
(

2075 Processing Unit -- Volume 1

ComprehensivB Introduction

Functional Units

Field Engineering

Manual of Instruction

223-2872- '

... ~,.
:::''''.'
.",~

Form 223-2872-!

FES 526-7033

PREFACE

This is one of six Field Engineering manuals for the
2075 Processing Unit. These six manuals contain
the lUlit theory of operation, reference diagrams to
be used when troubleshooting, and maintenance pro­
cedures.

A bas ic knowledge of the IBM System/360 con­
tained In the IBM System / 360 Principles of Opera­
tion, Form A22-6821 is considered a prerequisite
for studying the unit theory of operation. The theory
of operation is contained in a four volume manual
identified as a Field Engineering Manual of Instruc­
tion (FEMI). Volume 1 is a prerequisite for the
detailed infonnation contained in volumes 2, 3, and
4. Volume 1 contains the Introduction to the system
and the processing unit and a description of the
functional units (registers , adders, and decoders) of
the processing lUlit. Volumes 2 and 3 contain
detailed instruction analYSiS , and volume 4 conta.ins
detailed inConnation on special features and power
supplies and control.

The four volumes of theory of operation contain
many references to the diagrams packaged in the
associated Field Engineering Diagrams Manual
(FEDM). All diagrams in the FEDM are identified
by a four digit figure number and lUlless otherwise
specified, all four digit figure references in the

MAJOR REVISION (December 1965)

This edition, Form 223-2872-1, obsolete. Form 223-2S72-0. The

major chanSe " the addition of Figure. 10 and 63.

FEMI indicate that the figure is contained in the
associated FEDM.

The complete titles and form numbers of the six
2075 Field Engineering Manuals are:

2075 ProceSSing Unlt-- Volume 1, Comprehensive
IntrodUction, Functional Units , Field Engineer­
ing Manual of instruction , Fonn 223-2872

2075 Processing Unit-- Volume 2. Theory of
Operation: Storage Bus Control; Instruction
Preparation; FLT, Logout. MCW; Interrupts,
Field Engineering Manual of Instruction , Form
223-2873

2075 Processing Unlt-- Volume 3, Theory of
Operation: Fixed Point. I Execute, Branch,
Floating Point, Variable Field Length, Field
Engineering Manual of Instruction, Form
223-2874

2075 Processing Unlt-- Volume 4 , Special Fea­
tures , Power Supply and Control , Appendix,
Field Engineering Manual of Instruction, Form
223-2875

2075 Processing Unit, Field Engineering Diagrams
Manual, Form 223-2876

2075 Processing Unit, Field Engineering Main­
tenance Manual, Form 223-2880

Copies of thlr and other IBM publlcatJom Can be obt.o.lned through IBM Bnnch Offic~ •.

Address cOm men" c:onc:"mlng the contenu of thlt publication to:

I IBM Syrtemr Development Dlv!.lon, Product Publications, Dept. 520, CPO Box 120, Kingston, N. Y. 12401

© 1965 by !nUm. tlona! Business Machine. Corpontlon

COMPREHENSIVE INTRODUCTION

5yltems Im:roduetion •

207S Proc:e5K>r Unit
I_Uni t Controls and Data Flow •

E- Unlt CoDtroIl and Data Flow.
236S Pro<;eQOr Storage

2361 Large Cap3e1ty Storage

Input/Outpott Channels
Exe<;\Itlon of ChanDll!ls Programs

Communications 8etw"en CPU and Cha.tWels
2860 Selector Channel

Channel Operation
Channel Intemtpu

initial Program Load

Opdonal Inpott/Output o..vt«s.
Multisystem Operation

2075 Pm<;essing Unit Introduction

System, ConceptS

Central Processing Unit (CPU)
imtru<;tion Handling •
Bus Control Unit

System Control Pan.,}

Machine Cyclel
Faull Locating Tests

Intemtpu
Triggers and Latches
Sl""chl RetendOft o..vt<;el

Sequenc:ers and Sequencer Cycles
Major Units UK! Data Flow Paths

lnstftlc:tlon Pnop:uadon
Op Register loading

ICR Updating •
Result Storing •

lnstntcuon Exe<;ution Examples

Purpose of CPU Functional Units •

I'ul'pose of BeU Fun<;tional Units
Purpose of I Unit FW>Ctional Unit.

Purpose of E Unit Functional Unit.
Purpose of VFL Functional Units

FUNCTIONAL UNITS

Adders
Address.lng Adder
AND_OR_Excludve OR
o..dmu Adder.
Exponent Adder.

•

5

5

" " " 19
19

" 22
23 ,.
2S ,.
30

30
30

35

35
38
38

'"' 44
44

'" 46
47
SO
50
54

56

'0
64

" " 72
73

15

17

77
17
78
78

82

Cate Select Adde,

Incrementer Adder
Main Adder-Shifter

Clock
Controlled Clock, Running Clock

Counters and Pointers
Digit Bulfer-DIglt Counter

SandT Pointers

Y and Z Counters
o..coders

BOP o..coder
BR I Field o..coder
Channel De<;oder

Divide o..coder
EOP o..coder

ERt Field Decodtr
lOP Decoder
LeOP Decoder •

Multiply o..coder
;.n:C'J:
'AJ' :0·· .

