S
Tress

ok
.

.‘. 7 3
", \ "T-»T)
. Field. Engineering
e -

EM;:muﬁ of Instruction

O 0O

S S d

2075 Processing Unit — Volume 2

Storage Bus Control
Instruction Preparation
FLT, Logout, MCW

Interrupts

223-2873-1

Form 223-2873-1
FES 526-7034

PREFACE

This is one of six Field Engineering manuals for the
2075 Processing Unit. These six manuals contain
the unit theory of operation, reference diagrams to
be used when troubleshooting, and maintenance pro-
cedures.

A basic knowledge of the IBM System/360 as con-
tained in the IBM System/360 Principles of Opera-
tion, Form A22-6821 is considered a prerequisite
for studying the unit theory of operation. The theory
of operation is contained in a four volume manual
identified as a Field Engineering Manual of Instruc-
tion (FEMI), Volume 1 is a prerequisite for the
detailed information contained in volumes 2, 3, and
4, Volume 1 contains the introduction to the system
and the processing unit and a description of the
functional units (registers, adders, and decoders) of
the processing unit. Volumes 2 and 3 contain
detailed instruction analysis, and volume 4 contains
detailed information on special features and power
supplies and control.

The four volumes of theory of operation contain
many references to the diagrams packaged in the
associated Field Engineering Diagrams Manual
(FEDM), All diagrams in the FEDM are identified
by a four digit figure number and unless otherwise
specified, all four digit figure references in the

MAJOR REVISION (December 1965)

This edition, Form 223-2873-1, obsoletes Form 223-2873-0.
Principal change in this edition: Many figures have been
changed due to engineering changes affecting storage timing.

Copies of this and other IBM publications can be obtained through IBM Branch Offices.

Address comments concerning the contents of this publication to:
1 1BM Systems Develop Division, Product Publicati

(©) 1965 by International Business Machines Corporation

FEMI indicate that the figure is contained in the
associated FEDM.
The complete titles and form numbers of the six
2075 Field Engineering Manuals are:
2075 Processing Unit--Volume 1, Comprehensive
Introduction, Functional Units, Field Engineer-
ing Manual of Instruction, Form 223-2872
2075 Processing Unit--Volume 2, Theory of
Operation: Storage Bus Control; Instruction
Preparation; FLT, Logout, MCW; Interrupts,
Field Engineering Manual of Instruction, Form
223-2873
2075 Processing Unit--Volume 3, Theory of
Operation: Fixed Point, I Execute, Branch,
Floating Point, Variable Field Length, Field
Engineering Manual of Instruction, Form
223-2874
2075 Processing Unit--Volume 4, Special Fea-
tures, Power Supply and Control, Appendix,
Field Engineering Manual of Instruction, Form
223-2875
2075 Processing Unit, Field Engineering Dia-
grams Manual, Form 223-2876
2075 Processing Unit, Field Engineering Main-
tenance Manual, Form 223-2880

Dept. 520, CPO Box 120, Kingston, N.Y. 12401

CONTENTS

STORAGEBUSCONTROL 5 Theory of Operation . .« . .+« + . « « +« + + . + 64
Introduction . . 5 I Time for All Instructions+ + - . B4
Storage Words and Swrage nddresses 5 Instruction Sequencing Contrels 66
Storage Address Protection 6 TiCycles o & & & o 0w = & w » o 2 = 0B
Data Flow = & s & 2 11 TZCYCIE. o v = » o % w8 & & w w4 » €93
Storage Selection and Contml i % o= 12 ItoETransfer + +« « « « « « « + 74
Critical Timing Loop. . . . 14 Instruction Executions. + .+ + . . B2
CPU Fetch, the Basic Operation . 14 Instruction Fetching Contrels 83
CPU Fetch Error Detection . 15 Physical Description of Data Flow. 83
CPU Store Operation . . 15 A, B, and] Registers. 83
CPU Store Error Detection . 16 Checking. . .. 84
Channel Bus Priority 16 Gate Select Mecha.num G e % @ v ow e s o= B
Channel Fetch . WONEE A R W ey e 21 Addressing of Instructions 84
Chinnel'Spore . < & 3 ¢ = 5 5 & o 15 e 22 ICR Advancing. 85
Return Address Circuits . G W B CE o 22 Interrupts. 87
Theory of Operation + . . . 29 Instruction Fetching . . . ¢ w o owm oo s 88
Address Bit Functions . . . 29 Instruction Fetching--Special Cases 3w oo w w9
Address Switching 30
CEULFECh . .o v » o & o w5 30 FAULT LOCATION TESTING, LOGOUT, AND MAIN-
PathFlow i 3 & & & %@ &5 @ . 35 TENANCECONTROLWORD . ., . . . + . + « + . 99
Conlal. « v o 5 @ W ot wUoE e 3 @ B 35 Introduction, FET & & % o & % a4 5 o« & oo e s 99
CPUSIOre & « &« + = s s & 36 Test Tape Format. 100
DotaFlow: 5! s 4 & & 8 0 o4 & @8 37 FLT Sequence . . . O Ee o R R ow TR
COBOE o v v o6 & 5 & oAb % o8 W % e w o BT Transmission Checks Durmg FET w & w0 @ & s 309
Chiinal Petel s » o 2 & o w3 = % & o oy - B8 Manual Controls for FLT. 103
DdtaFlow & i =2 5 & o 4@ W ¥ 38 Indicatorsfor FLT + + + + & « & + s+ » + . 104
Control . . v « « o & & & =+ & & 39 Introduction, Logout . . . « o w w e, » 30§
Channel Store = = 40 Introduction, Maintenance Conl:ml Word <« « o » o « 106
DataFlom' = 06 & o & e u @ 40 MCWControl . v & & + & « &« & & & & » 106
COREDL o« i e o oEow e o o e oo oel TE L Theory of Operation, FLT 108
Panel Key Fetch . 41 Word Switch Matrix 108
DEtaFlow: & ws i 5 e s @@ @ w BitSwitchMatrix « &+ &« « & o % & o ¢ o« = 309
GERlal & = o= o e o) o b Bk S Word Control Counter.+ 109
AddressCompare <« + o+ o+ s o s » & s » & & Bit Control Register « « .« . . . 109
Special Operations: . . + & « &« = =+ o = & = TetRegiter & « 4 & ¢ o % = w » & « o109
SEREY o w s s o v o e W e oo RepeatCounter « = « s+ » « 109
ImeBeE - 4 e e e W NG R N W SeanClock : <+ + & a2 2 @ o N o8 = ow w109
DIagnose: . = . & s e o w ow e e e e Scan - w 5 s o o o w w e e o ow ow e e BEG
TEMPMLSEE « A6 % % 8 4 wmais 5 @& & 38 Advatice. . « w 3 s = & # = & s » = v&'10
Single:Cyeld:. o w5 & W & 8w W ¥ & @ e e Compare. . . o 8w w e w e oWl ow o= wE0

CPUFeteh . . + « &« + o o & & & v 8
CPUStore . « 5 & o o & s & § o & & &
EmorHandling - « & & 4 @ & @ s s ow 6o

Theory of Operation, MCW TR g mom b e

EEEESESALLLGRROE0 8RS

Paslty CHeckE . v « ¢ o w i » s o e o INTERBUPTS = o (o i % o) & &0 3@ F % @& 5 ¥

Program Checks Introductlon: = . = « s & = » o w o & v o w3IE2

CEncal & & o = & & w o ow o W w W W Interrupt Classes . « « « - s s+ » « » « 112

Communicate and CPU Storage Busy Interruptable Status13

MachineChecks: & & & v & & & % & b i s Interrupt Examples. . . + - + « » « « « U3

Address Parity Check Interrupt Priorities. . .,119

Store Data Parity Check . Interrupt Sequence Initiation 122

Return Synchronization Check Interrupt Sequencing 123

Modified Sequences 125

INSTRUCTION PREPARATION. 50 Special Conditions 126

Introduction. . . i I r Theory of Operation e owo . o 127

Control and Fu.ncuons of T1 and T2 e A 4 ol e s 5Y CPU SAPy Invalid Store Address, E Program, .md

Instruction Sequencing Controls 57 Extarngl . o« o o o % v & s w v owm s i FeE

Setting Operation Registers . . . i W oW o oce BB IProgramt . &+ & s o s & » » & « » + +» 129

T1 and T2 Cycle Automatic "uncnom . 4 owm o ow o R Input/Output . . < =« - « + % & & « & «129

Start Execution Units S a w E Timer Advance. . . + + + « + « + +» « . 130
Keeping Track of Instruction Preparauon a.ml Recovery Only . . o « + « « » « » » « » 131 .

Execution i v omEwow v 2w 5 Machine Check. . « .« . . - + . « . « . 131

Controlo[lnstrucnon?etches. e ool w w e 0 o+ B4 IPL (load PSW). . « « « « o &5 « o+ « » . 132

Form 223-2873-1
FES §26-7034

LIST OF ILLUSTRATIONS

Figure ﬂtl_e Page
STORAGE BUS CONTROL
1 System/360, Model 75« 7
2 IHnft Fatche i & o o W o< % 7
3 StorageWords « . = w wia 0 ow e 8
4 Model 75 Main Storage . ’ v e 8
5 Two-Way Interleaving, Model H?S % &)
6 Four-Way Interleaving, Models I75 and J75. 9
7 Storage Address Protection 10
8 SPFPotectionWord . . . < & o & o & & 10
9 Overlapped Storage Cycles , . . 13
10 Maximum Selection Rate 13
11 Machine Cycles for CPU Access 13
12 CPU Storage Access Time 17
13 Parallel Cables and Parallel Logic. 17
14 Critical TimingLoop. « 17
15 Data Flow, CPU Fetch 18
16 CPU Fetch Timing 18
17 Data Flow, CPU Store 19
18 CPU Store Timing 20
19 BCU Handling of Channel Requesu AT 20
20 Channel Bus Priority + « . .+ & 23
21 Channel Fetch Signal Exchange . o 24
22 Data Flow, Channel Fetch 25
23 Data Flow, Channel Store 26
24 Return Address v e W 27
25 Return Address Register Gatmg G o 28
26 Address Span Versus Interleaving Mode 31
27 HSS Selection, ModelH75. 31
28 HSS Selection, Model I75 31
I 28BA HSS Selection, Model IH75 31A
29 HSS Selection, Model J75 32
30 SPF Storage Block Addressing, Model H75 . 33
31 SPF Storage Block Addressing, Models 175 and]J75 33
32 Address Bit Switching . 33
33 Address Switching, Model H?S 34
34 Address Switching, Models I75 and 75 34
35 Selection and Post-Selection Cycles: CPU Fetch. 46
36 Single-Cycle CPU Fetch. 46
37 Single-Cycle CPU Store 46
INSTRUCTION PREPARATION
38 Simultaneous Preparation and Execution Saves Time 53
39 Execution, Sequencers, and Machine Cycles 53
40 Simultaneous Instruction-Fetch, Preparation, and
Execution . . i M Do e @ ® 54
41 Functional Secdons of2075. v v s s o » e 54
42 Main Flow Paths Through I Unit . . . 55
43 Variations in Preparation Cycling . . . 56

1/68

Figure Title Page
44 Three Instruction Sequencing Control Signals . 59
45 Instruction Sequencing Control Signals Used Two

Wapg o0 o o s 4 @ @ % 5 W ¥ 8 E s 80
46 Blocking of T1 . 60
47 Blockingof T2. w 61
48 Setting of Operation Registers . . . 61
49 Instruction Counter Fetch Controls, . 68
50 1 Time and E Time for an RX-FXP-Add {Fu.llWord] 68
51 Bockingof T - « « w &% 5% % & & . 69
52 Instruction Word Formats. 69
53 Blocking of T2 . 70
54 RR Floating-Point Operand Ganng ST |]
55 Operand Fetch Timing 75
56 Instructions Requiring Two Execution Units. 76
57 Instruction Sequencing for Start 1/O and Interrupt. 79
58 Instruction Sequenci.ng for E Executions and

Branch . . . £ e W 80
59 I Unit Store Requests ¥ bow e 3, 'BE
60 1 Unit Store Requests--Single Cycle CERTE EE |
61 Grout Timing . . R o e O
62 Parity Handling in the Incrementer and Gate Adder B6
63 Example of Normal Timing of IC Advances. . . 86
64 Example of | Unit Timing of an SS Instruction. 90
65 Example of Timing of Repeat Instruction . . 90
66 Example of Timing of an IC Fetch 91
67 Example of Timing 91
68 Example of IC Fetch--Single Cyele . 92
69 Chart for IC Fetch Address Generation . . 92

Blocking of IC Fetching 95
71 Chart for Program Store Compare 97
72 Example of Timing for an IC Recovery 98

FLT, LOGOUT, AND MCW
73 Test TapeFormat « « +» « « .« . 100
74 logout Data Flow . . . « .« + . 107
75 Diagnose Instruction . . . 107
INTERRUPTS

76 Fixed Storage Locations 115
77 Program Status Word 115
78 Extemal Interrupt+ « . 116 *
79 Program Interrupt 116
B8O Machine Check Interrupt. s K & o . 117
81 Supervisor Call Interrupt. 117
82 IOInterrupt . « + v 4 s = & o % 118
83 IPL Interrupt . . BRI 118
84 Interrupt Sequence Initlaﬁon « & Ui oes f 124
&5 Basic Interrupt Sequence. 124

e Prerequisite for study of this section is study of
the 2075 Processing Unit, Volume 1, Field
Engineering Manual of Instruction, Form
223-2872,

e This section covers operation of the basic storage
bus control -- one, two, or four 2365 Model 3
Processor Storage Units.

e Operation of the 2075 with the LCS is in the
"Features' section.

The Model 75 storage bus control (bus control unit)
is the link between main storage and storage users.
Because the operation of the bus control unit (BCU)
is affected extensively by system optional features
such as large capacity storage (LCS) and shared
LCS. only the basic BCU is described in this section.
The basic BCU operates with a main storage of either
one, two. or four 2365 Model 3 Processor Storage
Units. These storage configurations are reflected in
the system model designations:
Model H75 - One 2365 Processor Storage Unit
Model I75 - Two 2365 Processor Storage Units
Model J75 - Four 2365 Processor Storage Units
Operation of the BCU with optional main storage
configurations is described in the 2075 Processing
Unit. Volume 4, Field Engineering Manual of In-
struction, Form 223-2875.

INTRODUCTION

e BCU handles all system storage requests.

® BCU accepts storage requests, then frees the
requester during the storage cycle.

e BCU returns fetched data to the proper register
or to the channel SBO.

e Each 2365 contains two independently operating
high-speed storages (HSS).

e A 2365 stores even addresses in one HSS, odd
addresses in the other HSS. This addressing
scheme is called interleaving.

Whenever the E unit, the I unit, any channel, or the
system control panel requires a storage reference
(a store or fetch to main storage) a storage request
is sent to the BCU., The BCU honors these requests
one at a time according to a fixed priority scheme,

Form 223-2873-1
FES $26-7034

STORAGE BUS CONTROL

For each request, BCU must start (select) the proper
storage unit, route the incoming storage address.
and route the data either to or from the selected stor-
age unit (Figure 1).

A storage request to the BCU is actually an order.
or command, to store or fetch a 72-hit word (64-
data bits plus eight-parity bits) from main storage.
As soon as the BCU begins to execute this order, the
requesting area is free to do other work. For ex-
ample, consider a fetch request from the I unit
(Figure 2). The BCU will attempt to honor this re-
quest every machine cycle. However, it may be
several cycles hefore the request is actually honored.
For example, all channels have a higher priority
than the I unit. If a channel is ready to start storage,
the I unit request is blocked. Also, storage may be
busy, forcing the I unit to wait.

When there are no conflicts, BCU will select the
storage requested by the I unit and inform the I unit
by sending an accept pulse. The accept signal tells
the I unit that its request is being serviced. The I
unit is now free to drop its signals to the BCU and
proceed with other work. When the storage unit de-
livers the 72-bit word from the requested address,
the BCU routes this word into the J register.

In handling storage requests, it is not necessary
for the BCU to consider the E unit and the I unit as
separate users. The I unit establishes priorities for
E and I so that only one request from the CPU (E and
I) is sent to the BCU at a time.

STORAGE WORDS AND STORAGE ADDRESSES
e Full storage address is 24 bits.

e Model 75 storage words contain eight bytes (double
word).

e Bytes changed on a store operation are controlled
by mark bits.

e Two-way address interleaving is employed
on Models H75 and IH75.

e Four-way address interleaving is employed on
Models 175 and J75.

All System/360 processors use a 24-bit address to
select a byte within main storage. The Model 75

main storage, however, reads out eight bytes on every
storage selection. On fetch operations, all eight bytes
are delivered to the storage bus out (SBO) latch

Storage Bus Control 1/68 5

Form 223-2873-1
FES §26-7034

register in the BCU and simultaneously written back
into the cores. The CPU (or the channel) picks the
proper bytes from among the eight bytes received

if something less than a double word is required. On
store operations. main storage again reads out eight
bytes of data. However, one or more bytes of new
data is substituted for the data read out before the
double word is written back into the cores.

The substitution of bytes on a store operation is
controlled by mark bits. There are eight mark bits,
one for each of the eight bytes in a storage word. A
mark 1 bit tells storage to replace the corresponding
byte with the same byte of the storage bus in (SBI)
latch register. A mark 0 bit tells storage to leave
the corresponding byte unchanged (regenerate). The
eight-byte storage words are on double word bound-
aries. The address of the first (lowest) byte has
three low-order zeros (Figure 3), Because the BCU
and storage handle only double words, the three low-
order address bits are not used by either the BCU or
storage.

| Main storage consists of one, two, three, or four
2365 Processor Storage Units (Figure 4)., Each 2365
has two independently operating high-speed storages
(HSS), These HSS units are sometimes called M-4’s.
A system has from two to eight HSS, depending on
the model. The addressing scheme is such that one
HSS within a 2365 contains even addresses and the
other HSS contains odd addresses. Even and odd ad-
dresses are in relation to double word addresses
(Figure 3). A double word address is address bits
0-20. If bit 20 is a 0, the address is even; if bit 20
is a 1, the address is odd. The HSS have a two-
letter designation. The first letter gives the 2365
(A, B, C, or D); the second letter designates even
or odd addresses (E or O).

| In Models H75 and IH75. double word addresses
alternate between the two available HSS: this scheme
is known as two-way interleaving (Figure 5). In
Models 175 and J75, double word addresses progress
through a ring of four HSS; this scheme is known as
four-way interleaving (Figure 6). In Models 175 and
J75, double word addresses progress through a ring
of four HSS; this scheme is known as four-way in-
terleaving (Figure 6).

Storage Address Protection

e Iach 2365 has one storage protection unit.

e Storage address protection prevents inadvertent
use of a storage location.

6 1-68

e Storage is protected in blocks of 256 storage
words (2048 bytes).

e The key from the PSW or from the channel must
match a prestored key in the SP unit.

Each of the 2365 processor storages contains a small
storage and logic unit for storage address protection.
This unit called the storage protection feature (SPF)
or SP unit, serves both even and odd HSS within the
2365. The purpose of storage address protection is
to prevent inadvertent use of a storage location.

For protection purposes, storage is divided into
256 storage word (2048 bytes) blocks. These blocks
are pointed to by address bits 12-0. In other words,
address bit 12 changes once for every 2048 consecu-
tive byte addresses. Each SPF unit has one address
location for each block of storage addresses within
the associated HSS (Figure 7). In Models I75 and J75,
two SPF units contain identical protection words be-
cause each storage block is spread among four HSS.

Each SPF address location contains five bits plus
a parity bit (Figure 8). Initially, a series of set key
instructions loads the five bits of each SPF word into
the SPF unit(s). This initial loading establishes a
protection pattern for each corresponding block of
storage addresses.

" Whenever a HSS is selected for a store or a fetch
operation, a protection key (four bits) either from the
PSW or from a channel is sent to the appropriate SP
unit, If the CPU made the storage request, the pro-
tection key comes from PSW bits 8-11; if a channel
made the request, the channel sends the protection
key. This channel protection key was previously sent
to the channel in a channel address word (CAW)
bits 0-3.

The selected SP reads out the address location
corresponding to the block of processor storage ad-
dresses that includes the address of this particular re-
quest. A comparison is made between the prestored
key and the key sent to the SPF on this operation if
either:

1. This is a store operation, or

2, This is a fetch operation and the read-protect
bit in the SPF location is a 1 bit.

The comparison is for a bit-by-bit match of the
two keys; also, the keys are considered to match if a
key of all 0s was sent to the SP for this operation. If
the keys match, the requested storage operation pro-
ceeds normally; a mismatch, however, prevents
changing storage on a store operation or inhibits data
delivery on a fetch operation. In case of key mis-
match, a storage address protect (SAP) error is

Main Storage
One to Seven
/O Chaonnels

Chan ¢———|

Chan (» BCU
System

Chan Control I = Unit E - Unit
Panel

CrU

FIGURE 1. SYSTEM/360, MODEL 75

@ | Fetch Req
@ ! Storage Address

Unit BCU
g;z Retum to J
Meaning of Signals:
@ Fetch the 72-bit word ot address and (€ place it
in the) register.
, Selecr 2
@ | @ Accept acu Req
Unit Storage
Address
@ | received your order and have started the starage unil that
you requested. Yau are free to drop your input lines.
Req
@ Storoge cycle in progress. BCy Storoge
BCU waits for data from storcge . = Busy
[
@ BCU receives dota and delivers it 8CU | Dato | S'::.gu
to the 1 register. f/
Data
J Reg

FIGURE 2, 1 UNIT FETCH

Storage Bus Control 9/65

7

Form 223-2873-1
FES 526-7034

Decimal Address
[Low-Order Address Bis | §— Doubleword Address (bitn 0 theough 20)
Nw|wla[21]22]2
1 N 3
1) 1 0 38
o 1 37 | Storoge Word Address 32
o o i
o et [[z [oe s [[[5]
0 11101034] 000 001 010 011 100 101 110 111
1] 0 0 1
'] '] 1] 3 S
[]
J o 0 | a0
[0 [29 Storoge Word Address 24
0 00 |28 |,
0 i 27 B || 27| B | 29| 30| AN
4 C 0 [2 000 001 010 011 100 101 110 111
T 0|0
[i 0 '] 4 A
]
1] ¥
! 1] [F Storoge Word Address 16
0 | (7
. . £ I?ITS|T9IN|!T|22|2‘3|
0) 0 |8 000 001 010 011 100 101 110 111
0 '] 0 1 17
Q [0 0 '] 14 P
0 O I
(OO0 v [1110 |14
1 0 o 1 [1] Storoge Word Address 8
o]0 1 0o
lln [I N $ 9['°l"|"l'3|"l'sl
yo o010 0 |10 | 000 001 010 011 100 101 110 11
[]o[100 9
o 0 1 { [i S
o100 1 3
To [0 [0 o &
{0 '] 1] 1 ['] 1 5 Storoge Word Addres 0
[o [0 [0 [T |00 |
S I B) 7 o 12 |3)afs|e]7
[i] 1]) 0 0 000,001 010 011 100 101 110 111
i . = .
ress yte
Lo Lo lo Lo l0 Lo c: 8in 21,22,23 Addeaisss
FIGLRE 3, STORAGE WORDS
2365 Storoge D
Even Odd Addreses
L4, —h‘\-
A HSS Hss4¥]
©f) | | o)
7365 Storoge _C
Even —__ | /-Odd Addrewses
HSS H55]
e | | o
MODEL
175
2365 Storoge B
Even Odd Addresses
l s s e
(BE) (BO)
MODEL
173 * 2365 Storege A
MODEL 22} — = |_—Odd Addresses
H75 e | |0 NOTE: “Even" ond "Odd" refer to
‘ e e (odkdvass bit
r 0-20).

®FIGURE 4. MODEL 75 MAIN STORAGE

8 1/68

Form 223-2873-1

-
O000D0000POoOO0O000 00— ——— ===

FIGLRE 5. TWO-WAY INTERLEAVING, MODEL H75 AMD MODEL IH75

FES 526-7034
ey et r Dol Addree Evenhss 2958 odmss fvanhss 03T odamss
19 [20 [21 [22[23
of 1| 1] 1]
of1]1]of2
ol 1] o] 1|z
ol 1| o] ol 16
olol| 1] 1] Ue———— | | =rererae Brcwmra
olo| 1| ofms 256K132 (DW32K:4) | [Z56K<40 [DW3IIK135) | 2K +32 (DWoAK +4) 512K +40 (DW4K 15}
olololiliz 256K+ 16 (DW32K12) | | 256K+24 (DW32K13) K116 (DWoAK12) | | 512K+24 (DWEAK+3)
ololololis] 7 256K10_(DW3ZK 10) 756K18_(DWAZK11) 2K:0_(DWEAK10) | | 512K1B (DWedK11)
N EERE
il 1] o)
11 el 1|
11| o] ofi2 8 Doubleword 1
tlof 1] vfn
1]al 1] ol
1lo]o] 1|9 22654
1lololols] 7 Even HSS Odd HSS
ol [1] 17
ol 1| 1] ofe
ol 1|of 1|5
o|l1|ofof 4 0
olof 1| 1|3
of 9] 1] o2
ojofof 1] *Model IH75 only
olofloflo]ofl /
Doubleword 0 —
Doubleword 2 T T
T& (oW 2 2] Fw 3
0 (DW 0) B (OW 1)

\ c 235 D
Even HSS Odd HSS Even HSS Odd HSS
[512K+64 [DWSAK1B) 512K 172 (DWA4K+9) 512K 180 (OWA4KT10) 512K +88 (DWEAK 11 1)|
| 512K+32 (DWEAK+4) | | 512K140 (DWSAKIS) 512K148 (DW64K+6) 512K156 (DWAAK+7)
S L512K+0 _(DW&4K+0) S12K18 (DWALK+1) 512K1 16 (DW64K+2) 512K+24 (DWé4 K+3) |
i7s
2365 A 2385 B
Even HSS Odd H55 Even HSS Odd HSS
MODEL
175
&4 (OW 8 72 80 (DW_10) 83 (OW 11)
32 (OW 4 40 2% % 48 (OW &) 56 (DW 7)
) (DWW 8 (DW 1) 16 (DW 2) 24 [DW 3)
3 ® ® ®

NOTE : DW = Doubleword

@ FIGURE 6. FOUR-WAY INTERLEAVING, MODELS 175 AND J75

Storage Bus Control 1/68 9

Form 223-2873-1
FES 526-7034

Storege Protection, Model H7S ond IH75
2045 A Bor C
SPF AE HSS AO HSS
510 511
| s8] 509 |
? e B T T T V¥ Block
Protection Word 1 | 58 259 .
256 357
-1 N - .
| 252)] 253 |
_[p e T, M P Block
- 0
Protection Word 0 i 3
0 (Note) 1
Storoge Protection, Models 175 and J75 Note i Doubleword Addresses
2365 A 2365
SPF AE HSS AO HSS SPF AE__ HSS AQ HIS
Protection Word 1
(identical Words)
508 510 51
504 505 Block y 506 507
1 i . T Vot] 1 e e P S
260 261 262 263
25 %7 258 2%
252 253 254 255
248 249 s 250 25
]E] 5 A [T 7
0 [Note} 1 2 3
Protection Word 0 (Ideniical Words)
@ FIGURE 7. STORAGE ADDRESS PROTECTION
SPF
Protection Weords
Reod-Prorect Bit
Parity Bit
N\ ‘
ojr1]j2]ajrjr
—
Key
Chan
Chan Storoge Protect
- Ei
CcPU CPU »| Compare Lo
Storoge Protect
Error
Key Key
PSW —A— I CAW
S Te[e]we]n] ¢ [ofi]2]af 3

FIGURE 8. SPF PROTECTION WORD

10 1/68

signaled. This error causes a program interrupt if
the storage request was from the CPU or a channel
interrupt if the request was from a channel.

The contents of any SP location can be set into a
general register by an insert key instruction.

DATA FLOW
e Storage address is set into SAR for CPU requests.

e Address bits needed to select a particular HSS
are duplicated in the duplicate SAR.

e CPU store data is set into K,

e SBI latch is set from K on CPU store operations;
SBI latch is set from channel SBI on channel store
operations.

e All channels use a common storage address bus
(channel SAB).

e [Ietched data is temporarily stored in the SBO
latch.

e X and Y return address registers route fetched
data (and some error indications) to the proper
destination.

The job of the BCU is to:

1. Grant priority to one storage request at a
time.

2. Select the proper storage unit by examining
the address bits.

3. Route address, protection key, store data,
and mark bits to the selected storage unit.

4. Route fetched data returning from storage to
the requester.

5. Handle error conditions detected by BCU,
storage, and SPF.

The data flow to accomplish these jobs is explained
in the following text. Refer to Figure 2005.

For CPU requests, the storage address is set into
the storage address register (SAR) from either the
incrementer or the addressing adder. The address
for any CPU request is always in the SAR when the
request is made or is being set into the SAR simul-
taneously with the request. This address remains in
the SAR until BCU honors the request. When BCU
honors a CPU request, SAR is gated through the ad-
dress OR to storage. Note that some bits of SAR are

duplicated in the duplicate (dup) SAR. These are bits
needed by BCU to select a particular storage unit
(HSS). The select bits are duplicated to make them
available to BCU controls as soon as possible,

For a CPU request, the protection key field of the
PSW is gated through the key gate and the key OR to
storage. On a set key instruction, five bits of general
register R1 are substituted for the PSW storage pro-
tection key field.

If the CPU requests a store operation, the data to
be stored is in the K register at the time of the re-
quest (or will be set into K one cycle following the
request), and will remain there until BCU honors the
request and sets the data into the storage bus in (SBI)
latch register. The SBI latch is fed directly to all
storage units. A slore operation also requires eight
mark bits to be sent to storage along with the address
bits. For a CPU store operation, the mark register
has the proper mark bits at the time the request is
made. The BCU gates the mark register through the
mark OR to storage, then resets the mark register,

All channels and the system control panel use a
single set of lines to deliver store data to the SBI
latch register. This set of 64 lines (plus eight parity
lines) is the channel storage bus in (channel SBI). In
the same way, all channels and the system console
deliver addresses on one set of lines (CAB or channel
SAB), storage protection keys on the channel key bus,
and mark bits on the channel mark bus. When BCU
selects a storage for a channel, the CAB is gated
through the address OR to storage, and the channel
protection key is gated through the key OR to storage.
On channel store operations, the SBI latch is set from
the channel SBI and the channel mark bits are gated
through the mark OR to storage.

BCU temporarily stores all fetched data in a 64-bit
(plus eight-parity bit) register (the storage bus out
(SBO) latch register). This register has outputs to the
A, B, and J registers in the CPU and also feeds the
channel SBO. It is the job of the BCU to see that a
fetched storage word is delivered to the register
specified by the user when the request was made. The
BCU does this by sending an advance pulse to one of
the receiving areas. IFor example, if the data is
destined for the A register, BCU sends an advance
signal which gates the setting of the A register from
the SBO latch register. The proper advance pulse is
generated by the two return address registers, X and
Y. These registers are used alternately because of
overlapped storage operations.

Storage Bus Control 12-65 11

Form 223-2873-1
FES 526-7034

STORAGE SELECTION AND CONTROL

e The BCU maximum storage selection rate is one
selection every two machine cycles,

e Any two HSS cycles can be overlapped,
e BCU keeps track of busy HSS.

e Channel bus priority circuits grant priority to
one channel at a time.

¢ Channel requests have priority over CPU re-
quests,

e CPU has a three machine-cycle access time to
data in main storage.

e Maximum channel rate for main storage data is
about 1 microsecond per double word.

The BCU can select storage units (HSS) at the rate
of one selection every two machine cycles. This
means that any two storage units can be simultan-
eously busy (overlapped, Figure 9). BCU maintains
a busy trigger for each storage unit: two for Model
| H75, four for Model I75, six for Model IH75, and
eight for Model J75. By examining certain address
bits, the BCU determines which unit is being re-
quested; if the BCU is not busy and the requested
storage unit is not busy, the selection is made,

With each selection, the BCU is considered busy
for two machine cycles (Figure 10). Alternate selec-
tions can be made to one HSS without interference
from a busy trigger. Two consecutive requests for
the same HSS, however, require a delay of four ma-
chine cycles between the first and second selections.
Therefore, to achieve the maximum storage selection
rate of one selection every two machine cycles, con-
secutive requests must not be for the same HSSand the
BCU must always have a storage request waiting to
be serviced. Actual storage requests will not always
fulfill these requirements. However, interleaved
addressing means that more requests are for a non-
busy storage than would be the case if consecutive
addresses were in the same storage array: Instruc-
tions are generally fetched from sequential addresses;
a channel works into and out of sequential addresses;
and arithmetic operations often store or fetch into
sequential addresses.

Requests are honored according to a fixed priority
scheme. This scheme has two levels of priority. On
the first level, the channel bus priority circuits grant

12 1/68

priority to one channel (or the system control panel)
at a time. The channel bus priority circuits are nec-
essary to prevent interference on the channel buses
(CAB, channel SBI, and channel SBO), Because the
seven channels and the system control panel operate
independently of each other and of the CPU, any
number of these eight storage users may simultan-
eously request storage. When there are simultan-
eous requests, the BCU must allocate the use of the
channel buses to one user at a time. The BCU allo-
cates the use of the channel buses in a fixed priority
scheme; chanfi@l 0 has the highest priority, channel 1
next-to-highest, and so forth. For example, channel
6 cannot access storage if any other channel is making
a request. The’éy_stem control panel, or maintenance
channel, has thé lowest priority and can access stor-
age only when néne of the channels are making a re-
quest. —)

Once a channel gains bus priority, it puts the stor-
age address on‘the channel SBI (CAB). The entire
process of recognizing a channel request, granting
priority to the requesting channel, and receiving the
storage addresg"on CAB requires about 1 micro-
second. During this time, the BCU will honor CPU
requests even though channels have priority over the
CPU. A channel is not considéred to have a valid re-
quest until its storage address arrives in BCU and a
line, address valid, is generied.

The second level of priority is to grant any chan-
nel that has generated address valid (and is requesting
a nonbusy HSS) priority over the cPU.

The CPU is said to have a"three-cycle access to
storage (Figure 11). Assumipg no interference from
channels and a request for a_penbusy HSS, a fetched
storage word wilt be set dﬁEb A, B, or J three cycles
after the BCU recognizes the fequest.

A channel access requir. minimum of about
1-1/2 microseconds from the time that BCU recog-
nizes the request until the fetched word is in the chan-
nel registers. Most of this time is consumed in sig-
nal travel time to and from the channel. About 300

_ nanoseconds is required for a signal to travel to or

from a channel. Although a single channel fetch re-
quires about 1-1/2 microseconds, channels can access
storage at a 1-microsecond rate. This 1-microsecond
rate is possible because BCU overlaps the prepara-
tion for a new channel operation with the storage
cycle and data return of the previous channel opera-
tion. As soon as a HSS is selected for a channel, the
BCU tells the channel to remove its storage address
from the CAB, and (assuming another channel request
is pending) at the same time, tells the new channel

to put its storage address on the CAB.

Cor Storage Unit 1

Core Storage Unit 2

FIGURE 9.

Maximum Selection
Rote, Consecutive
requests are for
different HSS

Stort

End

Start

I

'

-
V

Start

FJ

Busy

End

Busy

Start

E
1
)

T

OVERLAPPED STORAGE CYCLES

.
\%

-

BCU Cycles

Busy Busy
/’;7- Meachine Cycles ——T‘—‘\
1 2 3 4 5 6 7 _j
Sel Post-Sel Sel Post-Sel Sel Post-Sel Sel

BCU Busy

HSS one Busy

HSS two Busy
Select may be for HSS one or
ony other non-busy HSS
‘/‘7-Muchine Cycles
1 2 3 4 5 -]

Selection rate BCU Cycles Sel Post-Sel Sel | Post-Sel phocace -7
for consecutive .
requests for the BCU Bulz Ty
some HSS e

Selected HSS Busy e
FIGURE 10, MAXIMUM SELECTION RATE b
CPU Request
Spans "A" / | “\
Clock :

O ® ®
Select Post=Select
Cycle Cycle

BCU Recognizes Fetched Storage

CPU Fetch Werd Set into

Request A, B, or J
FIGURE 11. MACHINE CYCLES FOR CPU ACCESS

Storage Bus Control

0-65

13

CRITICAL TIMING LOOP

e CPU is sometimes forced to wait for data from
storage.

e Waiting periods are minimized by using buffer
registers: A, B, and J.

e CPU access time consists of two parts: com-
munication time and storage time.

e A primary job of the BCU is to minimize com-
munication time.

In executing a program, the CPU is sometimes
forced to wait for data from storage before continu-
ing. In the Model 75, these periods of waiting are
minimized by using instruction buffer registers
(A-B), an operand buffer register (J), and by re-
questing storage fetches as soon as possible. There
are times, however, when the CPU must await the
return of data from storage. For example, a success-
ful branch instruction cannot be terminated until a
new instruction double word is in A or B. Also, on
many sequences of instructions such as two consecu-
tive E cycle RX instructions, the CPU must wait for
operand deliveries from storage. Because of these
times when the CPU is forced to wait for fetched
data, the performance of the CPU depends to a large
extent on the CPU storage access time.

Two time elements make up the CPU storage ac-
cess time (Figure 12): access time of the storage
unit and speed of CPU communication with the unit.

Fetched data is available at the storage frame
about 450 nanoseconds after the start of the storage
cycle. The time required to get a storage unit started
and the time required to move fetched data from a
storage into a CPU register is the communication or
BCU time. Stringent time requirements are imposed
on the BCU to minimize this communication time
enough to achieve the three machine-cycle CPU access
time (Figure 11). The storage selection circuits, for
example, are designed for maximum speed rather
than for the minimum number of modules required to
accomplish the logical objectives. Where minimum
delay is essential, the BCU uses parallel cabling and
parallel logic (Figure 13).

The philosophy used to achieve minimum CPU
storage access time is to consider that a CPU-
storage-CPU loop exists, starting from A-B and
ending at A-B (Figure 14). This critical timing loop
is used on branches. The timings throughout this
loop are tuned for maximum speed. The release of
SAR, for example, is adjusted to coincide (approxi-
mately) with the time when the output of the AA begins
to rise. Therefore, as the AA output rises, itpasses

14 12-65

through a released SAR and is on its way to storage
long before SAR is locked. This philosophy in timing
the release of SAR is used throughout the loop to
allow the address to flow to storage and the data to
flow from storage without being blocked by a locked
register, All CPU operations do not use all of this
critical timing loop. By using this path as a criterion,
or ""worst case,' however, the timing of other storage
paths is noncritical.

CPU FETCH, THE BASIC OPERATION
e CPU fetch is initiated by the I or E unit.

e BCU delivers fetched storage word to the A, B, or
J register.

e BCU sends 14 address bits from SAR to a HSS.

e BCU sends accept to the CPU when select is sent
to HSS.

e Selected HSS sends advance to BCU just prior to
data delivery.

The basic BCU operation is a CPU fetch. All other
operations performed by the BCU are variations of
the CPU fetch operation. A CPU fetch is a storage
fetch requested by either the I or the E unit. The BCU
starts storage to get the 64-bit plus eight-parity bit
word requested, then delivers this to the A, B, or J
register.

The CPU requests a fetch operation by sending I
fetch request or E fetch request to the BCU (Figure
15). Along with the request, the CPU sets the de-
sired address into the SAR and the duplicate SAR, and
specifies that the data be returned to the A, B, or J
register.

The BCU examines duplicate SAR bits to determine
which HSS is being requested. If the requested HSS
is not busy, the BCU generates a select pulse for this
HSS. If the CPU specifies that the data is to be re-
turned to A-B, the BCU uses duplicate SAR bit 20 to
choose the proper register. Bit 20, when on, means
that an odd address is being requested, and the
fetched data is to be returned to the B register. When
off, bit 20 means an even address; even instruction
words go to the A register.

On CPU fetch operations, BCU gates the SAR
through the address OR to all storages. Each 2365
has two memory address registers (MAR): one for
the even HSS and one for the odd HSS. The 14-bit
plus two-parity bit address gated from the address OR
is set into the MAR of the HSS that receives the
select pulse.

Part of the 14-bit storage address is sent to the
storage protect (SP) unit associated with the selected
HSS to address the SP location that corresponds to
the requested HSS address. The protection key from
the PSW is routed to the selected SP unit.

When the select is sent to storage, the BCU sends
accept back to the CPU. This signal tells the CPU
that its request has been honored and it can now drop
its request and change SAR. It can make a new re-
quest if one is pending.

About two cycles after select, the selected HSS
sends an advance signal to the BCU (Figure 16). Half
a cycle after advance, the selected HSS has the
fetched 72-bit word gated from its memory data
register (MDR) to the SBO latch register. Shortly
thereafter, BCU releases the SBO latch. After re-
leasing the SBO latch, BCU sends an A, B, or J
advance signal to the CPU. The CPU uses the advance
signal as a gate to set the receiving register with the
next A clock. (A and B are actually released with a
late B running (LBR) clock of the previous cycle.)

CPU Fetch Error Detection

e Storage address parity is checked by BCU and
by storage.

e If BCU detects an error, BCU cancels the selected
HSS.

e When a HSS is cancelled, the selected address is
regenerated and BCU does a panel key fetch.

e BCU checks for an invalid storage address.

e Storage checks the parity of the fetched word;
however, BCU ignores a data check from storage
on CPU fetches.

e The SP unit checks for a storage address protec-
tion violation.

On every storage operation, the BCU checks the
storage address for good parity. The check is made
off the address OR and is on the full 24-bit address.
If the address has bad parity, a cancel signal is sent
to storage. The cancel condition causes storage to
regenerate the selected address without delivering
the data brought out. Storage suppresses any errors
that it detects if cancel is on.

The cancel condition causes BCU to do a panel key
fetch operation. This operation consists of setting
the system control panel data keys into the SBO latch
register so that the receiving register gets a good
parity word. The receiving register gets meaningless
data but an erroneous data parity check is prevented.

If the receiving register were not set(left all zeros
including parities), the CPU would generate a parity
error when it checks the parity of the data it receives.
Any address parity error detected on a CPU initiated
storage cycle is a machine check, and it initiates a
CPU logout followed by a machine check interrupt.

The BCU also checks for an invalid storage ad-
dress on every storage access. An invalid address
is an address outside (higher than) the available stor-
age locations on a particular system. If an invalid
address is detected, the BCU again cancels storage
and does a panel key fetch operation. An invalid ad-
dress error detected on a CPU initiated storage
cycle is a program error and it causes a program
interrupt.

On fetch operations, the selected storage checks
the parity of the 14-bit address that it receives and
checks the parity of the 64-data bits read out of the
addressed location. If an address error is detected,
the fetched word is not delivered: storage delivers a
data word of all 0s with good parity (all parity bits
are 1s). Storage also sends a storage address error
line to the BCU. For a CPU initiated operation, the
storage address error line brings up the machine
check condition (logout followed by a machine check
interrupt).

If storage detects a parity error on the fetched
data word, a storage data error line is sent to the
BCU. TFor CPU fetch operations, however, the data
error line from storage is ignored; the CPU some-
times fetches data that will not be used. Any fetched
data actually used by the CPU is parity-checked prior
to use.

A storage address protect (SAP) error is another
programming error that can be generated on a CPU
fetch operation. This error is generated by the
selected SP unit only if the read-protect bit in the
addressed SP location is a 1 and there is a mismatch
between the SP key (match bits) and the key bits from
the PSW.

The SP unit parity-checks the address bits that it
receives and parity-checks any protection key data
that it uses. If the SP unit finds a parity error, it
generates a storage address error which is handled
exactly the same as an address error detected by the
selected HSS.

CPU STORE OPERATION

e BCU routes SAR, mark register, and PSW key to
storage.

@ BCU sends select and store to storage.
e BCU sets K into SBI lateh register and sends SBI

latch register to storage.

Storage Bus Control 12-65 15

The CPU requests a store operation by sending I
store request or E store request to the BCU (Figure
17). Along with the request, CPU sets the desired
address into SAR and duplicate SAR just as on a CPU
fetch operation. On a store operation, however, the
CPU must set the mark register along with the re-
quest or sometime prior to the request. The mark
register is used only on CPU storage operations and
is reset by the BCU after its contents have been sent
to the selected storage. The CPU, therefore, is free
to load the mark register anytime prior to a store
operation.

The BCU generates a select to the requested HSS
exactly as on a CPU fetch operation. The select is
generated when neither the BCU nor the requested
HSS is busy. The address (14 bits plus two parity bits)
is gated from SAR through the address OR to storage
and the CPU storage protect key (PSW 8-11) is gated
through the key OR just as on a CPU fetch operation.
The eight-mark bits (plus a parity bit) are gated
from the mark register through the mark OR to the
storage. Along with select, the BCU sends store to
the selected 2365.

Just as on a CPU fetch operation, BCU sends
accept back to the CPU to tell the CPU that its re-
quest has been honored and that it can now drop its
request and change SAR. It can make a new request
if one is pending.

When CPU initiates a store request, the data to
be stored are either in the K register or will be set
into K on the next cycle. On the post-selection cycle,
the BCU sets the SBI latch register from K (Figure
18). All 72 bits are set into the SBI latch and sent
to storage regardless of the number of bytes to be
stored. The selected storage unit uses the mark bits
to gate the corresponding bytes into its MDR. Those
bytes of the MDR not set from the SBI are set by
sense amplifiers at the end of the read portion of the
storage read/write cycle. Then, the modified 72-bit
word in the MDR is written back into the selected
address on the write cycle.

CPU Store Error Detection

e The BCU makes the same checks as on a CPU
fetch: address parity and invalid address.

e Storage checks address parity and data parity.

e The SP unit checks for mismatch of protection
keys.

Just as on a CPU fetch operation, the BCU checks

the parity of the storage address and checks for an
invalid address. If either of these conditions are

16 12-65

found, a cancel signal is sent to the selected HSS to
cause the selected address to be regenerated without
change. A bad parity address causes a machine
check interrupt; an invalid address causes a program
interrupt.

The selected storage checks the parity of the 14-
bit address that it receives and checks the parity of
the mark bits. If an error is found, storage regener-
ates the selected address and signals an address
error to the BCU. Just as on a CPU fetch operation,
a storage address error causes a machine check
interrupt.

Storage also checks the parity ‘of the data in the
MDR at the time when the MDR contains the new 72-
bit word to be written back into the array. Bad parity
does not alter the store operation, but a storage data
error line is sent to the BCU where a machine check
condition is generated. A machine check occurs if
any of the eight bytes have bad parity. The bad parity
byte may have come from K or it may have been
read out of the selected double word location in the
array.

The SP unit checks for a match of the protection
keys on all store operations, If there is a mismatch,
a SAP error is signaled to cause a program interrupt.

Just as on a CPU fetch operation, the SP unit
checks the parity of the address bits that it receives
and the parity of the protection key information that it
uses. If bad parity is found, the storage address
check line is raised; action taken for an SP parity
error is identical to the action taken for a HSS address
error.

CHANNEL BUS PRIORITY

e Channel storage requests occur at random; two or
more requests may occur simultaneously.

e Channel operations are done in two steps: priority
and storage selection.

e Priority circuits operate independently of storage
selection circuits.

e BCU grants priority to a channel by sending BCU
response to the priority channel.

e When granted priority, a channel puts the storage
address on the CAB.

Channel operations consist of two parts: channel bus
priority and channel storage selection.

The BCU handles these two parts of channel oper-
ations independent of each other (Figure 19). The
channel bus priority circuits examine channel requests,

Total CPU Storage Access Time
AN

HSS cycle

Communication Time

select pulse. Deliver to storage.

' |

CPU knows that storage fetch | I |
is required. [

| |

| |

Generate oddress ond storege ___ _ __ _ _| |

|

|

Select arrives at storage. Storoge cycle __
starts.

[
J
I
1
|
|
|
|
|
N |
|
|

Storage access time at storage unit (opprox 450 ns)— — — — —!

Storage hes fetched dota of storege wnit, — —

FIGURE 12, CPU STORAGE ACCESS TIME

Parallel Cables to Storage Frames 2365 A
Frame 06
2355 B
Address OR, mark OR/ Cable Frame 07
key OR, SBl latch, | o o Drivers
SBO latch and BCU- [~ = ﬂ"':d
storage control lines Receivers \ 2365 C
Frame 08
NOTE: J75 Configuration
2365 D
Frame 09
Sequential Legic X
Y
. Z
A A A
8 C D
One block Two blocks Three blocks
of delay of delay of delay
Parallel Logic
A
Al X
B
One block of delay
c
A z
D
FIGURE 13. PARALLEL CABLES AND PARALLEL LOGIC

I
[
|
l
I
i

N

0
="
e

|
I
|

=

s i S

750

|
|
| __ __ _ Storoge cycle

times-out .

Fetched dota available

in CPU register.

_ Fetched deta transferred from
storage unit to CPU register.

Storage

SBO

A

General Regs

FIGURE 14.

S
AN AA

A
s—

SAR

CRITICAL TIMING LOOP

Storage Bus Control

9=,

5

17

Incrementer + 3P @
Addr Adder 8-31 |+ 3P \/@
1 X 3p * £
DUP SAR MB SAR MB
0-6,19,20 0 (+3P) 23
PSW 813 Mdress OR M (179 o 5-18 (175, 179
Storage SAB's (1-14+PA, PB) 1‘# 0 (+3P) 23 !
P B B
Key OR Storuge A SBO
Storage B SBO
0) 4 Storage C SBO 6}_‘
0 3 R 8P
1 64
&4
'+
25 [| 2365 J 2365 || 2365 64 8P
Storage A Storage B Storage C Storage D 8P
4
A A A A SBO Latch RA
0 (+ 8P) 63
2 42 ol Ol wlo 89 8|8 a|lal al a
ol @ o © o o o A Reg
o L [*] (*] P i o [+ e) 9 (*] s T o o
8385 8885 B3 BB 88 88 BRg
a3 Y2 HEIR{R: 3l 3] 32 3|3 T2 g
A Y / I ¥ 1t .
| Fetch Req L1 A Advance =
| Fetch Req L2, B Advance :_
E Fetch Req_, BCU. Controls) Adverice il
Return A - B Accept e
Return J » .
FIGURE 15. DATA FLOW, CPU FETCH
Machine Cycles
Selection Cycle Post-Selection Cycle @
¢ _Accept to CPU Advance from M4
BCU sees Data_from 'M4
CPU Request |
| ' v
: Set SBO latch |
| |
I 1
| Set A,B, or J
| from SBO latch
- 3 Cyele A >
|
| AB, orJ Aldgance
FIGURE 16. CPU FETCH TIMING

18 9-65

~*daav]

JYOLS NdD ‘MOTd Yiva L1 AENOL

sjenue) e B s o 22
- d =SS
YY) ITTTTI } N
div
W LZE
r (dE + |E-8) +9ppPY PPV
c (dE +£2-0) 2y
W
Lt
{de + €9 - 0) 5oy ¥ e
/_.Rv z
_M,__ Y2107 185 ° =
F
() E£9-8F 4Pnoig G[-00 FIOW 155
\H/
F |f/|\ £9-95 YONON Z0-00 TON WA
Y
3815187 12 5
HEERHEEE
{dg+ £9-0) zmﬁ . - ﬂﬁ«,,
§Z1 |9poW 31ON
Gary S505ADY | GeA3 ¥ 1v9]95 EEEEER
PPO ¥ souchpy PPO v 139)35 Mwwmu.www
¥ D avs VAT Y 1985 v 5 @ioig v s _
v 3ds — PPO ¥ {99]95 | (_.,\l_ e
SV ?2.?.._99_.3.3_: -
2 \ ' yiow v sboioig
L (d + =9 g Ippy ds . (8d "wd + ri=L)
dv's v #Boioig +)
[@+¥-0 v g Aoy > RS
g oAy W3 § 1% Q v E
PPO § S3ubapy PPO @ 159]%5 :
g 294D dvs UoA3 § 199195 9 ebowis 21045 § 45
4 4d5 PPO 8 199]95 e e
woi5 g {g+ ©995 WBneMI Z0-00) W oW § somis
e
b

(d+ 519 8) JPPY dS N\

0%

(8d 'Wd+ri-1) B¥S g 2Baoig

(d+9-1) 8 g Aoy

19

0-65

Btorage Bus Control

Machine Cycles

A

Selection Cycle Post-Selection Cycle
| Advance from HSS
| Y
L |
BCU sees | Set SBI Selected HSS
CPU request latch goes not busy
l from K
Select, Address,
Merks, Key and
Store to Storage
Accept to CPU
FIGURE 18, CPU STORE TIMING
—
—
Channel and
el an Channel-Bus " Storoge
—
System Console Priority b Selection
Storoge Requests » Circvits Circuits
— Storoge
_— > Selects
e
4
CPU Requests

Channel Bus Priority Reset

FIGURE 19. BCU HANDLING OF CHANNEL REQUESTS

20 9-66

grant priority to one channel at a time, and obtain
the storage address from the requesting channel.
When the channel bus priority circuits obtain a chan-
nel address, an address valid line is sent to the
selection circuits., The address valid signal blocks
CPU requests when the HSS requested by the channel
is available.

The channel bus priority circuits operate independ-
ently of the selection circuits until address valid is
generated. At this point, the channel bus priority
circuits are locked-up until the selection circuits
select the storage requested by the waiting channel.
When the selection circuits generate this storage
select, a channel bus priority reset line is generated
to free the channel bus priority circuits. Once free,
the channel bus priority circuits continuously search
for a channel storage request until one is found.

