TABLE OF CONTENTS

Tabular Techniques Development - January 13, 1961
Ref. No. 1Al TABSOL - A Fundamental Concept for

Systems Oriented Languages T. F. Kavanagh
Ref. No. 1A2 Tabular Techniques Development
Status - December 1960 B. Grad

Tabular Techniques Development #2 - February 15, 1961
Ref. No. 1Bl A Preliminary Approach to

Tabular Programming E. O, Althoff
Ref. No. 1B2 Preliminary Reference Manual Draft
TABSOL - 225 D. Klick

Tabular Techniques Development #3 - June 23, 1961
Ref. No. 1F1 Tables Signal Better Communication

GUIDE Presentation B. Grad
Ref. No. 1F2 Information Processing System

Analysis Sutherland Co.
Ref. No. 1F'3 An Insurance Company File

Maintenance Problem B. Grad

Tabular Techniques Development #4 - August 21, 1961
Ref. No. 1G1 Tabular Form in Decision Logic
Datamation Reprint B. Grad
Ref. No. 1G2 GE TABSOL Application Manual GE Computer Dept.

NOTHING is to be removed from this book. It is for reference ONLY.

IBM Research Center
P. O. Box 218 January 13, 1961
Yorktown Heights, N.Y.

Subject: Tabular Techniques Development

In the past two years a number of people have explored the
possibility of using tabular form as a means of expressing decision
processes S0 as to present these logical decisions in a more under-
standable way. In order to keep IBM personnel acquainted with this
area of development, we are planning to distribute appropriate material
from time to time, reviewing current work in developing tabular
techniques. The people receiving this material have been selected
because of their interest in programming methods.

You may well ask, "What do you mean by tabular techniques?"
The full meaning of these techniques will be described in the various
papers to be distributed. For the present, let us define tabular techniques
as being the use of a table form to present the decision logic or operating
procedures. In other words, tabular techniques will present programming
and system descriptions in a table format. The material we distribute
will be of four types: (1) material obtained from customers experimenting
with tabular form, (2) material obtained from the Committee on Data
Systems Languages (CODASYL) concerning the work on tabular form
development, (3) material produced within IBM describing technical
developments or explaining the use of tabular form,and (4) material pro-
duced by competitors, describing their developments and applications.

Since this is the first release, we would appreciate suggestions as
to others who should be receiving this material, and any specific comments
or ideas concerning the attached work. If you have any questions concerning
these items, please call or write me.

This first distribution includes two items:
(1) A status report on current developments in tabular techniques.

(2) A copy of a speech given by Mr. T. F. Kavanagh, of General
Electric, at the Eastern Joint Computer Conference on
December 14, 1960. (Note that this speech differs from the
paper printed in EJCC proceedings).

Burton Grad

Project Coordinator

CLEARINGHOUSE REPORT

TABULAR TECHNIQUES DEVELOPMENT
STATUS-~-DECEMBER, 1980

January 13, 1961
Ref. No. 1AZ2

Burton Grad

This material is distributed to keep IBM personnel informed of
new developments. Selection is based on interest; this department
makes no claim for the desirability of this approach nor necessarily
recommends its use.

If additional copies are desired, please contact the Clearing-
house. No part of this material should be reproduced or distributed

outside IBM without approval of the Clearinghouse.

December, 1960

Tabular Techniques Development Status

Burton Grad
IBEM

During 1960 the use of tabular techniques in systems and pro-
gramming languages has grown to become an area of significant experi-
mentation. The one thing all these developments share is a tabular (or
table) layout, in which the decision or program logic is recorded:
information has positional significance as well as meaning contained
within the statements.

However, just as machine languages are not the same, tabular
techniques are not all the same. A number of people have contributed
to these developments, and each person (or group) has followed a some-
what different path, Most of the developments have been limited to the
particular application for which they were intended and have not been
generalized.

This report serves to record in one place what has transpired during
the past two or three years in the development of tabular techniques,
and attempts to express major features and differences between various
techniques.

Orren Evans, of Hunt Foods and Industries, first published work
on using tabular form for computer programming, He had gained ex-
perience in the use of tabular form in his work with Sutherland and
Company. The Hunt Foods material was released in December of 1959
to CODASYL,and later was presented at a Guide meeting and to the
NMAA,; it has been published by IBM as a General Information Manual.
The decision structure tables are of a "limited entry" variety; this
means that a complete condition or action statement is made in the
stub (argument) of the table while the tabular entries only make as-
sertions concerning the truth or falsity of the condition or indicate
whether an action should be executed.

The Evans work corresponds in many ways to the Sutherland
material, Copies of a current Sutherland proposal will be made available,
Sutherland has prepared a number of tables describing a particular
customer's decision rules; a 7070 program is being written from these
tables instead of from flow charts. The Sutherland tables are still of
the limited entry variety, though they are somewhat simpler in struc-
ture than the Hunt Foods' tables.

-9 -

The CODASYL Systems Committee, prompted by the Hunt Foods
work, has also decided to exploit tabular form to provide a systems-
oriented language. Iam a member of this Committee which also includes
Les Calkins of U. 8. Steel, Jack Strong of North American Aviation,
Carl Byham of Southern Railway, Sol Pollack of RAND and some 8 - 10
others including representatives of RCA, Remington-Rand,and GE. The
work which has been published to date in various intra-committee re-
ports describes tabular form, data description,and certain systems-
level operators. The tabular form material incorporates the limited
entry approach of Hunt Foods, but also takes care of "extended entry"
tables like those developed at General Electric: the table entries con-
tain actual values, names or functions.

The General Electric work was initiated by the Integrated Systems
Project in their Manufacturing Services Division (a staff group). As
part of the major project aimed at designing an automatic factory, the
need for describing complex, sequential, decision rules led this group
to the creation and use of decision structure tables.

For variables (named fields) which have many values (more than
two), the extended entry approach offers certain advantages; it is still
quite easy to teach and relatively easy to implement. In contrast, the
limited entry table may have substantial advantages for problems in~-
volving primarily two state variables. Up to recently, General Electric
had not been willing to release any of the material which they have
developed. However, at the last CODASYL meeting (12/1/60) Charlie
Katz and Don Klick of General Electric's Computer Department, pre-
sented a paper, "Preliminary Reference Manual, TABSOL ~ 225 ~
A Tabular Systems Oriented Language for the GE 225 Information
Processing System". This paper proposes a complete and quite com=
prehensive tabular form language which is to be directly processed on
a GE 225. I should like to quote briefly from the introduction to this
manual ;'

"Recent investigations by The Integrated Systems Project of
General Electric's Manufacturing Services uncovered an area of ap-
plications which require neither extensive data file processing nor
profound mathematics, but rather an unwieldy number of sequential
decisions. To cope effectively with these decisions, the ISP team
devised a tabular language. The purpose of this language was to depict,
by means of tables, the relationships of logical decisions... Since
its creation, TABSOL has been used in many departments of G. E. to
analyze and solve problems of product engineering, manufacturing
methods, cost accounting, and production control. The application
of decision tables is continually growing. Recent studies show that
they provide a concise method for supporting the logic of other data

B

processing applications. For example, decision tables may be used
to specify the transfer of control associated with the values of one
or more fields, to control the printing of detail and summary lines
of a report, or to interrogate the sort keys in a multi-file system.

At the Computer Department we have found decision tables a valuable

tool in designing and implementing the General Compiler."

"Decision tables represent a third language for the General
Compiler. These may be used by themselves or in conjunction with
the features of the compiler language. The specifications outlined
in this manual pertain mainly to the table entries and imply and require
a knowledge of the General Compiler ..."

General Electric has also permitted Mr, T. F. Kavanagh, who
worked on the Integrated Systems Project, to present a paper entitled,
"The TABSOL Concept" at the Eastern Joint Computer Conference on
December 14, 1960. It is known that General Electric has probably
thirty different departments (out of a total of 100) actually involved in
experimenting on the practical use of decision tables. The specific ex-
perience of the ISP team is such as to indicate that the use of tables
could save significant time in the programming and debugging of decision
rules. Work in General Electric up through 1959 involved the prepar-
ation and use of interpreters for the 702, 704, 650,and 305 RAMAC.

It would be reasonable to assume that in 1960, work on the NCR 304
would have progressed far enough to have a processor available, and
there may be processors for other machines such as the Burroughs 205.

As a result of the CODASYL work, IBM was requested by North
American Aviation to support their development work on tabular form.
P. W. Knaplund, then Manager, Systems Marketing, DP Division, ob-
tained the half-time services of M. D, Rayner who was assigned by
R. V. Woodworth, then of the Inglewood office. Mr. Rayner is spending
the other half of his time working with Northrop (Norair Division) on the
development of another form of tables involving variable operation
sequence. Neither of these programs are far enough along yet to have
formal reports available.

W. M. Selden of IBM Corporate Systems Standards has been located
at Rochester to work with Eastman Kodak in testing and developing con-
cepts in the use of tables, Specifically, there are three projects either
under way or ready to start there, with Eastman Kodak providing the
bulk of the experimental work. One project has to do with the presenta-
tion of production control rules in their camera division, The second
project has to do with the validation and updating of files in the Data
Processing group. The third project is concerned with quality control
decisions.

NIFIED
YSTEMS
PPROACH

CLEARINGHOUSE REPORT

TABSOL
A FUNDAMENTAL CONCEPT FOR

SYSTEMS ORIENTED LANGUAGES

Text of Speech Presented at EJ C C
December 14, 1960

T. F. Kavanagh

Manufacturing Services
General Electric Company

January 13, 1961
Ref, No., 1Al

This material is distributed to keep IBM personnel informed of
new developments. Selection is based on interest; this department
makes no claim for the desirability of this approach nor necessarily
recommends its use.

If additional copies are desired, please contact the Clearing-
house. No part of this material should be reproduced or distributed

outside IBM without approval of the Clearinghouse.

TABSOL
A Fundamental Concept for Systems Oriented L.anguages

T. F. Kavanagh
Manufacturing Services
General Electric Company

Bulging file cabinets, the flow chart jungle, mounting clerical costs,
and the vast world where electronic computers haven't been successfully
applied -~ that's really what TABSOL and decision structure tables are
all about. Structure tables have special meaning for information systems
designers and programmers and they also have implications for hardware
engineers because both computer user and computer designer must work
together on the same information processing problems.

To date, the difficulties of communicating with electronic computers
have received much attention. The various pseudo-languages represent
great advances in this area, but a language is a great deal more than the
basic tool of communication. A good language, -- a good symbology, ==
is an essential element in man's thought processes. In a sense it defines
his capacity for conceptualization and for abstract thought. It's no mystery
that the telephone wasn't invented in Tahiti or the airplane . in Afghanistan,
Today we face a similar language restriction in trying to analyze and
think about the complex decision-making systems required to operate a
business or control an industrial process. Our traditional techniques seem
inadequate. Flow charts quickly become a puzzle of lines, balloons, and
boxes whose secret lies hidden in the mind of the creator. Frequently,
programmers complain they would rather reprogram the job than take over
someone else's flow charts. '

In addition to flow charts, you often see matrix- type displays. They
appear under a variety of names--collation charts, tabulated drawings,
standard time data sheets, and so on. Often large and unwieldy, they
usually represent listings of past decisions or answers rather than the
logic used in making them. But none of these methods for thinking
about and communicating complex decision logic have been really effective.
Most business and professional people still communicate with the computer
world through an elaborate hierarchy of flow charters and programmers,
This is the problem which we feel TABSOL greatly simplifies. It combines
some of the characteristics of earlier methods and introduces a few new
features of tis own. After using TABSOL's decision structure tables in
numerous applications, we feel they are both good communicating tools,
and also valuable thinking tools, As one G.E. computer wag put it:

TABSOL is a thinking man's language.

Decision structure tables provide a standard, uniform methods for
clearly describing complex, multi-variable multi-result decision systems.

A structure table consists of a rectangular array of terms, sub-divided
into four quadrants. The vertical double line separates the decision logic
on the left from the result functions or actions which appear on the right.

A horizontal double line separates the structure table column headings
above from the table values recorded in the horizontal rows below. Thus,
the upper left quadrant records the names of the parameters effecting the
decision while the lower left quadrant records the specific values which

a decision parameter may have in a given situation. Similarly, the upper
right hand quadrant records the names of result functions -~ or actions to
be performed -~ once the decision has been made, and the lower right
quadrant shows the actual result values which pertain directly opposite the
appropriate set of decision parameter values. Thus, each horizontal

row completely and independently describes one possible decision situation.
Each structure table becomes a complete statement of the logical and
quantitative relationships supporting a particular elementary decision.

There is no limit to the structure table columns or rows. The
dimensions of any specific structure table are completely flexible, and
are a logical consequence of the decision being described. A series of
these structure tables taken in combination will describe a complete
decision system.

Now let's look at a simple example (figure 1). Here we want to make
an elementary decision on transportation from New York to Boston. There
are three significant decision parameters: Weather, Plane Space, and-
Hotel Room. Weather has only two value states, Fair or Foul; Plane Space
is either _Qi(or Sorry; and Hotel Room can be either Open or Filled., In
terms of results, Plane or Train are the only permissible means of
Transportation. If the weather was Foul, despite an OK on plane space
and an Open, Hotel Room, then we see by inspectionTlTat the solution appears
in the second row. Train is the correct Transportation. We are also instructed
to Cancel Plane, and this is the End of the decision.

This simple structure table provides a general solution to this particular
decision-making problem. If afternoon trips to Boston ever occur -- and
one must assume that they frequently do -~ then an operating decision can
quickly be made by supplying the current value of Weather, Plane Space,
and Hotel Room and solving the structure table.

.

Solving a structure table consists of comparing or "testing" specific
values assigned decision parameters in the problem statement against the
corresponding sets of decision parameter values recorded in the structure
table. If all tests in a row are satisfied, then the solution is in that row.
The correct result values or actions appear in the same row, to the right of
the double line.

Once a particular structure table has been solved and the result
functions executed, it is often necessary to make more decisions. For
this reason, the last result column of the structure table provides a firm
link to the next decision structure table. Notice the last row specifies
that for all values .of Weather, with no Plane Space, and no Hotel Room,
the decision-maker is directed to solve another structure table, Transporta-
tion, New York-Boston in the morning.

Similarly, a system designer can build a whole system of structure
tables. He completely controls the make-up of each table, as well as its
position in the sequence of total problem solution. He may decide to skip
tables, or, he may re-solve tables to achieve the effect of iteration.

Getting from New York to Boston is a rather prosaic problem to
say the least; we certainly don't need a computer to make decisions like
this,

So let's look at how a systems designer might structure a real
operating decision.

Table 2015 (figure 2) completely describes time standards determination
for a certain coil winding operation. In this situation if the number of turns
is less than 10, the operator's time allowance in seconds is equal to the
number of turns. However, if the number of turns is greater than 10
but less than 15, the operator is allowed an additional 88 hundredths of
a second.

So you see that problem values and decision parameter test values
need not be simple identities. Actually, the problem values may be equal
to the table value, greater than, less than, not equal to, greater than or
equal to, less than or equal to the test value. This broad selection of
test types greatly increases the power of individual structure tables and
sharply reduces their size. Note than we can put the test type right in the
test block immediately proceding the test value, or in the column heading
after the decision parameter name. Of course, the test type in the column

heading applies to all test values appearing below. It is also possible to
formulate complex test blocks involving two or more decision parameters.

Structure table results are not limited to simple assignments of
alphabetic or numeric constants. As we've already seen if the solution
occurs in the first row, the current value of TURNS is assigned TIME.

If the solution occurs in the second row, the result of the arithmetic ex-
pression TURNS { 0.88 is assigned TIME, If the solution occurs in the
third or fourth row the result of the formula evaluation TIME 1 or

TIME 2 will be assigned to TIME. This is the significance of the

equal sign, appearing after the name in the result value block. These
formulas are recorded in the area just prior to the structure table proper.

In the next action column the result function PERFORM appears.
This means that the data processing or arithmetic operations named in
the result value block are to be executed. Notice that one of the result
values is another structure table. Should the solution occur in this row,
Table 2016 will be solved just as any other, only control will remain
within the framework of Table 2015 which is our illustrative table. When
completed, the next result function will be processed. In the next column,
the result function GO links this structure table to the next structure table
to be solved. If there is no solution row found in the structure table proper,
then control passes to the area directly below the structure table, This
is usually regarded as an "error', and most often indicates a failure of
the decision logic to cope with a certain combination of problem values.
The systems designer can -- and should -- notify himself whenever such
an error occurs by arranging for an error printout, identifying the table
that failed and the problem being solved at the time. With this source
language printout and other structure tables, the systems designer has
all the data he needs to trouble-shoot the system in his own professional
terminology.

We can also use the areas immediately before and after the structure
table proper to record any additional language statements that may be
required -- input output operations, data movement, operator instructions
or any other data processing activities.

Of course, I cannot even attempt to completely describe decision
structure tables in this short talk; a much more complete explanation
appears in the Proceedings. There are many .more features available for
formulating concise, complete decision systems. I can only give a quick
introduction to inherent Gestalt in this method of describing decision logic.

Structure tables did not start at thelr present state of development.
This language concept evolved through a series of experimental tabular
systems-oriented languages developed for the 305, 650, 702 and 704.

These experimental languages proved remarkably adequate; however,
the added power of a conventional language seemed very appealing, particu-
larly as the prospects for structure table application in all sorts of problem
areas brightened.

At this point, General Electric's Computer Department joined the
effort. The Computer Department had been developing a new compiler,
called GECOM, for use with General Electric computers. The first version
of this new General Compiler, will be avilable for the GE 225 in May, 196l.
It has been designed primarily around COBOL, with some of the basic
elements of ALGOL. It will now contain all of TABSOL. Simply stated, join-
ing TABSOL with GECOM places the power of a full-fledged conventional
language at the command of every structure table block.

We now have a rather substantial amount of experience in applying
structure tablesto a wide variety of operating decision-making problems.
But perhaps the most interesting, at least from the researcher's point
of view, was the very work which led to decision structure tables themselves.
In 1957 we were investigating the possibility of automating the essential
information and material processing required to directly transform customer
orders into finished products. We studied customer order editing, product
engineering, drafting, manufacturing methods, and time standards, quality
control, cost accounting, and production control., This accounts for a fairly
substantial portion of the operating decision system in a manufacturing
business. Fortunately, the inputs and outputs to this system are simple
and well-defined: the customer order comes in and the finished product goes
out. So it was possible to treat all activities within these bounds as one
integrated, goal-oriented operating decision system and develop decision
structure tables accordingly. Working with a small product section in one
of the Company's operating components, a significant portion of the. functional
decision logic was successfully structured. Then the resulting structure
tables were directly incorporated into a computer-automated operating
. decision system which transformed customer orders for a wide variety of
finished products directly into factory instructions for operators and numeri-
cally programmed machine tools. This prototype system was demonstrated
to General Electric management in November, 1958, Since then, structure
tables have been used to describe the operating decision logic in many
different applications. Structure tables appear to have great potential in
compilers and also in computer simulation programs.

Problem Statement: Select Transportation, New York - Boston, p.m.

Weather: Foul

Plane Space: OK
Hotel Room: OBen

Decision Structure Table: Transportation, New York - Boston, p.m.

Weather Plane Hotel Trans= Other In- Next
Space Room portation structions| Decision
Fair OK Open Plane End
» Cancel
Foul OK Open Train Plane End
Sorry -Open Train End
Cancel NY -Bost.
OK Filled Plane a.m.
8or¥y Filled NY-Bost.
a.Imn.