Gates and OR',

~~~:t~R 0: ~; 
Key OR , • • ' ... ' --1" t "'-: • .,;. 
MarkOR "' •• ~~ • • , 
VFL Byte Cates_L8G aD;,;,;;::;:.t 

Registers and Buffers 
AD Registers. 

BOP Register 
Direct Data Register 
EOP Register ' i" ) ERl Register ~.J_ " 
ExpoDl'nt Register • V- , ~~ 

floating-Point Reg in e n ~-: ! 
General PItrpose ReglsterC;.-3 
H Register • • • • " " • 

0":· . 
{ 

..... ...,. 
:;'-.;1: 

. ;:1. 
" ' . . .. 

lOP Regllter • • " 0 ":-~;:l 
J Register ..... _ ... . • ~, 0 

K Regilte. • -c:" ..- .. ... -.. .:JI 
Key Buffer Reglste. Q . ...:-..:.;. . 
L Register 
LeOP Resister :I': ~ : : . . " 
M Register 0 \\.:-.. --/. 

Mark Regilter 0 'ir~; ~ 
Program Statw Word :~: ~;C"l'4. •. '. 
Register Bus Latch C .. 0' 
Retwu Address Registers 
Storage Address Register (SAR) 
SAR DuplJ<;atc 

Storage Bus In (SBI) Latch Register 
StOlage Bus Out (S80) Latch Register . 
SlUft Counter Register 

CONTENTS 

8S 

8S 
87 

" " 93 
93 
95 

" 104 
104 
104 
104 
104 
1115 
lOS 
lOS 
1115 
lOS 
106 
106 

106 
107 
107 
107 
100 
100 

100 
110 
110 
110 
111 
111 
112 
113 
114 

"' 116 
117 
117 
117 
117 
117 
118 
11' 
120 

121 
121 
122 
122 
122 



ILLUSTRATIONS 

Title 

COMPREHENSIVE INTRODUCTION 

SYSTEMS INTRO DUCTION 

1 
2 

3 
4 
5 , 
1 

8 , 
10 
11 

12 
13 
14 

15 
16 
11 
18 

" 2() 

21 

22 

23 

24 
2S 

26 

Block Diagram of the Model 75 
IBM System/360 Model 75 CPU- Ston.ge System~ 

Data Formats 
Model 75 lnfonnatlon Relationships • 
Five Bade Im:uuction Fonnats • 

Binary, Hexadecimal, Decimal EquivalenU 
I1IpUt/OutpUt Channel (l1Iput) Operation 

I1I pUt/Output Channel (Output) Operation 
Clock Pu.be Relationshlpl 
Simplified £-Unit Data flow 

PSW Fonnat 
PennaJIent Ston.ge AplgnmenU 
Simplified Core Storage Operation 

Suic COni! Storage Operation 
Channel Address Word 

Channel CommaJId Word 
Channel St atus Word • 
I/O Im:uuctions and Condition Codes 
Functional Struc:turt: of a Basic Synem 
Functional Struc:turt: of a Channel_to_Channel 

Mu.ltJsyJte m 
Transmlsdon Control Units as Multisystem 

Connecton • 
Shared Control Units as Multisystem COllPecton 
Shared Device as Multisystem CollPector 

Shared Storage as Multlsyste m Connector 
Centralhed Crossbu Switch Representation 
Distributed Crossbar Switch Repre.entatlon 

207S PROCESSING UNIT INTRODUCTION 

21 
28 

" 

COni! Storage Cycle 
Model 75 Working Areu 

BCURoutlDg 

5 

5 , , 
8 
8 

10 
10 
12 

13 
11 

11 
20 
20 

" " 21 
21 
33 

" 
" " 34 
34 

34 
34 

3S .. 
37 

30 

31 
32 

" 
34 

3S .. 
31 

3S 

" 40 

41 
42 
43 

44 
4S 
46 
41 

48 
49 

SO 
51 

52 
53 
54 
55 

56 
51 

58 

" .0 
61 

" " 

SY'tem/360 Model 7S 
SimultaJIoous Preparation aJld Execution 

Execution and Execution Sequencers • 
51multaJIoow Instruction Fetching, Preparation, 

and Execution • 
Functional Sections of the 207S 

I- UnIt Fetch 
Overlapped 5torage Cyc.les • 
Retur:Ding Data with Overlapped Storagel 

Model 7S Main Storage 

HSS Cycle • • 
CPU Machine Cycle 
AND-OR-l1Ivert 

Flip Latch 
Palarity Hold 
Example of PH U,e 

PH Registe r Padtlons 
Retention Devlee Variations 
FL'I Used to Alte r Sigual Timing 

207S FUp-Fiop 
Sequencen and Sequencer Cycles 

Major CPU Functional Units 

IC Fetch 
Op Register Loading 
iCR Updating . • 
RX Operand Fetch 
Regilter Operand Delivery 

Register Put- AwaY' 
Operand Store 
RR Fixed- Point Add/Subtract 
Bule Floating-Poi .. ExpoDeDt Equalization 

Bulc floating-Palm Add/Subtract 
Balle VFL Add/Subtract Set_ Up 
Ballc VFL Add/Subtract Iterations 
Main Adder_Shl rter: Functions, Data Paths , and 

Control Scheme 

37 

" " 
41 
41 
42 
42 

43 
43 
43 

4S 
49 
49 

49 
49 
49 

51 
51 
52 
52 
53 
55 
51 
58 

" 61 

" " OS 

" " 10 
11 

88 



r 

r 

r 

SYSTEMS INTRODUCTION 

• The processor is a number of independent units. 

• CPU and core storage are integrated units. 

• Overlapped cycles between four storage units in­
crease the access speed. 

• Each byte in pr ocessor storage is addressable. 

• Data flow consists of 64 data bits and 8 parity 
bits in parallel. 

• Operands are primarily based on the hexadecimal 
system. 

• Instruction formats use both long and short data 
formats . 

• Instruction cycles. execution cycles, and I/O 
operations may take place simultaneously. 

• Cycle time is dependent upon the speed of the 
registers and logic. 

• A high degree of reliability is obtained through 
fault location tests, parity checking, and logout. 

The IBM System/360 Model 75 fills the need for a 
data processing system with high-speed operation. 
a versatile instruction set , large core storage 
capacity, and input/outJ1lt capabilities for a wide 
range of applications. The Model 75 basic system 
(Figure 1) consists of a number of independent sec­
tions: the IBM 2365 Processor Storage, IBM 2075 
Processing Unit and Bus Control Unit, IBM 2860 
Selector Channel, and associated control units and 
input/output devices. 

The functional organization of the central proc­
essing unit is equivalent to that of any other IBM 
System/360; however, its higher performance is 
attributed to the following: 

1. The stor age word consists of eight bytes (64 
data bits and 8 parity hits). 

2 . It uses a thr ee input addressing adder capable 
of handling 24 bits in parallel . 

3. Double word floating-point operations as well 
as s ingle word and fixed-point arithmetic instructions 
are performed in parallel. 

4. Instruction requests from core storage are 
overlapped with the execution cycle of the current 
instruction. 

COMP REHENSIVE INT RODUCTION 

"" 
p= ... ", 5,,,,,,,,,,,, 

lkll' (oj 

r,;; 
I 

~----~--- ------------, 
2075 CPU 

I 
I 

b Cookol Unt' (lieU) I 
I 
I 

I I 
I 
I 

I 
I 

~ i---j--J 
, , I vo 

Unl, U,I, C ....... l (0) 

I I 

I 
I 
I 
I 

I I L _____ _ ____ _ _ -.-l .l1111 
j 
vo 

Conko\ UnB' 

I 
, .. , .. MoQno';e ~~, ..... , ,-, ,~ vo 

o.-.\c .. 

FIGURE 1. lLOCK OI .... G«AA\ OF THE MODEl 75 

The basic system consists of the Model 75 cen­
tral proceSSing unit and one 0, 75-microsecond 
processor storage unit installed as a Single inte­
grated frame . In another configuration of processor 
stol'age, shown in Figure 2, the 2075 central 

~, 

0.75 ..... 0.75 "'"" 
,~- 5,""'11' 
h_ ,,-
262 K 262 K 

8)0'" "", 

"" "" 
,. 0.75 ""'"" ,,- WoU Woll S""OO)O W.II 

~ Soc,l"" 50-< .. "" Soc'loo 

,. ,,-
" 

FIGUtE 1. IBM SYST£M/360, MODEL 75 CPU- 5TOII .... QE SYSTEMS 

12-65 5ystenu Introduction 5 



~.w .... - j 
w ... 

- I -
w ... - I 

- I - 1'1011-.1 - I • .... , .... .. I - , ...... • I 
• I- , .. -I- , .. - I- . .. -I- •• " I- ... ' 1- '''I 

01 1 8 11 

I 

01 718 I I 63 

l'od<o<Io.·i .. oIN.-, -..L----r--------------- - -- ---l 
I 4 0l.gi .. 401,1 .. ~Oigi .. _1 _____ 1 ___________________ J 

:Z_dO.'i",oI ~ [ ____ J _________________ J 
I 14Z_ 14[);;;r I H_I~ o;,1r .----t------ -------------i 
Ifi ..... l""'rh Lop,.", Ift'-ali"" I I I .... ; ... 0... I I 
o 311 I 

~v .. ; ... I.-l ... rh1;·:::... I 8a.... '., 8Cho<a<'.. i =-= =- =-= .=--=--=-_-_~_=__=_== -j 
HG~f 3. O ... T ... fOlM.t.TS 

~ .. +,."-I.~,."+ .. ; ,+~ .. ,,+.,-I.~ .. ,,+.,, -I .~,,.,,+ .. ,,--I.~ .. ;,+ .. ,,-I+ •. ,,+ .. ,_I·~ .. ,,+'·,,_I·I 
1----"". .! - Iyl. -!. tr,· , j- Iyr. .. ! - Iyr. -I- lyle -I- .,.re '1- Iyre----l 

f+1_--1'101l_d -j- l'101F_d _I_ l'101F .. ,,,d . 1_ 1'1.II_d .. I 

f+1_------Wonl .. I.. w ... ~ '1 
1+-1. ________ ..... W .. ________ ~· I 

6 9-65 



r 

r 

r 

procesSing unit consists of a wall used to house the 
power conversion equipment and cables, the main­
tenance control frame (in line with the wall), the 
central processing frame (right angle to the waUl, 
and the 2365 Processor Storage puits (right angle 
to the wall). 

Overlapped cycles between two storage units in­
crease the access speed. Addresses are staggered 
in the two units, and a series of requests for sue­
cessive double words activates the two unUs alter­
nately, thus doubling the maximum rate. 

Each byte in the processor storage is individually 
addressable with a 24-bit binary address; however, 
instructions concerned with word boundaries must 
be addressed as such or error conditions result. 
The location of a stored field is specified by the 
address of the left-mosi byte of the field. Variable 
length fields may start on any byte location, but a 
fixed length field of two, four, or eight bytes musi 
have an address that is a multiple of two, four. or 
eight. respectively. Some of the various alignment 
possibilities are shown in Figure 3. 

The Model 75 data flow among the working 
registers, addressable registers, processor stor­
age, AB registers, and main adder consists of 64 
data bits and 8 parity bits in parallel. The working 
registers (J, K, L, and M) are not addressable but 
they play an important part in the overall operation 
of the Model 75 because they function as an inter­
mediate storage for operands, partial products, 
factors, and multiples during instruction execution. 
At the completion of an instruction, the intennediate 
data in the working registers are transferred to 
storage, a floating-point register or a general 
register. If the data in the working registers are 
not stored by the end of the operation, the data are 
lost when the next instruction is executed. 

The addressable registers are the 4 floating­
point registers and the 16 general registers. Each 
register is addressable by a 4 -bit binary address . 
In some operations an even-odd address pair of 
registers are used for addressing purposes. The 
floating-point registers are always addressed by 
their even address because they are double words. 
The general registers contain operands and indexes; 
the floating-point registers contain operands. 

The AB register s hold prefetched instructions 
from the processor storage . These registers may 
obtain instructions directly from the storage bus 
out latch register or via the J register from the 
storage bus out latch register. From the AB 
register. the prefetched instructions are gated to 
the inst ruction decoders. 

Operands are primarily based on the hexa­
decimal system. Four bits equal one digit; there­
fore, the value 0000 through 1111 in binary is pos­
sible. The binary, hexadeCimal, decimal 

equivalents are shown in Figure 6 . Some of the terms 
used in Model 75 work are as follows( Figure 4): 

1. Bit: A bit is a single unit of information; its 
value is either a 0 or a 1. 

2. Digit: A digit consists of four bits, in any 
combination of bits from binary 0000 through binary 
1111. 

3. Byte: A byte is two digits plus one parity 
bit. In most cases, when a byte is mentioned, the 
main concern is with the eight data bits. The 
parity bit is assumed to be transferred on the main 
data paths throughout the system, and it is used for 
valid byte detection throughout the system. Parity 
in the 2075 proceSSing unit is odd. 

4. Halfword: A halfword is 2 bytes, 4 digits, 
or 16 data bits plus 2 parity bits. 

5 . Word: A word. sometimes referred to as a 
full word, is two halfwords or 32 data bits plus 4 
parity bits. 

6. Double word: A double word, sometimes 
referred to as a core storage word, is two words 
or 64 data bits plus 8 parity bits. 

The Model 75 uses several instruction and data 
formats. Included in the standard instruction for­
mats are the RR (register-to-register), RS (regis­
ter and storage), RX (register and indexed storage 
operation), SI (storage and immediate operand), and 
88 (storage-to-storage) formats shown in Figure 5 . 
In each format, the first instruction halfword con­
sists of two parts: the first byte contains the oper­
ation code, and the second byte is either two 4-bit 
fields or one 8 -bit field. 

The length and format of an instruction are indi­
cated by the first two digits of the operation code as 
follows: 

00 RR format 
01 RX format 
10 RS and 81 formats 
11 S8 format 

The second byte is specified from among the fo l ­
lowing: 

1. Four-bit operand register designators (Rl, 

R2, andR3). 
2. Four-bit index register deSignator (X2). 
3. Four-bit mask (Ml). 
4. Four-bit fie ld length specification (Ll or 

L2). 
5. Eight-bit field length specification (L). 
6. Eight-bit byte of intermediate data (12). 
The second and third halfwords each specify a 

4-bit base register designator (B), fo llowed by a 
12-bit displacement (D). An effective storage 
address (E) is a 24-bit binary integer given, in the 
typical case, by 

E = B+X+D 
where B and X are 24-bit integers from general 
registers identified by fields B and X, respectively, 

12_65 Systems Introduction 7 



I- Fin' HoI~d R.s!i.,., · 1" Second H.IIf .... ord ·1- TII;,d H"lfwo«l ol 

I ~I I 
I 
I 

1 1 1 1 

I 1 RR Format Op coo. R1 " 1 I 
I' 7 8 L 1 12 "I 1 I 
I 

Regist •• 

~I I Sto<~. Ol"'ond 1 I , , 
I 

RX Form,,! 
1 

Op Cod, R1 
1 " 1 " 1 

01 I I 
7 8 11 12 1.51 16 ,,,. "I 1 I' 

I 
Regi ...... Ope<ando 

1 
Storage Ope,......! 1 

1 

RS F"" .... , I Op c.o. R1 I" 1 " ., I 
1 

"'" "I I' 78 1112 15116 
1 

1 I"'medio~ Operon<! I Slor""e Opot.ond 

~ 1 ( V A 

$1 Fo""'" 
1 

OpCode 
1 " 1 I I 

1 

" DI 
1 

I' 78 15
1

16 "'" "I 1 

1 O"",ond Lengths 
1 

Slorog. Opt.and I S'orog, O~fcn;/ 2 1 

55 Forma. 
1 

Op Cod, 1I 
1 

L2 I " , 78 11 12 15 16 "'" 
fiGURE 5. FIVE BASIC INSTRUCTION FORMATS 

and the displacement (D) is a 12-bit integer con­
tained in every instruction that references storage. 

The base (B) can be used for static relocation of 
programs and data. In record prCK:ess ing. the 
base can identify a record; in array calculations, 
it can specify the location of an array. The index 
(X) can provide the relative address of an element 

\linoo")' Huadec'"",1 Doc • ....,t 

00IIII , , 
0011 I I 
0010 2 2 
0011 3 3 
0100 , , 
0101 , , 
0110 , , 
0111 7 7 
1000 8 8 
1001 9 9 
1010 A 10 
1011 • II 
1100 C 12 
t 101 0 13 
1110 , 

" 1111 , " 
FIGURE o. BINAAY. HfXAOECIMAI., OfCIMAt EQUIVALENTS 

, , 
DI I " D2 I 

31 32 "" " 

within an array. Together. B and X pennit double 
indexing in array processing. 

The displacement provides for relative address ­
ing of up to 4095 bytes beyond the element or base 
address. In array calculations, the displacement 
can identify one of many items associated with an 
element. Thus, multiple arrays whose indices 
move together are best stored in an interleaved 
manner. In the processing of recor ds, the dis­
placement can identify items within a record. 

In forming an effective address, the base and 
index are treated as unsigned 24-bit positive binary 
integers and the displacement as a 12-bit positive 
binary integer. The three are added as a 24-bit 
binary number, ignoring overflow . Since every 
address is formed with the aid of a base address, 
programs are readily relocated by changing the con­
tents of base registers. 

A zero base or index designator implies that a 
zero quantity must be used in forming the address, 
regardless of the contents of general register O. A 
displacement of zero has no special significance. 
Initialization, modification, and testing of bases and 
indices can be carried out by fixed-point instructions, 
by branch and link, branch on count, or branch on 
index instructions. Load effective address provides 
Dot only a convenient housekeeping operation, but 
alos, when the same register is specified for result 



r 

r 

and operand, an immediate register-incrementing 
operation. 

Several data formats are shown in Figure3. An 
a- bit unitef information (the byte) is fundamental to 
most of the formats. A consecutive group of N such units 
constitutes a field of length N. FLxed-length fields 
of length one, two, four, and eight are termed bytes, 
haUwords, words. and double words, respectively. 
In many instructions. the operation code implies 
one of these (our fields as the length of the oper­
ands. On the other hand. the length is explicit in 
an instruction that refers to operands of variable 
length . 

Data are entered into the Model 75 system 
Ulrough input/outp.1t devices attached to the input! 
output selector channel via control units. Figure 7 
shows a block diagram of data input from the card 
reader . The data sensed at the brushes in the card 
reader are assembled into bytes in the control 
unit. Once a byte is assembled, it is t ransferred 
to the D register in the selector channel. In the 
selector channel, the bytes are assembled into 
double words. When the D register contains an 
assembled word, it is transferred to the A regis­
ter. A new double word is assembled in the B 
register while the double word in the A register is 
transferred to the memory data register in the core 
storage unit. Oncc the data are placed in the mem­
ory data register. they are written into the speci­
fied address in the core array. 

An output operation (Figure 8) is the opposite of 
an lnp.lt operation. The data are read from the 
specified address into the memory data register. 
From the memory data register, the data are trans­
ferred to the A register in the selector channel. 
When the B register has transferred the last byte 
of data of the previous core storage word to the byte 
register in the control unit , the transfer from the A 
register to the B register occurs. The data, in the 
B register, are disassembled into bytes for trans­
mission to the byte register in the control unit. From 
the byte register in the control unit, the byte is dis­
assembled into bits and punched into the card . 

Although this is a general description of an 
input/output operation involving the selector chan­
nel, input/output control unit, and a card read/ 
punch, all input/output operations are basically the 
same whether they are slow-speed devices such as 
telecommunication equipment or high -speed devices 
such as hypertape units; input/output operations, 
instruction cycles, and execution cycles may take 
place simultaneously for maximum processing 
speed. 

The fundamental determinant of the central proc ­
ess ing unit speed is the time required to take data 

from the internal registers, process the data 
through the adder or other logical unit , and return 
the result to a register. Th.is cycle time is de­
termined by the delay per logical circuit level and 
the number of levels in the register-to-adder path, 
the adder, and the adder-to-register return path. 

The Model 75 processor has a 64-bit parallel 
data flow with parity checking on each 8 -bit byte. 
The parity checked main adder operates on a basic 
cycle time of 200 nanoseconds (~rosecondS)' 
and the nominal delay ~te l~ vel' the Model 
75 is 6 nanoseconds. T c t ycle of the 
Model 75 is 200 nanosec~ 

The speed of the cent~~ . unit also de -
pends on the speed of the Bal registers and the 
floating-point registers. he . en(;)~d floating­
point registers are imple t ' d \Vftb fY-:nanosecond 
logic circuits and commll.ftte1tle. dit~ctl'fwith the 
adder and other data path' . ,."", 

The two principal me~s""Of si.t~ the central 
processing unit are the width of the data"paths and 
the number of bytes of high~ed woilO.J!g registers. 
The Model 75 has a 64-bit toitaf'mam adder, an 
8-blt exponent adder, an 8~f.d.~imal adder, a 24-
bit addressing adder, and sre..ral o~ta trans­
fer paths, some of which h~ increniendng ability. 
In addition to the 16 general P6pos~regis~"'" s, there 
are 4 floating-point registe;~workingre isters, 
and a64 -bit program status word reg~le . 

In the Model 75, many operamw/can ~e place 
~ ~ 

at the same time. The centIdU prC?Ce~~ unit is 
divided into three units that (J))erafe ,ome\jlat inde­
pendently. The instruction Jte~ratiOn..un:it (I unit) 
requests instructions from m'aiH storagerlrepares 
them by computing their effec~e _!IJIcft.eS&b.and 
initiates the request for the r~ed c;lata. j The 
execution unit (E unit) performs the e~c~ti'm of the 
instruction prepared by the instruction unit. The 
third unit, the storage bus control unit (BCU), co­
ordinates the various requests by the other units and 
by the channels for core storage cycles. All three 
units normally operate Simultaneously, and together 
they provide a large degree of instruction overlap. 
Since each of the units contains a number of dif­
ferent data paths, several data transfers may occur 
during anyone single cycle in a single unit. 

Standard features of the Model 75 include single 
and double word floating-point arithmetic, fixed­
point arithmetic, decimal arithmetic, variable 
field length (VFL) operations, logical and masking 
operations, storage protection, interval timer, 
direct control features for external control features 
for external control signal transmission, and auto­
matic maintenance features such as fault locating 
tests (FLT), logout, and a comprehensive interrupt 
recovery system. 

12--65 Systems Introduction 9 



Chon.,.1 COf, Storoge Unit c., Contr,,1 
R ... d" Un;' 

0 0 0 0 
X , 

8 
X 

" 

8 A --. ... ... Dolo 
ROO .. 

X 
23 

~9 
0 ,. ., .. X 

R .. -

" I,Ie, 
J2 

X , 
" " X 

S'otage .. C •• 0,,, Storage 
Unil 

., .. 
X 

" " X 

" " " " 

FIGLRf 7. INPUT/ OUTPUT CHANNEL ( INPUT) OPERATION 

Cor. S'oroge Unit Chonn, 1 P~nch 

0 
0 

0 0 
C-O 

X-

0 
A 8 --. 0 

0,,10 
0 

... ... ~ 

ROO 
I 

X-

0 ~ 
0 
0 
0 f-C •• 
, 

Storage , 
Unit 

~ 0 , 
I 

f-0 
0 , bS\!\\\'{ 
0 ~ 
0 

X_ 

0 
0 ~ 0 

" , " OJ 
X-

flGl.IlE 8. INPUT/OUTPUT CHANNEL (OUTPUT) OPERATION 

10 9-65 



2075 PROCESSOR UNIT 

• Simultaneous I and E cycles are possible in CPU. 

• I and E units perform interlocked overlapped 
operations . 

• Instruction buffering is provided for greater 
speed. 

The Model 75 has a 64-bit main adder, 8-bit ex­
ponent adder, 8-bit decimal adder, 24-bit address­
ing adder and several other data transfer paths. 
There are 16 general purpose registers, 4 fioating­
point registers, 6 working registers, and a pro­
gram status word register. 

The Model 75 has simultaneous I and E cycles. 
The central processing unit is divided into three 
units which operate somewhat independently. They 
are the instruction unit (1 unit), the execution unit 
(E unit), and the bus control unit (BeU). As pre­
viously discussed, all three units normally operate 
simultaneously, and together they provide a large 
degree of Instruction overlap. Since the instruction 
and execution units contain a number of different 
data paths, several data transfers may occur during 
anyone cycle in a single unit. 

The I and E units are interlocked to prevent one 
unit overrulUling the other and to allow proper inter­
rupt recovery. Some instructions, such as input/ 
output instructions, are executed entirely by the 
1 unit, while multiple load and store and set system 
mask instructions are executed by both the I and E 
units. 

In addition to the overlapping of the I and E 
cycles, speed is also obtained by using instruction 
and operand buffering. Two double word registers 
(16 bytes) are used for prefetching instructions and 
one double word register (8 bytes) is used for pre­
fetching operands. Prefetching allows most of the 
core storage access cycle to be overlapped by in­
struction execution. 

I-Unit Controls and Data Flow 

• Main functions are controlled by the clock. 

• Instructions are placed temporarily in the AB 
registers. 

• Effective Address (E) = X + B + D. 

The I unit and the E unit functions are controlled by 
the clock. The main function of the clock is to gen­
erate, shape, and distribute c lock pulses to the I unit, 
E unit and maintenance console. Two types of pulses 

are generated by the clock: running pulses and con ­
trolled pulses. RulUling pulses are stopped during 
system reset; controlled pulses are stopped during 
system reset, machine check, during all resets. 
and in single-cycle mode. In single-cycle mode, 
controlled pulses are emitted one cycle at a time by 
depressing the single-cycle key . 

The relationship among the clock pulses is 
shown in Figure 9. The basic clock pulse (the A 
pulse, also called A clock) is wide enough to reliably 
set a control trIgger; its leading edge also defines 
the beginning of a machine cycle. 

D cycles are approximately 1/4 cycle long and 
are generated at three different times within a 
"machine cycle: early B clock is generated for the 
second quarter of the machine cycle, B clock is 
generated for the third quarter of the machine 
cycle, and late B clock is generated for the foUrth 
quarter. Each B clock pulse is timed for its indi­
vidual USC; therefore, these times are not exact. 

The L clock pulse is slightly longer than the A 
clock pulse and brackets the A clock pulse on both 
sides. The leading edge of an L clock pulse rises 
in the preceding A clock cycle and its trailing edge 
falls after the A clock pulse. L clock pulse sets 
the latch to insure the state of the control is held in 
the latch for the duration of the L clock even 
though the A clock is changing the status of the con­
trol trigger. 

The C clock cycle is one-hali cycle long and 
spans the first half of the machine cycle. It is used 
for special purposes in the bus control unit and 
maintenance console. The A, B, C. and L pulses 
are generated as controlled and running pulses. 

The heart of the clock is a crystal controlled 
oscillator which produces all clock pulses. A pro­
vision is also made to gate a fixed or variable fre­
quency oscillator into the pulse shaping and timing 
circuitry. The switch "enable frequency check" de­
termines the oscillator being used. 

Following the oscillator gate is a circuit that 
allows every other pulse from the oscillator to enter 
the clock controls and pulse shaping circuits. The 
shaped oscillator output feeds a delay line and two 
AND circuits which are gated by the control trigger 
and runni.ng trigger respectively . The delay line 
insures that the first 1X11Se emitted is a complete 
pulse. From here the pulses are sent to pulse 
stretchers and another delay line to form the L and 
C clock pulses as well as separating the leading 
edges of the A a nd L clocks. 

The D clock is formed from a L pulse by means 
of a pulse shrinker and then fed into three different 
delay lines to form early B, B, and late B clocks . 
Each clock pulse leaving !he large circuit boards 
has its own delay line, which is adjusted so that all 

'-65 Synenu Introduction H 



l..- O"'Mooh, ... _ _ _ + ___ O .... Modo; .... __ ~+---O'" Moc~; .. __ _I.I, 
I Cy<1ot C,..I. Cr<'" 

ftGUlE t . CLOCK I'\JUf ULA-TIONSHI..s 

pulses of the same kind (A, B, C, or L) arrive at 
every portion of the machine at the same time. 

The data flow in the I unit is shown in the IBM 
2075 Processing Unit Field Engineering Diagrams 
Manual, Form 223-2876. See Figure 2000. The 
instructions are brought from core storage and 
placed temporarily in the AB registers. Upon the 
completion of the I time of the previous instruction, 
the next Instruction is transferred into the I opera­
tion register. If the next instruction time is not 
blocked, the next operation is decoded. During 
I time the instruction placed in the instruction 
operation register is decoded to determine the 
operation to be performed. The op code and Rl 
fields are placed in the B operation (BOP) register. 
The B operation register is an operation register 
for those instructions executed by the 1 unit. The 
general registers specified by the X and B fields 
are decoded and the contents of these registers are 
added to the contents of the displacement (D) field 
in the addressing adder to calculate the effective 
address (E). The effective address is gated from 
the addressing adder to the storage address regis­
ter (SAR) or the H register. If the effective ad­
dress specifies a location in core storage, the 
contents of the storage address register is trans­
ferred to the memory address register (MAR) when 
the storage request is recognized by the bus con­
trol unit (BCU) . The data from core storage (or 
the general purpose register or floating-point 
register specified by Rl) is rcbJrned to the J 
register. By the end of instruction time the in­
struction is decoded, the operands are in the work­
ing registers, (if the instruction is an HR format) 
the inStruction counter is updated, and the next 
instruction is waiting in the AB registers . 

r 

E-Unit Controls and Data Flow 

• There are many main data paths in the execution 
unit. 

• Binary arithmetic operations fall into four 
classes. 

• Binary addition-subtraction is accomplished by 
paraliel addition. 

• Binary multiplication is performed at the rate of 
four bits per cycle. 

• Binary division uses a non-restoring division 
algorithm. 

• VFL and logical operations process fields of 
fixed and variable length . 

• Instruction sequencing is normally in sequential 
order. 

• Instruction counter controls control the advanc-
1ng of the instruction counter. 

• Branch requests are made in the same way as 
an operand request. 

The data flow in the execution (E) unit of the Model 
75 Is shown in Figure 10. There are many main 
data paths in the E unit: a typical one is one in 
which the main adder is used. Data is gated from 
one or more of the working registers (J, K, L, and 
1\1 register) to the main adder (AM); the main 
adder output bus (AMOB) latches are gated back to 



,....... ." 
I' r<!~ .J ! - . -

I 

( 

r 

I 

~ 

~ 

. 
" ><_ t ~ 

.l/ ... >(-

" . 

• • 
! f-. ~-
l 1 i • 
; 1-- .1-"' 
. c 3 1-;;-
f I-- .----1-. :r-~ 1- • , 1/1 J L..o. L.aJ <-

'- ~ 

, 
o 

12-65 Syste1Tl.1 Introduction 13 



Form 223-2872-1 

FES S26- 7033 

one or more of the working registers. A typical 
floating -point data path is one in which the M 
r egis ter is gated to the true/ complement (T I C) in­
put of the main adder, and the K register is gated 
to the normal input. The sum on the main adder 
out WS is gated to the K and M registers. 

Another data path is the one that is used in ex­
panding a half-word from core storage into a full 
word. The data flow is from the J register through 
the main adder, the shifter, the main adder output 
bus latches, and to the K register. From the K 
register the data pnth is to the register bus latch 
(RBL) and then back to the J register. System/360 
Model 75 binary arithmetic operations fall into four 
classes: fixed-point ar ithmetic. floating-po int 
arithmetic, logical operations, and decimal arith­
metic . The basic arithmetic operand is a 32-bit , 
fixed-point binary word. Some products and all 
dividends are 64 bits long, using an even-odd 
l'egistcr pall'. 

Addition , subtraction. multiplication, divisions, 
and comparisons take one operand from a register 
and the other operand either from a register or 
core storage. Floating-point numbers may occur in 
either of two fixed-length formats -- short or long. 
These formals differ only in the length of the 
fractions, as indicated in Figure 3. The fraction 
of a floating-point number Is expressed in 4-bit 
hexadecimal (base 16) digits. In the short format, 
the fraction has 6 hexadecimal digits, in the long 
format , the fraction has 14 hexadecimal digits. 
The radix point of the fraction is assumed to be 
immediately to the left of the high-order fraction 
digiL To provide the proper magnitude for the 
floating -point number, the frac tion is multiplied by 
a power of 16 . The characteristic (exponent), bits 
1-7 of both formats, ind icates this power. The 
characteristic is treated as an excess 64 number 
with a range from -64 through i63, and permits 
representation of dec imal numbers with magnitudes 
in the range of 10-78 to 1075 . Bit poSition 0 in 
either format is the fraction sign. The fraction of 
negative num bers is carried in true form. 

Floating-point operations are performed with 
one operand from a register and the other operand 
from either a register or core storage. The re­
sult , located in a floating-point register, is 
usually of the same length as the operands. 

Binary Addi t ion-5ubtraction; In the Model 75, 
binary addition and subtraction is accomplished by 
parallel addition of the two operands. In RX for­
mat instructions, Uw s torage operand is placed in 
the J register prior to the execution of the fi rst 
good E cycle , and th e HI operand is brought either 
from the general r egister or floating-point register 
specified by Rl In the instruction and placed in the 

14 1/68 

M r egister. U the instruction is a fixed-point in­
struction or a short floating-point instrUction, the 
Rl operand is placed in the high-order half (bits 

I 0-23, for floating-point or bits 0-31 for fixed­
point) of the M register, The result is obtained in 
one pass through the main adder. The result is 
returned to the K r egister ; from the K register 
the r esult is returned either to the floating-point or 
general register specifJed by R1 of the instruction, 

Before the add cycle in floating- point add-sub­
tract and compare instructions, the operand with the 
smaller exponent is shifted right until the exponents 
are equal. Addition of the fractions follows the 
shift cyc les as in the fixed-point instructions. A 
guard digit is re tained to incr ease the precis ion of 
the result following fraction addition, Subsequent 
cycles may be necessary to normalize the sum or 
recomplement the result in case the result is in 
complement form . 

Tests are madc during E time to detect exponent 
overflow, exponent underflow . addressing excep ­
tions, specification , and lost Significance for 
floating-point instructions, and addressing excep­
tions, specification, and overflow for fixed-point 
instructions . 

Binary Multiplication: The Model 75 incorporates 
logic which allows binary multiplication at the rate 
of four-bits per cycle. All even multiples of the 
multiplicand are provided fo r addition to or sub­
traction fr om the partial product within one cycle , 
except for the XIO and X14 multiples, which re­
quire two cycles. Since only even multiples are 
used, an even multiplier digit yields a correct 
partial product; aU odd multiplier digits yield a 
partial product which is the Xl multiple higher than 
the multiplicand. Correction for this over multi­
plication is provided for by decoding the unit bit of 
the next highest multiplier group. When an odd 
multiplier is antiCipated , the XI6 multiplicand is 
subtracted from the partial product. This results 
in the partial product being the Xl multiple low as 
the next multiplication cycle by an odd digit begins. 
The net result of this pair of cycles is a correct­
product if the units digit of the next multiplier group 
does not also contain a one bit. The first cycle of 
multiplication differs from the following cycles in 
that if the unit bit is odd. the multiplicand, located 
in the K register, is added to the multiple as though 
it is a partial product. 

Fixed-point multiply is executed by placing the 
multiplicand in the M r egister and the multiplier in 
the J register. IAtring the first cycle , the multi­
plicand is transferred from the M r egister to the 
main adder and back to the K r egister and the M 
register. The second cyc le develops the Xl2 
multiple by shifting and s ubtracting the X4 multiple 



r 

r 

r , 

from the X16 multiple; the result (the Xl2 multiple) 
is placed in the L register. The shift counter is 
sei to eight, and the multiply iterations are per­
formed. The multiplier is decoded from the J 
register to select the proper multiple from the M 
register or L register. The partial product in the 
AMOB latches is returned to the K register. the 
shilt counter Is decremented, and the J register is 
shifted right four bits. When the shift counter is 
decremented to zero, multiplication is complete; 
the product is stored in the general register speci­
fied by Rl of the instruction. 

Floating-po int multiply is similar to fixed-point 
multiply; however, the multiplicand is prenormal­
ized before the mul tiplication cycles and the sum of 
the exponents is determined. The multiple genera­
tion and iteration cycles are the same as for fixed­
point multiply except that the shift counter is set to 
six for Single-precision floating-point instructions 
or to 14 for double-precision floating-point instruc­
tions . 

l.)J.ring each iteration cycle, the multiplier is 
tested for high order zeros; when detected, 
multiplication is concluded. The partial product is 
either hex-normalized or a high-order hex-zero 
digit exists. In the latter case, the hex-zero digit 
is shifted left four bits and one is subtracted from 
the exponent. 

Floating-point multiplication is terminated by 
gating the final product from the K register into the 
floating-point register specified by Rl of the in­
struction. 

Binary Division: In the Model 75, binary divi­
sion uses a non-restoring divis ion algorithm which 
incorporates a trial division by a multiple and 
produces two quotient bits for each iteration 
cycle. A non-restoring approach is used because 
by following a trial subtraction which overdraws, 
with a trial addition, restoration cycles are elim­
inated. 

By execution time, the divisor is placed in the J 
register for RX format instructions or the M register 
for RR format Instructions. The divisor is hex­
normalized by gating it through the main adder and 
shifter . The result is placed in the K register and the 
Lregisler. The X 3/2 divisor is generated by adding 
the contents of the K register to the contents of the 
L register shifted right one. The result is returned 
to the L register. 

The dividend is placed in the M register, shifted 
the proper amount, and swapped with the K regis­
ter. The required divisor multiples are located in 
the M register and L register. The Xl and X 3/2 
divisors are obtained by a direct read out from the 
registers, and the X 1/2 and X 3/4 divisors are 
obtained by shifting r ight one. 

The quotient is assembled in the J register; 
every second iteration causes the J register to be 
shifted left four bits by gating it to the RBL and 
back into the J register; thus space is provided for 
the next four quotient bits. The shift counter is 
set to the iteration count and division takes place 
until the shift counter is decremented to zero or 
three. 

The first step in each iteration cycle is the 
selection of the divisor. If the dividend is true, the 
multiple is subtracted (rom the dividend; if the 
dividend is complement, the multiple is added to the 
diVidend, and the quotient bits are entered into the 
J register. Most iteration cycles produce two 
quotient bits; however, if the X 3/4 divisor is used , 
three bits are generated. In this case , the third 
bit is retained and entered in place of the high order 
quot ient bit developed during the next iteration 
cycle. 

When Ule shift counter is reduced to one or three, 
the iteration cycles are terminated. If the last 
divisor used is the X 3/4, the quotient is complete; 
however, i( th~ X 3/4 divisor is not the last divisor 
used, one more quotient bit is developed. The last 
quotient bit Is generated by reducing the dividend 
by the Xl divisor. 

In floating-point divide, the exponent is com­
puted, tests are made (or exponent overflow, ex­
ponent underflow, lost Significance, and for 
division by zero. Also, the quotient is transferred 
to the floating-point register specified by Rl. In 
fixed-point divide, the remainder is developed and 
transferred to the general register specified by R1 
and the quotient is transferred to RI + 1. 

VFL and Logical Operations: Operands (or com­
paring, translating, editing, bit testing, and bit 
setting are provided for process ing logical fields 
of fixed and variable lengths. Fixed-length logical 
operands, which consist of one, fOUI, or eight bytes, 
are processed from the general registers. Logical 
operations are also performed on fie lds up to 256 
bytes in length, in which case the fields are proc­
essed from left to right, one byte at a time. Two 
scanning instructions permit byte-by-byte transla­
tion and testing via tables. An important special 
case of variable-length logical operations is the 
one-byte field, whose individual bits are tested, 
set, reset, and inverted as specified by an a-bit 
mask in the instruction. 

Decimal arithmetic imporoves the performance 
for processes requiring few computational steps per 
datum between the source input and the output; 
decimal arithmetic is provided with the operands 
and the result located in storage. Decimal arith­
metic includes addition, subtraction , multiplication, 
division, and comparison. 

12_65 Systems Int roduction 15 



Decimal digits are represented in four-bit 
binary-coded-decimal; they are packed two to a 
byte, appearing in fields of variable length (from 1 
to 16 bytes), and are accompanied by a sign located 
in the rightmost four bits of the low -order byte. 
Operand fields are located on any byte boundary and 
have lengths up to 31 digits plus sign . Instructions 
are provided for packing and unpacking decimal 
numbers; packing of digits leads to efficient use of 
storage, increased arithmetic performance, and 
improved rates of data transmission. 

The execution of YFL and decimal instructions 
is handled by a separate section of the E unit. 
The K register and the L register are data input 
sources; the K register doubles as the result regiS­
ter. During YF L and decimal operations, normal 
I Wlit operations are suspended and the addressing 
facilities of the I unit are placed at the disposal of 
the YFL controls for generation of storage operand 
addresses. 

Generally, a VFL operation requests data from 
core storage containing operands one and two. 
These data are placed into the K register and the L 
registers. The operand bytes are gated to the 
YFL E unit and the required operation is per­
formed; the result byte replaces the operand byte 
i.n the K register. When either the K register or 
the L register oper and is depleted and the opera­
tion is not complete, a request is made to obtain 
the next sequential storage word. 

The central processing unit normally takes in­
structions in sequential order. After an instruction 
is obtained from a core storage location specified 
by the instruction counter, the instruction counter 
is incremented by the number of bytes in the in­
struction. 

Most branch ing is accomplished by inspecting 
the condition of two bits of the condition register 
(bits 34-35 of the PSW). Many of the arithmetic, 
logical, and input/ output operations indicate their 
outcome by setting the condition register to one of 
its four possible states (00-11). Subsequently, a 
conditional branch operation selects one of its four 
possible states as a criterion for branching. For 
example, the condition code reflects conditions 
such as non-zero result, first operand high, 
operands equal, overflow, chalUlel busy, zero, 
etc. Once the condition register is set, it remains 
unchanged until modified by an instruction that re­
flects a different condition code. 

The program status word (PSW), a double word 
having the format shown in Figure 11, contains in­
formation required for proper execution of a given 
program. The program status word includes the 
instruction address, condition code, several mask 

16 12_65 

bits, and several mode fields. The active or con­
trolling program status word is called the current 
PSWj the status of an interrupted program is pre­
served by storage of the current program status 
word. 

Five classes of interrupt conditions are dis-
tinguished: 

1. Input/ output 
2. Program 
3. Supervisor call 
4. External, and 
5. Machine check. 

For each class, two program status words, called 
old and new, are maintained in the main storage 
locations shown in Figure 12. An interrupt in a 
given class stores the current program status word 
as an old program status word and then takes the 
corresponding new program status word as the cur­
rent program status word. If, at the completion 
of the interrupt routine, the old and current pro­
gram status words are interchanged, the system is 
restored to its prior state and the interrupted 
routine is continued. 

The systems mask, program mask, and machine­
check mask bits in the program status word are used 
to control c ertain interrupts. When masked off, 
some interrupts remain pending while others are 
ignored . The system mask keeps external and 
input/ output interrupts pending; the program mask 
causes four of the 15 program interrupts to be 
ignored, and the machine-check mask causes 
machine-check interrupts to be ignored. 

Response of the central processing unit to a 
special condition in the channel and input/output unit 
is facilitated by an input/ output interruption. The 
address of the channel and input/ output unit are 
recorded in the old program status word while re­
lated information is preserved in a channel status 
word (CSW) that is stored as a result of the inter­
rupt. 

Unusual conditions in a program create program 
interruptions. Eight of the fifteen poSsible condi­
tions involve overflow, improper divide operations, 
exponent underflow, and lost significance. The 
remaining seven deal with attempted execution of 
privileged instructions, improper addresses, and 
similar conditions. 

A supervisor-call interrupt results from execut­
ing the supervisor call instruction. Eight bits from 
the instruction format are placed in the interrupt. 
code of the old program status word. Supervisor 
call permits a problem program to switch central 
pr oceSS ing unit control back to the supervisor. 

The central processing unit responds to signals 
from the interrupt key on the systems control 



r 

r 

Sr""" M .. k '" CMWP Intenvpl Code IlC 
Prog'''''' 

CC Mok In"'ructl"" Addr_ 

, 78 II , '" "32 ., 
'" -SIOfOV'· 
P,ot,ell"" 

FIGURE 11 . PSW fORMAT 

Add,_ Byte leroglh 

0 , , , 
" 

, 
" , 
J2 , 
" , .. , 
" 

, 
" 

, 
" • 
" • 80 • 
" • 88 , .. , 
"" , 
112 , 
'20 , 
12' 

CMWP­
~ter­
~, ..... 
Mod. check 
Woil.lote 
P<ObI_IIo~ 

Pu,...,... 

Inlliol program loodlng PSW 
Iniliol prog,am loodi"9 CCW 1 
Inlliol P<"9rom loading CCW 2 
btemol old PSW 
SUpeNIIO' coli old PSW 
Prog,am old PSW 
Machine check old PSW 
In.:,:/outpul old PSW 
C ,..1 ."'luI word 
Ch""n.l add.,... word 

""~ .. 
Timer 
~ .. 
Extemol n_ PSW 
SUpervi.Of coli new PSW 
Prog._ new PSW 
Machi ... check new PSW 
Input/ output new PSW 
Oiognostk 1C"" ...... t "' ..... 

·T'" lin 01 III_ dl"ll""'tlc I~ .......... t "',.., II configuroti"" depend..,t. 

flGl.IlE 12 . PERMANENT STORAGE ASSIGNMENTS 

panel, the timer, special devices, or other central 
processing units through an external interrupt sig­
nal. The source of the interrupt is identified by 
an interrupt code in bits 24-31 of the program 
status word. 

A machine chec k (if urunasked) is caused by a 
hardware malfunctiOll; it cannot be caused by 
invalid data or instructions, and it tenninates the 
current instruction, initiates a diagnostic pro­
cedure, and effects a machine-check interrupt. 
When several interrupt requests occur during 
execution of an instruction, they are honored in a 
predefined order. 

Overall central processing unit status is deter-
mined by four alternatives: 

1. Stopped versus operating state , 
2. RulUling versus waiting state, 
3. Masked versus interruptible state, and 
4. Supervisor versus problem state. 

In the stopped state (entered and left by manual 
procedure), instructions are not executed, inter­
rupts are not acknowledged, and the timer is not 
updated. In the operating state, the central proc­
essing unit is capable of instruction execution and 
of being interrupted. 

In the running state, instruction requests and 
execution take place in a nonnal manner. The 

II.>. - '" -Inll ... ";ll",, Con.UU"" 
~~­
Flx~ 
overflow l ... . 

C",," 
Cod. 

Oecl_' overflow 
bpo ... nl ........ ,fl_ 
Slgnlric""", 

wait state is entered by the program to wait for an 
interrupt. In the wait state, no instruction proc­
essing takes place, the timer is updated, and 
input/output and external interrupts are recognized 
if not masked off. Running versus waiting state is 
determined by the setting of a bit in the current 
program status word. 

Central processing Wiit operations are inter­
ruptible or they are masked for system, program, 
and machine interrupts. When the central proc­
essing unit is interruptible for a class of instruc ­
tions, interrupts are accepted. When the central 
processing unit is masked, system interrupts re­
main pending and program and machine-check 
interrupts are ignored. The interrupt states of the 
central processing unit are changed by altering 
mask bIts in the current program status word. 

In the problem state , processing instructions 
are valid, but all inp.1t/output instructions and a 
group of control instructions are invalid. In the 
supervisor state, all instructions are valid. The 
choice of problem or supervisor state is deter­
mined by a bit in the program status word. 

All instructions are initially processed in the 
instruction unit. The basic I time consists of two 
sequencers, T1 and T2. Both sequencers may stay 
on for more than one clock cycle. During Tl and 

9-65 Systems lnr:roduc:tlOD 17 



T2 time, the instruction is decoded, addresses are 
computed, and most operand r equests arc made. 
At the end of the last T2 cycle, the operation code 
is transferred to the execution unit where the in­
struction is completed. Tl of the next instruction 
usually follows T2 of the previous instruction. 

At the beginning of every Tl cycle, the two 
halfwords of the AB register addressed by the gate 
select latch (gate select addresses the l eft-most 
half word) are gated into the lOP register. During 
Tl, instruction decoding is done from the lOP 
register and any registers required for an effective 
operand addr ess are gated to the addressing adder. 
With the tur n on of T2 (called TN T2), the ad­
dressing adder output is gated into SAR and/or the 
H r egister; and any required operand fetch re­
quests are made; operands requested are generally 
returned to the E unit. During T2, GRP, or FPL 
register operands required by the E unit are gated 
to the RBL. At the end of T2, the I to E transfer 
occurs, providing an interrupt has not occurred. 
At this time, the instruction is transferred to the 
execution unit . During T2 time, decoding is done 
fr om both lOP and BOP, The turn on of Tl, T2, and 
the I to E transfer are dependent on several condi­
tions being met. 

E unit decoding is done from the E-operation 
register (EOP) in the E unit which is set from 
lOP. A second E unit op register (LeOP) provides 
the op code during the last cycle of the E unit in­
s t ruction execution . During LCOP, EOP is being 
sei for the next instruction, thus assuring tile E 
unit of one cycle of decoding before the I to E 
transfer. The instruction counter controls control 
the normal advancing of the instruction counter and 
the normal requesting of instructions. The in­
struction counter r egister (ICR) contains 24 bits . 
Bits 20-22 are advanced after the I time of each 
instruction; bits 0-19 are advanced independently 
of bits 20-22. Bit 23 of the instruction counter 
register is always zero because inst ructions start 
at halfwor d addr esses. The instruction counter 
register is advanced by two adders : the gate 
select adder for advancing bits 20-22 and the in­
crementer for advanc ing bits 0-19 . The gate 
select adder works in conjunction with the gate 
select register (GSR) to select gates from the AB 
r egisters to the lOP register . 

The instruction counter (IC) contr ols also gen ­
e r ate normal instruction counter requests and 
generate the instruction address. The addresses 
are gener ated by adding in the incrementer an 
amount equal to the length of the instruction plus 
the amount in the instruction counter register. The 
controls attempt an inst ruction counter request as 
soon as an empty instr uction buffer is detected, 

18 12_65 

but any instruction being executed may block an in­
struction counter request if it would interfere with 
the instruction being executed. Wheneve r an in­
struction counter block condition is generated, the 
instruction counter request which is not honored by 
the bus control unit is cancelled. 

Special instruction counter request rules are 
implemented to insure that A and B registers are 
never both empty by forcing instruction counter 
requests into the instruction stream and by sup­
pressing instruction requests in anticipation of 
br anch requests. 

Instruction counter request addresses are ob­
tained by gating the instruction counter into the 
incrementer and adding the proper increment 
amount. The increment amount is determined from 
the value of the instruction counter register and the 
empty condition of the A or B register . Bit 20 of 
the instruction counter request address is zero if 
the request is for the A register, or a one if the 
request is for the B register. 

Branch requests are made at TN T2 time similar 
to operand requests. Branch request return ad­
dresses are generated for the AB register and the 
J register. If bit 20 of the address is a zero, the 
request is returned to the A register, and if bit 20 
of the address is a one, the request is returned to 
the B register. 

Branch instructions initiate a request to fill the 
second buffer. The r equest is called the branch 
+1 (BR +1) request , and it is obtained from the 
storage location following the location of the 
branch-to instruction. The address for the branch 
+1 request is computed during T2 of the branch in­
s t ruction, and it is normally made at the I to E 
transfer. The return address for the branch +1 re­
quest is opposite to that specified for the branch 
request. 

During E time of the branch instruction, the 
success of the branch is detennined. The tests 
complete (tests cmplt) trigger is turned on, and 
during this cycle the line branch successful tells 
the success of the br anch instruction. 

If the branch operand is returned before tests 
complete of any branch, the operand is not placed 
in the AB register ; however, it is returned to the 
J register. If a successful branch is determined 
during tests complete and the branch operand is al­
ready in the J register, the branch operand is gated 
from the J register into the proper register of the 
AB register . If the branch operand is returned after 
tests complete is turned on and the br anch is success­
ful , the branch operand is gated into the prope r regis­
ter of the AB registers. 

The branch +1 request is made late enough so 
that the operand is returned after tests complete is 



r 

r 

r 

r 

turned on and the success of the branch is deter­
mined. If the branch is successful, the BR + 1 
operand is gated into the proper register of the AB 
register; however, if the branch is unsuccessful, 
the BR + 1 operand is blocked upon its return. If 
the branch is successful, the branch address (con­
tained in the H register) is gated to the gate select 
latch through the incrementer and to the instruction 
counter. If a branch is unsuccessful, normal 
processing of the ne.'(t instruction starts at the 
same time tests complete is turned on. 

The execute instruction is processed as a 
branch instruction, but the instruction counter is 
not replaced by the contents of the H register. 
After the instruction cons tructed by the execute 
instruction is performed, an instruction counter 
recovery cycle is taken providing the instruction 
is not a successful branch instruction. The in­
struction counter recovery cycle allows the central 
processing unit program to proceed with the in­
struction following the execute instruction. The 
program status word is incremented by the length 
of the execute instruction rather than the length of 
the instruction obtained by the execute instruction. 

2365 PROCESSOR STORAGE 

• 0.75 microsecond access time. 

• Eight byte width on an interleaved access is 
possible. 

• Interleaved and overlapping access for greater 
speed. 

• Three main data paths are store data, fetch 
data, and address. 

The IBM System/360 Model 75 is supplied with a 
minimum of 32 K, eight byte words of 0.75 micro­
second processor storage (one 2365, Model 3) or a 
maximum of 128 K, eight byte words of 0.75-
microsecond processor storage (2365 Model 5). 
Each 2365 processor storage has a word width of 
eight bytes (64 data bits and 8 par ity bits) on an 
interleaved access; the Model 3 is a two-way 
interleaved access, and the Model 5 is a four-way 
interleave. 

Simultaneity in core storage operation is ob­
tained by overlapping the cycles of the two storage 
units; addresses are s taggered in the two units so 
that a series of requests for s uccessive words 
activate the two units alternately, thus doubling 
the maximwn rate of the single unit. The 2365 
processor storage unit functions the same as any 
core storage unit; its prime purpose is to provide 

a quick , high-speed access to data and instruc­
tions. Each 2365 Processor Storage houses two 
ferrite core arrays and their associated logic. 

Figure 13 represents the three main data paths 
necessary to operate the 2365 Processor Storage. 
The address is an incoming data path carrying data 
U1at specifies the location in the processor storage 
that is affected. Addressing and the transfer from 
the central processing unit is done in binary. The 
address transfer from the central processing unit 
is momentary; therefore, the address must be re­
tained in the processor storage unit. This address 
is retained in the storage address register (SAR), 
and is decoded to select the proper X and Y ad­
dresses; the output of the decoder selects one 72-
bit word out of many possible locations. 

The store data signal is an incoming data path 
and brings information from the central processing 
Wlit, systems control panel, 01' input/output chan­
nels to the processor storage unit. This data, 
since it is also momentary, is stored in the mem ­
ory data register (MDR) instead of the information 
read out of the specified address. The write cycle 
places the data into the specified location. 

The fetch data is an output data path from the 
processor storage unit memory data register to the 
central processing unit registers or to the input/ 
output channels. The data in the memory data 
register is also used to rewrite the addressed loca­
tion because the core read-out cycle is a destruc­
tive readout. Figure 14 represents a typical logic 
flow of any core storage cycle. 

2361 LARGE CAPACITY STORAGE 

• Prime purpose of LCS is to increase storage 
capacity. 

• One 2361 LCS provides up to 2048 K bytes. 

• LCS provides a means of intercommunication 
between systems. 

• Interleaving is an option. 

The 2361 lar ge capacity storage (LCS) unit functions 
the same as any core storage unit; its prime pur­
pose is to increase the amount of storage available, 
on an immediate access basis, to the system. 

The maximwn number of 72-bit words available 
in one large capacity storage (LCS) is 262 , 144. 
Figure 13 also represents the three main data flow 
paths that are necessary for operating the large 
capacity s torage unit . The address is an incoming 
data path carrying data that specifies the location 
in storage is affected. The addressing is done in 

12-65 Systems Introduction 19 



-~. 

, , , .. , 
M~ -T'\t2 , , , , ! , 

'/',,', " lS'" ""/ , F.'ch Ooto 
""'" " "".,,, .... ~ '/'/,,,.,, ".,""" jAJ- • _ .. " ... n • ., .... ., ... .".~ ... ,.. ... ,... ..... , _ 

/""', "",., I .. /,,. I 'r I I , 'P I 

f. -• 
X-Add, ... Y-Add, ... ) 
OK .... OK"'", 

1 

510<<>;. At:Idt ... ROIl. 

1 .... -
FIGlJIIE 13. 5IMf'lIFIED CORE STORAGE OI'UATION 1 

St~" 

1 • .-
" S.I~I .o.dd,_ -- • .. (J) .... Oul Doto 

.... A Wri t • Y' 
+ 

W,lteOp 

S .... OoIO 
Ito" Out Of ~~, ~ 

AOd •• lft Dc ... Reoc! 
~Do'o Out Of Add •• 
'~. (eo..dl,jonol) 

+ • 1, ...... 110010 Ploco Doto 
To Exlo ...... F,_b ..... 001 
Source......, la- Souru ;nlo 
"';nlft~ ......,-
OGto leg, '~. 

• Wrilo C .......... 
at "'--Y Dot .. 
Rog, lnlo 5.",'19' 
lo<:oU .... , 

+ 
( Opo.OII .... 

C"",pl.,oci 

flGlaE t. WIC CORE STORAGE OPU:ATION 

zo 12_65 



binary, and the address transfer from the central 
processing unit is momentary; therefore, the 
address must be retained in the large capacity 
storage unit. This address is contained in the 
storage address register, and is decoded in groups 
of one, three, and four bits each. The outp.lts of 
the decoders are combined until the selection is 
narrowed down to one 72-bit word out of the 262,144 
possible word locations . 

The store data is an incoming data path and 
brings information from the central processing 
unit, systems control panel, or input/output chan­
nel to the large capacity storage unit. This data, 
since it is momentary, is stored in the memory 
data register in place of the information read out of 
the specified address . The write cycle places this 
data into the specified location. 

The fetch data is an output data path from the 
large capacity storage unit's memory data register 
to the central processing unit registers or to 
input/output channels. The data in the memory 
data register is also used to rewrite the addressed 
location because the read-out portion of the cycle is 
a destructive read-out. 

The 2361 Core Storage shared storage feature 
provides a means of communication behveen two 
IBM System/360, Model 50, 60, 62, or 75. Two 
systems can have access to the data and instructions 
contained in the large capacity storage unit. 
Through this arrangement, one program is avail­
able to two systems or data for the programs in two 
systems is available to both systems for immediate 
access. Up to four 2361 large capacity storage 
units in any combination of Modell (1024 K bytes) 
and Model 2 (2048 K bytes), can be attached. 
Interleaved operation of large capacity storage is 
an option, with the restriction that two 2361 stor­
ages of the same model be paired for interleaving" 
Pairs of interleaved 2361's can be attached with 
2361's not equipped for interleaving, in which case, 
the interleaved pairs are assigned the lower 
addresses. 

INPUT/OUTPUT CHANNELS 

• I/O operatiOns are performed by selector chan­
nels, control units, and I/O devices under 
control of a supervisory program" 

• Interlocks prevent one I/O program from inter­
ferring with another I/O program. 

• The approximate maximwn data rate is 156,000 
eight-byte words per second. 

The IBM System/360 Model 75 input/output opera­
tions are performed by selector channels , or multi­
plexor channels, control units, and input/output 
devices operating under the control of a super­
visory program. The supervisory program allo­
cates equipment to multiple programs and monitors 
the execution of each program. The supervisory 
program provides a means of assigning to each 
program the proper input/output device. This 
assignment consists of establishing a path for ex­
changing control and status information between the 
program and the input/outp.lt device and for trans­
ferring data between the input/output device and 
core storage. The deSi~antiCipate erroneous 
problem program~r~ean<; whereby one 
program is protecte' f~E' ference by another. 

The channel h~ d supervisory pro-
gram must solve ~o roblems; 

1. InPUt/outpuaes must be protected; a 
problem program hou i1 _~ _" cess only to its 
assigned inplt/out22'f~~v~ must be prohibited 
from writing and r~lng On .iifOlher device. On 
devices such as mi1@etic t;a:~d disk storage, 
protection is necessary fo~ of storage smaller 
than the entire recording ~~di~, so that a pro­
gram is permitted ~ 0 so e areas but not to 

others. ",+ ::, 
2. Core storag~ust be.J?,rotected from input/ 

output operations5in,Pllrr~t operation may 
permit transferr' ." rmlltiWonly to storage 
areas a"'gned to , ct:~rogr,,". 

3. The program is ofte rned with particu-
lar recording mediums, suli!~nape, disk packs, 
and cards, and not 'W).th.-the~al device on which 
the input/output ope'lian0!J isermed. 

4" Since areas Ofinam tora may be assigned 
to the problem pro(...~ j-t e ion time, the pro-
gram must be able ~.~~cif~ addresses 
symbolically. J-:> ........ 

5. When an inp 6Utputm"'lion is terminated, 
status information must be ila!m~led back to the 
program that initiated the operation. The input/ 
output device must be identified, and the extent of 
the core storage area used must be communicated" 

Other interlocks and supervisory functions are 
provided by the channel . For direct- access storage 
devices (disk and drums) data transfers may in­
volve a sequence of operations, such as poSitioning 
the access mechanism and searching for the desig­
nated data block. Two programs could interfere 
with each other during this sequence by initiating 
input/output operations for the same channel , or the 
input/output deVice, if accessible from more than 
one channel. Therefore, facilities must be provided 

12-05 System.lntroductiOD 21 



to protect a chain of input/output operations speci ­
fied by one program against interference by input/ 
output operations from another program. The 
design of the system considers the channel as an 
independent unit which executes a program consist ­
ing of commands. The central processing unit 
program starts the channel operation by specifying 
the beginning of the channel program and the device 
to be used. The command specifies the direction 
of data flow (read or write), the data source or 
destination in main storage, and all functions as­
sociated with the data transfer. Upon completion 
of the channel program, the central processing unit 
program is interrupted and status information is 
made available. 

Depending upon performance requirements, a 
system may contain up to six selector channels 
with an approximate maximum data. rate on one 
channel of 156,000 eight-byte words per second. 
The selector channel utilizes the central processing 
unit data paths for initiation and termination of the 
inyut/output program, but does not use the central 
processing unit data paths for byte transfer, 
storage word transfer, or for chaining operations. 
Central processing unit and input/output overlap 
operations are possible. 

External stor age devices, as well as the equip­
ment used to communicate with the external world, 
are referred to as input/ output devices ; the use of 
these devices by the central processing unit is re­
ferred to as an input/ output operation. In addition 
to magnetic tape units and direct access storage 
devices s uch as disks and drums, input/output 
devices include card readers, card punches, 
printers, inquiry stations, visual displays, process 
control devices, and devices for r eceiving and 
transmitting information over communication lines. 

A typical input/output device requ ires control 
eqUipment that is unique to its particular function. 
This equipment is referred to as the control unit, 
and it is considered part of the input/output device. 
Some devices, such as magnetic tape units, share 
a common control unit which is a separate unit. 

The part of the system that cormects the input/ 
output device to the central processing unit and 
main storage is the selector channel. The selector 
channel contains the equipment necessary for 
attaching input /output devices and their control 
units to the system and for synchronizing input/ 
output data cycles with core storage cycles. The 
input/output channel maintains control over the 
input/output operation at all times. 

22 12-65 

Execution of Channel Programs 

• I/O operations are initiated by commands. 

• Data transfer is under control of the I/O device 
and I/O channel. 

• Termination of an I/O operation provides a status 
byte. 

• Commands are coupled into a channel program. 

Input/Output operations are initiated by commands, 
which constitute the channel program. A command 
is specified in a charmel command word (CCW) and 
is decoded by the channel. 

The basic input/output operations are: read, 
which causes data transfers from a n input/output 
device to core storage, write, during which data 
from core storage are recorded at the device . In 
either case, the channel command word designates 
the storage area by addressing the initial data 
address and the number of bytes contained in the 
storage area . Data are taken from or placed into 
core storage in ascending order. 

A variation of the basic read operation is the 
read backward command . This command initiates 
the transfer of data from the device (such as 
magnetic tape) to the channel in a reverse order. 
In such a case, the chalUlel command word 
deSignates the highest address in the storage area, 
and the data are placed into storage in descending 
order. 

The volume of data transferred during an input/ 
output operation is under Ute control of the device 
as well as the channel. The device cannot trans­
fer more data than speclfied by the channel pro­
gram. When the allocated storage areas are 
filled, the chalUle l terminates the operation and 
requests an "end" signal from the device. On the 
other hand, if the device receives or transmits the 
specified number of data bits or words associated 
with the operation, the device signals the end condi­
tion regardless of whether or not the allocated 
storage is filled. 

The program specifies the input/output opera­
tion by the 8-bit command code in the channel com­
mand word. The chalUlel transfers the entire code 
to the device; for the most part, the code contains 
all the information needed by the device to initiate 
the data transfer. A portion of the command code 
is common to all devices and indicates the data 



r 

r 

( 

flow direction; the remainder of the code depends 
on the type of device. 

For disk files, the program must position the 
access mechanism before data are transferred. 
The use of magnetic tape units involves such 
operations as backspacing the tape, rewinding, or 
loading a tape cartridge. These functions are un­
related to data transfer and cannot be easily com­
bined with reading and writing operations without 
tieing up the channel facilities. 

All auxiliary control functions are speciiied by 
the programmer as orders. The orders are de­
coded by the input/output device, and the codes are 
transmitted to the device in a control operation. 
The orders are encoded in the command code of 
the control operation; if additional information is 
needed, it is obtained from the core storage area 
designated by the channel command word. A con­
trol operation is indistinguishable from a write 
operation in the charmel. 

When an input/output operation is terminated, 
a byte is provided to indicate the general condition 
during the operation. The condition is made 
available to the program in the sense operatioll. 
The sense command is a request to the input/output 
device for status information, such as the position 
of a magnetic tape, the condition of the card 
stacker and hopper, or the error conditions de­
tected in the last operation. The status informa­
tion is transferred to the channel as data during 
read and is placed in the core storage address 
specified by the channel command word . Sense 
data is indistinguishable from read data. 

Commands are coupled into a channel program 
by chaining channel command words. Chaining is 
specified by two flags in the channel command word; 
the presence of either causes the channel to request 
a new charmel command word. The chalUlel com­
mand words are brought from sequential locations 
in core storage, unless the transfer-in-channel 
command is encountered, which causes the chalUlel 
to branch to the location specified in the channel 
command word. 

When command chaining is used, the channel 
uses the new channel command word to initiate a 
new operation at the device. Command chaining 
reduces the frequency of communications between 
the channel and central processing unit, and per­
mits a single input/output instruction to start such 
sequences as printing multiple lines, or reading 
multiple tape blocks . Chaining also permits auxiliary 
functions , such as backspacing tape and data­
tr ansfer operations to be coupled, thus allowing 
multiple input/output operations. 

A storage protect mechanism is needed for the 
execution of multiple prog-rams in the central proc­
essing unit; protection is implemented in hardware 
and is extended to storage references made by the 
input/output channels. 

Certain input/output operations executions are 
contingent upon the result of preceding input/output 
operations . For example, on direct access storage 
devices data transfer is initiated only when the 
deSignated data block is under the recording or 
reading head. Usually the data block is identified 
by a key field immediately preceding the data area. 
To establish the relative position of the recording 
medium and the head, the system must match the 
identifier specified by the prog-ram with that ap­
pearing on the recording medium. The match can 
be performed by the channel or the device. In the 
Model 75, the comparison is performed in the de­
vice, and the channel is programmed to execute a 
closed loop of commands. The channel remains 
in the loop lUltil the device s ignals a successful 
match. 

Communications Between CPU and Channels 

• CPU controls channel activity by four I/O in­
structions: start I/O, test I/O, halt I/O, and 
test channel. 

• A connection established between the control unit 
and CPU releases the CPU for further operations. 

• The channel program interrupts the CPU when 
an I/O operation is term inated. 

The central processing unit controls chalUlel 
activity by means of four inIJ.lt/output operations : 
start I/O, test I/O, halt I/O, and test channel. 
Each channel and, when applicable, the device, 
such as a particular tape unit or communication 
line, is identified by an address. In direct-access 
storage units, such as magnetic disks and drums, 
each access mechanism is considered a separate 
device. 

The execution of a channel program for an input/ 
output device is initiated by the central processing 
until issuing a start input/output instruction. This 
instruction provides the chalUlel with storage­
protection information, the address of the first chan­
nel command word, and causes a logical connection 
to be established between the channel and the desig­
nated device. The central processing unit is in­
volved with the operation until the device responds 
and both channel and device verify that the operation 
can be executed, 

12-65 5ystemslnrn::>duction 23 



Once the device is started and the channel is set 
up to execute its program, the central processing 
unit is released. In input operations, the chaMel 
accepts data (rom the device, assembles, when 
necessary, the 8-bit plus parity bytes into units 
equal to the double-word length for core storage, 
and transfers the assembled word to the designated 
area in core storage. DJring output operations, 
the reverse process takes place, with the channel 
normally receiving double words from core storage 
and sending the word in 8-bit plus parity bytes to 
the input/output device. Once the initial contact is 
made, the central processing unit operates in a 
normal manner, unhindered by channel operations 
except for the delay caused by channel core storage 
requests . 

The ccntral processing unit program retains 
control over the channel program, and when input/ 
output activity must be rescheduled in response to 
conditions occurring after the channel program is 
started, the central processing unit issues a halt 
input/output operation which terminates the data 
transfers and further channel command word re­
quests by the cbannel. 

Whcn the channel program is terminated, the 
channel interrupts the central processing unit 
operations and makes a channel status word avail­
able. This word Identifies the last channel com­
mand word used, the amount of data transferred, 
and provides storage-protection information 
associated with the chain of operations. The status 
word also contains a status byte received from the 
device and a set of status bits provided by the 
channel, both of which describe the conditions of 
termination. 

In order that the central processing unit pro­
gram has a means of establishing in advance when 
conditions in the channel or device should alert 
the program, a mask bit is associated with each 
phySical channel. A masked channel cannot cause 
an input/output interrupt; consequently, the central 
processing unit can suppress input/ output inter­
rupts by masking the channels. The conditions in 
the channel and devices are preserved until ac­
cepted by the central processing Wlit. A test 
channel instruction is used to determine if an inter­
rupt condition is pending in the channel. 

Channels intended for high-speed operation con­
tain one subchannel . These channels are referred 
to as selector channels and are used for attaching 
such devices as magnetic tapes, disk, and drum 
units . A selector channel can sustain only one 
data -transfer-operation at a time. Once a data­
transfer is initiated, a logical cOMection is 
established between the addressed device and the 
channel. The connection is maintained for the 

24 9-65 

duration of the operation, and is established under 
program control. Other devioes cannot commWli­
cate with the channel while a data-transfer opera­
tion is in progress. Such operations as backspacing 
a tape file or positioning a disk access mechanism 
may take place simultaneously. 

2860 SELECTOR CHANNEL 

• Data rates up to 156,000 double words per 
second are possible. 

• Each channel contains its own C E panel. 

• Maximum of six channels per system is possible. 

• Maximum of eight control units per channel. 

• The channel has FLT circuits. 

• 1/0 operations are overlapped with CPU opera­
tions . 

• The channel operates in burst mode. 

The 2860 Selector Channel is a high-performance 
data channel designed to operate at data rates up to 
approximately 156,000 double words per second. 
The rate is measured by the number of double 
words that pass the interface to or from an appro­
priate input or output control unit. 

The channel uses 30-nanosecond SLT circuits 
packaged on a mixture of one high and two high six­
pac cards. The frame houses three swinging gates, 
each capable of containing 20 large boards. Two of 
the large boards are occupied by a CE panel; two 
large board spaces are left for options. Each 
channel occupies one full gate; up to three channels 
may be contained in the three gate frame . Each 
channel not only contains its own CE panel, but 
also contains manual controls and CE controls 
except power and biasing, which are mounted on 
the front of the frame. 

Up to eight control units may be attached to one . 
channel; however, only one device may be operated 
at anyone time . Operational lines provide the only 
control needed during normal program operation, 
and the controls for implementing the fault location 
tests are incorporated in the channel. The scan 
operation requires large volumes of data broken 
up into short tests. This date are on tape or disc 
packs, and it must be brought into memory without 
the beneHt of central processing unit instructions 
or interruptions; thus, the channel must work in 
conjunction with the fault locating tests controls to 
supply the data, keep the fault location tests 



( 

controls aware of the progress. retry when data 
errors are discovered , and start and stop trans­
mission when indicated to do so by the fau lt location 
test controls. 

The 2860 Selector Channel directs the flow of 
information between the input/output device and 
main storage. The channel relieves the central 
processing unit of the responsibility of communi­
cating directly with the input/output device. Control 
is accepted from the central processing unit in the 
program supplied format; it is expanded into a 
sequence of signals acceptable to a control unit. 
After an operation is initialized, the channel per­
forms an assembly or disassembly operation on 
the data, and synchronizes its transmission over 
the interfaces with the main storage unit or the 
input/output control unit. 

Since the 2860 Selector Channel contains all of 
the necessary facilities for controlling the inputl 
output operation, inputloutput operations are com­
pletely overlapped with the central processing unit 
activity. The only main storage cycles required 
during input/output operations are those needed to 
obtain input/output control words and to transfer 
the data in S-byte (double words) blocks to or from 
main storage. These cycles interfere with the 
central processing unit program only when both 
units require concurrent use of the same main 
storage. 

The selector channel operates in the burst mode. 
This mode extends over the entire block of data or 
when command chaining is specified over a whole 
sequence of blocks. Other input/output devices 
cannot be involved in a data transmission at the 
same time but they can execute operations that do 
not involve communicating with the channel. The 
selector chalU\el scans the inputloutput devices for 
interrupt conditions when it is not executing an 
operation or chain of operations. 

Channel Operation 

• I/O operations are initiated and controlled by 
instruction, command, or control formats. 

• I/O instructions generate the start 1/0 signal 
to the channel. 

• The channel address word is requested by the 
channel. 

• The command control word is requested (rom 
main storage. 

• The channel status word tells the result of the 
1/0 operation. 

• The 1/0 device controls the duration of the I/O 
operation. 

Input/output operations are initiated and controlled 
by three types of formats : instruction, command, 
and control. Instructions are decoded and executed 
by the central processing unit and are a part of the 
central processing unit program. Commands are 
decoded and executed by the channel and initiated 
input/output operations such as reading and writing. 
Any functions, such as a disk file seek, that are 
peculiar to a device are specified by means o( con­
trol orders. Control orders are transmitted to 
input/output devices as data and are decoded and 
executed by the input/output device. 

A read, read backward, write, sense, or control 
input/output instruction is initiated by the central 
processing unit sending the start I/O line to the 
selector channel, placing the S-bit unit address on 
the unit address bus, and signaling the proper 
channel on the select channel line. If the subchannel 
is busy, condition code 10 is sent to release the 
central processing unit, or if the subchannel is not 
available, condition code 11 is sent to r elease the 
central processing unit. When the channel is avail ­
able, the unit address is gated to the unit address 
register and the channel address word (CAW) is 
requested (rom storage location 72. 

The channel address word (Figure 15) contains 
the command address (C A) and the storage protec­
tion key which are gated to their respective regis­
ters. A storage request is initiated (or the command 
control word (CCW) (Figure 16). When the bus 
control unit (BCU) response is received, the chan ­
nel places the command address on the storage 
address bus (SAB) and waits (or an advance pulse 
which sets the command code, data address, flags. 
and count into the proper registers. DJring this 
time, the command address is incremented by one. 

The device is selected by placing the unit ad­
dress (UA) on the bus out and sending the address 
out and the select out signals. The control unit, 
upon recognizing its address, responds with the 
operational in signal which causes address out to 
drop. When the control unit loses the address 
out s ignal, it places the address of the device 
selected on the bus in lines and raises the address 
in line. The channel compares the address from 
the control unit with the one it sent. If a proper 
compare results, the command control word valid 
trigger is on, and no errors occurred, the opera­
tion is continued by placing the command code on 
the bus out and raising the command out line. The 
control unit responds with condition code 00 and re­
leases the central processing unit. The channel 
and device executes the command received in the 
command control word. 

12_6S System. Introduction ZS 



, 
" ..,-

spocm ...... 
.torClfilo 1"'''' 
loc'l.., ' CIfil 
/",,,\1,,,,,,," .... -
cI .. ' .... wi'" 
"",·VO. 

" ,_one! Add, ... -
S","cHi ....... 10<0110.. 0/ 
"'. Ii", Chon",,1 COfM'Iat><! 
W",d In Cot ...... av •• 

f lGUIlf. 15 . CHANNEL A.l)()RfSS WOIO 

" 

Oor .. .t.IcI. ... fl .. I;" N...o>oIH. Of &y ... In Opo,""'"" 

, 

C-ond Codoo , , , '""GIld Cod. 
MMM , , , ,.-, , , T, .. "f., In 0-",,1 
MMM , , , Rood Bockw"",, 
MMM MM , W,lt. 
MMM MM , ~~ , , C.,.,trot 

; ; 

" , 

flrn...E!6 CHANNEL C()MM.t.NO WOlD FotMAT 

If an error occurs, a hardware generated test 
I/O code is placed on the bus out instead of the 
command code and the device is relieved of its 
status . The channel disconnects the device and re­
quests a storage cycle. When the bus control unit 
rcsp:mse is received, the status information is 
placed in the channel status word and the central 
processing unit is r eleased. 

The channel address word specifies the storage 
protection key and the address of the first channel 
command word associated with the s tart I/O in­
struction. The channel address word is requested 
automatically from storage location 72. The chan­
nel address word (Figure 15) has the following 
format: 

1. Bits 0-3 (key) specifics the storage protec­
tion tag Cor all commands associated with the s tart 

" 

32· u.. .... , ... 1'0 .. 1 .... Of N .. t CCW. 
33 - u.. eo.n.. ...... Cod. A...J Da'a .... , ... or N .. I CCW. 
34 - sup",'" InCOf •• eI L."IIth Indic",l"" II 1" ..... 1. 
~ - sup,"" Inlo""ot1 .... T.crdf •• To Moln Stor ... . 
36 · C ........ Inl." .... pl . 

1/0 instruction. 
2. Bits 4-7 must contain zeros. 
3. Bits 8-31 (command address) specifies the 

location of the first chalUlel command word in core 
storage. 

The channel command word (Figure 16) is re ­
quested from the location specified by bits 8-31 
(command address) oC the channel address word, 
and has the following fOrmat: 

1. Bits 0-7 (command code) contains the opera ­
tion code. It may be sense, transfer in channel, 
read bach.>vards, read, write or control . 

2. Bits 8-31 (data address) specifies the ad­
dress of the first byte in storage. For all opera­
tions except read backwards I it specifies the 
high-order byte. For read backwards , it specifies 
the low-order byte. 



r 

«<I a... In Stah.B Count Fi.ld 

, 3" 7 8 31 32 '''' '''' 
C""toin, ,torage porot. cl tog 
obtoined d~.lng .1 .. 1 I/O 
i.,.!ruction. Obloln.c/ from 
Chome1 Add, .... Word. 

FIGUR( 17 . CHANNEL STATUS WORD 

3 . Bits 32 -36 (nag bits) 

Commoncl Add, ... " C""toin. 1000t 
command (+8 by l ... ) 
odd'e" ",ed by tl\e 
2860 c ... """.I. 
Positions 29, 30, 31 
... • to<ed .. ""'01 
........ illlil the~ .... 
° double-word 
bo...dory ocId. ... 

a. Bit 32--use address portion of the next 
channel command word . 

b. Bit 33--use command code and data 
address of the next channel command 
word. 

c. Bit 34--suppress incorrect length in­
dication if present. 

d . Bit 35--suppress infonnation transfer 
to main s torage. 

e. Bit 36 -~ause interrupt . 
4. Bits 37-39 must be zeros 
5. Bits 40 -47 not used 
6. Bits 48-63 specify the number of bytes of 

data in the operation. 
When the sequence of operations initiated by the 

start I/O inStruction is terminated, the channel or 
the device generates interrupt conditions. These 
interrupt conditions are brought to the attention 
of the program by the input /output interrupt 
mechanism, by the test I/O instruction, or in 
certain cases by the start I/O instruction . When 
an interrupt condition is cleared, the channel and 
the input/output device makes available to the pro­
gram one or more status conditions that describe 
the result of the last operation. These conditions, 
an address, and a count indicating the extent of the 
operation sequence are presented to the program in 
the channel status word (CSW). The chamel status 
word format is shown in Figure 17. 

A start I/O instruction causes the input/output 
channel and device to perform certain tests during 
the initiation of the instruction. A command can be 
rejected by any of the following conditions : 

Bu'Y 
Unit check 
Exceptional condition 
Program check 
Channel control check 
Interface control check 
Unavailable device 

8", In Sto\v$: Stofvl, 8il:l ,.celved 
f,om the devi c •• 

COlin! fi eld: C"",ol.,. I .... , ... iduol 

Chomel Slalus: Informotl"" lJ.n­
• • Oled by t .... 
chonn.1 to In,U­
col. III •• totul of 
tilt "...ceeding 
commond. 

cOOJn l of I .... 1011 CCW 
.. ed by lhe 2860 
»I.cto, 0. ... ",,1. 

When a channel rejects an instruction, it is ind i ­
cated by the channel sending condition codes 01, 
10, or 11 when it releases the central processing 
unit. Figure 18 lists the input/output instruction, 
the condition codes, and their meanings: 

Condition Code. 

In.tructi"" 00 " 10 " 
Slorr I/O Avail ab le CSW.tored "" Not ""eilabl. 
l e.t I/O A\loilable CSW.tared Working Nol ""oilabl. 
Ha lt I/O Not Working CSW l'IIody Ho llf:d Nol ""oilobl. 
T .. tChonnel Not Working CSW l'IIody Working Nol ""oHabl. 

FIGURE 18 . I/O INSnUCTlONS AND CONDITION COOES 

When the input/output device accepts a command, 
the channel is set up for data transmission. This 
state remains until one of the following conditions 
terminates the operation at the channel: 

1. A channel end signal is received from the 
input /output device. 

2. A halt I/O instruction is issued. 
3. A channel control check condition is detected. 
4. An interface control check condition is 

detected . 
During a normal execution of R."l operation, the 

channel signals the input /output device to tenninate 
data transmission whenever any of the following 
conditions occur: 

1. The s torage ar ea specified for the operation 
is exhausted. 

2. A program check condition is detected. 
3. A protection check condition is detected. 
4 . A chaining check condition is detected. 
The termination is signaled in response to a 

service request from the device and causes data 
t ransmission to cease. 

9-65 System. Int rod u<;t:lon 27 



The input/output device controls the duration of 
an operation and the timing of the chaIUlel end signal 
by way of data blocking. When blocks are defined 
for the operation, the device always proceeds to the 
end of the block before providing the channel end 
s ignal. 

Channel Interrupts 

• Interrupts provide a means for central processing 
unit to change its s tate. 

• Priority is determined by the position of a device 
on the channel. 

• Interrupts occur when a channel is not masked. 

• The channel status word is stored as a result 
of an interrupt. 

• Bus in s tatus bits 

• Channel status bits 

Input/output interrupt provide a means for the cen­
tral processing unit to change its state in response 
to conditions which occur in input/output device or 
