Computing Science Technical Report #37
Basic Utilities for Portable FORTRAN Libraries

P. A. Fox, A. D, Hall and N. L. Schryer

-BB16~-C(1-73)

A Dynamic Storage Allocator
for Portable FORTRAN Libraries

by
A. D. Hall and N. L. Schryer

Bell Laboratories
Murray Hill, N. J.

ABSIRACT

This paper describes a package of simple portable FOR-
TRAN subprograms for dynamic allocation and de-allocation of
scratch space. Available space is managed on a last-in
first-out basis in a manner similar to the stack discipline
implicit in ALGOL 60 implementations. Use of this package
often leads to more clearly structured programs, cleaner
calling sequences, improved memory utilization, and better

error detection.

A Dynamic Storage Allocator
for Portable FOKTRAN Libraries

9%

A. D. Hall and N. L. Schryer
Bell Lacoratories
Murray Hill, N. J.

1. Introduction

One of the biggest problems in FORTRAN programming 1S
deciding how to provide scratch space for intermediate cal-
culations in a subprogram. There are two commonly wused
technijues. The first attempts to keep calling sequences
clean by providing scratch arrays local to each subprogram.
The second attempts to avoid the wastefulness of local ar-
rays by requiring the invoker of a subprogram tO provide
scratch space through an argument.

Neither of these solutions 1s entirely satisfactory.
Since arrays local to a FORTRAN subprogram are fixed in size
at tne time of compilation, they are usually made big enough
to accommodate the "largest" proklem a subprogram may be
calied upon to solve. This not only places an upper limit
on the size of a problem that can be handled but results in
wasted storage when small proklems are solved. When several
sucn subprograms are used within a single program, the waste
is compounded.

By requiring scratch space to be passed to a subprogram
through one or more additional arguments, local arrays can
be avoided, but the calling sequence becomes cumbersome and
error prone, and tne problem of storage allocation is simply
left to the invoker. Worse yet, the subprogram has no way
of veriiying that enough scratch space has been provided.

This paper describes a package of simple portable FOR-
TRAN subprograms for dynamic allocation of scratch space.
Use of thas package often leads to more clearly structured
programs, cleaner calling sequences, improved memory
utilization, and better error detection. Listings of these
subprograms are included in the Appendix.

2. General Philosophy

The basic allocation mechanism provided is a stack
similar to that which wunderlies ALGOL 60 (1] implementa-
tions. Unlike ALGOL 60, however, the allocation and de-
allocation of space on the stack must be carried out through
the use ot explicit subprogram calls. Because of the nature
of a stack, allocations ana de-allocations must also be car-
ried out on a last-in first-out basis. This approach not
only Kkeeps the programming simple, but it reduces the over-
head to a minimum.

In order to make the stack invisible to most users of
liorary programs, tine package is self-initializing and con-
tains a default stack size equivalent to 1000 "words" (FOk-
TRAN INTEGER variables). If desired, larger amounts of
stack space can be allocated for a particular run.

3. Allocation and De-allocation

The stack resides in the labeled COMMON region CSTAK.
Any subroutine that uses space allocated in the stack must
include the following declarations:

COMMON /CSTAK/DSTAK (500)
(&
DOUBLE PRECISION DSTAK

These ensure that the length and type of the stack are
properly and consistently declared in all subprograms; in-
cluding those which use the allocator and are loaded from
libraries. Failure to use these declarations could lead to
unexpected ditfficulties during loading (or link-editing).
If needed, a 1larger stack can be declared in the MAIN
program (see Sec. U4).

To provide INTEGER, REAL and COMPLEX aliases for the
stack the following declarations may be included:

INTEGER ISTAK(1000)
REAL KSTAK (1000)
COMPLEX CMSTAK (500)

SQUIVALENCE (DSTAK(1),ISTAK(1))
EQUIVALENCE (DSTAK (1) ,KSTAK (1))
LQUIVALENCE (DSTAK(1),CMSTAK(1))

If any of these 1s not wanted, its declaration and
EQUIVALENCE to DSTAK may Le left out.

- 3 -

We now present two basic subprograms, IALLOC and DAL~
LOC, for allocating and de-allocating stack space, respec-
tively. The allocation subprogram is

INTEGER FUNCTION IALLOC (NITEMS,ISIZE)
where NITEMS is the number of items of size ISIZE words to

be allocated. The most commonly used values of ISIZE are as
follows:

item Type ISIZE
INTEGER 1
REAL 1
DOUBLE PRECISION 2
COMPLEX 2

The statement
I = IALLOC(N,1)
returns an index I so that the locations
ISTAK(I) , <+« ¢ ISTAK(I+N-1)

form the storage allocated for N INTEGER items. Altexrna-
tively, the locations

RSTAK (1) # weses g RSTAK (I"‘N-‘l)
can be thought of as the space allocated for N REAL items.
Note that the space allocated is not initialized to any par-
ticular value.

The statement

I = IALLOC(N,2)
returns an index I so that the locations

DSTAK(I) 4 <+« o DSTAK(I+N-1)

form the space allocated for N DOUBLE PRECISION items.
Similarly, the locations

CMSTAK(I) o <« , CMSTAK (I+N-1)

can be thought of as the space allocated for N COMPLEX
items.

It is important to note that ISIZE is not a switch that
determines what type of allocation is desired. Rather, it

- lf -

determines the alignment and number of words for each item.
Thus, if a FORTRAN compiler supports DOUBLE PRECISION COM-
PLEX declarations, allocations for this data type can be ac-
complished in the following way:

COMMON /CSTAK/DSTAK (500)

DOUBLE PRECISION DSTAK
DOUBLE PRECISION COMPLEX DCSTAK (250)

EQUIVALENCE (DSTAK(1) ,DCSTAK (1))

~
I e

IALLOC (N, 4)

and the allocated space would be the locations

DCSTAK (Ij g eee g DCSTAK (I*N-1) -

The de-allocation subprogram is
SUBROUTINE DALLOC (N)
which simply de-allocates the last N allocations.

As a simple example of the use of these two sub-
programs, consider a "little black box" subroutine LBB (A,N)
which is supposed to return something in a REAL vector A of
length N and requires two REAL scratch arrays of length N to
do it. LBB would look roughly as follows:

SUBROUTINE LBB (AgN)

C
COMMON /CSTAK/DSTAK (500)
C
DOUBLE PRECISION DSTAK
REAL A(N)
REAL RSTAK (1000)
C
EQUIVALENCE (DSTAK(1) RSTAK(1))
&
IB = IALLOC(N,1)
IC = IALLOC(Ng1)
{ code referring to RSTAK(IB+n) and RSTAK(IC+m) }
CALL DALLOC(2)
e

RETURN
END

- 5 =

To avoid messy (and possibly non-standard) subscript
calculations, it is sometimes more convenient to pass the
arguments and the allocated scratch space down one more
level to a subprogram which does the real work. This not
only will make programs more readable and easier to code,
but it will, in many cases, make them more efficient. LBB
would be coded as an "executive" routine calling on a "work-
horse" routine, as follows:

SUBROUTINE LBB(A,N)

C
COMMON /CSTAK/DSTAK (500)
4
DOUEBLE PRECISION DSTAK
REAL A (N)
REAL RSTAK (1000)
&
EQUIVALENCE (DSTAK (1) ,RSTAK (1))
C
IB = IALLOC(N,1)
IC = IALLOC(N,1)
C
CALL LBB1 (A,RSTAK (IB) ,RSTAK (IC) ,N)
&
CALL DALLOC(2)
RETURN
END
4, niti ization

As previously mentioned, the subprograms in the alloca-
tion package are all self-initializing so that a user with
small requirements need not even know of their existence.
However, there will be applications which require a larger
stack than that provided by default. In this case, declara-
tions for the stack and an explicit call to an initializa-
tion subprogram must be made in the MAIN program. The
initialization subprogram is

SUBROUTINE STINIT(NITEMS,ISIZE)

where NITEMS is the number of items of size ISIZE words set
aside for the stack.

- 6 -

For example, to set up a stack with 1000 DOUBLE PRECI-
SION 1items or, equivalently, 2000 INTEGER items, the fol-
lowing declarations and subroutine call would be used.

COMMON /CSTAK/DSTAK (1000)
&
DOUBLE PRECISION DSTAK

CALL STINIT(1000,2)

If desired, the CALL STINIT above could have been
replaced by:

CALL STINIT(2000,1)

It should be noted that the first four words of the
stack are reserved for use by the allocator and that each
allocation has an associated space overhead of at least 2,
but no more than ISIZE+1 words. When estimating the length
of the stack required, these overheads should be taken into
account. To determine the exact stack length required, one
can use the SRECAP subprogram (see Sec. 5).

5. Miscellapneous Subprograms

By design, it is considered a fatal error to attempt to
allocate more space than is actually available. The error
could have been made recoverable (in the sense of [2]) but
it was felt that this would unnecessarily complicate both
implementation and use. For those situations when it is
desirable to know how much stack remains so that it may all
be allocated, the subprogram

INTEGER FUNCTION NIRALL (ISIZE)

can be used. NIRALL returns the number of items of size
ISIZE remaining to be allocated in a single invocation of
IALLOC. (Recall from Section 4 that there are 2 or more
words of space overhead associated with each allocation. If
the stack is effectively full, NIRALL will return 0). The
statements

NLEFT = NIRALL(1)
I = IALLOC(NLEFT, 1)

allocate all remaining space as a single block of INTEGER or
REAL items.

- 7 =

In some applications it may be necessary to change the
size ot the most recent allocation. This can be accom-
plished with the subprogram

INTEGER FUNCTION MTSTAK (NITEMS)

which will reset the length of the last allocation to NITEMS
items and, in a manner similar to IALLOC, return the index
of the first item of that allocation. If the last alloca-
tion 1is truncated, only the first NITEMS are preserved. If
the last allocation is extended, existing information is
preserved but the added space is not initialized.

