
LOGIC PROGRAMMING WORKSHOP

14-16 Juli 1980

Tarnlund Sten- Ake

LOGIC PROGRAMMING WORKSHOP

14 - IB July

1980

—

TABLE OF CONTENTS

Warren D.

Bruynooghe M.

Mellish C.S.

Kahn K.

Clark K. &
McCabe F.

Hansson, A. &
Haridi S. &
Tarnlund S-A.

Dahl V.

Gal,laire H. &
Lasserre C.

Dincbas M.

Aiello L.

Davis R.

Pagello E. &
Valentini S.

An Improved PROLOG Implementation which Optimises
Tail Recursion

The Memory Management of PROLOG implementations

An Alternative to Structure-Sharing in the
Implementation of a PROLOG Interpreter

Intermission - Actors in PROLOG

IC-PROLOG - Language Features

Some Aspects on a Logic Machine Prototype

Two Solutions for the Negation Problem

A Control Metalanguage for Logic Programming

The METALOG Problem-Solving System
An Informal Presentation

Evaluating Functions Defined in First Order Logic,
or In Defense of the Semantic Attachment in FOL

Runnable Specifications as a Design Tool

Computing Algorithms and Proving Properties by
Computing Terms

1

12

21

33

45

53

61

73

80

92

106

118

Byrd L.

Hogger C.

Morris P.

Szeredi P. &
Balogh K. &
Santane-Toth E. &
Farkas Zs.

Futo I. &
Szeredi J. &
Barath E. &
Szalo P.

Understanding the Control Flow of PROLOG Programs

Logic Representation of a Concurrent Algorithm

A Dataflow Interpreter for Logic Programs

LDM - a Logic Based Software Development Method

Using T-PROLOG for a Long-Range Regional Planning
Problem

127

139

148

160

172

Santane-Toth E.
Szeredi P.

Clark K. &
McCabe F.

Moss C.

Bendl J. &
Koves P. &
Szeredi P.

Minker J.

Mayor B.

Bowen K.

Sickel S. &
McKeeman W.

Hansson A. &
Tarnlund S-A.

Hansson B. &
Johansson A-L.

Pereira F.

Kluzniak F. &
Szpakowics S.

Tancig P. &
Bojadziev D.

Markusz Z.

Darvas F.

Swinson P.

Winterstein G.
Dausmann M. 6
Persch G.

Lasserre C. &
Gallaire H.

& PROLOG Applications in Hungary

IC-PROLOG - Aspects of its Implementation

The Comparison of Several PROLOG Systems

The MPROLOG System

k Set-Oriented Predicate Logic Programming
Language

The Meaning of Logical Programs

Logic Programming & Relational Databases

Hoare's Program FIND Revisited

Program Transformation by a Function that Maps
Simple Lists onto D-lists

A Natural Deduction System for Program Reasoning

Extraposition Grammars

A Note on Teaching PROLOG

177

190

198

201

210

215

219

224

225

230

231

243

SOVA - An Integrated Question-Answering System
Based on ATO (for Syntax) and PROLOG (for Semantics) 247

Application of PROLOG in Designign Many-storied
Dwelling Houses

Logic Programming in Chemical Information Handling
and Drug Design

Prescriptive and Descriptive Programming
A Way Ahead for CAAD

& Deriving Different Unification Algorithms from a
Specification in Logic

Controlling Backtrack in Horn Clauses Programming

249

261

262

274

286

Broda K.

Komorowski J.

McCabe P.

Pereira L.

Jones S.

Bellia M. &
Degano P. &
Levi G.

Sebelik J. &
Stepanek P.

Stepankova 0.

The Relation Between Semantic Tableaux and Resolution
Theorem Provers 293

QLOG - The Software for PROLOG and Logic Programming 305

Tiny PROLOG

Intelligent Backtracking and Sidetracking in Horn
Clause Programs - Implementation

Structured Programming Techniques in PROLOG

A Functional Plus Predicate Logic Programming
Language

Horn Clause Programs Suggested by Recursive
Functions

A Decision Method for Process Logic

321

322

334

348

360

AUTHOR INDEX

Aiello L.
Balogh, L.
Barath E.
Bellia M.
Bendl J.
Bojadziev D.
Bowen K.A.
Broda K.
Bruynooghe M.
Byrd L.
Clark K.L.
Dahl V.
Darvas F.
Davis R.E
Dausmann M.
Degano P.
Dincbas M.
Farkas Z.
Futo I.
Gallaire H.
Hansson B.
Hansson A.
Haridi S.
Hogger C.J.
Johansson A-L.
Jones S.B.
Kahn K.
Kluzniak F.
Komorowski H.J.
Koves P.
Lasserre C.
Levi G.
Markusz Z.
Mayor B.
McCabe F.
McKeeman W.
Mellish C.S.
Minker J.
Morris P.H
Moss C.D.S.
Pagello E.
Pereira F.
Pereira L.M
Persch G.
Santane-Toth
Sebelik J.
Sickel S.
Stepanek P.
Stepankova 0.
Swinson P.

92
160
172
334
201
247
219
293
12
127
45, 190
61
261
106
274
334
80
160
172
73, 286
230
53, 225
53
139
230
322
33
243
30 5
201
73, 236
334
249
215
45, 190
224
21
210
148
198
118
231
321
274
160, 177
348
224
348
360
262

Szalo P. 172
Szeredi P. 160
Szpakowicz S. 243
Tancig P. 247
Tarnlund S-A. 53,
Valentini S. 118
Warren H.D. 1
Winterstein G. 274

/

AN IMPROVED PROLOG IMPLEMENTATION WHICH OPTIMISES TAIL RECURSION

David H D Warren
Department of Artificial Intelligence

University of Edinburgh

'•"5MCp.p«r describe, ,o.« recent

optimisation"" "ieTrgue' opti."l«
matter of course in any new Prolog implementation, ana giv
account of what is involved,

2. INTRODUCTION is to report on some improvements recently

dThetoPDEC°i0e Prolog1 [3^ familiarity with the Prolog language [5] [9]

«d f , fullunlnrstanl1

132 Z&'JZLS or Prolog implementation

include [1] [*0 [2].

rl'r
Byrd^to be reported on separately], and an "in-core" compiler.

intecral part of the Prolog system which

SSLK. — SK »• «£ -
r.s.6.'o S3S . proO.ee 'Ĵ JSZut̂ SZ

much less working storage, bu debugging aids, such as
itself is several times slower and most of the deDugging a ,
tracing, are no longer applicable.

The ay,tern operates « «=p s«pp.ble

respectively the Interpreter end theon

compiler iTLTTt to" ̂ HffortV pr'.d.o, t.an I expected,

yp, remainder of tbis paper• °"

implemented a completely nam Pro'og imp .obv'10ua that it uould take
other associated improvements. I . r,ractical fruition. In
, lot of work to bring this improvement, oould be
particular, it was not clear whether the as3°^.^ fts x shall argue

made compatible with the needs J realised in conjunction with a
belom, tn, foil^ petenti.1 of^ TO> 1^onlj ̂ ̂ ̂ from

garbage collector. I therefore ambitious course of making the
scratch, and laat«dpursued DEC_10 system necessary to support TRO.

m.TntauTL'nr, ~.»t tb»t not ,11 the potential of

1

TRO has been realised, particularly as regards speed.

3. OVERVIEW OF TAIL RECURSION OPTIMISATION
Like most high-level languages, Prolog requires a stack (called the

local stack) to hold frames, one for each active procedure, containing
bookkeeping information together with the value cells for local variables.
For most languages, the stack frame can be discarded at the time the
procedure returns its result. With Prolog, however, this is not in general
possible, since procedures may be non-determinate, ie. they can return
several alternative results. The stack frame is therefore not generally
reclaimed until backtracking occurs, after the procedure has generated all
of its results. However, if the Prolog system can detect that it is
generating the last alternative result of a procedure, it is possible to
reclaim the stack frame immediately on return from the procedure, as in a
conventional language, and many Prolog systems (including DEC-10 Prolog) do
this.

Detection of the determinate situation is therefore quite important, and
normally requires either that the procedure be appropriately indexed
yielding only one candidate clause for matching, or that determinacy be
signalled or imposed by the programmer through Prolog's "cut" operator.
(Hence much of the importance both of indexing and of cut).

The additional improvement of tail recursion optimisation rests on the
observation that one does not need to wait until a determinate procedure
returns in order to reclaim its stack frame. Instead it is possible to
recover the stack frame at the time the last goal in the procedure is
invoked, ie. If the Prolog system has reached the last goal in a clause,
and there are no remaining backtrack points within the procedure to which
that clause belongs, then the current stack frame can be overwritten by the
stack frame for the procedure about to be invoked. (Note that it is not
necessary for the last goal to be a recursive call; a better name for the
improvement would be "last call" optimisation).

To get away with this rather underhand manoeuvre, it is obviously
essential to extract from the old stack frame all information that will be
needed subsequently. In particular it is vital not to leave behind any
pointers to the old information. Hence the follov.ing departures from
previous practice in Prolog implementation.

1. Instead of information about the caller, a procedure is now passed a
continuation, consisting of a pointer to the actual goal to be
executed next, together with its associated stack frame. Thus the
continuation does not necessarily correspond to the immediate parent
procedure, but in fact indicates the most recent ancestor with
further goals left to execute.

2. A called procedure is no longer able to access its arguments merely
by referring to the information about its caller (since the caller's
stack frame may well have been discarded). Instead the arguments of
a call have to be copied into registers, to be subsequently stored in
the callee's stack frame as extra bookkeeping information looking
exactly like ordinary (local) variable cells. This scheme has the
incidental advantage that certain unification steps become null
operations, namely those steps concerning unification with the first
occurrence of a variable at the outermost level in the head of a
clause where that variable is local (ie. it does riot occur in a
compound term). The value cell for such a variable can be identified
with the location for the corresponding procedure argument, and so

3

unification does not need to initialise it.

3. A final pitfall which has to be avoided concerns the case where an
argument to a procedure is (a reference to) anunmstantiated
variable in the stack frame about to be discarded.Possib
solutions to this problem, including the one actually adopted,

discussed in a later section.
So much for what the TRO is, what are its benefits?

The most obvious benefit is a saving of (local) stack ord°r
example, the procedure "quicksort" now only requires a stack of size order
log N instead of order N. And a determinate, directly tail recursi e
procedure such as "concatenate" now never uses more than one stack frame.
However this benefit alone is not as significant as it might seem.
Firstly the TRO is only recovering earlier space which would anyway
recovered ^.ater. Secondly, we have ignored the fact that most Prolog
procedures create new structures which cannot be storedonthe iooal stack
So the effect on total working storage requirements (which is all the user

is aware of) is unlikely to be dramatic.

For the space saving to really pay off, it is necessary to have a
garbage collector which can recover the space occupied by structures whi
are no longer capable of being referred to. Such a garbage collector was
already included in DEC-10 Prolog. The real worth of the TRO is then t ,
not only does it recover local stack frames, but also it allows ati™ctures
which are only accessible through such stack frames t0 be f^ore
collected A determinate tail recursive procedure can therefore
potentially continue executing indefinitely, even though it creates new
structures. A typical example would look like:-

cycle(S) modify(S,S1), cycle(S1).
where •modify' is a determinate procedure which transforms a structure S
into a new structure S1. The structure might be a term representing
state of a database, or a term representing the conversation so far in
natural language question answering system, for example.

This ability of the TRO in conjunction with garbage collection to make
certain kinds of Prolog program feasible for the first lme is, ,

the main argument for introducing it.

A further benefit of the TRO, which particularly appeals to me, is that
it also saves time, although it could be argued that the saving is not, by

' . —listers without the need for saving and
information can be kept in registe pffioiencv overheads of
restoring. The net effect is to remove most of the efficiency overneaos o
recursive procedures with respect to corresponding iterative loops in

procedures where many clauses have to be examine or

The actual speed improvement achieved when the TRO was incorporated in
our DEC-10 implementatLn ranges from 6$ for examples of non- f--«a
procedures to 56% for -concatenate' and 68? for 'length'' >•
that this makes the speed of Prolog -concatenate' almost
of the corresponding Lisp version compiled with the DEC-10 Stanford L p

9
compiler (assuming no change in the latter speed since 1977). The
important special case of a unit clause had effectively already been
optimised in the original implementation, so the improvements achieved in
the best cases were not as typical of the general situation as had been
hoped for.

TRO is, of course, not a new idea (cf. for example SCHEME [6]), although
it seems that it has seldom been incorporated in software in widespread
use. The reason is probably that, because most languages include explicit
iterative constructs, implementors feel the burden can be left on the
programmer to recognise the iterative situation. However this state of
affairs seems hard to justify, since TRO is relatively easy to implement
(see below).

It is important to notice that TRO is more widely applicable in Prolog
than in other languages such as Lisp. For example the Prolog procedure for
'concatenate' :-

concatenate([],L,L).
concatenate([X|L1],L2,[X|L3]) concatenated ,L2,L3).

is susceptible to TRO, giving essentially the following iterative version-
concatenated ,L2,L3) =
(while L1 is a non-empty list
do

let List be a new record with 2 fields;
head(List) := head(L1);
L1 := tail(L1);
field pointed to by L3 := List;
L3 := a pointer to tail(List)

repeat;
field pointed to by L3 := L2;
return)

However for the Lisp version:-
concatenated ,L2) =
(null(L1) -> L2,
T -> cons(car(L1),concatenate(tail(L1),L2)))

straightforward TRO does not yield an iterative version, since the last
function call to be executed is the call to 'cons', not the call to
'concatenate'. It will be seen that the iterative version requires the
handling of partially completed structures and the passing around of
pointers to the corresponding "holes". This is available as a matter of
course in a Prolog implementation, since it is a feature of the language
(the "logical variable"), but the same is not true of Lisp. Now because,
in cases like this, the iterative version can only be programmed using the
very low-level concepts of pointers and pointer assignments, it seems even
more unreasonable for the job to be left to the programmer rather than the
implementation.

The following section gives a detailed description of what is involved
in implementing the TRO. The reader familiar with the standard
implementation will see that TRO introduces very little extra complexity,
provided it is designed in from the outset. For this reason, I think the
TRO should be included as a matter of course in any new Prolog
implementation, even if, without the inclusion of a garbage collector, the
full potential is not realised.

s
4. DESIGN DETAILS FOR TAIL RECURSION OPTIMISATION

This account aims to be as self-contained as possible, "ut the reader
should refer to [7] for certain details. Note that the version actually
implemented differs slightly from the more ideal design given here, because
of constraints imposed by adapting the existing implementation.

4.1. Data Areas
The main data areas are the code area, containing data representing the

program itself, and three areas operated as stacks, the local stack, the
global stack and the trail. Each procedure invocation leads to the
creation of an environment comprising three stack frames, one on each
stack. The local frame contains information that is only required during
the execution of the procedure concerned, namely bookkeeping information
and the value cells for local variables. The global frame contains
information representing the new structures (complex terms) created by the
procedure. For structure-sharing implementations, this will comprise just
the value cells for global variables. The trail frame contains the
addresses of variable cells which have been assigned to during unification
and which must be reset to "unassigned" on backtracking.

4.2. Registers , . .
The current state of a Prolog computation is defined by certain

registers containing pointers into the main data areas. These registe

are:-
L latest local frame
G latest global frame
TR top of trail

(V)
(VI)
(TR)

CP continuation point
(goals to be executed next) (A)

CL continuation local frame W
CG continuation global frame (X'J

BP backtrack point (alternative clauses)
BL backtrack local frame rvvil
BG backtrack global frame ^Vv

where the names in brackets are those used in [7] for roughly corresponding
registers. In addition, there are registers:-

A1, A2, ... etc.
representing the arguments of a procedure call. These registers °°nta^
constructed terms, ie. representations of atoms, compound terms

references to variable cells.

4.3. Bookkeeping Items
Each local frame contains space for six items of bookkeeeping

information, referred to as:-
CP(1) CL(1)
G(1) TR(1)
BP(D BL(1)

where 1 is the address of the local frame. These items are the values of
the corresponding registers at the time the procedure was invoked. The
items TR, BP and BL are only needed if the procedure is a choice point.

4.4. Shadows
Certain registers are not strictly essential, since they merely "shadow"

certain stack locations:-
G = G(L) CP = CP(L)
CG = G(CL) CL = CL(L)
BG = G(BL)

However the use of these non-essential registers is likely to be more
efficient. (Certainly this is the case in the DEC-10 implementation). In
particular, BG is involved in checking whether a variable assignment needs
to be trailed.

4.5. Procedure Arguments
The local frame also contains n locations (where n is the arity of the

procedure) into which the procedure's arguments are stored. These
locations are called:-•

A1(1), A2(l), ... etc.
where 1 is the address of the local frame. These locations look just like
ordinary variable cells, except that the value of the cell cannot be
"unassigned".

4.6. Analysis of a Prolog Program into Basic Operations
Let us now analyse the procedural aspect of a Prolog program into some

basic operations which allow for the tail recursion optimisation. The
detailed implementation of each basic operation will then be described
later. The naive analysis of a general clause:-

P :- Q, R, S.
would be:-

mateh P
enter
call Q
call R
call S
exit

However to allow for the tail recursion optimisation, the last call must be
treated differently; the actual analysis is:-

match P
enter
call Q
call R
depart S

Thus, in effect, "depart = call + exit". Clauses with no goal in the body
(a unit clause), or with just one goal in the body (a doublet clause), are
treated as special cases:-

match P match P
return proceed Q

One can summarise this as "return = enter + exit" and "proceed = enter +
depart".

The operations corresponding to a procedure P comprising clauses C1, C2,
C3 are:-

arrive P
choice
try C1
try C2
nochoice

1-

trust C3
If there is just one clause, the operations reduce to merely.-

arrive P
trust C1

Note that if the procedure is indexed, instead of just one sequence o
candidate clauses, there will be a set of alternative subsequences, one for
each different key; for keys with just one candidate (a common caseJ> oW
a single trust action will be necessary, as in the second of the two

alternatives above.

4.7. Description of the Basic Operations
The details of each basic operation, apart from the unification

operation -match', are now described. Two other basic operations are also
covered. These are -fail', the backtracking operation which occurs when
unification fails, and 'cut', the operation corresponding to the Prolog

control primitive.

{Load arguments and invoke procedure with new continuation.}
load A1,... with arguments from CL and CG;
CP := remaining goals;
goto procedure

enter
{Complete the current local and global frames.}

save CP, CL, G into L;
CL := L; CG := G;
L := L + size of local frame;
check L is not full;
G := G + size of global frame;
check G is not full

exit
{Resume at continuation, discarding
procedure is determinate.}
if BL < CL then L := CL;
restore CP, CL from CL;
CG := G(CL);
goto CP

the local frame if the current

P {cf "call + exit". Load arguments, and invoke the new procedure with
the'old continuation, overwriting the local frame if current procedure

is determinate.}
load A1,... with arguments from CL and CG;
if BL < CL then L := CL;
restore CP, CL from CL;
CG := G(CL);
goto procedure

{cf "enter + depart". Load arguments, complete the local frame only
if the current procedure is non-determinate, complete the global frame,
and invoke the new procedure with the existing continuation.}

&

load A1,... with arguments from L and G;
if BL = L
then

(save CP, CL, G at L;
L := L + size of local frame;
check L is not full);

G := G + size of global frame;
check G is not full;
goto procedure

return
{cf. "enter + exit". Complete the local frame only if the procedure is
non-determinate, complete the global frame, and resume at the current
continuation.}
if BL = L
then

(save CP, CL, G at L;
L := L + size of local frame;
check L is not full);

G := G + size of global frame;
check G is not full;
goto CP

arrive
{Store the procedure's arguments.}
store A1,... into L

choice
{Create backtracking point.}
save BP, BL, TR at L;
BL := L; BG := G

try
{Select a clause with other alternatives.}
BP := other clauses;
goto clause

nochoice
{Remove the backtracking point.}
restore BP, BL from L;
BG := G(BL)

trust

{Select a clause with no other alternatives.}
goto clause

fail

{Restore the state corresponding to the latest backtracking point.}
if BL < L
then

(L := BL; G := BG;
restore CP, CL from L;
CG := G(CL));

undo TR as far as TR(L);
goto BP

cut
{Remove backtracking points created since the current procedure: was
invoked, delete trail entries no longer relevant, and remove any local
frames which still remain after the current one.}

if not BL < CL
then

(until BL(BL) < CL do BL := BL(BL);
restore BP, BL, XRO from BL;
BG := G(BL);
tidy TR as far as TRO;
L := CL + size of local frame)

4.8. Design Considerations
There are certain points to notice in the above design.
1 As already mentioned, it is assumed that it is advantageous to

saving and restoring of registers can be avoided.

2. For completely determinate procedures (ie. procedure a°"vations
within which the action choice is not executed), there is absolutely
no saving or restoring of the "backtracking registers" BP, BL and TR.
Note that the cut operation therefore has to be slightly more
expensive in the general case, since it has to trace back down the BL

chain.

3 The saving of the other registers (CP, CL and G) is not performed at
' the beginning of the procedure, but is postponed as late aspossible

in ihP hone that it will not be necessary to preserve the local
frame. It may appear that this approach is disadvantageous in the
non-determinate case, since there is then the overhead ofrepeatedly
saving the same information for each clause entered. However, in
experimental comparisons of the two approaches, I have not found any
example, even among very non-determinate programs, where late
saving" is slower. The reason, I think, is that the extra overhead
mentioned is balanced by reduced overheads in calling a procedure

where no clause matches.

4 Reeisters CP CL and CG are restored by 'depart' since otherwise it
IS?" necessary for 'rsturn' to restore t»es. ™

5' JUS r & M n'oleeTep £iŜ £
G register or to check it for global stack overflow.

4.9. Treatment of Procedure Arguments
rprtain details concerning the handling of procedure arguments have not

yet been discussed. In particular ». »a.e to 0.
"dangling reference" is left to a variable cell in a discarded stack fram .

One way to do this would be to fully "dereference" all Procedure

arguments, and to forgo ^^"^f^encf30 ThisTa^ the disadvantage
dereferenced values were a dangling reierence.

to

that it involves quite a lot of extra work at runtime.

As an alternative, one can try to spot the possibility of a dangling
reference entirely at "compile-time", and only permit the stack frame to be
discarded where it can be guaranteed always safe to do so. A variation of
this, the approach actually adopted, is to force any variables which might
otherwise have given rise to a dangling reference to be stored in the
global stack. Both these options involve little or no run-time overhead,
but are less efficient at conserving stack space. I have adopted the
second option because it was the simplest to incorporate in the existing
implementation and because hopefully the garbage collector will be able
eventually to reclaim the extra global variables.

In the implemented version, no attempt is made to fully dereference
procedure arguments. If an argument is a variable, the argument register
is loaded with a reference to that variable's cell, unless it can be
guaranteed (at compile-time) that the variable is instantiated (to
something other than a reference to its own local stack frame), in which
case the value of the variable's cell is loaded. This guarantee can be
made if the variable has an occurrence in the head of a clause and
satisfies the normal conditions for being a local. To understand why this
is so, consult [7]. The TRO then requires that a variable be deemed global
if a reference to that variable is passed as an argument to the last goal
in the clause. Thus the only variables made global which would otherwise
have been local are those which (i) occur in the last goal, and (ii) only
occur in the body. In practice this is quite a small minority of
variables.

5. ACKNOWLEDGEMENTS
The improvements described were implemented with the help and

encouragement of Fernando Pereira and Lawrence Byrd. The work was
supported by a British Science Research Council grant.

6. REFERENCES

1. Bruynooghe M. An interpreter for predicate logic programs : Part ±.
Applied Maths & Programming Division, Katholieke Univ Leuven, Belgium,
1976. Report CW 10
2. Colmerauer A, Kanoui H and van Caneghem M. Etude et realisation d'un
svsteme Prolog. Groupe d'Intelligence Artificielle, U. E. R. de Luminy,
Universite d'Aix-Marseille II, 1979.
3. Pereira L M, Pereira F and Warren D H D. User's Guide to DECsvstem-10
Prolog. Dept of Artificial Intelligence, University of Edinburgh, 1978.
4. Roberts G M. An implementation of Prolog. Master Th., Dept of Computer
Science, Univ of Waterloo, Canada, 1977.
5. Roussel P. Prolog : Manuel de Reference et d'Utilisat-ion. Groupe J
d'Intelligence Artificielle, U. E. R. de Luminy, Universite d'Aix-Marseille
II, 1975.

6. Steele G L. RABBIT: A Compiler for SCHEME. Master Th., MIT, Mav 1978.
AI-TR-474 ' '

7. Warren D H D. Implementing Prolog - compiling predicate logic programs.

39P& 40 Artificial Intelligen°e. Univ of Edinburgh, 1977. Research Reports

V

8. Warren D H D. Prolog on the DECsystem-10. Expert Systems in the

Micro-Electronic Age, 1979.
9. Warren D H D, Pereira L M and Pereira F. Prolog - the language and
implementation compared with Lisp. SIGPLAN/SIGART Newsletter, ACM
Symposium on AX and Programming Languages, August, 1977.

II
T he memory managemen t c f PROI , OG imp lemen t a t i ons

Maur i ce Uruynooghe
Ka tno l i eke t ' n i v e r s i t e i t Leuven

Afde l i ng Toegepas t e Wi s kunde en P r og r a mma t i e
Ce l e s t i j r i en l aan 200k , B-3030 Hev e r l ee , Be lg ium

Abs t r ac t

He de sc r i be t he t op down execu t i on o f l og i c p rog rams and t h e concep t s o f
c ompu ta t i on r u l e and s ea r ch r u l e . We show t ha t e spec i a l l y PROL OG ' S dep th f i r s t
s ea r ch r u l e r e su l t s i n impor t an t s imp l i f i c a t i ons o f t he nece s sa ry run t ime
s t r uc t u r e s . A t a h igh l eve l , we de sc r i b e a n i n t e rp r e t e r w i th i t s r un t im e
s t r uc tu r e . Th i s imp lemen ta t i on i s p robab l y c l o se r t o imp lemen ta t i on t e ch n iq u es
o f A lgo l - l i ke l angua ge s t h an t o s t r uc t u r e sha r i ng . We c l a im tha t t h i s h igh
l eve l i n t e rp r e t e r i s a f a i r de sc r i p t i on o f t h e be s t known imp lemen ta t i ons . At
t n e s ame h igh - l eve l - wi thou t cons ide r i ng t he ac tua l r ep r e sen t a t i on o f t he
b ind ing s o f va r i ab l e s - we d i s cus s t he d i f f e r en t oppo r t un i t i e s t o s ave sp ace b y
popp ing t he env i ronmen t s t a c k o f t he run t ime s t r uc tu r e . F in a l l y , we d i s cus s
t he p rob l ems p o sed t o space s av ing b y t he r ep r e sen t a t i on o f t ne b ind ings o f t he
v a r i ab l e s . We s h o w t ha t s t r uc tu r e s ha r i ng , a l t hough supe r io r f o r a gene ra l
r e so lu t i on t heo rem p rove r , i s no t t he on ly pos s ib i l i t y t o hand l e t ne b ind ings o f
t he va r i a b l e s .

1 L og ic p rog ra ms - PRO L O G

L og i c p rog rams [j j .]

A l og i c p rog ra m compr i s e s a s e t o f p roce d u r e s and a goa l s t a t emen t . A
p r ocedu re o r Horn c l au se h a s t he fo rm B <— A-) A r i (n > = 0) w i th B and
l i t e r a l s . L i t e r a l s have t he fo rm R f 1 1 , . . . , t ^) (k > 0) w i th R a k - a d i c r e l a t i on
a n d t he t j t e r m s i . e . cons t an t s (f i r s t symbo l a n uppe r c a se l e t t e r) , va r i ab l e s
(f i r s t symbo l a l ower c a se l e t t e r) o r exp re s s ions o f t he fo rm f (t •) , . . . , t m) (m >
0) w i th f a m-a ry func t i on symbo l and t he t A aga in t e rms) . Such a c l au s e can be
r ead e i t he r a s a l og i ca l f a c t : ' f o r a l l va lue s o f t he va r i ab l e s , B i s t r ue i f
A(3 1 1 (3 3 1 1 (3 A n a r e t r ue ' o r a s a p rocedu re t o so lve t he p rob l em 8 : ' t o so lve
B , s o lve A- | a nd . and A n . A goa l s t a t emen t h a s t he fo rm A - j , . . ,A„ (n > 0)
w i th t he A^ l i t e r a l s I t h a s a l so t w o wa ys o f r e ad ing , a dec l a r a t i ve one :
' t h e r e does no t ex i s t va lue s f o r t he va r i a b l e s such t ha t A- | a nd . . . A a r e
t r ue ' and a p roce du ra l one : ' f i nd va lue s f o r t he va r i ab l e s s o lv ing ' t he p r ob l ems
A-] a nd . . and A r i ' .

A p rocedu re B < - - A - j , . . . ,A r i can be u sed t o so lve a p rob l em when t he head ing
B o f t he p rocedu re ma tc he s t he l i t e r a l (' c a l l ') r e p r e se n t i ng t he p rob l em. W i th
'm a t ch ' w e mean t ha t t he head ing a nd t ne ca l l mus t ag r ee t o cons ide r t he same
p rob l em, n am e ly t he mos t g e ne r a l i n s t ance o f t he c a l l f o r w h ich t he p ro ced u re
can be u sed . Th i s ma tch ing p ro ce s s (' un i f i c a t i on ') c r ea t e s a subs t i t u t i on

. componen t s x <— t . 3ucn a c ompone n t i nd i ca t e s t ha t , fo r
ag r eemen t be tween c a l l and head ing , i t i s ne ce s sa r y t o r ep l ace t he va r i ab l e x by
; f e t h e e r f o rm ' t K 1 ^ W ° r d S ' ? ° r * 3 t r i c t t n e V a l u e s f o r t n e t r i ab l e X t o va lue s
o f t h e fo rm t . Borne com ponen t s o f t he subs t i t u t i on can be r e l a t ed t o ' n e
wh i t e n th l n t n e ? a n (0 U t P U t) a n d dua l l y a f f ec t t he r ema in ing p r o ems ,

? ! componen t s a r e r e l a t ed t o va r i ab l e s o f t he p r oc e du r e (i npu t 1 and
f w a n o l . r 'V s u ? p r o ? } e m s c r ea t ed b y t he app l i c a t i on o f t h i s p ro ced u re (i n s t ance s o f t n e c a l l s i n t he body) ,

To execu t e a p rog ram , t he s e a r c h r u l e s e l ec t s t he i n i t i a l goa l s t a t emen t
1 , A n , d e m a n d s t h e c o m p u t a t i g t i r u l e t o s e l ec t a c a l l A • P (t , ' I

app l i e s a p ro ced u re R (t ' i . . t ' „) < R . n - \ w 1 * 1
• ' ' P ®a t chmg t ha t c a l l w i t h a

- 1 -

IS
T h e m e m o r y m a n a g e m e n t o f ' P R O L O G i m p l e m e n t a t i o n s

subs t i t u t i on ('mo s t gene ra l un i f i e r ') a and de r i ve s t he new ^ 1 s ta t emen t
, , . d r A- 1 . . .A„) a • The n t h e s ea r ch r u l e s t a r t s ove r

" i t . - ' s e l e c t i ng I ' goa l s t a t e m e n t , even tua l l y a c t i va t i ng t he compu ta t i on r u l e
and de r i v ing a new goa l s t a t emen t . Hew goa l s t a t emen t s a r e ac L xys ; s e l e c t ed
goa l s t a t emen t s become i nac t i ve once a l l p rocedu r e s ma t c h ing t he s e „c e ^
have been app l i ed . T he s ea r ch can b e r ep r e sen t ed by a n OR- t r ee , . _
S . t " nodes a r e goa l s t a t e me n t s . The de s cendan t s o f a node a r e t he
a l t e rna t i ve goa l s t a t em en t s de r i vab l e f rom t he goa l s t a t em en t " ' t ha t node . Th e
s ea r ch i s f i n i shed once a l I nodes a r e i nac t i ve . The t e rmina* ° f

a r e e i t h e r unso lvab l e goa l s t a t emen t s o r emp ty goa l s t a t emen t s . Th ^ .y g
s t a t emen t s r ep r e sen t so lu t i o n s . T he co mp o s i t i on o f t h e subs t i t u t i ons u s ed o r ,

p j " t h the roo t node t o emp ty nod . , W l Ud
i n i t i a l goa l s t a t emen t g ive s t he de s i r ed r e . u l t . T o oo .p l . t e t h . a ea r o n , on ly
t he a c t i ve goa l s t a t emen t s a r e needed .

A goa l s t a t emen t can be r ep r e sen t ed by an AND- t r ee t he iC S£ . The
r o o f node ha s a s immed ia t e de scendan t s t h e s u b g o a l s Ai o f t he i n i t i a l goa
r o o o noae na s S ub< toa l A , b e ing execu t ed by a p ro ced u re B
r X St 1 ; . ' ' i eS , , , i n f a 8 ? i e ' ddbgo l l . B , B „ . The g o . , «« .»»«
co r r e spond ing t o a p roo f t r e e i s g iven by t he nonempty t i p s ™l J2 a r J i r e e

c a n ' e a s i l y^be S e r ^ / f rom"^^ f t he r "^app ly ing ' t he s e l ec t ed p rocedu re o n t he
ca l l chosen b y t he co mp u t a t i o n r u l e .

P RO L O G

Tne s ea r ch ru l e o f PRO L O G e xp l o r e s t he s ea r ch t r e e dep th f i r s t , PROLOG
r u j e 01 r n f s t a t em en t (t h e cu r r en t goa l

a ! W f y Lt) r , < 3 T h i s s t r a t e g y g reany S i m p l i f i e s t h e needed r u n t i m e s t r u c t u r e s .
SXJT ^ ' l ac i go ! s t a t emen t s ' a r e on t he b r anch l e ad ing f rom t he roo t t o

co r r e spond ing t o t he cu r r en t goa l s t a t emen t and t o u se back t r ack ing t o r e s to r e
t he o t he r s .

The compu ta t i on r u l e o f PROLOG a lway s s e l ec t s t he l e f t m o s t subgoa l i n t ne
p roo f t r e e I t me a ns t ha t subgoa l s a r e s o l v e d s e que n i a l execu t i on o f a
subgoa l A i + 1 i s on ly s t a r t ed when t he subgoa l A i i s comple t e ly so lved .

. . l A f i - t - o r i kh t : o r , b ack t r ack ing , t h e i r
The s ubgoa l s f ££ J n 0 de co r r e s p o n d in g t o t he s e l e c t e d

expans i ons a r e r emoved f rom r i gh t , o i ha ok t r a c kDo i n t Th e node s
subgoa l i » an a c t l . , goa t s t a t emen t « , p ,

Z ' l lL i l i c ZIVZU, . °L„ - e matches t be oa i i . a ce pa r t o r t h .
cu r r en t s egmen t o f t he p roo f t r e e . O n back t r ack ing , t he cu r r en t s egmen t
r e mo ved and wha t r ema ins o f t he p roo f t r e e bec ome s t ne cu r r en t goa l s t a t emen t .

2 . . Run t i me s t r uc tu r e

t ne p roo f t r e e s co r r e spond ing t o t he back t r ackpomts .

t ' s ua l Jy 1 " 1 VZ — sir T' » Ss
p rocedu re w i th un ique names f o r t he va r i ab l e s . T i s r e s

- 2 -

The memory management o f PROLOG implementa t ions

use o f memory ; each t ime a p rocedure i s used , a new copy i s made . I t i s
p re fe rab le to use , l i ke in Algo l , r een t ran t code fo r ine r ep resen ta t ion of
p rocedures , such tha t a l l i n s t ances o f the same l i t e ra l sha re the code
desc r ib ing tha t l i t e ra l . Th i s i s poss ib le by us ing b ind ing env i ronments . The
pu re code i s a lways accessed in the con tex t o f a pa r t i cu la r b ind ing env i ronment .
When access ing a va r i ab le in the r een t ran t code , t he cor respond ing b ind ing
env i ronment i s consu l t ed . Thus , l i t e ra l s can be p resen ted by a po in te r to the
pure code and a po in te r to tne b ind ing env i ronment . Because a l l l i t e ra l s o f the
same p rocedure body sha re the same env i ronment , i t i s conven ien t t o s to re the
b ind ing env i ronment in the common f a the r node .

We can d i s t ingu i sh two k inds o f nodes i n the p roof t r ee . We have the
t ipnodes which a re the unso lved subgoa l s o f the cu r ren t goa l s t a t ement and the
non t ipnodes which a re the pa r t i a l ly so lved p rob lems . Excep t o f the l e f t mos t
t i pnode , the one to be s e l ec ted by the computa t ion ru le I t he cu r ren t subgoa l) ,
a l l t i pnodes a re pa r t o f i n s t ances o f p rocedures B <— B-) , . . . ,B m wi th the i r
f i r s t l i t e ra l B- j e i the r a s cu r ren t subgoa l o r a s non t i pnode . Assuming tha t the
pure code a l lows to f ind the r igh t hand b ro the r s B 1 + 1 , B i + 2 , . . o f any subgoa l
B i , and knowing tha t t he i r execu t ion demands the same b ind ing-env i ronment , a t ;
exp l i c i t r ep resen ta t ion o f the t ipnodes in the p roof t r ee i s no t necessa ry , they
can be accessed e i the r th rough non t ipnodes o r th rough the cu r ren t subgoa l .

For the non t ipnodes i t i s conven ien t t o use a s t ack (' env i ronment s t ack ') .
The subgoa l s be ing execu ted a re pushed on the s t ack , on back t rack ing , the s t ack
i s popped .

F ina l ly , we have to cons ide r the un i f i ca t ion be tween ca l l and p rocedure
head ing . Bes ides c rea t ing a b ind ing env i ronment fo r the p rocedure , a l so the
b ind ing env i ronment a s soc ia t ed wi th the ca l l (and , even tua l ly o the r pa r t s o f the
run t ime s t ruc tu re devo ted to the r ep resen ta t ion o f the va r i ab les) i s upda ted .
Al l upda tes no t undone by popp ing the cu r ren t segment o f the env i ronment s t ack
need to be saved . For t h i s purpose i t i s p re fe rab le to use a s t ack .
(' t r a i l ') . Eacn back t rackpo in t con ta ins a po in te r t o the top o f the t r a i l (the
beg in o f a new cu r ren t segment) . The cu r ren t segment o f t he t r a i l con ta ins a l l
changes made t o the r ep resen ta t ion o f the p roof t r ee a s soc ia t ed wi th the l a s t
bacKt rackpo in t , wh ich a re no t undone by popp ing the cu r ren t segment o f t he
env i ronment s t ack .

Tne s t a t e o f the computa t ion i s cha rac te r i zed by
Ct 'RR-CALL
CUR P . -EN

a po in te r t o the pure code o f the cu r ren t subgoa l .
a po in te r to the node con ta in ing the b ind ing env i ronment o f the
cu r ren t ca l l (the ' f a the r ' o f the cu r ren t ca l l) .

* CURR-PROC : a po in te r t o the pure code o f the p rocedure to be app l i ed on
the cu r ren t ca l l .

* LABTBACK : a po in te r to the l a s t back t rackpo in t .

Tne cu r ren t goa l s t a t ement i s g iven by the cu r ren t subgoa l , i t s r igh thand
b ro the r s and the r igh t -hand b ro the r s o f a l l i t s ances to r s .

To back t rack the cu r ren t segment o f the env i ronment s t ack i s popped (the
node po in ted by LASTBACK becomes the cu r ren t subgoa l) . a)) upda tes no ted on the
cu r ren . . s egment o f the t r a i l a re undone and tne cu r ren t segment o f the t r a i l i s
pOpp0Q.

To summar ize , a ' de te rmin i s t i c ' node con ta ins
CALL : a po in te r to the pure code o f tne ca l l tm q

to the r igh thand b ro the r s . po in te r g ives a l so access
FATHER : a po in te r to the f a the r o f t h i s node .Th i s f a the r node con ta ins the

b ind ing env i ronment a s soc ia t ed wi th CALL, i t a l so g ives access to

- J -

IS
The memory managemen t o f PROLOG imp l emen t a t i ons

t he r i gh thand b ro the r s o f a l l ance s to r s o f CA L L .
* a b ind ing env i ronmen t f o r t he va r i ab l e s o f t h e p rocedu re app l i ed on c a l l .

A b ack t r a ckpo in t a l so con t a in s :
» BACK : a po in t e r t o t he p r ev i o u s back t r ackpo in t .
* PROCED U R E : a p o in t e r t o t he pu re code .o f t he nex t p rocedu re t o be ap p l i ed on

CA LL (g ive s a cce s s t o a l l un t r i ed p rocedu re s) .
* TPAIL : a po in t e r t o t he t r a i l .

A l g o r i t h m

1 . Push a node on t he env i ronmen t s t a ck wi th
- CALL C URR-CALL,
- FATHER := CURR-ENV
- F ind ' t h e f i r s t succe s so r o f C U P R -P R OC wh ich pos s ib ly m a tches CURR-

CALL, i f none t hen we have a de t e rmin i s t i c node „ , » . 1 C . 0
e l s e we have a back t r ac kpo i n t (a b i t o f CALL o r rATHLP

can be u se d t o i nd i ca t e t he d i f f e r ence)
and we have t o comple t e t he node w i t h :
BA CK := LASTBACK, LAST6ACK becomes t h e new node
PROCEDURE := t he nex t pos s ib ly ma tch ing p rocedu re
TPA I L := t op o f t he t r a i l

A b i n d ing env i ronmen t f o r t he va r i ab l e s o f CURR- PROC
2 . Un i f i c a t i o n be tw e e n

C URR-CALL w i th i t s b ind ing env i ronmen t CURR- ENV and
t h e head ing o f CUPR-PROC w i th i t s b in d in g env i ronmen t i n t he new node .

A l l changes t o t he env i ronmen t s t ack no t r e s t r i c t ed t o t he cu r r en t s egmen t
a r e no t e d on t he t r a i l .

CURR-CALL := f i r s t c a l l i n t he body o f CURR-PRO C
C U R R -E N V := t he new node o f t he e nv i ronmen t s t ack

3 . I f s ucce s s f u l un i f i c a t i on
t nen f i nd t he n ex t unso lved subgoa l (i f none : a s o lu t i on i s de r i ved) .
wh i l e CURR-CALL = NIL do

CURR-CALL := t he suc c e s so r o f CAL L i n CURR- tNV
CURR-ENV := FATHER o f C U R R - EN V

e l s e back t r ack : (i f LASTBACK = NIL t hen en d o f compu ta t i on)
- u s e TPAIL po in t e r o f LASTBACK t o undo changes wh ich a r e n o t i n t he

cu r r en t s e gme n t o f t he env i ronmen t s t a ck and pop cu r r en t s egmen t o
t ne t r a i l .

- CURR-CALL := CALL o f LASTBACK
- CURR-ENV := FATHER o f LASTBACK
- CUPR-PROC := PROCEDURE o f LA S TB A C K
- LAS TBACK := BACK o f LASTBACK and pop t he cu r r en t s egmen t o f t he

env i ronmen t s t ack (a l l nodes i nc lu s ive t he one po i n t ed by
t he o ld va lue o f LASTBACK)

^ " i n the f i r s t PROLOG imp lemen ta t i on [1] , [5] , t he i de a t o u s e r e en t r an t code
fo r t he p rocedu re s was r a t he r ba sed on Bo y e r and Moore s s t r uc tu r e s ha r i ng ,
f o r r e so lu t i on t h eo rem p rove r s [2] , no t on imp lemen ta t i on t e chn iques f o r

- Mos t 1 imp lemen ta t i ons do no t make a d i s t i nc t i on be twe e n de t e r min i s t i c node s
and back t r a ckpo in t s ([1] , [7]) t he f i r s t imp lemen ta t i on [1] even do n o t
keep t r a ck o f t ne l a s t back t r ackpo in t , i t pops nodes one by one .

- The f a c t t ha t a de t e rmin i s t i c node i s more s pa c e e f f i c i e t u t han a
back t r acknode , and t ha t de t e r m in i s t i c nodes p l ay a c ruc i a l r o l e i n he
space s av ing t e chn iques de sc r i bed i n t he nex t s ec t i on makes i t wor thwh i l e

- 4 -

The memory management o f PROLOG implement a t io r j s

t o spend some e f fo r t in de te rmin ing ' t he f i r s t p rocedure which poss ib ly
"a tones a ca l l ' . The ex t remes a re ' t he f i r s t p rocedure ' and ' fu l l
un i f i ca t ion be tween head ing and ca l l ' .

•3 - Oppor t un i t i e s to POD the env i ronment - STAR- i f . Pi t f a l 1 S

a . Comple t ing a de te rmin i s t i c subgoa l

b / \

/ \ ^ d2 d"5

\ 1 p ^
* * s 7 sg

(a)

F ig - 1 . Dropp ing a de te rmin i s t i c sub t ree

(b)

In f ig . 1 . r deno tes the roo t o f the p roof t r ee the d - deno te
de te rmin i s t i c nodes , the b i deno te back t rackpo in t s , t he s , - deno ' e^nso j / ed
subgoa l s and the * deno te empty s e t s o f subgoa l s . Tne subgoa l co r respond ing to

2 i s comple te ly so lved , the so lu t ion i s un ique (no back t rackpo in t s in the
sub t ree) . Th i s comple ted sub t ree can be d ropped f rom the p roof t r ee (F ig Yb)
wi tnou t a f f ec t ing the behav iour o f tne a lgor i thm. Indeed we have fhe i ami
cu r ren t goa l s t a t ement and the goa l s t a t ement s co r respond ing lo the
back t rackpo in t s (b 1 f b 5) a re a l so tne same . " - r e spond ing .o the

the JTT ,teCll , l lque corresP°nds to the situation in a conventional language
activation record is popped when returning from a procedure.

< b) D U t he° a n h ? - d e - C t i Y 3 1 1 (1 h a t ' d] i ' ; g ° f ' t a i l end r ecur s ion ' (see sec t ion
in F ia ? IT technique i s r e s t r i c t ed to the s i tua t ion dep ic ted

F ig . 2 . where on ly one p rocedure ma tches the ca l l and the body i s empty .

and cSS ;° i s °a f de te^n i sS ic no 'de" = C l 'RR-CALL . Nil

s
y \ \ X j V C U R R - E N V : b i

' 2 3 3 CURR-ENV :d 2 S3 CL 'RR-CALL: S3

CL 'RR-CALL:«

/

(a) (b) (c)

the p„ 0 M l J „ „„ „

opT ne™f"*T ° f C , L L 1 , 1 CL'PF-ENV.
(new top i s e i tner CURR-ENV o r LASTBACK) , ° f t n e e n v i r ° r "»e" t s t ack

I>
The memory management or PROLOG implement at iotia

b. Tail end recursion

r

/\
b1 s5

Cl'RR-ENV :Ei

CURR-CALL:s2

(a)

Fig. 3. Replacing tail end recursion by iteration.

The situation is depicted in Fig. 3- The E-p denote the binding
environments which are part of the nodes. In Fig. 3-a, s2 is the last call
of a procedure surviving in the proof tree. (its eventually lefthand
brothers have been popped). Only one procedure is matching. (Fig. 3-b").
The benaviour of the interpreter on the proof trees of Fig. 3-b and Fig.
3.c is the same. Indeed : (1) the same current goal statement (with the
same binding environments!) and (2) the goal statements corresponding to
the backtrackpoints are also identical. The node describing the call s2
has been collapsed with its father (E2 replaces E-| and the node s2 is
popped). The same node can now be used to execute S3 (iteration over the
same space). This situation is typical for recursive calls with tail end
recursion. The recursion is replaced by an iteration. It results in great

savings when tnere is deep recursion.

Detection of the situation by the interpreter : (prior to the
unification. Fig. 3.a - due to the representation of the binding
environments, It is preferable to swap Ep and E2 before unification). The
successor of CURR-CALL is Nil and LA3TBACK is at least as for from the top
as CURP-ENV. (tnus CURR-CALL deterministic and its lefthand brothers

popped) .

Action : prior to unification : swap binding environments of the new
node and the node CURP-ENV; after unification (Fig. 3-b) : CURP-ENV : =
FATHER of CURR-ENV, pop the top node (CURP-ENV is the new top).

Note : to handle a special feature in PROLOG wnich transforms
some backtracknodes into deterministic nodes, it is necessary to know when
either a node has real children or its children are, due to tail end
recursion, further descendants. A bit of the FATHER or CALL fields can be

used to indicate the difference.

c. Pit fal1 a

We take care that the interpreter did not need to access the popped nodes,
however, up to now we did not consider the representation of the binding
environments. The above reasoning is only correct when the remaining binding-
environments do not refer to the removed ones : when eventual references are all
oriented from top to bottom of the envirorimentstack. The fir3t PROLOG
interpreter [1] violated this condition, as a consequence it could only pop the
stack on backtracking. The attempt to pop the stack when completing a

CURR-ENV:E2

/ \
CURR-CALL: S3 si)

r f

En EO

bp S5 b-| Si
El CURP-ENV:E2

I / \
d2 CURR-CALL: S3 si)

(b) (c)

it
The memory management ol' PFOI.OU implementations

determinate subgoal drove tne author [3J, [4 J and David Warren [J) to develop
other methods for the handling of tne binding environments. The autnor was
probably the first to consider also 'tail end recursion' (implementat ion : end
1977)-

J). .The represent at ion of the binding environment s

Structure sharing

In the first PROLOG interpreter [1], the representation of the binding of a
variable was based on Boyer and Moore's structure sharing [2]. As with tne
subgoals, the binding of a variable is represented by two pointers, one to the
pure code, the other to a binding environment. This binding environment in turn
contains the bindings of tbe variables in the pure code.

With this schema, the unification algorithm can be confronted with three
basic situations where it has to bind a variable.
1. A variable x which is free in environment Ej and a variable y which is free

in environment Ej

Suppose that E± is more recent (or identical) than E j, then, the variable x
in Ei is bound to the pure code of y and to the environment E<. The
pointer from Ei to Ej is oriented to tne bottom of the environmentstacx.

2. A variable x which is free in environment Ei and a term t with environment
Ej and Ei more recent than Ej. x is bound to the pure code of t and to the
environment Ej. Also tnis pointer is oriented to the bottom of the stack.

3- Same as (2) but Ej is more recent than Ei.
Also here, x has to be bound to the pure code of t and the environment Ei
but the pointer from Ei to Ej is oriented to the top of the
environmentstacK. As a consequence, the space saving techniques of the
previous section are impossible.

To solve the problem, Warren [7] observes that the trouble is due to »he
variables occurring in the terms of the pure code. He calls such variables
global, the others he calls local.. He divides the binding environment into a
global part and a local part. Also in the pure code, he makes a distinction
between global and local variables. Local environments are placed on the
environment stack but the global ones are placed on a special g] 0bal s*-ack This
stack is only popped on backtracking. Now unification starts with two literals
of P^re code, each with a local and global environment. The algorithm takes
care tha„ pointers between environments are either oriented from top to bottom
in the environment stack or, from the environmentstack to the global stack This
is possible, because, whenever a free variable is matched against a 'term 'all
variables occurring in the term are, by convention, in the global environment.

Note : The user can declare ('mode declaration') that some terms will never

variable^as EST * ^ ™

Copying pure code [3] [l£]

The binding of a variable can be represented
direct representation of the value. However,
cannot be a part of sucn a direct reDre^ort a4- i nn , u J « icpiebenr.aaon, nntriever a free variahlp k sr* ' "r* °r •««««• "ww.... oop, or ssui. i
In tnis copy, the pure code for the variables is replaced as follows.

by a single pointer to a
pure code containing variables
Whenever a free variable is

- 7 -

0\

The memory management o f PROLOG implementa t ions

i s the va r i ab le f r ee in the co r respond ing b ind ing env i ronment , t hen tne
copy ge t a f r ee va r i ab le and the va r i ab le in the b ind ing env i ronment i s
bound to th i s new f r ee va r i ab le .
i s the va r i ab le in the co r respond ing b ind ing env i ronment a l r eady bound to a
pa r t o f a copy , a po in te r i s p laced (a ' bound ' va r i ab le) f rom the new copy
to the ex i s t ing copy .

Us ing a spec ia l copys tack on ly popped on back t rack ing , t h i s a s su res tha t
po in te r s a re e i the r o r i en ted f rom top to bo t tom in the env i ronments t ack o r f rom
the env i ronments t ack to the copys tack o r , have any d i r ec t ion in the copys tacx .
Aga in , t he env i ronments t ack can be popped wi thou t danger o f dang l ing po in te r s .

Notes
1 . War ren has po in ted ou t he can d rop va r i ab les f rom the loca l env i ronment

once they wi l l no t be r e fe renced dur ing the fu r the r execu t ion . More
spec i f i c , loca l va r i ab les wi th on ly one occur rence (' vo id ' va r i ab les) do
no t need a p lace on t he env i ronments t ack , the un i f i ca t ion a lgor i thm knows
they a re f r ee ; loca l va r i ab les occur r ing on ly in the head ing can be d ropped
a f t e r un i f i ca t ion o f ca l l and head ing . Indeed , they a re no t r e fe renced in
the body o f the p rocedure . The same , bu t fo r a l l va r i ab les , i s t rue in tne
copy ing method .

2 . Some pa r t s o f tne g loba l / copy s t ack can become inaccess ib le . Garbage
co l l ec t ion and compac t ion i s poss ib le .

5.. D i scuss ion

To ge t an idea o f the space e f f i c i ency o f bo th approaches , we can compare
the s to rage needs o f nodes and b ind ing env i ronments . .

Wi th copy ing , a de te rmin i s t i c node needs 2 f i e lds (CALL, FATHER) ; w i tn
s t ruc tu re sha r ing , 3 f i e lds a re needed (a l so a po in te r to the g loba l b ind ing
env i ronment) .

A back t rackpo in t needs 6 f i e lds wi th bo th me thods (CALL, FATHER, BACK,
PROCEDURE, TRAIL, po in te r to g loba l / copys tack) .

Wi th s t ruc tu re sha r ing , the b ind ing env i ronment a s soc ia t ed wi th the use o f a
p rocedure needs 2 f i e lds fo r each va r i ab le . The d iv i s ion be tween loca l (on the
env i ronments t ack) and g loba l (on the g loba l s t ack) va r i ab les i s de te rmined by
the de f in i t ion o f the p rocedure . Wi th copy ing , one f i e ld fo r each va r i ab le i s
needed on the env i ronments t ack . The space needed fo r cop ies i s na rde r t o
de te rmine . I t depends on the pa t t e rn o f the ca l l which cop ies a re made . Tne
space needed by a copy depends on the chosen r ep resen ta t ion . We g ive two
poss ib i l i t i e s :
a . to copy a te r ra con ta in ing va r i ab les , o f the fo rm f (t -j , . . . , t n) , we can use

n+1 f i e lds , one f i e ld to iden t i fy tne func to r f and one po in te r to the
r ep resen ta t ion o f each a rgument . Such a r ep resen ta t ion g ives f a s t access
to the i - th a rgument .

b . Wi th nes ted t e rms , i t i s poss ib le to avo id the po in te r s to the a rguments by
p lac ing the a rgument one a f t e r ano the r . Then , on ly one f i e ld fo r each
symbol i s su f f i c i en t . Th i s r ep resen ta t ion i s more compac t bu t t he access
to the i - th a rgument i s s lower .

Wi th bo th r ep resen ta t ions , the copy o f a va r i ab le i s e i the r a f r ee va r i ab le o r a
po in te r t o the va lue o f tne va r i ab le .

For the p rocedures o f tne benchmark g iven in [7] , we computed the space
occup ied by the b ind ing env i ronment o f a typ ica l ca l l . For the 23 p rocedures

- 8 -

• 5-0
The memory management of PHOI.OG implement.at ions

having a nonempty binding environment, the totaJ space occupied by the ?<
typicaJ binding environments is as foJiows :

- Structure sharing : in total ?16 fields are needed of which IjO in the
g obal stack, with mode declarations, only 82 fields are needed on the
2JoDsJ stdcki

- Copying : with representation a, a total of 134 fields is sufficient or
rheUL°? y- 3 °a th! "opystdoi<- With representation b, the copystack (and
the total) is reduced by 10 fields.

shpwst that structure sharing needs mode declarations to reduce -he
global stack to a size comparable with the copystack. Also, with copyir g the

13 a,igB"y ui» *

h Th®se results have to be taken with care, individual cases where copying is
Z l M° rr th3n s t ructur® sharing are possible, i.e. wher larje t e r m s

need to be copied. The worst case between the 23 procedures • R
global stack, 15 on the copystack with representation a, 11 with representation

t h e o r e m " r ^ r l r e 3 0 l u t i o n

Although structure sharing results in very space eJf^ie^^^ea^uSn^th ^

representation of literals in the . T*T

implementation techniques of Algol-like languages as to structure sharing Foi
the representation of the binding of variables, structure sharing is not the
only alternative to be considered. aring is not vne

References

[1] Bat tarn , G. and Meloni, H., Xnterpreteur du langage de programmai ion PRO! or
Grouped-intelligence Artificiel1e, U.E.R. de Lumfny, Dniversite
d Aix-Marseil1e, 1973. "

C2] programs!^' ^ ̂ ' J,S-' ^ Shdr iRg ° f "> theorem-proving

Machine Intelligence 7 eds. Meltzer, B. and Michie, D., Edinburgn
University Press, 1972, 101-116. 8

C 3] p r i n c i p l e s ! M " i n t e r p r e t e r f o r P r e d i c a t e l o g i c p r o g r a m s - b a s i c

Report C'tf 10, Afdeling Toegepaste Wiskunde en Programmatie
K.U.Leuven, Belgium, oct. 1976

[4] B r u y n o o g h e M . , N a a r e e n b e t e r e b e h e e r s i n g v a n d e u i t v o e r i n g v a n
programma s m de logika der Horn-uitdrukkingen.(In Dutch)

s^te^rreiS-ayAfs;r:g Toegepaste — - -
[5] c o m m u n i c a t i o n ' h o m m e - r n a c h i n e T T r l l c J i s " * ° R 8 * 8 t ™ d e

Luminy, Dniversite

£ 0 J KCWalSKi , R . A • • PpPfii^stp 1 r>rr n /"i
, IFIP 7«, HorthlHoHL l;7 i°S»9"7;

I t

AN ALTERNATIVE TO STRUCTURE-SHARING IN THE IMPLEMENTATION
OF A PROLOG INTERPRETER

C.S.Mel lish.
Department of Artificial Intelligence,

University of Edinburgh,
EDINBURGH, UK

1. Introduction

This paper presents an alternative to "structure sharing" (SS) as a
technique used in a Prolog interpreter. We firstly summarise some of the basic
ideas used in Prolog implementations and show how structure sharing fits into
such a scheme. We then present our alternative approach and make some
comparisons. Our non structure sharing (NSS) approach, which uses a system of
"copying", is used in a practical interpreter for the PDP-11. This interpreter
is capable of running substantial Prolog programs, even though the PDP-11's
address space is limited to 32K, 16-bit words. We compare the space efficiency
of this interpreter with that of a structure sharing version that was
constructed later. It turns out that the "copying" approach compares very
favourably, although the comparison would be less favourable on a machine
capable of holding two addresses in one word. Our comparison shows that the
decision whether or not to use structure sharing in a Prolog implementation is
not simple and must take into account a number of factors.

2. Some Basics of Prolog Implementation

We will now discuss some of the basic concepts used in some Prolog
implementations. We follow here essentially the model presented by Warren C5J,
as developed from the work of Roussel C43 and Battani and Melom L1J.

2.1. Storing Prolog Programs

A Prolog program consists of a set of clauses and a goal statement. A clause
represents a general rule that can be used many times in the satisfaction of
the goal or its subgoals. Each time, we may want to consider different values
for the variables that occur within it - that is, we need to be able to handle
multiple instances of the same rule. When a clause instance is ,invoked__to
decompose an existing goal, we need to unify the clause head with the goal
concerned and then consider the new subgoals given by the body of the clause.
Since the main operation to be carried out with the parts of the clause is the
recursive comparison involved in unification, it is appropriate to store them
in a way that reflects the tree structure of the logical terms. (Note

SiS « °< th. unification atep, an, "unfolded" in ad.anco,
that this argument does not hold) The internal representations of these
structures are usually called skeletons. In PDP-11 Prolog, skeletons have a
prefix Polish format, with one machine word for each node of the tree. Since
the value of a variable mentioned in a clause will vary from instance to
instance, it is appropriate to represent a variable as an offset from an
environment pointer to be provided each time.

In general, the lifetime of a clause will be quite long - it will remain
until the user explicitly removes it. Clauses can be kept on a heap and the
space freed by the removal of a clause garbage collected. For this reason, we
will refer to the area where clauses are stored as the heap.

2 .2 . Bas ic Run t ime S to rage

Dur ing the runn ing o f a P ro log p rogram, the Pro log in te rp re te r mus t have
access to a ce r t a in amount o f space to s to re in te rmed ia te r e su l t s o f the
computa t ion . Some o f t h i s wi l l be used fo r in fo rmat ion abou t the con t ro l s t a t e
o f t he in t e rp re te r - " re tu rn" addresses and so on - and the r e s t wi l l be used
t o keep t r ack o f the va lues o f t he va r i ab les in the va r ious c l ause ins t ances .
I t i s conven ien t t o o rgan i se th i s in to a s e t o f f r ames - s imple s t ruc tu res
a s soc ia t ed wi th the subgoa l s o f t he p roof . A f r ame expresses bo th the con t ro l
i n fo rmat ion abou t the subgoa l ' s invoca t ion and the va r i ab le va lues g iv ing the
necessa ry env i ronment fo r i t s ach ievement . Thus , fo r ins t ance , the PDP-11
P ro log sys tem uses f r ames inc lud ing the address o f t he p lace in a c l ause where
t h i s subgoa l was invoked , t he address o f t he f rame fo r the goa l invok ing th i s
a s a d i r ec t subgoa l , t he address o f the f rame co r respond ing to the l a s t cho ice
made , t he address o f t he c l ause chosen to sa t i s fy th i s goa l and the va lues o f
t he va r i ab les fo r th i s pa r t i cu la r c l ause ins t ance . In many ways , t h i s i s l ike
the in fo rmat ion recorded on the s t ack fo r a conven t iona l p rogramming l anguage
l i ke ALGOL. However , because many o f the computa t ions in Pro log a re no t
de te rmina te (seve ra l c l auses may be ava i l ab le fo r p rov id ing poss ib le so lu t ions
fo r a goa l) , the re i s the impor tan t d i f f e rence tha t the space a l loca ted fo r a
f r ame canno t necessa r i ly be r ec la imed when a "p rocedure ex i t " t akes p lace . In
many cases , i t i s l ike ly tha t an a l t e rna t ive so lu t ion fo r the goa l may l a t e r
be r equ i red , even though bo th i t and i t s ances to r s have been success fu l ly
sa t i s f i ed once . Thus i t i s e s sen t i a l t o keep a r ecord o f in fo rmat ion l ike the
l a s t c l ause used and the env i ronment o f t he pa ren t (in the fo rm o f r e t a ined
f rames) whenever cho ices a re made . S ince back t rack ing in Pro log i s s t r i c t ly
chrono log ica l , t he re t a ined f rames can be kep t in a pa r t i cu la r ly s imple way .
when back t rack ing occurs , eve ry th ing done s ince the ac t iva t ion o f t he l a s t
cho ice f r ame mus t be undone , and the space used by the more r ecen t f r ames can
be r ec la imed . I t i s the re fo re poss ib le to keep f r ames in a s t ack-based sys tem,
wi th new fames "pushed" a s they a re ac t iva ted and f r ames "popped" p r imar i ly
when back t rack ing t akes p l ace .

In the bas ic loop o f t he in t e rp re te r , po in te r s to the cu r ren t ly r e l evan t
rames w i l l be r ead i ly ava i l ab le , and f rom these the va lues o f ce r t a in

va r i ab les can be eas i ly found . Th i s in fo rmat ion , toge the r wi th the po in te r s to
c l auses (and the cons t i tuen t ske le tons) under cons ide ra t ion , enab les the
sys tem to keep t r ack o f exac t ly wha t each c l ause ins t ance looks l i ke .

2 .3 . Cons t ruc ted Terms

„ p 7^° g var i ab les do no t a lways have s imple va lues (a toms , i n t ege r s , o r
undef ined") , bu t can a l so be a s soc ia t ed wi th complex t e rms . Such an

a s soc ia t ion can be made e i the r when a va r i ab le i s un i f i ed wi th a va r i ab le tha t
a l r eady s t ands fo r a complex t e rm o r when an "undef ined" va r i ab le i s matched
d i r ec t ly wi th a complex pa t t e rn men t ioned in a c l ause . In the second case , we
can t a lk in t e rms o f cons t ruc t ing the complex t e rm, because th i s complex va lue

. n o w become access ib le th rough the va r i ab le and can be man ipu la ted
va r ious ways . The examples in f ig 2 -1 bo th invo lve the cons t ruc t ion o f
c o m p l e x t e r m t o u n i f y w i t h a v a r i a b l e X .

i n
a

? - p (X) , . . . I

p (f (A ,B)) : - | p (x) . _

F igure 2 -1 : Examples o f t he Cons t ruc t ion o f Complex Ter

In these , t he t e rm " f (A,B)" i s no t access ib le a s an ob jec t un t i l i t i s un i f i ed

z l

wi th X; a f t e r th i s , i t can be passed to o the r va r i ab les , fu r the r ins t an t i a t ed
and so on . On t he o the r hand , i t i s no t appropr ia t e t o say tha t a t e rm i s
cons t ruc ted when "p" i s ca l l ed in e i the r example in f ig 2 -2 .

? - p (f (A ,B)) , | ? - q (X>, p (X>,

p (f (C ,D)) j p (f (C ,D)) : -
q(f (A,B)) : -

F igure 2 -2 : Examples o f Othe r Opera t ions on Complex Terms

In the f i r s t o f t hese , the complex t e rm i s never ava i l ab le as an ob jec t t o be
man ipu la ted - the spec i f i ca t ion o f the two pa t t e rns mere ly se rves a s a way o f
a s soc ia t ing A wi th C , B wi th D. We t hus do no t r e fe r to th i s as a cons t ruc t ing
opera t ion . In the second , a t e rm i s cons t ruc ted in the ca l l t o "q" , and the
match ing ope ra t ion in the ca l l t o "p" mere ly causes an a s soc ia t ion be tween the
" ins ide" va r i ab les . Th i s i s more appropr ia t e ly ca l l ed access ing , than
cons t ruc t ing .

I t can be seen f rom these examples t ha t i t canno t be a sce r t a ined f rom
ind iv idua l c l auses wha t t e rms wi l l be cons t ruc ted when they a re invoked . In
the Dec10 P ro log compi le r C53 , i t i s poss ib le fo r the use r t o spec i fy mode
dec la ra t ions which p rov ide some o f t h i s in fo rmat ion and enab le the compi led
code t o Be more e f f i c i en t . Such poss ib i l i t i e s wi l l no t be cons ide red in wha t
fo l lows . Mode dec la ra ions do in any case l e s sen the f l ex ib i l i ty o f t he use r ' s
p rocedures .

When a complex t e rm i s cons t ruc ted to be the va lue o f a va r i ab le , t ha t
va r i ab le i s sudden ly a s soc ia t ed wi th a g rea t dea l o f in fo rmat ion - bo th the
fo rm o f t he t e rm and the va lues o f the va r i ab les tha t appear in s ide i t . I t
migh t seem imposs ib le t o rep resen t t h i s in fo rmat ion in the same amount o f
space tha t i s used fo r o the r va r i ab le va lues (such a s a toms) . The ma in focus
of t h i s paper i s on two d i f f e ren t approaches fo r t ack l ing th i s r ep resen ta t ion
p rob lem.

2 .4 . Rec la iming S to rage a f t e r De te rmin i s t i c Computa t ions

A computa t ion (the sa t i s fac t ion of a subgoa l) t ha t has no cho ice po in t s
wi th in i t i s ca l l ed de te rmina te . The s t ack f rames a r i s ing f rom such a
computa t ion can be "popped" f rom the s t ack when the subgoa l has been
e s t ab l i shed , fo r back t rack ing wi l l never need t o recons ide r one t o t ry ano the r
poss ib i l i ty . I t i s , however , necessa ry to ensure tha t no po in te r s a re l e f t
f rom the remain ing s t ack in to the a rea tha t i s rec la imed . Thus one shou ld
ensure tha t the b ind ing toge the r o f two un ins tan t i a t ed va r i ab les i s a lways
recorded by a po in te r f rom the more r ecen t t o the l e s s recen t va r i ab le ee l I ,
and no t t he o the r way a round . However , a s soon a s complex va lues o f va r i ab les
a re poss ib le , even th i s i s no t adequa te . Cons ide r the va lue g iven to X i n f ig
2 -3 .

? - f (X) , g (X>.

f (foo(A,B)) : - h (Y) , j (Y) .

F igure 2 -3 : Var iab les Occur r ing ins ide a Complex Term

Imag ine t ha t the sa t i s fac t ion of " f (X>" i s comple te ly de te rmina te (the re a re

A*
no more c l auses fo r " f " arvH _ . ,
canno t r e r l a - im th ' • J e a l s o sa t i s f i ed un ique ly) . We

£ EB/;
v- tzz :;.s rss •;«% &

x . ' zzxx £"""*• - r : : i™ - »- d ™ ! u r« ; r
off th i ™ain s ! ack°nie E"! f " fL" ' • ""** A 3 f > d B r e P r e «n ted somewhere
des igned fo r da ta tha t ' canno t be" dUc l rdTT ' tb l ^

back t r ack ing In Jhe" ^ V a l U 6 S S t ° r e d < n t M * a P e a C a n b * ^" t rd ld 'm

i s rv° c a i s t a c k - » • ' " ?£ k uMSr
n Para l l e l wi th the loca l s t ack , wi th i t ems be ing "popped" f rom bo th w h e n

canno t ' be r ee I»? ' I IH' V ^ ° n l X d i f f — - tha t i t em ' s on the g loba l s t ack canno t be r ec la imed a f t e r a de te rmina te computa t ion . Because (in the absence
o f back t rack ing) i t ems pu t on the g loba l s t ack remain the re inde f in i t e^ i t
S ? tws t h a t ha y l n 9 h t 0 9 a r - a 9 e C O l l e C t u o e c « iona l ly . Th i s wi l l c l ea r
r« i i I I ! become inaccess ib le s ince they were pu t t he re . Garbaqe
; ; r « , s <- <« » - f r z :

2 .5 . Dis t r ibu t ing Da ta be tween the two S tacks

The ques t ion o f how to dec ide which p ieces o f da ta shou ld go on each s t ack
and when shou ld now be d i scussed fu r the r . As i s sugges ted by the example a
va r i ab le on ly needs to be a l loca ted on the g loba l s t ack i f i t occurs wi th in a

2 " , n * t r u c t * d 1 n a de te rmina te computa t ion and t h i s complex t e rm i s
passed ou t t o be used e l sewhere . Idea l ly the dec i s ion o f where to s to re

each va r i ab le shou ld be made a t run t ime , because space on the g loba l s t ack i s
no t eas i ly rec la imed and shou ld be used spa r ing ly . A r e l i ab le dec i s ion canno t
be made a t compi le t ime" (when the c l auses a re s to red in the heap) , because
a s we have no t i ced i t i s no t even poss ib le to de te rmine then whe the r t he
c l auses wi l l be used to "cons t ruc t " o r to "access" complex s t ruc tu res . So the
op t ima l p lace to make the dec i s ion i s a t run t ime . However , when a c l ause i s
s to red in the heap , the va r i ab les wi th in i t mus t be r e fe renced in such a way
t ha t the va lues fo r any ins t ance can be unambiguous ly loca ted . Th i s sugges t s
t ha t a dec i s ion a t "compi le t ime" i s unavo idab le .

In f ac t , the two approaches t o s to rage management t ha t we cons ide r in th i s
paper now beg in t o d ive rge . A " s t ruc tu re sha r ing" sys tem, a s we w i l l s ee in
sec t ion 3 , r e l i e s on the f ac t tha t va r i ab les in the g loba l s t ack have f ixed
pos i t ions r e l a t ive to a cu r ren t env i ronment po in te r , and so in pa r t i cu la r i t
r equ i res a dec i s ion on g loba l / loca l s t a tus a t "compi le t ime" . The a l t e rna t ive
sys tem tha t we p resen t makes t he dec i s ion a t run t ime , bu t incurs the ex t ra
overhead tha t eve ry va r i ab le mus t be a l loca ted a f ixed o f f se t in the loca l
s t ack , in add i t ion to an en t ry in the g loba l s t ack fo r each t ime i t appear s in
a cons t ruc ted t e rm. When a va r i ab le occurs in seve ra l p l aces , these a re l inked
toge the r wi th po in te r s in such a way t ha t a l l can be r eached f rom the f ixed
loca t ion on the loca l s t ack which i s re fe renced ind i rec t ly in the c l ause .

Where a "compi le t ime" dec i s ion abou t the s t a tus o f va r i ab les i s made , an
approx imat ion i s to make g loba l eve ry va r i ab le ocur r ing in a ske le ton tha t
cou ld be used t o cons t ruc t a complex t e rm. Th i s can be de te rmined
syn tac t i ca l ly - such a va r i ab le i s one tha t appea r s wi th in a complex a rgument
o f a goa l i n a c l ause . Th i s me thod i s used bo th by the Dec10 P ro log sys tem
C63 and in our s t ruc tu re sha r ing in t e rp re te r , a l though the use o f "mode
dec la ra t ions" in Dec10 P ro log enab les some o f these va r i ab les to be made
l oca l . Where a " run t ime" dec i s ion i s made , an approx imat ion i s to g ive a
g loba l en t ry to a va r i ab le whenever a t e rm con ta in ing i t i s cons t ruc ted . The
"compi le t ime" a lgor i thm fa l l s shor t o f op t ima l i ty whenever a t e rm tha t cou ld

jh'

theore t i ca l ly be cons t ruc ted in f ac t i s no t . Bo th f a l l shor t when a t e rm
cons t ruc ted in a de te rmina te computa t ion i s no t i n f ac t "passed ou t " to the
o the r pa r t s o f the p rogram.

3 . S t ruc tu re Shar ing

We saw ea r l i e r tha t in the main loop o f t he in t e rp re te r the s t a t e o f each
c l ause ins t ance can be found ou t f rom a po in te r t o the c l ause toge the r wi th a
po in te r t o an appropr ia t e s t ack f rame . Moreover , t h i s in fo rmat ion mus t be
s to red in any case fo r the in t e rp re te r to p roper ly o rgan i se back t rack ing (i t
mus t know which c l ause was l a s t chosen) and "p rocedure ex i t s " (i t mus t
con t inue f rom the s t ack f rame cor respond ing to the "pa ren t " goa l) . The idea o f
r ep resen t ing complex da ta by a pa i r o f po in te r s (ske le ton + env i ronment ,
t oge the r ca l l ed a molecu le) i s known a s s t ruc tu re sha r ing , and t h i s can a l so
be used to rep resen t t e rms cons t ruc ted a t run t ime . S t ruc tu re sha r ing
cap i t a l i ses on the f ac t tha t c l auses a re s to red in a way t ha t r e f l ec t s the i r
syn tac t i c s t ruc tu re . Thus t he ske le tons in a c l ause p rov ide a l l the re i s to
know abou t t he s t ruc tu re o f a g iven ins t ance excep t the va lues o f t he
va r i ab les .

I f i t i s poss ib le to s to re a pa i r o f mach ine addresses in the space
a l loca ted fo r a var i ab le va lue , then i t i s s t r a igh t fo rward to have molecu les
a s poss ib le va lues o f va r i ab les . I f a va r i ab le becomes in s t an t i a t ed a s a
complex t e rm, i t su f f i ces to b r ing toge the r a po in te r to the ske le ton wi th
which t he match was made and a po in te r to the env i ronment o f the co r respond ing
c lause ins t ance . "Cons t ruc t ing" i s thus r a the r a s imple p rocess , and
in fo rmat ion abou t the in t e rna l s t ruc tu re o f t he va r i ab le ' s va lue can be
ob ta ined the rea f t e r f rom the molecu le . Note , however , t ha t a molecu le r e fe r s
to a va r i ab le ins ide a cons t ruc ted t e rm v ia the f ixed o f f se t g iven in the
ske le ton . I t i s thus necessa ry to f ix the r e l a t ive Loca t ions o f va r i ab les a t
"compi le t ime" in o rde r tha t the va lues can be found . In pa r t i cu la r , s ince the
va r i ab les ins ide cons t ruc ted t e rms in genera l have t o appear on the g loba l
s t ack in o rde r to be access ib le when the appropr ia t e loca l f r ame has been
r ec la imed , a dec i s ion abou t g loba l / loca l s t a tus mus t be made a t compi le t ime .
Anothe r consequence o f t he f ac t tha t loca l f r ames may be rec la imed i s tha t i t
i s e s sen t i a l fo r the env i ronment po in te r in a molecu le t o po in t t o the g loba l
va r i ab le ce l l s a soc ia ted wi th the goa l , r a the r than the loca l ones .

As an example , cons ide r the t r ea tmen t o f t he c l auses de f in ing the
conca ten ta t ion r e l a t ion be tween l i s t s (f ig 3 -1) .

C1 . append(n i l ,X ,X) .
C2 . append(A.B,C ,A.D) append(B,C ,D) .

? - append(a .b . c .n i l , n i l ,R) .

F igure 3 -1 : C lauses and Goa l S ta tmen t fo r ' append '

S ince the re i s no reason why an ' append ' goa l shou ld no t have an
un ins tan t i a t ed va r i ab le a s i t s f i r s t o r th i rd a rgument , t he pa i r s <A,B> and
<A,D> o f va r i ab les in C2 may somet imes be invo lved in cons t ruc t ing opera t ions .
Hence A , B and D mus t be c l a s sed a s g loba l va r i ab les , wi th space a l loca ted fo r
them on the g loba l s t ack , when C2 i s chosen . On t he o the r hand , C (and X) can
ge t oy wi th space on the loca l s t ack . When t he goa l i s invoked and C2 i s
chosen , A i n the new c l ause ins t ance i s un i f i ed wi th ' a , and B i s un i f i ed
wi th the whole l i s t "b . c .n i l " . Th i s i s rep resen ted by a molecu le , wi th a
po in te r t o the ske le ton in the goa l c l ause and a po in te r to the env i ronment

9b

(which is, in fact, irrelevant as the list is ground). Similarly, R in the
goal is unified with the list "A.D", this giving rise to another molecule.
When the recursion is about to hit the "nil" case, there are 9 variable cells
on the global stack (3 instances each of A, B and D) and 4 on the local stack
(1 instance of R and 3 of C). Moreover, 5 of these variable values are
mo lecules.

4. An Alternative Approach

Structure sharing saves space by sharing the structure common to multiple
instances of the same skeleton. It has been proposed as a more space efficient
method than more obvious approaches. We will now examine one such alternative,
which is similar to what is used in conventional programming languages (like
POP-2 and Algol68) for constructing new records dynamically in a heap.

The basic idea is that variables are allocated space primarily on the local
stack, and that the references to them appearing in skeletons are always to
these positions in the local stack. When a complex term is constructed, a
concrete copy of the appropriate skeleton is created on the global stack, with
the values of the variables appropriate to this instance substituted for the
variable references. This means that there can be more than one location
representing the same variable^ these multiple locations must be appropriately
linked with pointers. Once a concrete copy has been constructed, the values
of its component parts can be simply read off, without the necessity of
consulting environment pointers. In particular, variables that are unified
with substructures can be dealt with by having pointers to the appropriate
parts, for a variable that becomes instantiated as a complex term is
represented simply by a pointer to the appropriate concrete copy.

Consider how this would work with the "append" example (fig 3-1). When C2
is chosen for matching with the goal, "A.B" in the new instance is unified
with the ground list "a.b.c.nil" in the goal. As a result, A gets the value
"a" and B is associated with a concrete copy of the rest of the list.
Similarly, R's value turns out to be a pointer to a concrete copy of a "cons
cell . The two variables inside this are A and D. A's value can be substituted
in directly, whereas D is as yet uninstantiated and so a link must be
established between the two locations representing it. In time, D's value is
discovered to be a complex term, and so these two locations become indirectly
linked to another concrete copy. When the "nil" case is about to be
investigated, there are 13 variable cells on the local stack (1 instance of R
and 3 each of A, B, C and D) and a total of 14 locations taken up by concrete
copies on the global stack (5 for "b.c.nil" and 3 each for 3 individually
rnnct ri ir "rnne ^a. I I c"\ *

5. Comparison

5.1. General Comments

5.1.1. Constructing Complex Terms

The whole point of SS is that there is a very low space overhead in
constructing complex terms. As far as the global stack is concerned, the only
pieces of information represented for a constructed term are the values of the
one! evenC if r-tn9 ^ M° re0Ver ' each variable is only represented
once, even if it appears several times in the term or in multiple constructed

17

t e rms . On t he o the r hand , the NSS approach needs to copy g round pa r t s o f a
complex t e rm and to have a loca t ion fo r eve ry occur rence o f a va r i ab le in a
complex t e rm. So s t ruc tu re sha r ing de f in i t e ly seems to requ i re l e s s g loba l
s t ack when a t e rm i s cons t ruc ted . An i l l u s t r a t ion of t h i s i s the cons t ruc t ion
of t he l i s t "b . c .n i l " in our "append" example , where s t ruc tu re sha r ing needs
no g loba l space (no va r i ab les occur wi th in i t) bu t t he o the r approach needs 5
loca t ions (1 fo r each " symbol" in the ske le ton) . I t i s c l ea r tha t an NSS
sys tem cou ld be op t imised to avo id copy ing g round sub te rms , bu t i t would s t i l l
lose by hav ing to copy func to r in fo rmat ion and po in te r s fo r g round sub te rms o f
t e rms which a re no t themse lves g round .

5 .1 .2 . Access ing the Componen t s o f Complex Terms

When i t comes t o access ing the componen t s o f a l r eady cons t ruc ted t e rms , SS
does no t pe r fo rm so we l l . I t a l loca tes space on the g loba l s t ack fo r the
va r i ab les r e fe r r ing to the componen t s , because a t compi le t ime the re i s no way
o f t e l l ing tha t an access ing r a the r than a cons t ruc t ing opera t ion wi l l be
invo lved . On t he o the r hand , t he copy ing approach on ly pu t s i t ems on the
g loba l s t ack when cons t ruc t ing t akes p lace . In the "append" example , none o f
the "B" va r i ab les r ea l ly need to be a l loca ted on the g loba l s t ack , because the
pa t t e rn "A.B" i s a lways used to decompose an a l r eady ex i s t ing ob jec t .

5 .1 .3 . Overa l l S tack Usage

From the l a s t two pa ragraphs , we can see tha t the r e l a t ive mer i t s o f SS and
NSS a s r ega rds g loba l s t ack usage wi l l depend on the types o f p rograms tha t we
wish t o run . On t he one hand , we can cons t ruc t a pa tho log ica l p rogram where
huge s t ruc tu res con ta in ing repea ted va r i ab les a re con t inuous ly c rea ted bu t
never accessed - on t h i s , s t ruc tu re sha r ing wi l l ga in by a rb i t r a ry amount s . On
t he o the r hand , we can cons t ruc t a pa tho log ica l p rogram tha t cons t ruc t s a
s ing le complex t e rm and r epea ted ly accesses i t s sub te rms - on t h i s , s t ruc tu re
sha r ing wi l l lo se by a rb i t r a ry amount s . P resumably , " r ea l p rograms f a l l
somewhere i n be tween these ex t remes .

As r ega rds loca l s t ack s to rage , SS i s c l ea r ly super io r , s ince i t a l loca tes
space fo r on ly some va r i ab les on the loca l s t ack , whereas NSS a l loca tes space
fo r a l l . S ince loca l s t ack space can be r ec la imed a t the end o f a de te rmina te
computa t ion , NSS migh t be expec ted to do bes t wi th de te rmina te p rograms . The
hope o f t h i s approach i s to reduce the to t a l g loba l s t ack usage a t the expense
o f t he to t a l amount o f s t acks used . Th i s c l ea r ly wi l l no t pay o f f i f the
s t ack space can on ly r a re ly be r ec la imed .

5 .1 .4 . Speed

We canno t comment he re on the r e l a t ive speed o f t he two approaches , because
such a compar i son needs t o t ake in to accoun t t he mach ine s ins t ruc t ion se t and
address ing modes . However , we can no te tha t our ^S sys tem seems lo save work
look ing up the va lues o f va r i ab les in env i ronments (fo r access ing sub te rms ; a t
the expense o f t he "once and fo r a l l " copy ing ope ra t ions (fo r cons t ruc t ing) .
What e f f ec t t h i s has in p rac t i ce i s a ma t t e r fo r fu r the r inves t iga t ion .

5 .2 . Represen t ing Molecu les i n Mach ines wi th Smal l Word S izes

O u r d i s c u s s i o n s o f a r h a s a s s u m e d t h a t i t i s p o s s i b l e t o s t o r e a m o l e c u l e
(t w o a d d r e s s e s) w i t h i n t h e s p a c e a l l o c a t e d f o r a s i n g l e a p a b l L ® « L u e . I n
g e n e r a l t h e m o s t e c o n o m i c a l a n d s i m p l e u n i t o f s p a c e t o u s e i s t h e m a c n i n e
w o r d (' h e r e t a k e n t o b e t h e s m a l l e s t i n d e p e n d e n t l y a d d r e s s a b l e u n i t o f s t o r a g e

l i

above some minimum size). In a machine with a small word size, we may be able
to store things like atom representations and (smallish) integers in single
words, but a molecule is really out of the question. This was a problem that
we had to confront for the POP—11, and in fact it was one of the main reasons
why we turned to an alternative to structure sharing.

If we wish to stick to a structure sharing approach, how are we to represent
molecules on a machine of small word size? One possibility is simply to take a
larger unit, such as 2 words, for the value of a variable. Another is to have
a molecule as a 2-word item to be separately allocated on the global stack and
to which variable cells can point. The second of these will certainly take up
less storage at any time if the number of variables allocated is at least
twice the number of molecules. This has proved to be the case in all the
examples we have tested.

What difference does this molecule overhead make for our "append" example?
The whole example involves 5 molecules, and so an extra 10 locations now
appear on the global stack. The NSS version of this example now has less on
the global stack than the SS one, the reverse of what was previously the case.

It should be noted that this overhead in representing molecules sometimes
affects a structure sharing approach even when the components of constructed
terms are accessed. When structure sharing has to represent a complex subterm
of a constructed term, it needs to produce a molecule, of course. Sometimes
the appropriate molecule is already available as the value of a variable
occurring in the constructed term. Otherwise a new one must be constructed.
(This is what happens with the second instance of B in our "append" example).
Such an action incurred no overhead previously, when we considered a molecule
as something that could be stored in any variable cell.

5.3. Some Figures

How do all these factors interact and what are the relative merits of
structure sharing and its alternatives in practice? When we decided to
investigate this question, we had already developed a non structure sharing
interpreter for the PDP-11 C33, and so we decided to construct a structure
s aring version of it and make some comparisons. The structure sharing
interpreter copes with the small word size of the PDP-11 by using the second
approach for representing molecules, with a molecule being allocated as a
serarate object on the global stack. In spite of these particular details

figures provide a basis for a comparison between SS and NSS in general. '

internrptA T C ? aLread>' existing, programs and ran them on the two

. r -V

sss

r z £ r
"quicksort" Droble, ,o deal with only tke fir't Mel«e„t5iTl - *

* q i " " a r no ; , " r a s : . ^ s 1 s«e i n : ' : ^a i r s . : " , M^;y t h ^ ' : s e r =

c r ? « d „ „ 2 : r : . v s ^ l o p K i L t t "

Finally, we wished to try something a bit Hiff„r ? / ?9 numbers 5 and 6-
e x a m p l e s . W e t o o k t h e ™ t u r a ? V a n g u g e l I r s T r t 1 ^ 0 * 1 r a t h e r " t 0 ' "

d i f fe ren t domain . Th i s p rogram reads an Eng l i sh sen tence , cha rac te r by
cha rac te r , f rom the t e rmina l , conver t ing i t to a l i s t o f a toms , and cons t ruc t s
a l og ica l fo rmula express ing i t s "mean ing" . (Th i s can then be used in
con junc t ion wi th a da tabase o f f ac t s abou t the wor ld t o p roduce an appropr ia t e
response) Th i s p rogram, when p resen ted wi th the ques t ion "What f i l e s da t ing
f rom Tuesday does the owner o f t he f i l e da t ing f rom Monday possess?" fo rms our
f i r s t example .

Wi th each p rogram, we measured va r ious pa ramete r s o f t he space used . We d id
no t measure run t ime o r heap usage (so the re i s no accoun t ing fo r the space
occup ied by bas ic ske le tons in the s t ruc tu re sha r ing sys tem) . The pa ramete r s
(a l l measured i n mach ine words) t ha t were r ecorded a re a s fo l lows :

A - The t o t a l amount o f l oca l s t ack in use a t the end o f t he computa t ion

B - The maximum amount o f l oca l s t ack in use a t any t ime dur ing the
computa t ion

C - The amount o f space occup ied by molecu les (2 words each) a t the end
o f the computa t ion (SS on ly)

D - The amount o f space occup ied in the g loba l s t ack a t the end o f t he
computa t ion . Th i s co r responds to the to t a l amount o f space tha t
would be t aken up i n the long t e rm i f the p rogram were invoked a s a
" subrou t ine" and a l l cho ice po in t s were then d i sca rded (fo r
ins t ance , wi th a " cu t ") . I t a l so cor responds more o r l e s s to the
maximum amount o f g loba l s t ack in use a t any t ime in the
computa t ion .

E - The t o t a l amount o f g loba l s t ack in use , ignor ing the space t aken by
molecu les (D-C)

F - The t o t a l amount o f space tha t would be t aken up in the long t e rm i f
the p rogram were invoked a s a " subrou t ine" bu t a l l cho ice po in t s
were kep t (A+D)

G - The t o t a l amount o f space needed to run the p rogram (B+D)

The f igu res themse lves a re g iven in f ig 5-1

5 .4 . Conc lus ions

I t i s ha rd to know how t o se l ec t a r ep resen ta t ive sample o f p rograms fo r
such an exper imen t . As i t was , t he p rograms were s e l ec ted in advance a s eas i ly
access ib le p rograms tha t covered a r ange o f d i f f e ren t s i tua t ions . There was
no pos t se lec t ion . Assuming t ha t they a re no t t oo unrepresen ta t ive , we can d raw
the fo l lowing conc lus ions :

Compar ing co lumns C and E , we s ee tha t in each case the number o f
va r i ab le ce l l s on the g loba l s t ack in SS i s a eas
number o f molecu les (s ince C i s the amount o f space used by t he
2 - w o r d m o l e c u l e s , t h i s r e s u l t f o l l o w s f r o m t h e f a c t t h a t C C E i n a l l
cases) . Th i s p rov ides jus t i f i ca t ion fo r our o f
r ep resen ta t ion o f molecu les a s sepa ra te i t ems on e g •
I t a l so sugges t s t ha t P ro log implementa t ions mak ing use o f long
words t o s to re molecu les may no t be ve ry e f f i c i en t in t e rms o f t he
number o f b i t s used , un less the ex t ra l eng th i s used s ign i f i can t ly

3 o

Program

|

Local
Occ (A)

| Local
| flax (B)

| Mo Is |
I (o I

Global | D-C
Occ (D>| (E)

| A*D
I (F)

I 8+0
I (6)

1 (1) Natural SS|
j Lang Prog NSSI
I

620
780

700
907

510 1235 725
805

1855
1585

1935
1712

I (2) Naive
| Reverse

SS I
NSS |

2820
4185

2823
4192

988 2353 1365
1454

5173
5639

*

5176
5646

| (3)
| Quicksort

SS I
NSS |

907
1270

913
1280

340 763 423
482

1670
1752

1676
1762

| (4)
I Serialise

SS I
NSS |

267
454

311
512

338 924 586
467

1191
921

1235
979 |

(5) Interp
running (2)

SS I
NSS |

4975
7892

4992
7913

2046 4995 2949
3414

9970
11306

9987
11327

(6) Interp
running (3)

SS J
NSS |

2715
4252

2732
4276

1188 2757 1569
1839

5472 5489

"cuts". NSS |
0
0

214
278

988 2353 1365
1454

2353
1454

2567 |
173? |

Figure 5-1: Comparison of SS and NSS Systems

for the representation of large integers, say.

"• Comparing column D for u-i+u i
for both), we see that if t h i r l ™ " * f°P SS (and co lumns A and B
molecules then SS would be better overhead in representing
(4)) . This suggests that S S is the m o r e (e x c e P t i n program
of the number of words used g i v e n a h, • 1cient technique in terms used, given a machine of large word size.
Comparing column D for the tun
molecule overheads) NSS is in earh ^ferns, we see that (given the
stack usage. This s u g g e s t s that f b!"er *han SS for global
local stack is eventually reclaimed) NSS f® t* rmln? te P r°grams (where
of storage occupied in the long term superior in the amount

Comparing columns A and B f o r th. •
always uses more local stack than SS L systams ' see that NSS
global stack usage (giving columns tM» i s added to
similar. Differences now depend on th ' systems a r e fairly
and (7) are better for NSS; (2) (3) (51 J5f la r task " (1 K (4)
But the differences are not great. ' are better for SS.

It should be noted that most of th..

wmtSbeHhthe th6 interbret^ cannot detre°ctramtShltClaUde ;'faLse chol'«
will be the only one that matches the 1 / a clause chosen
append example, where only one clause wi i f° happens in our

any stage). These would disappearH*?"" abpr°P^'ate at
interpreter that used indexing on ?he main i 3 m° re intelligent
arguments. The great difference that this fu?' t0rs ° f a Predicate's
in the difference between programs (21 I! ?,?ake is i l lustrated
view, the important thing is that NSS comes out^ °Ur P°1nt ° f

2*
p rog ram wi th " cu t s " (s ee co lumns F and G) , whe rea s i t i s wor se o f f
i n t he o n e w i thou t . T hus , c e r t a i n obv ious im pr ovem en t s i n ou r
i n t e rp r e t e r s can be expec t ed t o ma ke NSS an e ven mo re f avou r ab l e
op t i on . Of cou r se , o th e r improvemen t s (such a s , pe rhaps , g a rb ag e
co l l e c t i on o f t he g loba l s t a ck) may we l l w o rk i n f avou r o f SS .

6 . Some F i n a l Remarks

As w e have s een , t he c ompa r i s on be tw een s t r uc tu r e sha r i ng and i t s
a l t e rna t i ve s i s no t a s imp le one , and n o q u i ck a ns wer can be g iven a s t o wh i c h
app r oach i s be s t . I t i s i n t e r e s t i ng , h o w ev e r , t h a t a s i gn i f i c a n t f a c to r i n t he
d e c i s i on i s t h e r e l a t i onsh i p be tween t he w or d s i z e and a dd r e s s s i z e o f t he
mach ine on wh ich t he sy s t e m i s imp lemen ted .

As w e have p o in t ed o u t , ne i t he r o f t he s y s t e ms p r e se n t e d i s op t ima l i n i t s
use o f t h e l o ca l and g l oba l s t a cks . I t r ema in s t o be s een w h e t h e r m ixed
app roaches c an be d ev i s ed t ha t h av e t he bene f i t s o f bo th . I t i s hoped t ha t
t h i s pape r ha s m ade c l e a r wha t some o f t he i s sue s a r e and t ha t i t ha s r evea l ed
how muc h more work s t i l l ne e ds t o be done i n t h i s a r e a .

7 . Re fe r en ces

11]

[2]

C3]

[4]

C5]

Ba t t an i , G . and Me lon i , H .
I n t e rp r e t eu r du Langage de P ro g rammat io n P ro log .
Tech n i ca l Repo r t , G roupe d ' I n t e l l i gence Ar t i f i c i e l l e , Un iv o f

Mar se i l l e -Lumi ny , 1973 .

Dah l , V .
Un S ys t e me Deduc t i f d ' I n t e r roga t i on de Banque s d e b on nes en Espagno l .
Techn i ca l Repo r t , G roupe d ' I n t e l l i gence Ar t i f i c i e l l e , Un iv o l

Mar se i I l e -Luminy , 1977 .

Me l l i sh , C . and C ros s , M.
The UNIX P ro l og Sys t em.
So f twa r e Repo r t 5 , Dep t o f A r t i f i c i a l I n t e l l i gence , Un iv o f E d i nbu rgh ,

1979 .

Ro us s e l , P .
P ro log : Manue l de Re fe r ence e t d 'U t i I i s a t i on . _
T ech n i ca l Repo r t , Groupe d" I n t e l l i gence A r t i f i c i e l l e , Un iv o f Mar se i l l e

-L umi ny , 1975 .

War r en , D .H .D .
Imp lemen t ing P ro log - Compi l i ng P r ed i ca t e Log j_c P rog ram s .
Resea r ch Re po r t s 39 a nd 40 , Dep t o f A r t i f i c i a l I n t e l l i ge nc e , Un iv o f

Ed in bu rgh , 1977 .

Warren , D .H.D, Pe re i r a , F .C .N and Pe re i r a , L .M.
User ' s Guide t o DECsys tem-10 P ro log .
Oc cas iona l P ape r 15 , Dept o7 Ar t i f i c i a l In te l l i g en ce , Uni v o f Ed inburgh ,

1979 .

8 . Acknowledgements

I am g ra te fu l to Fernando Pe re i r a , Dav id War ren and Lawrence Byrd fo r many
f ru i t fu l d i scuss ions , a s we l l a s fo r comments on ea r l i e r ve r s ions o f th i s
paper .

I . Some Techn ica l De ta i l s

For those who wish t o look more c lose ly a t our f igu res , he re i s a summary of
some o f t he re l evan t t echn ica l de ta i l s .

In bo th i n t e rp re te r s , the amount o f admin i s t r a t ive in fo rmat ion s to red in the
l oca l s t ack fo r a goa l depends on whe the r t he c l ause used i s the l a s t one fo r
t he p red ica te . For NSS, t he space i s 2 words fo r the l a s t c l ause case ; 5
o the rwise . For SS , t hese numbers a re 3 and 5 r e spec t ive ly . The r e s t o f the
space on the loca l s t ack i s t aken up by va r i ab le ce l l s , a t 1 word each . When a
a °w + u S e ™ounte red , a l l loca l s t ack a f t e r the "pa ren t " f rame i s rec la imed

t he l a s t cho ice po in t " f r ame becomes the l a s t cho ice f rame be fo re the
r ecLa impd ? f 3 ^ "?* ® u "? s s f u 4x "ex i t ed" , i t s loca l s t ack space i s
no t (win 1 nv • •+ - i 8 cho ice po in t " comes fu r the r back in the s t ack . We do no t employ " t a i l r ecurs ion op t imisa t ion" .

same ^number i ^ e r p r e ^ e r ' "concre te cop ies" on the g loba l s t ack occupy the
Copy inq o f a round 3 S 4 co r respond ing ske le tons (1 word pe r " symbol") .
g lobaL s t a?k hof r im *°H? 1 8 " 0 t 0 e t i m i s * d . In the SS in t e rp re te r , the s^h^irif (2 *ords each>-
i n t e rp re te r s 0 1 s to re 6 t he^a l l iS tST ' l ! ? " t r a U " ̂ I n

s i ze i s no t inc luded in our f igu res NSS U t h « g loba l s t ack , a l though i t s
In these examples trail ^an use slightly more trail than SS.
u ses in to t a l 2 more words than t 1 c a l e x c ep t in p rogram (1) , where NSS

In te rmiss ion — Actors in Pro log

Kenneth M. Kahn
S tockholm Univers i ty

Pro log as a computer l anguage o f fe rs s impl ic i ty and a dec la ra t ive
in te rpre ta t ion of p rograms. Computer l anguages based upon computa t iona l
en t i t i es ca l led "ac tors" o f fe r modular i ty , para l le l i sm, da ta
represen ta t ion f ree programming and a s imple bu t powerfu l computa t iona l
semant ics . P ro log i s not wel l - su i ted for cont ro l l ing computa t ion , fo r
def in ing new da ta types , o r for wr i t ing programs tha t do not depend upon
the phys ica l represen ta t ion of i t s da ta . This paper in t roduces the
concept and mot iva t ion for ac tors and then descr ibes a sys tem ca l led
"In te rmiss ion" which implements ac tors in Pro log . The thes i s presen ted
i s tha t a hybr id of ac tors and log ic programming i s a s t rong a l te rna t ive
to a language based upon e i ther concept a lone .

INTRODUCTION AND MOTIVATION
Dur ing the l as t t en years there has been much research on a new k ind of
computa t iona l en t i ty , var ious ly known as "ac tors" , "objec ts" , and
"abs t rac t ob jec t s" . An ac tor combines bo th procedure and da ta in to a
s ing le ob jec t . Actors per form computa t ion v ia "message pass ing" . Var ious
computer l anguages have been bu i l t upon ac tors , among them a re Smal l ta lk
([Goldberg 1976] and [Kay 1977]) , Act 1 (a descendant of P lasma)
([Hewi t t 1977] and [Lieberman d ra f t]) and Di rec tor ([Kahn 1976] , [Kahn
1978] , and [Kahn 1979]) .

The advantages o f bu i ld ing sys tems in such languages a re increased
modular i ty and increased ex tens ib i l i ty . Actors a re a l so very wel l - su i ted
for descr ib ing para l le l p rocess ing . On h igh ly para l le l hardware i t i s
ant ic ipa ted tha t ac tor programs wi l l be s impl ie r and more e f f ic ien t than
the t rad i t iona l a l te rna t ives .

Pro log ([LNEC 1979] and [Warren 1977]) i s a programming language tha t
has the un ique fea ture tha t programs wr i t ten in i t can be v iewed e i ther
procedura l ly o r dec la ra t ive ly as log ica l s ta tements . However , a s a h igh-
leve l p rogramming language i t has cer ta in def ic ienc ies . I t i s d i f f icu l t
to wr i te programs tha t a re no t dependent upon the represen ta t ion of the
da ta . A typ ica l sor t program, fo r example , works on ly upon l i s t s as they
are p rovided by Pro log and a d i f fe ren t vers ion i s needed for d i f fe rence
l i s t s or o ther k inds of l i s t s . I t i s a l so qu i te awkward in Pro log to
handle "v i r tua l da ta ob jec t s" , such as the l i s t of na tura l numbers , tha t
i s computed as needed . In genera l i t i s d i f f icu l t to de lay computa t ions
unt i l they a re needed . The ab i l i ty to cons t ruc t new k inds of da ta
s t ruc tures in Pro log i s l imi ted to those tha t can be represen ted by
te rms and l i s t s t ruc tures . These very genera l da ta s t ruc tures a re on
occass ion ex t remely inef f ic ien t in compar i son wi th more spec ia l ze
s t ruc tures such as a r rays or b i t s t r ings . Other m°re genera l a a
s t ruc tures a re o f ten more convenien t than te rms or l i s t s whose par t s a
accessed by the i r pos i t ion in the s t ruc ture . The packagers o ^
which suppor t named subcomponents and par t ia l descr ip P
of such . As I hope to show, many of these def ic ienc ies of Pro log can be
remedied by the inc lus ion of ac tors .