channel. These interrupt conditions are caused by 
the termination of an input/output operation or by 
operator intervention at tlle device. 

Requests for input/output interrupts are 
initiated by the channel. The device initiates a 
reques t to the channel for an interruption whenever 
it detects one of the following conditions: 

1 . Channel end 
2. Device end 
3. Attention 
4. Control unit end 
5. Unit check 
6 . Unit exception 
The channel end and device end conditions do 

not cause the channel to request an interrupt when 
the command chaining flag is on. Unit check and 
unit exception cause interruptions when the con­
ditions are detected during the initiation of chained 
commands. 

Priority among the devices on any channel for 
an interrupt is determined by their position on the 
channel. The priority is determined at the central 
processing unit; the first device to receive and be 
capable of responding to the select out tag has top 
priority. The priority among channels is also 
determined at the central processing unit; the 
lowest numbered channel with an outstanding inter­
rupt condition has top priority. 

An input/output interrupt occurs when a channel 
is not masked and after the execution of the current 
instruction in the central processing unit is ter-

28 9 -65 

minated. U a channel establishes a priority among 
requested interrupts while it is masked, the 
interrupt occurs immediately after the termination 
of the instruction that removes the mask. If the 
priority among interrupts is not established in the 
channel by the time the mask is removed, the inter­
rupt does not necessarily occur immediately after 
the end of tll.e instruction that removes the mask. 

The channel status word provides the program 
with the status of an input/output device or the con­
dition under which an input/output oper ation is ter­
minated. The channel status word is stored as a 
result of an input/output interrupt; the associated 
input/output device is identified by the unit address 
sent to the central processing unit when tll.e interrupt 
response is released. The basic format (Figure 17) 
of the channel status word is as follows: 

1. Bits 0-3 (protection tag) contain the storage 
protection tag that was fetched at the time the chan­
nel address word was brought into the channel 
during the last start I/O instruction. 

2. Bits 4-7 are always stored as zeros . 
3. Bits 8-31 (command address) contain an 

address which is 8 bytes higher than the last address 
used by the 2860 Selector Channel. Bits 29, 30 and 
31 are stored as zel·os, making the address a 
double word boundary address. 

4. Bits 32-39 (bus in status) are the status bits 
received from the device over the input/output 
interface. 

5. Bits 40-47 (channel status) contain the infor­
mation generated by the channel to indicate the 
status of the preceding command. 

6. Bits 48~3 (count field) contain the residual 
count of the last channel command word used by the 
2860 selector channel. 

The eight bus In status bits (32-39) are re­
ceived with the status in tag . When the bits are 
stored in the channel s tatus word, they are stor ed 
as they are received over the interface. The bits 
are interpl'eted as follows by the selector chan­
nel: 

1. Bit 32(attention) signal is generated by the 
input/output device , and is interpreted as an 
attempt to interrupt the program . Program inter­
pretation is r equired . An input/output (l/O) device 
waiting to present the attention condition to the 
channel appears busy to a command initiated by a 
start I/O instruction; however, commands sent to 
the channel by the chaining process do not give tll.e 
busy appearance. 

2 . Bit 33 (status modifier) when received with 
the busy bit (bit 35) is interpreted by the channel 
as a control unit busy and is treated accordingly . 
When the bit is received with device end during a 
chain command operat ion , it causes the channel to 
skip the next sequential channel command word in 
the chaining process. 



3. Bit 34 (control unit end) is received from the 
input/output device to indicate that the control unit 
is free. This bit comes from the device if the de­
vice sent a control unit busy in response to a pre­
vious command . When this bit is received by the 
channel an interrupt occurs. 

4. Bit 35 (busy) when accompanied by bit 33 
indicates that the control unit is busy as discussed 
previously. The bit. unaccompanied by the status 
modifier (bit 33). indicates that the input/output 
device cannot accept a new conunand because an 
interrupt condition is pending or it is executing a 
previously initiated operation. 

5. Bit 36 (channel end) is caused by the com­
pletion of the portion of the input/outp..lt operation 
involving transmission of data or control informa­
tion between an input/output device and channel. 
The bit indicates that the channel is free to accept 
the next operation. 

6. Bit 37 (device end) is a signal from the input/ 
output device that it has completed its portion of 
the input/output operation. This bit allows the 
channel to chain commands when the chain conunand 
flag is on. Like attention and control unit end. if 
the device end is received during a polling operation 
by the channel device end it may be rejected and 
stacked by the channels receiving another instruc­
tion. 

7. Bit 38 (unit check) is sent by the device when 
it discovers an unusual condition. When this bit is 
accompanied by channel cnd or device end. the 
operation is automatically terminated even though 
a chain flag exists. 

8. Bit 39 (unit exception) terminates the opera­
tion and indicates a condition in the input/output 
device that does not usually occur. 

The channel status bits cause an interrupt con­
dition to be set up in the channel and the chaJUlel 
to be busy until the interrupt condition is recognized 
by the central processing unit. These conditions 
are: 

1. Bit 40 (program controlled interrupt) occurs 
when a channel fetches a channel command word and 
the program controlled interrupt (PCI) flag is on. 
The interrupt due to the program controlled inter­
rupt flag occurs as soon as possible after the 
fetching of the channel command word. but may be 
delayed due to the masking of the channel or other 
activity in the system. An interrupt is requested 
by the selector chalUlel but the input/output opera­
tion is continued. 

2. Bit 41 (incorrect length indication) occurs 
in the channel any time the apparent record 
length on the device and the count received in 
the channel command word do not agree and 
the SLI flag is off . Incorrect length condition 

terminates conunand chaining and causes an 
interrupt. 

3. Bit 42 (program check) is caused by pro­
gramming errors that are detected in the channel: 

a . Invalid channel conunand word address 
specification. 

b. Invalid channel command word address. 
c. Invalid command code. 
d. Invalid count. 
e. Invalid data address. 
f. Invalid channel address word format. 
g. Invalid channel command word format. 
h. Invalid sequence. Detection of any pro­

gram check condition during the initiation 
of a command causes the operation to be 
suppressed. If the condition is detected 
after the input/output device is started. 
the device terminates the operation. 

4. Bit 43 (protection check) indicates that the 
channel attempted to store data into main storage 
and the protection keys do not match. The device 
tenninates the operation and the command is sup­
pressed. 

5. Bit 44 (chalUlel data check) is caused by 
parity errors in the channel or main storage. Input 
operations force correct parity while outp.lt opera­
tions do not change the parity sent to the device. 
Data chaining is suppressed but the present opera­
tion is not tenninated by this check. 

6. Bit 45 (channel control check) indicates a 
machine malfunction that affects channel controls. 
It includes channel command word fetch parity 
errors. data address parity. and channel conunand 
word contents parity. 

7. Bit 46 (interface control check) is caused by 
an invalid signal on the input/output interface 
being detected by the channel. It usually indicates 
malfunctioning of an input/output device and may 
result from the following: 

a. Device address has invalid parity from 
the device. 

b. Status byte from input/output device has 
invalid parity. 

c. The input/output device responded with an 
address other than the one specified by 
the channel during command initiation. 

d. The addressed input/output device did not 
respond during command chaining. 

e . A signal from an input/output device oc­
curred at an invalid time or had an in­
valid duration. 

f. A signal from an input/output device did 
not occur during a predetermined time­
out interval. Any condition giving the 
interface control check causes an imme­
diate termination of the operation. 

9_6S Systems Intn"Hluctloll 2:9 



8. Bit 47 (chaining check) caused by the selector 
chalmel during data address chaining on inp..it opera­
tions. It occurs when the new data address does 
not fallon double or single-word boundaries and 
the input/output data address is such that the byte 
boundary of the first byte received 1s not deter­
minable. The input/ output device terminates the 
operation. 

Initial Program Load 

• A device is addressed by switches on the console. 

• An IPL causes a complete reset . 

• The channel selects a specUied unit and reads 
24 bytes of data. 

• The channel fetches channel command word one 
and then operates in a normal manner. 

The actual device used for initial program loading 
(lPL) is addressed by switches on the console. 
These switcbes feed the central processing unit 
channel decoder and raise and hold the proper 
select line until the channel release signal is re­
ceived. 

The handling of the initial program loading read 
within the channel, and the allocation of memory 
locations are: 

1 . Bytes 0-7 IPL PSW (initial program load 
program status word). 

2. Bytes 8-15 IPL CCWI (initial program load 
charmel command word one). 

3. Bytes 16-23 IPL CCW2 (initial program load 
channel command word twO). 

The channel uses the initial program load pulse 
to cause a complete reset. The operational out 
line to all control units is dropped, thus causing 
a reset. The selected channel retains the initial 
program load condition and at the completion of 
the reset, the CA is 1, DA is 0, the UA register 
is set , a read operation is forced with a count 
equal to 24 bytes, and a CC flag is forced in its 
flag register. 

The channel selects the specUied unit and reads 
24 bytes of data into memory begirming at address 
zero. If an incorrect length indication (ILl) is 
generated, it is suppressed and the channel pro­
cceds to act on the CC flag. 

The channel fetches channel command word one, 
which should contain a read command. At this 
point, the channel is ope r ating under normal rules 
until the list of commands is exhausted. U any 
error is detected during the initial program load 
operations, it does not send a release to the central 
processing unit. 

30 9 _65 

Optional Input/Output Devices 

• Consoles 

• Magnetic tape units 

• Serial file units 

• Parallel file units 

• Card readers, card punches, printers 

• Displays 

• Microfilm input/output units 

• Communication and data acquisition devices 

Provisions are made for connecting several input/ 
output devices to the Model 75 via the IBM 2860 
Selector Channel and the IBM 2871 Multiplexor 
Channel. Up to eight control units are attached to 
each selector chalUlel and up to 256 input/output 
device addresses are available. The Model 75 con­
figuration is shown in Form A22-6888. Included in 
the configurati.on are the input/ output devices 
attached to the Model 75. 

MULTISYSTEM OPERATION 

• A single CPU must be able to perform a variety 
of tasks. 

• Hazards of manual intervention are eliminated 
by program controlled switching and intercom­
munication. 

• Fail-safe systems per form their entire functions 
when any Single malfunction occurs. 

• Fail-soft systems perform their work load in the 
presence of a malfunction. 

• Simplex systems. 

• Channcl-to-channel adapter. 

• Transmission control units . 

• Shared control units. 

• Shared devices . 

• Shared storage. 

• Centralized crossbar switch. 

• Distributed crossbar switch. 



, 

r 

r 

, 

A system consisting of two or more central proc­
essing Wlits that can communicate without manual 
intervention is called a multisystem. Thus defined, 
the term, multisystem, encompasses a large 
variety of system config"'...lrations and should be 
distinguished from such terms as multicomputer or 
multiprocessing systems, which usually are given 
a more restricted definition. 

A single central processing unit must be able 
to perform a variety of tasks, but it is not equally 
adept at each of the tasks. In particular, high 
performance is of no value if it is limited by its 
input/output capability. The logical design of 
System/360 permits a wide degree of specialization 
that makes it attractive for individual specialized 
jobs within a multisystem system. 

Because the specialized computers join in a 
common job, data and programs must be com­
municated between them. The ability to communi­
cate data and programs between systems may be a 
manual process; however, any manual intervention 
is, by nature, unreliable. The ability to switch 
tapes, core storage, etc. under program control 
eliminates the time hazard of manual intervention, 
and improves the performance of the equipment by 
pooling of storage and peripheral equipment among 
central processing units. 

Equipment pooling, such as concurrent use of 
one storage array by two or more central proces­
sing units results in delays, called interference, 
during which one central processing unit waits 
because the storage array is performing a cycle 
for another cent ral processing unit . Since the 
central processing unit is not time-dependent, the 
loss of time does not cause complications; how­
ever, when an input/output device competes with 
another input/output device for the use of a shared 
storage, the permiss ible rate of transmission is 
affected and an overrun may result. An overrun is 
any time data transmission is too fast to be used by 
the central processing unit, or the central proces­
sing unit cannot supply data fast enough for the 
input/output unit. 

A system that can perform its entire work load 
in the presence of any single malfunction is said to 
be fail-safe, and a system Ulat can perform the 
essentials of its work load in the presence of a 
malfunction is said to be fail-soft. Either of these 
can be accomplished through multisystem installa­
tions. A multisystem configuration of a fail-soft 
system consists of two equal or unequal central 
procesSing units with a complement of storage and 
input/output equipment. This complement of 
equipment is shared among two or more central 
processing units, but is considered to be logically 
independent if they are intercormected by well­
defined interfaces so that they can, upon 

reconfiguration, operate without communicating 
with each other. Examples of logically independent 
system components are storage units, central 
processing units, input/ output control units, and 
input/output devices. 

Although logically independent, these system 
components may still be physically dependent be­
cause they share common equipment. Communica­
tion between the central processing units of a 
multisystem may be achieved by transmitting in­
formation from one central processing unit to 
another through a COIUlecting link or by giving them 
access to a shared storage medium. 

Figure 19 shows the major components of a 
single, or Simplex, system, together with their 
functional dependencies, in simplified fashion. The 
interconnection between channel and control unit is 
independent of the particular control units connected 
or the particular implementation of the channel 
logic . This interconnection in System / 360 is called 
the input/output interface. In contrast, the inter­
cOlUlection between control unit and device is 
specialized and differs for tape units, disk files, 
and communication equipment. 

To obtain communication between central proc­
essing units in a multisystem system, the storage 
media and interface connections already available 
in a simplex system are used. Therefore, the 
additional equipment necessary to achieve a multi­
system operation is minimized. This transmission 
of information is made possible by the channel-to­
channel adapter and the transmission control unit. 

A channel-to-channel adapter allows connecting 
the input/output interfaces of two channels, as 
shown in Figure 20. The main purpose of the 
channel-to-channel adapter is to make each channel 
appear as a control unit to the other channel. 
Transmission of data between the two channels is by 
byte at a rate established by the two channels . 
Because of the standardization of the input/output 
interface, the channel-to-channel adapter may con­
nect any model of the System/360 to any other 
model, and may use any type of channel on a given 
model. Any number of channel-to-channel adapters 
may be used in a multisystem, but their main 
function is in a multisystem emphasizing medium 
reconfiguration time or equipment specialization. 

A transmission control unit permits central 
processing unit communication by private line 
or common carrier . As indicated in Figure 
21, communication is established by means 
of a specialized device interface rather than 
via the channel interface. The r ate of data 
transmission is determined mainly by the 
line capacity. Any two models of System/ 
360, as well as those of any other system, 
can be connected. The major application of 

9_65 System. introduction 31 



the transmission control unit is for geographically 
separated computers. 

When two or more central processing units have 
access to a common storage, information placed in 
the common storage by one central processing unit 
can be read by another. In contrast to transmission, 
sending and receiving are not simultaneous, and 
a one-to-one relation between recording and re­
trieval is not necessary. The choice of the shared 
media is determined by access time, transmission 
rate, capacity, and cost per bit. Communication 
differing in application and implementation is 
achieved by the sharing of disk files, drums, data 
cells, and tape units. 

Shared devices are useful for program restart­
ing information for job recovery upon reconfigura­
tion. Disk, drums, and tape units may be pooled 
for storage of system programs as well as a 
means of communication between specialized 
central processing units to achieve improved turn­
around time. Because a control unit normally 
controls several disk files, drums, or tape units, 
a switch between channel and control unit allows 
efficient sharing of a control unit between two 
central processing units, as shown in Figure 22. 

Tape units or other input/output devices are 
shared between control units, as shown in Figure 
23, rather than control units being shared between 
channels. This choice permits pooling of tape 
units between control units and permits simultaneous 
operation of any combination of tape units. This 
logical ability increases the power of a simplex 
system, as well as a multisystem. As an example, 
the sharing of any pair of tape drives by two con­
trol units improves the sorting time significantly. 

Large capacity storage can be shared, as shown 
in Figure 24, by two central processing units. 
When one program is execut.,ed by different central 
processing units, it is desirable to have the loca-

32 9_65 

tions of instructions and data located in identical 
addresses in every processor unit. This address ­
ing convention is adopted in System/360 for multi­
system operation. The main application of shared 
storage is in multisystem configurations requiring 
short reconfiguration time. 

The method used to connect the components of 
a multisystem should be general to permit freedom 
of choice in system components; expandable , to 
permit economic systems growth; and reliable, to 
enhance systems availability. 

The System/360 Model 75 channel-to-channel 
adapter adheres to the input/output interface 
definition for all System/360 's, while the trans­
mission control units adhere to the industry 
standards for communication equipment. Inter­
connecting for the sharing of system components 
is also established between main storage and cen­
tral proceSSing unit, between channel and the 
control unit for disk and drums, and between control 
unit and devices such as tape units. Because of 
similarities in the logical approach to all three 
methods. the interconnection of main storage and 
central processing unit illustrates the discussion. 

Figure 25 shows the crossbar switch intercon­
necting technique that allows connecting of each of 
M central processing units to anyone of N storage 
units. F igure 26 shows the distributed implementa­
tion means of cOlUlection. Economic considerations 
favor the distributed crossbar switch because the 
need for separate frame and powering is eliminated. 
High availability is attained without duplication since 
failure of a switch element is counted as part of a 
storage unit failure because each storage unit con­
tains its own section of the switch. 

A distributed switch proves equally desirable for 
the connection of control units to channels; control 
units can be connected through multiple tails to 
different channels . 



, 

,-- ----~ ,- - ----., , 
'-

, , , 
'---r --.J '---r---' , , __ ___ ______ ~ __________ J ___ ~ 

-----------r-------~ , 
.-__ ..1. __ , 

,~, I Chao .... ' , 
, , 
L _____ J 

-- -- ---- -,--------i 

.... ---'--, 
C"" .. 01 I c....froI I 
~h I \.W , , , 

L _____ .J 

--------- - r------~ 

o..lc. 

, 
r--.L--, , , 
I 0..1"" , , , 
'- _____ .J 

flGUItE 19. fUNCTIONAl. ml.ClI.1;( 01' '" WIC SYSTEM 

,- - - ---~ , , 
, Slo<vgo I , , 
'- __ .- __ .J 

~ ----.:..----

S"""Uo 

---1 
P_I"'lI 

"'" 
2----i-- -- - ---

.. - ..... - , , , 
I Chaono' I , .... , , 
'- ____ _ ..1 

,~. 

~- --

P,_1I'II 

~" 

---

,~, I 

.------, , , '- , 
~_-.-_J 

----..:.--~ 

---- .. --< , 
~-_.&. --, , , 
I C~I , 
L _____ J 

~---"I---­, ----H '~~'--~ c~""""' ------- .... --~ , , , , , 
.---'---"1 
I Co.,,,,1 I 

~I! , , 
L _____ -' 

~---T--­, 
,- __ J.. __ , 

, 
0..1.,. , , 

'- _____ .J 

C"""ol 
~" 

---

o..lco 

...... ' 

""'~, 
~" 

-- -

"..,~ 

, , , , 
,... __ .1. _ _ , 

I Co.",,1 1 
I Unu I , 
.... ____ .J 

----.--~ , 
.... --'---, , , 
I 0..1.,. , , 
'- _ ____ J 

'IOUtE:IO. 'VNCl IONAI. SUI.IC1l1:t 01' '" CH...,.,.Nf:l-10<H...,.,.Nf:l MUlTISySTEM 

,-------, , , ,­, 
, , , , , .... __ .... _ .J 

, , 
~ ___ ..J __ _ 

/---- .... - --, 

,.---'--, 
, ' 
I C ....... , I , , 
~_ ---..I 

'-
- - --

....... 
~" 

- ---

Chao .... 1 

~--- ... --­, ---
, 

,--- -'- -, 
: 1 ........ 1 .. 1"" : 
1 Coo.froI ~U , 

'----- - -' 

1 __ 1.1"" 
Coo.otol ~U m 

'-
- - -

-'. ~" 

---

,~, 

.... - - - -- , , , '- , , '- _ .... __ J 
, , 

----I...--- ~ 

---..,----T , , 
~--'---, , , 
I C .......... I I , , 
'- _____ ..1 

-- -----.----l 

1....,.1 .. 1"" 
c....,,01 ~i1 

, , 
,- __ J.. __ , 

i '_ I .. I"" , 

, c.....roI Unu I 
L ____ J 

PlCUtE 11. l1J.NSMISSION CONl1Ol UNITS JU MlIlTlSYS1EMCONNECTOitS 

.. -----, , , 
I SlO<qjIo 1 , , 
L--r __ .J 

, 
~_J ______ _ 

l--T-------, 
r-- .... --' 

: 0..-1 : , , "-, 
l _____ .J 

~- -~- --- -----r--~ 
, 

r- -.1,.- -, 
, C .... "'" 1 , ~, , , 
'- _____ ..1 

l---.-------, , 
.- __ J.. __ , 

, 
'- ____ _ .J 

~- -- --, 
1 S"""Uo I , , 
'---T-- J , 

--- - ---'-- ---i 

-------r--- i , 
... -_..1--, 

a.......l ~C~I , , 
L _____ .J 

--------.,.- --~ , 
r--~--' 
""~ , 
~, ' , , 

L _____ J 

-------. ----i , , 
.... __ .1 __ , , , 
I o...lco I 
'-_____ .J 

flGUIIf: 22. $HAAEO CONl101. UNITS JU MULTlSYS1EM CONNECTOIS 

9-65 5yrtemJ lDtrodUctioll 33 



,-----., , , 
1 S ........ , , 
'--_ -, __ .1 

, 
r--.L---

~--r--, 
.. __ .J ___ ~ 

, , 
Ch<r.> •• 

.. -- - --~ 

'-

C'-nol 

~--""T-----, 
,- __ .J ___ , 

: c.,.,,,,,. : 
r u.,1' : 
'-------' 

, 
,...- - .1..._- .. , , 
1 o.vl.. 1 , , 
'-- ____ .J 

'-

Chonnol 

,...-----, , , 
1 S ....... I , , 
1.. _--,-_-' , ___ _ ..J.._-l 

---,---? , ,...-_ ... _-., , , 
C'-n.1 1 , , 

L _____ J 

------,--l , 
r--'---., 
I c.,.,,,,,1 1 
: Unit : 
L _____ .1 

--.--i , 
,- __ L __ , 

, , 
1 Oovl.. • , , 
'--- - ----' 

IIGUlf n. SKM{O DlVICf: AS MUlTlSYSUM CONNECTOt 

,...-----, 
: ~""-: ~ .... , , 
L __ y- __ J 

, 
~---'-------

~ ---r- ---- -, 
,...--..1.--., , , 

0._1 1 , 
L _____ .J 

, 
,... __ J. __ , , 
L ____ -' 

~---r-------, 
,- __ L __ , , , 

o.vl.o 1 , 
l _____ .J 

'-
r--- ---, , , 
I ~........ 1 , , 
l __ -. __ .1 

---~- ~ 

-----r-~ , 
r--L- -, , , , "-, , , '- ____ .1 

-------r--< , 
.. __ .1 __ ., 

c........ I c...~ol : 
u,,(, Unit 1 

.. ____ .1 

-------,.--~ , 
,... __ .J __ .., 

, , 
1 0 ..... 1«1 I 

.. _---_.1 

flGutE 2 •• S~"'UO StORAGE AS MVlt lSYSTtM CONNKTOI 

34 9_65 

,~. '-, , 

~- ----- -, 
"V, , , , 

I 
I 

"'" , , , 

J 

-

----

----

I 
I 
I 

~ 

" , , , , 
I 

_ _ __ ___ .J 

flG(Jtf 25. CfNn .•• U:Uo Closs."" SWlTOI UPlESlNTA"ON 

,~ - '-, , 
-

,-, ,- , , , , , " 
- --

<N, 

<N' 

, , , , , 
<N. 

flGlJIE 26. OISnllUTEO otOSSlAA SWITC~ REI"RE$[NTA'ION 



r 

• Prerequisite for study of this section is study OJf 
Model 75 Systems Introduction . 

SYSTEMS CONCEPTS 

• The Model 75 System consists of a number of 
sections . 

• Each section does a particular type of work. 

• Insofar as possible, sections work independently 
of each other. 

• Six large sections are: 
1 . Main Storage 
2 . Channels 
3. E Unit 
4. I Unit 
5. BCU 
6. System Control Panel 
The Model 75 consists of a number of sections, 

each of which does its job more or less independent 
of the other sections. To illustrate, consider a 
core storage unit (Figure 27). It sits idle Wltil given 
a start signal . Coincident with the start signal, 
certain raw material must be available to the unit. 
This raw material provides the core storage with the 
details of the job that is being requested, and at the 
minimum includes the address that is to be affected 
and whether the data at this address is to be brought 
out (fetched) or changed (stored). Once started, the 
core storage unit uses the raw material to do the 

f ttll Unit 

3 

F IGU~E 27. CORE STORAGE CYCU 

Idl. 

C~, 

Sto''"ge 
Unit 

8u.y 

Cor. 
Storage 
Unit 

2075 PROCESSING UNIT INTRODUCTION 

requested Job. It requires no further instructions or 
control, and it does not interfere with other sections 
of the system. At the end of its cycle, it gives the 
requested output or indicates that it has comp leted 
the requested job. 

Other sections of the system which operate with 
much the same philosophy as just described for core 
storages are: 

1. Channels 
2. Execution (E) wiit 
3. Instruction preparation (I) unit 
4 . Bus control unit (BCU) 
5. Main storage (one or more core storages) 
The jobs done by each of these four sections can be 

likened to jobs of a manufacturing plant (Figure 28). 
The receiving and shipping department handles the 

incoming orders and supplies and the outgoing pro­
ducts without interfering with other operations. 
Channels do a similar job for the Model 75 . Once 
given a specific command and told to start , channels 
transfer data between an I/O device and main storage 
without interfering with other sections of the system . 

The production line is the heart of the manufac­
turing plant. Here, products are made in accordance 
with sales orders. In our hypothetical plant, it is 
useful to think of a single production line which is 
capable of manufacturing a number of products, but 
can only work on one product at a time. The produc­
tion line, then, becomes the limiting factor, or the 
bottleneck, of the factory. 

The E unit resembles the production line because 
it does the actual job call ed for by an instruction, 

f;nioh 

c.., 
5~ ... 
Unit 

9_6S 2075 Prox:esslng Uni t 35 



I, PI ... , 5,oc~ to.... ... -, .... 
" .. 

nnl>hec! " .... cl> 
1 Sal .. Orden 

I 
Prod..cU .... ll ... '-". SuppU. 

1 wort. Or ..... 
Fln,>hec! P,oduelo 

I Sol .. O","n 
S""""'_ 

-. s .... «g • 

..... c.".,,01 Unu 

0.,. l, .... tr~cll_ 
I 

I L 0.,. -!-Unl' 

f " .. trucll_ 

I 1 .. "uc.l ..... 0.,. 
!-Unl. 

fIGU~E 2B. MOon 15 we_KING .... E ... S 

such as add or multiply. Once told the job it must 
do and given the data (operands) on which the job 
must be performed, it works independently of other 
sys tem sections. However, the E unit, I1ke the 
single production line, can handle only one job at a 
time, and therfore, tends to be a bottleneck in the 
total number of jobs that can be done in a given 
amount of time , This situation of a single produc­
tion line (E unit) i s necessary because the steps of a 
program (normally ) ar e meaningful only when exe­
cuted sequentially . For example, a partial result 
developed by one instruction is often used as an 
operand in the very next instruction . Execution of 
these instructions out of sequence would give a 
meaningless answer . 

Because the E unit , or production line, is the 
apparent bottleneck, a supervisor. or instruction 
unit, is used to keep the E unit busy . The I unit 
eliminates delays between jobs by starting a new job 
coi ncident with the end of the last job . 

As a supervisor interested only in getting the 
maximum work out of the production line, the I unit 
does the routine work of getting orders (fetching 

36 9- 65 

Rec';¥I~ .... 
S!I'ppi", 

-
----
"""-, ----

-----
-----

instructions) and ordering the materials (fetching 
operands) that the production line will need . Although 
the I unit works very closely with the E unlt, 1 unit 
jobs are performed Virtually independent of other 
system sections. 

The channels, the E unit, and the I unit aU require 
access to main storage. Because these sections are 
working independently of each other, requests come 
at random, much as stockroom requests might come 
from the various departments in a plant . Notice that 
a clerk handles stock requests (Figure 28) . He takes 
care of requests one at a time. When several depart ­
ments require service simultaneously, he takes care 
of the more urgent requests first. The Bus Contr ol 
Unit within the Model 75 handles the clerk 's job , and 
does its work independent of other system sections. 

The Bus Control Unit has an extensive routing, or 
switchboard, job (Figure 29). Storage requests can 
be generated by all of the channels, by the I unit and 
by the E unit . Further. any request can be for any 
storage unit attached to the system . Although Fig ­
ure 29 shows only two storage units, there may be 
four,eight,or even more attached to the system. 



Core Storage 1 

r-------
'ocu / .~-
~- --------- ------- -------

, 
""" Un;1 

FlCURE 29. BCU ROUTING 

Routing data is only part of the service performed 
by the BCU. The total job consists of taking storage 
orders and executing them . Consider the clerk in 
the factory (Figure 28). The production line section 
takes a finished product and gives it to the clerk. 
While the clerk is putting the item in its place , the 
production line is free to do other work. Similarly , 
the supervisor may call upon the clerk to deliver 
supplies to the production line. The clerk takes the 
order, fetches the requested supplies, and delivers 
them to the production line. Thus, the supervisor 
has only to place the order , then he is free to do 
other work . The BCU does exactly the same job as 
the clerk. It accepts an order to store or fetch a 
storage word, then frees the requester from further 
responsibility . 

Another Model 75 section which initiates storage 
requests is the System Control Panel (Figure 30) . 
The system control panel has all of the manual con­
trols and indicators for operator and CE communi­
cation with the system. As shown in the figure, the 
system control panel is connected to the BCU as if 
it were another channel. 

To summarize the discussion: 
1. The Model 75 System consists of a number of 

sections. 
2. Each section does a particular type of v..'Ork . 
3 . Insofar as possible, sections work independ­

ently of each other. 
4. Six large sections of the Model 75 are: 

a. Main Storage - two or more core stor­
age units . Main storage stores ins truc­
tions and data for the system . 

b . Channels - one to seven chalUlels handle 
data transfers between main storage and 
I/ O devices such as tape units and card 
machines . 

CII"" 0 

Ch~ 1 

C",", 2 

CII ... 3 

CII~4 

CII"", 5 

Cllon 6 

c . An Execution Unit - performs the actual 
job called for by an instruction. 

d. An Instruction Unit - keeps the E unit 
busy by ready1ng new instructions and 
handling routine tasks . 

e. A Bus Control Unit - handles storage re­
quests for the E unit, the I unit, and all 
channels. The BCU routes requests, 
addresses, and data, assigns priority, 
and frees the requesting area during 
the actual storage cycle. 

r. A System Control Panel - allows an oper­
ator or a CE to communicate with the 
system . 

",,~ 
Conlrol 
Pa ... ! 

MCI;n Sloroge 

BCU 

1- Un;1 E - Un;1 

C," 

F JGlMf 30. SVSTEM/360 MODE L 75 

9 _65 2015 Procenlng Unit 37 



CENTRAL PROCESSING UNIT (CPU) 

• CPU consists of an E unit to execute instructions, 
an I unit to prepare instructions for execution, 
a BCU to store and fetch instructions and operands 
from main s torage , and a system control panel 
for operator communication with the CPU. 

• E unit is further divided, later . 

In general, the Model 75 CPU consists of the E unit, 
the 1 unit, the BCU, and the system control panel, 
although the BCU is often conSidered a part of the 
I unit because of physical packaging (Figure 30). A 
further breakdown of the E unit is necessary when 
the execution of particular instructions or groups of 
instructions i s examined in more detail. First , 
however, consider the general way in which instruc­
Hons are handled, remembering that the BCli, main 
storage, and each channel can be operating si mul­
taneously with, and independent of, the I and E units. 

Instruction Handling 

• Simultaneous preparation and execution speeds 
running of program . 

• Most I unit jobs are automatic and independent 
of the specific instruction to be performed . 

• E unit jobs are directly controlled by instruction 
operation code . 

• E unit cycles are controlled by triggers, called 
sequencers. 

• There are many sets of sequencers, one set for 
each job-type . 

• 1 u.'tit keeps E unit busy. 

• I unit is controlled by one set of two sequencers 
(Tl and T2). 

• I unit fetches instructions , up:iates the instruction 
counter, and delivexs operands to the E unit. 

• I unit starts one of three execution units: 
1. E unit 
2. I-E unit 
3. Branch unit 

• Only one execution unit operates at any one time , 
except when two are required to execute a single 
instruction . 

38 9 _65 

The 2075 prepares instructions for execution in one 
unit and executes them in another unit, which greatly 
speeds up the running of any program . The use of 
different units enables simultaneous preparation and 
execution. While instruction one is being executed , 
instruction two is being prepared (Figure 31). 

The instruction preparation unit (I unit) performs 
all functions that are not directly dependent upon the 
particular instruction being processed. For in­
stance, preparation includes instruction fetching. No 
matter what the instruction, it must be fetched from 
storage . The execution unit (E unit) performs the 
specUic operation called for by the instruction being 
executed . For instance, on a divide instruction the 
E unit divides, and on an add instruction, it adds . 

The functions performed by the E unit are com­
pletely determined by the stored program. The I unit, 
however. automatically and without control from the 
stored program, performs all of those fUnctions 
which are necessary for the running of any program. 
The functions of the E unit might be thought of as the 
many different problems that we must conscientiously 
attack and solve in the course of a day's work. The 
functions of the I unit are the work habits which 
enable us to do a great deal of our work without con­
scious effort . 

Before being more specific about what I unit does, 
consider the E unit operation (Figure 32) . Execu ­
tions are done one at a time. The E unit caMot began 
a new execution until it is completely finished with 
the last execution . Before an execution starts, the 
operation code of the instruction to be executed is in 
the E unit operation register (EOP). 

For most instructions, operands are also de­
livered before the execution starts. During the 
execution, the required operations are performed 
on the operands, and the results are delivered to a 
specified location from the K register. 

On each machine cycle of an execution, the data 
flow and the operation performed are guided by a 
trigger called a sequencer. A series of sequencers 
is used for each execution . A different set of sequen­
cers is available for each class or type of job to be 
performed . The sequencers to be used for any exe­
cution are determined by the instruction to be 
executed . An execution may be a simple move from 
one general register to another requiring two E 
cycles, or it may be as complex as a VFL divide in 
which both operands come from storage and the 
result is returned to storage. This latter execution 
may require hundreds of E cycles . In all cases, 
some selected sequencer deSignates the first cycle 
and another the las t cycle of each execution . Because 
executions are done one at a time, the first cycle 
sequencer (E 1) for an execution may not come on 



r 

r 

Instruction N.....ber_CD (l) 
~~,--~ 

Ic"I'!fI k""'e Io;f>reP "Prep i.!nlP i/rep kPreP k'rep Ilree 
"""", """'" " het' ene' Exec' EM..: exeC' lIeC' nt' bee' 

FIGURE 31. SIMULTANEOUS PREPARATION ANO EXECUnON 

I 

Op CO<le eo, 

Machi ... Cycle 

. 
Scme unit prepo .... 
and ... ~ute. 

k Oiff"nln/ units, 
one ror~ion..-.d 
0 ... fo. uKutlon 

, , 
Exec 

F""" Sioroge viClICU 

I 
I 1 J Regi'ter 

E Unit 

1 K Reg •• '.' I 
I 

To lto,oge or 
odd,..,nabl . regi.t.", 

I El I (2 I P I EtC 

Ideal Opotation. (".ry Moehine Cycie M execution Cycle 

Ma<;hi .... Cycl. 

1 (1 I ElC I (1 I E2 I U I EN I EtC I (1 I (2 I (3 I He I (1 ! (2 I ElC I 

FIGURE 32. EXECUTION AND EXECUTION S,EQut:NCERS 

9_65 2075 Processing UnIt 39 



until the last cycle sequencer (ELC) for the pre­
ceding execution has gone off. 

For any program, the shortest rurul1ng time is 
achieved when every machine cycle is an execution 
cycle. An J unit performs all preparatory functions 
in a way that enables continuous execution . This 
ideal performance is shown at the bottom of Fig­
ure 32. 

Most preparation functions are sequencer­
controlled, as are the execution functions . Unlike 
executions , however, one set of two sequencers is 
used for the preparation of all instructions . Before 
the preparation sequence can begin, instructions 
must be brought from storage to the processor. J 
unit contains instruction buffers and a set of 
mechanisms for keeping instructions available in 
the buffers. The mechani sms controlling instruc­
tion fetches monitor many conditions . blstruction 
fetches are not made when they will interfere with 
executions or other preparation functions. Gen­
erally, however, new instructions are fetched 
before all buffered instructions are used. 

With instructions available in the buffers, the 
sequencer-eontrolled preparations are started . 
Under ideal conditions, sequencer-controUed prep­
arations are completed in two machine cycles. The 
preparation sequencers Tl and T2 guide the delivery 
of operands to the execution unit, the setting of the 
operation register in the E unit (EOP), and the send­
ing of a start Signal to the E unit. Housekeeping 
functions such as updating the instruction counter and 
controlling the gates [rom the instruction buffers to 
the operation register are also guided by Tl and T2 . 
The start signal is sent to the E unit as the T2 func­
tions are completed. 

Most execution sequences are longer than two 
machine cycles but some require only two cycles. 
ASSuming two-cycle executions and otherwise ideal 
conditions, instruction fetches, sequencer-controlled 
preparations, and executions will all proceed simul ­
taneously and without interfering with each other as 
shown at the bottom of Figure 33. 

As previously mentioned, a further breakdown of 
the E unit is necessary to describe specifiC execu­
tions . The I unit sees three different sections that 
perform executions (Figure 34). The E execution 
unit performs on e.xecutions requiring arithmetic 
or 10gicaJ manipulation of data, The instruction 
execution unit (IE unit) performs on executions that 
are closely associated with the I \illit functions or 
functional units. The branch unit performs on exe­
cutions that may result in a branch to a new instruc­
tion address , Each of these units executes certain 
instructions Independently of the other execution 
units . Each receives its own start signal from the 
1 unit and uses its own sequencers to control its 
operation much as has been described for the E unit, 

40 9 _65 

The use of three independent execution units does 
not enable more than one instruction to be executed 
at anyone time. The only simultaneous operation of 
execution units is when a single instruction requires 
the use of two units for its execution . On these few 
instructions, the E unit oper ates simultaneous with 
either the branch or the IE units. For instance, on 
branch on index-high (BXH) the E unit does arith­
metic to determine the success of the branch and the 
branch unit fetches instructions from the branch 
address. 

Bus Control Unit 

• BCU is the clerk for main storage. 

• BCU honors requests in a fixed -priority scheme . 

• A request to BCU Is an order to fetch or store 
a 72 -hit word. 

• Requester is released as soon as BCU honors 
request. 

• BCU returns fetched words to the proper register . 

• BCU overlaps storage requests . 

The BCU is the Model 75 clerk [or main storage . 
Whenever the E unit , the I unit, any channel, or the 
system control panel requires a storage reference (a 
store or fetch to maln storage), a storage request is 
sent to the BCU. The BCU honors these requests one 
at a time according to a fixed priority scheme . For 
each request, BCU must start (select) the proper 
storage address, and route the data either to or from 
the selected storage unit (Figure 30). 

A storage request to BCU Is actually an order or 
command , to store or [etch a 72-bit word (64 data bit 
plus 8 parity bit) from main storage . As soon as the 
BCU begins to execute this order, the requesting 
area is free to do other work . For example,consider 
a fetch request from the I Unit (Figure 35). BCU will 
attempt to honor this request every machine cycle , 
However , it may be several cycles before the request 
is actually honored. For example, all channels have 
a higher priority than the I unit. If a chalUlel is 
ready to start storage, the I unit request is blocked. 
Also , storage may be busy, forcing I unit to wait . 

When there are no conflicts, BCU will select the 
storage requested by the I unit and inform I unit by 
sending an accept pulse, The accept signal tells the 
I unit that its request is being serviced . The I unit is 
now free to drop its signals to the BCU and proceed 
with other work. 

When the storage unit delivers the 72-bit word 
from the requested address, the BCU routes this 
word into the J register . 



r 
F .... 
irwtNc:tl_ I_-
to buffen 

MlldUMCyocla 

I I I 

P .. porotion I. Automatic 

h.truction 
Availabl, TI I T2 

O,l i"" Optrond. 

Set O"" .... lon Rtllilten 

SIQ1 Execution Unit 

K"p Trock of P .. p" .... lon. 
a .... ExecutlOl'll 

TlIT2II! 

Encutlon I. Progrom ------l 
Controll~ ----, 

j 
RBl I I J Regi .. , 

I '0, Execution 

, .... , Seq .... n.:. 

I K Regllte. I 
I 

12 IT! T2 I II 12 I II 

1 £1 1 ELC 1 £1 I ELC I II I ELC I El I El C I £1 I HC I El IELC I f! 

FIGLRE 33. SIMULTANEOUS INSTRUCTION fETCHING, PltEfAAATlON. ANO EXECUTION 

IE unit I E unit J Bt unit 

r' OM~_';-' 
~""i"VMd 

( to ptrfonn all 
execution! (' 
I 1 

I unit 

(K .. P executions ~ing 

BeU 

0(710 fl_ pat+. ond ) 
control center fo, 011 
storoge operations 

FIGlAIE 3.4. FUNCTIONAL SECTIONS OF THE 2075 

9-65 2075 ProcessiDg Unit 41 



I Fetch R •• 
(i) 

I CD Storage Add .... 
Unit 

(c) Return to J 

Meoning of Si9..o1,: 

tAl Fetch the 72-bil word ot odd ..... <!> ond © plo ... it 
in 1M J "'gister. 

80 Amp' UtI'1 .. 

@ I received ~""r 0";'" end flave "ort~ lhe 010"'11" unit th<>l 
~..., reque.I.-I. y"" .... free to dRIp ~OU. input Ii ..... 

CD 510" cycle in P"Ogreu, 
BCU _its for dolo from .Ion:>ge . 

seu .. eei" .. data GIld deli", .. it 
10 tt.. J .. gister. 

FIGUIIE lS. !-uN1T FETCH 

OCU 

ocu 

ocu , 
I 
Do~ 

JR., 

The BeU overlaps the operation of any two core 
storage units within main storage (Figure 36) . To 
overlap storages, the BeU must remember two 
return addresses and associate these addr esses 
with the correct storage cycles (Figure 37) . 

The actual make~p of main storage is one, two 
or four 2365 Processor Storage Units (Figure 38) . 
Each 2365 has two independently operating storages 

S,,,rt 'od S,grt 

I ~~ 
Co<- 51oroge Uni I I / V '" 

''''' Sim ''''' s_ 

~~ ~~ 
C" ... 51oroge Unit 2 V '" V 
FIGURE 36. OVULAPI'ED STORAGE CYCLES 

42 9--65 

'" 
'" 

S-.. 

Do'o .... 
S~_ 

known as high-speed storages (HSS) or M-4's . The 
addressing scheme is such that one HSS contains 
even addresses and the other HSS contains odd 
addresses . This method of addressing is called 
"interleaving . " An HSS storage cycle (Figure 39) 
requires 750 nanoseconds . Fetched data is deliv­
ered to the BeU from about 400 ns to 600 ns of the 
cycle . 

'od St"" 

~~ 
V '" \ 

''''' ,,~ 

~~ 
... , V 



S",,- 0 ... 
Cy." 

,---~~----~rnL-____ , 
-----I L __ __ 

: Srorovo Two SIo<agoo Two 
I Cycle /Oel;ve" 0010 

E Un;1 f.'.~ 
ltOm 510""," T_ 

l .---~~---+------~f1lL----, 
----~,------~ ~ , , , , , 

&CU 5101" J' 
Slorogo 0 ... - - -

, , , , 
&CU Sr1KtI I 
Sro.ogo T .... - - -- - ________ .J 

, 
&CU Retumo 00'0 to C'-"-I _______ ..1 

&CURetu ...... 00'0 to E Unit 
, ________________ J 

fiGURE 37. RETUI!NING DATA WITH OVUlAPPEO STOIAGES 

FIGURE 38. MOOn 15 MAIN SlOlAG( 

Mj. __ , ,., ,., ,., , .. ,., , .. ,., 
N_ ..... , ,,. 

'" "" .. ". .. ". , , , , , , 
St",_ C)'"CI. I , , , , , , 
&CU Ivoy' JW~ 

I , 
",,' '". 

H5S Adoonc. I , I , , , 
.,.' ' .. 

H5S 0000 Out I I 
• ~",""j_l<Ilj"", &CU;, My willo lIoi, .. 1..:1;"". 

FIGUU 39. HS5 CYClE 

9_65 2075 PI"'oe~sslDg Unit 43 



System Control Panel 

• Panel contains lights and switches for communi­
cation with system . 

• Lights are grouped into logical areas such as I 
controls, bus control, VFL, etc. 

• Error indicators are grouped into one section. 

• Four sections of controls: 
1. Operator control 
2 . Operator intervention 
3. CUstomer engineer intervention 
4. Power control 

• Operator control section allows: 
1. Power on/off 
2 . Initial loading of programs and data 
3 . Manual interrupt 

• Operator intervention section allows : 
1. Start, stop, and reset CPU 
2. Manual store and display 
3 . Set machine registers 
4. Single-step and single--cycle. 

• Customer Engineer intervention section allows: 
1 . RurmingofFLT's. 
2 . Forcing of CPU logout. 
3 . Disabling error-checking circuits . 
4. Forcing parity-errors. 
S. Changing main storage addreSSing scheme. 
6. Repeating an instruction or a group of 

instructions . 
7. Stopping the CPU or storage on an error . 

• Power control section allows; 
1. Main system power~n 
2 . Checking the status of power on units of the 

system. 
3. Marginal checking . 

The sys tems control panel contains lights and con­
trols for operator and CE communication with the 
system . The lights show the contents of most CPU 
registers and the status of most CPU control trig­
gers. The controls consist of switches and keys to 
control power, to start, stop, and reset the CPU , 
to enable or disable various maintenance features 
and to perform manual operations such as store • 
display, and load CPU registers . ' 

Control trigger indicators are grouped, with the 
groups labeled according to logical areas of the 
machine such as I control, bus control, VFL, etc . 

A group of red indicators that show check conditions 
are generally turned on by parity errors. 

The switches and keys on the control panel are 
div ided into four sections: 

1. Operator control. 
2. Operator intervention . 
3 . Customer Engineer intervention . 
4. Power control . 
The operator control section contains the neces­

sary controls for the operator to turn the machine 
on or off, to initially load programs and data into 
the maChine, and to manually interrupt the CPU. 

The operator intervention section of the panel 
contains the switches and keys that permit the opera­
tor to stop, start, or reset the machine; to manually 
store instructions or data into any storage location 
or into any of the addressable registers; to set up an 
entire new PSW in the PSW register or to set up the 
IC portion of the PSW register; to start processing 
over again, from the very begirming, by reloading the 
PSW from storage location 0; to display the contents 
of any storage location or of any addressable reg­
ister j and to manually step through a program , 
either one instruction at a time or one machine­
cycle at a time. 

The customer engineer intervention section of 
the panel has controls to permit the CE to: 

1 . Start, stop, and control the running of fault 
locating tests (FLT) for maintenance purposes. 

2. Force a CPU log~ut operation to store the 
status of 1216 CPU triggers (both register posi­
tions and control triggers) into main storage. 

3. Load the instruction buffer (AB) registers . 
The registers are set from the data keys which are 
in the operator intervention section of the panel . 

4. Disable most errors. 
5. Force certain parity errors. 
6. Change the main storage addreSSing sc heme. 
7. Enable the system control panel data keys to 

be used in lieu of a main storage location. 
8. Repeat one instruction or repeat a group of 

instructions . 
9. Stop storage on an error condition to isolate 

a failing storage Wlit . 
10. Stop the CPU on an error condition. 

The power control section contains the controls 
concerned with system power. including marginal 
check controls. thermal controls, and emergency 
controls . Also included in this section is a key to 
test panel indicator lamps by turning all lamps on. 

Machine Cycles 

• Cycles are 195 nanoseconds in duration . 



r 

r 

• Pulses are: A, early B, B, late B, Land C 
clock . 

• B pulse is often timed for a specific job. 

• L pulses overlap A pulses. 

• L pulse holds data at origin while an A pulse 
samples the data into a receiving register. 

A machine cycle is 195 nanoseconds in duration and 
begins with an A clock pulse (Figure 40) . The 
timing of the B clock pulses is not always as shown 
in the figure. A delay line is often used to shift a B 
clock pulse for the most advantageous timing. The 
Significance of the L, or latch , clock is that it 
completely overlaps an A clock. Generally, data is 
held (latched) at an origin register by an L clock 
while it is sampled into a receiving register with an 
A clock. 

• 
I------,~- --- - -i 

FlGU~E 40. CPU M.A.OtlNE CYCLE 

Fault Locating Tests 

• FLT are an automated set of tests to check CPU 
logic circuits. 

• About 100,000 tests are stored on an FLT tape. 

• Speeial FLT circuits bring tests into CPU and 
execute them. 

• A listing correlates failing test numbers with 
circuit cards that can cause the failure. 

Fault Locating Tests (FLT) are an automated set of 
tests to check CPU logic circuits. There are about 

100,000 fault-locating tests. The tests are stored 
on tape and brought into the CPU one at a time with 
special FLT circuits. Once started, the tests run 
one after the other until a failing circuit causes test­
ing to stop. When testing stops, the failing test 
number is displayed in the test register. An FLT 
listing correlates the failing test number to the cir­
cuit card or cards that can cause this test to fail. 
The card or cards listed are replaced to repair the 
trouble. 

The FLT's do not test the CPU functionally as 
does a diagnostic program. For example, a diag­
nostic program would probably test the multiplying 
circuits by actually multiplying two numbers and 
comparing the product to a predetermined result. 
The FLT's, however, test the multiplying circuits 
(and all other circuits) one element at a time. Each 
trigger is turned on and then checked to see that it 
did turn on; each trigger is turned off and then 
checked to see that it did turn off. Where practical , 
each AND and OR circuit is conditioned and then 
checked to see that the output is correct. 

Each test on the tape tests a single element or a 
small group of elements for a single condition or 
output. For example, 72 separate tests from the 
tape checks the 72 triggers of the J register to see 
that they can turn on. Seventy- two other tests check 
the same triggers to see that they can turn off. After 
all of the triggers are tested (not only register poSi­
tions but also control triggers), logical groups of 
circuits are tested, such as adders, decoders , etc. 

To test a group of logic, the inputs to the logic 
must be properly conditioned so that a test of the out­
put will be meaningful. Each test on tape, therefore, 
sets up the CPU to the status (certain triggers turn 
on) that will result in a particular outlXlt of the logic 
in question. This output is one of the indicators on 
the system control panel. Anyone of the 1216 indi­
cators on the panel can be selected for the test result 
indicator . After the CPU is set up (called scan-in) 
for the test, the proper indicator is selected and its 
status is compared with the expected result bit in a 
register that was also set as part of the scan-in 
operation. If the comparison shows equal, the test 
passed; if not, the test failed. 

Many of the circuits tested cannot have their 
inputs conditioned directly by the scan-in or their 
output checked directly for the test. These circuits 
require that after scan-in, a number of machine 
cycles must occur before an indicator will reflect 
a true result of the cir~uit being tested. Therefore, 
after the scan-in, the controlled clock is started and 

12_65 2075 Processing Unit 4S 



and allowed to nUl for a predetermined number of 
cycles . Then the comparison is made between the 
selected indicator and the expected result bit. 

Interrupts 

• Interrupt system switches programs for unusual 
or special conditions . 

• An interrupt is accompUshed by r eplacing the 
PSW. 

• The five classes of interrupts are: external. 
program, machine check, supervisor call, and 
1/0. 

Certain system conditions such as program errors 
and machine errors require immediate programming 
attention. These and many other unusual or special 
conditions are bandled by the interrupt system. The 
interrupt system is a means of switcbing the CPU 
from executing one program to executing another 
program. Unlike branching, interrupt switching of 
programs is asynchronous with program execution . 
For example, an interrupt signal is generated when­
ever an I/o device completes an assignment. 111is 
interrupt Is used to allow the CPUto keep an I/O de­
vice operating continuously . The general sequence 
of events is: 

1. An I/o program is executed and results in the 
starting of some I/ O device. 

2. The CPU begins another program which is not 
dependent on the I/ O operation just started. 

3. After an indeterminate time, the r/ o device 
Cinishes its operation and signals "interrupt. " 

4 . The CPU leaves the program it is presently 
executing and goes back to the I/O program to start 
another I/O operation. 

S. After restarting the I/ O device on a new op­
eration, the CPU branches back into the non-I/ O 
program to continue from the p:>int at which it was 
interrupted . 

The interrupt scheme accomplishes steps 3 and 4 
to switch to a program that corresp:>nds to the type 
of interrupt signal which occurred. The interrupt 
scheme also records the necessary data to allow the 
programm er to switch back to the correct point of 
the interrupted program. 

The interrupt process accomplis hes the program 
transfer by replacing the current PSW register con­
tents with a new PSW. The new PSW establishes the 

46 12-65 

new status of the CPU, including a new instruction 
count (IC) which is the starting point of the new rou­
Une to be executed. Just before the current PSW is 
replaced, the interrupt code field of the PSW regis­
ter is set according to the type of interrupt condition 
that was detected. Then, the entire current PSW is 
stored away and the new PSW is fetched from stor­
age and set into the PSW register. Next, an IC 
recovery takes place, fetching a new stream of in­
structions from the transferred-to program. 

Generally, interrupts transfer to program rou­
tines in the operating system program . The interrupt 
hardware simply loads a new PSW; from this p:>int, 
the operating system program examines the stored­
away PSW to determ ine what caused the interrupt 
and then takes appropriate action. This action might 
be to process a real-time job because of an external 
signal from another computer; or, to call in an 
analyzing program because of a machine check; or. 
to terminate the problem because of a program 
check; etc. After the necessary action by the oper­
ating-system program, the interrupted program may 
be resumed by the execution of a load PSW instruc­
tion, which loads the PSW register with the PSW that 
was stored away at the time of the interrupt. 

There are five classes of interrupts: 
1 . External 
2. Program 
3 . Machine check 
4 . Supervisor call 
5. Input/ output 
All of the interrupts (with two exceptions) fall in­

to one of these classes. Each class is distinguished 
by the fixed storage locations in which the current 
PSW is stored and from which the new PSW is fetched. 
The two exceptions are initial program load (IPL) 
and timer advance request. These two procedures 
use the interrupt circuits to accomplish their objec­
tives, but do not result in the exchange of PSW's. 

External: This class includes (1) timer word over­
flow, which occurs when the timer word goes from a 
positive to a negative value, (2) interrupt key on the 
system control panel, and (3) any of six external 
signals. When any of these three types of interrupt 
conditions occurs, the CPU takes an external inter­
rupt, which stores the current PSW in the external 
old storage location (24) and fetches a new PSW from 
the external new location (88). 

Program: This class consists of 19 separate inter­
rupt conditions, all of them being associated with 



r 

either the interpretation or the execution of instruc­
tions. Any program interrupt results in the ex­
change of program old and program new PSW's . 
The fixed storage locations for the program PSW's 
are : old , 40; new, 104. 

Machine Check: This interrupt constitutes a class 
all by itself. It is a lways a result of a machine mal­
function and results in the exchange of machine 
check old and new PSW's (old, 48; new, 112) . 

When a machine check occurs, the CPU clock is 
stopped and a logout operation takes place. The 
logout consists of storing the status of most CPU 
triggers (both registbr triggers and control triggers) 
in a fixed area of storage . When the logout operation 
is complete, the machine check interrupt is initiated. 

Supervisor Call : This class includes only the super­
visor call interrupt, which occurs when the super­
visor call instruction is decoded . The current PSW 
is stored in location 32 (old), and a PSW is fetched 
from location 96 (new). 

Input/Output; The I/o class includes the interrupts 
caused by s ignals from any of the seven channels. 
An I/O interrupt causes the current PSW to be stored 
in location 56, the channel status word to be stored 
in location 64, and the new PSW to be fetched from 
location 120. 

In addition to the slots reserved for old and new 
PSW's, the first three double word locations are 
reserved for IPL use. location 64 is reserved for 
the channel status word , location 72 for the channel 
address word (single word). and location 80 for the 
timer word (single word). The 19 double words 
starting in location 128 are for logout , which follows 
any machine check error. 

Interruptible Status 

Certain positions in the PSW. called masks, de ­
termine the interruptible status of the CPU. If a 
mask position is a one, the corresponding interrupt 
source is allowed to interrupt the CPU; if a zero, 
the interrupt is said to be masked off and the inter­
rupt does not occur. Some interrupt sources, although 
masked off, remain pending and will be taken should 
the mask position in question be changed by the in­
troduction of a new P SW. Each new PSW introduced 
may therefore change the interruptible status of the 
CPU. Two of the mask fields, system mask and 

program mask, may be changed independently of the 
rest of the PSW by the instructions "set system 
mask" and "set program mask. " The mask fields 
and their effect on interrupts are: 

System Mask, PSW 0-6: Each position either allows 
or masks off the I/O interrupt signal from its re­
spective channel. If mask off. the I/o interrupt re­
quest remains pending. 

PSW 7: This single poSition is also a part of the 
system mask field and either allows or masks off, 
as a group, all of the external interrupt class. If 
masked off, the external interrupt remains pending. 

PSW 13: This position either allows or masks off 
machine check interrupts. If masked off, the 
machine check condition is ignored. 

Program Mask, PSW 36- 39: These four positions 
either allow or mask off respectively: fixed-point 
overflow, decimal overflow , exponent underflow, 
and significance. If masked off, the interrupt con­
ditions are ignored. Note that of the 19 conditions 
that cause a program interrupt, only four are con­
trolled by the PSW. 

Triggers and Latches 

• The AND-DR-invert is the logic building block of 
the CPU. 

• Retention devices in the 2075 are called triggers 
and latches. 

• Triggers and latches are, phYSically, nip latches 
(FL), polarity holds (PH), and flip-flops (FF) . 

The logic building-block of the 2075 is the AND-OR­
invert (Figure 41). This unit consists of either of 
two or three non-inverting plus AND's feeding an 
inverting plus OR. This AND-OR-invert (AOI) unit 
is used for most AND/OR logic decisions within the 
machine and is the heart of most of the retention 
devices. 

The retention devices in the 2075 are called trig­
gers and latches; this nomenclature, however, does 
not reflect the physical circuits, but rather the set­
reset timing of these devices. Devices changed at 
"A" time are usually called triggers; devices changed 
during ''not L" time are usually called latches. This 
trigger/latch nomenclature is further explained 
later in this section. 

9_65 2015 Processing Unit 47 



Physically, most of the retention devices used 
are either flip-latches (FL) or polarity holds (PH). 
The basic retention device, s hown in Figure 41, is 
a flip-latch. This device is more readily recognized 
as a cross-coupled AND/OR when redrawn (Figur e 42). 
Most instruc tion diagrams (positive logic) represent 
the FL circuit with a single block, as shown in the 
figure . 

A polarity hold is an FL that meets an additional 
requirement ; set and resel inputs are gated by com­
plementary timing pulses (Figure 43) . This config­
uration has several Wlique characteristics : 

1. A separate reset input is Wlnecessary. The 
c lock timing pulse turns the PH on or off as dictated 
by a single input. An additional reset line, however , 
can be used on a PH. 

2. The output follows the input during "relea se" 
time. 

3. On the transition from "release" to ''not re­
lease" the latch-back is activated to "lock" the out­
put in Its present status . 

4. The input has DO effect on the output except 
during ''release'' time. The device is said to be 
' 'locked during not release" (not A clock , in the ex­
ample). 

The PH is used extensively for both data register 
bit-poSitions and for control triggers and latches . 
An example use of the PH circuit is shown in Fig­
ure 44. When a PH is released, it assumes the new 
status of the data line; the P H changes state only if 
the data is now in the opposite status from that in 
which it was the last time the PH was released. 

Some register positions consist of two PH 's (Fig­
ure 45). The first, or input PH, is called a trigger 
and is released by an A clock pulse . The second, or 
output PH, is called a latch and is released by a "not 
L" cloc k. The significance of the latch is that it is 
locked during L time so that It cannot be changed 
during the A c lock pulses that change the triggers. 
This scheme allows new data to be set into a regis­
ter with the same A clock pulse that moves the old 
data to another register . 

Like the double PH register poSitions, the reten­
tion devices that control data movements (control 
triggers) are usually trigger/ latch combinations . 
These control devices are more fully discussed in 
the "Sequencers and Sequencer Cycles" section . 

Special Retention Devices 

• Most triggers operate with A clock timing, but 
there are exceptions . 

• Most latches operate with L c lock timing, but 
there are exceptions . 

• Many retention devices require examination of in­
dividual c ircuits and the latch-back arrangement. 

48 12_65 

• A flip-nop changes to its OPPOSite state upon the 
application of a single signal. 

As previously explained, a trigger in the 2075 CPU 
is a retention device released (or set) by an A clock; 
a latch is a device whose output is good (or locked) 
during an L clock. Although the majority of the 
retention devices fit one of these definitions, some 
operate with other timing. For example , there are 
PH's released at early B (EB), B, and late B (LB). 
Some of these devices are called triggers; others 
are called latches. There is no useful distinction 
between ''trigger'' and "latch" when a device i s timed 
at other than "A" or "L" clock time . 

Physically, there are many variations of the 
baSic FL and PH circuits. Many times the AND/OR 
circuits and the latch-back arrangement of these 
retention devices must be examined in detail in order 
to unde r stand exactly how the device behaves. In 
ALD's, any AND, OR, or invert bloc k that is a part 
of a retention device is tagged with the letters "PH" 
following the. A , OR, or N symbol. The PH tag 
means that the block is a part of a retention device; 
not that all of these circuits are PH's. Some of the 
PH and F L variations are explained in the following 
paragraphs. 

Often, a PH is set by more than one data (or con­
trol) source (Figu r e 46). Also, some PH's have a 
separate r eset. 

An FL is sometimes composed of two c ross­
coupled AOI Units (Figure 46). 

Retention devices are often used to alter the 
timing of a signal (Figure 47) . The duration may be 
shortened or lengthed or the signal may be delayed. 

Occasionally , there is need for a device which 
will change to the opposite state upon the application 
of a single s ignal; if it is on , turn it off; if it is off, 
turn it on. This device Is logically Imown as a flip­
flop (FF). Reversing the state of an FF is said to 
be "complementing the FF." or ''binary operation." 

The 2075 FF's consist of two FL's or two PH's 
with interconnecting gating (Figure 48) . In SMS 
technology, this circuit was sometimes called a 
binary latch configuration. The device works on the 
following principle. One retention device provides 
the output and is changed to the opposite state each 
time an active input signal is applied . To accomplish 
the binary operation of the first device, a second re­
tention device is set to the same status as the first , 
shortly after the first has been changed. This second 
device now gates the input signal to the first device 
so that the next input signal will change the present 
status of the first device . 

Sequencers and Sequencer Cyc les 

• Sequencers control 2075 operations . 

• One or more sequencers are generally on . 



'So. flip Lotdo ~ 

....... Fl' L •• oh " (!) , 
} 

ON-Side 

!-,-,",',.,', .. ,,''-______ 0.,." 

flip L .. oh __ II>" d_l.., 

'So' fI" L_~ 

Off-Side 0.'1"" 
- -(Go_oily --

• ,,' ,"c""',""'o'", ___ M flip l"'oh 

b .. , III, lROoh U 

~Q 
Si"lli. 'So. M)(Q 
,~, 

0) 

0) 

_" do<~ 

O"'i,. .. ...," do<~, ..... _ oJ ..... • So' M)(Q 
llno I . ....... . 

0....,. .... "olo<k, .... 050. Ml(Q I ..... 10 
oIl,-.lly ._Ied I. o!.. de.I •• ""'''"''i .......... 10. 
I. <old 10 I.e ,el.oood. 

IU .... end oJ "'" "doek, ........ 1 ..... .,.".1. 
lI> .... I .. ' ....... fA -se. Ml(Q ...... I. -1Ot:~"" 
ill ohio ....... unlll ...... ~. ".I ... k. 

fIGUIO:( ~3. 'OlAAlTV 1-101.0 

~Q 

_sao 0<000 all 

.Do'o lit f, .... S ........ 

- - -
.SIO Dolo all 

D 
SIO Ooto alt 

IIGUIO:E oW. (XAMPlE Of POI..-o.JIIY 1-101.0 iJSf 

J bill" .. , 

" Clo<~ 

l C1oc~ 

0)Ootollt 

0 JI, .... 

, JtoO.h 

0"101_ 

'-----

:---Mot:hl ... Cr<le-

-
- -

-
--

1M. "dock .... J LOI.h 

in'. 1.'""*''''''' _Ibly 
.. "a ..... bi' ..... JI, ..... 

-

-

flGUlE 45. 'Ol.-o.JITV 1-101.0 ~EGIS1(. 'OSrtIONS 

9-65 2015 Proeeulng Uni t 

-

-

" 



• Most sequencers consis t of a trigger-latch com­
bination. 

• Sequencers are generally arranged in chains . 

Operations perlormed by the 2075 are controlled by 
sequencers. If no sequencers are on during a par­
ticular machine cycle, the CPU does practically 
nothing during that cycle. Generally, one or more 
sequencers are on during a given machine cycle. The 
pa r ticular sequencer that is on and the operation 
code, together, determine the data movements and 
other functions that are accomplished by the clock 
pulses of that machine cycle. 

Most sequencers consist of a trigger-latch com­
bination quite similar to the trigger-latch combina­
tion used for individual bit-positions of some of the 
data registers (Figure 45). The sequencer trigger 
Is set by an "A" clock; the sequencer latch by ''not L . " 

The sequencers are generally arranged in chains , 
so that the latch of sequencer one gates the trigger 
turn-on of sequencer two. An example of a sequencer 
chain is IE I, IE 2, IE 3, and IEL. These sequencers 
control instructions executed by the I execution unit, 
Another example is a chain of 12 sequencers used 
for VFL instructions, This VFL chain (and most of 
the other chains ) is not always used in the same way; 
for example, sequencers one through nine perform 
for a VFL add/subtract set- up sequence, In this 
application, the sequencers are referred to as SU 1 
through SU 9. VF L sequencers two through seven 
perform VFL add/subtr act s tore-fetch sequences . 
In this application, the sequencers are referred to 
as SF 1 through SF 6. 

Each constructive machine cycle is named for the 
sequencer that exercises control over that cycle. 
For example, machine cycles occurring while the 
IE 1 sequencer is on a re called IE 1 cycles. U the 
First FXP (fixed-point) sequencer is on, then the 
machine cycle is a First FXP cycle . OCten , more 
than one sequencer is on during a particular cycle. 
For example , the two I unit sequencers , Tl and T2, 
gener ally overlap E unit sequencers ; iliat is , a T l 
cycle usually coinc ides with some E unit cycle such 
as Fi.rst FXP. 

As previously discussed , a machine cycle starts 
with an "A" clock pulse and ends wiili the next "A" 
c lock. This corresponds to the timing of a sequencer 
trigger (F igure 49) . Th is period of time (fr om A 
to A) is generally considered to constitute the se­
quencer cycle, although the sequencer latch timing 
extends into the next machine cycle . As shown in 
the figure , a sequencer cyc le can be repeated any 
number of mach ine cyc les, n lis is often the case 
when some condition prevents progressing to the 
next cyc le , such as when awaiting requested data 

SO 12-65 

to return from storage. A cyc le is repeated by 
leaving the sequencer trigger on and failing to turn 
on the sequencer latch. 

When a sequencer cycle is repeated, the functions 
of the sequencer are split into three groups: those 
that occur only on the first sequencer cycle, iliose 
that occur on every sequencer cycle, and those that 
occur only on the last, or ''good,'' sequencer cycle. 
H the blocking condition for a sequencer latch is not 
pr esent , all functions of the sequencer (first, every, 
last) occur on the same machine cycle. 

MAJOR UNITS AND DATA FLOW PATHS 

• Local storage is transistor registers: 16 general­
purpose , and 4 floating-point. 

• Three-input addressing adder. 

• 72-bit wide data paths ·, 

• VFL section for byte processing. 

• Two 72-bit instruction-buffer registers. 

The major functional units of the 2070 CPU are shown 
in Figure 50. Some highlights are: 

1. The local storage (Sixteen 32 data-bit plus 4 
parity-bit general registers and four 64 data-bit plus 
8 parity- bit floating- point registers) are implemented 
in diode-transistor logic. 

2. A three-input addressing adder calculates 
operand effective addresses in one machine cycle. 
Effective addresses consist of a base register, an 
index register, and a 12-bit displacement field. 

3. Major data paths are 72 bits wide (64 data­
bits plus 8 parity-bits). There are ten 72-bit regis­
ters and a main adder that adds two 72-bit operands 
in one machine cycle . 

4. A variable field length (VFL) section to process 
inst ructions that require manipulation of single-byte 
operands. 

5. A separate exponent adder to speed floating­
point operations . 

6. Two instruction buffer registers to hold a 
backlog of new instructions and thus avoid waiting 
for instruction fetches. 

Instruction Preparation 

Preparation consists of fetching instructions, op 
register loading, instruction counter updating , and 
local and main storage operand fetches . 



Two-Way PH Wilf, Sep<I' ate Reset 

z 
+ X Doto Bit 

+ Gal .. Dota il X A 

+ 10 it 
+ G<>te Dolo Bi' Y 

- Set Z 

A 

r 
X Doto Bit 

I A i z 
Gote Doto 8it X 00 

Se t Z 
PH 

Power-On 
Y Dalo 8it 

I A ~ 
.~, 

r 
G<>I .. Dolo 8it Y 

FIGURE 46 . RETENTION DEVICE VARIATIONS 

+Input 

r 
A 

+Timing O. ~ 
... Output 

I 
A 

Input Outpul 
IA Fe 

Input 

Timing 

Output 

FIGURE.fl. fLIP LATCHES USED TO ALTER SIGNAl TIMING 

Cro .. -Coupled AOI Flip Lotcf, 

t Deto 8it Z 

Doto 8il Z 

+Inpul 

" ... 
Sel the 

+C ond +0 ( 
SettheFL 

+ Timing 

I 
Input 

Input 

Timing 

Outpul 

. , { 
Fe 

-R""" 
.c 
' D 

A 

I-
A 

" ., A 
~ N . 00 o. 

I-i A 

L 
A 

O. N + On Latched 

A 

o. 

"!··""-L __ J--1 N f..---,,,,,,,-,t·""O'·.dL 

o. N 
LJ 

«N " ' 

9 -65 2075 Processing Unit 51 



-A 

+ Inpul 

Equivg lent POlIO/IV" Logic Oiogrom. 

I 
A Clock PH A lock 

Inpul 

,.,.., 
.::A-,C,,'~=k'----18 

FIGURE 411. 2075 HIP-HOI' 

~~i===:f--:Al Firs' 52 

51 T' ;Qge' (Not Shown) 

51 lolch (Not Shown) 

52 Tri9ll'" 

52 lolch 

521.g 

~ 

fl 

tOil , 51 
Cyeie 

FIGURE "9. SEQUENCERS AND SeQUENCER CYCLES 

52 9_65 

A 

o. P---,-l'l N 
A 

PH A 

-EJ-1 A 

rG-
Se""1'''' 

~-:-me-:-~Tlff 
RIO ... ' Input -----"'---' 

2 Func/ion, 

Group 1 
function' 

I 
:iJ I 

First 52 
Cycle 

A 

A 

~ 

"' .. ' Function. 

j 

" Cycl. 

O. 

", .. ' 
Function. 

A 

A 

~-l ~ 

Los'S2 
Cycle 

+ On Output 

o. 

On Oulput 

On Output 

LOiI! 52 



~ -8 m ~ Q --
II • 

0"< ~! / g 
, r D 

f"--
I • 
I 

0 
I 

~ llB ~ I ~ I 
I 
t } 
I 

./' I I 
I / r 

0 
r I 

0 
JQ D Oi 
~ L ________ J 

! ~~ -

[W] 

~ 

~ 

~ 
1 .. 
l 

D ~ 

0 0 t 
1 , 

0 
~ 

j , 
t'---. 1 

0 10 r 

~ 
II , 
/" 

L- ~ 

~ 

~ 
• • 

9_65 2075 Procesalug Unit S3 



Instruction Fetch 

• An instruction is 2, 4, or 6 bytes in length. 

• Instructions are fetched a double word at a time. 

• A and B registers buffer t.wo double word!:! of in­
st.ructions. 

• IC fetch fills an empty instruction buffer register. 

• Incrementer generates the IC fetch address. 

• Even- addr ess storage words are set into A. Odd 
address storage words are set into B. 

• IC fetch address is set into the storage address 
register (SAR). 

• 8CU returns fetched storage words under control 
of two return address registers. 

An instruction is either two, four , or six bytes in 
length and can begin on any haUword boundary 
(address bit 23 is zero). In the Model 75, instruc­
tions are fetched one double word at a time and 
placed in one of the two instruction buffer registers 
(Figure 51). 

Instruction fetching depends on the status of the A 
and B registers. Whenever all of the instructions 
contained in one of these registers have been proc­
essed, an IC fetch is made to replenish the empty 
register. The instruction COWlt register (ICR), the 
last 24 bits of the PSW, keeps track of the instruc­
tion which is currently being processed. The ICR is 
incremented by 8 or 16 to generate the address of the 
next instruction double word. For example, assume 
that A is empty and that instructions are being proc­
essed out of B. An increment of 8 (address bit 20) 
is added to the ICR to fetch the next instruction double 
word. The true address generated for this fetch is a 
byte address eight bytes higher than the value of the 
ICR. However, because the three low-order address 
bits are Ignor ed in addressing storage , the double 
word containing the specified byte address is always 
fetched. 

In two siruations. it is necessary to increment the 
ICR value by 16 to generate the correct lC fetch 
address. For example, assume that both A and B 
are loaded and instructions are being processed out 
of A. When the ICR is pointing to the last instruction 
in A, and this instruction has already been trans­
ferred to the op registers , an IC fetch can be initiated 
to reload A. In this case, it is necessary to add 16 
to the ICR value to skip the double word already in B 
and reload A with the correct instruction word. 

54 9-tiS 

The second situation that necessitates increment­
ing the ICR by 16 occurs when one buffer is empty 
and the last instruction in the second is being proc ­
essed. In this case, two instruction fetches are 
necessary to refill the buffers. The first IC fetch is 
made by adding 8 to the ICR; if the second fetch is 
made immediately following the first, 16 must be 
added to the ICR for the second fetch. 

Notice from the figure that even-address instruc ­
tion words (double wordS) always go into A and odd 
words go into B. The determination of even/odd is 
made from address bit 20, which changes at each 
multiple of eight byte addresses and, therefore, 
once each storage word (double word ). 

An IC fetch address is set into the storage address 
register (SAR), as is any address generated by the 
CPU for a fetch or store to main storage. The three 
low-order bits of SAR, which specify the byte within 
a storage word , are not transferred from SAR to 
main storage. 

Storage returns fetched instruction words (and all 
other fetched words) to the storage bus out (S80) 
latch register. From the S80, the seu routes the 
fetched data to its proper destination by using either 
the X or Y return address register (RAR). Two 
RARls are necessary because of overlapped storage 
cycles (two fetches may be outstanding). The X and 
Y RAR's are used alternately to direct data and 
errors for each storage request (fetch or store). 

Op Register Loading 

• The CPU has seven op registers : lOP, BOP, 
EOP, LCOP, ERl, Y, andZ. 

• Instructions are gated from AB to lOP by the gate 
select register (GSR). 

• BOP, EOP, Y, and Zare set from lOP. 

• lOP is used for instruction preparation. 

• BOP is used by the IE execution Wlit. 

• EOP and LCOP are used by the E WlU. 

• ER 1 is used for local storage put- aways. 

• Y and Z hold operand lengths for VFL operations. 

The CPU has seven op registers (Figure 52): 
1. I unit op register (IOP) 
2. 8 op register (BOP) 
3. E unit op register (EOP) 
4. E last cycle op register (LCOP) 
5. E time R l field (ERl) 



D 8Q Q li 
~ 

." 
.3 

0 ~ 
• • · , 

~ 
.! ~ 
1 ., 

D 
·n 

~ ij II! 
~ ~ - -, 1·-H} 

1 

~ 1 

0 B~ 
1:1 

Q 
I 

Ii, 
I ! "1 
I g 

~, 

" 
I 

,q) 

I 
' . i 

I 

0 
ill 

1 

~ 
j ~ t 

1 DO T I 
' > • • 

~ 1 
· . , 

I 

0 
l , : -, 

- I 
(0 

I 

~ ~ g 1 
~ 1 • 1 

! 1 , , , , , 
~I 

~ 
I 1 j l::'---' 1 
! I 

~ I I 0 
'I 1, 

~h'~ A 

0 ~ 
1 . 

~ 
• " , 1; , 
j · , 

j' , :1 

~, 
l' 

, 1i 
! ·r 
';1 
'1 

; 

0 
I' 

j 
~1 

Q 
, H ~ 

1 !l ~ 

~ H , 
u ! (0 

9-65 2015 Processing Unit 5S 



6. Y cOW1ter 
7. Z cOWlter 
The gate select register (GSR) gates instructions 

from the instruction buffers into lOP, The GSR 
always gates two haUwords (four bytes) and these 
two halfwords are on half -word boundaries. The 
A-B registers are treated as a continuous ring such 
that the GSR may simultaneously gate the last haIf­
word of A and the first halfword of B. or the last 
halfword of B and the first hallword of A. For single 
halfword instructions. the second half of lOP is 
ignored. For triple halfword instructions , the gating 
is switched from the second halfword to the third 
halfword during E-time whenever the information in 
the third halfword is needed. 

The BOP and EOP registers are set from lOP. 
The BOP register is used during the E time/"of in­
structions executed by the IE unit. The EOP: reg" -
tel' is used during the E time of O~~uti·on it 

instructions. The BOP and EOP regis&rl are nec­
essary because of the overlap of I ~ Gen­
erally. lOP contains the next instruc~ be ex­
ecuted and is used by I unit for inst~reparation 
functions such as operand fetches an~ter-deliv­
eries. The BOP and EOP registers ~~ instruc­
tion currently being executed and pro~the decoded 
operation line such as 'RR add," dur~e-:execution 
of the instruction. 

The LCOP register is set from EOP. Its purpose 
is exactly the same as EOPi however, I>~P "and 
LCOP are used at different times to prQVcnt lost E 

<. " time between two instructions. During the- first E 
cycle, the LCOP is set from EOP. LC~:temain 
good until the first E cycle of the next iI)atr:uction. 
Its main use is during ELC at which timUOP is 
already set for the next instruction to allow the new 
instruction to be completely decoded fro~pl! be-
fore its E time actually begins. ~ ~ -.. 

The ER 1 op register holds the Rl fiel~~-an ~ 
struction to select a local storage pul-aw'}f rrWsik 

The Y counter holds the Ll (length of O~qd 1) /' 
field for storage-to-storage operations. p.? ~ 

The Z counter holds the L2 field for sto -tor-..---
storage operations. Both Y and Z can be ecre- , ' 
mentedi these registers are used to determine when 
all bytes of both operands have been processed. and 
thus end the operation. 

ICR Updating (Figure 53) 

• ICR contains the address of the next instruction 
to be executed. 

• ICR is updated by first updating the GSR. 

• Updating the GSR is accomplished by adding the 
length of the current instruction to the GSR. 

S6 12-65 

• The updated GSR is set into the ICR. 

• If no carry is generated when the GSR is updated , 
the ICR updating is complete. 

• If a GSR carry ~, the ICR passes through 
the incremente~ , ~he;-l a 1 bit is added into 
position lP.'f1 .. 

f 
The ICn con~the address of the next instruction 
to the execut7." Three bits, bits 20-22, of the ICR 
are duplicatern the GSR to~ate the next instruction 
from the A-B ~.ieters to ilie lOP register. These 
bits point to o~ eight halfl.vords in A-B. The 
halfword follo\v4!l& the one ~ignated by the GSR is 
also gated to lOP:- .J 

ICR updating is accomphslied by first updating the 
GSR (Figure 53). rIhe length 9f the current instruc­
tion in lOP (firs~\lo 131ts of the op code) is added to 
ICR bits 20-22. ~e result forms the new GSR con­
tents . If a carry Ie! not rest;i~from the addition, 
the ICR updating completed-'~r simply transferring 
the new contents ct"the 'GSR l? b}ts 20-22 of the ICR. 
However, when G~~gOes tr:om • .lfinting to the right 
end of B to pointing to the (eft-end of A, a carry will 
result from the addition. In this:case, GSR is again 

< 
transferred to the ICR but a one~ust be added into 
ICR bit 19 to contine the updatin,. A bit 19 is added 
to the ICR by passq the IC~gb the inerementer 
to complete the ICR \pdating. 

RX Operand Fetch -y. ,'Tl 
• RX format instructions use one operand from main 

storage and one operand from local storage. 

• I unit fetches the operand . 

• Operand is delivered to the J register. 

On RX format instructions, one operand comes from 
main storage and the second operand comes from 
local storage. The I unit makes the fetch from main 
storage and instructs the BCU to deliver the fetched 
double word to the J register (Figure 54). 

The address is calculated in the addreSSing adder 
by the addition of the contents of two general registers 
and the 02 field of the instruction. The general regis­
ters are selected by the B2 and X2 fields of the in­
struction decoded from lOP. The D2 field is taken 
directly from lOP. 

Register Operand Deliveries 

• J unit usually delivers the register(s) from local 
storage to RBL . 



r 

r-

r 

-

1 
I 

III i I 

g 

~ 

~ 

0 I 
~ 

0 
0 ~ 

~ 
~ 

B~ 
o 0 

> N 

, 0 

~ ~ 
e 

o 0 

o 

U 't 57 
'
'''''5 Processing m 9-65 '"" 



: 
i 

~ 

~ 8 ~ 
O ~ 

I 

o 

, D 

o 

o • 
o 

j 

o 
1 

1 1 
j "--_"_-.J 

o 



r 

r 

r-

~ \ ~ 
- > N 

• 

f--- ~.-< 

~ 2 -• I 

1 
'- ~ , 

a , 
1 

,.-J ~ D ~ 
~ 0 

~ 
• , , 
j 

0 
, 

, t t I t I 
~ ' ::.:-,-.:-_--, , . " 

; . f: ", • ""- c-, . 
- I 

0 
~ ~~ ____ J .. . 

1 

~ 
0 

l r 

~ • , /' 
-

0 

, 
,1 
13 
oj 

" r "j 
'_1 
h ; ". I " • 
1! i , . , , 

1 II , 
-1 , s. , ' I 
I~ , 

I • 
H ~ 

H I 
0 • , • n .! " , , 

~ , 
! I ! ~ 0 0 ~ 

r 

9-65 2075 Proces.s'Dg Unit S9 



• Some instructions use a pair of general registers 
as one operand. 

• A control trigger, GROUT, is used whenever gen­
eral registers must be gated out during E time. 

• The FLOUT control trigger is used to gate floatlng­
point registers out during E time. 

Most instructions use at least one operand located in 
local storage (a general or a floating point register). 
The I unit usually delivers the register or registers 
that will be needed by the E unit to the register bus 
latch (RBL) register (Figure 55). As an example, 
consider a fixed point RR instruction (except multi­
ply). In this instruction, the first operand is in the 
general register speCified by the Rl field of the in­
struction. 'I1le second operand is in the general 
register specified by the R2 fie ld of the instruction. 
The two general registers are selected simultane­
ously by decoding the Rl and R2 fields off of lOP. 
The selected registers are gated out on general bus 
left (GBL) and general bus right (GBR) to the RBL 
register. 

Certain fixed-point instructions use a pair of 
general r egisters to hold a single operand. For ex­
ample, on an RR multiply. the product 1s returned 
to a pair of gene ral registers; on RS double shift in­
structions, two general registers are coupled; on an 
RX divide instruction, two general registers hold the 
dividend. For these instructions, the pair of general 
registers which hold the operand are designated by 
the Rl field and Rl + 1. These instructions must 
specify an even Rl general register such as 0,2,4, 
6, ---14. The second general register of the pair is , 
therefore, an odd register (Rl + 1). If Rl + 1 is not 
odd , it is not delivered to the RBL and a specification 
error is signaled to cause a program interrupt. On 
those instructions which use a register pair, the Rl 
+ 1 general register (if odd) is substituted for the R2 
general register and delivered to the RBL. 

The general register deliveries discussed to this 
point are initial register deliveries made by the I unit 
as a service for the E unit. Some instructions re­
quire additional register deliveries. These additional 
deliveries are handled by the E unit and are signaled 
by the "general register out" (GROUT) control trigger. 
An example use of GROUT is on RR divide to deliver 
RI + I , which contains the second half of the dividend. 
Another example is on RR multiply to get R2, which 
Is the multiplier. 

Floating-point registers are handled similar to a 
pair of general registers because floating-point 
registers contain a double word. On FP ax ins truc­
tions, where only one FP register is used, the I unit 
delivers FP RI to the RBL. On FP RR instructions, 

60 9-6S 

the I unit delivers FP R2. The ''floating-paint regis­
ters out" (FLOUT) control trigger is turned on for 
FP RR instructions to gate FP Rl out during E time. 

Result Storing 

• Most instructions return a result to a local s tor­
age register. 

• Store op codes transfer an operand from local 
storage to main storage. 

• The K register is the origin for all data stored in 
either local or main storage. 

Register Put-Away 

• Returning a result to a local storage register is 
called register put-away. 

• Data are taken from K for a register put-away. 

• ERI selects the put-away register. 

Most instructions (other than VFL) return a result to 
a local storage register (Figure 56) . The result is 
placed in the K register (with the exception of a FP 
exponent) and the ERI op register selects the general 
or floating point register for the put-away. 

Operand Store 

• Data path is from K to the SBI to main storage. 

• Address is calculated by AA and set into SAR. 

• A mark-register bit must be set for each byte of 
SBI to be stored. 

• Bytes not having a corresponding mark-bit are re­
generated in storage. 

A store-to-main-storage is accomplished by putting 
the store data in the K register and setting the stor­
age address into SAR (Figure 57). In addition, the 
mark register must be set to tell storage which bytes 
in the storage word are to be changed. The mark 
register contains eight bits, one bit for each of the 
eight bytes in a storage word. A mark-bit must be 
set for each byte to be stored. Bytes having a c or­
responding mark-bit of zero are regenerated in 
storage without change. 

For an operand store , the storage address is calcu­
lated by the I unit exactly as for an operand fetch . The 
B2 and X2 fields are decoded from lOP and the 02 
field is taken directly from lOP. 



r 

r 

r 

t 
t 

[ili] 

~ 

~r-

rl ~ . 
, 
• 
I'--

I 

1/ 

. 
I~ 

o 
o 
o 

o 

o 

9-65 Z07S Proen JiDg Unit 61 



~ D" Q 
[;@ 0 QQ Q 

I 0 . g 8~ 
o j ~ D D 
~~~ ! ~ 0 