As an example of the use of NIRALL and MTSTAK, the fol-
lowing program £fragment reads an indeterminate number of
positive REALs into the stack. For convenience, we assume
that a negative data item marks the end of the data.

-

C
C FIND OUT HOW MUCH STACK SPACE IS LEFT
C AND ALLOCATE IT ALL.
C
NLEFT = NIRALL(1)
IF (NLEFT .EQ. 0) GO TO error
I = IALLOC(NLEFT,1)
C
C INITIALIZE COUNT OF ITEMS READ SO FAR.
c
NITEMS = 0
c
C READ AN ITEM INTO THE STACK AND TEST FOR END-OF-DATA.
C

10 IF (NITEMS .EQ. NLEFT) GO TO error
READ (6,100) RSTAK(I)
100 FORMAT (F10.6)

C
IF (RSTAK(I) .LT. 0) GO TO 20
C
NITEMS = NITEMS + 1
I=1I+1
GO TO 10
c

C HERE WHEN ALL DATA READ. TRUNCATE THE ALLOCATION
C
20 IF (NITEMS .EQ. 0) GO TO error
I = MTSTAK (NITEMS)

NOW THE ITEMS ARE IN LOCATIONS

noaoao

The subprogram
SUBROUTINE SRECAP (IUNIT)

will write on logical unit IUNIT a summary of the status of
the stack, namely the number of outstanding allocations, the
current active length, the maximum length used and the max-
imum length allowed. Typically, this subroutine would be
called at the end of a run to obtain five 1lines of output
like the following

STACK STATISTICS...

OQUTSTANDING ALLOCATIONS 0
CURRENT ACTIVE LENGTH 4
MAXIMUM LENGTH USEL 1825
MAXIMUM LENGTH ALLOWED 9000

which says that the same or a similar run could be made with
only 1825 INTEGER words in the stack and that since the
number of outstanding allocations is 0, all allocations have
been successfully de-allocated. This information provides a
check on the balancing of allocations and de-allocations.

6. Portability Considerations

In the implementation of the allocator, every attempt
has been made to ensure portability [3,4]. Nevertheless, it
has been necessary to make two assumptions about FORTRAN
that are valid for most production systems.

First it is assumed that there is no subscript range
checking. Second it is assumed that variables local to a
subprogram which are initialized by DATA statements retain
their values from one subprogram invocation to the next.

Also, in order to adhere to a strict interpretation of
the FORTRAN Standard [5, Sec 10.2.5], it is necessary in the
MAIN program to declare the COMMON region CSTAK and to call
the subroutine STINIT. These precautions will ensure that
data stored in the stack will not be lost when using over-
lays (segments) or when running under FORTRAN systems in
which COMMON is dynamically allocated.

7. Implementation Notes

Each allocation consists of three parts: padding, ai-
located space, and control information. The padding takes
from 0 to ISIZE~1 words and is present to provide the proper
alignment for the allocated space which occupies
NITEMS*ISIZE words. The control information takes two words
the first of which contains ISIZE. The second word contains
the index (in ISTAK) of the second word of the control in-
formation associated with the previous allocation. If there
is no previous allocation, this contains 4.

The first four locations in ISTAK contain the following
data:

ISTAK(1) = the number of outstanding allocations

ISTAK(2) = the current active length of the stack
(second control word of last allocation)

ISTAK(3) = the maximum value of ISTAK(2) achieved so far
during the run

ISTAK(4) = the maximum possible length of the stack.

All lengths are in words (FORTRAN INTEGER variables) and the
default value of ISTAK(4) is 1000.

The consistency of these data and the control informa-
tion associated with the last allocation is checked on every
call to allocator. If an inconsistency is found, the Error
Handler (2] is called to deliver an appropriate message and
terminate the run.

References

"Revised Report on the Algorithmic Language ALGOL 60,"
Comm. ACM, vol. 6 (1963), p. 1.

A. D. Hall and N. L. Schryer, A Centralized Error
Handling Facility for Portable FORTRAN Libraries, this
report.

B. G. Ryder, The PFORT Verifier, Software Practice and

Experience, Vol. 4, No. 4, (October-December 1974), pp-
359-377.

A. D. Hall and B. G. Ryder, The PFORT Verifier, Computing
Science Technical Report #12, Bell Laboratories, Murray
Hill, N. J., 07974 (March 1975).

USA Standard FORTRAN, USA Standards Institute, New York,
N. Y., 1966.

nonoonoonooonooooooOooOocn0On0n

(g}

Appendix

INTEGER FUNCTION IALLOC (NITEMS,ISIZE)

ALLOCATES AN ARRAY OF LENGTH NITEMS*ISIZE OUT
OF THE INTEGER ARRAY ISTAK. ON RETURN, THE ARRAY WILL OCCUPY ...

ISTAK ((1+ (IALLOC- 1) *ISIZE) 4« « « ¢ ISTAK ((IALLOC- 1+NITEMS) *ISIZE))

ERROR

EWN =

STATES -

ONE OF (LNOW,LUSED,LMAX) HAS BEEN OVERWRITTEN.
NITEMS.LE.O.

ISIZE.LE.O.

STACK OVERFLOW.

THE ALLOCATOR RESERVES THE FIRST FOUR INTEGER WORDS OF THE STACK
FOR ITS OWN INTERNAL BOOK-KEEPING. THE USE OF THESE FOUR WORDS IS
DESCRIBED BELOW

ISTAK (1)
ISTAK (2)

THE NUMBER OF CURRENT OUTSTANDING ALLOCATIONS.
THE CURRENT ACTIVE IENGTH CF THE STACK IN INTEGER WORDS.

ISTAK(3) - THE MAXIMUM VALUE OF ISTAK(2) ACHIEVED SO FAR DURING

ISTAK (4)

THE RUN.
THE MAXIMUM LENGTH THE STACK CAN HAVE, IN INTEGER WORDS.

COMMON /CSTAK/DSTAK

DOUBLE PRECISION DSTAK (500)
REAL RSTAK(1000)

INTEGER ISTAK(1000)
LOGICAL INIT

EQUIVALENCE (DSTAK (1) ,RSTAK(1),ISTAK (1))
EQUIVALENCE (ISTAK (1) ,LOUT)
EQUIVALENCE (ISTAK(2) ,LNOW)
EQUIVALENCE (ISTAK (3),LUSED)
EQUIVALENCE (ISTAK (4),LMAX)

DATA INIT/.TRUE./

iF
IF
1

iF
IF

(INIT) CALL SOTAKO (INIT,1000)

(LNOW.LT.4.0R.LNOW.GT.LUSED.CR. LUSED.GT.LMAX) CALL SETERR
(S4HIALLOC - ONE OF (LNOW,LUSED,LMAX) HAS BEEN OVERWRITTEN,
54,1,2)

(NITEMS.LE.0) CALL SETERR (20HIALLOC - NITEMS.LE.0,20,2,2)
(ISIZE.LE.O) CALL SETERK (19HIALLOC - ISIZE.LE.O, 19,3,2)

IALLOC = (LNOW=1)/ISIZE+2

I

(IALLOC-1+NITEMS) *ISIZE+2

oonNnon 00

oooooonOOOnn

P

- AD -
STACK OVERFLOW IS AN UNRECOVERABLE ERROR.
IF (I.GT.LMAX) CALL SETERR(23HIALLOC - STACK OVERFLOW, 23,4, 2)

ISTAK (I-1) CONTAINS THE ITEM SIZE FOR THE FRAME.
ISTAK(I) CONTAINS A POINTER TO THE END OF THE PREVIOUS

ALLOCATION.
ISTAK (I-1) = ISIZE
ISTAK (I) = LNOW

LOUT = LOUT+1

LNOW = I

LUSED = MAXO0 (LUSED, LNOW)
RETURN

END

SUBROUTINE DALLOC (NUMBER)

DE-ALLOCATES THE LAST (NUMBER) ALLOCATIONS MADE IN THE STACK
BY IALLOC.

ERROR STATES -

- NUMBER.LT. 0.

- ONL OF (LNOW,LUSED,LMAX) HAS BEEN OVERWRITTEN.

- CANNOT DE-ALLOCATE MORE THAN THE ENTIRE STACK.

- THE POINTER AT ISTAK(LNOW) HAS BEEN OVERWRITTEN.

F L=

COMMON /CSTAK/DSTAK

DOUBLE PRECISION DSTAK (500)
REAL RSTAK (1000)

INTEGER ISTAK(1000)
LOGICAL INIT

EQUIVALENCE (DSTAK (1) +RSTAK (1),ISTAK (1))
EQUIVALENCE (ISTAK(1) ,LOUT)
EQUIVALENCE (ISTAK(2) ,LNOW)
EQUIVALENCE (ISTAK (3) ,LUSED)
EQUIVALENCE (ISTAK(4) ,LMAX)

DATA INIT/.TKUE./

IF (INIT) CALL SOTAKO (INIT,1000)

IF (NUMBER.LT.0) CALL SETERR (20HDALLOC - NUMBER.LT.0,20,1,2)
IF (LNOW.LT.4.0R.LNOW.GT.LUSED.OR.LUSED.GT.LMAX) CALL SETERR

1 (54HDALLOC - ONE OF (LNOW,LUSED,LMAX) HAS BEEN OVERWRITTEN,
2 54,2,2)

oo

0

_A3-

IN = NUMBER
10 IF (IN.EQ.0) RETURN

IF (LNOW.EQ.4) CALL SETERR
1 (S4HDALLOC - CANNOT DE-ALLCCATE MORE THAN THE ENTIRE STACK,
2 54,3,2)

CHECK TO MAKE SURE THE BACK PCINTERS ARE MONOTONE.

