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This paper describes a package of simple portable FOR-

TRAN subprograms for dynamic allocation and de-allocation of 

scratch space. Available space is managed on a last-in 

first-out basis in a manner similar to the stack discipline 

~mplic~t in ALGOL 60 implementations. Use of this package 

often leads to more clearly structured programs, cleaner 

calling sequences. improved memory utilization. and better 

error detection. 



A Dynam~c Storage Allocator 
for Portable EOn~RAN Libraries 

1. IntroductiQn 

ty 

A. D. Hall and N. L. Schryer 
Bell Lacoratories 
Hurray ti~ll. N. J. 

One of the oiggt:!st proDlems ~n FORI'RAN programming ~s 
dec~ding now to provide scratch space for intermediate cal­
culat~ons in a subprogram. there are two commonly used 
techni~ues. The tirst attemFts to keep calling sequences 
clean by prov~ding scratch arrays local to each subprogram. 
The second attempts to avoid the wasterulness of local ar­
rays by requiring the invoker ot a subprogram to prov~de 
scratCh space through an argument. 

Neitner of tnese solutions ~s entirely satisfactory. 
Si nce arrays local to a FORTRAN sUDprogram are fixed in size 
at toe ~~rne of compilat~on. they ar~ usually made big enough 
to accommodate the IIlargest ll prol:;lern a subprogram may be 
cal~ed upon to solve . This not only places an upper limit 
on the size of a problem that can be handled but results ~n 
wast ed storage when small problems are solved. When several 
sucn sub~rograms are used within a single program. the waste 
is compounded. 

By requiring scratch space to be passed to a subprogram 
through one or more additional arguments. local arrays can 
be avoided. but the cal l i ng sequence becomes cumbersome and 
error prone. and tne problem of storage allocation is simply 
lett to the invoker. worse yet. the subprogram has no way 
of verifying that enough scratch space has been provided. 

Tnis paper descr~bes d paCkage of simple portable FOR­
TRAN subprograms tor dynamic allocat~on of scratch space. 
Use of th~s package often leads to more clearly structured 
programs. cleaner calling sequences. improved memory 
uti lizat~on, and better error detection . Listings of these 
subprograms are included in the Appendix. 
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2. G~ne~ fhilosophV 

The basic allocation mechanism provided is a §S2£~ 
similar to that which underlies ALGOL 60 { 1] implementa­
tions. Unlike ALGOL 60, however, the allocation and de­
allocation of space on the stacK must be carried out through 
the use at 'explicit subprogram calls. Because of the nature 
of a stack, allocations and de-allocations must also be 'car­
ried out on a last-in f1rst-out basis. Tois approach not 
only Keeps the programming simple, but it reduces the over­
head to a minimum. 

In order to make tne staCK invisible to most users of 
liDrary programs, the package is self-initializing and con­
ta.l.ns a default stack size equivalent to 1000 "words ll (FOk­
TItAN INTEGER variables). If desired, larger amounts of 
stack space can De allocated for a particular run. 

3. 8llocat~on and ~-alloc2ti2n 

The stack resides in tne labeled COMMON 
Any subroutine that uses space allocated in 
include the following declarations; 

COMMON /CSTAK/DSTAK(500) 
C 

DOUBLE PRECISION DSTAJ< 

region CSTAK. 
the stack mus t 

These ensure that the length and type of the stack are 
properly anQ consistently declared in all subprograms; ~n­
eluding those which use the allocator and are loaded from 
libraries. Failure to use these declarations could lEad to 
unexpected difficulties during loading (or link-editing). 
~f needed. a larger stack can be declared in the MAIN 
program (see Sec. ~). 

To provide INTEGER. REAL and COMPLEX aliases for the 
stack the follOWing declarations may be included: 

C 

INTEGER ISTAK(1000) 
R£AL RSTAJ«1000) 
CO,'lPLEX CMS1'AJ< (500) 

~QUIVALENCE (DSTAK(l),ISIAK(l)) 
E~UIVALENCE (OSTAJ«l) ,RSTAK(l)) 
<'QUIVALENCE (DSTAK(1) ,CM&TAK(l)) 

If any of these ~s not wanted. its declaration and 
EQUIVALENCE to DSTAK may ce left Qut. 
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We now present two basic subprograms, IALLOC and DAL­
LOe, for allocating and de-allocating stack space, r espec­
tively. The allocation subprogram is 

INTEGER FUNCTION IALLOC(NITEMS , ISIZE) 

where NITEMS is the number of items of size ISIZE wor ds to 
be allocated. The most commonly used v a l ues of ISIZE are as 
fo.llows: 

INTEGER 1 
REAL 1 
DOUBLE PRECISION 2 
COMPLEX 2 

The statement 

I = IALLOC (N,l) 

returns an index I so that the locations 

ISTAK (I) , ••• , ISTAK (l+N-l) 

form the storage allocated for N INTEGER items. 
tively, the locations 

RSTAK (I) RSTAK (I+N-l) 

A.lterna-

can be thought of as the space allocated for N REAL i tems . 
Note that the space allocated is not initialized to any par­
ticular value. 

The statement 

I = IALLOC(N,2) 

returns an ~ndex I so that the locatioos 

DSTAK (I) , • • • , DSTAK (I+N- l) 

form t he space 
Similarly, the 

allocated 
locations 

for N DOUBLE PRECISION items. 

CMSTAK (I) , , CMSTAK(l+N- l) 

can be thought of as the space allocated for N COMPLEX 
items. 

It is 
determi.nes 

important to note that ISIZE is not a 
what type of allocation is desired . 

swi tch that 
Rather. it 
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determines the alignment and number of words for each item. 
Thus, if a FORTRAN compiler supports DOUBLE PRECISION COM­
PLEX declarations, allocations for this data type can be ac­
complished in the following way: 

COMMON /CSTAK/OSTAK(500) 
C 

DOUBLE PRECISION OSTAK 
DOUBLE PRECISION COMPLEX OCSTAK(250) 

C 
EQUIVALENCE (OSTAK(l).OCSTAK(l)) 

• 

I = IALLOC (N.4) 

and the allocated space would be the locations 

OCSTAK (I) ••••• OCS7AK (HN-l) • 

The de-allocation subprogram is 

SUBROUTINE OALLOC(N) 

which simply de-allocates the last N allocations. 

As a simple example of the use of these two sub­
programs, consider a "little black box" subroutine LBB (A,N) 
which is supposed to return something in a REAL vector A of 
length N and requires two REAL scratch arrays of length N to 
do it. LBB would look roughly as follows: 

C 

C 

C 

C 

C 

SUBROUTINE LBB(A.N) 

COMMON /CSTAK/OSTAK(500) 

DOUBLE PRECISION OSTAK 
REAL A(N) 
REAL RSTAK(1000) 

EQUIVALENCE (OSTAK(l) .RSTAK(l)) 

IB = IALLOC(N.l) 
IC = IALLOC(N.l) 

• 
• 

{ code referring to RSTAK(IB+n) and RSTAK(IC+m) ) 
• 

CALL OALLOC (2) 

RETURN 
END 
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To avoid messy (and possibly non-standard) subscript 
calculations, it is sometimes more convenient to pass the 
arguments ana the allocated scratch space down one more 
level to a subprogram which does the real work. This not 
only will make programs mare readable and easier to code, 
but it will. in many cases, make them more efficient. LBB 
would be coded as an "executive II routine calling on a "work­
horse" routine, as foll.ows: 

C 

C 

C 

C 

C 

C 

SUBROUTINE LBB(A.N) 

COMMON /CSTAK/DSTAK(SOO) 

DOU6LE PRECISION DSTAK 
REAL A (N) 
REAL RSTAK(1000) 

EQUIVALENCE (DSTAl< ( 1) • RSTAK (1) ) 

IB = IALLOC (N.l) 
IC = IALLOC(N.l) 

CALL LBBl (A. RSTAK (IB) .RSTAK(IC).N) 

CALL DALLOC (2) 
RETURN 
END 

4. Initialization 

As previously mentioned, the subprograms in the alloca­
tion package are all self-initializing so that a user with 
small requirements need not even know of their existence. 
However, there will be applications which require a larger 
stack than that provided by default. In this case, declara­
tions for the stack and an explicit cal~ to an initializa­
tion suoprogram must be made in the MAIN program. The 
initialization subprogram is 

SUBROUTINE STINIT(NITEMS.ISIZE) 

where NITEMS is the number of items of size ISIZE words set 
aside for the stack. 
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For example, to set up a stack with 1000 DOUBLE PRECI­
SION items or, equivalently, 2000 INTEGER items, the fol­
lowing declarations and subroutine call would be used. 

COMMON /CSTAK/DSTAK(1000) 
C 

DOUBLE PRECISION DSTAK 
• 
• 

CALL STINIT(1000.2) 

If desired, the CALL STINIT above could have heen 
replaced by: 

CALL STINIT(2000.1) 

It should be noted that the first four words of the 
stack are reserved for use by the allocator and that each 
allocation has an associated space overhead of at least 2, 
but no more than ISIZE+1 words. When estimating the length 
of the stack required, these overheads should be taken into 
account. To determine the exact stack length required, one 
can use the SRECAP subprogram (see Sec. 5). 

5. MiscellaneQus Subp{og!2ID§ 

By design, it is considered a fatal error to attempt to 
allocate more space than is actually available. The error 
could have Deen made recoverable (in the sense of [2]) but 
~t was felt that this would unnecessarily complicate both 
imp~ementation and use. For those situations when it is 
desirable to know how much stack remains so that it may all 
be allocated. the subprogram 

INTEGER FUNCTION NIRALL(ISIZE) 

can be used. NIRALL returns the number of items of size 
ISIZE remaining to be allocated in a singl~ invocation of 
IALLOC. (Recall from Section 4 that there are 2 or more 
words of space overhead associated with each allocation. If 
the stack is effectively full. NIRALL will return 0). The 
statements 

NLEFT = NIRALL(l) 
I = IALLOC(NLEFT.l) 

allocate all remaining space as a single block of INTEGER or 
REAL items. 
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In some applications it 
size at the most recent 
plished with the subprogram 

may be necessary to change the 
allocation. This can be accom-

INTEGER FUNCTION MTSTAK(NITEMS ) 

which will reset the length of the last allocation to NITEMS 
items and. in a manner similar to IALLOC. return the index 
of the first item of that allocation. If the last alloca­
tion is truncated, only the first NITEMS are preserved. If 
the last allocation is extended, existing information is 
preserved but the added space is not initialized. 

