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AN IMPROVED PROLOG IMPLEMENTATION WHICH OPTIMISES TAIL RECURSION 

David H D Warren 
Department of Artificial Intelligence 

University of Edinburgh 

'•"5MCp.p«r describe, ,o.« recent 

optimisation"" "ieTrgue' opti."l« 
matter of course in any new Prolog implementation, ana giv 
account of what is involved, 

2. INTRODUCTION is to report on some improvements recently 

dThetoPDEC°i0e Prolog1 [3^ familiarity with the Prolog language [5] [9] 

«d f , fullunlnrstanl1 

132 Z&'JZLS or Prolog implementation 

include [1] [*0 [2]. 

rl'r 
Byrd^to be reported on separately], and an "in-core" compiler. 

intecral part of the Prolog system which 

SSLK. — SK »• «£ -
r.s.6.'o S3S . proO.ee 'Ĵ JSZut̂ SZ 

much less working storage, bu debugging aids, such as 
itself is several times slower and most of the deDugging a , 
tracing, are no longer applicable. 

The ay,tern operates « «=p s«pp.ble 

respectively the Interpreter end theon 

compiler iTLTTt to" ̂ HffortV pr'.d.o, t.an I expected, 

yp, remainder of tbis paper• °" 

implemented a completely nam Pro'og imp .obv'10ua that it uould take 
other associated improvements. I . r,ractical fruition. In 
, lot of work to bring this improvement, oould be 
particular, it was not clear whether the as3°^.^ fts x shall argue 

made compatible with the needs J realised in conjunction with a 
belom, tn, foil^ petenti.1 of^ TO> 1^onlj ̂  ̂ ̂ from 

garbage collector. I therefore ambitious course of making the 
scratch, and laat«dpursued DEC_10 system necessary to support TRO. 

m.TntauTL'nr, ~.»t tb»t not ,11 the potential of 
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TRO has been realised, particularly as regards speed. 

3. OVERVIEW OF TAIL RECURSION OPTIMISATION 
Like most high-level languages, Prolog requires a stack (called the 

local stack) to hold frames, one for each active procedure, containing 
bookkeeping information together with the value cells for local variables. 
For most languages, the stack frame can be discarded at the time the 
procedure returns its result. With Prolog, however, this is not in general 
possible, since procedures may be non-determinate, ie. they can return 
several alternative results. The stack frame is therefore not generally 
reclaimed until backtracking occurs, after the procedure has generated all 
of its results. However, if the Prolog system can detect that it is 
generating the last alternative result of a procedure, it is possible to 
reclaim the stack frame immediately on return from the procedure, as in a 
conventional language, and many Prolog systems (including DEC-10 Prolog) do 
this. 

Detection of the determinate situation is therefore quite important, and 
normally requires either that the procedure be appropriately indexed 
yielding only one candidate clause for matching, or that determinacy be 
signalled or imposed by the programmer through Prolog's "cut" operator. 
(Hence much of the importance both of indexing and of cut). 

The additional improvement of tail recursion optimisation rests on the 
observation that one does not need to wait until a determinate procedure 
returns in order to reclaim its stack frame. Instead it is possible to 
recover the stack frame at the time the last goal in the procedure is 
invoked, ie. If the Prolog system has reached the last goal in a clause, 
and there are no remaining backtrack points within the procedure to which 
that clause belongs, then the current stack frame can be overwritten by the 
stack frame for the procedure about to be invoked. (Note that it is not 
necessary for the last goal to be a recursive call; a better name for the 
improvement would be "last call" optimisation). 

To get away with this rather underhand manoeuvre, it is obviously 
essential to extract from the old stack frame all information that will be 
needed subsequently. In particular it is vital not to leave behind any 
pointers to the old information. Hence the follov.ing departures from 
previous practice in Prolog implementation. 

1. Instead of information about the caller, a procedure is now passed a 
continuation, consisting of a pointer to the actual goal to be 
executed next, together with its associated stack frame. Thus the 
continuation does not necessarily correspond to the immediate parent 
procedure, but in fact indicates the most recent ancestor with 
further goals left to execute. 

2. A called procedure is no longer able to access its arguments merely 
by referring to the information about its caller (since the caller's 
stack frame may well have been discarded). Instead the arguments of 
a call have to be copied into registers, to be subsequently stored in 
the callee's stack frame as extra bookkeeping information looking 
exactly like ordinary (local) variable cells. This scheme has the 
incidental advantage that certain unification steps become null 
operations, namely those steps concerning unification with the first 
occurrence of a variable at the outermost level in the head of a 
clause where that variable is local (ie. it does riot occur in a 
compound term). The value cell for such a variable can be identified 
with the location for the corresponding procedure argument, and so 
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unification does not need to initialise it. 

3. A final pitfall which has to be avoided concerns the case where an 
argument to a procedure is (a reference to) anunmstantiated 
variable in the stack frame about to be discarded.Possib 
solutions to this problem, including the one actually adopted, 

discussed in a later section. 
So much for what the TRO is, what are its benefits? 

The most obvious benefit is a saving of (local) stack ord°r 
example, the procedure "quicksort" now only requires a stack of size order 
log N instead of order N. And a determinate, directly tail recursi e 
procedure such as "concatenate" now never uses more than one stack frame. 
However this benefit alone is not as significant as it might seem. 
Firstly the TRO is only recovering earlier space which would anyway 
recovered ^.ater. Secondly, we have ignored the fact that most Prolog 
procedures create new structures which cannot be storedonthe iooal stack 
So the effect on total working storage requirements (which is all the user 

is aware of) is unlikely to be dramatic. 

For the space saving to really pay off, it is necessary to have a 
garbage collector which can recover the space occupied by structures whi 
are no longer capable of being referred to. Such a garbage collector was 
already included in DEC-10 Prolog. The real worth of the TRO is then t , 
not only does it recover local stack frames, but also it allows ati™ctures 
which are only accessible through such stack frames t0 be f^ore 
collected A determinate tail recursive procedure can therefore 
potentially continue executing indefinitely, even though it creates new 
structures. A typical example would look like:-

cycle(S) modify(S,S1), cycle(S1). 
where •modify' is a determinate procedure which transforms a structure S 
into a new structure S1. The structure might be a term representing 
state of a database, or a term representing the conversation so far in 
natural language question answering system, for example. 

This ability of the TRO in conjunction with garbage collection to make 
certain kinds of Prolog program feasible for the first lme is, , 

the main argument for introducing it. 

A further benefit of the TRO, which particularly appeals to me, is that 
it also saves time, although it could be argued that the saving is not, by 

' . —listers without the need for saving and 
information can be kept in registe pffioiencv overheads of 
restoring. The net effect is to remove most of the efficiency overneaos o 
recursive procedures with respect to corresponding iterative loops in 

procedures where many clauses have to be examine or 

The actual speed improvement achieved when the TRO was incorporated in 
our DEC-10 implementatLn ranges from 6$ for examples of non- f--«a 
procedures to 56% for -concatenate' and 68? for 'length'' >• 
that this makes the speed of Prolog -concatenate' almost 
of the corresponding Lisp version compiled with the DEC-10 Stanford L p 
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compiler (assuming no change in the latter speed since 1977). The 
important special case of a unit clause had effectively already been 
optimised in the original implementation, so the improvements achieved in 
the best cases were not as typical of the general situation as had been 
hoped for. 

TRO is, of course, not a new idea (cf. for example SCHEME [6]), although 
it seems that it has seldom been incorporated in software in widespread 
use. The reason is probably that, because most languages include explicit 
iterative constructs, implementors feel the burden can be left on the 
programmer to recognise the iterative situation. However this state of 
affairs seems hard to justify, since TRO is relatively easy to implement 
(see below). 

It is important to notice that TRO is more widely applicable in Prolog 
than in other languages such as Lisp. For example the Prolog procedure for 
'concatenate' :-

concatenate([],L,L). 
concatenate([X|L1],L2,[X|L3]) concatenated ,L2,L3). 

is susceptible to TRO, giving essentially the following iterative version-
concatenated ,L2,L3) = 
(while L1 is a non-empty list 
do 

let List be a new record with 2 fields; 
head(List) := head(L1); 
L1 := tail(L1); 
field pointed to by L3 := List; 
L3 := a pointer to tail(List) 

repeat; 
field pointed to by L3 := L2; 
return) 

However for the Lisp version:-
concatenated ,L2) = 
(null(L1) -> L2, 
T -> cons(car(L1),concatenate(tail(L1),L2))) 

straightforward TRO does not yield an iterative version, since the last 
function call to be executed is the call to 'cons', not the call to 
'concatenate'. It will be seen that the iterative version requires the 
handling of partially completed structures and the passing around of 
pointers to the corresponding "holes". This is available as a matter of 
course in a Prolog implementation, since it is a feature of the language 
(the "logical variable"), but the same is not true of Lisp. Now because, 
in cases like this, the iterative version can only be programmed using the 
very low-level concepts of pointers and pointer assignments, it seems even 
more unreasonable for the job to be left to the programmer rather than the 
implementation. 

The following section gives a detailed description of what is involved 
in implementing the TRO. The reader familiar with the standard 
implementation will see that TRO introduces very little extra complexity, 
provided it is designed in from the outset. For this reason, I think the 
TRO should be included as a matter of course in any new Prolog 
implementation, even if, without the inclusion of a garbage collector, the 
full potential is not realised. 
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4. DESIGN DETAILS FOR TAIL RECURSION OPTIMISATION 

This account aims to be as self-contained as possible, "ut the reader 
should refer to [7] for certain details. Note that the version actually 
implemented differs slightly from the more ideal design given here, because 
of constraints imposed by adapting the existing implementation. 

4.1. Data Areas 
The main data areas are the code area, containing data representing the 

program itself, and three areas operated as stacks, the local stack, the 
global stack and the trail. Each procedure invocation leads to the 
creation of an environment comprising three stack frames, one on each 
stack. The local frame contains information that is only required during 
the execution of the procedure concerned, namely bookkeeping information 
and the value cells for local variables. The global frame contains 
information representing the new structures (complex terms) created by the 
procedure. For structure-sharing implementations, this will comprise just 
the value cells for global variables. The trail frame contains the 
addresses of variable cells which have been assigned to during unification 
and which must be reset to "unassigned" on backtracking. 

4.2. Registers , . . 
The current state of a Prolog computation is defined by certain 

registers containing pointers into the main data areas. These registe 

are:-
L latest local frame 
G latest global frame 
TR top of trail 

(V) 
(VI) 
(TR) 

CP continuation point 
(goals to be executed next) (A) 

CL continuation local frame W 
CG continuation global frame (X'J 

BP backtrack point (alternative clauses) 
BL backtrack local frame rvvil 
BG backtrack global frame ^Vv 

where the names in brackets are those used in [7] for roughly corresponding 
registers. In addition, there are registers:-

A1, A2, ... etc. 
representing the arguments of a procedure call. These registers °°nta^ 
constructed terms, ie. representations of atoms, compound terms 

references to variable cells. 

4.3. Bookkeeping Items 
Each local frame contains space for six items of bookkeeeping 

information, referred to as:-
CP(1) CL(1) 
G(1) TR(1) 
BP(D BL(1) 

where 1 is the address of the local frame. These items are the values of 
the corresponding registers at the time the procedure was invoked. The 
items TR, BP and BL are only needed if the procedure is a choice point. 



4.4. Shadows 
Certain registers are not strictly essential, since they merely "shadow" 

certain stack locations:-
G = G(L) CP = CP(L) 
CG = G(CL) CL = CL(L) 
BG = G(BL) 

However the use of these non-essential registers is likely to be more 
efficient. (Certainly this is the case in the DEC-10 implementation). In 
particular, BG is involved in checking whether a variable assignment needs 
to be trailed. 

4.5. Procedure Arguments 
The local frame also contains n locations (where n is the arity of the 

procedure) into which the procedure's arguments are stored. These 
locations are called:-• 

A1(1), A2(l), ... etc. 
where 1 is the address of the local frame. These locations look just like 
ordinary variable cells, except that the value of the cell cannot be 
"unassigned". 

4.6. Analysis of a Prolog Program into Basic Operations 
Let us now analyse the procedural aspect of a Prolog program into some 

basic operations which allow for the tail recursion optimisation. The 
detailed implementation of each basic operation will then be described 
later. The naive analysis of a general clause:-

P :- Q, R, S. 
would be:-

mateh P 
enter 
call Q 
call R 
call S 
exit 

However to allow for the tail recursion optimisation, the last call must be 
treated differently; the actual analysis is:-

match P 
enter 
call Q 
call R 
depart S 

Thus, in effect, "depart = call + exit". Clauses with no goal in the body 
(a unit clause), or with just one goal in the body (a doublet clause), are 
treated as special cases:-

match P match P 
return proceed Q 

One can summarise this as "return = enter + exit" and "proceed = enter + 
depart". 

The operations corresponding to a procedure P comprising clauses C1, C2, 
C3 are:-

arrive P 
choice 
try C1 
try C2 
nochoice 
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trust C3 
If there is just one clause, the operations reduce to merely.-

arrive P 
trust C1 

Note that if the procedure is indexed, instead of just one sequence o 
candidate clauses, there will be a set of alternative subsequences, one for 
each different key; for keys with just one candidate (a common caseJ> oW 
a single trust action will be necessary, as in the second of the two 

alternatives above. 

4.7. Description of the Basic Operations 
The details of each basic operation, apart from the unification 

operation -match', are now described. Two other basic operations are also 
covered. These are -fail', the backtracking operation which occurs when 
unification fails, and 'cut', the operation corresponding to the Prolog 

control primitive. 

{Load arguments and invoke procedure with new continuation.} 
load A1,... with arguments from CL and CG; 
CP := remaining goals; 
goto procedure 

enter 
{Complete the current local and global frames.} 

save CP, CL, G into L; 
CL := L; CG := G; 
L := L + size of local frame; 
check L is not full; 
G := G + size of global frame; 
check G is not full 

exit 
{Resume at continuation, discarding 
procedure is determinate.} 
if BL < CL then L := CL; 
restore CP, CL from CL; 
CG := G(CL); 
goto CP 

the local frame if the current 

P {cf "call + exit". Load arguments, and invoke the new procedure with 
the'old continuation, overwriting the local frame if current procedure 

is determinate.} 
load A1,... with arguments from CL and CG; 
if BL < CL then L := CL; 
restore CP, CL from CL; 
CG := G(CL); 
goto procedure 

{cf "enter + depart". Load arguments, complete the local frame only 
if the current procedure is non-determinate, complete the global frame, 
and invoke the new procedure with the existing continuation.} 
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load A1,... with arguments from L and G; 
if BL = L 
then 

(save CP, CL, G at L; 
L := L + size of local frame; 
check L is not full ); 

G := G + size of global frame; 
check G is not full; 
goto procedure 

return 
{cf. "enter + exit". Complete the local frame only if the procedure is 
non-determinate, complete the global frame, and resume at the current 
continuation.} 
if BL = L 
then 

(save CP, CL, G at L; 
L := L + size of local frame; 
check L is not full ); 

G := G + size of global frame; 
check G is not full; 
goto CP 

arrive 
{Store the procedure's arguments.} 
store A1,... into L 

choice 
{Create backtracking point.} 
save BP, BL, TR at L; 
BL := L; BG := G 

try 
{Select a clause with other alternatives.} 
BP := other clauses; 
goto clause 

nochoice 
{Remove the backtracking point.} 
restore BP, BL from L; 
BG := G(BL) 

trust 

{Select a clause with no other alternatives.} 
goto clause 

fail 

{Restore the state corresponding to the latest backtracking point.} 
if BL < L 
then 

(L := BL; G := BG; 
restore CP, CL from L; 
CG := G(CL) ); 

undo TR as far as TR(L); 
goto BP 



cut 
{Remove backtracking points created since the current procedure: was 
invoked, delete trail entries no longer relevant, and remove any local 
frames which still remain after the current one.} 

if not BL < CL 
then 

(until BL(BL) < CL do BL := BL(BL); 
restore BP, BL, XRO from BL; 
BG := G(BL); 
tidy TR as far as TRO; 
L := CL + size of local frame ) 

4.8. Design Considerations 
There are certain points to notice in the above design. 
1 As already mentioned, it is assumed that it is advantageous to 

saving and restoring of registers can be avoided. 

2. For completely determinate procedures (ie. procedure a°"vations 
within which the action choice is not executed), there is absolutely 
no saving or restoring of the "backtracking registers" BP, BL and TR. 
Note that the cut operation therefore has to be slightly more 
expensive in the general case, since it has to trace back down the BL 

chain. 

3 The saving of the other registers (CP, CL and G) is not performed at 
' the beginning of the procedure, but is postponed as late aspossible 

in ihP hone that it will not be necessary to preserve the local 
frame. It may appear that this approach is disadvantageous in the 
non-determinate case, since there is then the overhead ofrepeatedly 
saving the same information for each clause entered. However, in 
experimental comparisons of the two approaches, I have not found any 
example, even among very non-determinate programs, where late 
saving" is slower. The reason, I think, is that the extra overhead 
mentioned is balanced by reduced overheads in calling a procedure 

where no clause matches. 

4 Reeisters CP CL and CG are restored by 'depart' since otherwise it 
IS?" necessary for 'rsturn' to restore t»es. ™ 

5' JUS r & M n'oleeTep £iŜ  £ 
G register or to check it for global stack overflow. 

4.9. Treatment of Procedure Arguments 
rprtain details concerning the handling of procedure arguments have not 

yet been discussed. In particular ». »a.e to 0. 
"dangling reference" is left to a variable cell in a discarded stack fram . 

One way to do this would be to fully "dereference" all Procedure 

arguments, and to forgo ^^"^f^encf30 ThisTa^ the disadvantage 
dereferenced values were a dangling reierence. 
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that it involves quite a lot of extra work at runtime. 

As an alternative, one can try to spot the possibility of a dangling 
reference entirely at "compile-time", and only permit the stack frame to be 
discarded where it can be guaranteed always safe to do so. A variation of 
this, the approach actually adopted, is to force any variables which might 
otherwise have given rise to a dangling reference to be stored in the 
global stack. Both these options involve little or no run-time overhead, 
but are less efficient at conserving stack space. I have adopted the 
second option because it was the simplest to incorporate in the existing 
implementation and because hopefully the garbage collector will be able 
eventually to reclaim the extra global variables. 

In the implemented version, no attempt is made to fully dereference 
procedure arguments. If an argument is a variable, the argument register 
is loaded with a reference to that variable's cell, unless it can be 
guaranteed (at compile-time) that the variable is instantiated (to 
something other than a reference to its own local stack frame), in which 
case the value of the variable's cell is loaded. This guarantee can be 
made if the variable has an occurrence in the head of a clause and 
satisfies the normal conditions for being a local. To understand why this 
is so, consult [7]. The TRO then requires that a variable be deemed global 
if a reference to that variable is passed as an argument to the last goal 
in the clause. Thus the only variables made global which would otherwise 
have been local are those which (i) occur in the last goal, and (ii) only 
occur in the body. In practice this is quite a small minority of 
variables. 
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Abs t r ac t  

He  de sc r i be  t he  t op  down  execu t i on  o f  l og i c  p rog rams  and  t h e  concep t s  o f  
c ompu ta t i on  r u l e  and  s ea r ch  r u l e .  We  show t ha t  e spec i a l l y  PROL OG ' S  dep th  f i r s t  
s ea r ch  r u l e  r e su l t s  i n  impor t an t  s imp l i f i c a t i ons  o f  t he  nece s sa ry  run t ime  
s t r uc t u r e s .  A t  a  h igh  l eve l ,  we  de sc r i b e  a n  i n t e rp r e t e r  w i th  i t s  r un t im e  
s t r uc tu r e .  Th i s  imp lemen ta t i on  i s  p robab l y  c l o se r  t o  imp lemen ta t i on  t e ch n iq u es  
o f  A lgo l - l i ke  l angua ge s  t h an  t o  s t r uc t u r e  sha r i ng .  We  c l a im  tha t  t h i s  h igh  
l eve l  i n t e rp r e t e r  i s  a  f a i r  de sc r i p t i on  o f  t h e  be s t  known  imp lemen ta t i ons .  At  
t n e  s ame  h igh - l eve l  -  wi thou t  cons ide r i ng  t he  ac tua l  r ep r e sen t a t i on  o f  t he  
b ind ing s  o f  va r i ab l e s  -  we  d i s cus s  t he  d i f f e r en t  oppo r t un i t i e s  t o  s ave  sp ace  b y  
popp ing  t he  env i ronmen t  s t a c k  o f  t he  run  t ime  s t r uc tu r e .  F in a l l y ,  we  d i s cus s  
t he  p rob l ems  p o sed  t o  space  s av ing  b y  t he  r ep r e sen t a t i on  o f  t ne  b ind ings  o f  t he  
v a r i ab l e s .  We  s h o w  t ha t  s t r uc tu r e  s ha r i ng ,  a l t hough  supe r io r  f o r  a  gene ra l  
r e so lu t i on  t heo rem p rove r ,  i s  no t  t he  on ly  pos s ib i l i t y  t o  hand l e  t ne  b ind ings  o f  
t he  va r i a b l e s .  

1  L og ic  p rog ra ms  -  PRO L O G  

L og i c  p rog rams  [ j j . ]  

A  l og i c  p rog ra m compr i s e s  a  s e t  o f  p roce d u r e s  and  a  goa l  s t a t emen t .  A 
p r ocedu re  o r  Horn  c l au se  h a s  t he  fo rm  B  <—  A-)  A r i  ( n  >  =  0 )  w i th  B  and  
l i t e r a l s .  L i t e r a l s  have  t he  fo rm  R f  1 1 ,  .  .  .  , t ^ )  ( k  >  0 )  w i th  R a  k - a d i c  r e l a t i on  
a n d  t he  t j  t e r m s  i . e .  cons t an t s  ( f i r s t  symbo l  a n  uppe r  c a se  l e t t e r ) ,  va r i ab l e s  
( f i r s t  symbo l  a  l ower  c a se  l e t t e r )  o r  exp re s s ions  o f  t he  fo rm  f  ( t • ) , . . . , t m )  (m  >  
0 )  w i th  f  a  m-a ry  func t i on  symbo l  and  t he  t A  aga in  t e rms ) .  Such  a  c l au s e  can  be  
r ead  e i t he r  a s  a  l og i ca l  f a c t  :  ' f o r  a l l  va lue s  o f  t he  va r i ab l e s ,  B  i s  t r ue  i f  
A(  3 1 1 ( 3  3 1 1 ( 3  A n  a r e  t r ue '  o r  a s  a  p rocedu re  t o  so lve  t he  p rob l em 8  :  ' t o  so lve  
B ,  s o lve  A- |  a nd  .  and  A n .  A  goa l  s t a t emen t  h a s  t he  fo rm  A - j  ,  .  . ,A„  (n  >  0 )  
w i th  t he  A^  l i t e r a l s  I t  h a s  a l so  t w o  wa ys  o f  r e ad ing ,  a  dec l a r a t i ve  one  :  
' t h e r e  does  no t  ex i s t  va lue s  f o r  t he  va r i a b l e s  such  t ha t  A- |  a nd  . . .  A a r e  
t r ue '  and  a  p roce du ra l  one  :  ' f i nd  va lue s  f o r  t he  va r i ab l e s  s o lv ing ' t he  p r ob l ems  
A-]  a nd  . .  and  A r i ' .  

A  p rocedu re  B  < - -  A - j , . . . ,A r i  can  be  u sed  t o  so lve  a  p rob l em  when  t he  head ing  
B  o f  t he  p rocedu re  ma tc he s  t he  l i t e r a l  ( ' c a l l ' )  r e p r e se n t i ng  t he  p rob l em.  W i th  
'm a t ch '  w e  mean  t ha t  t he  head ing  a nd  t ne  ca l l  mus t  ag r ee  t o  cons ide r  t he  same  
p rob l em,  n am e ly  t he  mos t  g e ne r a l  i n s t ance  o f  t he  c a l l  f o r  w h ich  t he  p ro ced u re  
can  be  u sed .  Th i s  ma tch ing  p ro ce s s  ( ' un i f i c a t i on ' )  c r ea t e s  a  subs t i t u t i on  

.  componen t s  x  <— t .  3ucn  a  c ompone n t  i nd i ca t e s  t ha t ,  fo r  
ag r eemen t  be tween  c a l l  and  head ing ,  i t  i s  ne ce s sa r y  t o  r ep l ace  t he  va r i ab l e  x  by  
; f e t h e e r f o rm ' t K 1  ^  W ° r d S '  ? °  r * 3 t r i c t  t n e  V a l  u e s  f o r  t n e  t r i ab l e  X t o  va lue s  
o f  t h e  fo rm  t .  Borne  com ponen t s  o f  t he  subs t i t u t i on  can  be  r e l a t ed  t o  ' n e  
wh i t e  n th  l n  t n e  ? a n  ( 0 U t P U t )  a n d  dua l l y  a f f ec t  t he  r ema in ing  p r o ems ,  

? !  componen t s  a r e  r e l a t ed  t o  va r i ab l e s  o f  t he  p r oc e du r e  ( i npu t  1  and  
f w a n o l .  r 'V s u ? p r o ? } e m s  c r ea t ed  b y  t he  app l i c a t i on  o f  t h i s  p ro ced u re  ( i n s t ance s  o f  t n e  c a l l s  i n  t he  body )  ,  

To  execu t e  a  p rog ram ,  t he  s e a r c h  r u l e  s e l ec t s  t he  i n i t i a l  goa l  s t a t emen t  
1 , .  . . .  A n ,  d e m a n d s  t h e  c o m p u t  a t  i g t i  r u l e  t o  s e l ec t  a  c a l l  A  •  P  ( t ,  ' I  

app l i e s  a  p ro ced u re  R  ( t ' i . .  t ' „ )  <  R .  n  - \  w  1  *  1  
• '  '  P  ®a t chmg  t ha t  c a l l  w i t h  a  
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subs t i t u t i on  ( 'mo s t  gene ra l  un i f i e r ' )  a  and  de r i ve s  t he  new ^ 1  s ta t emen t  
,  ,  .  d  r  A-  1  . . .A„ )  a  •  The n  t h e  s ea r ch  r u l e  s t a r t s  ove r  

"  i t .  - ' s e l e c t i ng  I ' goa l  s t a t e m e n t ,  even tua l l y  a c t i va t i ng  t he  compu ta t i on  r u l e  
and  de r i v ing  a  new goa l  s t a t emen t .  Hew goa l  s t a t emen t s  a r e  ac L xys ;  s e l e c t ed  
goa l  s t a t emen t s  become  i nac t i ve  once  a l l  p rocedu r e s  ma t c h ing  t he  s e  „c  e  ^  
have  been  app l i ed .  T he  s ea r ch  can  b e  r ep r e sen t ed  by  a n  OR- t r ee ,  .  _  
S .  t "  nodes  a r e  goa l  s t a t e me n t s .  The  de s cendan t s  o f  a  node  a r e  t he  
a l t e rna t i ve  goa l  s t a t em en t s  de r i vab l e  f rom t he  goa l  s t a t em en t  " '  t ha t  node .  Th e  
s ea r ch  i s  f i n i shed  once  a l  I  nodes  a r e  i nac t i ve .  The  t e rmina*  ° f  

a r e  e i t h e r  unso lvab l e  goa l  s t a t emen t s  o r  emp ty  goa l  s t a t emen t s .  Th  ^ .y  g  
s t a t emen t s  r ep r e sen t  so lu t i o n s .  T he  co mp o s i t i on  o f  t h e  subs t i t u t i ons  u s ed  o r ,  

p j  " t h  the  roo t  node  t o  emp ty  nod . ,  W l Ud  
i n i t i a l  goa l  s t a t emen t  g ive s  t he  de s i r ed  r e . u l t .  T o  oo .p l . t e  t h .  a ea r o n ,  on ly  
t he  a c t i ve  goa l  s t a t emen t s  a r e  needed .  

A  goa l  s t a t emen t  can  be  r ep r e sen t ed  by  an  AND- t r ee  t he  iC S£ .  The  
r o o f  node  ha s  a s  immed ia t e  de scendan t s  t h e  s u b g o a l s  Ai  o f  t he  i n i t i a l  goa  
r o o o  noae  na s  S ub< toa l  A ,  b e ing  execu t ed  by  a  p ro ced u re  B  
r  X  St  1 ; . ' ' i eS , , , i n f a 8  ? i e  ' ddbgo l l .  B ,  B „ .  The  g o . ,  «« .»»«  
co r r e spond ing  t o  a  p roo f  t r e e  i s  g iven  by  t he  nonempty  t i p s  ™l J2 a r J i r e e  

c a n ' e a s i l y^be  S e r ^ / f rom"^^  f t he r "^app ly ing ' t he  s e l ec t ed  p rocedu re  o n  t he  
ca l l  chosen  b y  t he  co mp u t a t i o n  r u l e .  

P RO L O G  

Tne  s ea r ch  ru l e  o f  PRO L O G  e xp l o r e s  t he  s ea r ch  t r e e  dep th  f i r s t ,  PROLOG 
r u j e  01  r n  f  s t a t em en t  ( t h e  cu r r en t  goa l  

a ! W f y Lt ) r , < 3 T h i s  s t r a t e g y  g reany  S i m p l i f i e s  t h e  needed  r u n t i m e  s t r u c t u r e s .  
SXJT ^ ' l  ac  i  go !  s t a t emen t s  ' a r e  on  t he  b r anch  l e ad ing  f rom t he  roo t  t o  

co r r e spond ing  t o  t he  cu r r en t  goa l  s t a t emen t  and  t o  u se  back t r ack ing  t o  r e s to r e  
t he  o t he r s .  

The  compu ta t i on  r u l e  o f  PROLOG a lway s  s e l ec t s  t he  l e f t  m o s t  subgoa l  i n  t ne  
p roo f  t r e e  I t  me a ns  t ha t  subgoa l s  a r e  s o l  v e d  s e que n i a l  execu t i on  o f  a  
subgoa l  A i + 1  i s  on ly  s t a r t ed  when  t he  subgoa l  A i  i s  comple t e ly  so lved .  

.  .  l A f i -  t - o  r i kh t :  o r ,  b ack t r ack ing ,  t h e i r  
The  s ubgoa l s  f  ££  J  n 0 de  co r r e s p o n d in g  t o  t he  s e l e c t e d  

expans i ons  a r e  r emoved  f rom r i gh t  , o  i  ha ok t r a c kDo i n t  Th e  node s  
subgoa l  i »  an  a c t l . ,  goa t  s t a t emen t  « , p ,  

Z ' l lL i l i c  ZIVZU, . °L„  - e  matches  t be  oa i i .  a ce  pa r t  o r  t h .  
cu r r en t  s egmen t  o f  t he  p roo f  t r e e .  O n  back t r ack ing ,  t he  cu r r en t  s egmen t  
r e mo ved  and  wha t  r ema ins  o f  t he  p roo f  t r e e  bec ome s  t ne  cu r r en t  goa l  s t a t emen t .  

2 . .  Run t i me  s t r uc tu r e  

t ne  p roo f  t r e e s  co r r e spond ing  t o  t he  back t r ackpomts .  

t ' s ua l Jy 1 " 1  VZ — sir T' » Ss 
p rocedu re  w i th  un ique  names  f o r  t he  va r i ab l e s .  T  i s  r e s  
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use  o f  memory ;  each  t ime  a  p rocedure  i s  used ,  a  new copy  i s  made .  I t  i s  
p re fe rab le  to  use ,  l i ke  in  Algo l ,  r een t ran t  code  fo r  ine  r ep resen ta t ion  of  
p rocedures ,  such  tha t  a l l  i n s t ances  o f  the  same  l i t e ra l  sha re  the  code  
desc r ib ing  tha t  l i t e ra l .  Th i s  i s  poss ib le  by  us ing  b ind ing  env i ronments .  The  
pu re  code  i s  a lways  accessed  in  the  con tex t  o f  a  pa r t i cu la r  b ind ing  env i ronment .  
When  access ing  a  va r i ab le  in  the  r een t ran t  code ,  t he  cor respond ing  b ind ing  
env i ronment  i s  consu l t ed .  Thus ,  l i t e ra l s  can  be  p resen ted  by  a  po in te r  to  the  
pure  code  and  a  po in te r  to  tne  b ind ing  env i ronment .  Because  a l l  l i t e ra l s  o f  the  
same  p rocedure  body  sha re  the  same  env i ronment ,  i t  i s  conven ien t  t o  s to re  the  
b ind ing  env i ronment  in  the  common f a the r  node .  

We can  d i s t ingu i sh  two  k inds  o f  nodes  i n  the  p roof t r ee .  We have  the  
t ipnodes  which  a re  the  unso lved  subgoa l s  o f  the  cu r ren t  goa l  s t a t ement  and  the  
non t ipnodes  which  a re  the  pa r t i a l ly  so lved  p rob lems .  Excep t  o f  the  l e f t  mos t  
t i pnode ,  the  one  to  be  s e l ec ted  by  the  computa t ion  ru le  I  t he  cu r ren t  subgoa l ) ,  
a l l  t i pnodes  a re  pa r t  o f  i n s t ances  o f  p rocedures  B  <— B- ) , . . . ,B m  wi th  the i r  
f i r s t  l i t e ra l  B- j  e i the r  a s  cu r ren t  subgoa l  o r  a s  non t  i pnode .  Assuming  tha t  the  
pure  code  a l lows  to  f ind  the  r igh t  hand  b ro the r s  B 1  +  1  ,  B i + 2 ,  .  .  o f  any  subgoa l  
B i ,  and  knowing  tha t  t he i r  execu t ion  demands  the  same  b ind ing-env i ronment ,  a t ;  
exp l i c i t  r ep resen ta t ion  o f  the  t ipnodes  in  the  p roof t r ee  i s  no t  necessa ry ,  they  
can  be  accessed  e i the r  th rough  non  t ipnodes  o r  th rough  the  cu r ren t  subgoa l .  

For  the  non t ipnodes  i t  i s  conven ien t  t o  use  a  s t ack  ( ' env i ronment  s t ack ' ) .  
The  subgoa l s  be ing  execu ted  a re  pushed  on  the  s t ack ,  on  back t rack ing ,  the  s t ack  
i s  popped .  

F ina l ly ,  we  have  to  cons ide r  the  un i f i ca t ion  be tween  ca l l  and  p rocedure  
head ing .  Bes ides  c rea t ing  a  b ind ing  env i ronment  fo r  the  p rocedure ,  a l so  the  
b ind ing  env i ronment  a s soc ia t ed  wi th  the  ca l l  ( and ,  even tua l ly  o the r  pa r t s  o f  the  
run  t ime  s t ruc tu re  devo ted  to  the  r ep resen ta t ion  o f  the  va r i ab les )  i s  upda ted .  
Al l  upda tes  no t  undone  by  popp ing  the  cu r ren t  segment  o f  the  env i ronment  s t ack  
need  to  be  saved .  For  t h i s  purpose  i t  i s  p re fe rab le  to  use  a  s t ack  .  
( ' t r a i l ' ) .  Eacn  back t rackpo in t  con ta ins  a  po in te r  t o  the  top  o f  the  t r a i l  ( the  
beg in  o f  a  new cu r ren t  segment ) .  The  cu r ren t  segment  o f  t he  t r a i l  con ta ins  a l l  
changes  made  t o  the  r ep resen ta t ion  o f  the  p roof t r ee  a s soc ia t ed  wi th  the  l a s t  
bacKt rackpo in t ,  wh ich  a re  no t  undone  by  popp ing  the  cu r ren t  segment  o f  t he  
env i ronment  s t  ack .  

Tne  s t a t e  o f  the  computa t ion  i s  cha rac te r i zed  by  
Ct 'RR-CALL 
CUR P . -EN 

a  po in te r  t o  the  pure  code  o f  the  cu r ren t  subgoa l  .  
a  po in te r  to  the  node  con ta in ing  the  b ind ing  env i ronment  o f  the  
cu r ren t  ca l l  ( the  ' f a the r '  o f  the  cu r ren t  ca l l ) .  

*  CURR-PROC :  a  po in te r  t o  the  pure  code  o f  the  p rocedure  to  be  app l i ed  on  
the  cu r ren t  ca l l .  

*  LABTBACK :  a  po in te r  to  the  l a s t  back t rackpo in t .  

Tne  cu r ren t  goa l  s t a t ement  i s  g iven  by  the  cu r ren t  subgoa l ,  i t s  r igh thand  
b ro the r s  and  the  r igh t -hand  b ro the r s  o f  a l l  i t s  ances to r s .  

To  back t rack  the  cu r ren t  segment  o f  the  env i ronment  s t ack  i s  popped  ( the  
node  po in ted  by  LASTBACK becomes  the  cu r ren t  subgoa l ) .  a ) )  upda tes  no ted  on  the  
cu r ren . .  s egment  o f  the  t r a i l  a re  undone  and  tne  cu r ren t  segment  o f  the  t r a i l  i s  
pOpp0Q.  

To  summar ize ,  a  ' de te rmin i s t i c '  node  con ta ins  
CALL :  a  po in te r  to  the  pure  code  o f  tne  ca l l  tm  q  

to  the  r igh thand  b ro the r s .  po in te r  g ives  a l so  access  
FATHER :  a  po in te r  to  the  f a the r  o f  t h i s  node .Th i s  f a the r  node  con ta ins  the  

b ind ing  env i ronment  a s soc ia t ed  wi th  CALL,  i t  a l so  g ives  access  to  
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t he  r i gh thand  b ro the r s  o f  a l l  ance s to r s  o f  CA L L .  
*  a  b ind ing  env i ronmen t  f o r  t he  va r i ab l e s  o f  t h e  p rocedu re  app l i ed  on  c a l l .  

A  b ack t r a ckpo in t  a l so  con t a in s  :  
»  BACK  :  a  po in t e r  t o  t he  p r ev i o u s  back t r ackpo in t  .  
*  PROCED U R E :  a  p o in t e r  t o  t he  pu re  code .o f  t he  nex t  p rocedu re  t o  be  ap p l i ed  on  

CA LL ( g ive s  a cce s s  t o  a l l  un t r i ed  p rocedu re s ) .  
*  TPAIL  :  a  po in t e r  t o  t he  t r a i l  .  

A l g o r i t h m  

1 .  Push  a  node  on  t he  env i ronmen t  s t a ck  wi th  
-  CALL C URR-CALL,  
-  FATHER :=  CURR-ENV 
-  F ind  ' t h e  f i r s t  succe s so r  o f  C U P R -P R OC wh ich  pos s ib ly  m a tches  CURR-

CALL,  i f  none  t hen  we  have  a  de t e rmin i s t i c  node  „ , » . 1 C . 0  
e l s e  we  have  a  back t r ac kpo i n t  ( a  b i t  o f  CALL o r  rATHLP 

can  be  u se d  t o  i nd i ca t e  t he  d i f f e r ence )  
and  we  have  t o  comple t e  t he  node  w i t h  :  
BA CK  :=  LASTBACK,  LAST6ACK becomes  t h e  new node  
PROCEDURE :=  t he  nex t  pos s ib ly  ma tch ing  p rocedu re  
TPA I L  :=  t op  o f  t he  t r a i l  

A b i n d ing  env i ronmen t  f o r  t he  va r i ab l e s  o f  CURR- PROC 
2 .  Un i f i c a t i o n  be tw e e n  

C URR-CALL w i th  i t s  b ind ing  env i ronmen t  CURR- ENV and  
t h e  head ing  o f  CUPR-PROC w i th  i t s  b in d in g  env i ronmen t  i n  t he  new node .  

A l l  changes  t o  t he  env i ronmen t s t ack  no t  r e s t r i c t ed  t o  t he  cu r r en t  s egmen t  
a r e  no t e d  on  t he  t r a i l .  

CURR-CALL :=  f i r s t  c a l l  i n  t he  body  o f  CURR-PRO C 
C U R R -E N V  :=  t he  new node  o f  t he  e nv i ronmen t s t ack  

3 .  I f  s ucce s s f u l  un i f i c a t i on  
t nen  f i nd  t he  n ex t  unso lved  subgoa l  ( i f  none  :  a  s o lu t i on  i s  de r i ved ) .  
wh i l e  CURR-CALL =  NIL  do  

CURR-CALL :=  t he  suc c e s so r  o f  CAL L  i n  CURR- tNV 
CURR-ENV :=  FATHER o f  C U R R - EN V  

e l s e  back t r ack  :  ( i f  LASTBACK =  NIL  t hen  en d  o f  compu ta t i on )  
-  u s e  TPAIL  po in t e r  o f  LASTBACK t o  undo  changes  wh ich  a r e  n o t  i n  t he  

cu r r en t  s e gme n t  o f  t he  env i ronmen t  s t a ck  and  pop  cu r r en t  s egmen t  o  
t ne  t r a i l .  

-  CURR-CALL :=  CALL o f  LASTBACK 
-  CURR-ENV :=  FATHER o f  LASTBACK 
-  CUPR-PROC  :=  PROCEDURE o f  LA S TB A C K  
-  LAS TBACK :=  BACK o f  LASTBACK and  pop  t he  cu r r en t  s egmen t  o f  t he  

env i ronmen t s t ack  ( a l l  nodes  i nc lu s ive  t he  one  po i n t ed  by  
t he  o ld  va lue  o f  LASTBACK)  

^ " i n  the  f i r s t  PROLOG imp lemen ta t i on  [ 1 ] ,  [ 5 ] ,  t he  i de a  t o  u s e  r e en t r an t  code  
fo r  t he  p rocedu re s  was  r a t he r  ba sed  on  Bo y e r  and  Moore  s  s t r uc tu r e  s ha r i ng ,  
f o r  r e so lu t i on  t h eo rem p rove r s  [ 2 ] ,  no t  on  imp lemen ta t i on  t e chn iques  f o r  

-  Mos t 1 imp lemen ta t i ons  do  no t  make  a  d i s t i nc t i on  be twe e n  de t e r min i s t i c  node s  
and  back t r a ckpo in t s  ( [ 1 ] ,  [ 7 ] )  t he  f i r s t  imp lemen ta t i on  [ 1 ]  even  do  n o t  
keep  t r a ck  o f  t ne  l a s t  back t r ackpo in t ,  i t  pops  nodes  one  by  one .  

-  The  f a c t  t ha t  a  de t e rmin i s t i c  node  i s  more  s pa c e  e f f i c i e t u  t han  a  
back t r acknode ,  and  t ha t  de t e r m in i s t i c  nodes  p l ay  a  c ruc i a l  r o l e  i n  he  
space  s av ing  t e chn iques  de sc r i bed  i n  t he  nex t  s ec t i on  makes  i t  wor thwh i l e  

- 4 -
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t o  spend  some  e f fo r t  in  de te rmin ing  ' t he  f i r s t  p rocedure  which  poss ib ly  
"a tones  a  ca l l ' .  The  ex t remes  a re  ' t he  f i r s t  p rocedure '  and  ' fu l l  
un i f i ca t ion  be tween  head ing  and  ca l l ' .  

•3 -  Oppor t  un i t  i e s  to  POD the  env i ronment -  STAR- i f  .  Pi t  f a l  1  S  

a .  Comple t ing  a  de te rmin i s t i c  subgoa l  

b /  \  

/ \ ^ d2 d"5 

\ 1 p ^ 
*  *  s 7  sg  

( a )  

F ig -  1 .  Dropp ing  a  de te rmin i s t i c  sub t ree  

( b )  

In  f ig .  1 .  r  deno tes  the  roo t  o f  the  p roof  t r ee  the  d -  deno te  
de te rmin i s t i c  nodes ,  the  b i  deno te  back t rackpo in t s ,  t he  s , -  deno ' e^nso j / ed  
subgoa l  s  and  the  *  deno te  empty  s e t s  o f  subgoa l s .  Tne  subgoa l  co r respond ing  to  

2  i s  comple te ly  so lved ,  the  so lu t ion  i s  un ique  (no  back t rackpo in t s  in  the  
sub t ree ) .  Th i s  comple ted  sub t ree  can  be  d ropped  f rom the  p roof  t r ee  (F ig  Yb)  
wi tnou t  a f f ec t ing  the  behav iour  o f  tne  a lgor i thm.  Indeed  we  have  fhe  i ami  
cu r ren t  goa l  s t a t ement  and  the  goa l  s t a t ement s  co r respond ing  lo  the  
back t rackpo in t s  (b 1 f b 5 )  a re  a l so  tne  same .  " - r e spond ing  .o  the  

the  JTT ,teCll , l lque corresP°nds to the situation in a  conventional language 
activation record is popped when returning from a procedure. 

< b )  D U t he° a n h ? - d e - C t i Y 3 1 1 ( 1  h a t ' d ] i ' ; g  ° f  ' t a i l  end  r ecur s ion '  ( see  sec t ion  
in  F ia  ?  IT  technique  i s  r e s t r i c t ed  to  the  s i tua t ion  dep ic ted  

F ig .  2 .  where  on ly  one  p rocedure  ma tches  the  ca l l  and  the  body  i s  empty .  

and  cSS ;° i s °a f  de te^n i sS ic  no 'de"  = C l 'RR-CALL .  Nil  

s 
y \ \  X j V  C U R R - E N V  : b i  

' 2  3 3  CURR-ENV :d 2  S3  CL 'RR-CALL:  S3  

CL 'RR-CALL:«  

/ 

( a )  (b )  ( c )  

the  p„ 0 M l J „  „„  „  

opT ne™f"*T ° f  C , L L  1 , 1  CL'PF-ENV.  
(new top  i s  e i tner CURR-ENV o r  LASTBACK) ,  ° f  t n e  e n v i r ° r "»e" t  s t ack  
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b. Tail end recursion 

r 

/\ 
b1 s5 

Cl'RR-ENV :Ei 

CURR-CALL:s2 

( a) 

Fig. 3. Replacing tail end recursion by iteration. 

The situation is depicted in Fig. 3- The E-p denote the binding 
environments which are part of the nodes. In Fig. 3-a, s2 is the last call 
of a procedure surviving in the proof tree. (its eventually lefthand 
brothers have been popped). Only one procedure is matching. (Fig. 3-b"). 
The benaviour of the interpreter on the proof trees of Fig. 3-b and Fig. 
3.c is the same. Indeed : (1) the same current goal statement (with the 
same binding environments!) and (2) the goal statements corresponding to 
the backtrackpoints are also identical. The node describing the call s2 
has been collapsed with its father (E2 replaces E-| and the node s2 is 
popped). The same node can now be used to execute S3 (iteration over the 
same space). This situation is typical for recursive calls with tail end 
recursion. The recursion is replaced by an iteration. It results in great 

savings when tnere is deep recursion. 

Detection of the situation by the interpreter : (prior to the 
unification. Fig. 3.a - due to the representation of the binding 
environments, It is preferable to swap Ep and E2 before unification). The 
successor of CURR-CALL is Nil and LA3TBACK is at least as for from the top 
as CURP-ENV. (tnus CURR-CALL deterministic and its lefthand brothers 

popped) . 

Action : prior to unification : swap binding environments of the new 
node and the node CURP-ENV; after unification (Fig. 3-b) : CURP-ENV : = 
FATHER of CURR-ENV, pop the top node (CURP-ENV is the new top). 

Note : to handle a special feature in PROLOG wnich transforms 
some backtracknodes into deterministic nodes, it is necessary to know when 
either a node has real children or its children are, due to tail end 
recursion, further descendants. A bit of the FATHER or CALL fields can be 

used to indicate the difference. 

c. Pit fal1 a 

We take care that the interpreter did not need to access the popped nodes, 
however, up to now we did not consider the representation of the binding 
environments. The above reasoning is only correct when the remaining binding-
environments do not refer to the removed ones : when eventual references are all 
oriented from top to bottom of the envirorimentstack. The fir3t PROLOG 
interpreter [1] violated this condition, as a consequence it could only pop the 
stack on backtracking. The attempt to pop the stack when completing a 

CURR-ENV:E2 

/ \ 
CURR-CALL: S3 si) 

r f 

En EO 

bp S5 b-| Si 
El CURP-ENV:E2 

I / \ 
d2 CURR-CALL: S3 si) 

(b) (c) 
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determinate subgoal drove tne author [ 3J, [ 4 J and David Warren [ J) to develop 
other methods for the handling of tne binding environments. The autnor was 
probably the first to consider also 'tail end recursion' (implementat ion : end 
1977)-

J). .The represent at ion of the binding environment s 

Structure sharing 

In the first PROLOG interpreter [1], the representation of the binding of a 
variable was based on Boyer and Moore's structure sharing [2]. As with tne 
subgoals, the binding of a variable is represented by two pointers, one to the 
pure code, the other to a binding environment. This binding environment in turn 
contains the bindings of tbe variables in the pure code. 

With this schema, the unification algorithm can be confronted with three 
basic situations where it has to bind a variable. 
1. A variable x which is free in environment Ej and a variable y which is free 

in environment Ej 

Suppose that E± is more recent (or identical) than E j, then, the variable x 
in Ei is bound to the pure code of y and to the environment E<. The 
pointer from Ei to Ej is oriented to tne bottom of the environmentstacx. 

2. A variable x which is free in environment Ei and a term t with environment 
Ej and Ei more recent than Ej. x is bound to the pure code of t and to the 
environment Ej. Also tnis pointer is oriented to the bottom of the stack. 

3- Same as (2) but Ej is more recent than Ei. 
Also here, x has to be bound to the pure code of t and the environment Ei 
but the pointer from Ei to Ej is oriented to the top of the 
environmentstacK. As a consequence, the space saving techniques of the 
previous section are impossible. 

To solve the problem, Warren [7] observes that the trouble is due to »he 
variables occurring in the terms of the pure code. He calls such variables 
global, the others he calls local.. He divides the binding environment into a 
global part and a local part. Also in the pure code, he makes a distinction 
between global and local variables. Local environments are placed on the 
environment stack but the global ones are placed on a special g] 0bal s*-ack This 
stack is only popped on backtracking. Now unification starts with two literals 
of P^re code, each with a local and global environment. The algorithm takes 
care tha„ pointers between environments are either oriented from top to bottom 
in the environment stack or, from the environmentstack to the global stack This 
is possible, because, whenever a free variable is matched against a 'term 'all 
variables occurring in the term are, by convention, in the global environment. 

Note : The user can declare ('mode declaration') that some terms will never 

variable^as EST * ^ ™ 

Copying pure code [3] [ l£] 

The binding of a variable can be represented 
direct representation of the value. However, 
cannot be a part of sucn a direct reDre^ort a4- i nn , u J « icpiebenr.aaon, nntriever a free variahlp k sr* ' "r* °r •««««• "ww.... oop, or ssui. i 
In tnis copy, the pure code for the variables is replaced as follows. 

by a single pointer to a 
pure code containing variables 
Whenever a free variable is 

- 7 -
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i s  the  va r i ab le  f r ee  in  the  co r respond ing  b ind ing  env i ronment ,  t hen  tne  
copy  ge t  a  f r ee  va r i ab le  and  the  va r i ab le  in  the  b ind ing  env i ronment  i s  
bound  to  th i s  new f r ee  va r i ab le .  
i s  the  va r i ab le  in  the  co r respond ing  b ind ing  env i ronment  a l r eady  bound  to  a  
pa r t  o f  a  copy ,  a  po in te r  i s  p laced  ( a  ' bound '  va r i ab le )  f rom the  new copy  
to  the  ex i s t ing  copy .  

Us ing  a  spec ia l  copys tack  on ly  popped  on  back t rack ing ,  t h i s  a s su res  tha t  
po in te r s  a re  e i the r  o r i en ted  f rom top  to  bo t tom in  the  env i ronments t ack  o r  f rom 
the  env i ronments t ack  to  the  copys tack  o r ,  have  any  d i r ec t ion  in  the  copys tacx .  
Aga in ,  t he  env i ronments t ack  can  be  popped  wi thou t  danger  o f  dang l ing  po in te r s .  

Notes  
1 .  War ren  has  po in ted  ou t  he  can  d rop  va r i ab les  f rom the  loca l  env i ronment  

once  they  wi l l  no t  be  r e fe renced  dur ing  the  fu r the r  execu t ion .  More  
spec i f i c ,  loca l  va r i ab les  wi th  on ly  one  occur rence  ( ' vo id '  va r i ab les )  do  
no t  need  a  p lace  on  t he  env i ronments t ack ,  the  un i f i ca t ion  a lgor i thm knows  
they  a re  f r ee ;  loca l  va r i ab les  occur r ing  on ly  in  the  head ing  can  be  d ropped  
a f t e r  un i f i ca t ion  o f  ca l l  and  head ing .  Indeed ,  they  a re  no t  r e fe renced  in  
the  body  o f  the  p rocedure .  The  same ,  bu t  fo r  a l l  va r i ab les ,  i s  t rue  in  tne  
copy ing  method .  

2 .  Some pa r t s  o f  tne  g loba l / copy  s t ack  can  become inaccess ib le .  Garbage  
co l l ec t ion  and  compac t ion  i s  poss ib le .  

5.. D i scuss ion  

To  ge t  an  idea  o f  the  space  e f f i c i ency  o f  bo th  approaches ,  we  can  compare  
the  s to rage  needs  o f  nodes  and  b ind ing  env i ronments . .  

Wi th  copy ing ,  a  de te rmin i s t i c  node  needs  2  f i e lds  (CALL,  FATHER) ;  w i tn  
s t ruc tu re  sha r ing ,  3  f i e lds  a re  needed  ( a l so  a  po in te r  to  the  g loba l  b ind ing  
env i ronment )  .  

A back t rackpo in t  needs  6  f i e lds  wi th  bo th  me thods  (CALL,  FATHER,  BACK,  
PROCEDURE,  TRAIL,  po in te r  to  g loba l / copys tack)  .  

Wi th  s t ruc tu re  sha r ing , the  b ind ing  env i ronment  a s soc ia t ed  wi th  the  use  o f  a  
p rocedure  needs  2  f i e lds  fo r  each  va r i ab le .  The  d iv i s ion  be tween  loca l  (on  the  
env i ronments t ack)  and  g loba l  (on  the  g loba l  s t ack)  va r i ab les  i s  de te rmined  by  
the  de f in i t ion  o f  the  p rocedure .  Wi th  copy ing ,  one  f i e ld  fo r  each  va r i ab le  i s  
needed  on  the  env i ronments t ack .  The  space  needed  fo r  cop ies  i s  na rde r  t o  
de te rmine .  I t  depends  on  the  pa t t e rn  o f  the  ca l l  which  cop ies  a re  made .  Tne  
space  needed  by  a  copy  depends  on  the  chosen  r ep resen ta t ion .  We g ive  two  
poss ib i l i t i e s  :  
a .  to  copy  a  te r ra  con ta in ing  va r i ab les ,  o f  the  fo rm f  ( t  -j  , . . .  , t n ) ,  we  can  use  

n+1  f i e lds ,  one  f i e ld  to  iden t i fy  tne  func to r  f  and  one  po in te r  to  the  
r ep resen ta t ion  o f  each  a rgument .  Such  a  r ep resen ta t ion  g ives  f a s t  access  
to  the  i - th  a rgument .  

b .  Wi th  nes ted  t e rms ,  i t  i s  poss ib le  to  avo id  the  po in te r s  to  the  a rguments  by  
p lac ing  the  a rgument  one  a f t e r  ano the r .  Then ,  on ly  one  f i e ld  fo r  each  
symbol  i s  su f f i c i en t .  Th i s  r ep resen ta t ion  i s  more  compac t  bu t  t he  access  
to  the  i - th  a rgument  i s  s lower .  

Wi th  bo th  r ep resen ta t ions ,  the  copy  o f  a  va r i ab le  i s  e i the r  a  f r ee  va r i ab le  o r  a  
po in te r  t o  the  va lue  o f  tne  va r i ab le .  

For  the  p rocedures  o f  tne  benchmark  g iven  in  [7 ] ,  we  computed  the  space  
occup ied  by  the  b ind ing  env i ronment  o f  a  typ ica l  ca l l .  For  the  23  p rocedures  

- 8 -
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having a nonempty binding environment, the totaJ space occupied by the ?< 
typicaJ binding environments is as foJiows : 

- Structure sharing : in total ?16 fields are needed of which IjO in the 
g obal stack, with mode declarations, only 82 fields are needed on the 
2JoDsJ stdcki 

- Copying : with representation a, a total of 134 fields is sufficient or 
rheUL°? y- 3 °a th! "opystdoi<- With representation b, the copystack (and 
the total) is reduced by 10 fields. 

shpwst that  structure sharing needs mode declarations to reduce -he 
global stack to a size comparable with the copystack. Also, with copyir g the 

13 a,igB"y ui» * 

h Th®se results have to be taken with care, individual cases where copying is 
Z l  M° rr th3n s t ructur® sharing are possible, i.e. wher larje t e r m s  

need to be copied. The worst case between the 23 procedures • R 
global stack, 15 on the copystack with representation a, 11 with representation 

t h e o r e m  " r ^ r l r e 3 0 l u t i o n  

Although structure sharing results in very space eJf^ie^^^ea^uSn^th ^ 

representation of literals in the . T*T 

implementation techniques of Algol-like languages as to structure sharing Foi 
the representation of the binding of variables, structure sharing is not the 
only alternative to be considered. aring is not vne 
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AN ALTERNATIVE TO STRUCTURE-SHARING IN THE IMPLEMENTATION 
OF A PROLOG INTERPRETER 

C.S.Mel lish. 
Department of Artificial Intelligence, 

University of Edinburgh, 
EDINBURGH, UK 

1. Introduction 

This paper presents an alternative to "structure sharing" (SS) as a 
technique used in a Prolog interpreter. We firstly summarise some of the basic 
ideas used in Prolog implementations and show how structure sharing fits into 
such a scheme. We then present our alternative approach and make some 
comparisons. Our non structure sharing (NSS) approach, which uses a system of 
"copying", is used in a practical interpreter for the PDP-11. This interpreter 
is capable of running substantial Prolog programs, even though the PDP-11's 
address space is limited to 32K, 16-bit words. We compare the space efficiency 
of this interpreter with that of a structure sharing version that was 
constructed later. It turns out that the "copying" approach compares very 
favourably, although the comparison would be less favourable on a machine 
capable of holding two addresses in one word. Our comparison shows that the 
decision whether or not to use structure sharing in a Prolog implementation is 
not simple and must take into account a number of factors. 

2. Some Basics of Prolog Implementation 

We will now discuss some of the basic concepts used in some Prolog 
implementations. We follow here essentially the model presented by Warren C5J, 
as developed from the work of Roussel C43 and Battani and Melom L1J. 

2.1. Storing Prolog Programs 

A Prolog program consists of a set of clauses and a goal statement. A clause 
represents a general rule that can be used many times in the satisfaction of 
the goal or its subgoals. Each time, we may want to consider different values 
for the variables that occur within it - that is, we need to be able to handle 
multiple instances of the same rule. When a clause instance is ,invoked__to 
decompose an existing goal, we need to unify the clause head with the goal 
concerned and then consider the new subgoals given by the body of the clause. 
Since the main operation to be carried out with the parts of the clause is the 
recursive comparison involved in unification, it is appropriate to store them 
in a way that reflects the tree structure of the logical terms. (Note 

SiS « °< th. unification atep, an, "unfolded" in ad.anco, 
that this argument does not hold) The internal representations of these 
structures are usually called skeletons. In PDP-11 Prolog, skeletons have a 
prefix Polish format, with one machine word for each node of the tree. Since 
the value of a variable mentioned in a clause will vary from instance to 
instance, it is appropriate to represent a variable as an offset from an 
environment pointer to be provided each time. 

In general, the lifetime of a clause will be quite long - it will remain 
until the user explicitly removes it. Clauses can be kept on a heap and the 
space freed by the removal of a clause garbage collected. For this reason, we 
will refer to the area where clauses are stored as the heap. 



2 .2 .  Bas ic  Run t ime  S to rage  

Dur ing  the  runn ing  o f  a  P ro log  p rogram,  the  Pro log  in te rp re te r  mus t  have  
access  to  a  ce r t a in  amount  o f  space  to  s to re  in te rmed ia te  r e su l t s  o f  the  
computa t ion .  Some o f  t h i s  wi l l  be  used  fo r  in fo rmat ion  abou t  the  con t ro l  s t a t e  
o f  t he  in t e rp re te r  -  " re tu rn"  addresses  and  so  on  -  and  the  r e s t  wi l l  be  used  
t o  keep  t r ack  o f  the  va lues  o f  t he  va r i ab les  in  the  va r ious  c l ause  ins t ances .  
I t  i s  conven ien t  t o  o rgan i se  th i s  in to  a  s e t  o f  f r ames  -  s imple  s t ruc tu res  
a s soc ia t ed  wi th  the  subgoa l s  o f  t he  p roof .  A f r ame  expresses  bo th  the  con t ro l  
i n fo rmat ion  abou t  the  subgoa l ' s  invoca t ion  and  the  va r i ab le  va lues  g iv ing  the  
necessa ry  env i ronment  fo r  i t s  ach ievement .  Thus ,  fo r  ins t ance ,  the  PDP-11  
P ro log  sys tem uses  f r ames  inc lud ing  the  address  o f  t he  p lace  in  a  c l ause  where  
t h i s  subgoa l  was  invoked ,  t he  address  o f  t he  f rame  fo r  the  goa l  invok ing  th i s  
a s  a  d i r ec t  subgoa l ,  t he  address  o f  the  f rame  co r respond ing  to  the  l a s t  cho ice  
made ,  t he  address  o f  t he  c l ause  chosen  to  sa t i s fy  th i s  goa l  and  the  va lues  o f  
t he  va r i ab les  fo r  th i s  pa r t i cu la r  c l ause  ins t ance .  In  many  ways ,  t h i s  i s  l ike  
the  in fo rmat ion  recorded  on  the  s t ack  fo r  a  conven t iona l  p rogramming  l anguage  
l i ke  ALGOL.  However ,  because  many  o f  the  computa t ions  in  Pro log  a re  no t  
de te rmina te  ( seve ra l  c l auses  may  be  ava i l ab le  fo r  p rov id ing  poss ib le  so lu t ions  
fo r  a  goa l ) ,  the re  i s  the  impor tan t  d i f f e rence  tha t  the  space  a l loca ted  fo r  a  
f r ame  canno t  necessa r i ly  be  r ec la imed  when  a  "p rocedure  ex i t "  t akes  p lace .  In  
many  cases ,  i t  i s  l ike ly  tha t  an  a l t e rna t ive  so lu t ion  fo r  the  goa l  may  l a t e r  
be  r equ i red ,  even  though  bo th  i t  and  i t s  ances to r s  have  been  success fu l ly  
sa t i s f i ed  once .  Thus  i t  i s  e s sen t i a l  t o  keep  a  r ecord  o f  in fo rmat ion  l ike  the  
l a s t  c l ause  used  and  the  env i ronment  o f  t he  pa ren t  ( in  the  fo rm o f  r e t a ined  
f rames)  whenever  cho ices  a re  made .  S ince  back t rack ing  in  Pro log  i s  s t r i c t ly  
chrono log ica l ,  t he  re t a ined  f rames  can  be  kep t  in  a  pa r t i cu la r ly  s imple  way .  
when  back t rack ing  occurs ,  eve ry th ing  done  s ince  the  ac t iva t ion  o f  t he  l a s t  
cho ice  f r ame  mus t  be  undone ,  and  the  space  used  by  the  more  r ecen t  f r ames  can  
be  r ec la imed .  I t  i s  the re fo re  poss ib le  to  keep  f r ames  in  a  s t ack-based  sys tem,  
wi th  new fames  "pushed"  a s  they  a re  ac t iva ted  and  f r ames  "popped"  p r imar i ly  
when  back t rack ing  t akes  p l ace .  

In  the  bas ic  loop  o f  t he  in t e rp re te r ,  po in te r s  to  the  cu r ren t ly  r e l evan t  
rames  w i l l  be  r ead i ly  ava i l ab le ,  and  f rom these  the  va lues  o f  ce r t a in  

va r i ab les  can  be  eas i ly  found .  Th i s  in fo rmat ion ,  toge the r  wi th  the  po in te r s  to  
c l auses  ( and  the  cons t i tuen t  ske le tons )  under  cons ide ra t ion ,  enab les  the  
sys tem to  keep  t r ack  o f  exac t ly  wha t  each  c l ause  ins t ance  looks  l i ke .  

2 .3 .  Cons t ruc ted  Terms  

„  p 7^° g  var i ab les  do  no t  a lways  have  s imple  va lues  ( a toms ,  i n t ege r s ,  o r  
undef ined" ) ,  bu t  can  a l so  be  a s soc ia t ed  wi th  complex  t e rms .  Such  an  

a s soc ia t ion  can  be  made  e i the r  when  a  va r i ab le  i s  un i f i ed  wi th  a  va r i ab le  tha t  
a l r eady  s t ands  fo r  a  complex  t e rm o r  when  an  "undef ined"  va r i ab le  i s  matched  
d i r ec t ly  wi th  a  complex  pa t t e rn  men t ioned  in  a  c l ause .  In  the  second  case ,  we  
can  t a lk  in  t e rms  o f  cons t ruc t ing  the  complex  t e rm,  because  th i s  complex  va lue  

.  n o w  become access ib le  th rough  the  va r i ab le  and  can  be  man ipu la ted  
va r ious  ways .  The  examples  in  f ig  2 -1  bo th  invo lve  the  cons t ruc t ion  o f  
c o m p l e x  t e r m  t o  u n i f y  w i t h  a  v a r i a b l e  X .  

i n  
a  

? -  p (X) ,  . . .  I 

p ( f  (A ,B)  )  : -  |  p ( x )  . _  

F igure  2 -1 :  Examples  o f  t he  Cons t ruc t ion  o f  Complex  Ter  

In  these ,  t he  t e rm " f (A,B)"  i s  no t  access ib le  a s  an  ob jec t  un t i l  i t  i s  un i f i ed  
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wi th  X;  a f t e r  th i s ,  i t  can  be  passed  to  o the r  va r i ab les ,  fu r the r  ins t an t i a t ed  
and  so  on .  On t he  o the r  hand ,  i t  i s  no t  appropr ia t e  t o  say  tha t  a  t e rm i s  
cons t ruc ted  when  "p"  i s  ca l l ed  in  e i the r  example  in  f ig  2 -2 .  

? -  p ( f  (A ,B) ) ,  |  ? -  q (X>,  p (X>,  

p ( f (C ,D) )  j  p ( f (C ,D) )  : -
q( f (A,B) )  : -

F igure  2 -2 :  Examples  o f  Othe r  Opera t ions  on  Complex  Terms  

In  the  f i r s t  o f  t hese ,  the  complex  t e rm i s  never  ava i l ab le  as  an  ob jec t  t o  be  
man ipu la ted  -  the  spec i f i ca t ion  o f  the  two  pa t t e rns  mere ly  se rves  a s  a  way  o f  
a s soc ia t ing  A wi th  C ,  B  wi th  D.  We t hus  do  no t  r e fe r  to  th i s  as  a  cons t ruc t ing  
opera t ion .  In  the  second ,  a  t e rm i s  cons t ruc ted  in  the  ca l l  t o  "q" ,  and  the  
match ing  ope ra t ion  in  the  ca l l  t o  "p"  mere ly  causes  an  a s soc ia t ion  be tween  the  
" ins ide"  va r i ab les .  Th i s  i s  more  appropr ia t e ly  ca l l ed  access ing ,  than  
cons t ruc t ing .  

I t  can  be  seen  f rom these  examples  t ha t  i t  canno t  be  a sce r t a ined  f rom 
ind iv idua l  c l auses  wha t  t e rms  wi l l  be  cons t ruc ted  when  they  a re  invoked .  In  
the  Dec10  P ro log  compi le r  C53 ,  i t  i s  poss ib le  fo r  the  use r  t o  spec i fy  mode  
dec la ra t ions  which  p rov ide  some  o f  t h i s  in fo rmat ion  and  enab le  the  compi led  
code  t o  Be  more  e f f i c i en t .  Such  poss ib i l i t i e s  wi l l  no t  be  cons ide red  in  wha t  
fo l lows .  Mode  dec la ra ions  do  in  any  case  l e s sen  the  f l ex ib i l i ty  o f  t he  use r ' s  
p rocedures .  

When  a  complex  t e rm i s  cons t ruc ted  to  be  the  va lue  o f  a  va r i ab le ,  t ha t  
va r i ab le  i s  sudden ly  a s soc ia t ed  wi th  a  g rea t  dea l  o f  in fo rmat ion  -  bo th  the  
fo rm o f  t he  t e rm and  the  va lues  o f  the  va r i ab les  tha t  appear  in s ide  i t .  I t  
migh t  seem imposs ib le  t o  rep resen t  t h i s  in fo rmat ion  in  the  same  amount  o f  
space  tha t  i s  used  fo r  o the r  va r i ab le  va lues  ( such  a s  a toms) .  The  ma in  focus  
of  t h i s  paper  i s  on  two  d i f f e ren t  approaches  fo r  t ack l ing  th i s  r ep resen ta t ion  
p rob lem.  

2 .4 .  Rec la iming  S to rage  a f t e r  De te rmin i s t i c  Computa t ions  

A computa t ion  ( the  sa t i s fac t ion  of  a  subgoa l )  t ha t  has  no  cho ice  po in t s  
wi th in  i t  i s  ca l l ed  de te rmina te .  The  s t ack  f rames  a r i s ing  f rom such  a  
computa t ion  can  be  "popped"  f rom the  s t ack  when  the  subgoa l  has  been  
e s t ab l i shed ,  fo r  back t rack ing  wi l l  never  need  t o  recons ide r  one  t o  t ry  ano the r  
poss ib i l i ty .  I t  i s ,  however ,  necessa ry  to  ensure  tha t  no  po in te r s  a re  l e f t  
f rom the  remain ing  s t ack  in to  the  a rea  tha t  i s  rec la imed .  Thus  one  shou ld  
ensure  tha t  the  b ind ing  toge the r  o f  two  un ins tan t i a t ed  va r i ab les  i s  a lways  
recorded  by  a  po in te r  f rom the  more  r ecen t  t o  the  l e s s  recen t  va r i ab le  ee l  I ,  
and  no t  t he  o the r  way  a round .  However ,  a s  soon  a s  complex  va lues  o f  va r i ab les  
a re  poss ib le ,  even  th i s  i s  no t  adequa te .  Cons ide r  the  va lue  g iven  to  X i n  f ig  
2 -3 .  

? -  f (X) ,  g (X>.  

f  ( foo(A,B)  )  : -  h (Y) ,  j (Y) .  

F igure  2 -3 :  Var iab les  Occur r ing  ins ide  a  Complex  Term 

Imag ine  t ha t  the  sa t i s fac t ion  of  " f (X>"  i s  comple te ly  de te rmina te  ( the re  a re  
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2 .5 .  Dis t r ibu t ing  Da ta  be tween  the  two  S tacks  

The  ques t ion  o f  how to  dec ide  which  p ieces  o f  da ta  shou ld  go  on  each  s t ack  
and  when  shou ld  now be  d i scussed  fu r the r .  As  i s  sugges ted  by  the  example  a  
va r i ab le  on ly  needs  to  be  a l loca ted  on  the  g loba l  s t ack  i f  i t  occurs  wi th in  a  

2  " , n * t r u c t * d  1 n  a  de te rmina te  computa t ion  and  t h i s  complex  t e rm i s  
passed  ou t  t o  be  used  e l sewhere .  Idea l ly  the  dec i s ion  o f  where  to  s to re  

each  va r i ab le  shou ld  be  made  a t  run t ime ,  because  space  on  the  g loba l  s t ack  i s  
no t  eas i ly  rec la imed  and  shou ld  be  used  spa r ing ly .  A r e l i ab le  dec i s ion  canno t  
be  made  a t  compi le  t ime"  (when  the  c l auses  a re  s to red  in  the  heap) ,  because  
a s  we  have  no t i ced  i t  i s  no t  even  poss ib le  to  de te rmine  then  whe the r  t he  
c l auses  wi l l  be  used  to  "cons t ruc t "  o r  to  "access"  complex  s t ruc tu res .  So  the  
op t ima l  p lace  to  make  the  dec i s ion  i s  a t  run t ime .  However ,  when  a  c l ause  i s  
s to red  in  the  heap ,  the  va r i ab les  wi th in  i t  mus t  be  r e fe renced  in  such  a  way  
t ha t  the  va lues  fo r  any  ins t ance  can  be  unambiguous ly  loca ted .  Th i s  sugges t s  
t ha t  a  dec i s ion  a t  "compi le  t ime"  i s  unavo idab le .  

In  f ac t ,  the  two  approaches  t o  s to rage  management  t ha t  we  cons ide r  in  th i s  
paper  now beg in  t o  d ive rge .  A " s t ruc tu re  sha r ing"  sys tem,  a s  we  w i l l  s ee  in  
sec t ion  3 ,  r e l i e s  on  the  f ac t  tha t  va r i ab les  in  the  g loba l  s t ack  have  f ixed  
pos i t ions  r e l a t ive  to  a  cu r ren t  env i ronment  po in te r ,  and  so  in  pa r t i cu la r  i t  
r equ i res  a  dec i s ion  on  g loba l / loca l  s t a tus  a t  "compi le  t ime" .  The  a l t e rna t ive  
sys tem tha t  we  p resen t  makes  t he  dec i s ion  a t  run t ime ,  bu t  incurs  the  ex t ra  
overhead  tha t  eve ry  va r i ab le  mus t  be  a l loca ted  a  f ixed  o f f se t  in  the  loca l  
s t ack ,  in  add i t ion  to  an  en t ry  in  the  g loba l  s t ack  fo r  each  t ime  i t  appear s  in  
a  cons t ruc ted  t e rm.  When  a  va r i ab le  occurs  in  seve ra l  p l aces ,  these  a re  l inked  
toge the r  wi th  po in te r s  in  such  a  way  t ha t  a l l  can  be  r eached  f rom the  f ixed  
loca t ion  on  the  loca l  s t ack  which  i s  re fe renced  ind i rec t ly  in  the  c l ause .  

Where  a  "compi le  t ime"  dec i s ion  abou t  the  s t a tus  o f  va r i ab les  i s  made ,  an  
approx imat ion  i s  to  make  g loba l  eve ry  va r i ab le  ocur r ing  in  a  ske le ton  tha t  
cou ld  be  used  t o  cons t ruc t  a  complex  t e rm.  Th i s  can  be  de te rmined  
syn tac t i ca l ly  -  such  a  va r i ab le  i s  one  tha t  appea r s  wi th in  a  complex  a rgument  
o f  a  goa l  i n  a  c l ause .  Th i s  me thod  i s  used  bo th  by  the  Dec10  P ro log  sys tem 
C63  and  in  our  s t ruc tu re  sha r ing  in t e rp re te r ,  a l though  the  use  o f  "mode  
dec la ra t ions"  in  Dec10  P ro log  enab les  some  o f  these  va r i ab les  to  be  made  
l oca l .  Where  a  " run t ime"  dec i s ion  i s  made ,  an  approx imat ion  i s  to  g ive  a  
g loba l  en t ry  to  a  va r i ab le  whenever  a  t e rm con ta in ing  i t  i s  cons t ruc ted .  The  
"compi le  t ime"  a lgor i thm fa l l s  shor t  o f  op t ima l i ty  whenever  a  t e rm tha t  cou ld  
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theore t i ca l ly  be  cons t ruc ted  in  f ac t  i s  no t .  Bo th  f a l l  shor t  when  a t e rm 
cons t ruc ted  in  a  de te rmina te  computa t ion  i s  no t  i n  f ac t  "passed  ou t "  to  the  
o the r  pa r t s  o f  the  p rogram.  

3 .  S t ruc tu re  Shar ing  

We saw ea r l i e r  tha t  in  the  main  loop  o f  t he  in t e rp re te r  the  s t a t e  o f  each  
c l ause  ins t ance  can  be  found  ou t  f rom a  po in te r  t o  the  c l ause  toge the r  wi th  a  
po in te r  t o  an  appropr ia t e  s t ack  f rame .  Moreover ,  t h i s  in fo rmat ion  mus t  be  
s to red  in  any  case  fo r  the  in t e rp re te r  to  p roper ly  o rgan i se  back t rack ing  ( i t  
mus t  know which  c l ause  was  l a s t  chosen)  and  "p rocedure  ex i t s "  ( i t  mus t  
con t inue  f rom the  s t ack  f rame  cor respond ing  to  the  "pa ren t "  goa l ) .  The  idea  o f  
r ep resen t ing  complex  da ta  by  a  pa i r  o f  po in te r s  ( ske le ton  +  env i ronment ,  
t oge the r  ca l l ed  a  molecu le )  i s  known a s  s t ruc tu re  sha r ing ,  and  t h i s  can  a l so  
be  used  to  rep resen t  t e rms  cons t ruc ted  a t  run t ime .  S t ruc tu re  sha r ing  
cap i t a l i ses  on  the  f ac t  tha t  c l auses  a re  s to red  in  a  way  t ha t  r e f l ec t s  the i r  
syn tac t i c  s t ruc tu re .  Thus  t he  ske le tons  in  a  c l ause  p rov ide  a l l  the re  i s  to  
know abou t  t he  s t ruc tu re  o f  a  g iven  ins t ance  excep t  the  va lues  o f  t he  
va r i ab les .  

I f  i t  i s  poss ib le  to  s to re  a  pa i r  o f  mach ine  addresses  in  the  space  
a l loca ted  fo r  a  var i ab le  va lue ,  then  i t  i s  s t r a igh t fo rward  to  have  molecu les  
a s  poss ib le  va lues  o f  va r i ab les .  I f  a  va r i ab le  becomes  in s t an t i a t ed  a s  a  
complex  t e rm,  i t  su f f i ces  to  b r ing  toge the r  a  po in te r  to  the  ske le ton  wi th  
which  t he  match  was  made  and  a  po in te r  to  the  env i ronment  o f  the  co r respond ing  
c lause  ins t ance .  "Cons t ruc t ing"  i s  thus  r a the r  a  s imple  p rocess ,  and  
in fo rmat ion  abou t  the  in t e rna l  s t ruc tu re  o f  t he  va r i ab le ' s  va lue  can  be  
ob ta ined  the rea f t e r  f rom the  molecu le .  Note ,  however ,  t ha t  a  molecu le  r e fe r s  
to  a  va r i ab le  ins ide  a  cons t ruc ted  t e rm v ia  the  f ixed  o f f se t  g iven  in  the  
ske le ton .  I t  i s  thus  necessa ry  to  f ix  the  r e l a t ive  Loca t ions  o f  va r i ab les  a t  
"compi le  t ime"  in  o rde r  tha t  the  va lues  can  be  found .  In  pa r t i cu la r ,  s ince  the  
va r i ab les  ins ide  cons t ruc ted  t e rms  in  genera l  have  t o  appear  on  the  g loba l  
s t ack  in  o rde r  to  be  access ib le  when  the  appropr ia t e  loca l  f r ame  has  been  
r ec la imed ,  a  dec i s ion  abou t  g loba l / loca l  s t a tus  mus t  be  made  a t  compi le  t ime .  
Anothe r  consequence  o f  t he  f ac t  tha t  loca l  f r ames  may  be  rec la imed  i s  tha t  i t  
i s  e s sen t i a l  fo r  the  env i ronment  po in te r  in  a  molecu le  t o  po in t  t o  the  g loba l  
va r i ab le  ce l l s  a soc ia ted  wi th  the  goa l ,  r a the r  than  the  loca l  ones .  

As  an  example ,  cons ide r  the  t r ea tmen t  o f  t he  c l auses  de f in ing  the  
conca ten ta t ion  r e l a t ion  be tween  l i s t s  ( f ig  3 -1 ) .  

C1 .  append(n i l ,X ,X) .  
C2 .  append(A.B,C ,A.D)  append(B,C ,D) .  

? -  append(a .b . c .n i l , n i l ,R) .  

F igure  3 -1 :  C lauses  and  Goa l  S ta tmen t  fo r  ' append '  

S ince  the re  i s  no  reason  why  an  ' append '  goa l  shou ld  no t  have  an  
un ins tan t i a t ed  va r i ab le  a s  i t s  f i r s t  o r  th i rd  a rgument ,  t he  pa i r s  <A,B> and  
<A,D> o f  va r i ab les  in  C2  may  somet imes  be  invo lved  in  cons t ruc t ing  opera t ions .  
Hence  A ,  B  and  D mus t  be  c l a s sed  a s  g loba l  va r i ab les ,  wi th  space  a l loca ted  fo r  
them on  the  g loba l  s t ack ,  when  C2  i s  chosen .  On  t he  o the r  hand ,  C ( and  X)  can  
ge t  oy  wi th  space  on  the  loca l  s t ack .  When  t he  goa l  i s  invoked  and  C2  i s  
chosen ,  A i n  the  new c l ause  ins t ance  i s  un i f i ed  wi th  ' a  ,  and  B i s  un i f i ed  
wi th  the  whole  l i s t  "b . c .n i l " .  Th i s  i s  rep resen ted  by  a  molecu le ,  wi th  a  
po in te r  t o  the  ske le ton  in  the  goa l  c l ause  and  a  po in te r  to  the  env i ronment  
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(which is, in fact, irrelevant as the list is ground). Similarly, R in the 
goal is unified with the list "A.D", this giving rise to another molecule. 
When the recursion is about to hit the "nil" case, there are 9 variable cells 
on the global stack (3 instances each of A, B and D) and 4 on the local stack 
(1 instance of R and 3 of C). Moreover, 5 of these variable values are 
mo lecules. 

4. An Alternative Approach 

Structure sharing saves space by sharing the structure common to multiple 
instances of the same skeleton. It has been proposed as a more space efficient 
method than more obvious approaches. We will now examine one such alternative, 
which is similar to what is used in conventional programming languages (like 
POP-2 and Algol68) for constructing new records dynamically in a heap. 

The basic idea is that variables are allocated space primarily on the local 
stack, and that the references to them appearing in skeletons are always to 
these positions in the local stack. When a complex term is constructed, a 
concrete copy of the appropriate skeleton is created on the global stack, with 
the values of the variables appropriate to this instance substituted for the 
variable references. This means that there can be more than one location 
representing the same variable^ these multiple locations must be appropriately 
linked with pointers. Once a concrete copy has been constructed, the values 
of its component parts can be simply read off, without the necessity of 
consulting environment pointers. In particular, variables that are unified 
with substructures can be dealt with by having pointers to the appropriate 
parts, for a variable that becomes instantiated as a complex term is 
represented simply by a pointer to the appropriate concrete copy. 

Consider how this would work with the "append" example (fig 3-1). When C2 
is chosen for matching with the goal, "A.B" in the new instance is unified 
with the ground list "a.b.c.nil" in the goal. As a result, A gets the value 
"a" and B is associated with a concrete copy of the rest of the list. 
Similarly, R's value turns out to be a pointer to a concrete copy of a "cons 
cell . The two variables inside this are A and D. A's value can be substituted 
in directly, whereas D is as yet uninstantiated and so a link must be 
established between the two locations representing it. In time, D's value is 
discovered to be a complex term, and so these two locations become indirectly 
linked to another concrete copy. When the "nil" case is about to be 
investigated, there are 13 variable cells on the local stack (1 instance of R 
and 3 each of A, B, C and D) and a total of 14 locations taken up by concrete 
copies on the global stack (5 for "b.c.nil" and 3 each for 3 individually 
rnnct ri ir "rnne ^a. I I c"\ * 

5. Comparison 

5.1. General Comments 

5.1.1. Constructing Complex Terms 

The whole point of SS is that there is a very low space overhead in 
constructing complex terms. As far as the global stack is concerned, the only 
pieces of information represented for a constructed term are the values of the 
one! evenC if r-tn9 ^ M° re0Ver ' each variable is only represented 
once, even if it appears several times in the term or in multiple constructed 
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t e rms .  On  t he  o the r  hand ,  the  NSS approach  needs  to  copy  g round  pa r t s  o f  a  
complex  t e rm and  to  have  a  loca t ion  fo r  eve ry  occur rence  o f  a  va r i ab le  in  a  
complex  t e rm.  So  s t ruc tu re  sha r ing  de f in i t e ly  seems  to  requ i re  l e s s  g loba l  
s t ack  when  a  t e rm i s  cons t ruc ted .  An i l l u s t r a t ion  of  t h i s  i s  the  cons t ruc t ion  
of  t he  l i s t  "b . c .n i l "  in  our  "append"  example ,  where  s t ruc tu re  sha r ing  needs  
no  g loba l  space  (no  va r i ab les  occur  wi th in  i t )  bu t  t he  o the r  approach  needs  5  
loca t ions  (1  fo r  each  " symbol"  in  the  ske le ton) .  I t  i s  c l ea r  tha t  an  NSS 
sys tem cou ld  be  op t imised  to  avo id  copy ing  g round  sub te rms ,  bu t  i t  would  s t i l l  
lose  by  hav ing  to  copy  func to r  in fo rmat ion  and  po in te r s  fo r  g round  sub te rms  o f  
t e rms  which  a re  no t  themse lves  g round .  

5 .1 .2 .  Access ing  the  Componen t s  o f  Complex  Terms  

When  i t  comes  t o  access ing  the  componen t s  o f  a l r eady  cons t ruc ted  t e rms ,  SS  
does  no t  pe r fo rm so  we l l .  I t  a l loca tes  space  on  the  g loba l  s t ack  fo r  the  
va r i ab les  r e fe r r ing  to  the  componen t s ,  because  a t  compi le  t ime  the re  i s  no  way  
o f  t e l l ing  tha t  an  access ing  r a the r  than  a  cons t ruc t ing  opera t ion  wi l l  be  
invo lved .  On  t he  o the r  hand ,  t he  copy ing  approach  on ly  pu t s  i t ems  on  the  
g loba l  s t ack  when  cons t ruc t ing  t akes  p lace .  In  the  "append"  example ,  none  o f  
the  "B"  va r i ab les  r ea l ly  need  to  be  a l loca ted  on  the  g loba l  s t ack ,  because  the  
pa t t e rn  "A.B"  i s  a lways  used  to  decompose  an  a l r eady  ex i s t ing  ob jec t .  

5 .1 .3 .  Overa l l  S tack  Usage  

From the  l a s t  two  pa ragraphs ,  we  can  see  tha t  the  r e l a t ive  mer i t s  o f  SS  and  
NSS a s  r ega rds  g loba l  s t ack  usage  wi l l  depend  on  the  types  o f  p rograms  tha t  we  
wish  t o  run .  On t he  one  hand ,  we  can  cons t ruc t  a  pa tho log ica l  p rogram where  
huge  s t ruc tu res  con ta in ing  repea ted  va r i ab les  a re  con t inuous ly  c rea ted  bu t  
never  accessed  -  on  t h i s ,  s t ruc tu re  sha r ing  wi l l  ga in  by  a rb i t r a ry  amount s .  On  
t he  o the r  hand ,  we  can  cons t ruc t  a  pa tho log ica l  p rogram tha t  cons t ruc t s  a  
s ing le  complex  t e rm and  r epea ted ly  accesses  i t s  sub te rms  -  on  t h i s ,  s t ruc tu re  
sha r ing  wi l l  lo se  by  a rb i t r a ry  amount s .  P resumably ,  " r ea l  p rograms  f a l l  
somewhere  i n  be tween  these  ex t remes .  

As  r ega rds  loca l  s t ack  s to rage ,  SS  i s  c l ea r ly  super io r ,  s ince  i t  a l loca tes  
space  fo r  on ly  some  va r i ab les  on  the  loca l  s t ack ,  whereas  NSS a l loca tes  space  
fo r  a l l .  S ince  loca l  s t ack  space  can  be  r ec la imed  a t  the  end  o f  a  de te rmina te  
computa t ion ,  NSS migh t  be  expec ted  to  do  bes t  wi th  de te rmina te  p rograms .  The  
hope  o f  t h i s  approach  i s  to  reduce  the  to t a l  g loba l  s t ack  usage  a t  the  expense  
o f  t he  to t a l  amount  o f  s t acks  used .  Th i s  c l ea r ly  wi l l  no t  pay  o f f  i f  the  
s t ack  space  can  on ly  r a re ly  be  r ec la imed .  

5 .1 .4 .  Speed  

We canno t  comment  he re  on  the  r e l a t ive  speed  o f  t he  two  approaches ,  because  
such  a  compar i son  needs  t o  t ake  in to  accoun t  t he  mach ine  s  ins t ruc t ion  se t  and  
address ing  modes .  However ,  we  can  no te  tha t  our  ^S  sys tem seems  lo  save  work  
look ing  up  the  va lues  o f  va r i ab les  in  env i ronments  ( fo r  access ing  sub te rms ;  a t  
the  expense  o f  t he  "once  and  fo r  a l l "  copy ing  ope ra t ions  ( fo r  cons t ruc t ing) .  
What  e f f ec t  t h i s  has  in  p rac t i ce  i s  a  ma t t e r  fo r  fu r the r  inves t iga t ion .  

5 .2 .  Represen t ing  Molecu les  i n  Mach ines  wi th  Smal l  Word  S izes  

O u r  d i s c u s s i o n  s o  f a r  h a s  a s s u m e d  t h a t  i t  i s  p o s s i b l e  t o  s t o r e  a  m o l e c u l e  
( t w o  a d d r e s s e s )  w i t h i n  t h e  s p a c e  a l l o c a t e d  f o r  a  s i n g l e  a p  a b l L ®  « L u e .  I n  
g e n e r a l  t h e  m o s t  e c o n o m i c a l  a n d  s i m p l e  u n i t  o f  s p a c e  t o  u s e  i s  t h e  m a c n i n e  
w o r d  ( ' h e r e  t a k e n  t o  b e  t h e  s m a l l e s t  i n d e p e n d e n t l y  a d d r e s s a b l e  u n i t  o f  s t o r a g e  
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above some minimum size). In a machine with a small word size, we may be able 
to store things like atom representations and (smallish) integers in single 
words, but a molecule is really out of the question. This was a problem that 
we had to confront for the POP—11, and in fact it was one of the main reasons 
why we turned to an alternative to structure sharing. 

If we wish to stick to a structure sharing approach, how are we to represent 
molecules on a machine of small word size? One possibility is simply to take a 
larger unit, such as 2 words, for the value of a variable. Another is to have 
a molecule as a 2-word item to be separately allocated on the global stack and 
to which variable cells can point. The second of these will certainly take up 
less storage at any time if the number of variables allocated is at least 
twice the number of molecules. This has proved to be the case in all the 
examples we have tested. 

What difference does this molecule overhead make for our "append" example? 
The whole example involves 5 molecules, and so an extra 10 locations now 
appear on the global stack. The NSS version of this example now has less on 
the global stack than the SS one, the reverse of what was previously the case. 

It should be noted that this overhead in representing molecules sometimes 
affects a structure sharing approach even when the components of constructed 
terms are accessed. When structure sharing has to represent a complex subterm 
of a constructed term, it needs to produce a molecule, of course. Sometimes 
the appropriate molecule is already available as the value of a variable 
occurring in the constructed term. Otherwise a new one must be constructed. 
(This is what happens with the second instance of B in our "append" example). 
Such an action incurred no overhead previously, when we considered a molecule 
as something that could be stored in any variable cell. 

5.3. Some Figures 

How do all these factors interact and what are the relative merits of 
structure sharing and its alternatives in practice? When we decided to 
investigate this question, we had already developed a non structure sharing 
interpreter for the PDP-11 C33, and so we decided to construct a structure 
s aring version of it and make some comparisons. The structure sharing 
interpreter copes with the small word size of the PDP-11 by using the second 
approach for representing molecules, with a molecule being allocated as a 
serarate object on the global stack. In spite of these particular details 

figures provide a basis for a comparison between SS and NSS in general. '  

internrptA T C ? aLread>' existing, programs and ran them on the two 
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d i f fe ren t  domain .  Th i s  p rogram reads  an  Eng l i sh  sen tence ,  cha rac te r  by  
cha rac te r ,  f rom the  t e rmina l ,  conver t ing  i t  to  a  l i s t  o f  a toms ,  and  cons t ruc t s  
a  l og ica l  fo rmula  express ing  i t s  "mean ing" .  (Th i s  can  then  be  used  in  
con junc t ion  wi th  a  da tabase  o f  f ac t s  abou t  the  wor ld  t o  p roduce  an  appropr ia t e  
response )  Th i s  p rogram,  when  p resen ted  wi th  the  ques t ion  "What  f i l e s  da t ing  
f rom Tuesday  does  the  owner  o f  t he  f i l e  da t ing  f rom Monday  possess?"  fo rms  our  
f i r s t  example .  

Wi th  each  p rogram,  we  measured  va r ious  pa ramete r s  o f  t he  space  used .  We d id  
no t  measure  run t ime  o r  heap  usage  ( so  the re  i s  no  accoun t ing  fo r  the  space  
occup ied  by  bas ic  ske le tons  in  the  s t ruc tu re  sha r ing  sys tem) .  The  pa ramete r s  
( a l l  measured  i n  mach ine  words )  t ha t  were  r ecorded  a re  a s  fo l lows :  

A -  The  t o t a l  amount  o f  l oca l  s t ack  in  use  a t  the  end  o f  t he  computa t ion  

B -  The  maximum amount  o f  l oca l  s t ack  in  use  a t  any  t ime  dur ing  the  
computa t ion  

C -  The  amount  o f  space  occup ied  by  molecu les  (2  words  each)  a t  the  end  
o f  the  computa t ion  (SS  on ly )  

D -  The  amount  o f  space  occup ied  in  the  g loba l  s t ack  a t  the  end  o f  t he  
computa t ion .  Th i s  co r responds  to  the  to t a l  amount  o f  space  tha t  
would  be  t aken  up  i n  the  long  t e rm i f  the  p rogram were  invoked  a s  a  
" subrou t ine"  and  a l l  cho ice  po in t s  were  then  d i sca rded  ( fo r  
ins t ance ,  wi th  a  " cu t " ) .  I t  a l so  cor responds  more  o r  l e s s  to  the  
maximum amount  o f  g loba l  s t ack  in  use  a t  any  t ime  in  the  
computa t ion .  

E  -  The  t o t a l  amount  o f  g loba l  s t ack  in  use ,  ignor ing  the  space  t aken  by  
molecu les  (D-C)  

F  -  The  t o t a l  amount  o f  space  tha t  would  be  t aken  up  in  the  long  t e rm i f  
the  p rogram were  invoked  a s  a  " subrou t ine"  bu t  a l l  cho ice  po in t s  
were  kep t  (A+D)  

G -  The  t o t a l  amount  o f  space  needed  to  run  the  p rogram (B+D)  

The  f igu res  themse lves  a re  g iven  in  f ig  5-1  

5 .4 .  Conc lus ions  

I t  i s  ha rd  to  know how t o  se l ec t  a  r ep resen ta t ive  sample  o f  p rograms  fo r  
such  an  exper imen t .  As  i t  was ,  t he  p rograms  were  s e l ec ted  in  advance  a s  eas i ly  
access ib le  p rograms  tha t  covered  a  r ange  o f  d i f f e ren t  s i tua t ions .  There  was  
no  pos t se lec t ion .  Assuming  t ha t  they  a re  no t  t oo  unrepresen ta t ive ,  we  can  d raw 
the  fo l lowing  conc lus ions :  

Compar ing  co lumns  C and  E ,  we  s ee  tha t  in  each  case  the  number  o f  
va r i ab le  ce l l s  on  the  g loba l  s t ack  in  SS  i s  a  eas  
number  o f  molecu les  ( s ince  C i s  the  amount  o f  space  used  by  t he  
2 - w o r d  m o l e c u l e s ,  t h i s  r e s u l t  f o l l o w s  f r o m  t h e  f a c t  t h a t  C C E  i n  a l l  
cases ) .  Th i s  p rov ides  jus t i f i ca t ion  fo r  our  o f  
r ep resen ta t ion  o f  molecu les  a s  sepa ra te  i t ems  on  e  g  •  
I t  a l so  sugges t s  t ha t  P ro log  implementa t ions  mak ing  use  o f  long  
words  t o  s to re  molecu les  may  no t  be  ve ry  e f f i c i en t  in  t e rms  o f  t he  
number  o f  b i t s  used ,  un less  the  ex t ra  l eng th  i s  used  s ign i f i can t ly  
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Figure 5-1: Comparison of SS and NSS Systems 
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p rog ram wi th  " cu t s "  ( s ee  co lumns  F  and  G) ,  whe rea s  i t  i s  wor se  o f f  
i n  t he  o n e  w i thou t .  T hus ,  c e r t a i n  obv ious  im pr ovem en t s  i n  ou r  
i n t e rp r e t e r s  can  be  expec t ed  t o  ma ke  NSS  an  e ven  mo re  f avou r ab l e  
op t i on .  Of  cou r se ,  o th e r  improvemen t s  ( such  a s ,  pe rhaps ,  g a rb ag e  
co l l e c t i on  o f  t he  g loba l  s t a ck )  may  we l l  w o rk  i n  f avou r  o f  SS .  

6 .  Some  F i n a l  Remarks  

As  w e  have  s een ,  t he  c ompa r i s on  be tw een  s t r uc tu r e  sha r i ng  and  i t s  
a l t e rna t i ve s  i s  no t  a  s imp le  one ,  and  n o  q u i ck  a ns wer  can  be  g iven  a s  t o  wh i c h  
app r oach  i s  be s t .  I t  i s  i n t e r e s t i ng ,  h o w ev e r ,  t h a t  a  s i gn i f i c a n t  f a c to r  i n  t he  
d e c i s i on  i s  t h e  r e l a t i onsh i p  be tween  t he  w or d  s i z e  and  a dd r e s s  s i z e  o f  t he  
mach ine  on  wh ich  t he  sy s t e m i s  imp lemen ted .  

As  w e  have  p o in t ed  o u t ,  ne i t he r  o f  t he  s y s t e ms  p r e se n t e d  i s  op t ima l  i n  i t s  
use  o f  t h e  l o ca l  and  g l oba l  s t a cks .  I t  r ema in s  t o  be  s een  w h e t h e r  m ixed  
app roaches  c an  be  d ev i s ed  t ha t  h av e  t he  bene f i t s  o f  bo th .  I t  i s  hoped  t ha t  
t h i s  pape r  ha s  m ade  c l e a r  wha t  some  o f  t he  i s sue s  a r e  and  t ha t  i t  ha s  r evea l ed  
how muc h  more  work  s t i l l  ne e ds  t o  be  done  i n  t h i s  a r e a .  
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I .  Some Techn ica l  De ta i l s  

For  those  who  wish  t o  look  more  c lose ly  a t  our  f igu res ,  he re  i s  a  summary  of  
some  o f  t he  re l evan t  t echn ica l  de ta i l s .  

In  bo th  i n t e rp re te r s ,  the  amount  o f  admin i s t r a t ive  in fo rmat ion  s to red  in  the  
l oca l  s t ack  fo r  a  goa l  depends  on  whe the r  t he  c l ause  used  i s  the  l a s t  one  fo r  
t he  p red ica te .  For  NSS,  t he  space  i s  2  words  fo r  the  l a s t  c l ause  case ;  5  
o the rwise .  For  SS ,  t hese  numbers  a re  3  and  5  r e spec t ive ly .  The  r e s t  o f  the  
space  on  the  loca l  s t ack  i s  t aken  up  by  va r i ab le  ce l l s ,  a t  1  word  each .  When  a  
a °w + u S  e ™ounte red ,  a l l  loca l  s t ack  a f t e r  the  "pa ren t "  f rame  i s  rec la imed  

t he  l a s t  cho ice  po in t "  f r ame  becomes  the  l a s t  cho ice  f rame  be fo re  the  
r ecLa impd  ? f 3  ^  "?* ® u "? s s f u 4x  "ex i t ed" ,  i t s  loca l  s t ack  space  i s  
no t  (win  1  nv  • •+  - i  8  cho ice  po in t "  comes  fu r the r  back  in  the  s t ack .  We do  no t  employ  " t a i l  r ecurs ion  op t imisa t ion" .  

same  ^number  i ^ e r p r e ^ e r '  "concre te  cop ies"  on  the  g loba l  s t ack  occupy  the  
Copy inq  o f  a round  3 S  4  co r respond ing  ske le tons  (1  word  pe r  " symbol" ) .  
g lobaL  s t a?k  hof r im *°H?  1 8  " 0 t  0 e t i m i s * d .  In  the  SS  in t e rp re te r ,  the  s^h^irif (2 *ords each>-
i n t e rp re te r s 0 1  s to re 6  t he^a l l  iS tST ' l ! ?  " t r a U "  ̂  I n  

s i ze  i s  no t  inc luded  in  our  f igu res  NSS U t h «  g loba l  s t ack ,  a l though  i t s  
In these examples trail ^an use slightly more trail than SS. 
u ses  in  to t a l  2  more  words  than  t 1 c a l  e x c ep t  in  p rogram (1 ) ,  where  NSS 



In te rmiss ion  — Actors  in  Pro log  

Kenneth  M.  Kahn 
S tockholm Univers i ty  

Pro log  as  a  computer  l anguage  o f fe rs  s impl ic i ty  and  a  dec la ra t ive  
in te rpre ta t ion  of  p rograms.  Computer  l anguages  based  upon computa t iona l  
en t i t i es  ca l led  "ac tors"  o f fe r  modular i ty ,  para l le l i sm,  da ta  
represen ta t ion  f ree  programming and  a  s imple  bu t  powerfu l  computa t iona l  
semant ics .  P ro log  i s  not  wel l - su i ted  for  cont ro l l ing  computa t ion ,  fo r  
def in ing  new da ta  types ,  o r  for  wr i t ing  programs tha t  do  not  depend  upon 
the  phys ica l  represen ta t ion  of  i t s  da ta .  This  paper  in t roduces  the  
concept  and  mot iva t ion  for  ac tors  and  then  descr ibes  a  sys tem ca l led  
"In te rmiss ion"  which  implements  ac tors  in  Pro log .  The  thes i s  presen ted  
i s  tha t  a  hybr id  of  ac tors  and  log ic  programming i s  a  s t rong  a l te rna t ive  
to  a  language  based  upon e i ther  concept  a lone .  

INTRODUCTION AND MOTIVATION 
Dur ing  the  l as t  t en  years  there  has  been  much research  on  a  new k ind  of  
computa t iona l  en t i ty ,  var ious ly  known as  "ac tors" ,  "objec ts" ,  and  
"abs t rac t  ob jec t s" .  An ac tor  combines  bo th  procedure  and  da ta  in to  a  
s ing le  ob jec t .  Actors  per form computa t ion  v ia  "message  pass ing" .  Var ious  
computer  l anguages  have  been  bu i l t  upon ac tors ,  among them a re  Smal l ta lk  
( [Goldberg  1976]  and  [Kay 1977]) ,  Act  1  (a  descendant  of  P lasma)  
( [Hewi t t  1977]  and  [Lieberman d ra f t ] )  and  Di rec tor  ( [Kahn 1976] ,  [Kahn 
1978]  ,  and  [Kahn 1979])  .  