IF (ISTAK(LNOW) «LT.4.0R.ISTAK (LNOW) .GE.LNOW-2) CALL SETERR
1 (56 HDALLOC - THE POINTER AT ISTAK(LNOW) HAS BEEN OVERWRITTEN,
2 56,4,2)

LOUT = LOUT-1
LNOW = ISTAK (LNOW)
IN = IN-1

GO TO 10

L}

]

END

SUBROUTINE STINIT(NITEMS,ISIZE)
INITIALIZES THE STACK ALLOCATOR, SETTING THE LENGTH OF THE STACK.
ERROR STATES -

1 i NITEMS.LE- 0 .
2 = ISIZE.LE.OQ.

IF (NITEMS.LE.O) CALL SETERR (20HSTINIT - NITEMS.LE.0,20,1,2)
IF (ISIZE.LE.O) CALL SETERR(19HSTINIT - ISIZE.LE.O, 19,2,2)

CALL SOTAKO (.FALSE. ,NITEMS*ISIZE)
RETURN

END

ooooOoonooon

(9]

oonononooon

- Al -
INTEGER FUNCTION NIRALL(ISIZE)

RETURNS THE NUMBER OF ITEMS CF SIZE ISIZE THAT REMAIN
TO BE ALLOCATED IN ONE REQUEST.

ERROR STATES -

1 - ONE OF (LNOW,LUSED,LMAX) HAS BEEN OVERWRITTEN.
2 - ISIZE.LT.1-

COMMON /CSTAK/DSTAK

DOUBLE PKECISION DSTAK (500)

REAL RSTAK(1000)

INTEGER ISTAK(1000)

LOGICAL INIT

EQUIVALENCE (DSTAK (1) ,RSTAK (1),ISTAK(1))

EQUIVALENCE (ISTAK(1) ,LOUT)

EQUIVALENCE (ISTAK(2) ,LNOW)

EQUIVALENCE (ISTAK (3) ,LUSED)

EQUIVALENCE (ISTAK (4) ,LMAX)

DATA INIT/.TRUE./

IF (INIT) CALL SOTAKO (INIT,1000)

IF (LNOW.LT.4.OR.LNOW.GT.LUSED.OR.LUSED.GT.LMAX) CALL SETERR
1 (S4HNIRALL - ONE OF (LNOW,LUSED,LMAX) HAS BEEN OVERWRITTEN,
2 54,1,2)

IF (ISIZE.LT.1) CALL SETERR
1 (19HNIRALL - ISIZE.LT.1,19,2,2)

NIRALL = MAX0((LMAX-2)/ISIZE-(LNOW-1)/ISIZE-1, 0)
RETURN

END

INTEGER FUNCTION MTSTAK(NITEMS)

CHANGES THE LENGTH OF THE FRAME AT THE TOP OF THE STACK
TO NITEMS.

ERROR STATES -

1 - LNOW HAS BEEN OVERWRITTEN.
2 = ISTAK (LNOWO-1) HAS BEEN OVERWRITTEN.

COMMON /CSTAK/DSTAK

Q OO0

_As-

DOUBLE PRECISION DSTAK (500)
REAL RSTAK(1000)
INTEGER ISTAK(1000)

EQUIVALENCE (DSTAK (1) ,RSTAK (1), ISTAK (1))
EQUIVALENCE (ISTAK(1),LOUT)
EQUIVALENCE (ISTAK (2) LNOW)
EQUIVALENCE (ISTAK (3),LUSED)
EQUIVALENCE (ISTAK (4) ,LMAX)

LNOWO = LNOW
CALL DALLOC (1)

IF (LNOWO.LT.7) CALL SETERR
1 (34HMTSTAK - LNOW HAS BEEN OVERWRITTEN,34,1,2)

ISIZE = ISTAK (LNOWO-=1)

IF (ISIZE.LT.1) CALL SETERR
1 (44HMTSTAK - ISTAK(LNOWO-1) HAS BEEN OVERWRITTEN,44,2,2)

MTSTAK = IALLOC(NITEMS,ISIZE)
RETURN

END

SUBROUTINE SRECAP (IWUNIT)
WRITES LOUT, LNOW, LUSED AND LMAX ON LOGICAL UNIT IWUNIT.
COMMON /CSTAK/DSTAK

DOUBLE PRECISION DSTAK (500)
REAL RSTAK (1000)

INTEGER ISTAK(1000)
INTEGER ISTATS (4)

LOGICAL INIT

EQUIVALENCE (DSTAK (1) ,RSTAK (1),ISTAK (1))
EQUIVALENCE (ISTAK(1),ISTATS(1))
EQUIVALENCE (ISTAK (1) ,LOUT)

EQUIVALENCE (ISTAK (2) ,LNOW)

EQUIVALENCE (ISTAK(3) ,LUSED)
EQUIVALENCE (ISTAK(4) ,LMAX)

DATA INIT/.TRUE./

IF (INIT) CALL SOTAKO (INIT,1000)

—~

o

o aoon

0

nnNnao

oMo NP

90

10

- A6 -
WRITE (IWUNIT,9000) ISTATS

00 FORMAT (20HOSTACK STATISTICS...//

24H OUTSTANDING ALLOCATIONS,I8/
24H CURRENT ACTIVE LENGTH ,I8/
24H MAXIMUM LENGTH USED 18/
24H MAXIMUM LENGTH ALLOWED ,I8)

W -

RETURN

SUBROUTINE SOTAKO (LARG,LENGIH)
INITIALIZES THE STACK TO LENGTH INTEGER WORDS
COMMON /CSTAK/DSTAK
DOUBLE PRECISION DSTAK (500)
REAL RSTAK (1000)
INTEGER ISTAK (1000)
LOGICAL LARG,INIT
EQUIVALENCE (DSTAK (1) ,RSTAK (1) ,ISTAK (1))
EQUIVALENCE (ISTAK (1) ,LOUT)
EQUIVALENCE (ISTAK (2) ,LNOW)
EQUIVALENCE (ISTAK (3) ,LUSED)
EQUIVALENCE (ISTAK (4) ,LMAX)
DATA INIT/.FALSE./
IF (.NOT.LARG) GO TO 10
HERE IF NOT FROM STINIT

LARG = .FALSE.
IF (INIT) RETUKN

HERE TO INITIALIZE

INIT = .TRUE.

Lout = 0

LNOW = 4

LUSED = 4

LMAX = MAXO (LENGTH,6)
RETURN

END

A Centralized Error Handling Facility
for Portable FORTRAN Libraries

by

A. D. Hall and N. L. Schryer
Bell Lakoratories
Murray Hill, New Jersey

STRACT

Although it is obvious and widely recognized that
library procedures intended for general use ought to check
for incorrect arguments and other error conditions, most
FORTRAN subprograms avoid such testing because the required
code is annoyingly awkward and bulky. This paper presents a
portable centralized error handling facility which permits a
subprogram to detect an error, print an appropriate message,
and terminate execution all in a single statement.

The facility also allows a subprogram to indicate an
error condition and then return control to its caller if the
caller so desires. The caller may either retrieve the error
number and choose to print the saved message and terminate
execution, or leave the error state and proceed by an
alternative route, or return control to its caller if the
latter is willing.

The use of the facility leads to clean, simple code for
the detection and handling of error conditions, and provides
a uniform mechanism for passing error information from one
subprogram to another. The need for additional arguments in
calling sequences is avoided.

A Centralized Error Handling Facility
for Portable FORTRAN Libraries

by
A. D. Hall and N. L. Schryer
Bell Lakoratories
Murray Hill, New Jersey

1. Introduction

Although it is obvious and widely recognized that
library procedures intended for general use ought to check
for incorrect arguments and other error conditions, most
programs avoid such testing because the required code is
annoyingly awkward or bulky. For example, to ensure that
the dimension, N, of an array is positive and issue an
appropriate diagnostic if not, one would have to write

IF (N .GE. 1) GO TO 10
WRITE(6,9000)

9000 FORMAT (19H N IS LESS THAN ONE)
CALL FDUMP
STOP

o]

10 CONTINUE

where FDUMP is a locally provided subroutine intended to
produce a dump (hopefully symbolic, see Section 6).

Another drawback to the above, non-centralized, error
handling method is that i¢ terminates execution
unconditionally even though the calling subprogram might
want to recover control and either correct the error or
proceed by an alternative route.

This paper describes an Error Handler designed around
the idea that most errors detectable in library subprograms
are fatal while only a few are recoverable. We consider an
error fatal if it prevents a program or subprogram from
obtaining computationally useful results. For example, a
non-positive dimension for an adjustably dimensioned array
would be considered a fatal error. In this case, a single
subroutine call will suffice to print an error message and
terminate the run with a dump.

We consider an error recoverable only if a calling
subprogram might use that fact to obtain computationally
useful results. For example, a singular matrix in a
triangqularization subprogram might be considered a

-2

recoverable error. In this case, the called subprogram sets
an error state with a single subroutine call and provides
code for return of control to the caller. If the caller has
set the recovery mode on, control will be returned and the
caller may test for the presence of an error and take
appropriate action. If the caller has set the recovery mode
off, the error will be treated as if it were fatal and the
caller need not provide any code whatsoever for handling the
error.

Listings of the subprograms comprising the Error
Handler are given in the Appendix.

2. Error Setting

This section describes the use of the error-setting
subroutine, SETERR.

The following statement:
CALL SETERR (MESSG, NMESSG, NERR, IOPT)

sets an error state with the Hollerith message MESSG of
length NMESSG characters (1 £ NMESSG £ 72), and error number
NERR. The parameter IOPT determines what action is to be
taken by SETERR, as follows:

If IOPT = 1, the error is recoverable; but if not in
recovery mode, SETERR simply prints the message and
stops. If in recovery mode, SETERR records the error
number and message, sets the error state, and returns.