As an example of the use of NlRALL and MTSTAK, the fol­
lowing program fragment reads an indeterminate number of 
positive REALs into the stack. For convenience, we assume 
that a negative data item marks the end of the data • 

• 

C 
C FIND OUT HOW MUCH STACK SPACE IS LEFT 
C AND ALLOCATE IT ALL. 
C 

C 

NLEFT = NlRALL(1) 
IF (NLEFT .EQ. 0) GO TO error 
I = IALLOC(NLEFT.1) 

C INITIALIZE COUNT OF ITEMS READ SO FAR. 
C 

NITEMS = 0 
C 
C READ AN ITEM INTO THE STACK AND TEST FOR END-OF-DATA. 
C 

C 

C 

C 

10 IF (NITEMS .EQ. NLEFT) GO TO error 
READ (6.100) RSTAK (I) 

100 FORMA1: ( F10.6 ) 

IF (RSTAK(I) .LT. 0) GO TO 20 

NITEMS = NITEMS + 1 
I = I + 1 
GO TO 10 

C HERE WHEN ALL DATA READ. TRUNCATE THE ALLOCATION 
C 

20 IF (NITEMS .EQ. 0) GO TO error 
I = MTSTAK (NIT EMS) 

C 
C NOW THE ITEMS ARE IN LOCATIONS 
C RSTAK(I) ••••• RSTAK (I+NITEMS-1) 
C 
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The suoprogram 

SUBROUTINE SRECAP(IUNIT) 

wil.l write on .logical unit IUNIT a summary of the status of 
the stack, namel.y the number of outstanding allocations, the 
current active length, the maximum length used and the max­
imum length allowed. Typically. this subroutine would be 
called at the end of a run to obtain five lines of output 
like the following 

STACK STATISTICS ••• 

OUTSTANDING ALLOCATIONS 
CURRENT ACTIVE LENGTH 
MAXIMUM LENGTH USE~ 
MAXIMUM LENGTH ALLOWED 

o 
~ 

1825 
9000 

which says that the same or a similar run could be made with 
only 1825 INTEGER words in the stack and that since the 
number of outstanding allocations is 0, all allocations have 
been successfully de-allocated. This information provides a 
check on the balancing ot allocations and de-allocations. 

In the implementation of the allocator, every attempt 
has been made to ensure portability (3~4]. Nevertheless, it 
has been necessary to make two assumptions about FORTRAN 
that are valid for most production systems. 

First it is assumed that there is no subscript range 
checking. second it is assumed that variables local to a 
subprogram which are initialized by DATA statements retain 
their values from one subprogram inyocation to the next. 

Also~ in order to adhere to a strict interpretation of 
the FORTRAN Standard [5, Sec 10.2.5]~ it is necessary in the 
MAIN program to declare the COMMON region CSTAK and to call 
the subroutine STINIT. 'l'hese precautions will ensure that 
data stored in the stack will not be lost when using over­
lays (segmentsl or when running under FORTRAN systems in 
whicb COMMON is dynamically allocated. 
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1. lmQlernentation Notes 

Each allocation consists of three parts: pad9ing, ~!­
located §E~, and £2fiSX2! ~ntQ{mation. The padding takes 
from 0 to lSIZE-l words and is present to provide the proper 
alignment for the allocated space which occupies 
NITEMS*ISIZE words. The control information takes two words 
the first of which contains ISIZE. The second word contains 
the index (in ISTAK) of the second word of the control in­
formation associated with the previous allocation. If there 
is no previous allocation, this contains 4. 

The first four locations in ISTAK contain the following 
data: 

ISTAK(1, = the number of outstanding allocations 

ISTAK(2l = the current active length of the stack 
(second control word of last allocation) 

ISTAK(3) = the maximum value of ISTAK(2) achieved so far 
during the run 

ISTAK(4) = the maximum possible length of the stack. 

All lengths are in words (FORtRAN INTEGER variables) and the 
default value of ISTAK(4) is 1000. 

The consistency of these data and the control informa­
tion associated with the last allocation is checked on' every 
call to allocator. If an inconsistency is found. the Error 
Handler (2] is called to deliver an appropriate message and 
terminate the run. 
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Appendix 

INTEGER FUNCTION IALLOC(NITEMS,ISIZE) 
C 
C ALLOCATES AN ARRAY OF LENGTH NIUMS*ISIZE OUT 
C OF THE INTEGER ARRAY ISTAK. ON RETURN, lHE ARRAY WILL OCCUPY ••• 
C 
C ISTAK ( (1 + (IALLOC-l) *ISIZE) , • •• , ISTAK ((IALLOC-l +NITEMS) *ISI ZE)) 
C 
C ERROR STATES -
C 
C 1 - ONE OF (LNOW,LUSED,LMAX) HAS BEEN OVERWRITTEN. 
C 2 - NITEMS.LE.O. 
C 3 - ISIZE.LE.O. 
C 4 - STACK OVERFLOW. 
C 
C THE ALLOCATOR RESERVES THE FIRSl FOUR INTEGER WORDS OF THE STACK 
C FOR ITS OWN INTERNAL BOOK-KEEPING. lHE USE OF THESE FOUR WORDS IS 
C DESCRIBED BELOW 
C 
C ISTAK(l) - THE NUMBER OF CURRENT OUTS1ANDING ALLOCATIONS. 
C ISTAK(2) - THE CURRENT ACTIVE lENGTH OF THE STACK IN INTEGER WORDS. 
C ISTAK(3) - THE MAXIMUM VALUE OF ISTAK(2) ACHIEVED SO FAR DURING 
C THE RUN • . 
C ISTAK(4) - THE MAXIMUM LENGTH lHE STACK CAN HAVE, IN INTEGER WORDS. 
C 

C 

C 

C 

C 

C 

C 

C 

C 

COMMON /CSTAK/DSTAK 

DOUBLE PRECISION DSTAK(SOO) 
REAL RSTAK( 1000) 
INTEGER ISTAK(1000) 
LOGICAL INIl 

EQUIVALENCE (DSTAK (1) ,RSTAK (1) ,ISTAK (1) ) 
EQUIVALENCE (ISTAK(l) ,LOUT) 
EQUIVALENCE (ISTAK(2) ,LNOW) 
EQUIVALENCE (ISTAK (3) ,LUSED) 
EQUIVALENCE (ISTAK(4),LMAX) 

DATA INIT/.TRUE./ 

IF (INIT) CALL SOTAKO(INI1,1000) 

IF (LNOW.LT.4.0R.LNOW.GT.LUSED.OR. LUSED.GT.LMAX) CALL SETERR 
1 (S4HIALLOC - ONE OF (LNOW,LUSED,LMAX) HAS BEEN OVERWRITTEN, 
2 54,1,2) 

IF' (NITEMS.LE.O) CALL SETERR(20HIALLOC - NITEMS.LE.O,20,2,2) 
IF (ISIZE.LE.O) CALL SETERR(19HIALLOC - ISIZE.LE.O, 19,3,2) 

IALLOC = (LNOW-l)/ISIZE+2 
I = (IALLOC-l+NITEMS)*ISIZE+ 2 
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C STACK OVERFLOW IS AN UNRECOVERABLE ERROR. 
C 

LF (I.GT.LMAX) CALL SETERR(23HIALLOC - STACK OVERFLOW. 23.4. 2) 
C 
C ISTAK (I-I) CONTAINS THE ITEM SIZE FOR THE FRAME. 
C ISTAK(I ) CONTAINS A POINTER 70 7HE ENu OF THE PREVIOUS 
C ALLOCATION. 
C 

C 

C 

C 

ISTAK(I-l) = ISIZE 
ISTAK(1 ) = LNOW 
LOUT = LOUT+l 
LNOW = I 
LUSW = MAXO (LUSED, LNOW) 

RETURN 

END 

SUBROUTINE DALLOC(NUMBER) 

C DE-ALLOCATES THE LAST (NUMBER) ALIOCATIONS MADE IN THE STACK 
C BY IALLOC. 
C 
C ERROR STATES -
C 
C 1 - NUMBER.W.O. 
C 2 - ONh OF (LNOW.LUSED.LMAX) HAS BEEN OVERWRITTEN~ 
C 3 - CANNOT DE-ALLOCATE MORE 7HAN THE ENTIRE STACK. 
C 4 - THE POIN7ER AT ISTAK(LNOW) HAS BEEN OVERWRITTEN. 
C 

C 

C 

C 

C 

C 

COMMON /CSTAK/DSTAK 

DOUBLE PRECISION DSTAK(SOO) 
REAL RSTAK (1000) 
INTEGER ISTAK(100 0) 
LOGICAL INIT 

EQUIVALENCE (DSTAK (1) ,RSTAK (1) • ISTAK (1)) 
EQUIVALENCE (ISTAK(I).LOU7) 
EQUIVALENCE (ISTAK(2) .LNOW) 
EQUIVALENCE (ISTAK (3) .LUSED) 
EQUIVALENCE (ISTAK(4).LMAX) 

DATA INIT/.TRUE./ 

IF (INIT) CALL SOTAKO(INIT.l000) 

IF (NUMBER. LT. 0) CALL SETERR(20HDALLOC - NUMBER.LT.0.20.1.2) 
IF (LNOW.LT.4.0R.LNOW.GT.LUSED.OR.LUSED.GT.LMAX) CALL SETERR 

1 (54HDALLOC - ONE OF (LNOW"LUSED,LMAXJ HAS BEEN OVERWRITTEN. 
2 54.2,2J 
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C 
IN = NUMBER 

10 IF (IN.EQ. OJ RETURN 
C 

IF (LNOW.EQ.4j CALL SETERR 
1 (54HDALLOC - CANNOT DE-AlLOCATE MORE THAN THE ENTIRE STACK, 
2 54,3,2) 

C 
C CHECK TO MAKE SURE THE BACK POINTERS ARE MONOTONE. 
C 

C 

C 

C 

IF (ISTAK(LNOW) .LT.4.0R.ISlAK(LNOW) .GE.LNOW-2j CALL SETERR 
1 (56HDALLOC - THE POINTER Ai IST·AK(LNOWj HAS BEEN OVERWRIi'rEN, 
2 56,4,2) 