This repor t descr ibes an implementa t ion in Pro log of ac tors modeled
a f te r the Act 1 language . The implementa t ion i s ca l led In te rmiss ion .

There i s another mot iva t ion for implement ing ac tors in Pro log bes ides
the a l l i ev ia t ion of the above ment ioned de f ic ienc ies . " 5?ew of
may l ead to a be t te r or d i f fe ren t ac tor The ^ ica i view o
Pro log programs appl ies to the Programs tha t ^P 1 ^ actors J -
Cer ta in unusua l fea tures of Pro log car ry over to tne ^
in Pro log . The poss ib i l i ty of revers ing the normal input and ou tput

var iab les o f a Pro log re la t ion , for example , changes the normal
s emant ics o f ac tor computat ions . The ab i l i ty to use the same program i,
many different ways is very attractive and adds new dimensions to acto-
programs .

WHAT IS AN ACTOR
An ac tor i s a computat iona l ent i ty that combines in a s ing le unit both
program and data. Actors therefore subsume both procedures, functions
and a l l k inds o f data s tructures . Computat ion i s performed on ly by '
sending messages. It is not possible to reach inside an actor or chanqe
an ac tor wi thout sending that ac tor a message reques t ing such an
operation. This guarantees the integrity of the objects of computation,
The programs wr i t ten in an ac tor language depend on ly upon the behav io r
of modules and not upon the ir phys ica l representat ion .

An ac tor cons i s t s o f two parts : a "scr ipt" which dec ides what should be
done wi th incoming messages and a se t o f "acquaintances" which are t he
other ac tors that the ac tor knows . The acquaintances p lay t h e ro le of
l oca l data for the ac tor . An ac tor can on ly send a message to someone i t
knows , i . e . e i ther to one o f i t s acquaintances or to someone referred t o
in the incoming message .

Actors can represent a data type in many d i f f erent ways and the programs
that use them need not know which type i t i s dea l ing wi th . Por example ,
one can de f ine matr ices as two-d imens iona l arrays , or as pa irs o f
ind ices and va lues (perhaps s tored in a hash tab le) , or as a procedure
that computes the va lues as needed . The f i r s t a l ternat ive i s the
t ^ d i t i °2 a ^ w a y represent ing matr ices and exp lo i t s the way memory i s
addressed m convent iona l computers . The second one prov ides great
sav ings o f space and t ime i f the matr ix i s large and sparse . The t h i rd
a l ternat ive i s idea l for spec ia l matr ices such as ident i ty matr ices .

no Since programs depend on ly upon the behav ior o f the "data" there i s w
def in ing in f in i te objec t s such as the l i s t of p r i m e numbers .

rnmnn n !nL a C F° r S that_accept messages ask ing for the ir f i r s t and res t
f o r ^?na'nf° r pr int ing , for determin ing equal i ty wi th other l i s t s , ar
ask ina fnr i +-= e l ements . Some l i s t s accept o ther messages such as t hose
reason an ? r t o a PP e n d another l i s t to i t se l f . T h e r e i s no

e l i s t cannot be de f ined to do these th ings .

l o t l rTlh l l V r tTr l i S t t n t a C t ° r s y s t e m ' ^ is re i a t ive ly easy to add
in para l l e l (oerhan2 c o m P u t at ions ye t to be done or that a r e be ing to
around, inser ted in l i s t s ° n j n °^ h e r processor) . The ac tor can be passed
needed must the comDut-a l^ ' l l k e a n d o n l v w h e n i t s v a l u e 1 5
the behav ior L , ? invo lved f in i sh . Again the dependence upon
s tructure , makes th i s^oss ib le* p h y s i c a l implementat ion o f a data

HOW-TO PUT ACTORS INTO PROLOG

computer language 9 then° ih 0 t 0 P r ° l o < 3 f c o produce a bet ter prac t i ca l
of implementat ion . Perhan ^ o u l d have to be incorporated a t a lo w

symbols and numbers have f S y w o u ld have the same s ta tus as l i s t s
th i s report descr ibes an c u r r e n t implementat ions of Prolog . Ho«<
i s to c lar i fy and exp lore "£ o r P°ra t ion of ac tors i n Prolog whose p i
consequence , t he ac to r s an^ S aa S f u e s a n d i ^eas invo lved . As a
and f l ex ib le manner that i <= „ c t o P r ° l °g in a ve ry c lean , gen"'
implementat ion has Droved a , s n f o r t unate ly extremely i ne f f i c i en t . J 1

quick sor t or the s i eve e of a ^ a t ! . f ° r r u n n i r >g s imple programs l l *
seven d i f f erent types o f l i s t s a n d f o r i m Pl e m e n t i n 9 S 1 X

Actor theory de f ines the h
as "uni -d irec t iona l" . in c o n i P u t at ion mechanism o f message

r words , you send a message to an a

3^

its up to it to reply or to send messages off to others. If we were to
implement actors in this completely general fashion then we might have a
Prolog relation called "sent" between four terms as follows:

sent (Continuation-1, Message-1, Continuation-2, Message-2)

which is interpreted as message-1 is sent to the actor continuation-1
and as a result message-2 is sent to continuation-2. When all the terms
are instantiated the following should happen:

sent(Continuation-2, Message-2, Continuation-3, Message-3)

In other words, each transmission of a message to a continuation should
create a new continuation and a new message. The newly created message
and continuation then become the participants in the next message
transmission. In the full generality, the "result" of sending a message
to an actor should be any number of new transmissions. The problem with
this setup is that the programs written in this fashion repeat the same
text twice (e.g. Continuation-2 in the above example). Actor
interpreters avoid this and the Prolog interpreter could be changed
similarly.

Instead of making this major change to Prolog's interpreter a more
limited version of actor semantics was implemented where all message
transmissions "return" a value. This is similar to the approach taken in
Smalltalk, Director, and the abstract objects in Lisp Machine Lisp. In
Prolog terms that means that the "sent" relation has only three terms as
follows:

sent(Target, Message, Answer)

This scheme was generalized by allowing for any number of "answers"
including zero (for print messages, for example). It is the one used in
Intermission. For example, let us consider a simple implementation of
lists to illustrate the "sent" relation. Of course, since Prolog already
has lists this is meant solely as an illustration of the basic ideas. It
turns out we will represent actors as Prolog lists, so this clearly will
not make Prolog more powerful later examples are for that. Actors
are represented as lists whose first element is their type which plays
the role of the "script" and the rest of the list are the
"acquaintances" of the actor.

First we define the message "first" which returns the first element of
the actor list, and the message "rest" which returns the rest of the
list. (Lower case words are literals; upper case are variables.)

sent([list,First,Rest] ,first,First) .
sent ([list,First,Rest] , rest, Rest) .

For example, to find the rest of the list (A B) we type the following
to Intermission.

sent([list,A, [list,B, [emtpyJList]]] ,rest,R) .

and the system responds

R= [list,B, [emtpy_list]]

Next we define a means of making lists by adding new elements in front
(i.e. "cons" in Lisp) .

5ent([list,First,Rest] , [add element ,New_element] ,
[list,New_element,[list,First,Rest]]) .

3

u
To get s tarted we need the empty l i s t , which we wi l l represent a s an act
w i thout any acquiantences .

sent ([empty_l i s t] , [add_element ,New_element] , [1 i s t ,New_element , [empty l i S []]

Now suppose we want our l i s t s to respond to "length" messages . We could
def ine th is as fo l lows .

sent ([l i s t ,F i rs t ,Rest] , l ength ,N) /* the l i s t ' s length i s N i f* /
sent (Rest , length ,M) , /* the length of i t s res t i s M * /
sent (M, [+ ,1] ,N) . /* and N = M + 1 (numbers as actors are descr ibed below) t

s ent ([empty_l i s t] , l ength ,0) .

To extend our l i s t s so that they can respond to messages asking i f thev
are equal to another l i s t , we have the fo l lowing.

sent ([l i s t ,F irs t ,Rest] , [equal ,Another_l i s t] , true)
sent (Another_l i s t , [are_you a , l i s t] , true) , /* i s the other i s a l i s t * /
s ent (Another_l i s t , f i rs t ,OtKers f irs t) ,
sent (Fir s t , [equal ,Other s_f i r s tT, true) , /* i s my f i rs t equal to his f irs t * '
s ent (Another_l i s t ,res t ,Others_r es t) ,
sent (Rest , [equal ,Others_rest] , true) . /* and h is res t equal to mine * /

We need to s top somet ime so we def ine empty l i s t s to equal themselves ,

sent ([empty_l i s t] , [equal , [empty_l i s t]] , true) .

tvne n of°^h» e d t n e w m e ssage of general usefulness that ver i f ies the
to the "• " b ° t h l i s t s a n d t h e ***** H«t to answer yes to tne quest ion "are you a l i s t" .

«nwn™ P ^V?" i s t l ' ̂ a r e _you_a, 1 i s t] , true) .
sent ([l i s t ,F irs t ,Rest] , [are_you_a, l i s t] , true) .

aSfwe'ask^t are^o^eouaT ̂ ̂ r?° i n t " S u p P ° S e W e h a v e t h e l i s t (A B C 1

to Z. But A and I Ir l p™? t 0 (? B C) t h e n i f c w i l 1 A i f i t i s equal
problem that we take i ! V n 0 t a c t °rs . The so lut ion to this
bot tom" actors We reore^nv £° t h a t t a k e n b y A c t 1 i n handl ing "rock
s t i l l behave just l ike fu l l - f?oIJ ^ S 3 n d s y ™ b ° l a spec ia l ly but they
i s Prolog's . For examni .= actors . The representat ion we choose
message we do the fo l lowing e n a b l e Prolog symbols to answer "equal"

sent {Symbol , [equal ,Symbol] , true) atomic (Symbol) .
A LIST OF INTEGERS
The actor l i s t s we just dpf inoa u
seems more complex and awkuar^ » a v e n o a d v a r | tages over Prolog l i s t s M"
advantages of the actor exa??le that points to some of the
a large c lass of them s implv hv / S 3 l l s t . o f integers . We can r e p r e s e n t
first element, the last element ^Ct°r with three acquaintances: the
e lements . We can def ine "f irs?"' ^ „ t h e d i f f «ence between sucess ive
f o l l o «s . t l r s t a n d "rest" messages for such l i s t s as

SGnt ([n l i s t .Beqin Fn^ T*I^
«"t ' [n l l ? t : B e |] ; ; i^;^«™»nt . f irs t ,Begin , .

sent (Begin , [+ , Increment] ,New begin" [n l i s t ' N ew_begin ,End,Increment]) •
The "rest" m^c;

excepftha? f i^^^^^swers^i t^a 3 ! • i S t ° f n U m b e r s i s a s k e d 1? inborn* ?™ t h e . f i rs t e lement i s o f numbers just l ike i t se l f
number ?s*a N ° f c i £ e that the addi t ion ? f irs t e lement p lus the

^ sent the message "add the v*? p e r f °rmed by actors; the f i r s t
t b e v a l u e of increment" to yourse l f .

3?
Numbers are ab le to take messages l ike th i s because they are "rock
bo t tom" actors wi th message handlers such as the fo l lowing .

sent (Number , [+ ,Another] ,Resu l t)
in teger (Number) , in teger (Another) , / * i f they are both numbers * /
Resu l t i s Another+Number . / * then add them * /

Se cou ld go on and de f ine "equal" , " length" , "are_you_a" , and "pr int"
nessages for these new k inds o f l i s t s but some o f i t wi l l be a
repet i t ion o f the prev ious c lauses . Other k inds o f l i s t s wi l l be de f ined
and some w i l l have even more in common wi th the behav ior o f our ac tor
l i s t s . The so lut ion to th i s problem in Act 1 and Direc tor i s "message
de legat ion" . When an ac tor does not know how to handle a part i cu lar
nessage i t "de legates" i t to someone i t th inks can handle i t for h im.
rh i s ac tor which de legates i s ca l l ed the "c l i ent" and i t de legates to
i t s "proxy" . De legat ion i s implemented by hav ing the fo l lowing two
c lauses o f "sent" a t the very end .

sent (Anyone ,Message ,Resu l t) / * i f any ac tor cannot handle a message * /
sent (Anyone ,proxy ,Proxy) , / * we ask the ac tor who h i s proxy i s * /
sent (Proxy , [handle_for ,Anyone ,Message] ,Resu l t) .
/* and send the Proxy the message ask ing i t to handle th i s for the ac tor * /

sen t (Anyone , [handle_for ,C l i ent ,Message] ,Resu l t)
/* and i f a proxy cannot handle the problem passed to h im, he passes i t

on a long to h i s proxy * /
sent (Anyone ,proxy , Proxy) ,
sent (Proxy , [handle_for ,C l i ent ,Message] , Resu l t) .

rh i s s imple scheme great ly increases the power o f the ac tor sys tem by
fac i la ta t ing the shar ing o f knowledge . The programmer now can p lace
knowledge a t as h igh a l eve l o f abs trac t ion as des ired . For example , we
can de f ine a "pr int" message for a l l k inds o f l i s t s as fo l lows .

sent (l i s t , [handle_for , A_ l i s t ,pr in t])
wr i t e (' (*) , / * pr int an open parenthes i s * /
sent (A l i s t ,pr int_e lements) ,
wr i te f) ') . / * pr int a c lose parenthes i s * /

sent (l i s t , [handle_for ,A_ l i s t ,pr int_e lements])
wri te (' ') ,
sent (A l i s t , f i r s t ,F irs t) , >. * /
s ent (P lrs t ,pr int) , / * send a "pr int" message to the f i r s t e lement /
sent (A l i s t , res t ,Res t) , .
sent (Res t ,pr int_e lements) . / * send a "pr int e l ements" message to the res t * /

Not ice that s ince "pr int" messages are sent on ly for the ir s ide e f fec t
and there i s no "resu l t" the "sent" re la t ion has on ly two arguements
here . (This ac tua l ly causes s l ight problems wi th de legat ion . The two
c lauses implement ing de legat ion need to be cop ied wi th on ly two
arguements t o "sent" .)

Now i f we dec lare that our number l i s t s have the gener ic " l i s t" ac tor as
a "proxy" a s fo l lows ,

sent (n l i s t ,proxy , l i s t) .

then we can pr int "n l i s t s" wi thout d i f f i cu l ty . For example ,

s e nt ([n l is t , 1,15,2] ,pr int) . / * resu l t s in the fo l lowing be pr inted * /
' 1 3 5 7 9 11 13 15)

T h | s i s f ine but how should a l i s t l ike " [n l i s t , l , J°2°°?J 'b ihav ior we
Pr inted? The de legat ion mechanism prov ides on ly a •
can overr ide i t in th i s case as fo l lows .

3*
sent (nlist, [handle for,A_list,print_elements])
/* no need to override "print" since we still want the Parentheses */
sent(A list,length,Length), /* find the length of the list */
sent(Length,[>,5],true) , /* and its greater then 5 */
s e n t (A_list,print_elements_with_dots) . /* print it specially as follows'

sent (nlist, [handle_for , A_list ,pr int_elements_with_dots])
write (' ') ,
sent(A_list,first,First) ,
sent(First,print), /* print the first element */
write (' ') ,
sent(A_list,2,Second) ,
/* We define lists to respond to numbers with their Nth element */
sent(Second,print) , /* print the second element */
wr ite (' ') ,
sent(A_list,3,Third) ,
sent(Third,print), /* print the third element */
write(' ... '), /* print three dots */
sent (A_list,last,End) , /*• lists return the last element to "last" messages!
sent (End,print). /* and print the last element */

Our change has not affected lists of numbers with less than 6 elements,
However if we try to print the first million integers, the list behaves
sensibly as follows.

sent([nlist,1,1000000,1],print) .
(123... 1000000)

Notice that our print method asks the list for its length. This could be
quite expensive considering that the general method for length keeps
sending rest" messages until the list is empty. (One part of our
nlist a<?tor that has been ommitted here are the clauses that determine
if„fn emPty.) We can fix this by adding a method which simply
fhp KSnCe bebween the first and last element and divides by

2? ? °r the len9th. A similar problem exists with
and ouffe 0^!ment m®ss?9e. This one is trivial for "nlist" to handle

quite expensive to let the general method in "list" handle it.

renresent inf?n!fWeiba^e deflned "nlists" in such a way that they can
integers is iust " rnl * 1 F<?r ®xaTnPieJ the list of all the positive odd
acto?"hiJh has oJn ' 'inflnity'2]"- "Infinity" is just a number actor wnicn has clauses such as the following.

infinity delegates to number V
sent (infinity | [> ̂Anyone] ' true?11"/* * I #1 1?f ln 1 ty Plus anything is infinj J

J, ue) . / infinity is greater than any other /

that the other^umberSwhich should be edified to make sure
infinity. This coulfbfdo£e„foUoS! C°mpared with is n0t itS6lf

nitY't>,Any°nel ,true> sent (Anyone, [are_you,finite],true),

its length, and Sample'366 t0' taken aPart' printed, asked

L=infinU;?'1,infinity'2] '^ngth^) .

S")

DELAYED COMPUTATIONS
Somet imes i t i s easy to descr ibe what each ob jec t o r process in a
computa t ion should be or do bu t the par t s depend upon each o ther in such
complex ways tha t i t i s d i f f icu l t to order the events . One would l ike to
have each p rocess run in para l le l and wai t when they need some va lue
tha t has ye t to be computed . Actor sys tems a re wel l - su i ted for
descr ib ing para l le l p rocess ing because of message pass ing and the
in te rna l iza t ion and loca l iza t ion of s ta te descr ip t ions . However , s ince
achiev ing concur rency wi th in Pro log would requi re major changes to the
in te rpre te r the ac tor p r imi t ives for para l le l i sm were no t implemented .
(See [Clark 1980] fo r a descr ip t ion of some of these changes to Pro log .)

A pr imi t ive fo r de lay ing computa t ions un t i l the va lue i s needed has ,
however , been implemented . I t i s espec ia l ly usefu l for comput ing wi th
inf in i te ob jec t s . "Delay" could be def ined as fo l lows in Pro log .

sen t (ac tor , [handle fo r ,Cl ien t , [de lay ,Message]] ,
[de layed_t ransmiss ion ,Cl ien t ,Message , Value]) .

I f any ac tor rece ives a message beginning wi th "de lay" fo l lowed by a
message i t jus t " re turns" an ac tor tha t i s a de layed t ransmiss ion whose
acquai tences a re the or ig ina l rec ip ien t of the message , the de layed
message , and a var iab le represen t ing the to-be-computed resu l t of
sending the message to the ac tor . The next problem i s to def ine de layed
t ransmiss ions as ac tors tha t when they ge t a message f ina l ly do the
delayed ac t ion and then send the message on a long to the resu l t .

sen t ([de layed_t r ansmiss ion , Tar ge t ,Delayed_message , Value] , Message , Re su i t) : -
sent (Targe t ,Delayed_message ,Value) , /* compute the de layed computa t ion * /
sent (Value ,Message ,Resul t) . /* and send Message to the resu l t * /

The d i f f icu l ty wi th th i s so lu t ion i s tha t the ac tor wi l l recompute i t s
delayed computa t ion every t ime i t ge ts a message . We would l ike i t to
compute i t the f i r s t t ime on ly and f rom then on have i t behave as the
resu l t . To avoid th i s we t ake advantage of Pro log ' s ab i l i ty to compute
wi th pa r t ia l ly ins tan t ia ted s t ruc tures . The f i r s t t ime the computa t ion
i s per formed the l as t e lement o f the l i s t represen t ing the de layed
computa t ion i s ins tan t ia ted . To take advantage of th i s we add the fo l lowing

sent ([de layed t ransmiss ion ,Targe t ,Delayed_message , Value] ,Message ,Resul t) : -
nonvar (ValueT, /* I f the Value i s ins tan t ia ted , then use i t * /
sent (Value ,Message ,Resul t) . /* and send Message to the Value * /

One use o f th i s "de lay" message i s to cons t ruc t the l i s t of na tura l
numbers a s fo l lows .

sent (l ist , [natural_numbers_beginning ,N] ,Result) : -
sent(N, [+,1] ,N plus one), i n
sentfl ist , [delay, [natural_numbers_beginning ,N_plus_one]] ,Delayed_rest) ,
sent (l ist , [add_e lemen t , N, De lay ed_r est] ,Result) .

The r esu l t o f sending a "na tura l numbers beg inning 1" message to " l i s t "
is the l i s t of na tura l numbers . In many ways th i s i s a . i - e ;=s .
implementa t ion o f a l i s t of numbers than the one descr ibed ear l ie r s ince
i f we ask i t for i t s length or to pr in t the computa t ion wi l l no t t e rmina te .

Avery o ld a lgor i thm for comput ing pr ime n u m b e r s i s ca l led the "s ieve of
Er a to s thenes " . The idea i s s imple . You begin wi th the l i s t of in tegers
g inning wi th 2 . You then repea ted ly c ross ou t n u ™k®rs tha t a r
multiples of the f irst element of the l ist . The LwaSs
jrst elements is the l ist of primes. With actors and Jelay messages

l h«e are no diff icult ies dealing with these m fmite objects and
computations. We can define the l ist of primes as fol lows.

7

HO

primes(Tbejorimes)
' sent (list,[natural_numbers_beginning,2],Numbers) ,
sent (Numbers,repeatedly_cross_out_multiplies_of_f irst ,The_primes).

sent (list,[handle_for,List,repeatedly_cross_out_multiples of first] RPC„HI
sent(List,first,First),
sent(List,rest,Rest),
sent(Rest,[cross out_those_divisible_by,First],Those_left) ,
sent (Those lef t ,Tdelay ,repeatedly_cross_out_mult iples_of_f irst],Primes)
sent(list,Tadd_element,First,Primes],Result) . ~ " '

sent (list, [handle_for ,A_list, [cross_out_those_divisible_by ,N]],Result) •-
sent(A_list,first,First),
sent(A_list,rest,Rest),
Mod is First mod N,
cross_out_helper(First,Rest,Mod,N,Result) .

cross_out_helper(First,Rest,0,N,Result)
/* mod is 0 meaning that this one is a multiple of N */
sent (Rest, [delay, [cross_out_those_divisible_by,N]] ,Result).

cross_out_helper(First,Rest,_,N,Result)

Cn??n2=t ^mflti?le °f N S° keep ifc and delay the recursion on the rest */
sent (Rest, [delay, [cross_out_those_divisible by, N]] , Those left),
sent (list,[add_element,First,Those_left],Result).

print_primes
primes(P),
sent(P,print) .

^ s " i r / * U l t s t l l e f o l l o w i n g b e i n g t y p e d * /
(2 3 5 7 11 13 17 /* until we interrupt the program V

BATA REPRESENTATION FREE PROGRAMMING

programs: one^oriquickI"lsor'-^hiS research was reading two Prolog
difference lists (?Han^nn °rdlnarV and another for
Intermission's message oasslnn an<3 [Hansson ^80]). Using
any sort of list as follows. WS Ca" w te a 3uick sort that works for

sent (A_list,empty?true?f 7 ̂ list is it<5elf T

sent (list, [handle for,A list [nn(-i,
sent (A_list,first,First) [q u i c k_ s o rtdelation]] , Sorted list)
sent(A_list,rest,Rest),

/* Partion ̂ h^iist^nto ̂wo^art'FiCStl 5 'Less_than_°r_equal,Greater_tha
the first element of thP i; I *, those greater and those less than

sent (Less than or M„ai r~ • , '
sent(Greater_tEan7?qu?cklor1fRe?a^'Re}a"0nl'Fi"t-P art sorted),
/* lust sortEd the €wo s5rl?^; ?• ^°n]'Rest-sort^~, ~
sent Rest_sorted, [cons,First? now put the™ bac* together agai
sent (First_part sortel [a£peid8 .'"t.MrUd) ,

p , n . r ~ PP nd,New-rest_sorted] ,sorted list),
sent(list,[handle for A 1iet r
sent (A_list,empty,trueT. /* ' an3^?10?-157'Pred icafce]) , A list,A list)
„bH1; „ ry empty llst Par tit ions into itself */
J .list, [handle for A li«i- r Lhi'v10" A LTst those3that ̂ -ky. Predicate)] .""rue ones, False®1'
w ' lrst'First), Predicate is true of and those its n<
sent(A list,rest,Rest}
sent(FTrst,Predicate^true)

ft

V

ent (. l i s t , [handle_for , A_l is t , [par t i t ion_by,Predicate]] , Tr ue ones ,False ones i
/* th is handles the case where the Predicate i s fa lse * /
sent(A_l is t , f i rs t ,F i rs t) ,
s e n t (A_l is t , res t ,Rest) ,
sent (Fl rs t ,Predicate , fa lse) ,
sent (Rest , [par t i t ion_by,Predicate] ,True_ones ,Rest_f a lse_ones) ,
sent (R e s t_false_ones , [cons ,Fi rs t] ,False_ones) .

ot ice tha t th is quick sor t procedure works for any kind of l i s t and any
ela t ion between e lements . For example , i t works on In termiss ion 's
rdinary l i s t s , l i s t s of in tegers (f in i te ones only) , d i f ference l i s t s ,
is ts of l i s t s (an implementa t ion of l i s t s for which the "append"
pera t ion i s very inexpensive) , and Prolog l i s t s (preceeded by a symbol
ndicat ing tha t they are Prolog l i s t s so as not to be confused wi th
ther ac tors) . One somewhat s i l ly tes t which shows off some of the
eatures of In termiss ion i s one which a l i s t of a l l d i f ferent sor ts of
is ts i s sor ted by the length of i t s e lements . Some of the e lements a re
nf in i te l i s t s . Al l tha t was required for th is tes t was to extend l i s t s
o answer messages asking i f they are longer than another l i s t . This was
one as fo l lows.

ent (l i s t , [handle_for ,A_l is t , [longer ,Another]] ,Answer)
sent (A_l is t , length ,My Tength) ,
sent (Another , length ,HTs_length) ,
sent(My_length , [> ,His_length] , Answer) .

THER WAYS THE FEATURES OF INTERMISSION MIGHT BE PROVIDED
e have shown how by replac ing the data types of Prolog wi th ac tors we
ave increased the express ive power of the language. Cer ta in kinds of
ata s t ructures tha t were d i f f icul t to express in Prolog (such as
nf in i te l i s t s) are not d i f f icul t in In termiss ion. In termiss ion a lso
rovides more control over the computa t ion as exempl i f ied by the "delay"
essage. In termiss ion programs are by the i r very nature independent of
he representa t ion of the da ta .

ne ques t ion tha t needs to be answered i s whether these advantages of
ntermiss ion could not have been achieved eas i ly in Prolog. We need to
mphasize the word "eas i ly" in our ques t ion s ince we a re deal ing wi th
niversa l Computers tha t are Tur ing equivalent . For example , suppose
nstead of sending messages as we do in In termiss ion we have Prolog
ela t ions for deal ing wi th a l l data s t ructures . Compare the fo l lowing

ent ([l i s t ,F i rs t ,Rest] , f i r s t ,F i rs t) . /* Intermiss ion 's way * /
ics t ([l i s t ,F i rs t ,Rest] ,F i rs t) . /* Prolog 's way * /

hi s scheme i s admi t t ed ly s i mpl i er a nd a l e s s dras t i c depar ture f rom normal
ro log b ut i s much more l imi t e d tha n the message p as s i n g ac tor sy s t e m
"Interm is s io n . T he s cheme ge t s more awkward when the mes s age i s a l i s
truc ture . More s i gn i f i can t i s the d i f f i cu l ty o f in c or p or a t in g
" lega t ion and d e lav in s uch a s cheme . The se ope r a t ion s app ly t o any
i"d o f m es s age wh ich i s ve r y d i f f i cu l t t o expres s in th i s s e tup .

n ° ther poss ib le answer to the ques t ion of whether ^ ̂vantages
"termiss ion could be achieved wi th a less dras t ic p . I C _
s Ves, the implementa t ion of IC-Prolog i s such an a"®" 1 ** 1 *®* t h

" log a l lows the user to annota te t h e i ^ P r o ^°? 1 p r °^ a ^ t ermiss ion 's
omputat ion. They have a pr imi t ive tha t i s s imi lar to Intermiss ion ,
" lay message, for example . One impor tant d i f ference between the IC-
"log 's control fea tures and In termiss ion 's i s tha t permiss ion s h Q t
® bui l t in to any in terpre ter but were def ined wi th three f f "
pauses i n In termis s ion . Th i s sugges t s tha t n e r v e s " ra ther th a n

6 t e r posi t ion t o de f ine the i r own c o n t r o l " pr imi t ive s ra ther tha n
! Ply accept those provided by the language ^p^Pon
t j U r e s ° f In t ermis s ion : de l ega t ion a nd da ta ^p P o l _ s j n Pro log .

are as d i f f icul t to provide__in_IC^Prolocj^^ M ^ M M ^^ M ^^ M M

H Z

PROBLEMS WITH INTERMISSION
There are many problems with Intermission of course. The syntax is
awkward and verbose. This is not a consequence of the use of actors^
message passing but of how Intermission was built upon Prolog. °r
Delegation, for example, requires handlers for "handle for ..*•
messages. With the proper defaulting this level of detail does not
to appear in any user's program as is the case in most actor lanquaa!
The worst problem with the syntax of Intermission compared to Pro loo <
the use of explicit constructors and selectors instead of pattern
matching. This is ironic since in all other actor languages pattern
matching is an essential part of the language. In Act 1, for example
the pattern matching is performed by actors and is very powerful Li'
ovfonci hi O Tnfnfmi nni mm — i_ J _ -1 "1 , _ extensible. Intermission can only partially make use of Proloq's oat-h,
matching because it is representation dependent. What is needed in
Intermission is a pattern like " [Head, . .Tail] " which will match anv kin*

"fiJst" »nl "Headn a"d "Tail" t0 the reSUlt of ending first and rest message, respectively, to the list. These svntactir
problems with Intermission could be overcome by placing a "front end"

interpreter?C""SSi0n Pr°5"mS a"d °r *

Another problem with Intermission is that all message passinq is bi-
control1 especially vithMspf"'^?!!!,,

when the actor in question cannor hsMi1S?KlS intended to take over only
describe a pattern for h.handle the current message. One cannot
instead one is forced to rp f3 that an actor will not accept and
prover so that the deleaation U?°n e search order of Prolog's theoren

««««* „,y8
its

program in

delegation in an inapproprlite if lull i o1V" ̂ behavior message
terminate, it is especially aiffi ation) and often the program will
point where it is clear that an 0C have the program break at a
example of this is the inability, fr°u should be signaled. A serious
message that neither it S l!. „ break when an actor receives a
k ufe hj1?" ifc wlll be triqaerpfl Can handle- If one adds such
imni ackfn9- Some of these difFio..i°?eously in the process of
implementing Intermission in OLOP 3 WOUld be alleviated by

™?st of InterLisp's deJ!' a" implementation of Prolog which
[Komorowski 1980], debugging facilities to the user

The most serious short
iS that it: is berriblvfsiotermiS3i°n as a Poetical program

inst 6nCe bhe way inCwhich achor a"d • ,inef f icient • This is a
ineffici being incorporated at a m built on top of Prolog
behfvior m£-1S als° dua to the iL^ ^ l0W6r level« Mu^h °f the
is a lanan= ST*Spect could be alleki°5 ^°"tr?l over Prolog's search

IC-Prolog. sted by implementing Intermissio

DirectorllIndncailS con,putationaltineff°f actors and message pass
"overhead" of indicate tWfflculencies. Experience with Act

verhead of actors and message S«<™uch (if not aU> the

to5 Can be compiled out without

<3
loss of f lexibi l i ty . Many ant ic ipate ac tor compi lers tha t wi l l be more
ef f ic ient than those of convent ional languages because the programs
being compi led re ly only upon the behavior of the objects involved
leaving the compi ler grea t f reedom in performing opt imizat ions which are
perfec t ly safe . Also there has been much research tha t suggests tha t the
actor model of computa t ion leads to programs tha t can fu l ly exploi t the
para l le l processors of the not - too-dis tant fu ture .

POSSIBLE CONTRIBUTIONS TO THE ACTOR MODEL OF COMPUTATION
This research was performed wi th two goals : to improve Prolog by adding
actors and to improve ac tors by implement ing them in Prolog in such a
way so as to preserve some of i t s unusual fea tures . One benef ic ia l s ide-
effect of th is research i s tha t In termiss ion seems to be a good way of
in t roducing ac tors and message pass ing concepts to a communi ty famil iar
with Logic Programming.

Dne very appeal ing fea ture of Prolog i s the abi l i ty to use the same
program in many ways . For example , the Prolog def in i t ion of "append" can
be used not only to compute the resul t of appending two l i s t s together
out can a lso be used as a predicate to ver i fy i f the resul t of appending
two l i s t s i s a th i rd l i s t , as a genera tor of pa i rs of l i s t s that append
to a par t icular l i s t , as a way of f inding the d i f ference between two
l i s t s , and as a genera tor of t r ip les of l i s t s such tha t the f i r s t two
appended form the th i rd . In Prolog only some of these uses are ef f ic ient ,
lowever IC-Prolog provides a means of grea t ly increas ing the ef f ic iency
pf the o ther uses .

rhis fea ture of Prolog has only par t ia l ly been preserved in
Intermiss ion. The problem i s tha t when sending a message to an un-
ins tant ia ted ac tor Prolog of ten never terminates whi le i t crea tes more
and more examples of the wrong k ind of ac tor . The d i f f icul ty i s
pr imar i ly one of the inabi l i ty in Prolog to control i t s search. I t i s
axpected tha t th is d i f f icul ty would be remedied by implement ing
Intermiss ion in IC-Prolog. In termiss ion in IC-Prolog would a lso provide
:he impor tant ab i l i ty to descr ibe and tes t the program f i rs t and then
idd commentary to improve i t s performance.

toe of the most impor tant fea tures of Prolog i s tha t the programs have
)o th a declara t ive logical in terpre ta t ion and a procedural one . Because
>f the way In termiss ion was bui l t upon Prolog programs wri t ten in
In te rmiss ion also have these two in terpre ta t ions . This i s impor tant for
mveral reasons . Somet imes the declara t ive in terpre ta t ion i s s impl ier
i n i t hus i t i s eas ier to wri te and debug programs in such cases . The
ask of implement ing programs tha t unders tand themselves i s eased by the
i b i l i ty to reason about the code as logical s ta tements . Ver i f ica t ion of
l r ograms i s made eas ier by taking a logica l in terpre ta t ion of the
: °<3e. There i s a lso the poss ib i l i ty tha t theorem provers could der ive
' r og rams f rom speci f ica t ions ([Hansson 1979] and [Hansson 1980]) .

WORE RESEARCH
•xperience i s needed us ing Intermiss ion for more than "toy" programs.
^fore th i s can be done a more e f f ic ient and pract ica l implementa t ion
'seds to be made. The b ig problem here i s how to accompl ish th is whi le
' ^ se rv ing the fea tures of Prolog, especia l ly the declara t ive
In te rpre ta t ion of programs. Prolog programs can be in terpre ted
e c l a ra t ive ly or procedural ly . One v iew of th is research i s tha t i t s an
t tempt to genera l ize the "procedural" in terpre ta t ion of Prolog programs
! thout los ing the declara t ive .

nother avenue of research i s to implement a Prolog- l ike (or iC-Prolog-
l k e) language in an ac tor language such as Act 1 . This would he lp
a r i f y the re la t ionship between the two languages and would Provide a

a n u of Act l ' s fea tures to Prolog. The idea here i s s imi lar to tha t
Q L O G w h i c h p r o v i d e s I n t e r l i s p f e a t u r e s t o ^ o l o g . < ® £ ; i t i n g

ibi l i ty i s tha t th is implementa t ion would be the™orepract ica l_
^menta t ion of In termiss ion because ac tors would be under ly ing
data

V/JL lllLCLilllOOlwii ^

types and pa t tern matching-

MM

ACKNOWLEDGEMENTS
I would l ike to thank Sten-Ake Tarnlund for h is help and encouragement
wi th th is research. I am a lso indebted to Car 1 Hewit t for most of the
ideas about actors incorporated in Intermission and to Henry Liebernan
whose ac tor langauge Act 1 was the model for In termiss ion.

REFERENCES

[Clark 1980]
Clark K. and McCabe F . "The Control Faci l i t ies of IC-Prolog" , Depar tnen
o f Comput ing and Control , Imper ia l Col lege , London

[Goldberg 1976]
Goldberg , A. , Kay A. ed i tors , "Smal l ta lk-72 Ins t ruct ion Manual" The
Learning Research Group, Xerox Palo Al to Research Center , March 1976

[Hansson 1979]
Hansson A and Tarnlund S , "A Natura l Programming Calculus" , IJCAI-79
Tokyo, Japan, August 1979

[Hansson 1980]
Hansson, A. "A Formal Development of Programs" , Depar tment of
Informat ion Process ing Computer Science , The Royal Ins t i tu te of
Technology and The Univers i ty of Stockholm, January 1980

[Hewit t 1977]

Journal of ArMf — a s P a t t e™» of Pass ing Messages" , ournal of Ar t i f ic ia l In te l l igence , Vol 8 . No. 3 , June 1977, pp. 323-36)
[Kahn 1976]

37-43 Proc^r i^ 0 r ~? a fu d C o n , P u t e r Animat ion Language" , ed . Treu, S . , op.
o f In terac t ive

[Kahn 1978]

Computer Graphic^ Vol G ! [a p h l c s u s l ng Quasi Para l le l i sm", P s , vol . 12 , No. 3 , August 1978, pp. 357-362
[Kahn 1979]
Kahn, K. "Director Guide" M T T » T , MIT AI Memo 482b, December 1979
[Kay 1977]
Kay, A. "Microelectronics anH vv, r .
Sc ient i f ic American, September^Personal Computer" ,

[Kornfe ld 1979]

Master Thes is^Spr in^igyg 6 1 P r o c e s s i ng for Problem Solving" , MIT EECS

[Komorowski 1980]
Komorowski , H. J . "oioa - mv.
Programming", Data logi Linkoenfn^ 3 ^ f o r P r ° log and Logic
Univers i ty , Apr i l 1980 g Research Repor t , Linkoeping

[Lieberman draf t]
Lieberman, H. "A Preview of Act 1"
[LtJEC 1979, ' S " b " ' t t ' d E ° ' Publ ica t ion
"How to Solve i t wi th Proi *
Lisbon Por tugal , August 1979 L a b o r a t o r io Nacional de Engenhar ia Civil-

[Warren 1977]
Warren, D Warren, D, " Impleinent '
Univi rJ t S e a l C h P a P^t n No! r ?9° 9 D Zn c ° m p i l i ng predicate logic nrograms"-

e rs i ty of Edinburgh, May 1977 t m e n t °f Art i f ic ia l In te l l igent '

ir-ppornG - langhacf FF.ATTTRES

K. L. Clark and F. G. McCabe, Imperial College of Science and Technology,

Department of Computing and Control, 180 Queen's Gate, London, SW7 2BZ

Extended Abstract

IC-PROLOG differs from the other Implemented PROLOG' S in two major

respects. Firstly, it does not provide the extra-logical feature "/",

nor the meta-logical facilities to add and delete clauses during a

computation. In part compensation, it provides negation as a primitive

and allows the programmer to use conditionals. The other major difference

is the control facilities. With the use of annotations the programmer

can cause the computation to proceed in a pseudo—parallel mode, and to

coroutine on the basis of the flow of data through shared variables.

Negation

In IC-PROLOG a program clause is an implication of the form:

B •*- ZA &. . .&Lm , miO

where B is an atom and Ll,..,Lm are literals. Thus, a negated atom A

can appear as a procedure call of a clause. Negated atoms are evaluated

by the negation-as-failure proof rule. That is, if all possible proofs of

A fail, .•*a is assumed to be proven. As explained in Clark £1978], this proof

rule can be reconciled with the truth functional semantics of ~ if one

assumes that the implications of the PROLOG programs are a shorthand for

a set of equivalences and inequalities. The IC-PROIOG implementation of

negation is faithful to that semantics. In particular, if the proof

succeeds, ~ A is failed only if no variables in A have been bound. The way

H b

(2)

in which this binding condition is checked without too much overhead i.

explained in our companion paper on implementation. Cclark and McCabe 1980]

Conditionals

The pair of clauses

P C & D

P «-~C & E

-PC.. . conditional of P. » IC-PROLOC . PAL, -- LUT

this can b. absorbed into the non-cl.uaal baplicatlon.

P *• C THEN D ELSE E.

The logical ,e.,nU„ o, tb. iopiioation 1, that it „

paxr of program clauses. However, procedurally it avoid, the

redundancy of attempting to estahl<-K ^
twice, once for the po.itive proof,

and once for the failure proof T„ ft,fc P oof. In other pRoux.s ^

has to be achieved by using "/" The .1
y / • The clauses are written

p Ca/ao

P +- E .

The problem with this solution is that the

true statement. " ClaU86 00 l0n9er 4

Set of Solution <a

The collection of the set of

«-*. Of a variable p. anoth,, ^ ^ ̂

PROLOG programmer to or normally left to the
to Program using «/" ^

^ packaged and expressed us" clause". In IC-PROIOC this
an abbreviated „.t „t,tib„.

H ?

(3)

Suppose that the programmer would like all the bindings for the

variables x and y for which there a solutions to the goal •+• P{x,y,z) .

This list denotes the set

{<x,y>|3 2, "P (n,y,z) }.

In a language such a SETL [Kennedy and Schwartz 1975] such a set extension

could be assigned to a variable by writing.

w = {<x,y>| 3zP(x,y,z)}.

In IC-PROLOG, the programmer can write

w = CUx.y)/ P(x,y,z)]

as a shorthand for this equality statement. Its evaluation will result

in w being bound to a list of the form.

t(al.bl) . t(a2,b2) t(ak,bk) .Nil

where

x»al, y=bl, x=ak,y=bk

are all the solution bindings for the goal +P(x,y,z).

. An example of the use of this set facility is the clause

Courses-taken (x,w) w=[y/Takes(x,y>3•

Used to evaluate the goal * courses-taken (Smith, w) it will result in w

being bound to the list of all the courses that Smith takes.

Search Control

H.<6

(4)

Back-tracking is the basic search strategy with the clause* for a

predicate selected in the before-after order in which they are listed

(they do not need to be contiguous) . The programmer can exercise saoe

limited control over the back-tracking.

Firstly, if a relation R is such that some subset of Its arguaents

are uniquely determined by the other arguments, the prograsmer can express

the fact as an assertion about his program. After the successful

evaluation of some call involving R in which these other arguaant. were

given, the trace of the evaluation is succeess popped from the stack.

This saves space and avoids unnecessary backtracking.

Secondly, the programmer can request indexing of the clauses for any

predicate on any argument positions. For each Indexed argument a table

is constructed. This contains an entry for each constant and each top-

level function symbol that appears in that argument position in the

consequent atom of some clause for the predicate. it also contain, an entry
for a variable occurence in «-h—

P°sition. When an atom is selected with an
predicate the i„der t^„ ^ , c^,d.e.

not in the candidate set cennot unify with the selected
atom and the evaluation only backtrar-v .u

^tracks through the candidate set.
Computation rule

The rule which determines which i<«
literal of some derived goal clause

is selected for the next evaluation a.
steP is the computation rule. To our

knowledge all other PROT.OO ^
s use a fixed lelf-right computation rule. This gi*

programmer very , < ,
he can do is sujLtabl ^ °0ntr01 °Ver "der of execution. All that

of 7 °r<3er ^ literals in each clause to specify an order
of executron for each use of the el.

USE. IC-PRO LOG gives the PROGRAMME* a

(5)

rich set of control facilities. The programmer can make the execution

order conditional upon which variables of the clause are bound by the

unification that Invokes the clause. He can also relax the strictly

sequential execution. He can cause the evaluation of particular calls

to be coroutined with the evaluation of the preceding sequence of calls,

and he can cause a sequence of calls to be evaluated in pseudo-parallel

fashion.

Most of these computation rule control facilities are fully described

in [Clark and McCabe 1979]. We shall just give one or two examples.

Selection of control alternatives

To make the order of evaluation of the calls of the clause

grandparent (x,z) - parent (x,y) & parent (y,z)

conditional upon whether x or z is given we write

[grandparent (n?,z) parent(x,y) & parent(y,z),

grandparent(x,z?) +• parent(y,z) & parent(x,y)]

in place of the single clause. Bracketing the clauses together prevents

their being considered as back-tracking alternatives. The annotation ?

• v.i „ it- annotates must have been bound,
expresses the condition that the van

to a non-variable before that clause copy can be used.

Data-flow coroutining

for testing whether or not two trees
The classic coroutining example

oxoressed by a coroutining annotation,
have the sarnie leaf profile can be e p

In the clause

•To

(6)

same-leaves (x,y) *• leaves (x,u) & leaves (y,u?)

the ? annotation on the u of leaves (y,u?) causes the evaluation of

two leaves calls to be coroutined. The trigger for the transfer is

the evaluation step that finds a new leaf on either tree. Thus, when

the leaves (x,u) evaluation finds the first leaf, there is a transfer to

the leaves (y,u) evaluation. This checks the first leaf and continues

until it finds the second leaf of y. Just before it would further

instantiate u with the second leaf control transfers back to leaves tx,u

This is because the «?« annotation specifies that the -flow of

data1 through u is from leaves (x ul / » eaves (x, u) to leaves (y,u). The leaves (x,u)

evaluation now runs until u is further instantiated with the second

leaf of x. At this point we transfer back to leave, (y,u> to check

this second leaf. The interaction continues in this way until both

successfully terminate, or until there i. ,
here is a mismatch of leaves. In this

event we benefit from an early failure.

Pseudo-parallel

.valu,tlon< o(the tw imvij ̂ ̂
1 annotation. We replace the "a" with a"//" and write the

clause

Same-leaves(x,y) h- leaves .
vx,u; // ieaves (y<uj #

When the clause is used the evaluan
ions of leaves (x,u) and leaves (y,u)

W1 1 be strictly alternated. in th,„
re9ime either evaluation may bind

he shared variable, and one evaluati
i°n may run ahead of the other.

There are other annotations which can be used to delay a coroutining

SI

(7)

transfer (a instead of "&")^and to suspend an evaluation that is

being executed in pseudo parallel ("!" annotation on a variable). An

example of the coroutining delay is a clause written as

P (g (u) ,f (v)) •«- T(u) : P(u,v).

The will delay any transfer of the partial result represented by

f(v) until after the evaluation of T(u) is successfully completed. An

example of the parallel suspension is

R(x,y) * Q(x.')R

If this clause is used during the evaluation of a call P which is being

executed as one of a set of pseudo parallel executions, then the

execution of P is temporarily suspended until one of the other executions

binds x to a non-variable.

File handling

Finally, a word about the file handling of IC-PROLOG. Logically,

the transfer of a sequence of characters from one file to another is a

relation over strings. This is how it must be described in IC-PROIOG.

The programmer gives a set of clauses for the relation R(x,y) that holds

between the input string x and the output string y. He then

x and y to specific files of characters with the system provided

predicates. For example, the goal clause.

•>- In(x) & R(*,y> & OutCy)

will bind x to the string of characters that will be typed at the

fnr V to be printed on
terminal and causes the string binding genera

i +-4 nn usino the annotated
the terminal. By coroutining the Out (y) evaluatio ,

SI

(8)

goal clause

In (x) & R(x,y) & Out(y?),

th. evaluation oi the program become. interactive. Each

character appearing in y „u,e, , printout of th. ,,,

characters added to y.

References

K. b. ftS78J, Negation „ i„ ̂ „

Gallaire & Minker, Plenum Press.

-art. K. 5, . F. s. „cCabe ^ ̂ ̂ ̂

""" Sy"- * - M 0.. Nichl.,. Edinburgh
University Press.

Clark, K. L., & F. G. McCabe [l9£k-.-,

forthcom" ' " up,ct' of lamentation,
forthcoming ecu re.e.rch report,

Kennedy, K & Schwartz J. [X9751 .

language SETL c ' ^reduction to the Set Theoretical
i>ETL, Computer Maths with » ,

PPlications, vol. 1, pp 97-U9.

klc/pgm/rm

10/6/1980

S 3

Some Aspects on a Logic Machine Prototype

he Hansson*, Seif Haridi** and Sten-Ake Tarnlund*

(Extended Abstract)

We shall outline some proper t ies of a logi^ "^hine^prthe^machine,
development. We shall take up the logical y ramtning language)
and focus on its obgect it. Finally we comment
and the computation rules associate machine.
briefly on a microprogrammed targe

Logical system
•= a cart of a programming calculus in

The logic machine prototype is P .. (see Hansson and Tarnlund
which programs can be d e v e l o p e d o,..mally £iciently. The latter
[1979a], [1979b]) and bv a succession of PR°1?0^
possibility has been dem°ns^a^ M975] and Warren [1977]), which
implementations (e.g., see Rousse t [1965]).
are based on resolution logic (see

Our logical system consists of several p
derivations of object

(i) A calculus that facdli^at®sJ^te^is a first order predicate
language programs. The lo^a (^ee Prawitz [1965]).
logic natural deduction system (see

part will be £ - Ml.ui na programs• inib tr
(ii) An object language for writi g
explained in more detail below. ^

(iii) n meta language which is taBS e.g.. in!e("p?ovide
for hypothetical reasoning P

I t i s a l s o intended to
deleting hypotheses and strat®g qranis efficiently on the ta g
control information for running P
machine e.g., computation rules.

Department, Uppsala University
Addresses: * UPMAIL, Computer Sc^e Mi.ute of

Uppsala, Sweden. ms, The Royal Institute of
** Deparment of ^ Sweden.

Technology, Stoc

PAGE 2

Object language

The object language in which we wri te our programs as fmir i i
re la t ions on a domain of objects consis ts of sentenc r #

composed of constant symbols , var iable symbols , funct ion
predicate symbols and the logical connect ives There i „ ^
predicate symbol , = , for ident i ty? 6 1 3 special

The logical s igns by which we bui ld up sentences are-
« (and) v (or) - (not) <- (condi t ional , <?-> " luWaience) .

s impifcond^tLnal^or bKSiSoMl #££JiJS 'Jf

lef t par t of ' the pr incipal^onne^t ive? l i t e r a l i s a l l o«d in the

"not"°and r "equivalence"?GThey^give ̂ u^a^nnore ^

ident i ty which gives us e e b s ' M o r e o ver , we have introduced
funct ions important not ions for m??h 1° n f 1 " o t a t i°n- Not only are
^ve U S j a control con?!P t F?rSt k" 1 r e a s o n i"g ' "ey also

I? ? r m a t l o n for runnina s imh r s t , by using funct ions ve get
obviate the use of "cut /s lash" r°g r a m<3 determinis t ical ly . This wil l
"cut" wil l be catered for in -k °S t l o g i c Programs. Other uses oi

c n e meta language .

funct ion'def in i t ions U a re "used 0 to a s s u m e 3 ' as a defaul t , that
This means that upon an act i? o r a p L l t e resul ts from arguments .

Posi t ions wi l l be bonn^ 1 0 ? ° 3 f u n c t i °n variables at the
fm j ? S a t a resul t pos i t io .J f a "onvariant instance and
th« S d ? f a u l t can be revoked bv 7f3" b e ""instant iated . Of course ,
the meta language . * e d b y w r i t mg down control informat ion in

Moreover , as we shal l
be P Uused f c fU t - i n f o r m a t i °n e impl ied b?^* 0"* 0" c o mP u tat ion rules , this
order f * introduce a comou^?- 7 h e f u n c t ional notat ion , will

in funct ional Programming ?? ng^= i m i l a r t o t h e appl icat ive
The fol lowing guick-sorf
appending l n a O U i i 1 f n g U a g e - Th^resul t ®f ' 1 , p l? * i s t s i 1 lus trates a few.
sort ina v" S t x .q (y -) w k q u i c k - sort ing a l i s t x .y i s

' t o t h e »"«l t ot ' ,„* f" q < y" ' i s t h a resul t of q«» '
the y »"h respect to w ?h - s? r*• i n9 7 ' i f the res . l t *
of the e l em ? y that are l ess th-r , y 3 n d y " w h e r e T* i s a l i s t

1 = • £ £ £ • — * • a r e T £ t o - a n d r " " • ; s nan x . Moreover , the empty l i s t

q(0)" y i 0 a P P e n d (q^ ') ,X. q (y B)) r ^
Part i t ion (x,y,y> ,y») (1)

ss
PAGE 3

We omit the procedure for par t i t ion for reasons of space .

we have combined func t ions and re la t ions in th i s program, bu t we
take one fu r ther s tep and subs t i tu te the re la t ion by a func t ion

" par t i t ion (x ,y) = (y ' .y") and thus make use of a Car tes ian
product a s a da ta s t ruc ture . In fac t , we had been in t rouble
wi thout the Car tes ian product s ince par t i t ion can be v iewed as a
mul t i -va lued func t ion .

Data s t ruc tures

Dot p rogramming ca lcu lus cons is t s of ax iomat ized da ta
P s i . p l , l i s t s , l i s t s , f i r s t s b ln«y t rees and Car tes ian

implementation? In par t icu la r nan , sub.tltutlon patt.rns during
computa t ions can be compi led in to pr imi t ive opera t ions on such da ta Ssks-.rnsp'.si
to these s t ruc tures i t i s a l so poss ib le to US*g-J '

in*" the ' °programra ing ^a lc f lus^of * f fasons of c la r i ty , program
reasoning and running e f f ic iency .

Computa t iona l ru les

PROLOG has combined a n^H^ech^nis i^whi fh ' ' f an
computa t iona l ru le wi th a more t r i e y oparch s t ra tegy
obscure the meaning of p r o f a ^: r Clauses , can be explo i ted
which i s impl ied by the t ex tua l order c t e r ize the problem to be
for wr i t ing programs tha t fa i l to l e g cannot change the
so lved . In cont ras t , our ^ompuat ioJ o f t h e computa t ion ,
meaning o f the program, on ly the e f r ic y

. . „ , i r l) ip , . The f i r s t c lass
We have two c lasses of compuat io a t iona l ly i t g ives a
charac te r izes sequent ia l . obeying such computa t ion
procedura l in te rprea t ion to the sen ten
ru les (see Kowalsk i [1974]) .

a -mio iv of re la t ions the body of the
To eva lua te a sen tence composed so ie iy or inc ipa l connec t ive i s
sentence (i . e . , the an tecedent p« t t , 1 order . This i s the
condi t iona l) i s eva lua ted in a l e f t to y defau l t ru le for
ru le used in PROLOG-based sys tems and i t i s o
such sen tences .

a r \ f func t ions and re la t ions / the
To eva lua te a sen tence compose i a l ly ordered accord ing to
l i t e ra l s of the sen tence wi l l be par d then topologica l ly
the i r input -output re la t ion a t compi le t ime r J e the
sor ted to produce the eva lua t ion o * x a m p l e , a n equiva len t bu t a
appl ica t ive order of eva lua t ion . Fo i n (i) i l lus t ra tes
b i t d i f fe ren t vers ion of our qu ick-sor t program

q(x .y) = w <- part i t ion(x .y ,y 1 ,y") & q (y ') - w' t
q(y") = w" & append (w' ,x .w") • w

The computat ion of part i t ion i s f in ished before the computet)™, « pp ipprir- 3 asasrj-aiLSStt
executed. This sequent ia l computat ion rule i s * n
independent ly o f the way we t f r Up ^ A ? . fo l lowed
predicates . Y t e t h e o r d e n n 9 between these

SfttSg*L.TS!" î}Jgf yt P 1 * * « « • l n s t a n t i a t l M
impl ies a dynamic Jopoloaicf l * ' T h i ® i n s t a nt iat ion pattern
sentence based on the St-Ln, eri?l<0n the "*«•!« of the
th is rule and the applicative S a relat(°n* The difference between
invocations of the Jame sentence °f evaluatio" *• that separate
order ings due to d i f ferent cause d i f ferent topological
requires a run t ime check, howeverms of instant iat ion . This rule
operating on a data haoe "ever, it is useful in programs
exis ts in IC-PROLOG, where th P a S n e r t l ° n S ' A r u l e s i r a i l a r t 0 t h i s

explicitly the alternative era Profram™er ,however, specifies
McCabe [1980]). a±cernative order of evaluation (see Clark and

The second cta<j<a
d i s tr ibuted processes communicat I 0 " f U u C S c h a r a c t e r i"s paral le l ly
single^ computation rule C I'?9JW1 channels. It consists of a
Operat ional ly an object lanemar, 3 demand dr iven computat ion ,
a network of communicat?™ 9 3 e n t e n c e spec i f ies an a lgor i thm by
Networks are constructed L processes through unbounded buffers.
no^buted networks are 5i>.f2!P?8l"on and recursion. Our
[1977] , to s treams of Landin r iQf i f? e i d e a o f K a h n a n d M c Q u e e n

Dennis [1973] . I n contrast d a t a f l o « computat ion of
computat ions for log ic programs^* " i* 1 a PP r o a c h, i . e . , actor
are running programs on a s in!? . exploared by Ken Kahn [1980] . We

e co routines. For example Pr°cessor, so our processes behave
„, v . ample , the fo l lowing sentence
"<*) - y <- A { x) = t & B (=

(3)
S e c i f . i e s a s imple network *
A 'L?,,3 channel z. when N two processes, A and B communicating
link a • 11 b* created with the K8ted two process instances for
e v e r v l s cal led a producer for c b a nnel z used as a communicat ion
in i t ia l n e t w ° tk ther l I t a " d B U a consumer of « . In
proceedo a n d drives the ° n u , p r o c e s s (here B) which i s the
z the n f S f ° l l °ws: B runs unfV ° network. The computat ion
i t s oo int"^ 0 1 i s t h e n transferred « . 1 ' n e e d s a "resul t" via

o f suspens ion. ^ and then returned to B at

$•>
PAGE 5

I t i s to be noted that such je tworks process
computat ion . When we pre (<-t - r p a m s) on which no process can g ive
on in f in i te data « ' •«« ' • jJ^ 'SSUwuS. «n l ive sa t i s fy ing
a comple te re su l t , demand dr ive JJ (dynamic data s tructure) ffSSUSSB* tJOT^TtSSSSi cov ins and Poppe i s tone

[1971]) for th i s purpose .

8 e ta„a op an . sample f g . «*»£* SSS5
program that computes *** P™ a f u n c t iona l notat ion that

i l lus trates 5 a demand dr iven computat ion .

s i f t (in tegers) Our goa l i s to compute th i s s treaml
in tegers - increment (1)
increment (n) -n+1 • increment (n+ l)
s i f t (p .q)=P*s i f t (f i l t er (p ,q)) , / 0
f i l t er (p ,n^q) -n . f i l t er (p .q) < - mod (n ,p) /0
f i l ter (p ,n .q) - f i l t er (p ,q) < - mod(n ,p)

where the computat ion ru le o f s i f t i s demand dr iven .

Process ne tworks can a l so be ^^Henderson [1976]) •
lazy eva luat ions for LISP l^ee Morr i s ^^s trate th i s we take up
networks are use fu l in some P£° g ". h e r e w e sha l l generate e l ements o
an example f rom Digks tra [§ k J^ w h e r e a , b , c 0 • m o r e ? V e j ' n o n
a s tream o f the form 2 i n c r e as ing order wi thout omiss io
e lements sha l l be generated in increas ing
repet i t ion .

We have:
x<u

< - u<x erge (x .y ,u .w)=x .merge(y ,u .w) <•
l erge (x . y ,u .w) =u .merge (x .y ,w)
l erge (x .y ,u .w) =x .merge (y ,w)
: imes (x ,y . z)=x*y . t imes (x ,z)

. • ream in a demand dr iven fash ion that we
?e want to compute a s tream
t fr i t e a s fo l lows:

n i«oa i3 .v) . t imes (5 , y)))
y=l .merge(t imes(2 ,y) ,merge (.
In addi t ion , to depand ^ l -^ot . t ion .^ .JPacta o i
program i t i s an example w ^ e r e * % h e O C cur check in the un i f i ca t io
the s tream of e l ements due o the o<^ the sys tem becomes
a lgor i thm. Unfortunate ly , w i thout th i s
incons i s tent

Si
PAGE 6

In a sentence whose execut ion i s control led by a demand driven rule
one demanding process wi l l s tart the execut ion of the body 0 f tto
sentence. If the network is cycle free any non-producer consumer
can be the demanding process . I f the network i s cyc l ic , with on
cyc le or an over lapping number o f cyc les then any process in S J CI
cyc les can be the demanding process . I f the network i s composed of
d i s jo int cyc les wi th one cyc le act ing as a producer to one or »re
cyc les , then there must be a t l east one cyc le which acts as non-
producer consumer. Any process in such a cyc le can be the demanding
process . The only res tr ic t ion we have i s that there can be only on
designated producer for any variable. This is reasonable since a
problem would ar i se in dec id ing which producer should grant!
demand.

A s i tuat ion may ar i se where many consumers may demand a partial
result from a single producer. This may only occur when the
producer of a result has local consumers. In this situation the
consumers will be resumed in an inner-most to outer-most order
before the procedure i s react ivated .

S(x)=z <- Po(x)=y & Ql (y)
Po(x)=y <- Pl (X)=y & Q2(y)

P I (x) = y < - P 2 (x) = y & Q 3 (y)

a^con^um^ 1 ^ 8 ^ 6 " 0 6 3 a b ° V e y i s a c h a ""el var iable , Ql , Q2,5]
the « same channel y , Q2, Q3 are loca l consumers of
o f PI and pfn , n i P ° P r o d u c e s a part ia l resul t of y on behalf
This i s imnlpmo 6 ? S kT w b e a c t i v a ted , then Q2 and f inal ly Ql'

S 1 8 l m p l e m e n ted by chaining the consumers Ql , Q2 and Q3.

The target machine

computer V77 -* S b e i n 9 implemented on a microprogram® 5

The machine be lono 9 m ^ r ?v r ° g r a , n control s tore of 4K x 64 bits-
machines which Derm?*- c lass of hor izonta l ly microprogram^
Paral le l . i t ^" m ^ t S s ? v eral microoper at ions to be executed i
Personal computer a„« *ntfnti°n that the system will be used as
bui l t a t the lowest ? memeory management system i s be
address space of 2 am 2 i which permits user jobs to have a M

e x P ^4 bytes .

5^
PAGE 7

References

Burstall R. &
Collins J. '
Poppelstone R.
[1971]

Clark K. &
McCabe P.
[1979]

Dennis J.
[1971]

Dijkstra E.
[1976]

Hansson A. |
Tarnlund S-A.
[1979a]

Hansson A. 6
Tarnlund S-A.
[1979b]

Kahn G. &
McQueen D.
[1977]

Kahn K.
[1980]

Kowalski R.
[19741

Landin P.
[1975]

Morris J. &
Henderson P.
11976]

Programming in POP-2, Edinburgh University Press

1C-PROLOG reference manual, CCD Research Report,
Imperial College, London

on t-he Design and Specification of a Common Base
L a n g u a g e ^ in Computers and Automata, Brooklyn
Polytechnic Institute

A Discipline of Programming, Prentice Hall,
Englewood Cliffs, N.Y

A Natural Programming Calculus, Proc. IJCAI-6,

Tokyo

„ a natural programming

A Mot-wnrks of Parallel Processes,

??ri?-?7?eNo?th-Holland Publ. Company

• nnfiT on Loaic Programming
Workshop^'John von°Neumann Computer Science Society,

Hungary, 14-16 June

Predicate Logic as P^°^h-Holland Publishing Company,
IFIP Congress l
Amsterdam '

The Correspondence betweenoALGOLc60_and Church s^
lambda notation: Parr
vol.8, no. 2

Proceedings of the Third ACM
A Lazy Evaluator , f Programming Languages
Conference on Principle

to
PAGE 8

Prawitz D.
[1965]

Robinson J .A.
[1965]

Roussel P .
[1975]

Warren D.
[1977]

Natural Deduct ion, A Proof-Theoret ical Studv
Almqvist & Wiksel l , Stockholm y '

A Machine-Oriented Logic based on the Resolntu Principle, JACM 12, 1, January Resolution

Prolog: Manuel de Reference e t d 'Uti l isaUnn
Groupe d•Intel l igence Art i f ic ie l le , u '
deLummy, Marsei l le

Implementing Prolog - Compil ing Predicate
Programs, Dept . of Art i f ic ia l ^ Edinburgh n c l a l Intel l igence, No 39,

I

C I -1-

TWO SOLUTIONS FOR THE NEGATION PROBLEM

Veronica Dahl

Facultad de Ciencias Exactas

1428 Buenos Aires, Argentina

in logic programs, negation has traditionally been defined by default, i.e., by con

sidering false any fact vhose truth can not be demonstrated. This convention, wh

saving numerous explicit representations of facts that, under certain circumstances^

can just as well be deduced, might have the undesirable side effect of not always

ing tt reliable answers. This article examines the conditions under which a ^

ra! with negation by default is lihely to produce all the expected answers, and proposes

two ways of automatically ensuring that this is always the case.

1- INTRODUCTION

facts in logic programming has traditionally
The problem of how to represent negative fa

-—»•—zr-zzzsz
„le i, .pproprr.t,

main being represented is complete. ^ negative facts becomes redundant,

assumption- is correct, the explicit represen ... default

since in a two-valued logic these can simply be established by

rii-h resoect to data bases12, and shown that
R. Reiter has discussed this assumption ^ ^ ^ ̂ ̂ Horn_c,ause

it may lead to inconsistencies for non- ^ ̂ world assumption, suited

ones. In ve proposed a three-valued ^ ±nwesti&ated the relationship between

for natural language application . truth_functional semantics 1 , by explic-

negation's implementation by defau ^ ̂ ,fll definitions, as opposed to

itating the closed world assumption in o

the classical "if" procedures of logic programs.

particular proof strategy chosen

These discussions, however, are ind*pel^f operational problems that negation

and are therefore not concerned with som •ntpmreter

P, .isht c.us. vith respect to .« •«- K** •>«*"" l°"rPr" '

n > 14 negation by default, we show that dealing with
In this article we examine Prolog s S ag expected> and we propose

closed worlds does not in itself guarantee

go alternative „„ ,olvi„B £hi, problM. Both betn

within natural languag. conaultable data base systems written in Proloe
thev are eenpr^l »nr»nr»v. •

— wjm+wmm wnuen m Prolog 5 • w
tbby at, general enough to serve in other program, w.H. therefore 1
• arger picture, involving higher level ways of querying logic prog,-,.

Because of space limitations, we shall mostly deal with our = ki
of the related „P,et, covered .or, ^

slightly biased towards data bases but this 4.s i ' termnol°«yh

we share R. Kowalski's view that £ drstinctionTet^enT^ leTaTorT ̂
rams is not a useful one '»1 c . 3nd 0rdlnar5r «

is assumed.

2- PROLOG'S STRATEGY

Given a querv — fJ r j
dure +A] -A] . . V" ' °f pr°ced-es, Prolog selects the first proce-

derives the new ** a most general unifier ,, 2

query, always selecting the first literal Pr°CeSS " 0" *"* "*
procedures in P are tried in the ° 6 reS°dved uP°n- Alternative matching

backtracking upon failures. Efficienc •" th6y W6rC stored» *ltt exhaustive
which the literals amiear i ^ therefore influenced both by the order in

° in a query and Ywt
cedures for each predicatP 6 ° rder in *Mch the alternative pro-r »-ui(.ciLe are stored.

Notice that, by choosing always the 1 f
duces all those resolvents snri • °St l l tera1, prolog systematically pro-

turns to the second one when ^d7l ^ Uteral *" 3 qU6ry ' 3nd °nly

al (i.e., in replacing it bv an succeeded in evaluating this first liter-
8 by an emP ty set of literals).

Execution can be further controlled by the
ical features. The predicates used f Pr°gtammer, through Prolog's extra-log-

* is a "free"(1> variable or not, an^ ^ "VAR(i>M. used to test whether

non-determinism that arises from d i f f ^ ° Predlcate serving to limit the
erent procedure choices.

(1) Prolog's concept of a "freo"
resolution process = • , variable is a d,m •
function term. From n Variable is "free" if i t h air ' ;LC one: a t a given point in the
meaning. ' °W on ' we shall use inverfp'^S nCt yet been substituted for a

commas whenever we refer to this

-3-

"/" always evaluates to true and has the side effect of disqualifying certain al

ternative procedures, so that they will not be considered upon a backtrack. For

instance, given the procedures

(1) +P(x) -R(x) •• • .-T(x) "/ -Q(*)
(N.B. Variables are underlined through-

(3) +P(x) OUt the P3per)

and the query -P(a) , Prolog first selects procedure (1). Two cases arise: if the lit

erals preceding "-/" can all be evaluated, Prolog tries to evaluate the remaining lit

erals in the clause," but, upon a backtrack, is inhibited from trying the remaining

choices for P,R,...T. If, on the other hand, (1) fails before "-/" is selected, (2)

and (3) can be tried next.

3- THE NEGATION PROBLEM

• 1 = rhp rule "take every unprovable fact as false",
Prolog's negation operator implements the

as follows:

(1) +N0T(2> -£ -/ -FAIL

(2) +N0T(2>

"FAIL" L. . predicate for which no corra,ponding procedure, .re defined and

eh... evaluation will therefore provoh. . Thee, procedure. (1) an 2,

bove can be readi "if -£ can he evaluated, »0T(£> i. false- Oth^i.e. »0T<£>

Let u. now consider a logic progra. c..pri=i«g Procedure. U> and <2> .hove plus the

following:
. . (5) +SINGER(C)

(3) +ACTORCA) v

(6) +SINGER(D)
(4) +ACTOR(B)

-it- is easv to verify that the queries
With respect to this (closed worl) prog , ^ respectively, which is
-N0T(ACT0R(C)) and -NOT (ACTOR(A)) evaluate to rue

what we would expect. But, faced to the query

Q1= -NOT(ACTOR(x))

for which one could expect the answers "C"
(i p "find an x who is not sn actor)> (i.e., find an x who ^ ̂ all. it would successively gener
or "D", Prolog would not come up with a y

ate the resolvents :
. . , _.TT (from Q, and (1))

Q2= -ACTOR(X) -/ -FAIL 1

Q3= _/ -FAIL (from ^2 and (3))

C H

At this point, the evaluation of -/ would eliminate (2) and (4) as alternative pro
cedure choices, and the remaining query (Q^* -FAIL) would fail.

The fact is that Prolog's negation operator is only safe to apply on predicate! with
ground arguments (terms which contain no "free" variables). In other words, it CM

safely verify the truth of proposed answers, but not generate an answer.

Since ground terms in a given query can not cause the negation problem, we shall call

them safe. This is also the case f.or those variables with no occurrences inside a lit

eral of the form -NOT(P) . A variable occurring in the scop, of a neg.cion, however,
must be considered in its dynamic behaviour.

»« .hall ,hat , variable x occurring Wk a lit.,.1 »-»OT(P) „i,hi. . L_

Q is safe tn Q »h„av,r it i, c.rt.ir, to talc . grouod M<>,. „

query Q i. „id to b. a.fe vhcoover „oh of th. v.ri.bl.. it coot.ro. i. „f,.

U . = * " t . b e t h r o u g h . p . r t i c u l r c
ordering of the literals. For instancp
substitute, , ^ suppose that the evaluation of -P(x)
substitutes a ground term for x. Then it is safe to query:

-P(x) -NOT(Q(x))

because, although the argument of "NOT" at

strict left-to-right strategy ass K ^ beginning' Prolog'S

-N0T(Q(X)) is selected. J " FF. t3ke 3 ground v*lu« b*for#

On the other hand, the unsafe but declared!
>- aeciaratively equivalent query:

-N0T(Q(X)) -p(x)

will always fail (excenr

Q exist). C0UrSG' " the case that no procedures for

^ this example, query reordering is rather - ,

real applications, where efficiency i SJJnPle, but it can become difficult in

mer to remember the run-time behav' CrUC*a*' si"ce it forces the prog'ran-

cording to the input/output role of mL"' 2-- PrediC3te* This- in turn- varies aC"

behave differently than another of ** e/r8UmentS: a <?uery °i the for- -P(a,*) will
ot the form -P(x,b).

-5-

prolog.s negation operator, therefore, while saving a lot of time and trouble in

the development and execution of a closed world program, introduces extra trouble

in

With

not

ble

le
i querying it and increases the opportunity for error.

respect to data bases this problem is particularly acute, since the user must

— h . » « . * » • « * * * £ -

i-r-,- -..«<«•"». p*™"1 mwhv •**f'08""*not

V, id ideallv accept casual users, so the problem we
ally regarded as data bases should ideally accept ca

are dealing with is'a rather general one.

,, „ solution.«—- r.

guage interfaces translating a user by an appropr ia te evalua-

try to show how these systems
tion of the for.nl.. », n.tur.l l.ng».£. —ly""-

4- COROUTINING

• idea- the evaluation of a literal of
Our first solution is based on a very simp p ground.

the form -NOTCP) inside a query should

a in. the query so that all negations appear in
We can achieve this either by reorderi ^ select ion of a literal is

the end. or by altering Prolog's strategy, s ^ Qf the

made to depend upon its dynamic merit rathe

query.

with coroutines: instead of always
The latter alternative corresponds to computation bg se lected> resolved

r t-np first literal, any literal
completing the evaluation of _ eventually be kept waiting

j\ cmr.fi -its descendants uuxy
upon (i.e., partially evaluated), ^ ^ higher merit- This approach, while

while attention shifts to other of non_gr0und negated literals, can

allowing in particular to pos tpone ̂ the eva^ ^ pol iag of queries, as we

also be exploited to improve efficie

shall see later.

4.1- Implementing coroutines in Prolog.

• Prolog itself is by defining a Prolog predic-
One way of implementing coroutines query Q and of performing
ate -say, PROVE(Q)- capable of selecting any

-6-

just one derivation step at a time. For commodity, a query -Gj -G^ ...-G can

be noted as a list Gj,G2.. .Gn.nil (where is a Prolog-defined binary operator

in infix notation), and procedures to be coroutined can be noted through a special

predicate, e.g. as

+AXIOM(A,A. .A....A .nil)
J- ^ m

instead of +A -A, ...-A .
1 m

Then the prover can easily find a matching procedure for a selected atom G by

querying: -AXIOM(Gj., 1), and then replacing Gk by the retrieved list of a tots 1.

Thus, just one derivation step is performed, and the prover regains control over

the new query. Any of its atoms might be selected next.

state The selection of a predicate to be evaluated must depend both on the run-time

of the variables in the query and on the particular definitions chosen for each pred

icate, which determine its run-time behaviour. General guidelines for this selection

must be therefore set up by the programmer. This can be done through a special pred

icate of the form DELAY(P.n), stating under which conditions a predicate P is to be
delayed n derivation steps.

For instance, an efficient evaluation order for queries such as:

-PRICE(S,£) -SYSTEM(s) -HAS(s,FORTRAN)

(What IS the price of a (computer) system having Fortran?) can be obtained simply
by defining:

1)+DELAY(PRICE(JC.£) ,0) -GROUND (X) -/ 3)

2)+DELAY(PRICE(X,V),») (V - '
4) +DELAY(HAS(X,£),0)

where GROUND is an auxiliary predicate evaluating to true whin x contains no "free-

appro ^t " ̂ 3 SUffiCi6ntly integer. These definitions ensure that an

Fortran" T/h Pr°dUCed bef°re attemptine to calculate its price, and that
Fortran is included before anv other

ed accordingly. ^ the system> which is then c°mPlet'

The prover's evaluation of a query 0 can nn u
a - . , c a n n o w b e s u m m a r i z e d a s f o l l o w s : Q i s s u c c e s
sively scanned, looking first for 0-delaved nrea •
so on Farh n r predicates, then for 1-delayed ones, and
so on.Each time one such predion f-o c J

ound, AXIOM is used to perform one derivation

F -7-

step and the next scan's delay is set to 0 -since this partial evaluation might have

altered the run-time delay value of any other predicate. If none is found in a given

scan, the searching delay value is incremented by one for the next scan. This process

ends successfully when Q has been transformed into "nil".

Notice that, within this coroutining system, the negation problem can be solved sim

ply by blocking non-ground negated literals through the DELAY predicate. Our actual

treatment of negation, however, is somewhat subtler: our prover can use negative in

formation to improve efficiency, and also accepts more flexible queries.

4.2- Coroutining logical formulas

Our Prolog implementation of coroutines was designed for a data base system repre

senting the software and hardware catalogues for the French series of computers SO

LAR 16 '. A user can ask this system questions in French, ranging from simple ones

involving retrieval of stored facts, up to requests to assembly and describe comput

er configurations suiting his particular needs. The analyser uses a modified version

of a metamorphose2 grammar written by A. Colmerauer(>, which translates restricted

French queries into closed logical formulas, whose syntax is defined recursively by:

a) if p is an atom, p is a formula.

b) if f y f 2 and f are formulas, then NO(f), EXISTS(x,f), EVERY(x, f) , AND (f x, f 2),

OR(f,,f,) and IMPLIES(f,,f2) are also formulas.
-1-nt-n a list of queries to be coroutined, by succes-

These formulas can be converted into a list oi querx
, ro,jrii-ine rules. This task can be left to the prover

sive application of appropriate rewrit g
• j • c i!.= -ac n-delaved predicates and using AXIOM rules such as:

itself, by considering formulas as O-deiayea preuj-o

(1) +AXIOM(EXISTS(*,f) ,X-nil) -/ (3)+AXI0M(AND(£j .£2.)

(2) +AXIOM(EVERY(x,l) tKO(EXISTS(jt,NO(f))) .nil) -/ <« +AXI0M«0(»O(f)) ,f-nU) -/

nf all the procedure definitions in the data which precede the AXIOM representations of all tne pro

base.

4.3- Using negated formulas to' improve efficiency

t, „ the SOLAR 16 one, some negative requirements of the In constructive programs such as tne auum »

user can be exploited to reduce the search space, and should therefore be given prior

ity even when applied on non-ground arguments. For instance, a request for the charac-

(2) Personal communication, 1977.

-8-

teristics of a system which does not include Fortran should first forbid the addition

of Fortran and then complete the system accordingly. This can be done for instance

through the rule: +AXIOM(NO(HAS(x.^)) ,FORBID(x,^) .nil) -/ . where FORBID is a 0-delayed

data base predicate, which somehow marks in x the mandatory absence of

Let us now consider a formula f containing a subformula NO(f') which can not be fur

ther transformed. This fact can be registered by renaming NO into NEG once that none

of the formula-rewriting AXIOM rules has been found to match (i.e., by adding after

these rules a rule .of the form: +AXIOM(NO(f),NEG(f).nil). Notice that the subformula

f could be coroutined if we simply replaced it by a recursive call on the demonstrat

or: -PROVE(f') . But some of the variables in f' may well also appear outside it, which

would mean that some of the predicates concerning these variables are being delayed

outside f'. Since f is assumed closed, this case arises whenever a variable x is free

in f' (its quantifier appears outside the negated subformula).

Therefore, in order to evaluate NEG(f'), the prover first calculates the list of the

quantified variables inside f' . if it is empty, it evaluates NOT(PROVE(f')), where

NOT is Prolog's negation by default. Otherwise .t just keeps NEG(f') waiting and con
tinues the current scan of f.

Thus, our prover can handle a subtler treatment „f • •
treatment of negation than the mere delaying of

non-ground negated formulas, but oare*fni *. •
* ' C careful coroutining specifications must be designed

for each problem domain.

4-4~ Some performance considerations

The pre-processing of a query by the demonstrator although t.v •
the overall • ' thouEh taking some time, increases

other hand, those'predic^^L^ng8 "T" ̂ °" ̂

directly. This can be achieved by a) defin" v, • ^ hand6d t0 Pr°l0g

rule suffices), b) «ltlng „o„-c„»„ti,,ed ""'j' V*1U' " ° <* '"l1'

offbcoufbmo„, „dc, ,ddl„s„th , ru,u*1
'"

l0e '*-
. » d o « « » t d h l n „ y o f t h e p r . c - * • I h u s ' i f

Prolog and eliminated from the prover's list. ' a"Md«t«ly evaluated by

The search for a matching procedure, however can he t-•

notation: most Prolog versions have direct access to due t0 °ur sPecial

ing to a given predicate, but this is obviously 10 t h Pr°CedUreS

«. P.ct,d up .ithl„ , .pr.dtMte Uke d"in"lm!

-9-

Fortunately, more recent research on Prolog implementation has eliminated the over

head caused by searching through all the AXIOM and DELAY rules, by providing quick

direct access to subsets of procedures whenever their first argument is either a
1 6

constant or a function term

5- A SET-ORIENTED QUANTIFIER MECHANISM

Our second solution to the negation problem was devised for a less sophisticated

but more general data base system, also programmed in logic 5 . It is a more restrict

ed solution than the previous one in the sense that it has no coroutining facilities

and is only applicable to programs that represent finite worlds, but it accepts de

finitions of fairly arbitrary data bases with less effort from the programmer.

This solution has also been worked out in combination with a natural language inter

face, which translates Spanish queries into a more evolved, three-valued logical sys

tem, that we shall call L3 • . Some details regarding this translation can be found m

\ and related work for French is 3 . L3's features, which were designed to meet not
Knf also data base development requirements, are dis-only natural language processing but also data o . ^ ^ _

« •„., -in 4 Those characteristics of L3 related to our
cussed from the latter point of view in •

treatment of negation can be summarized as follows: fM<.nrp
. false or undefined. Owing to this feature,

- a formula in L3 can take the value ,
, - v , n T / fv must be subtler than previously described,

the evaluation of a formula NOT if; wV,Pn
, P i.- Rrieflv NOT(f) is considered false when

still follows the nega t ion-by-default idea.
, f. , . f evaluates to undefined, and true when f eval-

f evaluates to true, undefined when f eval
^ faiqe when all attempts to prove that it

uates to false. A formula f evaluates

is true or undefined have failed. . .
A •! p associated with a finite domain or se

each variable in a formula is typod, • •»

M A N T I C T Y P 6 ' A * Vi" formulas either extensionally (through a term of the
- sets are represented within formu , ^ ^ ̂ subformula of the form

form:a 1 .« 2 . . .a n.nil) or intensions y. those x< s in 8 associated domain
"tho.e(x,f)" is used to represen the^s ^ ^ ̂ ^ ̂ ^

which satisfy f. The evaluation Quantification" allowed,
resentation of that set. The "those" formula is the y

,nt-ifiers including any presuppositions they
- the meaning of natural language qu » . , fnrmiilaq- such as , a formula through special sub-formulas such as

might induce, is represented with ^ ^ ̂ ̂ ^ instance, the sentences:
"card(s)", which stands for the cardinal y

40
-10-

"Twenty students registered" and "Some students registered" are respectively rep

resented through the formulas:

equal (card (those(x, and (student (x) , registered (x)))) , 20)

greater-than(card(those(x,and(student(x),registered(x)))),1)

where x. is typed by the student domain.

The basic idea in this second solution is to use set representations as the nain

data structure, and to make sure that any set designated in a query is evaluated

(i.e., replaced by its extensional representation) before the evaluation of any

predicate concerning it takes place. This, in particular, ensures negated predicates

to be evaluated only when all their arguments are known. If, in turn, the evalua

tion of a set can also be made safe, the negation problem is solved.

In our finite, typed world, there is an extra-logical but Prolog-feasible way of

evaluating a THOSE (x,f) formula such that the designated set S is obtained with

out ever having to evaluate f with x "free". It consists in successively evaluat

ing f for each value of x in its associated dom. in, and concatenating those who

satisfy it into a list representing the set S.

uith this evaluating it obvious that any quantified v.ti„bl, i,
vithin it, quantifier., ,uope. ^ ̂ ̂ fr<g ^ ̂

omul, f, it i, obviously al.o „f. i„ f, ,im, U j, „f, „ ̂ ̂

fre • °CCIjrS* Therefore> hy allowing only closed formulas (formulas with no

atioaV"M n"0"*""'' " *""• theit •»'»«*»• °"* solves the nn„-
P l" « L3, and evaluating ,„.„ti„,d

subformulas as described above.

Of course, the implementation of this solution i' l

two-valued logic into the semantics of L3 whi h H " C3refUl m3PPin8 ̂ Pr0l°8'S
ues but also set k ai • includes not only three logical val-

set-handlmg operations. We have done this in w

needs only define which tuples make each relation true C " ^ ̂

individuals, or both, as he may prefer) and leave th termS ̂ "
definitions which make it false a e • system to deduce from these

than the previous one, in the sensVtha^^both l^ °btaine<1 3 high6r level S°1Uti°B

and ha. .or. Unguis, _ (th, ̂ g ^ « fh, Pro,r.™r

natural i„go,g, J"*' it to d.t.ct f.l,.

ly With Una complicated world,. ' ""Mines, it c.n only d.,1 efficient

V - 1 1 -

6- CONCLUDING REMARKS

We have shown how Prolog's negation by default might induce some operational anomalies

with respect to non-safe queries, and we have proposed two ways of solving this prob

lem: an appropriate coroutining system and a set-oriented quantifier mechanism.

The first solution is adequate for "constructive" data bases such as the SOLAR 16

one, where different modules can be combined to form particular configurations adapt

ed both to the user's requirements and to the specific construction rules stored in

the data base. In return for the power obtained, however, the programmer must learn

how to use the coroutining system. This is certainly a lighter task than the one of

finding ad-hoc solutions for each problem that would need coroutining, but it would

still be desirable to generalize it further, so as to provide higher level language

features -or, in data base terminology, greater data independence.

Coroutines should form part of a more powerful interface allowing the sequential sim

ulation of time-independent patterns of thought, in a manner invisible to the program

mer. Ideally, he should be able to describe in n,tural language sentences the world

he wants represented, and leave all efficiency considerations to that interface, just

as, in the consultation level, our solution relieves him from all sequencing concerns-

in particular, those relative to negation.

Our second solution works in a less ambitious context and can therefore afford to be

more general, allowing an easy and straightforward definition of fmte but fairly

arbitrary closed world data bases. This has been achieved mainly through a care u

study of the syntax and semantics of natural language queries on one hand, and o

the Prolog implementation of set primitives on the othe

More general solutions to the negation problem, in our view, must necessarily be con

cerned with higher-level ways of querying and defining logic programs, and should -

dude a set axiomatization that can be efficiently combined with £
• » a should allow complex worlds such as the SOLAR 16

underway in this direction , and shoul .
f f*w "orimitive" predicates describing sets and suit

one to be defined in terms of a few pnmiti v
i-ntallv independent from exactly how this

able ways of combining them, in a manner

is to be done.

-12-r
References

1. Clark, K. Negation as failure. In: Logic and data bases, Plenum Publ. Co, 1978.

2. Colmerauer, A. Grammaires de metamorphose. In: Natural language communication

with computer. Lecture Notes in Computer Sciences, Springer-Verlag, 1978.

3. Colmerauer, A, Un sous-ensemble interessant du francais. R.A.I.R.O. vol. 13, N°

A, 1979.

A. Dahl, V. Logical design of deductive, natural language consultable data bases.

Proc. V International Conference on Very Large Data Bases, Rio de Janeiro, 1979.

5. Dahl, V. Un syst-eme deductif d'interrogation de banques de donnees en espagnol.

These de Doctorat de Specialite en Intelligence Artificielle, Univ.d'Aix-Marseille

II, 1977.

6. Dahl, V. and Sambuc, R. Un syst&me de banque de donnees en logique du premier or-

dre, en vue de sa consultation en langue naturelle. D.E.A. Report, Univ. d'Aix-

Marseille II, 1976.

7. Dahl, V. Quantification in a three-valued logic for natural language question

answering systems. Proc. Sixth International Joint Conference on Artificial In

telligence, Tokyo, 1979.

8. Dahl, V. A three-valued logic for natural language computer applications. Proc.

Tenth International Symposium on Multiple Valued Logic, Illinois, 1980.

9. Dahl, V. Towards constructive data bases. Univ. of Buenos Aires (forthcoming report).

10. Kowalski, R. A. Logic for data description. In: Logic and data bases, Plenum Publ.

Co., 1978.

11. Kowalski, R. A. Logic for problem solving. North-Holland, 1980.

12. Reiter, R. On closed world data bases. In: Logic and data bases, Plenum Publ. Co,

1980.

13. Robinson, J. A. A machine-oriented logic based on the resolution principle. JACM

vol 12, 1965.

1A. Roussell, Ph. Prolog: .manuel de reference et d'utilisation. Univ. d'Aix-Marseille
II, 1975.

15. Van Emden M. H. Programming with resolution logic. In: Machine Intelligence 8,
1977 .

Warren, D. and Pereira, L. Prolog- the language and its implementation compared

with Lisp. ACM Symposium on Artificial Intelligence and Programming Languages,
1977.

?3

A CONTROL METALANGUAGE

FOR

LOGIC PROGRAMMING

Herve GALLAIRE and Claudine LASSERRE

ABSTRACT:

In this paper we present a revised position on a metalanguage

built for expressing control knowledge on the derivation of information

in a logic program. The metalanguage is itself a logic language; the user

expresses his metarules separately from his program clauses; he can specify

both clause selection and literal selection metarules; these metarules

can be specific of his problem or they can express general strategies.

This approach is examined in the light of other approaches to metaknow

ledge expression.

Keywords: Metaknowledge expression, control of deduction process, logic
programming, problem solving.

Address : ENSAE -CERT Complexe aerospatial
31055 TOULOUSE Cedex FRANCE

Part of this research was financed by CNRS under ATP N° 4270.

i

1. INTRODUCTION

In a previous paper [GAL] we defined a metalanguage for controlling the
derivation process in a Horn-clause programming language. This control meta
language (CML in short) was inplemented in top of PROLOG fROU] and its inter
preter coded in PROLOG itself. In this paper we first review and update our
position on CML. Next we present a revised version of a CML which is to be
implemented and which will be used in connection with intelligent backtra
cking techniques not presented here. The CML exposed here extends that of
LGAL1 both in its syntax and in its semantics. A discussion of both aspects
is given in section 3 where the interpreter is sketched too.

2* ISSUES IN METAKNOWLEDGE EXPRESSIONS

The following statements recapitulate our positions on CML :

The types of CML we advocate are logic programming languages
whose predicates (i.e the meta-level predicates or metapredicates)
are given a fixed interpretation in terms of the behavior of the

logic interpreter.

- The CML statements and the world description statements are sepa
rated from each other;this is contrary to some other viewpoints, as
or instance Clark and McCabe CCLA] , or Pereira [PER] . They both mix

knowledge i.e world description and metaknowledge i.e contol primi-
,-fVeS«- • °ne advfnfcage °f that approach over ours is likely to be in
the efficiency of interpretation; but we feel it is a step which
sive nolr°?1C WhSn USSd in 3 systematic manner; its expres-

1P "er .1S ? learly more restricted than ours if only for beeing
Selves 3 statem®nt thus not capable to bear on clauses them-

~ klnd of metaknowledge we want to express is not the same as
lid «h r ,by Bundy CBUNI °r Dincbas CDINJ- Namely, as recal

ls °Va ' we y ta*k in terms of interpreter behavior while their
Ton IZlTZ hiereSSH°n " bUiU StriCtly in te™S °f W-Id desSriS-
(such cb£ °f leV6lS °f percePti°ns of the world
(such as objects, assemblies, equations, methods, heuristics)

««l l ' r l lL'd rld thLir .«
can be Dut in if f structuring language. In this respect they
language definition i311 eff°r tS in kn°^adge representation g g efinition and implementation such as KRL [BOB] .

litieforCGAU Pr6S-nt • CML Which ^tends the capabi-
shafl also discuss thisrff6n " baS6d °n A" Fahrai 's CFAH]-He
ves. anguage in terms of the above mentionned alternati-

3- A REVISED CONTROL METALANGUAGE

vely."6 ShaU diSCUSS " fr°m i tS Syntax and semantics viewpoints successi-

75

2

3.1 Syntax of metarules

The syntactic modifications which have been introduced allow
to express meaningful actions in terms of the derivation process and
to have several ways to indicate which objects (i.e clauses or literals)
are involved in the metarules.

The general form of a metarule is :

Action(tl, t2, tn) •<? Conditionl A AConditionk

A metarule is written in order to describe an Action on the interpreter
behavior whenever the interpreter focuses its attention on an object
which is involved in that metarule. Both "t1 and Condition parameters may
be partially instantiated or variables; Condition is a literal which is
either system—defined or user-defined. The set of objects involved in a
metarule is obtained from a combination of direct and/or indirect selec
tion through the "t" terms and through the Condition arguments.

a literal P or a clause P*-Q is directly designated by any literal
P' which is less instantiated than P and which unifies with P. Of
course P' being an argument in a literal is logically a term,

an indirect designation of a clause may be either content-directed
or position-directed :

OPORDER(P(x,y), 'nl.n2...)<- CI a C2/w-ACk
will select clauses numbered nl , n2, .. in that order for attempting
resolution of literals matching P(x,y) with the above mentionned
restrictions;any such literal is directly designated and is invol

ved in the metarule;

OPBEFORE(R(x,a), tl, t2)<- CLAUSE(tl, z, P(x,y))A
CLAUSE(t2, r, Q(x,y))

will select for any literal R(x,a) clauses containing P(x,y)
before clauses containing Q(x,y) ; here tl and t2 are used to
link both parts of the metarule; z and y are variables naming
the clauses; thus in this case this metarule would apply to any
clause whose head matches R(x,a); of course it would be possible
to restrict its application to some clauses by appropriately

instantiating z and r;

- an indirect designation of a literal is given b>

LITERAL(x, name, list-of-properties)

where x links this designation to other parts of the metarule
as tl and t2 above, where name will select the literals for which
that metarule was designed, and where list-of-properties is a list that(metarule wa^ p. arg tQ be taken lB a set of pre

defined symbols. fATHER, DEPTH, SOLVED, :

3

BEFORE(tl, t2) <— LITERAL(tl, x, DEPTH: nJ) A
L I T E R A L (t 2 , y , D E P T H : n 2) A
INF(nl, n2)

will impose a breadth first strategy to the interpreter;further
restrictions on x and y would impose such a strategy only to the
involved literals

Clearly this syntax is rich enough to express any designation of literals
and clauses; whether the set of properties is sufficient or not remains
to be seen; in any case the user can define his own conditions built
with his problem literals as well as with other system literals, such
as the Ancestor predicate and the Var predicate in PROLOG.

3.2 Semantics' of metarules

Metapredicates are provided for clause selection and literal selec
tion. By selection we mean either electing a candidate among others or
eliminating a candidate.

3.2.1 Clause selection

Let S be the set of clauses that could be used for resolution with
the active i.e selected literal. Then a metarule for clause selection can
give information on some of the clauses in S (namely those clauses that
it designates), expressing precedence between them, excluding some of them,
expressing mutual exclusion between them. As this is straightforward, it
is not discussed further here. Example :

OPBEFORE(tl, t2, t3)-*—CLAUSE(t2, x, nI)A
CLAUSE(t3, y, n2) A
INF(nl, n2)

allows to express that clauses are to be selected according to
their number of literals (shorter clauses first) for any literal
tl .

Such a type of control expression is outside the scope of expression of
the [PER] type of approach (see 2 above).

3.2.2 Literal selection

These metarules express how to choose in a resolvant clause the
next literal to be solved; they provide for the following :

turning off metarule control during the proof of a literal;this is
an essential characteristic in a realistic environment;

priority of a literal over another;

restricting the attention of the interpreter to the selected
literal and to its descendants until it is proved;

recovering the space corresponding to the proof of a literal;

n

u n s o l v a b i l i t y o f a l i t e r a l ;

u n i q u e n e s s o f s o l u t i o n o f a l i t e r a l ;

- r e c u r s i o n l e v e l l i m i t a t i o n ;

- i n h i b i t i o n o f a l i t e r a l o n b a c k t r a c k ,

n e c e s s a r y (N E E D) a n d s u f f i c i e n t (R E A D Y) c o n d i t i o n s f o r a
l i t e r a l t o b e s e l e c t e d .

T h e N E E D a n d R E A D Y m e t a r u l e s a r e q u i t e r e l a t e d t o t h e p r o d u c e r -
c o n s u m e r p r i m i t i v e s g i v e n i n I C - P R O L O G . N E E D e x p r e s s e s t h a t a
m u s t h a v e s o m e r e s o u r c e s a v a i l a b l e b e f o r e i t c a n b e s e l e c t e d , i t c o
n n n r f s t o a l a z y c o n s u m e r i n I C - P R O L O G t e r m s [C L A } . S i m i l a r l y R E A D Y

N E E D (F i l t e r (x , y , z)) ^ — I N S T (x)
N E E D B Y (t l , t 2) - » — C 1 / \ C 2 . . .

„ « c r y „ t h l . ^ " V ^ i f p r o -
i t i s d i f f i c u l t t o d i s c u s s ' h e ® ^ " " ° i t P s e e m s i t w o u l d b e d i f f i c u l t
p o s a l s a r e n o t i n t e n d e d t o e a P U t e ^ . a l o v e r a n o t h e r w h e n n o p r o d u c e r -
f o r t h e m t o e x p r e s s p r i o r i t y , b e o t h e r s i g n i f i c a n t d i f f e -
c o n s u m e r r e l a t i o n h o l d s b e t w e e n e m ' , c r u c i a l ; m o r e i m p o r t a n t t o u s
r e n c e s i n p o w e r b u t t h e y d o n o t ^ e m t o b e c r u c i a l , B u t w e

i s t h e f a c t t h a t l o g i c p r o g r a m s t h e m s e l v e s h a v e ^ ^ s e i e c t i o n
c a n t a k e f r o m t h e i r a p p r o a c h t h ^ 6 . ^ p r o c e s s i t s e l f a n d _
m e t a r u l e s , t h u s b y s t e p p m g , • T h i s w o u l d n e e d a m o d i f i e d m
g e t t i n g m o d i f i e d l o g i c c l a u s e s a s • i n t e r p r e t e r f o r m e t a r u l e s
t e r p r e t e r w h i c h s e e m s t o b e c o m p a t i b l e w i t h t h e i n p

3 . 3 I n t e r p r e t a t i o n p r o c e s s

V k „ ; u i s r a t h e r s t r a i g h t f o r w a r d ; i t i s
T h e i n t e r p r e t e r t o b e b u ^ m e t a r u l e s ; o n l y t h e l i t e r a l

d r i v e n b y l i t e r a l e x p a n s i o n w i t h c a r e d u e t o t h e R E A D Y t y p e m e t a -
s e l e c t i o n p r o c e s s m u s t b e d e f i n e s s t h e s t a t e t r a n s i t i o n i n t h e
r u l e s . A n a u t o m a t o n c a n b e u s e d H d e f i n e d f r o m t h e s t a t e o f l i t e r a l
i n t e r p r e t e r , w h e r e t h e s t a t e n ° c i o d e r i v a t i o n p r o c e s s . R o u g h l y s t a t e
i n t h e r e s o l v a n t a t e a c h s t e p f i r s t t o p r i o r i t y m e t a r u l e s ,
t r a n s i t i o n o f U t . r . l ^ S f c f ^ L t . r n l , . .
t h e n t o R E A D Y m e t a r u l e s a n d f i n a l l y

?»
5

One should also pay attention to the unification process
between literals in the resolvant, in the clauses, and in the metarules-
while the first unification can be unrestricted it is not the case for *
unification with the metarule; further no indirect instantiation pro
duced by the Condition part evaluation should occur. Thus the standard
unification module should be modified so as to have several calling
sequences.

We have indicated above a possible compilation of literal
metarules. In the same spirit, it is very much conceivable to build
an interpreter which would compile links between clauses and metarules
thus making it much easier and more efficient at deduction time. This
would require the unification process just described and nothing more.

A. CONCLUSION

In this paper we have given an overview of a control metalanguage
and discussed some of the related issues. To the above discussion we
want to add the following :

this approach can accomodate specific i.e problem-related strategies
as well as general strategies; we gave examples of general strategies
much in the spirit of CMINj. This is due to the possibility of tailo
ring metarules to their goals with much ease;

as far as specific metaknowledge language approach is concerned (see
above) it should be clear that it is quite complementary to ours

and that our proposal could be adapted to interpreters such as the ones
they build, although many of our constructs would be redundant in
their effects to theirs.

What remains to be done is the actual construction of the interpreter
which will also incorporate intelligent backtracking features.

REFERENCES

rBOBl D. BOBROW et al: Experience with KRL 0. One cycle of a knowledge
representation language- Proc IJCA1 5, 197/ pp 213-222

[BUNJ A. BUNDY, L. BYRD, G. LUGER, C. MELLISH, M. PALMER: Solving mechanics
using meta-level inference- Proc. IJCAI 6, 1979 pp

[CLA] K.L CLARK, F.G McCABE: The control facilities of IC-PROLOG-
Department of computing and control; Imperial College on

[DINl M. DINCBAS: A knowledge-based expert system for automatic anal}sis and
synthesis in CAD- To be presented IFIP 1980

(FAHl A. FAHMI: Controle de systemes de ded"^i°n automatique fondes sur la
logique- These de Docteur-Ingenieur ENSAE CERT 1979

[GAL] H. GALLAIRE, C. LASSERRE: Controlling knowledge deduction in a declara

tive approach- Proc. IJCAI 6, 1979 pp sl-sl-

^ TR SSTiSSS
nova de Lisboa, Portugal 1979

%o

THE METALOG PROBLEM-SOLVING SYSTEM

AN INFORMAL PRESENTATION

Mehmet DINCBAS

ONERA-CERT - Department of Computer Science

BP 4025 - 31055 TOULOUSE CEDEX, FRANCE

1. INTRODUCTION

This paper presents the main features of the METALOG logic

problem solving system that we have developed using PROLOG [13],

This is a general purpose system which has also been used to construct

PEACE, a knowledge-based expert system for electronic circuit design
[A], [5].

In the first section we present the two levels of language

that can be used to express object-knowledge and meta-knowledge.

The second section presents the user-defined control expressed in the

control meta-language. In the following section we discuss the strategy

for forward search processing. Finally, we present failure and loop

processing mechanisms in the last two sections.

2. KNOWLEDGE AND META-KNOWLEDGE EXPRESSION

The METALOG system offers two levels of language to the user

the object-level language (or simply object-language! in

which he expresses his knowledge (domain-oriented and proble
specific),

- 2 -

- the meta-level language (or simply meta;!™^^) in which he

expresses his meta-knowledge, i.e. indications and pieces

advice on how to use this knowledge.