I

~

62 9-65

~
0
8~ g ~

r I a I i I
Q ~

D
~

0 ~
I B~ /

!

,--- V

r-

~
~ DO

0
" '--'

t ~
!
I ,r--l , , ,

I

D , I ~ I

-f---.J i

~
rJ I

I :
Ir---J ,
I'

L]e
• • • ·

• •

0
, ,

~

I j j j lIT
~ " i--I--

T"

, ~ ~ _ I ~- - ----
.:.

""-

0
, ,---

___ ...I ~

~
, , r
~ e

V
•
~

9_65 Z07S Pro<: . esslllg Unlt 63

Instruction Execution Examples

CPU handles three kinds of arithmetic:
1. Fixed-point binary.
2. Floating-point binary.
3. Variable field length decimal.

Fixed-Point Add/Subtract

• At begilUling of E time for RR instructions, Rl
and R2 are in RBL.

• At beginning of E time for ax instructions, Rl
is in RBL and operand 2 is in J.

• Operands are passed through AM and set into K
for put-away into Rl.

• All add op codes are added true .

• All subtract op codes are complement added.

• All negative fixed-point operands are kept in
two's complement form in both main and local
storage.

At the beginning of execution-time for an RR fixed­
point add/subtract, the operands are both in RBL
(Figure 55). At the beginning of execution time for
an RX fixed-point add/subtract, Rl is in RBL (Fig­
ure 55) and operand 2 has been fetched from storage
and set into J (Figure 54). In either event, the two
operands must be combined (added or subtracted)
and delivered to K for put-away into Rl (Figure 56).

For an RR add/ subtract, the two operands are
moved from RBLtoM. and from Minto the main
adder (Figure 58). The result from the adder is de­
livered to K for the general register put-away to Rl.

For an RX add/subtract, operand 1 (Rl) is moved
from RBL to M and then to the main adder just as on
RR instructions; however, operand 2 (from storage)
is taken from J to the main adder. The output on the
main adder is set into K for the Rl register put-away
just as on RR instructions .

Unlike many other computers, the decision of
whether or not to complement one of the operands
during the addition depends only on the op code; the
second operand is complemented on all subtract op
codes and it is added true on all add op codes . The
operand signs need not be checked to determine
whether or not to complement because all negative
numbers are kept at all times. in local or main stor­
age, in two's complement form. This means that a
true algebraic addition or subtraction results from
the corresponding op code.

64 12-6S

Floating-Point Add/Subtract

• Floating-point numbers consist of a fraction and
an exponent.

• Exponent represents a power of 16 by which the
fraction is multiplied.

• Exponent is one byte; fraction is either three or
seven bytes .

• Floating-point arithmetic is used for operands
too large or too small to be handled by fixed-point.

• Operand exponents must be equalized before addi­
tion or subtraction,

• Exponent difference is calculated by the exponent
adder.

• If exponents are unequal, one of the operand frac­
tion is shifted until the exponents are equal.

• After factors are aligned, the fractions are passed
through AM to perform the addition or subtraction.

• The result fraction is set into K for local storage
put-away.

• Exponent of the result is the original larger ex­
ponent.

Floating-point numbers have two parts. a fraction
and an exponent. 11J.e exponent is one byte; the frac­
tion may be either three bytes (short operands) or
seven bytes (long operands).

Following is a Simplified explanation of floating­
point operations.

The fraction of a floating-pOint operand represents
a series of hexadecimal digits. just as does a fixed­
pOint operand. The exponent of a floatmg-point
operand represents a power of 16 by which the frac­
tion must be multiplied in order to obtain the true
value of the fraction digits. In practice. floating­
point arithmetic is used to handle numbers which are
too large or too small to be represented in fixed­
point. The exponent automatically keeps track of the
decimal (acrually hexadecimal) point of these numbers.

To add or subtract two floating-point operands, the
exponents must first be made equal by shifting one of
the fractions. This is equivalent to aligning the deci­
mal point when adding:

1.23 1.23 1.23
+ 12.3

can't add
+ 1 2.3

can't add
+ 12.3

13.53

r

I

r

2 ~ "1 ~ 0 .. W - }J

O
~t .z

; j

!

1 ,

o

(
9-65 2075 P'foc:eA1l>g Unit 6S

Fovn 223-2872-1

FES 526-7033

The fraction which has has the smaller exponent
is shifted to make its exponent equal to the other.
The exponent of the result is the original larger ex­
ponent.

At the beginning of a floating-point add/subtract
E time, operand 1 is in RBL and operand 2 is in J
(figure 59). For RR instructions, both operands
came from local storage (Figure 55). For RX in­
s tructions, operand 1 came from local storage and
operand 2 came from main storage (Figure 54).

Operand 2 is routed from the J register through
the main adder to K (Figure 59), In the transfer,
the exponent is removed so that only the operand 2
fraction is in K. Operand 1 fraction is moved [rom
RBL to M. A parity bit is forced for bits 56- 63.
This allows M-register bits 56-59 to remain avail­
able for a possible guard digit,

The two operand exponents are routed through the
exponent adder (AE) where one is subtracted from
the other to determine the exponent difference. The
difference is set into both the exponent register (ER)
and the shift counter (SC). The result of the sub­
traction determines which operand must be shifted
and the SC contains the number of shifts required,
If the exponents are equal, no shifting is required.
If shifting is required, the operand to be shifted is
passed through AM one or more times under control
of the SC to accomplish the required number of shifts.

The aUgned fractionB in K and M can now be added
or subtracted (Figure 60). Both operand fractions
are passed through AM to perform the addition or
subtraction. The results are set into both K and M.

At this point, the result [racUon is in K ready for
put-away. The result exponent. however, Is the
larger of the two original operand exponents . The

I original operand 1 exponent Is in the FP register
specified by BUt. If this is the one required for the
result, it is passed through the AE and set into ER.
ER and K are then put-away.

II operand 2 originally had the larger exponent, it
must be reconstructed because the operand 2 ex­
ponent has been lost. It is reconstructed by com­
bining the operand 1 exponent with the exponent
difference still in the ER. The result is equal to the
original operand 2 exponent and is set into the ER
(or put-away.

VFL Add/Subtract

• VFL handles operations whose operands are a
variable number of bytes,

• The two types of VFL operations are: logical
and decimal arithmetic .

• Logical instructions use zoned format data.

66 1/68

• Decimal arithmetic uses packed format.

• Instructions are SS format .

• Decimal instructions generally require fou l' ex­
ecution sequences:
a. Set-up: initial operand fetches .
b. Iterations: perform the required operation ,

one byte at a time.
c. Pre-fetch: fetches new operand 2 storage

words prior to the time they will be needed.
d. Store-fetch: stores finished result bytes and

fetches new operand 1 words .

• On add/subtract, T and S pOinters select operand
bytes (rom operand storage words.

• Y and Z count the number of bytes processed to
determine when to end the operation.

The variable field length (VFL) section of the CPU
handles operations which require manipulation of a
variable number of bytes. Processing is accom­
plished a byte at a time until all bytes have been
processed. There are two types of VFL instruc­
tions : decimal arithmetic and logical instructions ,

VFL logical operations are those intended prima­
rily for manipulation of alphameric characters (zoned
format). Examples are the edit and translate in­
structions.

Decimal arithmetic operates on data in the packed
format. In this (ormat. two decimal digits are placed
in one eight-bit byte. Decimal arithmetic operations
include add, subtract, multiply, and divide .

Decimal instructions are in the storage-to-storage
(88) instruction format. Both operands are taken
from storage , the deSignated operation performed,
and the result is returned to the storage location
which originally held operand 1. An instruction
generally requires four sequences .

A set up sequence bringS the first word of each
operand from storage and sets the necessary regis­
ters to control byte selection within each operand
word and to determine when all requested bytes have
been processed. An iteration sequence does the
operation called for such as add or subtract. The
operation is performed over and over on successive
bytes until all bytes have been processed or until
iterations must be suspended to store a double word
of results and to fetch a new operand word.

A store-fetch sequence is used to put resuJt­
words back into the operand 1 storage location and
to fetch the next operand 1 double word. Iterations
must be suspended during this sequence. When all

r

-
-

r

I
!
i

o
c- • r-..

f'.-. :;; - - ...
1 & Ii e: .!

iI!' ,
~ . o ' ..0 :!.

~ ' . -,..--- -- --, ,
L ' r- ,

, 8 ''k:-,. ,
' 8 " r -u·..1 r"

'--

'~ '" t.... I - i~

C 0[0 Ii
. ~

' f---0"
i V ! 8

0

•

I , ~ l , , /~ I ,
, <:) : h
L ___ _ ., L. I
r- ' .,

f---' '-- , • l. ___ ~
1 -
! _ I~

i

w

- - -

[J ". , . g
! ' , . --

W
.0

/

0
B ~ 0 ,

D D D
~

~

!
• ;
J ,

~

0

o

Form 223-2812-1

rES S26-7033

1
;

!
j I ! 1
l 1 <

1
t ! ,
-- >

I
,
• •

i i
i -,

• , < ,
i ; • - ,

• • , !
< < • ,
l 1 , I
1 i l i _. _.

• , · .
1 1 ·1 [
~ j.' ·008

1/68 2075 Procuring Unit 67

z
2

E
o

a • • • z
~
x • • ~
z

~ •
u

~
Iii
• • ,
o

" •

Form 2.2.3-2.872-1

FES 52.6-1033

I
!
I

68 1/68

•
'-

J
; ,

j

,
J
j ,

;1
.>

B~
~ DO

~~

,

• < ,
o

" •

/

bytes have been processed, the last result word is
stored without fetching another operand.

A pre -fetch sequence is used to replenish operand
2 double words . Unl ike the store-fetch sequence,
this sequence is handled by looking ahead to deter­
mine that another operand 2 double word will be re­
quired. Successive operand 2 double words are
fetched before they are required and temporarily
stored in a machine register not used by the itera­
tion sequence . The pre-fetch sequence can run con­
currently with the iteration or set-up sequence,
When operand 2 must be replenished, iterations are
interrupted only one machine cycle to move the pre­
fetched operand 2 word into the proper register.

The following discussion is a simplified explana­
tion of a typical VF L add/subtract operation. Factors
such as ove rlapping operand fields will vary the
operation described.

The basic VFL add-subtract set-up sequence
fetches the first operand 1 double word from storage
(Figure 61). The fetch address is calculated in the
AA by adding B1, 0 1, and L1. L1 was set into Y
from lOP during I time. When th.is word returns, it
is set into K. The second operand address is calcu­
lated by adding B2, 0 2, and L2 . L2 was set into Z
during I time . When this word returns , it is set
into L.

During the initial fetches , the calculated addresses
are set into H. H 21-23 is set into T (T pointer)
during the first fetch to indicate the starting byte of
operand 1. H 21-23 is set into S (S pointer) during
the second fetch to indicate the starting byte address
of the second operand. Actually, the second fetch
may be made before the first operand 1 word returns
from storage because of overlapped storage opera­
tions .

With the first word of operand 1 in K and the first
word of operand 2 in L , the iteration sequence can
begin (Figure 62) . The T pointer controls the left
byte gate (LBG) to gate the first operand 1 byte into
the decimal adder (AV). The S pointer controls the
right byte gate to put the first byte of operand 2
into AV. The AV output is guided back into the
starting byte position of K by the T pointer.

After the first add/subtract cycle, the T and S
pointers are decremented to gate the next operand
bytes. The bytes gated on the second cycle will be
the two to the left (lower register poSitions, but
higher-order digits) of the starting operand bytes.
The T pOinter is also used to set a mark-bit so that
the result byte just generated will be stored at the
end of the operation or when a store- fetch sequence
is initiated. At the end of the firs t add/subtract
iteration, the Y and Z cOWlter are also decremented
to indicate that one byte of each operand has been
processed. The iteration cycles continue until both

Y and Z counters show that all bytes of both operands
have been processed.

PURPOSE OF CPU FUNCTIONAL UNITS

This section contains a brief explanation of the
major CPU functional units. The functional units
are divided into four sections; BCU, I unit, E unit
and VF L.

Purpose of BC U FW'lctional Units

• Key buffer register.

• Mark register.

• Return address registers.

• Storage address register (SAR).

• Storage bus in (SBI) latch register.

• Storage bus out (SBO) latch register.

Key Buffer Register : This five data-bit plus parity­
bit register holds the storage protect key from SP
storage on an insert key instruction. The fetched
key is transferred from the key buffer r egister to
the AOE mask.

Mark Register: The one-byte (8 data-bits plus 1
parity bit) mark register (MR) is used during store
operations to specify which byte(s) of the storage bus
in (SBI) is to be stored. Each bit in the mark regis­
ter corresponds to one byte in the storage word.
Each one-bit in the mark register specifies a byte in
the specified address that is to be replaced by the
corresponding byte on the SBI.

Return Address Registers: There are two 5-bit
return address registers , X and Y. They indicate
the register to which a fetched storage word is to be
returned. The two registers are necessary because
of the overlapping storage operations . These regis­
ters are used alternately with each successive stor­
age request.

Storage Address Register: The storage address
register (SAR) is a 24 data-bit plus 3 parity-bit
register that holds all addresses for core storage
operations initiated by the central processing unit
(CPU) and performed by the bus control unit (BCU).

tZ_65 Z075 Proc~lling Unit 69

O
.j -,
I" .t

= H
'~

f"--.. "
> 1 __ ~l

r- <:) "

i V _
I <:) ' I~" ~ , - . , ___ , L.:; , ,... I , --- ,

I-- 01----1 c:
-

70 9_65

;
L

o

o

D o

v ,

1

1 ,

, " I ./ L-----V

f
I

I

- r------
I 0
t 0

[8
i ~

[J-----J <

1

1 ,

o

9-65 2fJl 5 ProcesslU9 Unit 71

Storage Bus In Latch Register; The storage bus in
(SBI) latch r egister , located in the MCF unit, is an
eight byte (64 data-bits plus 8 parity-bits) buffer be­
tween its inputs from the E unit K register and the
channel storage bus in, and its output, the storage
bus in (SBI) bus. The storage bus in (SBI) bus feeds
core storage.

Storage Bus Out Latch Register; The storage bus
out (SBO) latch register contains 64 data- bit latches
and 8 parity-bit latches (eight bytes). The storage
bus out (SBO) serves as a buffer for data between
high-speed core storage. large capac ity core stor­
age, system control panel keys, and the central
processing unit (CPU) instruction buffer (AB regis­
ters) , operand buffer (J register), and the channel
bus out.

Purpose of I Unit Functional Units

• I unit functiona l units consist of registers, arith­
metic units, and controls to handle instruction
preparation.

• Address adder

• AB registers

• BOP register.

• BRI incrementer

• ERI register and incrementer

• Floating-point registers

• Gate select adder and register

• General purpose registers

• H register

• lncrementer

• Incrementer extender

• lOP register

• Program status word register

The instruction unit (I unit) contains registers , arith­
metic units, and necessa ry controls to handle in­
struction sequencing . address preparation, and
some instruction executions. The bus control unit
(BCU) is sometimes cons idered a part of the I unit.
The I unit also contains the general purpose registers

72 9_65

(GPR), the program status word (PSW) register, and
the central processing unit (CPU) clock.

Address Adder: The addressing adder is a three in­
put, 24-bit adder for address arithmetic. Two 24-
bit inputs are provided by the low-order 24-bits of
the GBL and GBR. The third input comes from the
lOP displacement (D) field and is added to the 12 low­
order bits (bits 13-24). Thus, an index quantity
and a base address each from a general register are
simultaneously added to the displacement.

Eight-bit parity is maintained through the adder
and input parity is checked. A check is also per­
formed on the internal carry-lookahead circuits.

AB Registers; The A and B (AB) registers each hold
64 data bits and 8 parity- bits. The AB register is
used as a buffer for pre-fetched instructions. The A
register obtains its data from the even storage loca­
tions while the B register receives its data from the
odd storage locations. The 64 bit plus 8 parity- bit
data requested by a branch instruction may be trans­
ferred from the J register to the AB register on a
successful branch instruction. The output of the AB
register is gated to the I operation (lOP) register.

BOP Register; This 12-bit register serves as an
operation register for those instructions executed by
the I execution (I-E) unit. BOP contains the op code
and the Rl field.

BRI Incrementer; The BRI incrementer is a 4-bit,
latched output half-adder , and provides for incre­
menting , by one, the Rl address field of the BOP
register during the store multiple instruction and all
instructions requiring a Rl + 1 operand.

ERI Register and ERI Incrementer; The ERI regis­
ter is a four-bit register used to hold the Rl address
field after instruction control is passed from the
I unit to the E unit. The ER1 register indicates the
general or floating-point register which receives the
instruction result.

The ERI incrementer is a four-bit, latched output
half-adder. The half-adder provides for increment­
ing the ERI register by one during multiple load in­
structions and instructions requiring an Rl + I operand.

Floating-Point Registers: There are four floating­
point (FLP) registers each containing eight bytes
(64 data-bits plus 8 parity- bits) of information. The
floating-point registers serve as source and destina­
tion (accumulators) for floating-point instructions.
The K register and exponent register (ER) are the
only input sources for Ule floating-point registers,
and their output is gated either to the J register or

the M register via the RBL register. The floating­
point register addresses are 0, 2, 4, and 6.

Gate Select Adder and Register; This three - bit
adder and register provides a means for advancing
the ICR by one to three haliwords. The result is
returned to the gate select register (GSR) where it
is decoded to select the proper 32-bit AS register
output to lOP. The decoder off the gate select
register selects thirty two bit Helds in the AB regis­
ter for gating into lOP as follows:

GSR Field Selected

000 AOO-31
001 A16-47
010 A32-63
011 A48-63, BOO-IS
100 BOO-31
101 816-47
llO B32-63
III 848-63, ADO-IS

General Purpose Registers: The 16 general purpose
registers (GPR) each contain 32 data-bits and 4
parity-bits. The general purpose registers may
contain index quantities, base addresses, or fixed­
point arithmetic operands. To facilitate the various
uses, separate GPR address decoders are provided
on the lOP R2 (or X) field, the lOP B field , the BOP
Rl field , and the ER1 register. The first three are
select out gates; ER1 gates into the GPR.

The general purpose registers are loaded from
the high-order hali (bits o-~n) of the K register
located in the E unit. There are two independent
32-bit out buses; general bus left (GBL) and general
bus right (GBR). Any two general purpose registers
may be simultaneously gated onto general bus left
and general bus right. General bus left and general
bus right are gated into the high and low order halves,
respectively, of the register bus latch (RBL)register.

H Register: The H RegIster (HR) is a 24 data- bit
plus 3 parity-bit register used to hold addresses
during branch, shift, multiple load/store, and other
instructions.

Incrementer: The incrementer (incr) is a 24-position
adder with latched outputs. A 24-bit fie ld from either
the instruction counter (IC) register (PSW positions
40- 63) or the H register is incremented by 0, 8, 16,
or 24. The result is returned to the H register. the
storage address register (SAR) or the ICR, as well
as the E unit K register high-order bit positions
(bits 0-31).

The incrcmenter Is used to update the ICR on
high order advances and to generate addresses from

the ICR for instruction requests. Ouring branch in­
structions, the incrementer adds eight to the H regis­
ter value for a branch plus one request (BR + 1). The
incrementer is also a path from the H register to the
ICR for inserting the new instruction counter value on
a successful branch. Multiple l oad and store instruc­
tions use the incrementer to generate the request or
store addresses. The path used is from the H regis­
ter to the incrementer, where 8 is added, and then
to SAR and the H register. The incrementer also
has gates to the K register which are used in trans­
ferring VFL addresses. On a load PSW instruction,
the incrementer provides a means of parity checking
the new PSW. Parity checking is done in two steps.
Likewise , on a store PSW instruction , the PSW is
transferred through the incrementer in two steps.

Incrementer Extender: The incrementer extender is
an eight-bit extension of the incrementer used as a
transfer path for the PSW to the E unit K register
for the store PSW instruction . It is also used for
loading the PSW register from storage and for parity
c hecking of the PSW.

lOP Register: The I operation (lOP) register holds
a one or two hailword instruction for initial decoding
and I unit processing. Provisions are made to logi­
cally OR bits 24-31 of a specUied general register
with the contents of lOP positions 8-15 on an execute
instruction .

Program Status Word Register: The program status
word (PSW) register contains the program status
word. The register is eight bytes in length (64 data­
bits plus 8 parity-bits), and may be loaded from the
J register. Either half of the PSW may be stored
into the high-order half (bits 0-31) of the K register
via the incrementer. Positions 40-63 of the PSW
serve as the instruction counter.

Purpose Of E Unit Functional Units

• E-op register (EOP)

• Exponent adder (AE)

• Exponent register (ER)

• J register

• K register

• L register

• Last cycle op register (LCOP)

9 _65 2075 Procesdng Unit 13

• M register

• Main adder and shifter (AM)

• Register bus latch (RBL)

• Shift counter register (SC)

E Unit Operation Register: EOP is an eight data-bit
plus parity-bit register which contains the operation
code during E time. The EOP register is set from
the I unit lOP register at least one cycle before the
I to E transfer.

Exponent Adder: The AE is an eight-bit binary adder
used primarily for the calculation of floating-point
result exponents. In addition, it is used to form the
exponent difference to determine floating-point add/
subtract preshift requirements and for reducing this
preshift and other shift counts . One input is a true/
complement input and its latched output (AEOB) feeds
the exponent register and shift counter. The ex­
ponent adder parity is checked in a maJUler similar
to that of the main adder.

Exponent Register: The ER is an eight bit register
used to hold the result exponent during floating-point
instructions. Its output feeds both exponent adder
inputs and bits 56-63 of the floating-point registers;
its input is the output of the exponent adder output
latches (AEOB).

J Register: This register receives operands from
core storage via the storage bus out (SBO) latch
register and general registers (GPR) and floating­
point (FLP) registers via the register bus latch
(RBL) register. The multiplier is contained in the J
register during multiply operations, and the quotient
during divide operations. The J register is shifted
right four bits or left four bits via the register bus
latch (RBL) register. The right {our (R4) shift is
accomplished by an unconditional left four (L4) shift
to the RBL register and then a right eight (R8) shift
back to the J register. The L4 shift is lhe uncondi­
tional L4 shift of the J register to the RBL register
and a straight transfer from the RBL register to
the J register.

Single and double word operands are passed from
the J register through the main adder to the K regis­
ter on load and store operations. The storage
operand for fixed-point add , subtract, and compare
instructions (RX format) is contained in the J register.

K Register: This register is an originating point
from which stores are made to core storage via the
storage bus in (SBI) latch register, and directly to

74 9_65

the floating-point and general registers. During
multiply , the product is located in the K register,
and during divide, the K register temporarily retains
the divisor and contains the dividend. The output of
the K register can be gated right four (R4). left two
(L2). or straight to the main adder. It can accept
the full eight-byte (64 data-bits plus 8 parity-bits)
output from the main adder sum latches (AMOS),
and in addition, it is provided with output gates fOl·
variable field length (VFL) operations and divide
divisor gating to the digit buffer (DB) and digit
counter (DC) via the VFL gates.' The K register Is
a lso set by bytes from VFL operations.

L Register: This register is set from the main adder
sum latches (AMOS), and its enUre output may be
shifted left one position or its low-order 40-bits
(24-63) may be shifted left three positions to the
main adder. The three-halves and three-fourths
divisors are obtained by gating the L register straight
or right one respectively to the main adder. The L
register also holds the 12 times multiplicand on
multiply operations. The L register feeds the right
byte gate (RBG) for VFL operations.

Last Cycle Operation Register: The LCOP is set
directly from EOP so that EOP can simultaneously
hold the operation code of the next sequential in­
struction. This allows the E time of one instruction
to be completed while the E time of the next instruc­
tion is being set up for execution.