Solution:

If the value of Weather is Foul, and
the value of Plane Space is OK, and
the value of Hotel Room is Open,

Then

the value of Transportation is Train, and

the value of Other Instructions is Cancel Plane, and

the value of Next Decision is End.

Figure 1

TABLE 2015. DIMENSION C2 A3 R4.
NOTE TIME STANDARDS FOR COIL WINDING
TIME ~1 = 125*DIA*TURNS.

TIME ~2 = 1000*DIA/SQRT (TURNS).

BEGIN

TURNS TURNS LS TIME PERFORM GO

LS 10 TURNS TABLE 2020
GREQ 10 15 TURNS + 0. 88 | SETUP TABLE 2025
GREQ 15 100 TIME~1 = |SETUP TABLE 2025
GREQ 100 1000 TIME~2 = |TABLE 2016 | TABLE 2030

IF NOT SOLVED GO ERROR ~COIL.
END TABLE 2015.

Figure 2

IBM Corporation

Research Laboratory

P.O. Box 218

Yorktown Heights, New York

February 15, 1961

Memorandum to:

Subject: Tabular Techniques Development
Distribution #2

This is the second release of material concerning the develop-
ment of tabular techniques for systems and programming description.
Enclosed are two items:

(1) A working paper by Mr. Earl Althoff of Eastman-Kodak
describing a tabular approach to a file updating problem.

(2) A preliminary report on TABSOL 225 by Mr. D. Klick
of General Electric's Computer Department. This
paper was given at the CODASYL Systems Committee
meeting in December, 1960,

Reference is also made to a third item which is available
through IBM Stationary Stores in Endicott and hence not attached:

(3) General Information Manual "Advanced Analysis Method
for Integrated Electronic Data Processing" by Mr. Orren
Y. Evans of Hunt Foods & Industries. This is Report
No. F20-8047.
! P R
_“.Ur':.': /C Lits
“ Burton Grad
Project Coordinator

NIFIED
YSTEMS

PROACH

CLEARINGHOUSE REPORT

A PRELIMINARY APPROACH
TO

TABULAR PROGRAMMING

E. O. Althoff
February 1, 1961 Data Processing Service
Refs No«. 1B1 Eastman - Kodak

This material is distributed to keep IBM personnel informed of
new developments. Selection is based on interest; this department
makes no claim for the desirability of this approach nor necessarily
recommends its use.

If additional copies are desired, please contact the Clearing-
house. No part of this material should be reproduced or distributed

outside IBM without approval of the Clearinghouse.

1.

2.

3-

5.

10.

POINTS ABOUT PRELIMINARY APPROACH TO TABULAR PROGRAMMING

For each element used, prepare a 15-dlgit title to use in the English text
and a four-digit abbreviation to use in formulae. The four-digit abbrevia-
tion either starts with a letter or is numbered sequentially 0001, £002,

"0003, LRI

Do not strain to over-abbreviate. For example, CTOl, CTO2, ... can be used
to stand for control totals of various types. It is usually best to glve
mnemonic abbreviations only for the hundred or less most used elements.

Data sets can be listed on a data element sheet if desired. TFor example,
the data set "Target Date" abbreviated TRGT consists of the data elements:

"Target Month" abbreviated TMON
"Target Day" abbreviated TDAY
"Target Year" abbreviated TYR

In the above, four entries are made, one for each data element and one for
the data set.

The definition should be clear and unambiguous,‘but above all must be com=
plete. Differentiate clearly between similar data elements.

Prepare a data file for each set of data (not going directly to a report).
Do not consider the machine in your preparation. As an example consider a
tape with records of Type A followed by several records of Type B; prepare
two datae files, A and B, since having these on the same tape is pure machine
method.

For each data set or element listed, record a reference to set number and page
number of the data element sheets. Thus, 03-0l1 refers to data element set 03,
page 0l. Record both the title and the abbreviation. Record the length for
that file. A given element can require four digits on one data file and six
on another.

Give each data file a letter designation A, B, C, .., record whether input or
output. In the case of an updated data file, assign two letters, say A for
input and B for output.

Obtain a Data Processing Spacing Chart for all report lines (messages as well
as fancy reports). Label each report A, B, etc. Use a second letter for each
different type of line. Thus, Report A may have lines AA, AB, AC, ...

Tables must give all logic except how to start and how to stop. All the state-
ments which follow must be accomplished completely — no exceptions can be per-
mitted.

The table is divided into conditions and actions. On the left, one gives the
English statement of the condition or action, and on the right, one records the
precise formula fully and completely. Thus, on the right,;

A-STAT = B-STAT clearly shows that the condition is true if and only if the
STAT element of data File A equals the STAT element of data File B.

C-0001 > O shows the condition is true only if the data element 0001 of data
File C is greater than the constant O.

1L,

12.

13.

1h.

15.

16.

17.

18.

19.

- D

The formula for a condition can ineclude any connectors desired to complete
"a single condition". Examples are:

F-TAX = 10 or 15
F-TAX = 10 and G-TAX = 15

The actions can be varied also. In general, one records data movement or
arithmetic actions first, then all data file advance actions, then all table
transfer actions.

Typical data movement actions are D -» E (ASG#, PROG, and TTOl) meaning
move from data File D to data File E the data elements ASG#, PROG, and TTOL.
In case of one move, D-ASG# -» E-ASG#. Others are D-PDHR add to E-YRHR, etc.

When data is posted to report lines, increment is used as: D-ASG# -> ABLY mean-
ing post data element ASG# of data File D to position 14 (right-hand increment)
of line B of Report A.

Another action may be to do an action or actions from other tables. Thus,
Action 2 of Table 01-A5 can simply be "Do actions 3 and 6 of Table 03-B7.

Another action may follow the actions for a data rule from another table in
its entirety; if so, simply transfer to Rule XX of Table XX-XX.

The advance data files actions are abbreviated GIV X for input and TAK X for
output. In some cases posting a data element to a control total is included
as: C-AMT' add to TOT1l; TAK C. When an advance action is given, the next ac-
tion calling on that file from any table will be from the next record.

Tables are numbered NN-XN where NN denotes the project area; NN runs from
01, 02, ,., X is a letter denoting a sub-project and runs from A to Z, while
the rightmost N is 1 to 9 and denotes table within sub-project. The last
action for any data rule is always a transfer to some table. (Do not trans-
fer to a rule within a table — leave this to the programmer,)

On any given table, possible entries opposite condition are Y, N, and -.
Y = Yes, N = No, and - means "does not apply".

The matrix |Y|[Y|N|] would indicate an analyst omission since the combinationEﬁ
Y|Nj N
is not specified. One must specify enough data rules to account for every

combination of the conditions, whether possible or impossible (is it really
impossible???) et

The -~ is used primarily in two cases:

A. If condition 1 is A~STAT = O and condition 2 is A-STAT = 1, then a |Y]|-]|entry

=13

would show that, if A-STAT = O, we don't need to test for A-STAT = 1 and
vice versa.

B. The - may be used to indicate a plain transfer to another table, when the
only alternative would be to over-run the 6 X 10 matrix. Example:

Condition 1 [Y[Y[Y[Y[Y[Y[X]Y[N] The data rule on the right simply
Condition 2 [Y([Y|Y|N|Y|N|N|N|= transfers to another table where
Condition 3 |Y|Y|N|Y|N|Y|N|N|- the NO's for Condition 1 are spelled out.
Condition 4 [Y[N[Y[Y[N[N[Y|N]-

20. In summary, the preliminary approuch 1s deslgned to obtain from a Job analyst
actions to follow for every combination of conditions. The conditions and
actions are not to be vague — but must be 100 percent precise to every data
element involved. There is no thought given in the preliminary approach to
automating any of the steps:tables —% programs. Only & person with two -
three years actlve programming and computer systems experience can prepare
tables containing many subtle traps which develop only in automatic E.D.P.
systems; for the next year or so, it 1s expected that these people will
return expanded tables (with these subile points included) to the job analyst
and will, in addition, write programs in KodaKoder.

FOAlthoff:rds
October 11, 1960

DATA PROCESSING SEEVICE Job No.

ELEMENTS DEFINITION ‘ Fame: part 0. Althats

ISET # O1L PAGE #01 Project: D.P.S. Billing
1~=DIGIT TITLE One Letter ASBGN 4-DIGIT ABBREV. ASGL
DEFINITION: :

Refer to the hack af a D.P.S. Time-Beporting Sheet. for full details.

15-DIGIT TITLE pcqigznment No. 4-DIGIT ABBREV. ASG#
DEFIRITION: A four-digit number pgiven in sequence to non-perpetual assignments as they ocecur.

The number has no structure of any sort.

15-DIGIT TITLE Billing Number L-DIGIT ABEREV. BIL#
DEFINITION: A five-digit number assigned by the D.P.S. Accountant to each account or sub-

account which D.P.S. bills. It is structured as desired to yield a meaningful report order.

e T
15-DIGIT TITLE PROG-SYSTEM NO. (DATA SET) 4-DIGIT ABEREV. UJ#
DEFIRITION: A uniform Job number which serves a variety of purposes. It 1s organized primarily

elements MFC, RUN#, and PRGL.

|

15-DIGIT TITLE Project Title 4L-DIGIT ABBREV. TITL
DEFINITION'_A 45-character title given to each project having a four-digit assignment number.

15-DIGIT TITLE Project Type Code 4-DIGIT ABEREV. TYFPE
DEFINITION: A two-character code enabling us to group a project Ly new programs (N), changes

(c), or revisiop (R). The upits position is 1 for a business project, 6 for a program re-

search project.

15-DIGIT TITLE Major Fetn. Code L4-DIGIT ABEREV. MFC
DEFINITION: A two-digit code used by D.P.S. to roughly distinguish between basic major project

_functions such as Merchandise Billinz, Paper Finishing Scheduling, etc. It is the first two
—digits af Prog=Syatem No.

= —
©.DIGIT TITLE Tar.ct Date 4-DIGIT ABBREV. TRGT

DusINITION: The date by which an assignment should be completed to the point that production

results are obtainable. Six digits as 011560,

DAC'A PROCESSING SERVICE Job No.:

ELEMENTS DEFINTTION R S
ISEr # 01 PAGE # 0o | Project: D.P.S. Billing
[1,-0IGTT TITLE _Programmer 4-DIGIT ABBREV. proq |

DEFINITION: An official ten-dip
Methods Staff

15-DIGIT TITLE Registration # 4L-DIGIT ABBREV. gmi
DEFINRITION: A six-diglt number given to each employee of Kodak Rochester. The first three

digits indicate department and the last three are sequentially given by various rules.

15-DIGIT TITLE __ Prog-Syst.Descr, L-DIGIT ABBREV. pRsc
DEFINITION: Refers to a 29-digit alphanumeric title or description given to each specific

program or computer systems sub-assignment.

T T L L LA e L M T i T W T TR
15=-DIGIT TITLE EST. Man Manths L-DIGIT ABBREV. mamM
DEFINITION: Refers to a time estimate given for each program in an assignment. The time is

. ven ip four digits (one decimal place).

15-DIGIT TITLE Due Date for V L-DIGIT ABBREV. DUEV
DEFINITION: A date given for each program to be ready for system volume testin:., Six digits

as 011560 or 12B161l.

15-DIGIT TITLE Department 4-DIGIT ABEREV. DEPT
DEFINITION: A four-character alphanumeric abbreviation of the department a programmer belongs

~to. FExamples are DPS, MSDD, AXQ, DC.

15-DIGIT TITLE __ Computer Run # 4-DIGIT ABBREV._RUNf

DEFINITION: _The third and fourth digit of Prog-System No.. Delipeates the programs consititutihy

a scheduled computer run.

e T SRR I
~ DIGIT TITLE Program Letter L-DIGIT ABEREV. PRGL

Do#IRITION: _The fifth digit of Prog-System No. Letters from A 40 Z are given to programs of a

gilven computer run.

DATA

FILE DESCRIPTION

PROCESSING
DATA FILE LAYOUT

SERVICE

Assignment Master

Job No.:
Project:

Dl Pl S- Billim 5

Data File:A in B out

L = Rame: Far) Althoff
For Programmer Use Onl
. TITLE REF. ABBREV. LENGTH _Iﬁc_f INCR.
‘L. Assignment No. 01-01 ASG# L
2._Billing Number 01-01 BIL# 5
3. Proj. Ldr. Name 01-05 PLDR 10
4. Project Title 01-01 TITL b5
5._Pro]. Type Code 01-01 TYPE _ 2
6._Malar FCTN Cade 01-01 MFC 2
(- _Target Date 01-01 TRGT _ L
| 8._Ri11-out Code: ~01-01 BILC |
| 9. Completion Code 01-03 CMPL i

10.

(11,

i =

13,

AN

15.

16.

5 7 g8

18.

19.

20,

21.

a2,

23.

2k,

25.

26.

27.

28.

2'_;- .

DATA PROCESSING SERVICE Job No.:

DATA FILE LAYOUT Project: 1 p g Ri114 |
FILE DESCRIPTION _Current Time Records Data Flle: ¢ 44
FAme : Earl Althoff
For Programmer Use Onl

~ TITLE REF. ABEREV. LENGTH REC # INCR.
1._Assigoment No. —01-01 Asa# . __ b
2._Prog-Syaten No. ~01-01 un# 5
3._Programmer ~0l-02 _ PROG = 10

4. Department 01-02 DEPT L

5. Progress Code 01-03 STAT p !

6._Est. Date for V 01-03 ESTV 6

T._Hra. This Period -Q1-03 HRTR = __ I

8._CPU MIN V-Test 01-05 yTST Y

9._K-10S This Pd. 01-0k K10P 2

10. K-208 This Pd. 01-04 K20P 2

11._X-308 This Pd. 01-03 K30P 2

12. _x-40S This Pd. 010k) 10) 4 2

13. K-508 This Pd. 01-04 KSOP 2

1b ASGL can be M and N only 01-01 ASGL 1

AL

16.

17.

18.

19.
20.

2l.

22.

23.

2h.

25.

26.
2T.
28.
29,
30.
31.

33.

34,

35.

DATA

PROCESSING
DATA FILE LAYOUT

FILE DESCRIPTION Program System Master

SERVICE

Job No.:

Project: D.P.S. Billing
Data File;g in L out
Hame: Barl Althoff

For Programmer Use Onl

TITLE REF. ABBREV. LENGTH REC # INCR.

1. Assignment No. 01-01 ASG# b
2. Prog-System No. 01-01 UJ# 5
3. Programmer 01-02 PROG 10
L4, ProgeSystem Description 01-02 DESC 29
5. BEst. Man Months 01-02 ESTM 4
6. Due Date for V 01-02 DUEV 6
T. _Denartment _01-02 DEPT __ 4
8. _Progress Code Q1-03 __ STAT 1
9. Est. Date for V 01-03 ESTV 6
10. HRS to Date 01-03 HRTD 5
11. Bill-out Code 01-03 BILC 1
12. V-TEST To Date 01-05 VITD 6
13. K-10S To Dete 01-0L K108 3
1. K-20S To Date 01-05 K208 3

. .. K-308 to Date 01-0k K308 3

16. K-4OS To Date 01-0k .08 3

17. K-508 To Date 01-0L K508 3
18. ASGL will be M and N only 01-01 ASGL 1
19.__

40,

21.

22.

3.

24.

b5.

26.

7.

£8.

e

30.

31.

33.

3h.

DATA PROCESSING SERVICE Job. No.:

TITLE Update Assignment Master Project:_ D P.3. Bill4
- Table Na:_Ql-Al
[
WONDITIONS ERMAENCY |01 10,1 110 CONDITION
: RULE KO, 1/ 23]k [5 T[8]9 [10 ABBREVIATION
., —1s there a new aaslenment master? |y | vy|N|w [N (N D-ASGH < A-ASGH
s
—Is there a chepge to the assign-
k. -l-|y|Y|Y|n D-ASGH = A-ASGH
\ ment master?
3. _Is the chapge record a deletion? | v | w|y|- |- |- D-CMPL = 2
L. Is the change record a completion - (0 P D-CMPL = 1
; notification?
[5 Are we posting changes toa com | _ | _|_|_|y]- DeoNDL, = A
'~ pleted assignment?
I
8.
| b T T R RN Ak
ACTIONS l —
3 . .
X ~Mave entire master record to serve Y Y K == B
A as_base. 5
A Post change asslgnment no. to up-
~ _lated master. Y|Y Y D-ASG# 5B~ ASG#
4, _Post corresponding parts of change Y Y BIL#, PLDR, TITL, TYPE,
to master. MFC, TRGT, BILC D=8
" Set~up and write delete error D- ASGH# —”AA- 39
. . 4
£ message. Write AA
v
6. —Poat completion code to master | |xly D-CMPL (Fumeric portion)
. : 3> B~ CMPL
6. _Set-up and write deleting message Y D-ASG# —>AB-18
Write AB
v Advance controls to next change T T1IXIE1 T GIV D
8 Advance controls to next input masper I X122 : GIV A
9 Transfer to Table Ol-Al Y TR 01-Al
10. Transfer to Table 0l-A3 . Y TR 01-A3
.. Tranafer to Table Q1-A2 Y| | ¥ TR O1-A2
12 Transfer to Table Ol-Ak Y TR 01-Ak

13.

DATA PROCESSING SERVICE Job. No.:
TABLE LAYOUT Name: Earl Althoff
TITLE _ Second Change Check Project: D.P.S. Billing .
. Table Na: 01-A2
1 0101030
. 8 [FRPQUENCY CONDITION
VORDITION RULE NO. 1[2]3 | & 8|9 10 ABBREVIATIO!
1. Is there a change to the upg.ated. Y Y N D—ASG# “@ B—ASG#
, master?
i. Is this change a deletion? y |-|-]- D-CMPL = 2
§. —la_thia change A completion natlfid CMPL
tion? Ii=}- i e
Ar ti cha t 1e-
u.____reweposrg; nges to a comple el D . A
ted assignment?
3.
é.
.__ Le XTI m
l: CTIONS
= S rEseesEe. T WD ACKET: SN TNAX. SCEEECL L srassEn e
1]ngw gc;;gg of R_1ge 3 Table OL-A] Y TR Rule 3 - 0lAl
» JPost completion code to master. b 4 D-CMPL (numeric part)
=¥ B-CMPL
8, Advance centrols to next change. ol it GIV D
Follow actions 3 and 5 of Table
L. OLo AL Y Duplicate 3 and 5 of
. 5 0l1-Al
5. Transfer to Table O0l-A2 TIT TR 01-A2
6. _Transfer to Table Ol-Al 4 TR Ol-Ak
] 7.
} 8.
9.
10.
12
13«

DATA PROCESSING SERVICE Job. No.:
TABLE = LAYOUT Name: Earl Althoff
TITLE Update Prog-System Master Project:_ 1 p g, Ri114
- Table Na: 01-Bl
. [FREQUENCY QUON 10L1 110 CONDITION
CONDITIONS ULE NO. | 1230k |5 8[9 10 ABBREVIATIO!
—Is there a new Prog-System Master?
1. Y|Y[(Y|N|(N E-FLDl £ K-FLD1
2. Is the new master for this assign- ylylwl- |- E-ASGH = B- "
ment?
Is this a delete? Y| N|-]~- |-
3. E-DPGM = 1
" Is the next master for this assign-
esry- -|=-1Y|Y K-ASG# = B-ASG#
5. 18 there a chanze for the master? -1-1Y|Y E-FLD1 = K-FLDl
6 Is the change a delete? -|=-|Y|N E-DPGM = 1
T TR e T AT T Y Y Y e T S AT 4
ACTIONRNS
Mave entire master in serve as
i base. Y (Y K=>L
Post corresponding chapge fields 2L 304
? to master. Y Y DE;C:F-&%, bﬂ?gﬂ-c.
" Blanks to STAT, ESTV Zero.
3 Post start-up constants to master. Y to HRTD,VTTD lCiOS,KZOS, .
K308, Khos, ks0S |
Set-up and write delete error E- ASG# -
k. Y g
—=xr
message. E-UJ# Rﬁ
5, —Bet-up and write deleting message. ¥ E- ASG# -»AG19
. . E-UJ#=>AG29
6. _Advance control to next change Y|y Y|y GIV E
Irecard.
7 Advance control to next master Y |y GIV K
record.
8. —lcensfer to this Table OL-BlL |y TR Ol-Bl
9 TRansfer to Table 01-B3 Y Y TR 01-B3
TRansfer to Table 01-Cl Y TR 01-C1
10.
e ".'Ransfer to Table 01-B2 Y TR 01l-B2
12 TRansfer to Table O1-Bh TR OL-Bl
13.