The channels bring up storage request any time
they require a storage access. (Channel includes the
system console or maintenance channel.) Unlike
CPU requests, channel requests are completely
asynchronous with each other and with BCU and CPU
cycles; therefore, two or more channel requests
may occur simultaneously (Figure 20). Whenever
the channel buses are not in use (as indicated by the
buffer trigger being off), the BCU checks for channel
requests once per machine cycle. The checking is
done from channel 0 through channel 6 and then the
maintenance channel in that order. The first request
that is found (highest priority) is honored, and any
other requests are ignored.

BCU honors a channel request by sending that
channel a BCU response signal. This signal tells the
channel that it gained channel bus priority and should
respond by putting the address of the desired storage
location on the channel storage address bus (CAB).
Along with the storage address, the channel sends
an address valid signal to the BCU. After a delay
to allow the storage address to travel from the chan-
nel to the BCU, the BCU gates the address valid
signal from the channel to the storage selection cir-
cuits. The selection circuits also receive CAB bits
4, 19, and 20 to determine which HSS is being re-
quested.

CHANNEL FETCH

e A series of signals is exchanged between the BCU
and a channel that makes a storage access.

e The first signal is a simplex request line from
the channel to the BCU.

@ Second and third signals are simplex BCU response
and BCU data request from the BCU to the chan-
nel.

o On channel fetch operations, the channel responds
to the BCU with a multiplex storage address, a
protection key, and an address valid signal.

e BCU sends the channel a multiplex channel accept
signal when a storage selection is made for the
channel.

e BCU sends the channel a multiplex channel advance
signal just prior to data.

e BCU sends fetched data to the channel on a multi-
plex channel SBO.

A channel operation is controlled by a series of signals
exchanged between the BCU and the channel being
serviced. Some of these control signals use simplex
lines: a simplex line is unique to or from a particular
channel. Other signals use multiplex lines; a multi-
plex line goes to or comes from all channels. Chan-
nels share the use of multiplex lines; for example. all
channels use a single set of address and data lines

as previously explained.

The channel operation signal exchange begins with
a channel that sends storage request to the BCU
(Figures 21 and 22)., Each channel has a storage re-
quest line (simplex) because any number of channels
may simultaneously need an access to storage. When
BCU grants priority to a channel, it responds to that
particular channel with BCU response. The BCU re-
sponse lines are also simplex because the BCU must
tell one specific channel to put its address on the
channel SAB (CAB). Because of signal travel time,
the channel sends an address valid signal to tell the
BCU controls when the address has arrived in the
BCU. The channel also sends the storage protection
key to the BCU on the channel key bus.

The BCU follows BCU reponse with another simplex
line, BCU data request. The primary purpose of BCU
data request is to tell the channel to put the incoming
data on the channel storage bus in (SBI) if this is to be
a store operation, At request time, however, BCU
does not know if a channel is requesting a store or a
fetch: therefore, the BCU data request signal is
always sent, but the channel will not put data on the
channel SBI for fetch operations. The channel does
use BCU data request to drop its storage request to
the BCU.

When BCU starts storage for the channel that has
its address on the CAB, the BCU drops BCU response
and sends channel accept. The channel accept signal
is a multiplex line but channels condition this line with
BCU data request and not BCU response, This condi-
tioning ensures that only one channel will recognize
channel accept when it is sent out. Channel accept
tells the channel that its request has been honored

Storage Bus Control 12-65 21

and that the data it required will be on the channel
storage bus out (channel SBO) following the next chan-
nel advance pulse. The fall of BCU response tells the
channel to take its storage address off the channel
SAB.

When the selected storage sends advance, the BCU
routes this signal to the channel. The channel de-
lays channel advance to gate the requested data from
the channel SBO into its registers.

CHANNEL STORE

e For a channel store operation, the initial sequence
through BCU data request is identical to a channel
fetch operation.

e The channel sends multiplex store line and multi-
plex mark bits along with storage address.

e The channel sends a double word of store data on
the multiplex channel SBI in response to BCU
data request.

e Just as on a channel fetch operation, BCU sends
multiplex channel accept and channel advance
signals to the channel; however, no data is
delivered on the channel SBO.

A channel starts a channel store operation with a
request exactly the same as it starts a channel fetch
operation (Figure 23). The BCU grants priority and
sends BCU response and BCU data request without
knowing whether the channel desires to fetch or
store.

The channel, upon receiving BCU response, puts
the storage address on the channel SAB just as it
does for a channel fetch operation. Along with the
storage address and the storage protection key, how-
ever, the channel raises the store line to the BCU.
Also, the channel puts the eight-mark bits (plus a
parity bit) on the channel mark bus.

When the channel receives BCU data request, it
not only turns off its request. but also puts the 72-bit
store data word on the channel SBI.

After BCU response and BCU data request. the
BCU waits for address valid just as on a channel
fetch operation. With address valid, the BCU gen-
erates a select when BCU and the requested storage
are free. Because the channel store line is up, the
BCU also sends store to storage and gates the chan-
nel marks to storage along with the channel address
bits (Figure 23).

On the post-selection cycle, the BCU sets the SBI
latch register from the channel SBI. All 72 bits are
sent to storage; the selected storage takes only the

22 12-65

bytes which have corresponding mark bits, just as on
a CPU store operation.

The channel accept and channel advance signals
are sent back to the channel, just as on a channel
fetch operation. On a store operation, however, no
data is returned to the channel; and, therefore, the
channel does not use the channel advance signal to
gate the channel SBO.

RETURN ADDRESS CIRCUITS

e Return address registers remember the requested
destination of fetched data from select until
advance.

e Two return address registers are necessary be-
cause of overlapped storage cycles.

e Each register has six positions (no parity): A, B,
J, channel, diagnose, and invalid.

e A, B, and J positions route fetched data to the
corresponding CPU registers.

e Channel position is set for both channel fetch and
channel store operations.

e Diagnose routes fetched data to the MCW register
for diagnose instructions.

e Invalid routes invalid address error indication on
CPU fetches and channel operations.

e X/Y binary trigger gates inputs to one return
address register at a time.

e W/Z binary trigger gates outputs from one return
address register at a time: W gates out X; Z gates
out Y.

e X/Y trigger is switched by delayed select: W/Z
trigger is switched by delayed advance.

The BCU must remember where to return fetched
data. The requesting unit tells the BCU where to re-
turn the data when a fetch request is made. Several
machine cycles later, the BCU uses this information
to route the returning data.

Remembering where to return fetched data would
be a simple task if the BCU always waited for the
end of a storage cycle before initiating a new cycle.
However, the BCU overlaps the operation of any two
HSS units within main storage. To overlap storages,
the BCU must remember two return addresses and
associate these addresses with the correct storage
cycle.

[oauoy sng afeaog

g89-6

b

From Selection

OR

Wait for address
to artive on CAB

Response

Sys Stor Regq
Cons

Circuits FL Buffer Tgr
/ {Means chan buses are in use)
Chan Selects Stor H
Pwr On OR A
Clk
Off
On .\ Stor Reg ®
—) Chan 0 - —
! On I off
off | L <
o]
_n.\ ——y Stor Req - x
| On Off
Off | Response = I o
- Lt
On
ﬁlk Chan 2 Stor Req o —
I On I Off
%FF | Response S
o}
n _— Stor Req > —
I On Off
|
off | Reponse (D l o
On
-‘._ . Stor Req _;_o_
| n Off
Off 1 Response - ___T
2..\[— Chan Stor Reg >
| On O
off | Response - I_r__
On
ﬁk Chon & Stor Req o
| On Off

|

Y

Off

Response

A

Off
Channel Buses

'On

™ 1 ®
Address Valid
A L
To Selecti

Address Valid e
Multiplex CAB Bits 4,19,20
line from =
channels

@ Any chan can moke o request of any

time. In so doing, the corresponding
@ request switch in the BCU is tumed on.
cAB To (2) Assume that the buffer tgr s off. This
= Addr aollows o clock pulse to examine the
OR status of channel switches.

@ The highest priority chonnel with request
on, receives a response to give that
channel control of the chonnel buses.

@ The response signal turns on the buffer
trigger so that all channel requests are
ignored until this channel s serviced,

Chan SBI To
pre— '30] @ The channel receiving response sends
Latch Reg the storage oddress on the CAB,

FIGURE 20. CHANNEL BUS PRIORITY

After a delay to allow the oddress to
amrive, BCU uses CAB bits to determine
which HSS is being requested. When
requested HSS is availoble, BCU blocks
CPU selects and maokes channel select.

® ® @ @ ® ©

() (3) BCU has granted priority

FIGURE 21,

24

Chan X Storage
Request

BCU Response to
Chan X

Address Valid from
Chan

£
&

L2

|

BCU Data Request
to Chan X

Chan Accept from
BCU

|
|
e e

Chan Advance from

BCU

(%) BCU tells Chan X to drop

Chan X request
for an occess

to main storage.

| S| i A (W N T

to Chan X, Chan X
responds by putting — — A
storage aoddress on _ __ __
the chan SAB and by
generating "Address Valid.,"

its storage request.

advance” is for this chan.

S B e

I
|
I
|
|
l
I
|
|
I
|
I
|
|
|
|
|
|
|

@ Multiplex line tells Chan X that storage
selection has been made, MNext "chan

U S
|
|
I
I
|
—J

P

s i s i i i o i vl a2 Sl

Multiplex line informs Chan that fetched data

will be on the Chan SBO in about 200 ns.
Chan uses delayed advance to sample Chan

SBO into chan registers,

9-65

NOTE:

1

Signal Travel-Time from BCU

to Chan and Retumn.

CHANNEL FETCH SIGMNAL EXCHANGE

|oduo) sng afwamg

5%-6

kT4

Key Bus B

Storage B SAB (1-14 4 PA,PB)

»,

rfth Storoge A SAB (1-144PA PB)
+2P
NAie

Storoge 8 SBO (063 + 8P)

Select B Odd 2365

Advance B Odd

S B
Select B Even ocoge

Advonce B Even

Key Bus A

Storage A SBO

2365

Advance A Odd

Select A Even

Advonce A Even

Key OR
0 (+P) 4
Chon Key 3
[BUS (0-3+P) 9 |
14
2P
5
Multiple MB
i | [Address OR 23|
From < 0 20
Channels
21
+3P
4,19,20
CAB (0-20 + 3P) L !
Address Valid
Channel 0 Request
Channel 1 Request
i Channel 2 Request
<i
l;::“ Chonnel 3 Reguest
From Channel 4 Request
Channels Channel 5 Request
Channel & Request

Maintenonce Request

MNOTE: Model 175 shown

FIGURE 22, DATA FLOW,CHANMEL FETCH

BCU Controls

(0-63 + BF)
RA
0 SBO Lotch 63
_:> Multiplex
Channel Accept Lines
> To
Channel Advance = Chennels
BCU Response Chonnel 0 —
BCU Data Request Channel 0 _
BCU Response Channel 1 =
BCU Dato Request Channel 1 _
BCU Response Channel 2 S
BCU Data Request Channel 2 -
BCU Resp Chonnel 3 » | Simel
BCU Data Request Channel 3 Lin:s
BCU Response Channel 4 Te

BCU Doto Request Channel 4 -
BCU Resp Cl 15
BCU Data Request Channel 5
BCL Response Channel &
BCU Data Request Channel 6
BCU Response Maint Channel

BCU Dota Request Maint Channel

—

Channels

J¥OLS TINNYHD MO viva B2 39

P

T 4D dupoyy bay oyeg 4

favuoy)
o) su <

H 1sanbay s3uouajuioy
i panbay § [suuoyD
| dusg

[oy g o
sanbay § jauuoyy
isanbay | |suoy3
DR
& wnbey | juuens

ssenboy [auuoyy)

Sjenuel NoE

Simplex Lines from Channely

| |3uuoy) asuodsay g
ﬁio {suunyy bay oiog 128

52 PHoA SRippy
-

o4 tour] IDUoApY |BuuDYy) —
wajdyiny 1dadzy |auuoyy ¥ vy _ _ _ _ _ _ _
i,

d8+

C (dB+£9-0) 195 |2uwoy) _ A
_ 3i0i5 [BUUGY

hn.ﬂ Yooy 185 o_
| _ (d8+£9-0)
v 185 d+
_ 8 £9-95 WBnosyl £0-00
3 Spow [auuoyy

o
Multiplex Lines from Channals

_—

UaA] y aaubApy N\ UoA ¥ IDR[eg 2lalzlz] zlale
A Lol Bl 1.0 L] -
PPO v S5uDARY v sBoiig AN PO v 199195 MEHEIEEE 9
9EL aoig y abosoig HO oW
d ¥+ <
8
sng oy vy eBosoyg _ _ _
gvs v eboioig
4 (de£-0)
v sng Lay g
URAY B SmApy N uany g i9a|eg m_ +V Aoy oy
- 8
PPO @ 23uoApy ¢ eBoiis /k PRO @ 190]85
S9EL N sinig g 2Boioig
{d + £9-96 yBnosy £0-00) 57 oW @ Boioig

(8d'vd + #1-1) 8vs g 3Boioig

@ wg Aey

(48 + £9-0) 8 i85

9-65

26

ai

“waippy PioAY|

auoapy padojag

“i38195 =wouboig

-
@3UDAPY |auuDyD)

e T
@susApy [

e ———
@ouUcApy @

-
ATUDAPY ¢

$S3YAQY N¥NLIY “¥Z 39NOI4

‘(594243 @ ||@M SO sau0ys) @942

aBosos Aana Buunp payaiims a0 By Z/M puo A/¥ @yl

‘awy 49885 40 {as JaysiBas ssauppo
wingas ayy yno-sayob a6} Aoug Z/M W ‘3w IJUDAPS |y

*uoijosado |BUUDY> D JO Y38 4D © jO Wil da(es
10 325 200 JaysiBas $SaUppo WNGaL D jo suoljisod ssow 1o BUQD

} _m._.
Aiouyg

*@IUDAPO
ixau ay| Joj uoyosodaid uy payopms i By Aiouig Z/M Sy
‘pasn uaaq eAbY JaisiBal SAIPPO WINBI O JO SjUBJUOD 3| By

*pasouoy $i |senbas
aB0i0is Ixau ayi 2lojaq paydyims 5| 61 Asouig A/Y @y]

©@ ®@ @ @ @

A

Lo

AN X

©

#qiyu| 31|243 padojeg

FaIppy PIoAU]

[B2

Uﬂn:..,wm.ﬂ

[P OF uiniay

4O

! Boig |
|
_ uo -5
yo fe
|
_ r
[
| 7 L
|
| v
| ®
j A
M A 1= X
Boyg
wou | ©
r -
® —[
d_ -
uaagl § @duoapy %
PPO § @9uBAPY
Cﬂ>md. ﬂu:ﬂ)_ud_
PPO w P2udApy

[o4 wingay

g o1 uinay

0Z 11§ o9FPY

v O uingay v

iV o4 winjoy

G-

Storage Bus Control

Whenever CPU makes a fetch request (I fetch
request or E fetch request), one of two control sig-
nals is sent to the BCU to tell BCU where to return
the fetch data. The two control signals are: return to
J and return to A-B.

The BCU must remember the control signal
associated with each request so that it can return
fetched data to the correct destination. Because the
BCU overlaps the operation of storage units, two
registers are required to store return addresses.

A fetch to A-odd storage, for example, may be
initiated two machine cycles after a fetch to A-even
storage. In this case, data from A even have not
returned at the time the select to A odd is generated.
Therefore, the return address for both fetches must
be remembered. Note that because of the time rela-
tion of machine cycles to storage cycles, fetched
data from the first fetch are back before the BCU can
make a third consecutive fetch; therefore, two re-
turn address registers are sufficient (Figure 24).

Each of the two return address registers has six
positions:

1. A
B
J
Channel
Diagnose
. Invalid

The return to A-B signal from the CPU is divided
into return to A and return to B signals, using ad-
dress bit 20. Data fetched from even addresses (not
bit 20) go to the A register. Data fetched from odd
addresses (bit 20) go to the B register.

A fourth position is set for channel operations.
Unlike CPU, a return signal is sent to the channel on
both store and fetch operations; therefore, a return
signal from the channel is unnecessary. The channel
select signal that is generated within the BCU sets the
channel position of the return address registers.

Another position in the return address registers
is for the diagnose instruction. This instruction sets
the maintenance control word (MCW) register with
the contents of a specified storage location. The
diagnose instruction is unique because CPU makes
the request but the fetched word is set into the MCW
from the channel SBO. The diagnose position in a
return address register sends a diagnose select sig-
nal to control circuits which perform this special
gating,

The last position in the return address register is
for an invalid address error. An invalid address is
an address which is not within the main storage of

[=r < - - I

28 9-65

this particular system, It is necessary to route the
invalid address indication through the return address
registers because the action taken for the invalid
address depends on what the system was doing when
it generated the erroneous address. For example,
if instructions are located in the highest storage
word with a branch back to a lower address, the I
unit would generate an invalid address in attempting
to fill an empty instruction buffer. In this case, the
invalid address is not an error. The BCU must send
the invalid address indication along with the A advance
or B advance signal so that the CPU knows that this
invalid address was generated for an IC fetch and,
therefore, may not be an error condition.

Gating into and out of the return address registers
is controlled by two binary triggers (Figure 24). The
X/Y trigger gates the input,and the W/Z trigger gates
the output. The W condition of the W/Z trigger always
gates out the X return address register. The X/Y
trigger gates inputs to one register at select time and
then switches to be ready for the next select (Figure
25). The W/Z trigger gates the output of one register
at advance time, then switches to be ready for the
next advance.

Time X/ w/Z
Select 1 --}_X-»— X Reg Set —‘l
0 \
\
' \
Select 2 - ¥ [~ Y Reg Set —.ll \\
| T
X
Y \
\\
V)
\
A
[
Advance | — —fe — — — — —| L W = X Reg Gated Out 9=
\ z
.l
\
TR [SR e Lpd 7 | ¥ Reg Goted Out—p
W

MNOTE: XY end W/Y hove no fixed relotion to odd/even storoges .

FIGURE 25. RETURN ADDRESS REGISTER GATING

The advance signal gates fetched data into the
proper register(s). Outputs from SBO latch go to the
A register, the B register, the J register, and the

channel SBO: but the data is set only into that register

(or those registers) that receive an advance pulse.

An example of two registers that receive an advance
pulse, and therefore, the same data, is a manual load
A-B. This operation causes BCU to fetch the 64-bit
word (plus eight-parity bits) stored in the system
control panel data keys (panel keys) and deliver this
word to both the A and B registers.

THEORY OF OPERATION

e The major operations performed by the BCU are:
CPU fetch, CPU store, channel fetch, and chan-
nel store.

e In addition to these, the BCU does special opera-
tions to fetch or store a storage protect key, load
the maintenance control word register (MCW),
handle system console manual operations, and
handle errors detected by the BCU and main stor-
age,

The major operations performed by the BCU are:

1. CPU fetch: BCU fetches the addressed double
word from main storage and delivers the fetched data
to the A, B, or J register.

2. CPU store: BCU delivers the double word in
the K register and the contents of the mark register
to main storage. Storage substitutes the K register
data bytes indicated by the mark bits for correspond-
ing bytes in the addressed location.

3. Channel fetch: BCU fetches the addressed
double word and delivers the fetched data to the
channel on the channel SBO.,

4. Channel store: BCU delivers the double word
on the channel SBI and the channel mark bits to main
storage.

In addition to these four major operations, the
BCU handles the storage access portion of the set and
insert key instructions, the diagnose instruction, the
test and set instruction, and system console manual
operations. BCU also handles errors detected within
the BCU and within main storage. Figure 9100 sum-
marizes the operations performed by the BCU.

ADDRESS BIT FUNCTIONS
e Each HSS holds 16K double words.

e Address range within a HSS depends on the mode
of interleaving.

® TFourteen address bits are used to address double
words within a HSS: Models H75 and IH75 use
bits 6-19; Models 175 and J75 use bits 5-18,

Form 223-2873-1
FES §26-7034

e SPF uses a portion of the HSS address bits.

Each HSS holds 16,384 (16K) double words or 131,072
(128K) bytes. The address range of a HSS, however,
is 32K for two-way interleaving or 64K for four-way
interleaving. In other words, the span of addresses
from the lowest to the highest within a HSS depends
on the mode of interleaving (Figure 26).

Fourteen bits are required to address the 16K
double words within a HSS. Any group of 14 bits has
16K combinations; the particular address bits used,
however, depend on the span of addresses within
that HSS:

Address Number Double Word
Bits of Bits Address Span
7-20 14 16K
6-20 15 32K
5-20 16 64K
4-20 17 128K

In the Model H75, address bits 6-19 constitute a
HSS address; bit 20 is used to select one of the two
HSS (Figure 27). In the Model IH75, address bits
6-19 constitute a HSS address; bit 20 is used to
select odd or even HSS. Bits 4 and 5 are used to
select A, B or C Memory Group (Figure 28A). For
Models 175 and J75, address bits 5-18 constitute a
HSS address; bits 19 and 20 select one of four HSS
(Figure 28). In the Model J75, address bit 4 selects
the lower or upper group of HSS (Figure 29).

A portion of the 14-bit address sent to a HSS is
relayed to an SPF unit. Address bit 12 is the low-
order SPF address bit; this bit changes once every
2048 consecutive byte addresses (256 double word
addresses). In Models H75 and IH75, the single
SPF unit stores 128 storage protection words (Fig-
ure 30). These 128 words, each protecting a block
of 256 (double word) addresses, span the 32K stor-
age words within the single 2365. Address bits
6-12 are used to address the 128 protection words
in Models H75 and IH75.

In Models 175 and J75, each SPF unit stores 256
storage protection words because the span of ad-
dresses within each 2365 is twice (64K) that of Model
| 575 and Model 1HT5 (32K). Address bits 5-12 are

required to address the 256 storage protection words
(Figure 31).

In addition to locations within main storage, the
BCU can fetch the system control panel data keys
(panel keys). The panel keys are fetched for certain
manual operations, for certain errors, and when the
programmer specifies the panel key address. The
panel key address is specified by a 1 bit in address

Storage Bus Contrel 1/68 29

Form 223-2873-1
FES §26-7034

position 0 if the enable panel key address switch on
the control panel is on.
Figures 9101, 9102, and 9103 summarize the ad-
| dress bit functions for Models H75, 175, IH75, and
J75.

Address Switching

® Address bits can be switched to allow a diagnostic
program to run with a failing HSS.

® Switching can be done manually or by setting bit
14 or bit 15 in the MCW,

On Model H75 and Model IH75, address bit 6 is
interchanged with address bit 20 or address bit
6 is inverted, then interchanged with bit 20.

® On Models 175 and J75, address bits 5 and 19 are
used for bit switching instead of bits 6 and 20.

On Model H75 and Model TH75, address switching
defeats interleaving: on Models 175 and J75, ad-
dress switching replaces four-way interleaving
with two-way interleaving,

The Model 75 has a scheme for switching certain
address bits as a diagnostic aid. The purpose of this
scheme is to allow a diagnostic program to run when
g HSS is failing. The program can then analyze the
pattern of failing addresses to further localize the
failing circuits within the defective HSS. The bits
that are interchanged and the resulting effect on the
physical location of addresses, depends on the system
storage configuration; note, however, that the pur-
pose of address switching is to arrange the addresses
so that a sizeable program can be loaded in such a
way as to avoid a failing HSS.

Address switching can be done manually from the
system control panel or by changing bit 14 or bit 15
in the MCW with a diagnose instruction. The control
panel switch has three positions:

1. Up - interchange storage address bits

2, Center - normal

3. Down - interchange and invert storage address

bits

MCW bit 14 duplicates the up position of the
switch; MCW bit 15 duplicates the down position of
the switch, A priority scheme exists so that MCW
bits have priority over the switch setting. The two
MCW bits are interlocked so that if both are on,
neither is effective (Figure 32).

| For Models H75 and IH75, the interchange stor-
age address bits condition interchanges bits 6 and 20,

30 1/68

Reversing these bits, defeats the interleaved address
scheme so that consecutive addresses are in one HSS
(Figure 33). Withnormal addressing, consecutive ad-
dresses are inalternate HSS, Whenbits 6 and 20 are
interchanged, the first 16K of consecutive addresses
are in the HSS that normally contains only even addresses.
Note that consecutive addresses within a HSS jump
by 8K as bit 20 is used in place of bit 6. When, after
16K addresses, bit 6 goes to a 1, the HSS which
normally contained odd addresses is selected because
bit 6 is being used by the BCU in place of bit 20. The
first 16K addresses are in the original even HSS;
the second 16K addresses are in the original odd HSS.
When bit 20 is exchanged with the inverted condi-
tion of bit 6 (interchange and invert storage address

| bits, Model H75 and Model IHT75), the effect is to

place the first 16K addresses in the original odd
HSS and the second 16K addresses in the original

| even HSS. In the Model H75 and Model IH75, a
diagnostic program of 16K, or less, can be loaded
into either of the two HSS to analyze the remaining
HSS.

For Models 175 and J75, the interchange storage
address bits condition interchanges bit 5 and 19.
Reversing these bits, changes the addressing scheme
from four-way interleaving to two-way interleaving
(Figure 34). Every third consecutive address jumps
by 8K compared to the normal addressing scheme;
however, consecutive addresses stay within a pair
of HSS (one 2365) until the 32K available locations are
exhausted. With bits 5 and 19 interchanged, 2365 A
contains the first 32K addresses, 2365 B contains
the second 32K of addresses. In Model J75, 2365 C
contains the third 32K of addresses and 2365 D con-
tains the fourth 32K of addresses.

When bit 19 is interchanged with the inverted con-
dition of bit 5 (interchange and invert storage address
kits), the effect is to place the first 32K addresses
in 2365 B and the second 32K addresses in 2365 A.

In Model J75, 2365 D contains the third 32K addresses
and 2365 C contains the fourth 32K addresses.

CPU FETCH
e Ior E unit can initiate a CPU fetch.

e BCU selects storage to get requested storage
word.

e When the fetched word returns from storage,
BCU routes the word into the A, B, or J register.

A CPU fetch is a storage fetch requested by either
the I unit or the E unit. The BCU starts storage to
get the 64-bit plus eight-parity bit word requested,
and then delivers this word to the A, B, or J register.

Form 223-2873-1
FES 526-7034

2345C
CE i co o
Even HSS Odd H55
23658
8E _ 80
Even H5S Odd HSS i
23654
AE AD
Even H5S Odd H55
1 €O
0 CE,CO m
| 18O
BCU Select Storage 01 8E, BO | 0 BE
L= D

| |
| Lo atn0 13
t]
| Select | of 16,000 storage words within a HSS]|
|u|||z]3]4 5]sl?]alv|w||||12|t?]u||5|1¢]ulw|w|m|z||21|23|

LEGEND:

§ Used for additional optional storoges
t1 Byre address, not used by BCU or storage

OFIGURE 28A. HSS SELECTION, MODEI IH75

Storage Bus Contrcl 1/68 30A

Sequentiol Doubleword Addrewes
£
-

Sequential Addressing Two-Woy Four=Way
(Mo Interleaving) Interleaving Interléaving
I HS5S Hés) H@” R&S %S HSS HSS
48K + 2
48K + 1
4BK + 0
H55
32K +2
32K+ 1 IR+ 2 EIEER
: 2RIT | krLER
o o 5
8% &K + 2
&K +
6K +
2K
T 8
16K 2
1 2 k] 4 5 & 7
0 [1 1] 1 2 3

FIGURE 24, ADDRESS SPAN VERSUS INTERLEAVING MODE

2365 A

AE
Even HSS

AD
Odd HSS

14 Bils Select Odd BCU Select Sio
roge
Select Even 0

|
| Select | of 16,000 storoge words within o HSS 1.1 E|

[o]v[2]alsa]sel7]e]s ro]nralnafaa]asfre]rzra]ro]20] 21 22 T 2a]

. lj’!d "!r dditi

** Byte oddress.

| aptional get,
Mot used by BCU or steroge

FIGURE 27, HSS SELECTION, MODEL H7S

2365 B
BE 80
Even HSS ™ 0dd Hiss
2365_A
AE - = AD
Even HSS "1 Odd Hss
Sel 8O
i
Sel BE 10, N BCU Select Storage
Sel AO_O1 |
Sel AE__ 00, |

[.

[Select 1 of 16,000 storage words within a HSS 1‘ |

[ofv]2]a]e]s[el[7]a]s]rofn]iz]ra]ia]is|is]iz]re]19]20]2r |22]2s]

* Lked for additional optional staroges,
** Byte oddress. Mot used by BCU or storoges.

FIGURE 28.

HS5 SELECTIOMN, MODEL 175

Storage Bus Control

9-65

a1

2355 D

DE DO
P Even HSS - Odd HSS
2365 C
CE - co
1 Even Hss [OddHss [T
2365 B
§ - BE - Bo
Even HSS = Odd HSS
2365 A
AE AO
P Even HSS e Odd HSS
DE 1
Tﬁ\—f
— .
o1 |
R T o N
zcla) ? I SSEE BCU Sel
elect
As_ﬁ"““l‘-“ 8O,DO Ll‘\r\ Storoge
e : | AE,CE 00 |
20 0% AO,CO 01 |

A

Select 1 of 16,000 storage words within a HSS

P N

[of1[2]a]«]s[e]7|s]o[w]n]rz]a]re]rs]ie]r7|18]1]20]2 [22]2]

* Used for odditional optional storages.

** Byte oddress. Not used by BCU or storoge.

HSS SELECTION, MODEL J75

Byte Address Bits

HEE RN E R R EE M
8 (2|5|3513|=|8|%| |||~

@ || e =
Ol1|2|3(4|5|6]7|82|1001112{13[14[15]1&6]17(18]19]20}2]1(22]23

HSS Address Bits

Model IH75 Select
Group A, B or C Storoge

t=—— X Address

—_—

e—— Y Address ——ef

1|2[3]4]s]s]7
T

BERENEED

2365 SPF Address Bits

1[2]3f4]s]e]

I
|
I
I
1
7

@ FIGLRE 30.

These seven bits oddress 128

storoge protect locations

SPF STORAGE BLOCK ADDRESSING, MODEL H75 AMND MODEL IH75

_Y_J
Byte Address
Within Storoge Word

Even/QOdd
HSS Selection

= This bit chonges
every 2048 bytes
or every 256
storage words

H55 selection
(one of four)

This bit chonges every
2048 bytes, or every
256 storoge words

™0 [nd -l ™ =l o~ ol oo| e fed | —
g|3[2 3] &3] 5|/ | o =l als| [3
|~ AR B= ol o] =] o]
HHAHB R ER
o <|ed |~
Byte Address Bits ol1|2|3|4)|5|6|7]|8]|9 |0|||'|2 13]14]15|16 |17 |18 |19 |20 |21 | 22| 23
|
| R
| Byte Address
Model 175-select low : within storage word
high f HSS
or iah grovp @ la—— X Address ——nll— Y Address ——a
i Lo
HSS Address Bits 1] 2]afals]s]|7]8]9]r0f11]12]1a]14
]
|
]
I
:
_2%5 SPF Address Bits tl2]al4]sle]7]e
e o Cre e -
h..—Y,—’
These eight bits address 256
storoge protect locations
FIGURE 31, SPF STORAGE BLOCK ADDRESSING, MODELS 175 AND J75

MCW Bits Switch
. Result

14 15 Setting
0] Conter MNarmal oddressing

1 1 Any

0 0 Up Interchange storage

1] Any address bits

0 0 Down Interchange and invert
0 1 Any storage oddress bits

FIGURE 32. ADDRESS BIT SWITCHING

Storage Bus Control

Form 223-2873-1
FES 526-7034

1/68 33

Form 223-2873-1
FES $26-7034

SLF ONY SZ1 ST3AOW 'ONIHDLIMS S53¥aaY “vE 3uNOId

*umDls SSSAUPPO YL UDY JSYBLY N9 MB SSH Q PUB I Ulipa seNRIpRY

0z-§ Z-g 0z: s 0Z- S
1] L+ aze ooz
< ¥ S+ NZE ¥+ AZE
(&1 arm
@ @ ® ® s
pus 5 panul)
= e = & 19 ppy
£ 4 £+ AZE | | _E+AZE | 4 sfiouoyg iaaup
£ 9 L+ AZE P+ AZE pus abuoyssaiu)
® ® ® ©
«0Qg © 08 « 30 % 38 « 0D © OV «3D W 3y
0z -5 0z -5 0z- & 0z §
T+ et | 0 -zt 0 0
§ + ML ¥+ AZE 3 ¥
® ® ® © (61 puo g 3Buoya
] | S B S L) sug ey
E+ MIE | F . (4% £ Z 61 2Bosoig sbuoyaiaiu|
L+ MZE 9+ A2E L ¢
® @ ® ®
«0Q o Of « 30 38 » 0D o Qv «32 49 Iy
0z - &l - 6l oz - *
0z (1) 0z tf.rruf....zu
€ 4 .} 0
Z ? uy kﬂ 5 v
sanaippy
Nl [- s Bujssasppy
E + NI Z+ AZE L+ X2E 0+ NZE 5 | Puiopy
4+ NZE 9+ M2E S+ NIE ¥+ dZE
® @ ® ®
« 00 ° 08 «3Q 2 38 « 02 ®© OV « 32 % 3v

SLH 1300W "ONIHDLIMS S53¥aay 'EE 3O @
Tumoys voyy @ viyiem 941y yrp 2o puo I uiyim gy zg 210 RRERY

"GZHI |opow "Bujydiimg ssauppy

9 9
0 0+ 491
[4 Z+391
© ® (02 Witm aBuoys
0 -y puo § 419
Lng. Le 9L |0z o =g ppy
T T e 391 afioioagg (aauy
® @ |
020 .08 'O¥ 3D 0.38 ‘3
9 2
[o=%t] 1]
Z v A91 Z
@ @ oz (oz pue
- = __9 aBuoysiaguy)
L+ 491 1 uig iopy
£+ 3% £ 3Bosoig abuoyasaiu)
0210 ,08 'OV +3D 0,38 "3V
SNaIppy plomdignog
0z Vr 0z
" ‘ % 3 g nig sasppy
£ z
(SSH 2uc) g @ @
-h. s 2./ ___Busssippy
1+ A1 LT 9 7 SR (LI
| E+N91 | | Z+d91 |

+0D .08 ‘OV .32 0,38 IV

1/68

34

a ow
e BCU gets I fetch request or E fetch request.

® Address is in SAR (or is being set into SAP) a.
the time of request.

o BCU generates select to the proper storage unit.

o Selected HSS sends advance to forewarn BCU of
returning data.

e BCU sets returning storage word into SBO latch.
e BCU sends A, B, or J advance to the CPU,

The CPU requests a fetch operation by sending I
fetch request or E fetch request to the BCU (Figure
6100). Along with the request, the CPU sets the
desired address into SAR and into duplicate SAR.
SAR and the storage protection key from the PSW
are gated through the address OR and the key OR
unless a channel storage select is to be made on
this machine cycle.

The requested CPU selection is made if there is
no pending channel select blocking the CPU selects,
the BCU is not busy (cyclic inhibit off), and the
requested HSS is not busy. The BCU decodes ad-
dress bits set into duplicate SAR to generate a
select to the proper HSS. Note that all HSS receive
the storage address and the protection key; only the
HSS that receives select, however, sets the storage
address into its MAR and uses the protection key.

When select is sent to storage, the busy trigger
for the selected HSS is set to block further selections
of this HSS until it ends its cycle. The A, B, orJ
position in the return address register that is
pointed to by the X/Y binary trigger is set. The
position set is determined by a return to line from
the CPU and, in the case of A-B, address hit 20.

Shortly after select, an accept signal is sent
back to the CPU. This signal tells the CPU that its
request has been honored and that it can now drop
its request and change SAR. It can make a new
request if one is pending.

About two cycles after select, the selected HSS
sends an advance signal to the BCU. Half-a-cycle
after advance, the selected HSS has the fetched 72~
bit word gated from its memory data register (MDR)
to the SBO latch register, Shortly thereafter, the
BCU releases the SBO latch to temporarily store
the fetched word. After setting the SBO latch, the
BCU sends an A, B, or J advance signal to the CPU,
The CPU uses the advance as a gate to set the receiv-
ing register with the next A clock.

Control

e CPU interlocks all I and E storage request lines.

e BCU is busy with each selection for two machine
cycles.

® A CPU request is blocked if BCU is busy, a
channel selection is to be made on this cycle, a
CDA signal is present from a channel, or if the
requested HSS is busy.

e When BCU sends a select to HSS, accept is sent
back to the CPU.

e BCU sets a return address register and switches
the X/Y binary trigger.

® Advance from the selected HSS samples the
return address register.

e Advance also gates the setting of the SBO latch.

The CPU interlocks all fetch and store request lines
so that only one request can be made at a time. One
of the two CPU return to lines always accompanies a
CPU fetch request and the SAR and duplicate SAR either
contain the desired storage address or these registers
will be set at approximately the same time that the
request signal is brought up.

The BCU checks for a CPU request each L time.
The request is blocked, however, if the BCU is busy
with another storage request (cyclic inhibit is on),
if a channel is ready to select a nonbusy HSS, or if
the HSS requested by the CPU is busy. If a CPU
request is blocked, it is completely ignored until the
next L time, when another attempt will be made,
Meanwhile, the CPU is free to drop its request or
substitute another request. For example, the I unit
may substitute an operand fetch request for an unac-
cepted IC fetch request because the operand fetch has
a higher priority. An unaccepted request is a request
for which BCU has not generated an aceept pulse.

From the time that BCU recognizes a CPU
request, BCU is busy making the storage selection
for two machine cycles (Figure 35). The approximate
timing of the major control signals is shown in Figure
35. The generation of each control signal is shown
in Figure 5200 and is described in the following text.

All CPU storage request lines are ORed, then
combined with an L clock . not accept, and not
single cycle to produce a fast request signal. This
signal is routed to one set of HSS set select latch
ANDs. In addition to bringing up fast request,
the CPU fetch request lines are routed to set the
CPU request latch if it is not being blocked by accept.

Storage Bus Control 12-65 35

The output of the CPU request latch is routed to a
second set of set select latch ANDs. The first set
of set select latch ANDs ensures that a select latch
is set as early as possible when a selection is made
(minimum circuit delay). The second set of set
select latch ANDs ensures a set pulse of sufficient
duration to complete the latch-back path through the
select latches.

A CPU set select signal, timed by an A clock, is
a second condition necessary for setting a select
lateh. This signal is blocked if BCU is busy (cyelic
inhibit on), a channel select is to be made on this
cycle, or if a chain data address (CDA) signal is
present from one of the channels. A channel brings
up the CDA signal under certain conditions which re-
quire a rapid storage access. By blocking all CPU
selects while CDA is on, the channel will probably be
serviced more rapidly because neither the BCU nor
the requested HSS will be busy when the channel
request arrives.

The final condition that can block the setting of a
select latch is a busy trigger that is on for the
requested HSS. Duplicate SAR bits are decoded in the
set select latch ANDs to pick a single HSS select
latch with any one combination of bits in the duplicate
SAR. If the busy trigger for this requested HSS is
on, the setting of the select latch is blocked. If the
busy trigger is off, the requested HSS select latchis
set and the busy trigger for the selected HSS is turned
on.

When any select latch is set, the positive select
out latch is turned on to indicate that a storage se-
lection was made.

The positive select out signal and an EB clock
turn on the accept and pulse accept triggers. These
two triggers are set in parallel, and under normal
conditions, are also simultaneously reset. The pulse
accept trigger is reset by a running clock, and the
accept trigger is reset by a controlled clock. The
two triggers are necessary for single-cycle opera-
tion to maintain the accept signal to the CPU for one
controlled clock cycle even though the storage cycle
has been completed. The accept and pulse accept
triggers distinguish CPU from channel storage se-
lects; they are not set when a channel selection is
made.

The positive select out signal and a B clock set
the eyclic inhibit latch to inhibit all storage selections
on the following machine cycle.

The positive select out signal also controls the
setting of a position in a return address register
(Figure 5080). The A, B, or J position is set into
the return address register that is pointed to by the
X/Y binary trigger with a B clock during the se-
lection cycle.

36 12-65

The positive select out signal is delayed to switch
the X/Y binary trigger after a register position has
been set.

After two machine cycles, the BCU is finished
with the selection and can service any other request
that is pending, Handling of the returning data is
completely independent of the selection circuits.

The only information that pertains to the selection
just completed that is retained by the BCU is the bit
set into a return address register. This information
will be used when data returns from the selected HSS.
The timing of events for returning fetched data and
completing the fetch operation depends entirely on
the selected HSS., The BCU simply waits for advance
from storage and the number of machine cycles
between select and advance is of no consequence to
the BCU.

The storage advance pulse tells the BCU that a
storage cycle is nearing completion. The BCU uses
advance to sample the return address register that
is pointed to by the W/Z trigger. For a CPU fetch
operation, the sampling yields the appropriate ad-
vance signal to the CPU (A, B, or J). The A, B, or
J advance signal, however, is delayed to bracket the
A clock which sets the J register or the LBR clock
which sets the A or B register,

The BCU also uses advance to gate the setting of
the SBO latch: storage times advance to precede
fetch data by about 100 nanoseconds.

The final two steps of a CPU fetch operation are:

1. Switching the X/Y trigger, and

2. Resetting the selected HSS busy trigger.

The BCU delays the storage advance to switch the
W/ Z trigger after advance has sampled the return
address register.

The busy trigger is reset by a reset busy signal
from the selected HSS nearly one machine cycle be-
fore the storage times-out. This timing allows the
BCU to reselect this HSS at the same time that it is
ending its previous cycle.

Detailed timings of consecutive CPU fetches to AO
HSS are shown in Figure 8100.

CPU STORE
e CPU store is initiated by the I unit or the E unit.

e BCU selects storage anddelivers the double wordin
K to storage.

e Only K bytes masked by mark bits are stored.
Other bytes are regenerated.

® Protection key in PSW much match key in SPF
storage.

A CPU store is a store-to-main storage requested
by the I unit or the E unit. The BCU starts storage
and sends the 64-bit plus eight-parity bit word in the
K register to storage. Only those bytes of the K
register that have a corresponding bit in the mark
register are stored; bytes represented by a zero-
mark bit are regenerated by storage.

The BCU sends the CPU storage protection key
(PSW bits 8-11) to the SPF where this key is com-
pared to the key for this address previously stored
in SPF. If the keys match, the store operation pro-
ceeds. If the keys do not match, the SPF cancels
the store operation (all bytes are regenerated) and sig-
nals a storage address protect (SAP) error.

Data Flow

e BCU routes SAR, mark register, and PSW key to
storage.

e BCU sends select and store to storage.

e BCU sets K into SBI latch register and sends SBI
latch register to storage.

The CPU requests a store operation by sending I store
request or E store request to the BCU (Figure 6101).
Along with the request, the CPU sets the desired
address into SAR and the duplicate SAR and sets the
mark register. The mark register is set in one of
two ways:

1. Single bits set by VFL circuits.

2. Twin bits corresponding to halfword boundaries
for storing halfwords, words, and double words.

The BCU generates a select pulse to start the
correct HSS. The address (14 bits plus two-parity
bits) is gated from SAR through the address OR to
all HSS. The eight-mark bits (plus a parity bit)
are gated from the mark register through the mark
OR to the storage. The CPU storage protect key
(PSW 8-11) is gated through the key OR and a parity
bit is added. Along with select, the BCU sends store
to all 2365 storage frames.

Just as on a CPU fetch operation, BCU sends ac-
cept back to the CPU about the time select is sent to
storage. The accept signal tells the CPU that its
request has been honored and that it can now drop its
request and change SAR., It can make a new request
if one is pending.

On the post-selection cycle, the SBI latch register
is set from K, All 72-bits are set into the SBI latch
and sent to storage regardless of the number of bytes
to be stored. The selected HSS uses the mark bits to
gate the corresponding bytes into its MDR. Those
bytes of the MDR not set from SBI are set by the
sense amplifiers at the end of the read portion of the

storage read/write cycle. Then, the modified 72-bit
word in the MDR is written back into the selected
address on the write cycle.

After the post-selection cycle, the BCU is finished
with the CPU store operation, except for the house-
keeping jobs of turning off the storage busy trigger
set by select and changing the W/Z trigger to keep it
in step with the X/Y trigger. Just as on a CPU fetch
operation, these jobs are done near the end of the
storage cycle after the selected HSS sends advance.

Control

e CPU request latch and blocking conditions operate
the same as for a CPU fetch.

e BCU sends select and store to storage along with
SAR, marks, and key.

e No return address register bits are set.

e X/Y, W/Z, and HSS busy triggers operate the
same as on a CPU fetch.

The CPU interlocks all fetch and store request lines
so that only one request can be made at a time. The
CPU may have loaded SAR, duplicate SAR, and the
mark register prior to raising store request; or it may
set these registers at approximately the same time
that store request is brought up. In either event,
BCU will have this input data at the L clock when the
CPU request latch is set (Figure 5200).

The same blocking conditions described for a CPU
fetch operation may block a CPU store operation. These
blocks are:

1. A channel ready to select a nonbusy HSS on this

cycle or a CDA line from a channel.

2. Cyclic inhibit on (BCU is busy).

3. Requested HSS is busy.

If the request is blocked, it is completely ignored
until the next L time, when another attempt will be
made if the request is still present. Meanwhile, the
CPU is free to drop its request or substitute another
request.

If the store request is not blocked, BCU decodes
duplicate SAR bits and sends a select pulse to the
requested HSS. The BCU gates the address from
SAR, the mark bits from the mark register, and the
SPF key from the PSW to the storage. The BCU also
sends store to all 2365 storage frames. Also, during
the selection cycle, BCU sends accept back to the
CPU, turns on cyelic inhibit, and sets the appropriate
HSS busy trigger.

A return address register is reset and no positions
in the register are turned back on even if the specified
store address is invalid (Figure 5080). A separate

Storage Bus Control 12-65 37

error trigger is set for invalid CPU store address;
details of all invalid address conditions are desecribed
under "Program Checks."

At the beginning of the post-selection cycle, the
X/Y binary trigger is changed, even though no return
address register bits are set for a CPU store opera-
tion. The SBI latch register is also released (reset
and set) in the post-selection cycle. The CPU can
(and often does) wait until A time of the post-selection
cycle to set the K register; however, K can be set at
any time prior to the post-selection cycle. The out-
put of the SBI latch is ungated to storage; the selected
HSS sets its MDR from the SBI about one~third of the
way through its eycle.

The selected HSS sends advance back to the BCU,
even though no data returns on a store operation
(Figure 5080). Advance is delayed to switch the W/Z
trigger to keep it in synchronization with the X/Y
trigger.

The selected HSS sends reset busy to the BCU to
reset the busy trigger turned on by select intime to
allow a new select shortly after the end of the stor-
age cycle (Figure 5200). A HSS receiving consecutive
selects is idle about 30 nanoseconds (difference he-
tween four machine cycles and a 750-nanosecond
storage cycle).

Detailed timings of consecutive CPU store opera-
tions to alternate storage addresses are shown in
Figure 8101.

CHANNEL FETCH

e Channel bus priority circuits allocate the use of
the channel buses to one channel at a time.

e BCU gives channel storage requests priority over
CPU storage requests.

e Unlike CPU requests, a channel request remains
pending if the requested HSS is busy.

The channel bus priority circuits grant priority to one
channel (or the system control panel) at a time. The
channel bus priority circuits are necessary to pre-
vent interference on the channel buses (CAB, channel
SBI, and channel SBO). Because the seven channels
and the system control panel operate independently

of each other and of the CPU, any number of these
eight storage users may simultaneously request stor-
age. When there are simultaneous requests, the BCU
must allocate the use of the channel buses to one user
at a time, The BCU allocates the use of the channel
buses in a fixed priority scheme: channel 0 has the
highest priority, channel 1 next-to-highest, and so
forth., For example, channel 6 cannot access storage
if any other channel is making a request, The sys-
tem control panel, or maintenance channel, has the
lowest priority and can access storage only when

none of the channels are making a request.

38 12-65

Once a channel gains channel bus priority, it
puts the storage address on the channel SAB (CAB).
The entire process of recognizing a channel request,
granting priority to the requesting channel, and
receiving the storage address on CAB requires about
1 microsecond. During this time, the BCU will
honor CPU requests even though channels have
priority over the CPU.

A channel is not considered to have a valid re-
quest until its storage address arrives in BCU and
a line, address valid, is generated. At this point,

a channel select signal is generated at the first B
time when the BCU and the HSS requested by the CAB
bits are not busy. Any channel select blocks all
CPU selects. By bringing up channel select at B
time, a CPU request that would have been honored
on the next cycle is blocked and the channel selection
is made instead.

The turn-off of the HSS busy triggers is timed to
allow a channel select signal to be generated at the
B time of the cycle that precedes the machine cycle
in which a new select can be sent to a HSS ending a
previous cycle.

Data Flow

e Channel requests are asynchronous with each other
and with the CPU and the BCU.

e BCU gives priority to a channel by sending that
channel a BCU response.

e A channel puts its storage address on the channel
SAB (CAB) when it gets priority.

e When BCU has a valid address and the BCU and
the requested HSS are not busy, CPU requests are
blocked and storage is selected for the channel.

e Advance from storage is sent directly to the chan-
nel,

e With advance, the BCU sets fetched data into the
SBO latch.

e The channel uses advance to sample a fetched word
from channel SBO into the channel registers.

The channels bring up storage request anytime they
require a storage access, (Channel includes the sys-
tem control panel which is considered the maintenance
channel.) Unlike CPU requests, channel requests are
completely random with respect to each other and

with respect to the BCU and CPU cycles (Figure 6102),

Whenever the channel buses are not in use (as indi-
cated by the buffer trigger being off), the BCU checks
for channel requests once per machine cycle. The
checking is done from channel 0 through channel 6
and then the maintenance channel in that order. The
first request that is found (highest priority) is
honored, and any other requests are ignored.

BCU honors a channel request by sending that
channel a BCU response signal. This signal tells
the channel that it gained channel bus priority and
should respond by putting the address of the desired
storage location on the channel SAB (CAB) and the
protection key on the channel key bus. The CAB
positions, 0-20 plus three parity bits, feed into
corresponding positions of the BCU address OR.

About 300 nanoseconds travel time is required
for BCU response togooutto a channel. Another 300
nanoseconds is required for the storage address to
come back to the BCU. Because of this signal travel
time, the channel sends an address valid sig-
nal to tell the BCU controls when the address has
arrived in the BCU. Meanwhile, the BCU follows
the BCU response signal with a BCU data request
signal. The primary purpose of BCU data request
is to tell the channel to put the incoming data on the
channel storage bus in (SBI) if this is to be a store
operation. At request time, however, BCU does not
know if a channel is requesting a store or a fetch;
therefore, the data request signal is always sent,
but the channel will not put data on the channel SBI
for fetch operations. The channel does use BCU
data request to drop its storage request to the BCU.

Once the BCU receives address valid, it examines
CAB bits to start the proper HSS in the same way
duplicate SAR bits are examined to select a storage
unit for CPU requests. Channel selects are decoded
at B time of a machine cycle to block an L time CPU
request (if present). Successful decoding of a chan-
nel select depends on the BCU and the requested
HSS being not busy.

When the BCU decodes a channel select (B time),
the address OR (and the key OR) is switched to gate
14 bits (plus two-parity bits) from the CAB to stor-
age. After sending select to storage, the BCU sends
accept to the channel. Accept tells the channel that
its request has been honored and that the data it re-
quested will be on the channel storage bus out (chan-
nel SBO) following the next channel advance pulse.
Just prior to select, the BCU resets the channel
bus priority circuits and turns off BCU response.
The fall of BCU response tells the channel to take
its storage address off the channel SAB.

When the selected HSS sends advance, the BCU
routes this signal to the channel. The channel de-
lays advance to gate the requested data from the
channel SBO into its registers.

Control

e BCU samples for channel requests once per ma-
chine cycle until a request is found.

® A channel request turns on the buffer trigger
which prevents further checking for requests un-
til this channel is serviced.

e BCU sends BCU response and BCU data request
to the requesting channel.

e The channel sends address valid when address on
CAB is good.

e The channel waits if BCU or requested storage is
busy.

e The channel bus priority circuits are released
(reset) just prior to select.

e The maximum channel selection rate is one select
per five machine cycles (about 1 microsecond).

A channel fetch operation begins when the BCU rec-
ognizes a channel request signal (Figure 5200). Note
that the buffer trigger must be off in order for BCU
to examine the channel request latches, The buffer
trigger means that some channel has its address on
the CAB (channel SAB). If more than on€ channel
request latch is on, the BCU recognizes only the one
which has the highest priority.

When the BCUrecognizes a channel request, it
immediately turns on the buffer trigger to prevent
further checking of the request latches until this re-
quest is fulfilled. The buffer trigger output is com-
bined with the request latches in the priority ANDs
to send BCU response to the channel, The BCU re-
sponse signal tells the channel to gate its storage
address onto the CAB. BCU response remains on
until the buffer trigger is turned off; the buffer trig-
ger is turned off just prior to the generation of stor-
age select for the channel. Because 600 nanoseconds
travel time is required to remove the storage address
from CAB, ample time is allowed for the HSS to set
its address register (MAR) from CAB (through the
address OR).

After a fixed time delay following BCU response,
the BCU sends data request to the requesting chan-
nel. For a fetch operation, the channel uses data
request only to turn off its storage request.