M Register: M is a working register which is in­
volved in most shift operations. The M register
receives data from the general purpose and floatlng­
point registers via the RBL register. The M register
has the ability to gate its contents out one, two, or
three positions to the right. When this gating is used
in conjunction with the shifter in the main adder (AM),
a right shift of 1-8 or a left shift of 1-8 is possible.

The M register contains the multiplicand during
multiply operations, temporarily retains the dividend,
and contains the divisor during divide operations . In
addition, its full word transfer path has the ability to
send the high-order half (bits 0-31) of the register to
the normal input of the main adder , and the low-order
half (bits 32-63) of the register to the true/comple­
ment input of the main adder (AM) during the RR
format fixed-point add/subtract instructions.

Main Adder and Shifter: The main adder (AM) is
used for fixed-point and floating-point arithmetic . It
is a two-input (64 bits plus 8 parity-bits), parallel
carry-propagate binary adder. Its inputs come from
the J, K, L. and M registers. Parity is checked on
a byte basis and is combined with the parity of the

(
inputs to produce a predicted sum byte parity. The
predicted parity is compared with the actual sum
parity for checking purposes. The main adder Qut­
put can be gated straight or shifted to the main adder
output latches (AMOS), which can be transferred to
the K. L. or M register.

The main shifter is logically located between the
main adder inputs and the adder sum latches (AMOS).
The shifler provides for shifting the eight bytes
e ither right four. eight or 32 bit positions, or left
four or eight bit poSitions. Parity checking is ac­
complished by matching an independently derived
predicted parity with a generated output parity.

Register Bus Latch Register: The RBL register is
an eight-byte (64 data bits plus 8 parity-bits) latch
register which provides buffering between its inputs :
the floating-point (FLP) registers. the general pur­
pose registers (GPR), the J register, and the K
register; and its outputs: the J register and the M
register. TheRBLregister allows a transfer from
one of its input registers to one of its out}:Rlt regis­
ters while the input register is being set with in­
formation from another source .

Shift Counter Register: The SC register is an eight­
bit register used to hold the shift count for multiply,
divide, floating-point add/subtract, and for shift
operations. The input to the shift counter is supplied
by the exponent adder (AE). The SC feeds the ex­
ponent adder and the shift decoder.

Purpose ex VFL Functional Units

• AOE mask

• Decimal adder (A V)

• Digit counter (DC) and digit buffer (DB)

• Direct data register (DD)

• Left byte gate (LBG)

• Right byte gate (RBG)

• T and S pointers

• Y and Z counters

AOE Mask: All VFL logical operations are per­
formed by the AND-OR- Exclusive OR (AOE) logical
unit. The masking function for test under mask, the
insert key operation (fetched storage protect key)
and the read direct storing of the direct data lines
are all executed through the AOE mask unit. The

AOE results generate a parity bit. Checking of the
operation is accomplished by passing the input
operands to the decimal adder and utilizing the half­
sum parity-check of the adder.

Decimal Adder: The VFL arithmetic operations are
performed one byte (two digits) at a time by the deci­
mal adder (AV). The AV is an eight-bit binary adder
with a decimal correction made on the output sum.
The adder input gates on both sides are split for the
two digits in each byte . The right band adder inputs
are gated either true or one's complement. On true
add, six 1s added to the right digit inputs to force
decimal carries. This causes sums of ten and above
to be correct, but sums of less than ten must be re­
duced by six by the decimal correction circuits.

Digit Counter and Digit Buffer: The DC is a four-bit
counter, and the DB is a four-bit register. They are
used for decimal multiply and divide operations, and
in combination during edit , move with offset, pack,
and unpack operations. The digit counter counts
multiplier digits during multiply and generates the
quotient digits during divide. The first complete
quotient digit is held in the digit buffer while the
second digit is generated in the digit counter. Parity
is generated for the complete byte as the digits are
generated. When the DC and DB are filled, the byte
is transferred to the K register.

During edits , the DB and DC hold the fill char­
acter; during move with offset. the DB and DC hold
the high-order digit of a byte being shifted left. The
digit in the DB is gated to the decimal adder as the
low--order digit on the following cycle. For pack
operations, the even numbered digits are held in the
DC and their parities are held in the DB; they are
gated to the decimal adder and combined with theodd
numbered digits to form packed bytes.

During unpack, the high-order digit of a packed
byte is contained in the DC and their parity is heldin
the DB while the low-order digit and its parity is
sent to the unpacked byte in the K-register. During
the next cycle , the digit in the DC and its parity is
sent to the next sequential byte in the K-register.

Direct Data Register: The DD register is a one-byte
register without a parity-bit. The DD register is set
with a byte (rom the K register on a write direct in­
struction. The contents of the DD register remain
fixed until another write direct is executed.

Left Byte Gate: The 72 bits (rom K and 8 bits plus
parity from DB/DC are brought into the LBO. Two
gating triggers determine whether K register is
gated with the T pointer or DB/DC is gated through
the LBG. The value in the T pointer determines
which byte of the K register is gated through the LBG.

12-65 207S ProcesslDg Unit 7S

Right. Byte Gate: All 72 bits from K and L registers
are brought. into RBG. 'I\vo gating triggers, ''gate K
with SIt and ''gate L with S " determine whether K
or L register is gated by the S pointer. The value
in the S pointer determines which byte, 0 through 7,
of the K or L register is gated through the RBG.

T and S Pointers: The T and S pointers are 3-bit.
counters containing the byte addresses of the VFL
operands 1 and 2 in the K and L registers, respec­
tively. These counters are capable of counting up
or down and control the K and L register byte gates.

76 9-65

The S counter also has the ability to gate bytes of
the operand in the K register for overlapped
operands .

Yand Z Counters : The Y and Z counters are 4-bit
counters containing the initial field lengths from the
lOP register. They are decremented and determine
when the VFL decimal operation is completed, For
decimal divide, L2 is placed in the Y counter and in­
cremented until L2 is equal to Ll, During logical
operations, the counters are combined and used as
an eight-bit counter,

I

ADDERS

Addressing Adder

• The addressing adder is a three input adder.

The addressing adder is a 24-bit, three input adder
used for address calculations. The three inputs are
required for calculating the operand address in the
RX format (X + B + 0) and the SS I format (L + B +
0). Figure 6000 is a flow diagram of the entire
addressing adder, and Figures 5000 and 5001 are
simplified logic diagrams, showing sum generation
and parity prediction.

Inputs

The first input to the adder consists of the final OR
for the general bus left (GBL). The second input
consists of the final OR for the general bus right
(GBR). A 9-bit bus containing a length field from
variable field length (VFL) is also OR'ed into this
input at bit positions 23-31. The third input is fed
by the instruction operation (lOP) D field in posi­
tions 20-31 and by the interrUpt controls at positions
25-28. The interrupt controls have access to the
addressing adder for generating implied addresses
during interrupts. Bits 0-7 of the general bus left
and general bus right do not feed the addressing
adder but their final OR's are located on an adder
board. The output of the 36 bit (32 data-bits plus
4 parity-bits) final OR's for general bus left and
general bus right feed the adder and condition the
gates to the register bus latch. Final OR's for bits
2-7 are also sent to the program status word for
the program mask . The OR's for bits 24-31 are
sent to the instruction operation register for use
during the execute instruction.

The Sum

The addition of the three inputs is accomplished by
the use of a serial combination of a carry save
adder and a carry propagate adder. The carry save
adder (Ion Figure 6000) combines the three
inputs into two outputs; namely, the s um per bit
position and the carry per bit position . The sum
output of the carry save adder (CSA) is the "exclu­
sive OR" of its inputs and becomes one input to the
carry propagate adder (CPA). The carry output
represents a carry generated from the particular
bit position and becomes the second input to the
carry propagate adder after being shifted one posi­
tion to the left (towards the high order end of the
adder). In other words, the carry from one carry

FUNCTIONAL UNITS

save adder bit position becomes an input to the
adjacent higher order bit of the carry propagate
adder. The carry is generated if two or more carry
save adder inputs are "ones." The carry propagate
adder forms the binary sum of its two inputs by par­
allel carry lookahead techniques.

An example of the operation of the carry save
adder-carry propagate adder combination is:

, 0 , 0 GBl iDput

0 0 , , GBR iDput

0 , , , lOP 0 iDput

, , , 0 CSA Swn

0 0 , , CSA carry (shifted)

, 0 , 0 0 CPA rum

Checking

The checking stations wi thin the carry save adder­
carry propagate adder consist of a half sum parity
check (16 on Figure 6000) in the carry propagate
adder and a serial carry check (1 8 on Figure
6000) in the lookahead. The half sum is the
"exclusive OR" of the input data to the carry propa­
gate adder. The parity of the half sum may be
predicted as the "exclusive OR" of the input parity
bits; which in this, is the sum and carry parity from
the carry save adder. The predicted half sum
parity is compared to the actual (generated) half sum
parity. Any discrepancy between the two might be
traced to an odd number of errors in any of the fol­
lowing areas:

1. The input data
2. The carry save adder
3. The bit lookahead in the carry propagate adder
4. The hall sum generation in the carry propa­

gate adder
5. The duplicate carry logic in the carry save

adder
6. The carry save adder sum parity prediction
7. The carry parity generation in the carry

save adder
8. The half sum parity generation in the carry

propagate adder
9. The half sum parity prediction in the carry

propagate adder, or
10. The checking circuitry.

The carry lookahead check involves a comparison
between the group input carry and the carry out of
the high order bit within the adjacent lower order
group. Since a carry out of the aforementioned bit

12-6S Functional Units 77

is, in effect, a carry to the high order group, it
should be equal to the carry propagated from the
lookahead logic. A discrepancy would catch an
error in the carry lookahead circuitry.

The parity for the sum output of the carry propa­
gate adder (13 on Figure 6000) is predicted from
the bit lookahead functions (gene rate and trans mlt),
from the half sums, and from the group input carry,
all of which are checked by the previously described
schemes. Thi s predicted sum parity is thus inde­
pendent of the sum generation logic. A parity check
of the sum is done in the bus control unit (BCU) or at
the incrementer depending on how the sum is used.

AND-DR-Exclusive OR

• The AND-DR-exclusive OR is an eight-bit
latched data paUl.

• The function performed by the AND-OR­
exclusive OR is controlled by the control lines.

• The byte output of the AND-DR-exclusive OR
is gated to the digit buffer and digit counter
or the K register.

The AND-OR-cxclusive OR (AOE-Mask) is an eight­
bit latched data path that provides the AND, OR, and
Exclusive OR functions necessary to execute the VFL
connective instructions. Similar to the decimal
adder, the AND-DR-exclusive OR has a right and
left data input. A data byte from the left byte gate
or from the Y Z counters are gated into the left
AND-DR-exclusive OR input. A data byte from the
right byte gate or from the direct data register is
gated into the right AND-DR-exclusive OR input.

The function performed by the AND-DR- exclusive
OR is controlled by the active status of the AND, OR,
or exclusive OR (DE) control lines (Figure 5002).

OR Function: The OR function to the AND-OR­
exclusive OR is always gated except when th e AND­
or-exclusive OR is active. The OR function is de­
termined by the active status of the OR op and the
OR or DE lines. When the OR function and one
AND-DR-exclusive OR input is gated, the AND-OR­
exclusive OR latches are set to the input bits; thus,
the AND-OR-exclusive Or becomes a path for one
da Ia byte. Willi the OR function and both AND-OR­
exclusive OR inputs gated . each AND-DR-exclusive
OR latch sets to the OR'ed condition of the two input
bits. For example, for each bit position, the AND­
OR-exclusive OR latch is set to 1 if either or both
inputs are 1; U both inputs are zero, the AND-OR­
exclusive OR lat.ch is reset to O.

78 9-65

Example:

Right lnput 0 o Oil 0

Left lnput 1 1 0 0 o 0 I 1

1 1 0 1 o , ACE Latches

AND Function: When the AND function is gated, the
AND-DR-exclusive OR latches are set to 1 for those
positions where bo th input bits are l's.

Example:

Right Input 0 1 0 1 o 0

Leftlnput 1 0 0 0 0 1 1
---,.---:---:--:-
o 1 00 00 1 o AOELatches

ExcluSive OR Function (OE): The Xl and XC instruc­
tions are the only instructions that use the exclusive
OR function of the AND-OR-exclusive OR. The OR
Op and OR or DE Op lines to the AND-DR-exclusive
OR are active to gate the OR function. \\!hen the
exclusive OR function is gated, the OR Op function
control is suppressed and only the OR or exclusive
OR control is active. For each pOSition of the AND­
OR-exclusive OR, the latch is set to 1 if either bit
input , but not both, is a 1. If both input bits are I's
or both are O's, the Al~D-OR-exclusive OR latch is
reset to zero.

Example:

Right Input 0 1 0 Oil 0

Left lnpur. 1 1 0 0 00'

, 0 0 o o 1 ACE Latches

AOE OUtput

The data byte output of the AND-DR-exclusive OR is
gated to the digit buffer (DB)-dlgit counter (DC) or to
the K register. A parity generator monitors the
latched output of the AND-DR- exclusive OR and pro­
vides correct parity for the output byte. Mlen the
AND-DR-exclusive OR is used with the insert stor­
age key instruction, the parity bit from the direct
data register is used instead of the generated parity.

AOE Mask

The test under mask instruction uses the ANO-OR­
exclusive OR circuits to select and test the bits of
a storage byte to determine condition code settings.
See test under mask instruction.

Decimal Adder

• The decimal adder is an eight-bit binary
adder with two eight-bit inputs.

r

• Modified binary circuits are used for
decimal addition.

• The adder is used as a decimal adder or
as a latched data path.

• The adder adds two bytes and provides one
byte sum.

The variable field length (VFL) decimal adder (AV),
(Figure 2040) is an eight-bit binary adder with
two data inputs and an eight-bit latched output.
Internal circuit functions of the decimal adder are
the same as eight positions of the main adder. The
parity predict and output cirCuits, however, are
modified to enable decimal operations. In addition,
to provide carries from byte to byte a carry trigger
is associated with the decimal adder. Because
variable field length additions move through the
operands serially, adding a byte at a time, a carry­
out of the decimal adder is set into the decimal
adder carry trigger and used as a carry-in during
the next byte addition.

Each of the two eight-pOS ition inputs to the deci­
mal adder is numbered zero through seven. A data
byte gated through the left byte gate enters the left
data input of the decimal adder. A data byte gated
through the right byte gate enters the right data
input to the decimal adder through the true/ comple­
ment plus six gate. Because a data b.Yte contains
two four-bit binary coded decimal digits, and be­
cause a digit is independently gated through the
right byte gate and/or the left byte gate, each digit
within a byte is identified as the high-order digit
(HOD) and the low-order digit (LOD). Positions
zero through three are the high order digits of either
input to the decimal adder and pOSitions four through
seven are the low order digits.

The decimal adder is used to add or subtract two
eight-bit decimal bytes and provides an eight-bit
sum, or it is used as a data palh for one data byte
or one four-bit digit. Data are gated into and out of
the decimal adder in either binary or decimal form.
Input and output controls to the decimal adder
enable it to be used as a latched data path for one
byte or one digit of either binary or decimal data,
and as a decimal adder when performing decimal
arithmetic. When used as a latched data path, each
data bit is gated through the decimal adder unchanged.
When used as a decimal adder, excess-six (TC + 6)
gating on the right side input and decimal correction
on the latched output provide decimal correction to
the binary adder.

True-Complement Plus Six Gate (TC + 6)

The true-complement plus six input gate (Figure
5003) to the right side of the decimal adder pro­
vides the plus-six correction to the high-order digit
and low-order digit inputs {or decimal addition, and
provides complement control for subtraction. Bit
seven of the low order digit (bits 4-7) has a separate
complement control used to invert the s ign of a deci­
mal result, if needed.

When binary coded decimal (BCD) numbers are
added in binary adder, the result digit is an invalid
binary coded decimal number if the bit-sum is
greater than nine. ConSider the addition of decimal
numbers 17 plus 28:

" 000 1 o ,
." o 0 1 0 1 0 0 0

4S o 0 1 1 , ,
HOO LOO

In the example, the low-order digit contains the
correct binary sum of seven plus eight; however, the
bit structure of the low-order digit does not conform
to the binary coded decimal coding for decimal num­
bers. Note that the high-order digit (dec1mall0's
position) is one short and the low-order digit (deci­
mal ones pOSition) is excess ten. This has occurred
because a four-bit binary position does not carry out
until the sum exceeds 15 (1111). In decimal arithme­
tic, a carry out of any Single pOSition occurs when
the sum exceeds nine. Therefore, when decimal
addition is performed, the TC + 6 gate on the right
input of the decimal adder elevates the value of the
high order digit and the low order digit plus six. In
this manner, a carry out of each digit position is
forced when the decimal sum exceeds nine. Consider
the problem of 17 + 28 as executed on the 360/75.

(1)
o 0 0

HOD

1BG

(7)
o 1 1 I

100

" ."
4S

RBG
(2) (8)

o 0 1 0
HOD

1 0 0 0

TC ~ Gate
1 0 0 0 1

~~ ,AV01~)

o 0/0/'/'/' 0 __ -
o 0 1 1 1 1 0 0 lnI:~mal Cartl~s

o
/,

/ ,
•• 1 0 1 0 0 1 0 1 AV Out (binary rum)

o I I 0 0 0 0 0 Decimal C~~Ctlon (-6)

o 1 0 0 0 0 I Decimal Rerult

9 -65 FlWctiOUal Unlts 79

In the example, the decimal number 17 is gated
through the left byte gate to the left input of the
decimal adder, and the decimal number 28 is gated
through the right byte gate and the TC + 6 gate to
the right input of the decimal adder. The TC + 6
gate is controlled to gate decimal and adds plus 6
to the value of each decimal digit . Through the
internal circuits of the decimal adder, the inputs
from the left byte gate and the TC + 6 gate are
added in binary. Bit carries are generated and
tranSmitted, as shown in the above example, to
combine with the input sums and produce a binary­
sum decimal adder output for each decimal digit.
Because the decimal sum of the low order digit
inputs (7 + 8) exceeds 9, the +6 added to the low
order digit forces a carry from the low-order
digit to the high-.order digit. The decimal adder
low-order digit output sum is the correct decimal
digit and does not require additional decimal cor­
rection. The high-order digit decimal adder out­
put, in the example, requires decimal correction.
Because the sum of the two high-order input deci­
mal digits (1 + 2) does not exceed nine, the +6 added
to the high-order digit input does not cause a carry­
out from the high-order digit. Therefore, the
binary-sum of the decimal adder high-order digit
output is six greater than the decimal value. Deci­
mal correction circuits on the decimal adder output
then removes the excess-six to provide a true
decimal value .

The decimal correction circuits (Figure 5004)
on the output of the decimal adder monitor the carry­
out Signals from the high-order digit and low-order
digit positions when either position is gated for
decimal operations. A carry from either pOSition
indicates the decimal adder output sum for that
pOSition requires no correction. The absence of a
carry indicates the output sum must be corrected
by removing the excess-six.

Complement Control: The complement control to
the TC + 6 gate enables the decimal adder to be
used for decimal or binary subtraction . A separate
complement control is provided for each input digit
to the decimal adder (Figure 5003). When the
complement control to either digit is active, the
data bits of the digit are inverted to the binary one's
complement.

Decimal subtraction is accomplished by the
nine's complement method. Briefly, this entails
the addition of the nine' s complement (the difference
between the decimal number and nine) of one decI­
mal number and the true value of another decimal
number. In binary subtraction, the one's comple­
ment of one binary number is added to another
binary number. In either binary or decimal sub­
traction, the complement addition produces a

80 12-65

result value equal to the difference of the two
numbers.

For each four-bit decimal number, the nine' s
complement plus six is equal to the binary one's
complement of the same number. see the following
chart. For example, the nine's complement of the
decimal number 7 (0111) is 2 (0010); 2 (0010) plus
6 (0110) equals 8 (1000); the binary one's comple­
ment of 7 (0111) is also 8 (1000). Therefore, the
TC + 6 complement gate is used for both binary and
decimal operations.

Decimal Nine'$
Number Complemem: ••

0 0 0 0 0 0 , , , , ,
0 0 0 , , 0 0 0 , 0

0 0 0 0 , , , 0 ,
0 0 , , 0 , , 0 , 0 0

0 , 0 0 0 , 0 , , 0 , ,
0 , 0 , 0 , 0 0 , 0 , 0

0 , , 0 0 0 , , , 0 0 ,
0 , 0 0 0 , 0 0 0

, 0 0 0 0 0 0 , 0 , , ,
, 0 0 , 0 0 0 0 0 , , 0

Although, during decimal subtraction, the TC + 6
gate does not add +6 , the decimal adder output sums for
each digit must be considered for decimal correction.

The same decimal correction rules apply for
subtraction as applies to decimal addition. For each
digit position, if a carry-out occurs, the decimal
adder binary sum is the correct decimal sum; if a
carry-out does not occur , the decimal adder binary
sum is not the correct decimal sum, and receives
decimal correction by removal of excess-six. The
following example shows how decimal number 0784
is subtracted from 1728.

2nd Byte 1st Bytec

Addition Addition

0001 01 1 1 001 0 1000 Left A V input

>7" 1 1 1 1 1 000 01 1 1 1 0 1 1 Right AV inpl.l:
from TC + 6 (comp)

"()784- 1ttO 0000 1111_0111 Internal AV can-ies

09« 0000 1 1 1 1 t 01 0 0100 AV binary 5\l111 out

0000 01 1 0 0110 0000 -<i de<;:imal correc-

tioo

0000 1001 01 00 01 00 AV latch sum

(0, (" (4' (4'

Gate Binary True: The Gate Binary True controls
to the TC + 6 gate enables either or both digits of a

data byte to be gated into the right decimal adder
input with all bits unchanged. Two controls, Gate
HOD Binary True and Gate LOD Binary True (Fig­
ure 5003), are independent; they are gated simul­
taneously separately, or in combination with decimal
gating. For example, the low-order digit of each
decimal operand contains the sign of the decimal
nwnber; if the data byte that contains the sign digi t
is routed through the decimal adder, the low order
digit is gated Binary True to prevent the Sign digit
from receiving decimal correction. The high-order
digit, in this case, is gated Decimal True and re­
ceives decimal correction. When the decimal adder
is used as a data path for non-decimal data, then
both controls, gate high-order binary true and gate
low-order digit binary true, are active.

Invert Sign: The inve rt sign control (Figure 5003),
when active, causes the low-order bit of a Sign digit
to be inverted. When a sign digit enters the right
low-order digit input to the decimal adder, the po­
larity of the sign is changed by inverting bit seven 's
input in the TC + 6 gate.

Parity Adjust

Byte parity is adjusted whenever a partial byte is
gated to the decimal adder or when the number of
data bits is altered as they pass through the decimal
adder. For those occasions when the decimal adder
is used as a data path, byte parity is routed through
without adjustment. When two bytes or partial
bytes are added with decimal correction in the deci­
mal adder, both input and output parity is corrected.

Right Side Parity Adjust: (Figure 5005). The
right byte gate is connected to the TC + 6 input to
the decimal adder . From the right byte gate, the
data lines are split for the high-order digit (0-3) and
the low-order digit (4-7). Through the right byte
gate, the high-order digit and low-order digit are
gated either together or separately. The byte parity
is adjusted when a partial byte is gated or bits are
altered at the decimal adder input.

When gating digits decimal true through the deci­
mal adder, the TC + 6 gate adds plus-six to each
decimal digit . Decimal digits four or five are the
only ones that change parity when the plus-six is
added. Two gating combinations that require parity
adjustment are:

1. (HOD DT) . (LaD BT)--This gating is used
when the low-order byte of the decimal operand is
processed. LaD BT gates the sign digit to the
decimal adder unchanged, while HOD DT provides
decimal correction to the HOD of the byte (low-order
decimal dig! t of the operand).

2. (HOD DT) . (LOD DT)-- This gating is used
when both digits of the byte are gated decimal truej
in this case, only decimal digits four or five change
parity .

All other parity adjustments are made because
either the high-order digit or low-order digit is not
gated. Figure 9050 shows the possible gate com­
binations on the adjusted parity.

Left Side Parity Adjust: (Figure DM5006). The left
byte gate is connected straight to the left input of the
decimal adder. Left byte gate controls enable sepa­
rate gating of the high order digit and the low order
digit of the byte. Parity adjustment on the left deci­
mal adder input has the following combinations:

1. P Straight--This parity gate is used when all
eight bits (high-order digit and low-order digit) of
the byte are gated to the decimal adder .

2. PH--This gate is used to provide adjusted
byte parity when the high-order digit of the byte is
removed and only the low-order digit is gated to the
decimal adder.

3. PL --This gate is used to adjust byte parity
when only the high-order digit of the byte is gated to
the decimal adder.

For either case of two or three above, the data
bits of the unused digit are exclusive OR'ed with byte
parity to determine the correct parity for the partial
byte used. For example , if only the low- order digit
of the byte is gated to the decimal adder, the data bits
of the high-order digit are used to adjust byte parity.
This procedure precludes the possibility of adjusting
parity upon a digit that has gained or lost a hit, then
gate the digit through the variable field length circuits
without detecting the error.

Decimal Adder Errors

When the decimal adder is used as a data path or
when two decimal bytes are added, error detection
circuits monitor the parity of the input data and the
functions of the carry lookahead circuits. Incorrect
parity of either input to the decimal adder causes a
decimal adder half sum (HS) check. An err oneous
carry from either digit within the decimal adder
causes a carry error. The occurrence of either
error condition causes a machine check, and unless
masked out by the panel key or the program status
word, an automatic log-out occurs .

Decimal Adder Half-Sum Check (HS Check): During
each cycle that the decimal adder is used as a data
path or decimal adder. the half-sum parity is checked
with the input parity. A half-sum check occurs if
either decimal adder input byte contains wrong parity.

9_65 FWlCdonal Unitl 81

For each bit position within the decimal adder,
a half-sum is developed if either input, but not both,
is a one . The eight half-sums, without carries, are
exclusive OR'ed to determine the odd or even half­
sum parity. Because half-sum parity is always the
complement of the exclusive OR'ed input parity bits,
the half-sum parity is compared with the comple­
ment o[the exclusive OR'ed left byte gate and right
byte gate parity bits (Figure 5007). An unlike con­
dition causes a half-sum error.

Decimal Adder Carry Error: A decimal adder
carry error indicates a failure within the decimal
adder; a carry-out from either digit indicates the
decimal adder has failed when needed or an extran­
eous carry has occurred.

Within the dccimal adder, generate and transmit
functions are developed [or each bit. The bit-func­
tions then become inputs to the carry-lookahead
circuits. In the carry-lookahead circuits, the bit
functions within each digit are AND'ed to provide
bit-to-bit carries and a carry-out from the digit.
For example, consider the low-order digit, bits
4-7; if the function of bits 4-6 is transmit and bit 7
generates (Figure 5008), a carry-out from the
low-order digit occurs. At the same time and at
different logic levels , a duplicate carry is developed
and compared with the digit carry generated . Both
carries should occur at the same time; if either car­
ry occurs separately, the decimal adder carry error
trigger is set and the execution unit check circuits
are signalled.

Exponent Adder

• A seven position adder used primarily for
exponent arithmetic .

• It is used to increment or decrement the
exponent register or shilt counter.

The exponent adder provides a nine bit, fully
checked data path between the source registers and
the exponent and/or shift counter registers. The
low-order positions (1-7) comprise a seven bit bin­
ary adder, the eighth position (0) is used for floating­
point operations, and the ninth position is the parity
bit.

The primary function of the exponent adder is to
perform exponent arithmetic ror such purposes as
incrementing and decrementing or s hift amounts and
iteration counts.

Data Flow

The basic data path (Figure GOOI) is [rom the
source register to the exponent adder input OR's,

8Z lZ-65

through the exponent adder to the exponent adder out­
put bus (AEOB) latches, and then to the exponent and/ or
shift counter registers. The input OR's are r eferred
to as the AE-OR and the AET/ C-OR. The source
registers to the adder inputs are:

AE-oR AET/C-oR

J 0-7 M 56-63

J 3Z-39 FLP 56-63

III 0-1 III 0-1

SC 0-7

Additional inputs to the AE-OR are received from
the M and SC/H decrement decoder, and from the
control area . The AET/C-OR receives additional
inputs from the variable field length area in addition
to the source registers listM.

Binary Adder

The seven position adder employs parallel carry
lookahead to resolve the bit carry functions. The
sums are generated as the "exclusive OR" of the
data inputs and the bit carries .

Note on Figure 6002 that the two operands are
combined to generate bit functions. The bit functions
then produce the sum along two independent paths.
One path produces the sum before carries (half sum).
The other path, carry lookahead, resolves the car­
ries to each bit pOSition.

Hall Sum: The half sum for each bit position is a
function of the input bits which follow these rules:

AE Bit • AET/C Bit • Half Sum

o • o • o

o •
• o •

• • o

The half sum is the "exclusive OR" (.-,c) of the
data inputs. Figure 5009 shows the logiC used to
produce the half sum for each position.

Bit Functions: The carry to each bit pOSition (bit
carry) is a function of the input bits and is developed
by the lookahead circuits. Each pOSition delivers
a carry to the next higher order position according
to the following rules:

AE Sit

o

o

,

AIT/C Bit

o Will never produce a carry

o

'} (Will s:roduce a c=y if the
\. position receive$ a 'arry

Will always s:roduce a 'arry

Note that two different predictions concerning a
carry [rom each position can be made :

1. U either input is a "one state," the position
produces a carry if it receives a carry. The poSi­
tion is said to transmit (T) .

2. U both input bits are in a "one state," the
position always p,roduces a carry. The position is
said to generate (D).

Figure 5009 shows the logic used to produce
the transmit and generate functions for each bit
position.

The "OR" function, rather than the "exclusive
OR" function, is used in producing the transmit.
This does not interfere with the operation of the
lookahead circuits s ince the generate function deter­
mines the carry whenever both bits are present.

Carry-Lookahcad: The bit functions for each pOSi­
tion are delivered to the lookahead circuits . The
lookahead circuits deliver a carry to each bit pOSition
if two conditions are met:

1. Some lower order bit pOSition generates.
2 . All bit pOSitions, between the generating bit

pOSition and the pOSition to receive the carry,
transmit.

To implement the logic to resolve the bit carry to
the high-order pOSition, as thus far described, would
require six AND circuits, anyone of which could
produce the carry. Further, the circuit testing for
the condition in which the low order bit generates
and all other bits transmit would require six inputs .
These cumbersome circuits are avoided by uniting
the adder into two groups ; three positions to the first
(5-7) and four positions to the second (1-4). Gener­
ate and transmit functions are produced for each
group and these are combined to produce carries
into the groups (group carry). The bit carries arc
developed from the group carries and the bit functions.

Figure 6003 is a block diagram of the look­
ahead function. Within these blocks are references
to Figures 5010, 5011, and 5012 which show the logic
within these blocks .

End Around Carry: The end around carry functions,
when enabled, essentially removes the high/low
order relationship of the adder poSitions with re­
spect to the carry functions. That is, to resolve
the carry to each bit pOSition, all other positions are

treated as lower order pOSitions. For example, if
pOSition 4 generates and pOSitions 3, 2, 1, 7, and S
transmit, a carry is delivered to pOSition 5. (D4 ·
T3' T2 . Tl . T7 · TS ::: C5)

The end around carry function is incorporated in
the group carry generation and is enabled or dis­
abled by the allow end carry (AEC) control fu nction.

Sum Generation: The final sum is generated from the
half sum and the bit carry, following the same rules
used to produce the half sum . That is, the final
sum is the "exclusive OR" of the bit carry and the
half sum. Figure 5009 shows the logic used to pro­
duce the final sum.

Sum Parity: The generation of the sum parity de­
pends upon a relationship that exists between the
parity of ilie hall sums, the parity of the bit carries,
and the parity of the final sum. This relationship is:

Parity HS 1<:;1 Parity Carries = Parity Sum

The half sum parity and ilie parity of the carries
within each group are determined comparatively
early in thc adder path. The group carries, devel­
oped by lookahead, are not available until later in the
addcr path. Therefore, the sum parity is developed
as follows:

1. The parity of the carries within each group is
generated (internal carries parity).

2. The parity of the half sum is determined from
the parities of the input operands (predicted half
sum parity). The relationship of the half sum parity
to the parities of the input operand •.. :;;;c;;c::;=

AET/ C Parity V AE Parity :::
The predicted half sum parity is the ;;;.-""'"
of the input parities .

3. The parities generated in 1 and 2 are com­
bined according to the relationship previously cited
to produce the parity of the final sum before group
carries (internal sum parity).

4 . The parity generated in 3 is changed U the
number of sums changed by the group carries ~s
odd (change parity). This condition is determined
by examining certain half sums within each group,
and the group carries .

The sum parity, therefore, is a function of the
following, and is generated independently of the sums
themselves:

1. The parity of the internal carries.
2. The predicted half-sum parity.
3. The change parity.
4. The sign control and AEOB complement

functions, not related to the add function. The
manncr in which these functions modify the parity
is defined under "Sign Control" and "AEOB
Complement." Figures 5013 and 5014 show the
logic used to produce the sum parity.

12-65 Functional Unlu 83

Checking: The checking functions are designed to
detect the following:

1. A mismatch of the input data and its associ­
ated parity.

2. A failure within the adder which could result
in multiple sum failures .

Input Parity Check

The checking of the input parities depends upon the
relationship of the input parities and the half sums,
as previously stated. To check the input parities:

1. The parity of the half sums is generated.
2. The parity generated in 1 is compared with

the predicted half sum parity. An inequality defines
an error condition.

Figure 5015 shows the logic used to generate
the half sum parity, Figure 5016 shows the com­
parison.

Bit Function Check

The adder contains circuitry which detects all single
bit function failures. The half sum functions are
generated in a manner such that a bit function fail­
ure causes:

1. The haIf sum functions to be the inverse of
the proper result. This failure is detected by the
input parity check.

2. The half sum and its complement to be equal.
This failure, as well as a failure within the half
sum parity generation circuitry, will cause the
half sum parity and its complement to be equal . A
comparison is made of the half sum parity and its
complement. An eQ.uality defines an error.

Group Carry Check

The ~oup carry developed by the lookahead circuits
is equivalent to a carry from the high-order bit
position of the lower-order group. This carry (KG)
is developed from the bit functions of. and the carry
into, the 11.igh-order position of each group. The
predicted group carry (KG) is compared with the
equivalent group carry and an inequality defines an
error .

Byte Check

The bit function check and the group carry checks are
OR'ed to produce the function byte check. This
function defines a failure internal to the adder cir­
cuitry. Figure 5016 presents the logic used to
implement the checking functions.

84 9-65

Sign Control

Sum 0 (sign) (Figure 5017) is a function of its
half sum and the sign control functions. If the re­
sulting sum is different from the half sum, the sum
parity is changed. The following chart defines
these relationships:

Corurol FUDCtiOns HSO '=0 Change Parity

N®. 0 0 No

N®. 1 1 No

Set Sign Plus 0 0 No

Set Sign Plus 0 y"

Set SlgD MiDus 0 1 y"

Set Sign Minus 1 1 No

Invert Sip 0 1 y"

Invert Sign 0 y ••

Complement Gates

Complement gates at the exponent adder input and
output provide the ability to perform complement
arithmetic in both binary and "excess 64" forms.

AE Complement: A complement gate is implemented
in the exponent adder following the "AET/ C-OR . "
This gate extends the full width of the "AET/C-OR,"
including position 0 (sign). This allows for comple­
menting the AET/ C input operand, and is enabled by
the select AE complement control function.

AEOB Complement: A complement gate is incorpor­
ated in the AEOB latch, providing for the recomple­
mentation of the adder sum. It extends from position
one through seven (position zero is excluded) and Is
split after position one. The two components, com­
plement AEOB 1 and complement AEOB 2-7, are
selected Singly or together. The selection of the
complement AEOB 1 gate causes the inversion of an
odd number of sums (1), and a corresponding change
In the sum parity. This feature provides the ability
to perform the arithmetic operations defined later in
this text.

Output Signals

Certain conditions are detected by the exponent
adder ci rcuitry which are of Significance in the per ­
formance of particular instructions .

Half Sum One's Detector: A signal is generated when
the half sums of positions one through seven are all
one's. With the exponent adder complement gate
selected, the presence of the half sum poSitions one
through seven being all ones signal indicates the
equality of the two input operands (positions 1-7).

High Order Carries Detector: The carries from
poSition 1 and position 2 are detected by the adder
look-ahead circuits (Figure 5012).

Overflow/Underflow Detector: The result of expo­
nent arithmetic can, of course, exceed the limits of
exponent values. This occurrence is detected by the
adder circuitry. A result in excess of the upper
value limit defines an overflow condition . A result
which exceeds the lower value limit defines an under­
flow.

Floating-Point Operation

For all floating-point operations, the exponent adder
performs "excess 64" arithmetic. All adder oper­
ands, including increment and decrement amounts,
are considered as "excess 64" values. Four opera­
tions are performed by the exponent adder:

1. Exponent transfer
2. Exponent comparison
3. Exponent subtraction
4. Exponent addition.

Exponent Transfer: The exponent adder serves as a
data path through which the operand passes to the
exponent register and/or the shift counter register.

The adder result is equal to
of the input operands. This

result is obtained as follows:
A complement add, with end around carry en­
abled, is performed. The result is the true
binary difference if the exponent adder input
operand is the larger. Complementing Sum 1
(Compl AEOB 1) yields the deSired result.

The result is the complement of the binary
difference if the AET/C input operand is the
larger. Recomplementing yields the true
binary difference. Complementing Sum 1
again yields the deSired result. However,
this is the same result as obtained by com­
plementing sums 2-7 (Compl AEOB 2-7).
Therefore, the sums are complemented de-

pendent upon the form of the add result, defined
by the carry from position 1. Examples are
shown in Figure 9051.

Exponent SubtractIOn The adder result is equal to
the algebraic difference of the exponent adder input

operand subtracted from the AET/C input operand.
The result is obtained as follows:

A complement add is performed and sums 2-7 are
complemented (AEOB Compl 2-7).

Exponent subtraction is performed to resolve
!.he result exponent for divide, and to decrement
exponents, preshift amounts and iteration counts.
Figure 9052 presents some examples.

Exponent Addition: The adder result is equal to the
sum of the input operands. The result is obtained as
follows;

A true add is performed and sum one is comple­
mented (Compl AEOB 1). Exponent addition is
performed to resolve the result exponent for
multiply and to increment exponent values. Fig­
ure 9053 presents some examples.

Binary Operation

For all non-floating-point operations, the exponent
adder performs as a conventional binary adder.

Gate Select Adder

• Central to data loop used to change gates to
lOP at TN T2.

• Central to data loop used to update ICR LO at I
to E transfer.

• Constantly looks at three prelatch pOSitions and
two control inputs and delivers three sum bits
and a carry to the CSR.

• Corrected parity for the changed byte (eight bits)
is delivered with the sum.

• The prelatch receives inputs from either ICR
20-22 or the CSR.

The use of the gate select adder in the 2075 and the
data flow in the adder are shown in FIgure 5018.

Incrementer Adder

• The incrementer is a 24-bit adder.

• There is an eight bit extension on the high­
order end.

• There are three Inputs to the incrementer.

• The incrementer results are checked on a
byte basis.

The incremented (!NCR) is a 24-position adder with
latched outputs. The incrementer adds zero, eight,

12-tiS Functional Units 8S

sixteen, or twenty-four to its input data. Bits 21,
22, and 23 are not added into, but are used in the
data path and for parity purposes .

lncrementu Data Inputs 0 18 19 20 21 22 23

Adder -8 0 •..••... 0 0 I 0 0 0

Inputs -16 0•... 0 I 0 0 0 0

F« -24 0 ...••.•. 0 I I 0 0 0

There is also an eight bit extension to the high-order
input of the inerementer. It is used to transfer the
program status word to the K register and to gener­
ate or check parity on these eight bits.

The incrementer is used to update the instruction
counter on high-order advances and to generate ad­
dresses from the instruction counter for instruction
fetches. During branch instructions the incrementer
adds eight to the H register value for the branch plus
one fetch. It also is the path from the H register to
the instruction counter for inserting the new instruc­
tion counter value on successful branches. Multiple
load and store instructions use the incrementer to
generate the fetch or store addresses. The path
used is from the J-I register to the incrementer,
where eight is added, and then to the storage address
register and the H register. The incrementer output
has gates to the K r egister which are used in trans­
ferring variable field length and decimal addresses
from the addreSSing adder to the variable field length
unit. On a "load PSW" instruction, the incrementer
and incrementer extender are used to parity check
the new program status word. As the program stat­
us word is 64-bits wide and the incrementer with the
incrcmenter extender is only 32-bits wide, the check
is done in two s teps. The right hand program s tatus
word (bits 32-63) is checked first and then the left
hand program status word (bits 0-31). Likewise,
on a "store PSW" the program status word is trans­
ferred through the incrementer to the K register in
two steps. See Figure 6004.

The H register, instruction counter, and program
status word bits 8-31 are the three sources of input
data to the incrementer. All three inputs are gated
at their source, and feed a three way "OR" into the
incrementer. The incrementer extender is fed by
tbe program status word bits 0-7 and 32-39. Botb
of tbese are gated at the extender. The aforemen­
tioned gales to the K register are one output of the
incrementer. All 24 incrementer bits are sent to
the storage address register (SAR) and the H regis­
ter. The incrementer data are gated at the storage
address register and the H register. Incrementer
bits 0-19 plus bit 23 are sent to the instruction
counter register which does the gating in. Incre­
menter bits 0-20 are sent D. C. to the program sto1;:e

86 12-65

compare circuits. The 24 incrementer bits and tbe three
parities have an input from the J register. This data
are gated through the incrementer to the storage ad­
dress register and the H register during scanning.

The 24 incrementer bits are packaged with a byte
on each of three boards. Bits 0-7 are on 01G-B1,
bits 8-15 are on 01G-A2, and bits 16-23 are on board
OlG-AI. Bits 0-19 are broken into five four-bit
groups for packaging purposes. Bit 20 is packaged
separately. Carries into each group are generated
independently by look-ahead circuitry. The carry
into group 16-19 is the function: ADD 16 + (ADD 8
INCR INPUT 20). The group carry into any other
group is generated whenever aU higher numbered
bits up to 19 are 1 's and there is a carry into group
16-19. For example, there would be a carry into
group 8-11 if input bits 12-19 are a ll ones and 16 is
being added. A car ry into a bit pOSition is generated
if there is a group carry into the group and if all the
bits in the group to the right of the bit in question
are ones. For example, bit eight would have a carry
into it if bit nine, ten, and eleven are ones and a
carry into the group is present. Sum bit 20 is
formed by exclusive OR'ing the +8 input with data input
20. Twenty-four is added to the incrementer, only
during an IC HO advance. Since an IC HO ADV oc­
curs only if the input to the incrementer pOSition 20
(from ICR 20) is zero, it follows that it is never
necessary to add 24 in the incrementer if the incre­
menter input from pOSition 20 is a one. This Simpli­
fies the adder logiC for bit 19 because there are
never three ones into pOSition 19 at the same time.
The logic for position 19 becomes data input 19 exclu­
sive OR'ed with (ADD 16 + ADD 8 . INCR INPUT 20).
See Figures 5019, 5020, and 5021.

The incrementer results are checked on a byte
basis by comparing a parity predicted from the input
data to a parity generated from the incrementer sum.
The predicted parities for bytes 0-7 and 8-15 are
obtained from the following expression: HiPU.!
PARITY CHANGE'" (CARRY INTO 4-7) (7 + 5 . 6 +
3 . 4 . 6 + I . 2 . 4 . 6). The bit positions in the
formula shown are for byte 0-7. For byte 8-15 use
the corresponding values. Byte 16- 23 is unique in
that the +8, +16, and +24 conditions are taken into
account. Bits 21-23 do not change so they are not
conSidered. The expreSSion for the parity predict
on byte 16-23 is: Input Parity Change '" 20 (+8) (+16)
+ 19 (+8) (+16) + 17 + 19 (+8) +18 19 (+8) + 17 18 (+8)
(+16) + 17 1819 20 (+16). This expression reflects
the fact that bit 19 is not a full adder pOSition. For
each byte an eight way exclusive OR generates a
parity from the incrementer sum bits and this gener­
ated parity is compared to the corresponding pre­
dicted parity. See Figure 6005.

Byte 16-23 is provided with a second predicted
parity bit called Pl. Whenever the instruction counter

-r

/

register is set from the incrementer. either zero or
sixteen is added to the incrementer input, The
quantity 16 is added on an Ie HO ADV only. An Ie
HO ADV takes place when bit 20 of the instruction
counter register is zero. At the same time, as an
IC HO ADV, the controls allow an instruction
counter fetch address to be generatcd in the incre­
menter for setting into the storage address register .
In this case the controls force a plus eight into the
incrementer, resulting in a net +24. However, the
plus eight must not effect the result sent to the in­
struction counter register. This is accomplished
with the following features:

1. Bit 20 of the incrementer is not gated into
the instruction counter register. Therefore, on an
instruction counter HO ADV bit 20 of the instruc­
tion counter register remains a zero.

2. The predicted parity PI is generated by using
the plus 16 input and ignoring the plus eight input.
Therefore the correct parity for bits 16-23 is set
into the instruction counter register in all cases.

There are occasions when it is necessary to have
the parity bit PI available directly at the gate select
register. Such a case occurs when the gate select
register is set at the end of the Ie HO ADV. There
is not time for the new parity bit to pass through the
instruction counter register and then the gate select
register. Therefore, PI of the incrementer is sent
directly to the gate select register.

Main Adder-Shifter

• The adder is a 64-poSition binary adder
with inputs from the J,K, L, and M registers,
and outputs to the K, L, and M registers.

• The shifter provides shift amounts of L4, LB,
R4, RB, and R32.

The main adder-shifter takes part in most data
transfers within the execution unit. The operations
performed by the adder-shifter, the controls used
to execute each operation, and the data paths within
the adder-shilter used for each operation are shown
in Figure 63.

Data Paths and Control Scheme

The adder performs all of its operations with a mini­
mum of controL The true add operation is the basic
function of the adder and is performed with no control
other than input and output gating. The heavy por­
tions of the figure show the data path for an add
operation. When operands are gated to each of the
input OR's and no adder control is exercised,the
sum of the operands is generated and gated to the
main adder output bus latches. From the output bus

latches, the sum is delivered to the K, L, and/or
M registers.

To perform an operation other than the true add
one or more of the controls indicated by the circled
numbers is used. For example: to perform a shift,
control number four sets the shifter to give the
des ired output. The same control gates the shilter
to the main adder latch and blocks gating thc final
sum to the main adder output bus latches. The data
path is from the bit functions to the normally se­
lected ORE gate, through the shilter and the shift
gate to the main adder output bus latch.

On adder operations, input parity is checked and
output parity is generated. The check circuits
require that correct parity is gated to both input OR's.
For this reason, on Single operand operations, such
as shifting, parity is forced to the input OR not re­
ceiving the operand.

Data Flow and Timing Example

The adder is a one cycle data path. The sum of
operands gated to the adder during a machine cycle
is latched in the main adder output bus latch at L
time following the cycle. This point is illustrated on
Figure 6007 for the AR add instruction. The add
takes place on the first fixed point cycle. The sum
is delivered to the K register at A time of the next
cycle.

On the AR add instruction, the adder receives
inputs of two thirty-two bit operands and delivers a
thirty-two bit useful sum. The operands are gated
to the left or high order end of the adder input OR's.
Parity is forced to the low order half of each input
OR. A 64 bit sum having Significant digits in the
high order 32 bits is gated to the K register. Only
the left 32 bits of the K register are gated to the
general register, Rl.

The control of gates to the adder is external to
the adder. The gating depends not only on the adder
operation being performed but also upon the context
of the operation. The gating for the true add per­
formed when the AR add instruction is being per·
formed is shown on Figure 6007. The gating for a
true add being performed during the execution of a
multiply or divide instruction is different and may
involve shifted as well as straight gates.

Bit FWlctions and the Add Operation

Note on Figure 63 that the two operands are com­
bined to generate bit functions. The bit functions then
produce the final sum along two independent paths.
One path produces the sum before carries. The
other path produces the carrieS to each bit pOSition.

The carry to each position is determined without
waiting for the generation of the final sums in the

12-65 FWlctionai Units 81

To u.. the Addti-Shift.,

~a.,1t. il'lpUl OR. m",,' ,..,., ithe, do", Dr oil
r;;-Lpority bit •.
crTl", AM lo'ch , to. .. nt '" 0 .~i.'" one! the

regi., 1 b. •• '-oMd.

T,..,
No ."...,. con',ol i n.. dolo ""It. i. in
h.ovy "",Iir",.

To """,,-,,-, Add, T o'o C"""''-...... ,

~AM T;t: Olt i ' ,0 Inverl".

@--A"hol_" II I«c-.;l 'o ,I.. I -ad •• ~ilion.

To ComplefMtlt Add, 0 ... '. Comp,-"",n l

0-"AM Tft: OR Input i. InWlr'.a'.

~Allow o<!d_.,..,...o corry I. octl

To Shift

Singi. """.and h gu'''' Po.lty I, f",c..:l '00' 1...
inpu' OR.

~n......o.d shlfl con,,.., I I. "",lIval..:l; iI,

5.1'1 "'i ft .. for do'" IIlill. Goteo shiltto. to AM
l<ltch . Bloc:k. fino l got. 10 AM I"tch.

n.. dol" ""It. i. through It.. nonnolly .. '-eted OJt-f
go"" 10 the shi ft.,.

To 00 Conr.tc l i, OR-f, AND, OR

0010 pou8' thr"""h the odd .. /Wic.. On , ... Ii •• ,
P""", t+,. c 11 I. f'8,f..........t bur inc ct porily
moy to. genero-.J. On the "cand pou, c ct
""rily i. ge ... ,..,ted.

Finl P",.