The knowledge/meta-knowledge duality in problem-solving is equi

valent to the logic/control duality as proposed by Kowalski for t e

analysis of algorithms [91. Through meta-knowledge the user can define

a Juristic control over the deduction process in the ob3ect-level

.nd.dg.-b.... Tbi. user-specified control ha. already

ly ^ ob.ict.1„g„,g, lo .hich the knowledge-base is

cod.d i, tb. clausal for. of Uct-order predict.

t„ Horn claua... Ib. following notation is used to express object

knowledge : ndg ̂ A(x>y) «. B(x)> c(y)
+HCLAUSE(A(x,y) , B(x) .C(.yj .mi;

*HCLAUSE(A(x),nii) stands for A r

A. it can be seen fro. this notation. Horn clan...

r-• * • h - d ° f c i , u " b , i n s

j it-. Knriv beine the second argument,
first argument and its body

The Horn clause :
*• A(x,y) ,B(y,z)

wbicb define, a goal " represented a. foil™ •

GOAL(A(x,y) .B(y,z) .nil)
A proof is found wb.n we obtain COAb(nil). wbicb stand, for a contradrc

1 Vniik. tb. object-language, tb. «t.-l.ngo... is ™°««

exhibits greet advantage for expressing-knowledge, to portico er

by allowing u. to use clan... •»•>
expressed in tbi. «t.-l.ngu.g« has the following general for. •

+ACTION - CondCondn n ^ °

v, e ACTION refers to a built-in meta-predicate that handles object-
where ACTION refers ^ either meta-predicates
level clauses. The literals C o n d , , . . .,Condn

Z(L

- 3 -

or simply PROLOG predicates. The system offers some built-in predicates

and meta-predicates to use as Cond^ but a user can define (in PROLOG)

the predicates he needs.

Through this control meta-language a user can express some semantic

information about his particular problem in order to reduce the size of

the search space, as well as specify his problem-solving strategy. Whatever

the power of a system, we believe that the "system—user association" is

the most efficient because it is easier for a user to convey semantic

information to the problem-solver than it is for the problem-solver to

discover this same semantic information.

Thus, the system contains two kinds of knowledge (provided by the

user) :

object-knowledge coded as the arguments of the meta-predicate

HCLAUSE, and

- meta-knowledge coded in a distinct control meta-language.

Let us notice that for efficiency reasons, the system allows PROLOG-

predicates to be used in the object-language. In case of deterministic

procedures this is a very efficient process. In our expert system PEACE, this

process allowed us to use procedures defined in a formal and numerical compu

tation module, at the object-level knowledge-base [4].

3. USER-DEFINED CONTROL

As we mentioned before, in the METALOG system a user expresses his

meta-knowledge in a separated control meta-language. He has built-in meta-

predicates at his disposal and he can construct meta-rules with them.

These meta-rules can be about subproblem selection, procedure selection,

failure-preventing and failure-processing, and other purposes.

3) -Meta-rules for subproblem (or literal) selection

There are two meta-rules for controlling the selection of literals

in a goal statement. The first one is :

ACTIVATE (g,p)

where : g represents the goal statement (i.e. the list of literals to be

solved)

p represents the literal to be selected.

*3

- 4 -

Meta-rules of this form can be used to select a particular

problem p. (by naming it explicitly) or to specify a general problem-

solving strategy (by enumerating the properties of the literal to be

selected). Let us give some examples.

The meta-rule
+ACTIVATE (g, ON(x.y))

indicates Chat the WW ™« "»l «•» I""*1 <" "V
instance of it. Ute 0»<B,A» in the goal statement g (-h.never .y>

occurs in g). The m e t a -rules
+ACTIVATE (g,p) ~ TOTALINST(p).

+ACTIVATE (g,p) ~ PARTINST(p).

indicate to the

i n s t a n t i a t e d « . - ™ > - « - -
i- f l *-n ^t-c internal strategy,

the system selects one according
f conflict e.g. when several literals are fully instan-

In case of conflict, e.g the lef t-
dated, the ay.te. -elects the le«t».t on. (in fact,

„,t literal verifying the ACTIVATE condition). ^ ^
The second stet.-rule used in selecting a

FREEEE(g.p) • system fro» selecting a
,, is the dual of ACTIVATE and it prev. ^
frozen lit.t.l p. Everything .. -aid about ACTIVATE

FREEZE. Let us give an example of its
+FREEEE(g,ON(r,y)) - ««.). ^ ^ ̂ „

It prevents the system from c oos ^ ^ ^ built-in PROLOG predicate),
its first argument is not instantiate ^

This meta-rule allows coroutining in sy

tion rule (like PROLOG) .

b) Meta-rules for_^rocedur^election

As in the case of problem selection, we have two meta-rules.

These are :
CHOOSECLAUSE (p>D

tnhtrglAUSE (P,D

- 5 -

where : p represents a procedure name (i.e. the head of a clause)

unifying with the selected problem, and

1 represents the body of this procedure (i.e. the list of

literals to be solved).

The first meta-rule indicates a procedure to be chosen while the second

meta-rule rules out procedures. These meta-rules allow us to have a

content-directed procedure invocation [3], [8],

c) Meta-rules for failure—preventing and failure-processing

As we will see below, failure processing is one of the most

important features of METALOG system. Although the system has a heuristi-

cally guided automatic mechanism for preventing and processing failures,

intelligent backtracking and so on, a user can give semantic information

about his particular problem (unsolvable subproblems, the backtracking node

in the case of failure, etc ...) in order to prevent the system from use

less search and thus improve the problem-solving efficiency.

The first meta-rule for this purpose is :

INSOLUBLE(p)

which allows a user to state that problem p (or any instance of p) is

unsolvable.

Through a second meta-rule

INSOLUBLEBACK(p,b)

a user can also specify a node b where to backtrack to (a backtracking

node). The above meta-rules prevent the system from failures. A third

meta-rule

BACKFAIL(p,b)

can be used to indicate to the system a backtracking node b _if the proof

of p fails.

d) Other meta-rules

The system offers some other meta-rules for different purposes.

For example, the meta-rule

FINISH(p)

allows a user to indicate that problem p must be solved entirely when it

has been selected.

- 6 -

i

The meta-rule :

LITNUMBER(n)
can be used to indicate the maximum number of literals in a goal statement ;

this will be used to prevent expanding loops (cf. loop processing section).

4. FORWARD SEARCH PROCESSING

Forward search processing specifies what the system has to perform to

obtain a new goal statement G. + , from another goal statement G., except for

failure and loop processing. When a failure (or a loop) is detected

not be avoided, its processing is done by a failure processing (or loop

processing) mechanism. This will be explained in the next sections.

Given a goal statement

Gi = Vp2 ••• Vnil

at time t., forward search processing consists of several steps :

- selecting a literal (or problem) P^ in G. ,

- selecting a procedure to apply to Pj,
, , j r\ -for P in G. (with the necessary

- substituting the body of Qj lor m ̂

unifications),
- ai-rpptance checking for the candidate goal statement . + ,.

are as for LUSH-resolution [6], [10]. The last
The first three steps are as ioi

,,.r ro increase efficiency and to prevent
step is added to our system m order to mcreas

u failures and loop.. Thi. step oou.i.t. of several ta.ks that

" "'I'X ZZ*...rod tha problem-solver uses man, ̂ ds of
t -J t- fakes into account i

information coming from several sources. In

- its internal autonomous control,

- user-specified control*
• • rion "learnt" during the problem-solving process

- semantic information tear
(la particular, information concerning failed problem, •

All thi. control information i. managed b, • .eta-control

a) ce'enfin, nf a problem in a goal statement

, . . _ r,rinritv to user's indications
The problem-solver gives a ig meta-rule ACTIVATE) ,

concerning the selection of problems (expressed

- 7 -

If no problem has been specified by the user, the system selects one

according to the following strategy :

- select a problem that has only one solution (i.e. which unifies

with only one head of procedure), if there is such a problem ; otherwise

- select a problem that can be solved in one step (i.e. which

unifies with an assertion - a procedure with an empty body -), if there is

such a problem ; otherwise

- select the leftmost problem in the goal statement.

After selecting a problem, the system checks the FREEZE meta-rules

to see whether the selected literal is frozen. If it is, another problem

is selected.

In case of conflict, for instance when several problems have only

one solution and no other control information is given, the leftmost such

literal in the goal statement is selected.

b) Selection of a procedure

As in the case of problem selection, a higher priority is given

to user's meta-rules (expressed by CHOOSECLAUSE). If no such meta-rule is

applicable to the selected problem, the system chooses a procedure according

to the following strategy :

select the procedure that has an empty body (i.e. a unit clause) ;

otherwise

select the first procedure in the order in which they have been

written.

While selecting a procedure, the system takes notice of INHIBCLAUSE

meta-rules in order not to choose an inhibited clause.

c) Obtaining a candidate goal statement

This step consists in replacing in a goal statement the selected

literal by the body of a given procedure and applying a matching substitu

tion 0. This is the resolution rule. Let us notice that in our system the

matching substitution is directly applied by the PROLOG interpreter.

n
- 8 -

d) Acceptance checking for a candidate goal statement

Before accepting the resolvent obtained at the preceding step

as the new goal statement, a specialized module of the problem-solver

performs a lot of tests in order to prevent the system from a "bad" goal

statement and thus from useless search.

Let G.+) = Q,.Q2 ... Qn.nil

be a candidate goal statement ; the first step is the breadth-first

unification. This ensures that all in Gi+] have compatible solutions,

i.e. there is a matching substitution 0 such that any literal.Q^. 0 can

be unified with at least one head of procedure. Obviously, if any is

indicated as failure by the user or by the failure processing module, no

goal statement can contain it. Thus, the breadth—first unification allows

the problem-solver to reject a candidate goal statement as soon as a

failure literal appears. With this acceptance checking most of the failu

res can be avoided.

Let us notice that at the end of the test, if it is successful,

we do not keep the matching substitution and we undo this unification

(in order to have the candidate goal statement as it was before this test).

The last step of acceptance checking consists of a lot of more

or less heuristic tests to detect loops. This will be seen in the section

concerning loop processing.

A candidate goal statement can become a goal statement only if

it passes the acceptance test.

5. FAILURE PROCESSING

An intelligent failure processing includes several tasks : prevention,

detection, analysis, backtracking, learning and so on. In METALOG, prevention

and detection of failures are performed in the breadth-first unification step,

as we have seen above. In this section we explain how the other tasks are

performed within the system.

The first task is to determine the cause of failure. We can have two

kinds of failure causes in our system :

- a literal fails, i.e. in all alternatives, it admits a descendent

literal with no solution, or

- 9 -

- a goal statement fails, i.e. each literal of the goal statement

has a solution but all solutions together are incompatibles

(because of the shared variables).

In the latter case, the problem-solver backtracks to the preceding

goal statement and tries other alternatives of this node.

In the former case, i.e. when a literal is detected as a failure,

an intelligent backtracking mechanism is in charge of finding a node in

the derivation tree (a goal statement) where to backtrack to. Several

intelligent backtracking methods have been proposed [7], [II], [12].

The originality of our method is its great simplicity. For this method

(and also for loop checking and processing), we need to memorize all the

goal statements and protect them against any subsequent unification. When

a failure P is detected, backtracking simply consists in testing the memo

rized goal statements, one by one, beginning with the most recent, in order

to see whether they contain a variant or an instance of the literal P. The

backtracking node is the first one which contains none of them. Here, let

us notice that :

- Pj is a variant of P if P and P are identical except for the names

of variables (e.g. ON(x,y) and ON(z,t)) ;

- Pj is an instance of P if there exists a substitution 0 such that

P-0 ° Pj (e.g. ON(A,y) and ON(z,z) are instances of ON(x,y)).

The last task about failures is their memorization. This corresponds

to a simple learning process because they will be used during the whole

derivation process and thus contribute to the pruning of the search space.

In METALOG, this memorization is carried out "intelligently", i.e. before

memorizing a failure problem P, the system looks for a memorized failure

Pj which is an instance of P. If there are such problems P., all of them

are deleted and the most general failure P is added. This treatment avoids

having redundant failure indications.

6. LOOP PROCESSING

The METALOG system has some heuristic mechanisms for detecting and

processing loops. During the problem-solving process two kinds of loops

occur :

- logic loop

- expanding loop.

I

frl
- 1 0 -

a) A logic loop occurs when we obtain a candidate goal statement

G which is identical with a previous goal statement G. (with j < i).
1 J
The logic loop is very easy to detect (this is done while forward sear

ching) and to process. Logic loops often occur in systems with a static

strategy for selecting literals and procedures, like PROLOG.

b) An expanding loop may occur in many different ways. The two most

frequent ones are :

— resolvent-expanding loop : recognized as a regular increase of

the number of literals in the resolvent (i.e. goal statement)

- term—expanding loop : recognized as a regular increase of the

size of terms in the arguments of a literal in the resolvent.

These expanding loops can be detected by the system, possibly assisted

by the user who can indicate by meta-rules (like LITNUMBER as already seen)

some heuristic detection rules.

When an expanding loop is detected, the system has some heuristic

methods to process it. This processing is based on checking the looping

goal statement to see whether there is a literal with no solution ; to do

this, the system proceeds as follows :

- check fully instantiated literals ;

- check partially instantiated literals ; and

- check the other literals.

If a failure literal is detected in the "looping" goal statement, the

intelligent backtracking mechanism is used to backtrack to the appropriate

node,

7. CONCLUSION

In this paper we informally presented the METALOG system which is

written entirely in PROLOG. We believe that the system can be successfully

used to construct expert systems (as we did for PEACE) as well as for other

applications like plan-formation problems and intelligent data-base systems.

ACKNOWLEDGMENTS

I would like to thank H. GALLAIRE for all discussions I had with him

and his advice during the development of the system.

REFERENCES

[1] A. BUNDY et al., Solving mechanics problems using meta-level

inference, Proc. IJCAI 79, Tokyo 1979, p. 1017-1027.

[2] R. DAVIS and B.G. BUCHANAN, Meta-level knowledge : overview

and applications, Proc. IJCAI-77, August 1977,

p. 920-927.

[3] R. DAVIS, Generalized procedure calling and content-directed

invocation, Proc. Symposium on AI and Programming

Languages, August 1977, p. 45-54.

[4] M. DINCBAS, Etude d'un systeme expert pour la CAO : presentation

de PEACE, Rapport final du contrat DRET. Document CERT/

DERI n° 3/3122, Nov. 1979.

[5] M. DINCBAS, A knowledge-based expert system for automatic analysis

and synthesis in CAD, IFIP Congress 80, Tokyo 1980.

[6] M.H. Van EMDEN, Programming with resolution logic, Machine Intel

ligence 8, p. 266-299, 1977.

[7] A. FAHMI, Controle de systemes de deduction automatique fondds sur

la logique. These de Docteur-Ingenieur ENSAE, Nov. 1979.

[8] H. GALLAIRE and C. LASSERRE, Controlling knowledge deduction in

a declarative approach, Proc. IJCAI-79. Tokyo, 1979.

[9] R. KOWALSKI, Algorithm = logic + control, Comm. ACM, Vol 22, n° 7,

1979, p. 424-436.

[1 0] R. KOWALSKI, Logic for problem solving. North Holland, 1979.

[11] J.C. LATOMBE, Failure processing in a system for designing complex

assemblies, Proc. IJCAI-79. Tokyo, 1979.

[12] L.M. PEREIRA, Backtracking intelligently in AND/OR trees,

Dept. Informatica, Universidade Nova de Lisboa, Lisbon

Portugal, June 1979.

[13] P. ROUSSEL, PROLOG : Manuel de reference et d'utilisation, Groupe

d'Intelligence Artificielle, Marseille-Luminy, 1975.

qa.

EVALUATING FUNCTIONS DEFINED IN FIRST ORDER LOGIC

Luigia Aiello

Istituto di Elaborazione dell'Informasione, Consiglio Naiionale delle Ricerche
Via S. Maria 56,1-56100 Pita, Italy.

Computer Science Department, Stanford University
Stanford, California 94305, USA.

ABSTRACT

After a short introduction to FOL, an interactive reasoning system for first order logic,
we present a way of extending the use of the FOL evaluator by showing how systems
of (mutually recursive) function definitions formulated in first order logic can be trans
lated into programs. This allows function definitions (syntactic objects) to be treated as
programs (semantic objects). The advantages of this translation are illustrated.

1. INTRODUCTION

This paper reports on an extension that has been recently made to the FOL system,
namely a compiling algorithm from FOL into LISP, which allows for a direct evaluation
m! 7ifP °f functl0ne and Predicates defined in First Order Logic. The first motivation
that has prompted us to devise this extension was the hope of substantially increasing the
efficiency of the FOL evaluator; the examples shown is Section 4 confirm this expectation.

There is also another reason for this extension: the algorithm that translates systems of
mutually recursive function and predicate definitions from FOL into LISP programs allows

hirf/CTr i] Ur!u°f 57 °fder Logic as a ProSr&niming language. The user of FOL
v tem f rTi .f 7 °f dir6Ctly C°ding piece8 of Programs in LISP because the o,"om a 'peci6"lion in

melllTa^'frHtT1011 fF°L aXi°mS (°r'in genera1' fact')int0 a"ach-
semantic soec^S' "r ge^TEUJaranteeing the consistenc* ^tween the syntactic and
limit "he user's J TS 7 »7 " °f dUc°UrSe (U L/S st™cture), or at least, to limit the user s freedom of introducing inconsistencies.

d^ripSTof',pOLl^dT^1i.y" 1° "" for an erten.i.e 7 " ' lh* with related work to a minimum.
w"h in,ish"»>°»»«

ohs rsr.stsbe r-'f

algorithm and of the FOL evaluation mechanism to further increase the efficiency of the
evaluations and to further guarantee the user that the syntactic specification of an L/S
structure agrees with the semantic specification.

The paper is organized as follows. Section 2 contains a short description of FOL which
essentially emphasizes the notions of L/S structure, semantic attachment and gives hints
on the behaviour of the FOL evaluator. Section 3 describes the compiling algorithm which
translates systems of mutually recursive function and predicate definitions into LISP pro
grams. Section 4 shows, by means of examples run in FOL (both with and without the
compiling algorithm), how important this extension has been, not only in terms of reducing
the cpu time of evaluations but also in making some evaluations possible that otherwise
were not. Section 5 presents a discussion of semantic attachment. Finally, Section 6
presents some ideas on further improvements and few concluding remarks.

2. SHORT DESCRIPTION OF FOL

FOL is a conversational system capable of reasoning with a user in the language of
First Order Logic. It has been designed by Richard Weyhrauch at the Stanford Artificial
Intelligence Laboratory and is implemented in LISP on aKLlO. The aims of such a system
are many [Wey79]. FOL is primarily intended to be a tool for developing a mechanized
formal theory of reasoning, with applications in knowledge representation in both Artificial
Intelligence and Mathematical Theory of Computation.

We cannot give here a detailed description of FOL and of its many features. We only
sketch some of them. The reader is referred to [Wey77,78,79) for more insights and to
[AW80,Fil79,Tal80] for some examples of applications.

FOL can be viewed as an interactive theorem proving system. The interaction takes place
in a user-determined first order language with equality, enriched with a partially ordered
sort structure. The presence of sort information is very useful: interesting conclusions can
often be drawn on its basis alone. FOL deals with the full predicate calculus, i.e. no
restriction is imposed on the well formed formulas - wffs - being manipulated. In addition,
FOL allows conditional terms and wffs, which, while being a conservative extension of
ordinary predicate calculus, are very useful in defining functions and predicates.

FOL implements the first order logic with the deductive apparatus of Prawitz's Natural
Deduction [Pra65j enriched in many ways: besides the already mentioned sort structure
and the relative sort checking facilites, many decision procedures have been added to FOL.

There are at least three main features of FOL which are not commonly available in most
theorem provers and that contribute to make it flexible and epistemologically adequate
for knowledge representation and mechanized formal reasoning. 1) The possibility of dis
tinguishing between syntactic and semantic knowledge and using both kinds of knowledge
in the same derivation. 2) The possibility of dealing at the same time with many theories
(actually it is more appropriate to call them L/S structures). 3) The possibility of repre
senting meta-theoretic knowledge and using it in performing deductions.

"H

The first point will be expanded in Section 2.1. We do not enter into details about the
last two points (even though they are very important) because they are out of the scope
of the present paper. We only say that in FOL many L/S structures may coexist and -
to some extent - exchange information between one another. One privileged L/S struc
ture, named META, is used to represent meta-theoretic knowledge, i.e. to speak about any
L/S structure. The presence of a command named REFLECT allows for the transfer of
knowledge from the meta-theory level into the theory level during a deduction.

2.1. L/S structures - Semantic Attachments

As pointed out in |Wey77,78,79j, one of the most innovative aspects of FOL as a reasoning
system is the possibility of representing and using both syntactic and semantic information
for the same context of discourse. This idea is embodied in the notion of L/S structure.

An L/S structure is a triple <L, S, F>, where L is a language, S is a simulation structure
and F is a set of facts.

More precisely, L is a sorted language, i.e. a finite set of variable symbols and a finite
set of constant symbols (all of them with an associated sort), a finite set of function sym
bols (with associated arity, domain and codomain), a finite set of predicate symbols (with
associated arity and domain).

A simulation structure S is a computable partial specification of a model. It consists
of an association between symbols (not necessarily all) of L and objects of some real
world. In the case of FOL the world is LISP and the objects are LISP data structures.
A simulation structure is specified by providing a denotaion map for some of the con
stant symbols of L and some information about the meaning of some of the function and
predicate symbols of L. Note that FOL does not require that S contains an algorithm for
computing the functions and predicates associated with the symbols of L. The information
about a function (predicate) can be limited to the specification of how it maps only a few
elements of the domain. Note that all predicates and functions of the simulation structure
are total, even if their behaviour is specified only on some elements of the domain. The
FOL evaluator can deal with this kind of partialness: if it tries to compute the value of
a function on some arguments for which no information is provided, it returns "I don't
know" as an answer.

A simulation structure is built by associating symbols of the language with LISP entities
via the so called semantic attachment.

The set of facts F of an L/S structure is a finite set of well formed formulas of L together
with a justification, i.e., the specification of whether they are axioms, assumptions or they
are,7'{SU ° S°me deduction (in this case system keeps track of the dependencies
and of the inference rule used).

Note that L/S structures are very different in spirit from the logicians' notion of theory-
*ndth ^1' ^ Cady P°inted °Ut the differen«s between the notion of a model
and that of a simulation structure; in addition, it is worth stressing that the set of facts
in a L/S structure is finite and not deductively closed.

I S

In FOL, each application of a deduction rule (it can be one of Prawitz's inference rules
or a sophisticated decision procedure) is a mapping from an L/S structure into an L/S
structure, the second one being obtained from the first one by adding a new fact, namely
the conclusion of the deduction.
Despite these differences, with an abuse of language, sometimes L/S structures are called
theories, and simulation structures are called models (more precisely, a value in a simula
tion structure is called a model value).

2.2. A simple example

The idea exploited in many proofs carried out in FOL is that the syntactic knowledge
(language, set of axioms, set of theorems) about a theory is used in deriving proofs along
with the semantic knowledge about the intended model for that theory. Use of semantic
information and use of syntactic information are intermixed. When a deduction is per
formed, semantic attachments are used to compute values in the intended model, such
values are then used at the syntax level to carry on the deduction symbolically.

To better illustrate this point we present an L/S structure for natural numbers. In this
example we define the language of natural numbers, assert some axioms and build a
simulation structure for them. Note that, in the FOL system, numerals are automatically
declared as individual constants and are attached to the expected numbers. Thus the
following axiomatization includes by default the numerals NATNUM and their attachments
to the LISP natural numbers.

DECLARE INDVAR a m p q e NATNUM;
DECLARE OPCONST sue(NATNUM)=NATNUM;
DECLARE OPCONST + * (NATNUM,NATNUM)=NATNUM;

AXIOM Q:
ONEONE:V n m. (suc(n)=suc(m) Dn=m);
SUCC1: V n.-i (0=suc(n));
SUCC2: V n.(-i0=iO3 m.(n=suc(m)));
PLUS: V n.n+0=n

V n m.n+suc(m)=suc(n+m);
TIMES: V n.n*0=0

V n m.n*suc(m)=(n*m)+m ;;

ATTACH sue <4 (LAMBDA (X) (ADD1 X));
ATTACH + <4 (LAMBDA (X Y) (PLUS X Y));
ATTACH * <4 (LAMBDA (X Y) (TIMES XY));

The first group of declarations creates the language. The second group specifies some
facts: Robinson's axioms Q without the equality axioms [Rob50j. The third group makes
the semantic attachments of function symbols to the LISP code for computing them.
Actually, FOL requires some more information about details that are irrelevant here, for
example the parser must be informed that the symbols + and * are infix operators and
have a certain precedence.

%
Suppose that we extend the previous L/S structure by adding the following facts:

1 = suc(O)
2 = suc(l)
3 = sue(2)

If in this context we want to prove that for all p the following equality holds:
p*0+(1+2) = 3

we can use syntactic information only (i.e. repeatedly rewrite p*0*(l*2) by means of

, l h " t h i - — —
EVAL p*0+(l+2)=3 BY {TIMESl}

^SShUSSli ,k,"nUclic k"™«d« "»»'• - —•*
appearing on the left hand tide of th«Lo XuTdl'»" ''™ F'°
(tirmhoffo) evaluation it an e.tential p„t of the FOLZu'Z '

one may concludeThaMher'e""no'to^»a''ont can only be performed on ground Irmu, xszsvzss* rrin, ~^ss 22£tsz BILI;' T*u "'m,s*«£ ̂ ™rz;r,r ™',h"m
evaluator. We wi'l'l not'eiplain the'beh """""" hinl ' on «* working! of the FOL
tince it would be too Zand ' Zj'Tb Z' •»»""«
™ch alike, to „,d„ l0 "4™' 8»w of the eontrol in all of them it m, EVAL "St detai,! *"""thE or""F0L

*VAL termi=teraia BY slmpset;
m the case where term* is D*0+fi+oi +
The evaluator looks for all the . t " ^ SlmpSet (T™ESl}.
structure and uses them, on bot^rms^n^T"16 ^ *" provided in the c""ent L/S
P*0+ (i+2), namely +(*(p 0) + (i m ™ost out«most manner. In the case of
+ has an attachment, then it tries to reali i6S that the function «>mbo1

^ first case, it is provided with an *Cp '0) and In

attachment for the symbol p (nor p can ht !• ,? Cti°n 5Jrmbo1 *• but ifc has no
evaluation on *(p,0) fails. At this poiS the Iv" ^ u simp,ified)- Hence the semantic

TS that matches w^h (some subterm If Th I Whe 'her the , imPset there
TIMES1 match6S tbe term '"-case, the axiom

(via symbolic evaluation) as

0. As for the term +(1,2), since both the symbol + and the numerals i and 2 have
an attachment, control is passed to the LISP EVALuator which uses these attachments
to compute a model value, namely the number three, whose name in the current L/S
structure is the numeral 3. The FOL evaluator is now left with the term +(0,3), which
by using semantic information, is evaluated to the term 3 (i.e. the numeral 3, which is the
name for the LISP number three, that is the model value computed by applying the LISP
evaluator on the semantic attachment of the symbol + and the model values attached to
the symbols 0 and 3). At this point the evaluation of the term at the left hand side of the
equality of the original wff ends. The evaluation of the term at the right hand side of the
equality is straightforward: the result is the term 3. Since the evaluation of both the term
at the left hand side and the one at the right hand side of the original wff yield the same
term, the wff has been proved, hence the current L/S structure iB extended by adding the
fact that p*0+(l+2)=3.

In this short trace of the behaviour of EVAL we have omitted many details; we hope
however to have provided the reader with an idea of the flow of the control during the
evaluation and, more important, of the order in which the use of syntactic and semantic
knowledge is intermixed.

3. COMPILING SYSTEMS OF MUTUALLY RECURSIVE FUNCTIONS

In order to further exploit the ability of the FOL evaluator to directly invoke the LISP
interpreter whenever it is provided with code for some of the function or predicate symbols
occurring in the term/wff being evaluated (and a model value for all the arguments of such
an occurrence of the function or predicate symbol), a compiler has been designed and
implemented which translates systems of mutually recursive definitions into LISP code.

The compilation of systems of function (predicate) definitions from FOL into LISP allows
FOL to transform syntactic information into semantic information. In other words the
compiling algorithm allows FOL to automatically build parts of a model for a theory,
starting from a syntactic description.

The FOL-LISP compiler is invoked by giving FOL the command

COMPILE name-list;
each name in name-list is checked to see whether or not i t i s the name of a fact (i.e. an
axiom or a theorem) in the current L/S structure and if this fact is a function or predicate
definition (note that we use the word "definition" in a broader sense than logicians do). In
this case the LISP code for the definiens is computed and attached to the definiendum as
a semantic attachment, i.e. COMPILE has the same effect as the previously seen command
ATTACH.

Using a sligthly modified version of the notation of |CMC79] the compiler treats systems
of mutually recursive definitions of the following form.

Vz i l . . .Zi r . f i{x i l ,Zi r) = <7,•[$,• , « i t j ••• , z«, l
VYH-YJAPAYJU •••» VJ.) =TI^J> VA- WJ)

where /,-s are function symbols and Pj are predicate symbols. The a,- are terms in
s, tf.-s, and Z,-s; the Tj-s are wffs in the $:-s, ^y-s, ?/-» and Jffs. By 2 we denotes
tuple of constant symbols. By (resp. we denote a tuple of function (resp. predicate)
symbols. 3? (resp. may contain some of the /,- (resp. Pj), but it is not necessarily
limited to them, i.e. other function and predicate symbols besides the definiendums can
appear in each definiens.

The compilation algorithm first performs a well formedness check, then a compilability
check.

Wel l formedness check - Each name in name-list is checked to see if it actually cor
responds to a fact in the current L/S structure, and in this case if this fact is a definition,
i.e. if it has one of the two following forms:

Vzij... Xi r . f i (x i i l ..., Xi r) = ...
= ...

Note that no further check is performed on the well formedness or the well sortedness
of the definitions, since all these checks have already been performed by the FOL parser
when these facts have been input in the current L/S structure.

Compi lab i l i t y check - It consists in verifying that: a) each definition is a closed wff, i.e. no
free variable occurs in it; b) all the individual constants and the function (predicate) sym
bols appearing in the definiens have a model value, i.e. individual constants are attached to
some model value, while function and predicate symbols have some code attached to them
(either by the compilation presently being done - which allows for recursion or mutual
recursion - or by a previous attachment or compilation); c) the definiens can contain
logical constants, conditionals and logical connectives but no quantifiers.

Before explaining why these restrictions have been imposed to a system of definitions

a^gorHhm0 ^ C°mpilable ' we give more "P^nations on the workings of the compiling

3. 1 . The compiling algorithm

check1!^111?!^'/ TRU °r & Wff WFF" TRU <reEP- ffFF) i6 t rave"ed only once to
(resn f r i ? ̂ compile it- In case of failure, i.e. as soon as a subpart of TRU
(resp. WFF) is not compilable, the process is stopped.

-mSm tCk and 7'7 eT' , , i0" " d°«« i« » recursive w.y, a. follow.:

b "e clpS; " c" , r ru whe" C 'IF" h

- if WFF is TRM1=TRM2, it is compiled as (EQUAL C-WFF1 r wviroi
- if WFFis WFFIATRL'2 or WFF1VWFF? 1 J, C~VFF2)-
C-BFF1 C-WFF2), respectively; "mp.led „ (Am> c-tFFl C-IFF2) or COB

- IF Iff (UIP'ranT'. 1' » i ! "» torm. of A. V.-;

compiled and the resulting0 (COm^c^tisTc-th^ ft t6St ' th6n a"d 6lS6 ParU "*
test is the code for test, etc • "then) (T c-else)) returned, where C"

C) t)

- if TRM is a variable, then it must not be a free var, the code is the variable itself;
- if TRM is the symbol TRUE then T is the code for it;
- if TRM is the symbol FALSE then NIL is the code for it;
- if TRU is a constant symbol, its model value (i.e. a LISP constant) is computed and
returned, if any, otherwise a failure occurs;
- if TRM is an application of a function (predicate) symbol to some terms, then the function
(predicate) symbol and the terms are compiled and their LISP application is returned. The
function (predicate) symbol is first searched in the list of symbols defined in the system
being compiled in this "block" compilation, (i.e. we look first for recursive or mutually
recursive definitions). In this case the name of the LISP function attached to that symbol
by the present compilation is returned as its model value. Otherwise, an attachment for
that symbol is searched. If it if found, this code is returned, otherwise a failure occurs.

A few more remarks are in order. FOL allows for some polymorphism: if a function
(predicate) symbol has different attachments for different sorts, then the compiling al
gorithm selects the approriate code for it, according to the sort of the terms that are
arguments for that function (predicate) symbol in the term being compiled.

Finally, note that we allow for the separate compilation of function (predicate) definitions
within a given L/S structure, the only requirement being that they are compiled in an
appropriate order and that systems of actually mutually recursive functions (predicates)
are compiled together.

3.2. An example of compilation

To provide an example of compilation, we present here the mutually recursive definitions of
two predicates, without providing details on the language and sorts appearing there. They
have been taken from the meta-theoretic description of arithmetic expressions (remember
that UETA is just an ordinary L/S structure). They are used to check whether or not an
individual variable or function symbol occurs in a list (of individual variables and function
symbols) and given two such symbols which one occurs first:

AXIOM MEMBER:
V vf lex.(MEMBER(vf,lex)=

if EMPTYLEX(lex) then FALSE
else if vf=hd(lex) then TRUE

else MEMBER(vf,tl(lex)));;

AXIOM BEFORE:
V vf 1 vf2 lex. (BEF0RE(vfl,vf2,lex) =

if EMPTYLEX(lex) then FALSE
else if vfl=hd(lex) then MEMBER (vf 2, tl (lex))

else BEF0RE(vfl,vf2,tl(lex)));;

If we type to FOL the command for compiling them, i.e.

COMPILE MEMBER, BEFORE;

it answers:

100

MEMBER compiled as
(DE C-MEMBER (vf lei)

(COND ((NULL lei) NIL)
(T (COND ((EQUAL Tl (C-lid lei)) T)

(T (C-MEMBER Tl (C-tl lei)))))))
BEFORE compiled as

(DE C-BEFORE (vli rl2 lei)
(COND ((NULL lei) NIL)

(T (COND ((EQUAL ri1 (C-hd lei))
(C-MEMBER 712 (C-tl lei)))

. (T (C-BEFORE Til vf2 (C-tl lei)))))))

The compiling algorithm uniformly generates names for the LISP functions it creates (C-
MEMBER is the code for MEMBER, etc.) and, as stated above, it uses code generated in
previous attachments and compilations. In the above examples EMPTYLEX had been pre
viously attached to the LISP predicate NULL, hd (head) and tl (tail) to C-hd and C-tl,
respectively.

3.3. Restrictions on the compilability

The above description and examples show that the code produced by the compiling algo
rithm is pretty straightforward: it is a transliteration from FOL syntax into LISP syntax,
hence we will not go into further details about it, nor we will bother about its correctness.
We turn instead to explaining the restrictions imposed on systems of mutually recursive
function (predicate) definitions in order to be compilable. They have been listed above, as
points a), b) and c) of the compilability check.

a) Closedness of the definition - We want each definition to be a closed wff. In first
order logic with natural deduction we cannot infer Vl.P(i) from P(l). Hence we can
not compile free variables possibly appearing in the definition as LISP bound variables,
which would correspond to compile the universal closure of the given wff. If, conversely,
we compile free variables occurring in the definition as free variables in the LISP code,
they would result in unbound variables for the LISP EVAL (or, even worse, they might be
dynamically captured by some bound variable with the same name).

b) Existence of attachments - A consideration similar to the above one justifies the choice
we have made to allow the compilation only when all the constant, function and predicate

rm0 rCTCrn/vTr th\definienS have a m0del Value- If thU is not the case for some of

2 PU if u tfying t0 eVa 'Uate that con6tant or t0 aPPJX t^t function (or
Z w' T? re ' m an e"°r- The F0L evaluat0r- as " presently is, after invoking
from an errle eXpeC(tBfCtUrn a model it does not know how to recover from an error occurring at the LISP level.

inA thu definiens - The ch°iee of not allowing quantifiers in the
""I6 11 WaS n0t need6d f0r the resent applications of the

Clearly we canrot™!! 7 aIlowed ' even thou£h only bounded quantifications.
Clearly we cannot allow for an unbounded quantification in the definiens, (the computa-

101

tion at LISP level has to return a value), but bounded quantification can be introduced,
by compiling, for instance, Vx. P (x) with the code that repeatedly binds X to all the data
objects of the (finite) domain associated with its sort, checking whether or not P hold6 for
all of them (analogously for the bounded existential quantification).

3.4. Soundness of the compilation

While the correctness of the compiling algorithm should not constitute a problem, a
legitimate question is the following: Is the compilation process sound? To say it in other
words, the question to be asked is: Who guarantees that running the FOL evaluator syn
tactically on a system of definitions gives the same result as running the LISP evaluator
on their (compiled) semantic attachments?

The answer is that the two evaluations are weakly equivalent (i.e. if both terminate, they
produce the same result). This is because the FOL evaluator uses a leftmost outermost
strategy of function invocation (which corresponds to call-by-name) while the mechanism
used by the LISP evaluator is call-by-value. Hence, compiling a function can introduce
some nonterminating computations that would not happen if the same function were
evaluated symbolically.
This however does not constitute a serious problem and it will be overcome in the next
version of FOL. In fact, it will be implemented in a dialect of LISP which is pure applica
tive, statically scoped and whose evaluator implements call-by-need (note that, in this
case, call-by-need is strongly equivalent to call-by-name).

4. AN EXAMPLE OF USE OF COMPILED CODE

The first sizable application of the compiling algorithm from FOL recursive function
definitions into LISP code has been done in order to develop a meta-theoretic description
of arithmetic expressions.
This application is presented in [AW80]. The FOL theory (and meta-theory) of arithmetic
expressions is a completely general one. Arithmetic expressions are allowed to contain
variables ranging over INTEGERS, the usual operators (+,*, prefix and infix -) and unin
terpreted function symbols. No restriction is imposed on them, nor on their arguments.
To be more precise: function symbols may take objects of any sort as their arguments; the
only restriction is that they must be hereditarily well sorted and return integers as values.

Question answering involving arithmetic expressions often requires two expressions to be
checked for the identity of their values for all the interpretations of the variable symbols
occurring in them. This cannot be done by a single rewriting, using the associative and
distributive laws (etc.) holding for elements of an integral domain, because of the presence
of the commutative laws for plus and times. In fact, the commutative laws may cause a
rewriting system to loop.
To solve this problem, an algorithm has been devised in META which describes manipula
tions on arithmetic expressions that transform them into a canonical form with respect

l o t

to commutativity (in addition to associativity, distributivity, evaluation of ground sub
expressions, elimination of zeroes and ones, etc.). This has the property that arithmetic
expressions are equal if their canonical forms are the same. Such algorithm relies on an
intermixed symbolic evaluation of the expression at the theory level and of a reordering
done at the meta-theory level. The specification of the algorithm in META it a rather
long piece of FOL code and running it in a completely symbolic way and running it by
compiling LISP code for all the definitions (about 30) substantially changes its behaviour.

Consider the following examples (where 1 has been declared as OPCONST mapping pairs
of INTEGERS into an INTEGER):

(a) x*(-y)-(-y)*x
(b) x*3*(4-y)-(-y+4)*3*x
(c) x*0*f(4-y,y)
(d) x*y*f (y, z) -y*x*f (y, z)
(e) x*3* (4-y) + (z-u) * 1 ((x+y) *w, w*u)

-12*x- (u-z)*f(w*x+w*y+0,u*l*w)+3*x*y
To make the examples more straightforward we have chosen only expressions that are to
be proved to be identically zero. The times reported in the following are KL10 cpu time.
For each expression, in the first column we report the cpu time for the simplification done
using the compiler, in the second one the cpu time for the simplification done completely
symbolically.

(a) 5" 1*20*'
(b) 3 ' ' stack overflow
(c) 2" 11"
(d) 12* ' 5 * 5 "
(e) 3*11* * stack overflow

(*) Note that during the last garbage collection before the result was produced only 310
LISP cells were recovered!.

We think that these figures are self-explaining. The reader should not be mislead by
them and conclude that the FOL evaluator is particularly inefficient. The point we are
making here is only that computations on model values are more efficient than symbolic
manipulations at the syntax level, hence that the use of semantic attachments in FOL has
to be encouraged.

5. IN DEFENSE OF SEMANTIC ATTACHMENT

The semantic attachment in FOL has been criticised as being error prone. The main
jec ion is t at the user of FOL has the freedom of introducing two separate descriptions

a syntactic one and a semantic one) within a single L/S structure, using two separate
anguages and the system does not provide means to check whether these two separate
escriptions actually match. For instance, going back to the example of Section 2.2, in

presently is, there are no means of checking that the LISP function attached

10 3
to the function symbol + satisfies the properties stated by the axioms PLUS.

Conversely, we consider the introduction and use of semantic attachments in FOL a very
sound idea and not only because it increases the efficiency of evaluations but (more im
portant) because it is episternologically valuable to have a clear distinction between the
syntactic part and the semantic part of a description of a context of discourse.

In addition, it has not to be underestimated that the notion of simulation structure in
FOL allows for partial descriptions. Their need is certainly not evident from the examples
provided in this paper, where each function (predicate) symbol introduced had a clear,
well known, model value (i.e. a nice recursive function). But if you think of FOL as a
system that allows you to represent knowledge about a domain of discourse as soon as
you gather it by means of some observation, then the possibility of feeding it with partial
information about model values seems the only viable way of setting up and updating a
domain of discourse between FOL and the user.

Let us go back to the above objection, that the syntactic and the semantic specification
of an L/S structure are made in two different, and in a sense incomparable languages.
Note that the presence of the compiling algorithm described in this paper has reduced
this problem to a minimun. In fact now the user, even though he intends to use some
information at the semantic level, can input it in the form of FOL axioms (or prove it from
previously specified axioms), and then transform it into semantic knowledge by means of
a compilation.

There are many advantages in setting up an L/S structure by giving FOL syntactic infor
mation and then allowing the compiler to transform it into a simulation structure.

First, the FOL user can specify his knowledge in the syntax of first order predicate logic
and be guaranteed that the LISP code of the simulation structure generated from it ac
tually models the syntax.
Second, the user can ask FOL itself to prove any property he wants of the notions he
is introducing, thus increasing his confidence on the consistency of the specification he is
setting up.
Note that in this last point we have never mentioned the word correctness. In this case,
in fact, we think that there is no point in speaking about correctness: the only thing that
matters is to provide the user with the ability of verifying that the domain of discourse
he is setting up with FOL corresponds to his intentions.

Before ending this section we also notice that, once the theory of LISP in FOL has been
completely developed |Tal80], an algorithm can be devised for transforming LISP recur
sive function definitions into FOL formulas, using for instance the minimization schema
proposed by J. McCarthy. This, besides allowing for a theory of recursive functions in
first order logic, allows for a further check to be done on L/S structures. Namely, it can
be checked that the semantic attachments provided in given L/S structure (in particular,
those that are not the result of a compilation) are consistent with the syntactic part of
the L/S structure itself.

ioi

6. FURTHER WORK - CONCLUDING REMARKS

We have given some indication concerning the workings of the FOL evaluator and its use
of syntactic and semantic knowledge in performing evaluations. We have then illustrated
a compiling algorithm for systems of recursive function (predicate) definitions from FOL
into LISP, which greatly improves the performance of the evaluator itself. Here we describe
some possible further improvements.
As pointed out in Section 2.2, the strategy that is presently adopted by the FOL evaluator
is that, whenever it has some semantic information about the term (or wfT) being evaluated,
it uses that information first; if nothing can be done at the semantic level, it tries with
a syntactic simplification. This strategy was the only reasonable one when the semantic
attachments were very few and, conversely, the sets of simplification rules tended to be
very large. The addition to FOL of the compiling algorithm described in this paper hat
changed this balance: facts at the semantic level are many more than those at the syntax
level. This implies that a rethinking of the FOL evaluator has to be done in order to choose
which information has to be used first. It is our opinion that syntactic information has
to be used first. In fact, in a L/S structure where all the function (predicate) definitions
have been transformed into semantic attachments, the only knowledge that is left at the
syntactic level is in the form of properties of these functions and predicates. The use of
such properties before trying to compute the function (predicate) may result in avoiding
some computation.

To clarify this point we give an example. Suppose that, in the theory of Section 4 you
declare a binary function I which maps pairs of NATNUMs into NATNUM, and add (via com
pilation, or "by hand") an attachment to it. Suppose that in this L/S structure you prove
the theorem:

V l.f(x,i)=0
From now on, when'evaluating f (trm.trm) (where trm stands for any term), you cer
tainly want to use the above theorem and immediately rewrite 1 (trm, trm) as 0, instead
of running the LISP evaluator on the code for t applied to the model value of trm, and
re-discover that the result is 0.

One further improvement worth considering is to allow the FOL evaluator to handle some
kind of LISP errors, in order to enhance its possibility of performing mixed computations.
In Section 3.3 we have said that one of the requirements for a definition to be compil
able is that all the function (predicate) symbols occurring in the definiens must have an
attachment, to avoid that the LISP EVAL encounters an undefined function. The FOL
evaluator can be designed to handle this kind of errors, pass back the control to its sym
bolic evaluation part and check the simplification set for some fact regarding this function
(predicate) symbol, and, if possible, perform a rewriting.

Wr?' fVUbieCt f°r f?rtHer investi&ation consi!^ improving the compiler in order to
of firT J* r ? C°de 11 Senerates- In fact, as it presently is, the transformation
a a i r]r Cate) definitions into code is a transliteration, no optimisation
at all is performed. This is a subject worth investigating: partial evaluation and other

i or

efficiency increasing transformations (for example, in the style suggested by [BD77] or by
[AAP78]), can be performed on the code produced by the FOL-LISP compiler.

Due to the lack of space we cannot present a detailed comparison between our work and
other proposals circulated in the recent literature, mostly in automatic synthesis of pro
grams. We only mention that the use of (compiled) meta-functions in FOL is very much
in the same spirit as [BM79].

ACKNOWLEDGEMENTS

C. Talcott is acknowledged for useful discussions, J.S. Moore for a careful reading of the
manuscript that improved it. R.W. Weyhrauch deserves special thanks: all the conversa
tions we have had about FOL have been interesting, stimulating and enlightening.

REFERENCES

[AAP78] Aiello, L., Attardi, G. and Prini, G. Towards a More Declarative Programming
Style, Formal Description of Programming Concepts, North Holland (1978).
[AW80] Aiello, L. and Weyhrauch R.W. Using Meta-theoretic Reasoning to do Algebra,
Proc. of the 5-th Automated Deduction Con}., Les Arcs (1980).
[BM79] Boyer, R.S. and Moore, J.S. Metafunctions: Proving them correct and using them
efficiently a6 new proof procedures, Comp. Sci. Lab., SRI Int. (1979).
[BD77] Burstall, R.M. and Darlington, J. A Transformation System for Developing
Recursive Programs, J ACM, 24,1, 44-67 (1977).
[CMC79] Cartwright, R. and McCarthy, J. First Order Programming Logic, Proc. of the
6-th ACM Symp. on Principles of Programming Languages, San Antonio (1979).
[Fil79j Filman, R E. Observation and Inference applied in a Formal Representation
System, Proc. of the 4-th Workskop on Automated Deduction, Austin, Texas (1979)
[Pra65j Prawitz, D. Natural Deduction - a Proof-Theoretical Study, Almqvist & Wiksell,
Stockholm (1965).
[Rob50] Robinson, R. M. An Essentially Undecidable Axiom System, Proc. Int. Cong.
Math., Cambridge, Mass. (1950).
[Tal80] Talcott, C. FOLISP: a System for Reasoning about LISP Programs, Stanford A.I.
Lab. Memo, in preparation (1980).
[Wey77] Weyhrauch, R.W. FOL: A Proof Checker for First-order Logic, Stanford A.I.
Lab. Memo AIM-235.1 (1977).
|Wey78] Weyhrauch, R.W. The Uses of Logic in Artificial Intelligence, Lecture Notes of
the Summer School on the Foundations of Artificial Intelligence and Computer Sc.ence
(FAICS >78), Pisa (1978).
[Wey79] Weyhrauch, R.W. Prolegomena to a Mechanized Theory of Formal Reasoning,
Stanford A.I. Labo. Memo AIM-315 (1979); to appear in Artificial Intelligence Journal

(1980)

I Ob

Runnable Specification As a Design Tool

I

Ruth E. Davis
Electrical Engineering and Computer Science Department

University of Santa Clara
Santa Clara, CA 9505S

There are at least four phases in the development of "correct" software.

1) Understanding the problem. The program designer may work with intended users
of the system to develop an intuitive understanding of the problem and possible
approaches to its solution.

2) Formal specification. Once the designer knows intuitively how to solve the
problem, the solution must be specified unambiguously.

3) Programming. An implementation of the specification is programmed.

4) Verification. The implementation developed in step three is shown to satisfy the
formal specification of step two.

There |, , certain amount of teaing and debugging that go,, on „
stages Mi one i, satisfied „„„ the current step and moves on s,„„,

vertftcatton technique, b,e„ to «« m accomplishing step four. However,

satisfies th ' """" ~«M satisfies the given specification.

T* be,ne ei"ded *"" mmmfk «• «m «
step entfrei, M ' "" "h"'"""8 "" """ " "» """""""

eon Jcta or'aTI''" ' h," T" "'P "" ""^P"™ °f ' P«*">» " «"
pr»b,7m Th" , our ^ a ,7' !P"""*",'n ""PersLLg of the
construction and testing * " d,,"°Pi"8 " h"P

2

How does one "debug" a specification? We cannot hope to formally prove that a

specification is "correct" with respect to our intuition, but we can at least test it to see that it

conforms to our intuition in specific cases.

Guttag and Horning [2] present an algebraic specification technique as a design tool.

As an example they describe part of the specification of a high-level interface to a flexible

display and discuss the analysis of the specification. A salient feature of their approach is

the ability to "ask questions" of the specification, derive answers, and change the design if

the answers are unacceptable. In this way they hope to test and debug the specification.

I suggest that Horn clauses provide a much better specification language than do

algebraic axioms. The two languages are closely related; it is a simple matter to translate

between them. The ease of writing a specification in one language versus the other is

undoubtedly a matter of personal taste and depends largely on which language one is more

familiar with. The same may be said of the readability of a specification. Horn clauses, as

well as algebraic axioms, can be analyzed for answers to specific questions and modified

accordingly.

The major distinction between the two methods is the manner in which questions can

be handled. With the Guttag-Horning approach, an informal question is posed and

submitted to an "expert" who reformulates the question, often generalizing it. The

questioner must then be convinced that the formal statement developed by the expert does

indeed reflect the original question, and an answer to the formal question will provide an

answer to the informal one. Then an attempt is made to derive an answer from the

axioms.

The same approach may be taken with Horn clauses, but it is not necessary. Since

Horn clauses are executable, if the questioner wants to know what happens in a particular

case, it is possible to simply "try it and see". The expert will still be needed to develop the

specification and to determine what modifications should be made to the specification to

change an unacceptable answer, but the "what happens if ...? questions no longer need be

formalized. For example, given the specification detailed in the appendix, and definitions

for the primitives (machine dependent) that interface the underlying logic with the

commands controlling the appearance of the screen, it is possible to execute logic programs

that manipulate the display. Ideally, a "front-end command language should be provided

by the designer(s) that enables users/testers of the design to make their requests of the

system without having to write them as Horn clauses.

(0% a

Once one is satisfied that a Horn clause specification is a reasonable embodiment of

one's intuition, the task of refining the specification into an efficient program can proceed.

The ability to run a specification makes the problem of testing and debugging it much

more tractable.

As an example, I have written the Horn clause specification of the display specified

with algebraic axioms by Guttag and Horning. The fundamental assumption is that a

user will want to be able to display several distinct blocks of information on the screen at

once. The top level concept is that of a view. A view is a spatial arrangement of pictures, a

picture is a block of displayable information. A picture consists of a boundary, a contents,

and a coordinate transformation to be applied in viewing its contents. Examples of pictures

are the entire display (with implicit boundary), and the interior of a fixed rectangle on the

display; examples of contents are text, figures, and views.

The Guttag-Horning specification of picture is as follows;

Operators:

MakePicture. Contents X /Coordinate -» TruthValues) X [Coordinate -> CoordinateJ
-» Picture

Picture.Appearance: Picture X Coordinate •* Illumination

Picture.ln: Picture X Coordinate -> TruthValues

Axioms:

Picture.Appearance(MakePicture(cont, bound, trans), coord)
- Contents.Appearance(coru. trans(coord))

Picture.ln(MakePicture(cont, bound, trans), coord) - bound(coord)

The operators are listed first, giving their functionality, then the axioms defining

them are given. MakePicture is not defined further since it is simply the constructor

function for the type Picture. The first axiom tells us that the appearance at a given

coordinate in a picture is determined by the appearance at a coordinate (the result of

applying the transformation to the original coordinate) in the contents of the picture. The

second axiom indicates that a coordinate is in a picture if it is within the boundary of the
picture as defined by the function bound.

The specification of type Picture using Horn clauses is given below. The Horn clause

J04
4

specification clearly indicates the distinction between constructor functions, such as

make-picture, and the predicates indicating relationships among their arguments. The type

constraints, indicating functionality of the predicates, are given only for the dause(s)

defining the type being specified. Type-checking can be included explicitly in each clause,

however, we assume the required type is made obvious by consistent naming of variables

and choose to leave it out of the rest of the specification for the sake of readability.

Picturefmake-picturelconl. bound, trans)) <- Contents(conl), Boundary(bound),
Translation trans)

Picture-Appcarancefmake-picturelconl, bound, trans), coord, ilium) -
C-orr,pule posilionfcoordjrarucoord'), Contents-appcarance(cont, coord")

Picture Inlmake-picture(cont. bound, trans), coord, tv)«- Lies-in(coord. bound, tv)

In the Cuttag-Horning axiomatic specification of the display, a boundary is a

function from Coordinate to TruthValues and a translation is a function from Coordinate to

Coordinate. Horn clause syntax does not allow functions as arguments, thus I've treated

trans and bound as objects, Compute-position is a predicate that accomplishes the

translation from coord to coord' indicated by the Guttag-Horning trans, similarly,

Lies-in(coord, bound, tv) results in tv being bound to true if and only if the

Guttag-Horning bound(coord) is true, and to false if and only if Guttag-Horning

bound(coord) is false. I would not need the predicates Compute-position and Lies-in if I

had an evaluation predicate which accepts a function and its arguments and applies the

function to the arguments, such as the LISP "apply". I have decided to remain within

first-order logic and the strict limitations of Horn clauses. Others have concerned

themselves with the problem of moving to second-order, as shown in the demonstrate

predicate used by Ken Bowen and Alan Robinson.

The specification of type View, given algebraically, is as follows:

i

Operators:

View P. m ply: -> View

AddPicture: View X Coordinate X Pictureld X Picture -> View

View.Appearance: View X Coordinate -» Illumination

View.ln: View X Coordinate -» TrulhValues

I / O 5

FindPictures: View X Coordinate -» IdList

DeletePicture: View X Piclureld -» Wen/

Axioms:

View.Appearancel AddPictureiv. coord'. id. p). coord) •
if Picture.ln(p. Minuslcoord. coord!))
then Picture. A ppearancel p. Minus(coord, coord"))
else View. Appearancelv, coord)

View.Appearance(View£mpty. coord) intentionally left unspecified

ViewdnlView Empty, coord) - False

View.ln(AddPictureiv. coord", id. p). coord) -
Picture.lnlp, Minuslcoord. coord!)) v View.lnlv. coord)

FindPictureslViewJimpty. coord) » IdList Fir. ply

FindPictureslAddPictureiv. coord!. id. p). coord) -
if Picture.lnlp. Minuslcoord. coord!))
then IdList.lnsertlid. FindPictureslv. coord))
else FindPictureslv. coord)

DeletePiciurelViewF.mpty.id) " ViewFmpty

DeletePicturel AddPictureiv. coord, icf. p). id) *
if PictureldFquallid. id")
then v
else AddPiclure(DeletePicture(v, id), coord, id", p)

Guttag and Horning use the convention of prefixing a function name by the type it

is operating on and a dot. In this way they can use the same name for similar functions

being defined over several different types. They chose to use a 0-ary function VUrn.Empty

to indicate the empty view, we use a constant mt-view. AddPicture is the constructor

function for type View. Appearance and In are determined by the components (pictures)

making up a view. FindPictures is a function that constructs a list of icCi of pictures

containing a given coordinate. DeletePicture deletes a picture, specified by its id. from a
view.

Again, using Horn clauses, we indicate the types of arguments only in the

specification of View, and assume the desired types are made apparent by naming of
variables.

I l l

View(mt-vlew) «-

Vieuiladdpicturelv, c. id. p)) «- View(v). Coordinau(c), Pictureld(id), Picture(p)

View - Appearancc(mt-vicw. coord, x) «-

As in the algebraic specification, we leave unspecified the appearance of the
rr.t-vicw at any coordinate. Since we have no if-then-else, the axiom describing
Vlew.Appearance corresponds to two Horn clauses, one for each alternative.

View-Appearance(addpicture(v. coord", id. p), coord, ilium) «-
Picture-ln(p. minuslcoord. coord'), true).
Picture-Appearancelp. minuslcoord. coord"), ilium)

Vieui-Appearance(addpicturt(v. coord", id. p), coord, ilium) <-
Picture ln(p. minus(coord. coord"), false),
View Appearance(v, coord, ilium)

View-ln(mt-view. coord, false) *•

Horn clauses are not allowed alternative conditions. Thus the second axiom for
View-In Is handled by the following three Horn clauses, one for each alternative
making the conclusion true, and a third to enable us to derive the fact that a
coordinate is not in a view.

Vicw-ln(addpicture(v, coorrt. id. p), coord, true) *-
Picture-ln(p. minus(coord, coord"), true)

View-ln(addpicture(v, coord', id. p). coord, true) *• Vieui-ln(v. coord, true)

View-ln(addpicture(v, coord", id. p), coord, false) «-
Picture ln(p. minusUoord, coord"),false).
View-ln(v. coord,false)

FindPlctures(mt-vlew. coord, mt-ldlist) *•

FindPictures(addpicture(v. coord", id. p). coord, idlist-insert(ididl)) *-
Picture-ln(p. minusicoord. coord"), true).
FtndPictures(v. coord, idl)

FindPictures(addpicture(v, coord", id. p). coord, idl) -
Picture-ln(p. minusicoord. coord), false),
FindPictureslv, coord, idl)

DelelePicture(mt-view, id. ml-view) «-

DeletePictureladdpicturelv. coord, id. p). id, v) «-

DeletePiclureladdpicturelv. coord, id", p). id. addpicture(v". coord, id", p)) -
Pictureld-equal(id. id", false), DeletePicturelv, id, v)

I l l
7

FindPictures and DeletePicture present no surprises. Again, an if-then-else in an axiom

results in two clauses in the Horn clause specification. A complete Horn clause

specification of the display is given in the appendix.

In analyzing the specification using the algebraic axioms one needs an expert to go

between the questioner and the specification. For example, and informal question asked of

Guttag and Horning was: "Is it the case that pictures are not transparent or even

translucent? I.e., if two pictures overlap, does the bottom one have no effect on what one

sees through the top one?". The question was formalized as:

"Is it true that
Lict' juid)>\v2)l Piaure.ln(wMinai(ct')) •*

fVieuiAppearance(AddPicture(vlSidui)*) - Vitw. Appear ant tl AddP Ictui e{v21 T

The formal question is answered affirmatively, following directly from the first alternative
in the first axiom of type View.

If we so desired, we could formalize the question to be put to our Horn clause

specification and derive the same answer, using the second clause in the definition of

View-Appearance, but there is no need. Since we can run the Horn clause specification, all

the user need do is construct overlapping pictures and look at the result. This U sufficient

to answer questions about specific cases. If one is interested in proving general properties,

then we must fall back to a formalization of the question and formal derivation of an
answer from the specification.

Using Horn clauses as a design tool we enjoy all the benefits of the algebraic

approach, and gain the advantage that testing is more easily accomplished. An expert may

still be required to develop the design specification and to modify it if necessary, but the

analysis of the design can be carried out by people who may be experts ,n the problem
domain but not in the specification language.

[H Davis, RpE - "Generation of Correct Programs from Logic Specification."
h D Thesis, Board of Information Sciences, University of

California, Santa Cruz, 1979. X

[2] Guttag, J and J Horning, "Formal Specification As a Design Tool"

ESS?r/sf ACM Symp0S1Um P̂ 'P'« jamming

[3] Kowalski, R„ Logic for Problem Solving, Elsevier North Holland. Inc. 1979.

H 3

Appendix

TYPE Picture

Picturelmake picturelcom, bound, trans)) *•
Contents(com). Boundaryl bound). TranslalionUrans)

Picture • Appearancelmake picturc(conl. bound, trans), coord, ilium) -
Compute-position(coord. trans, coord"), Contents-appcarance(cont, coord").
Content si com). Boundary(bound). T ranslalionUrans), Coordinate(coord),
Coordinate(coord'), lllumination(illum)

Picture Inlmake picturelcom, bound, trans), coord, to) <-
Lies-in(coord. bound, tv). Contents(com). Boundarylbound),
Translation(trans). Coordinate(coord). Trut/i-valuc(tv)

END TYPE Picture

TYPE Contents

Conteras(mt-coments) *•

Contents(add- componentlcom. com p. coord)) *- Consents(cont). Componens(comp), Coordinate(coord)

Contents-Appearancelmt-contents. coord, x) «-

The appearance of an empty contents at a coordinate is intentionally left unspecified as yet.

Contents Appcarance(add-component(cont. comp. coord'), coord, ilium) -
Component-lnlcomp. minuslcoord, coord"), true), Contents-Inlcont, coord, true).
Component Appearancelcomp. minuslcoord. coord"), illuml).
Contents Appearancelcont. coord. illum2). Combinelilluml. illuml. ilium)

Contents- Appearance(add-component(cont. comp, coord). coord, ilium) *•
Component- Inlcomp. minuslcoord. coord'), true), Contents-Inlcont, coord, false),
Component- Appearancelcomp. minuslcoord, coord"), ilium)

Contents-Appearance(add component(com. comp. coord"), coord, ilium) *-
Component Inlcomp. minuslcoord. coorSlfalse). Contents-Appearancelcont. coord. Ulum)

Contents-lnlmt-contents, coord,false) *•

Coments-lnladd- com ponentl com, comp. coord.'), coord, true) «-
Component-lnfcomp. minuslcoord, coord"), true)

Contents-Inladd com ponentl com, comp, coord.'), coord, true)«- Comems-lnlcont. coord, true)

Coments-lnladd componentlcom, comp. coortT). coord, false) <-
Component Inlcomp. minuslcoord. coord"), false), Comems-lnlcont, coord, false)

E N D T Y P E C o m e m s

! / 1

TYPE Component
Simply the union of View. Text, and Figure.

Component(make-vcomp(view)) -

Component(makc-liompUexl)) *-

Component(make-fcomp(figure)) *•

Component-Appearance(make-vcomp(view). coord, ilium) -
Ficui-Appearancelview. coord, ilium)

Component-Appcarance(make-tcomp(text), coord, ilium) -
Text-Appearance(text. coord, ilium)

Componcnt-Appearance(makc-fcomp(figure). coord, ilium) •
Figure-Appearance(figure. coord, ilium)

Component-ln(make-vcomp(view). coord, tv) *-
View-ln(vieu). coord, tv)

Component-ln(make-tcomp(text). coord, tv) «-
Text-ln(text, coord, tv)

Component-ln(make-fcomp(figure), coord, tv) *•
Figure-ln(figure, coord, tv)

END TYPE Component

TYPE Text

Text(mt-text) «-

T ext(tcxt- insert! par, txt)) - Paragraph par). Text(txt)

macro: down(d) is minuslcoord. timesld, UnitFectorDown)

Texi-Appearance(mi-text. coord, x) -

TtXt'XPrZaTJ'fTinJn'<par- »">• <°»d- Ulum) -Paragraph-!n(par, coord, true).
P<tragraph-Appcarance(p. coord, ilium)

T^ 7aPrZ?Zt(TTinSeT!(par-!X!K eeord- -P<tragraph-ln(par, coord, false)
Paragraph-Heightlpar. d),
Text-Appearance(txt, down(d). ilium)

Text-ln(mt-text, coord,false) «-

Text-,n(,ext-insert(par. txt). coord, true) t-
Paragraph-lnipar. coord, true)

Text-ln(text-insert(par. txt). coord, true) «-
Ptragraph-Heightfpar, d).
Text-ln{txt, down(d). true)

Text-ln(tcxt-inscrt(par, txt), coord.false) -
Paragraph-,n(par. coord, false)
Paragraph-Heightfpar, d).
Tcxt-lnftxt, down(d).false)

END TYPE Text

TYPE View

Ftewlmt view) -

Ftcwladd pictureIvine, coord, future id.pietist).

Fieu A p peat ant H ml vlem. coord, ri •

Again, we leave unspecified the appearance
of the mi view at any coordinate

Fiew-Appear anceladd putuielv. coord.Idpl.tmilt
Future ltt(p. minujUoord. coord), tnu).
Pieture AppearancHp. mirtusUoorlcoetE.ee

View Appearaneeiadd prctuteio. coord, id. pl.aviiti
FUtute-1 nip. mtnusleoerd. coord), feist),

View Appeataruelv. coord, tllum)

Fiew-Inl mt-view, coord, false) -

Flew-Inladd picture,v. coord. Id. p). coord, tnul-
Ptciure-lnlp. minurlcoord. coord), me)

View Inladd pUturelv. coord. Id. p). coord, tnu) -
Flew- Inlv. coord, true)

Flew -Inladd picturelv. coord, id. p). coord,foist) -
Picture Inl p. minusl coord, coord).foist).
Fiew-lnlv. coord.false)

FtndPUtureslmt-view, coord, mi idlist) -

FlndPUturesladd picturelv. coord, id. p).
coord, idlist-insert(ldldl)) -

Picture-ln(p. minuslcoord. coord), nut).
FindPUtureslv. coord, id!)

FindPicturesladd picturelv. coord, id. p). coeri. M*
Picture-lnlp. minuslcoord.coord).foist).
FindPUtureslv. coord, id!)

DeletePicturelmt view. Id. ml view) -

DeletePictureladd picturtlv. coord, id. p). id ») *

Delete PUturel add- picturelv. coord, id. p).
id. add picturdv'. coord, id. p)) -

PUtureld equallid. id. false).
DeletePicturelv. Id. v')

END TYPE Flew

TYPE Idlist

Idlistlmt-idlist) -

Idlisrlidlist-iruor,(id. id!)) -
Putureld(ld). Idlist(idl)

E N D T Y P E I d l i s t

10

TYPE Paragraph
macro: Down(d) is Minus(coord, Times(d, UnitVectorDown)

Paragraphlmake paragraph!parlooks. eng-string)) *•

Par-Firstline(make-paragraphllook, s). line) «-
Parlooks-width(look. w),
EngString- Firstlinels. w. line)

Par-Balancelmakc paragraph(took. s),
make-paragraphllook. s')) *•

Parlooks width!look .w).
EngString-Balance(s, w)

Par-Null(make-paragraph(look, s). tv) «-
String-NulKs. tv)

Par-Space(make-paragraph(look. s), dist) «-
ParLooks-spaceHook, dist)

Par-Height(p, dist) »-
Par-Nu/llp. true). Par-Space!p. dist)

Par-Height! p. dist I t dist 2)«- Par-Null! pfalse),
Par-Firstline!p. line). Line-Heightlline, distl),
Par-Balance!p. p'). Par-Height!p'. dist2)

Par-ln(p. coord, true)«- Par-Nulllp. false).
Par-Firstlinc!p. line). Par-Space!p. distl).
Line AscentHine. dist2).
Line-ln(llne. Down(distl t dist2), true)

Par-ln(p. coord, true) • Par-Null(p. false).
Par-Balance!p. p'). Par-Firstline!p. line).
Line-Hcight(line. dist). Par In!p'. Douin(dist), true)

Par-ln(p. coord, false) •- Par-Null(p, true)

Par-ln(p. coord, false) •- Par-Null(p. false).
Par-Firstline!p. line). Par-Spacclp. distl).
Line- AscentHine. dist2). Line-ln(ltne.
Downldistl r dist2).false). Par-Balance!p. p'),
Line-Hcightdine. dist). Par-lnlp'. Down!dist). false)

Par-Appearance!p. coord, ilium) *•
Par Firstline!p. line). Par Space!p. distl).
Line-Ascent(line.dist2),
Line-lnlline. Downldistl t disl2). true).
Line-Appearance!line. Down!distl -t dist2). ilium)

Par-Appearance!p. coord, ilium) *•
Par-Firstline(p. line). Par-S pace! p. distl).
Line-AscentHine. dist2).
Line ln(line. Downldistl + disl2). false).
Par-Balance!p. p'). Line-Height(line. dist).
Par-Appearancelp'. Down(dist), ilium)

END TYPE PARAGRAPH

TYPE LINE

Linelmt- line) «-

Line(line-insert(c,l)) <- Character(c). Lined)

Linc-Appcarancclmt-line, coord, ilium)
intentionally left unspecified

macro: Right(d) is Minus(coord, Times(d,UnitVectorRight)

Line-Appcarancclline inserllc, In), coord, ilium) «-
Character- In(c, coord, true),
Character- Appcarance(c, coord, ilium)

Line-Appearance(line-inscrt(c, In), coord, ilium) <-
Characler-ln(c, coord, false), Charactcr-width(c, w).
Line- Appearancclln. Right(w), ilium)

Line-lnlmt-line. coord, false) <-

Line-ln(line-insert(c. In), coord, true) «-
Character-ln(c, coord, true)

Line-ln(line-insert(c, In), coord, true) *-
Character-widthlc, w),
Line-lnlln. Right(w), true)

Line-Hcightlln. dl\d2) •-
Line-Ascentlln. dl), Line-Descent(ln, d2)

Line-Ascentlml-line. 0J *•

Line-AscentHine inserllc. In), d) «-
Character-Ascentlc, dl). Line-Ascenl(ln. d2),
Maximum(dl, d2, d)

Line-Descenl(mt-line.O) <-

Line-Desccnt(line-inserl(c. In), d) «-
Character-Descentlc. dl). Line-Descenl(ln, d2),
Maximum(dl, d2. d)

Maximum(x.y.x) *• LessThan(x.y. false)

Maximum(x.y.y) *- LessThanly. x. false)

I have assumed the existence of a LessThan
predicate that returns true or false

END TYPE LINE

TYPE EnglishSlring

EngSlringlmi-string) «-

EngString!string-insert(char. string) <-
Character(char), EngString(string)

EngString- Firstline(mt-slring. dist, mt-line) w

l ib

EngSlring-Firsllinel string-insertlc. s). d. e) -
SplitHcrels, c. d. true)

EngString- Firstlinclstring-insertlc. si. d.
lint-instrt(c. lint)) *•

SplitHcrels. c. d, foist). Character-widihlc. w),
EngString-Firstlint(s. d-w. lint)

EngString-Balancelmt-string. d. wit-strlngh-

EngSlring- Ba/anet(siring-instrt(t, s). d. s) -
SplitHcrels. c. d. nut)

EngString- Balanctistring-instrtlc. s). d. sir) *•
Character-widthlc, w). EngString-Balanitis, d-w. sir)

SplitHtrt(mt-string. c, dlrut) «-

SplitHertlstring-insertlc'. s), e. d. trut) -
Character-Equallc', quotcCR, trut)

SplitHtre(string-instrtlc'. s). t. d. trut) •
Charaettr-Equallc'. quotespact, foist)

LZrT7jd'h<C: U)- Cha'^"r-uidt\(c'. w'). LessThanfd. w+w \ trut)

SplitHcre(string-instrt(c'. s). c. d. trut) *•

Wor^fts(s^c\d-w^fal'se')^aTaettT'"'l^l^e'

SplitHtrelstring instrtfc'. s). c. d. foist) *
Character-Equallc'. quoleCR, false)
Character - Equailc', qucttSpact. tvl)

LtxicalBrtaklc. c'. tvj), Notltv). tvF)

SK5X» "• '•

Notltrue.foist) *-

Notlfalst, true) *•

Orltrue. tv. true) *•

Or(tv. true, true) *•

Orlfalse, false.false) *-

Lexical Br eak(current. next, true) *
c tor otter E quotl currev. pattSftu
C to totter IquaHnext.qwtcSfeu.ja

Lexical Br eehlcur rent. next, nut) -
C to rotter E quail current. fuettHjfkit,
Char a: let Equal! next. quNtHjfltip '
Character-Equallnext. qjuSpui.jLi

Lexical Br eah! curt eni, next.Joist)*
Char otter Equallnexi.qiMtSfeu.tru!

Lexical Br eahlcurreni. next, foist)*
C kor octet • Equall current. quucS fu.jd,
C hot octet -Equal! cut rent. qmuHjfknja

Lexical Break! current, next, false)*
Character E quell current. qwtSfut.p.
Character-E quail next. qvtnHffkn.trd.

WordF Us!nit - strt ng. c. d. true) *

WordFtttlstring insertlc'. t). c. d. trut) *
Character - E quail t. quoteCR. trut)

WordF it slurlng-insertlc'. s), c. d. trut) *
Character• Equallc. quottSpett. tnu)

WordFUslstring insertlc'. t). c. i. trut) *
Lexical Br eaklc. c'true). Cheteact-ukC •
LtsiTkanld. w. false)

WordF it shtring insertlc'. s). c. i. trut) *
Character wldthlc. w). Charaaer-wM^I
LtssThanld. utm',false).
WordFUsls.c'. d-w. true)

WordF it si string insertlc', s). c. 4. foist) *
Character-Equallc. quottCR.feist).
Character Equallc, quoitS fact, feist).
Lexical Breaklc. e'/vl). Noll tvl. tvl').
Character-widthlc. w). LtssTkend,
Orltvl'. tv2). Character-widlMc'.u').
LessThanld. wrw'. tvl).
WordF it s(s. c'. d-w. lv4). Noll tvl. tvl').
Or(tvy. M'. true)

String- Nulllmt-siring. true) *

String Null(string- insertlc. s).false) *

END TYPE EngltshSirtng

I I ?
1 2

TYPE Character

Character(make-char(code.fig. ascent, descent, width)) «-
CharaclerCode(code), Figure(fig). Distance(ascenl),
Distance(descent). Distance(width)

Character- wldth(make-char(codc.fig. ascent.
descent, width), width) «-

Char-equal(make-char(code.fig. asc. des, w).
make-charlcode.fig'. asc'. des', w'» *•

Character-Ascenl(make-char(code,fig. ascent.
descent, width), ascent) «-

Character-Descent(make-char(ccde,fig. ascent,
descent, width), descent) *•

Char-A p pearancelmake-char(cd. f. a. d. w). coord, ilium) -
Figure-Appearanceif. coord, ilium)

Char-ln(make-char(cd.f, a. d. w). coord, true) -
Figure-ln(f, coord, true),
lncreasing(a. project(coord, unltvcctordown), d. true).
Increasing!!). proqectfcoord, unitvcctorright), w, true)

Char-ln(make-char(cd,f, a, d, w). coord, false) *•
Flgure-ln(f, coord, false)

Char- ln(make-char(cd.f. a. d. w). coord, false) -
Irureasingfa. projecl(coord. unitvectordown), d,false)

Char-ln(make char(cd.f. a, d, w). coord, false) *-
lncreasing(0. projectlcocrd. unitvcctorright). w,false)

END TYPE Character

TYPE Figure

Type Figure will necessarily include specifications
of the Appearance and In predicates for the type.
This type is left unspecified as it may be dependent upon
the target system. Clearly, a more flexible specification
of Figure is possible for a bit mapped display than is
possible given a character mapped display.

END TYPE Figure

TYPE Coordinate

This type is not yet specified. It needs at least the
functions minus, times, and project, and the constants
unitvcctorright and unitvcctordown. A 2-dimensional
vector space would do, and one might consider this a
primitive type of the system one is using.

END TYPE Coordinate

TYPE Distance

Again, this type should be available already on the
target system. One simply needs to define the mapping
from the predicate form used in the Horn clauses to
the functions available.

END TYPE Distance

TYPE Font

Font(mt-font) *-

Fontjaddcharacter(font. char)) +

Lookup(mt-font. code, x) -
another unspecified pathological case

Lookup(addcharacter(fnt, make-char(cd.f. a. d, w)).
cd. make-char(cd.f. a. d, w)) <-

Lookup(addcharactcr(fnt, make-char(cd.f. a. d, w)). code, c) <-
CharaclcrCode-EquaUcd, code.false),
Lookupifnt, code, c)

END TYPE Font

PRIMITIVES

The primitive predicates that relate the logic to a
particular system include the types Boundary. Translalion,
Coordinate. Illumination, and the predicates, such as
Compute Position. Lies-ln. and Minus, that operate
on them. For example, an illumination may be one of two
values (white/black), one of several shades of grey, or a
more complex combination of hue and intensity, depending
on the capabilities of the system one is designing.

W6

AND PROVIMC PROPERTIES
BY COMPUTING TERMS

b y E n r i c o

< -) « "UV"IISSLIS"

«?»• r»»-J3^ssrfc,s?*|"1*,h*
K e y w o r d s : - H «•»«••«.• of .oJJ

"R1": F

Siena , in

A b s t r a c t

^ " t r o d n r y ; ,

m t e r p r e t a t i " n r , c P r o g r a m m i n g i S n » , „ . p r o b l e m m a n y s y n t a c
P R O L O G / 7 / o f f e r s a h < ? • H ° r n _ c 1 a " s e s / 3 / e ' t J " e d ° " t h e P ™ " * "
m a k i n g a n a p r < * « » £ n r e s t £ n g £ " Z J 5 ? * " " 1 " • l a n « U

t ° t h e m e t a t h e o r y m a y b e t h t e c h B
I n t h i s p a p e r w e " y b e t h e w a y t o d o t h i , .

P t o g r r m m i n g ^ t y L ^ b i c h " f u " l y h . * P o s s i b i l i t y b y
t r a n s f o r m c 1 e a r f X - P f S 8 1 n « t e r m s a s n r * ? p l o x t t h e P R O L O C
• n a t i o n s i n t o p u r / H o ^ 1 1 3 ' ' 0 1 " 7 ' 3 " r r e c t n ' 1 " 6 5 " n d v ! c e v e r s a

A s _ H ° r n - c i a u s e p r o g r a m s ? ® « » '

^ / 2 / ' t h a n e e d f o r e x t e n t a s i t d ° a H o r n - c i a u s e p r o B r l " " 1 " ' " 8 a

a b l e t o u s e c o m D u t , ? ? r ° C e d u r a l P r o g r a m ® t u p r e v a i ^ t o t h e s a m e
® e t o f s e n t e n c e s S D p 1 v n ? 1 1) ' b o L h t h e s o » r ' r P r 0 ? l e ' x s n o w t 0 b

• 8 . m a t h e m a t i c a l i a y i n 8 t h e o r e t i c a l ^ a l c a t i o n s a n d a s u i t a
d o m a i n . l c a l i n d u c t i o n) p r o p e r t i L Z t m e c a t h e o r e t i c a 1 (l i t

° t h e c h o o s e n p r o b l e m
F u r t h e r m o r e i n / 4 /

P r o b l e m d o m ^ n P , ? r C S ̂ a ̂ O G I C ̂ o m " 1 8 ° ̂ t h m S C a " b e

c h o 0 1 C O N T R O b c o m p o n e n t u i j a l 8 ° r i t h m , i T " " " h i c h a p - i f i e s
n t o ® o l v e t h e p r o b l e m h " S r e s P ° n s i b i e f c j

W i t h * - u • » i . e . t h e f l i o • h e s t r a t e g y
o f p i 1 f p a P e r w e i n r ^ h m b e h a v i o u r .

"f".':,;1;;! «• '-fie

«•«*? •«
d e t e r m i n i s t i c s t l c a l g o r i t h m s o n e s .

- i -

Ill

In section 2 we will introduce a set of Horn-Clauses for computing
over natural numbers; in section 3 we will explain our use of the
metatheory in a PROLOG-like programming style; in section 4 we will
give more examples either about the computation of terms within
predicates and about proving properties by using induction via sets
of Horn-Clauses.

We think that our approach, even if quite simple, is a neat and
clear suggestion to do everything (proving and improving programs)
within the same level, i.e. PROLOG programs; its capability should
become evident if applied to a richer domain, like the one of binary
trees, for example, and if combined with clever strategies. These
must be able to choose on what variable to try the induction and
how to explore the search space.

2. A basic Horn-Clause set for Number Theory

Let us refer to the usual natural number domain, that must be
intended as the set closed under the one-to-one function successor
and containing the "0" element; this compels us to use the language,
over the Predicate Calculus, with the "0" constant and only the
successor term "s(x)".

We reserve the right to introduce new names for relations over the
domain, i.e. computable predicates, by giving the Horn Clause
programs for our new axioms. We will try to use the induction
property at the theory level by creating suitable Horn-clause
programs .

First we grow our theory by introducing new axioms /6/ for equality
which add to our language new predicates EQ and DIFF:

let be Axl: x = y—>(x=z—>y = z)
Ax2: x=y —»s(x)=s(y)
Ax3: O^s(x)
Ax4: X5*y —>s (x) t's (y)

We naturally obtain the following Horn-Clause program:

EQ: 1. EQ(y,z)<—EQ(x,y),EQ(x,z)
2. EQ(s(x),s(y)) <—EQ(x,y)

DIFF: 3. DIFF(0,s(x))«-
4. DIFF(s(x) ,0) «—
5. DIFF(s(x),s(y))«-DIFF(x.y)

where lines 1, 2, 3&4, 5 follow directly from axioms 1, 2, 3, 4.
Then we turn to the axioms for plus:

let be Ax5: x+0=x
Ax6: x+s(y)=s(x+y)

By using the following equivalence

x+y=z s PLUS(x,y,z)

we write the following program

PLUS: 6. PLUS(x,0,x) <—
7* PLUS(x,s(y),s(x A y))<-

I M
where the term A now is not defined in our theory.

There are two main ways to manipulate the specification set fee
obtaining a Horn-Clause program: the first one is in the follaL
while the second will be in the next section.

By introducing the output variable within the predicate Pll'S
obtain the equivalence:

x+s(y)=s(z) iff x + y-z

which gives the following program:

PLUS: 6. PLUS(x,0,x)«—

7. PLUS(x,s(y),s(z))«—PLUS(x,y,z)

x + 0 = z iff z_x

which gives the following program:

EQPLUS: 8. EQ(x,z)<— PLUS(x,0,z)

We are ready now to prove theorems about our theory:

TH1: o=0

Theorem 1, under the Horn-Clause form

"-EQ(0,0)

trivially follows from clauses Tin.
be added: • ® » so the following clause may

9. EQ(0,0)«-

px and provi„^
r

Let us introduce now a nn;„. t

developed i n / 8 / a b o u t *"" x°f nT l e w a n a l o8° u* to that one
a uation processes. semantics attachments in the

If we consider again the Axioms 5Afi
> we may write immediately:

x + s(y)=z iff z=s(x+y)

us introduce a new predicate SUCC(x y) to bt •

PLUS: 6. PLUS(x , 0,x) « Pr°gr

PLUS(x,s(y) >z)«—SUCC(plUs(x,y) ̂ z^

Problems arise v

thed6fine SUCC frotn cor rect'axiW tD 8r°W °Ur theory: first we r

to^pLr- 2 1 U S U ' y y ' notSexis°tUtinthe "S(x)": SeC0»

predicate H (f or "HOLB^T C° "-P-f i" wTca U'uo^ ' S° "
> for the metatheoretical knowledge"6"

- 3 -

By definition of successor term we have:

SUCC(x,y) d= f y = s(x)

from which :

SUCC: 10. SUCC(0,s(0))<—
11. SUCC (s (x) ,s(s(x)))<-

where 10 and 11 have been choosen to avoid non-determinism with 7'.

The meta theoretica 1 knowledge own by the predicate H gives the
following program:

H0LD_PLU S:12. SUCC(plus(x,y),z)*-SUCC(t,z),H(plus(x,y),t)
13. H(plus(x,y) ,z) •— PLUS(x,y,z)

Here the clauses 6, 7', 10 and 11 describe the syntax of sum and
successor functions; with the clause 12 we claim that the function
"plus(x,y)* may be computed through its semantics; in the clause 13
the predicate H evaluates the semantics of the term "plus(x,y)"
through its syntactic description.

Please note that the circularity of the program is justified by
the completeness theorem for predicate logic; the metathe oretical
predicate HOLD allows reduction from higher order functional
calculus to first order predicate calculus.

Let us now exploit the full capability of our predicate H: we want
to try to prove the simple theorem:

TH2: \£x.x = x

We pass it , as a term, to the predicate H which tries to compute
it making appeal to its metatheoretical knowledge.

*— H(for-all(x,eq(x,x)))

H calls for a program H' which has knowledge of resolution and

induction properties:

14. H(x)<— H' (not(x))

where we suppose for the moment to have an effective Horn-Clause
program which defines H' /4/ which is able to carry out resolution.

First, H' tries to solve directly by resolution and fails as

following:

«-H'(not(for-all(x,eq (x.x))))
«— H ' (eq (a , a))
«— Ajout(«— EQ (a,a))

no answer in time

where Ajout is the PROLOG usual predicate 111.

Second, H' tries by induction over x and succeeds as following

(only significant steps are illustrated) .

\n
<— H'(not(for-all(z,eq(x,x))))
<—H'(not(and(eq(0,0),for-all(x,impl(eq(x,x) , eq (s (x) lS(x)>

«—H ' (or(not (eq (0,0)) ,est(x,not(impl(eq(x,x) ,eq (s(x) ,s(x)>

<—H'(or(not(eq(0,0)),and(eq(a,a)fnot(eq(s(a),s(a)>

<—Aj out(EQ(a,a)«-EQ(0,0)) , A j ou t («-EQ (0 , 0) , EQ (s (a) , s (a)))
from which

<-EQ(0,0),EQ(s(a) ,s(a))
•—EQ(s(a),e(a))
<-EQ(a,a)
<-EQ(0,0)

D

Let us discuss which problems seems to arise now for constructing
such a H' program. F.or some theorems the result of the application
of H is a simple Horn-Clause program easily refutable, as in the
previous case. But in most cases;or we cannot find a Horn-Clause
set as a result to be passed to the Ajout predicate or, even if
this happens, it becomes very hard to explore the search space
for refutation.

Anyhow, we think that such an approach can be usefully exploited
/'i circularity: the fact that properties we want to

prove about algorithms are all expressible from the same PROLOG
program, recalls the circularity of LISP between programs and data.

in°caL°^H- ̂ •ri^S f°r he 1P^n8 resolution of non-Horn-Clauses
in case predicates involved in a program are recursive it is

illustrate°inSthehe N°N~wi^"failure trick of PROLOG, as we will
simple wavs to rn * section. Furthermore we think that few and

computations /1 / /4/ and° t h a t 1 ? ° S 6 S m3y succeed in significant
via uetatheory as suggested inS/8/!6 strategies may be introduced

if pred'icates'in^hf68' ̂ Procedur*s which tempt to detect
loops of the form: "p (x)f^P (f M) recJJrsive: for example detecting
necessary for ex. formrr^H t ' • ' such a technique is
because the clause " <-^EQ (a a) " the proo£ of TH2'
in a loop. ' y resolve with clause 1 entering

4. More Examples

Let us extend our theorv bv i r, i- A
product whose axioms are "troducing programs for computing the

AX7: X*0=0
AX8: xxs(y)=x+(x*y)

where we use the equivalence

x*s (y)=z iff x+(x,y)=2

to Obtain the following program

II3

PROD: 15. PR0D(x,0,0)<—
16. PROD(x,s(y) , z) <— PLUS(x,prod(x,y) , z)
17. PLUS(x,prod(x,y) , z) <-PLUS(x,t,z),H(prod(x,y) , t)
18. H(prod(x,y) , t) <— PROD(x,y,t)

where we have justified the introduction of the new term "prod(x,y)
by teaching the predicate H.

Because we consider only recursive functions over natural numbers
and because the Horn-Clause syntax is computationally complete, it
does exist a universal program for computing terms of higher order
whichever form they assume; we think that this allows easily to
manipulate programs, every time we are able to describe their
semantics .

To clarify the role of the metatheory let us consider the
following specification for the recursive schema:

FUN SCHEMA: f(x,y) = if x = 0 then 1 else f (x-1,f(x,y))

If we translate it into a Horn-Clause program, by using the output
variables in the simple standard way, we obtain the following
program:

FVAL: 19'. F(0,y, 1)
20'. F(s(x) ,y , z) <— F(x,t,z) ,F(s(x),y,t)

where whichever literal we choose to activate, we compute the same
result corresponding to a "call by value" rule for the functional
schema, i.e. "if x = 0 then 1 else co" .

Instead, if we transform the given specification by carefully
using our predicate HOLD, we may compute at the semantics level
by the program:

FNAME:
19. F(0,y,1) <—
20 . F (s (x) , y , z) <— F (x , f (s (x) ,y) , z)
21. F (x , f(w,y),z)«—F(x,t,z),H(f(w,y),t)
22. H(f(w,y),t) <— F(w,y,t)

which transforms,with a complete search strategy, the original
functional specification into a program computing the least
fixpoint of "fun-schema", i.e. "if x>0 then 1 else 0)".

To further clarify the role of metatheory let us consider the
problem of translating a given structured flowchart program over
the Manna's statements /5/.

Let us consider the first basic flowchart schema which computes

the function:

C0MP_SCHEMA: pl(x) = g2(gl(x))

141

t:= gl(x)

I
j z : - g 2 (t)|

STOP

By using metatheory in a trivial application, we obtain the
following Horn-Clause program:

COMP : 23. PI (x, z)<-G2 (t ,z) ,H(gl (x) , t)
24. H(gl(x),y)<— G1(x,y)

Let us remember for completeness how assignements work by
illustrating the following example:

AS SIGN_SCHEMA: p2(x) = i(x)+s(0)

ASSIGN:
26* ^(x»z)t-Q(x»x^)

/- ^x»y»t,z)<— PLUS(y,t,z)

Let us consider the second basic flowchart schema:

L O O P S C H E M A : p 3 f x - > - i f PJCx; = lf prop(x) then p3(g3(x)) eUe

(START}

RP g3(x) prop(xl^l.

where vSTOP;

the (recur,i„) pllliclt, „ !Iti

"a ». oh metatheory th.

I

LOOP: 28. P 3 (x , z)•— H(prop(x),T),P3(t,z),H(g3(x),t)
29. H(g3(x) , y) <— G3(x,y)
30. P3(x,x)<—H(prop(x),F)

Now H may easily solve the problem of determining the truth value
of prop(x) using the NON trick of PROLOG:

31. H(prop(x) ,!)•—PROP(x)
32. H(prop(x) ,F)e—NON(PROP(x))
33. NON(*X)*X,/,FAIL
34. NON(» X)

where the predicate H in this case has knowledge of the way to find
the truth value of prop(x) by using the extratheoretical predicate
"slash" of PROLOG.

We need however to proof the correctness of 33 & 34 clauses; indeed

if Ax h PROP(x) then Ax |= PROP(x)

if Ax / PROP (x) then i (Ax U n PROP(x) I- J_) = Ax j= n PROP (x)
<YA.

because of the decidability of PROP(x).

Because our transformations of axioms and flowchart specifications
are naturally correct, we can use axioms or functional schemata
as independent specifications for our Horn-Clauses Programs.
Furthermore we suggest that the clauses obtained by these transfor_
mations of flowchart programs'into Horn-Clauses may be used to
build the inductive assertions usefull to proof the correctness
of the program, in a symmetric way.

However it remains the problem of verifying the termination of
programs; we may use again whenever possible the predicate H'.

First we express termination for PLUS as:

TH3 : ¥x Vy 3z. PLUS(x,y,z)

where / by partial correctness of our transformations, if such z
exists, it is unique.

The proof of TH3 follows now from the usual appeal to metatheory
knoledge. Infact we might have the derivation:

«—H(for-all(x,for-all(y,est(z,plus(x,y,z)))))

<—Ajout(PLUS(x,b,f(x)) <- PLUS(a,0,z)) ,Aj out(<— PLUS(a,0,z
PLU S(c,s(b) ,w)

and so
•—PLUS(a,0,z), PLUS(c , s(b),w)
•—PLUS (c , s (b) ,w)

«—PLUS (c , b , w ')
•—PLUS (a,0,z)

•

Our program about PLUS then,obtained by correct transformations
over Peano Axioms, is totally correct because TH3 asserts
its termination.

)S0>

3From XH3 we may add to our axioms the following clause:

35. PLUS(x,y,g(x,y)«-

Now we can proove a termination theorem for PROD:

TH4: ¥ x V y 3 z.PROD(x,y,t)

proof:' <-H(for-all(x,for-all(y,e»t(z,prod(x,y,«)))))

<—Ajout(PROD(x,b,f(x)) — PROD(1,0,1)),
Aj out(«- PROD(1,0,1),

PROD(c.s(b).w))
3 n d so

<— PROD(a,0,z),PROD(c,s(b) ,v)
< PROD(c,s (b) , w)
<—PLUS(c,prod(c,b),w)

PROD(a,0,w),PLUS(c,f(c) ,z)
<-PLUS(c,f(c) ,z)

•

References

££Lrfif iY'TJJrrr"" •
Edinburgh, 1976 C eport n- 26> University of

K8J* iiUiul'liliV'" nf.l°eU

ge, University of London, August 1979

/3/ Kowalski R. "Predi
Proceedings'of IFIp"^ Stfckoln 3 Progran,min8 Language"

M/ Problem Solving"

' McnGraw'Hii?a^74atiCal Theor7 of Computation"

/6/ Mendelson E. "Tr>f-v„j
Van Nostrand' 1964 uctlon to Mathematical Logic"

/7/ Rous s e1 P., "peotop
Technical report, Group™*! ̂ ref*r?nce e d ' u t i 1 i z a t ion"
a Lummy, 1975 * ' » universit§ de Marseille

/8/ Weyrauch R "pr„,
Memo AIM-315, A. ^7^'° * The°r7 °f Foraal Reasoning"

Lab., Stanford On., Stanford 1978

!

- 9 -

Itf
UNDERSTANDI NG THE CONTROL FLOW OF PROLOG PROGRAMS

by
Law r en ce Byrd

Depa r tmen t o f Ar t i f i c i a l I n t e l l i ge nc e
Un ive r s i t y o f Ed inbu r gh

Sc o t l a nd

1 . In t roduc t i on

Th i s pa pe r i s an i n f o r m a l d i s cus s ion o f s ome o f t he p r ac t i c a l p rob l ems
i nvo l ved i n t e ach ing and u s ing cu r r en t P ro log sy s t ems . M y conce rn i s w i th t h e
ac tua l exe c u t i on o f P ro log p ro g ram s - how i s i t pos s ib l e t o unde r s t and and
fo l l ow such execu t i ons , an d wha t s o r t s o f sy s t em f ac i l i t i e s wou ld a s s i s t t h i s
t a sk? I sha l l mo t iva t e t he se ques t i ons , and t h e n go o n t o d e sc r i b e gene ra l
mode l o f P ro log con t ro l f l ow . Th i s mode l ha s been u sed a s t he ba s i s f o r
imp lemen ta t i ons o f p r ac t i c a l debugg ing packages f o r P ro l og sy s t ems on t h e
DEC-10 and t h e PDP-11 .

I w i l l be a s su ming f ami l i a r i t y w i t h t he l anguage P ro log ERousse l 75] , and
knowle dge o f t h e DEC-10 P ro log imp lemen ta t i on CPe re i r a e t a l . 78 , War r en 77]
wou ld a l so be u se fu l . I sh a l l a l so be r e s t r i c t i ng my d i s cus s ion t o P ro log
p rog rams exe cu t e d w i t h t he s t an d a rd , l e f t - r i g h t , dep th - f i r s t , con t ro l
s t r a t eg y . I t w ou l d be i n t e r e s t i ng t o t r y a nd ex t end wha t f o l l ows t o t a ke i n to
acco u n t more g en e r a l s t r a t eg i e s .

P ro l og p rog rams can b e r e a d dec l a r a t i ve ly a s co l l e c t i ons o f p r ed i ca t e
c a l c u lu s c l au se s . I t i s pos s ib l e , i nde e d de s i r ab l e , t o u t i l i s e t he advan t ages
fo l l owi ng f r om t h i s when t r y i ng t o u nd e r s t an d P ro log p rog rams , and when t r y ing
t o t e ach P ro log p r og ramming (s ee f o r exa mple EKowa l s k i 8 0] f o r such a gene ra l
Log i c P r og r ammi ng app roa ch) . I n t h i s pape r , howeve r , I s ha l l be d i s cus s ing
P ro log i n p rocedu ra l t e rms , and a s suming t h a t i t i s nece s sa ry t o t e ach t h i s ,
and t o unde r s t and many p rog rams i n t h i s way .

I n o rde r t o do t h i s we r equ i r e a c l e a r mode l o f t he execu t i on o f P ro log
p rog rams w h ich can be u sed i n t e ach ing P ro log p rog ramming , and wh ich a l so
p rov i de s enough soph i s t i c a t i on t o f o r m a ba s i s f o r p r ac t i c a l t r a c ing and
debugg ing t oo l s . Thus , I s ee t he spec i f i c a t i on o f t he r equ i r emen t s o f such a
mode l b e ing gu ided by r e l a t ed work i n t w o d i f f e r en t a r ea s :

1 . The t e a c h i ng o f p rog ramming . Recen t w ork i n t h i s f i e l d ha s
emphas i s ed t h e impor t ance o f spec i fy ing an unde r ly ing "no t i ona l
mach ine" , i n o rde r t o g ive nov i ce s a f r a m e w or k f o r unde r s t and ing
t h e va r i ous ope ra t i ons o f t he p rog ramming l anguage i nvo lved (s ee
Cdu B o u l ay 80a] , Cdu Bou l ay 80b]) . A mode l exp l a in ing t h e con t ro l
f l ow o f P r o log p ro g ram s shou ld p rov ide such a ' no t i ona l mach ine ,
and t h i s mode l s hou ld be p rope r ly i n t eg r a t ed i n to t h e P ro log
sy s t em(s) u se d , so t ha t nov i ce s can f o l l ow t he i r p rog rams i n t e rm s
o f t h e ope ra t i ons g iven by t he mo d e l .

2 . The de ve l opme n t o f i n t e r ac t i ve p rog ramming en v i r o n men t s . Th e pa s t
de c a de ha s s e en t he deve lopmen t o f m ore and mo re soph i s t i c a t ed
t oo l s f o r t he p r ac t i c a l deve lopmen t o f l a rge p rog rams . Wi th in t he
Ar t i f i c i a l I n t e l l i gence com m un i ty , c omp lex p rog ramming sy s t ems
(s uc h a s INT ERLISP , [Te i t l eman 75]) a r e now a lmos t t aken f o r
g r an t ed . I n t e r ac t i ve debugg ing f a c i l i t i e s fo rm an i m por t a n t p a r t
o f t h e se sy s t ems . Many o f u s wou ld l i ke t o ha ve s im i l a r f a c i l i t i e s
ava i l ab l e i n t he P ro log sy s t ems we u s e . I n func t i ona l l an g u ag es

Hi
(eg LISP and P0P2) , t he concep t s o f func t ion en t ry and re tu rn ,
p rov ide a bas i s fo r the debugg ing mechan i sms . A mode l o f the
con t ro l f low o f P ro log p rograms mus t p rov ide a s imi la r bas i s fo r
t he bu i ld ing o f soph i s t i ca ted debugg ing too l s wi th in Pro log
sys t ems .

I see these two , somewha t d i f f e ren t , r equ i rement s be ing re l a t ed in the
f o l lowing way . A P ro log con t ro l f low mode l mus t p rov ide a s imple , teachab le
way o f v iewing the execu t ion o f a P ro log p rogram. I t mus t b e poss ib le to
bu i ld th i s mode l i n to the implementa t ions o f our P ro log in te rp re te r s , so tha t
nov ices who a re l ea rn ing the l anguage can s i t down and exhaus t ive ly fo l low
t he i r p rograms , wi th the sys tem exp l i c i t ly go ing th rough the opera t ion!
i nvo lved . Th i s w i l l p rov ide them wi th a comple te t r ace o f the program ' s
execu t ion . Such t r ac ing wi l l obv ious ly be he lp fu l to more advanced use r s »ho
w i sh t o debug the i r p rograms . However , exhaus t ive t r ac ing i s un l ike ly to be
a ccep tab le to such use r s when they a re debugg ing l a rge p rograms . Sa t i s fy ing
t he i r needs invo lves se l ec t ive ly r e s t r i c t ing the amount o f in fo rmat ion
p resen ted , and a l so a l lowing access t o add i t iona l in fo rmat ion and con t ro l
op t ions . Thus , I hope to accommoda te bo th requ i rement s by see ing one as
mere ly be ing a soph i s t i ca ted enhancement o f t he o the r . I would l ike to
be l i eve tha t t h i s s imple r e l a t ionsh ip can be ma in ta ined , even when the
f ac i l i t i e s have t o be ex tended to mee t fu r the r demands .

2 . Con t ro l F low mode l

P ro log i s a ve ry h igh l eve l l anguage which , none the l e s s , has a ve ry s imple
r omnfe te f ! semant i c s . The p rocedura l ope ra t ions o f the language ore
mach ine ! u ° I a n y L ° W e r L e v e L °P e r a t ions (such a s those of the
o !o ! id ! eva t f tk the re fo re expec t t he p rocedura l semant i c s o f Pro log to
Le t u s look a t an f k ^d ° f mode l I was a sk ing fo r in the p rev ious sec t ion ,
f rom [Pe re i r a e t a l 7S11- de f in i t ion o f P ro log ' s p rocedura l semant i c s (t aken

head°matches t e or a un i f i . s^wl th^ th#"^?* t h < ? f i r S t c l a U S e w h ° S e

CRobinson 651 f i edo + k goa l . The un i f i ca t ion process
wh ich i s un ique i f I n * t a n c e o f t h e t w o t e n " S '
c l ause ins t ance i c t (, . „ ' V I f a m a tch i s found , the match ing
r i gh t ! each o f t he a C f 1 V a t a d ^ execu t ing in tu rn , f rom l e f t to
sys tem f a i l s to f ind a match fo ! i " - t S b 0 d y * I f a t a n y t i n i e t h e

t he mos t r ecen t ly ac t iva ted h 9°a l , i t back t racks , i e . i t re j ec t s
t he match wi th the head o f^he ^ s u b s t i t u t i 0 " 5 m a d e b y

or ig ina l goa l which a c t i v a t e d t k • c l a u s e - N e * t i t recons ide r s the
subsequen t c l ause which a l s f m^eTt^ !? 0 " ' t H " t 0

fo rwa rds ! °match ing goa f s^g^ i ' n s ! ̂ l a ' u l^h °d h a P P 6 n S a S a p r 0 g r " 9 ° '
so on . However , t he exp lana t ion f h ® a ' t r ymg to sa t i s fy subgoa l s , a"
does no t p rov ide us wi th wi th 3 ! 1 0 ? o f b a c k t r a c k ' ' n 9 , whi le co r rec t and p rec i se
happens when a p rogram back t rack e n o u 9 h Pic tu re o f wha t ac tua l l
exp lana t ions o f back t rack ing which a r e^p? 0 " ge t^onf^ 'd T h e r 6 "*

ac t iva ted c lause "^Mch^s^eco 3 ^ V e ' w h e r e i b i s t f >e mos t r ecen t ly
backwards o„ , U .

the dec i s ion made a t the chronnf d a s c r ihed es be ing the remeking o f
- <. c tose r , o - . i . J^J J .