DAYA PROCESSING SERVICE Job. No.:

TABLE LAYOUT Name: Earl Althoff
TITLE _ Pinish deleting on Prog-Syst. Delete. Project: D.P.S. Billing
— Table Na:_01-B2
1 FREQUENCY CONDITIOR
RANPLIEEORE RULE NO. 1121315 1516171819 |10 ABBREVIAT. "
i _Are there any more Prog-Syst. Y[|n E-FLD1 = L-FLD-1
i___changes?
h, —Isthere a current fime record? | ~-[Y N C-FLD1 = L~FLDl
L
3.
i,
5.
6.
._M.
ACTIONS ,
i Set-up and write message AC. Y E-UJ#-2AC30
X AC !
» Set correspandipg ta delete messpge- b 4 Action 6 of table O1-A3
3. —3et rest of corresponding and Y Action 7 of table 01-A3 '
; write delete message.
. —Advance contrals tao next Prag-Syste y GIV E
Change.
Advance Controls to next time recoxrd.
b 4 GIV K
6. _TRansafer to Table Q1-B2 b 4 TR 0l-B2
7. —TRansfer to Table 01-Bl Y|Y TR O1-Bl
8.
9.
10.
g
12
134

DATA PROCESSING
ELEMENTS DEFINITION

SERVICE

[SET #

15-DIGIT TITLE

PAGE #

Job No.:

Name:

Project:

DEFINITION:

L4L-DIGIT ABBREV.

15-DIGIT TITLE

DEFINITION:

4~DIGIT ABBREV.

15-DIGIT TITLE

DEFINITION:

L-DIGIT ABBREV.

15-DIGIT TITLE

DEFINITION:

- DIGIT ABBREV.

15-DIGIT TITLE

DEFINITION:

L-DIGIT ABBREV.

15-DIGIT TITLE

DEFINITION:

4-DIGIT ABBREV.

15-DIGIT TITLE

DEFINITION:

L4-DIGIT ABBREV.

5-DIGIT TITLE

I&

DEFINITION:

4-DIGIT ABBREV.

PROCESSING
DATA FILE LAYOUT

FILE DESCRIPTION

DATA

SERVICE

Job No.:

Project:

Data File:

Name :

TITLE

REF.

ABEREV, LENGTH

For Programmer Use Onl
REC # INCR.

15.

16.

17.

18.

19.

20,

21-

22.

23.

2k.

25.

26.

27,

28.

29, \

30.

31.

33.

3k

35._

CLEARINGHOUSE REPORT

PRELIMINARY REFERENCE MANUAL DRAFT
(TABSOL - 2256

A Tabular Systems Oriented Language
for the
GE 225 Information Processing System

D, Blick
February 1, 1961 Computer Department
Ref. No. 1B2 General Electric Company

This material is distributed to keep IBM personnel informed of
new developments. Selection is based on interest; this department
makes no claim for the desirability of this approach nor necessarily
recommends its use.

If additional copies are desired, please contact the Clearing-
house. No part of this material should be reproduced or distributed
outside IBM without approval of the Clearinghouse.

PRELIMINARY REFERENCE MANUAL

TABSOL~225 ==~ A Tabular Systems Oriented Language

for the

GE225 Information Processing System

Computer Department

Applications Sectiocn

Programming Research and Development
Phoenix, Arizona

December, 1960

This document is a draft of a Preliminary
Reference Manual and a language specifica-
tion for integrating decision tables with
the General Compiler. The information con-
tained herein assumes a basic knowledge of
computers and electronlc data processing
applications. Therefore, the manual should
be used not as a text book but rather to
augment already realized skills. Minor
changes in language specification may occur
during the implementation pexiod of the
compiler. Any changes that are made will

be reflected in future and more fimal versions
of this manual or in supporting material issued
during the interim of implementation.

D. Klick
Programming Research

I. INTRODUCTION

Early automatic coding systems, such as asscubly programs, employed
mnemonic abbreviations in place of the computer's numerical instruction
code and symbolic addresses in place of actual memory addresses. In
reality the assembly program language was a set of synthetlc computer
instructions. Although these systems greatly simplified progromming, the
programuer was still plagued with the many detalls dictated by the compnuter.

Autvmatic coding languages of today are on the threshoeld of relieving
the progrummer of these detalls. The structure of these new languages
are very much like English. By using a combination of English words and
phrases to form sentences, the programmer now needs only to "describe"

a procédure for the computer to follow. This procedure together with a
description »f the data is then given to a special computer program for
processing. This special program, commonly called a compiler, translate
the English problem description and generates a program of computer
instruections.

Such a compiler is provided for the GE-225. Its General Compiles
evolved from tvo noteworthy language efforts - the Common Bueiness
Oriented Lacguage (COBOL) and the Algorithmic Language (ALGOL). Both
languages ware developed by voluntary committecs of computer manufaciirers
and users and reflect the recent trend toward "common" compiler lan uages.

The language presently available with the Generzl Compilex is Dased
primarily on COBOL, since COPOL satisfied the needs of a broad s cctrum

of data processing applications. To accommodate the demands of more techmical

applications, Boolean eipressions, floating point arithmetic, and
the ability to express eijuations were incorporated into the format
of COBOL. Therefore, cne may say that the present version of the
General Compiler can accept programs writtenm in one, two, or in a
combination of two lanjuage forms.

Those programmers familiar with COBOL recognize that it is well
suited for creating asad processing data files. ALGOL, on the other
hand, provides an ex:ellent meaus for expressing complex mathematical
relationships. Recaat investigatlious by the Integrated Systems Project
of General Electric 8 Manufacturing Services uncovered an area of
applications which require neither extensive data file processing
nor profound mathenatics but rather an unwieldy number of sequential
decisions.

To cope effectively with these decisions the ISP team devised a
tabular language. The purpose of thiz language was to depict, by means
of tables, the relstionships of lcogical decisions. The new language
was appropriately termed TABSOL for Tabular Systems Oriented Language.
Since its creation V4BSOL has been used by many departments of General
Electric to analyze aad solve problems in product engineering, manu-
facturing methods, cosv accounting, and production contwol. The applicatlon
of decision tables is coatinually growing., Recent studies show that
they provide a concise method for supperting the logle of other data
processing applications. I'vr example, decivfon tables may be used Lo
specify the transfer of control associated with the values of one or
more fields, to control the printing of detall and summary liwes of a

report, or to Interrogate the sort keys in a multi~file system At

the Computer Department we have found decision tables a valuable tool
in designing and implementing the CGeneral Compiler.

Decision tables represent a third language for the General Compiler.
They may be used by themselves or in conjunction with the features of
the compiler language. The specifications outlined in this manual pertain
mainly to the table entries and imply and require a knowledge of the
General Compiler. Therefore, this manual should be used as a supplement

to the GE-225 General Compiler Manual, CPB-123 (5.5M10-60).

II. DECISION TABLE FORMAT

The format of a decision table is given in Fig. 1. In concept &
table is an array of blocks divided into four quadrants by a pair of
double lines. The vertical double line separates the decisions or
"conditions" on the left from the "actions" on the right. The hori-
zontal double line isolaies variables from associated operands which
will appear in the blocks and rows below. A condition then is a relation
between a variable appearing in a primary block and en operand appearing
in a corresponding secondary block. For example, we may write AGE in
primary block 1 and FQ 26 in secondary block 1. Inm doing this, we are
stating a condition. Verbally, we are asking "if age equals 26". An
action, on the other hand, 1s a statement of what is to be done. By
writing AGE in a primary action block and 26 in its assoclated secondary
block, we are stating that "the value 26 is to be asgigned to apge".

It is interesting to note, at this point, the English interpretation
given to the vertical limes. The left-most line may be thought of as
representing the word IF. Those lines to the left of tke vertical double
line may be taken to mean AND; the vertical double lime itself the word
THEN. Since actions are sequentlal entities, the lines separating them
may be interpreted as semicoloms and the wight~-most line, which actually
terminates the actions, as a pevlod. With this in mind, ecach secondary
row becomesa an English sentence. For example, e2ach row now reads:

"IF condition-1 is patisficd AND condition-2 i3 satisfied
AND . . . AND conditicn~k is saotisfied THEN perform
action~1; action-2; . . .; acticn w."

If any condition within a row is not satlsfled, the neut vow is evaluated

uf‘-\.

DECISION TABLE FORMAT

Figure 1

I A A A A T H H)
r N N N EN H
3] D D D B
i 2 3 sos k N 1 2 3
Primary
Row A AR AGE
26 26
Secondary
Rows A
\
L - LY .

Conditions Actions

and so on until all the rows are depleted. When this happens the table
is said to have "no solution”. The table is considered "solved" when all

the conditions of a row are saticflcd and their assoclated actions performed.

Before considering the conventions used to formulate conditions
and actions, an example may help develop insight into the nature of
decision tables and the manner in which they may be uged with the
General Compiler. In this example (Fig.2) we are searching a master
employea file (recorded on magnetic tape) to determine the number of

male employees who fall into the following job categories.

Job Level Years Experience Title

6 2 Programmer

7 3 Programmer or Amalyst
8 More than 3 Analyst

9 More than 4 Analyst or Manager

10 More than 4 Manager

For each employee we find having any of these qualifications, we are
to write his department number, name, title, level, and experience
on the computer's typewriter. At the end of the run the totals for

each cof the categories are to be also put on the typewriter.

The core of this problem is the decisions that must be made on the
information stored im the records of the master file. These decigions
are conveniently expressed above in narrative form. With only minor
alteration this form becomes the program statement of our problem.

The table and sentences are punched into 80-column cards exactly as they
appear in Fig.2. When this is done they may be given directly to the
compiler for processing.

As illustrated in our example, General Compiler sentences may

be used to support the logic of the table. These sentences accomplish

the following:

SENTENCE FORM

ceNERAL @ ELECTRIC

e 4

7 van¥yy
Computer Doportment, Fhoonix, Arissas =13 (18-40)
. -
! u
k F
o of
o 7 3
"] W
£ [o
E) » >
o (2 3
?
P “]
1z 2]
g F 5
P ! ~ %
[i o o d
- ofl ? At
w2 E = "] A
) I[» z [
) a=1] 4
vl - N 1)
"] | e [
J o
& = . . | =] |]| 2| W w Pemn
“ '8 [y o L
* 3 J
) "] 0 ["))
U £ 2 @ L] > -
=] > >~ w |
-I._ V] o of] Q
W of < [[
[¥] o) z '] 7]
2 o o« ol
A + -] z [[
o - of - -
o e +) £ (&]
o W v o
wl | » -« o o o ul [
o B o |l o o 3 []
o 4 A £] £ <« +
Wl o] o £] £] F] | & F1E
J al W] £] | <] 2] 2| o - * |~
Wl - wl o = | | [=] w 5 Wl
J] wl| o 3 ° o] 9| 4] o] « 2| 4]
P] IR - o]l o]l «] =] = wl =
W off | > [o| o) 2| 2] 2 ~ i <
I - al ol <| <] £ + H 1
Lﬂ_lm. 4] [IEA [M_T
L £ » Al « J Al W F
o/ k| «] 0] © [o o o| & &) ¢ .
2| o] <[| ~ [3 ol w| | 0] w e
9] « f A] ml] = J| Al O] v] <] -] =
F | £| A| o » [- w{ [F[ul £/~4 2
2 v €| v df o] O] o o] o o W o < of
F =[] w u ' m.-lE....&._Gu Vel n] W =
_l > 2| | @] v W o] - FL =] | &
K =] » il ¢ g » Wl el ~ #f 0f Of ¥
“ & Dn.a: Y w B 3] H J] Fl oWl
|l L= Pl E| - £ ~ Y L
" = [o w o « 2 o] | J] © [
) - ¢z olulw o W Fl | 2] F] +] +| &
A - I w] W o [2 - zZ| -| ©
= Pl al wlul x i) 0 0| @ 0| 9f 9] of p
J - Wlo] o Hl w d wf 9] =] e -] ~ U sl 3| v
g = Y ¢] > ul ?
| S 0 [g u o /]
Mrl.o. o w <« =] > z
vl o 9 = u
"~
M || o] W of w o w| o] W ofw|a wlolw of y of | |
|| w - | 4l ~ m =]] w, W] = #] =] el tel vl o=
K= &t
ol g
m | 83
| - w=

OPEN --- Declares that the MASTER/FILE is input and since the file

is recorded on magnetic tape, validates the tape labels.

READ --- Delivers the next record from the MASTER+FILE and tests

for an end-of-file sentinel. When this sentinel ie
detected, sequential program execution is interupted and
control passes to the portion of the program labeled END-RUN.

IF =--- Eliminates those data records which contain information

about female employees. The word FEMALE (also PROGRAMMER,
ANALYST, and MANAGER used in the table) represents a
special kind of comndition and will be explained later in
the manual.

EXPERIENCE = -~-- Calculates the employees total experience and

agssigns the value to the field named EXPERIENCE.

The word TABLE informs the compiler that it must process a decision
table; EXAMPLE is a name or label which was given to the table. The
size of the table is stated next by giving the number of conditionms,
actions, and rows contained in the table., This information is used
only by the compiler and is not executed by the compiled program.

Table execution begins at row 1 (sequence number 40). Using our
narrative definition of a table, row 1 is interpreted as follows:

"IF the job LEVEL field equals (EQ) 6 AND the
EXPERIENCE field equals (EQ) 2 years AND the
employee's title is PROGRAMMER THEN assign the
value 1 to the subscript I; GO TO the part of
the program having the label TYPE~OUT."
If one of these condtions cannot be satisfied, row 2 is evaluated starting
again vith the left-most condition. Sequential execution of the rows

continues until either all conditions in a given row are satisfied or

all rows are exhausted. When the latter situation occurs, the
sentence iimediately following the table is executed. Proceeding
from here the sentences in our example accomplish the following:

GO ~=- Interrupts sequential program execution and passes

control to the part of the program labeled GET~RECORD,

WRITZ--- Writes the current contents of the DEPARTMENT, NAME,

TITLE, LEVEL, and EXPERIENCE fields on the computer's
“ypewriter.

CLOSE~-~ Rewinds the MASTER¥ILE and performs the file's closing

conventions.

STOP -~=- Terminates processing and writes the words END RUN on

the typewriter,

By (i2neral Compiler standards thils example represents relatively
simple conditions and actions. 1In formulating these entries, the
prograrmer may take full advantage of the compiler's capabilities.
The remaining sections of this manual are devoted to defining the
conventions and manner in which conditions and actions way be formed

and entered in tables.

IIL, PEASIC CONCEFTE
,8ince decision tables arc used in conjunction with the CGeneral
" Compiler language, we must first look at the foundations of this
language before considering the counterparis that may appear in a
table. The compiler's language, like most natuval languages, is a
body of words and a set of corvent:ions fox combiaing these words to
express meanings. Its structure of 'synta:" closely vesembles the
rules of English grammar, anc its Lody of words may be appropriately
termed & '"wvoecabulary'., Tke purpose of this seztimm 18 to show how
words ere formed and how they may be used ¢ 2xpross a deaired
meaning.
Characters
“he basic units of our lsuguage are the characters used to form
wordsn and symbols. The character set Includes the letters of the
alpbabet (A, B, C, 2), the nuerals {0, 1, 2, ..., 9), and the
spaclal characters shown in Fig. 3. GSpaeclal characters are presented
in more detail as they arz encountered in the manual,
Hords
The words of a typicel Ceneral Compiller program fall into ome of
two categories: the vocabulary of the coripiler and the vocabulary
used by the programmer. Tle programwar's vocabulary will consist mostly
of arbitrary numes given to his data and sectlons of his program, The
compiler's vocabulary, on the other hand, is predetermined and explicitly
defined In this manual. Since the compiler, by nature of its designers,
is a mistrusting mechanism, the programmer mus: define the words he

uses too, This is done, not by writing a wanual, but instead by merely

-10-

SPECIAL CHARACTERS

Character Meaning Caxd Code
A Space or blank Space
. Period - Decimal point 12-3-8
. Comma 0-3-8
" Quotation Mark 3-8

~ Hyphen 5-8

(Left Parenthesis 0-5-8

) Right Parerthesis 0-6-8

+ Addition 12

- Subtraction - Minus Sign 11

* Multiplication 11-4-8

/ Division 0-1

- Assignment 6-8
Vertical Table Line 12-4-8

Figure 3

-ll =

filling out & data description form. Once these '"data names" are
defined, they may be f£filed either on 80~colurm punched cards or on
magnetic tape and used over and over again., The data descriptiom
file then is a "dictiomary" since it contains the definitions of the
words used by the programwer. Furthermore, this dictionary may be
revised without redefining all of its entries. This is accomplished
by a speclial service routiae which accepts corrections, insertions, and
deletions as long as they are written on the compiler's data description
form.

Our two categories of words may be illustrated by the following
sentence taken from the program example given in Fig. 2.

GET FECORD. READ MASTEE~FILE RECORD IF END FILE GO TO END-RUN.
Here, the words READ, RECORD, IF,END, FILE, GO, and TO belong to the
vocabulary of the compilur; whereas, the wouds GET-RECORD, MASTER~FILE,
and END"RUN belong to the programmer's vocabulary. The compiler will
agsume that MASTER~FILE is e data name duc to the word's position in the
sentence. It will then search the data description to verify its
agsumption and to determive the characteristics depicted by this word.
Not finding a match in the data description results in an error message
typed on the computer's typewriter. The words GET-RECORD ard END-RUN
will be interpreted as sertence names due to their position in the
progras. (mne again, the compiler will attempt to verify its findings
by checking cach transfer to make certain that they lead to properly
defined sentence mamas. The consequence of an undefined sentence name
is likevise an error messzge on the compu:er's typewriter. The compatability
checks mentioned here are only two of many which the compiler performs to
insure unquesticnable zezsults in the programs which creates.

Foxmation of Names

A8 previously mentionad, data names are words representing data
(files, records, ficlds, elements, constants, arrays of values, etc.)
ard are arbitrerily sssigned by the programmer. They are formed from

the following characters.

Letters Ay By 8y avaug B
Numerals 05 L5 25 wnwy 9
Hyphen ~

To avoid error messages and possible re~compilation, the programmer

should choose daia names thet

1. Do not exceed 12 characters,
2. Do comntain at least one letter,

3. Do not begim or end with a hyphen.

To insure a vroperly defined nrogram, ail data names should be recorded an(
their characteristic data described on the compiler's data dascription
form. The prograwmer also shoutd be careful not to use the compiler's
vocabulary as data names.