The advantages  o f  bu i ld ing  sys tems  in  such  languages  a re  increased  
modular i ty  and  increased  ex tens ib i l i ty .  Actors  a re  a l so  very  wel l - su i ted  
for  descr ib ing  para l le l  p rocess ing .  On h igh ly  para l le l  hardware  i t  i s  
ant ic ipa ted  tha t  ac tor  programs wi l l  be  s impl ie r  and  more  e f f ic ien t  than  
the  t rad i t iona l  a l te rna t ives .  

Pro log  ( [LNEC 1979]  and  [Warren  1977])  i s  a  programming language  tha t  
has  the  un ique  fea ture  tha t  programs wr i t ten  in  i t  can  be  v iewed e i ther  
procedura l ly  o r  dec la ra t ive ly  as  log ica l  s ta tements .  However ,  a s  a  h igh-
leve l  p rogramming language  i t  has  cer ta in  def ic ienc ies .  I t  i s  d i f f icu l t  
to  wr i te  programs tha t  a re  no t  dependent  upon  the  represen ta t ion  of  the  
da ta .  A typ ica l  sor t  program,  fo r  example ,  works  on ly  upon l i s t s  as  they  
are  p rovided  by  Pro log  and  a  d i f fe ren t  vers ion  i s  needed  for  d i f fe rence  
l i s t s  or  o ther  k inds  of  l i s t s .  I t  i s  a l so  qu i te  awkward  in  Pro log  to  
handle  "v i r tua l  da ta  ob jec t s" ,  such  as  the  l i s t  of  na tura l  numbers ,  tha t  
i s  computed  as  needed .  In  genera l  i t  i s  d i f f icu l t  to  de lay  computa t ions  
unt i l  they  a re  needed .  The  ab i l i ty  to  cons t ruc t  new k inds  of  da ta  
s t ruc tures  in  Pro log  i s  l imi ted  to  those  tha t  can  be  represen ted  by  
te rms  and  l i s t  s t ruc tures .  These  very  genera l  da ta  s t ruc tures  a re  on  
occass ion  ex t remely  inef f ic ien t  in  compar i son  wi th  more  spec ia  l ze  
s t ruc tures  such  as  a r rays  or  b i t  s t r ings .  Other  m°re  genera l  a  a  
s t ruc tures  a re  o f ten  more  convenien t  than  te rms  or  l i s t s  whose  par t s  a  
accessed  by  the i r  pos i t ion  in  the  s t ruc ture .  The  packagers  o  ^  
which  suppor t  named subcomponents  and  par t ia l  descr ip  P  
of  such .  As  I  hope  to  show,  many of  these  def ic ienc ies  of  Pro log  can  be  
remedied  by  the  inc lus ion  of  ac tors .  

This  repor t  descr ibes  an  implementa t ion  in  Pro log  of  ac tors  modeled  
a f te r  the  Act  1  language .  The  implementa t ion  i s  ca l led  In te rmiss ion .  

There  i s  another  mot iva t ion  for  implement ing  ac tors  in  Pro log  bes ides  
the  a l l i ev ia t ion  of  the  above  ment ioned  de f ic ienc ies . "  5?ew of  
may l ead  to  a  be t te r  or  d i f fe ren t  ac tor  The  ^ ica i  view o  
Pro log  programs appl ies  to  the  Programs tha t  ^P 1 ^  actors  J -
Cer ta in  unusua l  fea tures  of  Pro log  car ry  over  to  tne  ^  
in Pro log .  The  poss ib i l i ty  of  revers ing  the  normal  input  and  ou tput  



var iab les  o f  a  Pro log  re la t ion ,  for  example ,  changes  the  normal  
s emant ics  o f  ac tor  computat ions .  The  ab i l i ty  to  use  the  same program i, 
many different ways is very attractive and adds new dimensions to acto-
programs .  

WHAT IS  AN ACTOR 
An ac tor  i s  a  computat iona l  ent i ty  that  combines  in  a  s ing le  unit both  
program and data. Actors therefore subsume both procedures, functions 
and a l l  k inds  o f  data  s tructures .  Computat ion  i s  performed on ly  by  '  
sending messages. It is not possible to reach inside an actor or chanqe 
an  ac tor  wi thout  sending  that  ac tor  a  message  reques t ing  such  an  
operation. This guarantees the integrity of the objects of computation, 
The  programs  wr i t ten  in  an  ac tor  language  depend on ly  upon the  behav io r  
of  modules  and  not  upon  the ir  phys ica l  representat ion .  

An ac tor  cons i s t s  o f  two  parts :  a  "scr ipt"  which  dec ides  what  should be  
done  wi th  incoming  messages  and  a  se t  o f  "acquaintances"  which  are  t he  
other  ac tors  that  the  ac tor  knows .  The  acquaintances  p lay  t h e  ro le  of  
l oca l  data  for  the  ac tor .  An ac tor  can  on ly  send  a  message  to  someone  i t  
knows ,  i . e .  e i ther  to  one  o f  i t s  acquaintances  or  to  someone  referred  t o  
in  the  incoming  message .  

Actors  can  represent  a  data  type  in  many  d i f f erent  ways  and  the  programs  
that  use  them need  not  know which  type  i t  i s  dea l ing  wi th .  Por  example ,  
one  can  de f ine  matr ices  as  two-d imens iona l  arrays ,  or  as  pa irs  o f  
ind ices  and  va lues  (perhaps  s tored  in  a  hash  tab le )  ,  or  as  a  procedure  
that  computes  the  va lues  as  needed .  The  f i r s t  a l ternat ive  i s  the  
t ^ d i t i °2 a ^ w a y  represent ing  matr ices  and  exp lo i t s  the  way  memory  i s  
addressed  m convent iona l  computers .  The  second  one  prov ides  great  
sav ings  o f  space  and  t ime  i f  the  matr ix  i s  large  and  sparse .  The  t h i rd  
a l ternat ive  i s  idea l  for  spec ia l  matr ices  such  as  ident i ty  matr ices .  

no  Since  programs  depend on ly  upon  the  behav ior  o f  the  "data"  there  i s  w  
def in ing  in f in i te  objec t s  such  as  the  l i s t  of  p r i m e  numbers .  

rnmnn n !nL a C F° r S  that_accept  messages  ask ing  for  the ir  f i r s t  and  res t  
f o r  ^?na'nf° r  pr int ing ,  for  determin ing  equal i ty  wi th  other  l i s t s ,  ar  
ask ina  fnr  i  +-=  e l ements .  Some l i s t s  accept  o ther  messages  such  as  t hose  
reason  an  ? r  t o  a PP e n d  another  l i s t  to  i t se l f .  T h e r e  i s  no  

e  l i s t  cannot  be  de f ined  to  do  these  th ings .  

l o t l rTlh l l V r tTr l i S t t n t  a C t ° r  s y s t e m '  ^  is  re i  a t ive ly  easy  to  add 
in  para l l e l  (oerhan2  c o m P u t at ions  ye t  to  be  done  or  that  a r e  be ing  to  
around,  inser ted  in  l i s t s  ° n  j n °^ h e r  processor ) .  The  ac tor  can  be  passed  
needed  must  the  comDut-a l^ '  l l k e  a n d  o n l v  w h e n  i t s  v a l u e  1 5  
the  behav ior  L  ,  ?  invo lved  f in i sh .  Again  the  dependence  upon  
s tructure ,  makes  th i s^oss ib le*  p h y s i c a l  implementat ion  o f  a  data  

HOW-TO PUT ACTORS INTO PROLOG 

computer  language 9 then° ih 0 t 0  P r ° l o < 3  f c o  produce  a  bet ter  prac t i ca l  
of  implementat ion .  Perhan  ^ o u l d  have  to  be  incorporated  a t  a  lo w  

symbols  and  numbers  have  f  S y  w o u ld  have  the  same s ta tus  as  l i s t s  
th i s  report  descr ibes  an  c u r r e n t  implementat ions  of  Prolog .  Ho«< 
i s  to  c lar i fy  and exp lore  "£ o r P°ra t ion  of  ac tors  i n  Prolog  whose  p i  
consequence ,  t he  ac to r s  an^  S aa S f u e s  a n d  i ^eas  invo lved .  As  a  
and f l ex ib le  manner  that  i  <= „  c  t o  P r ° l °g  in  a  ve ry  c lean ,  gen"'  
implementat ion  has  Droved  a , s  n f o r t unate ly  extremely  i ne f f i c i en t .  J 1  

quick  sor t  or  the  s i eve e of a ^ a t ! . f ° r  r u n n i r >g s imple  programs  l l *  
seven  d i f f erent  types  o f  l i s t s  a n d  f o r  i m Pl e m e n t i n 9  S 1 X  

Actor  theory  de f ines  the  h  
as  "uni -d irec t iona l" .  in  c o n i P u t at ion  mechanism o f  message  

r  words ,  you  send  a  message  to  an  a  
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its up to it to reply or to send messages off to others. If we were to 
implement actors in this completely general fashion then we might have a 
Prolog relation called "sent" between four terms as follows: 

sent (Continuation-1, Message-1, Continuation-2, Message-2) 

which is interpreted as message-1 is sent to the actor continuation-1 
and as a result message-2 is sent to continuation-2. When all the terms 
are instantiated the following should happen: 

sent(Continuation-2, Message-2, Continuation-3, Message-3) 

In other words, each transmission of a message to a continuation should 
create a new continuation and a new message. The newly created message 
and continuation then become the participants in the next message 
transmission. In the full generality, the "result" of sending a message 
to an actor should be any number of new transmissions. The problem with 
this setup is that the programs written in this fashion repeat the same 
text twice (e.g. Continuation-2 in the above example). Actor 
interpreters avoid this and the Prolog interpreter could be changed 
similarly. 

Instead of making this major change to Prolog's interpreter a more 
limited version of actor semantics was implemented where all message 
transmissions "return" a value. This is similar to the approach taken in 
Smalltalk, Director, and the abstract objects in Lisp Machine Lisp. In 
Prolog terms that means that the "sent" relation has only three terms as 
follows: 

sent(Target, Message, Answer) 

This scheme was generalized by allowing for any number of "answers" 
including zero (for print messages, for example). It is the one used in 
Intermission. For example, let us consider a simple implementation of 
lists to illustrate the "sent" relation. Of course, since Prolog already 
has lists this is meant solely as an illustration of the basic ideas. It 
turns out we will represent actors as Prolog lists, so this clearly will 
not make Prolog more powerful later examples are for that. Actors 
are represented as lists whose first element is their type which plays 
the role of the "script" and the rest of the list are the 
"acquaintances" of the actor. 

First we define the message "first" which returns the first element of 
the actor list, and the message "rest" which returns the rest of the 
list. (Lower case words are literals; upper case are variables.) 

sent([list,First,Rest] ,first,First) . 
sent ([list,First,Rest] , rest, Rest) . 

For example, to find the rest of the list (A B) we type the following 
to Intermission. 

sent([list,A, [list,B, [emtpyJList] ] ] ,rest,R) . 

and the system responds 

R= [list,B, [emtpy_list] ] 

Next we define a means of making lists by adding new elements in front 
(i.e. "cons" in Lisp) . 

5ent([list,First,Rest] , [add element ,New_element] , 
[list,New_element,[list,First,Rest] ] ) . 

3 
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To get  s tarted  we need the  empty  l i s t ,  which we wi l l  represent  a s  an act  
w i thout  any acquiantences .  

sent  ( [empty_l i s t ]  , [add_element ,New_element]  ,  [  1  i s t  ,New_element ,  [empty  l i S [ ] ]  

Now suppose  we want  our  l i s t s  to  respond to  "length" messages .  We could  
def ine  th is  as  fo l lows .  

sent  ( [ l i s t  ,F i  rs t ,Rest ]  ,  l ength  ,N)  /*  the  l i s t ' s  length  i s  N i f* /  
sent (Rest , length ,M) ,  /*  the  length  of  i t s  res t  i s  M * /  
sent  (M,  [  +  ,1 ]  ,N)  .  /*  and N =  M +  1  (numbers  as  actors  are  descr ibed below)  t  

s ent ( [empty_l i s t ] , l ength ,0) .  

To extend our  l i s t s  so  that  they  can respond to  messages  asking  i f  thev  
are  equal  to  another  l i s t ,  we have  the  fo l lowing.  

sent  ( [ l i s t ,F irs t ,Rest ]  ,  [equal ,Another_l i s t ] , true)  
sent  (Another_l i s t ,  [are_you a ,  l i s t ]  , true)  ,  /*  i s  the  other  i s  a  l i s t  * /  
s ent (Another_l i s t , f i rs t ,OtKers  f irs t )  ,  
sent  (Fir  s t ,  [equal ,Other  s_f  i r  s tT,  true)  ,  /*  i s  my f i rs t  equal  to  his  f irs t  * '  
s ent (Another_l i s t ,res t ,Others_r  es t ) ,  
sent  (Rest ,  [equal ,Others_rest ]  , true)  .  /*  and h is  res t  equal  to  mine  * /  

We need to  s top  somet ime so  we def ine  empty  l i s t s  to  equal  themselves ,  

sent  ( [empty_l i s t ] , [equal , [empty_l i s t ] ] , true)  .  

tvne n of°^h» e d  t  n e w  m e ssage  of  general  usefulness  that  ver i f ies  the  
to  the  "•  "  b ° t h  l i s t s  a n d  t h e  ***** H«t  to  answer  yes to  tne  quest ion  "are  you a  l i s t" .  

«nwn™ P ^V?" i s t l  '  ̂ a r e _you_a,  1  i s t ]  , true)  .  
sent  ( [ l i s t ,F irs t ,Rest ] , [are_you_a, l i s t ] , true)  .  

aSfwe'ask^t  are^o^eouaT  ̂  ̂  r?° i n t " S u p P ° S e  W e  h a v e  t h e  l i s t  ( A  B  C 1  

to  Z.  But  A and I  Ir l  p™? t 0  ( ? B  C )  t h e n  i f c  w i l 1  A i f  i t  i s  equal  
problem that  we take  i !  V  n 0 t  a c t °rs .  The so lut ion  to  this  
bot tom" actors  We reore^nv £°  t h a t  t a k e n  b y  A c t  1  i n  handl ing  "rock 
s t i l l  behave  just  l ike  fu l l - f?oIJ  ^ S  3 n d  s y ™ b ° l a  spec ia l ly  but  they  
i s  Prolog's .  For  examni .=  actors .  The  representat ion  we choose  
message  we do  the  fo l lowing e n a b l e  Prolog  symbols  to  answer  "equal"  

sent  {Symbol ,  [equal ,Symbol]  ,  true)  atomic  (Symbol)  .  
A LIST OF INTEGERS 
The actor  l i s t s  we just  dpf inoa  u 
seems more  complex  and awkuar^ » a v e  n o  a d v a r | tages  over  Prolog  l i s t s  M" 
advantages of the actor exa??le that points to some of the 
a large  c lass  of  them s implv  hv  / S  3  l l s t . o f  integers .  We can r e p r e s e n t  
first element, the last element ^Ct°r with three acquaintances: the 
e lements .  We can def ine  "f irs?"'  ^  „ t h e  d i f f «ence  between sucess ive  
f o l l o «s .  t l r s t  a n d  "rest"  messages  for  such l i s t s  as  

SGnt  (  [n l i s t .Beqin  Fn^ T*I^ 
«"t ' [n l l ? t : B e | ] ; ; i^;^«™»nt  . f irs t ,Begin , .  

sent  (Begin ,  [  +  , Increment]  ,New begin" [ n l i s t ' N ew_begin ,End,Increment] )  • 
The "rest" m^c; 

excepftha? f i^^^^^swers^i t^a 3 !  • i S t  ° f  n U m b e r s  i s  a s k e d  1? inborn* ?™ t h e .  f i rs t  e lement  i s  o f  numbers  just  l ike  i t se l f  
number  ?s*a  N ° f c i £ e  that  the  addi t ion  ?  f irs t  e lement  p lus  the  

^  sent  the  message  "add the  v*?  p e r f °rmed by actors;  the  f i r s t  
t b e  v a l u e  of  increment" to  yourse l f .  



3? 
Numbers  are  ab le  to  take  messages  l ike  th i s  because  they  are  "rock  
bo t tom"  actors  wi th  message  handlers  such  as  the  fo l lowing .  

sent (Number  ,  [+ ,Another]  ,Resu l t )  
in teger  (Number)  ,  in teger  (Another)  ,  / *  i f  they  are  both  numbers  * /  
Resu l t  i s  Another+Number .  / *  then  add  them * /  

Se  cou ld  go  on  and  de f ine  "equal" ,  " length" ,  "are_you_a" ,  and  "pr int"  
nessages  for  these  new k inds  o f  l i s t s  but  some o f  i t  wi l l  be  a  
repet i t ion  o f  the  prev ious  c lauses .  Other  k inds  o f  l i s t s  wi l l  be  de f ined  
and some w i l l  have  even  more  in  common wi th  the  behav ior  o f  our  ac tor  
l i s t s .  The  so lut ion  to  th i s  problem in  Act  1  and  Direc tor  i s  "message  
de legat ion" .  When an  ac tor  does  not  know how to  handle  a  part i cu lar  
nessage  i t  "de legates"  i t  to  someone  i t  th inks  can  handle  i t  for  h im.  
rh i s  ac tor  which  de legates  i s  ca l l ed  the  "c l i ent"  and  i t  de legates  to  
i t s  "proxy" .  De legat ion  i s  implemented  by  hav ing  the  fo l lowing  two  
c lauses  o f  "sent"  a t  the  very  end .  

sent  (Anyone ,Message ,Resu l t )  / *  i f  any  ac tor  cannot  handle  a  message  * /  
sent (Anyone ,proxy ,Proxy)  ,  / *  we  ask  the  ac tor  who  h i s  proxy  i s  * /  
sent  (Proxy ,  [handle_for ,Anyone ,Message]  ,Resu l t )  .  
/*  and  send  the  Proxy  the  message  ask ing  i t  to  handle  th i s  for  the  ac tor  * /  

sen t  (Anyone ,  [handle_for  ,C l i ent ,Message]  ,Resu l t )  
/*  and  i f  a  proxy  cannot  handle  the  problem passed  to  h im,  he  passes  i t  

on  a long  to  h i s  proxy  * /  
sent  (Anyone ,proxy ,  Proxy)  ,  
sent  (Proxy ,  [handle_for  ,C l i ent ,Message]  ,  Resu l t )  .  

rh i s  s imple  scheme great ly  increases  the  power  o f  the  ac tor  sys tem by  
fac i la ta t ing  the  shar ing  o f  knowledge .  The  programmer  now can  p lace  
knowledge  a t  as  h igh  a  l eve l  o f  abs trac t ion  as  des ired .  For  example ,  we  
can  de f ine  a  "pr int"  message  for  a l l  k inds  o f  l i s t s  as  fo l lows .  

sent  ( l i s t ,  [handle_for  ,  A_ l i s t  ,pr  in t ]  )  
wr  i t e  ( '  (* )  ,  / *  pr int  an  open  parenthes i s  * /  
sent (A l i s t ,pr int_e lements )  ,  
wr i te f  ) ' ) .  / *  pr int  a  c lose  parenthes i s  * /  

sent ( l i s t ,  [handle_for  ,A_ l i  s t  ,pr int_e lements ] )  
wri te  ( '  ' )  ,  
sent (A l i s t , f i r s t ,F irs t )  ,  >.  *  /  
s ent (P lrs t ,pr int )  ,  / *  send  a  "pr int"  message  to  the  f i r s t  e lement  /  
sent  (A l i s t , res t ,Res t )  ,  .  
sent  (Res t ,pr int_e lements )  .  / *  send  a  "pr int  e l ements"  message  to  the  res t  * /  

Not ice  that  s ince  "pr int"  messages  are  sent  on ly  for  the ir  s ide  e f fec t  
and there  i s  no  "resu l t"  the  "sent"  re la t ion  has  on ly  two  arguements  
here .  (This  ac tua l ly  causes  s l ight  problems  wi th  de legat ion .  The  two  
c lauses  implement ing  de legat ion  need  to  be  cop ied  wi th  on ly  two  
arguements  t o  "sent" . )  

Now i f  we  dec lare  that  our  number  l i s t s  have  the  gener ic  " l i s t"  ac tor  as  
a "proxy"  a s  fo l lows ,  

sent (n l i s t ,proxy , l i s t )  .  

then  we  can  pr int  "n l i s t s"  wi thout  d i f f i cu l ty .  For  example ,  

s e nt ( [n l is t ,  1,15,2]  ,pr int )  .  / *  resu l t s  in  the  fo l lowing  be  pr inted  * /  
' 1 3 5 7 9 11 13 15 ) 

T h | s  i s  f ine  but  how should  a  l i s t  l ike  "  [n l i s t , l , J°2°°?J 'b ihav ior  we  
Pr inted?  The  de legat ion  mechanism prov ides  on ly  a  •  
can  overr ide  i t  in  th i s  case  as  fo l lows .  
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sent (nlist, [handle for,A_list,print_elements]) 
/* no need to override "print" since we still want the Parentheses */ 
sent(A list,length,Length), /* find the length of the list */ 
sent(Length,[>,5],true) , /* and its greater then 5 */ 
s e n t ( A_list,print_elements_with_dots) . /* print it specially as follows' 

sent (nlist, [handle_for ,  A_list ,pr int_elements_with_dots]) 
write (' ') , 
sent(A_list,first,First) , 
sent(First,print), /* print the first element */ 
write (' ') , 
sent(A_list,2,Second) , 
/* We define lists to respond to numbers with their Nth element */ 
sent(Second,print) , /* print the second element */ 
wr ite (' ') , 
sent(A_list,3,Third) , 
sent(Third,print), /* print the third element */ 
write(' ... '), /* print three dots */ 
sent (A_list,last,End) , /*• lists return the last element to "last" messages! 
sent (End,print). /* and print the last element */ 

Our change has not affected lists of numbers with less than 6 elements, 
However if we try to print the first million integers, the list behaves 
sensibly as follows. 

sent([nlist,1,1000000,1],print) . 
(123... 1000000 ) 

Notice that our print method asks the list for its length. This could be 
quite expensive considering that the general method for length keeps 
sending rest" messages until the list is empty. (One part of our 
nlist a<?tor that has been ommitted here are the clauses that determine 
if„fn emPty.) We can fix this by adding a method which simply 
fhp KSnCe bebween the first and last element and divides by 

2? ? °r the len9th. A similar problem exists with 
and ouffe 0^!ment m®ss?9e. This one is trivial for "nlist" to handle 

quite expensive to let the general method in "list" handle it. 

renresent inf?n!fWeiba^e deflned "nlists" in such a way that they can 
integers is iust " rnl * 1 F<?r ®xaTnPieJ the list of all the positive odd 
acto?"hiJh has oJn ' 'inflnity'2]"- "Infinity" is just a number actor wnicn has clauses such as the following. 

infinity delegates to number V 
sent (infinity | [> ̂Anyone] ' true?11"/* * I #1 1?f ln 1 ty Plus anything is infinj J 

J, ue) . / infinity is greater than any other / 

that the other^umberSwhich should be edified to make sure 
infinity. This coulfbfdo£e„foUoS! C°mpared with is n0t itS6lf 

nitY't>,Any°nel ,true> sent (Anyone, [are_you,finite],true), 

its length, and Sample'366 t0' taken aPart' printed, asked 

L=infinU;?'1,infinity'2] '^ngth^) . 
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DELAYED COMPUTATIONS 
Somet imes  i t  i s  easy  to  descr ibe  what  each  ob jec t  o r  process  in  a  
computa t ion  should  be  or  do  bu t  the  par t s  depend  upon each  o ther  in  such  
complex  ways  tha t  i t  i s  d i f f icu l t  to  order  the  events .  One  would  l ike  to  
have  each  p rocess  run  in  para l le l  and  wai t  when  they  need  some va lue  
tha t  has  ye t  to  be  computed .  Actor  sys tems  a re  wel l - su i ted  for  
descr ib ing  para l le l  p rocess ing  because  of  message  pass ing  and  the  
in te rna l iza t ion  and  loca l iza t ion  of  s ta te  descr ip t ions .  However ,  s ince  
achiev ing  concur rency  wi th in  Pro log  would  requi re  major  changes  to  the  
in te rpre te r  the  ac tor  p r imi t ives  for  para l le l i sm were  no t  implemented .  
(See  [Clark  1980]  fo r  a  descr ip t ion  of  some of  these  changes  to  Pro log . )  

A pr imi t ive  fo r  de lay ing  computa t ions  un t i l  the  va lue  i s  needed  has ,  
however ,  been  implemented .  I t  i s  espec ia l ly  usefu l  for  comput ing  wi th  
inf in i te  ob jec t s .  "Delay"  could  be  def ined  as  fo l lows  in  Pro log .  

sen t  ( ac tor ,  [handle  fo r  ,Cl ien t ,  [de lay ,Message]  ]  ,  
[de layed_t ransmiss ion ,Cl ien t ,Message ,  Value] ) .  

I f  any  ac tor  rece ives  a  message  beginning  wi th  "de lay"  fo l lowed by  a  
message  i t  jus t  " re turns"  an  ac tor  tha t  i s  a  de layed  t ransmiss ion  whose  
acquai tences  a re  the  or ig ina l  rec ip ien t  of  the  message ,  the  de layed  
message ,  and  a  var iab le  represen t ing  the  to-be-computed  resu l t  of  
sending  the  message  to  the  ac tor .  The  next  problem i s  to  def ine  de layed  
t ransmiss ions  as  ac tors  tha t  when they  ge t  a  message  f ina l ly  do  the  
delayed  ac t ion  and  then  send  the  message  on  a long  to  the  resu l t .  

sen t  ( [de layed_t r  ansmiss  ion  ,  Tar  ge t  ,Delayed_message  ,  Value]  ,  Message ,  Re  su i t )  : -
sent (Targe t ,Delayed_message ,Value)  ,  /*  compute  the  de layed  computa t ion  * /  
sent  (Value ,Message ,Resul t )  .  /*  and  send  Message  to  the  resu l t  * /  

The d i f f icu l ty  wi th  th i s  so lu t ion  i s  tha t  the  ac tor  wi l l  recompute  i t s  
delayed  computa t ion  every  t ime  i t  ge ts  a  message .  We would  l ike  i t  to  
compute  i t  the  f i r s t  t ime on ly  and  f rom then  on  have  i t  behave  as  the  
resu l t .  To  avoid  th i s  we t ake  advantage  of  Pro log ' s  ab i l i ty  to  compute  
wi th  pa r t ia l ly  ins tan t ia ted  s t ruc tures .  The  f i r s t  t ime the  computa t ion  
i s  per formed the  l as t  e lement  o f  the  l i s t  represen t ing  the  de layed  
computa t ion  i s  ins tan t ia ted .  To take  advantage  of  th i s  we add  the  fo l lowing  

sent  ( [de layed  t ransmiss ion ,Targe t  ,Delayed_message ,  Value]  ,Message ,Resul t )  : -
nonvar  (ValueT,  /*  I f  the  Value  i s  ins tan t ia ted ,  then  use  i t  * /  
sent  (Value ,Message ,Resul t ) .  /*  and  send  Message  to  the  Value  * /  

One use  o f  th i s  "de lay"  message  i s  to  cons t ruc t  the  l i s t  of  na tura l  
numbers  a s  fo l lows .  

sent ( l ist ,  [natural_numbers_beginning ,N] ,Result)  : -
sent(N, [+,1]  ,N plus one),  i n  . .  .  .  
sentfl ist ,  [delay,  [natural_numbers_beginning ,N_plus_one] ]  ,Delayed_rest)  ,  
sent ( l ist ,  [  add_e lemen t ,  N, De lay ed_r est]  ,Result)  .  

The r esu l t  o f  sending  a  "na tura l  numbers  beg inning  1"  message  to  " l i s t "  
is  the  l i s t  of  na tura l  numbers .  In  many ways  th i s  i s  a . i - e ;=s  .  
implementa t ion  o f  a  l i s t  of  numbers  than  the  one  descr ibed  ear l ie r  s ince  
i f  we ask  i t  for  i t s  length  or  to  pr in t  the  computa t ion  wi l l  no t  t e rmina te .  

Avery  o ld  a lgor i thm for  comput ing  pr ime n u m b e r s  i s  ca l led  the  "s ieve  of  
Er a to s thenes " .  The  idea  i s  s imple .  You begin  wi th  the  l i s t  of  in tegers  
g inning  wi th  2 .  You then  repea ted ly  c ross  ou t  n u ™k®rs  tha t  a r  
multiples of  the f irst  element of  the l ist .  The LwaSs 
jrst  elements is  the l ist  of  primes.  With actors and Jelay messages 

l h«e are no diff icult ies  dealing with these m fmite objects and 
computations.  We can define the l ist  of primes as fol lows.  

7 
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primes(Tbejorimes) 
' sent (list,[natural_numbers_beginning,2],Numbers) , 
sent (Numbers,repeatedly_cross_out_multiplies_of_f irst ,The_primes). 

sent (list,[handle_for,List,repeatedly_cross_out_multiples of first] RPC„HI 
sent(List,first,First), 
sent(List,rest,Rest), 
sent(Rest,[cross out_those_divisible_by,First],Those_left) , 
sent (Those lef t ,Tdelay ,repeatedly_cross_out_mult iples_of_f irst],Primes) 
sent(list,Tadd_element,First,Primes],Result) . ~ " ' 

sent (list, [handle_for ,A_list, [cross_out_those_divisible_by ,N] ],Result) •-
sent(A_list,first,First), 
sent(A_list,rest,Rest), 
Mod is First mod N, 
cross_out_helper(First,Rest,Mod,N,Result) . 

cross_out_helper(First,Rest,0,N,Result) 
/* mod is 0 meaning that this one is a multiple of N */ 
sent (Rest, [delay, [cross_out_those_divisible_by,N] ] ,Result). 

cross_out_helper(First,Rest,_,N,Result) 

Cn??n2=t ^mflti?le °f N S° keep ifc and delay the recursion on the rest */ 
sent (Rest, [delay, [cross_out_those_divisible by, N] ] , Those left), 
sent (list,[add_element,First,Those_left],Result). 

print_primes 
primes(P), 
sent(P,print) . 

^ s "  i  r  / * U l t s  t l l e  f o l l o w i n g  b e i n g  t y p e d  * /  
( 2 3 5 7 11 13 17 /* until we interrupt the program V 

BATA REPRESENTATION FREE PROGRAMMING 

programs: one^oriquickI"lsor'-^hiS research was reading two Prolog 
difference lists (?Han^nn °rdlnarV and another for 
Intermission's message oasslnn an<3 [Hansson ^80]). Using 
any sort of list as follows. WS Ca" w te a 3uick sort that works for 

sent (A_list,empty?true?f 7 ̂  list is it<5elf T 

sent (list, [handle for,A list [nn(-i, 
sent (A_list,first,First) [ q u i c k_ s o rtdelation] ] , Sorted list) 
sent(A_list,rest,Rest), 

/* Partion ̂ h^iist^nto ̂wo^art'FiCStl 5 'Less_than_°r_equal,Greater_tha 
the first element of thP i; I *, those greater and those less than 

sent (Less than or M„ai r~ • , ' 
sent(Greater_tEan7?qu?cklor1fRe?a^'Re}a"0nl'Fi"t-P art sorted), 
/* lust sortEd the €wo s5rl?^; ?• ^°n]'Rest-sort^~, ~ 
sent Rest_sorted, [cons,First? now put the™ bac* together agai 
sent (First_part sortel [a£peid8 .'"t.MrUd) , 

p , n . r ~ PP nd,New-rest_sorted] ,sorted list), 
sent(list,[handle for A 1iet r 
sent (A_list,empty,trueT. /* ' an3^?10?-157'Pred icafce] ) , A list,A list) 
„bH1; „ ry empty llst Par tit ions into itself */ 
J .list, [handle for A li«i- r Lhi'v10" A LTst those3that ̂ -ky. Predicate) ] .""rue ones, False®1' 
w ' lrst'First), Predicate is true of and those its n< 
sent(A list,rest,Rest} 
sent(FTrst,Predicate^true) 

ft 
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ent  ( . l i s t  ,  [handle_for  ,  A_l is t ,  [par t i t ion_by,Predicate]  ]  ,  Tr  ue  ones ,False  ones i  
/*  th is  handles  the  case  where  the  Predicate  i s  fa lse  * /  
sent(A_l is t , f i rs t ,F i rs t )  ,  
s e n t ( A_l is t , res t ,Rest )  ,  
sent (Fl rs t ,Predicate , fa lse)  ,  
sent  (Rest ,  [par t i t ion_by,Predicate]  ,True_ones  ,Rest_f  a lse_ones)  ,  
sent  ( R e s t_false_ones  ,  [cons ,Fi rs t ]  ,False_ones)  .  

ot ice  tha t  th is  quick sor t  procedure  works  for  any kind of  l i s t  and any 
ela t ion between e lements .  For  example ,  i t  works  on In termiss ion 's  
rdinary  l i s t s ,  l i s t s  of  in tegers  ( f in i te  ones  only) ,  d i f ference  l i s t s ,  
is ts  of  l i s t s  (an  implementa t ion of  l i s t s  for  which the  "append"  
pera t ion i s  very  inexpensive)  ,  and Prolog l i s t s  (preceeded by a  symbol  
ndicat ing tha t  they are  Prolog l i s t s  so  as  not  to  be  confused wi th  
ther  ac tors)  .  One somewhat  s i l ly  tes t  which shows off  some of  the  
eatures  of  In termiss ion i s  one which a  l i s t  of  a l l  d i f ferent  sor ts  of  
is ts  i s  sor ted  by the  length  of  i t s  e lements .  Some of  the  e lements  a re  
nf in i te  l i s t s .  Al l  tha t  was  required  for  th is  tes t  was  to  extend l i s t s  
o answer  messages  asking i f  they are  longer  than another  l i s t .  This  was  
one as  fo l lows.  

ent ( l i s t ,  [handle_for  ,A_l is t ,  [ longer  ,Another]  ]  ,Answer)  
sent (A_l is t , length ,My Tength)  ,  
sent  (Another  ,  length  ,HTs_length)  ,  
sent(My_length ,  [>  ,His_length]  ,  Answer)  .  

THER WAYS THE FEATURES OF INTERMISSION MIGHT BE PROVIDED 
e have shown how by replac ing the  data  types  of  Prolog wi th  ac tors  we 
ave increased the  express ive  power  of  the  language.  Cer ta in  kinds  of  
ata  s t ructures  tha t  were  d i f f icul t  to  express  in  Prolog (such as  
nf in i te  l i s t s )  are  not  d i f f icul t  in  In termiss ion.  In termiss ion a lso  
rovides  more  control  over  the  computa t ion as  exempl i f ied  by the  "delay"  
essage.  In termiss ion programs are  by the i r  very  nature  independent  of  
he representa t ion of  the  da ta .  

ne ques t ion tha t  needs  to  be  answered i s  whether  these  advantages  of  
ntermiss ion could  not  have been achieved eas i ly  in  Prolog.  We need to  
mphasize  the  word "eas i ly"  in  our  ques t ion s ince  we a re  deal ing wi th  
niversa l  Computers  tha t  are  Tur ing equivalent .  For  example ,  suppose  
nstead of  sending messages  as  we do in  In termiss ion we have Prolog 
ela t ions  for  deal ing wi th  a l l  data  s t ructures .  Compare  the  fo l lowing 

ent ( [ l i s t ,F i rs t ,Rest ]  , f i r s t ,F i rs t )  .  /*  Intermiss ion 's  way * /  
ics t ( [ l i s t ,F i rs t ,Rest ]  ,F i rs t )  .  /*  Prolog 's  way * /  

hi s  scheme i s  admi t t ed ly  s i mpl i er  a nd  a  l e s s  dras t i c  depar ture  f rom normal  
ro log b ut  i s  much  more  l imi t e d  tha n  the  message  p as s i n g  ac tor  sy s t e m 
"Interm is s io n .  T he  s cheme  ge t s  more  awkward  when  the  mes s age  i s  a  l i s  
truc ture .  More  s i gn i f i can t  i s  the  d i f f i cu l ty  o f  in c or p or a t in g  
" lega t ion  and  d e lav  in  s uch  a  s cheme .  The se  ope r a t ion s  app ly  t o  any  
i"d  o f  m es s age  wh ich  i s  ve r y  d i f f i cu l t  t o  expres s  in  th i s  s e tup .  

n ° ther  poss ib le  answer  to  the  ques t ion of  whether  ^  ̂vantages  
"termiss ion could  be  achieved wi th  a  less  dras t ic  p  .  I C _ 
s Ves,  the  implementa t ion of  IC-Prolog i s  such an  a"®" 1 ** 1 *®* t h  

" log a l lows the  user  to  annota te  t h e i ^ P r o ^°? 1 p r °^ a ^ t ermiss ion 's  
omputat ion.  They have a  pr imi t ive  tha t  i s  s imi lar  to  Intermiss ion , 
" lay  message,  for  example .  One impor tant  d i f ference  between the  IC-
"log 's  control  fea tures  and In termiss ion 's  i s  tha t  permiss ion s  h Q  t  
® bui l t  in to  any in terpre ter  but  were  def ined wi th  three  f f "  
pauses  i n  In termis s ion .  Th i s  sugges t s  tha t  n  e r  v e s "  ra ther  th a n  

6  t e r  posi t ion t o  de f ine  the i r  own  c o n t r o l  " pr imi t ive s  ra ther  tha n  
!  Ply  accept  those  provided by the  language ^p^Pon 
t j U r e s  ° f  In t ermis s ion :  de l ega t ion  a nd  da ta  ^p P o l _  s  j n  Pro log .  

are  as  d i f f icul t  to  provide__in_IC^Prolocj^^ M ^ M M ^^ M ^^ M M  
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PROBLEMS WITH INTERMISSION 
There are many problems with Intermission of course. The syntax is 
awkward and verbose. This is not a consequence of the use of actors^ 
message passing but of how Intermission was built upon Prolog. °r 
Delegation, for example, requires handlers for "handle for ..*• 
messages. With the proper defaulting this level of detail does not 
to appear in any user's program as is the case in most actor lanquaa! 
The worst problem with the syntax of Intermission compared to Pro loo < 
the use of explicit constructors and selectors instead of pattern 
matching. This is ironic since in all other actor languages pattern 
matching is an essential part of the language. In Act 1, for example 
the pattern matching is performed by actors and is very powerful Li' 
ovfonci hi O Tnfnfmi nni mm — i_ J _ -1 "1 , _ extensible. Intermission can only partially make use of Proloq's oat-h, 
matching because it is representation dependent. What is needed in 
Intermission is a pattern like " [Head, . .Tail] " which will match anv kin* 

"fiJst" »nl "Headn a"d "Tail" t0 the reSUlt of ending first and rest message, respectively, to the list. These svntactir 
problems with Intermission could be overcome by placing a "front end" 

interpreter?C""SSi0n Pr°5"mS a"d °r * 

Another problem with Intermission is that all message passinq is bi-
control1 especially vithMspf"'^?!!!,, 

when the actor in question cannor hsMi1S?KlS intended to take over only 
describe a pattern for h.handle the current message. One cannot 
instead one is forced to rp f3 that an actor will not accept and 
prover so that the deleaation U?°n e search order of Prolog's theoren 

««««* „,y8 
its 

program in 

delegation in an inapproprlite if lull i o1V" ̂  behavior message 
terminate, it is especially aiffi ation) and often the program will 
point where it is clear that an 0C have the program break at a 
example of this is the inability, fr°u should be signaled. A serious 
message that neither it S l!. „ break when an actor receives a 
k ufe hj1?" ifc wlll be triqaerpfl Can handle- If one adds such 
imni ackfn9- Some of these difFio..i°?eously in the process of 
implementing Intermission in OLOP 3 WOUld be alleviated by 

™?st of InterLisp's deJ!' a" implementation of Prolog which 
[Komorowski 1980], debugging facilities to the user 

The most serious short 
iS that it: is berriblvfsiotermiS3i°n as a Poetical program 

inst 6nCe bhe way inCwhich achor a"d • ,inef f icient • This is a 
ineffici being incorporated at a m built on top of Prolog 
behfvior m£-1S als° dua to the iL^ ^ l0W6r level« Mu^h °f the 
is a lanan= ST*Spect could be alleki°5 ^°"tr?l over Prolog's search 

IC-Prolog. sted by implementing Intermissio 

DirectorllIndncailS con,putationaltineff°f actors and message pass 
"overhead" of indicate tWfflculencies. Experience with Act 

verhead of actors and message S«<™uch (if not aU> the 

to5 Can be compiled out without 
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loss  of  f lexibi l i ty .  Many ant ic ipate  ac tor  compi lers  tha t  wi l l  be  more  
ef f ic ient  than those  of  convent ional  languages  because  the  programs 
being compi led  re ly  only  upon the  behavior  of  the  objects  involved 
leaving the  compi ler  grea t  f reedom in  performing opt imizat ions  which are  
perfec t ly  safe .  Also  there  has  been much research tha t  suggests  tha t  the  
actor  model  of  computa t ion leads  to  programs tha t  can fu l ly  exploi t  the  
para l le l  processors  of  the  not - too-dis tant  fu ture .  

POSSIBLE CONTRIBUTIONS TO THE ACTOR MODEL OF COMPUTATION 
This  research was  performed wi th  two goals :  to  improve Prolog by adding 
actors  and to  improve ac tors  by implement ing them in  Prolog in  such a  
way so  as  to  preserve  some of  i t s  unusual  fea tures .  One benef ic ia l  s ide-
effect  of  th is  research i s  tha t  In termiss ion seems to  be  a  good way of  
in t roducing ac tors  and message pass ing concepts  to  a  communi ty  famil iar  
with  Logic  Programming.  

Dne very  appeal ing fea ture  of  Prolog i s  the  abi l i ty  to  use  the  same 
program in  many ways .  For  example ,  the  Prolog def in i t ion  of  "append"  can 
be used not  only  to  compute  the  resul t  of  appending two l i s t s  together  
out  can  a lso  be  used as  a  predicate  to  ver i fy  i f  the  resul t  of  appending 
two l i s t s  i s  a  th i rd  l i s t ,  as  a  genera tor  of  pa i rs  of  l i s t s  that  append 
to a  par t icular  l i s t ,  as  a  way of  f inding the  d i f ference  between two 
l i s t s ,  and as  a  genera tor  of  t r ip les  of  l i s t s  such tha t  the  f i r s t  two 
appended form the  th i rd .  In  Prolog only  some of  these  uses  are  ef f ic ient ,  
lowever  IC-Prolog provides  a  means  of  grea t ly  increas ing the  ef f ic iency 
pf the  o ther  uses .  

rhis  fea ture  of  Prolog has  only  par t ia l ly  been preserved in  
Intermiss ion.  The problem i s  tha t  when sending a  message to  an un-
ins tant ia ted  ac tor  Prolog of ten  never  terminates  whi le  i t  crea tes  more  
and more  examples  of  the  wrong k ind of  ac tor .  The d i f f icul ty  i s  
pr imar i ly  one  of  the  inabi l i ty  in  Prolog to  control  i t s  search.  I t  i s  
axpected tha t  th is  d i f f icul ty  would  be  remedied by implement ing 
Intermiss ion in  IC-Prolog.  In termiss ion in  IC-Prolog would  a lso  provide  
:he impor tant  ab i l i ty  to  descr ibe  and tes t  the  program f i rs t  and then 
idd commentary  to  improve i t s  performance.  

toe  of  the  most  impor tant  fea tures  of  Prolog i s  tha t  the  programs have 
)o th  a  declara t ive  logical  in terpre ta t ion and a  procedural  one .  Because  
>f the  way In termiss ion was  bui l t  upon Prolog programs wri t ten  in  
In te rmiss ion  also  have these  two in terpre ta t ions .  This  i s  impor tant  for  
mveral  reasons .  Somet imes  the  declara t ive  in terpre ta t ion i s  s impl ier  
i n i  t hus  i t  i s  eas ier  to  wri te  and debug programs in  such cases .  The 
ask of  implement ing programs tha t  unders tand themselves  i s  eased by the  
i b i l i ty  to  reason about  the  code as  logical  s ta tements .  Ver i f ica t ion of  
l r ograms  i s  made eas ier  by taking a  logica l  in terpre ta t ion of  the  
: °<3e.  There  i s  a lso  the  poss ib i l i ty  tha t  theorem provers  could  der ive  
' r og rams  f rom speci f ica t ions  (  [Hansson 1979]  and [Hansson 1980]) .  

WORE RESEARCH 
•xperience i s  needed us ing Intermiss ion for  more than "toy" programs.  
^fore  th i s  can  be done a  more  e f f ic ient  and pract ica l  implementa t ion 
'seds  to  be  made.  The b ig  problem here  i s  how to  accompl ish  th is  whi le  
' ^ se rv ing  the  fea tures  of  Prolog,  especia l ly  the  declara t ive  
In te rpre ta t ion  of  programs.  Prolog programs can be  in terpre ted  
e c l a ra t ive ly  or  procedural ly .  One v iew of  th is  research i s  tha t  i t s  an 
t tempt  to  genera l ize  the  "procedural"  in terpre ta t ion of  Prolog programs 
! thout  los ing the  declara t ive .  

nother  avenue of  research i s  to  implement  a  Prolog- l ike  (or  iC-Prolog-
l k e )  language in  an  ac tor  language such as  Act  1 .  This  would  he lp  
a r i f y the  re la t ionship  between the  two languages  and would  Provide a  

a n u  of  Act  l ' s  fea tures  to  Prolog.  The idea  here  i s  s imi lar  to  tha t  
Q L O G  w h i c h  p r o v i d e s  I n t e r l i s p  f e a t u r e s  t o  ^ o l o g .  < ® £ ; i t i n g  

ibi l i ty  i s  tha t  th is  implementa t ion would  be  the™orepract ica l_  
^menta t ion of  In termiss ion because  ac tors  would  be  under ly ing 
data 

V/JL lllLCLilllOOlwii ^ 

types  and pa t tern  matching-



MM 

ACKNOWLEDGEMENTS 
I  would  l ike  to  thank Sten-Ake Tarnlund for  h is  help  and encouragement  
wi th  th is  research.  I  am a lso  indebted to  Car  1 Hewit t  for  most  of  the  
ideas about actors incorporated in Intermission and to Henry Liebernan 
whose ac tor  langauge Act  1  was the  model  for  In termiss ion.  

REFERENCES 

[Clark  1980]  
Clark  K.  and McCabe F .  "The Control  Faci l i t ies  of  IC-Prolog" ,  Depar tnen 
o f  Comput ing and Control ,  Imper ia l  Col lege ,  London 

[Goldberg  1976]  
Goldberg ,  A. ,  Kay A.  ed i tors ,  "Smal l ta lk-72 Ins t ruct ion Manual" The 
Learning Research Group,  Xerox Palo  Al to  Research Center ,  March 1976 

[Hansson 1979]  
Hansson A and Tarnlund S ,  "A Natura l  Programming Calculus" ,  IJCAI-79 
Tokyo,  Japan,  August  1979 

[Hansson 1980]  
Hansson,  A.  "A Formal  Development  of  Programs" ,  Depar tment  of  
Informat ion Process ing Computer  Science ,  The Royal  Ins t i tu te  of  
Technology and The Univers i ty  of  Stockholm,  January  1980 

[Hewit t  1977]  

Journal  of  ArMf — a s  P a t t e™» of  Pass ing Messages" ,  ournal  of  Ar t i f ic ia l  In te l l igence ,  Vol  8 .  No.  3 ,  June 1977,  pp.  323-36)  
[Kahn 1976]  

37-43 Proc^r i^ 0 r ~? a fu d  C o n , P u t e r  Animat ion Language" ,  ed .  Treu,  S . ,  op.  
o f  In terac t ive  

[Kahn 1978]  

Computer  Graphic^  Vol  G ! [ a p h l c s  u s l ng Quasi  Para l le l i sm",  P  s ,  vol .  12 ,  No.  3 ,  August  1978,  pp.  357-362 
[Kahn 1979]  
Kahn,  K.  "Director  Guide"  M T T  » T  ,  MIT AI  Memo 482b,  December  1979 
[Kay 1977]  
Kay,  A.  "Microelectronics anH vv,  r .  
Sc ient i f ic  American,  September^Personal  Computer" ,  

[Kornfe ld  1979]  

Master  Thes is^Spr in^igyg 6 1  P r o c e s s i ng for  Problem Solving" ,  MIT EECS 

[Komorowski  1980]  
Komorowski ,  H.  J .  "oioa  -  mv.  
Programming",  Data logi  Linkoenfn^ 3 ^ f o r  P r ° log and Logic  
Univers i ty ,  Apr i l  1980 g  Research Repor t ,  Linkoeping 

[Lieberman draf t ]  
Lieberman,  H.  "A Preview of  Act  1"  
[LtJEC 1979,  '  S " b " ' t t ' d  E ° '  Publ ica t ion 
"How to  Solve  i t  wi th  Proi  *  
Lisbon Por tugal ,  August  1979  L a b o r a t o r io  Nacional  de  Engenhar ia  Civil-

[Warren 1977]  
Warren,  D Warren,  D,  " Impleinent '  
Univi rJ t S e a l C h  P a P^t n No! r ?9° 9 D Zn c ° m p i l i ng predicate  logic  nrograms"-

e rs i ty  of  Edinburgh,  May 1977  t m e n t  °f  Art i f ic ia l  In te l l igent '  



ir-ppornG - langhacf FF.ATTTRES 

K. L. Clark and F. G. McCabe, Imperial College of Science and Technology, 

Department of Computing and Control, 180 Queen's Gate, London, SW7 2BZ 

Extended Abstract 

IC-PROLOG differs from the other Implemented PROLOG' S  in two major 

respects. Firstly, it does not provide the extra-logical feature "/", 

nor the meta-logical facilities to add and delete clauses during a 

computation. In part compensation, it provides negation as a primitive 

and allows the programmer to use conditionals. The other major difference 

is the control facilities. With the use of annotations the programmer 

can cause the computation to proceed in a pseudo—parallel mode, and to 

coroutine on the basis of the flow of data through shared variables. 

Negation 

In IC-PROLOG a program clause is an implication of the form: 

B •*- ZA &. . .&Lm , miO 

where B  is an atom and Ll,..,Lm are literals. Thus, a negated atom A  

can appear as a procedure call of a clause. Negated atoms are evaluated 

by the negation-as-failure proof rule. That is, if all possible proofs of 

A fail, .•*a is assumed to be proven. As explained in Clark £1978], this proof 

rule can be reconciled with the truth functional semantics of ~ if one 

assumes that the implications of the PROLOG programs are a shorthand for 

a set of equivalences and inequalities. The IC-PROIOG implementation of 

negation is faithful to that semantics. In particular, if the proof 

succeeds, ~ A  is failed only if no variables in A  have been bound. The way 



H b  

( 2 )  

in which this binding condition is checked without too much overhead i. 

explained in our companion paper on implementation. Cclark and McCabe 1980] 

Conditionals 

The pair of clauses 

P C & D 

P «-~C & E 

-PC.. . conditional of P. » IC-PROLOC . PAL, -- LUT 

this can b. absorbed into the non-cl.uaal baplicatlon. 

P *• C THEN D ELSE E. 

The logical ,e.,nU„ o, tb. iopiioation 1, that it „ 

paxr of program clauses. However, procedurally it avoid, the 

redundancy of attempting to estahl<-K ^ 
twice, once for the po.itive proof, 

and once for the failure proof T„ ft,fc P oof. In other pRoux.s ^ 

has to be achieved by using "/" The .1 
y / • The clauses are written 

p Ca/ao 

P +- E . 

The problem with this solution is that the 

true statement. " ClaU86 00 l0n9er 4 

Set of Solution <a 

The collection of the set of 

«-*. Of a variable p. anoth,, ^ ^ ̂  

PROLOG programmer to or normally left to the 
to Program using «/" ^ 

^ packaged and expressed us" clause". In IC-PROIOC this 
an abbreviated „.t „t,tib„. 
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Suppose that the programmer would like all the bindings for the 

variables x and y for which there a solutions to the goal •+• P{x,y,z) . 

This list denotes the set 

{<x,y>|3 2, "P (n,y,z) }. 

In a language such a SETL [Kennedy and Schwartz 1975] such a set extension 

could be assigned to a variable by writing. 

w = {<x,y>| 3zP(x,y,z)}. 

In IC-PROLOG, the programmer can write 

w = CUx.y)/ P(x,y,z) ] 

as a shorthand for this equality statement. Its evaluation will result 

in w being bound to a list of the form. 

t(al.bl) . t(a2,b2) t(ak,bk) .Nil 

where 

x»al, y=bl, x=ak,y=bk 

are all the solution bindings for the goal +P(x,y,z). 

. An example of the use of this set facility is the clause 

Courses-taken (x,w) w=[y/Takes(x,y>3• 

Used to evaluate the goal * courses-taken (Smith, w) it will result in w 

being bound to the list of all the courses that Smith takes. 

Search Control 
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Back-tracking is the basic search strategy with the clause* for a 

predicate selected in the before-after order in which they are listed 

(they do not need to be contiguous) . The programmer can exercise saoe 

limited control over the back-tracking. 

Firstly, if a relation R is such that some subset of Its arguaents 

are uniquely determined by the other arguments, the prograsmer can express 

the fact as an assertion about his program. After the successful 

evaluation of some call involving R in which these other arguaant. were 

given, the trace of the evaluation is succeess popped from the stack. 

This saves space and avoids unnecessary backtracking. 

Secondly, the programmer can request indexing of the clauses for any 

predicate on any argument positions. For each Indexed argument a table 

is constructed. This contains an entry for each constant and each top-

level function symbol that appears in that argument position in the 

consequent atom of some clause for the predicate. it also contain, an entry 
for a variable occurence in «-h— 

P°sition. When an atom is selected with an 
predicate the i„der t^„ ^ , c^,d.e. 

not in the candidate set cennot unify with the selected 
atom and the evaluation only backtrar-v .u 

^tracks through the candidate set. 
Computation rule 

The rule which determines which i<« 
literal of some derived goal clause 

is selected for the next evaluation a. 
steP is the computation rule. To our 

knowledge all other PROT.OO ^ 
s use a fixed lelf-right computation rule. This gi* 

programmer very , < , 
he can do is sujLtabl ^ °0ntr01 °Ver "der of execution. All that 

of 7 °r<3er ^ literals in each clause to specify an order 
of executron for each use of the el. 

USE. IC-PRO LOG gives the PROGRAMME* a 
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rich set of control facilities. The programmer can make the execution 

order conditional upon which variables of the clause are bound by the 

unification that Invokes the clause. He can also relax the strictly 

sequential execution. He can cause the evaluation of particular calls 

to be coroutined with the evaluation of the preceding sequence of calls, 

and he can cause a sequence of calls to be evaluated in pseudo-parallel 

fashion. 

Most of these computation rule control facilities are fully described 

in [Clark and McCabe 1979]. We shall just give one or two examples. 

Selection of control alternatives 

To make the order of evaluation of the calls of the clause 

grandparent (x,z) - parent (x,y) & parent (y,z) 

conditional upon whether x or z is given we write 

[grandparent (n?,z) parent(x,y) & parent(y,z), 

grandparent(x,z?) +• parent(y,z) & parent(x,y)] 

in place of the single clause. Bracketing the clauses together prevents 

their being considered as back-tracking alternatives. The annotation ? 

• v.i „ it- annotates must have been bound, 
expresses the condition that the van 

to a non-variable before that clause copy can be used. 

Data-flow coroutining 

for testing whether or not two trees 
The classic coroutining example 

oxoressed by a coroutining annotation, 
have the sarnie leaf profile can be e p 

In the clause 
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same-leaves (x,y) *• leaves (x,u) & leaves (y,u?) 

the ? annotation on the u of leaves (y,u?) causes the evaluation of 

two leaves calls to be coroutined. The trigger for the transfer is 

the evaluation step that finds a new leaf on either tree. Thus, when 

the leaves (x,u) evaluation finds the first leaf, there is a transfer to 

the leaves (y,u) evaluation. This checks the first leaf and continues 

until it finds the second leaf of y. Just before it would further 

instantiate u with the second leaf control transfers back to leaves tx,u 

This is because the «?« annotation specifies that the -flow of 

data1 through u is from leaves (x ul / » eaves (x, u) to leaves (y,u). The leaves (x,u) 

evaluation now runs until u is further instantiated with the second 

leaf of x. At this point we transfer back to leave, (y,u> to check 

this second leaf. The interaction continues in this way until both 

successfully terminate, or until there i. , 
here is a mismatch of leaves. In this 

event we benefit from an early failure. 

Pseudo-parallel 

.valu,tlon< o( the tw imvij ̂  ̂  
1 annotation. We replace the "a" with a"//" and write the 

clause 

Same-leaves(x,y) h- leaves . 
vx,u; // ieaves (y<uj # 

When the clause is used the evaluan 
ions of leaves (x,u) and leaves (y,u) 

W1 1 be strictly alternated. in th,„ 
re9ime either evaluation may bind 

he shared variable, and one evaluati 
i°n may run ahead of the other. 

There are other annotations which can be used to delay a coroutining 
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transfer (a instead of "&")^and to suspend an evaluation that is 

being executed in pseudo parallel ("!" annotation on a variable). An 

example of the coroutining delay is a clause written as 

P (g (u) ,f (v)) •«- T(u) : P(u,v). 

The will delay any transfer of the partial result represented by 

f(v) until after the evaluation of T(u) is successfully completed. An 

example of the parallel suspension is 

R(x,y) * Q(x.')R 

If this clause is used during the evaluation of a call P which is being 

executed as one of a set of pseudo parallel executions, then the 

execution of P is temporarily suspended until one of the other executions 

binds x to a non-variable. 

File handling 

Finally, a word about the file handling of IC-PROLOG. Logically, 

the transfer of a sequence of characters from one file to another is a 

relation over strings. This is how it must be described in IC-PROIOG. 

The programmer gives a set of clauses for the relation R(x,y) that holds 

between the input string x and the output string y. He then 

x and y to specific files of characters with the system provided 

predicates. For example, the goal clause. 

•>- In(x) & R(*,y> & OutCy) 

will bind x to the string of characters that will be typed at the 

fnr V to be printed on 
terminal and causes the string binding genera 

i +-4 nn usino the annotated 
the terminal. By coroutining the Out (y) evaluatio , 
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goal clause 

In (x) & R(x,y) & Out(y?), 

th. evaluation oi the program become. interactive. Each 

character appearing in y „u,e, , printout of th. ,,, 

characters added to y. 
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Some Aspects on a Logic Machine Prototype 

he Hansson*, Seif Haridi** and Sten-Ake Tarnlund* 

(Extended Abstract) 

We shall outline some proper t ies of a logi^ "^hine^prthe^machine, 
development. We shall take up the logical y ramtning language) 
and focus on its obgect it. Finally we comment 
and the computation rules associate machine. 
briefly on a microprogrammed targe 

Logical system 
•= a cart of a programming calculus in 

The logic machine prototype is P .. (see Hansson and Tarnlund 
which programs can be d e v e l o p e d  o,..mally £iciently. The latter 
[1979a], [1979b]) and bv a succession of PR°1?0^ 
possibility has been dem°ns^a^ M975] and Warren [1977]), which 
implementations (e.g., see Rousse t [1965]). 
are based on resolution logic (see 

Our logical system consists of several p 
derivations of object 

(i) A calculus that facdli^at®sJ^te^is a first order predicate 
language programs. The lo^a (^ee Prawitz [1965]). 
logic natural deduction system (see 

part will be £ - Ml.ui na programs• inib tr 
(ii) An object language for writi g 
explained in more detail below. ^ 

(iii) n meta language which is taBS e.g.. in!e("p?ovide 
for hypothetical reasoning P

I t  i s  a l s o  intended to 
deleting hypotheses and strat®g qranis efficiently on the ta g 
control information for running P 
machine e.g., computation rules. 

Department, Uppsala University 
Addresses: * UPMAIL, Computer Sc^e Mi.ute of 

Uppsala, Sweden. ms, The Royal Institute of 
** Deparment of ^ Sweden. 

Technology, Stoc 
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Object language 

The object  language in  which we wri te  our  programs as  fmir i i  
re la t ions on a  domain of  objects  consis ts  of  sentenc  r #  

composed of  constant  symbols ,  var iable  symbols ,  funct ion 
predicate  symbols  and the logical  connect ives  There i  „  ^  
predicate  symbol ,  = ,  for  ident i ty? 6  1 3  special  

The logical  s igns by which we bui ld  up sentences are-
« (and)  v  (or)  -  (not)  <-  (condi t ional ,  <?-> " luWaience) .  

s impifcond^tLnal^or  bKSiSoMl #££JiJS 'Jf  

lef t  par t  of ' the  pr  incipal^onne^t ive? l i t e r a l  i s  a l l o«d in the 

"not"°and r  "equivalence"?GThey^give  ̂ u^a^nnore ^  

ident i ty  which gives  us  e  e  b s '  M o r e o ver ,  we have introduced 
funct ions important  not ions for  m??h 1° n f 1  " o t a t i°n-  Not only are 
^ve U S j  a control  con?!P t  F?rSt  k" 1  r e a s o n i"g '  "ey also 

I?  ? r m a t l o n  for  runnina s imh r s t ,  by using funct ions ve get  
obviate  the use of  "cut /s lash" r°g r a m<3 determinis t ical ly .  This  wil l  
"cut"  wil l  be catered for  in  -k °S t  l o g i c  Programs.  Other  uses  oi  

c n e  meta language .  

funct ion'def in i t  ions  U a re  "used 0  to  a s s u m e 3 '  as  a  defaul t ,  that  
This  means  that  upon an act  i? o r a p L l t e  resul ts  from arguments .  

Posi t ions  wi l l  be  bonn^ 1 0 ? °  3  f u n c t i °n  variables  at  the  
fm j  ? S  a t  a  resul t  pos i t io  .J f  a  "onvariant  instance  and 
th« S  d ? f a u l t  can be  revoked bv  7f3" b e  ""instant iated .  Of  course ,  
the  meta  language .  * e d  b y  w r i t mg down control  informat ion in  

Moreover ,  as  we shal l  
be P Uused f c fU t -  i n f o r m a t i °n e impl ied  b?^* 0"* 0"  c o mP u tat ion  rules ,  this  
order  f  *  introduce  a  comou^?-  7  h e  f u n c t ional  notat ion ,  will  

in  funct ional  Programming ?? ng^= i m i l a r  t o  t h e  appl icat ive 
The fol lowing guick-sorf  
appending l n a O U i i 1 f n g U a g e -  Th^resul t  ®f ' 1 , p l? * i s t s  i  1  lus trates  a few.  
sort ina  v"  S t  x .q ( y - )  w k q u i c k - sort ing  a  l i s t  x .y  i s  

'  t o  t h e  »"«l t  ot ' ,„* f"  q < y" '  i s  t h a  resul t  of  q«» '  
the  y  »"h respect  to  w ?h - s? r*• i n9 7 '  i f  the res . l t  *  
of  the  e l  em ? y  that  are  l ess  th-r , y  3 n d  y " w h e r e  T* i s  a  l i s t  

1 =  • £ £ £ • — * • a r e  T £ t o  - a n d  r "  " •  ; s  nan x  .  Moreover ,  the  empty  l i s t  

q(0)" y i  0  a P P e n d ( q^ ' ) ,X. q ( y B ) )  r  ^ 
Part i t ion (x,y,y> ,y»)  (1)  
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We omit the  procedure  for  par t i t ion  for  reasons  of  space .  

we have  combined  func t ions  and  re la t ions  in  th i s  program,  bu t  we 
take  one  fu r ther  s tep  and  subs t i tu te  the  re la t ion  by a  func t ion  

"  par t i t ion (x ,y)  = (y ' .y")  and  thus  make  use  of  a  Car tes ian  
product  a s  a  da ta  s t ruc ture .  In  fac t ,  we had  been  in  t rouble  
wi thout  the  Car tes ian  product  s ince  par t i t ion  can  be  v iewed as  a  
mul t i -va lued  func t ion .  

Data  s t ruc tures  

Dot  p rogramming ca lcu lus  cons is t s  of  ax iomat ized  da ta  
P s i . p l ,  l i s t s ,  l i s t s ,  f i r s t s  b ln«y  t rees  and  Car tes ian  

implementation? In  par t icu la r  nan ,  sub.tltutlon patt.rns during 
computa t ions  can  be  compi led  in to  pr imi t ive  opera t ions  on  such  da ta  Ssks-.rnsp'.si 
to  these  s t ruc tures  i t  i s  a l so  poss ib le  to  US*g-J '  

in*" the ' °programra ing  ^a lc f lus^of  *  f fasons  of  c la r i ty ,  program 
reasoning  and  running  e f f ic iency .  

Computa t iona l  ru les  

PROLOG has  combined  a  n^H^ech^nis i^whi fh '  ' f an  
computa t iona l  ru le  wi th  a  more  t r i e  y  oparch  s t ra tegy  
obscure  the  meaning  of  p r o f a ^: r  Clauses ,  can  be  explo i ted  
which  i s  impl ied  by  the  t ex tua l  order  c t e r ize  the  problem to  be  
for  wr i t ing  programs tha t  fa i l  to  l e g  cannot  change  the  
so lved .  In  cont ras t ,  our  ^ompuat ioJ  o f  t h e  computa t ion ,  
meaning  o f  the  program,  on ly  the  e f r ic  y  

.  .  „ , i  r l ) ip , .  The  f i r s t  c lass  
We have  two c lasses  of  compuat io  a t iona l ly  i t  g ives  a  
charac te r izes  sequent ia l  . obeying  such computa t ion  
procedura l  in te rprea t ion  to  the  sen ten  
ru les  ( see  Kowalsk i  [1974]) .  

a -mio iv  of  re la t ions  the  body of  the  
To eva lua te  a  sen tence  composed  so ie iy  or inc ipa l  connec t ive  i s  
sentence  ( i . e . ,  the  an tecedent  p« t t ,  1  order .  This  i s  the  
condi t iona l )  i s  eva lua ted  in  a  l e f t  to  y  defau l t  ru le  for  
ru le  used  in  PROLOG-based  sys tems  and  i t  i s  o  
such  sen tences .  

a r \ f  func t ions  and  re la t ions /  the  
To eva lua te  a  sen tence  compose  i  a l ly  ordered  accord ing  to  
l i t e ra l s  of  the  sen tence  wi l l  be  par  d  then  topologica l ly  
the i r  input -output  re la t ion  a t  compi le  t ime  r J e  the  
sor ted  to  produce  the  eva lua t ion  o  * x a m p l e ,  a n equiva len t  bu t  a  
appl ica t ive  order  of  eva lua t ion .  Fo  i n  ( i )  i l lus t ra tes  
b i t  d i f fe ren t  vers ion  of  our  qu ick-sor t  program 



q(x .y)  =  w <-  part i t ion(x .y ,y 1 ,y")  & q (y ' )  -  w'  t  
q(y")  =  w" & append (w'  ,x .w")  •  w 

The  computat ion  of  part i t ion  i s  f in ished before  the  computet )™,  « pp ipprir- 3 asasrj-aiLSStt 
executed.  This  sequent ia l  computat ion  rule  i s  * n  
independent ly  o f  the  way we t f r Up ^  A  ? . fo l lowed 
predicates .  Y  t e  t h e  o r d e n n 9 between these 

SfttSg*L.TS!" î}Jgf yt P 1 * *  «  « •  l n s t a n t i a t l M  
impl ies  a  dynamic  Jopoloaicf l  * '  T h i ® i n s t a nt iat ion  pattern 
sentence  based on the  St-Ln, eri?l<0n the "*«•!« of the 
th is rule and the applicative S a relat(°n* The difference between 
invocations of the Jame sentence °f evaluatio" *• that separate 
order ings  due  to  d i f ferent  cause  d i f ferent  topological 
requires  a  run t ime check,  howeverms of  instant iat ion .  This rule 
operating on a data haoe "ever, it is useful in programs 
exis ts  in  IC-PROLOG, where  th P a S n e r t l ° n S '  A  r u l e  s i r a i l a r  t 0  t h i s  

explicitly the alternative era Profram™er ,however, specifies 
McCabe [1980]). a±cernative order of evaluation (see Clark and 

The second cta<j<a 
d i s tr ibuted processes  communicat  I 0 " f U u C S  c h a r a c t e r  i"s  paral le l ly  
single^ computation rule C I'?9JW1 channels. It consists of a 
Operat ional ly  an object  lanemar, 3  demand dr iven computat ion ,  
a  network of  communicat?™ 9  3 e n t e n c e  spec i f ies  an a lgor i thm by 
Networks are constructed L processes through unbounded buffers. 
no^buted networks are 5i>.f2!P?8l"on and recursion. Our 
[1977]  ,  to  s treams of  Landin  r iQf i f?  e  i d e a  o f  K a h n  a n d  M c Q u e e n  

Dennis  [1973] .  I n  contrast  d a t a  f l o « computat ion  of 
computat ions  for  log ic  programs^* " i* 1  a PP r o a c h,  i . e . ,  actor  
are  running programs on a  s in!? .  exploared by Ken Kahn [1980] .  We 

e co routines. For example Pr°cessor, so our processes behave 
„, v .  ample ,  the  fo l lowing sentence  
"<*)  -  y  <-  A { x)  =  t  &  B (  =  

(3)  
S e c i f . i e s  a s imple  network * 
A 'L?,,3 channel z. when N two processes, A and B communicating 
link a • 11 b* created with the K8ted two process instances for 
e v e r v  l s  cal led  a  producer  for  c b a nnel  z  used as  a  communicat ion  
in i t ia l  n e t w ° tk  ther l  I t  a " d  B  U  a  consumer of  « .  In  
proceedo a n d  drives  the  ° n u , p r o c e s s  (here  B)  which i s  the 
z  the  n  f S  f ° l l °ws:  B runs  unfV °  network.  The computat ion  
i t s  oo int"^ 0 1  i s  t h e n  transferred « . 1 '  n e e d s  a  "resul t"  via  

o f  suspens ion.  ^  and then returned to  B at 
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I t  i s  to  be  noted  that  such  je tworks  process  
computat ion .  When we  pre  ( <-t - r p a m s )  on  which  no  process  can  g ive  
on in f in i te  data  « ' •«« ' • jJ^ 'SSUwuS.  «n  l ive  sa t i s fy ing  
a comple te  re su l t ,  demand dr ive  JJ (dynamic  data  s tructure)  ffSSUSSB* tJOT^TtSSSSi cov ins  and Poppe i s tone  

[1971] )  for  th i s  purpose .  

8 e  ta„a  op  an  . sample  f g .  «*»£*  SSS5 
program that  computes  ***  P™ a  f u n c t iona l  notat ion  that  

i l lus trates 5 a  demand dr iven  computat ion .  

s i f t ( in tegers )  Our  goa l  i s  to  compute  th i s  s treaml  
in tegers - increment  (1 )  
increment  (n )  -n+1  •  increment  (n+ l )  
s i f t (p .q)=P*s i f t ( f i l t er (p ,q) )  ,  / 0  
f i l t er  (p ,n^q)  -n . f i l t er  (p .q)  < -  mod (n ,p ) /0  
f i l ter  (p ,n .q) - f i l t er  (p ,q)  < -  mod(n ,p)  

where  the  computat ion  ru le  o f  s i f t  i s  demand dr iven .  

Process  ne tworks  can  a l so  be  ^^Henderson  [1976] )  •  
lazy  eva luat ions  for  LISP l^ee  Morr i s  ^^s trate  th i s  we  take  up  
networks  are  use fu l  in  some P£° g ". h e r e  w e  sha l l  generate  e l ements  o  
an  example  f rom Digks tra  [  §  k  J^ w h e r e  a ,  b ,  c  0  •  m o r e ? V e j ' n  o n  
a  s tream o f  the  form 2  i n c r e as ing  order  wi thout  omiss io  
e lements  sha l l  be  generated  in  increas ing  
repet i t ion .  

We have:  
x<u  

< -  u<x  erge  (x .y ,u .w)=x .merge(y ,u .w)  <•  
l erge  (x  . y  ,u  .w)  =u .merge  (x .y  ,w)  
l erge  (x .y  ,u  .w)  =x .merge  (y  ,w)  
: imes (x ,y . z )=x*y . t imes (x ,z )  

. • ream in  a  demand dr iven  fash ion  that  we  
?e  want  to  compute  a  s tream 
t fr i t e  a s  fo l lows:  

n i«oa i3 .v )  . t imes  (5 , y ) ) )  
y=l .merge(t imes(2 ,y) ,merge (  .  
In  addi t ion ,  to  depand ^ l -^ot . t ion .^ .JPacta  o i  
program i t  i s  an  example  w ^ e r e  *  % h e  O C cur  check  in  the  un i f i ca t io  
the  s tream of  e l ements  due o  the  o<^  the  sys tem becomes  
a lgor i thm.  Unfortunate ly ,  w i thout  th i s  
incons i s tent  
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In  a  sentence  whose  execut ion  i s  control led  by a  demand driven rule  
one  demanding process  wi l l  s tart  the  execut ion  of  the  body 0 f  tto  
sentence. If the network is cycle free any non-producer consumer 
can be  the  demanding process .  I f  the  network i s  cyc l ic ,  with  on 
cyc le  or  an over lapping  number  o f  cyc les  then any process  in  S J CI  
cyc les  can be  the  demanding process .  I f  the  network i s  composed of  
d i s jo int  cyc les  wi th  one  cyc le  act ing  as  a  producer  to  one  or  »re  
cyc les ,  then there  must  be  a t  l east  one  cyc le  which acts  as  non-
producer  consumer.  Any process  in  such a  cyc le  can be  the  demanding 
process .  The  only  res tr ic t ion  we have  i s  that  there  can be  only  on 
designated producer for any variable. This is reasonable since a 
problem would  ar i se  in  dec id ing  which producer  should  grant!  
demand.  

A s i tuat ion  may ar i se  where  many consumers  may demand a  partial 
result from a single producer. This may only occur when the 
producer of a result has local consumers. In this situation the 
consumers will be resumed in an inner-most to outer-most order 
before  the  procedure  i s  react ivated .  

S(x)=z  <-  Po(x)=y & Ql (y)  
Po(x)=y <-  Pl ( X )=y  & Q2(y)  

P I ( x ) = y  < -  P 2 ( x ) = y  &  Q 3 ( y )  

a^con^um^ 1 ^ 8 ^ 6 " 0 6 3  a b ° V e  y  i s  a  c h a ""el  var iable ,  Ql ,  Q2,5]  
the  «  same channel  y ,  Q2,  Q3 are  loca l  consumers  of  
o f  PI and pfn ,  n i  P °  P r o d u c e s  a  part ia l  resul t  of  y  on behalf 
This  i s  imnlpmo 6 ? S  kT w b e  a c t i v a ted ,  then Q2 and f inal ly  Ql'  

S  1 8  l m p l e m e n ted  by chaining  the  consumers  Ql ,  Q2 and Q3.  

The  target  machine  

computer  V77 -* S  b e i n 9 implemented on a  microprogram® 5  

The machine  be lono 9 m ^ r ?v r ° g r a , n  control  s tore  of  4K x  64 bits-
machines  which Derm?*-  c lass  of  hor izonta l ly  microprogram^ 
Paral le l .  i t  ^" m ^ t S  s ? v eral  microoper  at  ions  to  be  executed i 
Personal computer a„« *ntfnti°n that the system will be used as 
bui l t  a t  the  lowest  ?  memeory management  system i s  be 
address  space  of  2  am 2  i  which permits  user  jobs  to  have  a  M 

e x P ^4 bytes .  
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TWO SOLUTIONS FOR THE NEGATION PROBLEM 

Veronica Dahl 

Facultad de Ciencias Exactas 

1428 Buenos Aires, Argentina 

in logic programs, negation has traditionally been defined by default, i.e., by con

sidering false any fact vhose truth can not be demonstrated. This convention, wh 

saving numerous explicit representations of facts that, under certain circumstances^ 

can just as well be deduced, might have the undesirable side effect of not always 

ing tt reliable answers. This article examines the conditions under which a ^ 

ra! with negation by default is lihely to produce all the expected answers, and proposes 

two ways of automatically ensuring that this is always the case. 

1- INTRODUCTION 

facts in logic programming has traditionally 
The problem of how to represent negative fa 

-—»•—zr-zzzsz 
„le i, .pproprr.t, 

main being represented is complete. ^ negative facts becomes redundant, 

assumption- is correct, the explicit represen ... default 

since in a two-valued logic these can simply be established by 

rii-h resoect to data bases12, and shown that 
R. Reiter has discussed this assumption ^ ^ ^ ̂ ̂ Horn_c,ause 

it may lead to inconsistencies for non- ^ ̂  world assumption, suited 

ones. In ve proposed a three-valued ^ ±nwesti&ated the relationship between 

for natural language application . truth_functional semantics 1 , by explic-

negation's implementation by defau ^ ̂ ,fll definitions, as opposed to 

itating the closed world assumption in o 

the classical "if" procedures of logic programs. 

particular proof strategy chosen 

These discussions, however, are ind*pel^f operational problems that negation 

and are therefore not concerned with som •ntpmreter 

P, .isht c.us. vith respect to .« •«- K** •>«*"" l°"rPr" ' 

n > 14 negation by default, we show that dealing with 
In this article we examine Prolog s S ag expected> and we propose 

closed worlds does not in itself guarantee 



go alternative „„ ,olvi„B £hi, problM. Both betn 

within natural languag. conaultable data base systems written in Proloe 
thev are eenpr^l »nr»nr»v. • 

— wjm+wmm wnuen m Prolog 5 • w 
tbby at, general enough to serve in other program, w.H. therefore 1 
• arger picture, involving higher level ways of querying logic prog,-,. 

Because of space limitations, we shall mostly deal with our = ki 
of the related „P,et, covered .or, ^ 

slightly biased towards data bases but this 4.s i '  termnol°«yh 

we share R. Kowalski's view that £ drstinctionTet^enT^ leTaTorT ̂  
rams is not a useful one '»1 c . 3nd 0rdlnar5r  « 

is assumed. 

2- PROLOG'S STRATEGY 

Given a querv — fJ r j 
dure +A] -A] . . V" '  °f  pr°ced-es, Prolog selects the first proce-

derives the new ** a most general unifier ,, 2 

query, always selecting the first literal Pr°CeSS " 0" *"* "* 
procedures in P are tried in the ° 6 reS°dved uP°n- Alternative matching 

backtracking upon failures. Efficienc •" th6y W6rC stored» *ltt exhaustive 
which the literals amiear i ^ therefore influenced both by the order in 

° in a query and Ywt 
cedures for each predicatP 6 ° rder  in  *Mch the alternative pro-r »-ui(.ciLe are stored. 

Notice that, by choosing always the 1 f 
duces all those resolvents snri • °St l l tera1,  prolog systematically pro-

turns to the second one when ^d7l ^ Uteral  *" 3 qU6ry ' 3nd °nly 

al (i.e., in replacing it bv an succeeded in evaluating this first liter-
8 by an emP ty set of literals). 

Execution can be further controlled by the 
ical features. The predicates used f Pr°gtammer, through Prolog's extra-log-

* is a "free"(1> variable or not, an^ ^ "VAR(i>M. used to test whether 

non-determinism that arises from d i f f  ^ ° Predlcate serving to limit the 
erent procedure choices. 

(1) Prolog's concept of a "freo" 
resolution process = • , variable is  a d,m • 
function term. From n Variable is  "free" if i t  h air ' ;LC one:  a t  a given point in the 
meaning. ' °W on ' we shall use inverfp'^S nCt yet  been substituted for a 

commas whenever we refer to this 
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"/" always evaluates to true and has the side effect of disqualifying certain al

ternative procedures, so that they will not be considered upon a backtrack. For 

instance, given the procedures 

(1) +P(x) -R(x) •• • .-T(x) "/ -Q(*) 
(N.B. Variables are underlined through-

(3) +P(x) OUt the P3per) 

and the query -P(a) , Prolog first selects procedure (1). Two cases arise: if the lit

erals preceding "-/" can all be evaluated, Prolog tries to evaluate the remaining lit

erals in the clause," but, upon a backtrack, is inhibited from trying the remaining 

choices for P,R,...T. If, on the other hand, (1) fails before "-/" is selected, (2) 

and (3) can be tried next. 

3- THE NEGATION PROBLEM 

• 1 = rhp rule "take every unprovable fact as false", 
Prolog's negation operator implements the 

as follows: 

(1) +N0T(2> -£ -/ -FAIL 

(2) +N0T(2> 

"FAIL" L. . predicate for which no corra,ponding procedure, .re defined and 

eh... evaluation will therefore provoh. . Thee, procedure. (1) an 2, 

bove can be readi "if -£ can he evaluated, »0T(£> i. false- Oth^i.e. »0T<£> 

Let u. now consider a logic progra. c..pri=i«g Procedure. U> and <2> .hove plus the 

following: 
. . (5) +SINGER(C) 

(3) +ACTORCA) v 

(6) +SINGER(D) 
(4) +ACTOR(B) 

-it- is easv to verify that the queries 
With respect to this (closed worl ) prog , ^ respectively, which is 
-N0T(ACT0R(C)) and -NOT (ACTOR(A)) evaluate to rue 

what we would expect. But, faced to the query 

Q1= -NOT(ACTOR(x)) 

for which one could expect the answers "C" 
(i p "find an x who is not sn actor )> (i.e., find an x who ^ ̂  all. it would successively gener 
or "D", Prolog would not come up with a y 

ate the resolvents : 
. . , _.TT (from Q, and (1)) 

Q2= -ACTOR(X) -/ -FAIL 1 

Q3= _/ -FAIL (from ^2 and (3))  



C H  

At this point, the evaluation of -/ would eliminate (2) and (4) as alternative pro 
cedure choices, and the remaining query (Q^* -FAIL) would fail. 

The fact is that Prolog's negation operator is only safe to apply on predicate! with 
ground arguments (terms which contain no "free" variables). In other words, it CM 

safely verify the truth of proposed answers, but not generate an answer. 

Since ground terms in a given query can not cause the negation problem, we shall call 

them safe. This is also the case f.or those variables with no occurrences inside a lit

eral of the form -NOT(P) . A variable occurring in the scop, of a neg.cion, however, 
must be considered in its dynamic behaviour. 

»« .hall ,hat , variable x occurring Wk a lit.,.1 »-»OT(P) „i,hi. . L_ 

Q is safe tn Q »h„av,r it i, c.rt.ir, to talc . grouod M<>,. „ 

query Q i. „id to b. a.fe vhcoover „oh of th. v.ri.bl.. it coot.ro. i. „f,. 

U . = * "  t .  b e  t h r o u g h  .  p . r t i c u l r c  
ordering of the literals. For instancp 
substitute, , ^ suppose that the evaluation of -P(x) 
substitutes a ground term for x. Then it is safe to query: 

-P(x) -NOT(Q(x)) 

because, although the argument of "NOT" at 

strict left-to-right strategy ass K ^ beginning' Prolog'S 

-N0T(Q(X)) is selected. J " FF. t3ke 3 ground v*lu« b*for# 

On the other hand, the unsafe but declared! 
>- aeciaratively equivalent query: 

-N0T(Q(X)) -p(x) 

will always fail (excenr 

Q exist). C0UrSG' " the case that no procedures for 

^ this example, query reordering is rather - , 

real applications, where efficiency i SJJnPle, but it can become difficult in 

mer to remember the run-time behav' CrUC*a*' si"ce it forces the prog'ran-

cording to the input/output role of mL"' 2-- PrediC3te* This- in turn- varies aC" 

behave differently than another of ** e/r8UmentS: a <?uery °i the for- -P(a,*) will 
ot the form -P(x,b). 
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prolog.s  negation operator, therefore, while saving a lot of time and trouble in 

the  development and execution of a closed world program, introduces extra trouble 

in 

With 

not 

ble 

le 
i querying it and increases the opportunity for error. 

respect to data bases this problem is particularly acute, since the user must 

—  h . »  « .  * » • «  * *  * £ -

i-r-,- -..«<«•"». p*™"1 mwhv •**f'08""*not 

V, id ideallv accept casual users, so the problem we 
ally regarded as data bases should ideally accept ca 

are dealing with is'a rather general one. 

,, „ solution.«—- r. 

guage interfaces translating a user by an appropr ia te  evalua-

try to show how these systems 
tion of the for.nl.. », n.tur.l l.ng».£. —ly""-

4- COROUTINING 

• idea- the evaluation of a literal of 
Our first solution is based on a very simp p ground. 

the form -NOTCP) inside a query should 

a in. the query so that all negations appear in 
We can achieve this either by reorderi ^ select ion of a literal is 

the end. or by altering Prolog's strategy, s ^ Qf the 

made to depend upon its dynamic merit rathe 

query. 

with coroutines: instead of always 
The latter alternative corresponds to computation bg se lected> resolved 

r t-np first literal, any literal 
completing the evaluation of _ eventually be kept waiting 

j\ cmr.fi -its descendants uuxy 
upon (i.e., partially evaluated), ^ ^ higher merit- This approach, while 

while attention shifts to other of  non_gr0und negated literals, can 

allowing in particular to pos tpone  ̂ the eva^ ^ pol iag of queries, as we 

also be exploited to improve efficie 

shall see later. 

4.1- Implementing coroutines in Prolog. 

• Prolog itself is by defining a Prolog predic-
One way of implementing coroutines query Q and of performing 
ate -say, PROVE(Q)- capable of selecting any 
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just one derivation step at a time. For commodity, a query -Gj -G^ ...-G can 

be noted as a list Gj,G2.. .Gn.nil (where is a Prolog-defined binary operator 

in infix notation), and procedures to be coroutined can be noted through a special 

predicate, e.g. as 

+AXIOM(A,A. .A....A .nil) 
J- ^ m 

instead of +A -A, ...-A . 
1 m 

Then the prover can easily find a matching procedure for a selected atom G by 

querying: -AXIOM(Gj., 1), and then replacing Gk by the retrieved list of a tots 1. 

Thus, just one derivation step is performed, and the prover regains control over 

the new query. Any of its atoms might be selected next. 

state The selection of a predicate to be evaluated must depend both on the run-time 

of the variables in the query and on the particular definitions chosen for each pred 

icate, which determine its run-time behaviour. General guidelines for this selection 

must be therefore set up by the programmer. This can be done through a special pred

icate of the form DELAY(P.n), stating under which conditions a predicate P is to be 
delayed n derivation steps. 

For instance, an efficient evaluation order for queries such as: 

-PRICE(S,£) -SYSTEM(s) -HAS(s,FORTRAN) 

(What IS the price of a (computer) system having Fortran?) can be obtained simply 
by defining: 

1)+DELAY(PRICE(JC.£) ,0) -GROUND (X) -/ 3) 

2)+DELAY(PRICE(X,V),») (V - ' 
4) +DELAY(HAS(X,£),0) 

where GROUND is an auxiliary predicate evaluating to true whin x contains no "free-

appro ^t " ̂  3 SUffiCi6ntly integer. These definitions ensure that an 

Fortran" T/h Pr°dUCed bef°re attemptine to calculate its price, and that 
Fortran is included before anv other 

ed accordingly. ^ the system> which is then c°mPlet' 

The prover's evaluation of a query 0 can nn u 
a - .  ,  c a n  n o w  b e  s u m m a r i z e d  a s  f o l l o w s :  Q  i s  s u c c e s 
sively scanned, looking first for 0-delaved nrea • 
so on Farh n r predicates, then for 1-delayed ones, and 
so on.Each time one such predion f-o c J 

ound, AXIOM is used to perform one derivation 
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step and the next scan's delay is set to 0 -since this partial evaluation might have 

altered the run-time delay value of any other predicate. If none is found in a given 

scan, the searching delay value is incremented by one for the next scan. This process 

ends successfully when Q has been transformed into "nil". 

Notice that, within this coroutining system, the negation problem can be solved sim

ply by blocking non-ground negated literals through the DELAY predicate. Our actual 

treatment of negation, however, is somewhat subtler: our prover can use negative in

formation to improve efficiency, and also accepts more flexible queries. 

4.2- Coroutining logical formulas 

Our Prolog implementation of coroutines was designed for a data base system repre

senting the software and hardware catalogues for the French series of computers SO

LAR 16 '. A user can ask this system questions in French, ranging from simple ones 

involving retrieval of stored facts, up to requests to assembly and describe comput

er configurations suiting his particular needs. The analyser uses a modified version 

of a metamorphose2 grammar written by A. Colmerauer( >, which translates restricted 

French queries into closed logical formulas, whose syntax is defined recursively by: 

a) if p is an atom, p is a formula. 

b) if f y  f 2 and f are formulas, then NO(f), EXISTS(x,f), EVERY(x, f) , AND (f x, f 2), 

OR(f,,f,) and IMPLIES(f,,f2) are also formulas. 
-1-nt-n a list of queries to be coroutined, by succes-

These formulas can be converted into a list oi querx 
, ro,jrii-ine rules. This task can be left to the prover 

sive application of appropriate rewrit g 
• j • c i!.= -ac n-delaved predicates and using AXIOM rules such as: 

itself, by considering formulas as O-deiayea preuj-o 

(1) +AXIOM(EXISTS(*,f) ,X-nil) -/ (3)+AXI0M(AND(£j .£2. ) 

(2) +AXIOM(EVERY(x,l) tKO(EXISTS(jt,NO(f))) .nil) -/ <« +AXI0M«0(»O(f)) ,f-nU) -/ 

nf all the procedure definitions in the data which precede the AXIOM representations of all tne pro 

base. 

4.3- Using negated formulas to' improve efficiency 

t, „ the SOLAR 16 one, some negative requirements of the In constructive programs such as tne auum » 

user can be exploited to reduce the search space, and should therefore be given prior

ity even when applied on non-ground arguments. For instance, a request for the charac-

(2) Personal communication, 1977. 
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teristics of a system which does not include Fortran should first forbid the addition 

of Fortran and then complete the system accordingly. This can be done for instance 

through the rule: +AXIOM(NO(HAS(x.^)) ,FORBID(x,^) .nil) -/ . where FORBID is a 0-delayed 

data base predicate, which somehow marks in x the mandatory absence of 

Let us now consider a formula f containing a subformula NO(f') which can not be fur

ther transformed. This fact can be registered by renaming NO into NEG once that none 

of the formula-rewriting AXIOM rules has been found to match (i.e., by adding after 

these rules a rule .of the form: +AXIOM(NO(f),NEG(f).nil). Notice that the subformula 

f could be coroutined if we simply replaced it by a recursive call on the demonstrat

or: -PROVE(f') . But some of the variables in f' may well also appear outside it, which 

would mean that some of the predicates concerning these variables are being delayed 

outside f'. Since f is assumed closed, this case arises whenever a variable x is free 

in f' (its quantifier appears outside the negated subformula). 

Therefore, in order to evaluate NEG(f'), the prover first calculates the list of the 

quantified variables inside f' . if it is empty, it evaluates NOT(PROVE(f')), where 

NOT is Prolog's negation by default. Otherwise .t just keeps NEG(f') waiting and con
tinues the current scan of f. 

Thus, our prover can handle a subtler treatment „f • • 
treatment of negation than the mere delaying of 

non-ground negated formulas, but oare*fni *. • 
* ' C careful coroutining specifications must be designed 

for each problem domain. 

4-4~ Some performance considerations 

The pre-processing of a query by the demonstrator although t.v • 
the overall • ' thouEh taking some time, increases 

other hand, those'predic^^L^ng8 "T" ̂  °" ̂  

directly. This can be achieved by a) defin" v, • ^ hand6d t0 Pr°l0g 

rule suffices), b) «ltlng „o„-c„»„ti,,ed ""'j' V*1U' " ° <* '"l1' 

offbcoufbmo„, „dc, ,ddl„s„th , ru,u*1 
'"

l0e '*-
. » d o « «  » t d h  l n  „ y  o f  t h e  p r . c  - * • I h u s ' i f  

Prolog and eliminated from the prover's list. ' a"Md«t«ly evaluated by 

The search for a matching procedure, however can he t-• 

notation: most Prolog versions have direct access to due t0 °ur sPecial 

ing to a given predicate, but this is obviously 10 t h Pr°CedUreS 

«. P.ct,d up .ithl„ , .pr.dtMte Uke d"in"lm! 



-9-

Fortunately, more recent research on Prolog implementation has eliminated the over

head caused by searching through all the AXIOM and DELAY rules, by providing quick 

direct access to subsets of procedures whenever their first argument is either a 
1 6 

constant or a function term 

5- A SET-ORIENTED QUANTIFIER MECHANISM 

Our second solution to the negation problem was devised for a less sophisticated 

but more general data base system, also programmed in logic 5 . It is a more restrict

ed solution than the previous one in the sense that it has no coroutining facilities 

and is only applicable to programs that represent finite worlds, but it accepts de

finitions of fairly arbitrary data bases with less effort from the programmer. 

This solution has also been worked out in combination with a natural language inter

face, which translates Spanish queries into a more evolved, three-valued logical sys

tem, that we shall call L3 • . Some details regarding this translation can be found m 

\ and related work for French is 3 . L3's features, which were designed to meet not 
Knf also data base development requirements, are dis-only natural language processing but also data o . ^ ^ _ 

« •„., -in 4 Those characteristics of L3 related to our 
cussed from the latter point of view in • 

treatment of negation can be summarized as follows: fM<.nrp 
. false or undefined. Owing to this feature, 

- a formula in L3 can take the value , 
,  -  v , n T / fv  must be subtler than previously described, 

the evaluation of a formula NOT if; wV,Pn 
, P i.- Rrieflv NOT(f) is considered false when 

still follows the nega t ion-by-default idea. 
, f. , . f  evaluates to undefined, and true when f eval-

f evaluates to true, undefined when f eval 
^ faiqe when all attempts to prove that it 

uates to false. A formula f evaluates 

is true or undefined have failed. . . 
A  •! p associated with a finite domain or se 

each variable in a formula is typod, • •» 

M A N T I C  T Y P 6 '  A  * Vi" formulas either extensionally (through a term of the 
- sets are represented within formu , ^ ^ ̂ subformula of the form 

form:a 1 .« 2 . . .a n.nil) or intensions y. those x< s  in 8 associated domain 
"tho.e(x,f)" is used to represen the^s ^ ^  ̂ ^ ̂ ^ 

which satisfy f. The evaluation Quantification" allowed, 
resentation of that set. The "those" formula is the y 

,nt-ifiers including any presuppositions they 
- the meaning of natural language qu » . , fnrmiilaq- such as , a formula through special sub-formulas such as 

might induce, is represented with ^ ^ ̂  ̂  ^ instance, the sentences: 
"card(s)", which stands for the cardinal y 
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"Twenty students registered" and "Some students registered" are respectively rep

resented through the formulas: 

equal (card (those(x, and (student (x) , registered (x) ) ) ) , 20) 

greater-than(card(those(x,and(student(x),registered(x)))),1) 

where x. is typed by the student domain. 

The basic idea in this second solution is to use set representations as the nain 

data structure, and to make sure that any set designated in a query is evaluated 

(i.e., replaced by its extensional representation) before the evaluation of any 

predicate concerning it takes place. This, in particular, ensures negated predicates 

to be evaluated only when all their arguments are known. If, in turn, the evalua

tion of a set can also be made safe, the negation problem is solved. 

In our finite, typed world, there is an extra-logical but Prolog-feasible way of 

evaluating a THOSE (x,f) formula such that the designated set S is obtained with

out ever having to evaluate f with x "free". It consists in successively evaluat

ing f for each value of x in its associated dom. in, and concatenating those who 

satisfy it into a list representing the set S. 

uith this evaluating it obvious that any quantified v.ti„bl, i, 
vithin it, quantifier., ,uope. ^ ̂  ̂ fr<g ^ ̂  

omul, f, it i, obviously al.o „f. i„ f, ,im, U j, „f, „ ̂  ̂ 

fre • °CCIjrS* Therefore> hy allowing only closed formulas (formulas with no 

atioaV"M n"0"*""'' " *""• theit •»'»«*»• °"* solves the nn„-
P l" « L3, and evaluating ,„.„ti„,d 

subformulas as described above. 

Of course, the implementation of this solution i' l 

two-valued logic into the semantics of L3 whi h H " C3refUl m3PPin8 ̂  Pr0l°8'S 
ues but also set k ai • includes not only three logical val-

set-handlmg operations. We have done this in w 

needs only define which tuples make each relation true C " ^ ̂ 

individuals, or both, as he may prefer) and leave th termS ̂  " 
definitions which make it false a e • system to deduce from these 

than the previous one, in the sensVtha^^both l^ °btaine<1 3 high6r level S°1Uti°B 

and ha. .or. Unguis, _ (th, ̂  g ^ « fh, Pro,r.™r 

natural i„go,g, J"*' it to d.t.ct f.l,. 

ly With Una complicated world,. ' ""Mines, it c.n only d.,1 efficient 
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6- CONCLUDING REMARKS 

We have shown how Prolog's negation by default might induce some operational anomalies 

with respect to non-safe queries, and we have proposed two ways of solving this prob

lem: an appropriate coroutining system and a set-oriented quantifier mechanism. 

The first solution is adequate for "constructive" data bases such as the SOLAR 16 

one, where different modules can be combined to form particular configurations adapt

ed both to the user's requirements and to the specific construction rules stored in 

the data base. In return for the power obtained, however, the programmer must learn 

how to use the coroutining system. This is certainly a lighter task than the one of 

finding ad-hoc solutions for each problem that would need coroutining, but it would 

still be desirable to generalize it further, so as to provide higher level language 

features -or, in data base terminology, greater data independence. 

Coroutines should form part of a more powerful interface allowing the sequential sim

ulation of time-independent patterns of thought, in a manner invisible to the program

mer. Ideally, he should be able to describe in n,tural language sentences the world 

he wants represented, and leave all efficiency considerations to that interface, just 

as, in the consultation level, our solution relieves him from all sequencing concerns-

in particular, those relative to negation. 

Our second solution works in a less ambitious context and can therefore afford to be 

more general, allowing an easy and straightforward definition of fmte but fairly 

arbitrary closed world data bases. This has been achieved mainly through a care u 

study of the syntax and semantics of natural language queries on one hand, and o 

the Prolog implementation of set primitives on the othe 

More general solutions to the negation problem, in our view, must necessarily be con

cerned with higher-level ways of querying and defining logic programs, and should -

dude a set axiomatization that can be efficiently combined with £ 
• » a should allow complex worlds such as the SOLAR 16 

underway in this direction , and shoul . 
f f*w "orimitive" predicates describing sets and suit 

one to be defined in terms of a few pnmiti v 
i-ntallv independent from exactly how this 

able ways of combining them, in a manner 

is to be done. 
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1. INTRODUCTION 

In a previous paper [GAL] we defined a metalanguage for controlling the 
derivation process in a Horn-clause programming language. This control meta
language (CML in short) was inplemented in top of PROLOG fROU] and its inter
preter coded in PROLOG itself. In this paper we first review and update our 
position on CML. Next we present a revised version of a CML which is to be 
implemented and which will be used in connection with intelligent backtra
cking techniques not presented here. The CML exposed here extends that of 
LGAL1 both in its syntax and in its semantics. A discussion of both aspects 
is given in section 3 where the interpreter is sketched too. 

2* ISSUES IN METAKNOWLEDGE EXPRESSIONS 

The following statements recapitulate our positions on CML : 

The types of CML we advocate are logic programming languages 
whose predicates ( i.e the meta-level predicates or metapredicates) 
are given a fixed interpretation in terms of the behavior of the 

logic interpreter. 

- The CML statements and the world description statements are sepa
rated from each other;this is contrary to some other viewpoints, as 
or instance Clark and McCabe CCLA] , or Pereira [PER] . They both mix 

knowledge i.e world description and metaknowledge i.e contol primi-
,-fVeS«- • °ne advfnfcage °f  that approach over ours is likely to be in 
the efficiency of interpretation; but we feel it is a step which 
sive nolr°?1C WhSn USSd in  3 systematic manner; its expres-

1P "er  .1S ? learly more restricted than ours if only for beeing 
Selves 3 statem®nt thus not capable to bear on clauses them-

~ klnd of  metaknowledge we want to express is not the same as 
lid «h r  ,by Bundy CBUNI °r  Dincbas CDINJ- Namely, as recal

ls °Va ' we y ta*k in  terms of interpreter behavior while their 
Ton IZlTZ hiereSSH°n " bUiU StriCtly in te™S °f W-Id desSriS-
(such cb£ °f  leV6lS °f  percePti°ns of the world 
(such as objects, assemblies, equations, methods, heuristics ) 

««l l ' r l lL'd rld thLir .« 
can be Dut in if f structuring language. In this respect they 
language definition i311 eff°r tS in kn°^adge representation g g efinition and implementation such as KRL [BOB] . 

litieforCGAU Pr6S-nt  • CML Which ^tends the capabi-
shafl also discuss thisrff6n " baS6d °n A" Fahrai 's  CFAH]-He 
ves. anguage in terms of the above mentionned alternati-

3- A REVISED CONTROL METALANGUAGE 

vely."6 ShaU diSCUSS " fr°m i tS Syntax and semantics viewpoints successi-
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2 

3.1 Syntax of metarules 

The syntactic modifications which have been introduced allow 
to express meaningful actions in terms of the derivation process and 
to have several ways to indicate which objects ( i.e clauses or literals) 
are involved in the metarules. 

The general form of a metarule is : 

Action( tl, t2, tn) •<? Conditionl A AConditionk 

A metarule is written in order to describe an Action on the interpreter 
behavior whenever the interpreter focuses its attention on an object 
which is involved in that metarule. Both "t1 and Condition parameters may 
be partially instantiated or variables; Condition is a literal which is 
either system—defined or user-defined. The set of objects involved in a 
metarule is obtained from a combination of direct and/or indirect selec
tion through the "t" terms and through the Condition arguments. 

a literal P or a clause P*-Q is directly designated by any literal 
P' which is less instantiated than P and which unifies with P. Of 
course P' being an argument in a literal is logically a term, 

an indirect designation of a clause may be either content-directed 
or position-directed : 

OPORDER( P(x,y), 'nl.n2...)<- CI a C2/w-ACk 
will select clauses numbered nl , n2, .. in that order for attempting 
resolution of literals matching P(x,y) with the above mentionned 
restrictions;any such literal is directly designated and is invol

ved in the metarule; 

OPBEFORE( R(x,a), tl, t2)<- CLAUSE( tl, z, P(x,y))A 
CLAUSE( t2, r, Q(x,y)) 

will select for any literal R(x,a) clauses containing P(x,y) 
before clauses containing Q(x,y) ; here tl and t2 are used to 
link both parts of the metarule; z and y are variables naming 
the clauses; thus in this case this metarule would apply to any 
clause whose head matches R(x,a); of course it would be possible 
to restrict its application to some clauses by appropriately 

instantiating z and r; 

- an indirect designation of a literal is given b> 

LITERAL( x, name, list-of-properties) 

where x links this designation to other parts of the metarule 
as tl and t2 above, where name will select the literals for which 
that metarule was designed, and where list-of-properties is a list that(metarule wa^ p. arg tQ be taken lB a set of pre

defined symbols. fATHER, DEPTH, SOLVED, : 
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BEFORE( tl, t2) <— LITERAL( tl, x, DEPTH: nJ) A  
L I T E R A L (  t 2 ,  y ,  D E P T H :  n 2 ) A  
INF( nl, n2) 

will impose a breadth first strategy to the interpreter;further 
restrictions on x and y would impose such a strategy only to the 
involved literals 

Clearly this syntax is rich enough to express any designation of literals 
and clauses; whether the set of properties is sufficient or not remains 
to be seen; in any case the user can define his own conditions built 
with his problem literals as well as with other system literals, such 
as the Ancestor predicate and the Var predicate in PROLOG. 