The BCU waits about 600 nanoseconds from BCU
response to allow the storage address to arrive on
the CAB. After this time delay, delay full comes on
and the address valid line from the channe! is tested.
The address valid signal is timed to arrive at BCU
slightly later than the slowest CAB bit; therczfore,
address valid tells BCU that all CAB bits are true
(in their final state).

Storage Bus Control 12-85 39

Once the address valid 2 trigger (Figure 5200) is
on, the channel select ANDs are allowed to decode a
channel select if the BCU is not busy (inhibit off). One
of the channel select ANDs is activated when the HSS
that is pointed to by the CAB selection bits is not
busy. Unlike a CPU request, a channel request waits
and remains pending if the BCU or the requested HSS
is busy. As soon as neither is busy, channel select
HSS is generated to block CPU requests. Another
function of channel select HSS is to set the gating
latch which switches the address OR and the key OR
to gate the CAB and the channel keys to storage.

When select is sent to storage for a channel, the
appropriate busy trigger, the positive select trigger,
and the cyclic inhibit latch are turned on in the same
way that these conditions are set for CPU storage
selections.

At the LBR preceding select, the buffer triggeris
reset to allow the channel bus priority circuits to ex-
amine for a new channel request. Resetting the buffer
trigger also turns off BCU response to tell the chan-
nel to remove the storage address from CAB.

At the same time that the buffer trigger is reset,
accept is sent to the channel. This signal tells the
channel to use the next channel advance to gate the
channel SBO into the channel. For 2365 storage units,
accept is unnecessary; the fall of BCU response
could have the same meaning. However, accept is
necessary when LCS units are used on the system.

In this case, it is sometimes necessary for BCU to
drop BCU response to a channel without having hon-
ored its request. Therefore, the fall of BCU response,
alone, cannot tell a channel that the next data on the
channel SBO is the data that is requested. The oper-
ation of the BCU with LCS units attached to thesys-
tem is in the "Features' section.

The action taken by BCU at select time appears,
at first, to be too rapid. The channel priority cir-
cuits are released to look for a new channel request
and, at the same time, BCU response is dropped.
However, consider the travel time of signals to and
from the channels. The requested address remains
on CAB for about 600 nanoseconds after BCU response
is dropped by the BCU. This gives plenty of time
for the selected storage to set its MAR with the CAB
address. In the same way, if the channel bus priority
circuits immediately recognize a new request, it
will require 600 nanoseconds for this new channel to
fulfill the address valid condition within the BCU, Al-
though the BCU can initiate a new BCU response al-
most immediately after dropping a prior BCU re-
sponse, the signal travel time to and from the chan-
nels slows the over-all channel storage access rate
to about 1 microsecond; that is, the maximum rate
at which channels (one channel or a combination of
channels) can access storage is one selection per
five machine cycles (about 1 microsecond).

40 12-65

— -

Like CPU operations, the terminating sequence of
a channel operation is completely independent of the
initiating sequence (Figure 5080), When the selected
storage sends advance, this signal is routed to the
channel by a return address register. The BCU also
uses advance to gate the SBO latch and to switch the
W/Z trigger. The channel delays the channel advance
signal to gate the data from the channel SBO into the
channel registers. The operation is completed when
the selected HSS sends reset busy to the BCU to re-
set the busy trigger that is turned on at select time
(Figure 5200).

Detailed $imings of consecutive channel fetches to

al storage addresses are shown in Figure 8102.
1 f Y

CH STORE

(] starts storage and stores the channel SBI

m word.

A 1 store is a storage store operation requested
by he channels or the system console. The

BC the desired storage address from the CAB,
atart'ﬁ;:age for the channel, and delivers the store
data (72 bits) on the channel SBI to the selected stor-

age. Th also routes the eight-mark bits plus
a pari E.dmd the four-bit (plus a parity bit) stor-
age protéction key from the channel to storage.

Data Floﬁ :

° Request(.cfribrity, and BCU response are the same
as on a channel fetch operation.
"ﬂ, -~ - : =
e The channelfputs store a on channel SBI when

BCU sends BCU data st.
F
e BCU sets th&!él 'latcéter from the channel
-:r'-' *

SBI.

A channelstarts a channel store operation with a re-
quest exactly the same as it starts a channel fetch
operation (Figure 6103). The BCU grants priority
and sends BCU response and data request without
knowing whether the channel desires to fetch or store.

The channel, upon receiving BCU response, puts
the storage address on CAB just as it does for a chan-
nel fetch., Along with the 21-bit plus three-parity bit
storage address and the four-bit (plus a parity bit)
protection key, the channel raises the store line to
the BCU. Also, the channel puts the eight-mark bits
(plus a parity bit) on the channel mark bus.

When the channel receives data request, it not
only turns off its request, but also puts the 72-bit
store data word on the channel SBI.

After BCU response and BCU data request, the
BCU waits for address valid just as on a channel
fetch operation. With address valid, the BCU gen-
erates a select when BCU and the requested storage

are free, Because the channel store line is up, the
BCU also sends store to storage and gates the chan-
nel marks and the SPF key to storage along with the
channel address bits.

On the post-selection cycle, the BCU sets the SBI
latch register from the channel SBI. All 72 bits are
sent to storage; the selected storage takes only the
bytes which have corresponding mark bits just as on
a CPU store operation.

After the post-selection cycle, the BCU is finished
with the store operation except for the housekeeping
jobs of turning off the storage busy trigger set by
select and changing the W/Z trigger to keep it in
synchronization with the X/Y trigger. These jobs
are done near the end of a storage cycle after the
selected storage sends advance.

Control

e Along with address from CAB, the BCU sends
channel marks, channel key, and store to the
selected storage.

® On post-selection cycle, BCU sets SBI latch
register from channel SBI.

e Unlike a CPU store, a return address register is
set for a channel store.

e Channel advance is sent to the channel even though
no data is delivered.

The BCU control of a channel store operation is
similar to that for a channel fetch operation (Figure
5200). The BCU recognizes a channel request through
the channel bus priority ecircuits and responds with
BCU response and BCU data request. When the chan-
nel receives BCU response, it puts the storage ad-
dress on the CAB, puts the mark bits on the channel
mark bus, puts the protection key on the key bus, and
brings up the store line, When the channel receives
BCU data request, it drops its request to the BCU
and puts the 72-bit word to be stored on the channel
SBI.

The BCU waits for address valid, then sets the
address valid 1 trigger followed by the address valid
2 trigger. A further delay is necessary if either the
BCU or the requested storage is busy. When both are
free, the BCU uses CAB bits to generate a channel
select which blocks CPU selects and sets the gating
latch. The gating latch gates the channel address,
marks, and key to all storages; only the selected HSS
takes these inputs.

Just prior to select time, the channel bus priority
circuits are released by resetting the request latches
and the buffer trigger. Resetting the buffer trigger
also turns off BCU response and, after about a 200-
nanosecond delay, BCU datarequest is turned off.

During the selection cycle, BCU sends accept to
the channel. The BCU also turns on cyclic inhibit
and the appropriate storage busy trigger as it does
during every selection cycle. The channel position
of one of the return address registers is set and the
X/Y binary trigger is switched.

During the post-selection cycle, the BCU re-
leases the SBI latch register to set this_ye i@
from the channel SBI.

After the post-selection cycle, theds hed
storage sends advance (Figure 5080 en advance
arrives, the BCU samples the retuess reg-

with the channel store operation unt
ister that is pointed to by the W/Z trigg€r. "Thiss

@

sampling yields a channel advance s which.is
sent to the channel. The channel us his si for
housekeeping functions associated with an end-o

storage cycle. After sending channel advance, the
BCU switches the W/Z trigger. T eration-is
completed when the selected HSS sefids. reset busy
turn off the busy trigger which was ‘select time,

Detailed timings of a channel see i;pex‘atiOIT:e
shown in Figure 8103. ;

PANEL KEY FETCH

e BCU can fetch the control panel data keys instead
of a storage location.

e A panel key fetch is made:

1. When the panel keys artddresse}

2. On some errors

The BCU can feteh the system co Jpar?f‘lwa keys
(panel keys) instead of a storage ocationg "'Ws S0
when a storage user specifies the addres e panel
keys instead of a storage location, and when an error
condition prevents the return of data from the
requested address. The panel keys are returned on
error operations to put good parity in the receiving
register. If the receiving register is loaded with all
0s, an erroneous machine check is generated be-
cause the receiving register hds bad parity.

The panel key address is a 1 bitin address position
0. In addition to this address bit, the enable panel
key address line must be active for the BCU to rec-
ognize address bit 0 as the panel key address. This line
is brought up by the enable panel key address switch
on the CE panel and for manual operations that use
the panel key data,

o2

Storage Bus Control 12-65 41

Data Flow

e Panel keys are gated through the word switch ma-
trix to the SBO latch register.

e SBO latch goes to normal destination.

When the BCU determines that a panel key fetch is

to be made, it sends a panel key fetch signal to the
maintenance channel (Figure 5201). This signal is
delayed to gate the system control panel data keys in-
to the SBO latch register. The delay is set to deliver
the panel key data to the SBO latch at the time when
data would have arrived from storage on a normal
fetch. The SBO latch is released as a result of ad-
vance from a selected, but cancelled storage.

Good parity (8 bits) is always generated for the
64 data keys and the full 72-bit word is set into the
SBO latch. The BCU sends an advance signal to the
receiving register as if a storage fetch had been
made.

In the case where BCU makes a panel key fetch
because of an error, the receiving register gets a
good parity word, and thus, an erroneous parity
error is avoided. For example, an invalid address
causes the BCU to make a panel key fetech., An in-
valid address is a programming error; if a parity
error is allowed to occur, it would cause a machine
check and would erroneously indicate a machine mal-
function.

Control
e A HSS is selected, then cancelled.
e A cancelled HSS controls BCU.

Any of eight conditions cause the BCU to make a panel
key fetch:

1. Enable panel key address switch on and any
fetch request that has a 1 bit in address bit 0.

2, Load FLT control word.

3. Manual load AB.

4, Manual store to GP or FP register.

5. Manual set IC.

6. Manual set PSW,

7. Invalid address.

8. Address check detected in BCU,

In six of these operations, the panel key data is
needed; the two error conditions cause a panel key
fetch only as a means of getting a good parity word
into the receiving register.

A storage is always started, then cancelled, for a
panel key fetch (Figure 5201). BCU starts storage
and sets a return address register in the normal way.
In the case of an invalid address or an address parity

42 12-65

check, select has already been sent to storage before
the error condition is recognized.

At B time of the select cycle, BCU sends cancel
to storage. The cancel signal causes storage to re-
generate the selected address without delivering data
tothe SBOlatch. Anyerrors detected by storage are
ignored.

Even though the selected storage is cancelled, it
still sends advance to the BCU. The BCU uses ad-
vances for all of the normal functions, including the
gating of the SBO latch, The panel key fetch signal
is delayed to time the delivery of the panel key data
to the SBO latch as if it were data from the cancelled
storage.

ADDRESS COMPARE

e An address compare circuit compares bit positions
0-20 of the address OR with 0-20 control panel
address keys,

@ The compare signal is used for scope synchroniza-
tion and for stop on address compare.

The BCU contains an address compare circuit that
checks every address sent to storage against the ad-
dress setting in the system control panel address
keys (Figure 5202), Bit positions 0 through 20 of the
address OR are compared with the corresponding ad-
dress keys.

The address compare circuit generates a scope
synchronization (sync) signal for troubleshooting and
stops the CPU when a particular address in storage
is accessed. Two switches on the system control
panel determine the results of an address compare.
A three-position switch selects the CPU, the chan-
nel, or both. In the up (CPU) position, a scope sync
signal is generated only when an address compare
occurs on a CPU generated address. In the down
(channel) position, a scope sync signal is generated
only if the address compare is the result of a chan-
nel-generated address. In the center (unlabeled)
position, any address compare generates a scope
sync signal. The scope sync signal can be used to
halt the CPU under control of an address compare
stop switch. If a halt is generated, the CPU finishes
the instruction in progress, then goes to the stopped
state.

The output of the address compare circuit causes
an address compare trigger to turn on for one ma-
chine cycle, beginning at B time of a BCU select
cycle and ending at B time of the post-selection
cycle (Figure 5202). The output of the address compare
trigger is controlled by the address compare select
switch on the system control panel. When this switch
is in the center position, the address comparetrigger

output is routed unconditionally to the address com-
pare sync points. A sync point is located on each
CPU gate and in each channel. When the select switch
is set to the CPU position, the compare trigger out-
put is not gated to the sync points unless the BCU
gating latch is off (gate CPU). When the select switch
is set to the channel position, the compare trigger
output is gated to the sync points only if the gating
latch is on (gate channel), The address compare sync
pulse generates a CPU halt if the compare stopswitch
is in the stop position.

SPECIAL OPERATIONS

e Normal fetch and store operations are varied
slightly for certain special operations.

e Set key, insert key, diagnose, and test and set
instructions require a variation from thenormal
BCU operations.

e Single-cycle mode and some manual operations
vary the operation of the BCU.

The normal fetch and store operations of the BCU
are varied slightly to handle the storage access por-
tion of the set and insert key instructions, the diag-
nose instruction, the test and set instruction, and
some system control panel manual operations. The
set key instruction is a store operation to one or two
SP units. The insert key instruction is a fetch from
an SP unit. The diagnose instruction is a CPU fetch
with data delivery to the maintenance control word
(MCW) register via the channel SBO. The test and
set instruction is a combination CPU fetch and store
operation. Several manual operations require the
BCU to do a panel key fetch. Examples are: set PSW,
load A-B, and store GP or FP registers. Placing
the CPU in single-cycle mode also varies the oper-
ation of the BCU.

Set Key

e The set key instruction stores a five-bit key into
SPF storage.

e The BCU handles errors on a set key operation as
if it were a CPU store operation.

e A HSS is selected, but it is cancelled by the set
key control line.

e On Models 175 and J75, the BCU performs two
set key operations for each set key instruction.

The set storage key instruction is the means by
which a configuration of key bits for a block of

storage is set into the storage of the storage protec-
tion feature (SPF). The SPT storage holds a five-bit
key (plus a parity bit) for each block of 256 main
storage words (double words). On the set key instruc-
tion, SPF storage is addressed by the contents of
general register R2 and the key set into SPF istaken
from bits 24-28 of general register R1.

On a set key instruction, the BCU receives three
control lines from the CPU: CPU fetch request, re-
turn to J, and set key. The set key line alters the
operation of the BCU. Errors are handled as if they
had occurred on a store operation and no data is re-
turned. A return address register is not set even
though return to J is active. A set key line is sent to
storage. This line causes the selected HSS to cancel
its operation and tells the SPF to store the incoming
key. The BCU generates a parity bit for the incoming
key and gates the six bits to the SPF.

For a Model H75, the BCU selection and post-
selection cycles on a set key are the same as on a
CPU store operation, except that the SBI latch is
not set. (The H configuration has a single SP unit.)

For the Models 175 and J75, four HSS are inter-
leaved. Two of these HSS are in one 2365 and the
othertwoare ina second 2365. Each 2365has one SP
unit; therefore, two SP units must hold identical
keys for a particular block of addresses. This means
that on a set key operation, the new key must be set
into two SP units. The BCU performs a set key oper-
ation to one 2365, then does a second set key to the
other 2365 of the interleaved pair (pair of 2365's
containing the four interleaved HSS).

The BCU has two triggers to control set key in-
structions that must set a key into two SP units
(Figure 5205). When positive select turns on for the
first set key operation, key trigger 1 is set to inhibit
the accept signal to the CPU, As soon as positive
select goes off, key trigger 2 is turned on. Key
trigger 2 reverses address bit 19 to set the key into
the other SP unit of the interleaved pair.

The BCU can make one or more channel storage
accesses between the first and second set key opera-
tions. The CPU, however, cannot access storage be-
cause it is still waiting for an accept response to its
set key request.

When positive select turns on for the second set
key operation, key trigger 1 is turned off to allow the
accept signal to be generated. The accept reset
trigger turns off key trigger 2, restoring address
bit 19 to normal.

Insert Key

e The insert key instruction fetches a five-bit key
from SPF storage.

Storage Bus Control 12-65 43

e The BCU handles errors on an insert key operation
as if it were a CPU store operation.

e A HSS is selected, but it is cancelled by the in-
sert key control line.

e Unlike a set key operation, the BCU fetches a key
from a single SP unit on all models.

The insert storage key instruction is the means by
which a programmer can examine a previously stored
protection key for a particular block of storage. The
instruction fetches the SPF key addressed by GR R2
and sets it into GR R1 bits 24-28.

General register R2, bits 8-31, is routed through
the AA and is set into SAR 0-23. As on any CPU
fetch or store operation, the BCU sends 14 bits of
SAR to storage and either seven bits (H75) or eight
hits (175, J75) are routed to the SP unit to address
the key to be fetched. The SP unit delivers the ad-
dressed key to the BCU key buffer register. The
key (five bits plus a parity bit) is routed from the
key buffer to the AOE mask where three 0s are
added to make a full byte.

While the BCU is fetching the key, the CPUroutes
GR R1 through RBL to M and from M through the
main adder to K. The AOE mask byte, which contains
the fetched key, is set into K 24-31. This byte re-
places the corresponding byte from GR R1. Bits
0-31 of K are then set back into GR R1 to complete
the instruction.

At the end of an insert key instruction, bits 24-28
of GR R1 contain the fetched key. Bits 29-31 of GR
R1 contain 0s, and the remainder of GR R1 is un-
changed.

The BCU handles the insert storage key instruc-
tion almost identical to the way it handles the set
storage key instruction for a Model H75. Unlike the
set key instruction, the insert key is not affected by
four-way interleaving. On an insert key instruction,
the key is fetched from whichever SP unit is ad-
dressed by R2. On Models 175 and J75, the other
SP unit containing identical information is not in-
volved in the operation.

On an insert key instruction, the BCU receives
I fetch request, return to J, and insert storage key
control lines from the CPU. The insert storage key
line causes the BCU to treat the fetch as a store
operation; no return address positions are set even
though return to J is active and any errors detected
during the operation are handled as if they occurred
during a CPU store operation.

The insert key line to the selected HSS causes a
cancel and causes the SP unit to fetch the addressed
key. The BCU uses an SPF advance signal from the
SP unit to gate the fetched key into the key buffer

44 12-65

register and to signal the E unit that it can proceed
from the first fixed-point (FXP) cycles to a halfword
logical cycle.

The advance and reset busy lines from the selected
(and cancelled) HSS are used by the BCU as if the
operation were a CPU store.

Diagnose

e The diagnose instruction loads the MCW register
from a specified storage location.

e Diagnose is a CPU fetch with data return via the
channel SBO to the MCW.

The diagnose instruction is handled uniquely by the
BCU because it consists of a CPU fetch, but the
fetched data is returned via the channel SBO to the
MCW register. The CPU sets the calculated storage
address into SAR and sends the I fetch request and
diagnose signals to the BCU. The BCU starts stor-
age and relays the storage address from SAR through
the address OR to storage. At select time, the BCU
sets the diagnose position in a return address regis-
ter.

When the fetched 72-bit word returns from stor-
age, the BCU sets it into the SBO latch register.
From the SBO latch, the storage word goes out on the
channel SBO. The BCU uses the advance pulse from
the selected HSS to generate a diagnose select sig-
nal. The signal is generated by sampling the return
address register set at select time. The diagnose
select signal gates 0-31 of the channel SBO into the
MCW register.

Test and Set

e Storage performs a unique operation for the test
and set instruction; it does a combination fetch
and store.

e The BCU performs a normal CPU fetch operation,
except for a unique mark register reset.

The storage unit performs a unique operation for the
test and set instruction. The addressed location is
fetched and sent unaltered to the SBO latch register
the same as on a fetch operation. Unlike a normal
fetch, however, the storage uses a mark bit supplied
by the CPU to designate a single byte to be changed
in storage. The storage unit sets the designated byte
to ali 1s then regenerates the 72-bit word; thus, the
storage unit performs a combination store and fetch.
To cause a test and set, the BCU performs a

normal CPU fetch but sends a test and set line to the
selected storage unit. No special gating is required

for the mark bit. The CPU sets a bit into the mark
register; the mark register is gated to storage on
any CPU operation. A unique mark-register reset,
however, is required for the test and set instruction.
The mark register is reset after any CPU store oper-
ation and after a test and set operation.

The storage protection unit is active on a test and
set instruction. A SAP check causes the original
word to be regenerated in storage and, instead of the
fetched word, the storage unit delivers all 0s with
good parity bits to the SBO latch register. This pro-
tects the CPU from taking a machine check caused
by a SAP error.

SINGLE CYCLE
e Single cycle applies to CPU operations only,

e On single cycle, running clock pulses are continu-
ous; controlled clock pulses are released one set
per depression of the start key.

e Storage units are not affected by single cycle.

The single cycle mode is applicable only to CPU
operations., The BCU handles channel requests with
running clock pulses available whenever power is on,
except during a system reset,

Single cycle mode does not affect the storage units.
A storage cycle, once started, runs to completion in
a fixed amount of time. A fetch request honored
during single cycle causes a complete storage cycle
with one depression of the start key. The fetched
data is set into the receiving register (A, B, or J)
by a running clock pulse. Similarly, a CPU store
operation is completely executed with one set of
control clock pulses. For correct operation, how-
ever, certain circuits within the BCU must operate
differently during single cycle than during normal
operation,

CPU Fetch
e CPU request latch is set with a control clock pulse.

@ When a request is honored, the request latch is
turned off and blocked during the following con-
trolled clock cycle.

e There are two CPU accept triggers: pulse accept
is reset by the running clock and normal accept
is reset by the controlled clock.

The CPU request latch in the BCU is set with control
clock pulses. For a single cycle CPU fetch, the
request latch is set with the same conditions as those

used for normal operation (a CPU fetch request and
a control L clock). For single cycle, however, the
request latch must be turned off before the next de-
pression of start., To prevent honoring the same
request twice, the request latch must be blocked so
that it will not be set on the next depression of start,

To properly control the request latch, the CPU
accept trigger is duplicated (Figure 36). These two
accept triggers are set in parallel, but one is reset
by a control clock while the other is reset by a run-
ning clock. The CPU accept signal is taken from the
normal accept, so that accept to the CPU remains on
until the next set of control clock pulses. This simu-
lates normal operation to sequence CPU requests to
the BCU. The pulse accept trigger causes the CPU
request latch to be reset on the running clock cycle
following a CPU select.

The CPU request and accept conditions are the
only area of BCU changed for single cycle mode. All
other areas are controlled by running clock pulses.

CPU Store

e To ensure that K is set, the BCU delays one con-
trolled clock cycle before honoring a single cycle
CPU store.

To perform a single cycle CPU store, the BCU must
delay one cycle before honoring the request. Note
that on a CPU store, the CPU often brings up store
request one cycle before loading the K register. If
BCU honors the request on the first ¢ycle following
the request, the K register is actually set with the A
clock of the post-selection cycle. On single cycle,
this A clock will not occur until the next time start
is depressed.

Two latches are used to delay a single cycle store
request for one cycle (Figure 37). This one-cycle
delay ensures that the K register contains the data
to be stored when BCU selects storage.

The accept and pulse accept triggers operate the
same on a single cycle store as they do on a single
cycle fetch.

ERROR HANDLING

e BCU handles two kinds of errors: parity checks
and program checks.

e Most parity checks cause a machine check.

Two kinds of errors are handled by the BCU: parity
check errors and programming check errors. The
action taken for one of these errors depends not only
on the type of error, but also on the user (channel or
CPU) and whether the error occurred on a fetch or a
store operation (Figure 9104).

Storage Bus Control 12-65 45

Mochine Cycles

N

Selection Cycle Post-Selection-Cycle
l Selecr 1o Stor J
BCUR e BCU Can Begin
o J Accepl to CPU Ancther Selection
Set Cyelie Inhibit
gw
¥ Set Ret s
Adde Change X/Y Bin Tgr
Reg ! t

'

FIGURE 35. SELECTION AND POST-SELECTION CYCLES: CPU FETCH

Fetch
etc! uest Y CPU Request Te BCU
L Clk (Control) FH Cireuity

Pesitive CPU Accept
Sel Out zad I E' Accen 6. €U

FL

Pulse Accept

EB {Contral) Reset

cPuU Pulse Accept _EBR | A

Pulse Accept Reset j——4 MNOTE:
a= In single cycle mode, depressing

FL

_AR)} PH stort couses one set of control
clock pulses beginning with an
L clock,

-

‘f%“ ol |\

Running Clk = y
Control Clk ﬁ i

CPU Reqguest Lotch

Select to Stor

CPU Accept Tgr })

Pulse Accept Tar

‘\
Set 58O Latch . / /

Set A, B, or J Ab

=
L —d

\— CPU Selection Cycle

FIGURE 3§, SINGLE-CYCLE CPU FETCH

- S/C Store 5/C Store
CPU Store Req Buffer 1 Buffer 2
L Cik {Controll A L Y B A CPU Request
5/C Mode PH [~ To Selection
Circuits
L Clk_{ Control)

From Figure 36 el J [L[:_Il

Pulse Accept Reset

From Figure 36

FIGLRE 37, SINGLE-CYCLE CPU STCRE

46 9-65

Parity check errors indicate a hardware malfunc-
tion and result in a logout followed by a machine check
interrupt if they occur on a CPU operation. Parity
errors that occur on channel operations are sent to

the channel, where a channel interrupt will be initiated.

Programming errors are caused by asking the ma-
chine for anillegal or an impossible operation. Pro-
gramming errors result in a program interrupt.

Parity Checks

® BCU checks parity of all addresses off of the ad-
dress OR,

e [Each HSS parity-checks addresses and marks.
e SPF parity-checks addresses and keys.

e Each HSS parity-checks all data bytes in MDR on
both fetch and store operations.

Address and Mark Parity

The BCU parity-checks all addresses that pass through
the address OR (Figure 5203). This 24-bit address
check is the only parity checking done withinthe BCU.
When a bad parity address is detected, the BCU can-
cels the selected HSS so that the selected address

will be regenerated without change and will not be
delivered on the SBO. The HSS suppresses any errors
found to prevent other error indications caused by

the faulty address.

Each HSS parity-checks the 14-bit addresses that
it receives. On store operations, the HSS also checks
the parity of mark bits. The SPF parity-checks the
address bits that it receives and parity-checks all
keys that it uses: the parity of the two keys used
for bit match, the parity of the incoming key on a set
key instruction, and the parity of the outgoing key
on an insert key instruction, A parity error detected
at MAR, the mark register, or within the SPF sends
storage address check to the BCU if the BCU has not
sent cancel. A storage address check causes the se-
lected address to be regenerated without change and
prevents data delivery on the SBO.

The BCU address check and storage address check
lines are ORed within the BCU to produce a single
address checkline. This line sets either the CPU ad-
dress check latch or the channel address check latch, de-
pending on the channel bit of the return address
register associated with this operation. If the CPU
address check latch is turned on, a machine check
interrupt is initiated. If the channel address check
latch is turned on, a channel address check signal
is sent to the channel.

Storage Data Check

Each HSS checks all data bytes in its MDR on both
store and fetch operations. A data byte parity error
brings up the storage data error line to the BCU if
cancel is not on. A storage data check does not alter
the storage operation (fetch or store). The storage
data error line is sent directly to the channel where
it is recognized by channel advance on a channel
operation. For CPU operations, the storage data
error line is combined with the return address
register outputs to set the X or Y CPU data check
latch on a CPU store. Bad parity on a CPU fetch is
not an error; the CPU may not use the portion of the
storage word that has bad parity. The CPU checks
the parity of fetched data that is uses.

Program Checks

e Two program checks are handled by the BCU:
invalid address and storage address protect (SAP).

e BCU detects invalid addresses.
e SPF generates SAP.

Programming checks handled by the BCU are:

1. Invalid address (address not within main stor-
age of this system).

2. Storage address protect (SAP) error (mismatch
of storage protect keys).

Invalid Address

On every operation, the BCU checks for an invalid
address (Figure 5204). An invalid address is an ad-
dress which is beyond the range of storage addresses
available on a particular system. Whenever an in-
valid address is detected, BCU cancels the selected
HSS.

An invalid address usually causes an interrupt;
however, the type of interrupt and the time at which
it is taken depend on the operation being performed
when the invalid address occurs., For channel opera-
tions and CPU fetches, the BCU stores the invalid
condition in a return address register and sends itto
the channel, A-B, or J along with the corresponding
advance, A channel that receives invalid will initiate
a channel interrupt. For fetches, the CPU does not
initiate an interrupt until it determines whether the
data from the invalid address is required.

For a CPU store operation, the invalid address
condition is set into the CPU invalid store buffer
trigger. This trigger initiates a program interrupt.

Storage Bus Control 12-65 47

Storage Address Protect (SAP)

The SPF generates a SAP error on any store opera-
tion if the storage protect keys do not match (unless
the in key is all 0s). On fetch operations, the SPF
generates a SAP error if the keys do not match and
the read-protect bit is on.

On store operations, the SAP error cancels the
selected HSS and sends SAP to the BCU (Figure 5204).
On fetch operations, the SAP error suppresses

data delivery on the SBO and sends SAP to the BCU.

For any channel operation, the BCU sets the chan-
nel SAP trigger if SAP is received from the SPF.
The channel SAP error is recognized by channel
(with channel advance) and causes a channel interrupt.

For CPU store operations, the BCU sets the CPU
SAP trigger if SAP is received from the SPF. The
CPU SAP trigger feeds the interrupt circuits to cause
a program interrupt.

For CPU fetch operations, the BCU must handle
SAP from SPF similar to the way an invalid address
is handled on a CPU fetch operation. A program
interrupt is not desirable until CPU determines that
the fetched data is to be used. The BCU has an X
and a Y SAP fetch buffer trigger; one of these trig-
gers is set when SPF generates a SAP error on a
CPU fetch. The output of these triggers is ORed to
feed the A SAP, the B SAP, and the J SAP circuits;
these circuits determine whether the data from the
error fetch is actually required in the operation being
performed. If this data is necessary, either the A
SAP, the B SAP, or the J SAP trigger is turned on
to cause a program interrupt.

Cancel

e Cancel causes storage to regenerate the selected
address.

e No data is delivered to the SBO,

A cancel signal causes a selected HSS to regenerate
the selected address without change. On a cancelled
operation, data to the SBO is suppressed and any
errors detected by the HSS are suppressed.

The cancel latch within a HSS is set in one of three
ways:

1. Cancel from the BCU.

2. SAP signal from the SPF,

3. Set or insert key line from the BCU.

The BCU cancel signal is brought up on a BCU-
detected address check, on an invalid address, and
for a panel key fetch (Figure 5201),

48 12-65

Communicate and CPU Storage Busy

e The CPU communicate line controls two error
latches in each HSS and one error latch in each
SPF.

¢ The purpose of these error latches is to light an
an indicator if the specified error occurs on a
CPU operation,

e HSS indicators are address (eight lights) and data
(eight lights).

@ SPF indicator is SPF (four lights).

o The CPU storage busy line prevents entry into an
interrupt sequence while BCU is handling a CPU

request.

Two error latches in each HSS and one error latch

in each SPF are controlled by a CPU communicate
line from the BCU. The purpose of these latches isto
light an error indicator if an error occurs on an opera-
tion requested by the CPU (Figure 5203). These
indicators isolate a bad address or bad data as having
come from either the CPU or a channel., The HSS
indicators controlled hy CPU communicate are ad-
dress and data, The SPF indicator controlled by
CPU communicate is SPF.

The CPU interrupt controls require BCU to gen-
erate a CPU storage busy line. This signal prevents
entrance into the interrupt sequence while the BCU
is busy with a CPU request.

The BCU generates the CPU communicate line
from the CPU pulse accept condition (Figure 5206).
The CPU storage busy signal is held up for two cycles
by ORing the pulse accept and CPU communicate con-
ditions to control an EBR PH.

MACHINE CHECKS

e The BCU generates a machine check signal for
any of three error conditions:

1. Address parity check detected by the BCU
or storage on a CPU operation.

2. Storage data parity check detected by stor-
age on a CPU store operation.

3. X/Y and W/Z return address triggers are
out-of-synchronization (any operation).

The three error conditions are ORed to produce stop
clock which turns off the control clock and initiates
a logout followed by a machine check interrupt
(Figure 5203).

Address Parity Check

® An address parity check is detected by BCU or
storage.

® BCU sets channel address check or CPU address
check.

The address OR parity check within the BCU and the
storage address check are described under "Parity
Errors.' These two error conditions are ORed with-
in the BCU, then set into either the channel address
check or the CPU address check error latch. The
CPU address check latch is one input to the stop
clock OR.

Store Data Parity Check

® The HSS units check MDR parity on every operation.

e BCU ignores data check from HSS on CPU fetch
operations.

® Data check is sent to the channel on channel opera-
tions.

e Data check causes a machine check on a CPU store
operation,

The 2365 storage units check parity on the MDR on
every operation as described under "Parity Errors."
Unless cancel is on, the storage sends storage data
check whenever it detects an error (Figure 5203).
The BCU ignores a storage data check on CPU fetch

operations, but sets either the data check X CPU or
data check Y CPU latch if the error occurs on a CPU
store operation. Both of these latches feed the stop
clock OR.

Return Synchronization Check

e X/Y and W/Z binary triggers must stay in syn-
chronization.

e Synchronization is checked only when no HSS
are busy.

e W and not X, or Z and not Y, causes machine
check.

The X/Y binary trigger gates return addresses into
one of the two return address registers; the W/Z
binary trigger gates the output of one of the two re-
turn address registers. The X condition of X/Y and
the W condition of W/Z point to the X return address
régister; the Y condition of X/Y and the 7 condition
of W/Z point to the Y return address register. This
relationship, or synchronization, must be maintained
in order to return fetched data to the correct register.
When no HSS are busy, the synchronization of
X/Y with W/Z can be checked; either X and W or Y
and Z should be on. The checking circuit tests for
W and not X, or Z and not Y (Figure 5203). Either
of these conditions signals a return address syn-
chronization error. This error condition brings up
the stop clock OR to signal a machine check error.

Storage Bus Control 12-65 49

INSTRUCTION PREPARATION

INTRODUCTION

e Simultaneous execution and preparation of instruc-
tions gains processing speed.

e Execution is program dependent.
e Preparation is automatic.

e Executions start with operation code registers
loaded and operands delivered.

e Executions are guided by sequencers.
e Executions are done one at a time.

e Main objective of preparation is to make every
machine cycle and execution cycle.

e Preparations are guided by sequencers T1 and T2.
e Instruction fetching is not T1 and T2 controlled.

e TI1 and T2 cycles, instruction fetching, and exe-
cutions are all done simultaneously.

The 2075 prepares instructions for execution in one
unit and executes them in another unit, and thus
greatly speeds up the running of any program. The
use of different units enables simultaneous prepara-
tion and execution. While instruction one is being
executed, instruction two is being prepared, see
Figure 38.

The instruction preparation unit (I unit) performs
all functions that are not directly dependent on the
particular instruction being processed. For instance,
preparation includes instruction fetching, no matter
what the instruction, it must be fetched from storage.
The execution unit (E unit) performs the specific
operation called for by the instruction being executed.
For instance, on a divide instruction the E unit
divides, on an add instruction it adds.

The functions performed by the E unit are de-
termined by the stored program. The I unit, how-
ever, without control from the stored program
performs automatically all of those functions which
are necessary to the running of any program. This
distinction between automatie (or built-in) control of
preparation as opposed to program (or external) con-
trol of execution is of primary importance for an
understanding of 2075 operation. The preparation
functions performed by the I unit under built-in

50 12-65

control serve as a foundation for all operations per-
formed by the 2075. A preparation failure can affect
all executions.

Before being more specific about what the I unit
does, we must look more closely at E unit operation.
Some characteristics of a typical execution are shown
on Figure 39,

Before an execution starts, the operation code of
the instruction to be executed is in an E unit opera-
tion register (EOP). For most instructions, operands
are delivered to RBL or the J register before the
execution starts. During the execution, the operands
are taken from RBL or J, the required operations
are performed, and the results are delivered to
specified locations via the K register.

On each machine cycle of an execution, the data
flow and the operation performed are guided by a
trigger called a sequencer. A series of sequencers
is used for each execution. Many sets of sequencers
are available. The sequencers to be used for any
execution are determined by the instruction to be
executed.

An execution may be a simple move from one gen-
eral register to another requiring two E cycles, or it
may be as complex as a VFL divide in which both
operands come from storage and the result is returned
to storage. This latter execution may require hundreds
of E cycles. In all cases some selected sequencer
defines the first cycle and another sequencer defines
the last cycle of each execution. Executions are done
one at a time; that is, the first cycle sequencer (EI)
for an execution may not come on until the last cycle
sequencer (ELC) for the preceding execution has been
turned off.

For any program the shortest running time is
achieved when every machine cycle is an execution
cycle. The I unit's job is to perform all preparation
functions in a way that enables continuous executions.
This ideal performance is shown at the bottom of
Figure 39.

The distinction between preparation and execution
functions and a first breakdown of the preparation
functions performed by the 1 unit are shown on Fig-
ure 40,

Most preparation functions are sequencer con-
trolled as are executions. Unlike executions, one set
of two sequencers is used for the preparation of all
instructions. Before the preparation sequence can be-
gin, instructions must be brought from storage {o the
processor. The I unit contains instruetion butfers and
a set of mechanisms aimed at keeping instructions
always available in the buffers. The mechanisms that
control instruction fetches moniisr many conditions,

Instruction fetches are not made when they will inter-
fere with executions or other preparation functions.
Generally, however, new instructions are fetched
before all buffered instructions are used. With the
instructions available in the buffers, the sequencer
controlled preparations are started. Under ideal
conditions, sequencer controlled preparations are
completed in two machine cycles. The preparation
sequencers T1 and T2 guide the delivery of operands
to the execution unit, the setting of the operation
register inthe E unit (EOP), and the sending of a
start signal to the E unit. The "keep track" functions
such as updating the instruction counter and con-
trolling the gates from the instruction buffers to the
operation register are also guided by T1 and T2. The
start signal is sent to the E unit as the T2 functions
are completed.

Most execution sequences are longer than two ma-
chine cycles but some require only two cycles. As-
suming two cycle executions and otherwise ideal
conditions, instruction fetches, sequencer controlled
preparations, and executions will proceed simultan-
eously and without interfering with each other as
shown at the bottom of Figure 40,

The 2075 processor as described consists of the
instruction preparation unit and execution unit. A
further breakdown by functional section is shown on
Figure 41.

Three different sections perform executions. The
execution unit (E unit) performs on executions re-
quiring arithmetic or logical manipulation of data.
The instruction execution unit (IE unit) performs on
executions that are closely associated with I unit
functions or mechanisms. The branchunit (Br unit)
performs on executions that may result in a branch
to a new instruction address. Each of these units
executes certain instructions independently of the
other execution units. Each receives its own start
signal from the I unit and uses its own sequencers to
control its operation as has been described for the E
unit.

The use of three independent execution units does
not enable more than one instruction to be executed
at any one time. The only simultaneous operation of
execution units occurs on some instructions which
require the use of two units for their execution. On
these instructions, the E unit operates simultaneously
with either the Br unit or the IE unit. For example,
on branch on index high (BXH) the E unit does arith-
metic to determine the success of the branch, and
the Br unit fetches instructions from the branch
address.

The bus control unit (BCU) is another functional
section of the 2075 processor. BCU contains the data
flow paths and the controls for storage operation with
the channels as well as with the processor. A main

function of the BCU is to service near simultaneous
storage requests from the different channels and the
CPU in the order of their assigned priorities.

CONTROL AND FUNCTIONS OF T1 AND T2

e Dependencies between data paths and between
functions require variations in cycling.

o Required variations are achieved by three IS
control signals: TN T1, TN T2, andIto E
transfer.

e Interference between executions and T1 cycles or
T2 cycles is prevented by block T1-M and block
T2-M.

e Interference between one execution and the next
is prevented by busy triggers and last cycle se-
quencers.

e Operation registers are set by IS control.

e TI1 cycles compute effective addresses and initiate
fetches for storage operands.

e T2 cycles deliver operands from the registers.
e [to E transfer times the start of all executions.

e ICR contains the storage address of the instruction
that is being prepared.

Note that the 2075 uses specific units to perform
various jobs and thereby gains speed. Similarly, the
I unit gains speed by keeping the various jobs that it
must do as independent as possible. Figure 42 shows
some of the main flow paths through the I unit.
Mechanisms which are a part of units other than I are
shown by dotted lines and their unit is given at the
upper right corner.

Instruction addresses must be delivered to the
storage address register (SAR) before instructions
can be fetched. When a program is initially loaded,
the program status word (PSW) comes from storage
on the storage bus out (SBO). The PSW is gated from
SBO to the J register and then to the PSW register in
the I unit, When instructions are to be fetched, the
portion of the PSW that contains the instruction ad-
dress (ICR) is gated to the incrementer (Incr). The
inecrementer can deliver the address unchanged to
SAR, or it can add appropriate increments when in-
structions in advance of the ICR value are to be
fetched. The incrementer is the only arithmetic unit
needed to generate instruction fetch addresses from
the ICR value.

Instruction Preparation 12-65 51

Instructions must be delivered to five operation
registers. Instructions come from storage on SBO
and are gated by BCU into either the A or B instruc-
tion buffer registers. A gate select mechanism gates
the proper halfwords for the next instruction to be
prepared to an I unit operation register (IOP). The
setting of IOP and of the other operation registers
fed by IOP is done under control of preparation
sequencers T1 and T2. The exact cycle on which
each operation register is set depends on many things
which will be discussed later. The general rule is
that each is set as early as possible without inter-
fering with its use by the preceding instruction.

Addresses for operands from storage are gener-
ated on the T1 preparation cycle. An address may
require the addition of three quantities: the base and
the index which are in the general purpose registers
(GPR), and the displacement (D) field of the instruc-
tion. On T1, IOP contains the instruction to be pre-
pared. IOP decoding gates the required address
components to the addressing adder (AA) and sets the
output of the AA to SAR. The base register is gated
to the general bus left (GBL) and the index register
is gated to the general bus right (GBR). GBL and
GBR go through the AA ORs and into the AA without
further gating. The AA receives inputs and gener-
ates a sum on every T1 cycle. On instructions which
do not require an address, the sum is not set to SAR.

Operands from GPR are delivered to the register
bus latch (RBL) in the E unit on T2 preparation
cycles. On every T2 cycle, two registers are se-
lected for gating to GBR and GBL by decoding the R1
and R2 fields of IOP. Except when IOP decoding
indicates a floating-point instruction, GBL and GBR
are gated to RBL after going through the AA ORs.

On floating-point instructions a selected floating-point
register (FPR) is gated to RBL. RBL, therefore,
receives information from either a GPR or a FFPR on
every T2 cycle. If the gated registers are not re-
quired for the execution of the instruction, the con-
tents of RBL are ignored.

The units and mechanisms described as independ-
ent are not completely independent. Instruction
fetching and operand fetching have been described as
various functions performed by specific mechanisms.
TFigure 42 shows storage addresses for instructions
and for operands independently generated, but both
being delivered to the SAR. The BCU (and storage)
can process only one storage address on any one
machine cycle; therefore, nothing would be gained
if two storage addresses were delivered from the
2075. On any machine cycle the conditions of the
instruction buffers can call for an instruction fetch.
On any T1 cycle, depending on the instruction and
sequencers T1 and T2, an operand fetch may be

52 12-65

initiated. The need for the operand fetch is deter-
mined during the T1 cycle. Both addresses are gen-
erated; if the operand fetch is required, the operand
address is delivered to the SAR and the instruction
address is blocked. Only if the operand fetch proves
unnecessary is the instruction fetch made. Under
normal conditions, operand fetches have priority
over instruction fetches. Whenever an instruction
fetch will interfere in any way with the preparation or
execution of an instruction already available in the
buffers, instruction fetching is blocked.

Instruction fetches must sometimes be blocked;
the preparation eycles T1 and T2 must also some-
times be blocked and for the same reason, depend-
encies exist between the units and mechanisms
described as independent. Note on Figure 42 that on
T2 cycles, operands from the registers are delivered
to RBL. On certain instructions, the E unit makes
additional use of RBL as a data path during execution
cycles. For these instructions, T2 cycles are blocked
until RBL is no longer required by the E unit. Fig-
ure 42 also shows that on T1 cycles, GPR is gated
out as components of the operand addresses. On
certain instructions, the E unit requires that GPR be
gated out during execution cycles. For these instruc-
tions, T1 cycles are blocked until GPR out gating is
no longer required by the E unit.

The situations described in the preceding text re-
quire that T1 or T2 cycles should not start until the
execution unit has finished using some shared mech-
anism. Sometimes even though the T1 or T2 se-
quencer is on, its functions cannot be completed inone
cycle; the cycle must be repeated. T1 is allowed to come
on even though the instructionto be prepared has not yet
been delivered to the instruction buffers. T1 must
be repeated until the instruction has been loaded to
IOP. T2 also must be repeated sometimes. If the
instruction being prepared requires an operand fetch,
the fetch is initiated during T1 and maintained during
T2. Should BCU be busy and not accept the request
immediately, T2 must be repeated until the request
is accepted. When all preparation functions have
been completed, the start of the execution may be
further delayed because the previous execution is
still in progress. Some possible variations in cycling
that result from these delays are shown on Figure43.

Note that either T1 or T2 cycles may be repeated
and that on some machine cycles neither T1 nor T2
is on. However, time is lost only when E1 does not
occur on the machine cycle following ELC.

The variations in preparation sequencing do not
affect execution sequencing. When the start signal is
sent for the execution of any particular instruction,
the appropriate first cycle sequencer is turned on and
execution proceeds completely under control of the
executing unit.

Instruction

=@ @ @ @ O

r ™ AL 4-_\ r A W ald A A
Prep | Exec Exec Exec | Prep |Exec Exe Same unit prepares
ond executes
(OGO OO ONG) ®
Prep | Prep Pre Pre, Pre, P Different units:
N ~ N N ~ N AN \ N one for preparation and

* one for execution

hY * hY ~ ~ . ™, ~ “
‘\lExec\l lExec\: 'Exec\ |E xoc}IE xech, anc\= &e l.'.\) lExac\=1Emc\: l

FIGURE 38. SIMULTANEOUS PREPARATION AND EXECUTION SAVES TIME

From Addressable Registers From Storage via BCU
RBL J Register
Start Signal
E Unit
| K Register I
To storoge or

oddressable registers

SEQUENCERS GUIDE EXECUTIONS

Machine Cycle —

| : }. L 1 i i i | 1 _= 1 L SRR

J ' I T T
Start Signal —_—
Sequencers } El | E2 : E3 %ELC |
IDEAL OPERATION = EVERY MACHINE CYCLE AN EXECUTION CYCLE
MochineCycle f— 4 4 444444 L L
Start Signal EPRE—— ety e S
El ELC | El E2 EM ; ELC , EI E2 E3 , ELC 4 E1 E2 ELC
Senuencers (ELQHC LBl B gy (ENGECL B LB LB LECLEL B ACy

FIGURE 39, EXECUTIONS, SEQUENCERS, AND MACHINE CYCLES

Instruction Preparation 12-65 53

Execution is Program

b Preparation is Automatic i Controlled =
Instruction
Availcble T T2
Fetch Deliver Operands (])
instructions N
from storage Set Operation Registers RBL] | 1 Register
f
fo hufiers Start Execution Unit
EOp 3
Keep Trock of Preparations Exe:::::
and Executions Start E)
| K Register |
Machine Cycles

-] [l 1 1 1 1 1 1

; Initial Instruction=-Fetch :
)]

—=

L

| Instructions Availoble

LI 12 T

1 12 :Tl

A

Start

Start

LEl

(ELC | El

(ELC , E1

r I

FIGURE 40.

IE unit Br unit

One or two of
these units used
to perform all

executions

SIMULTANEOUS INSTRUCTION-FETCH, PREPARATION, AND EXECUTION

I unit

Keep executions going

BCU

Data flow path and
contral center for all
storage operations

FIGURE 41. FUNCTIONAL SECTIONS OF 2075

54 U-65

INSTRUCTION
ADDRESS

J Register |

e i i |

PSW ICR

uonEamialg uorjonaysug

S9-71

X IC Controis

Instruction addresses are always
generated without preparotion or
execution sequencer control and
are delivered to SAR when needed.

FIGURE 42, MAIN FLOW PATHS THROUGH 1 UNIT

INSTRUCTION
BCU
o T LT
| SBO 1
| SRR R e |
X X
| |
| A Register B Register
()
\T/
[o]3
X
| ond |E
o]
) g E and IE
r_ - A [_L—_.i“
EOP | ER1 |
| PR Sl
T
X
T
| LCoP

Instructions are moved from the buffers
to the operation registers under control
of preparation sequencers Tl and T2.

QPERAND REGISTER
ADDRESS OPERAND
E E
| K Ragister ‘E 1 K Register \
0 31 0 31
X X
] |
16 GPR 16 GPR
| ! I i
GBL 'y X GBR GBL 3 X GBR
AA OR AA OR AA OR AA OR
I I
= Tt x
IOP D
i
X
| From FPR
V Vv ==
x
Addressing Adder
X BCU
r= -L== 1
I SAR |
e E
G ==~ e T ¥

On T1 preparation cycles operond
oddresses ore always generated and
ore goted to SAR when needed.

On T2 preparation cycles operonds
from oddressable registers are always
gated to RBL. They are used by E unit
only when needed.

Start Signal Held Up

Do not send start until TE T2 ¢ OF 3T g T ey W g By A

preceding execution o 5
is Finished. N Y
Start <o Start \\ Start
"'n\ N
£l , E2 , E3 ,AC ¢
E E El ,ELC™My El
Py e B Rc, e acy By

Tum=0On for T2 Held Up

Do not turn on T2 if it Iy T2 0 T, Ty T, T2 T T2 4 T oy
uses dato path needed by | T i) 3 ! eyt X Nt
execution in progress, s = ~

Start > Start N Stort

. ~
(B B2 LB g e ELE:[EII)
Turm=On for T1 Held Up

Do not turn on T1 if b_Jl_‘,_[Z_'\ R S N O o A
- I T g L |
Start

it uses doto path needed
by execution in progress.

Executions Held Up (Time Lost)

Do not start execution [Tl | 12 I 1! I Tl | Ti I Tl | T2 | Tl ; T2 I P

until preporation is “ ~
complete, % R
Start N Start ~ _Start
N o N
N N
! El EELC\ai | El fELc\='| El)

FIGURE 43. VARIATIONS IN PREPARATION CYCLING

56 9-66

Instruction Sequencing Controls

e Three control signals give all cycling variations:
TN T1, TN T2, and I to E transfer.

e [lach signal occurs once for each instruction.

There are two major control jobs in the I unit. The
instruection counter (IC) controls fetch instructions
to the buffers. The instruction sequencing (IS) con-
trols turn T1 and T2 on and off and start the execu-
tion units. Both sets of controls operate to perform
their assigned tasks as early as possible without
slowing down the executions. Since the progress of
preparations and executions determines the rate at
which instructions are used and thus the need for
instruction fetches, the sequencing controls are
described first.

Three major control signals are basic to the IS
controls. All of the required variations in prepara-
tion sequencing and starting execution units are ob-
tained by controlling turn-on T1 (TN T1), turn-on T2
(TN T2), and I to E transfer. The functions of the
first two signals are self-explanatory: I to E transfer
signals the start of every execution.

Figure 44 shows. in simplified form, the develop-
ment of each of these signals; Figures 5250, 5251,
and 5252 show the detailed logic for each signal. The
relationship of each signal to clock ecycles and to the
sequencer it controls is also shown.

By developing these signals at the proper time any
required variation in preparation sequencing may he
achieved; however, the signals are used for much
more than simply setting their respective sequencers.
For the preparation of a single instruction, any num-
ber of T1 or T2 cycles may occur; each of the three
control signals, however, occurs only once. By using
the control signals. as well as the sequencers. se-
lected operations may be performed on the first or
the last of a series of cycles controlled by the same
sequencer. TN TI1 is present at the beginning of the
first T1 cycle only. TN T2 spans the last T1 and the
first T2 cycle. I to E transfer marks the last T2
cycle. Figure 45 shows selective control by means
of these signals.

Bloek T1-M and Block T2-M

e Block T1-M and block T2-M time TN T1 and
TN T2.

e Block T1-M and block T2-M set at I to E transfer
if T1 or T2 cycles will interfere with execution.

e Reset during execution when interference will no
longer occur.

In the development of TN T1 and TN T2 one of the
major considerations is the interference problem;
that is, T1 or T2 must not be turned onif it uses any
mechanism that is required by an execution in pro-
gress. This problem is solved by the use of two
blocking triggers: block Tl-memorized and block T2-
memorized. If one of the triggers is on, it prevents
the turn-on signal for the preparation sequencer to
which it relates. The triggers are set at Ito E
transfer under control of a decode line from an I unit
operation register, BOP. The line BOP decode block
T1 (BD Blk T1) comes up during T2 for any instruc-
tion the execution of which requires that T1 cycles
for the next instruction he prevented. When the
reason for the block no longer exists: that is, when
T1 cycles will no longer interfere with execution, the
unit executing the instruction sends a signal that turns
off the trigger and allows TN T1 to be developed.
Blocking of T2 is done in the same way.

Figures 46 and 47 show the timings of these blocks.
Note that for T1 the actual block anticipates the turn-
on of the trigger. This is necessary because the
normal case is to turn on T1 at I to E transfer the
same time that the blocking trigger is set. Also note
that in both cases the actual block is dropped when
the turn-off signal is received and does not wait for
the turn off of the blocking trigger. Figures 5253
and 5254 show the complete logic for turning block
T1-M and block T2-M on and off.