If IOPT = 2, the error is fatal; SETERR prints the
message, produces a dump and stops.

Messages are written on the standard output unit wused for
error messges [1].

The following simple dot product function illustrates
the use of SETERR for a fatal error.

REAL FUNCTION DOT (A, B, N)
REAL A(N), B(N)

c
IF (N .LT. 1) CALL SETERR(12HDOT - N.LT.1, 12, 1, 2)
c
DOT = 0.0
DO 10 I = 1, N
10 DOT = DOT + A(I)*B(I)
c
RETURN

END

G .

The above call to SETERR indicates that "N.LT.1" is the
first error condition (NERR = 1) in "DOT" and that it is a
fatal (IOPT = 2) error. In case of such an error, the
following line would be output

ERROR 1 IN DOT - N.LT.1

followed by a dump and termination of the run. We adopt the
convention that all error messages begin with the name of
the package or subprogram which produced the error.

An example of the use of SETERR for recoverable errors
is given at the end of Section 4.

3. Error Recovery

Recovery from an error is permitted only when the value
of IOPT is 1 in the call to SETERR. In this case, a
recovery switch internal to the error handling routines is
tested to see if recovery is permitted. If the value of the
recovery switch is 1, recovery is permitted, and SETERR
records the error number and message, sets the error state,
and returns control to the caller. If the wvalue of the
recovery switch is 2, the error message is printed and the
run terminated. Execution begins with the recovery switch
set to 2, so that all errors are considered fatal.

Two subroutines, ENTSRC and RETSRC, are provided for
manipulating the recovery switch. ENTSRC 1is used to
retrieve the o0ld value of the recovery switch and
simultaneously set a new value. RETSRC is used to restore
the recovery switch to its previous value. ENTSRC, RETSRC
and SETERR are so designed that a program can never be in
the error state unless the value of the recovery switch is
1-

When IRNEW is 1 or 2, the statement
CALL ENTSRC (IROCLD, IRNEW)

sets the recovery switch to IRNEW and returns the previous
value in IROLD. If IRNEW is 0, the recovery switch is left
unchanged and the current value returned in IROLD. It 1le
considered a fatal error to call ENTSRC with a value of
IRNEW other than 0, 1, or 2.

The statement

CALL RETSRC (IROLD)

restores the recovery switch to IROLD. It is considered a
fatal error if IROLD has a value other than 1 or 2.

-lj

Typically, calls of ENTSRC and RETSRC are used to
surround sections of program where it is desired to force a
particular setting of the recovery switch and then restore
it to its previous value. For example, to turn recovery
mode on upon entry to a subprogram and restore it to its
previous value upon return, the following coding is used:

SUBROUTINE WORKER

c
CALL ENTSRC (IROLD,1)
CALIL RETSRC (IROLD)
RETURN

c
END

Recovery from recoverable errors is a two-sided
process, with the called subprogram setting an error state
(via SETERR) and the caller then testing for, and responding
to, that error state. If a subprogram explicitly puts
itself in recovery mode (via ENTSRC), it should test for the
occurrence of an error after any call to a subprogram that
might set a recoverable error state. If an error has
occurred, the subprogram may choose to either (1) force
printing of the saved message and terminate execution, (2)
leave the error state and proceed by an alternative route,
or (3) return control to its caller if the latter is
willing.

Two errors in a row, with no explicit recovery
statement between, 1is regarded as a fatal error since it
means that the user has failed to recover properly from an
error condition. Similarly, it is a fatal error to call
ENTSRC while the program is in the error state, or ¢to call
RETSRC with IROLD = 2 while the program is in the error
state. In each of these three cases, two error messages are
printed and execution stops.

Every call of a subprogram that has recoverable error
conditions and could be executed in recovery mode should be
followed by a test for an occurrence of an error. The error
number may be retrieved by writing

NERR2 = NERROR (NERR1)

which sets both NERR2 and NERR1 to the current value of the
error number. If the errcor number is non-zero, it means
that an error has occurred and that corrective action must
be taken. When done, the error state may be left by writing

CALL ERROFF

-5

A typical wuse of ENTSRC, RETSRC and NERROR in a
subprogram takes the following form:

SUBROUTINE WORKER

- 8 9

SET RECOVERY MODE ON.

Qa0

CALL ENTSRC (IROLD, 1)
CALL SUBPRG
IF (NERROR(NERR) .EQ. 0) GO TO 10

ERROR IN SUBPRG. TAKE ONE OF THE THREE
CORRECTIVE ACTIONS PRESENTED BELOW:

(1) TERMINATE EXECUTION

(2) LEAVE THE ERROR STATE AND PROCEED BY
ALTERNATIVE ROUTE

(3) RETURN AN ERRCR TO CALLER

noOoOoonNOnNOnN

NO ERROR. PROCEED.

QOn

10 - 8 a

RESTORE PREVIOUS RECOVERY MODE AND RETURN

oo

20 CALL RETSRC (IROLD)
RETURN

END

Possible ways of coding the three alternatives outlined

in the above program are given below.
(1) Terminating execution

c

c ERROR IN SUBPRG. TERMINATE EXECUTION
C BY FORCING A DOUBLE ERROR.
=

CALL SETERR (22HWORKER - SUBPRG FAILED, 22, 1, 2)

-
(2) Proceeding by an alternative route

C
c ERROR IN SUBPRG. TRY SOMETHING ELSE,

c
CALL ERROFF

& & a

GO TO 20

(3) Returning an error to the caller

Cc

Y ERROR IN SUBPRG. RETURN NEW ERROR TO CALLER.

c
CALL ERROFF
CALL SETERR (22HWORKER - SUBPRG FAILED, 22, 1, 1)
GO TO 20

To avoid having to deal with recoverable errors at all,
the subroutine WORKER illustrated above could be coded as
follows:

SUBROUTINE WORKER

SET RECOVERY MODE OFF SC THAT ERRORS IN
ANY SUBPROGRAMS ARE IMMEDIATELY FATAL.

[pNeNeNO]

CALL ENTSRC (IROLD, 2)

CALL SUBPRG

RESTORE PREVIOUS RECOVERY MODE AND RETURN.

o0

CALL RETSRC (IROLD)
RETURN

END

4. Returning in the Error State

For NERROR to work reliakly, it is important that the
error number, if non-zero, be due to an error in the
subprogram invoked in the preceeding statement. This can
only be guaranteed in the current framework if we are
certain tnhat the program is not in the error state when that
subprogram is invoked. Otherwise, the subprogram could
succeed but NERROE would report an error. To ensure that
this does not happen, we adopt the convention that any
subprogram which can return one or more recoverable errors

o =

and might be invoked while in the error state must begin
with a call to ENTSRC, even if only to check this condition.
A corresponding call to RETSRC 1is necessary prior to
returning only if the recovery switch is altered by the call
to ENTSRC (IRNEW # 0).

A simple subprogram which returns recoverable errors
might be coded roughly as follows:

SUBROUTINE WORKER

C
(o CHECK FOR EXISTING ERRCR STATE
c
CALL ENTSRC(IDUMMY, 0)
C
C IF ZERO PIVOT, SET ERROR AND RETURN-.
C
IF (X(I,J) .NE. 0.) GC TO 10
CALL SETERR(19HWORKER - ZERO PIVOT, 19, 1, 1)
RETURN
e

10 CONTINUE

5. Debugging and Testing

When testing subprograms which can return a recoverable
error, it is often desirable to print the error number and
associated message, and the subroutine EPRINT is provided
for this purpose. For example, if the statements

CALL LBB
CALL EPRINT
IF(NERROR(IERR) .EQ. 0) GO TO 10

are executed in recovery mode, and if a recoverable error
occurs in LBB, then EPRINT will print the corresponding
message.

6. Implementation Notes

In the implementation of the Error Handler, every
attempt has been made to ensure portability [2,3]. However,
it has been necessary to make an assumption about FORTRAN
systems which is almost wuniversally wvalid, but not
guaranteed by the FORTRAN Standard [4]. Specifically, it

-

has been assumed that local variakles initialized by DATA
statements retain their values from one subprogram
invocation to the next. (This assumption is likely to be
violated in the presence of overlays.)

SETERR also calls a subroutine FDUMP to produce a dump.
Ideally, this dump ought to be symbolic in the sense of
[5,6,7,8], and not simply a sheaf of octal or hexadecimal
constants. More specifically, for each active subprogram a
symbolic dump should list the names and values of all its
variables, the name of its caller, and the location in the
caller from which it was called. Since it is impossible to
write a portable FORTRAN subprogram to print symbolic dumps
in a an arbitrary FORTRAN environment, such a subprogram has
not been included. Instead, a dummy version of FDUMP has
been supplied which may be replaced by a locally sugpplied
subroutine.

Te

8.

References

P. A. Fox, A. D. Hall and N. L. Schryer, Machine
constants for Portable FORTRAN Libraries, this report.

B. G. Ryder, The PFORT Verifier, Software Practice and
Experience, Vol. 4, No. 4, (October-December 1974),

A. D. Hall and B. G. Ryder, The PFORT Verifier, Computing
Science Technical Report #12, Bell Laboratories, Murray
Hill, N. J., 07974 (March 1975).

American National Standard FORTRAN, American National
Standards Institute, New York, N. Y., 1966.

W. S. Brown, An Operating Environment for Dynamic
Recursive Computer Programming Systems, Comm. ACM,
Vol. 8, (1965), pp. 371-377.