3.2 Semantics' of metarules 

Metapredicates are provided for clause selection and literal selec
tion. By selection we mean either electing a candidate among others or 
eliminating a candidate. 

3.2.1 Clause selection 

Let S be the set of clauses that could be used for resolution with 
the active i.e selected literal. Then a metarule for clause selection can 
give information on some of the clauses in S ( namely those clauses that 
it designates), expressing precedence between them, excluding some of them, 
expressing mutual exclusion between them. As this is straightforward, it 
is not discussed further here. Example : 

OPBEFORE( tl, t2, t3)-*—CLAUSE( t2, x, nI)A 
CLAUSE( t3, y, n2) A  
INF( nl, n2) 

allows to express that clauses are to be selected according to 
their number of literals (shorter clauses first) for any literal 
tl . 

Such a type of control expression is outside the scope of expression of 
the [PER] type of approach (see 2 above). 

3.2.2 Literal selection 

These metarules express how to choose in a resolvant clause the 
next literal to be solved; they provide for the following : 

turning off metarule control during the proof of a literal;this is 
an essential characteristic in a realistic environment; 

priority of a literal over another; 

restricting the attention of the interpreter to the selected 
literal and to its descendants until it is proved; 

recovering the space corresponding to the proof of a literal; 
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u n s o l v a b i l i t y  o f  a  l i t e r a l ;  

u n i q u e n e s s  o f  s o l u t i o n  o f  a  l i t e r a l ;  

-  r e c u r s i o n  l e v e l  l i m i t a t i o n ;  

-  i n h i b i t i o n  o f  a  l i t e r a l  o n  b a c k t r a c k ,  

n e c e s s a r y  ( N E E D )  a n d  s u f f i c i e n t  ( R E A D Y )  c o n d i t i o n s  f o r  a  
l i t e r a l  t o  b e  s e l e c t e d .  

T h e  N E E D  a n d  R E A D Y  m e t a r u l e s  a r e  q u i t e  r e l a t e d  t o  t h e  p r o d u c e r -
c o n s u m e r  p r i m i t i v e s  g i v e n  i n  I C - P R O L O G .  N E E D  e x p r e s s e s  t h a t  a  
m u s t  h a v e  s o m e  r e s o u r c e s  a v a i l a b l e  b e f o r e  i t  c a n  b e  s e l e c t e d ,  i t  c o  
n n n r f s  t o  a  l a z y  c o n s u m e r  i n  I C - P R O L O G  t e r m s [ C L A } .  S i m i l a r l y  R E A D Y  

N E E D (  F i l t e r ( x , y , z ) ) ^ — I N S T (  x )  
N E E D B Y (  t l ,  t 2 ) - » —  C 1 / \ C 2  . . .  

„  «  c r y  „  t h l .  ^ " V ^ i f p r o -
i t  i s  d i f f i c u l t  t o  d i s c u s s  ' h e  ® ^ " " ° i t P s e e m s  i t  w o u l d  b e  d i f f i c u l t  
p o s a l s  a r e  n o t  i n t e n d e d  t o  e  a P U t e ^ . a l  o v e r  a n o t h e r  w h e n  n o  p r o d u c e r -
f o r  t h e m  t o  e x p r e s s  p r i o r i t y  ,  b e  o t h e r  s i g n i f i c a n t  d i f f e -
c o n s u m e r  r e l a t i o n  h o l d s  b e t w e e n  e m '  ,  c r u c i a l ;  m o r e  i m p o r t a n t  t o  u s  
r e n c e s  i n  p o w e r  b u t  t h e y  d o  n o t  ^ e m  t o  b e  c r u c i a l ,  B u t  w e  

i s  t h e  f a c t  t h a t  l o g i c  p r o g r a m s  t h e m s e l v e s  h a v e ^  ^  s e i e c t i o n  
c a n  t a k e  f r o m  t h e i r  a p p r o a c h  t h ^ 6 . ^  p r o c e s s  i t s e l f  a n d  _  
m e t a r u l e s ,  t h u s  b y s t e p p m g  ,  •  T h i s  w o u l d  n e e d  a  m o d i f i e d  m  
g e t t i n g  m o d i f i e d  l o g i c  c l a u s e s  a s  •  i n t e r p r e t e r  f o r  m e t a r u l e s  
t e r p r e t e r  w h i c h  s e e m s  t o  b e  c o m p a t i b l e  w i t h  t h e  i n  p  

3 . 3  I n t e r p r e t a t i o n  p r o c e s s  

V  k „ ; u  i s  r a t h e r  s t r a i g h t f o r w a r d ;  i t  i s  
T h e  i n t e r p r e t e r  t o  b e  b u  ^  m e t a r u l e s ;  o n l y  t h e  l i t e r a l  

d r i v e n  b y  l i t e r a l  e x p a n s i o n  w i t h  c a r e  d u e  t o  t h e  R E A D Y  t y p e  m e t a -
s e l e c t i o n  p r o c e s s  m u s t  b e  d e f i n e  s s  t h e  s t a t e  t r a n s i t i o n  i n  t h e  
r u l e s .  A n  a u t o m a t o n  c a n  b e  u s e d  H  d e f i n e d  f r o m  t h e  s t a t e  o f  l i t e r a l  
i n t e r p r e t e r ,  w h e r e  t h e  s t a t e  n ° c i o  d e r i v a t i o n  p r o c e s s .  R o u g h l y  s t a t e  
i n  t h e  r e s o l v a n t  a t  e a c h  s t e p  f i r s t  t o  p r i o r i t y  m e t a r u l e s  ,  
t r a n s i t i o n  o f  U t . r . l  ^ S f c f ^  L t . r n l , . .  
t h e n  t o  R E A D Y  m e t a r u l e s  a n d  f i n a l l y  



?» 
5 

One should also pay attention to the unification process 
between literals in the resolvant, in the clauses, and in the metarules-
while the first unification can be unrestricted it is not the case for * 
unification with the metarule; further no indirect instantiation pro
duced by the Condition part evaluation should occur. Thus the standard 
unification module should be modified so as to have several calling 
sequences. 

We have indicated above a possible compilation of literal 
metarules. In the same spirit, it is very much conceivable to build 
an interpreter which would compile links between clauses and metarules 
thus making it much easier and more efficient at deduction time. This 
would require the unification process just described and nothing more. 

A. CONCLUSION 

In this paper we have given an overview of a control metalanguage 
and discussed some of the related issues. To the above discussion we 
want to add the following : 

this approach can accomodate specific i.e problem-related strategies 
as well as general strategies; we gave examples of general strategies 
much in the spirit of CMINj. This is due to the possibility of tailo
ring metarules to their goals with much ease; 

as far as specific metaknowledge language approach is concerned (see 
above) it should be clear that it is quite complementary to ours 

and that our proposal could be adapted to interpreters such as the ones 
they build, although many of our constructs would be redundant in 
their effects to theirs. 

What remains to be done is the actual construction of the interpreter 
which will also incorporate intelligent backtracking features. 
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1. INTRODUCTION 

This paper presents the main features of the METALOG logic 

problem solving system that we have developed using PROLOG [13], 

This is a general purpose system which has also been used to construct 

PEACE, a knowledge-based expert system for electronic circuit design 
[A], [5]. 

In the first section we present the two levels of language 

that can be used to express object-knowledge and meta-knowledge. 

The second section presents the user-defined control expressed in the 

control meta-language. In the following section we discuss the strategy 

for forward search processing. Finally, we present failure and loop 

processing mechanisms in the last two sections. 

2. KNOWLEDGE AND META-KNOWLEDGE EXPRESSION 

The METALOG system offers two levels of language to the user 

the object-level language (or simply object-language! in 

which he expresses his knowledge (domain-oriented and proble 
specific), 
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- the meta-level language (or simply meta;!™^^) in which he 

expresses his meta-knowledge, i.e. indications and pieces 

advice on how to use this knowledge. 

The knowledge/meta-knowledge duality in problem-solving is equi

valent to the logic/control duality as proposed by Kowalski for t e 

analysis of algorithms [91. Through meta-knowledge the user can define 

a Juristic control over the deduction process in the ob3ect-level 

.nd.dg.-b.... Tbi. user-specified control ha. already 

ly ^ ob.ict.1„g„,g, lo .hich the knowledge-base is 

cod.d i, tb. clausal for. of Uct-order predict. 

t„ Horn claua... Ib. following notation is used to express object 

knowledge : ndg ̂  A(x>y) «. B(x)> c(y) 
+HCLAUSE(A(x,y) , B(x) .C(.yj .mi; 

*HCLAUSE(A(x),nii) stands for A r 

A. it can be seen fro. this notation. Horn clan... 

r-• * •  h - d  ° f  c i , u " b , i n s  

j it-. Knriv beine the second argument, 
first argument and its body 

The Horn clause : 
*• A(x,y) ,B(y,z) 

wbicb define, a goal " represented a. foil™ • 

GOAL(A(x,y) .B(y,z) .nil) 
A proof is found wb.n we obtain COAb(nil). wbicb stand, for a contradrc 

1 Vniik. tb. object-language, tb. «t.-l.ngo... is ™°«« 

exhibits greet advantage for expressing ....-knowledge, to portico er 

by allowing u. to use clan... •»•> 
expressed in tbi. «t.-l.ngu.g« has the following general for. • 

+ACTION - CondCondn n ^ ° 

v, e ACTION refers to a built-in meta-predicate that handles object-
where ACTION refers ^ either meta-predicates 
level clauses. The literals C o n d , , . . .,Condn 
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or simply PROLOG predicates. The system offers some built-in predicates 

and meta-predicates to use as Cond^ but a user can define (in PROLOG) 

the predicates he needs. 

Through this control meta-language a user can express some semantic 

information about his particular problem in order to reduce the size of 

the search space, as well as specify his problem-solving strategy. Whatever 

the power of a system, we believe that the "system—user association" is 

the most efficient because it is easier for a user to convey semantic 

information to the problem-solver than it is for the problem-solver to 

discover this same semantic information. 

Thus, the system contains two kinds of knowledge (provided by the 

user) : 

object-knowledge coded as the arguments of the meta-predicate 

HCLAUSE, and 

- meta-knowledge coded in a distinct control meta-language. 

Let us notice that for efficiency reasons, the system allows PROLOG-

predicates to be used in the object-language. In case of deterministic 

procedures this is a very efficient process. In our expert system PEACE, this 

process allowed us to use procedures defined in a formal and numerical compu

tation module, at the object-level knowledge-base [4]. 

3. USER-DEFINED CONTROL 

As we mentioned before, in the METALOG system a user expresses his 

meta-knowledge in a separated control meta-language. He has built-in meta-

predicates at his disposal and he can construct meta-rules with them. 

These meta-rules can be about subproblem selection, procedure selection, 

failure-preventing and failure-processing, and other purposes. 

3) -Meta-rules for subproblem (or literal) selection 

There are two meta-rules for controlling the selection of literals 

in a goal statement. The first one is : 

ACTIVATE (g,p) 

where : g represents the goal statement (i.e. the list of literals to be 

solved) 

p represents the literal to be selected. 
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Meta-rules of this form can be used to select a particular 

problem p. (by naming it explicitly) or to specify a general problem-

solving strategy (by enumerating the properties of the literal to be 

selected). Let us give some examples. 

The meta-rule 
+ACTIVATE (g, ON(x.y)) 

indicates Chat the WW ™« "»l «•» I""*1 <" "V 
instance of it. Ute 0»<B,A» in the goal statement g (-h.never .y>  

occurs in g). The m e t a -rules 
+ACTIVATE (g,p) ~ TOTALINST(p). 

+ACTIVATE (g,p) ~ PARTINST(p). 

indicate to the 

i n s t a n t i a t e d « . - ™ > - « -  -
i- f l  *-n ^t-c internal strategy, 

the system selects one according 
f conflict e.g. when several literals are fully instan-

In case of conflict, e.g the lef t-
dated, the ay.te. -elects the le«t».t on. (in fact, 

„,t literal verifying the ACTIVATE condition). ^ ^ 
The second stet.-rule used in selecting a 

FREEEE(g.p) • system fro» selecting a 
,, is the dual of ACTIVATE and it prev. ^ 
frozen lit.t.l p. Everything .. -aid about ACTIVATE 

FREEZE. Let us give an example of its 
+FREEEE(g,ON(r,y)) - ««.). ^ ^ ̂  „ 

It prevents the system from c oos ^ ^ ^ built-in PROLOG predicate), 
its first argument is not instantiate ^ 

This meta-rule allows coroutining in sy 

tion rule (like PROLOG) . 

b) Meta-rules for_^rocedur^election 

As in the case of problem selection, we have two meta-rules. 

These are : 
CHOOSECLAUSE (p>D 

tnhtrglAUSE (P,D 
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where : p represents a procedure name (i.e. the head of a clause) 

unifying with the selected problem, and 

1 represents the body of this procedure (i.e. the list of 

literals to be solved). 

The first meta-rule indicates a procedure to be chosen while the second 

meta-rule rules out procedures. These meta-rules allow us to have a 

content-directed procedure invocation [3], [8], 

c) Meta-rules for failure—preventing and failure-processing 

As we will see below, failure processing is one of the most 

important features of METALOG system. Although the system has a heuristi-

cally guided automatic mechanism for preventing and processing failures, 

intelligent backtracking and so on, a user can give semantic information 

about his particular problem (unsolvable subproblems, the backtracking node 

in the case of failure, etc ... ) in order to prevent the system from use

less search and thus improve the problem-solving efficiency. 

The first meta-rule for this purpose is : 

INSOLUBLE(p) 

which allows a user to state that problem p (or any instance of p) is 

unsolvable. 

Through a second meta-rule 

INSOLUBLEBACK(p,b) 

a user can also specify a node b where to backtrack to (a backtracking 

node). The above meta-rules prevent the system from failures. A third 

meta-rule 

BACKFAIL(p,b) 

can be used to indicate to the system a backtracking node b _if the proof 

of p fails. 

d) Other meta-rules 

The system offers some other meta-rules for different purposes. 

For example, the meta-rule 

FINISH(p) 

allows a user to indicate that problem p must be solved entirely when it 

has been selected. 
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The meta-rule : 

LITNUMBER(n) 
can be used to indicate the maximum number of literals in a goal statement ; 

this will be used to prevent expanding loops (cf. loop processing section). 

4. FORWARD SEARCH PROCESSING 

Forward search processing specifies what the system has to perform to 

obtain a new goal statement G. + , from another goal statement G., except for 

failure and loop processing. When a failure (or a loop) is detected 

not be avoided, its processing is done by a failure processing (or loop 

processing) mechanism. This will be explained in the next sections. 

Given a goal statement 

Gi = Vp2 ••• Vnil 

at time t., forward search processing consists of several steps : 

- selecting a literal (or problem) P^ in G. , 

- selecting a procedure to apply to Pj, 
, , j r\ -for P in G. (with the necessary 

- substituting the body of Qj lor m ̂  

unifications), 
- ai-rpptance checking for the candidate goal statement . + ,. 

are as for LUSH-resolution [6], [10]. The last 
The first three steps are as ioi 

,,.r ro increase efficiency and to prevent 
step is added to our system m order to mcreas 

u failures and loop.. Thi. step oou.i.t. of several ta.ks that 

" "'I'X ZZ*...rod tha problem-solver uses man, ̂ ds of 
t -J t- fakes into account i 

information coming from several sources. In 

- its internal autonomous control, 

- user-specified control* 
• • rion "learnt" during the problem-solving process 

- semantic information tear 
(la particular, information concerning failed problem, • 

All thi. control information i. managed b, • .eta-control 

a) ce'enfin, nf a problem in a goal statement 

, . . _ r,rinritv to user's indications 
The problem-solver gives a ig meta-rule ACTIVATE) , 

concerning the selection of problems (expressed 
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If no problem has been specified by the user, the system selects one 

according to the following strategy : 

- select a problem that has only one solution (i.e. which unifies 

with only one head of procedure), if there is such a problem ; otherwise 

- select a problem that can be solved in one step (i.e. which 

unifies with an assertion - a procedure with an empty body -), if there is 

such a problem ; otherwise 

- select the leftmost problem in the goal statement. 

After selecting a problem, the system checks the FREEZE meta-rules 

to see whether the selected literal is frozen. If it is, another problem 

is selected. 

In case of conflict, for instance when several problems have only 

one solution and no other control information is given, the leftmost such 

literal in the goal statement is selected. 

b) Selection of a procedure 

As in the case of problem selection, a higher priority is given 

to user's meta-rules (expressed by CHOOSECLAUSE). If no such meta-rule is 

applicable to the selected problem, the system chooses a procedure according 

to the following strategy : 

select the procedure that has an empty body (i.e. a unit clause) ; 

otherwise 

select the first procedure in the order in which they have been 

written. 

While selecting a procedure, the system takes notice of INHIBCLAUSE 

meta-rules in order not to choose an inhibited clause. 

c) Obtaining a candidate goal statement 

This step consists in replacing in a goal statement the selected 

literal by the body of a given procedure and applying a matching substitu

tion 0. This is the resolution rule. Let us notice that in our system the 

matching substitution is directly applied by the PROLOG interpreter. 



n 
- 8 -

d) Acceptance checking for a candidate goal statement 

Before accepting the resolvent obtained at the preceding step 

as the new goal statement, a specialized module of the problem-solver 

performs a lot of tests in order to prevent the system from a "bad" goal 

statement and thus from useless search. 

Let G.+) = Q,.Q2 ... Qn.nil 

be a candidate goal statement ; the first step is the breadth-first 

unification. This ensures that all in Gi+] have compatible solutions, 

i.e. there is a matching substitution 0 such that any literal.Q^. 0 can 

be unified with at least one head of procedure. Obviously, if any is 

indicated as failure by the user or by the failure processing module, no 

goal statement can contain it. Thus, the breadth—first unification allows 

the problem-solver to reject a candidate goal statement as soon as a 

failure literal appears. With this acceptance checking most of the failu

res can be avoided. 

Let us notice that at the end of the test, if it is successful, 

we do not keep the matching substitution and we undo this unification 

(in order to have the candidate goal statement as it was before this test). 

The last step of acceptance checking consists of a lot of more 

or less heuristic tests to detect loops. This will be seen in the section 

concerning loop processing. 

A candidate goal statement can become a goal statement only if 

it passes the acceptance test. 

5. FAILURE PROCESSING 

An intelligent failure processing includes several tasks : prevention, 

detection, analysis, backtracking, learning and so on. In METALOG, prevention 

and detection of failures are performed in the breadth-first unification step, 

as we have seen above. In this section we explain how the other tasks are 

performed within the system. 

The first task is to determine the cause of failure. We can have two 

kinds of failure causes in our system : 

- a literal fails, i.e. in all alternatives, it admits a descendent 

literal with no solution, or 
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- a goal statement fails, i.e. each literal of the goal statement 

has a solution but all solutions together are incompatibles 

(because of the shared variables). 

In the latter case, the problem-solver backtracks to the preceding 

goal statement and tries other alternatives of this node. 

In the former case, i.e. when a literal is detected as a failure, 

an intelligent backtracking mechanism is in charge of finding a node in 

the derivation tree (a goal statement) where to backtrack to. Several 

intelligent backtracking methods have been proposed [7], [II], [12]. 

The originality of our method is its great simplicity. For this method 

(and also for loop checking and processing), we need to memorize all the 

goal statements and protect them against any subsequent unification. When 

a failure P is detected, backtracking simply consists in testing the memo

rized goal statements, one by one, beginning with the most recent, in order 

to see whether they contain a variant or an instance of the literal P. The 

backtracking node is the first one which contains none of them. Here, let 

us notice that : 

- Pj is a variant of P if P and P are identical except for the names 

of variables (e.g. ON(x,y) and ON(z,t)) ; 

- Pj is an instance of P if there exists a substitution 0 such that 

P-0 ° Pj (e.g. ON(A,y) and ON(z,z) are instances of ON(x,y)). 

The last task about failures is their memorization. This corresponds 

to a simple learning process because they will be used during the whole 

derivation process and thus contribute to the pruning of the search space. 

In METALOG, this memorization is carried out "intelligently", i.e. before 

memorizing a failure problem P, the system looks for a memorized failure 

Pj which is an instance of P. If there are such problems P., all of them 

are deleted and the most general failure P is added. This treatment avoids 

having redundant failure indications. 

6. LOOP PROCESSING 

The METALOG system has some heuristic mechanisms for detecting and 

processing loops. During the problem-solving process two kinds of loops 

occur : 

- logic loop 

- expanding loop. 
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a) A logic loop occurs when we obtain a candidate goal statement 

G which is identical with a previous goal statement G. (with j < i). 
1 J 
The logic loop is very easy to detect (this is done while forward sear

ching) and to process. Logic loops often occur in systems with a static 

strategy for selecting literals and procedures, like PROLOG. 

b) An expanding loop may occur in many different ways. The two most 

frequent ones are : 

— resolvent-expanding loop : recognized as a regular increase of 

the number of literals in the resolvent (i.e. goal statement) 

- term—expanding loop : recognized as a regular increase of the 

size of terms in the arguments of a literal in the resolvent. 

These expanding loops can be detected by the system, possibly assisted 

by the user who can indicate by meta-rules (like LITNUMBER as already seen) 

some heuristic detection rules. 

When an expanding loop is detected, the system has some heuristic 

methods to process it. This processing is based on checking the looping 

goal statement to see whether there is a literal with no solution ; to do 

this, the system proceeds as follows : 

- check fully instantiated literals ; 

- check partially instantiated literals ; and 

- check the other literals. 

If a failure literal is detected in the "looping" goal statement, the 

intelligent backtracking mechanism is used to backtrack to the appropriate 

node, 

7. CONCLUSION 

In this paper we informally presented the METALOG system which is 

written entirely in PROLOG. We believe that the system can be successfully 

used to construct expert systems (as we did for PEACE) as well as for other 

applications like plan-formation problems and intelligent data-base systems. 
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ABSTRACT 

After a short introduction to FOL, an interactive reasoning system for first order logic, 
we present a way of extending the use of the FOL evaluator by showing how systems 
of (mutually recursive) function definitions formulated in first order logic can be trans
lated into programs. This allows function definitions (syntactic objects) to be treated as 
programs (semantic objects). The advantages of this translation are illustrated. 

1. INTRODUCTION 

This paper reports on an extension that has been recently made to the FOL system, 
namely a compiling algorithm from FOL into LISP, which allows for a direct evaluation 
m! 7ifP °f functl0ne and Predicates defined in First Order Logic. The first motivation 
that has prompted us to devise this extension was the hope of substantially increasing the 
efficiency of the FOL evaluator; the examples shown is Section 4 confirm this expectation. 

There is also another reason for this extension: the algorithm that translates systems of 
mutually recursive function and predicate definitions from FOL into LISP programs allows 

hirf/CTr i ] Ur!u°f 57 °fder Logic as a ProSr&niming language. The user of FOL 
v tem f rTi .f 7 °f dir6Ctly C°ding piece8 of Programs in LISP because the o,"om a 'peci6"lion in 

melllTa^'frHtT1011 fF°L aXi°mS (°r'in genera1' fact')int0 a"ach-
semantic soec^S' "r ge^TEUJaranteeing the consistenc* ^tween the syntactic and 
limit "he user's J TS 7 »7 " °f dUc°UrSe (U L/S st™cture), or at least, to limit the user s freedom of introducing inconsistencies. 

d^ripSTof',pOLl^dT^1i.y" 1° "" for an erten.i.e 7 " ' lh* with related work to a minimum. 
w"h in,ish"»>°»»« 

ohs rsr.stsbe r-'f 



algorithm and of the FOL evaluation mechanism to further increase the efficiency of the 
evaluations and to further guarantee the user that the syntactic specification of an L/S 
structure agrees with the semantic specification. 

The paper is organized as follows. Section 2 contains a short description of FOL which 
essentially emphasizes the notions of L/S structure, semantic attachment and gives hints 
on the behaviour of the FOL evaluator. Section 3 describes the compiling algorithm which 
translates systems of mutually recursive function and predicate definitions into LISP pro
grams. Section 4 shows, by means of examples run in FOL (both with and without the 
compiling algorithm), how important this extension has been, not only in terms of reducing 
the cpu time of evaluations but also in making some evaluations possible that otherwise 
were not. Section 5 presents a discussion of semantic attachment. Finally, Section 6 
presents some ideas on further improvements and few concluding remarks. 

2. SHORT DESCRIPTION OF FOL 

FOL is a conversational system capable of reasoning with a user in the language of 
First Order Logic. It has been designed by Richard Weyhrauch at the Stanford Artificial 
Intelligence Laboratory and is implemented in LISP on aKLlO. The aims of such a system 
are many [Wey79]. FOL is primarily intended to be a tool for developing a mechanized 
formal theory of reasoning, with applications in knowledge representation in both Artificial 
Intelligence and Mathematical Theory of Computation. 

We cannot give here a detailed description of FOL and of its many features. We only 
sketch some of them. The reader is referred to [Wey77,78,79) for more insights and to 
[AW80,Fil79,Tal80] for some examples of applications. 

FOL can be viewed as an interactive theorem proving system. The interaction takes place 
in a user-determined first order language with equality, enriched with a partially ordered 
sort structure. The presence of sort information is very useful: interesting conclusions can 
often be drawn on its basis alone. FOL deals with the full predicate calculus, i.e. no 
restriction is imposed on the well formed formulas - wffs - being manipulated. In addition, 
FOL allows conditional terms and wffs, which, while being a conservative extension of 
ordinary predicate calculus, are very useful in defining functions and predicates. 

FOL implements the first order logic with the deductive apparatus of Prawitz's Natural 
Deduction [Pra65j enriched in many ways: besides the already mentioned sort structure 
and the relative sort checking facilites, many decision procedures have been added to FOL. 

There are at least three main features of FOL which are not commonly available in most 
theorem provers and that contribute to make it flexible and epistemologically adequate 
for knowledge representation and mechanized formal reasoning. 1) The possibility of dis
tinguishing between syntactic and semantic knowledge and using both kinds of knowledge 
in the same derivation. 2) The possibility of dealing at the same time with many theories 
(actually it is more appropriate to call them L/S structures). 3) The possibility of repre
senting meta-theoretic knowledge and using it in performing deductions. 
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The first point will be expanded in Section 2.1. We do not enter into details about the 
last two points (even though they are very important) because they are out of the scope 
of the present paper. We only say that in FOL many L/S structures may coexist and -
to some extent - exchange information between one another. One privileged L/S struc
ture, named META, is used to represent meta-theoretic knowledge, i.e. to speak about any 
L/S structure. The presence of a command named REFLECT allows for the transfer of 
knowledge from the meta-theory level into the theory level during a deduction. 

2.1. L/S structures - Semantic Attachments 

As pointed out in |Wey77,78,79j, one of the most innovative aspects of FOL as a reasoning 
system is the possibility of representing and using both syntactic and semantic information 
for the same context of discourse. This idea is embodied in the notion of L/S structure. 

An L/S structure is a triple <L, S, F>, where L is a language, S is a simulation structure 
and F is a set of facts. 

More precisely, L is a sorted language, i.e. a finite set of variable symbols and a finite 
set of constant symbols (all of them with an associated sort), a finite set of function sym
bols (with associated arity, domain and codomain), a finite set of predicate symbols (with 
associated arity and domain). 

A simulation structure S is a computable partial specification of a model. It consists 
of an association between symbols (not necessarily all) of L and objects of some real 
world. In the case of FOL the world is LISP and the objects are LISP data structures. 
A simulation structure is specified by providing a denotaion map for some of the con
stant symbols of L and some information about the meaning of some of the function and 
predicate symbols of L. Note that FOL does not require that S contains an algorithm for 
computing the functions and predicates associated with the symbols of L. The information 
about a function (predicate) can be limited to the specification of how it maps only a few 
elements of the domain. Note that all predicates and functions of the simulation structure 
are total, even if their behaviour is specified only on some elements of the domain. The 
FOL evaluator can deal with this kind of partialness: if it tries to compute the value of 
a function on some arguments for which no information is provided, it returns "I don't 
know" as an answer. 

A simulation structure is built by associating symbols of the language with LISP entities 
via the so called semantic attachment. 

The set of facts F of an L/S structure is a finite set of well formed formulas of L together 
with a justification, i.e., the specification of whether they are axioms, assumptions or they 
are,7'{SU ° S°me deduction (in this case system keeps track of the dependencies 
and of the inference rule used). 

Note that L/S structures are very different in spirit from the logicians' notion of theory-
*ndth ^1' ^ Cady P°inted °Ut the differen«s between the notion of a model 
and that of a simulation structure; in addition, it is worth stressing that the set of facts 
in a L/S structure is finite and not deductively closed. 
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In FOL, each application of a deduction rule (it can be one of Prawitz's inference rules 
or a sophisticated decision procedure) is a mapping from an L/S structure into an L/S 
structure, the second one being obtained from the first one by adding a new fact, namely 
the conclusion of the deduction. 
Despite these differences, with an abuse of language, sometimes L/S structures are called 
theories, and simulation structures are called models (more precisely, a value in a simula
tion structure is called a model value). 

2.2. A simple example 

The idea exploited in many proofs carried out in FOL is that the syntactic knowledge 
(language, set of axioms, set of theorems) about a theory is used in deriving proofs along 
with the semantic knowledge about the intended model for that theory. Use of semantic 
information and use of syntactic information are intermixed. When a deduction is per
formed, semantic attachments are used to compute values in the intended model, such 
values are then used at the syntax level to carry on the deduction symbolically. 

To better illustrate this point we present an L/S structure for natural numbers. In this 
example we define the language of natural numbers, assert some axioms and build a 
simulation structure for them. Note that, in the FOL system, numerals are automatically 
declared as individual constants and are attached to the expected numbers. Thus the 
following axiomatization includes by default the numerals NATNUM and their attachments 
to the LISP natural numbers. 

DECLARE INDVAR a m p q e NATNUM; 
DECLARE OPCONST sue(NATNUM)=NATNUM; 
DECLARE OPCONST + * (NATNUM,NATNUM)=NATNUM; 

AXIOM Q: 
ONEONE:V n m. (suc(n)=suc(m) Dn=m); 
SUCC1: V n.-i (0=suc(n)); 
SUCC2: V n.(-i0=iO3 m.(n=suc(m))); 
PLUS: V n.n+0=n 

V n m.n+suc(m)=suc(n+m); 
TIMES: V n.n*0=0 

V n m.n*suc(m)=(n*m)+m ;; 

ATTACH sue <4 (LAMBDA (X) (ADD1 X)); 
ATTACH + <4 (LAMBDA (X Y) (PLUS X Y)); 
ATTACH * <4 (LAMBDA (X Y) (TIMES XY)); 

The first group of declarations creates the language. The second group specifies some 
facts: Robinson's axioms Q without the equality axioms [Rob50j. The third group makes 
the semantic attachments of function symbols to the LISP code for computing them. 
Actually, FOL requires some more information about details that are irrelevant here, for 
example the parser must be informed that the symbols + and * are infix operators and 
have a certain precedence. 
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Suppose that we extend the previous L/S structure by adding the following facts: 

1 = suc(O) 
2 = suc(l) 
3 = sue(2) 

If in this context we want to prove that for all p the following equality holds: 
p*0+(1+2) = 3 

we can use syntactic information only (i.e. repeatedly rewrite p*0*(l*2) by means of 

, l h " t h i - — —  
EVAL p*0+(l+2)=3 BY {TIMESl} 

^SShUSSli ,k,"nUclic k"™«d« "»»'• - —•* 
appearing on the left hand tide of th«Lo XuTdl'»" ''™ F'° 
(tirmhoffo) evaluation it an e.tential p„t of the FOLZu'Z ' 

one may concludeThaMher'e""no'to^»a''ont can only be performed on ground Irmu, xszsvzss* rrin, ~^ss 22£tsz BILI;' T*u "'m,s*«£ ̂ ™rz;r,r ™',h"m 
evaluator. We wi'l'l not'eiplain the'beh """""" hinl ' on «* working! of the FOL 
tince it would be too Zand ' Zj'Tb Z' •»»""« 
™ch alike, to „,d„ l0 "4™' 8»w of the eontrol in all of them it m, EVAL "St detai,! *"""thE or""F0L 

*VAL termi=teraia BY slmpset; 
m the case where term* is D*0+fi+oi + 
The evaluator looks for all the . t " ^ SlmpSet (T™ESl}. 
structure and uses them, on bot^rms^n^T"16 ^ *" provided in the c""ent L/S 
P*0+ (i+2), namely +(*(p 0) + (i m ™ost out«most manner. In the case of 
+ has an attachment, then it tries to reali i6S that  the function «>mbo1 

^ first case, it is provided with an *Cp '0) and In 

attachment for the symbol p (nor p can ht !• ,? Cti°n 5Jrmbo1 *• but ifc has no 
evaluation on *(p,0) fails. At this poiS the Iv" ^ u simp,ified)- Hence the semantic 

TS that  matches w^h (some subterm If Th I Whe 'her the , imPset  there 
TIMES1 match6S tbe term '"-case, the axiom 

(via symbolic evaluation) as 



0. As for the term +(1,2), since both the symbol + and the numerals i and 2 have 
an attachment, control is passed to the LISP EVALuator which uses these attachments 
to compute a model value, namely the number three, whose name in the current L/S 
structure is the numeral 3. The FOL evaluator is now left with the term +(0,3), which 
by using semantic information, is evaluated to the term 3 (i.e. the numeral 3, which is the 
name for the LISP number three, that is the model value computed by applying the LISP 
evaluator on the semantic attachment of the symbol + and the model values attached to 
the symbols 0 and 3). At this point the evaluation of the term at the left hand side of the 
equality of the original wff ends. The evaluation of the term at the right hand side of the 
equality is straightforward: the result is the term 3. Since the evaluation of both the term 
at the left hand side and the one at the right hand side of the original wff yield the same 
term, the wff has been proved, hence the current L/S structure iB extended by adding the 
fact that p*0+(l+2)=3. 

In this short trace of the behaviour of EVAL we have omitted many details; we hope 
however to have provided the reader with an idea of the flow of the control during the 
evaluation and, more important, of the order in which the use of syntactic and semantic 
knowledge is intermixed. 

3. COMPILING SYSTEMS OF MUTUALLY RECURSIVE FUNCTIONS 

In order to further exploit the ability of the FOL evaluator to directly invoke the LISP 
interpreter whenever it is provided with code for some of the function or predicate symbols 
occurring in the term/wff being evaluated (and a model value for all the arguments of such 
an occurrence of the function or predicate symbol), a compiler has been designed and 
implemented which translates systems of mutually recursive definitions into LISP code. 

The compilation of systems of function (predicate) definitions from FOL into LISP allows 
FOL to transform syntactic information into semantic information. In other words the 
compiling algorithm allows FOL to automatically build parts of a model for a theory, 
starting from a syntactic description. 

The FOL-LISP compiler is invoked by giving FOL the command 

COMPILE name-list; 
each name in name-list is checked to see whether or not i t  i s  the name of a fact (i.e. an 
axiom or a theorem) in the current L/S structure and if this fact is a function or predicate 
definition (note that we use the word "definition" in a broader sense than logicians do). In 
this case the LISP code for the definiens is computed and attached to the definiendum as 
a semantic attachment, i.e. COMPILE has the same effect as the previously seen command 
ATTACH. 

Using a sligthly modified version of the notation of |CMC79] the compiler treats systems 
of mutually recursive definitions of the following form. 

Vz i l . . .Zi r . f i{x i l ,Zi r )  = <7,•[$,• ,  « i t j  ••• ,  z«, l  
VYH-YJAPAYJU •••» VJ.) =TI^J> VA- WJ) 



where /,-s are function symbols and Pj  are predicate symbols. The a,- are terms in 
s, tf.-s, and Z,-s; the Tj-s are wffs in the $:-s, ^y-s, ?/-» and Jffs. By 2 we denotes 
tuple of constant symbols. By (resp. we denote a tuple of function (resp. predicate) 
symbols. 3? (resp. may contain some of the /,- (resp. Pj), but it is not necessarily 
limited to them, i.e. other function and predicate symbols besides the definiendums can 
appear in each definiens. 

The compilation algorithm first performs a well formedness check, then a compilability 
check. 

Wel l  formedness  check  - Each name in name-list is checked to see if it actually cor
responds to a fact in the current L/S structure, and in this case if this fact is a definition, 
i.e. if it has one of the two following forms: 

Vzij... Xi r . f i (x i i l ..., Xi r )  = ... 
= ... 

Note that no further check is performed on the well formedness or the well sortedness 
of the definitions, since all these checks have already been performed by the FOL parser 
when these facts have been input in the current L/S structure. 

Compi lab i l i t y  check  -  It consists in verifying that: a) each definition is a closed wff, i.e. no 
free variable occurs in it; b) all the individual constants and the function (predicate) sym
bols appearing in the definiens have a model value, i.e. individual constants are attached to 
some model value, while function and predicate symbols have some code attached to them 
(either by the compilation presently being done - which allows for recursion or mutual 
recursion - or by a previous attachment or compilation); c) the definiens can contain 
logical constants, conditionals and logical connectives but no quantifiers. 

Before explaining why these restrictions have been imposed to a system of definitions 

a^gorHhm0 ^ C°mpilable ' we give more "P^nations on the workings of the compiling 

3. 1 .  The compiling algorithm 

check1!^111?!^'/ TRU °r  & Wff WFF" TRU <reEP- ffFF) i6  t rave"ed only once to 
(resn f  r i ?  ̂  compile it- In case of failure, i.e. as soon as a subpart of TRU 
(resp. WFF) is not compilable, the process is stopped. 

-mSm tCk and 7'7 eT' , , i0" " d°«« i« » recursive w.y, a. follow.: 

b "e clpS; " c" , r ru whe" C 'IF" h 

- if WFF is TRM1=TRM2, it is compiled as (EQUAL C-WFF1 r  wviroi 
- if WFFis WFFIATRL'2 or WFF1VWFF? 1 J, C~VFF2)-
C-BFF1 C-WFF2), respectively; "mp.led „ (Am> c-tFFl C-IFF2) or COB 

- IF Iff (UIP'ranT'. 1' » i !  "» torm. of A. V.-; 

compiled and the resulting0 (COm^c^tisTc-th^ ft t6St ' th6n a"d 6lS6 ParU "* 
test is the code for test, etc • "then) (T c-else)) returned, where C" 
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- if TRM is a variable, then it must not be a free var, the code is the variable itself; 
- if TRM is the symbol TRUE then T is the code for it; 
- if TRM is the symbol FALSE then NIL is the code for it; 
- if TRU is a constant symbol, its model value (i.e. a LISP constant) is computed and 
returned, if any, otherwise a failure occurs; 
- if TRM is an application of a function (predicate) symbol to some terms, then the function 
(predicate) symbol and the terms are compiled and their LISP application is returned. The 
function (predicate) symbol is first searched in the list of symbols defined in the system 
being compiled in this "block" compilation, (i.e. we look first for recursive or mutually 
recursive definitions). In this case the name of the LISP function attached to that symbol 
by the present compilation is returned as its model value. Otherwise, an attachment for 
that symbol is searched. If it if found, this code is returned, otherwise a failure occurs. 

A few more remarks are in order. FOL allows for some polymorphism: if a function 
(predicate) symbol has different attachments for different sorts, then the compiling al
gorithm selects the approriate code for it, according to the sort of the terms that are 
arguments for that function (predicate) symbol in the term being compiled. 

Finally, note that we allow for the separate compilation of function (predicate) definitions 
within a given L/S structure, the only requirement being that they are compiled in an 
appropriate order and that systems of actually mutually recursive functions (predicates) 
are compiled together. 

3.2. An example of compilation 

To provide an example of compilation, we present here the mutually recursive definitions of 
two predicates, without providing details on the language and sorts appearing there. They 
have been taken from the meta-theoretic description of arithmetic expressions (remember 
that UETA is just an ordinary L/S structure). They are used to check whether or not an 
individual variable or function symbol occurs in a list (of individual variables and function 
symbols) and given two such symbols which one occurs first: 

AXIOM MEMBER: 
V vf lex.(MEMBER(vf,lex)= 

if EMPTYLEX(lex) then FALSE 
else if vf=hd(lex) then TRUE 

else MEMBER(vf,tl(lex)));; 

AXIOM BEFORE: 
V vf 1 vf2 lex. (BEF0RE(vfl,vf2,lex) = 

if EMPTYLEX(lex) then FALSE 
else if vfl=hd(lex) then MEMBER (vf 2, tl (lex)) 

else BEF0RE(vfl,vf2,tl(lex)));; 

If we type to FOL the command for compiling them, i.e. 

COMPILE MEMBER, BEFORE; 

it answers: 
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MEMBER compiled as 
(DE C-MEMBER (vf lei) 

(COND ((NULL lei) NIL) 
(T (COND ((EQUAL Tl (C-lid lei)) T) 

(T (C-MEMBER Tl (C-tl lei))))))) 
BEFORE compiled as 

(DE C-BEFORE (vli rl2 lei) 
(COND ((NULL lei) NIL) 

(T (COND ((EQUAL ri1 (C-hd lei)) 
(C-MEMBER 712 (C-tl lei))) 

. (T (C-BEFORE Til vf2 (C-tl lei))))))) 

The compiling algorithm uniformly generates names for the LISP functions it creates (C-
MEMBER is the code for MEMBER, etc.) and, as stated above, it uses code generated in 
previous attachments and compilations. In the above examples EMPTYLEX had been pre
viously attached to the LISP predicate NULL, hd (head) and tl (tail) to C-hd and C-tl, 
respectively. 

3.3. Restrictions on the compilability 

The above description and examples show that the code produced by the compiling algo
rithm is pretty straightforward: it is a transliteration from FOL syntax into LISP syntax, 
hence we will not go into further details about it, nor we will bother about its correctness. 
We turn instead to explaining the restrictions imposed on systems of mutually recursive 
function (predicate) definitions in order to be compilable. They have been listed above, as 
points a), b) and c) of the compilability check. 

a) Closedness of the definition - We want each definition to be a closed wff. In first 
order logic with natural deduction we cannot infer Vl.P(i) from P(l). Hence we can
not compile free variables possibly appearing in the definition as LISP bound variables, 
which would correspond to compile the universal closure of the given wff. If, conversely, 
we compile free variables occurring in the definition as free variables in the LISP code, 
they would result in unbound variables for the LISP EVAL (or, even worse, they might be 
dynamically captured by some bound variable with the same name). 

b) Existence of attachments - A consideration similar to the above one justifies the choice 
we have made to allow the compilation only when all the constant, function and predicate 

rm0 rCTCrn/vTr th\definienS have a m0del Value- If  thU is not the case for some of 

2 PU if u tfying t0 eVa 'Uate that  con6tant or t0 aPPJX t^t function (or 
Z w' T? re ' m an e"°r- The F0L evaluat0r- as " presently is, after invoking 
from an errle eXpeC(tBfCtUrn a model it does not know how to recover from an error occurring at the LISP level. 

inA thu definiens - The ch°iee of not allowing quantifiers in the 
""I6 11 WaS n0t need6d f0r the resent applications of the 

Clearly we canrot™!! 7 aIlowed ' even thou£h only bounded quantifications. 
Clearly we cannot allow for an unbounded quantification in the definiens, (the computa-
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tion at LISP level has to return a value), but bounded quantification can be introduced, 
by compiling, for instance, Vx. P (x) with the code that repeatedly binds X to all the data 
objects of the (finite) domain associated with its sort, checking whether or not P hold6 for 
all of them (analogously for the bounded existential quantification). 

3.4. Soundness of the compilation 

While the correctness of the compiling algorithm should not constitute a problem, a 
legitimate question is the following: Is the compilation process sound? To say it in other 
words, the question to be asked is: Who guarantees that running the FOL evaluator syn
tactically on a system of definitions gives the same result as running the LISP evaluator 
on their (compiled) semantic attachments? 

The answer is that the two evaluations are weakly equivalent (i.e. if both terminate, they 
produce the same result). This is because the FOL evaluator uses a leftmost outermost 
strategy of function invocation (which corresponds to call-by-name) while the mechanism 
used by the LISP evaluator is call-by-value. Hence, compiling a function can introduce 
some nonterminating computations that would not happen if the same function were 
evaluated symbolically. 
This however does not constitute a serious problem and it will be overcome in the next 
version of FOL. In fact, it will be implemented in a dialect of LISP which is pure applica
tive, statically scoped and whose evaluator implements call-by-need (note that, in this 
case, call-by-need is strongly equivalent to call-by-name). 

4. AN EXAMPLE OF USE OF COMPILED CODE 

The first sizable application of the compiling algorithm from FOL recursive function 
definitions into LISP code has been done in order to develop a meta-theoretic description 
of arithmetic expressions. 
This application is presented in [AW80]. The FOL theory (and meta-theory) of arithmetic 
expressions is a completely general one. Arithmetic expressions are allowed to contain 
variables ranging over INTEGERS, the usual operators (+,*, prefix and infix -) and unin
terpreted function symbols. No restriction is imposed on them, nor on their arguments. 
To be more precise: function symbols may take objects of any sort as their arguments; the 
only restriction is that they must be hereditarily well sorted and return integers as values. 

Question answering involving arithmetic expressions often requires two expressions to be 
checked for the identity of their values for all the interpretations of the variable symbols 
occurring in them. This cannot be done by a single rewriting, using the associative and 
distributive laws (etc.) holding for elements of an integral domain, because of the presence 
of the commutative laws for plus and times. In fact, the commutative laws may cause a 
rewriting system to loop. 
To solve this problem, an algorithm has been devised in META which describes manipula
tions on arithmetic expressions that transform them into a canonical form with respect 
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to commutativity (in addition to associativity, distributivity, evaluation of ground sub
expressions, elimination of zeroes and ones, etc.). This has the property that arithmetic 
expressions are equal if their canonical forms are the same. Such algorithm relies on an 
intermixed symbolic evaluation of the expression at the theory level and of a reordering 
done at the meta-theory level. The specification of the algorithm in META it a rather 
long piece of FOL code and running it in a completely symbolic way and running it by 
compiling LISP code for all the definitions (about 30) substantially changes its behaviour. 

Consider the following examples (where 1 has been declared as OPCONST mapping pairs 
of INTEGERS into an INTEGER): 

(a) x*(-y)-(-y)*x 
(b) x*3*(4-y)-(-y+4)*3*x 
(c) x*0*f(4-y,y) 
(d) x*y*f (y, z) -y*x*f (y, z) 
(e) x*3* (4-y) + (z-u) * 1  ((x+y) *w, w*u) 

-12*x- (u-z)*f(w*x+w*y+0,u*l*w)+3*x*y 
To make the examples more straightforward we have chosen only expressions that are to 
be proved to be identically zero. The times reported in the following are KL10 cpu time. 
For each expression, in the first column we report the cpu time for the simplification done 
using the compiler, in the second one the cpu time for the simplification done completely 
symbolically. 

(a) 5" 1*20*' 
(b) 3 ' '  stack overflow 
(c) 2" 11" 
(d) 12* ' 5 * 5 "  
(e) 3*11* * stack overflow 

(*) Note that during the last garbage collection before the result was produced only 310 
LISP cells were recovered!. 

We think that these figures are self-explaining. The reader should not be mislead by 
them and conclude that the FOL evaluator is particularly inefficient. The point we are 
making here is only that computations on model values are more efficient than symbolic 
manipulations at the syntax level, hence that the use of semantic attachments in FOL has 
to be encouraged. 

5. IN DEFENSE OF SEMANTIC ATTACHMENT 

The semantic attachment in FOL has been criticised as being error prone. The main 
jec ion is t at the user of FOL has the freedom of introducing two separate descriptions 

a syntactic one and a semantic one) within a single L/S structure, using two separate 
anguages and the system does not provide means to check whether these two separate 
escriptions actually match. For instance, going back to the example of Section 2.2, in 

presently is, there are no means of checking that the LISP function attached 
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to the function symbol + satisfies the properties stated by the axioms PLUS. 

Conversely, we consider the introduction and use of semantic attachments in FOL a very 
sound idea and not only because it increases the efficiency of evaluations but (more im
portant) because it is episternologically valuable to have a clear distinction between the 
syntactic part and the semantic part of a description of a context of discourse. 

In addition, it has not to be underestimated that the notion of simulation structure in 
FOL allows for partial descriptions. Their need is certainly not evident from the examples 
provided in this paper, where each function (predicate) symbol introduced had a clear, 
well known, model value (i.e. a nice recursive function). But if you think of FOL as a 
system that allows you to represent knowledge about a domain of discourse as soon as 
you gather it by means of some observation, then the possibility of feeding it with partial 
information about model values seems the only viable way of setting up and updating a 
domain of discourse between FOL and the user. 

Let us go back to the above objection, that the syntactic and the semantic specification 
of an L/S structure are made in two different, and in a sense incomparable languages. 
Note that the presence of the compiling algorithm described in this paper has reduced 
this problem to a minimun. In fact now the user, even though he intends to use some 
information at the semantic level, can input it in the form of FOL axioms (or prove it from 
previously specified axioms), and then transform it into semantic knowledge by means of 
a compilation. 

There are many advantages in setting up an L/S structure by giving FOL syntactic infor
mation and then allowing the compiler to transform it into a simulation structure. 

First, the FOL user can specify his knowledge in the syntax of first order predicate logic 
and be guaranteed that the LISP code of the simulation structure generated from it ac
tually models the syntax. 
Second, the user can ask FOL itself to prove any property he wants of the notions he 
is introducing, thus increasing his confidence on the consistency of the specification he is 
setting up. 
Note that in this last point we have never mentioned the word correctness. In this case, 
in fact, we think that there is no point in speaking about correctness: the only thing that 
matters is to provide the user with the ability of verifying that the domain of discourse 
he is setting up with FOL corresponds to his intentions. 

Before ending this section we also notice that, once the theory of LISP in FOL has been 
completely developed |Tal80], an algorithm can be devised for transforming LISP recur
sive function definitions into FOL formulas, using for instance the minimization schema 
proposed by J. McCarthy. This, besides allowing for a theory of recursive functions in 
first order logic, allows for a further check to be done on L/S structures. Namely, it can 
be checked that the semantic attachments provided in given L/S structure (in particular, 
those that are not the result of a compilation) are consistent with the syntactic part of 
the L/S structure itself. 
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6. FURTHER WORK - CONCLUDING REMARKS 

We have given some indication concerning the workings of the FOL evaluator and its use 
of syntactic and semantic knowledge in performing evaluations. We have then illustrated 
a compiling algorithm for systems of recursive function (predicate) definitions from FOL 
into LISP, which greatly improves the performance of the evaluator itself. Here we describe 
some possible further improvements. 
As pointed out in Section 2.2, the strategy that is presently adopted by the FOL evaluator 
is that, whenever it has some semantic information about the term (or wfT) being evaluated, 
it uses that information first; if nothing can be done at the semantic level, it tries with 
a syntactic simplification. This strategy was the only reasonable one when the semantic 
attachments were very few and, conversely, the sets of simplification rules tended to be 
very large. The addition to FOL of the compiling algorithm described in this paper hat 
changed this balance: facts at the semantic level are many more than those at the syntax 
level. This implies that a rethinking of the FOL evaluator has to be done in order to choose 
which information has to be used first. It is our opinion that syntactic information has 
to be used first. In fact, in a L/S structure where all the function (predicate) definitions 
have been transformed into semantic attachments, the only knowledge that is left at the 
syntactic level is in the form of properties of these functions and predicates. The use of 
such properties before trying to compute the function (predicate) may result in avoiding 
some computation. 

To clarify this point we give an example. Suppose that, in the theory of Section 4 you 
declare a binary function I which maps pairs of NATNUMs into NATNUM, and add (via com
pilation, or "by hand") an attachment to it. Suppose that in this L/S structure you prove 
the theorem: 

V l.f(x,i)=0 
From now on, when'evaluating f (trm.trm) (where trm stands for any term), you cer
tainly want to use the above theorem and immediately rewrite 1 (trm, trm) as 0, instead 
of running the LISP evaluator on the code for t applied to the model value of trm, and 
re-discover that the result is 0. 

One further improvement worth considering is to allow the FOL evaluator to handle some 
kind of LISP errors, in order to enhance its possibility of performing mixed computations. 
In Section 3.3 we have said that one of the requirements for a definition to be compil
able is that all the function (predicate) symbols occurring in the definiens must have an 
attachment, to avoid that the LISP EVAL encounters an undefined function. The FOL 
evaluator can be designed to handle this kind of errors, pass back the control to its sym
bolic evaluation part and check the simplification set for some fact regarding this function 
(predicate) symbol, and, if possible, perform a rewriting. 

Wr?' fVUbieCt f°r  f?rtHer investi&ation consi!^ improving the compiler in order to 
of firT J* r ? C°de 11 Senerates- In fact, as it presently is, the transformation 
a a i r]r Cate) definitions into code is a transliteration, no optimisation 
at all is performed. This is a subject worth investigating: partial evaluation and other 
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efficiency increasing transformations (for example, in the style suggested by [BD77] or by 
[AAP78]), can be performed on the code produced by the FOL-LISP compiler. 

Due to the lack of space we cannot present a detailed comparison between our work and 
other proposals circulated in the recent literature, mostly in automatic synthesis of pro
grams. We only mention that the use of (compiled) meta-functions in FOL is very much 
in the same spirit as [BM79]. 
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Runnable Specification As a Design Tool 

I 

Ruth E. Davis 
Electrical Engineering and Computer Science Department 

University of Santa Clara 
Santa Clara, CA 9505S 

There are at least four phases in the development of "correct" software. 

1) Understanding the problem. The program designer may work with intended users 
of the system to develop an intuitive understanding of the problem and possible 
approaches to its solution. 

2) Formal specification. Once the designer knows intuitively how to solve the 
problem, the solution must be specified unambiguously. 

3) Programming. An implementation of the specification is programmed. 

4) Verification. The implementation developed in step three is shown to satisfy the 
formal specification of step two. 

There |, , certain amount of teaing and debugging that go,, on „ 
stages Mi one i, satisfied „„„ the current step and moves on s,„„, 

vertftcatton technique, b,e„ to «« m accomplishing step four. However, 

satisfies th ' """" ~«M satisfies the given specification. 

T* be,ne ei"ded *"" mmmfk «• «m « 
step entfrei, M ' "" "h"'"""8 "" """ " "» """"""" 
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pr»b,7m Th" , our ^ a ,7' !P"""*",'n ""PersLLg of the 
construction and testing * " d,,"°Pi"8 " h"P 
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How does one "debug" a specification? We cannot hope to formally prove that a 

specification is "correct" with respect to our intuition, but we can at least test it to see that it 

conforms to our intuition in specific cases. 

Guttag and Horning [2] present an algebraic specification technique as a design tool. 

As an example they describe part of the specification of a high-level interface to a flexible 

display and discuss the analysis of the specification. A salient feature of their approach is 

the ability to "ask questions" of the specification, derive answers, and change the design if 

the answers are unacceptable. In this way they hope to test and debug the specification. 

I suggest that Horn clauses provide a much better specification language than do 

algebraic axioms. The two languages are closely related; it is a simple matter to translate 

between them. The ease of writing a specification in one language versus the other is 

undoubtedly a matter of personal taste and depends largely on which language one is more 

familiar with. The same may be said of the readability of a specification. Horn clauses, as 

well as algebraic axioms, can be analyzed for answers to specific questions and modified 

accordingly. 

The major distinction between the two methods is the manner in which questions can 

be handled. With the Guttag-Horning approach, an informal question is posed and 

submitted to an "expert" who reformulates the question, often generalizing it. The 

questioner must then be convinced that the formal statement developed by the expert does 

indeed reflect the original question, and an answer to the formal question will provide an 

answer to the informal one. Then an attempt is made to derive an answer from the 

axioms. 

The same approach may be taken with Horn clauses, but it is not necessary. Since 

Horn clauses are executable, if the questioner wants to know what happens in a particular 

case, it is possible to simply "try it and see". The expert will still be needed to develop the 

specification and to determine what modifications should be made to the specification to 

change an unacceptable answer, but the "what happens if ...? questions no longer need be 

formalized. For example, given the specification detailed in the appendix, and definitions 

for the primitives (machine dependent) that interface the underlying logic with the 

commands controlling the appearance of the screen, it is possible to execute logic programs 

that manipulate the display. Ideally, a "front-end command language should be provided 

by the designer(s) that enables users/testers of the design to make their requests of the 

system without having to write them as Horn clauses. 
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Once one is satisfied that a Horn clause specification is a reasonable embodiment of 

one's intuition, the task of refining the specification into an efficient program can proceed. 

The ability to run a specification makes the problem of testing and debugging it much 

more tractable. 

As an example, I have written the Horn clause specification of the display specified 

with algebraic axioms by Guttag and Horning. The fundamental assumption is that a 

user will want to be able to display several distinct blocks of information on the screen at 

once. The top level concept is that of a view. A view is a spatial arrangement of pictures, a 

picture is a block of displayable information. A picture consists of a boundary, a contents, 

and a coordinate transformation to be applied in viewing its contents. Examples of pictures 

are the entire display (with implicit boundary), and the interior of a fixed rectangle on the 

display; examples of contents are text, figures, and views. 

The Guttag-Horning specification of picture is as follows; 

Operators: 

MakePicture. Contents X /Coordinate -» TruthValues) X [Coordinate -> CoordinateJ 
-» Picture 

Picture.Appearance: Picture X Coordinate •* Illumination 

Picture.ln: Picture X Coordinate -> TruthValues 

Axioms: 

Picture.Appearance(MakePicture(cont, bound, trans), coord) 
- Contents.Appearance(coru. trans(coord)) 

Picture.ln(MakePicture(cont, bound, trans), coord) - bound(coord) 

The operators are listed first, giving their functionality, then the axioms defining 

them are given. MakePicture is not defined further since it is simply the constructor 

function for the type Picture. The first axiom tells us that the appearance at a given 

coordinate in a picture is determined by the appearance at a coordinate (the result of 

applying the transformation to the original coordinate) in the contents of the picture. The 

second axiom indicates that a coordinate is in a picture if it is within the boundary of the 
picture as defined by the function bound. 

The specification of type Picture using Horn clauses is given below. The Horn clause 
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specification clearly indicates the distinction between constructor functions, such as 

make-picture, and the predicates indicating relationships among their arguments. The type 

constraints, indicating functionality of the predicates, are given only for the dause(s) 

defining the type being specified. Type-checking can be included explicitly in each clause, 

however, we assume the required type is made obvious by consistent naming of variables 

and choose to leave it out of the rest of the specification for the sake of readability. 

Picturefmake-picturelconl. bound, trans)) <- Contents(conl), Boundary(bound), 
Translation trans) 

Picture-Appcarancefmake-picturelconl, bound, trans), coord, ilium) -
C-orr,pule posilionfcoordjrarucoord'), Contents-appcarance(cont, coord") 

Picture Inlmake-picture(cont. bound, trans), coord, tv)«- Lies-in(coord. bound, tv) 

In the Cuttag-Horning axiomatic specification of the display, a boundary is a 

function from Coordinate to TruthValues and a translation is a function from Coordinate to 

Coordinate. Horn clause syntax does not allow functions as arguments, thus I've treated 

trans and bound as objects, Compute-position is a predicate that accomplishes the 

translation from coord to coord' indicated by the Guttag-Horning trans, similarly, 

Lies-in(coord, bound, tv) results in tv being bound to true if and only if the 

Guttag-Horning bound(coord) is true, and to false if and only if Guttag-Horning 

bound(coord) is false. I would not need the predicates Compute-position and Lies-in if I 

had an evaluation predicate which accepts a function and its arguments and applies the 

function to the arguments, such as the LISP "apply". I have decided to remain within 

first-order logic and the strict limitations of Horn clauses. Others have concerned 

themselves with the problem of moving to second-order, as shown in the demonstrate 

predicate used by Ken Bowen and Alan Robinson. 

The specification of type View, given algebraically, is as follows: 

i 

Operators: 

View P. m ply: -> View 

AddPicture: View X Coordinate X Pictureld X Picture -> View 

View.Appearance: View X Coordinate -» Illumination 

View.ln: View X Coordinate -» TrulhValues 
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FindPictures: View X Coordinate -» IdList 

DeletePicture: View X Piclureld -» Wen/ 

Axioms: 

View.Appearancel AddPictureiv. coord'. id. p). coord) • 
if Picture.ln(p. Minuslcoord. coord!)) 
then Picture. A ppearancel p. Minus(coord, coord")) 
else View. Appearancelv, coord) 

View.Appearance(View£mpty. coord) intentionally left unspecified 

ViewdnlView Empty, coord) - False 

View.ln(AddPictureiv. coord", id. p). coord) -
Picture.lnlp, Minuslcoord. coord!)) v View.lnlv. coord) 

FindPictureslViewJimpty. coord) » IdList Fir. ply 

FindPictureslAddPictureiv. coord!. id. p). coord) -
if Picture.lnlp. Minuslcoord. coord!)) 
then IdList.lnsertlid. FindPictureslv. coord)) 
else FindPictureslv. coord) 

DeletePiciurelViewF.mpty.id) " ViewFmpty 

DeletePicturel AddPictureiv. coord, icf. p). id) * 
if PictureldFquallid. id") 
then v 
else AddPiclure(DeletePicture(v, id), coord, id", p) 

Guttag and Horning use the convention of prefixing a function name by the type it 

is operating on and a dot. In this way they can use the same name for similar functions 

being defined over several different types. They chose to use a 0-ary function VUrn.Empty 

to indicate the empty view, we use a constant mt-view. AddPicture is the constructor 

function for type View. Appearance and In are determined by the components (pictures) 

making up a view. FindPictures is a function that constructs a list of icCi of pictures 

containing a given coordinate. DeletePicture deletes a picture, specified by its id. from a 
view. 

Again, using Horn clauses, we indicate the types of arguments only in the 

specification of View, and assume the desired types are made apparent by naming of 
variables. 



I l l  

View(mt-vlew) «-

Vieuiladdpicturelv, c. id. p)) «- View(v). Coordinau(c), Pictureld(id), Picture(p) 

View - Appearancc(mt-vicw. coord, x) «-

As in the algebraic specification, we leave unspecified the appearance of the 
rr.t-vicw at any coordinate. Since we have no if-then-else, the axiom describing 
Vlew.Appearance corresponds to two Horn clauses, one for each alternative. 

View-Appearance(addpicture(v. coord", id. p), coord, ilium) «-
Picture-ln(p. minuslcoord. coord'), true). 
Picture-Appearancelp. minuslcoord. coord"), ilium) 

Vieui-Appearance(addpicturt(v. coord", id. p), coord, ilium) <-
Picture ln(p. minus(coord. coord"), false), 
View Appearance(v, coord, ilium) 

View-ln(mt-view. coord, false) *• 

Horn clauses are not allowed alternative conditions. Thus the second axiom for 
View-In Is handled by the following three Horn clauses, one for each alternative 
making the conclusion true, and a third to enable us to derive the fact that a 
coordinate is not in a view. 

Vicw-ln(addpicture(v, coorrt. id. p), coord, true) *-
Picture-ln(p. minus(coord, coord"), true) 

View-ln(addpicture(v, coord', id. p). coord, true) *• Vieui-ln(v. coord, true) 

View-ln(addpicture(v, coord", id. p), coord, false) «-
Picture ln(p. minusUoord, coord"),false). 
View-ln(v. coord,false) 

FindPlctures(mt-vlew. coord, mt-ldlist) *• 

FindPictures(addpicture(v. coord", id. p). coord, idlist-insert(ididl)) *-
Picture-ln(p. minusicoord. coord"), true). 
FtndPictures(v. coord, idl) 

FindPictures(addpicture(v, coord", id. p). coord, idl) -
Picture-ln(p. minusicoord. coord), false), 
FindPictureslv, coord, idl) 

DelelePicture(mt-view, id. ml-view) «-

DeletePictureladdpicturelv. coord, id. p). id, v) «-

DeletePiclureladdpicturelv. coord, id", p). id. addpicture(v". coord, id", p)) -
Pictureld-equal(id. id", false), DeletePicturelv, id, v ) 
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FindPictures and DeletePicture present no surprises. Again, an if-then-else in an axiom 

results in two clauses in the Horn clause specification. A complete Horn clause 

specification of the display is given in the appendix. 

In analyzing the specification using the algebraic axioms one needs an expert to go 

between the questioner and the specification. For example, and informal question asked of 

Guttag and Horning was: "Is it the case that pictures are not transparent or even 

translucent? I.e., if two pictures overlap, does the bottom one have no effect on what one 

sees through the top one?". The question was formalized as: 

"Is it true that 
Lict' juid)>\v2)l Piaure.ln(wMinai(ct')) •* 

fVieuiAppearance(AddPicture(vlSidui)*) - Vitw. Appear ant tl AddP Ictui e{v21 T 

The formal question is answered affirmatively, following directly from the first alternative 
in the first axiom of type View. 

If we so desired, we could formalize the question to be put to our Horn clause 

specification and derive the same answer, using the second clause in the definition of 

View-Appearance, but there is no need. Since we can run the Horn clause specification, all 

the user need do is construct overlapping pictures and look at the result. This U sufficient 

to answer questions about specific cases. If one is interested in proving general properties, 

then we must fall back to a formalization of the question and formal derivation of an 
answer from the specification. 

Using Horn clauses as a design tool we enjoy all the benefits of the algebraic 

approach, and gain the advantage that testing is more easily accomplished. An expert may 

still be required to develop the design specification and to modify it if necessary, but the 

analysis of the design can be carried out by people who may be experts ,n the problem 
domain but not in the specification language. 

[H Davis, RpE - "Generation of Correct Programs from Logic Specification." 
h D Thesis, Board of Information Sciences, University of 

California, Santa Cruz, 1979. X 

[2] Guttag, J and J Horning, "Formal Specification As a Design Tool" 

ESS?r/sf ACM Symp0S1Um P̂ 'P'« jamming 

[3] Kowalski, R„ Logic for Problem Solving, Elsevier North Holland. Inc. 1979. 
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Appendix 

TYPE Picture 

Picturelmake picturelcom, bound, trans)) *• 
Contents(com). Boundaryl bound). TranslalionUrans) 

Picture • Appearancelmake picturc(conl. bound, trans), coord, ilium) -
Compute-position(coord. trans, coord"), Contents-appcarance(cont, coord"). 
Content si com). Boundary(bound). T ranslalionUrans), Coordinate(coord), 
Coordinate(coord'), lllumination(illum) 

Picture Inlmake picturelcom, bound, trans), coord, to) <-
Lies-in(coord. bound, tv). Contents(com). Boundarylbound), 
Translation(trans). Coordinate(coord). Trut/i-valuc(tv) 

END TYPE Picture 

TYPE Contents 

Conteras(mt-coments) *• 

Contents(add- componentlcom. com p. coord)) *- Consents(cont). Componens(comp), Coordinate(coord) 

Contents-Appearancelmt-contents. coord, x) «-

The appearance of an empty contents at a coordinate is intentionally left unspecified as yet.  

Contents Appcarance(add-component(cont. comp. coord'), coord, ilium) -
Component-lnlcomp. minuslcoord, coord"), true), Contents-Inlcont, coord, true). 
Component Appearancelcomp. minuslcoord. coord"), illuml). 
Contents Appearancelcont. coord. illum2). Combinelilluml. illuml. ilium) 

Contents- Appearance(add-component(cont. comp, coord). coord, ilium) *• 
Component- Inlcomp. minuslcoord. coord'), true), Contents-Inlcont, coord, false), 
Component- Appearancelcomp. minuslcoord, coord"), ilium) 

Contents-Appearance(add component(com. comp. coord"), coord, ilium) *-
Component Inlcomp. minuslcoord. coorSlfalse). Contents-Appearancelcont. coord. Ulum) 

Contents-lnlmt-contents, coord,false) *• 

Coments-lnladd- com ponentl com, comp. coord.'), coord, true) «-
Component-lnfcomp. minuslcoord, coord"), true) 

Contents-Inladd com ponentl com, comp, coord.'), coord, true)«- Comems-lnlcont. coord, true) 

Coments-lnladd componentlcom, comp. coortT). coord, false) <-
Component Inlcomp. minuslcoord. coord"), false), Comems-lnlcont, coord, false) 

E N D  T Y P E  C o m e m s  
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TYPE Component 
Simply the union of View. Text, and Figure. 

Component(make-vcomp(view)) -

Component(makc-liompUexl)) *-

Component(make-fcomp(figure)) *• 

Component-Appearance(make-vcomp(view). coord, ilium) -
Ficui-Appearancelview. coord, ilium) 

Component-Appcarance(make-tcomp(text), coord, ilium) -
Text-Appearance(text. coord, ilium) 

Componcnt-Appearance(makc-fcomp(figure). coord, ilium) • 
Figure-Appearance(figure. coord, ilium) 

Component-ln(make-vcomp(view). coord, tv) *-
View-ln(vieu). coord, tv) 

Component-ln(make-tcomp(text). coord, tv) «-
Text-ln(text, coord, tv) 

Component-ln(make-fcomp(figure), coord, tv) *• 
Figure-ln(figure, coord, tv) 

END TYPE Component 

TYPE Text 

Text(mt-text) «-

T ext(tcxt- insert! par, txt)) - Paragraph par). Text(txt) 

macro: down(d) is minuslcoord. timesld, UnitFectorDown) 

Texi-Appearance(mi-text. coord, x) -

TtXt'XPrZaTJ'fTinJn'<par- »">• <°»d- Ulum) -Paragraph-!n(par, coord, true). 
P<tragraph-Appcarance(p. coord, ilium) 

T^ 7aPrZ?Zt(TTinSeT!(par-!X!K eeord- -P<tragraph-ln( par, coord, false) 
Paragraph-Heightlpar. d), 
Text-Appearance(txt, down(d). ilium) 

Text-ln(mt-text, coord,false) «-

Text-,n(,ext-insert(par. txt). coord, true) t-
Paragraph-lnipar. coord, true) 

Text-ln(text-insert(par. txt). coord, true) «-
Ptragraph-Heightfpar, d). 
Text-ln{txt, down(d). true) 

Text-ln(tcxt-inscrt(par, txt), coord.false) -
Paragraph-,n(par. coord, false) 
Paragraph-Heightfpar, d). 
Tcxt-lnftxt, down(d).false) 

END TYPE Text 

TYPE View 

Ftewlmt view) -

Ftcwladd pictureIvine, coord, future id.pietist). 

Fieu A p peat ant H ml vlem. coord, ri • 

Again, we leave unspecified the appearance 
of the mi view at any coordinate 

Fiew-Appear anceladd putuielv. coord.Idpl.tmilt 
Future ltt(p. minujUoord. coord), tnu). 
Pieture AppearancHp. mirtusUoorlcoetE.ee 

View Appearaneeiadd prctuteio. coord, id. pl.aviiti 
FUtute-1 nip. mtnusleoerd. coord), feist), 

View Appeataruelv. coord, tllum) 

Fiew-Inl mt-view, coord, false) -

Flew-Inladd picture,v. coord. Id. p). coord, tnul-
Ptciure-lnlp. minurlcoord. coord), me) 

View Inladd pUturelv. coord. Id. p). coord, tnu) -
Flew- Inlv. coord, true) 

Flew -Inladd picturelv. coord, id. p). coord,foist) -
Picture Inl p. minusl coord, coord).foist). 
Fiew-lnlv. coord.false) 

FtndPUtureslmt-view, coord, mi idlist) -

FlndPUturesladd picturelv. coord, id. p). 
coord, idlist-insert(ldldl)) -

Picture-ln(p. minuslcoord. coord), nut). 
FindPUtureslv. coord, id!) 

FindPicturesladd picturelv. coord, id. p). coeri. M* 
Picture-lnlp. minuslcoord.coord).foist). 
FindPUtureslv. coord, id!) 

DeletePicturelmt view. Id. ml view) -

DeletePictureladd picturtlv. coord, id. p). id ») * 

Delete PUturel add- picturelv. coord, id. p). 
id. add picturdv'. coord, id. p)) -

PUtureld equallid. id. false). 
DeletePicturelv. Id. v') 

END TYPE Flew 

TYPE Idlist 

Idlistlmt-idlist) -

Idlisrlidlist-iruor,(id. id!)) -
Putureld(ld). Idlist(idl) 

E N D  T Y P E  I d l i s t  
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TYPE Paragraph 
macro: Down(d) is Minus(coord, Times(d, UnitVectorDown) 

Paragraphlmake paragraph!parlooks. eng-string)) *• 

Par-Firstline(make-paragraphllook, s). line) «-
Parlooks-width(look. w), 
EngString- Firstlinels. w. line) 

Par-Balancelmakc paragraph(took. s), 
make-paragraphllook. s')) *• 

Parlooks width!look .w). 
EngString-Balance(s, w) 

Par-Null(make-paragraph(look, s). tv) «-
String-NulKs. tv) 

Par-Space(make-paragraph(look. s), dist) «-
ParLooks-spaceHook, dist) 

Par-Height(p, dist) »-
Par-Nu/llp. true). Par-Space!p. dist) 

Par-Height! p. dist I t dist 2)«- Par-Null! pfalse), 
Par-Firstline!p. line). Line-Heightlline, distl), 
Par-Balance!p. p'). Par-Height!p'. dist2) 

Par-ln(p. coord, true)«- Par-Nulllp. false). 
Par-Firstlinc!p. line). Par-Space!p. distl). 
Line AscentHine. dist2). 
Line-ln(llne. Down(distl t dist2), true) 

Par-ln(p. coord, true) • Par-Null(p. false). 
Par-Balance!p. p'). Par-Firstline!p. line). 
Line-Hcight(line. dist). Par In!p'. Douin(dist), true) 

Par-ln(p. coord, false) •- Par-Null(p, true) 

Par-ln(p. coord, false) •- Par-Null(p. false). 
Par-Firstline!p. line). Par-Spacclp. distl). 
Line- AscentHine. dist2). Line-ln(ltne. 
Downldistl r dist2).false). Par-Balance!p. p'), 
Line-Hcightdine. dist). Par-lnlp'. Down!dist). false) 

Par-Appearance!p. coord, ilium) *• 
Par Firstline!p. line). Par Space!p. distl). 
Line-Ascent(line.dist2), 
Line-lnlline. Downldistl t disl2). true). 
Line-Appearance!line. Down!distl -t dist2). ilium) 

Par-Appearance!p. coord, ilium) *• 
Par-Firstline( p. line). Par-S pace! p. distl). 
Line-AscentHine. dist2). 
Line ln(line. Downldistl + disl2). false). 
Par-Balance!p. p'). Line-Height(line. dist). 
Par-Appearancelp'. Down(dist), ilium) 

END TYPE PARAGRAPH 

TYPE LINE 

Linelmt- line) «-

Line(line-insert(c,l)) <- Character(c). Lined) 

Linc-Appcarancclmt-line, coord, ilium) 
intentionally left unspecified 

macro: Right(d) is Minus(coord, Times(d,UnitVectorRight) 

Line-Appcarancclline inserllc, In), coord, ilium) «-
Character- In(c, coord, true), 
Character- Appcarance(c, coord, ilium) 

Line-Appearance(line-inscrt(c, In), coord, ilium) <-
Characler-ln(c, coord, false), Charactcr-width(c, w). 
Line- Appearancclln. Right(w), ilium) 

Line-lnlmt-line. coord, false) <-

Line-ln(line-insert(c. In), coord, true) «-
Character-ln(c, coord, true) 

Line-ln(line-insert(c, In), coord, true) *-
Character-widthlc, w), 
Line-lnlln. Right(w), true) 

Line-Hcightlln. dl\d2) •-
Line-Ascentlln. dl), Line-Descent(ln, d2) 

Line-Ascentlml-line. 0J *• 

Line-AscentHine inserllc. In), d) «-
Character-Ascentlc, dl). Line-Ascenl(ln. d2), 
Maximum(dl, d2, d) 

Line-Descenl(mt-line.O) <-

Line-Desccnt(line-inserl(c. In), d) «-
Character-Descentlc. dl). Line-Descenl(ln, d2), 
Maximum(dl, d2. d) 

Maximum(x.y.x) *• LessThan(x.y. false) 

Maximum(x.y.y) *- LessThanly. x. false) 

I have assumed the existence of a LessThan 
predicate that returns true or false 

END TYPE LINE 

TYPE EnglishSlring 

EngSlringlmi-string) «-

EngString!string-insert(char. string) <-
Character(char), EngString(string) 

EngString- Firstline(mt-slring. dist, mt-line) w 
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EngSlring-Firsllinel string-insertlc. s). d. e) -
SplitHcrels, c. d. true) 

EngString- Firstlinclstring-insertlc. si. d. 
lint-instrt(c. lint)) *• 

SplitHcrels. c. d, foist). Character-widihlc. w), 
EngString-Firstlint(s. d-w. lint) 

EngString-Balancelmt-string. d. wit-strlngh-

EngSlring- Ba/anet(siring-instrt(t, s). d. s) -
SplitHcrels. c. d. nut) 

EngString- Balanctistring-instrtlc. s). d. sir) *• 
Character-widthlc, w). EngString-Balanitis, d-w. sir) 

SplitHtrt(mt-string. c, dlrut) «-

SplitHertlstring-insertlc'. s), e. d. trut) -
Character-Equallc', quotcCR, trut) 

SplitHtre(string-instrtlc'. s). t. d. trut) • 
Charaettr-Equallc'. quotespact, foist) 

LZrT7jd'h<C: U)- Cha'^"r-uidt\(c'. w'). LessThanfd. w+w \ trut) 

SplitHcre(string-instrt(c'. s). c. d. trut) *• 

Wor^fts(s^c\d-w^fal'se')^aTaettT'"'l^l^e' 

SplitHtrelstring instrtfc'. s). c. d. foist) * 
Character-Equallc'. quoleCR, false) 
Character - Equailc', qucttSpact. tvl) 

LtxicalBrtaklc. c'. tvj), Notltv). tvF) 

SK5X» "• '• 

Notltrue.foist) *-

Notlfalst, true) *• 

Orltrue. tv. true) *• 

Or(tv. true, true) *• 

Orlfalse, false.false) *-

Lexical Br eak( current. next, true) * 
c tor otter E quotl currev. pattSftu 
C to totter IquaHnext.qwtcSfeu.ja 

Lexical Br eehlcur rent. next, nut) -
C to rotter E quail current. fuettHjfkit, 
Char a: let Equal! next. quNtHjfltip ' 
Character-Equallnext. qjuSpui.jLi 

Lexical Br eah! curt eni, next.Joist)* 
Char otter Equallnexi.qiMtSfeu.tru! 

Lexical Br eahlcurreni. next, foist)* 
C kor octet • Equall current. quucS fu.jd, 
C hot octet -Equal! cut rent. qmuHjfknja 

Lexical Break! current, next, false)* 
Character E quell current. qwtSfut.p. 
Character-E quail next. qvtnHffkn.trd. 

WordF Us!nit - strt ng. c. d. true) * 

WordFtttlstring insertlc'. t). c. d. trut) * 
Character - E quail t. quoteCR. trut) 

WordF it slurlng-insertlc'. s), c. d. trut) * 
Character• Equallc. quottSpett. tnu) 

WordFUslstring insertlc'. t). c. i. trut) * 
Lexical Br eaklc. c'true). Cheteact-ukC • 
LtsiTkanld. w. false) 

WordF it shtring insertlc'. s). c. i. trut) * 
Character wldthlc. w). Charaaer-wM^I 
LtssThanld. utm',false). 
WordFUsls.c'. d-w. true) 

WordF it si string insertlc', s). c. 4. foist) * 
Character-Equallc. quottCR.feist). 
Character Equallc, quoitS fact, feist). 
Lexical Breaklc. e'/vl). Noll tvl. tvl'). 
Character-widthlc. w). LtssTkend, 
Orltvl'. tv2). Character-widlMc'.u'). 
LessThanld. wrw'. tvl). 
WordF it s(s. c'. d-w. lv4). Noll tvl. tvl'). 
Or(tvy. M'. true) 

String- Nulllmt-siring. true) * 

String Null(string- insertlc. s).false) * 

END TYPE EngltshSirtng 
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TYPE Character 

Character(make-char(code.fig. ascent, descent, width)) «-
CharaclerCode(code), Figure(fig). Distance(ascenl), 
Distance(descent). Distance(width) 

Character- wldth(make-char(codc.fig. ascent. 
descent, width), width) «-

Char-equal(make-char(code.fig. asc. des, w). 
make-charlcode.fig'. asc'. des', w'» *• 

Character-Ascenl(make-char(code,fig. ascent. 
descent, width), ascent) «-

Character-Descent(make-char(ccde,fig. ascent, 
descent, width), descent) *• 

Char-A p pearancelmake-char(cd. f. a. d. w). coord, ilium) -
Figure-Appearanceif. coord, ilium) 

Char-ln(make-char(cd.f, a. d. w). coord, true) -
Figure-ln(f, coord, true), 
lncreasing(a. project(coord, unltvcctordown), d. true). 
Increasing!!). proqectfcoord, unitvcctorright), w, true) 

Char-ln(make-char(cd,f, a, d, w). coord, false) *• 
Flgure-ln(f, coord, false) 

Char- ln(make-char(cd.f. a. d. w). coord, false) -
Irureasingfa. projecl(coord. unitvectordown), d,false) 

Char-ln(make char(cd.f. a, d, w). coord, false) *-
lncreasing(0. projectlcocrd. unitvcctorright). w,false) 

END TYPE Character 

TYPE Figure 

Type Figure will necessarily include specifications 
of the Appearance and In predicates for the type. 
This type is left unspecified as it may be dependent upon 
the target system. Clearly, a more flexible specification 
of Figure is possible for a bit mapped display than is 
possible given a character mapped display. 

END TYPE Figure 

TYPE Coordinate 

This type is not yet specified. It needs at least the 
functions minus, times, and project, and the constants 
unitvcctorright and unitvcctordown. A 2-dimensional 
vector space would do, and one might consider this a 
primitive type of the system one is using. 

END TYPE Coordinate 

TYPE Distance 

Again, this type should be available already on the 
target system. One simply needs to define the mapping 
from the predicate form used in the Horn clauses to 
the functions available. 

END TYPE Distance 

TYPE Font 

Font(mt-font) *-

Fontjaddcharacter(font. char)) + 

Lookup(mt-font. code, x) -
another unspecified pathological case 

Lookup(addcharacter(fnt, make-char(cd.f. a. d, w)). 
cd. make-char(cd.f. a. d, w)) <-

Lookup(addcharactcr(fnt, make-char(cd.f. a. d, w)). code, c) <-
CharaclcrCode-EquaUcd, code.false), 
Lookupifnt, code, c) 

END TYPE Font 

PRIMITIVES 

The primitive predicates that relate the logic to a 
particular system include the types Boundary. Translalion, 
Coordinate. Illumination, and the predicates, such as 
Compute Position. Lies-ln. and Minus, that operate 
on them. For example, an illumination may be one of two 
values (white/black), one of several shades of grey, or a 
more complex combination of hue and intensity, depending 
on the capabilities of the system one is designing. 
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In section 2 we will introduce a set of Horn-Clauses for computing 
over natural numbers; in section 3 we will explain our use of the 
metatheory in a PROLOG-like programming style; in section 4 we will 
give more examples either about the computation of terms within 
predicates and about proving properties by using induction via sets 
of Horn-Clauses. 

We think that our approach, even if quite simple, is a neat and 
clear suggestion to do everything (proving and improving programs) 
within the same level, i.e. PROLOG programs; its capability should 
become evident if applied to a richer domain, like the one of binary 
trees, for example, and if combined with clever strategies. These 
must be able to choose on what variable to try the induction and 
how to explore the search space. 

2. A basic Horn-Clause set for Number Theory 

Let us refer to the usual natural number domain, that must be 
intended as the set closed under the one-to-one function successor 
and containing the "0" element; this compels us to use the language, 
over the Predicate Calculus, with the "0" constant and only the 
successor term "s(x)". 

We reserve the right to introduce new names for relations over the 
domain, i.e. computable predicates, by giving the Horn Clause 
programs for our new axioms. We will try to use the induction 
property at the theory level by creating suitable Horn-clause 
programs . 

First we grow our theory by introducing new axioms /6/ for equality 
which add to our language new predicates EQ and DIFF: 

let be Axl: x = y—>(x=z—>y = z) 
Ax2: x=y —»s(x)=s(y) 
Ax3: O^s(x) 
Ax4: X5*y —>s (x) t's (y) 

We naturally obtain the following Horn-Clause program: 

EQ: 1. EQ(y,z)<—EQ(x,y),EQ(x,z) 
2. EQ(s(x),s(y)) <—EQ(x,y) 

DIFF: 3. DIFF(0,s(x))«-
4. DIFF(s(x) ,0) «— 
5. DIFF(s(x),s(y))«-DIFF(x.y) 

where lines 1, 2, 3&4, 5 follow directly from axioms 1, 2, 3, 4. 
Then we turn to the axioms for plus: 

let be Ax5: x+0=x 
Ax6: x+s(y)=s(x+y) 

By using the following equivalence 

x+y=z s PLUS(x,y,z) 

we write the following program 

PLUS: 6. PLUS(x,0,x) <— 
7* PLUS(x,s(y),s(x A y))<-
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where the term A now is not defined in our theory. 

There are two main ways to manipulate the specification set fee 
obtaining a Horn-Clause program: the first one is in the follaL 
while the second will be in the next section. 

By introducing the output variable within the predicate Pll'S 
obtain the equivalence: 

x+s(y)=s(z) iff x + y-z 

which gives the following program: 

PLUS: 6. PLUS( x,0,x)«— 

7. PLUS(x,s(y),s(z))«—PLUS(x,y,z) 

x + 0 = z iff z_x 

which gives the following program: 

EQPLUS: 8. EQ(x,z)<— PLUS(x,0,z) 

We are ready now to prove theorems about our theory: 

TH1: o=0 

Theorem 1, under the Horn-Clause form 

"-EQ(0,0) 

trivially follows from clauses Tin. 
be added: • ® » so the following clause may 

9. EQ(0,0)«-

px and provi„^ 
r 

Let us introduce now a nn;„. t 

developed i n  / 8 /  a b o u t  *"" x°f nT l e w  a n a l o8° u* to that one 
a uation processes. semantics attachments in the 

If we consider again the Axioms 5Afi 
> we may write immediately: 

x + s(y)=z iff z=s(x+y) 

us introduce a new predicate SUCC(x y) to bt • 

PLUS: 6. PLUS(x , 0,x) « Pr°gr 

PLUS(x,s(y) >z)«—SUCC(plUs(x,y)  ̂ z^ 

Problems arise v 

thed6fine SUCC frotn cor rect'axiW tD 8r°W °Ur theory: first we r 

to^pLr- 2 1 U S U ' y y '  notSexis°tUtinthe "S(x)": SeC0» 

predicate H (f or "HOLB^T C° "-P-f i" wTca U'uo^ ' S° " 
> for the metatheoretical knowledge"6" 

- 3 -



By definition of successor term we have: 

SUCC(x,y) d= f  y = s(x) 

from which : 

SUCC: 10. SUCC(0,s(0))<— 
11. SUCC (s (x) ,s(s(x)))<-

where 10 and 11 have been choosen to avoid non-determinism with 7'. 

The meta theoretica 1 knowledge own by the predicate H gives the 
following program: 

H0LD_PLU S:12. SUCC(plus(x,y),z)*-SUCC(t,z),H(plus(x,y),t) 
13. H(plus(x,y) ,z) •— PLUS(x,y,z) 

Here the clauses 6, 7', 10 and 11 describe the syntax of sum and 
successor functions; with the clause 12 we claim that the function 
"plus(x,y)* may be computed through its semantics; in the clause 13 
the predicate H evaluates the semantics of the term "plus(x,y)" 
through its syntactic description. 

Please note that the circularity of the program is justified by 
the completeness theorem for predicate logic; the metathe oretical 
predicate HOLD allows reduction from higher order functional 
calculus to first order predicate calculus. 

Let us now exploit the full capability of our predicate H: we want 
to try to prove the simple theorem: 

TH2: \£x.x = x 

We pass it , as a term, to the predicate H which tries to compute 
it making appeal to its metatheoretical knowledge. 

*— H(for-all(x,eq(x,x))) 

H calls for a program H' which has knowledge of resolution and 

induction properties: 

14. H(x)<— H' (not(x)) 

where we suppose for the moment to have an effective Horn-Clause 
program which defines H' /4/ which is able to carry out resolution. 

First, H' tries to solve directly by resolution and fails as 

following: 

«-H'(not(for-all(x,eq (x.x)))) 
«— H ' (eq (a , a) ) 
«— Ajout(«— EQ (a,a) ) 

no answer in time 

where Ajout is the PROLOG usual predicate 111. 

Second, H' tries by induction over x and succeeds as following 

(only significant steps are illustrated) . 
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<— H'(not(for-all(z,eq(x,x))) ) 
<—H'(not(and(eq(0,0),for-all(x,impl(eq(x,x) , eq (s (x) lS(x)> 

«—H ' (or(not (eq (0,0) ) ,est(x,not(impl(eq(x,x) ,eq (s(x) ,s(x)> 

<—H'(or(not(eq(0,0)),and(eq(a,a)fnot(eq(s(a),s(a)> 

<—Aj out( EQ(a,a)«-EQ(0,0)) , A j ou t ( «-EQ (0 , 0) , EQ (s (a) , s (a))) 
from which 

<-EQ(0,0),EQ(s(a) ,s(a)) 
•—EQ(s(a),e(a)) 
<-EQ(a,a) 
<-EQ(0,0) 

D 

Let us discuss which problems seems to arise now for constructing 
such a H' program. F.or some theorems the result of the application 
of H is a simple Horn-Clause program easily refutable, as in the 
previous case. But in most cases;or we cannot find a Horn-Clause 
set as a result to be passed to the Ajout predicate or, even if 
this happens, it becomes very hard to explore the search space 
for refutation. 

Anyhow, we think that such an approach can be usefully exploited 
/'i circularity: the fact that properties we want to 

prove about algorithms are all expressible from the same PROLOG 
program, recalls the circularity of LISP between programs and data. 

in°caL°^H- ̂  •ri^S f°r he 1P^n8 resolution of non-Horn-Clauses 
in case predicates involved in a program are recursive it is 

illustrate°inSthehe N°N~wi^"failure trick of PROLOG, as we will 
simple wavs to rn * section. Furthermore we think that few and 

computations /1 / /4/ and° t h a t 1 ? ° S 6 S m3y succeed in significant 
via uetatheory as suggested inS/8/!6 strategies may be introduced 

if pred'icates'in^hf68' ̂  Procedur*s which tempt to detect 
loops of the form: "p (x)f^P (f M) recJJrsive: for example detecting 
necessary for ex. formrr^H t ' • ' such a technique is 
because the clause " <-^EQ (a a) " the proo£ of TH2' 
in a loop. ' y resolve with clause 1 entering 

4. More Examples 

Let us extend our theorv bv i r, i- A 
product whose axioms are "troducing programs for computing the 

AX7: X*0=0 
AX8: xxs(y)=x+(x*y) 

where we use the equivalence 

x*s (y)=z iff x+(x,y)=2 

to Obtain the following program 
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PROD: 15. PR0D(x,0,0)<— 
16. PROD(x,s(y) , z ) <— PLUS(x,prod(x,y) , z) 
17. PLUS(x,prod(x,y) , z) <-PLUS(x,t,z),H(prod(x,y ) , t ) 
18. H(prod(x,y) , t) <— PROD(x,y,t) 

where we have justified the introduction of the new term "prod(x,y) 
by teaching the predicate H. 

Because we consider only recursive functions over natural numbers 
and because the Horn-Clause syntax is computationally complete, it 
does exist a universal program for computing terms of higher order 
whichever form they assume; we think that this allows easily to 
manipulate programs, every time we are able to describe their 
semantics . 

To clarify the role of the metatheory let us consider the 
following specification for the recursive schema: 

FUN SCHEMA: f(x,y) = if x = 0 then 1 else f (x-1,f(x,y)) 

If we translate it into a Horn-Clause program, by using the output 
variables in the simple standard way, we obtain the following 
program: 

FVAL: 19'. F(0,y, 1) 
20'. F(s(x) ,y , z ) <— F(x,t,z) ,F(s(x),y,t) 

where whichever literal we choose to activate, we compute the same 
result corresponding to a "call by value" rule for the functional 
schema, i.e. "if x = 0 then 1 else co" . 

Instead, if we transform the given specification by carefully 
using our predicate HOLD, we may compute at the semantics level 
by the program: 

FNAME: 
19. F(0,y,1) <— 
20 . F ( s (x) , y , z) <— F (x , f ( s (x) ,y) , z) 
21. F (x , f(w,y),z)«—F(x,t,z),H(f(w,y),t) 
22. H(f(w,y),t) <— F(w,y,t) 

which transforms,with a complete search strategy, the original 
functional specification into a program computing the least 
fixpoint of "fun-schema", i.e. "if x>0 then 1 else 0)". 

To further clarify the role of metatheory let us consider the 
problem of translating a given structured flowchart program over 
the Manna's statements /5/. 

Let us consider the first basic flowchart schema which computes 

the function: 

C0MP_SCHEMA: pl(x) = g2(gl(x)) 
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t:= gl(x) 

I 
j z : - g 2 ( t )| 

STOP 

By using metatheory in a trivial application, we obtain the 
following Horn-Clause program: 

COMP : 23. PI (x, z)<-G2 (t ,z) ,H(gl (x) , t) 
24. H(gl(x),y)<— G1(x,y) 

Let us remember for completeness how assignements work by 
illustrating the following example: 

AS SIGN_SCHEMA: p2(x) = i(x)+s(0) 

ASSIGN: 
26* ^(x»z)t-Q(x»x^) 

/- ^x»y»t,z)<— PLUS(y,t,z) 

Let us consider the second basic flowchart schema: 

L O O P  S C H E M A :  p 3 f x - >  - i f  PJCx; = lf prop(x) then p3(g3(x)) eUe 

(START} 

RP g3(x) prop(xl^l. 

where vSTOP; 

the (recur,i„) pllliclt, „ !Iti 

"a ». oh metatheory th. 
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LOOP: 28. P 3 ( x , z )•— H(prop(x),T),P3(t,z),H(g3(x),t) 
29. H(g3(x) , y ) <— G3(x,y) 
30. P3(x,x)<—H(prop(x),F) 

Now H may easily solve the problem of determining the truth value 
of prop(x) using the NON trick of PROLOG: 

31. H(prop(x) ,!)•—PROP(x) 
32. H(prop(x) ,F)e—NON(PROP(x)) 
33. NON(*X)*X,/,FAIL 
34. NON(» X) 

where the predicate H in this case has knowledge of the way to find 
the truth value of prop(x) by using the extratheoretical predicate 
"slash" of PROLOG. 

We need however to proof the correctness of 33 & 34 clauses; indeed 

if Ax h PROP(x) then Ax |= PROP(x) 

if Ax / PROP (x) then i ( Ax U n PROP(x) I- J_) = Ax j= n PROP (x) 
<YA. 

because of the decidability of PROP(x). 

Because our transformations of axioms and flowchart specifications 
are naturally correct, we can use axioms or functional schemata 
as independent specifications for our Horn-Clauses Programs. 
Furthermore we suggest that the clauses obtained by these transfor_ 
mations of flowchart programs'into Horn-Clauses may be used to 
build the inductive assertions usefull to proof the correctness 
of the program, in a symmetric way. 

However it remains the problem of verifying the termination of 
programs; we may use again whenever possible the predicate H'. 

First we express termination for PLUS as: 

TH3 : ¥x Vy 3z. PLUS(x,y,z) 

where /  by partial correctness of our transformations, if such z 
exists, it is unique. 

The proof of TH3 follows now from the usual appeal to metatheory 
knoledge. Infact we might have the derivation: 

«—H(for-all(x,for-all(y,est(z,plus(x,y,z))))) 

<—Ajout(PLUS(x,b,f(x)) <- PLUS(a,0,z)) ,Aj out( <— PLUS(a,0,z 
PLU S(c,s(b) ,w) 

and so 
•—PLUS(a,0,z), PLUS(c , s(b),w) 
•—PLUS (c , s (b) ,w) 

«—PLUS ( c , b , w ' ) 
•—PLUS (a,0,z) 

• 

Our program about PLUS then,obtained by correct transformations 
over Peano Axioms, is totally correct because TH3 asserts 
its termination. 
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3From XH3 we may add to our axioms the following clause: 

35. PLUS(x,y,g(x,y)«-

Now we can proove a termination theorem for PROD: 

TH4: ¥ x V y 3 z.PROD(x,y,t) 

proof:' <-H(for-all(x,for-all(y,e»t(z,prod(x,y,«))))) 

<—Ajout(PROD(x,b,f(x)) — PROD(1,0,1)), 
Aj out( «- PROD(1,0,1), 

PROD(c.s(b).w)) 
3 n d so 

<— PROD(a,0,z),PROD(c,s(b) ,v) 
< PROD(c,s (b ) , w) 
<—PLUS(c,prod(c,b),w) 

PROD(a,0,w),PLUS(c,f(c) ,z) 
<-PLUS(c,f(c) ,z) 

• 
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UNDERSTANDI NG THE CONTROL FLOW OF  PROLOG PROGRAMS 

by  
Law r en ce  Byrd  

Depa r tmen t  o f  Ar t i f i c i a l  I n t e l l i ge nc e  
Un ive r s i t y  o f  Ed inbu r gh  

Sc o t l a nd  

1 .  In t roduc t i on  

Th i s  pa pe r  i s  an  i n f o r m a l  d i s cus s ion  o f  s ome  o f  t he  p r ac t i c a l  p rob l ems  
i nvo l ved  i n  t e ach ing  and  u s ing  cu r r en t  P ro log  sy s t ems .  M y  conce rn  i s  w i th  t h e  
ac tua l  exe c u t i on  o f  P ro log  p ro g ram s  -  how i s  i t  pos s ib l e  t o  unde r s t and  and  
fo l l ow  such  execu t i ons ,  an d  wha t  s o r t s  o f  sy s t em f ac i l i t i e s  wou ld  a s s i s t  t h i s  
t a sk?  I  sha l l  mo t iva t e  t he se  ques t i ons ,  and  t h e n  go  o n  t o  d e sc r i b e  gene ra l  
mode l  o f  P ro log  con t ro l  f l ow .  Th i s  mode l  ha s  been  u sed  a s  t he  ba s i s  f o r  
imp lemen ta t i ons  o f  p r ac t i c a l  debugg ing  packages  f o r  P ro l og  sy s t ems  on  t h e  
DEC-10  and  t h e  PDP-11 .  

I  w i l l  be  a s su ming  f ami l i a r i t y  w i t h  t he  l anguage  P ro log  ERousse l  75 ] ,  and  
knowle dge  o f  t h e  DEC-10  P ro log  imp lemen ta t i on  CPe re i r a  e t  a l .  78 ,  War r en  77 ]  
wou ld  a l so  be  u se fu l .  I  sh a l l  a l so  be  r e s t r i c t i ng  my  d i s cus s ion  t o  P ro log  
p rog rams  exe cu t e d  w i t h  t he  s t an d a rd ,  l e f t - r i g h t ,  dep th - f i r s t ,  con t ro l  
s t r a t eg y .  I t  w ou l d  be  i n t e r e s t i ng  t o  t r y  a nd  ex t end  wha t  f o l l ows  t o  t a ke  i n to  
acco u n t  more  g en e r a l  s t r a t eg i e s .  

P ro l og  p rog rams  can  b e  r e a d  dec l a r a t i ve ly  a s  co l l e c t i ons  o f  p r ed i ca t e  
c a l c u lu s  c l au se s .  I t  i s  pos s ib l e ,  i nde e d  de s i r ab l e ,  t o  u t i l i s e  t he  advan t ages  
fo l l owi ng  f r om  t h i s  when  t r y i ng  t o  u nd e r s t an d  P ro log  p rog rams ,  and  when  t r y ing  
t o  t e ach  P ro log  p r og ramming  ( s ee  f o r  exa mple  EKowa l s k i  8 0 ]  f o r  such  a  gene ra l  
Log i c  P r og r ammi ng  app roa ch ) .  I n  t h i s  pape r ,  howeve r ,  I  s ha l l  be  d i s cus s ing  
P ro log  i n  p rocedu ra l  t e rms ,  and  a s suming  t h a t  i t  i s  nece s sa ry  t o  t e ach  t h i s ,  
and  t o  unde r s t and  many  p rog rams  i n  t h i s  way .  

I n  o rde r  t o  do  t h i s  we  r equ i r e  a  c l e a r  mode l  o f  t he  execu t i on  o f  P ro log  
p rog rams  w h ich  can  be  u sed  i n  t e ach ing  P ro log  p rog ramming ,  and  wh ich  a l so  
p rov i de s  enough  soph i s t i c a t i on  t o  f o r m  a  ba s i s  f o r  p r ac t i c a l  t r a c ing  and  
debugg ing  t oo l s .  Thus ,  I  s ee  t he  spec i f i c a t i on  o f  t he  r equ i r emen t s  o f  such  a  
mode l  b e ing  gu ided  by  r e l a t ed  work  i n  t w o  d i f f e r en t  a r ea s :  

1 .  The  t e a c h i ng  o f  p rog ramming .  Recen t  w ork  i n  t h i s  f i e l d  ha s  
emphas i s ed  t h e  impor t ance  o f  spec i fy ing  an  unde r ly ing  "no t i ona l  
mach ine" ,  i n  o rde r  t o  g ive  nov i ce s  a  f r a m e w or k  f o r  unde r s t and ing  
t h e  va r i ous  ope ra t i ons  o f  t he  p rog ramming  l anguage  i nvo lved  ( s ee  
Cdu  B o u l ay  80a ] ,  Cdu  Bou l ay  80b ] ) .  A mode l  exp l a in ing  t h e  con t ro l  
f l ow  o f  P r o log  p ro g ram s  shou ld  p rov ide  such  a  ' no t i ona l  mach ine  ,  
and  t h i s  mode l  s hou ld  be  p rope r ly  i n t eg r a t ed  i n to  t h e  P ro log  
sy s t em(s )  u se d ,  so  t ha t  nov i ce s  can  f o l l ow  t he i r  p rog rams  i n  t e rm s  
o f  t h e  ope ra t i ons  g iven  by  t he  mo d e l .  