In addition to data names, the prograumer is free to name sentences,
tables, aad other "procedures" in his jrogram. With one exception these names
are formed like dsta nemes. Since pro:edure names are judged from their
position in the program, they may bte f:rmed from only the numerals, 0
through 9.

Constants
The values associated with data nauce generally change during the

actual running of a compiled progrsm. It is for this reason that they

w 13 =

are sometimes called "variables'. A constant, as opposed to

& variable, is8 a specific value and does not change within the
scope of a program. Constants may be one of two kinds: a literal,
or & named constant.

A literal is a value itself rather then a pame given to a value.
Literals may be numerical, alphabetic, or alphanumeric - l.e.,
composed from the character set of the computer. All non-numeric
literals should be enclosed in quotation marks (") to avoid having
the compiler confuse them with data mames. The conventions for
forming literals are the followirng:

1. Non-numeric literals are limited to 30 characters, excluding
the quotation marks.
2. A nmeric literal not enclesed in cuotation marks s

assumed to be a number. Numbers may contain not wmore than

one decimal point and a minus sign. Unslgaed nuwbers are
considered poaitive, Bxcluding decimal polnts and minus

signs, number: must not exceed 11 decimal diegita,

3. Numbers may be triated as floating point by writing them
as a power of ten -~ i.e., & nuder os decimsl fraction
followed by ¢ power of ten expement. For example, the
number 230100 might be written ec 2.301E5 vhich is equivalent
to 2.301 multiplied by 105. The exponent part, indicated
by the letter E, may contain a minus sign to show a negative
exponent. The value range of aa exponent is limited to

4+ 75. Excluding the decimal point, the minus sign, and

“ 14 o

the letter E, the fractional part of a power of temn number
must mot exceed nine decimal digits. To distinguish data
names from flcating pofnt numbers, data names should not
be formed from only the numerals and the letter E.

4. An alphanumeric literal may not contain en embeddud quotation
mark since the enclosirg quotation marks are used to leterminz
the size and content of the litersl.

A named constant is a constant which haes been given a nane. Named
constants are defimed by means of the date description and moy include
any character belonging to the character set of the ccmputer, including
the quotation mark. Like literals named constants may be numeri:,
alphabetic, or alphanumeric. They are unlike literals in that they
may be any length.

Subscripts

Subscripts provide a convenient methocd to reference individual
values contained in a list or in an array of values. The ~ariable, I,
employed in the decision teble of Fig. 2 is a subscript used just for this
purpose. Since five totals are to be accumulated, one name was assigned
to all five, namely, the data name TOTAL. Whenever reference was made
to a particular total, the data name TOTAL was followed by the subscript
I. This is illustrated in the expression

TOTAL (I) = TOTAL (I) + 1.
and the sentence which prints all five totals on the typewriter. From
this example, it follows that subscripts, like data, may be given names.
In fact the same rules that govern forming dats names apply to naming

subscripts.

Since subscripting is a positional notation, the range of any sub-
script is limited to the values 1, 2, 3, . . ., n (vhere n is the maximum
number of values in a list). This does not mean that subscripts are
limited only to integers. If a subscript is not defined ds integer by
means of the data division, the compiler will automatically provide
coding to truncate its value o an integer. Furthermore, subscripts are
not restricted to a single variable name. Arithmetic expressions may also
be used as subscript. For example,

RATE /P+1)
K (/X-3)*p¥*3)
A (J)
are legitivate forms of subscripts.

Up watil now , only cae<demensional subscripting was comsidered. Values

in wult/-demensioned arrays muy &lao be referenced by subscripts. For example,

an arzay in which values are oxdered

Ay Mo A3 A A5
Ayy Ay Ay Ay Ay
Ap Ay A3 Ay Ay

A

51 A

g2 A

43 M Mus

A

51 A

52 As3 A

g3 Ag; A

55

might be subscripted as A (J,K), where K is the columnar subscript and

J the row. To refer to value A35. J weuld have to equal 3 and K equal 5.
Preceeding examples show that gpubscripte are enclosed in parenthesis and

neparated by commas. Thie notation permits the compiler to distinguish

subscripts from other elements inm the language.

- 16 =

Truth-Values

There is a cLass of variables which, through either usage or definition,
may assume only che numerals 1 or 0. The value 1 is said to be their true
state and the alue 0 their false state. The words END FILE of the READ
sentence in Fg. 2 is such a variable. When the OPEN sentence is executed,
END FILE is Jet to its false state and remains so set until the end-file
condition i: encountered. At this time, it is set to its true state.

Variabi.es having truth-values are termed "True-False'" variables. END
FILE is a -onvcaience provided by the compiler; the programmer may also
formulate his rwm true-false variables by merely listing them under the
heading TRUE*FALSE in'the data division. They may be named according to
the rules givin for data names.
Arithmotic I} pressions

Aritba:tic eipressions are rulea for cowputing numerical values. They
are forr«d from variables, nvmbers, functions, and symbols representing
addition, oibtraction, multiplication, Jivision, and exponentiation. For
(u--+ple, in the expression

IOHEM~HRS # 2.50 + OTWHRS # 3.75
PREMVHRS anc OTYHRS are variables; 2,50 ard 3.75 numbers; and + and * symbols
for addition and multiplication. If PREMY\\RS were 40 and OTYHRS were 4, the
expression becomes 40 * 2.50 + 4 * 3.75 and after performing the arithmetic,
reduces to the value 115.00, To save this value, a programmer might write
GROSSYPAY = PREMVHRS * 2.50 + OTVHR3 * 3.73,

The presence of the = symbol tells the compiler to assign 115.00 to the
variable GROSSVPAY. When expressions are written in this form, they are

called "assignment statements”.

- 17 =

The arithmetic permitted in an expression is stated by the following

symbols:

Symbol Meaning
+ Addition
- Subtraction
* Multiplication
/ Division
ik Exponentiation

In addition to arithmetic, the following mathematical functions may be used.

Symbol Function
SIN Sine
Ccos Cosine
ATAN Arctangent
SQRT Square Root
EXP Exponential
LOG Commion Logarithm
LN Natural Logarithm
ABS Absolute Value

Arithmetic expressions ace evaluated from left to right according
to the following priority:
1. Exponentiation and Functions
2. Multiplication and Division

3. Addition and Subtraction

Parentheses may be used to establish a precedence other tham the one
above. When they are used, the evaluation is performed from the innermost

to the vutermost pair but still from left to right within a given pair.

- 18 -

Relational Expressions
A relational expression is a statement of magnitude between two values.

For example, FICA GR 144.00 is a comparision between the variable FICA and
144.00. The symbol GR stands for the relatioa "greater than". Other

relations may be stipulated by

Symbol Relation

EQ Equal to

GR Greater than

LS Less than

NEQ Not equal to
NGR Not greater than
NLS Not less than

To have mesning, relational expressions must be stated as conditionms.
The expression FICA GR 144.00 tells us nothirg. However, when it is written
as

IF FICA GR 144.00, GO TO ADJUST~PAY

ve know immediately whet is intended. By definition then, relatiomal
expressions are conditions and when evaluated always give a truth-value.
Relational expressions may be explicitly stated or implied. FICA GR
144,00 is an explicit statement of magnitude. In the program example of
Fig. 2, implied relations were stated by the words FEMALE, PROGRAMER,

ANALYST, and MANAGER. An implied expression is formed by giving a name

to a value, a range of values, or to a series of values and ranges. Once
the name and its values are defined in the data division, it may be used to
mean its associated values. Implied reclations are termed "condition-names"

since a name was given ¢o a condition, i.e., a value, of a variable. The

- 19 -

variable from which the value is taken is called a "conditional wvariable".
Therefore, writing PROGRAMMER (£1g.2) in a derision table block is the same
as writing an expression which will compare the TITLE field with the value
associated with the title, programmer.
Logical Expressions

Logical expressicns providc a convenient method for obtaining truth-
values. They are formed by combining true-fazlse variables and relational
expressions with the loglcal operators AND, CR, and NOT. The expression
(FPig.2)

PROGRAMMER OR ANALYST

is a logical expression which is true vher a2p cmployee's TITLE fileld
indicates that he is either a programmer or an analyst.

The rules goveraing the evaluation of leglcal expressions may be

expressed as follows:

— o — - — O — - — S W — v Sw e - e

pOR g F T T T

where p and q are a combination of true-false variables,

relational expressions, or logical expressions.
logical expreegions are evaluated from left to vight with the logical
operator AND having precedence over the OR. Parentheses may be used for
grouping or establishing a precedence of evaluation other tham the one
mentioned previously. Vhen Lhev are ueed, the evaluation proceeds from

left to vight from the imnnermost palr to the outerxmost pair.

- 20 -

IV TABLE ENTRIES

The previous section outlined the elements of the General Compiler
language and briefly showed hcw they might be used. In the introduction,
it was mentioned that these same elements mey be employed within the
blocks of decision tables. The purpose of this section is to show how
this may be done.

Formation of Conditions

By definition, a condition is a relation between a primary block
entry and some corresponding secondary block entry. A condition, like a
relational expression, may be either true or false. True conditions are
sald to be "satisfied" and false conditions "mnot satisfied'". From this
definition, a condition may be either a relational expression, a logical
expression, or a true-false variable since these are the only elements
that yield a truth-value,

The formats noted below show how these expressions may be split between
primary and secondary blocke to form conditions. In these examples, the
word "operand" stand for either a varisble {data name or subscripted data
name), a constant (literal or named comstan:), or an arithmetic expression.
The word "relation” signifies one of the relational operators - EQ, GR, LS,
NEQ, NGR, or HLS. Since arithmetic expressions may be operands of relational
expressions and relacional expressions as operands of logical expressions,

it necessarily follows that arithmetic expressions may appear in logical

expressions.
Format Example
Operand-1 Relation EFVHL EQ
d=2_ po

- 2] =

Operand-1

|_Relation Operand=2_|

Operand-1 Relation

Operand-2 OR Operand-3

[Ooperand-1

icondition-nm

jror

ition-name

Fo Entry

2z fmple

(EXPERIENCE

ler 4

TOTAL (I) NLS

(1) OR PT(2) or PT(3)

(X+Y) *% 3

iGR P+l OR LS Q(I)

PROGRAMMER

{NOT

FEMALE

Fme-l?al se Variable

REQYL

ot

NOT

Il'mo-l'alse Variable

END INVENTORY FILE

try

Logical Erpression

PROGRAMMFR OR ANALYST

[por

NOT

l..ogical Expression

X GR ¥ OR X LS (2+1)

Formation of Actions

Actions are statements of the things to be done when all the
conditione of a row are satisfied. The score of an action may be
one of three kinds: implied assignment, procedural, or input-output.
The only action presented so far was assignment. The other two are
extensions of CGeneral Compller sentences and will be mentionmed here
only briefly. The compiler msnual should be consulted for a more
detailed presentation.

1. Value Assignment. Value assignment is an implied function
between associated ,primary and secondary block entries. By placing
a data name in a primary block and some number in a secondary block,
for example, I and 1 of Fig. 2, the compiler automatically produces
coding to assign the numer to the data mame. In the case of our
example, 1 is assigned to the subscript I. Other examples of value
assignment are given below. In thesec formats the word variable
implies either a data name ¢r a subscripted data name and the word

conotant either a literal or a named conestant.

ormat Example

[Variable »

Constant 1

Constant |"CoPPER"

Variable | B

axriable FPHA (1,3,K)
i
ithmetic Expreszicn 1 PIN THETA + (X/P)**2

<

Format

Arithmetic Expression

Variable

True-False Variable

Truth-Value 1 or 0

Truth-Value 1 or 0

True-False Variable

Example
T & RA2
[AREAs1
SWITCH?
1
0
BETAVREQ

2. Procedural actliong. Procedural actions provide the means for

interrupting the normal execution scguence of a table.

following compiler verbs may be usci for this purpose.

GO TO
PERFCRM
STOP

Any of the

The GO verb stipulates an unconditicr:al transfer to a specified part of the

table or program. Its destination way be a sentence name, table name, or

the row number of a particular table

follows:

Format

GO TO

Sentence Name

GO TO

Table Naue

— i e

GO TO

Row of Table

. 2& -

The format of the GO entry is as

Example
G0 TO0
TYPEYOUT
60 0 ‘
TABLE 23 i
GO 70

\ROW 7 TABLE BETA

The other form of a procedural control is the PERFORM verb. The
PERFORM specifies a transfer to some destination, the axecution of a
table or a set of sentences at that destination, and a return to the
action block following the PERFORM. The sentences or tables acted
upon are by definition a “closed procedure" - i.e., they have a single
entrance point and a defined exit point. Conventions for writing closed
procedures are given in the next section. Legitimate forms of rhe

PERFORM action are

Format Example
PERFORM [PERFORM
Bentence Nama ! [GROSSv PAY
[pmonu [PERFORM
| @
[f~ble Name ERNOR TABLE

The STOP verb may alasc be used as an action. It may be placed in
either a2 primary ox secondery block. When it is used, no other action
may appear with it in the same action column. The STOP terminates pro-
cessing temporarily or verwanently according to what action is taken
at the computer's console.

3. Input-Cutput Actions. Input and cutput actions are compiler
verbs that control thz flow of data to and from the computer. They read

write, and validate tape labels of data fiies assigned to peripheral

input-output devices. When dota files are referred to from sn acticn
block, they must be dafined according to the envivonment and data division
specifications listed in the General Compiler manual. The formats of

input-output actions are illustrated by the following:

- 25 «

Format Example

FEAD RELD

Fﬁe Name MASTERVFILE

DPEN INPUT or OUTPUT OPEN INPUT

File Name MASTERVFILE
SE CLOSE

[File Name MASTERFILE

L |

READ, CLOSE, or OPEN verbs IREAD

ETTE WRITE

Record Name DETALIMLINE

[Record Name TRANSACTION

[WRITE ITE

The Skip and Repeat Operators
The skip operator makes 1t possible to show that a condition or

action is not to take part in the evalution of a row. This is done by
placing a hyphen () in the concerned conditiom or action block. The
compiler then will skip this block and proceed to the next.

The repeat operator iz a shorthand metlod to indicate that a condition
or action im the block above is repeated. This 1s shown by entering a ditto
mark (") in the block below the one that is to be repeated. This notation

was used wvith the GO TO action in the sample table of Fig. 2.

Ll 26 -

V THE TARLE A3 A PROGIAM

Up until ncw, cnly compenents of tebles were presented. It was learned
in Section II that General Compiler sentences could be used to support the
conditions and actions of tables, and the preceeding section mentioned
tables as closed procedures. This sect on relates these topics to tables

and tables to compiler programs.

Block Conventions for Writing Expressions

1. Words, abbreviations, and symbols of the compiler's vocabulary
ghould not be used as names. They may be combined with other characters to
form nawmes.

2, The words in an expression should be separated by at least one
space. More than one space is permitted. The space separator is opticnal if
the words are hound by

dowow fowoa () "=, |

3. Subscripts should be enclosed in parentheses. They may be written
adjacent to (without a apace separator) or apart (with space separators)
from thely associated data names. Individual subsCripts in a list of subscripts
should be separated by commas.

4. VWhen two arithmetic expressions zppear side by side as in a series,
they should be sepavated >y cormas,

5. All colums of a table should be bound by the vertical table line,

(12-4~3 punch).
6. The skip end vepeat symbols, ~ and ", should be the only entry ,

other than spzces, in a block.

- 27 =

Conventions for Placing a Tabie in a Program

1. Tables are written on the General Compiler Sentence Form,

2. A table is preceeded by thz word TABLE. Naming tables is
optional, When a table is given a name, the name may preceed
or follow the word TABLE. The word

TABLE,
name TABLE, or
TABLE name

should be followed by a period.
3. The table's size is given next and should be placed on the
same line as the table's name. The size may be writtem in one
of two ways:
kkk CONDITIONS mam ACTTONS nnn ROWS.
or
(kkk, miom, aun).
Both forms are terminated by a perlod. The oruer of writing
the number of conditlons, actions, and rows is optionel in the
first case since cach can be identified. However, order 1s
important in the second form since the compiler interprets the
first number enclosed in parencheses as the numter of conditions,
the second as actilona, and the third as rows. Conditions, actions,
and rows are numbiered sequentially beginning with 1. Row 1 is the
first secondary row; the primary row is not countel in the row
count.
&4, General Coumpller sencences should not be placed betveen the
word TABLE and the primary row of the tables.
5. The double vertical lines that separates conditions from actions

may be represented by cne or two l2-4-5 punches.

- 28 -

The size of each block may vary from column to column and
row to Tow.
The only limit on the size of a table is row width. Since the
compiler prints & listing of compilation, the recommended row
width is 120 characters including card sequence number. Maximum
row width 18 1200 cheracters.
Since the table form is an image of an 80-column punched card, a hyphen
(~) 1is placed in cclum 7 of the form to show that a row is contained
on mora than one card. In this case, no table column may be split
across cards. Esch card is to comtain a sequence number to insure
prover catd order. Whe2n rows exceed oue card, the sequence number
of the first card is only printed. Sequence numbers of succeeding
caxds are stripped out. The row iz then printed as a multiple
of 120 characters with an integral number of table columns
per 120 characters.
Expressions too long or complex to be writtem in blocks may be
written after the table's name and size and be executed from the
table by means of the PERFORM verb. In addition to expressions,
any General Compiler sentence may be used and executed in this
manner. To indicate the start of the table the word BEGIN is to
follow the list of expressions and sentences. This format may be
illustrated by the following:

TABLE name, kkik CONDITIONS nsma ACTIONS nnn ROWS.

.+« General Compiler Sentences and Expressions - May be
exzcuted only from the confines of the tsble.

BEGIN

DECISION TABLE

- 29 .

Closed Procedures

Fig. 4 outlines the format of a closed procedure. By definition a closed
procedure may be acted on vnly by the PERFORM verb. It contairs one eantrance
point and one exit point. 1In fig. 4 these are indicated by the words BEGIN
and END TABLE name. BEGIN and END also act as sentence names and may be
referred to from withia the procedure body.

Expresaions too loag to be placed in the blocks of a table may be
written in the procedurz head and executed from the procedure body by means
of the PERFORM werb. Az such, they must be given names. In addition to
expressions any General Compiler sentence may be writtem in the head and
executed accordingly.

The procedure body contains the table. As shown in Fig. & compiler
sentences may preceed and follow the table. Execution is sequeatial
starting with the sentence or table after the woxrd BEGIN and proceeds umtil
the exit END TABLE is reached. It is at this point that control is
reverted to the PERFORM verb which origineclly referenced the procedure.

Any unconditional transfer from within the procedure to the outside is
undefined. However, PERFORM verbs in the body may reference other closed
procedures.

Closed procedures should be written apart from the main program.

DECISION TABLE AS A CLOSED PROCEDURE

CJ.‘ABLE name., kkk CONDITIONS mmm ACTIONS nnn ROWS.

prog:igre{ .+ General Compiler Sentences and Expressjons - May be
executed from the confires of the cecision table.

BEGIN. (Start of execution - entrance to procedure body)

N
Vg «+. General Compiler Sentences and Expressions
rocedure
’ body 4 Decision| Table
«+s General Compiler Sentences and Expressions

END TABLE name. (Exit of procedure body)

Fig. 4

T

IBM Data Processing Division
Thomas J. Watson Research Center
P. O. Box 218

Yorktown Heights, New York

June 23, 1961

Memorandum to:

Subject: Tabular Techniques Development
Distribution #3

This is the third release of material concerning the development of
tabular techniques for systems and programming description. Enclosed are
three reports:

(1) A report by Sutherland Company describing a method of
recording management decision rules and other information
necessary to adapt an information system to an automatic
medium of data processing.