R. Bayer, D. Gries, M. Paul and H. R. Wiehle, The ALCOR
Illinois 709077094 Post Mortem Dump, Comm. ACM, Vol. 10,

A. D. Hall, FORTREX: GECOS III Extended FORTRAN, Bell
Laboratories Computer Center, unpublished
(November 1968) .

A. D. Hall, FDS: A FORTRAN Debugging System - Overview
and Installer’s Guide, Computing Science Technical Report
#29, Bell Laboratories, Murray Hill, Ne: Fap 07974
(May 1975).

nnoonNoonNNoaOoNnNoOONNOOOONNONONONN

0 oon

C

8
&
Cc

c

Appendix

SUBROUTINE SETERR (MESSG, NMESSG, NERR, IOPT)

SETERR SETS LERROR = NERR, OPTIONALLY PRINTS THE MESSAGE AND
DUMPS ACCORDING TO THE FOLLOWING RULES...

IF IOPT = 1 AND RECOVERING - JUST REMEMBER THE ERROR.

IF IOPT = 1 AND NOT RECOVERING - PRINT AND STOP.

IF IOPT = 2 = PRINT, DUMP AND STOP.
INPUT

MESSG - THE ERROR MESSAGE.

NMESSG - THE LENGTH OF THE MESSAGE, IN CHARACTERS.
NERR - THE ERROR NUMBER. MUST HAVE NERR NON-ZERO.
IOPT - THE OPTION. MUST HAVE IOPT=1 OR 2.

ERROR STATES -

- MESSAGE LENGTH NOT POSITIVE.

- CANNOT HAVE NERR=0.

- AN UNRECOVERED ERROR FOLLOWED BY ANOTHER ERROR.
= BAD VALUE FOR IOPT.

FWwh -

ONLY THE FIRST 72 CHARACTERS OF THE MESSAGE ARE PRINTED.

THE ERROR HANDLER CALLS A SUBROUTINE NAMED FDUMP TO PRCDUCE A
SYMBOLIC DUMP. TO COMPLETE THE PACKAGE, A DUMMY VERSION OF FDUMP
IS SUPPLIED, BUT IT SHOULLD BE REPLACED BY A LOCALLY WRITTEN
VERSION WHICH AT LEAST GIVES A TRACE-BACK.

INTEGER MESSG(1)

THE UNIT FOR ERROR MESSAGES.
IWUNIT=I 1MACH (4)
IF (NMESSG.GE.1) GO TO 10
A MESSAGE OF NON-POSITIVE LENGTH IS FATAL.
WRITE (IWUNIT, 9000)
9000 FORMAT (52H1ERROR 1 IN SETERR - MESSAGE LENGTH NOT POSITIVE.)
GO TO 60
NW IS THE NUMBER OF WORDS THE MESSAGE OCCUPIES.

NW= (MINO (NMESSG, 72) - 1) /I 1MACH (6) +1

IF (NERR.NE.0) GO TO 20

C
C CANNOT TURN THE ERROR STATE CFF USING SETERR.
C

WRITE (IWUNIT,9001)
9001 FORMAT (42H1ERROR 2 IN SETERR - CANNOT HAVE NERR=0//
1 34H THE CURRENT ERRCR MESSAGE FOLLOWS///)

CALL E9RINT (MESSG,NW,NERR, . TRUE.)
ITEMP=I8SAVE(1,1,.TRUE.)
GO TO 50
c
C SET LERROR AND TEST FOR A PREVIOUS UNRECOVERED ERROR.
c
20 IF (I8SAVE(1,NERR,.TRUE.).EQ.0) GC TO 30
c
WRITE (IWUNIT,9002)
9002 FORMAT (23H1ERROR 3 IN SETERR -,

1 48H AN UNRECOVERED ERROR FOLLOWED BY ANOCTHER ERROR.//
2 48H THE PREVICUS ANLC CURRENT ERROR MESSAGES FOLLOW.///)

CALL EPRINT
CALL E9RINT(MESSG,NW,NERR, . TRUE.)

GO TO 50
o
C SAVE THIS MESSAGE IN CASE IT IS NOT RECOVERED FROM PROPERLY.
c
30 CALL E9RINT (MESSG,NW,NERR,.TRUE.)
c
IF (IOPT.EQ.1 .OR. IOPT.EQ.2) GO TO 40
c .
C MUST HAVE IOPT = 1 OR 2.
c
WRITE (IWUNIT, 9003)
9003 FORMAT (42H1ERROR 4 IN SETERR - BAD VALUE FOR IOPT//
1 34H THE CURRENT ERROR MESSAGE FOLLOWS///)
GO TO 50
c
C TEST FOR RECOVERY.
c
40 IF (IOPT.EQ.2) GO TO 50
c .
IF (I8SAVE(2,0,.FALSE.).EQ.1) RETURN
c
CALL EPRINT
STOP
c

50 CALL EPRINT
60 CALL FDUMP
STOP

END

aonnaooooaoanonOooOnn

0

NN nNn

(@]

= K3 =
SUBROUTINE ENTSRC (IROLD,IRNEW)
THIS ROUTINE RETURNS TROLD = IRECOV AND SETS LRECOV = IRNEW.

IF THERE IS AN ACTIVE ERROR STATE, THE MESSAGE IS PRINTED
AND EXECUTION STOPS.

IRNEW = 0 LEAVES LRECOV UNCHANGED, WHILE
IRNEW = 1 GIVES RECOVERY AND
IRNEW = 2 TURNS RECOVERY OFF.

ERROR STATES -

1 - ILLEGAL VALUE OF IRNEW.
2 - CALLED WHILE IN AN ERROR STATE.

IF (IRNEW.LT.0 .OR. IRNEW.GT.2)
1 CALL SETERR (31HENTSRC - ILLEGAL VALUE OF IRNEW,31,1,2)

IROLD=I8SAVE (2, IRNEW, IRNEW. NE. Q)

IF (I8SAVE(1,0,.FALSE.) .NE. 0) CALL SETERR
1 (39HENTSRC - CALLED WHILE IN AN ERROR STATE, 39,2,2)

RETURN

END

SUBROUTINE RETSRC (IROLD)
THIS ROUTINE SETS LRECOV = IRCLD.

IF THE CURRENT ERROR BECOMES UNRECOVERABLE,
THE MESSAGE IS PRINTED ANLC EXECUTION STOPS.

ERROR STATES -
1 - ILLEGAL VALUE OF IROLD.

IF (IROLD.LT.1 .OR. IROLD.GT.2)
1 CALL SETERR(31HRETSRC - ILLEGAL VALUE OF IROLD,31,1,2)

ITEMP=I8SAVE (2,IROLD, . TRUE.)
IF (IROLD.EQ.1 .OR. I8SAVE(1,0,.FALSE.).EQ.0) RETURN

CALL EPRINT
STOP

END

INTEGER FUNCTION NERROR(NERR)
C RETURNS NERROR = NERR = THE VALUE OF THE ERROR FLAG LERROR.

NERROR=I8SAVE(1,0,.FALSE.)

NERR=NERROR
RETURN
C
END
SUBROUTINE ERROFF
C

C TURNS OFF THE ERROR STATE OFF BY SETTING LERROR=0,

I=I8SAVE (1,0, .TRUE.)

RETURN
C

END

SUBROUTINE EPRINT
C

C THIS SUBROUTINE PRINTS THE LAST ERROR MESSAGE, IF ANY,

INTEGER MESSG (1)

c
DATA MESSG (1) /1H /

c
CALL E9RINT (MESSG,1,1,.FALSE.)
RETURN

o

END

nonNao

nnoaonn

nnNnnonOnN aonn

(9]

oo 0

C

s

€

10

20

SUBROUTINE E9RINT (MESSG,NW,NERR, SAVE)

THIS ROUTINE STORES THE CURRENT ERROR MESSAGE OR PRINTS THE OLD
ONE, IF ANY, DEPENDING ON WHETHER OR NOT SAVE = .TRUE. .

INTEGER MESSG (NW)
LOGICAL SAVE

MESSGP STORES AT LEAST THE FIRST 72 CHARACTERS OF THE PREVIOUS
MESSAGE. ITS LENGTH IS MACHINE DEPENDENT AND MUST BE AT LEAST

1 + 71/ (THE NUMBER OF CHARACTERS STORED PER INTEGER WORD).
INTEGER MESSGP (36) ,FMT (14) ,CCPLUS
START WITH NO PREVIOUS MESSAGE.
DATA MESSGP (1) /1H1/, NWP/0/, NERRP/0/
SET UP THE FORMAT FOR PRINTING THE ERROR MESSAGE.

THE FORMAT IS SIMPLY (A1, 14X, 72AXX) WHERE XX=I1MACH(6) IS THE
NUMBER OF CHARACTERS STORED PER INTEGER WORD.

DATA CCPLUS / 1H+ /
DATA FMT(1) 7/ 1H(/
DATA FMT(2) / 1HA /
DATA FMT(3) 7 1H1 /
DATA FMT(4) 7 1H, 7/
DATA FMT (5) 7/ 1H1 /
DATA FMT(6) / 1H4 /
DATA FMT (7) / 1HX /
DATA FMT(8) / 1H, 7/
DATA FMT (9) / 1H7 7/
DATA FMT(10) / 1H2 /
DATA FMT (11) 7/ 1HA 7/
DATA FMT(12) / 1HX 7/
DATA FMT (13) / 1HX /
DATA FMT (14) / 1H) /

IF (.NOT.SAVE) GO TO 20
SAVE THE MESSAGE.
NWP=NW
NERRP=NERR
DO 10 I=1,NW
MESSGP (I) =MESSG (I)
RETURN

IF (I8SAVE(1,0,.FALSE.).EQ.0) GO TO 30

C PRINT THE MESSAGE.

nonoo

- Af -

IWUNIT=I1MACH (4)
WRITE (IWUNIT,9000) NERRP
9000 FORMAT (7H ERROR ,Il4,U4H IN)

CALL S88FMT (2,I1MACH (6) ,FMT (12))
WRITE (IWUNIT, FMT) CCPLUS, (MESSGP(I),I=1,NWP)

30 RETURN

END

SUBROUTINE S88FMT (N, W, IFMT)
S88FMT REPLACES IFMT (1), «.. o IFMT(N) WITH
THE CHARACTERS CORRESPONDING TO THE N LEAST
SIGNIFICANT DIGITS OF W.