Busy Triggers and Last Cycle Sequencers

e Ito E transfer is held up if:
1. T2 is not finished (OPF and not accept).
2. Last execution is not finished (unit busy
trigger and not same unit last cycle trigger).

I to E transfer is developed when T2 functions have
heen completed and the previous execution is complete
or in its last eyele, With T2 on, the only delay in its
completion occurs when the I unit is making an oper-
and fetch and must wait for an accept from the BCU.
The operand fetch (OPF) trigger is set when the I
unit is to make a fetch and it is turned off when the
request is accepted. Therefore, either OPF off or
OPFT on and accept indicate the completion of T2,
Busy triggers and last eycle triggers that indicate

the condition of each of the execution units must be
monitored. As each execution is started, the IX busy
trigger is set if the E unit is used; the IE busy trig-
ger is set if either the branch or the IE unit is to be
used. This double use of the IE busy trigger is possi-
ble because the branch and the IE units are never
used on the same instruction. An execution unit com-
pletes its part of an execution when its last cycle
sequencer is on. The last cycle sequencer turns off

Instruction Preparation 9-65 57

the busy trigger for the unit. The line last cycle
memorized is brought up only when all execution
units are not busy or are in their last cycle; and if
T2 is complete, it allows I to E transfer (Figure
5252).

Setting Operation Registers

e Decoding from operation registers along with
sequencers controls operation on each cycle.

e Preparation unit controls the setting of all opera-
tion registers.

e Each operation register is set as early as possible
without interfering with use on the previous in-
struction.

Just as the setting of the T1 and T2 blocking triggers
depends on decoding from an operation register so
most other preparation and execution functions are
directed by decode lines as well as sequencers.
Operation decoding is performed from five registers.
IOP and BOP are used to direct preparation. BOP

is also used by the branch unit and the IE unit to
direct executions. EOP and LCOP are used on E unit
executions. ERL is used by both [E and E to direct
put-aways to general purpose or floating-point regis-
ters. All operation registers are set by the I unit
using the execution unit busy triggers and last cycle
information from each unit as part of the control
circuits.

Figure 48 shows the operation register sets that
occur as a string of instructions involving both E and
IE executions is processed. The cycles during which
each register must be correctly loaded are alsoshown.

IOP: Must contain the instruction being prepared for
at least one T1 cycle hefore T2 is turned on, and for
all T2 cycles. Normally IOP is set from the instruc-
tion buffers at TN T1 for each instruction and is not
changed until TN T1 for the next instruction. Three
conditions, however, require variations of this
procedure. The logic for setting IOP under all condi-
tions is shown on Figure 5256.

On occasion T1 is turned on before the instruction
to be prepared is present in the instruction buffer.
To take care of this situation, IOP is set at the start
of each T1 cycle and TN T2 is not allowed until IOP
has been correctly loaded for at least one T1 cycle.
The line which allows T2 to be turned on is IOP
loaded, which is generated by the IC controls. This
line will be described in detail later. IOP loaded will
be up during any cycle only if the instruction to be
processed has been present in the instruction buffers
a sufficient time to have been loaded into IOP at the

58 12-65

beginning of the cycle. Since IOP loaded is needed
for TN T2, IOP will contain the correct instruction
for at least one T1 cycle,

The second variation 1= the normal setting «f v
occurs during T1 of the subjeet instruction of an
execute instruction. Af this time TOP must he set
with bits ORed from two sources, the instruction
buffers and a general register. IOP loaded indicat=s
that the instruction huffers have been set to IOP and
the execution sequence latch indicates that the info»
mation from the general register has been set to
IOP. By setting IOP on every T1 cycle until both of
these conditions are present, the required setling is
assured.

The third variation to the setting of IOP occurs
during the execution of 8S instructions. An 88 instruc-
tion consists of three halfwords. TOP holds only two
halfwords. The third halfword is not required during
instruction preparation but must he available in IOP
for address calculation during execution. This is
accomplished by setting IOP on every execution eycle
of SS instructions and by allowing the E unit to con-
trol the gates from the instruction buffers to IOP
during execution of these instructions.

BOP: Must contain each instruction for at least one
T2 cycle before the I to E transfer, for all T1 cycles
of the next instruction, and for all execution cycles of
branch or IE executes until the branch or IE last cycle
triggers are set. Normally BOP is set from IOP at
TN T2 and not changed until the next TN T2. Two
conditions require variation of this procedure. The
logic for setting BOP under all conditions is shown
on Figure 5257.

On some IE executes, T2 is turned on before the
IE unit has reached its last cycle. For these instruc-
tions BOP is set on the same T2 cycle that the [E last
cycle trigger is set. This set does not interfere with
the use of BOP by IE since last cycle decoding is not
reqjuired by the IE unit. The set meets the require-
ment that BOP be good for at least one T2 cycle he-
fore I to E transfer because I to E transfer cannot
come up until the last cycle of any execution.

The second variation of the normal set of BOP
occurs on the IE instruction store multiple. On this
instruction the last four positions of BOP are incre-
mented by the IE unit during execution to keep track
of the registers that are stored. On these instruc-
tions BOP is not needed during T1 cycles of the fal-
lowing instructions.

EOP: Must contain the operation code of any instrue-
tion to be executed by the E unit from one cycle beivr=
the first E eyele until EOP decoding is no longe» -~
quired (normally the turn-on of ELC). EOP ig s=°

T1 Will Not Interfere A
12 is OFf _§ B TN 7)) Yes
12 Complete This Cyele OR (Figure 5250)
T2 Will Not Interfere A
Tl is On ™NT2 NG Yes
Tl Complete This Cycle P
Mot Instruction=Fetch Priority (Figure 5251)
— T2 sequencer
2 onby TN T2
off by | to E
T tronsfer
Execution Finished or in Lost Cycle
A Itk
J2is On transfer
T2 Complete This Cycle (Figure 5252)
Clock Cycles L i [l I ik i] L] 1 !
\ T | 12 i L Tl i TI q T2 " T2 y T 4 12 :
L El | E2 i E3 L E4 | g8c El | E2
TN T1 TN TI TNTI
TN 72 TN 72 TN 72
| to E Tronsfer | to E Tronifer

FIGURE 44. THREE INSTRUCTION SEQUENCING CONTROL SIGNALS

Instruction Preparation 9-65 59

TN
T

The Two Uses of 15 Control Signals:
@ Turn T1 end T2 on ond off.

@ Alter T1 and T2 cycles so that different events occur on

FIGURE 45.

[a1l T al

[

| repeated cycles.
—1
T
™
Cycle . L>—"
First T1
Event
v:n I{
=
Event Every
No Yes g n
™ \
7 |/ i
Event Lest T1
[Only
2 ™
Cycle
E 12
Event First T2
D | Only
|
No | e E Event Eve;y
Tronsfer E T
lteE \
Tronsfer / |
Event Lost T2
F OI‘!IY

INSTRUCTION SEQUENCING CONTROL SIGNALS USED TWO WAYS

P!
[R5
T, T2 1 T1
T 1 —_—
77 21— =
27/ 8D BIk T1 (BOP Decoding)
| Block T1-M 4 \
f 143 1
":':” I to E Transfer N\
re
i Actual Block T1 Condition —
L v . > s
| to E Tronsfer Block T1=m
and BD Blk T1 and Mo TF
/ E TF Blk T1-M \
IE TF Blk T1-Mm
VFL Ending
FIGURE 46, BLOCKING OF T1
-65

€0

-

I 12 rsvewsoudbec waai A e T e Gl i
== e T -
277" 8D BIk T2 (BOP Decoding) _ A ,_j;
| Block T2-M 31 |
I ¢ 1
t’:;;; | to E Tronsfer '\
)

L1
__/ Actual Block T2 Condition , I

(Block T2-M and no TF)

_Jf *TF Blk T2-M __

E TF Blk T2-M
+

Branch LC -« Succ Branch M
Conditions Occur for | Cyc +

VFL Ending * No Store Reg
+
* TF Blk T2-M Tests Complete . Unsuce Bronch

+

Accept (BCU) + E TOF Blk T2-M on Accept
Conditions Occur and Wait)

for the Accept Acup:‘IBCU) + VFL Ending
Accept (BCU) + IE TOF Blk T2 on Accept
FIGURE 47. BLOCKING OF T2
©) ©) ® @
T, » T (e (A - N ; B - 1R, . L eI LT Y R TR,
r T 111 T 1 11 T L] 1 | F] 1
©) ©) ® @
EB IE E Bu E
Sy pEoe
v ' 1 S Cycles Used
oP: F— ? ’ ; f ®* " Gi Last T1 and oll T2
BOP | @ l @ + @ ! @ Lus:?_?::d:ll T1 of
* next 1nsi chon
£OP ? @ t @ t @ t t + @ Cyclie:::ore I;!cll'\rt-nml-\
cycle before
* @ f @ *1 * @ f@i Cycle before ELC
Lcor ; _; t + f + through ELC

er1 | @ } @ } @ - @ All execution cycles

l EOP — LCOP
Op Code Doto Path A/B Reg— :os-[:
Set BOP —» ERI

FIGURE 48, SETTING OF OPERATION REGISTERS

Instruction Preparation 9-65

61

from IOP to fulfill these conditions under all circum-
stances by the use of four set timings as shown on
Figure 5258.

The set timed by E not busy ensures a correct set
when the preceding instruction was not an E execute
or when the preceding instruction was an E execute
but ELC occurred before T1 came on. The set timed
by the ELC latch ensures a correct set when ELC
and T1 coincide. These two sets require the T1 latch
line so that EOP will not he set at the end of a last
T2 cycle when IOP will be changing. The set timed
by set ELC gives a proper set when the preceding
instruction was an E execute for which ELC coincides
with the last T2 cycle of the instruction about to be
executed. The fourth set timed by set put-away (set
PA) trigger is used on certain operations where set
ELC is data dependent and may come up too late inthe
cycle to be used to set EOP because of circuit path
length. On these instructions set PA always comes
on a cycle before set ELC or it coincides with set
ELC.

LCOP: Must contain the operation code of any in-
struction to be executed by the E unit from one cycle
before ELC through ELC. These conditions are ful-
filled by setting LCOP from EOP using two different
sets as shown on Figure 5259,

The first set takes care of all situations where the
first E cycle of the execution is not directly preceded
by an ELC. The second set takes care of the situation
when E1 follows ELC.

ERL: Is set from BOP at every I to E transfer. It,
therefore, contains the R1 field of any instruction
during all execution cycles. ER1, however, is incre-
mented on the load and store multiple instructions
under IE unit control. This is done to direct put-
away to general registers and to determine when the
last register has been loaded or stored. The logic for
setting ER1 is shown on Figure 5260.

T1 and T2 Cycle Automatic Functions

e T1 cycles compute operand storage addresses and
when required initiate fetches.

e T2 cycles deliver operands from the registers to
the E unit,

e Loose decoding allows T1 and T2 functions to be
performed when they are not needed.

With the three major IS control signals directing T1

and T2 cycles and the start of executions, and with
all operation registers set so that they contain the

62 12-65

required instruction, the I unit's job of delivering
operands is accomplished automatically for every
instruction.

On Every T1 Cycle: Decoding from IOP directs the

selected data to the addressing adder. The adder
generates a sum and makes it available at SAR and
the H register at the end of each T1 eyele, Only on
the last T1 cycle, as signaled by TN T2, is the adder
output set in H. Only if IOP decode indicates the
quantity generated is to be used as a storage address
is it set in SAR. This allows SAR to be set with an
instruction fetch address on all cycles not requiring
its use for an operand address. The logic that ac-
complishes this T1 operation is shown on Figure 5261.
On the last T1 cycle decoding from IOP initiates
a fetch request to BCU, if required. At A clock of
the next cycle (first T2), the operand feteh (OPF)
trigger is set. OPF maintains the request to BCU
until it is accepted. At the same time, and only if
the adder output is to be used, decoding from IOP
causes the adder error checking circuits to be
sampled. The logic for making the fetch and causing
the AA error to be sampled is shown on Figure 5262,

On Every T2 Cycle: Selected addressable registers
(GPR or FPR) are gated to the RBL in the E unit as
shown on Figure 5264. Note that for all operation
codes, except floating-point, two GPRs are gated to
RBL. On floating-point operations, a selected FPR
is gated to RBL on every T2 cycle and on every E
cycle (after Ito E transfer) until the E unit turns off
FLOUT.

Loose Decoding: A principle that is used throughout
the 2075 is illustrated by the gatings that occur on

T1 and T2 cycles. Loose decoding occurs during T1
cycles of all SS instructions. On SS instructions all
operand storage addresses are calculated during exe-
cution cycles. On T1 cycles, however, the register
designated by the B1 field of the instruction and the

D field of IOP are gated to the AA. The sum gener-
ated is set in H at TN T2. The contents of H are not
used. The decoding that brings this about is useful
on other instructions and does no harm on SS instruc-
tions. Stopping the unnecessary transfers on S5
instructions would require additional logic and serve
no useful purpose.

Start Execution Units

e Ito E transfer times the start of all executions.

@ Igo (same timing as I to E transfer) sets the first
IE unit sequencers.

¢ E go and enable first E cycle (same timing as I
to E transfer) set the first E unit sequencers.

e TFirst branch unit sequencer is set at TN T2 at
least one cycle before start of branch executions.

With the setting of the operation register and the
delivery of operands taken care of, the required exe-
cution unit or units may be started. Tigure 5265
shows how this is accomplished for all instructions.

Execution is started by setting a selected se-
quencer which defines the first cycle of the instruc-
tion to be executed. The sequencer is selected by de-
coding from the operation registers, and the set is
timed by I to E transfer. The Ito E transfer line is
not used, however, in setting the IE or I unit se-
quencers, The proper timing is achieved for the IE first
cycle sequencer by setting the sequencer with1go which
is timed by the same conditions that time [to E
transfer. The proper timing is achieved for the E
first cycle sequencer by using E go and enable first
E cycle to time the set. All conditions for I to E
transfer are contained in these two lines. Enable
first E cycle originates in the E unit and contains
conditions required for I to E transfer that are some-
times not available until late in the cycle. By ANDing
them with E go in the E unit, and using the output of
the AND to set the sequencer, the long circuit path
to the I unit and back to the E unit is avoided.

The first sequencer for the branch executions is
set at TN T2 at least one cycle before the other first
cycle execution sequencers, The reason is that the
first branch unit sequencer is used to control opera-
tion during T2 as well as during the branch execution.
This operation is described in detail under branch
instructions in 2075 Processing Unit, Volume 3, Field
Engineering Manual of Instruction. Form 223-2874,

Keeping Track of Instruction Preparation and
Execution

e During T1 and T2. ICR holds the address of the
instruction being prepared.

e Itlo E transfer changes ICR to the address of the
next instruction to be prepared.

e LOaddress is updated in the GSA during T1.
e LOaddress is set in GSR at TN T2.

e GSR gates the next instruction to IOP during T2
cycles,

e LOaddress is set to ICR at I to E transfer,

e If GSA carry, HOaddress is updated in the incre-
menter on the cycle after I to E transfer.

e On program interrupts the address of the instruc-
tion following the one causing the interrupt is al-
ways set to ICR to be stored with the old PSW.

During T1 and T2 cycles the instruction counter
register (ICR) contains the storage address of the
instruction being prepared. At the end of prepara-
tion (I to E transfer), the ICR is changed to contain
the address of the next instruction to he prepared.
The mechanisms used to do this are the gate select
adder (GSA), the gate select register (GSR), and the
incrementer (Incr) as shown on Figure 5266.

GSA: During normal processing the GSA always
receives two inputs: the low-order positions of the

ICR (20-22) and the instruction length of the instruc-
tion being prepared which is decoded from IOP. At

TN T2 the output of the GSA is set in the GSR. The com-
plete logic for all sets of the GSR is shown on Figure 5267,

GSR: In addition to storing the updated value of the
ICR, between the time that it is generated in the GSA
(TN T2) and the time that it must be set in the ICR

(I to E transfer), the GSR is used to gate the proper
instruction from the instruction buffers to IOP. The
ungated output of the GSR controls the gates from
the instruetion buffers to IOP. Normally each in-
struction is, therefore, available at the input to IOP
for at least one cycle before it is set in IOP.

Incrementer: As shown on Figure 5266, the incre-
menter is used in updating the ICR only when the GSA
gives a carry out as it delivers the low-order bits to
the GSR. The new high-order value for the ICR is
generated in the incrementer on the cycle following

I to E transfer and is set to the ICR at the beginning
of the next cycle. The use of the incrementer does
not interfere with its use in the generation of instruc-
tion fetch addresses. The incrementer can generate
the proper value for a high-order advance and for an
instruction fetch both on the same cycle. Some in-
struction executions use the incrementer as a data
path during execution. On these instructions, the
incrementer may not be used until at least one cycle
after I to E transfer.

On Program Interrupts: The value of the ICR is stored
with the PSW. The updating of the ICR is controlled
by interrupt circuits so that the value stored is always
the address of the instruction following the instruction
on which the interrupt occurred. This necessitates

Instruction Preparation 12-65 63

that the updating of ICR be blocked when an [time
interrupt occurs simultaneously with an I to E trans-
fer. I time interrupts are serviced at I to E transfer
and in this case the normal updating of ICR must he
allowed to take place.

CONTROL OF INSTRUCTION FETCHES

® Instructions in advance of the one being processed
are normally available in A-B registers.

e I0P loaded signals the availability of the next
instruction.

e An empty instruction buffer register (A-B) is
recognized at TN T2.

e Conflict hetween instruction fetching and T1, T2,
or execution cycles of an instruction blocks in-
struction fetching at TN T2 of the conflicting
instruction.

e The address for the next necessary fetch to A-B
is automatically generated and set in SAR if the
instruction fetches are not blocked.

e An instruction fetch is made if either A or B is
empty and instruction fetches are not blocked.

e Instruction fetching is given priority over instruc-
tion processing only if both A and B are in danger
of heing emptied,

e Detecting the need for a recovery causes both A
and B to be filled, starting at the address in the
ICR.

The instruction counter fetch controls (IC controls)
are introduced by eight figures. Figure 49 shows how
the IC controls fit into the 2075, states the main ob-
jectives of the IC controls, and references Figures
5268, 5269, 5270, 5271, 5273, and 5274 that show
how the major objectives of the IC controls are
accomplished.

THEORY OF OPERATION

Included in this chapter are flow diagrams that cover
instruction preparation for every instruction and
detailed discussions of the instruction sequencing
controls and instruction fetching controls.

64 12-65

I TIME FOR ALL INSTRUCTIONS

e Lvery execution starts at I to E transfer.

e For any particular instruction, the conditions
affecting execution are always the same at I to
E transfer.

e Variations in the preparation sequencing have no
effect upon the conditions existing at I to E trans-
fer.

For each instruction a flow diagram in the 2075
Processing Unit, Field Engineering Maintenance

Diagram Manual, Form 223-2876 shows all things

done during preparation specifically in support of
execution. The following list of all instructions refer-
ences the preparation flow chart for each:

Name Mnemonic Figure
Add AR 6153
Add A 6152
Add Decimal AP 6154
Add Haliword AH 6152
Add Logical ALR 6153
Add Logical AL 6152
Add Normalized (Long) ADR 6150
Add Normalized (Long) AD 6151
Add Normalized (Short) AER 6150
Add Normalized (Short) AE 6151
Add Unnormalized (Long) AWR 6150
Add Unnormalized (Long) AW 6151
Add Unnormalized (Short) AUR 6150
Add Unnormalized (Short) AU 6151
AND NR 6153
AND N 6152
AND NI 6158
AND NC 6154
Branch and Link BALR 6377
Branch and Link BAL 6377
Branch on Condition BCR 6375
Branch on Condition BC 6375
Branch on Count BCTR 6378
Branch on Count BCT 6378
Branch on Index High BXH 6379
Branch on Index Low or Equal BXLE 6379
Compare CR 6153
Compare C 6152
Compare Decimal cp 6154
Compare Halfword CH 6152
Compare Logical CLR 6153
Compare Logical CL 6152
Compare Logical CLI 6162
Compare Logical CLC 6154

Name

Compare (Long)
Compare (Long)
Compare (Short)
Compare (Short)
Convert to Binary
Convert to Decimal

Diagnose
Divide

Divide

Divide Decimal
Divide (Long)
Divide (Long)
Divide (Short)
Divide (Short)

Edit

Edit and Mark
Exclusive OR
Exclusive OR
Exclusive OR
Exclusive OR
Execute

Halt I/0
Halve (Long)
Halve (Short)

Insert Character
Insert Storage Key

Load

Load

Load Address

Load and Test

Load and Test (Long)
Load and Test (Short)
Load Complement

Load Complement (Long)
Load Complement (Short)

Load Halfword

Load (Long)

Load (Long)

Load Multiple

Load Negative

Load Negative (Long)

Load Negative (Short)

Load Positive

Load Positive (Long)
Load Positive (Short)
Load PSW

Load (Short)

Load (Short)

Move

Move

Move Numerics
Move with Offset
Move Zones
Multiply

Mnemonic Figure Name
CDR 6150 Multiply
cD 6151 Multiply Decimal
CER 6150 Multiply Halfword
CE 6151 Multiply (Long)
CVB 6152 Multiply (Long)
CcVD 6156 Multiply (Short)
Multiply (Short)
- 6174
DR 6161 OR
D 6159 OR
Dp 6154 OR
DDR 6150 OR
DD 6151
DER 6150 Pack
DE 6151 Read Direct
Set Program Mask
ED 6154 Set Storage Key
EDMK 6154 Set System Mask
XR 6153 Shift Left Double
X 6152 Shift Left Double Logical
X1 6158 Shift Left Single
Xc 6154 Shift Left Single Logical
EX 6375 Shift Right Double
Shift Right Double Logical
HIO 6156 Shift Right Single
HDR 6150 Shift Right Single Logical
HER 6150 Start [/O
Store
IC 6152 Store Character
ISK 6154 Store Halfword
Store (Long)
LR 6153 Store Multiple
L 6152 Store (Short)
LA 6167 Subtract
LTR 6153 Subtract
LTDR G150 Subtract Decimal
LTER 6150 Subtract Halfword
LCR 6153 Subtract Logical
LCDR 6150 Subtract Logical
LCER 6150 Subtract Normalized (Long)
LH 6152 Subtract Normalized (Long)
LDR 6150 Subtract Normalized (Short)
LD 6151 Subtract Normalized (Short)
LM 6169 Subtract Unnormalized (Long)
LNR 6153 Subtract Unnormalized (Long)
LNDR 6150 Subtract Unnormalized (Short)
LNER 6150 Subtract Unnormalized (Short)
LPR 6153 Supervisor Call
LPDR 6150
LPER 6150 Test and Set
LPSW 6168 Test Channel
LER 6150 Test I/O
LE 6151 Test Under Mask
Translate
MVI 6170 Translate and Test
MVC 6154
MVN 6154 Unpack
MVO 6154
MVZ 6154 Write Direct
MR 6161

Zero and Add

Mnemonic

MP
MH
MDR
MD
MER
ME

OR

e]]

PACK
RDD
SPM
SSK
SSM
SLDA
SLDL
SLA
SLL
SRDA
SRDL
SRA
SRL
sio
ST
STC
STH
STD
ST™
STE
SR

SP
SH
SLR
SL
SDR
SD
SER
SE
SWR
Sw
SUR
su
svC

TS
TCH
TIO
™
TR
TRT
UNPK
WRD

ZAP

Instruction Preparation

6159
6154
6159
6150
6151
6150
6151

6153
6152
6158
6154

6154
6172
6166
6165
6175
6155
6155
6155
6155
6155
6155
6155
6155
6156
6157
6157
6157
6160
6171
6160
6153
6152
6154
6152
6153
6153
6150
6151
6150
6151
6150
6151
6150
6151
6163

6493
6156
6156
6162
6154
6154

6154

6173

6154

9-65

65

INSTRUCTION SEQUENCING CONTROLS
T1 Cycle

The basic function of the T1 cycle is to gate to the ad-
dressing adder those fields required to form an ef-
fective address. See Figures 5261 and 50.

TN T1

If an instruction belongs to the class of instruction
for which T1 of the next instruction may cause inter-
ference with execution of the first instruction, T1 of
the next instruction is always blocked. At theIto E
transfer of the first instruction, the trigger block
T1-M is set if the instruction belongs to the above
class. This blocks T1 of the next instruction until
the unit executing the first instruction generates a
signal that cancels the block. Similarly, if aninstruc-
tion belongs to the class of instruction for which T2
of the next instruction may cause interference with
execution of the first instruction, the T2 of the next
instruction is blocked. A trigger block T2-M is
operated in a method analogous to block T1-M. See
Figures 51 and 52.

The T1 cycle is always taken as the first cycle of
an instruction. It is also performed if no effective
address is required. In some instructions, it pro-
cures only a single field to be used as an address.

All fields are obtained from the general register (s)
and/or the IOP register.

The turn-on for T1 called TN T1 is composed of
many logic lines. The usual case is to turn it on with
the I to E transfer of the previous instruction. Before
the I to E transfer occurs, BOP decoding examines
the class of instruction and determines if blocking of
T1 of the next instruction is required. If BOPdecodes,
blocking of T1 is required (BD block T1) then the I
to E transfer is not allowed to turn on T1, but instead
turns on the block T1-M trigger. This trigger main-
tains the blocking during successive cycles. When the
E time has progressed to the point of no longer re-
quiring this block, it will generate a signal to turn-off
the block T1-M trigger. This signal is also used to
generate the TN T1 condition.

T1 may also be turned on by BLK Ti-ML. This is
the turn-on which allows the system to start up after
it has been manually halted.

66 12-65

Instructions That Generate Blocking of the Next T1
Cycle:

Instructions

Condition

All S5 Instructions--
SPM, SSK, MR, DR, D,
BXH, BXLE, and STM

Require gating out of general registers
during the E time of the instruction.
The execution unit is required to turn
off the block trigger when this gating
is no longer required.

The channel and unit addresses are sent
to the 1/O devices from the H register.
Blocking of T2 would prevent H from
being changed; however, the release
line from the channel (used to end the
instruction) could extend into the next
instruction and, if it were another I/O
instruction, cause permature termina-
tion. This may occur because the re-
lease line is multiplexed and uses slow
circuits. Thus, T1 is blocked to allow
the extra start up cycle.

All 1/O Instructions

LA The effective address must be saved in
the H register until the E unit can
transfer it to a general register. Al-
though blocking of T2 could accomplish
this, packaging requirements caused
T1 to be used. No additional delays
resulted.

LM In the LM instruction many general
registers are loaded. The compare
block is not capable of detecting a
compare from more than two registers.
LPSW In LPSW the ICR is changed. Thus, new
instructions will need fetching to the
buffers before processing can continue.

Until the MCW is loaded and the error
status lines have settled down, any
further instruction execution must be
blocked.

DIAG

SVC This instruction requires blocking of T1
to prevent the TN T1 from changing
IOP. IOP is required during the setting

of the interrupt code into the PSW,

The program halt trigger can also prevent TN T1.
This trigger, located in the maintenance console, is

used for the maintenance functions: manual halt,
single operation, etc. An output of the program halt
trigger is latched on the sequence control board and
deconditions TN T1.

Set IOP (Figures 5256 and 52)

The IOP register contains two instruction halfwords.
The first halfword contains an operation code and,
for multiple halfword instructions (all but RR), the
second halfword is used for addressing. Handling of
the third halfword, required by SS instruections, is
described in the "Instruction Fetching" section. By
means of the gate select mechanism any two succes-
sive halfwords of the eight halfwords contained in the
instruction buffers (A-B registers) are selected and
sent to the IOP register. The proper selection is
normally made during the previous T2 cycle. The
gate select mechanism causes the length of the in-
struction as decoded from the first two bits of IQP
to be added to the ICR and this value to be stored in
the gate select register with TN T2. The output of
the gate select register selects the gate for IOP,
With the I to E transfer, the gate select register is
sent back to the ICR thus updating the ICR.

The T1 function can be accomplished in one ma-
chine cycle. However, if the conditions to generate
TN T2 do not exist the T1 cycle continues to repeat
itself until TN T2 occurs. IOP is set to the gated
contents of A-B at the beginning of every T1 cycle.
The logic line TN T1 sets IOP for the first T1 cycle.
If T1 repeats itself, the set IOP occurs at the be-
ginning of each machine cycle until TN T2 occurs.
There is one exception to the later set condition.
During the execute instruction, the setting of IOP
has taken place. This special block is represented
by the expression:

IOP LOADEDL. XEQ SEQL

A special set ssoPL - vFL ADRY is also pro-
vided for setting IOP on S8 instructions; therefore,
the total expression for setting IOP is:

TON T1 + T1L . TON T2 - Not (IOP LOADED Lth -
XEQ SEQ Lth)+ ssopL - vFL ADRL

I time (that is, T1) may start even though the se-
lected instruction has not yet returned to the instruc-
tion buffer. This could occur, for example, after

successful branches or recoveries. Since T1 cannot

be turned off (see "TN T2'") until the selected instruc-
tion has returned to IOP, there will be at least one

T1 cycle during which IOP has contained the correct
instruction.

The selected instruction will arrive at IOP during
the same cycle that it returns to A-B since set IOP has
occurred for each T1 cycle. Note that if the selected
instruction is contained entirely within one register,
waiting is required only until this register is loaded.
The timing of A-B in relation to IOP and the problems
encountered in single cycle are discussed in the
"Instruction Fetching Controls' section.

Effective Addressing (Figure 5261)

The T1 cycle conditions input gating to the addressing
adder for up to three fields. The fields determined
by the instruction are selected by IOP. The contents
of general register R2 (X2) are gated to the addressing
adder via GBR, and the contents of B2 are gated via
GBL. D2 is gated directly to the addressing adder
from IOP. The general register buses have a width
of 32 bits plus parity. However, only 24 bits par-
ticipate in the add, The D field has a width of 12 bits.
When general register 0 is specified as one of the
fields, that adder input receives all zero data with a
correct parity for that field. The instructions in the
RR format are exceptions in that they make no
distinctions for GR 0.

The effective address formed has a width of 24 bits.
With the TN T2 it is always gated into the H register,
and may also be sent to SAR. When the effective ad-
dress is sent to SAR, the error checking of the AA is
sampled. All of the preceding conditions are decoded
by IOP., The RS shift instructions, which use the
effective address only as a shift amount, are unique
in that they sample the AA error but they do not send
the result to SAR.

T1 Cycle Additional Functions

The T1 control trigger has outputs used inother areas
of the machine, for example, it is used during the
maintenance feature single operation to turn-on the
block T1-M trigger and it is also used by the E unit
for setting EOP.

The T1 cycle during which TN T2 occurs can be
considered the good T1 cycle. For the TN T2 tooccur
every condition for the T1, functions must be avail-
able. In addition, every blocking condition that pre-
vents the second part of I time must have been re-
moved.

Instruction Preparation 12-65 67

Instruction
Available

Preparation is Aub

Execution is Program
Controlled —»

Fetch n L
instructions £
Bior - hoione Deliver Operands ‘ ;
to buffers 2 :
Set Operation Registers RBL I | J Register
Start Execution Unit
For Any Instruction |__E O
Keep Track of Preparations Eiaeibicn
IC fetches preceed preparation. and Executions Sttt E Sequence
Preparation preceeds execution.
IC Fetch Controls
W K Register
1. Signal the preparation unit when a complete
instruction is availoble. (Figure 5270) r A N
2. Recognize either buffer empty (last instruction 7 1
used) ot TN T2, (Figure 5268) _[Re:::n?ﬁm N Instructions. |
b
3. Always generate instruction fetch oddress and < LALLES SI;v‘\ulle Fetch I
set 1t to SAR unless blocked. (Figure 5269) Figure 5268 Figure 5270
4. Preblock IC fetches before start of preparation Fetch
of a branch, (Figure 5271) it b Block Fetch Figure 5268 | Request for A/B.
Block IC fetches at TN T2 if IC fetch and preparo- BPreh:Csl ; -
tion or execution use same mechanisms. (Figure 5271) f:néo;ﬂi: Block Address Generation o3 Address IC Feteh
5. Make IC fetch request if either instruction buffer is Figure 5271 T Generdtion | Address to SAR
empty and |C fetches are not blocked. (Figure 5268) IC Fetch
6. Give priority to IC fetches when both instruction 7] Priority Figure 5249
g ! F bei ted. (Fi
buffers are in donger of being emptied, (Figure 5273) S Figure 5273 Prevent TN T2
7. Fetch to fill both A ond B from the oddress held in
the ICR when the need for a recovery is indicated . Fiaure 5274 Feich from ICR Address to A/B
(Figure 5274) W -
FIGURE 49, INSTRUCTION COUNTER FETCH CONTROLS
A Clock [] 1 [1 -] F F—1 1
n 12
| Time - } ”_ _____
Displacement + GR(R1)S5ent
Bose + Index Amt= to M Via RBL
Effective Address
r=-
vy N gy - i
Set Set Set
10P BOP |OP
—/ INm :x_Tltan -
rans
. Fetch Request to BCU
Sel Effective Address into SAR
' OPF
/ Accept from '\ / Advance for 1\
BCU from BCU
BCU Storage Cycles } + } e § 7 7
P
7 i First FXP
S s e e -t First FXP ; First FXP : irst ;:ELC (Put Awoy]
n'
r=i
setop] L_sericoe] L Jyord s A‘;‘:I*' _4 L_ Set EOP
© er

roLo M) L

FIGURE 50. | TIME AND E TIME FOR AN RX-FXP-ADD (FULL WORD)

68 12-G5

L J I_ Adder Ourpur+KL
B I B)

BD Blk T1 (BOP Decoding)

‘bt
—k

Block Ti-m

=k

-

2400 10 E Transfer \

3 A
ry
it Actual Block TI C LB b Y
\ o
~
1 to E Transfer Block T1-M
and and
8O Blk TI Mo TF TR
i
1E TF Blk T1-M
L]
FIGURE 51, BLOCKING OF T1 VFL Ending
78 112 15
1 Ll
"l Op Code | ®I : R2
0 16 1920 3l
t T L T
uxl Op Code | R : X2 ! 82 I D2 I
0 3l
) 1] 1
ns[Op Code : Rl : r3 { 82 D2 J
0 3l
H I T
SI| Op Code : Imm l Bl : D1
0 32 35 3 47
T T T T T T
ssl OpCode + LI 1 12 | B | DI 1o | D2
il 1 Ml 1 1 1L

FIGURE 52. INSTRUCTION WORD FORMATS

Instruction Preparation 9/65 69

Form 223-2873-1
FES $26-7034

TN T2

The following are the conditions necessary to gener-
ate the logic level TN T2,

10P Loaded: The IC controls generate this condition
if the selected gate (from A-B to IOP) is pointing to
a loaded instruction in the A-B register(s). See
Figure 5270,

NO COMPARE BLOCK + E BUSY: Buffer operation
register (BOP) decodes those E unit instructions
that will perform put-aways to the general registers.
A compare occurs when the put-away is to any of the
general registers used hy T1 of the next instruction.
T1 must subsequently wait until the new value has
been put-away. This waiting is accomplished by
blocking TN T2. The block exists until the E busy
trigger is turned off. See Figure 5255,

No Instruction Fetch Priority: When the processing
has emptied one instruction buffer and is approaching

the point of emptying the second buffer (without having

allowed the first to be reloaded), the IC controls may

generate a block TN T2 until an IC fetch is made.
This gives the IC controls access to SAR. (See
"Instruction Fetching Controls' section and Figure
52173.)

BLOCK T2-M + TOF BLK T2-M: This condition is
available if the previous instruction processing has
not set the BLOCK T2-M trigger or the execution
unit is turning it off.

Block T2-M (Figures 53 and 5254)

The need for blocking of T2 is determined in the
same manner that T1 blocking is determined. BOP
decoding generates BD block T2. This decode line
and the I to E transfer turns on the block T2-M trig-
ger. Since the TN T2 cannot occur with the I to E
transfer, no additional logic is needed to anticipate
the block T2 as was required for blocking T1.

Some instructions will generate both BD block
T1 and BD block T2 lines. In these cases both block
triggers are set. When the processing no longer
requires the blocking of T1, the execution unit turns

__’Tl] A I I A l 1 A l I A I §
T ird T T2
' —p—————— I A m e e 4
ST \,F---s
T 8D Blk T2 (BOP Decoding) | SRORO
i Block T2-M -
r =1
2L | 1o E Tromsfer \
AN Actual Block T2 Condifion N—
(Block T2-M ond Mo TF)
/ * TF Blk T2-m \
E TF Bk T2-M
-
Branch LC * Succ Bronch M
Conditions Occur for one Cycle +
VFL Ending-MNo Store Req
+
T Bik T2-M= Tsh CpF: + Unsuce Beanch

Conditions Occur ond Wait for

the Accept

1@ FIGURE 53. BLOCKING OF T2

70 1-68

Accept (BCU) + E TF Blk T2-M On Accept
Accept (BCU) + VFL Ending
+

Accept (BCU) * IE TF Blk T2-M On Accepi

it off. Processing continues and the overlap is
started on the next instruction; however, T2 is
blocked until the execution unit turns off block T2-M.

Instructions That Generate BD Block T2:
Instruction

Condition

ISK, ST, STH, STC,
CVD, STD, STE, RD,
STM, MVI, NI, Ol, XI,
and all SS instructions

Operand fetches are generated by the
execution unit, or operands are to be
stored in external storage. For these
operand fetches the SAR is required to
provide the storage address(es). SAR
must not be changed by TN T2 of the
overlapped instruction.

LH, CH, AH, and SH The E unit requires the RBL as part of
the data path to expand the fields to
32 bits. T2 of overlapped instructions
is blocked to prevent the gating of

operands into the RBL.

CDR, ADR, SDR, AWR,
SWR, SER, AER, SER,
AUR, SUR, CD, AD, SD,
AW, SW, CE, AE, SE,
AU, SU

The E unit requires the contents of
the BOP REG for selection of the FP
REG to supply operand 1 exponent on
fractions add cycle.

MR, DR, MDR, DDR,
MER, DER, and MD

The E unit requires the | register as part
of the data path during E time. Over-
lap of the next instructions could re-
sult in a getch of an operand to] if T2
were not blocked.

BCR, BC, BCTR, BCT,

BXH, BXLE, BALR, BAL,
and EX

For branch instructions the block T2-M
trigger is turned on by BRANCH OPL.

1 to E XFER. This blocks the second

part of 1 time on overlapped instructions
until the branch success is determined.
Blocking T2 protects the H register which
contains the branch-to-address.

Logic is provided to remove the block T2 con-
dition at the earliest possible time. Each turn-off
for the block trigger also enters TN T2 as a con-
ditioning level. The only exception occurs during
the execute instruction. In this instruection the block
T2-M trigger is turned off one cycle before T2 is
allowed to turn on. In this case the latched output
of block T2-M maintains the block for this cycle.

When blocking is employed to protect SAR, the
execution unit conditions the turn-off of block T2-M
with the control line TF block T2-M on accept at
the appropriate time during instruction execution.
This control line and accept (from BCU) turns off
block T2-M. See Figure 53.

If the blocking was protecting the J register, the
control line E TF block T2 is generated by the E
unit to turn off block T2-M. This line is always
generated during the last cycle of relevant instruc-
tions; and if the system is not in single-cycle mode,

Form 223-2873-1
FES §26-7034

the line is also generated a number of cycles before

J is free. T2 can be allowed to turn on earlier be-

cause any operand fetches it may initiate would not

return to J for at least four cycles. The turn-off may

be anticipated for up to three cycles beforeJ is free.
If RBLusage required blocking, the E unit generates

TF block T2-M when this usage is no longer required.

Compare Block (Figure 5255)

A compare block condition with the E busy trigger
on causes a deconditioning level to TN T2, If the
previous instruction is doing a put-away into a gen-
eral register which is being used to compute an ef-
fective address during T1 of the next instruction,
then T1 of the next instruction must be held up until
the operands have been put-away. This condition is

detected by comparing both IX2 and IB2 to BR1. IX2
and IB2 contain the address of the general registers
which could be used to form the T1 cycle effective
address, and BRI contains the address of the put-
away general register for the previous instruction.

BOP remains unchanged from the previous instruc-
tion until TN T2 of the next instruction and therefore
provides the operation code of the previous instruc-
tion during T1 of the next instruction. On the basis
of BOP, it is determined whether or not the previous
instruction requires a put-away to the general reg-
isters. It is also determined if there is a pair of
put-aways to an even/odd pair of general registers.

If BOP indicates a single put-away (BD compare
request) then BRI is compared to IX2 and IB2 accord-
ing to their usage in the effective address. IX2 (or
IB2) is not used in the effective address if it refer-
ences GR 0. If BOP indicates a double put-away to
an even/odd register (BD double register compare),
then the same compares are made as for a single
put-away; but the low-order bit is ignored in the com-
pare. If either compare is satisfied and if E busy is
on, then compare block prevents T2 from turning on.

All put-aways to the general register are com-
pleted before the end of the last cycle of an instrue-
tion. The usage of E busy in compare block ensures
that if a compare situation occurs, at least one cor-
rect effective addressing cycle is taken after the
execution of the previous instruction is completed.

In the discussion of T2 no line comparable to
compare block is required in the gating of internal
operands to the Eunit. Noblockis necessary because
all put-aways are completed by B time of ELC. In
the remaining half-cycle, any general register may
be gated to the E unit before the I to E transfer.

TN T2 Functions Controlled by IOP

The TN T2 indicates a good T1 cycle. In addition to
providing the set condition for the T2 cycle, it per-
forms many functions. IOP decoding steers the

Instruction Preparation 1/68 71

TN T2 condition. The following lines are described
with respect to their functions at TN T2.

ID AA to SAR: With TN T2 the effective address
formed by the AA is gated from the AA latches into
SAR.

ID Sample AA Error: Tests the error checking
lines of the AA during TN T2. If an error occurs,
it causes a machine check condition,

ID Fetch Class: Indicates that operand fetching is
required. With TN T2 it initiates the request to BCU.
See "Operand Fetching." ‘

r

ID Block IC: At TN T2 this forms the third blockiug;

condition. It prevents IC fetches from interfering F
with instruction processing. It also forms the TN
for block IC~-M, a control trigger used to maintain
the IC blocking condition.

C

Setting of BOP: The setting of BOP usually ocecurs
with TN T2. For a detailed description, see the
""Buffer Operation Register'" section and Figure 5257.

Instruction Buffer Empty Condition: When the last
instruction located in one of the A-B registers has
been selected and set into IOP, TN T2 indicates the
empty condition to the IC fetch controls and turns off
the appropriate loaded trigger. See Figure 5268.

IOP Error: TN T2 is used to sample for a parity
e bits 8-15 of IOP. If an error exists, the
rdOP error is turned on,

Inberr??s If the instruction being executed is from
an d storage address, if bit 23 of the address

of the instruction is 1, or if the operation code of the
i:nstruction is invalid, then I program interrupt is set

at TN T2. The ID code for the type of interrupt is
‘set fnto the PSW with TN T2.

ID Floating Point: Used in the controls that gate
out the floating-point registers. It sets the FLOUT
trigger with TN T2,

ID RR: Used during TN T2 to set the FR2 trigger,
FR2 determines the order in which floating-point
operands are gated to the E unit. Seethe "T2 Cycle."

ID S8: ID S8 conditions the sequencing controls to
process the S8 format instructions by turning on the
SSOP control trigger with TN T2,

ID Branch Operation: Sets the branch operation con-

trol trigger with TN T2, Branch operationisa status
trigger used during branches. ID branchoperationis
also used to override any blocking of TN T2 generated
by the IC controls.

TN T2 Additional Functions

In addition to those functions decoded by IOP, TN T2
also conditions the following functions.

Setting the Gate Select Register: During T1 the in-
struction in IOP is examined to determine its length
(in halfwords). This length is added to the ICR low
order. With TN T2 the adder output is gated into
the GSR. Gate selection now changes and a new gate
for A-B to IOP is selected. The next instruction is
thus gated to the IOP input.

Setting of IOP: Since TN T2 indicates a good T1 cycle,
the TN T2 logic line deconditions the setting of IOP
from the T1 triggers latched output.

72 12-65

ilf‘—

I-I Register The output of the addressing adder is set
into H at TN T2,
a

| .-

it
" Buffer Operation Register (BOP) (Figure 5257)

~ The buffer peratian registeris a 12-bit operation reg-
- ister set ffom IOP 0-11. By taking advantage of the way
& time ancfi time are overlapped, three areas are
able to - sh. usage of BOP, BOP is used by T2
during the cycle of the I to E transfer, and it is used
"-“by brancl; ‘Bxecutions and IE executions during E time.

.. Bran ecutions and IE executions have been
""ﬁﬁj:_’o,lenggnte in a way such that no operation code
| xg‘l-‘r_eiéquf the executionunit during the last cycle.
nce +Fio E transfer of the next instruction can-

mcur‘m the end of the previous instruction,

i to set BOP which accomplishes all
of the fi

1. BOP is not updated until one cycle after I0P
is correctly set.

2. BOP is updated at least one cycle before the I
to E transfer.

3. BOP is available to the branch and IE units
for the cycle before the I to E transfer and for every
execution unit cycle except the last cycle.

4. No performance penalty is taken because of
the shared usage of BOP,

The specific logic implementation to control the
setting of BOP is:

BOP is set at TN T2 if the IE busy trigger is off,
indicating that neither the IE unit nor the branch unit
are operating. BOP is set at TN T2 if either IE unit
last cycle (IEL) trigger or branch unit last cycle
(BRLC) trigger is on, indicating that the relevant
unit is completing execution, These set conditions

are not sufficient to ensure that BOP is set at least
one cycle before an I to E transfer if the previous
instruction is an I execution or an unsuccessful
branch. In the case of IE unit execution, TN-IEL
(TN T2 + T2Y 5 ysed to obtain a further set con-
dition for BOP. Thus, BOP is set one cycle early
even if IEL causes an I to E transfer on the next
cycle.

For unsuccessful branches, T2 ecan be turned on
with the turn-on of BRLC but not before. Therefore,
TN T2 is ANDed with the unsuccessful branch turn-
on of BRLC to obtain another set for BOP., Thus,
for unsuccessful branches BOP is set one cycle early
even if BRLC causes an I to E transfer on the next
cycle. For successful branches, T2 is never turned
on until BRLC is turned off. Therefore, no special
set is required for successful branches.

The logic statement is:

Set BOP = TON T2 (BRLCY + IELL + IE BSY~ +
TON IEL + Unsuccessful Branch Turn-On of
BRLC) + T2L - TON IEL

BOP decoding is used during the T2 cycle to
specify which internal registers are to be gated to
the RBL as operands, the execution unit(s) required
to perform the E time of the instruction, and at
what point overlap of the next instruction is to be
blocked, if necessary. BOP decode lines also define
many functions of the store instructions, A list of
the BOP decode lines is shown on Figure 9068.
When BOP is still maintained during T1 of the next
instruction it allows usage in generating the block of
TN T2 called compare block.

T2 Cycle

The TN-T2 logic level indicates thatthe T1 cycle has
been properly performed and thus initiates the T2
cycle. The T2 cycle has as one of its functions the
gating of internal operands. It is this function that
required placement of T2 near the general registers.
T2, as well as T1, are located on the G-C2 board.

Internal Operand Gating (Figure 5264 and 50)

Internal operands are gated to RBL, a G4-bit latch
located in the E unit. RBL is latched during every
Lclock and unlatched during every not Lclock. Oper-
ands from the general registers are sent via GBL
or GBR. If the instruction is in the floating-point
class, operands are gated from the floating-point
registers.

General register operands are gated to RBL by
T2 if IOP2 = 0 (that is, not FP). Operands are gated
simultaneously to RBL by T2 ongeneral bus left (GBL)

and general bus right (GBR). General register BR1
is gated to GBL and either general register IR2 or
general register BR1 + 1 is gated to GBR. BRIl + 1
is gated to GBR for shift and RX instructions and
MR. For all other instructions, IR2 is gated to GBR.
The execution unit ignores those operands gated by
T2 which are not needed to complete the instruction.
Certain instructions require that g
tinued after the I to E trangfg w Hitional oper-
ands be sent. This gating is #cdomplisifed by the
control triggers GROUT o P% pr a detailed
description of GROUT, sam%' section,
FLOUT is set with TN T2 §ewgny instruction in the
floating-point class rega '- format. It opens
the gate from the floating-po¥fit régisteys to the RBL.
L ed on the

Floating-point register g s peL

full 64-data bits of the r%s.. , each ad-
dressed register fills the 3 Qstructions in
the RR format, this full gating me at the two
operands must be sent ntlﬂ.ﬂ:wth TN T2
and ID RR, a control tpigger FR2 is’conditioned.
The FR2 trigger cause ing-point register

gating to be addresse !."‘lie 1d (the sec-
ond operand). The tu 1"To is maintained
esi(ify ccur) by T2 and

during subsequent T2
the BOP decode line BD RR. Wi I to E transfer,
the turn-on FR2 condition is réffiowml. With no turn-
on, the FR2 will turn olL.. Wheh- is off the first
operand., addressed b ,» is selected

for gating to the RBL T mLOUT stays on
:? it provides a
)
)

after the I to E transfgr
nge uired. Normally,

turn-off when gating ig no
the turn-off is genera i
The exceptions are vid ctions, Divide
instructions require prenorrjal ion of the divisor
to be completed before the second operand, the
dividend, can be accepted. For the divide instruc-
tions, block T2-M is set and this prevents the over-
lap of another instruction from setting the FR2 trig-
ger prematurely. See Figures 5264 and 54,

e first E unit cycle.

Incrementer Gating

The effective address formed by T1 is, during
branches, the address of the branch-to instruction,
Since two instruction buffers are provided within the
CPU, two effective addresses are required in order
to fill both buffers. H and SAR are set to the effec-
tive address by TN T2 which also initiates the first
fetch. The second address is formed by adding a
control amount (1 in position 20) to the contents of
the H register. The T2 branch operation gates the

H register and the control amount to the incrementer.
With the I to E transfer, the output of the incrementer
is sent to SAR. Branch controls initiate the second
fetch.

Instruction Preparation 12-65 73

The LM instruction requires that the effective ad-
dress of H and SAR be updated by one storage word
after the first operand fetch has been made. The
BOP decode line BD multiple LD gates the contents
of the H register and a control amount (+1 in incre-
menter position 20) to the incrementer. With I to
E transfer, the incrementer output is sent to SAR
and H.

Any time the output of the incrementer is gated
into a register, the checking circuits in the incre-
menter are tested. If there is an error the incre-
menter error trigger is turned on., Therefore, the
incrementer error line is tested at the I to E trans-
fer of branches and LM.

Operand Fetching (Figures 5261, 5262, and 55)

Most features of a T2 operand fetch request are
similar to the features of all CPU fetch requests.
If you understand T2 operand fetches, it should be
possible to understand any CPU fetch.

If IOP contains an instruction requiring an operand
fetch, the TN T2 ID fetch class line generates a fetch
request. This turns on the CPU request trigger at
A time in the BCU. This trigger in BCU actually
initiates storage operation. TN T2 ID fetch class
also turns on the operand fetch trigger (OPF) in the
I unit controls . Whenever a fetch request is made,
SAR must be 1vaded with the correct fetch address at
time of the request (or earlier). For all instructions
requiring a fetch during I time, the logic ID gate
addressing adder to SAR TN T2 sets SAR from the
addressing adder with A clock.

The CPU request trigger in the BCU is normally

kept on until the request is accepted, However. if the
request line from CPUis cancelled. the CPU request

turns off onthe next A clock. This feature is very useful.

as it enables fetch requests which have not been
honored by BCU and which are no longer needed to
be cancelled. This ability is used extensively during
IC fetching, and is also used to cancel fetch requests
when entering an interrupt sequence. In the case of
T2 operand fetches, the request line is held up by
the output of OPF,

Whenever the CPU request trigger is on, a re-
quested storage is not busy, and the channel does not
have priority, then the requested storage is started
at about B time. The BCU then generates a line,
called accept, which straddles the next A clock. This
is distributed throughout the CPU, If OPF is on,
accept turns the OPF trigger off, thus dropping the
request. The request does not drop early enough to
prevent setting of CPU request again at the A clock
staddled by accept. The two cycles of BCU prevent
any further action being taken by the request, and
CPU request is immediately reset with a BR clock.

74 12-65

Accept rises with an early BR clock and remains
until the next early B clock. Thus, A clock is
straddled by accept even if the clock is being
single cycled. This line is used in connection with
conventional CPU request logic. There is another
accept line, called pulsed accept, which rises at the
same time as accept, but which falls on the next
early BR clock. Thus, pulsed accept straddles the
next AR clock only. Pulsed accept is used primarily
in the branch and IC controls.

OPF is also used to indicate that the fetch should
be returned to the J register. The unlatched output
of OPF is ORed with certain other fetch sequencers
and is sent to the BCU. This line is used by BCU to
sel up a return address register for a return to J.
When the storage gates the requested word out onto
the SBO, the storage also sends a line called advance
to the BCU. The advance and BR clockareused to
gate the storage data into the SBO latch. If the
appropriate return address register indicates a re-
turn to J, the advance is gated out to the CPU as J
advance. The J advance AR clock is used to gate the
SBO latch data into the J register and to turn on J
loaded. The trigger J loaded indicates to the various
execution units that the fetch has returned and data
is in the J register. J loaded is normally turned
off when the data is transferred out of J,

In the standard 2075 configuration, data is returned
three cycles after CPU request is set (assuming the
storage was available). The storage times out in
four cycles and is available at that time for another
operation. A fetch of an operand from an odd ad-
dress (as per address bit 20) can be overlapped with
a fetch of an operand from an even address. Fetches
from addresses with bit 20 identical cannot be over-
lapped. Because of the overlapped operation of BCU,
it is possible for two operand fetches for two dif-
ferent instructions to be outstanding at the same time.
This does not cause difficulty because the relevant
execution unit clears out the contents of J before the
second fetch returns. At the time the J register is
cleared out, J loaded is also turned off and the con-
trols are thus prepared to receive the second fetch.
In the few cases where the execution unit cannot clear
out J in time (for example, multiply or divide), T2
and the associated fetch of the next instruction are
blocked until such time as a J free condition may be
anticipated.