2 .  The  de ve l opme n t  o f  i n t e r ac t i ve  p rog ramming  en v i r o n men t s .  Th e  pa s t  
de c a de  ha s  s e en  t he  deve lopmen t  o f  m ore  and  mo re  soph i s t i c a t ed  
t oo l s  f o r  t he  p r ac t i c a l  deve lopmen t  o f  l a rge  p rog rams .  Wi th in  t he  
Ar t i f i c i a l  I n t e l l i gence  com m un i ty ,  c omp lex  p rog ramming  sy s t ems  
( s uc h  a s  INT ERLISP ,  [Te i t l eman  75 ] )  a r e  now a lmos t  t aken  f o r  
g r an t ed .  I n t e r ac t i ve  debugg ing  f a c i l i t i e s  fo rm  an  i m por t a n t  p a r t  
o f  t h e se  sy s t ems .  Many  o f  u s  wou ld  l i ke  t o  ha ve  s im i l a r  f a c i l i t i e s  
ava i l ab l e  i n  t he  P ro log  sy s t ems  we  u s e .  I n  func t i ona l  l an g u ag es  



Hi 
( eg  LISP  and  P0P2) ,  t he  concep t s  o f  func t ion  en t ry  and  re tu rn ,  
p rov ide  a  bas i s  fo r  the  debugg ing  mechan i sms .  A mode l  o f  the  
con t ro l  f low o f  P ro log  p rograms  mus t  p rov ide  a  s imi la r  bas i s  fo r  
t he  bu i ld ing  o f  soph i s t i ca ted  debugg ing  too l s  wi th in  Pro log  
sys t ems .  

I  see  these  two ,  somewha t  d i f f e ren t ,  r equ i rement s  be ing  re l a t ed  in  the  
f o l lowing  way .  A P ro log  con t ro l  f low mode l  mus t  p rov ide  a  s imple ,  teachab le  
way  o f  v iewing  the  execu t ion  o f  a  P ro log  p rogram.  I t  mus t  b e  poss ib le  to  
bu i ld  th i s  mode l  i n to  the  implementa t ions  o f  our  P ro log  in te rp re te r s ,  so  tha t  
nov ices  who  a re  l ea rn ing  the  l anguage  can  s i t  down and  exhaus t ive ly  fo l low 
t he i r  p rograms ,  wi th  the  sys tem exp l i c i t ly  go ing  th rough  the  opera t ion!  
i nvo lved .  Th i s  w i l l  p rov ide  them wi th  a  comple te  t r ace  o f  the  program ' s  
execu t ion .  Such  t r ac ing  wi l l  obv ious ly  be  he lp fu l  to  more  advanced  use r s  »ho  
w i sh  t o  debug  the i r  p rograms .  However ,  exhaus t ive  t r ac ing  i s  un l ike ly  to  be  
a ccep tab le  to  such  use r s  when  they  a re  debugg ing  l a rge  p rograms .  Sa t i s fy ing  
t he i r  needs  invo lves  se l ec t ive ly  r e s t r i c t ing  the  amount  o f  in fo rmat ion  
p resen ted ,  and  a l so  a l lowing  access  t o  add i t iona l  in fo rmat ion  and  con t ro l  
op t ions .  Thus ,  I  hope  to  accommoda te  bo th  requ i rement s  by  see ing  one  as  
mere ly  be ing  a  soph i s t i ca ted  enhancement  o f  t he  o the r .  I  would  l ike  to  
be l i eve  tha t  t h i s  s imple  r e l a t ionsh ip  can  be  ma in ta ined ,  even  when  the  
f ac i l i t i e s  have  t o  be  ex tended  to  mee t  fu r the r  demands .  

2 .  Con t ro l  F low mode l  

P ro log  i s  a  ve ry  h igh  l eve l  l anguage  which ,  none  the  l e s s ,  has  a  ve ry  s imple  
r omnfe te f !  semant i c s .  The  p rocedura l  ope ra t ions  o f  the  language  ore  
mach ine !  u  ° I  a n y  L ° W e r  L e v e L  °P e r a t ions  ( such  a s  those  of  the  
o !o ! id !  eva  t f  tk  the re fo re  expec t  t he  p rocedura l  semant i c s  o f  Pro log  to  
Le t  u s  look  a t  an  f  k ^d  ° f  mode l  I  was  a sk ing  fo r  in  the  p rev ious  sec t ion ,  
f rom [Pe re i r a  e t  a l  7S11-  de f in i t ion  o f  P ro log ' s  p rocedura l  semant i c s  ( t aken  

head°matches t e or a  un i f i . s^wl th^ th#"^?*  t h < ?  f i r S t  c l a U S e  w h ° S e  

CRobinson  651  f i edo  + k  goa l .  The  un i f i ca t ion  process  
wh ich  i s  un ique  i f  I n * t a n c e  o f  t h e  t w o  t e n " S '  
c l ause  ins t ance  i c  t ( , . „  '  V I f  a  m a tch  i s  found ,  the  match ing  
r i gh t !  each  o f  t he  a C f 1 V a t a d  ^  execu t ing  in  tu rn ,  f rom l e f t  to  
sys tem f a i l s  to  f ind  a  match  fo !  i "  - t S  b 0 d y *  I f  a t  a n y  t i n i e  t h e  

t he  mos t  r ecen t ly  ac t iva ted  h  9°a l ,  i t  back t racks ,  i e .  i t  re j ec t s  
t he  match  wi th  the  head  o f^he  ^  s u b s t i t u t i 0 " 5  m a d e  b y  

or ig ina l  goa l  which  a c t i v a t e d  t k  •  c l a u s e -  N e * t  i t  recons ide r s  the  
subsequen t  c l ause  which  a l s f  m^eTt^ !? 0 " '  t H "  t 0  

fo rwa  rds ! °match ing  goa f s^g^ i ' n s !  ̂ l a ' u l^h  °d  h a P P 6 n S  a S  a  p r 0 g r "  9 ° '  
so  on .  However ,  t he  exp lana t ion  f  h  ® a  '  t r ymg to  sa t i s fy  subgoa l s ,  a"  
does  no t  p rov ide  us  wi th  wi th 3 ! 1 0 ?  o f  b a c k t r a c k ' ' n 9 ,  whi le  co r rec t  and  p rec i se  
happens  when  a  p rogram back t rack  e n o u 9 h  Pic tu re  o f  wha t  ac tua l l  
exp lana t ions  o f  back t rack ing  which  a r e^p? 0 "  ge t^onf^ 'd  T h e r 6  "*  

ac t iva ted  c lause  "^Mch^s^eco  3 ^ V e '  w h e r e  i b  i s  t f >e  mos t  r ecen t ly  
backwards  o„ , U  .  

the  dec i s ion  made  a t  the  chronnf  d a s c r ihed  es  be ing  the  remeking  o f  
-  <. c tose r  , o  - . i . J^J J .  
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r e f l ec ted  in  the  in fo rmat ion  p rov ided  by  p rev ious  OEC-10  t r ac ing  
packages .  

Bo th  o f  t hese  exp lana t ions  a re  p rob lemat i c .  They  f a i l  to  p rov ide  a  
comple te ly  adaqua te  mode l  o f  t he  ac t iv i ty  o f  back t rack ing ,  and  unders t and ing  
back t rack ing  i s  a  p rob lem.  In  the  f i r s t  p lace ,  nov ices  f ind  i t  ve ry  d i f f i cu l t  
to  unders t and  wha t  i s  happen ing  when  a  p rogram o f  any  s i ze  s t a r t s  
back t rack ing .  Even  a f t e r  cons ide rab le  exper i ence  wi th  P ro log ,  s tuden t s  wi l l  
c l a im to  be  ba f f l ed  in  ce r t a in  cases .  Second ly ,  when  p rac t i ca l ly  debugg ing  
l a rge  p rograms  a  sudden  back t rack  to  a  cho ice  po in t  any  d i s t ance  away  i s  
h igh ly  confus ing  ( "where  am I  now?") .  In  ne i the r  case  does  the  knowledge  tha t  
i t  i s  the  mos t  r ecen t  cho ice  tha t  i s  be ing  r edone ,  p rov ide  us  wi th  any  
so lu t ion  to  our  d i f f i cu l t i e s .  The  mode l s  a re  inadaqua te  because  they  do  no t  
he lp  us  unders t and  the  r ami f i ca t ions  o f  t he  p rocesses  they  desc r ibe .  Th i s  
k ind  o f  d i f f i cu l ty  was  i n  f ac t  an  impor tan t  a rgument  used  aga ins t  the  l anguage  
PLANNER by  Sussman  and  S tee le  CSussman  723 ;  they  a rgued  tha t  p rogrammers  
s imply  cou ldn ' t  unders t and  wha t  was  go ing  on!  

The  f i r s t  exp lana t ion  ( a l though  ve ry  c lose  to  wha t  I  sha l l  in t roduce) ,  
su f fe r s  because  i t  i s  no t  a lways  obv ious  wha t  t he  l a s t  c l ause  ac t iva ted  
ac tua l ly  was  (we  wi l l  have  concep tua l ly  " re tu rned"  up  the  ca l l ing  cha in ) .  
More  impor tan t ly ,  no  way  i s  p rov ided  o f  f ind ing  the  ( r eve r se )  sequence  o f  
ac t iva ted  c l auses .  Th i s  i s  no t  t o  say  i t  can ' t  be  done ,  bu t  r a the r  tha t  the  
so  ca l l ed  "exp lana t ion"  p rov ides  us  wi th  no  c lues  abou t  how t o  go  abou t  i t .  
Thus ,  u s ing  th i s  mode l ,  i t  wi l l  be  d i f f i cu l t  t o  unders t and  which  p rocedures  
wi l l  ac tua l ly  be  r e t r i ed  on  back t rack ing .  

The  second  exp lana t ion  i s  qu i t e  s imple  (and  the re fo re  o f t en  used) ,  bu t  i s  
even  worse  i n  t e rms  o f  p rov id ing  an  adaqua te  mode l  fo r  unders t and ing  
back t rack ing .  The  p rob lem he re  s t ems  f rom the  f ac t  tha t  the  backward  s t ep  (o f  
back t rack ing)  i s  concep tua l ly  ve ry  much  ' l a rge r '  than  the  fo rward  s t ep  (o f  
f ind ing  a  ma tch ing  c l ause ) .  In  t e rms  o f  t he  ac tua l  t ex t  o f  the  p rogram,  the  
fo rward  s t ep  i s  reasonab ly  loca l  (we  on ly  need  t o  look  a t  some  sma l l  s e t  o f  
r e l evan t  c l auses ) ,  whi l e  t he  backward  s t ep  i s  much  more  g loba l  ( the  p lace  in  
the  t ex t  co r respond ing  to  the  mos t  r ecen t  cho ice  po in t  may  be  any  d i s t ance  
away  f rom the  p lace  where  t he  f a i lu re  occur red) .  Th i s  i r r egu la r i ty  causes  
confus ions  and  d i f f i cu l t i e s .  

I  sha l l  now dec r ibe  a  con t ro l  f low mode l  where  the  s t eps  invo lved  a re  
regu la r ,  bo th  when  go ing  fo rwards  and  backwards ,  and  which  I  be l i eve  so lves  
many  o f  t he  above  p rob lems .  

The  mode l  i s  based  on  the  idea  tha t  we  shou ld  be  ab le  to  fo l low the  
execu t ion  by  moving ,  i n  some  s imple  way ,  round  the  ac tua l  t ex t  o f  t he  p rogram.  
The  p rogram t ex t  can  be  d iv ided  in to  d i s t inc t  p rocedures ;  each  p rocedure  
cons i s t s  o f  some  (usua l ly )  sma l l  sequence  o f  cons t i tuen t  c l auses .  (Note :  a  
p rocedure  i s  a  se t  o f  c l auses  a l l  o f  which  sha re  a  common p red ica te  fo r  the i r  
head) .  Imag ine  tha t  we  p l ace  a l l  the  c l auses  fo r  a  p rocedure  in  a  box ,  and  
cons ide r  t he  poss ib le  con t ro l  movements  i n  and  ou t  o f  t h i s  box .  There  a re  
four  d i f f e ren t  types  o f  con t ro l  f low tha t  may  occur ,  I  sha l l  cons ide r  these  to  
be  t ypes  o f  po r t .  Thus ,  con t ro l  f low can  be  seen  a s  movements  i n  and  ou t  o f  
p rocedure  boxes ,  v i a  the  por t s  o f  t hese  boxes .  Le t  us  look  a t  an  example  
Pro log  p rocedure  ( t aken  f rom [Pe re i r a  e t  a l .  783) :  



CALL 

FAIL 

descendant(X,YJ 
of f spring (X,Y) . 

descendant(X,Z> 
offspring(X,Y), 
descendant(Y,Z) . 

EXIT 

f REDO 

.rLsh,iL?„7;̂ s;sr:L£ jstlsifss? n Tir-
BEEN LABEUED CALL' EXIT' «EB° — FAIL; let us |& S", 

Call 

EXIT 

Redo 

FAI I 

£ it oVZ ap?s2cj£j!Ici Y;.vo?r^ °! l* r0^ -
control passes through the Cat? «f7^^ t0 ** 
intention of matchino a f descendant box with t-
subgoals in the body of that clause a*?' *** the" Mti , fY in9 « 
of whether such a match is possible-*i Z° rn! "at th,« ^W"*' 
such matters are worried L„, C . the box ls  called, and tlx 
finger to the code for descendant yhln'"'1.^ "" <M8 ine •ov1n3 
some other part of the code meeting a call to descendant! 

occurs when ^he^initial ̂ "goal" f r°" the procedure ' Wl 

component clauses and any ?* ° one of tit 

passes out of the Exit port of rh ^ sat ,sf ,ad- Control m 
following the code for descendant- * bescendant b®x. Textually we stop 
from. ° r  aescendant and go back to the place we ca.t 

This arrow indicates that a C, ,K 

system is backtracking in an !*• seOuent goal has failed and that the 
solutions. Control passes tLmpt t0 f ind aI t^rnat i ves to previous 
box. An attempt will now h. w rough the Redo port of the descendant 
subgoals in the bod^A* ""?? *° resatisfy one of the component 
ails, to completely rematch the aiJ®e. that last succeeded; or, if that 

clause and then try s* -c! ° r i9 inal  9oal with an alternative 
clause. Textually we follow *kl * "y sub9°als the body of this new 
looking for new ways, of l,r back"a'ds up the way we C»e 
another clause and followinq that 1n9 ' poss ibly dropping dowr 

a ".nac i  T necessary 
Th i  e 

- , , necessary. 
This arrow represents a * •• 
if there were no clauses, or^Tf no ln i t ia l  9°al, which might 
later sat ls f iedw or if any so iur -aUSe matehed, or if subgoal 
desr process ing. Control now Da «'°n Produced is always rejec 
descendant box and the system, 8 out  of  the Fail port o 
moving fcn9er back to code wh?*,!™65 t0 backtrack. Textua 

ackwards up the text lookinc>C-f caL1-ed this procedure and 
Usinn +kj . choice points. 

9 this model. we ran -f i i 
movement through all tl f°l-low the execution n-f 
ftow within boxes is "T8 traversed dur-inq tu_ 9 pro9 raro by foUo»i» 
Procedure boxes of th , course, followed • execution. The co 
several calls to tht subgoaLs- Since, in ? ?n terms of  the ports fo 
different invoraf SumS procedure, it is in 91ven program there ma 
for every fresh in10" ?xes- That is to say 9eneral necessary to distirv 
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( i n  pa r en th e s e s ) ,  
i g no re  t hem f o r  now) :  

I  SI  
( I  sh a l l  b e  r e f e r r i ng  back  t o  t he  a lphabe t i c  t e t t e r s ,  so  

G iven  t he  p r og r a m 

P  Q ,  r .  
q  s .  
q  t .  
r  a ,  b .  
s .  
a .  

? -  P .  

we  g e t  t he  fo l l owing  execu t i on  

(1 )  C a l l  :  p  >  A  

( 2 )  Ca l l  :  q  |  g 
(3 )  Ca l l  : s  /  c  

( 3 )  Ex i t  i s  /  D 
( 2 )  Ex i t  :  q  >  f o rwa rds  E  
( 4 )  Ca l l  :  r  \  F  

( 5 )  Ca l l  :  a  \  G  
( 5 )  Ex i t  :  a  I  H  
( 6 )  Ca l l  :  b  /  X  

( 6 )  Fa i l  :  b  \  I "  
(5 )  Redo  :  a  |  H'  
(5 )  Fa i l  :  a  /  G '  
( 4 )  Fa i l  :  r  4  backwards  F*  
( 2 )  Redo  :  q  \  E '  
( 3 )  Redo  :  s  I  D"  
( 3 )  Fa i l  :  s  /  C '  

( 7 )  Ca l l  :  t  J  fo rwa rds  J  

( 7 )  F a i l  :  t  J '  
(2 )  F a i l  :  q  I  backwards  B '  
( 1 )  Fa i l  :  p  )  A '  

No t i c e  t ha t  f o r  a ny  i nvoca t i on  t he r e  can  on ly  be  on ly  one  C a l l  and  Fa i l ,  
a l t hough  t he r e  may  be  an  a rb i t a ry  number  o f  Red o s  and  c o r r e spond ing  Ex i t s  
( g r ea t e r  t han  o r  e qua l  t o  z e ro ) .  I t  i s  t he  i n i t i a l  C a l l  w h i c h  i n t r o d u ces  t he  
i n voc a t i on ,  and  i t  i s  h e r e  t ha t  we  f i r s t  s ee  t he  new i nvoca t i on  number .  A l so  
no t i c e  ho w t he  backward  mov ing  po r t i ons  o f  t h i s  t r a ce  a r e  d i r ec t  m i r ro r  images  
o f  p r e v i ous  fo rwa rd  mov ing  po r t i ons ;  whe re  Ex i t  ~>  Redo  and  C a l l  =>  Fa i l .  We  
f i nd  a  ch o i ce  po in t  by  go ing  back  a l o n g  t he  pa th  we  c a me  un t i l  we  e xp l i c i t l y  
f i n d  i t .  I f  t h i s  p a t h  i s  fo l l o w ed  i n  t he  t ex t ,  a s  i t  can  be ,  t hen  we  w i l l  be  
su r e  abou t  whe re  i t  i s ,  and  we  w i l l  unde r s t and  why  t h i s  wa s  t he  cho i ce  po in t  -
we  w i l l  have  no t i c ed  t ha t  t he r e  w e r e  n o  o th e r  pos s ib i l i t i e s  a f t e r  t h i s  one .  
The  e s s en t i a l  f e a t u r e  o f  t h i s  mode l  i s  p r ec i s e ly  t ha t  t he  i n t e r m e d ia t e  boxes  
a r e  ex p l i c i t l y  g iven ,  t hus  a l l ow i ng  t he se  f a c t s  t o  be  s een .  

My u se  o f  t h e  wor d  backwards  r e f l e c t s  t he  f a c t  t h a t ,  i n  t h e  t ex t ,  we  w i l l  b e  
a c tua l l y  m ov ing  ou r  f i nge r  backwards  a l ong  t he  goa l s  p r ev io u s ly  e xe c u t e d .  
Th i s  c an  be  s e e n  g r a ph i ca l l y  by  cons ide r i ng  t he  fo l l owing  d i ag r am,  whe re  I  
ha ve  exp l i c i t l y  shown  t he  boxes  an d  t he i r  i n t e r r e l a t i onsh i p .  I  ha ve  l ab e l l ed  
t he  a r rows  a t  t he  po r t s  w i th  t he  l e t t e r s  f rom t he  co r r e spond ing  l i ne s  i n  t he  
above  t r a ce .  



cap tur ing b ° the  ^ence^o^he '  . TeLVi  " s^nt^  ̂  "  
a l lowing  one  t o  f o l l ow  bo th  ACTIVATE™ a  u  L c s '  a n d  or»aers tandab le ,  
The  con tro l  f l o w  ca n  be  d i rec t l y  f o l l owe / i n  d a 0 k t r , c k 1 n f l  i n  a  c on s i s t e n t  w r ,  
s imple  regu lar  s t eps .  To i iowed  in  the  program t ex t  a s  a  se que nc e  o f  

p rograms .  I ^ i h a t  t fh a n d / o ,  t r e e  repres en ta t io n  o f  Pro log  
t h e  box  mo de l  corre sponds  t o  a**  s imple  P ° r t S  < S U C h  "  °° e  a b o v ( )  i f l  

repr e se n t i n g  the  program,  
s impl e  program used  e ar l i e r ,  
par t i cu lar  c laus e s .  

,. , „ • - traversal of the »nd/or tr« 
The following diagram is the and/or tree for the 

have labelled the nodes with the heads of the 

The  a lphabe t i ca l l y  l ahe l i^  
Pro log  when  a t t empt ing  t o  sa t i s fyThe  m™!*  t r a v e r s a l  t h a t  w ou ld  be  used  b:  
i n  t he  e ar l i e r  t race ,  and  on the n r ^ i 9 °  I f  *  T h e s e  L a b e l s '  ̂  
t h ro u gh  a  por t ,  corre sponds  t o  L  d l a 9 r a m '  show how each  movement  
Arr iva l  a t  a  node  f rom above  C O r  L !  V  a r r o w s  t r ee  t raversa l .  
t o  ba  t r  8  l 3 " 1 8  a r c J  c °rre sponds  to  an  f **  3  C a  L  ^  a n d  l eav in g  a  node  (bac<  
m l l a !" t r a ! , k  S i n c e  there  i s  no  way  o f  - A f t e r  t h e  arrow I ,  we  are  forced  

c ement  through  Redo  an d  Fa i l  n „ S f 1 S  9  t h e  9 0 a l  ' b ' -  T h e  backward  
e arne r  and /or  t r ee  t raversa l s  in  r  " ' re sponds  to  a  p er fo rmi n g  a l l  the  
The se  are  marked  a s  V W 0  9 < f t  b a ^  S  a  SSS .  p o i n t .  

corresn n e ^ 6 r S e  t r a v e r sa l"  to  de s c r ibe  . JJ* '  1  s h a l l  hence for th  use  the  
Aga in  P 1 S  t 0  3  F a i L '  an d  r e ve rs ing  aS% R a ^' s ing  a  C a  11  t raversa l  
throuah th 080 S6e the accuracy of descrih-i t^avarsa'- corresponds to a  Redo, 
t r ave r sa l  6  J ? r o g r a m -  When the  c h o i r s  a c l c t r ack ing  a s  mov ing  ba ckwa rds  
l ad  b e en  Lr  ?*  t h a t  ' °™ t  " i  i s  f o u n d  t h e n  a "  f °™ a r d  

been  sa t i s f i ed  in  the  examp e ,  t he n  the  t r a v a ' sa l s .  I f  the  goa l  ' f  
( 7 )  E x i t  .  t  '  ̂  t h e  l °w ing  wou ld  have  occurred:  

P> 
<7 )  Ex i t  
12 )  Ex i t  
< 8 )  Ca l l  
19 )  Ca l l  
<9 )  Ex i t  

(C  
L  
M 
N  
0  



rh i s  Las t  po in t  i s  impor tan t  when  cons ide r ing  the  more  genera l  case  where  
(poss ib ly  d i f f e ren t )  i n s t an t i a t ions  wi l l  be  occur r ing .  At  each  por t  o f  a  box  
the  goa l  invo lved  in  the  ca l l  wi l l  be  in  some  pa r t i cu la r  s t a t e  o f  
i n s t an t i a t ion .  At  t he  Ca l l  po r t  i t  wi l l  be  in  i t s  " in i t i a l "  s t a t e ,  bu t  when  
the  Ex i t  po r t  i s  reached  the  goa l  may  be  fu r the r  ins t an t i a t ed  due  to  the  
ac t ions  o f  t he  c l ause  used  t o  sa t i s fy  the  goa l .  I f  we  Redo  t h i s  box  then  
fu r the r  Ex i t s  may ,  o f  course ,  have  d i f f e ren t  ins t an t i a t ions .  The  
in s t an t i a t ion  s t a t e  a t  Redos  w i l l  a lways  be  iden t i ca l  wi th  t ha t  o f  t he  
p rev ious  Ex i t  f rom tha t  box  (no te :  they  wi l l  NOT i n  genera l  be  iden t i ca l  wi th  
the  o r ig ina l  Ca l l ) ,  and  s imi la r ly .  Fa i l s  wi l l  be  iden t i ca l  wi th  Ca l l s .  Th i s  
i s  na tu ra l  s ince  Ca l l  and  Fa i l  a re  e f fec t ive ly  a t  exac t ly  the  same  p lace  on  
the  box  ( s imi la r ly  Ex i t  and  Redo) ,  t he  on ly  d i f f e rence  i s  the  d i r ec t ion  o f  
movement !  These  f ac t s  a re  r e f l ec ted  in  the  and /o r  t r ee  t r ave r sa l  where  each  
t r ave r sa l  a r row has  a  un ique  co r respond ing  ins t an t i a t ion  s t a t e  fo r  i t s  
pa r t i cu la r  goa l .  (Reverse  t r ave r sa l s  thus  have  the  same  ins t an t i a t ion ,  s ince  
they  a re  the  same  a r rows ,  and  remember ;  r eve r sa l  co r responds  to  the  mapp ing  
Ca l l  =>  Fa i l ,  Ex i t  =>  Redo) .  

I t  i s  conven ien t  a t  t h i s  po in t  t o  de f ine  th ree  concep t s  in  t e rms  o f  the  
and /o r  t r ee  r ep resen ta t ion .  I  sha l l  make  use  o f  these  concep t s  in  wha t  
fo l lows .  

The  ances to r  l i s t .  
For  any  por t  t he  ances to r  l i s t  i s  the  sequence  o f  nodes  be tween  
the  co r respond ing  t r ave r sa l  a r row and  the  top  o f  t he  t r ee .  Eg ,  
fo r  I  ( the  ca l l  o f  ' b ' )  th i s  would  be  Cr ,p3 .  

The  comple te  f a i l  pa th .  
For  any  por t  t he  comple te  f a i l  pa th  i s  the  sequence  o f  r eve r se  
t r ave r sa l s  r equ i red  to  reach  the  l a s t  node  on  the  t r ave r sa l  
r ep resen t ing  a  cho ice  po in t .  Eg ,  fo r  I  t h i s  would  be  
I , ,H , , 6 , ,F , ,E , ,D , / C' .  

The  shor t e s t  f a i l  pa th .  
For  any  por t  t he  shor t e s t  f a i l  pa th  i s  the  (o rde red)  subse t  o f  t he  
comple te  f a i l  pa th ,  which  r ep resen t s  the  shor t e s t  
(g raph- theore t i c )  rou te  to  the  cho ice  po in t .  Eg ,  fo r  I  th i s  would  
be  I ' ,F ' ,E ' .  

3 .  P rac t i ca l  Sys tems  

The  p rev ious  sec t ion  has  ou t l ined  a  con t ro l  f low mode l  which  i s  in tended  to  
mee t  my o r ig ina l  r equ i rement s .  I  have  found  i t  use fu l  fo r  my own th ink ing  and  
a l so  fo r  the  purpose  o f  t each ing  o the r s  exac t ly  how Pro log  p rograms  execu te .  
I  be l i eve  tha t  i t  p rov ides  a  su i t ab le  "no t iona l  mach ine"  fo r  t each ing  nov ices  
abou t  P ro log  p rogramming .  However ,  more  work  would  need  to  be  done  to  ve r i fy  
th i s .  In  t h i s  sec t ion  I  sha l l  desc r ibe  the  k inds  o f  f ac i l i ty  needed  in  o rde r  
to  mee t  my  second  r equ i rement ,  t ha t  o f  s a t i s fy ing  the  debugg ing  needs  o  
soph i s t i ca ted  p rogrammers  wi th  l a rge  p rograms .  I  sha l l  base  t h i s  desc r ip t ion  
on  ac tua l ly  implemented  ideas  cu r ren t ly  used  in  recen t  DEC-10  i n t e rp re te r s  a t  
Ed inburgh .  

con t ro l  the  amount  o f  in fo rmat ion  he  r ece ives  by  bo th  genera l  
3  t o  the  in t e rp re te r ,  and  s p e c i f i c  ac t ions ,  op t ions  ava i l ab le  

the  gener  
o f f .  The  use r  can  spec i fy  

The  use r  can  
ac t ions ,  commands  . . . . . .  .  ,  .  ,  .  .  ,  ,  
a t  po r t s .  At  t he  genera l  l eve l  debugg ing  can  be  comple te ly  swi tched  on  o r  

f .  The  use r  can  spec i fy  which  types  o f  po r t  he  would  l i ke  to  be  p rompted  a t  
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for specific options; eg, all types, or just Call and Redo ports etc. (This 
is called leashing). The user can also selectively decide that he would like 

to always see movement through ports of boxes of particular procedures. This 
is called setting a spypoint and is similar to the idea of function breaks in 
P0P2 and LISP. Spypoints have turned out to be a major enhancement to the 
debugging package, and much use is made of them. (This was to be expected!), 
Information is available about what spypoints are set at any given time ar-
they can also be removed. It is also possible to just start exhaustive 
tracing of goals right from the beginning. 

When control passes through a port a message of the following form is 
printed: 

(76) 8 Call : foo(Ca,b,c],f,_102) 

This gives the unique invocation number for the box, the recursion depth, the 
type of port, and the current instantiation state of the goal. The goal is 
printed using the (new) evaluable predicate 'print', defined more-or-less as 
follows: 

print(X) :- portray(X), !. 
print(X) :- write(X). 

portray' is intended to be user defined, and so the use of 'print' throughout 
the debugging package provides a handle for various kinds of pretty printing, 
This has turned out to be extremely useful, especially for masking out 
arguments known to be very large terms. If the port is leashed (see earlier), 
then the user is prompted and he then has available a variety of options. 
These can be divided into: 

Information. The goal can be (re) printed, written in infix or 
prefix formats, and chosen amounts of the ancestor list can be 
printed. 

" H»h,!r°™entaL\ The- US6r Can break to a ne" <sub> execution, 
gging can be switched off, the whole execution can be aborted or 

the system left completely. 

" controlMn "f!  ̂ mpor*fnt of  aU ' the user is provided with ways of 
next port9 J , see ' I t ;  is  Possible to creep to the very 
thus Droducp a P w° * n6Xt spypoint- A sequence of creeps will 
selected snvnni +exha"Stlve t race ' while leaps will just show 
Redo) it is oossihl a|°n9L-he Way" When goin9 in t0 a box (CaU and 

execu t i on  r e t u r n ,  %  ^  S °  t h a t  n ° t h i n g  i s  s e e n  u n t i l  t h e  

This provides a way of° ei* th® Ex1t or  Port of that box), 
as deep recursions ™askln9 out irrelevant internal detail, such 
the Call port (retry) or thX 1S possib le to force a jump to 
useful in 1 r. the FaU port  ( fa iD °f the box. This is 
to see what happens Tf 0ther °Ptions; eg, arrive at Call, skip 
instantiation ?s 'onn lw C°meS baCk at  FaiL or  i f  the Exi t  

creeping into the int i 60 ret^y back to the Call port, and start 
has also been generalised^so*^haJ0 "t h°W U happened" 
available earlier inwnra+- u tha* retrying can be done to any 
When backtracking it is oft- identified by their number). 
f a i l  pa th  back  t o  some cho i ce^o in t  A^F^ f  t 0 , f o U o H  t h e  c o r a P L e t e  

poss ib le  t o  soec i f v  •  1  V  a i L  a n d  R e d o  por t s  i t  i s  
this will be a sequence of Fails folloS^1 ̂  ̂  b6 pHnted;  

tollowed by a sequence of Redos. 

seen, and of movingnoneseIfGround r fUl  ° f  select in9 the amount of detail 
nesett around an execution if one wishes to reinvestigate 



13^ 
pxhaus t ivp  t r a rp S ° P t h S  i C a t e C ' i  d ° e S  n 0 t  ^ a V S  t 0  p U t  U p  W ^ t h  e n o r m o u s  
exhaus t ive  t r aces ;  t he  genera l  and  spec i f i c  ac t ions  a l low h im to  be  ve ry  
se l ec t ive  over  wha t  i s  t r aced .  

I  have  gone  ove r  the  de ta i l s  r a the r  qu ick ly ,  bu t  the  po in t  I  wish  to  
emphas i se  i s  tha t  a l l  these  f ea tu res  a re  bu i l t  a s  enhancements  t o  the  
under ly ing  con t ro l  f low mode l .  I t  i s  a lways  poss ib le  to  fo l low the  fu l l  
sequence  o f  ope ra t ions  g iven  by  the  mode l .  Looked  a t  f rom the  o the r  
d i r ec t ion ,  i t  i s_  much  eas i e r  to  in t roduce  nov ices  t o  the  debugg ing  too l s ,  
s ince  they  fo l low in  a  na tu ra l  way  f rom the  t augh t  mode l  o f  execu t ion .  

4 .  Implementa t ion  

The  ideas  I  have  been  d i scuss ing  have  been  implemented  on  the  DEC-10  a s  
improvements  t o  the  DEC-10  i n t e rp re te r .  S l igh t ly  more  r e s t r i c t ed  f ac i l i t i e s  
have  a l so  been  added  t o  the  UNIX PDP-11  i n t e rp re te r  deve loped  a t  Ed inburgh  
( [He l l i sh  783) .  These  debugg ing  packages  a re  implemented  in  Pro log  and  cou ld  
the re fo re ,  i n  p r inc ip le ,  be  moved  t o  o the r  sys tems .  I  sha l l  ju s t  ou t l ine  the  
genera l  p r inc ip les  he re .  S ince  the  DEC—10 i n t e rp re te r  i s  i t s e l f  wr i t t en  in  
Pro log  i t  i s  a  s imple  ma t t e r  t o  inse r t  someth ing  o f  t he  fo l lowing  fo rm in to  
the  in t e rp re ta t ion  cyc le :  

b reak(Goa l )  
t r ace (ca l l ,Goa l ) ,  
(  ca l l (Goa l )  ;  t race ( fa i l ,Goa l ) ,  f a i l  ) ,  
(  t r ace (ex i t ,Goa l )  ;  t race ( redo ,Goa l ) ,  f a i l  ) .  

The  ' t r ace '  goa l s  wi l l  implement  t he  messages  and  read  re sponses  f rom the  
use r ,  they  implement  t he  four  por t s  o f  t he  box  a round  the  ' c a l l ' ,  ' b reak '  i s  
the re fo re  a  s imple  ske le ton  o f  how the  box  mode l  can  be  implemented .  The  UNIX 
in t e rp re te r  i s  no t  wr i t t en  in  P ro log ,  bu t  I  was  ab le  to  add  spypo in t s  by  the  
t r i ck  o f  a s se r t ing  an  ex t ra  c l ause  a t  the  top  o f  t he  da tabase  fo r  each  
p rocedure  one  wan ted  t o  spy  on .  So  fo r  a  p rocedure  ' example '  t h i s  would  go  a s  
fo l lows :  

example (X,Y,Z)  
: -  f l ip f lop ,  

i  
• / 

break(example (X,Y,Z) ) .  

The  p rocedure  ' f l i p f lop '  has  t o  be  p rov ided  and  i t  has  the  in t e res t ing  
proper ty  t ha t  i t  a l t e rna t ive ly  succeeds  and  f a i l s !  The  f i r s t  t ime  ' example '  
i s  ca l l ed  f l ip f lop  wi l l  be  t rue  and  so  ' b reak '  w i l l  be  ca l l ed .  When  ' b reak '  
i t s e l f  ca l l s  ' example '  ( the  Goa l ) ,  then  on  t h i s  second  t ime  f l ip f lop  wi l l  f a i l  
so  con t ro l  d rops  down on to  the  r ea l  c l auses  fo r  ' example ' .  Th i s  i s  a  s imple  
way  ( a lbe i t  a  hack! )  o f  p l ac ing  an  ex t ra  env i ronment  a round  p rocedures .  
Not i ce  t ha t  g iven  the  na tu re  o f  ' b reak ' ,  on ly  one  ve r s ion  of  f l i p f lop  wi l l  be  
requ i red  r ega rd less  o f  how many  ex t ra  c l auses  we  need  to  add  fo r  d i f f e ren t  
p rocedures .  

S ince  ' t r ace '  i s  wr i t t en  in  P ro log  (on  bo th  sys tems) ,  i t  i s  easy  to  bu i ld  in  
the  r equ i red  in fo rmat ion  and  env i ronmenta l  f ea tu res .  The  con t ro l  f ea tu res  a re  
s l igh t ly  more  d i f f i cu l t  and  the re  i t  i s  necessa ry  to  improve  ' b reak* .  Bo th  
sys tems  make  use  o f  ex t ra  mag ic  f l ags  (bas ica l ly  as s ignab le  loca t ions  fo r  
in tege r s ) ,  which  ho ld  s t a tus  in fo rmat ion  and  which  a re  used  to  fo rce  con t ro l  
a round  ' b reak '  i n  va r ious  ug ly  ways  ( eg ,  fo r  do ing  r e t ry  e t c ) .  For  t h i s  
Purpose ,  bo th  sys tems  p rov ide  ( sec re t ! )  eva luab le  p red ica tes  fo r  man ipu la t ing  
these  f l ags .  However ,  on  o the r  sys tems ,  use  cou ld  be  made  o f  t he  da tabase  
(wi th  p robab le  los s  in  e f f i c i ency) ,  i f  f l ags  o f  t h i s  k ind  cou ld  no t  be  made  



ava i tab l e .  

Th e r e  are  two  ge ne r a l  po in t s  tha t  need  t o  be  made .  I t  i s  impor t™,  
no t i ce  tha t  the  sugges t i ons  g iv en  above  r equ ire  tha t  the  G oa l  be  pas sed  " 
a s  an  argum ent  a t  some  s tage .  For  implementa t ions  which  do  no t  17 '  
s t ruc ture  s har ing  t echn ique  ( s ee  CWarren  773 )  th i s  ma/  turn  ou t  t o  be  oL  
expens ive .  I  per sona l ly  be l i e ve  tha t  th i s  p o in t s  t o  th e  cruc ia l  impor tant  »<  

t ruc ture  shar ing ,  s ince  I  reg a rd  debug g i ng  f ac i l i t i e s  a s  v i t a l  to  
prac t i ca l  sy s t em,  an d  w r i t i ng  mos t  o f  the  c ode  in  Pro log  a s  the  mi  
r ea son ab le  way  o f  pr ov id ing  the m .  Second ly ,  whe n  debugg ing ,  a l l  proeedur !  

eak  ,  but  i t  f o l l ow s  f ro m the  requ irem ent s  o f  the  t ;  * 
f i i iwt f c  aar & 

th a t  h  s p a c e '  a n d  t h l s  m l 9ht  become  a  pro b l em.  My f e e l ing  on  th i s  i s  

air 

'larssrs 
i nc id en t ly ,  p ro v id e  the  same  in forr / t" 0 "  n o n - d e t e r , " 1 n a cy  (and  would ,  
do  no t  regard  su ch  ex trempc  a t  •  ! *  t h e  o H 9 i n - 1  ""-10  trac ing ) .  I 
w o rk  ye t  t o  be  done  t r v - in  t  7  a c t o r 7 -  1  tha t  th ere  i s  p l en t y  o f  
r equ ire s ,  and  ' f f i JgZZS gS T f  **  

5 .  Fur ther  wor k  an d  conc lus ions  

PrSog^iS:: IIhhLeema0;i^tetdharthdraSCr1b^a m0del °f the <l<"" 
t each ing  pur pos e s ,  an d  f o r  the  Prov ides  a  su i tab l e  bas i s  for  bo i  
have  a l so  ou t l ined  the  na ture  anr i  •  ? n  0  s °P h l s t i ca t ed  de bugg ing  t oo l s ,  
the se  ideas  w hi ch  a re in a c  a ,  21S ta t ion  of  s y s t ems  incorpora t i r  
l ook  a t  how var ious  *  —-  day- to -day  use .  I  sha l l  now take  a  br i t  
c ou ld  a l l  be  incorporated into the' cur  rent S s ys  terns "°d#U 6<V" * 

The  ' bo x 1  ide a  de l inea tp<?  fh f l  _ j  
The  m ode l  does  no t  dea l  w i th  f e  a s  pr im e  focu s  o f  a t t en t ion  
th in k  th i s  i s  bas i ca l l y  correr t  •  &  a * t e m p t s  t o  m atc h  par t i cu lar  c lause s .  
a  l a rge  number  o f  i r re l evant  *++  S 1 " c e  o r  Pro g ra ms  o f  a ny  s i z e  th ere  w i l l  b i  
no t  s eem unr e as onab le ,  e inac imfTw «  t 0  m a t c h  c lau se  heads .  However ,  i t  doe :  
t o  be  made  o f  exac t ly  wh ich  r l auc  ° r  t each ing  p u r p os e s ,  f or  some  i nd i ca t i or  
a c tua l  c l aus e  pr i n ted  ou t  wo7d  L  ^  I n  f a c t '  b e i n 9  ab le  t o  have  th .  
c ou ld  s ee  bo th  the  or i g ?na L  c la l e  U S e f u U  "  "°^ d  b a  ni c e  i f  o re  
su os t i tu t i ons  per form ed  o n  i t  u  ^  th e  same  c l ause ,  but  w i th  the  cu rren t  
e t t e r  idea  o f  what  the  var iah lp  -i  f V 1 n 9  s  Pr in ted  out  wou ld  prov i de  a  much  

1 nln e a S ^ r  f 0 r  n 0 v i ' c e s  t o  grasp  how^rnf 0 "" 6 0 1  . ° n S  W < ? r C -  ( I t  W O u l d  a l S 0  " ' 8 k e  
genera l l y ,  wh y  shou ld ' t  I  h P  a M v a r i ab le s  ac tua l  l y  wor k) .  Ev en  more  

(A t^ the  f ° r  S V e r y  9 ° a l -  o n  t h e  ances tor  L i s t^  c l a u s e s  ( b o t h  ° r i 9 i n a l  a n d  
I  *  , t h e  ™om ent  I  c a n  _  t  .  s t '  o r  1 n  the  comple t e  f a i l  path?  
o a^V 1 9 '  t h e  t h r e e  c on c e p t s  Sh  T a U  a b o u t  t h e  f a i l  P« th !>  1  a "  
Pa th ,  shor te s t  f a i l  pa th ) ,  sh ou l d  7  7  Ti 1 e r  Nes tor  l i s t ,  comple t e  fa i l  
e r>Dh a 7 e r '  a b o u t  which  he  c an  aa in**  •  s e r i o u s l y  as  ob jec t s  ava i l ab l e  to  
the  n  - S '  t 7  i m p o r t ance  o f  t ry inq  to  „„ t l ! t ® r e * t i ng  in format i on .  I  wou ld  a l so  

o r i g i na l  source  a s  Pos s ib l e . 1 " 9  t 0  ° U t P U t  t h e  c l a u s e s  ^  a form a s  c lo se  to  

megar° ^; o a r n t i «  °^ r r O L ° 9  i S  ^I f ly  def ined ,  the r e  ar e  no  
og i ca l  bug ,  hence  the  impor tance  o f ° 9 qood  9  b ° 9  t h e n  t h l ' s  w U l  b e  3  

good  debugg ing  t oo l s .  However, the  
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Pro log  sy s t em may  p r ov i de  eva luab l e  p r ed i ca t e s  w h ich  a r e  on ly  de f i ne d  ove r  
so me  subse t  o f  a l l  pos s i b l e  a rgumen t s .  They  w i l l  u sua l l y  p r oduc e  an  e r ro r  
w hen  u sed  i nco r r ec t l y .  When  such  an  e r ro r  occu r s  t he  u se r  wou ld  l i ke  t o  know 
whe re  i t  occu r r ed .  The  o b v io u s  cho i ce  o f  a c t i on  i s  t o  s t a r t  t he  t r a c ing  
mechan i sm  and  w ind  back  t o  t he  l a s t  Ca l l .  I e ,  t he  u se r  shou ld  b e  t o l d  o f  t he  
e r ro r ,  and  t hen  he  shou ld  au toma t i ca l l y  f i nd  h imse l f  a t  t he  C a l l  po r t  o f  t he  
p rocedu re  wh e re  t h e  e r ro r  o ccu r r ed .  He  w ou l d  t he n  be  i n  a  pos i t i on  t o  
d i s cove r  w hy  i t  had  oc c u r r e d .  (By  l ook ing  back  a t  t he  i n fo rma t ion  s ugge s t e d  
abo ve ,  o r  by  r e t r y ing  f rom some  e a r l i e r  pos i t i on  e t c . )  In  ge ne ra l ,  t h en ,  AL L  
e r ro r s  shou ld  cause  a c t i va t i on  o f  t he  t r a c ing  mechan i sms .  S ince  t he  con t ro l  
f l ow  m ode l  e f f ec t i ve ly  de f i ne s  t he  u se r ' s  v i r t ua l  mach ine ,  e r r o r s  can  b e  s een  
a s  c aus ing  a  ha l t  a t  some  ope ra t i on  ( i e  a t  some  po r t ) .  As  a  l a s t  po in t ,  t h e r e  
a r e  many  c a s e s  w he re  t he  p rocedu re  box  i s  a c tua l l y  emp ty .  I n  o the r  words ,  we  
ha ve  a n  unde f ined  p rocedu re  ( e i t he r  we  have  l e f t  some th ing  ou t ,  o r  m i s spe l l ed  
a  goa l  so mew h ere ) .  Th i s  i s  a lmos t  a lw a ys  a  bug .  I  am conv inced  t ha t  t h i s  
ca se  shou ld  be  t r e a t ed  a s  an  e r ro r ,  so  t h a t  t he  u se r  i s  in fo rmed  and ,  aga in ,  
he  shou ld  f i nd  h imse l f  a t  t he  Ca l l  po r t  conce rned .  Th i s  p r o b l em  i s  a  ma jo r  
s o u rce  o f  was t ed  t ime  on  cu r r en t  sy s t ems .  (The  on ly  ex amp l e s  I  ha ve  s een  
w he re  f a i l i ng  due  t o  n o  c l au se s  i s  s i gn i f i c an t  a r e  c l ea r l y  da t a ba s e  
app l i c a t i o n s  wh ich  shou ld  u se  a  spe c i f i c  "u se r  d a t a ba s e "  (Cf  ' r e co rd '  e t c .  o n  
t he  DEC -10  s y s t em) ) .  

Such  improvemen t s  wou l d  g r ea t l y  enhance  t he  e rgonomics  o f  t he  P ro log  sy s t ems  
we  u s e .  They  w ou l d  i nc r e a se  t he  a t t r a c t i venes s  o f  P ro log  a s  a  p rog ramming  
l anguage  and  r e s ea r ch  t oo l .  H o w ev e r ,  we  c anno t  a lways  t ake  i dea s  f rom o th e r  
l a ngua ge s  s t r a i g h t  o f f  t he  she l f .  I t  i s  impor t an t  t ha t  such  deve lopmen t s  a r e  
based  on  mode l s  wh ich  r e f l e c t  t he  ac t u a l  na tu r e  o f  P ro log .  My a i m  ha s  been  t o  
dev e l op  such  a  mo d e l  f o r  con t ro l  f l ow ,  and  t o  show how c e r t a i n  impor t an t  
f e a tu r e s  can  be  cons t ru c t ed  i n  t e rms  o f  t h i s  mod e l .  

Acknowl edgemen t s  

I  wou l d  l i k e  t o  t hank  Dav id  W ar r en ,  Fe rnando  Pe r e i r a ,  A lan  Bundy  and  Chr i s  
Me l l i sh  f o r  t h e i r  he lp  and  encou ragemen t .  I  am suppo r t ed  by  a  B r i t i sh  Sc i ence  
Re sea r ch  C ounc i l  g r a n t ,  number  GR /A/57954 .  

REFERENCES 

[du  Bou lay  80a ]  
du  Bou l ay ,  B .  and  O 'Shea ,  T .  
Teach ing  N o v ice s  P r o g r ammi n g .  
Resea r ch  Pape r  No .  132 ,  Dep t .  o f  A r t i f i c i a l  I n t e l l i gence ,  

Ed i nbu r gh . ,  1980 .  .  .  
To  appea r  i n  'Compu t ing  Sk i l l s  an d  Adap t i ve  S ys t ems ' ,  M.  Coombs  

(Ed . ) ,  Acad emic  P r e s s .  

ldu  Bou lay  80bD 
du  Bou l ay ,  B . ,  O 'Shea ,  T .  and  Monk ,  J .  
T he  b l ack  box  i n s ide  t he  a j a s s  box :  p r e sen t i ng  compu t ing  

concep t s  t o  n o v i ce s - .  .  . .  
Res^7n^Pi"p¥F N^~73T, Dept. of Artificial Intelligence, 

[Kow a l sk i  80 ]  

Ed inbu rgh . ,  1980 .  

Ko w a l s k i ,  R .  A .  
Log i c  f o r  P rob l em So  I v ing .  
N or th  Ho l l and ,  1980 .  



CMel l i sh  78 ]  /J* 
Mel l i sh  C .  
The  UNIX P ro log  Sys tem.  

Ar t i f i c i a l  In te l l igence ,  Univ  o f  Ed inburgh ,  1978  
I  no te ] .  

Dep t  o  
Cln fo rma  

CPere i ra  e t  a l .  783  
Pe re i r a  L  M,  Pe re i r a  F and  War ren  OHO.  
User ' s  Guide  to  DECsys te»-10  P ro log .  
D e p ' ;  A r 5 i f ^! f l  In te l l igence ,  Ed inburgh . ,  Unive r . i ty  of  

Ed inburgh ,  1978 .  '  

CRobinson  653  

CRousse l  753  

CSussman 723 

CTei t l eman  753  

CWarren  773  

Rob inson  J  A.  

JACM C 12m°??7 n ?^  L ^ 9 1 C  u a " d  °°  t h e  r " o l u t ^  Pr inc ip le .  J A C W  12(13 .227-234 ,  December ,  1965 .  

Rousse l  P .  
P r o l °g .  :  f f anue^  de  Refe rence  e t  d 'U t i l i sa t ion .  
Groupe  d ' In te l l igence  Ar t i f i c i e l l e ,  U.  E .  R .  de  Lua iny ,  

Universite d'Aix-Marseille II, 1975. 

Sussman ,  G .  J .  and  McDermot t ,  0 .  V.  
Why Conn iv ing  j i s  be t t e r  than  P lann ing .  
AI -Memo 255A,  MIT AI  Lab37it"ory ,  1972 .  

Te i t l eman ,  W.  
INTERLISP r e fe rence  manua l  
Xerox  Pa lo  Al to  Resea rch  Cen te r ,  1975 .  

War ren  D H 0 .  

" l i ep t  P red ica te  log ic  p rograas .  
Resea rchRepo^V I 2^ . L l 9 e n C e ' ^^ E ^^77 .  



i SI 

LOGIC REPRESENTATION OF A CONCURRENT Al fflRTTHM 

C .  J .  H o g g e r  
I m p e r i a l  C o l l e g e ,  U n i v e r s i t y  o f  L o n d o n ,  1980 

ABSTRACT 

A  c o n c u r r e n t  a l g o r i t h m  i s  r e p r e s e n t e d  u s i n g  t h e  ' l o g i c  p r o g r a m m i n g '  
f o r m a l i s m  a n d  s o m e  g e n e r a l  p r i n c i p l e s  a r e  e x t r a c t e d  f r o m  t h e  f o r m u l a t i o n .  
T h e  t r e a t m e n t  i s  s h o w n  t o  b e  s e m a n t i c a l l y  p u r e  a n d  c o n s i s t e n t  w i t h  
c u r r e n t  a p p r o a c h e s  t o  l o g i c  p r o g r a m  d e v e l o p m e n t  a n d  v e r i f i c a t i o n .  

1 .  I N T R O D U C T I O N  

S t u d i e s  i n  l o g i c  p r o g r a m m i n g  h a v e  u s u a l l y  a s s u m e d  p r o g r a m  e x e c u t i o n  
t o  b e  t h e  r e s p o n s i b i l i t y  o f  a  s i n g l e  p r o c e s s o r .  T h i s  a s s u m p t i o n  m a k e s  
i t  e a s y  t o  e x p l a i n  c o n v e n t i o n a l  P R O L O G - l i k e  p r o g r a m s  u s i n g  i d e a s  
p r e v a l e n t  i n  o t h e r  p r o g r a m m i n g  f o r m a l i s m s ,  i n  p a r t i c u l a r  t h e  i d e a  o f  
i n t e r p r e t i n g  p r o c e d u r e  c a  1  I  s  a s  t a s k s  t o  b e  c o m p l e t e d  o n e  a t  a  t i m e  b y  
t h e  p r o c e s s o r .  M o r e  r e c e n t l y ,  s i g n i f i c a n t  a d v a n c e s  h a v e  b e e n  m a d e  i n  
d i v e r s i f y i n g  t h e  m e a n s  o f  s p e c i f y i n g  c o n t r o l ,  t h a t  i s  t o  s a y ,  i n  
p r o v i d i n g  p r o g r a m  a n n o t a t i o n  s c h e m e s  w h i c h  i n d i c a t e  c o n t r o l  p r e f e r e n c e s  
s u p p l e m e n t i n g  t h e  u s u a l  d e f a u l t  s t r a t e g y .  A  n o t a b l e  s c h e m e  o f  t h i s  k i n d  
h a s  b e e n  d e v e l o p e d  b y  C l a r k  a n d  M c C a b e  ( 3 )  a n d  p r o v i d e s  a n  e l e g a n t  a n d  
p o w e r f u l  c o r o u t i n i n g  f a c i l i t y  i n  t h e i r  I C - P R O L O G  s y s t e m .  T h i s  a l l o w s  
o n e  t o  w r i t e  l o g i c a l l y  l u c i d  p r o g r a m s  w h o s e  b e h a v i o u r  i s  e x p l i c i t l y  
p r e s c r i b e d  i n  t e r m s  o f  t h e  n a t u r e  o f  t h e  d a t a  f l o w  t h r o u g h  s p e c i a l l y  
a n n o t a t e d  v a r i a b l e s ;  t h e  a n n o t a t i o n s  e n a b l e  c a l l  e v a l u a t i o n s ,  b y  a  
s i n g l e  p r o c e s s o r ,  t o  b e  t e m p o r a l l y  i n t e r l e a v e d ,  a l l o w i n g  a  f i n e r  g r a i n  
o f  i n t e r a c t i o n  b e t w e e n  t h e m  t h a n  i f  t h e  a n n o t a t i o n s  w e r e  a b s e n t .  
F o r m e r l y ,  c o m p a r a b l e  b e h a v i o u r  c o u l d  o n l y  h a v e  b e e n  a c h i e v e d  b y  e x e c u t i n g  
p r o g r a m s  o f  g r e a t e r  l o g i c a l  i n t r i c a c y .  

D e s p i t e  t h e  b e n e f i t s  o b t a i n e d  f r o m  s u c h  e l a b o r a t i o n s  o f  t h e  c o n t r o l  
m e c h a n i s m ,  t h e r e  r e m a i n  n u m e r o u s  s i m p l e  p r o b l e m s  w h i c h  c o u l d  b e  s o l v e d  
y e t  m o r e  e f f i c i e n t l y  i f  m u  1 1  i - p r o c e s s o r  h a r d w a r e  w e r e  a v a i l a b l e .  
I n d e e d ,  C l a r k  a n d  M c C a b e  ( 3 )  f i n d  a n  e x a m p l e  o f  t h i s  i n  t h e i r  d i s c u s s i o n  
o f  c o r o u t i n e d  p r o g r a m s  f o r  t h e  e i g h t - q u e e n s  p r o b l e m ,  a n d  B r u y n o o g h e  a n d  
C l a r k  ( 2 )  h a v e  a l r e a d y  c o n s i d e r e d  p r o g r a m  a n n o t a t i o n s  f o r  s p e c i f y i n g  
c o n c u r r e n t  c a l l  e v a l u a t i o n s .  T h e  p r e s e n t  p a p e r  a r o s e  f r o m  t h e  a u t h o r ' s  
a t t e m p t  t o  f o r m u l a t e  I n  l o g i c  t h e  e s s e n c e  o f  a  c l a s s i c  p r o b l e m  c h o s e n  b y  
O w i c k i  a n d  G r i e s  ( 7 )  t o  d e m o n s t r a t e  v e r i f i c a t i o n  o f  c o n c u r r e n t  A L G O L - l i k e  
p r o g r a m s .  T h e  i d e a s  p r e s e n t e d  h e r e  a r e  s o m e w h a t  t e n t a t i v e  a n d  a r e  
c h i e f l y  i n t e n d e d  t o  s t i m u l a t e  i n t e r e s t  i n  t h i s  a n d  s i m i l a r  p r o b l e m s ,  
r a t h e r  t h a n  t o  c o n s t i t u t e  a  c o m p r e h e n s i v e  p r o p o s a l  f o r  i m p l e m e n t i n g  
c o n c u r r e n c y .  T h e  r e a d e r  i s  e x p e c t e d  t o  b e  f a m i l i a r  w i t h  l o g i c  
p r o g r a m m i n g ;  t h i s  h a s  b e e n  c o m p r e h e n s i v e l y  d e s c r i b e d  b y  i t s  o r i g i n a t o r  
R o b e r t  K o w a l s k i  ( 6 ) .  

2 -  ASSUMPTIONS AND NOTATION 

A s s u m e  t h a t  s e v e r a l  p r o c e s s o r s  P 1 , . . . , P n  a r e  a v a i l a b l e  f o r  s o l v i n g  
a  c o l l e c t i o n  o f  c a l l s .  T h e n  a  g o a l  + •  A , B  c a n  b e  e x e c u t e d  u s i n g  
R '  a n d  P 2  t o  s o l v e  t h e  t w o  r e s p e c t i v e  s u b g o a l s ,  p r o c e e d i n g  c o n c u r r e n t l y .  
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For a simple model, imagine that PI and P2 operate as distinct interpreters 
sharing access to a single set of procedure definitions. A desire to 
execute the goal in this way can be expressed by writing It as * A//B 
where // is interpreted logically as conjunction but operat ionai ly as a 
prescription for concurrent execution of A and B. This use of the // 
symbol is therefore referred to as conjunctive concurrency. 

Further annotations can be devised to declare which processors are 
to deal with which calls, if this is prescribable, or else processor 
allocation can be decided dynamically by the implementation. The details 
of such arrangements are not relevant to what follows and so are not 
discussed further. 

Although concurrent executions are easiest to conceive and control 
when they do not manipulate shared data, no limitations are imposed here 
upon the argument structures of calls conjolnable by //. Thus to express 
the problem of deciding whether a given element E belongs to given sets 
A and B, construct a goal whose concurrent subgoals can be executed 
independently : 

m(E,A) // m(E,B) . 

Similarly, to find an element u common to A and B, construct the goal : 
«- m(u,A) // m(u,B) 

execij1''on_ instantiates u, the simplest control arrangement 
r !• ?hUS^ • 9'VeS the m°St sens'b1e behaviour) Imnedlately 

t H ! 9 1° 'u6 °ther execution • so that the execution, c.n 

comDlicatls rh I i Pro9ress" Transmission of binding, 
™ ' C ^ew%kt:aCk,n? °f concurrent execution,. If execution of 

repeatina !hat hfndtn a^m'tS 3 b!nding to B and then has to backtrack, 

Ff'reatJsur^c^t 

W© can also D© rm it* PXNROCC INN _ R 
An example of this is seen Tn rhn n t conc"rrency within procedure bodies-
two binary trees. Derivation of comparing the frontiers of 
Hogger (5), in which a ^ 

I-epr 3 C°n^urrenC ProgrLtwhichXseiks^ob;hXrC;;;'Wd;;'tfXre;'XW^ * 
P esented by such terms have the samn - w that two trees T1 and T2 

same (Tl ,12) is : 

same(x,x) 
same (x,y) 

~;.i 
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Ob se rve  t h a t  t he  execu t i ons  wh ich  de c ompos e  t he  f r on t i e r s  o f  x  a n d  y  
e n d  m o s t  o f  t h e i r  t i m e  r e s t r u c t u r i n g  t h e  t r e e s  u n t i l  t h e y  b e c o m e  r e a d y  

t o  c o m p a r e  t h e  f r o n t i e r s '  f i r s t  l a b e l s .  T h i s  r e s t r u c t u r i n g  i s  b e s t  
p e r f o r m e d  c o n c u r r e n t l y  a s  i n d i c a t e d  i n  t h e  s e c o n d  p r o c e d u r e .  

3 INFLUENCE OF LOGIC ON CONCURRENCY 

I n  g e n e r a l  i t  i s  p r e f e r a b l e  t o  a r r a n g e  t h a t  a s  l i t t l e  d e t a i l  a s  
p o s s i b l e  r e g a r d i n g  r u n - t i m e  c o n t r o l  i s  p r o g r a m m e d  i n t o  t h e  l o g i c  o f  
n r o c e d u r e  d e f i n i t i o n s ,  f o r  v a r i o u s  m e t h o d o l o g i c a l  r e a s o n s  w h i c h  a r e  w e l l  
d o c u m e n t e d  i n  t h e  l o g i c  p r o g r a m m i n g  l i t e r a t u r e .  N e v e r t h e l e s s  t h e r e  m u s t  
e x i s t  p r a c t i c a l  l i m i t s  u p o n  t h e  c o m p l e x i t y  o f  e x t r a l o g i c a l  c o n t r o l  
a n n o t a t i o n s  C o n s i d e r ,  f o r  i n s t a n c e ,  h o w  a  1  g o r i  t h m i c a  1  1  y  i n t r i c a t e  s u c h  
a n n o t a t i o n s  w o u l d  h a v e  t o  b e  i n  o r d e r  t o  i n s t r u c t  a n  i n t e r p r e t e r  t o  e l i c i t  
D a n t z i g ' s  ' S i m p l e x '  a l g o r i t h m  f r o m  n a i v e  p r o c e d u r e s  e x p r e s s i n g  t h e  m e a n i n g  
o f  l i n e a r  o p t i m i z a t i o n ;  t h e y  w o u l d  a s s u m e  t h e  c h a r a c t e r  o f  c o m p u t e r  
p r o g r a m s  i n  t h e i r  o w n  r i g h t  a n d  w o u l d  b e  m o r e  d i f f i c u l t  t o  c o m p o s e  a n d  
v e r i f y  t h a n  t h e  p r o c e d u r e s  t h e y  w e r e  i n t e n d e d  t o  c o n t r o l .  T h e r e f o r e  
n r a c t i c e  i t  i s  o n l y  r e a l i s t i c  t o  e x p e c t  ' c l e v e r n e s s '  i n  i m p l e m e n t e d  
a l g o r i t h m s  t o  d e r i v e  m a i n l y  f r o m  t h e  l o g i c a l  c o n t e n t  o f  t h e i r  
T h i s  a p p l i e s  p a r t i c u l a r l y  t o  c o n c u r r e n t  a l g o r i t h m s  b e c a u s e  t h e i r  e f f i c a c y  
o f t e n  d e p e n d s  u p o n  c a r e f u l l y  c o n t r i v e d  c o m m u n i c a t i o n  b e t w e e n  t h e  v a r i o u s  
e x e c u t i o n s ,  w h i l s t  t h e  c o n t r o l  o f  t h i s  c o m m u n i c a t i o n  d e p e n d s  " P ° n  t i e ,  
p r o b l e m - s p e c i f i c  l o g i c a l  r e l a t i o n s h i p s  h o l d i n g  o v e r  t h e  e v o l v i n g  d a t a  
s t r u c t u r e s  w h i c h  t h o s e  e x e c u t i o n s  m u t u a l l y  c o m p u t e  a n d  c o n s u l t  S o  i  t  
i s  u s e f u l  t o  f i n d  o u t  w h a t  k i n d  o f  l o g i c a l  c o n s t r u c t i o n s  c a n  h e l p  t h e  
p r o g r a n v n e r  t o  a r r a n g e  f o r  e f f i c i e n t  c o o p e r a t i o n  b e t w e e n  c o n c u r r e n t  
e x e c u t i o n s .  S o m e  i n s i g h t  i n t o  t h i s  c o m e s  f r o m  i n v e s t i g a t i o n  o f  a  s i m p l e  
p r o b l e m  w h i c h  i s  n o w  e x a m i n e d  i n  d e t a i l .  

K. A CONCURRENT ALGORITHM 

i s  r e q u i  r e d  »  d e c i d .  
t o  e i t h e r  o f  t w o  g i v e n  s e t s  A a n d  B ,  a n d  _  p r o g r a m  
A  a n d  B  c o n c u r r e n t l y .  O n e  s i m p l e  w a y  o f  d o i n g  t h i s  i s  t o  u s e  a  p  g  

, l k e  *  f t  b e longs ( E ,A ,B )  

be longs (u , x , y )  uc x  
be longs  ( u , x , y )  * •  u cy  

wh ere  t h e  new  anno t a t i on  F l  l abe l s  a  c a l l  i n  o r ' i e r  ( s 0  t h a t  t he  
p r o c e d u r e ,  r e s i d i n g  t o  i t  t o  b e  »  W U t S '  
d e r i v e d  s u b g o a l s  « •  EL A  a n d  EcB  ̂  w o u l d  e n s u i n g  e x e c u t i o n s  
p r o c e s s o r s ) .  S u c c e s s f u l  t e r m i n a t i o n  o f  a n y  o n e  .  .  s i m u l t a n e o u s l y  
w o u l d  s i g n a l  s u c c e s s f u l  e x e c u t i o n  o f  t h e  a n n o  a  .  ̂  S u c h  a n  
a b a n d o n  a n y  o t h e r  u n f i n i s h e d  e x e c u t i o n s  i n s t i g a  s i n c e  i t  i s  t a n t a m o u n t  
a r r ange m e n t  cou l d  b e  c a l l ed  d i s junc t i v e  c o n ? u r ^?  j t s  d i s junc t s  c onc u r r e n t  
t o  so l v i ng  t h e  goa l  *  (ECA v  ECB)  by  ® u se fu l  r o l e  t o  p l ay  i n  
Howeve r ,  a l t hough  s uch  an  anno t a t i on  mig  a l t e rna t i ve s ,  i t  b r i ng  
the  concu r r en t ,  qua s i -b r ead th - f i r s t  exp lo r a  1 0  ^ o r  c o n C u r r en t  execu t i  
us  no  ne a r e r  t o  an  unde r s t and ing  o f  how t o  <* r r  r h  o th e r ' s  p rog re s s ,  
to  a cce s s  and  r e ac t  t o  de t a i l ed  knowledge  ab o u  . e ach^  
Ws sha l l  t h e r e fo r e  deve l op  an  a l t e rn a t i v e  s  

wh ich  ne e ds  t o  r e f e r  t o  
In s t ea d  o f  u s ing  a  p r ed i ca t e  l i ke  be longs ,  t  Q n e  s e t  X m  

both s e t s ,  i n t rod u ce  a  p r ed i ca t e  m (u . x , a )  which  dea l s  

ngs  
ons  



I H 1  

The  s pec i f i c a t i on  o f  m i s  a s  f o l l ows  :  

m(u,x,a) -<-»• ( uCx, a=YES ) v  ( n -uex ,  a-NO ) 

so  t ha t  i t s  t h i rd  a rgumen t  a ac t s  a s  an  exp l i c i t  ' an swer '  t o  t he  q u es t i o n  
o f  whe th e r  u be longs  t o  x. Using  t e rms  t o  r ep re sen t  s e t s ,  t oge the r  wi t h  
an  app rop r i a t e  de f i n i t i on  o f  e ,  compose  a  s t r a i g h t fo rwa rd  p rocedu re  s e t  
form. ,a) *• a=NO 

m(u,v:x,a) *• u=v, a—YES 
m(u,v:x,a) *• u?v, m(u,x,a) . 

Now cons ide r  an  exe cu t i on  TJ ,  r unn ing  on  a  p roce s so r  P I  ,  o f  a  c a l l  a(B,A,al) 
where  E and  A a r e  we l l - f o r med  i npu t  d a t a .  Suppose  t ha t  a  concu r r en t  
execution T2, running on a processor P2, is dealing with a call n(E,B,a2) 
and  b inds  YES t o  a2. I f  I \Z  we re  somehow ' t o l d '  t ha t  YES had  been  bound  
t o  a2, i t  cou ld  s ens ib ly  ab an d o n  i t s  a t t e mp t  t o  dec ide  BCA, r e co rd  an  
a r b i t r a ry  a nsw e r  D O N T K N O W f o r  al and  t hen  t e rmina t e  succe s s fu l l y .  T h i s  
s ugges t s  t he  u se  o f  an  a l t e r n a t i ve  p r ed i ca t e  m*(u,x,al,a2) which  a l l ows  
t he  answer  al compu ted  f o r  t he  ques t i on  uex t o  be  c on t i nge n t  upon  t he  
s t a t e  o f  a2. I t s  spec i f i c a t i on  j u s t  ex t en d s  t ha t  f o r  a I n  o rd e r  t o  
admit the alternative answer for al : 

m*(u,x,al,a2) «-»- m(u,x,al) v  ( a2-YES, al-DONTKNOW ) . 

Proc e du re s  f o r  m *  t hen  f o l l ow  b y  t r i v i a l  t r an s fo rma t ion  o f  t hose  f o r  
m  above  :  

CI: m* (u ,$  ,al,a2) *• al=NO 
C2: m* (u ,v:x,al ,a2) u=v ,  al=YES 
C3: m* (u ,v:x,al ,a2) *- u?v, m* (u ,x ,al ,a2) 
C4: m*(u,x ,al,a2) *• a2=YES, al —DONTKNOW . 

Procedu r e s  C1-C4 can  now be  u sed  t o  so lve  t he  fo l l owing  goa l  whose  two  
u  goa  s  a r e  t o  b e  dea l t  w i th  by  concu r r en t  p roce s so r s  P I  and  P2  r e spec t i ve ly  

*• m* (E,A,al ,a2) // m* (E,B,a2,al) 

whe the r  e xecu t i ^o f^heU ' ! s  co n ' 6 "  a n S W e f S  "  1 °  t h ' S  9 ° a '  
t h a t  i t  i s  l oa i ca l l v  1  T  S  c o n c u r r e n t  o r  s equen t i a l .  No te  a l so  
pos s ib l e  t o  co mp u t e  al =  a 2 '  =  Y ET.C O m p u t e  a J  "  "  DONTKNOW bu t  l og i ca l l y  

Meanwh i l e !  vT \ s  o f  C ° n [ i r m s  E C B  a n d  " s i gns  y r s  t o  a2. 
where  a '  i s  t he  subse t  o f  A r em n  IS ^  U a t m g  S O f T , e  d e r iv ed  s ubgoa l  m»  (E,A' ,al,a2 
T2 i n s t an t i a t e !  3  wlSh  r e s  Z  6 6  s e a r c hed  fo r  E .  As  s o o n  a s  
t han  s e l ec t  C1-C3;  p r i o r  t o  t h i s  IM sh t 0 l d e k e C t  C 4  a " d  t e r m i n a t e  r a t h e r  
p r e f e r ence  t o  C4. These  c o n t r o l  shou ld  have  been  s e l ec t i ng  C1-C3 i n  
t h e  e a r l i e s t  p o s s i b l e  t e rmina t i on  P p !  e T e n c e s >  w h ' c h  a r e  mo t i va t ed  towa r ds  
because they cannot be implemented If* t re.some edifications to C1-C4, 
o rde r ing  o r  by  ad d ing  s e l ec t i ve  da t a  f ?  ^  ch o o s in g  s ome  o the r  f i xe d - t ry  
he a d i ng  a rgume n t s .  "  anno t a t i on  l i ke  ?  and  "  to  the i r  

Th e re fo r e  i n se r t  some  checks  a2* re s  t o  ob t a i n  :  

C2\- 'al,'a2) a2^ES, al=NO 
(ufv.x,al ,a2) •*- a2^YF<z ?7—T C3 ' ; m* (u VY = 7 rXES, u-v, al=YES 

« - :  2 S -/ ax YES, a 1 = DONTKNOW 



i f; 
This d o e s  n o t  a f f e c t  ( p a r t i a l )  c o r r e c t n e s s ,  s i n c e  C l ' - C 4 '  a r e  l o g i c a l l y  
i m p l i e d  b y  C 1 - C 4 -  T h e  c h e c k s  e n s u r e  t h a t  w h e n  a 2  h a s  b e e n  i n s t a n t i a t e d  
b y  Y E S ,  s e a r c h i n g  w i t h  C l ' - C 3 '  i s  d i s c o n t i n u e d  a n d  t e r m i n a t i o n  b y  C 4 '  
f o l l o w s  i m m e d i a t e l y .  H o w e v e r ,  t h e s e  c h e c k s  m u s t  n o t  b e c o m e  o p e r a t i v e  
u n t i l  a 2  i s  i n s t a n t i a t e d ,  a s  t h e y  w o u l d  o t h e r w i s e  c a u s e  n o n d e t e r m i  n  i  s  t  i  c  
b e h a v i o u r .  T o  g u a r d  a g a i n s t  t h i s  w e  c a n  e x p l o i t  t h e  a n n o t a t i o n s  o f  
C l a r k  a n d  M c C a b e  t o  s p e c i f y  c o n t r o l  a l t e r n a t i v e s  a p p r o p r i a t e  t o  t h e  
d a t a - f l o w .  U s i n g  t h e i r  s c h e m e ,  a  p r o c e d u r e  s e t  f o r  m *  b e h a v i n g  i n  
p e r f e c t  a c c o r d a n c e  w i t h  o u r  w i s h e s  i s  o b t a i n e d  b y  f o r m i n g  p a i r s  o f  
a n n o t a t e d  c o n t r o l  a l t e r n a t i v e s  c h o s e n  f r o m  b o t h  C 1 - C 4  a n d  C l ' - C 4 '  ,  
s o  t h a t  e a c h  p a i r  a c t s  l i k e  a  s i n g l e  p r o c e d u r e  w h i c h  c a n  e i t h e r  e x e c u t e  
o r  i g n o r e  t h e  c a l l  a 2 ^ Y E S  :  

C I  :  m * ( u , $  , a l , a 2 * )  * •  a l = N O  
C I ' :  m * ( u , a l , a 2 7 )  * •  a 2 ? Y E S ,  a l = N O  

C 2  :  m * ( u , v : x , a l , a 2 ~ )  * •  u = v ,  a l = Y E S  
C 2 ' :  m *  ( u , v : x , a l  , a 2 7 )  * •  a 2 ? Y E S ,  u = v , a l = Y E S  

C 3  :  m * ( u  , v : x , a l , a 2 ~ )  u/v, m *  ( u , x , a l  , a 2 )  
C 3 ' :  m *  ( u , v : x , a l  , a 2 7 )  * •  a 2 ? Y E S ,  u ? v ,  m *  ( u , x , a l  , a 2 )  

C 4 ' :  m * (  t l , X  , a l , a 2 l )  +  a 2 = Y E S ,  a l = D O N T K N O W  .  

T h e  s o l u t i o n s  f o r  t h e  g o a l  v a r i a b l e s  ( a l ,  a 2 )  w h i c h  a r e  l o g i c a l l y  
computable from these procedures are (NO,NO), (NO, YES) , (YES ,YES) , (YES ,NO) , 
M,  DONTKNOW) a n d  (DONTKNOW, YES) ;  b u t  w h e n  e x e c u t i o n  i s  c o n s t r a i n e d  b y  
t h e  g i v e n  c o n t r o l  a n n o t a t i o n s ,  t h e  u n w a n t e d  a n s w e r  (YES,YES)  i s  n o t  
c o m p u t a b l e .  

O b s e r v e  t h a t  i t  i s  n o t  n e c e s s a r y  f o r  t h e  v a r i o u s  s e t s  o f  
contro l  a l t e r n a t i v e s  l i k e  { c i  , C J ' }  t o  b e  l o g i c a l l y  e q u i v a l e n t  t o  a  s i n g l e  
p r o c e d u r e ;  i t  s u f f i c e s  f o r  t h e m  t o  b e  l o g i c a l l y  i m p l i e d  b y  a  s i n g  e  
p r o c e d u r e  ( C I ) ,  s o  t h a t  t h e  a n n o t a t i o n  s c h e m e  a l l o w s  c a l l s  t o  b e  s e l e c t i v e  y  
s k i p p e d  a s  w e l l  a s  r e s e q u e n c e d .  

F i n a l l y ,  n o t e  t h a t  a n  a l t e r n a t i v e  p r o g r a m  c a n  b e  d e r i v e d  b y  e x t e n d i n g  
r a t h e r  t h a n  m o d i f y i n g  C 1 - C 4  :  

C I  :  m * ( u , Q  , a l , a 2 * •  a l = N O  
C 2  :  m *  ( u , v : x , a l  , a 2 " )  * •  u = v ,  a l = Y E S  
C 3  :  m *  ( u , v : x , a l  , a 2 ~ )  -  u ^ v ,  m *  ( u , x , a l  , a 2 )  
C 4  :  n *  ( u , x  , a l  , a 2 7 )  a 2 = Y E S ,  al=DONTKNOW 
C  5  . •  r a * ( u , x  , a l , a 2 7 )  * •  a 2 i * Y E S ,  m ( u  , x  , a l )  

t o g e t h e r  w i t h  t h e  t h r e e  g i v e n  p r o c e d u r e s  f o r  m .  

T h i s  f o r m u l a t i o n  a r i s e s  b y  d e r i v i n g  a  n e w  m *  p r o c e d u r e  

m * ( u , x , a l , a 2 )  * •  m ( u , x , a l )  ^  

i n s e r t i n g  a  c h e c k  a 2 j Y E S  a n d  t h e n  a n n o t a t i n g  C 1 - C 5  a p p r o p r i a t e  y  
? i v e s  m u c h  t h e  s a m e  b e h a v i o u r  b u t  s l i g h t l y  c l e a r e r  o  
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5 .  THE GENERAL PRINCIPLES 

The  p r i nc ip les  unde r l y i ng  the  t rea tmen t  above  a re  as  f o l l ows : -

(1 )  Suppose  t ha t  t he  p rob lem t o  be  so l ved  has  been  f o rmu la ted  as  a  
p rog ram i n tended  f o r  sequen t i a l  ca l l  execu t i on  us ing  a  s i ng le  
p rocesso r  -  i n  o the r  wo rds ,  as  a  s tanda rd  non -concu r ren t  l og i c  
p rog ram.  

Fu r the r  suppose  t ha t  t he  p rog ram 's  goa l  con ta ins  some ca l l  
P ( t l , . . . , t r ) .  Usua l l y  i t  w i l l  be  poss ib le  t o  so l ve  the  
p rob lem more  e f f i c i en t l y  by  s imp ly  a r rang ing  tha t  one  o r  
more  o the r  ca l l s  a re  execu ted  concu r ren t l y  w i t h  t h i s  ca l l  t o  
P .  However ,  even  g rea te r  improvemen t  may  be  poss ib le  when  
t ha t  ca l l  i s  rep laced  by  

P * ( t l , . . . , t r , x r + 1 >  x n )  

where  t he  x ±  va r i ab les  a re  sha red  w i t h  the  o the r  concu r ren t  
ca l l s .  I n  e f f ec t ,  t h i s  rep lacemen t  an t i c i pa tes  tha t  use fu l  
da ta  f r om concu r ren t  execu t i ons  w i l l  be  t r ansm i t t ed  t o  the  
x i  va r i ab les  wh i l s t  t he  ca l l  t o  P *  i s  be ing  
execu ted ,  and  t he reby  makes  t he  goa l  more  e f f i c i en t l y  
so l vab le  than  t he  o r i g i na l  one  wh i ch  ca l l ed  P  i ns tead .  

I n  the  examp le ,  t he  goa l  f o r  t he  non -concu r ren t  f o rmu la t i on  
wou ld  have  been  

m ( E , A , a l )  ,  m ( E , B , a 2 )  

Th is  can  be  so l ved  more  e f f i c i en t l y  by  concu r ren t  p rocess ing :  

m ( E , A , a l )  / /  m ( E , B , a 2 )  

and  more  e f f i c i en t l y  s t i l l  by  sha r i ng  t he  va r i ab les  a l  
and  a 2  be tween  t he  ca1  I s :  

m *  ( E , A , a l , a 2 )  / /  m *  ( E  , B  , a 2  , a l )  

' pp  its ^•strr:is.p;nr r b,
°° prrrr,; f̂f,ci'"cy n« - «• f*« «•« 

( a l , a 2 )  =  ( D O N T K N O W ,  Y E S )  

w i l l  I t  m o r e ' e f f i c f e n t ! y t c o m p u t a b b e e t h a n b ' y £ s / r E S ; ' ! , 0 r e O V e r  

(2 )  Compose  p rocedu res  f o r  p *  r a „ , k i 0  ,  .  

ca l l  t o  P*  wh i ch  has  on l y  va r i ab les  i n  a C t i v a t e d  

pos i t i ons  r + 1  t o  n  I n  t L  D ies  i n  i t s  a rgumen t  

C1-C4. They  a re  the  p rocedu res^h i c fT^T^ ' • ' ^  

such ' " t ' ime^s  ' concu r ren t ^execu t ^ ° n S e  ~  
the  sha red  va r i ab les .  ' ° n s  t r a n sm i t  da ta  t h rough  



(3) Now f r ee l y  i nse r t  i n to  these  p rocedu res  any  number  o f  a rb i t r a r y  
ca l l s  whose  i nspec t i on  o f  t he  a rgumen ts  i n  pos i t i ons  r + 1  t o  n  
o f  t he  i nvok ing  ca l l ,  commun ica t i ng  da ta  f r om concu r ren t  
execu t i ons ,  imp roves  e f f i c i ency .  Th i s  s tep  i nev i t ab l y  p rese rves  
pa r t i a l  co r rec tness .  Usua l l y  t he  i nse r ted  ca l l s  a re  dev i sed  
by  cons ide r i ng  how t o  ob ta in  op t ima l  behav iou r  and  may  no t  
simply arise as a natural result of deriving sufficient P* 

procedu res  t o  dea l  w i t h  a l l  cases  l og i ca l l y  admi t t ed  by  t he  
p *  spec ! f i ca t i on .  

I n  t he  examp le  t he  i nse r t i ons  p roduced  Cl ' -C4 '  .  They  a re  t he  
p rocedu res  wh i ch ,  i n  t he  f i na l  p rog ram,  w i l l  be  i nvoked  i n  
response  t o  P *  ca l l s  a f t e r  da ta  compu ted  by  concu r ren t  
execu t i ons  has  been  t r ansm i t t ed  t o  the  sha red  va r i ab les .  

(4 )  Comb ine  t he  p rocedu res  f r om s teps  (2 )  and  (3 )  and  ado rn  them 
w i th  con t ro l  anno ta t i ons  -  these  de te rm ine  wh ich  p rocedu res  t o  
invoke  i n  response  t o  P *  ca l l s ,  acco rd ing  t o  the  i ns tan taneous  
s ta tes  (bound  o r  unbound )  o f  t he  sha red  va r i ab les .  

i  

6.  ANOTHER EXAMPLE 

Ow ick i  and  Gr ies  (7 )  g i ve  a  de ta i l ed  accoun t  o f  an  a 1  gor  i  then  
p roposed  by  Rosen  (8 )  wh i ch ,  g i ven  an  i npu t  l i s t  L  o f  a rb i t r a r y  n  
U l ) , . . . , L t N ) ,  compu tes  i »  as  t he  l eas t  i ,  i f  any ,  sa t 1  s fy  i  ng  ^  _ 
I f  no  such  i  ex is t s  t hen  i *  i s  compu ted  as  N + l .  The  a , 9° ' "  o the r  
two  concu r ren t  sea rches ,  one  i nspec t i ng  L ( i )  f o r  even  i  an  i p a s t  
inspec t i ng  i ( i )  f o r  odd  i .  The  f o rmer  sea rch  compu tes  j  =  z  

even  i  sa t i s f y i ng  1(1) >  o  I f  t h i s  ex i s t s ,  bu t  o t he rw i_  
T , i e  l a t t e r  sea rch  compu tes  k  ana logous l y  f o r  t he  o  v | r t ue  o f  

1 9  i s  compu ted  as  t he  l eas t  o f  j  and  k .  The  ch  e f  v i r t ue  g t  
the  a l go r i t hm i ,  tha t  i f  one  execu t i on  T l  f »M«  s ° ^  -  N + 1  a n d  

e the r  execu t i on  T2  can  respond  e i t he r  by  s e t t ' " 9  [  d e p e n d ing  on  whe the r  
te rm ina t i ng  o r  e l se  by  con t i nu ing  i t s  own  sea rc  ^  usefu lness  o f  
o r  eo t  T2  has  ye t  sea rched  t h rough  L  beyond  L ( i )  -  n r o D e r t i es  o f  t he  
th i s  consu l t a t i on  be tween  t he  sea rches  de r i ves  r °  p r o b l  em-spec  i  f  i  c ,  

r ' n 9  re la t i on  ove r  l i s t  i nd i ces .  I t  i s  The re fo re  p  
f ^ th i ,  1 ,  re f l ec ted  i n  the  l og i ca l  s t ruc tu re  o f  t he  f o l l ow ing  
formulation ; 



* •  f i n d *  ( L , N , 2  , j  , k )  / /  f i n d *  ( L , N , l , k ,  j )  ,  l e a s t  ( j  , k  , i *  )  

f i n d * ( x , n , i , j , k ~ )  * -  i £ n ,  x ( i ) £ 0 ,  f i n d * ( x , n , i + 2 , j , k )  
f i n d *  ( x  , n  , i  , j  , k T  )  * •  i ^ n  ,  i < k ,  x ( i ) £ O f  f i n d * ( x , n , i + 2 , j , k )  

f i n d *  ( x , n , i , j , k " )  * -  O n ,  x ( i ) > 0 ,  j = i  
f i n d *  ( x , n , i , j , k T )  * •  i £ n ,  i < k ,  x ( i ) > 0 ,  j - i  

f i n d *  ( x , n , i , j , k 2 )  i ^ k ,  j = n + l  

f i n d *  ( x , n , i , j  , k  )  * -  i > n ,  j = n + l  .  

These  p rocedu res  can  be  de r i ved  qu i t e  eas i l y  acco rd ing  t o  the  p r i nc ip les  
a l ready  enunc ia ted ,  beg inn ing  w i t h  a  s imp le  p rog ram i n  wh ich  the  two  
sea rches  p roceed  sequen t i a l l y  and  i ndependen t l y :  

- t - f i n d ( L , N , 2 , j )  ,  f i n d ( L , N , l , k ) ,  l e a s t  ( j  , k , i * )  

f i n d ( x , n , i , j )  * •  i 4 n ,  x ( i ) £ O f  f i n d ( x , n , i + 2 , j )  
f i n d ( x , n , i , j )  * •  i 4 n ,  x ( i ) > 0 ,  j = i  
f i n d ( x , n , i , j )  * •  i > n ,  j = n + l  

Here  f i n d ( x , n , i , j )  ho lds  when  j  i s  t he  l eas t  i  e { i  , i * 2 , . . .  , n )  sa t i s f y i ng  
x ( i )  >0 ,  i f  any ;  o the rw ise  j  =  n + 1 .  Then  f i n d  i s  e labo ra ted  t o  f i n d '  
and  f i n d *  procedu res  a re  composed  sa t i s f y i ng  the  spec i f i ca t i on  

f i n d *  ( x  , n , i  , j  , k )  * - > •  f i n d ( x , n , i , j )  v  (  i ^ k ,  j - n * l  )  

Ef f i c i en t  con t ro l  o f  t hese  p rocedu res ,  gove rned  by  t he  da ta - f l ow  th rough  i t ,  
i s  t hen  imposed  us ing  the  anno ta t i ons  shown .  

7 .  D ISCUSSION 

The  t r ea tmen t  i l l us t ra ted  he re  i s  cons i s ten t  w i t h  the  usua l  
i nc remen ta l  app roach  t o  l og i c  p rog ram deve lopmen t .  D i s rega rd ing  concu r ren t  
capab i l i t y ,  a  su i t ab le  goa l  and  p rocedu re  se t  a re  composed  wh i ch  wou ld  
execu te  co r rec t l y  unde r  IC -PROLOG,  w i t h  no  res t r i c t i ons  imposed  on  the  
use  o f  t he  ava i l ab le  con t ro l  mechan i sms .  By  reason ing  abou t  t he  p rog ram 's  
behav iou r  we  dec ide  how t o  ob ta in  a  more  e f f i c i en t  execu t i on  were  
concu r ren t  p rocess ing  ava i l ab le .  I f  t h i s  improvemen t  r equ i res  no  
commun ica t i on  be tween  concu r ren t  execu t i ons  then  i t  i s  ob ta inab le  by  

l n 9  s ®' a c t ed  con junc t i ons  as  / / .  O the rw ise ,  new p red i ca tes  
a n ® de f i ned  wh ich  i n t roduce  sha red  va r i ab les  as  t he  veh i c l e  o f  conwnun ica t i on  
and  t he  p rog ram i s  re fo rmu la ted  such  as  t o  compu te  so lu t i ons  
- °£vo  caHv  r a r ' a b I e S '  S t a t e S "  Cor rec tness -p rese rv ing  mod i f i ca t i ons  
nex t  aDD l i L ' t nn^h 0 "  2 *1  *  t 0  m a n i P u , a t e  the  sha red  va r i ab les  -  a re  
None  o f  t h e s e  s t e  e r  w ' t h  any  f u r t he r  necessa ry  con t ro l  anno ta t i ons .  
None  o f  these  s teps  v i o l a te  the  f o rma l i sm 's  f i r s t -o rde r  seman t i cs .  

i n t roduc t i on a o f 1 concu r rencv r does d ' C r t e  t H a t  f ° f  ' 0 9 ' C  P r o 9 r a m B , i n 9  the  
o f  es tab l i sh ina  na r t - i a l  no t  r equ i re  depa r tu re  f rom ou r  usua l  way  
spec i f i ca t i ons?  m  c o r r e c t n a "  (by  de r i v i ng  p rocedu res  f rom 
though  no  d i f f e ren t  i n  o rTne i ! *?p roo fs  may  become more  t ed ious ,  
imposed  by  con t ro l  anno ta t i o n P  V t ^ r o u g h  h a v i n 9  to  examine  the  cons t ra in t s  
t he  '  non - In te r fe rence "  c r i t e r i o  "  p a ; ; t i c u , a r  -  can eas i l y  sa t i s f y  
name ly  t ha t  i f  aP roposed  by Owick i  and  Gr ies  (7 )  :  
i n  i so la t i on ,  i s  no t  i nva l i da ted°bv f t h  e a ^ . c ? n c u r r e n t  execu t i on ,  ac t i ng  

co r rec t ' i y ! '  ^  ̂  XTSS. *  
o f  the  l og i c  p rocedu res  wh i ch  I t  TnUeT ,  ^  



11} 

e x e c u t e d  ( c o n c u r r e n t l y  o r  s e q u e n t i a l l y )  s u c h  a s  t o  c o m p l y  w i t h  i t s  l o g i c a l  
i n t e r p r e t a t i o n ,  t h e n  t h e  u n i o n  o f  t h e s e  v e r i f i c a t i o n s  i s  a  v e r i f i c a t i o n  
f o r  t h e  c o m p l e t e  g o a l .  T h i s  i s  j u s t  a  c o n s e q u e n c e  o f  o u r  b e i n g  a b l e  t o  
s p e c i f y  c o n c u r r e n c y  i n  t h e  p r o g r a m  t e x t  w i t h o u t  a l t e r i n g  i t s  l o g i c a l  m e a n i n g .  

T h e r e  a r e  s e v e r a l  o t h e r  a s p e c t s  o f  c o n c u r r e n t  l o g i c  p r o g r a m m i n g  w h i c h  
n e e d  t o  b e  p r o p e r l y  r e s e a r c h e d .  F o r  e x a m p l e ,  i t  m a y  b e  n e c e s s a r y  t o  d e v i s e  

of specifying t e m p o r a l  c o o r d i n a t i o n .  I n  o u r  e x a m p l e s  n e i t h e r  
e x e c u t i o n  n e e d e d  t o  w a i t  f o r  r e s u l t s  f r o m  t h e  o t h e r ,  b u t  i n  o t h e r  c a s e s  
w a i t i n g  m i g h t  b e  n e c e s s a r y ,  t h e  e x i s t i n g  c o r o u t i n i n g  f a c i l i t i e s  m a y  n o t  
b e  a b l e  t o  e x p r e s s  a l  1  s u c h  r e q u i r e m e n t s  i n  s u f f i c i e n t  d e t a i l .  A t  p r e s e n t  
w e  c o u l d  a s s u m e  a  s i m p l e  d e f a u l t  s t r a t e g y  -  t h a t  i f ,  i n  r e s p o n s e  t o  a  c a l l ,  
a l l  l o g i c a l l y  r e s p o n d i n g  p r o c e d u r e s  w e r e  b l o c k e d  b y  d a t a - f l o w  r e s t r i c t i o n s ,  
t h e n  t h e  c a l l  w o u l d  j u s t  s u s p e n d  ( r a t h e r  t h a n ,  a s  a t  p r e s e n t ,  r e g i s t e r  a  
c o n t r o l  e r r o r )  u n t i l  d a t a  b e c a m e  a v a i l a b l e  f r o m  o t h e r  e x e c u t i o n s .  A  
p o s s i b l e  e f f e c t  o f  s u c h  a r r a n g e m e n t s  i s  d e a d l o c k  -  t h e  r e l e v a n c e  o f  t h i s  
t o  l o g i c  p r o g r a m m i n g  m a k e s  a n  i n t e r e s t i n g  r e s e a r c h  t o p i c .  

A l s o ,  l o g i c  p r o g r a m s  c a n  a c c o m m o d a t e  a t  l e a s t  t w o  k i n d s  o f  c o n c u r r e n c y  
( c o n j u n c t i v e  a n d  d i s j u n c t i v e )  h a v i n g  d i f f e r i n g  l o g i c a l  a s s o c i a t i o n s  
( n o n d e t e r m i n i s t i c  c a l l  a c t i v a t i o n  a n d  n o n d e t e r m i n i  s t i c  p r o c e d u r e  i n v o c a t i o n ) .  
S o m e  d e s c r i p t i o n s  o f  o t h e r  f o r m a l i s m s  d o  n o t  s e e m  t o  p r o v i d e  c l e a r ^  
r e l a t i o n s h i p s  b e t w e e n  t h e i r  n o t i o n s  o f  c o n c u r r e n c y  a n d  n o n d e t e r m i n i  s m ,  a n d  
i t  m a y  b e  t h a t  c l a r i f i c a t i o n  c o u l d  b e  o b t a i n e d  b y  c o m p a r i s o n  w i t h  t h e  
v a r i o u s  n o n d e t e r m i n i s t i c  f e a t u r e s  o f  l o g i c .  

F i n a l l y ,  t h e r e  a r e  o t h e r  w a y s  i n  w h i c h  e x e c u t i o n s  
b e s i d e s  t h r o u g h  s h a r e d  v a r i a b l e s .  A n  i n t e r e s t i n g  a l t e r n a t i v e  i s  
o f  g l o b a l  a s s e r t i o n s  r e g a r d e d  a s  d a t a  s t r u c t u r e s ,  s u p p o r t e d  b y  m e c h a n i s m s  
f o r  e n a b l i n g  c o n c u r r e n t  e x e c u t i o n s  t o  u p d a t e  a n d  1 d i s c o v e r  
c o m m u n a l l y .  F o r  b o t h  m o d e s  o f  c o m m u n i c a t i o n  i t  w i l l  b e  u s e f u  a i n a t o r  

t h e i r  p r a c t i c a l  l i m i t a t i o n s  i n  o r d e r  t o  u n d e r s t a n d  b e t  e r  w  Y  C o n c u r r e n t  
o f  o t h e r  f o r m a l i s m s ,  s u c h  a s  H o a r e ' s  C S P  W  a n d  B r i n c h  H a n s e n  C o n c u r r e n t  
P A S C A L  ( I )  h a v e  c o n s i d e r e d  i t  n e c e s s a r y  t o  r e l y  u p o n  i n  e  D r e f e r e n c e  
l i k e  s p e c i a l i z e d  i n p u t - o u t p u t  r e g i m e s  a n d  m o n i t o r  p r o c e s s e s  p  
t o  g l o b a l  d a t a  s h a r i n g .  
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INTRODUCTION 

au thors  [1^2]^  i n  t h i s  h a V S  b e e "  s t u d *e d  by a  number  of  
model .  In  addi t ion  to  be i  no  ^ t r o d u C * a  high  leve l  vers ion  of  the  
i n te res t ing  fea tures?  F i r s t  aof? '  ) , ° U r  m ° d e l  h "  a  n u m b e f o f  

sys tem;  ins tead  cer ta in  ac t iv i ty  counts  a re  not  used  in  our  
among tokens .  ' second ,  " inde te?mina t° - e d  t 0  r e s t r l c t  in te rac t ions  
these  may be  regarded  as  a r ic in l  5mina te  computa t ions  a re  permi t ted ;  
s ense  in  which  Su  ,  f r ° m  b a c k t r 4 c ^n9.  Thi rd ,  there  i s  a  
sys tem to  run  "backwards  "  F i l ! a n t S  a r e  in te rchangeable ,  a l lowing  the  
r epresen ted  by  a  f ln fV.  n a I 1 y '  recurs ive  computa t ions  can  be  
mechanism.  7  t l n i t e  ne twork ,  wi thout  an  ex te rna l  s tack ing  

o f  Kowalsk i  [3]  ,  ̂ nd^ho^hnw 6 . - ? 3 1 5 " '  W e  c o n s i d er  the  Logic  Prograas  
o f  the  type  cons idered  here  Th?= f a e  reduced  to  da ta f low networks  
rou t ing  i s  essen t ia l lv  1 S  h a r d l y  surpr i s ing ,  s ince  data  
Symbol ica l ly ,  a  = S I  +  CP,  SSZTSl 'Z  t 0  C O n t r o 1  a lgor i thms .  
F low,  and  CF fo r  Cont ro l  p  i  stands  for  Algor i thm,  DF for  Data  
equa t ion  A =  L + c  sugges ts  th?  c °n t ras t ing  th i s  wi th  Kowalsk i ' s  
model  p resen ted  here  i s  an  * t t C ° n ^  I o n  L o 9ic  -  Dataf low.  The 
models  wi th  the  log ic  v iew of  programming 0  r e c o n c i l e  previous  dataf low 

f lowgpp h r t or k Mirne P r anr e M nnl r b e r I i a  s t r u c t u " l  resemblance  to  the  
min i  ? - a r e  d i f f e ren t .  i n  par t i  i  a i t h o u 9h the i r  mot iva t ion  and 
min imal i ty  do  no t  appear  i n n the?r r t sys^m. '  t h * l a W S  ^  Glance  and 

EXAMPLE AND INFORMAL DEFINITIONS 

W© wi l l  presen t -
i l lus t ra t ive  example .  ® s y s t e m  in  an  in formal  manner  us ing  an 

d?noted a bi V c i r i l J e 9 e r ! -  ^"e^re '^ f tv? 3 "  compute  addi t ion  to: °y  c i rc les  and  boxes  t y f e s  °<  "odes  in  the  network ,  f igure  1 .  T h e  „  
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circles are called places, while those denoted by boxes are called 
ctivit^ boxes (the reader will note the resemblance to a Petri Net 

[5J). The places are joined to the activity boxes, and vice versa hu 
"« «•"«« "MS- The point, wheio th. il„„ J" JtM 

t w o ^ a r £  

dn.„y po"̂ ?"0"" by 

they JfiFThearules9 Tt^ may PauS throu?h the network, provided 
Tokens come in tio Carietiel" >5L£«2OU»5* °f " 3 klnd ol P»tlcle-
of a token has nothing to Co JfSTTTT~ ^^±tive (note: the sign 
Tokens i^TTravel along lines Positive 9? Z value lt carries), 
moving in the direction of t-ho = five tokens are restricted to 
travel against the arrows— t v rrows, while negative tokens may only 
c i reurostances7 an TnZ-ctlln™?* 3t plaC6S' Under certai" 
consists of single tokens enter"; no ^ occur at an activity box. This 
the lines, wililfe n^w tokens 0? Si"* °"e °r m°re (P°"ibly all, of 
the remaining lines. The tokensthat" / 9n' "* emitted along 
disappear from the network Th. JU? * enter are absorbed, and 
is called an event. Eacheventif °f*aCh toKen lea^ng or entering 
to the valu^lCried Sy^he tlken^^r^ hf# a Value' 
participate in the interaction Ce !? events involved are said to 
f̂ iFTlfeipate in the sLI Stelae L . are coactiv* if 
to be coactive with itself We mlv* I • 6Vent ls also considered 
a box; this means that the events fat tokens interact" at 
tokens are coactive. One of ;hP box) corresponding to the 
occur is the Consistency Law: the f?r an interaction to 
must satisfy the relation associated u-,uS , e Participating events 
a token carrying value p enters alona a r activity box. Thus, if 
carrying g leaves along a line malke^-x+ll^then"^!" WMle * t0k6n 

v and' w°nInntIIgCreheiInt"eC®|gf"d t h e  n e t w o r k  <m«ked u,  
d1V1uy b°X* The events consistingf tZ ®ing afctached to a special 

and the output token(s) leaving th lnPut token(s) entering, 
romn t d \an lnteraction at this box /I netw°rk are considered to 
computed by the network as bei™ th ™?y think of the relation 

thP̂ wô >S3??f ̂  thiS 'he Cons is tency9La w°i ̂enforced ̂by 

theyT^:^ntLoc-ri^:; »?:?enjhjorts aresaidtobe uss- « 
. one of the ports and enterinci t-h676^3 correspond to the token 

such events is called a transit 0 9 other,. An ordered pair of 

Notice°Cthat Sis* e2 occurs"S (6l'62) iS P°Sitive-
el to the this may involve a positive t Z negative port, 
directlo P°ru °f e2' or a negative t v token moving from the port of 
e2 is at e ^ transition is negative If60: ™ovin9 in the opposite 

positive one. Two traniTtion^ ; i1S at 3 ne9ative port and 
transitions (el,e2, and (e3,e4) connect 



P a g e  3  
i S )  

i f  e 2  a n d  e 3  p a r t i c i p a t e  i n  t h e  s a m e  i n t e r a c t i o n .  A  c h a i n  i s  a  f i n i t e  
s e q u e n c e  o f  t r a n s i t i o n s  { t l , . . . , t N }  s u c h  t h a t  t  s u b  i  c o n n e c t s  w i t h  t  
s u b  i + 1 ,  f o r  i = l , . . . N - l .  I f ,  i n  a d d i t i o n ,  t N  c o n n e c t s  w i t h  t l ,  w e  s a y  
t h e  c h a i n  i s  c y c l i c .  I f  t h e s e  a r e  t h e  o n l y  c o n n e c t i o n s  ( i . e .  t l  d o e s  
n o t  c o n n e c t  w i t h  t K  u n l e s s  K = I + 1 ,  o r  I = N  a n d  K = l ) ,  t h e  c y c l i c  c h a i n  i s  
e l e m e n t a r y .  I n t u i t i v e l y ,  a n  e l e m e n t a r y  c y c l i c  c h a i n  v i s i t s  
I n t e r a c t i o n s  a t  m o s t  o n c e .  W e  w i l l  a l s o  c a l l  a n  e l e m e n t a r y  c y c l i c  
c h a i n  a  c i r c u i t .  A  c h a i n  i s  s a i d  t o  b e  b a l a n c e d  i f  t h e  n u m b e r  o f  
p o s i t i v e  t r a n s i t i o n s  i s  e q u a l  t o  t h e  n u m b e r  o f  n e g a t i v e  t r a n s i t i o n s .  
N o w  s u p p o s e  C  i s  a  b a l a n c e d  c i r c u i t .  W e  s a y  C  i s  s h o r t e d  i f  i t  i s  o f  
t h e  f o r m  { . . . , ( a , e l )  ,  .  .  . , t K  ,  ( e 2 , b ) , . .  .  }  ,  w h e r e  ( 1 )  {  ( a , e l ) , . . . , t K }  i s  
b a l a n c e d ,  ( 2 )  e l  a n d  e 2  o c c u r  a t  a d j a c e n t  p o r t s .  T h e  i d e a  i s  t h a t  i f  
e l  a n d  e 2  w e r e  l i n k e d  t o  e a c h  o t h e r  i n s t e a d  o f  a  a n d  b ,  t h e n  
{ ( e 2 ,  e l )  t K }  w o u l d  b e  a  c i r c u i t  o f  s h o r t e r  s i z e  t h a n  t h e  o r i g i n a l .  