(2) A report by Burton Grad, IBM, describing two techniques
of representing the decision logic of an insurance company
file maintenance problem; namely, traditional flow charts
and tabular form.

(3) A paper given by Burton Grad at the 12th GUIDE International

meeting in Montreal, Canada, June 1, 1961 describing the
general concept of tabular techniques.

M
T
Burton Grad, Manager

Systems Engineering Services

YSTEMS
NGINEERING
ERVICES

CLEARINGHOUSE REPORT

INFORMATION PROCESSING SYSTEM
ANALYSIS

June 5, 1961
Ref. No. 1F2 Sutherland Co.

This material is distributed to keep IBM personnel informed
of new developments. Selection is based on interest; this department
makes no claim for the desirability of this approach nor necessarily
recommends its use.

If additional copies are desired, please contact the Clearing-
house. No part of this material should be reproduced or distributed

outside IBM without approval of the Clearinghouse.

INFORMATION PROCESSING SYSTEM ANALYSIS INSTRUCTIONS

1. Purpose. To provide a standard method of recording the management
rules (arithmetic and decision processes) and other information necessary to
adapt an Information System to a mechanical or other medium of processing.

2. General. The method described in the following instructions eliminates
the need for lengthy narrative with its inherent disadvantages of misinterpre-~
tation by the reader and difficulty of organization by the writer. This method
also eliminates the need for the system analyst to prepare detailed flow charts
to convey to a processing specialist the processing required to obtain the de-
sired results of the Information Processing System. The method of documen=-
tation is general enough to allow the Information System to be adapted to any
medium of processing, but detailed enough to permit the application of the
Information System to electronic machine processing by a machine special-
ist who has no prior knowledge of the Information System.

A. Documentation Preparation. The documentation will be prepared by
the system analyst and forwarded to the processing specialist. The processing
specialist may be a punched card equipment specialist, an electronic equip-
ment processing specialist or a manual and standard office equipment proces~
sing specialist, In many instances, the manual and standard office equipment
processing specialist will be the system analyst. .

B. Content of Documentation. The documentation prepared by the
. system analyst will include the following:

(1) General System Chart including the inputs to the system and the
sources of the inputs, the outputs of the system and the disposition of the out-
puts and the data to be retained by the system.

- (2) A general narrative description of the Information System which
will include the purpose and scope of the Information System and any other
pertinent information that may be helpful to the Processing Specialist.

(3) Description Sheets
a. Input Description .
b. Process Description and Process Description Continuation

c. Output Description

(4) Any reference notes that are required to clarify the Input, Out-
put or Process Description sheets.

(5) A sample copy of each "hard copy" input and "hard copy" output
of the Information System. Element codes will be entered on the input and
output samples to identify the elements and their position.

Note: Appeadix I is a sample of the documentation for an Information Processing System.

Page 2
3. Input Description Sheet.

A. General. An Input Description Sheet is used to describe the content
of Action Sets and Retained Data Sets which are input to the information system.

B. Headings .

(1) In the upper left-hand corner, place the two-character "System
Identification' for the system being described.

(2) Below the '"System Identification', place the ""Set Identification"
for the Input Set being described. If the input is an Action Set, use the iden-
tification of the Action Set. If the input is a Retained Data Set, use the unique
Retained Data Set identification assigned to the set.

The first two characters of the Retained Data Set identification

are the System Code, the next two characters will be "RD'". The next char-
acter (s) is used to identify uniquely each Retained Data Set. For example:

04RD]
Billing \Ji

ngDZ
Billing Assigned to the Price List

Assigned to the Customer File

_ (3) Indicate in the space provided for "Frequency of Proceuing"
the most frequent period in which this set is to be input to the system.

(4) Process. Indicate in the space provided the name of the process
being documented. In most instances the process will directly correspond to
what is described by the System Identification. Occasionally the System Iden-
tification is not definitive of the process being documented and the actual
process name should be indicated. For example:

System Code 20 is assigned to Salary Payroll which includes:
Pay Check Preparation, Personnel Reports, Labor Distri-

. bution, Tax Reports and Annuity Reports. In this example,
the System Code would be 20, but the process would be Pay
Check Preparation, Labor Distribution, etc. depending on
the process being documented.

(5) Place the '"Set Name' in the space provided.

(6) Indicate in the space for '"Volume' the "Average' and '"Peak"
number of sets that will be available as input in the time period shown for
"Frequency of Processing''.

Page 3

(7) In the space provided indicate the Form Type for the set.
Examples of ""Form Type" are: '"Manual', '""Punched Card", "Magnetic Tape",
and '""Paper Tape''.

(8) For "Source System I.D." indicate the two-character System Cede
of the System which processes the set immediately prior to this system. If the
Input Set is a Retained Data Set which is added to in more than one system, in-
dicate the system from which the Retained Data Set will be received.

(9) In the upper right-hand corner indicate the page number, the name
of the person preparing the Input Description Sheet, and the date of preparation.
AL ReTAives saa 5ers

C. Management Rule Numbers. For Action Setsjindicate in the spaces
provided across the top of the sheet the three-digit numbers of the Management
Rules (other than Validation Rules) which must be executed if this set is pres-
ent. If there is not sufficient space on one Input Description Sheet for all the
rules, use additional sheets.

D. Element Name.

(1) In this column enter the "Element Names' assigned to the ele-
ments that are contained in the Input Set. For an inpjl. regardba\ of Whether
or not space is provided for an element, no entry should be made for the ele-
ment, if it is alwa.zs blank.

(2) Additional information on each element is placed to the right of the
element name.

E. Element Code. In this column place the seven-character element code
number corresponding to each element name.

F. Element Code - Suffix.

(1) An element in a set may be used differently or prepared differ-
ently depending on what other elements identify it. An example is the Element
"Quantity on Hand Total''. This element may appear twice on a set. In one
place, it may be the total "Quantities on Hand'" for each 'Stock Number' at
each '""Location'. In the other place, it may be the total of all "Quantities on
Hand" for each "Stock Number'" at all "Locations''. In the first instance,
location would be an Identifying Element; in the second, it would not. To in-
dicate this difference for the element in this set, two suffixes '""A'" and "B"
would be assigned. For each different grouping of Identifying Elements for an
element, assign a different suffix, beginning with "A'", (See paragraph 3, N,
(3) following).

G. Element Description - Alpha. If the element described by the element
name contains any non-numeric characters, enter an "A'" in this column.
Otherwise, leave the column blank.

Page 4

H. Element Description - Numeric. If the element described by the ele-
ment name contains any numeric characters, enter an '"N'" in this column.
Otherwise, leave the column blank.

I. Element Description - Characters - Total., Place in this column a
maximum of two digits to describe the maximum number of characters that the
element may contain. Do not include in the total number of characters, punc-
tuation marks in numeric fields which are used for arithmetic processes.

J. Element Description - Characters - Decimal. This entry is made only
for all numeric elements which may be used inarithmetic computation. Enter
in this column the number of digits that appear to the right of the implied
decimal point.

K. Element Classification (Class.). Depending on whether the element
described by the element name is a Recognition, Identification, Action, Action
Modifier, Information, or Superfluous Element, enter an "X'" in the appropri-
ate column. See the definitions for the different Element Classifications in
Appendix I. Generally, the different classifications are mutually exclusive.
However, any element may be described by more than one classification other
than '"Information' and '"Superfluous'". For retained Data Sets only Recogni-
tion and Identifying Elements need be indicated.

L. Number of Times an Entry May Appear on This Set. Place in this
column a maximum of three characters to indicate the '"Average' and a maxi-
mum of three characters to indicate the '"Peak' number of times an entry may
appear for this element on this set. If the number exceeds 999, use ''C'" for
hundreds and '"M" for thousands.

M. Validation Rule (s). In this column list the three-digit Rule Numbers
for the Management Rules which must be executed to validate the element de-
scribed by the element name. Use as many lines as are necessary for each
element name.

N. Identifying Element Codes.

(1) For ldentifying Elemerits that are used to identify an element on
the Input Set, the Identifying Element Codes are listed vertically in the spaces
provided. If more space is required, use additional Input Description Sheets.

|

(2) Place an "X" in the "Identifying Element Code' column and Ele-
ment row intersection if the Identifying Element is used to identify the element
indicated on that row. Each entry for the element described by the element
name is identified by one combination of entries for the elements dcacribed by
the Identifying Element Codes.

Page 5

(3) The first two lines of Figure I illustrates the example described
in paragraph 3, F, preceding. Quantity on Hand with Suffix "A' is for each
Stock Number at each location. Consequently an "X'" appears under both
9300100 and 7976050, the Element Codes for Stock Number and Location
respectively. Quantity on Hand with Suffix ""B'" is for each stock number at all
locations. An '"X'" only appears under 9300100, the Element Code for Stock
Number. In this case, Stock Number alone is the Identifying Element for
Quantity on Hand. The third line of Figure 1 indicates that the entry (s) for
location is identified by an entry for Stock Number.

System ldectification

Page 6

91,7 L 1 R —

e e

Locaron

S7vek MO _

Ser Mdentificution . Set Name .. Form
Frodquency of Processing Volume: Avetage Source System 1. D,
 MAMAGIMENT RULE NOS. {
vy \ \JDENTIFYING ELEMENT €O/
DESCRIPTION
NE
e e ELEMENT ST,
ELEMENT NAME s s { M)
d«l8] = | N
El&|E|l & " O
a=|z| = O N
hrangma s A wn e s e b -~ — -
QrY ow Hewo 7or (9768750 W V[x[x
J7¢8760 & ar |
§ 7976050 /[1x]| /
?300/90 P \
;-'-'C;:-,.;;_‘__‘_‘::e-‘-'\t::*"‘”- S oo \wu/é_—l/\n...ﬂ_ 9‘-,~A

FIGURE 1. USE OF ELEMENT SUFFIXES
AND IDENTIFYING ELEMENT CODES

Page 7

O. Reference Note (Ref. Note[. If there is a need for a reference note,

place a check mark (#) in the column. Cross-reference the note with the
‘System ldentification,Process, Set Identification, and if required the Element
Code and Suffix.

P. Remarks. This column may be used for any additional information be-
lieved necessary by the analyst preparing the Input Description Sheet.

4. Process Description Sheet.
A. General.

(1) A Process Description Sheet is used to describe Management Rules
used in processing information within a system.

(2) Rules for Validation are shown on separate sheets from all other
processing rules. It is assumed by the analyst that all Validation processing is
to be accomplished before other processing is begun.

B. Headings.

(1) In the upper left-hand corner place the two digit "'System Identifi-
cation' for the Analysis System.

(2) In the space provided for '""Process', indicate the name assigned
to the process being described. (Refer to paragraph 3, B, (4) preceding).

(3) If the processes described by the Management Rules on the sheet
are Validation Processes, place an "X'" in the '"Validation' Box.

(4) In the right-hand part of the heading, enter in the spaces provided:
the page number, the name of the person preparing the sheet, and the date of
preparation.

C. Line Number. On each line in this column, place a four-character line
number. It is suggested that the right-most digit always be blank in case there
is a later need for insertion of additional lines. Line numbers will be unic;_uely;wél;.

assigned to all lines within the description of a particular pebiessfora-cystenn

WW“WH&E -number-022;—the-first-line
auwmbsr-on-Page-2-will-be-023:

Examples of line numbers are :
011
012
0131
0132
014

Page 8

D. Condition/Action Indicator (C/A).

(1) If a condition is expressed on this line, place a "C" in this column;
if the line is used to express an action, place an ""A" in this column. If what
has been placed in this column for an immediately previous line is true for a
line that follows, no entry need be made for the line that follows.

E. Management Rule - Current. In this column on the first line for each
Management Rule place a three-digit number for the Management Rule, The
numbers of all Management Rules will be uniquely assigned for all rules within
a Process for a System.

F. Management Rule - Prior. In this column list the three-digit numbers
of all of the Management Rules which must be considered before the rule speci-
fied in the '"Management Rule - Current'' column is considered. Generally, a
rule is prior to another rule only if it specifies the creation of elements of data
necessary for the processing of the current rule. Management Rules for Valida-
tion of elements will not be shown as prior rules for non-validation Management
Rules.

G. Source - Element Name, Prior Result or Actual Value.

(1) If one source for a condition or action is an element, place the
name assigned to the element in this column. If the source is an actual value
(Literal or Descriptive constants - See Appendix I) place the actual value in
this column. If the source is the result of an action in any rule, place the
designation of the result in this column. (Results of an action are designated
as '""Result X", whkere "X'" is any character A to Z or 0 - 9. The first result
of a rule is designated as '""Result A", the second as '""Result B"', etc. Unique
designations of prior results are only necessary within each rule. Two dif-
ferent rules may each have an intermediate result designated as Result A.

(2) Deletion of an Element. The deletion of an element from a set is
indicated by placing the Descriptive Literal "/BLANK/" in this column, enter-
ing a check mark in the '""Set Equal To" column, and entering the Element
Name and Set Identification for the element to be deleted in the appropriate
spaces in the "Source/Disposition' column.

(3) Deletion of a Set. The deletion of a set is indicated by placing
the Descriptive Literal '"'/BLANK/" in this column, entering a check mark in
the '"Set Equal To'" column, and entering the Set Identification for the set to be
deleted in the "Source/Disposition - Set Identification" column. In this case*;
the "Source/Disposition - Element Name” is left blank. _. ;‘ﬁ‘ﬂ

o
L

H. Source - Element Suffix. 'If the entry made in the "Source - Element.r s
Name Prior Result Actual Value'" column was an Element Name, and if a, 1‘ W -..----‘5 ‘
suffix was assigned to the element gyvﬁ Input Description Sheet, the suffig’

.‘f_’_, =
;‘rﬁ-_- 4
S
&

&

Page 9

which was assigned is entered in this column. Otherwise, the column is left
blank.

I. Source - Set Identification.

(1) If the entry made in the "Source - Element Name, Prior Result or
Actual Value'" column was an Element Name, enter in this column the seven-
character set designation for the set of which the element is a part. If an ele~
ment for a rule may appear in one Input Set or another, depending on which set
is present, more than one Set ldentification may be listed in this column as a
source for the element described by the Element Name. If the entry in the
"Element Name' column is the designation of a Result of an action in this rule
or another rule, enter the three-digit number for the source rule within paren-
theses. This column is left blank if the entry made in the "Source' column is
an entry for an actual value. Examples of entries that may be made in this
column are:

24165A = Set
(152) = Management Rule
152 Set

In u

(2) The addition or insertion of a set into an Output Set or Retained
Data Set may be indicated by placing the Set Identification of the set to be
added or inserted in the '"Source Set Identification' column, the Set Identifi-
cation of the Output Set or Retained Data Set in the '"Source/Disposition Set
Identification'" column and a check mark in the '"Set Equal To'" column. The
element columns of both the Source and Source Disposition will be left blank.
This procedure will only be used if all the Elements of the Output Set or
Retained Data Set are contained in the Input Set.

J. Condition (Cond.). If a condition is expressed on a line, it is
"Greater Than', "Less Than', or "Equal To'. Place a check mark (¥) in
the appropriate column (s) to indicate the relationship between the first and
the second Source Elements or Actual Values., The relationship between the
three conditions is a logical "or" condition. More than one column may be
checked for a line. In reading, "or" is inserted between each condition
checked.

For example, if "AMT SALARY" is the first Source Element, (O) is
specified as the second Source Element (Actual Value), and the '"Less Than"
and "Equal To'" conditions are checked, this is read, "If AMT SALARY is
Less Than or Equal To O..."

K. OEeration.

(1) To express an Arithmetic Operation for an action relating two
elements, results or actual values, place one of the following operation

Page 10

symbols in the column:

<+

for addition

- for subtraction

x for multiplication
/ for division

<. for sum

(2) Explanation of Operation Symbols.

a. An entry of '"+" in this column indicates that the first source
entry is to be added to the second source entry.

b. An entry of "-" in this column indicates that the second source
entry is to be subtracted from the first source entry.

c. An entry of "x'" in this column indicates that the second source
entry is to be multiplied by the first.

d. An entry of '"/" in this column indicates that the first source
entry is to be divided by the second.

~

e. An entry of '"¢" (Greek letter "Sigma') in this column indi-
cates that all entries for the first specified element are to be summed.

L. Set Equal To. If the element or result specified in the "Source/Dis-
position' column is to be '"Set Equal To' another element, actual value or prior
result, or is to be '"Set Equal To' the result of an arithmetic action, place a
check mark in this column. The last line of any action within a rule will have a
check mark in the "Set Equal To" column.

M. Source/Disposition - Element - Name Result, Prior Result or
Actual Value.

(1) 1If the entry to be made in this column is for a source for a condi-
tion or an action, the way to make the entry is described in paragraph 4, G, (1).

(2) If this column is used to indicate disposition for a result of an
action, enter the appropriate element name or prior result designation. (See
"Result X", paragraph 4, G, preceding).

N. Source/Disposition - Element - Suffix. If the entry made in the
"Source/Disposition - Element Name' column is an Element Name, and if, on
the Input or Output Description Sheet the element has been assigned a suffix,
enter the appropriate suffix in this column. Otherwise, leave the column
blank.

Page 11

O. Source/Disposition - Set Identification. If the entry made for the
"Source/Disposition" column is an entry for a Source, see paragraph I. If the
entry is a Disposition entry for an element, enter in the '"Set Identification"
column the Set Identification for the set or sets in which the Element is to be
placed. If the entry is a Disposition entry for an intermediate Result, leave
the "Set Identification'" column blank.

P. Operation.

(1) To relate arithmetically an entry in the "Source/Disposition"
column on one line with an entry in the '"Source' column on the next line,
indicate the arithmetic operation in this '""Operation' column using one of the
following symbols:

+ for addition

- for subtraction

/ for division

x for multiplication

(2) Explanation of Operation Symbols.

a. An entry of ''+'" in this column indicates that the "Source"
entry on the next line is to be added to the '"Source/Disposition' entry on the
line where the "+' appears.

b. An entry of "-'" in this column indicates that the '"Source'
entry on the next line is to be subtracted from the "Source/Disposition' entry
on the line where the '"-" appears.

c. An entry of "/" in this column indicates that the "Source/Dis-
position' entry on the same line is to be divided by the '"Source'" entry on
the next line.

d. An entry of "x'" in this column indicates that the ""Source/Dis-
position'' entry on the same line is to be multiplied by the "Source' entry on
the next line,

Q. Note Reference (Note Ref. (¥/)). If a note or remarks are necessary
and/or advisable to explain further a condition or an action, place a check mark
in this column. On the sheet where it appears, cross reference the note to the

R Jgﬂﬂtmt‘”ﬁ”?' £k e
System Identification, Proce snand rst Line Number of the Condition or Action

to which the note applies.

R. Management Rule Suffix and Frequency.

(1) Eighteen Management Rule Suffixes, "A'' through '"R'", are pre-
printed across the top of the Process Description Sheet. If more than eighteen

Page 12

suffixes are necessary for a rule, Process Description Continuation Sheets
should be used.

(2) In describing a Management Rule, all the conditions which must be
considered at any one time will be listed on a Process Description Sheet. Fol-
lowing the conditions, all the actions which may be executed for the conditions
of the rule will be listed on the same Process Description Sheets (insofar as
possible). Management Rule Suffixes are used to relate a combination of posi-
tive and/or negative results for one or more conditions to the execution of one
or more actions within a rule.