LOUT = LOUT-1 
LNOW = ISTAK (LNOWj 
IN = IN-1 
GO TO 10 

END 

SUBROUTINE STINIT(NITEMS,ISIZE) 

C INITIALIZES THE STACK ALLOCATOR, SETTING THE LENGTH OF THE STACK. 
C 
C ERROR STATES -
C 
C 1 - NITEMS.LE.O. 
C 2 - ISIZE.LE.O. 
C 

c 

c 

C 

IF (NITEMS.LE.Oj CALL SETERR(20HSTINIT - NITEMS.LE.O,20,1,2j 
IF (ISIZE.LE.O) CALL SETERR(19ESTINIT - ISIZE.LE.O, 19,2,2) 

CALL SOTAKO (.FALSE. ,NITEMS*ISIZE) 

RETURN 

END 
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INTEGER FUNCTION NIRALL(ISIZE) 
C 
C RETURNS THE NUMBER OF ITEMS CF SIZE ISIZE THAT REMAIN 
C TO BE ALLOCATED IN ONE REQUEST. 
C 
C ERROR STATES -
C 
C 1 - ONE OF (LNOW,LUSED,LMAX) HAS BEEN OVERWRITTEN. 
C 2 - ISIZE.LT.1. 
C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

COMMON /CSTAK/DSTAK 

DOUBLE Pf<ECISION DSTAK (500) 
REAL RSTAK (1000) 
INTEGER ISTAK(1000) 
LOGICAL INn' 

EQUIVALENCE (DSTAK (1) ,RSTAK (1) ,ISTAK (1) ) 
EQUIVALENCE (ISTAK(1) ,LOU~) 
EQUIVALENCE (ISTAK(2) ,LNOW) 
EQUIVALENCE (ISTAK(3),LUSED) 
EQUIVALENCE (ISTAK(4),LMAX) 

DATA INIT/.TRUE./ 

IF (INIT) CALL SOTAKO(INI~,1000) 

IF (LNOW.LT.4.0R.LNOW.GT.LUSED.OR.LUSED.GT.LMAX) CALL SETERR 
1 (54HNIRALL - ONB OF (LNCW,LUSED,LMAX) HAS BEEN OVERWRITTEN, 
2 54.1 .. 2) 

IF (ISIZE.LT.1) CALL SETERR 
1 (19HNIRALL - ISIZE.LT.1,19,2,2) 

NIRALL = MAXO ( (LMAX-2) /ISIZE- (LNOW-1) /ISIZE-1, 0 ) 

RETURN 

END 

INTEGER FUNCTION MTSTAK(NI~EMS) 

C CHANGES THE LENGTH OF THE FRAME AT THE TOP OF THE STACK 
C TO NITEMS. 
C 
C ERROR STATES -
C 
C 1 - LNOW HAS bEEN OVERWRIT~EN. 
C 2 - ISTAK(LNOWO-1) HAS BEEN OVERWRITTEN. 
C 

COMMON /CSTAK/DSTAK 



C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

DOUBLE PRECISION DSTAK(500) 
REAL RSTAK (1000) 
INTEGER ISTAK(1000) 
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EQUIVALENCE (DSTAK(l) ,RSTAK(l),ISTAK(l)) 
EQUIVALENCE (ISTAK(l) ,LOUT) 
EQUIVALENCE (ISTAK(2) ,LNOW) 
EQUIVALENCE (ISTAK(3),LUSED) 
EQUIVALENCE (ISTAK(ij),LMAX) 

LNOWO = LNOW 
CALL DALLOC (1) 

IF (LNOWO. Ll'. 7) CALl. SETERR 
1 (3ijHMTSTAK - LNOW HAS B EEN OVERWRITTEN,3ij,l,2) 

ISIZE = ISTAK(LNOWO-l) 

IF (ISIZE.LT. 1) CALL SETERR 
1 (ijijHMTSTAK - ISTAK(LNOW0-1) HAS BEEN OVERWRITTEN,ijij,2,2) 

MTSTAK = IALLOC(NITEMS,ISIZE) 

RETURN 

END 

SUBROUTINE SRECAP(IWUNIT) 

C WRITES LOUT, LNOW, LUSED AND LMAX ON LOGICAL UNIT IWUNIT. 
C 

C 

C 

C 

C 

C 

COMMON /CSTAK/DSTAK 

DOUBLE PRECISION DSTAK(500) 
REAL RSTAK(1000) 
INTEGER ISTAK(1000) 
INTEGER ISTATS(ij) 
LOGICAL INIT 

BQUIVALENCE (DSTAK(l),RSTAK(l),ISTAK(l)) 
EQUIVALENCE (ISTAK (1) ,ISTATS (1)) 
EQUIVALENCE (ISTAK(l) ,LOU1) 
EQUIVALENCE (ISTAK(2),LNOW) 
EQUIVALENCE (ISTAK (3) ,LUSED) 
EQUIVALENCE (ISTAK(ij) ,LMAX) 

DATA INIT/.TRUE./ 

IF (INIT) CALL SOTAKO(INI1,1000) 
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WRITE (IWUNIT,90001 ISTATS 
C 

9000 FORMAT(20HOSTACK STATISTICS ••• // 
1 24H OUTSTANDING ALLOCATIONS,I8/ 
1 24H CURRENT ACTIVE LENGTH ,18/ 
3 24H MAXIMUM LENGTH USED ,18/ 
4 24H MAXIMUM LENGTH ALLOWED ,181 

C 
RETURN 

C 
END 

SUBROUTINE SOTAKO(LARG,LENGTHI 
C 
C INITIALIZES THE STACK TO LENGTH IN'I'EGER WORDS 
C 

C 

C 

C 

C 

C 

COMMON /CSTAK/DSTAK 

DOUBLE PRECISION DSTAK(SOOI 
REAL RSTAK (10001 
INTEGER ISTAK(10001 
LOGlCAL LARG.INIT 

EQUIVALENCE (DSTAK(ll,RSTAK(ll,ISTAK(l» 
EQUIVALENCE (ISTAK (11 ,LOUTI 
EQUIVALENCE (ISTAK (2I,LNOWI 
EQUIVALENCE (ISTAK(3),LUSEDI 
EQUIVALENCE (ISTAK (41 ,LMAXI 

DATA INIT/.FALSE. / 

IF (.NOT.LARGI GO TO 10 

C HERE IF NOT FROM STINIT 
C 

C 

LARG = • FALSE. 
IF (INITI RETURN 

C HERE TO INITIALIZE 
C 

C 

C 

10 IN IT = .TRUE. 
LOUT = 0 
LNOW = 4 
LUSED = 4 
LMAX = MAXO(LENGTH,61 

RETURN 

END 



A Centralized Error Handling Facility 
for Portable FORTRAN Libraries 

by 

A. D. Hall and N. L. Schryer 
Bell Laboratories 

Murray Hill, New Jersey 

Although it is obvious and widely recognized that 
library procedures intended for general use ought to check 
for incorrect arguments and other error conditions, most 
FORTRAN subprograms avoid such testing because the required 
code is annoyingly awkward and bulky. This paper presents a 
portable centralized error handling facility which permits a 
subprogram to detect an error, print an appropriate message, 
and terminate execution all in a single statement. 

The facility also allows a subprogram to indicate an 
error condition and then return control to its caller if the 
caller so desires. The caller may either retrieve the error 
number and choose to print the saved message and terminate 
execution, or leave the error state and proceed by an 
alternative route, or return control to its caller if the 
latter is willing_ 

The use of the facility leads to clean, simple code for 
the detection and handling of error conditions, and provides 
a uniform mechanism for passing error information from one 
subprogram to another. The need for additional arguments in 
calling sequences is avoided. 



A Centralized Error Handling Facility 
for Portable FORTRAN Libraries 

by 
A. D. Hall and N. L. Schryer 

Bell Latoratories 
Murray Hill, New Jersey 

Although it is obvious and widely recognized that 
library procedures intended for general use ought to check 
for incorrect arguments and other errOr conditions, most 
programs avoid such testing because the required code is 
annoyingly awkward or bulky. For example, to ensure that 
the dimension, N, of an array is positive and issue an 
appropriate diagnostic if not, one would have to write 

... 
IF (N .GE. 1) GO'IO 10 
WRITE(6,9000) 

9000 FORMAT (19H N IS LFSS THAN ONE) 
CALL FDOMP 
STOP 

C 
10 CONTINUE 

••• 

where FDUMP is a locally 
produce a dump (hopefully 

provided 
symbolic, 

subroutine 
see Section 

intended 
6) • 

to 

Another drawback to the above, non-centralized, e r ror 
handling method is that it terminates execution 
unconditionally even though the calling subprogram might 
want to recover control and either correct the error or 
proceed by an alternative route. 

This paper describes an Error Handler designed around 
the idea that most errors detectable in library subprograms 
are !a!~! while only a few are ~~ov~~ble. We consider an 
error fatal if it prevents a program or subprogram from 
obtaining computationally useful results. For example, a 
non-positive dimension for an adjustably dimensioned array 
would be considered a fatal error. In this case, a single 
subroutine call will suffice to print an error message and 
terminate the run with a dump_ 

We consider an error recoverable only if a calling 
subprogram might use that fact to obtain computationally 
useful results. For example, a singular matrix in a 
triangularization subprogram might be consider ed a 
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recoverable error. In this case, the called subprogram sets 
an g!!~ state with a single subroutine call and provides 
code for return of control to the caller. If the caller has 
set the !~!ery ~~ on, control will be returned and the 
caller may test for the presence of an error and take 
appropriate action. If the caller bas set the recovery mode 
off, the error will be treated as if it were fatal and the 
caller need not provide any code whatsoever for handling the 
error. 

Listings of 
Handler are given 

the subprograms 
in the Appendix. 

comprising the Error 

This section describes the use of the error-setting 
subroutine, SET ERR. 

The following statement: 

CALL SETERR(MESSG, NMESSG, NERR, lOPT) 

sets an error state with the Hollerith message MESSG of 
length NMESSG characters (1 ~ NMESSG ~ 72), and error number 
NERR. The parameter IOPT determines what action is to be 
taken by SETERR. as follows: 

If IOPT = 1, the error is recoverable; but if not in 
recovery mode, SETERR simply prints the message and 
stops. If in recovery mode, SETERR records the error 
number and message, sets the error state, and returns. 

If IOPT = 2, the error is fatal; SETERR prints the 
message, produces a dump and stops. 