I to E Transfer

The I to E transfer is a logic level generated during
the last T2 cycle. The principal function of the I to
E transfer is to initiate the start of E time. When
all the T2 cycle functions have been completed and
the E time of the previous instruction has also been

T2 ; T

I_ —— — — ———
FLOUT ,
(TN T2+ IDFP) FR2 . (E TF FLOUT)
" (TN T2¢IDRR) (I to E Transfer)

e | to E Transfer e
/ Gote FR (R2) to RBL X Gate FRR1) to RBL N

(FLOUT = FR2) (FLOUT * FR2)

i;

l First FLP

/ E TF FLOUT X
FLOUT Remains on Longer
for DDR and DER | | | |

RBL— J REL—»= M

FIGURE 54, RR FLOATING-POINT OPERAND GATING

AClock_[] [] [[[[[[] L

(Even Storage) (Even Storage)
7 T = T2 Tl T2 T2 T2 2

Gt Ef Addr to SAR J_l |_|
_/ ID Fetch Class x

| OPF ! OFF {
=Ret to_J =Ret to J

_/ Request to BCU __X_ Request to BCU \
Sample Storage Data inte SBO I]—
Sample SBO into J and v Stor Teg _|-—I_

J Loaded

1
o ID Block IC _ X
—/ ID Cne Fetch CL (Lth) —X—
Block 1C-M " "
p—— r 1
—/ Block IC Requests _L _
CPU Request (Tgr) }—oo—— b— S|

— Accept < d Accept —
/ Pulsed Accept \ / T

\ Even Storage Busy (Tgr) | b
I L}

— J Advance —
/ CPU Storage Busy \ / N\

L Even Storage Unit Cycle

PR Storage Data N

FIGURE 55, OPERAND FETCH TIMING

Instruction Preparation 12-68

75

completed, the I to E transfer occurs. Lines from
the interrupt mechanism further condition the I to

E transfer. If an interrupt is outstanding, the E

time is not started, but instead the interrupt mechanism
begins an interrupt sequence.

Generation of I to E Transfer (Figure 5252)

The logic for the I to E transfer is T2l + (OPFM +
ACCEPT) * LCM. The first two quantities indicate
that I time of the instruction to be transfered is
completed. LCM indicates that E time of the pre-
vious instruction has been completed. If OPF is not
on, either no operand fetch was required or the fetch
request already has been honored by BCU (accept
turns off OPF). Since accept enters the logic for the
I to E transfer directly, the transfer may be made
at the time the request is honored.

Last cycle memorized (LCM) part of the I to E
transfer statement occurs when a previous E time
reaches its last cycle or when all execution units are
idle, The execution units are idle when both E busy
and IE busy are off. E busy is turned on at the I to
E transfer of any instruction starting the E unit.
ELC turns E busy off unless it is being turned on by
the next instruction. IE busy is turned on at the I
to E transfer of any instruction starting the branchor
IE unit. BRLC + IEL turns IE busy off unless it is
being turned on by the next instruction.

The last cycle of E time must be allowed to con-
dition the I to E transfer if successive E time with-
out idle machine cycles are desired. Since two
execution units may be required to accomplish an in-
struction's E time, further complications arise in
determining the true last cycle of E time. The last
cycle logic from each of the execution units cannot
alone indicate the true last cycle. Only when the
last unit completes its operation, or when both end
simultaneoulsy, can a true last cycle be generated.

No instructions require that the branch unit and
the IE unit operate simultaneously. It is this fact
that allows these units to share the same busy trig-
ger (IE busy). See Figures 56 and 5265.

Instruction Branch Unit E Unit IE Unit

15K
SSM
LM
STM
BALR % (if R220)
BCTR X _(if R240)
BCT
BAL
BXH
BXLE

XX [X

e e b 5 B

Kix X[

FIGURE 56. INSTRUCTIONS REQUIRING TWO EXECUTION UNITS

Testing for the true last cycle is performed in the
following manner, When any unit sends its last cycle,
this last cycle is compared against the busy trigger
of the other unit. If the busy trigger for the other
unit is off, the last cycle condition is the true last
cycle. If the other busy trigger is still on, the last
cycle of the first unit only provides a turn-off for its
own busy trigger., Logic is also provided to test for
the simultaneous ending of the two units. The simul-
taneous occurrence of both last cycle conditions gen-
erates a true last cycle.

The following statement defines how the true last
cycle is determined:

(IEL + BRLC) - E BUSY + ELC + IE BUSY +
(IEL + BRLC) » ELC

The logic level generated by the above function is
called control last cycle. It is used in generating
LCM and is also sent to the interrupt mechanism.
There it is used to indicate that E time is ending so
that the interrupt mechansim may test for E time
interrupt conditions.

The complete statement for LCM is:

LCM = (iE BUSYL - E BUSYL) + CTRL LAST CYCLEL
= @qeLL +BRLCL +IEBUSYY (ELCL +E BUSYD)

Interrupts (Figure 57)

Since interrupts are soimportantto the I to E transfer,
they will be discussed before going further into the
functions performed at that time.

There are two classes of interrupts: I time inter-
rupts and E time interrupts. I time and E time inter-
rupts are distinguished by the time that the interrupt
is processed. I time interrupt sequences areentered
at the I to E transfer, and E time interrupts are
entered after the last cycle of execution time.

I time interrupts may be detected during T1 or T2.
Interrupts resulting from instructions located in an
invalid storage address, from instructions located on
a non-halfword boundary, or from instructions with
invalid operation codes are detected during T1., If
any of these interrupts occur, the I program inter-
rupt trigger is turned on with TN T2. At the same
time, the interruption code is set up for the type of
interrupt which has occurred. An I time interrupt
is taken at the time of the I to E transfer and no exe-
cution unit is started. Interrupts resulting from an
invalid operand specification, from an attempt to
process an execute instruction while in execute mode,
from decoding the instruction SVC, or from decoding
of a privileged instruction while not in monitor mode
are all detected during T2. If any of these interrupts
occur, except SVC, the I program interrupt trigger is

turned on with the I to E transfer. If I program
interrupt was not on previously, the interruption
code is set up at the I to E transfer for the type of
interrupt which has occurred. An I time interrupt
is taken and no execution unit is started.

I time interrupts are entered at I to E transfer
time by turning on the I interrupt end trigger in the
interrupt sequencing controls. The essential line
which does all the conditioning for I time interrupts
is I interrupt from I.

E time interrupts are normally detected during
the last cycle of instruction execution. Certain E
time interrupts are also detected during interrupt
last cycle or while the system is in wait status.

E time interrupts are generated in two locations:
the I unit and the E unit. Interrupts which are
detected in the E unit during the course of an in-
struction are set into a buffer register in the E unit.
These interrupts are program interrupts such as
divide check, exponent overflow, etc. The detection
of such an interrupt causes the E interrupt from E
line to rise. A second group of E time interrupts
consists of interrupts which are detected asynchron-
ously in the I unit. These are interrupts such as 1/0
interrupts, timer advance requests, external inter-
rupts, ete. These interrupts, which are buffered in
the I unit, cause the E interrupt from I line to rise,

If an E time interrupt is detected, then during the
last cycle of instruction execution an E time inter-
rupt sequence is started by turning on EXIT with an
A clock. The interruption code is set from the inter-
rupt buffers during the interrupt sequencing. It is
possible that the I to E transfer of the next instruc-
tion is occurring at the same time as the turn-on for
EXIT. Ifthis is true, the execution unit is blocked
from starting by the E time interrupt lines.

It is possible for an E time interrupt to occur at
the same time as an I time interrupt for the next
instruction. Since the E time interrupt is associated
with the earlier instruction, it takes priority over
the I time interrupt. Thus, even though the inter-
ruption code has already been set for the I time
interrupt, the E time interrupt is processed and the
interruption code is set again.

Both EXIT and I interrupt end generate a line called
interrupt reset. This line resets any sequencers in
the I unit which might still be on and thus effectively
terminates all normal instruction processing.

Starting of Execution Units (Figures 5265 and 58)

Execution units are started at I to E transfer time.
The branch unit is started by I to E TRANSFER -

NO IRPTS - BROPL, Branch operation is turned on
at TN T2 for all branch instructions (provided R2 #0
in an RR branch) and, therefore, may be used to

condition the branch unit. The IE unit is started by
I GO =1 to E TRANSFER + NO INRPTS- BD Il EXEC -
BROP. BROP must be excluded because the instruc-
tion BCR is included in BD I execute. For BCR the
IE unit is started if R2 = 0 in which case the IE unit
does a no operation, Branch operation is turned on
for this instruction only if R2 # 0 and hence the
exclusion in I go.

E go is complicated by the fact that certain lines
from the E unit may be late in arriving at the I unit.
The logic for E go is:

T2L (GPFL + ACCEPT) - (fE BUSYL+BRLCL +
IELL) - TIRPT FROM 1+ E IRPT FROM 1.BDE EXEC

The expression (ELCL +E BUSYL)- (E IRPT
FROM E) is effectively generated in the E unit, This
expression is ANDed with E go to obtain a signal to
start the E unit. It can be seen that the expression
EGO- (ELCL + E BUSYL). EIRPT FROM E is analog-
ous to the expression for I go. It is necessary to do
part of the ANDing in the E unit because the line E
interrupt from E is too late to send to the I unit and
then back to the E unit, ELCL + E BUSYL is also
ANDed with E go in the E unit as protection against
a late ELC line.

Stores (Figures 59 and 5263)

Stores which are made at the I to E transfer by the I
unit are described in this section. Most features of
this type of store are similar to the features of any
CPU store. Thus, an understanding of all stores may
be obtained by reading this section.

For instructions such as ST, STE, and STD, store
requests are made at the I to E transfer if no inter-
tupts are outstanding. BD store request, no inter-
rupts, and I to E transfer set the CPU request and
the CPU store triggers in the BCU and the store re-
quest trigger in the I unit. For all stores in this
type, the effective address is set into SAR and H at
TN T2. Block T2-M is turned on by the I to E trans-
fer, thus preventing TN T2 of the next instruction
from altering SAR until an accept is received. The
E unit sends, for these instructions, the line TF
block T2-M on accept which is ANDed with accept to
turn off block T2-M and to allow setting of SAR by
TN T2 of the next instruction.

CPU request starts a storage unit and generates
accepts just as for a fetch. The store request line to
the BCU is held up by the latched output of store re-
quest until store request is turned off by accept.

The CPU store trigger indicates to the BCU that
a store rather than a fetch is being requested. CPU
store remains on until SAR is again set.

Instruction Preparation 9-65 77

There are eight mark bits in BCU which must be
set to indicate which bytes in external storage are to
be altered. These bits are set at the I to E transfer
of stores of the type being discussed. The bits are
set on the basis of the output of the BOP decoder and
bits 21 and 22 of the H register. The output of the
BOP decoder indicates the length of the field being
stored, and bits 21 and 22 indicate where the field
being altered starts in a storage word. The mark hit
corresponding to any byte in the storage word to be
altered is set to a 1 at this time.

NOTE: It is possible to set the mark bits individ-
ually on various cycles. This facility is used exten-
sively in the SS instructions for setting up store
fields.

The E unit is started at the I to E transfer of the
instructions being discussed. The E unit places the
operand to be stored into the K register at the end of
the first Eunit cycle. K is gated into the SBI latch
on the early BR clock immediately following the AR
clock that is straddled by pulsed accept. ELC is set
by A clock accept for this class of instructions.

If the address for the store is for a nonexistent
storage, CPU store invalid is set with the late BR
clock just before the AR clock is straddled by the
pulsed accept. The invalid address interrupt is then
taken as an E time interrupt at the end of ELC.

TFor all stores by CPU (except stores by the inter-
rupt mechanism), bits 8-11 of the PSW are gated out
to a storage protection feature. If a compare is
generated in this feature, a storage address protec-
tion (SAP) signal is sent back to the CPU. This sig-
nal is sampled into the SAP latch at the AR clock,
that follows accept. This causes an interrupt which
is treated as an E time interrupt. However, the
interrupt may return too late to be processed after
the instruction that caused the interrupt. Therefore,
the interrupt will not be processed until the next
instruction is completed.

The store request trigger gates the ICR into the
incrementer and adds 1 into position 20 of the incre-
menter, Compares are made between H and the ICR,
and between H and the output of the incrementer. The
two compare lines are handled as described in the
"Instruction Fetching Controls' section to generate
the program store compare (PSC) line. This signal
ANDed with store requestl turns on the PSC trigger
in the interrupt mechanism. The PSC line indicates
that a store is being made into an address which may
have been prefetched into the A or B register for
instruction processing. The PSC trigger will cause
an E time interrupt to be taken which initiates an IC
recovery only. This results in the A and B registers
being refetched after the store is completed.

If the CPU is being single cycled, the store re-
quest must be delayed for one cycle to allow the E
unit time to set the K register. The one cycle delay is

78 12-65

generated by a pair of single-cycle store triggers in
the BCU. These triggers are turned on in place of
CPU request when the store request is first made.
On the next A clock, the single-cycle store triggers
turn on CPU request, and the store proceeds at high
speed. See Figure 60.

Additional Functions of I to E Transfer

Updating the PSW Length Code: Bits 32 and 33 of the
PSW, the length code, are set to the length of the
instruction by the I to E transfer. The number of half-
words required by the instruction word determine its
length. Updating the LC does not occur if an E time
interrupt is detected.

Updating the ICR: As defined in the "Instruction
Fetching Controls'" section, the ICR is considered

in two parts: high order and low order. With the I
to E transfer, the contents of the gate select register
are set into the ICR low order. If the IC high order
needs advancing, IC high-order advance is turned on
with the I to E transfer. Neither action takes place
if an E time interrupt is outstanding.

Ending T2: The I to E transfer turns T2 off.

Turn-On Block Triggers: When BOP decoding indi-
cates that blocking of the next T1 or T2 cycle is
required, block T1-M and/or block T2-M triggers
are turned on with the I to E transfer.

Setting of Busy Triggers: The I to E transfer in gen-
erating the start condition for execution units also
sets their respective busy triggers (IE busy and E
busy).

SS Instructions: The SSOP status trigger is set by
TN T2, and the I to E transfer conditions the VFL
address trigger if there is no interrupt.

Decondition FR2 (Floating-Point R2): The I to E
transfer prevents any further setting of FR2.

Set SAR and H Registers: SAR is set from the incre-
menter at I to E transfer time for branches and LM.
H is also updated for LM. The incrementer error is
sampled at this time.

ER1: The contents of the BOP R1 field are set into the
ER1 register with the I to E transfer. ERIL is used
by the E unit for put-aways to internal registers.

BR + 1 Request: The BR + 1 fetch for branches is
generally made at I to E transfer time if there is no
interrupt.

uopeiedatd uoponIsul

S9-21

6L

, .
Clocll SIO Y AR ST

Seq, 11, T2 2,0 2.7,
Ctrl Gr(p) GR(R1) GR(X) FR(RI)

AR Generates a Fixed-Point Overflow
Location of New Program PSW 15 104

FIGURE 57. INSTRUCTION SEQUENCING FOR START [/O AND INTERRUPT

J i
|
D—H | —=RBL(L) + GR(B)—RBL i
| GR(R2) + D—=S5AR i
: ~=RBLR) H i
| A, IO I T T e T S A S O T LU
|IOP BOP (LCOI’} IOP BOP IOP BOP (IOP) (IOP) (IOP) (IOP) (IOP) (IOP) IOP BOP Léop
(EOP) E?P LCPP EOP LCOP (EOP) y (50?} {EOF)(EOP) (EOP) [EOF)E;)P
ICR Lo GSR-- ICR lo GSR=ICR Lo ICR Lo ICR Lo ICR Lo ICR Lo GSR
+2 -=GSR |ca Lo +1=GSR ICR LO +2-=GSR -GSk —= GSR—GSR +3+=GSR=ICR Lo
Sto PSW
IE Execution L_h_*m;,ﬂ__,___.__h@_ku_t : %.fm_x. . i Ss0p
i K=K
"—"'—/ Solacr Channel A L R
-
Start /O, Unit Add —/ Release From Channel N\
o :'/ CP:m [DfC) Relegse Buffer RBL=M / - E Interrupt from E \
Release TE. Irpt Execution Cycl Cyc2. Cycs Cy:4 Cw:‘ Cycd4 Cyc5, Cycé
i Fetch Store LH PSW J=PSW
Set CR Addr 104 Addr 40 — K Chk RH| Chk LH
S —=SAR —= SAR PSW | psw
Reset Chan Priorities Set Irpt Code RH PSW
e B Reset Irpt
Irpt Reset of | Unit —/__H L ers
Fefch Req to J Store Request IC Req to A IC Req to B
— i = N/ K N~
Accep m cept
New PSW (Addr 104} Old PSW (Addr 40) [th for A
¥ _|I w v
Srorage Cycle : IC Ferch for B
IE Busy E Busy i Loaded , Storage Cycle Odd f—
55 — ' ! E &nr .
—*’}-m;w is A Looded ———
5 { 8 Looded *
— Block T1 sl ¥ \ / Block T o \ /
: Sr y (Store) - Blk TI-M
4 / S Block N\ = -
2 = Mook . s 1. ™ ,
— ek /
BIkT2-M IC IC IC
Recyc Recyc Recyc 5
104 1000 A Register 1008 B Register 2000 ARegister IC IC IC Ic+1IcH
T T T 1]
[H ; ! s U
ICR = 2000 1 H | SAR+ SAR+SAR~SAR=S5AR
Program Interrupt PSW S I S o J
SI0 AR ST ZAP

HONVEE GNV SNOIIND3X3 3 304 ONIDNINDIS NOILNYLSNI "85 3WNDId

o e e e e e e e e e e —
A |
= — HXI — w1 peojas | [(pro) 3V 1 gy jed
sapibay Jmsibay g iaysiBay v
_‘.|.||.||.||||||||.|.I||||i.|..llu.||||||.|||.||||lnll+
| = . | KRR — w-z e
=%. | / ~r u Pops
" J [l d " o
I = r 1 I
ﬂ aung 30q-84g sioig ! W-2I 1208
™ R Y (PUg) =, ,— (+1M) = (1g) paxyog
e " 4 Ve W b4 S ey o)
i _ papoo] _ _1lteo._ ﬂ_
1 1
“ _ popoa g |
L { | — e 1a|3d)
papoeT y | Papeo]
—t——— —tt—— o
PO poy ! I I T T [Tk abosolg
I (] 1] | L 1 I 1 I 1 I 1 1
I T T 1 waag | I T T T T T T Touaag |
/|\L| idaszy
__ \ /T \ N e N |
1 |
] sanbay euo)
a | Y = i
|rl L [puoy o W Of ey — - - | ssanbay
o) Yy3§a, . -
| o1 Yiag |.yg ./fr _\ 94 .m\ ./_._u:i ol [ol yney n.O\r- oo yaiey dof
_._9 403 To> ITo) 403 4021 4021 4021 403 403 saitibay
dol 40l dol dO <08 40| 408 4ol 403 fle) 401 403 408 401 408 o %0
* ¥ v ' ¥ v v 1 \J v L v L v | \j
$O= o §3| “14DI = USD = 7 §OI W YSO = O] YOI O+ - Y5O =07 Y| ——UGD) — 43| puo
bul_aw nuom.-v
$9) - :_ o1 H Py WO THOL I ESO 191 BDI ¥5D 91 ¥l WSO 401 ¥ M52 e WDl
e ¢ ¥ ¥t v I i
A ! L ETH : i 4 — e
L 1 L
I T T T L Asng 3 R Asng
| .iﬁ? Ty- W=l W -8 T W - W - 188
“-eaurl_s;z f...H T4 - aé g - oy e+ Y+ yw sl.w_
%]
_ Sy U WY ety BT Y oies o u o oY dgdwn wey qesdeg¥ ogua N ey | qasdx3 gnsdxg gngdxg e
o1 Pev mH dxd 01| D13 dxd il | smis ! g1 i) | \vd | PPY 8L iva | PPV | 4 sl 414 BU 414 i) :
Seal 190 il J J o J M3 sy 1 13 NSy 1]
TT\'I 2905 \youog \ \ \ \
t \ P \ \
I dog I - i sjonuo)
| 4_.. ... " - Em._ 4_. / , e \ouosg
| \ \ ! \ .___ W (1ded) q \ oW
| V' 4o __,, \ \ o ! Voo !
| | wsersn) \ \ \
L O [\ H o He | Hea
ﬁ (W 1eu-e-! (CH¥D Ha— __. z4)¥0 \ WS - \ wys e | o5 -—
[(elo | gueivse | (1788 = \ as@¥0 \ o« |\ a+{guo
S | (eo ad@ius \ (w0 v see N ; , ek T
1 1 T S R TN 1 T S B SREL LI SRR T VIR | T VER S UNSARE TR LA LR AT 2
_ XA gy sbimieyg PRO aficiolg ppO abioiolg uang
[st bas xany Hxg w s v v
P10 ¥

5 i 18 i 9 g

58 I 1 (e 5y O (o 5 5 Sy [N (R 6 iy W

[W Y I i O B &

12-85

80

[&bk | 1 Ty | | 1

! 4] 4 12 i 11

+ o = = ——

— INT2 T

/| to E Tronsfer \
Gr Efl Addr

E}
Reibilon = i T T ——
—/ BD Store Request
— /" TBD Se1 Recuired Mark
Set Mark Register —J_L

Store Request
—_—

cPu

— /" Store Request 1o BCU N\
Gt Store Daoto to K Reg ._J_l_.
G! 1C 1o Ina h
Gt + 1 to Incr Pos 20 —l___-_l—-

] Program Store Compare Trigger

/ ™ Block 1€ N\
' Block IC-M
/ Block IC Requests .
/" D Block 12
j—Block T2-M
e Block T2 e
ST
cept
Pulsed Accept
x Even Storoge Busy (T,
i . oge Busy (Tgr)
= CPU Storoge Busy
L
Sample K into 581 Latch ——) B
CPU Store Involid . SR = = A
. CPU Storage Address Protection Tog i

FIGURE 59, | UNIT STORE REQUESTS

5_M Unit Cyele i

A Clock
AR Clock : i‘
I
| to E Transfer e
El e

BD Sto Req
BD Set Required Marks
Set Mark Register

: Sy i Store Request)
- - —
e "
Store R t 1o BCU
Gt Store Dato to K _!_‘._. e
)1)
" Gote IC_to_tncr and Gate + 1 to bner Ps20 _ :
l-..--.-l Progrom Store Compore Trigger Block IC-M]
s Block IC Requests ;
3)
- ¢ Block 12-M _[I
b ‘5 1
= Block T2
b P! 4 Single Cycle Store Req |
} 1t e Single Cycle Store qu C2Pu R
. CPUStore 4y ' : 1
k T {
/ Accep! b
/ Pulsed Accept -
Even Si Bu
__/ CPU Storoge Busy o
i
Sample K into 581 Lotch —|_l—
CPU Store Invalid ——r J__________ R

CPU Storoge Address Protection Tag

FIGURE 40, | UNIT STORE REQUESTS--SINGLE CYCLE

S

Instruction Preparation 12-65 81

T1 and IOP: The I to E transfer is used in the logic
for setting T1 and IOP.

General Register Out (GROUT): GROUT is turned on
for certain instructions to gate out GPR during E
cycles,

BOP Error: A parity check is performed on the
first byte of BOP at the I to E transfer. BOP error
is turned on at this time if there is a parity error.

Decoders

The E unit contains two operation registers: execution
operation register (EOP) and last cycle operation
register (LCOP). Both EOP and LCOP are eight-bit
registers which are loaded with the first eight bits of
an instruction. EOP is set from IOP, and LCOPis
set from EOP, With the use of two operation registers,
the E unit is able to overlap the last eycle of one instruc-
tion with the decode cycle for the next instruction.
EOP is set by the following logic (Figure 5258):

T1l. ®BUSYL + ELCly + TON ELC

This logic ensures that EOP is set one cycle be-
fore the start of an E unit instruction. If the E unit
is not operating or if ELC is on during the last T1
cycle, EOP is set correctly at TN T2; therefore,
EOP is set at least a cycle before the I to E transfer.
However, if the E unit does not finish the previous
instruction until after T1 of the next instruction, TN
ELC ensures that ELC is set at least one cycle be-
fore the I to E transfer. Note that EOP is not avail-
able to the E unit during the last cycle of an instruc-
tion, therefore, decoding is done from LCOP during
this time.

LCOP is set by the following logic (Figure 5259):

T2l . @ BUSYL + ELcly
This logic has the effect of setting LCOP at the |
to E transfer, perhaps along with many unnecessary

earlier settings.

Instruction Executions

There are a few instructions which have unique fea-
tures that are relevant to this section.

GROUT Class Instructions (Figure 61)

There are a number of instructions which require that
the general register operands be gated out during E
time. This gating is accomplished by GROUT, a trig-
ger located on G-C2 near the general registers.

Since GROUT gates out operands from the general

82 12-65

GRCUT
: 1 i 12 L 1 M. | S
F 1 i b 1
GR(R1) ——» GBL GR{R1)—» GBL
GR(R2) or GR(R2), GR(R3+1) or

GR(R1+1) —» GBR GRIRHI){;*’ GBR
Gt GR — VY
t to RBL I (12 FLP) 3, (GROUT) |

{0
) T
BD GROUT Class

[
— B BlockT
Block TI-M

—/ Exec Unit TF , T

GROUT and Blk T1-M

FIGURE &1. GROUT TIMING

registers, T1, which also gates out general registers,
cannot be allowed to turn on (except in EX). This is
accomplished by turning on block T1-M.

Those instructions which use GROUT are: SPM,
SSK, MR, DR, EX, D, BXH, BXLE, and STM. For
the SPM, SSK, and STM instructions, GROUT gates
BR1 onto GBL for use by the execution unit. GROUT
also gates general register BR1 onto GBL for EX.

T1 and GROUT are on simultaneously for EX.
GROUT overrides T1 to the extent of preventing the
GR specified by IB2 from being gated onto GBL.

For the D and DR instructions,the R1 field must
be even or an invalid specification interrupt is taken.
If R1 is even, GROUT gates general register BR1 onto
GBL and general register BR1 + 1 onto GBR. For the
MR instruction, GROUT gates general register IR2
onto GBR.

For the BXH and BXLE instructions, GROUT gates
general register IR3 onto GBR also. In this case
GROUT forces a 1 into the low-order position of the
decoder so that the odd register of an even/odd pair
is always obtained (R3 + 1).

For all these instructions (except EX), the execu-
tion unit sends a signal to turn off GROUT. For the
EX instruction, GROUT is turned off by the I unit
controls after bits 24-31 of the general register, ad-
dressed by BR1, have been ORed into bits 8-15 of
IOP.

Note that operands are generally gated out by GROUT
to the unspecified half of RBL. However, these oper-
ands are ignored by the execution unit.

Supervisor Call (SVC)

The instruction SVC is unique in that it is treated as
a T2 interrupt and no normal E time is taken. AtI
to E transfer, the SVC interrupt competes with any
other existing interrupts for priority, and the inter-
rupt sequence is entered. See Figure 6163.

Shift Instructions

The shift amount for shift instructions is obtained
from bits 18-23 of the effective address which is
placed in H at TN T2. The H register is available
to the E unit.

WD, RD, and Immediate Instructions

For these instructions, IOP bits 8-15 are transferred
to the Y and Z registers in VFL. The Y and Z regis-
ters are set by VFL controls at B time. They areset
by essentially the same logic that sets EOP. Thus,
the I to E transfer may be allowed to change IOP.

INSTRUCTION FETCHING CONTROLS

The instruction counter controls in the 2075 control
the normal advancing of the instruction counter and
the normal fetching of instructions.

Instructions returned from storage are buffered
in either the A or the B register before being sent
into the IOP register for initial execution. The in-
struction counter register (ICR) contains 24 bits
(numbered 0-23) and is advanced by means of two
adders: the gate select adder which advances the
IC low order (bits 20-22) and the incrementer which
advances the IC high order (the remaining bits). The
gate select adder works in conjunction with the gate
select register (GSR) to select gates from the A and
B registers to the IOP register. The instruction
counter controls, while advancing the GSR, also
maintains the ICR with a proper address for inter-
rupt purposes.

The IC controls also make normal IC fetches and
generate the instruction fetch addresses. The ad-
dresses are generated by adding in the incrementer
an appropriate small increment amount to the ICR.
The IC controls attempt to make an IC fetch as
soon as an empty instruction buffer condition is de-
tected, but any instruction in the process of execu-
tion may block out IC fetches if an IC fetch would
cause interferences with the instruction execution.
If the IC fetches are blocked continuously by instruc-
tion executions, the I unit ultimately will exhaust all
instructions in the buffers. At this time, the IC block
will drop, thus allowing IC fetches to be made and
instruction execution to resume. Normally, the
instruction buffers will not be exhausted before IC
fetches are made. However, special logic has been
incorporated to ensure that, except in unique situa-
tions, both buffers are not emptied.

Physical Description of Data Flow

The IC is a 24-bit register used for addressing in-
structions in external storage during normal linear

sequencing. Though the register is located in posi-
tions 40-63 of the PSW, it is numbered 0-23 in the
2075. The ICR is gated into a 24-bit adder called the
incrementer. The input on the other side of the incre-
menter is at positions 19 and 20 only. These two
lines are generated by controls. Thus, addresses at
the incrementer input can be advanced 0, 1, 2, or 3
double words. The output of the incrementer is
latched with an L clock, and this latch register has
outputs to SAR and ICR (in addition to other outputs).
While the gate to SAR is a full 24 bits in width, the
gate to ICR lacks positions 20-22 and, therefore, con-
sists of only 21 bits. A full 24-bit path from the H
register to the incrementer is also provided.

Note that the incrementer is not a true general
adder because certain special inputs can occur only
if there is a machine malfunction. If there is a bit in
incrementer data input position 20 at the same time
as there are bits on both control inputs, an incorrect
sum results. This appears as:

Position
Data 16 17 18 19 20 21 22 23
Incrementer data input - - = b 1 - - -
Control input 1 1
Incrementer output s oS BB o e e
Sum - = = b 0 = - =

For this case result, position 19 is erroneous; and
if b is 0, the carry which normally would go into posi-
tion 18 is not generated. For any other inputs, the
incrementer gives a correct sum. The parity predic-
tion and checker for incrementer P16-23 (called P2)
is designed for the incrementer as implemented--not
a true adder. The details of the incrementer imple-
mentation are described in the '""Functional Units" sec-
tion of 2075 Processing Unit, Volume 1, TField Engi-
neering Manual of Instruction, Form 223-2872.

A, B, and J Registers

There are two 64-bit instruction buffers (A and B).
The A register is associated with double words in
storage for which the address contains a 0 in position
20. The B register is associated with double words
for which the address contains a 1 in position 20, Ex-
cept for this one consideration, registers A and B are
symmetrical in usage. Bit 63 of register A is con-
sidered as being adjacent to bit 0 of register B, and
bit 63 of register B is considered as being adjacent to
bit 0 of register A. There is also one 64-bit operand
buffer J. All of these buffers are fed by the 64-bit
SBO which is fed from external storage. There is also
a 64-bit bus from J to AB. There is a 32-bit operand

Instruction Preparation 9-65 83

register called IOP which can be loaded directly from
any 32-bit field in AB, starting at a halfword ad-
dress. The field in AB that is selected for gating

to IOP is determined by a full decoder off a three-bit
gate select register.

Checking (Figure 62)

The A, B, J, IOP, SBO, H, and ICR registers have
one parity bit for each byte. The incrementer has

a checker which checks input parity and the internal
operation of the incrementer. The incrementer also
generates normal parities for each of the three output
bytes. These are generated by independent circuitry.
A unique parity bit (P1) is also generated within the
incrementer. This parity is generated by incre-
menter inputs 16-19, control input 19, and the input
parity. Assume that there are an even (odd) number
of bits in inerementer inputs 16-19. If control input
19 is 1, and if adding a 1 in position 19 of the incre-
menter input would result in a sum with an odd (even)
number of bits in positions 16-19, Pl is set opposite
to the input parity. If the result has an even (odd)
number of bits in positions 16-19, Pl is set equal to
the input parity. The parity bit P1 is gated into ICR
P16-23 instead of the conventional parity bit for 16-23.
However, the normal incrementer parity for 16-23

is gated to SAR P16-23. The following is an example
of the operation of the incrementer:

Position

Data 16 17 18 19 20 21 22 23 P P1
Incrementer input o 0 1 1 0o 0 1 0 0
Control input 1 1

Incrementer output o 1 0 0 1 0 1t 00 1

Gate Select Mechanism (Figure 5018)

A three-bit path is provided from ICR 20-22 to the
gate select added pre-latch. A second three-bit in-
put to the gate select adder pre-latch comes from the
gate select register. The output of this latch feeds
into the gate select adder. The gate select adder is a
three position adder that is implemented in two levels.
Control inputs are provided at positions 21-22 on the
second side of the gate select adder. The output of the
gate select adder can be gated into the three position
gate select register. This register also has a gated
input from positions 20-22 of the H register which is
used during branches. There is also a carry position
in the gate select register which is fed by the carry
output of the gate select adder. The decoder off the

84 12-65

gate select register selects 32-bit fields in the A
and B registers for gating to IOP:

GSR_ Field Selected
000 A 00-31

001 A 16-47

010 A 32-63

011 A 48-63, B 00-15
100 B 00-31

101 B 16-47

110 B 32-63

111 B 48-63, A 00-15

The gate select register has a corrected parity
position which is used in updating ICR P16-23 when-
ever ICR 20-22 is updated from the GSR. The cor-
rected parity is generated from the gate select adder
data inputs and a parity bit that is sent with the data.
Normally this parity comes from ICR P16-23, but if
the ICR is being set from the incrementer at the same
time as the GSR is being set from the ICR, the input
parity is taken from P1 of the incrementer,

The expression for generation of the corrected
parity bit is:

Input Parity ¥ Adv 1 Halfword * Adv 2 Halfwords * GS Adder Input 21

+ Adv 2 Halfwords - GS Adder Input 22
+ GS AdderInput 21+ m

+Adv 1 Halfword « Adv 2 Halfwords * GS Adder Input 21

GS adder input 21 and GS adder input 22 are data
inputs into the GS adder, and advance 2 halfwords and
advance 1 halfword are the corresponding control in-
puts.

This expression predicts the new ICR P16-23 that
results from the add in the gate select adder. If any
single error occurs in the gate select adder or the
parity generation circuitry, the corrected parity bit
is incorrectly set. When the GSR is returned to the
ICR, the last byte of the ICR contains incorrect parity.
Whenever the ICR is gated into the incrementer for
an IC high-order advance or an instruction fetch, the
parity is checked. At this time the erroneous parity
results in a data check.

Addressing of Instructions

At the start of each T1 cycle, the instruction being
executed by the I unit is placed into the IOP register.
The leftmost halfword of the instruction is placed into
IOP 0-15, and the next halfword is placed into IOP
16-31. If the instruction is an RR instruction, IOP
16-31 is not involved in the instruction execution. The
basic unit of data in external storage is the double
word = two words = eight bytes = 64 bits. Addresses,
which are 24 bits in length, address bytes. There-
fore, bits 0-20 of any address specify a double word
in storage and bits 21-23 specify a byte within a double

word. Instructions always start at halfword ad-
dresses, and any address for an instruction should
have a 0 in position 23. To obtain an instruction at
a given address, it is necessary to first fetch the
double word that is addressed by bits 0-20. If bit 20
is 0, the double word is buffered in the A register.
If bit 20 is 1, the double word is buffered in the B
register. If the instruction is located in a position
which overlaps a double word boundary, it is neces-
sary to fetch the next double word. This second
double word would be buffered in the B register if
the first double word was in the A register, and vice
versa.

Before any instruction that is contained in the A-B
registers can be properly set into IOP, one of the
gates out of the A-B registers must be selected. This
is accomplished by setting bits 20-22 of the instruc-
tion counter register into the GSR. On the basis of
the GSR, one of the eight gates from the A-Bregisters
to IOP is selected. The specific decoding was de-
scribed in the '"Data Flow'" section.

The first two bits of any instruction, which are
placed in IOP 0, 1 (and BOP 0, 1), contain a code
that identifies the number of halfwords in the instruc-
tion. There is a length decoder off of BOP 0, 1which
provides the actual length of instruction. The output
of the length decoder is fed to PSW 32, 33. The
coding is:

1I0P0 1 Input to PSW 32 33
0 0 0 1
01 1 o
1 0 1 0

ICR Advancing

An example of ICR advancing is shown in Figure 63.
ICR 20-22 is gated continuously into the gate select
pre-latch, except during special circumstances.
Normally this latch is not latched, but acts ag a
flush path. The two-bit instruction length, which is
obtained from the IOP decoder, is gated into the con-
trol inputs of the gate select adder.

At the start of any instruction, bits 20-22 of the
address for that instruction are contained in ICR 20-22
and the GSR. During the last T1, the instruction be-
ing executed is located in IOP; and, therefore, bits
20-22 of the address of the next instruction are avail-
able at the output of the gate select adder. This out-
put and the carry and corrected parity are gated into
the corresponding GSR position with TON T2 A CLK.
During T2, the GSR output selects the proper gate
from the A-B registers for the next instruction. Thus,

the gates are selected in time for setting IOP with the
next instruction in the A-B registers on the clock
cycle following TN T2.

When an instruction is transferred from the I unit
to the E unit, the IC low order is advanced by gating
the GSR to ICR 20-22. The corrected parity is alsoset
back into ICR P16-23 at the 1 to E transfer. The
length of the instruction being transferred is gated
from the BOP decoder to PSW 32, 33 with the I to E
transfer. If a carry was generated by the gate select
adder, the ICR will not be advanced completely until
positions 0-20 are advanced. Therefore, in order to
advance the IC high order, the IC high-order advance
trigger is turned on by I to E transfer and GS carry.
IC high-order advance gates the complete ICR into
the incrementer, adds a 1 in control input position 19,
and gates the sum and the new parities back into the
ICR 0-19 and 23. Thus, within one eycle of the I to
E transfer, the whole ICR is updated.

As will be described under "Instruction Fetching,"
the IC controls have the ability, under certain circum-
stances, to force the incrementer control input to gen-
erate IC fetch addresses. The fetch controls are not
necessarily blocked during an IC high-order advance.
Therefore, the possibility exists that the IC fetch con-
trols may be activating incrementer control input 20
(also, incrementer control input 19) at the same time
as anIC high-order advance is activating incrementer
control input 19. ICR 20 is always 0 whenever an IC
high-order advance is made; therefore, there can be
no carry into position 19 of the incrementer, DuringIC
high-order advance, incrementer sum positions 0-19
and 23 are the correct bits for updating the IC high-
order even though IC fetch addresses are being gener-
ated. Incrementer parity bit P1 16-23, which is gen-
erated by predicting the effect of the incrementer con-
trol input 19 on the input parity, is the correct parity
for the updated ICR and is gated back to ICR 16-23.

When updating the IC low order, the quantity to be
updated should be taken from the fully advanced previ-
ous ICR value. It is possible for an IC high-order
advance to coincide with a good or last T1 cycle. In
this case, the IC high order is being advanced for one
update at the same time as the updated IC low order
is being set into the GSR for the next update. This
generates no problems (because of the partial incre-
menter to ICR gate), except for the setting of the
corrected parity into the GSR. Since the parity to be
modified in the gate select adder has not yet been set
into the ICR, the parity is taken directly from P1
16-23 of the incrementer output. Thus, the corrected
parity is set correctly at TN T2 for transfer to the
ICR P16-23 on the next I to E transfer.

Advancing the IC high order during the first cycle
of E time, creates problems with the execution of
only two instructions. These are LA and LPSW. In

Instruction Preparation 9-65 85

T]

! o
]
0 19"20123'7'1'3
it Ll
P
In ?Ha ulplle 2a|p] IcR
20 22 P
Hor LH PSW | T 20 2 Adv 2
e S Halfwords
15,p8-15 & | 20,m&-23 16 | 19,P16-23 Al)
g 2 Mh
——
20 | 2
20] 22 5y, 2
Pexity | Holfwords
Pred | Adv |
T Halfword
o
or 20 22
o
. TO SAR, H, K Parity
Incr Parity T [
Error Tgr
FIGURE 62. PARITY HANDLING IN THE INCREMENTER AND GATE SELECT ADDER
R CELINE R RS RN DT N S DS SR (N S S
O - CHY (- PO - - < I - o . B B B B B o R
r L hd A L 1 | — Ll LL Ll L K T 1
ICR Lo—%GS Pre-latch —»GS Adder
Length
fom IOP 0,1 —/ Agy =P Ady 2 e &5 Adv 1 =5 T = Ady 2 N
to G5 Adder
Gr GSA—»GSR I I B il !
GSR—»ICR Lo 1 I I I I
IC Ho Adv
Gt ICR —» Incr | 1
(Gt + | = Pog 19)
Iner
Gt Incr+ICR 0-19,23 !
ICR 16-23 o011 0110 0011 1000 0011 1100 ool 1110 00110010 0100 0010 000 0110
ICR P 16-23 P=1 P=0 P=1 P=0 Fau‘ p=1 P=0
GSR 20-22 on 100 1o m 001 on
GSR Carry
GSR Cret Parity cP=0 cr=1 cP=0 cP=0 cP=0
Bits 16-23 of Insn Adde P=ICR P16-23
CP= G5 Reg Cret Pority
Comry = G5 Carry P
0100 0000
IC Fetching b Not
0011 0000 0011 1000 4 Coimilired for
oM | I© [®] @ | ® Thi Branple
| A Register |1 B Register | A Register

FIGURE 63, EXAMPLE OF NORMAL TIMING OF IC ADVANCES

B6 965

LA, the E unit makes use of the incrementer to
transfer the effective address to the K register. The
transfer is made on the second E time cycle instead
of the first E time cycle to avoid conflict with an IC
high-order advance. In LPSW, there is a possibility
that an IC high-order advance is gating the incre-
menter output into the ICR at the same time as J is
being gated into the ICR by the instruction execution.
To avoid this multiple gating, the IE unit blocks the
incrementer to ICR gate whenever the PSW is being
loaded from J.

Interrugts

If an interrupt occurs, the PSW which is stored
must contain the address of the next instruction.
There are two types of interrupts: E interrupts and
I interrupts. E interrupts take place after the last
cycle of instruction execution. This class includes
the majority of interrupt types. I interrupts take
place at the I to E transfer in place of normal instruc-
tion execution. It is possible for an E interrupt and
an I interrupt to occur simultaneously. In this case
the E interrupt is processed and the I interrupt is
suppressed.

In the case of an E time interrupt, the ICR has
already been advanced to the next instruction. There-
fore, the I to E transfer of the next instruction is
blocked from having any further effect on the ICR,
the IC high-order advance trigger, or the PSW length
code. In the case of an I time interrupt, the ICR must
be advanced to the next instruction. At the time of
the I to E transfer, ICR 20-22 is advanced normally,
IC high-order advance is turned on if required, and
the PSW length code is set.

5SS Instructions

The ICR is advanced normally at the start of any SS
instruction. During SS instructions the execution
unit must alternately have access to the second and
third halfwords of the SS instruction. Access to these
halfwords is obtained through special controls to the
gate select mechanism. An example of an SS instruc-
tion timing is shown in Figure 64.

At TN T2 of SS instructions, the SSOP status trig-
ger is turned on. The output of SSOP latches the
gate select pre-latch, thus holding bits 20-22 of the
address of the SS instruction at the gate select adder
input. When SSOP is latched, it also inhibits the
normal gating of the instruction length code into the
control side of the gate select adder. By this time
the GSR has been updated normally at TN T2. At the
I to E transfer the GSR is transferred to ICR 20-22.
An IC high-order advance can also take place, if
needed. The ICR is advanced for SS instructions as

in any other instruction, and the ICR then has the
proper value for handling any interrupts during the
S8 instruction.

At TN T2, block IC-M is turned on. At the I to E
transfer, block T1-M and block T2-M are turned on.
These three triggers guarantee that neither IC fetches
nor I time of the next instruction can interfere with
the SS execution.

The VFL address trigger is turned on with I to
E transfer in an SS instruction. The output of this
trigger is ANDed with an early B clock to set the out-
put of the gate select adder into the GSR. In this
case the early B clock is timed so that it does not
overlap an A clock. The use of the B clock on the
GSR serves as a latch. The GSR is guaranteed not to
change until the IC low order has been set on the I to
E transfer.

During execution of the SS instruction, the VIL
logic has control over a special line--VFL address
advance. This line provides an advance 1 halfword
input to the gate select adder. Since SSOP and VFL
address are both on, the address of the SS instruction
is held at the gate select adder input by the gate se-
lect adder pre-latch and the normal length code addi-
tion is suppressed. With each early B clock, the GSR
is set with the address of the SS instruction (if VFL
address advance is not on) or is set to the address of
the second halfword of the SS instruction (if VFL
address advance is on).

The IOP register is set from the A-B registers by
VFL ADRL:. SSOPL ON EVERY A clock. The SS in-
struction is still in the A-B registers because IC
fetching is blocked during SS instruction executions.
IOP is set according to the quantity which was placed
in the GSR by the previous early B clock. Depending
on the VFL address advance line, IOP is loaded on
every A clock with either the first two halfwords or
the second two halfwords of the SS instruction. The
SSOP trigger gates the IOP D field and the general
register addressed by the IOP B field to the address-
ing adder. On the cycle after IOP is set, either the
address (contents Bl + D1) or the address (contents
B2 + D2) is available at the input to SAR and H. VFL
has controls for setting the effective address into
SAR and H, as desired.

At the end of an SS instruction, the VFL thru line
is sent to the I unit to return the controls to normal
operation. VFL thru turns off SSOP with an A clock,
thus unlatching the gate select adder pre-latch, VFL
now holds the VFL address advance line down, and
VFL ADR -+ T1 + T1L now blocks the length code
from entering the gate select adder. ICR 20-22
flushes into the gate select adder and is set into the
GSR on the next early B clock. The GSR now contains
the proper value for the next instruction. Block T1-M
is turned off on the next A clock, and T1 of the next

Instruction Preparation 12-65 87

instruction is turned on. Block T2-M, block IC-M,
and VFL address are turned off whenever SAR is not
needed by the SS instruction. When T1 turns on,
VFL ADR- T1- T1t no longer blocks the length code
input to the gate select adder. The normal add is
made in the gate select adder at TN T2.

Repeat Instruction (Figure 65)

Repeat instruction provides continuous execution of

an instruction located in the left end of the A register.

In order to utilize repeat instruction, it is necessary
to first place the desired instruction in the left end of
the A register.

All instructions may be processed in repeat in-
struction mode except branches, load PSW,or exe-
cute, Also, interrupts or IC recoveries may not be
taken while in repeat instruction. Any of the above
exceptions initiates instruction fetches to A and B,
thus destroying the instruction being repeated. The
DC line repeat instruction suppresses the following
gates in the gate select mechanism:

1. ICR 20-22 to gate select adder input

2. Length code to gate select adder input

3. GSR to ICR 20-22
REPEAT INSTR - VFL ADR also holds the gate to
GSR open continuously.

The operation of repeat instruction is:

Except during SS instructions, the suppression ot
gating forces 0s to be flushed into the gate select
adder. The 0s are set into the GSR by REPEAT
INSTR - VFL ADR. The GSR holds 0s at all times
and continuously selects the first halfword in the A
register. At no time is the GSR able to make an
ordinary advance. The gate back to ICR 20-22 is
suppressed in order to prevent setting the ICR with
incorrect parity. If the original parity in the ICR
was correct, it will remain correct throughout the
operation of repeat instruction. During SS instruc-
tions VFL address is on and, therefore, REPEAT
INSTRUCTION - VFL ADR no longer sets the GSR.
The SS controls now operate and are able to utilize
the gate select mechanism in the usual manner dur-
ing instruction execution. Upon completion of the SS
instruction, 0s are returned to the GSR. The inter-
locks to prevent IC fetching are discussed in the
"Empty Rule" section.

Instruction Fetching (Figures 66, 67, and 68)

In the instruction counter scheme of the 2075, the
interlocks between IC advancing and IC fetching are
indirect in nature. Advancing the IC and fetching the
instructions takes place at times which are not
closely interlocked. In order to generate correct IC
fetch addresses, the instruction fetching mechanism

88 9-65

monitors the ICR. On the basis of the ICR and the
loaded status of AB, the ICR is modified in the incre-
menter to obtain an instruction fetch address. The
rules of IC fetching are:

IOP Loaded Rule: T2 of any instruction is not turned

on before all halfwords of the instruction to be exe-
cuted have been available in the A-B registers for at
least one good T1 cycle.

Empty Rule: The fact that an instruction is emptying
the A or B register and that an IC fetch is therefore
required is recognized at TN T2 of the instruction
that is emptying the register.

IC Fetch Rule: If either A or B register is empty

and IC fetches are not blocked, an IC fetch request is
sent to the BCU. The fetch request is maintained until
accept is returned from the BCU or until IC fetching
is blocked.

IC Address Rule: Addresses for IC fetches are

generated automatically whenever IC fetching is not
blocked by block IC-M. The address is generated on
the basis of the ICR, the empty status of A, and the
empty status of B.

Block IC Rule: Any instruction which has been
completely loaded into the AB register and which is

in the process of execution may block IC fetches in
order to ensure that no interference arises in the
usage of the incrementer or of the SAR. The block
is started with TN T2 and continues to a point uniquely
determined for each instruction.

Pre-Block IC Rule: Upon advancing the GSR at TN
T2, the next instruction is available at the input to
IOP. If this instruction is BXH, BXLE, BALR, BAL,
BCTR, BCT, or EX, and is completely loaded in the
A-B registers, instruction fetching is blocked. This
rule prevents unnecessary IC fetches from interfer-
ring with branch fetches.

IC Fetch Priority Rule: In certain cases where A
and B are both close to being emptied, TN T2 of the
instruction about to be executed is blocked until the
IC feteh mechanism fetches an instruction word. By
decreasing the chances of both buffers being emptied,
this rule results in a net speed-up of the system.

IOP Loaded Rule (Figure 5230)

To turn on T2 of an instruction, the instruction must
have been in IOP for at least one good T1 cycle. The
GSR is set with bits 20-22 of the instruction address
no later than the cycle that precedes the start of T1.

The GSR is set with an A clock for normal ICR ad-
vancing; but in other cases, such as at the termina-
tion of SS instructions or branching, the GSR is set
with an early B clock. In either case, the GSR out-
put has at least a three-fourths cycle to select a
gate from A-B to IOP. Any words that return to A
or B are loaded with a late BR clock and an advance
from BCU. BCU generates an A advance to gate in
A and a B advance to gate in B. The contents of A
or B have, at the very least, a one-fourth cycle to
get to IOP. Usually the required instruction will
have been available in the A-B registers for a num-
ber of cycles.

On the AR clock immediately following the late BR
clock on which a word is returned to the A or B
register, the trigger A loaded or B loaded, respec-
tively, is set. A loaded stays on until the last in-
struction is removed from the A register. B loaded
is treated similarly. A loaded and B loaded indicate
when the A register and B register, respectively,
contain unprocessed instructions. With the start of
every T1 cyele, IOP is set from the output of the
selected AB gate.

The IOP loaded line must rise before T2 can he
turned on. This line, which indicates when an un-
processed instruction is available at the output of the
AB ORs, is:

A LOADED- B LOADED + (GS21-GS22 (P0 + PL) +
GS21- P0. PI)- (A LOADED - GS20 + B LOADED -
GS20)

GS20, GS21, and GS22 are positions of the GSR.
P0 and P1 are positions of the selected word from the
A-B registers. PO goes to IOP 0 and P1 goes to
IOP 1. The above line is latched with a not B clock
and is then used to condition TN T2.

If A and B are loaded, a good instruction is avail-
able in IOP no matter which AB gate is selected. If
the instruction selected is contained entirely within
the A register and A is loaded, a good instruction is
available in IOP. The instruction addressed is
entirely within the A register if GSR position 20 is 0
and if none of the following are satisfied:

1. The instruction starts at the last halfword of
a register (GS21 =1, GS22 =1) and is not an RR in-
struction (that is, P0 =1 or P1 = 1).

2. The instruction starts in the last half of a
register (GS21 = 1) and is an S8 instruction (that is,
if PO =1 and P1 = 1),

Similar logic is used to determine whether the instruc-
tion is entirely within the B register.