V i e w e d  a s  a  c o m p u t i n g  d e v i c e ,  t h e  n e t w o r k  o p e r a t e s  
n o n d e t e r m i n i s t i c a l l y .  G i v e n  s o m e  i n i t i a l  t o k e n s  p l a c e d  a t  b o u n d a r y  
p o i n t s  o f  t h e  n e t w o r k ,  a  c o m p u t a t i o n  i s  a  s e q u e n c e  o f  .  i n t e r a c t i o n s  
s a t i s f y i n g  t h e  f o l l o w i n g  c o n d i t i o n s :  

1 .  A t  t h e  e n d  o f  t h e  c o m p u t a t i o n  t h e r e  a r e  n o  t o k e n s  l e f t  i n  t h e  
n e t w o r k .  

2 .  L a w  o f  B a l a n c e :  e v e r y  c y c l i c  c h a i n  i s  b a l a n c e d .  

3 .  L a w  o f  M i n i m a l i t y :  n o  c i r c u i t  i s  s h o r t e d .  

T h e  L a w s  o f  B a l a n c e  a n d  M i n i m a l i t y  a r e  u n u s u a l  i n  t h a t  t h e y  a r e  g l o b a l  
r a t h e r  t h a n  l o c a l  c o n d i t i o n s  o n  w h a t  c o n s t i t u t e s  a  v a l i d  c o m p u t a t i o n .  
A t  t h e  t i m e  a  p o t e n t i a l  i n t e r a c t i o n  i s  b e i n g  " c o n s i d e r e d ,  i t  m a y  n o t  
b e  e a s y  t o  d e t e r m i n e  w h e t h e r  i t  i s  c o m p a t i b l e  w i t h  t h e  L a w s  ( e x c e p t ,  
p e r h a p s ,  b y  t r y i n g  i t  a n d  b a c k t r a c k i n g  i f  n e c e s s a r y ) .  W e  w i l l  n o  
c o n c e r n  o u r s e l v e s  h e r e  w i t h  h o w  t o  e n f o r c e  t h e  L a w s  i n  a n  
i m p l e m e n t a t i o n .  O u r  p r i m a r y  i n t e r e s t  i s  i n  t h e i r  u s e a s  a  t h e o r e t i  a  
d e v i c e  t o  c h a r a c t e r i z e  c o m p u t a t i o n s .  T h e  m e a n i n g  o f  
s h o r t e d - c i r c u i t "  c o n d i t i o n  w i l l  b e c o m e  c l e a r e r  a  e r .  .  
s p e a k i n g ,  i t  e n s u r e s  t h a t  e v e n t s  a r e  l i n k e d  i n  s u c h  a  w  y  ,  
t h e  s h o r t e s t  c i r c u i t s .  T h e  m o t i v a t i o n  f o r  t h i s  i s  o  p  
b e l o n g i n g  t o  d i s t i n c t  p r o c e d u r e  c a l l s  s e p a r a t e .  

C o n s i d e r  f i g u r e  1  i n  t h e  l i g h t  o f  t h e s e  d e f . i ^ i o n s  S u p p o s e  
t o k e n s  ( n e c e s s a r i l y  p o s i t i v e )  w i t h  v a l u e s  3  a n  ,  ~ o m D u t a t i o n  i s  
i n s e r t e d  a t  t h e  p o s i t i o n s  m a r k e d  " u "  a n d  v .  " e . v  .  a - t i v i t v  b o x  
a s  f o l l o w s :  t h e  t o k e n  w i t h  v a l u e  2  i s  a b s o r b e d _ a t  t h e  a c t i v i t y  b o x  
m a r k e d  B .  
B  a n d  a  
i s  a b s o i  

w t i w t h .  l . »  O £  B e  

t h e  n u m b e r  o f  c y c l e s  a t  A  b e  e q u a l  t o  t h e  n u m  ® | [  w i t h  t h e  t o k e n  
c o u l d  c o n s t r u c t  a n  u n b a l a n c e d  c y c l i c  c h a i n  t  a  b a c k  t h r o u q h  t h e  
a t  - u , "  f o l l o w s  t h e  c y c l e s  t h r o u g h  A ,  t h e n  t h r o u g h  C ,  b a c k  t h r o u g h  
c y c l e s  a t  B  a n d  e n d i n g  a t  " v " )  .  
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Now a  negat ive  token with value 3 emerges  at  the  bottom of  r 
The two interact ions  required by the  Law of  Balance now take place  at  
marked" 3 "^" 3  At th , C a r r y l n 9  5 . e m e r 9 e s  from the network at  the  point  

^  this  point  there  are  no tokens  le f t  in  the n e t w o r k  
The reader may sat is fy  himself  that  a  val id  computat ion must  result  i n  a token with value 5  emerging at  "w.  "  H  result  in 

F im,ri  f 6 a £ u r e  o f  t k e  m o d e l  i s  t h a t  the  networks are  mult i -purpose .  
insert ing ini  t  ia i m ?okens°aJ  ̂ he  "^""iJ^thi l  
case ,  the  answer token emerges  at  •  r»  k  ,  

entering or  emerging at  t^  ^  represent  the  values  on the  tokens 
respect ively)  .  That  i s  "? r k * d ,  "v" -nd V  
computat ion that  outputs '  that  l a i r  a n  P  '  1 3  a  V a l i d  

outputs  such a  pair  This  lpartf  e v ery val id  computat ion 
"backwards." Another poss ible  mode t o , s p e a k  o f  the  network running 
V" m this  case  *£»?t* 2  t 0  f n s e r t  tokens  at  "u," "V and 
annihi lat ion of  the  input  t o k e n s  c o ™ p ^ t a t i o n  W H1 simply result  in an 
u+v=w.  P U t  t o k e n s -  This  can occur i f  and only  i f  

I t  turns  out  to  be necessarv 
al lowable  network conf igurat ions  i t  i t  r e *trict ions  ° n  

the  networks be proper in  the  = .  convenient  to  require  that  
P lace  node . .yMriFc^n.St .S  "" " t n  •>«"<»>».  '  
( i .e .  posi t ive  or  negat ive)  in  the  sem t h a n . o l ? e  P o r t  o f  the  same type 

" i lner's  second condit ion i s a c t i v l t y box.  Notice  that  
o f  intermediate  place  nodes  1 S  3  c o n s e c ^ u e n c e  °f  jo ining boxes  by means 

NEUTRAL LINES 

t y p e  N o f  ' t o k e r u 6  ^ h e s e  a r e  neutralVJ* 3 b ° V e '  i n t r o d u c e  a  t h i r d  

l i n e s ,  w h i c h  a r e  d i s t i n g u i s h e ^ T ^ 1 1 1  t o k e n s  a n d  t h e y  t r a v e l  o n  n e u t r a l  
a r r o w ,  i . e .  t h e y  a r e  1  r  "  d l ^ r a m s  b X  n o t  c o n t a i n T H T ^  
n e u t r a l  l i n e  a r e  c o n s i d e r e d  t o  b e  l * '  T h e  p o r t s  a t  o p p o s i t e  e n d s  o f  a  
£ £ £ t s .  A  n e u t r a l  t r a n s i t i o n  L  ®  a n d  a r e  c a l l e d  " e u t r a l  
w h e t h 2 n t ^ n  n e u t r a l  t r a n s T t T o n s  ? h « V °  9  a  n e u t r a l  t o k e n .  C h a i n s  

h e r  t h e  c h a i n  i s  b a l a n c e d .  "  h e s e  a r e  i g n o r e d  i n  d e t e r m i n i n g  

We wi l l  a lso  relax-  n , D  , ,  
Inont* a n  a c ^ i v i t y box for  an interim t h a t  a t  l e a s t  o n e  t o k e n  n u s t  

that  th?°  y  e m l t  t o k e n s  alonq a l l  I f"/ 0  occur.  That  i s ,  a  box may 
Howpyor ^would result  in  m a n y  °  1 I n e s -  I t  might  be thought  
token i 'o l n - a  v a l id  computat ion therp° S S  computat ions  in  f igure 1.  
en£eriJ  r i n g  C  i s  equivalentto22 1 3  J S e n s e  i n  *h*ch a posi t ive  
ant ipart ic les 1 " a m a n n e r  reminiscent  I f  R V - c h t 0 k . e n  w I t h  t h e  s a m e  v a l U f  going :  a  n e 9 a t ive  token m l ,  K Orchard Feynman's  view of  
reverse  th 3  S  i n  t i m e -  We m2v Ln? t h o u 9 h t  of  as  a  posi t ive  token 
"transL^-  f l ° W .  o f  ««« on v 22?^ t h i S  i d e a  t 0  success ively  
ones  whirh 1 < ' n S '"  i t :  i s  Possible  to  r  2 U S  a r c s " B y a sequence of  such 

involve  the  same values  (a l l ! 6  t h ® n e w  computat ions  to  old 
values  (a l though generated in  a di f ferent  
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order). 

Figure 2 shows an example of the use of neutral lines. This 
network can be used to compute the factorial function. Suppose a 
token with value 3 is inserted at "u." One computation proceeds as 
follows: three interactions occur at A, until a token with value 0 is 
produced. This travels down to be absorbed at C. Meanwhile, tokens 
pile up on the neutral line. Next, a negative token with value 1 is 
spontaneously emitted from D. Three interactions now occur at B, 
using up the tokens on the neutral line. Notice that for the Law of 
Balance to be satisfied, the tokens on the neutral line must be 
absorbed in reverse order. Finally, a token with value 6 emerges at 
"v." This sequence of interactions simulates a recursive computation 
of factorial. The same network can simulate an iterative computation. 
In this sequence, the initial token waits at the first place it 
encounters. boxes C and D spontaneously emit tokens. Two 
interactions each at A and B are interleaved. A third interaction 
occurs at A, with the waiting initial token joining in. A final 
interaction occurs at B and the answer token emerges at "v." 

It is worth noting that the necessity for neutrai lines 
disappears if we are willing to allow non-simultaneous events to 
participate in an interaction (recall that this is already true for 
I/O). With this approach we could combine A and B in figure 2 into a 
single box. Places could also be dispensed with, since it would no 
longer be necessary for tokens to wait until their "mates" are ready 
before entering an activity box (however, it is convenient to retain 
"places" as a pictorial device to reduce the criss-crossing of arcs -
see figure 2a). We will adopt this viewpoint in a subsequent section. 

LOGIC PROGRAMS 

We now consider the logic programs of Kowalski_[3,8] . The reader 
amiliar with these will already have noticed a number of 
imilarities: the multi-purpose character of both systems a"d their 
ack of commitment to top-down or bottom-up processing. As we shall 
ee, there is a sense in which dataflow networks, as e ine af.'fiow 

imply a syntactic variant of logic programs. e e e dprstand;nq 

nterpretation will promote significant advances in the understan ng 
f such programs and of computation in general. 

The reduction to a dataflow network proceeds as J0"®"®* 
rite the logic program as a set of .clauses, ^ • ̂ 3 
lause. We will restrict our attention to Ho " vowaiski [7] 
hows an example. The connection g.raph, introduced by K waIsk 1 [7], 

inks literals among the conditions of a clause wi literals match if 
n the conclusion of the same or other clauses (two l^erals 

hey have the same predicate name). Thus, in g each of the 
plU.V.WP and -pp^x VP)" ara both connected to each o^the 

iterals "plus(X,0,X" and "plus (X,Y+1 ,z+u . _ .* iX 
ef inition slightly: for each predicate name,-estalblish ^special 

ode called a predicate node. Now replace ea condition literal to 
onnection graph by two arcs, one going from ina~from the predicate 
he appropriate predicate node and the other going from the preo 



)S1 ' 
node to  the conclusion l i teral .  We a lso direct  the arcs  in  a  

'  T h e  r e s u i t  o f  t b e"  modif icat ions ' : :  

By our  or ientat ion of  the arcs ,  we do not  m**. ,  •  :  ,  

ZTct'T Wo" condition T̂ A.', 
otherwise b lT. t™S  »•«" 

We are  now ready to  def ine a dataf low network For  » ,nk ,  draw a  box.  Wri te  eeoh aro, ,m«w. t  atJ-uw network.  For  each clause,  
posi t ion „„ the pe"ime"r  of the h^P"SS l° . n '  " c h  "*«•».  «  
several  nodes,  " 'n&S' t f jh .  -erfL- 'ol  
or iginal  arc  is  l ikewise sol i t  into r l t y ,  o f  t h e  Predicate .  Each 
a t tached to  the apu oori  ?  s  several  arcs ,  and these are 
i s  i l lust ra ted in  f igure 5 ( iqnorem the  r t*f t eaSn n S  t h e  boxes.  T h i s  

box,  for  the moment)  This  ends t h e  "9»>t-han<l  
dataf low network.  (We can improve i t«  canonical  t ransformation to a 
not  a t tempt  to  just i fy  here  "cut a p p* a r a nce by a  means we wil l  
dot ted l ines ,  to  obtain three bovn<= L  6  r l9 h t -band box along the 
two may now be renamed.  with minor  var iables  in  the r ight-most  
the  network shown in  f igure 1 . )  cosmetic  changes,  th is  gives  us 

th is  G t raLforma rUon i to iclLsL n^%\r n f i 9 U r a t i o n '  W e  C a n n o t  aP^ 
twice in  the body,  e .g  xf ibr iu  same predicate  symbol  occurs  
th is  example,  Urn. s^ch 2«, <"X"b<N-' •*(i» 
confusion of  tokens) .  This  mav f i r iJ  i f  necessary to  avoid a  possible  

y Lirsz  De t ransformed to  the pair :  

x1!b^(N^J; f^;N b^^)^f ibl(N- 2 ,y , .  

The t ransformation may then be completed as  above.  

g t t i"  ̂ e^ t^^™ a t  «P "  the-
nroaram 6  resul t ing network computes  the ® v e ry iogic  program. Assuming 
S i -  ~ t 0  b e  p r o v e d  below -  t  „n m e  r e l a t i o n  a s  t h e  original  
netwiikf  C a n  b -  c o mPuted by some such°W S  b  e very par t ia l  recursive networks const i tute  a  ** »»»" 

An i „• 

procedures  

are  actual l f 6^ f 3"  b e  Stained by us in^? 6 5? 3^ T h* benefi ts  of  the 
th is .  The ann n S t W° r k S -  B o x  B  in  f iqure"? • b o x es  to  represent  what  
pr imit ives  "  p p r o a c h  might  be referred f- 1 S  a c t u a l ly an example of  red to  as  "promoting the 
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CORRECTNESS & 
In this section we show the dataflow interpreter is correct in 

the sense that the network obtained (without cutting) from a logic 
program computes the same relation as the original program. 

Before proceeding, we require some additional concepts. Suppose 
a and b are events in a computation. Let C = {<e,f>,...,<g,h>} be a 
chain such that e is coactive with a and h is coactive with b. Let s 
be the algebraic count of transitions in C, i.e. the number of 
positive transitions minus the number of negative transitions. Let CI 
be another such chain joining a and b, with count si. Then s = si; 
otherwise we could create an unbalanced cyclic chain by splicing 
together C and CI. Thus the value of s is independent of the 
particular chain used to join a and b. We call s the separation from 
a to b, abbreviated as sep(a,bj. The following can be easily derived: 

1. sep(a,b) = sep(a,c) + sep(c,b), for any event c. 
2. sep(b,a) = -sep(a,b). 
3. If a and b are coactive, then sep(a,b) = 0. 

Now let e0 be any input/output (I/O) event and let e be any other 
event. We define the depth of e by: 

depth(e) = sep(e0,e) 

Clearly, the value of depth is independent of the particular e0 
chosen. From 1 and 2, it follows that sep(a,b) = depth(b) - depth(a). 

Next we prove the following lemma for networks arising from the 

canonical transformation. 

LEMMA: Let A and B be two positive ports in an activity box. Let C 
and D be negative ports of a neighboring box such that A is adjacent 
to C and B is adjacent to D (see figure 6). Suppose a,b,c and d are 
events occuring at A,B,C and D, respectively, such that a is coactive 
with b, c is coactive with d, and a is linked to c. Then is in e 
to d. 

PROOF: Notice that there may be other, competing, ports adjacent to 
the ones of interest, as indicated in figure 6. We will call t 
ports in an activity box "partners" if each is connec e 
place nodes shown in figure 6. Thus A and B are par ne , Dorts 

and D. We will also say two events are partners l ( ) P 
are partners, and (2) they are coactive. In this sense a and b are 

partners, and so are c and d. 

Now consider the sequence { el,e2,e3,e4,,..} where el-b, e2 a, 

e3=c, e4 = d and, for all i, 

e sub 2i is the partner of e sub 2i-l 
e sub 2i+l is linked to e sub 2i. 

Since the number of events in the entire computation 



/^><.ve 9 : A/ervoe/r p-CQ QF/fcT 
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iS} 
eventually an element in the sequence will recur. Let eN be the first 
recurring element. Claim: eN=el. Suppose contrariwise that eN=eI 
where 1 < I < N. Since an event has a unique partner and also a 
unique "linkee," it follows that e sub 1-1 = e sub N-l. That is, e 
sub N-l is a recurrent element. This contradicts the fact that eN is 
the first such element, establishing the claim. N may now be seen to 
be odd; otherwise e sub N-l is the partner of el, i.e. a. In fact, 
N must equal 5. If N > 5 then the sequence is of the form 
{el,e2,e3,e4,p,...,q,eN}. We may rearrange the events in the sequence 
to form a cyclic chain {...,<q,el>,<e2 , e3> , <e4,p>,...}. Since each 
event in the chain interacts only with its unique partner (among the 
events of the chain), the chain is elementary. However, the chain is 
shorted since {<q, el> , <e2 , e3> } is balanced, and el occurs at B while 
e4 occurs at the adjacent port D. Thus, the assumption N > 5 is 
incompatible with a valid computation. It follows that N = 5. Hence 
d is linked to b. This completes the proof of the lemma. 

It is now straightforward to prove correctness. We note that the 
negative ports of a box correspond to the arguments of the head 
literal of the clause from which the box is derived. We will show 
that a set of interacting events at these ports must satisfy the 
predicate of the literal. 

PROOF: By downward induction on the depth of the events. Consider 
events of maximum depth first. These must occur at a box with no 
positive ports (otherwise there would be events of greater depth). 
Such a box corresponds to a clause with empty body, i.e an assertion. 
In this case, the relation associated with the box is such that events 
satisfying it satisfy by definition the predicate of the head literal. 
Therefore, the Consistency Law ensures the result for events of 
maximum depth. Now consider a set at depth n, w ere n l -
the maximum depth. Assume the result is true for all depths greater 
than n. If the current box has no positive ports, the result is true 
as before. Otherwise there are events at the positive ports that are 
coactive with the set we are considering. These are linked t^ sets 
events of depth n+1 at other boxes. By ininction, these satisfy 
head literal predicates for their boxes. It ollows the ev<ents 
at the positive ports in the original box satisfy the predicates 
the body of the clause. Utilizing the Consistency Law, the events 
the negative ports satisfy, by definition, the predicate of the 
literal. This completes the induction. 

T 
Events 
are co 
The 

iW ".witO,' of. the ~head 1 U.t,:̂  »... ̂th. 

conclusion). The body of the clause is assu respectively, 
whose arguments correspond to the por s will be of depth 
Assuming the events at 0 .are. of ̂depth ".^hose^E ^ 

the same as 
nee linked 
sfy this 
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P a g e  9  

p r e d i c a t e .  S i m i l a r l y ,  t h e  e v e n t s  a t  F  s a t i s f y  t h e  p r e d i c a t e  o f  t h e  
l i t e r a l  t h e r e .  I t  f o l l o w s  t h a t  t h e  e v e n t s  a t  G  s a t i s f y  t h e  p r e d i c a t e  
o f  t h e  h e a d  l i t e r a l  o f  b o x  A .  

B y  t h e  p r e c e e d i n g ,  t h e  I / O  e v e n t s  m u s t  s a t i s f y  t h e  p r e d i c a t e  o f  
t h e  c l a u s e  c o r r e s p o n d i n g  t o  t h e  I / O  b o x ,  i . e .  t h e  g o a l  c l a u s e .  T h u s  
t h e  d a t a f l o w  i n t e r p r e t e r  i s  c o r r e c t .  W e  w i l l  n o t  p r o v e  c o m p l e t e n e s s  
h e r e ,  b u t  i t  i s  n o t  h a r d  t o  s e e  t h a t  l o g i c  c o m p u t a t i o n s  w h i c h  r e s u l t  

n  f u l l y  i n s t a n t i a t e d  v a r i a b l e s  c a n  b e  m i r r o r e d  b y  d a t a f l o w  
c o m p u t a t i o n s  o f  t h e  t y p e  d e s c r i b e d .  a a t a t i o w  

D E T E R M I N A T E  C O M P U T A T I O N S  

W e  h o p e  t h e  m a c h i n e r y  d e v e l o p e d  w i l l  p r o v e  u s e f u l  i n  
I s  S I X J r 1 ? ?  a d o o t i t : ? h S  f ° r  ? , r e a t e r  e " i c i e n c y .  F o r  t h i s  p u r p o s e  i t  
p a r t i c i o a t i n a  f n  P  ^  p o s l b l o n  m e n t i o n e d  e a r l i e r ,  t h a t  e v e n t s  

e a  u  i n t e r a c t i o n  m a y  b e  d i s p e r s e d  i n  t i m e .  I n  t h i s  
w h i c h  a r e  r J ! 9 a r d  3  c o m P u t e t i o n  a s  a  s e q u e n c e  o f  e v e n t s  
r a t h e r  L  t h r o u g h  a  s t r u c t u r e  o f  l i n k s  a n d  i n t e r a c t i o n s ,  
c o m p u t a t i o n s  w h i c h  S e q u e n = e  o f  i n t e r a c t i o n s .  W e  m a y  h a v e  t w o  
d i f f e r e n c e  b e i n a  t h a i -  i d e n t i c a l  i n  s t r u c t u r e  a n d  v a l u e s ,  t h e  o n l y  
r e c u r s i v e  a n d  i t o r a M  6 V e n t S  ° C C U r  i n  a  d i f f e r e n t  o r d e r .  T h i  
e x a m p l e  o f  t h i Q  t o  v e r s i o n s  o f  f a c t o r i a l  c o n s i d e r e d  e a r l i e r  a r e a  
s h a l l  s e e  t h a t  f r o m  a n V " ?  ° r d e r f n 9  t o  b e  P r e f e r r e d  t o  a n o t h e r ?  W e  
r e q u i r e d  f o r  o n e  m a v  b 2  P ° i n t  o f  v i e w '  t h e  b a c k t r a c k i n g  
p r o v i d e s  a  p o w e r f u l  i n c e n t i v e  " r  c h o o I f n g ' J h e  bi l l  o ldel l^"'  ™ S  

p o i n t  t h e r e  w i  1 1  " ^ e ^ e v e r a  1  * * v o t e n t i  ™ l d d l e  o f  a  c o m p u t a t i o n .  A t  t h i s  
t h e  w r o n g  o n e  i s  c h o s e n  w e  m a v  l a t e !  t r a n s i t i o n s  t o  c h o o s e  f r o m .  I f  
h o w e v e r ,  t h a t  o n e  o f  t h e  !  ,  h a v e  t o  b a c k t r a c k .  S u p p o s e ,  
( p e r h a p s  b e c a u s e  o f  t h e  C o n s i s t e n c y  r ?  h 3 S  ° n l y  ° n e  P l a c e  i f c  c a n  9 0  

c o n t i n u a t i o n  f r o m  t h i l  n  *  " t h e r e  i s  a n y  v a l i d  
s o m e t i m e .  S i n c e  t h e  v a l i d i t v ' n f  t - K  h a v e  t o  i n c l u d e  t h a t  t r a n s i t i o n  
o r d e r  o f  t h e  t r a n s i t i o n s  „  c o m p u t a t i o n  i s  i n d e p e n d e n t  o f  t h e  
a r e  g u a r a n t e e d  " " n i  J o t  J a S r t . a V e l l * m a k e  t h a t  t r a n s i t i o n  n o w .  W e  
w i t h  t h i s  p r o p e r t y  a  u n d o ? e -  W e  c a l l  a  t r a n s i t i o n  
e v e r y  t r a n s i t i o n  i s  d e t e r m T n a t e ~ T f  A  c o n l P u t a t i o n  i n  w h i c h  
I t  i s  i m p o r t a n t  n o t  t o  c t f u  " d ' h !  3  d e t e ™ i n a t e  c o m p u t a t i o n .  
T h e r e  m a y  i n  f a c t  b e  m o r e  t h a n  o n *  ,  ® t e r , ? l n a t e "  w i t h  " d e t e r m i n i s t i c . "  
a  g i v e n  p o i n t ,  s o  t h a t  t h e  c o m p u t a n !  F m i n a b e  t r a n s i t i o n  a v a i l a b l e  a t  
t h e  f a c t o r i a l  e x a m p l e  c o n s i d e r e d  i 1  n o n - d e t e r m i n i s t i c .  I n  
r e c u r s i v e  c o m p u t a t i o n s  a r e  d e t e r m i n a c ! r * l e r  b ° t h  t h e  i t e r a t i v e  a n d  " t e u m n a t e  i n  o u r  s e n s e .  

A s  a  f u r t h e r  e x a m p l e ,  c o n s i d e r  a  f u n c t i o n  Q F A C T  d e f i n e d  b y :  
Q F A C T ( 0 ) = 1  
Q F A C T ( N ) = N * Q F A C T ( N / / 2 )  

c o m p u t e d  b y  t h e  
e  t h e r e  i s  

h o w e v e r ,  
T h u s  t h e  
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IS") 
iterative computation is indeterminate. On the other hand, N//2 is 
uniquely determined by N, so the recursive computation is still 
determinate. 

It should be pointed out that not every network admits a 
determinate computation. Some elaboration of this concept would be 
required for more general applicability. 

FUTURE DIRECTIONS 

The formulation of the dataflow interpreter developed here may 
not be the ideal one. It may be worthwhile to experiment with 
different sets of constraints. There are many open questions 
concerning allowable "box operations." The general problem of choosing 
transition sequences to minimize backtracking needs to be porously 
attacked. It would also be desirable to map out the relationship with 

other models of computation. 

The author is of the opinion that many of the earlier models of 
computation have outlived their usefulness. The .^na™Wm^t^ 
develop models that correspond more close y fipviblv It is hoped 
structures that practising programmers use so flexibly. It hoped 
the present work is a small step in that direction. 
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Abstract 

LDM is a software development method based on the ideas of logic 

programming (PROLOG^) and the Vienna Development Method (VDM). The 
paper gives an overview of the main features of the language of 

LDM, making also a comparison with VDM and PROLOG. An illustrative 

example of the development of a simple assembler is presented, 

finally the experiences in using the method and further plans are 
summarised. 

1. Introduction 

•,T' ™ """" ̂  Development 

r, °Ut " Hungarian instltut.s for 
software development, S2KI and JJIM IGligZI. LDM 1, i.,..,., to 

give more than its name eiDre=;«d- 4 + 
3me exPresses it covers not only a method 

lor the develoDment of software ^ * 
, J . " s°ftware-ob0ectsf but also a language to 

be used during development, and a svstem *»n + • 
primarily deals with the il supporting it. The report 
basis of the anguage, since it constitutes the formal 
Dasis of the system and reflect* . , 

fundamental features of the method. 

ST"-

s 
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LDM canie into being as a combination of two existing languages 

(respectively methods): the PROLOG language P3 based on logic 
and the VDM (Vienna Development Method1) [2]. Besides these LDM was 

influenced by the languages IOTA CLEAR £3] and CIP [lj, also. 
The starting point was the PROLOG language; its successful applica
tions resulted in the idea of trying to apply it for formulating plans 
of software objects. The first experiments in this direction were 
very promising. On the first hand PROLOG, as a sublanguage of first 
order logic proved to be suitable for specifying and design soft

ware-objects. On the other hand execution mechanism of PROLOG 
helped considerably in immediate checking, testing of the 

specification during preparation. However, PROLOG is lacking 
in tools for adequate handling of the plethora of data structures. 

Exactly this possiblity whs found later in the domain notion of 
VDM. Thus LDM adopted from PROLOG the logic-based definition 

mechanism (and so inherited constructivity, that 
is executability of abstract descriptions), and from VDM the 
notion of domains (that is data types) and their handling. 

With the help of domains and operations in LDM software objects 

can be modelled on the whole range of abstraction levels. 
Exploiting this possibility, LDM supports a multi—level development 
process: an implementation can be reached from the specification 

through several intermediate design levels having a lower and 
lower degree of abstraction. Each level gives the whole descrip
tion of the object in question. Each level is a reformulation of 

the previous one with some abstract notions replaced by more 
concrete ones, (l'his is opposed to the other usual interpretation 

of the phrase "abstraction level" when the lower level is meant to 
supply the definition of the notions left undefined in the previous 
level.) The idea of a multi-level development process is also pre

sent in VDM [_zj, however LDM aims at supporting this process by 

language and system constructs, as well. 
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Objectives of LDM are partly the same as those of VDM: 

- to support each phase of software development 
(though primarily software design), 

- to use a homogeneous formalism built on mathematical bases, 

- to aid a design method applying several abstraction levels« 

to give abstract, descriptive, applicative language elements 
(types of objects, operations) for specification, design 
phases, and concrete, algorithmic, imperative sorts for 
implementation phases. 

LDM differs essentially from VDM in that it is intended to design 
software only, but not to define semantics of programming langua
ges. It is this restriction that makes it possible, for the goals 
of LDM to exceed those of VDM in the following respects: 

- LDM has a constructive, strictly defined and implementable lan
guage; therefore each level of the plan written in that langu
age can be executed and tested independently (from execution of 
other levels^, while verifying the interfaces between neighbourly 
levelsj 

— language structures reflpr+ino- ^ . x "tmg the process of the software design 
are introduced, both in order to Hi.ij t , divide plans into levels and to 
decompose levels functionally. 

r "" lans"ase a- *•" «... 
Pl" illustrates the introduced notions. 

A detailed description of the c„ ^ ̂ p0j. 



2. Outline of the features of the LDM language 

The LDM language is used for describing different levels of 

abstractions which model software objects. Accordingly it 

provides abstract notions corresponding to notions of data 

and algorithms used in traditional programming languages. 

2.1. Domains 

Data appear in LDM as suitable mathematical_objects (e.g. 

numbers, sets, functions)). The class of objects used for 

the same purpose, having the same structure constitute a 

domain. 

The notion of domain corresponds to that of a data type, so 

the expression "is from domain t" is equivalent to "is of type t". 

There are simple and composite domains in LDM. A simple domain 

contains some kind of unstructured simple objects (e.g. num

bers). A composite domain (e.g. that of pairs of numbers) 

contains objects having the same structure and it can be 

constructed from one or more domains by systematical appli

cation of some ob^ect_constructing_operation. 

Beside simple and composite domains so-called derived jiomains can 

also be defined in LDM. Definition of a derived domain does not 

introduce new objects, it creates a new domain from objects of 

existing domains (e.g. the domain of even numbers). 

One can use so-called domain.expressions for identifying 

domains in the text of a plan description (e.g. the domain of 

pairs of numbers is denoted by "struct (number, number)»> 

With the help of domain_definitions one can denote the used 

domains by identifiers 
(e.g. "pairs-of-numbers str^(number,number). ). 

The simple domains of LDM are the following: 

number - the domain of integers; 
• + a sinele object named by a ? the a - the domain containing a single j 

"a" is any name determined by the designer ; 
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The Composite domains are the following (let "t", 

"t^" denote any domain, "a" any name}: 

list t - the domain of finite lists (sequences) 
of objects from "t"; 

set t - the domain of finite sets of objects 
from "t"; 

- trUC|t (V •••» tn) " the domain of structures (>rees), 
i-th components of which are objects 
from "tj"; 

HE C*l» *2 ^ - the domain of finite mappings, which ma 

a finite number of objects from »t:" to 
objects from -t2"; 

naBe^ 3 ~ the domain, containing those objects, 
which are constructed from those of "t" 
by the operation of naming lagging) 
by "a", 

C„ r, ,y def;ln;Lt;LOn of the derived domains is the following 
{ P denotes any one-place predicate symbol); 

- the domain containing all the objects 
from both »t1" and "t2"; 

the domain of those objects from "t", foj 
which the predicate "p» holds. 

dleaiTdellhteroen:°nStrUCtS "  ̂ the following 

source-program:;=(Wt source-statement) suchthat wf-program 

This means, that a 
"source-statement", f0r whlcTJITp ^ °' °bjeCtS °f ^ 

r which the property «wf-pr0gram» holds. 

tj; t2 

t suchthat p 
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The language contains standard functions and relations for 

the different kinds of domains. 

For instance to an object SP of type "s—prog" the standard 

list-operations can be applied: among others the function 

"length SP" gives the length of the list SP, the relation 

"S el em SP" decides, whether S occurs in SP or not, etc. 

The notion of domain in LDM is almost entirely equivalent to 

that of VDM. The only essential difference between them is 

that LDM does not allow general (infinite) functions as objects 

(only finite map objects are allowed). The reason of this rest

riction is mainly the intention to have a constructive lan

guage, and it is justified by the restricted programme of the 

language (namely LDM is not for describing semantics of 

languages). A less significant change is, that the operation of 

composing structures and that of naming (distinction) is separated: 

VDM structures (non-anonimous trees) correspond to objects of 

form "struct (...) named ..." in LDM. Finally the notational 

differences between the two languages are given by the reason, 

that LDM aspires to be implementable using a restricted 

character-set. 

Operations 

The notion of operation in LDM corresponds to the algorithmic 

components of other languages. Operations can be described by 

operation definitions. "Operation" is a comprehensive name for 

relations, functions and procedures. Among them the notion of 

relation is the primary, and the two others are reduced to it. 

A relation definition is actually a logical formula of resticted 

form £he character of the restrictions is determined by the 

requirement of reducibility to Horn clauses - i.e. the possi 

of implementation in PROLOG). 
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The notion of function in iDM is a syntactic one, the function 

form is interpreted in the usual way as a relation (having U 

additional argument). In this approach the *any-v.lued ,W 

deterministic) functions are also included in a natural way. 

Relations and functions can be used in the descriptive definitions, 

in the phase of specification and early phases of design. On 

those levels of the plan approaching indentation it is 
necessary to write algorithmic definitions as well. 

The so-called procedure definitions serve this purpose. These 

on th b ^ f0rn,UlaS' "hi°h 3re - algorithm 
on the basis of the procedural interpretation of (Horn-) logic. 

i n  t h e l * ^ * 1 1 1 8  t 0  p * B a r k * t l » t  t h i s  p r o c e d u r a l  i n t e r p r e t a t i o n  

r4l1 SUaee CdeSi6ned for the implenentation of software sjst.s 

languages joining the LDM desic-n . 
In th. case of procedure. Prosp.cti,, .ppjio.tiom. 

» .  o f  g l o b a l ^  u  "  a d a l t l ° ° « 1  « . « « . ! » -

* relation ̂  
two further are + a is interpreted as a relation having 

™ Trtio<to th- *»d -
usual language construct. h,J- <•«•««•» "« 

to the. „d reading their 

are the already bUlldln£ blocks the operation definitions 

l o g i c a l  t Z Z  , T :  , " "  
•» the „h, of the ubmi — 

introduced to denote t h  Nation schemes are 

conditional, case struckCfop «« 
and bounded quantification). 
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Besides the operation definitions LDM descriptions contain 

some important additional elements. Every operation definition 

must be accompanied by a type specification, which fixes the 

type of the arguments of the operation. The already mentioned 

global variables can be introduced by variable definitions. 

Finally, there are additional constructs which can be used for 

structuring the plan; see the following section. 

The notion of the operation in LDM - as delineated above - is 

based on logic, or more exactly on PROLOG. This approach -

besides assuring the executablity of the plan {plan variants), 

makes the plan itself more concise and simple. Here primarily 

the following well-known feature of logic (relational) programming 

is referred to £6j: the same relation definition can be used for 

computing different functions, by changing the input-output role 

of the arguments. As a simple consequence of this feature the 

analogue of construction "let mk-D^...)^ ..." of VDM (which 

breaks down a structure into its components) is assured in LDM 

automatically. 

2.3. The structure of LDM plans - language elements provided for 

structuring 

As already mentioned in the introduction, the purpose of LDM is 

to support a multi—level design process going from specification 

towards implementation. Accordingly, an LDM-plan is divided into 

levels: a plan description is actually a sequence of level descrip

tions. The main components of level descriptions are the domain and 

operation definitions introduced in the previous two sections. Thsse 

are framed by the so-called define- and need_-_sp_e_ci_fications. 

The notions, with which the level provides the external world, 

are listed in the define—specification. These are the main 

operations and domains of the software object to be realized, 

which are defined by the level. In the need—specification we 

give the notions used but not defined in the level description, 

that is, we give our expectations about the external world. 
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The levels are the decriptions of different abstraction levels 

of the sane software object. Therefore it is very important to 

make clear the connections between the levels; the so-called 

interface—specifications serve this purpose. 

The main function of the interface-specifications is to fix the 

correspondence between the domains and operations of two conse

cutive levels (for the domains using a relation and for the 

operations by a logical formula"). 

Beside structuring according to the abstraction levels we also 

feel that the modularization of level descriptions is necessary, 

that is, their decomposition into independent parts is required. 

In LDM the notion of the grouj) serves this purpose. The groups 

are framed - similarly to the levels - by define- and need-

specifications. Outside of the group only those of its operation: 

and domains are visible, which are specified in this frame; that 

is, information hiding can be realized with the aid of groups. 

The groups also can be divided into so-called plan-parts; a 

plan part (or oriefly a part) consists of definitions related 

rom a certain point of view, but without the above mentioned 

-n ormation hiding property. The parts are useful for example 

with ̂  T ̂ 3d0Pt 311 a part to the nexi level 
without change; in this case on the new level it is enough to 

to the name of the part (using the ̂  keyvc>rd)< 

* A££^ij^n^LpM to a simple 

After the short survey of LDM (riven in +K 
LDM nl*n n-r given m the previous section the 

rio*d-The «•-—-
three levels of the plan. 

dinglTth/r61 T th£ SpeCifiCation the assembler (accordingly the name of the 1P,.I „ -

named "programs" says that a ^ ̂  

well-formed list of + ^ 1106 SOUrce Pr°gram is a 
of target st t a-events, and a target program is a list 

target statements; also it is stated that the result of 
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translating a well-formed source program is the list of the 

target statements resulting from translating the source 

statements in the appropriate order. 

The group named "statements" of the level gives the structure 

of the source and target statements, and defines - using an 

appropriate address calculating function - the meaning of the 

translation of a statement £with respect to the source program 

as an environment). The LDM-program of this level can be found 

after the figure. ("To ease understanding, the more complicated 

elements are commented with an English language description of 

the meaning of that element.') 

Reading the program it can be seen that though this first level 

of the plan determines the result of the translation, and it can 

be executed (^the result of the translation of a source program 

is built up from the translated source statements), this execu

tion is hardly effective. For it can be seen that the address 

calculating function at every applied occurence of a label 

repeatedly searches for its single ("uniquely-defined"_) defining 

occurence in the source program. 

For the sake of a more effective address calculation on the second 

level in the group "dictionary" the auxiliary notion of the dic

tionary is introduced, and the meaning of dictionary manipulation 

is expressed, but only declaratively. Also the group "statement" 

speaks declaratively about the translation of a statement. The 

structure of the program and the statements is the same as on 

the first level; the respective parts are only referred am0) 

here. 

The third level describes a possible way of algorithmization of 

the translation using a dictionary introduced on the second level, 

namely, the plan of a two-pass translation. In this plan we gi,fe a 

more algorithmic construction both of the source program, and of 

the dictionary, replacing the implicit list and 
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map creating operations by appropriate loop statements; on 
the other hand, the address calculation is algorithaized by 
introducing an address-counter. 

The example is not typical from the point of view of the 
general design method in the sense that the source and target 
programs are modelled by the same domains on every level. 
However, this example shows, that in this case also it is 
natural to approach the effectively implementable solution 
in several steps. 
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l eve l  spec i f i ca t ion  

group  p rogram:  
•////A//// 

source  Y/A t a rge t  yX t rans la t ion  ^  
p rogramY/A p rogramy/A of  p rogram 

ẐZZZZZZ2ZẐ MU ẑzzzzzzz 

t r ans la t ion  \  
of  s t a t ement  '  
s  j  * / / / / /  s  

l eve l  in t roduc t ion  o f  the  d ic t iona ry  

rm7;/yy/y/////yy/yz777Y 
Y/X same  VA same  VA ± ,  .  .  V/  y / X  v X  ~ r — j. Y  A  translation V Y / \  source \/\ target VA x- V \ / A  Y A  &  Y / \  of program Y, \ / A  programyA programY/A ^ 
V7Ar77T/// /// // A A/ ; / / / / /7T 

source  
s t a t ement  

l eve l  two-pass  a s semble r  

^^I2i/llZZZZ77/ 
\  s ame  Y/ \  s a i r ' e  VA 
A source  yA ta rge t  yV 
A program VA program V)  ^ t r ans la t e  

Aprogram 

in i t i a l i ze  
d ic t iona ry  

"~7~77~7~/~7~Y / XZYL 
X r e a d  
A  d ic t iona ry  

WJzMM Ẑ̂ tzzzzl 

ssmbier The structure of the first three levels of the simple 
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.Using T-PRCLOG for a long-range regional planning prohlpm 

> I.Futo, J.Szeredi 
Inst, for Coordination of Computer Techniques 
H-1368 Budapest, Hungary 

E.Barath, P.Szalo 
Hungarian Town and Regional Flanning Institute 
H-1253 Budapest, Huneary 

T-FROLC-G is a very high level simulation language. 
It is a tool for discrete event simulation and modelling, susolied 

with the advantageous facilities of a logic based language /[l],[2],[)]/ 

There are two basic differences between FR~TOG and ?-?RCT.O-. 

/I/ The goals of the initial goalseouence are proved 
simoultaneouslv and not sequentially. 

/2/ The iruth value of the facts /unit clauses/ may be 
dependent on. time. 

Simoultaneous proving of the initial goalseauence means, that a 
separate proving procedure is initialized for each individual goal 
of the goalsequence. 

It may be supposed that there are as many theorem provers as goals 
in the goalseauence. 

These theorem provers use top-down, depth-first strategy. 
The parallel execution is controlled by an only scheduler since 

there is only one processor. 
The theorem provers executing special built in medicates / e.g. 

:send(message) / or using common logical variables in the goals of the 
goalsequence can communicate with each other. . 

They can wait for messages or for the fulfilement of different 
conditions using built in predicates./ e. g. :wait(condition) , 
:wait_for(message) etc./ 

If a precondition in a :wait(condition) cannot be proved yet, 
the corresponding theorem prover does not back track , but waits 
until precondition becomes provable. 

Back track may occur if called literal has no match or the whole 
system io in a dead-lock because the theorem provers wait for each 
0tner. 

tie need an explicit handling of time because the real systems 
tnemselves worx: and evolve in time. 

TLW^oit0+deTribS their working axioms and conditions, 
^ acnieved by them we have to speak about the 

Time xacxor too. 

procedure"^01'05 &n lnbernal time duration is assigned to each matching 

or^inarvtun?tdnT'=n=2n su?P°sed to zero for the matching of an 

Seema?cSngSSoceSur^ff:wherf'llfthe^ura^ioS'of , 
The suffix 5an be used Inly ^ 

if 1 initUcL^ConSei a-built in clock mechanism, 
corresponding thswon PPliea with such suffix matches, then the 
to the value "'of m ^ " prover becomes blocked for a duration equal 

becomes^eoual^o^hp1"^ J_Dec°r|le3 reactivated if actual system time 
increased by T? Sy3tem ti:ne in the moment of blocking 

ihe^blrinnii^and'^th^en^of °f th? g°als "tak« tine". 
be prescribed. " 01 Seal proving procedure can also 
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Unit  c lauses  in  case  of  ordinary  uni t  c lause  are  a lways  t rue ,  
thev a re  not  necessar i ly  a lways  t rue  i f  they are  suff ixed by :before /?)  
:a t (?) ,  . -af ter  (?)  ,  : f rcm(?- .  to  ? ? )  .  v  '  

fied then back t racking begins .  
Back t rack occurs  a lso  i f  the  dura t ion of  the  proving procedure  

exceeds  the  l imi i  g iven.  
A s imple  example  i s  here  to  show haw the  scheduler  and c lock 

ruechanism work.  
/ I /  ar r ives  (somebody,  somewhwere ,  vehic le ,  t ime)  :  

t ravels  .by(yehic le ,  somewhere) ,  
sys tem_Time ( t ime)  .  

/2 /  t ravels^ j -^TRAIM,UIEN ) :  dur ing/4) .  
/? /  t ravels  by (CAR. ,  V/I5N )  :  dur ing (b) .  
/4 /  t ravels  by (AIRPLANS,  WISH.  ) :  

f l ies_to(WIEN ) ,  
t ravels_to  the_center_of(v/ IEN ) .  

/5 /  f l ies  to (v/ IEN )  :  d 'ur ing( l )  .  .  
/6 /  t raveTs_to_the_center_of(WI3N )  :  dur ing( l ) .  

f l n -  /  ,  X \  " V / I f  :newf.ar r ives  (?ET3R,  WIEN .vehic le ,  t ime) .n i l ,  PETER ) e n a  3 
new(output(WTEN -vehic le- t ime) .n i l ,OUTPUT) s tar t  lo .  

We wanted to  get  c loser  to  the  formulas  used by those  working 
in  the  • f i e ld  of  s imula t ion.  For  th is  purpose  by process  
we mean tha t  speci f ic  par t  of  the  search t ree  which i s  t raversed by 
a  theorem prover  Ll]  .  According to  th is  there  i s  a  process  correspon
ding to  each goal  in  the  goalsequence.  

/ ! /  and /4 /  are  ru les  of  . inference ,  /2 / , /3 / , /5 / , /6 /  are  uni t  
c lauses  wi th  suff ix  :dur ing/?)  .  

I l l  i s  a  T-FROLOG goalsequence having ' two goals .  
The.  f i r s t  goal  i s^ to  be  proved by the  process  ca l led  PETER,  
whi le  the  second serves  for  pr in t ing out  the  answer .This  second 
process ,  named OUTPUT has  to  s tar t  a t  t ime uni t  lo .  
:new(goal ,procname)  i s  a  bui l t  in  predicate  for  crea t ing a  

process  wi th  a  goal .  .  
The d iagram of  the  execut ion i s  the  io l_owmg:  

r-•  a r r ives(PE'nEP, ,V/IEN .vehic le ,  t ime) .  sys tem t ime 
v  i s  equal  to  0  

/ l /  somebody:=PSTER 
somewhere:=WI3N 
t ravels  by^vehic le . r f l iN ) ,  

sys t 'em_t ime(  t ime) .  
/2 /  vehic le :=?RAIN 

- :  sys tem_l ime (oi rne^ .  
back t rack 

f-- i  Y*<=; i~  f^os l  i s  to  be  olockeo.  — o r  4  -he  theorem prover  ox the  f i rs t  goal  ^  svscem t ime + the  
t ime uni ts  / " t ravel ing by^tra in / .  _ r v i Q o  +  V i ' ^ T .  t h a n  3/ ' the  prescr ibed 
blocking in terval  i s  0  -  4 •= 4  i s  f j rea .ner  -
ena t ime of  the  proving proceau.e .  ^ne  
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/3/ vehicle: =CAR system time 
-: system_time (time) is eQual to 0 

back track 

The theorem prover is to be blocked for 6 tine units and as 6 ?  3 
back tracking begins. 

/4/ vehicle:=AIRPLANE 
l~: flies_to ('.'I3F 

travels_to the center_of(viEN ), 
syTTem_7ine(time). 

75/ 

-:travels_to the center_of('//TEN ), 
sylfemj£ime(time). 

Process PETER is blocked 
for 1 time unit,/traveling/ 

As the second process has to start at time moment lo the next 
action to perform_is the reactivation of PETER at time moment 1. 

Tne system time is set to 1 by the clock mechanism and PE^ER 
continues to travel. 

/ 6/ 

•:travels_to_the_center of(v/IEN ), system tine 
system_time(tTme^ . ' is equal to 1 

Process PETER is blocked 
for 1 time unit , 

to 1 7*1 fy|tem time ls icrease<* by the clock mechanism and is set 

-jsystem_time(timej . system time 
built in predicate is equal to 2 
time:=2 

mn+ Proc®ss PETER succesfully completed its tas', T'^e n»xt 
time i« serto0^1^ T)rocess OUTPUT. The system sex to lo oy tne CIOCK roechanism. 

-1 output(v JEN -AIRPLANE-2^. svstem time 

built in predicate 18 6QUal t0 10 

u 

by AlSLNE°2ra«lve8VI^2tw1atnSit8^: travels to WI3*A 

devel|;SS°o^SJjrSrJeSXnr^iSS^-
Tne goals in the model reflect th« + v certain time bv the cnnn+i^^ iect tne s^ate to be reacned in 

resources. ' using duferent common -shared-

r?Prese»ted by. a process. 

developement of the cou^t^0'"1 iS "in<3 t'ae aP?ropriate way of P men. ox tne counties according to the goals prescribed. 
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The system is composed from the hierarchical rules of county 
categorisation, the data describing the actual state of a county 
and the data transformation rules requiring time. The latest means 
that rules are given describing how many time is required to reach 
a given value of a data type from the actual value of the same 
data type. 

Here we give some examples of the different logical assertions. 

the_level_of _the_urban_developement_of_an_area_in the_integrated_ 
soace structure(area,DEVELOPED HIGHER THAU THE AVERAGE) 

:if( " " " " 
m_the functional-territorial structure(area,INTENSIVELY_ 

DEVELOPED) 
or 

in_the_functional_territorial_structure(area, INTSNSIVELY_ 
D EJVSL OPED_FR OH_T HE_PO I NT_0 F_V IBW_0 F_T H E_PR ODUOT'10N_ 
AND_SETTLEMENT_?ACIII?IBS) 

or 
in_the functional_territorial_structure(area, INTSNSIVELY_ 

D£VEL0P3D_PR0iI_THE_P0INT_0P_¥I3W_0F_THE_SUPPLY) 

and 
in the technical_nhvsical_territorial_structure(area, 

INTENSTVELY_DEVSLOPED) 

or 
in the technical "Dhysical territorial_structure(area, 
~ ""INTENS IVELY JbE7EL0PED_FR0M_TH3_?0 INT_OF_V IEW_OF_ 

THE_LAND_USE j 

or 
in the technical nhysical territorial_structure(area, 

"INT ENS IVELY D3VEL0P3D_PR0M_THE_PO INT_0?_V IEW_0 F__ 
NETWORKS )) . 

There are some 5o inference rules of this kind in the system yet. 

the numb-er_of_industrial_workers_i.n(ABBA,NUMBER) . 
the number of_agrarian_workers_in (ARnA,NUMBER/. 

There are some 2o data of this kind about every ARivA. 

the number of_industrial_workers_in(ARSA,NUMB3R2): 
"the number of industrial_wor-Kers__m^/v^'A, b J/ldi-Rly , 
passes(t). 

passes (time): 
hold(time). 

:hold (time) is a built in predicate. It serves to block a 
process for a duration equal of the value of Lime. 

The system is under developement and only the first experimental 
version works yet. 
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PROLOG applications in Hungary 

E. Santane-Toth, P. Szeredi 

Institute of Co-ordination, of Computer Techniques /SZKI/ 
HUNGARY 1368 Budapest Pf 224 

Abstract 
The paper makes a-n overview of the main PROLOG applications in Hungary. 
For each application a short description of the problem and the main 
characteristics of the implementation are given. Finally the paper 
summarizes the experiences of the described applications. 

1. Introduction 

Since 1975 /the implementation of the first PROLOG interpreter in Hungary/ 
many problems have been solved using PROLOG; problems previously either 
unsolvable /in traditional programming languages/ or solvable only by 
applying complex algorithms and considerable effort. 

A group in Nil! IGUSZI began PROLOG development and application programming. 
The first applications already showed how clearly and^ simply programs could 
be written in PROLOG solving problems_needing the facilities of symbol 
manipulation, pattern matching, serching and deduction. 

A version of the PROLOG interpreter written in CDL1 was installed in 1977 
on a SIEMENS 7.740 /and later on a 7.755/ computer of SZKI, under the oper
ating system BS2000. This installation served as a basis for later install
ations on computers compatible with the^IBM sys.em 36 . ..eanw e 
interpreter was extended with the facility of mteractivi y among 
possibilities. 

In 1978 KSH OSZI* provided support for research work_ aiming at a search 
for new application areas for PROLOG and aid for solving new Problems in 
PROLOG. The PROLOG applications in Hungary were studied in this framework 
[Santane-Toth,793 the results of this research served as a primary 
source of this survey. 

In the following we begin with an enumeration of .appliSt-
Hungary and then we give a review Of the more £ 
ions. Finally we shall summarise the experimental ^ 
comments on the basis of current PROLOG applications. The bibliography 
comprises the papers, research reports and internal memos published by 
Kmgarian authors to date. 

We should like here to thank everybody working in the d^elopment 

ication of PROLOG for their help; everybody ^tionedinthis ^terial^nd 
for the contributions of those who helped in putting together P P 

2. PROLOG installations in Hungary 

Th. table b.lo. ,ho» 
order. Due to the fact that the mterp ~ n + her machines. /The reference 
no special difficulties *.n transferring to o«,er ,c,79]/ 
and users' manuals are [ozeredi P,77&j, [_ , A I-

T̂ e Institute for Application of Oo.put.r Tecbni,,. of tb. Central 
Statistical Office 
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Year Institute 

1975 
1975 
1976 
1976 
1976 
1977 
1977" 
1977 
1977 
1977 
1978 
1978 
1979 
1979 
1979 
1980 

HIM IGUSZI 
OTSZK 
EVTG 
ASZSZ 
ELT3 
MUM SZAifTI 

Machine 

ICL 1903A 
ICL SYSTEM 4/70 
EMG 840 
HV/B 66/20 
ODRA 1304 
ICL 1905 

Op. System 

GSCHGS-2 
MULTI JOB 
tain /+mix/ 
GCOS 
GEORGE 1-2 
GEORGE 1-2 
CS0RG3 1-2 
GEORGE 1-2 
BS2000 
DOS As 
OS MIT 
0S/VS1 
BS2000 
DOS 
OS MVT 
CMS 

z.r - . „ . ICL 1905 
Kobanyai Gyogyszerarugyar ODRA 1305 
jg ODRA 1305 
SzSoK SIEMENS 7.755 SSS S 370/145 
SlSLzi Im 370A45 
PL^F • SIEMENS 4004 
0X1 So 
SZTAKI IBM 3031 

_ Tables PROLOG installations till early I960 
Xt is worth noting1 her« +hn+ • 
MPROLOG is now being develop ™,0L0G interpreter, the so-call, 
pne of its IjC6vea,79l^ 
in PROLOG and offers better rrorrq • ' •. facilitates modular program: 

better programming aid and execution mechanism. 

3' .PROLOG applieat.inns in 

PROLOG ha3 been used for anvo™i 
it with PROLOG" 1 well representiT'the Sfi ^ Th® ajlthol°^ "Ho» t0 s°: 

successfully be solved usin- the lanl.f o r® 8P0ciai problems could 
foliows a list of successful Hungarif^ROLOO0"156?- aoo?rdinS t0 topics, if 
the year of realization, the cnrm.V^ PROLOG applications. For each of tb 
adapted, and the relevant publicati r °H wiucil tile Program was developed o 

P bllCatlons Siven immediately after the tit 
3.1 Applicationa it. 

— * w 

3>1 ^^^^^SS£-iS-^lg_^l^rnaceutical 

OF°pfraSssT^ T° CALCUIAT2 PARAMETERS PREDICTING BIOLOGICAL ACT1 

1979; SIEMENS 7.755 , fcfervas,79cJ. 

research. CForpre^ti^h^activitCrea3inS inportance in phamaceut 
features of peptides is needed. & H°del rev9aling the specific 

mode^?^nAftP^fr"Sy8tera "senerat93" a family oi 
the biological activity on the'basi a % ff® tl119 facilities prediction o 
chemical structural units /substriturL ^ m°dsls- Th® 8Y8ten infers 
to*the°t e^+°al/' ?omP°3ition of peptides in^rai?ln®nt3// froni the aminoacid 
tu, nits. This is done by PROLOG nr ' assigns numerical parameters 
by pn™t9r3 ths biologicS acti^?.ejn3*,The ^lationships between 

J P0RTR.4N programs. S1°al act^ties of peptides is investigated 

LN3C,0Lisboa,C*1979.a'' L*M* Pereira: 
Ro.v to solve it with PROLOG? 
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3 . 1 . 2  PROGRAM-SYSTEM SUPPORTING RESEARCH MANAGEMENT IN THE 
PHARMACEUTICAL INDUSTRY 
1979: SIEMENS 7.755 ; -

The program-system helps to solve research management problems in the 
pharmaceutical industry by information retrieval and automatic inference; 
the latter aiming at finding new applications for drugs and pesticides. 
The languages of the system are PROLOG and EOT /the editor of BS2000/. 

3.1.3 A PROGRAM-SYSTEM TO CALCULATE PHYSICO-CHEMICAL PARAMETERS FOR 
DRUG DESIGN PURPOSES 

1976-78; ICL 1903A , ODRA , SIEMENS 7.755 ; 
£Darvas,78aJ, {Darvas,78d] . 

In computer-aided drug design, a considerable part of the calculations is 
based on the so-called logP value of components, a value indicating their 
lipophillic character. The manual calculation of this value is time-consuming 
and results are of questionable accuracy. In 1976, when the PROLOG program 
was written, only one computer program had been published for this calculation. 

3.1.4 PROGRAM-SYSTEM FOR PREDICTING DRUG-INTERACTIONS 
1975-79; ICL 1903A , ODRA , SIEMENS 7.755 
[Darvas,763, [Darvas,78oJ , [Darvas,79bJ, j_Futo,73aj . 

Modification in clinical effects may arise when drugs are parallelly 
administered.The so-called drug-interactions constitute an aspect of medical 
treatment which is not neglighle. The present system considers the physico-
chemical, pharmacological and chemical properties of drugs and, starting 
from these, infers the possible drug-interactions. 

3.1.5 NUMERICAL ANALYSIS OF LIGAND-BONDING SYSTEMS 
1979; SIEMENS 7.755 ; [Kofalusi,79e]. 

The PROLOG program generates a FORTRAN SUBROUTINE_segment which calculates 
the proper initial value for the numerical analysis of ligand-bondxng 
systems. The program is based on the program-generator described in 3.7.2. 

3.1.6 TESTING AND MODELLING OF SELF-REPRODUCING BIOCHEMICAL PROCESSES 

1979; ICL SYSTEM 4/70 , SIEMENS 7.755 ; -
The program permits the analysis and modelling of any biochemcal self-
reproducing cycle. With the replacement of the built-in date-base any cycle 
can be examined. The input data of the program are the formal_reaction 
equations; in the course of processing selected are the nutriments, end-
products and attractors. The program is an appropriate example for tne fast 
andconvenient definition of structural system-models in PROLOG; these 
advantages come from the use of logical expressions treatable by PROLOG. 

3.1.7 SEARCH OF ANALOGOUS SUBSTRUCTURES TO ENZYME-SEQUENCES 

1979; SIEMENS 7.755 ; jj.iatrai,79~]. 
The program serves as a means to find the structures of enzymes with known 
sequences and similar mechanism, that are presumably relevant i0m 

viewpoint of functioning. The program is suitable for the search of analogous 
primary sequence units of any size and having any number of error-spo .3. 
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3,2 Information-retrieval system*. 

3.2.1 A LOGIC-BASED CHEMICAL INFORMATIONAL SYSTEM 

1976-78; ICL 1903A , ODRA , SIEMENS 7.755 ; D>arvasf78b, 79a]. 

proV̂ r +in WHm,rMd raows 

and biological properties as well PROLOG structure and chemical 
form of clauses. This allows !" th° etora«e oi in the 
of logical statements that are connected ^0^0°,+ pr°grams ia tha fo™ 
/as conditions/, and refer to the ehem-ici the structures and substructures 
compounds containing the relevant str^tSe^! bl°l0glCal ProPerti8s of the 

3.2.2 ̂  INTERACTIVE INFORMATION. SYSTEM FOR AIR POLLUTION CONTROL 

1977; ICL SYSTEM 4/70 ; [Sentl,?^, [Fut6,78a]. 
This program-system handles data .u ^ . 
industrial pollutants in Budapest i^th 1̂3 coaoentration of seven 
county having 15-20 districts. The svstem ̂  <̂ untles of ̂ gary with each 
of working or planned plants is belnw th checks whether the air-pollution 
calculates the height of the chimne Permitted level. If not, it 
moreover it looks up in its data-base"anr3̂  t0 redU°e the c°ucontration, 
equipment appropriate to the given inrt..^'i. r®c°mmend3 industrial filtering 
!-+r?a,. êraCtive1̂  the basic motive of iS technoloSy. The system 
with different approaches /e.g. managers ^ Panning was to enable people 
to use the system. agers, designers and research workers/ 

1977; r™r:z:zr° °iti ™  ̂
This PROLOG program tha+ ®oo 
expected when_ applying different^esticida; efamiaation of results to be 

lnteractions among the th^ear t? ̂ V®n 8ituati°na, can be used 
^^eases pests, etc. detrimental „ following factors: 

- insecticides, pesticides «t! ?° a culture: 
- cultures, application areas of given diseases; 
3 3 AnnT insecticides, pesticides, etc. 
3 A££l̂ ^i^h^unding indent--.. 

3-3.1 PLANNING OF A ONE-TPVPT mere, 
1975; ICL 1903A^- _ 1 SH°? BUILDING USING PREFABRICATED PANELS 

This program is the first psnmn 

^rS!^t\^r 3̂d°---n Hunsary; u piaas a -

eleomt3°/geometri®ei?"PMeis.^Th^daS^/the0 be Con8tructed from 

the form of assertions^ thi SUP?°rting s?r^t£/eJ-rf?bri°ated 
parameters of the Program. As initial e exvea in 

ceiling are given The n°P 411,1 the int*nsitJ «S^hf ̂ 1 the g8°^tric sice 
of the ceilint T , proSK® determines the balanced load of the 
point of the ceonst ^ and oilooses the elementfr0undPlan /the distribution 

the geometric and statical condition^. aP?r°priate ̂ om the view-
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3.3.2 ARCHITECTURAL PLANNING OF PANEL BUILDINGS 
1976; ICL 1903A , R22 ; Qiarkusz,77a, 77bJ .  

The program generates the ground plan variants of flats with given size, 
number of rooms or halfrooms, using the panel elements given in the data 
base. 

3.3.3 PLANNING BUILDINGS WITH MORE THAN ONE LEVEL 
1980; SIEMENS 7 .755  ,  IBM 3031 ; £kirkusz,80a, 80b], 

The program system provides support in the stages of planning of buildings 
with more than one level. First it generates the variants of groundplans 
of all flats according to the special requirements of the customers. The 
customer is given the possibility to classify the variants, to choose the 
most advantageous ones, and to exclude the less favourable ones.^The 
program assorts from chosen variants the plan of the whole building 
satisfying requirements for the horizontal and vertical arrangements} 
the given measurements, and the conditions depending on the building site. 

3.3.4 AUTOMATIZED SOLITAIRE FOUNDATION PLANNING 
1979; ICL SYSTEM 4/70 , SIEMENS 4004 ; [Holnapy,79j. 

The problem solved by the program is the selection of bodies, usable under 
columns, from a given fixed set of system components /defined by assertions/. 
An extended version is experimentally tested now, where an arbitrapr system o 
loads /load list/ and a distance list can be given in the_goal statement 
and the result consists of the identifiers of the foundation bodies to be 
used at the loading forces. . . 
Notes a PROLOG program is planning for the simulation of the result 
architectural selection based technical planning process. 

3.4 Sofbyare applications 

3.4.1 PROGRAM GENERATOR OF COBOL PROGRAMS FOR INPUT CHECKING _ 

1978; SIEMENS 7.755 , ICL 1903A ; [Lang,78jo 
The program generator is written in PROLOG end is applicable for generating 
ANSI COBOL programs to be used for checking input data. The generated program 
outputs the valid data on an output file and print 
/indicating the cause of the error/. The structure of the files maintained 
by the generated COBOL program and the aspects of the validation are defined 
with parameters coming either from terminal or rom 

3.4.2 GENERATING COBOL PROGRAMS ACCORDING TO COLAMI STANDARDS 

1979; SIEMENS 7.755 ; jFuto,79dJ. 
The program generators written in PROLOG generate programs according to the 
me gc io , avvr The* frenerators create programs for 

COBOL programs and the work to be done can o . 
parameters given either from a terminal or from 
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EROM-MAPPING OF INTEL 3000 MICROPROGRAMS 

1978; SIEMENS 7.755 ; Jszeredi J,78] , JAFPL,787. 
INTEL 3000 microprocessors have a special nrmrMn, 
The program store can be thought of "as a matr?T^i*h aechanisn. 
the matrix pointing to its successor/s/ There i \ 6V8ry-1?3trUCtion ia 

matrix nodes where a successo- can ho i j / °" y a llnated number of 
the predecessor/, furthermore the form^f0?' v?*F* 10 tbe 3ara8 coluan aa 
of the instruction. taerm°re the form °{ limitation depends on the sort 
The PROLOG program performs the task of add roe* » • 
consists of the partially loaded store " assignment. Its input 
gives either a possible mapping plan as input " °pr?ST?m* The PR0L0G progran 
of mapping the given micropro™ - in a °^lndlcates th« iapossibili p r o g r a m  - m a  r e a s o n a b l e  a m o u n t  o f  C P U  t i n e .  
3.4.4 ANALYSIS .OF' PROGRAMMING STYLE AND EFFECTIVENESS 

1980; IBM 370/145 , [bero.So]. 

correct PvfLfcS eyntactically 
style, effectivity and complexity aspect ? a?C°rdlng to structural, 
the quality errors in the programs the o^o addition to the recovery of 
for the correction. During the structure? °S1?m fyst9m suggests alternatives 
prints /in the form of hierarchy d-iao- * analysis the system reveals and 
program in question, and notes" *he ^tr + losical construction of the 
The program system ks implemented m3^fural ccrrections to be executed, 
hierarchy diagrams is written in optimizing11?!/^00' ^ m°dule drawia« the 

3.4.5 A SYSTEM FOR VERIFYING PROLOG PROGRAMS 

1977-78; ICL SYSTEM 4/70 , SIEMENS 7.755 , TBALOGH 77L 
The system aims at proving partial ' 
system, consisting of a pro-am for'^8<\ 33 °f PROLOG Pr°&rams. A sub-
or general theorem proving is usable h" & tran3foriaation and a progran 

t»+e°re? f°ving* Tbe interactive forinul o°+6V6rJ. by itself' for interactive 
natural deduction on the basis of either formation program performs 
transformationa! /inference/^chLas TL " °P int8ra=tively generat 

on the resolution principle * 5 ®enerai theorem prover progran i: 
inis is an experimental system The + r 

««, the ee„o.pt»,l 'S 

3-4.6 PU.TO S0!T,iM. ̂  ̂  oBjE^ 

1978, ICL I903A , siBffihs 7.755 j- 7 
The sxperiences with PRnr no • -** 
language f°r solving problems^ajeable r£Tealed the suitability of the 
Se 1! ^ languages. The proSafs wj, t+° 7-Acuities or not at is/r-s* - Ziir^r«* 
1 ' t?" «« tie applioAo/ZmSS "" a»r«S FS0UX1 coaieg . 
system ~T j experiment. The plans lan£uage for planning might be 
system, a module library maintenSce *******, a file mfintfnance 

experimental application 

data^handV^ 30ftware /and hardware/^ob ' ̂ 4^° Pr°Ved that PR0L0G is usable 
approStr-fhl1^163' "real means for°intbUt ^ ^ «» 
based* lannnage for° ff °f planninS. Having dra^th™ testlnS a"11 M 

ievelopnent /?„. S/ ^ 
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3.5 Supporting computer architecture design 

3.5.1 BTALON-PROGRAM GENERATOR FOR THE EVALUATION OF 
HIGH-LEVEL LANGUAGE ARCHITECTURES 
1978; SIEMENS 7.755 ; [kiss V, 78^ . 

In design and comparative evaluation of High-level language architectures 
for the^ analysis of effectiveness such programs are needed that have average 
statistical features for given high-level language /e.g. rate of occurence 
of instruction types or of data types/. A PROLOG program was developed as 
an experimental tool, for the purpose of generating etalon programs. The 
program input consists of the syntax rules of the given language and the 
statistical features we want the generated programs to have. 

3.5.2 A SIMULATOR FOR EVALUATING THE DESIGN AND THE EXPERIMENTAL TESTING 
OF HIGH-LEVEL ARCHITECTURES / DELBOLSIM / 
1979; SIEMENS 7.755 ; [kiss V, 79*]. 

The basic purpose for the development of DELBOLSIM was to provide computerized 
support for the design process of language-oriented computer architecture. 
The system is applicable for: 
- measuring quantitative factors characterizing the effectiveness of the 

given architecture, 
- the experimental validation of the specified architecture by the means 

of running test programs, and finally, 
- measuring the dynamic statistics of the use of the source language. 
The objective of the development of DELBOLSIM was to support architectures 
complying the Canonic Interpretation Form of programming languages. 

3.6 Simulation 

3.6.1 A VERY HIGH-LEVEL LANGUAGE SUITABLE FOR THE SOLUTION OF PROBLEMS 
INVOLVING PARALLELISM 

1978; SIEMENS 7.755 ; [Futo,80aJ. 
The interpreter of the language is capable of running an arbitrary number 
of PROLOG-like goals in parallel. The processes executing the goals can 
communicate with each other through logical variables, the data-base and a 
simple demon mechanism. In the case of a deadlock further paths are tried 
through backtracking. 

3.6.2 AN INTERPRETER FOR THE LANGUAGE T-PROLOG 

1980; SIEMENS 7.755 ; [Futo,80b, 80cJ. 
T-PROLOG is an extension of the language cited in 3.6.1 with a capability 
for explicitly and implicitly handling time. This makes T-PROLOG into a 
full-fledged simulation language. There is now a project underway to use 
T-PROLOG in the examination of the long-term regional models of VATI /an 
institute concerned with urban development/. 

3.6.3 GENERATING M0DEI£ OF TELEPROCESSING NETWORKS 

1980; SIEMENS 7.755 ; -
A PROLOG program was developed for supporting the generation of simulation 
models of remote data processing networks. 
First phase: the user enters graphically the network topology to a display 
screen. 
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Second phase: the system enquires the network elements to be placed into 
the nodes, the line algorithm for the edges, and the type of the channels 
transmitting data. 
Third phase: comparing the given data to a data base the system checks 
whether the given hardware elements were permitted in the given nodes. 
Fourth phase: if the check gave positive result then the system enquires 
the data flow protocols. The protocols give the information concerning the 
istribution of the data quality among the terminals and the central 

processor /remote data processing network with one processor/. 
model SaGPSS°/SIAa/biapiS °f the. ?^en data the 8>'3ten' generates a simulate model ox GPSS /SIAS/ language, which can be executed immediately. 

nodes°detcWatCheS ^ thr0U^put of the ^tern, and waiting queues at the 

3.7 Other applicatidns 

3.7.1 COMPUTERIZED MORPHOLOGICAL ANALYST'S OF HUNGARIAN TEXTS 
1979; SIEMENS 7.755 ; jjiss Z, 79J. 

The problem of parsing Hungarian texts by computer hasn't been solved vet 

j i f f i c u x ,  t o  " i 0  

program itself ncLally represents f ^ relatively easily- The 
analysis of the Hungarian verb forms and the v " ^ f°r th° morphological 

analysis of the tagged nouns. other for the morphological 

3.7.2 GENERATING THE FIRST N FORMAT TKT?OTYTAmrtmn « 
FUNCTIONS OF MORE THAN ONE VARSBLE °X™ VEHY C0]S?LEX ^ 

1979; SIEMENS 7.755 , {K6falusi,79bJ. 

during generation phasl1 every9variable f^the^3 & F°HTRAH subroutine; 
factored to the left wherever it -i e manipulated formulae is 
routine computes the substituting\„?°S i®* The generated FORTRAN sub-
the variable values characterized bv+T th° dlfferential quotients for 
The PROLOG program is based ^ « «t A ® S1V®n P^^ters. 
a graph constructed by the author 1! spa°9 c°ncept to be represented by 
This concept of state space might 'beco-^a &t % first tine in tbi3 program 
[jCofalusi ,80]/. mght become a new element of PROLOG /see 

3.7.3 SIMPLIFICATION IN MATHEMATICAL STRUCTURES 
1979-80; SIEMENS 7.755 , |>«f *ltoi, 79.1. 

iflfiil Vft r\-P + u „ -J 
> Û j-axum, fy a / #  

The objective of the proerram * , 
expressions allowed in a very broad iS th® sinPlification of 
/including groups, rings, fields ', mathematical structures 
the expressions represented by binarv t:ree^wf'* etc'^' The Program treat 
ana looks m the forward directionfor„ 3 bottom-up, from left to right, 

n the case of an associative chain of oner + ' bacl^*ard for more levels 
sorting according to the appropriate orrffr^ Pr°Sram performs 
simplifications according to the operation^5 a®P8ct,s» ma!<es reductions am 

ructure3 of n arguments finally further 511(1 then creates prefi: 
many further simplifies these structures. 
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4. The experiences and conclusions derived so far 
from the PROLOG applications 

As it was already mentioned in Section 1. the installation on the SIEMEUS 
7.755 computer of SZKI can be used in a relatively comfortable way, and 
provides one of the largest memories for the users because of the virtual 
store facility. Even this store is not big enough for quite a lot of 
practical problems. This interpreter works, however, relatively slov/ly, 
so the programs need a great amount of time to r-un /this is partly due to 
the paging required by the virtual store handling/. 

The users who .have already solved a lot of problems using traditional 
languages definitely required the facility of calling subprograms and 
procedures 'written in other languages. The objective of the development of 
the interpreter version {jCofalusi, 79] was to solve this problem. 

A number of users required the incorporation of certain procedures into 
the language, especially ones concerned with floating point arithmetic. 
The fulfilment of the demand mentioned above would serve as a possibility 
for solving this problem, too. 

The majority of the users who had got used to the traditional languages 
complained, that having studied the presently available PROLOG reference 
manuals.they couldn't write by themselves a PROLOG program solving a given 
problem. They were not able to acquire without help neither the knowledge 
necessary for the application of the method, nor the proper attitude. Thus 
the question: "How to teach PROLOG?" arises. This problem is studied for 
example in [Kofalusi ,79} and [Kaposi,79a] . 

There is a system called MPROLOG under development which is designed on the 
basis of the experiences gained from the PROLOG applications until now, and 
the development conceptions described in [Szeredi P, 79 J . See about the 
subject [3endl,78, 79, 80] end [Koves,79] . The system is intended to reduce 
all the problems mentioned above, and even to solve optimally some of them. 
The store required by the user program will he one fifth of the present^ 
one, for example. A new reference manual will appear that is structured in 
a more didactic way and contains exercises, too. 

The applications gave also rise to problems caused^by the incompability 
between the character of the problem,, and the /strict/ tree-traversing ^ 
strategy of the PROLOG interpreter / see e.g. [Kiss Z, 79J, and [K5falusi,80J/< 
According to the users the formulation of the problem xn PROLOG was even then 
worth the effort, if, for the sake of efficiency, the program was to be 
transcribed into a traditional language. It was worthwxle, as they couldn't 
formulate the problem previously in a traditional language xn an appropriate 
way, quickly and clearly. So PROLOG proved to be useful for them as a 
language for supporting design.Furthermore, the users could advantageously 
exploit the tools provided bfPROLOG for supporting trace and other 
conveniences, and so check and test the plan itself. However, as the appl
ications described in [AP?L,78] also showed, the current PROLOG version is 
not aoolicable for design of software /and hardware/ objects, because of it 

language for supporting design /the LDM/ is under development / s ee  e .g .  
j/Szerecli P, 80] and this language will provide for a solution of this problem. 

According to the opinion of the users if somebody has already learned to 
follow the way of thinking PROLOG requires, the language helped him very 

his problem.Having acquired some practice the Programmer 
could tost and correct, his program very quimclT and easily. „e note, that 
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those services of the above mentioned system uppot nr 
«»d the interactive u.^e « b. 

Se'ĥ .̂ .e'pMê c'at̂  S3 SjSTffy"," • th°im^'» 
•id.lp eg.d languages, «,...'tooSLX™ Lm°f 
programming than traditional means PHOT/v- i = =! ̂  easier and faster 
language specially for thnsp urobl e^'q" ^ >,; •L-ea3- 1:n-lamentation 
because PRnT.nn m,pr„«e.„ t-.+1 — olvable bv means of traversing » +.», 
search algorithm" * thS da^ representation and the description of 
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In  th i s  companion  paper  to  " iC-PRnrn r .  ^  
descr ibe  some of  the  imp le men ta t i on  ^  l a n 9 u a 9 e  fea tures"  we wi l l  
behind the language features of IC-ppolS w £olutior technioues 
tu rn  in  a  s imi la r  o rder  to  the i r  p rese t , e a c h  f e a t u r e  « 
conclude  wi th  a  b r ie f  s e c t i on  on  l n  t h e  c t h er  pacer .  Ke 
implementa t ion .  o n  t h e  l essons  of  the  IC-PFCLCC 

Negat ion  

fa i lu re^^d^we^us^ th is^ lchnK 6  •"  P R C L ° G  •*«««  as  neoa t ior -as -
be tween  the  implementa t ion  of  nega t ion in ' r r^wBrt  T h e  " a J° r  d i f f e r e n « 
l ies  m the  t rea tment  o f  var iab?fb indingi?  I C _ P R 0 L 0 G  a n d  other  FPClCCs 

nega t ' io n t a t i f n - ' J S i n 9  s l a s h  an^meta-var  iab^ 1 < ? S  t h e n  t h e  n o n r a l  P R 0 L C C  
n S " f a i l u r e  r u l e -  Howeve  f  a b  f £ / 0 r r e C t l y  implements  the  

-q*  p t lV r 3 m U S t  b e  c a re fu l  about  the  8??  S t 0 m  c o n t a i n ^  a  var iab le  
«=vs temL a n '  J*  ~ P ( X ) •  T h e  di f fe rence  *  b l f f e r e n c e  between  implement ing  
in  the  2f l  i n  t h e  "ega ted  C9l l  ZZLl l ,  *  a c t i o n  t a k e n  f c V t h e  

« "^tion:13* -»<« *-
been  bound,  i f  i t  v® p r o o f  of  P( X )  succeed=~ W P  " i" e . r S 8 ' l l y  "uni f ied  

i t  has ,  we repor t  a  CONTROL e r ror .  i f  X  h M  

Before  the  IC -PRornn  •  

i" ah" "°^ S e th i  ' i s ' i  i n t a j ; u "  f r  *  «»  
examininq  t he  r P c 0 .  ^f r iab les  i n  a  have  h  1  h a s  s u c ceeded ,  a  
-A ana  the™ ,  ' •""•en  *h .  T h i s  "  «»» "  

rent  top  of  s tack :  1  ^  were  we se lec ted  the  ce l l  

I 
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IC-PRCLOG: Aspects of its implementation 

_N. 

Portion of 
reset list -
to be examined 

< ~A selected 

< top of stack 

If there is an entry in one of the reset lists belonging to an 
activation record at or above the point where the negated call was 
selected. If one is found then, since the whole of the later (lower) 
part of the stack belongs to the computation of A, it follows that a 
variable of A has been bound. 

Conditionals 

IC-PROLOG allows the user to specify conditionals in the bodies of 
clauses and in goals. The syntax of conditionals is: 

C <- P THEN C ELSE P 

where P must be a single literal, but Q and P can be conjunctions of 
literals and conditionals. The above clause is logically eouivalent to 
the pair of clauses: 

C <- P & 0 
C <— ~P & R 

IC-PRCLOG also takes as control information the fact that the 
conditional test needs only to be perfomed once. 

Conditionals can be programmed up quite readily using the slash 
feature of PROLOG and the meta variable facility, but in IC-PRCLOG a 
different approach is taken. The method we use relies on a data 
structure for activation records chosen for other reasons (mainly for 
efficient implementation of coroutining) . In an activation record we 
keep a record of which of its atoms have been a) started end b) 
finished. When selecting for the next call to activate instead of 
following an explicit 'success' pointer, the flags are ex; ned and the 
next unfinished call is taken up. Suppose we had a goal of the form 

<- P THEN C ELSE R, 

then the goal activation record would look like: 
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^ & E3 
*  f  

started finished 

finishld1^0^ P"*1*" " ̂  succeedsn,thein9 th6£e fl3g£ after we 

ana p are sequences instead of c;L, ?? beln9 finished instead If 
and thing we need to know are "t-h |^tera-ls th® same method applies 
and the rest of the goal. 3re the boundarie* between C and Tand 

£f Solutions 

The goal 

<— w = f t (x,y)/p (x,y,z)] 

eDaluate^is^ ^o^tions'to^5 * faJ'V *1*fc (ek'fck> • 

MX yTS'r "« ""iT* Everŷ tiixe%Pr°0f '*«°< 
the env^onment of the proof ̂ fS^ceeds *e construct a copy 

,dded »• 

p ( x , y , Z )  selected 

p ( x , y , Z )  succeeded 

with  {x /A ,y / f ( u )  f Z / B ]  s a y  

The copy of t(x 

« s  t^e» • »  «, o l u t l o n s . ,  

• -  • £ .  S i u * T - ° " «  « i  
aj.i succeeded. p 18 bound to the var 
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IC-PROLOG:  Aspec ts  o f  i t s  implementa t ion  

When a  so lu t ion  i s  be ing  cons t ruc ted  any  var iab les  appear ing  in  i t  a re  
g iven  new s torage  loca t ions  on  the  s tack  d i f fe ren t ia t ina  the in  f rom a l l  
the  o ther  var iab les .  

Not ice  tha t  we do  no t  a t tempt  to  remove  mul t ip le  occur rences  of  
so lu t ions  f rom the  l i s t .  

Indexing  

Indexing  i s  used  to  cu t  down on  sha l low backt rack ing  par t icu la r ly  when 
search ing  through a  l a rge  re la t ion  tha t  i s  represen ted  ex ten t iona l ly .  
The  programmer  asks  for  indexing  by  adding  an  asser t ion  about  the  
re la t ion  spec i fy ing  which  a rguments  a re  to  be  indexed .  

An index  tab le  i s  cons t ruc ted  for  each  a rgument  tha t  i s  spec i f ied  to  
have  indexing .  This  t ab le  conta ins  re fe rences  to  a l l  the  top  leve l  
func t ion  symbols  and  cons tan ts  tha t  appear  in  the  re la t ion  in  tha t  
a rgument  pos i t ion .  Assoc ia ted  wi th  each  'key '  i s  a  l i s t  of  c lauses  tha t  
ment ion  the  key  in  the  r igh t  a rgument  pos i t ion .  A fu r ther  subse t  of  the  
re la t ion :  those  c lauses  wi th  var iab les  in  the  argument  pos i t ion  a re  a l so  
grouped  toge ther .  For  example  the  program:  

PI  P  (A,  b )  <-
P2 P( f  (B)  ,C)  <-
P3 P  (u ,C)  <-

wi l l  have  the  fo l lowing  tab les  cons t ruc ted  for  the  two a rguments :  

Arg l  A PI  Arg2  C P2 ,P3  
f  P2  var  PI  
var  P3  

When a  p rocedure  ca l l  involv ing  an  indexed  re la t ion  i s  about  to  be  
en te red  a  check  i s  made  f i r s t  on  the  cons tan ts  and  func t ion  symbols  
occur r ing  in  the  ce l l .  For  each  a rgument  tha t  i s  indexed  and  tha t  
conta ins  a  non-var iab le  the  appropr ia te  subse t  i s  ex t rac ted  f rom the  
index  tab le  toge ther  wi th  the  subse t  assoc ia ted  wi th  var iab les .  These  
two l i s t s  a re  unioned  toge ther  to  g ive  a  candida te  se t  of  c lauses  for  
tha t  a rgument .  The  candida te  se t s  for  a l l  of  the  indexed  a rguments  a re  
in te rsec ted  to  g ive  the  candida te  se t  for  the  procedure  ca l l .  
Backt rack ing  now on ly  occurs  wi th in  the  candida te  se t ,  and  typ ica l ly  in  
opt imal  condi t ions  i t  i s  a  s ing le  c lause .  

This  indexing  scheme i s  very  f lex ib le  -  there  a re  no  a rb i t ry  
res t r ic t ions  on  the  number  o f  a rguments  tha t  can  be  indexed ,  nor  do  the  
keys  in  the  index  t ab les  have  to  be  un ique .  Fur thermore ,  the  sys tem 
rever t s  to  sequent ia l  access  when no  use  can  be  made  of  the  index .  When 
there  a re  no  non-var iab le  a rguments  in  the  ca l l  or  when more  than  one  
c lause  i s  re turned  in  the  candida te  se t  they  a re  accessed  sequent ia l ly  
in  the  normal  way.  

Data  F low corout in ing  

The  essen t ia l  problem wi th  da ta  f low corout in ing  i s  to  make  sure  for  
each  var iab le  a )  tha t  on ly  ' au thor ized '  sub-proofs  a re  permi t ted  to  b ind  
i t  and  b)  i f  a  var iab le  .has  become fur ther  ins tan t ia ted  to  jump to  any  
sub-proofs  wai t ing  for  the  var iab le .  The  da ta  s t ruc ture  we use  for  th i s  
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mechanism is called a 

SSr" " B'0re -"<>-1 coroutining" sylllL 

va^bS'rs55 a'plpe^ro^1 whi^fl^1*'* W Wl#W *ach «ted 

Of the Pipe: It telSS iheSer^'—J*""'*0' d««'tes the , I 

' • « i , r s ? S !  
a given "atiable'is^stapl'y'djterained0'''1?" ,nd con««'K Processes f», ssssr-s. JSieSU-L' -s* -y-" r* 
atoms of the clause Tf t-h Ai of a seouence A.& ta nf ,' 
the co„s„er process if "I" «!"V' 

pJodicei/^JS^;-^!.,®J producer If the ,°Jotat^ 

annotated variable. ce"a"ed. Each atoc „„ ha« n „„sl £ 

The default of an IC-PRnrrv ~ 

variables' H°wever each time a claule^is^ Je2?'"tlal left t0 eight 
unactivated3 P£0cess descriptor is set nn * contains annotated 

each^ri^e^S £ £ 

SorS- iSh^ /-eved by a slight modification 

oTi" 2̂ = -ŵ rs:e 
only if the sten °C producer computation Th<=Cerrent resolution is part 

y the step xs part of the Producer'prSes^^ Mndln9 i£ affeCted 

To make this test 

patlrto the11liter^l°fCUr in the P^o^tree ̂  5h°Vide 3 .nanling £che,re 

call. By comparino th™ ̂  root node of the Soof"^ 1S actually a 

descriptor (which is Path na,re with the Z tfee t0 any given 

variable appears) wf path name of the can *** the Process 
step is part^of the cons" 6aEily che<* wh^her tL ™ "hich the plpe ! 

consumer or producer process current resolution 

annotated variables e"£oding, and only differ v 
can then use bit strinn Path can be represented H-]iteral£ with 

C string operations to e elfrented as a bit strino. Ke 
^ere are two condit • ^ffxcxently compare path names. 

we tried to bind a lfcl?ns when the state of th 
descriptor records riable but were not allow f1Pe Wl11 change: when 

variable fo AhSuspe"ded Producer? and ̂  t0 .(ie' the proce££ 

case the state o fn" is a suspend cons^!" W<? haVe just bound ? 

process is susoenL process descriotr.? " recorded. in either 
folowing diagram sh ' 3nd tbe susPended nrnS switched: the current 
interaction- 9 Sh°WS three steps of a„FSS is activated. The 

an example of a coroutining 
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An example coroutining interaction 

Initial state of process descriptor with eager consumer 

The producer P(x) has just produced a value for x and the 
suspended consumer on x: Q(x?) is about to be started. 

Evaluation of the call Q'(y) tries to bind y. 
This is not allowed to do since there is a suspended producer 
at: P'(y). The suspended producer will now be activated. 

When an annotated variable is bound for the first time, or when it is 
futher instantiated, the annotation must be inherited by all the 
variables occurring in the binding term. This is because the annotated 
variable is still the pivot of the coroutining and we must apply the 
same rules to all the further approximations of the variable. 
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Pointer, signifying thlt^itl' ThUS 3 vafiabl<? ̂ay hmvê both'i"!*? S"d 

S-de-iptor signifying Patha?fthe?i9her leV<?1 coro"tinino^ 
- Jhls ^ form of nested coroutin no .1S coro^ining about'it a 

restriction of only one consumer/produce"? £ SSUESKSmT* * 

Pseydo Parallelism 

•SS's,—*1 

a singl|eUs°ack-aile?j8? *5 ilrplemented in IC-PBCLOC h ,I 

J3*£. ssr* - "«« 
Th is is the 

^S^lfJr^F"""^"1"' clever6backt kilrplei*enti"9 P"-o 
these sub-lomoTtJ"°Cesses sharing a JiSle K a??n9> The effect of 
processes are un?ol?^ haS to ^track thfn n that if any of 
retries the mo?? ^ 33 wel1- Worse si ! ̂allL the interleaved 
point may not hplnCent alternative fir = t anw t-k6 backtracker always 

Potentially be vlrv^rJ0 ,the P'ocesI that ?an V^k recent 

exhaustively retrv f5edundant in its backtra^ti fc systeir will 
evaluation before ?<- ? ® other independent hi k"9 search- It will 
that failed. The re fn another StSSfc i?"?Ches °f the P»Mlltl 
PROLOG when the parallel Pseudo parallelism is rein parallel Process 

Parallel branches are detSinisU? V °nly S5fe in IC' 
we can mix both the p saŝ LS.-p̂ ss: kie1,-«- «. 

Seev»8dsf «; &srKS 
specifies that o?l the variabl^^nd a™otetion specifies that 
annotated. The test' fol producer proce« I p£?ducer annotation 
remains the same, bJ Aether a variaM? the va"able 
parallelism: when a ls a new circuirqfp> Can bound or not 
Producer, after the eo??r°Utlnln9 ^""P Possible with pseudo 
Possible that the proSfr6" has sttemptl| to I 1° be n'ade fc° the 

Producer is already ru?nino pbl"d 3 vsriable, it is 
<_ P(X)//Q (x?) example in the goal: 

the producer of x is 

» j t h t h . „ P ( „ i s  

currently .keStK,"!f OCO process to'S \t0° '» thi" 

Drn^Pen y soo if ?ha? h®" Each timo a?oi?d ?k back of the <?"eue of 
Produces the next- ' becon,e bound or queue the Q(x) will 
automatically resun,e e2sS£?in,ation for J 'tJ"d equally when Pfx) 

execution. x the 0(x) process will 
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Not ice  tha t  we can detec t  the  deadlock condi t ion  oui te  eas i ly  i f  we 
go through an ent i re  ' sweep 1  of  the  current ly  running processes  wi thout  
being able  to  run any of  them then we have a  deadlock.  ?n  th is  case  we 
concurred"  o f . t h e r n '  d is regarding the  annota t ions  for  the  var iable  
concerned This  i s  equivalent  to  forc ing one of  the  processes  to  

guess  i t s  input ,  and hoping tha t  i t  wi l l  f ree  the  deadlock.  

Implementa t ion of  Logic  sys tems.  

D ^^T P l e , t e  i n t e r a c f c ive  system of  the  complexi ty  and s ize  of  IC-
PROLOG demands  a  careful  considera t ion of  implementa t ion s t ra teoy.  In  
par t icular  the  implementa t ion language needs  to  be  f lexible ,  powerful  
and preferably  por table .  

For  la rgely  h is tor ica l  reasons  and avai labi l i ty  we chose  Pascal  as  the  
implementa t ion language.  At  the  t ime of  th is  decis ion Pascal  was  oui te  
a  new language and seemed to  offer  what  we needed,  namely  good "data  
s t ructur ing tools ,  h igh- ish  level  control  s t ructures  and promised some 
nope of  por tabi l i ty  s ince  the  s tandard  was  qui te  comprehensive .  

Our  exper ience  unfor tunate ly  has  been d issapoint ing,  wi th  the  resul t  
tha t  a)  we were  forced in to  poor  da ta  s t ructure  choices  by the  
inf lexibi l i ty  of  Pascal ,  b)  the  sys tem i s  not  a l l  tha t  por table  due to  
some unfor tunate  gaps  in  the  Pascal  s tandard  and c)  the  sys tem i s  a  
fac tor  of  three  to  f ive  t imes  less  ef f ic ient  than necessary .  

On the  o ther  hand logic  i s  a  good implementa t ion language especia l ly  
for  exper imenta l  sys tems.  The method we would  now adopt  involves  
bui ld ing a  h ighly  e f f ic ient  kernel  sys tem in  assembly language and then 
wri t ing  the  bulk  of  the  sys tem in  logic  i t se l f .  This  promises  a  fas ter  
implementa t ion t ime,  more  f lexibi l i ty  and some ext ra  power  too .  Of  
course  th is  i s  the  way tha t  the  or ig inal  Marsei l les  PROLOG was  
implemented,  though we fee l  tha t  the  use  of  assembler  for  the  kernel  i s  
jus t i f ied  ra ther  than us ing FORTRAN. 

A var ia t ion  on th is  method i s  to  wri te  the  complete  sys tem in  logic ,  
and to  t ransform i t  in to  a  specia l  logic  based language which can be  
s imply  and cheaply  compi led .  Hal im(1979)  descr ibes  such a  language 
which has  a  logic  semant ics ,  wi th  an  ALGOL l ike  syntax and control .  

References  

Hal im [1979]  MSc Thes is  Imper ia l  Col lege ,  London 
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T'ne Cnr ̂ ai"v;on of poveral P 1o-t sy-terns 

d.ciioiL'. ::oss 
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- = , nunwsr of Prolog in pler-en taiions is gro-iry reric.lv. as the 
useiumess of toe language and toe ease of making an interpreter for <t 
1= oppreciatec. .he tecaniques lor these iir^amentation* nave, verier 
2S t+M~ CX -n° n,etllCCS develc,?et 3n !tne last 20 years for lamuoce Sv3tc 
ana ttru i-«r.-orrc.:.co varies correspondingly. widel-. A ccnoarison of 
the performance of several systems a as therefore beer, made in order 
uo acn; present users ana future ir.pler.entcrs assess the relative merits 

Jie.3e teennxques in the context of Irolog. 

Five implementations are compared: 

ir Pctrln original Marseilles interpreter, v,Titter, as a small kerr.al 
in Fo-tian, citn a. supervisor written in the primitive Prolog langurre. 
code with extr^rgr'nfne compiler, wnicn translates into DLC-10 machine 
coae, -vitn extr^ i-acnine coce ar.u compiled Prolog sur-ort routines The 
mam part of the compiler was itself written in Pre loo? * 

' 3. 'The Edinburgh interpreter, also written mostly in coiroilec 
• _n~urgh prolog, but avoiding the expensive compilation orocess'. 
for the im310. °9' fiMt SySte*' >;ritter- totally in asserhier,! 

for alternativ^control^strategies?SCal designe<i mainly as a testbed 

*composite^Vt?-LC?o"^3°nS -°f ?r°log s*sterns have used ore or more 

misleading as Sre a?e se^rarS^tfncf5' bUt t;Us is felt to b3 
the mix iii any particuLf^oya! is ̂ ^/'to5^55 f efficier'c^ 
separate tests «,»« Jf. larc to c-isentany: e. A nun 

,  and  
separate tests "/ere thereforp'nw J cisentanyie. A number of 
of the systems . Thes^ we?£ aS fSlS£w5?aSWre Cistinct characteristics 

r. is built and1rev3r5ed°usinq0the^liranC1 tfee fcuil<5inC; a list of length 
of wxdely different svst-r,' elgoritnr wnicn makes comparison of widely different systems siaole. ®-^oritur wnicn makes comparison 

a printout of' the"?-! st so^u^lt^33 oy sddinS to the above test 
cifferent systems Ee«ed the overall run-tiro of cifferent systems,in ve^y"different ways. 

backtracking s*oeecl vp<? -
which generates oermutation=? **y usinc- tr*e r.aive sort algorithm. 

4. indexing s, vL L tl0ni tests them for crdereaness 4. Indexing speed was te«ted > ., £"C tSSt3 ther" for crdars 
a medium. size database consisting ̂  ll -'f ri°5r lr" several queries on 
facts about countries of the"world ^ a£>ovt z0 '•> clauses describing basic 

"asCdes???iedni?rtheateit Iblve.^3 teSted hy re?din? the same 

, ICO UJ. L o i. f 

Prolog systems .performed 6t - — «—>- w. cue 
• ascal program, thus showing ts: far s?oeds to a recursively written 
coes not nave to amoloAim anv Ion tcrr.s of speeo at least, Prolog 

o any longer to traditional ccmoilers. 
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The results of these tests are given in the following two 

tables. Tne first gives actual runtimes , on the two processors, to 
give an appreciation of the actual machine utilisation. The benchmarking 
process just described showed the DEC-10 to run at an effective speed of 
5.8 tines as fast as the IBM 370/135. The second table shows a comparisc 
between the different Prolog systems, using the system:that is generally 
fastest, tne Waterloo interpreter, as a basis (given a timing of 1.0 in 
each case), anc allowing for the difference in machine speeds. 

Absolute times Marseille Edinburgh Edinburgh Waterloo IC-Prolog 
Interp; Compiler Interp. Interp. Interp. 

Test IBM DEC* DEC IBM IBM 

1. Bcsic speed. 5.02 0.08 0.74 0.20 16. 87 

2. Speed and 45.11 0.40 1.02 0.33 17.77 
printout. 

1.35 85.03 3. Backtracking. 7.53 0.36 2. 36 1.35 85.03 

4. Indexing. - 0.08 0.46 0.51 29. 87 

5. Read-in. (462) 147.0 5.64 3.73 39.06 

Relative Times 

1. 3asic Speed 25.10 2.32 21.46 1.0 84.35 

2. Speed and 136.70 7.03 17.93 1.0 53.83 
printout. 

10.14 62.99 3. Backtracking. 5.58 1.55 10.14 1.0 62.99 

4. Indexing. - 0.91 5.23 1.0 58.57 

5. Read-in 123.86 228.6 8.77 1.0 10.47 

The main conclusion that can be drawn from, this is the rather 
surprising one, namely that an interpreter (Waterloo) can perform quite 
as well as a compiler (Edinburgh) in most areas. This car. to some extent 
be explained by the method of implementation - tne Eainourgh system 
was written by standard bootstrapping techniques whicn are cniefly 

the interpreter. However, one has to ask how Prolog systems are in 
f._t and this cuestion must give great importance to reac-in 
sceed (the con-oiler is extremely slow) and to tne printout of results, 

iS cSll" dee. not significantly shine over an interpreter, 
as tiiis is done by procedure call anyway. 

It is difficult to compare the iivplefentation time for the 

writ! tnan the others, with the possible exception of 
system "which developed many of the techniques used in other systerns1. 

Comments on the individual systems are as follows: 

1. The Marseilles system was the first Prolog system and is understand-
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ably less efficient, particularly in input-output (this prevented the 
completion of the database test, the difficulty of which v:?;; coupon.foe 
by its relatively poor error recovery on input) . The current Marseilles 
system was not available on a compatible machine, but is sale to bo 
considerably better. This test does show the necessity for a Prolog 
system to contain higher level input output procedures. 

2. The compiler is considerably rrore efficient than•earlier 
interpreters, and nas considerably more effective space saving features 
(throwing away of 'local' variables on completion) than either Marseilles 
or Waterloo. These space saving features would probably slev.' down the 
Waterloo system considerably. But the main disadvantage of the cor uler 
is ins long compilation time, which means that it is most useful for 
programs which are used repeatedly: given the experimental nature of 
most Prolog programming up to this time, these are probably not in tiie 
majority. 

3. The Edinburgh interpreter is distinguished by its large 
range of evaluable predicates, which is more comprehensive than any other, 
and its superior diagnostics, including trace facilities. These support 
facilities are written in a mixture of compiled Prolog and assembler 
ana, at well over 100 compared with about 40 for Marseille and Waterloo, 
may be more difficult to learn ana use effectively. 

4. The Waterloo interpreter is a sensible 'basic' system, 
omitting some of the features of the other systems, but implementing 
what it has sensibly. The effect of the assembler implementation is to 
make it extremely fast, and because of its compactness, it would 
probably be easier to copy to another machine than the Edinburgh system. 
Although it doesn't have the Edinburgh space saving features, its 
data structures are themselves more compact, and thus the proof stack 
grows less quickly in size - this tradeoff must be carefully considered 
with regard to both machine characteristics ana expected amplications. 

5. The IC-Prolog system is not shown to advantage by this 
comparison, as its main purpose, as was stated earlier, was to experiment 
with different control strategies and also provide a. 'clean' version of 
Prolog. Its behaviour does however teach some lessons. Pascal is 
probably not a good implementation language for Prolog systems owing to 
the difficulty of handling asta structures such as stacks in the way that 
most Prolog systems do. Also the 'one level' approach of writing a 'system, 
entirely in a conventional high level language is probably not desirable. 
On the other side must'be placed the portability of the system, which is 
already running on at least 3 different machines, and its use of 
annotations, which reduce an order factorial problem (in the sorting : 
example) to an order n squared. 