Messages are written on the standard output unit used for 
error messges (1]. 

The following simple dot product function illustrates 
the use of SETERR for a fatal error. 

c 

c 

C 

REAL FUNCTION DOT(A, a, N) 
REAL A (N), B (N) 

IF (N .LT. 1) CALL SETERR(12HDOT - N.LT. 1, 12, 1, 2) 

DOT = 0.0 
D010I=1,N 

10 DOT = DOT + A(I)*B(I) 

RETURN 
END 
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The above call to SETERR indicates 
first error condition (NERR = 1, 
fatal (lOPT = 2) error. In case 
following line would be output 

ERROR 1 IN DOT - N.LT.1 

that liN. LT. 1" is 
in "DOT" and that it 
of such an error. 

the 
is a 
the 

followed by 
convention 
the package 

a dump and termination of the run. We adopt the 
that all error messages begin with the name of 
or subprogram which froduced the error. 

An example of the use of SETERR for recoverable errors 
is given at the end of Section 4. 

3. ~~~Qf Recovery 

Recovery from an error is permitted only when the value 
of IOPT is , in the call to SETERR. In this caser a 
recovery switch internal to the error handling routines is 
tested to see if recovery is ~erroitted. If the value of the 
recovery switch is 1, recovery is permitted. and SETERR 
records the error number and message. sets the error state. 
and returns control to the caller. If the value of the 
recovery switch is 2. the error message is printed and the 
run terminated. Execution begins with the recovery switch 
set to 2. so that all errors are considered fatal. 

Two subroutines. ENTSRC and RETSRC. are provided for 
manipulating the recovery switch. ENTSRC is used to 
retrieve the old value of the recovery switch and 
simultaneously set a new value. RETSRC is used to restore 
the recovery switch to its previous value. ENTSRC. RETSRC 
and SETEFR are so designed that a program can never be in 
the error state unless the value of the recovery switch is 
1. 

when IRNEW is 1 or 2. the statement 

CALL ENTSRC(IROlD. IRNEW) 

sets the recovery switch to IRNEW and returns the previous 
value in IROLD. If IRNEW is O. the recovery switch is left 
unchanged and the current value returned in IROLD. It is 
considered a fatal error to call ENTSRC with a value of 
IRNEW other than O. 1. or 2. 

The statement 

CALL RETSRC(IROLD) 

restores the recovery switch to IROLD. 
fatal error if IROLD has a value other 

It is 
than 1 

considered 
or 2. 

a 
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Typically, calls of ENTSRC and RETSRC are used to 
surround sections of program where it is desired to force a 
particular setting of the recovery switch and then restore 
it to its previous value. For example, to turn recovery 
mode on upon entry to a subprogram and restore it to its 
previous value upon return, the following coding is used: 

C 

C 

SUBROUTINE WORKER 

CALL ENTSRC(IROLD,1) 

••• 
CALL RETSRC (IROLD) 
RETURN 

END 

Recovery from recoverab1e errors is a two-sided 
process, with the called subprogram setting an error state 
(via SETERR) and the caller then testing for, and responding 
to, that error state. If a subprogram explicitly puts 
itself in recovery mode (via ENTSRC), it should test for the 
occurrence of an error after any call to a subprogram that 
might set a recoverable error state. If an error has 
occurred, the subprogram may choose to either (1) force 
printing of the saved message and terminate execution, (2) 
leave the error state and proceed by an alternative route, 
or (3) return control to its caller if the latter is 
willing. 

Two errors in a row, with no explicit recovery 
statement between, is regarded as a fatal error since it 
means that the user has failed to recover properly from an 
error condition. Similarly, it is a fatal error to call 
ENTSRC while the program is in the error state, or to call 
RETSRC with tROLD = 2 while the program is in the error 
state. In each of these three cases, two error messages are 
printed and execution stops. 

Every call of a subprogram that has recoverable error 
conditions and could be executed in recovery mode sbould be 
followed by a test for an occurrence of an error. The error 
number may be retrieved by writing 

NERR2 = NERROR (NERR 1) 

which sets both NERR2 and NERR1 to the current value of the 
error number. If the error number is non-zero, it means 
that an error has occurred and that corrective action must 
be taken. When done, the error state may be left by writing 

CALL ERROFF 
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A typical use 
subprogram takes the 

of ENTSRC, RE~SRC 
following form: 

SUBROUTINE WORKER · .. 
C 
C SET RECOVERY MODE ON. 
C 

CALL ENTSRC(IROLD, 1) 

CALL SUBPRG 

and 

IF (NERROR(NERR) .EQ. 0) GO TO 10 
C 

NERROR 

C ERROR IN SUBPRG. TAKE ONE OF THE THREE 
C CORRECTIVE ACTIONS PRESENTED BELOW: 
C 
C (1) TERMINATE EXECUIION 
C (2) LEAVE THE ERROR STATE AND PROCEED BY 
C ALTERNATIVE ROUIE 
C (3) RETURN AN ERRCR 10 CALLER 
C 

C 
C 
C 

10 
C 
C 
C 

20 

C 

• •• 

NO ERROR. PROCEED. 

· .. 
RESTORE PREVIOUS RECOVERY MODE AND RETURN 

CALL RETSRC(IROLD) 
RETURN 

END 

in a 

possible ways of coding the three alternatives outlined 
in the above program are given below. 

(1) Terminating execution 

C 
C ERROR IN SUBPRG. TERMINATE EXECUTION 
C BY FORCING A DOUBLE ERROR. 
C 

CALL SETERR{22HWORKER - SUBPRG FAILED, 22, 1, 2) 
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(2) Proceeding by an alternative route 

c 
C ERROR IN SUBPRG. TRY SOMETHING ELSE. 
C 

CALL ERROFF 
• •• 
GO TO 20 

(3) Returning an error to the caller 

C 
C ERROR IN SUBPRG. RETURN NEW ERROR TO CALLER. 
C 

CALL ERROFF 
CALL SETERR(22HwORRER - SUBPRG FAILED, 22, 1, 1, 
GO TO 20 

To avoid having to 
the subroutine WORKER 
follows: 

deal with recoverabl e e r ror s at all, 
illustrated above could be coded as 

SUBROUTINE WORKER 

C 
C SET RECOVERY MODE OFF SC THAT ERRORS IN 
C ANY SUBPROGRAMS ARE IMMEDIATELY FATAL. 
C 

CALL ENTSRC (IROLD, 2) 

• •• 
CALL SUBPRG 
· .. 

C 
C RESTORE PREVIOUS RECOVERY MODE AND RETURN. 
C 

C 

CALL RETSl<C (IROr.n) 
RETURN 

ENIj 

For NERROR to work reliatly, it is important that the 
error number, if non-zero, be due to an error in the 
subprogram invoked in the preceeding statement. This can 
only be guaranteed in the current framework if we are 
certa in tnat the program is not in the error state when that 
subprogram is invoked. Otherwise, the subprogram could 
succeed but NERROF would report an error. To ensur e that 
this does not happen, we adopt the conventi on that any 
subprogram which can return one or more recoverable e r rors 
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and might be invoked while in the error state must begin 
with a call to ENTSRC, even if only to check this condi t i on. 
A corresponding call to RETSRC is necessary prior to 
returning only if the recovery switch is altered by the call 
to ENTSRC (IRNEW ~ 0). 

A simple subprogram which returns recoverable errors 
might be coded roughly as follows: 

SUBROUTINE WORKER 

C 
C CHECK FOR EXISTING ERROR STATE 
C 

CALL ENTSRC(IDUMMY, 0) ... 
C 
C IF ZERO PIVOT, SET ERROR AND RETURN. 
C 

IF (X (I,J) • NE. 0.) GO TO 10 
CALL SETERR(19HWORRER - ZERO PIVOT, 19, 1, 1) 
RETURN 

C 
10 CONTINUE 

••• 

5. Rebygging ~g Testing 

when testing subprograms which can return a recoverable 
error, it is often desirable to print the error number and 
associated message, and the subroutine EPRINT is provided 
for this purpose. For example, if the statements 

••• 
CALL LBB 
CALL EPRINT 
IF (NERROR(IERR) .EQ. 0) GO TO 10 ... 

are executed 
occurs in 
message. 

in recovery mode, 
LBB, then EPRINT 

6. imBlementatlon ~~ 

and if a recoverable error 
will print the corresponding 

In the implementation of the Error Handler, every 
attempt has been made to ensure portability [2,3]. However, 
it has been necessary to make an assumption about FORTRAN 
systems which is almost universally valid, but not 
guaranteed by the FORTRAN Standard [4]. specifically, it 
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assumed that local variacles initialized by DATA 
retain their values from one subprogram 
to the next. (This assumption is likely to be 
the presence of overlays.) 

SETERR also calls a subroutine FDUMP to produce a dump_ 
Ideally~ this dump ought to be symbolic in the sense of 
[Sr6,7,81, and not simply a sheaf of octal or hexadecimal 
constants. More specifically, for each active subprogram a 
symbolic dump should list the names and values of all its 
variables, the name of its caller, and the location in the 
caller from which it was called. Since it is impossible to 
write a portable FORTRAN sub~rogram to print symbolic dumps 
in a an arbitrary FORTRAN environment, such a subprogram has 
not been included. Instead. a dummy version of FDUMP has 
been supplied which may be replaced by a locally supplied 
s ubroutine. 
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c 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

Appendix 

SUBROUTINE SETERR (MESSG, NMESSG, NERR, IOPT) 

SETERR SETS LERROR = NERR, OP~IONALLY PRINTS THE MESSAGE AND 
DUMPS ACCORDING TO THE FOLLOWING RULES ••• 

IF IOPT = 1 AND RECOVERING 
IF IOPT = 1 AND NOT RECOVERING 
IF lOPT = 2 

INPUT 

MFSSG - THE ERROR MESSAGE. 

- JUST REMEMBER THE ERROR. 
- PRINT AND STOP. 
- PRINT, DUMP AND STOP. 

NMESSG - THE LENGTH OF THE MESSAGE, IN CHARACTERS. 
NERR - THE ERROR NUMBER. MUST HAVE NERR NON-ZERO. 
IOPT - THE OPTION. MUST HAVE IOPT=1 OR 2. 