The IOP loaded line is latched with a not B clock
because of a problem that arises during single cycling.
A fetch may return to A or B on a running B clock a
few cycles after the last controlled clock pulse has

been given. IOP is loaded on an A clock. If Tl is
on and if the turn-on of T2 is waiting for IOP loaded,
this line must not be allowed to rise before IOP has
been set. Immediately upon setting the A (or B)
register and the associated A loaded trigger (or B
loaded trigger), the raw IOP loaded line rises. The
line IOP loadedl” does not rise because it was latched
after the last B clock, IOP is set with the next A
clock and IOP loaded” rises with the next correspond-
ing B clock. A good T1 ecycle will occur before T2 is
turned on by IOP loadedl,

Empty Rule (Figure 5268)

If an instruction is emptying the A register, the A
loaded trigger is turned off at TN T2. Though this
section discusses the A register, an exactly analogous
discussion holds for the B register. The logic, called
ID A empty, for recognizing the last instruction in A
is GS20 (GS20 for B register) and any of the following:

GS21 - IDRR
GS21 - G822
GS22 - IDSS

IDRR is the ANDed output of not IOP 0 and not
IOP 1. IDSS is the ANDed output of IOP 0 and IOP 1.
The first term covers any two or three halfword in-
structions, starting in the last half of A. The second
term covers any instruction, starting in the last
quarter of A. The last term covers SS instructions,
starting in the second quarter of A.

Not A loaded (ANDed with no outstanding fetchto A)
is the normal method for indicating the necessity for
a feteh to A. If IC fetches are not blocked and if a
fetch to B does not have priority, a fetch request to
A is made on the next A clock. As described previ-
ously, A loaded is turned on when the fetch returns
to A. An auxiliary trigger, instruction counter fetch
to A memorized (ICAM), is turned on when the BCU
accepts the request to A. ICAM (and its turn-on)
serves to indicate an outstanding fetch. ICAM (and
its turn-on) prevents not A loaded from indicating a
fetch required condition for A.

If an instruction is emptying the A register, the
conditions which turn off A loaded at TN T2 also enter
directly into the fetch request circuitry. If IC fetches
are not blocked and if a fetch to B does not have
priority, a fetch request to A is made at TN T2. For
a number of instructions, including most RRs, this
anticipation circuitry allows early IC fetches to be
made.

Note that if the system is in repeat instruction, the
GSR never leaves the first halfword of the A register.
No instruction buffer is ever made emtpy and no IC
feteh is every made. Thus, the contents of the

Instruction Preparation 12-65 89

Address ,..0 1010
; B Register A Register
L | MVO

A Clock *1 Accept Delayed One Cycle

ML rt - f _J1- [7 Mgl (gl Tt [I

Mvol T T2 | Tl : 12 |
TN T2 q JTN T2 N\
—/_|—1’D—E\ [/| to E
Transfer 23 Transfer
VFL1st SUI SU2 SU3 SU4 SUS , SF3 , SF4 | SF4 | ,
L 'Cycle ; Blk IC-AI'- : : : [(I ; j ,: I
o i Blk T1-M i |
: Blk T2-M ((' ,,
 SSOP (1 i
' | VFL Addr (| _
_/ Latch Gt Select Adder Pre-lth, IOP D—»AA, GR (B)-+AA S
[
__/ Block (Length—#Gate Select Adder) A D
[__ Set ioP m_n_n n mn ’mn ’mn NSt Jr I Jju
1 Mm . rmn frmJ1.J7°_Tn f_l“_l_l [T T 71 T [
GR(B1)+ D] + L1 GR(B2) + D2+ L2
Gt AA—oH, SAR | 1 Gt AA®H, SAR [|
/ Fetch —D-J_/Felch — J\) Sl R =
/Y—AA N/ ZeAA N\]
,___/Accepr _/Accepi N ".—/igép—!_
IC Ho Adv flAddPN____
Adv
Gt GSR™R Lo [] / VFL \
through Gt GSR
Gt Iner »ICR Ho [] —» ICR Lo
ICR 01010 ‘00000‘10000 1 0000 ‘10010
19-23
GsR1ol | o000 ‘ 101 | 101 | 10 | 101 ‘ 101 l 101 ‘ 101 ‘ 101 | 000 ‘ 001
20-22

FIGURE 64, EXAMPLE OF | UNIT TIMING OF AN 55 INSTRUCTION

@ @ ®

, El , ELC El . HE ;

Zeros —»= G5 Pre-latch ——»= G5 Adder

Block Length to GSA Cirl Input

Gt GSA— GSR (Up By Repeat Insn ® VFL Addr)
Gt GSR —» ICR Lo (suppressed)

Gt Inecr —»ICR Ho (does not occur)
ICR=7
GSR = 000
Lo] | L
A B

Since the ICR never advances, empty conditions cannot cccur; therefore no IC fetches are made.

FIGURE 65, EXAMPLE OF TIMING OF REPEAT INSTRUCTION

90 12-65

1 421

"‘*@n . n

™ 12 ’ |
| to E Tronsfer | |

1OFP Looded
D A E
Block IC-M
Block IC Fetches

ICR_—— Incr

1 To Incr Pos 19 AN

Iner —=5A8 [I . [
A Looded
A Looded
— ICAE i B Looded
J/1C Fetch'\
Reg
kg Mo
' ICAM 4
ICPU Rnguurl ,A e N\
Gt 580 10 A Reg I |
| Storage Time Out
ICR 20-23 =+ 0110 «see 1000
GSR 20-22 on ‘ 100

FIGURE &6, EXAMPLE OF TIMING OF AN IC FETCH

0

, T2 12

Nate thot IC fetch oddress
fer A is comectly generated
in onticipation of A being

emplied.

A Register ,,.,0110 vess 1000 B Register
| [=0[x@ [«5] I
Thin instruction streom has the property of-not interfering with
IC fetches.

Assume both A and B looded ot start of instruction @.

Following Feotures are Lked:

fuil L12

TN 12 / \ I l

M1 | Ml

. Simyltoneous IC. Ho Adv ond IC fetch
oddress generation

] Ti
to € Tronsfer [1 = 2. Block IC-M
X 1OF Looded I 4 3. IC Fetch Priority Blocks T2
A ——
1D B Empty b
. BTk J1C-M 1 . — Blk IC-M
2 ! B i 2
T Block IC Forches L[S
ID One Feteh Closs X Address
e L— | | I e R
I to Iner Pos \?L——l-l (IC He Adv) = @ D
‘10 1 te Iner Pos 20 | | I I IC'Z) |
Sat (From {From See }. (From (Fram . RX instructiors ore FXP
SAR__ [iner) [T_AA) __ NOTE [iner) [T A& Py
*3
IC Fetch Prioelty N
oFF " st —5%F . 2, Assumed both A and B
—_— — + 1 looded ot start of instruc-
/ Op—w1Req _X_IC Ferch _¥__ Op—=J Req N tion ().
. Req—»8
SR N N TN 3. Mo IC interfecnce from
|CBM

instructions not shown.

Even Stor Activity (Op)

= Even Storage Actovity (Op)

4

*1 Odd Storoge Activity | (IC)
|

\ﬁ_—l

—— NOTE: On fourth somple SAR i
8 Looded H sample i
i set o ,...1 1010,
A Looded 1
T Looded
J Ady B Adv
1 I o Adv |
ICR19-23 01110 0 0010 | 1 0010
t | e 1 0110
GSR 20-22 001, Carry ol
TNT 2 ITeE TNT 2 IToE

FIGURE 47, EXAMPLE OF TIMING

Instruction Preparation 12-65

o1

AR Clock M M1y M i m M M |

A Clock | 1) =)1
L83
n Y i T2 y
e Y —(e——-_"‘
- 0
1D A Empty
3
- UIN T2 b, V—
)1
/ s
| to E Tronsfer
e J1
"' IOP Looded
- J 1 j 1
Y Block 1C-M —1
P))}
L ICR—wIner i
peve.)1 -
"Y1 to Iner Pos 19 — k1
1 5 |))
R “Ulner to SAR RA
1t 4 A Loaded 2
) Yy~ -
/ UCTC Ferch Reg .\ e
CPU Request
ICAE 1
¢
Pulsed Accept _/-—___
)1
/. Accept e
ICAM
' Even Storoge Cycle y
FIGURE 48, EXAMPLE OF IC FETCH--SINGLE CYCLE
ICR AE - BE AE - BE AE - BE AE - BE
Positions Incr | Incr | Reg | Red | Iner | Incr | Reg | Red | Incr | Incr | Reg | Red | Incr | Incr | Reg | Red
20 21 22 19 20 19 20 19 20 19 20
0 0 0 0 0 A R 0 0 A 0 1 B 0 0 A R
0 0 1 0 0 A R 0 1 A R 0 1 B 0 0 A R
0 1 0 1 0 A 0 1 B 0 1 B 1 0 A
| 0 1 1 1 0 A 0 1 B 0 1 B 1 0 A
1 0 0 0 1 A 0 0 B 0 0 B R 0 0 B R
1 0 1 0 1 A 0 1 B R 0 0 B R 0 0 B R
| 1 0 0 1 A 0 1 A 1 0 B 1 0 B
1 1 1 0 1 A 0 1 A 1 0 B 1 0 B

AE = |CAM + A Loaded

BE=ICBM + B Lloaded

Incr 19 = Ctrl Input to Incrementer Pos 19,
Incr 20 = Ctrl Input to Incrementer Pos 20.
A.B Indicates Register Which Is Fetched.

R Indicates Inputs Cannot Occur and Therefore
Entry Is Redundont.

FIGURE 69. CHART FOR IC FETCH ADDRESS GENERATION

82 12-65

instruction buffers remain unchanged throughout the
repeat instruction.

IC Fetch Rule (Figure 5268)

If either A or B is empty and if no block exists, an
IC fetch request is made. If both A and B are empty,
the priority circuitry described in the next section
determines which register is requested first. This
section describes fetches to the A register only:
similar logic is used to make fetches to the B regis-
ter.

At the same time as an IC request is made to the
BCU, the trigger instruction counter fetch to A exe-
cute (ICAE) is turned on. On any A clock on which
an IC request is made, SAR is set from the incre-
menter. This is controlled by not block IC-M, and is
described under ""Block IC Rule.' ICAE turns off
unless it is turned on. It is turned on each cycle a
request for A is made, and it turns off on any cycle
that a request for A is not made. ICAE has two func-
tions. It is ORed with ICBE to indicate that the fetch
is to be returned to the A or B register. If a fetch to
A-B is indicated, BCU examines bit 20 of SAR and
sets the A return trigger in BCU if SAR20 = 0; and
it sets the B return trigger in BCU if SAR20 = 1.

When the accept is received from BCU, ICAE
steers the accept to turn on ICAM. ICAM is the IC
fetch to A outstanding trigger. At this time A advance
turns off ICAM and turns on A loaded.

The full logic for generating the A empty condi-
tion of the previous section is described here. A
appears empty to the fetch logic if the following ex-
pression is 1:

A TOADEDL . TCAM Lth - (ICAE Lth - ACCEPT)

+ID A EMPTY + TON T2

The first term represents the normal empty con-
dition and the second term is the anticipatory term.
Note that ICAEL. ACCEPT is included in the first
term. This quantity makes the register look full im-
mediately upon receipt of the accept for an IC fetch
to A. Therefore, ICAE will not stay on after the
accept has been generated. The normal fetching is
shown in Figure 66.

If the B register is empty at the same time as a
fetch to A is being made, it is possible that the fetch
request to A is followed by a fetch request o B. The
request to B in this case occurs on the cycle following
the cycle of the accept for the first fetch. The re-
qrest to B is not made on the cycle of the accept be-
c use the address circuitry (see "IC Address Rule")
is not able to respond until ICAM is turned on. This

causes no deterioration in performance because of
the two cycle bus rate of the BCU.

If the CPU is being single cycled, the sequencing
of the IC fetch sequencers is slightly modified. At
this time, single clock pulses are generated upon each
depression of the start button. All running clocks
continue to operate, however, in the normal high-
speed manner.

Pulsed accept is a 200-nanosecond latched line
which straddles the AR clock following the start of
storage activity. Accept rises at the same time as
pulsed accept and falls after the first A clock fol-
lowing the start of storage.

The request trigger in BCU (CPU request) turns
off with each A clock unless it is turned on by a re-
quest from the CPU at a time when accept is not on.
The request trigger is also turned off by PULSED
ACCEPT + AR CLK. Since single-cycle pulses can
be issued at a very slow rate only, any word requested
on one A clock will be returned to the CPU before the
next A clock. The BCU request trigger is turned off
by pulsed accept and cannot be turned on with the next
A clock.

ICAE is turned on and off with an A clock. ICAM
is turned on and off with an AR clock. A loaded is
turned on with an AR clock and is turned off with an
A clock. If an IC request is made while single cycling,
ICAE will turn on and stay on until the next A clock.
ICAM will turn on and off at high speed, and A loaded
will turn on when ICAM turns off. See Figure 68.

IC Address Rule (Figures 5269 and 69)

Whenever block IC-M is off, the ICR is gated to the
inerementer and an increment amount is added into
positions 19 and 20. The amount to be added to the
ICR is shown in the chart in Figure 69. The output
of the incrementer is gated into SAR if no block IC
condition exists. The chart also indicates whether the
generated address is for the A register or the B reg-
ister. This chart is not used for branch fetches or for
the first IC fetch during an IC recovery.

This chart indicates how addresses are generated
for any other IC fetch situation. AE is equal to the
expression A LOADED - ICAM, and BE is equal to
the expression B LOADED - [CBM. AE (BE), there-
fore, is an unlatched line which is related to the need
for a fetch to A(B). AE and BE are used in conjunc-
tion with ICR 20-22 to generate the increment amount
for the incrementer and are the five coordinates of
the chart. Whenever an R appears in the table, that
entry represents a situation which can never happen
if the machine operates correctly. An analysis of the
various entries is:

Consider those entries for which (ICR 20 =0) »
AE . BE = 1. This indicates that the ICR is in the A

Instruction Preparation 12-65 93

register, A does not need to be fetched, and B does
not need to be fetched. Therefore, good instructions
in A are currently being processed, but the B regis-
ter must be fetched if instruction processing is to
proceed uninterrupted. Since instructions are fetched
sequentially and the ICR addresses an instruction in
the A register, bits 0-20 of the proper address for a
fetch to B can be obtained by adding al into position
20 of the ICR. Since SAR bits 21-23 are ignored by
the BCU, no problem is created if the output of incre-
menter positions 21-23 (= ICR 21-23) is set into SAR
21-23 along with the rest of the address.

If (ICR 20 = 0) - AE . BE, then A must be fetched
and B does not need to be fetched. This situation can
arise while processing the last instruction in the A
register. At least one cycle occurs after the AE
condition has been recognized and before the ICR has
been updated to the B register. During these cycles
(ICR 20 = 0) - AE - BE =1,

(ICR 20 = 0) * AE - BE cannot occur until at least
one good T1 cycle has been done on an instruction
located in the A register. This can be illustrated by
considering the situation with (ICR 20 = 0) - AE and
with no instructions processed in the A register.

The ICR has therefore just left the B register, there-
by emptying that register without any fetches being
made. If AE =1, then the A register has been empty
for an extended period. The situation is now (ICR

20 =0)- AE - BE. As will be shown, the A register
is fetched at this time. The situation now becomes
(ICR 20 = 0) - AE . BE. Thus. (ICR 20 =0)- AE - BE
cannot occur until an instruction in A is processed.

If the ICR addresses the first halfword of A, A
cannot be emptied by an instruction in A because it
would take a four-halfword instruction to empty A and
no instruction exceeds three halfwords. If the ICR
addresses the second halfword of A, A can be emptied
only through an SS instruction. For SS instructions,
however, IC fetching is always blocked during the
period between the recognition of the emply condition
and the advance of the ICR and this situation cannot
occur. Therefore, the top two entries in the situa-
tion now being considered are marked with an R for
redundant.

For the other two cases, since B is already loaded,
it is necessary to fetch the A register two storage
words ahead of the ICR. Therefore, a bit is added to
the ICR in position 19,

If (ICR 20 = 0)- AE - BE, both A and B must be
filled. If the ICR addresses any but the first halfword
of A, the AE condition occurs as just described for
(ICR 20 = 0)+ AE - BE. The only difference arises
from the fact that the previously emptied B register
has not yet been filled; therefore, the B register is

94 9-65

the register to be fetched. The address for B is ob-
tained by adding a bit into position 20 of the incre-
menter. Again, the situation for the ICR addressing
the second halfword of A is redundant because SS
instructions block the IC.

If the ICR addresses the first halfword of the A
register and AE- BE, there are no loaded instructions
available in the instruction buffers. Before the in-
struction at the address specified by the ICR can be
executed, that instruction must be fetched to the A
register and the ICR without any modification is used
as a fetch address.

The entries for (ICR 20 = 0) - AE - BE have meaning
because a fetch request can be made on the same
sample as A loaded is turned off; therefore, it is
necessary to generate a correct fetch address in
anticipation of an empty condition. An example of this
situation is shown in Figure 66. This column is the
same as the column for (ICR 20 = 0) - AE - BE because
the only new empty condition which can be generated
while ICR 20 = 0 is the A empty condition.

All of the above reasoning holds for entries in the
chart for which ICR 20 = 1. For these entries, AE
and BE must be interchanged in the discussion.

As described under "ICR Advancing,"” the genera-
tion of IC fetch addresses is not inhibited if there is
an IC high-order advance. At this time the ICR ad-
dress is incorrect because a carry from the ICR
low-order must be entered into position 19. While
gating the ICR to the incrementer, IC high-order ad-
vance forces a 1 into position 19, If an IC high-order
advance is taking place, ICR 20-22 = 000 or 001, or
010. If ICR 20-22 =010, an SS instruction is being
executed and IC fetches are blocked by the SS execu-
tion. If ICR 20-22 = 000 or 001, the chart indicates
that either 0 or 1 in position 20 must be added to the
ICR. If the entry is 0, the correct updated ICR (old
ICR + 1 in position 19) is obtained at the output of the
incrementer for IC fetching. If the chart entry is 1,
the (old ICR + 1 in position 19 + 1 in position 20) is
obtained at the output of the incrementer. This is the
correct value for making an IC fetch. As described
under "ICR Advancing,' bits 0-20 and 23 of the incre-
menter contain the correct updated IC high-order value
for all cases and are gated back into the ICR at the
end of the ICR high-order advance.

During IC high-order advance. IC fetch addresses
may also be computed and no special interlocks are
necessary to inhibit the IC fetching during this time.

Block IC Rule (Figures 5271, 5272, and 70)

Many instructions block IC fetches to ensure that no
interference in the usage of SAR or the incrementer
occurs. For all instructions which block the IC, the

=
_IT] [a I (6) A_L_ | A | | A | {
l T1 = T2 {l‘i 12 ”____Tl_ _____ 1____12__8
B e e—— e s i 5
/ DBk IC (IOP-Deccding) R o
e e e =k
TN-T2 ’ TN-T2 \
=t _Block IC-M == ——
f 4 TN,
f *TF Blk 1C-M N
e \‘= E 3 - 73
el Actual Block of IC Fetching & ===
N A | J1
Y e 1 |
1D Blk IC Block » e &
ol IC-M Lth If TN T2+ 1D Blk
™ T2

NOTE:
In case of branches or the execute
instruction, actual blocking moy be
anticipated by seporate logic.

FIGURE 70. BLOCKING OF IC FETCHING

trigger block IC-M is turned on at TN T2. Block
IC-M is turned on by TON T2 « ID BLK IC.IC fetch
requests and ICR (from the incrementer) to SAR
gatiniare inhibited by TON T2 - ID BLK IC +BLOCK
IC-M*~, The ICR, along with the appropriate incre-
ment amounts, is gated into the incrementer for IC
feteh address computation whenever block IC-M is
off. When block IC~M is turned on, this gating is
suppressed,

The timing for block IC-M is shown in Figure 70.
An example of an instruction stream utilizing block
IC-M is shown in Figure 67. The uses of block IC-M
by instruction classes are described below.

One Fetch Class: For this class an operand is
fetched at TN T2. During the operand fetch the IC
controls are denied access to SAR. Upon generation
of accept the IC fetch mechanism is again allowed to
operate. ID ONE FETCH CLASSL: OPFL: ACCEPT-
TON BLK IC-M turns off block IC-M. An ICfetch
address is generated which can be set into SAR on
the next A clock. This is the earliest time that BCU
can accept another storage request because of the
two cycle bus rate. Therefore, the I unit controls are
able to operate BCU at its maximum rate in this
situation, if needed.

The instructions which belong to one fetch class
are most of the external fetch instructions for which

* TF Blk IC-M= IE TF Blk IC-M

+ VFL Ending » No Store Request

+ E TF Blk IC-M+ No Branch Op

+ Tsts Cplt+ Branch Unsuce

+ Branch LC - Branch Suce M

+ Accept+ ID One Fetch Class

+ Accept- E TF Blk T2-M on Accept
+ Accept- VFL Ending

+ Accept - IE TF Blk T2-M on Accept

no storage requests are made during E time. These
include instructions such as A, SD, DE, and TM.

STH, STC, CVD, ST, STD, STE, SSK, ISK, RD,
STM, MVI, NI, OI, XI, LM and SS Instructions: For
these instructions the execution unit make use of SAR
for storage fetches and stores. Therefore, the IC
controls are inhibited from making any requests until
the last storage request of E time has heen accepted.
At this time the execution unit (I unit controls in the
case of S8 instructions) generates a line TTF block
T2-M on accept. This line, which conditions the
turn-off of block T2-M is also used to condition the
turn-off of block IC-M. The condition which turns
block IC-M off is TOF BLK T2-M ON ACCEPT -
ACCEPT - TON BLK IC-M, except for SS instruc-
tions. For SS instructions, (SSOPL. VFL ADRL) -
(STORE REQUESTL + ACCEPT) turns off block
IC-M. As described under "SS Instructions," SsopL-
VFL ADRL occurs at the end of the SS instruction.
At this time, if there is no store request outstanding,
block IC-M is turned off immediately. If there is a
store request outstanding, block IC-M is turned off
upon receipt of the accept.

Branches: For branch instructions and EX, IC fetches
are blocked until the end of the branch instructions.
This gives the branch controls access to both the
incrementer and SAR.

Instruction Preparation 9-65 95

BALR (R2 =0), LA: For these instructions (and cer-
tain other instructions), instruction execution makes
use of the incrementer. Therefore, block IC-M is
turned on to prevent IC fetch address generation from
interfering with the instruction execution use of the
incrementer, The E unit turns off block IC-M when

it has finished using the incrementer.

LPSW: Block IC-M is turned on for this instruction
because a fetch is made at TN T2. It is turned off
when the new PSW has been loaded and an IC reecovery
has been started.

Diagnose: Block IC-M is turned on because the IE
unit makes a fetch during E time. Block IC-M is
turned off by a sequencer (IE 3); it is turned on by
the proceed from the PDU. This ensures that the IC
fetches will always start at a known time after a
diagnose.

Block IC-M is also turned on during interrupt
routines. In this case the turn-on of block IC-M does
not block IC fetches. A block is not necessary be-
cause the interrupt lines directly block IC fetches at
this time. Block IC-M is turned off when an IC re-
covery is started.

Block IC-M is turned on by a computer reset. If
the reset resulted from an IPL or a machine check,
block IC-M is turned off at the end of the appropriate
routine., If the reset resulted from a manual reset,
block IC-M is turned off by set IC or set PSW.

Pre-Block IC Rule (Figure 5271)

Whenever the GSR is advanced to a new instruction,
the new instruction (if in A-B) is available at the out-
put of the eight-way OR off the A-B registers. If a
BALR, BAL, BCTR, BCT, EX, BXH, or BXLE in-
struction is decoded at this point, IC fetching is
blocked. This block does not prevent generation of
IC fetch addresses and their placement into the SAR.
The block inhibits only the IC fetch request line to the
BCU. The line which generates the block is IOP
LOADEDL - [PD (BALR + BAL + BCTR + BCT + EX
+ BXH + BXLE%] L,

The effect of this rule is to block unnecessary IC
fetches before branches which have a high probability
of being successful branches. Thus, storage activity
before the branch fetch is decreased by blocking the
IC. This increases the probability that the branch
fetch can be made without running into storage con-
flicts. BCR and BC are excluded from this block be-
cause they are not considered to be branches with a
high probability of success.

96 12-65

IC Fetch Priority Rule (Figures 5273 and 67)

The action of the previous rules is summarized in
the following text.

The empty status of a register is recognized at
TN T2 of the instruction that empties that register.
IC fetch requests are made to that register unless
some instruction in the process of execution gener-
ates a block to inhibit IC fetching. This block may
occur through the action of block IC-M or through
the action of pre-block IC. IC fetch requests may or
may not be accepted by the BCU. A fetch request
which has not yet been accepted by the BCU may be
cancelled at any time by a block that is generated by
a new instruction. It is possible for the IC fetch to
he made very early, and it is also possible for IC
fetches to be blocked out continuously by instruction
executions until both registers are emptied. If both
registers are emptied, all IC blocks fall and both
registers are fetched in proper order.

These rules give low priority to IC fetches. When~
ever an IC fetch request is recognized to cause inter-
ference with instruction execution, the instruction
execution is given priority. This has two advantages:
IC fetches cause minimum interference with instruc-
tion executions; if IC fetches are not forced prema-
turely, they will be recognized to be unnecessary if
a successful branch is encountered before both regis-
ters are emptied. Therefore, an unnecessary stor-
age cycle is not taken. For normal instruction se-
quences (that is, sequences not containing success-
ful branches), a net performance loss is suffered
if both registers are allowed to empty.

With both registers empty, it is necessary to make
an IC fetch while the I unit remains idle. This results
in a significant number of lost eycles. It is better to
take a smaller penalty by forcing IC fetches at some
earlier time when instructions are still available for
processing. As a result IC fetch priority is incorpor-
ated to allow IC fetches to be made as late as possi-
ble while minimizing the chances of the I unit being
idled by lack of instructions. The action of this rule
is accomplished by blocking TN T2 at times which
are described in the following text.

TN T2 is blocked by:

1D (BROP +RR) * (GSR 21 =1 + GSR 22 =1)
+ (GSR 20 =0+ B FTCH REQUIRED +GSR20=1"
A FTCH REQUIRED)
where A FTCH REQUIRED =ICAE Lth . ACCEPT .
[CAML . A TOADED-
and B FTCH REQUIRED =ICBE Lth - ACCEPT -
I[CBML - B LOADEDL .

When we consider the A fetch required situation, note
that no block of TN T2 can be generated by this rule
until the GSR addresses the second, third, or fourth
halfword of B. This incorporates the concept of not
forcing IC fetches prematurely.

If the GSR addresses one of the above halfwords
and the instruction is an RR instruction, again no
block is generated. A block is not generated because
no interference is possible between RR instructions
and IC fetches (except for ISK, SSK, and the branches).
In all probability the IC fetch will be made without any
special block to hold up RR execution.

If the GSR addresses a branch instruction (RS, RX
branch, or RR branch with R2 # 0), again IC fetching
is not given special priority. This is for the same
reason that the pre-block IC rule was incorporated. It
is undesirable to have IC fetches, which might prove
unnecessary, made before a branch instruction. If
branches were not excluded from bringing up IC fetch |
priority, there would be a conflict between this rule
and the pre-block IC rule.

If the GSR addresses any instruction which starts
in the last three halfwords of B and which is neither
a branch nor an RR instruction, the IC fetch priority
holds up TN T2 until a fetch to A has been made.

Since RX instructions are assumed to be the instruc-
tions with the highest rate of occurrence, and if A is
empty, an instruction starting in halfwords two, three,
or four of the B register is probably the last com-
plete instruction available in the buffers. It is the
effect of this rule to force any unmade IC fetches be-
fore TN T2 of the last probable instruction in the IC
buffers. As aresult, a new instruction will probably
be available in the buffers when needed for execution.

Instruction Fetching--Special Cases

Program Store Compare (Figures 5263 and 71)

If a store is made by the CPU to an address which has
been prefetched to the A-B register, it is necessary
to refetch that register. In the 2075 refetching is
made whenever a store is made to either the storage
word addressed by the ICR or to the storage word
located in the next location. To implement this
feature, two compares are provided which enable
comparison between the store address and the ICR,
and between the store address and the next address
after the ICR. Whenever a store takes place (except
stores made by interrupts), these compares are
tested without regard to whether or not the instruc-
tion buffers have been loaded. If a compare occurs,
an IC recovery is taken as an E time interrupt and
the buffers are refetched.

Bits Compared
Compare IC Ho Adv IC Ho Adv
H: ICR 0-20 _—
H: Incr 0-20 0-19

ICR—= Incr

R t tes —a
Store Request Gotes +1 —# Incr Position 20

ICR —+ Ince

Ho Adv G —
& Ty Gutes +1 —* Incr Position 19

If all bits in any of the indicated Compares are satisfied when store
request is on, the trigger Prgm Stor Cmpr is turned on,

FIGURE 71. CHART FOR PROGRAM STORE COMPARE

Whenever a CPU store (except an interrupt store)
is made, the store request trigger (Figure 5263) is
turned on. This trigger gates the ICR into the incre-
menter and adds a 1 into position 20. At this time
block IC-M is always on.

At the time that a store address is set into the SAR,
the address is also set into H, There are two compares
off of the H register. The usage of the compares is
shown in Figure 71. The first compare is a full com-
pare of the H bits 0-20 to ICR bits 0-20. The second
compare is a full compare of H bits 0-19 to the incre-
menter output bits 0-19., This second compare can
be modified to include bit 20.

If IC high-order advance is off, 0-20 of H is com-
pared to 0-20 of the ICR and 0-20 of H is compared
to 0-20 of the incrementer output. Bits 21-23 are
ignored because they are not relevantto external storage
addresses. If either compare is satisfied while store
request is on, program store compare is turned on
and an IC recovery will result at the end of the instruc-
tion. If IC high-order advance is on, the ICR is two
full storage words behind its proper value; therefore,
the H to ICR compare is blocked by IC high-order ad-
vance. Since +1 is added into incrementer position
19 by the IC high-order advance and +1 is added into
incrementer position 20 by store request, the incre-
menter output is one full storage word ahead of the
correct ICR value., Whenever IC high-order advance
is turned on, bit 20 of ICR is 0. If the H bits 0-19
are compared to incrementer outputs 0-19, the
following compares are effectively generated:

1. 0-20 of H to 0-20 of the correct ICR.

2. 0-20 of H to 0-20 of the next address that
follows the correct ICR.

If the H to incrementer compare is satisfied, pro-
gram store compare is again turned on.

Instruction Preparation 9-65 97

Interrupt Entry

Whenever an interrupt is detected and one of the three
interrupt lines into the I unit sequencing controls
rises, IC fetches are immediately blocked. The IC
fetch controls may still attempt to make IC fetches,
but since no storage unit can be started, it is im-
possible for the request to be acknowledged. All IC
fetching is terminated by the first interrupt sequences.

At this time the IC controls are reset and block
IC-M is turned on (unless the interrupt is an IC
recovery only).

IC Recoveries (Figures 5274 and 72)

During an interrupt routine, the instruction LPSW, or
the manual operation set IC or set PSW, a new value
is placed into the instruction counter. It is necessary
to refetch the A and B registers. At the appropriate
time after the IC has been loaded, a signal is gen~
erated by the unit that loads the IC. This signal starts
an IC recovery. A typical example of an IC recovery
is shown in Figure 72. This signal resets A loaded,

B loaded, block IC-M, and block T1-M; and it also

by ICR 20.

IC recovery L blocks the control inputs into the
gate select adder and gates the gate select adder into
the GSR with an A clock. Thus, the GSR is correctly
loaded for the first instruction.

IC recovery destroys the normal method for gen-
erating an IC fetch address and for establishing
priority between the A and B registers. The ICR is
gated directly through the incrementer to the SAR,
Since block IC-M is off, an IC fetch is now made.
This fetch is from the location that is addressed by
the ICR and it.goes to the instruction buffer indicated

A]

“-JC recoveryif resets J loaded to ensure that it is
t len on if a previous instruction failed to reset it.
f(recovery is reset by PULSED ACCEPT -
(Ié& '+ ICBEL) » AR CLK; therefore, IC recovery
turn{:‘i when the first fetch is accepted. The IC
fetch trols nowé erate normally and they correctly
fetch the next storage word for the second instruction
buffer.”T1 turns on-a cycle after block T1-M is
turned off and instrucl;'i"gn sequencing now proceeds
normally.

©
sets IC recovery. ¢ |
[%
L% %
: 3 :
! _,,t‘}.
A Clock 2
7 1 i 1 1 |_% =
AR - - 8
n | 11 ' A F 1l i L e
Start IC_Recov =
i e = P
———— A looded ‘ ‘; ::J
_— -
-_——— B looded I g E
= e——— Block 1C-M S; i
P | | IC Recovery |
ST T T Bleck T1-M
et e e e | 3 Looded
s el 0 e o 19 it
e I To Incr Pos 20 e
= o Length to Gt Sel Adder D e
= A e
e ICAM SO
—T o L
Gate Sel Adder —= GSR . | 1CBM DO
e e N A e
— Kteg N———oo-S" icReg
—_—A —
ICR 18-23 10 0010 001 0o Recovery Address
GSR 20-22 510 0010,

FIGLRE 72. EXAMPLE OF TIMING FOR AN IC RECOVERY

98 12-65

Firsl instruction Iy on AR,

FAULT LOCATION TESTING, LOGOUT, AND MAINTENANCE CONTROL WORD

INTRODUCTION, FLT

e Tests are executed as they are read from mag-
netic tape.

e Each test checks a single CPU element or a small
group of circuits.

e The status of a single CPU indicator shows the
result of the test.

e Each test is executed eight times before the next
test is tried.

® A hardware failure stops the testing; a diagnostic
index reference is displayed in the test register.

o Each test consists of five major steps:
1. Load the test into storage.
2. Secan into the CPU triggers.
3. Advance the control clock (optional).
4, Compare a trigger status to an expected
result.
5. Execute the nexttest or terminate the testing.

Fault location testing (FLT) on the 2075 is a main-
tenance aid. Special FLT hardware in the CPU, in
conjunction with test words read from tape, enables
the customer engineer to check out the CPU circuits.
The tests run until a failing circuit is found; the fail-
ing circuit stops the testing and displays in the test
register the number of the test that failed.

The customer engineer then looks up the failing
test number on a listing; the listing shows the test
points of the circuits that could cause the failure, and
the voltage levels (up or down) that should appear at
these points. He may replace the questionable cards
directly, or he may repetitively run the failing test
and scope the test points to locate the failure.

The FLTs do not test the CPU functionally as do
diagnostic programs. For example, a diagnostic
program tests the multiply circuits by actually
multiplying two numbers and comparing the product
to a predetermined result. The FLTs, however, test
the multiply circuits (and all other circuits) one ele-
ment at a time: each trigger is checked to see
that it will turn onand off; where practicable, the in-
puts of each AND circuit are conditioned and a check
is made to see that the output is correct, etc. The
entire CPU is checked in this manner.

There are approximately 100,000 tests on thetape.
Each tests a single element or a small group of
elements for a single condition or output. For ex-
ample, 72 separate tests from the tape check the 72
triggers of the J register to see that they can turn
on. Seventy-two other tests check the same triggers
to see that they can turn off. After all of the trig-
gers are tested (control triggers as well as register
positions), logical groups of circuits are tested,
such as the adders, decoders, etec.

NOTE: Although in the pre d following
descriptions, the adv m FLT opera-
tion is considered to b the pemgf cycles that
the particular test calls
currently call for no a
only one machine cycl

To summarize, FL

the FLTs used
 an advance of

into storage

1. Read a test fro

2. Secan into the C%%ge m the test
words just loaded into GQ

3. Advance the controlled c predetermined
number of cycles _{

4, Compare a sing cted in#icator with the
expected result bit

‘ﬁ.
5. Run the next tes%q r terminate
the testing w

To test a group of 1ffie RHth to the logic
must be properly cond a test of the out-

put will be meaningful. Eacht e tape, there-
fore, sets up the CPU gs;—;atus (certain
triggers turned on) th%t rticular output
of the logic in questio 15 one of the in-
dicators on the syste l. Any one of
1216 indicators on the can be.-selected as the
indicator to reflect the s Of the logic being tested.
After the CPU is set a test (scan in), the prop-
er indicator is selected and its sfatls is compared
with an expected result bit in a register that was also
set as part of the CPU set-up. If it is an equal com-
pare, the test passed; if it is an unequal compare,
the test failed.

In testing many of the circuit groups, it is not
enough merely to condition their inputs and then have
the output checked. Some logic requires that after the
set-upa number of machine cycles must occur before
the logic reaches a state that can be tested. There-
fore, after the set-up (scan in), the controlled clock
is started and allowed to run for a predetermined
number of cycles (advance cycles). Then the compar-
ison is made between the selected indicator and the
expected result bit.

FLT, Logout, and Maintenance Control Word 12-65 99

Test Tape Format

The test tape contains, in order: one IPL control
record consisting of three channel command words
(CCWs); one channel control recerd consisting of five
CCWs; a succession of 17-word tests blocked with
approximately 50 tests per record (Figure 73).

The IPL record performs exactly as in the initial
program load procedure: the first three double words
(CCWs) are read from tape into double word storage
locations 0, 1, and 2. The channel obtains the CCW
from location 1 and uses it to direct the reading of
the next record, the channel control record (five
CCWs), into storage, starting at double word loca-
tion 16, The channel control record consists of the
CCWs that will cause the channel to read the suc-
ceeding 17-word tests alternately into the storage
buffer areas.

The first few test records on the tape, hard core
tests, checkoutthe FLT circuits. These tests check
the FLT hardware in three levels. The first-level
tests are executed manually by single cycle, the
results being observed in various indicators; they
check the FLT sequencing triggers and the scan-in
paths to the J register.

The second and third-level tests are executed
automatically; the second level checks out the FLT
seek circuits; the third level checks out the FLT
switch matrices.

Following the hard core tests are the CPU FLTs
that require no advance cycles (zero-cycle tests),
which test the CPU triggers for turn-on and turn-off.
Following these tests are all the other CPU FLTs,
ones that require an advance of one cycle or more.

The last test in each record is a dummy test. Its
function is to keep the channel from reading across
the interrecord gap before the result of the last real
test is known so that after a last real test is executed,
a halt or a backspace of tape can be executed before
the interrecord gap is reached.

Each test consists of seventeen 64-bit words,
organized in the following manner:

Word 0, Test Number: Bits 46-63 contain an 18-bit
number which is used to identify the test. Bits 0-45
are not used.

Words 1-15, Test Input Pattern: This is a 960-bit
field which is used to specify the initial state of the
CPU. Each bit in this field corresponds to a trigger
in the CPU, and the triggers are set on or off de-
pending on whether the bits are 1s or 0s.

Word 16, FLT Control Word: This word contains

the following fields:

BITS 19-21, CLOCK PULSE SELECT: These bits
select the kinds of control clock pulses that will be
emitted during the clock advance portion of the test.
Bit 19 selects the A pulses, bit 20 selects the early
B pulses, and bit 21 selects the B and late B pulses.
These three bits may be in any combination.

BITS 22-25, CLOCK ADVANCE FIELD: This field
contains the number of control clock cycles that
must be executed before the trigger specified by the
comparison bit address is compared to the expected
result bit.

BIT 32, UNCONDITIONAL TERMINATION BIT: This
bit causes the testing to stop after the current test,
regardless of whether the test passed or failed.

BIT 33, CONDITIONAL TERMINATION BIT: This
bit causes the testing to stop after the current test
if the trigger specified by the comparison bit ad-
dress does not match the expected result bit.

Total Tests: Approximately 100,000

Approximately 50 Tests o 50 More Tests
IPL Channel
Control Control First Test Second Test Etc.
Record Record (17 Words) (17 Wourds)
cew|cowfcew| [cow|cewlcew|cow|cew s f JD 2
First Second Third Fourth
Record Record Record Record
FIGURE 73 TEST TAPE FORMAT

100 12-65

BIT 34, EXPECTED RESULT: This bit is compared
to the state of the trigger specified by the comparison
bit address. If they match, the test passed; if they
do not match, the test failed.

BITS 34-35, COMPARISON BIT ADDRESS: This
field specifies which of the possible 1216 triggers
will be compared to the expected result bit.

BITS 46-63, DIAGNOSTIC INDEX NUMBER OR
ALTERNATE TEST NUMBER: Normally, this field
contains the number of the current test; therefore,
on a stop, the failing test number is displayed in
the test register.

If desired, on the passing of a test, certain suc-
ceeding tests on the tape may be skipped, the next
test to be executed being selected by the alternate
test number. This method of operation requires that
no termination bhits be present and that the fail trig-
ger be off after the eighth execution of a test. The
FLT next-test-selection circuits have the capability
for this mode of operation, but it is expected that
this mode of operation will not be used and that all
tests on the tape will be executed in sequence, with
no skips.

FLT Sequence

Figures 6200 and 6201 show the sequence of events
and the data flow of FLT. Throughout the discussion,
refer to the flowchart and data flow diagram.

There are five major steps in an FLT opera-
tion:

1. Load the tests into storage

2. Scan the test pattern into the CPU triggers

3. Advance the control clock a number of cycles

4. Compare the status of a selected trigger to
an expected result

5. Select the next test to be executed or term-
inate the testing

Load the Tests

To load the first record from tape into storage, the
customer engineer follows a procedure similar to
the one used on initial program load. The FLT mode
switch is set to FLT, the rotary switches are set
to the addresses of the channel and tape unit, and
the load pushbutton is pressed. The system resets
and the tape unit starts. The first record is read
from tape (three double words) and placed in stor-
age locations 0, 1, and 2 (double word locations).
The channel then obtains the command from loca-
tion 1 (a read command) which causes the next 40

bytes, the second record on tape, to be read and
placed in storage, starting at double word location
16. This record consists of the five CCWs that will
load into storage all of the following test records on
the tape.

After the 40 bytes are placed into storage, the
channel obtains the next command from location 2
because of command chaining. This second command
is a transfer-in-channel, which transfers control to
the command at location 17, The command at loca-
tion 17 reads the next 136 bytes (17 test words)
into storage area A, which starts at double word
location 16,384,

After the 136-hbyte read is completed, the channel
fetches the command at location 18 because of data
chaining. The command at location 18 transfers con-
trol to the command at location 19 and sends a trans-
fer-in-channel (TIC) pulse to the FLT controls. The
command at location 19 reads the next test into stor-
age area B, which starts at double word location
16,416.

After storage area B is filled, channel control is
transferred back to the command at location 17 and
another TIC pulse is sent to the FLT controls. In
this manner, the channel loads tests alternately into
areas A and B as fast as data can be read from the
tape.

Each TIC pulse signals the FLT controls that a
buffer area in storage has just been filled with a test.
On receipt of the TIC signal, the FLT controls ex-
ecute the test eight times, while the next test is being
loaded into the other buffer area. The CPU is fast
enough so that even after executing a test eight times,
the FLT controls are idle, waiting for the next TIC
pulse.

Scan In

Scan inisthe part of the FLT sequence that sets up
the CPU triggers according to the 15 test pattern
words in a storage buffer area. The control clock
is not running during scan in; a special clock, the
scan clock, creates the timed pulses necessary to
make the storage requests and gate the data from
storage into the CPU triggers. The scan clock, once
started, goes through seven stages (0-6) and then
stops.

The TIC pulse from the channel makes the initial
storage request. The BCU takes the address for the
storage operations from the channel SAB positions
as follows:

0-5 - Always 0
6 - Always 1
T-14 - Always 0
15 - Storage section trigger
16-20 - Word control counter positions 0-4

FLT, Logout, and Maintenance Control Word 12-65 101

Because the storage section trigger and the word
control counter (WCC) are reset initially, the first
location addressed in storage is double word loca-
tion 16,384 which is the beginning of buffer area A
and the location of a test-number word. This first
double word is fetched from storage and placed on
the channel SBO. Storage advance starts the scan
clock. The WCC being 0 indicates that the word on
the channel SBO is a test-number word; but since
the test-number word is used only when seeking a
new test to run, and the seek trigger off at this time
indicates no seek, the test-number word is allowed
to "die'" on the channel SBO. The WCC is stepped
to 1 and another storage request is made, this time
by a scan clock pulse.

Because the WCC is now 1, the second storage
fetch is from address 16,385, which is the first
test-pattern word. Storage advance again starts the
scan clock, and since this word is a test pattern word, it
is returned to the J register. The WCC =1 isde-
coded to gate the contents of the J register into a
certain group of 64 CPU triggers. The WCC is
stepped to 2 and another storage request is made.

This process continues, with the WCC addressing
storage for the pattern-word fetches and also pick-
ing out the group of 64 triggers to put the pattern
bits into, until all 15 pattern words have been
scanned in. At the end of the fifteenth scan in, the
WCC has been stepped to 16.

The scan in completed allows the FLT sequence
to go to the advance control clock portion.

Advance Control Clock

The next storage request fetches the double word
from the seventeenth double word location of the buf-
fer area, which is the location of the FLT control
word. The FLT control word designates how many
machine cycles will now be taken (clock advance),
which clock pulses are to be used, which trigger will
be examined afterwards for its status, what the
expected result is, and the number of the next test
to be executed if the current test passes all eight
times. Storage advance again starts the scan clock,
and since the WCC = 16, the FLT control word now
on the channel SBO is set info the FLT control word
registers.

The WCC = 16 and a scan clock pulse start the CPU
control clock. When the FLT control word was set
into the FLT control word registers, one of the areas
set up was the advance counter. The advance counter
was set to correspond to the number of cycles that
the control clock should run, and now as the control
clock runs, the advance counter is stepped down

102 12-65

until it reaches 0. When the advance counter reaches
0, it stops the control clock.

The advance completed allows the FLT sequence
to go on to the compare portion.

Compare

Advance completed causes the FLT controls to enter
the compare portion of the sequence by turning on

the compare cycle trigger and starting the scan clock.
During scan in, the WCC was used to address storage
and to scan the pattern words into the proper groups
of triggers. At the end of scan in, the FLT control
word was set into the control word registers, two of
the areas set being the word control counter and the
bit control register. The WCC now is used as a regis-
ter, not a counter, and inconjunction with the hit
control register, picks one trigger out of the possible
1216 to be compared to the expected result bit.

The compare cycle trigger and a scan clock pulse
make the comparison between the selected trigger
and the expected result bit. If it is an equal compare,
the pass trigger is set; if it is an unequal compare,
the fail trigger is set. This concludes one of the
eight times that the current test must be executed be-
fore it is decided what to do with the results of the testing.

A repeat counter is used to count the number of
executions of a test; one execution scans in the 15
pattern words, sets the FLT control word registers,
advances the control clock, and compares the selected
trigger to the expected result. The repeat counter
starts at count 0 and steps up 1 after each execution.
After the eighth execution (denoted by the repeat
counter at 7), the FLT operation is allowed to go on
to the next portion of the sequence, which is the se-
lection of the next test or the termination of the test-
ing.

Select Next Test or Terminate

As soon as a comparison is made with the repeat
counter equal to 7 (the eighth comparison), the fail
trigger is examined along with the unconditional and
conditional termination bits to decide upon a course
of action.

The FLT seek circuits were designed to allow for
automatically skipping certain lower-level tests if a
prior higher-level test passed, and conversely, to
execute the lower-level tests only if a higher-level
test failed. This concept of testing is the reason for
having conditional terminations.

The current concept of testing, however, is to
execute all the tests on the tape, with no skips, and to
halt the testing on the failure of any of the tests. To

implement this concept, it is likely that all tests will
have a conditional termination bit. The conditional
termination bit in conjunction with the fail trigger on
stops the testing.

Transmission Checks During FLT

When the channel discovers a data check, it sends the
scan data check signal to the FLT controls. Then the
channel automatically backspaces one record (by
transferring to location 16 in its control program) and
starts reading into area A again,

The FLT controls will, upon receipt of the scan
data check signal, step the retry counter, reset the
CPU, and wait for a TIC pulse from the channel.
When the TIC pulse is received, the FLT controls
start the testing from storage area A, repeating the
tests from the record that had the data check. If the
checks persist, the record will be retried up to 64
times. If 64 attempts to complete the record are un-
successful, testing stops and the manual intervention
required indicator turns on (W32).

If a control check occurs in the channel, the chan-
nel stops transmission and sends the scan control check
signal to the FLT controls. The signal stops the
testing immediately and turns on the manual inter-
vention required indicator.

If the BCU recognizes an address check, data check,

or invalid address check, this information is sent to
the FLT controls. On any of these checks, a stop

scan signal is sent to the channel to stop it from trans-

mitting data, followed by a start scan signal to make
it backspace the record and start reading into stor-
age area A again., The CPU and the FLT controls
are reset, and the retry counter is stepped. The

FLT controls then wait for a TIC pulse from the chan-

nel. When this pulse is received, the FLT controls
start the testing from storage area A, repeating the
tests from the record involved. After 64 unsuccessful
attempts to complete the test record, automatic test-
ing stops with the manual intervention required in-
dicator on,

Manual Controls for FLT

e A single test can be run repetitively.

® A test can be single-cycled.

® The FLT control word registers can be set up
from the data keys.

e Testing can be restarted at any point on the tape.

FLT Mode Switch: This switch enables the system

to run fault locating tests. In FLT mode, CPU stor-
age requests and CPU select channel lines are
blocked, the initial program load function is modi-
fied, and the channel specified by the rotary switches
is conditioned for FLT operation.

Repeat FLT Switch: When the system is in FLT
mode, this switch allows the fault locating test
specified by the test register to be executed re-
petitively, independent of normal branch and stop
conditions., The system reset or stop FLT push-
button will halt the testing.

Single Cycle FLT/Log Switch: This switch prevents
‘the normal turn-on of the scan clock, but allows the
scan clock to run through its seven stages whenever
the start FLT/log pushbutton is pressed; thus, an
FLT or a logout operation may be stepped by in-
crements of the total scan clock.

Load FLT Control Word Pushbutton: When the FLT
mode switch is active, this pushbutton causes the
contents of data keys 19-63 to be set into the FLT
control word registers:

M FLT Control Word Field

19-21 Clock pulse select

22-25 MCW counter (clock advance field)
32 Unconditional termination trigger
33 Conditional termination trigger
34 Bit-compare trigger

35-39 Word control counter

40-45 Bit control register

46-63 Test register

In addition, seek mode is set. If testing is then
restarted via restart FLT I/0, the first test to be
executed will be the one whose test number matches
the contents of the test register.

Stop FLT Pushbutton: When the system is in FLT
mode, this pushbutton halts the FLT controls at the
end of the test currently being executed. Channel
transmission is stopped and the channel disconnects
at the end of the record.

Start FLT/Log Pushbutton: When the system is
stopped in FLT mode, this pushbutton restarts the
execution of the test last performed. The test will
be repeated until either stop FLT or system reset
is pressed. The test is reread from the A/B buffer
area of storage; the channel and tape are not acti-
vated. If the single cycle FLT/log switch is on, the
action of the start FLT/log pushbutton is as described
under "Single Cycle FLT/Log Switch.'

FLT, Logout, and Maintenance Control Word 12-65 103

Restart FLT 1/0 Pushbutton: When the system is in
the FLT mode, this pushbutton initiates a backspace
record in the channel. The channel then rereads the
record into storage area A, and the normal automatic
test routine is resumed.

Indicators for FLT

Manual Intervention Required (W32)PR 031: This
trigger turns on to indicate that the result of the test
is not valid and that manual intervention is necessary.
This situation ecan be brought about by persistent
control checks or data checks from the channel, or
persistent address, data or invalid address checks
from the BCU.

The manual intervention trigger is turned off by
system reset,

Pass, Fail (W34,35) PR 201: During the compare
cycle of each of the eight executions of a test, the
pass trigger or the fail trigger is set to indicate
whether the execution passed or failed. The triggers
are turned off after the eight executions and after the
decision is made whether to select the next test,
seek the next test, or stop the testing.

Seek (W36) PR 271: This trigger turns on during the
select-next-test portion of the FLT sequence (after
the eighth execution of a test) to cause a seek of the
next test. A seek of the next test is called for if
there are no termination bits and the current test
passes, or if the FLT control word is entered man-
ually.

The seek trigger causes each succeeding test to
be rejected until a test is found whose number is
equal to the number in the test register. An equal
comparison indicates that the next test to be executed
is now in storage buffer A or B and is to be scanned
in.

Loop On Test (W37) PR 271: This trigger causes the
same test to be executed repetitively, without stop-
ping. Loop on test is activated when the repeat FLT
switch is on or when the start FLT/log pushbutton is
used for starting. System reset or the stop FLT
pushbutton will halt the testing.

Storage Section (W39) PR 271: This trigger determines
whether storage bufferarea A orstorage buffer area Bis
addressed when the FLT controls send an address to
the BCU. The FLT operation starts with the stor-

age section trigger off, which causes the first scan

in to be from area A; the trigger is complemented
after the eighth execution of each test to cause the

next scan in to be from the alternate storage area.

104 12-65

Advance Cycle (W41) PR 241: This trigger turns on
as the FLT control word is reading out of storage

(a scan clock pulse and WCC = 16) to set the word into
the FLT control word register and to start the con-
trol clock. The advance cycle trigger also starts up
D1, D2, and D3 sequence; these three triggers mon-
itor the advance counter so that the control clock can
be stopped when the count is reduced to 0. The ad-
vance cycle trigger turns off when the compare cycle
trigger turns on.

Compare Cycle (W42) PR 251: This trigger is on for
one cycle following the advance portion of the FLT
operation to make the comparison between the se-
lected CPU trigger and the expected result bit. The
pass trigger or the fail trigger is set as a result of
the comparison.

Scan In Cycle (W43) PR 241: The TIC pulse from the

channel makes a storage request. Storage advance
turns on the scan clock. Scan clock A2 pulse turns on the
scan in cycle trigger. The scan in cycle trigger and
scan clock A2 pulses gate the 15 test pattern words
from the J register into the CPU triggers. The scan
in cycle trigger turns off when the advance portion of
the test is entered.