INTEGER N,W,IFMT (N)

INTEGER NT,WT,DIGITS(10)

DATA DIGITS(1) 7/ 1HO /
DATA DIGITS(2) / 1H1 /
DATA DIGITS(3) / 1H2 /
DATA DIGITS(4) / 1H3 /
DATA DIGITS(5) / 1H4 7/
DATA DIGITS(6) / 1HS5 /
DATA DIGITS(7) 7/ 1H6 7/
DATA DIGITS(8) / 1H7 /
DATA DIGITS(9) 7/ 1H8 /
DATA DIGITS(10) / 1H9 7/

N
W

E

10 IF (NT .LE. 0) RETURN
IDIGIT = MOD(WT, 10)
IFMT (NT) = DIGITS (IDIGIT+1)

WT = WI/10
NT = NT -~ 1
GO TO 10

END

0O N0 ononoonnn

nnno

n oonoonn

- AT =

INTEGER FUNCTION I8BSAVE(ISW,IVALUE,SET)

IF (ISW = 1) I8BSAVE RETURNS THE CURRENT ERROR NUMBER AND
SETS IT TO IVALUE IF SET = .TRUE. .

IF (ISW

2) IBSAVE RETURNS THE CURRENT RECOVERY SWITCH
AND SETS IT TO IVALUE IF SET = .TRUE. .

LOGICAL SET
INTEGER IPARAM(2)

EQUIVALENCE (IPARAM (1) ,LERROR)
EQUIVALENCE (IPARAM (1) ,LRECOV)

START EXECUTION ERROR FREE AND WITH RECOVERY TURNED OFF.
DATA LERROR/0/ , LRECOV/2/

18SAVE=IPARAM (ISW)
IF (SET) IPARAM (ISW)=IVALUE

RETURN

END

SUBROUTINE FDUMP
FDUMP IS INTENDED TO BE REPLACED BY A LOCALLY WRITTEN
VERSION WHICH PRODUCES A SYMBOLIC DUMP. FAILING THIS,
IT SHOULD BE REPLACED BY A VERSION WHICH PRINTS THE
SUBPROGRAM NESTING LIST.

RETURN

END

Machine Constants for Portable FORTRAN Libraries

Phyllis A. Fox
A.D. Hall

N.L. Schryer

Bell Laboratories,
Murray Hill, New Jersey 07974

ABSTRACT

One of the essential principles of programming for portability is the isola-
tion of the machine dependent aspects of a program through the use of param-
elers or primitive subprograms. When FORTRAN is the vehicle for portabili-
ty, it is usually more convenienl Lo use primitive subprograms since the
language does nol provide even a rudimentary parameter substitution facility.

This paper describes a set of three FORTRAN function subprograms
which provide a machine independent way of obtaining a number of important
machine or operating system dependent constants. Among these constants are
the "standard” 1/0 unit numbers, the word size in bits and characters, and the
relative spacing of floating-point numbers. The choice of available constants
was dictated primarily by experience, convenience and simplicily, with com-
pleteness and minimality being secondary considerations.

Machine Constants for Portable FORTRAN Libraries

Phyllis A. Fox
A.D. Hall

N.L. Schrver

Bell Laboratories,
Murray Hill, New Jersey 07974

1. Introduction

One of the essential principles of programming for portability is the isolation of the
machine dependent aspects of a program in parameters or primitive subprograms. In this way
the alterations that need to be made when moving a substantial program library from one en-
vironment to another are isolated, minimized and easily documented. When FORTRAN is the
vehicle for portability, it is usuaily more convenient to use primitive subprograms since the
language does nol provide even a rudimentary parameter substitution facility.

This paper describes a set of three FORTRAN function subprograms which can be in-
voked to determine one of a number of basic machine or operating system dependent con-
stants, These functions are

IIMACH which delivers integer constants,
RIMACH which delivers single-precision floating-point (real) constants, and
DIMACH which delivers double-precision floating-point constants.

By requiring that all machine-dependent constants be incorporated into programs through
references to these functions, the effort required to move a library to a new environment is
minimized; only DATA statements in the three function subprograms need to be changed. A
listing of the functions is included in the Appendix. Included in the comments are specific
constants for the Honeywell 6000 Series, the IBM 360 and 370 Series, the SEL Systems 85/86,
the UNIVAC 1100 Series, the DEC PDP 10 (KA and KI processors), the DEC PDP 11, and
the CDC 6000 and 7000 Series.

The functions have a single integer argument indicating the particular constant desired.
For example, IIMACH(2) is the logical unit number of the "standard" output unit, so the state-
ments
~ IWUNIT = 1IMACH(2)
WRITE (IWUNIT, 9003) ...

will write output (using Format statement 9003) on the standard output unit. As another ex-
ample RIMACH(1) is the smallest positive single-precision number. If a program wishes to
test how small a quantity, x, is becoming, perhaps to avoid underflow, it can test x against some
reasonable multiple of RIMACH(1).

If the integer argument to RIMACH or DIMACH is out of range, the Error Handler [1]
is called 1o deliver an appropriate message and terminate the run. In IIMACH, the message is
output directly to avoid the possibility of a recursive call from the Error Handler.

2. The Constants
The constants cover four basic areas:

1) Logical unit numbers
2) Word size

3) Integer variables

4) Floating-point variables

These areas are discussed in the following subsections:

2.1. Logical Unit numbers

The FORTRAN run-time environment in many operating systems has several logical
unit numbers which have preassigned (or default) associations with particular "devices". For
example, logical unit 5 is frequently the standard input unit and logical unit 6 is frequently the
standard output unit. Often there are also logical unit numbers assigned for punched output
and error messages.

For any particular system, the logical unit numbers are available as follows:
IIMACH(1) = the standard input unit

IIMACH(2) = the standard output unit

IIMACH(3) = the standard punch unit

IIMACH(4) = the standard error message unit
2.2. Word Size

A word is defined to be that machine storage element allocated to an INTEGER or
REAL variable. We define its size in both bits and characters as follows:

IIMACH(5) = the number of bits per word

I[IMACH(6) = the number of characters per word

These allow subprograms which perform character or bit manipulation to be suitably
parameterized.

2.3. Integer Variables
We assume that the permissible values of INTEGER variables are represented in the s-
digit, base-a form:

+(x,_a*V+x,_5a° 24 - +xja+xg)
where0 < x; < afori =0,..., s—1. We then have,
IIMACH(7) = a

IIMACH(8) =5
and the largest integer is,
IIMACH(9) = a*—1

Although IIMACH(9) can be computed from IIMACH(7) and 11MACH(8), it is provid-
ed because a straightforward evaluation of the formula may cause overflow. Note also that
IIMACH(8) need not be directly related to 11IMACH(5). For instance, on the CDC 6000
Series, integers have 48 bits of magnitude and 1 sign bit, yet there are 60 bits in a word.

2.4. Floating-point Variables
We assume that floating-point numbers are represented in the r-digil, base b form:
2 X,
b (—+—+ - +—)

b b2 b
where 0 £ x; < bfori=1,...,40 < x| and ¢,;;, < e < e,,,,. For a particular machine,
we choose values for the parameters, 1, €, and €,,,, such that all numbers expressible in
this form are representable by the hardware and usable from FORTRAN. Note that the for-
mula is symmeitrical under negation but not reciprocation. On some machines a small portion
of the range of permissible numbers may be excluded.

For both single and double precision we have,
IIMACH(10) = b
In order to accommodate machines such as the CDC 6000 Series which put the &-point

on the right, we must concede the possibility that the magnitude of e,;, may be substantially
smaller than e,,,. Thus, for single-precision floating-point we have:

IIMACH(11) = ¢

IIMACH(12) = ¢

min

IIMACH(13) = ¢

max

For double precision, & remains the same, but 1, e,
and E, as follows:

max *
I[IMACH(14) =T > 1

and e, are replaced by T, E ;..

IIMACH(15) = E,,;, < ¢

min
IIMACH(16) = E ., 2 €.y

3. Derived Quantities

We now describe a number of derived floating-point quantities which frequently are used
in mathematical software. Although redundant, in the sense that they can be computed from
previously given quantities, they are provided for efficiency and convenience. It is recom-
mended that the derived quantities be used whenever possible in case the defining equations
have 1o be generalized 10 accommodate some future machine architecture.

The smallest positive single and double precision magnitudes are given by:
RIMACH(1) = p*min ™!

DIMACH(1) = pmin ~!

The largest single and double precision magnitudes are given by:
RIMACH(2) = p™ (1 —p ')

DIMACH(2) = b5 (1 —p=T)
The smallest relative spacings between adjacent single-precision or double-precision
values are given by:
RIMACH(3) =561

DIMACH(3) =57

The largest relative spacings between adjacent single-precision or double-precision values
are given by:

RIMACH(4) =11

DIMACH(4) =5/1-1

The largest relative spacing is the smallest value of € that can safely be used in tests for
relative error of the form | (x—y)/x| < e. It is also the smallest positive value of & for
which 1+3 is not equal to 1 and is known as Wilkinson’s error constant [2].

The logarithm of the base 4 is given by:
RIMACH(5) = logyb

DIMACH(5) = log,b

4. Decimal Input-Output

In some applications, particularly input-output, it is often useful to know the basic rela-
tionships between the internal representation of numbers and an external decimal representa-
tion. Some of the simpler relationships are summarized below. More detail can be found in
[3].