C ERROR STATES -
C 
C 1 - MESSAGE LENGTH NOT POSI~IVE. 
C 2 - CANNOT HAVE NERR=O. 
C 3 - AN UNRECOVERED ERROR FOLLOWED BY ANOTHER ERROR. 
C 4 - BAD VALUE FOR IOPT. 
C 
C ONLY THE FIRST 12 CHARACTERS OF THE MESSAGE ARE PRINTED. 
C 
C THE ERROR HANDLER CALLS A SUBROUTINE NAMED FDUMP TO PRODUCE A 
C SYMBOLIC DUMP. TO COMPLETE THE PACKAGE, A DUMMY VERSION OF FDUMP 
C IS SUPPLIED, BUT IT SHOULD BE REPLACED BY A LOCALLY WRITTEN 
C VERSION WHICH AT LEAST GIVES A TRACE-BACK. 
C 

INTEGER MESSG (1) 
C 
C THE UNIT FOR ERROR MESSAGES. 
C 

lWUNIT=I1MACH(4) 
C 

IF (NMFSSG.GE.l) GO TO 10 
C 
C A MFSSAGE OF NON-POSITIVE LENGTH IS FATAL. 
C 

\ 9000 
WRITE(IWUNIT,90001 
FORMAT (52H1ERROR 1 IN SETERR - MESSAGE LENGTH NOT POSITIVE.) 
GO TO 60 

C 
C NW IS THE NUMBER OF WORDS ~HE MESSAGE OCCUPIES. 
C 

10 NW=(MiNO(NMESSG,721-1)/I1MACH(6)+1 
C 

IF (NERR.NE.O) GO TO 20 
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C 
C CANNOT TURN THE ERROR STATE OFF USING SETERR. 
C 

C 

WRITE(IWUNIT,9001) 
9001 FORMAT (42H1ERROR 2 IN SETERR - CANNOT HAVE NERR=O// 

1 34H THE CURRENT ERROR MESSAGE FOLLOWS///) 
CALL E9RINT(MESSG, NW, NERR, • TRUE.) 
ITEMP=IBSAVE(1,1,.TRUE.) 
GO TO 50 

C SET LERROR AND TEST FOR A PREVIOUS UNRECOVERED ERROR. 
C 

20 IF (IBSAVE(1,NERR,.TRUE.).EQ.0) GO TO 30 
C 

9002 

C 

1 
2 

WRITE (IWUNIT,9002) 
FORMAT (23H1ERROR 3 IN SETERR -, 

48H AN UNRECOVERED ERROR FOLLOWED BY ANOTHER ERROR.// 
48H THE PREVIOUS ANC CURRENT ERROR MESSAGES FOLLOW. ///) 

CALL EPRINT 
CALL E9RINT(MESSG,NW,NERR,.TROE.) 
GO TO 50 

C SAVE THIS MESSAGE IN CASE IT IS NOT RECOVERED FROM PROPERLY. 
C 

30 CALL E9RINT(MESSG,NW,NERR,.TROE.) 
C 

IF (IOPT.EQ.1 • OR. IOPT.EQ.2) GO TO 40 
C 
C MUST HAVE IOPT = 1 OR 2. 
C 

WRITE(IWUNIT,9003) 
9003 FORMAT (42H1ERROR 4 IN SETERR - BAD VALUE FOR IOPT// 

1 34H THE CURRENT ERROR MESSAGE FOLLOWs///) 
GO TO 50 

C 
C TEST FOR RECOVERY. 
C 

40 IF (lOPT.EQ.2) GO TO 50 
C 

IF (I8SAVE(2,O,.FALSE.) .EQ.1) RETURN 
C 

CALL EPRINT 
STOP 

C 
50 CALL EPRINT 
60 CALL FDUMP 

STOP 
C 

END 
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SUBROUTINE ENTSRC(IROLD,IRNEW) 
C 
C THIS ROUTINE RETURNS IROLD = LRECOV AND SETS LRECOV = IRNEW. 
C 
C IF THERE IS AN ACTIVE ERROR STATE, THE MESSAGE IS PRINTED 
C AND EXECUTION STOPS. 
C 
C IRNEW = 0 LEAVES LRECOV UNCHANGED, WHILE 
C IRNEW = 1 GIVES RECOVERY AND 
C IRNEW = 2 TURNS RECOVERY OFF. 
C 
C ERROR STATES -
C 
C 1 - ILLEGAL VALUE OF IRNEW. 
C 2 - CALLED WHILE IN AN ERROR STATE. 
C 

IF (IRNEW.LT.O .OR. IRNEW.GT.2) 
1 CALL SETERR(31HENTSRC - ILLEGAL VALUE OF IRNEW,31,1,2) 

C 
IROLD=I8SAVE(2,IRNEW,IRNEW.NE.0) 

C 
IF (I8SAVE(1.0,.FALSE.) .NE. 0) CALL SETERR 

1 (39HENTSRC - CALLED WHILE IN AN ERROR STATE. 39,2.2) 
C 

RETURN 
C 

END 

SUBROUTINE RETSRC (IROLD) 
C 
C THIS ROUTINE SETS LRECOV = IRCLD. 
C 
C IF THE CURRENT ERROR BECOMES UNRECOVERABLE. 
C THE MESSAGE IS PRINTED AND EXECUTION STOPS. 
C 
C ERROR STATES -
C 
C 1 - ILLEGAL VALUE OF IROLD. 
C 

C 

C 

C 

C 

IF (IROLD. LT. 1 • OR. IROLD. GT. 2) 
1 CALL SETERR(31HRETSRC - ILLEGAL VALUE OF IROLD,31,1,2) 

ITEMP=I8SAVE (2. IROLD, . TRUE.) 

IF (IROLD.EQ.1 .OR. I8SAVE(1,O,.FALSE.).EQ.O) RETURN 

CALL EPRINT 
STOP 

END 



INTEGER FUNCTION NERROR(NERR) 
C 
C RETURNS NERROR = NERR = THE VALUE OF THE ERROR FLAG LERROR. 
C 

C 

C 

NERROR=I8SAVE(1,O,.FALSE.) 
NERR=NERROR 
RETURN 

END 

SUBROUTINE ERROFF 

C TURNS OFF THE ERROR STATE OFF BY SETTING LERROR=O. 
C 

C 

C 

I=I8SAVE(1,O,.TRUE.) 
RETURN 

SUBROUTINE EPRINT 

C THIS SUBROUTINE PRINTS THE LAST ERROR MESSAGE, IF ANY. 
C 

c 

c 

C 

INTEGER MESSG(1) 

DATA MESSG(1)/1H / 

CALL E9RINT(MESSG,1,1,.FALSE.) 
RETURN 

END 
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SUBROUTINE E9RINT(MESSG,NW,NERR,SAVE) 
C 
C THIS ROUTINE STORES THE CURRENT ERROR MESSAGE OR PRINTS THE OLD 
C ONE, IF ANY, DEPENDING ON WHETHER OR NOT SAVE = .TRUE •• 
C 

C 

INTEGER MESSG (NW) 
LOGICAL SAVE 

C MESSGP STORES AT LEAST THE FIRS! 72 CHARACT·ERS OF THE PREVIOUS 
C MESSAGE. ITS LENGTH IS MACHINE DEPENDENT AND MUST BE AT LEAST 
C 
C 1 + 71/ (THE NUMBER OF CHARACTERS STORED PER INTEGER WORD). 
C 

INTEGER MESSGP(36) ,FMT(14) ,CCPLUS 
C 
C START WITH NO PREVIOUS MESSAGE. 
C 

DATA MESSGP(1)/1H1/, NWP/O/, NERRP/O/ 
C 
C SEl UP THE FORMAT FOR PRINUNG THE ERROR MESSAGE. 
C THE FORMAT IS SIMPLY (A1,14X,72AXX) WHERE XX=I1MACH(6) IS THE 
C NUMBER OF CHARACTERS STORED PER INTEGER WORD. 
C 

C 

C 

C 
C 
C 

10 
C 

C 

DATA CCPLUS / 1H+ / 

DATA FMT( 1) / 1H ( / 
DATA FMT( 2) / 1HA / 
DATA FMT ( 3) / 1 H1 / 
DATA FMT( 4) / 1H, / 
DATA FMT ( 5) / 1H1 / 
DATA FMT( 6) / 1H4 / 
DATA FMT ( 7) / 1HX / 
DATA FMT ( 8) / 1H, / 
DATA FMT ( 9) / 1H7 / 
DATA FMT (10) / 1H2 / 
DATA FMT(11) / 1HA / 
DATA FMT (12) / 1HX / 
DATA FMT(13) / 1 HX / 
DATA FMT (14) / 1H) / 

IF (.NOT.SAVE) GO TO 20 

SAVE THE MESSAGE. 

NWP=NW 
NERRP=NERR 
DO 10 I=1,NW 
MESSGP (I) =MESSG(I) 

RETURN 

20 IF (I8SAVE(1.0,.FALSE.).EQ.0) GO TO 30 
C 
C PRINT THE MESSAGE. 



C 

C 

C 

C 

C 
C 
C 
C 
C 

C 

C 

C 

C 

C 
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IWUNIT=I 1 MACH (4) 
WRITE(IWUNIT.9000) NERRP 

9000 FORMAT (7H ERROR .14. 4H IN ) 

CALL S88FMT(2.I1MACH(6).FMT(12)) 
WRITE(IWUNIT.FMT) CCPLUS. (MESSGP(I).I=l.NWP) 

30 RETURN 

END 

SUBROUTINE S88FMT(N.W.IFMT) 

S88FMT REPLACES IFMT(11. ... 
THE CHARACTERS CORRESPONDING 
SIGNIFICANT DIGITS OF W. 