Intermittent (X32) PR 201: This trigger turns onwhen

the pass and fail triggers are on at the same time and
indicates that the current test both passed and failed
sometime during the eight executions; the machine
malfunection, therefore, is intermittent.

The intermittent trigger serves only to turn on
the indicator. The trigger is reset by the start
FLT/log pushbutton (not in single cycle), the restart
FLT I/O pushbutton, system reset, or when the
retry counter is stepped.

Stop (X34) PR 151: This trigger stops the testing by
blocking further storage requests and sends a signal
to the channel to stop the tape. The trigger turns on
by (1) normal stop conditions, that is, an unconditional
termination or a conditional termination with a failure,
(2) by the stop FLT pushbutton, or (3) by any condi-
tion that brings about manual intervention required.

No Compare (X36) PN 181: This indicator is from
the exclusive OR circuit that compares the status of
the selected CPU trigger (the output of the bit switch
matrix) with the expected result bit (the bit compare
latch). The no compare indicator turns on when the
comparison is unequal.

Clock Select (X37-39) PR 061: These triggers are
a part of the FLT control word register. The trig-
gers are set from channel SBO positions 19, 20, and
21 by the pulse set FLT control word.

Trigger A (X37), when on, allows the emission of
A pulses during the clock advance portion of the FLT
sequence; trigger EB (X38) allows emission of the
early B pulses: and trigger B (X39) allows emission
of the B pulses.

Storage Request (X40) PR 151: This trigger makes
the storage requests of the BCU that are needed by
the FLT operation. The trigger turns off when the

BCU returns the accept pulse.

Logout (X42) PR 301: The logout trigger turns on by
(1) the log-on-check signal, which results from any
machine check that is not disabled, or (2) by the log-
out pushbutton when the CPU is stopped. The log-
out trigger stays on until the 19 double words of
indicator information have been stored.

Log Complete (X43) PR 301: This trigger turns on as
the last double word of log information is stored and
causes one of the following:

1, If the logout was the result of a log-on-check,
the CPU is reset and a machine check interrupt is
initiated.

2. If the logout was the result of pressing the log-
out pushbutton, the CPU stops. No reset occurs.

INTRODUCTION, LOGOUT

e Logout operation stores the status of 1216 CPU
triggers into storage.

e Logout can be automatic following a machine check
or can be caused manually by a pushbutton.

The state of the CPU is expressed in terms of the

binary states of the various triggers that make up

its registers and controls. Logout is the way in

which this state of the CPU is stored into fixed loca-

tions of storage. During logout, the binary states

of 1216 triggers are stored as the bits of 19 double

words; the words are stored starting at storage loca-

tion 16. Figure 74 shows the data flow of logout.
The logout process is executed by the scan con-

trols in the PDU. Most of this hardware is the same

as that used on FLT, such as the word control counter,

the word switch matrix, the scan clock, and so on.

For a logout to have meaning, the control clock in
the CPU must be stopped, which will always be the
case. Logout can be initiated two ways:

1. By a log-on-check signal from the CPU. The
log-on-check signal results from any machine check
that is not disabled.

2, By pressing the logout pushbutton when the
CPU is stopped.

Either of these conditions starts the logout pro-
cess by making a store request of the BCU, The
BCU takes the storage address from the channel SAB
positions as follows:

0-14 - Always 0

15 - WCC position 0

16 - Not WCC position 0

17 - WCC position 1

18 - WCC position 2

19 - WCC position 3

20 - WCC position 4

Since the WCC starts out at all 0s, the first ad-
dress taken by the BCU is for double word location
16. Also, the word control counter, through a de-
coder, selects word 0 of the word switch matrix.
The word switch matrix is fed by 19 groups of 64
indicator drivers, and the selection by the WCC of
word 0 picks out one of the groups to be gated from
the output of the matrix, These 64 trigger indica-
tions are placed on the SBI and are taken by storage
into location 16 whenever the storage store cycle
occurs.

Storage advance turns on the scan clock whose
pulses step the WCC to 1 and make another storage
request. Storage address 17 is now sent to the chan-
nel SAB and word 1 is selected at the word switch
matrix (another group of 64 indicator drivers). The
storage cycle stores the second group of 64 trigger
indications, and storage advance again turns on the
scan clock, which again steps the WCC and makes
a storage request. This process continues until all
19 groups of trigger indications are stored.

The storage advance signal, as the nineteenth word
is stored, generates a log complete signal. The log
complete signal causes one of the following:

1. If the logout was the result of a log-on-check
(a machine check occurred), the CPU is reset and a
machine check interrupt is taken.

2. If the logout was the result of pressing the log-
out pushbutton, the CPU stops. No reset or interrupt
occurs.

The two logout indicators (logout and log complete)
are described in the "Indicators for FLT'" section.

Logout may be single cycled by the following pro-
cedure:

1, Turn on the single-cycle FLT/log switch

2. Press the logout pushbutton

3. Press the start FLT/log pushbutton for each
run of the scan clock

FLT, Logout, and Maintenance Control Word 12-65 105

INTRODUCTION, MAINTENANCE CONTROL WORD

The maintenance control word register (MCW) is
primarily a test register, whose main purpose is to
dynamically test the various error checking stations
in the CPU or in a selected channel.

The diagnose instruction loads the MCW register
from the storage location specified in the address
portion of the instruction (Figure 75). Once the in-
struction is executed, certain operations of the CPU
and/or a selected channel are directly affected by the
bits in the MCW. These bits control their correspond-
ing operations in the CPU or channel until the bits are
removed from the MCW by another diagnose instruc-
tion, or until the MCW is cleared by system reset.

NOTE: MCW position 3 is reset not only by sys-
tem reset but also by computer reset when the CPU
is selected (position 7 off).

A feature of MCW control is the automatic stop
and logout of the CPU at a predetermined number of
machine cycles after the execution of the diagnose
instruction, A portion of the MCW is a cycle counter,
which is set initially on the MCW load to the desired
number of cycles. Following the diagnose instruc-
tion execution, normal instruction processing con-
tinues, but with the MCW bits controlling their cor-
responding operations and with the cycle counter being
decreased by 1 each machine cycle. When the counter
reaches 0, a pseudo machine check is forced which
stops the CPU and initiates the logout. If the proper
bits are initially loaded into the MCW, and if proper
operands are selected for the instructions that follow
the diagnose instruction, errors can be forced in the
CPU or the selected channel and the results of the
errors recorded in the storage logout area. In this
manner, the error detection circuits can be tested.

The diagnose instruction is a privileged instruc-
tion; that is, it is valid only in the monitor state. Be-
cause of its effect on system operation, the status of
the system is considered as having been switched to
a diagnostic state after the execution of the diagnose
instruction,

The effective address of the diagnose instruction
must specify a double word storage location. The
leftmost single word of this location loads the MCW
register.

MCW Control

The MCW register indicators are at console locations
M16-50.

MCW 0,1 and 2, Channel Decode: These three posi-
tions are decoded to select one of the seven channels

106 12-65

to be placed under MCW control. The bits and their
corresponding selection are:

MCW Positions Selection
g X 2
0o 0 0 Channel 0
0 0 1 Channel 1
p. AL 0 Channel 2
0 1 1 Channel 3
1 0 0 Channel 4
1 0 1 Channel 5
1 1 0 Channel 6

Any channel selected causes a diagnose select chan-
nel signal (a simplex line) to be sent to that channel,
which causes the channel to simulate the 1/O inter-
face. A bit in MCW 7 gates the multiplex diagnostic
lines from the MCW into the selected channel. The
multiplex diagnostic lines to the channels originate
at MCW positions 3, 4, and 5.

MCW 3, Force Carry: This bit has two functions,
one for channels and one for the CPU, If channels
are selected (by MCW 7), bit 3 activates a reverse
data parity line in the channel specified by MCW 0,
1, and 2 that (1) causes a reversal of the parity
bit that comes out of the channel's simulate I/O
register (which feeds the bus in), and (2) blocks the
parity checking of the bus in. For the channel,
therefore, bit 3 simulates the channel's readingout
of a bad byte from an I/O device.

If the CPU is selected (by not MCW 7), bit 3
causes a reversal of the half-sum parities in the
main adder and the exponent adder. This causes
an adder error only if the carry circuits do not
call for a reversal of the half-sum parities; there-
fore, by performing an addition with selected oper-
ands, and with MCW bit 3 on, the choice can be
made between correct and incorrect parity bits for
each byte in the data word.

MCW 4, Reverse Parity: This bit, enabled by
MCW 7, reverses the parity at the selected chan-
nel's byte counter, causing the byte counter parity
to be incorrect when the byte counter is updated.
This bit provides a means of testing the byte
counter check circuits.

MCW 5, Block Set: This bit, enabled by MCW 7,
causes the channel to block the setting of a control
check or data check due to incorrect parity on a
CCW or a data word fetched from storage., This

1216 CPU Binary
Storage Elements

[&4 Indicator Drivers

FLT Control Word Register
g | Woard Control Ctr i i

Logout-Group 1

| 64 Indicator Drivers

Logout-Group 2

1216 Inputs

| —

Word Selects 1 of 19
; . or 4B
L 64 Indicator Drivers Switch 64 Bit Groups PITI
Logout-Group 19 Matrix Doubleword
Storage Locations
Feamin | ' (CHSAB) J

\i
Main Storage

B
(8 Logout=-Group 1
 —— Logout-Group 2
Logout-Group 3 Doubleword
] Addresses
16-34

I
Logout-Group 19

FIGURE 74. LOGOUT DATA FLOW

Diagnose (Diag)
RS

|83|RI\R3\B2|DZ—|

0 ?E 1112 15)16 19 20 31

Ignored —

— E——

GR 2 20 31
I
| 2 D2
|
| 8 3l 20 31
|

|
GR 15

Addressing
Adder

‘ Main Sterage

I SBO Latch

| Addressing OR _I i “

0 31
& i 12 MCW

FIGURE 75. DIAGNOSE INSTRUCTION

FLT, Logout, and Maintenance Control Word 9-656 107

funetion allows invalid CCWs to be brought into the
channel to test sections of the channel's check cir-
cuits.

MCW 6, Send Stop: This bit conditions the diagnostic
stop and logout feature of the MCW, If CPU is se-
lected, (by not MCW 7) and position 6 is on, the CPU
stops and a logout occurs at a predetermined number
of machine cycles after the execution of the diagnose
instruction. The number of machine cycles that occur
is determined by the count set into the MCW count
field by the diagnose instruction. This automatic stop
and logout function allows the CPU to progress through
an instruetion (or instructions) only to the extent
specified by the initial MCW count.

MCW 7, Select Channel: This position, if on, selects
channels for MCW control; if off, the position selects
the CPU.

MCW 9, Channel Mark Parity to 1: This position is
independent of any selected unit. Bit 9 causes the
channel mark parity sent to the BCU by any channel
to be a 1, thereby allowing the storage mark parity
checking station to be tested.

MCW 10, Channel SAB Parity to 1: This position is
independent of any selected unit. Bit 10 causes the
channel SAB parity bits for bytes 0-7 and 8-15 to be
1s, thereby allowing testing of the parity checking
station at the BCU's addressing OR.

MCW 11, Enable Address Check: This position is
independent of any selected unit. It allows testing of
the address error checking stations in the storage
units. Bit 11 disables address checking in the BCU
for both CPU and channel operations; therefore, the
BCU will not recognize address errors and, conse-
quently, will not cancel storage if the BCU receives
an address with bad parity from the CPU or a channel.
If the address checking station in the storage works
properly, the error will be detected there and
forwarded to the BCU; thus, a means is provided for
testing the address checking circuits in the storage
units.

MCW 12, Stop Timer: This position is independent
of any selected unit, Bit 12 blocks the updating of the
interval timer.

MCW 14-15, Interchange Address: These bits are
independent of any selected unit. The bits duplicate
the function of the interchange storage address switch
located at Z28 on the system control panel; position
14 duplicates the up position of the switch and position
15 duplicates the down position. (For a description

108 12-65

of address switching, see 2075 Processing Unit,
Volume 2, Field Engineering Manual of Instruction,

Form 223-2873.) MCW positions 14 and 15 have
priority over the console switch; that is, if bit 14 or
15 is a 1, the address interchange function called for
by the bit will be effective regardless of the setting
of the switch. There is no interlock, however, be-
tween the two MCW positions. Care must be taken
to have only one of the positions on at a given time.

MCW 22-31, Count: These bits form a ten-bit count

field, which is used with the diagnostic stop and log-
out feature of MCW control. The field is set to some
initial count by the diagnose instruction, the countthat
specifies the number of machine cycles the CPU is to
spend executing instructions (following the diagnose
instruction) before the stop and logout occurs.

If the initial count is 0, the logout occurs immedi-
ately following the diagnose instruction execution. If
the initial count is other than 0, the instructions that
follow the diagnose instruction are executed for the
number of machine cycles specified by the count, the
count being reduced 1 on each machine cycle. When
the count reaches 0, the machine stops and a logout
occurs.

THEORY OF OPERATION, FLT

This section describes the details of the FLT cir-
cuits. A review of Figures 6200 and 6201 should
precede a study of circuit details.

Word Switch Matrix (Figure 5300)

The word switch matrix has as its inputs 1216 in-
dicator lines, 64 data keys, and 20 control lines
(19 of which gate the indicators, and one which gates
the data keys). Its output is 64 data lines numbered
0-63. The word switch matrix separates the in-
dicator lines and the data keys into 20 groups of 64
lines each. The state of a particular group will be
gated through and will be available at the output de-
pending on which control line is up. The control
lines are mutually exclusive; however, there will
always be one line active.

If an indicator is on, the corresponding output
line will be a logical 1 when gated through. A data
key in the 1 position will be gated through as alogical
1. During FLT mode or during a logout, the control
lines that gate the indicators through will be active;
at all other times the data keys will be gated through
the matrix.

Odd parity is generated on the eight output bytes
from the word switch matrix. The 64 output data
lines and the eight parity bits feed the channel SBI

and the SBO latches. Only the 64 data lines go to the
input of the bit switch matrix.

Bit Switch Matrix (Figure 5301)

The bit switch matrix has as its inputs the 64 output
data lines from the word switch matrix and 16 control
lines. Its output is one data line. The bit switch ma-
trix selects one of the 64 inputs and gates it through
to the output, The one to be selected depends on the
state of the control lines.

The 16 control lines are divided into eight byte
lines, each corresponding to one of the eight input
bytes, and eight bit lines, which pick the bit in the
selected byte. During FLT, a pair of the 16 lines are
always selected and this pair of lines determines
which one of the input lines will appear at the output.

Word Control Counter (Figure 5302)

The word control counter is a five-position counter,
consisting of a group of five indicated triggers and a
group of five latches. The triggers feed through com-
binatorial logic into the latches; the latches in turn
feed directly into the triggers. The control pulse step
word control counter sets the contents of the triggers
plus 1 into the latches. The control pulse set latches
to triggers sets the value of the latches back into the
triggers.

The five triggers are also fed from channel SBO
positions 35-39. The SBO is gated into the WCC trig-
gers with the control pulse set FLT control word.

The word control counter has the following functions:

1. It provides the five low-order positions (16-20)
of the storage address during FLT and logout opera-
tions.,

2, It provides, via a decoder, the select lines that
gate the 64-bit groupings through the word switch ma-
trix.

3. Itprovides, viathe same decoder, the gating

lines for the CPU that determine where the pattern words

will be put during the scan in portion of FLT,

Bit Control Register (Figure 5301)

The bit control register consists of a group of six
indicated triggers numbered 0-5. The six triggers
are fed from the channel SBO positions 40-45. SBO
is gated into the register by the control pulse set FLT
control word. The bit control register generates the
16 gating lines to the bit switch matrix. The first
three positions of the register feed a binary decoder
that develops the eight byte select lines; the lastthree
positions feed another binary decoder that develops
the eight bit select lines.

Test Register

The test register consists of 18 indicated triggers.
The 18 triggers are fed by channel SBO positions
46-63. The SBO is gated into the test register by the
control pulse set FLT control word. The test reg-
ister has two functions:

1. During termination, the register contains the
index number that refers to the diagnostic index. The
number is displayed on the system control panel at
M67-86.,

2. During the running of an FLT, if no termina-
tion bits are present, the register contains the alter-
nate test number. If the test passes, the next test
to be executed is the one whose test number matches
the contents of the test register.

Repeat Counter (Figure 5303)

The repeat counter counts the number of times a
test is executed, so that after eight executions, con-
ditions will be established to select the next test or
to terminate the operation.

The clock steps twice during each compare cycle,
once when the compare cycle A5D1 pulse becomes
active, and again when the pulse becomes inactive.

The first four executions step the clock through
one complete cycle (1-8) and the next four executions
step the clock through another complete cycle.
Trigger 2, which is on only during the second clock
cycle, and clock output 6 generate the RC 7 pulse.
RC 7 conditions the terminate and the select next-
test circuits.

The RC 0 output conditions the FLT repeat cir-
cuits and conditions the turn-off of the seek trigger.

Scan Clock (Figure 5304)

The output of the scan clock consists of eight 100~
nanosecond pulses labeled A0 through A7. The clock
is driven by two complementary inputs, which are
created by the network of singleshots shown in the
figure. Note in the timing sequence that singleshots
A and B fire in tandem, each firing twice for a com-
plete clock cycle. Singleshot C fires with A, and
singleshot D fires with B, to generate the complement
inputs to the clock. Details of the clock are shown
on Systems PR 990.

The scan clock is started by turning on the run
scan clock trigger. Scan clock pulse A5 turns the
run scan clock trigger off. With the trigger off,
singleshot B can no longer turn on singleshot A, so
the clock completes its cycle (through A7) and stops.

FLT, Logout, and Maintenance Control Word 12-65 109

Scan In

After a test is loaded from tape into area A or B, the
TIC pulse from the channel makes the first storage
request. When the storage word is available, the
storage advance pulse starts the scan clock (Figure
5304). Scan clock pulse A2 turns on the scan in
cycle trigger (Figure 5302), which stays on until the
15 pattern words are scanned in. Figure 5305 shows
the scan in circuit.

As the fifteenth pattern word is scanning in, the
WCC steps to 16. During the fifteenth scan in, secan
clock pulse A4 requests storage again (to fetch the
FLT control word), and scan clock pulse A6, with
WCC 16, turns on the advance cycle trigger (Figure
5304).

Advance

The advance cycle trigger: (1) allows the FLT control
word registers to receive the FLT control word from
storage, and (2) enables the operation of triggers D1,
D2, and D3 (Figure 5304). Triggers D1, D2, and D3
start and stop the CPU control clock so that the
number of CPU cycles specified by the advance
counter will occur during the advance portion of the
FLT operation.

When the FLT control word returns from storage,
storage advance sets the FLT control word into the
FLT control word registers and starts the scan
clock. During FLT advance, the only function of the
scan clock is to start the D1, D2, and D3 sequence;
a scan clock A3D2 pulse gates an AR clock pulse to
turn on trigger D1. One cycle later, trigger D1
turns off and trigger D2 turns on. D2 stays on for
two cycles and turns on D3. D3 stays on until the
beginning of the compare portion of the FLT opera-
tion.

Trigger D1 turns on the start clock sync trigger
in the CPU clock controls and at the same time ex-
amines the advance counter for an initial count of 0.
If the advance counter is 0, which means that no CPU
cycles are to take place, D1 also turns on the MCW
pseudo check trigger, which blocks the control trig-
ger; in this case, no controlled pulses are emitted by
the CPU clock.

If the advance counter contains an initial count of
1, D1 turns on the start clock syne trigger the same
as before and also turns on D2, D2 recognizes the
1-count in the advance counter and turns on the MCW
pseudo check trigger, but before the control clock
can be blocked, one set of controlled pulses will have
been emitted by the CPU clock.

110 9-65

If the advance counter has an initial count of more
than 1, D3 monitors the advance counter until the
advance counter is reduced to 1; then D3 turns on the
MCW pseudo check trigger to stop the CPU control
clock. The control clock will have emitted a num-
ber of sets of controlled pulses equal to the initial
count in the'advance counter.

When the MCW pseudo check trigger stops the
control clock, it also fires a 2-microsecond single-
shot to turn on the compare cycle trigger. The com-
pare cycle trigger denotes the end of the advance
portion of the test and conditions the compare cir-
cuits. The 2-microsecond delay allows time for the
CPU trigger lines to settle down before the compari-
son is made between the selected CPU trigger and
the expected result bit,

Compare

Figures 5300 and 5301 show how one CPU trigger, out
of the possible 1216, is selected and compared to the
expected result bit. As soon as the FLT control word
is loaded (at the beginning of the advance portion of
the test), the word control counter and the bit control
register select one CPU trigger, and the bit compare
trigger is either left off or turned on to indicate what
the status of the selected trigger should be after the
advance is completed.

When the compare trigger turns on at the end of
the advance, the scan clock is started and a scan
clock A0 pulse samples the output of the compare cir-
cuit. If the status of the selected trigger and the
expected result are equal, the pass trigger
turns on; if they are unequal, the fail trigger turns
on.

Each test is executed eight times, and if a test
both passes and fails during the eight tries, the
intermittent trigger turns on, The intermittent trig-
ger only turns on an indicator.

THEORY OF OPERATION, MCW

MCW control of the CPU or the channels starts with the
execution of the diagnose instruction. The instruc-
tion fetches a double word from storage and sets
the left half of it into the MCW register. Figure
6210 shows the execution of the diagnose instruction,
and Figure 5320 shows the CPU and channel functions
that are controlled by the MCW positions.

The diagnose instruction is executed by the IE and
D sequencers. During I time, the storage address

is calculated and set into the SAR. IE1l makes the
fetch request and maintains the request until the
BCU responds with accept. The IE1 cycles also
send a diagnose signal to the BCU that sets the
djagnose position of one of the return address reg-
isters.

After BCU generates accept, no sequencers are
on until the advance pulse from the selected storage
samples the return address register and generates
diagnose select. The diagnose select signal (delayed
approximately 150 nanoseconds) gates SBO 0-31 into
the MCW register and at the same time turns on
sequencer D1,

The timings of D1, D2, and D3 are shown in Figure
6210. If MCW 6 is off, the three sequencers turn on

in order, and D3 generates a proceed signal. This
signal turns on IE3, allowing the execution of the in-
struction to continue.

If MCW 6 is on and MCW 7 is off, D1, D2, and D3
turn on the same as before, butnow they monitor the
MCW counter (as shown in Figure 5320). If the MCW
count field is 0, D1 turns on the MCW pseudo check
trigger, which stops the clock and causes a logout
before the proceed signal is generated. If the initial
count is other than 0, D2 or D3 turn on the MCW
pseudo check trigger at a time that allows the CPU
to run, following proceed, a number of cycles that
corresponds to the initial count in the MCW count
field.

FLT, Logout, and Maintenance Control Word 9-65 111

INTERRUPTS

INTRODUCTION

e An interrupt temporarily halts processing while
the current PSW is stored and a new PSW is
fetched.

e Processing resumes under control of the new PSW.
e The stored PSW shows what caused the interrupt.

Processing a job on the 2075 consists primarily of
executing in sequence the instructions of the problem
program. It is necessary at times, however, to halt
temporarily the execution of the problem instructions
and take care of one of a number of unusual or spe-
cial conditions that can arise, such as a program
error, an interval timer overflow, an I/O unit com-
pleting its current assignment, a machine error, and
so on. The interrupt circuits monitor the system for
all of the unusual or special conditions; when one of
them occurs, the interrupt circuits cause the CPU to
suspend execution of the program in process at the
time and to transfer to another program that can
analyze the interrupting condition and take some
course of action. (Specific examples are given later.)

The interrupt process accomplishes the program
transfer by replacing the current PSW register con-
tents with a new PSW. The new PSW establishes the
new status of the CPU and establishes the starting
point of the new routine to be executed, which is
normally in the operating system program. Before
the current PSW is replaced, however, the interrupt
code field of the PSW register is set according to the
type of interrupt condition that was detected. Thenthe
entire current PSW is stored away and the new PSW
is fetched from storage and set into the PSW register.
Next, an IC recovery occurs, fetching a new stream
of instructions from the transferred-to program.

The interrupt hardware has now completed its job.
From this point, the operating system program ex-
amines the stored-away PSW to determine what caused
the interrupt and takes a course of action consistent
with the cause. This action might be to process a
real-time job because of an external signal from
another computer; or to call in an analyzing program
because of a machine check; or to terminate the
problem because of a program check, and so on. After
the necessary action by the operating system program,
the interrupted problem may be resumed by the exe-
cution of the load PSW instruction, which loads the
PSW register with the PSW that was stored away at
the time of the interrupt.

112 9-65

Interrupt Classes

e There are five classes of interrupts:
1. External
2. Program
3. Machine check
4, Supervisor call
5. Input/output

All of the interrupts (with two exceptions) fall into one
of these classes. Each class is distinguished by the
fixed-storage locations in which the current PSW is
stored and from which the new PSW is fetched. The
two exceptions are initial program load (IPL) and
timer advance request. These two procedures use
the interrupt circuits to accomplish their objectives,
but do not result in the exchange of PSWs.

External

This class includes (1) timer word overflow, which
oceurs when the timer word goes from a positive to
a negative value, (2) interrupt key on the system
control panel, and (3) any of six external signals
from an "outside' computer. When any of thesethree
types of interrupt conditions occurs, the CPU takes
an external interrupt, which results in the storing
away of the current PSW in the external old storage
location (24) and the fetching of a new PSW from the
external new location (88).

Program

This class consists of 19 interrupt conditions, all of
them being associated with either the interpretation
or the execution of instructions. Any program inter-
rupt results in the exchange of program old and pro-
gram new PSWs. The fixed-storage locations for the
program PSWs are: old, 40: new, 104.

Machine Check

This interrupt constitutes a class., It is always the
result of a machine malfunction and results in the
exchange of machine check old and new PSWs (old, 48;
new, 112).

Supervisor Call

This class includes only the supervisor call interrupt,
which occurs when the supervisor call instruction is
decoded. The current PSW is stored in location 32
(old), and a PSWis fetched from location 96 (new).

is calculated and set into the SAR. IE1 makes the
feteh request and maintains the request until the
BCU responds with accept. The IE1 cycles also
send a diagnose signal to the BCU that sets the
djagnose position of one of the return address reg-
isters.

After BCU generates accept, no sequencers are
on until the advance pulse from the selected storage
samples the return address register and generates
diagnose select. The diagnose select signal (delayed
approximately 150 nanoseconds) gates SBO 0-31 into
the MCW register and at the same time turns on
sequencer D1,

The timings of D1, D2, and D3 are shown in Figure
6210. If MCW 6 is off, the three sequencers turn on

in order, and D3 generates a proceed signal. This
signal turns on IE3, allowing the execution of the in-
struction to continue.

If MCW 6 is on and MCW 7 is off, D1, D2, and D3
turn on the same as before, but now they monitor the
MCW counter (as shown in Figure 5320). If the MCW
count field is 0, D1 turns on the MCW pseudo check
trigger, which stops the clock and causes a logout
before the proceed signal is generated. If the initial
count is other than 0, D2 or D3 turn on the MCW
pseudo check trigger at a time that allows the CPU
to run, following proceed, a number of cycles that
corresponds to the initial count in the MCW count
field.

FLT, Logout, and Maintenance Control Word 9-65 111

INTERRUPTS

INTRODUCTION

e An interrupt temporarily halts processing while
the current PSW is stored and a new PSW is
[etched.

e Processing resumes under control of the new PSW.
e The stored PSW shows what caused the interrupt.

Processing a job on the 2075 consists primarily of
executing in sequence the instructions of the problem
program. It is necessary at times, however, to halt
temporarily the execution of the problem instructions
and take care of one of a number of unusual or spe-
cial conditions that can arise, such as a program
error, an interval timer overflow, an I/O unit com-
pleting its current assignment, a machine error, and
so on. The interrupt circuits monitor the system for
all of the unusual or special conditions; when one of
them occurs, the interrupt circuits cause the CPU to
suspend execution of the program in process at the
time and to transfer to another program that can
analyze the interrupting condition and take some
course of action. (Specific examples are given later.)

The interrupt process accomplishes the program
transfer by replacing the current PSW register con-
tents with a new PSW. The new PSW establishes the
new status of the CPU and establishes the starting
point of the new routine to be executed, which is
normally in the operating system program. Before
the current PSW is replaced, however, the interrupt
code field of the PSW register is set according to the
type of interrupt condition that was detected. Thenthe
entire current PSW is stored away and the new PSW
is fetched from storage and set into the PSW register.
Next, an IC recovery occurs, fetching a new stream
of instructions from the transferred-to program.

The interrupt hardware has now completed its job.
From this point, the operating system program ex-
amines the stored-away PSW to determine what caused
the interrupt and takes a course of action consistent
with the cause. This action might be to process a
real-time job because of an external signal from
another computer; or to call in an analyzing program
because of a machine check; or to terminate the
problem because of a program check, and so on. After
the necessary action by the operating system program,
the interrupted problem may be resumed by the exe-
cution of the load PSW instruction, which loads the
PSW register with the PSW that was stored away at
the time of the interrupt.

112 9-65

Interrupt Classes

e There are five classes of interrupts:
1. External
2. Program
3. Machine check
4. Supervisor call
5. Input/output

All of the interrupts (with two exceptions) fall into one
of these classes. Each class is distinguished by the
fixed-storage locations in which the current PSW is
stored and from which the new PSW is fetched. The
two exceptions are initial program load (IPL) and
timer advance request. These two procedures use
the interrupt circuits to accomplish their objectives,
but do not result in the exchange of PSWs.

External

This class includes (1) timer word overflow, which
occurs when the timer word goes from a positive to
a negative value, (2) interrupt key on the system
control panel, and (3) any of six external signals
from an "outside'" computer. When any of these three
types of interrupt conditions occurs, the CPU takes
an external interrupt, which results in the storing
away of the current PSW in the external old storage
location (24) and the fetching of a new PSW from the
external new location (88).

Program

This class consists of 19 interrupt conditions, all of
them being associated with either the interpretation
or the execution of instructions. Any program inter-
rupt results in the exchange of program old and pro-
gram new PSWs. The fixed-storage locations for the
program PSWs are: old, 40; new, 104.

Machine Check

This interrupt constitutes a class. It is always the
result of a machine malfunction and results in the
exchange of machine check old and new PSWs (old, 48;
new, 112),

Supervisor Call

This class includes only the supervisor call interrupt,
which occurs when the supervisor call instruction is
decoded. The current PSW is stored in location 32
(old), and a PSWis fetched from location 96 (new).

Input/Output

The 1/0 class includes the interrupts caused by sig-
nals from any of the six channels. An I/O interrupt
causes the current PSW to be stored in location 56,
the channel status word to be stored in location 64,
and the new PSW to be fetched from location 120,

Figure 76 shows the permanently allocated stor-
age locations. Note that in addition to the slots re-
served for old and new PSWs, the first three double-
word locations are reserved for IPL use; location 64
is reserved for the channel status word, location 72
for the channel address word (single word), and loca-
tion 80 for the timer word (single word). The logout
area starts in location 128 and has space for the
storage of 19 double words.

Interruptable Status

e Certain PSW positions enable or mask off interrupt
requests: a 1 bit enables the request; a 0 bit
blocks the request.

Certain positions in the PSW, called masks,determine
the interruptable status of the CPU (Figure 77). If a
mask position is a 1, the corresponding interrupt
source is allowed to interrupt the CPU; if a 0, the
interrupt is said to be masked off and the interrupt
does not occur. Some interrupt sources, although
masked off, remain pending and will be taken should
the mask position in question be changed by the intro-
duction of a new PSW. Each new PSW that is intro-
duced may, therefore, change the interruptable sta-
tus of the CPU. Two of the mask fields, system mask
and program mask, may be changed independently of
the rest of the PSW by the instructions set system
mask and set program mask. The mask fields and
their effect on interrupts are:

System Mask, PSW 0-6

Each position either allows or masks off the 1/0 inter-
rupt signals from its respective channel. If masked
off, the I/O interrupt request remains pending.

PSW 7

This single position is also a part of the system mask
field and either allows or masks off as a group all of
the external interrupt class. If masked off, the ex-
ternal interrupts remain pending.

PSW 13

This position either allows or masks off machine
check interrupts. If masked off, the machine check
condition is ignored.

Program Mask, PSW 36-39

These four positions either allow or mask off, re-
spectively: fixed-point overflow, decimal overflow,
exponent underflow, and significance. If masked off,
the interrupt conditions are ignored. Note that of the
19 conditions for program interrupts, only four of
them are controllable by the PSW.

Interrupt Examples

An interrupt causes the storing of the current PSW
and the fetching of a new PSW, using fixed-storage
locations that correspond to the class of the inter-
rupt. It is the programmer's responsibility to de-
termine what the new PSW shall do for the situation
that caused the interrupt. The following examples
show how certain interrupt conditions might be used
to accomplish various objectives. The associated
diagrams are simplified and are not intended to show
programming techniques.

External

If the CPU is in the wait state, and it is desired to
switch to the running state, a new PSW must be in-
troduced. Because no instructions are executed in
the wait state, an interrupt must occur to change the
PSW. The interrupt key could be used for this pur-
pose (Figure 78), provided PSW position 7 is a 1.
Depressing the key causes an external interrupt with
the resultant exchange of PSWs. The new PSW would
specify the running state by having position 14 toa 0:
the IC portion would specify the address of the first
instruction with which to start processing.

Program

Figure 79 shows how the program interrupt might be
used to signal to the machine a program-caused situ-
ation such as a fixed-point overflow. In this particu-
lar case, the interrupt request would be honored only
if PSW position 36 is a 1. After the interrupt, the
new PSW could specify the supervisor state (bit 15 a
0) and the starting point of a subroutine. The sub-
routine would first examine the interrupt code field
of location 40 (where the old PSW was stored) to de-
termine the cause of the interrupt. The subroutine
could then examine the instruction address (IC) and
the instruction length code (ILC) of location 40. The
IC points to the instruction that would have been exe-
cuted next if the CPU had not been interrupted, and
the ILC indicates the length of the last instruction
executed, the one that caused the overflow, With this
knowledge, the subroutine can locate the overflow-
causing instruction and take whatever action is nec-

essary.

Interrupts 9-65 113

At the end of the subroutine, the load PSW instruc-
tion might be executed, specifying location 40 as its
operand. This action would place the original PSW
in control again; the problem would continue from
where it was interrupted.

Machine Check

Upon the occurrence of a machine error, with the
CPU check switch on the system control panel in the
process position, the sequence of events is as shown
in Figure 80. The controlled clock is stopped im-
mediately on detection of the error, blocking further
change of any triggers in the CPU. The CPU is then
logged out; that is, the status of 1216 CPU triggers

is stored in 19 consecutive double words, starting at
byte address 128. Next, the CPU is reset, the clock
is restarted, and a machine check interrupt occurs,
exchanging old and new machine check PSWs. The
new PSW specifies the supervisor state and transfers
to the operating system program. The operating sys-
tem program then brings in a recording and retry
program that analyzes the logged-out data to make a
decision whether to retry the instruction on which the
error occurred. Some instructions can be retried
directly because the operands involved are still valid;
other instructions, however, destroy their operands
as they are executed, making a direct retry impos-
sible.

If the retry is attempted and is successful, the
recording and retry program notifies the operating
system program which reloads the PSW register
from location 48 (location 48 contains the interrupted
PSW). The problem program continues from where
it was interrupted.

If the retry is attempted but is unsuccessful, the
retry program notifies the operating system program:
the problem is aborted, the operator is notified by a
printout, and the next stacked job is run.

If the retry is not attempted, control is returned
to the operating system program which may restart
the problem from some prior checkpoint. If the
failure persists, the problem is aborted, the operator
is notified by a printout, and the next stacked job is
run.

Supervisor Call

The supervisor call interrupt may be used for chang-
ing the status of the CPU, for example, switching
from problem to supervisor state. If a problem pro-
gram needs to start an I/0 operation, it would first
switch to the supervisor state before an [/O instruc-
tion could be executed (I/O instructions are invalid in
the problem state). Figure 81 shows the supervisor
call interrupt being used for such a purpose.

114 9-65

The supervisor call instruction causes a supervisor
call interrupt, resulting in the exchange of PSWs. The
new PSW specifies the supervisor state and locates
the start I/O instruction. The start 1/0 instruction
is decoded, addressing a channel and an 1/0 device.
At this point, the CPU hangs up until it receives a
release from the channel. The release does notcome,
however, until the channel obtains the CAW from stor-
age, then the first CCW from storage, then a signal
from the I/0O device indicating that the device can
perform what the CCW specifies.

Once the channel releases the CPU, the CPU con-

tinues with the instruction that follows start I/0.
This next instruction could reload the PSW register
with the PSW from location 32 (the interrupted PSW)
thus continuing the problem program from where it
was interrupted.

Input/Output

Channels send [/0 interrupt signals to the CPU upon
the occurrence of various error conditions in the chan-
nel or the 1/0 device, and upon the normal end of an
1/O operation. Figure 82 shows an I/O interrupt
caused by the channel completing its operation with
the 1/0 device.

An 1/0 interruption can occur only after the exe-
cution of the current instruction is completed and
while the CPU is interruptable for the channel that
presents the request. The I/0 interrupt signal from
the channel starts the interrupt sequence, during
which time the channel stores a channel status word
(CSW) in location 64. The interrupt sequence ex-
changes 1/0 old and new PSWs. The new PSW locates
a program routine that examines the CSW just stored
to determine whether the 1/0 operation was completed
satisfactorily. The load PSW instruction could then be
executed to transfer control back to the program that
was interrupted.

Initial Program Load

Figure 83 shows the sequence of events of the IPL
procedure. The load pushbutton on the system control
panel causes the channel and device addressed by the
rotary switches to read three words (the IPL PSW and
two CCWs) and place them in the first three double
word locations of storage. The channel then obtains
the second word it just stored (a CCW) and uses it to
read from the device and put the rest of the program
into storage. After the read operation is completed,
the channel sends a release signal to the CPU which
starts the interrupt sequence.

Because IPL controls are on, the store portion of
the interrupt sequence is blocked, but the fetch por-
tion is allowed, fetching the PSW from location 0 and

Decimal Doubleword Address

\

I_l{re Address
Even
0

Odd
0| IPL PSW 1] 8 IPL CCW 1
2] 16 IPL CCW 2 3|24 Extemal Old
4| 32 Supervisor Coll Old 5|40 Progrom Old
6| 48 Machine Check Old 7156 /O Old
8| 64 Channel Status Word 9172 Chan_Addr Word Not Used
10| _BO Timer Not 11|88 Extemal New
12| 96 Supervisor Call New 13[104 Program New
14| 112 Machine Check New 150120 1/O New
Logout
Logout i
19 doublewords
M| 272
FIGURE 76. FIXED STORAGE LOCATIONS
PSW Register
8 7T [6 2 | 2 4 24
System Prot |epaw N Program Instruction Address
iak Key | Interruption Code ILC | CC Mek (1cR)
0 7(8 1112 1516 3132 3334 3536 39| 40
Bit
0 Multiplexor Channel
1 Selector Channel 1
2 Selector Channel 2
3 Selector Channel 3
4 Selector Channel 4
5 Selector Channel 5
6 Selector Channel 6
7 Extemal

8-11 Protection Key

12 VFL Code; 1=ASCII, 0=EBCDIC
13 Machine Check Mask (M)
14 Wait State (W); 1=wait, 0= running
15 Problem State (P); 1= problem, O=supervisory

16-31 Interruption Code

32-33 Instruction Length Code (in holfwords);

34-35 Condition Code

36 Fixed-Point Overflow
37 Decimal Overflow
38 Exponent Underflow
39 Significance

40-63 Instruction Address

FIGURE 77, PROGRAM STATUS WORD

01 =1 holfword, 10 = 2 halfwords,
11 =3 halfwords

Interrupts

12-66

1185

g9~6 911

LANY¥ILNT WYHD Oud “64 3¥NDI1

*pajdnuaju
MSd wajqald

Beard d

SOM ! 3JaYM WOl UD 3nNupjuod of
“49151B92 MSd OJUl 0 MGd wajqosd
Spooja) uolanysul mcd peoj ‘paystuyy sy aupnos dnxyy-uoydacxa Jelyy

*pasnnso snl joyy
uoldadke UCHINYSUI Yl SBIPUDY IO SUlNCS BIO%0| MmSd weiBoid mapy

*MSd Meu saysiay pup ‘uoclDI0| MGd Plo woubosd up pG4 welqoxd sasos

‘uoynaaxa uoyanysul sdogs 4D CHIUN g Y JO jIun | By Jayia ul

in3%0 uod suoydadxa !(mojieac uo ‘ad 104) 19
sy ui voyonuysul up BulWBdUOD $35ID LO)YIPUCD |ouoldacxe awog

®
®

saisiBay M |

®)

—] — /,f......l.lco:nnuxw
@ MSd Peol uojanysu|
*Joue
woiBosd jo auod \ _—
533D} {ouYY aulinoy —
Euﬂo._a Ol % |
5] 08 | —
. ' ﬁ % —
| — 9% B7 |
= (754 PO, WoB51g Oy z " waiBoy
L) ve 9l sosiatadng wajqaly
) 7, 0
TS nd2>
ELLTLITS (touss BuiwwosBosd o dn w1y o))

-u:.:t__.___ wouficuy

LdN¥¥3LINT TVN¥ILXT "84 3¥8NOH

*Bussasord {10y ©f Yolym Yiim uoyoniysul ayj
2ypo0| pup 2jois Bujuuni Ajoads UDD MG [PWRIXS MAN

“MSd MeU D SBYDay puD UOLIDDO| MG4 P|O |Duxe By ul
MSd Juauns sy saios uoyngysnd jdnuajul ay Bujssasy

©)

© -
Aoy m?:n_:_
U_DEU
MSd maN g g8 08 | ————

L L4 —
95 8y_| e —
oy 44

| MSd PIO 3 mn 921 woiBouy sosiasadng

PO g 3 ndd

el

(@4p4s Busuuns oy
ajoys Jlom woy ob o)

idnuajup |owapxg

Machine Check Interrupt

CPU
Program

Machine

Error
Logout
Area:
19 Doublewords

Shop

| PSW Register P |

(D Mochine mokes error, which stops clock.

@ Logout circuits store 19 doublewords thot represent the
status of 1216 CPU triggen.
@ CPU reset.
@" hine check interrupt seq stores current PSW in
machine check old PSW location and fetches mochine check I
new PSW. New PSW locates progrom that tokes corrective action.
FIGURE 80, MACHINE CHECK INTERRUPT Q
S isor Coll Interrupt , 2
ilo stort 1/0) L Even ey Odd
]
o

CrU i

32 Call Old PSW 40
48

Problem Supervisor
Progrom Progrom .
JP—— '
—_— _‘__,-l-l-'_'_"___'—'—-—._.___‘-
Supervisor Call — 94 Coll New PSW |
T " Start 1/O
= Load PSW

[l

s
®

PSW Register ioic |

|
©) =
@ Channel)
1. Channel fetches CAW
2, Channel fetches CCW* Control /o O
3. Chonnel receives Linit Devic
“can do” signal

from /O devi
" VO device * CCW's may be onyplace in starage. >

@ Supervisor call instruction couses supervisor call interrupt which stores problem PSW in supervisor call old location ond fetches @ new PSW.
@ New supervisor call PSW locates start |/O instruction,

@ Start 1/O instruction starts up channel and couses CPU to hold up further instruction executions.

(@) Channel sends relense to CPU, CPU executes next instruction (lood PSW),

() Lood PSW instruction reloods problem PSW back into PSW register.

@H’oﬂm?‘j“’cmr blem program to inue with next i &

MNOTE: Once channel sends release to CPU, chonnel performs operation with |/C device independent of CPU.
FIGURE 81. SUPERVISOR CALL INTERRUPT

Interrupts 8-65 117

VO Interrupt

(to exomine CSW at end of I/O operation) Storoge

'] B8
16 24
32 40
e | 48 56 /O Old PSW
Problem Supervisor 64 CSW E
Program Program » (‘ 80
g L 96 104 -
@ 112 120 VO _New P5W)
e — !
E—— § ‘ et 2
s]]
:_' \-
Routine that
uur:;:u the /.
CSW; lood PSW A——] @
S o | PSW Register | ic

@

Channel
Channe! ends Control /o
it operation Unit Device|
with the /O
device

Channel ends operotion with /O device and sends interrupt \ 7
signal to CPU. CPU stops Instruction execution, stores problem

PSW in I/O old PSW location and fetches new PSW, Chonnel stores CSW

while PSW swapping is going on.

New |/O PSW locates routine thot exomines the CSW just stored by chonnel.,
After CSW-exomining routine Is finished, lood PSW i jon reloods
problem PSW back into PSW register.

Problem PSW couses probl
interrupted,

@ee e

o inue on from where it wos

progr

FIGURE 82. 1/O INTERRUPT

Initial rom_Load

Console
Load Pushbutton

Channel|

1. Read First thres
doublewords; store
at 0,8,16 @
2. e CCW ot loc B
to reod and store
rest of progrom

3. Send release o
[« 1]

Vo Control
Device Unit

S 7

@ Lood pushbutton couses channel to reod first three doublewords from /O device
and to ploce them in itoroge locations 0,8, ond 16, The channel then uses the
CCW ot location B to store the rest of the progrom.

@ At the end of the read operotion, channel sends release o CPU which couses an

IPL lood PSW i pt. This i pt seq loods the PSW register from
location 0,

@ The IPL PSW, now in the PSW register, locates the start of the program to be
executed.

FIGURE 83. IPL INTERRUPT

118 9-65

setting it in the PSW register. An IC recovery then
occurs, fetching a stream of instructions as dictated
by the IC of the PSW. The CPU starts executing
these instructions.

Interrupt Priorities

e Priorities in general are: (1) those caused by
instruction execution, (2) those caused by external
or I/0 signals, and (3) those caused by I unit
processing.

e Machine check and IPL share top priority.

Interrupt requests can come from various sources at
the same time, such as from the I unit while an
instruction is being fetched or decoded and from the
E unit while an instruction is being executed. All
interrupts are assigned a priority: and when two or
more interrupt requests occur at the same time, the
priority circuits choose the interrupt request with
the highest priority and execute that interrupt.

The general priority scheme is that interrupts
should be taken in the same order as the instructions
with which they are associated. Interrupt conditions
resulting from instruction execution. therefore. are
given priority over interrupt conditions resulting
from I unit processing. In addition to the instruction
execution interrupts and the I time processing inter-
rupts, there are interrupts that may occur asynchron-
ously with CPU operation, such as the external or
I/0 interrupt. These interrupts have a lower priority
than the execution interrupts but higher than the I
time interrupts, The general order of interrupt pri-
ority hecomes: those caused by instruction execution,
those caused by external or /0O, and those caused by
I unit processing,

These three classes of interrupts are E [rom E,
E from I. and I from I. The E from E class of inter-
rupts are caused by instruction execution that occurs
in the E unit. The E from I class of interrupts are
caused by instruction execution that occurs outside
the E unit. The I from I class of interrupts are caused
by instruction preparation that occurs in the I unit
(during T1 or T2).

An exception to the general order of interrupts
stated above is that two interrupts of the E from I
class, SAP and invalid store address, take priority
over the E from E class.

Two interrupts are special. not belonging to any
of the three classes: they are machine check and
IPL,

Figure 9250 lists all of the interrupts in the order
of descending priority. A description of each inter-
rupt follows.

Machine Check

On a machine error, a logout takes place, then a

CPU reset, then a machine check interrupt request.
The machine check interrupt request forces the start
of the interrupt sequence directly, without first having
to be detected during an E last cycle or a T1 or T2,
as do other interrupts. The machine check interrupt
has priority over all other interrupts.

Initial Program Load

The IPL procedure consists of loading storage from
an 1/0 device and then loading the PSW register [rom
storage location 0. The PSW loading portion of the
IPL is performed by a modified interrupt sequence
(PSW fetch, but no store).

The channel signals the CPU when the 1/0 to stor-
age operation is completed by sending a release sig-
nal. This signal forces the start of an interrupt se-
quence, during which the PSW is loaded from storage
location 0. Because neither the E unit nor the I unit
is running at the time of the release signal, no other
interrupt can be detected. IPL, therefore, has top
priority along with machine check.

Storage Address Protect

Of all the program-caused interrupts, the storage
address protect (SAP) has highest priority. A SAP
check occurs when a store is attempted in a location
whose key in the storage protect memory does not
match the protection key in the PSW.

The storage cycle in which the store is attempted
is in progress when the mismatch of keys is detected.
The storage cycle is completed without actually stor-
ing anything and a mismatch signal is sent to the
bus control unit (BCU), turning on the SAP check trig-
ger. This trigger in turn requests a storage address
protect interrupt.

The request is checked only during an E last cycle,
but because the instruction execution calling for the
store might be completed before the mismatch of the
keys is detected, the interrupt request might come too
late to be sampled during the E last cycle of the exe-
cution that caused it. The interrupt request, in this
case, is detected at the next E last cycle. which is
on the instruction following the one that called for the
bad store.

It is possible, however, that on the execution of
the bad-store instruction or on the concurrent I time
processing of the next instruction another interrupt
condition is present; this other interrupt condition
would be detected, causing entrance into an interrupt
sequence. The SAP check signal would arrive at the
interrupt controls as this sequence for the other

Interrupts 9-65 119

interrupt is started, and would force the sequence
already started to become a SAP check interrupt
sequence.

Note that a SAP check interrupt can be taken at
two intervals, immediately after the bad-store in-
struction or after the next instruction, depending on
whether another interrupt occurred on the bad-store
instruction. An analyzing program would have diffi-
culty establishing which instruction caused the SAP
check; therefore, a retry is not attempted if a SAP
check occurs.

Invalid Store Address

This interrupt condition occurs when the I unit speci-
fies a store address that is outside the available
storage.

The bad-address condition is detected in the BCU,
which sends an interrupt request to CPU along with
the accept pulse for the storage cycle that was to
perform the store operation. The storage cycle is
completed without anything being stored. Because
the interrupt condition is detected early in the storage
cycle, the request for this interrupt is present dur-
ing the E last cycle of the instruction execution
associated with it. The request is sampled during
this E last cycle, and the interrupt sequence is
started.

E Program

The interrupts in this section are all in the E from
E class; that is, they originate in the E unit during
an instruction execution and they are detected during
E time (specifically, E last cycle).

The occurrence of any of the following 12 conditions
turns on a trigger in the E unit called the E interrupt
trigger, which in turn requests an E program inter-
rupt (exchange of program PSWs). During the inter-
rupt sequence, the interrupt code field of the old PSW
is set according to the particular condition that caused
the interrupt. If more than one of the 12 conditions
occur on the same execution, the condition that
occurs first turns on the E interrupt trigger, which,
in addition to requesting an E program interrupt,
blocks the recognition of any of the other E program
interrupt conditions. The 12 E program interrupts,
therefore, are mutually exclusive; there are no
priority considerations among them:

The E program conditions are:

Invalid Data: This interrupt may be caused by any
of the following:

1. The sign or digit codes of operands are incor-
rect in decimal arithmetic, convert to binary, or
editing operations.

2. In decimal arithmetic, the fields overlap in-
correctly.

120 12-65

3. In decimal arithmetic, the multiplicand has
too many high-order significant digits.
Fixed-Point Overflow: A high-order carry occurs or
high-order significant bits are lost in fixed-point ad-
dition, subtraction, shifting, or sign control opera-
tions.

Fixed-Point Divide: The quotient exceeds its register
size (31 bits plus sign), or the result of convert to
binary exceeds 31 bits.

Invalid Address: An operand address is outside
available storage.

E SAP: A SAP violation occurs on an operand fetch
of a read-protected storage location.

Specification: In multiply or divide decimal, one of
the following occurs:

1. The multiplier or the divisor exceeds 15
digits and sign (L2 >T7).

2. The multiplier is not shorter than the multi-
plicand (L2 = L1); the divisor is not shorter than
the dividend (L2 =1L1).

Decimal Overflow: In a decimal operation, the
destination field is too small to contain the result.

Decimal Divide: The quotient exceeds the specified
data field size.

Exponent Overflow: In floating-point arithmetic, the
result characteristic exceeds 127.

Exponent Underflow: In floating-point arithmetic, the
result characteristic goes less than 0.

Significance: In floating-point addition or subtraction,
the result has an all zero fraction.

Floating-Point Divide: An attempt is made to divide
by 0.

External

Any of the following three interrupts cause the ex-
change of the external PSWs; each interrupt, how-
ever, has its own identifying digit set into the inter-
rupt code field of the old PSW. If two or more re-
quests occur simultaneously, one interrupt is taken,
but with an interrupt code bit set for each request.

Console: Initiated by the interrupt key on the system
control panel.

Timer: The timer word is stepped from a positive
to a negative value.

External Signal: The signal on any or all of six
external lines from another computer.

Timer Advance Request

Timer advance requests are initiated by a 50-cycle
or 60-cycle signal from the power supply. On any
of the requests, if no higher-priority request is out-
standing, a timer advance interrupt sequence occurs
which fetches the timer word from location 80, setting
it in the J register. The E unit then updates the word
by subtracting 5 from it, and stores the word back
into location 80.

Subtracting 5 ata 60 cpsrate is equivalent to sub-
tracting 1ata300cps rate, or 1 every 3.33 milli-
seconds. The same reduction rate is achieved on 50-
cycle machines by subtracting 6 instead of 5, at the
50 cps rate.

If reduction causes the count to go negative, a
timer overflow condition is detected and a timer
overflow interrupt request is made. The timer over-
flow interrupt will occur immediately after the timer
advance interrupt, provided the external signal mask
bit is on in the PSW.