W)
r e f l ec ted in the in fo rmat ion p rov ided by p rev ious OEC-10 t r ac ing
packages .

Bo th o f t hese exp lana t ions a re p rob lemat i c . They f a i l to p rov ide a
comple te ly adaqua te mode l o f t he ac t iv i ty o f back t rack ing , and unders t and ing
back t rack ing i s a p rob lem. In the f i r s t p lace , nov ices f ind i t ve ry d i f f i cu l t
to unders t and wha t i s happen ing when a p rogram o f any s i ze s t a r t s
back t rack ing . Even a f t e r cons ide rab le exper i ence wi th P ro log , s tuden t s wi l l
c l a im to be ba f f l ed in ce r t a in cases . Second ly , when p rac t i ca l ly debugg ing
l a rge p rograms a sudden back t rack to a cho ice po in t any d i s t ance away i s
h igh ly confus ing ("where am I now?") . In ne i the r case does the knowledge tha t
i t i s the mos t r ecen t cho ice tha t i s be ing r edone , p rov ide us wi th any
so lu t ion to our d i f f i cu l t i e s . The mode l s a re inadaqua te because they do no t
he lp us unders t and the r ami f i ca t ions o f t he p rocesses they desc r ibe . Th i s
k ind o f d i f f i cu l ty was i n f ac t an impor tan t a rgument used aga ins t the l anguage
PLANNER by Sussman and S tee le CSussman 723 ; they a rgued tha t p rogrammers
s imply cou ldn ' t unders t and wha t was go ing on!

The f i r s t exp lana t ion (a l though ve ry c lose to wha t I sha l l in t roduce) ,
su f fe r s because i t i s no t a lways obv ious wha t t he l a s t c l ause ac t iva ted
ac tua l ly was (we wi l l have concep tua l ly " re tu rned" up the ca l l ing cha in) .
More impor tan t ly , no way i s p rov ided o f f ind ing the (r eve r se) sequence o f
ac t iva ted c l auses . Th i s i s no t t o say i t can ' t be done , bu t r a the r tha t the
so ca l l ed "exp lana t ion" p rov ides us wi th no c lues abou t how t o go abou t i t .
Thus , u s ing th i s mode l , i t wi l l be d i f f i cu l t t o unders t and which p rocedures
wi l l ac tua l ly be r e t r i ed on back t rack ing .

The second exp lana t ion i s qu i t e s imple (and the re fo re o f t en used) , bu t i s
even worse i n t e rms o f p rov id ing an adaqua te mode l fo r unders t and ing
back t rack ing . The p rob lem he re s t ems f rom the f ac t tha t the backward s t ep (o f
back t rack ing) i s concep tua l ly ve ry much ' l a rge r ' than the fo rward s t ep (o f
f ind ing a ma tch ing c l ause) . In t e rms o f t he ac tua l t ex t o f the p rogram, the
fo rward s t ep i s reasonab ly loca l (we on ly need t o look a t some sma l l s e t o f
r e l evan t c l auses) , whi l e t he backward s t ep i s much more g loba l (the p lace in
the t ex t co r respond ing to the mos t r ecen t cho ice po in t may be any d i s t ance
away f rom the p lace where t he f a i lu re occur red) . Th i s i r r egu la r i ty causes
confus ions and d i f f i cu l t i e s .

I sha l l now dec r ibe a con t ro l f low mode l where the s t eps invo lved a re
regu la r , bo th when go ing fo rwards and backwards , and which I be l i eve so lves
many o f t he above p rob lems .

The mode l i s based on the idea tha t we shou ld be ab le to fo l low the
execu t ion by moving , i n some s imple way , round the ac tua l t ex t o f t he p rogram.
The p rogram t ex t can be d iv ided in to d i s t inc t p rocedures ; each p rocedure
cons i s t s o f some (usua l ly) sma l l sequence o f cons t i tuen t c l auses . (Note : a
p rocedure i s a se t o f c l auses a l l o f which sha re a common p red ica te fo r the i r
head) . Imag ine tha t we p l ace a l l the c l auses fo r a p rocedure in a box , and
cons ide r t he poss ib le con t ro l movements i n and ou t o f t h i s box . There a re
four d i f f e ren t types o f con t ro l f low tha t may occur , I sha l l cons ide r these to
be t ypes o f po r t . Thus , con t ro l f low can be seen a s movements i n and ou t o f
p rocedure boxes , v i a the por t s o f t hese boxes . Le t us look a t an example
Pro log p rocedure (t aken f rom [Pe re i r a e t a l . 783) :

CALL

FAIL

descendant(X,YJ
of f spring (X,Y) .

descendant(X,Z>
offspring(X,Y),
descendant(Y,Z) .

EXIT

f REDO

.rLsh,iL?„7;̂ s;sr:L£ jstlsifss? n Tir-
BEEN LABEUED CALL' EXIT' «EB° — FAIL; let us |& S",

Call

EXIT

Redo

FAI I

£ it oVZ ap?s2cj£j!Ici Y;.vo?r^ °! l* r0^ -
control passes through the Cat? «f7^^ t0 **
intention of matchino a f descendant box with t-
subgoals in the body of that clause a*?' *** the" Mti , fY in9 «
of whether such a match is possible-*i Z° rn! "at th,« ^W"*'
such matters are worried L„, C . the box ls called, and tlx
finger to the code for descendant yhln'"'1.^ "" <M8 ine •ov1n3
some other part of the code meeting a call to descendant!

occurs when ^he^initial ̂ "goal" f r°" the procedure ' Wl

component clauses and any ?* ° one of tit

passes out of the Exit port of rh ^ sat ,sf ,ad- Control m
following the code for descendant- * bescendant b®x. Textually we stop
from. ° r aescendant and go back to the place we ca.t

This arrow indicates that a C, ,K

system is backtracking in an !*• seOuent goal has failed and that the
solutions. Control passes tLmpt t0 f ind aI t^rnat i ves to previous
box. An attempt will now h. w rough the Redo port of the descendant
subgoals in the bod^A* ""?? *° resatisfy one of the component
ails, to completely rematch the aiJ®e. that last succeeded; or, if that

clause and then try s* -c! ° r i9 inal 9oal with an alternative
clause. Textually we follow *kl * "y sub9°als the body of this new
looking for new ways, of l,r back"a'ds up the way we C»e
another clause and followinq that 1n9 ' poss ibly dropping dowr

a ".nac i T necessary
Th i e

- , , necessary.
This arrow represents a * ••
if there were no clauses, or^Tf no ln i t ia l 9°al, which might
later sat ls f iedw or if any so iur -aUSe matehed, or if subgoal
desr process ing. Control now Da «'°n Produced is always rejec
descendant box and the system, 8 out of the Fail port o
moving fcn9er back to code wh?*,!™65 t0 backtrack. Textua

ackwards up the text lookinc>C-f caL1-ed this procedure and
Usinn +kj . choice points.

9 this model. we ran -f i i
movement through all tl f°l-low the execution n-f
ftow within boxes is "T8 traversed dur-inq tu_ 9 pro9 raro by foUo»i»
Procedure boxes of th , course, followed • execution. The co
several calls to tht subgoaLs- Since, in ? ?n terms of the ports fo
different invoraf SumS procedure, it is in 91ven program there ma
for every fresh in10" ?xes- That is to say 9eneral necessary to distirv
idea of REDOing, <>e)EXITi ̂ °n eVery cat

L> - ̂ ThiV ?™f91ne having 3 nel
a simple examnle h 9 or FAIL-ing the J W make sense of

example where boxes are distinguisheJlT 35 b6f° re- Let 'S *
y unique invocation nun

(i n pa r en th e s e s) ,
i g no re t hem f o r now) :

I SI
(I sh a l l b e r e f e r r i ng back t o t he a lphabe t i c t e t t e r s , so

G iven t he p r og r a m

P Q , r .
q s .
q t .
r a , b .
s .
a .

? - P .

we g e t t he fo l l owing execu t i on

(1) C a l l : p > A

(2) Ca l l : q | g
(3) Ca l l : s / c

(3) Ex i t i s / D
(2) Ex i t : q > f o rwa rds E
(4) Ca l l : r \ F

(5) Ca l l : a \ G
(5) Ex i t : a I H
(6) Ca l l : b / X

(6) Fa i l : b \ I "
(5) Redo : a | H'
(5) Fa i l : a / G '
(4) Fa i l : r 4 backwards F*
(2) Redo : q \ E '
(3) Redo : s I D"
(3) Fa i l : s / C '

(7) Ca l l : t J fo rwa rds J

(7) F a i l : t J '
(2) F a i l : q I backwards B '
(1) Fa i l : p) A '

No t i c e t ha t f o r a ny i nvoca t i on t he r e can on ly be on ly one C a l l and Fa i l ,
a l t hough t he r e may be an a rb i t a ry number o f Red o s and c o r r e spond ing Ex i t s
(g r ea t e r t han o r e qua l t o z e ro) . I t i s t he i n i t i a l C a l l w h i c h i n t r o d u ces t he
i n voc a t i on , and i t i s h e r e t ha t we f i r s t s ee t he new i nvoca t i on number . A l so
no t i c e ho w t he backward mov ing po r t i ons o f t h i s t r a ce a r e d i r ec t m i r ro r images
o f p r e v i ous fo rwa rd mov ing po r t i ons ; whe re Ex i t ~> Redo and C a l l => Fa i l . We
f i nd a ch o i ce po in t by go ing back a l o n g t he pa th we c a me un t i l we e xp l i c i t l y
f i n d i t . I f t h i s p a t h i s fo l l o w ed i n t he t ex t , a s i t can be , t hen we w i l l be
su r e abou t whe re i t i s , and we w i l l unde r s t and why t h i s wa s t he cho i ce po in t -
we w i l l have no t i c ed t ha t t he r e w e r e n o o th e r pos s ib i l i t i e s a f t e r t h i s one .
The e s s en t i a l f e a t u r e o f t h i s mode l i s p r ec i s e ly t ha t t he i n t e r m e d ia t e boxes
a r e ex p l i c i t l y g iven , t hus a l l ow i ng t he se f a c t s t o be s een .

My u se o f t h e wor d backwards r e f l e c t s t he f a c t t h a t , i n t h e t ex t , we w i l l b e
a c tua l l y m ov ing ou r f i nge r backwards a l ong t he goa l s p r ev io u s ly e xe c u t e d .
Th i s c an be s e e n g r a ph i ca l l y by cons ide r i ng t he fo l l owing d i ag r am, whe re I
ha ve exp l i c i t l y shown t he boxes an d t he i r i n t e r r e l a t i onsh i p . I ha ve l ab e l l ed
t he a r rows a t t he po r t s w i th t he l e t t e r s f rom t he co r r e spond ing l i ne s i n t he
above t r a ce .

cap tur ing b ° the ^ence^o^he ' . TeLVi " s^nt^ ̂ "
a l lowing one t o f o l l ow bo th ACTIVATE™ a u L c s ' a n d or»aers tandab le ,
The con tro l f l o w ca n be d i rec t l y f o l l owe / i n d a 0 k t r , c k 1 n f l i n a c on s i s t e n t w r ,
s imple regu lar s t eps . To i iowed in the program t ex t a s a se que nc e o f

p rograms . I ^ i h a t t fh a n d / o , t r e e repres en ta t io n o f Pro log
t h e box mo de l corre sponds t o a** s imple P ° r t S < S U C h " °° e a b o v () i f l

repr e se n t i n g the program,
s impl e program used e ar l i e r ,
par t i cu lar c laus e s .

,. , „ • - traversal of the »nd/or tr«
The following diagram is the and/or tree for the

have labelled the nodes with the heads of the

The a lphabe t i ca l l y l ahe l i^
Pro log when a t t empt ing t o sa t i s fyThe m™!* t r a v e r s a l t h a t w ou ld be used b:
i n t he e ar l i e r t race , and on the n r ^ i 9 ° I f * T h e s e L a b e l s ' ̂
t h ro u gh a por t , corre sponds t o L d l a 9 r a m ' show how each movement
Arr iva l a t a node f rom above C O r L ! V a r r o w s t r ee t raversa l .
t o ba t r 8 l 3 " 1 8 a r c J c °rre sponds to an f ** 3 C a L ^ a n d l eav in g a node (bac<
m l l a !" t r a ! , k S i n c e there i s no way o f - A f t e r t h e arrow I , we are forced

c ement through Redo an d Fa i l n „ S f 1 S 9 t h e 9 0 a l ' b ' - T h e backward
e arne r and /or t r ee t raversa l s in r " ' re sponds to a p er fo rmi n g a l l the
The se are marked a s V W 0 9 < f t b a ^ S a SSS . p o i n t .

corresn n e ^ 6 r S e t r a v e r sa l" to de s c r ibe . JJ* ' 1 s h a l l hence for th use the
Aga in P 1 S t 0 3 F a i L ' an d r e ve rs ing aS% R a ^' s ing a C a 11 t raversa l
throuah th 080 S6e the accuracy of descrih-i t^avarsa'- corresponds to a Redo,
t r ave r sa l 6 J ? r o g r a m - When the c h o i r s a c l c t r ack ing a s mov ing ba ckwa rds
l ad b e en Lr ?* t h a t ' °™ t " i i s f o u n d t h e n a " f °™ a r d

been sa t i s f i ed in the examp e , t he n the t r a v a ' sa l s . I f the goa l ' f
(7) E x i t . t ' ̂ t h e l °w ing wou ld have occurred:

P>
<7) Ex i t
12) Ex i t
< 8) Ca l l
19) Ca l l
<9) Ex i t

(C
L
M
N
0

rh i s Las t po in t i s impor tan t when cons ide r ing the more genera l case where
(poss ib ly d i f f e ren t) i n s t an t i a t ions wi l l be occur r ing . At each por t o f a box
the goa l invo lved in the ca l l wi l l be in some pa r t i cu la r s t a t e o f
i n s t an t i a t ion . At t he Ca l l po r t i t wi l l be in i t s " in i t i a l " s t a t e , bu t when
the Ex i t po r t i s reached the goa l may be fu r the r ins t an t i a t ed due to the
ac t ions o f t he c l ause used t o sa t i s fy the goa l . I f we Redo t h i s box then
fu r the r Ex i t s may , o f course , have d i f f e ren t ins t an t i a t ions . The
in s t an t i a t ion s t a t e a t Redos w i l l a lways be iden t i ca l wi th t ha t o f t he
p rev ious Ex i t f rom tha t box (no te : they wi l l NOT i n genera l be iden t i ca l wi th
the o r ig ina l Ca l l) , and s imi la r ly . Fa i l s wi l l be iden t i ca l wi th Ca l l s . Th i s
i s na tu ra l s ince Ca l l and Fa i l a re e f fec t ive ly a t exac t ly the same p lace on
the box (s imi la r ly Ex i t and Redo) , t he on ly d i f f e rence i s the d i r ec t ion o f
movement ! These f ac t s a re r e f l ec ted in the and /o r t r ee t r ave r sa l where each
t r ave r sa l a r row has a un ique co r respond ing ins t an t i a t ion s t a t e fo r i t s
pa r t i cu la r goa l . (Reverse t r ave r sa l s thus have the same ins t an t i a t ion , s ince
they a re the same a r rows , and remember ; r eve r sa l co r responds to the mapp ing
Ca l l => Fa i l , Ex i t => Redo) .

I t i s conven ien t a t t h i s po in t t o de f ine th ree concep t s in t e rms o f the
and /o r t r ee r ep resen ta t ion . I sha l l make use o f these concep t s in wha t
fo l lows .

The ances to r l i s t .
For any por t t he ances to r l i s t i s the sequence o f nodes be tween
the co r respond ing t r ave r sa l a r row and the top o f t he t r ee . Eg ,
fo r I (the ca l l o f ' b ') th i s would be Cr ,p3 .

The comple te f a i l pa th .
For any por t t he comple te f a i l pa th i s the sequence o f r eve r se
t r ave r sa l s r equ i red to reach the l a s t node on the t r ave r sa l
r ep resen t ing a cho ice po in t . Eg , fo r I t h i s would be
I , ,H , , 6 , ,F , ,E , ,D , / C' .

The shor t e s t f a i l pa th .
For any por t t he shor t e s t f a i l pa th i s the (o rde red) subse t o f t he
comple te f a i l pa th , which r ep resen t s the shor t e s t
(g raph- theore t i c) rou te to the cho ice po in t . Eg , fo r I th i s would
be I ' ,F ' ,E ' .

3 . P rac t i ca l Sys tems

The p rev ious sec t ion has ou t l ined a con t ro l f low mode l which i s in tended to
mee t my o r ig ina l r equ i rement s . I have found i t use fu l fo r my own th ink ing and
a l so fo r the purpose o f t each ing o the r s exac t ly how Pro log p rograms execu te .
I be l i eve tha t i t p rov ides a su i t ab le "no t iona l mach ine" fo r t each ing nov ices
abou t P ro log p rogramming . However , more work would need to be done to ve r i fy
th i s . In t h i s sec t ion I sha l l desc r ibe the k inds o f f ac i l i ty needed in o rde r
to mee t my second r equ i rement , t ha t o f s a t i s fy ing the debugg ing needs o
soph i s t i ca ted p rogrammers wi th l a rge p rograms . I sha l l base t h i s desc r ip t ion
on ac tua l ly implemented ideas cu r ren t ly used in recen t DEC-10 i n t e rp re te r s a t
Ed inburgh .

con t ro l the amount o f in fo rmat ion he r ece ives by bo th genera l
3 t o the in t e rp re te r , and s p e c i f i c ac t ions , op t ions ava i l ab le

the gener
o f f . The use r can spec i fy

The use r can
ac t ions , commands , . , . . , ,
a t po r t s . At t he genera l l eve l debugg ing can be comple te ly swi tched on o r

f . The use r can spec i fy which types o f po r t he would l i ke to be p rompted a t

! V i

for specific options; eg, all types, or just Call and Redo ports etc. (This
is called leashing). The user can also selectively decide that he would like

to always see movement through ports of boxes of particular procedures. This
is called setting a spypoint and is similar to the idea of function breaks in
P0P2 and LISP. Spypoints have turned out to be a major enhancement to the
debugging package, and much use is made of them. (This was to be expected!),
Information is available about what spypoints are set at any given time ar-
they can also be removed. It is also possible to just start exhaustive
tracing of goals right from the beginning.

When control passes through a port a message of the following form is
printed:

(76) 8 Call : foo(Ca,b,c],f,_102)

This gives the unique invocation number for the box, the recursion depth, the
type of port, and the current instantiation state of the goal. The goal is
printed using the (new) evaluable predicate 'print', defined more-or-less as
follows:

print(X) :- portray(X), !.
print(X) :- write(X).

portray' is intended to be user defined, and so the use of 'print' throughout
the debugging package provides a handle for various kinds of pretty printing,
This has turned out to be extremely useful, especially for masking out
arguments known to be very large terms. If the port is leashed (see earlier),
then the user is prompted and he then has available a variety of options.
These can be divided into:

Information. The goal can be (re) printed, written in infix or
prefix formats, and chosen amounts of the ancestor list can be
printed.

" H»h,!r°™entaL\ The- US6r Can break to a ne" <sub> execution,
gging can be switched off, the whole execution can be aborted or

the system left completely.

" controlMn "f! ̂ mpor*fnt of aU ' the user is provided with ways of
next port9 J , see ' I t ; is Possible to creep to the very
thus Droducp a P w° * n6Xt spypoint- A sequence of creeps will
selected snvnni +exha"Stlve t race ' while leaps will just show
Redo) it is oossihl a|°n9L-he Way" When goin9 in t0 a box (CaU and

execu t i on r e t u r n , % ^ S ° t h a t n ° t h i n g i s s e e n u n t i l t h e

This provides a way of° ei* th® Ex1t or Port of that box),
as deep recursions ™askln9 out irrelevant internal detail, such
the Call port (retry) or thX 1S possib le to force a jump to
useful in 1 r. the FaU port (fa iD °f the box. This is
to see what happens Tf 0ther °Ptions; eg, arrive at Call, skip
instantiation ?s 'onn lw C°meS baCk at FaiL or i f the Exi t

creeping into the int i 60 ret^y back to the Call port, and start
has also been generalised^so*^haJ0 "t h°W U happened"
available earlier inwnra+- u tha* retrying can be done to any
When backtracking it is oft- identified by their number).
f a i l pa th back t o some cho i ce^o in t A^F^ f t 0 , f o U o H t h e c o r a P L e t e

poss ib le t o soec i f v • 1 V a i L a n d R e d o por t s i t i s
this will be a sequence of Fails folloS^1 ̂ ̂ b6 pHnted;

tollowed by a sequence of Redos.

seen, and of movingnoneseIfGround r fUl ° f select in9 the amount of detail
nesett around an execution if one wishes to reinvestigate

13^
pxhaus t ivp t r a rp S ° P t h S i C a t e C ' i d ° e S n 0 t ^ a V S t 0 p U t U p W ^ t h e n o r m o u s
exhaus t ive t r aces ; t he genera l and spec i f i c ac t ions a l low h im to be ve ry
se l ec t ive over wha t i s t r aced .

I have gone ove r the de ta i l s r a the r qu ick ly , bu t the po in t I wish to
emphas i se i s tha t a l l these f ea tu res a re bu i l t a s enhancements t o the
under ly ing con t ro l f low mode l . I t i s a lways poss ib le to fo l low the fu l l
sequence o f ope ra t ions g iven by the mode l . Looked a t f rom the o the r
d i r ec t ion , i t i s_ much eas i e r to in t roduce nov ices t o the debugg ing too l s ,
s ince they fo l low in a na tu ra l way f rom the t augh t mode l o f execu t ion .

4 . Implementa t ion

The ideas I have been d i scuss ing have been implemented on the DEC-10 a s
improvements t o the DEC-10 i n t e rp re te r . S l igh t ly more r e s t r i c t ed f ac i l i t i e s
have a l so been added t o the UNIX PDP-11 i n t e rp re te r deve loped a t Ed inburgh
([He l l i sh 783) . These debugg ing packages a re implemented in Pro log and cou ld
the re fo re , i n p r inc ip le , be moved t o o the r sys tems . I sha l l ju s t ou t l ine the
genera l p r inc ip les he re . S ince the DEC—10 i n t e rp re te r i s i t s e l f wr i t t en in
Pro log i t i s a s imple ma t t e r t o inse r t someth ing o f t he fo l lowing fo rm in to
the in t e rp re ta t ion cyc le :

b reak(Goa l)
t r ace (ca l l ,Goa l) ,
(ca l l (Goa l) ; t race (fa i l ,Goa l) , f a i l) ,
(t r ace (ex i t ,Goa l) ; t race (redo ,Goa l) , f a i l) .

The ' t r ace ' goa l s wi l l implement t he messages and read re sponses f rom the
use r , they implement t he four por t s o f t he box a round the ' c a l l ' , ' b reak ' i s
the re fo re a s imple ske le ton o f how the box mode l can be implemented . The UNIX
in t e rp re te r i s no t wr i t t en in P ro log , bu t I was ab le to add spypo in t s by the
t r i ck o f a s se r t ing an ex t ra c l ause a t the top o f t he da tabase fo r each
p rocedure one wan ted t o spy on . So fo r a p rocedure ' example ' t h i s would go a s
fo l lows :

example (X,Y,Z)
: - f l ip f lop ,

i
• /

break(example (X,Y,Z)) .

The p rocedure ' f l i p f lop ' has t o be p rov ided and i t has the in t e res t ing
proper ty t ha t i t a l t e rna t ive ly succeeds and f a i l s ! The f i r s t t ime ' example '
i s ca l l ed f l ip f lop wi l l be t rue and so ' b reak ' w i l l be ca l l ed . When ' b reak '
i t s e l f ca l l s ' example ' (the Goa l) , then on t h i s second t ime f l ip f lop wi l l f a i l
so con t ro l d rops down on to the r ea l c l auses fo r ' example ' . Th i s i s a s imple
way (a lbe i t a hack!) o f p l ac ing an ex t ra env i ronment a round p rocedures .
Not i ce t ha t g iven the na tu re o f ' b reak ' , on ly one ve r s ion of f l i p f lop wi l l be
requ i red r ega rd less o f how many ex t ra c l auses we need to add fo r d i f f e ren t
p rocedures .

S ince ' t r ace ' i s wr i t t en in P ro log (on bo th sys tems) , i t i s easy to bu i ld in
the r equ i red in fo rmat ion and env i ronmenta l f ea tu res . The con t ro l f ea tu res a re
s l igh t ly more d i f f i cu l t and the re i t i s necessa ry to improve ' b reak* . Bo th
sys tems make use o f ex t ra mag ic f l ags (bas ica l ly as s ignab le loca t ions fo r
in tege r s) , which ho ld s t a tus in fo rmat ion and which a re used to fo rce con t ro l
a round ' b reak ' i n va r ious ug ly ways (eg , fo r do ing r e t ry e t c) . For t h i s
Purpose , bo th sys tems p rov ide (sec re t !) eva luab le p red ica tes fo r man ipu la t ing
these f l ags . However , on o the r sys tems , use cou ld be made o f t he da tabase
(wi th p robab le los s in e f f i c i ency) , i f f l ags o f t h i s k ind cou ld no t be made

ava i tab l e .

Th e r e are two ge ne r a l po in t s tha t need t o be made . I t i s impor t™,
no t i ce tha t the sugges t i ons g iv en above r equ ire tha t the G oa l be pas sed "
a s an argum ent a t some s tage . For implementa t ions which do no t 17 '
s t ruc ture s har ing t echn ique (s ee CWarren 773) th i s ma/ turn ou t t o be oL
expens ive . I per sona l ly be l i e ve tha t th i s p o in t s t o th e cruc ia l impor tant »<

t ruc ture shar ing , s ince I reg a rd debug g i ng f ac i l i t i e s a s v i t a l to
prac t i ca l sy s t em, an d w r i t i ng mos t o f the c ode in Pro log a s the mi
r ea son ab le way o f pr ov id ing the m . Second ly , whe n debugg ing , a l l proeedur !

eak , but i t f o l l ow s f ro m the requ irem ent s o f the t ; *
f i i iwt f c aar &

th a t h s p a c e ' a n d t h l s m l 9ht become a pro b l em. My f e e l ing on th i s i s

air

'larssrs
i nc id en t ly , p ro v id e the same in forr / t" 0 " n o n - d e t e r , " 1 n a cy (and would ,
do no t regard su ch ex trempc a t • ! * t h e o H 9 i n - 1 ""-10 trac ing) . I
w o rk ye t t o be done t r v - in t 7 a c t o r 7 - 1 tha t th ere i s p l en t y o f
r equ ire s , and ' f f i JgZZS gS T f **

5 . Fur ther wor k an d conc lus ions

PrSog^iS:: IIhhLeema0;i^tetdharthdraSCr1b^a m0del °f the <l<""
t each ing pur pos e s , an d f o r the Prov ides a su i tab l e bas i s for bo i
have a l so ou t l ined the na ture anr i • ? n 0 s °P h l s t i ca t ed de bugg ing t oo l s ,
the se ideas w hi ch a re in a c a , 21S ta t ion of s y s t ems incorpora t i r
l ook a t how var ious * —- day- to -day use . I sha l l now take a br i t
c ou ld a l l be incorporated into the' cur rent S s ys terns "°d#U 6<V" *

The ' bo x 1 ide a de l inea tp<? fh f l _ j
The m ode l does no t dea l w i th f e a s pr im e focu s o f a t t en t ion
th in k th i s i s bas i ca l l y correr t • & a * t e m p t s t o m atc h par t i cu lar c lause s .
a l a rge number o f i r re l evant *++ S 1 " c e o r Pro g ra ms o f a ny s i z e th ere w i l l b i
no t s eem unr e as onab le , e inac imfTw « t 0 m a t c h c lau se heads . However , i t doe :
t o be made o f exac t ly wh ich r l auc ° r t each ing p u r p os e s , f or some i nd i ca t i or
a c tua l c l aus e pr i n ted ou t wo7d L ^ I n f a c t ' b e i n 9 ab le t o have th .
c ou ld s ee bo th the or i g ?na L c la l e U S e f u U " "°^ d b a ni c e i f o re
su os t i tu t i ons per form ed o n i t u ^ th e same c l ause , but w i th the cu rren t
e t t e r idea o f what the var iah lp -i f V 1 n 9 s Pr in ted out wou ld prov i de a much

1 nln e a S ^ r f 0 r n 0 v i ' c e s t o grasp how^rnf 0 "" 6 0 1 . ° n S W < ? r C - (I t W O u l d a l S 0 " ' 8 k e
genera l l y , wh y shou ld ' t I h P a M v a r i ab le s ac tua l l y wor k) . Ev en more

(A t^ the f ° r S V e r y 9 ° a l - o n t h e ances tor L i s t^ c l a u s e s (b o t h ° r i 9 i n a l a n d
I * , t h e ™om ent I c a n _ t . s t ' o r 1 n the comple t e f a i l path?
o a^V 1 9 ' t h e t h r e e c on c e p t s Sh T a U a b o u t t h e f a i l P« th !> 1 a "
Pa th , shor te s t f a i l pa th) , sh ou l d 7 7 Ti 1 e r Nes tor l i s t , comple t e fa i l
e r>Dh a 7 e r ' a b o u t which he c an aa in** • s e r i o u s l y as ob jec t s ava i l ab l e to
the n - S ' t 7 i m p o r t ance o f t ry inq to „„ t l ! t ® r e * t i ng in format i on . I wou ld a l so

o r i g i na l source a s Pos s ib l e . 1 " 9 t 0 ° U t P U t t h e c l a u s e s ^ a form a s c lo se to

megar° ^; o a r n t i « °^ r r O L ° 9 i S ^I f ly def ined , the r e ar e no
og i ca l bug , hence the impor tance o f ° 9 qood 9 b ° 9 t h e n t h l ' s w U l b e 3

good debugg ing t oo l s . However, the

/}?
Pro log sy s t em may p r ov i de eva luab l e p r ed i ca t e s w h ich a r e on ly de f i ne d ove r
so me subse t o f a l l pos s i b l e a rgumen t s . They w i l l u sua l l y p r oduc e an e r ro r
w hen u sed i nco r r ec t l y . When such an e r ro r occu r s t he u se r wou ld l i ke t o know
whe re i t occu r r ed . The o b v io u s cho i ce o f a c t i on i s t o s t a r t t he t r a c ing
mechan i sm and w ind back t o t he l a s t Ca l l . I e , t he u se r shou ld b e t o l d o f t he
e r ro r , and t hen he shou ld au toma t i ca l l y f i nd h imse l f a t t he C a l l po r t o f t he
p rocedu re wh e re t h e e r ro r o ccu r r ed . He w ou l d t he n be i n a pos i t i on t o
d i s cove r w hy i t had oc c u r r e d . (By l ook ing back a t t he i n fo rma t ion s ugge s t e d
abo ve , o r by r e t r y ing f rom some e a r l i e r pos i t i on e t c .) In ge ne ra l , t h en , AL L
e r ro r s shou ld cause a c t i va t i on o f t he t r a c ing mechan i sms . S ince t he con t ro l
f l ow m ode l e f f ec t i ve ly de f i ne s t he u se r ' s v i r t ua l mach ine , e r r o r s can b e s een
a s c aus ing a ha l t a t some ope ra t i on (i e a t some po r t) . As a l a s t po in t , t h e r e
a r e many c a s e s w he re t he p rocedu re box i s a c tua l l y emp ty . I n o the r words , we
ha ve a n unde f ined p rocedu re (e i t he r we have l e f t some th ing ou t , o r m i s spe l l ed
a goa l so mew h ere) . Th i s i s a lmos t a lw a ys a bug . I am conv inced t ha t t h i s
ca se shou ld be t r e a t ed a s an e r ro r , so t h a t t he u se r i s in fo rmed and , aga in ,
he shou ld f i nd h imse l f a t t he Ca l l po r t conce rned . Th i s p r o b l em i s a ma jo r
s o u rce o f was t ed t ime on cu r r en t sy s t ems . (The on ly ex amp l e s I ha ve s een
w he re f a i l i ng due t o n o c l au se s i s s i gn i f i c an t a r e c l ea r l y da t a ba s e
app l i c a t i o n s wh ich shou ld u se a spe c i f i c "u se r d a t a ba s e " (Cf ' r e co rd ' e t c . o n
t he DEC -10 s y s t em)) .

Such improvemen t s wou l d g r ea t l y enhance t he e rgonomics o f t he P ro log sy s t ems
we u s e . They w ou l d i nc r e a se t he a t t r a c t i venes s o f P ro log a s a p rog ramming
l anguage and r e s ea r ch t oo l . H o w ev e r , we c anno t a lways t ake i dea s f rom o th e r
l a ngua ge s s t r a i g h t o f f t he she l f . I t i s impor t an t t ha t such deve lopmen t s a r e
based on mode l s wh ich r e f l e c t t he ac t u a l na tu r e o f P ro log . My a i m ha s been t o
dev e l op such a mo d e l f o r con t ro l f l ow , and t o show how c e r t a i n impor t an t
f e a tu r e s can be cons t ru c t ed i n t e rms o f t h i s mod e l .

Acknowl edgemen t s

I wou l d l i k e t o t hank Dav id W ar r en , Fe rnando Pe r e i r a , A lan Bundy and Chr i s
Me l l i sh f o r t h e i r he lp and encou ragemen t . I am suppo r t ed by a B r i t i sh Sc i ence
Re sea r ch C ounc i l g r a n t , number GR /A/57954 .

REFERENCES

[du Bou lay 80a]
du Bou l ay , B . and O 'Shea , T .
Teach ing N o v ice s P r o g r ammi n g .
Resea r ch Pape r No . 132 , Dep t . o f A r t i f i c i a l I n t e l l i gence ,

Ed i nbu r gh . , 1980 . . .
To appea r i n 'Compu t ing Sk i l l s an d Adap t i ve S ys t ems ' , M. Coombs

(Ed .) , Acad emic P r e s s .

ldu Bou lay 80bD
du Bou l ay , B . , O 'Shea , T . and Monk , J .
T he b l ack box i n s ide t he a j a s s box : p r e sen t i ng compu t ing

concep t s t o n o v i ce s -
Res^7n^Pi"p¥F N^~73T, Dept. of Artificial Intelligence,

[Kow a l sk i 80]

Ed inbu rgh . , 1980 .

Ko w a l s k i , R . A .
Log i c f o r P rob l em So I v ing .
N or th Ho l l and , 1980 .

CMel l i sh 78] /J*
Mel l i sh C .
The UNIX P ro log Sys tem.

Ar t i f i c i a l In te l l igence , Univ o f Ed inburgh , 1978
I no te] .

Dep t o
Cln fo rma

CPere i ra e t a l . 783
Pe re i r a L M, Pe re i r a F and War ren OHO.
User ' s Guide to DECsys te»-10 P ro log .
D e p ' ; A r 5 i f ^! f l In te l l igence , Ed inburgh . , Unive r . i ty of

Ed inburgh , 1978 . '

CRobinson 653

CRousse l 753

CSussman 723

CTei t l eman 753

CWarren 773

Rob inson J A.

JACM C 12m°??7 n ?^ L ^ 9 1 C u a " d °° t h e r " o l u t ^ Pr inc ip le . J A C W 12(13 .227-234 , December , 1965 .

Rousse l P .
P r o l °g . : f f anue^ de Refe rence e t d 'U t i l i sa t ion .
Groupe d ' In te l l igence Ar t i f i c i e l l e , U. E . R . de Lua iny ,

Universite d'Aix-Marseille II, 1975.

Sussman , G . J . and McDermot t , 0 . V.
Why Conn iv ing j i s be t t e r than P lann ing .
AI -Memo 255A, MIT AI Lab37it"ory , 1972 .

Te i t l eman , W.
INTERLISP r e fe rence manua l
Xerox Pa lo Al to Resea rch Cen te r , 1975 .

War ren D H 0 .

" l i ep t P red ica te log ic p rograas .
Resea rchRepo^V I 2^ . L l 9 e n C e ' ^^ E ^^77 .

i SI

LOGIC REPRESENTATION OF A CONCURRENT Al fflRTTHM

C . J . H o g g e r
I m p e r i a l C o l l e g e , U n i v e r s i t y o f L o n d o n , 1980

ABSTRACT

A c o n c u r r e n t a l g o r i t h m i s r e p r e s e n t e d u s i n g t h e ' l o g i c p r o g r a m m i n g '
f o r m a l i s m a n d s o m e g e n e r a l p r i n c i p l e s a r e e x t r a c t e d f r o m t h e f o r m u l a t i o n .
T h e t r e a t m e n t i s s h o w n t o b e s e m a n t i c a l l y p u r e a n d c o n s i s t e n t w i t h
c u r r e n t a p p r o a c h e s t o l o g i c p r o g r a m d e v e l o p m e n t a n d v e r i f i c a t i o n .

1 . I N T R O D U C T I O N

S t u d i e s i n l o g i c p r o g r a m m i n g h a v e u s u a l l y a s s u m e d p r o g r a m e x e c u t i o n
t o b e t h e r e s p o n s i b i l i t y o f a s i n g l e p r o c e s s o r . T h i s a s s u m p t i o n m a k e s
i t e a s y t o e x p l a i n c o n v e n t i o n a l P R O L O G - l i k e p r o g r a m s u s i n g i d e a s
p r e v a l e n t i n o t h e r p r o g r a m m i n g f o r m a l i s m s , i n p a r t i c u l a r t h e i d e a o f
i n t e r p r e t i n g p r o c e d u r e c a 1 I s a s t a s k s t o b e c o m p l e t e d o n e a t a t i m e b y
t h e p r o c e s s o r . M o r e r e c e n t l y , s i g n i f i c a n t a d v a n c e s h a v e b e e n m a d e i n
d i v e r s i f y i n g t h e m e a n s o f s p e c i f y i n g c o n t r o l , t h a t i s t o s a y , i n
p r o v i d i n g p r o g r a m a n n o t a t i o n s c h e m e s w h i c h i n d i c a t e c o n t r o l p r e f e r e n c e s
s u p p l e m e n t i n g t h e u s u a l d e f a u l t s t r a t e g y . A n o t a b l e s c h e m e o f t h i s k i n d
h a s b e e n d e v e l o p e d b y C l a r k a n d M c C a b e (3) a n d p r o v i d e s a n e l e g a n t a n d
p o w e r f u l c o r o u t i n i n g f a c i l i t y i n t h e i r I C - P R O L O G s y s t e m . T h i s a l l o w s
o n e t o w r i t e l o g i c a l l y l u c i d p r o g r a m s w h o s e b e h a v i o u r i s e x p l i c i t l y
p r e s c r i b e d i n t e r m s o f t h e n a t u r e o f t h e d a t a f l o w t h r o u g h s p e c i a l l y
a n n o t a t e d v a r i a b l e s ; t h e a n n o t a t i o n s e n a b l e c a l l e v a l u a t i o n s , b y a
s i n g l e p r o c e s s o r , t o b e t e m p o r a l l y i n t e r l e a v e d , a l l o w i n g a f i n e r g r a i n
o f i n t e r a c t i o n b e t w e e n t h e m t h a n i f t h e a n n o t a t i o n s w e r e a b s e n t .
F o r m e r l y , c o m p a r a b l e b e h a v i o u r c o u l d o n l y h a v e b e e n a c h i e v e d b y e x e c u t i n g
p r o g r a m s o f g r e a t e r l o g i c a l i n t r i c a c y .

D e s p i t e t h e b e n e f i t s o b t a i n e d f r o m s u c h e l a b o r a t i o n s o f t h e c o n t r o l
m e c h a n i s m , t h e r e r e m a i n n u m e r o u s s i m p l e p r o b l e m s w h i c h c o u l d b e s o l v e d
y e t m o r e e f f i c i e n t l y i f m u 1 1 i - p r o c e s s o r h a r d w a r e w e r e a v a i l a b l e .
I n d e e d , C l a r k a n d M c C a b e (3) f i n d a n e x a m p l e o f t h i s i n t h e i r d i s c u s s i o n
o f c o r o u t i n e d p r o g r a m s f o r t h e e i g h t - q u e e n s p r o b l e m , a n d B r u y n o o g h e a n d
C l a r k (2) h a v e a l r e a d y c o n s i d e r e d p r o g r a m a n n o t a t i o n s f o r s p e c i f y i n g
c o n c u r r e n t c a l l e v a l u a t i o n s . T h e p r e s e n t p a p e r a r o s e f r o m t h e a u t h o r ' s
a t t e m p t t o f o r m u l a t e I n l o g i c t h e e s s e n c e o f a c l a s s i c p r o b l e m c h o s e n b y
O w i c k i a n d G r i e s (7) t o d e m o n s t r a t e v e r i f i c a t i o n o f c o n c u r r e n t A L G O L - l i k e
p r o g r a m s . T h e i d e a s p r e s e n t e d h e r e a r e s o m e w h a t t e n t a t i v e a n d a r e
c h i e f l y i n t e n d e d t o s t i m u l a t e i n t e r e s t i n t h i s a n d s i m i l a r p r o b l e m s ,
r a t h e r t h a n t o c o n s t i t u t e a c o m p r e h e n s i v e p r o p o s a l f o r i m p l e m e n t i n g
c o n c u r r e n c y . T h e r e a d e r i s e x p e c t e d t o b e f a m i l i a r w i t h l o g i c
p r o g r a m m i n g ; t h i s h a s b e e n c o m p r e h e n s i v e l y d e s c r i b e d b y i t s o r i g i n a t o r
R o b e r t K o w a l s k i (6) .

2 - ASSUMPTIONS AND NOTATION

A s s u m e t h a t s e v e r a l p r o c e s s o r s P 1 , . . . , P n a r e a v a i l a b l e f o r s o l v i n g
a c o l l e c t i o n o f c a l l s . T h e n a g o a l + • A , B c a n b e e x e c u t e d u s i n g
R ' a n d P 2 t o s o l v e t h e t w o r e s p e c t i v e s u b g o a l s , p r o c e e d i n g c o n c u r r e n t l y .

I H O

For a simple model, imagine that PI and P2 operate as distinct interpreters
sharing access to a single set of procedure definitions. A desire to
execute the goal in this way can be expressed by writing It as * A//B
where // is interpreted logically as conjunction but operat ionai ly as a
prescription for concurrent execution of A and B. This use of the //
symbol is therefore referred to as conjunctive concurrency.

Further annotations can be devised to declare which processors are
to deal with which calls, if this is prescribable, or else processor
allocation can be decided dynamically by the implementation. The details
of such arrangements are not relevant to what follows and so are not
discussed further.

Although concurrent executions are easiest to conceive and control
when they do not manipulate shared data, no limitations are imposed here
upon the argument structures of calls conjolnable by //. Thus to express
the problem of deciding whether a given element E belongs to given sets
A and B, construct a goal whose concurrent subgoals can be executed
independently :

m(E,A) // m(E,B) .

Similarly, to find an element u common to A and B, construct the goal :
«- m(u,A) // m(u,B)

execij1''on_ instantiates u, the simplest control arrangement
r !• ?hUS^ • 9'VeS the m°St sens'b1e behaviour) Imnedlately

t H ! 9 1° 'u6 °ther execution • so that the execution, c.n

comDlicatls rh I i Pro9ress" Transmission of binding,
™ ' C ^ew%kt:aCk,n? °f concurrent execution,. If execution of

repeatina !hat hfndtn a^m'tS 3 b!nding to B and then has to backtrack,

Ff'reatJsur^c^t

W© can also D© rm it* PXNROCC INN _ R
An example of this is seen Tn rhn n t conc"rrency within procedure bodies-
two binary trees. Derivation of comparing the frontiers of
Hogger (5), in which a ^

I-epr 3 C°n^urrenC ProgrLtwhichXseiks^ob;hXrC;;;'Wd;;'tfXre;'XW^ *
P esented by such terms have the samn - w that two trees T1 and T2

same (Tl ,12) is :

same(x,x)
same (x,y)

~;.i

1 1 1

Ob se rve t h a t t he execu t i ons wh ich de c ompos e t he f r on t i e r s o f x a n d y
e n d m o s t o f t h e i r t i m e r e s t r u c t u r i n g t h e t r e e s u n t i l t h e y b e c o m e r e a d y

t o c o m p a r e t h e f r o n t i e r s ' f i r s t l a b e l s . T h i s r e s t r u c t u r i n g i s b e s t
p e r f o r m e d c o n c u r r e n t l y a s i n d i c a t e d i n t h e s e c o n d p r o c e d u r e .

3 INFLUENCE OF LOGIC ON CONCURRENCY

I n g e n e r a l i t i s p r e f e r a b l e t o a r r a n g e t h a t a s l i t t l e d e t a i l a s
p o s s i b l e r e g a r d i n g r u n - t i m e c o n t r o l i s p r o g r a m m e d i n t o t h e l o g i c o f
n r o c e d u r e d e f i n i t i o n s , f o r v a r i o u s m e t h o d o l o g i c a l r e a s o n s w h i c h a r e w e l l
d o c u m e n t e d i n t h e l o g i c p r o g r a m m i n g l i t e r a t u r e . N e v e r t h e l e s s t h e r e m u s t
e x i s t p r a c t i c a l l i m i t s u p o n t h e c o m p l e x i t y o f e x t r a l o g i c a l c o n t r o l
a n n o t a t i o n s C o n s i d e r , f o r i n s t a n c e , h o w a 1 g o r i t h m i c a 1 1 y i n t r i c a t e s u c h
a n n o t a t i o n s w o u l d h a v e t o b e i n o r d e r t o i n s t r u c t a n i n t e r p r e t e r t o e l i c i t
D a n t z i g ' s ' S i m p l e x ' a l g o r i t h m f r o m n a i v e p r o c e d u r e s e x p r e s s i n g t h e m e a n i n g
o f l i n e a r o p t i m i z a t i o n ; t h e y w o u l d a s s u m e t h e c h a r a c t e r o f c o m p u t e r
p r o g r a m s i n t h e i r o w n r i g h t a n d w o u l d b e m o r e d i f f i c u l t t o c o m p o s e a n d
v e r i f y t h a n t h e p r o c e d u r e s t h e y w e r e i n t e n d e d t o c o n t r o l . T h e r e f o r e
n r a c t i c e i t i s o n l y r e a l i s t i c t o e x p e c t ' c l e v e r n e s s ' i n i m p l e m e n t e d
a l g o r i t h m s t o d e r i v e m a i n l y f r o m t h e l o g i c a l c o n t e n t o f t h e i r
T h i s a p p l i e s p a r t i c u l a r l y t o c o n c u r r e n t a l g o r i t h m s b e c a u s e t h e i r e f f i c a c y
o f t e n d e p e n d s u p o n c a r e f u l l y c o n t r i v e d c o m m u n i c a t i o n b e t w e e n t h e v a r i o u s
e x e c u t i o n s , w h i l s t t h e c o n t r o l o f t h i s c o m m u n i c a t i o n d e p e n d s " P ° n t i e ,
p r o b l e m - s p e c i f i c l o g i c a l r e l a t i o n s h i p s h o l d i n g o v e r t h e e v o l v i n g d a t a
s t r u c t u r e s w h i c h t h o s e e x e c u t i o n s m u t u a l l y c o m p u t e a n d c o n s u l t S o i t
i s u s e f u l t o f i n d o u t w h a t k i n d o f l o g i c a l c o n s t r u c t i o n s c a n h e l p t h e
p r o g r a n v n e r t o a r r a n g e f o r e f f i c i e n t c o o p e r a t i o n b e t w e e n c o n c u r r e n t
e x e c u t i o n s . S o m e i n s i g h t i n t o t h i s c o m e s f r o m i n v e s t i g a t i o n o f a s i m p l e
p r o b l e m w h i c h i s n o w e x a m i n e d i n d e t a i l .

K. A CONCURRENT ALGORITHM

i s r e q u i r e d » d e c i d .
t o e i t h e r o f t w o g i v e n s e t s A a n d B , a n d _ p r o g r a m
A a n d B c o n c u r r e n t l y . O n e s i m p l e w a y o f d o i n g t h i s i s t o u s e a p g

, l k e * f t b e longs (E ,A ,B)

be longs (u , x , y) uc x
be longs (u , x , y) * • u cy

wh ere t h e new anno t a t i on F l l abe l s a c a l l i n o r ' i e r (s 0 t h a t t he
p r o c e d u r e , r e s i d i n g t o i t t o b e » W U t S '
d e r i v e d s u b g o a l s « • EL A a n d EcB ̂ w o u l d e n s u i n g e x e c u t i o n s
p r o c e s s o r s) . S u c c e s s f u l t e r m i n a t i o n o f a n y o n e . . s i m u l t a n e o u s l y
w o u l d s i g n a l s u c c e s s f u l e x e c u t i o n o f t h e a n n o a . ̂ S u c h a n
a b a n d o n a n y o t h e r u n f i n i s h e d e x e c u t i o n s i n s t i g a s i n c e i t i s t a n t a m o u n t
a r r ange m e n t cou l d b e c a l l ed d i s junc t i v e c o n ? u r ^? j t s d i s junc t s c onc u r r e n t
t o so l v i ng t h e goa l * (ECA v ECB) by ® u se fu l r o l e t o p l ay i n
Howeve r , a l t hough s uch an anno t a t i on mig a l t e rna t i ve s , i t b r i ng
the concu r r en t , qua s i -b r ead th - f i r s t exp lo r a 1 0 ^ o r c o n C u r r en t execu t i
us no ne a r e r t o an unde r s t and ing o f how t o <* r r r h o th e r ' s p rog re s s ,
to a cce s s and r e ac t t o de t a i l ed knowledge ab o u . e ach^
Ws sha l l t h e r e fo r e deve l op an a l t e rn a t i v e s

wh ich ne e ds t o r e f e r t o
In s t ea d o f u s ing a p r ed i ca t e l i ke be longs , t Q n e s e t X m

both s e t s , i n t rod u ce a p r ed i ca t e m (u . x , a) which dea l s

ngs
ons

I H 1

The s pec i f i c a t i on o f m i s a s f o l l ows :

m(u,x,a) -<-»• (uCx, a=YES) v (n -uex , a-NO)

so t ha t i t s t h i rd a rgumen t a ac t s a s an exp l i c i t ' an swer ' t o t he q u es t i o n
o f whe th e r u be longs t o x. Using t e rms t o r ep re sen t s e t s , t oge the r wi t h
an app rop r i a t e de f i n i t i on o f e , compose a s t r a i g h t fo rwa rd p rocedu re s e t
form. ,a) *• a=NO

m(u,v:x,a) *• u=v, a—YES
m(u,v:x,a) *• u?v, m(u,x,a) .

Now cons ide r an exe cu t i on TJ , r unn ing on a p roce s so r P I , o f a c a l l a(B,A,al)
where E and A a r e we l l - f o r med i npu t d a t a . Suppose t ha t a concu r r en t
execution T2, running on a processor P2, is dealing with a call n(E,B,a2)
and b inds YES t o a2. I f I \Z we re somehow ' t o l d ' t ha t YES had been bound
t o a2, i t cou ld s ens ib ly ab an d o n i t s a t t e mp t t o dec ide BCA, r e co rd an
a r b i t r a ry a nsw e r D O N T K N O W f o r al and t hen t e rmina t e succe s s fu l l y . T h i s
s ugges t s t he u se o f an a l t e r n a t i ve p r ed i ca t e m*(u,x,al,a2) which a l l ows
t he answer al compu ted f o r t he ques t i on uex t o be c on t i nge n t upon t he
s t a t e o f a2. I t s spec i f i c a t i on j u s t ex t en d s t ha t f o r a I n o rd e r t o
admit the alternative answer for al :

m*(u,x,al,a2) «-»- m(u,x,al) v (a2-YES, al-DONTKNOW) .

Proc e du re s f o r m * t hen f o l l ow b y t r i v i a l t r an s fo rma t ion o f t hose f o r
m above :

CI: m* (u ,$,al,a2) *• al=NO
C2: m* (u ,v:x,al ,a2) u=v , al=YES
C3: m* (u ,v:x,al ,a2) *- u?v, m* (u ,x ,al ,a2)
C4: m*(u,x ,al,a2) *• a2=YES, al —DONTKNOW .

Procedu r e s C1-C4 can now be u sed t o so lve t he fo l l owing goa l whose two
u goa s a r e t o b e dea l t w i th by concu r r en t p roce s so r s P I and P2 r e spec t i ve ly

• m (E,A,al ,a2) // m* (E,B,a2,al)

whe the r e xecu t i ^o f^heU ' ! s co n ' 6 " a n S W e f S " 1 ° t h ' S 9 ° a '
t h a t i t i s l oa i ca l l v 1 T S c o n c u r r e n t o r s equen t i a l . No te a l so
pos s ib l e t o co mp u t e al = a 2 ' = Y ET.C O m p u t e a J " " DONTKNOW bu t l og i ca l l y

Meanwh i l e ! vT \ s o f C ° n [i r m s E C B a n d " s i gns y r s t o a2.
where a ' i s t he subse t o f A r em n IS ^ U a t m g S O f T , e d e r iv ed s ubgoa l m» (E,A' ,al,a2
T2 i n s t an t i a t e ! 3 wlSh r e s Z 6 6 s e a r c hed fo r E . As s o o n a s
t han s e l ec t C1-C3; p r i o r t o t h i s IM sh t 0 l d e k e C t C 4 a " d t e r m i n a t e r a t h e r
p r e f e r ence t o C4. These c o n t r o l shou ld have been s e l ec t i ng C1-C3 i n
t h e e a r l i e s t p o s s i b l e t e rmina t i on P p ! e T e n c e s > w h ' c h a r e mo t i va t ed towa r ds
because they cannot be implemented If* t re.some edifications to C1-C4,
o rde r ing o r by ad d ing s e l ec t i ve da t a f ? ^ ch o o s in g s ome o the r f i xe d - t ry
he a d i ng a rgume n t s . " anno t a t i on l i ke ? and " to the i r

Th e re fo r e i n se r t some checks a2* re s t o ob t a i n :

C2\- 'al,'a2) a2^ES, al=NO
(ufv.x,al ,a2) •*- a2^YF<z ?7—T C3 ' ; m* (u VY = 7 rXES, u-v, al=YES

« - : 2 S -/ ax YES, a 1 = DONTKNOW

i f;
This d o e s n o t a f f e c t (p a r t i a l) c o r r e c t n e s s , s i n c e C l ' - C 4 ' a r e l o g i c a l l y
i m p l i e d b y C 1 - C 4 - T h e c h e c k s e n s u r e t h a t w h e n a 2 h a s b e e n i n s t a n t i a t e d
b y Y E S , s e a r c h i n g w i t h C l ' - C 3 ' i s d i s c o n t i n u e d a n d t e r m i n a t i o n b y C 4 '
f o l l o w s i m m e d i a t e l y . H o w e v e r , t h e s e c h e c k s m u s t n o t b e c o m e o p e r a t i v e
u n t i l a 2 i s i n s t a n t i a t e d , a s t h e y w o u l d o t h e r w i s e c a u s e n o n d e t e r m i n i s t i c
b e h a v i o u r . T o g u a r d a g a i n s t t h i s w e c a n e x p l o i t t h e a n n o t a t i o n s o f
C l a r k a n d M c C a b e t o s p e c i f y c o n t r o l a l t e r n a t i v e s a p p r o p r i a t e t o t h e
d a t a - f l o w . U s i n g t h e i r s c h e m e , a p r o c e d u r e s e t f o r m * b e h a v i n g i n
p e r f e c t a c c o r d a n c e w i t h o u r w i s h e s i s o b t a i n e d b y f o r m i n g p a i r s o f
a n n o t a t e d c o n t r o l a l t e r n a t i v e s c h o s e n f r o m b o t h C 1 - C 4 a n d C l ' - C 4 ' ,
s o t h a t e a c h p a i r a c t s l i k e a s i n g l e p r o c e d u r e w h i c h c a n e i t h e r e x e c u t e
o r i g n o r e t h e c a l l a 2 ^ Y E S :

C I : m * (u , $, a l , a 2 *) * • a l = N O
C I ' : m * (u , a l , a 2 7) * • a 2 ? Y E S , a l = N O

C 2 : m * (u , v : x , a l , a 2 ~) * • u = v , a l = Y E S
C 2 ' : m * (u , v : x , a l , a 2 7) * • a 2 ? Y E S , u = v , a l = Y E S

C 3 : m * (u , v : x , a l , a 2 ~) u/v, m * (u , x , a l , a 2)
C 3 ' : m * (u , v : x , a l , a 2 7) * • a 2 ? Y E S , u ? v , m * (u , x , a l , a 2)

C 4 ' : m * (t l , X , a l , a 2 l) + a 2 = Y E S , a l = D O N T K N O W .

T h e s o l u t i o n s f o r t h e g o a l v a r i a b l e s (a l , a 2) w h i c h a r e l o g i c a l l y
computable from these procedures are (NO,NO), (NO, YES) , (YES ,YES) , (YES ,NO) ,
M, DONTKNOW) a n d (DONTKNOW, YES) ; b u t w h e n e x e c u t i o n i s c o n s t r a i n e d b y
t h e g i v e n c o n t r o l a n n o t a t i o n s , t h e u n w a n t e d a n s w e r (YES,YES) i s n o t
c o m p u t a b l e .

O b s e r v e t h a t i t i s n o t n e c e s s a r y f o r t h e v a r i o u s s e t s o f
contro l a l t e r n a t i v e s l i k e { c i , C J ' } t o b e l o g i c a l l y e q u i v a l e n t t o a s i n g l e
p r o c e d u r e ; i t s u f f i c e s f o r t h e m t o b e l o g i c a l l y i m p l i e d b y a s i n g e
p r o c e d u r e (C I) , s o t h a t t h e a n n o t a t i o n s c h e m e a l l o w s c a l l s t o b e s e l e c t i v e y
s k i p p e d a s w e l l a s r e s e q u e n c e d .

F i n a l l y , n o t e t h a t a n a l t e r n a t i v e p r o g r a m c a n b e d e r i v e d b y e x t e n d i n g
r a t h e r t h a n m o d i f y i n g C 1 - C 4 :

C I : m * (u , Q , a l , a 2 * • a l = N O
C 2 : m * (u , v : x , a l , a 2 ") * • u = v , a l = Y E S
C 3 : m * (u , v : x , a l , a 2 ~) - u ^ v , m * (u , x , a l , a 2)
C 4 : n * (u , x , a l , a 2 7) a 2 = Y E S , al=DONTKNOW
C 5 . • r a * (u , x , a l , a 2 7) * • a 2 i * Y E S , m (u , x , a l)

t o g e t h e r w i t h t h e t h r e e g i v e n p r o c e d u r e s f o r m .

T h i s f o r m u l a t i o n a r i s e s b y d e r i v i n g a n e w m * p r o c e d u r e

m * (u , x , a l , a 2) * • m (u , x , a l) ^

i n s e r t i n g a c h e c k a 2 j Y E S a n d t h e n a n n o t a t i n g C 1 - C 5 a p p r o p r i a t e y
? i v e s m u c h t h e s a m e b e h a v i o u r b u t s l i g h t l y c l e a r e r o

} t fH

5 . THE GENERAL PRINCIPLES

The p r i nc ip les unde r l y i ng the t rea tmen t above a re as f o l l ows : -

(1) Suppose t ha t t he p rob lem t o be so l ved has been f o rmu la ted as a
p rog ram i n tended f o r sequen t i a l ca l l execu t i on us ing a s i ng le
p rocesso r - i n o the r wo rds , as a s tanda rd non -concu r ren t l og i c
p rog ram.

Fu r the r suppose t ha t t he p rog ram 's goa l con ta ins some ca l l
P (t l , . . . , t r) . Usua l l y i t w i l l be poss ib le t o so l ve the
p rob lem more e f f i c i en t l y by s imp ly a r rang ing tha t one o r
more o the r ca l l s a re execu ted concu r ren t l y w i t h t h i s ca l l t o
P . However , even g rea te r improvemen t may be poss ib le when
t ha t ca l l i s rep laced by

P * (t l , . . . , t r , x r + 1 > x n)

where t he x ± va r i ab les a re sha red w i t h the o the r concu r ren t
ca l l s . I n e f f ec t , t h i s rep lacemen t an t i c i pa tes tha t use fu l
da ta f r om concu r ren t execu t i ons w i l l be t r ansm i t t ed t o the
x i va r i ab les wh i l s t t he ca l l t o P * i s be ing
execu ted , and t he reby makes t he goa l more e f f i c i en t l y
so l vab le than t he o r i g i na l one wh i ch ca l l ed P i ns tead .

I n the examp le , t he goa l f o r t he non -concu r ren t f o rmu la t i on
wou ld have been

m (E , A , a l) , m (E , B , a 2)

Th is can be so l ved more e f f i c i en t l y by concu r ren t p rocess ing :

m (E , A , a l) / / m (E , B , a 2)

and more e f f i c i en t l y s t i l l by sha r i ng t he va r i ab les a l
and a 2 be tween t he ca1 I s :

m * (E , A , a l , a 2) / / m * (E , B , a 2 , a l)

' pp its ^•strr:is.p;nr r b,
°° prrrr,; f̂f,ci'"cy n« - «• f*« «•«

(a l , a 2) = (D O N T K N O W , Y E S)

w i l l I t m o r e ' e f f i c f e n t ! y t c o m p u t a b b e e t h a n b ' y £ s / r E S ; ' ! , 0 r e O V e r

(2) Compose p rocedu res f o r p * r a „ , k i 0 , .

ca l l t o P* wh i ch has on l y va r i ab les i n a C t i v a t e d

pos i t i ons r + 1 t o n I n t L D ies i n i t s a rgumen t

C1-C4. They a re the p rocedu res^h i c fT^T^ ' • ' ^

such ' " t ' ime^s ' concu r ren t ^execu t ^ ° n S e ~
the sha red va r i ab les . ' ° n s t r a n sm i t da ta t h rough

(3) Now f r ee l y i nse r t i n to these p rocedu res any number o f a rb i t r a r y
ca l l s whose i nspec t i on o f t he a rgumen ts i n pos i t i ons r + 1 t o n
o f t he i nvok ing ca l l , commun ica t i ng da ta f r om concu r ren t
execu t i ons , imp roves e f f i c i ency . Th i s s tep i nev i t ab l y p rese rves
pa r t i a l co r rec tness . Usua l l y t he i nse r ted ca l l s a re dev i sed
by cons ide r i ng how t o ob ta in op t ima l behav iou r and may no t
simply arise as a natural result of deriving sufficient P*

procedu res t o dea l w i t h a l l cases l og i ca l l y admi t t ed by t he
p * spec ! f i ca t i on .

I n t he examp le t he i nse r t i ons p roduced Cl ' -C4 ' . They a re t he
p rocedu res wh i ch , i n t he f i na l p rog ram, w i l l be i nvoked i n
response t o P * ca l l s a f t e r da ta compu ted by concu r ren t
execu t i ons has been t r ansm i t t ed t o the sha red va r i ab les .

(4) Comb ine t he p rocedu res f r om s teps (2) and (3) and ado rn them
w i th con t ro l anno ta t i ons - these de te rm ine wh ich p rocedu res t o
invoke i n response t o P * ca l l s , acco rd ing t o the i ns tan taneous
s ta tes (bound o r unbound) o f t he sha red va r i ab les .

i

6. ANOTHER EXAMPLE

Ow ick i and Gr ies (7) g i ve a de ta i l ed accoun t o f an a 1 gor i then
p roposed by Rosen (8) wh i ch , g i ven an i npu t l i s t L o f a rb i t r a r y n
U l) , . . . , L t N) , compu tes i » as t he l eas t i , i f any , sa t 1 s fy i ng ^ _
I f no such i ex is t s t hen i * i s compu ted as N + l . The a , 9° ' " o the r
two concu r ren t sea rches , one i nspec t i ng L (i) f o r even i an i p a s t
inspec t i ng i (i) f o r odd i . The f o rmer sea rch compu tes j = z

even i sa t i s f y i ng 1(1) > o I f t h i s ex i s t s , bu t o t he rw i_
T , i e l a t t e r sea rch compu tes k ana logous l y f o r t he o v | r t ue o f

1 9 i s compu ted as t he l eas t o f j and k . The ch e f v i r t ue g t
the a l go r i t hm i , tha t i f one execu t i on T l f »M« s ° ^ - N + 1 a n d

e the r execu t i on T2 can respond e i t he r by s e t t ' " 9 [d e p e n d ing on whe the r
te rm ina t i ng o r e l se by con t i nu ing i t s own sea rc ^ usefu lness o f
o r eo t T2 has ye t sea rched t h rough L beyond L (i) - n r o D e r t i es o f t he
th i s consu l t a t i on be tween t he sea rches de r i ves r ° p r o b l em-spec i f i c ,

r ' n 9 re la t i on ove r l i s t i nd i ces . I t i s The re fo re p
f ^ th i , 1 , re f l ec ted i n the l og i ca l s t ruc tu re o f t he f o l l ow ing
formulation ;

* • f i n d * (L , N , 2 , j , k) / / f i n d * (L , N , l , k , j) , l e a s t (j , k , i *)

f i n d * (x , n , i , j , k ~) * - i £ n , x (i) £ 0 , f i n d * (x , n , i + 2 , j , k)
f i n d * (x , n , i , j , k T) * • i ^ n , i < k , x (i) £ O f f i n d * (x , n , i + 2 , j , k)

f i n d * (x , n , i , j , k ") * - O n , x (i) > 0 , j = i
f i n d * (x , n , i , j , k T) * • i £ n , i < k , x (i) > 0 , j - i

f i n d * (x , n , i , j , k 2) i ^ k , j = n + l

f i n d * (x , n , i , j , k) * - i > n , j = n + l .

These p rocedu res can be de r i ved qu i t e eas i l y acco rd ing t o the p r i nc ip les
a l ready enunc ia ted , beg inn ing w i t h a s imp le p rog ram i n wh ich the two
sea rches p roceed sequen t i a l l y and i ndependen t l y :

- t - f i n d (L , N , 2 , j) , f i n d (L , N , l , k) , l e a s t (j , k , i *)

f i n d (x , n , i , j) * • i 4 n , x (i) £ O f f i n d (x , n , i + 2 , j)
f i n d (x , n , i , j) * • i 4 n , x (i) > 0 , j = i
f i n d (x , n , i , j) * • i > n , j = n + l

Here f i n d (x , n , i , j) ho lds when j i s t he l eas t i e { i , i * 2 , . . . , n) sa t i s f y i ng
x (i) >0 , i f any ; o the rw ise j = n + 1 . Then f i n d i s e labo ra ted t o f i n d '
and f i n d * procedu res a re composed sa t i s f y i ng the spec i f i ca t i on

f i n d * (x , n , i , j , k) * - > • f i n d (x , n , i , j) v (i ^ k , j - n * l)

Ef f i c i en t con t ro l o f t hese p rocedu res , gove rned by t he da ta - f l ow th rough i t ,
i s t hen imposed us ing the anno ta t i ons shown .

7 . D ISCUSSION

The t r ea tmen t i l l us t ra ted he re i s cons i s ten t w i t h the usua l
i nc remen ta l app roach t o l og i c p rog ram deve lopmen t . D i s rega rd ing concu r ren t
capab i l i t y , a su i t ab le goa l and p rocedu re se t a re composed wh i ch wou ld
execu te co r rec t l y unde r IC -PROLOG, w i t h no res t r i c t i ons imposed on the
use o f t he ava i l ab le con t ro l mechan i sms . By reason ing abou t t he p rog ram 's
behav iou r we dec ide how t o ob ta in a more e f f i c i en t execu t i on were
concu r ren t p rocess ing ava i l ab le . I f t h i s improvemen t r equ i res no
commun ica t i on be tween concu r ren t execu t i ons then i t i s ob ta inab le by

l n 9 s ®' a c t ed con junc t i ons as / / . O the rw ise , new p red i ca tes
a n ® de f i ned wh ich i n t roduce sha red va r i ab les as t he veh i c l e o f conwnun ica t i on
and t he p rog ram i s re fo rmu la ted such as t o compu te so lu t i ons
- °£vo caHv r a r ' a b I e S ' S t a t e S " Cor rec tness -p rese rv ing mod i f i ca t i ons
nex t aDD l i L ' t nn^h 0 " 2 *1 * t 0 m a n i P u , a t e the sha red va r i ab les - a re
None o f t h e s e s t e e r w ' t h any f u r t he r necessa ry con t ro l anno ta t i ons .
None o f these s teps v i o l a te the f o rma l i sm 's f i r s t -o rde r seman t i cs .

i n t roduc t i on a o f 1 concu r rencv r does d ' C r t e t H a t f ° f ' 0 9 ' C P r o 9 r a m B , i n 9 the
o f es tab l i sh ina na r t - i a l no t r equ i re depa r tu re f rom ou r usua l way
spec i f i ca t i ons? m c o r r e c t n a " (by de r i v i ng p rocedu res f rom
though no d i f f e ren t i n o rTne i ! *?p roo fs may become more t ed ious ,
imposed by con t ro l anno ta t i o n P V t ^ r o u g h h a v i n 9 to examine the cons t ra in t s
t he ' non - In te r fe rence " c r i t e r i o " p a ; ; t i c u , a r - can eas i l y sa t i s f y
name ly t ha t i f aP roposed by Owick i and Gr ies (7) :
i n i so la t i on , i s no t i nva l i da ted°bv f t h e a ^ . c ? n c u r r e n t execu t i on , ac t i ng

co r rec t ' i y ! ' ^ ̂ XTSS. *
o f the l og i c p rocedu res wh i ch I t TnUeT , ^

11}

e x e c u t e d (c o n c u r r e n t l y o r s e q u e n t i a l l y) s u c h a s t o c o m p l y w i t h i t s l o g i c a l
i n t e r p r e t a t i o n , t h e n t h e u n i o n o f t h e s e v e r i f i c a t i o n s i s a v e r i f i c a t i o n
f o r t h e c o m p l e t e g o a l . T h i s i s j u s t a c o n s e q u e n c e o f o u r b e i n g a b l e t o
s p e c i f y c o n c u r r e n c y i n t h e p r o g r a m t e x t w i t h o u t a l t e r i n g i t s l o g i c a l m e a n i n g .

T h e r e a r e s e v e r a l o t h e r a s p e c t s o f c o n c u r r e n t l o g i c p r o g r a m m i n g w h i c h
n e e d t o b e p r o p e r l y r e s e a r c h e d . F o r e x a m p l e , i t m a y b e n e c e s s a r y t o d e v i s e

of specifying t e m p o r a l c o o r d i n a t i o n . I n o u r e x a m p l e s n e i t h e r
e x e c u t i o n n e e d e d t o w a i t f o r r e s u l t s f r o m t h e o t h e r , b u t i n o t h e r c a s e s
w a i t i n g m i g h t b e n e c e s s a r y , t h e e x i s t i n g c o r o u t i n i n g f a c i l i t i e s m a y n o t
b e a b l e t o e x p r e s s a l 1 s u c h r e q u i r e m e n t s i n s u f f i c i e n t d e t a i l . A t p r e s e n t
w e c o u l d a s s u m e a s i m p l e d e f a u l t s t r a t e g y - t h a t i f , i n r e s p o n s e t o a c a l l ,
a l l l o g i c a l l y r e s p o n d i n g p r o c e d u r e s w e r e b l o c k e d b y d a t a - f l o w r e s t r i c t i o n s ,
t h e n t h e c a l l w o u l d j u s t s u s p e n d (r a t h e r t h a n , a s a t p r e s e n t , r e g i s t e r a
c o n t r o l e r r o r) u n t i l d a t a b e c a m e a v a i l a b l e f r o m o t h e r e x e c u t i o n s . A
p o s s i b l e e f f e c t o f s u c h a r r a n g e m e n t s i s d e a d l o c k - t h e r e l e v a n c e o f t h i s
t o l o g i c p r o g r a m m i n g m a k e s a n i n t e r e s t i n g r e s e a r c h t o p i c .

A l s o , l o g i c p r o g r a m s c a n a c c o m m o d a t e a t l e a s t t w o k i n d s o f c o n c u r r e n c y
(c o n j u n c t i v e a n d d i s j u n c t i v e) h a v i n g d i f f e r i n g l o g i c a l a s s o c i a t i o n s
(n o n d e t e r m i n i s t i c c a l l a c t i v a t i o n a n d n o n d e t e r m i n i s t i c p r o c e d u r e i n v o c a t i o n) .
S o m e d e s c r i p t i o n s o f o t h e r f o r m a l i s m s d o n o t s e e m t o p r o v i d e c l e a r ^
r e l a t i o n s h i p s b e t w e e n t h e i r n o t i o n s o f c o n c u r r e n c y a n d n o n d e t e r m i n i s m , a n d
i t m a y b e t h a t c l a r i f i c a t i o n c o u l d b e o b t a i n e d b y c o m p a r i s o n w i t h t h e
v a r i o u s n o n d e t e r m i n i s t i c f e a t u r e s o f l o g i c .

F i n a l l y , t h e r e a r e o t h e r w a y s i n w h i c h e x e c u t i o n s
b e s i d e s t h r o u g h s h a r e d v a r i a b l e s . A n i n t e r e s t i n g a l t e r n a t i v e i s
o f g l o b a l a s s e r t i o n s r e g a r d e d a s d a t a s t r u c t u r e s , s u p p o r t e d b y m e c h a n i s m s
f o r e n a b l i n g c o n c u r r e n t e x e c u t i o n s t o u p d a t e a n d 1 d i s c o v e r
c o m m u n a l l y . F o r b o t h m o d e s o f c o m m u n i c a t i o n i t w i l l b e u s e f u a i n a t o r

t h e i r p r a c t i c a l l i m i t a t i o n s i n o r d e r t o u n d e r s t a n d b e t e r w Y C o n c u r r e n t
o f o t h e r f o r m a l i s m s , s u c h a s H o a r e ' s C S P W a n d B r i n c h H a n s e n C o n c u r r e n t
P A S C A L (I) h a v e c o n s i d e r e d i t n e c e s s a r y t o r e l y u p o n i n e D r e f e r e n c e
l i k e s p e c i a l i z e d i n p u t - o u t p u t r e g i m e s a n d m o n i t o r p r o c e s s e s p
t o g l o b a l d a t a s h a r i n g .

REFERENCES

1 . B r i n c h H a n s e n , P . T h e p r o g r a m m i n g 1 a n 9 u a 9 e . i C o " C L " ^ ® 2 t 1 Q 7 A
T T a n s . o n S o f t w a r e E n g i n e e r i n g , V o l . S E - 1 . N o . 2 , J u n e 1 9 / i » . , . . .

2 . B r u y n o o g h e . H . , C l a r k , K . L . P a r a l l e l p r o g r a m m i n g " ? P ^ d ' ^ " 0 l ? e k e
D r a f t R e p o r t , A p p T T i T M a t h e m a t ! c s a n d P r o g r a m m i n g D i v i s i o n ,
U n i v e r s i t a t , L e u v e n , B e l g i u m , 1 9 7 9 -

3 . C i a d c , K . L . , H c C a b e , F . G . T h e c o n t r o l f a c i i j t l . f r C o]] e g e >

R e s e a r c h R e p o r t , D e p t . o f C o m p u t i n g 6 C o n t r o l , P
. , . C o m m . A C M , £ } _ ,

H < * r e , C . A . R . C o o p e r a t i n g s e q u e n t i a l p r o c e s

, ? 7 ? ' P h D Thes i s , Un i ve rs i t y
5 - H o g g e r , C . J . D e r i v a t i o n o f l o g i c p r o g r a m s . «ns&.. i,7S. r Borth „olland,
6 - j f o w a l s k i . R . A . L o g i c f o r p r o b l e m s o l v i n g .

e „ r h n i a u e f o r p a r a l l e l p r o g r a m s .
T O w i c k i , S . , C r i e s . 0 . A n a x i o m a t i c p r o o f e

^TTnformatica, 6 , 1 9 7 6 . c h u r c h . R o s s e r
8 - R o s e n , B . K . C o r r e c t n e s s o f p a r a l l e l H e i g h t s (N . Y .) ,

3PPr o a c h . T . J . W a t s o n R e s e a r c h C e n t r e ,
' R f R e s e a r c h R e p o r t R C 5 ' 0 7 , 1 9 7 1 * -

m

A DATAFLOW INTERPRETER FOR LOGIC PROGRAMS

Paul H. Morr i s

Depar tment of In format ion and Computer Sc ience
Univers i ty of Ca l i forn ia , I rv ine

INTRODUCTION

au thors [1^2]^ i n t h i s h a V S b e e " s t u d *e d by a number of
model . In addi t ion to be i no ^ t r o d u C * a high leve l vers ion of the
i n te res t ing fea tures? F i r s t aof? ') , ° U r m ° d e l h " a n u m b e f o f

sys tem; ins tead cer ta in ac t iv i ty counts a re not used in our
among tokens . ' second , " inde te?mina t° - e d t 0 r e s t r l c t in te rac t ions
these may be regarded as a r ic in l 5mina te computa t ions a re permi t ted ;
s ense in which Su , f r ° m b a c k t r 4 c ^n9. Thi rd , there i s a
sys tem to run "backwards " F i l ! a n t S a r e in te rchangeable , a l lowing the
r epresen ted by a f ln fV. n a I 1 y ' recurs ive computa t ions can be
mechanism. 7 t l n i t e ne twork , wi thout an ex te rna l s tack ing

o f Kowalsk i [3] , ̂ nd^ho^hnw 6 . - ? 3 1 5 " ' W e c o n s i d er the Logic Prograas
o f the type cons idered here Th?= f a e reduced to da ta f low networks
rou t ing i s essen t ia l lv 1 S h a r d l y surpr i s ing , s ince data
Symbol ica l ly , a = S I + CP, SSZTSl 'Z t 0 C O n t r o 1 a lgor i thms .
F low, and CF fo r Cont ro l p i stands for Algor i thm, DF for Data
equa t ion A = L + c sugges ts th? c °n t ras t ing th i s wi th Kowalsk i ' s
model p resen ted here i s an * t t C ° n ^ I o n L o 9ic - Dataf low. The
models wi th the log ic v iew of programming 0 r e c o n c i l e previous dataf low

f lowgpp h r t or k Mirne P r anr e M nnl r b e r I i a s t r u c t u " l resemblance to the
min i ? - a r e d i f f e ren t . i n par t i i a i t h o u 9h the i r mot iva t ion and
min imal i ty do no t appear i n n the?r r t sys^m. ' t h * l a W S ^ Glance and

EXAMPLE AND INFORMAL DEFINITIONS

W© wi l l presen t -
i l lus t ra t ive example . ® s y s t e m in an in formal manner us ing an

d?noted a bi V c i r i l J e 9 e r ! - ^"e^re '^ f tv? 3 " compute addi t ion to: °y c i rc les and boxes t y f e s °< "odes in the network , f igure 1 . T h e „

u v

Z

0

//

B

Cli c

u\
w

i : Computes u + u = V

f\ B

<
C D

B

C P

fijoi 2a '. "Ptflcc/1 as

a hittcriuP Jlvict

M
V

B

n-i
ni__o_

lUs.\z.

v\ *nt

D
/igurt 2 : Cc^tes V = $+*ter'*.Q M

(x2.uS (X 1

f\0-ws (X, Y*t, Z + V> 2%)

4- fi£u$ (u) u"> w).

•fi^e ? : <^'c P*°**AH A"0

6-DAL STATEMENT FOR WrEOER AUDIT 10H

^(x ;o ;xV

IL iu(x, Y+i /^ . i OC,Y,^-

H^~
^ \

^ [Aa (u^^-uf).

4- J Modified CouUECTlc*/

6-RAfH

£•' bDTfiFLOL/ A/fra/fKK

Page 2
I SO

circles are called places, while those denoted by boxes are called
ctivit^ boxes (the reader will note the resemblance to a Petri Net

[5J). The places are joined to the activity boxes, and vice versa hu
"« «•"«« "MS- The point, wheio th. il„„ J" JtM

t w o ^ a r £

dn.„y po"̂ ?"0"" by

they JfiFThearules9 Tt^ may PauS throu?h the network, provided
Tokens come in tio Carietiel" >5L£«2OU»5* °f " 3 klnd ol P»tlcle-
of a token has nothing to Co JfSTTTT~ ^^±tive (note: the sign
Tokens i^TTravel along lines Positive 9? Z value lt carries),
moving in the direction of t-ho = five tokens are restricted to
travel against the arrows— t v rrows, while negative tokens may only
c i reurostances7 an TnZ-ctlln™?* 3t plaC6S' Under certai"
consists of single tokens enter"; no ^ occur at an activity box. This
the lines, wililfe n^w tokens 0? Si"* °"e °r m°re (P°"ibly all, of
the remaining lines. The tokensthat" / 9n' "* emitted along
disappear from the network Th. JU? * enter are absorbed, and
is called an event. Eacheventif °f*aCh toKen lea^ng or entering
to the valu^lCried Sy^he tlken^^r^ hf# a Value'
participate in the interaction Ce !? events involved are said to
f̂ iFTlfeipate in the sLI Stelae L . are coactiv* if
to be coactive with itself We mlv* I • 6Vent ls also considered
a box; this means that the events fat tokens interact" at
tokens are coactive. One of ;hP box) corresponding to the
occur is the Consistency Law: the f?r an interaction to
must satisfy the relation associated u-,uS , e Participating events
a token carrying value p enters alona a r activity box. Thus, if
carrying g leaves along a line malke^-x+ll^then"^!" WMle * t0k6n

v and' w°nInntIIgCreheiInt"eC®|gf"d t h e n e t w o r k <m«ked u,
d1V1uy b°X* The events consistingf tZ ®ing afctached to a special

and the output token(s) leaving th lnPut token(s) entering,
romn t d \an lnteraction at this box /I netw°rk are considered to
computed by the network as bei™ th ™?y think of the relation

thP̂ wô >S3??f ̂ thiS 'he Cons is tency9La w°i ̂enforced ̂by

theyT^:^ntLoc-ri^:; »?:?enjhjorts aresaidtobe uss- «
. one of the ports and enterinci t-h676^3 correspond to the token

such events is called a transit 0 9 other,. An ordered pair of

Notice°Cthat Sis* e2 occurs"S (6l'62) iS P°Sitive-
el to the this may involve a positive t Z negative port,
directlo P°ru °f e2' or a negative t v token moving from the port of
e2 is at e ^ transition is negative If60: ™ovin9 in the opposite

positive one. Two traniTtion^ ; i1S at 3 ne9ative port and
transitions (el,e2, and (e3,e4) connect

P a g e 3
i S)

i f e 2 a n d e 3 p a r t i c i p a t e i n t h e s a m e i n t e r a c t i o n . A c h a i n i s a f i n i t e
s e q u e n c e o f t r a n s i t i o n s { t l , . . . , t N } s u c h t h a t t s u b i c o n n e c t s w i t h t
s u b i + 1 , f o r i = l , . . . N - l . I f , i n a d d i t i o n , t N c o n n e c t s w i t h t l , w e s a y
t h e c h a i n i s c y c l i c . I f t h e s e a r e t h e o n l y c o n n e c t i o n s (i . e . t l d o e s
n o t c o n n e c t w i t h t K u n l e s s K = I + 1 , o r I = N a n d K = l) , t h e c y c l i c c h a i n i s
e l e m e n t a r y . I n t u i t i v e l y , a n e l e m e n t a r y c y c l i c c h a i n v i s i t s
I n t e r a c t i o n s a t m o s t o n c e . W e w i l l a l s o c a l l a n e l e m e n t a r y c y c l i c
c h a i n a c i r c u i t . A c h a i n i s s a i d t o b e b a l a n c e d i f t h e n u m b e r o f
p o s i t i v e t r a n s i t i o n s i s e q u a l t o t h e n u m b e r o f n e g a t i v e t r a n s i t i o n s .
N o w s u p p o s e C i s a b a l a n c e d c i r c u i t . W e s a y C i s s h o r t e d i f i t i s o f
t h e f o r m { . . . , (a , e l) , . . . , t K , (e 2 , b) , . . . } , w h e r e (1) { (a , e l) , . . . , t K } i s
b a l a n c e d , (2) e l a n d e 2 o c c u r a t a d j a c e n t p o r t s . T h e i d e a i s t h a t i f
e l a n d e 2 w e r e l i n k e d t o e a c h o t h e r i n s t e a d o f a a n d b , t h e n
{ (e 2 , e l) t K } w o u l d b e a c i r c u i t o f s h o r t e r s i z e t h a n t h e o r i g i n a l .

V i e w e d a s a c o m p u t i n g d e v i c e , t h e n e t w o r k o p e r a t e s
n o n d e t e r m i n i s t i c a l l y . G i v e n s o m e i n i t i a l t o k e n s p l a c e d a t b o u n d a r y
p o i n t s o f t h e n e t w o r k , a c o m p u t a t i o n i s a s e q u e n c e o f . i n t e r a c t i o n s
s a t i s f y i n g t h e f o l l o w i n g c o n d i t i o n s :

1 . A t t h e e n d o f t h e c o m p u t a t i o n t h e r e a r e n o t o k e n s l e f t i n t h e
n e t w o r k .

2 . L a w o f B a l a n c e : e v e r y c y c l i c c h a i n i s b a l a n c e d .

3 . L a w o f M i n i m a l i t y : n o c i r c u i t i s s h o r t e d .

T h e L a w s o f B a l a n c e a n d M i n i m a l i t y a r e u n u s u a l i n t h a t t h e y a r e g l o b a l
r a t h e r t h a n l o c a l c o n d i t i o n s o n w h a t c o n s t i t u t e s a v a l i d c o m p u t a t i o n .
A t t h e t i m e a p o t e n t i a l i n t e r a c t i o n i s b e i n g " c o n s i d e r e d , i t m a y n o t
b e e a s y t o d e t e r m i n e w h e t h e r i t i s c o m p a t i b l e w i t h t h e L a w s (e x c e p t ,
p e r h a p s , b y t r y i n g i t a n d b a c k t r a c k i n g i f n e c e s s a r y) . W e w i l l n o
c o n c e r n o u r s e l v e s h e r e w i t h h o w t o e n f o r c e t h e L a w s i n a n
i m p l e m e n t a t i o n . O u r p r i m a r y i n t e r e s t i s i n t h e i r u s e a s a t h e o r e t i a
d e v i c e t o c h a r a c t e r i z e c o m p u t a t i o n s . T h e m e a n i n g o f
s h o r t e d - c i r c u i t " c o n d i t i o n w i l l b e c o m e c l e a r e r a e r . .
s p e a k i n g , i t e n s u r e s t h a t e v e n t s a r e l i n k e d i n s u c h a w y ,
t h e s h o r t e s t c i r c u i t s . T h e m o t i v a t i o n f o r t h i s i s o p
b e l o n g i n g t o d i s t i n c t p r o c e d u r e c a l l s s e p a r a t e .

C o n s i d e r f i g u r e 1 i n t h e l i g h t o f t h e s e d e f . i ^ i o n s S u p p o s e
t o k e n s (n e c e s s a r i l y p o s i t i v e) w i t h v a l u e s 3 a n , ~ o m D u t a t i o n i s
i n s e r t e d a t t h e p o s i t i o n s m a r k e d " u " a n d v . " e . v . a - t i v i t v b o x
a s f o l l o w s : t h e t o k e n w i t h v a l u e 2 i s a b s o r b e d _ a t t h e a c t i v i t y b o x
m a r k e d B .
B a n d a
i s a b s o i

w t i w t h . l . » O £ B e

t h e n u m b e r o f c y c l e s a t A b e e q u a l t o t h e n u m ® | [w i t h t h e t o k e n
c o u l d c o n s t r u c t a n u n b a l a n c e d c y c l i c c h a i n t a b a c k t h r o u q h t h e
a t - u , " f o l l o w s t h e c y c l e s t h r o u g h A , t h e n t h r o u g h C , b a c k t h r o u g h
c y c l e s a t B a n d e n d i n g a t " v ") .

Page i

Now a negat ive token with value 3 emerges at the bottom of r
The two interact ions required by the Law of Balance now take place at
marked" 3 "^" 3 At th , C a r r y l n 9 5 . e m e r 9 e s from the network at the point

^ this point there are no tokens le f t in the n e t w o r k
The reader may sat is fy himself that a val id computat ion must result i n a token with value 5 emerging at "w. " H result in

F im,ri f 6 a £ u r e o f t k e m o d e l i s t h a t the networks are mult i -purpose .
insert ing ini t ia i m ?okens°aJ ̂ he "^""iJ^thi l
case , the answer token emerges at • r» k ,

entering or emerging at t^ ^ represent the values on the tokens
respect ively) . That i s "? r k * d , "v" -nd V
computat ion that outputs ' that l a i r a n P ' 1 3 a V a l i d

outputs such a pair This lpartf e v ery val id computat ion
"backwards." Another poss ible mode t o , s p e a k o f the network running
V" m this case *£»?t* 2 t 0 f n s e r t tokens at "u," "V and
annihi lat ion of the input t o k e n s c o ™ p ^ t a t i o n W H1 simply result in an
u+v=w. P U t t o k e n s - This can occur i f and only i f

I t turns out to be necessarv
al lowable network conf igurat ions i t i t r e *trict ions ° n

the networks be proper in the = . convenient to require that
P lace node . .yMriFc^n.St .S "" " t n •>«"<»>». '
(i .e . posi t ive or negat ive) in the sem t h a n . o l ? e P o r t o f the same type

" i lner's second condit ion i s a c t i v l t y box. Notice that
o f intermediate place nodes 1 S 3 c o n s e c ^ u e n c e °f jo ining boxes by means

NEUTRAL LINES

t y p e N o f ' t o k e r u 6 ^ h e s e a r e neutralVJ* 3 b ° V e ' i n t r o d u c e a t h i r d

l i n e s , w h i c h a r e d i s t i n g u i s h e ^ T ^ 1 1 1 t o k e n s a n d t h e y t r a v e l o n n e u t r a l
a r r o w , i . e . t h e y a r e 1 r " d l ^ r a m s b X n o t c o n t a i n T H T ^
n e u t r a l l i n e a r e c o n s i d e r e d t o b e l * ' T h e p o r t s a t o p p o s i t e e n d s o f a
£ £ £ t s . A n e u t r a l t r a n s i t i o n L ® a n d a r e c a l l e d " e u t r a l
w h e t h 2 n t ^ n n e u t r a l t r a n s T t T o n s ? h « V ° 9 a n e u t r a l t o k e n . C h a i n s

h e r t h e c h a i n i s b a l a n c e d . " h e s e a r e i g n o r e d i n d e t e r m i n i n g

We wi l l a lso relax- n , D , ,
Inont* a n a c ^ i v i t y box for an interim t h a t a t l e a s t o n e t o k e n n u s t

that th?° y e m l t t o k e n s alonq a l l I f"/ 0 occur. That i s , a box may
Howpyor ^would result in m a n y ° 1 I n e s - I t might be thought
token i 'o l n - a v a l id computat ion therp° S S computat ions in f igure 1.
en£eriJ r i n g C i s equivalentto22 1 3 J S e n s e i n *h*ch a posi t ive
ant ipart ic les 1 " a m a n n e r reminiscent I f R V - c h t 0 k . e n w I t h t h e s a m e v a l U f going : a n e 9 a t ive token m l , K Orchard Feynman's view of
reverse th 3 S i n t i m e - We m2v Ln? t h o u 9 h t of as a posi t ive token
"transL^- f l ° W . o f ««« on v 22?^ t h i S i d e a t 0 success ively
ones whirh 1 < ' n S '" i t : i s Possible to r 2 U S a r c s " B y a sequence of such

involve the same values (a l l ! 6 t h ® n e w computat ions to old
values (a l though generated in a di f ferent

Page 5

order).

Figure 2 shows an example of the use of neutral lines. This
network can be used to compute the factorial function. Suppose a
token with value 3 is inserted at "u." One computation proceeds as
follows: three interactions occur at A, until a token with value 0 is
produced. This travels down to be absorbed at C. Meanwhile, tokens
pile up on the neutral line. Next, a negative token with value 1 is
spontaneously emitted from D. Three interactions now occur at B,
using up the tokens on the neutral line. Notice that for the Law of
Balance to be satisfied, the tokens on the neutral line must be
absorbed in reverse order. Finally, a token with value 6 emerges at
"v." This sequence of interactions simulates a recursive computation
of factorial. The same network can simulate an iterative computation.
In this sequence, the initial token waits at the first place it
encounters. boxes C and D spontaneously emit tokens. Two
interactions each at A and B are interleaved. A third interaction
occurs at A, with the waiting initial token joining in. A final
interaction occurs at B and the answer token emerges at "v."

It is worth noting that the necessity for neutrai lines
disappears if we are willing to allow non-simultaneous events to
participate in an interaction (recall that this is already true for
I/O). With this approach we could combine A and B in figure 2 into a
single box. Places could also be dispensed with, since it would no
longer be necessary for tokens to wait until their "mates" are ready
before entering an activity box (however, it is convenient to retain
"places" as a pictorial device to reduce the criss-crossing of arcs -
see figure 2a). We will adopt this viewpoint in a subsequent section.

LOGIC PROGRAMS

We now consider the logic programs of Kowalski_[3,8] . The reader
amiliar with these will already have noticed a number of
imilarities: the multi-purpose character of both systems a"d their
ack of commitment to top-down or bottom-up processing. As we shall
ee, there is a sense in which dataflow networks, as e ine af.'fiow

imply a syntactic variant of logic programs. e e e dprstand;nq

nterpretation will promote significant advances in the understan ng
f such programs and of computation in general.

The reduction to a dataflow network proceeds as J0"®"®*
rite the logic program as a set of .clauses, ^ • ̂ 3
lause. We will restrict our attention to Ho " vowaiski [7]
hows an example. The connection g.raph, introduced by K waIsk 1 [7],

inks literals among the conditions of a clause wi literals match if
n the conclusion of the same or other clauses (two l^erals

hey have the same predicate name). Thus, in g each of the
plU.V.WP and -pp^x VP)" ara both connected to each o^the

iterals "plus(X,0,X" and "plus (X,Y+1 ,z+u . _ .* iX
ef inition slightly: for each predicate name,-estalblish ^special

ode called a predicate node. Now replace ea condition literal to
onnection graph by two arcs, one going from ina~from the predicate
he appropriate predicate node and the other going from the preo

)S1 '
node to the conclusion l i teral . We a lso direct the arcs in a

' T h e r e s u i t o f t b e" modif icat ions ' : :

By our or ientat ion of the arcs , we do not m**. , • : ,

ZTct'T Wo" condition T̂ A.',
otherwise b lT. t™S »•«"

We are now ready to def ine a dataf low network For » ,nk , draw a box. Wri te eeoh aro, ,m«w. t atJ-uw network. For each clause,
posi t ion „„ the pe"ime"r of the h^P"SS l° . n ' " c h "*«•». «
several nodes, " 'n&S' t f jh . -erfL- 'ol
or iginal arc is l ikewise sol i t into r l t y , o f t h e Predicate . Each
a t tached to the apu oori ? s several arcs , and these are
i s i l lust ra ted in f igure 5 (iqnorem the r t*f t eaSn n S t h e boxes. T h i s

box, for the moment) This ends t h e "9»>t-han<l
dataf low network. (We can improve i t« canonical t ransformation to a
not a t tempt to just i fy here "cut a p p* a r a nce by a means we wil l
dot ted l ines , to obtain three bovn<= L 6 r l9 h t -band box along the
two may now be renamed. with minor var iables in the r ight-most
the network shown in f igure 1 .) cosmetic changes, th is gives us

th is G t raLforma rUon i to iclLsL n^%\r n f i 9 U r a t i o n ' W e C a n n o t aP^
twice in the body, e .g xf ibr iu same predicate symbol occurs
th is example, Urn. s^ch 2«, <"X"b<N-' •*(i»
confusion of tokens) . This mav f i r iJ i f necessary to avoid a possible

y Lirsz De t ransformed to the pair :

x1!b^(N^J; f^;N b^^)^f ibl(N- 2 ,y , .

The t ransformation may then be completed as above.

g t t i" ̂ e^ t^^™ a t «P " the-
nroaram 6 resul t ing network computes the ® v e ry iogic program. Assuming
S i - ~ t 0 b e p r o v e d below - t „n m e r e l a t i o n a s t h e original
netwiikf C a n b - c o mPuted by some such°W S b e very par t ia l recursive networks const i tute a ** »»»"

An i „•

procedures

are actual l f 6^ f 3" b e Stained by us in^? 6 5? 3^ T h* benefi ts of the
th is . The ann n S t W° r k S - B o x B in f iqure"? • b o x es to represent what
pr imit ives " p p r o a c h might be referred f- 1 S a c t u a l ly an example of red to as "promoting the

Page 7

CORRECTNESS &
In this section we show the dataflow interpreter is correct in

the sense that the network obtained (without cutting) from a logic
program computes the same relation as the original program.

Before proceeding, we require some additional concepts. Suppose
a and b are events in a computation. Let C = {<e,f>,...,<g,h>} be a
chain such that e is coactive with a and h is coactive with b. Let s
be the algebraic count of transitions in C, i.e. the number of
positive transitions minus the number of negative transitions. Let CI
be another such chain joining a and b, with count si. Then s = si;
otherwise we could create an unbalanced cyclic chain by splicing
together C and CI. Thus the value of s is independent of the
particular chain used to join a and b. We call s the separation from
a to b, abbreviated as sep(a,bj. The following can be easily derived:

1. sep(a,b) = sep(a,c) + sep(c,b), for any event c.
2. sep(b,a) = -sep(a,b).
3. If a and b are coactive, then sep(a,b) = 0.

Now let e0 be any input/output (I/O) event and let e be any other
event. We define the depth of e by:

depth(e) = sep(e0,e)

Clearly, the value of depth is independent of the particular e0
chosen. From 1 and 2, it follows that sep(a,b) = depth(b) - depth(a).

Next we prove the following lemma for networks arising from the

canonical transformation.

LEMMA: Let A and B be two positive ports in an activity box. Let C
and D be negative ports of a neighboring box such that A is adjacent
to C and B is adjacent to D (see figure 6). Suppose a,b,c and d are
events occuring at A,B,C and D, respectively, such that a is coactive
with b, c is coactive with d, and a is linked to c. Then is in e
to d.

PROOF: Notice that there may be other, competing, ports adjacent to
the ones of interest, as indicated in figure 6. We will call t
ports in an activity box "partners" if each is connec e
place nodes shown in figure 6. Thus A and B are par ne , Dorts

and D. We will also say two events are partners l () P
are partners, and (2) they are coactive. In this sense a and b are

partners, and so are c and d.

Now consider the sequence { el,e2,e3,e4,,..} where el-b, e2 a,

e3=c, e4 = d and, for all i,

e sub 2i is the partner of e sub 2i-l
e sub 2i+l is linked to e sub 2i.

Since the number of events in the entire computation

/^><.ve 9 : A/ervoe/r p-CQ QF/fcT

Page 8

iS}
eventually an element in the sequence will recur. Let eN be the first
recurring element. Claim: eN=el. Suppose contrariwise that eN=eI
where 1 < I < N. Since an event has a unique partner and also a
unique "linkee," it follows that e sub 1-1 = e sub N-l. That is, e
sub N-l is a recurrent element. This contradicts the fact that eN is
the first such element, establishing the claim. N may now be seen to
be odd; otherwise e sub N-l is the partner of el, i.e. a. In fact,
N must equal 5. If N > 5 then the sequence is of the form
{el,e2,e3,e4,p,...,q,eN}. We may rearrange the events in the sequence
to form a cyclic chain {...,<q,el>,<e2 , e3> , <e4,p>,...}. Since each
event in the chain interacts only with its unique partner (among the
events of the chain), the chain is elementary. However, the chain is
shorted since {<q, el> , <e2 , e3> } is balanced, and el occurs at B while
e4 occurs at the adjacent port D. Thus, the assumption N > 5 is
incompatible with a valid computation. It follows that N = 5. Hence
d is linked to b. This completes the proof of the lemma.

It is now straightforward to prove correctness. We note that the
negative ports of a box correspond to the arguments of the head
literal of the clause from which the box is derived. We will show
that a set of interacting events at these ports must satisfy the
predicate of the literal.

PROOF: By downward induction on the depth of the events. Consider
events of maximum depth first. These must occur at a box with no
positive ports (otherwise there would be events of greater depth).
Such a box corresponds to a clause with empty body, i.e an assertion.
In this case, the relation associated with the box is such that events
satisfying it satisfy by definition the predicate of the head literal.
Therefore, the Consistency Law ensures the result for events of
maximum depth. Now consider a set at depth n, w ere n l -
the maximum depth. Assume the result is true for all depths greater
than n. If the current box has no positive ports, the result is true
as before. Otherwise there are events at the positive ports that are
coactive with the set we are considering. These are linked t^ sets
events of depth n+1 at other boxes. By ininction, these satisfy
head literal predicates for their boxes. It ollows the ev<ents
at the positive ports in the original box satisfy the predicates
the body of the clause. Utilizing the Consistency Law, the events
the negative ports satisfy, by definition, the predicate of the
literal. This completes the induction.

T
Events
are co
The

iW ".witO,' of. the ~head 1 U.t,:̂ »... ̂th.

conclusion). The body of the clause is assu respectively,
whose arguments correspond to the por s will be of depth
Assuming the events at 0 .are. of ̂depth ".^hose^E ^

the same as
nee linked
sfy this

/

\96
P a g e 9

p r e d i c a t e . S i m i l a r l y , t h e e v e n t s a t F s a t i s f y t h e p r e d i c a t e o f t h e
l i t e r a l t h e r e . I t f o l l o w s t h a t t h e e v e n t s a t G s a t i s f y t h e p r e d i c a t e
o f t h e h e a d l i t e r a l o f b o x A .