(3) Unless a Management Rule describes an unconditional action
(action taken regardless of the results of any conditions), an action is taken
only when the results of certain conditions are positive ("Y'") and/or negative
("N'). In describing a Management Rule, all the pertinent possible combina-
tions of condition results must be related to the actions for the rule.

(4) A simple example is shown in Figure 2. In this sample Manage-
ment Rule there are only three conditions shown on lines 001 to 003. One set
of results for the conditions are listed under Suffix Aj i.e.,if the result of the
conditions on lines 001 and 002 are positive the action specified on line 004
should be taken. Under Suffix C, if the results of the conditions on lines 001
and 003 are positive and the result of that on line 002 is negative, the action
specified on line 004 should be taken.

PROCESS DESCRIPTION

Page of
System Identification Prepared by
Process D Validarion Date
SOURCE COND.| _ SOURCE/DISPOSITION MANAGEMENT RULE SUFFIX AND FREQUENCY
i n T N < — ot [N2 G e
LINE ik ekl [[9 I s e 10K e} = Blank = Condition Not Applicable
- el 1= 5 O . PocReme |G3| A X = Action 1o Be Takes
< ; Name, Prior Result w A P B Name, Result, Prior i 5l @ Blank = Action Not to Be Taken
3] Susreai) Prles or Actual Value 7 HEESE SrnipoeAraiVae 4 Sz[acPEFIc[a1 [[K[L[M[N[o]P QIR
oo/l |é| ool QUAN ON HAND T4/ v |V QUAN ORDERED L0089 Y|N|Y|Y|N
ooz CREDIT RATINVG LoA 4 (A) YlyInIN
co3 QUAN ORDERED L0897 4 CUSTemeR MAX 404 Y|N
8lalJ| 0|9
o|glel4]|1
co4 |4 QUAN ORDERED 089 QUAN SHIPPED dogas57 x| 1X
o o5 QUAN on HAND &T7EY/ v X
ook (o) XX

FIGURE 2, EXA

PLLE OF USE

EMENT

RULE §

SUFFIX AND

NCY

Page 14

(5) As is evident from the example, pertinent results for conditions
are indicated for a suffix using "Y'" for '""Yes' and '"N" for '""No'". Under each
suffix an indication of an action to be taken is shown with an "X'" on the line,
(""'Set Equal' line if more than one) on which the action is described. If neither
"Y" nor '""N'" is placed on the line for a Condition under a given Suffix, it indi-
cates that for the combination of results shown under the suffix, the result of
this condition is immaterial; the result can be positive, negative, or undeter-
mined.

(6) For a Management Rule, on the line (s) following the last line
describing the conditions, the analyst will indicate the probable Frequency of
Occurrence as a percentage for the results of the conditions listed under each
suffix. The total Frequencies of Occurrence for all suffixes within a Rule
should be 100 percent. For any frequencies less than 1%, use '"1". In Figure
2 the Frequency of Occurrence is indicated between lines 003 and 004. In this
example the probability of the conditions of rule 00lA prevailing is 80%, wr:.t-
ten . For rule 001D, the probability of occurrence is 4%, written 2 ;

5. Process Description Continuation Sheet.

A. General. A Process Description Continuation Sheet is used only if,
for a Management Rule, there were insufficient suffixes on the Process Descrip-
tion Sheet to depict all the combinations of results for the conditions described
on it.

B. Headings. The instructions for completing the heading information are
the same as shown for the Process Description Sheet, paragraph 4, B, pre-
ceding.

C. Line Number. In the line number column post the line numbers from
the Process Description Sheet that this sheet is a continuation of. Use exactly
the same spacing and relative positioning of the line numbers as appears on the
Process Description Sheet. This will enable the user to lay a completed Con-~
tinuation Sheet next to the sheet it is a continuation of to have effectively a
single sheet of paper.

D. Management Rule Suffix and Frequency.

(1) In the blank heading blocks, place one.or two-character suffix
designations that will be unique for the Management Rule to which they apply.
If a two-character suffix designation is used, place the more significant
character over the less significant character.

(2) All other information is placed on the sheet as described under
Process Description Sheets, paragraph 4, R, preceding.

Page 15

6. Output Description Sheet.

A. General. An Output Description Sheet is used to describe the content
of output from an Information System.

B. Headings -

(1) Enter the "System ldentification' for the system being described
in the space provided.

(2) Enter the "Set Identification' for the Output Set in the space pro-
vided.

(3) Indicate in the space provided the name of the process being
documented. (Refer to paragraph 3, B, (4) preceding).

(4) In the space provided for '"Number Copies' indicate the number of
copies that are required for this Output Set.

(5) Place the ""Set Name'' in the space provided.

(6) Indicate in the space provided for "Volume'" the "Average' and
"Peak'" number of sets that will be prepared.

(7) Form Type. Indicate the Form Type for the set. For example,
Standard Print, Punched Card, Multilith Mat, etc.

(8) Special Form I.D. If the set is to be prepared on a special form,
indicate the identification of the special form in the space provided.

(9) In the upper right-hand corner enter the Page number, the name
of the person preparing the sheet, and the date of preparation.

C. Element Name.

(1) In this column enter the Element Name for each of the elements
which may appear in this set.

(2) Additional information on each element is placed to the right of
the Element Name, ,

D. Element Code.

(1) In this column enter the seven-character Element Code Number
corresponding to each Element Name.

Page 16

E. Element Code - Suffix.

(1) If an Element Code Suffix is required (See paragraph 3, F, Input
Description Sheet), enter a one-character alphabetic designation for the suffix
in this column.

F. Element Description - Alpha.

(1) 1f the Element described by the Element Name contains any non-
numeric characters, enter an "A'" in this column. Otherwise, leave the
column blank.

G. Element Description - Numeric.

(1) If the Element described by the Element Name contains any
numeric characters, enter an''N" in this column. Otherwise, leave the column
blank.

H. Characters - Total.

(1) Enter in this column a maximum of two digits to describe the
maximum number of characters that the Element may contain.

1. Characters - Decimal.

(1) An entry is made in this column only for all numeric Elements
which are a result of or may be used in arithmetic computations. Enter in this

'+ column the number of digits that should appearto-the right of the implied -

decimal point.

J. Element Classification.

(1) Depending on whether the Element described by the Element Name
is a "Recognition', ''Identification', or "Other" classification of Element,
enter an "X" in the appropriate column.

K. Number of Times an Entry May Appear on This Set.

(1) Enter in this column a maximum number of three characters to
describe the "Average' and a maximum of three characters to describe the
"Peak'' number of times an entry may appear in the Set for the element de-
scribed by the Element Name. If the number for either exceeds 999, use "C"
for "hundreds' and '""M'" for '"thousands'.

Page 17

L. Source - Set Type.

(1) 1f the Source for the element described by the Element Name is
other than "Direct Recording' from an Action Set or Retained Data Set, place
an "X" in the column headed '"Process (X)".

(2) 1f the element described by the Element Name is to be placed on
the Output Set as a result of a Direct Recording from a Retained Data Set after
all posting to the Retained Data Set has been accomplished, enter an "A' in the
column headed "Ret'd (A, B, or X)".

(3) If the element described by the Element Name is to be placed on
the Output Set as a result of a Direct Recording from a Retained Data Set
before any posting to the Retained Data Set has been accomplished, enter a '"B'"
in the column with the heading "Ret'd (A, B, or X)".

(4) 1f the element described by the Element Name may be placed on
the Output Set as a result of a Direct Recording from a Retained Data Set,
either before or after posting to the Retained Data Set has been accomplished,
enter an '"X" in the column headed '"Ret'd (A, B, or X)".

(5) If the element described by the Element Name is placed on the
Output Set as a result of a Direct Recording from an Action Set, enter an '"X"
in the column headed "Action (X)".

M. Source - Source Set Identification for Direct Recording.

(1) If the element described by the Element Name is to be placed on
the Output Set as a result of Direct Recording from a Retained Data Set or an
Action Set, enter in this column a maximum of seven characters for the Set
Identification of each source set. If there are more than three sources, use
additional lines.

N. Identifying Element Codes.

(1) For Identifying Elements that are used to identify Elements on the
Output Set, the Identifying Element Codes are listed vertically in the spaces
provided. If more space is required, use additional Output Description sheets.

(2) Place an "X" in the Identifying Element Code column and Element
row intersection if the Identifying Element is used to identify the Element indi-
cated on that row.

O. Reference Note.

(1) If there is a need for a '""Reference Note'', place a check mark in
this column. Cross-reference the note using the System Identification,
Process, Set Identification and if necessary, the Element Code and Suffix.

APPENDIX I - DEFINITIONS

1. Action Element

An element within an Action Set, the entry for which is the value to be
inserted or replaced, or the value of the adjustment to be made via a Recording
Action or Actions or arithmetic computation.

2. Action Modifier Element

An element within an Action Set which alters the Recording Action or
Actions in some manner.

3. Action Set

An Input Set for a system whose presence may require the execution of
specific Management Rules. Input other than Retained Data Set.

4. Constant Value

A value, which does not appear as an element in either a Retained Data or
Action Set, used as a source for an element or elements in an Output Set.

A. Descriptive Constant

An entry which designates between two slashes (/) the commonly under-~
stood name of a constant value.

Examples are :
/ Blank / - Designates one or more blanks.

/ Current Year / - Designates 1962, if that is the current year.

/ ANNN / - Designates a field in which the first char-
acter is non-numeric and the rest are
numeric.’

B. Literal Constant

The designation of a constant value between parentheses where the
constant value is identical to what appears between the parentheses.

An example is :

(06) which designates a constant value of "06'".

Appendix I, Page 2

5. Direct Recording

The unconditional transferring of an element from an Action Set or Re-~
tained Data Set to an Output Set. No prior processing other than validation is
required for the element in the Action Set or Retained Data Set. The recording
is dependent on the presence of the Action Set or Retained Data Set and the re~
quirement to produce the Output Set.

6. Frequency of Occurrence

A number which indicates, as a percentage, the probability a particular
result, or combination of results of a condition or conditions, will prevail.

7. Identification Element

An element within an Action Set which permits the segregation of a particu-
lar set from others containing the same Recognition Element values; it is used
to associate the set with other sets containing different Recognition Element
values and to indicate how elements within the set are recorded and identified.

8. Information Element

An element within an Action Set, which does not influence the Recording
Action nor is it recorded in this system. It may be subject to validation for
the purpose of an overall system check and is required for processing in sub-
sequent systems.

9. Management Rule

The action or actions and generally an associated condition or conditions
which indicate the decisions and processes required to operate an Information
Processing System.

10. Output Set

A set created by an Information Processing System for the use of another
Information Processing System or by the same Information Processing System,
but using a different medium to accomplish its processes.

11. Process

The production of elements of data through the execution of Management
Rules. Includes all data processing except Direct Recording.

+ Appendix I, Page 3

12 Recognition Element

An element within an Action Set which identifies the function of the set.
The Set Identification is a Recognition Element unless otherwise stated.

13. Retained Data Set

A set which is used to maintain elements which are required to accomplish
the preparation of the Output Sets and may not be available on the Action Sets.
The Retained Data Set will include the elements required to validate the Action
Sets.

14. Set

A meaningful grouping of more than one element of data.

15. Superfluous Element

An element within an Action Set which is not required for processing in
this or subsequent systems.

1. Purpose:

2. Sdope:

3. Other Outputs:

Appendix IT, 1

SYSTEM CODE 04 BILLING

To develop an invoice from a copy of the order which
indicates that shipment has been made to a customer
from a warehouse or factory.

The system will include all debit billing to all custom-~
ers.

a. Selected data will be furnished to the Sales
Statistics system for Sales Accounting and Sales
History.

b. Selected data relative to inventory will be
furnished to the Distribution system for
inventory adjustments.

c¢. A record of input recelved that did not meet the
criteria established (invalld) will be furnished
to the Billing Department.

1hi3
Billing
% 0650

04RD1 04RD2 65124 1201 04RD3
Customer Item Order File Maint, Sales Tax
— File File Changes File
/
, <
7 Y

/ 04 Billing Daily

/ . Update Customer, Item and
/ Sales Tax Files
/ . Create Invoice
. Exmrract Data for Sales Statistics
/ and Inventory
/ . Validate Input
/ . Create Emror Report When

Necessary

e - = — = —

Y oK
04RD1 04RD2 0401 0403 0404
Customer Item Sales Order File Maint,
File File Data Errors Errors
02
Sales illing Billing
Stix 0690 0690

z ofeq ‘11 x1pueddy

Form 1201

Change
Customer Code Disc. % Code
|-e— 6520130
3981100 6813250 8760100)
Name Sold To

6813200
Address Sold To
6813210

1. "Delete” for Old Customer Code

If Custommer Code, Name Sold To or Address Sold To changes, create

2. "Add" for New Customer Code, Disc. %, Name Sold To and Address Sold To
Change Codes: .1 = Delete 2 = Add 3 = Change Disc. %

¢ o8eg ‘mr xtpusddy

8760100
8981100 6813250 l 7000100 6920130
P e, Sy F o Y P,
XXXXX xxxx bb X bb xxxxxxxxx bb xx.x bb

6813200

Current
Month Day Year

6813210

Page Number xxxxx

¥y o3wg ‘11 xpusddy

PR B OI Cl o TN~ MMAIN R S R T ge 7 _ o 23
Set Identification __ 7572 4 stName ORDER Form Type MANUAL Prepared by: He D
Frequency of Processing _2A8JLY Volume: Average 500 Peak _Jemmo 00 Source System 1.D, @1 Date e/ /5, -/ o
MANAGEMENTRULENOS. 006 | 007 | ooz 009l rolon ol | | | | [[| [| [| |
ELEMENT ELEMENT NO. TIMES AN ENTRY IDENTIFYING ELEMENT CODES (X)
P bl cxéca)ss. ?EQ'}Y APPEAR ON THIS
, 0)
ELEMENT NAME Elc‘%:,?r She E e VAR%EEE;) % s o % REMARKS
% "'§ = —’é PREE ;:: Average Peak 3 g E
g2El 2 [g|3]5|5|5 g & Ol | » v
2lZ|2 HEENEEE % ™ 2
ACCT CENTER |Loi7/00 | |A|l | 13 X / / X
MO CUST ORD |8/8620 #l o2 lo X / / X
DA ¢cvsT o©oRD |4L836620 ME-rar- X / / X
YR _cusT oRD |9980420 Nloz o X / / X
ORDER _WNo B3L&/00 Awn| o9 X / /
MO SHIPFPED e 86 6O N oz |0 X / /| oo/l X
DA SHIPPED B3 55O N ozl|o X / /| ool X
YR _SHIPPED 9 80&50 #| ez X / ! | ool X
INvelrcEsE Ne 7&80 /00 Alv| o9 X / / X
COST NAME SoilD |L8/3 200 A 7o X / / X
cvsT APDR solD|Lg8/3210 | |AIN| 7o X / / X
CuST NAME SHIP | e&132220 | |Al | 70 X / / X
OUST ADDR sHiP 813230 | |AIN| 70 / / X
| cusr oRDER MO /3jloo | |AW| 42 X / /i X
SALE SMAN No | 8381/ 0o Mos|o |X / /| co3 A
cusST ACCT No |¢8/32s50 w o4 |0 |X / /| co3 X Z
TERMS PAYMENT | 92 9% Joo | laln| 23 X 7 / X '§
SHIPE TERMS /i1 00 Al |23 X / / X E-_
| cARRIER Name |L#bsloo| |4| | 24 X / / X =]
SHIP FROM TewnN | 9f/o /20 Al | /3 X / / A Lol
SALES 7AX CoDE | 94 #/b0 | |Aln| 057 X / /| ooz X 03
| PRICE BASE SeeLioo| AN o8 P / / X —
S zE gl/Edjoo | | MM 2/ x| it 3 Es X X
LINE NAME 294 /120 AN 25 X| 2 /3 X *

- ——— 3
System ldentification _ o< Process B2 LIV & INPUT DESCRIPTION Page 2 of_ 2
Set Identification _/§7/2 A stName ORDER Form Type MANGAC Prepared by: oD
Frequency of Processing 244 Y Volume: Average 500 Peak _JoeoO Source System 1.D, _©7 Date é'//\f'/&o
MANAGEMENT RULENOS. | 006 | 007 |04 | 009 | 0s0 | 01 | or2] 1 | l | [l l l I [[

ELEMENT NO. TIMES AN ENTRY IDENTIFYING ELEMENT CODES (X)
FLIAET CLASS. MAY APPEAR ON THIS
DESCRIPTION|
) SET o Q
; VALIDATION | ¢ ° =
ELEMENT NAME e L 3 |3 T N R > REMARKS
9 q".‘-'; s |E o | 5| 8 rf_"_ Average Peak Y g 2
g1E1E| 2 [3]3|5]55 < & o (D 3
ERE SHEEEEEE % o~ K]

STOCK /o yZoo /00 AlN| o7 X 3 /5| ook X

QTY ORDERED 8768 500 H o5 o X 1)5 | o0 5 X X

QRTY SHIPPED 8768550 #| o5|o 3 /5| cos” X X

pise Pc asA &322 /10 H 02|/ X / / tal

Z
g
[¢]
=]
()
=
el
w
m
L=

System Identification _ o<

ocess _SiLING
o INPUT DESCRIPTION Page =T o 23
Set Identification __ OL KD/ iet Name OUSTOMER Flie Form Type MAG T Prepared by: M &
Frequency of Processing % Volume: Average 26?,-&0.0 Peak S‘n, felalo) Source System 1.D, _Qf___ Date & /75
mavaceventroevos. | | [[| [T T T [T T T T T T T T [1]
ELEMENT ELEMENT NO. TIMES AN ENTRY IDENTIFYING ELEMENT CODES (X)
R ol CLASS. MAY APPEAR ON THIS
&) SET Q
ELEMENT Char. 11 - VALIDATION| O | g s REMARKS
ELEMENT NAME CODE | - E 2 RULE (S) g nmj P
A=l5 E IE| olslgl || Average Peak Q> 2
EIEEl 2 82|55 e & o~ | W o
FEE a|2|=| <[< 5 3 % | W 3
SALESMAN No | 8981100 Nos jo| [x / / v
CUST AcCT NO 68/ 3250 | o4 o] |X P 4 / X
CUST NAME soLl | 6&5/3200| |A 70 / / X X
CUST ADDR Soip |eL/3270 | |AWN| 70 / / X X
LISC RosorP Bow | &v20/30 M oz|/ / / X A

98ely ‘[1 Frpyaddy

4

jon_O4 BlLLineg
System Identification Process INPUT DESCRIPTION e Page 4 5 23
Set Identification _O4 KD ~2 Name JTEM FiLtE Form Type M2 T Prepared by: Ac L
Frequency of Processing 2AJLY Volume: Average 3000 Peak £500 source System .D, 24 | pate &/ ’5/ 6o
wavaonenteoienos. | | |] [[[[[| | [| [[[[| |]
ELEMENT ELEMENT NO. TIMES AN ENTRY IDENTIFYING ELEMENT CODEs (X)
CLASS. MAY APPEAR ON THIS
DESCRIPTION| © BT
VALIDATION| § <
ELEMENT NAME E&%i"'r Ch "28 z RULE®) | N - REMARKS
0 . P
P 3| 3 E SREE r;:i Average Peak o z
£ E]l 2 [3]|8]|5l=]|E g & n .
23|12 HEEEEEE it <
S70CKk NOMBER 73ec /0o AN O7 X / £
SIZE gre£/00 | AN 24 / / X
LINE NWAME 794/ 00 AlN| 25 / y, X
PRICE ¢N BASE | EGle #/30 N o6 |2 / / X
TAX FED &X UN A b4 /o0 N o5 |2 / Z X