For All Connecll :

@--R4 "'if! control i. oc:livattod; 11:

5.1S "'lit ... lor R4 ... m. Gol .. "'ift •• ro AM 1"lch.
Block! got. of fl",,1 """ to AM 10'ch.

For OR-f:

No o,he, conlto l, OR-e bit funcllon, I. n ... molly goted
10 til •• hifr.,.

F« AND:

@---<30,. AND i ... I..,teel and gotto OR-f i. bloc:ked.

For OR,

G:)+GoI. AND I ... '-cted and gotto OR-f I. o Uaw«I'o ,.....,In open.

S.concI Pou

For Al l C..-c'i :

@"-' l4"'iflcontrol ;. octivated; II:

5.1'1 "'i f, .. for LA "'ift.
Go".,hift., 10 AM lotch.
Bloch go l. of fi ",,1 to AM lotch.

Goted f..... Goted f,..."
IC,M, ... l M, l , ... J

~ ~

Forc. Porily F ... c. P ... ily

+-------0---- .-~-

,..,

8it
Funcli

AMT'"

ook-M.ad

o...lpul i, olway ... nt 10 l,
""'Y be IJC>ted 10 IC ... M.
R.c.i"ing regi.l , be
rel •t.

FIGU RE 63. MAI N MOU-SHIFTU: fUNCTI O NS, DATA PATHS, AND CO NT ROL SCHEME

88 12-65

3

1

r

r

low-order positions. This fact is the time saver in
the lookahead circuits.

The sum before carries for any bit position is a
function of the input bits which follow these rules:

AM Bil + AMT IC Bit Swn Before Can-ies (HS)

0+0 o

0+1 •

1+0 1

1 + 1 o

The sum before carries is the exclusive OR of the
input bits.

Figure 9054 shows the logic used to produce the
sum before the carries, called the half sum (HS),
for each bit pOSition.

The carry to any bit position is a function of the
input bits to all lower order bit positions and is
developed by the lookahead circuits using two bit
functions from each bit position.

Any single position delivers a carry to the next
higher order poSition according to the following
rules:

o + 0 will never produce a carry
1 + 0) (will produce a carry if the
o + 1 position receives a carry.
1 + 1 will always produce a carry.
Note that two different predictions concerning a

carry from any position can be made.
1. If either input bit is present the pOSition

always produces a carry if it receives a carry. The
position is said to transmit (T).

2. If both input bits are present the position pro­
duces a carry. The poSition is said to generate (D).

Figure 9054 shows the logic used to produce the
transmit and generate functions for each bit position.

The OR rather than the exclusive OR is used to
produce the trasmit function. This does not inter­
fere with operation of the lookahead circuits since
whenever both bits are present the carry out is de­
termined by the generate function and is not depen­
dent upon the transmit.

The transmit and generate functions for each bit
position are delivered to the lookahead circuits. The
lookahead circuits deUver a carry to any bit poSition
if two conditions are met:

1. Some lower order bit position generates .
2. All bit pOSitions between the bit position to

receive the carry and the generating bit position
transmit .

The final sum is generated from the half sum and
the carry by the same rules used to product the half
sum from the two input bits. That is, the final sum
is the exclusive OR of the carry and the hall sum.

Lookahead for the Full Adder

To predict the carry into the high-order position of
the 64-position adder using the lOgic thus far de­
scribed would require 63 AND Cir cuits, anyone of
which could produce the carry . Further, the circuit
testing for the condition in which the low order bit
generates and all other bits tranSmit would require
63 inputs. An addcr using such circuits is said to
have one level of lookahead. By one level is meant
that only bit functions are used to predict the carries
to all pOSitions. The Model 75 uses three lcvels of
lookahead and thus avoids the cumbersome circuits
described above.

To achieve three levels of lookahead, the adder is
divided into groups and sections, and the carries out
of groups and sections are predicted by group and
section functions.

A group contains four bit positions.
A section contains four groups.
Figure 9055 visualizes this breakdown for the

entire adder.
Gcncrate(D) and transmit (T) functions are de­

veloped for each group and section. These functions
have the same meanings as the bit functions generate
and transmit.

GENERATE (D) means that the section or group
delivers a carry.

TRANSMIT (T) means that the section or group
delivers a carry U it receives a carry in.

Figure 9056 shows how the functions and predicted
carries on the three levels of lookahead relate to
each other. The figures (5022, 5027) called out in
each block show the circuit logic used to develop the
function or the carry named in the block.

Figure 9057 shows the levels of logic and there­
fore the circuit delays involved in the generation of
the haH sum and the carry into the lookahead circuits.
The half sum requires five levels of logic, and the
carry requires nine levels. The final sum is devel­
oped in 11 levels.

Variations of the Add Operation

As shown on Figure 63. the true add is performed
with no internal adder controls. Thrce other adder
operations use the same data paths as the true add
but require somc control.

Complement addition is used to
,.,:e;; •• between two numbers. For the

floating-point add and subtract instructions, one's
complement addition is used when the difference is
required. Other operations requiring the differcnce
between numbers use two's complement addition.

For two 's complement addition one operand is
changed to its two's complemcnt and all other adder

12-65 FWlctlouJ Units 89

operations are for true add. The two's complement
is the inversion of the number with a 1 bit added to
the low order position. Controls 1 and 2 in Figure
6006 change Ule operand entering the true/comple­
ment input OR to its two's complement.

Control 1: "Sel AMT/C Compl" selects the inversion
of the operand fo r the generation of the bit functions
for the entire adder.

Control 2: "Hot 1" adds a one bit to the low-order
pOSition by forcing a group carry to group 60 to 63
and also cauSing the group to generate if all posi­
tions transmit.

For one's complement addition, one of the oper­
ands is changed to its one's complement and all other
adder operation is as for true add. The one's com­
plement is generated by inverting one of the operands
and allOwing a carry from the high-order position
if generated, to be fed to the low-order end.

Controll "Sel AMT/C CompI" selects thc inver­
Sion of the input for Ule generation of the bit functions .

Control 3 "Allow End Carry" enters the lookahead
logic at the section level and allows a carry out of the
high-order position to be fed back to the low-order
poSition.

Adder As a Straight Data PaUl: To use the adder as
a data path, the operand to be moved Is gated to
either Input, and all parity bits and no data bits are
gated to the other input. The operation 1s exactly
as for the add. The sum is equal to the single input
operand.

Parity Generation

The final sum of the two operands is generated by
exclusive ORting the half-sum of the operands and
the carries generated by the operands. The genera­
tion o[pari ty [or the final sum depends on the
relationship that exists among the parity of the half­
sum, Ule parity of the carries and the parity of the
final sum. The relationship is:

HS 'Q" Carry = Sum
p p p

For example:

Bit Positions 1 2 3 • Dec-EQuiv. f

A 0 1 0 1 5 1

a 0 1 0 0 • 0

HS 0 0 0 1 0

C:llTiu 1 0 0 0 0

S.m 1 0 0 1 , 1

90 9-65

In practice, the half sum and the carries within
each group are available early in the adder cycle.
The carries Into groups come from lookahead and are
not available until later . The parity of the final sum
is generated in four stages:

1. The half sum parity on each byte is generated.
2. The carry parity within each group is

generated.
3. The parities generated in steps 1 and 2 are

combined according to the relationship previously
cited to generate the parity of the final sum before
group carries.

4. \\!hen the group carries are available, they are
used to change the parity generated in step 3, depend­
ent on properties of the final sum before the group
carries. The parity changes are predicted by exam­
ining certain of the half sums within each group and
the carry into the group.

Entering into the generation of parity for each
byte are three things:

1. The half sum parity of the byte.
2. The parity of the carries within each o[the

two groups o[the byte.
3. Two "Change Parity Group" (CPG) lines

generated by examining the carry into the group from
lookahead and certain of the half sum within the
group.

The output parity for group 08 to 15 is on Systems
AM 157.

Input Parity Checking (Byte HS Parity Error)

The checking of input parities depends on a relation­
ship that exists between the input parity of each
operand and the half-sum o[the op erands. The re­
lationship Is:

Parity of A "it' Parity B :: Parity of HS
For example:

1 2

A o

a o

HS 0 o

3

o

o

o

fa

o

•

o

To cheek input byte parity:

Parity

o

o

1

1 . The half sum parity is generated [or each
byte.

2. The exclusive OR of the input parities for
each byte is generated.

r

I

/

/

(

r

,.

3. 1 and 2 are compared. If they are the same,
an input parity error has occurred. The "byte HS
parity error" indicator is set.
The circuit generating byte HS parity error {or byte
08 to 15 is on Systems AM 163.

Bi 1 Func tion Error

All outputs of the main adder-shifter depend upon
hi t functions generated for each input bit position.
The adder contains circuits that detect any single
bit {unction crror.

The hit function check is performed in the fol­
lowing steps.

1. The AND and OR bit functions and their
complements are generated.

2 . From these the half sum and complement
half sum are generated, independently of each other.
for each bit position.

3. From the half sum and complement half sum
generated in 2, the half sum parity for each byte
and its complement are generated.

Any single error in steps 1 to 3 are detected by
the ''byte HS parity check" or the "bit function error"
circuits as follows;

1. Single error in 1 causes HS = HS, or HS and
HS to be inverse of the proper result.

2. Single error in 2 causes HS = lIS.
3. Single error in 3 causes HS parity = HS Parity.
In 1 and 2, when HS = HS then HS parity =

HS Parity and the "Bit Function Error" circuit de­
tects the error.

In 1 , when HS and HS are inverse then the HS
parity I- predIcted liS parity and Ute "HS Parity
Check" detects the error.

In 3, the "Bit Function Check" circuit detects
the error.

The "HS Parity Error," "Bit Function Error" ,
and "Byte Error" circuits for byte 8 to 15 are on
Systems AM 163.

Lookahead Check

l'11e lookahead circuits predict the carry into each
group. The low-order bit position of any group
receiving a group carry always receives a bit carry.
In order to check the lookahead circuits, the adder
predicts this same carry dependcnt on the bit func­
tions of, and the carry into , the next lower-order
bit. The carry from lookahead and the predicted
carry (KC) are compared; U they are unequal an
error has occurred.

On Figure 9055, the lookahead check for the carry
into bit 51 (low-order bit of group 0, section 3) is
added in dot ted lines. Note the carry to bit 51 de­
pends on group and section lookahead circuits. The
predicted carry for the same bit position (KG48_51)

is generated using the carry into bit 52 (CB52) and

Form 2Z3-2872-1

FES 526-1033

the bit functions for bit 52 (TBS2 and D8S2). U the
predicted carry is not the same as the carry from
lookahead the byte error indicator is set. The look­
ahead check circuits for byte 08 to IS arc on Systems
AM 163.

Shifting and Logical Connectives

As shown on Figure 63, shift operations and the
performance of the logical cOlUlcctives use data
paths that differ from those of the add operation.
Figure 9058 shows how the same bit functions used
on the add operation are renamed and moved along
different data paths to accomplish operations other
than add. The logical exclusive OR is the same
function as the half-sum. The logical AND is the
same function as the generate.

Either or both of these functions are gated to the
shifter. The exclusive OR gate to the shifter is nor­
mally conditioned and is used to deliver the Single
operand to the shifter on shift operations or to de­
liver the exclUSive OR of the two input operands to
the shifter when the logical connective exclusive OR
is being executed.

To execute the logical cOlUlective AND the line
"sel log AND" gates the AND function to the s hifter
and also degates the exclusive OR function so that it
does not reach the shifter.

To execute the logical cOlUlective OR, both the
exclusive OR and the AND functions are gated to the
shifter. The "se1 log AND" line is conditioned and
the "sel log ORE" line is aUowed to remain condi­
tioned. These various gatings are represented
logically on Figures 63 and 9058.

When the data path is to be through the shifter th e
output of the shifter is delivered to the AMOB latches,
and the final sum from the main adder is blocked
from reaching the AMOB latches. This gating is
presented on Figures 63 and 9058.

Data Shifting; The relationship of input bits to output
bits of the shifter for the various combinations of
control lines that may occur are shown on Figure
9059. The control scheme used and the operation of
the shift control l ines (R32, R8, R4, lA , and L8)

I the "inhibit bits 28-35" lines and the "inhibit bits
60-63" are shown on Figure 5028. The operation
of the "save sign, " "propagate sign, " and "propa-
gate 16" control lines are shown on Figure S029.
Figure 5030 shows the operation of the "overflow"
control Une.

Shifter Parity Generation: Parity generation
in the shifter depends upon the fact that when a
single operand is gated to the adder, the half sum
of the operand is equal to the operand. On the
logical connectives AND and OR, when two operands
use the shifter path correct parity is not generated.

1/68 FUDCt10Dll1 Units 91

Parity generation for the shUler output takes
place in four stages:

1. The adder de livers to the shifter the half Sum
pari ty of each four-bit group and of the three-bit
left extension (bits 64-66).

2. The shifter combines the half sum group pari­
ti cs for all combinations of groups tllat may form
outpu t bytes. This is done by the byte parity re­
generation circuits on Figures 5031 and 5032. The
circuits on Figure 5032 also take into account the
affect of the save sign control on the bytes that may
become llytes zero to eight.

3 . The parity shifting c ircuits, Figure 5033
select the properly combined group parities for each
output byte depending upon the shift being executed.

4. When anyone of the four controls (prop signs,
prop 16, overflow, or inhibit bits 28 to 35) that may
force output bits is active the parity shifter circuits
adjust the parity accordingly.

Shifter Overflow Detector: When fixed-point num­
bers are sh ifted left, it Is possible to shift out high­
order bits. This condition is detected by the shUter
overflow detector; the Simplified circuit is shown
on Figure 5034.

The "save sign" line active indicates a fixed­
point number is being shifted. With the save sign
line active and a leU shift taking place, all bits being
shifted off a r e compared to input bit o. If any bit to
be shifted off differs from bit 0, the overflow condi­
tion is indicated.

Logical Connectives: The adder-shifler's part in the
execution of the logical cOlUlective instruction is
summarized with reference to Figure 9058.

Two cycl~s are required for the operation. On
the first cycle:

1. Both operands are gated to the left end of the
adder and parity is forced to the right end.

2. One or both of the bit functions (logic ORE or
logic AND) are gated to the shifter depending on the
connective to be performed.

3. The shifter is controlled to s hift right four.
Since the operands are 32 bits long no bits are
shifted ou~.

4. The right four shift control also serves as a
gate for gating the shifter to the main adder latch
a.nd to disable the gate used by the final sum to reach
the main adder latch.

5. Both operands are checked for correct input
parity but correct parity has not been generated on
the output (for th e AND and OR instructions).

6. The output is delivered to the K register.
On the second cycle:
1. The K register having (on AND and OR ins truc­

tions) incorrect parity is gated to the adder .

92 12-65

2. The logic exclusive OR function is gated to the
shifter. This delivers the operand to the shifter as
it was received.

3 . The left four s hift control causes the connec­
tive to be delivered to the high-order positions of the
main adder latch.

4, The connective now with generated parity is
gated to the K register.

5. The left end of the K register is s tored in
general register specified by Rl.

Carry Select Adder

The main adder high-order byte, poSitions 0-7, is
implemented as a carry select adder. Basically,
this differs from the seven low-order bytes in the
resolution of the sums. The other adder functions-­
input OR's, bit functions, half s ums, sum parity,
and checking--are the same.

Sum Generation: Each sum is a function (exclusive­
OR) of the associated half-sum and bit carry. The
bit carries. in the lower order bytes, are functions
of the group carry and the bit fu nctions. The group
carry has two states: "1" (carry) or "0" (no car ry).
For pOSitions 0-7, two sets of bit carries are gener­
ated. One set, assume carry (AG), assumes the
group carry Is in the "1" state; the other set, not
assume carry (NAG), assumes the group carry is in
the "0" state.

The bit carry sets are then combined with the
half-Sums, producing two sum sets . One sum set is
associated with a group of carry of "1" and is se­
lected as the result sum if the look-ahead group
carry result is a "1". The other set , associated
with a group carry of "0", is selected if the look­
ahead group carry is "0". The carry and sum sets
are generated with positions 0-7 united as one group
rather than two, as is the case in the lower-order
bytes. The entire eight position sum is selected
dependent upon the carry into group 4-7 (CG4 _7).

Figure 6008 presents a block diagram of the
general components of the main adder related to the
add function. Figure 6009 is a block diagram of
pOSitions 0-7, showing the sum generation path.
Comparison of the two shows the differences as
previously cited.

Adder Outputs

Figure 6010 is an overall figure of the outputs avail­
able from the adder.

CLOCK

Controlled Clock, Running Clock

The source of the machine pulses is an oscillator

whose output is fed through a frequency divider: the
divider output is a series of 50-nanosecond pulses
that occur at an approximate 200-nanosecond rate.
These pulses are gated by the control c lock trigger
to generate the controlled pulses, and are gated by
the running clock trigger to generate the running
pulses (Figure 5035).

Various machine signals, through synchronizing
triggers. turn the gating triggers on and off, there­
by starting and stopping pulses to the central proc­
essing unit. The sync triggers synchronize the
machine start and stop Signals to oscillator time;
this ensures that the gating triggers are turned on
and off properly relative to the oscillator.

Controlled pulses are started:
1. By the start pushbutton when not in single­

cycle mode.
2. At the end of any central processing unit or

system reset.
3. At the beginning of the advance portion of a

fault location test.
4. By the start pushbutton when in single-cycle

mode. In this case a single controlled pulse is
emitted by the clock .

Controlled pulses are stopped:
1 . By the start pushbutton when in Single-cycle

mode (one controlled pulse is emitted).
2. By the rate switch being turned to the single­

cycle position.
3. At the end of thc advance portion of a fault

location test.
4. At the beginning of any central processing

unit or system rcset.
5. By a machine check.
The running pulses are stopped by any system

reset, but they are started again when the reset is
over.

COUNTERS AND POINTERS

Digit Buffer-Digit Counter

• Digit buffer is a four-poSition register .

• Digit counter is a four-position register-latch
combination with increment/decrement circuits.

• Digit counter steps up or down by one.

• Combined, digit buffer-digit counter contains one
data byte with parity.

In System 360 Model 75, the smallest addressable
unit of data is the byte which is eight data bits plus
one parity bit. However, decimal and certain logi­
cal SS instructions manipulate decimal or hexadecimal

data one digit, four data bits, at a time. The digit
buffer (DB) and digit counter (DC) each provide a
data path and temporary storage for a four -bit digit .

Digit Buffer

The digit buffer (Figure 5036) is a four-bit register;
the bit positions are numbered zero through three,
with position three the low-order position. The digit
buffer is used to retain zone bits of the fill-character
when executing an Edit instruction, and as temporary
storage for the high-order digit of a quotient byte
during the execution of the decimal divide instruction.
When executing certain other instructions, the digit
buffer and the digit counter are combined and used
as one unit.

Data inputs to the digit buffer are from the left
byte gate, from the AND-OR-Exclusive OR, and
from the digit counter. Inputs from the digit counter
are used during the execution of the decimal divide
instruction to transfer the complemented quotient
digit from the digit counter to the digit buffer. Other
data inputs are used when the digit buffer and digit
counter are combined.

Digit Counter

The digit counter (Figure 5037) is a four-position
register-latch combination. The digit counter is
used as a temporary storage for a four-bit data digit
or as a counter. Increment and decrement circuits
and control gates enable the digit counter to step up
or down.

The digit counter is used as a counter in decimal
multiply and decimal divide, and as a temporary
storage register in edit, edit and mark, pack, un­
pack, and move with offset instructions.

Data inputs to each pOSition of the digit buffer and
digit counter are shown in the following listing and
in Figure 5036.

DB DC

0 , 3 B • , 1

Multiplier Bus o , 3

AV Latch • 5 6 7

LBC 0 , 3 • 5 6 7

ADE • 5 6 7 o , 3

DC B • , 1

FOf'C" 9 to DC x X 1

12-05 Functloaal UtJiu 93

Selection of data set into the digit buffer-digit
counter is controlled by input gates activated by the
instruction being executed. The following text pro­
vides a general description of input control gates to
the digit buffer-digit counter. For details concern­
ing specific data or timing refer to the Theory of
Operation Section and the instruction involved.

Gate Multiplier Bus to DC: This control gate Is used
during the decimal multiply instruction to set the
multiplicand digit from the J register into the digit
counter.

The (irst, low-order , multiplicand digit is set
into the digit counter from J 60-63 during PF4 time
of the set-up sequence. The J register is shifted
right four to place the next multiplicand digit into
positions 60-63. Thereafter, each time the multi­
plier is added to the partial product the digit counter
is stepped up or down one. When the digit counter
steps to zero when stepping down or to ten when
stepping up, the multiplier has been added to or sub­
tracted from the partial product the number of
times specified by the multiplicand digit. A new
multiplicand digit is set into the digit counter and
the process is repeated until all multiplicand digits
are processed. Each time a new multiplicand digit
is set into the digit counter, the gate multiplier bus
to digit counter line is active.

Gate AOE to DC-DB: The active status of the gate
AOE to DC-DB line gates the data byte from the
AND-OR-Exclusive OR output into the digit buffer
and the digit counter. The low-order digit of the
byte (AOE 4-7) is set into the digit buffer, and the
high-order digit (AOE 0-3) is set into the digit
counter.

During the execution of the unpack and move in­
structions, the high-order digit of an Op2 data byte
becomes the low-order digit of the succeeding Op 1
data byte . To accomplish thiS, the data byte from
the right byte gate is gated through the AND-OR­
exclusive OR into the digit buffer-digit counter, the
high-order digit goes into the digit counter . During
the next cycle, the digit counter is gated into the
low-order input of the decimal adder; the digit in the
digit buffer is ignored. Thus, the high-order digit
of one byte becomes the low-order digit of the next
data byte.

Gate LBG to DB -DC: 'Nhen the gate left byte gate to
digit buffer-digit counter line is active, the data
byte from the left byte gate is set into the digit
buffer-digit counter . This gating is used during the
ED and EDMK instructions to set the fill-character
from the K r egister into the digit buffer-digit
counter. Gate left byte gate to digit buffer-digit
counter is also used when executing fixed point and

94 9 _65

floating-point divide instructions to set the high­
order eight bits of the normalized divisor into the
digit buffer-digit counter for comparison to the divi­
dend.

Gate AV to DB-DC: During execution of the pack in­
struction, the low- order digit of two unpacked data
bytes ar e combined to form one packed byte. The
digit counter is used as a temporary storage for the
low-order digit of each packed byte. The gate deci­
mal adder to digit buffer-digit counter line is active
during each IS 2 cycle of the pack instruction and
sets the low-order decimal adder output digit into the
digit counter.

Force 9 to DC: The acti ve status of the force nine to
digit counter line sets the digit counter to nine.
During the decimal divide instruction, th'e digit
counter is counted up fr om zero or down from nine
to develop the quotient digit.

The digit counter is set to nine and counted down
during cycles in which the divisor is added to a nega­
tive dividend.

Gate DC to DB: The active status of the gate digit
counter to digit buffer line transfers the contents of
the digit counter to the digit buffer. During the odd
cycles of the decimal divide instruction the high­
order digit of the quotient byte 1s developed in the
digit counter. When the quotient digit is complete ,
it is transferred to the digit buffer. The low-order
quotient digit is developed in the digit counter to
complete the quotient byte.

DC Stepping: The digit counter can be reset, set.
counted up or counted down. Figure 5037 shows
the digit counter circuits in Simplified logic . The
increment/decrement circuits and register latch
logic of the digit counter are essentially the same as
those of the Y-Z counters. See Y-Z counter stepping
for a detailed description of counter stepping. The
count up and count down controls to the digit counter
are controlled by the decimal multiply and divide in­
structions, the only instructions in which the digit
counter is stepped .

DB Parity: A one-bit digit buffer parity register
(Figure 5038) provides a correct parity for the
data byte when it is gated from the digit buffer-digit
counter to the K register. The digit buffer parity
register i s set to the input parity when a data byte is
set into the digit buffer-digit counter, such as, from
the decimal adder, or from the AND-OR-exclusive
OR. The four-bit multiplier bus has no parity bit;
however, because the multiplier digit set into the
digit counter during decimal multiply is used as a
count factor, parity is not necessary.

r

In decimal divide, the quotient byte that is trans­
ferred from the digit buffer-digit counter to the K
register is developed in the digit counter one digit at
a time. The high-order digit of the quotient byte is
developed in the digit counter then transferred to the
digit buffer. The low-order digit of the quotient byte
is then developed in the digit counter to complete the
quotient byte. When the quotient byte is complete, it
is transferred to the K register with correct parity.

Development of a new quotient byte starts with the
digit buffer-digit counter set to zero or nine and the
parity register set to onc. All digit buffer positions
are reset and the digit buffer parity is set to one by
the active status of the reset digit buffer control. At
the same time the digit counter is released and is
set to the status of the digit counter inputs, either
zero or nine, depending upon the status of the force
nine to digit counter control. Thereafter, the high­
order digit of the quotient byte is developed by
stepping the digit counter up or down. In each cycle
that the digit counter steps, its bit configuration
changes. When the number of data bits in the digit
counter changes {rom odd to even or visa versa, the
digit buffer parity bit is changed. Correct digit
buffer-digit counter parity is thus maintained during
each ~cle that the digit counter is stepped. When
the high-order digit of the quotient byte is complete,
it is transferred to the digit buffer with correct
parity. The digit counter is then restored to zero or
nine and the low-order digit of the quotient byte is
developed in the same mamer. The digit buffer
parity register continues to change status as neces­
sary to maintain correct parity for the quotient byte .
When the low-order digit of the quotient byte is com­
plete. it is transferred to the K register with correct
parity .

When the digit counter counts up or down, a
parity correction latch (Figure 5038) determines the
status of the digit buffer parity register. In each
count cycle , the parity correction latch and associ­
ated circuits monitor the digit counter 1, 2, and 4
outputs and the status of the digit buffer parity regis­
ter to determine correct parity for the next count
cycle.

VoIhen the high-order digit of the quotient byte is
developed by stepping the digit counter up [rom zero
(Figure 9060), the digit buffer parity register indi­
cates the correct parity of the digit counter during
cach cycle (Figure 9060, Section A). After the
high-order digit of the quotient byte is transferred to
the digit buffer and the digit counter is stepped up to
develop the low-order digit of the quotient byte, then
the digit buffer parity r egister indicates the correct
parily for both digits. If the high-order digit of the
quotient byte contains an even number of bits, ex­
cluding parity, then the digit buffer parity register is
set or reset each count up cycle as shown in Figure

9060, Section A. U the high-order digit of the
quotient byte contains an odd number of bits, then as
the low-order digit is developed, the digit buffer
parity register is set or reset each count up cycle
as shown in Figure 9060, Section B.

Figure 9061 shows the same conditions when the
digit counter is counted down to develop the quotient
digits.

Sand T Pointers

• S and T poInters set to starting byte address of
operands (H21-23).

• Sand T count up or down.

• Sand T select operand bytes during processing.

• T pOinter selects result byte location in the K
register.

• Sand T signal word boundaries.

Execution of variable field length instructions, In
general, process one data byte at a time from each of
the two operands. Both operands are brought from
storage into the K and L registers. All bit positions
of the K register are inputs to the left byte gate and
the right byte gate; all bit positions of the L register
are inputs to the right byte gate. Selected data bytes
of Op 1 in the K register and of Op 2 in the L register
are then gated through the left byte gate and the right
byte gate to the variable field length circuits. Be­
cause only one data byte at a time is gated through the
left byte gate or the right byte gate, the S and T
pOinters are used to select one of the eight bytes con­
tained in the K or L register. The S pointer selects
the byte gated through the right byte gate and the T
pointer selects the byte gated through the left byte
gate. See Figure 2040.

Sand T pOinters are, in general , set to the start­
ing byte address of each operand. They are set during
the set-up sequence of an SS instruction or during the
fixed-point cycle of fixed- sequence variable field
length instructions. For S8 insturctions, T is set to
Op 1 starting byte address, and S is set to Op 2 start­
ing byte address. H register bit pOSitions 21, 22,
and 23 are the only data inputs to the Sand TpOinters.
As each operand fetch is initiated, during variable
field length set-up sequences, the storage address is
computed and set into the storage address register
and the H register . H register positions 21-23 are
then set into the S or T pointer. The usual sequence
is to fetch the first Op 1 word from storage and set
the byte address into the T pOinter, then fetch the
first Op 2 word from storage and set the byte address
into the S pOinter.

9-65 Functional Unitt 9S

Thereafter, as each data byte Is processed during
iteration cycles, Sand T pOinters are stepped up or
down and the decoded output is used to gate the next
operand byte to be processed. \Vh.ether S and T step
up or down is determined by the direction the in­
struction moves through the operands.

Figure 5039 and Figure 5040 are simplified posi­
tive logic diagrams of the S and T pointers. Each
pOinter is a three-poSition register-latch combina­
tion with increment/decrement circuits that enable
the pointers to step up or down.

Each 8 or T register is a polarity hold (PH) cir­
cuit with a data input, a release control and a reset
control. When the release control is active, the
register sets to the status of the data input each
central processing unit A clock time. At all other
Urnes during the central proceSSing unit cycle, the S
and T registers are locked. When locked, the reg­
isters retain their status independent of fluctuations
that may occur on the data input lines.

Each S or T latch is a polarity hold circuit sim­
ilar to the register; however, the timing of the
release to the latch differs from that of the register.
Each 8 or T latch pOSition sets to the status of the
data input and is locked during central processing
unit L clock tim e. Except at L clock time, the latch
output follows the data input.

Data input to each S or T register is from the
latched output of that position or from the increment!
decrement circuit. Data input to each S or T latch
position is from the H register or from the register
output of the same position. Selection of data gated
into the registers and latches is determined by the
status of the S and T function controls.

Function Controls

Functional controls gated to Sand T pointers through­
out the execution of variable field length instructions
enable the pointers to set, reset, step up, or step
down, or remain static and retain the present count.
Because data bytes are not processed during every
central processing unit cycle of every variable field
length instruction, 8 and T controls vary from cycle
to cycle . The function gated to the Sand T pointer
is controlled and timed by the instruction in process .

Gate H21-23 to T Lth: The active status of the gate
H21-23 to T latch line (Figure 5040) gates H
register bits 21-23 to the T latch ; in general , the
s tarting byte address of Op 1. Early in the set-up
sequence of each S8 instruction, fetches are initi­
ated for the first words of Op 1 and Op 2. The
storage address of the first ~ 1 word is computed
and set into the storage address register and the H
register. Gate H21-23 to T latch is then active
during S U T3 time to gate the starting byte address

96 9-.QS

of Op 1 to the T pointer. The L clock pulse at the
end of SU 3 time locks the T latches to the status of
the bit lines from the H register. and the A clock at
the beginning of SU 4 sets the T registers to the out­
put of the T latches.

Gate H21-23 to T latch is also active at other
times when the starting byte of Op 1 is referenced,
such as, at the beginning of the change sign pass of
the decimal add or subtract instruction, or to pro­
vide correct multiplier/partial-product or divisor/
dividend alignment during MP or OP instructions.

Gate T Reg to T Lth: The active status of the gate T
register to T latch line gates the contents of the T
register to the T latch. Because it is the inverted
function of gate H21-23 to T latch, gate T register
to T latch is active when the Gate H21-23 to T latch
is inactive, except SU L9 time of the MP or DP set­
up sequence. During SU L9 of the MP or DP set-up
sequence, gate T register to T latch is blocked to
force the T pOinter to zero preparatory to being
stepped down to seven .

During a variable field length execution cycle in
which a data byte is processed, the decoded output
of the T register gates the data byte out of the K
register through the left byte gate. The result byte
is set into the same byte pOSition in the K register
at the beginning of the next cycle . Therefore, the
register value is gated and set into the T latch by
the gate T register to T latch control; the output of
the T latches are then decoded to select the input
byte of the K register.

Gate H21-23 to S Lth: The active status of the gate
H21-23 to S latch control (Figure 5039) sets the
byte address contained in H register positions 21-23
into the S latch. In general , this is the starting byte
address of Op 2. Early in the set-up sequence of S8
instructions, the storage address of the word that
contains the first ~ 2 byte is computed and set
into the storage address register and the H register.
Gate H21-23 to S latch is active during 8U 1'5
and gates the starting byte address of Op 2 into
the 8 pointer. The L clock that follows locks the S
latches and the A clock sets the S register to the S
latch.

Gate H21-23 to S latch is also active during the
first fixed point cycle of fixed sequence variable
field length instructions and during PF Ll of TR or
TRT instructions.

Gate S Reg to S Lth: The active status of the gate S
register to S latch line gates the contents of the S
register to the S latch. Gate S register to S latch is
active when the gate H21-23 to S latch is inactive
except during PF 4 of MP or OP set-up when the S
pointer is forced to zero.

r

r

r

r

Release S and T: Release controls to the Sand T
registers and latches enable the pointers to set and
to step up and down. Release timing to the latches
differs from that to the registers.

Release to Sand T r egisters is a gated central
processing unit A clock pulse. Gating of the A
clock release to the registers is controlled by the
instruction in process. In general, however, a
release is gated to S or T register when the pOinter
is set or stepped,

Release to the S or T latch is an ungated L clock
pulse . S or T latches are released each central
processing unit cycle and set to the register or to
the bit poSition of the H register when the gate H21-
23 to S latch or gate H21-23 to T latch is active.
Release to the T latch is blocked during PF 1 and
PF 2 cycles of TR or TRT instructions by the active
status of the hold T latch control (see S and T
Stepping).

Reset; Reset controls to the Sand T poiiiter enable
the pOinters to be reset to zero. Reset control to
both pointers is active whenever a central process­
ing unit reset is initiated or when the first fixed­
point latch is set to execute CVB or CVD instruc­
tions.

When executing first fixed-point or first fioating­
point divide instructions, the T pOinter is reset to
zero to gate the high-order divisor byte from the K
register through the left byte gate into the digit
buffer-digit counter.

A reset is gated to the S pOinter during Seq A
cycle of MP or DP instructions. At this time, the
S pointer is reset to zero then counted down 1 to 7
to start a new pass through the multiplier or divisor.

Sand T Stepping

Execution of SS instructions process data bytes one
at a time and serially from each operand. Logical
SS instructions start with the high-order (most Sig­
nificant) data byte and move through each operand
one byte at a time to the low-order byte. Decimal
SS instructions start with the low-order data byte
and move through each operand in the opposite di­
rection except for MP and DP instructions.

The Sand T pointers are used to select and gate
the data bytes of each operand through the variable
field length circuits; S selects the data bytes gated
through the right byte gate, and T selects the data
bytes gated through the left byte gate. As each suc­
cessive data byte is processed, the S and T pointers
step up or down. The stepping function of each
pointer is controlled by the active status of the
count up or count down line (Figure 5039 or Figure
5040).

Increment/decrement circuits associated with
each poSition of the S or T pointer enables the
pOinter to step up or down. The increment/ decre­
ment circuits are inserted between the latch and
register of each S or T pointer poSition. When
stepping, the register is set to the incremented or
decremented value of the latch, depending upon
which count control is active. The latch then sets
the new register value at the end of L clock time.

Count S and T Up: The active status of the count S
and T up control causes the S and T pointer to step
up one each central processing unit cycle. Through
the increment/decrement circuits of each pointer
pOSition the status of the count up control and the
status of the latch gates a set or reset to the regis­
ter and propagates a carry to the next higher-order
position.

Consider the T pointer (Figure 5040) to be
gated to count up from zero. Figure DM9062 shows
9 central processing unit cycles in which the pointer
is counted up from zero to seven and the register­
latch relationships during each cycle. Assume cen­
tral processing unit cycle I to be the first cycle that
the count Sand T up control is active, and that the
T pOinter has previously been set or reset to zero.

Through the increment/ decrement circuits of
Tl pOSition (Figure 5040), the active status for
the count Sand T up control and the reset status
of Tl latch gates the set of Tl register. The L
clock pulse at the end of central processing unit
cycle 1 and the start of central processing unit
cycle 2 (Figure 9062) locks the n latch reset.
The A clock pulse at the beginning of central
processing unit cycle 2 then releases and sets the
T~ register.

Because the Gate T register to T latch control is
active, the Tl latch sets to the status of the TI reg­
iSter at the end of L clock time during central
processing unit cycle 2. Thus, the T pointer steps
from 0 to I.

As soon as the Tl latch sets. during central
processing unit cycle 2, the Tl increment/decrement
circuits gates a carry into T2 and blocks the set of
Tl register. The Tl register remains set for the
remainder of the cycle; however, because it is re­
leased only at A clock time.

Through the T2 increment/ decrement circuits,
the active status of the count S and T up, carry into
T2, and the reset status of T2 latch gates the set of
T2 register. The following A clock at the beginning
of central processing unit cycle 3 sets the T2 regis­
ter. Because the set of Tl register Is blocked, it
resets.

At the end of L clock time, the T latches set to
Ule status of the registers. In this case, during

, .. 5 Functional Units "

central processing unit cycle 3, Tl register and operand, then stepped down onc as each data byte is
latch are reset and 1'2 register and latch are set . processed. Because data bytes are not processed
The T pointer has stepped from 1 to 2. every central processing unit cycle of instruction

During central processing unit cycle 3, the reset execution, the count S down and/or count T down are
status of Tl latch, through the T1 increment/ active only during the cycles in which S and T point-
decrement circuits, gates the set of Tl register. ers are to step.
Because the carry in to 1'2 is active only during the The stepping logic of the S and T pointers are
time Tllatch Is set, 1'2 register is gated to set to identicali therefore, the following count down de-
the status of 1'2 latch. The T latches are locked at scription of the T pointer also applies to the S
the end oC central processing un,! cycle 3, 1'11'() pointer.
is locked reset and 1'2 latch is locked set. The Each cycle that the T pointer (Figure 5038) is
clock sets T1 and 1'2 registers. 'Ij\ stepped down, one is subtracted from the pOinter

At the begiruung of central proceSSinltf(! 4Ycli"""\. value. Subtraction is accomplished in the pOinters
4, the T registers are set to the value Of~~ by subtracting one from the units pOSition, Tl, and
sum of 2 and 1. At the end of L clock tim , inverting the function of the carry in to 1'2 carry in

pointer has stepped from 2 to 3. ~c T pointer is stepped up, one IS added to the T1
T latches are set to the register value. n to T4 to that of borrows from those POSltiOns. When

Durmg central processing unit cycle 4, ~ ~Sition each count cycle and the carnes from T1
1'1 latch sets, carry 10 to T2 is active. Bec~e ~ accumulated in T2 and T4 positions. When Tis
1'2 latch is set, the carry in to 1'2 is propaga~ \...JIlfpped down, one Is subtracted from Tl pOSItion
through 1'2 increment/decrement clrcuits and ~ -eactt count cycle and repeated borrows from T2 and
comes a carry in to T4. The reset status of T4 ~~duce the pomter value.
latch gates the set of T4 register, while the set ~ In binary subtraction, 1 - 1 '" 0 and 0 - 1 '" 1 with
status of Tl and 1'2 latches block the set of Tl a~) ~bor ow from the next higher-order non-zero bit
1'2 registers. The A clock, at the start of centr~ ti n. This principle is used when S and T
processing unit cycle 5 sets T4 register, and be- r U p,tt ·.ill are stepped down. Through the increment/
cause the set of Tl and 1'2 registers is blocked, th~-",d~iM\nt circuits (Figure 5040) of Tl and 1'2 po-
are reset. CJc:VSi"~O~ e carry in to T2 and Carry into T4 become

At the beginning of central processing unit cycle ac 0 effect borrows from the 1'2 and T4 pOSitions.
5 (Figure 9062), the T register steps from 3 to ~ in Figure 9063 for each count-down
4. At the end of L clock time, the T latches set to $t!:2' subtracted from Tl pOSition. The Tl
the registers and through the increment/decrement . r a latch change status every count cycle,
circuits establish gates for the next incremented I.tl~r et (1) to reset (0) or from reset (0) to
value. ~tt1:1). ring the alternate COWlt cycles in which

Because the pOinter steps binary-wise, stepping -eSI reset (0) a borrow from T2 position
up from 4 through 7 is a repetition of the logic of 0 rs n to T2 is active). During count
stepping 0 through 3, except that the T4 register cles hich both Tl and 1'2 positions are reset
and latch remain set until a carry is received from (0) a borrow from T4 occurs (Carry in to T4 is active).
the T2 pOSition. When the pointer steps beyond 7, The active status of the Carry in to T2 or the Carry
the count reverts to zero and starts over. in to T4 causes those pOSitions to change status.

The preceding text and figures have described Figure 9063 shows nine consecutive central
the stepping up of the T pOinter. The count up con- processing unit cycles in which the S or T pointers
trois and functions of the S pOinter (Figure 5039) are stepped down from six through zero to six. Al-
perform in the same manner. though shown this way to display the register-latch

Count Down: The count S down or count T down con­
trols enable the S or T pOinter to step down. Each
central procesSing unit cycle that the count down
control is active the pointer steps down one. Be­
cause certain variable field length instructions, such
as pack or unpack, process data bytes of each oper­
and at a different rate, the step down controls of S
and T pointers are independent.

When executing decimal instructions, except MP
or DP, the data byte that contains the low-order
decimal digit is the first to be processed. Sand T
pOinters are set to the starting byte address of each

98 90065

relationships throughout the stepping range of S or
T, the pOinters are never stepped for more than
eight consecutive cycles. Because the decoded out­
put of S and T are used to gate data bytes from each
operand and to signal the approach of a word bound­
ary, no more than eight data bytes are processed
between word boundaries. When a word boundary is
encountered, S or T pOinters equals zero when count­
ing down or equals seven when counting up, stepping
of the Sand T pOinter is suspended until a new word
is set into the K register or the L register and byte
processing resumes. The stepping of either pointer
may be suspended during any cycle by making the

(

(

count controls inactive. When the count controls are
inactive, the pointer retains its value until a new
value is set into it or the pOinter is stepped or reset.

Hold T Lth: 'The Hold T latch control is used when
executing the TR instruction and both operands are
contained in the same storage word--operands over­
lapped.

Overlapping the table word return with the ad­
dress calculation for the next. fetch (the next byte to
be translated) requires two byte addresses. One is
the byte address where the translated byte is to be
temporarily stored in the K register; the other byte
address is that of the next byte to be translated. A
hold is used on the T pOinter latch to prevent it
from changing after the T pointer is advanced. This
holds the translated byte address in the T latch to
control T IN decoding to the K register, while the
T register advances and gates the next byte out o[K
through the left byte gate to the addressing adder.
Figure 9064 shows a block diagram of the T pOinter
and an example timing chart to show the above con­
ditions.

Y and Z Counter

• They are four-position binary counters.

• Y and Z contain Op 1 and Op 2 lengths for decimal
instructions .

• Y and Z are coupled as an eight-position binary
cOWlter [or SS logical instructions.

• Y and Z are used as a [our-poSition counter; Y
or Z steps up or down by one.

• Coupled as an eight position cOWlterj YZ steps
up or down by one or by eight.

• Y and Z provide address factors to compute stor­
age addresses for operand fetches.

• Y and Z determine when execution of SS instruc­
tions is complete.

The Y and Z counters of the System 360 Model 75 are
each four-position binary cOWlters. They are used
as operand length counters for the S8 instructions,
and as registers to retain the immediate data field
of certain SI instructions. When used as cOWlters
they may be counted up or down.

In general, during the execution of SS decimal
instructions, Y and Z are used as two independent
counters with a capacity of counting 16 bytes each.
When the execution of a decimal instruction starts,
Y counter contains the byte length of Op 1 (Ll) and

Z counter contains Op 2 byte length (L2). Y and Z
are then counted down to zero, all data bytes of both
operands have been processed and the instruction
execution ends.

During the execution of SS Logical instructions,
Y and Z counters are coupled and used as one eight­
position counter with a maximum count capacity of
256 bytes. For the majority of SS Logical Instruc­
tions, Y and Z cOWlters are the L field of the
instruction (lOP 8 ~q co d down one as each
data byte is processel. frh ruction is termin-
ated when YZ step~ t~

When coupled a~i~ition counter, YZ
is stepped up or d~ one or by eight. Y and Z
are counted down ei t when executing the MVC
instruction in tr~mo~

Y and Z are c~?a~t-poSition counter
and stepped from ~P§ the execution of TR,
TRT, ED, and EDMK ins uc' nSj when equal to the
specified operand length (L), instruction is
terminated . ~

In decimal di . e num r of quotient bytes to
be generated is 2' L2 is set into Y and Y is
counted up until s~P 8 -11).

The following s~e starting and ending
conditions of th ~, eq-fers for all SS instruc-
tions: f •

~'" ®C7' c_
InstructiON

~t\
y "'" z ,""Op

AP, CP, SP, ZAP On On Y &2 = 0

MP ~lJ1L2'li
D. y = o

DP

R~~
D. Y = L

1

MVO, PK. UNPK .. D. y _o

MVN, MVC, MVZ, L I" D. Y'Z=0
CLe, NC, OC, XC

TR, ED, EDMK 0 Up Y2 L

TRT 0 Up Y'Z _ Lor

Nonzero
Ch acter

In addition to performing the functions of operand
length counters, Y and Z provide factors used, in
certain SS instructions, to compute storage addresses
when an operand store or fetch operation is started.
For example, the decimal add instruction starts with
the storage word that contains the low-order (least
Significant) data byte, and processes each operand
one byte at a time until the highest-order operand
bytes are processed. Y and Z counters initially con­
tain the length of each operand, Y contains Ll and Z
contains L2' Because either decimal operand may be
contained in as many as three storage words. and be­
cause the word containing the low-order decimal digit
is the first to be processed, the contents of Y and Z

12_65 FWlCtiolllll Units 99

counters are used to compute the storage addresses
needed to fetch the first word of each operand. Y is
gated to the addressing adder to compute Bl + Dl +
LI (Y) storage address of Ule first Op 1 word; Z is
gated to the addressing adder to compute B2 + D2 +
L2 (Z) s torage address of the first Op 2 word .

During the execution of the EDMK or TRT in­
structions, the mark sequence places the storage
address of a selected data byte into a general pur­
pose register. When executing these two instruc­
tions, Y and Z counters are coupled and used as one
eight-position counter and counted up . YZ counter
provides a convenient method of computing the stor­
age address of the selected data byte.

Fixed sequence variable field 1ength instructions
in the 81 instruction format use the Y and Z counters
as immediate data registers. Ouring the execution
of these instructions, the Y and Z registers are
gated to the AND-OR-Exc1usive OR where the con­
nective function with a data byte from storage is
performed.

Y-Z Counter Logic

The four poSitions of the Y or Z counters are identi­
fied 1, 2, 4, and 8. When used as cOWlters, they
step up or down binary-wise. The numeric value of
el ther counter at any specUic time is represented
by the binary sum of the [our positions; when Y and
Z are coupled as one counter, the value is repre­
sented by the binary sum of all eight positions, with
Zl and low-order position.

Each poSition of either counter consists of a
trigger register and latch . Increment/decrement
circuIts are inserted between the register and latch
to enable the counters to step up or down and to
propagate a carry from one position to the next. The
circuit arrangement of the trigger and latch is that
of the conventional System/360 polarity hold (PH)
retention circllit . With but one exception, the Y and
Z triggers (registers) change status, either set or
reset, at central processing unit A clock time. The
Y or Z latches may change status any time during
a counting cycle except at L clock time when they
are locked.

Except for control gating and coupling, the Y and
Z counter operations are identical; therefore,
description of counter circuits apply to either
counter.

Figure 5041 shows the circuits, in Simplified
positive logic, of the Z register. latches, and
increment/decrement circuits. Z register (trigger)
positions 1-8 are set to instruction operation regis­
ter bits 12 -15 or to the Z latches, depending upon
the active status of the Gate lOP 12 -15 to Z or the
Gate Z Lth to Z Reg line .

100 12_65

Y-Z Controls

The count up, count down, and release controls to
the Y and Z counters are, in general, activated by
the instruction being executed.

Gate lOP: The Gate lOP 8 -11 to Y and Gate IOP
12 -15 to Z lines are active during E last cycle
(ELC) of every instruction and during centralproc­
essing unit cycles that the E unit is not busy. Gate
lOP 8-11 to Y allows lOP register bits 8-11 to set
into the Y register. For SS decimal instructions,
lOP 8 -11 is the L1 operand length.

Gate lOP 12 -15 to Z allows instruction operation
register bits 12 -15 to set into the Z register. For
88 decimal instructions, lOP 12-15 is the L2 operand
length.

For 88 logical instructions, Yand Z counters are
coupled; instruction operation register bits eight
through fifteen then represent Op 1 field length.

When Single- byte type RR, RX, and 81 instructions
are executed , the set of instruction operation 8-15
(lOP 8-15) to Y and Z counters during the E last
cycle of the previous instruction enables the I unit
and the E unit cycles to overlap.

Gate Latch to Register: The gate Y latch to Y regis­
ter and the gate Z latch to Z register lines are the
inverted functions of the gate lOP 8-11 to Y and the
gate lOP 12-15 to Z lines. These lines are active
except when instruction operation is gated to Y and
z.

Gate Y Lth to Y Reg or Gate Z Lth to Z Reg en­
ables the setting of the Y and Z registers to the
incremented or decremented value of the latches
when the counters are stepping or when data is re­
tained.

Count Up/Down: The active status of the count up or
COWlt down lines to the Y and Z counters determine
whether the counter steps up or down. The instruc­
tion being executed determines which of the two
lines is active . Y and Z counters are only stepped
when an 8S instruction is being executed; therefore,
the Y and Z count controls are active only at this
time.

Figure 5041 shows simplified logic of the count
up and count down control of the Y and Z counters.

Release: Conventional System 360 Model 75 circuit
logic of polarity hold triggers and latches use a
release signal to sct data into a trigger or latch reg­
ister. When the release is active, the trigger or
latch sets to the condition of the input, either on or
off. When the release line is not active, the trigger
or latch is locked to the status of the input at the

time the release became inactive. Thereafter, the
trigger or latch retains the same status, impervious
to changes to input status, until the release is again
active.