INTEGER N.W,IFMT(N) 

INTEGER NT,WT,DIGITS (1 0) 

DATA DIGITS ( 1) / 1HO / 
DATA DIGITS ( 2) / 1H1 / 
DATA DIGITS ( 3) / 1H2 / 
DATA DIGITS ( 4) / 1H3 / 
DATA DIGITS ( 5) / 1 H4 / 
DATA DIGITS ( 6) / 1H5 / 
DATA DIGITS ( 1) / 1 H6 / 
DATA DIGITS ( 8) / 1H7 / 
DATA DIGITS ( 9) / 1 H8 / 
DATA DIGITS (10) / 1H9 / 

NT = N 
WT = W 

10 IF (NT .LE. 0) RETURN 
IDIGIT = MOD( WT. 10 ) 

• TO 

IFMT (NT) = DIGITS (!DIGIT+ 1) 
WT = WT/10 
NT = NT - 1 
GO TO 10 

END 

IFMT (N) WITH 
THE N LEAST 
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INTEGER FUNCTION I8SAVE(ISW,IVALUE,SET) 
C 
C IF (ISW = 1) I8SAVE RETURNS THE CURRENT· ERROR NUMBER AND 
C SETS IT TO IVALUE IF SET = .TRUE •• 
C 
C IF (ISW = 2) 18SAVE RETURNS THE CURRENT RECOVERY SWITCH 
C AND SETS IT TO IVALUE IF SET = • TRUE •• 
C 

C 

C 

C 

LOGICAL SET 

INTEGER IPARAM (2) 

EQUIVALENCE (IPARAM(l) ,LERROR) 
EQUIVALENCE (IPARAM(l) ,LRECOV) 

C START EXECUTION ERROR FREE AND WITH RECOVERY TURNED OFF. 
C 

C 

C 

C 

C 

DATA LERROR/O/ , LRECOV/2/ 

I8SAVE=IPARAM (ISW) 
IF (SET) IPARAM(ISW)=IVALUE 

RETURN 

END 

SUBROUTINE FDUMP 

C FDUMP IS INTENDED TO BE REPLACED BY A LOCALLY WRITTEN 
C VERSION WHICH PRODUCES A SYMBOLIC DUMP. FAILING THIS, 
C IT SHOULD BE REPLACED BY A VERSION WHICH PRINTS THE 
C SUBPROGRAM NESTING LIST. 
C 

RETURN 
C 

END 
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Machine Constants for Portable FORTRAN Libraries 

Phyllis A. Fox 

A.D. Hall 

N.t. Schryer 
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Murray Hill. New Jersey 07974 

ABSTRACT 

One of the essential principles of programming for portabili ty is the isola­
tion of the machine dependent aspec ts of a program through the use of param­
e ters or primit ive subprograms. When FORTRAN is the vehicle fo r portabili­
ty, it is us ually more convenient to use primitive subprograms since the 
language does not provide even II rud ime ntary parameter substitution facility. 

Th is paper describes a set of th ree FORTRAN function subprograms 
wh ich provide a machine independent way of obtaining a number of important 
machine or ope rating system dependent constants. Among these constan ts are 
the ·standard· 110 unit numbers, the word size in bits and characters, and the 
rela tive spacing of floating-point numbers. The choice of .tvailable constants 
was dictated primarily by experience. convenience and simplicity, with com­
pleteness and minimality being secondary considerations. 



Machine Constants for Portable FORTRAN Libraries 

I. Introduction 

Phyllis A. Fox 

A.D. Hall 

N.L. Schryer 

Bell Laboratories, 
Murray Hill , New Jersey 07974 

One of the essential principles of programming for portability is the isolation of the 
machine dependen t aspects of a program in parameters or primi tive subprograms. In th is way 
the alte rations thaI need to be made when moving a substanti al program library from one en­
vironment to another are isolated, minimized and easily documented. When FORTRAN is the 
vehicle for portabil ity. il is usually more convenient 10 use primitive subprograms since the 
language does nOI provide even a rudimentary parameter substitution facility. 

This paper describes a set of three FORTRAN function subprograms which can be in· 
voked to determine one of a number of basic machine or operating system dependent con· 
stants. These functions are 

11 MACH 
RIMACH 
DIMACH 

which delivers integer constants, 
which delivers single·precision noating·point (real) constants, and 
which delivers double·precision noating·poin t cons tants. 

By requ iring that all machine·dependent constants be incorporated into programs through 
references to these functions, the effort required to move a library 10 a new environmen t is 
mini mized; on ly DATA statements in the three fun clion subprograms need to be changed. A 
listing of the functions is included in the Appendix. Included in the COmments are specific 
constants for the Honeywell 6000 Series, the IBM 360 and 370 Series, the SEL Systems 85/86, 
the UNIVAC 1100 Series, the DEC PDP 10 (KA and KI processors). the DEC PDP II, and 
the COC 6000 and 7000 Series. 

The functions have a single integer argument indicating the particular constant desired. 
For example, IIM ACH (2) is the logical unit number of the "standard~ oulput unil, ~o the state­
ments 

IWUNIT ~ 11 MACH(2) 
WRITE OWUN IT. 900) ." 

will write output (using Format statement 9(03) on the standard output unit. As another ex· 
ample RIMACH ( I) is the smallest positive singJe·precision number. If a program wishes to 
test how small a quantity, x, is becoming, perhaps to avoid undernow, it can test x against some 
reasonable mUltiple of R I MACHO). 

I f the integer argument to RIMACH or DIMACH is out of range, the Error Hand ler III 
is called to de liver an appropriate message and terminate the run. In IIMACH, the message is 
outpu t directly to avoid the possibility of a recursive call from the Error Handle r. 
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2. The Constants 

The constants cover four basic areas: 

1) Logical unit numbers 
2) Word size 
3) Integer variables 
4) Floating-point variables 

These areas are discussed in the following subsections: 

2.1. Logical Unit numbers 

The FORTRAN run-time environmen t in many operating systems has several logical 
unit numbers which have preassigned (or default) associations with particular ~devicesM. For 
example, logical unit 5 is frequen tly the standard input unit and logical unit 6 is frequently the 
standard ou tpu t unit Often there are also logical unit numbers assigned for punched output 
and e rror messages. 

For any particular system, the logical unit numbers are available as follows: 

IlMACH( 1) = the standard input unit 

I IMACH( 2) = the standard output unit 

IlMACH( 3) - the standard punch unit 

IlMACH( 4) = the standard error message unit 

2.2. Word Size 

A word is defined to be that machine storage element allocated to an INTEGER o r 
REAL variable. We define its size in both bits and characters as follows: 

IlMACH( 5) = the number of bits per word 

IIMACH( 6) = the number of characters per word 

These allow subprograms which perform character or bit manipulation to be su itab ly 
parameterized. 

2.3. Integer Variables 

We assume that the permissible values of INTEGER variables are represented in the s­
digit , base-o fo rm: 

± (x os-I +X os - 2+ s- 1 s-2 

where 0 ~ Xi < 0 for i - O •. . .. s - 1. We then have, 

IIM ACH( 7) - a 

II MACH( 8) - s 

and the largest integer is, 

IlMACH( 9) "'" oS-I 
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Although IlMACH(9) can be compu ted from IlM ACH( 'J) and IlMACH(S), it is provid· 
ed because a straight forward evaluation of the formula may cause ove rflow. Note also that 
IlMACH(S) need nOI be direcLly related to IlMACH(5). For instance, on the CDC 6000 
Series, intege rs have 48 bits of magnitude and I sign bit , yet there are 60 bils in a word. 

2.4. Floating-point Variables 

We assume thaI floating·point numbers are represented in the I-digit, base b form: 

xI xl XI 
±b('(-+-+ ... +-) 

b b 2 b l 

where 0 ::;; x, < b for i-I. ... ,1,0 < xI and emln ~ e ~ emax ' For a particular machine, 
we choose values for the parameters, f, t'min. and emax • such that all numbers expressible in 
this form are represen tab le by the hardware and usable from FORTRAN. Note that the fOf­

mula is sym metrical under negation but not reciprocation. On some mac hines a small portio n 
of the range o f permissible numbers may be excluded. 

For both single and double precision we have, 

IIMACH(IO) ~ b 

In order to accommodate machines such as the CDC 6000 Series which put the b-point 
on the right, we must concede the possibility that the magnitude of enlln may be substan tially 
smalle r than emu,,-. Thus, fo r single-precision floating-point we have: 

IIMACH(I J) ~ I 

IIM ACH(l2) = emin 

IIM AC H(J 3) = emax 

For double precision. b remains the same, but I, emm , and emax are replaced by T, Emin , 

and Ema,,-, as follows: 

IIMACH(I4) ~ T> I 

IIMACH(I S) = Emin :s;;; emin 

IIMACH(l6) = Ema,,- ~ ema ,,-

3. Derived Quantities 

We now describe a number of derived floa ting-point quantities which frequently are used 
in mathemat ical software. Although redundant. in the sense that they can be computed from 
previously given quantities. they are provided for efficiency and convenience. It is recom­
mended that the derived quantities be used whenever possible in case the defining equations 
have to be gene ralized to accommodate some fut ure mach ine architect ure. 

The smallest positive single and double precision magnitudes are given by: 

RIMACH( J) ~ b'm .. - I 

DIMACH( I) ~ bE",,"-1 
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The largest single and double precision magnitudes are given by: 

R1 M ACH ( 2) - b'~' (J -b -' ) 

Dl MACH( 2) _ bE.., (J -b - T) 

The smallest relative spacings between adjacent single-precision or double-precision 
values are given by: 

R1 MACH ( 3) - b -' 

D1MACH ( 3) _ b-T 

The largest re lative spacings between adjacent single-precision or double-precision values 
are given by: 

R1MACH ( 4) - b(1-,) 

D1MACH ( 4) _ b(1-T> 

The largest re lative spacing is the smallest value of E that can safely be used in tests for 
relati ve error of the form I (x-y)/x I ~ E. It is also the smallest positive value of 8 for 
which I +5 is nOI equal 10 I and is known as Wilkinson's error constant (21. 

The logarit hm of the base b is given by : 

R1 MACH( 5) -loglOb 

D1MACH( 5) - loglOb 

4. Decimal Inpul-Oulput 

In some applications. part icularly inpu t-ou tput, it is often useful to know the bas ic rela­
tionships between the internal representation or numbers and an external decimal representa­
tion. Some or the simpler re lationships are summarized be low. More detai l can be found in 
IJI. 

For out put, one usually wan ts to know how much space to allow ror the decimal 
representation or an internal number. In the case or intege rs. the numbe r s' or decimal places 
that are needed is given by 

s' - fs 10glO01 ' 

where a and s are de fi ned in Sec. 2.3, and where rxl de notes the smalles t intege r not less than 
x. 

For single-precision floating-point, the situation is slightly more complex. Ir the external 
representation is or the rorm mlO" with 10 - I ~ In < 10. then the minimum and maximum 
values or e' are : 

e'min -l (emin - I ) 10glObj + 1 

e'mu - femu 'OgiObl ' 

where b, emin and emax are defined in Sec. 2.4. Here, IxJ denotes the largest in teger nOI 
exceed ing x. 