Is there a 'best' implementation strategy for Prolog? Probably 
not, although the results of this comparison suggest one possible 
strategy. The basic kernel of Prolog, which includes resolution, 
backtracking, and evaluable predicates including a reasonably high level 
of input output (at the 'term' level) is a relatively small program 
anc can be implemented on most machines in assembler in perhaps 2-3 
programmer-months. Other high level facilities can then be added in 
Prolog, including better syntax, trace facilities and more complex ccntro 
facilities. To allow for this recruires careful design of the basic 
evaluable predicates, as all the systems studied have lacunae which 
make it cifficult to iirylement some of these things. The provision of a 
Klacro implementation of Prolog' should also be considered. 
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The IvIPROLOG System 

* X* XX 
J.Bendl, P.Koves, P. Szeredi 

Abstract 

A new PROLOG system is described which facilitates 
modular programming and efficiency both in execution 
and in program development. 

Introduction 

Based on experience with existing PROLOG interpreters 
a new implementation of the language was developed. 
This implementation is called the JTPRDLOG system 
reflecting the fact that the system provides facilities 
for modular PROLOG program development. 
The aim of our new implementation was to develop a 
system more suitable for practical purposes. We wanted 
to reduce time and space requirements to run PROLOG 
programs, and to provide facilities to aid pros1*2-31 

development and testing. 
The system consists of four components, namely the 
precompiler, the consolidator, the interpreter and 
the interactive program development subsystem. The 
precompiler, the consolidator and the interpreter are 
implemented in the compiler writing languag# CDL2, 

- the program development system is itseff an 1IPR0L0G 

program. 

x 
Institute of Industrial Economy and Plant Organisation 
of the liinistry of Heavy Industries 
NIL! IGU3ZI, HUNGARY, 1363 Budapest, P'f. 33-

Institute of Co-ordination of Computer Techniques 
SzKI, HUNGARY, 1363 Budapest, Pf. 224. 
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The precompiler reads an MPROLOG source module, 
does lexical analysis, syntactical analysis, static 
semantic checking, optimises and produces a compact 
internal form of the module. 
The modules in internal form which make—up a complete 
program are consolidated into an interp re table 
program-module by the consolidator; this is a PROLOG 
level linkage editor. Such a program-module can be 
interpreted by the interpreter. 
The rest of the paper will describe in more detail 
the PROLOG language variant accepted by the MPROLOG 
system and the interpreter and program development 
subsystem components of the system. 
The implementation is now functionally complete 

i_Bendl 79 j ; the system is currently undergoing 
tuning. It runs on SIEMENS 7700 computers under BS2000. 
The porting of the system to I3M 360/370 and Rjad 
computers under OS and DOS is underway; this is 
especially simplified by the exceptionally high degree 
of portability of software developed in CDL2. 
The system was designed by P. Szeredi, K. Balogh, 
J. Sendl, G. Bogdanfy and P. Kbves. The precompiler 
was written by G. Bogdanfy, M. K6sa, J.ne Boda. The 
consolidator was written by J. Visnyovszky. The 

"aS Writte'1 "y J' £kmd1' M' L-vadi. The program development suosystem was written 
by P. Koves. 

The MPROLOG l&n^ua.|ge 

MPROLOG syntax is similar to that of CDL2 /and also 

"memr PR°L°G/' the a procedure 
fonot:" S liSt" f°r ™ ^ — as 

Member (x,x.£). 
Member(x,y. t):Member(x, l). 
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The syntax permits also the use of alternatives and 
groups. For example the above definition could also 
be written as 

Member -.x,y. ( ): x=y; 
Member (x ,  £ ' ) .  

MPROLOG modules contain a so-called interface specifi
cation, which declares the module's connections with 
other modules. 
Any symbol /name of an object, name of a predicate, 
etc/.which is to be used outside this module,- must 
be "exported", and any symbol which is used in this 
module but not defined must be "imported". 

Symbols not involved in module—connections are encoded 
by the precompiler, and loose their character-form, to 
save space in the symbol—table. 

Thus the internal symbols of different modules in a 
program will never be confused. 

An MPROLOG program may also contain Mode declarations 
[Warren, 77] and Match_order declarations. In a Match_ 
order declaration one may specify those argument positions 
of a predicate which should be used in a classification 
of the clauses for the predicate. Based on this 
information the precompiler will construct a tree which 
is used by the interpreter to quickly select that 
subset of clauses with which unification is feasible 
for a given call. This subset selection is also 
advantageous because it facilitates the recognition of 
determinism with a consequent memory saving. 

The interpreter 

The main aim of the interpreter of the MPROLOG system 
is to execute programs using much less memory in 
comparison 'with the "old" PROLOG. Furthermore there 
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is also an increase in time-efficiency mainly due 
to more elaborate coding and to the high level 
optimization features of CDL2, the implementation 
language. Finally the inclusion of algorithms written 
in a traditional language /as new built-in procedures/ 
is made simpler. 

Space saving in ffiPROLOG is achieved in two respects. 
First, due to the precompilation and consolidation 
techniques, the symbol table of the interpreter contains 
only those symbols whose character form is needed 
during the running of the program, i.e. only those 
that are to be input or to be output. In this way e.g. 
the names of PROLOG partitions /procedures/ are 
basically not present in the symbol table of the 
interpreter. 

The second, and more important way of space saving is 
achieved using the stack—management described in 
[Warren 77] . Thus the stack regime of the interpreter 

is split into three parts: 

- the main stack containing the administration 
parts and the so called local variables; 

- the global stack containing global variables, 
and 

- the trail that contains information for the 
undoing operations /at backtrack/. 

There are some minor changes in the organisation of 
stacks. Due to the fact that it cannot be assumed that 
the target computer's word size permits the storage 
of two addresses in one word a new mechanism for 
storing molecules was introduced. The basic directly 
addressable cells of both global and local stacks are 
words,thus cannot store a molecule. When one has to 
store a new molecule in such a cell a double word 
cell is created on the top of the global stack and 
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its address is stored instead. Of course care must 

be taken to avoid unnecessary duplication of molecules, 

e.g. when an existing molecule is unified with a 

variable the "old" address of the molecule is simply 

assigned. 

There is an improvement in the interpretation mechanism 

of MPROLOG aiming at avoiding growth of stacks when 
performing ordinary loops. The technique applied is a 

bit more general: when the interpreter reaches the 
last call in a given clause and there are no .backtrack 

choices up to and including its parent /which is the 
case in a deterministic loop/, then the whole local 

frame corresponding to the. call is moved down onto 

the frame of its parent, thus recovering both the 
administration space and the local cells of the latter. 

The operation is performed only if there are no cells 

in the frame of the call pointing to the frame of 

the parent. 

MPROLOG has a feature analogous to the indexing of 

clauses [Warren 77] , as described above under 

Match_order. 

Program Development Subsystem /PDSo/ 

The MPROLOG system was designed in such a way as to 

obtain a very high degree of optimality in the 

execution of PROLOG programs. For this reason the 

basic interpreter contains very few facilities to 

directly support interactive program development, 
instead, provisions were made to enable the development 

of a PDS3 in PROLOG. 

Vie envision the use of the MPROLOG system as follows. 

A PROLOG program consists of several modules. any 
point Of time a certain number of these modules are 
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complete and have been translated by the precompiler, 
a single module is -under development in the PDSS, 
several modules have not yet been written. The PDSS 
will provide facilities for the linking of precompiled 
modules and the simulation of the interfaces of 
nonexistent modules. The user will be conversing 
with the dialog manager component /D13/ of the PDSS; 
this will provide programer's assistant services 
in the style of INTERLISP. He will be able to edit 
and examine the module under development with a 
specialized PROLOG editor /EDIT/; the services of the 
editor will include semi—automated generation of 
interface specifications for the module. It will be 
possible to interactively debug and trace programs 
as well as manage errors /BREAK/. 

A program measurement facility will be available 
which will aid the programmer in selecting candidate 
procedures for translation into lower-level languages 
for optimization purposes. Currently only a very 
minimal DM and the BREAK subsystem are complete. In 
the sequel these will be described. 

The DM currently is simply an MPROLOG program which 
implements a read-interpret loop. It reads clauses 
from the terminal and performs actions based on the 
type of clause read. Two DM commands are available at 
this time: oTOP with the obvious meaning and CONSULT fn 
which causes reading to switch to the file fn; 
reading resumes at the terminal when a STOP is read 
from the file. Clauses which are goals are executed while 
all other clauses are added to the database. 

The BREAK subsystem is responsible for managing errors 
and providing tracing and debuging facilities. The 

•punTn^8111 13 m°deled cn the package of INTERLISP. 
ROLOG systems known to us either provide no tracing 



2o? 
- 7 -

or provide too much. It is our view that it should 
be possible for the user to control very precisely 
the amount and type of tracing information he recieves 
if debuging is to be effective. For this reason the 
BREAIC subsystem makes it relatively difficult for 
the user to specify the production of a large amount 
of tracing. The basic trace may be requested by the 

call 

:Trace fpr/n) .  
Subsequent to the execution of this call the predicate 
pr will be traced; note however that only the n argu
ment version of Pr is selected. The name and arguments 
of the procedure "will be provided at procedure entry 
and successful procedure exit; only the name of 
procedure is displayed on backtracking into the 
procedure and on failure exit. It is also possio. e 
to specify the procedure to be traced as pr, IN pr2, 
in which case only calls of pr, made from pr2 wi 
be traced. The next level of tracing may be mvo e 

by the call 

:Break (pr/n ) . 

in this case execution will stop at procedure entry, 
exit and on backtracking into the procedure. The us . 
is then in an interactive break. At this Poin 

full facilities of the PD3S are availaole to him 
i e. he may define new procedures, read files, 

*IdditJ a set of spectre* -
available to belp in examining the s a" 
currently running goal. A brief description bill 
be given of the most important BBSAK commands. 

Kt VTA AT, ATA are backtrace commando. They display 
• the cLll history with or without arguments, 

ancestors only or all calls. 
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ARG3 displays the arguments of the broken 

WHO 

n? 

procedure. 

displays the name of the broken procedure, 

displays the n-th argument of the broken 
procedure. 

unifies term with the n-th argument of the 
broken procedure. 

\ similar to the above commands var is the 
var=termj name of a variable that occurs in the clause 

that called the broken procedure, 

are commands that exit from the BREAK 
and cause execution to resume. In addition 
if OK! is given deeper calls of the broken 
procedure are not traced, if OK!! is given 
no deeper call is traced. 

causes exit from the break with the computation 
aborted. Return is made to the previous level 
of supervision /BREAK or PDSS/. 

a context switch is made to this state of 
the broken procedure, 

the most important command. 

When setting the break it is also possible to specify 

a list of BREAK commands to be executed in addition to 
or instead of interacting with the user. 

In the MPROLOG system errors are controlled through 
an exception handling mechanism. Errors are system 
defined exceptions; the user may define his own 

exceptions. When an exception occurs the procedure 
call causing the exception is replaced by a call on 

an exception handler. Exception handlers are specific 

o the type of the exception. The default handler for 
all exceptions causes a break to occur. Exceptions mav 
be raised explicitly by a call on 
error Tf « v, ^ procedure Raise 
*"/• " a nanaler = that it cannot adequately" 

exception it may propagate it, in a break 

n=term 

var? 

OK 

OK! 

OK!! 

ABORT 

SUCCEED 
PAIL 

HELP 
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this is done with the BREAK command PROPAGATE. At any 

point it is possible to issue the call 

Error_j?rotect t^call, handler). 

This call is equivalent to "call" if no exceptions 

which are propagated occur during the execution of 

"call". If this is not the case execution of "call" 

is replaced by the execution of "handler". Of course 

if exception propagation occurs during the execution 

of "handler" this is propagated to a higher level 

Error protect /if any/. 
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A Set - Oriented Predicate Logic Programming Language 

by Jack Minker 

The use of predicate logic as a programming language proposed by Kowalski 

[1974] has been achieved with a number of effective implementation of PROLOG 

(Colmerauer[1973, 1979], Bruynooghe[1976], Warren[l 977], and Roberts[1977]). 

A listing of a number of programs written in predicate logic has been achieved 

by Tarn! und[l 975] and Pereira[1979]. 

The control structure available with PROLOG has provided a sequential 

search with some very powerful additional features. A major problem that re

mains for predicate logic languages is that of providing a more flexible control 

structure for wide classes of problems. The control of backtracking as caused 

by non-determinism associated with fully instantiated unit is one such problem. 

Some approaches to handling such problems are described by Clark[1979], and by 

Bruynooghe[l 979]. 

In this paper we discuss a predicate logic programming language based upon 

set operations. The use of set operations is shown to alleviate some problems 

associated with backtracking. A clause within this language, referred to as a 

n-clause, represents a set of clauses in first-order logic. A n-clause consists 

of an ordered pair, C = (T, $ ), where T is a Horn Clause template and $ 1s a 

finite set of substitution sets, $ = *n>. A Horn clause tenplate is 

a Horn clause in first-order logic which is free of constants and where the 

predicate names have been replaced by variables. Each $ e $ is a set of substi

tutions sets where one may substitute for variables in a template. A substitution 

for a variable may be a set of constants, a set of predicate names, or boolean 

combinations of types as in a typed-predicate logic. 
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Examples of n-clauses are: 

^ C-| = (a(x,y)., {{[P]/« > [a,b]/x, [c-j ,c2>c3,c4]/y }}), 

C2 C2 = (a(z,y) «- e(x,y) & y(x,z), {{[PJ/a . [F]/B > [H]/y . male/x, 

human/y, female/z}} , 

c3 C3 = la(x-j), g(x2» x3) *• e(f(x-]), x2) & (hU])» *3)' 

{{[F]/a , [F]/B , [F]/y , integer/xr integer/x2, Integer^})). 

The n-clause, C-, may be interpreted as the eight unit clause in the first 

order predicate calculus. 

P(a, c-,). P(b, c-,) 

P(a, c2). P(b, c2) 

P(a, c3). P(b, c3) 

P(a, C4). P(b, c4) 

If the predicate P is interpreted as PARENT, then the children of a and b are 

specified by the n-clause and the corresponding unit clauses. 

The n-clause C2 corresponds to . single predicate calculus clause -here 

the variables belong to different types. That is. it corresponds to the typed 

first-order clause, 

(Vxe-U) (Vy,human) (Vz , female) - Flx.y) 8 "(x'z)) 

The n-clause C3 corresponds to the typed first-order clause, 

(Vx1Vx2Vx3,integer) (F(V 9(x,. x3l - Ftrtx,). x2). F(h(x,). x3>. 

If we interpret 

F = FIBONACCI 

f(Xj) S X| * 1 

h(x-|) = x1 - 2, 

g(x2, x3) = x2 + x3, 

then the n-clause C3 defines the FIBONACCI numbers. 

The notation of n-clauses (Fishman and Minker[l«5]) permits se s 0 

first-order clauses to be treated as individual clauses. It effective,, pe™ts 

2 
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all solutions for proof paths having the same template structure to be obtained 

in paralled. If so desired, the user may avoid the set operation features by 

permitting substitutions to consist of individual constants. A typeless first-

order system may be obtained by allowing only the universal type. 

An operational prototype system which runs in an interpretive mode on the 

UN I VAC 1108 has been developed. All predicates within the system are indexed 

on all argument positions. A call for unification of a literal with entries 

in the database consisting of unit and non-unit n-clauses results in all n-clauses 

being returned that have a literal that can unify with the given literal. The 

unification algorithm permits two n-clauses to be unified. The algorithm per

forms type-checking, that is, a variable to be substituted for another variable 

must have a type that overlaps with the type of the variable for which it is to 

be substituted to be acceptable. The type of the new variable then becomes the 

type of the overlap between the two types. Thus, dynamic type-checking is 

achieved (McSkimin[1976], McSkimin and Minker[l 977,1979}) i 

The inference system of LUSH-resolution is used with the bookkeeping de

veloped for LUST-resolution (Minker and Zanon[l979]). If desired, the system 

can run in a trace mode which permits every n-clause in the search space to 

retain the history of its derivation. This feature can be useful in a debugging 

mode. 

The control structure (Minker[l978]) permits literals to be selected in 

any position in a n-clause. A n-literal selected in a n-clause is expanded by 

the n-clause with best "merit". A dynamic generalized "slash" operator is pro

vided within the control structure of the system. For a given predicate for which 

m — 1 solutions pertain, "slash(m)" will terminate expansion of the literal 

when m solutions are found for the literal. 

Additional features which permit the ability to output answer and reason 

steps in symbolic, natural language, or voice output are noted (Minker and 

Powell[1979]). Experimental results will be presented. 

3 
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The  mean ing  of  l og ica l  p rograms  (abs t rac t )  

I > 'j v i A A* /\ v' o . f\ (TK v S c f J • i/ 

In  a  r ecen t  pape r  Kowalsk i  (  )  ha s  advoca ted  r ep lac ing  the  s logan  

"Algor i thm -  Program +  Da ta  S t ruc tu re"  by  the  s logan  

"Algor i thm =  Log ic  +  Con t ro l " .  I f  t he  semant i c s  o f  a  p rogramming  

language  a re  to  g ive  us  a  func t ion  M f rom Algor i thms  to  Mean ings ,  t he  

second  s logan  sugges t s  de f in ing  th i s  func t ion  a s  a  member  o f  

Log ic  -»  (Con t ro l  Mean ings )  

In  t h i s  pape r  we  use  th i s  f ac to r i za t ion  of  M to  b r ing  some  un i fo rmi ty  in  
the  de f in i t ion  o f  t he  semant i c s  o f  l og ica l  p rogramming  l anguages  l ike  
LUCID and  PROLOG.  We desc r ibe  how a  con tex t  f r ee  g rammar  can  be  
ass igned  to  each  log ica l  p rogram and  we  iden t i fy  Con t ro l  wi th  the  l an 

guage  genera ted  by  the  g rammar .  Th i s  r educes  the  p rob lem of  de f in ing  

the  func t ion  M to  the  p rob lem of  de f in ing  the  semant i c s  o f  a  t r ad i t iona l  
p rogramming  l anguage  because  the  syn tax  o f  such  a  l anguage  i s  g iven  by  

a  g rammar  and  the  semant i c s  g ives  a  mean ing  to  any  o f  t he  "p rograms 1 ,  

genera ted  by  the  g rammar .  

In  t he  sec t ions  on  AND/OR (Hare l ) ,  PROLOG,  LUCID,  and  ex tended  
a t t r ibu te  g rammar  log ica l  p rogramming  we  show tha t  ou r  approach  can  
g ive  the  "o f f i c i a l "  semant i c s  o f  t he  l anguage  -  showing  th i s  i s  the  main  

pa r t  o f  t he  paper  bu t  i t  canno t  be  conven ien t ly  abs t r ac ted  -  and  we  i l lu 

s t r a t e  the  approach  by  the  same  two  examples .  We  have  used  the  example  
o f  squa re  roo t  ex t rac t ion  because  i t  i s  s imple  enough  to  make  our  bas ic  

idea  c l ea r ;  we  have  t aken  the  LUCID pr ima l i ty  example  

N =  f i r s t  inpu t  

f i r s t  I  =  2  

beg in  • i  
f i  r s t  J  =  1 x  I 

nex t  J  =  J  +  1 
D  =  J  eq  N as  soon  a s  J  a  N 

end  

nex t  1=1+1  
outpu t  =  - i  D  a s  soon  a s  D V 1  X  I  a  N  
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because  i t  shows  how our  approach  can  handle  the  more  obscure  par t s  
of  LUCID's  semant ics .  

At t r ibu te  grammars  a re  not  usua l ly  thought  of  a s  log ica l  p rograms,  but  
in  the  ex tended  form (Wat t  & Madsen)  they  can  be  very  convenien t .  For  
those  wi thout  access  to  a t t r ibu te  grammar  based  compi le r  genera t ing  
sys tems  (  )  th i s  convenience  may not  be  obvious  un t i l  one  sees  the  
ex tended  a t t r ibu te  grammar  so lu t ion  of  the  pr imal  i ty  example  

Pr ime( iN TR) ' :  :  = Tes t  ( i  2  tN f  R)  

Tes t  ( i l  IN TR)  : :  =  lnner ( i l  t lx l  iN t  D)  Outer ( iD I I  IN rR)  

Outer  ( i  TRUE t l  iN t  FALSE)  : :  =  

Outer  ( i  FALSE i l  IN tR)  : :  =  l ess  than  ( i l  x  I iN  t  TRUE)  Tes t ( i l  +  1  INfF 
Outer  ( iFALSE II  iN t  TRUE)  : :  =  l ess  than  ( i  I  x  I iN  t  FALSE)  

lnner ( ( i l  i j  iN t J  =  N)  : :=  less  than( i j  iN (FALSE)  
Inner  ( i l  i j  iN t  D)  : :  =  l ess  than( i j  iN T TRUE)  Inner  ( i  I  I J+I  iNID)  

This  so lu t ion  should  be  compared  wi th  the  PROLOG so lu t ion  

Pr ime (N,  R)  «-  Tes t (2 ,N,R)  

Tes t  ( l ,N,R)  •-  squared ,  J )  Inner  ( I ,  J ,  N,  D)  Outer  (D,  I ,  N ,  R)  
Outer  (TRUE,  I ,  N,  FALSE)  «-

Outer  (FALSE,  I ,  N,  R)  «-  square( l ,  J )  l ess  than  ( J ,  N,  TRUE)  

SUCC(I ,  K)  Tes t (K,  N,  R)  
Outer  (FALSE ,  I ,  N ,  TRUE)  «-  square  ( I ,  J )  l ess  than  ( J ,  N,  FALSE)  

Inner  ( I ,  J ,  N,  D)  -  less  than  ( J ,  N,  FALSE)  eq( j ,N,D)  
Inner  ( I ,  J ,  N,  D)  ft, l ess  than  ( J ,  N ,  TRUE)  sum ( l , J , K )  Inner  ( I ,  K,  N,  0)  

and  the  AND/OR so lu t ion  
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R=Prime(N) 

1 = 2 R=Test(l, N) R -Outer(D, 1, N) 

[DYV 
l ^ X f n D A l ^ N ]  

R = FALSE1 R = TRUE 

'ANT 

J=square(l) D=lnner(l, J, N) 

, [-, DA I2 < N] 

R = Outside( I, N) 

K=sum(l,j) D=lnner(l, K, N) K=succ(l) R=Test(K,N) 

[j>Nl/ \vTJ<N] 

D=equals( J, N) D=Inside(l, J, N) 

These logical programs would have been much simpler if we were content 

with showing that composites are not primes. All four of them have the 

underlying grammar 

Prime 

Test 

Outer 

Inner 

: = two Test 

: = square Inner Outer 

: = [D] false j [—i D A I  ̂  < N] succ Test 

| [—i D A I2 a N] true 

: = [J a N] equals j [J < N] sum Inner. 

There is a close connection between logical programs and data flow 

machines because both of them abandon assignment and stores. The last 

section of the paper uses data flow machines to give an operational seman

tics of logical programming languages that can be compared with 

1) their official denotational semantics 2)actual interpreters. The data 

flow machine for our primal ity example is 
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As a  con t r ibu t ion  to  the  l i t t l e  exp lo red  f i e ld  o f  co r rec tness  p roofs  fo r  

i n t e rp re te r s  o f  log ica l  p rogramming  l anguages  the  paper  con ta ins  a  

p roof  tha t  t he  above  da ta  f low mach ine  g ives  a  co r rec t  in te rp re ta t ion  of  
t he  o f f i c i a l  deno ta t iona l  s emant i c s .  

Log ica l  p rogramming  l anguages  can  be  d iv ided  in to  

-  re la t iona l  ly  o r i en ted  l anguages  l ike  PROLOG 

-  func t iona l ly  o r i en ted  l anguages  l ike  LUCID 

and  da ta  f low mach ines  shed  some  l igh t  on  the  s ign i f i cance  o f  th i s  d iv i 
s ion .  
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L o g i c  P r o g r a m m i n g  &  R e l a t i o n a l  D a t a b a s e s  

P r o g r e s s  R e p o r t  

K e n n e t h  A .  B o w e n  
S c h o o l  o f  C o m p u t e r  &  I n f o r m a t i o n  S c i e n c e  

S y r a c u s e  U n i v e r s i t y  
S y r a u c s e ,  N e w  Y o r k ,  1 3 2 1 0  U S A  

T h i s  i s  a  p r o g r e s s  r e p o r t  o n  a  p r o j e c t  i n v e s t i g a t i n g  
t h e  c o u p l i n g  o f  a  l o g i c  p r o g r a m m i n g  s y s t e m  w i t h  a  r e l a t i o n a l  
d a t a b a s e  m a n a g e m e n t  s y s t e m .  T h e  p o i n t  o f  v i e w  i n  t h i s  
e n d e a v o r  i s  t h a t  o f  t h e  l o g i c  p r o g r a m m i n g  s y s t e m .  T h e  g o a l  
i s  s e e n  a s  t h e  a d d i t i o n  o f  f a c i l i t i e s  t o  t h e  l o g i c  
p r o g r a m m i n g  s y s t e m  w h i c h  w i l l  m a k e  i t  p o s s i b l e  f o r  t h e  l o g i c  
p r o c e s s o r  t o  e f f i c i e n t l y  s t o r e  a n d  r e t r i e v e  i t s  c l a u s e s  o n  a  
c o m b i n a t i o n  o f  b a c k i n g  s t o r e  a n d  p r i m a r y  m e m o r y ,  i n s t e a d  o f  
p r i m a r y  m e m o r y  a l o n e  a s  h a s  b e e n  t h e  c a s e  i n  m o s t  p r e v i o u s  
g e n e r a l - p u r p o s e  l o g i c  p r o g r a m m i n g  s y s t e m s .  T h e  u s e  o f  t h e s e  
a d d i t i o n a l  s t o r a g e  m e c h a n i s m s  i s  t r a n s p a r e n t  t o  t h e  l o g i c  
p r o g r a m s  a n d  t o  t h e  c a s u a l  u s e r .  T h e  a c t i o n  o f  t h e s e  
m e c h a n i s m s  i s  c o n t r o l l e d  b y  t h e  u s e  o f  a s s e r t i o n s  i n  t h e  
p r o c e s s o r ' s  d a t a b a s e  o f  c l a u s e s .  

T h e  l o g i c  p r o g r a m m i n g  s y s t e m  b e i n g  u s e d  i s  b a s e d  o n  o n e  
d e s i g n e d  a n d  i m p l e m e n t e d  b y  R o b i n s o n  a n d  S i b e r t  i n  L I S P .  
( T h e  h i g h l y  d e v e l o p e d  f a c i l i t i e s  o f  L I S P  m a d e  i t  q u i t e  
s u i t a b l e  a s  a  " s y s t e m s  p r o g r a m m i n g "  l a n g u a g e .  H o w e v e r ,  t h e  
c h o i c e  o f  t h i s  a p p r o a c h  w a s  m o s t  s t r o n g l y  c o n d i t i o n e d  b y  t h e  
g o a l  o f  R o b i n s o n  a n d  S i b e r t  t o  e f f e c t  a  m e r g e r  o f  L I S P  a n d  
l o g i c  i n  w h i c h  t h e  t o p - l e v e l  l o g i c  p r o c e s s o r  i s  a  
L I S P - c a l l a b l e  f u n c t i o n ,  a n d  a r b i t r a r y  L I S P  f u n c t i o n  
e x p r e s s i o n s  c a n  o c c u r  a s  e v a l u a b l e  t e r m s  i n  l o g i c  c l a u s e s . )  
T e r m s  a n d  a t o m i c  f o r m u l a s  i n  t h i s  s y s t e m  a r e  w r i t t e n  i n  
L I S P ' s  " C a m b r i d g e  P o l i s h "  n o t a t i o n :  

( o p e r a t o r  a r g 1  a r g 2  .  .  . )  

C l a u s e s  a r e  w r i t t e n  i n  t h e  l i s t  f o r m a t  

( c l a u s e  h e a d  b o d y 1  b o d y 2  .  .  . )  

w h e r e  t h e  l i s t  

b o d y 1  b o d y 2  .  .  .  

c o n s t i t u t e s  t h e  b o d y  o f  t h e  c l a u s e .  T h u s  t h e  l o g i c  
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definition of the append relation, usually presented as 

append(NIL, _Y, _Y) 
append (_H._T, _Y, _H._Z)<--append( T, Y, Z) 

is now written as: 

((append NIL _Y _Y)) 
((append (_H . _T) _Y (_H . _Z) ) (append _T Y Z)) 

*%S%ZUriSt3S''.}iis:,.yt 'nput in the usual 

called^LOGIC JrocJS^R^rr °9 *® S**"" is a LISP function 
and GOALS The , accaPts two arguments, HOW MANY? 
consitituMnJ ti! -iS f llSt °f collecfively 
HOW MJnJ" is a bit of, ?°?1. ClaUSe for the Proces*or. 
acceptable values °^contro1 information. At present, its 

ALL The outp- LSgic^OJESIor1"?!'"5 l?stthL fS 
substitutions S described as pairs 

S = (VARS VALS) 

where VARS is a list of th~ ^ 
GOALS. Each such suh^tit- Yanables occurring in 
for GOALS relative to the utlor> S is a successful solution 
length of the list L"J*!"* database of clauses. The 
longest non-repetitive list 3S follows- 1 *« the 
GOALS such that lenath.'r i  ̂uoi, substitutions satisfying 
treated as wh"e the atom alL is 
f eatur es°o f the'processor ̂ 1 one ̂ re^' ^ princiPal other 

processing6'staĉ T̂ 't̂ T̂ "'5 riSSS to the top of the 
whether pred ' system first checks to see 
PRIMITIVE_SYSTEM RELATIONS3 T*ON THE LIST 

exist a LISP definition f ' SO' there should 
LISP function The n °r prefj as a (boolean) 
function as a LISP Lnction^Tf"6".^3 t0 rUn thi 
runs (without erm *f pred successful? lu"s (without errnri ^uccessrui: 
this literal is reqarderf returns a non-NIL value 
and is popped off the stack S!^cessful ly solved 
error and rot-,,rn„ u tack. if pred runs withou 
regarded as logicallv ̂  ?IL" ^"literal 1 

branch of the computation tre^i^fa iled th%?Urlr?'1 
1 an error occurs • tailed. Finally 

(|red args) , and if therê ema î 6 LISP execution o 
below (pred args) on thl !f f another litera 
literal is swapped with Cn a then this latte 

occursrKCeSSin9 centinues flhf5 °n thG St3Ck 
occurs because of the n error tvpicall 
bound logic variables in Trgs?)"66 °f incomPletel: 
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2 .  C o n s t r u c t s  o f  t h e  f o r m  

( I S  v a r  S - e x p r e s s i o n )  

m a y  o c c u r  a s  l i t e r a l s .  T h e  a c t i o n  o f  t h e  p r o c e s s o r  
i s  s i m i l a r  t o  t h a t  i n  c a s e  1 .  i t  a t t e m p t s  t o  
e v a l u a t e  S - e x p r e s s i o n  a s  a  L I S P  t e r m .  I f  n o  e r r o r s  
o c c u r  i n  t h i s  e v a l u a t i o n ,  t h e  r e s u l t  i s  b o u n d  t o  
v a _ r  i n  t h e  c u r r e n t  e n v i r o n m e n t ,  a n d  p r o c e s s i n g  
c o n t i n u e s .  I f  a n  e r r o r  o c c u r s ,  t h i s  c o n s t r u c t  i s  
s w a p p e d  w i t h  t h e  l i t e r a l  b e l o w  i t  o n  t h e  s t a c k  ( i f  
a n y )  ,  a n d  p r o c e s s i n g  c o n t i n u e s .  

3 .  C o n s t r u c t s  o f  t h e  f o r m  

( ?  g o a l s )  

m a y  o c c u r  a s  l i t e r a l s .  T h e s e  a r e  r e c u r s i v e  c a l l s  
o f  t h e  l o g i c  p r o c e s s o r .  E s s e n t i a l l y ,  
( L O G I C _ P R O C E S S O R  1  g o a l s )  i s  r u n .  I f  a  s o l u t i o n  i s  
f o u n d ,  t h e  c u r r e n t  e n v i r o n m e n t  i s  e x t e n d e d  b y  t h e  
b i n d i n g s  c r e a t e d  b y  t h i s  s o l u t i o n ,  a n d  p r o c e s s i n g  
c o n i n u e s  w i t h  t h e  r e m a i n d e r  o f  t h e  s t a c k .  

T h e  d i r e c t  i n t e r f a c e  t o  t h e  d a t a b a s e  m a n a g e m e n t  s y s t e m  
i s  v i a  t h e  t w o  f u n c t i o n s  R E S O L V E N T S  a n d  R E T R I E V E .  
R E S O L V E N T S  t a k e s  a  l o g i c  p r o c e d u r e - c a l l  a s  i t s  s i n g l e  
a r g u m e n t ,  a n d  r e t u r n s  a  l i s t  o f  a l l  p r o c e d u r e  b o d i e s  w h o s e  
h e a d s  s u c c e s s f u l l y  m a t c h e d  t h e  g i v e n  p r o c e d u r e  c a l l .  T o  
o b t a i n  t h e  c a n d i d a t e s  f o r  m a t c h i n g ,  R E S O L V E N T S  c o n s t r u c t s  a  
c o n c r e t e  l i t e r a l  o u t  o f  t h e  v i r t u a l  r e p r e s e n t a t i o n  i n  t h e  
p r o c e d u r e - c a l l  w h i c h  i t  w a s  p a s s e d ,  a n d  p a s s e s  t h i s  c o n c r e t e  
t e r m  t o  R E T R I E V E .  T h e  l a t t e r  f u n c t i o n  e x t r a c t s  a p p r o p r i a t e  
i n f o r m a t i o n  f r o m  t h e  c o n c r e t e  t e r m  w h i c h  i t  r e c i e v e s ,  
a c c e s s e s  t h e  r e l a t i o n a l  d a t a b a s e  m a c h i n e r y ,  a n d  r e t u r n s  t o  
R E S O L V E N T S  a  l i s t  o f  a l l  c a n d i d a t e  m a t c h i n g  p r o c e d u r e s .  

T h e  s t o r a g e  s t r a t e g y  a n d  m e c h a n i s m s  i n  u s e  a t  p r e s e n t  
a r e  a s  f o l l o w s .  A l l  c o n d i t i o n a l  c l a u s e s  t o g e t h e r  w i t h  a l l  
i n d e f i n i t e  u n i t  c l a u s e s  ( i . e . ,  t h o s e  w i t h  a t  l e a s t  o n e  l o g i c  
v a r i a b l e )  o f  a  p r o c e d u r e  a r e  s t o r e d  i n  p r i m a r y  s t o r a g e .  
D e f i n i t e  u n i t  c l a u s e s  m a y  b e  s t o r e d  e i t h e r  i n  p r i m a r y  
s t o r a g e  o r  o n  b a c k i n g  s t o r e .  ( T h e  d e f a u l t  i s  p r i m a r y  
s t o r e . )  

T h e  p r i m a r y  m e m o r y  s t o r a g e  m e c h a n i s m  i s  a  h a s h  t a b l e  
( v i a  L I S P ' s  p r o p e r t y  l i s t  f a c i l i t y )  b u i l t  o n  t h e  p r e d i c a t e  
n a m e s .  E a c h  t a b l e  e n t r y  i s  a  l i s t  o f  t h e  e n t e r e d  p r o c e d u r e s  
c o r r e s p o n d i n g  t o  t h a t  p r e d i a t e .  

T h e  s e c o n d a r y  s t o r a g e  i s  c o n c e p t u a l l y  a r r a n g e d  i n  a  
r e l a t i o n a l  d a t a b a s e  s t y l e  - -  h e n c e  t h e  r e s t r i c t i o n  t h a t  o n l y  
d e f i n i t e  u n i t  c l a u s e s  c a n  b e  s t o r e d  o n  s e c o n d a r y  s t o r a g e .  
A l l  t h e  t u p l e s  f o r  w h i c h  t h e  p r e d i c a t e  h a s  b e e n  a s s e r t e d  t o  
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H ° ^ A r \ C , ° n C e P t U a l l y  9  r o u p e d  t o g e t h e r  ( t h o u g h  t h e y  m a y  b e  
d i s t r i b u t e d  p h y s i c a l l y  i n  b l o c k s  o n  d i f f e r e n t  p a g e s  o f  
s e c o n d a r y  m e m o r y . )  T h e  s y s t e m  a u t o m a t i c a l l y  p r o v i d e s  
o p t i o n  F0 "  t h c . f ] ; r s t  e l e m e n t  o f  a  t u p l e .  T h e  u s e r  h a s  t h e  
o p t i o n  o f  r e q u i r i n g  i n d i c i e s  o n  o t h e r  a r g u m e n t s  o r  
c o m b i n a t i o n s  o f  a r g u m e n t s .  T h e  i n d i c i e s  a t  p r e s e n t  a r e  
s e a r c h l n t r e e * S  l n ^ e n o n t e d  b X  m e a n s  o f  u n b a l a n c e d  b i n a r y  

r e t r i e v a l ,  o n l y  a  s p a l l  p o r t i o n  o f  t h e  t r e l  n e e d  b e  

I t s  d e f i n i t i o n .  N o r m a l l y  a  c a l l  o f  t h e  f o r m  
( j o r e d  a r g s - w i t h - v a r s )  ,  

S l u t i o L 1 g r l i p e r i n n a u i u s a b l U r S ' / O U l d  r 6 t U r n  3  l i s t  o f  

p h y s i c a l  d i s t r i b u t i o n  o f  t h e  t n n i °  *  r e f l e c t i n g  t h e  a c t u a l  
s e c o n d a r y  s t o r a g e  H o w e l e r  " P  '  ° f  ^  ° n  t h e  P a g e s  

a d d i n g  c l a u s e s  t o  t h e  d a t a b a s e  o f  t h e ^ o ™ *  t H i S  ° r d e r  b y  

( T R A V E R S E  p r e d  i n d e x )  

H e r e  i n d e x  i s  a  d e ? c r i n t - i o n  _  c  •  .  
b e i n g  m a i n t a i n e d  b y  t h e  s y s t e m ^  i h d e X f ! ° r  P * [ e d  w h i c h  i s  
o f  t h i s  c l a u s e  i s  t h a t  c a l l s  n f "  # - w  !  e c t  o f  t h e  p r e s e n c e  
w i l l  r e t u r n  t h e  s o l u t i ™ *  t h e  f  ° r m  A s c r i b e d  a b o v e  
t r a v e r s a l  o f  t h e  i n d e x  t r e e  J ? , ! "  ? r d e r  " " e c t i n g  t h e  
w i t h  o t h e r  s u c h  c o n t r o l  p l a n n e d  t o  e x p e r i m e n t  
i n - p r i m a r y - s t o r a g e  { c o n d  i  t  i o n a l  f  t 6 S  '  S U C h  3 5  " r u n  

d a t a b a s e  a c c e s s e s , "  e t c .  c l a u s e s  b e f o r e  { a f t e r }  

T h o u g h  t h e  p r e s e n t  
p r o c e d u r e s  h a v e  b e e n  o m n r  a b a ^ e .  a c c e s s  a n d  s t o r a g e  
a d d  o t h e r  m e t h o d s  ( s p e c I ? i c a T ? v  J "  L I S P '  i f c  i s  P l a n n e d  t o  
s t r u c t u r e s )  b y  p r o g r a m m i n o I I I  m ° r f  S 0 P b i = t i c a t e d  t r e e  
l o g i c  p r o c e s s o r  t o  e x e c u t e  t h e ™  l n  1 ° 9 1 C  a n d  a l l o w i n g  t h e  
c i r c u l a r i t y  h e r e  a r e  o f  c o u r s e  a v n i „  / u t e n t i a l  « o u r c e I  o f  
t h e s e  d e f i n i t i o n s  i n  p r i m a r y  s t o r a g e  X  m a i n t a i n i ^  a H  o f  

- ^ g ^ a M 3 e X K S ^ a a 1 n f V t d e a t a b a s e s  h a v e  b e e n  c o n s t r u c t e d  
s a t i s f a c t o r y .  A t  p r e s e n t  %  P e r f o r m a n c e  h a s  b e e n  q u i t e  
f i r s e a S K  U S i n g  t h i s  s y s t e m  i s  n n ? 1 _ W o r l d  b i b l i o g r a p h i c  
f i r s t  p h a s e  i t  w i l l  c o n s i s t  o f  a n n  c o n s t r u c t i o n .  I n  t h e  
p e r i o d -  T h e  r a w  d e s c r i p t i o n s  ° x l ^ t e l y  2 0 0 0  c o n c e p t u a l  ssr'srs1 rut <£«.::.r (Jlbtt*by 

" b ? ™ ™ "  " ' " s ' f r o m  I S  t o  •»" n a: 
i s  a P P l i c a t i o n  i n v o l v e s  



e x t e n s i v e  s t r i n g  p a t t e r n - m a t c h i n g  ( e . g . ,  f o r  t i t l e s  o r  
v a r i a n t s  o f  n a m e s ,  e t c . ) ,  i t  i s  p l a n n e d  t o  i m p l e m e n t  a  f a s t  
p a t t e r n - n a t c h e r  a t  a  l o w  l e v e l  a n d  i n t e r f a c e  i t  t o  t h e  l o g i c  
s y s t e m  b y  m e a n s  o f  f a c i l i t i e s  1 /  a n d  2 /  a b o v e .  P e r f o r m a n c e  
e x p e r i e n c e  f o r  t h i s  a p p l i c a t i o n  w i l l  b e  a v a i l a b l e  b y  J u l y .  

T h e  p o i n t  o f  t h i s  p r o j e c t  i s  n o t  c o n s t r u c t  a  
" p r o d u c t i o n "  s y s t e m ,  b u t  r a t h e r  t o  c r e a t e  a n  e x p e r i m e n t a l  
v e h i c l e  s u i t a b l e  f o r  a  f e w  s e l e c t e d  r e a l  a p p l i c a t i o n s ,  a n d  
t o  g a i n  e x p e r i e n c e  f r o m  t h o s e  a p p l i c a t i o n s .  P r e s u m a b l y  t h e  
e x p e r i e n c e  r e s u l t i n g  f r o m  t h e  s y s t e m  c o n s t r u c t i o n  a n d  f r o m  
t h e  a p p l i c a t i o n s  w i l l  m a k e  p o s s i b l e  t h e  c o n s t r u c t i o n  o f  a  
h i g h - c l a s s  s y s t e m  o f  l o g i c  p r o g r a m m i n g  c a p a b l e  o f  d e a l  w i t h  
e x t r e m e l y  l a r g e  a m o u n t s  o f  b a s i c  d a t a .  P o t e n t i a l  
a p p l i c a t i o n s  r a n g e  f r o m  o r d i n a r y  d a t a b a s e s  w i t h  v e r y  
u s e r - f r i e n d l y  f r o n t - e n d s  ( p e r h a p s  e v e n  n a t u r a l  l a n g u a g e )  t o  
k n o w l e d g e - b a s e d  e x p e r t  s y s t e m s .  



EXTENDED ABSTRACT 
Hoare's Program FIND Revisited 

by 
Sharon Sickel 

William McKeeman 

this Jape® we°give Tdifferent^00W°rreCtneSS °f the al9orithm, FIND. In 
The proof is based on a leouenro t° -a comPutat1onal ly eqoivalent algorithm. 
specific, and successive members of the1cePr°9ra,nS tha^ 9et Pr09ressively more 
Our goal is not to find fault with th se9u®nce are shown to be equivalent, 
first non-trivial proof of 9roundbr«king work of Hoare in this 
to extend the concepts to a differentSfn° afP+kr*in the literature, but rather 
of program design. We feel that this Ho*"?3 fee1 conduc1ve to clarity 
•or* Intuitive thin Hour" tSltSIt o?ttl' ,Kl 'It th* "sorlthn, ,re 
actually is part of the proqrm KSnSLS algorithm, and the derivation 
solution at the beginning and In fact ^his' ?6 do" not need to know the final 
serves two useful roles: 1) as a hls'c™ of th 1og1c Pro9ram refinements 
framework for the correctness proof program development. 2) as the 

The problem solved by FIND is as fniinu.. n 
elements, and a natural number, f oermuto Given an array A of N comparable 
element r and all smaller elements £oS e^?<?y S^Ch that A(f) co"tains 
elements later. This is similar to one •" array and a11 lar9er 

Hoare s algorithm appears in Table I Me ^ the Quicksort algorithm, 
equivalently. Ia£>le *• * shall derive a logic program that works 
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PROGRAM TRANSFORMATION BY A FUNCTION THAT MAPS SIMPLE LISTS 
ONTO D-LISTS 

Ake Hansson  and  S ten-Ake  Tarn lund  

UPMAIL 
Computer  Sc ience  Depar tment  

Uppsa la  Univers i ty -
Sweden  

In t roduc t ion  

We sha l l  in t roduce  a  func t ion- tha t  maps  a  s imple  l i s t  to  a  d - l i s t ,  
which  was  fo rmal ized  in  Clark  and  Tarn lund  [1977]  .  This  func t ion  
g ives  a  convenien t  method  for  deve loping  programs.  The  main  idea  to  
t ransform a  program to  another  program by  da ta  s t ruc ture  mappings  
seems to  go  back  to  Burs ta l l  and  Dar l ing ton  [1975] .  We have  made  
use  o f  i t  for  log ic  programs in  Hansson  and  Tarn lund  [  1979a ,1979b]  
and  we sha l l  deve lop  tha t  idea  fur ther  here .  The  success  of  th i s  
method  i s  dependent  on  whether  o r  no t  there  a re  dext rous  mappings  
be tween  da ta  s t ruc tures .  The  main  cont r ibu t ion  of  th i s  paper  i s  the  
formal iza t ion  of  such  a  mapping  be tween  s imple  l i s t s  and  d - l i s t s  in  
def in i t ion  1 .  The  mer i t s  of  our  mapping  func t ion  i s  re f lec ted  by  
the  shor t  der iva t ions  of  programs on  d - l i s t s  f rom programs on  
s imple  l i s t s .  This  i s  for tuna te  s ince  der iva t ions  of  programs a re  
usua l ly  qu i te  long  as  has  been  demons t ra ted  by  works  a l ready  
ment ioned  in  the  t ex t  as  wel l  as  by  Manna  and  Wald inger  [1978] ,  
Hogger  [1979]  and  Clark  and  Dar l ing ton  [1980] .  

Der iv ing  programs by_ da ta  s t ruc ture  mappings  

I t  i s  of  course  eas ie r  to  der ive  a  program on  a  s imple  da ta  
s t ruc ture .  However ,  to  make  th i s  program e f f ic ien t  we may have  to  
subs t i tu te  the  da ta  s t ruc ture  and  change  a  few procedures .  The  
l a t te r  s tep  can  be  taken  as  we sha l l  see  wi th  a  proper  mapping  
func t ion .  Le t  us  i l lus t ra te  th i s  method  by  an  example .  Suppose  t h a *j  
we spec i fy  the  idea  of  sor t ing  in  the  fo l lowing  way;  y  i s  a  sor ted  
vers ion  of  x  exac t ly  when y  i s  ordered  and  a  permuta t ion  of  x .  This  
i s  wr i t t en  more  p rec i se ly  next .  

sor t (x)=y  <—> ordered  (y)  & pe rmuta t ion  (x ,y)  (  

(Universa l  quant i f ie rs  a re  omi t ted  in  f ron t  of  the  en t i re  sen tence) .  
The  def in i t ions  of  o rdered  and  permuta t ion  a re  no t  impor tan t  here  
so  we l eave  them ou t .  Qui te  a  l engthy  der iva t ion  of  the  fo l lowing  
quick  sor t  program f rom the  spec i f ica t ion  in  (1)  i s  g iven  
Hansson  [1980]  .  
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The result of sorting the empty list is the empty list, and 
moreover the result of sorting a list x.y is to append a list 
consisting of the element x followed by a quick sorted list y" to a 
quick sorted list y' if the ordered pair (y',y") is the result of 
partitioning the list y with respect to x such that all elements 
less than x are on y' and those greater than x on y". We can now 

this program in our programming language (see Hansson, Haridi. 
Tarnlund [1980]). 

q (0) =0 
q (x.y) =append (q (y ') ,x .q (y" ) ) <- partition(x,y)«(y*,y") (2) 

mak?s .us®.of a functional notation and two data 
structures: a simple list written x.q(y"), where x is the first 
element and q(y-) the rest of the list, and a Cartes an Lid ls °,c iittie 
leave it out. The inefficiency of program (2) is due to anoend <?o 

element and the rest is the result of appending z to y. We have: 

append(0,u)=u 
append(x.y,z)=x.append (y,z) 

Ssthaseda^a struck! ISt'Jl'.XS'Sk^Si U8in* 8 Slmple 
more efficient e.g., by a new ll ^his Pro9ram to be a bit 
append. So our problem may be solved A'* where we do n°t "eed 
that also takes away L a n „ Y S data st^<=ture mapping 
mapping m from simple lists to d 1J Pr°cedure. Let us charcterize a 
our problem. The function m 1,^1 3- 33 we.shaH see solves 
simple list y.z appended to a simole n=fSll°ple list, composed of a 
exactly when m maps the simplelilt x ***'- £? 3 d"list <u'w> 
simple list z to the d-list <v,w>?t X t0 the d-list <u,y.v> and the 

m : simple list -> d-list 

Definition 1 

m (append (x,y.z)) =<u,w> <-> m(x)=<u,y v> . M„. 
"»y.v-> & m(z)»<v,w> 

m(0)=<u,u> 
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The quick sort program in (2) on a simple list and definition 1 
with our mapping function m lead to an equivalent quick sort 
program (big Q) on d-lists. 

Definition 2 

Q(y) =<u,w> <—> m (q (y)) =<u fw> 

We can now write down a short derivation in our natural dedution 
system that arrives at a quick-sort program on d-lists from our 
program in (2) . 

1. Q(x.y)=<u,w> <—> m (q (x.y) ) =<u ,w> UI def. 2 
2. Q (y1) =<u,x. v> <—> m(q(y'))=<u,x.v> UI def. 2 
3. Q(y")=<v,w> <—> m (q (y" ) ) =<v,w> UI def. 2 
4.* Q (y') =<u ,x.v> & Q(y")=<v,w> Hypothesis 
5.* m (q (y1) ) =<u ,x . v> & m (q (y" ) ) =<v ,w> <--> elim. 2,3,4 
6.* m (append (q (y ') ,q (y" )) =<u ,w> <—> elim. 5 and def. 1 
7.** part (x.y) = (y',y") Hypothesis 
8.** q (x.y) =append (q (y ') ,q (y" ) ) —51 elim. 7 and (2) 
9. ** m(q(x.y))=<u,w> Identity 6 and 8 
10.** Q(x.y)=<u,w> <—> elim. 9 and def. 2 
11. Q(x.y)=<u,w> <— Q (y') =<u ,x. v> & —> intro. 4 and 7 

Q(y")=CV,W> & 
part(x.y)=(y1,y") 

The base case gives immediately: Q(0)=<u,u> that we leave for the 
reader to check. So, together with this base case and step 11 we 
have derived an efficient quick-sort program on d-lists. 

Q (0) =<u ,u> 
Q(x.y)=<u,w> <- Q(y')=<u,x.v> 6 Q(y")=<v,w> & 

part(x.y)=(y1iY ) <4> 

Formal program development can, of course, not only be applied to 
derivations of programs from (abstract) specifications. It may also 
be applied to program transformations and in this way yield 
alternative programs of which some can be more efficient than the 
original programs. In fact, the quick sort program on dl^ts above 
is an example of such a transformation. We shall give a fin 
illustration of a transformation where our mapping faction 
definition 7 is very useful. Suppose that we want to ceverse 
list and have the following program. The result of revers g 
empty list is the empty list, and moreover the result °^,re^rs^ 
a list x.y is to append the list x.O to the list y' if y 18 the 
result of reversing the the list y. We can now;wr:rets progr,am 
more precisely, where we exploit the functional notation. 

rev(0) =0 
rev(x,y) =append (rev (y) ,x.O) 

(5) 
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This program is also inefficient due to the behaviour of append, so 
we want an equivalent program that does not make any use of append. 
For this purpose we define from (5) and definition 1 a reverse 
relation (big R) on d-lists which we can make use of to develop 
a reverse program on d-lists. 

Definition 3 

R(z)=<u,w> <—> m(rev(z))=<u,w> 

We can now derive a more efficient program on d-lists. 

R(X/Y)=<u,w> <—> m(rev(x.y))=<u,w> 
R(x.y) =<u,w> <—> m (append (rev (y) ,x.O) ) =<u,w> 

* R(5)>S<Cfi!w>(y)'X-0))=<U'W> <~> 1,1 (rev (y) )=»<u,x.w> 

* m(rev(y))=<u,x.w> 
6.* m(append(rev(y),x.O))=<u,w> 
7.* R(x,y)=<u,w> 
8. R(x,y)=<u,w> <- R(y)=<u,x.w> 

The last 

UI def.3 
Identity 1 and (5) 
Identity, * 
Hypothesis 
-> elim. 4, def. 3 

elim. 3, 6 
elim. 6, 2 
intro 4, 7 

-> 

-> 

-> 

... ,  ̂ steP together with a trivial 
efficient program for reversing a list: base case comprise an 

R(0)—<u,u> 
R(x.y)=<u,w> <- R(y)=<u,x.w> 

(6) 

Conclusion 

deduction system^Thi s*isPpleasantbwheanthderiVati°nS in 3 natural 

mapping function in definition 1 are methods like the 
programs are of modest size. However a^lable and moreover, the 
an error along a derivation ^o' K n dlfficult to make 
software in which we could make'th^I < w°uld be helpful to have 
get them checked out. We have in fact . * °ns comf°rtably and 
systems, POL (see Pilman and Wevhrau^ such "mi-automatic 
ansson and Johansson [19801 ) Bot-h iu and NATDED (see 

deduction systems of Prawitz (I9fisi ? these systems are natural 
c a r r y  o u t  q u i t e  - m p l i c a ^ r d i r i v a ^  

<u?u>=5v'w>eieadsaio°v=w!ng 6quality f°r d-lists in step 3 i.e., 
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DEVELOPMENT OF SOFTWARE FOR DEDUCTIVE REASONING 
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1. Introduction 

deductiveereaionina ?rogress. "Port on software development for aeauctive reasoning in a semi-automatic or automatic mode 
The implementation language is DECsystem-10 PROLOG [PEREIRA-78] . 

Development?3 h*6" SUpported the Swedish Board for Technical 

s^ongndem?nds9onU?he pr'ogramHsel w" t0-day'3 soci«ty leads to 
the programs are correct fn ^e ̂  t0 make sure that 

difficult problem to solve and we exDect"^ aspects. This is a 
found unless advanced software e 3 solution is not 
developed. A computer-based system wit^its^iah3"1 reasoning ia 

prodneehnudmannm?nd°?9ht t0 ** 9 aid t̂hê e!SfS'Si .SS 

axiomatized9in first-o^de^p^edicat ̂ 1 tbS ?at3 structures are 
programs are predicate imi> i logic with identity and the 
deduction system can be used toprograms (Horn-clauses) , a natural 

- Prove that a given program fulfills specified properties 

- Prove the correctness of a given program 

synthesize programs 

transform programs 

This is illustrated in rcranv 771 r 
and in [HANSSON-80]. ICLARK-77], [HANSSON-79A], [HANSSON-79B] 

sboat and 
In NATDFn ar3 de<3uctions can be perfo^ ,system' NATDED, in 

steps. i ;2̂ } 
be studied in ?P^WITZ?6 Jf?" SyStem on which^ATDE^i Jan 
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EXTRAPOSITION GRAMMARS 
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Abstract 
"Extraposition grammars" are an extension of "definite clause grammars", 

and are similarly defined in terms of logic clauses. The extended formalism 
makes it easy to describe left extraposition of constituents, an important 
feature of natural language syntax. 

1. Introduction 
This paper presents a grammar formalism for natural language analysis, 

called extraposition grammars (XGs), based on the subset of predicate calculus 
known as definite, or Horn, clauses. It is argued that certain important 
linguistic phenomena, collectively known in transformational grammar as left 
extraposition, can be better described in XGs than in earlier grammar 
formalisms based on definite clauses. 

The XG formalism is an extension of the definite clause grammar (DCG) [5] 
formalism, which is itself a restriction of the original grammar formalism 
based on definite clauses, Colmerauer's metamorphosis grammars (MGs) [2]. 
Thus XGs and MGs may be seen as two alternative extensions of the same basic 
formalism, DCGs. 

The argument for XGs will start with a comparison with DCGs. I should 
point out, however, that the motivation for the development of XGs came .rom 
studying large MGs for natural language [3, 7]. 

The relationship between MGs and DCGs is analogous to that^ between type-0 
grammars and context-free grammars. So, some of the linguistic phenomena 
which are seen as rewriting one sequence of constituents into another might be 
described better in a MG than in a DCG. However, it will be s own . a 
rewritings like those involved in left extraposition cannot be easily 
described in any of the two formalisms. 

Left extraposition has been used by grammarians to describe the form of 
interrogative sentences and relative clauses, at leas in ang ag 
English, French, Spanish and Portuguese. The importance of the 
constructions, even in simplified subsets of natura anguag , 
used in database interfaces, suggests that a grammar or 
to express them in a clear and concise manner. This is the purpose of XGs. 

The reader is expected to have had some Pr^ i°u%contraQC1\W"\®4amthe 
formalisms based on definite clauses [2, 5], with Prolog 
syntax conventions of DEC-10 Prolog [6]. 

' Roughly'speaking'' left .ktr.posltion occur. In , natural 
hen a subconstituent of some constituent is massing, missing 
onstituent, to the left of that' an  empty constituent, the 
onstituent in some way. It is useful to think h> 
race, occupies the "hole" left by the missing constituent, and that^the 
onstituent to the left which represents the missing p [1]), One 
ndicating that a constituent to its right contains stands has been 
an then say that the constituent in whose place e -pr,resented bv the 
xtraposed to the left, and, in its new position represented^ by the 
arker. For instance, relative clauses are formed y ' Where some 
impler cases is just a relative pronoun, followed by a sentence where some 
oun phrase has been substituted by a trace. This is represented in the 
ollowing annotated surface structure:-

The man that i[sj0hn met tj_] is a grammarian. 



3̂5. 
markerS * sta"fs for the trace, 'that' is the surface form of the 
index i. connection between the the two is indicated by the common 

inJJL?"0?1 °f l6ft extraP°sition plays an essential role, directly or 
RelatPH t7' ft" ma"y f°rmal descriPtions of relative and interrogative clauses 
Related to this concept, there are several "global constraints" t-hP 'm i A 

i s : 1 ?  T ^ r a  TZZISSS :R™£%;L°LR --r"- m° 
U" [np ... [rei X2 [a ... t2 ... t-i ... ]] ... ] 

without r^\iInghTt%rtratL%o™naCtfotn0f ̂  «trap0"Ul0n in . loose sense, 
and also in nti p transformations as in transformational grammar. In XGs 

context-free rule BGb^Zf ml d"Crlbi.ng lan«"a«es (cf. for instance the 
but a conceptual operation of sole MnH °f tra8forMtion ia not used, 
relative p^noun to a "hoL" in the , ̂  t0 relate a 

constituent following the pronoun. structural representation of the 

3. Limitations of Other Formalisms 

1 l e "  .  o c o ,  „  

trace. This technique is analogous to ti? f <- °an possibly dominate a 
[4], and is exemplified by the o i inbroduc"<>n of "derived" rules in 
clauses:- P d by the foll°"ing simplified grammar for relative 

full_sentence —> sentence(nil). 

sentence(HoleO) > 

noun_phrase(HoleO,Hole1), verb_phraseCHole1). 

noun_phrase (Hole, Hole) -> pr0per noun 
noun__phrase (Hole, Hole) —> 

determiner, noun, relative 
noun_phrase(HoleO.Hole) —> 

noUnJS«™t1r;,nnS?'..trf,]fhr"e<BoM'H°1«>-

verb_phrase(Hole) —> 
verb, noun__phrase(Hole nill 

verb_phrase(nil) -> verb? 

relative —> []. 
relative —> 

rel_pronoun, sentence!trace). 

Prep_phrase(HoleO,Hole) —> 

preposition, noun_phrase(HoleO,Hole). 

The variables 'Hole... 'g dennt 1' Dfu f°r relative clauses 

The fin?? °f!an extraP°sed constituent i?r?xeD'eo?rH 'nil'' dependin® whether 
The final rule for 'nounnhrase' ll expected an the rest of the string 

r -  j  

—  -  -  —  -  ~ ; r : _  



involves the use of rules whose left-hand side is a non-terminal followed by a 
string of terminal symbols which do not occur in the input vocabulary. An 
example of such a rule is:-

rel_marker, [t] —> rel_pronoun. 
Its meaning is that a ' rel_jpronoun' can be rewritten into a 'rel_marker' 
followed by the dummy terminal 't ', representing a trace. Note that after the 
application of this rule, the symbol 't ' will be at the front of the rest of 
the input, and subsequent rules will need to cope explicitly with such dummy 
terminals. This method has been used in several published grammars [2, 3, 7], 
but in a large grammar it has the same (if not worse) problems of size and 
clarity as the previous method. It also suffers from a theoretical problem: 
in general, the language defined by such a grammar will contain extra 
sentences involving the dummy terminals. For parsing, however, no problem 
arises, because the input sentences are not supposed to contain dummy 
terminals. These inadequacies of MGs were the main motivation for the 
development of XGs. 

M. Informal Description of XGs 
The only difference between XGs and DCGs concerns what is allowed on the 

left-hand side of a rule. The left-hand side of an XG rule can be any 
sequence of segments, where a segment is any sequence of non-terminals and 
lists of terminals, with the sole restriction that the first symbol of the 
first segment, the leading symbol, must be a non-terminal. The notation for 
an XG rule is:-

s 1 . . .  32 etc. sp-_i... s^ —* r- ^1 ^ 
where the s i  are segments. The following are examples of XG rules:-

fronted_verb ... verb(V), [not] --> verb(V), [not], 

rel_marker ... trace —> rel_pronoun. 

open ... close -.-> []. 

Roughly speaking, the meaning of a rule like (1) is that any sequence of 
symbols of the form 

siXiS2X2 ... sk-lXk-13k , ^ 
with arbitrary Xs, can be rewritten into ... X^-i. Jk ls  loose 
description could be made rigorous by using the notion of deriva ion grap 
derivation graphs are for XGs what parse trees are for context-free grammars. 
In this paper, however, derivation graphs and the meaning of XGs will only 
discussed informally. 

In a derivation graph, as in a parse tree, each node corresponds to a rule 
application or to a terminal symbol in the derived sentence, end the edges 
leaving a node correspond to the symbols in the right-han si e o 
rule. In a derivation graph, however, a node can have more than 
edge - in fact, one such edge for each of the symbols on the left-hand side of 
the rule corresponding to that node. Of these e ges, on y 
corresponding to the leading symbol is used to define the lef t" t0"r^ t  °r* 
of the symbols in the sentence whose derivation is represented by the graph 
If one deletes all except the first of the incoming edges to every node from a 
derivation graph, the result is a tree analogous to a parse ree. 

XGs, even without arguments, are strictly more powerful than context-J^ 
grammars. For example, figure 4-1 shows the derivation graph for the string 
"aabbcc" according to the XG:-



xi-i 
s —> as, bs, cs. 

as —> []. 
as ... xb —> [a], as. 

bs —> []. 
bs ... xc —> xb, [b], bs. 

os —> []. 
cs —> xc, [c], cs. 

strings0 d6flneS the context-sensitive language formed by the set of all 

anbnon for n>0. 
s Conventions: 

• = rule application 
(node) 

x = non terminal 
X = terminal 
[] = empty string 

** ~ S. s. 
Figure 4-1; Derivation graph for "aabbcc" 

Two consecutive symbols in i ^ 
course to consecutive edges entering ̂ nv 3id<5 °f  3 rule c°rrespond ol 
graph. If two such symbols are in the sLp° fortthat  in a derivatior 
are said to be next to each other segment, the corresponding edges 
imposes a restriction on the form'of derlCt?® edS6S t0 b® neXt to each other 
like that of figure 4-2, paths p' and D> . 10" graphs- In a configuration 
graph, the sector between them The term, sur™und a fragment of derivation 
^y be non-empty, and then one' says thatThe from that  sect°r  

e . However, when edges e' and e' < *L ? is  a gap between edges e' and 
string derived from the sector mus^ be empty"*^ t0 ea°h other> the terminal 

stes*,- s -a — i. ««- * l m - " M  M d - l s  • «  ° ° - s  



r + 

%3b 
5 

P' P" 
.. sector ... 

+ , + 

\ / 
\ / 

e' \ / e" 
\ / 
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\ / 
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Figure 4-2: Node n has two consecutive edges e' and e'' 
match each of its symbols in sequence. This sequence of symbols can be 
interrupted by gaps, which are arbitrary sequences of symbols paired to the 
occurrences of '...' on the left-hand side of the rule. 

I can now show how simple it is to express left extraposition with an XG. 
The following XG fragment describes essentially the same fragment of language 
as that of figure 3-1:-

sentence —> noun_phrase, verb_phrase. 

noun_phrase —> proper_noun. 
noun_phrase —> determiner, noun, relative. 
noun_phrase —> determiner, noun, prep_phrase. 
noun_phrase —> trace. 

verb__phrase —> verb, noun_phrase. 
verb_phrase —> verb. 

relative —> []. (2) 
relative —> rel_marker, sentence. 

rel_marker ... trace —> rel__pronoun. 

prep phrase —> preposition, noun_phrase. 
Figure 4-3: XG for relative clauses 

In this grammar, the sentence 
The mouse that the cat chased squeaks. ... 

. . a- Fio-nrp 4-4 The left extraposition 

SpUcit structure of'toe sot.nc. » £ not', SSfn 
Sr.pt 0, application or r«l. tor •« ..rt.P. « ̂  
in the figure. One can say that the leTt Pwhich may be looked at as 
the derivation by the the extraposition of the 
repositioning 'trace' to the right, thus reversing 
original sentence. 

In the rest of this paper, I will often refer to a 
repositioned into a fragment of a derivation grap , 
that constituent as a non-leading symbol in the left-hand side 
applied, and the symbol corresponds to some edge in the fragment. 



det noun rel verb 

Abbreviations: 

det =determiner 
np = nour\_phrase 
r - rei_marker 
relp = rel__pronoun 
s = sentence 
t = trace 
vp = verb_phrase 

A A det noun rel verb np 

relp 

the mouse that the eat 

[ ]  

chased squeaks 

Figure 4-H: Example of derivation graph for the XG above 

5. The Bracketing Constraint 
In the example of figure 4-4 the 

rule, at the place marked (•) when ^ 13 on"''y one aPPHcation of a non-D' 
applications of such rules, the aDni i _ Ver*' a deriv3tlon contains sever 
the bracketing constraint of the XG fn™ ^°nS must ot |ey a global constrain 
the translation of XGs into logic ThiS oonstraint is implicit : 
section. The discussion of the constraint TS ' t0 be discussed in the nei 
would require a lengthy formal ^ 

In a derivation c;raDh a A 

wit h  m o r e  t han one symbol'in its^eft t0 th® aPP l ication of a rul 
n,tderlIati°n graph> defined ^.n thp SldS deterain^ certain sectors 1 

constraint forbids the occurrenceinthe secti°n- The bracketin 
descendant both of a node in a sector a n d  r "0" graph of an* "°d* "eing 
sector IUdS C3K te apP l ied whose left-hand J*™** outside fchat sector. Tha 

ij-x sar-ffss: r: 

The constraint 
sentences 

The mouse squeaks. 
The cat likes fish. 
The cat chased the mouse. 

and its use is better 
shown with an example. From 
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the grammar of figure 4-3 can derive the following string, which violates the 
complex NP constraint:-

* The mouse that the cat that chased likes fish squeaks. 
This might be rendered in something more like English as:-

The mouse, that the cat which chased it likes fish, squeaks. 

The derivation graph for the ungrammatical string is shown in figure 5-1. 

det noun verb 

the mouse that the cat that chased likes. -^91! 

Fieure 5-1: Violation of the complex NP constraint 

in the graph f.) and («) mark two nested applicat*£ ££* ,SiS 

'rel_marker\ The sentence is unf^®a 1C ing inside a sentence which is 
(marked (+) in the graph) binds a trace occu 
part of the subordinated 'noun_phrase (++;. 

Now, oaing tN. bracketing constraint of JO. for 
complex NP constraint. It is only necessary to change the 

'relative' in figure 4-3 to (3) 
relative —> open, rel_marker, sentence, close. 



and add the rule 
open ... close —> []. (1)) 

nnn^^n«-ID0Kified grammar' ifc is no longer possible to violate the complex NP 
constraint, because no constituent can be repositioned from outside into the 

r^etOL0r^ivt?3).aPPUCatiOn °f ^ t0 th6 r6SUlt °f aPPlyi"« the 

auhJUni '0Pen' 3nd ,CloSe' behave aa brackets around a 
subderivation, preventing any constituent from being repositioned from outside 

Figure 5"2 ShOWS the - - W ̂  t": 

The mouse that the cat that likes fish chased squeaks. 

of̂ ieur̂ 36!'3 °nv, tKe<.uame three Simple sentences as the ungrammatical string 
to see how the 2S2 m* °m "°W try t0 derive in the.odifild gr^ 
to see how the bracketing constraint prevents the derivation. 

6, XGs as Logic Programs 

riefi'n^3 1DCG' an.XG is no more than a convenient notation for a set of 

predicate ^with ̂ h^same n^eK^f"3 he° extra ̂ our^ng63^^3 ? "" ̂  

S: 3rnln!nP° eî pLit/on Tist ̂  ĥ h ̂  S 
repositioned. L f Z ,Whl°h °arries constituents to be 

corresponding to the leading symboli"of the rSle 3 In^th ^ Predi0ate 

rule has just a single svmhnl on m,. i I !r In the case where the 
similar to that of DCG rules. For example, "the rule^' ̂  tran3lation 13 ver* 

sentence —> noun_phrase, verb_phrase. 
translates into 

sentence(SO,S,XO,X) 

noun_phrase(S0,S1,X0,X1), verb_phrase(S1 ,S,X1 X) 

3 "b16 translâ es' Into a call to the 
'connects' in DCGs. For example, the rule' r°le 13 analo8°us to that of 

rel_pronoun ~> [that], 
translates into 

re l_pronoun (SO, S, XO, X) terminal (that, SO S XO X) 
The translation of a rule with (-w, ' ' ,X) • 
bit more complicated. Informally the^em"6 Symbo1 in the left-hand side is a 
made into a (pseudo-) list which* is fraZ"? °S Symb°ls after the first is 
element of the fronted list is a I the ^^Position list. Each 
corresponding symbol, its type and contevt  ̂̂ !rm Whioh encapsulates the 
Thus, for example, the rule^6 context» and the continuation of the list. 

rel_marker ... trace -_> rel_pronoun 
translates into ' 

s'sss-M.'isfssrira kjtt «««* ««» •>« d"the 01™" 

between XO and X in the extraposition^lis't'" ̂  re3d 33 "C is the constituent 

- • — 
if the symbol^precetetK; •'-htyp^^1 13 preceded by '...', or -nogap', 
with the obvious meaning; symbol'is the t k 'terminal' or 'nonterminal', 

f"* «'wSu ?»xn.t i. 
So, the rule lsc <an e®Pty list being represented by •[]') 

marker(Var), [the] r.f u 
... [of,whom], trace(Var) —> [whose]. 
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marker(Var,SO,S,X0,x(nogap,terminal,the, 
x(gap,terminal,of, 
x(nogap,terminal,whom, 
x(nogap,nonterminal,trace(Var), 
X )))) ) :-

terminal(whose,SO,S,X0,X). 

trace(Var,S,S,X0,X) virtual(trace(Var),X0,X). 

svnthesisf ff6 tha" 3 l0gi° program ' an XG can "e used for analysis and for 
KSiSw * -r? Way " a DCG- For instance, to determine whether a 

defined bv th* \r \r r<P » o ^1 a"d flnal point final is in the 
y the XG of figure 1-3, one tries to prove the goal statement 

:- sentence(initial,final,[],[]). 
?CwS ' the String s can be represented in several ways If it is 

represented as a list, the above goal would be written 
sentenced,[],[],[]). 

2U£2ti£ -fj? -^ie t^f ST™ 
constituent can be repositioned into or out of the top level -sentence- "° 

as fSlois;- the tW° 3UXiUary Predicates -virtual- and -terminal- are defined 

virtual(NT, x(_,nonterminal,NT,X), X). 

terminal(T, SO, S, X, X) gap(X), connectsCSO, T, S). 
terminal(T, S, S, x(_,terminal,T,X), X). 

g a p ( x ( g a p .  
gap([]). 

where 'connects' is as for DCGs. 

These definitions need some comment The 
that, provided the current extraDosin'nn , ( 7, clause for -terminal- says 
derivation, terminal symbol T may be taken from th?* 3 ̂  *" th6 

string, where T connects SO to position SO in the source 
'terminal' says that if the next symbofin P°Sltion S* The second clause for 
terminal T, then this symbol can bfuken as iff^ extraP°3ition "«t is a 

string. The clause for 'virtual- aifl occurred at S in the source 
the extraposition list. 8 non-terminal to be "read off from" 

placed in the exf aposnLrflisf 00nstraint works. Symbols are 
left-hand side, and removed by calls'" ti^i f f f"6 tha" °"e synbo1 in the 

basis. This means that if two s vL hf ! Vlrtua1 '- °n a first in last out 
position to the right of the initial nn^r1"6 e* traPosedf one from an initial 
Of the first must be either the °/ the ° ther- the final P°3"ion 
second, or to the left of its final °f th® inUial position °f the 

t™ of repositioning, gives ^»»«»» " 

7. Conclusions and Further Work 

this extension15was1 tfjfovfif'a^'impleformal °d °/ DCGS ' The ffl°tivation for 
of such important natural language rnn T J• t0 describe the structure 
interrogative sentences. In tSZ,H3nst1ructlona a* relative clauses and 
usually been analysed in terms S left ex,r ' theSe destructions have 
constraints, such as the complex NP constr^T81"0"' togethd with global 
the extraposition. Global constraints all * ' ,h restrict the range of 

are given externally to be enforced n° explioit  in the grammar rules, 
objectionable, both on theoretical frn.fd f083 rUle aPPlications. This is 
pd on practical grounds "beo^e ft leads t'oT " 18 "ad hoc" 

leads to obscure grammars and prevents 
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the use of any reasonable parsing algorithm. 

DCGs, although they provide the basic machinery for a clear description of 
languages and their structures, lack a mechanism to describe simply left 
extraposition and the associated restrictions. XGs are an answer to this 
limitation. 

An XG has the same fundamental property as a DCG, that it is no more than a 
convenient notation for the clauses of an ordinary logic program. XGs and 
their translation into definite clauses have been designed to meet three 
requirements: (i) to be a principled extension of DCGs, which can be 
interpreted as a grammar formalism independently of its translation into 
definite clauses; (ii) to provide for simple description of left extraposition 
and related restrictions; (iii) to be comparable in efficiency with DCGs when 
executed by Prolog. It turns out that these requirements are not 
contradictory, and that the resulting design is extremely simple. The 
restrictions on extraposition are naturally expressed in terms of scope, and 
scope is expressed in the formalism by "bracketing out" subderivations 
corresponding to sectors in a derivation graph. The notion of derivation 
graph is introduced in order to describe extraposition and bracketing 
independently of the translation of XGs into logic programs. 

Some questions about XGs have not been tackled in this paper. First, from a 
theoretical point of view it is necessary to define derivation graphs 
rigorously, in order to give a precise definition of the concept of derivation 
in an XG, and to prove that the translation of XGs into logic programs 
correctly renders this independent characterisation of the semantics of XGs. 
This formalisation does not offer any substantial problems. 

Next, it is not clear whether XGs are as general as they could be. For 
instance, it might be possible to extend them to handle right extraposition of 
constituents, which, although less common than left extraposition, can be used 
to describe quite frequent English constructions, such as the gap between head 
noun and relative clause in:-

What files are there that were created today? 
It may however be possible to describe such situations in terms of left 
extraposition of some other constituent (eg. the verb phrase "are there" in 
the example above). 

Finally, as for DCGs, one can consider the question of what transformations 
should be applied to an XG developed as a clear description of a language, so 
that the resulting grammar could be used more efficiently in parsing, A 
possible approach to this question might be to generalise results on 
deterministic parsing of context-free languages into appropriate principles of 
transformation. 
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A hote on Teaching Frolog 

Prolog can he taught either to a layman or to an experienced 

programmer. The .former will gladly accept any plausible justifica

tion of the way the language is constructed - first-order logic 

seems the best justification possible. The latter, however, will 

be demoralized by bad Fortran habits or, at best, so used to the 

Structured-Programmirg-in-Pascal approach that he will need a lot 

of convincing before he considers Prolog a useful programming lan

guage . 

We are going to outline the crucial points of a method of 

presenting Prolog fundamentals which gives due attention to tneir 

proximity to "normal" programming language constructions and empha

sizes their advantages. 

We are deem.pha.sizing logic intuitions as we. believe that any 

practical use. of Prolog requires drastic short cuts or. the w«y 

from a logic explication to a running program. One can exploit 

first-order parallels of Prolog clauses to facilitate program ve

rification. normally, though, a clause is much more concise than 

its logic counterpart and it is even more so with complete Proce

dures. Try, for example, to account reasonably for such (evidently 

not first-order!) features as the cut procedure 'the "slash ), 

variable literals and - last, not least - the conscio.u u->e o, 

backtracking as a Pro.nramr.ir.g tool rather than as a search space 

generator. 
We also do without AI intuitions which do not help to make 

the clarity of Prolog obvious enough, -e stress Prolog's uniformi

ty and generality of data and control structures. These are the 

very features of a -cod programming language, not ov,l/ - lan n.5e 
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"for AI". 

As a contrast to Prolog we have chosen not Lisp but Pascal 

which is clearly the most up-to-date of all^.vldespread languages. 

Its design was influenced by the recommendations o^ Programming 

Lethodology, the same that we use to show the main (and somewhat 

startling) features of Prolog in a favourable light. 

* * * 

In a very general sense terms can be thought of as specifi

cations of data types, that is of classes of objects. These vary 

from the most general (the class of all objects) to the most spe

cific ones (a class containing one object). In Prolog objects are 

denoted directly by descriptions of their types - this provides 

sufficient flexibility to let us specify only those attributes 

of objects which are interesting in a particular context. 

A simple (unstructured) object is denoted by a name and we 

do not associate with it any interpretation. Simple objects are 

the Prolog counterparts of Pascal's constants but without some of 

flaws. Simple objects need not be declared, neither do they 

require a specification of type-censtant relation which is obli
gatory in Pascal. 

compound obier.t. is built of components which can be quite 

arbitrary. aeir correction with the object 1= expressed by Its 

nane (which Is, In fact, a close counterpart of type pane In Pas

cal) • A term denoting an object is nceto, „ > „nh c . 

a description of 1-th component which cap be also a compound ot-

sually speak of functor and arg-jnents instead of "nape" 

-a corponentf, as the potation rescues the one used 1- catha

rtics. -'°r the sake of homogeneity of approach we also speak of 

functors of sero argents which describe einnle objects. 

-.a ŝ actic sugar is welcome to facilitate description .1 

--acts but It not Pake things obscure. introduce -ir ̂  
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tors (infixj prefix and postfix) which help to simplify the nota

tion (we think it co-fusing to call them "operators")• Other faci

lities, such as infix procedure names or list brackets, aren't in 

the least necessary. 

Terms containing variables are used to describe objects with 

incompletely specified attributes; a variable denotes an object 

of an unknown type. Partially unspecified objects are used in a 

manner similar to Pascal's formal value-parameters in that they 
Cf-

serve as the handles of concrete objects. There is fc&e close si

milarity to "variables" of high-school algebra, cf g(x)=x'/+3- Af

ter a Prolog variable gets instantiated, it likewise ceases to be 

a variable: later on it denotes a specific object. That object 

in turn can contain variables - quite naturally it means that it 

still remains only partially specified. 

Terms are certainly more general than Pascal's value-parame

ters.- Their instantiation can be performed in discrete steps and 

not necessarily at once; it can also take place both on the called 

and the calling side. This generality is due to the generality of 
parameter passing 

unification used as the p«ite<iai!nmuiifcmtaiLag» mechanism. Tnis particu

lar mechanism enables us to write procedures in a natiiral and con

cise form, as illiistrated by 

+COifSCAACPiU*CAR.*Cm, xGAit, *CDR). 

The operation of a procedure depends on the attributes of 

its actual parameters but it is usually (as in Pascal) obscured 

by the piecemeal fashion of testing attributes to determine cont

rol flow. The dependency becomes clear in a multi-clause procedu

re where every clause gives rise to a distinct course of computa

tion. Surprisingly enough, similar multi—use routines appear in so 

modern a language as ADA in the clumsy form of "overloaded proce

dures; each version of such a procedure handles another set of 

parameter types. 
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The types of the actual parameters should match those o f  the 

formal ones In at least one clause heading of the called procedu

re. Otherwise the call is erroneous. Treating failure as an error 

condition helps to explain the meaning of backtracking, ixperler.ee 

shows that this notion can he particixlarly alien to ̂ programmer's 

intuitions. We decided then to slip through the psychological 

harrier by paraphrasing it as a general exception-handling mecha

nism with one major peculiarity. In Prolog every procedure can 

- in suitable circumstances - serve as an exception-handler and 

its operation consists in redirecting the computation in order to 
avoid failure. 

The misuse of backtracking for extended type-checking (e.g. 

at run time) and for the construction of nondeterminlstic proce

dures is then shown to equip Prolog programs with so much power, 

elegance and clarity that it. cannot be advised against, even thou

gh it makes backtracking virtually useless in its principal appli

cation, namely exception handling. Fortunately we need not really 

aice a choice since the cut procedure appears to be an effective 

tool for taming nondeterminism and for tailoring the backtracking 
mechanism to our needs. 

* * * 

short paper was not intended as a detailed description 

0 our method. A complete lecture on Prolog will appear - in Po-
ish - in a boo* bel»g „ltten by ^ ̂  ^ ̂  

-anted to safest a .ay „f demonstration that Krolo, is not as 
0 as it has seemed up to now. If ^olog ls tQ all 

—d as a pro™. ̂  ̂ ^ J _ ̂  

it compressible to th. prosramlns _ 

oltLT "J-"—^ " — —• —in terns, JL 

notio„: r:j::::roetoe8\bMt— - th* - * ~ 
Programmer's way of thinking. 
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APPLICATION OF PROLOG IN DESIGNING 

MANY-STORIED DWELLING HOUSES 

BY ZSUZSANNA MARKUSZ 

Computer and Automation Institute 

Hungarian Academy of Sciences 

/llll Budapest, Kende u. 13-17./ 
Hungary 

1. PREFACE 

The purpose of this paper is to show a new application of 

PROLOG in the field of CAD. A previous architectural CAD applica

tion of PROLOG has been published in [Mar, 3], In the course of 

solving the problem laid out there - namely the designing of 

different ground-plans for big-panel apartments - it turned out 

that PROLOG can be well applied in solving architectural problems. 

This program system makes use of the experiments performed in the 

previous work, however it is based on sore other architectural 

conceptions. Furthermore this new program system does not stop 

at producing variants of apartment ground plans, but aims at 

contributing to architectural design of complete dwelling houses. 

The method of program developing appears to be new as veil. It 

will be reported in Chapter 4, and it was also published in greater 

detail in [KM, 4] and [KM, 5] . The results of its application 

cote up in this paper, too. 

The programs were tested and run on the Siemens 7.7.55 computer 

of the Institute for Coordination of Computer Technics, the PROLOG 

system which was installed by Peter Koves [Kov, 6j. 

1. THE DESIGN SYSTEM OF THE APARTMENT HOUSE, DATA BASE, STRUCTURES 

In this program system basic building cells with given measurements 

and functions serve as the basic elements for designing apartments. 

Three cells with different measurements are taken into the data base: 
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measurements 

2.4 x 4.8 meter /narrow/ 

4.2 x 4.8 /wide/ 

4.2 x 3.6 /wide/ 

name 

A,B,C,D 

M 

N,L 

Eaph apartment is constructed by joining 3 wide cells and 1 to 4 

narrow cells. A general apartment is nade up of a iraxiirum of 7 

cells has the following geometrical neasurenents: 

•J' •J' A 
M 

*1 Fi 
N 

*1 Fi 

> 
1 

r 
Vt 'i.l 

r 
5! 

SI 
T 

-*—f—f-+• 

Figure 1. Outline of an apartrent 

« b" Z ̂  ̂  ̂ aPartTO"t " — «"» 

1 dining roan 2 
bedroom 3 

entrance 4 
kitchen 5 , 

bathroom 6 
0611 can serve two functions. Accordina to «, 

positial of the tor,, cells with theIT  ̂

can sw for different versions ih! !L'MSUr™mt' 

«*t of ta cells code. " "" 

3™ T -u ~ S"1 

Point, to the safer of retslom_ ̂  ̂ >»**• 

d«its stand for the above taction,! code,. °° 

In the program one apartnent is represents k , • 
*M. W. .t; .A, ,B. as folta, 

or *MIDDLE; *OUTSIDE 
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where MIDDLE means the list of the middle wide cells, 

OUTSIDE means the list of the outside narrow cells. 
In the course of apartment design the constant values of the 

chosen cells are assigned to the variables of the list. If the 

apartment contains less than 7 cells, a variable still remains 

in the unused part of the list. 

Two apartments and a staircase make up one section level. 

Horizontal placement of one or two section levels makes one 

dilatation unit level. The vertical placement of 2-4 section 

levels makes one section, while the vertical placement of 2-4 

dilatation unit levels makes one dilatation unit. Any number 

of dilatation units joined horizontally make up one building. 

One building is represented by a catpound list in which four 

different operators are present. 

According to the priority level the operators are as follows: 

! joins apartments /horizontally/ 

joins section levels /horizontally/ 

; joins dilatation levels /vertically/ 

joins dilatation units /horizontally/ 

To set an example let us take a building with 4 levels and 3 

dilatation units: 

* A 4  ! * B T  L ' O  j  * P W  I  1 

* 5 3  * , A 1  I  * 8 3  [  * C i  1  *  D 3  
/ 1  i  . 

* b Z  * A 2  I  * B Z  [  * C 2  1  ' 0 2  i  1  :  i 1  

* S A  « A J  !  * f h  .  * C K  i  * M  1  , y  I !  * S A  

-
- *  D 3  

NIL 

— N 

where *D1, *D2, *D3 represent the certain dilatation units, 

*D1 breaks down according to levels: 

*D1 = *S4; -*S3; *S2; *S1? NIL 

*S1 breaks down according to apartments: 

*S1 = *A1 ! *B1 . *C1 ! *D1 . NIL 

Figure 3. An example for illustrating a building 

in the program 



The building is designed so that the list of con tan ts of the 
finished apartments will replace the variables /»A1,.../ 
representing the apartments. 

3. PARTS OF THE PROGRAM SYSTEM 

The program system is ccrposed of the following four programs: 
1. FIAT program to design variations of ground.plans to neet 

individual demands; 

2. OKD prpc™ to aeclde tte priority orderin, of varieties of 
apartnents; 

3' ^°9ram t0 Create ^ ̂ rtical structure of the building 
to be designed? 

4" ^•PTB t0 deSl9n 1116 aewn»"« <* ground-plans of 
dwelling houses level by level. 

3.1. FLAT 

Taking into consideration the arrUe»,n 
program produces all the possible of T * d£mandS' ** possible ground-plans of the 
it provides these variants with the code of the ^ ' 
them in a file. This program is to be run appllcant stores 
of applicants. 33 "Bny tirnes 35 the nunfcer 

"^n^>ut:— list of the applicants; 
the personal demands of the anni-i^ 
data: PPlicants according to the following 

1/ Apart frcm the livina rrvm 4-u 
2/ The nurrber of single bedrocks nUrnber of double bedrooms /0-3/ 
3/ Preference of fJl <WUoant to have 

/ ! /  k  tT  C B , b t a a t t o -  of  the  fo l lowing/ :  
kitchen - dining rocm 

121 living room - dining rocm 

/The possible answers ^2 or T/^ ̂  

5/ Does nor1" 7l'2'3 °r ° ±f n° Second choice/. 
Does not accept the third solution- /, o , n, 

* s: t ZLTTle tedra:m for parê ?  ̂'*>*• agree to having a double bedrr™, „ • 
/Yes, No/. ' penlng into the living rocrn? 

8/ Does he want a study? /Yes, No/> 
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Output: - the lists of ground-plans fulfilling the input require
ments /in a file/ 

- on the printer the same lists in the form of a matrix 

with data concerning area and other quantities: 

1/ the area of the whole apartment 

2/ living area 

3/ nunber of beds 

4/ the ratio of living area and the whole area 

5/ area for one person 

3.2. ORD 

Uiis program enables the applicant to order the apartments 

according to preference that is the from the best choice to satis

factory in such a way that the applicant may exclude those versions 

vhich do not fulfill his needs, ibis is done by assigning a priority 

number to the apartments on the list. 

Input: the output of the FLAT program 

Output: according to the applicant's denend the program orders the 

apartments in the file. 

3.3 BUHD 

As a function of the maximum nunber of levels of the building to 

be designed as well as a function of the nunber of apartments, this 

program calculates the nunber of dilatation units the building will 

contain. It designs the general and the last - maybe incomplete -

dilatation unit's structure /sections, levels, nunber of apartments/. 

It elaborates the general outline of the building which will serve as 

input for the next program. 

Input: - the nunber of apartments in the building to be designed; 

- maximum nunber of levels; 

- nunber of sections is one dilatation unit; 

Output: the general outline of the whole building printed. 

3.4. TOTAL 

This program makes use of the results obtained from the precious 

three. Its aim is to fill the structure made by BUILD and several runs 

of the FLAT program taking into account the area and geometric require

ments of the building. The program places the apartments beside and above 

one another so that it selects those which correspond to the horizontal 

and vertical geometric and functional connections. 
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SEfi: - «» W of the left e„d of the dfletatfch « lopm „ clcM/, 

the type of the right end of the dilatation unit; 

- the connection of the first « to the second the first 

staircase is to be shifted up or down by half level? 

- the sane concerning the second staircase-

- to. many eat™ telle ^ ̂ ^ ̂  ̂ ̂ 

and second apartments? 

- the sane with the 2nd and 3rd apartnents; 

- the sane with the 3rd and 4th apartnents; 

~ •" Se°U°°S " "*** h»̂ «"lly as spared to 
each other to the right or to the left? 

a™,̂  lewl by ̂  of 

me apartnents are given bv the li=t-

of the applications! Ihe ̂  l^ "T "«*** 

a visual picture of the egcnetri rin ̂  °f ̂  nUlfcerS P10™** 
apartnents /Fig. 6> 7 /. ^angenent of functional elenents and 

pre~;:r,r̂ 016 apartatEnts ŝiae  ̂****** ̂  

figure 5. 

^ere K nm /Is n, ms 4/ is an ̂  _ 
* ™ P,Q .. ' 18 ̂  aP̂ nt; p Q apartment; 

^ K n ITH-1 

^ the apartnent K nm we^iert'^ 1̂ ^ ̂  apartnEntS' 
rents P,Q. n mfl apartment which neets rc 

f R'S To °f ̂  apartments. - —w uien 

K n m  S l S C t  9 K 11+1 m apartnent 

Abbreviations: ^^ts R and s. 

S ~ synmetry 

HZ ~ horizontal ® " h°rstair 

"f ~ suitable left 
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MV - suitable right 

GE - geometric left 
V - vertical 

GV - geometric right 

To every connection a procedure is assigned the functions of which 

are as follows: 

1. SYMMETRY 

It produces the symmetrical version of an apartment designed by the 

FIAT program with respect to the Y axis. 

2. HORSTA.IR 

It controls whether the staircase can be put between two apartments 

in the way that the entrances open from the staircase. 

3. HORIZONT 

It checks whether the geometric structure of the right cells in the 

second apartment is suitable to be joined to the left cells of the third 

apartment. . 

4. SUITAHLELEFT 

This program checks whether the right cells of the first apartment 

on the first level which is situated on the left side of the dilatation 

unit corresponds to the type of the dilatation unit on the left. If this 

type is OPEN then it does not join another dilatation unit, therefore 

the outline of the elements can be arbitrary. If it is CLOSED, the left 

side of the apartment's outline is allowed to contain only flat surfaces. 

5. SUITABT,FRIGHT 
Similar to 4. on the right end of the dilatation unit. 

6. VERTICAL 
This procedure is necessary for selecting any apartments above the 

ground floor. It checks whether 
- the wiater-block of the chosen apartment is above the water-block 

of the lower apartment, 

- the entrances are above each other, 

- there are cells under all cells. 

7. GEOMETRICLEFT 
This procedure is necessary to choose apartments on the left side 

of the dilatation units above the ground floor. It checks whether the 

left element of the upper apartment corresponds to the type of the left side 
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of the dilatation unit, and Aether the gecrretry of the upper and 

lower apartments match. 

8. GEXM2TRICRIGHT 

The same as 7 but refers to the right side apartments. 

Filling up the structure of the dilatation unit with apartments is 
performed in the following way: 

- applying the SUEEABLELEFT conditio « thoo« the apsrt«„ts K 11 to the 
left side of the first level, 

- ve fill up the first totol with apartnents to order of K 12, K 13. X 1, 

taking into account the horizontal conditions pointed out In Fl, 5 

- « chocs. apartment K 21 to the left side of the second leml so thit the 

- ZR.'R;.—A™APPIIED T° ̂  ̂  
the conditions of fitting the npyf /ir oo / 

i-uig rne next /K 22/ apartment are determined bv 
apartment K 21 beside an K 12 below if- mt • ^™nea ny 
vertical 15 SyStem °f ̂ izontal and 
vertical conditions can be seen in k„ r ™ 
_ Fig. 5. Hie other apartirents /K 23 K 2< 

Of the second tel fit In the sm way Parents /X 23, K 2. 

- the 3rd and 1th floor. treated similarly to the 2nd. 

Fig.6. shews the output form of the first le,»i e 
dilatation « of the s™ Fto, ̂  "" ̂  
of the above. respective drawing 

4' ?HE CC!>IPLEXTTY OF TVF VRCGR.W SYftr**, 

p~5 0,8 ** T »*««. - the 

the cutting of test tine th Program errors as well as at 

complexity of the program. " ^ lntr°dUCtion of local and global 

Ifcw we shall not go into details of the th 

principles and the achieved results. ^ the ̂  

All the programs have been developed in = 
organization so that the parts of th easy-to-survey hierarchical 

independently frcm one anoth d 6 PrDgra;ns can ̂  written almost 
om one another. PPOIOG es^ially is suitable for ̂  



- 9 -

The independent program units are called partitions. The definitions 

of the 6 different sorts of partitions /AND, OR, DATA, CASE, RECURSION, 

TASK/ can be found in[KM, 5.3.The programs were written 'top-down' and 

we decided at the hierarchical decomposition every time what sort of 

partition we needed for the further devision of the task. The partition 

was defined so that the number of clauses and arguments should not 

exceed 4. Having written the program before running it, we calculated 

the local and average complexity level of the program. The partitions 

with high complexity were devided to simple ones and the program was 

altered accordingly. Table 1. contains the test data of the programs, 

the number of sematic errors and complexity indeces. Vfe found the 

average local complexity 6.7 calculated for the whole program system 

to be optimal. 

The nuirber of sematic errors is 34 which is fairly small in respect 

to the whole program system. We can say that complexity calculation 

contributed a great deal in writing this fairly difficult task and 

putting it into working condition with only a few semantic errors in 

a short time, It took two persons a month's work to write and test the 

program system. 

The computer aided design procedure laid out in this paper can be 

adopted to other architectural applications. To create a new design 

system, the redefinition of the building's structure and the support

ing data base is necessary. The program level formalization of steps 

of the design solved by this system can be further applied. 

For the time being the program system only serves our research 

goals however, by altering the data base, the system can be made suit

able for any particular application. 
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FLAT 
BUILD 
TOTAL 
ORD 

Naite of 
the program 

Design Testing 
/man-days/ 

FLAT 
BUILD 

lo 
3 

11 
•» 

TOTAL 
ORD 

8 
1 

16 
1 

22 3T 

Nurrber of N 

Nunfcer of 
partitions 

78 
39 
85 
13 
215 

semantic errors types of partitions 

4 
18 
JL 
34 

J.4 
8 
16 
_5 
43 

43 
16 
31 
_4 
94 

21 
15 
37 
_4 
77 

Global 
conplexity 

6.4 
6.8 
7.1 
5.8 

Hie average local ccpplexitv «f <-k 
Y the program system: 

6.7 

Table 1„ Sunmary 
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LOGIC PROGRAMMING IN CHEMICAL INFORMATION HANDLING AND DRUG DESIGN 

P. Darvas 

Institute for Coordination of Computer Techniques 

Budapest, Hungary 

Chemical structure handling, i.e, the entry, storage and retrieval 
of information related to chemical structures is a peculiar problem 
requiring sophisticated software. In chemical industry and research, 
environmental protection and in other application areas data bases 
are in charge not only of chemical structure handling but also data 
handling of chemical properties which make the problem more complex. 

Logic programming seems to be an especially suitable tool for deve
loping such complex data bases. It provides a unique knowledge repre
sentation for the two kinds of information /structure and properties/. 

The lecture discusses a PROLOG-written interactive program system 
for chemical structure handling and CAD in drug development field. 

Information related to chemical structures /bonds of oompounds, frag
ments, etc/ are stored in the form of Horn-clauses. Advantages of 
this storage form are detailed. 

The program system contains the following levels of knowledge repre
sentations 
1/ Chemical structures as chemical bond sets. 
2/ Chemical properties related to chemical bonds, 
3/ Possible biological activities in pharmacological tests. 
4/ Possible biological activities in clinical trials. 
The knowledge representation of the system is organized in such a 
manner that concepts of higher levels are defined by those at lower 
levels. Thus, inferences can be based on the whole hyerarchy. 

The system is composed from the following subsystemst 
a/ One for chemical structure handling. 
b/ A subsystem for inference of chemical properties applicable in 

c/ A subsystS'for inferring biological activities from chemical pro-
pertie~ and chemical structure• 

The system operates on a Siemens 7755 computer and requires the ope 
ration system BS2ooo, 
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PRESCRIPTIVE TO DESCRIPTIVE PROGRAMMING 
A Way Ahead for CAAD 

Peter S# G» Swinson 
July 1980 

EdCAAD Studies 

Department of Architecture 
University of Edinburgh 

ABSTRACT 

enthusiasts about the^se^f ̂ r^* by PR0L0G 

standing the finished code by LopleTr^8 "8e °f Under" 
originator. To test these clliL th* Pro8"m 
problem was set which w s» 311 apparently simple 
illustrates some S' 

Aided Architectural Design pro*™?™ Wlth c°">P"ter 
then tackled using the FORTRAN "j'r Problem was 
involving what can be described^ computer languages 

and in PROLOG involvi™descrinM *V6 Pr°8ra™>ing, 
lowing report describes the diffir^ Pro«ran»>lng. The fol

ding, the progress ̂ of8the Exercise ̂ the °f CMD Pr°Rra-
version of the PROLOG program Indr* ""expected ultimate 
the exercise. the conclusions drawn from 

The investigation described in thi« 
research project looking PapCr 18 Part of a 

potential tools for Computed AiH .S°ftWare techniques as 
applications. The project is fa Architectural Design 
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1• INTRODUCTION 

1-1. Computing in Architecture Toda^ 

Computing has now become ui^i 

J" . r ; ; . - h o " „ e v s k ; . h " " i n  

and even "fewer in"6 V6ry feW lar8e integrated de 1 f°r bundlng 

groups working in the6'* •'"i'j3 1S desPite the efforts^f around* 
(CAAD) over leZd °f Computer A*a a ? several research 
the complete a P3St decsde" An integrated rAfn Archltectural Design 

base, and wherr"-"0" °f 3 is l!ored *S one in which 

t° generate further'de -3nge °f interrelated operaMonsC°CPrlLenS ̂  d"ta 
urther design and production inforaatSon? 7 Performed 
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The experience of the Scottish Special Housing Association (SSHA) serves 
to illustrate some of the major difficulties. It needs to be said that 
the following comments are in no way critical of the SSHA who were 
prepared to be involved as pioneers in CAAD. Rather, the experience has 
highlighted the inherent problems of current integrated CAAD systems in 
general. The SSHA is a central government funded organisation set up to 
build and factor public housing throughout Scotland, supplementing the 
work of local authorities. In co-operation with the Ed CAAD group of the 
University of Edinburgh an integrated CAAD system was developed to pro
duce the contract documentation (drawings and bills of quantities) for 
housing schemes (1). Most of this has been in production use for about 
four years. 

The system has highlighted three difficulties: 
- The time taken to get the system into production was much longer than 
expected. 
- Despite interest from several outside bodies, no other organisation 
has implemented the system or any part of it. 
- The system is becoming harder and harder to adapt to the changing 
needs of the SSHA. 

These difficulties stem from three basic aspects of CAAD today, namely 
the nature of CAAD problems, the tools currently available to resolve 
these problems, and the compound effect of these two taken together. 

1.2. The Nature of CAAD Problems 

In common with many other computing applications, CAAD systems can be 
seen as ways of helping people to cope with the increasing volume of 
information involved in their work. (Whether all this information is 
necessary may be debatable, but that is not the concern here.) Unlike 
most other computing systems, however, design activity is dominant in 
integrated CAAD systems. The creative and subjective nature of design 
means that there are no "right" or determinate answers to design prob
lems. The needs of one designer are not often met by the tools which 
meet the needs of another designer, or even the same designer in a dif
ferent situation or occasion. The more sophisticated the system, the 
more this is so. 

Not only individuals but organisations approach design differently from 
each other. To a system designer it may well be an attractive idea tc 
have a system reused in many places but, even if technical matters at 
each installation could be resolved, it would not be desirable that 
individuals or organisations should have to tailor their their way of 
working to conform to a given system. 