For output, one usually wants to know how much space to allow for the decimal
representation of an internal number. In the case of integers, the number s’ of decimal places
that are needed is given by

s = I.’f IOg"}al '

where a and s are defined in Sec. 2.3, and where [x] denotes the smallest integer not less than
X

For single-precision floating-point, the situation is slightly more complex. If the external
representation is of the form m10¢ with 10 ~!' € m < 10, then the minimum and maximum

values of e’are:
- =I(emi,, —l)[ogwbl 1

e’max = lemax Imgll')‘bl '

where b, e¢,;, and e,,, are defined in Sec. 24. Here, |x| denotes the largest integer not
exceeding x.

The number of decimal places required for the decimal exponent is therefore

Ilegm (max (| ein || € x|))|

To determine the number of decimal places to allow for m, we observe that integers in

the range 0 to &' — 1 can be represented exactly in single-precision floating-point. 1f these are
1o be represented exactly on output, then the number ¢’ of decimal places required is
= Ir Iogmbl ¢

where 1 and b are defined in Sec. 2.4. Relations similar 1o those given above hold for double-
precision. ¥

It should be noted that a decimal Noating-point system carrying ¢’ significant digits has a
smallest relative spacing which is less than or equal o the smallest relative spacing of our as-
sumed internal representation.

For input, one usually wants 10 know the approximate ranges of decimal numbers which

can be represented in the machine. For instance, all integers of s” decimal digits, where
s = ls logq al

can be represented internally. Of course, it is possible that some larger inlegers can be
represented, but a more complicated test would be needed.

All single-precision floating-point numbers of the form m10¢” where 10 ~' < m < 10
and

(€nin ~Dlogigb| +1 < ¢ < |emey low10t]

can be approximated in the machine. Similar relations hold for double-precision.

5. Programming Hints

In some cases, particularly inner loops, it may be desirable 1o avoid repeated calls to the
functions described above. The obvious lechnique is o retrieve lhe needed values before
entering the loop, but there are cases where substantial overhead may be incurred, even by
this technique. One way to eliminate repeated calls to these functions in a portable (but non-
standard) way is to use a carefully constructed "first-time" swilch.

For example, to retrieve RIMACH(4) on first entry 10 a subprogram, the following cod-
ing can be used:

REAL MCHEPS
DATA MCHEPS / 0.0 /

IF (MCHEPS .EQ. 0.0) MCHEPS = RIMACH(4)

Il more than one value is 1o be oblained in this way, the lollowing coding will suffice:
REAL SMALL, LARGE, MCHEPS

DATA SMALL. LARGE. MCHEPS / 3*0.0 /

IF (SMALL .NE. 0.0) GOTO 10
SMALL = RIMACH(1)
LARGE = RIMACH(2)
MCHEPS = RIMACH(4)

10 CONTINUE

To ensure portability it is essential that a/l values oblained in this way be initialized in a
DATA statement. If not, some operating systems (notably Burroughs) will not preserve the
values from one subroutine call 1o the next.

References

[11 Hall, A.D., and Schryer, N.L., "A Centralized Error Handling Facility for Portable FOR-
TRAN Libraries", March 3, 1975.

[2] Wilkinson, J.H., Rounding Errors in Algebraic Processes, Prentice-Hall, Inc., 1963.
[3] Matula, D.H., "In-and-Out Conversions", Comm. ACM 11 (Nov. 1968), 47.

(- I8 o B o B o B - B o I o~ - Y o B o IO o Y o T o~ B o B o B o B o B - I o}

(]

[B I =]

OO0 0

IIMACH(13) = EMAX, THE LARGEST EXPONENT E.

DOUBLE-PRECISION

IIMACH(14) = T, THE NUMBER OF BASE-B DIGITS.
IIMACH(15) = EMIN, THE SMALLEST EXPONENT E.
IIMACH(16) = EMAX, THE LARGEST EXPONENT E,

TO ALTER THIS FUNCTION FOR A PARTICULAR ENVIRONMENT,

THE DATA STATEMENTS FOR THE HONEYWELL 6000 SERIES

SHOULD BE TURNED INTO COMMENTS BY ADDING A C IN COLUMN 1.
THE DESIRED SET OF DATA STATEMENTS SHOULD BE ACTIVATED BY
REMOVING THE C FROM COLUMN 1. ALSO, THE VALUES OF
I1IMACH(1) - I1MACH(4) SHOULD BE CHECKED FOR CONSISTENCY
WITH THE LOCAL OPERATING SYSTEM.

INTEGER IMACH(16),0UTPUT
EQUIVALENCE (IMACH(4),0UTPUT)

MACHINE CONSTANTS FOR THE HONEYWELL 6000 SERIES.

DATA IMACH(1) / 5/
DATA IMACH(2) / 6/
DATA IMACH(3) / 43/
DATA IMACH(4) / 6/
DATA IMACH(5) / 36/
DATA IMACH(6) / 6/
DATA IMACH(7) / 2/
DATA IMACH(8) / 35/
DATA IMACH(9) /03777777111111/
DATA IMACH(10) / 2/
DATA IMACH(11) / 27/

DATA IMACH(12) /-127/
DATA IMACH(13) / 127/
DATA IMACH(14) / 63/
DATA IMACH(15) /-127/
DATA IMACH(16) / 127/

MACHINE CONSTANTS FOR THE IBM 360 AND 370 SERIES,
AND THE SEL SYSTEMS 85/86.

DATA IMACH(1) / 5/
DATA IMACH(2) / 6/
DATA IMACH(3) / 1/
DATA IMACH(4) / 6/
DATA IMACH(5) / 32/
DATA IMACH(6) / 4/
DATA IMACH(7) / 2/
DATA IMACH(8) / 31/

[3 W I I o B I o B o B o B I B o B o o NN B e B e R0 o N - N o Y e DO e I e R e Y g S e I Y - Y i O e I g N g Y o e B o N o Y g O = T - Y g Y o 1 e I B - Y e Y o IO o IO o B B o B o B o I

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

IMACH(9)
IMACH(10)
IMACH(11)
IMACH(12)
IMACH(13)
IMACH(14)
IMACH(15)
IMACH(16)

=S =

JTTFFFFFFF/
16/
6/
-64/
63/
14/
-64/
63/

NN N N NN NN

MACHINE CONSTANTS FOR THE CDC 6000 AND 7000 SERIES.

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

IMACH (
IMACH (
IMACH (
IMACH (
IMACH (
IMACH (
IMACH (
IMACH (
IMACH (
IMACH(10)
IMACH(11)
IMACH(12)
IMACH(13)
IMACH(14)
IMACH(15)
IMACH(16)

w00~ Oh W B Y
e N e i S T

5/
6/
1/
6/
60/
10/
)
48/
000007777777771771717171/
2/
48/
<974/
1070/
96/
914/
1070/

e e e R T T . e e e e e T N

MACHINE CONSTANTS FOR THE PDP-10 (KA PROCESSOR).

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

IMACH(1)
IMACH(2)
IMACH(3)
IMACH(4)
IMACH(5)
IMACH(6)
IMACH(7)
IMACH(8)
IMACH(9)
IMACH(10)
IMACH(11)
IMACH(12)
IMACH(13)
IMACH(14)
IMACH(15)
IMACH(16)

5/

6/

5/

6/

36/

5/

s

35/
"3771711171717111/

2/

27/

-128/

127/

54/

-128/

127/

B i i i e

MACHINE CONSTANTS FOR THE PDP-10 (KI PROCESSOR).

DATA
DATA
DATA
DATA

IMACH(1
IMACH(2
IMACH(3
IMACH(4

B

5/
6/
5/
6/

e

s NN NelolefaelelelaeNaoNarRrNleleslelaolasNleN-NeNeNrleN-lelleloleleNeNslesleslioleReNeNsleloNaNeNarNaelaeNorieRNelels

o

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

IMACH(5)
IMACH(6)
IMACH(7)
IMACH(8)
IMACH(9)
IMACH(10)
IMACH(11)
IMACH(12)
IMACH(13)
IMACH(14)
IMACH(15)
IMACH(16)

i s

/ 36/
/ 5/
/ 2/
/ 35/
["3TTTITTRI0TY/
/ 2/
/ 21/
/-128/
/ 121/
/ 62/
/-128/
& 1234

MACHINE CONSTANTS FOR THE PDP-11.

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

IMACH (
IMACH (
IMACH (
IMACH (
IMACH (
IMACH (
IMACH (
IMACH (
IMACH (
IMACH(10)
IMACH(11)
IMACH(12)
IMACH(13)
IMACH(14)
IMACH(15)
IMACH(16)

W00~ N W S L N -
Nt S S St Nt S St it S

5/

6/

5/

6/

32/

4/

2/

3l/
2147483647/

2/

24/

-121/

127/

56/

-127/

127/

B e T s T e

MACHINE CONSTANTS FOR THE UNIVAC 1100 SERIES,

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

IF (1

IMACH(1)
IMACH(2)
IMACH(3)
IMACH(4)
IMACH(5)
IMACH(6)
IMACH(7)
IMACH(8)
IMACH(9)
IMACH(10)
IMACH(11)
IMACH(12)
IMACH(13)
IMACH(14)
IMACH(15)
IMACH(16)

3 iy P

o
=

o/

6/

1/

6/

36/

6/

2/

35/

0377777171717111/

2/

21/

-128/

127/

61/
-1024/
1023/

e T e e e e e e R

I .GT. 16) GO TO 10

=[P

| IMACH=IMACH(1)
RETURN

10 WRITE(QUTPUT,9000)
9000 FORMAT(39HI1ERROR 1 IN IIMACH - | OUT OF BOUNDS)

CALL FDUMP
STOP

END

OO0 O0O0O0O00O00O00C0O000000C0O00C00 0

OO0

TRl rlesNalerNeNeRNe el N llol o Nl

The single-precision floating-point constant

FORTRAN function subprogram R1MACH

REAL FUNCTION RIMACH(I)

SINGLE-PRECISION MACHINE CONSTANTS

RIMACH(1)

RIMACH(2)

]

RIMACH(3)

RIMACH(4)

1l

RIMACH(5)

I

B**(EMIN-1), THE SMALLEST POSITIVE MAGNITUDE.
B**EMAX*(1 - B**(-T)), THE LARGEST MAGNITUDE.
B**(-T), THE SMALLEST RELATIVE SPACING.
B**(1-T), THE LARGEST RELATIVE SPACING.