B y t h e p r e c e e d i n g , t h e I / O e v e n t s m u s t s a t i s f y t h e p r e d i c a t e o f
t h e c l a u s e c o r r e s p o n d i n g t o t h e I / O b o x , i . e . t h e g o a l c l a u s e . T h u s
t h e d a t a f l o w i n t e r p r e t e r i s c o r r e c t . W e w i l l n o t p r o v e c o m p l e t e n e s s
h e r e , b u t i t i s n o t h a r d t o s e e t h a t l o g i c c o m p u t a t i o n s w h i c h r e s u l t

n f u l l y i n s t a n t i a t e d v a r i a b l e s c a n b e m i r r o r e d b y d a t a f l o w
c o m p u t a t i o n s o f t h e t y p e d e s c r i b e d . a a t a t i o w

D E T E R M I N A T E C O M P U T A T I O N S

W e h o p e t h e m a c h i n e r y d e v e l o p e d w i l l p r o v e u s e f u l i n
I s S I X J r 1 ? ? a d o o t i t : ? h S f ° r ? , r e a t e r e " i c i e n c y . F o r t h i s p u r p o s e i t
p a r t i c i o a t i n a f n P ^ p o s l b l o n m e n t i o n e d e a r l i e r , t h a t e v e n t s

e a u i n t e r a c t i o n m a y b e d i s p e r s e d i n t i m e . I n t h i s
w h i c h a r e r J ! 9 a r d 3 c o m P u t e t i o n a s a s e q u e n c e o f e v e n t s
r a t h e r L t h r o u g h a s t r u c t u r e o f l i n k s a n d i n t e r a c t i o n s ,
c o m p u t a t i o n s w h i c h S e q u e n = e o f i n t e r a c t i o n s . W e m a y h a v e t w o
d i f f e r e n c e b e i n a t h a i - i d e n t i c a l i n s t r u c t u r e a n d v a l u e s , t h e o n l y
r e c u r s i v e a n d i t o r a M 6 V e n t S ° C C U r i n a d i f f e r e n t o r d e r . T h i
e x a m p l e o f t h i Q t o v e r s i o n s o f f a c t o r i a l c o n s i d e r e d e a r l i e r a r e a
s h a l l s e e t h a t f r o m a n V " ? ° r d e r f n 9 t o b e P r e f e r r e d t o a n o t h e r ? W e
r e q u i r e d f o r o n e m a v b 2 P ° i n t o f v i e w ' t h e b a c k t r a c k i n g
p r o v i d e s a p o w e r f u l i n c e n t i v e " r c h o o I f n g ' J h e bi l l o ldel l^"' ™ S

p o i n t t h e r e w i 1 1 " ^ e ^ e v e r a 1 * * v o t e n t i ™ l d d l e o f a c o m p u t a t i o n . A t t h i s
t h e w r o n g o n e i s c h o s e n w e m a v l a t e ! t r a n s i t i o n s t o c h o o s e f r o m . I f
h o w e v e r , t h a t o n e o f t h e ! , h a v e t o b a c k t r a c k . S u p p o s e ,
(p e r h a p s b e c a u s e o f t h e C o n s i s t e n c y r ? h 3 S ° n l y ° n e P l a c e i f c c a n 9 0

c o n t i n u a t i o n f r o m t h i l n * " t h e r e i s a n y v a l i d
s o m e t i m e . S i n c e t h e v a l i d i t v ' n f t - K h a v e t o i n c l u d e t h a t t r a n s i t i o n
o r d e r o f t h e t r a n s i t i o n s „ c o m p u t a t i o n i s i n d e p e n d e n t o f t h e
a r e g u a r a n t e e d " " n i J o t J a S r t . a V e l l * m a k e t h a t t r a n s i t i o n n o w . W e
w i t h t h i s p r o p e r t y a u n d o ? e - W e c a l l a t r a n s i t i o n
e v e r y t r a n s i t i o n i s d e t e r m T n a t e ~ T f A c o n l P u t a t i o n i n w h i c h
I t i s i m p o r t a n t n o t t o c t f u " d ' h ! 3 d e t e ™ i n a t e c o m p u t a t i o n .
T h e r e m a y i n f a c t b e m o r e t h a n o n * , ® t e r , ? l n a t e " w i t h " d e t e r m i n i s t i c . "
a g i v e n p o i n t , s o t h a t t h e c o m p u t a n ! F m i n a b e t r a n s i t i o n a v a i l a b l e a t
t h e f a c t o r i a l e x a m p l e c o n s i d e r e d i 1 n o n - d e t e r m i n i s t i c . I n
r e c u r s i v e c o m p u t a t i o n s a r e d e t e r m i n a c ! r * l e r b ° t h t h e i t e r a t i v e a n d " t e u m n a t e i n o u r s e n s e .

A s a f u r t h e r e x a m p l e , c o n s i d e r a f u n c t i o n Q F A C T d e f i n e d b y :
Q F A C T (0) = 1
Q F A C T (N) = N * Q F A C T (N / / 2)

c o m p u t e d b y t h e
e t h e r e i s

h o w e v e r ,
T h u s t h e

Page 10

IS")
iterative computation is indeterminate. On the other hand, N//2 is
uniquely determined by N, so the recursive computation is still
determinate.

It should be pointed out that not every network admits a
determinate computation. Some elaboration of this concept would be
required for more general applicability.

FUTURE DIRECTIONS

The formulation of the dataflow interpreter developed here may
not be the ideal one. It may be worthwhile to experiment with
different sets of constraints. There are many open questions
concerning allowable "box operations." The general problem of choosing
transition sequences to minimize backtracking needs to be porously
attacked. It would also be desirable to map out the relationship with

other models of computation.

The author is of the opinion that many of the earlier models of
computation have outlived their usefulness. The .^na™Wm^t^
develop models that correspond more close y fipviblv It is hoped
structures that practising programmers use so flexibly. It hoped
the present work is a small step in that direction.

References

-...,3 t.i4i Pinnffe. An Asynchronous

KUsiS- 114A'Dept-
of Info. and Comp. Sci., U. cai.,

[2] Dennis J. B„ First Version of ,, Data Flo. Procedure Language.

MAC TM 61, Project MAC, MIT (May 1976).

[3] Kowalski R. A., Algorithm = Logic + Control, Comm. ACM «, 7

(July 1979), 424-436 .

[4] Milne G. and R. Milner, Concurrent processes and their syntax,

h. ACM 26., 2 (Apr 1979), 302-321 .
_ _ ci/chpmci in Associative

[5] Holt A. W. , introduction to °ccur[e d * American Elsevier, New
information techniques (Jacks E. ' eu";'
York, 1971.

[61 Milner R., Flo.graphs and Flo. Algebras, ir «»•' (0« 1,791 '

794-818.
C n.ncoHnrp usinq connection graphs, J^

[7] Kowalski R. A., A proof procedure usi y
ACM 22, 4 (Oct 1974) , 572-595.

,8, Kowalski R. A., Logic for Probl.M Solving, Month Holland -

Elsevier, 1979.

Ibo

LDM - a Logic Based Software Development Method

P.Szeredi *
K.Balogh **
E.Santane-T6th *
Zs.Farkas *

(This research was supported by State Office of Technical
Development (OMFB)).

Abstract

LDM is a software development method based on the ideas of logic

programming (PROLOG^) and the Vienna Development Method (VDM). The
paper gives an overview of the main features of the language of

LDM, making also a comparison with VDM and PROLOG. An illustrative

example of the development of a simple assembler is presented,

finally the experiences in using the method and further plans are
summarised.

1. Introduction

•,T' ™ """" ̂ Development

r, °Ut " Hungarian instltut.s for
software development, S2KI and JJIM IGligZI. LDM 1, i.,..,., to

give more than its name eiDre=;«d- 4 +
3me exPresses it covers not only a method

lor the develoDment of software ^ *
, J . " s°ftware-ob0ectsf but also a language to

be used during development, and a svstem *»n + •
primarily deals with the il supporting it. The report
basis of the anguage, since it constitutes the formal
Dasis of the system and reflect* . ,

fundamental features of the method.

ST"-

s

l b I

- 2 -

LDM canie into being as a combination of two existing languages

(respectively methods): the PROLOG language P3 based on logic
and the VDM (Vienna Development Method1) [2]. Besides these LDM was

influenced by the languages IOTA CLEAR £3] and CIP [lj, also.
The starting point was the PROLOG language; its successful applica
tions resulted in the idea of trying to apply it for formulating plans
of software objects. The first experiments in this direction were
very promising. On the first hand PROLOG, as a sublanguage of first
order logic proved to be suitable for specifying and design soft

ware-objects. On the other hand execution mechanism of PROLOG
helped considerably in immediate checking, testing of the

specification during preparation. However, PROLOG is lacking
in tools for adequate handling of the plethora of data structures.

Exactly this possiblity whs found later in the domain notion of
VDM. Thus LDM adopted from PROLOG the logic-based definition

mechanism (and so inherited constructivity, that
is executability of abstract descriptions), and from VDM the
notion of domains (that is data types) and their handling.

With the help of domains and operations in LDM software objects

can be modelled on the whole range of abstraction levels.
Exploiting this possibility, LDM supports a multi—level development
process: an implementation can be reached from the specification

through several intermediate design levels having a lower and
lower degree of abstraction. Each level gives the whole descrip
tion of the object in question. Each level is a reformulation of

the previous one with some abstract notions replaced by more
concrete ones, (l'his is opposed to the other usual interpretation

of the phrase "abstraction level" when the lower level is meant to
supply the definition of the notions left undefined in the previous
level.) The idea of a multi-level development process is also pre

sent in VDM [_zj, however LDM aims at supporting this process by

language and system constructs, as well.

161

- 3 -

Objectives of LDM are partly the same as those of VDM:

- to support each phase of software development
(though primarily software design),

- to use a homogeneous formalism built on mathematical bases,

- to aid a design method applying several abstraction levels«

to give abstract, descriptive, applicative language elements
(types of objects, operations) for specification, design
phases, and concrete, algorithmic, imperative sorts for
implementation phases.

LDM differs essentially from VDM in that it is intended to design
software only, but not to define semantics of programming langua
ges. It is this restriction that makes it possible, for the goals
of LDM to exceed those of VDM in the following respects:

- LDM has a constructive, strictly defined and implementable lan
guage; therefore each level of the plan written in that langu
age can be executed and tested independently (from execution of
other levels^, while verifying the interfaces between neighbourly
levelsj

— language structures reflpr+ino- ^ . x "tmg the process of the software design
are introduced, both in order to Hi.ij t , divide plans into levels and to
decompose levels functionally.

r "" lans"ase a- *•" «...
Pl" illustrates the introduced notions.

A detailed description of the c„ ^ ̂ p0j.

2. Outline of the features of the LDM language

The LDM language is used for describing different levels of

abstractions which model software objects. Accordingly it

provides abstract notions corresponding to notions of data

and algorithms used in traditional programming languages.

2.1. Domains

Data appear in LDM as suitable mathematical_objects (e.g.

numbers, sets, functions)). The class of objects used for

the same purpose, having the same structure constitute a

domain.

The notion of domain corresponds to that of a data type, so

the expression "is from domain t" is equivalent to "is of type t".

There are simple and composite domains in LDM. A simple domain

contains some kind of unstructured simple objects (e.g. num

bers). A composite domain (e.g. that of pairs of numbers)

contains objects having the same structure and it can be

constructed from one or more domains by systematical appli

cation of some ob^ect_constructing_operation.

Beside simple and composite domains so-called derived jiomains can

also be defined in LDM. Definition of a derived domain does not

introduce new objects, it creates a new domain from objects of

existing domains (e.g. the domain of even numbers).

One can use so-called domain.expressions for identifying

domains in the text of a plan description (e.g. the domain of

pairs of numbers is denoted by "struct (number, number)»>

With the help of domain_definitions one can denote the used

domains by identifiers
(e.g. "pairs-of-numbers str^(number,number).).

The simple domains of LDM are the following:

number - the domain of integers;
• + a sinele object named by a ? the a - the domain containing a single j

"a" is any name determined by the designer ;

- 5 -

The Composite domains are the following (let "t",

"t^" denote any domain, "a" any name}:

list t - the domain of finite lists (sequences)
of objects from "t";

set t - the domain of finite sets of objects
from "t";

- trUC|t (V •••» tn) " the domain of structures (>rees),
i-th components of which are objects
from "tj";

HE C*l» *2 ^ - the domain of finite mappings, which ma

a finite number of objects from »t:" to
objects from -t2";

naBe^ 3 ~ the domain, containing those objects,
which are constructed from those of "t"
by the operation of naming lagging)
by "a",

C„ r, ,y def;ln;Lt;LOn of the derived domains is the following
{ P denotes any one-place predicate symbol);

- the domain containing all the objects
from both »t1" and "t2";

the domain of those objects from "t", foj
which the predicate "p» holds.

dleaiTdellhteroen:°nStrUCtS " ̂ the following

source-program:;=(Wt source-statement) suchthat wf-program

This means, that a
"source-statement", f0r whlcTJITp ^ °' °bjeCtS °f ^

r which the property «wf-pr0gram» holds.

tj; t2

t suchthat p

- 6 -

The language contains standard functions and relations for

the different kinds of domains.

For instance to an object SP of type "s—prog" the standard

list-operations can be applied: among others the function

"length SP" gives the length of the list SP, the relation

"S el em SP" decides, whether S occurs in SP or not, etc.

The notion of domain in LDM is almost entirely equivalent to

that of VDM. The only essential difference between them is

that LDM does not allow general (infinite) functions as objects

(only finite map objects are allowed). The reason of this rest

riction is mainly the intention to have a constructive lan

guage, and it is justified by the restricted programme of the

language (namely LDM is not for describing semantics of

languages). A less significant change is, that the operation of

composing structures and that of naming (distinction) is separated:

VDM structures (non-anonimous trees) correspond to objects of

form "struct (...) named ..." in LDM. Finally the notational

differences between the two languages are given by the reason,

that LDM aspires to be implementable using a restricted

character-set.

Operations

The notion of operation in LDM corresponds to the algorithmic

components of other languages. Operations can be described by

operation definitions. "Operation" is a comprehensive name for

relations, functions and procedures. Among them the notion of

relation is the primary, and the two others are reduced to it.

A relation definition is actually a logical formula of resticted

form £he character of the restrictions is determined by the

requirement of reducibility to Horn clauses - i.e. the possi

of implementation in PROLOG).

- 7 -

The notion of function in iDM is a syntactic one, the function

form is interpreted in the usual way as a relation (having U

additional argument). In this approach the *any-v.lued ,W

deterministic) functions are also included in a natural way.

Relations and functions can be used in the descriptive definitions,

in the phase of specification and early phases of design. On

those levels of the plan approaching indentation it is
necessary to write algorithmic definitions as well.

The so-called procedure definitions serve this purpose. These

on th b ^ f0rn,UlaS' "hi°h 3re - algorithm
on the basis of the procedural interpretation of (Horn-) logic.

i n t h e l * ^ * 1 1 1 8 t 0 p * B a r k * t l » t t h i s p r o c e d u r a l i n t e r p r e t a t i o n

r4l1 SUaee CdeSi6ned for the implenentation of software sjst.s

languages joining the LDM desic-n .
In th. case of procedure. Prosp.cti,, .ppjio.tiom.

» . o f g l o b a l ^ u " a d a l t l ° ° « 1 « . « « . ! » -

* relation ̂
two further are + a is interpreted as a relation having

™ Trtio<to th- *»d -
usual language construct. h,J- <•«•««•» "«

to the. „d reading their

are the already bUlldln£ blocks the operation definitions

l o g i c a l t Z Z , T : , " "
•» the „h, of the ubmi —

introduced to denote t h Nation schemes are

conditional, case struckCfop ««
and bounded quantification).

14?
- 8 -

Besides the operation definitions LDM descriptions contain

some important additional elements. Every operation definition

must be accompanied by a type specification, which fixes the

type of the arguments of the operation. The already mentioned

global variables can be introduced by variable definitions.

Finally, there are additional constructs which can be used for

structuring the plan; see the following section.

The notion of the operation in LDM - as delineated above - is

based on logic, or more exactly on PROLOG. This approach -

besides assuring the executablity of the plan {plan variants),

makes the plan itself more concise and simple. Here primarily

the following well-known feature of logic (relational) programming

is referred to £6j: the same relation definition can be used for

computing different functions, by changing the input-output role

of the arguments. As a simple consequence of this feature the

analogue of construction "let mk-D^...)^ ..." of VDM (which

breaks down a structure into its components) is assured in LDM

automatically.

2.3. The structure of LDM plans - language elements provided for

structuring

As already mentioned in the introduction, the purpose of LDM is

to support a multi—level design process going from specification

towards implementation. Accordingly, an LDM-plan is divided into

levels: a plan description is actually a sequence of level descrip

tions. The main components of level descriptions are the domain and

operation definitions introduced in the previous two sections. Thsse

are framed by the so-called define- and need_-_sp_e_ci_fications.

The notions, with which the level provides the external world,

are listed in the define—specification. These are the main

operations and domains of the software object to be realized,

which are defined by the level. In the need—specification we

give the notions used but not defined in the level description,

that is, we give our expectations about the external world.

- 9 -

The levels are the decriptions of different abstraction levels

of the sane software object. Therefore it is very important to

make clear the connections between the levels; the so-called

interface—specifications serve this purpose.

The main function of the interface-specifications is to fix the

correspondence between the domains and operations of two conse

cutive levels (for the domains using a relation and for the

operations by a logical formula").

Beside structuring according to the abstraction levels we also

feel that the modularization of level descriptions is necessary,

that is, their decomposition into independent parts is required.

In LDM the notion of the grouj) serves this purpose. The groups

are framed - similarly to the levels - by define- and need-

specifications. Outside of the group only those of its operation:

and domains are visible, which are specified in this frame; that

is, information hiding can be realized with the aid of groups.

The groups also can be divided into so-called plan-parts; a

plan part (or oriefly a part) consists of definitions related

rom a certain point of view, but without the above mentioned

-n ormation hiding property. The parts are useful for example

with ̂ T ̂ 3d0Pt 311 a part to the nexi level
without change; in this case on the new level it is enough to

to the name of the part (using the ̂ keyvc>rd)<

* A££^ij^n^LpM to a simple

After the short survey of LDM (riven in +K
LDM nl*n n-r given m the previous section the

rio*d-The «•-—-
three levels of the plan.

dinglTth/r61 T th£ SpeCifiCation the assembler (accordingly the name of the 1P,.I „ -

named "programs" says that a ^ ̂

well-formed list of + ^ 1106 SOUrce Pr°gram is a
of target st t a-events, and a target program is a list

target statements; also it is stated that the result of

l(/)
- 10 -

translating a well-formed source program is the list of the

target statements resulting from translating the source

statements in the appropriate order.

The group named "statements" of the level gives the structure

of the source and target statements, and defines - using an

appropriate address calculating function - the meaning of the

translation of a statement £with respect to the source program

as an environment). The LDM-program of this level can be found

after the figure. ("To ease understanding, the more complicated

elements are commented with an English language description of

the meaning of that element.')

Reading the program it can be seen that though this first level

of the plan determines the result of the translation, and it can

be executed (^the result of the translation of a source program

is built up from the translated source statements), this execu

tion is hardly effective. For it can be seen that the address

calculating function at every applied occurence of a label

repeatedly searches for its single ("uniquely-defined"_) defining

occurence in the source program.

For the sake of a more effective address calculation on the second

level in the group "dictionary" the auxiliary notion of the dic

tionary is introduced, and the meaning of dictionary manipulation

is expressed, but only declaratively. Also the group "statement"

speaks declaratively about the translation of a statement. The

structure of the program and the statements is the same as on

the first level; the respective parts are only referred am0)

here.

The third level describes a possible way of algorithmization of

the translation using a dictionary introduced on the second level,

namely, the plan of a two-pass translation. In this plan we gi,fe a

more algorithmic construction both of the source program, and of

the dictionary, replacing the implicit list and

no
u -

map creating operations by appropriate loop statements; on
the other hand, the address calculation is algorithaized by
introducing an address-counter.

The example is not typical from the point of view of the
general design method in the sense that the source and target
programs are modelled by the same domains on every level.
However, this example shows, that in this case also it is
natural to approach the effectively implementable solution
in several steps.

ft!
- 12 -

l eve l spec i f i ca t ion

group p rogram:
•////A////

source Y/A t a rge t yX t rans la t ion ^
p rogramY/A p rogramy/A of p rogram

ẐZZZZZZ2ZẐ MU ẑzzzzzzz

t r ans la t ion \
of s t a t ement '
s j * / / / / / s

l eve l in t roduc t ion o f the d ic t iona ry

rm7;/yy/y/////yy/yz777Y
Y/X same VA same VA ± , . . V/ y / X v X ~ r — j. Y A translation V Y / \ source \/\ target VA x- V \ / A Y A & Y / \ of program Y, \ / A programyA programY/A ^
V7Ar77T/// /// // A A/ ; / / / / /7T

source
s t a t ement

l eve l two-pass a s semble r

^^I2i/llZZZZ77/
\ s ame Y/ \ s a i r ' e VA
A source yA ta rge t yV
A program VA program V) ^ t r ans la t e

Aprogram

in i t i a l i ze
d ic t iona ry

"~7~77~7~/~7~Y / XZYL
X r e a d
A d ic t iona ry

WJzMM Ẑ̂ tzzzzl

ssmbier The structure of the first three levels of the simple

m
.Using T-PRCLOG for a long-range regional planning prohlpm

> I.Futo, J.Szeredi
Inst, for Coordination of Computer Techniques
H-1368 Budapest, Hungary

E.Barath, P.Szalo
Hungarian Town and Regional Flanning Institute
H-1253 Budapest, Huneary

T-FROLC-G is a very high level simulation language.
It is a tool for discrete event simulation and modelling, susolied

with the advantageous facilities of a logic based language /[l],[2],[)]/

There are two basic differences between FR~TOG and ?-?RCT.O-.

/I/ The goals of the initial goalseouence are proved
simoultaneouslv and not sequentially.

/2/ The iruth value of the facts /unit clauses/ may be
dependent on. time.

Simoultaneous proving of the initial goalseauence means, that a
separate proving procedure is initialized for each individual goal
of the goalsequence.

It may be supposed that there are as many theorem provers as goals
in the goalseauence.

These theorem provers use top-down, depth-first strategy.
The parallel execution is controlled by an only scheduler since

there is only one processor.
The theorem provers executing special built in medicates / e.g.

:send(message) / or using common logical variables in the goals of the
goalsequence can communicate with each other. .

They can wait for messages or for the fulfilement of different
conditions using built in predicates./ e. g. :wait(condition) ,
:wait_for(message) etc./

If a precondition in a :wait(condition) cannot be proved yet,
the corresponding theorem prover does not back track , but waits
until precondition becomes provable.

Back track may occur if called literal has no match or the whole
system io in a dead-lock because the theorem provers wait for each
0tner.

tie need an explicit handling of time because the real systems
tnemselves worx: and evolve in time.

TLW^oit0+deTribS their working axioms and conditions,
^ acnieved by them we have to speak about the

Time xacxor too.

procedure"^01'05 &n lnbernal time duration is assigned to each matching

or^inarvtun?tdnT'=n=2n su?P°sed to zero for the matching of an

Seema?cSngSSoceSur^ff:wherf'llfthe^ura^ioS'of ,
The suffix 5an be used Inly ^

if 1 initUcL^ConSei a-built in clock mechanism,
corresponding thswon PPliea with such suffix matches, then the
to the value "'of m ^ " prover becomes blocked for a duration equal

becomes^eoual^o^hp1"^ J_Dec°r|le3 reactivated if actual system time
increased by T? Sy3tem ti:ne in the moment of blocking

ihe^blrinnii^and'^th^en^of °f th? g°als "tak« tine".
be prescribed. " 01 Seal proving procedure can also

H3
- 2 -

Unit c lauses in case of ordinary uni t c lause are a lways t rue ,
thev a re not necessar i ly a lways t rue i f they are suff ixed by :before /?)
:a t (?) , . -af ter (?) , : f rcm(?- . to ? ?) . v '

fied then back t racking begins .
Back t rack occurs a lso i f the dura t ion of the proving procedure

exceeds the l imi i g iven.
A s imple example i s here to show haw the scheduler and c lock

ruechanism work.
/ I / ar r ives (somebody, somewhwere , vehic le , t ime) :

t ravels .by(yehic le , somewhere) ,
sys tem_Time (t ime) .

/2 / t ravels^ j -^TRAIM,UIEN) : dur ing/4) .
/? / t ravels by (CAR. , V/I5N) : dur ing (b) .
/4 / t ravels by (AIRPLANS, WISH.) :

f l ies_to(WIEN) ,
t ravels_to the_center_of(v/ IEN) .

/5 / f l ies to (v/ IEN) : d 'ur ing(l) . .
/6 / t raveTs_to_the_center_of(WI3N) : dur ing(l) .

f l n - / , X \ " V / I f :newf.ar r ives (?ET3R, WIEN .vehic le , t ime) .n i l , PETER) e n a 3
new(output(WTEN -vehic le- t ime) .n i l ,OUTPUT) s tar t lo .

We wanted to get c loser to the formulas used by those working
in the • f i e ld of s imula t ion. For th is purpose by process
we mean tha t speci f ic par t of the search t ree which i s t raversed by
a theorem prover Ll] . According to th is there i s a process correspon
ding to each goal in the goalsequence.

/ ! / and /4 / are ru les of . inference , /2 / , /3 / , /5 / , /6 / are uni t
c lauses wi th suff ix :dur ing/?) .

I l l i s a T-FROLOG goalsequence having ' two goals .
The. f i r s t goal i s^ to be proved by the process ca l led PETER,
whi le the second serves for pr in t ing out the answer .This second
process , named OUTPUT has to s tar t a t t ime uni t lo .
:new(goal ,procname) i s a bui l t in predicate for crea t ing a

process wi th a goal . .
The d iagram of the execut ion i s the io l_owmg:

r-• a r r ives(PE'nEP, ,V/IEN .vehic le , t ime) . sys tem t ime
v i s equal to 0

/ l / somebody:=PSTER
somewhere:=WI3N
t ravels by^vehic le . r f l iN) ,

sys t 'em_t ime(t ime) .
/2 / vehic le :=?RAIN

- : sys tem_l ime (oi rne^ .
back t rack

f-- i Y*<=; i~ f^os l i s to be olockeo. — o r 4 -he theorem prover ox the f i rs t goal ^ svscem t ime + the
t ime uni ts / " t ravel ing by^tra in / . _ r v i Q o + V i ' ^ T . t h a n 3/ ' the prescr ibed
blocking in terval i s 0 - 4 •= 4 i s f j rea .ner -
ena t ime of the proving proceau.e . ^ne

m

-3-

/3/ vehicle: =CAR system time
-: system_time (time) is eQual to 0

back track

The theorem prover is to be blocked for 6 tine units and as 6 ? 3
back tracking begins.

/4/ vehicle:=AIRPLANE
l~: flies_to ('.'I3F

travels_to the center_of(viEN),
syTTem_7ine(time).

75/

-:travels_to the center_of('//TEN),
sylfemj£ime(time).

Process PETER is blocked
for 1 time unit,/traveling/

As the second process has to start at time moment lo the next
action to perform_is the reactivation of PETER at time moment 1.

Tne system time is set to 1 by the clock mechanism and PE^ER
continues to travel.

/ 6/

•:travels_to_the_center of(v/IEN), system tine
system_time(tTme^ . ' is equal to 1

Process PETER is blocked
for 1 time unit ,

to 1 7*1 fy|tem time ls icrease<* by the clock mechanism and is set

-jsystem_time(timej . system time
built in predicate is equal to 2
time:=2

mn+ Proc®ss PETER succesfully completed its tas', T'^e n»xt
time i« serto0^1^ T)rocess OUTPUT. The system sex to lo oy tne CIOCK roechanism.

-1 output(v JEN -AIRPLANE-2^. svstem time

built in predicate 18 6QUal t0 10

u

by AlSLNE°2ra«lve8VI^2tw1atnSit8^: travels to WI3*A

devel|;SS°o^SJjrSrJeSXnr^iSS^-
Tne goals in the model reflect th« + v certain time bv the cnnn+i^^ iect tne s^ate to be reacned in

resources. ' using duferent common -shared-

r?Prese»ted by. a process.

developement of the cou^t^0'"1 iS "in<3 t'ae aP?ropriate way of P men. ox tne counties according to the goals prescribed.

f tb
-4-

The system is composed from the hierarchical rules of county
categorisation, the data describing the actual state of a county
and the data transformation rules requiring time. The latest means
that rules are given describing how many time is required to reach
a given value of a data type from the actual value of the same
data type.

Here we give some examples of the different logical assertions.

the_level_of _the_urban_developement_of_an_area_in the_integrated_
soace structure(area,DEVELOPED HIGHER THAU THE AVERAGE)

:if(" " " "
m_the functional-territorial structure(area,INTENSIVELY_

DEVELOPED)
or

in_the_functional_territorial_structure(area, INTSNSIVELY_
D EJVSL OPED_FR OH_T HE_PO I NT_0 F_V IBW_0 F_T H E_PR ODUOT'10N_
AND_SETTLEMENT_?ACIII?IBS)

or
in_the functional_territorial_structure(area, INTSNSIVELY_

D£VEL0P3D_PR0iI_THE_P0INT_0P_¥I3W_0F_THE_SUPPLY)

and
in the technical_nhvsical_territorial_structure(area,

INTENSTVELY_DEVSLOPED)

or
in the technical "Dhysical territorial_structure(area,
~ ""INTENS IVELY JbE7EL0PED_FR0M_TH3_?0 INT_OF_V IEW_OF_

THE_LAND_USE j

or
in the technical nhysical territorial_structure(area,

"INT ENS IVELY D3VEL0P3D_PR0M_THE_PO INT_0?_V IEW_0 F__
NETWORKS)) .

There are some 5o inference rules of this kind in the system yet.

the numb-er_of_industrial_workers_i.n(ABBA,NUMBER) .
the number of_agrarian_workers_in (ARnA,NUMBER/.

There are some 2o data of this kind about every ARivA.

the number of_industrial_workers_in(ARSA,NUMB3R2):
"the number of industrial_wor-Kers__m^/v^'A, b J/ldi-Rly ,
passes(t).

passes (time):
hold(time).

:hold (time) is a built in predicate. It serves to block a
process for a duration equal of the value of Lime.

The system is under developement and only the first experimental
version works yet.

) Jb
- 5 -

R e f e r e n c e s

l*i5 K- Szenes

t o iS^ra^&rLiss"1"lMeu8ge
S J R . X o w a l s k i

L o g i c f o r p r o b l e m s o l v i n g
U n i v . o f E d i n b u r g h K e m o n o . 7 5 1 9 7 4 .

$? ^ n r ? p . V / n r r e n ' L * M * p e r e i r a

S I G P L A N L o t i c e s g V o l ! 1 2 ^ " ? a u ^ l m * * 1 ™ C o m P a r e d w " h I E ?

m
PROLOG applications in Hungary

E. Santane-Toth, P. Szeredi

Institute of Co-ordination, of Computer Techniques /SZKI/
HUNGARY 1368 Budapest Pf 224

Abstract
The paper makes a-n overview of the main PROLOG applications in Hungary.
For each application a short description of the problem and the main
characteristics of the implementation are given. Finally the paper
summarizes the experiences of the described applications.

1. Introduction

Since 1975 /the implementation of the first PROLOG interpreter in Hungary/
many problems have been solved using PROLOG; problems previously either
unsolvable /in traditional programming languages/ or solvable only by
applying complex algorithms and considerable effort.

A group in Nil! IGUSZI began PROLOG development and application programming.
The first applications already showed how clearly and^ simply programs could
be written in PROLOG solving problems_needing the facilities of symbol
manipulation, pattern matching, serching and deduction.

A version of the PROLOG interpreter written in CDL1 was installed in 1977
on a SIEMENS 7.740 /and later on a 7.755/ computer of SZKI, under the oper
ating system BS2000. This installation served as a basis for later install
ations on computers compatible with the^IBM sys.em 36 . ..eanw e
interpreter was extended with the facility of mteractivi y among
possibilities.

In 1978 KSH OSZI* provided support for research work_ aiming at a search
for new application areas for PROLOG and aid for solving new Problems in
PROLOG. The PROLOG applications in Hungary were studied in this framework
[Santane-Toth,793 the results of this research served as a primary
source of this survey.

In the following we begin with an enumeration of .appliSt-
Hungary and then we give a review Of the more £
ions. Finally we shall summarise the experimental ^
comments on the basis of current PROLOG applications. The bibliography
comprises the papers, research reports and internal memos published by
Kmgarian authors to date.

We should like here to thank everybody working in the d^elopment

ication of PROLOG for their help; everybody ^tionedinthis ^terial^nd
for the contributions of those who helped in putting together P P

2. PROLOG installations in Hungary

Th. table b.lo. ,ho»
order. Due to the fact that the mterp ~ n + her machines. /The reference
no special difficulties *.n transferring to o«,er ,c,79]/
and users' manuals are [ozeredi P,77&j, [_ , A I-

T̂ e Institute for Application of Oo.put.r Tecbni,,. of tb. Central
Statistical Office

- 2 -

Year Institute

1975
1975
1976
1976
1976
1977
1977"
1977
1977
1977
1978
1978
1979
1979
1979
1980

HIM IGUSZI
OTSZK
EVTG
ASZSZ
ELT3
MUM SZAifTI

Machine

ICL 1903A
ICL SYSTEM 4/70
EMG 840
HV/B 66/20
ODRA 1304
ICL 1905

Op. System

GSCHGS-2
MULTI JOB
tain /+mix/
GCOS
GEORGE 1-2
GEORGE 1-2
CS0RG3 1-2
GEORGE 1-2
BS2000
DOS As
OS MIT
0S/VS1
BS2000
DOS
OS MVT
CMS

z.r - . „ . ICL 1905
Kobanyai Gyogyszerarugyar ODRA 1305
jg ODRA 1305
SzSoK SIEMENS 7.755 SSS S 370/145
SlSLzi Im 370A45
PL^F • SIEMENS 4004
0X1 So
SZTAKI IBM 3031

_ Tables PROLOG installations till early I960
Xt is worth noting1 her« +hn+ •
MPROLOG is now being develop ™,0L0G interpreter, the so-call,
pne of its IjC6vea,79l^
in PROLOG and offers better rrorrq • ' •. facilitates modular program:

better programming aid and execution mechanism.

3' .PROLOG applieat.inns in

PROLOG ha3 been used for anvo™i
it with PROLOG" 1 well representiT'the Sfi ^ Th® ajlthol°^ "Ho» t0 s°:

successfully be solved usin- the lanl.f o r® 8P0ciai problems could
foliows a list of successful Hungarif^ROLOO0"156?- aoo?rdinS t0 topics, if
the year of realization, the cnrm.V^ PROLOG applications. For each of tb
adapted, and the relevant publicati r °H wiucil tile Program was developed o

P bllCatlons Siven immediately after the tit
3.1 Applicationa it.

— * w

3>1 ^^^^^SS£-iS-^lg_^l^rnaceutical

OF°pfraSssT^ T° CALCUIAT2 PARAMETERS PREDICTING BIOLOGICAL ACT1

1979; SIEMENS 7.755 , fcfervas,79cJ.

research. CForpre^ti^h^activitCrea3inS inportance in phamaceut
features of peptides is needed. & H°del rev9aling the specific

mode^?^nAftP^fr"Sy8tera "senerat93" a family oi
the biological activity on the'basi a % ff® tl119 facilities prediction o
chemical structural units /substriturL ^ m°dsls- Th® 8Y8ten infers
to*the°t e^+°al/' ?omP°3ition of peptides in^rai?ln®nt3// froni the aminoacid
tu, nits. This is done by PROLOG nr ' assigns numerical parameters
by pn™t9r3 ths biologicS acti^?.ejn3*,The ^lationships between

J P0RTR.4N programs. S1°al act^ties of peptides is investigated

LN3C,0Lisboa,C*1979.a'' L*M* Pereira:
Ro.v to solve it with PROLOG?

m
- 3 -

3 . 1 . 2 PROGRAM-SYSTEM SUPPORTING RESEARCH MANAGEMENT IN THE
PHARMACEUTICAL INDUSTRY
1979: SIEMENS 7.755 ; -

The program-system helps to solve research management problems in the
pharmaceutical industry by information retrieval and automatic inference;
the latter aiming at finding new applications for drugs and pesticides.
The languages of the system are PROLOG and EOT /the editor of BS2000/.

3.1.3 A PROGRAM-SYSTEM TO CALCULATE PHYSICO-CHEMICAL PARAMETERS FOR
DRUG DESIGN PURPOSES

1976-78; ICL 1903A , ODRA , SIEMENS 7.755 ;
£Darvas,78aJ, {Darvas,78d] .

In computer-aided drug design, a considerable part of the calculations is
based on the so-called logP value of components, a value indicating their
lipophillic character. The manual calculation of this value is time-consuming
and results are of questionable accuracy. In 1976, when the PROLOG program
was written, only one computer program had been published for this calculation.

3.1.4 PROGRAM-SYSTEM FOR PREDICTING DRUG-INTERACTIONS
1975-79; ICL 1903A , ODRA , SIEMENS 7.755
[Darvas,763, [Darvas,78oJ , [Darvas,79bJ, j_Futo,73aj .

Modification in clinical effects may arise when drugs are parallelly
administered.The so-called drug-interactions constitute an aspect of medical
treatment which is not neglighle. The present system considers the physico-
chemical, pharmacological and chemical properties of drugs and, starting
from these, infers the possible drug-interactions.

3.1.5 NUMERICAL ANALYSIS OF LIGAND-BONDING SYSTEMS
1979; SIEMENS 7.755 ; [Kofalusi,79e].

The PROLOG program generates a FORTRAN SUBROUTINE_segment which calculates
the proper initial value for the numerical analysis of ligand-bondxng
systems. The program is based on the program-generator described in 3.7.2.

3.1.6 TESTING AND MODELLING OF SELF-REPRODUCING BIOCHEMICAL PROCESSES

1979; ICL SYSTEM 4/70 , SIEMENS 7.755 ; -
The program permits the analysis and modelling of any biochemcal self-
reproducing cycle. With the replacement of the built-in date-base any cycle
can be examined. The input data of the program are the formal_reaction
equations; in the course of processing selected are the nutriments, end-
products and attractors. The program is an appropriate example for tne fast
andconvenient definition of structural system-models in PROLOG; these
advantages come from the use of logical expressions treatable by PROLOG.

3.1.7 SEARCH OF ANALOGOUS SUBSTRUCTURES TO ENZYME-SEQUENCES

1979; SIEMENS 7.755 ; jj.iatrai,79~].
The program serves as a means to find the structures of enzymes with known
sequences and similar mechanism, that are presumably relevant i0m

viewpoint of functioning. The program is suitable for the search of analogous
primary sequence units of any size and having any number of error-spo .3.

I to
- 4 -

3,2 Information-retrieval system*.

3.2.1 A LOGIC-BASED CHEMICAL INFORMATIONAL SYSTEM

1976-78; ICL 1903A , ODRA , SIEMENS 7.755 ; D>arvasf78b, 79a].

proV̂ r +in WHm,rMd raows

and biological properties as well PROLOG structure and chemical
form of clauses. This allows !" th° etora«e oi in the
of logical statements that are connected ^0^0°,+ pr°grams ia tha fo™
/as conditions/, and refer to the ehem-ici the structures and substructures
compounds containing the relevant str^tSe^! bl°l0glCal ProPerti8s of the

3.2.2 ̂ INTERACTIVE INFORMATION. SYSTEM FOR AIR POLLUTION CONTROL

1977; ICL SYSTEM 4/70 ; [Sentl,?^, [Fut6,78a].
This program-system handles data .u ^ .
industrial pollutants in Budapest i^th 1̂3 coaoentration of seven
county having 15-20 districts. The svstem ̂ <̂ untles of ̂ gary with each
of working or planned plants is belnw th checks whether the air-pollution
calculates the height of the chimne Permitted level. If not, it
moreover it looks up in its data-base"anr3̂ t0 redU°e the c°ucontration,
equipment appropriate to the given inrt..^'i. r®c°mmend3 industrial filtering
!-+r?a,. êraCtive1̂ the basic motive of iS technoloSy. The system
with different approaches /e.g. managers ^ Panning was to enable people
to use the system. agers, designers and research workers/

1977; r™r:z:zr° °iti ™ ̂
This PROLOG program tha+ ®oo
expected when_ applying different^esticida; efamiaation of results to be

lnteractions among the th^ear t? ̂ V®n 8ituati°na, can be used
^^eases pests, etc. detrimental „ following factors:

- insecticides, pesticides «t! ?° a culture:
- cultures, application areas of given diseases;
3 3 AnnT insecticides, pesticides, etc.
3 A££l̂ ^i^h^unding indent--..

3-3.1 PLANNING OF A ONE-TPVPT mere,
1975; ICL 1903A^- _ 1 SH°? BUILDING USING PREFABRICATED PANELS

This program is the first psnmn

^rS!^t\^r 3̂d°---n Hunsary; u piaas a -

eleomt3°/geometri®ei?"PMeis.^Th^daS^/the0 be Con8tructed from

the form of assertions^ thi SUP?°rting s?r^t£/eJ-rf?bri°ated
parameters of the Program. As initial e exvea in

ceiling are given The n°P 411,1 the int*nsitJ «S^hf ̂ 1 the g8°^tric sice
of the ceilint T , proSK® determines the balanced load of the
point of the ceonst ^ and oilooses the elementfr0undPlan /the distribution

the geometric and statical condition^. aP?r°priate ̂ om the view-

!%l
- 5 -

3.3.2 ARCHITECTURAL PLANNING OF PANEL BUILDINGS
1976; ICL 1903A , R22 ; Qiarkusz,77a, 77bJ .

The program generates the ground plan variants of flats with given size,
number of rooms or halfrooms, using the panel elements given in the data
base.

3.3.3 PLANNING BUILDINGS WITH MORE THAN ONE LEVEL
1980; SIEMENS 7 .755 , IBM 3031 ; £kirkusz,80a, 80b],

The program system provides support in the stages of planning of buildings
with more than one level. First it generates the variants of groundplans
of all flats according to the special requirements of the customers. The
customer is given the possibility to classify the variants, to choose the
most advantageous ones, and to exclude the less favourable ones.^The
program assorts from chosen variants the plan of the whole building
satisfying requirements for the horizontal and vertical arrangements}
the given measurements, and the conditions depending on the building site.

3.3.4 AUTOMATIZED SOLITAIRE FOUNDATION PLANNING
1979; ICL SYSTEM 4/70 , SIEMENS 4004 ; [Holnapy,79j.

The problem solved by the program is the selection of bodies, usable under
columns, from a given fixed set of system components /defined by assertions/.
An extended version is experimentally tested now, where an arbitrapr system o
loads /load list/ and a distance list can be given in the_goal statement
and the result consists of the identifiers of the foundation bodies to be
used at the loading forces. . .
Notes a PROLOG program is planning for the simulation of the result
architectural selection based technical planning process.

3.4 Sofbyare applications

3.4.1 PROGRAM GENERATOR OF COBOL PROGRAMS FOR INPUT CHECKING _

1978; SIEMENS 7.755 , ICL 1903A ; [Lang,78jo
The program generator is written in PROLOG end is applicable for generating
ANSI COBOL programs to be used for checking input data. The generated program
outputs the valid data on an output file and print
/indicating the cause of the error/. The structure of the files maintained
by the generated COBOL program and the aspects of the validation are defined
with parameters coming either from terminal or rom

3.4.2 GENERATING COBOL PROGRAMS ACCORDING TO COLAMI STANDARDS

1979; SIEMENS 7.755 ; jFuto,79dJ.
The program generators written in PROLOG generate programs according to the
me gc io , avvr The* frenerators create programs for

COBOL programs and the work to be done can o .
parameters given either from a terminal or from

t yx
- 6 -

EROM-MAPPING OF INTEL 3000 MICROPROGRAMS

1978; SIEMENS 7.755 ; Jszeredi J,78] , JAFPL,787.
INTEL 3000 microprocessors have a special nrmrMn,
The program store can be thought of "as a matr?T^i*h aechanisn.
the matrix pointing to its successor/s/ There i \ 6V8ry-1?3trUCtion ia

matrix nodes where a successo- can ho i j / °" y a llnated number of
the predecessor/, furthermore the form^f0?' v?*F* 10 tbe 3ara8 coluan aa
of the instruction. taerm°re the form °{ limitation depends on the sort
The PROLOG program performs the task of add roe* » •
consists of the partially loaded store " assignment. Its input
gives either a possible mapping plan as input " °pr?ST?m* The PR0L0G progran
of mapping the given micropro™ - in a °^lndlcates th« iapossibili p r o g r a m - m a r e a s o n a b l e a m o u n t o f C P U t i n e .
3.4.4 ANALYSIS .OF' PROGRAMMING STYLE AND EFFECTIVENESS

1980; IBM 370/145 , [bero.So].

correct PvfLfcS eyntactically
style, effectivity and complexity aspect ? a?C°rdlng to structural,
the quality errors in the programs the o^o addition to the recovery of
for the correction. During the structure? °S1?m fyst9m suggests alternatives
prints /in the form of hierarchy d-iao- * analysis the system reveals and
program in question, and notes" *he ^tr + losical construction of the
The program system ks implemented m3^fural ccrrections to be executed,
hierarchy diagrams is written in optimizing11?!/^00' ^ m°dule drawia« the

3.4.5 A SYSTEM FOR VERIFYING PROLOG PROGRAMS

1977-78; ICL SYSTEM 4/70 , SIEMENS 7.755 , TBALOGH 77L
The system aims at proving partial '
system, consisting of a pro-am for'^8<\ 33 °f PROLOG Pr°&rams. A sub-
or general theorem proving is usable h" & tran3foriaation and a progran

t»+e°re? f°ving* Tbe interactive forinul o°+6V6rJ. by itself' for interactive
natural deduction on the basis of either formation program performs
transformationa! /inference/^chLas TL " °P int8ra=tively generat

on the resolution principle * 5 ®enerai theorem prover progran i:
inis is an experimental system The + r

««, the ee„o.pt»,l 'S

3-4.6 PU.TO S0!T,iM. ̂ ̂ oBjE^

1978, ICL I903A , siBffihs 7.755 j- 7
The sxperiences with PRnr no • -**
language f°r solving problems^ajeable r£Tealed the suitability of the
Se 1! ^ languages. The proSafs wj, t+° 7-Acuities or not at is/r-s* - Ziir^r«*
1 ' t?" «« tie applioAo/ZmSS "" a»r«S FS0UX1 coaieg .
system ~T j experiment. The plans lan£uage for planning might be
system, a module library maintenSce *******, a file mfintfnance

experimental application

data^handV^ 30ftware /and hardware/^ob ' ̂ 4^° Pr°Ved that PR0L0G is usable
approStr-fhl1^163' "real means for°intbUt ^ ^ «»
based* lannnage for° ff °f planninS. Having dra^th™ testlnS a"11 M

ievelopnent /?„. S/ ^

- 7 -

3.5 Supporting computer architecture design

3.5.1 BTALON-PROGRAM GENERATOR FOR THE EVALUATION OF
HIGH-LEVEL LANGUAGE ARCHITECTURES
1978; SIEMENS 7.755 ; [kiss V, 78^ .

In design and comparative evaluation of High-level language architectures
for the^ analysis of effectiveness such programs are needed that have average
statistical features for given high-level language /e.g. rate of occurence
of instruction types or of data types/. A PROLOG program was developed as
an experimental tool, for the purpose of generating etalon programs. The
program input consists of the syntax rules of the given language and the
statistical features we want the generated programs to have.

3.5.2 A SIMULATOR FOR EVALUATING THE DESIGN AND THE EXPERIMENTAL TESTING
OF HIGH-LEVEL ARCHITECTURES / DELBOLSIM /
1979; SIEMENS 7.755 ; [kiss V, 79*].

The basic purpose for the development of DELBOLSIM was to provide computerized
support for the design process of language-oriented computer architecture.
The system is applicable for:
- measuring quantitative factors characterizing the effectiveness of the

given architecture,
- the experimental validation of the specified architecture by the means

of running test programs, and finally,
- measuring the dynamic statistics of the use of the source language.
The objective of the development of DELBOLSIM was to support architectures
complying the Canonic Interpretation Form of programming languages.

3.6 Simulation

3.6.1 A VERY HIGH-LEVEL LANGUAGE SUITABLE FOR THE SOLUTION OF PROBLEMS
INVOLVING PARALLELISM

1978; SIEMENS 7.755 ; [Futo,80aJ.
The interpreter of the language is capable of running an arbitrary number
of PROLOG-like goals in parallel. The processes executing the goals can
communicate with each other through logical variables, the data-base and a
simple demon mechanism. In the case of a deadlock further paths are tried
through backtracking.

3.6.2 AN INTERPRETER FOR THE LANGUAGE T-PROLOG

1980; SIEMENS 7.755 ; [Futo,80b, 80cJ.
T-PROLOG is an extension of the language cited in 3.6.1 with a capability
for explicitly and implicitly handling time. This makes T-PROLOG into a
full-fledged simulation language. There is now a project underway to use
T-PROLOG in the examination of the long-term regional models of VATI /an
institute concerned with urban development/.

3.6.3 GENERATING M0DEI£ OF TELEPROCESSING NETWORKS

1980; SIEMENS 7.755 ; -
A PROLOG program was developed for supporting the generation of simulation
models of remote data processing networks.
First phase: the user enters graphically the network topology to a display
screen.

I't1
8 -

Second phase: the system enquires the network elements to be placed into
the nodes, the line algorithm for the edges, and the type of the channels
transmitting data.
Third phase: comparing the given data to a data base the system checks
whether the given hardware elements were permitted in the given nodes.
Fourth phase: if the check gave positive result then the system enquires
the data flow protocols. The protocols give the information concerning the
istribution of the data quality among the terminals and the central

processor /remote data processing network with one processor/.
model SaGPSS°/SIAa/biapiS °f the. ?^en data the 8>'3ten' generates a simulate model ox GPSS /SIAS/ language, which can be executed immediately.

nodes°detcWatCheS ^ thr0U^put of the ^tern, and waiting queues at the

3.7 Other applicatidns

3.7.1 COMPUTERIZED MORPHOLOGICAL ANALYST'S OF HUNGARIAN TEXTS
1979; SIEMENS 7.755 ; jjiss Z, 79J.

The problem of parsing Hungarian texts by computer hasn't been solved vet

j i f f i c u x , t o " i 0

program itself ncLally represents f ^ relatively easily- The
analysis of the Hungarian verb forms and the v " ^ f°r th° morphological

analysis of the tagged nouns. other for the morphological

3.7.2 GENERATING THE FIRST N FORMAT TKT?OTYTAmrtmn «
FUNCTIONS OF MORE THAN ONE VARSBLE °X™ VEHY C0]S?LEX ^

1979; SIEMENS 7.755 , {K6falusi,79bJ.

during generation phasl1 every9variable f^the^3 & F°HTRAH subroutine;
factored to the left wherever it -i e manipulated formulae is
routine computes the substituting\„?°S i®* The generated FORTRAN sub-
the variable values characterized bv+T th° dlfferential quotients for
The PROLOG program is based ^ « «t A ® S1V®n P^^ters.
a graph constructed by the author 1! spa°9 c°ncept to be represented by
This concept of state space might 'beco-^a &t % first tine in tbi3 program
[jCofalusi ,80]/. mght become a new element of PROLOG /see

3.7.3 SIMPLIFICATION IN MATHEMATICAL STRUCTURES
1979-80; SIEMENS 7.755 , |>«f *ltoi, 79.1.

iflfiil Vft r\-P + u „ -J
> Û j-axum, fy a / #

The objective of the proerram * ,
expressions allowed in a very broad iS th® sinPlification of
/including groups, rings, fields ', mathematical structures
the expressions represented by binarv t:ree^wf'* etc'^' The Program treat
ana looks m the forward directionfor„ 3 bottom-up, from left to right,

n the case of an associative chain of oner + ' bacl^*ard for more levels
sorting according to the appropriate orrffr^ Pr°Sram performs
simplifications according to the operation^5 a®P8ct,s» ma!<es reductions am

ructure3 of n arguments finally further 511(1 then creates prefi:
many further simplifies these structures.

- 9 -

4. The experiences and conclusions derived so far
from the PROLOG applications

As it was already mentioned in Section 1. the installation on the SIEMEUS
7.755 computer of SZKI can be used in a relatively comfortable way, and
provides one of the largest memories for the users because of the virtual
store facility. Even this store is not big enough for quite a lot of
practical problems. This interpreter works, however, relatively slov/ly,
so the programs need a great amount of time to r-un /this is partly due to
the paging required by the virtual store handling/.

The users who .have already solved a lot of problems using traditional
languages definitely required the facility of calling subprograms and
procedures 'written in other languages. The objective of the development of
the interpreter version {jCofalusi, 79] was to solve this problem.

A number of users required the incorporation of certain procedures into
the language, especially ones concerned with floating point arithmetic.
The fulfilment of the demand mentioned above would serve as a possibility
for solving this problem, too.

The majority of the users who had got used to the traditional languages
complained, that having studied the presently available PROLOG reference
manuals.they couldn't write by themselves a PROLOG program solving a given
problem. They were not able to acquire without help neither the knowledge
necessary for the application of the method, nor the proper attitude. Thus
the question: "How to teach PROLOG?" arises. This problem is studied for
example in [Kofalusi ,79} and [Kaposi,79a] .

There is a system called MPROLOG under development which is designed on the
basis of the experiences gained from the PROLOG applications until now, and
the development conceptions described in [Szeredi P, 79 J . See about the
subject [3endl,78, 79, 80] end [Koves,79] . The system is intended to reduce
all the problems mentioned above, and even to solve optimally some of them.
The store required by the user program will he one fifth of the present^
one, for example. A new reference manual will appear that is structured in
a more didactic way and contains exercises, too.

The applications gave also rise to problems caused^by the incompability
between the character of the problem,, and the /strict/ tree-traversing ^
strategy of the PROLOG interpreter / see e.g. [Kiss Z, 79J, and [K5falusi,80J/<
According to the users the formulation of the problem xn PROLOG was even then
worth the effort, if, for the sake of efficiency, the program was to be
transcribed into a traditional language. It was worthwxle, as they couldn't
formulate the problem previously in a traditional language xn an appropriate
way, quickly and clearly. So PROLOG proved to be useful for them as a
language for supporting design.Furthermore, the users could advantageously
exploit the tools provided bfPROLOG for supporting trace and other
conveniences, and so check and test the plan itself. However, as the appl
ications described in [AP?L,78] also showed, the current PROLOG version is
not aoolicable for design of software /and hardware/ objects, because of it

language for supporting design /the LDM/ is under development / s ee e .g .
j/Szerecli P, 80] and this language will provide for a solution of this problem.

According to the opinion of the users if somebody has already learned to
follow the way of thinking PROLOG requires, the language helped him very

his problem.Having acquired some practice the Programmer
could tost and correct, his program very quimclT and easily. „e note, that

- 10 -

those services of the above mentioned system uppot nr
«»d the interactive u.^e « b.

Se'ĥ .̂ .e'pMê c'at̂ S3 SjSTffy"," • th°im^'»
•id.lp eg.d languages, «,...'tooSLX™ Lm°f
programming than traditional means PHOT/v- i = =! ̂ easier and faster
language specially for thnsp urobl e^'q" ^ >,; •L-ea3- 1:n-lamentation
because PRnT.nn m,pr„«e.„ t-.+1 — olvable bv means of traversing » +.»,
search algorithm" * thS da^ representation and the description of
Bibliography

are connected or deal with SFRm2g°103 821(1 r9p0rtS of Hungarian authors which

Liadrdk,,76j M-ti. The ee.pl.t,„„e oi ».„

Univ. of EdiSurJh. igye. 2 lan^^- HAI Report, Ho. 21.,

jAPFL,78] The application of the ppotj-ii- i
and hardware objects Volumeb0 the design of software
SZKI reports. SOFTTECH D2? po* on /Hungarian/ NIK ICUSZI and

C"«lo6d,75j K.Beiogh, £. MB™ " ' ̂ ""SZMKI'

logic. /Hungarian/ Proc o^the*'1'11^10113 °f th® mathematical
Systems'75" , Szeged^S. "Pr°S™^

[Balogh,77j K. Balogh, I. Euto, K. Labadi- The d
program verification system. Nl^ is^r ^0'1 °f a PR0L0G

[B.ieeh.79fl mi' s-p" M"

features of programs. /Sun^r ̂ a/r^-"ng tlle proof oi the semantic

[=aioSh,79a j. Baloeh_ E. slt4n:.^t777 <7™. im.

f£:Ssrsnsr- °r

due::tion./0f'ic/hstioa3/'!il A- Vessprem. 1,. Some

report. SOPTTECH D38, SZAmki, 1979 AKSWER<' /Hungarian/ ELT3
J. Bendl, E. Varra w v
interpreter of a modular°PR0L0G Bal°sh: The specification of ar
/Hungarian/ NIM TriiqvT rttu^OG

CBendl,79a3 J. Bendl, Gy. Lu reP°rt* S0™H D20' SZ^> 1978.

checking air pollution2! M^nforn"^-interaotivs system for

jBendl,79b]

MPrSmg!°%SJIrian1/Tiy ^

iendl,807 J, Bendl, P. K5ves p ' _ IG"SZI r9P°rt for SZ^1, 1979.

Jiarvas,76j p. Darvag p ' * Z9redl! The «?H0L0G system /These proc./

"S!e^^-0f*druS0in^racUoeni:/^r°SraJI1/0r the «*tonatie
the ^plication Qf C0aputor • /Hungarian/ Proc. of the coll.

PP 413 4??18nCeS Md bi°l°gy"/ed ^0Sand cybernetics in the
PP-413-422. sy /ea. D. .JUszka/, Szeged, 1976.

{Ban, 79]

[?endl,78]|

- 11 -

jl)arvas,78b]

jparvas, 78cJ

[parvas,78d3

[Darvas, 79a]

[Darvas, 78a] F. Darvas, I. Fut6, P. Szeredi: Some application of theorem
proving based on machine intelligence in QSAR; automatic
calculation of molecular properties and automatic interpretation
of qualitative structure-activity relationships. Proc. of the
Symposium on Chemical Structure-Biological Activity:
Quantitative Approaches, Suhl, GDR, Akademie Verlag, Berlin.
pp.251-257.

F. Darvas, I. Fut6, J. Szeredi, J. Bendl, P. Koves: A PROLOG-
based drug design system. /Hungarian/ Proc. ot the conf.
"Programming System'78", Szeged, 1978.
F. Darvas, I. Futo, P. Szeredi: A logic-based program system
for predicting drug interactions. International Journal of
Biomedical Computing, Vol. 9., 1978. pp.259-271.

F. Darvas: Computer analysis of the relationship between the
biological effect and the chemical structure. /Hungarian/
Kemiai Kozlemenyek, Vol. 50.,1978. pp.97-116.

F. Darvas, J. Szeredi, I. Futo, J. Redei: A logic-based
chemical information system - theoretical considerations and
experiences. /Hungarian/ First National Conference of NJSZT,
Szeged, 1979. pp.92-96.

[Darvas,79b] F. Darvas, I. Futo, P. Szeredi: Expected interactions of
spirololactions: predictions by computer. Proc. of the Conf.
on Pathogenesis of Hyperaldosteronism, ed. E Glaz. 1979.
pp.219-220.

[Darvas,79c] F, Darvas, A. Lopata, Gy. Mdtrai: A specific QSAR model for
peptides. To appear in: "Quantitative structure activity
analysis", ed. F. Darvas. Akademiai Kiado, Budapest.

F. Darvas: Logic programming in chemical information handling
and drug design. /These proc./
I. Futo, F. Darvas, E. Cholnoky: Practical applications of an
Ai language /PROLOG/ . Second Hungarian Computer Science .
Conference, Budapest, 1977. pp..-388-399.
I. Fut6, P. Szeredi: AI languages - the PROLOG language.
/Hungarian/ Informacio Elektronika, XII. No. 2, 3, 1977.
pp. 108-113 and 146-152 resp.
I. Futo, F. Darvas, P. Szeredi: The application of PROLOG
to the development of QA and DBM systems. Logic and Data Bases
ed. Gallaire and J, Minker. Plenum Press, New York and London,
1978. pp.347-376.
I. Futo, J. Szeredi, J. Redei: A very high level language •
supplied with facilities for parallal programming. /Hungarian/
SZKI report, 1978.
I. Fut6 F. Darvas, P. Szeredi, J. Szeredi, P. Koves: Biodesign,
a logic-based system for drug design. To appear in: Proc. of
Coll. on Math. Logic in Programming, Salgotarj'dn, 1978. North
Holland Publ. Comp.
I. Futo, J. Szeredi, J. Redei: PAPLAN - Users' Reference
Manual. /Hungary/ SZKI study, 1979.
I. Futo, J. Szeredi, J. M d e i : The very high level language
PROPHET and its application. /Hungarian/ First National Con .
of NJSZTT,Szeged, 1979. pp.146-157.

[barvas,8o]

[Futo, 77a]

{Futo, 77b]

[Fut6,78c]

[Futo, 78b]

[Fut6,78c]

[Fut6,79a]

[Fut6,79b]

i n
- 12 -

Jfut6,80b]

[Futo,80oJ

J*"'7*? SoSK: Uei u"' ̂

Ijm^ylnT Sih t^e ^oSlTtwd^da C0B0L P"gra«
^ /Hungarian/ SZKI report, 1979. •DoseriPtion for users.

- a n A I l a n g u a g e f o r p a r a l l e l
Systems of Robots", Smolenice £«*

mathematical^logic1- fcrao^cV m°dellinS to°l based on
North Holland pSbl. Comp. &PP&ar ln' CL 4

(2uto,80cJ I. Puto, J. Szeredi 2. Barath p s i

i«.8oj r^rr esrai pia^s *'
of Prog^ammers/sSK^eport1" ^80* 8Upervision M a training

r — L S s ™ . - o . „

Kaposi,79aJ TT/ ^ «| a^osl> aaarkusz: PRTOTtv* 4.u
programming. Proc. of info_t~r;~J,^e ca8e for augmented PROI

Kaposi,79bj A. A. Kaposi Z M- ! Inf°™atica'79, Bled, 1979.

for control of design^"^o^il0?"0*10? °f a comPlexity mm®

hus ,.™i rs.r n80' B-isht°». '"a M° i'roer"s-

design environment and th/onK^ ?pecif*cation of en architect
applicable in the environing ^1S °f tha Programming tools
SZTAKI, 1978o 9nvironment. Hungarian/ SZKI report for

m?T>eXperimental testimrlfH^1" f°r evaluating the design anc
DSLBOLSIM . a desription fL / Uvel Wchitltures -

r SZTAKI, 1979. ~ lg71er8» /Hungarian/ SZKI report
LKiss Z,79j 2. Kiss g P "

texts with computer. /Hunfa^" ^'^rPbologioal analysis of Hungary
r„. n , SZ™> 1979. /An Bnglish ven^? ™A ™ report! SOmsSwi,
[Kofalusi, 79J v. Kofalusi 2 3 appear in CL A CL ./

of PROLOG: appiica[iol basedPonSi+le aPPHoation and extension
rv-.p , . report. S0JTT2CH D42 87<°£t te Space s#ta»/Hungarian/
[Kofalusi,79^7. Ko'falusi: Qn • ' ' 19?9*

JV- . . /Hungarian/ SOTOBCH^Jl^szl^? *? mathe®atioal structures.
[Kofalusi,79bjv. Kofalusi: A PROLOG ' 19?9* PP'12-86-

g®l[livea°f given, re[l^tf°arfanarebing the first n fornf1

s.-zsg***- "
i&r«»»e,73iJ V. Kofalusi r r.„ .a

255—- "*;»•" »' iisead boudiog

r«f.iu8i,aol Tt?;at128-132- port-SOTTOCa M2'sztei'

Da™ 731 " cSl"'c'P"' "* its » www. AO

[kiss V,78 jf

[K i s s V f 7 9 j

i v l
- 13 -

|^Koves,79l! P. Koves: A preliminary users' manual of the debugging and
trace subsystem of system HPROLOG. /Hungarian/ SZKI report.
SOFTTECH D32, SZlMKI, 1979.

[Lang,78] O-ne Lang: On the generation of data processing ANSI-COBOL
programs in PROLOG. /Hungarian/ Proc. of the conf. "Programming
Systems'78", Szeged, 1978. pp.364-368.

[Laufer,793 T. Laufer: DOS PROLOG users' reference manual. /Hungarian/
Report for SZilQCI, Technical Highschool, Pecs, 1979.

[liarkusz,77a] Z. Markusz: How to design variants of flats using programming
language PROLOG, based on mathematical logic. Proc. of
IFIP'77, Toronto, 1977.

[tJarkusz ,77bJ Z. Markusz: The application of the programming language PROLOG
for panel house design. /Hungarian/ Informacio Elektronika,
XII. No. 3. 1977. pp.124-230.

[Markusz ,80aTJ Z. Markusz: The application of the programming language PROLOG
for house design. /Hungarian/ /Submitted to Informacio Elektr./

[Markusz ,80b3 Z. Markusz: An application of PROLOG in designing many storied
dwelling houses. /These proceedings/

]jiatrai,79] G. Martai: The application of PROLOG for search of similar
substructures of enzym sequences. /Hungarian/ MTA SZBK rep.1979.

[lJatrai,80a3 G. Matrai, F. Darvas, K. Keleti: Homologous subsequences in
dehidrogenases. /Hungarian/ MTA SZBK report, 1980.

[Hatrai,80b3 G. Matrai: Primary structure activity of dehidrogenases. /To
appear in J. of Mol. Bio. No. 5., 1980./

Ysantane-T6th,79] E. Santane-Toth: PROLOG applications in Hungary in 1979.
/Hungarian/ SZKI report. SOFTTECH D42, SZAMKI, 1979.

[szeredi J,78j J. Szeredi: On the application of mathematical logic in
computer techniques. /Hungarian/ Dissertartion, 1978.

[szeredi P,75l P. Szeredi: On a high-level programming language based on logic.
/Hungarian/ Proc. of the conference: "Programming Systems'75",
Szeged, 1975. pp.191-209.

[Szeredi P,77aJ P. Szeredi, I. Futo: PROLOG reference manual. /Hungarian/
SZAMOLOCiiP, VII., No. 3-4. 1977. pp.5-130.

[Szeredi P,77bl P. Szeredi: PROLOG - A very high level language based on
predicate logic. Prep, of Second Hungarian Computer Science
Conference, Budapest, 1977. pp.853-856.

[Szeredi P,79l I. Futo, K. Labadi, P. Szeredi, K„ Balogh /ed.: P. Szeredi/:
On the implementation methods and theoretical foundations of
language PROLOG. /Hungarian/ NIM IGuSZI and SZKI report.
SOFTTECH D34, SZAMKI, 1979.

LDM - a [*Szeredi P,8oJ

^Toth,74j

P. Szeredi, K. Balogh, E. Santane-Toth, Z. Farkas:
logic based development method. /These proc./
P. Toth: Comparison analysis of the very high level programming
languages. /Hungarian/ NIM IGUSZI report for KSH OSZI, 1974.

K.L.Clark & F .C.NcCabe

IC-PROLOG: Aspec ts o f i t s implementa t ion

K.L.Clark & F .G.McCabe

Eepar tment o f Comput ing and Cont ro l
180 Cueens ga te

London SW7
Shor t Paper

In th i s companion paper to " iC-PRnrn r . ^
descr ibe some of the imp le men ta t i on ^ l a n 9 u a 9 e fea tures" we wi l l
behind the language features of IC-ppolS w £olutior technioues
tu rn in a s imi la r o rder to the i r p rese t , e a c h f e a t u r e «
conclude wi th a b r ie f s e c t i on on l n t h e c t h er pacer . Ke
implementa t ion . o n t h e l essons of the IC-PFCLCC

Negat ion

fa i lu re^^d^we^us^ th is^ lchnK 6 •" P R C L ° G •*««« as neoa t ior -as -
be tween the implementa t ion of nega t ion in ' r r^wBrt T h e " a J° r d i f f e r e n «
l ies m the t rea tment o f var iab?fb indingi? I C _ P R 0 L 0 G a n d other FPClCCs

nega t ' io n t a t i f n - ' J S i n 9 s l a s h an^meta-var iab^ 1 < ? S t h e n t h e n o n r a l P R 0 L C C
n S " f a i l u r e r u l e - Howeve f a b f £ / 0 r r e C t l y implements the

-q* p t lV r 3 m U S t b e c a re fu l about the 8?? S t 0 m c o n t a i n ^ a var iab le
«=vs temL a n ' J* ~ P (X) • T h e di f fe rence * b l f f e r e n c e between implement ing
in the 2f l i n t h e "ega ted C9l l ZZLl l , * a c t i o n t a k e n f c V t h e

« "^tion:13* -»<« *-
been bound, i f i t v® p r o o f of P(X) succeed=~ W P " i" e . r S 8 ' l l y "uni f ied

i t has , we repor t a CONTROL e r ror . i f X h M

Before the IC -PRornn •

i" ah" "°^ S e th i ' i s ' i i n t a j ; u " f r * «»
examininq t he r P c 0 . ^f r iab les i n a have h 1 h a s s u c ceeded , a
-A ana the™ , ' •""•en *h . T h i s " «»» "

rent top of s tack : 1 ^ were we se lec ted the ce l l

I

2
101

IC-PRCLOG: Aspects of its implementation

_N.

Portion of
reset list -
to be examined

< ~A selected

< top of stack

If there is an entry in one of the reset lists belonging to an
activation record at or above the point where the negated call was
selected. If one is found then, since the whole of the later (lower)
part of the stack belongs to the computation of A, it follows that a
variable of A has been bound.

Conditionals

IC-PROLOG allows the user to specify conditionals in the bodies of
clauses and in goals. The syntax of conditionals is:

C <- P THEN C ELSE P

where P must be a single literal, but Q and P can be conjunctions of
literals and conditionals. The above clause is logically eouivalent to
the pair of clauses:

C <- P & 0
C <— ~P & R

IC-PRCLOG also takes as control information the fact that the
conditional test needs only to be perfomed once.

Conditionals can be programmed up quite readily using the slash
feature of PROLOG and the meta variable facility, but in IC-PRCLOG a
different approach is taken. The method we use relies on a data
structure for activation records chosen for other reasons (mainly for
efficient implementation of coroutining) . In an activation record we
keep a record of which of its atoms have been a) started end b)
finished. When selecting for the next call to activate instead of
following an explicit 'success' pointer, the flags are ex; ned and the
next unfinished call is taken up. Suppose we had a goal of the form

<- P THEN C ELSE R,

then the goal activation record would look like:

m

K.L.Clark & F.G.McCabe

^ & E3
* f

started finished

finishld1^0^ P"*1*" " ̂ succeedsn,thein9 th6£e fl3g£ after we

ana p are sequences instead of c;L, ?? beln9 finished instead If
and thing we need to know are "t-h |^tera-ls th® same method applies
and the rest of the goal. 3re the boundarie* between C and Tand

£f Solutions

The goal

<— w = f t (x,y)/p (x,y,z)]

eDaluate^is^ ^o^tions'to^5 * faJ'V *1*fc (ek'fck> •

MX yTS'r "« ""iT* Everŷ tiixe%Pr°0f '*«°<
the env^onment of the proof ̂ fS^ceeds *e construct a copy

,dded »•

p (x , y , Z) selected

p (x , y , Z) succeeded

with {x /A ,y / f (u) f Z / B] s a y

The copy of t(x

« s t^e» • » «, o l u t l o n s . ,

• - • £ . S i u * T - ° " « « i
aj.i succeeded. p 18 bound to the var

4
i13

IC-PROLOG: Aspec ts o f i t s implementa t ion

When a so lu t ion i s be ing cons t ruc ted any var iab les appear ing in i t a re
g iven new s torage loca t ions on the s tack d i f fe ren t ia t ina the in f rom a l l
the o ther var iab les .

Not ice tha t we do no t a t tempt to remove mul t ip le occur rences of
so lu t ions f rom the l i s t .

Indexing

Indexing i s used to cu t down on sha l low backt rack ing par t icu la r ly when
search ing through a l a rge re la t ion tha t i s represen ted ex ten t iona l ly .
The programmer asks for indexing by adding an asser t ion about the
re la t ion spec i fy ing which a rguments a re to be indexed .

An index tab le i s cons t ruc ted for each a rgument tha t i s spec i f ied to
have indexing . This t ab le conta ins re fe rences to a l l the top leve l
func t ion symbols and cons tan ts tha t appear in the re la t ion in tha t
a rgument pos i t ion . Assoc ia ted wi th each 'key ' i s a l i s t of c lauses tha t
ment ion the key in the r igh t a rgument pos i t ion . A fu r ther subse t of the
re la t ion : those c lauses wi th var iab les in the argument pos i t ion a re a l so
grouped toge ther . For example the program:

PI P (A, b) <-
P2 P(f (B) ,C) <-
P3 P (u ,C) <-

wi l l have the fo l lowing tab les cons t ruc ted for the two a rguments :

Arg l A PI Arg2 C P2 ,P3
f P2 var PI
var P3

When a p rocedure ca l l involv ing an indexed re la t ion i s about to be
en te red a check i s made f i r s t on the cons tan ts and func t ion symbols
occur r ing in the ce l l . For each a rgument tha t i s indexed and tha t
conta ins a non-var iab le the appropr ia te subse t i s ex t rac ted f rom the
index tab le toge ther wi th the subse t assoc ia ted wi th var iab les . These
two l i s t s a re unioned toge ther to g ive a candida te se t of c lauses for
tha t a rgument . The candida te se t s for a l l of the indexed a rguments a re
in te rsec ted to g ive the candida te se t for the procedure ca l l .
Backt rack ing now on ly occurs wi th in the candida te se t , and typ ica l ly in
opt imal condi t ions i t i s a s ing le c lause .

This indexing scheme i s very f lex ib le - there a re no a rb i t ry
res t r ic t ions on the number o f a rguments tha t can be indexed , nor do the
keys in the index t ab les have to be un ique . Fur thermore , the sys tem
rever t s to sequent ia l access when no use can be made of the index . When
there a re no non-var iab le a rguments in the ca l l or when more than one
c lause i s re turned in the candida te se t they a re accessed sequent ia l ly
in the normal way.

Data F low corout in ing

The essen t ia l problem wi th da ta f low corout in ing i s to make sure for
each var iab le a) tha t on ly ' au thor ized ' sub-proofs a re permi t ted to b ind
i t and b) i f a var iab le .has become fur ther ins tan t ia ted to jump to any
sub-proofs wai t ing for the var iab le . The da ta s t ruc ture we use for th i s

K.L.Clark & F.G.McCabe

mechanism is called a

SSr" " B'0re -"<>-1 coroutining" sylllL

va^bS'rs55 a'plpe^ro^1 whi^fl^1*'* W Wl#W *ach «ted

Of the Pipe: It telSS iheSer^'—J*""'*0' d««'tes the , I

' • « i , r s ? S !
a given "atiable'is^stapl'y'djterained0'''1?" ,nd con««'K Processes f», ssssr-s. JSieSU-L' -s* -y-" r*
atoms of the clause Tf t-h Ai of a seouence A.& ta nf ,'
the co„s„er process if "I" «!"V'

pJodicei/^JS^;-^!.,®J producer If the ,°Jotat^

annotated variable. ce"a"ed. Each atoc „„ ha« n „„sl £

The default of an IC-PRnrrv ~

variables' H°wever each time a claule^is^ Je2?'"tlal left t0 eight
unactivated3 P£0cess descriptor is set nn * contains annotated

each^ri^e^S £ £

SorS- iSh^ /-eved by a slight modification

oTi" 2̂ = -ŵ rs:e
only if the sten °C producer computation Th<=Cerrent resolution is part

y the step xs part of the Producer'prSes^^ Mndln9 i£ affeCted

To make this test

patlrto the11liter^l°fCUr in the P^o^tree ̂ 5h°Vide 3 .nanling £che,re

call. By comparino th™ ̂ root node of the Soof"^ 1S actually a

descriptor (which is Path na,re with the Z tfee t0 any given

variable appears) wf path name of the can *** the Process
step is part^of the cons" 6aEily che<* wh^her tL ™ "hich the plpe !

consumer or producer process current resolution

annotated variables e"£oding, and only differ v
can then use bit strinn Path can be represented H-]iteral£ with

C string operations to e elfrented as a bit strino. Ke
^ere are two condit • ^ffxcxently compare path names.

we tried to bind a lfcl?ns when the state of th
descriptor records riable but were not allow f1Pe Wl11 change: when

variable fo AhSuspe"ded Producer? and ̂ t0 .(ie' the proce££

case the state o fn" is a suspend cons^!" W<? haVe just bound ?

process is susoenL process descriotr.? " recorded. in either
folowing diagram sh ' 3nd tbe susPended nrnS switched: the current
interaction- 9 Sh°WS three steps of a„FSS is activated. The

an example of a coroutining

t*)S
6 IC-PPOLOG: Aspects of its implementation

An example coroutining interaction

Initial state of process descriptor with eager consumer

The producer P(x) has just produced a value for x and the
suspended consumer on x: Q(x?) is about to be started.

Evaluation of the call Q'(y) tries to bind y.
This is not allowed to do since there is a suspended producer
at: P'(y). The suspended producer will now be activated.

When an annotated variable is bound for the first time, or when it is
futher instantiated, the annotation must be inherited by all the
variables occurring in the binding term. This is because the annotated
variable is still the pivot of the coroutining and we must apply the
same rules to all the further approximations of the variable.

K.L.Clark & F.G.McCabe

Pointer, signifying thlt^itl' ThUS 3 vafiabl<? ̂ay hmvê both'i"!*? S"d

S-de-iptor signifying Patha?fthe?i9her leV<?1 coro"tinino^
- Jhls ^ form of nested coroutin no .1S coro^ining about'it a

restriction of only one consumer/produce"? £ SSUESKSmT* *

Pseydo Parallelism

•SS's,—*1

a singl|eUs°ack-aile?j8? *5 ilrplemented in IC-PBCLOC h ,I

J3*£. ssr* - "««
Th is is the

^S^lfJr^F"""^"1"' clever6backt kilrplei*enti"9 P"-o
these sub-lomoTtJ"°Cesses sharing a JiSle K a??n9> The effect of
processes are un?ol?^ haS to ^track thfn n that if any of
retries the mo?? ^ 33 wel1- Worse si ! ̂allL the interleaved
point may not hplnCent alternative fir = t anw t-k6 backtracker always

Potentially be vlrv^rJ0 ,the P'ocesI that ?an V^k recent

exhaustively retrv f5edundant in its backtra^ti fc systeir will
evaluation before ?<- ? ® other independent hi k"9 search- It will
that failed. The re fn another StSSfc i?"?Ches °f the P»Mlltl
PROLOG when the parallel Pseudo parallelism is rein parallel Process

Parallel branches are detSinisU? V °nly S5fe in IC'
we can mix both the p saŝ LS.-p̂ ss: kie1,-«- «.

Seev»8dsf «; &srKS
specifies that o?l the variabl^^nd a™otetion specifies that
annotated. The test' fol producer proce« I p£?ducer annotation
remains the same, bJ Aether a variaM? the va"able
parallelism: when a ls a new circuirqfp> Can bound or not
Producer, after the eo??r°Utlnln9 ^""P Possible with pseudo
Possible that the proSfr6" has sttemptl| to I 1° be n'ade fc° the

Producer is already ru?nino pbl"d 3 vsriable, it is
<_ P(X)//Q (x?) example in the goal:

the producer of x is

» j t h t h . „ P („ i s

currently .keStK,"!f OCO process to'S \t0° '» thi"

Drn^Pen y soo if ?ha? h®" Each timo a?oi?d ?k back of the <?"eue of
Produces the next- ' becon,e bound or queue the Q(x) will
automatically resun,e e2sS£?in,ation for J 'tJ"d equally when Pfx)

execution. x the 0(x) process will

m
IC-PROLOG: Aspects of i t s implementa t ion

Not ice tha t we can detec t the deadlock condi t ion oui te eas i ly i f we
go through an ent i re ' sweep 1 of the current ly running processes wi thout
being able to run any of them then we have a deadlock. ?n th is case we
concurred" o f . t h e r n ' d is regarding the annota t ions for the var iable
concerned This i s equivalent to forc ing one of the processes to

guess i t s input , and hoping tha t i t wi l l f ree the deadlock.

Implementa t ion of Logic sys tems.

D ^^T P l e , t e i n t e r a c f c ive system of the complexi ty and s ize of IC-
PROLOG demands a careful considera t ion of implementa t ion s t ra teoy. In
par t icular the implementa t ion language needs to be f lexible , powerful
and preferably por table .

For la rgely h is tor ica l reasons and avai labi l i ty we chose Pascal as the
implementa t ion language. At the t ime of th is decis ion Pascal was oui te
a new language and seemed to offer what we needed, namely good "data
s t ructur ing tools , h igh- ish level control s t ructures and promised some
nope of por tabi l i ty s ince the s tandard was qui te comprehensive .

Our exper ience unfor tunate ly has been d issapoint ing, wi th the resul t
tha t a) we were forced in to poor da ta s t ructure choices by the
inf lexibi l i ty of Pascal , b) the sys tem i s not a l l tha t por table due to
some unfor tunate gaps in the Pascal s tandard and c) the sys tem i s a
fac tor of three to f ive t imes less ef f ic ient than necessary .

On the o ther hand logic i s a good implementa t ion language especia l ly
for exper imenta l sys tems. The method we would now adopt involves
bui ld ing a h ighly e f f ic ient kernel sys tem in assembly language and then
wri t ing the bulk of the sys tem in logic i t se l f . This promises a fas ter
implementa t ion t ime, more f lexibi l i ty and some ext ra power too . Of
course th is i s the way tha t the or ig inal Marsei l les PROLOG was
implemented, though we fee l tha t the use of assembler for the kernel i s
jus t i f ied ra ther than us ing FORTRAN.

A var ia t ion on th is method i s to wri te the complete sys tem in logic ,
and to t ransform i t in to a specia l logic based language which can be
s imply and cheaply compi led . Hal im(1979) descr ibes such a language
which has a logic semant ics , wi th an ALGOL l ike syntax and control .

References

Hal im [1979] MSc Thes is Imper ia l Col lege , London

m
T'ne Cnr ̂ ai"v;on of poveral P 1o-t sy-terns

d.ciioiL'. ::oss

Imperial College. London

- = , nunwsr of Prolog in pler-en taiions is gro-iry reric.lv. as the
useiumess of toe language and toe ease of making an interpreter for <t
1= oppreciatec. .he tecaniques lor these iir^amentation* nave, verier
2S t+M~ CX -n° n,etllCCS develc,?et 3n !tne last 20 years for lamuoce Sv3tc
ana ttru i-«r.-orrc.:.co varies correspondingly. widel-. A ccnoarison of
the performance of several systems a as therefore beer, made in order
uo acn; present users ana future ir.pler.entcrs assess the relative merits

Jie.3e teennxques in the context of Irolog.

Five implementations are compared:

ir Pctrln original Marseilles interpreter, v,Titter, as a small kerr.al
in Fo-tian, citn a. supervisor written in the primitive Prolog langurre.
code with extr^rgr'nfne compiler, wnicn translates into DLC-10 machine
coae, -vitn extr^ i-acnine coce ar.u compiled Prolog sur-ort routines The
mam part of the compiler was itself written in Pre loo? *

' 3. 'The Edinburgh interpreter, also written mostly in coiroilec
• _n~urgh prolog, but avoiding the expensive compilation orocess'.
for the im310. °9' fiMt SySte*' >;ritter- totally in asserhier,!

for alternativ^control^strategies?SCal designe<i mainly as a testbed

*composite^Vt?-LC?o"^3°nS -°f ?r°log s*sterns have used ore or more

misleading as Sre a?e se^rarS^tfncf5' bUt t;Us is felt to b3
the mix iii any particuLf^oya! is ̂ ^/'to5^55 f efficier'c^
separate tests «,»« Jf. larc to c-isentany: e. A nun

, and
separate tests "/ere thereforp'nw J cisentanyie. A number of
of the systems . Thes^ we?£ aS fSlS£w5?aSWre Cistinct characteristics

r. is built and1rev3r5ed°usinq0the^liranC1 tfee fcuil<5inC; a list of length
of wxdely different svst-r,' elgoritnr wnicn makes comparison of widely different systems siaole. ®-^oritur wnicn makes comparison

a printout of' the"?-! st so^u^lt^33 oy sddinS to the above test
cifferent systems Ee«ed the overall run-tiro of cifferent systems,in ve^y"different ways.

backtracking s*oeecl vp<? -
which generates oermutation=? **y usinc- tr*e r.aive sort algorithm.

4. indexing s, vL L tl0ni tests them for crdereaness 4. Indexing speed was te«ted > ., £"C tSSt3 ther" for crdars
a medium. size database consisting ̂ ll -'f ri°5r lr" several queries on
facts about countries of the"world ^ a£>ovt z0 '•> clauses describing basic

"asCdes???iedni?rtheateit Iblve.^3 teSted hy re?din? the same

, ICO UJ. L o i. f

Prolog systems .performed 6t - — «—>- w. cue
• ascal program, thus showing ts: far s?oeds to a recursively written
coes not nave to amoloAim anv Ion tcrr.s of speeo at least, Prolog

o any longer to traditional ccmoilers.

IV)
The results of these tests are given in the following two

tables. Tne first gives actual runtimes , on the two processors, to
give an appreciation of the actual machine utilisation. The benchmarking
process just described showed the DEC-10 to run at an effective speed of
5.8 tines as fast as the IBM 370/135. The second table shows a comparisc
between the different Prolog systems, using the system:that is generally
fastest, tne Waterloo interpreter, as a basis (given a timing of 1.0 in
each case), anc allowing for the difference in machine speeds.

Absolute times Marseille Edinburgh Edinburgh Waterloo IC-Prolog
Interp; Compiler Interp. Interp. Interp.

Test IBM DEC* DEC IBM IBM

1. Bcsic speed. 5.02 0.08 0.74 0.20 16. 87

2. Speed and 45.11 0.40 1.02 0.33 17.77
printout.

1.35 85.03 3. Backtracking. 7.53 0.36 2. 36 1.35 85.03

4. Indexing. - 0.08 0.46 0.51 29. 87

5. Read-in. (462) 147.0 5.64 3.73 39.06

Relative Times

1. 3asic Speed 25.10 2.32 21.46 1.0 84.35

2. Speed and 136.70 7.03 17.93 1.0 53.83
printout.

10.14 62.99 3. Backtracking. 5.58 1.55 10.14 1.0 62.99

4. Indexing. - 0.91 5.23 1.0 58.57

5. Read-in 123.86 228.6 8.77 1.0 10.47

The main conclusion that can be drawn from, this is the rather
surprising one, namely that an interpreter (Waterloo) can perform quite
as well as a compiler (Edinburgh) in most areas. This car. to some extent
be explained by the method of implementation - tne Eainourgh system
was written by standard bootstrapping techniques whicn are cniefly

the interpreter. However, one has to ask how Prolog systems are in
f._t and this cuestion must give great importance to reac-in
sceed (the con-oiler is extremely slow) and to tne printout of results,

iS cSll" dee. not significantly shine over an interpreter,
as tiiis is done by procedure call anyway.

It is difficult to compare the iivplefentation time for the

writ! tnan the others, with the possible exception of
system "which developed many of the techniques used in other systerns1.

Comments on the individual systems are as follows:

1. The Marseilles system was the first Prolog system and is understand-

&00

ably less efficient, particularly in input-output (this prevented the
completion of the database test, the difficulty of which v:?;; coupon.foe
by its relatively poor error recovery on input) . The current Marseilles
system was not available on a compatible machine, but is sale to bo
considerably better. This test does show the necessity for a Prolog
system to contain higher level input output procedures.

2. The compiler is considerably rrore efficient than•earlier
interpreters, and nas considerably more effective space saving features
(throwing away of 'local' variables on completion) than either Marseilles
or Waterloo. These space saving features would probably slev.' down the
Waterloo system considerably. But the main disadvantage of the cor uler
is ins long compilation time, which means that it is most useful for
programs which are used repeatedly: given the experimental nature of
most Prolog programming up to this time, these are probably not in tiie
majority.

3. The Edinburgh interpreter is distinguished by its large
range of evaluable predicates, which is more comprehensive than any other,
and its superior diagnostics, including trace facilities. These support
facilities are written in a mixture of compiled Prolog and assembler
ana, at well over 100 compared with about 40 for Marseille and Waterloo,
may be more difficult to learn ana use effectively.

4. The Waterloo interpreter is a sensible 'basic' system,
omitting some of the features of the other systems, but implementing
what it has sensibly. The effect of the assembler implementation is to
make it extremely fast, and because of its compactness, it would
probably be easier to copy to another machine than the Edinburgh system.
Although it doesn't have the Edinburgh space saving features, its
data structures are themselves more compact, and thus the proof stack
grows less quickly in size - this tradeoff must be carefully considered
with regard to both machine characteristics ana expected amplications.

5. The IC-Prolog system is not shown to advantage by this
comparison, as its main purpose, as was stated earlier, was to experiment
with different control strategies and also provide a. 'clean' version of
Prolog. Its behaviour does however teach some lessons. Pascal is
probably not a good implementation language for Prolog systems owing to
the difficulty of handling asta structures such as stacks in the way that
most Prolog systems do. Also the 'one level' approach of writing a 'system,
entirely in a conventional high level language is probably not desirable.
On the other side must'be placed the portability of the system, which is
already running on at least 3 different machines, and its use of
annotations, which reduce an order factorial problem (in the sorting :
example) to an order n squared.

Is there a 'best' implementation strategy for Prolog? Probably
not, although the results of this comparison suggest one possible
strategy. The basic kernel of Prolog, which includes resolution,
backtracking, and evaluable predicates including a reasonably high level
of input output (at the 'term' level) is a relatively small program
anc can be implemented on most machines in assembler in perhaps 2-3
programmer-months. Other high level facilities can then be added in
Prolog, including better syntax, trace facilities and more complex ccntro
facilities. To allow for this recruires careful design of the basic
evaluable predicates, as all the systems studied have lacunae which
make it cifficult to iirylement some of these things. The provision of a
Klacro implementation of Prolog' should also be considered.

£o)

The IvIPROLOG System

* X* XX
J.Bendl, P.Koves, P. Szeredi

Abstract

A new PROLOG system is described which facilitates
modular programming and efficiency both in execution
and in program development.

Introduction

Based on experience with existing PROLOG interpreters
a new implementation of the language was developed.
This implementation is called the JTPRDLOG system
reflecting the fact that the system provides facilities
for modular PROLOG program development.
The aim of our new implementation was to develop a
system more suitable for practical purposes. We wanted
to reduce time and space requirements to run PROLOG
programs, and to provide facilities to aid pros1*2-31

development and testing.
The system consists of four components, namely the
precompiler, the consolidator, the interpreter and
the interactive program development subsystem. The
precompiler, the consolidator and the interpreter are
implemented in the compiler writing languag# CDL2,

- the program development system is itseff an 1IPR0L0G

program.

x
Institute of Industrial Economy and Plant Organisation
of the liinistry of Heavy Industries
NIL! IGU3ZI, HUNGARY, 1363 Budapest, P'f. 33-

Institute of Co-ordination of Computer Techniques
SzKI, HUNGARY, 1363 Budapest, Pf. 224.

H O I
- 2 -

The precompiler reads an MPROLOG source module,
does lexical analysis, syntactical analysis, static
semantic checking, optimises and produces a compact
internal form of the module.
The modules in internal form which make—up a complete
program are consolidated into an interp re table
program-module by the consolidator; this is a PROLOG
level linkage editor. Such a program-module can be
interpreted by the interpreter.
The rest of the paper will describe in more detail
the PROLOG language variant accepted by the MPROLOG
system and the interpreter and program development
subsystem components of the system.
The implementation is now functionally complete

i_Bendl 79 j ; the system is currently undergoing
tuning. It runs on SIEMENS 7700 computers under BS2000.
The porting of the system to I3M 360/370 and Rjad
computers under OS and DOS is underway; this is
especially simplified by the exceptionally high degree
of portability of software developed in CDL2.
The system was designed by P. Szeredi, K. Balogh,
J. Sendl, G. Bogdanfy and P. Kbves. The precompiler
was written by G. Bogdanfy, M. K6sa, J.ne Boda. The
consolidator was written by J. Visnyovszky. The

"aS Writte'1 "y J' £kmd1' M' L-vadi. The program development suosystem was written
by P. Koves.

The MPROLOG l&n^ua.|ge

MPROLOG syntax is similar to that of CDL2 /and also

"memr PR°L°G/' the a procedure
fonot:" S liSt" f°r ™ ^ — as

Member (x,x.£).
Member(x,y. t):Member(x, l).

2o3

The syntax permits also the use of alternatives and
groups. For example the above definition could also
be written as

Member -.x,y. (): x=y;
Member (x , £ ') .

MPROLOG modules contain a so-called interface specifi
cation, which declares the module's connections with
other modules.
Any symbol /name of an object, name of a predicate,
etc/.which is to be used outside this module,- must
be "exported", and any symbol which is used in this
module but not defined must be "imported".

Symbols not involved in module—connections are encoded
by the precompiler, and loose their character-form, to
save space in the symbol—table.

Thus the internal symbols of different modules in a
program will never be confused.

An MPROLOG program may also contain Mode declarations
[Warren, 77] and Match_order declarations. In a Match_
order declaration one may specify those argument positions
of a predicate which should be used in a classification
of the clauses for the predicate. Based on this
information the precompiler will construct a tree which
is used by the interpreter to quickly select that
subset of clauses with which unification is feasible
for a given call. This subset selection is also
advantageous because it facilitates the recognition of
determinism with a consequent memory saving.

The interpreter

The main aim of the interpreter of the MPROLOG system
is to execute programs using much less memory in
comparison 'with the "old" PROLOG. Furthermore there

- 4 -

is also an increase in time-efficiency mainly due
to more elaborate coding and to the high level
optimization features of CDL2, the implementation
language. Finally the inclusion of algorithms written
in a traditional language /as new built-in procedures/
is made simpler.

Space saving in ffiPROLOG is achieved in two respects.
First, due to the precompilation and consolidation
techniques, the symbol table of the interpreter contains
only those symbols whose character form is needed
during the running of the program, i.e. only those
that are to be input or to be output. In this way e.g.
the names of PROLOG partitions /procedures/ are
basically not present in the symbol table of the
interpreter.

The second, and more important way of space saving is
achieved using the stack—management described in
[Warren 77] . Thus the stack regime of the interpreter

is split into three parts:

- the main stack containing the administration
parts and the so called local variables;

- the global stack containing global variables,
and

- the trail that contains information for the
undoing operations /at backtrack/.

There are some minor changes in the organisation of
stacks. Due to the fact that it cannot be assumed that
the target computer's word size permits the storage
of two addresses in one word a new mechanism for
storing molecules was introduced. The basic directly
addressable cells of both global and local stacks are
words,thus cannot store a molecule. When one has to
store a new molecule in such a cell a double word
cell is created on the top of the global stack and

%oS

- 5 -

its address is stored instead. Of course care must

be taken to avoid unnecessary duplication of molecules,

e.g. when an existing molecule is unified with a

variable the "old" address of the molecule is simply

assigned.

There is an improvement in the interpretation mechanism

of MPROLOG aiming at avoiding growth of stacks when
performing ordinary loops. The technique applied is a

bit more general: when the interpreter reaches the
last call in a given clause and there are no .backtrack

choices up to and including its parent /which is the
case in a deterministic loop/, then the whole local

frame corresponding to the. call is moved down onto

the frame of its parent, thus recovering both the
administration space and the local cells of the latter.

The operation is performed only if there are no cells

in the frame of the call pointing to the frame of

the parent.

MPROLOG has a feature analogous to the indexing of

clauses [Warren 77] , as described above under

Match_order.

Program Development Subsystem /PDSo/

The MPROLOG system was designed in such a way as to

obtain a very high degree of optimality in the

execution of PROLOG programs. For this reason the

basic interpreter contains very few facilities to

directly support interactive program development,
instead, provisions were made to enable the development

of a PDS3 in PROLOG.

Vie envision the use of the MPROLOG system as follows.

A PROLOG program consists of several modules. any
point Of time a certain number of these modules are

jlol
- 6 -

J

complete and have been translated by the precompiler,
a single module is -under development in the PDSS,
several modules have not yet been written. The PDSS
will provide facilities for the linking of precompiled
modules and the simulation of the interfaces of
nonexistent modules. The user will be conversing
with the dialog manager component /D13/ of the PDSS;
this will provide programer's assistant services
in the style of INTERLISP. He will be able to edit
and examine the module under development with a
specialized PROLOG editor /EDIT/; the services of the
editor will include semi—automated generation of
interface specifications for the module. It will be
possible to interactively debug and trace programs
as well as manage errors /BREAK/.

A program measurement facility will be available
which will aid the programmer in selecting candidate
procedures for translation into lower-level languages
for optimization purposes. Currently only a very
minimal DM and the BREAK subsystem are complete. In
the sequel these will be described.

The DM currently is simply an MPROLOG program which
implements a read-interpret loop. It reads clauses
from the terminal and performs actions based on the
type of clause read. Two DM commands are available at
this time: oTOP with the obvious meaning and CONSULT fn
which causes reading to switch to the file fn;
reading resumes at the terminal when a STOP is read
from the file. Clauses which are goals are executed while
all other clauses are added to the database.

The BREAK subsystem is responsible for managing errors
and providing tracing and debuging facilities. The

•punTn^8111 13 m°deled cn the package of INTERLISP.
ROLOG systems known to us either provide no tracing

2o?
- 7 -

or provide too much. It is our view that it should
be possible for the user to control very precisely
the amount and type of tracing information he recieves
if debuging is to be effective. For this reason the
BREAIC subsystem makes it relatively difficult for
the user to specify the production of a large amount
of tracing. The basic trace may be requested by the

call

:Trace fpr/n) .
Subsequent to the execution of this call the predicate
pr will be traced; note however that only the n argu
ment version of Pr is selected. The name and arguments
of the procedure "will be provided at procedure entry
and successful procedure exit; only the name of
procedure is displayed on backtracking into the
procedure and on failure exit. It is also possio. e
to specify the procedure to be traced as pr, IN pr2,
in which case only calls of pr, made from pr2 wi
be traced. The next level of tracing may be mvo e

by the call

:Break (pr/n) .

in this case execution will stop at procedure entry,
exit and on backtracking into the procedure. The us .
is then in an interactive break. At this Poin

full facilities of the PD3S are availaole to him
i e. he may define new procedures, read files,

IdditJ a set of spectre -
available to belp in examining the s a"
currently running goal. A brief description bill
be given of the most important BBSAK commands.

Kt VTA AT, ATA are backtrace commando. They display
• the cLll history with or without arguments,

ancestors only or all calls.

w
- 8 -

ARG3 displays the arguments of the broken

WHO

n?

procedure.

displays the name of the broken procedure,

displays the n-th argument of the broken
procedure.

unifies term with the n-th argument of the
broken procedure.

\ similar to the above commands var is the
var=termj name of a variable that occurs in the clause

that called the broken procedure,

are commands that exit from the BREAK
and cause execution to resume. In addition
if OK! is given deeper calls of the broken
procedure are not traced, if OK!! is given
no deeper call is traced.

causes exit from the break with the computation
aborted. Return is made to the previous level
of supervision /BREAK or PDSS/.

a context switch is made to this state of
the broken procedure,

the most important command.

When setting the break it is also possible to specify

a list of BREAK commands to be executed in addition to
or instead of interacting with the user.

In the MPROLOG system errors are controlled through
an exception handling mechanism. Errors are system
defined exceptions; the user may define his own

exceptions. When an exception occurs the procedure
call causing the exception is replaced by a call on

an exception handler. Exception handlers are specific

o the type of the exception. The default handler for
all exceptions causes a break to occur. Exceptions mav
be raised explicitly by a call on
error Tf « v, ^ procedure Raise
*"/• " a nanaler = that it cannot adequately"

exception it may propagate it, in a break

n=term

var?

OK

OK!

OK!!

ABORT

SUCCEED
PAIL

HELP

2.0s)

- 9 -

this is done with the BREAK command PROPAGATE. At any

point it is possible to issue the call

Error_j?rotect t^call, handler).

This call is equivalent to "call" if no exceptions

which are propagated occur during the execution of

"call". If this is not the case execution of "call"

is replaced by the execution of "handler". Of course

if exception propagation occurs during the execution

of "handler" this is propagated to a higher level

Error protect /if any/.

References

|Bendl 79J J. Bendl, J-ne Boda, G. Bogdanfy,
M. Kosa, L. Naszvadi, J. Visnyovszlcy:

KPRGLOG user's documentation

/Hungarian/

NIH IGUSZI, 1979

GKoves 79l P. Koves: A preliminary user's manual
on the debuging and trace subsystem of

MPROLOG

/Hungarian/
3ZKI report, 30FTTECH D32 1979

[Warren ll\ D.H.D. Warren: Implementing Prolog-
compiling predicate logic programs
D.A.I. Research Report No. 39-40.

University of Edinburgh 1977

JUO

A Set - Oriented Predicate Logic Programming Language

by Jack Minker

The use of predicate logic as a programming language proposed by Kowalski

[1974] has been achieved with a number of effective implementation of PROLOG

(Colmerauer[1973, 1979], Bruynooghe[1976], Warren[l 977], and Roberts[1977]).

A listing of a number of programs written in predicate logic has been achieved

by Tarn! und[l 975] and Pereira[1979].

The control structure available with PROLOG has provided a sequential

search with some very powerful additional features. A major problem that re

mains for predicate logic languages is that of providing a more flexible control

structure for wide classes of problems. The control of backtracking as caused

by non-determinism associated with fully instantiated unit is one such problem.

Some approaches to handling such problems are described by Clark[1979], and by

Bruynooghe[l 979].

In this paper we discuss a predicate logic programming language based upon

set operations. The use of set operations is shown to alleviate some problems

associated with backtracking. A clause within this language, referred to as a

n-clause, represents a set of clauses in first-order logic. A n-clause consists

of an ordered pair, C = (T, $), where T is a Horn Clause template and $ 1s a

finite set of substitution sets, $ = *n>. A Horn clause tenplate is

a Horn clause in first-order logic which is free of constants and where the

predicate names have been replaced by variables. Each $ e $ is a set of substi

tutions sets where one may substitute for variables in a template. A substitution

for a variable may be a set of constants, a set of predicate names, or boolean

combinations of types as in a typed-predicate logic.

SIM

Examples of n-clauses are:

^ C-| = (a(x,y)., {{[P]/« > [a,b]/x, [c-j ,c2>c3,c4]/y }}),

C2 C2 = (a(z,y) «- e(x,y) & y(x,z), {{[PJ/a . [F]/B > [H]/y . male/x,

human/y, female/z}} ,

c3 C3 = la(x-j), g(x2» x3) *• e(f(x-]), x2) & (hU])» *3)'

{{[F]/a , [F]/B , [F]/y , integer/xr integer/x2, Integer^})).

The n-clause, C-, may be interpreted as the eight unit clause in the first

order predicate calculus.

P(a, c-,). P(b, c-,)

P(a, c2). P(b, c2)

P(a, c3). P(b, c3)

P(a, C4). P(b, c4)

If the predicate P is interpreted as PARENT, then the children of a and b are

specified by the n-clause and the corresponding unit clauses.

The n-clause C2 corresponds to . single predicate calculus clause -here

the variables belong to different types. That is. it corresponds to the typed

first-order clause,

(Vxe-U) (Vy,human) (Vz , female) - Flx.y) 8 "(x'z))

The n-clause C3 corresponds to the typed first-order clause,

(Vx1Vx2Vx3,integer) (F(V 9(x,. x3l - Ftrtx,). x2). F(h(x,). x3>.

If we interpret

F = FIBONACCI

f(Xj) S X| * 1

h(x-|) = x1 - 2,

g(x2, x3) = x2 + x3,

then the n-clause C3 defines the FIBONACCI numbers.

The notation of n-clauses (Fishman and Minker[l«5]) permits se s 0

first-order clauses to be treated as individual clauses. It effective,, pe™ts

2

£|CL

all solutions for proof paths having the same template structure to be obtained

in paralled. If so desired, the user may avoid the set operation features by

permitting substitutions to consist of individual constants. A typeless first-

order system may be obtained by allowing only the universal type.