The same problem of differing views on a common data base occurs within 
any one implementation of a system within an organisation. The same 
information is used by architect, engineer, quantity surveyor and site 
operative. As well as differing views among these people, motivated by 
their different tasks, the same information is used by any one person in 
different ways. It is not a simple matter to resolve the various views 
and categorisations of the common data. 
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1.3. The Tools Currently Available 

Advances in hardware technology (the machines) has outstripped advances 

niques i^use for CAAD^can'be C?nVent*onal Programming tech-
Every sten tha? tb» u" be described as imperative or prescriptive. 
fying detail every oneratT tb l° ^ hM t0  ^ sPel led in stupe-
anticipated 'and catered for in Ml ̂  ̂ l l6d f°T needs to have been 

larger. Additions become more and mo"'difficult^o'l ^ torily into the exist - fncr  nn*** u Qirricult to integrate satisfac-
Introduce error, Int ' " n th» «» >««,..» do not 
"loc. knooded,,. of th. ?«!"" 

programming 'cAAD applications"howeve^^th St3ff "* required« ^ 
required, based on knowledge of ^ »P«i.li.t skills are also 
to get both skills to le^on CA^ PSbLrlCtlC:r, " * th" dlf"Cult 

the difficulty of avoiding interdisMMt satisfactorily; not least is 
corned , l t t  tk.ir ,.P„£? S.tfS XIS'.™' 

1.4. The Compounding Problem 

The complexity of the code, the uresrriboa . 
difficulty in getting suitable staff an^^b ^ pTOgrams ' the 

integrated CAAD system off the ground are all ft take" tC 86t 

together to make further problems. actors which compound 

Staff turnover is inevitable in the typical Hf„„ 
mg. Prescriptive code is notnr-fn ^  j t *  fesPan of a CAAD undertak
es author to pick up and develop. Difficulties' 1°* perSOnS other  than 

people to work on the same code means th=t getting different 
a co-ordinated approach, program code been SySbem development soon lacks 
versions of any one utility become fragmented and, typically, 
requiring it. Documentation, which is pIIti°U1 there  are  Programmers 
plex prescriptive code, is by the same Lv necessary with corn-
time consuming to produce. It is oftln°ken> P3""ularly difficult and 
sure to get the system up and working! SaCrif lced ^"e there is pres

ide programs always lag hehlua tv, 
culties of making changes has been^ome'l'T °f  the users* fie diffi-
cannot be viewed as a finished product Juil^ 6arlier ' A CMD system 

in-house_ policy changes, the needs' nJ I f regula"°ns change, 
anges in the specification occur frequent 1 * '  ® organisati°n change. 

P™g""'es«»p"r~raMbLppo^1"^ l  "hlch the "r.taeJ 

ited life-span of the system such that ^?lles a recognition of the lira-
nitio"" fr  d^*el°Pment alongside the one inMs SyStem would have 
software' !«»».» no, «*" 
... ™„M Uy Jle . ah ... „slfy> t£ f 
linoe • °pinion of CAAD propram L '• leaving many users with a dis-
lmgermg senility. P g ms hav™g experienced a system in its 
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1.5. The Future? 

In discussing the difficulties of conventional or prescriptive program
ming, John Backus highlighted two levels of the problem (2). Firstly 
there is the machine architecture itself, made up of a central process
ing unit, a store and a connecting tube. Up and down this tube single 
words are pumped back and forth as the program accesses and modifies the 
data in the store. This tube is aptly described as a bottleneck. 
Secondly, conventional programming languages follow the same philosophy, 
being built round the assignment statement which works with one word at 
a time. Backus pointed out that this approach not only sets up a 
literal bottleneck in the machine but an intellectual bottleneck, 
preventing radical new thinking. The same tunnel vision is also evident 
on a third level where application programmers are constrained to work 
with fully prescribed data structures on the same word-at-a-time basis. 
Programmers, with their investment in knowledge of conventional program
ming techniques, too readily try to mould each and every problem to suit 
their tools, rather than develop their tools to suit the problems. If 
we stay with conventional or prescriptive programming, the only future 
for the wide scale use of integrated CAAD systems would be to enforce 
conformity on both individuals and organisations. Even if this were 
possible, it would not be desirable. 

In a report on integrated CAAD systems by EdCAAD (3) two new software 
techniques were identified as indicating the first steps towards a new 
software technology which can overcome these problems, namely the rela
tional view of data and descriptive languages. This paper follows an 
initial investigation into PROLOG, a descriptive language based on 
predicate calculus (A). PROLOG is described as descriptive rather than 
prescriptive because programs written in it describe the world of known 
information and relationships, rather than prescribe the steps to be 
taken by the machine in dealing with any one particular problem. 

The rest of the paper takes an apparently simple problem and attempts to 
solve it with prescriptive languages and with PROLOG. The problem, set 
up at the SSHA, is somewhat abstract in nature but illustrates well some 
of the difficulties associated with CAAD programming (5). The solutions 
are compared and the differences between the prescriptive and descrip
tive approaches drawn out. It is apposite to point out that the pro
grammers involved were experienced with prescriptive languages (6) but 
not in PROLOG, a factor which strengthens the conclusions. 

2. THE SHAPES PROBLEM 

2.1. The Problem 

Given a data base of points (x and y co-ordinates), determine how many 
shapes of specified form can be found. For example in the given data 
base: + + +• 

+- + +-

There are 5 squares: -t- + + 
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There are 9 rectangles: 

c (5 squares plus) 

There are also 20 equal sided L shapes and 36 arbitrary L shapes 

The solutions in FORTRAN, C and PROLOG are given later. 

2'2' The Prescriptive Solutions 

°ne of th* commonly „«d I.ngu.gc, c i. 

H... FORTRAN ,nd C progrm. ..tl.f.ctorily the 

How many rectangles are there? 
How many squares are there? 
How many equal sided L shapes are there' 
How many arbitrary L shapes are there? 

If the user then chooses to ask how manv T 
grammer would reply: shapes are there, the pro-

I will have to develop6myhprogrMWfurther?' ̂  ̂  ab°Ut T Sh*peS-

And so it would continue. The prescr int--r^o * , 
grams to answer prescribed aPProach can only offer pro-
the questions that will be asked w *RS * programmer must anticipate 
grow as more and more Is asked' P"?"™ "e llkely t0 8™ and 
that that brings. them, with all the attendant problems 

2*3* The Descriptive Solution 

The PROLOG solution is here call^a a a 
prescribing a solution to a narti i escrlPtlve because rather than 
statements of what is true are held Wh St6P ̂  StCp' 8eneralised 
is In fact asking for all the" USeT re9"ests a shape, he 
defined shape exists. If for examn1 P°®Sible conditions under which his 

there are, he will set the goal as a's * wants t0 know how many squares 
mine how many ways in which the eoal r qUare an? the Program will deter-
well set the goal as an L shape a T eh" satisfied. He could equally 

shape, a T shape, or any shape he wishes. 

Many readers may well be unfamiliar with PROLOG a 
the code and how questions are ask J °L°G and so an explanation of 
the interrogation procedures would^ llstln§' "early 
be offered as a user package but the ^.anced if this were to 
t h e  u n d e r l y i n g  p r i n c i p l e s  o f  t h e  ^ s c r i p t i v e ' a p j r o ^ . ° U t  
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2.4. The FORTRAN Listing 

DIMENSION IPXC128),IPY(128) 
READ IN DATA POINTS 
WRITE(5,100) 

100 FORMAT(' ENTER UP TO 128 POINTS, 
X 1 SET/LINE, (END WITH -1,-1)') 

NP=0 
DO 1 1=1,128 
READ(5,101)IX,IY 

101 FORMAT (21) 
IF(IX.LT.O)GOTO 2 
NP=I 
IPX(I)=IX 
IPY(I)=IY 

1 CONTINUE 
2 NR=0 

NS=0 
NEL=0 
NUL=0 

C***** TEST FOR RECTANGLES, SQUARES, EQUAL L SHAPES 
C***** AND ARBITRARY L SHAPES 

DO 3 1=1,NP 
DO 3 J=1,NP 

IF(I.EQ.J)GOTO 3 
IF(IPY(I).NE.IPY(J))GOTO 3 
IHD=IPX(J)-IPX(I) 
DO 3 K=1,NP 

IF(J.EQ.K)GOTO 3 
IF(IPX(J).NE.IPX(K))GOTO 3 
IVD=IPY(K)-IPY(J) 
NUL=NUL+1 
IF(IABS(IHD).EQ.IABS(IVD))NEL=NEL+1 
DO 3 L=1,NP 

IF(I.EQ.L)GOTO 3 
IF(IPX(I).EQ.IPX(L))GOTO 3 
IVD2=IPY(L)-IPY(I) 
IF(IVD2.NE.IVD)GOTO 3 
NR=NR+1 
IF(IABS(IVD).EQ.IABS(IHD))NS=NS+1 

3 CONTINUE 
NR=NR/4 
NS=NS/4 

C***** PRINT OUT THE RESULTS 
WRITE(5,102)NR 

102 FORMAT(' THERE ARE',14,' RECTANGLES') 
WRITE(5,103)NS 

103 FORMATC THERE ARE',14,' SQUARES') 
WRITE(5,104)NEL 

104 FORMATC THERE ARE',14,' EQUAL SIDED L SHAPES ) 
WRITE(5,105)NUL 

105 FORMATC THERE ARE',14,' ARBITRARY L SHAPES ) 
STOP 
END 
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2 .5 .  The  C  L i s t i ng  

ma in ( )  
{ 
* n t  i » j» k > 1 >vd ,vd2 ,hd , r oax ,g r i dx [128 ] , g r i dy [128 ] ;  
i n t  r e c t . squa re , eq_e l s , non_e q_e l s ;  

max  =  r e c t  =  squa re  =  e q_e l s  =  non  eq  e l s  -  0 ;  
/ *  r ead  In  da t a  po in t s  * /  ~  ~  

p r ln t f ( "  ENTER U P  TO 128  P OI NTS , " ) ;  
p r i n t f ( "  1  SE T PER LINE. (END WITH - 1  - l ) \ n "> -
w h l l e ( l )  {  "  '*  

s c a n f ( "%d%d" ,&gr idx fmax] ,&gr idy fmax] ) ;  
i f ( ( g r i dx fmax ]  — -1 )  | |  ( m a x  >  1 2 8 ) )  

b r eak ;  
++max ;  

/ *  t e s t  f o r  r e c t ang l e s ,  squa r e s ,  equa l  s i ded  L  shapes  
and  a rb i t r a ry  L  shapes  * /  P  

f o r ( i  =  0 ;1  <  max ;++ i )  
f o r ( j  =  0 ; j  <  max ;++ i )  
i f ( j  !=  1 )  {  
i f ( ( g r i dy [ j ]  -  g r idy [ i ) )  =  0 )  {  

bd  =  g r i dx f j ]  -  g r id x f i ] ;  
f o r (k  -  0 ;k  <  max ;++k )  

I f  ( k  ! =  1 )  {  
i f ( ( g r i d x f k ]  -  g r idx f i ] )  =  0 )  {  

v d  =  g r i dy [k ]  -  g r idy ] ! ] ;  
++non__e  q  e  I s ;  
i f ( ( ab s (v d )  -  abs (hd ) )  =  0)  

++eq_e l s ;  
f o r ( l  =  0 ;1  <  max ;++ l )  
i f ( l  !=  j )  {  

I f  ( ( g r i dx f  j . ]  -  g r idx f i ] )  =  0)  {  
v d 2  -  g r idy f l ]  -  g r idy [ j ] ;  

i f  ( vd  =  V d2 )  {  
+ + rec t ;  
i f ( ab s (vd )  =  a bs (hd ) )  

++sq u a r e ;  
} 

} 
} 

} 
} 

} 
} 

r e c t  = /  4 ;  
squa re  - /  4*  

/ *  p r i n t  ou t  t he  r e su l t s  * /  
p r i n t f ( "  THERE ARE Zd  RECTANGLFF  \ n "  
P r i n t f (»  T H E RE  ARE %d  

}  p r in t f ( "  S  ̂ Zd  
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2 .6 .  The  PROLOG L i s t i ng  

/*  da t a  po in t s  f o r  t he  e xa mple  * /  
p (0 ,0 ) .  p ( 10 ,0 ) .  p ( 20 ,0 ) .  
p (0 , 10 ) .  p (10 ,10 ) .  p (20 ,10 ) .  
p (0 ,20 ) .  p (  1 0 ,20 ) .  p (20 ,20 ) .  

/ *  t he  p rog ram * /  
ho r i z o n t a l s ( [ ] ) .  
ho r i zon t a l s (  [Head |Ta i l ] ) : -  h o r i z ( H ead ) ,  ho r i zon t a l s (Ta i l ) .  

ho r i z ( [ ] ) .  
ho r i z ( [L0C ] ) .  
ho r i z ( [ l oc (p (X l ,Y) ,D l ) , l oc (p (X2 ,Y) ,D2) |Res t ] ) : -

p ( X l ,Y ) ,  p (X2 ,Y) ,  X2= \=X1 ,  D1  i s  X 2- X1 ,  
ho r i z ( [ l oc (p ( X 2 ,Y ) ,D 2) | Re s t ] ) .  

v e r t i c a l s ( U ) .  
ve r t i c a l s ( [Head ITa i l ] ) : -  ve r t (H ead ) ,  v e r t i c a l s (Ta i l ) .  

v e r t ( [ ] ) .  
ve r t ( [L0C] ) .  
v e r t ( [ l oc (p (X ,Yl ) ,D l ) , l oc (p (X ,Y2) ,D2) |Res t ] ) : -

p ( X ,Y l ) ,  p (X ,Y2) ,  Y1= \=Y2 ,  D 1  i s  Y2-Y1 ,  
v e r t ( [ l oc (p (X ,Y2 ) ,D2 ) [ Res t ] ) .  

ab s ( A ,A) : -  A >0 .  
ab s (A ,B)A =<0 ,  B  i s  -A .  

2 . 7 .  T he  PROLOG L i s t i ng  Exp l a ined  

The  f o l l owing  e xp l ana t i on  i s  i n t ended  t o  g ive  t he  r eade r  a  s imp le  u n d e r 
s t a nd ing  o f  t h e  de sc r i p t i ve  na tu r e  o f  t he  p rog ram,  and  no t  t o  t e ach  o r  
even  i n t roduce  PRO LOG a s  such .  

( a )  The  f o l l owing  t e rms  (o r  pa r ame te r s )  a r e  u sed  ( no t e  t ha t  t e rms  
beg inn ing  w i th  c ap i t a l  l e t t e r s  a r e  va r i ab l e s ) :  

c o -o rd ina t e s  X ,Y  
po in t  P  be ing  t he  complex  t e rm  p (X ,Y)  
d i s t ance  D  
l oca t i on  LOC be ing  t he  complex  t e rm  loc (P ,D)  o r  

l o c (p (X ,Y )  , D)  whe re  D  i s  t he  d i s t ance  
t o  t he  nex t  l oca t i on  on  t he  l i ne  

(b )  L ine s  a r e  s e t  up  a s  l i s t s  o f  l o ca t i on s .  
S hap es  a r e  s een  a s  l i s t s  o f  l i n e s  i n  t he  h o r i zo n t a l  d i r ec t i on  and  
l i ne s  i n  t he  ve r t i c a l  d i r e c t i on .  
No te  t he  PROLO G  s e ma n t i c s  u sed  f o r  a  l i s t  w h ich  i s  a  spec i a l  t ype  
o f  t e rm:  
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the empty list (a list with no contents) 
[Item] a list with only one term called Item 
[Head|Tail] a list with Head as its first tern 

followed by the list called Tail 
(which may be empty) 

[First,SecondfRest] a list with terms First and Second 
followed by the list called Rest 
(which may be empty) 

) The data consists of a series simple logic assertions that points 
of the form p(X,Y) exist, eg: 

p(10,20). 

Unlike the restrictions built into the prescriptive programs, there 
is no limit to the number of alternative points which can be 
asserted (other than the obvious restraint of machine size). Data 
in PROLOG is in fact no different in essence from program asser
tions. although it would be sensible to set them up in a separate 

The program can be "read" as follows: 

horizontals([]). 
horizontals([Head(Tail):- horiz(Head), horizontals(Tail). 

a list of lines is to be judged to be horizontal if in fact 
there are no lines in the list; 
or the list of lines is horizontal provided:-

the first line is horizontal and the rest of the lines 
are horizontal. 

horiz([]). 
horiz([LOC]). 
horiz([loc(p(Xl,Y),D1),loc(p(X2,Y)I Rest]):-

P(X2>Y)» X2=\=X1, D is X2-X1 
hor i z ([loc(p (X2,Y ) |Rest]). * 

locations ll j!.3ud*ed1" horizontal if there are in fact no cations in it, or only one location; 
or the line is horizontal provided:-

the points of the first two locations exist 
the points have the same y co-ordinate, ' 

cident)?'8 d° "0t thG Sane X ""ordinate (not coin-

aS ?*Stance ln ^ is as specified (perhaps a variable) 
E°o„.i.or;[«."lth the re,t °f "*ij" 

verticals cf. horizontals 
vert  cf. horiz 

abs(A.A):- A>0. 
abs(A.B):- A=<0, B is -A. 
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the absolute value of A Is A provided A > 0; 
or the absolute value of A is B provided:-

A =< 0, 
and B is -A. 

(e) Interrogations are asked by requesting the desired shape filling in 
as much of the detail as the user wishes. The program responds 
with the sets of conditions under which the request can be satis
fied. For example: 

To get squares omitting mirror images, request:-

horizontals 
([ [loc(Pl,D),loc(P2,0)],[loc(P3,D),loc(P4,0)]]), 
verticals 
([ [loc(P3,D),loc(Pl,0)],[loc(P4,D),loc(P2,0)]]). 
D>0. 

To get I. shapes including mirror images, with verticals twice as 
long as horizontals, request:-

horizontals([[loc(Pl,DH),loc(P2,0)]]), abs(DH,DHA), 
verticals([[loc(Pl,DV),loc(P3,0)]]), abs(DV,DVA), 
DVA is DHA*2. 

To get T shapes intersecting at p(10,20), request:-

horizontals([[loc(PI , D H ) , l o c ( p (10,20) , D H ),loc(P3,0)]]), 
verticals([[loc(P4,DV),loc(p(10,20)]]), DH>0, DV>0. 

2.8. The Ultimate Program 

^s the shapes program was examined in depth in the preparation of these 
notes the surprising realisation came that the most flexible PROLOG 
solution was in fact no program at all! The data and basic PROLOG 
facilities are sufficient and in fact easier to use than the program 
listed earlier. As there are therefore no procedures for horizontal or 
vertical lines, the user is not coerced into thinking that the program 
is suitable for only rectilinear shapes. Questions would now be posed 
as follows: 

ro get squares omitting mirror images, request:-

p(Xl.Yl), p(X2,Y1), D is X2-X1, D>0, 
p(Xl,Y2), D is Y2-Y1, p(X2,Y2). 

To get isosceles triangles with horizontal bases, request. 

P(X1,Y1), p(X2,Y2), DHB is X2-X1, DHB>0, 
DV is Y2-Y1, DV>0, p(X3,Yl), DHB is X3-X2. 

Thus the example problem is, astonishingly, so trivial to PROLOG 
special procedures whatsoever are required, even t oug l 
intents and purposes impossible to handle in a total y genera 
prescriptive programming. 
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3. CONCLUSIONS 

3*J* Prescriptive and Descriptive Approaches Compared 

(a) 

(b) 

(c) 

(d )  

(e) 

Fundamentally, like is not being compared with like. The prescrip
tive programs, in FORTRAN and C, will only deal with the specified 
shapes - the descriptive program, in PROLOG, is much more general. 

(Note that the only reason why the prescriptive programs appear to 
deal so easily with the four shapes is that L shapes and rectangles 
are convenient stage shapes on the way to determining a square!) 

The time taken to analyse the problem, code it and implement it 
using the descriptive approach was about half the time taken using 

prescriptive approach (one hour as against two). 

The potential for program errors was much greater in the prescrip-

solution. 3 1Satl°n Problems did not occur when coding the PROLOG 

Typically a prescriptive program is even more restricted in use 

7 PHHFr sr's 
° t i z " ' S " - ^ s . p S  

Lr VZLSZTZZIS. « 

S„.d?.'„c.rlp̂ «'S;1s.elsof,b;«" •>"«"«• of Po,„tl.i 
. partial solution to STri!, ) ! *»«"« d«t. are provided. Such 
prescriptive programming. 3 * capab,l lEy "ot available in 

ep7roS\C,SS^PdrSip,rId " ""Ch ™">a> «-
the prescriptive programs had been written^o^test^f forTexa®P le> 
(and therefore inverted TO i-n j v T shaPes 

on their side would have involved p C Pro8ram c° cater for Ts 
the case of the delcriptiJl 311(3 f lnlcky chanSes-
veniently be handledwithaslmnlPT°f*m. the T *ts side can con-
this procedure would be: P 6 dl txonal  procedure. In detail 

bothwayalbineg!, Lines2)hord.ont.l.fti...,,, 

bothways (Lines 1 Lin*^ ^erbicals(Lines2). 
> v-mesl .Lines2) - horizontals(Lines2 ) , 

verticals(Lines 1)• 

long and complex. '  ques t i on  wou l d  b e  f a i r l y  
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(g) The reduction in program size in the descriptive approach is pri
marily due to the code not having to contain precise instructions 
on internal machine operations. The shorter program length also 
reflects a shift in responsibility for the operations of an appli
cation from the programmer to the user. The more procedures that 
are written, the easier the PROLOG program may be to use - but the 
less general it may become. 

(h) To those not familiar with any form of programming, the descriptive 
program code has proved to be much more comprehensible than the 
prescriptive code. However, the same people tend not to realise 
the limitations that conventional programming methods place on 
their use of computing resources. 

On the other hand, people already familiar with prescriptive pro
gramming philosophy find it much harder to think in the descriptive 
manner than do others without such a background. 

3.2. The Potential for CAAD 

In assessing the value of a new software technique for Computer Aided 
Architectural Design consideration must be given to the way it is 
envisaged that future systems should function. Where possible, this 
projection should be free of the limitations of current software or 
hardware technology. The aim of EdCAAD as a group in this area has been 
summed up by Aart Bijl, the group's director, as follows: 

We aim to make computing more accessible to architects - to 
enable architects to undertake their own journeys through 
fields of knowledge. Present CAAD technology, offering archi
tects turnkey systems, is equivalent to the first Stockton to 
Darlington railway - you have to be happy with where the^track 
takes you. New technology needs to support architects driv
ing' their own computers, selecting their own routes and des
tinations without a 'chauffeur' and 'mechanic in attendance. 

Descriptive programming as a technique is not yet in a suitable form for 
practical use on a wide scale. However, this example illustrates the 
potential that the technique has in the field of Computer Aided Archi
tectural Design. With the technique comes the promise of a wider use of 
integrated CAAD systems, each developing under the control of its user 
or user organisation; the promise of a diminishing dependence on com 
puter specialists standing between the user and computing resources. 
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1 .  INTRODUCTION 

Predicate  logic  can be  regarded as  a  very  h igh level  formal  
language for  descr ib ing problems.  i t  a lso  can be  used as  a  

yLvyLan u  a t  any phase  durma the* noeinn . .  
execut ion of  the  speci f ica t ions  wi l l  t  • sys tem the  
underspeci f ica t ions .  6  inconsis tencies  and 

t ion  of  a  cer ta in  control  ^Differpn? 2 t iza t ion and a  speci f ica-
problem domain lead to  d i f ferent  ?  a *i° t ia t iza t ions  of  the  same 
of  the  control  comoo^enf  ALHhf  hon l t h T S  a S , W 6 1 1  a S  c h a n 0ing 
control  par t  of  e  sceci  i r ,H^ border l ine  between logic  and 
axiomat iza t ion may a lso  be  seen as 5 *"^ f * x e i ? '  1 * e -  Par ts  of  the  
v .  v .  Y  0 6  S e e n  a s  a  control  speci f ica t ion and 

Ihe  usefulness  of  orpd i  pa t-o i  • 
and  i t s  implementa t ion 1 "  t  9 1 0  a s . a  Programming language 
[ 2 - 5 ] .  c u f  m a i n ^ m o h a S f r ,  " ^ , f t u Q i e d  ^ . d e t a i l  ^ f o r e  -  o j .  c u r  m a i n  e m o h a s i c ;  i  < =  t ~  _ - t u u J . c u  l n  o e t a i i  o e t o r e  
a l so  serve  as  a  speci f ica t ion lann s n o w  t h a t  predicate  logic  may 
I t  i s  formal ,  ea^  to  S"d«8tanf  S o f t w a r e  engineer ing,  
ads t rac t  ion fac i l i t ies  for  data  -  ° e s c r ip t ive ,  provioes  
automat ic  proofs  of  the  comDleton™ a ^ o r i t h r a s '  ano a l lows 
contradic t ions  may be  de tec ted  bv™— 2  s p e c i f i c a t ion .  Also 
ooes  not  impose  any implement  a t i™ a cmne.  °n  the  o ther  nana i t  
rea l iza t ion.  Logic  has  been used for  th  Q e C l s i o r -  o r  concre te  
concurrent  problems [ 6  -  7 ]  f o ?  .  ,-u ? e C l t l c a t i o r i  o f  s imple  
evaluat ion of  a  query  in a  ,  k" 1 t h f r  complex problem,  the  
co O P i« e  p c o b l e m  3p q e ci£L,t"o„\,r;^ ;™?i e „° t B t a .  sr8ysEe-' ° 
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In this paper we consider as an example the unification 
proolem in first order logic. For the syntactical representation 
of the specifications we use the conventional notation of logic 
programming. However no control for the execution of such a 
description is implicitly associated. If necessary the control 
part is described seperately. 

At the beginning we analyze Robinson's first algorithm given 
in [lb] . Then we give another more problem oriented specifica
tion. Different control strategies for executing this 
specification lead to ciifferent unification algorithms to 
compute the most general unifier. We show that parts of the 
control can be incorporated into the logic description. 

These algorithms have been discribed in the literature before 
[11- 17] and their time and space complexity have been 
investigated. Therefore the unification problem is a good 
example to show the usefulness of predicate logic as a 
specification language. 

2. ROBINSON1S UNIFICATION ALGORITHM 

In his fundamental paper: 'A Machine-Oriented Logic Sasea on 
the Resolution Principle' [IB] J. A. Robinson also gave a 
description of of an unification algorithm. 

"The following process, applicable to any finite nonempty set A 
of well formed expressions, is called Unification Algorithm: 

Step 1: Set s0 = £ and k = 0, and go to step 2. 

Step 2: If Ask is not a singleton, go to step 3. Otherwise set 
sA = sk and terminate. 

Step 3: Let Vk be the earliest, and Uk the next earliest in the 
lexical ordering of the disagreement set 3k of Ask. If 
Vk is a variable, and does not occur in Uk set 
sk+1 = sk{Uk/Vk}, add 1 to k, and return to step 2. 
Otherwise, terminate." 

"If A is any set of well-formed expressions, we call the set 3 
the disagreement set of A whenever 3 is the set of all 
well-formed subexpressions of well-formed express , 
which begin at the first symbol position at_ which 
well-formed expressions in A have the same symbol. 
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e ,  a s s u m e  t n a t  t h e  r e a d e r  i s  a l r e a d y  f a m i l i a r  w i t h  
w e l l - f o r m e d  e x p r e s s i o n s ,  s u b s t i t u t i o n  a n d  s u b s t i t u t i o n  

m p o n e n t s ,  i n s t a n t i a t i o n  ( t h e  a p p l i c a t i o n  o f  a  s u b s t i t u t i o n  t o  
a n  e x p r e s s i o n )  a n d  t h e  c o m p o s i t i o n  o f  s u b s t i t u t i o n s  
p r e c i s e  d e f i n i t i o n  t h e  r e a d e r  i s  r e f e r r e d  t o  ^ ® f * c u t l o n s  F o r  a  

i n t o "  l o | i c t " p e 6 o " L i " o n : " C t i P t i 0 °  ° f  "  . l j o r i t h .  

L o g i c - p a r t :  

U N I F Y ( a , s k , s a )  < -  A P P L Y ( s k , a , a s ) ,  
U * ( a , a s , s k , s a ) ;  

U *  ( a , a s , s k , s a )  < -  I S j S I N G L E T O N ( a s ) ,  
E Q U A L ( s a , s k )  ;  

U *  ( a , a s , s k , s a )  < -  D I S A G R E E ( a s , u k , v k )  
N O T _ O C C U R ( u k , v k ) ,  
C O M P O S E ( u k , v k , s k , s k + l ) ;  
U N I F Y ( a , s k + l , s a ) ;  

C o n t r o l - p a r t :  

glwJ? f90«l"?«Snt"L'0ev,l"otenS *" 
•-"^^TKs^i^rirssSijs'figsr?".««•» 
E x a m p l e :  

U n i f i c a t i o n  o f  A  =  ( P / V  A *  R W N , „ T  . . ,  
l e s .  '  ) ' P < F ( U ) » U ) }  w h e r e  X  a n d  u  a r e  a  v a r i a b -

< -  U N I F Y ( { P ( X , A ) , P ( F ( U ) , U ) } , £ , S a )  

< -  A P P L Y ( s ,  { P ( X , A )  , P ( F ( U )  U H  o c i  

< ~  U * ( {  P ( X ,  A ) , P ( F ( U ) , U ) } , { P  ( X , A ) , P ( F  ( U ) , u ) } ,  £ , s a )  

< _  N ^ S l u k ^ i  ; P < F ( U )  ' U )  }  ' » ^ v k )  ,  
C O M P O S E ( u k , y k , £ ,  s k + 1 ) ,  
U N I F Y ( { P ( X , A ) , P ( F ( U ) , U ) } , S k + l , S a )  

< -  N O T _ O C C U R ( X , F ( U ) )  

n r T P v f f ^ ' F ( U ) ' £ ' ® k + D ,  U N I F Y ( { P ( X , A ) , P ( F ( U ) , 0 ) } , s k + 1 , s a )  
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< -  C O M P O S E ( X , F ( U )  , £ , s k + l )  ,  
U N I F Y ( { P ( X , A )  , P ( F ( U )  , U )  } , s k + l , s a )  

< -  U N I F Y  ( { P ( X , A )  , P ( F ( U )  , U ) } , { F ( U ) / X } , s a )  

< -  A P P L Y ( { F ( U ) /  X } , { P ( X , A )  , P ( F ( U )  , U ) } , a s ) ,  
U * ( { P ( X , A ) , P ( F ( U )  , 0 )  }  , a s , { F ( U ) / X }  , s a )  

< -  U *  ( { P ( X , A ) , P ( F ( U ) , U ) } , { P ( F ( U )  , A )  , P ( F ( U )  , U ) } , { F ( U ) / X } , s a )  

< -  D I S A G R E E ( { P ( F ( U ) , A )  , P ( F ( U )  ,  U )  }  , u k , v k ) ,  
N 0 T _ 0 C C U R ( u k , v k )  ,  
C O M P O S E ( u l , v l , { F ( U ) / X } , s k  +  l )  ,  
U N I F Y ( { P ( X , A )  , P ( F ( U )  , U )  } , s k  +  l , s a )  

< -  N O T _ O C C U R ( U , A )  ,  
C O M P O S E ( U , A , { F ( U ) / X } , s k + l ) ,  
U N I F Y ( { P ( X , A )  , P  ( F  ( U )  , U )  } , s k + l , s a )  

< -  C O M P O S E ( U , A , { F ( U )  / X } , s k + l )  ,  
U N I F Y ( { P ( X , A ) , P ( F ( U ) , U ) } , s k + l , s a )  

< -  U N I F Y ( { P ( X , A ) , P ( F ( U ) , 0 ) } , { F ( A ) / X , A / U } , s a )  

< -  A P P L Y ( { F ( A ) / X f A / U } , { P ( X , A )  , P ( F ( U )  , U ) } , a s ) ,  
U * ( { P ( X , A ) , P ( F ( U ) , U ) } , a s , { F ( A ) / X , A / X } , s a )  

< -  U *  ( { P ( X , A )  , P ( F ( U )  , U ) } , { P ( F ( A )  , A )  } , { F ( A ) / X , A / X } , s a )  

< -  I S  S I N G L E T O N ( { P ( F ( A ) , A ) } )  ,  
E Q U A L ( s a , { F ( Z ) / X , A / U } )  

< -  E Q U A L ( s a , { F ( Z ) / X , A / U } )  

F r o m  t h e  d e s c r i p t i o n  o f  R o b i n s o n ' s  u n i f i c a t i o n  a l g o r i t h m  i n  
l o g i c  w e  s e e  i m m e d i a t e l y  i t s  d i s a d v a n t a g e s .  

-  T h e  s e t  A  h a s  t o  b e  k e p t  d u r i n g  t h e  e x e c u t i o n  o f  t h e  w h o l e  
a l g o r i t h m .  

-  T o  c o m p u t e  t h e  d i s a g r e e m e n t  s e t  B k  o f  A s k  t h e  w h o l e  s e t  A s k  
h a s  t o  b e  c o n s i d e r e d  e s p e c i a l l y  t h o s e  p a r t s  w h i c h  a r e  
a l r e a d y  k n o w n  t o  b e  i d e n t i c a l .  

-  T h e  s u b s t i t u t i o n  s k  h a s  t o  b e  a p p l i e d  e x p l i c i t l y  t o  A .  



• i*?e logic program above is also no good description of the 
unification problem because it does not defcribe the oroCiem 5n 

s-ecial «ni t-0" Y °ne way how to solve it. It tnerefore forces a 
act hat it took" moro Perhaps it is due to tnis 
ace tnat it took more than six years before a sianificant 
improvement of the unification algorithm was achieved. 

o„ In*.thf. neXt section give a more problem oriented 
specification of unification. 

3. ANOTHER SPECIFICATION OF THE UNIFICATION PR03LEM 

problem"! !!i!yi!g twHx^ession! el6®!^^. °UrSelveS to the 

Logic-part: 

UNIFY(el,e2,s) <- EQUAL(el,e2) ; 

UNIFY(el,e2,s) <- ls_FUNCTERM(el,headl,argsl) 
IS FUNCTERM(e 2,h e ad 2,a rgs 2) 
EQUAL(headl,head2), 
UNILIST(argsl,args2,s); 

UNILIST(argsl,args2,s) <- IS_EMPTY(argsl) , 
IS_EMPTY(args2) 

UNILIST (argsl, args2<— TAKE_CORR_PAIR (argsl, ,rgs2, 

UNILIST(args'l,args'2,s); 
UNIFY(el,e2,s) <- IS_VAR(el), 

MEMBER(el,tl,s), 
NOT_OCCUR(el,tl,s), 
UNIFY(tl,e2,s); 

UNIFY(el,e2,s) <- UNIFY(e2,el,s) ; 

Control-part: 

9;™" pThe'dp"cJSS;r^jj" in the °'a" tr)t> 

"u " ma-0BCmis — 4 
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W e  h a v e  n o t  s p e c i f i e d  t h e  p r o c e d u r e s  E Q U A L ,  I S  F U N C T E R M ,  
I S _ V A R ,  N G T _ G C C U R ,  M E M B E R  a n d  T A K E _ C O R R _ P A I R .  T h e i r  m e a n i n g  i s  
o b v i o u s .  

W e  s e e  t h a t  t h e  l o g i c  p a r t  o f  t h e  s p e c i f i c a t i o n  o n l y  g i v e s  
t h e  d e s c r i p t i o n  o f  a  u n i f i e r .  T h e  s p e c i f i c a t i o n  o f  a  m o s t  
g e n e r a l  u n i f i e r  f o r  t w o  t e r m s  i s  a c h i e v e d  b y  g i v i n g  a n  
a d d i t i o n a l  c o n t r o l  s p e c i f i c a t i o n .  I n  t h i s  c a s e  t h i s  l e a d s  t o  a  
m u c h  m o r e  e l e g a n t  a n d  u n d e r s t a n d a b l e  s p e c i f i c a t i o n  o f  t h e  m o s t  
g e n e r a l  u n i f i e r  t h a n  t h e  a x i o m a t i z a t i o n  o f :  " A  u n i f i e r  s  o f  a  
s e t  o f  t e r m s  C  i s  a  m o s t  g e n e r a l  u n i f i e r  o f  C  i f  f o r  e v e r y  
u n i f i e r  t  o f  C  t h e r e  i s  a  s u b s t i t u t i o n  r  s o  t h a t  s  =  r t . "  

N o t i c e  t h a t  n o t h i n g  i s  s a i d  a b o u t  t h e  d a t a  s t r u c t u r e  f o r  s ,  e .  
g .  i f  i t  i s  o r g a n i z e d  a s  l i s t  o r  s e t .  

example :  

< -  U N I F Y ( P ( X , A ) , P ( F ( U ) , U ) , s )  

< -  I S _ F U N C T E R M ( P ( X , A ) , h e a d l , a r g s l )  ,  
I S ^ F U N C T E R M t P t F ( U ) , U ) , h e a d 2 , a r g s 2 )  ,  
E Q U A L ( h e a d l , h e a d 2 ) ,  
u N I L I S T ( a r g s l , a r g s 2 , a r g s ' l , a r g s ' 2 , s )  

< -  U N I F Y ( X , F ( U )  , S )  ,  
U N I L I S T ( ( A ) , ( U ) , s )  

< -  I S _ V A R ( X )  ,  
M E M B E R ( X , t l , s )  ,  
N O T _ O C C O R ( X , t l , S )  ,  
U N I F Y ( t l , F ( U )  , S )  ,  
U N I L I S T  (  ( A )  ,  ( U )  ,  S )  

< -  N O T _ O C C U R ( X , t l , { t l / X } ) ,  
U N I F Y ( t l , F ( 0 )  , { t l / X j )  ,  
U N I L I S T ( ( A ) , ( U ) , { t l / X } )  

< -  N 0 T _ 0 C C U R ( X , F ( U ) , { F ( U ) / X } ) ,  
U N I L I S T ( ( A ) , ( U ) , { F ( U ) / X } )  

< -  I S _ V A R ( U ) ,  
U N I F Y ( U , A , { F ( U ) / X } )  

< -  U N I F Y ( U , A , { F ( U ) / x } )  

< -  I S _ V A R ( U ) ,  
M E M B E R ( U , t l , { F  ( U ) / X } )  ,  
N 0 i ' _ 0 C C U R  ( U ,  t l )  ;  
U N I F Y ( t l , A , { F ( U ) / X } )  
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<-  NOT_OCCUR(U,t l , {F(t l ) /X,t l /U}) ,  
UNIFY(t l ,A,{F(t l ) /X,t l /O})  

<-  NO'r_OCCUR(U f  A, {F (A)/X,A/U} )  
< -

In this  example  we have chosen a  set  representat ion for  s .  

f t ,*"" M t U " 1  " S p e C " y  ">• of  

UNIFY(el ,e2 ,s j  <-  APPLY(s ,e l ,e) ,  
APPLY(s ,e2 f e);  

above speci l fca  t io^is^mose 1 convenient^but  ̂ in F gener C f £ "" : P O S e S  "i  sr. '-
plays 0 n , a t n central  S role f  "n^th W S  S e e  b b a t  t h e  Procedure MEMBER 
e i ther  be used to  compose a  nlw subst i tut ion" ° f  U W I F Y - . U  c a n  
subst i tut ion computed so  far  "subst i tut ion component  with the 
variable  has  a lready beeJ boS d An" •*  ?*** t 0  i n S p e C t  l f  3  
speci f icat ion using the  d o u b ] P  implementat ion of  this  
representat ion for  s )  i f  fh!  of  MEMBER (us ing a  l i s t  
Boyer and Moore [ l l j .  unif icat ion algori thm given by 

the  '  execut ion of  a l l^NOT^ccuit" b y  B a x t e r  ( 1 2 ^ simply delays  
a lgori thm.  Then they can be C f l l s  t 0  t h e  e n o  o f  t h e  
topological  sort .  ' -plementea very e legant ly  by a  

insert ing a  new^subs t  i tutf  l 9 ° r  i t h n i s  u s e  MEMBER only  for  
assure  that  the  variable  occCr_? o m p ? n e n t •  T hey therefore  have to  
i s  not  a lreaay in  s .  As we h av e  * K  5 s u b s t i t u t ion component  
the  a lgori thm of  Robinson  ̂  e " b S f? r e  t h i s • i s  achieved in  
so  far  to  the  original  set  Thic 1 " 5  subst i tut ion generated 
which appear on the  le f t  hen-' ;  .  , g u a 5 a n t e e , s  that  a l l  variables  
m s  oo not  occur in  the  terns  nn^ 1 Q e  a  subst i tut ion component  
any new subst i tut ion component  "  c o n s i d e r a t ion and therefore  conf l icts .  component  may be  adaeo to  s  witnout  

'̂ î̂ b\£o"̂ %*l9?b%"haibbrso'ihbea in 113 - "i «• 
oelayed and whenever there  i s  a  goal  of  theism" ° £  M E M B f i R  i s  
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<- MEMBER(var,terml,s) ... UNIFY(var,term2,s) ... 

they rewrite it to the form 

<- MEKBER(var , terml, s) ... UNIFY (terml, term2, s) ... 

By this the number of occurrences of var is reuuced by one. 
The elaboration of MEMBER is delayed until all calls of UNIFY 
and UNILIST are done. Then the substitution s is generated by 
the evaluation of MEMBER. At tne end all calls of NOT_OCCUR are 
processed. 

Parts of the control can be incorporated into the logic-part 
of the specification which leads to a refined description: 

Logic-part: 

UNIFY (el,e2,s) <- EQUAL(el,e2)? 

UNIFY (el,e2,s) <- IS_FUNCTERM(el,headl,argsl), 
IS_FUNCTERI4(e2 , he ad 2 ,args2) , 
EQUAL(headl,head2), 
UNILIST(argsl,args2,s); 

UNILIST(argsl,args2,s) <- I3_EMPTY(argsl), 
IS_EMPTY(args2); 

UNILIST(argsl,args2,s) <- TAKE_CORR_PAIR(argsl, args2, 
el, e2, 
args'1,args'2), 

UNIFY(el,e2 , s); 
UNILIST(args'1,args'2,s) ; 

UNIFY(el,e2,s) <- IS_VAR(el), 
MEMBER(el,e2,s) , 
WOT_OCCUR(el,e2 , s) ; 

UNIFY(el,e2,s) <- UNIFY(e2,el ,s); 

Eontrol-part: 

The procedure declarations are invokea in the order they are 
given. A goal statements is elaborated from le^ del-ved 
the exception that calls of MEMBER ana NQi OCCUR JelayeJ-
The rewrite rule given above is applieo wheneve " 
calls of NOT OCCUR are processed after the calls of n -• 
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Though an implementation of the algorithm ahove is rather 
efficient it still can be improved. This is done by liberating 
the order in which the calls of UNIFY and UMLIST are executed 
i. e. the expressions are not scanned from left to right 
anymore. It has the advantage that the NOT_OCCUR procedure is 
indepenaant from s. Because if a most general unifier exists 
there must be a partial ordering among the variables which build 
the substitution. This order can be determined by allowing to 
process only those calls of UNIFY whose variable in tne first 
component does not occur in another call. This may oe achieved 
by changing the control part of the specification into 

Control-part: 

The procedure declarations are invoked in the order they are 
ofVnuTPv state1le"^ may b? executed in any order. All calls 

UNIFY with a variable as first parameter are delayed. If a 

oafh C^nS1SKS entlrely of calls of UNIFY of that form those 
calls may be processed where the variable does not occur 
anywnere eise in the goal statement. For those calls for which 
possible following rewrite rule is applied if 

. UNIFY(var,terml,s) , ... UNIFY(var,term2,s), ... <- . 

> 

<- . UNlFY(terml,term2,s), ... UNIFY(var,terml,s), 

expressions (llf, or t °£ a variable »" tl» 
variable is represented oniv ~ s5ructure i" which every 
pointers (17] . ^ y once together witn adaitional 

Example: 

Unification of fprx 7 vi c mi\r\ . 
variables ' ' ̂ rP(F(Y) ,A,F(z))} where X, Y, and Z are 

<- UNIFY(P(X,Z,Y),P(F (Y),A,F(Z)),s) 

UNIFY {IVl]'5)' !„!-0CCDR (Y,F (Z) > , *  1 » " » s ) /  N O T  O C C U R f 7  a i  
UNIFY(X,F(Y),S), NOT:OCCSR!X:F(Y)) 
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<- UNIFY(Y,F(Z) ,S) , 
UNIFY (Z ,A, S) , 
UNIFY(X,f(Y) ,S) 

<- UNIFY (Y, F (Z) ,{F(Y)/X}) , 
UNIFY(Z,A,{F(Y)/X} ) 

<- UNIFY(Z,A, {F (F (Z) /X, F (Z ) /Y} ) 

<-

In the implementations mentioned aoove the goal statement 

<- UNIFY (Y,F (Z) ,s) , UNIFY ( Z ,A , s) , UNIFY (X, F (Y) , S) 

would be coded as 

F (Y) 

or as 

Y F (Z) #X = 1 

Z A # Y = 2 

X F (Y) #Z = 2 

CONCLUSION 

Vie have shown that the family 
2 specified by a logic program ^oge be refined by 
strolling its execution. The logic P ' ̂  . .. concrete 
ncorporating parts of the control speci alaorithms, which 
Cementations of the^ d i f f e r e n t ^  nplementations of the different un """" "t'""tt 0 
:e explained in detail in [21] code the control part o 
pecification into the oata structure t ey SDecificati 

f the 
program 
on. We ecification into the data structure cney "Y'at • „ 

ructure reflects the logic P^t o g Qf algorithms in 
lieve that a specirication of other ' . of alg0rithms and 
gic will give more insight in the >=e discovel- more 
eir relations to eachotner. It als ^ As logic also 
ficient implementations for certain p ' * s an6 abstract 
lows a formal specification of oata st uc ^ 
ta types it seems to be a useful and practicable 
rmal specification in software engineering. 
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C O N T R O L L I N G  B A C K T R A C K  I N  H O R N  C L A U S E S  P R O G R A M M I N G  

I n t r o d u c t i o n .  

T h e  p r o b l e m  o f  c o n t r o l l i n g  a  l i n e a r  d e d u c t i o n  o n  H o r n  c l a u s e s  i s  
t h a t  o f  d e t e r m i n i n g  a n  o r d e r  o f  s e a r c h  s p a c e  e x p a n s i o n ,  t h a t  i s  t o  s a y  
o f  f i x i n g ,  a t  e v e r y  s t e p ,  t h e  c h o i c e  o f  t h e  l i t e r a l  t o  s o l v e  a n d  t h e  c h o i - *  
c e  o f  t h e  c l a u s e  t o  s o l v e  i t .  I n  f a c t ,  t h i s  c o n t r o l  i s  s h a r e d  b e t w e e n  t w o  
p r o c e s s e s  :  

( 1 )  t h e  f o r w a r d  e x e c u t i o n  p r o c e s s ,  w h e r e  a  f i r s t  c h o i c e  i s  s e t  a n d  t r i e d ,  
a n d  

( 2 )  t h e  b a c k t r a c k i n g  p r o c e s s ,  w h e n  a  f a i l u r e  o c c u r s  i n  p r o c e s s  ( 1 ) ,  w h e r e  
i t  i s  t o  b e  d e c i d e d  w h a t  c h o i c e s  a r e  t o  b e  e r a s e d  a n d  w h a t  n e w  c h o i c e s  
a r e  t o  b e  m a d e .  

O f  c o u r s e ,  a  r e a s o n a b l e  c o n t r o l  o f  p r o c e s s  ( 1 )  m a y  a l l e v i a t e  c a u s e s  
o f  b a c k t r a c k i n g .  

I n  b o t h  c a s e s  t h e r e  a r e  t w o  p o s s i b l e  w a y s  o f  c o n t r o l l i n g  :  e i t h e r  
a u t o m a t i c a l l y ,  a c c o r d i n g  t o  a  g e n e r a l  s t r a t e g y ,  a s  P r o l o g  j J R O U J  d o e s  a n d  
a s  w e  s h a l l  p r o p o s e  i n  t h e  s e q u e l ,  o r  a c c o r d i n g  t o  s p e c i f i c a t i o n s  g i v e n  b y  
t h e  u s e r  t h r o u g h  m e t a r u l e s .  W e ' v e  a l r e a d y  d e v e l o p e d  s u c h  m e t a r u l e s  f o r  
f o r w a r d  c o n t r o l  i n  [ G A L ]  .  H e r e  w e  c o n c e n t r a t e  o n  t h e  p o s s i b i l i t i e s  o f  o p e  
r a t i n g  a  b a c k t r a c k  a s  " i n t e l l i g e n t l y "  a s  p o s s i b l e  i n  t h e  c o n t e x t  o f  a n  
i n t e r p r e t e r  t h a t  w o u d  a l l o w  a n y  o r d e r i n g  o f  l i t e r a l s  t o  s o  v e .  

B a c k t r a c k i n g  p r o c e s s  c o n t r o l .  

I n  c a s e  o f  f a i l u r e ,  t h e  p r o b l e m  i s  t o  r e c o n s i d e r  e a r l i e r  c h o i c e s  
o f  c l a u s e s  t h a t  s o l v e d  p r e v i o u s l y  s e l e c t e d  l i t e r a l s ,  a  
m i n e  w h a t  r e s o l u t i o n s  a r e  t o  b e  e r a s e d  a n d  w h a t  n e w  c h o i c e s  a r e  t o  b e  m a  
d e  t o  r e s t a r t  t h e  f o r w a r d  p r o c e s s .  

G i v e n  t h a t  d e r i v a t i o n  i s  a  p r o c e s s  o f  r e d u c i n g  i n  a n y  o r d e r  s u b -
p r o b l e m s  ( i e  l i t e r a l s )  i n t o  o t h e r  s u b p r o b l e m s  w h i c h  w i l l  b e  d e p e n  
t h r o u g h  t h e  v a r i a b l e s  s h a r e d  a n d  n o t  t h r o u g  t  e  e x p a  .  '  0 t v i a -
c o m e s  n e c e s s a r y  t o  f u l f i l l  t h e  f o l l o w i n g i r r e l e v a n t  c h o i c e s  :  
t e ,  a s  m u c h  a s  p o s s i b l e ,  u n e c e s s a r y  b a c k t r a c k i n g  t o  

~  n e r m i  t t i n e  f a i l u r e  l o c a t i o n  ( a n d  a n a l y s i  -  T o  h a v e  a  u n i f i c a t i o n  a l g o r i t h m  p e r m i t t  g  f . •  f  4 n s -

~ > .  ' : « •  ST "TtniTii"":  t a n t i a t i o n  o f  a  v a r i a b l e  i n  t h e  f a i l i n g  .  a  < ? u b c h a i n  
c i e n t  t o  e r a s e  a  p a r t  o f  t h e s e  r e s o l u t i o n s  ( 1 > e *  °  i r r e l e v a n t  v a l u e )  
o f  l i n k s  i n  t h e  c h a i n  o f  s u c e " i v e  ^  ̂' t r e e .  T h e  i n f o r m a t i o n s  g a -
c o r r e s p o n d i n g  t o  a  b r a n c h  i n  t h e  d e r i v a t i o n  
t h e r e d  m a y  e v e n t u a l l y  h e l p  t o  d e t e r m i n e  f u r t h e r  c i o i c e s .  
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W 

To have  a  back t rack  mechan i sm pe rmi t t ing  to  keep  the  re so lu t ion  of  
t he  b ro the r s  o f  t he  l i t e ra l  the  r e so lu t ion  o f  which  wi l l  be  e rased ,  
na^ f i  ?" C k  k  t h e  U c e r a l s  w h i c h  h a v e  been  so lved  a f t e rwards  in  
„ a : ™ l l l e l  b r an ,ches ,  a s  f a r  a s  we  have  chosen ,  i n  the  p rev ious  s t ep ,  

b l e s? e P  a n y '  t h 6 y  C ° U l d  h 3 V e  a d d e d  t o  c h e  s h a r e d  v a r " -

tiiTJs r»p
cS" e of a t

s,rrr-lly-in,piemented (cf proio«)' «t«.uy e 8 t a -
r educ t ion  tvoe l  „  , d e r l v a t l o n s  i . e .  the  schema  (o f  p rob lem 
in  pa ra l l e l  i t  ca r r i e s  U t " a l s  e *P a ns ion ,  wi thou t  subs t i tu t ions ,  whi l e  
t e  th i s  P lan .  Hence  r  ° "  ^  t r e a t m e n t  o f  t h e  un i f i ca t ions  tha t  va l ida -
o f  these  pa r t s  o f  t he  e m e n t  w h a t  P r e c e eds ,  the  main  cha rac te r i s t i c s  pa r t s  o t  the  in t e rp re te r  mus t  be  :  

"  «ea te5 e be twJen a v l r i ab l 1 f s r bv h m  ?° n S t r u C t  a  * r a P h  ° £  dependenc ies  
t he  co r respond ing  l i t e ra l  ^  U T ! l f l c a t ™ n '  l abe l l ed  by  the  number  o f  
s ea rch  o f  the  re so lu t ion<?  • 6 S °  U t *u?  1 D  t h e  g r a p h »  t o  enab le  the  qu ick  
t h i s  g raph  mus t  a l so  be  e s t ab l i shed  r a th^ 3  C O n f l i c t i n g  i n s t an t i a t ion  ;  

ZXTeT. qUiCkly t0° When °ne °r several literals 

the  chrono log ic  Expans ion  o rde r^o"^^  in^a^  f  ̂ '  •*  H n k e d  b > '  
s i b l e  to  come no t  to  a  D r ev in , , c  •  -  •  °  P r u n i n 8  1 C  l s  P o s "  
wi thou t  the  e rased  b ranch!  and  so^ha t ' i n  ^  " t U ' t i o n  

chosen  fo r  expans ion .  y  case  any  l i t e ra l  can  be  

Cox  [ cox]  and  Pe re i r a  FpeR l l  £>f r  p I  „  •  
i den t i ca l  so lu t ions  to  these  n rnh i  u  -*  8 1 v e  Par t i a l  and  somet imes  ' * ' • «  « ° „  ct: x Xrus — o r  t h e  f a i lu re  t r ea tmen t .  

a )  Fa i lu re  loca t i c  

They  bo th  e s t ab l i sh  in  rk=  
l inks  be tween  va r i ab les  : ' cox  as  _ C O U r s ?  ? f  c h e  der iva t ion ,  dependency  
sub te rms  toge the r  wi th  a  g raph  o f  p a r t l ' l o n  o f  sub te rms  in to  un i f i ed  
dependency  l i s t s  at tached t o  Ja^ah les !  "  r e l a t i o n '  L '  P «re i ra  a s  

i n  8 a n a r a t i ng e on- lLe°sub te rm°par t i t i S  3 l f r i t h r a  o n  H o ™ clauses  cons i s t  
duced  be tween  two  sub te rms  o f  t h e  ,  l a b e U i n 8  each  l ink  in t ro -
sea r  j~ . l i t e r a l  t e so lu t ion  tha t  c rea ted  th a S f - W i ! C h  t h e  n u m b e r  ( i n  t h e  8"  

c  ing  the  sub te rm g raph  to  f ind  1  •  6  l n l c '  t hus  avo id ing  much  e f fo  
used  in  the  pa r t i t ion  cons t ruc t ion  *  a "  i n  *•«  those  a l r ead  

Never the les s  i t  i  c  
L -» -un .  

Which  i s  ac tua l ly  a  se t  of°g r !phs  t0 W°rk °n SUch a Partition, 
twe l  \ 1 S t S  ° f  v a r t ab le  dependences  J l  ^  t h e s e  as  l i -
tween  two  va r i ab les  by  a  un i f i ca t l n n  ,  • d ° £ S  !  e a c h  c rea ted  
d ing  number  o f  t h e  l i t e ra l  b f ing  so lved  •  1 8  a d d e d '  *«»  the  co r respon-
1  , V a , n a b l e s ,  a n d  r epor t ed  in  the  c*  g r a p h '  i n  t h e  l i s t  o f  the  

t o  keep  the  s t a t e  o f  the  l i s t  a t  eve ry  
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s t e p  ( s i n c e  w e  d o n ' t  n e c e s s a r i l y  c o m e  b a c k  t o  a  p r e v i o u s  s i t u a t i o n ) ,  i t  
b e c o m e s  n e c e s s a r y  t o  s t o r e  n o t  o n l y  v a r i a b l e  d e p e n d e n c y  b u t  a l s o ,  a s  C o x  
d o e s ,  t h e  p o s s i b l e  i n s t a n t i a t i o n  o f  o n e  o f  t h e  v a r i a b l e s  r e s p o n s i b l e  f o r  
t h i s  d e p e n d e n c y  :  t h a t  i s  t o  s a y  m e m o r i z e  t h a t  X  i s  l i n k e d  t o  a Y  a n d  Y  
t o  X  a t  n o d e  2  i n s t e a d  o f  t h e  l i n k s  o f  X  t o  Y  a n d  Y  t o  X ,  i n  o r d e r  t o  
l o c a t e  t h e  e x a c t  p o i n t  o f  m i s m a t c h i n g .  

E x a m p l e  :  L e t ' s  t a k e  P e r e i r a ' s  e x a m p l e  c a l c u l a t i n g  t h e  i n t e r s e c t i o n  o f  
t w o  f o r m a l  g r a m m a r s  S  a n d  P  
T h e  i n s a t i s f i a b l e  s e t  o f  c l a u s e s  i s  t h e  f o l l o w i n g  :  

+ S ( L . C \  .  
+  s  ( L I ,  U \  _  S *  ( 1 1  , U , )  _  S b  ( U ,  L 3 )  -  s  ( L i  , I A )  
+  - $ r ( a , L  L )  
+  Sa f a . ,  l / l  L 5 y \  -  S a  (L\ , U A  

t S k  b . y V ,  ,  

_ S  

H e r e  i s  t h e  p l a n  g e n e r a t e d  a t  t h e  f a i l u r e  p o i n t  a t  e x p a n s i o n  5 . T h e  n u m b e r  
o f  a  n o d e  a c t u a l l y  c o r r e s p o n d s  t o  t h e  n u m b e r ,  a c c o r d i n g  t o  e x e c u t i o n  ^  
o r d e r ,  o f  t h e  r e s o l u t i o n  u n i f y i n g  t h e  t w o  l i t e r a l s  q u o t e d  ( i . e . ,  r n  C o x  s  
n o t a t i o n ,  t h e  n u m b e r  o f  t h e  r e p l a c e m e n t  a r c ) ;  w e  m a y  c o n s i d e r  t h a t  e v e r y  
l i t e r a l  i s  a f f e c t e d  a  n u m b e r  w h e n  i t  i s  s e l e c t e d  f o r  e x p a n s i o n .  T h e  . a l 
l u r e  o c c u r s  w h e n  a t t e m p t i n g  t o  u n i f y  t h e  l i t e r a l  
-  P a b  ( S . n i l )  w i t h  P a b  ( a a T I  ,  T 2 )  i n  o r d e r  t o  s o l v e  P a b  ( S . n i l )  u s i n g  

t h e  r e d u c t i o n  s c h e m a  o f  P a b  ( a a T I ,  T 2 )  i n t o  P b  ( T 1 ,  T 2 )  ;  t h e  d e p e n 
d e n c y  l i s t s  w i l l  e x h i b i t  t h e  n o n  u m f i a b i l i t y  t h a t  i n v a l i d a t e s  t h i s  
p l a n .  

S 0 4 > )  
( D  

_ S a ( L 1 , U )  0 - S U a ( l i ) © - S C L ^  
S c c f a L ^ L )  ^ C V / V )  

I  i  I  • • • 

P a t > ( a a T - i  

I  
-

P a b  ( S , n i l )  h a s  b e c o m e  a  n o d e  b y  s e l e c t i o n  f o r  e x p a n s i o n ,  w h i l e  
P b  ( T l , T 2 )  i s  n o t  y e t  a  n o d e  s i n c e  i t  i s  s t i l l  t o  s o  v e .  
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an 
the 

ordered liK'5 V^rall y^H^e f° Updi>" 

-th£ m^:0-Here cl , i'su« « ̂ fiSii;lli"^Mttrr ,olttt  
ion 

are presented with Pereira^s notltim'1"8'^ semantics of this plan 
just before the example ; the lists for T1 H T,'BOdification described 
are useless for the sequel not 8lven 88 the' 

s. 

tUUpa,[̂ [iL4.[-i,[is..[5; [99IT1 ,ur ]̂.uŝ j: dtiim[U,«J,uid 

L )̂_s Kif fL, ft, hi 91 F^ ' Fnj4 .  F A  R ~rr T .  r - -o .%-> "fl 1 

LT-S Kit jjt '.ULVo] 

is abnil through link with Ll at nod Jhe. l lst  of S is : the value of 
itself linked to bL3 at 3 itself Ti* , lts? lf  iinked to L2 at 2, 
also linked to aaTl at node 5 which" * l lnked to nil at 4 ; it is 
ceedmg value. ' whlch is incompatible with the pre-

eibl. with th. .'Sj,™;' "J"? thLva»u« »f «" .rgu^nt is inca.pi-
rn f^-glVe minimum sets of resolution ' Cox's cflculations automati-
noH 'TV' ithus avoiding further cal ^ ° erase in order to solve the 
nodes JFAH] . In this Lntext theV t-°nS °f  failure independent 
nodes m the sublists of xt^ they consist in setting the Us£ of ^ 
ting instantiations, from their be' 8 V3riable containing the confli 
and j""8' tIlen replacing each of th nnin8 up to cfle undesirable instan-
to era deSCendents ; at this Lilt ! T** Che subliat <* i"8" 
0f fh be accor<3ing to our will 0f k & 3VC tbe possible sets of nodes 
sLr* branch ! if we wa°t toT"8 the of the root node 
The last j sublists containing other3Ve, aijnilnuni sets, we have to 

no e is always a possible resolution'to e'rase^11'1^ h*1""' 
hxamp X0 ; the 

T">'  '~~L :£ 
or at least h' '?'5- The first set can dis' 6 SetS °f  nodes t0 erase 

*" be tried a last possibtnty ^^ ** * "°n minim81 set-
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c) Back tracking. 

In the case of a failure on several arguments, it is neces
sary to combine the failure analyses if we want to eliminate them all 
together. The process would be to look for a common set of nodes to 
erase, and if no such set exists, to take the set containing one set 
from each argument and rooted by the nearest ancestor of the roots of 
these two sets. 

Three choices remain to make after the set of possible 
erasable subsets of nodes has been determined : 

C . : the set of nodes to erase : it seems reasonable to try all the 
clauses for the literal which was solved the last before analysing 
the failure, to eliminate this trivial possibility. It is possible 
to order the sets as Pereira does, but in this context erasing t e 
most recent nodes loses interest since we don't have to erase all 
the work done afterwards ; at least we can try a minimal set first. 

C, : the next literal to solve : it can be the literal that r°°ted 
2 the erased branch, but it could be another one too, according to 

forward execution strategy : for example a literal that had bee 
given a higher priority in the producer-consumer schema. 

C • the next solution to this literal : further analysis of the conflict 
3 source could allow to avoid _ another failure : f^or example keeping cnnrrp roulci allow CO avuiu auu-  — .  * _ .  

^ch instantiations to avoid at this point may <eliminate choices 
of clauses. If no other alternative is available fortius liter , 
it is possible to choose another set of nodes to erase, or 
last chance the father of this literal, an so on. 

Another possibility for all these choices is to let the user 
specify them by means of metarules if needed. 

The problem is then to update the plan and the corresponding 

dependency lists. ^.  ̂ ^g^ning with th^^ber1 rooting the branch 

r s E E : . . —  
on the choice C2 
Example : Suppose that in the previous example we decided to erase 2, 
tKITnew situation after this suppression would 

® -SS.ruf 
SCw,w 

4-1,U) ©_s(L\U) 4L(pvt3l) 

i 
00 

I 
Q 

Ŝ a»VTl[lS{l i[lL"1 stiui]]*. ; UFtJ]: USQ 

L^UUl^I?'LU'UU^! UUt] 
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The list of literals to resolve is now - Sa (L1,L2), 
Pb (T1.T2), which are kept with their father nodes, respectively 

1 and 5. 

Conclusion 

It seems that much work has been done on failure location. But 
much remains to do concerning failure analysis and treatment i.e. to 
find an intelligent way of restarting the derivation after a failure ; 

of"the rltfrTeS(Ca"fbe applied in conjunction with further analysis 
control ° rh1 and "formations memorized from the forward execution 
control they don t preclude the use of metarules which would be 
Vhrfh6 V£ t0 determine which set of nodes to erase, even possibly 
whether we must keep some of the parallel branches developed after the 
erased nodes, and what new solution try in a particular ap^icLic ion. 
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TI'.SL TTQT, TJ- Z.-K SuVL'TTT TABLEAUX AHD 5ESC;LH~TCK PHOWLl. 

KHYSIA 3RCDA 
Imperial College, London SW7. 

Abstract. 

The semantic tableau method as presented in "Beth can be modified by the incl
usion and use of dummy variables (Prawitz Cn3 )• With this modification, the 
tableau method begins to show similarities with resolution theorem provers. Lore-
over a procedural interpretation can be given to the tableau so that one can see a 
resemblance to Horn clause theorem provers (for example). This paper investigates 
the relation between semantic tableaux and some clausal theorem provers. 

1.Introduction. 

The ideas presented in this paper derived from a consideration of a theorem prover 
for logic programs using first order logic * (SF) based on semantic tableaux^ . 
The initial motivation was to write an interpreter in ICPROLCG £.« for proving 
inconsistency of a set of sentences in SF. 

The algorithm used in the program was based on the semantic tableau method (des
cribed in sec. 2) modified by the inclusion and use of dummy variaoles, to ,aci..i 
tate a reasonably efficient search for a proof. The program su-,ered from, some 
redundancy and as an aid in overcoming this, refutation procedures for clausal sets 
of sentences were studied with the idea that the better aspects o eac coa , 
combined, extended to SF and then incorporated into the theorem proyer. i em i-
that all the procedures studied could be simulated within the 
mat and could'be easily and intuitively understood witn reference to the tableaux. 

As a natural sequel to these studies, progress has been made on oompleteness proofs 
for 5L-resolutiop, Horn clause theorem provers and the connection graph proof p.oc 
edure, obtained from consideration of certain tableaux. . en e ^°°® , 
has been finalised (i.e. when useful features of the cl usal tneorem provers hav.. 
been incorporated) a proof of its coupleteness wi e a emp • ^ 

it is appreciated that work in this area has Deen or is oe;ing , 

C31,C4-3, Andrews C ' 3, Bowen CS 3) but their "°ron̂ leg0lthe inconsistency of a set 
Bibel has presented a systematic procedure whic - - , . se+s 0f senten-
of sentences to be proved but the method is imi^e , /mdreWs has extend-
ces in which only one instantiation of eacn sente _ o-imole" orc^f as 
ed the method (although it does not ne°es® X̂ ̂ ^^does not seem'to have related 
does Bibel's) to arbitrary sets of sentences, bu^ h \ i'nreoveT neither of 
it to resolution theorem provers (except connection gr * . ^ r do they 
these presentations directly relates the proof to a semantic tableau 
use its structure to justify the operations involved. 

For the sets of sentences investigated in the aforesaid paper-, a touristy vou ̂  
often generate the same or tableau. Logic tQ golye & 

useful inconsistency proofs than a systematic puoc heuristic 
investigated. KStay of the operations of SL-resolution etc. can he seena^ spirit 
when viewed from a tableau stance. A procedura in erp ' - » t th tableau 
to that given to top down Horn clause theorem provers can be given 
method and it is hoped to make use of this in the heuristics used. 

The sections that follow give the general background and terminology, 
simulation of clausal theorem provers and detail curren 

* The sentences in which logic programs axe written may include^ the 
tivs s A , V > i +•> 

lop-ic r>ro .Tains wx ----- ""-v _ „ 
together with universal and existentia quanta 



2. Preliminaries. 

example^ to iSStratHJf feaXs^dlnJrod'"^ V' 18 applled t0 * Saa11 

optimisation is consciously made or indeed at 

LSnletTrefol IfflK#^fSTfflK£ £ ******* *>*T (*# so, 
(usually only one sentence) the g^al). LoSely^Jt-^'.A th<? pr?°fUJ'es «*£ 

"*kea =»"»-»° -4 t™. ,i„ « ii?,t S, Si".T-s"-
We make use of a semantic tableau: 
Assume Atzfrg and attempt to derive a contridfot^n. < 
interpretation in which all sentences of/Z ar» f i.e. assume there exists® 
for the interpretation and if it is found <» ^ in 3X6 fale°; look 
can exist, conclude >0=^£ . "possible that such an interpretation 

Each branch of a semantic tableau vives a n„+ 
of the assumption that all sentences i.n tA arc + sentences which, as a corse-uence 
also be true. (i.e. a possible interpretation i a11 111 ,are false> ™»i 
particular every branch will include!* ^d°V enumerated), ^us in 
and its negation in a branch, we are Termini no- " f *" S°m9 staPe wp have a senten 
imply) both a sentence and its nee-tin- lrin? interpretation to include (or 
this occurs cannot represent a possible in^\™US!< Mlity* 7''US th* br~'c;" is « 
(closed). If an branches in thTtabS2™ 2 T^10" •"* be t-rninated 
is possible in which all the sentences in ° in thi3 way' ro interpretation 
Hence we conclude Jl=^dB. . are true and all in S are false. 

I f  n t  ™ t h ^  ~ * » 1 ' 1 ' » « • p - " . - "  < •  

0 

*)--

iy— 

4---
sV--

6) 

T> 

0 

1 )~~  

"• ['-.-J. a 

V X 

•  •  V s l * '  S 3 ' ^  V , .  C . e = . ,  l i t , ] )  

• = I. ooL 
= *-Ur*lL 

C: -g'1 S3 -»Vx[xfeUU-> it-Ul.n'4.1 *•' = I .nil 
" * 4  - » >  X f e  X  . 1  .  « j t l  

1 -J, 5 .i.̂ Ud 
«fl- H-Vd 

C-x-lrwu vOC-XfeVi^^ TC«A»1v 

(No e: "sn> n 6 „ „ = (| 

Notes for example l k-m . ' &re Pre<*icate symbol s > _oie i. (illustrated in f i e  S -

Assurna ©ach c;o-n+ a (. • 1» ) 
to. tor W. ' ~ t„. ln ^ ^ ^ ̂  

"3. .vi 
*-3. x 40 
<*« =x . 
^ — I. 
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2) Example of a simplification rule: If a sentence of the form Vx P(x) is^ true in 
I then ?(X) is true in I for any individual X in the domain of I. Thus we have 
(possibly) nianv true sentences implied by V xP(x). We are aiming to close each 
branch and for efficiency sake would like to do so as soon as possible. But we may 
not know the best individual to choose so we replace the quantified variable by a 
dummy variable and instantiate the dummy later, when a suitable constant is found. 
Dummy variables used here are xl and yl. 

3) Another simplification rule: If a sentence of the form X*-Y is true in J then 
either X orii is true in I.In this example (see fig.l), I must be such that A , J3 , 
C are true in it or A , 10 ,£> are true in it. (We now have two possible ways of 
finding the interpretation i). 
4) We close a branch when it represents a set of requirements which no interpretation 
may satisfy. Here, instantiating xl,yl to l.nil and 2.1.n re^pec lve ^ 
the branch to be closed (by "matching" with ). The su js i^u +, _ „ u „'\ 
for xl,yl in the other branch, (indicated by tne symbo —— o • 

5) Another rule- fiV z = 3 zn). 3 zP(z) asserts that there exists an individual in 
01 Anotner rule. I ;• » \ / Fo+ice. we must choose a name 
I - let us name it 'el' - such that P(ei; is true. i.o.ice, 
that has not been used before. 
6) Another rule: i(X-»Y) true in I means both X and"«Y must be true m I. 

7) Use of the"VxP(xj'rule (for x.u.v respectively). 

3) Use of the —»"rule and closure of a branch. 

9) The branch is closed because it contains el €1.nil and lel^l.ml. 

There axe other possible tableaux, notably the one which 
bottom-up from elC l.nil (as opposed to ^ tha 
fig.l)). Ve need extra sentences in JL for t. - details not difficult to supply, 
second clause in JL of fig.l and VxvxZnil. The details ar 

j. +n mind. e.g. (a) quantifiers should be 
Some "obvious" heuristic improvements co^e " „ possible. With this modifio-
raoved as close to the quantified varialbl® °° ef, can be repeated in a branch with 
ation universally quantified parts of sent gentonces, which only need occur 
different instantiations ana other par-ts •eg ̂ their descendants may be 
once in a branch will not be repeated. (,b; _ thereby enabling transformation 
labelled for bottom-up only or top-down on y u . C0S only j_n the direction 
rules to be used. With this modification one us " . Qr „nUSable information, 
intended by the programmer and does not genera 

. rules. With the constraint that 
We require some rules for using the simp l choose any branch to develop 
one does not pursue a branch single-minde y qpeins obvious that one does not 
and any sentence in that branch to simplify* t than once in any branch - for if 
instantiate a sentence with the same constant more than once 

one did repetition would occur). cla8Sical closed tableau; 
Note that once all instantiations have been made v- c. 
one of (in general) an infinite set. 

3* Simulation of a Ton Down Horn 01 a.use Interpreter. ^ tabieau. Certainly, 

Example 1 used "human knowledge" to guide the searc dispense with human inter-
if the sentences involved are Horn clauses ppqr or. theorem prover: selection of 
vention. We can simulate various features o backtracking; negation as fai 
arbitrary literals in the goal clause; po-rou ^ _rpperiy described here, but it is 
ure; some loop checking. Not all of these c- _vour 0f the ideas involved, 
hoped that the following examples will gave a flavour - inustrates the top 

.Example 2. This example (a very simple finite (rfwo orders of choice are 
down nature of a PROLOG proof and arbi .. ;s employed (i.e. each brsr.cn is 
given in figs 2a and 2b). Depth first eval _ branch at the same or higher 
developed to its closure before developing routiRi"1' i- thus possible by 
level) but one need not do this. Simulation o^ ̂  > if the goal w«=re 
developing branches in a quasi-parallel • y* 



t-reach(s,a.b.a.a.nil) which fails, co-rcutining can judisciocsly be u"ert to redtffl 
the search space.e.g. compare a depth first tableau, always choosing append first 
and a tableau which co-routines between append and reach. 

(Kote the program is not the simplest that could be written to carry out the task), 
The classical tableaux represented by figs 2a and 2b can be obtained by "filling-iiT 
the instantiations. Pig 2c illustrates this for fig 2b. 

0 — 
C ex .  rs'J. 

^a«.cU Cjf.oO <c- L(\ 

Rfuxc-U. ^ ft i*.} *— Ra*.d~ C ft , OLf>pa_Adl V. ex . n  ̂

t « a  x . i )  ̂  A f f i a - r s r f .  C  u . i j . i ) ;  C S ,  a . a . r i v D ; ^  

, - •< V, 
Reg-cKCs a -x.1) -tRc_a. c_k C A , ytX) = RaacUCfl,a.a.J 

I 

ApparvdC.W-4,*^ yl,, w.lbl ->Appj^dCu.3,vj3,x3) 

0t"4 r *.*\ol ' /  "iR»».cMfV 

Fig 2a 
a- s « «-rv'vA. 
l3:«Cdl 

^ «•& a.o.1 CQockt "is, ioxaq. aw.A aa ^ 

c ft ,-su) ' "> i. h , o.c. . nU, ") ftcmt-U C^,XQ 
*|z« •a.fl'a 

<A - eJL 
•>ftpf»A.A t a.xU.^'i, n».n\jU 

II 
J t*. .Oi.Avi ^.a.rvA J 

^ =A, > r\J. . v a «.rt 
ftp p-s-od. (."XA , «vjU -XA) ^ - «Ol 

= <V.aJ. 

Notes for example 2 finno+^o+ j • — Ul-ustrated m figg 2a,2b,2c,2d) 
; Assume all clauses are aporonri~+ei 

an interpretation (say I). ^ ^ ̂^ersaily quantified and ere all trie 
repeated there. The tableau is generat9fwiS+USed ^ 2b'2c'2d 2nd is not 

en m the order given in the program. ^ ° ° rlght dePth first and clauses a 
2 )  P r e v i o u s l v  t h e  " o r "  =  i - r -
"V"  is associative we can ^ dealt wlth the binary case only Sir 
SStifier"6™ °f fl« 1 ^ uivaLnt ** JV<Wb> "* ^te l^ £ 
pine be"or &t the left °f a clause ** °f f±g 3b ?11 universal 

before splitting. US' t:nd replacement by dummy variables takes 
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3) At each stage the tips of the unclosed "branches 
cl use in the IfJJH proof. The LU'SH proof simulated 
a sore usual notation. (The chosen literal at each 

{ P3 1 I 3°^ 

fioativC * .»vA.) 

ft'AcK.ft,*.*. «\dl) 

n App&n dLCft'«<i 1 aW < 
A.O.nli ) 

| 
(a -oli j *U,a.rttO 

:'ln ,'.C 

represent the resolvant ( s -oal) 
in fig 2b is given in fig 2d in 
stage is underlined). 

\ Peogr«.«vi <V> \v\ f\ij i«.1» 

(j A. ) 

o f RsuvcJt-CA , ^.a..«\si) 

|<fe- SWdUC 
~ ~ ~ tjx, a<k.«Co.} 

> ir A^ipAnA Ca.nU, a ./CJ, •"'l) 

f t  p p a n d l * * )  r t v l  1 *  

Fi~ 2d 

Fig 3a Fig ?b 

Example 3 (illustrates simulation of backtracking) 

Kotes for example \ (illustrated in fig 4a-) 

1) The goal, <-append(a.nil, nil, a.a.nil) fails 
the last available alternative. 10 simulate . ^ ^iteral ln the sajne way as 

alternative occurs, closing branches up to t alternative choice at the 
previously. (e.g. it (*) in fig f )• » :^Sm7X«*(M^) 
relevant literal, (in fig 4a, instead of matching ireacn 
we match it with the head of the' recursive clause for reach.; 

~ w>™r -flint the Dortion "below the failed 
The tableau of fig 4a is redundant, since w ^lQsure (there would not have been a 
append literal cannot use that literal m i failed literal with the 
failure if it oould) „ can overlay the «*«•«£ »S £J£j?L, fig 4b. Tni. nor 
Portion of the tableau bolo. it. The'MSB search space. 
tableau correspond, to a euccessful path t J! ^ ^ ̂ ^ ̂  ^ ̂  ̂  

Various other backtracking strategies might » instantiated in all poss-
lose the potential of using every clause in every branch, instanti 
ible ways (unless a branch should close). rals i- the 
One can simulate the backtracking without the ^^^^^^yga^quantifiers as 
clause to which the backtracking is made, by movi g kinfr will then be to the 
close to their variables' occurrences as possibl • ha^s alternatives. The 

sssrs rarisrsase'srss. ~ »--- rrrT 
We 4 (an era.pl. neing 'negation «• UOmf («*•» =<*> 

(It is assumed the reader is familiar with the idea of negation as 

programs (Clark C<>1 ). 1' d to "he tableau 
The same principle of using negation in logic Pr°5rw®8r°^aoe and only 
method: if we generate a node of tne form C i + pad<a. to close. (In the 
close th- branch if the tableau forn.ed below-«P^ot be nad^' ^ we COrcl-aie 
procedural interpretation to shew J3Ci I -e _ T-i >, , pycJOT- proof using the 
ECT ?j. The reader should now be able to °irai - " ,eg i.he use of a met".-ra e wnich 
ideas in the previous examples. Thxs predicates and procedures in the given 
could be dispensed with by including sui -



set of sentences. (After all, here we axe not restricted to "O*T. Ĉ  uses' e ~ if 
the clause were A 4-HOT S we could replace it by A,34- ar.d we would need daniela of 

m" n S° r ̂  probleF" 'rnis presents a different procedural inter
pret-- .ion: assu-.e 3 and see what happens" which ray not give such a .natural argu
ment as negation by failure. 

[ ll i»<-

Ra&cMSiPcT) *1 Raa<J»(R ,ucQ — IfUAck (.0 , a.-a-aVq') 

^ci-a.a.o..nJ- y*-- *.oq i««U, ji) 

Ap^J-C u-3. v % T — 7(*.*d 
w -X ' — U1=a..rvi ,K"i —c^. 

vv-g^l.i -• 7fyp*~JCc,.a\l,yq ,*4.) = yftr/u^j 

Ktmag.rJ. —\ " ., Jf . . . 

(M 
RflPw cklft T^AAxlXA^uS-) ^ 

fy^diub, »ct .u) C««.,y*,x*; 

^ ̂ s ft • ft s ̂  ( 

<3^ ~ " ̂ • ij* = e-a. (, 

7/ 
7#p V CrxJ(̂ J(t<j 

bp fû d Cwf-.iU,*?) 

Fir- da *7 ̂  « .*a =  lf e  

TWM.S,*.,-) 

( a^^gooj. «•, ,n T^j 4-<v} 

~IRA*^(.A,X.O n= "I IWiACfl. *• cx ^.^vA J 

"* <* La.*U ,yj* , *4.)=i ftp^A 

:! . . . 
12^1' 

II 
TApju^i (Cn.Aa ,yS< ^ ̂  

fttc . 

•»Aftpa Cx.xa (^ a i S j,-) 

«Tu 

Pig db 

intro-— or ̂  »,*, ta lr, 

2 : s k e-  c ' r t*1--1" i f* retread !/l?:tl.then a Potential loon ™v v« ~l^I-f!Ccn? ccĉ rce is »•> 
by 

suned bv the It oranch twice, such that to- JI tainiy, , 
•? tnen a potential loon v seccru occurrence is 

« srrr « .ASiass^i 
tableau „ .»„« <„ 



I l l  7 -

In this section we have described how various aspects of PECLCG-like theorem provers 
may be simulated by a semantic tableau. liext we will deal with simulation of other 
clausal theorem provers. 

4.Simulation of SL-lesolution and other Clausal Theorem Provers. 

(Familiarity with SL-resoluticn .connection graphs and Shostak's graph 
construction procedure Dal is assumed in this and the following sections.) 

Example 5 (The operations of ancestor resolution, merging (factoring) ana deletion 
of literals in SL-resolution are illustrated). 

Cne possible SL-proof is given in tableau form in fig 5a and in a more usual not
ation in fig 5b,An alternative proof is given in figs. 5° and5d . 3ee also the 
explanation below. 
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Motes on example 5 (illustrated in figs. 5»t 5%5c,5d). 
1) Assume suitable universal quantification of sentences. Nodes and closures 
generated in ascending order and in a depth first manner. 
2) The start clause is T(cat)e! In fig.5b each stage is separated by a fullston. 

5) Closure of a branch corresponds to making a pas® : ve x vnboxed literals 
is made active. In fig 5b an active literal is enclosed m a to. Lnboxea i 
represent palsive litfrals (or tips of the unclosed branches of the tableau;. 

4) Merging has taken place at (20% We can close ^(tny literal above 
closure can be develooed below (7) can be developed ^^c^ontaining (17)). 
(7) which is used in the closure oelow it is conm ' as the literal "higher" in 
In general this operation is one of factoring. ^ = , her") any closure 
the tableau (7 here) is subsumed by the lc«er llt ̂ [, l er literal (which i: 

' develooed from the higher literal can be transferrer! to -he lower 
the more fierier p.l ^ -
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7) Start clause is'L(cat) V in figs."5c end 5d . 
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Shostak's graph construction procedure ( G C )  and Prawitz* splitting rule for matrices 
can be obtained using arguments similar to those used in this section. We briefly 
give the argument for GC. ... . _ 

In 3I-resolution, when all branches below a literal have been closed, knowledge of 
having "proved" that literal is lost. In the special case of the closure below 
the literal having used only nodes below and including the literal, we know that 
if the same literal (or one which subsumes it) occurs elsewhere in the tableau 
the same closure can be used. To facilitate this we add the negation of the literal 
to other branches in the tableau. The easiest way to do this is to add the negated 
literal to the top of the tableau. In a less specialised case the closure may have 
involved literals (L say) in the branch above the literal (K say; being considered. 
We can add the negated literal to all branches which have literals L in common 
with the branch containing K. In the worst case this will be tnose branches which 
have the same immediate predecessor as K. 

In this section simulation of SL-resolution,LUST-resolution and the graph constru
ction procedure were described. Simulation of other theorem provers is possiole 
and the arguments are similar to those used here. It remains to illustrate simu
lation of the connection graph procedure. 

•ij*"*•/ ^ 

n® IX.® 
•—d) (a)"1 a 

<3) <S> 

Fig.6 S-r-om N\tr»K«r 

5. Simulation of the Connection Orach t'rocf Procedure. 

In all previous simulations which were of a depth first nature the "latest" resol-
vant was the one represented by the ends of the unclosed Caliches. Th.e correction 
graph procedure (CG) has , in general, several active "solvants ^Snev^ a 
this the tableau is developed in separate P^®ce^ bookkeeping of CG still has to 
pair of resolvants axe used, as parent clauses. The . nnp to see when 
be performed. The structure imposed on CG by the tableau ena efficiency, 
factoring is necessary for a proof and when it is on!y necess./ 
A more complete description than is given here s in useful for the visual 
preparation. We will look at two examples. The CG format is useful 
recording of links and will.be used as well as tne tablea . 

grannie 7 (illustrates a simple simulation with no factoring). 

Notes on example 7 (illustrated in fig. 7) . 

1) The operations of deleting incompatible links ^ ^n°beU1ustified in 
literal with no links (and the special case of pseudo-links) can „ 
terms of the .tableau being generated. _ , . 

2) 'When we have deleted link 2, the resulting ^ -! The 
represents the resultant 'f-C(cat,a)' and. the oritJ ;j " delete link 3, rather 
latter still has a link (3) and can be used again Jen we de. (^^ted 
then repeat the clause 'L(cat}«-' we g—+- e. ^-dimensional 
by the dotted lir.e in V). We no-: have 

'e no*.-. 

oe used again. When we ^ " 
generate a 5-dimensional tableau 

s two tableau joined at L(ca-). 

5) First we delete (10) and generate the tableau of ^ In this case it is 
i link (the descendant of 9) which is be ween "flattened". Notice we still have 
an easy operation - the 3-dinsnsional tab ^ ^ "+v,~ i This part cculd have 
the clause 'D(cat.a) ,D(cnt,b)«-1 representee in th, t.olec-u. -
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Example 8 (illustrates factoring in a simple setting). 

Notes on example 8 (illustrated in fig. 8). 

(In this example factoring is not necessary, although it is useful for a more j 
ient proof. If however the clause '«-?(a)' were '<-P(a),P(u) ' (say) factoring 
he necessary). The factoring is indicated in the tableau by being able t° r®f 
the literal 'iQ(vl)* in the first resolvant with the original clause 'P(x;,^ ' 
The Q, literal is represented in the tableau at (A). This resolution produces ' 
copies of 'P(xl)' which effectively are factored in the tableau. Certainly. ̂  
may be the case when this phenomenon occurs that factoring is not necessary, 
we can be sure that factoring is only necessary when it does occur, (^ots-
are a few special cases with regard tc some sorts of tautological links where -
toring is necessary before deleting all tautological links. However these cas= 
can be recognised from the tableau format and hence dsalj with). 
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•PhP tableau generated in fig.S is not the only tableau corresponding to the CG 
nJ An alternative is shown in fig. 8V1. The difference is due to the aeyunetry 

Pf°f- ^. f th respect to the parent clauses in a resolution. Tins asjnvnetry 
?J™o?occS in the^normal CG foil. In fig. TO U ~t Indlo.t.d by 
the tabl.aa «id heme n.«d not have to.n p.nfon.ed in the CO proof. 
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6. Conclusion. resolutio„ theorem provers can be embodied within the 

It is seen that a host o 
classical t.hl.a. «thod. v„l0„ a,o„. prov.r. 

A paper detailing completeness p method employed for tableau formed 
semantic tableau is in a fully £h°£Eta, instantiated 
graphs involves "pruning P clauSe is develope in this paper show 
in a "systematic" way. (e-f* ® similar to those used elsev ^ olosed tableau in 
with each constant), closure, and the *"®sicieration. The final close 
that the pruning df3 "°\he theorem prover under con ^ oonneotion graphs 
a format consistent with the tneo ae method usea 
tableau Is "lifted- * «. c»»® ^ „ Ks 

a more direct proof. Tn always derives the hoped to 

Hegardless of uheth.r »• K»U»1 progr™. W 
a satisfying r.l.tionoh P »»„,„«.« of th. r*~£?.££~ 
make use of this in a necessary m t P event of the inform - c-oe 
allowing human ^provements.e.g. f ^wVersion mif^ provide scope 
and consequently brin^ B - Comolete a proof, fatis to close. 
lied not being ^ffl"gginS premiss when a brano i improvement, if 
for a user to add a missing P metarules. within SF? 
Another area of exploration to formating 
any, is gained by using m 
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QLOG - THE SOFTWARE FOR PROLOG 

AND LOGIC PROGRAMMING 

by 

H. Jan Komorowski 

ABSTRACT: We argue that the existing Prolog implementations 
are insufficient wrt incremental programming, interactive 

environment, interactive debugging tools, integrated programming 
system, etc. The best of them - the Prolog DEClOsystem - is an 
attempt toward such the environment but it nevertheless provides 
a rather poor support for the programmer. Instead we suggest 
using Qlog, an interactive programming environment for Prolog 
(and logic programming) which has been implemented in a portable 
subset of LISP. The new system is very efficient and with minimal 
cost inherits all the support of the host Lisp system The 
interpreter itself takes 10 pages of pretty printed code, while the 
interface » ,h. L..P ho,, system occupies about 20 pages -

Inter lisp)- Currently there are Qlog version, •" intertep, Port 
Lisp F3 and Stanford Lisp 1-6- Timing for Qlog in Stanford L sp 
'7 and Prolog DECIO on ,h« — ™CiO (KL .0E, compute, 

shows that code is executed slightly faster in Qlog. 

. , rases. Prolog, Lisp, logic programming, 
Keywords and phrases. S r„„r,m debugging and 
interactive programming environment, p 

testing, embedded languages. 
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J.O INTRODUCTION 

The best and most well known implementation of Prolog < 1 > is 
the Prolog DEC10 system < 2 >. That implementation has been a 
pioneer work toward an interactive environment for logic 
programming. The task to implement it was very big but 
unfortunately only partially succeeded. The system is interactive 
but for several reasons uninvitingly hard to use. We had a rather 
big experience with Interlisp < 3 > and would like to provide a 
similar environment for Prolog. 

There were two possible approaches: use the existing Prolog 
implementation and design Interlisp inspired facilities in it, or 
take Interlisp (or any other modern Lisp environment) and embed 
Prolog in it. 

The first approach was possible but would require an enormous 
effort. The code for Interlisp packages is several hundred pages. 
Working from scratch would mean to repeat it for Prolog. 

The second approach attracted us very much. By the use of the 
"law of maximal embedding- < 4 > we expected to design an 
interactive environment for Prolog with minimal cost. The 
embedding law says: implement special facilities for a given 
anguage only when necessary, and embed in Lisp otherwise. This 

minimizes the costs of the implementation, while maximizing the 
inheritance of Lisp language features (like input/output routines) 
and Lisp system facilities (like the editor and file librarian). The 
embedded approach usually results in very few pages of code. In 
our case the functions of the interpreter itself consist of 330 lines 
of pretty printed code (the text files have about 10 pages of 
pretty printed code). The interface to Lisp facilities usually takes 
more code than the interpreter. The figure for Interlisp is 20 
pages of pretty printed code. 



y>*) 
- 5 -

2.0 WHY PROLOG DEC10 IS INSUFFICIENT 

A user who switches from "batch" oriented computation as in 
Prolog Marseille < 5 > is certainly very pleased by the new 
environment of Prolog DEC10. However the system may only 
satisfy an unexperienced programmer who never tasted a flavor of 
a fully interactive programming environment. The MACLISP 
< 6 > and INTERLISP are good examples what are such the 

environments. 

2.1 The requirements on a language for an interactive 

programming system 

Let us characterize what should be the requirements on a 
programming language for integrated, interactive programming 
system. With some modifications we quote from Sandewall < 7 > 
and immediately relate to Prolog DEC10. (We shall write PD10 for 

Prolog DEC10.) 

BOOTSTRAPPING. The system should be implemented itself in the 

language it supports; PD10 - yes. 

INCREMENTALITY. To achieve real interaction, the basic cycle 
of ,h. programming system shooid be to read an expression from 
the user, execute it, and print ou, the result while preserving 

el„ba, side effects in its database, PD.O - *. ^ 
yes, although there are no tools for examining 

database of programs. 

PROCEDURE ORIENTATION. Obvious reasons; PD10 - yes. 

ctmTatioN OF PROGRAMS. Since most of the 
INTERNAL REPRESENTATI ^ ^ operations on 
operations required by the program p0Ssible to 
programs, the language should make it as easy 

PDIO -  YES.  
operate on programs, 
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FULL CHECKING CAPABILITY. All possible input from the user 
must result in rational response from the system; PD10 - NO! 

DATA STRUCTURES AND DATABASE. The system must 
minimally have data structures that are able to represent 
programs as tree structures and a database facility where one can 
conveniently store and retrieve properties of items. For example, 
what are the procedures currently defined by the user; PD10 
- data structures: yes; database facility: no. 

DEFINED I/O FOR DATA STRUCTURES. In order to test a 
procedure interactively, one wants to be able to type in a call to 
the procedure and obtain back the result. Since the arguments 
and/or the result may be data structures, I/O for data structures 
must be defined in the system. Since programs are internally 
stored as data structures, this I/O may also be used as parser and 
program-printer; PD10 - the I/O is very poor and it forces 
the user to define his/her own routines. 

HANDLES AND INTERACTIVE CONTROL. The actions taken by 
the system in specific situations should be controllable by the user 
in such a way that a user-defined procedure (a "handle") can be 
inserted instead of the original procedure provided by the system. 
For example, such handles are useful for the operation applied to 
expressions input by the user, and reactions to errors and 
exceptional conditions during the execution of a procedure. 
Also, the system must allow for an assortment of different control 
signals that may be typed-in by the user at arbitrary times to 
control the ongoing computation. The "killer" interrupt, which 
terminates the interactive session and returns to the operating 
system, is exactly what the user does NOT want. The response to 
control signals should also be user-controllable through handles. 

PD10 - the system has a possibility to interrupt the execution 
without returning to the operating system, but the interrupt is not 
programmable. The worst is the elimination of errors in PD10 
which leads to bizarre, hard to analyze computations. 
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In summary, the Prolog DECIO language fulfills only partially the 
requirements on a programming language for an interactive 
environment. It (and tiny Prolog) has however one very important 

property: programs are represented as Prolog data. This property 
makes it possible implement Prolog in Lisp. 

2.2 The requirements on an interactive programming system 

Let us now consider what are the requirements on an interactive 
programming system. The view of advanced program development 
and maintenance tools < 8 > in such the environment is centered 

around a few main concepts: 

1. Program development is an incremental process. 

2. Programs are stored in a database not as strings of 

characters but in some structured form. 

3. The programmer must have available several advanced tools 
when developing and maintaining programs. This includes 

tools for: 
a. program specification 
b. program debugging and testing 
c. program presentation and modification 

d. program analysis and transformations 

e. program verification 

f. program generation 
g. program documentation 

Here w. ioco, our ett.n.ion on tool, n.med In point, 3.0, 3.=, «"d 

3-g-



V I  
- 8 -

3.0 PROGRAM DEBUGGING AND TESTING 

The interactive programming in a system based on a language with 
pattern-directed invocation and backtracking requires several 
properties for a programming system. First of all calls to 
undefined functions must be properly handled. 

1. If the definition of the function FOO contains a call to the 
function FIE, but FIE is not actually called for a certain 
argument vector x to FOO, then the programming system 
should be able to operate and to compute FOO(x) even if 
FIE has not yet been defined. 

2. If FOO calls FIE as in the previous case and FIE is 
undefined, but computation of FOO(y) leads to a call of 
FIE, then the programming system should make a "soft 
landing". In other words, it should not print an error 
message and abort, but rather preserve the current 
environment and allow the programmer to inspect the 
situation, decide on a suitable assignments that FIE could 
have accomplished, type it into the programming system, 
and let the computation continue. 

The first property is of course available in every interpreter. The 
second one is not provided by .any other Prolog implementation 
than Qlog. The "soft landing" is in fact the point of the 
interactive testing and debugging. After !t happens, the user has a 
spectrum of tools. He/she can provide a definition for this yet 
undefined function. He can also decide that the function fails and 
simulate this case by typing FAIL to the system. The decisions are 
supported by several facilities. Namely, the user may examine the 
current environment by looking at the formal arguments' binding, 
the AND/OR tree structure of the computation, the stack, the 
procedures about to be computed, and the pattern which has just 
succeeded in the unification. It is also possible to change actual 
bindings of variables. 
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An intended (programmed) interrupt followed by the "soft landing" 
is a modification of the second case. In Lisp terminology it is 

called "break". The user simply informs the system that when a 
function FOO is called he wants to examine the environment prior 
to the execution of FOO. 

A simplified variant of breaking is tracing. In the trace the 
function (which the user wants to trace) is broken, the current 
bindings are printed, and the computation is automatically 

continued without any further action from the user. 

The Prolog DEC10 system offers quite different philosophy. Since 
the semantic is totally defined, there are no errors nor 
programmed interrupts (breaks). The execution of a program might 
be halted in random, but since no tools are given for examining 

the environment these halts aire nearly useless. 

4.0 PROGRAM PRESENTATION AND MODIFICATION 

The collection of procedures which are currently in the database 

must be presentable to the user. He wants to know what functio 
are currently in the program and he may want to examine their 
text. The natural requirement is a pretty printer which displays a 

selected procedure in some system defined format. 

During the debugging process a lot of changes are done in the text 
of procedures. For these purposes an intelligent editor must e 
provided, i.e. an editor which understands the structure of 

programs and works on their tree representation, not on the 

strings of characters. Usually the editor is in core an is 
in the same language. Another solution is the editor ,n parallel 

job. It requires however a sophisticated operating y 
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5.0 PROGRAM DOCUMENTATION 

An interactive system needs a file librarian. Among other things 
the librarian knows what functions have been introduced during 
the interactive session, and which have been changed. He asks the 
user where the new ones should go, and takes care of updating the 
existing files, creating the new ones, producing the compiled files, 
etc. He also should be able to answer questions like: "Where is the 
function FOO?". In programs with several hundred functions 
distributed over several files this is an important facility. 

6.0 THE IMPLEMENTATION OF QLOG 

As we have earlier pointed out Prolog has equality between data 
and programs. This property makes implementation easier. As an 
implementation principle we applied the "law of maximal 
embedding", i.e. implemented special facilities for Qlog when 
necessary, and embedded in Lisp otherwise < 9 >. This minimizes 
the costs of implementation drastically. The inherited services are 
far larger than Qlog itself, far better than anything one could 
have afforded to build from scratch, and far better than the 
facilities built from scratch in other Prolog implementations. 

6.1 Data types 

No special finesse is required to embed Prolog data in Lisp data. 
They are similar enough that Qlog can just use an appropriate 
subset of S-expressions directly. Thus Qlog obtains for free 
allocators, a garbage collector, READ and PRINT, a list structure 
editor and in general all utilities which are defined over arbitrary 
S-expressions. 
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6.2 Prolog control structure and variable binding 

Since the Prolog control structure and variable binding mechanism 

are quite different from that of Lisp, they involve harder design 
decisions. The use of FEXPRs, i.e. functions which do not evaluate 
their arguments, and the introduction of a special stack for the 
non-recursive Prolog control structure allow representing Qlog 
functions directly as Lisp functions. Thus Qlog forms and functions 
are simply a subset of those of Lisp. This allows us to bind Qlog 
variables arbitrarily (through the introduction of a special stack), 
while still inheriting most of Lisp's numerous form and function 

oriented programming tools. 

6.3 The inherited programming tools 

Thanks to the implementation method we inherited almost for free 
a lot of Lisp programming tools. We have the testing and 
debugging tools of Lisp: trace, break, error handling, visible 

stacks, current binding environment, etc. Some of them 
inherited directly; a few need some cosmetics like variable binding 

display since it is rather different from the Lisp one. 
The file librarian, I/O routines, and the structure editor are taken 

as they stand. 
Our worst cases are the pretty printing routine and the compiler. 
Because the Lisp pretty print formats are quite different from 
that of Qlog there is a special pretty printer consisting of 36 lines 

of code. . . 
The regular Lisp compiler may be used on Qlog forms. The gain 
however relatively small. The Lisp compiler does not know 
anything about the Qlog structure; in general case a true pattern 

matcher compiler is required. (Of course one can use the ro g 

DEC10 compiler if accessible). A Lisp pattern matcher co p 
. • for correct comparisons of Lisp and Prolog also a sine qua non for correci k  nprin 

,, , In < io > the designers of Prolog DEC 10 
DEC10 compiled code. In  < 10 x 
compared Prolog .o Lisp in a very unfavorable case for L»p. 

program for symbolic differentiation is str.c.iy » ^ ™ ° 

pattern matching. The Lisp program is no, comp.led 
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respect to this pattern matching whereas the Prolog one is. 
Instead of a Qlog compiler we have developed an incremental 
indexing of functions entries by their first arguments. The method 
is similar to Prolog DEC10 one, but is superior in that it works 
for the interpreted code and the new assertions might be added 

arbitrarily. 
In addition, the Interlisp system provides several more advanced 
facilities like the history package and the spelling corrector which 
work fairly well for Qlog functions. They needed a little more 
work to interface with the regular Qlog. 

Totally, the interface in Interlisp case takes only 20 pages of 
pretty printed code. As a rough estimate, the Lisp code for the 

parts of the Interlisp programming environment which we use is 
about 50 times larger! We guess that implementing them in Prolog 

DEC10 would result in approximately the same size. 

7.0 CONCLUSIONS 

We have shown that that the possibility of partially embedding 
Prolog in Lisp is very powerful system design technique. The point 
of maximal embedding is that the designer does not have to spend 

most of his time (re)programming the environment facilities for 
Prolog. Instead, he makes a set of design decisions and inherits 
major parts of the Lisp system. This method is very important 
since it drastically cuts the costs and time expenses required for 
the development of an interactive system. 

The volume of the code is several times smaller than any other 
implementation of Prolog. This factor is very important for 
obvious reasons, e.g. debugging the interpreter, introducing 
modifications, working on a minicomputer version of Lisp, etc. 

Since by embedding Prolog in Lisp we did not depart from the 
implementation environments (cf. Interlisp, Lisp 1.6 < 11 >, and 

Fortran Lisp F3 <12 >), the Qlog programming system may be 

extremely easily used for experiments with logic programming 
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while retaining the same interactive programming system. Some 

examples are: new search strategies, other pattern matcher, 

parallel processing, and many others. 

7.1 Comparison to the Prolog DEC10 system 

The speed of execution was not our primary concern; it was more 

important to get a very good programming environment. To our 

pleasant surprise the resulting interpreter runs slightly faster than 

Prolog DEC10, both on the same DEC10 computer (KL 10E). The 

average times for benchmarks programs in Qlog Lisp 1.6 and 

Prolog DEC10 show that the Prolog average time was 798 

milliseconds and the Qlog was 760 milliseconds. The test program 

resulted in 10x27=270 function calls and the cost of timing was 

subtracted from the results shown by the Prolog timing function 

(about 18 ms). 

The comparison of interactive environments is very favorable for 

Qlog. The Prolog DEC10 is interactive and incremental, but the 

actual data base of functions is virtually impossible to control or 

display. The i/o routines are very low level, ^ ̂  °' 

characters (READC) or Prolog terms. RATOM an -
must be programmed by each user. The trace feature is of the 

wallpaper type, i.e. one can trace all functions at once or none. 

instead of error handling, Prolog DEC10 offers the philosophy that 

errors are impossible. This means that the system trea^ aU 
t o  undefined functions, as patter 

errors, from misspellings tu_,P are no 
As < 13 > promises, there are 

matching failure. A ^ ̂  nQ mes$ages 

"incomprehensible error m g ^ ̂  agree> 

at all; the program doe not ev^ ^ ̂  

however, that "this o y ^ 

r;:c"Uf —« — — - - -iementatrir~of̂ ::;:. 
relevant response to the user who has 
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typographical mistakes which can be routinely detected by the 

interpreter. 