B pBeg | rt.pladrv

System Identification

o4

Set Identification _ L2 0 3

Process _BULING ——— [NDUT DESCRIPTION

Page S of _23

etName _<@/es 7dx £ = Form Type MAGT: Prepared by: H oD
Frequency of Processing _ /244y _ Volume: Average /2o Peak _Z0o Source System 1.D. QA& _ | Date_____ & /r5/len
MANAGEMENT RULE NOS. I | |] I l | I ! | l | l I | | | | I
" ELEMENT NO. TIMES AN ENTRY IDENTIFYING ELEMENT CODES (X)
ELEMEN CLASS. MAY APPEAR ON THIS
DESCRIPTION) it
on| 9 <
VALIDATI
ENT Ch T REMARKS
ELEMENT NAME EE%E = E £ RULE () $ &
» = 2
olalB| F Bl s = E| Average Peak 3 =
EEE A HEEEEE ¥ -
al<|z ol|2|2|<|<| & 3 ™ 2]
SALES 7HAX CopE | AL L leo| |AlN 05 X
SALES TAX RC Il L/ 5O o3 |2 / X

é GIB‘ET 41 xrpupddy

System Identification oL Process Gu G — npyT DESCRIPTION Page & of _ 232
Set Identification __ /2 0/ tName CUST FIE CHANGE Form Type MANCAL Prepared by: D
Frequency of Processing U2EEKLY Volume: Average /& Peak S50 Source System I.D. _ @4 | page & /f7 s/ o
wanaceentroteNos. [oys| | | | | [T T T T T T T T T [7]
EN ELEMENT NO. TIMES AN ENTRY IDENTIFYING ELEMENT CODES (X)
DESFE%TI'SN CLASS. MAY APPEAR ON THIS
&= SET 0 a
3 VALIDA ION| g <
ELEMENT NAME oo e EE RE® | 8| [W 2 R
dalsl 3 [Elalolsls |E Average Peak @ ¥ e
gEEl & 351535 ¢ 2 > | o
al<|Z HEEEEERE Q N 2
SALESMAN NO F98//c0 # eslol | X / /
CosT Acc.T No | b8/3z2so N o4 lo / / X
Dise _Pe S0P BoN &L920 730 M oz2|/ X # / L X
COST NAME solD | Lgr32c00 70 X / / X X
cosT ADDR _soto | b&r32/0 | |almM 7o X / X| |X
CSTING IND 760 /00 M e/l|o X / / X X

(lt 98y ‘[1 yrpyeddy

QUTPUT DESCRIPTION

Page 7 of 23
System Identification ¢ A — Process _ Gl £ /NG Set Name __/ANV o/ CE Form Type MAT MASTER
Set Identification /I5/28 Number Copies 8 Volume: Average 560 Peak /oeoO Special Form 1.D. _/5/0 PR 2oL
=S = | Puae &)15/ o
Element] NO. TIMES AN ENTRY SOURCE IDENTIFYING ELEMENT CODES (X)
Dmé?{m% - <(:;§ss gn;rv APPEAR ON THIS [set T;_\; oe "
ELEMENT NAME ELEMENT | Char. | = 2 = S-.?urce Set Ide_.m.i{ication for 5 g §
CODE L) =) s, & Direct Recording ° z
g '_E_g ‘:‘E % g-b v 5 Average Peak g ;’. —§ -‘\2 % f_
FEEREEEE HEE 9| | 3
ACCT CcENTER bos7 /00 4| | /3 A _ / X| 75724 A
Mo cusT oRO 8le8&2o w| oz |o X / / X| /5724 X
DA _CUST oRD |L836S20 Wl oz lo X / / X\ 78124 X
YR <UST oRD 9980 @20 w| oz o X / / X|/5724 X
ORDER NO 836 8/00 | law| 09 X / / x|l ss57/24
me SHIPPED B8 &50 ¥ o2 |o X / o x| /5724 X
DA SHIPPED 6836550 w| o2 lo X / / X| y15/2A4 X
YR SHIPPED 99 80 L5° oz lo X / ' X| ¢ts/2A4 X
INVOICE NO 780 soe AWl o9 X / / x| 75724 X
CUST NAME SetD | L&/7Z2c0 4| | 70 X / / X cARDI X
CUST ADDR Soto | &8/32/0 Q| 7o X / / OCARD/ X
CCST NVAME SHIP | Bi3220 70 > / / X| /572 A X
CUST ADOR _SH!P | 4873232 | |aw| 70 X / / X| 75724 X
CuUST ORDER No | 68/3 /00 AW| /2 / / X| /5724 X
SALESMAN _No 838 /100 W| o5 o / / X| 7s724 X
CusT AHecT NO 6B 13250 w| o4 |0 pat / / X| /5724 X f:l?
| TERMS PAYMENT | I£9 b (00O w23 X / / X| /5724 X &
SHIPE TERMS 9200 23 X / / X| rs724 X &
CARRIER NAME | £blr /20 A 2 £ > / / Y|)s/z24 A =
SHIPL FRom gown | 9/r0 (20 Al 173 X / J x| 725724 X
SALES 7A4x coo& | PLLAL/GO o5 X / o X| /5724 % u‘_?
PRICE BASE Le6£ico o3 X / / x| /5724 A =
S)IZE b e o AR 4N 27 X 3 7&1 IX cLRD2 A X
LINE NAME 7547 /00 Al 25~ X 3 /5| x| | c£RO2 X X

OUTPUT DESCRIPTION

Page_ &8 =2

System Identification __ A4 crocess _ @M L NG SetName _JANVoICE Form Type MAL MASTER
dentif /15/2 8 b 8 Voluthe & Peak | Form 1.D. /4570 TR LEL
Set I tificati N Copies olume: Average ea S ial Form 1. D.
et ldentification umber Cop. g 5000 loeo Spec - 6//5/(-0
Element] NO. TIMES AN ENTRY SOURCE IDENTIFYING ELEMENT CODES (X)
ELEMENT | ~occ | MAY APPEAR ON THIS [Set Type
DESCRIPTION | oy — = 5
ELEMENT NAME ELEMENT Char < z | Source Set Identification for -?. 8 S
CODE 2 = = (3 Direct Recording L) ~ ‘_o.’
| a|B| F |E|ed | | Average Peak 21 g 3 g =
E|EEl 2 |8|8|§2 o E) " u
S(=12] = (2| 23| = 2l 3] e I}
e E =1 E £l 2| < % =~ &
S7ock NompBeEr |93cc/00 | lawl| o7 2 /5 x| /672 A X
a7y ORDERED F768 500 o5 o A 3 5 X| /s5/z2 A4 X X
| Q7Y SHIPPER | 87062550 as 3 s Xl /672 4 X
| TAN FED £x pry |9£&£/00 os |2 % 3 25 | X oARDZ X X
UNIT PRICE SelbAdlio Ao X - 45 | X X X
DISC PC @SA &2 clio ez X / P X| /5724 X
AMT QTY Adlow |Ll/ersRO o5 A / s X
AMT PRIE EXT |loll loldO o7 X 2 /5 |X X X
AMT PRE T7AX |G/lb/80 a8 A / xR X
AMT FED EXTAX | (/1o /190 o7 Vi i IX Pa
AMT CUST /NY | el 220 o X / /11X X
SALES TAX PC 9L £/SO / /_|X X
| AMT SALES TAX | & He2/0 ok X 2 £ 1% o
>
o
=
g

OUTPUT DESCRIPTION

Page 9 23
System Identification _ & o wocess _ S LN G 0 SetName _SALES DOATA Form Type -MAG . TAPE
Prepared by: Hep
Set Identification Aol Number Copies L Volume; Average Zaga Peak gumams Special Form 1. D, v
ate
Element| NO. TIMES AN ENTRY SOURCE IDENTIFYING ELEMENT CODES (X)
ELEMENT | cja | MAY APPEAR ON THIS [Set Ty

DESCRIPTION | oy e = o

ELEMENT NAME ELEMENT | Chiar_ < 2 e Source Set Identification for ?\ S

CODE k2 = =L Direct Recording 0 =

x| «|8] = Elsd o Average Peak 2l s 9 z

= = = e |al@lel @ gl 9| = 0 k

sS85 = |2] 3|8 S ol gl © <

a|<|= Alx=|=2|0 | | < o~ &

STockK NumBeR |93cc/c0 Anl a7 / / X| /572 A

| Mo SHIPPED BilaBLsD _az_lp / . X| /512 4 X
| DA SHIPPED | 50 az y) / X| /524 X
YR _SHIPPED LB SO o2l0 / i X 12 A X
SALESMAN NO | 898s700 ag |19 Z /Z X| s5/2 A X
COST AccT No |tz /8250 odlo / Vi x| /5712 A x
OTY SHIPPED 874855 X, / / x| 75/124 X
| AT PRICE EXT | Loy lalOO n a7 / / 1X X

PU2

41 49eg °

System Identification _ .

.s0CEss M___._‘

OUTPUT DESCRIPTION

Set Name SNV ENTORY pDAFA Form Type AMAG TAPE

Page. g ¢ 23

Prepared by: MHa
Ser Identification _ o da2 Number Copies / Volume: Average 2aaa Peak seeo Special Form 1. D,
Date
— Element| NO. TIMES AN ENTRY SOURCE IDENTIFYING ELEMENT CODES (X)
Class. MAY APPEAR ON THIS Set T
DESCRIPTION | oo
X) SET < o
ELEMENT NAME ELEMENT Char o 8 Source Set Identification for o N
CODE 9 = - HE Direct Recording ~ 2
ol al8l 5 |Eled .| Average Peak 21 S« 0 2
|8l & [3]|3] 58 8l 5|2 9]
s|l—=1= B ol g 8= S| 8| o o) o
»|<|Z Qx| 3| O ol | < » -
STocH NUMBER |Q3s80l00 A o7 > X| fay2 A
| SHIP FRom TownN | F//0/20 | Al | 3 Z X| 25724 A
| QT Yy SHIPPED |\RB7LE55D W / x| s 5724 X

[9Bed ‘[I xpupddy

OQUTPUT DESCRIPTION Page / 23

System Identification @ #©@ crocess E/LLING Set Name OF D ER EARKORS Form Type JINCARD PRINT HeD
Prepared by:
ificati oLo3 o0/ i 2 " /0 i
Set Identification 3 Number Copies Volume: Average 5 Peak Special Form I. D. S (‘//5/(‘0
SOURCE IDENTIFYING ELEMENT CODES (X)

Element] NO. TIMES AN ENTRY

ELEMENT | ~1. | MAY APPEAR ON THIS [Set Type
DESCRIPTION) SET — 0
=) .
Ch B PO
ELEMENT NAME ELEMENT |_Cnar, | 2 & g gource Set Identification for % %
CODE s = jou 2 Jirect Recording 2
<l alsl = |E|ed | .| Average Peak gl =15 3 2
=| < R R EE 8l 5| 2 m 5
= .E'."E !2 I g = ol =l 5 % <
#|<|= = E RS £ &l < 2
ORDER No E368/00 Aiv o7 X / / R| /572 A4
SALES TAX ColE |94be4/lo AW | o5 X £ /7 1% x

E1 PBYg (11 krpyeddy

OUTPUT DESCRIPTION

Page /2 4 23

System Identification O = Picess _GHM L IN G Set Name ORDER EXRRORS Form Type SIANDARD PRINT

Set Identification _o£ &322 Number Copies = Volume: Average 5 Peak _/Jp Special Form L. D PRENENE: Hco
— i s Date b)is/eo
Element] NO. TIMES AN ENTRY SOURCE IDENTIFYING ELEMENT CODES (X)
ELEMENT | 130 | MAY APPEAR ON THIS [Set Type
DESCRIPTION) SET = g
ELEMENT NAME ELEMENT Chie = g = Source Set Identification for a >
CODE el . |I=] & Direct Recording }a’
x| 8] F |E|d || Average Peak 21 s ~3 2
£|EE| 2 3|35 2 HEE D =
2|<|2 SEER 2| 82 % 3
OROER No 8368s/0 | AW| 09 X / x| /5724
SALESMAN e | 898 j1eo | o5 X / X
CUST ACCcT WNo &&/3250 W oL / /X

b1 pBeg |IT kpfeddy

OUTPUT DESCRIPTION

Page /3 of 23
System Identification e Pucess SHLLING Set Name _ORPER ERROKS Form Type SLANDARD PrRwT D
Prepared by: [
Set Identification _afa 20 2 Number Copies ____ 2 Volume: Average 209 Peak £O Special Form 1.D. D G/s5/ o
ate
Element] NO. TIMES AN ENTRY SOURCE IDENTIFYING ELEMENT CODEs (X)
ELEMENT | a5 | MAY APPEAR ON THIS [Set Type
DESCRIPTION | oy s p~ o
&= s i 2
ELEMENT NAME ELEMENT — 2| = e, T If::;‘;;’:;“ca“m for % §
(3] — S - J o
CODE AeEl 7 |E ol | | Average Peak 2 5-5 9 z
ElEEl & |3|3]5 2 HEE) <
a|<|= alZ|2| & £| 2l < o =
ORDER _NoO e&lfeo o9 / X|sr2 A
SToCA HNo 9300 /00 67 % / P Fad

| T 998 (1T ¥pyeddy

OUTPUT DESCRIPTION

Page_ /4 of 2.3
System Identification Q4L Process SN LING = setName ORDER ERRORS Form Type STANDARR PRINT]
Prepared by: Hcp
Set Identification __ &0 30 A Number Copies = Volume: Average A Peak _Jp Special Form 1. D.
Date &/15/te0
Element|] NO. TIMES AN ENTRY SOURCE IDENTIFYING ELEMENT CODES (X)
ELEMENT | 1, | MAY APPEAR ON THIS [Ser Type
DESCRIPTION
) SET =
Char 5 0) 3
ELEMENT NAME ELEMENT 2 ol = source Set Identification for d o
CODE o v~ = & Direct Recording N 3 g
x|=18] = |E|led Average Peak gl s 9 b b
=|ElE|] © |B] 2| g 2 ol gl &) %
=|=1= = ol o] 3= a1 ol o oy %0
| <|Zz Alxz|3jC al| xz2j< L) o &
ORPER No 8368E/00 o9 / X| /572 4
S7ock o g300/0 0 AR-¥i X X| /5124 X
QTY SHIPPED | 8768550 os o X X x| |X

Fpyadiy

81 98y 1 3

OUTPUT DESCRIPTION

Page 25 of 23

System Identification __ O AL = . cess BILLING == SetName ORDER ERRvR S Form Type SIANDARD PRINT
Identificati o Number C Vol A Peak _JQO 1F i 22
Set Identification __ QX630 5 umber Copies ____ & Volume: Average & e Special Form 1. D.
. - ’ Date &/ 15/ bo
Element] NO. TIMES AN ENTRY SOURCE IDENTIFYING ELEMENT CODES (X)
ELEMENT | cja | MAY APPEAR ON THIS [Ser Type
DESCRIPTION) SET Py °
9
ELEMENT NAME ELEMENT cha < : = Source Set Identification for {“ S N
CODE © = L Direct Recording [N ° 2
el wlS E Eled o o Average Peak § == 1 o z
== -l O o) =
E15E 2 (8]3g|8 2 HEE oD 5
al=|= ol2|=2| & £l 2 < © i &
OROER No &3e8/00 | law| o7 X / X| /572 A4
SToCK NO g3c0 /00 o7 X / X| /52 A
Q7Y ORDERED |87685v0 Wl o5 o / X x| |

T 9% (I ¥ipyeddy

QUTPUT DESCRIPTION) Page e of 232
System Identification > Process _ZILLING =~ SetName ORDER ERKORS Form Type SIANOARD PRINT 1
Prepared by: HC D
Set Identification __o#€ 020 L Number Copies = Volume: Average = Peak j Special Form 1. D. 5 > "
ate QZ s/ 6o
Element| NO. TIMES AN ENTRY SOURCE IPENTJ.FYLNG ELEMENT CODES (&)
ELEMENT | cya0 | MAY APPEAR ON THIS [Set Type
DESCRIPTION 0 SET §4 0
0
Char 5 dentification f N hd S
ELEMENT NAME ELEMENT 2| =l o Source Set Identfication for 2 - S
CODE o _Is ik S L Direct Recording |o g
x| al8] B O|E[oq of 5 Averese e gl <5 N ° z
EEEHEEREEEE K L <
3|<|z SEEGE £l 2| < % o &
ORDEAR ___N©o 8368 /00 Wl o9 k£ / X | rs72 A
S7ToCA e g3c0/00 v | o7 Vi i /5/2 A
QTY SHIPPED L768550 T X / £ Ix X X
QRTY ORDERED |8768 s60 #los z /X X X

Z 49% {0 Fpyedfly

System Identification oL

Set Identification _ L0 30 7

cess _ @ L ING = 0
Number Copies = Volume: Average S

OUTPUT DESCRIPTION

Peak _ /70 Special Form 1. D.

Set Name ORDER EARR. RS Form Type STANDOIRD FRINT

Page_/7 of 23

Prepared by: HCD

Date ¢/ +5/ %0

& A L4 —
IDENTIFYING ELEMENT CODES (X)

Element] NO. TIMES AN ENTRY SOURCE
ELEMENT | 1. | MAY APPEAR ON THIS [Set Type
DESCRIPTION |) panes -
[4]
Char s ification f 0 S
ELEMENT NAME ELEMENT | =l source Set Identification for ~ =
CODE s _I= - s (3 Direct Recording 5 g
R EEE B = e 9 =
E|SE| & [§]3]8l2 S) "
al=lz al2|= & &l &l < @ &
ORLER NO & /oo Wl o9 Z / X|/s12 A
MO SHIPPED |8/LB6S0 Vi VA" ¢ X
DA SHIPPED LR 3550 o2 lo P4 /X X
| YR SHIPPEDC |9980650 wleoz © X 7z by b4

1z 99=9 I ¥ °3L?