An operational prototype system which runs in an interpretive mode on the

UN I VAC 1108 has been developed. All predicates within the system are indexed

on all argument positions. A call for unification of a literal with entries

in the database consisting of unit and non-unit n-clauses results in all n-clauses

being returned that have a literal that can unify with the given literal. The

unification algorithm permits two n-clauses to be unified. The algorithm per

forms type-checking, that is, a variable to be substituted for another variable

must have a type that overlaps with the type of the variable for which it is to

be substituted to be acceptable. The type of the new variable then becomes the

type of the overlap between the two types. Thus, dynamic type-checking is

achieved (McSkimin[1976], McSkimin and Minker[l 977,1979}) i

The inference system of LUSH-resolution is used with the bookkeeping de

veloped for LUST-resolution (Minker and Zanon[l979]). If desired, the system

can run in a trace mode which permits every n-clause in the search space to

retain the history of its derivation. This feature can be useful in a debugging

mode.

The control structure (Minker[l978]) permits literals to be selected in

any position in a n-clause. A n-literal selected in a n-clause is expanded by

the n-clause with best "merit". A dynamic generalized "slash" operator is pro

vided within the control structure of the system. For a given predicate for which

m — 1 solutions pertain, "slash(m)" will terminate expansion of the literal

when m solutions are found for the literal.

Additional features which permit the ability to output answer and reason

steps in symbolic, natural language, or voice output are noted (Minker and

Powell[1979]). Experimental results will be presented.

3

REFERENCES

1 . Bruynooghe , M. [1976] "An In te rp re te r fo r P red ica te Log ic P rograms"
Repor t CW 10 , Ka tho l i eke Unive r s i t e i t Leuven (Be lg ium) , Oc t . 1976 .

2 . Bruynooghe , M. [1979] "So lv ing Combina t iona l Sea rch Prob lems by
In te l l igen t Back t rack ing" Repor t CW 18 , Ka tho l i eke Unive r s i t e i t
Leuven (Be lg ium) , Sep tember 1979 .

3 . C la rk , K. and McCabe , F .G . [1979] "The Con t ro l Fac i l i t i e s o f IC-
PR0L0G CCD Repor t , Imper ia l Co l l ege , London 1979 .

4 . Co lmerauer , A . e t a l . [1973] "Un Sys teme de Communica t ion Homme -
Mach ine en F ranca i s " Groupe de IA, UER de Luming Univ . , d Aix
Marse i l l e , F rance .

5 Co lmerauer e t a l . [1979] "E tude e t Rea l i sa t ion d 'Un Sys teme PROLOG
Groupe de IA , UER de Luming Univ . d ' s ix Marse i l l e , F rance .

6 . F i shman , D .H. and Minker , J . [1975] "n -Represen ta t ion - A C lause
Represen ta t ion fo r Pa ra l l e l Sea rch" Ar t i f i c i a l In te l l igence 6 , 103-127 .

7 Kowalsk i R [1974] "Pred ica te Log ic a s Programming Language"
Proceed ings o f the IFIP Congress 1974 , Nor th Hol l and Pub l i sh ing
Company .

8 McSkimin J R T l976] "The Use o f Semant i c In fo rmat ion in Deduc t ive
Ques t ion-Answer ing Sys te rns" Ph .D. D i s se r t a t ion Depar tmen t o f Com-
pu te r Sc ience , Un ive r s i ty o f Mary land , Co l l ege Pa rk .

9 . McSkimin , J .R . and Minker , J . [1971] "The Use o f a Semant i c Ne twork
in a Deduc t ive Ques t ion-Answer ing Sys tem Proceed ings I JCAW7,
Cambr idge , Mass . , 1977 , 50-58 .

10 . McSkimin , J .R . and Minker , J . 0^9] "APred lMte to lc^us^sed^
Semant i c Ne twork fo r Deduc t ive Sea rch ing • -p r r -—cip i—Academic
The Represen ta t ion and Use o f Knowledge (N . F ind le r , Ed .) , Acade
Press Inc . , New York , 205-238 .

P lenum P ress , New York , 107-14 ' / .
T O « • . - I . I N n D R MQ7Q1 "Answer and Reason Ex t rac t ion ,
12 . Minker , J . and Powel l , P .B . L19 /9J i ^ . + . Re la t iona l Da ta Bases"

Na tu ra l Language and Voice Outpu t fo r Deduct ive r e l a t ion^
In : Na tua ra l Language Based Compute r Sys tems^ (L . Bo le , •

- nmm "i IIST Rp^ol u t ion : Reso lu t ion wi th
13 . Minker , J . and Zanon , G . [1979] LUST Reoor t TR-736 ,

Arb i t a ry Se lec t ion Func t ion" Urn v . o f Md. Tech . Repor t
Februa ry 1979 .

I R„+ 4 . , i M N979 1 "How t o So lve I t
Pe re i ra , L .M. , Coc lho , H . and Co t t ; a , . J . • L c i v i 1 Univers idade
Wi th PROLOG" Labora to r io Nac iona l de Engennar i a

Februa ry 1979

1 4 .

Nova de L i sboa , L i sbon

15 . Rober t s , G .M. [1977J "An Implementa t ion o f PROLOG" DCS, Un iv . o f
Wate r loo , Canada .

16 . Tarn lund , S .A . [1975] "Log ic In fo rmat ion P rocess ing" Repor t TRITA -
IBADB - 1034 Dep t . o f In fo rmat ion P rocess ing , Un ive r s i ty o f S tockho lm
Swede n i :

17 . War ren , D .H. [1977] " Implement ing PROLOG - Compi l ing P red ica te Log ic
P rograms Univ . o f Ed inburgh , DAI Resea rch Repor t 39 and 40 .

5

St IS

The mean ing of l og ica l p rograms (abs t rac t)

I > 'j v i A A* /\ v' o . f\ (TK v S c f J • i/

In a r ecen t pape r Kowalsk i () ha s advoca ted r ep lac ing the s logan

"Algor i thm - Program + Da ta S t ruc tu re" by the s logan

"Algor i thm = Log ic + Con t ro l " . I f t he semant i c s o f a p rogramming

language a re to g ive us a func t ion M f rom Algor i thms to Mean ings , t he

second s logan sugges t s de f in ing th i s func t ion a s a member o f

Log ic -» (Con t ro l Mean ings)

In t h i s pape r we use th i s f ac to r i za t ion of M to b r ing some un i fo rmi ty in
the de f in i t ion o f t he semant i c s o f l og ica l p rogramming l anguages l ike
LUCID and PROLOG. We desc r ibe how a con tex t f r ee g rammar can be
ass igned to each log ica l p rogram and we iden t i fy Con t ro l wi th the l an

guage genera ted by the g rammar . Th i s r educes the p rob lem of de f in ing

the func t ion M to the p rob lem of de f in ing the semant i c s o f a t r ad i t iona l
p rogramming l anguage because the syn tax o f such a l anguage i s g iven by

a g rammar and the semant i c s g ives a mean ing to any o f t he "p rograms 1 ,

genera ted by the g rammar .

In t he sec t ions on AND/OR (Hare l) , PROLOG, LUCID, and ex tended
a t t r ibu te g rammar log ica l p rogramming we show tha t ou r approach can
g ive the "o f f i c i a l " semant i c s o f t he l anguage - showing th i s i s the main

pa r t o f t he paper bu t i t canno t be conven ien t ly abs t r ac ted - and we i l lu

s t r a t e the approach by the same two examples . We have used the example
o f squa re roo t ex t rac t ion because i t i s s imple enough to make our bas ic

idea c l ea r ; we have t aken the LUCID pr ima l i ty example

N = f i r s t inpu t

f i r s t I = 2

beg in • i
f i r s t J = 1 x I

nex t J = J + 1
D = J eq N as soon a s J a N

end

nex t 1=1+1
outpu t = - i D a s soon a s D V 1 X I a N

2

because i t shows how our approach can handle the more obscure par t s
of LUCID's semant ics .

At t r ibu te grammars a re not usua l ly thought of a s log ica l p rograms, but
in the ex tended form (Wat t & Madsen) they can be very convenien t . For
those wi thout access to a t t r ibu te grammar based compi le r genera t ing
sys tems () th i s convenience may not be obvious un t i l one sees the
ex tended a t t r ibu te grammar so lu t ion of the pr imal i ty example

Pr ime(iN TR) ' : : = Tes t (i 2 tN f R)

Tes t (i l IN TR) : : = lnner (i l t lx l iN t D) Outer (iD I I IN rR)

Outer (i TRUE t l iN t FALSE) : : =

Outer (i FALSE i l IN tR) : : = l ess than (i l x I iN t TRUE) Tes t (i l + 1 INfF
Outer (iFALSE II iN t TRUE) : : = l ess than (i I x I iN t FALSE)

lnner ((i l i j iN t J = N) : := less than(i j iN (FALSE)
Inner (i l i j iN t D) : : = l ess than(i j iN T TRUE) Inner (i I I J+I iNID)

This so lu t ion should be compared wi th the PROLOG so lu t ion

Pr ime (N, R) «- Tes t (2 ,N,R)

Tes t (l ,N,R) •- squared , J) Inner (I , J , N, D) Outer (D, I , N , R)
Outer (TRUE, I , N, FALSE) «-

Outer (FALSE, I , N, R) «- square(l , J) l ess than (J , N, TRUE)

SUCC(I , K) Tes t (K, N, R)
Outer (FALSE , I , N , TRUE) «- square (I , J) l ess than (J , N, FALSE)

Inner (I , J , N, D) - less than (J , N, FALSE) eq(j ,N,D)
Inner (I , J , N, D) ft, l ess than (J , N , TRUE) sum (l , J , K) Inner (I , K, N, 0)

and the AND/OR so lu t ion

M

R=Prime(N)

1 = 2 R=Test(l, N) R -Outer(D, 1, N)

[DYV
l ^ X f n D A l ^ N]

R = FALSE1 R = TRUE

'ANT

J=square(l) D=lnner(l, J, N)

, [-, DA I2 < N]

R = Outside(I, N)

K=sum(l,j) D=lnner(l, K, N) K=succ(l) R=Test(K,N)

[j>Nl/ \vTJ<N]

D=equals(J, N) D=Inside(l, J, N)

These logical programs would have been much simpler if we were content

with showing that composites are not primes. All four of them have the

underlying grammar

Prime

Test

Outer

Inner

: = two Test

: = square Inner Outer

: = [D] false j [—i D A I ̂ < N] succ Test

| [—i D A I2 a N] true

: = [J a N] equals j [J < N] sum Inner.

There is a close connection between logical programs and data flow

machines because both of them abandon assignment and stores. The last

section of the paper uses data flow machines to give an operational seman

tics of logical programming languages that can be compared with

1) their official denotational semantics 2)actual interpreters. The data

flow machine for our primal ity example is

4

As a con t r ibu t ion to the l i t t l e exp lo red f i e ld o f co r rec tness p roofs fo r

i n t e rp re te r s o f log ica l p rogramming l anguages the paper con ta ins a

p roof tha t t he above da ta f low mach ine g ives a co r rec t in te rp re ta t ion of
t he o f f i c i a l deno ta t iona l s emant i c s .

Log ica l p rogramming l anguages can be d iv ided in to

- re la t iona l ly o r i en ted l anguages l ike PROLOG

- func t iona l ly o r i en ted l anguages l ike LUCID

and da ta f low mach ines shed some l igh t on the s ign i f i cance o f th i s d iv i
s ion .

2/0

L o g i c P r o g r a m m i n g & R e l a t i o n a l D a t a b a s e s

P r o g r e s s R e p o r t

K e n n e t h A . B o w e n
S c h o o l o f C o m p u t e r & I n f o r m a t i o n S c i e n c e

S y r a c u s e U n i v e r s i t y
S y r a u c s e , N e w Y o r k , 1 3 2 1 0 U S A

T h i s i s a p r o g r e s s r e p o r t o n a p r o j e c t i n v e s t i g a t i n g
t h e c o u p l i n g o f a l o g i c p r o g r a m m i n g s y s t e m w i t h a r e l a t i o n a l
d a t a b a s e m a n a g e m e n t s y s t e m . T h e p o i n t o f v i e w i n t h i s
e n d e a v o r i s t h a t o f t h e l o g i c p r o g r a m m i n g s y s t e m . T h e g o a l
i s s e e n a s t h e a d d i t i o n o f f a c i l i t i e s t o t h e l o g i c
p r o g r a m m i n g s y s t e m w h i c h w i l l m a k e i t p o s s i b l e f o r t h e l o g i c
p r o c e s s o r t o e f f i c i e n t l y s t o r e a n d r e t r i e v e i t s c l a u s e s o n a
c o m b i n a t i o n o f b a c k i n g s t o r e a n d p r i m a r y m e m o r y , i n s t e a d o f
p r i m a r y m e m o r y a l o n e a s h a s b e e n t h e c a s e i n m o s t p r e v i o u s
g e n e r a l - p u r p o s e l o g i c p r o g r a m m i n g s y s t e m s . T h e u s e o f t h e s e
a d d i t i o n a l s t o r a g e m e c h a n i s m s i s t r a n s p a r e n t t o t h e l o g i c
p r o g r a m s a n d t o t h e c a s u a l u s e r . T h e a c t i o n o f t h e s e
m e c h a n i s m s i s c o n t r o l l e d b y t h e u s e o f a s s e r t i o n s i n t h e
p r o c e s s o r ' s d a t a b a s e o f c l a u s e s .

T h e l o g i c p r o g r a m m i n g s y s t e m b e i n g u s e d i s b a s e d o n o n e
d e s i g n e d a n d i m p l e m e n t e d b y R o b i n s o n a n d S i b e r t i n L I S P .
(T h e h i g h l y d e v e l o p e d f a c i l i t i e s o f L I S P m a d e i t q u i t e
s u i t a b l e a s a " s y s t e m s p r o g r a m m i n g " l a n g u a g e . H o w e v e r , t h e
c h o i c e o f t h i s a p p r o a c h w a s m o s t s t r o n g l y c o n d i t i o n e d b y t h e
g o a l o f R o b i n s o n a n d S i b e r t t o e f f e c t a m e r g e r o f L I S P a n d
l o g i c i n w h i c h t h e t o p - l e v e l l o g i c p r o c e s s o r i s a
L I S P - c a l l a b l e f u n c t i o n , a n d a r b i t r a r y L I S P f u n c t i o n
e x p r e s s i o n s c a n o c c u r a s e v a l u a b l e t e r m s i n l o g i c c l a u s e s .)
T e r m s a n d a t o m i c f o r m u l a s i n t h i s s y s t e m a r e w r i t t e n i n
L I S P ' s " C a m b r i d g e P o l i s h " n o t a t i o n :

(o p e r a t o r a r g 1 a r g 2 . . .)

C l a u s e s a r e w r i t t e n i n t h e l i s t f o r m a t

(c l a u s e h e a d b o d y 1 b o d y 2 . . .)

w h e r e t h e l i s t

b o d y 1 b o d y 2 . . .

c o n s t i t u t e s t h e b o d y o f t h e c l a u s e . T h u s t h e l o g i c

WO
definition of the append relation, usually presented as

append(NIL, _Y, _Y)
append (_H._T, _Y, _H._Z)<--append(T, Y, Z)

is now written as:

((append NIL _Y _Y))
((append (_H . _T) _Y (_H . _Z)) (append _T Y Z))

*%S%ZUriSt3S''.}iis:,.yt 'nput in the usual

called^LOGIC JrocJS^R^rr °9 *® S**"" is a LISP function
and GOALS The , accaPts two arguments, HOW MANY?
consitituMnJ ti! -iS f llSt °f collecfively
HOW MJnJ" is a bit of, ?°?1. ClaUSe for the Proces*or.
acceptable values °^contro1 information. At present, its

ALL The outp- LSgic^OJESIor1"?!'"5 l?stthL fS
substitutions S described as pairs

S = (VARS VALS)

where VARS is a list of th~ ^
GOALS. Each such suh^tit- Yanables occurring in
for GOALS relative to the utlor> S is a successful solution
length of the list L"J*!"* database of clauses. The
longest non-repetitive list 3S follows- 1 *« the
GOALS such that lenath.'r i ̂uoi, substitutions satisfying
treated as wh"e the atom alL is
f eatur es°o f the'processor ̂ 1 one ̂ re^' ^ princiPal other

processing6'staĉ T̂ 't̂ T̂ "'5 riSSS to the top of the
whether pred ' system first checks to see
PRIMITIVE_SYSTEM RELATIONS3 T*ON THE LIST

exist a LISP definition f ' SO' there should
LISP function The n °r prefj as a (boolean)
function as a LISP Lnction^Tf"6".^3 t0 rUn thi
runs (without erm *f pred successful? lu"s (without errnri ^uccessrui:
this literal is reqarderf returns a non-NIL value
and is popped off the stack S!^cessful ly solved
error and rot-,,rn„ u tack. if pred runs withou
regarded as logicallv ̂ ?IL" ^"literal 1

branch of the computation tre^i^fa iled th%?Urlr?'1
1 an error occurs • tailed. Finally

(|red args) , and if therê ema î 6 LISP execution o
below (pred args) on thl !f f another litera
literal is swapped with Cn a then this latte

occursrKCeSSin9 centinues flhf5 °n thG St3Ck
occurs because of the n error tvpicall
bound logic variables in Trgs?)"66 °f incomPletel:

M l
2 . C o n s t r u c t s o f t h e f o r m

(I S v a r S - e x p r e s s i o n)

m a y o c c u r a s l i t e r a l s . T h e a c t i o n o f t h e p r o c e s s o r
i s s i m i l a r t o t h a t i n c a s e 1 . i t a t t e m p t s t o
e v a l u a t e S - e x p r e s s i o n a s a L I S P t e r m . I f n o e r r o r s
o c c u r i n t h i s e v a l u a t i o n , t h e r e s u l t i s b o u n d t o
v a _ r i n t h e c u r r e n t e n v i r o n m e n t , a n d p r o c e s s i n g
c o n t i n u e s . I f a n e r r o r o c c u r s , t h i s c o n s t r u c t i s
s w a p p e d w i t h t h e l i t e r a l b e l o w i t o n t h e s t a c k (i f
a n y) , a n d p r o c e s s i n g c o n t i n u e s .

3 . C o n s t r u c t s o f t h e f o r m

(? g o a l s)

m a y o c c u r a s l i t e r a l s . T h e s e a r e r e c u r s i v e c a l l s
o f t h e l o g i c p r o c e s s o r . E s s e n t i a l l y ,
(L O G I C _ P R O C E S S O R 1 g o a l s) i s r u n . I f a s o l u t i o n i s
f o u n d , t h e c u r r e n t e n v i r o n m e n t i s e x t e n d e d b y t h e
b i n d i n g s c r e a t e d b y t h i s s o l u t i o n , a n d p r o c e s s i n g
c o n i n u e s w i t h t h e r e m a i n d e r o f t h e s t a c k .

T h e d i r e c t i n t e r f a c e t o t h e d a t a b a s e m a n a g e m e n t s y s t e m
i s v i a t h e t w o f u n c t i o n s R E S O L V E N T S a n d R E T R I E V E .
R E S O L V E N T S t a k e s a l o g i c p r o c e d u r e - c a l l a s i t s s i n g l e
a r g u m e n t , a n d r e t u r n s a l i s t o f a l l p r o c e d u r e b o d i e s w h o s e
h e a d s s u c c e s s f u l l y m a t c h e d t h e g i v e n p r o c e d u r e c a l l . T o
o b t a i n t h e c a n d i d a t e s f o r m a t c h i n g , R E S O L V E N T S c o n s t r u c t s a
c o n c r e t e l i t e r a l o u t o f t h e v i r t u a l r e p r e s e n t a t i o n i n t h e
p r o c e d u r e - c a l l w h i c h i t w a s p a s s e d , a n d p a s s e s t h i s c o n c r e t e
t e r m t o R E T R I E V E . T h e l a t t e r f u n c t i o n e x t r a c t s a p p r o p r i a t e
i n f o r m a t i o n f r o m t h e c o n c r e t e t e r m w h i c h i t r e c i e v e s ,
a c c e s s e s t h e r e l a t i o n a l d a t a b a s e m a c h i n e r y , a n d r e t u r n s t o
R E S O L V E N T S a l i s t o f a l l c a n d i d a t e m a t c h i n g p r o c e d u r e s .

T h e s t o r a g e s t r a t e g y a n d m e c h a n i s m s i n u s e a t p r e s e n t
a r e a s f o l l o w s . A l l c o n d i t i o n a l c l a u s e s t o g e t h e r w i t h a l l
i n d e f i n i t e u n i t c l a u s e s (i . e . , t h o s e w i t h a t l e a s t o n e l o g i c
v a r i a b l e) o f a p r o c e d u r e a r e s t o r e d i n p r i m a r y s t o r a g e .
D e f i n i t e u n i t c l a u s e s m a y b e s t o r e d e i t h e r i n p r i m a r y
s t o r a g e o r o n b a c k i n g s t o r e . (T h e d e f a u l t i s p r i m a r y
s t o r e .)

T h e p r i m a r y m e m o r y s t o r a g e m e c h a n i s m i s a h a s h t a b l e
(v i a L I S P ' s p r o p e r t y l i s t f a c i l i t y) b u i l t o n t h e p r e d i c a t e
n a m e s . E a c h t a b l e e n t r y i s a l i s t o f t h e e n t e r e d p r o c e d u r e s
c o r r e s p o n d i n g t o t h a t p r e d i a t e .

T h e s e c o n d a r y s t o r a g e i s c o n c e p t u a l l y a r r a n g e d i n a
r e l a t i o n a l d a t a b a s e s t y l e - - h e n c e t h e r e s t r i c t i o n t h a t o n l y
d e f i n i t e u n i t c l a u s e s c a n b e s t o r e d o n s e c o n d a r y s t o r a g e .
A l l t h e t u p l e s f o r w h i c h t h e p r e d i c a t e h a s b e e n a s s e r t e d t o

H i
H ° ^ A r \ C , ° n C e P t U a l l y 9 r o u p e d t o g e t h e r (t h o u g h t h e y m a y b e
d i s t r i b u t e d p h y s i c a l l y i n b l o c k s o n d i f f e r e n t p a g e s o f
s e c o n d a r y m e m o r y .) T h e s y s t e m a u t o m a t i c a l l y p r o v i d e s
o p t i o n F0 " t h c . f] ; r s t e l e m e n t o f a t u p l e . T h e u s e r h a s t h e
o p t i o n o f r e q u i r i n g i n d i c i e s o n o t h e r a r g u m e n t s o r
c o m b i n a t i o n s o f a r g u m e n t s . T h e i n d i c i e s a t p r e s e n t a r e
s e a r c h l n t r e e * S l n ^ e n o n t e d b X m e a n s o f u n b a l a n c e d b i n a r y

r e t r i e v a l , o n l y a s p a l l p o r t i o n o f t h e t r e l n e e d b e

I t s d e f i n i t i o n . N o r m a l l y a c a l l o f t h e f o r m
(j o r e d a r g s - w i t h - v a r s) ,

S l u t i o L 1 g r l i p e r i n n a u i u s a b l U r S ' / O U l d r 6 t U r n 3 l i s t o f

p h y s i c a l d i s t r i b u t i o n o f t h e t n n i ° * r e f l e c t i n g t h e a c t u a l
s e c o n d a r y s t o r a g e H o w e l e r " P ' ° f ^ ° n t h e P a g e s

a d d i n g c l a u s e s t o t h e d a t a b a s e o f t h e ^ o ™ * t H i S ° r d e r b y

(T R A V E R S E p r e d i n d e x)

H e r e i n d e x i s a d e ? c r i n t - i o n _ c • .
b e i n g m a i n t a i n e d b y t h e s y s t e m ^ i h d e X f ! ° r P * [e d w h i c h i s
o f t h i s c l a u s e i s t h a t c a l l s n f " # - w ! e c t o f t h e p r e s e n c e
w i l l r e t u r n t h e s o l u t i ™ * t h e f ° r m A s c r i b e d a b o v e
t r a v e r s a l o f t h e i n d e x t r e e J ? , ! " ? r d e r " " e c t i n g t h e
w i t h o t h e r s u c h c o n t r o l p l a n n e d t o e x p e r i m e n t
i n - p r i m a r y - s t o r a g e { c o n d i t i o n a l f t 6 S ' S U C h 3 5 " r u n

d a t a b a s e a c c e s s e s , " e t c . c l a u s e s b e f o r e { a f t e r }

T h o u g h t h e p r e s e n t
p r o c e d u r e s h a v e b e e n o m n r a b a ^ e . a c c e s s a n d s t o r a g e
a d d o t h e r m e t h o d s (s p e c I ? i c a T ? v J " L I S P ' i f c i s P l a n n e d t o
s t r u c t u r e s) b y p r o g r a m m i n o I I I m ° r f S 0 P b i = t i c a t e d t r e e
l o g i c p r o c e s s o r t o e x e c u t e t h e ™ l n 1 ° 9 1 C a n d a l l o w i n g t h e
c i r c u l a r i t y h e r e a r e o f c o u r s e a v n i „ / u t e n t i a l « o u r c e I o f
t h e s e d e f i n i t i o n s i n p r i m a r y s t o r a g e X m a i n t a i n i ^ a H o f

- ^ g ^ a M 3 e X K S ^ a a 1 n f V t d e a t a b a s e s h a v e b e e n c o n s t r u c t e d
s a t i s f a c t o r y . A t p r e s e n t % P e r f o r m a n c e h a s b e e n q u i t e
f i r s e a S K U S i n g t h i s s y s t e m i s n n ? 1 _ W o r l d b i b l i o g r a p h i c
f i r s t p h a s e i t w i l l c o n s i s t o f a n n c o n s t r u c t i o n . I n t h e
p e r i o d - T h e r a w d e s c r i p t i o n s ° x l ^ t e l y 2 0 0 0 c o n c e p t u a l ssr'srs1 rut <£«.::.r (Jlbtt*by

" b ? ™ ™ " " ' " s ' f r o m I S t o •»" n a:
i s a P P l i c a t i o n i n v o l v e s

e x t e n s i v e s t r i n g p a t t e r n - m a t c h i n g (e . g . , f o r t i t l e s o r
v a r i a n t s o f n a m e s , e t c .) , i t i s p l a n n e d t o i m p l e m e n t a f a s t
p a t t e r n - n a t c h e r a t a l o w l e v e l a n d i n t e r f a c e i t t o t h e l o g i c
s y s t e m b y m e a n s o f f a c i l i t i e s 1 / a n d 2 / a b o v e . P e r f o r m a n c e
e x p e r i e n c e f o r t h i s a p p l i c a t i o n w i l l b e a v a i l a b l e b y J u l y .

T h e p o i n t o f t h i s p r o j e c t i s n o t c o n s t r u c t a
" p r o d u c t i o n " s y s t e m , b u t r a t h e r t o c r e a t e a n e x p e r i m e n t a l
v e h i c l e s u i t a b l e f o r a f e w s e l e c t e d r e a l a p p l i c a t i o n s , a n d
t o g a i n e x p e r i e n c e f r o m t h o s e a p p l i c a t i o n s . P r e s u m a b l y t h e
e x p e r i e n c e r e s u l t i n g f r o m t h e s y s t e m c o n s t r u c t i o n a n d f r o m
t h e a p p l i c a t i o n s w i l l m a k e p o s s i b l e t h e c o n s t r u c t i o n o f a
h i g h - c l a s s s y s t e m o f l o g i c p r o g r a m m i n g c a p a b l e o f d e a l w i t h
e x t r e m e l y l a r g e a m o u n t s o f b a s i c d a t a . P o t e n t i a l
a p p l i c a t i o n s r a n g e f r o m o r d i n a r y d a t a b a s e s w i t h v e r y
u s e r - f r i e n d l y f r o n t - e n d s (p e r h a p s e v e n n a t u r a l l a n g u a g e) t o
k n o w l e d g e - b a s e d e x p e r t s y s t e m s .

EXTENDED ABSTRACT
Hoare's Program FIND Revisited

by
Sharon Sickel

William McKeeman

this Jape® we°give Tdifferent^00W°rreCtneSS °f the al9orithm, FIND. In
The proof is based on a leouenro t° -a comPutat1onal ly eqoivalent algorithm.
specific, and successive members of the1cePr°9ra,nS tha^ 9et Pr09ressively more
Our goal is not to find fault with th se9u®nce are shown to be equivalent,
first non-trivial proof of 9roundbr«king work of Hoare in this
to extend the concepts to a differentSfn° afP+kr*in the literature, but rather
of program design. We feel that this Ho*"?3 fee1 conduc1ve to clarity
•or* Intuitive thin Hour" tSltSIt o?ttl' ,Kl 'It th* "sorlthn, ,re
actually is part of the proqrm KSnSLS algorithm, and the derivation
solution at the beginning and In fact ^his' ?6 do" not need to know the final
serves two useful roles: 1) as a hls'c™ of th 1og1c Pro9ram refinements
framework for the correctness proof program development. 2) as the

The problem solved by FIND is as fniinu.. n
elements, and a natural number, f oermuto Given an array A of N comparable
element r and all smaller elements £oS e^?<?y S^Ch that A(f) co"tains
elements later. This is similar to one •" array and a11 lar9er

Hoare s algorithm appears in Table I Me ^ the Quicksort algorithm,
equivalently. Ia£>le *• * shall derive a logic program that works

5L2S"

PROGRAM TRANSFORMATION BY A FUNCTION THAT MAPS SIMPLE LISTS
ONTO D-LISTS

Ake Hansson and S ten-Ake Tarn lund

UPMAIL
Computer Sc ience Depar tment

Uppsa la Univers i ty -
Sweden

In t roduc t ion

We sha l l in t roduce a func t ion- tha t maps a s imple l i s t to a d - l i s t ,
which was fo rmal ized in Clark and Tarn lund [1977] . This func t ion
g ives a convenien t method for deve loping programs. The main idea to
t ransform a program to another program by da ta s t ruc ture mappings
seems to go back to Burs ta l l and Dar l ing ton [1975] . We have made
use o f i t for log ic programs in Hansson and Tarn lund [1979a ,1979b]
and we sha l l deve lop tha t idea fur ther here . The success of th i s
method i s dependent on whether o r no t there a re dext rous mappings
be tween da ta s t ruc tures . The main cont r ibu t ion of th i s paper i s the
formal iza t ion of such a mapping be tween s imple l i s t s and d - l i s t s in
def in i t ion 1 . The mer i t s of our mapping func t ion i s re f lec ted by
the shor t der iva t ions of programs on d - l i s t s f rom programs on
s imple l i s t s . This i s for tuna te s ince der iva t ions of programs a re
usua l ly qu i te long as has been demons t ra ted by works a l ready
ment ioned in the t ex t as wel l as by Manna and Wald inger [1978] ,
Hogger [1979] and Clark and Dar l ing ton [1980] .

Der iv ing programs by_ da ta s t ruc ture mappings

I t i s of course eas ie r to der ive a program on a s imple da ta
s t ruc ture . However , to make th i s program e f f ic ien t we may have to
subs t i tu te the da ta s t ruc ture and change a few procedures . The
l a t te r s tep can be taken as we sha l l see wi th a proper mapping
func t ion . Le t us i l lus t ra te th i s method by an example . Suppose t h a *j
we spec i fy the idea of sor t ing in the fo l lowing way; y i s a sor ted
vers ion of x exac t ly when y i s ordered and a permuta t ion of x . This
i s wr i t t en more p rec i se ly next .

sor t (x)=y <—> ordered (y) & pe rmuta t ion (x ,y) (

(Universa l quant i f ie rs a re omi t ted in f ron t of the en t i re sen tence) .
The def in i t ions of o rdered and permuta t ion a re no t impor tan t here
so we l eave them ou t . Qui te a l engthy der iva t ion of the fo l lowing
quick sor t program f rom the spec i f ica t ion in (1) i s g iven
Hansson [1980] .

/

PAGE 2

The result of sorting the empty list is the empty list, and
moreover the result of sorting a list x.y is to append a list
consisting of the element x followed by a quick sorted list y" to a
quick sorted list y' if the ordered pair (y',y") is the result of
partitioning the list y with respect to x such that all elements
less than x are on y' and those greater than x on y". We can now

this program in our programming language (see Hansson, Haridi.
Tarnlund [1980]).

q (0) =0
q (x.y) =append (q (y ') ,x .q (y")) <- partition(x,y)«(y*,y") (2)

mak?s .us®.of a functional notation and two data
structures: a simple list written x.q(y"), where x is the first
element and q(y-) the rest of the list, and a Cartes an Lid ls °,c iittie
leave it out. The inefficiency of program (2) is due to anoend <?o

element and the rest is the result of appending z to y. We have:

append(0,u)=u
append(x.y,z)=x.append (y,z)

Ssthaseda^a struck! ISt'Jl'.XS'Sk^Si U8in* 8 Slmple
more efficient e.g., by a new ll ^his Pro9ram to be a bit
append. So our problem may be solved A'* where we do n°t "eed
that also takes away L a n „ Y S data st^<=ture mapping
mapping m from simple lists to d 1J Pr°cedure. Let us charcterize a
our problem. The function m 1,^1 3- 33 we.shaH see solves
simple list y.z appended to a simole n=fSll°ple list, composed of a
exactly when m maps the simplelilt x ***'- £? 3 d"list <u'w>
simple list z to the d-list <v,w>?t X t0 the d-list <u,y.v> and the

m : simple list -> d-list

Definition 1

m (append (x,y.z)) =<u,w> <-> m(x)=<u,y v> . M„.
"»y.v-> & m(z)»<v,w>

m(0)=<u,u>

ni-

PAGE 3

The quick sort program in (2) on a simple list and definition 1
with our mapping function m lead to an equivalent quick sort
program (big Q) on d-lists.

Definition 2

Q(y) =<u,w> <—> m (q (y)) =<u fw>

We can now write down a short derivation in our natural dedution
system that arrives at a quick-sort program on d-lists from our
program in (2) .

1. Q(x.y)=<u,w> <—> m (q (x.y)) =<u ,w> UI def. 2
2. Q (y1) =<u,x. v> <—> m(q(y'))=<u,x.v> UI def. 2
3. Q(y")=<v,w> <—> m (q (y")) =<v,w> UI def. 2
4.* Q (y') =<u ,x.v> & Q(y")=<v,w> Hypothesis
5.* m (q (y1)) =<u ,x . v> & m (q (y")) =<v ,w> <--> elim. 2,3,4
6.* m (append (q (y ') ,q (y")) =<u ,w> <—> elim. 5 and def. 1
7.** part (x.y) = (y',y") Hypothesis
8.** q (x.y) =append (q (y ') ,q (y")) —51 elim. 7 and (2)
9. ** m(q(x.y))=<u,w> Identity 6 and 8
10.** Q(x.y)=<u,w> <—> elim. 9 and def. 2
11. Q(x.y)=<u,w> <— Q (y') =<u ,x. v> & —> intro. 4 and 7

Q(y")=CV,W> &
part(x.y)=(y1,y")

The base case gives immediately: Q(0)=<u,u> that we leave for the
reader to check. So, together with this base case and step 11 we
have derived an efficient quick-sort program on d-lists.

Q (0) =<u ,u>
Q(x.y)=<u,w> <- Q(y')=<u,x.v> 6 Q(y")=<v,w> &

part(x.y)=(y1iY) <4>

Formal program development can, of course, not only be applied to
derivations of programs from (abstract) specifications. It may also
be applied to program transformations and in this way yield
alternative programs of which some can be more efficient than the
original programs. In fact, the quick sort program on dl^ts above
is an example of such a transformation. We shall give a fin
illustration of a transformation where our mapping faction
definition 7 is very useful. Suppose that we want to ceverse
list and have the following program. The result of revers g
empty list is the empty list, and moreover the result °^,re^rs^
a list x.y is to append the list x.O to the list y' if y 18 the
result of reversing the the list y. We can now;wr:rets progr,am
more precisely, where we exploit the functional notation.

rev(0) =0
rev(x,y) =append (rev (y) ,x.O)

(5)

m
PAGE 4

This program is also inefficient due to the behaviour of append, so
we want an equivalent program that does not make any use of append.
For this purpose we define from (5) and definition 1 a reverse
relation (big R) on d-lists which we can make use of to develop
a reverse program on d-lists.

Definition 3

R(z)=<u,w> <—> m(rev(z))=<u,w>

We can now derive a more efficient program on d-lists.

R(X/Y)=<u,w> <—> m(rev(x.y))=<u,w>
R(x.y) =<u,w> <—> m (append (rev (y) ,x.O)) =<u,w>

* R(5)>S<Cfi!w>(y)'X-0))=<U'W> <~> 1,1 (rev (y))=»<u,x.w>

* m(rev(y))=<u,x.w>
6.* m(append(rev(y),x.O))=<u,w>
7.* R(x,y)=<u,w>
8. R(x,y)=<u,w> <- R(y)=<u,x.w>

The last

UI def.3
Identity 1 and (5)
Identity, *
Hypothesis
-> elim. 4, def. 3

elim. 3, 6
elim. 6, 2
intro 4, 7

->

->

->

... , ̂ steP together with a trivial
efficient program for reversing a list: base case comprise an

R(0)—<u,u>
R(x.y)=<u,w> <- R(y)=<u,x.w>

(6)

Conclusion

deduction system^Thi s*isPpleasantbwheanthderiVati°nS in 3 natural

mapping function in definition 1 are methods like the
programs are of modest size. However a^lable and moreover, the
an error along a derivation ^o' K n dlfficult to make
software in which we could make'th^I < w°uld be helpful to have
get them checked out. We have in fact . * °ns comf°rtably and
systems, POL (see Pilman and Wevhrau^ such "mi-automatic
ansson and Johansson [19801) Bot-h iu and NATDED (see

deduction systems of Prawitz (I9fisi ? these systems are natural
c a r r y o u t q u i t e - m p l i c a ^ r d i r i v a ^

<u?u>=5v'w>eieadsaio°v=w!ng 6quality f°r d-lists in step 3 i.e.,

PAGE 5

References

Burstall R.M. &
Darlington J.
[1975]

Clark K. &
Darlington J.
[1980]

Clark K., & ̂
Tarnlund S-A
[1977]

Filman R.E. &
Weyhrauch R.W.
[1976]

Hansson A. &
Tarnlund S-A.
[1979a]

Hansson A. &
Tarnlund S-A.
[1979b]

Hansson A.
[1980]

Hansson A &
Haridi S.
Tarnlund S-A.
[1980]

Hansson B. &
Johansson A-L.
[1980]

Hogger C.
[1979]

Manna z. &
Waldinger R.
[1978]

Prawitz D.
[1965]

Some transformations for developing recursive
programs, Proc. Int. Conf. Reliable Software,
Los Angeles, California, pp 465-472

Classification through Synthesis,
To appear in the Computer Journal

A First Order Theory of Data and Programs,
Proc IFIP Congress 1977, North-Holland
Publishing Company Amsterdam

An FOL Primer, Stanford Al-lab, Memo AIM-288,
Computer Science Dept. Stanford University

A Natural Programming Calculus, 6th Int.
Joint Conference on Artificial Intelligence,
Tokyo, 20-24 August

Derivations of Programs in a Natural Programming
Calculus, Electrotechnical Laboratory Tokyo
August 27-28

A Formal Development of Programs, Ph.D. Thesis,
Computer Science Dept., Royal Institute of Tech.
and University of Stockholm

Some Aspects on a Logic Machine Prototype, Logic
Programming Workshop, John von Neumann Computer
Science Society, Hungary, 14-16 June

Development of Software for Deductive Reasoning,
Logic Programming Workshop, John von Neumann Computer
Science Society, Hungary, 14 16 June

Derivation of Logic Programs, Ph.D. Thesis,
Dept. of Computing and Control, Imperial
College, London

A Deductive Approach to Program Synthesis _
Technical Report, Computer Science Dept. Stanford
University, Stanford and Artificial Intelligence
Center, SRI International, Menlo Park, Ca.

Natural Deduction, A Proof-Theoretical Study,
Almqvist & Wiksellr Stockholm

2 SO

DEVELOPMENT OF SOFTWARE FOR DEDUCTIVE REASONING

Bertil Hansson and Anna-Lena Johansson

Department of Information Processing and Computer Science.
The Royal Institute of Technology

and
The University of Stockholm

Sweden

1. Introduction

deductiveereaionina ?rogress. "Port on software development for aeauctive reasoning in a semi-automatic or automatic mode
The implementation language is DECsystem-10 PROLOG [PEREIRA-78] .

Development?3 h*6" SUpported the Swedish Board for Technical

s^ongndem?nds9onU?he pr'ogramHsel w" t0-day'3 soci«ty leads to
the programs are correct fn ^e ̂ t0 make sure that

difficult problem to solve and we exDect"^ aspects. This is a
found unless advanced software e 3 solution is not
developed. A computer-based system wit^its^iah3"1 reasoning ia

prodneehnudmannm?nd°?9ht t0 ** 9 aid t̂hê e!SfS'Si .SS

axiomatized9in first-o^de^p^edicat ̂ 1 tbS ?at3 structures are
programs are predicate imi> i logic with identity and the
deduction system can be used toprograms (Horn-clauses) , a natural

- Prove that a given program fulfills specified properties

- Prove the correctness of a given program

synthesize programs

transform programs

This is illustrated in rcranv 771 r
and in [HANSSON-80]. ICLARK-77], [HANSSON-79A], [HANSSON-79B]

sboat and
In NATDFn ar3 de<3uctions can be perfo^ ,system' NATDED, in

steps. i ;2̂ }
be studied in ?P^WITZ?6 Jf?" SyStem on which^ATDE^i Jan

m
EXTRAPOSITION GRAMMARS

Fernando Pereira
Department of Artificial Intelligence

University of Edinburgh

Abstract
"Extraposition grammars" are an extension of "definite clause grammars",

and are similarly defined in terms of logic clauses. The extended formalism
makes it easy to describe left extraposition of constituents, an important
feature of natural language syntax.

1. Introduction
This paper presents a grammar formalism for natural language analysis,

called extraposition grammars (XGs), based on the subset of predicate calculus
known as definite, or Horn, clauses. It is argued that certain important
linguistic phenomena, collectively known in transformational grammar as left
extraposition, can be better described in XGs than in earlier grammar
formalisms based on definite clauses.

The XG formalism is an extension of the definite clause grammar (DCG) [5]
formalism, which is itself a restriction of the original grammar formalism
based on definite clauses, Colmerauer's metamorphosis grammars (MGs) [2].
Thus XGs and MGs may be seen as two alternative extensions of the same basic
formalism, DCGs.

The argument for XGs will start with a comparison with DCGs. I should
point out, however, that the motivation for the development of XGs came .rom
studying large MGs for natural language [3, 7].

The relationship between MGs and DCGs is analogous to that^ between type-0
grammars and context-free grammars. So, some of the linguistic phenomena
which are seen as rewriting one sequence of constituents into another might be
described better in a MG than in a DCG. However, it will be s own . a
rewritings like those involved in left extraposition cannot be easily
described in any of the two formalisms.

Left extraposition has been used by grammarians to describe the form of
interrogative sentences and relative clauses, at leas in ang ag
English, French, Spanish and Portuguese. The importance of the
constructions, even in simplified subsets of natura anguag ,
used in database interfaces, suggests that a grammar or
to express them in a clear and concise manner. This is the purpose of XGs.

The reader is expected to have had some Pr^ i°u%contraQC1\W"\®4amthe
formalisms based on definite clauses [2, 5], with Prolog
syntax conventions of DEC-10 Prolog [6].

' Roughly'speaking'' left .ktr.posltion occur. In , natural
hen a subconstituent of some constituent is massing, missing
onstituent, to the left of that' an empty constituent, the
onstituent in some way. It is useful to think h>
race, occupies the "hole" left by the missing constituent, and that^the
onstituent to the left which represents the missing p [1]), One
ndicating that a constituent to its right contains stands has been
an then say that the constituent in whose place e -pr,resented bv the
xtraposed to the left, and, in its new position represented^ by the
arker. For instance, relative clauses are formed y ' Where some
impler cases is just a relative pronoun, followed by a sentence where some
oun phrase has been substituted by a trace. This is represented in the
ollowing annotated surface structure:-

The man that i[sj0hn met tj_] is a grammarian.

3̂5.
markerS * sta"fs for the trace, 'that' is the surface form of the
index i. connection between the the two is indicated by the common

inJJL?"0?1 °f l6ft extraP°sition plays an essential role, directly or
RelatPH t7' ft" ma"y f°rmal descriPtions of relative and interrogative clauses
Related to this concept, there are several "global constraints" t-hP 'm i A

i s : 1 ? T ^ r a TZZISSS :R™£%;L°LR --r"- m°
U" [np ... [rei X2 [a ... t2 ... t-i ...]] ...]

without r^\iInghTt%rtratL%o™naCtfotn0f ̂ «trap0"Ul0n in . loose sense,
and also in nti p transformations as in transformational grammar. In XGs

context-free rule BGb^Zf ml d"Crlbi.ng lan«"a«es (cf. for instance the
but a conceptual operation of sole MnH °f tra8forMtion ia not used,
relative p^noun to a "hoL" in the , ̂ t0 relate a

constituent following the pronoun. structural representation of the

3. Limitations of Other Formalisms

1 l e " . o c o , „

trace. This technique is analogous to ti? f <- °an possibly dominate a
[4], and is exemplified by the o i inbroduc"<>n of "derived" rules in
clauses:- P d by the foll°"ing simplified grammar for relative

full_sentence —> sentence(nil).

sentence(HoleO) >

noun_phrase(HoleO,Hole1), verb_phraseCHole1).

noun_phrase (Hole, Hole) -> pr0per noun
noun__phrase (Hole, Hole) —>

determiner, noun, relative
noun_phrase(HoleO.Hole) —>

noUnJS«™t1r;,nnS?'..trf,]fhr"e<BoM'H°1«>-

verb_phrase(Hole) —>
verb, noun__phrase(Hole nill

verb_phrase(nil) -> verb?

relative —> [].
relative —>

rel_pronoun, sentence!trace).

Prep_phrase(HoleO,Hole) —>

preposition, noun_phrase(HoleO,Hole).

The variables 'Hole... 'g dennt 1' Dfu f°r relative clauses

The fin?? °f!an extraP°sed constituent i?r?xeD'eo?rH 'nil'' dependin® whether
The final rule for 'nounnhrase' ll expected an the rest of the string

r - j

— - - — - ~ ; r : _

involves the use of rules whose left-hand side is a non-terminal followed by a
string of terminal symbols which do not occur in the input vocabulary. An
example of such a rule is:-

rel_marker, [t] —> rel_pronoun.
Its meaning is that a ' rel_jpronoun' can be rewritten into a 'rel_marker'
followed by the dummy terminal 't ', representing a trace. Note that after the
application of this rule, the symbol 't ' will be at the front of the rest of
the input, and subsequent rules will need to cope explicitly with such dummy
terminals. This method has been used in several published grammars [2, 3, 7],
but in a large grammar it has the same (if not worse) problems of size and
clarity as the previous method. It also suffers from a theoretical problem:
in general, the language defined by such a grammar will contain extra
sentences involving the dummy terminals. For parsing, however, no problem
arises, because the input sentences are not supposed to contain dummy
terminals. These inadequacies of MGs were the main motivation for the
development of XGs.

M. Informal Description of XGs
The only difference between XGs and DCGs concerns what is allowed on the

left-hand side of a rule. The left-hand side of an XG rule can be any
sequence of segments, where a segment is any sequence of non-terminals and
lists of terminals, with the sole restriction that the first symbol of the
first segment, the leading symbol, must be a non-terminal. The notation for
an XG rule is:-

s 1 . . . 32 etc. sp-_i... s^ —* r- ^1 ^
where the s i are segments. The following are examples of XG rules:-

fronted_verb ... verb(V), [not] --> verb(V), [not],

rel_marker ... trace —> rel_pronoun.

open ... close -.-> [].

Roughly speaking, the meaning of a rule like (1) is that any sequence of
symbols of the form

siXiS2X2 ... sk-lXk-13k , ^
with arbitrary Xs, can be rewritten into ... X^-i. Jk ls loose
description could be made rigorous by using the notion of deriva ion grap
derivation graphs are for XGs what parse trees are for context-free grammars.
In this paper, however, derivation graphs and the meaning of XGs will only
discussed informally.

In a derivation graph, as in a parse tree, each node corresponds to a rule
application or to a terminal symbol in the derived sentence, end the edges
leaving a node correspond to the symbols in the right-han si e o
rule. In a derivation graph, however, a node can have more than
edge - in fact, one such edge for each of the symbols on the left-hand side of
the rule corresponding to that node. Of these e ges, on y
corresponding to the leading symbol is used to define the lef t" t0"r^ t °r*
of the symbols in the sentence whose derivation is represented by the graph
If one deletes all except the first of the incoming edges to every node from a
derivation graph, the result is a tree analogous to a parse ree.

XGs, even without arguments, are strictly more powerful than context-J^
grammars. For example, figure 4-1 shows the derivation graph for the string
"aabbcc" according to the XG:-

xi-i
s —> as, bs, cs.

as —> [].
as ... xb —> [a], as.

bs —> [].
bs ... xc —> xb, [b], bs.

os —> [].
cs —> xc, [c], cs.

strings0 d6flneS the context-sensitive language formed by the set of all

anbnon for n>0.
s Conventions:

• = rule application
(node)

x = non terminal
X = terminal
[] = empty string

** ~ S. s.
Figure 4-1; Derivation graph for "aabbcc"

Two consecutive symbols in i ^
course to consecutive edges entering ̂ nv 3id<5 °f 3 rule c°rrespond ol
graph. If two such symbols are in the sLp° fortthat in a derivatior
are said to be next to each other segment, the corresponding edges
imposes a restriction on the form'of derlCt?® edS6S t0 b® neXt to each other
like that of figure 4-2, paths p' and D> . 10" graphs- In a configuration
graph, the sector between them The term, sur™und a fragment of derivation
^y be non-empty, and then one' says thatThe from that sect°r

e . However, when edges e' and e' < *L ? is a gap between edges e' and
string derived from the sector mus^ be empty"*^ t0 ea°h other> the terminal

stes*,- s -a — i. ««- * l m - " M M d - l s • « ° ° - s

r +

%3b
5

P' P"
.. sector ...

+ , +

\ /
\ /

e' \ / e"
\ /
\ /
\ /
\ /
n +

Figure 4-2: Node n has two consecutive edges e' and e''
match each of its symbols in sequence. This sequence of symbols can be
interrupted by gaps, which are arbitrary sequences of symbols paired to the
occurrences of '...' on the left-hand side of the rule.

I can now show how simple it is to express left extraposition with an XG.
The following XG fragment describes essentially the same fragment of language
as that of figure 3-1:-

sentence —> noun_phrase, verb_phrase.

noun_phrase —> proper_noun.
noun_phrase —> determiner, noun, relative.
noun_phrase —> determiner, noun, prep_phrase.
noun_phrase —> trace.

verb__phrase —> verb, noun_phrase.
verb_phrase —> verb.

relative —> []. (2)
relative —> rel_marker, sentence.

rel_marker ... trace —> rel__pronoun.

prep phrase —> preposition, noun_phrase.
Figure 4-3: XG for relative clauses

In this grammar, the sentence
The mouse that the cat chased squeaks. ...

. . a- Fio-nrp 4-4 The left extraposition

SpUcit structure of'toe sot.nc. » £ not', SSfn
Sr.pt 0, application or r«l. tor •« ..rt.P. « ̂
in the figure. One can say that the leTt Pwhich may be looked at as
the derivation by the the extraposition of the
repositioning 'trace' to the right, thus reversing
original sentence.

In the rest of this paper, I will often refer to a
repositioned into a fragment of a derivation grap ,
that constituent as a non-leading symbol in the left-hand side
applied, and the symbol corresponds to some edge in the fragment.

det noun rel verb

Abbreviations:

det =determiner
np = nour_phrase
r - rei_marker
relp = rel__pronoun
s = sentence
t = trace
vp = verb_phrase

A A det noun rel verb np

relp

the mouse that the eat

[]

chased squeaks

Figure 4-H: Example of derivation graph for the XG above

5. The Bracketing Constraint
In the example of figure 4-4 the

rule, at the place marked (•) when ^ 13 on"''y one aPPHcation of a non-D'
applications of such rules, the aDni i _ Ver*' a deriv3tlon contains sever
the bracketing constraint of the XG fn™ ^°nS must ot |ey a global constrain
the translation of XGs into logic ThiS oonstraint is implicit :
section. The discussion of the constraint TS ' t0 be discussed in the nei
would require a lengthy formal ^

In a derivation c;raDh a A

wit h m o r e t han one symbol'in its^eft t0 th® aPP l ication of a rul
n,tderlIati°n graph> defined ^.n thp SldS deterain^ certain sectors 1

constraint forbids the occurrenceinthe secti°n- The bracketin
descendant both of a node in a sector a n d r "0" graph of an* "°d* "eing
sector IUdS C3K te apP l ied whose left-hand J*™** outside fchat sector. Tha

ij-x sar-ffss: r:

The constraint
sentences

The mouse squeaks.
The cat likes fish.
The cat chased the mouse.

and its use is better
shown with an example. From

V?t
i 7

the grammar of figure 4-3 can derive the following string, which violates the
complex NP constraint:-

* The mouse that the cat that chased likes fish squeaks.
This might be rendered in something more like English as:-

The mouse, that the cat which chased it likes fish, squeaks.

The derivation graph for the ungrammatical string is shown in figure 5-1.

det noun verb

the mouse that the cat that chased likes. -^91!

Fieure 5-1: Violation of the complex NP constraint

in the graph f.) and («) mark two nested applicat*£ ££* ,SiS

'rel_marker\ The sentence is unf^®a 1C ing inside a sentence which is
(marked (+) in the graph) binds a trace occu
part of the subordinated 'noun_phrase (++;.

Now, oaing tN. bracketing constraint of JO. for
complex NP constraint. It is only necessary to change the

'relative' in figure 4-3 to (3)
relative —> open, rel_marker, sentence, close.

and add the rule
open ... close —> []. (1))

nnn^^n«-ID0Kified grammar' ifc is no longer possible to violate the complex NP
constraint, because no constituent can be repositioned from outside into the

r^etOL0r^ivt?3).aPPUCatiOn °f ^ t0 th6 r6SUlt °f aPPlyi"« the

auhJUni '0Pen' 3nd ,CloSe' behave aa brackets around a
subderivation, preventing any constituent from being repositioned from outside

Figure 5"2 ShOWS the - - W ̂ t":

The mouse that the cat that likes fish chased squeaks.

of̂ ieur̂ 36!'3 °nv, tKe<.uame three Simple sentences as the ungrammatical string
to see how the 2S2 m* °m "°W try t0 derive in the.odifild gr^
to see how the bracketing constraint prevents the derivation.

6, XGs as Logic Programs

riefi'n^3 1DCG' an.XG is no more than a convenient notation for a set of

predicate ^with ̂ h^same n^eK^f"3 he° extra ̂ our^ng63^^3 ? "" ̂

S: 3rnln!nP° eî pLit/on Tist ̂ ĥ h ̂ S
repositioned. L f Z ,Whl°h °arries constituents to be

corresponding to the leading symboli"of the rSle 3 In^th ^ Predi0ate

rule has just a single svmhnl on m,. i I !r In the case where the
similar to that of DCG rules. For example, "the rule^' ̂ tran3lation 13 ver*

sentence —> noun_phrase, verb_phrase.
translates into

sentence(SO,S,XO,X)

noun_phrase(S0,S1,X0,X1), verb_phrase(S1 ,S,X1 X)

3 "b16 translâ es' Into a call to the
'connects' in DCGs. For example, the rule' r°le 13 analo8°us to that of

rel_pronoun ~> [that],
translates into

re l_pronoun (SO, S, XO, X) terminal (that, SO S XO X)
The translation of a rule with (-w, ' ' ,X) •
bit more complicated. Informally the^em"6 Symbo1 in the left-hand side is a
made into a (pseudo-) list which* is fraZ"? °S Symb°ls after the first is
element of the fronted list is a I the ^^Position list. Each
corresponding symbol, its type and contevt ̂̂ !rm Whioh encapsulates the
Thus, for example, the rule^6 context» and the continuation of the list.

rel_marker ... trace -_> rel_pronoun
translates into '

s'sss-M.'isfssrira kjtt «««* ««» •>« d"the 01™"

between XO and X in the extraposition^lis't'" ̂ re3d 33 "C is the constituent

- • —
if the symbol^precetetK; •'-htyp^^1 13 preceded by '...', or -nogap',
with the obvious meaning; symbol'is the t k 'terminal' or 'nonterminal',

f"* «'wSu ?»xn.t i.
So, the rule lsc <an e®Pty list being represented by •[]')

marker(Var), [the] r.f u
... [of,whom], trace(Var) —> [whose].

no
9

2W0
10

marker(Var,SO,S,X0,x(nogap,terminal,the,
x(gap,terminal,of,
x(nogap,terminal,whom,
x(nogap,nonterminal,trace(Var),
X))))) :-

terminal(whose,SO,S,X0,X).

trace(Var,S,S,X0,X) virtual(trace(Var),X0,X).

svnthesisf ff6 tha" 3 l0gi° program ' an XG can "e used for analysis and for
KSiSw * -r? Way " a DCG- For instance, to determine whether a

defined bv th* \r \r r<P » o ^1 a"d flnal point final is in the
y the XG of figure 1-3, one tries to prove the goal statement

:- sentence(initial,final,[],[]).
?CwS ' the String s can be represented in several ways If it is

represented as a list, the above goal would be written
sentenced,[],[],[]).

2U£2ti£ -fj? -^ie t^f ST™
constituent can be repositioned into or out of the top level -sentence- "°

as fSlois;- the tW° 3UXiUary Predicates -virtual- and -terminal- are defined

virtual(NT, x(_,nonterminal,NT,X), X).

terminal(T, SO, S, X, X) gap(X), connectsCSO, T, S).
terminal(T, S, S, x(_,terminal,T,X), X).

g a p (x (g a p .
gap([]).

where 'connects' is as for DCGs.

These definitions need some comment The
that, provided the current extraDosin'nn , (7, clause for -terminal- says
derivation, terminal symbol T may be taken from th?* 3 ̂ *" th6

string, where T connects SO to position SO in the source
'terminal' says that if the next symbofin P°Sltion S* The second clause for
terminal T, then this symbol can bfuken as iff^ extraP°3ition "«t is a

string. The clause for 'virtual- aifl occurred at S in the source
the extraposition list. 8 non-terminal to be "read off from"

placed in the exf aposnLrflisf 00nstraint works. Symbols are
left-hand side, and removed by calls'" ti^i f f f"6 tha" °"e synbo1 in the

basis. This means that if two s vL hf ! Vlrtua1 '- °n a first in last out
position to the right of the initial nn^r1"6 e* traPosedf one from an initial
Of the first must be either the °/ the ° ther- the final P°3"ion
second, or to the left of its final °f th® inUial position °f the

t™ of repositioning, gives ^»»«»» "

7. Conclusions and Further Work

this extension15was1 tfjfovfif'a^'impleformal °d °/ DCGS ' The ffl°tivation for
of such important natural language rnn T J• t0 describe the structure
interrogative sentences. In tSZ,H3nst1ructlona a* relative clauses and
usually been analysed in terms S left ex,r ' theSe destructions have
constraints, such as the complex NP constr^T81"0"' togethd with global
the extraposition. Global constraints all * ' ,h restrict the range of

are given externally to be enforced n° explioit in the grammar rules,
objectionable, both on theoretical frn.fd f083 rUle aPPlications. This is
pd on practical grounds "beo^e ft leads t'oT " 18 "ad hoc"

leads to obscure grammars and prevents

IHt
1 1

the use of any reasonable parsing algorithm.

DCGs, although they provide the basic machinery for a clear description of
languages and their structures, lack a mechanism to describe simply left
extraposition and the associated restrictions. XGs are an answer to this
limitation.

An XG has the same fundamental property as a DCG, that it is no more than a
convenient notation for the clauses of an ordinary logic program. XGs and
their translation into definite clauses have been designed to meet three
requirements: (i) to be a principled extension of DCGs, which can be
interpreted as a grammar formalism independently of its translation into
definite clauses; (ii) to provide for simple description of left extraposition
and related restrictions; (iii) to be comparable in efficiency with DCGs when
executed by Prolog. It turns out that these requirements are not
contradictory, and that the resulting design is extremely simple. The
restrictions on extraposition are naturally expressed in terms of scope, and
scope is expressed in the formalism by "bracketing out" subderivations
corresponding to sectors in a derivation graph. The notion of derivation
graph is introduced in order to describe extraposition and bracketing
independently of the translation of XGs into logic programs.

Some questions about XGs have not been tackled in this paper. First, from a
theoretical point of view it is necessary to define derivation graphs
rigorously, in order to give a precise definition of the concept of derivation
in an XG, and to prove that the translation of XGs into logic programs
correctly renders this independent characterisation of the semantics of XGs.
This formalisation does not offer any substantial problems.

Next, it is not clear whether XGs are as general as they could be. For
instance, it might be possible to extend them to handle right extraposition of
constituents, which, although less common than left extraposition, can be used
to describe quite frequent English constructions, such as the gap between head
noun and relative clause in:-

What files are there that were created today?
It may however be possible to describe such situations in terms of left
extraposition of some other constituent (eg. the verb phrase "are there" in
the example above).

Finally, as for DCGs, one can consider the question of what transformations
should be applied to an XG developed as a clear description of a language, so
that the resulting grammar could be used more efficiently in parsing, A
possible approach to this question might be to generalise results on
deterministic parsing of context-free languages into appropriate principles of
transformation.
Acknowledgements

David Warren has read several drafts of this paper, and his detailed
comments were a major source of improvements, both to the content and to the
form. A British Council Fellowship is supporting my work in this subject. The
computing facilities I used to experiment with XGs and to prepare this paper
were made available by a Science Research Council grant (GR/A 74432).

8. References
1. Chomsky, N. Reflections on Language. Pantheon, 1975.
2. Colmerauer A. Metamorphosis Grammars. In L .Bole, Ed. , Natural. Language
Communication with Computers. Springer-Verlag, 1978. First appeared as an
internal report, 'Les Grammaires de Metamorphose', in November 1975

Espaltnol' ?f?uctif ?'Interrogation de Banques de Donnees en d-S2;JiTiV « •
e- »• <*

L,°*SŜ ?-sSS,1fhA"if,c?Ŝ t-''r" La"E"E'- Sol»»1 °f s»"'i =«*»«».

5. Pereira, F. and Warren, D, H. D. Definite Clause Grammars Compared with

o?T̂ rsSb"r!"mr' ""e*rc# "ep°rt 5'-,,ept' °r *• u",ve"'«

UcZssi
f. Pique, J. F. Interrogation en Franoais d'une Base de Donnee

<"lflai'ua' «• e- »• <« e»*»».

8. Ross, J R . Excerpts from -Constraints on Variables in Syntax- In

9* R O U S S ' T f1 f23® £rili£Sl £ssaxs, Anchor Books, 1974.
dlinffiif Prolog : Manuel de Reference et Utilisation. Groupe
II, 1975.Sen°e rtlfi0lelle' u- E' R- de Luminy, Universite d'Aix-Marseille

Feliks Kluzniak, St ant slaw Gspakowicz
Institute of Informatics
v.arsaw University
P03 1 210 , 00 -901 Warssawa, P0LAJ.7D

April 1930
A hote on Teaching Frolog

Prolog can he taught either to a layman or to an experienced

programmer. The .former will gladly accept any plausible justifica

tion of the way the language is constructed - first-order logic

seems the best justification possible. The latter, however, will

be demoralized by bad Fortran habits or, at best, so used to the

Structured-Programmirg-in-Pascal approach that he will need a lot

of convincing before he considers Prolog a useful programming lan

guage .

We are going to outline the crucial points of a method of

presenting Prolog fundamentals which gives due attention to tneir

proximity to "normal" programming language constructions and empha

sizes their advantages.

We are deem.pha.sizing logic intuitions as we. believe that any

practical use. of Prolog requires drastic short cuts or. the w«y

from a logic explication to a running program. One can exploit

first-order parallels of Prolog clauses to facilitate program ve

rification. normally, though, a clause is much more concise than

its logic counterpart and it is even more so with complete Proce

dures. Try, for example, to account reasonably for such (evidently

not first-order!) features as the cut procedure 'the "slash),

variable literals and - last, not least - the conscio.u u->e o,

backtracking as a Pro.nramr.ir.g tool rather than as a search space

generator.
We also do without AI intuitions which do not help to make

the clarity of Prolog obvious enough, -e stress Prolog's uniformi

ty and generality of data and control structures. These are the

very features of a -cod programming language, not ov,l/ - lan n.5e

I H H
A hote o~ Teachl-- Prolog (2)

"for AI".

As a contrast to Prolog we have chosen not Lisp but Pascal

which is clearly the most up-to-date of all^.vldespread languages.

Its design was influenced by the recommendations o^ Programming

Lethodology, the same that we use to show the main (and somewhat

startling) features of Prolog in a favourable light.

* * *

In a very general sense terms can be thought of as specifi

cations of data types, that is of classes of objects. These vary

from the most general (the class of all objects) to the most spe

cific ones (a class containing one object). In Prolog objects are

denoted directly by descriptions of their types - this provides

sufficient flexibility to let us specify only those attributes

of objects which are interesting in a particular context.

A simple (unstructured) object is denoted by a name and we

do not associate with it any interpretation. Simple objects are

the Prolog counterparts of Pascal's constants but without some of

flaws. Simple objects need not be declared, neither do they

require a specification of type-censtant relation which is obli
gatory in Pascal.

compound obier.t. is built of components which can be quite

arbitrary. aeir correction with the object 1= expressed by Its

nane (which Is, In fact, a close counterpart of type pane In Pas

cal) • A term denoting an object is nceto, „ > „nh c .

a description of 1-th component which cap be also a compound ot-

sually speak of functor and arg-jnents instead of "nape"

-a corponentf, as the potation rescues the one used 1- catha

rtics. -'°r the sake of homogeneity of approach we also speak of

functors of sero argents which describe einnle objects.

-.a ŝ actic sugar is welcome to facilitate description .1

--acts but It not Pake things obscure. introduce -ir ̂

A note on Teaching Prolog (3)

tors (infixj prefix and postfix) which help to simplify the nota

tion (we think it co-fusing to call them "operators")• Other faci

lities, such as infix procedure names or list brackets, aren't in

the least necessary.

Terms containing variables are used to describe objects with

incompletely specified attributes; a variable denotes an object

of an unknown type. Partially unspecified objects are used in a

manner similar to Pascal's formal value-parameters in that they
Cf-

serve as the handles of concrete objects. There is fc&e close si

milarity to "variables" of high-school algebra, cf g(x)=x'/+3- Af

ter a Prolog variable gets instantiated, it likewise ceases to be

a variable: later on it denotes a specific object. That object

in turn can contain variables - quite naturally it means that it

still remains only partially specified.

Terms are certainly more general than Pascal's value-parame

ters.- Their instantiation can be performed in discrete steps and

not necessarily at once; it can also take place both on the called

and the calling side. This generality is due to the generality of
parameter passing

unification used as the p«ite<iai!nmuiifcmtaiLag» mechanism. Tnis particu

lar mechanism enables us to write procedures in a natiiral and con

cise form, as illiistrated by

+COifSCAACPiU*CAR.*Cm, xGAit, *CDR).

The operation of a procedure depends on the attributes of

its actual parameters but it is usually (as in Pascal) obscured

by the piecemeal fashion of testing attributes to determine cont

rol flow. The dependency becomes clear in a multi-clause procedu

re where every clause gives rise to a distinct course of computa

tion. Surprisingly enough, similar multi—use routines appear in so

modern a language as ADA in the clumsy form of "overloaded proce

dures; each version of such a procedure handles another set of

parameter types.

A .Tote on Teaching Prolog (4)

The types of the actual parameters should match those o f the

formal ones In at least one clause heading of the called procedu

re. Otherwise the call is erroneous. Treating failure as an error

condition helps to explain the meaning of backtracking, ixperler.ee

shows that this notion can he particixlarly alien to ̂ programmer's

intuitions. We decided then to slip through the psychological

harrier by paraphrasing it as a general exception-handling mecha

nism with one major peculiarity. In Prolog every procedure can

- in suitable circumstances - serve as an exception-handler and

its operation consists in redirecting the computation in order to
avoid failure.

The misuse of backtracking for extended type-checking (e.g.

at run time) and for the construction of nondeterminlstic proce

dures is then shown to equip Prolog programs with so much power,

elegance and clarity that it. cannot be advised against, even thou

gh it makes backtracking virtually useless in its principal appli

cation, namely exception handling. Fortunately we need not really

aice a choice since the cut procedure appears to be an effective

tool for taming nondeterminism and for tailoring the backtracking
mechanism to our needs.

* * *

short paper was not intended as a detailed description

0 our method. A complete lecture on Prolog will appear - in Po-
ish - in a boo* bel»g „ltten by ^ ̂ ^ ̂

-anted to safest a .ay „f demonstration that Krolo, is not as
0 as it has seemed up to now. If ^olog ls tQ all

—d as a pro™. ̂ ̂ ^ J _ ̂

it compressible to th. prosramlns _

oltLT "J-"—^ " — —• —in terns, JL

notio„: r:j::::roetoe8\bMt— - th* - * ~
Programmer's way of thinking.

AY ?

P e t e r T A N C I G i D a m j a n B 0 J A D 2 I E V

U n i v e r s i t y o f E d v a r d K a r d e I j i n L j u b l j a n a
J O S E F S T E F A N I N S T I T U T E
D e p a r t m e n t o f C o m p u t e r S c i e n c e a n d I n f o r m a t i c s
L j u b l j a n a ! Y u g o s l a v i a

S O V A - A r . I n t e g r a t e d Q u e s t i o n - A n s w e r i n g S y s t e m

B a s e d o n A T N (f o r s y n t a x) a n d P R O L O G

(f o r s e m a n t i c s) i n L I S P E n v i r o n m e n t

E x t e n d e d a b s t r a c t o f t h e p a p e r i n t e n d e d f o r
C O L I N G - B O t t h e B - t h I n t e r n a t i o n a l C o n f e r e n c e
o n C o m p u t a t i o n a l L i n g u i s t i c s !
T O K Y O i S e p t . 3 0 - O c t . A . i 1 9 8 0

S u b i e c t H e a d i n g s !

i n t e g r a t e d n a t u r a l l a n g u a g e q u e s t i o n - a n s w e r i n g s y s t e m s
A T N s u b s y s t e m f o r s y n t a i / s e m a n t i c a n a l y s i s
P R O L O G s u b s y s t e m f o r s e m a n t i c i n t e r p r e t a t i o m a s s i m i l a t i o n !

a n d s e a r c h i n d a t a b a s e
i n t e r f a c e s a m o n g d i f f e r e n t p a r t s o f t h e s y s t e m
L I S P e n v i r o n m e n t
C O C C Y B E R c o m p u t e r

I n t h e p a p e r w e p r e s e n t a m e t h o d o l o g y a n d a n a p p l i c a t i o n o f 2

p o w e r f u l t o o l s ! i m p l e m e n t e d a n d e m b e d d e d i n L I S P i f o r e x p e r i m e n

t i n g w i t h q u e s t i o n - a n s w e r i n g s y s t e m s w i t h n a t u r a l l a n g u a g e i n p u t .

P a r s i n g o f i n p u t s e n t e n c e s i s d o n e w i t h a n A T N s u b s y s t e m

w h i c h a l l o w s o n e t o e x p e r i m e n t w i t h d i f f e r e n t s y n t a x / s e -

m a n t i c s - o r i e n t e d a p p r o a c h e s a n d t o p r o d u c e d i f f e r e n t k i n d s

o f " d e e p " s t r u c t u r e s .

T h e s e " d e e p " s t r u c t u r e s m a y a l r e a d y b e t h e P R O L O G c l a u s a l f o r m

o r t h e y m a y b e " t r a n s l a t e d " i n t o i t f r o m a n o t h e r " d e e p s t r u c t u r e r e p -

- 1 -

T h a f o l l o w i n g f u n c t i o n c o m p o s i t i o n !

(s e t q O U T S N T C
(g e n e r a t e (s e t q V A L U E S

C i n t e r p r e t e (s e t q I N P C L A U S E
(c l a u s a l i z e (s e t q . I N P O E E P

(p a r s e (s e t q I N P S N T C
(r e a d }

U l u s t r a t e s „ „ . r 5 s t . p , t f u o c , t o o e , p e r ^

. a n e t t a r . t , . „ 3 u . g . , „ p u , w s

T h e 5 (g l o b a l) v a r i a b l e s a n d t h e i r v a l u e s a r e ,
I N P S N T C < ~ i n p u t s e n t e n c e (q u e s t i o n | a s s # r t

I N P O E E P < - . . d e e p . . s t r u c t u r e Q f i N p s N T c ^ ̂

I N P C L A U S E < — P R O L O G i r « * u l t o f A T N p a r s i n g
P R O L O G i n p u t c l a u s a l t o r * o f I N P O E E P (,

v s c u e s < - P R 0 L 0 S . , a B p u t r " • • • • > '

O U T S N T C < , " " l u a l . o o o f I N P C L P U S E
' U T S N T C < - - o u t p u t s e n t e n c e

° " ' » " " » « h t r a n s f e r o f t t ,
t h e f o l l o w i n g : * 9 ° ° d ° L d F i d o « o u l d b e

a s s e r t i n n

I N P S N T C < — (P p . B —
I N P O E E P < — 7 = ^ j ^ l v e s . F i d o t e n

;nvp ;r
r k j B S i v e s)
< N P (N P R F i d o) ,
< r P / (P R E P t o)

< e v e n t , , p e t e r ^
q u e s t i o n

I N P S N T C (— (W h a t w
I " P 0 E " < - t o

«™FP ft'" p®. er))
< n p '
C P P / (P R E P t o)

I N P C L A U S E < - - / / - / • > * < N P (N P R N a r y)) ;))

o S c V - ' " " P E r " " « « • o B J . . „ a R y))
8 l v e , F l a „ , o ^

" 3 -

2.4*)

APPLICATION OF PROLOG IN DESIGNING

MANY-STORIED DWELLING HOUSES

BY ZSUZSANNA MARKUSZ

Computer and Automation Institute

Hungarian Academy of Sciences

/llll Budapest, Kende u. 13-17./
Hungary

1. PREFACE

The purpose of this paper is to show a new application of

PROLOG in the field of CAD. A previous architectural CAD applica

tion of PROLOG has been published in [Mar, 3], In the course of

solving the problem laid out there - namely the designing of

different ground-plans for big-panel apartments - it turned out

that PROLOG can be well applied in solving architectural problems.

This program system makes use of the experiments performed in the

previous work, however it is based on sore other architectural

conceptions. Furthermore this new program system does not stop

at producing variants of apartment ground plans, but aims at

contributing to architectural design of complete dwelling houses.

The method of program developing appears to be new as veil. It

will be reported in Chapter 4, and it was also published in greater

detail in [KM, 4] and [KM, 5] . The results of its application

cote up in this paper, too.

The programs were tested and run on the Siemens 7.7.55 computer

of the Institute for Coordination of Computer Technics, the PROLOG

system which was installed by Peter Koves [Kov, 6j.

1. THE DESIGN SYSTEM OF THE APARTMENT HOUSE, DATA BASE, STRUCTURES

In this program system basic building cells with given measurements

and functions serve as the basic elements for designing apartments.

Three cells with different measurements are taken into the data base:

- 2 -

measurements

2.4 x 4.8 meter /narrow/

4.2 x 4.8 /wide/

4.2 x 3.6 /wide/

name

A,B,C,D

M

N,L

Eaph apartment is constructed by joining 3 wide cells and 1 to 4

narrow cells. A general apartment is nade up of a iraxiirum of 7

cells has the following geometrical neasurenents:

•J' •J' A
M

*1 Fi
N

*1 Fi

>
1

r
Vt 'i.l

r
5!

SI
T

-*—f—f-+•

Figure 1. Outline of an apartrent

« b" Z ̂ ̂ ̂ aPartTO"t " — «"»

1 dining roan 2
bedroom 3

entrance 4
kitchen 5 ,

bathroom 6
0611 can serve two functions. Accordina to «,

positial of the tor,, cells with theIT ̂

can sw for different versions ih! !L'MSUr™mt'

«*t of ta cells code. " ""

3™ T -u ~ S"1

Point, to the safer of retslom_ ̂ ̂ >»**•

d«its stand for the above taction,! code,. °°

In the program one apartnent is represents k , •
*M. W. .t; .A, ,B. as folta,

or *MIDDLE; *OUTSIDE

%s 1

- 3 -

where MIDDLE means the list of the middle wide cells,

OUTSIDE means the list of the outside narrow cells.
In the course of apartment design the constant values of the

chosen cells are assigned to the variables of the list. If the

apartment contains less than 7 cells, a variable still remains

in the unused part of the list.

Two apartments and a staircase make up one section level.

Horizontal placement of one or two section levels makes one

dilatation unit level. The vertical placement of 2-4 section

levels makes one section, while the vertical placement of 2-4

dilatation unit levels makes one dilatation unit. Any number

of dilatation units joined horizontally make up one building.

One building is represented by a catpound list in which four

different operators are present.

According to the priority level the operators are as follows:

! joins apartments /horizontally/

joins section levels /horizontally/

; joins dilatation levels /vertically/

joins dilatation units /horizontally/

To set an example let us take a building with 4 levels and 3

dilatation units:

* A 4 ! * B T L ' O j * P W I 1

* 5 3 * , A 1 I * 8 3 [* C i 1 * D 3
/ 1 i .

* b Z * A 2 I * B Z [* C 2 1 ' 0 2 i 1 : i 1

* S A « A J ! * f h . * C K i * M 1 , y I ! * S A

-
- * D 3

NIL

— N

where *D1, *D2, *D3 represent the certain dilatation units,

*D1 breaks down according to levels:

*D1 = *S4; -*S3; *S2; *S1? NIL

*S1 breaks down according to apartments:

*S1 = *A1 ! *B1 . *C1 ! *D1 . NIL

Figure 3. An example for illustrating a building

in the program

The building is designed so that the list of con tan ts of the
finished apartments will replace the variables /»A1,.../
representing the apartments.

3. PARTS OF THE PROGRAM SYSTEM

The program system is ccrposed of the following four programs:
1. FIAT program to design variations of ground.plans to neet

individual demands;

2. OKD prpc™ to aeclde tte priority orderin, of varieties of
apartnents;

3' ^°9ram t0 Create ^ ̂ rtical structure of the building
to be designed?

4" ^•PTB t0 deSl9n 1116 aewn»"« <* ground-plans of
dwelling houses level by level.

3.1. FLAT

Taking into consideration the arrUe»,n
program produces all the possible of T * d£mandS' ** possible ground-plans of the
it provides these variants with the code of the ^ '
them in a file. This program is to be run appllcant stores
of applicants. 33 "Bny tirnes 35 the nunfcer

"^n^>ut:— list of the applicants;
the personal demands of the anni-i^
data: PPlicants according to the following

1/ Apart frcm the livina rrvm 4-u
2/ The nurrber of single bedrocks nUrnber of double bedrooms /0-3/
3/ Preference of fJl <WUoant to have

/ ! / k tT C B , b t a a t t o - of the fo l lowing/ :
kitchen - dining rocm

121 living room - dining rocm

/The possible answers ^2 or T/^ ̂

5/ Does nor1" 7l'2'3 °r ° ±f n° Second choice/.
Does not accept the third solution- /, o , n,

* s: t ZLTTle tedra:m for parê ? ̂'*>*• agree to having a double bedrr™, „ •
/Yes, No/. ' penlng into the living rocrn?

8/ Does he want a study? /Yes, No/>

£S3

- 5 -

Output: - the lists of ground-plans fulfilling the input require
ments /in a file/

- on the printer the same lists in the form of a matrix

with data concerning area and other quantities:

1/ the area of the whole apartment

2/ living area

3/ nunber of beds

4/ the ratio of living area and the whole area

5/ area for one person

3.2. ORD

Uiis program enables the applicant to order the apartments

according to preference that is the from the best choice to satis

factory in such a way that the applicant may exclude those versions

vhich do not fulfill his needs, ibis is done by assigning a priority

number to the apartments on the list.

Input: the output of the FLAT program

Output: according to the applicant's denend the program orders the

apartments in the file.

3.3 BUHD

As a function of the maximum nunber of levels of the building to

be designed as well as a function of the nunber of apartments, this

program calculates the nunber of dilatation units the building will

contain. It designs the general and the last - maybe incomplete -

dilatation unit's structure /sections, levels, nunber of apartments/.

It elaborates the general outline of the building which will serve as

input for the next program.

Input: - the nunber of apartments in the building to be designed;

- maximum nunber of levels;

- nunber of sections is one dilatation unit;

Output: the general outline of the whole building printed.

3.4. TOTAL

This program makes use of the results obtained from the precious

three. Its aim is to fill the structure made by BUILD and several runs

of the FLAT program taking into account the area and geometric require

ments of the building. The program places the apartments beside and above

one another so that it selects those which correspond to the horizontal

and vertical geometric and functional connections.

iSH

SEfi: - «» W of the left e„d of the dfletatfch « lopm „ clcM/,

the type of the right end of the dilatation unit;

- the connection of the first « to the second the first

staircase is to be shifted up or down by half level?

- the sane concerning the second staircase-

- to. many eat™ telle ^ ̂ ^ ̂ ̂ ̂

and second apartments?

- the sane with the 2nd and 3rd apartnents;

- the sane with the 3rd and 4th apartnents;

~ •" Se°U°°S " "*** h»̂ «"lly as spared to
each other to the right or to the left?

a™,̂ lewl by ̂ of

me apartnents are given bv the li=t-

of the applications! Ihe ̂ l^ "T "«***

a visual picture of the egcnetri rin ̂ °f ̂ nUlfcerS P10™**
apartnents /Fig. 6> 7 /. ^angenent of functional elenents and

pre~;:r,r̂ 016 apartatEnts ŝiae ̂****** ̂

figure 5.

^ere K nm /Is n, ms 4/ is an ̂ _
* ™ P,Q .. ' 18 ̂ aP̂ nt; p Q apartment;

^ K n ITH-1

^ the apartnent K nm we^iert'^ 1̂ ^ ̂ apartnEntS'
rents P,Q. n mfl apartment which neets rc

f R'S To °f ̂ apartments. - —w uien

K n m S l S C t 9 K 11+1 m apartnent

Abbreviations: ^^ts R and s.

S ~ synmetry

HZ ~ horizontal ® " h°rstair

"f ~ suitable left

iSb

- 7 -

MV - suitable right

GE - geometric left
V - vertical

GV - geometric right

To every connection a procedure is assigned the functions of which

are as follows:

1. SYMMETRY

It produces the symmetrical version of an apartment designed by the

FIAT program with respect to the Y axis.

2. HORSTA.IR

It controls whether the staircase can be put between two apartments

in the way that the entrances open from the staircase.

3. HORIZONT

It checks whether the geometric structure of the right cells in the

second apartment is suitable to be joined to the left cells of the third

apartment. .

4. SUITAHLELEFT

This program checks whether the right cells of the first apartment

on the first level which is situated on the left side of the dilatation

unit corresponds to the type of the dilatation unit on the left. If this

type is OPEN then it does not join another dilatation unit, therefore

the outline of the elements can be arbitrary. If it is CLOSED, the left

side of the apartment's outline is allowed to contain only flat surfaces.

5. SUITABT,FRIGHT
Similar to 4. on the right end of the dilatation unit.

6. VERTICAL
This procedure is necessary for selecting any apartments above the

ground floor. It checks whether
- the wiater-block of the chosen apartment is above the water-block

of the lower apartment,

- the entrances are above each other,

- there are cells under all cells.

7. GEOMETRICLEFT
This procedure is necessary to choose apartments on the left side

of the dilatation units above the ground floor. It checks whether the

left element of the upper apartment corresponds to the type of the left side

IS<0

- 8 -

of the dilatation unit, and Aether the gecrretry of the upper and

lower apartments match.

8. GEXM2TRICRIGHT

The same as 7 but refers to the right side apartments.

Filling up the structure of the dilatation unit with apartments is
performed in the following way:

- applying the SUEEABLELEFT conditio « thoo« the apsrt«„ts K 11 to the
left side of the first level,

- ve fill up the first totol with apartnents to order of K 12, K 13. X 1,

taking into account the horizontal conditions pointed out In Fl, 5

- « chocs. apartment K 21 to the left side of the second leml so thit the

- ZR.'R;.—A™APPIIED T° ̂ ̂
the conditions of fitting the npyf /ir oo /

i-uig rne next /K 22/ apartment are determined bv
apartment K 21 beside an K 12 below if- mt • ^™nea ny
vertical 15 SyStem °f ̂ izontal and
vertical conditions can be seen in k„ r ™
_ Fig. 5. Hie other apartirents /K 23 K 2<

Of the second tel fit In the sm way Parents /X 23, K 2.

- the 3rd and 1th floor. treated similarly to the 2nd.

Fig.6. shews the output form of the first le,»i e
dilatation « of the s™ Fto, ̂ "" ̂
of the above. respective drawing

4' ?HE CC!>IPLEXTTY OF TVF VRCGR.W SYftr**,

p~5 0,8 ** T »*««. - the

the cutting of test tine th Program errors as well as at

complexity of the program. " ^ lntr°dUCtion of local and global

Ifcw we shall not go into details of the th

principles and the achieved results. ^ the ̂

All the programs have been developed in =
organization so that the parts of th easy-to-survey hierarchical

independently frcm one anoth d 6 PrDgra;ns can ̂ written almost
om one another. PPOIOG es^ially is suitable for ̂

- 9 -

The independent program units are called partitions. The definitions

of the 6 different sorts of partitions /AND, OR, DATA, CASE, RECURSION,

TASK/ can be found in[KM, 5.3.The programs were written 'top-down' and

we decided at the hierarchical decomposition every time what sort of

partition we needed for the further devision of the task. The partition

was defined so that the number of clauses and arguments should not

exceed 4. Having written the program before running it, we calculated

the local and average complexity level of the program. The partitions

with high complexity were devided to simple ones and the program was

altered accordingly. Table 1. contains the test data of the programs,

the number of sematic errors and complexity indeces. Vfe found the

average local complexity 6.7 calculated for the whole program system

to be optimal.

The nuirber of sematic errors is 34 which is fairly small in respect

to the whole program system. We can say that complexity calculation

contributed a great deal in writing this fairly difficult task and

putting it into working condition with only a few semantic errors in

a short time, It took two persons a month's work to write and test the

program system.

The computer aided design procedure laid out in this paper can be

adopted to other architectural applications. To create a new design

system, the redefinition of the building's structure and the support

ing data base is necessary. The program level formalization of steps

of the design solved by this system can be further applied.

For the time being the program system only serves our research

goals however, by altering the data base, the system can be made suit

able for any particular application.

5. ACi'J\'QWLEDGEVE'iTS

I would like to express ny thanks architect Mr. Istvan Rakossy for

working out the architectural concepts in this program system and for

helping set the architectural way of thinking into computer programs.

- lo -

H e f e r e n a e s

[Kou, 1]

[SzF, 2]

[Mar, 3] ,

[KM, 4] :

[KM, 5] ;

[Kdv, 6] :
[MR, 7} :

' :°w-

' S'Ŝ rg/' *•** FmUX luma- «*•"**. '•

Z??2£ZI&I,RZZ SSSSL^
control of 'dJ^Telro^i*n*rod?cti°n °f a complexity measure for

Brighton, Great Britain. CAD P^^ams. Proa, of CAWS,

KSves, P; BS Sooo PROLOG USERS' S MANUEL V2 4 SzKJ 1Q7A r »
Markusz, ZS: Rdkossu r- r/in c. ^ JS'fl. in ftoia.
Houses. Manuscript. 1973. Vs-em for Many-storied Apartment

FLAT
BUILD
TOTAL
ORD

Naite of
the program

Design Testing
/man-days/

FLAT
BUILD

lo
3

11
•»

TOTAL
ORD

8
1

16
1

22 3T

Nurrber of N

Nunfcer of
partitions

78
39
85
13
215

semantic errors types of partitions

4
18
JL
34

J.4
8
16
_5
43

43
16
31
_4
94

21
15
37
_4
77

Global
conplexity

6.4
6.8
7.1
5.8

Hie average local ccpplexitv «f <-k
Y the program system:

6.7

Table 1„ Sunmary

%s*\

•9
V yy

o
m
-J-

n3 B
. rM

IS-

s
•ar

Ml T§'
iJ

- §

J/1
«n
-J-

o->
r>

\ryn
rO O ja ̂

«n

vn

*

5 %
c 8
•o

Q)
-8 +j
•H

•O
»*>
Mi

' o
o
r\l

— o
o
CM

<N o
tn o
<N

1 O
O
CM

o o
«"> o

cm

•O O
O
oj

o
o:

f\J
<o o
tn o

CM

o
no 0

co rn vo o
O ro o

> o o > y r v j
cm

I CM
O
o
Csj

cm O
>r o

cm

CM
<0 O
>r o

cm

O -H (\)
£ O I f N Q
"C Cj f\j 0

cm

m
o

>r o
C7 r>g

c> o
• O ct
0"» o
>r *M to

c. • rsj
o ©
*• o

cs.

m o
4Ti O
cm r\j

O
CO o
n r\i

v
O

CO o
CO CM

Cj
O

>r o
cn rv

—« o
CO f-g

a

4J

o

<D

£

VD

cf»
•H
&<

JLfcf

LOGIC PROGRAMMING IN CHEMICAL INFORMATION HANDLING AND DRUG DESIGN

P. Darvas

Institute for Coordination of Computer Techniques

Budapest, Hungary

Chemical structure handling, i.e, the entry, storage and retrieval
of information related to chemical structures is a peculiar problem
requiring sophisticated software. In chemical industry and research,
environmental protection and in other application areas data bases
are in charge not only of chemical structure handling but also data
handling of chemical properties which make the problem more complex.

Logic programming seems to be an especially suitable tool for deve
loping such complex data bases. It provides a unique knowledge repre
sentation for the two kinds of information /structure and properties/.

The lecture discusses a PROLOG-written interactive program system
for chemical structure handling and CAD in drug development field.

Information related to chemical structures /bonds of oompounds, frag
ments, etc/ are stored in the form of Horn-clauses. Advantages of
this storage form are detailed.

The program system contains the following levels of knowledge repre
sentations
1/ Chemical structures as chemical bond sets.
2/ Chemical properties related to chemical bonds,
3/ Possible biological activities in pharmacological tests.
4/ Possible biological activities in clinical trials.
The knowledge representation of the system is organized in such a
manner that concepts of higher levels are defined by those at lower
levels. Thus, inferences can be based on the whole hyerarchy.

The system is composed from the following subsystemst
a/ One for chemical structure handling.
b/ A subsystem for inference of chemical properties applicable in

c/ A subsystS'for inferring biological activities from chemical pro-
pertie~ and chemical structure•

The system operates on a Siemens 7755 computer and requires the ope
ration system BS2ooo,

262-

PRESCRIPTIVE TO DESCRIPTIVE PROGRAMMING
A Way Ahead for CAAD

Peter S# G» Swinson
July 1980

EdCAAD Studies

Department of Architecture
University of Edinburgh

ABSTRACT

enthusiasts about the^se^f ̂ r^* by PR0L0G

standing the finished code by LopleTr^8 "8e °f Under"
originator. To test these clliL th* Pro8"m
problem was set which w s» 311 apparently simple
illustrates some S'

Aided Architectural Design pro*™?™ Wlth c°">P"ter
then tackled using the FORTRAN "j'r Problem was
involving what can be described^ computer languages

and in PROLOG involvi™descrinM *V6 Pr°8ra™>ing,
lowing report describes the diffir^ Pro«ran»>lng. The fol

ding, the progress ̂ of8the Exercise ̂ the °f CMD Pr°Rra-
version of the PROLOG program Indr* ""expected ultimate
the exercise. the conclusions drawn from

The investigation described in thi«
research project looking PapCr 18 Part of a

potential tools for Computed AiH .S°ftWare techniques as
applications. The project is fa Architectural Design
Research Council. funded by the UK Science

1• INTRODUCTION

1-1. Computing in Architecture Toda^

Computing has now become ui^i

J" . r ; ; . - h o " „ e v s k ; . h " " i n

and even "fewer in"6 V6ry feW lar8e integrated de 1 f°r bundlng

groups working in the6'* •'"i'j3 1S desPite the efforts^f around*
(CAAD) over leZd °f Computer A*a a ? several research
the complete a P3St decsde" An integrated rAfn Archltectural Design

base, and wherr"-"0" °f 3 is l!ored *S one in which

t° generate further'de -3nge °f interrelated operaMonsC°CPrlLenS ̂ d"ta
urther design and production inforaatSon? 7 Performed

- 2 -

The experience of the Scottish Special Housing Association (SSHA) serves
to illustrate some of the major difficulties. It needs to be said that
the following comments are in no way critical of the SSHA who were
prepared to be involved as pioneers in CAAD. Rather, the experience has
highlighted the inherent problems of current integrated CAAD systems in
general. The SSHA is a central government funded organisation set up to
build and factor public housing throughout Scotland, supplementing the
work of local authorities. In co-operation with the Ed CAAD group of the
University of Edinburgh an integrated CAAD system was developed to pro
duce the contract documentation (drawings and bills of quantities) for
housing schemes (1). Most of this has been in production use for about
four years.

The system has highlighted three difficulties:
- The time taken to get the system into production was much longer than
expected.
- Despite interest from several outside bodies, no other organisation
has implemented the system or any part of it.
- The system is becoming harder and harder to adapt to the changing
needs of the SSHA.

These difficulties stem from three basic aspects of CAAD today, namely
the nature of CAAD problems, the tools currently available to resolve
these problems, and the compound effect of these two taken together.

1.2. The Nature of CAAD Problems

In common with many other computing applications, CAAD systems can be
seen as ways of helping people to cope with the increasing volume of
information involved in their work. (Whether all this information is
necessary may be debatable, but that is not the concern here.) Unlike
most other computing systems, however, design activity is dominant in
integrated CAAD systems. The creative and subjective nature of design
means that there are no "right" or determinate answers to design prob
lems. The needs of one designer are not often met by the tools which
meet the needs of another designer, or even the same designer in a dif
ferent situation or occasion. The more sophisticated the system, the
more this is so.

Not only individuals but organisations approach design differently from
each other. To a system designer it may well be an attractive idea tc
have a system reused in many places but, even if technical matters at
each installation could be resolved, it would not be desirable that
individuals or organisations should have to tailor their their way of
working to conform to a given system.

The same problem of differing views on a common data base occurs within
any one implementation of a system within an organisation. The same
information is used by architect, engineer, quantity surveyor and site
operative. As well as differing views among these people, motivated by
their different tasks, the same information is used by any one person in
different ways. It is not a simple matter to resolve the various views
and categorisations of the common data.

- 3 -

1.3. The Tools Currently Available

Advances in hardware technology (the machines) has outstripped advances

niques i^use for CAAD^can'be C?nVent*onal Programming tech-
Every sten tha? tb» u" be described as imperative or prescriptive.
fying detail every oneratT tb l° ^ hM t0 ^ sPel led in stupe-
anticipated 'and catered for in Ml ̂ ̂ l l6d f°T needs to have been

larger. Additions become more and mo"'difficult^o'l ^ torily into the exist - fncr nn*** u Qirricult to integrate satisfac-
Introduce error, Int ' " n th» «» >««,..» do not
"loc. knooded,,. of th. ?«!""

programming 'cAAD applications"howeve^^th St3ff "* required« ^
required, based on knowledge of ^ »P«i.li.t skills are also
to get both skills to le^on CA^ PSbLrlCtlC:r, " * th" dlf"Cult

the difficulty of avoiding interdisMMt satisfactorily; not least is
corned , l t t tk.ir ,.P„£? S.tfS XIS'.™'

1.4. The Compounding Problem

The complexity of the code, the uresrriboa .
difficulty in getting suitable staff an^^b ^ pTOgrams ' the

integrated CAAD system off the ground are all ft take" tC 86t

together to make further problems. actors which compound

Staff turnover is inevitable in the typical Hf„„
mg. Prescriptive code is notnr-fn ^ j t * fesPan of a CAAD undertak
es author to pick up and develop. Difficulties' 1°* perSOnS other than

people to work on the same code means th=t getting different
a co-ordinated approach, program code been SySbem development soon lacks
versions of any one utility become fragmented and, typically,
requiring it. Documentation, which is pIIti°U1 there are Programmers
plex prescriptive code, is by the same Lv necessary with corn-
time consuming to produce. It is oftln°ken> P3""ularly difficult and
sure to get the system up and working! SaCrif lced ^"e there is pres

ide programs always lag hehlua tv,
culties of making changes has been^ome'l'T °f the users* fie diffi-
cannot be viewed as a finished product Juil^ 6arlier ' A CMD system

in-house_ policy changes, the needs' nJ I f regula"°ns change,
anges in the specification occur frequent 1 * ' ® organisati°n change.

P™g""'es«»p"r~raMbLppo^1"^ l "hlch the "r.taeJ

ited life-span of the system such that ^?lles a recognition of the lira-
nitio"" fr d^*el°Pment alongside the one inMs SyStem would have
software' !«»».» no, «*"
... ™„M Uy Jle . ah ... „slfy> t£ f
linoe • °pinion of CAAD propram L '• leaving many users with a dis-
lmgermg senility. P g ms hav™g experienced a system in its

- A -

1.5. The Future?

In discussing the difficulties of conventional or prescriptive program
ming, John Backus highlighted two levels of the problem (2). Firstly
there is the machine architecture itself, made up of a central process
ing unit, a store and a connecting tube. Up and down this tube single
words are pumped back and forth as the program accesses and modifies the
data in the store. This tube is aptly described as a bottleneck.
Secondly, conventional programming languages follow the same philosophy,
being built round the assignment statement which works with one word at
a time. Backus pointed out that this approach not only sets up a
literal bottleneck in the machine but an intellectual bottleneck,
preventing radical new thinking. The same tunnel vision is also evident
on a third level where application programmers are constrained to work
with fully prescribed data structures on the same word-at-a-time basis.
Programmers, with their investment in knowledge of conventional program
ming techniques, too readily try to mould each and every problem to suit
their tools, rather than develop their tools to suit the problems. If
we stay with conventional or prescriptive programming, the only future
for the wide scale use of integrated CAAD systems would be to enforce
conformity on both individuals and organisations. Even if this were
possible, it would not be desirable.

In a report on integrated CAAD systems by EdCAAD (3) two new software
techniques were identified as indicating the first steps towards a new
software technology which can overcome these problems, namely the rela
tional view of data and descriptive languages. This paper follows an
initial investigation into PROLOG, a descriptive language based on
predicate calculus (A). PROLOG is described as descriptive rather than
prescriptive because programs written in it describe the world of known
information and relationships, rather than prescribe the steps to be
taken by the machine in dealing with any one particular problem.

The rest of the paper takes an apparently simple problem and attempts to
solve it with prescriptive languages and with PROLOG. The problem, set
up at the SSHA, is somewhat abstract in nature but illustrates well some
of the difficulties associated with CAAD programming (5). The solutions
are compared and the differences between the prescriptive and descrip
tive approaches drawn out. It is apposite to point out that the pro
grammers involved were experienced with prescriptive languages (6) but
not in PROLOG, a factor which strengthens the conclusions.

2. THE SHAPES PROBLEM

2.1. The Problem

Given a data base of points (x and y co-ordinates), determine how many
shapes of specified form can be found. For example in the given data
base: + + +•

+- + +-

There are 5 squares: -t- + +

- 5 -

There are 9 rectangles:

c (5 squares plus)

There are also 20 equal sided L shapes and 36 arbitrary L shapes

The solutions in FORTRAN, C and PROLOG are given later.

2'2' The Prescriptive Solutions

°ne of th* commonly „«d I.ngu.gc, c i.

H... FORTRAN ,nd C progrm. ..tl.f.ctorily the

How many rectangles are there?
How many squares are there?
How many equal sided L shapes are there'
How many arbitrary L shapes are there?

If the user then chooses to ask how manv T
grammer would reply: shapes are there, the pro-

I will have to develop6myhprogrMWfurther?' ̂ ̂ ab°Ut T Sh*peS-

And so it would continue. The prescr int--r^o * ,
grams to answer prescribed aPProach can only offer pro-
the questions that will be asked w *RS * programmer must anticipate
grow as more and more Is asked' P"?"™ "e llkely t0 8™ and
that that brings. them, with all the attendant problems

2*3* The Descriptive Solution

The PROLOG solution is here call^a a a
prescribing a solution to a narti i escrlPtlve because rather than
statements of what is true are held Wh St6P ̂ StCp' 8eneralised
is In fact asking for all the" USeT re9"ests a shape, he
defined shape exists. If for examn1 P°®Sible conditions under which his

there are, he will set the goal as a's * wants t0 know how many squares
mine how many ways in which the eoal r qUare an? the Program will deter-
well set the goal as an L shape a T eh" satisfied. He could equally

shape, a T shape, or any shape he wishes.