LOG10(B)

TO ALTER THIS FUNCTION FOR A PARTICULAR ENVIRONMENT,
THE DATA STATEMENTS FOR THE HONEYWELL 6000 SERIES
SHOULD BE TURNED
THE DESIRED SET OF DATA STATEMENTS SHOULD BE ACTIVATED BY
REMOVING THE C FROM COLUMN 1.

WHERE POSSIBLE,

OCTAL OR HEXADECIMAL CONSTANTS HAVE BEEN USED

INTO COMMENTS BY ADDING A C IN COLUMN 1.

TO SPECIFY THE CONSTANTS EXACTLY.

REAL RMACH(5)

MACHINE CONSTANTS FOR THE HONEYWELL 6000 SERIES.

DATA RMACH(
DATA RMACH(
DATA RMACH(
DATA RMACH(
DATA RMACH(

(5.0 - R FLRN S
L

/ 0402400000000/
/ 037677771717771/
/ 0714400000000/
/ 0716400000000/
/ 0776464202324/

MACHINE CONSTANTS FOR THE IBM 360 AND 370 SERIES,
AND THE SEL STSTEMS 85/86.

DATA RMACH(
DATA RMACH(
DATA RMACH(
DATA RMACH(
DATA RMACH(

QN P O =
B ey

/ 200100000/
/ TIEFEFEEES
/ 13B100000/
/ 13C100000/
/ 141134413/

MACHINE CONSTANTS FOR THE CDC 6000 AND 7000 SERIES.

DATA RMACH(
DATA RMACH(
DATA RMACH(
DATA RMACH(
DATA RMACH(

/ 00014000000000000000B/
/ 377671777177777717717177178B/
/ 16404000000000000000B/
/ 16414000000000000000B/
/ 171646420232411757208B/

OO0 O

< 1=

MACHINE CONSTANTS FOR THE PDP-10 (KA OR KI PROCESSOR).

DATA RMACH(1) / "000400000000/
DATA RMACH(2) / "37777171717717111/
DATA RMACH(3) / "146400000000/
DATA RMACH(4) / "147400000000/
DATA RMACH(5) / "177464202324/

MACHINE CONSTANTS FOR THE PDP-11.

DATA RMACH(1) / 0.29387358771E-38/
DATA RMACH(2) / 0.17014117331E+39/
DATA RMACH(3) / 0.59604644775E-07/
DATA RMACH(4) / 0.11920928955E-06/
DATA RMACH(5) / 0.30102999566 /

MACHINE CONSTANTS FOR THE UNIVAC 1100 SERIES.

DATA RMACH(1) / 0000400000000/

DATA RMACH(2) / 03777771717171171/

DATA RMACH(3) / 0146400000000/

DATA RMACH(4) / 0147400000000/

DATA RMACH(5) / 0177464202324/

e G JLT. ¥ JOR. U JRY. §)
1 CALL SETERR(24HRIMACH - | OUT OF BOUNDS,b24,1,2)

RIMACH = RMACH(1)
RETURN

END

OO0 OO0

o

- ol o]

The double-precision floating-point constant
FORTRAN function subprogram DIMACH

DOUBLE PRECISION FUNCTION DIMACH(I)

DOUBLE-PRECISION MACHINE CONSTANTS

DIMACH(1) = B**(EMIN-1),

DIMACH(2) = B*"EMAX™ (1
DIMACH(3) = B**(-T), THE
DIMACH(4) =

THE SMALLEST POSITIVE MAGNITUDE.
B**(-T)), THE LARGEST MAGNITUDE.

SMALLEST RELATIVE SPACING.

B**(1-T), THE LARGEST RELATIVE SPACING.

THE LARGEST RELATIVE SPACING

DIMACH(5) = LOG10(B)

TO ALTER THIS FUNCTION FOR A PARTICULAR ENVIRONMENT,
THE DATA STATEMENTS FOR THE HONEYWELL 6000 SERIES

SHOULD BE TURNED

INTO COMMENTS BY ADDING A C IN COLUMN 1.

THE DESIRED SET OF DATA STATEMENTS SHOULD BE ACTIVATED BY
REMOVING THE C FROM COLUMN 1.

WHERE POSSIBLE,

OCTAL OR HEXADECIMAL CONSTANTS HAVE BEEEN USED

TO SPECIFY THE CONSTANTS EXACTLY WHICH HAS IN SOME CASES
REQUIRED THE USE OF EQUIVALENT INTEGER ARRAYS.

INTEGER SMALL(2)
INTEGER LARGE(2)
INTEGER RIGHT(2)
INTEGER DIVER(2)
INTEGER LOG10(2)

DOUBLE PRECISION DMACH(5)

EQUIVALENCE (DMACH(1),
EQUIVALENCE (DMACH(2),
EQUIVALENCE (DMACH(3),
EQUIVALENCE (DMACH(4),
EQUIVALENCE (DMACH(5),

SMALL(1))
LARGE(1))
RIGHT(1))
DIVER(1))
L0G10(1))

MACHINE CONSTANTS FOR THE HONEYWELL 6000 SERIES.

DATA
DATA
DATA
DATA
DATA

SMALL(1),SMALL(2)
LARGE(1),LARGE(2)
RIGHT(1),RIGHT(2)
DIVER(1),DIVER(2)
LOG10(1),L0G10(2)

0402400000000,0000000000000/
037677777717717,077771771771117/
0604400000000,0000000000000/
0606400000000,0000000000000/
0776464202324,0117571775714/

b S T, T T

MACHINE CONSTANTS FOR THE IBM 360 AND 370 SERIES,
AND THE SEL SYSTEMS 85/86.

OO0 0O00O00O0000 000000000000 0000000000000 0OO0OO0O0000

DATA
DATA
DATA
DATA
DATA

MACHINE CONSTANTS FOR THE CDC 6000

DATA SMALL(1)
DATA SMALL(2)

DATA LARGE(1)
DATA LARGE(2)

DATA
DATA

RIGHT(1)
RIGHT(2)

DATA
DATA

DIVER(1)
DIVER(2)

DATA
DATA

LOG10(1)
LOGLO(2)

SMALL(1),SMALL(2)
LARGE(1),LARGE(2)
RIGHT(1) ,RIGHT(2)
DIVER(1) ,DIVER(2)
LOG10(1),L0G10(2)

/
/

~~

/
/
/
/

- 16 -

/ 200100000
/ LZTFFFFFFF
/ 133100000
/ 134100000
/ 741134413

00014000000000000000B/
000000000000O000D00D0D00B/

377677777717717171777171178B/
37167777771177177777178/

156040000000000000008B/
00000O00OOOOOOOOOOOOD0ODB/

15614000000000000000B/
000000000O0O0OOOODOOOOOB/

171646420232411757178/
163675714217422546548B/

,200000000/
JLFFFFFFFF/
,200000000/
,200000000/
I509F79FF/

AND 7000 SERIES.

MACHINE CONSTANTS FOR THE PDP-10 (KA PROCESSOR).

DATA
DATA
DATA
DATA
DATA

MACHINE CONSTANTS FOR THE PDP-10 (KI

DATA
DATA
DATA
DATA
DATA

MACHINE CONSTANTS

DATA DMACH(1)

DATA
DATA
DATA
DATA

DMACH(2)
DMACH(3)
DMACH(4)
DMACH(5)

MACHINE CONSTANTS

SMALL(1),SMALL(2)
LARGE(1),LARGE(2)
RIGHT(1),RIGHT(2)
DIVER(1),DIVER(2)
LOGIO(1),L0G610(2)

SMALL(1) , SMALL(2)
LARGE(1),LARGE(2)
RIGHT(1) ,RIGHT(2)
DIVER(1) ,DIVER(2)
LOG10(1),L0G10(2)

/

/
/
/
/

"000400000000
"317777171717177

e e

FOR THE PDP-11.

.2938735877055719

/ "000400000000,
/["311717171111711117,
/ "113400000000,
/ "114400000000,
/ "177464202324,

"103400000000,
"104400000000,
"177464202324

"000000000000/
"34477777717117/
"000000000000/
"000000000000/
“144117571776/

PROCESSOR) .

,"ooo0000000000/

"3777171711771711/
"000000000000/
"000000000000/
"476747767461/

D-38/

cooc oo

.1701411834604692290+39/
.138777878078144568D-16/
.277555756156289135D-16/
.301029995663981195D+00/

FOR THE UNIVAC 1100 SERIES.

DATA SMALL(1),SMALL(2) / 0000040000000,0000000000000/
DATA LARGE(1),LARGE(2) / 0377777777777,0777717717117111/
DATA RIGHT(1),RIGHT(2) / 0170540000000,0000000000000/
DATA DIVER(1),DIVER(2) / 0170640000000,0000000000000/

Lo W]

DATA LOG10(1),L0G10(2) / 0177746420232,0411757177572/

F) LY. 2 .oR. | .6T. §)
CALL SETERR(24HDIMACH - | OUT OF BOUNDS,24,1,2)

DIMACH = DMACH(1)
RETURN

END