Release to the Y-Z triggers and release to the
latches are independent and controlled separately .
In general, except the initial set during E last cycle,
both are controlled by the instruction being exe­
cuted.

When Y and Z triggers are set to instruction op­
eration, during E last cycle, the release is a cen­
tral processing unit B clock pulse; at other times,
when Y and Z are stepped up or down and the trigger
is set to the latch, the release is at central process­
ing unit A clock time.

The latches function differently; when release is
active, the latch output follows the input except at
central processing unit L clock time, when the
latch is locked to the status of its input at the be­
ginning of the L clock pulse. This enables the use
of the latch output to set or reset other triggers at
central processing unit A clock time .

The Y - Z latches are set to the register value or
to the status of the increment/decrement circuit
depending upon the active status of the count lines
(See Y -Z Stepping).

In general, when executing SS instructions, Y
and Z counters are stepped during central process­
ing unit cycles in which data bytes are processed.
Therefore, the count up or COWlt down controls are
active during all cycles and release gated to the
triggers and latches only during those cycles when
counting occurs.

During8U2, SU4, 8Fl, and SF 3 cycles, the
contents of the Y or Z counter is used to compute
storage addresses. During these cycles, a hold is
activated on the Y and Z latch release and the re­
lease is blocked to prevent any deviation of line
levels from the Y and Z latches to the addressing
adder input.

Y-Z Stepping

Y and Z regiSters are set to the operand length field
of instruction operation register positions 8- 15
during E last cycle of every instruction. There­
after, the registers are set to the output of the
latches. When counting, the latches contain the
incremented or decremented cOWlter value, the
value to be set into the register at the beginning of
the next COWlt cycle.

To enable each Y or Z cOWlter position to count
up or down, increment/decrement circuits are in­
serted between the register and latch. The count
up or count down lines and the increment/decrement
circuits control the set and reset of the latches such
that the value in the counter latches is the next value

set into the register. Figure 9065 is a timing ex­
ample of the Y or Z counter stepping. Two ex­
amples are shown, that of step counter up and step
counter down.

Sixteen central processing unit cycles are shown.
The count up example shows the trigger-latch re­
lationship as the count progresses from minimum
value (0) to maximum value (15). When the counter
is stepped beyond IS, it returns to zero and con­
tinues stepping. The count down example shows the
counter stepped [rom a value of 14 down through
zero to a value of 15.

Particularly note the relationship of the registers
and latches. The counter value in the latches always
precedes the regiSter value when counting . For the
majority of S8 instructions, Y and Z counters are
stepped down and the instruction terminated when Y
and Z equal zero. \\!hen counting down, the counters
are stepped with the set conditions for the iteration
sequencers. Because the operand length is the
speCified number of bytes minus one, a cOWlter value
of all ones indicates the end of operation instead of a
zero value (counter is stepped past zero to 15). The
latched output of the counter is decoded instead of
the register output because the decoded output is
used to set and reset control triggers at central
processing unit A clock time . Therefore, a counter
value of 1110 for decimal instructions or a combined
YZ counter value of 1111-1110 for logical instructions
indicates all bytes have been processed.

Figure 9065 shows the cOlUlting up or down of the
Y or Z counter for 16 consecutive central processing
unit cycles. Sixteen count cycles are necessary to
display the trigger-latch relationships for all combi­
nations throughout the counting range of each counter.
Because Y and Z are stepped one as each data byte
is processed, no more than eight consecutive step­
ping cycles occurs before a word boundary is
reached. When a word boundary in either operand
is encountered, the stepping of Y and Z is tempo­
rarily suspended until a new operand word is set
into the K or L register; then byte processing and Y
and Z counter stepping is resumed . Because Y and
Z stepping occurs only when a release is gated to
both the trigger and the latch, stepping is suspended
by allowing the release to Y or Z to remain active.
When the release is inactive, the triggers and latches
retain their value.

The increment/decrement circuits control the
set or reset of the counter latches, and generate
and propagate carries from one position to the
next. For each counter pOSition, the set or re­
set status of the register combined with the active
status of the count up or count down controls
determine whether the latch for that position is
set or a carry is propagated to the next higher
position.

Figure 5042 shows a simplified poSitive logic
diagram of Z counter positions one and two with
increment/decrement circuits for those positions.
The heavy lines indicate the conditions to set the
Zl latch when the counter is counted up one from
zero. This status corresponds to central process­
ing unit cycle one of Figure 9065 when stepping the
counter up . Because the count Zl and Z2 up line is
active (Figure 5042) and Zl register is reset, the
increment/decrement circuit gates the set of the Zl
latch . At L clock time, the Zl latch is locked
(release is inactive). The set status of the latch
then conditions the input to ZI register (heavy
broken line). The Zl register sets to the status of
the latch at A clock time.

Figure 5043 shows the Z counter stepping up
from one. The heavy lines are those active at the
start of L clock time . The active status of the
count up and the COWlt down lines are ORled to pro­
vide a carry-in to the Zl counter position. \\!hen
counting up, the set status of the AI register and a
carry-in blocks the set of the Zl latch and gates a
carry to the Z2 cOWlter position. In the increment/
decrement circuit for Z2 counter position, the
carry from Zl combines with the reset status of Z2
register and sets Z2 latch. The set status of the
Z2 latch enables the next A clock release to set the
Z2 register. The same A clock release resets the
Zl register because the set of the Zl latch is
blocked. Thus, from the end of the L clock pulse
at the beginning of central processing unit cycle two
(Figure 9065) to the end of the A clock pulse at the
beginning of central processing unit cycle three, the
Z counter stepped from one to two.

At the end of L clock time during central process­
ing unit cycle three, the Zl latch is again set. The
increment/decrement circuit for Zl poSition (Figure
5043) gates the set of the Zl latch because the count
up line is active and ZI register is reset; no carry
is gatcd to poSition Z2. Because position Z2 re­
ceives no carry, the Z2 register and latch retain
their status. Near the end of central proceSSing
un1t cycle three (Figure 9065), the set status of ZI
and Z2 latches represent a counter value of three,
set to the registers with the next A clock release.

The preceding text and figures have described
the stepping of the Z counter up from zero to ODe to
two and to three. Stepping from three to four, and
so on, occurs in the same manner utilizing counter
positions four and eIght. Operation of the Y counter
is exactly the same.

For each counter position during a count up cycle,
if the register is reset and a carry-in is present,
the latch is set; if the register is set and a carry-in
occurs, the set of the latch Is blocked and the carry
is gated to the next higher-order counter position .
In this manner carries generated on alternate count

102 9-65

cycles, when the low-order (YI or Zl) register is
set, are gated through each counter position pro­
gressively to the high-order (YB or ZB) position as
the count value increases.

The cOWlt-down logic of Y and Z counters is sim­
ilar to the COWlt up except the generation and propa­
gation of carries from the low-order to the high­
order counter positions is reversed. When counting
down, carries are generated by the low-order (YI
or Zl) position on alternate count cycles when the
register is reset (Figure 9065). A carry received
by each counter position causes that poSition to
change status and if the register for that position is
set, the carry is gated to the next h.igher-order po­
sition. Thus a carry generated by the low-order
position (YI or Zl) may be propagated through the
increment/decrement circuit of each higher-order
position to the YB or ZB position if the registers of
the intermediate positions are reset.

Figures 5044 and 5045 are the Simplified positive
logiC diagrams of the Y and Z counters. The count
up and count down logic for each counter is exactly
the same. Differences do exist; however, in the
cOWlter controls that enable Y and Z to be coupled
as one eight-pOSition counter, and to step up or
down by one or by eight.

Y-Z Counters Coupled

Y and Z counters are used as two independent four­
position counters when SS decimal instructions are
processed. When SS logical instructions are
processed, Y and Z are coupled together and used
as a Single eight-poSition counter. When coupled
as a single counter, Y is the four high-order po­
sitions and Z is the four low-order positions. Com­
bined, Y and Z provide a COWlting capacity of 256
(0-255), and may be counted up or down by ones or
by eight. The move (MVC) instruction is the only
one that steps the YZ counter down by eight, and
that occurs only when in transmit mode.

Special decoding circuits provide the correct con­
trols to the Y and Z cOWlters for each instruction
executed. Figure 5041 shows, in Simplified logic,
the control decoding for the Y and Z counters. Of
particular Significance is the carry to YI and the
split of the count up and count down lines to Z.

The carry to YI enables the YI counter position
to change status each central processing unit cycle
that a release is gated to the Y regil:l;ter and latch.
When Y is used as an independent counter, the carry
to YI is active throughout the execution time of the
SS instruction and position YI changes status every
count cycle.

Y is the high-order cOWlter when Y and Z are
coupled and counts only the carries from the Z
counter. The carry to YI is active only during the

r

r

cycle that Z -15 when counting up or Z ::: 0 when
counting down. Because increment/decrement cir­
cuits of the Z counter do not provide a carry from
the Z8 position, the value in the Z register is de­
coded to gate the carry to Yl (Figure 5041).

When executing the move (MVC) instruction, Y
and Z are coupled and counted down. If the instruc­
tion starts execution in transmit mode, YZ is
stepped down by eight each count cycle. If the

instruction does not start in transmit mode, then YZ
is stepped down by one each count cycle. When YZ
Is gated to step by eIght, the count Z4 down and
count Z4 up lines are active. TIlls causes Z4
increment/decrement circuits to gate a carry to Z8
every cycle, and Z8 changes starus every cycle that
YZ is released. When YZ counts down by eight, the
carry to Yl is active during the alternate stepping
cycles that Z8 is reset.

, .. , 10'

DECODERS

BOP Decoder

• The BOP decoder is implemented in four levels
of logic.

• Sequencing, branch, and interrupt signals are
included in the decoder outputs.

The decoding is implemented in general, in four
levels of logic. A negative AND-INVERT block
generates plus outputs which include format decod­
ing and basic instruction class decoding . This is
followed by an AND-QR-invert to combi ne the class
decoding into required functions in each of the for­
mats. This output is inverted and another AND­
OR-inver t, combining the format and associated
functions, produces the desired output. Included in
the decoder outputs are sequencing, branch, and
interrupt signals.

A list of the decoder functions and the instructions
which generate these outputs are provided on Figure
9068.

BRI Field Decoder

• The BOP register RI field (SRI) contains bits
8-11 of the instruction.

• The decoding is implemented in two levels of
logic .

• The BRI field decoder selects a GPR or FLP
register.

The B operation (BOP) register Rl field (BRI) con­
tains bits 8-11 of the instruction. This field is used
to select one of the general IJ-Irpose registers or one
of the floating-point registers for out-gating. A
manual input is provided to force the decoder to any
one of the 16 possible outputs . The select lines are
AND'ed with a gate-out control in both of the stacks .

The manual controls include display lines for the
general purpose registers and the floating-point
registers and four encoded bits. The DSPLY GPR
and DSPLY FPR lines are CR 'ed and inhibit the BRI
field inputs. The line also gates the manual bits to
the decoder.

The decoding is Implemented in two levels of
logic. The first AND's the low-order bit with the
high order bit for both the BRI and the manual
inputs . The two are gated as mentioned and OR'ed.
The middle t""'O bits are treated Similarly in the first
level and produce immediate decoding for the FPR
stack (select 0, 2 , 4, or 6), since the outside two
bits must be zero for floating-point register selection.

104 12-65

The second level of logic is a negative AND-invert
to combine the four bits for general purpose register
selection with a plus output.

Channel Decoder

• Decodes the channel for I/O instructions.

The channel decoder decodes the addressed channel
from bits H13-15 for the Start I/O, Test I/O, Halt
I/O, and Test Channel instructions. Outputs of the
chalUlel decoder are sent to the channel selector
which sends a select line to the proper chalUlel if it
is present In the system. The channel decoder also
detects illegal chalUlel addresses to generate an
early release from the central processing unit. See
Figure 6354.

Divide Decoder

• The divide decoder selects the divisor multiple [or
the divide iteration .

The divide decoder (Figure 5046) serves to deter­
mine the proper divisor multiple to be selected for
each divide iteration cycle. The main adder 0-7
is implemented as a carry select adder to provide
early sums to compare with the divisor, generating
the new multiple within the basic clock cycle .

Multiple Resolution

The high-order divisor bits, contained in the digit
buffer-digit counter registers are compared with
each of the sum sets accorcling to the relationship
required by the divide algorithm (Figure 9067).
As the new dividend (adder result) is either true or
complement, four functions are generated for each
divisor multiple :

result true· CG
4

_
7

result true . CG
4

_
7

result complement· CG
4

_
7

usult complement· CG
4

_
7

There are four multiple sets generated. The
selection Is made dependent upon the add result. H
the add result is true (defined by the carry from
position 0) and a carry to group 4-7 (CG4-7) occurs,
then the true· AC set is selected to the multiple
latch. Similarly , the remaining combination of add
result and CG4-7 select the other multiple sets .

,

r

Divisor Leading Zeros

The divide execution sequencing does not bit nor­
malize the operands . However, the divide decoder
adjusts for leading zeros in the divisor by comparing
different bit groupings dependent upon these leading
zeros . Figure 9068 shows this relationship .

First Cycle Multi ple Selection

Prior to the first iteration cycle, the dividend may
be positioned in different locations . To determine
the multiple for the firs t iteration cycle, the decoder
is able to examine the dividend as it appears in
these different locations. This is accomplished by
OR'ing the possible first cycle dividend sources,
under cont rol of the execution hardware, prior to
entering the comparison circuitry .

High-Order Zeros Detector

Positions 0-3 of the two sum sets (AC and NAC) are
examined for a ll zeros and all ones conditions . The
correct function is selected by the carry to group
4-7 (CG4_7), producing the two functions:

AMO -3 equal zero

A MO -3 equal ones

These functions are used by the execution control
c ircuitr y in determining instruction sequence .

EOP Decoder

• The EOP decoder decodes the contents of the E
operation (EOP) register.

The E operation decoder (EOP decoder) decodes the
contents of the E operation (EOP) register . The
lines produced by the E operation decoder are pre­
fixed by ED . An example i s ED MH (multiply half) .
The eight-bit operation code field is decoded by
four-bit groups into their hexadec imal values, then
the two hexadecimal values are combined to produce
lines that denote a particular instruction or group
of instructions. See Figures 5047 and 9069 .

ER1 Field Decoder

• The ER1 decoder is analagous to the decoder for
the BR1 field.

The ER1 field decoder is analagous to the decoder
for the BRI field . The decoding is done in two
levels of logic which generate 16 select lines for the
general pur pose r egisters and four select lines for
the floating-point registers . The four encoded bits
fro m manual controls ar e also used to fo r ce the ER1

decoder to one of the 16 outputs. The cont rol line
which i.nhibits the ERl field and gates the manual
Hnes Is, in this case, a store control rather than the
display control .

lOP Decoder

• The I Decode section of CPU contains much of the
logic for controlling I box operations during I
t ime .

• lOP decoding, GPR out -gating controls, invalid op
detection, and parity checking on bits 8-15 of lOP
register are included in I decode.

The instruction operation (lOP) register is set at the
start of each instruction and remains valid Wltil the
start of the next instruction . During this period, the
instruction unit performs two basic fWlctions--cal­
culation of the effective address and procurement of
operands for execution. The instruction operation
decoder performs most of the instruction class
decoding for these functions.

The decoding is implemented, in general, in four
levels of logic . A negative AND -invert combines two
instruction operation bits to obtain format decoding
and basic instruction class decoding . A positive
AND-OR-invert combines the class decoding.

A list of the decoder outputs and the instructions
which generate the outputs are provided on Figure
9068.

LCOP Decoder

• The LCOP decoder provides decoding for the
LCOP register.

The last cycle operation (LCOP) decoders decode the
outputs of the last cycle operation register. The
Unes produced by the last cycle operation decoder
are prefixed by LD. Example LD FLP M (fioating­
point multiply) . The eight-bit operation code field
is decoded by four-bit groups into their hexadecimal
values, then the two hexadecimal values are com­
bined to produce lines that denote a particular instruc·
tion or group of instructions . See Figures 5047 and
9068.

Multiply Decoder

• The multiply decoder decodes the multiple to be
used for fixed-point multiply and floating-poin!
multiply instructions.

• The multiply decoder inputs are J27 -31 or J59 -
63 .

12-65 FQDC:t:iQDU Units 105

• The multiply decoder outputs gates the K, L, or
M registers to the main adder during each
iteration cycle.

The multiply decoder is used by fixed-point multiply
and floating-point multiply instructions to decode
the multiple or multiples which are gated from the
working registers to the main adder during each
iteration cycle. Figure 5048 is the multiply decoder
input gating, and a block diagram of the multiply
decoder, the multiplier digit latches, multiply
decode, and the decoder gates. The chart on fig­
ure 5048 labeled Multiply Multiple Decoder Outputs
lists the input bits to the multiplier digit latches,
the corresponding multiply decode outputs, and the
multiply decode gate output that is activated for
each inp.lt bit combination .

During each iteration cycle, the multiplier (J
register bits 27-31 or 59-63) is set into the multi­
plier digit latches, Figure 5048. The output of the
multiplier digit latches provide the inputs to the
multiply decode circuits, and the output of the multi­
ply decode circuits provide the inputs to the multi­
ply decode gates . The multiply decode gates decode
which working register (multiple) is gated to the
true/complement input of the main adder. At the
same time, the adder is conditioned for either a
true or a complement add by the functional OR out
gate to AM. The K register which contains the Xl
multiple on the first iteration cycle is gated to the
normal input of the main adder if Mplr Dig 3 L con ­
tains a one on the first iteration cycle. The K
register is gated to the main adder by the Shift Gate
to AM logic. During the following iteration cycles,
the K register is al ways gated to the normal input of
the main adder because the partial product is stored
in the K register after each iteration cycle. The K
register is gated straight or right four to the normal
input of the main adder depending on the cycle In
progress. If during the first iteration cycle, the Xl
multiple is not needed, parity is gated to the normal
input of the main adder and the output of the main
adder latches (AMOB) is returned to the K register
replacing the Xl multiple with a partial product. The
left hand series of columns labeled 1st Iteration (Xl
multiple) in the chart in Figure 5048 show the
decoder outputs during the first iteration cycle. The
right hand set of columns labeled Iteration > 1 (not
Xl Multiple) show the decoder outputs during the
following iteration cycles. II a multiple is decoded
as a two cycle multiple, the first cycle gates either
the X2 multiple or the X6 multiple to the main adder
and the second cycle gates the X8 multiple to the
main adder.

106 \2-65

GATES AND OR'S

Address OR

The address OR gates either the channel address bus
(CAB) bits or the storage address register bits to
storage (Figure 5083). The address OR provides a
storage address bus to each 2365 storage unit. Each
storage address bus consists of 14-bits plus two
parity bits, PA and PB.

On Models 175 and J75, bit positions 5-18 of the
address OR correspond to bi~ positions 1-14 of each
storage address bus; on the Model H75, bit poSitions
6-19 of the address OR correspond to bit positions
1-14 of each storage address bus. The PA bit is the
parity-bit for storage address bus poSitions 1-7; the
PB bit is the parity-bit for storage address bus posi­
tions 8-14.

A parity check circuit checks the validity of al124
address OR bits. A parity adjust circuit converts the
three parity bits associated with the 24-bit addresses
to PA and PB parity bits for the l4-bit addresses
sent to storage.

Bit positions 0-20 of the address OR are sent to
the address compare circuits where each address
passing through the address OR is compared against
the address set in the system control address keys.
An address compare signal is generated whenever a
storage address matches the setting of the address
keys. This address compare signal is routed to all
logic gates for use as a scope sync during mainte­
nance. The address compare signal is also routed
to the system console circuits where it may generate
a central processing unit halt signal depending on the
setting of the stop on address compare switches.

Bit positions 0-5 on the address OR are sent to
the invalid address detection circuits . The job of
these circuits is to signal "invalid address" whenever
a storage location not available on this particular
system is addressed. The bits used for detecting an
invalid address depend upon the particular main stor­
age configuration.

Key Gate

The key gate gates the four-bit storage protect fea­
ture key from the program status word or a four-bit
key plus a read-protect bit from general register R1
(Figure 5064). The program status word, bits 8-11,
is gated to the key OR on a central processing unit
store and a central processing unit fetch operation.
General register R1, bits 24- 28, is gated to the key

r

r

OR on a "sct storage protection key" (SSK) instruc­
tion.

The bus control unit receives a full byte (and the
byte-parity) from each of the two key sources. To
generate a parity- hit for the four or five bits sent to
storage, the bus control unit does an exclusive OR
of the ungated bits in the byte. The result, if a 1 bit,
means that an odd number of bits are being removed
from the byte, and therefore, the byte-parity bit
must be changed . The result of the exclusive OR on
the Wlused hits Is exclusive ORled with the original
byte parity to obtain the adjusted parity-bit. This
action inverts the original parity-bit when an odd num­
ber orbits arc being removed from the byte and leaves
the original parity intact when an even number of bits
are being removed from the byte . The adjusted
parity-bit [s s6nt to storage as the parity for the four
or five bits gated to the storage protect feature.

Adjusting byte parity based on bits removed (rom
the byte prevents correcting bad parity . U the byte
originally had good parity, good parity is sent to the
storage protect feature storage . U the byte had bad
parity , a wrong parity-bit is sent to the storage pro­
tect feature storage where it will be detected and a
parity error is generated .

During interrupts, the protection key is Inhibited
to store the old program status word. A key of all
zeros Inhibits key checking within the storage pro­
tect feature.

Key OR

The key OR gates either the channel key-bits or the
central processing unit key-bits to storage (Figure
5065). The gating lines which control this OR are
the same l ines that control the mark OR. Notice
that each position gates the no bit condition; outputs
of the OR are inverted before being sent to the stor­
age units.

Mark OR

The mark OR is an eight-bit plus parity bit OR
which is used to gate the mark register or channel
ffiarks to storage. The mark OR gates either the
central processing unit mark-bits (from the mark
r egister) or the channel mark- bits to storage on
store operations (Figure 5069).

Each position gates the no bit condition from
either the mark register or from the channel mark
bus. Inverters on the outputs of each position
change the no bit condition to the bit condition;
these Inverters also provide the driving power to
send the mark btt to the storage units.

VFL Byte Gates-LBG and RBG

• Data Input to VFL Circuits is through the LBG
and RBG.

• Op 1 data is gated from the K register through
the LBG ODe byte at a time.

• Op 2 data is gated from the K or L register
through the RBG one byte at a time.

Left Byte Gate (LBG)

The left byte gate (Figure 5049) consists of AND and
OR logic that provides a one byte data path from the
K register or from the digit buffer -digit counter to
the variable field length circuits. All data and
parity bits of the K register and digit bufCer-digit
counter are inputs to the left byte gate. The selec ­
tion of the register gated through the left byte gate
is determined by the set status of one of two gating
triggers, "gate T decode out" or "gate DB-DC to
LBG. "

The majority of the
gate Op 1 data bytes

from the K register through the left byte gate to the
variable field length circuits ODe byte at a time . One
of the eight data bytes in the K register is selected by
the T pointer through the T decode out circuits (Fig­
ure 5050). T decode out selection is enabled by the
on status of the "gate T decode out" trigger . During
the execution of variable field length instructions, the
T decode out trigger is set on during those cycles in
which a data byte from the K register is neededi
during other central proceSSing unit cycles, the T
decode out trigger may be reset .

Gate DB-DC to LBG Trigger: During certain cycles
of the execution of MVO, PACK, or UNPK instruc­
tions the data byte contained in the digit buffer -digit
counter is gated to the decimal adder through the
left byte gate . The set status of the "gate DB-DC to
LBG" trigger enables this gating . Therefore, the
gate digit buffer-digit counter to left byte gate trigger
is set and reset at various times throughout instruc­
tion execution time.

The gate T decode out and gate digit buffer-digit
counter to left byte gate triggers are mutually ex­
clusive; a set to ODe becomes a reset to the other
(KW 433) .

12-65 FuncdOllal Unlu 101

Left Digit Gate: The left digit gate (Flgure 5049)
provides a data path from the left byte gate to the
left input of the decimal adder. The left digit gate
is split to provide independent gating of the high
order digit and the low order digit.

Right Byte Gate (RBG)

The right byte gate (Figures 5051 and 5052) consists
of AND and OR logic that provides a one bytf~ data
path from the K or L register to the variable field
length circuits. All data and parity bits of the K
and L registers are inputs to the right byte gate .
The selection of the register and data byte gated
through the right byte gate is determined. by the set
status of one of two gating triggers, "gate K with S"
or ligate L with S", and the value (0-7) contained in
the S pointer .

In general, variable field length instructions gate
Op 2 bytes, one at a time , from the L register
through the right byte gate to the decimal adder or
the AND-OR-exclusive OR. When data bytes are
gated from the L register through the right byte gate,
the "gate L with S" trigger is set . When Op 1 and
Op 2 are both contained within the same storage
word, Op 2 data bytes are then gated. from the K
register through the right byte gate; in this case ,
the "gate K with S" trigger is set and "gate L with
SIt trigger is reset.

Gate L With S Trigger: The on status of the "gate L
with 5" trigger gates the data byte selected. by the T
pointer from the L register through the right byte
gate. For the majority of the 55 instructions, the
"gate L with S" trigger is set during the set-up
sequence; thereafter, it is reset or set at various
times depending upon the instruction and conditions
that arise during execution. For example, during
the execution of a decimal divide instruction the
"gate L with S" trigger is reset at the end of each
pass through the divisor, then set again just prior
to the start of the next pass . "Gate L with S" trigger
is always reset with E last cycle.

Gate K with S Trigger: The on status of the "gate K
with 5" trigger gates the data byte selected. by the 5
pointer from the K register through the right byte
gate. The "gate K with 5" trigger is set when the
next Op 2 byte to be processed is contained in the K
register; this condition occurs when both operands
or a portion of both operands are contained in the
same storage word (overlapped-see Overlap Control).
For certain variable field length instructions, an
overlap condition is determined during the set-up
sequence and the "gate K with 5" trigger is set at the
end of set-up or during iteration cycles . liGate K
with S" is set at the end of set-up when the starting

108 Sl-6S

byte of both operands are in the same storage word,
or during iteration sequence when the byte gating of
Op 2 moves into the same storage word from which
Op 1 bytes are gated.

The set condition of the "gate L with S" and "gate
K with S" triggers is mutually exclusive; therefore ,
the set of one trigger resets the other. "Gate K with
5" trigger is always reset with E last cycle .

Zero Detect--RBG

Correct execution of the AP , SP. ZAP, and TRT
instructions require zero detection of the Op 2 byte.
The Op 2 byte is zero detected at the output of the
right byte gate . As shown in Figure 5051 the zero
status of the high order digit and the lower order
digit from the right byte gate are AND 'ed. to set the
right byte gate zero detect latch. The right byte
gate zero detect latch is set during each central
processing unit cycle that both digits of the right byte
gate are zero. The on or off status of the right byte
gate zero detect latch determines the sequencing o(
certain phases of the above instructions.

During the execution of a TRT instruction, if a
non-zero function byte is encountered. (right byte gate
zero detect latch off), the mark sequence is entered
and the instruction is terminated.

During the execution of variable field length AP,
SP or ZAP instructions when all Op 1 bytes have been
processed. the right byte gate is zer o detected. If a
non-zero byte is detected, VFL T6 trigger is set to
cause an overflow interrupt to occur during the sub­
sequent SF sequence.

Zero Detect - VFL Result

Result bytes from the decimal adder or the AND-OR­
exclusive OR are gated to the K register by way of the
K in bus. To determine the zero or non-zero status
of the result byte, the eight data bit lines of the K in
bus are mOnitored during each central proceSSing
unit cycle in which a result byte is gated. AND and
OR logic (Figure 5053) performs the zero detection
and sets the variable field length result zero detect
trigger If the result byte contains one or more data
bits; the on status of the trigger indicates a non-zero
result, the off status a zero result.

The variable field length result zero detect trigger
is reset off the cycle following E last cycle or each
instruction; thus , the execution of each variable field
length instruction starts with the trigger reset . For
those variable field length instructions that require
zero detection of the result, the variable field length
result zero detect trigger is released during central
processing unit cycles that gate a result byte to the
K in bus. The first non-zero result byte gated. sets
the variable field length result zero detect trigger to

,
the on state. The trigger then remains on for the
remainder of the instruction execution , Certain
variable field length instructions interrogate the
status of the variable field length result zero detect
trigger and set controls that determine subsequent
sequencing. For example, if a complement add
operation is near completion, the status of the
variable field length result zero detect trigger and
the decimal adder carry trigger determines whether
a change sign or recompiement pass follows .

In general, all eight hits of the K in bus are zero
detected; however, Cor those variable field length
decimal instructions that gate a sign digit with the
first byte I zero decoding of the low order digit
(K in 4-7) is suppressed during the cycle that the
sign digit is included in the result byte.

REGISTERS AND BUFFERS

AB Registers

• The AB register is the main instruction buffering
unit.

• Both the SBO and J register have data paths to
the AB registers.

• The one output from the AB registers is to the
IOP register .

The AB register, to which the storage bus out (SOO)
latch output is connected, forms the main instruction
buffering unit. The AB register is two 64-bit (Plus
eight parity bits) registers which have identical data
inputs and are selected alternately to receive the
input data . Thus, there is an instruction buffering
capacity of two 64-bit words . The decision of which
register (A or B) the data are returned to is based
upon the address of the requested instruction . Even
addresses are returned to the A register and odd
addresses are returned to the B register . The set­
ting of the AB register is timed with a Late BR Clk
which is adjusted indiVidually for each of the four
boards containing the AB registers.

There are two data inputs to the AB register.
One from the storage bus out latch and the other
from the J register . The gate line which gates the
storage bus out data to the AB register is condi­
tioned when the J register gate line is not condi­
tioned' i.e., the J register gate line is the inverse
of the storage bus out gate line . The J register input
is needed during successful branch operations. It is
used to transfer preCetched branch operands, which
have been returned to the J register, back to the AB
register . See Figure 5054 .

There are two additional positions in the AB reg­
ister which are not part of the data path. These are

the A and B invalid tags . These register poSitions
are set when a fetch to the AB register is attempted
from a non-eXistant storage address. The data
which is placed in the AB register under these con­
ditions is not from storage but from the maintenance
panel keys . This data has no meaning and is used
only to prevent parity errors . These register posi­
tions may also be set from the J register on branch
operations and by scan controls.

ABORts

There is one output from the AB register. This
output forms the input to the instruction operation
register, which is a 32-bit (Plus four parity bits)
register used for first cycle decoding. Since the AB
register contains 144 bit positions and the instruction
operation register contains 36 bit poSitions, the
instruction operation register cannot accept the full
AB register at one time. Also, since instructions
may start at any haliword, facilities are provided for
gating from the AB register on 16-bit boundaries to
the instruction operation register. This means that
each instruction operation register position is able
to accept any one of eIght possible AB register bits.
To accomplish this, the input to each instruction op­
eration register position is the result of eight, two­
way AND's feeding two four-way OR 's, see Figure
5054, which in turn are dot-OR 'ed, which is in effect
an eight-way OR. There are eight gate select lines
which determine the 32 bits to be gated into the
instruction operation register. If the instruction is
in the RR format and only 16-bits are needed, the
second half of the instruction operation is ignored .

OOP Register

• The BOP register contains the op code, and the
Rl field.

• The BOP register is set at the beginning of the
second I cycle.

The buffer operation (BOP) code register is a 13-bit
register containing the eight-bit operation code, the
Cour-bit Rl field and the parity bit for the operation
code . The register contains the required information
to successfully complete the transition between the in­
struction (1) box and the execution (E) box instruction
execution. It is set at the start of the second cycle of
I t ime and remains valid as long as is necessary,nor ­
mally until the next set time. The contents are also
used for instruction executions within the I unit.

BOP Parity Check

The operation code, bits 0-7 of the instruction, is
checked off the buffer operation register. The
checking consists of a nine-way exclusive OR which

12-65 FUDCdonal Unib 109

generates an error signal that is sampled into a
trigger with an A clock pulse when the execution unit
starts the instruction. This checking station detects
an odd number of errors in anyone of the following
areas:

1. The storage data
2 . The AB instruction buffer registers
3. The AB gating to rop
4. The IOP register
5 . The data path from IOPto BOP
6. The BOP register
7 . The checking circuitry.

BR 1 Field Incrementer

The buffer operation register Rl incrementer is a
four-bit, plus 1 adder. The output is latched and
sets back into the BR 1 register on control from
the instruction box execution unit. During the Store
MPL instruction , the BR 1 field is continually in­
cremented for gating out consecutive r egisters from
the general purpose register stack. When the 8R 1
and m 2 compare circuitry signifies a match, the
Store MPL is concluded.

The incrementer consists of one level of parallel
carry lookahead logic to propagate carries into
each bit position followed by a two level exclusive
OR to generate the sum. The outpJ.t feeds a latch.
Overflow carries are ignored because a wrap­
around is desiredi therefore, an initial input of 15
generates a zero output. As mentioned , the BR 1
register sets on an A clock pulse. The latch control
is generated from a not B clock pulse so the latched
outpJ.t brackets the register set. (The latch is
released for the duration of the B clock pulse.)

Direct Data Register

• The direct data register is an eight-bit register
without parity.

• The direct data register is used during the write
direct instruction.

The direct data (~O) register is an eight-bit register
without a parity hit. The direct data register is used
as a storage device for placing a data byte on the
direct data out bus during the execution of the write
direct (WRD) instruction.

During the SF 4 cycle of the write direct instruc­
tion , a data byte from the left byte gate is gated to
the AND-OR-exclusive OR and the direct data reg­
ister . The direct data register is then released
during Seq Lth A time and is set at the following AR
c lock pulse(Figure DM5055). Because the direct data
register is not reset, data set into it by one write

110 9-65

direct instruction remains until the next write direct
instruction is executed .

EOP Register

• The EOP register contains the Op field to control
execution of the instructions.

The E unit operation (EOP) register is a group of
nine triggers including a parity trigger. The regis ­
ter contains the instruction operation code of the
instruction which the execution unit is executing or
about to execute. The register is set from positions
0-7 of the instruction operation register one cycle
before tbe first execution cycle. The outpJ.t of the
register is decoded in the E operation decoder
(EOP Decoder) and i s used to gate data depending
on the instruction .

ER 1 Register

• The register is a four-bit register which is set
from BR 1 at the I to E transfer.

• The ER 1 field specifies the GPR or FPR which
receives the result of the instruction.

The ER 1 register is a four-bit field and is set from
BR 1 when the instruction to execution transfer (I to
E transfer) occurs. The ER 1 field specifies the reg­
ister in the general I1lrpose or floating-point register
stack which receives the result of the instruction. A
register decoder is used to select the proper register
for in-gating. If more than one register is to be
used--LD MPL--the ER 1 field is incremented . The
setting of the field occurs on a B clock pulsei the BR
1 transfer occurs on an A clock p,Ilse. The ER 1 bits
are also compared with the R2 field of the Instruction
operation to determine the conclusion of the LD MPL
instruction.

ER 1 Field Incrementer

The ER 1 incrementer is used when more than
one general purpose register is stored during an
E box execution. The output of the ER 1 incre­
menter is returned to the ER 1 register and is
set on a B clock pulse. The field is incremented
for a put-away during the following central process­
ing unit cycle.

The implementation of the incrementer is exactly
the same as the one for the BR 1 register. It also
has a latched outputi the latch control is conditioned
by an A clock pulse which allows new data to be set
into the latch.

r

ER 1 Compare

The ER 1 field is compared to the R2 field in the
instruction operation register . A compare is re­
quired to signify the completion of the LD MPL
instruction. D.l.ring this execution , the storage data
is consecutively loaded into the general purpose
register selected by the ER 1 decoder until the
register specified by the R2 field is encountered.
The ER 1 field is incremented after each put-away ,
thus the compare line rises prior to the last cycle
control. The compare signal is latched with an L
clock pulse.

Exponent Register

• The exponent is an eight-bit latch register.

• The register has t\\Q input data sources.

• The register has three data outputs.

The exponent register (ER) is an eight-bit, plus
parity , latch register with inputs from the exponent
adder output latches (AEOB) and L register positions
8 -15. Figure 5056 shows the data flow into and out
of the exponent register; the register is set during
A clock time by the gating conditions shown in the
figure or by the scan word 12 and scan pJ.lse 2
during fault location test mode of operation . The
exponent register may contain an operand exponent
result sum or a result exponent difference during
floating- point instructions or a word count , which is
reset to zero during the variable field length set~p
sequence--Iogical instructions. During variable
field length logical instructions thc exponent register
is advanced by one each time a result word is stored.
Bits 9-15 of the L register are used during fault
location testing (FLT) operations to directly set the
exponent register when the gate, scan word 12 and
scan pulse 2, is conditioned.

The exponent register outpJ.t conditions the nor­
mal and the true/complement input of the exponent
adder, bits 56-63 of the floating-point registers,
and condition register bits 34 and 35 of the program
status word .

Figure 5056 shows the output gating for the ex­
ponent register . The register is gated out during
fixed-point, floating-point and variable field length
instructions . The exponent register output to the
condition register (bit 0) is gated at the condition
register, and the exponent register output to the
floating-point register is gated at the inpJ.t to the
floating-point register. The outputs to the exponent
adder normal and true/complement inputs are gated
at the outpJ.t of the exponent register.

In order to set a bit into the exponent register and
obtain an output from the AND circuits supplying
inputs to the exponent adder or floating-point regis ­
ters, the register bit latch must have a positive out­
pJ.t indicated by the name above each bit position.
To obtain a positive outIJJ.t from the exponent regis ­
ter latch, the input AND's are considered as -OR's
and the output OR's are considered as -AI circuits .

Assume the following conditions for exponent
register bit 0:

1. -AE bit 0 to ER Is negative,
2 . -L scan bit 08 is positive.
3. +release exp reg is positive,
4. -release exp reg is negative, and
5. The latch back is positive .

With these conditions, one inpJ.t for each of the -OR's
is conditioned. Since one input to each of the -OR's
is conditioned. the two inputs to the -AI are condi­
lioned . With the -AI inputs conditioned . the outp.1t of
the block is positive.

The positive output from the AOI block is inverted
by the invert block which conditions the latch back
circuits to the AOI. When the +release exp reg and
the -release exp reg inputs reverse their states, the
bit is retained in the latch regardless of the input
conditions on the -AI bit 0 to ER in(:Ut or the -L scan
bit 08 inpJ.t to the exponent register bit O.

With a bit in exponent register bit 0, any gate
(+gate ER to AE or +gate ER to AETC) allows the
content of the exponent register to be transferred to
the normal or the true/complement input of the
exponent adder. The. outputs to the condition regis­
ter and the floating-potnt registers are gated at their
respective registers.

Floating-Point Registers

• There are four floating-point registers.

• The registers have two inpJ.ts.

• The registers have three outpJ.ts.

• The register addresses are 0,2,4, and 6.

The four floating-point (FLP) registers each contain
64 data bits plus eight parity bits. Their addresses,
specified by the R1 and R2 fields in the instruction
format , are 0 , 2.4, and 6. Bits 0-55 are loaded
from the K register and bits 56-63 are loaded from
the exponent register by floating-point load, load
type, or arithmetic instructions .

The floating-point (FLP) register outputs are
gated to the registor bus latch (RBL), exponent adder
(AE). and sign control. The entire contents of the
floating-point register are gated to the register bus

9_65 FunctlozW Uniu 111

latch ; bits S6 ~3 are gated to the exponent adder,
and bit S6 is used in the sign control circuits ,

Figure SOS7 is the data flow into and out o(the
float ing-point registers, and the gating and selection
circuitry necessary to place data in the registers
or to transfer data out o(the registers, In Figure
SOS7, a typical bit position is shown (or the (our
floating-point registers with the E operation selec­
tion and E cycle timing used to gate data into one of
the (our registers during execution time of the
floating-point instructions. The outPJt gating and
register selection is controlled by instruction oper­
ation , buffer operation, the FR 2 trigger and the
floating-point out (FWUT) trigger being on . The
exponent, bits S6~3, i s gated either to the register
bus latch or to the exponent adder and is dependent
upon the gating shown in Figure SOS7 . Either bytes
0, I, 2, and 7 or bytes 0-7 are gated to the floating­
point register by the byte gating circuitry depending
whether the instruction format is decoded as float­
ing-point short operand or floating-point long oper­
and. The contents of the low order half, bits 24-SS,
o(the floating-point register are not changed during
short precision floating-point instructions .

When one or more of the bits are set in Figure
SOS7, a minus level is obtained at the output of the
latch register. In order to have a bit present on the
-FLP Bit 0 to RBL line the following conditions must
be present on the AND/OR feeding the output AND
circuit:

1. Assume the input AND's are negative OR's
and the OR is a -AI .

2 , Assume all positive gate out r egister lines
are minus except the line labeled +Gate Out Reg 0
Byte 0,

3. Assume a bit in minus Reg 0 Bit 0 Latch,
thus giving a minus Reg 0 Bit 0 level .
Therefore , each of the input AND's (-OR's) have a
negative input. With th.e negative input to each
AND (-OR) (our negative inputs to the OR (-AND) is
realized. With all inputs conditioned to the OR, a
positive level is obtained at the output . With a
positive output and a positive gate out Byte 0 to RBL
a negative FLP bit 0 to RBL is obtained . Likewise ,
if a bit is not present in the minus Reg 0 Bit 0 latch,
the AND (-OR) or the OR (-AN D) is not conditioned;
therefore, a negative level is obtained at the output
which indicates the absence of a bit in the addressed
floating-point r egister bit position.

In order to set a bit into floating-point register 0
bit 0, the following conditions must exist;

1 . +K Reg 00 to FLP is positive,
2. +Set Reg 0 Byte 0 i s positive,
3 . -Reset Reg 0 Byte 0 is positive, and
4. the latch back line is negative,

Since the upper AND circuit is conditioned, one input
to the OR circuit is also conditioned. The output

112 9-65

from the OR circuit is negative, and feeds the invert
block . The output of the invert block is positive and
places a positive level on the input of the latch back
line. The set and reset lines will return to the
oPPOsite states when the input gating conditions are
removed; however, this will not affect the output of
the latch even though the input data to the register is
removed. The only way to reset the latch is by
again conditioning the set and reset lines without data
being present on the line labeled +K Reg 00 to FLP.

General Purpose Registers

• There are 16 general purpose registers .

• The registers may contain operands, indexes,
addresses , counts, etc.

There are 16 general purpose registers (GPR), each
consists of 36 bits (32 data bits and four parity bits).
The general purpose registers may be specified as
operand locations for fixed-point arithmetic or they
may contain addresses, index quantities, counts, etc .
The 16 general purpose registers are selected on the
basis of the decoded outputs of various four -bit fields
in the instruction.

The general purpose registers are packaged on
(our boards. Each board contains four complete
registers. Board G-B3 contains general purpose
registers 0-3, G-B4 contains 4 -7 , G-C4 contains
8 -11 , and G-D4 contains 12-1S . With this layout the
even~d pairs of registers used in multiply , divide
and shifting are contained on one board . Selection of
the registers for in and out gating is Simplified with
this packaging scheme .

To Load a GPR

The general purpose registers are loaded from the
K register positions 0-31. Three conditions are
necessary to load a general register as shown on
Figure SOS8 . Condition I, a gate in timing (Early
B clock) is always available. Each board containing
four registers has its own clock line so that it may be
timed individually . Condition 2 , a gate control line
from the execution unit, is available at all registers
when anyone is to be loaded . Condition 3, is a reg­
ister select line (rom the ER 1 decoder . The line is
active when the particular register of the 16 regis ­
ters is to be loaded .

Specially wired select lines enable the scan con­
trols to gate the data in the K register to general
purpose register zero and general purpose register
four. This facilitates pattern testing of the address­
ing adder.

/

To Gate Out a GPR

As shown on Figure 5058, each general purpose
register bit feeds two output gates . These out gates
make up two busses; general bus left (GBL) and gen­
eral bus right (GBR). A single regIster may be
gated to both busses s imultaneously. The last level
of OR'ing for general bus left is done at one of the
addressing adder inputs, and general bus r ight is
s imilarly OR 'ed at a second input to the addressing
adder. Gated outputs from the above OR's are sent
to the register bus latch in the execution unit . The
gated output of general bus left goes to the register
bus latch bit positions 0-31 and the gated output of
general bus right goes to register bus latch 32-63.

To gate a general pJrpose register on to a bus, .
two conditions are necessary: a register select
line and a control signal . The register select lines
for general bus left are obtained from the decoded
outputs of either the B field in the instruction opera­
tion register or the R1 field in the Buffer operation
register. The register select lines for general bus
right are obtained from the decoded outputs of the
R2 (X) field of the instruction operation register.
A wired in shift of one from the RI field of buffer
operation register is also provided for gating odd
registers to the general bus right. For example,
if R1 = 2, the wired in shift selects general purpose
register three for out-gating to the general bus
right. For any instruction reqUiring an even-odd
pair of operands from the general purpose registers
(e. g . fixed-point multiply, fixed-point divide) the
operand at the odd address is obtained by the use of
the wired shift . Rl of the buffer operation register
contains the address of the even register in such
cases. There are four gate out control lines for
gating the four sets of select lines (R1, Rl + 1 ,
B and R2 (X» to the general purpose register s .
Each control line is !.SA'd to all four general pur­
pose register boards . Each gated select line
directly gates out one of the general purpose regis­
ters to either general bus left or general bus right .
General purpose register one and general purpose
register two have a special line to gate them on the
general bus left bus. These lines are used by the
execution unit during "EDIT AND MARK" and
"TRANSLATE AN D TEST" instructions.

Checking

There i s no checking performed in the general pJ.r­
pose registers . Data is checked at the source and
destination points. The general purpose registers
are indicated by gating them to the register bus
latch . The display general register and load general
register manual functions are done using normal se­
lect and control paths.

H Register

• The H register is used as an auxiliary address
register.

• The H register has inputs from the addressing
adder and the incrementer.

• The H register has outputs to the incrementer ,
compare circuits, chaMel controls, I and E unit
controls, interrupts , etc.

The H register is a 24-bit register used as an auxil­
iary address register. In branch operations, the H
register contains the branch address. In the incre­
menter, one is added to the contents of the H regis­
ter and the result is placed in the storage address
register for the the branch plus one fetch . U the
branch is successful, the H register contents are
transferred to the instruction counter register (lCR) .
During multiple load and store operations, the H
register is used in conjunction with the incrementer
to update the effective storage operand address. The
H register is used on shift instructions and variable
field length instructions for transferring operands to
the K register. On store instructions, the contents
of the H register are compared to both the contents
of the instruction counter register and to the
incrementer output. U either comparison is satis­
fied, a store has been made into the instruction
counter area, and re-fetching of the AB register
contents are required.

The H register, along with the instruction counter
register and the incrementer is packaged on three
boards . Bits 0- 7 and parity are on G-B1 , bits 8-15
plus parity are on G-A2 , and bits 16-23 plus parity
are on G-Al.

Inputs to the H register come from the addreSSing
adder and the incrementer. The adder bits are at
the end of an LSA chain and come to the H register
via the storage address register boards. The
incrementer bits are located on the same board as
the corresponding H register bits. Both inpJ.ts are
gated in at the H register at A time. See Figure
5059.

All 24 -hits of the H register are gated to the
incrementer . Bits 0-20 feed the program store com­
pare circuits for the comparison to the instruction
counter register and the incrementer . Bits 13 -23 are
selection hits for channel controls. Variable field
length and the execution unit receive bits 18-23 for
shift counts , byte addresses, etc. Bits 20-23 are
received by the instruction unit . Bits 20 and 23 have
latched outputs . Bit 23 's latched output is used by
interrupts and bit 20 's latched output is used by the
gate select mechanism.

lOP Register

• The lOP register is a 32-bit bipolar register.

• The lOP register has inputs from th e AB regis­
ter, scan, and the addressing adder.

• The lOP register output is decoded by the lOP
decoder.

The instruction operation (lOP) register is made up
of 32 bipolar data triggers, see Figure 5060. The
advantage of thc bipolar trigger is that both phases
of the output are available simultaneously. How­
ever, both phases of the data input lines and gate
lines are also required to successfully set the
triggers . The main input to the instruction opera­
tion register is from the AB register OR's. This
input is indicated at the output of the OR's and is
gated into the ins truction operation register with a
"set rop control" line. This gating line contains
a controlled A clock sample. A second input to the
instruction operation register is the scan input.
The data Cor the scan inp..lt comes from the J regis­
ter bits 0-35 during fault location test mode of
operation. J re~:ister bits 0-31 supply inputs to scan
inputs 0-31 respectively of the instruction operation
register, and J register bits 32 -35 are the inputs to
the four paJ:ity poSitions of the instruction opera­
tion register. These inputs are gated with the scan
gate line which is conditioned at scan word two ,
pulse two during the scan operation as previously
mentioned.

A third input is present on positions 8 -15 of the
instruction operation register. These hits are from
the input of the addressing adder positions 24-31,
and are gated inlo the instruction operation register
on an execute instruction. These bits are, in eUect,
ORred with the Rl field and the X field of the sub­
ject instruction, which in turn changes the designa­
tion of the referenced general purpose register.
Since the execute bits are OR 'ed with the instruction
operation register bits only the positive phase of
these bits are used. Thi s is because the bits in the
instruction operation register may be changed from
zero to one by the execute bits but never from one to
zero .

Decoding of the instruction operation register is
done over several fields: the operation (OP) field
(bits 0-7), the R2 or X fi eld (bits 12-15), and the B
field (bits 16-19). The 0 field (bits 20-31) is not
decoded but instead is gated to the addressing adder
for use in address modification. Two parity bits
(P20-23 and P24-31) are used for checking this
field in the adder . The R1 field (bits 8-11) i s not
decoded from th e instruction operation r egistet· .

114 9-65

All first cycle decoding and some second cycle
decoding for the instruction box is decoded from
the instruction operation register. A small amount
of pre-decoding is done from the output of the AB
OR's for use by the instruction counter .