The number of decimal places required rOT the decimal exponen t is thererore 

flOglO (max <I ("nlln 1.11"nlu I ) ) I 
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To determine the number 01" dcdmal places to ,llIow ror //I, we observe thaI integers in 
the range 0 to hi - I I;all be represented exactly in single-precision noating-point. If these are 
10 be represented exactly on Output, then the number ,'of decimal places required is 

" -I' toslObl· 
where I and h arc defined in Sec. 2.4. Relations similar 10 those given above hold for double-
precision. 

It should be noted thaI a dCl:imClI noaling-poin! system carrying t'significant digits has a 
smallest relative spacing which is tess than or equal to the smallest relative spacing of OUf as­
sumed internal representation. 

For input. one usually wanlS to know the approximate ranges of decimal numbers which 
can be represented in the machine. For instance, all integers of s" decimal digits, where 

J" - lSIOglOaj 

can be represented internally. Of course, it is possible th,1I some larger integers can be 
represented, but .. more complicated test wou ld be needed. 

All single-precision floating-point numbers of the form 11110 1'" where \0 -I ~ 111 < 10 
and 

r ("nun -1 )IOgtobl + I .( £0" ~ le01;,.\ logtobi 

can be approximated in the machine. Similar relations hold for double-precision. 

S. PrORrammin~ Hints 

In some cases, particularly inner [oops. It may be desirable to avoid repeated ca lls to the 
functions described above. The obvious techn ique is to retrieve the needed vCllues before 
entering the loop, but there are cases where substantial overhead may be incurred, even by 
this technique. One way to eliminate repeated calls to these functions in a ponablc (but non­
sland<lrd) way is to use a carefully constructed ftfirsHime" switch. 

For example. to retrieve R I MACH(4) on first entry to a subprogram, the following cod­
ing can be used: 

REAL MCHEPS 

DATA MCHEPS I 0.0 I 

IF (MCHEPS .EO. 0.0) MCHEPS ~ RIMACH(4) 

If more than one value is 10 be obtained in this way, the following coding will suffice: 

REAL SMALL, LARGE, MCHEPS 

DATA SMALL, LARGE, MCHEPS I }'O.O I 

IF (SMALL .NE. 0.0) GO TO 10 
SMALL ~RIMACH(l1 

LARGE ~ RIMACH(2) 
MCHEPS ~ RIMACH(4) 

10 CONTINUE 
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To ensure portability it is essential th ai all lIalm's obtained in this way be initialized in a 
DAT A statemen t. I f not, some operating systems (notably Burroughs) will not preserve the 
va lues from one subroutine call to the nex\. 
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IIMACH(13) - EMAX, THE LARGE ST EXPONENT E. 

OOUBLE · PRECISION 

I IMACH(4) T, THE NUMBER OF BASE·B DIGITS. 

11MACH(15) - EMIN, THE SMA LLE ST EXPONENT E. 

C 11MACH(16) - EMAX, THE LARGEST EXPONENT E. 
C 
C TO ALTER THIS FUNCTION FOR A PARTICULAR ENVIRONMENT, 
C THE DATA STATEMENTS FOR THE HONEYWELL 6000 SERIES 
C SHOU LD BE TURNED INTO COMMENTS BY ADDING A C IN COLUMN 1 . 
C THE DESIRED SET OF DATA STATEMENTS SHOULD BE ACTIVATED BY 
C REMOVING THE C FROM COLUMN 1. ALSO, THE VALUES OF 
C 11MACH( 1) . 11MACH ( 4) SHOULD BE CHECKED FOR CONS I STENCY 
C WITH THE LOCAL OPERATING SYSTEM . 
C 

C 

C 

INTEGER IMACH(16) ,OUTPUT 

EQUIVALENCE (IMACH(4),OUTPUT) 

C MACHINE CONSTANTS FOR THE HONEYWELL 6000 SERIES. 
C 

OA TA MAC H ( 1 ) / 5/ 
OA T A MAC H ( 1 ) / 6/ 
DA TA MAC H ( 3 ) / 43/ 
OATA MACH( 4 ) / 6/ 
OA TA MACH( 5 ) / 36/ 
OATA MA C H ( 6 ) / 6/ 
OATA MACH( ]) / 1/ 
OATA MACH( 8 ) / 35/ 
OATA MACH( 9) /0377777777777/ 
OATA MACHOO) / 1/ 
OAT A MACH(1) / 17/ 
OATA MACH(1) /·117/ 
OATA MACH(3) / 117/ 
OATA IMACH(4) / 63/ 
OATA IMACH(15) /·117/ 
DATA IMACH(6) / 117/ 

C 
C MACHINE CONSTANTS FOR THE IBM 360 AND 370 SERIES, 
C AND THE SEL SYSTEMS 85/86. 
C 
C 
C 
C 
C 
C 
C 
C 
C 

DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 

IMACH( 
IMACH( 
IMACH( 
IMACH ( 
IMACH ( 
IMACH ( 
IMA CH( 
IMACH( 

1 ) / 5/ 
1 ) / 6/ 
3 ) / 7/ 
4 ) / 6/ 
5 ) / 31/ 
6 ) / 4/ 
]) / 1/ 
8 ) / 31/ 
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C DA T A IMACH( g) /17FfFFFFF / 
C DATA IMACH(IO) / 16/ 
C DATA IMACH(II) / 6/ 
C DATA IMACH(I2) / ·64/ 
C DATA IMACH(13) / 63/ 
C DATA IMACH(I4) / 14/ 
C DA T A IMACH(I5) / ·64/ 
C DA T A IMACH(I6) / 63/ 
C 
C MACHINE CONSTANTS FOR THE CDC 6000 AND 7000 SERI ES . 
C 
C DATA MAC H ( I ) / 5/ 
C DATA MACH( 2) / 6/ 
C DATA MA C H ( 3 ) / 7! 
C DATA MAC H ( 4) / 6/ 
C DATA MAC H ( 5 ) / 60/ 
C DATA MAC H ( 6 ) / 10/ 
C DATA MAC H ( 7) / 2/ 
C DATA MAC H ( 8 ) / 48/ 
C DATA MACH( 9) /000007777777777777777/ 
C DATA MACH(IO) / 2/ 
C DATA MACH(II) / 48/ 
C OATA MACH(I2) / ·974/ 
C OATA MACH(13) / 1070/ 
C OATA MACH(14) / 96/ 
C OATA MACH(I 5) / ·974/ 
C OATA MACH(16) / 1070/ 
C 
C MACHINE CONSTANTS FOR THE POP · 10 (KA PROCESSOR). 
C 
C OATA MAC H ( I ) / 5/ 
C OATA MACH( 2 ) / 6/ 
C OATA MACH( 3 ) / 5/ 
C OATA MACH( 4) / 6/ 
C OATA MAC H ( 5 ) / 36/ 
C OATA MACH( 6 ) / 5/ 
C OATA MACH( 7) / 2/ 
C OA T A MACH( 8 ) / 35/ 
C OATA MACH( 9) / "377777777777/ 
C OA T A MACH(IO) / 2/ 
C OA T A MACH(II) / 27/ 
C DATA MACH(I2) /· 128/ 
C DA T A MACH(13) / 127! 
C DATA IMAC H(I4) / 54/ 
C DATA IMACH(15) /·128/ 
C OA T A IMACH(16) / 127! 
C 
C MACHINE CONSTANTS FOR THE POp·IO (KI PROCESSOR). 
C 
C OATA IMACH( I ) / 5/ 
C OATA IMACH( 2) / 6/ 
C OATA IMACH( 3 ) / 5/ 
C OATA IMACH( 4) / 6/ 
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C DATA MACH( 5 ) I 361 
C DATA MACH( 6 ) I 51 
C DATA MA CH ( ]) I 21 
C DATA MACH( 8 ) I 351 
C DATA MACH( 9) I "3777771/77771 
C DATA MACH(IO) I 21 
C DATA MACHOI) I 27/ 
C DATA MACH(12) 1·1281 
C DATA MACH(13) I 127/ 
C DATA MACH(I4) I 62/ 
C DATA MACH(5) 1·1281 
C DATA MACH(6) I I 271 
C 
C MACHINE CONSTANTS FOR THE PDp ·II. 
C 
C DATA IMACH( I ) I 51 
C DATA IMACH( 2) I 61 
C DATA IMACH( 3 ) I 51 
C DATA IMACH( 4 ) I 61 
C DATA IMACH( 5 ) I 321 
C DATA IMACH( 6 ) I 41 
C DATA IMACH( ]) I 2/ 
C DATA IMACH( 8 ) I 311 
C DATA IMACH( 9) I 21474836471 
C DATA IMACH(IO) I 21 
C DATA IMACHOI) / 241 
C DATA IMACH(2) /·127/ 
C DATA IMACH(3) / 1271 
C DATA IMACH(14) / 56/ 
C DATA IMACH(5) /·127/ 
C DATA IMACH(16) I 127/ 
C 
C MACHINE CONSTANTS FOR THE UNIVAC 1100 SERIES. 
C 
C DATA MAC H ( 1 ) / 5/ 
C DATA MACH( 2 ) / 6/ 
C DATA MACH( 3 ) / 7/ 
C DATA MACH ( 4) / 61 
C DATA MACH( 5 ) / 36/ 
C DATA MACH( 6 ) / 6/ 
C DATA MACH( ]) / 2/ 
C DATA MACH( 8 ) / 35/ 
C DATA MA CH( 9) /0377777777777/ 
C OA T A MACH(10) / 2/ 
C OA TA MACH(11 ) I 27/ 
C DA TA MACH( 12) 1·128/ 
C DA TA MACH(3) I 127/ 
C DA T A MACH(I4) / 6 1 / 
C DATA MACH(5) /·102 41 
C DATA MACH(6) / 1023/ 
C 

I F (I . LT . 1 .OR. I . GT. 16 ) GO TO 10 
C 



C 

C 

C 

C 

IIMACH~ IMACH( I) 
RETURN 

10 WRITE(OUTPUT,9000) 
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9000 FORMAT(39HIERROR I IN IIMACH 

CALL FOUMP 

STOP 

E NO 

l OU T OF BOUNDS) 
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The single-precision floating-point constant 
FORTRAN function subprogram RIMACH 

REAL FUNCTION RIMACH( I ) 