Input/Output

An 1/0 interrupt is caused by an I/O request signal
from one of the six channels. If requests from
several channels occur simultaneously, a separate
priority circuit for channel requests selects one of
the requests for servicing; the other requests re-
main pending.

If I/O interrupts have priority, a response is sent
to the selected channel, and the interrupt sequence
is started. The sequence is stopped one cycle after it
starts, however, to wait on the channel that received
the response to store its channel status word. After
the CSW is stored, the channel sends a release sig-
nal to the CPU which allows the interrupt sequence
to continue, exchanging I/0 PSWs.,

If requests are pending from other channels, the
requests are examined during the last cycle of the
interrupt sequence; one is selected, and if I/0 inter-
rupts still have priority, the I/O interrupt process is
repeated.

Program Store Compare Recovery

During the I time processing of a store type instruc-
tion, the I unit calculates the effective address of the
store and places the address in SAR and the H regis-
ter. As the I unit transfers the instruction to the E
unit, a storage request is made (for the store) and
the instruction counter register (ICR) is updated to
the address of the next instruction. This is normal
I unit processing.

While the store trigger is on (from store request
to store accept), a comparison is made between the
H register (the address to be stored into) and the ICR
(the address of the next instruction); if the comparison
is equal, the E unit is about to make a store into the
location of the next storage words to be processed,
words that probably have been prefetched into the A
or B register. This situation is remedied by taking
an IC recovery, fetching again the instructions that
start at the updated setting of the ICR; the fetch is
not made, however, until the store is completed.

The program store compare (PSC) signal (from
the equal condition of the H register and the ICR)
turns on the IC recovery required trigger, which in
turn makes an interrupt request. At the end of the
store instruction execution (E last cycle), this re-
quest is considered along with any other interrupt
requests that are present; if the PSC gets priority,
the IC recovery trigger turns on which starts the
prefetch sequence in the I unit.

The PSC recovery takes priority over the inter-
rupts listed below it because the lower-priority inter-
rupts are concerned with the instruction that follows
the store instruction; this next instruction is the one
that might be changed by the store.

The PSC recovery interrupt does not use the regu-
lar interrupt sequencers because no PSWs are ex-
changed. Once priority for PSC recovery is estab-
lished, the IC recovery trigger turns on which causes
the necessary fetches to A and B.

I Program

The interrupts in this category all result from condi-
tions that occur during the I time processing of an
instruction, which is the instruction following the cur-
rent one being executed. Because the I unit and the
E unit overlap, priority is granted to I program inter-
rupts only if no interrupts associated with the current
instruction are outstanding.

All of the following I program interrupts result in
the exchange of program PSWs.

Invalid Address: The I unit calculates an instruction
address (to fill the A-B register) that is outside
available storage.

A-B SAP: A SAP violation occurs on an IC fetch of

a read-protected storage location.

Specification: The I unit calculates an instruction ad-
dress that does not fall on a halfword boundary.

Operation: The bit configuration of the operation
code field is not that of an assigned instruction.

Interrupts 9-65 121

Privileged Operation: Any of the following instruc-
tions are encountered in the problem state:

Start 1/0

Halt 1/0

Test 1/0

Test channel
Insert storage key
Set storage key
Set system mask
Load PSW

Read direct
Write direct
Diagnose

Execute: The object instruction of an execute is
another execute.

Specification: Any of the following conditions ocecur:

1. The I unit calculates an operand address that
does not fall on an integral houndary.

2. The R1 field of an instruction specifies an
odd general register when a pair of general registers
are to be used for an operand.

3. A floating-point register other than 0. 2, 4, or
6 is specified.

4. The block address specified in the set storage
key or insert storage key instruction has the four
low-order bits not all zero.

Supervisor Call Instruction

The supervisor call interrupt exchanges supervisor
call PSWs. The interrupt request is made when the
instruction is decoded.

As the supervisor call interrupt sequence is
entered. the interrupt code field of the current PSW
is set to the hit configuration of the R1 and R2 fields
of the supervisor call instruction. The Rl and R2
fields of the instruction do not specify general regis-
ters, as they do in other instructions: they are used
only as a means to convey some message to the
operating system program via the old PSW.

Execute Operation Recovery

A recovery only sequence is initiated at the comple~-
tion of the object instruction of the instruction exe-
cute, provided the object instruction is not a success-
ful branch. Because the object instruction was inter-
jected into the normal sequence of instructions. dis-
turbing the prefetched instructions in the A-B regis-
ters, it is necessary to recover to the instruction
following the execute instruction so that the normal
instruction sequence can be resumed.

122 9-65

The execute operation recovery has the lowest pri-
ority in the interrupt system's priority scheme; in
the event of any other interrupt associated with exe-
cute's object instruction, that interrupt would have to
be serviced before returning to the normal instruc-
tion stream.

As with the program store compare recovery
described earlier, the execute operation recovery
does not use the regular interrupt sequencers because
no PSWs are exchanged. Once priority for execute
operation recovery is established. the IC recovery
trigger turns on which causes the necessary fetch to
A or B.

If the object instruction of the execute is a success-
ful branch, the execute operation recovery is not
taken because the branch instruction is purposely
changing the normal sequence of instructions.

Interrupt Sequence Initiation

There are four paths from which the interrupt se-

quence can be entered: (1) from the I unit, (2) from
the E unit, (3) by direct entrance, and (4) from the
interrupt sequence.

Entrance from the I Unit

e Interrupt condition detected during T1 or T2.
e Entrance trigger is I interrupt end.

e E unit is blocked; interrupt sequence occurs.

Certain I program interrupts are detected during T1

and certain I program interrupts are detected during
T2. Regardless on which cycle, T1 or T2, the inter-
rupt request is detected. the I unit stops at the end of
the good T2 and turns on the entrance trigger for the
interrupt sequence, I interrupt end (Figure 84).

At the end of T2, as I interrupt end comes on, the
I to E transfer line causes the IC and ILC to be up-
dated just as if no interrupt were going to occur;
however, no execution unit is allowed to start and
storage requests are blocked.

The 1 interrupt end trigger stays on for one cycle
and then turns on the first interrupt sequencer, inter-
rupt cycle 1, at the same time resetting the 1 unit.
The interrupt sequencers then come on in succession
and perform the interrupt.

As stated previously, requests can be detected
during either T1 or T2. It is possible that two inter-
rupts may occur in the I unit, one during T1 and the
other during T2. If this happens, only the T1 inter-
rupt is detected; the T2 interrupt is ignored.

Entrance from the E Unit

e Interrupt condition detected during control last
cycle,

e Entrance trigger is EXIT.

e [unit is blocked; interrupt sequence occurs
immediately after control last cycle.

All interrupts other than the I program group, ma-
chine check, and IPL load PSW, are detected in the
E unit during control last cycle. If one or more in-
terrupt requests are present during control last
cycle, the execution interrupt trigger, EXIT, turns
on following control last cycle (Figure 84). One of
the requests is given priority, and EXIT, which is on
for one cycle, turns on the first interrupt sequencer,
interrupt cycle 1. The interrupt sequencers then
come on in succession and perform the interrupt.

NOTE: Control last cycle is defined as (ELC -

IE Busy) +(IELC - E Busy) +(IE Busy - E Busy).

At the time of control last cycle, the I unit may
be in any of its own cycles. If an interrupt request
is detected during control last cycle, and if a good
T2 coincides with this control last cycle, the de-
tected request blocks the updating of the IC and ILC
and blocks the start of an execution unit. The EXIT
trigger blocks storage requests. If a good T2 coin-
cides with control last cycle, and if there is an I unit
interrupt request along with the E unit request, I
interrupt end and EXIT will attempt to come on at the
same time; EXIT will turn on, holding off I interrupt
end. EXIT then turns on interrupt cycle 1, at the
same time causing a reset of the I unit.

If there is no coincidence of control last cycle and
good T2, there is no conflict between the I unit and
E unit interrupts; EXIT turns on interrupt cycle 1
and resets the I unit.

Direct Entrance
e Machine check or IPL.

e No entrance trigger is used; interrupt sequencers
turned on directly.

The machine check and IPL load PSW interrupts do
not turn on either entrance trigger (EXIT or I inter-
rupt end), but instead cause a direct entrance into
the interrupt sequence by forcing on interrupt cyclel.
Because these two interrupt requests follow a CPU
reset, there are no testing cycles present, that is,
no control last cycle or T1-T2; no other interrupt can
be detected, therefore, at the same time as machine
check or IPL load PSW.

Interrupt Last Cycle

During an interrupt sequence, none of the program
caused interrupts can arise because the I unit and E
unit are stopped. An asynchronous signal, however,
can arise, such as a channel interrupt request, a
timer advance request, and so on. Also, an interrupt
sequence might load a new PSW that has a different
system mask than the one it replaced, now enabling

a channel or external interrupt that might have been
pending.

At the end of each interrupt sequence, during
interrupt last eycle, a test is made for outstanding
interrupt requests. If any are present, EXIT is
turned on immediately after interrupt last cycle and
another interrupt sequence is taken for the request
that has the highest priority.

Interrupt Sequencing

e Seven sequencing triggers:
1 and 2 -- fetch new PSW
3 and 4 -- store current PSW
5 and 6 -- parity check new PSW
Interrupt last cycle -- tests for other out-
standing interrupts

The interrupt requests are checked during T1or T2 and
during E last cycle. The request with the highest
priority is selected, the I unit and E unit are stopped,
and the interrupt sequence is entered.

Most of the interrupts use the same fixed sequence,
which is the turning on in succession of seven se-
quencing triggers. Each sequencer does a specific
job, but the result of all of them is the exchange of
the PSWs.

The sequence starts by the turn-on of the first se-
quencer, interrupt cycle 1 (Figure 85). The first
sequencer stays on for only one cycle and then turns
on the second sequencer. interrupt cycle 2. The
combination of interrupt cycles 1 and 2 sends the new
PSW address to SAR and makes a storage request for
the fetch of the new PSW. Interrupt cycle 2 then
stays on until the fetch accept comes back from stor-
age. When the accept is received, the sequence ad-
vances to interrupt cycle 3.

While storage is timing out for the fetch, interrupt
cycle 3 turns on for one cycle and then turns on inter-
rupt eyele 4, The combination of interrupt cycles 3
and 4 makes a storage request and sends the PSW
register contents to the K register and on to the SBI.
At this point, storage is fetching the new PSW, the
old PSW is on the SBI, and store request is on. In-
terrupt cycle 4 stays on until storage is obtained for
the store, but since the fetch and the store reference
the same storage, the store cannot start until the
fetch is completed.

Interrupts 9-65 123

When | Irpt End Turns On:
Block | to E Tronsfer
Block T1
Block Storoge Requests

L 11 I 12 K|
Y Test A Test

| ot

d
S 1ot Code I lrpt End T

Into PSW Reg
- Interrupt Sequence
ylrpt Cycle 1, lipt Cycle 2 , lpt Cycle 3 Etc.
I i T 1
I Exit TEr l
E ELCyel Set Irpt Code
p—_—= Into PSW Reg

When Exit Turns On:
Block | to E Transfer
Block Updating of IC and ILC
Block T1
Block Storage Requests

FIGURE 84. INTERRUPT SEQUENCE INITIATION

Storage Fetch

Storage Store

ipt Cycle 1 lrpt Cycle 2 |rplec|eE:1rperle¢ (4) | (4)
I I

lrpt

Irpt Cycle 5 lrpt Cycle 6, Last Cycle
T 1

Check PSW Reg
ond set new
maskable status

Request Storage PSW Reg —» K—5B|

for:Fuseh Request Storage

1
+
|
I
|
|
|
|
for Store :
|
|
|

| T

Set J Register Set PSW Register
from J Register

FIGURE 85. BASIC INTERRUPT SEQUENCE

124 12-60

|
|
|
|
|
|
|
|
|

Test for
other
interrupts

|
!
|
|
|
|Do en IC Recovery

| or start onother
| interrupt sequence
|

|
|
|

Storage advance is received for the fetch. The
advance pulse sets the double word from storage
(the new PSW) into the J register. As soon as stor-
age times-out for the fetch, it is immediately started
again because store request is on. With interrupt
cycle 4 on, the sequencing waits until the accept is
received for the store; when this occurs, the con-
tents of J are set into the PSW register and the se-
quence advances to interrupt eycle 5, At this point,
the new PSW is in the PSW register, and the stor-
age is on its way for the store (the old PSW is on the
SBI). The interrupt sequence is now finished with
storage.

The only jobs to be completed are to check the
PSW register for parity and to test for any other
outstanding interrupts. The checking is accomplished
by sequencers interrupt cycle 5 and interrupt cycle
6; each stays on only one cycle and each checks a
half of the PSW register. After interrupt cycle 6,
one more cycle occurs, interruptlast cycle, at the
beginning of which IC recévery is turned on. During
this cycle, any interrupt request that is present is
recognized, EXIT is turned on, IC recovery is re-
set, and entrance is made again to another interrupt
sequence. If during interrupt last cycle there are
no outstanding requests, the IC recovery continues,
prefetching the instructions located by the IC of the
new PSW.

The interrupt sequence just described is the
normal fixed sequence. The interrupts that use this
pattern are:

1. I program

2. E program

3. BCU (invalid store address and SAP)

4, External (timer, console, and external
signal).

5. Supervisor call instruction

Modified Sequences

Some interrupts, for one reason or another, require
modification of the fixed sequence. These modified
sequences are described separately in this section,

Input/Output Sequence

e Interrupt cycle 1 stays on until the channel stores
the CSW.

The processing of channel interrupts departs from
normal sequencing only in that a pause is injected
between interrupt cycle 1 and interrupt cycle 2 (before
the fetch request is made); during this pause, the
channel that originates the interrupt request performs
its interrupt routine, which includes storing its chan-
nel status word. The unit address bits, which along

with the channel address are set into the old PSW in-
stead of an interrupt code, are not available from the
channel until the channel has completed its processing.
At the same time that interrupt cycle 1 turns on to
start the I/O interrupt sequence, aninterrupt response
signal is sent to the channel; this signal serves as a
"go" signal for the channel to start its processing.
When the channel has completed this processing, it
sends a release signal to the interrupt controls which
results in turning on interrupt cycle 2; the channel
and unit addresses are set into the PSW register at
this time, and the interrupt sequence continues the
rest of the way the same as the regular fixed sequence.

Timer Advance Request Sequence

@ Sequence consists only of interrupt cycles 1, 2,
and interrupt last cycle.

e E unit decrements the timer word.

The timer advance request sequence starts like the
regular fixed sequence with interrupt cycles 1 and 2
making a fetch request. The address senttostorageis
that of the timer word, location 80, The PSWs are not
involved in a timer advance; consequently, thetimer
advance sequence does not use interrupt cycles 3
through 6.

After interrupt cycle 2, while storage is timing
out for the fetch, an E unit control trigger turns on
(timer J to M trigger) which controls the updating of
the timer word. The sequencing now waits until the
timer word returns to the J register. When this
occurs, the E unit decrements the word by using the
M register and the adder. The updated word is sent
to K and on to the SBI. Meanwhile, the E unitmakes
a storage request to store away the updated timer
word into location 80.

When the E unit receives the accept for the stor-
age store cycle, the interrupt controls are again
activated, turning on interrupt last cycle. The ac-
tions during this cycle are the same as with the reg-
ular fixed sequence: outstanding requests, if there
are any, are recognized, EXIT is turned on, and
another interrupt sequence is entered; if there are
no requests, processing resumes with an IC recovery.

Recovery-Only Sequence

During E last cycle, recovery-only requests (program
store compare or execute operation) are considered
along with other interrupt requests. The entrance
trigger EXIT is turned on, and if recovery only re-
ceives priority, the triggers blocking the I unit are
turned off and the IC recovery trigger is turned on.
The machine proceeds directly into an IC recovery
without any of the interrupt sequencers turning on.

Interrupts 9-65 125

IPL Load PSW Sequence

® Sequence consists of interrupt cycles 1, 2, 5, 6,
and interrupt last cycle.

The IPL procedure starts with the load pushbutton
which resets the system. Next, the channel and unit
addresses in the rotaries are sent to the channel
along with an IPL pulse, which starts the loading of
storage by the channel.

When the loading of storage is completed, the chan-
nel sends a release signal to CPU; the release signal
results in the turn-on of interrupt cycle 1.

The ensuing interrupt sequence consists of interrupt
cycles 1, 2, 5, 6, and interrupt last cycle. Cycles
1 and 2 make a fetch request of storage location 0,
which contains the initial PSW, Interrupt cycle 2
stays on until the storage accept comes back. When
accept is received, interrupt cycle 2 turns off, but
cycles 3 and 4 do not come on because no store is to
be made; instead, the interrupt IPL buffer trigger
turns on. This trigger is used to fill the storage
time-out gap; it stays on until the word at location 0
returns from storage and is set into the J register.

The interrupt IPL buffer trigger then turns off and
interrupt cycle 5 turns on; at the same time J goes
to the PSW register. At this point, the interrupt se-
quence proceeds to completion the same as a normal
fixed sequence, ending with an IC recovery.

Machine Check Sequence

The machine check interrupt sequence is the same
as the normal fixed sequence except for the manner
in which the sequence is entered. At the completion
of logout, which is caused by a machine error, the
CPU is reset., A reset line, in conjunction with the
log complete and restart triggers, turns on the ma-
chine check control trigger in the interrupt controls.
When the reset is completed, the control clock is
started and this trigger, with a clock pulse, turns
on interrupt cycle 1, starting the interrupt sequence.

Special Conditions

Wait Status

e Console, timer overflow, external signals, and
I/O interrupts may occur during wait status.

Position 14 of the PSW indicates whether the CPU is
in the wait state (1 bit) or the running state (0 bit).

In the wait state, the CPU does not execute instruc-
tions, but remains suspended until aninterruptoccurs.
The interrupts that may occur are timer advance,ex-
ternal (console, timer overflow, and external signals),

126 9-65

and I/O. These requests start the interrupt sequence,
which except for timer advance, result in the loading
of a new PSW. The new PSW may or may not change
the running status of the CPU, depending on the new
value of position 14, In the wait state, the timer is
advanced normally without effecting the wait status.

A wait trigger within the interrupt controls is
associated with the status bit in the PSW. This
trigger reflects the true status of the CPU since
there is a delay between the setting of the PSW wait
bit and the halt of processing, and a delay between
the resetting of the wait bit and the resumption of
processing.

After every setting of a new PSW, the wait bit is
observed before normal processing is continued.
At the end of the load PSW instruction or at the end
of every interrupt sequence that fetches a PSW, the
wait bit prevents the instruction fetching for the new
IC value, and the wait trigger is set if no interrupts
require servicing. Any of the interrupt signals (con-
sole, timer advance, external signals, or I/O) that
arise in the wait state will reset the wait trigger and
set EXIT, which leads into the interrupt sequence.

If the CPU is in the wait state and the halt trigger
is set (by the stop pushbutton), all processing is
inhibited. This includes the external and I/0 inter-
rupts and timer advances. All operations are de-
ferred until the halt trigger is reset (by the start
pushbutton). When processing resumes, the highest
priority interrupt that is outstanding will be serviced.

Storage Interlock

e Interrupt sequence cannot start until storage goes
not husy.

An interlock is provided at the entrance to interrupt
sequencing for two reasons:

1. If a store operation is in process, the inter-
rupt sequence must be delayed for a sufficient time
to allow for a possible SAP check to return. This
avoids the possibility of missing a protection inter-
rupt.

2. If a fetch is outstanding, theinterrupt sequence
must be delayed for a sufficient time to allow for the
effects of the returning word to be nullified. (An un-
wanted effect might be the turn-on of the J loaded
trigger.)

The interlock is accomplished by the CPU storage
busy line from the BCU, which designates that the
CPU has a storage operation in process. The inter-
lock is provided during the set of EXIT or I inter-
rupt end; whichever trigger is used remains on and
prevents the turn-on of interrupt cycle 1 until the
CPU storage busy line drops.

THEORY OF OPERATION

This section describes the detection and entrance
circuits for interrupts and details of the various
interrupt sequences. The interrupts described in
this section are grouped according to the kind of
sequence they cause, not necessarily in the order of
their priority.

CPU SAP, Invalid Store Address, E Program, and
External

Detection and Entrance Logic

Figure 5350 shows the interrupt requests that are
detected during E last cycle, during interrupt last
cycle, or during the wait state, resulting in the turn-
on of the entrance trigger EXIT. The requests en-
tering this figure, with the exception of channel,
timer advance, and recovery only, cause the normal

fixed sequence shown. This group of requests includes:

1. CPU SAP check

2, CPU invalid store

3. E from E group (12 E program interrupts)

4. Console

5. Timer overflow

6. External signals

The three exceptions, channel, timer advance, and
recovery only, also turn on EXIT, but they result in
modified sequences. These three exceptions are
described later.

In Figure 5350 note that the requests SAP, invalid
store, recovery only, and the E program group (E
from E), are detected only during control last cycle.
If any of these requests occur, they do so because of
the I unit processing or the E unit execution of an in-
struction; in either case, they are detected at the end
of the execution of the instruction in question so that
an interrupt sequence can immediately follow.

The remaining requests shown in the figure, timer
advance request, channel interrupts, and the external
group (timer, console, and external signals), may
occur at anytime with respect to CPUoperation. These
interrupt requests, therefore, are observed not only
during E last cycle along with the group of requests
previously mentioned, but also during interrupt last
cycle because they might occur while an interrupt
sequence is in process, and also during the time that
the CPU is in wait status. This asynchronous group
of requests, therefore, may cause an interrupt se-
quence to start immediately after an instruction ex-
ecution, immediately after another interrupt se-
quence, or during a CPU wait, depending on when the
request occurs.

Each of the incoming requests in Figure 5350 comes
from a request trigger and latch arrangement similar

to that shown for one of the external signal requests.
A description of the turn-on and turn-off conditions
of the request triggers follows.

The CPU SAP and CPU invalid store request trig-
gers are in the BCU. They are turned on by a SAP
or invalid store condition detected in the BCU, and
they are turned off by interrupt end reset, which
occurs at the beginning of interrupt cycle 6 of any
interrupt sequence.

The E interrupt from E request trigger is the E
interrupt trigger in the E unit. It is turned on by any
of the 12 E program conditions that may occur during
the execution of an instruction, and it is turned off by
interrupt end reset,

The request trigger for console interrupts is the
console interrupt trigger. It is turned on by a signal
from the interrupt pushbutton, and it is turned off by
interrupt cycle 4 of a console external interrupt se-
quence.

The request trigger for timer overflow is the timer
interrupt trigger. It is turned on when the timer word
goes from positive to negative during a timer advance
interrupt sequence, and it is turned off by interrupt
cycle 4 of a timer external interrupt sequence.

The external signal request triggers are shown in
Figure 5350. They are turned on by signals from an
outside source and turned off by interrupt cycle 4 of
an external interrupt sequence.

The request triggers for recovery only, timer ad-
vance request, and channel interrupts are described
later.

Most of the request triggers are set with an A
pulse and are followed by latches that are released
at not L time; at not L time the request trigger out-
puts are transferred to the detection circuits, waiting
there for E last cycle to occur so that they can be
detected.

The asynchronous requests, however, consisting
of external signal, timer advance request, console,
and channel, have special conditions imposed on their
request trigger latches, as stated in the note in
Figure 5350. This group of requests must be handled
in a special manner because of the following:

Once an interrupt request becomes outstanding, it
blocks the start of the execution units. If one of the
asynchronous interrupt requests were allowed to be-
come outstanding (the latch reflecting the trigger
status) as soon as the request occurred, it might
happen while none of the execution units were running,
such as between instructions during an instruction
step operation. The outstanding request would block
the start of the execution unit, and without an execu-
tion unit running, there would be no E last cycle to
detect the request; the CPU would hang up. To pre-
vent this condition, the latches of the asynchronous
request triggers are released only if an execution unit
is already in operation (E or IE busy).

Interrupts 9-65 127

Also, if the stop pushbutton is pressed while in the
wait state, all interrupts are to be blocked, including
those that normally could oceur during wait. The stop
condition of CPU turns on the interrupt priority hold
trigger, an output of which prevents the release of the
asynchronous request latches. In the stopped condi-
tion, therefore, the asynchronous interrupts cannot
be detected even though the wait trigger is on.

Note in Figure 5350 that any of the requests entering
the diagram can turn on EXIT, resulting in the start
of an interrupt sequence. All requests present at the
time also feed a priority generating circuit, which
grants priority to the highest request. It is the pri-
ority line generated that determines whether the se-
quence that follows is to be a normal sequence, as in
Figure 5350, or one of the modified sequences (see
"Modified Sequences").

The priority generated also allows its corresponding
request to set the interrupt code field to the proper
configuration, and determines the addresses to be
used for the PSW fetch and store. For example, a
CPU SAP request turns on EXIT, starting the se-
quence; the SAP priority (it is the highest of the re-
quests in Figure 5350) gates the SAP request to set
a bit into position 29 of the interrupt code field and
generates address 104 for the PSW fetch and address
40 for the PSW store. The addresses are those of
the program PSWs.

Interrupt Sequence

Figure 5350 shows the details of the interrupt fixed
sequence that occurs as a result of any of the E pro-
gram, SAP, invalid store address, or external
interrupts. Note that at the turn-on of EXIT, various
blocks are brought up so that the current PSW will
not be disturbed (it has already been updated for the
instruction just completed) and so that no new stor-
age cycles may be started by the CPU, such as by
the I unit; storage is now available for the exchange
of the PSWs.,

Also at the turn-on of EXIT, the interrupt pri-
ority holdtriggerturns on and remains on throughout
the interrupt sequence; it is turned off at the end of
interrupt cycle 5 by interrupt end reset. The inter-
rupt priority hold trigger prevents another turn-on of
EXIT, thus making sure that another interrupt se-
quence cannot start until the current one is completed.

Interrupt reset comes up during EXIT, resetting
the I unit, which is now in T1 of the next instruction.
The A pulse following the turn-on of EXIT turns on
interrupt cycle 1, provided storage is not busy from
a prior CPU operation. If storage is busy, an inter-
lock CPU storage busy line blocks the turn-on of
interrupt cycle 1 until storage goes not busy; EXIT,
therefore, stays on until storage is available for the
interrupt sequence.

128 9-65

The A pulse following the turn-on of EXIT sets the
interrupt code bits into 16-31 of the PSW register.

Interrupt cycle 1 (always one cycle) sets up SAR
with the address of the new PSW to be fetched. Inter-
rupt cycle 2 makes the fetch request, staying on until
accept is received. When the accept is received, the
sequence advances to interrupt cycle 3.

As storage starts timing out for the fetch, interrupt
cycles 3 and 4 start storing the current PSW. Inter-
rupt cycle 3 (always one cycle) sets up SAR with the
store address and gates the right-half of the PSW
through the incrementer to the left-half of K, The A
pulse at the end of interrupt cycle 3 latched sets K
and brings up store request.

During interrupt cycle 4, the left-half of K is sent
through the shifter and back to the right-half of K,
under control of the store PSW trigger in the E unit.
(This data was originally the right-half of the PSW.)
At the same time, the left-half of the PSW is gated
through the incrementer into the left-half of K; the
following A pulse sets K, The BCU sets the contents
of K into the SBI latches because store request is up.
Interrupt cycle 4 stays on until the accept comes from
BCU for the store. The current PSW is nowon the
SBI and will be stored as the old PSW whenever the
storage store occurs.

In due time, the fetched word returns from stor-
age and sets into J. Storage times-out for the fetch
and is immediately started again for the store, pro-
vided CPU has storage priority. On the advent of
store accept, the PSW register is set from J, inter-
rupt cycle 4 turns off, and interrupt cycle 5 turns on.

Interrupt cycle 5 gates the right-half of the PSW
through the incrementer for parity checking; inter-
rupt cycle 5 also brings up interrupt end reset, which
turns off the request triggers for CPU SAP, invalid
store address, and E program, If the interrupt se-
quence was caused by one of the external group of
requests (console, timer, or external signals), the
request triggers for these interrupts would be turned
off at interrupt cycle 4.

Interrupt ecycle 6 gates the left-half of the PSW
through the incrementer for parity checking. At the
end of interrupt cycle 6, the block T1-M and block
IC-M triggers are turned off and interrupt last cycle
is turned on, If the new PSW position 14 does not
specify wait status, the IC recovery trigger is turned
on,

The I unit now starts an IC fetch to recover to the
setting of the IC in the new PSW, but at the same time,
the interrupt last cycle tests for other outstanding
interrupts, If an outstanding interrupt is found (it
could be only channel, timer advance request, console,
or external signal), EXIT is immediately turned on,
the I unit is again reset, and another sequence is
taken.

I Program
Detection and Entrance Logic

Figure 5351 shows the interrupt requests that are de-
tected in the I unit during T1 and T2, resulting in the
turn-on of the entrance trigger I interrupt end. The
interrupt conditions entering this figure cause the
normal fixed sequence shown in the figure. The se-
quence is similar to the fixed sequence described in
the preceding section, the main differences being the
manner in which the sequence is entered and the
setting of the interrupt code field.

Of the eight interrupt requests entering Figure
5351, four of them, invalid address, SAP, invalid
operation, and address specification, occur during
T1. The four requests enter a priority generating
circuit (not shown) which selects the request that
has highest priority. The priority generated allows
its corresponding request to set the interrupt code
field to the proper configuration; the actual setoccurs
at the turn-on of T2,

Also at the turn-on of T2, any of the four requests
turn on the I program interrupt trigger; this trigger
stays on until the completion of the interrupt sequence,
generating the fetch and store addresses for the PSW
exchange (program PSWs). With the I program inter-
rupt trigger on, the entrance trigger, I interrupt end,
turns on at the normal I to E transfer time, provided
no interrupt request, detected during E last cycle,
turned on EXIT.

If storage is not busy, I interrupt end stays on for
one cycle and then turns on interrupt cycle 1; if
storage is busy, I interrupt end stays on until the A
pulse following the fall of the storage interlock line,
then turns on interrupt cycle 1. Interrupt cycle 1
starts the fixed interrupt sequence.

At the same time that I interrupt end turns on, the
interrupt priority hold trigger also turns on. This
trigger stays on throughout the interrupt sequence
and prevents the start of another sequence until the
current one is completed.

The other four requests entering Figure 5351,
privileged operation, execute to execute, specification,
and supervisor call, occur during T2, These four re-
quests enter a priority generating circuit (not shown)
which selects the request that has highest priority.
The priority generated allows its corresponding re-
quest to set the interrupt code field to the proper con-
figuration; the actual set occurs at the normal Ito E
transfer time. Also at this time, both I program
interrupt (except for supervisor call) and I interrupt
end are turned on, which do the same jobs as de-
scribed previously.

If interrupt requests occur during T1 and T2, the
T1 request turns on I program interrupt and sets the
interrupt code as previously described. The I pro-
gram interrupt trigger is on by the time the T2 re-
quest is detected (I to E transfer time), thus blocking
another set of the interrupt code field. The T1 re-
quest has effectively taken priority over the T2 re-
quest.

Interrupt Sequence

Figure 5351 shows the fixed sequence that results from
any of the following interrupt requests:

1, Invalid instruction address

2. SAP violation

3. Instruction address specification

4. Invalid operation code

5. Privileged operation

6. Execute to execute

7. Specification

8. Supervisor call instruction
The first four requests occur during T1; the last four
occur during T2. Any of the eight requests result in
the turn-on of the entrance trigger, I interrupt end.

Because an interrupt request is outstanding at
the normal I to E transfer time, the start of the
execution units is prevented. The interrupt reset
that occurs as a result of I interrupt end being on
resets the I unit, thereby blocking further I unit
processing. All CPU operations, therefore, are
halted in favor of the interrupt sequence.

Subsequently, the interrupt sequencing triggers
come on in succession, performing the exchange of
the program PSWs. The detailed action of each se-
quencer is the same as in the fixed sequence de~
scribed for CPU SAP, invalid store address, E pro-
gram, and external,

Input/Output

Figure 5352 shows the detection logic and the inter-
rupt sequence for I/0 interrupts.

An interrupt request from a channel turns on its
priority A trigger, provided the request is enabled by
a system mask bit in the PSW. (More than one chan-
nel may send a request at the same time.) The pri-
ority A triggers feed a channel priority circuit which
selects the one channel that has highest priority of
those making requests. The request that is granted
priority turns on the channel interrupt trigger and
also blocks further sets of the priority A triggers.
One particular channel will now get the next channel
interrupt sequence that is taken.

At E last cycle or interrupt last cycle (or during
wait status), any of several outstanding interrupt

Interrupts 9-65 129

requests, including the request by the channel inter-
rupt trigger, may turn on EXIT, which turns on in-
terrupt cycle 1 to start an interrupt sequence. The
channel request, along with other outstanding inter-
rupt requests, also feeds a priority generating cir-
cuit; and if the channel has priority over the other
requests, the interrupt sequence just started be-
comes a channel interrupt sequence.

Unlike the description of other interrupt sequences,
interrupt cycle 1 does not lead directly into interrupt
cycle 2; interrupt cycle 1 goes off after one cycle and
the turn-on of interrupt cycle 2 depends on a release
signal from the channel to CPU. Thisisaccomplished
as follows:

When interrupt cycle 1 turns on, the channel inter-
rupt response trigger also turns on. The channel
interrupt response trigger (1) sends a response sig-
nal to the channel that was granted priority over the
other channels, and (2) prevents the turn-on of inter-
rupt cycle 2 until release is received from the channel.
The response signal causes the channel to proceed
with whatever processing it has to perform, which
includes storing the channel status word.

When the channel completes its processing, it
sends a release signal to the CPU which turns on the
channel interrupt release trigger. This trigger turns
off the interrupt response trigger and turns on inter-
rupt eycle 2. The interrupt sequence now continues
just like the fixed sequences described previously,
except that since channel priority is up, 1/0 PSWs
are addressed for the exchange.

During interrupt cycle 5, interruptendresetcomes
on, as it does for other interrupt sequences, and
resets all the request triggers, including the channel
interrupt trigger. It also resets the channel priority
A triggers, dropping the priority granted line that
was blocking the inputs to the priority A triggers.
This allows a new sampling of the request lines from
the channels according to a new system mask that may
have been introduced as part of the new PSW,

The enabled requests again compete with one
another for priority with the highest one obtaining
priority, again turning on.channel interrupt. During
interrupt last eycle, the outstanding channel request
is again ORed with other possible outstanding inter-
rupt requests to turn on EXIT; and if the channel is
granted priority over the other requests, another
channel interrupt occurs.

Note that at the turn-on of interrupt cyele 1, no
interrupt code is set into the PSW as in other inter-
rupt sequences. Instead, a three-bit code that
identifies the channel is set into PSW 21-23. This
code is generated from an encoder that has as its in-

130 9-65

put a line corresponding to the channel that receives
the interrupt. When the channel sends release to the
CPU, allowing the interrupt sequence to continue, the
unit address is available from the channel on the unit
address bus in, This unit address is set into PSW
24-31 at the same time as the turn-on of interrupt
cycle 2.

Timer Advance

The timer advance detection logic, the timeradvance
interrupt sequence, and the updating data flow are
shown in Figure 5353.

A fixed frequency signal from the power supply,
through a 500-nanosecond singleshot, initiates the
timer advance request. The frequency corresponds
to the line frequency of the machine: 60 cps for 60~
eycle machines; 50 cps for 50-cycle machines.

The singleshot output, after being synchronized
with CPU timing, turns on the timer advance request
trigger. Note that the turn-on of this trigger can be
blocked by the disable interval timer switch (on the
system control panel) or by a bit in position 12 of the
MCW. Once the timer advance request trigger is on,
however, it will remain on until a timer advance
interrupt sequence is taken or until the CPU is reset.

During E last cycle or interrupt last cycle (or
during wait status), any of several outstanding inter-
rupt requests, including the request by the timer ad-
vance request trigger, may turn on the EXIT trigger,
which turns on interrupt cycle 1 to start an interrupt
sequence. The timer advance request, along with
other outstanding requests, also feeds a priority
generating circuit; if timer advance receives pri-
ority over the other requests, the interrupt sequence
just started becomes a timer advance interrupt.

The timer advance interrupt sequence starts like
any other interrupt sequence, that is, interruptcycle
1 sets up the address of the fetch and interrupt cycle
2 makes the storage request. Interrupt cycle 2 stays
on until storage is obtained and accept is received.
At the end of the first interrupt cycle 2, however,
the timer J to M trigger turns on due to interrupt
cycle 2 and timer advance priority. The timer J to
M trigger will cause the fixed-point arithmetic cir-
cuits in the E unit to decrement the timer word when-
ever the word returns to the J register.

When feteh accept is returned by the BCU, inter-
rupt eycle 2,timer advance request, and interrupt
priority hold turn off. The sequence does not con-
tinue with interrupt cycles 3 through 6, as it does
with other interrupts, because there are no PSWs to
be exchanged. Instead, the E unit is conditioned by

the timer J to M trigger to take over and decrement
the timer word.

J advance sets the timer word into the J register;
the word always fetches to the left-half of J because
of the fixed-storage location from where it came
(single word location 80). The timer J to M trigger
and J loaded cause the left halfword of J to flush
through the adder to the left-half of M. At the same
time, bits are forced into position 53 and 55 of M
(the right-half); these bits constitute the subtrahend
to be used for the subtraction on the next cycle. (If
50 cps machine, bits are forced into 53 and 54.)

On the next cycle, timer J to M latched and an A
clock turn on the timer subtract trigger which gates
both halves of M into the adder, subtracting the
forced bits from the timer word. The difference is
set into K. The subtrahend bits being in M 53 and 55
amount to a reduction of 5 from the timer word, con-
sidering the units position of the timer word (0-31)
to be position 23. Bits in the rightmost byte of the
timer word, 24-31, would be used for decrementing
if a more refined count were desired, with the lesser
decrementing-amount occurring at a proportionately
higher rate.

After the subtraction cycle, the updated timer
word in K goes to the SBI and waits there to be sent
back to storage. The storage request for the store
is made while the subtraction is being performed; the
subtraction is completed and the result is on the SBI
in time to be stored. The store request is brought
up by the timer advance trigger (turned on by J ad-
vance and the timer J to M trigger). The timer ad-
vance trigger also conditions the return back to the
interrupt sequence that was interrupted after inter-
rupt cycle 2. The return is made by store accept
turning on interrupt last cycle. Concurrent with the
turn-on of interrupt last cycle is the turn-on of IC
recovery and T1.

If no interrupt requests are outstanding during
interrupt last cycle, an IC recovery takes place and
the program continues; if an outstanding request is
detected, EXIT is turned on again, the I unit is reset,
and another interrupt is taken.

Recovery Only

Figure 5354 shows the entrance logic and sequence
for recovery only. Recovery only is not truly an
interrupt because no interrupt sequence occurs. But
recovery-only conditions are considered as interrupt
requests because they must obtain priority over other
interrupt requests that may be outstanding before the
recovery-only operation can occur.

A recovery-only condition occurs when:

1. An instruction stores into the location of a pos-
sible next instruction to be executed.

2. The object instruction of an execute is some-
thing other than a successful hranch.

The first of these two conditions is a program store
compare condition, detected in the I unit. The condi-
tion turns on the IC recovery required trigger. At E
last cycle, any of several interrupt requests, in-
cluding the request from the IC recovery required
trigger, may turn on EXIT. Also, the IC recovery
request competes with the other requests for priority.
If another request is granted priority over IC recovery,
that interrupt is started by the turn-on of interrupt
cycle 1; but if IC recovery is granted priority, the
turn-on of interrupt cycle 1 is blocked and EXIT turns
on the IC recovery trigger.

The second of the two recovery-only conditions
is an execute instruction that does not branch. This
condition has the lowest priority of all the interrupt
requests. At the I to E transfer time that begins the
object instruction's execution, the IC recovery re-
quired trigger turns on; but if the execution is a suc-
cessful branch, the IC recovery required trigger is
turned off before E last cycle arrives. If not turned
off by a successful branch, the IC recovery required
trigger turns on EXIT and tries to get priority the
same as described for program store compare.

Note that the requests that turn on EXIT have pri-
ority over those that turn on I interrupt end, and that
execute operation turns on EXIT but does not have
priority over anything. This apparent conflict is
solved by the following:

Note in Figure 5354 the IC recovery required
trigger turn-on consisting of execute operation latch,
I to E transfer, and no interrupt from I. The no inter-
rupt from I leg is actually a part of the priority sys-
tem since it allows the execute operation to request
an IC recovery only if there are no I program or
supervisor call requests.

Once the IC recovery trigger turns on, the fetch
to A or B is as shown in the sequence in Figure 5354.
This is the same as normal I unit prefetching and is
described in detail in "Instruction Preparation."

Machine Check

The machine check interrupt sequence is the same as
the full fixed sequence shown in Figure 5350 except
that interrupt cycle 1 is turned on directly; EXIT isnot
used.

The turn-on of interrupt cycle 1 is accomplished
by using the logic shown in Figure 5355. First, a
machine error stops the clock and causes a logout
operation. The logout, in addition to storing the
status of the CPU triggers, turns on the restart trig-
ger. When the logout is complete, denoted by the
word counter at 18 (19 words have been stored), the
log complete trigger turns on. This trigger, in con-
junction with restart, brings up CPU reset, which

Interrupts 9-65 131

turns on the machine check control trigger and resets
the CPU. When the CPU reset ends, the clock starts
and interrupt cycle 1 turns on.

The machine check control trigger resets the inter-
rupt code field to all 0s and generates the PSW ad-
dresses.

IPL (Load PSW)

The IPL operation loads storage and then causes an
interrupt sequence, during which the PSW register is
loaded irom lcecation 0.

Figure 5356 shows the entrance logic and the inter-

' rupt sequence.

The IPL procedure starts by depressing the load
button on the system control panel or on the operator's
console. The system is immediately reset; the reset
pulse turns on the IPL trigger. The IPL trigger gates
the unit address in the rotary switches to all channels
and turns on the IEL trigger. IE1l gates the channel
address in the rotary switch to the channels; this se-
lects one of the channels. At the same time, the IE1
trigger turns on the IE2 trigger, which sends an IPL
pulse to the channels. The IPL pulse is accepted by
the selected channel. IE2 stays on for only one cycle

132 9-65

and turns on the IE3 trigger, the only purpose of IE3
being to prevent another turn-on of IE2,

When the channel receives the IPL pulse, it proceeds
to load storage. Whenthe load operation is complete, the
channel sends a release signal to the CPU. The re-
lease signal turns on the release buffer trigger, which
synchronizes the release signal with CPU timing. The
release buffer trigger turns on the release trigger.
The release trigger turns on interruptcycle 1, starting
the interrupt sequence.

Interrupt cycle 1 and interrupt cycle 2 address
stotage and make a fetch request, the same as in
other interrupt sequences. Interrupt cycle 2 stays on,
as usual, until accept is received. Because no store
is to be made, there are no interrupt cycles 3 and 4;
instead, the interrupt IPL buffer trigger turns on,
whose sole purpose is to turn on interrupt cycle 5 as
soon as the word from location 0 is returned to the J
register. The interrupt IPL buffer ANDed with J
loaded turns on interrupt cycle 5 and sets the contents
of J into the PSW register.

The rest of the sequence is the same as described
for other sequences; that is, interrupt cycles 5 and 6
check the PSW for parity, and an IC recovery is
started. Interrupt last cycle occurs as in other inter-
rupt sequences, but at this point there should not be
any outstanding interrupt requests.

STORAGE BUS CONTROL

Access time 12
Address compare 42
Address interleaving

description 5

diagram, four-way 9

diagram, two-way 9
Address switching 30
Addressing

description 29

H75 diagram 31

I75 diagram 31

J75 diagram 32

SPF diagrams 33

Cancel 48
CDA 36
Channel bus priority

details 39

general 16

simplified diagram 23
Channel fetch

control 39

data flow 38

data flow diagram 25

general 21

simplified timing chart 24
Channel store

control 41

data flow 40

data flow diagram 26

general 22
Communicate 48
CPU fetch

control 35

data flow 35

data flow diagram 18

general 14

simplified timing chart 18
CPU storage access time 13
CPU storage busy 48
CPU store

control 37

data flow 37

data flow diagram 19

geperal 15

simplified timing chart 20
Critical timing loop 14

Data flow
diagram, channel fetch 25
diagram, channel store 26
diagram, CPU fetch 18
diagram, CPU store 19
general 11

Diagnose 44

Error checking
CPU fetch 15
CPU store 16

INDEX

machine checks 48

parity checks 47

program checks 47
Error handling 45

Fetch operation
channel 38
CPU 35

HSS addressing
description 29
H75 diagram 31
175 diagram 31
J75 diagram 32

Insert key 43
Interleaving
description 5
diagram, four-way 9
diagram, two-way 9

Machine checks
address parity check 47
return sync check 49
store data parity check 47
Main storage configurations
description 5
diagram 8
Manual operations
panel key fetch 41
single cycle 45
Maximum selection rates 12

Overlapped storage cycles 13

Panel key fetch 41
Parity checks
address and mark parity 47
storage data check 47
Program checks
invalid address 47
SAP 48
Protection key 6

Return address circuits
description 22
simplified diagram 27
Return synchronization check 49

Selection rates 12
Set key 43
Signal exchange, BCU and channel 21
Single cycle
CPU fetch 45
CPU store 45
Special operations 43
Storage address bit switching 30
Storage address protection
bits of SPFword 6

Index 12-65

133

description 10
main storage blocks 10
Storage addressing
description 29
H75 diagram 31
175 diagram 31
J75 diagram 32
SPF diagrams 33
Storage configurations
description 5
diagram 8
Storage selection and control 12
Storage words
description 5
diagram 8
Store operation
channel 40
CPU 37
System models 5

Test and set 44
Timing loop 14

X/Y binary trigger 22

W /Zbinary trigger 22

INSTRUCTION PREPARATION

A loaded 93

Address for storage operands, data flow 52

Addresses, instruction
detail 84
figures referenced 64
general 51
generating 93
Addresses, operand from storage
general 52
generating 67
on Tl 62

B loaded 93
Block IC fetch
instructions that 95
memorized trigger, figure 95
rule 94
timing examples, figure 91
Block T1
halt trigger 66
instructions generating 66
timing, figure 69
Block T1-M and T2-M, general 57
Block T2
compare block 71
IC fetch priority 96
instructions generating 71
timing, figure 70
BOP 72
Branch executions, example 80
Busy triggers
AND I to E transfer 76
general 57

134 12-65

Compare block 71
Control last cycle 76

Data flow, general, figure 55

E executions, timing, branch 80

E go
detail 77
general 62

E unit operation register 82

Effective addressing 67

Empty rule 89

Execution of instructions, general 50

Fetches
instructions 93
operands 74
FLOUT 73
Formats, figure 69
Functional sections of 2075 51

Gate selection mechanism 84
GROUT 82
GSA parity, figure 86

Halt trigger 66

Igo
detail 77
general 62
I time, all instructions 64
1 to E transfer
functions 78
general 57
generation 76
start executions 62
I unit, general 51
IC fetch
priority rule 96
priority timing, figure 91
recovery 98
single cycle timing, figure 92
timing, figure 91
ICAE 93
ICAM 93
ICBE 93
ICBM 93
ICR advancing
detail 85
general 63
interrupts 87
repeat instruction 88
SS instruction 87
timing, figure 86
Immediate instructions 83
Incrementer
checking 84
gating 73
general 83
Instruction addresses, data flow 51
Instruction fetch address
chart 92

general, data flow 51

rule 93

timing, figure 91
Instruction fetch control

detail 83

diagrams referenced 68

general 64
Instruction, fetching rules

address rule 93

block IC rule 94

empty rule 89

fetch rule 93

IOP loaded rule 88

preblock rule 96

priority rule 96

Instruction sequencing controls 57

Instructions, data flow 52
Internal operand gating 73
Interrupt entry 98
Interrupts 76

IOP loaded rule 88

IOP, set 67

Last cycle memorized 76

Last cycle sequencers, general 57

LCOFP 82
Loose decoding, general 62

Mark bits 78

Operand fetch timing, figure 75
Operand fetching 74
Operands from GPR

data flow 52

gating detail 73

gating general 62

general 52
Operation registers

BOP 58

EOP 58

ER1 62

IoP 58

LCOP 62
Operation registers, general 58
Overlap of instructions 50

Preblock IC rule 96
Program store compare 97
Pulsed accept 93

Read direct 83

Recoveries 98

Register operand gating 73
Repeat instruction 88

RX timing example, figure 68

Sequencers, general 50
SS instructions 87
SSOP status trigger 87
Start execution

detail 77

general 62

Start I/O timing, figure 79
Store request 77
Stores 77

T1 and T2
automatic functions 62
general 51

T1 cycles 66

T2 cycles 73

TNT1 66

TN T1 functions 66

TNT2 70

TN T2 functions 71

VFL address 87

Write direct 83

FLT, LOGOUT, MCW

Advance cycle light 104
Advance, FLT 102, 110

Bit control register, FLT 109
Bit switch matrix, FLT 109

Block set, MCW 106

Channel decode, MCW 106
Channel mark parity to 1, MCW 108
Channel SAB priority to 1, MCW 108
Checks, FLT 103

Compare cycle light 104

Compare, FLT 102, 110

Control word, FLT 100

Count, MCW 108

Diagnose instruction for MCW 106
Enable address check, MCW 108

Fail light 104

FLT, general description 99
FLT mode switch 103

Force carry, MCW 106
Format of tests, FLT 100

General description, FLT 99
General description, logout 105
General description, MCW 106

Indicators, FLT 104
Interchange address, MCW 108
Intermittent light 104

Load FLT control word (key) 103
Load the tests, FLT 101

Log complete light 105

Logout, general description 105
Logout light 105

Loop on test light 104

Index 12-65

135

Maintenance control word, general 106

Manuzl controls, FLT 103

Manual intervention required light 104

MCW control 106
MCW theory of operation 110

No compare light 104

Pass light 104
Pattern word, FLT 100

Repeat counter, FLT 109
Repeat FLT switch 103

Restart FLT 1/O (key) 104
Reverse parity, MCW 106

Scan clock, FLT 109
Scan in cycle light 104
Scan in, FLT 101, 110
Seek light 104
Select channel, MCW 108
Select next test, FLT 102
Send stop, MCW 108
Sequence, FLT

advance 102

compare 102

load the tests 101

scan in 101

termination 102
Single cycle FLT/log switch 103
Start FLT/log (key) 103
Stop FLT (key) 103
Stop light 104
Stop timer, MCW 108
Storage request light 105
Storage section light 104
Switches, FLT 103

Tape format, FLT 100
Terminate, FLT 102

Test number word, FLT 100
Test register, FLT 109

Transmission checks during FLT 103

Word control counter, FLT 109
Word switch matrix, FLT 108
INTERRUPTS

Comnsole interrupt 120

Direct entrance 123

E program 120, 127
E unit entrance 123

136 12-65

Execute operation recovery 122, 131
External interrupts 120, 127
External signal 121

General description 112

I program 121, 129
I unit entrance 122
Input/output interrupt 121, 129
Input/output sequence 125
Interrupt classes

external 112

input/output 113

machine check 112

program 112

supervisor call 112
Interrupt examples

external 113

initial program load 114

input/output 114

machine check 114

program 113

supervisor call 114
Interrupt last cycle 123
Interrupt priorities 119
Interrupt sequence initiation 122
Interrupt sequencing 123
Interruptable status 113
Interrupts, theory of operation 127
Invalid store address 120, 127
IPL interrupt 119, 132
IPL load PSW sequence 126

Machine check interrupt 119, 131
Machine check sequence 126
Masks 113

Modified sequences 125

Priorities, interrupts 119
Program mask 113
Program status word 115

Program store compare recovery 121, 131

Recovery-only sequence 125

SAP interrupt 119, 127
Sequence ipitiation 123
Sequencing 123

Storage interlock 126
System mask 113

Supervisor call intermpt 122

Timer advance request sequence 125
Timer interrupt 120

Wait status 126

IBM FE Supplement System/Unit 2075

Re: Form No. 223-2874-1
This Supplement No. S826-7034
Date January 1968
Previous Supplement Nos. None

This supplement revises and updates Volume 2 of the Field Engineering Manual of
Instruction on the IBM 2075 Processing Unit, Form 223-2873-1. This supplement

incorporates the floating point changes released under Engineering change EC 705848E
and the 2075 Model 1H 75 configuration.

Incorporate this supplement by replacing Title page, Preface page, List of Tllustrations
page, pages 5, 6, 8, 9, 10, 12, 29, 30, 33, 34, 70, and 71 with corresponding pages
attached to this notice.

Changes to text are indicated by a vertical bar to the left of the affected material.
Revised diagrams are identified by a bullet () to the left of the figure caption. (In

addition, changes that are not readily apparent are indicated by a vertical bar to the left
of the changed area,

File this cover letter at the back of the publication. [t will then serve as a record of
the changes received and incorporated.

International Business Machines Corp., Product Publications Dept., Neighborhood Road, Kingston, N.Y. 12401

PRINTED IN U.S.A 826-7034 (223-2873-1) Page 1 of 1

COULU0ULUOUUCO0OC0000OL C

— - ,

s |

g |
Eao E

aBEa @ |

LBESR I |
Py >

53 t |

s |

|

——————— CUT HERE S = o amiom it

223-2873-1

TBM

International Business Machines Corporation
Field Engineering Division
112 East Post Road, White Plains, N.Y. 10601

VSN Ul pajuly

L-ELBZ-ELT