The decoding of the R2 or X field and the B field
is identical. Each four bit field is decoded in two
levels to form sixteen lines to select one of the 16
general purpose registers. These fields are also
tested for an all zero condition.

Parity for bits 20-23 of the D field are generated
because the parity accompanying the data to the
instruction operation register is for the eight bits
16-23. This parity Is generated by generating parity
for bits 16-19 (B field) and combining thi s parity with
the eight bit parity with an exclusive OR. The result
is the parity for bits 20 -23.

GPR Out-Gating Controls

All output gating from the general purpose registers
is controlled in the instruction unit. Instructions
may call for general purpose register fetches from
anyone of the following fields- -R1, R2 (or X) , B,
or the implied R1 plus 1. These four-bit fields are
decoded and select the proper register when an out­
gate control is raised. All fetches are made during
one of these sequencing cycles--T1 . T2, GROUT
(general regIster out), or under variable field length
control .

DJring the 1'1 cycle, an address calculation, or in
some cases , an add for an operand quantity , is made.
In this cycle, the R2 or X field or the B field or both
may be requested. For RR format or RX format
instructions , the general purpose register specified
as the R2 (or X) field is a lways gated to the adder .
For all non-RR format instructions, the B register
is gated . U the particular field is all zeros, this
implies that no register is required for address cal­
culation . The registers selected by the decoded field
are gated through the addreSSing adder and, when
required, the adder sum is set into the storage ad­
dress register and the H register. One or more
registers are always gated to the adder during the
1'1 cycle whether any are requir ed or not. The for­
mat decoding and the zero conditions mentioned are
performed directly from the instruction operation
register rather than the instruction operation decod­
er to obtain a speed advantage in the cycle .

The 1'2 cycle of I time represents the pre-Cetch
cycle. Operands are obtained from storage or
from the general purpose registers and the fioating­
point registers. These registers are gated to the
register bus latch for use by the execution unit. In
all cases, two registers are gated out of the general
purpose regi s ter stack . U the instruction is not

r

floating-point, then the general purpose register
busses arc gated to the register bus latch. One of
the registers corresponds to tbe Rl field; the other
is either R2 or Rl plus 1. In the RX format and the
RM SHFT instructions Rl plus 1 is gated out; in the
others, R2 is gated .

Following the two~ycle instruction time, all
further general purpose register operand fetches
are controlled by the general r egister out-gate
trigger (GROUT). As in the pre-fetch cycle there
are always two registers gated out. One of these
registers is always HI; the second register is RI
plus 1 except for RR format FX MPY and RS format
BR ON Index instructions when R2 is required.
General register out-gate trigger is also used to
gate the registers to the execution unit.

Ouring variable field length executions the
instruction box has the function of addressing stor­
age for the required operands. A variable field
length control line is used to maintain the B field
input to the adder for calculating these addresses.
The registcr designated by the B field (except
general purpose register zero) is constantly added
to a 12-bit field in the instruction operation and to
a length originating in the execution unit. When
needed, the adder output is set into the storage
address register and the storage operation is ini ­
tiated.

Associated with the general purpose register
controls is the D field control. This line gates the
12-bit displacement field to the addressing adder.
In most applications the same timing as the B field
exists. The variable field length control mentioned
above always gates this fie ld and Tl does for all non­
RR format instructions .

There is one special case which occurs during the
Execute instruction. Bits 24-31 of the contents of
the general purpose register specified by Rl are
OR 'ed in instruction operation with bits 8-15 of the
subject instruction. To implement this OR'ing,
general register out-gate trigger is set to gate out
R1 and T1 is set to allow the initial instruction
operation set. This is the only case when general
register out-gate trigger and a sequencer are both
on . To prevent the subject instruction from affect­
ing the gate out of RI (because TI is on) a special
line is required which blocks the B gate control.
This B inhibit is necessary since both Band RI use
the same data path. The R1 register bits are ORted
into instruction operation and, after another TI cycle,
the instruction processing continues with the T2
cycle .

When the machine is not under program control,
it is possible to display anyone of the general pur­
pose registers with a special control. This DSPLY
GPR line forces the RI gate out and also forces the
gate to the register bus latch. Four register select

lines choose one of the 16 general p.1rpose registers
for display. A similar scheme is employed for
displaying the floating-point registers .

The gate control to register bus latch mentioned
above is also located in the instruction decode logic.
This line gates the two 32-bit general p.1rpose regis­
ter busses, located at the adder inp.1t, to the regis ­
ter bus latch in the execution unit. The control is
raised during the T2 cycle on all non -Cloating-point
instructions , when general register out-gating
trigger is set, when the general purpose register bus
is displayed, and when the adder input is displayed
(also under manual control) .

Invalid Operation Detection

Part of the instruction operation decoder is reserved
for the invalid operation detection. The output
represents all the unassigned operation codes for the
machine. II any of these codes appear in the instruc ­
tion operation register, the output raises and a pro­
gram interrupt is initiated .

The decoding is four level AND-OR-invert logic
as in the instruction operation decoder . All the
unassigned codes in each format are generated and,
in the final level, they are ANDted with their respec­
tive formats . The output is also used to prevent
sampling the adder error line to insure that no
machine check results from an invalid operation
code .

Addressing Compare

Due to the overlapped instruction-execution operation
of the system, it is possible for the instruction unit
to require a general purpose register which the exe­
cution unit may be loading during its previous instruc­
tion. This condition exists during the T1 cycle in the
instruction unit when the effective address is com­
puted. The conflict occurs on register specified as
the R2 (or X) and the B fields, since these are the
ones used for address addition on the first cycle.

Compares between these fields and the Rl field
of the buffered operation register are made , and the
outputs are gated with control lines associated with
instruction unit and execution unit operations . The
instruction unit determines which r egisters, if any,
are required during the first cycle. The R2 (or X)
field is used for RR format branch and all RX format
instructions; the B field is needed for all RX format
and RS format instructions. The buffered operation
register, during the T1 cycle, contains the operation
code of the previous execution instruction . Buffered
operation decoding determines whether a putaway
into a general purpose register occurs and also
whether there is a coupled register (even-odd) p.1t­
away as in FX MPY and SHFT DBL. In this

9-65 FUDctlOtl~ Unit, 115

instance, the odd-even field bit does not participate
in the compares .

The final output--CMP BLK--prevents the
instruction unit from continuing with the instruc­
tions until the putaways are complete . The output
is latched with an A clock pulse.

A compare has no significance if the field con­
tains all zeros s ince general purpose register zero
cannot participate in the address calculation.

The compare between the Rl field of the buffer
operation register and the R2 field of the instruc­
tion operation register is also used to control the
ending of the store multiple instructions. This
compare line also is sent to the execution area of
the instruction unit and is latched with an A clock
pulse.

The compares are implemented by a bit-for-bit
exclusive OR which determines equality. followed by
a four-way AND to combine the bits of the field .

rop Parity Check

Bits 8-15 of the instruction operation register are
checked each time a new instruction enters the
instruction unit. A nine-way exclusive OR checks
Ute parity of the instruction operation bits and
generates an error signal which is sampled into a
trigger when a sequencer, 1'2, is set .

J Register

• The J register receives operands from storage,
GPR. and FLP registers.

• The J register has outputs to RBL. AE , AM,
and multiplier decoding .

• Quotient insertion logic i s used with bits 59"'{)3
of the register .

The J register (Figure 5OS1) is a 64 data bit plus
eight parity bit register . The register receives
operands [r')m core storage, the general purpose
and floating-point registers via the register bus
latch, and from the divide quotient insert logic. The
J register has outputs to the main adder, exponent
adder , multipli er decoder and the register bus latch
register . The output of the J register to the register
bus latch is an automatic left four shift while the
input from the register bus latch to the J register is
either straight or a right eight shift. This arrange­
ment of the left [our shift and the right eight shift
to the register bus latch register and return allows
for shifting the divide instructions quotient left four
and shifting the multiplier right four (left [our shift
to register bus latch and right eight shift to the J

116 12.-65

register gives a net result of a right [our shift) for
each iteration cycle.

During divide instructions, the J register is used
to assemble the quotient which is transferred to the
K register via the main adder for storing into a
general purpose register or floating-point register
during put-away time . The J register contains the
multiplier during multiply instructions. Bits 27-31
or bits 59-63 are used to decode which multiple will
be added to the partial product located in the K
register .

The J register also has zero detection circuits
for detecting zero operands during instruction exe­
cution . II a zero operand is detected, specific
operations occur to indicate this zero condition . For
the operations that occur because of the zero oper­
and conditions, refer to theory of operation section
associated with each instruction.

Figure 5061 is layed out with all release (input)
controls on the left hand side, the register is con­
tained in the next section (only partial register repre­
sentation is shown) and the right hand section shows
the out-gating conditions.

K Register

• The K register is used as a result and storage
register .

• The K register has outputs to the main adder.
register bus latch, noating-point registers, and
the general purpose registers .

The K register (Figure 5062) is a 64 data bit plus
eight parity bit register which is used as a result
register during arithmetic operations and as a tem­
porary storage register. It has inputs from the main
adder, the variable field length circuitry, and the
instruction unit incrementar. Outputs from the K
register are to the main adder, the register bus latch,
the variable field length circuitry , the general pur­
pose registers. the floating-point registers and to the
storage bus in (SBI) for transferring data to core
storage .

The four high-order positions of the K register
have gates to the main adder from the convert to
binary instruction . The result of the main adder is
parity checked from the K register.

The K register has zero detection circuits for de­
tecting zero operands during instruction execution .
If a zero operand is detected, specific operations
occur to Indicate this zero condition. For operations
that occur because of the zero operand conditions,
refer to the theory o[operation section associated
with each instruction.

Figure 5062 is layed out with all release (inp.tt)
controls on the left side of the figure. The register

is shown in the next section to the right of the
release controls, and the partial register positions
is followed by the output gating circuitry associated
with out-gating for the K register .

Key Buffer Register

• The key buffer register is five bits plus parity.

• The key buffer is used on the insert key (ISK)
instruction.

• The key buffer register buffers the key fetched
from SPF.

The key buffer register hOlds the storage protect
feature (SPF) key enroute from the storage protect
feature storage to general purpose register Rl on
an insert storage key (lSK) instruction (Figure
5063). The key buller contains five bits plus a
parity bit. The five bits consist of a four -bit stor­
age protect key and a read-protect bit. The output
of the key buffer register is to the AND-DR-exclusive
OR where zeros are added to make a full byte . From
the AND-DR-exclusive OR, the byte containing the
key is routed into bits 24-31 of the K register. From
the K register. the key is set into bits 24-28 of gen­
eral purpose register HI along with the added zeros
which are set into the remainder of the byte.

L Register

• The L register is used in multiply, divide, and
convert instructions.

The L register (Figure 5066) is another 64 data­
bit plus 8 parity-bit register. The register contains
the Xl2 multiple of the multiplicand during multiply
instructions, the X 3/2 multiple of the divisor dur­
ing divide, and the operands for the convert instruc­
tions. The L register is set from the main adder
and has outputs to the main adder and the variable
field length section.

LCOP Register

• The LCOP register contains the Op field to con­
trol the execution of instructions .

The last cycle operation (LCOP) register is a group
of nine triggers including a parity trigger. The
register contains the instruction operation code of
the instruction which the execution unit is executing.

The last cycle operation register is set from the
execution unit operation register at the beginning of

the first execution cycle. The output of the register
is decoded and used for gating of data pertinent to
the instruction.

M Register

• The M register is used primarily to receive
operands from the GPR and FLP registers.

The M register (Figure 5067) is a 64 data-bit plus
8 parity-bit register in the execution unit. One of
its prime purposes is to receive a pre-fetched
operand from the general purpose registers or
from the floating-point registers at the beginning of
the first execution unit cycle. The operand is re­
ceived from the general purpose or floating-point
registers via the register bus latch.

The M register also has an input from the main
adder in addition to the inp.1t from the register
bus latch. The outputs of the M register are to
the main adder and the exponent adder. The M
register contains the divisor for divide and the
multiplicand for multiply instructions. The out­
gates to the main adder do bit shifting, generate
multiples of the multiplicand, and generate multi­
ples of the divisor . The high order five bits have
an output to the divide decoder . The high order
three digits of the M register have a zero detect
circuit which is used for normalizing floating­
point numbers.

Figure 5067 shows the release (input gating) logic
on the left side followed by the partial representa­
tion of the register bits. On the right side of the
figure are the output gating circuits.

Mark Register

• The mark register is e ight-bits plus parity bit.

• The register holds the CPU mark bits.

• The register sets either two adjacent bits at a
time or one bit at a time by VFL.

The mark register holds the eight central processing
unit mark bits used for central processing unit store
operations (Figure 5068). The register is set by
either of two sets of inputs. For instructions which
store halfwords (two bytes) or multiple halfwords
(words, double words), the s tore data follows the
address boundary rules. These instructions use a
set of four input lines to the mark register. Each
of these four lines set two adjacent bits in the mark
register . Where a single byte is to be stored, or a
variable number of bytes which do not necessarily
follow the halfword boundary rules, the eight
variable field length input lines are used. Each

12.-65 FlmCtiOllai Units 117

input line sets one mark bit; however, only one of
these lines is active on anyone cycle.

The mark register holds the mark bits for an
indefinite period of time. The register is reset only
following a central processing unit store operation
(or following a test and set operation) which means
its contents have just been used. For example,
assume that three bytes are to be stored. Preceding
the store request, the three appropriate mark bits
are set, one at a time. There may be any number
of machine cycles from the time that the first mark
bit is set until the third mark bit is set. Again, any
number of cycles may elapse from the time the
third mark bit is set until the store request signal
is sent to the bus control unit. Meanwhile, cen-
tral processing unit fetches can be made and chan­
nels can both store and fetch without disturbing the
mark register. Only after the central processing
unit store operation is started and the mark bits are
sent to storage is the mark register reset.

The mark register parity-bit is turned on when
the register is reset. This gives correct odd-parity
for an empty register. The parity-bit is not
cha.t\&ed when the four-line input is used to set mark
bits because the bits are always set in multiples of
two. When the eight-line input (variable field
length) is used, the parity-bit is complemented
(changed) each time a mark bit is set.

Notice that the active condition sent to the mark
OR is "Mark Bit X'" 0" (Figure 5068).

Program Status Word

• The PSW is a 64-bit data register plus 8 parity ­
bits.

• All bits in the PSW have an input from the J
register.

The program status word (PSW) is a 64 data bit
plus eight parity bit register , the contents of which
are used to control instruction sequencing and to
indicate the central processing unit status. The
higil-{)rder 40 bits (bits 0-39) are used to control
or indicate the various central processing unit con­
ditions. The low-{)rder 24 bits (bits 40-63) contain
the instruction counter register (leR).

The 64 program status word bits are packaged
on five different boards. Bits 0-23 and 32-39 are
on board 0IG-B2. Bits 24-31 are located on
board 0IH-D3. Bits 40-47 instruction counter
register 0-7) are on 01G-B1, bits 48-55 (instruc­
tion counter register 8-15) are on OlB-A2 and
hits 56-{i3 (instruction counter register 16-23) are
located on 01G-Al .

118 12_6S

All 64 program status word bits have an input
from the J register. These bits are gated at the
program status word. Program status word bits
8-31 and 40-63 have gates to the incrementer on
their output. Bits 0-7 and 32-39 have un-gated
outputs to the incrementer extender. During a
"load PSW", the new program starus word is sent
to the incrementer for parity checking. The pro­
gram status word passes through the incrementer
to the K register on a "store PSW" instruction.

The first byte of the program status word con­
tains the system mask which is used to control
channel and external interrupts (Timer, Console).
When a mask bit is zero, the corresponding source
cannot interrupt the central processing unit. When
a one, the source causes an interrupt. Bit 0 , the
multiplex channel mask bit, is not used in the 2075.
Bits 1-6, the selector channel mask bits, have un­
gated outputs to the channel interrupt controls.
Bit seven is the external interrupt mask bit and has
an ungated output to the instruction unit controls.
See Figure 5070.

Program status word bits 8-11 fonn the storage
protection tag for central processing unit store
operations. These bits have an ungated output to
the central processing unit tag OR'ing circuits. See
Figure 5071.

Program storage word bit 12 Is the ASCII mode
bit. The sign and zone codes generated for all deci­
mal arithmetic results differ for the extended binary
coded decimal interchange code (EBCDIC) and the
American Standard code for information interchange
(ASCII). When bit 12 is zero, the preferred EBCDIC
codes are generated; these are plus, 1100; minus,
1101; and zone, 1111. When bit 12 is one, the pre­
{erred ASCII codes are generated; these are plus,
1010; minus, 1011; and zone, 0101 (Figure 5088).

Program status word bit 13 is the machine check
mask bit. When this bit is a zero machine check
interruptions are not taken. When bit 13 is a one,
machine check interruptions occur. This bit has an
ungated output to the power distribution unit (PDU)
check controls. See Figure 5072.

Program status word bit 14 is the wait status bit.
Bit 14 being a one indicates that the central process­
ing unit is in the wait state. Otherwise the central
processing unit is in the running state. Bit 14 has
an ungated output to interrupt controls and an un­
gated output to the instruction-execution (IE) con­
troIs. See Figure 5072.

Program status word bit 15 is the monitor stale
bit. When bit 15 is a zero, the central processing
unit is in the monitor state. When a one, the cen­
tral processing unit is in the problem state. This
bit has an ungated output to the instruction unit con­
troIs. See Figure 5072 .

Progl'am status word bits 16-31 are reserved for
interrupt codes, They identify the cause of an
input/ output, program, monitor call or external
interruption, Bits 16-20 have no specUlc code as­
signed to them and they are reset on any interrupt,
Bits 21-23 identify the channel causing the inter­
rupt. They have an input from the channel inter­
rupt controls. This input is gated in at the program
status word. See Figure 5073. On channel inter­
ruptions, bits 24 -31 contain the channel unit address.
Other interruptions set an identifying code into bits
24-31. Bits 24-31 have various inputs, all of which
are gated in at the program status word.

These inputs are:
1. Channel unit address, bits 24-31.
2 , Buffered operation register bits 8-11, bits

24 - 27,

3. Instruction operation register bits 12- 15,
bits 28-31.

4. External interrupts, bits 24-31.
5. Execution unit interrupts, bits 28-31.
6. Instruction unit interrupts, bits 28-31.
There is a gated OR in front of bits 24-31 to

handle all the various inputs. See Figure 5074.
Program status word bits 32 and 33 preserve the

length code of the last instruction. Preceding these
bits is a decoder which takes buffered operation
register bits 0 and 1 and generates the proper
length code for gating into the program status word,
See Figure 5075.

Program status word bits 34 and 35 are the
condition register, The channel and the execution
unit inputs to these positions are received through
gated OR's in front of these bits. Bits 34 and 35
also have inputs from the general bus left bits 2
and 3. These bits are used on ''Set Program
Mask" instructions. See Figure 5076,

Program status word bits 36 -39 are the four
program mask hits. When the mask bit is a one.
the appropriate program exception causes an inter­
rupt. When the mask bit is zero , no interrupt
occurs. Bits 4 -7 of the general bus left are set
into bits 36-39 during a "set program maskl1 in­
struction. These bits have ungated outputs to the
execution unit interrupts, See Figure 5077.

Program status word bits 40-63 are the instruc­
tion countcr register bits 0-23. Instruction
counter register bits 0-19 and bit 23 have inputs
from the incrementer. These bits are gated in at
the instruction counter register. Instruction
counter register bits 20-22 have inputs from the
gate select register which are also gated in at the
ins truction counter register. Bits 0 - 20 have un­
gated outputs to the program store compare cir ­
cuitry. Bits 20-22 have ungated outputs to the gate
select adder. The parity bit for instruction
counter register byte 16-23 has inputs from both

the gate select register and the incrementer.
These inputs are gated in at the instruction counter
register. The parity bit for bits 16 -23 has an un­
gated output to the gate select adder, See Figure
5078.

Register Bus Latch

• The RBL is a 68 data bit latch.

• The RBL buffers operands for one cycle.

• The RBL has inputs from GPR, FLP, J, and K
registers.

• The HBL has outputs to the J and M registers.

The register bus latch (RBL) is a 68 position, plus
eight parity bits. latch. The primary use of the
register bus latch is a buffer for operands from the
floating-point registers, the general purpose
registers, or data from the K register and the J
register.

Figure 5079 is the data flow into and out of the
register bus latch. When the contents of the J
register are gated into the register bus latch, an
unconditional left four shift is taken. Figure 5079
shows the J register position zero is gated into
register bus latch position -4 and J register posi ­
tion 63 is gated into register bus latch position 59
everytime the J register is transferred to the regis­
ter bus latch.

The K register and the floating-point registers
are gated straight to the register bus latch, and the
general purpose registers are gated to register bus
latch positions 0-31 or 32-63. The addressed
general purpose register is 32 bits in length.
Therefore, some instructions place the contents of
an addressed general purpose register into the high­
order positions (bits 0-31) of the register bus latch,
and other instructions place the contents of an
addressed general purpose register into the low­
order positions (bits 32-63) of the register bus latch ,
or one general purposc register may be placed into
each hali of the register bus latch depending upon
the instruction being performed .

The output from the register bus latch gates data
to the J register and the M register. The transfer
from the register bus latch to the J register is
either a s traight transfer or a right eight shift trans­
fer as shown in Figure 5079, With the left four
shift on, the transfer from the J register to the
register bus latch and the right eight shift from the
register bus latch to the J register, the next digit
is placed into position for gating to the multiplier
digit latches to allow the next multiplier to be de­
coded during multiply instructions. The left four

9-65 FW1(:tiouai Units 119

shilt on the transfer of the J register to the register
bus latch combined with the straight transfer from
the register bus latch to the J register during
divide operations allows shilting the partial quotient
left four bit positions to provide space for the next
quotient digit to be gated into bits 59-63 of the J
register.

During floating-point operations, the exponent of
the float ing-point data word is located in bits 56-63
of the floating-point register. During the transfer
of the contents of the floating -point register to the
register bus latch, the exponent is transferred to
positions 56-63 of the register bus latch and the
fraction is t ransferred to positions 0- 55 of the
register bus latch in a straight transfer. However,
during the transfer of the register bus latch regis­
ter to the J register, during instruction time of the
floating-point instruction , the exponent and fraction
are shilted right eight bit positions in a closed loop
operation. This operation is shown as a RBL to
J RT 8 Ring ReI J operation in Figure 5079. At the
end of this transfer, the fraction is located in bit
positions 8-63 of the J register, and the exponent
is located in bits 0-7.

In order to set a bit into any position of the
register bus latch, the ANO-QR circuit labeled
+RBL 00 is considered in the following way: the
input AND circuit is considered as a -OR and the
output OR is considered as a -AI. This method of
looking at the AND/OR circuit for RBL 00 applies
to all bit poS itions of the register bus latch.

For discussion purposes, lets assume a bit is
transferred from a floating-point regis ter to the
register bus latch. Considering the inputs to the
AND circuits (-OR's) , the following conditions are
present:

1 . -J04 to RBL 00 is positive.
2. - KOO to RBL 00 is positive.
3. -FLP bit 0 to RBL is negative.
4. -Gen Reg 00 to RBL 00 is positive.
5. -Loc k RBL 0-7 is positive.
6. +Lock RBL 0-7 is negative.
7. The latch back line is positive.

With these conditions present at the input to the
+RBL 00 latch , one input of each of the AND circuits
(-OR's) is negative.

Next, considering the OR circuit (-AI); both in­
puts to the OR (-AI) circuit are negative; there­
fore, a positive output is obtained . The positive
output is inverted by the inverter and a negative
level is obtained on the latch bac k line. When the
-Lock RBL 0-7 line and the +Lock RBL 0-7 line
return to the indicated conditions, the bit trans­
ferred from the floating- point register to the regis­
ter bus latch is locked into the register bus latch.
The register bus latch is reset when the lock line

120 12.-05

conditioning levels are reversed and a bit is not
transferred to the register bus latch from another
register. This condition exists on the follOWing
clock cycle because the -Lock RBL 0-7 line and
the +Lock RBL 0-7 line are L running clock pulses;
therefore, data are retained in the register bus
latch for one clock cycle.

From Figure 5079 it is seen that any condition
which gates the contents of the register bus latch to
the J register also conditions the line labeled +Rel
J. The only other condition which release the J
register so that data is placed into it is the J ad­
vance pulse which is conditioned when data are
returned from storage to the storage bus out
register then to the J register.

Return Address Registers

• The return address registers are six position
registers used to route data and error indications
to their proper destinations.

• The two return address registers (X and Y) are
used alternately on 2365 s torage selections, and
are necessary because of overlapped storage
cycles.

• The positions in each register are A, B, J,
Channel, Invalid, and Diagnose.

• The X-Y binary trigger controls the input gating
to the return address registers.

• The W-Z binary trigger controls the output gating
from the return address registers.

The X and Y return address registers are used
alternately on 2365 s torage selections to route data
and error indications to the proper destinations .
Two registers, used alternately, are necessary
because of overlapped storage cyc les. Each register
has six positions (no parity).

The bus control unit sets one or more positions
in a return address register wherever a select is
sent to storage; the set positions subsequently
route the storage "advance" pulse to the proper
destination. Return address register positions are:

A; Set on even-word instruction buffer fetches;
returns double-word to the A register.

B: Set on odd-word instruction buffer fetches;
returns double-word to the B register.

J: Set on operand fetches; returns double-word
to the J register.

Channel: Set on channel fetches and stores;
returns storage advance signal to channel.

r

•

Invalid: Set when the bus control unit receives
an invalid address (one outside the available stor­
age) on central processing unit Cetches on channel
fetches or stores. Result: storage Is cancelled
and storage advance is routed to set A invalid, B
invalid, J invalid, or to send the invalid address
signal to channel.

Diagnose; Set on diagnose instructions to gate
fetched word into the maintenance control word
(MeW) register.

The X-Y binary trigger controls input gating to
the return address registers (Figure 5080). When
a storage select ion is made, the "positive select
out" signal and a B rwming clock releases the
return address register pointed-to by the X-Y trig ­
ger. The "positive select out" signal is delayed to
switch X-Y after the register has been locked.

The W-Z binary trigger controls output gating
from the return address registers. The "advance"
from storage is routed according to the positions set
in the return address register pointed-to by W-Z.
The W condition of W-Z points-to the X return ad­
dress register; the Z condition of W-Z points-to the
Y return address register. The "advance" from
storage is delayed to switch W-Z after the undelayed
"advance" has been routed according to the return
address register positions set.

The rebJ.rn address register mechanism operates
on all storage selections; however, no return ad­
dress register positions are set on central process­
Ing unit store operations.

Storage Address Register (SAR)

• SAR is a 24-bit plus three parity-bit register.

• SAR holds CPU storage addresses .

• SAR is set from AA or incrementer.

• SAR feeds the address OR.

The storage address register is a 24-bit plus three
parity -bit register with positions 0-23 (Figure
5081) . The central processing unit (instruction
unit and execution unit) puts the desired address into
the storage addr ess register for all central process­
ing unit storage operations. The storage address
register is set from either the addressing adder or
the incrementer. The addressing adder sets the
storage address register when an effective address
is calculated. The incrementer sets the storage ad­
dress register for instruction cOWlter retches and [or
multiple fetch operations. Notice that the addressing
adder bits 8-31 set storage address register bits 0-23.

The on ly output of the storage address register is
to the addressing OR which gates either the address

in the storage address register or the address on the
channel address bus (CAB) to main storage.

Each bit position of the storage address register
is a polarity hold device release by a special early L
clock pulse. Input bits to the storage address regis­
ter are not necel3sarily good at release time. The re­
lease is timed to allow the storage address to now
from the addressing adder or the incrementer through
the storage address register to the address OR. All
bits are good at lock time (end of the release pulse)
so that the storage address register holds the stor­
age address until the address is set into a memory
address register in storage.

A separate s torage address register release (not
shown in the figure) is provided for fault location
test scan-in. During scan-in, the data input is
through the incrementer.

SAR Duplicate

• Duplicate 8AR positions 0-6 and 19-20.

• Duplicate 8AR is set in parallel with SAR.

• The output of duplicate SAR are good sooner than
8AR bits.

• Duplicate 8AR outputs are used to direct a select
pulse to the proper storage unlt.

Nine positions of the storage address register are
dUplicated in the duplicate storage address register
(dup SAR). The poSitions are 0-6 and 19-20 (Figure
5082). The duplicate storage address register is
used by the bus control unit to generate a storage
select pulse and is phYSically closer to the bus con­
trol unit selection circuits than the storage address
register. By using a separate register for the se­
lection bits, the bus control unit receives these bits
prior to the time when they would otherwise be avail­
able. This fast decoding of selection bits is necessary
because the central processing Wlit may set the stor­
age address register on the same cycle that a storage
request is made; If the requested storage is not busy
and there is no interference from channels , the bus
control unit selects storage on this same cycle .

Bits 5 and 6 are included in the duplicate storage
address register because of the address switching
maintenance feabJ.re. This feature allows switching
of address bits to help isolate core storage failures .
Address switching is described in the bus control
unit theory of operation section.

The bit positions of the duplicate storage address
register are two-way input polarity hold devices
identical to the storage address register bit positions
(Figure 5081) .

12-65 Functional Units 121

Storage Bus In (SBI) Latch Register

• The SBI is 72 bits wide.

• The SBI is set from the K register or channel SBI.

• The SBI feeds each 2365 storage unit.

The storage bus in latch register holds the 64-bit
plus eight parity-bit word enroute to storage on store
operations (Figure 5084). The storage bus in
latch is set from the K register on central process­
ing unit stores and from the channel storage bus in
on channel stores. Outputs of the storage bus in are
to the 2365 storage units A, B, C, and 0 (J75).
Another storage bus in latch register output bus is
routed to the large capacity storage (LCS) units if the
system has onc or more of these storages .

Bit positions of the storage bus in latch register
are two-input polarity hold devices released early
in the cycle following a store select cycle.

The inhibit storage bus in trigger (Figure 50S4)
insures that the storage bus in cannot be changed
again on the cycle following a release pulse (Sm data
is always good for a minimum of two machine cycles).

Storage Bus Out (SOO) Latch Register

• The SBO is a 72-bit register.

• The SBO buffers fetched storage words.

• The inputs to the SBO are from storage A, B, C.
D, and PDU pre -OR.

• The outputs of the SBO are to A, B, J, and chan­
nel SBO.

The storage bus out latch register holds the 64 -bit
plus eight parity-bit word enroute from storage to
the destination register on fetch operations (Figure
50S5) . Five inputs are OR'ed at the storage bus out
latch: storage A SBO, storage B SBO, storage C
SBO, storage D SBO, and the output of the system
console (PDU) pre-oR. The power distribution unit
pre-oR output contains either the system console
data keys (panel keys) or the storage bus out from
optional large capacity storage units.

The storage bus out sets either the J register
(operand fetches), the A or B r egIster (instruction
counter fetches), or is fed to a channel on the channel
storage bus out. The destination of the storage bus
out latch data is controlled by the return address
circuits which send an "advance" pulse to the appro­
priate receiving register.

122 12._65

Bit positions within the storage bus out latch are
polarity hold devices released at the late LR time
following the rise of the "advance" signal from
storage.

Shift Counter Register

• The shift counter is an eight position plus parity
register.

• The shift counter has inputs from the AEOB, FLT,
H register and forced inputs.

• It has outputs to the AE, VFL, and shift counter
decoder.

The shift counter (SC) register is an eight bit, plus
parity, register used to hold the shift amount for
shift instructions, the iteration count for multiply
instructions, normalization shift cycle count decoding
during add, subtract, and compare and variable field
length logical instructions.

Figure 50S6 shows a block diagram of the data
flow into and out of the shill counter, the input gating
for the shift counter, the shift counter, and the
out-gating for the shift counter. The shift counter
decoder is shown on Figure 50S7. The shift cOWlter
register inputs are the exponent adder output bus,
the L register bits 16-23. H register bits 1S-20,
and forced inputs to shift counte~ register positions
1- 6. Bits 0-7 of the exponent adder are placed in
the shift counter register during instructions re­
quiring the contents of the shift counter to be decre­
mented (example: during shift operations). The
input from the L register bit positions 16-23 are
used during the fault location test (FLT) mode of
operation; these bits are set into the shift counter
by the line labeled + &an ReI 8ft Clr conditioning the
AO labeled - ReI SC on Figure 5086. This scan re ­
lease shift ctr is conditioned by the same scan word
12 and scan pulse 2 that release the exponent regis­
ter in Figure 5056. The inputs from the H register,
bits 1S-20, are set into the shift cOWlter register
bits 4-6 when a shift instruction is decoded. The
shift counter register bits 1-6 are forced for itera­
tion counts during fixed-point instructions, floating­
point instructions and on convert instructions.

The output of the shift counter register is gated
to the true/complement input of the exponent adder,
the shift cOWlter decoder, Figure 50S6, and the ad­
dressing adder bils 24-27 for variable fie ld length
instructions . TIle contents of the shift counter regis­
ter are transfened to the true/complement input of
the exponent adder and decremented by an amount
equal to the value of the shift of the iteration cyc le
taken . The shift counter, bits 2-7 , output provides

•

inputs to tile shift counter decoder which determines
tile magniblde of Ule shift during normalization cycles
or the remaining iterations to be taken. The shift
counter output to the addressing adder is \lsed to set
the variable field length address during convert
binary and convert decimal instructions .

In order to set a bit in the shift counter register,
Figure 5086, tile input AND circuits for any bit are
considered as -OR's and the output OR circuits are
considered as -AI circuits . To set a bit into shift
counter register position labeled +SC bit 1 in Fig­
ure 5086 from the exponent addel', the following
conditions must exist:

1. -AE Bit. 1 to SC is negative.
2. -L Scan Bit 17 is positive .
3, -Force SC 1 is positive •

4, +Release Shift Ctr. is positive.
5. -Release Shift Ctr. Is negative.
6. The latch back line is positive.

With these conditions present at the inputs to the AND
circuits (-OR's), both inputs to the OR (-AI) arenega­
tive, thus, conditions being met, the output of the
OR (-AI) is positive. The invert block inverts the
level and conditions tile latch back line to retain the
bit in the shift counter register.

When the + Release Shift Ctr and the -Release
Shift Ctr lines are returned to the opposite states,
the bit is locked in the latch register. The bit
is retained in tile shift counter register Wltil the
+ Release Shift Ctl' and the - Release Shift Ctr lines
are conditioned again .

12-65 Functional UuitJ 123

INDEX

FUNCTIONAL UNITS

A80Rs 109

A8 registen 109

Adder as a straight data path 90
Adder outputs 92

Adders

addressing adde r 77

AND-OR-e:<clU5ive OR 78

decimal adder 78

upoDent adder 82

8ate le lect adder 8S

incremeDter adder 85

main adder ami shifter 87

Adduss OR 106

Addressing adder 77

Addreuing compare 115

AE complement 84

AE08 complement 84
AND_OR_e:<clusive OR 77

AOE muk 78

AOE output 78

Binary adder 82

,Binary opention 8S

B.it functlon checkl 84

Bit func tion error 91

B.il functions 82

811 fWlctions aad the add operation 81
BOP decodB t Ool
BOP pari ty check 109

BOP register 109

SRI field decoder 104

SRI field incrementer t 10

Byte check 84

Cany-lookahead 83

CarT}' le lect adder 92

Channel decoder to..
Checking 84, 113

Checking, addressing adder 77

Clock 92

Complement add 89

Compleme..t control 79

Complement gates 84

Conl;l'Ol I 90

Control2 90
Controlled clock 92

COWlt down 98
Count S aad T up 97

Count up/down 100

Counters and pointers

digit buffer and digi t counter

5 and T pointers 9S

shift cO\mler t22

Y and Z counte rs 99

Data flow 82

Data flow and timing u.ample

"

" Data pathl and contro llcherne 87

Data thlftl ng 91

DB parity 94

DC stepping 94

Decimal adder 78

Decimal adder carry error 82

Decimal adder erron 81

Decimal adder hall-sum check 81

Decoders

BOP 104

BRI field 10<!

channel 104

divide 104

EOP lOS

ERt field lOS

lOP lOS

LCOP lOS

multiply lOS

Ihift 123
Digit buffer 93

Digit buffer and digit counter 93

Digit counter 93

DINct data reginer 110

Divide decoder lQ.4

mvisor leading tetOlll lOS

I::ndaround carry 83

EOP decoder lOS

EOP register 110

ER I COm paN: 111

ER I field decoder lOS

ERI field incremeDter 110
ERt register 110

bponent addition 85

Exponent comparllon 85

Exponent register 11 1

£:<ponent rubtraction 85

E.>tponent transfer 85

Fint cycle multiple lelection lOS

floating-point operation 85

floating-point regilten 111

Force 9 to DC 94

Function connoll 96

Gate AOE to DC_DB 94

Gate AV to DB- DC 94

Gate binary true 80

Gate DB-DC to L8G trigger 107

Gate DC to DB 94

Gate H21-23 to 5 latch 96

Gate H21_23 to T latd! 96

Gate lOP 100

Gate K with S trigger 108

Gate L with S tri8ger lOS

Gale latd! to regilter 100

Gate L8G to DB-DC 94

Gate multiplier bus to DC

Gate out a GPR, to 113

Gate 5 reg to 5 latch 96

Gate lelect adder 8S

Gate T decode out trigger

Gate T re9 to T latch 96
Gatet

"

101

VFL byte gatet -~ LBG and RBG 107

General pwpose reginen 112

,-
CPR out • • g~tlng contn)lt: 114
Croup carry check g4

H Rglster tl3
Halfsum 82
Half sum one. detectOl' 85

Hlgh·on:ler curiel detectoe' 85

Hlgh·order ""f'OI deteclOl' lOS

Hold T latch 99

Incrementer adder 85
Input p:;uity cheek 81
Input parity checking (byte HS parity error) 90
Inputs, addreulng adder 77

Invalid opentlon detection 115
Invert sign 81

lOP decoder lOS

lOP parity c:heek 116
lOP register 114

J register 116

K Rglster 116
Key buffe. register 117
Key gate 106

Key OR 107

L register 117
leap decoder 105

LeOP Rgbte r 117
Left byte gate 107
Left digit gate 108

Left side ""rltyadjust 81
Load a CPR, to 112
Logical cOl>lleetlvu 92

Lookahead check 91
Lookahead lor the full adder 89

M register 117
Main adder • • lhJ.tts 87
Mark OR 107

M:uk register 117
Multiple ruolution 104

Multiply decoder 105

OR function 78
Output rignalt: 84
Overflow/underflow detector 85

P:;uity adjust 81
Parity generation 90
Prognm statui won;! 118

Register bus latch 119
Registen and buffen

AB reghten 109

BOP regiSler 109
direct data register 110
EOP .eglner 110
ERl reglner 110
eltponent reglRe. 111
floating-point registe.. 111

general purpose .egllten 112
H register 113

lOP regi.te. 114

J reglne. 116
K reglner 116
key buHe. register 117

L register 117
leap register 117

M .eglRer 117
mark .eglrte, 117
program litatus word l1g

register bus latch 119

ret.an addrus reglne. 120
SAR duplicate 121
rtorage address regirte. 121
rtonge bus in btch register 122

Release 100
Release 5 and T 97
Reset 97
Return adduss register 120

Right byte gate 108
Right side "".ity adjust 81

Running clock 9Z

Sand T poInten 9S

Sand T litepping 97
SAR duplic:ate 121
Shift c:ounle r RgiRer 122
Shifter overflow detec:tor 92

Shifter parity generation 91

Shifting aDd logical connect ives 91
Sign c:ontrel 85
Stonge address Rgister 121
StOl'age bus In btc:h register 122

Storage bus out latch register 122
Sum, addu$ling adder , the 77
Sum genef1ltion 83, 92
Sum parity 83

True/c:omplement plus six gate 79

Variations of the ~dd operation 89

VFL byte gatu 107

Y·Z controil 100
Y and Z counter 99

Y·z counteR coupled 102
Y·Z counter logic 100
Y·Z nepplng 101

Zero detect • • RBC 108
Zero detect -. VFL ,esult 108

SYSTEMS INTRODUCTION

AB ~9lsten 72
Adden

addressing adder 72
decimal adder 75
l!;JCponent adder 7<1

main adder and $hifter 74
Addrea ealc:u1ation

instruction fetc:h S4
operand fetc:1l 56

operand Itore 60
Addust Interleaving 4Z
AdduSling adder n

ludelt 12_65 125

Addbubtnct

fixed·point 64
floating . point 64

VFL 66
AND-OR_invert (AOI) 47

AOEmuk 75

Basic syflem, functional structure diagram 33

seu lunctional uniU

key buUer register 69

mark register 69
return address registers 69

storage address register 69
storage bus in latch 72

storage bus out latch 72

Binary addition-subtractlon 14

Binary division 15

Binary, hexadecimal,

Binary n,ultiplication

Bit 7
BOP n
BRI Incrementer n
Bu. control unit 40
Byte 7

CE controls «

decimal equivalenu

14

8

Centralited crcasbar switch representation 34

Channel and CPU communications 23

Channel command word format diagram 26

Channel interrupu 28

Channel operation 25

Channel program, execution of 22

Channel status word format diagram 27

Channel- lo-channel multisystem connector 33

Classes of intenupU 46

Clock pulse relationship diag.nm 12

Clock pulses 45

Component circuiu 47

Condition codes 27

Control panel «
CPU 38

CPU and channel communications 23

Crossbar liwitch reprnentation

centralhed 34

distributed 34

Data diagram 6
Data flow paths 50

Decimal adder 75
Decimal arithmelic 66
Digit 7
Digit counter and digit buffer 75

Direct data register 75

Dirtributed crossbar switch representation 34

Double word 7

[OP 74

ERI ,eghter and incrementer 72

Enor Jighu 44

[-unit controls and data flow 13

[-unit l unctional uniU

[OP 74

exponent adder 74

exponent register 74

126 12-65

J register 74

K register 74

L register ,.
LCOP 74

M register 74

main adder and shifter 74

RBI. 75
shift counter 75

Exponent 64
Exponent adder 74

Exponent equallution

description 64
diagram 67

Exponent register 74

External intenuptl 47

Fault locating teru 4S

fix ed· point add/subtract

description 64
diagram 6S

flip-flops 47

flip iatclles 47

floating-point add/$Ubtract

descriptiOn 64

diagrallll 67, 68
Floating-point reglners n
FLOUT 60
FormaU

data di agram 6
Information relationship definitions 7
InlormatiOl> relationship diagram 6
Instruction format diagram 8

Fraction, floating_point 64
Functional uniu

diagram 53

highlig.hU 50

purpose of 69

Cate select adder and register 73

General purpc:!5e register'S 73

GROUT 60

H register 73
Hallword 7

Hexadecimal numbering 6Y$lem 8
H55 cycle 43

ICR updating

description 56

diagram 58
lnuementer and e:.ctender 73
Information reiadolilihip definitions

"" 7 by<. 7
digit 7
double word 7

halfword 7

word 7

Information relationship diagram 6

Initial program load 30

Input/output channels
channel and CPU communications 23

channel program execution of 22

Input/output channel (input) operation diagram 10

r

r

I

ltlput/olltput channel (output) oper:l.tiOD diagram 10

Inputfoutput devices, optional 30
Input/output in(elTUpu 47
Instruction buffer .eg iste .. 72

Instruction exec lit ion eu.mplu
flxed~point 64

floating-point 64
VFL 66

In.struction fetch

descriptio" 54
diagram 5S

Insuuction bandti",!! 38
Interleaving 42
lute'rupe conditions 16

Interruptible status 47

IDterrupti 46

I unit 38
I-unit copuob and data flow 11
I_unlt functional unill

AS ~9iJtel'll 12
address adde. 72
BOP 12
SRI In<;: menter 72
ERI register and increment." 72
floating -point glsten 12
gate select addu and reg !!te. 73

gen.mll purpOSe I'1!glnen 73
H gl$ter 73
hlc menter 73
incremente. extender 73

101' 73
PSW 73

Multisystem operation 30

01' reginer loading
des<;riptioD S4
diagn.m 57

Operand fetch
delcnption S6

diagram S9

Operator controb 44
Overlap of I and E 38

Overlapping storage cyell,s 4Z

Polarity hold 48
Progrllm interTUpu 47

Program mask 47
Program status word formllt 17

PSW
IntelTUpt switching of 46

PSW register 73
Put_away 60

Register bus latch (RBL) 7S

Register operand deliveries
description 56
diagram 61

Register pUt-lIwllY 60
Regirten (see specific register)

Result non",!! 60
Retention devices, special 48
Return address regbten 69

Right byte gate 76

101' 73 5 p>Jmu 76

J regbter 74

K register 74
Key buffer register 69

L register 74

l:atches and triggers 47
LCOP 74
Left byte gate 75
Ughu and switches 44

Logic circuits 47
logical and VfL operations 15
Long operan<b 64

M reginer 74
Machine check Interrupts 47

Machine cycles 44
Main adder lind shifteT 74

Main storage 43
Manual operations 44
Mark byte. 60
Mark register 69

Model 7S block diagram S
Model 7S CPU_Storage rynems 5

Multisystem connectors
basic rynem, functioll structure 33
channel-to-channel, structure of 33

shared control unit as 33
shar<l!d device a. 33
shared norage as 33
transmission control unit as 33

SClln_in 4S

~quencer cycle. 50
Sequences

detailed 48

general 38
Simultaneow preparation lind execution l8
Shared contro l unit "" multiryllem connector 33
Shared device as multlsynem connector 33

Shared storage"" multhyrtem connector 34

Shift counter 7S
Short operands 64
Storllge lIddress reglner 69
Storage asslgnmenu, pennanent 17

Storage bus In latch 7Z
Storage bus out latch 7Z

Storage operation, buic
flow diagram ZQ

Storage operation, simplified
diagram 20

Store 60
Supervisor call 47

Switches and lighu 44
Sy$lem control p<lnel 44
Synems

block diagram, Model7S S

Introduction 5
Model 75 CPU-storage systems 5

Systems concepts 3S

T pointer 76
T1 and T2 38

Index 12-65 127

Transmission control unit a5 multisystem connector 33

Triggers and latches 47

2075 processor uni t

clock pulse relatioll$hip diagram 12

E-unit controil and data flow 12

binary addition-subtractlOIl 14

biliary division 15
binary multlplicatloll 14

VFL aIKllogical operation 15
I-unit cOlltrob aIKI data flow 11
intemlpt conditions 16

236 1 large capacity storage 19

2365 proc:eSSOT storage 19
l860 selector channel 23

c:hannel command word format diagram lS

c:hannel interrupts 27
channel operation 24
channel statui word fonnat diagram 26
condifion codes 26

VFL add/subtract 66

VfL functional units

AOE made 75
decimal adder 75
digit counter and digit buffer 75
direct data register 75
left byte gale 75
right byte gate 76

T and 5 pointers 76

Y and Z counters 76

VFL and logical operations 15
VFL sequences

Iteration 66

pre_fetch 69
set _up 66

store fetch 66

Word 7

y counter 76

Z counter 76

r

•

:
" " -, " .' " 0 '

" <' ,
s: •

"OLO

COMMENT SHEET

2075 PROCESSING UNIT -- VOLUME I

F I ELD ENGINEER I NG NUAL OF" INSTRUCT I ON, FOR Z1.3_Z81l._ 1

FROM

NAME
__________________________ O FFI CE/OEPT NO. ______ _

CI T V/ST"T f!
_____ _ ____________ OATE __________ ___

To make this manual mOTe useful to you, we want your commenU: what

additional InlonnatlOIl should be included in the maDualj what description

or figure could be clarified; what subject requires more explanation; what

presentation is particularly hel pful to YOu; and so forth.

How do you rate this maIlua!; ExceUcnt _____ Good _____ Fair ___ "x" __ _

Suggestion from mM Employees giving specific solutiom intCllded for award

CODllderatlons should be submitted through the IBM Suggestion Plan.

NO POSTAGE NECESSARY IF MAILED IN U. S.A.

FOL D ON T WO LINES, STAPLE, AND ""AIL

"'OLD

!'"OLD

STAPLE ST ... PL. '::

FOL.D 1'"01..0

--- - - -- -- - ---- - ----,-~---------------------6 "Rn C<.AU

NO

...-lJ PERMIT NO. II

~ POUGHKCI:PSII!:. N . Y •

. ~ r
U. S

POST ... G E WILL 81: ."':lJ
IBM CORPORATf'~" r-
P.O. BOX 390 C;J \\ \
POUGHKEEPSIE, N. Y. ~ ---- ::;,., .c. -

ATTN: FE MANUALS, DEPARTMENT ~~ 2:.
Y' \.\

--- -- -------- --- -- -- --- ------------- - -----
FOLD FOLD

ST"'PLE

I
I

I
I
I
I

w
z

" " Z

g
<
~ ,
U

/

r'

"
(

,"
I

r

(

IB" FE Supplement System/Unit 2075

Re: Form No. 223 - 2872-1

This Supplement No. 826- 7033

Due January 19G8

Previous Supplement Nos. !'bne

This supplement revises and updates Volume 1 of the Field Engineering Manual of
Instruction on the IBM 2075 Processing Unit, Form 223-2872-1. This supplement
incorporates the floating point changes released under Engineering Change Ee 705 848E.

Incorporate this supplement by replacing Title page, Preface page, pages 66,67,68,
and 91 with corresponding pages attached to this notice.

Changes to text are indicated by a vertical bar to t he left of the affected material.
Revised diagr ams are identified by a bullet (.) to the left of the figure caption. (In
addition, changes that are not readily apparent are indicated by a vertical bar to the
left of the changed ar ea.)

File this cover letter at the back of the publication. It w1ll then serve as a record of
the changes received and incorporated.

inrf!f1/al ional BIUilleJI Mac/Jines Corp., Produ(/ Publi&alionJ Dept., N tighborhood Road, Kingston , N.Y. 11401

PMINIED I" us . .\. S 26-7033 (223-2872-1) Page 1 of 1