Many readers may well be unfamiliar with PROLOG a
the code and how questions are ask J °L°G and so an explanation of
the interrogation procedures would^ llstln§' "early
be offered as a user package but the ^.anced if this were to
t h e u n d e r l y i n g p r i n c i p l e s o f t h e ^ s c r i p t i v e ' a p j r o ^ . ° U t

- 6 -

2.4. The FORTRAN Listing

DIMENSION IPXC128),IPY(128)
READ IN DATA POINTS
WRITE(5,100)

100 FORMAT(' ENTER UP TO 128 POINTS,
X 1 SET/LINE, (END WITH -1,-1)')

NP=0
DO 1 1=1,128
READ(5,101)IX,IY

101 FORMAT (21)
IF(IX.LT.O)GOTO 2
NP=I
IPX(I)=IX
IPY(I)=IY

1 CONTINUE
2 NR=0

NS=0
NEL=0
NUL=0

C***** TEST FOR RECTANGLES, SQUARES, EQUAL L SHAPES
C***** AND ARBITRARY L SHAPES

DO 3 1=1,NP
DO 3 J=1,NP

IF(I.EQ.J)GOTO 3
IF(IPY(I).NE.IPY(J))GOTO 3
IHD=IPX(J)-IPX(I)
DO 3 K=1,NP

IF(J.EQ.K)GOTO 3
IF(IPX(J).NE.IPX(K))GOTO 3
IVD=IPY(K)-IPY(J)
NUL=NUL+1
IF(IABS(IHD).EQ.IABS(IVD))NEL=NEL+1
DO 3 L=1,NP

IF(I.EQ.L)GOTO 3
IF(IPX(I).EQ.IPX(L))GOTO 3
IVD2=IPY(L)-IPY(I)
IF(IVD2.NE.IVD)GOTO 3
NR=NR+1
IF(IABS(IVD).EQ.IABS(IHD))NS=NS+1

3 CONTINUE
NR=NR/4
NS=NS/4

C***** PRINT OUT THE RESULTS
WRITE(5,102)NR

102 FORMAT(' THERE ARE',14,' RECTANGLES')
WRITE(5,103)NS

103 FORMATC THERE ARE',14,' SQUARES')
WRITE(5,104)NEL

104 FORMATC THERE ARE',14,' EQUAL SIDED L SHAPES)
WRITE(5,105)NUL

105 FORMATC THERE ARE',14,' ARBITRARY L SHAPES)
STOP
END

- 7 -

2 .5 . The C L i s t i ng

ma in ()
{
* n t i » j» k > 1 >vd ,vd2 ,hd , r oax ,g r i dx [128] , g r i dy [128] ;
i n t r e c t . squa re , eq_e l s , non_e q_e l s ;

max = r e c t = squa re = e q_e l s = non eq e l s - 0 ;
/ * r ead In da t a po in t s * / ~ ~

p r ln t f (" ENTER U P TO 128 P OI NTS , ") ;
p r i n t f (" 1 SE T PER LINE. (END WITH - 1 - l) \ n "> -
w h l l e (l) { " '*

s c a n f ("%d%d" ,&gr idx fmax] ,&gr idy fmax]) ;
i f ((g r i dx fmax] — -1) | | (m a x > 1 2 8))

b r eak ;
++max ;

/ * t e s t f o r r e c t ang l e s , squa r e s , equa l s i ded L shapes
and a rb i t r a ry L shapes * / P

f o r (i = 0 ;1 < max ;++ i)
f o r (j = 0 ; j < max ;++ i)
i f (j != 1) {
i f ((g r i dy [j] - g r idy [i)) = 0) {

bd = g r i dx f j] - g r id x f i] ;
f o r (k - 0 ;k < max ;++k)

I f (k ! = 1) {
i f ((g r i d x f k] - g r idx f i]) = 0) {

v d = g r i dy [k] - g r idy] !] ;
++non__e q e I s ;
i f ((ab s (v d) - abs (hd)) = 0)

++eq_e l s ;
f o r (l = 0 ;1 < max ;++ l)
i f (l != j) {

I f ((g r i dx f j .] - g r idx f i]) = 0) {
v d 2 - g r idy f l] - g r idy [j] ;

i f (vd = V d2) {
+ + rec t ;
i f (ab s (vd) = a bs (hd))

++sq u a r e ;
}

}
}

}
}

}
}

r e c t = / 4 ;
squa re - / 4*

/ * p r i n t ou t t he r e su l t s * /
p r i n t f (" THERE ARE Zd RECTANGLFF \ n "
P r i n t f (» T H E RE ARE %d

} p r in t f (" S ̂ Zd

- 8 -

2 .6 . The PROLOG L i s t i ng

/* da t a po in t s f o r t he e xa mple * /
p (0 ,0) . p (10 ,0) . p (20 ,0) .
p (0 , 10) . p (10 ,10) . p (20 ,10) .
p (0 ,20) . p (1 0 ,20) . p (20 ,20) .

/ * t he p rog ram * /
ho r i z o n t a l s ([]) .
ho r i zon t a l s ([Head |Ta i l]) : - h o r i z (H ead) , ho r i zon t a l s (Ta i l) .

ho r i z ([]) .
ho r i z ([L0C]) .
ho r i z ([l oc (p (X l ,Y) ,D l) , l oc (p (X2 ,Y) ,D2) |Res t]) : -

p (X l ,Y) , p (X2 ,Y) , X2= \=X1 , D1 i s X 2- X1 ,
ho r i z ([l oc (p (X 2 ,Y) ,D 2) | Re s t]) .

v e r t i c a l s (U) .
ve r t i c a l s ([Head ITa i l]) : - ve r t (H ead) , v e r t i c a l s (Ta i l) .

v e r t ([]) .
ve r t ([L0C]) .
v e r t ([l oc (p (X ,Yl) ,D l) , l oc (p (X ,Y2) ,D2) |Res t]) : -

p (X ,Y l) , p (X ,Y2) , Y1= \=Y2 , D 1 i s Y2-Y1 ,
v e r t ([l oc (p (X ,Y2) ,D2) [Res t]) .

ab s (A ,A) : - A >0 .
ab s (A ,B)A =<0 , B i s -A .

2 . 7 . T he PROLOG L i s t i ng Exp l a ined

The f o l l owing e xp l ana t i on i s i n t ended t o g ive t he r eade r a s imp le u n d e r
s t a nd ing o f t h e de sc r i p t i ve na tu r e o f t he p rog ram, and no t t o t e ach o r
even i n t roduce PRO LOG a s such .

(a) The f o l l owing t e rms (o r pa r ame te r s) a r e u sed (no t e t ha t t e rms
beg inn ing w i th c ap i t a l l e t t e r s a r e va r i ab l e s) :

c o -o rd ina t e s X ,Y
po in t P be ing t he complex t e rm p (X ,Y)
d i s t ance D
l oca t i on LOC be ing t he complex t e rm loc (P ,D) o r

l o c (p (X ,Y) , D) whe re D i s t he d i s t ance
t o t he nex t l oca t i on on t he l i ne

(b) L ine s a r e s e t up a s l i s t s o f l o ca t i on s .
S hap es a r e s een a s l i s t s o f l i n e s i n t he h o r i zo n t a l d i r ec t i on and
l i ne s i n t he ve r t i c a l d i r e c t i on .
No te t he PROLO G s e ma n t i c s u sed f o r a l i s t w h ich i s a spec i a l t ype
o f t e rm:

$10
- 9 -

the empty list (a list with no contents)
[Item] a list with only one term called Item
[Head|Tail] a list with Head as its first tern

followed by the list called Tail
(which may be empty)

[First,SecondfRest] a list with terms First and Second
followed by the list called Rest
(which may be empty)

) The data consists of a series simple logic assertions that points
of the form p(X,Y) exist, eg:

p(10,20).

Unlike the restrictions built into the prescriptive programs, there
is no limit to the number of alternative points which can be
asserted (other than the obvious restraint of machine size). Data
in PROLOG is in fact no different in essence from program asser
tions. although it would be sensible to set them up in a separate

The program can be "read" as follows:

horizontals([]).
horizontals([Head(Tail):- horiz(Head), horizontals(Tail).

a list of lines is to be judged to be horizontal if in fact
there are no lines in the list;
or the list of lines is horizontal provided:-

the first line is horizontal and the rest of the lines
are horizontal.

horiz([]).
horiz([LOC]).
horiz([loc(p(Xl,Y),D1),loc(p(X2,Y)I Rest]):-

P(X2>Y)» X2=\=X1, D is X2-X1
hor i z ([loc(p (X2,Y) |Rest]). *

locations ll j!.3ud*ed1" horizontal if there are in fact no cations in it, or only one location;
or the line is horizontal provided:-

the points of the first two locations exist
the points have the same y co-ordinate, '

cident)?'8 d° "0t thG Sane X ""ordinate (not coin-

aS ?*Stance ln ^ is as specified (perhaps a variable)
E°o„.i.or;[«."lth the re,t °f "*ij"

verticals cf. horizontals
vert cf. horiz

abs(A.A):- A>0.
abs(A.B):- A=<0, B is -A.

%V
- 10 -

the absolute value of A Is A provided A > 0;
or the absolute value of A is B provided:-

A =< 0,
and B is -A.

(e) Interrogations are asked by requesting the desired shape filling in
as much of the detail as the user wishes. The program responds
with the sets of conditions under which the request can be satis
fied. For example:

To get squares omitting mirror images, request:-

horizontals
([[loc(Pl,D),loc(P2,0)],[loc(P3,D),loc(P4,0)]]),
verticals
([[loc(P3,D),loc(Pl,0)],[loc(P4,D),loc(P2,0)]]).
D>0.

To get I. shapes including mirror images, with verticals twice as
long as horizontals, request:-

horizontals([[loc(Pl,DH),loc(P2,0)]]), abs(DH,DHA),
verticals([[loc(Pl,DV),loc(P3,0)]]), abs(DV,DVA),
DVA is DHA*2.

To get T shapes intersecting at p(10,20), request:-

horizontals([[loc(PI , D H) , l o c (p (10,20) , D H),loc(P3,0)]]),
verticals([[loc(P4,DV),loc(p(10,20)]]), DH>0, DV>0.

2.8. The Ultimate Program

^s the shapes program was examined in depth in the preparation of these
notes the surprising realisation came that the most flexible PROLOG
solution was in fact no program at all! The data and basic PROLOG
facilities are sufficient and in fact easier to use than the program
listed earlier. As there are therefore no procedures for horizontal or
vertical lines, the user is not coerced into thinking that the program
is suitable for only rectilinear shapes. Questions would now be posed
as follows:

ro get squares omitting mirror images, request:-

p(Xl.Yl), p(X2,Y1), D is X2-X1, D>0,
p(Xl,Y2), D is Y2-Y1, p(X2,Y2).

To get isosceles triangles with horizontal bases, request.

P(X1,Y1), p(X2,Y2), DHB is X2-X1, DHB>0,
DV is Y2-Y1, DV>0, p(X3,Yl), DHB is X3-X2.

Thus the example problem is, astonishingly, so trivial to PROLOG
special procedures whatsoever are required, even t oug l
intents and purposes impossible to handle in a total y genera
prescriptive programming.

1YL
- 1 1 -

3. CONCLUSIONS

3*J* Prescriptive and Descriptive Approaches Compared

(a)

(b)

(c)

(d)

(e)

Fundamentally, like is not being compared with like. The prescrip
tive programs, in FORTRAN and C, will only deal with the specified
shapes - the descriptive program, in PROLOG, is much more general.

(Note that the only reason why the prescriptive programs appear to
deal so easily with the four shapes is that L shapes and rectangles
are convenient stage shapes on the way to determining a square!)

The time taken to analyse the problem, code it and implement it
using the descriptive approach was about half the time taken using

prescriptive approach (one hour as against two).

The potential for program errors was much greater in the prescrip-

solution. 3 1Satl°n Problems did not occur when coding the PROLOG

Typically a prescriptive program is even more restricted in use

7 PHHFr sr's
° t i z " ' S " - ^ s . p S

Lr VZLSZTZZIS. «

S„.d?.'„c.rlp̂ «'S;1s.elsof,b;«" •>"«"«• of Po,„tl.i
. partial solution to STri!,) ! *»«"« d«t. are provided. Such
prescriptive programming. 3 * capab,l lEy "ot available in

ep7roS\C,SS^PdrSip,rId " ""Ch ™">a> «-
the prescriptive programs had been written^o^test^f forTexa®P le>
(and therefore inverted TO i-n j v T shaPes

on their side would have involved p C Pro8ram c° cater for Ts
the case of the delcriptiJl 311(3 f lnlcky chanSes-
veniently be handledwithaslmnlPT°f*m. the T *ts side can con-
this procedure would be: P 6 dl txonal procedure. In detail

bothwayalbineg!, Lines2)hord.ont.l.fti...,,,

bothways (Lines 1 Lin*^ ^erbicals(Lines2).
> v-mesl .Lines2) - horizontals(Lines2) ,

verticals(Lines 1)•

long and complex. ' ques t i on wou l d b e f a i r l y

1?3
- 1 2 -

(g) The reduction in program size in the descriptive approach is pri
marily due to the code not having to contain precise instructions
on internal machine operations. The shorter program length also
reflects a shift in responsibility for the operations of an appli
cation from the programmer to the user. The more procedures that
are written, the easier the PROLOG program may be to use - but the
less general it may become.

(h) To those not familiar with any form of programming, the descriptive
program code has proved to be much more comprehensible than the
prescriptive code. However, the same people tend not to realise
the limitations that conventional programming methods place on
their use of computing resources.

On the other hand, people already familiar with prescriptive pro
gramming philosophy find it much harder to think in the descriptive
manner than do others without such a background.

3.2. The Potential for CAAD

In assessing the value of a new software technique for Computer Aided
Architectural Design consideration must be given to the way it is
envisaged that future systems should function. Where possible, this
projection should be free of the limitations of current software or
hardware technology. The aim of EdCAAD as a group in this area has been
summed up by Aart Bijl, the group's director, as follows:

We aim to make computing more accessible to architects - to
enable architects to undertake their own journeys through
fields of knowledge. Present CAAD technology, offering archi
tects turnkey systems, is equivalent to the first Stockton to
Darlington railway - you have to be happy with where the^track
takes you. New technology needs to support architects driv
ing' their own computers, selecting their own routes and des
tinations without a 'chauffeur' and 'mechanic in attendance.

Descriptive programming as a technique is not yet in a suitable form for
practical use on a wide scale. However, this example illustrates the
potential that the technique has in the field of Computer Aided Archi
tectural Design. With the technique comes the promise of a wider use of
integrated CAAD systems, each developing under the control of its user
or user organisation; the promise of a diminishing dependence on com
puter specialists standing between the user and computing resources.

References and Acknowledgements:

(1) "Computer Aided Architectural Design at the Scottish Special Hous
ing Association", SSHA, Autumn 1977

(2) Backus J., "ACM Turing Award Lecture", Comm. A.C.M. 21 8, Aug. 1928
(3) Bijl A., Stone D. and Rosenthal D., "Integrated CAAD Systems ,

EdCAAD Studies, 1979
(4) Pereira L.M., Pereira F.C.N, and Warren D.H.D., "User s Guide to

DEC System-10 PROLOG", University of Edinburgh, 1978
(5) Shawcross G., "A Dream World", Unpublished SSHA paper written fol

lowing a presentation to the CAD 78 Conference by Scrivener,
Edmonds and Thomas.

(6) Nash J. for his work on the prescriptive solution and the C code.^
(7) Kernighan B.W. and Ritchie D.M., "The C Programming Language ,

Prentice-Hall, 1978

- 1 -

DERIVING DIFFERENT UNIFICATION ALGORITHMS

FROM A SPECIFICATION IN LOGIC

oy

Georg winters te in
Manfred Dausmann

Guiao Persch

Ins t i tu t fur Infor inat ik I I , Univers i ta t Kar ls ruhe,
Post fach 6380, D-7500 Kar ls ruhe 1 , Feci . Rep. of Germany

1 . INTRODUCTION

Predicate logic can be regarded as a very h igh level formal
language for descr ib ing problems. i t a lso can be used as a

yLvyLan u a t any phase durma the* noeinn . .
execut ion of the speci f ica t ions wi l l t • sys tem the
underspeci f ica t ions . 6 inconsis tencies and

t ion of a cer ta in control ^Differpn? 2 t iza t ion and a speci f ica-
problem domain lead to d i f ferent ? a *i° t ia t iza t ions of the same
of the control comoo^enf ALHhf hon l t h T S a S , W 6 1 1 a S c h a n 0ing
control par t of e sceci i r ,H^ border l ine between logic and
axiomat iza t ion may a lso be seen as 5 *"^ f * x e i ? ' 1 * e - Par ts of the
v . v . Y 0 6 S e e n a s a control speci f ica t ion and

Ihe usefulness of orpd i pa t-o i •
and i t s implementa t ion 1 " t 9 1 0 a s . a Programming language
[2 - 5] . c u f m a i n ^ m o h a S f r , " ^ , f t u Q i e d ^ . d e t a i l ^ f o r e - o j . c u r m a i n e m o h a s i c ; i < = t ~ _ - t u u J . c u l n o e t a i i o e t o r e
a l so serve as a speci f ica t ion lann s n o w t h a t predicate logic may
I t i s formal , ea^ to S"d«8tanf S o f t w a r e engineer ing,
ads t rac t ion fac i l i t ies for data - ° e s c r ip t ive , provioes
automat ic proofs of the comDleton™ a ^ o r i t h r a s ' ano a l lows
contradic t ions may be de tec ted bv™— 2 s p e c i f i c a t ion . Also
ooes not impose any implement a t i™ a cmne. °n the o ther nana i t
rea l iza t ion. Logic has been used for th Q e C l s i o r - o r concre te
concurrent problems [6 - 7] f o ? . ,-u ? e C l t l c a t i o r i o f s imple
evaluat ion of a query in a , k" 1 t h f r complex problem, the
co O P i« e p c o b l e m 3p q e ci£L,t"o„\,r;^ ;™?i e „° t B t a . sr8ysEe-' °

- 2 -

In this paper we consider as an example the unification
proolem in first order logic. For the syntactical representation
of the specifications we use the conventional notation of logic
programming. However no control for the execution of such a
description is implicitly associated. If necessary the control
part is described seperately.

At the beginning we analyze Robinson's first algorithm given
in [lb] . Then we give another more problem oriented specifica
tion. Different control strategies for executing this
specification lead to ciifferent unification algorithms to
compute the most general unifier. We show that parts of the
control can be incorporated into the logic description.

These algorithms have been discribed in the literature before
[11- 17] and their time and space complexity have been
investigated. Therefore the unification problem is a good
example to show the usefulness of predicate logic as a
specification language.

2. ROBINSON1S UNIFICATION ALGORITHM

In his fundamental paper: 'A Machine-Oriented Logic Sasea on
the Resolution Principle' [IB] J. A. Robinson also gave a
description of of an unification algorithm.

"The following process, applicable to any finite nonempty set A
of well formed expressions, is called Unification Algorithm:

Step 1: Set s0 = £ and k = 0, and go to step 2.

Step 2: If Ask is not a singleton, go to step 3. Otherwise set
sA = sk and terminate.

Step 3: Let Vk be the earliest, and Uk the next earliest in the
lexical ordering of the disagreement set 3k of Ask. If
Vk is a variable, and does not occur in Uk set
sk+1 = sk{Uk/Vk}, add 1 to k, and return to step 2.
Otherwise, terminate."

"If A is any set of well-formed expressions, we call the set 3
the disagreement set of A whenever 3 is the set of all
well-formed subexpressions of well-formed express ,
which begin at the first symbol position at_ which
well-formed expressions in A have the same symbol.

- 3 -

e , a s s u m e t n a t t h e r e a d e r i s a l r e a d y f a m i l i a r w i t h
w e l l - f o r m e d e x p r e s s i o n s , s u b s t i t u t i o n a n d s u b s t i t u t i o n

m p o n e n t s , i n s t a n t i a t i o n (t h e a p p l i c a t i o n o f a s u b s t i t u t i o n t o
a n e x p r e s s i o n) a n d t h e c o m p o s i t i o n o f s u b s t i t u t i o n s
p r e c i s e d e f i n i t i o n t h e r e a d e r i s r e f e r r e d t o ^ ® f * c u t l o n s F o r a

i n t o " l o | i c t " p e 6 o " L i " o n : " C t i P t i 0 ° ° f " . l j o r i t h .

L o g i c - p a r t :

U N I F Y (a , s k , s a) < - A P P L Y (s k , a , a s) ,
U * (a , a s , s k , s a) ;

U * (a , a s , s k , s a) < - I S j S I N G L E T O N (a s) ,
E Q U A L (s a , s k) ;

U * (a , a s , s k , s a) < - D I S A G R E E (a s , u k , v k)
N O T _ O C C U R (u k , v k) ,
C O M P O S E (u k , v k , s k , s k + l) ;
U N I F Y (a , s k + l , s a) ;

C o n t r o l - p a r t :

glwJ? f90«l"?«Snt"L'0ev,l"otenS *"
•-"^^TKs^i^rirssSijs'figsr?".««•»
E x a m p l e :

U n i f i c a t i o n o f A = (P / V A * R W N , „ T . . ,
l e s . ') ' P < F (U) » U) } w h e r e X a n d u a r e a v a r i a b -

< - U N I F Y ({ P (X , A) , P (F (U) , U) } , £ , S a)

< - A P P L Y (s , { P (X , A) , P (F (U) U H o c i

< ~ U * ({ P (X , A) , P (F (U) , U) } , { P (X , A) , P (F (U) , u) } , £ , s a)

< _ N ^ S l u k ^ i ; P < F (U) ' U) } ' » ^ v k) ,
C O M P O S E (u k , y k , £ , s k + 1) ,
U N I F Y ({ P (X , A) , P (F (U) , U) } , S k + l , S a)

< - N O T _ O C C U R (X , F (U))

n r T P v f f ^ ' F (U) ' £ ' ® k + D , U N I F Y ({ P (X , A) , P (F (U) , 0) } , s k + 1 , s a)

- 4 -

< - C O M P O S E (X , F (U) , £ , s k + l) ,
U N I F Y ({ P (X , A) , P (F (U) , U) } , s k + l , s a)

< - U N I F Y ({ P (X , A) , P (F (U) , U) } , { F (U) / X } , s a)

< - A P P L Y ({ F (U) / X } , { P (X , A) , P (F (U) , U) } , a s) ,
U * ({ P (X , A) , P (F (U) , 0) } , a s , { F (U) / X } , s a)

< - U * ({ P (X , A) , P (F (U) , U) } , { P (F (U) , A) , P (F (U) , U) } , { F (U) / X } , s a)

< - D I S A G R E E ({ P (F (U) , A) , P (F (U) , U) } , u k , v k) ,
N 0 T _ 0 C C U R (u k , v k) ,
C O M P O S E (u l , v l , { F (U) / X } , s k + l) ,
U N I F Y ({ P (X , A) , P (F (U) , U) } , s k + l , s a)

< - N O T _ O C C U R (U , A) ,
C O M P O S E (U , A , { F (U) / X } , s k + l) ,
U N I F Y ({ P (X , A) , P (F (U) , U) } , s k + l , s a)

< - C O M P O S E (U , A , { F (U) / X } , s k + l) ,
U N I F Y ({ P (X , A) , P (F (U) , U) } , s k + l , s a)

< - U N I F Y ({ P (X , A) , P (F (U) , 0) } , { F (A) / X , A / U } , s a)

< - A P P L Y ({ F (A) / X f A / U } , { P (X , A) , P (F (U) , U) } , a s) ,
U * ({ P (X , A) , P (F (U) , U) } , a s , { F (A) / X , A / X } , s a)

< - U * ({ P (X , A) , P (F (U) , U) } , { P (F (A) , A) } , { F (A) / X , A / X } , s a)

< - I S S I N G L E T O N ({ P (F (A) , A) }) ,
E Q U A L (s a , { F (Z) / X , A / U })

< - E Q U A L (s a , { F (Z) / X , A / U })

F r o m t h e d e s c r i p t i o n o f R o b i n s o n ' s u n i f i c a t i o n a l g o r i t h m i n
l o g i c w e s e e i m m e d i a t e l y i t s d i s a d v a n t a g e s .

- T h e s e t A h a s t o b e k e p t d u r i n g t h e e x e c u t i o n o f t h e w h o l e
a l g o r i t h m .

- T o c o m p u t e t h e d i s a g r e e m e n t s e t B k o f A s k t h e w h o l e s e t A s k
h a s t o b e c o n s i d e r e d e s p e c i a l l y t h o s e p a r t s w h i c h a r e
a l r e a d y k n o w n t o b e i d e n t i c a l .

- T h e s u b s t i t u t i o n s k h a s t o b e a p p l i e d e x p l i c i t l y t o A .

• i*?e logic program above is also no good description of the
unification problem because it does not defcribe the oroCiem 5n

s-ecial «ni t-0" Y °ne way how to solve it. It tnerefore forces a
act hat it took" moro Perhaps it is due to tnis
ace tnat it took more than six years before a sianificant
improvement of the unification algorithm was achieved.

o„ In*.thf. neXt section give a more problem oriented
specification of unification.

3. ANOTHER SPECIFICATION OF THE UNIFICATION PR03LEM

problem"! !!i!yi!g twHx^ession! el6®!^^. °UrSelveS to the

Logic-part:

UNIFY(el,e2,s) <- EQUAL(el,e2) ;

UNIFY(el,e2,s) <- ls_FUNCTERM(el,headl,argsl)
IS FUNCTERM(e 2,h e ad 2,a rgs 2)
EQUAL(headl,head2),
UNILIST(argsl,args2,s);

UNILIST(argsl,args2,s) <- IS_EMPTY(argsl) ,
IS_EMPTY(args2)

UNILIST (argsl, args2<— TAKE_CORR_PAIR (argsl, ,rgs2,

UNILIST(args'l,args'2,s);
UNIFY(el,e2,s) <- IS_VAR(el),

MEMBER(el,tl,s),
NOT_OCCUR(el,tl,s),
UNIFY(tl,e2,s);

UNIFY(el,e2,s) <- UNIFY(e2,el,s) ;

Control-part:

9;™" pThe'dp"cJSS;r^jj" in the °'a" tr)t>

"u " ma-0BCmis — 4

W)
- 6 -

W e h a v e n o t s p e c i f i e d t h e p r o c e d u r e s E Q U A L , I S F U N C T E R M ,
I S _ V A R , N G T _ G C C U R , M E M B E R a n d T A K E _ C O R R _ P A I R . T h e i r m e a n i n g i s
o b v i o u s .

W e s e e t h a t t h e l o g i c p a r t o f t h e s p e c i f i c a t i o n o n l y g i v e s
t h e d e s c r i p t i o n o f a u n i f i e r . T h e s p e c i f i c a t i o n o f a m o s t
g e n e r a l u n i f i e r f o r t w o t e r m s i s a c h i e v e d b y g i v i n g a n
a d d i t i o n a l c o n t r o l s p e c i f i c a t i o n . I n t h i s c a s e t h i s l e a d s t o a
m u c h m o r e e l e g a n t a n d u n d e r s t a n d a b l e s p e c i f i c a t i o n o f t h e m o s t
g e n e r a l u n i f i e r t h a n t h e a x i o m a t i z a t i o n o f : " A u n i f i e r s o f a
s e t o f t e r m s C i s a m o s t g e n e r a l u n i f i e r o f C i f f o r e v e r y
u n i f i e r t o f C t h e r e i s a s u b s t i t u t i o n r s o t h a t s = r t . "

N o t i c e t h a t n o t h i n g i s s a i d a b o u t t h e d a t a s t r u c t u r e f o r s , e .
g . i f i t i s o r g a n i z e d a s l i s t o r s e t .

example :

< - U N I F Y (P (X , A) , P (F (U) , U) , s)

< - I S _ F U N C T E R M (P (X , A) , h e a d l , a r g s l) ,
I S ^ F U N C T E R M t P t F (U) , U) , h e a d 2 , a r g s 2) ,
E Q U A L (h e a d l , h e a d 2) ,
u N I L I S T (a r g s l , a r g s 2 , a r g s ' l , a r g s ' 2 , s)

< - U N I F Y (X , F (U) , S) ,
U N I L I S T ((A) , (U) , s)

< - I S _ V A R (X) ,
M E M B E R (X , t l , s) ,
N O T _ O C C O R (X , t l , S) ,
U N I F Y (t l , F (U) , S) ,
U N I L I S T ((A) , (U) , S)

< - N O T _ O C C U R (X , t l , { t l / X }) ,
U N I F Y (t l , F (0) , { t l / X j) ,
U N I L I S T ((A) , (U) , { t l / X })

< - N 0 T _ 0 C C U R (X , F (U) , { F (U) / X }) ,
U N I L I S T ((A) , (U) , { F (U) / X })

< - I S _ V A R (U) ,
U N I F Y (U , A , { F (U) / X })

< - U N I F Y (U , A , { F (U) / x })

< - I S _ V A R (U) ,
M E M B E R (U , t l , { F (U) / X }) ,
N 0 i ' _ 0 C C U R (U , t l) ;
U N I F Y (t l , A , { F (U) / X })

1*0

- 7 -

<- NOT_OCCUR(U,t l , {F(t l) /X,t l /U}) ,
UNIFY(t l ,A,{F(t l) /X,t l /O})

<- NO'r_OCCUR(U f A, {F (A)/X,A/U})
< -

In this example we have chosen a set representat ion for s .

f t ,*"" M t U " 1 " S p e C " y ">• of

UNIFY(el ,e2 ,s j <- APPLY(s ,e l ,e) ,
APPLY(s ,e2 f e);

above speci l fca t io^is^mose 1 convenient^but ̂ in F gener C f £ "" : P O S e S "i sr. '-
plays 0 n , a t n central S role f "n^th W S S e e b b a t t h e Procedure MEMBER
e i ther be used to compose a nlw subst i tut ion" ° f U W I F Y - . U c a n
subst i tut ion computed so far "subst i tut ion component with the
variable has a lready beeJ boS d An" •* ?*** t 0 i n S p e C t l f 3
speci f icat ion using the d o u b] P implementat ion of this
representat ion for s) i f fh! of MEMBER (us ing a l i s t
Boyer and Moore [l l j . unif icat ion algori thm given by

the ' execut ion of a l l^NOT^ccuit" b y B a x t e r (1 2 ^ simply delays
a lgori thm. Then they can be C f l l s t 0 t h e e n o o f t h e
topological sort . ' -plementea very e legant ly by a

insert ing a new^subs t i tutf l 9 ° r i t h n i s u s e MEMBER only for
assure that the variable occCr_? o m p ? n e n t • T hey therefore have to
i s not a lreaay in s . As we h av e * K 5 s u b s t i t u t ion component
the a lgori thm of Robinson ̂ e " b S f? r e t h i s • i s achieved in
so far to the original set Thic 1 " 5 subst i tut ion generated
which appear on the le f t hen-' ; . , g u a 5 a n t e e , s that a l l variables
m s oo not occur in the terns nn^ 1 Q e a subst i tut ion component
any new subst i tut ion component " c o n s i d e r a t ion and therefore conf l icts . component may be adaeo to s witnout

'̂ î̂ b\£o"̂ %*l9?b%"haibbrso'ihbea in 113 - "i «•
oelayed and whenever there i s a goal of theism" ° £ M E M B f i R i s

H)
- 3 -

<- MEMBER(var,terml,s) ... UNIFY(var,term2,s) ...

they rewrite it to the form

<- MEKBER(var , terml, s) ... UNIFY (terml, term2, s) ...

By this the number of occurrences of var is reuuced by one.
The elaboration of MEMBER is delayed until all calls of UNIFY
and UNILIST are done. Then the substitution s is generated by
the evaluation of MEMBER. At tne end all calls of NOT_OCCUR are
processed.

Parts of the control can be incorporated into the logic-part
of the specification which leads to a refined description:

Logic-part:

UNIFY (el,e2,s) <- EQUAL(el,e2)?

UNIFY (el,e2,s) <- IS_FUNCTERM(el,headl,argsl),
IS_FUNCTERI4(e2 , he ad 2 ,args2) ,
EQUAL(headl,head2),
UNILIST(argsl,args2,s);

UNILIST(argsl,args2,s) <- I3_EMPTY(argsl),
IS_EMPTY(args2);

UNILIST(argsl,args2,s) <- TAKE_CORR_PAIR(argsl, args2,
el, e2,
args'1,args'2),

UNIFY(el,e2 , s);
UNILIST(args'1,args'2,s) ;

UNIFY(el,e2,s) <- IS_VAR(el),
MEMBER(el,e2,s) ,
WOT_OCCUR(el,e2 , s) ;

UNIFY(el,e2,s) <- UNIFY(e2,el ,s);

Eontrol-part:

The procedure declarations are invokea in the order they are
given. A goal statements is elaborated from le^ del-ved
the exception that calls of MEMBER ana NQi OCCUR JelayeJ-
The rewrite rule given above is applieo wheneve "
calls of NOT OCCUR are processed after the calls of n -•

Z<6l

- 9 -

Though an implementation of the algorithm ahove is rather
efficient it still can be improved. This is done by liberating
the order in which the calls of UNIFY and UMLIST are executed
i. e. the expressions are not scanned from left to right
anymore. It has the advantage that the NOT_OCCUR procedure is
indepenaant from s. Because if a most general unifier exists
there must be a partial ordering among the variables which build
the substitution. This order can be determined by allowing to
process only those calls of UNIFY whose variable in tne first
component does not occur in another call. This may oe achieved
by changing the control part of the specification into

Control-part:

The procedure declarations are invoked in the order they are
ofVnuTPv state1le"^ may b? executed in any order. All calls

UNIFY with a variable as first parameter are delayed. If a

oafh C^nS1SKS entlrely of calls of UNIFY of that form those
calls may be processed where the variable does not occur
anywnere eise in the goal statement. For those calls for which
possible following rewrite rule is applied if

. UNIFY(var,terml,s) , ... UNIFY(var,term2,s), ... <- .

>

<- . UNlFY(terml,term2,s), ... UNIFY(var,terml,s),

expressions (llf, or t °£ a variable »" tl»
variable is represented oniv ~ s5ructure i" which every
pointers (17] . ^ y once together witn adaitional

Example:

Unification of fprx 7 vi c mi\r\ .
variables ' ' ̂ rP(F(Y) ,A,F(z))} where X, Y, and Z are

<- UNIFY(P(X,Z,Y),P(F (Y),A,F(Z)),s)

UNIFY {IVl]'5)' !„!-0CCDR (Y,F (Z) > , * 1 » " » s) / N O T O C C U R f 7 a i
UNIFY(X,F(Y),S), NOT:OCCSR!X:F(Y))

2*5

- it) -

<- UNIFY(Y,F(Z) ,S) ,
UNIFY (Z ,A, S) ,
UNIFY(X,f(Y) ,S)

<- UNIFY (Y, F (Z) ,{F(Y)/X}) ,
UNIFY(Z,A,{F(Y)/X})

<- UNIFY(Z,A, {F (F (Z) /X, F (Z) /Y})

<-

In the implementations mentioned aoove the goal statement

<- UNIFY (Y,F (Z) ,s) , UNIFY (Z ,A , s) , UNIFY (X, F (Y) , S)

would be coded as

F (Y)

or as

Y F (Z) #X = 1

Z A # Y = 2

X F (Y) #Z = 2

CONCLUSION

Vie have shown that the family
2 specified by a logic program ^oge be refined by
strolling its execution. The logic P ' ̂ . .. concrete
ncorporating parts of the control speci alaorithms, which
Cementations of the^ d i f f e r e n t ^ nplementations of the different un """" "t'""tt 0
:e explained in detail in [21] code the control part o
pecification into the oata structure t ey SDecificati

f the
program
on. We ecification into the data structure cney "Y'at • „

ructure reflects the logic P^t o g Qf algorithms in
lieve that a specirication of other ' . of alg0rithms and
gic will give more insight in the >=e discovel- more
eir relations to eachotner. It als ^ As logic also
ficient implementations for certain p ' * s an6 abstract
lows a formal specification of oata st uc ^
ta types it seems to be a useful and practicable
rmal specification in software engineering.

- 11 -

5. REFERENCES

[1] R. A. Kowalski:
Algorithm = Logic + Control,
CACi-i 22-7-79, pp. 424 - 436

[2] R. A. Kowalski:
Logic for Problem Solving,
DCL Memo 75, Univ. of Edinburgh, 1974

[3] R. A. Kowalski:
Predicate Logic as Programming Language,
IFIP 74, pp. 596 - 574, North Holland

[4] A. Colmerauer, h. Kanoui, R. Pasero, P. Roussel:
Un systeme de communication homme-machine en francais,
Universite a'Aix-Marseille, Luminy 1972

[5] D. Warren:
Implementing PROLOG - Compiling predicate logic programs
DAI Report, Univ. Edinburgh 1976

16] H. Dausmann, G. Persch, G. Winterstein:
Concurrent Logic,
Proc. 4th Workshop on AI, Bad Honnef, 1979

[7] G. Winterstein, M. Dausmann, G. Persch:
A new method for describing concurrent oroblems
basea on logic,
Interner Bericht Nr. 10, Universitat Karlsruhe, 1980

[8] P. Trum:

Diplomarbeit, UniversiP^t* Pai . / umversicat Kaiserslautern, 1980

[9] N. Heck:

einem reLJioni^n^atenb?^^6; Auswertun9 einer Anfrage :
Diplomarbeit? unive?sit2tQK^YSteir 3Uf Qer inte"en Ebene, universitat Kaiserslautern, 1930

[10] J. a. Robinson:

J.AO?i2-l?65?npp? 135150?di?65the resolution Principle,

[11] R. S. Boyer, J. S. Moore:

^ch?hlnJ?97?fp^r^j!-6;n1^orem proving programs,

- 12 -

[12] L. D. Baxter:
An efficient unification algorithm,
Univ. of Waterloo, Res. Rep. CS-73-23, 1973

[13] L. D. Baxter:
A practically linear unification algorithm,
Univ. of Waterloo, Res. Rep. C3-76-13, 1976

[14] J. A. Robinson:
Fast unification,
Workshop on Automated Theorem Proving,
Oberwolfach, Jan. 1976

[15] G. Huet:
Algebraic aspects of unification
Workshop on Automated Theorem Proving,
Oberwolfach, Jan. 1976

[16] A. Martelli, U. Montanari:
Unification in linear time and space,
Univ. of Pisa, Int. Rep. B76-16, 1976

[17] M. S. Paterson, M. N. wegman:
Linear unification .. _ la6 lg7
Proc. 8th ACM Symp. on Theory of Comp. pp. 161 '

[17] G. winterstein: , . b„„h- \ nnpn
Praaikatenlogik-Progr amme tint evalulerbaren
Ph. D. Thesis, Univ. of Kaiserslautern,

[18] S. Tarnlund:
Logic Information Processing, ,, , iQ7S
Report TRITA-IBADB-1034, Univ. of Stockholm,

[19] F. G. McCabe:
Programmer's Guide to IC-PROLOu.,
Imperial College, London, 1978

u" High >r*\rra[S„"» "OLOG'
M. Sc. Thesis, Imperial College, >

[21] P. Trum, G. Winterstein: nrac-tical comparison of
Description, implementation and practical comp

unification algorithms, c/ia iq7r
Univ. Kaiserslautern, Int. Ber. 6/73, 19 I a

CONTROLLING BACKTRACK IN HORN CLAUSES PROGRAMMING

Claudine LASSERRE - Herve GALLA1RE
ENSAE, 10 Avenue Edouard Belin
Complexe aerospatial de Lespinet

31055 TOULOUSE CEDEX

Abstract

whose characteristicshwouldPbe to t0 f>reSe?t a backtracking mechanis
the conflict, and L 1 386 °nly. res°l"tions relevant tc
are presented to perform it i"*.10?*5 fS pos8lble* General algorithms
and questions are raised ' • ° ocate and analyse the conflict
ces to remedy. concerning possible ways of making other ch

.Key words : Artificial Intelligence - Horn m

vation control - Backtracking Co«ro" Pr°gran,n,in8 " Dea'

C O N T R O L L I N G B A C K T R A C K I N H O R N C L A U S E S P R O G R A M M I N G

I n t r o d u c t i o n .

T h e p r o b l e m o f c o n t r o l l i n g a l i n e a r d e d u c t i o n o n H o r n c l a u s e s i s
t h a t o f d e t e r m i n i n g a n o r d e r o f s e a r c h s p a c e e x p a n s i o n , t h a t i s t o s a y
o f f i x i n g , a t e v e r y s t e p , t h e c h o i c e o f t h e l i t e r a l t o s o l v e a n d t h e c h o i - *
c e o f t h e c l a u s e t o s o l v e i t . I n f a c t , t h i s c o n t r o l i s s h a r e d b e t w e e n t w o
p r o c e s s e s :

(1) t h e f o r w a r d e x e c u t i o n p r o c e s s , w h e r e a f i r s t c h o i c e i s s e t a n d t r i e d ,
a n d

(2) t h e b a c k t r a c k i n g p r o c e s s , w h e n a f a i l u r e o c c u r s i n p r o c e s s (1) , w h e r e
i t i s t o b e d e c i d e d w h a t c h o i c e s a r e t o b e e r a s e d a n d w h a t n e w c h o i c e s
a r e t o b e m a d e .

O f c o u r s e , a r e a s o n a b l e c o n t r o l o f p r o c e s s (1) m a y a l l e v i a t e c a u s e s
o f b a c k t r a c k i n g .

I n b o t h c a s e s t h e r e a r e t w o p o s s i b l e w a y s o f c o n t r o l l i n g : e i t h e r
a u t o m a t i c a l l y , a c c o r d i n g t o a g e n e r a l s t r a t e g y , a s P r o l o g j J R O U J d o e s a n d
a s w e s h a l l p r o p o s e i n t h e s e q u e l , o r a c c o r d i n g t o s p e c i f i c a t i o n s g i v e n b y
t h e u s e r t h r o u g h m e t a r u l e s . W e ' v e a l r e a d y d e v e l o p e d s u c h m e t a r u l e s f o r
f o r w a r d c o n t r o l i n [G A L] . H e r e w e c o n c e n t r a t e o n t h e p o s s i b i l i t i e s o f o p e
r a t i n g a b a c k t r a c k a s " i n t e l l i g e n t l y " a s p o s s i b l e i n t h e c o n t e x t o f a n
i n t e r p r e t e r t h a t w o u d a l l o w a n y o r d e r i n g o f l i t e r a l s t o s o v e .

B a c k t r a c k i n g p r o c e s s c o n t r o l .

I n c a s e o f f a i l u r e , t h e p r o b l e m i s t o r e c o n s i d e r e a r l i e r c h o i c e s
o f c l a u s e s t h a t s o l v e d p r e v i o u s l y s e l e c t e d l i t e r a l s , a
m i n e w h a t r e s o l u t i o n s a r e t o b e e r a s e d a n d w h a t n e w c h o i c e s a r e t o b e m a
d e t o r e s t a r t t h e f o r w a r d p r o c e s s .

G i v e n t h a t d e r i v a t i o n i s a p r o c e s s o f r e d u c i n g i n a n y o r d e r s u b -
p r o b l e m s (i e l i t e r a l s) i n t o o t h e r s u b p r o b l e m s w h i c h w i l l b e d e p e n
t h r o u g h t h e v a r i a b l e s s h a r e d a n d n o t t h r o u g t e e x p a . ' 0 t v i a -
c o m e s n e c e s s a r y t o f u l f i l l t h e f o l l o w i n g i r r e l e v a n t c h o i c e s :
t e , a s m u c h a s p o s s i b l e , u n e c e s s a r y b a c k t r a c k i n g t o

~ n e r m i t t i n e f a i l u r e l o c a t i o n (a n d a n a l y s i - T o h a v e a u n i f i c a t i o n a l g o r i t h m p e r m i t t g f . • f 4 n s -

~ > . ' : « • ST "TtniTii"": t a n t i a t i o n o f a v a r i a b l e i n t h e f a i l i n g . a < ? u b c h a i n
c i e n t t o e r a s e a p a r t o f t h e s e r e s o l u t i o n s (1 > e * ° i r r e l e v a n t v a l u e)
o f l i n k s i n t h e c h a i n o f s u c e " i v e ^ ̂' t r e e . T h e i n f o r m a t i o n s g a -
c o r r e s p o n d i n g t o a b r a n c h i n t h e d e r i v a t i o n
t h e r e d m a y e v e n t u a l l y h e l p t o d e t e r m i n e f u r t h e r c i o i c e s .

- 2 -

W

To have a back t rack mechan i sm pe rmi t t ing to keep the re so lu t ion of
t he b ro the r s o f t he l i t e ra l the r e so lu t ion o f which wi l l be e rased ,
na^ f i ?" C k k t h e U c e r a l s w h i c h h a v e been so lved a f t e rwards in
„ a : ™ l l l e l b r an ,ches , a s f a r a s we have chosen , i n the p rev ious s t ep ,

b l e s? e P a n y ' t h 6 y C ° U l d h 3 V e a d d e d t o c h e s h a r e d v a r " -

tiiTJs r»p
cS" e of a t

s,rrr-lly-in,piemented (cf proio«)' «t«.uy e 8 t a -
r educ t ion tvoe l „ , d e r l v a t l o n s i . e . the schema (o f p rob lem
in pa ra l l e l i t ca r r i e s U t " a l s e *P a ns ion , wi thou t subs t i tu t ions , whi l e
t e th i s P lan . Hence r ° " ^ t r e a t m e n t o f t h e un i f i ca t ions tha t va l ida -
o f these pa r t s o f t he e m e n t w h a t P r e c e eds , the main cha rac te r i s t i c s pa r t s o t the in t e rp re te r mus t be :

" «ea te5 e be twJen a v l r i ab l 1 f s r bv h m ?° n S t r u C t a * r a P h ° £ dependenc ies
t he co r respond ing l i t e ra l ^ U T ! l f l c a t ™ n ' l abe l l ed by the number o f
s ea rch o f the re so lu t ion<? • 6 S ° U t *u? 1 D t h e g r a p h » t o enab le the qu ick
t h i s g raph mus t a l so be e s t ab l i shed r a th^ 3 C O n f l i c t i n g i n s t an t i a t ion ;

ZXTeT. qUiCkly t0° When °ne °r several literals

the chrono log ic Expans ion o rde r^o"^^ in^a^ f ̂ ' •* H n k e d b > '
s i b l e to come no t to a D r ev in , , c • - • ° P r u n i n 8 1 C l s P o s "
wi thou t the e rased b ranch! and so^ha t ' i n ^ " t U ' t i o n

chosen fo r expans ion . y case any l i t e ra l can be

Cox [cox] and Pe re i r a FpeR l l £>f r p I „ •
i den t i ca l so lu t ions to these n rnh i u -* 8 1 v e Par t i a l and somet imes ' * ' • « « ° „ ct: x Xrus — o r t h e f a i lu re t r ea tmen t .

a) Fa i lu re loca t i c

They bo th e s t ab l i sh in rk=
l inks be tween va r i ab les : ' cox as _ C O U r s ? ? f c h e der iva t ion , dependency
sub te rms toge the r wi th a g raph o f p a r t l ' l o n o f sub te rms in to un i f i ed
dependency l i s t s at tached t o Ja^ah les ! " r e l a t i o n ' L ' P «re i ra a s

i n 8 a n a r a t i ng e on- lLe°sub te rm°par t i t i S 3 l f r i t h r a o n H o ™ clauses cons i s t
duced be tween two sub te rms o f t h e , l a b e U i n 8 each l ink in t ro -
sea r j~ . l i t e r a l t e so lu t ion tha t c rea ted th a S f - W i ! C h t h e n u m b e r (i n t h e 8"

c ing the sub te rm g raph to f ind 1 • 6 l n l c ' t hus avo id ing much e f fo
used in the pa r t i t ion cons t ruc t ion * a " i n *•« those a l r ead

Never the les s i t i c
L -» -un .

Which i s ac tua l ly a se t of°g r !phs t0 W°rk °n SUch a Partition,
twe l \ 1 S t S ° f v a r t ab le dependences J l ^ t h e s e as l i -
tween two va r i ab les by a un i f i ca t l n n , • d ° £ S ! e a c h c rea ted
d ing number o f t h e l i t e ra l b f ing so lved • 1 8 a d d e d ' *«» the co r respon-
1 , V a , n a b l e s , a n d r epor t ed in the c* g r a p h ' i n t h e l i s t o f the

t o keep the s t a t e o f the l i s t a t eve ry

- 3 -

s t e p (s i n c e w e d o n ' t n e c e s s a r i l y c o m e b a c k t o a p r e v i o u s s i t u a t i o n) , i t
b e c o m e s n e c e s s a r y t o s t o r e n o t o n l y v a r i a b l e d e p e n d e n c y b u t a l s o , a s C o x
d o e s , t h e p o s s i b l e i n s t a n t i a t i o n o f o n e o f t h e v a r i a b l e s r e s p o n s i b l e f o r
t h i s d e p e n d e n c y : t h a t i s t o s a y m e m o r i z e t h a t X i s l i n k e d t o a Y a n d Y
t o X a t n o d e 2 i n s t e a d o f t h e l i n k s o f X t o Y a n d Y t o X , i n o r d e r t o
l o c a t e t h e e x a c t p o i n t o f m i s m a t c h i n g .

E x a m p l e : L e t ' s t a k e P e r e i r a ' s e x a m p l e c a l c u l a t i n g t h e i n t e r s e c t i o n o f
t w o f o r m a l g r a m m a r s S a n d P
T h e i n s a t i s f i a b l e s e t o f c l a u s e s i s t h e f o l l o w i n g :

+ S (L . C \ .
+ s (L I , U \ _ S * (1 1 , U ,) _ S b (U , L 3) - s (L i , I A)
+ - $ r (a , L L)
+ Sa f a . , l / l L 5 y \ - S a (L\ , U A

t S k b . y V , ,

_ S

H e r e i s t h e p l a n g e n e r a t e d a t t h e f a i l u r e p o i n t a t e x p a n s i o n 5 . T h e n u m b e r
o f a n o d e a c t u a l l y c o r r e s p o n d s t o t h e n u m b e r , a c c o r d i n g t o e x e c u t i o n ^
o r d e r , o f t h e r e s o l u t i o n u n i f y i n g t h e t w o l i t e r a l s q u o t e d (i . e . , r n C o x s
n o t a t i o n , t h e n u m b e r o f t h e r e p l a c e m e n t a r c) ; w e m a y c o n s i d e r t h a t e v e r y
l i t e r a l i s a f f e c t e d a n u m b e r w h e n i t i s s e l e c t e d f o r e x p a n s i o n . T h e . a l
l u r e o c c u r s w h e n a t t e m p t i n g t o u n i f y t h e l i t e r a l
- P a b (S . n i l) w i t h P a b (a a T I , T 2) i n o r d e r t o s o l v e P a b (S . n i l) u s i n g

t h e r e d u c t i o n s c h e m a o f P a b (a a T I , T 2) i n t o P b (T 1 , T 2) ; t h e d e p e n
d e n c y l i s t s w i l l e x h i b i t t h e n o n u m f i a b i l i t y t h a t i n v a l i d a t e s t h i s
p l a n .

S 0 4 >)
(D

_ S a (L 1 , U) 0 - S U a (l i) © - S C L ^
S c c f a L ^ L) ^ C V / V)

I i I • • •

P a t > (a a T - i

I
-

P a b (S , n i l) h a s b e c o m e a n o d e b y s e l e c t i o n f o r e x p a n s i o n , w h i l e
P b (T l , T 2) i s n o t y e t a n o d e s i n c e i t i s s t i l l t o s o v e .

- 4 -

an
the

ordered liK'5 V^rall y^H^e f° Updi>"

-th£ m^:0-Here cl , i'su« « ̂ fiSii;lli"^Mttrr ,olttt
ion

are presented with Pereira^s notltim'1"8'^ semantics of this plan
just before the example ; the lists for T1 H T,'BOdification described
are useless for the sequel not 8lven 88 the'

s.

tUUpa,[̂ [iL4.[-i,[is..[5; [99IT1 ,ur]̂.uŝ j: dtiim[U,«J,uid

L)̂_s Kif fL, ft, hi 91 F^ ' Fnj4 . F A R ~rr T . r - -o .%-> "fl 1

LT-S Kit jjt '.ULVo]

is abnil through link with Ll at nod Jhe. l lst of S is : the value of
itself linked to bL3 at 3 itself Ti* , lts? lf iinked to L2 at 2,
also linked to aaTl at node 5 which" * l lnked to nil at 4 ; it is
ceedmg value. ' whlch is incompatible with the pre-

eibl. with th. .'Sj,™;' "J"? thLva»u« »f «" .rgu^nt is inca.pi-
rn f^-glVe minimum sets of resolution ' Cox's cflculations automati-
noH 'TV' ithus avoiding further cal ^ ° erase in order to solve the
nodes JFAH] . In this Lntext theV t-°nS °f failure independent
nodes m the sublists of xt^ they consist in setting the Us£ of ^
ting instantiations, from their be' 8 V3riable containing the confli
and j""8' tIlen replacing each of th nnin8 up to cfle undesirable instan-
to era deSCendents ; at this Lilt ! T** Che subliat <* i"8"
0f fh be accor<3ing to our will 0f k & 3VC tbe possible sets of nodes
sLr* branch ! if we wa°t toT"8 the of the root node
The last j sublists containing other3Ve, aijnilnuni sets, we have to

no e is always a possible resolution'to e'rase^11'1^ h*1""'
hxamp X0 ; the

T">' '~~L :£
or at least h' '?'5- The first set can dis' 6 SetS °f nodes t0 erase

*" be tried a last possibtnty ^^ ** * "°n minim81 set-

r
201 5 -

c) Back tracking.

In the case of a failure on several arguments, it is neces
sary to combine the failure analyses if we want to eliminate them all
together. The process would be to look for a common set of nodes to
erase, and if no such set exists, to take the set containing one set
from each argument and rooted by the nearest ancestor of the roots of
these two sets.

Three choices remain to make after the set of possible
erasable subsets of nodes has been determined :

C . : the set of nodes to erase : it seems reasonable to try all the
clauses for the literal which was solved the last before analysing
the failure, to eliminate this trivial possibility. It is possible
to order the sets as Pereira does, but in this context erasing t e
most recent nodes loses interest since we don't have to erase all
the work done afterwards ; at least we can try a minimal set first.

C, : the next literal to solve : it can be the literal that r°°ted
2 the erased branch, but it could be another one too, according to

forward execution strategy : for example a literal that had bee
given a higher priority in the producer-consumer schema.

C • the next solution to this literal : further analysis of the conflict
3 source could allow to avoid _ another failure : f^or example keeping cnnrrp roulci allow CO avuiu auu- — . * _ .

^ch instantiations to avoid at this point may <eliminate choices
of clauses. If no other alternative is available fortius liter ,
it is possible to choose another set of nodes to erase, or
last chance the father of this literal, an so on.

Another possibility for all these choices is to let the user
specify them by means of metarules if needed.

The problem is then to update the plan and the corresponding

dependency lists. ^. ̂ ^g^ning with th^^ber1 rooting the branch

r s E E : . . —
on the choice C2
Example : Suppose that in the previous example we decided to erase 2,
tKITnew situation after this suppression would

® -SS.ruf
SCw,w

4-1,U) ©_s(L\U) 4L(pvt3l)

i
00

I
Q

Ŝ a»VTl[lS{l i[lL"1 stiui]]*. ; UFtJ]: USQ

L^UUl^I?'LU'UU^! UUt]

- 6 -

The list of literals to resolve is now - Sa (L1,L2),
Pb (T1.T2), which are kept with their father nodes, respectively

1 and 5.

Conclusion

It seems that much work has been done on failure location. But
much remains to do concerning failure analysis and treatment i.e. to
find an intelligent way of restarting the derivation after a failure ;

of"the rltfrTeS(Ca"fbe applied in conjunction with further analysis
control ° rh1 and "formations memorized from the forward execution
control they don t preclude the use of metarules which would be
Vhrfh6 V£ t0 determine which set of nodes to erase, even possibly
whether we must keep some of the parallel branches developed after the
erased nodes, and what new solution try in a particular ap^icLic ion.

Bibliography

[c°xj Philip T. Cox : Deduction Plans : a graphical proof procedure
for the first-order predicate calculus.

ReeLâ rLp1r?cLÛ :28Ci!nCo;toUbIrV"9̂ y °f

^ sur la l^ique^011"016 ̂ Syst*raes de deduction automatique fonde

Thi^'a*^ 10 AV'.E- Belin " 31055 TOULOUSE CEDEX
These de docteur ingenieur - November 1979

[GAL] Herve GALLAIRE - Claudine LASSFRRF . o •
ti°n in a declarative approach ' Controllln8 Knowledge deduc-

I J C A I 7 9 * T o k y o W l n " 3 ' 0 5 5 T ° U L ° U S E C E ° E *

[perl] Luis M. PEREIRA - Antonio PORTO • Intel H .
tracking in Horn clause programs Th! th backtracking and sid.
Departamento de Informatics n- ? he°ry

Report n° 2/79 CIUNL - October ?979rSldade n°Va de Lisboa

[PER2] Luis M. PEREIRA - Antonio PORTO . t _ •
sidetracking in Horn clancp ' Intelll8ent backtracking and
Departamento de ^nformitica Pr°gTaniS- . ̂mentation
Report n° 3/79 CIUNL - December^g81^6 R°Va de Lisboa

[ROU] Philippe ROUSSEL : Proloe - ma i ^

groupe. d'IA - Universite Marseille-Luminy?'61106 "

23)3
i.

TI'.SL TTQT, TJ- Z.-K SuVL'TTT TABLEAUX AHD 5ESC;LH~TCK PHOWLl.

KHYSIA 3RCDA
Imperial College, London SW7.

Abstract.

The semantic tableau method as presented in "Beth can be modified by the incl
usion and use of dummy variables (Prawitz Cn3)• With this modification, the
tableau method begins to show similarities with resolution theorem provers. Lore-
over a procedural interpretation can be given to the tableau so that one can see a
resemblance to Horn clause theorem provers (for example). This paper investigates
the relation between semantic tableaux and some clausal theorem provers.

1.Introduction.

The ideas presented in this paper derived from a consideration of a theorem prover
for logic programs using first order logic * (SF) based on semantic tableaux^ .
The initial motivation was to write an interpreter in ICPROLCG £.« for proving
inconsistency of a set of sentences in SF.

The algorithm used in the program was based on the semantic tableau method (des
cribed in sec. 2) modified by the inclusion and use of dummy variaoles, to ,aci..i
tate a reasonably efficient search for a proof. The program su-,ered from, some
redundancy and as an aid in overcoming this, refutation procedures for clausal sets
of sentences were studied with the idea that the better aspects o eac coa ,
combined, extended to SF and then incorporated into the theorem proyer. i em i-
that all the procedures studied could be simulated within the
mat and could'be easily and intuitively understood witn reference to the tableaux.

As a natural sequel to these studies, progress has been made on oompleteness proofs
for 5L-resolutiop, Horn clause theorem provers and the connection graph proof p.oc
edure, obtained from consideration of certain tableaux. . en e ^°°® ,
has been finalised (i.e. when useful features of the cl usal tneorem provers hav..
been incorporated) a proof of its coupleteness wi e a emp • ^

it is appreciated that work in this area has Deen or is oe;ing ,

C31,C4-3, Andrews C ' 3, Bowen CS 3) but their "°ron̂ leg0lthe inconsistency of a set
Bibel has presented a systematic procedure whic - - , . se+s 0f senten-
of sentences to be proved but the method is imi^e , /mdreWs has extend-
ces in which only one instantiation of eacn sente _ o-imole" orc^f as
ed the method (although it does not ne°es® X̂ ̂ ^^does not seem'to have related
does Bibel's) to arbitrary sets of sentences, bu^ h \ i'nreoveT neither of
it to resolution theorem provers (except connection gr * . ^ r do they
these presentations directly relates the proof to a semantic tableau
use its structure to justify the operations involved.

For the sets of sentences investigated in the aforesaid paper-, a touristy vou ̂
often generate the same or tableau. Logic tQ golye &

useful inconsistency proofs than a systematic puoc heuristic
investigated. KStay of the operations of SL-resolution etc. can he seena^ spirit
when viewed from a tableau stance. A procedura in erp ' - » t th tableau
to that given to top down Horn clause theorem provers can be given
method and it is hoped to make use of this in the heuristics used.

The sections that follow give the general background and terminology,
simulation of clausal theorem provers and detail curren

* The sentences in which logic programs axe written may include^ the
tivs s A , V > i +•>

lop-ic r>ro .Tains wx ----- ""-v _ „
together with universal and existentia quanta

2. Preliminaries.

example^ to iSStratHJf feaXs^dlnJrod'"^ V' 18 applled t0 * Saa11

optimisation is consciously made or indeed at

LSnletTrefol IfflK#^fSTfflK£ £ ******* *>*T (*# so,
(usually only one sentence) the g^al). LoSely^Jt-^'.A th<? pr?°fUJ'es «*£

"*kea =»"»-»° -4 t™. ,i„ « ii?,t S, Si".T-s"-
We make use of a semantic tableau:
Assume Atzfrg and attempt to derive a contridfot^n. <
interpretation in which all sentences of/Z ar» f i.e. assume there exists®
for the interpretation and if it is found <» ^ in 3X6 fale°; look
can exist, conclude >0=^£ . "possible that such an interpretation

Each branch of a semantic tableau vives a n„+
of the assumption that all sentences i.n tA arc + sentences which, as a corse-uence
also be true. (i.e. a possible interpretation i a11 111 ,are false> ™»i
particular every branch will include!* ^d°V enumerated), ^us in
and its negation in a branch, we are Termini no- " f *" S°m9 staPe wp have a senten
imply) both a sentence and its nee-tin- lrin? interpretation to include (or
this occurs cannot represent a possible in^\™US!< Mlity* 7''US th* br~'c;" is «
(closed). If an branches in thTtabS2™ 2 T^10" •"* be t-rninated
is possible in which all the sentences in ° in thi3 way' ro interpretation
Hence we conclude Jl=^dB. . are true and all in S are false.

I f n t ™ t h ^ ~ * » 1 ' 1 ' » « • p - " . - " < •

0

*)--

iy—

4---
sV--

6)

T>

0

1)~~

"• ['-.-J. a

V X

• • V s l * ' S 3 ' ^ V , . C . e = . , l i t ,])

• = I. ooL
= *-Ur*lL

C: -g'1 S3 -»Vx[xfeUU-> it-Ul.n'4.1 *•' = I .nil
" * 4 - » > X f e X . 1 . « j t l

1 -J, 5 .i.̂ Ud
«fl- H-Vd

C-x-lrwu vOC-XfeVi^^ TC«A»1v

(No e: "sn> n 6 „ „ = (|

Notes for example l k-m . ' &re Pre<*icate symbol s > _oie i. (illustrated in f i e S -

Assurna ©ach c;o-n+ a (. • 1»)
to. tor W. ' ~ t„. ln ^ ^ ^ ̂

"3. .vi
*-3. x 40
<*« =x .
^ — I.

%*)$

2) Example of a simplification rule: If a sentence of the form Vx P(x) is^ true in
I then ?(X) is true in I for any individual X in the domain of I. Thus we have
(possibly) nianv true sentences implied by V xP(x). We are aiming to close each
branch and for efficiency sake would like to do so as soon as possible. But we may
not know the best individual to choose so we replace the quantified variable by a
dummy variable and instantiate the dummy later, when a suitable constant is found.
Dummy variables used here are xl and yl.

3) Another simplification rule: If a sentence of the form X*-Y is true in J then
either X orii is true in I.In this example (see fig.l), I must be such that A , J3 ,
C are true in it or A , 10 ,£> are true in it. (We now have two possible ways of
finding the interpretation i).
4) We close a branch when it represents a set of requirements which no interpretation
may satisfy. Here, instantiating xl,yl to l.nil and 2.1.n re^pec lve ^
the branch to be closed (by "matching" with). The su js i^u +, _ „ u „'\
for xl,yl in the other branch, (indicated by tne symbo —— o •

5) Another rule- fiV z = 3 zn). 3 zP(z) asserts that there exists an individual in
01 Anotner rule. I ;• » \ / Fo+ice. we must choose a name
I - let us name it 'el' - such that P(ei; is true. i.o.ice,
that has not been used before.
6) Another rule: i(X-»Y) true in I means both X and"«Y must be true m I.

7) Use of the"VxP(xj'rule (for x.u.v respectively).

3) Use of the —»"rule and closure of a branch.

9) The branch is closed because it contains el €1.nil and lel^l.ml.

There axe other possible tableaux, notably the one which
bottom-up from elC l.nil (as opposed to ^ tha
fig.l)). Ve need extra sentences in JL for t. - details not difficult to supply,
second clause in JL of fig.l and VxvxZnil. The details ar

j. +n mind. e.g. (a) quantifiers should be
Some "obvious" heuristic improvements co^e " „ possible. With this modifio-
raoved as close to the quantified varialbl® °° ef, can be repeated in a branch with
ation universally quantified parts of sent gentonces, which only need occur
different instantiations ana other par-ts •eg ̂ their descendants may be
once in a branch will not be repeated. (,b; _ thereby enabling transformation
labelled for bottom-up only or top-down on y u . C0S only j_n the direction
rules to be used. With this modification one us " . Qr „nUSable information,
intended by the programmer and does not genera

. rules. With the constraint that
We require some rules for using the simp l choose any branch to develop
one does not pursue a branch single-minde y qpeins obvious that one does not
and any sentence in that branch to simplify* t than once in any branch - for if
instantiate a sentence with the same constant more than once

one did repetition would occur). cla8Sical closed tableau;
Note that once all instantiations have been made v- c.
one of (in general) an infinite set.

3* Simulation of a Ton Down Horn 01 a.use Interpreter. ^ tabieau. Certainly,

Example 1 used "human knowledge" to guide the searc dispense with human inter-
if the sentences involved are Horn clauses ppqr or. theorem prover: selection of
vention. We can simulate various features o backtracking; negation as fai
arbitrary literals in the goal clause; po-rou ^ _rpperiy described here, but it is
ure; some loop checking. Not all of these c- _vour 0f the ideas involved,
hoped that the following examples will gave a flavour - inustrates the top

.Example 2. This example (a very simple finite (rfwo orders of choice are
down nature of a PROLOG proof and arbi .. ;s employed (i.e. each brsr.cn is
given in figs 2a and 2b). Depth first eval _ branch at the same or higher
developed to its closure before developing routiRi"1' i- thus possible by
level) but one need not do this. Simulation o^ ̂ > if the goal w«=re
developing branches in a quasi-parallel • y*

t-reach(s,a.b.a.a.nil) which fails, co-rcutining can judisciocsly be u"ert to redtffl
the search space.e.g. compare a depth first tableau, always choosing append first
and a tableau which co-routines between append and reach.

(Kote the program is not the simplest that could be written to carry out the task),
The classical tableaux represented by figs 2a and 2b can be obtained by "filling-iiT
the instantiations. Pig 2c illustrates this for fig 2b.

0 —
C ex . rs'J.

^a«.cU Cjf.oO <c- L(\

Rfuxc-U. ^ ft i*.} *— Ra*.d~ C ft , OLf>pa_Adl V. ex . n ̂

t « a x . i) ̂ A f f i a - r s r f . C u . i j . i) ; C S , a . a . r i v D ; ^

, - •< V,
Reg-cKCs a -x.1) -tRc_a. c_k C A , ytX) = RaacUCfl,a.a.J

I

ApparvdC.W-4,*^ yl,, w.lbl ->Appj^dCu.3,vj3,x3)

0t"4 r *.*\ol ' / "iR»».cMfV

Fig 2a
a- s « «-rv'vA.
l3:«Cdl

^ «•& a.o.1 CQockt "is, ioxaq. aw.A aa ^

c ft ,-su) ' "> i. h , o.c. . nU, ") ftcmt-U C^,XQ
*|z« •a.fl'a

<A - eJL
•>ftpf»A.A t a.xU.^'i, n».n\jU

II
J t*. .Oi.Avi ^.a.rvA J

^ =A, > r\J. . v a «.rt
ftp p-s-od. (."XA , «vjU -XA) ^ - «Ol

= <V.aJ.

Notes for example 2 finno+^o+ j • — Ul-ustrated m figg 2a,2b,2c,2d)
; Assume all clauses are aporonri~+ei

an interpretation (say I). ^ ^ ̂^ersaily quantified and ere all trie
repeated there. The tableau is generat9fwiS+USed ^ 2b'2c'2d 2nd is not

en m the order given in the program. ^ ° ° rlght dePth first and clauses a
2) P r e v i o u s l v t h e " o r " = i - r -
"V" is associative we can ^ dealt wlth the binary case only Sir
SStifier"6™ °f fl« 1 ^ uivaLnt ** JV<Wb> "* ^te l^ £
pine be"or &t the left °f a clause ** °f f±g 3b ?11 universal

before splitting. US' t:nd replacement by dummy variables takes

2*)>

3) At each stage the tips of the unclosed "branches
cl use in the IfJJH proof. The LU'SH proof simulated
a sore usual notation. (The chosen literal at each

{ P3 1 I 3°^

fioativC * .»vA.)

ft'AcK.ft,*.*. «\dl)

n App&n dLCft'«<i 1 aW <
A.O.nli)

|
(a -oli j *U,a.rttO

:'ln ,'.C

represent the resolvant (s -oal)
in fig 2b is given in fig 2d in
stage is underlined).

\ Peogr«.«vi <V> \v\ f\ij i«.1»

(j A.)

o f RsuvcJt-CA , ^.a..«\si)

|<fe- SWdUC
~ ~ ~ tjx, a<k.«Co.}

> ir A^ipAnA Ca.nU, a ./CJ, •"'l)

f t p p a n d l * *) r t v l 1 *

Fi~ 2d

Fig 3a Fig ?b

Example 3 (illustrates simulation of backtracking)

Kotes for example \ (illustrated in fig 4a-)

1) The goal, <-append(a.nil, nil, a.a.nil) fails
the last available alternative. 10 simulate . ^ ^iteral ln the sajne way as

alternative occurs, closing branches up to t alternative choice at the
previously. (e.g. it (*) in fig f)• » :^Sm7X«*(M^)
relevant literal, (in fig 4a, instead of matching ireacn
we match it with the head of the' recursive clause for reach.;

~ w>™r -flint the Dortion "below the failed
The tableau of fig 4a is redundant, since w ^lQsure (there would not have been a
append literal cannot use that literal m i failed literal with the
failure if it oould) „ can overlay the «*«•«£ »S £J£j?L, fig 4b. Tni. nor
Portion of the tableau bolo. it. The'MSB search space.
tableau correspond, to a euccessful path t J! ^ ^ ̂ ^ ̂ ^ ̂ ̂

Various other backtracking strategies might » instantiated in all poss-
lose the potential of using every clause in every branch, instanti
ible ways (unless a branch should close). rals i- the
One can simulate the backtracking without the ^^^^^^yga^quantifiers as
clause to which the backtracking is made, by movi g kinfr will then be to the
close to their variables' occurrences as possibl • ha^s alternatives. The

sssrs rarisrsase'srss. ~ »--- rrrT
We 4 (an era.pl. neing 'negation «• UOmf («*•» =<*>

(It is assumed the reader is familiar with the idea of negation as

programs (Clark C<>1). 1' d to "he tableau
The same principle of using negation in logic Pr°5rw®8r°^aoe and only
method: if we generate a node of tne form C i + pad<a. to close. (In the
close th- branch if the tableau forn.ed below-«P^ot be nad^' ^ we COrcl-aie
procedural interpretation to shew J3Ci I -e _ T-i >, , pycJOT- proof using the
ECT ?j. The reader should now be able to °irai - " ,eg i.he use of a met".-ra e wnich
ideas in the previous examples. Thxs predicates and procedures in the given
could be dispensed with by including sui -

set of sentences. (After all, here we axe not restricted to "O*T. Ĉ uses' e ~ if
the clause were A 4-HOT S we could replace it by A,34- ar.d we would need daniela of

m" n S° r ̂ probleF" 'rnis presents a different procedural inter
pret-- .ion: assu-.e 3 and see what happens" which ray not give such a .natural argu
ment as negation by failure.

[ll i»<-

Ra&cMSiPcT) *1 Raa<J»(R ,ucQ — IfUAck (.0 , a.-a-aVq')

^ci-a.a.o..nJ- y*-- *.oq i««U, ji)

Ap^J-C u-3. v % T — 7(*.*d
w -X ' — U1=a..rvi ,K"i —c^.

vv-g^l.i -• 7fyp*~JCc,.a\l,yq ,*4.) = yftr/u^j

Ktmag.rJ. —\ " ., Jf . . .

(M
RflPw cklft T^AAxlXA^uS-) ^

fy^diub, »ct .u) C««.,y*,x*;

^ ̂ s ft • ft s ̂ (

<3^ ~ " ̂ • ij* = e-a. (,

7/
7#p V CrxJ(̂ J(t<j

bp fû d Cwf-.iU,*?)

Fir- da *7 ̂ « .*a = lf e

TWM.S,*.,-)

(a^^gooj. «•, ,n T^j 4-<v}

~IRA*^(.A,X.O n= "I IWiACfl. *• cx ^.^vA J

"* <* La.*U ,yj* , *4.)=i ftp^A

:! . . .
12^1'

II
TApju^i (Cn.Aa ,yS< ^ ̂

fttc .

•»Aftpa Cx.xa (^ a i S j,-)

«Tu

Pig db

intro-— or ̂ »,*, ta lr,

2 : s k e- c ' r t*1--1" i f* retread !/l?:tl.then a Potential loon ™v v« ~l^I-f!Ccn? ccĉ rce is »•>
by

suned bv the It oranch twice, such that to- JI tainiy, ,
•? tnen a potential loon v seccru occurrence is

« srrr « .ASiass^i
tableau „ .»„« <„

I l l 7 -

In this section we have described how various aspects of PECLCG-like theorem provers
may be simulated by a semantic tableau. liext we will deal with simulation of other
clausal theorem provers.

4.Simulation of SL-lesolution and other Clausal Theorem Provers.

(Familiarity with SL-resoluticn .connection graphs and Shostak's graph
construction procedure Dal is assumed in this and the following sections.)

Example 5 (The operations of ancestor resolution, merging (factoring) ana deletion
of literals in SL-resolution are illustrated).

Cne possible SL-proof is given in tableau form in fig 5a and in a more usual not
ation in fig 5b,An alternative proof is given in figs. 5° and5d . 3ee also the
explanation below.

5— „• TCca.O; 4- OCcoJ-,-z.');

t) T<W>

© iTbciT ®-» CC-^al — c<-«^ «<0
©-STO ^ ®

G> TUCxO

•) (dj) Q) \ ©
® CCxa,*^ "-51 it>Ci#Jr/

(g) -aja-b (4}
Fig. 5a (Example frov KcwalsKiy

rc-3 - cs Jf

Jn^LCcoO •> • P°5^1 • 5 •
ukw-I t»<_

.fTCc,.! -.cc^toi fvvgSIEl

are

M lcj»Jr) -i ULo^r J ^ (1 —. •• •a t
„.ul> Egg -c^eshi.

nx^n - .uw-i [HT^3E^aEht53:
1 TCua-yHiu.(.cpJr^| • a <*)

-Fig. 5b

Motes on example 5 (illustrated in figs. 5»t 5%5c,5d).
1) Assume suitable universal quantification of sentences. Nodes and closures
generated in ascending order and in a depth first manner.
2) The start clause is T(cat)e! In fig.5b each stage is separated by a fullston.

5) Closure of a branch corresponds to making a pas® : ve x vnboxed literals
is made active. In fig 5b an active literal is enclosed m a to. Lnboxea i
represent palsive litfrals (or tips of the unclosed branches of the tableau;.

4) Merging has taken place at (20% We can close ^(tny literal above
closure can be develooed below (7) can be developed ^^c^ontaining (17)).
(7) which is used in the closure oelow it is conm ' as the literal "higher" in
In general this operation is one of factoring. ^ = , her") any closure
the tableau (7 here) is subsumed by the lc«er llt ̂ [, l er literal (which i:

' develooed from the higher literal can be transferrer! to -he lower
the more fierier p.l ^ -

•

^00

(s a U S 6 d i n f i F * 5 b f a c t o r i ^ c n occur if a oassive lit,
literal A can be boxed! ^ °r t0 * PreWeu» (?"«iw). 3>*

T b6en ClCS9d ttet literal ca" * ̂oved. 1; i- " , truncated).The liberal can no longer be used vi+hin alioed ST-
op^rations and will have no passive literals following it.

closed "Tableau)! b"" t2™Cated "* we a contradiction, (i.e. a coBpletel;

7) Start clause is'L(cat) V in figs."5c end 5d .

•"»" -»»»)»»
called ancestor resolution. A passive liter,! bran°b' In • «™Olution fis is
it with a literal (active) of LnoeHL / active (boxed) by "Batching"
example no instantiations were irtrotWen"^6 ^ositive with negative etc.). In this
ancestor resolution may instonti-it-- " ancestgr resolution. Bu* in gener?

9) Other SL-proofs are possible for this nr^viQ~
disjunctive solution'z = a or z = b ' t>," \ sin?left of "hich rives a a or z - b. ^e z of the clause «-B(cat,a).)

£?£? £2f0;Sd.2.1S2"i2eS!tv2r'inf *? devel0°a brarcb * ooc-2letion

depending- on the exact rel = tionshi a "hot CU".faC oriR# operations any be possible
branches at anv give^stage One Jheo^^"66" Vari°US 1 Serais at the tins of the
resolution C«* fSee * Elated" is LIST-_ _ illustrated in fig. 6) ^ the notes belov>

S>

tcT&tCTo
l^X — o.
® 1 C CacV, «p

© »«• 3 = t &.<

S"«-J

&Cci*|0ky <£r*c-*i,fc) =. ChCo>,fc,)© ,

^ lb CcaJr,x.i) ©
® v ~ C.C-acT.,^3—=_

ITCx-"i h =. n ccooT (g) | 1

@ T I Calf)

ll. b

"*>-L(oocO .
J'ig 5c

Uses') =lU»ti
T®

L CcaJc)
(s)

Ems cuM

ESil *> '"".aQTS^7ErS=l H-r^n
-ESS3. •

Fig 5d Ilotes on example 6.

s k t h e r ^ h L " ^ " c i t y . S t a r t
node (l

clause is x,z«-

are made this'i^likeiy t&°h again* Tn a Kore^n^r-l^ettt0 thS brarc:h froyr
y to be a useful strate^v • tt-nSt wnere instantiations

s to be careful abou ^ 1S co-rou^tining in ICIP-CLC 3>.Ve have to be careful about" (a
usmg the ar.o*urient +^^4. <_•, 0 using" factoring V<a 4.
closure at (1 4) nav , ° tn; closure at (la) cm be H i Cl°SS ths branch at 1

Hay USe nod=s not common to b!i!rlo?ed at (18) since t ie

1.01

Shostak's graph construction procedure (G C) and Prawitz* splitting rule for matrices
can be obtained using arguments similar to those used in this section. We briefly
give the argument for GC. _

In 3I-resolution, when all branches below a literal have been closed, knowledge of
having "proved" that literal is lost. In the special case of the closure below
the literal having used only nodes below and including the literal, we know that
if the same literal (or one which subsumes it) occurs elsewhere in the tableau
the same closure can be used. To facilitate this we add the negation of the literal
to other branches in the tableau. The easiest way to do this is to add the negated
literal to the top of the tableau. In a less specialised case the closure may have
involved literals (L say) in the branch above the literal (K say; being considered.
We can add the negated literal to all branches which have literals L in common
with the branch containing K. In the worst case this will be tnose branches which
have the same immediate predecessor as K.

In this section simulation of SL-resolution,LUST-resolution and the graph constru
ction procedure were described. Simulation of other theorem provers is possiole
and the arguments are similar to those used here. It remains to illustrate simu
lation of the connection graph procedure.

•ij*"*•/ ^

n® IX.®
•—d) (a)"1 a

<3) <S>

Fig.6 S-r-om N\tr»K«r

5. Simulation of the Connection Orach t'rocf Procedure.

In all previous simulations which were of a depth first nature the "latest" resol-
vant was the one represented by the ends of the unclosed Caliches. Th.e correction
graph procedure (CG) has , in general, several active "solvants ^Snev^ a
this the tableau is developed in separate P^®ce^ bookkeeping of CG still has to
pair of resolvants axe used, as parent clauses. The . nnp to see when
be performed. The structure imposed on CG by the tableau ena efficiency,
factoring is necessary for a proof and when it is on!y necess./
A more complete description than is given here s in useful for the visual
preparation. We will look at two examples. The CG format is useful
recording of links and will.be used as well as tne tablea .

grannie 7 (illustrates a simple simulation with no factoring).

Notes on example 7 (illustrated in fig. 7) .

1) The operations of deleting incompatible links ^ ^n°beU1ustified in
literal with no links (and the special case of pseudo-links) can „
terms of the .tableau being generated. _ , .

2) 'When we have deleted link 2, the resulting ^ -! The
represents the resultant 'f-C(cat,a)' and. the oritJ ;j " delete link 3, rather
latter still has a link (3) and can be used again Jen we de. (^^ted
then repeat the clause 'L(cat}«-' we g—+- e. ^-dimensional
by the dotted lir.e in V). We no-: have

'e no*.-.

oe used again. When we ^ "
generate a 5-dimensional tableau

s two tableau joined at L(ca-).

5) First we delete (10) and generate the tableau of ^ In this case it is
i link (the descendant of 9) which is be ween "flattened". Notice we still have
an easy operation - the 3-dinsnsional tab ^ ^ "+v,~ i This part cculd have
the clause 'D(cat.a) ,D(cnt,b)«-1 representee in th, t.olec-u. -

a^tJv. dUfl-a-Go^ °}

TCc^t) \3 .

bCu*̂

LCcoi*j

-t<Uw.O

11 1 " u X 1 •\i.a*>> TCOJ-) ica*ii*i i

0C«VJ o«<

-tOGtvjvT^Wi
\ >.ic<*r ||

Cb*<0
n uCxO r>cxi.O

DCuh«) OCtA)",fc)

c <.tAP,<0

Close. bf».»>cV <*Jr IK\ by usw«3

?jf- 7

Example 8 (illustrates factoring in a simple setting).

Notes on example 8 (illustrated in fig. 8).

(In this example factoring is not necessary, although it is useful for a more j
ient proof. If however the clause '«-?(a)' were '<-P(a),P(u) ' (say) factoring
he necessary). The factoring is indicated in the tableau by being able t° r®f
the literal 'iQ(vl)* in the first resolvant with the original clause 'P(x;,^ '
The Q, literal is represented in the tableau at (A). This resolution produces '
copies of 'P(xl)' which effectively are factored in the tableau. Certainly. ̂
may be the case when this phenomenon occurs that factoring is not necessary,
we can be sure that factoring is only necessary when it does occur, (^ots-
are a few special cases with regard tc some sorts of tautological links where -
toring is necessary before deleting all tautological links. However these cas=
can be recognised from the tableau format and hence dsalj with).

11.

•PhP tableau generated in fig.S is not the only tableau corresponding to the CG
nJ An alternative is shown in fig. 8V1. The difference is due to the aeyunetry

Pf°f- ^. f th respect to the parent clauses in a resolution. Tins asjnvnetry
?J™o?occS in the^normal CG foil. In fig. TO U ~t Indlo.t.d by
the tabl.aa «id heme n.«d not have to.n p.nfon.ed in the CO proof.

laituj Con«<tcXGs„ Ctre.fl*!

Ptoc"), ^
A t- C? <.«.), Qtv)

D-aOefci 2.".

. o

\(PCu") «• Qlv)

"eTpto TL

CM

s£ ls.<X

t q c u A T » t v O _

u" V"=1C'

n ft t- c • PCu.), PCv^t" OftSftta. S . r e r>

TM

Pa.t>or **» o'0®1'' PCU^"
I " u CuaIt tP«0

ou«<l da&ttJla 1

to de-rive. • 19

Q U A P C X J I M X « < U « ")
I

-7PCA)

"2-

£Lgs£

6. Conclusion. resolutio„ theorem provers can be embodied within the

It is seen that a host o
classical t.hl.a. «thod. v„l0„ a,o„. prov.r.

A paper detailing completeness p method employed for tableau formed
semantic tableau is in a fully £h°£Eta, instantiated
graphs involves "pruning P clauSe is develope in this paper show
in a "systematic" way. (e-f* ® similar to those used elsev ^ olosed tableau in
with each constant), closure, and the *"®sicieration. The final close
that the pruning df3 "°\he theorem prover under con ^ oonneotion graphs
a format consistent with the tneo ae method usea
tableau Is "lifted- * «. c»»® ^ „ Ks

a more direct proof. Tn always derives the hoped to

Hegardless of uheth.r »• K»U»1 progr™. W
a satisfying r.l.tionoh P »»„,„«.« of th. r*~£?.££~
make use of this in a necessary m t P event of the inform - c-oe
allowing human ^provements.e.g. f ^wVersion mif^ provide scope
and consequently brin^ B - Comolete a proof, fatis to close.
lied not being ^ffl"gginS premiss when a brano i improvement, if
for a user to add a missing P metarules. within SF?
Another area of exploration to formating
any, is gained by using m

References.

t i l A n d r e w s , P . B . G e n e r a l N a t i n g s , ? r o c . I V t h W o r k s h o p o n
Automated Deduction (1979)•

C 2l Beth, E, W. The Foundations of Mathematics.

£3 J Bihel, W. A Comparative Study of Several Proof Procedures,
Bericht 62, Universitat Karlsruhe (1979)•

C4l Bibel, W. and Schreiber, J. Proof Search in a Gentzen-like System of
First Order Logic, Proc. Int. Computing Symposium,
North-Holland, Amsterdam (1975).

Bowen, K. Programming with Full First Order Logic.

C6] Clark, K.L. Negation as Failure, Logic and Data Bases,
Plenum Press, (1978).

[_7] Clark, K.L. and NcCabe, F. Programmers' Guide to ICPROLOG,
CCD Rep. 79/71 Imperial College, London

(8l Kleene, S.C. Mathematical Logic, John Wiley, (I967).

[9l Kowalski, R. A Proof Procedure using Connection Graphs,
JACM 22, No. 4, (Oct. 1975).

(l0l Kinker, J. and Zanon, G. Lust-Resolution and its Completeness.

(ill Prawitz, D. A Proof Procedure with Matrix Reduction,
Lecture Notes in Mathematics 125.

tl2l Shostak, R.E. Refutation Graphs, A.I. 7 (1976).

ZD 5-

QLOG - THE SOFTWARE FOR PROLOG

AND LOGIC PROGRAMMING

by

H. Jan Komorowski

ABSTRACT: We argue that the existing Prolog implementations
are insufficient wrt incremental programming, interactive

environment, interactive debugging tools, integrated programming
system, etc. The best of them - the Prolog DEClOsystem - is an
attempt toward such the environment but it nevertheless provides
a rather poor support for the programmer. Instead we suggest
using Qlog, an interactive programming environment for Prolog
(and logic programming) which has been implemented in a portable
subset of LISP. The new system is very efficient and with minimal
cost inherits all the support of the host Lisp system The
interpreter itself takes 10 pages of pretty printed code, while the
interface » ,h. L..P ho,, system occupies about 20 pages -

Inter lisp)- Currently there are Qlog version, •" intertep, Port
Lisp F3 and Stanford Lisp 1-6- Timing for Qlog in Stanford L sp
'7 and Prolog DECIO on ,h« — ™CiO (KL .0E, compute,

shows that code is executed slightly faster in Qlog.

. , rases. Prolog, Lisp, logic programming,
Keywords and phrases. S r„„r,m debugging and
interactive programming environment, p

testing, embedded languages.

rf.d bv the Swedish Board for Technical
This work was sponsored y
Development under contract 77 4380

Informatics Laboratory
Linkoping University
5-581 83 Linkoping

Sweden

- 2 -

ACKNOWLEDGMENTS: Mats Carlsson and Martin NiJsson
implemented respectively Fortran Lisp F3 and Stanford Lisp 1.6
versions of Qlog. They have contributed to debugging and cleaning
up the basic implementation.

Jim Goodwin has patiently assisted during the Interlisp
implementation and provided several ideas about the strategy and
tactics of embedding languages in Interlisp so as to obtain
maximum support at minimum cost: what we have begun to call
"the law of maximal embedding".

Sten-Ake Tarnlund discussed with me several implementation

issues and invited me to write this paper for the Logic
Programming Workshop in Budapest.

Professor Daniel Chester of the University of Texas at Austin
reviewed an early version of the report, and his criticisms were of
great help to me in revising it.

Finally, I am very indebted to Erik Sandewail whose constant
supervising of my research provided several fruitful ideas.

3o?

- 3 -

CONTENT

1.0 INTRODUCTION

2.0 WHY PROLOG DEC10 IS INSUFFICIENT

2.1 The requirements on a language for an interactive

programming system

2.2 The requirements on an interactive programming system

3.0 PROGRAM DEBUGGING AND TESTING

<1.0 PROGRAM PRESENTATION AND MODIFICATION

5.0 PROGRAM DOCUMENTATION

6.0 THE IMPLEMENTATION OF QLOG

6.1 Prolog data types in Lisp

<L2 Prolog control and variable binding in Lisp

7.0 CONCLUSIONS

t„ the Prolog DEC10 system 7.1 Comparison to the

8.0 SUMMARY

9.0 REFERENCES

Z0<6

- 4 -

J.O INTRODUCTION

The best and most well known implementation of Prolog < 1 > is
the Prolog DEC10 system < 2 >. That implementation has been a
pioneer work toward an interactive environment for logic
programming. The task to implement it was very big but
unfortunately only partially succeeded. The system is interactive
but for several reasons uninvitingly hard to use. We had a rather
big experience with Interlisp < 3 > and would like to provide a
similar environment for Prolog.

There were two possible approaches: use the existing Prolog
implementation and design Interlisp inspired facilities in it, or
take Interlisp (or any other modern Lisp environment) and embed
Prolog in it.

The first approach was possible but would require an enormous
effort. The code for Interlisp packages is several hundred pages.
Working from scratch would mean to repeat it for Prolog.

The second approach attracted us very much. By the use of the
"law of maximal embedding- < 4 > we expected to design an
interactive environment for Prolog with minimal cost. The
embedding law says: implement special facilities for a given
anguage only when necessary, and embed in Lisp otherwise. This

minimizes the costs of the implementation, while maximizing the
inheritance of Lisp language features (like input/output routines)
and Lisp system facilities (like the editor and file librarian). The
embedded approach usually results in very few pages of code. In
our case the functions of the interpreter itself consist of 330 lines
of pretty printed code (the text files have about 10 pages of
pretty printed code). The interface to Lisp facilities usually takes
more code than the interpreter. The figure for Interlisp is 20
pages of pretty printed code.

y>*)
- 5 -

2.0 WHY PROLOG DEC10 IS INSUFFICIENT

A user who switches from "batch" oriented computation as in
Prolog Marseille < 5 > is certainly very pleased by the new
environment of Prolog DEC10. However the system may only
satisfy an unexperienced programmer who never tasted a flavor of
a fully interactive programming environment. The MACLISP
< 6 > and INTERLISP are good examples what are such the

environments.

2.1 The requirements on a language for an interactive

programming system

Let us characterize what should be the requirements on a
programming language for integrated, interactive programming
system. With some modifications we quote from Sandewall < 7 >
and immediately relate to Prolog DEC10. (We shall write PD10 for

Prolog DEC10.)

BOOTSTRAPPING. The system should be implemented itself in the

language it supports; PD10 - yes.

INCREMENTALITY. To achieve real interaction, the basic cycle
of ,h. programming system shooid be to read an expression from
the user, execute it, and print ou, the result while preserving

el„ba, side effects in its database, PD.O - *. ^
yes, although there are no tools for examining

database of programs.

PROCEDURE ORIENTATION. Obvious reasons; PD10 - yes.

ctmTatioN OF PROGRAMS. Since most of the
INTERNAL REPRESENTATI ^ ^ operations on
operations required by the program p0Ssible to
programs, the language should make it as easy

PDIO - YES.
operate on programs,

V o
- 6 -

FULL CHECKING CAPABILITY. All possible input from the user
must result in rational response from the system; PD10 - NO!

DATA STRUCTURES AND DATABASE. The system must
minimally have data structures that are able to represent
programs as tree structures and a database facility where one can
conveniently store and retrieve properties of items. For example,
what are the procedures currently defined by the user; PD10
- data structures: yes; database facility: no.

DEFINED I/O FOR DATA STRUCTURES. In order to test a
procedure interactively, one wants to be able to type in a call to
the procedure and obtain back the result. Since the arguments
and/or the result may be data structures, I/O for data structures
must be defined in the system. Since programs are internally
stored as data structures, this I/O may also be used as parser and
program-printer; PD10 - the I/O is very poor and it forces
the user to define his/her own routines.

HANDLES AND INTERACTIVE CONTROL. The actions taken by
the system in specific situations should be controllable by the user
in such a way that a user-defined procedure (a "handle") can be
inserted instead of the original procedure provided by the system.
For example, such handles are useful for the operation applied to
expressions input by the user, and reactions to errors and
exceptional conditions during the execution of a procedure.
Also, the system must allow for an assortment of different control
signals that may be typed-in by the user at arbitrary times to
control the ongoing computation. The "killer" interrupt, which
terminates the interactive session and returns to the operating
system, is exactly what the user does NOT want. The response to
control signals should also be user-controllable through handles.

PD10 - the system has a possibility to interrupt the execution
without returning to the operating system, but the interrupt is not
programmable. The worst is the elimination of errors in PD10
which leads to bizarre, hard to analyze computations.

3M

- 7 -

In summary, the Prolog DECIO language fulfills only partially the
requirements on a programming language for an interactive
environment. It (and tiny Prolog) has however one very important

property: programs are represented as Prolog data. This property
makes it possible implement Prolog in Lisp.

2.2 The requirements on an interactive programming system

Let us now consider what are the requirements on an interactive
programming system. The view of advanced program development
and maintenance tools < 8 > in such the environment is centered

around a few main concepts:

1. Program development is an incremental process.

2. Programs are stored in a database not as strings of

characters but in some structured form.

3. The programmer must have available several advanced tools
when developing and maintaining programs. This includes

tools for:
a. program specification
b. program debugging and testing
c. program presentation and modification

d. program analysis and transformations

e. program verification

f. program generation
g. program documentation

Here w. ioco, our ett.n.ion on tool, n.med In point, 3.0, 3.=, «"d

3-g-

V I
- 8 -

3.0 PROGRAM DEBUGGING AND TESTING

The interactive programming in a system based on a language with
pattern-directed invocation and backtracking requires several
properties for a programming system. First of all calls to
undefined functions must be properly handled.

1. If the definition of the function FOO contains a call to the
function FIE, but FIE is not actually called for a certain
argument vector x to FOO, then the programming system
should be able to operate and to compute FOO(x) even if
FIE has not yet been defined.

2. If FOO calls FIE as in the previous case and FIE is
undefined, but computation of FOO(y) leads to a call of
FIE, then the programming system should make a "soft
landing". In other words, it should not print an error
message and abort, but rather preserve the current
environment and allow the programmer to inspect the
situation, decide on a suitable assignments that FIE could
have accomplished, type it into the programming system,
and let the computation continue.

The first property is of course available in every interpreter. The
second one is not provided by .any other Prolog implementation
than Qlog. The "soft landing" is in fact the point of the
interactive testing and debugging. After !t happens, the user has a
spectrum of tools. He/she can provide a definition for this yet
undefined function. He can also decide that the function fails and
simulate this case by typing FAIL to the system. The decisions are
supported by several facilities. Namely, the user may examine the
current environment by looking at the formal arguments' binding,
the AND/OR tree structure of the computation, the stack, the
procedures about to be computed, and the pattern which has just
succeeded in the unification. It is also possible to change actual
bindings of variables.

y y
- 9 -

An intended (programmed) interrupt followed by the "soft landing"
is a modification of the second case. In Lisp terminology it is

called "break". The user simply informs the system that when a
function FOO is called he wants to examine the environment prior
to the execution of FOO.

A simplified variant of breaking is tracing. In the trace the
function (which the user wants to trace) is broken, the current
bindings are printed, and the computation is automatically

continued without any further action from the user.

The Prolog DEC10 system offers quite different philosophy. Since
the semantic is totally defined, there are no errors nor
programmed interrupts (breaks). The execution of a program might
be halted in random, but since no tools are given for examining

the environment these halts aire nearly useless.

4.0 PROGRAM PRESENTATION AND MODIFICATION

The collection of procedures which are currently in the database

must be presentable to the user. He wants to know what functio
are currently in the program and he may want to examine their
text. The natural requirement is a pretty printer which displays a

selected procedure in some system defined format.

During the debugging process a lot of changes are done in the text
of procedures. For these purposes an intelligent editor must e
provided, i.e. an editor which understands the structure of

programs and works on their tree representation, not on the

strings of characters. Usually the editor is in core an is
in the same language. Another solution is the editor ,n parallel

job. It requires however a sophisticated operating y

y n
- 10 -

5.0 PROGRAM DOCUMENTATION

An interactive system needs a file librarian. Among other things
the librarian knows what functions have been introduced during
the interactive session, and which have been changed. He asks the
user where the new ones should go, and takes care of updating the
existing files, creating the new ones, producing the compiled files,
etc. He also should be able to answer questions like: "Where is the
function FOO?". In programs with several hundred functions
distributed over several files this is an important facility.

6.0 THE IMPLEMENTATION OF QLOG

As we have earlier pointed out Prolog has equality between data
and programs. This property makes implementation easier. As an
implementation principle we applied the "law of maximal
embedding", i.e. implemented special facilities for Qlog when
necessary, and embedded in Lisp otherwise < 9 >. This minimizes
the costs of implementation drastically. The inherited services are
far larger than Qlog itself, far better than anything one could
have afforded to build from scratch, and far better than the
facilities built from scratch in other Prolog implementations.

6.1 Data types

No special finesse is required to embed Prolog data in Lisp data.
They are similar enough that Qlog can just use an appropriate
subset of S-expressions directly. Thus Qlog obtains for free
allocators, a garbage collector, READ and PRINT, a list structure
editor and in general all utilities which are defined over arbitrary
S-expressions.

v$
- 1 1 -

6.2 Prolog control structure and variable binding

Since the Prolog control structure and variable binding mechanism

are quite different from that of Lisp, they involve harder design
decisions. The use of FEXPRs, i.e. functions which do not evaluate
their arguments, and the introduction of a special stack for the
non-recursive Prolog control structure allow representing Qlog
functions directly as Lisp functions. Thus Qlog forms and functions
are simply a subset of those of Lisp. This allows us to bind Qlog
variables arbitrarily (through the introduction of a special stack),
while still inheriting most of Lisp's numerous form and function

oriented programming tools.

6.3 The inherited programming tools

Thanks to the implementation method we inherited almost for free
a lot of Lisp programming tools. We have the testing and
debugging tools of Lisp: trace, break, error handling, visible

stacks, current binding environment, etc. Some of them
inherited directly; a few need some cosmetics like variable binding

display since it is rather different from the Lisp one.
The file librarian, I/O routines, and the structure editor are taken

as they stand.
Our worst cases are the pretty printing routine and the compiler.
Because the Lisp pretty print formats are quite different from
that of Qlog there is a special pretty printer consisting of 36 lines

of code. . .
The regular Lisp compiler may be used on Qlog forms. The gain
however relatively small. The Lisp compiler does not know
anything about the Qlog structure; in general case a true pattern

matcher compiler is required. (Of course one can use the ro g

DEC10 compiler if accessible). A Lisp pattern matcher co p
. • for correct comparisons of Lisp and Prolog also a sine qua non for correci k nprin

,, , In < io > the designers of Prolog DEC 10
DEC10 compiled code. In < 10 x
compared Prolog .o Lisp in a very unfavorable case for L»p.

program for symbolic differentiation is str.c.iy » ^ ™ °

pattern matching. The Lisp program is no, comp.led

y b
- 12 -

respect to this pattern matching whereas the Prolog one is.
Instead of a Qlog compiler we have developed an incremental
indexing of functions entries by their first arguments. The method
is similar to Prolog DEC10 one, but is superior in that it works
for the interpreted code and the new assertions might be added

arbitrarily.
In addition, the Interlisp system provides several more advanced
facilities like the history package and the spelling corrector which
work fairly well for Qlog functions. They needed a little more
work to interface with the regular Qlog.

Totally, the interface in Interlisp case takes only 20 pages of
pretty printed code. As a rough estimate, the Lisp code for the

parts of the Interlisp programming environment which we use is
about 50 times larger! We guess that implementing them in Prolog

DEC10 would result in approximately the same size.

7.0 CONCLUSIONS

We have shown that that the possibility of partially embedding
Prolog in Lisp is very powerful system design technique. The point
of maximal embedding is that the designer does not have to spend

most of his time (re)programming the environment facilities for
Prolog. Instead, he makes a set of design decisions and inherits
major parts of the Lisp system. This method is very important
since it drastically cuts the costs and time expenses required for
the development of an interactive system.

The volume of the code is several times smaller than any other
implementation of Prolog. This factor is very important for
obvious reasons, e.g. debugging the interpreter, introducing
modifications, working on a minicomputer version of Lisp, etc.

Since by embedding Prolog in Lisp we did not depart from the
implementation environments (cf. Interlisp, Lisp 1.6 < 11 >, and

Fortran Lisp F3 <12 >), the Qlog programming system may be

extremely easily used for experiments with logic programming

V T -
- 13 -

while retaining the same interactive programming system. Some

examples are: new search strategies, other pattern matcher,

parallel processing, and many others.

7.1 Comparison to the Prolog DEC10 system

The speed of execution was not our primary concern; it was more

important to get a very good programming environment. To our

pleasant surprise the resulting interpreter runs slightly faster than

Prolog DEC10, both on the same DEC10 computer (KL 10E). The

average times for benchmarks programs in Qlog Lisp 1.6 and

Prolog DEC10 show that the Prolog average time was 798

milliseconds and the Qlog was 760 milliseconds. The test program

resulted in 10x27=270 function calls and the cost of timing was

subtracted from the results shown by the Prolog timing function

(about 18 ms).

The comparison of interactive environments is very favorable for

Qlog. The Prolog DEC10 is interactive and incremental, but the

actual data base of functions is virtually impossible to control or

display. The i/o routines are very low level, ^ ̂ °'

characters (READC) or Prolog terms. RATOM an -
must be programmed by each user. The trace feature is of the

wallpaper type, i.e. one can trace all functions at once or none.

instead of error handling, Prolog DEC10 offers the philosophy that

errors are impossible. This means that the system trea^ aU
t o undefined functions, as patter

errors, from misspellings tu_,P are no
As < 13 > promises, there are

matching failure. A ^ ̂ nQ mes$ages

"incomprehensible error m g ^ ̂ agree>

at all; the program doe not ev^ ^ ̂

however, that "this o y ^

r;:c"Uf —« — — - - -iementatrir~of̂ ::;:.
relevant response to the user who has

y%

-11 -

typographical mistakes which can be routinely detected by the

interpreter.

Prolog DEC10 has no facilities like break, pretty printer, file
librarian, nor any support for editing either in core or in parallel
jobs. The compiler exists as a separate package but is rather
inflexible and uninvitingly hard to use.

S.O SUMMARY

Qlog is a portable Lisp implementation of Prolog. It already exists
in Fortran Lisp F3, Stanford Lisp 1.6 and Interlisp <14 >.

Qlog inherits most of the major components of the Lisp
programming environment at very low cost, and obtains a high
quality programming environment. Interfacing the existing Interlisp
facilities to the new language required 30 to 50 times less code
than the Lisp facilities themselves require.

Brand new development-time facilities for languages with pattern
directed invocation of functions were invented.

Lisp itself has been complemented with pattern directed
invocation of functions, a unification pattern matcher, and an
associative data base with richer structure than property lists, all
for less then 30 pages of pretty printed Lisp code.

The Prolog language has inherited a high quality interactive
programming environment for a very low price. If this new
implementation attracts serious interest, Prolog can reach a much
broader audience, the whole Lisp community. In fact this is
already happening. The Qlog system is installed at MIT Artificial
Intelligence Laboratory and there is an implementation of
Intermission < 15 > (an actor system in Prolog) in Qlog. At the
same time Prolog can use Lisp machine < 16 > what we think is
of a very big advantage.

yr\

- 15 -

REFERENCES

1 > Kowalski, Robert, A., "Algorithm = Logic + Control"
Comm. ACM, 3uly 1979, Vol. 22, No. 7.

2 > Pereira, L.M. et al., User's Guide to DECsystem-10 Prolog
(Provisional Version) Divisao de Informatica Laboratorio
Nacional de Engenharia Civil, Lisbon, April 1978.

3 > Teitelman, Warren, Interlisp Reference Manual,
Xerox-Palo Alto, Calif., 1979.