Prolog DEC10 has no facilities like break, pretty printer, file 
librarian, nor any support for editing either in core or in parallel 
jobs. The compiler exists as a separate package but is rather 
inflexible and uninvitingly hard to use. 

S.O SUMMARY 

Qlog is a portable Lisp implementation of Prolog. It already exists 
in Fortran Lisp F3, Stanford Lisp 1.6 and Interlisp <14 >. 

Qlog inherits most of the major components of the Lisp 
programming environment at very low cost, and obtains a high 
quality programming environment. Interfacing the existing Interlisp 
facilities to the new language required 30 to 50 times less code 
than the Lisp facilities themselves require. 

Brand new development-time facilities for languages with pattern 
directed invocation of functions were invented. 

Lisp itself has been complemented with pattern directed 
invocation of functions, a unification pattern matcher, and an 
associative data base with richer structure than property lists, all 
for less then 30 pages of pretty printed Lisp code. 

The Prolog language has inherited a high quality interactive 
programming environment for a very low price. If this new 
implementation attracts serious interest, Prolog can reach a much 
broader audience, the whole Lisp community. In fact this is 
already happening. The Qlog system is installed at MIT Artificial 
Intelligence Laboratory and there is an implementation of 
Intermission < 15 > (an actor system in Prolog) in Qlog. At the 
same time Prolog can use Lisp machine < 16 > what we think is 
of a very big advantage. 
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Abstract 

This is the second report of our work on intelligent backtracking and 

sidetracking strategies in Horn clause programs. / 

This second part is a description of three interpreters ( written in 

'solos ) for Prolog programs* working on the basis of the theory described 

to the first part CPereira et al. 19793. They offer practical information 

•bout the featu res of the new strategies* 

The first is a general-purpose interpreter which uses intelligent 

"oktracking instead of the standard blind one. 

The second is a specialization of the first* for database ouery only* 

h'ch uses intelligent backtracking in a much more restricted way* 

'though sufficient for Prolog relational databases satisfying a 

Sssonable set of assumptions. 

The third i. ar. interpreter uorkms throush sidetr.ckind. uhich bv 

» ,tur. is not extensive t. the full l.n.u.d. uithout so.. 

Winitions. The use of cut, not.blu. doe. not ..he sens, uithout . 

i~ tr. 3 future paper* however* some 
*ed order of execution of goals. 

+ n ,rhieve an effect similar to the r'trol constructs will be presented to achieve 

W" 
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Structured Programming Techniques in Prolog 

Simon B. Jones 
Computing Laboratory, 

University of Newcastle upon Tyne 

in +h\S PaP6r f ̂ nteJd t0 comPare the programming facilities available 
n predicate logic and functional programming languages. I vill examine a 

mi "r'f capability for structured and advanced programming techniques. 

The work arises from a background of practical programming vith a 

israr?61!! Tr/T26 (Lispkit [4]). Lispkit is very much like 
IS VIM L5]. The capability of having variables and function definitions which 

^hich"accent ®Xpr®sslons> 30,1 the support of higher order functions (functions 
312°ePt.Actions as parameters and/or return functions as results) 

combine to give the language great expressive power in the representation 
and structuring of textually large and computationally complex programs 

,+1.m ^olog provides a fascinating alternative formalism for the renresen-

mill -f i — H-i -ran+n j. u. • / pattern matching, built in nondeterminism, 

d.t. c„po„nt Talu„ S 

Vith the organisation of programing "in the iar^" * n° aSSlstanC6 

and modularise^his'program^with * pr°g™r to abstract 
manageabilitv Co Jon ̂  J ^objective of improving its clarity and 

toetails 

(giving rise to'local £2£$T 

clauses^cJ^roduce'Lfr'1"^ " ̂  ̂the d"™« "vbere 
by higher order working enabling"?Jcti1 SU^ex^ress;LOns and functions, and 
behaving like a A-expression, which can "be tre t "pr®Sented ̂  a construction, 

Tue in 
of variable and function names def^ne^ Zll 

since all the program cla^sesJre ̂ fL^rti??'3 ""J3 Program structure, 
name is of global scope Loci ̂  aelrned at the "same level" and each predicate 
clauses to represent intermediate3,?!? "+ be introduced within program 
indispensable in thisJortj^^f^-f8' ̂d indeed they seem 

clauses (or groups of clauses) cannot Ze lreatedT^f' ^ 
•leauea as first class citizens. 

structured and higher order extensions to the h• 2'ard some proposals for 
extensions, motivated by aesthetic and nrart ?S1C ft'oloS ianguage. The 
designed to bring Prolog up to par with ? J Programming reasons, are 

g P par with higher order functional languages. 
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A Basic Dialect of Prolog 

I wish to illustrate and discuss my extensions to Prolog, and their 
properties, in terms of some concrete language representation in order to 
avoid any unnecessary vagueness. To this end I will introduce a simple 
dialect of Prolog, unadorned by any fancy features, which I will subsequently 
refer to as "basic Prolog". The language should be very familiar, it is 
just that described by Kowalski in £1]. 

A basic Prolog program consists of a goal clause (line 1 in the 
example below), and a set of program clauses (lines 2, 3, 4, 5 below). 
Here is a common example, a program which may be used to reverse a list 
built using the constructor cons: 

1. reverse(cons(1,cons(2,...cons(..,nil)...)),Result) 

2. reverse(nil ,nil) 

3. reverse(cons(X,L1 ) ,L2)<"reverse(L1 .L3) ,append(L3,cons(X,nil) ,L2) 

4. append (nil ,L,L)*~ 

5. append( cons (X,L1 ) ,L2 , cons(X,L3) )4"append(L1 ,L2 ,L3) 

The goal clause is a set of subgoals (or conditions, or procedure 
calls) - this is represented as a list of subgoals in the text. Each 
subgoal specifies a parenthesised list of argument terms, and the ngm£of 
a predicate (or procedure) which is to be satisfied by the values of those 
arguments. There is only one condition in the goal clause on line 1 of the 
example; the procedure name (entirely in lower case) is "reverse , and 

there are two arguments. 

(or,™piy ». 

in upper case), a constant (underline ), — functor)" and t1,t2 
where "cons" is the constructor (or unc ion the"'single condition in line 1 
are the^iilves terms. Hence the arguments of .. .nil) .. 
above are, firstly, the constructed term — and, secondly, 
which is supposed to represent some particular list (1,2,...;, 

a variable "Result". 
of a program are contained in the set of 

The computational resources _ P Qr prf1<.edure definitions). Each 
program clauses (or predica e e __p~ifi.es a particular relation on its 
p-ogram clause (or simply .clausg.) -P + 1-nn of the form "consequenfr-gnteccdend . 
argument terms, defined by an imp ica ^ rexation being defined, 
The consequent contains the proce -terms which are to be related. e 
and a parenthesised list of argument terms ^ example> or lt may contain 
antecedent may be empty, as in as a list) which must be satisfied 
a set of conditions (represen e defined relation, for examp e 
in order that the arguments are in the 

3 and 5. , • p. j.„ i.erribe the semantics 
I now require a semi-formal tool with which ter„ 

of basic Prolog. An appropriate ~^ticg„ of basic Prolog given by 
scheme following the "procedural » descrihed below will assist g 
Kowalski [1]. The abstract mterp^^ extensions later on. 
in defining and understanding 
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A basic Prolog program is separated it. I7' 

I T o Z ^ V l s l T ^ s u b s c r i p t i n g  e a c h  v a r i a b l e  i n  

gc with a zero. Each variable in pc must be unsubscnpted. 

new terms (or'may have remained unchanged). The meaning of each such gc^ 

is intended to be that the resulting argument values satisfy the conditions 
of the goal clause as defined by the program clauses pc. 

Each result gcres is related to gcQ as follows: 

The abstract interpreter constructs (or discovers otherwise) a 
sequence of goal clauses s"tai"ting vi"th §>cQ 

gcQ, gc.j, gc2, ... gcn 

and' a sequence of substitutions (each associating terms with subscripted 
variables) 

V V — e„ 
with the following four properties: 

1) gc0,...,gcn ^ are not empty, they contain at least one condition to 

be satisfied. 

2) gc is empty, it could be read as "Halt". 

3) Each substitution 8 relates goal clauses gc and gc : For some 
M M— 1 IB 

condition c in gc . and clause p from pc, with the predicate name 
m—1 

in c matching that in the consequent of p, 

c e S>cm i p e pc predicate of c = predicate of p 

generate a variant p' of p by subscripting each variable in p with rn, 

p' = variant m of p 

and obtain 8^ by unifying the argument list of c with the argument 

list of the consequent of p', 

8^ = unify (arguments of c, arguments of p'). 

Unification, which is described in detail elsewhere by Robinson, 
Clark and others [ ], produces a substitution which makes the corres
ponding arguments of the two lists equal. 

4) gcm is obtained by removing c (from 3) from gCQ adding the set 

of conditions which is the antecedent of p' (from 3), and substituting 
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through by 6 , 

gc = [gc H-lc} + antecedent of p'] 
m m-1 

The result substitution instance gcres is foulld from 8co by flrst 

substituting vith 61, then &2 and so on until ®n» 

gCres = ̂ O1 ®1 ®2 6n * 

Note that in property 3 1 am assuming a in 
each c, in order to avoid a failed uni ica 10 .-successful executio :£rĈ 8rxe- onT"^^^ describing "successful executions" 

of the interpreter. 

Local Clause Definitions 

The first step that I *^"^®^^nSSre^ri°gThe extension 
one, but it vill significantly a . ture ̂  ̂hich X am interested, and 

the'transition6t^a more .2^1 variation of the idea which I will 

introduce in the next section. 
, -• -» __T j,r>"\r sfit of conditions 

In a nutshell, the general idea is ° * cedents of program clauses) 

(the main goal clause of a ^program clause definitions, 
to have a local, privately accessible setlocal definitions by 
Syntactically I will delimit a set of condi^ Ht of definitions, 
curly brackets, vith the keyvor _____ syI1tax vill be as before. 
If there are no local definitions^then he^syn ^ comEOund^ntece^. 
antecedent containing local definition definiti. 

_ four local definm< 
lent containing IOCO-J- V*. ,. 

Consider the example program clauses containing four local 

in tvo compound antecedents. 

1. pK...)-( aK ). i2( >' p2( } 

5. 

6, 

where q.1 ( ) .... 

. to scope rules for P*"0C®dg Ûctured languages. 
My intention^vith respec^^ conventional °°d within the set of 

... „ ~4- nrG t-O nomp riaS 
ny . rules m v—-- resolved vnniu — --

they should be sunilar to ™ ion set are to be res dure name has 
The procedure names « £ °e are any), otherwise, ̂ f.JUons)> then the name 
local definitions (if there are no 1 Hence an inner clause 
no match in the local set I enclosing sets; definitions makes the 
is resolved in ^""^ceedure name as any in the same set may 
definition with the same proce ^ definition 

outer definitions mac recurs ive. 
be recursive or mutually rec 
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Thus in the example, vhere the tvo clause definitions are assumed 
to appear in the same local definition set, the following scope resolutions 
holds In line 1, q1 matches q1 in line 2, q2 matches q2 in line 3, and p2 
matches the p2 definition in lines 4, 5, 6. In line 4, q1 matches q1 in 
line 5, and p1 matches p1 in line 6 (and not the p1 in lines 1,2,3). 

Vith this extension a Prolog program can be seen to have the 
structure of a single goal clause qualified by a set of local definitions. 

The practical utility of the modified Prolog is that it enables groups 
of predicate definitions vhich are interdependent, or which contribute to 
the description of a particular definition, to be collected together and 
isolated (both textually and semantically) from the remainder of the progran 
within a compound antecedent. In terms of programming discipline this amounts 
to hiding implementation details. 

For example, when coding the efficient form of the reverse clauses 
it may be desirable to hide the extra argument which is required: 

reverse(L1 ,L2)*-{ rev(L1 ,nil,L2) 
where rev(nil .L.L)<~ 

rev(cons (X,L1) ,L2 ,L3 )«-rev(L1 , cons(X,L2) ,L3) ] 

p N°? Provide a more precise meaning for the extended basic 
, Y1 0 bis describing a transformation into basic Prolog, 

this tran°fonS + °W vt abstrac"t interpreter can be modified to perform xnis transformation "dynamically". 

is necessarv^o h Prolog program into basic Prolog it 
vels of defini+* nested program clause definitions up through 
vels of definition until they are local to onlv the *„»! el. 

levels of + - 77, program clause definitions up througn 
thl proSif S! ̂ ^ l0Cal.t0 only the main goal clause of 
clauses vi+h +v. process the accidental introduction of program 

controlled maimer. In the + ^subscripts to predicate names in i 
an understanding of the predicate^011 ^ transform*tion I will assune 
as "All occurrences of the name scope rules by using a phrase such 
associated with the definition P" t0 meaD 0nly 1hoS® occurrencel 

n oi p by the scope rules. -  r *  u a c o .  

The transformation proceeds „ , 
of local definition sef^ in +i steps, where n is the total number in the program. 

In step 0 
separated. Each predicate nam^"36 8C and its local definitions pc are 
name defined at the outermost 1 "N8^13 subscripted vith 0. Each predics 
names throughout pc, are civer, ^ °, *>C' ^d occurrences of these j e given the subscript 0. 

In each of steps 1 to n 1 
definition in pc. At step i the T* 1<?Vel 0f nesting is removed from one 
immediately lone! to the couumm/1,0?13"1 clause definitions vhich are 
definition in pc are themselves bT-8^ aaeden"t of some outermost level 
defined predicate names and all -n,°^8 outermost level, vith thei 
Following step n there should be I,611" °^currences subscripted vith i. 

G n° nested definitions left in pc. 

-5-



3a> 
Transformation of tlie program 

- { P( ) 
•where p( )*" 

P( )"{ r( ), s( ), p( ) 
where r( )*~ 

} s( )«" } 

gives the goal clause 

•v ) 
and the following sequence of program clause sets: 

Step 0 pQ( )«" 

P0( )- { r( ), s( ), pQ( ) 

where r( )*" 

s( )*" } 

Step 1 pQ( ) 

PQ( )*~ r, ( )> s-, < )> * 

-,( )' 

The goal clause and the program clauses of step 1 form the desired basic 

Prolog program. 

The abstract interpreter is easily modified to 
ftolog. Again nested program ̂ ause deflations ̂ ll^e^aised^the 

nested locations, but only as ̂ quired. ication ̂ th a condition from the 
compound antecedent is selected for^ ,nsWtiated aIld are included as 
goal clause, its local definitions a —_ instantiated program 
separate definitions in the program clause sex., un y 
clauses may be selected for unification. 

E«„ P,.„„t. ssr^r1 " 
given the subscript 0, giving the 

local to the goal clause 
The program clauses which are noes Gf these names, subscripted is rars™ JTSIJS SU —* ~ **• 
B,. abstract lat.rpr.t.r contracts a .I"-" .* 

gcQ, gc1, gc2, Scn 

a sequence of program clause sets 

pc0, pc1» pc2> pcn 

and a sequence of substitutions 



32* 

As before gCg,.. .gc^^ are not empty, and gc^ is empty. 

®m> f>cm_i and Bcm are related as before, selecting a condition c 

from gc and a program clause p, this time from pc : m— i m—1 
c e ®cm-1 p 6 pcm-1 Predtcate of c = predicate of p 

p' = variant m of p 

9m = unif5r (arguments of c, arguments of p') 

gcm = £gcm_.i ~ (c) + conditions of antecedent of p« ] 6 
ZD 

Generating variant m of p is more complex than earlier. Each variable in 
aad conditions (if any) of p is given subscript m. Variables 

mthin the local definitions m p are not altered. Hovever, each local 
thes!n™» ?b its predicate name given subscript m, and all occurrences of 
Sr+bn throughout P are similarly subscripted. The local program clauses 
5".tS fl™ riô :"10̂ 6 nam6S' instantiation by âddition 

m-1 * 

PCm = pcm-1 + local definitions of antecedent of p' 

before;The rGSUlting ^stitution instance of the goal clause is found as 

gCres = 92 — 0n -

Relaxing Scope Rules for ^fables. Structured Pro! og 

to that clause and°my brlLId^nl^vithi P+£graJD clause is strictly local 
of the clause. If the same var-iehi D consequent and antecedent 
then each clause has its mm A • ~e name occurs in more than one clause 
subscripting strateg, of t£ 2E£S I^eSe'tlr^ " ^ 

variables are still local^to th^10? presfnted ln the previous section, 
is stricter because the scope of var̂ blê fl1'̂ 11011 êy appear« but the 1:1116 

clause definitions which may be present ^SS — extend into any local 
a program clause contain onlv i+<= l i # consequent and conditions of 
interpreter enforces these properties! Variables- *8*™, the abstract 

It is often desirable to be able > : 
For example, consider the following r,v x these strict scope rules, 
complex operation on a table: Fr°gram clause for performing some 

tableop(Table,Result )•" 
{  . . . . . .  p ( T a b l e , V , V ) .  
•vhere p (Table, V,v)t-

. . . .  *  l o o k u p ( Z , T a b l e , V ) , . . .  
lookup(X,T,Y)e- T 

3 • • • • 

-7-
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The clause j»(Table,V,W) is designed "to check that V and V are related, 
tosehov, by Table. However, p is not interested in the structure or contents 
of Table, it merely passes Table on to lookup. It would he convenient to be 
able to drop Table from the arguments of p. This makes sense since the 
programmer probably has in mind that Table is of global significance within 
the tableop clause. 

I will permit such simplifications to be made by the inclusion of 
explicit information in a program to indicate that the scope of a variable 
may cover a wider range than simply its local consequent and conditions. 
This is in contrast to the implicit ''local scope" rule which both basic and 
extended basic Prolog have. Such explicit information will take the form 
of an import list of variable names appearing before any program clause. 
The meaning of each variable name in an import list is that occurrences of 
that variable name immediately outside and immediately inside the clause 
are to be treated as occurrences of same variable. 

For example in the program clause 

p(.. .X)4" { • • .X. •. 
where ... 

(X):q( )*~ ...X... 
} 

• , • +n _ from the surrounding environment, 

^al^e^cLrLn^f S'-X "hoLerepreSent the same variable. 

Variables may be explicitly imported through several levels of local 

clause definitions. 
_ . ___.es remains the same as that in 

The scope rule for predicate name 

extended basic Prolog. 
+ - te the treatment of variables, the coding 

Vith the above modification 
for the tableop example becomes *-

tableop( Table, Result)*" 
(... P(V,V) ••• 
where lookup(Z,Table, 

(Table) s p(v»¥> 

lookupCXjTjT)4"' • * 

• • • 

r will call "structured Prolog". 
This new dialect of Prolog -riution of the meaning 

• . more formal descnp i 
Before proceeding to f^j^uld like to show an 

of a structured Prolog program, 1 W 
interesting example clause. 

L fr-i} seconds 2̂/ 
pairs(L1,L2)-t firs t(nil)4" , T) L1))«-fir«ts(M> 

where firs ;-fronS(cons(X,x;, 

} 
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The predicate pairs is satisfied by two lists of pairs, L1 and L2, if the 
first members of each pair in L1 are equal, and are also equal to the 
second members of each pair in L2. The identity of the value which is to 
be the same in both lists is "communicated" between the local definitions 
of firsts and seconds via the variable X, which, unusually, does not appear 
outside the definitions of firsts and seconds (and it is not imported from 
a more global environment). However, this i^ valid structured Prolog, and 
I must be able to give a correct interpretation for programs of this form. 

It is possible to transform a structured Prolog program into a basic 
Prolog program, but the details are a little tedious and I will not give 
them here. During the transformation variables which are imported into 
program clause definitions are added to the argument lists of those clauses, 
and conditions which call on the clauses have their argument lists similarly 
expanded. In the general case of mutually recursive clauses it may be 
necessary to add more variables to the import lists of some or all of the 
clauses. Care is needed to get the scheme correct. Once the dependence on 
global variables has been removed, the import lists can be dropped, leaving 
a program in extended basic Prolog which can be transformed to basic Prolog 
as I described earlier. 

The abstract interpreter for extended basic Prolog may be modified in 
a straightforward fashion to handle structured Prolog programs. The new 
abstract interpreter depends on the presence of instantiated (subscripted) 
variables within the sets of program clauses - previously instantiated 
variables were only allowed in the goal clauses. 

For the initial goal clause Scq take the goal clause of the program, 

and give each variable and predicate name the subscript 0. For the initial 
se o. program clauses pcQ take the local definitions associated with the 

thfsuhscr^tgnVe eaCh 11°cally defined predicate names (and all occurrences) 
Hi Slici? " , occurrences (as defined by the implicit scope rule 
^1 ^ import lists) of each variable in the outer import lists (if 
dtfe+e 11 S£ript 0, drop the import lists from outer program clauses, and 
delete all subscripted variables from all other import lists. This has 
instantiated the main program clmis***: qv»/3 
the outermost envirolentf ClaUses> ̂ d a11 the variables belonging to 

The interpreter constructs the three sequences as before: 

&cq j  ̂c-\ 9 • • • • gc 

PCQ» Pc-j f PC2 • • • . pcn 

• . . . 0  i d. n 

p, T° relate em' gcm-l' gcm' pcm_1' pcm select condition c and clause 

c e P * Pcm_1 predicate of c = predicate of p, 

and generate variant m of p, 

p' = variant m of p . 

-9-
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Generating the variant is again more complex. As before, each of the local 
definitions within p has its predicate name subscripted m, and all occurrences 
of these names are similarly subscripted. The variables immediately local 
to p are those appearing in the consequent and conditions of p which do not 
already have subscripts, and also those in the import lists of the local 
definitions in p. The local variables, and all their occurrences in p (as 
defined by the implicit scope rule and the import lists) are given subscript 
m, and such occurrences in import lists are deleted. The import lists for 
the local definitions of p are now empty and are deleted. This completes the 
generation of p1 from p, and substitution 0^ may be found by unification. 

9 = unify (arguments of c, arguments of p') . 
m 

gc is constructed by replacing c: 
m 

„c _ fKC - (c} + conditions of antecedent of P']6m 
° m m-1 

and pc is constructed by adding newly instantiated iocaldefinitions, and 
by substituting through with &m since instantiated variables within pc^ 
and the new definitions may have been bound by m-

uc = luc + local definitions of antecedent of p' 3em 
r m m-1 

The result is, as usual, 

gcres = ®2 
e 

res u l ill 
As an illustration of the w^king ^i^useHhe pairs clause 

consider the following structured Pr g P 
given earlier: 

r • 1 ( nnefl 2) nil) ,cons(cons(3_>x) j£ii)) *-( nairs( cons(consyl ,_£! jEii.-' ». 
where pairs(L1 ,L2)*~ 

The initial goal clause, gcQ is 

/ 11 ol nil) .cons(cons(2>xn^ 
4~pairs(-)(£ons(cons.(l.'5.' '—— — 

and the initial program clause set, pcQ, 

pairs0(L1,L2)- • ^ .g nQ choice of condition and 

To construct 91»gcl ^ available program clause 
clause. Variant 1 of1 the only ava 

• fT,1 L2 )*"{ firstSf (Ij1! } »secon^Sl 1 
pairsn(.L1 1 1 

where fmsts1 n irsts 0-1 ) 
firstSl (consfcons^ ,U 1 

seconds1(nil) L2)^seconds (hi) 
seconds^ (cons.(o°25.^ ' 1 

) 

-10— 
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and unification, giving 6^, binds 

L1 to cons(cons(1,2),nil) 
and 

L21 to cons(cons(3,X^),nil) 

Hence gc^ : 

- firstSl(cons(cons(1,2),nil)).seconds(cons(cons(3,),nil)) 

and pc, contains 

pairs0(L1,L2)«-

firsts., (nil)*~ 

firstSl (cons(cons(X1 ,Y) ,L1) )«"f irsts (L1 ) 
seconds., (n-i 1 )•-

seconds., (cons(cons(l,Xl ) ,L2) J-seconds, (L2) 

TO COaStrUct e2,gc2 and pc2 I vill select the first condition fro* gc, 
and the third clause from pc, . The variant is sijnply 

firsts., (cons(cons.Y,,) ,L12) )<-f irsts., (L12) 

vhich gives binding 

X1 t0 1» r2 to 2, and L12 to nil. 

The new goal clause gc is 

" firStS1 (£ii)»^condSl (cons(cons(3,X0,nii)) 

and pc2 is found by substituting 6., through pc : 

Pairs0(L1,L2)»-.... 

firsts., (nil)*-

f irsts., (cons(cons(l_,Y),L1 ))*- firsts (L1) 
seconds, (nil)*- 1 

seconds (cons(cons(Y 1) Tolle-
1 seconds ,(L2) 

Note that the value 1 of X common to both the f 

has been substituted into these clauses. 1 seconds1 clauses' 

unknown'^X^ or" with'th ̂  clause sets are 
unknown, X0, is bound to the constant 1.' result that the original 

Hence the result, gc 
res 

pairs (cons(cons(1.?) nil ̂ / / 
' y±'-> »£ons(cons (3^) >nil)} 

-11-
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Hirber Order Extensions and Further Vork 

An important technique in the design of programs concerns the discovery 
:f conaon patterns of program construction, and the abstraction of each pattern 
into a clear description independent of its particular applications. Many 
1 usages provide some vay of achieving this, for example procedure parameters 
in Algol type languages. In functional languages the facility takes the form 
of X expressions, whose values are functions which can be applied to arguments, 
and higher order functions, which may take function values as arguments, and 
say return function values as results. 

That this technique may be of some use in Prolog can be seen from 
the pairs example in the previous section. There are two locally define 
predicates, first, and seconds, which each have the effect cfapplyinga test 
to every member of a list. This program structure will be quite cnm, an 
. sethod for representing the pattern as a separate Predicate is desi:rab:Le. 
fte predicate would require two arguments, the listv] ose me ern would 

tested, and the predicate which implements the tests. H the predicate 
be represented by the clauses of a higher or er pre ica » program 
valued argument 'would be represented in f - ̂  5 
construct, a "predicate expression", containing one or more prog 

Investigation is currently proceeding into basic 
order Prolog". The modified language +-r,,rtured Prolog programs can be 
Fr.l.,. b.vlv.r b..ic, extended Wc, if ?»not b. exp.et.d 
••ransformed into .special cases of high vill be captured in an 
that the full power of higher order logip/^grams^ power would not be 
implementation of higher order Prolog' ̂ Loblem then is to develop a semantic 
exploited in practical programing.^ P iaes adequate programming power, 

- L implementable. 

x am interested in the develop and 

study if designed to cover *ethodod°^ements of the inf luence^of impl^n^a^ 
systems, to obtain quantitative me t a quantitative r order Prolog 
decisions, and in the long term***« structured and higher^0r 

representing a range of P^°|rinvestigation, since they ti j. programming 
will play their part in this inves * egual to inn 
logic programming in a form which is a 

in expressive power. 

•R*ferePCCS programming Language. Proc. IFIP 

[,] R. Kowalski- Predicate Logic as 

Congress, 1974. 1£? Reference Manual- CCD Report. 
. IC-Prolog 

w ^ . 1IU, «*-• 

D] D. ««»; miverxW. ,9"" ^ 

DAI Res. Reports 39, 4 Application and Implem 

Functional P^f^ter Science? i980. 
[4] P. Henderson Series in Compute ^ ̂ 9> 

Prentice Hall ianfruages. 
The Next 700 Program® 

[5] P.J. I-andxn. *ne 
No. 3, March 1966. 
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and unification, giving 8^ , binds 

L1 to cons(cons(1,2),nil) 
and 

L21 to cons (cons (3,Xp ),nil) 

Hence gc^ : 

firsts^ (£ons(cons(l ,2), nil)) , seconds (cons (cons (3. .nil)) 

and pc^ contains 

pairs0(L1,L2)*-.... 

firsts^ (nil )*~ 

firsts^ (cons(cons (X1 , X) ,L1) )4"firsts1 (L1 ) 
seconds^ (nil)4" 

seconds 1 (cons (cons (X^ ) ,L2) )4"seconds1 (L2) 

To construct ®2»HC2 Pc2 will select the first condition from gc. 
and the third clause from p^ . The variant is simply 

firstSl (cons(cons(Xl .L1,,) )«-firstSl (L12) 

vhich gives 82 binding 

X1 to  1» Y2 to  ^ L12 to  pjLl' 

The new goal clause gc2 is 

firstSl (nil_) > seconds 1 (cons (cons (3,3^. nil)) 

and pc2 is found by substituting 6,, through pc : 

pair s0(L1,L2 )*".... 

f irsts1 (nil)*-

firstSl (cons(cons0,X),L1))*- firsts (Li) 
seconds1 (nil)4- 1  

secondSl (cons(cons(Yjl) ,L2) )«- secondSl (L2) 

Note that the "value 1 nf y ^ 
has beer, W+ ! 1 ' ^ b° th  the f irSts-. clauses, 
has been substituted into these clauses. 1 1 

The remaining substitution 
constructed in a straightforvATv} 1' g°a c*auses program clause sets are 
unknown, X0, is bound to the const^t^' Wlth thS resul t  that  the original 

Hence the result, gc 
res' 

pair s^ (cons (cons (1 21 n-fil / / . 0 ~ ^» oons (cons (2,1_), nil) ) 

- 1 1 -
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Higher Order Extensions and Further Work 

An important technique in the design of programs concerns the discovery 
of conmon patterns of program construction, and the abstraction of each pattern 
into a clear description independent of its particular applications. Many 
languages provide some vay of achieving this, for example procedure parameters 
in Algol type languages. In functional languages the facility takes the 
of X expressions^vhose values are functions vhich can be applied to arguments, 
and higher order functions, vhich may take function values as arguments, and 
nay return function values as results. 

That this technique may be of some use :in 
the pairs example in the previous section. of applying a test 
predicates, firsts and seconds, vhich each ave nuite conmon, and 
to every member of a list. This program structure vill | desirable, 
a method for representing the >•**•» »«_• separa^e pr^ arg to be 

Die predicate vould require tvo argumen , . + Hence the pattern vould 
tested, and the predicate vhich implements thePpredicate 
be represented by the clauses of a higher instances by a nev program 
valued argument vould be represented in program clauses, 
construct, a "predicate expression", containing 

Investigation is currently proceeding into basic 
order Prolog". The modified language ls structured Prolog programs can be 
Prolog, hovever basic, extended order programs. It cannot be expec e 
transformed into special cases of hig ^rocrams vill be captured in an 
that the full pover of higher order logic p |eed such poWer vould not be 
implementation of higher order Pro °8» blem then is to develop a 
exploited in practical programming. The p eg adeqUa.te programming pover, 
description of higher order Prolog v . implementable. 
but vhich i. sufficiently constrained to he ^ of various f-s 

1 am interested in the development and imp^ ^ & investigation 
of Prolog, in particular higher order, x ^ level language of 

of the performance charaoie"^1" ° for the assessment an ^piementation 
study is designed to cover ^^^^nts of the influence of 
systems, to obtain quantitative me , quantitative r order Prolog 
decisions, and in the long term to attemp^ ltructuxed and ^^nting 
representing a range of p£°Sr* tiga-tion, since they tional programming 
vill play their part in this inves B leagt eqUai to lun 
logic programming in a i°rm v "LC 

In expressive power. 

. Pr„.r=-i« Low™*'- proc- IFir 

[1] ». Kov.Uki. Pr.di..« "8" "" 
^ ieierino. CCD 

[2] K. Clark and F. McCabe. 
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A FUNCTIONAL PLUS PREDICATE LOGIC PROGRAMMING LANGUAGE 

Marco Bellia (  +  \ Pierpaolo Degano (  \ Giorgio Levi 

i) 

ii) 

1. Introduction. first order logic became very popular, 

. i - —- -

guages, but also as practical programming languages. 
The main features of such languages are. . define a  straightforward | 

or programs; „,s, »ho,« s.m.otio. Is not bas.0 on 

.r.^-s»io:r»" ire**. , .«*— „««— 

m, r.«"r»' ts:." /;oaW.s .no., t.i™.— 

Predicate logic programming languages can be classified according to the kind of 
Predicate logi p s (relational languages) procedures are de

procedures they^ define. Jn^^ of  a  re la t i0nal language is PLANNER /7/. 

Koralsk", lLguige /B/ is • milestone .ithin this f.milj, beosose of the formal defini-
Soh of prooeduro. . . set, of Horn ol.ns.s, »d it, =l„n m.th.m.tio.l «-nt.o, /• 

. . i ^^4-o-h^ncj PROLOG /2-6 10-11/ and other similar languages ,^21/ 
On Kowa s i ^ ^ second class of languages (functional languages) procedures are 

defined "by sets of functional equations. Languages within such a class have been motiva 
ted by several different problems, namely proving program properties in forma sys em 

/15-19/, and abstract data type specification /20-23/. 
There are no definite arguments in favour of one class against the othe , .  

cla=s has its own appealing features. Namely, a uniform evaluation rule can more easily 
be defined for functional languages, while relational languages lead to non-determ 
istic interpreters. Properties of programs (i.e. lemmas and theorems to be used in 
symbolic simplifications) are more expressively defined within the functional approach. 
On the other hand, relational languages are exactly what is needed to describe proce

dures with more than one output. ...anal 
The language described in this paper is based on an attempt to combine relationa 

and functional languages in a unified environment, which provides the best features o 

both approaches. ,. 
Our goal was to design a first order logic language, which allows to define 

functions and procedures. Our language is a proper extension of functional languages 
enriched with somewhat constrained Horn clauses. The constraints are concerned wit 
distinguishing between input and output parameters and sequencing of literals. In the 
resulting language, predicates play the role of standard programming language proce
dures. Moreover, it is possible to define an efficient deterministic interpreter. 

( + ) Istituto di Elaborazione dell1 Informazione - C.N.R., Via S.Maria, 46 - 156100 Pisa 

(ITALY) 
(*) Istituto di Scienze dell'Informazione - Universita di Pisa - 156100 Pisa (ITALY) 
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The Syntax of FPL. 

•he Functional plus Predicate Logic (FPL) programming language is a strongly typed 
order language, whose programs are equations defined according to first order 
over the alphabet A= fs , C , D , V, F, R} , where: 

5 .i a set of identifiers. Given S, we define a sort s which is: 
simple if s £ S, ii) functional if seS*-S, iii) relational if s£S*—S*. 
n family of sets of constant symbols indexed by simple sorts, 
a lamily of sets of data constructor symbols indexed by functional sorts. 

• a family of denumerable sets of variable symbols indexed by simple sorts. 
1 :n a family of sets of function symbols indexed by functional sorts. 
I . t family of sets of predicate symbols indexed by relational sorts. 

Families are defined in the language by declarations, which assign a specific sim-

t r •functional or relational sort to each object, 

iianples are: 
— NAT; succ: NAT—NAT +: NAT x NAT—NAT 
— NLIST; cons: NAT x NL1ST— NLIST eqn: NAT x NAT—BOOL 

ndiv: NAT x NAT—NAT x NAT. 
A FPL program is a set of declarations and equations. Each symbol occurring in an 

«• ; ation must be declared. _ 
The syntax of equations is based on the standard concepts of term and atomic for 

A term is either a data term or a functional term. 

A data term of sort s (s £ S) is 
a constant symbol of sort s, 

a variable symbol of sort s, ,,,.,t are data terms 
: . d.t. constructor application d . .....t •„ 

Of sort s sn and dla D has^ son, fljriCtioT application O , such 

A functional term of sor F hag gQrt s x x s — s. 
• t are date terms of sorts Sl n 1 

An atomic formula is either ^ d is a data term of sort s and 
, "Tunctional atomic formula of the 

+-Vip same sort , or . . , j_ nn+- • t . . • » > f )» sucn 
• is a term of the ^ ̂  form r(rn:t V ^ ̂ 

relational a ^ data terms of sorts s^,.m> m+1 n 

that 'x's'-S X ... X sn. 
•* has sort s x • • • rn 

A constraint is either , _ . Con-
an atomic formula, or such that c is an atomic formu a a 2 

~-r the form c , c 1 
a  formula o f t  1 2 (function calls) and atomic formu-
: -.paint. combine functional er^ a local environment which is 
restraints are «s ogram. Constraints defi Constraints can be used 

= - ; rocedure calls) i teraction among) its comp following syntax of equa-
. by (and allows the in according to 

» n function and proce ^ ̂  part and r x 

- the following form 1 - r, w. possibly followed by a 1 "rrŝ su. 
: LRht part, such r  is  either emp y 

to : • raint and its rig 

s 

/O 
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The equation is functional or relational, according to the type of its atomic 
formula. 

Example: 

1. true:—BOOL 7. ndiv: NATxNAT—NATxNAT 
2. false:—BOOL e8. minus(x,0)=x— 

3. 0: —NAT e9. minus(s(x),s(y) )=z—minus(x,y) =z 
4. s: NAT—NAT elO. lt(0,s(x))=true— 

5. minus: NATxNAT—NAT ell. It(x,0)=false — 

6. It: NATxNAT—BOOL el2. It (s (x), s (y) )=z—It (x ,y )=z 
el3. ndiv( in:x,y: out: 0,x) ,lt(x,y)=true—• 

el4. ndiv( in: x,y; out: s( q) ,r), lt(x,y )=false —ndiv(in: z ,y ;out: q ,r) .minus (x. v )=z 
el5. isfact(x,y)=false,ndiv(in:y,x;out:z,s(r)) — 

el6. isfact(x,y)=true,ndiv(in:y,x;out:z,0)— 

Declarations 1-3, 4, 5-6, 7 are constant, data constructor, function and relation 
declarations, respectively. The example is completed with the functional equations 
e8-el2, el5-el6 and the relational equations el3-el4. 

The above definition of equation is inadequate, since context-dependent condi

tions on variable occurrences are needed to guarantee proper nesting of constraints 

and binding of local variables. Some more definitions are needed to introduce the con

ditions. In order to give some insight into the meaning of the conditions, we will 
informally use operational arguments. 

A definition contains atomic formulas of the form r(in:x x ;out:y ,...,y ), 

or f(x,...,x )=y. Let us define, for each atomic formula a the multisets of^nput 2nd 
output variable occurrences. Namely, 

Mln(a) is the multiset of the variable occurrences in terms x ,...,x , while 
Mout(a^ 1S the multiset of "the variable occurrences in terms y ,.. . ,y or y. 

Each definition has a header, consisting of the leftmost atomic formula, and a 
set of invocations, whose element are the other atomic formulas. Let H and 1= {i } be 
the neader and the set of invocations of an equation e i 

C°ndi^°n ThS raultlse^ «in(H) and M (!)= U M (I.) must be sets> 

the left llr^t Tf°CCUrrenCeS °f 3 v^Sbli in the header corresponds to 

Hi set of iiivocat' 1 the abse"« of multiple output occurrences of a variable in 
the set of invocations rules aliasing out. 

Examples of equations not satisfying condition 1 are: 

eq(x,x)=true- (since it would impose a specific relation on input values) 
r(in:x;out:y,z) — g(w)=y,f(x)=w,q(in:x:out:w z) . u. alues). 

, / • - • 1 * ' ' sine© variable w is (outnut) con— 
strained (i.e. could be computed) by two different constraints) 
Condition 2. M. (H) D M (I)=((). 

Disjointness of sets of header inDut variahioo ^ 
in an equation is connected with the non invertibilTtv of lnV°Cati°nS °UtpUt variableS 

equation p( in :x,y ;out :z ) — r (in ;y, z . out .x) f ( v) „ * f Pr°grams ' As 311 sample, the 

constraint on the variable x (i.e. it may invert wi'tlT Aspect ̂  x " imP°SeS " 
Condition 3. F k x'* 

—' A11 variable symbols occurring in M (H) anrl m n \ 
M. (H) or to M (I ), where I la =n in °-ut in i * must belong either to 
• iBly t.i„s i„ °&% Aft p.rt '«« Innermost i„»oo.tlo„. pes-

3.2. For each invocation I in a ri trhi- *-

least one variable symbol belonging either?to toV*!^! T C°"tain * 
i Mr invocation. out in(I,-'' where I in an in i 

A 
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rxasple of equations which do not satisfy condition 3 are: 

: n:x,y ;out: z , w ) , f ( x ,y) =t-»-h( t )=w (since the output z cannot be computed), 

p(in:x,y ;out:z ) — g( t, w)=z ,f (x ,y )=w (since intermediate variable t cannot be comput
ed), 

f(x,y)«z,k(x,y,t)«z »-h(x)=t (since the left part constraint could not be computed 
before the right part constraint), 

h!x!=t«-g(x,z)=t,f(x,t)=z (since there exists a circular precedence relation between 

invocations), 
ri:r.:s(x) ,y ;out: s(z ) ) -»- r( in : x,y ;out: z) , f (x,y )=w (since the invocation f(x,y)=w never 

needs to be computed). 
: ;n:x,y;out:z) — h(x)=z,f(x,y)=false (since false is a constant symbol occurring as 

:.tput of an invocation which will never be computed). 
Thus far we have defined well-formed equations. A set of equations should denote 

seta of procedures. Since our aim is to restrict sets of equations so as to define 

(deterministic) procedures by disjunct cases, we are forced to introduce more defini

tions and conditions. 
Conditions on a set of equations are concerned with the non superposition proper

ty on the equations left parts and relies on (first order) unification. invoc. 
An equation left part consists of a header and a (possibly empty) set of 

tions. Let c be any header or invocation, 
i) n(c) be the function or relation symbol in c, 

ii) D (c) the n-tuple of input data terms in c, 

Ui) £ M«». or „on .up.rpo.ltlon property for 
Given a aet of equations E- {e±> , and 1. are non overlapping, 

any pair of equations 6 overlapping'3if one of the follow! •, 
Condition 4. Two left parts 1. and l^ 

properties holds: , , - an(j i . 
1) „(hi)/n(hj). where h. and h. are the header of 1. and . 

2) D (h ) and D. (h ) are non-unifiable. ! and 1 
in 1 10 , a nnifiable with most general unifier , t j 

3) D.n(hi) and D.^h.) are ^ syntactically disjoint. 

constraints k and k , and L jA disjoint if °ne of' thf fcl* JiTY Two constraints E; - -? ^ 

non-uni finable . respectively, and either 

2) k. and k. have the form c^, ki2 a j2 

2.1 c and c are syntactically disjoin . ^ ^ ̂ ^ are unifiable with 

2.2 n(c)=n(c ), , °Ut £ ]. are syntactically disjoint. The 

t nifier A, and [k.^A • 
most g^ral Uonverlapping equations: t; x,, eq(y. 0) = true- , 

following are sets o plus(__ >+(x#y )=0*-. 
{t(x,0)=x-, plus(i£-x.y'_--^;z)> + (X(y)=z^} 

+ (0,x)=x~}, 0)=true^, Plus —' 

{Plus(in:x,y;oui.y . '(in:y,x;out:z), 
plus(in:x.v;out.z) -- P 



Let us finally introduce the syntactic construct program. A program has the same 

form of an equation right part, namely it is a constraint. Hence a program consists 

of a set of invocations I={l.}, whose variables must obey the following conditions. 

Condition 6. M JD = u M (I ) must be a set. 
out 1 out 1 

Condition 7. 
7.1. For each I. in a program, each variable belonging to "^(1^) must belong to 

M (I ), where I 1 is a inner invocation. 
°U7 2k For each ̂  in a program, M (I ) must contain at least one variable symbol 

—'•—" k v . out }< . . 
which belongs to M (I. ), where I is an inner invocation. 

in i k . , 
Conditions 6 and 7 ensure that a program is closed. 
In section 3 we will introduce FPL operational semantics, which allows to define 

a computation from given program and set of equations. It is worth noting <,hat our 

lengthy and tedious definition of the FPL syntax (typically, the conditions for well-

formedness of equations, sets' of equations and programs), was mainly concerned with 

semantic properties, which can be incorporated into the syntax and statically checked. 

The possibility of defining a deterministic FPL interpreter relies exactly on such 

conditions. 
Let us finally note that the syntax we have defined does not allow function com

position. However, our syntax has to be seen as the abstract FPL syntax. The concrete 

syntax will allow to use standard function composition. Namely, a general term ob

tained by function composition can replace a functional term every where in an 

equation, but in an equation header. 
The functional and relational aspects of FPL can be distinguished leading to two 

different subsets of the language. 
The language obtained ruling out relational atomic formulas and left part con

straints, is a subset of the functional language TEL /15/, since it does not allow 

to express properties. 
Ruling out functional atomic formulas and left part constraints, we obtain a 

specific class of Horn clauses, characterized by input-output separation and ordering 

of the right part atomic formulas. The above constraint forbids program invertibi-

lity, yet leads to a deterministic interpreter. 
FPL can be extended by releasing some of the above conditions in order to allow 

to express properties of programs as well. Such an extension, however, is outside the 

scope of this paper. 

3. Operational Semantics. 

The operational semantics will be defined by describing the FPL interpreter. The 

interpreter consists of a set of mutually recursive procedure (EVAL, MATCH, UNIFY) 

which operate on abstract representations of programs and constraints (closure struc
tures), that will be defined in the following. 

A set of invocations I={l.} can be represented as a closure set, which contains 

a closure for each invocation I.. The closure corresponding to invocation I. is the 

pair c=<I. ,env(I. ) > , where envfl.) is a set of bindings for all the input variables 
of I. (which are "'also input variables of closure c). 

A binding possibly associates an input variable v to the closures which corre

spond to those invocations in I which have v among their output variables. 

A closure structure is a set of closures C={c.}, such that: 

i) For each closure c in the set and for each input variable v in c , v is bound to 
exactly one closure in C. 1 

ii) The multiset of output variables of all the closures of C is a set. 

6 
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Let r be a closure structure. If we associate a labeled node to each closure in F 
vid i directed ere from node labeled to node labeled c ., if some input variable of 

:s bound to c . Thc-n, a closure structure is a directed ̂ raph. 

Let T be • Closure structure and c^ be a closure in F . The substructure off 
rooted et c is the closure structure F/c. defined as follows; 
n c « r)ct 1 

:: closure c belongs to F/c , then F/c contains all the closures of F 
k 1 1 

whose output variables are input variables of c^. 
A substitution Is s closure structure A , such that for each closure c £ A and for 
eKh output variable v in c, there exists no closure belonging to the substructure 

i/c which has v among its input variables. 
A rtct * ii any closure c of A , such that there exists no closure in A having an 
.unable : und to c . . Slence a substitution is a directed acyclic graph. Note 

that each substructure of a substitutions is itself a substitution. 
The composition A .ft of a substitution A with a substitution n is the closure 

st-ucture containing the following closures. 

All Uu- c losures of n . 
ii) Only those closures of A whose output variables are different from the ou pu 

lafcles of closures of n . , . _ c=f+-
The closure structure A.M is itself a substitution, because it is acyc 1 c' eM 
the presence of a cycle would require the existence of a closure c^ su cl£sure 
and c c A. u , which has as input variable a variable v whic is oun t 

V »ich that c,« 4 X.M. «y~ if «* " also be °d 
dinot b«long tA 1 . n by definition of composition, Since va 

output variable of ft . , . . . , . , onlv if: 
A set of closures C-{c } can be appended to a su s 1 u , ̂ ̂  nn outDut variable 

i) For each closure ̂  ̂d for each input variable v of c., 

of some closure in A. 
a: The mult.set of output variables of C is a se ' t_ 
iii) The sets of output variables of C and A are substitution A is a sub-
ft. result C|A of appending a legal set of closures 

P is a e^lg-rooted substitution (i.e. 
A FPL program, as defined in Section ' _ .s ,a 0a^sure structure, because 

directed single-rooted acyclic graph). A prog • ^ at least one invocation (c 

i Each input variable in an invocation i unique (condition 6). 
tion 7.1) and such an invocation is a set (condit^^6 . 

ii) The multiset of output variables of xts ^ ̂ acyclic> because each * ^ 

toreover, a program is a 3ubS^^1°^ocation (condition which does 
•'put variable is bound to an ^ that there exists only 
rooted because condition 7.2 ensures iving a new program as 
lot occur in any binding. . ODerate on a program, g substitution 

The interpreter procedure EVAL " tnes^To be preserved by {^ch models the 
output. In order to allow single^ r°° d„ with a virtualJ ° # input variables 
corresponding to a program will be topp invocation and 

eternal environment) which con a program, 
oil the output variables of the of a progta^ • P 

It is worth noting V iS ̂  " 8 

A set of closures C={cj} gach variable v m i> 
i) For each closure c and ° 
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ii) The multiset of all the output variables of closures in C is a set. 
Hence a schematic closure structure is different from a closure structure only be-
cause'some input variables can be free. Schematic substructures and schematic substi
tutions can easily be defined following the definitions given for the closure struc-
ture case. In particular, a schematic substitution G is an acyclic schematic closure 

structure. 
Let free(G) the set of free input variables in G. A schematic substitution G can 

be instantiated by a substitution A, if 
i) For each variable v in free(G), there exists a closure in A having v among its 

outputs. 
ii) The sets of output variables of G and A are disjoint. 

The instantiation [G ], contains all the closures of G and only those closures of 
A which belong to a A/c, spch that c has some variable in free(G) among its outputs. 
[G] is a substitution, because all its inputs are bound, all its outputs are 

different, and there are no cycles since each input of a closure of A cannot be an 
output of a closure of G. 

A FPL equation e is a triple <H(e),G^(e),G^(e)> , where: 
i) H(e) is the header. 
ii) G (e) is the left part constraint. 
iii) G (e) is the right part constraint. 
It is possible to prove that both G^(e) and G^(e) are schematic substitutions. In .act, 
for each closure c corresponding to an invocation of either G^(e) or " 
each variable v in c, v is either free, or bound to at least one closure (condition 
3.1), which is unique (condition 1). Moreover, the multiset of output variables is > 
set (condition 1), and there are no cycles, since v can only be bound to an in™-
c o n s t r a i n t  ( c o n d i t i o n  3 . 1 ) .  

We are now able to describe the interpreter procedures. 
UNIFY (X:n-tuple of terms,D:n-tuple of terms, A :substitution); 

returns < failure/success, fi: substitution> 
X is a n-tuple of data terms (x ,...,x ), which contain free variables not occur-

ing in any closure of A , with no multiple occurrences of the same variable. 
D is a n-tuple of data terms (d d ), whose only variables are bound to some 

closure of A . In 
UNIFY is basically first order unification, which returns failure or, in case 

success, a set of associations of the form t=v, where v is a variable and t is a da" 
term. In our framework, each association is a closure, having the association as W 
invocation, variable v as output, and all the variables occurring in t as inputs. *s  

s o o n  a s  a  n e w  a s s o c i a t i o n  i s  g e n e r a t e d ,  t h e  c o r r e s p o n d i n g  c l o s u r e  i s  i n s e r t e d  i n *  
(initially empty) set of closures MGU. 

Unification proceeds like stl^iard first order unification comparing terms of* 
to terms of D (possibly) associating variables occurring in X to terms occurring i» ' 
The difference has to do with bound variables occurring in D, which cannot » 
instantiated, just because they are bound. If unification reaches the p o in t  where' 
bound variable b. is matched against a non-variable data term t (which occurs in*)• 
the following actions are taken. k 

If  ̂  ̂  t0 Closure c  whose invocation has the form t =b. a n d t  i s !  

data term, then unification proceeds with b. replaced by t J 1 

1  j' 
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Step . • therwise, : indard unification is suspended and a call is made to EVAL, 
passing the clct ure c (to which b. is bound) and the substitution A , as parameters. 
If EVAL returns failure. UNIFY returns failure. Otherwise, EVAL returns a new sub
stitute A' , su. h that the closure of A' which has b. among its outputs is dif
ferent from c. Step 1 is taken one more time, possibly leading to a further evalu

ation . 
Eventually, unless some EVAL process does not terminate, unification will end up 

with failure r with a set of closures MGU and a substitution A*. 
REMARK. The .Uput variables of MGU are exactly the variables occurring in the n-tuple 
X, while its input variables are all bound to some closure of A*. From the conditions 
imposed on variables occurring in X (which also prevent circularity in most general 
unifiers), it follows that the set of closures MGU can be appended to the substitution 

A*. 
UNIFY returns the substitution /u=MGU H A*. _ 

MATCH (e:equation,a: atomic formula, A : substitution), 
returns < failure/success, n:substitution> 
a is an atomic formula, whose only variables are bound to closures of • 
e is an equation, with header H(e) and (possibly empty) left part constraint 

0 ( e ) .  
Step 1. If the function (or predicate) symbols occurring 

a and H(e) are differ-

X ̂  n-tuple el input «. <• »<"> - « » " 

n-tuple of input data terms in a. . eouation. Hence all the varia-
REMARK. When MATCH is called, e is a renaming ^ condition 1, no vari-

bles in X do not occur in any closure ' 'nallv au the input variables of D are 
able can have multiple occurrences in . can'be appiied to parameters X, D andA. 
bound to some closure of A . There ore, rf=turn failure. Otherwise, let A' be 
Call UNIFY(X.D.A ). If UNIFY returns failure, retu^ ^ 

the substitution returned by UNIFY. If , ins;antiation of the schematic substi-

Step 3. Otherwise, let A" J \ > 
tution G (e) by the substitution A'; closure in A', because a free 

REMARK. Each variable in freeze) ) is bg an input variable of H(e) (con 
input variable in the left part cons ra bles 0f H(e) are output variables o 
.... oil t-.he input variapx 

/ariaDie in x.ne xcx ̂  ̂  - .„hlpq Q-
-I -I 4-V-IA incut vaniabiss 

dition 3.1), and because all the inp ^ tQ instantiate G^e). 

(by definition of UNIFY). Hence A closures, such that each c. 
Let C={cl, 1< i< k, be the k-tuple 

, „ . A > = A". - upturn failure. C 

is a root of 

A". Set i = lx and A = A" • f EVAL returns failure, return °Jhbbe oubput 
Step A. Call EVAL( A ,c ) • " which is the composition 
i=k return the substitution „ = A . A., of the last EVAL. 

substitution of UNIFY and the ou p^ _terate step 4. titution fi has among its 

Ste^. If i/k \nCreaSA6TCH returns success, its output ̂  yariables of G (e) 
REMARK. If eventually. MA 1 On . TTT of H(e) and all tne o h 
output variables all the input variables 

EVAL ( A substitution,c:closure)^ itution> , c is any cloS^re ^c'ording to the 
returns < failure/success, «• associated with the closu 

Step 1. Let I be the invoca 10 is taken. ^ the k_tuple 
fbTmTf I, one of the following action ^ }> 1<1<k, 

1.1 If I is empty (top closure of a P 



m 
of closures to which the input variables of I are bound. Set i=l and A = A/c 
1.1.1 Call EVAL( A.,c.). If EVAL returns failure return failure. Otherwise let 
A' be the substitution returned by EVAL. If i=k, let A' = A', and go to step 2, 
otherwise increase i by 1, set A.+^= ^' i 311(3 iterate step 1.1.1. 
1.2 If I has the form d=v, where d is a daia tern^and v is a variable, then 
1.2.1 If d is not a variable, then return A . 
1.2.2 If d is an (input) variable, let c' be the (unique) closure in A to which 
d is bound. Call EVAL( A /c' ,c' ). If EVAL returns failure, return failure. Other
wise, let A' be the output substitution of EVAL and go to step 2. 

1.3 If I is an atomic formula, for each equation e in the global set of equations 
E, a nondeterministic call to MATCH is performed, SfATCHfe. , I, A+), where e is a 
new consistent renaming of equation e. , and A+ is the substructure of A rooted at 
c, c non included. 1 

1.3.1 If no MATCH succeeds, return failure. Otherwise, let e' and A be one 
successful equation and the output substitution of the corresponding MATCH. If 
Gr(e'i) is empty, set v' =Ak and go to 1.3.3. 

REMARK. Because of the non superposition condition (conditions 4 and 5) on sets of 
equations, a unique MATCH can terminate successfully. However, we are not allowed to 
handle the different equations sequentially since MATCH could be nonterminating. 

1.3.2 Let „ be the instantiation [G <•• )], , of the schematic substitution, 
associate to the right part constraint of the successful equation by the output 
substitution of the successful MATCH, and v' =A . v 

REMARK. A can be used to instantiate r i \ instantiate G (e1 ), because each variable in free 
r 15 either 811 inPut variable of H(ef ) or an output variable of G (.' ) (be

cause of condition 3 i), and A has all suet variables as output variables (Seethe 
last remark to MATCH). Moreover, for each output variable v of G (.' ), v cannot be 
an ou pu varia e of k • Iri fact, because of equation renaming, rfor kv to be an out-

^ V3"a 6 ° ' k' V must be either 311 input variable of H(e' ) (contradictory be-
dition°i)C°n 10n ^ ̂ °UtPUt Variable of Gi(e'k) (contradictory because of con-

1.3.3 Let X be the n—tuple of outnnt Aa4.. +_ _ ~ . , , , p utput data terms of closure c, and D be the n-
tuple of the output data terms of H(e' ). 

REMARK. We want to show that X, D and v< ane i i 
prove that iegal parameters for UNIFY. We must 

i) There are no multiple occurrences of a variable in y iv. a •• e k 
sence of aliasing in a procedure call). (by Condltlon 6' ̂  ab' 

ii) All the variables in D are bounri te 
an output variable of H(e' ). By condition0 ^ ^ Variabl® D 18 

variable of H(e' ) or an output vari m mUSt alS° be either 311 inpUt 

hand, all the output variables of G (9> ) ̂  V'V' °" ** 

variabies of H(e- ) and the output Sari^bles ofTfe- f " ' WMle 311 *1 ̂  
Ak. Hence, they are all output variables of 1 k °UtPUt Variabl6S ° 

iii) Each variable v in X is not an output variable „f " k"" ' 
c is the only closure in A havina ^ closur« in v'. Initially, 
prove that the only new output variabl ̂  °UtpUt variat>le. It is rather easy to 
are variables coming from renamed equat!'3 , °tly gener"3ted by MATCH and UNIFY 
only need to show that each recursive lT" a"d therefore different from v). Ve 
following property. b° ̂ ^L (via MATCH and UNIFY) has the 
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EVAL property. Let *i be the output of EVAL( A ,c); for each closure c' such that: 

* ^ c ' ' has an output variable which is also an output variable 
of some closure c" in A , 

t h e  c l o s u r e  c "  b e l o n g s  t o  A / c .  
»r will assume here the property to hold. 

1.3.4 Call UNIFY! X,D, v '  ) . If UNIFY fails, returns failure. Otherwise, let .1* be 
the output substitution of UNIFY. 

P.EKARK. .1 * has all the output variables of c as outputs. 
let 1 ' : the structure which contains only those closure of A* which belong 

sub: tru t .re: of A* rooted at closures which have as output variable an out
put variable of c. 

SEXARK. A ' is a substitution. 
Step 2 .  Return • A . A'. 

.REHARK. The EVAL property follows directly from the above construction. 
A FPL program 17 is evaluated by calling EVAL with substitution 17 and with the 

unique root of /7 as closure. 
EVAL is clearly based on an external rule. Since our language has no builtin 

data types, and since "constructors are not evaluated", the' FPL rule is a call-by 
need, whose behaviour can be summarized as follows. "An atomic formula is evaluated 

w.«o„ rn..™ j-mj. Ph7= SJSfi 
tion. by side effects, through language implementations and theorem 
successfully used in several Plicate lo&islZ pf the same atomic fpr-
provers. In fact, with structure shan evaluations of atomic formulas which 
aula are identified, thus avoiding multiple 
typically arise in call-by-name interpreters. described interpreter is non-

Even if the language is deterministi ^ nondeterministically MATCHED a-
deteralnistic. The EVAL Step, m which a P g .mplemented by backtracking, provided 
gainst all the equations left parts, 
that the following property holds 
Backtracking property ru; i b. - ̂ °C"T, t°" 

substitution A , and let E-tei • '  " '  ' _n' . Ar> predicate symbols occurring 
equation e in E. H(e ) containl t h T n )  d i v e r g e s  f o r  all e. 

Let us belonging to E. cs-imnle condition is 
The above property holds if one ^ not  be described ̂ here. 

ticr.s. For the sake of brevi y, „„4.)0fvine such a take equations satisfying s 
condition (which, roughly 

the call-by-ne ed and structure 
evaluations which only remark that if we def initions). evaluate, ---

spea.mg, are simply good rec „optimal", because a11 t  MATCH, 
sharing implementation is in a sense P transmitted to the 
could have been performed within the -ccessfu^ MATCH, which 

find would have been, in any ca 9 showing our use of ^al)  , with cases be-
We will now give an built-in of the pro-

allow recursive by case* ^formulas. The example ^howJect ion ?  ( i (c) denotes the 
mg defined by general atomic ons e8,..->e16 

g r a m  i s f a c t ( s ( s ( 0 ) ) ,  s ( 0 ) )  W 1  

i n v o c a t i o n  o f  c l o s u r e  c ) .  



cO: isfact(s(s(0)),s(0))« 3 ^ 4  
x0= cO 

EVAL(A0,cO) 

*1" , 
MATCH(eJ5,i(cO),Aj) 
UNXFY((xl,yl),(s(s(0)),s(0)),Aj) 
cl: s(s(0))=xl 
c2: s(0)=yl 
A2={cl,c2} 

c3: ndiv(in:yl,xl;cut;zl.s(cl)) 
A3={cl,c2,c3} 
EVAL(A3,C3) 

AI,= cl,c2 
MATCH(ej 3,i(c3) 
UNIFY((x2,y2),(yl,xl),Alt) 
c4: s(0)=x2 
c5: s(s(0))=y2 ' 
A5={cl,c2,c4,c5} 
c6: It(x2,y2)=true 
Ag={c4,c5,c6} 
EVAL(Ag,c6) 

A7={C4,C5} 
MATCH(eJ0,i(c6),A7) 
UNIFY((0,s(x3)),(x2,y2),A7) 
failure 

failure 
MATCH (e^f 1,i(c6),A7) 
UNIFY((x4,0)(x2,y2),A7) 
failure 

failure 
MATCH(ef2,i(c6),A7) 
UNIFY((s(x5),s(y5)),(x2,y2),A7) 
c7: 0=x5 
c8: s(0)=y5 
As= c4,c5,c7,c8 

a8 
c9: It(x5,y5)=z5 
Ag={c7,c8,c9} 
AJO=A8-Ag={c4,c5,c7,c8,c9} 
UNIFY((true),(z5),A1o) 
EVAL(A10,c9) 

Aj j = {c4,c5,c7,c8} 
MATCH(e^0 >i(c9),A11) 

™iix6S(X6))'(X5'y5)>Xll) 

A  ^12={c4,c5,c7,c8,clO} ™IFY( (zl,s(cl)) , (0,x2) ,AJ6) 

SH S:SRU6)'AL2) M7:{CI!C2,C4,C5,C6,C12,C13} 
Al3={c4,c5,c7,c8,clO,cll} \ Al8 ^cl•c2•c12•cl3> 

A j 3={c4,c5,c7,c8 clll 18 

Ajg UNIFY((x),(false,Ale) 
Aj5={c4,c5,c6} cl4: false=x 

Ai6=A5.A15 {cl,c2,c4,c5,c6} I A1?=^cJ•c2>c12>cl3,cl4} 
A20=icl4} 



4 Fixed-point Semantics. 
'  In this Section, we will describe the fixed-point semantics of a set of equations 

tje} For the fixed-point semantics, each equation e can be seen as a pair<H(e.), 
J L such that G(e.) is the set of all the invocations occurring both in the left 
4 all in the right part of e . It is worth noting that generally two equations 

1 .  P  ,  0 - R  .  S  2 .  P -  R  ,  S  ,  Q  
ihich differ only because one invocation occurs in the left part and in t e gfr 

part, are different both from the operational and the vle t  h 'as  a t  

IUM» U «.» operational if invocation Q .ati.fi.a oondit^ ^  ̂  ^ 

least one output variable, which is an input ^tional difference is concerned 
is the case equation 2 is a legal equation. ^ ^ MATCH succeeds, the other 
.ith nondeterminiam. With equation , (since we are guaranteed from condi-
nondeterministic attempts in EVAL can be _ai l ing in  the evaluation of Q, within 
tions A and 5 that any other MATCH would fail0. - a fa i lure  in the evalu-
MATCH, would Just kill the current attempt Wi mat 'ch_ This  would require to 
ati°n of 0 could only be detected aft»r(n0nrecursive backtracking) . 
backtrack to a choice-point which pnuation 2 could possibly have a super 
This situation corresponds to the fact a guaranteed that when a match 
,-iti.h .ith other equations. In such a case » 
is successful, no other successful MATCHing i 3 2 equation 2 is not a legal 

On the other hand, if 2 does Have a completely different 
equation. As a matter of fact, equations 1 a t  in  such a case, Q would 
semantics if the evaluation of Q diverges or fails. 
not be evaluated by equation 2. ^ equation e a semantics which is equiva ^ ^ 

The fixed-point semanti g , f  a l l  the  invocations ^ ^gal  equat ion). 
the operational semantics of ^ of  e_ ( i.e. if e. f ixed_point of a 
satisfy condition 3.2 occur in ^ E> obtained as^ ^ ^ ^ the  

The fixed-point aema^ t1^ ta t ions. Our fixed-point sema semant ics. There-
transformation P.. on inte p however, is a cai  * , _ _ insformation 9 on interprevau however, is a caii-ui 

iantics definedEin /9/. Our semantics ^ _ for  each simpie sort^-^ ^ ̂  

•e our domain will contain an abstractjtomain A, w ic d as  follows: 
interpretations are defined on an ^Each As  

each set beeing indexed by a sort so ^ 

u, belongs to A I occurring in E '  are  * g' contains all the 
A?1 the constant symbols o f  sort s x . •• x n * s respectively. A 

) For each data constructor symbol heioW to A . • • • .  an for  some sort s 
terms d(t V. such. that if it cental s  

term belonging to a family re ta tion base B. The inte£E^' 
,h indexes a set A in A. ^ ^  ̂  f  ,he -terpreta 

-r; «- »r 
For each function symbol ^ )=t  such that  ^ n ^ CQn_ 

a.":1." t » -  -  ' - • • • •  •  
. x ... J. s ? , . 

, , t  h a v e  s o r t s  m + 1  

not*undefined. 
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Roughly speaking, an interpretation assigns output values to applications of 
functions and relations to ground input values. All the other applications have some vaxuco. rtii one otner applications have some 
undefined output. An interpretation is "more defined" than interpretation £ if£i 

where J is set inclusion. Note that the partial ordering relation j  i <jn 
interpretations corresponds to an intuitive notion r»-r Koffon interpretations corresponds to an intuitive notion of better approximation. In fact, 

Sj = Si' Si assigns output values to some applications that in £ had 
undefined output. j 

Transformation m maps interpretations on interpretations and is defined as 
follows. 

Let be any interpretation and e =<H(e ),G(e )> be an equation of E. Equation 
e,_ defines a transformation V which maps £ Snto tfee interpretation C=f (l), such 
that "i " (^i' 
1)) All the atomic formulas of £. are in £*„ 
2) For each instantiation A of "variables *to terms such that, for each invocation I 

in G(e, ) either j 
2.1) [I .]^ is in , or 

2.2) AnJ  output variable v of I which is not an output variable of H(e ), is 
instantiated to an undefined term by A , k 

the formula [H(e )]^ is in £*. 

and t mukst  inStantiatel  a  variable v of sort s to a term belonging to A , 
and that if G(e ) is empty, condition 2.2 is satisfied for any instantation .1 . 

The transformation p is  the transformation defined by all the equations of E 
according to the above definition, i.e. a> ( / )= (J off ) 

E 5i ee E ^ i ' 
k 

ordered h f transformation <p on the set of interpretations partially 
fixed ooi t t H0" 1Srra°n0t0nic and continuous. Hence, there exists the least 
tivelv an 1 "nterpretat"°n . i* SUch thab £*= V £*), which can be obtained by itera-

oJ the oartLrf V *T ^ °f B' WhiCh is the bottom 
of the partially ordered set of interpretations. 

5. Conclusion 
We have described a new first order lovic „ u • 

and the nelatienei , , g language, which combines the functional and the relational approach. We have defined the fixed ee-i e 
shnwn an -in tan a,, n , xixed-point semantics and we have shown an interesting operational model which is both fe,~mei . , . . 

htztz:, z ~,rr Tr10™1 J °rz-
f M I , a i „ l y  o a t a i a ,  o f  t h e  .ZTo/tLTLZ 

We have some nice examples of FPL programs that u t  

in a predicate language without left part constraints or in / ""natUral  a"d 

The improved expressive power of the language is due to th 3 10"al  langua8e-
tion and the procedure constructs and to the left nart PreSenCe °f  both the funC ' 
full nower of a hn-iit -in ,- , . part constraints which provide the xuxi power oi a built-in conditional, while saving tk. e-
flavour. One more interesting feature of FPL is it hit l0giC axiomatlC 

tions and relations. Non strict functions, as the i^en^ "°n_StriCt  'T 
iy be defined in FPL, Just because of its call by ^ 

We have almost completed an experimental FPT i„(-. 
strictly related to the i • interpreter, whose architecture is strictly related to the operational model of Section d The • 4. , • e 
LISP) is based on structure sharing and relies on LISP h lnter>Preter  bitten in 

Future work on FPL will include its ext ! § ^ C° l leCt°r-
and parallel programs. Our final goal is creTt̂ ng an FP̂   ̂definiti°n °f theorems 

for program proving also. environment providing tools 
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HORN CLAUSE PROGRAMS SUGGESTED BY RECURSIVE FUNCTIONS 

Jan gEBELlK Petr STMNEK 
Department of Cybernetics and Operational Research 

CHARLES UNIVERSITY, Praha, Czechoslovakia 

1. Introduction 
We shall construct a program in Hern logic for every partially 

recursive function by induction on the complexity of its defini
tion. We shall show that these programs can be transformed into 
programs consisting only of binary Horn clauses. This gives a 
new proof of a result due to Tarnlund CO , who used a binary 
Horn clause program to simulate the behaviour of a Universal Tu
ring machine. Our proof gives additional information about the 
length of computations. We can show that for every partially re
cursive function, the computations of the original program and 
of the corresponding binary Horn clause program have the same num
ber of steps on every input. 

Reviewing the structure of programs suggested by induction on 
recursive functions, we shall see that these programs can be stra
tified in a natural way. We shall call stratifiable every program 
admitting stratification. The above result shows that every stra
tifiable program to compute a recursive function can be transformed 
in a binary Horn clause program. We shall show that every binary 
Horn clause program can be transformed in an inductive program 
computing the same function. At the end of paper, we shall formu
late some open problems. 

Throughout the paper, we shall use standard concepts and nota
tion of Horn logic and of Resolution logic. We refer the reader 
to C2] , (733 C5J 'or a more detailed exposition. We 
shall mostly deal with first—order languages without equality 
containing only two function symbols 0 and S , where 0 i» 8 

constant interpreted as zero and unary function symbol S 1( i®" 
terpreted as the successor function s(x) = x • 1 . Hence, the 
terms 0, S(0), SS(0) , ... can be identified with natural n»®" 
b e r s  0 ,  1 ,  2 ,  . . .  .  E v e r y  e x p r e s s i o n  P ( t l f  t g ,  . . .  ,  t  )  %  
where P is a p-ary predicate symbol and tx , ... , tp are 



- 2 -

terme, is called an atomic formula or an atom. The atomic formulae 
and tve negation# of atomic formulas are called literals; the atoms 
and the negations of atoms are called positive literals and negative 
literals respectively. A clause is a disjunction of literals, a Horn 
clause is a clauae with at most one positive literal. A binary Horn 
clause ia a Horn clause with at most one negative literal. Every 
conjunction of (Horn) clauaee is called a (Horn) sentence. The 
clauses are usually represented as lists of literals and sentences 
are identified wit* sets of clauses. We shall sometimes speak about 
unions of sentences etc. 

It is ueeful to express Horn clauses in the following way 

(1) A < Blt Bj, ... , Bn 

vhert A is a positive literal (if any) and ... » Bn are 
negative literals (if n >0). 

! • »  »  t v .  f o l l o w i n g  t y p e s  o f  H o r n  c l a u —  fs shall use special names for the roixowing 
tea: 

• t.ivfi literal is called a £©§1 
,» i Horn cl.u.0 .rthout » .x.o.e or . Mil 
« of o gonl ana it aopty clan.. i. denoted 
tatement if it has no negative literals. 
y • • 

ill* I Horn oi.no. with ~ T 
A regular clause without nega ^ a procedure or a 

isaertion or an axiom , otherwise xt ^ called the name 
gocedure declaration., the literalcalled t>,e body of procedure (1)* 

"* ^ \ ruVcondunotion of r.gul.r olnu... 
(iii) Every sentence Which 

i. oollod E^ulariSntsBoi- ^ ̂  Mto^n« 

The Resolution principle with eo calied Horn Logic. We 
algorithm is the only InferenC*iar with these concepts and we 
assume that the readerKiS ^^ollowing example, 
a^all illustrate them by t e 
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Example 1 The clauses 

( 2 )  

( 3 )  

PIAJS(x, 0, x) 

PLUS(x, Sy, Sz) < PIUS(x, y, z) 

state respectively that for every natural number x , the sua of 
x and zero is equal to x and that the sua of x and Sy 
(the successor of y ) is Sz whenever z is the sum of x and ; 
The regular sentence consisting of regular Horn clauses (2) and (3) 
can be used as a program computing addition of natural numb era. 
Suppose e.g. that we want to compute the sum 1 + 1 . We start by 
writing a goal statement which denies that there is a number z 

which is the sum of SO and SO. The following goal statement is the 
first step in computation that yields the desired sua. The assign
ments of variables are the effect of unification. 

U) < PUJS(S0, SO, z) 

We obtain z •« SSO by composition of both assignments. 

We have seen that regular sentences can be used as programs and 
we shall call every regular sentence a Horn clause program. In 
general, we shall proceed as follows. If S is a Horn clause pro
gram and C0 is a goal statement, the sequence C0, C^, ... , Cn 

of goal statements is said to be a deduction (computation) from S 
and CQ provided that for every 1 ' Ci+1 is the resolvent of 
and a clause D from S such that the leftmost atom of and 
the only positive literal of D are the literals the clauses 
and D are resolved upon. If the last clause of a deduction is 
empty, we say that the deduction refutes S and CQ . It follows 
from the properties of Linear Ordered Resolution and from the fact 
that every regular sentence is satisfiable that S u {CQ^ is not 
satisfiable iff there is a deduction starting with C0 and refut
ing S and C0 . To find such a refutation, one has to use a com
plete search strategy. We shall adopt the following notation, we 
shall write 

(5) PUJS(S0, 0, z') 
x < SO , y < 0 , z < Sz' 

by (3), (4) 
SO 

by (5), (2) 
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to eay that the goal , j ~^-i is deducible from and S» 
If P is a ground atom (i.e. a variable-free atomic formula), we 
s-nll write 

S i —  P  
instead of 

•' hr • 
U s it the program from Example 1 then S 1~ PLUS(SO,SO,SSO) 
oxpreesee the result of computation, namely, that the term SSO 
corresponds to the sum 1 + 1 • 

following easy lemma is used quite often in proofs. 

I,—* i . Let S be a Horn clause program, P a ground atom. 
Let there be only one regular clause 

P#« ^2* ••• » Sn 

in S sue- t-at p' can be unified with P by a most general 

unifier Co • . 
D,en g |— p iff there is a substitution ^ sue 

s J— holds for every i ̂  n , 

all QvC^ being ground atoms. 

" f°r r"2^L^f^rUaliy recursive functions 
f. .hall describe programs definitions. We start with 

by induction on the compiexity truct programs for functions 
beeic functions and then we shaxx minimization. The correspon-
obtained by composition, recur a8 we shall see later, 
ding programs are naturally mot •« shall prove the 
th.y ad.it . certain gratification. Ho.. 

f0llt,*ing „llv recursive function f ' 
'H-ecrcn 1. for eery par ^ predicate symbol Ff «>* " 

variables, tbere ie an (n fQr every sequence of na 
Horn clauee program P suc 

numbers alf .. • » *n » c ^ to c iff 
a ) is defined ana ^ 

(6) f(a. , • • • » an' _ _ p . 
a) u provable from P 

f 1* *** ' an* 
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Proof. We shall omit the subscript f by the predicate F . If 
f is one of the basic functions, then P consists of one assertion, 
namely, P is 

(i) F(x, 0) « 
provided that f is the zero function, f(x) = 0 for every x , 

(ii) F(x, S x ) <  
whenever f is the successor function f(x) = x • 1 , and 

(iii) F(x^, , x^» x^)-< 
whenever f is the projection on the i-th coordinate. 

(iv) Let f be obtained by composition, let 
f(x) * h ( g 1 ( x ) ,  ... , gk(x)) , where g i  for i = 1, 2, ... , k 
is a function of n variables. Let H, G^, ... , Gj^ be the predi
cate symbols corresponding to h, g^, ... , gk and let P0 be 
a program computing h and Pt for i k be programs computing 

respectively. By induction hypothesis, we have 
g^(a) » b^ iff PjJ— G^(a, b^) for i4 k , 

( 7 )  
h(b) » c iff P0<— H(b, c) , 

for every n-tuple a of natural numbers and natural numbers 
••• » bt> e » where b = (bj^, ... , bk). We may assume that 

every two programs P^ , Pj have no predicate symbol in common. 
Let F be a new (n + l)-ary predicate symbol and 

x^t ••• » *n » yi» ••• » y* » z be new variables. If we add the 
clause 

(8) F(x, z  ) < —Gx(x, y x ) , G^Cx, y2), ... , GJc(x,yk), H(y,z) 

where x and y are appropriate tuples of variables, to the union 
of sentences P0, P^, ... , Pk , we obtain a program P satis
fying (6). 

(v) Let f be obtained from functions g and h by primitive 
recursion, i.e. 

f(0, Xg, ... ,xn) m g(x£>, ... ,xn) , 
f(Sx^, *2, . . .  ,  * J J ) 1 h(x^, ... , x^, f(x^, ... , ) 

holds for every x^, ... , x^^ • Let G, B be predicate symbols 
corresponding to g and h and let P1, P2 be the programs for 
g and h . We assume that both programs do not s*>are any predicate 
symbol. Let F be a new (n + l)-ary predicate symbol. It is easy 
to see that the Horn clause program P which is obtained by adding 
the clauses 
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(9) F(0,*2 Z)^~ GtX2 **! ul , v z) 
x n , z )  < —  T i H  x n , y ) ,  K b *  x n , y , . )  

0  r e u n i o n  o f  ? x ,  P 2  a a t i . f i «  ( 6 ) .  

(vi) last case to be considered is w»en f u obtained y 

ligiaiiation of a computable function g , i.e. 

f i x )  -  m7 f g ( x , y )  -  O l  ,  ( r t + 2 ) - a r y  

£ • b;:r^L7„r g. 

t'T T01, 7.77 (ll>-.ry Predicat*. aymbols ^ » 
4 A * rn p bv adding the following clauses it obtained from P1 oy aaui«e 

R ( x , 0 ) ^ - ,  
(10) »(x,s.)- «*.»>. ' 

F ( x » z )  » ( * » • ) »  G ^ x » z » 0 )  *  

where x- ()*•••• suffices to prove 
I. «. tbet P <••• tM ae.^.a P~P« - u . of natural 

that for .-.IT natural »"»b«r ° i""1 "*** 

numbers, we have defined and nonzero). 

Ms can be proved by induct on 

n'°T" 1- flr.t proved by TSrnlund t 43 
Tb. result et.t.d in Tb.oram 1 •» on i6 computable by 

Wo shoved tb.t ever, Turing , gndre*. end Beu.ti 
a binary Horn clause program. 1 P needed in a Horn cl 
1 loved that no eurUiery ^ ̂e ^ ̂  

program for . computeble ^^tural number. (a~ — "3 

tains individual constan properties of pro-
. turI1 attention to spec ^ step by step 

We would l^e t ^ ̂  of Theorem 1. t0 func-
grams constructed functions from b rise to a 
construction of recursive operations give^ri ^ 

tion. teat are partially b""1"*". 7.raroby on 
natural tiarare y- ^ level of 
...igned a rani according 
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it appears® Our programs reflect the hierarchy of recursive 
functions in the following way: the predicates corresponding 
to recursive functions can be uniformly stratified in every 
program by a mapping that assigns a natural number to every 
predicate symbol. It is convenient to assign zero to the pre
dicate symbol occuring in the goal statement and to other predi
cate symbols assign numbers in the inverse order with respect to 
the ranks of corresponding functions. This motivates the follo
wing definition. 

Let P be a Horn clause program and A be a predicate symbol 
that occurs in P . We say that P admits stratification with 
respect to A if there is a mapping s that assigns a natural 
number to every predicate symbol in P such that the following 
conditions hold 

(i) s(A) * 0 
(ii) if the clause Q( «••)•< R^(®»•),«••»R^(•••) 

belongs to P , then every i * 2,3,...,* , we have 

(12) s^) = s(Q) + 1 , 

and for i = 1 either R^ is Q or (12) holds. 

We say that a program P is stratifiable is it admits strati
fication with respect to one of its predicate symbols. 

It should be stressed that the mapping s assigns natural num
bers to predicate symbols, not to the atoms containing them. It is 
not hard to check that the programs constructed in the proof of 
Theorem 1 are all stratifiable, admitting stratification with 
respect to predicate symbol F^. , Thus we can reformulate th# 
result as follows: 

Theorem 1* . Every partially recursive function is computable 
by a stratifiable Horn clauae program. 

3. Binary Horn clauae vrofrrnmn 

We shall show that every stratifiable program constructed in 
previous Section can be converted into a binary Horn clause pro
gram. This gives a new proof of the above mentioned result of 
Tarnlund. Our proof gives additional information about the length 
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of computations. In fact, we can show that for every recursive 
function f the computationa of the stratifiable program for 
f and of the corresponding binary program have the same number 
of etepe for every input. Thus the binary Horn clause programs 
do not increase the complexity of computation in comparison 

with the "natural" stratifiable programs. 

Th.orem 2. Every partially recursive function is computable 

by a binary Horn clauee program. 
Hor.ov.r, for .vary ~ch function, it i. poe.ible to transfer. 

t*. corresponding stratifiable program fro. Theorem 1 In « *1-
nar, Horn clause program aucb that the lsngtha of computation. 

of both programe ara the aama for every input. 

Sl.teh of proof, w. oh all proc.ad by induction on ™=ur„iv, 
fiction. and describe th. .tap. to tranafor. th. corraaponding 

stratifiable program In a th. program daaori-

If f ia one of t e ba - Theorem 1 are already binary, 
bed in CD - CiiD of th. preofof Theore ̂  ̂ ̂ ̂ ̂ 

Let f be obtained by compositxo .  ̂ ± are 

previous proof, we shall ®seu®® ^̂ 'to functions and 
(ntl)-ary predicate symbols cor P  ̂̂  H be the <k*l>-ary 
that T. is a binary program fo gx be a binary 

predicate corraaponding programs h.v. no 
program for h . W. ma, .«»»•  ̂ (B) «vich ia 

predicate eymbol in commo. T . 

not binary, •« *«• " •odlf £ variiblee .rich do not 
1st " ° »dd tbaaa variable, to .11 

occur in any pr̂ a. and .. --11 conva" 
atom, in program. T, int„ suit.bl. procedure d 
.11 aea.rtiona of th«. uniting 
ration, to a.t.bli.b tie. bet.. obt.ined 

every *>1#t 1 

rvo. Tt « : t »„> rf Ti 

(13) Every ol.ua. HUX V 

is replaced by . 

P *̂ (û , •••»uq,xl* * *"• n* 1 

„ ••£ -Q- ore ne. predicate symbols, 
where K. » w 
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(14) Every assertion lUt^... ,tr)« of T- is replaced by 

tr,x,y ,z)-«— ^i+1(Xfyi+1>x»y»z) » 

where t is as above and ^ is a new (n*l+nHc*l)-ary predicate 
symbol corresponding to G^+-^ • 

For i - k , we apply (13) and every assertion R(...)-< is 

replaced by />, _ R ( . . .  ,x,y .z)-*1 H(y,z> . 

Let P- be the resulting programs. Now, we can state the following 
fact. For every ground atom P(...) and appropriate tuples of na
tural numbers a, b, c we have 

Ti h P(...) iff «-£(...,a,b,c) Oi+1(a,bi+1,a,b,c) 

(15) holds for every i * k-1 , and 
Tk j- PU..) iff "«-£(...,a,b,c) |p < H(b,c) . 

The lengths of deductions on both sides are the same. 
This fact can be proved by induction on the length of deduction. 
If we add the clause 

(16) F(x,z)<—- , 
where x and y are appropriate tuples of variables, to the union 
of programs P1,...,Pk,T£) , we obtain a binary program P for^ f . 
If T ie the program obtained by adding (8) to the union of TjS , 
it is not hard to prove from (15) and Lemma 1 t*at the computations 
of T and P have the same length for every input. 

The cases, where f is obtained by primitive recursion or mini
misation are treated similarly. One has to deal with recursive 
calls of procedures. To give the idea, we shall illustrate the 
case of recursion by the following example. 

Virnmpl a 2. Let f be defined by primitive recursion as follows 
f(l) = 1 , f(x*l) * f(x) + (x+1) • A stratifiable program for t 
consists of clauses 

(17) F(Q,SO) <— 
(18) F(Sx,z)-* F(x,y), PUJS(y,Sx,z) 

and of the clauses from example 1 , namely , 
PLUS(x,0,x) < 
FLUS(x,Sy,Sz)< PLUS(x,y,z) . 

If v,w are new variables, we ean write the following binary 
program P for f . 
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(19) FlO ,S0) •* 
(20) FlSx.z)* Ply,sx,z,x,y) 
(21) P(x,0,x,v ,*)•*— F(v,w) 
(22) Plx.Sy ,Ss,v,w)* Plx,y,z,v,w) . 

If «• denote the original program by T , we can compare the compu 
tations of T and P starting witb the goal < FlSS0,z). 

t-F(SS0,z) * Flsso»z^ 
• F(S0,y) .PLUSly,SS0,z) * Ply,SSO ,z ,S0 ,y) 
-F(0,y') ,PUJS(y' ,S0,y) .PIAJSly ,SS0,z) «-Ply ,S0,z ,SOsy) 
-PTiTRfRO.so.vl .PLUSly ,SS0,z) <—p(y»°>z »s0»y^ 

7-*— Sv 

Sz' 
i vu»y ) »J / »J » „ 
PUJS(S0,S0,y) ,PIAJSly,SSO,z) <—Ply,0,z ,S0,y) 

J*— S v  H  „ »  

•PUJS(S0,0,v),PLUSlSv,SS0,a) ^-FlSO.z") y*~z 

sso *) * ? y>so»z »o»y) z^~Sz 
-PUJS(SSO,SSO,«) , , n _/// o v) y-e—z"' 
-PLustsso .so .a ) tip 0 J>n ' 
-gSiSSO.O..- ) —-0 -g-

Both programs ar« deterministic *V^f*^Pwith th, goal 
U only one procedure Which , ls a.t.r»i„ie-

Btatement. In general ca . n(jt_ In 0ther words, it W 
tic in the above e.n». but computations of both programs 
happen that the length o """ ^ Buoceseful oonputation of F 
ar. th. same, but tht aondeterniniem. It ahould be ncted that 
may be more complex due not stratifiable. 
the program P from Examp e 

, hinflry p rQmise programs 
«• Itratifipbla »ng ES2-~"1 „ogra»a motivated bjr reour-

Va have Been that the strati la bin£try programs computing 
aire functionn can be trans or pI.ogroms have the came eng 
th. same function. Surprisingly."^^ ̂  u cen be shown 
of computation, on every lnp^" tranBformed in . ntratifmbl. 
that every binary program «n 
program. *e have clauB. program. * " Fre' 

t «.t T be a binary .M m,o transform 
Theorem Let T it is possibl #very 

dicate symbol occurxng in ppogrm P such that 
into a stratifiable Horn A we have 
ground atom a' containing Aj ^ . 

Tl— A 
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The proof of Theorem 3 uses induction on t*>e height of a compu
tation tree of T . The main problem is to deal with multiple re
cursive calls of procedures. We shall not give the proof here. In 
comparison with the two previous theorems, the proofs of which 
depend strongly on the language of Resolution Arithmetic, in parti
cular on the representation of natural numbers by terms Sn(0) , 
Theorem 3 can be proved for every first-order language. In general 
case however, the resulting stratifiable program need not be binary, 

The above results indicate that there is a strong relationship 
between binary and stratifiable program, at least in the ease of 
Resolution Arithmetic. There are some open problems left. We have 
shown that certain stratifiable programs in the language of 
(successor) arithmetic can be transformed into binary programs. 

Problem 1. 

Is it possible to transform every stratifiable Horn clause 
program into a binary program ? 

Note that the proof of Theorem 2 used special features of pro
grams motivated by recursive operations. Another problem is moti
vated by Theorem 3. It is clear that every Horn clause program 
computing a partially recursive function has a stratifiable eouter-
part computing the same function. This follows from Theorem l'. 
Generalising Theorem 3 to the case of arbitrary Horn clause pro
grams, one has to deal with AND/OR trees instead of simple trees 
for binary programs. One of the possible ways to handle the problem 
may be coding information about branching in natural numbers. 

Problem 2. 

Is it possible to transform every Horn clause program into a 
stratifiable program computing the same function ? What are 
the necessary conditions for the language ? 
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A decision method for process logic 

Olge StSp^nkovd 
Institute for Computation techniques 
of the CVUT, Horak«5 3, Praha 2, 
Czechoslovakia 

Process logic was proposed in [l] as a tool for reasoning 
about on going processes. There are introduced modal constructs 
after J , throught LL1 , during J_ and preserves S , expressing 
important properties of programs. Their intuitive meaning is 

aJp - any halting computation of <x ends in a state satisfying P 
a.uip - in every state of computation of a holds p 
a-Lp - sometimes during any computation of a occures a state 

satisfying p 
<x._Tp - ones p is true in a computation of a, , it holds on 

in all the following states. 

The modal concepts J , UJ , _T are completely axiomatized in 
[l] . The axiomatization of these modalities combined with 1 is 
formulated in [1] as an open problem. The modality 1 is defined 
in [2 J differently. There is given axiomatization of J , 111 , J 
and of this new version of -L — no claim is mode about its comple
teness. T,Ve propose a complete decision method for J , lil,-T and i- . 

Syntax of the language 
Let a be a constant differing from all the propositional va

riables. Let formulas be the elements of the minimal class inclu-
ding propositional variables and closed under the following rule: 
Mif p , q, are formulas then 

PH , "'P , P v 1 UJ p , <*, J" p a^d. aip 
are formulas as well". 

Semantics 
Let W be a set of states: a trajectory A - (-6.,^, • 

is a sequence of states drawn from IV ; is the length of & 
(when is infinite, then A has no final state). 

A failing computation is indicated by a trajectory whose final 
state is A , a distinguished "limbo" state used only for this 
purpose this case covers deadlock, short and fail situations . 
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Any occurrence of A in a trajectory must be as the final state. 
An interpretation of the language is given by a structure 
<1V f ,&> , where ris a get of states, P a set of "facts" 
about states ( for any propoaitional variable p and 
either <P."> « P or <np,^>*P, not both), a set of 

trajectories from W% 
The set describes a program in this sense: 

_ . c f , then the program started in O • , 'V, . • • • > ' 
C«1 brin* about the trajectory ^6 . 

Validity of formula. Of the considered language id e given 
,t.t. Vof this interpretation 1. defined ee follows: 

I f  p  i B 8  p r o p o a i t i o n a l  v a r i a b l e  t h e n  

^ m p iff % J 

otherwise ^ ^ ip iff ^ p 

1ff wPp and N IC (= P ^ % iff P p rS F|p) 

ifr v aKfp^ 

p iff ^ 
. . a l p  i f f  ( V ^ f ^ 3  *  

x i p  - f f  !  a i p  i f f  v  

t least one occurrence of *- is 3*Ji§£ij£>i£ 
A formula p with at 1 p ^ a state ««/• ¥• A ^ 

iff there exists a ^Jc, A c «" »«*•>"« " 
»„ch thet there is at leas flnlte Mt of formulas Ca theory 
Me A. ) 831,3 ^ FP ' „ ftf on its formulas is 
le'eetiefieble iff the ronton * . ^ ^ ̂ erti^le. 
salifiable. A formula p is 

, e.rielon methei u3(! of oentzen systems manipulating 

We follow 111 ^ 
Mte of formulae-^ sete of f „ ̂  ̂ ̂  c . 

i__geauent corresponding to a thsor 
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The theory (?ufir-•. red?} i3 unsatisfieble iff the formula AP-*V(R, 
is valid. A sequent is valid iff the theory <P o ?tp -. 
is unsatisfiable (iff A«>-*V<R ia valid). 

All properties of propositions! calculus can be derived by 
the use of 

?1 VI ~E~~ P3 P^f 
P P 1P —i•pA'J. 

It is proved in 1 that if the rules 

J" 1 
p, £lJ"p -> O/Jp -> p 

<*-> J p -> 

j £ foi i Pj, I,,-» 
cc J r» 

p  ? t s < i  •  - •  ' ' V  =  f i -i Fv) 5 ('f n^oH.Un't) 
«.u. p., a.U .Tpk ^ 

are added, the resulting system is a complete axiomatisation 
of UJ , _T and J . 

Let us use the following conventions - are either 
natural numbers or 0. The set St^ includes just all the permuta
tions of the numbers f 1, - , *} , i.e. all 1 - 1 functions of 
this set on itself. If (R. is © set of fonnules, then •» & is 
an abbreviation for fi* •. ^eft] . If <f. , <?4 are sets of formulas 
and 1 , p are formulas, then 

i <?». , A -» p 
denotes just the sequent <P. u <Pt u M -» . We faise 

instead of notoriously invalid formula pup and true instead 
of its negation. 

! f p d/ 1 -faAt. } 
10 f p- 1 

1 1  ft.), -> 0-1 
( f a. 1 aiff 
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1 1  

(V f>. i 6 ** S ** « S^)C1^0 4 50 

I l j t  ,  $ *  " *  * * l ; o  .  f  a , T P i ^ t 5 - »  ? a ' - L C ^ ! f t t S i  " * "  a * J A  

f V ( f ,  e  s  t f * * *  «  *  f  P * V ' J  ^ V , s  U °  f e  * * x )  

.  ^  x  • • ? , « .  7 , " Y i C t  
( ^ l t ,  • "  "  i - l c . i "  " " *  ^  U ' l o , < ? A ° l  °  , < ^ 7 ' ^  

l A  f o - u ,  i . ! . t l  ,  J 4  x  t  * \ 7 i 7  - *  

The intended reading of 1- 1 is . 
c  i  s ^ \  b e  t h e  s e t s  o f  f o r m u l a s  

"Let U\-,.s , - fi" w* 1 . .. e «f «, f0 
i? - • if f°r ®y " 

process logic. Denote ° ji? , itself there 
d an, 1-1 function • of the set il, -. 

ists that 

r l ft i C^o ' J i H-vCJfc.) ' ̂ A 4" W ^ 1 ° ' 

, a valid sequent, then ^ 
_ "7 f 1 i *K 

< y $ a* S p j j fc *jk ' f a, u» s; fr  ̂ , 1 [ * g 

3 valid too". ^ ̂  
Similsrly for the rules J 2^ ̂  ̂  ̂  rf 

The rule i <-> 
he form , fa-1 <H U ^ ' 

f , f—rP<,V«- » ' t that a structure with 
rds it elites the p°«lb"V would be considered 

h other words, h nG sequence st*r 
state «- . in , mto | . >ase state 'l*r > F -» 1 

be a model for e.g. > 
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Theorem 1 : 
The rules 10, ll, 12, 13 ere sound, i.e. if the premises 

of a rule are met, then the sequent resulting from this rule 

is valid. 

Proof : 
Suppose, that the sequent resulting from e.g. 1 1 is not 

valid. Thus there exists x 9 x 0"> and m- e.W such that 

^ f= ? u f u 

Let us considere the trajectory f * ? such that n: and 
Ŷ . 4 A t= . It can be shown, that the study of this tra

jectory leads to the specification of <?, c • • • <=• 
and of the permutation m e SFj, such that they contradict the 

assumption of the rule 11. 
Similarly for 12, 13 . 

Considering the rule 10, let us distinguish the cases, 

a/ there is no occurrence of a in p 

b/ there is an occurrence of a. in p . 

a/ If there is a state v satisfying p , denote 
jp * (<£-. <jpropositional variable, v . Then the structure 

, Sp, > with the base state is a model 

of p -* & 1 false. 

b/ The formula a 1 false is true in the base state of any 

structure satisfying p 

A proof is a rooted tree whose verteces are labelled with 

sequents such that every sequent follows from its predecessors 
by some rule. Given a proof we say that the sequent labelling 

the root is proved from the assumptions, which are just all the 

sequents on the leaves of that proof. 
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Let ^ » V -» V be a sequent. The corresponding theory ^y> 
is o U* * c S" 1 • We s0y that ^ is S -e°2£let§~§i3ii§!lt 
iff the corresponding theory ?? meets all the following 

conditions: 

1. a, J p i ^ 

2. f> * i s 

3 .  p » i  c  ̂  

4 . •» (p * O c \ 

5 .  i  ( p  * 0 '  

AWe-ldl pc or 
ry ip ^ J(p 

tUeaq p> e Ty> and ¥ 
H- e ? 

tlnen or < v e  ^  

A p t  ̂  I p  or 
ry 

q t £ P 

1p€ S"tj> and 

emma x /y 
ut V be a sequent. There cen be found a finite set b, 

t complete sequent! eueh that 
* fcan be proved from the assumptions *> using 

rules "PA - P1* end J" 1» 
o, 35 is valid as well, 

b/ if f is valid, then any f 

' , ,,, theories associated with complete 
Let » «• «* °f 8 u3 construct a sequence of 

sequents of process logic. 
sets of theories :  - G o .  the element ^i*a 

«, start with *i • f «»1 J^S'the theories obtained 
is composed from % „ of edition. on oompletn.ss 
from the members of t 
of sequents as follows : ^ ^Jp , « but P < 

If there is « « ... o.RoM 8113 "• 
and ,P d « . « ' 
are elements of * _na 2, -» 5-
Similarly for the conditions 2. 
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Obviously there is m0 such that is "the 
searched set of theories. The property a/ is a conse
quence of the way of construction of from . Moreover 
any theory <0, e 36. includes all the formulas from !fy - the 
theory corresponding to ? . Thus if has no model, then <£> 
cannot have a model as well, i.e. all the sequents from 36^, are 
valid if !? is valid. 

Lemma 2 : 

Each complete valid sequent of process logic has a proof 
using the rules P , 1. and J" 1 only. 

Proof : 

Let us define duration of a formula of process logic by 
induction on construction of formulas : 

• duration of a pro positional variable pis d (p) = 0 

• let <j.,, be formulas of a known duration, then 
<*( a-J O * d (a J O = d. (a. 1 <j.,) - cL ui ,) - + ^ 
d 9-.) = d-t^v q_J = ma*. , cX-ClS))  
d  (  i  ) « d . 

Let us define a relation between sequents of process logic : 

% -d fx iff . maximal duration of formulas in ^ is smaller 
then that of 
or 

• maximal durations of formulas in S", and are 
equal, but there is less formulas in S? of this 
duration then in % • 

Obviously is a good ordering. 

Suppose the lemma does not hold, i.e. there is a complete 
valid sequent, which has no proof. We shall drive this to 
contradiction. 
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Let ^ be ^ minimal element of the class of all complete 
valid sequents without a proof. Let be the theory corresponding 
to and 9*1. be the set of all formulas from ^ of the 

maximal duration. 
T^« »i 9a. must contain only formulas of the form ^lp^Ip.^Jp 

o.uip or their negations. 
Two cases must be distinguished : 

e/ Let there be a negative occurrence of a modality in ^ , 
i.e. i clLvcK . Then ^ - f «-lcannot be valid, 
because it corresponds to a sequent % + % , whose validity 

implies the existence of the proof of £ , bence of % , 
too. If 1 1 is not appliable to % , then there can be 
constructed a structure satisfying by adding to the struc 
ture for ^ ^ fi-1^ a new trajectory beginning in its base 
state and visiting consequently the structures for sequents 
as named In the example excluding the feasibility to app y^ 

Contradiction with assumption 92 is veli • 
*  t p  +h-<<* is the first step of the proof of X  , 

eppliable to S? , thi ^ sequents> which 

because the application of Contradiction, 
are -2 smaller then « , thus they have proof. 

offo+ive occurrence of modality in o 
b/ Suppose there is no negativ ^ ^r 

1 Let there be at least one formula of the torm t 

or rn 3; . surely none a modality 
is appliable to any nags ive ^ ̂  _ e_g_ 

in T. . Let us considere c8nnot correspond 
a. 1 a c w. . The theory 0 „+ is smaller 
^ because this sequent is 

to a valid sequent bee ^ prMf_ 
then % and it would have t ^ %(XjVO, \  can be 

/ur ® for i. x ? a. i s. j 
The structure < ^ < ' ure for X if no 11,12, II 

reconstructed into a * follows : 
i8 applicable. This is done ^g in the base state. 
Let - be a sequence from 

If 3 
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to the new structure and new sequence of £" is considered. 
Otherwise we skill find the negative modality, e.g. 
1 a,Sy e. 3; f which is illustrated by v . If there is none 
we proceed to a new sequence of & . 
As stated above 13 is not appliable to % thus there 
is a sequence of structures contradicting the use of 13 . 
This sequence - ending in A - is concatenated to the 
base state of the original structure to form a new sequence 
which should replace ^ in t . This is done to all 
negative modalities illustrated by v . This procedure 
is repeated for all sequences from t . The structure 
thus obtained with the same base state as the original 
structure realizes all the formulas from ££ . Contra
diction. 

2. If there is no negative modal formula in <P„ . Let us use 
the rule 10 and let us consider the sequent with 
the theory T.1 = u ^alfalse ] . Let there be a modal 
formula, e.g. . if V v has no model, 
then .. fa, l <0 has no model, too. Theory X, - f«, l 
corresponds to a sequent -4 smaller then S> , thus it 
has a proof. Contradiction. 
If i; - has a model, and if 1 i is not appliable 
to the sequent corresponding to £' , the structure 
for 1. can be constructed as in the case 1. Thus 1 1 
must be appliable to and the proof of SS can be 
constructed. Contradiction. 

Theorem 2 

Each valid sequent of process logic has a proof using the 
rules ?1 - Tif- , j" i ang 1 o - 3 . 

The completeness of the dedicion procedure for process 
logic using the above rules is stated in the following theory, 

18 811 easy consequence of the Lemma 1, Lemma 2. 
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