C S INGLE · PRECISION MACHINE CO NSTANT S 
C 
C RIMA CH ( I) - B··(EMIN ·I), THE SMALLEST POSITIVE MAGNITUOE. 
C 
C RIMA CH ( 2) - B··EMAX·(I . B·· ( · T)), THE LARGEST MAGNITUDE . 
C 
C RIMACH( 3) - B··( · T) , THE SMALLEST RELATIVE SPACING . 
C 
C RIM ACH( 4 ) - B··(I · T) , THE LARGEST RELAT IVE SPACING . 
C 
C RIMACH( 5) - LOGIO ( B) 
C 
C TO ALTER TH IS FUNCTION FOR A PARTICULAR ENV IRONMENT , 
C THE OATA STAT EMENTS FOR THE HON EYWELL 6000 SER IES 
C SHO ULO BE TURNED INTO COMMENTS BY ADDING A C IN COLUMN I . 
C THE OESIREO SET OF DATA STATEMENTS SHOULO BE ACTIVATEO BY 
C REMO VING THE C FROM COLUMN I . 
C 
C WHERE POS SIBLE , OCTA L OR HEXADEC IMAL CONSTANTS HAVE BEEN USED 
C Tp SPECIFY THE CONSTANTS EXACTLY . 
C 

REAL RMACH(5) 
C 
C MAC HI NE CONSTANTS FOR THE HONEYWELL 6000 SER I ES . 
C 

C 

DATA RMACH( I) 1 0402400000000 1 
DATA RMACH( 2) I 03767777777 771 
DATA RMACH( 3) I 0714400000000 1 
DATA RMAC H( 4) I 07164000000001 
OATA RMACH( 5) I 0776464202324 1 

C MACHINE CONSTANTS FOR THE IBM 360 AND 370 SERIE S, 
C AND THE SEL STSTEMS 85/86 . 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

DATA RMACH ( I ) I 1001 00000 1 
OATA RMACH ( 2 ) I 17FFFFFFF I 
DATA RMACH( 3 ) I 13BIOOOOOI 
DATA RMACH( 4) I 13CI00000 1 
DATA RMACH ( 5 ) I 14113441 31 

MACHINE CO NSTANT S FOR THE C~C 6000 AND 7000 

DATA RMACH( I ) I 00014000000000000000B I 
OATA RMA CH( 2 ) I 37767777777777777777BI 
DATA RMACH( 3 ) I 16404000000000000000B I 
DATA RMACH ( 4 ) I 16414000000000000000BI 
DATA RMA CH( 5 ) I 1716464202 32 41175720B I 

SERIE S. 
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C MACHINE CONSTANTS FOR THE POp·IO (KA OR KI PROCESSOR). 
C 
C DATA RMACH( I) 1 "0004000000001 
C DATA RMACH( 2) 1 "3777777777771 
C DATA RMACH( 3) 1 "14640 0000000 1 
C DATA RMACH( 4) 1 "1474000000001 
C DATA RMACH( 5) 1 "1774642023241 
C 
C MACHINE CONSTAN TS FOR THE POP·ll. 
C 
C DATA RMACH( 1) 1 0.29387358771E·381 
C DATA RMACH( 2) 1 0.17014117331E+391 
C DATA RMACH( 3) 1 0.59604644775E·071 
C DATA RMACH( 4) 1 0.11920928955E·061 
C DATA RMACH( 5) 1 0.30102999566 1 
C 
C MACHINE CONSTANTS FOR THE UNIVAC 1100 SERIES . 
C 
C DATA RMACH( 1) 1 00004000000001 
C DATA RMACH( 2) 1 03777777777771 
C DATA RMACH( 3) 1 01464000000001 
C DATA RMACH( 4) 1 01474000000001 
C DATA RMACH( 5) 1 01774642023241 
C 

IF (I . LT . 1 .OR . I .GT. 5) 
1 CALL SE TERR (24 HRIMACH lOUT OF 80UNOS,24,1,2) 

C 
RIMACH - RMACH(I) 
RETURN 

C 
END 
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Th e double-precision floating-point constant 
FORTRAN function sub program DIMACH 

DqUBLE PRECISION FUNCTION DIMACH( I) 
C 
C DDUBLE·PRECISION MACHINE CONSTANTS 
C 
C OIMACH( I) B··(EMIN·I) , THE SMALLEST POSITIVE MAGNITUDE. 
C 
C DIMAC H( 1) B··EMAX·(I · B"( ' T)), THE LARGEST MAGNITUDE. 
C 
C DIMACH( 3) B"( ·T), THE SMA LLEST RELATIVE SPACING . 
C 
C DIMACH( 4) - B··(I·T), THE LARGEST RELATIVE SPACING . 
C THE LARGEST RELATIVE SPACING 
C 
C DI MACH( 5) - LOGIO (B) 
C 
C TO AL TER THIS FUNCTION FOR A PARTICULAR ENVIRONMENT , 
C THE DATA STATEMENTS FOR THE HONEVWELL 6000 SERIES 
C SHOULD BE TURNED INTO COMMENTS BV ADDING A C IN COLUMN I. 
C THE DESIRED SET OF DATA STATEMENTS SHOULD BE ACTIVATED BV 
C REMOVING THE C FROM COLUMN I. 
C 
C WHERE POSSIBLE, OCTAL DR HEXADECIMAL CONSTANTS HAVE BEEEN USED 
C TO SPEC IFV THE CONSTANTS EXACTLV WHICH HAS IN SOME CASES 
C RE QUIRED THE USE OF EQUIVALENT INTEGER ARRAVS. 
C 

C 

C 

C 

INTEGER SMALL(1) 
INTEGER LARGE(1 ) 
INTEGER RIGHT(1) 
INTEGER DIVER(1) 
INTEG ER LOGIO(1) 

D9uBL E PRECISION DMACH(5) 

EQUIVALENCE (DMACH(I) , SMALL(I)) 
EQUIVALENCE (DMACH(1) ,LARGE(I)) 
EQU IVA LENCE (DMACH(3) , RIGHT(I)) 
EQ UIVALENCE (DMACH(4) , DIVER(I)) 
EQ UIVALENCE (DMACH(5) , LOGIO(I)) 

C MACH INE CONSTANTS FOR THE HONEVWELL 6000 SERIE S. 
C 

C 

OAT A SMAL L(I) ,SMAL L(1) 10401400000000 , 00000000000001 
DATA LARGE(I) , LARGE(1) I 037 6777777777,07777777777771 
DATA RIGHT(I) , RIGHT(1 ) 10604400000000,00000000000001 
DATA DIVER(I ) ,0IVER(1) 10606400000000,00000000000001 
OATA LOGIO(I) , LOGIO(1 ) 10776464101314,01175717757141 

C MACHINE CONS TANTS FOR THE IBM 360 AND 370 SER IE S, 
C AN O THE SEL SYS TEM S B5/86 . 
C 
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C DATA SMAll(l) ,SMAll(2) I ZOOIOOOOO ,ZOOOOOOOOI 
C DATA lARGE(I ) ,lARGE(2) I Z7FFFFFFF,ZFFFFFFFFI 
C DATA RIGHT(I) ,RIGHT(2) I Z33100000 ,ZOOOOOOOOI 
C DATA OIVER(I ) , 0IVER(2) I Z34100000,ZOOOOOOOOI 
C DATA lO GIO(I) ,lOGIO(2) I Z41134413,Z509F79FFI 
C 
C MACHINE CONSTANTS FOR THE CDC 6000 AND 7000 SERIES. 
C 
C DATA SMAll(l) 10001400000000000000081 
C DATA SMAll(2) I 0000000000000000000081 
C 
C DAT A lARGE(I) I 3776777777777777777781 
C DATA LARGE(2) I 3716777777777777777781 
C 
C DATA RIGHT(I) I 1560400000000000000081 
C OATA RIGHT(2 ) I 0000000000000000000081 
C 
C DATA DIVER(I) I 1561400000000000000081 
C DATA 0IVER(2) I 0000000000000000000081 
C 
C DATA LOGIO(I) I 1716464202324117571781 
C DATA LOGIO(2) I 1636757142174225465481 
C 
C MACHINE CONSTANTS FOR THE POP · IO (KA PROCESSOR) 
C 
C DATA SMALL(I),SMALL(2) I "000400000000,"0000000000001 
C DATA LARGE(I) ,L ARGE(2) I "377777777777, "3447777777771 
C DATA RIGHT(I) , RIGHT(2) I "113400000000,"0000000000001 
C DATA DI VER(I),DIVER(2) I "114400000000, "0000000000001 
C DATA LOGIO(I) , lOGIO(2) I "177464202324,"1441175717761 
C 
C MACHINE CONS TANT S FOR THE PDP 'I O (KI PROCESSOR). 
C 
C DATA SMAll(I),SMALL(2) I "000400000000,"0000000000001 
C DATA LARGE(I) , LARGE(2) I "377777777777, "3777777777771 
C DATA RIGHT(I),RIGHT(2) I "103400000000,"0000000000001 
C DATA 0IVER(I) ,DIVER(2) I "104400000000,"0000000000 001 
C DATA LOGIO(I),LDGIO(2) I "177464202324,"4767477674611 
C 
C MA CHIN E CONSTANTS FOR THE POP·II. 
C 
C DATA DMACH(I) I 0.2938735877055719 0·381 
C DATA OMACH(2) 10.1701411834604692290+391 
C DATA DMACH( 3) I 0.1387778780781445680·161 
C DATA DMACH(4) I 0.2775557561562891350·161 
C DATA DMACH(5 ) I 0.3010299956639811950+001 
C 
C MACHINE CONSTANTS FOR THE UNIVAC 1100 SERIES. 
C 
C DATA SMAlL(I),SMALL(2) 10000040000000,00000000000001 
C DATA LARGE(I) ,LARGE(2) I 0377777777777,07777777777771 
C DATA RIGHT(I) ,R IGHT(2 ) I 0170540000000,00000000000001 
C DATA 0IVER(I),0IVER(2) 10170640000000,00000000000001 
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C OATA LO GIO(I) , LOGIO(2) 10177746420232,04117571775721 
C 

C 

C 

If ( I . LT . 1 .OR. I .G T. 5) 
1 CALL SETERR( 24HOIMACH . lOUT Of BOUNOS,24 ,1,2) 

OIMAC H ~ OMACH ( I ) 
RETURN 

ENO 
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