U > Goodwin, Oames W., Komorowski, H. 3an, "System Design
by Embedded Sublanguages: A Lisp Craft Tradition", to

appear.
> Roussel, P. "Prolog: Manuel de reference et d utilisation",

Groupe dlntelligence Artificielle, Marseille-Luminy, Sept.

1975.
> Moon, David, "Maclisp Reference Manual", MIT AI

Laboratory, 1975.
> Sandewall, Erik, "Programming in an Interactive

Environment: the "Lisp" Experience", Computing Surveys,

Vol. 10, No. 1, March 1978.
> Wilander, Terker, Haraldsson, Anders, "Proposal for

Programming Environment Laboratory" in: Software
Systems Research Center", research proposal, Linkdping

University, March 1980.
> Komorowski, H. J-. Goodwin, domes W, Embedd

Prolog in Lisp: An Example of . Lisp Cra ra

> d.h.d„ «•T-s.^rLS-
,mP,ern^rrA™«frci.nnte,iig.nce and Programming

langTaTer SIGPLAN/SJGART Special issue, pp. 109-115, , ™
Manual" Stanford AI Laborator , ^ Guide",

ht isp i >
> Nordstrom, M«s, UnIverslty, done 1««.

Datalogilaboratoriet, PP ^ tutorial, Laboratorio

> "H- <° "S*C lZ, Lisbon, Agosto de ,979.
Nacional de Engenharia Civi

330

- 16 -

< 14 > Komorowski, H. Jan, "QJog Interactive Environment - The
Experience from Embedding a Generalized Prolog in
Interlisp", Informatics Laboratory, Linkoping University,
August 1979.

< 15 > Kahn, Kenneth M., "Intermission - Actors in Prolog"
Stockholm University, April 1, 1980.

< 16 > Weinreb, Daniel, Moon, David, Lisp Machine Manual, MIT
AI Laboratory, November 1978.

Intelligent backtracking

in Horn clause programs -

and sidetracking

implementation

Luis Moniz Pereira

Antonio Porto

Departamento de Informatics
Universidade Nova de Lisboa
1899 Lisbon* Portugal

December 1979

Abstract

This is the second report of our work on intelligent backtracking and

sidetracking strategies in Horn clause programs. /

This second part is a description of three interpreters (written in

'solos) for Prolog programs* working on the basis of the theory described

to the first part CPereira et al. 19793. They offer practical information

•bout the featu res of the new strategies*

The first is a general-purpose interpreter which uses intelligent

"oktracking instead of the standard blind one.

The second is a specialization of the first* for database ouery only*

h'ch uses intelligent backtracking in a much more restricted way*

'though sufficient for Prolog relational databases satisfying a

Sssonable set of assumptions.

The third i. ar. interpreter uorkms throush sidetr.ckind. uhich bv

» ,tur. is not extensive t. the full l.n.u.d. uithout so..

Winitions. The use of cut, not.blu. doe. not ..he sens, uithout .

i~ tr. 3 future paper* however* some
*ed order of execution of goals.

+ n ,rhieve an effect similar to the r'trol constructs will be presented to achieve

W"

322.

Structured Programming Techniques in Prolog

Simon B. Jones
Computing Laboratory,

University of Newcastle upon Tyne

in +h\S PaP6r f ̂ nteJd t0 comPare the programming facilities available
n predicate logic and functional programming languages. I vill examine a

mi "r'f capability for structured and advanced programming techniques.

The work arises from a background of practical programming vith a

israr?61!! Tr/T26 (Lispkit [4]). Lispkit is very much like
IS VIM L5]. The capability of having variables and function definitions which

^hich"accent ®Xpr®sslons> 30,1 the support of higher order functions (functions
312°ePt.Actions as parameters and/or return functions as results)

combine to give the language great expressive power in the representation
and structuring of textually large and computationally complex programs

,+1.m ^olog provides a fascinating alternative formalism for the renresen-

mill -f i — H-i -ran+n j. u. • / pattern matching, built in nondeterminism,

d.t. c„po„nt Talu„ S

Vith the organisation of programing "in the iar^" * n° aSSlstanC6

and modularise^his'program^with * pr°g™r to abstract
manageabilitv Co Jon ̂ J ^objective of improving its clarity and

toetails

(giving rise to'local £2£$T

clauses^cJ^roduce'Lfr'1"^ " ̂ ̂the d"™« "vbere
by higher order working enabling"?Jcti1 SU^ex^ress;LOns and functions, and
behaving like a A-expression, which can "be tre t "pr®Sented ̂ a construction,

Tue in
of variable and function names def^ne^ Zll

since all the program cla^sesJre ̂ fL^rti??'3 ""J3 Program structure,
name is of global scope Loci ̂ aelrned at the "same level" and each predicate
clauses to represent intermediate3,?!? "+ be introduced within program
indispensable in thisJortj^^f^-f8' ̂d indeed they seem

clauses (or groups of clauses) cannot Ze lreatedT^f' ^
•leauea as first class citizens.

structured and higher order extensions to the h• 2'ard some proposals for
extensions, motivated by aesthetic and nrart ?S1C ft'oloS ianguage. The
designed to bring Prolog up to par with ? J Programming reasons, are

g P par with higher order functional languages.

ll'h

A Basic Dialect of Prolog

I wish to illustrate and discuss my extensions to Prolog, and their
properties, in terms of some concrete language representation in order to
avoid any unnecessary vagueness. To this end I will introduce a simple
dialect of Prolog, unadorned by any fancy features, which I will subsequently
refer to as "basic Prolog". The language should be very familiar, it is
just that described by Kowalski in £1].

A basic Prolog program consists of a goal clause (line 1 in the
example below), and a set of program clauses (lines 2, 3, 4, 5 below).
Here is a common example, a program which may be used to reverse a list
built using the constructor cons:

1. reverse(cons(1,cons(2,...cons(..,nil)...)),Result)

2. reverse(nil ,nil)

3. reverse(cons(X,L1) ,L2)<"reverse(L1 .L3) ,append(L3,cons(X,nil) ,L2)

4. append (nil ,L,L)*~

5. append(cons (X,L1) ,L2 , cons(X,L3))4"append(L1 ,L2 ,L3)

The goal clause is a set of subgoals (or conditions, or procedure
calls) - this is represented as a list of subgoals in the text. Each
subgoal specifies a parenthesised list of argument terms, and the ngm£of
a predicate (or procedure) which is to be satisfied by the values of those
arguments. There is only one condition in the goal clause on line 1 of the
example; the procedure name (entirely in lower case) is "reverse , and

there are two arguments.

(or,™piy ».

in upper case), a constant (underline), — functor)" and t1,t2
where "cons" is the constructor (or unc ion the"'single condition in line 1
are the^iilves terms. Hence the arguments of .. .nil) ..
above are, firstly, the constructed term — and, secondly,
which is supposed to represent some particular list (1,2,...;,

a variable "Result".
of a program are contained in the set of

The computational resources _ P Qr prf1<.edure definitions). Each
program clauses (or predica e e __p~ifi.es a particular relation on its
p-ogram clause (or simply .clausg.) -P + 1-nn of the form "consequenfr-gnteccdend .
argument terms, defined by an imp ica ^ rexation being defined,
The consequent contains the proce -terms which are to be related. e
and a parenthesised list of argument terms ^ example> or lt may contain
antecedent may be empty, as in as a list) which must be satisfied
a set of conditions (represen e defined relation, for examp e
in order that the arguments are in the

3 and 5. , • p. j.„ i.erribe the semantics
I now require a semi-formal tool with which ter„

of basic Prolog. An appropriate ~^ticg„ of basic Prolog given by
scheme following the "procedural » descrihed below will assist g
Kowalski [1]. The abstract mterp^^ extensions later on.
in defining and understanding

w
A basic Prolog program is separated it. I7'

I T o Z ^ V l s l T ^ s u b s c r i p t i n g e a c h v a r i a b l e i n

gc with a zero. Each variable in pc must be unsubscnpted.

new terms (or'may have remained unchanged). The meaning of each such gc^

is intended to be that the resulting argument values satisfy the conditions
of the goal clause as defined by the program clauses pc.

Each result gcres is related to gcQ as follows:

The abstract interpreter constructs (or discovers otherwise) a
sequence of goal clauses s"tai"ting vi"th §>cQ

gcQ, gc.j, gc2, ... gcn

and' a sequence of substitutions (each associating terms with subscripted
variables)

V V — e„
with the following four properties:

1) gc0,...,gcn ^ are not empty, they contain at least one condition to

be satisfied.

2) gc is empty, it could be read as "Halt".

3) Each substitution 8 relates goal clauses gc and gc : For some
M M— 1 IB

condition c in gc . and clause p from pc, with the predicate name
m—1

in c matching that in the consequent of p,

c e S>cm i p e pc predicate of c = predicate of p

generate a variant p' of p by subscripting each variable in p with rn,

p' = variant m of p

and obtain 8^ by unifying the argument list of c with the argument

list of the consequent of p',

8^ = unify (arguments of c, arguments of p').

Unification, which is described in detail elsewhere by Robinson,
Clark and others [], produces a substitution which makes the corres
ponding arguments of the two lists equal.

4) gcm is obtained by removing c (from 3) from gCQ adding the set

of conditions which is the antecedent of p' (from 3), and substituting

-3-

through by 6 ,

gc = [gc H-lc} + antecedent of p']
m m-1

The result substitution instance gcres is foulld from 8co by flrst

substituting vith 61, then &2 and so on until ®n»

gCres = ̂ O1 ®1 ®2 6n *

Note that in property 3 1 am assuming a in
each c, in order to avoid a failed uni ica 10 .-successful executio :£rĈ 8rxe- onT"^^^ describing "successful executions"

of the interpreter.

Local Clause Definitions

The first step that I *^"^®^^nSSre^ri°gThe extension
one, but it vill significantly a . ture ̂ ̂hich X am interested, and

the'transition6t^a more .2^1 variation of the idea which I will

introduce in the next section.
, -• -» __T j,r>"\r sfit of conditions

In a nutshell, the general idea is ° * cedents of program clauses)

(the main goal clause of a ^program clause definitions,
to have a local, privately accessible setlocal definitions by
Syntactically I will delimit a set of condi^ Ht of definitions,
curly brackets, vith the keyvor _____ syI1tax vill be as before.
If there are no local definitions^then he^syn ^ comEOund^ntece^.
antecedent containing local definition definiti.

_ four local definm<
lent containing IOCO-J- V*. ,.

Consider the example program clauses containing four local

in tvo compound antecedents.

1. pK...)-(aK). i2(>' p2(}

5.

6,

where q.1 ()

. to scope rules for P*"0C®dg Ûctured languages.
My intention^vith respec^^ conventional °°d within the set of

... „ ~4- nrG t-O nomp riaS
ny . rules m v—-- resolved vnniu — --

they should be sunilar to ™ ion set are to be res dure name has
The procedure names « £ °e are any), otherwise, ̂ f.JUons)> then the name
local definitions (if there are no 1 Hence an inner clause
no match in the local set I enclosing sets; definitions makes the
is resolved in ^""^ceedure name as any in the same set may
definition with the same proce ^ definition

outer definitions mac recurs ive.
be recursive or mutually rec

-4-

Thus in the example, vhere the tvo clause definitions are assumed
to appear in the same local definition set, the following scope resolutions
holds In line 1, q1 matches q1 in line 2, q2 matches q2 in line 3, and p2
matches the p2 definition in lines 4, 5, 6. In line 4, q1 matches q1 in
line 5, and p1 matches p1 in line 6 (and not the p1 in lines 1,2,3).

Vith this extension a Prolog program can be seen to have the
structure of a single goal clause qualified by a set of local definitions.

The practical utility of the modified Prolog is that it enables groups
of predicate definitions vhich are interdependent, or which contribute to
the description of a particular definition, to be collected together and
isolated (both textually and semantically) from the remainder of the progran
within a compound antecedent. In terms of programming discipline this amounts
to hiding implementation details.

For example, when coding the efficient form of the reverse clauses
it may be desirable to hide the extra argument which is required:

reverse(L1 ,L2)*-{ rev(L1 ,nil,L2)
where rev(nil .L.L)<~

rev(cons (X,L1) ,L2 ,L3)«-rev(L1 , cons(X,L2) ,L3)]

p N°? Provide a more precise meaning for the extended basic
, Y1 0 bis describing a transformation into basic Prolog,

this tran°fonS + °W vt abstrac"t interpreter can be modified to perform xnis transformation "dynamically".

is necessarv^o h Prolog program into basic Prolog it
vels of defini+* nested program clause definitions up through
vels of definition until they are local to onlv the *„»! el.

levels of + - 77, program clause definitions up througn
thl proSif S! ̂ ^ l0Cal.t0 only the main goal clause of
clauses vi+h +v. process the accidental introduction of program

controlled maimer. In the + ^subscripts to predicate names in i
an understanding of the predicate^011 ^ transform*tion I will assune
as "All occurrences of the name scope rules by using a phrase such
associated with the definition P" t0 meaD 0nly 1hoS® occurrencel

n oi p by the scope rules. - r * u a c o .

The transformation proceeds „ ,
of local definition sef^ in +i steps, where n is the total number in the program.

In step 0
separated. Each predicate nam^"36 8C and its local definitions pc are
name defined at the outermost 1 "N8^13 subscripted vith 0. Each predics
names throughout pc, are civer, ^ °, *>C' ^d occurrences of these j e given the subscript 0.

In each of steps 1 to n 1
definition in pc. At step i the T* 1<?Vel 0f nesting is removed from one
immediately lone! to the couumm/1,0?13"1 clause definitions vhich are
definition in pc are themselves bT-8^ aaeden"t of some outermost level
defined predicate names and all -n,°^8 outermost level, vith thei
Following step n there should be I,611" °^currences subscripted vith i.

G n° nested definitions left in pc.

-5-

3a>
Transformation of tlie program

- { P()
•where p()*"

P()"{ r(), s(), p()
where r()*~

} s()«" }

gives the goal clause

•v)
and the following sequence of program clause sets:

Step 0 pQ()«"

P0()- { r(), s(), pQ()

where r()*"

s()*" }

Step 1 pQ()

PQ()*~ r, ()> s-, <)> *

-,()'

The goal clause and the program clauses of step 1 form the desired basic

Prolog program.

The abstract interpreter is easily modified to
ftolog. Again nested program ̂ ause deflations ̂ ll^e^aised^the

nested locations, but only as ̂ quired. ication ̂ th a condition from the
compound antecedent is selected for^ ,nsWtiated aIld are included as
goal clause, its local definitions a —_ instantiated program
separate definitions in the program clause sex., un y
clauses may be selected for unification.

E«„ P,.„„t. ssr^r1 "
given the subscript 0, giving the

local to the goal clause
The program clauses which are noes Gf these names, subscripted is rars™ JTSIJS SU —* ~ **•
B,. abstract lat.rpr.t.r contracts a .I"-" .*

gcQ, gc1, gc2, Scn

a sequence of program clause sets

pc0, pc1» pc2> pcn

and a sequence of substitutions

32*

As before gCg,.. .gc^^ are not empty, and gc^ is empty.

®m> f>cm_i and Bcm are related as before, selecting a condition c

from gc and a program clause p, this time from pc : m— i m—1
c e ®cm-1 p 6 pcm-1 Predtcate of c = predicate of p

p' = variant m of p

9m = unif5r (arguments of c, arguments of p')

gcm = £gcm_.i ~ (c) + conditions of antecedent of p«] 6
ZD

Generating variant m of p is more complex than earlier. Each variable in
aad conditions (if any) of p is given subscript m. Variables

mthin the local definitions m p are not altered. Hovever, each local
thes!n™» ?b its predicate name given subscript m, and all occurrences of
Sr+bn throughout P are similarly subscripted. The local program clauses
5".tS fl™ riô :"10̂ 6 nam6S' instantiation by âddition

m-1 *

PCm = pcm-1 + local definitions of antecedent of p'

before;The rGSUlting ^stitution instance of the goal clause is found as

gCres = 92 — 0n -

Relaxing Scope Rules for ^fables. Structured Pro! og

to that clause and°my brlLId^nl^vithi P+£graJD clause is strictly local
of the clause. If the same var-iehi D consequent and antecedent
then each clause has its mm A • ~e name occurs in more than one clause
subscripting strateg, of t£ 2E£S I^eSe'tlr^ " ^

variables are still local^to th^10? presfnted ln the previous section,
is stricter because the scope of var̂ blê fl1'̂ 11011 êy appear« but the 1:1116

clause definitions which may be present ^SS — extend into any local
a program clause contain onlv i+<= l i # consequent and conditions of
interpreter enforces these properties! Variables- *8*™, the abstract

It is often desirable to be able > :
For example, consider the following r,v x these strict scope rules,
complex operation on a table: Fr°gram clause for performing some

tableop(Table,Result)•"
{ p (T a b l e , V , V) .
•vhere p (Table, V,v)t-

. . . . * l o o k u p (Z , T a b l e , V) , . . .
lookup(X,T,Y)e- T

3 • • • •

-7-

321

The clause j»(Table,V,W) is designed "to check that V and V are related,
tosehov, by Table. However, p is not interested in the structure or contents
of Table, it merely passes Table on to lookup. It would he convenient to be
able to drop Table from the arguments of p. This makes sense since the
programmer probably has in mind that Table is of global significance within
the tableop clause.

I will permit such simplifications to be made by the inclusion of
explicit information in a program to indicate that the scope of a variable
may cover a wider range than simply its local consequent and conditions.
This is in contrast to the implicit ''local scope" rule which both basic and
extended basic Prolog have. Such explicit information will take the form
of an import list of variable names appearing before any program clause.
The meaning of each variable name in an import list is that occurrences of
that variable name immediately outside and immediately inside the clause
are to be treated as occurrences of same variable.

For example in the program clause

p(.. .X)4" { • • .X. •.
where ...

(X):q()*~ ...X...
}

• , • +n _ from the surrounding environment,

^al^e^cLrLn^f S'-X "hoLerepreSent the same variable.

Variables may be explicitly imported through several levels of local

clause definitions.
_ . ___.es remains the same as that in

The scope rule for predicate name

extended basic Prolog.
+ - te the treatment of variables, the coding

Vith the above modification
for the tableop example becomes *-

tableop(Table, Result)*"
(... P(V,V) •••
where lookup(Z,Table,

(Table) s p(v»¥>

lookupCXjTjT)4"' • *

• • •

r will call "structured Prolog".
This new dialect of Prolog -riution of the meaning

• . more formal descnp i
Before proceeding to f^j^uld like to show an

of a structured Prolog program, 1 W
interesting example clause.

L fr-i} seconds 2̂/
pairs(L1,L2)-t firs t(nil)4" , T) L1))«-fir«ts(M>

where firs ;-fronS(cons(X,x;,

}

3S0

The predicate pairs is satisfied by two lists of pairs, L1 and L2, if the
first members of each pair in L1 are equal, and are also equal to the
second members of each pair in L2. The identity of the value which is to
be the same in both lists is "communicated" between the local definitions
of firsts and seconds via the variable X, which, unusually, does not appear
outside the definitions of firsts and seconds (and it is not imported from
a more global environment). However, this i^ valid structured Prolog, and
I must be able to give a correct interpretation for programs of this form.

It is possible to transform a structured Prolog program into a basic
Prolog program, but the details are a little tedious and I will not give
them here. During the transformation variables which are imported into
program clause definitions are added to the argument lists of those clauses,
and conditions which call on the clauses have their argument lists similarly
expanded. In the general case of mutually recursive clauses it may be
necessary to add more variables to the import lists of some or all of the
clauses. Care is needed to get the scheme correct. Once the dependence on
global variables has been removed, the import lists can be dropped, leaving
a program in extended basic Prolog which can be transformed to basic Prolog
as I described earlier.

The abstract interpreter for extended basic Prolog may be modified in
a straightforward fashion to handle structured Prolog programs. The new
abstract interpreter depends on the presence of instantiated (subscripted)
variables within the sets of program clauses - previously instantiated
variables were only allowed in the goal clauses.

For the initial goal clause Scq take the goal clause of the program,

and give each variable and predicate name the subscript 0. For the initial
se o. program clauses pcQ take the local definitions associated with the

thfsuhscr^tgnVe eaCh 11°cally defined predicate names (and all occurrences)
Hi Slici? " , occurrences (as defined by the implicit scope rule
^1 ^ import lists) of each variable in the outer import lists (if
dtfe+e 11 S£ript 0, drop the import lists from outer program clauses, and
delete all subscripted variables from all other import lists. This has
instantiated the main program clmis***: qv»/3
the outermost envirolentf ClaUses> ̂ d a11 the variables belonging to

The interpreter constructs the three sequences as before:

&cq j ̂c-\ 9 • • • • gc

PCQ» Pc-j f PC2 • • • . pcn

• . . . 0 i d. n

p, T° relate em' gcm-l' gcm' pcm_1' pcm select condition c and clause

c e P * Pcm_1 predicate of c = predicate of p,

and generate variant m of p,

p' = variant m of p .

-9-

35/
Generating the variant is again more complex. As before, each of the local
definitions within p has its predicate name subscripted m, and all occurrences
of these names are similarly subscripted. The variables immediately local
to p are those appearing in the consequent and conditions of p which do not
already have subscripts, and also those in the import lists of the local
definitions in p. The local variables, and all their occurrences in p (as
defined by the implicit scope rule and the import lists) are given subscript
m, and such occurrences in import lists are deleted. The import lists for
the local definitions of p are now empty and are deleted. This completes the
generation of p1 from p, and substitution 0^ may be found by unification.

9 = unify (arguments of c, arguments of p') .
m

gc is constructed by replacing c:
m

„c _ fKC - (c} + conditions of antecedent of P']6m
° m m-1

and pc is constructed by adding newly instantiated iocaldefinitions, and
by substituting through with &m since instantiated variables within pc^
and the new definitions may have been bound by m-

uc = luc + local definitions of antecedent of p' 3em
r m m-1

The result is, as usual,

gcres = ®2
e

res u l ill
As an illustration of the w^king ^i^useHhe pairs clause

consider the following structured Pr g P
given earlier:

r • 1 (nnefl 2) nil) ,cons(cons(3_>x) j£ii)) *-(nairs(cons(consyl ,_£! jEii.-' ».
where pairs(L1 ,L2)*~

The initial goal clause, gcQ is

/ 11 ol nil) .cons(cons(2>xn^
4~pairs(-)(£ons(cons.(l.'5.' '—— —

and the initial program clause set, pcQ,

pairs0(L1,L2)- • ^ .g nQ choice of condition and

To construct 91»gcl ^ available program clause
clause. Variant 1 of1 the only ava

• fT,1 L2)*"{ firstSf (Ij1! } »secon^Sl 1
pairsn(.L1 1 1

where fmsts1 n irsts 0-1)
firstSl (consfcons^ ,U 1

seconds1(nil) L2)^seconds (hi)
seconds^ (cons.(o°25.^ ' 1

)

-10—

IVL

and unification, giving 6^, binds

L1 to cons(cons(1,2),nil)
and

L21 to cons(cons(3,X^),nil)

Hence gc^ :

- firstSl(cons(cons(1,2),nil)).seconds(cons(cons(3,),nil))

and pc, contains

pairs0(L1,L2)«-

firsts., (nil)*~

firstSl (cons(cons(X1 ,Y) ,L1))«"f irsts (L1)
seconds., (n-i 1)•-

seconds., (cons(cons(l,Xl) ,L2) J-seconds, (L2)

TO COaStrUct e2,gc2 and pc2 I vill select the first condition fro* gc,
and the third clause from pc, . The variant is sijnply

firsts., (cons(cons.Y,,) ,L12))<-f irsts., (L12)

vhich gives binding

X1 t0 1» r2 to 2, and L12 to nil.

The new goal clause gc is

" firStS1 (£ii)»^condSl (cons(cons(3,X0,nii))

and pc2 is found by substituting 6., through pc :

Pairs0(L1,L2)»-....

firsts., (nil)*-

f irsts., (cons(cons(l_,Y),L1))*- firsts (L1)
seconds, (nil)*- 1

seconds (cons(cons(Y 1) Tolle-
1 seconds ,(L2)

Note that the value 1 of X common to both the f

has been substituted into these clauses. 1 seconds1 clauses'

unknown'^X^ or" with'th ̂ clause sets are
unknown, X0, is bound to the constant 1.' result that the original

Hence the result, gc
res

pairs (cons(cons(1.?) nil ̂ / /
' y±'-> »£ons(cons (3^) >nil)}

-11-

33>

Hirber Order Extensions and Further Vork

An important technique in the design of programs concerns the discovery
:f conaon patterns of program construction, and the abstraction of each pattern
into a clear description independent of its particular applications. Many
1 usages provide some vay of achieving this, for example procedure parameters
in Algol type languages. In functional languages the facility takes the form
of X expressions, whose values are functions which can be applied to arguments,
and higher order functions, which may take function values as arguments, and
say return function values as results.

That this technique may be of some use in Prolog can be seen from
the pairs example in the previous section. There are two locally define
predicates, first, and seconds, which each have the effect cfapplyinga test
to every member of a list. This program structure will be quite cnm, an
. sethod for representing the pattern as a separate Predicate is desi:rab:Le.
fte predicate would require two arguments, the listv] ose me ern would

tested, and the predicate which implements the tests. H the predicate
be represented by the clauses of a higher or er pre ica » program
valued argument 'would be represented in f - ̂ 5
construct, a "predicate expression", containing one or more prog

Investigation is currently proceeding into basic
order Prolog". The modified language +-r,,rtured Prolog programs can be
Fr.l.,. b.vlv.r b..ic, extended Wc, if ?»not b. exp.et.d
••ransformed into .special cases of high vill be captured in an
that the full power of higher order logip/^grams^ power would not be
implementation of higher order Prolog' ̂ Loblem then is to develop a semantic
exploited in practical programing.^ P iaes adequate programming power,

- L implementable.

x am interested in the develop and

study if designed to cover *ethodod°^ements of the inf luence^of impl^n^a^
systems, to obtain quantitative me t a quantitative r order Prolog
decisions, and in the long term***« structured and higher^0r

representing a range of P^°|rinvestigation, since they ti j. programming
will play their part in this inves * egual to inn
logic programming in a form which is a

in expressive power.

•R*ferePCCS programming Language. Proc. IFIP

[,] R. Kowalski- Predicate Logic as

Congress, 1974. 1£? Reference Manual- CCD Report.
. IC-Prolog

w ^ . 1IU, «*-•

D] D. ««»; miverxW. ,9"" ^

DAI Res. Reports 39, 4 Application and Implem

Functional P^f^ter Science? i980.
[4] P. Henderson Series in Compute ^ ̂ 9>

Prentice Hall ianfruages.
The Next 700 Program®

[5] P.J. I-andxn. *ne
No. 3, March 1966.

I l l

and unification, giving 8^ , binds

L1 to cons(cons(1,2),nil)
and

L21 to cons (cons (3,Xp),nil)

Hence gc^ :

firsts^ (£ons(cons(l ,2), nil)) , seconds (cons (cons (3. .nil))

and pc^ contains

pairs0(L1,L2)*-....

firsts^ (nil)*~

firsts^ (cons(cons (X1 , X) ,L1))4"firsts1 (L1)
seconds^ (nil)4"

seconds 1 (cons (cons (X^) ,L2))4"seconds1 (L2)

To construct ®2»HC2 Pc2 will select the first condition from gc.
and the third clause from p^ . The variant is simply

firstSl (cons(cons(Xl .L1,,))«-firstSl (L12)

vhich gives 82 binding

X1 to 1» Y2 to ^ L12 to pjLl'

The new goal clause gc2 is

firstSl (nil_) > seconds 1 (cons (cons (3,3^. nil))

and pc2 is found by substituting 6,, through pc :

pair s0(L1,L2)*"....

f irsts1 (nil)*-

firstSl (cons(cons0,X),L1))*- firsts (Li)
seconds1 (nil)4- 1

secondSl (cons(cons(Yjl) ,L2))«- secondSl (L2)

Note that the "value 1 nf y ^
has beer, W+ ! 1 ' ^ b° th the f irSts-. clauses,
has been substituted into these clauses. 1 1

The remaining substitution
constructed in a straightforvATv} 1' g°a c*auses program clause sets are
unknown, X0, is bound to the const^t^' Wlth thS resul t that the original

Hence the result, gc
res'

pair s^ (cons (cons (1 21 n-fil / / . 0 ~ ^» oons (cons (2,1_), nil))

- 1 1 -

333>

Higher Order Extensions and Further Work

An important technique in the design of programs concerns the discovery
of conmon patterns of program construction, and the abstraction of each pattern
into a clear description independent of its particular applications. Many
languages provide some vay of achieving this, for example procedure parameters
in Algol type languages. In functional languages the facility takes the
of X expressions^vhose values are functions vhich can be applied to arguments,
and higher order functions, vhich may take function values as arguments, and
nay return function values as results.

That this technique may be of some use :in
the pairs example in the previous section. of applying a test
predicates, firsts and seconds, vhich each ave nuite conmon, and
to every member of a list. This program structure vill | desirable,
a method for representing the >•**•» »«_• separa^e pr^ arg to be

Die predicate vould require tvo argumen , . + Hence the pattern vould
tested, and the predicate vhich implements thePpredicate
be represented by the clauses of a higher instances by a nev program
valued argument vould be represented in program clauses,
construct, a "predicate expression", containing

Investigation is currently proceeding into basic
order Prolog". The modified language ls structured Prolog programs can be
Prolog, hovever basic, extended order programs. It cannot be expec e
transformed into special cases of hig ^rocrams vill be captured in an
that the full pover of higher order logic p |eed such poWer vould not be
implementation of higher order Pro °8» blem then is to develop a
exploited in practical programming. The p eg adeqUa.te programming pover,
description of higher order Prolog v . implementable.
but vhich i. sufficiently constrained to he ^ of various f-s

1 am interested in the development and imp^ ^ & investigation
of Prolog, in particular higher order, x ^ level language of

of the performance charaoie"^1" ° for the assessment an ^piementation
study is designed to cover ^^^^nts of the influence of
systems, to obtain quantitative me , quantitative r order Prolog
decisions, and in the long term to attemp^ ltructuxed and ^^nting
representing a range of p£°Sr* tiga-tion, since they tional programming
vill play their part in this inves B leagt eqUai to lun
logic programming in a i°rm v "LC

In expressive power.

. Pr„.r=-i« Low™*'- proc- IFir

[1] ». Kov.Uki. Pr.di..« "8" ""
^ ieierino. CCD

[2] K. Clark and F. McCabe.
Imperial College. Predicate Logic Progiam

M D. Darren. ^
DAI Res. Reports 39, ^ duplication ^ ImI>1

[4] P. Henderson, ^ctional ^rogr^^ Science, 1980.
Prentice Hall Int. Sen fln(Tuacres. Com®. AO.,

. The Next 700 Programming
15] P.J. handin. lne

No. 3, March 1966.

A FUNCTIONAL PLUS PREDICATE LOGIC PROGRAMMING LANGUAGE

Marco Bellia (+ \ Pierpaolo Degano (\ Giorgio Levi

i)

ii)

1. Introduction. first order logic became very popular,

. i - —- -

guages, but also as practical programming languages.
The main features of such languages are. . define a straightforward |

or programs; „,s, »ho,« s.m.otio. Is not bas.0 on

.r.^-s»io:r»" ire**. , .«*— „««—

m, r.«"r»' ts:." /;oaW.s .no., t.i™.—

Predicate logic programming languages can be classified according to the kind of
Predicate logi p s (relational languages) procedures are de

procedures they^ define. Jn^^ of a re la t i0nal language is PLANNER /7/.

Koralsk", lLguige /B/ is • milestone .ithin this f.milj, beosose of the formal defini-
Soh of prooeduro. . . set, of Horn ol.ns.s, »d it, =l„n m.th.m.tio.l «-nt.o, /•

. . i ^^4-o-h^ncj PROLOG /2-6 10-11/ and other similar languages ,^21/
On Kowa s i ^ ^ second class of languages (functional languages) procedures are

defined "by sets of functional equations. Languages within such a class have been motiva
ted by several different problems, namely proving program properties in forma sys em

/15-19/, and abstract data type specification /20-23/.
There are no definite arguments in favour of one class against the othe , .

cla=s has its own appealing features. Namely, a uniform evaluation rule can more easily
be defined for functional languages, while relational languages lead to non-determ
istic interpreters. Properties of programs (i.e. lemmas and theorems to be used in
symbolic simplifications) are more expressively defined within the functional approach.
On the other hand, relational languages are exactly what is needed to describe proce

dures with more than one output. ...anal
The language described in this paper is based on an attempt to combine relationa

and functional languages in a unified environment, which provides the best features o

both approaches. ,.
Our goal was to design a first order logic language, which allows to define

functions and procedures. Our language is a proper extension of functional languages
enriched with somewhat constrained Horn clauses. The constraints are concerned wit
distinguishing between input and output parameters and sequencing of literals. In the
resulting language, predicates play the role of standard programming language proce
dures. Moreover, it is possible to define an efficient deterministic interpreter.

(+) Istituto di Elaborazione dell1 Informazione - C.N.R., Via S.Maria, 46 - 156100 Pisa

(ITALY)
(*) Istituto di Scienze dell'Informazione - Universita di Pisa - 156100 Pisa (ITALY)

535
The Syntax of FPL.

•he Functional plus Predicate Logic (FPL) programming language is a strongly typed
order language, whose programs are equations defined according to first order
over the alphabet A= fs , C , D , V, F, R} , where:

5 .i a set of identifiers. Given S, we define a sort s which is:
simple if s £ S, ii) functional if seS*-S, iii) relational if s£S*—S*.
n family of sets of constant symbols indexed by simple sorts,
a lamily of sets of data constructor symbols indexed by functional sorts.

• a family of denumerable sets of variable symbols indexed by simple sorts.
1 :n a family of sets of function symbols indexed by functional sorts.
I . t family of sets of predicate symbols indexed by relational sorts.

Families are defined in the language by declarations, which assign a specific sim-

t r •functional or relational sort to each object,

iianples are:
— NAT; succ: NAT—NAT +: NAT x NAT—NAT
— NLIST; cons: NAT x NL1ST— NLIST eqn: NAT x NAT—BOOL

ndiv: NAT x NAT—NAT x NAT.
A FPL program is a set of declarations and equations. Each symbol occurring in an

«• ; ation must be declared. _
The syntax of equations is based on the standard concepts of term and atomic for

A term is either a data term or a functional term.

A data term of sort s (s £ S) is
a constant symbol of sort s,

a variable symbol of sort s, ,,,.,t are data terms
: . d.t. constructor application dt •„

Of sort s sn and dla D has^ son, fljriCtioT application O , such

A functional term of sor F hag gQrt s x x s — s.
• t are date terms of sorts Sl n 1

An atomic formula is either ^ d is a data term of sort s and
, "Tunctional atomic formula of the

+-Vip same sort , or . . , j_ nn+- • t . . • » > f)» sucn
• is a term of the ^ ̂ form r(rn:t V ^ ̂

relational a ^ data terms of sorts s^,.m> m+1 n

that 'x's'-S X ... X sn.
•* has sort s x • • • rn

A constraint is either , _ . Con-
an atomic formula, or such that c is an atomic formu a a 2

~-r the form c , c 1
a formula o f t 1 2 (function calls) and atomic formu-
: -.paint. combine functional er^ a local environment which is
restraints are «s ogram. Constraints defi Constraints can be used

= - ; rocedure calls) i teraction among) its comp following syntax of equa-
. by (and allows the in according to

» n function and proce ^ ̂ part and r x

- the following form 1 - r, w. possibly followed by a 1 "rrŝ su.
: LRht part, such r is either emp y

to : • raint and its rig

s

/O

33C.

The equation is functional or relational, according to the type of its atomic
formula.

Example:

1. true:—BOOL 7. ndiv: NATxNAT—NATxNAT
2. false:—BOOL e8. minus(x,0)=x—

3. 0: —NAT e9. minus(s(x),s(y))=z—minus(x,y) =z
4. s: NAT—NAT elO. lt(0,s(x))=true—

5. minus: NATxNAT—NAT ell. It(x,0)=false —

6. It: NATxNAT—BOOL el2. It (s (x), s (y))=z—It (x ,y)=z
el3. ndiv(in:x,y: out: 0,x) ,lt(x,y)=true—•

el4. ndiv(in: x,y; out: s(q) ,r), lt(x,y)=false —ndiv(in: z ,y ;out: q ,r) .minus (x. v)=z
el5. isfact(x,y)=false,ndiv(in:y,x;out:z,s(r)) —

el6. isfact(x,y)=true,ndiv(in:y,x;out:z,0)—

Declarations 1-3, 4, 5-6, 7 are constant, data constructor, function and relation
declarations, respectively. The example is completed with the functional equations
e8-el2, el5-el6 and the relational equations el3-el4.

The above definition of equation is inadequate, since context-dependent condi

tions on variable occurrences are needed to guarantee proper nesting of constraints

and binding of local variables. Some more definitions are needed to introduce the con

ditions. In order to give some insight into the meaning of the conditions, we will
informally use operational arguments.

A definition contains atomic formulas of the form r(in:x x ;out:y ,...,y),

or f(x,...,x)=y. Let us define, for each atomic formula a the multisets of^nput 2nd
output variable occurrences. Namely,

Mln(a) is the multiset of the variable occurrences in terms x ,...,x , while
Mout(a^ 1S the multiset of "the variable occurrences in terms y ,.. . ,y or y.

Each definition has a header, consisting of the leftmost atomic formula, and a
set of invocations, whose element are the other atomic formulas. Let H and 1= {i } be
the neader and the set of invocations of an equation e i

C°ndi^°n ThS raultlse^ «in(H) and M (!)= U M (I.) must be sets>

the left llr^t Tf°CCUrrenCeS °f 3 v^Sbli in the header corresponds to

Hi set of iiivocat' 1 the abse"« of multiple output occurrences of a variable in
the set of invocations rules aliasing out.

Examples of equations not satisfying condition 1 are:

eq(x,x)=true- (since it would impose a specific relation on input values)
r(in:x;out:y,z) — g(w)=y,f(x)=w,q(in:x:out:w z) . u. alues).

, / • - • 1 * ' ' sine© variable w is (outnut) con—
strained (i.e. could be computed) by two different constraints)
Condition 2. M. (H) D M (I)=(().

Disjointness of sets of header inDut variahioo ^
in an equation is connected with the non invertibilTtv of lnV°Cati°nS °UtpUt variableS

equation p(in :x,y ;out :z) — r (in ;y, z . out .x) f (v) „ * f Pr°grams ' As 311 sample, the

constraint on the variable x (i.e. it may invert wi'tlT Aspect ̂ x " imP°SeS "
Condition 3. F k x'*

—' A11 variable symbols occurring in M (H) anrl m n \
M. (H) or to M (I), where I la =n in °-ut in i * must belong either to
• iBly t.i„s i„ °&% Aft p.rt '«« Innermost i„»oo.tlo„. pes-

3.2. For each invocation I in a ri trhi- *-

least one variable symbol belonging either?to toV*!^! T C°"tain *
i Mr invocation. out in(I,-'' where I in an in i

A

33?
rxasple of equations which do not satisfy condition 3 are:

: n:x,y ;out: z , w) , f (x ,y) =t-»-h(t)=w (since the output z cannot be computed),

p(in:x,y ;out:z) — g(t, w)=z ,f (x ,y)=w (since intermediate variable t cannot be comput
ed),

f(x,y)«z,k(x,y,t)«z »-h(x)=t (since the left part constraint could not be computed
before the right part constraint),

h!x!=t«-g(x,z)=t,f(x,t)=z (since there exists a circular precedence relation between

invocations),
ri:r.:s(x) ,y ;out: s(z)) -»- r(in : x,y ;out: z) , f (x,y)=w (since the invocation f(x,y)=w never

needs to be computed).
: ;n:x,y;out:z) — h(x)=z,f(x,y)=false (since false is a constant symbol occurring as

:.tput of an invocation which will never be computed).
Thus far we have defined well-formed equations. A set of equations should denote

seta of procedures. Since our aim is to restrict sets of equations so as to define

(deterministic) procedures by disjunct cases, we are forced to introduce more defini

tions and conditions.
Conditions on a set of equations are concerned with the non superposition proper

ty on the equations left parts and relies on (first order) unification. invoc.
An equation left part consists of a header and a (possibly empty) set of

tions. Let c be any header or invocation,
i) n(c) be the function or relation symbol in c,

ii) D (c) the n-tuple of input data terms in c,

Ui) £ M«». or „on .up.rpo.ltlon property for
Given a aet of equations E- {e±> , and 1. are non overlapping,

any pair of equations 6 overlapping'3if one of the follow! •,
Condition 4. Two left parts 1. and l^

properties holds: , , - an(j i .
1) „(hi)/n(hj). where h. and h. are the header of 1. and .

2) D (h) and D. (h) are non-unifiable. ! and 1
in 1 10 , a nnifiable with most general unifier , t j

3) D.n(hi) and D.^h.) are ^ syntactically disjoint.

constraints k and k , and L jA disjoint if °ne of' thf fcl* JiTY Two constraints E; - -? ^

non-uni finable . respectively, and either

2) k. and k. have the form c^, ki2 a j2

2.1 c and c are syntactically disjoin . ^ ^ ̂ ^ are unifiable with

2.2 n(c)=n(c), , °Ut £]. are syntactically disjoint. The

t nifier A, and [k.^A •
most g^ral Uonverlapping equations: t; x,, eq(y. 0) = true- ,

following are sets o plus(__ >+(x#y)=0*-.
{t(x,0)=x-, plus(i£-x.y'_--^;z)> + (X(y)=z^}

+ (0,x)=x~}, 0)=true^, Plus —'

{Plus(in:x,y;oui.y . '(in:y,x;out:z),
plus(in:x.v;out.z) -- P

Let us finally introduce the syntactic construct program. A program has the same

form of an equation right part, namely it is a constraint. Hence a program consists

of a set of invocations I={l.}, whose variables must obey the following conditions.

Condition 6. M JD = u M (I) must be a set.
out 1 out 1

Condition 7.
7.1. For each I. in a program, each variable belonging to "^(1^) must belong to

M (I), where I 1 is a inner invocation.
°U7 2k For each ̂ in a program, M (I) must contain at least one variable symbol

—'•—" k v . out }< . .
which belongs to M (I.), where I is an inner invocation.

in i k . ,
Conditions 6 and 7 ensure that a program is closed.
In section 3 we will introduce FPL operational semantics, which allows to define

a computation from given program and set of equations. It is worth noting <,hat our

lengthy and tedious definition of the FPL syntax (typically, the conditions for well-

formedness of equations, sets' of equations and programs), was mainly concerned with

semantic properties, which can be incorporated into the syntax and statically checked.

The possibility of defining a deterministic FPL interpreter relies exactly on such

conditions.
Let us finally note that the syntax we have defined does not allow function com

position. However, our syntax has to be seen as the abstract FPL syntax. The concrete

syntax will allow to use standard function composition. Namely, a general term ob

tained by function composition can replace a functional term every where in an

equation, but in an equation header.
The functional and relational aspects of FPL can be distinguished leading to two

different subsets of the language.
The language obtained ruling out relational atomic formulas and left part con

straints, is a subset of the functional language TEL /15/, since it does not allow

to express properties.
Ruling out functional atomic formulas and left part constraints, we obtain a

specific class of Horn clauses, characterized by input-output separation and ordering

of the right part atomic formulas. The above constraint forbids program invertibi-

lity, yet leads to a deterministic interpreter.
FPL can be extended by releasing some of the above conditions in order to allow

to express properties of programs as well. Such an extension, however, is outside the

scope of this paper.

3. Operational Semantics.

The operational semantics will be defined by describing the FPL interpreter. The

interpreter consists of a set of mutually recursive procedure (EVAL, MATCH, UNIFY)

which operate on abstract representations of programs and constraints (closure struc
tures), that will be defined in the following.

A set of invocations I={l.} can be represented as a closure set, which contains

a closure for each invocation I.. The closure corresponding to invocation I. is the

pair c=<I. ,env(I.) > , where envfl.) is a set of bindings for all the input variables
of I. (which are "'also input variables of closure c).

A binding possibly associates an input variable v to the closures which corre

spond to those invocations in I which have v among their output variables.

A closure structure is a set of closures C={c.}, such that:

i) For each closure c in the set and for each input variable v in c , v is bound to
exactly one closure in C. 1

ii) The multiset of output variables of all the closures of C is a set.

6

w

Let r be a closure structure. If we associate a labeled node to each closure in F
vid i directed ere from node labeled to node labeled c ., if some input variable of

:s bound to c . Thc-n, a closure structure is a directed ̂ raph.

Let T be • Closure structure and c^ be a closure in F . The substructure off
rooted et c is the closure structure F/c. defined as follows;
n c « r)ct 1

:: closure c belongs to F/c , then F/c contains all the closures of F
k 1 1

whose output variables are input variables of c^.
A substitution Is s closure structure A , such that for each closure c £ A and for
eKh output variable v in c, there exists no closure belonging to the substructure

i/c which has v among its input variables.
A rtct * ii any closure c of A , such that there exists no closure in A having an
.unable : und to c . . Slence a substitution is a directed acyclic graph. Note

that each substructure of a substitutions is itself a substitution.
The composition A .ft of a substitution A with a substitution n is the closure

st-ucture containing the following closures.

All Uu- c losures of n .
ii) Only those closures of A whose output variables are different from the ou pu

lafcles of closures of n . , . _ c=f+-
The closure structure A.M is itself a substitution, because it is acyc 1 c' eM
the presence of a cycle would require the existence of a closure c^ su cl£sure
and c c A. u , which has as input variable a variable v whic is oun t

V »ich that c,« 4 X.M. «y~ if «* " also be °d
dinot b«long tA 1 . n by definition of composition, Since va

output variable of ft . , . . . , . , onlv if:
A set of closures C-{c } can be appended to a su s 1 u , ̂ ̂ nn outDut variable

i) For each closure ̂ ̂d for each input variable v of c.,

of some closure in A.
a: The mult.set of output variables of C is a se ' t_
iii) The sets of output variables of C and A are substitution A is a sub-
ft. result C|A of appending a legal set of closures

P is a e^lg-rooted substitution (i.e.
A FPL program, as defined in Section ' _ .s ,a 0a^sure structure, because

directed single-rooted acyclic graph). A prog • ^ at least one invocation (c

i Each input variable in an invocation i unique (condition 6).
tion 7.1) and such an invocation is a set (condit^^6 .

ii) The multiset of output variables of xts ^ ̂ acyclic> because each * ^

toreover, a program is a 3ubS^^1°^ocation (condition which does
•'put variable is bound to an ^ that there exists only
rooted because condition 7.2 ensures iving a new program as
lot occur in any binding. . ODerate on a program, g substitution

The interpreter procedure EVAL " tnes^To be preserved by {^ch models the
output. In order to allow single^ r°° d„ with a virtualJ ° # input variables
corresponding to a program will be topp invocation and

eternal environment) which con a program,
oil the output variables of the of a progta^ • P

It is worth noting V iS ̂ " 8

A set of closures C={cj} gach variable v m i>
i) For each closure c and °

7
5*0

ii) The multiset of all the output variables of closures in C is a set.
Hence a schematic closure structure is different from a closure structure only be-
cause'some input variables can be free. Schematic substructures and schematic substi
tutions can easily be defined following the definitions given for the closure struc-
ture case. In particular, a schematic substitution G is an acyclic schematic closure

structure.
Let free(G) the set of free input variables in G. A schematic substitution G can

be instantiated by a substitution A, if
i) For each variable v in free(G), there exists a closure in A having v among its

outputs.
ii) The sets of output variables of G and A are disjoint.

The instantiation [G], contains all the closures of G and only those closures of
A which belong to a A/c, spch that c has some variable in free(G) among its outputs.
[G] is a substitution, because all its inputs are bound, all its outputs are

different, and there are no cycles since each input of a closure of A cannot be an
output of a closure of G.

A FPL equation e is a triple <H(e),G^(e),G^(e)> , where:
i) H(e) is the header.
ii) G (e) is the left part constraint.
iii) G (e) is the right part constraint.
It is possible to prove that both G^(e) and G^(e) are schematic substitutions. In .act,
for each closure c corresponding to an invocation of either G^(e) or "
each variable v in c, v is either free, or bound to at least one closure (condition
3.1), which is unique (condition 1). Moreover, the multiset of output variables is >
set (condition 1), and there are no cycles, since v can only be bound to an in™-
c o n s t r a i n t (c o n d i t i o n 3 . 1) .

We are now able to describe the interpreter procedures.
UNIFY (X:n-tuple of terms,D:n-tuple of terms, A :substitution);

returns < failure/success, fi: substitution>
X is a n-tuple of data terms (x ,...,x), which contain free variables not occur-

ing in any closure of A , with no multiple occurrences of the same variable.
D is a n-tuple of data terms (d d), whose only variables are bound to some

closure of A . In
UNIFY is basically first order unification, which returns failure or, in case

success, a set of associations of the form t=v, where v is a variable and t is a da"
term. In our framework, each association is a closure, having the association as W
invocation, variable v as output, and all the variables occurring in t as inputs. *s

s o o n a s a n e w a s s o c i a t i o n i s g e n e r a t e d , t h e c o r r e s p o n d i n g c l o s u r e i s i n s e r t e d i n *
(initially empty) set of closures MGU.

Unification proceeds like stl^iard first order unification comparing terms of*
to terms of D (possibly) associating variables occurring in X to terms occurring i» '
The difference has to do with bound variables occurring in D, which cannot »
instantiated, just because they are bound. If unification reaches the p o in t where'
bound variable b. is matched against a non-variable data term t (which occurs in*)•
the following actions are taken. k

If ̂ ̂ t0 Closure c whose invocation has the form t =b. a n d t i s !

data term, then unification proceeds with b. replaced by t J 1

1 j'

3 HI
Step . • therwise, : indard unification is suspended and a call is made to EVAL,
passing the clct ure c (to which b. is bound) and the substitution A , as parameters.
If EVAL returns failure. UNIFY returns failure. Otherwise, EVAL returns a new sub
stitute A' , su. h that the closure of A' which has b. among its outputs is dif
ferent from c. Step 1 is taken one more time, possibly leading to a further evalu

ation .
Eventually, unless some EVAL process does not terminate, unification will end up

with failure r with a set of closures MGU and a substitution A*.
REMARK. The .Uput variables of MGU are exactly the variables occurring in the n-tuple
X, while its input variables are all bound to some closure of A*. From the conditions
imposed on variables occurring in X (which also prevent circularity in most general
unifiers), it follows that the set of closures MGU can be appended to the substitution

A*.
UNIFY returns the substitution /u=MGU H A*. _

MATCH (e:equation,a: atomic formula, A : substitution),
returns < failure/success, n:substitution>
a is an atomic formula, whose only variables are bound to closures of •
e is an equation, with header H(e) and (possibly empty) left part constraint

0 (e) .
Step 1. If the function (or predicate) symbols occurring

a and H(e) are differ-

X ̂ n-tuple el input «. <• »<"> - « » "

n-tuple of input data terms in a. . eouation. Hence all the varia-
REMARK. When MATCH is called, e is a renaming ^ condition 1, no vari-

bles in X do not occur in any closure ' 'nallv au the input variables of D are
able can have multiple occurrences in . can'be appiied to parameters X, D andA.
bound to some closure of A . There ore, rf=turn failure. Otherwise, let A' be
Call UNIFY(X.D.A). If UNIFY returns failure, retu^ ^

the substitution returned by UNIFY. If , ins;antiation of the schematic substi-

Step 3. Otherwise, let A" J \ >
tution G (e) by the substitution A'; closure in A', because a free

REMARK. Each variable in freeze)) is bg an input variable of H(e) (con
input variable in the left part cons ra bles 0f H(e) are output variables o
.... oil t-.he input variapx

/ariaDie in x.ne xcx ̂ ̂ - .„hlpq Q-
-I -I 4-V-IA incut vaniabiss

dition 3.1), and because all the inp ^ tQ instantiate G^e).

(by definition of UNIFY). Hence A closures, such that each c.
Let C={cl, 1< i< k, be the k-tuple

, „ . A > = A". - upturn failure. C

is a root of

A". Set i = lx and A = A" • f EVAL returns failure, return °Jhbbe oubput
Step A. Call EVAL(A ,c) • " which is the composition
i=k return the substitution „ = A . A., of the last EVAL.

substitution of UNIFY and the ou p^ _terate step 4. titution fi has among its

Ste^. If i/k \nCreaSA6TCH returns success, its output ̂ yariables of G (e)
REMARK. If eventually. MA 1 On . TTT of H(e) and all tne o h
output variables all the input variables

EVAL (A substitution,c:closure)^ itution> , c is any cloS^re ^c'ording to the
returns < failure/success, «• associated with the closu

Step 1. Let I be the invoca 10 is taken. ^ the k_tuple
fbTmTf I, one of the following action ^ }> 1<1<k,

1.1 If I is empty (top closure of a P

m
of closures to which the input variables of I are bound. Set i=l and A = A/c
1.1.1 Call EVAL(A.,c.). If EVAL returns failure return failure. Otherwise let
A' be the substitution returned by EVAL. If i=k, let A' = A', and go to step 2,
otherwise increase i by 1, set A.+^= ^' i 311(3 iterate step 1.1.1.
1.2 If I has the form d=v, where d is a daia tern^and v is a variable, then
1.2.1 If d is not a variable, then return A .
1.2.2 If d is an (input) variable, let c' be the (unique) closure in A to which
d is bound. Call EVAL(A /c' ,c'). If EVAL returns failure, return failure. Other
wise, let A' be the output substitution of EVAL and go to step 2.

1.3 If I is an atomic formula, for each equation e in the global set of equations
E, a nondeterministic call to MATCH is performed, SfATCHfe. , I, A+), where e is a
new consistent renaming of equation e. , and A+ is the substructure of A rooted at
c, c non included. 1

1.3.1 If no MATCH succeeds, return failure. Otherwise, let e' and A be one
successful equation and the output substitution of the corresponding MATCH. If
Gr(e'i) is empty, set v' =Ak and go to 1.3.3.

REMARK. Because of the non superposition condition (conditions 4 and 5) on sets of
equations, a unique MATCH can terminate successfully. However, we are not allowed to
handle the different equations sequentially since MATCH could be nonterminating.

1.3.2 Let „ be the instantiation [G <••)], , of the schematic substitution,
associate to the right part constraint of the successful equation by the output
substitution of the successful MATCH, and v' =A . v

REMARK. A can be used to instantiate r i \ instantiate G (e1), because each variable in free
r 15 either 811 inPut variable of H(ef) or an output variable of G (.') (be

cause of condition 3 i), and A has all suet variables as output variables (Seethe
last remark to MATCH). Moreover, for each output variable v of G (.'), v cannot be
an ou pu varia e of k • Iri fact, because of equation renaming, rfor kv to be an out-

^ V3"a 6 ° ' k' V must be either 311 input variable of H(e') (contradictory be-
dition°i)C°n 10n ^ ̂ °UtPUt Variable of Gi(e'k) (contradictory because of con-

1.3.3 Let X be the n—tuple of outnnt Aa4.. +_ _ ~ . , , , p utput data terms of closure c, and D be the n-
tuple of the output data terms of H(e').

REMARK. We want to show that X, D and v< ane i i
prove that iegal parameters for UNIFY. We must

i) There are no multiple occurrences of a variable in y iv. a •• e k
sence of aliasing in a procedure call). (by Condltlon 6' ̂ ab'

ii) All the variables in D are bounri te
an output variable of H(e'). By condition0 ^ ^ Variabl® D 18

variable of H(e') or an output vari m mUSt alS° be either 311 inpUt

hand, all the output variables of G (9>) ̂ V'V' °" **

variabies of H(e-) and the output Sari^bles ofTfe- f " ' WMle 311 *1 ̂
Ak. Hence, they are all output variables of 1 k °UtPUt Variabl6S °

iii) Each variable v in X is not an output variable „f " k"" '
c is the only closure in A havina ^ closur« in v'. Initially,
prove that the only new output variabl ̂ °UtpUt variat>le. It is rather easy to
are variables coming from renamed equat!'3 , °tly gener"3ted by MATCH and UNIFY
only need to show that each recursive lT" a"d therefore different from v). Ve
following property. b° ̂ ^L (via MATCH and UNIFY) has the

I ' i y
EVAL property. Let *i be the output of EVAL(A ,c); for each closure c' such that:

* ^ c ' ' has an output variable which is also an output variable
of some closure c" in A ,

t h e c l o s u r e c " b e l o n g s t o A / c .
»r will assume here the property to hold.

1.3.4 Call UNIFY! X,D, v ') . If UNIFY fails, returns failure. Otherwise, let .1* be
the output substitution of UNIFY.

P.EKARK. .1 * has all the output variables of c as outputs.
let 1 ' : the structure which contains only those closure of A* which belong

sub: tru t .re: of A* rooted at closures which have as output variable an out
put variable of c.

SEXARK. A ' is a substitution.
Step 2 . Return • A . A'.

.REHARK. The EVAL property follows directly from the above construction.
A FPL program 17 is evaluated by calling EVAL with substitution 17 and with the

unique root of /7 as closure.
EVAL is clearly based on an external rule. Since our language has no builtin

data types, and since "constructors are not evaluated", the' FPL rule is a call-by
need, whose behaviour can be summarized as follows. "An atomic formula is evaluated

w.«o„ rn..™ j-mj. Ph7= SJSfi
tion. by side effects, through language implementations and theorem
successfully used in several Plicate lo&islZ pf the same atomic fpr-
provers. In fact, with structure shan evaluations of atomic formulas which
aula are identified, thus avoiding multiple
typically arise in call-by-name interpreters. described interpreter is non-

Even if the language is deterministi ^ nondeterministically MATCHED a-
deteralnistic. The EVAL Step, m which a P g .mplemented by backtracking, provided
gainst all the equations left parts,
that the following property holds
Backtracking property ru; i b. - ̂ °C"T, t°"

substitution A , and let E-tei • ' " ' ' _n' . Ar> predicate symbols occurring
equation e in E. H(e) containl t h T n) d i v e r g e s f o r all e.

Let us belonging to E. cs-imnle condition is
The above property holds if one ^ not be described ̂ here.

ticr.s. For the sake of brevi y, „„4.)0fvine such a take equations satisfying s
condition (which, roughly

the call-by-ne ed and structure
evaluations which only remark that if we def initions). evaluate, ---

spea.mg, are simply good rec „optimal", because a11 t MATCH,
sharing implementation is in a sense P transmitted to the
could have been performed within the -ccessfu^ MATCH, which

find would have been, in any ca 9 showing our use of ^al) , with cases be-
We will now give an built-in of the pro-

allow recursive by case* ^formulas. The example ^howJect ion ? (i (c) denotes the
mg defined by general atomic ons e8,..->e16

g r a m i s f a c t (s (s (0)) , s (0)) W 1

i n v o c a t i o n o f c l o s u r e c) .

cO: isfact(s(s(0)),s(0))« 3 ^ 4
x0= cO

EVAL(A0,cO)

*1" ,
MATCH(eJ5,i(cO),Aj)
UNXFY((xl,yl),(s(s(0)),s(0)),Aj)
cl: s(s(0))=xl
c2: s(0)=yl
A2={cl,c2}

c3: ndiv(in:yl,xl;cut;zl.s(cl))
A3={cl,c2,c3}
EVAL(A3,C3)

AI,= cl,c2
MATCH(ej 3,i(c3)
UNIFY((x2,y2),(yl,xl),Alt)
c4: s(0)=x2
c5: s(s(0))=y2 '
A5={cl,c2,c4,c5}
c6: It(x2,y2)=true
Ag={c4,c5,c6}
EVAL(Ag,c6)

A7={C4,C5}
MATCH(eJ0,i(c6),A7)
UNIFY((0,s(x3)),(x2,y2),A7)
failure

failure
MATCH (e^f 1,i(c6),A7)
UNIFY((x4,0)(x2,y2),A7)
failure

failure
MATCH(ef2,i(c6),A7)
UNIFY((s(x5),s(y5)),(x2,y2),A7)
c7: 0=x5
c8: s(0)=y5
As= c4,c5,c7,c8

a8
c9: It(x5,y5)=z5
Ag={c7,c8,c9}
AJO=A8-Ag={c4,c5,c7,c8,c9}
UNIFY((true),(z5),A1o)
EVAL(A10,c9)

Aj j = {c4,c5,c7,c8}
MATCH(e^0 >i(c9),A11)

™iix6S(X6))'(X5'y5)>Xll)

A ^12={c4,c5,c7,c8,clO} ™IFY((zl,s(cl)) , (0,x2) ,AJ6)

SH S:SRU6)'AL2) M7:{CI!C2,C4,C5,C6,C12,C13}
Al3={c4,c5,c7,c8,clO,cll} \ Al8 ^cl•c2•c12•cl3>

A j 3={c4,c5,c7,c8 clll 18

Ajg UNIFY((x),(false,Ale)
Aj5={c4,c5,c6} cl4: false=x

Ai6=A5.A15 {cl,c2,c4,c5,c6} I A1?=^cJ•c2>c12>cl3,cl4}
A20=icl4}

4 Fixed-point Semantics.
' In this Section, we will describe the fixed-point semantics of a set of equations

tje} For the fixed-point semantics, each equation e can be seen as a pair<H(e.),
J L such that G(e.) is the set of all the invocations occurring both in the left
4 all in the right part of e . It is worth noting that generally two equations

1 . P , 0 - R . S 2 . P - R , S , Q
ihich differ only because one invocation occurs in the left part and in t e gfr

part, are different both from the operational and the vle t h 'as a t

IUM» U «.» operational if invocation Q .ati.fi.a oondit^ ^ ̂ ^

least one output variable, which is an input ^tional difference is concerned
is the case equation 2 is a legal equation. ^ ^ MATCH succeeds, the other
.ith nondeterminiam. With equation , (since we are guaranteed from condi-
nondeterministic attempts in EVAL can be _ai l ing in the evaluation of Q, within
tions A and 5 that any other MATCH would fail0. - a fa i lure in the evalu-
MATCH, would Just kill the current attempt Wi mat 'ch_ This would require to
ati°n of 0 could only be detected aft»r(n0nrecursive backtracking) .
backtrack to a choice-point which pnuation 2 could possibly have a super
This situation corresponds to the fact a guaranteed that when a match
,-iti.h .ith other equations. In such a case »
is successful, no other successful MATCHing i 3 2 equation 2 is not a legal

On the other hand, if 2 does Have a completely different
equation. As a matter of fact, equations 1 a t in such a case, Q would
semantics if the evaluation of Q diverges or fails.
not be evaluated by equation 2. ^ equation e a semantics which is equiva ^ ^

The fixed-point semanti g , f a l l the invocations ^ ^gal equat ion).
the operational semantics of ^ of e_ (i.e. if e. f ixed_point of a
satisfy condition 3.2 occur in ^ E> obtained as^ ^ ^ ^ the

The fixed-point aema^ t1^ ta t ions. Our fixed-point sema semant ics. There-
transformation P.. on inte p however, is a cai * , _ _ insformation 9 on interprevau however, is a caii-ui

iantics definedEin /9/. Our semantics ^ _ for each simpie sort^-^ ^ ̂

•e our domain will contain an abstractjtomain A, w ic d as follows:
interpretations are defined on an ^Each As

each set beeing indexed by a sort so ^

u, belongs to A I occurring in E ' are * g' contains all the
A?1 the constant symbols o f sort s x . •• x n * s respectively. A

) For each data constructor symbol heioW to A . • • • . an for some sort s
terms d(t V. such. that if it cental s

term belonging to a family re ta tion base B. The inte£E^'
,h indexes a set A in A. ^ ^ ̂ f ,he -terpreta

-r; «- »r
For each function symbol ^)=t such that ^ n ^ CQn_

a.":1." t » - - ' - • • • • •
. x ... J. s ? , .

, , t h a v e s o r t s m + 1

not*undefined.

3W fe

Roughly speaking, an interpretation assigns output values to applications of
functions and relations to ground input values. All the other applications have some vaxuco. rtii one otner applications have some
undefined output. An interpretation is "more defined" than interpretation £ if£i

where J is set inclusion. Note that the partial ordering relation j i <jn
interpretations corresponds to an intuitive notion r»-r Koffon interpretations corresponds to an intuitive notion of better approximation. In fact,

Sj = Si' Si assigns output values to some applications that in £ had
undefined output. j

Transformation m maps interpretations on interpretations and is defined as
follows.

Let be any interpretation and e =<H(e),G(e)> be an equation of E. Equation
e,_ defines a transformation V which maps £ Snto tfee interpretation C=f (l), such
that "i " (^i'
1)) All the atomic formulas of £. are in £*„
2) For each instantiation A of "variables *to terms such that, for each invocation I

in G(e,) either j
2.1) [I .]^ is in , or

2.2) AnJ output variable v of I which is not an output variable of H(e), is
instantiated to an undefined term by A , k

the formula [H(e)]^ is in £*.

and t mukst inStantiatel a variable v of sort s to a term belonging to A ,
and that if G(e) is empty, condition 2.2 is satisfied for any instantation .1 .

The transformation p is the transformation defined by all the equations of E
according to the above definition, i.e. a> (/)= (J off)

E 5i ee E ^ i '
k

ordered h f transformation <p on the set of interpretations partially
fixed ooi t t H0" 1Srra°n0t0nic and continuous. Hence, there exists the least
tivelv an 1 "nterpretat"°n . i* SUch thab £*= V £*), which can be obtained by itera-

oJ the oartLrf V *T ^ °f B' WhiCh is the bottom
of the partially ordered set of interpretations.

5. Conclusion
We have described a new first order lovic „ u •

and the nelatienei , , g language, which combines the functional and the relational approach. We have defined the fixed ee-i e
shnwn an -in tan a,, n , xixed-point semantics and we have shown an interesting operational model which is both fe,~mei . , . .

htztz:, z ~,rr Tr10™1 J °rz-
f M I , a i „ l y o a t a i a , o f t h e .ZTo/tLTLZ

We have some nice examples of FPL programs that u t

in a predicate language without left part constraints or in / ""natUral a"d

The improved expressive power of the language is due to th 3 10"al langua8e-
tion and the procedure constructs and to the left nart PreSenCe °f both the funC '
full nower of a hn-iit -in ,- , . part constraints which provide the xuxi power oi a built-in conditional, while saving tk. e-
flavour. One more interesting feature of FPL is it hit l0giC axiomatlC

tions and relations. Non strict functions, as the i^en^ "°n_StriCt 'T
iy be defined in FPL, Just because of its call by ^

We have almost completed an experimental FPT i„(-.
strictly related to the i • interpreter, whose architecture is strictly related to the operational model of Section d The • 4. , • e
LISP) is based on structure sharing and relies on LISP h lnter>Preter bitten in

Future work on FPL will include its ext ! § ^ C° l leCt°r-
and parallel programs. Our final goal is creTt̂ ng an FP̂ ̂definiti°n °f theorems

for program proving also. environment providing tools

IH ?-

REFERENCES
1. Bsrkus.J. Can programming be liberated from the von Neumann style? A functional

style and its algebra of programs. C. ACM 21,8 (1978), 613-641.
2. iarren, D. Implementing PROLOG — compiling predicate logic programs. Report 39,

Dept. of AI, Edinburgh, 1977.
3. Roussel.P. PROLOG: Manuel de Reference et d'utilisation, Groupe d' Intelligence

Artificielle. University d'Aix-Marseille.
4. HcCabe.F.G. Programmer's guide to IC-PROLOG. Dept. of Computation and Control,

Imperial College, London, 1978.
5. Roberts,G.M. An implementation of PROLOG. M.Sc. TH. , Dept. of Computer Science,

Univ. of Waterloo, 1977.
6. Szeredi ,P. PROLOG- a very high level language based on predicate logic. 2nd Hunga

rian Computer Science Conf., Budapest, 1977.
7. Hewitt,C. Description and theoretical analysis (using schemata) of PLANNER: a lan

guage for proving theorems and manipulating models in a robot. AI Memo 231, MIT

Project MAC, 1972.
8. Kcwalski,R.A. Predicate logic as a programming language. Information Processing

North Holland (1974), 556-574.
9. vanHemden.M.H. , and Kowalski,R. A. The semantics of predicate logic as a programming

language. J.ACM 23,4 (1976), 733-742. . nl...nt.
10. Warren,D., Pereira,L.M. , and Pereira.F. PROLOG - the language 311

ation compared with LISP. Proc. ACM Symp. on AI and PL, Roc es' ' Artificielle.
U. Colmerauer.A. Le grammaires de metamorphose. Group d Intelligence

University d'Aix Marseille, 1975. (1977) 215-226.
12. Tarnlund,S-X. Horn clause computability. BIT l_ • ' Proc. 6th IJCAI,
13. Hansonn.Jl. and Tarnlund.S-X. A natural programming calculus.

Tokyo 1979 . 4th Workshop on Automated Deduc-
!<• Stickel.S. Invertibility of logic program .

tion, Austin, 1979, 103-109. Gerties symbolic evaluation and logical
15- Levi,G. and Sirovich.F. Proving program P not 'es ^ computer Science, Springer

procedural semantics. Proc. MFCS 75. L
Verlag (1975), 294-301. ; transformation and synthesis. Rivista di

16. Burstall.R.M. Recursive programs. r ,
Informatics 7. 2 (1976), 25-42. tructural induction. Proc. 5th IJCAI,Cambn g

17• Aubin.R. Strategies for mechanizing s
1977. 363-369. • • a dr iven automatic theorem prover for recursive

18- Boyer.R.S. and Moore,.J S. A ^^ridg-. X977. proc. of 6th POPL. San
function theory. Proc. 5th IJ , programming logic.

»• Cart.rlght,R. «d McCarthy,-*. »»' jjg sp« l f l„tion..
Antonio, 1979, 68-80. Putting theories toghether

2°. Burstall.R.M. and Goguen. J . A . U i045_1058. Semantics and theory of
Proc. 5th IJCAI, Cambridge, 19 - preliminary user manual.

21. Goguen.J.A. and Tardo.J. 0B . software valida-
computation Report, UCLA, 1977' D.p, Abstract data

* e-ttM.J.V.. Horowitz E. «-^ i063; system. Proc. Specif
tion. C.ACM 21, 12 (1978), soecification m the

23. Musser.D.R. Abstract data type ton< 1979.
tion of Reliable Software Con

iw
HORN CLAUSE PROGRAMS SUGGESTED BY RECURSIVE FUNCTIONS

Jan gEBELlK Petr STMNEK
Department of Cybernetics and Operational Research

CHARLES UNIVERSITY, Praha, Czechoslovakia

1. Introduction
We shall construct a program in Hern logic for every partially

recursive function by induction on the complexity of its defini
tion. We shall show that these programs can be transformed into
programs consisting only of binary Horn clauses. This gives a
new proof of a result due to Tarnlund CO , who used a binary
Horn clause program to simulate the behaviour of a Universal Tu
ring machine. Our proof gives additional information about the
length of computations. We can show that for every partially re
cursive function, the computations of the original program and
of the corresponding binary Horn clause program have the same num
ber of steps on every input.

Reviewing the structure of programs suggested by induction on
recursive functions, we shall see that these programs can be stra
tified in a natural way. We shall call stratifiable every program
admitting stratification. The above result shows that every stra
tifiable program to compute a recursive function can be transformed
in a binary Horn clause program. We shall show that every binary
Horn clause program can be transformed in an inductive program
computing the same function. At the end of paper, we shall formu
late some open problems.

Throughout the paper, we shall use standard concepts and nota
tion of Horn logic and of Resolution logic. We refer the reader
to C2] , (733 C5J 'or a more detailed exposition. We
shall mostly deal with first—order languages without equality
containing only two function symbols 0 and S , where 0 i» 8

constant interpreted as zero and unary function symbol S 1(i®"
terpreted as the successor function s(x) = x • 1 . Hence, the
terms 0, S(0), SS(0) , ... can be identified with natural n»®"
b e r s 0 , 1 , 2 , E v e r y e x p r e s s i o n P (t l f t g , . . . , t) %
where P is a p-ary predicate symbol and tx , ... , tp are

- 2 -

terme, is called an atomic formula or an atom. The atomic formulae
and tve negation# of atomic formulas are called literals; the atoms
and the negations of atoms are called positive literals and negative
literals respectively. A clause is a disjunction of literals, a Horn
clause is a clauae with at most one positive literal. A binary Horn
clause ia a Horn clause with at most one negative literal. Every
conjunction of (Horn) clauaee is called a (Horn) sentence. The
clauses are usually represented as lists of literals and sentences
are identified wit* sets of clauses. We shall sometimes speak about
unions of sentences etc.

It is ueeful to express Horn clauses in the following way

(1) A < Blt Bj, ... , Bn

vhert A is a positive literal (if any) and ... » Bn are
negative literals (if n >0).

! • » » t v . f o l l o w i n g t y p e s o f H o r n c l a u — fs shall use special names for the roixowing
tea:

• t.ivfi literal is called a £©§1
,» i Horn cl.u.0 .rthout » .x.o.e or . Mil
« of o gonl ana it aopty clan.. i. denoted
tatement if it has no negative literals.
y • •

ill* I Horn oi.no. with ~ T
A regular clause without nega ^ a procedure or a

isaertion or an axiom , otherwise xt ^ called the name
gocedure declaration., the literalcalled t>,e body of procedure (1)*

"* ^ \ ruVcondunotion of r.gul.r olnu...
(iii) Every sentence Which

i. oollod E^ulariSntsBoi- ^ ̂ Mto^n«

The Resolution principle with eo calied Horn Logic. We
algorithm is the only InferenC*iar with these concepts and we
assume that the readerKiS ^^ollowing example,
a^all illustrate them by t e

3 so
- 3 -

Example 1 The clauses

(2)

(3)

PIAJS(x, 0, x)

PLUS(x, Sy, Sz) < PIUS(x, y, z)

state respectively that for every natural number x , the sua of
x and zero is equal to x and that the sua of x and Sy
(the successor of y) is Sz whenever z is the sum of x and ;
The regular sentence consisting of regular Horn clauses (2) and (3)
can be used as a program computing addition of natural numb era.
Suppose e.g. that we want to compute the sum 1 + 1 . We start by
writing a goal statement which denies that there is a number z

which is the sum of SO and SO. The following goal statement is the
first step in computation that yields the desired sua. The assign
ments of variables are the effect of unification.

U) < PUJS(S0, SO, z)

We obtain z •« SSO by composition of both assignments.

We have seen that regular sentences can be used as programs and
we shall call every regular sentence a Horn clause program. In
general, we shall proceed as follows. If S is a Horn clause pro
gram and C0 is a goal statement, the sequence C0, C^, ... , Cn

of goal statements is said to be a deduction (computation) from S
and CQ provided that for every 1 ' Ci+1 is the resolvent of
and a clause D from S such that the leftmost atom of and
the only positive literal of D are the literals the clauses
and D are resolved upon. If the last clause of a deduction is
empty, we say that the deduction refutes S and CQ . It follows
from the properties of Linear Ordered Resolution and from the fact
that every regular sentence is satisfiable that S u {CQ^ is not
satisfiable iff there is a deduction starting with C0 and refut
ing S and C0 . To find such a refutation, one has to use a com
plete search strategy. We shall adopt the following notation, we
shall write

(5) PUJS(S0, 0, z')
x < SO , y < 0 , z < Sz'

by (3), (4)
SO

by (5), (2)

3 SI
- 4 -

to eay that the goal , j ~^-i is deducible from and S»
If P is a ground atom (i.e. a variable-free atomic formula), we
s-nll write

S i — P
instead of

•' hr •
U s it the program from Example 1 then S 1~ PLUS(SO,SO,SSO)
oxpreesee the result of computation, namely, that the term SSO
corresponds to the sum 1 + 1 •

following easy lemma is used quite often in proofs.

I,—* i . Let S be a Horn clause program, P a ground atom.
Let there be only one regular clause

P#« ^2* ••• » Sn

in S sue- t-at p' can be unified with P by a most general

unifier Co • .
D,en g |— p iff there is a substitution ^ sue

s J— holds for every i ̂ n ,

all QvC^ being ground atoms.

" f°r r"2^L^f^rUaliy recursive functions
f. .hall describe programs definitions. We start with

by induction on the compiexity truct programs for functions
beeic functions and then we shaxx minimization. The correspon-
obtained by composition, recur a8 we shall see later,
ding programs are naturally mot •« shall prove the
th.y ad.it . certain gratification. Ho..

f0llt,*ing „llv recursive function f '
'H-ecrcn 1. for eery par ^ predicate symbol Ff «>* "

variables, tbere ie an (n fQr every sequence of na
Horn clauee program P suc

numbers alf .. • » *n » c ^ to c iff
a) is defined ana ^

(6) f(a. , • • • » an' _ _ p .
a) u provable from P

f 1* *** ' an*

352-
- 5 -

Proof. We shall omit the subscript f by the predicate F . If
f is one of the basic functions, then P consists of one assertion,
namely, P is

(i) F(x, 0) «
provided that f is the zero function, f(x) = 0 for every x ,

(ii) F(x, S x) <
whenever f is the successor function f(x) = x • 1 , and

(iii) F(x^, , x^» x^)-<
whenever f is the projection on the i-th coordinate.

(iv) Let f be obtained by composition, let
f(x) * h (g 1 (x) , ... , gk(x)) , where g i for i = 1, 2, ... , k
is a function of n variables. Let H, G^, ... , Gj^ be the predi
cate symbols corresponding to h, g^, ... , gk and let P0 be
a program computing h and Pt for i k be programs computing

respectively. By induction hypothesis, we have
g^(a) » b^ iff PjJ— G^(a, b^) for i4 k ,

(7)
h(b) » c iff P0<— H(b, c) ,

for every n-tuple a of natural numbers and natural numbers
••• » bt> e » where b = (bj^, ... , bk). We may assume that

every two programs P^ , Pj have no predicate symbol in common.
Let F be a new (n + l)-ary predicate symbol and

x^t ••• » *n » yi» ••• » y* » z be new variables. If we add the
clause

(8) F(x, z) < —Gx(x, y x) , G^Cx, y2), ... , GJc(x,yk), H(y,z)

where x and y are appropriate tuples of variables, to the union
of sentences P0, P^, ... , Pk , we obtain a program P satis
fying (6).

(v) Let f be obtained from functions g and h by primitive
recursion, i.e.

f(0, Xg, ... ,xn) m g(x£>, ... ,xn) ,
f(Sx^, *2, . . . , * J J) 1 h(x^, ... , x^, f(x^, ... ,)

holds for every x^, ... , x^^ • Let G, B be predicate symbols
corresponding to g and h and let P1, P2 be the programs for
g and h . We assume that both programs do not s*>are any predicate
symbol. Let F be a new (n + l)-ary predicate symbol. It is easy
to see that the Horn clause program P which is obtained by adding
the clauses

3*3
- 6 -

(9) F(0,*2 Z)^~ GtX2 **! ul , v z)
x n , z) < — T i H x n , y) , K b * x n , y , .)

0 r e u n i o n o f ? x , P 2 a a t i . f i « (6) .

(vi) last case to be considered is w»en f u obtained y

ligiaiiation of a computable function g , i.e.

f i x) - m7 f g (x , y) - O l , (r t + 2) - a r y

£ • b;:r^L7„r g.

t'T T01, 7.77 (ll>-.ry Predicat*. aymbols ^ »
4 A * rn p bv adding the following clauses it obtained from P1 oy aaui«e

R (x , 0) ^ - ,
(10) »(x,s.)- «*.»>. '

F (x » z) » (* » •) » G ^ x » z » 0) *

where x- ()*•••• suffices to prove
I. «. tbet P <••• tM ae.^.a P~P« - u . of natural

that for .-.IT natural »"»b«r ° i""1 "***

numbers, we have defined and nonzero).

Ms can be proved by induct on

n'°T" 1- flr.t proved by TSrnlund t 43
Tb. result et.t.d in Tb.oram 1 •» on i6 computable by

Wo shoved tb.t ever, Turing , gndre*. end Beu.ti
a binary Horn clause program. 1 P needed in a Horn cl
1 loved that no eurUiery ^ ̂e ^ ̂

program for . computeble ^^tural number. (a~ — "3

tains individual constan properties of pro-
. turI1 attention to spec ^ step by step

We would l^e t ^ ̂ of Theorem 1. t0 func-
grams constructed functions from b rise to a
construction of recursive operations give^ri ^

tion. teat are partially b""1"*". 7.raroby on
natural tiarare y- ^ level of
...igned a rani according

3 51
- 7 -

it appears® Our programs reflect the hierarchy of recursive
functions in the following way: the predicates corresponding
to recursive functions can be uniformly stratified in every
program by a mapping that assigns a natural number to every
predicate symbol. It is convenient to assign zero to the pre
dicate symbol occuring in the goal statement and to other predi
cate symbols assign numbers in the inverse order with respect to
the ranks of corresponding functions. This motivates the follo
wing definition.

Let P be a Horn clause program and A be a predicate symbol
that occurs in P . We say that P admits stratification with
respect to A if there is a mapping s that assigns a natural
number to every predicate symbol in P such that the following
conditions hold

(i) s(A) * 0
(ii) if the clause Q(«••)•< R^(®»•),«••»R^(•••)

belongs to P , then every i * 2,3,...,* , we have

(12) s^) = s(Q) + 1 ,

and for i = 1 either R^ is Q or (12) holds.

We say that a program P is stratifiable is it admits strati
fication with respect to one of its predicate symbols.

It should be stressed that the mapping s assigns natural num
bers to predicate symbols, not to the atoms containing them. It is
not hard to check that the programs constructed in the proof of
Theorem 1 are all stratifiable, admitting stratification with
respect to predicate symbol F^. , Thus we can reformulate th#
result as follows:

Theorem 1* . Every partially recursive function is computable
by a stratifiable Horn clauae program.

3. Binary Horn clauae vrofrrnmn

We shall show that every stratifiable program constructed in
previous Section can be converted into a binary Horn clause pro
gram. This gives a new proof of the above mentioned result of
Tarnlund. Our proof gives additional information about the length

- 8 -

of computations. In fact, we can show that for every recursive
function f the computationa of the stratifiable program for
f and of the corresponding binary program have the same number
of etepe for every input. Thus the binary Horn clause programs
do not increase the complexity of computation in comparison

with the "natural" stratifiable programs.

Th.orem 2. Every partially recursive function is computable

by a binary Horn clauee program.
Hor.ov.r, for .vary ~ch function, it i. poe.ible to transfer.

t*. corresponding stratifiable program fro. Theorem 1 In « *1-
nar, Horn clause program aucb that the lsngtha of computation.

of both programe ara the aama for every input.

Sl.teh of proof, w. oh all proc.ad by induction on ™=ur„iv,
fiction. and describe th. .tap. to tranafor. th. corraaponding

stratifiable program In a th. program daaori-

If f ia one of t e ba - Theorem 1 are already binary,
bed in CD - CiiD of th. preofof Theore ̂ ̂ ̂ ̂ ̂

Let f be obtained by compositxo . ̂ ± are

previous proof, we shall ®seu®® ^̂ 'to functions and
(ntl)-ary predicate symbols cor P ̂̂ H be the <k*l>-ary
that T. is a binary program fo gx be a binary

predicate corraaponding programs h.v. no
program for h . W. ma, .«»»• ̂ (B) «vich ia

predicate eymbol in commo. T .

not binary, •« *«• " •odlf £ variiblee .rich do not
1st " ° »dd tbaaa variable, to .11

occur in any pr̂ a. and .. --11 conva"
atom, in program. T, int„ suit.bl. procedure d
.11 aea.rtiona of th«. uniting
ration, to a.t.bli.b tie. bet.. obt.ined

every *>1#t 1

rvo. Tt « : t »„> rf Ti

(13) Every ol.ua. HUX V

is replaced by .

P *̂ (û , •••»uq,xl* * *"• n* 1

„ ••£ -Q- ore ne. predicate symbols,
where K. » w

-!>$(?
- 9 -

(14) Every assertion lUt^... ,tr)« of T- is replaced by

tr,x,y ,z)-«— ^i+1(Xfyi+1>x»y»z) »

where t is as above and ^ is a new (n*l+nHc*l)-ary predicate
symbol corresponding to G^+-^ •

For i - k , we apply (13) and every assertion R(...)-< is

replaced by />, _ R (. . . ,x,y .z)-*1 H(y,z> .

Let P- be the resulting programs. Now, we can state the following
fact. For every ground atom P(...) and appropriate tuples of na
tural numbers a, b, c we have

Ti h P(...) iff «-£(...,a,b,c) Oi+1(a,bi+1,a,b,c)

(15) holds for every i * k-1 , and
Tk j- PU..) iff "«-£(...,a,b,c) |p < H(b,c) .

The lengths of deductions on both sides are the same.
This fact can be proved by induction on the length of deduction.
If we add the clause

(16) F(x,z)<—- ,
where x and y are appropriate tuples of variables, to the union
of programs P1,...,Pk,T£) , we obtain a binary program P for^ f .
If T ie the program obtained by adding (8) to the union of TjS ,
it is not hard to prove from (15) and Lemma 1 t*at the computations
of T and P have the same length for every input.

The cases, where f is obtained by primitive recursion or mini
misation are treated similarly. One has to deal with recursive
calls of procedures. To give the idea, we shall illustrate the
case of recursion by the following example.

Virnmpl a 2. Let f be defined by primitive recursion as follows
f(l) = 1 , f(x*l) * f(x) + (x+1) • A stratifiable program for t
consists of clauses

(17) F(Q,SO) <—
(18) F(Sx,z)-* F(x,y), PUJS(y,Sx,z)

and of the clauses from example 1 , namely ,
PLUS(x,0,x) <
FLUS(x,Sy,Sz)< PLUS(x,y,z) .

If v,w are new variables, we ean write the following binary
program P for f .

- 10 -

(19) FlO ,S0) •*
(20) FlSx.z)* Ply,sx,z,x,y)
(21) P(x,0,x,v ,*)•*— F(v,w)
(22) Plx.Sy ,Ss,v,w)* Plx,y,z,v,w) .

If «• denote the original program by T , we can compare the compu
tations of T and P starting witb the goal < FlSS0,z).

t-F(SS0,z) * Flsso»z^
• F(S0,y) .PLUSly,SS0,z) * Ply,SSO ,z ,S0 ,y)
-F(0,y') ,PUJS(y' ,S0,y) .PIAJSly ,SS0,z) «-Ply ,S0,z ,SOsy)
-PTiTRfRO.so.vl .PLUSly ,SS0,z) <—p(y»°>z »s0»y^

7-*— Sv

Sz'
i vu»y) »J / »J » „
PUJS(S0,S0,y) ,PIAJSly,SSO,z) <—Ply,0,z ,S0,y)

J*— S v H „ »

•PUJS(S0,0,v),PLUSlSv,SS0,a) ^-FlSO.z") y*~z

sso *) * ? y>so»z »o»y) z^~Sz
-PUJS(SSO,SSO,«) , , n _/// o v) y-e—z"'
-PLustsso .so .a) tip 0 J>n '
-gSiSSO.O..-) —-0 -g-

Both programs ar« deterministic *V^f*^Pwith th, goal
U only one procedure Which , ls a.t.r»i„ie-

Btatement. In general ca . n(jt_ In 0ther words, it W
tic in the above e.n». but computations of both programs
happen that the length o """ ^ Buoceseful oonputation of F
ar. th. same, but tht aondeterniniem. It ahould be ncted that
may be more complex due not stratifiable.
the program P from Examp e

, hinflry p rQmise programs
«• Itratifipbla »ng ES2-~"1 „ogra»a motivated bjr reour-

Va have Been that the strati la bin£try programs computing
aire functionn can be trans or pI.ogroms have the came eng
th. same function. Surprisingly."^^ ̂ u cen be shown
of computation, on every lnp^" tranBformed in . ntratifmbl.
that every binary program «n
program. *e have clauB. program. * " Fre'

t «.t T be a binary .M m,o transform
Theorem Let T it is possibl #very

dicate symbol occurxng in ppogrm P such that
into a stratifiable Horn A we have
ground atom a' containing Aj ^ .

Tl— A

- 11 -

The proof of Theorem 3 uses induction on t*>e height of a compu
tation tree of T . The main problem is to deal with multiple re
cursive calls of procedures. We shall not give the proof here. In
comparison with the two previous theorems, the proofs of which
depend strongly on the language of Resolution Arithmetic, in parti
cular on the representation of natural numbers by terms Sn(0) ,
Theorem 3 can be proved for every first-order language. In general
case however, the resulting stratifiable program need not be binary,

The above results indicate that there is a strong relationship
between binary and stratifiable program, at least in the ease of
Resolution Arithmetic. There are some open problems left. We have
shown that certain stratifiable programs in the language of
(successor) arithmetic can be transformed into binary programs.

Problem 1.

Is it possible to transform every stratifiable Horn clause
program into a binary program ?

Note that the proof of Theorem 2 used special features of pro
grams motivated by recursive operations. Another problem is moti
vated by Theorem 3. It is clear that every Horn clause program
computing a partially recursive function has a stratifiable eouter-
part computing the same function. This follows from Theorem l'.
Generalising Theorem 3 to the case of arbitrary Horn clause pro
grams, one has to deal with AND/OR trees instead of simple trees
for binary programs. One of the possible ways to handle the problem
may be coding information about branching in natural numbers.

Problem 2.

Is it possible to transform every Horn clause program into a
stratifiable program computing the same function ? What are
the necessary conditions for the language ?

15")
- 12 -

REFERENCES

[1] H.Andreka, I.Nemeti, The generalized Completness of
Horn Predicate Logic as a programming language,
D.A.I. Ressearch Rep. 21, Dept. Al, University
of Edinburgh 1976

[2] C.L.Chang, R.T.C. Lee, Symbolic Logic and Mechanical
Theorem Proving, Academic Press, NX 1971

[3] R . K o w a l s k i , L o g i c f o r p r o b l e m s o l v i n g
Memo 75, Department of Computational Logic
University of Edinburgh 1975

[4 I S . I . T a r n l u n d , L o g i c I n f o r m a t i o n p r o c e s s i n g ,
TRITA - IBADB - 1029 1975-11-24, dept. Comp.
Sci.* Royal Institute of Tech. Stockholm 1975

[5 1 S.I. Tarnlund, Horn Clause Computability
L BIT 17 (1977) , 215 - 226

w
A decision method for process logic

Olge StSp^nkovd
Institute for Computation techniques
of the CVUT, Horak«5 3, Praha 2,
Czechoslovakia

Process logic was proposed in [l] as a tool for reasoning
about on going processes. There are introduced modal constructs
after J , throught LL1 , during J_ and preserves S , expressing
important properties of programs. Their intuitive meaning is

aJp - any halting computation of <x ends in a state satisfying P
a.uip - in every state of computation of a holds p
a-Lp - sometimes during any computation of a occures a state

satisfying p
<x._Tp - ones p is true in a computation of a, , it holds on

in all the following states.

The modal concepts J , UJ , _T are completely axiomatized in
[l] . The axiomatization of these modalities combined with 1 is
formulated in [1] as an open problem. The modality 1 is defined
in [2 J differently. There is given axiomatization of J , 111 , J
and of this new version of -L — no claim is mode about its comple
teness. T,Ve propose a complete decision method for J , lil,-T and i- .

Syntax of the language
Let a be a constant differing from all the propositional va

riables. Let formulas be the elements of the minimal class inclu-
ding propositional variables and closed under the following rule:
Mif p , q, are formulas then

PH , "'P , P v 1 UJ p , <*, J" p a^d. aip
are formulas as well".

Semantics
Let W be a set of states: a trajectory A - (-6.,^, •

is a sequence of states drawn from IV ; is the length of &
(when is infinite, then A has no final state).

A failing computation is indicated by a trajectory whose final
state is A , a distinguished "limbo" state used only for this
purpose this case covers deadlock, short and fail situations .

3(J
— 2. **

Any occurrence of A in a trajectory must be as the final state.
An interpretation of the language is given by a structure
<1V f ,&> , where ris a get of states, P a set of "facts"
about states (for any propoaitional variable p and
either <P."> « P or <np,^>*P, not both), a set of

trajectories from W%
The set describes a program in this sense:

_ . c f , then the program started in O • , 'V, . • • • > '
C«1 brin* about the trajectory ^6 .

Validity of formula. Of the considered language id e given
,t.t. Vof this interpretation 1. defined ee follows:

I f p i B 8 p r o p o a i t i o n a l v a r i a b l e t h e n

^ m p iff % J

otherwise ^ ^ ip iff ^ p

1ff wPp and N IC (= P ^ % iff P p rS F|p)

ifr v aKfp^

p iff ^
. . a l p i f f (V ^ f ^ 3 *

x i p - f f ! a i p i f f v

t least one occurrence of *- is 3*Ji§£ij£>i£
A formula p with at 1 p ^ a state ««/• ¥• A ^

iff there exists a ^Jc, A c «" »«*•>"« "
»„ch thet there is at leas flnlte Mt of formulas Ca theory
Me A.) 831,3 ^ FP ' „ ftf on its formulas is
le'eetiefieble iff the ronton * . ^ ^ ̂ erti^le.
salifiable. A formula p is

, e.rielon methei u3(! of oentzen systems manipulating

We follow 111 ^
Mte of formulae-^ sete of f „ ̂ ̂ ̂ c .

i__geauent corresponding to a thsor

l(ol
- 3 -

The theory (?ufir-•. red?} i3 unsatisfieble iff the formula AP-*V(R,
is valid. A sequent is valid iff the theory <P o ?tp -.
is unsatisfiable (iff A«>-*V<R ia valid).

All properties of propositions! calculus can be derived by
the use of

?1 VI ~E~~ P3 P^f
P P 1P —i•pA'J.

It is proved in 1 that if the rules

J" 1
p, £lJ"p -> O/Jp -> p

<*-> J p ->

j £ foi i Pj, I,,-»
cc J r»

p ? t s < i • - • ' ' V = f i -i Fv) 5 ('f n^oH.Un't)
«.u. p., a.U .Tpk ^

are added, the resulting system is a complete axiomatisation
of UJ , _T and J .

Let us use the following conventions - are either
natural numbers or 0. The set St^ includes just all the permuta
tions of the numbers f 1, - , *} , i.e. all 1 - 1 functions of
this set on itself. If (R. is © set of fonnules, then •» & is
an abbreviation for fi* •. ^eft] . If <f. , <?4 are sets of formulas
and 1 , p are formulas, then

i <?». , A -» p
denotes just the sequent <P. u <Pt u M -» . We faise

instead of notoriously invalid formula pup and true instead
of its negation.

! f p d/ 1 -faAt. }
10 f p- 1

1 1 ft.), -> 0-1
(f a. 1 aiff

- 4 -

1 1

(V f>. i 6 ** S ** « S^)C1^0 4 50

I l j t , $ * " * * * l ; o . f a , T P i ^ t 5 - » ? a ' - L C ^ ! f t t S i " * " a * J A

f V (f , e s t f * * * « * f P * V ' J ^ V , s U ° f e * * x)

. ^ x • • ? , « . 7 , " Y i C t
(^ l t , • " " i - l c . i " " " * ^ U ' l o , < ? A ° l ° , < ^ 7 ' ^

l A f o - u , i . ! . t l , J 4 x t * \ 7 i 7 - *

The intended reading of 1- 1 is .
c i s ^ \ b e t h e s e t s o f f o r m u l a s

"Let U\-,.s , - fi" w* 1 . .. e «f «, f0
i? - • if f°r ®y "

process logic. Denote ° ji? , itself there
d an, 1-1 function • of the set il, -.

ists that

r l ft i C^o ' J i H-vCJfc.) ' ̂ A 4" W ^ 1 ° '

, a valid sequent, then ^
_ "7 f 1 i *K

< y $ a* S p j j fc *jk ' f a, u» s; fr ̂ , 1 [* g

3 valid too". ^ ̂
Similsrly for the rules J 2^ ̂ ̂ ̂ rf

The rule i <->
he form , fa-1 <H U ^ '

f , f—rP<,V«- » ' t that a structure with
rds it elites the p°«lb"V would be considered

h other words, h nG sequence st*r
state «- . in , mto | . >ase state 'l*r > F -» 1

be a model for e.g. >

w
- 5 -

Theorem 1 :
The rules 10, ll, 12, 13 ere sound, i.e. if the premises

of a rule are met, then the sequent resulting from this rule

is valid.

Proof :
Suppose, that the sequent resulting from e.g. 1 1 is not

valid. Thus there exists x 9 x 0"> and m- e.W such that

^ f= ? u f u

Let us considere the trajectory f * ? such that n: and
Ŷ . 4 A t= . It can be shown, that the study of this tra

jectory leads to the specification of <?, c • • • <=•
and of the permutation m e SFj, such that they contradict the

assumption of the rule 11.
Similarly for 12, 13 .

Considering the rule 10, let us distinguish the cases,

a/ there is no occurrence of a in p

b/ there is an occurrence of a. in p .

a/ If there is a state v satisfying p , denote
jp * (<£-. <jpropositional variable, v . Then the structure

, Sp, > with the base state is a model

of p -* & 1 false.

b/ The formula a 1 false is true in the base state of any

structure satisfying p

A proof is a rooted tree whose verteces are labelled with

sequents such that every sequent follows from its predecessors
by some rule. Given a proof we say that the sequent labelling

the root is proved from the assumptions, which are just all the

sequents on the leaves of that proof.

- 6 -

Let ^ » V -» V be a sequent. The corresponding theory ^y>
is o U* * c S" 1 • We s0y that ^ is S -e°2£let§~§i3ii§!lt
iff the corresponding theory ?? meets all the following

conditions:

1. a, J p i ^

2. f> * i s

3 . p » i c ̂

4 . •» (p * O c \

5 . i (p * 0 '

AWe-ldl pc or
ry ip ^ J(p

tUeaq p> e Ty> and ¥
H- e ?

tlnen or < v e ^

A p t ̂ I p or
ry

q t £ P

1p€ S"tj> and

emma x /y
ut V be a sequent. There cen be found a finite set b,

t complete sequent! eueh that
* fcan be proved from the assumptions *> using

rules "PA - P1* end J" 1»
o, 35 is valid as well,

b/ if f is valid, then any f

' , ,,, theories associated with complete
Let » «• «* °f 8 u3 construct a sequence of

sequents of process logic.
sets of theories : - G o . the element ^i*a

«, start with *i • f «»1 J^S'the theories obtained
is composed from % „ of edition. on oompletn.ss
from the members of t
of sequents as follows : ^ ^Jp , « but P <

If there is « « ... o.RoM 8113 "•
and ,P d « . « '
are elements of * _na 2, -» 5-
Similarly for the conditions 2.

- 7 -

Obviously there is m0 such that is "the
searched set of theories. The property a/ is a conse
quence of the way of construction of from . Moreover
any theory <0, e 36. includes all the formulas from !fy - the
theory corresponding to ? . Thus if has no model, then <£>
cannot have a model as well, i.e. all the sequents from 36^, are
valid if !? is valid.

Lemma 2 :

Each complete valid sequent of process logic has a proof
using the rules P , 1. and J" 1 only.

Proof :

Let us define duration of a formula of process logic by
induction on construction of formulas :

• duration of a pro positional variable pis d (p) = 0

• let <j.,, be formulas of a known duration, then
<*(a-J O * d (a J O = d. (a. 1 <j.,) - cL ui ,) - + ^
d 9-.) = d-t^v q_J = ma*. , cX-ClS))
d (i) « d .

Let us define a relation between sequents of process logic :

% -d fx iff . maximal duration of formulas in ^ is smaller
then that of
or

• maximal durations of formulas in S", and are
equal, but there is less formulas in S? of this
duration then in % •

Obviously is a good ordering.

Suppose the lemma does not hold, i.e. there is a complete
valid sequent, which has no proof. We shall drive this to
contradiction.

w
- 3 -

Let ^ be ^ minimal element of the class of all complete
valid sequents without a proof. Let be the theory corresponding
to and 9*1. be the set of all formulas from ^ of the

maximal duration.
T^« »i 9a. must contain only formulas of the form ^lp^Ip.^Jp

o.uip or their negations.
Two cases must be distinguished :

e/ Let there be a negative occurrence of a modality in ^ ,
i.e. i clLvcK . Then ^ - f «-lcannot be valid,
because it corresponds to a sequent % + % , whose validity

implies the existence of the proof of £ , bence of % ,
too. If 1 1 is not appliable to % , then there can be
constructed a structure satisfying by adding to the struc
ture for ^ ^ fi-1^ a new trajectory beginning in its base
state and visiting consequently the structures for sequents
as named In the example excluding the feasibility to app y^

Contradiction with assumption 92 is veli •
* t p +h-<<* is the first step of the proof of X ,

eppliable to S? , thi ^ sequents> which

because the application of Contradiction,
are -2 smaller then « , thus they have proof.

offo+ive occurrence of modality in o
b/ Suppose there is no negativ ^ ^r

1 Let there be at least one formula of the torm t

or rn 3; . surely none a modality
is appliable to any nags ive ^ ̂ _ e_g_

in T. . Let us considere c8nnot correspond
a. 1 a c w. . The theory 0 „+ is smaller
^ because this sequent is

to a valid sequent bee ^ prMf_
then % and it would have t ^ %(XjVO, \ can be

/ur ® for i. x ? a. i s. j
The structure < ^ < ' ure for X if no 11,12, II

reconstructed into a * follows :
i8 applicable. This is done ^g in the base state.
Let - be a sequence from

If 3

3 b%
- 9 -

to the new structure and new sequence of £" is considered.
Otherwise we skill find the negative modality, e.g.
1 a,Sy e. 3; f which is illustrated by v . If there is none
we proceed to a new sequence of & .
As stated above 13 is not appliable to % thus there
is a sequence of structures contradicting the use of 13 .
This sequence - ending in A - is concatenated to the
base state of the original structure to form a new sequence
which should replace ^ in t . This is done to all
negative modalities illustrated by v . This procedure
is repeated for all sequences from t . The structure
thus obtained with the same base state as the original
structure realizes all the formulas from ££ . Contra
diction.

2. If there is no negative modal formula in <P„ . Let us use
the rule 10 and let us consider the sequent with
the theory T.1 = u ^alfalse] . Let there be a modal
formula, e.g. . if V v has no model,
then .. fa, l <0 has no model, too. Theory X, - f«, l
corresponds to a sequent -4 smaller then S> , thus it
has a proof. Contradiction.
If i; - has a model, and if 1 i is not appliable
to the sequent corresponding to £' , the structure
for 1. can be constructed as in the case 1. Thus 1 1
must be appliable to and the proof of SS can be
constructed. Contradiction.

Theorem 2

Each valid sequent of process logic has a proof using the
rules ?1 - Tif- , j" i ang 1 o - 3 .

The completeness of the dedicion procedure for process
logic using the above rules is stated in the following theory,

18 811 easy consequence of the Lemma 1, Lemma 2.

w
- 10 -

References

[1] V.R. Pratt : Process Logic. Preliminary Report. Conference
Record of the 6th Annuel ACM Symp. on Principles of Progr.
Lsng., San Antonio, TX, Jan. 29- - 31. j 1979

[2] V.R. Pratt : Six Lectures on Dynamic Logic, Research Report

MIT/LCS/TM - 117