OUTPUT DESCRIPTION

Page_ﬁ of 23
System Identification o4 = Process _BMLING SetName CUST CHANGE E,AK0R Form Type STANDARD PRINT
Prepared by: HeD
Set Identification SLOAL Number Copies ___& Volume: Average ___/ Peak /O Special FormI,D. Date &/ /5/ &o
Flement] NO. TIMES AN ENTRY SOURCE IDENTIFYING ELEMENT CODES (X&)
ELEMENT | ~1as | MAY APPEAR ON THIS [Set Type
DESCRIPTION | oy =i
Ch)g‘ 9 e S
ELEMENT NAME ELEMENT | Cnar, | =l Source Set Identification for V) N &
CODE 2 - |= =14 (3 Direct Recording Ny) g
<=5 3 |E[d s Average Peak gl s Q &\I =
E|EEl 5 |2|8|52 = iy 5
EEE R EEEE HEE » |9 K]
sacespany wNe | #3847 00 Moslal | / / A /20/
auST AccT NO é&/3250 j o4 / / Xl /207 X
Djse A suP 8oN | L920/30 o2 b /(X X
CUST WAME setD | 6g/32c0| |A | 70 Y4 £ 1Y X b 4
CusT APPR soeD | L8r3 2/0| |AM 70 A / / | x X X
PosTiNG InD BF7éo /o0 M or |a X / /1 X X X
ERBOR _REASON 7000 /00 A4 | o9 ba / 71X X X\

p7 989y |11 X1pgeddy

PROCESS DESCRIPTION ge /7 of 23

System Identification ad Prepared by HCp
Process ___Bii L ING f vatidation Date 4,/ /2, /&0
SOURCE coND.| _ SOURCE/DISPOSITION MANAGEMENT RULE SUFFIX AND FREQUENCY
W Cond: Y = Conditionls Satisfied
M.;Nutg%m I < x| B N = Condition Is Not Satisfied
LINE ; Set Ident. or | =) f |7 ELEMENT Set Ident. or ||~ Blank = Condition Not Applicable
NO. Rule No. for | 1 37}, |2 Rule No. for | |G| Action: X = Action to Be Taken
< y Name, Prior Result i RERE 3 ?‘.7;] Name, Result, Prior o Prior Result 5l @ Blank = Action Not to Be Taken
G| Cumveny Prioe or Actual Value 2 HE EiSE Result or Actual Value 2 SEABCDEFGHIJ KILTMINloP TolR
anl ol Mo SHIPPED 1512 a W]V (or) 1[Y|N
ooz v (s2) Y| [N
0o3 Da SHIPPED 5724 vl ly (o/) Y N
oo d V] A (3/) Y “f
Y YR _SHIPPED 725/2 4 Viv) [CURRENT YA/ Y N
st
-7 Mo SHIPPED /5/2 A v me SHIPPED oLo307 XX XXX
Pt DA SHIPPED /5/2 4 vl DA SRIPPED o£0307 ALX|X|XIR
Y-y Y@ SHIPPED /542 A V| YR SHIPPED o4£0307 XX A X X
__aog fevsnenr Mo [/ vl_po SHIPPED /572 A4 X| x| X| X %
o L CURRENT OA / | oA SHIPPED 572 A X% X| K%
aula Lo URRENT Y&) v| YR SHIPPED (572 A XA XX A
[
(4]
“y

PROCESS DESCRIPTION

Page 2© of 23

System Identification od Prepared by HcDo
i &)15/ o
Process — Bl AN G w Validation Date ,/ /
SOURCE COND.|__ SOURCE/DISPOSITION MANAGEMENT RULE SUFFIX AND FREQUENCY
W = Cond: Y = ConditionIs Satisfied
M‘;’;‘:‘;%E"T BT ERENT g oo v, SR by 2 N = Condition Is Not Satisfied
LINE S Set ldeﬂl.rm ﬁ g of « % Set Ident. or I Blank = Condition Not Apphcable
NO. Rule No. for sleele] 2 R‘-‘_le No. for #B| Action: X-= Action to Be Taken
<[c i Name, Prior Result o| FrorResult 1 310Sls| 1| Name, Result, Prior B 5|2 Blank = Action Not to Be Taken
a urpent i or Actal Value a 6 .§ 35 3 Result or Actual Value B CiZlalB ICIDIEIF|GIH |1] IK|L|MIN|O|P Q R
o/z2 klooz SALES TAX CoLE 1572 A N SALES TAX CODE oARD 3 1[Y|N
25
al3 SALES THAX CoD& 1572 A V| s4ces T4x cooe ofLoc3c/ rd
old (x 8 908) V| s4aces 74Ax CcooE 1572 A X
ors oo3 SALESMAN NO 7518 A / SALESMAN NO o4 RD) 2 |YIN
ol COST AT WO 1572 A v cusT AceT Yo ©4RD), Y| (M
PAE
oY ird SALESMAN IO /572 A V| satesmAary o oLa302 XX
7 CUOST ACCT NNO /5/2 4 V| sacesmay No ofo302 XX
ol codL STocA WO /512 A v S7TocHK NVO ofLRD2 2IY|N
s
o220 la STock No /1572 A J| s70Cck MO oA£0303 X
| az/ leloas QFY SWIPPED /572 A / ,//V/wwv/v/ 2| YIN|Y]Y i
"o
o222 la OTY ORDERED 1512 A V] [N v/ Y| Y|N| Y >
o022 e QZY ORDPERED 16724 |/ |V QrY SHIPPED 1572 A N[N 3
Halz|/
lozs |4 DTy SHIPPED /5724 vl @7y SHIPPED o463 04 X X
azs A RTY ORDERED (1512 A vl @y oRDEREP ofa3os X Z
ozl |a QRTY SHIPPED (sre A U Q7Y SHIFPED o440 306 X o
loz7 |4 QITY ARDERED (512 A A 7y ORPERED o4o30le

PROCESS DESCRIPTION

Page L of __33_

System Identification ol Prepared by HC D
Process _ @ 4 JN & O varidation Date @I/"S_’/(‘ o
SOURCE COND.]_ SOURCE/DISPOSITION MANAGEMENT RULE SUFFIX AND FREQUENCY
W Cond: Y = ConditionIs Sarisfied
UEAR Aot o *| Sls N = Condition Is Not Satisfied
LINE RULE NO. ELEMENT Set Ident. or T < ELEMENT Set Ident. or ‘:" 4 Blank = Condition Not Applicable
NO. Rﬁlie No. for & & Ru_le No. for & E' X = Action to Be Taken
< it Name, Prior Result | roeTenk 5| " Name, Result, Prior] TebrHenl 5|2 Blank = Action Not to Be Taken
a Current| Prior e Actaal Vidiie a ol 3 Result or Actual Value g oz Flclali 7 [KILIMInlolP [o
o28a ale DISC PC SUF Bow O£ RD] X| |PRICE oN BASE oARD 2
o029 SNenm PRICE /572 8
030 kloe7 lco8|pDisc PC asSA /51E A [BeAank/ YN
sla
031 pise P gSA /52 A AMT PRE 7TAX /572 B
n32 V] AmT Q7Y Atiow /s/2 8
MRS d HAESOLT A
s ULT A
eV _Jfzero/ V| gE
ozs5 Aloos lnole | WNIT PRICE /5/2 & QTY _SHIPPED /5724
O 3 V| amT PRICE EXT /5728
Q327 V| AmT PRICE EXT oL/
A 38 AMT PRICE EXT V| AmT PRE TAX /5728
233 |Alooy QTY SHIPPED 2572 A TAX FEO EXUN ogRO2
ado SN amTr FEP =x THx /5128 >
K
| of) lulormloos| AmT £RE 74X /572 8 AMT FED EX TAX /) 5/2 8 Z
| L2 oy V1 pesve7T A b
BN

PROCESS DESCRIPTION sage 22 of 23
System Identification oA Prepared by Hec b
Process __BILL ING O vatidation Date (‘,/ 15/ &0
SOURCE COND.|__ SOURCE/DISPOSITION MANAGEMENT RULE SUFFIX AND FREQUENCY
L Cond: Y = Conditionls Satisfied
MANAGEMENT 5 i P 5 f s N = Condition Is Not Satisfied
LINE RULE NO. ELEMENT Set Ident. or £l | "'.- <) EMENT Set Ident. or S 8 Blank = Condition Not Applicable
NO. Rule No. for || 52|, |2 Rule No. for | 4]G| Action: X = Action to Be Taken
- it o Rk : Prior Result = ‘: E 3| " Name, Result, Prior | Frior Resul 5|2 Blank = Action Not to Be Taken
-U.._Cuue_n[Prior ok S e E 6236‘2 Result or Actual Value a olzlalslcIple e lclali 1 [k[LImInTo]r TR

o043 kloyl |oog | SALES TAX CoDE 1572 A J (x 8.089) YN
55

otd SALES TAX _PC oA RD 3 X| | AmT PRE TAX /572 8

OALS V| amT sAces 74X /s/2 8 X

O AL V| REsveT A X

o047 [zEeRe /[V| mesviT A X

oLR SALES 7AX PC OALRD 3 V| sALES 7AX PC /1572 8 X

o239 lWlosz lon | mesveT 4 (os0) -| | mESVLT A4 C(eez) |+

oso ote | gESULT A (or7) V| AmT cusT /Ny /572 8B

o7

nﬂ.zF - kipiadiy

PROCESS DESCRIPTION 23 of 23

2age
System Identification = 4 Prepared by AT D
Process ML ING O vatidation Date 6’/ /5, / Lo
SOURCE COND L_\ SOURCE/DISPOSITION MANAGEMENT RULE SUFFIX AND FREBQUENCY
M:{NU‘;‘E%&J‘T Fo— - = 2 . Sls Cond: E - ‘éﬁﬁﬁiﬂﬁﬁi litttis;i??sﬁed
o ' Al S PRR E i St] e 2 2 Coniion o Appiase
. Prior Result o) = B e e - Prior Result 2 : \crion to Be Taken
. [Name, Prior Result g § 3 E—E- ‘I,-", ;‘:;T]i-cfe,::iaar:;iiue - :‘12 Blank = Action Not to Be Taken
S or Acmal Value @ 0| =[O0 =@ @ olzlalslcple [r a1 |1 x| [m[n]o]r [olr
o4l elols SALES MAN _NO /1201 v SALESM AN NO ot RDI Y|Y[YIN| [N| [N
o552 CUST AQecT wne / 2o/ v CUST AccT w~No oALR DI YIY[Y] |N| [N| [N
os53 POSTING __INVD 12¢] v (7) Yl (Yl
OS54 v (2) Y Y|Y
o5s 4 (2) Y Y|Y
sl 5l50
056 [BLANK [v SARD| %
o557 s /20l v OARD] KX
A58 pise P Sop Bon 120/ v| pise. Pc suP Ben oLRD! X
059 pise Pc svPBSon /20f V| pI1se._pPe SuP BoN | |of oL XXX X
oG CUST NAME SokD (2ol V| cusT NAME _SoiD oAOA A | #| A
VYA CysST ADOR SesD /Eof V| cusT ADOR SOkD | | aAOA X XX
Ol (maTewes) V| EfRoR® REASON o f£of X
Ol 3 {enmATCHED) V| ErRROR _REASIN o L6 XX XX
ey
5
|
=

Note
Number

1.

Appendix II, Page 28

STANDARD REFERENCE NOTES FOR VALIDATIONS

Eﬂla.nation

If the element is not valid, continue with
the execution of the Management Rules for
validations and processes indicated by the
set that contains the invalid element.

If the element is not valid, continue with
the execution of the Management Rules for
validations indicated by the set that con-
tains the invalid element. Do not execute
the Management Rules for processes in-
dicated by the set that contains the invalid
element.

If the element is not valid, do not continue
with the execution of the Management Rules
for validations. Do not execute the Manage~
ment Rules for processes.

YSTEMS
NGINEERING
ERVICES

CLEARINGHOUSE REPORT

AN INSURANCE COMPANY
FILE MAINTENANCE PROBLEM

June 10, 1961 Burton Grad
Ref. No. 1F3

AN INSURANCE COMPANY
FILE MAINTENANCE PROBLEM

Burton Grad
IBM

This report presents two methods (flow chart and decision table)
for representing the decision logic of a complex problem; it thereby
provides a means of comparing the relative merits of the two techniques.
Some considerations in such a comparison are: clarity of understanding,
ease of modifying, ability to detect logical errors and omissions, ability
to see important relationships, etec. This example by no means rep-
resents a controlled test or evaluation of flow charts vs. decision tables;
it has, however, provided some insight and firsthand experience with
the two methods on an identical problem.

The particular problem is concerned with master file maintenance
and controlling key operating procedures of a large insurance company.
The operations ai'e presented at the systems level and while not precise
enough for direct coding, should be accurate and structurally sound.
Some of the logical inaccuracies that exist in the flow chart were
corrected in the decision tables.

With the problem solution initially represented in flow chart
form, it was then decided to explore the capability of decision tables for
describing such a complex decision procedure. It took approximately
25 man-hours to study the flcw chart, understand and structure the
problem, and prepare the decision tables. This short time did not allow
thorough review and debugging of the decision tables. The most difficult
task was to understand the problem from the information available;
considerable time and effort were required with the flow chart originator
toward this end. However, once the flow chart was grasped, the problem
could be subdivided into several major portions. It seemed at the time
that this might be one main advantage of tables, i.e., they seem to
force logical structure.

The Basic Problem Solution

A series of insurance policies are maintained in a master random access
file; because of the large number of these policies, and the relative
infrequency of change or use, it is desirable to have a dictionary track
which contains a brief record for each policy. The overall control

table (001) is concerned with detecting which policies need to be acted
upon while checking each of the policy summary records in sequence.

- B

Another complication of the job is that a single customer may
have a multiple account, i.e., more than one policy; 1f a customer has
a multiple account, he may go on a monthly pay plan instead of the
normal three-payment or one-payment method. Tables 002, 003, and
012 detect and handle multiple account and monthly pay cases.

There are two major types of activities to the file. The first
is that which is scheduled because of the date, such as renewals,
terminations, etc. This is handled by Tables 005 and 009, which are
concerned with scheduled activitles. The other type of work involves
handling transactions, where a change in policy status or introduction
of a new policy takes place. Tables 008 and 011 take care of trans-
action activities.

The remaining table, Table 010, is a closed procedure table
which is used in a variety of cases to write out a previous policy and
obtain the policy to be examined.

Attached you will find the flow chart used to describe the
insurance company job, followed by the decision tables which cover
the same ground.

®

PRE LM 1ARY |
House Keee wol ﬂ
Arstb
ConTROL \/‘

REARD F
IDicTIONA

TRACK

e <®b
N

= <G
Lo
G
& L&

%W

fiLL
(03
AeebUNT
TOoTHL

RENEwAL R
RouTINE

Yes

WiNDuvPR

BILLING
RevTINE

WERiTe
ficco uNT
REcerD

TABLE 001 QOwerall Control

Rule No,

(NV]

co

(o)

1

o

Lo

e
—

b
k.o

START

Activity Date £ Process Date

Card Input for this account

=2 =2

abz1=

Z v

alalz=

al=1=

Last Record on Track

221212

Change Track Switch ON

Policy Control No. = 2000

212|122 =

ZH<EZ=2Z=2 P

End of Dictionary

Z<A<=21212 >

KiZ <212 =2

2z 12 12

K2 12 =

Active Policy No.

New Account

= P

==

Preliminary Housekeeping
& Control

Error...Not Active Policy

Set Status Code =

(W)

Set Track Change Switch ON

Accumulate tc 115 Account

b

Write Dictionary Track

Set Track Change Switch OFF

Spill 115 Account Total

| P

Read Next Dictionary Track

Setup Next Dictionary Item

]

Set Policy Control No. =

100

+100

S [

O [54[bd] bbb

O (D[[bd [b

Windup (incl. Table 010)

Read Input Card

Set Card Switch ON

talkal

Set Schedule Activity Switch ON §

GO TO TABLE

001

001

001

001

001

001

Stop

001

002

002

002

002

TABLE 002 Special Processing

Rule No.

Pt

\V]

€

H

(o]

-

(e 0]

O

=
<

fb
=

=
Do

o

3

Multiple Account

Monthly Pay

Card Switch ON

Z| == 2

2=2(=

st L = =<

Z|z(-

1 1] = I

2

2|

R <

Type of Transaction = Status Change

= Cash

Transaction Switch =C

I =<

i = B S

o o] =

|

Set Multiple Account Switch ON

Set Monthly Pay Switch ON

> P4

Read Multiple Account Record

ol el (= I B [

Setup Multiple Account Tally & Control

P[4

i Nhﬁ = s = S I

A | =

NI [22| 2|

>

Do Policy Record Setup (Table 010)

Set Transaction Switch =

IIC n

Handle Monthly Pay Cash Transaction

Read Input Card

PaI >

GO TO TABLE

008

003

012

003

003

012

003

003

003

003

012

011

011

TABLE 003 Multiple Account Control

Rule No. 1 2 3 - 5] 6 i 8 9 10 11
End of Account Y Y. b4 ¥ N N N N N N N
Card Switch ON N N Y Y ¥ = X b4 X N N
Cards for Tally High High Low Low EQ
New Business Y N Y N
Monthly Pay Switch ON N X
Schedule Activity ’ N Y N ¥
Error. ..Card out of line X X
Set Transaction Switch = il P ol o
Change Tally X X
Set Schedule Activity Switch OFF X X
Bllling Routine X
Write Account Record X
Tally X X
Read Input Card - - X _ X
Do Policy Record Setup (Table 010) X X X X X
Set Multiple Account Switch OFF X X
GO TO TABLE 005 005 008 011 003 005 008 011 008 003 005

TABLE 005 Scheduled Activity

Rule No.

|

(W]

o

10

11

12

13

14

Schedule Activity Switch ON

¥

Monthly Pay Switch ON

Multiple Account Switch ON

Type of Activity =Renewal

)]

w12

=

=Renewal
Questionnaire

=Termjination

=Cancellation

=Bills &
Reminders

Transaction Switch = "T'"

Renewal Routine

Renewal Questionnalre Routine

Termination Routine

P

>

Cancellation Routine

™

Bills & Reminders Routine

>

Zero Record & Open Address

Take Renewal

Compute New Act, Date

Write Policy Record

Pl >4 [

Pl >

e BT I b

Paf P[P

| |

b b

Insert New Act. Date in Dictionary

Tally

Change Multiple Account Record

[P [P

[bdlbd | nd|b4

M | D

e I e e

(e I b b

o o I b b

> >

Set Schedule Actlvity Switch OFF

b

GO TO TABLE

003

003

001

003

001

003

001

003

001

003

001

001

003

001

TABLE 008 Transaction Activity

Rule No. 1 2 3 4 4] 6 g 8 9 10 11 12
Card Switch ON 4 Y N N N N N N N N N
Transaction Type = New Business X N Y N - N - N
- =Endorsement N N N Y
Control COde — HNBI! IIEN" TIRT 1 IINBII llENll "RTIT |INBII “ENH‘ HRT n
Policy Nos. match b X X N N N ¥ X -
New Business Preliminary X
Endorsement Preliminary X
Handle Transaction X X
Process Card X X X P
Read Input Card X X X X X X
Set Card Switch OFF X X X
Set Card Switch ON X X X
Set Control Code = "NB"| "EN"| "RT"
Finish Endorsement X
Finish New Business X X
Compute New Activity Date X X X
GO TO TABLE 008 008 008 008 008 008 009 | 009 009 008 008 | 008

TABLE 009 Scheduled Activity Check

Rule No. L 2 3 - 5

Schedule Actlvity Switch ON Y 4 X N N
Old Schedule Necessary Y N N

Analysis of Activity Change p 1 N 3

Set Schedule Activity Switch ON X

Set Schedule Activity Switch OFF B X

Set Transaction Switch = "T'" X X
GO TO TABLE 005 005 005 005 005

TABLE 010 (DO) Policy Record Setup

Rule No. 1

2 3

Status Code 1 0 2
Seek Policy Record X X
Pre Activity Write X X
Activity Write X X
Read Policy Record X X
Set Status Code = 1
TABLE 011 Card Input Control

Rule No. 1 2 3 4 3
Card Input for this Policy ' Y N N N
Transaction Switch = e i g e i “«©c" L.
Schedule Activity Switch ON ¥
Set Card Switch OFF X X X
GO TO TABLE 002 003 002 003 003

TABLE 012 Status Change Control

Rule No. 1 2 3 ey 5

Multiple Account ' N Y N N
Monthly Pay 4 N N N
Type of Status Change = On Multiple Account X

= On Monthly Pay Y

= On Multiple Account & Monthly Pay Y

= Off Multiple Account X

= Off Monthly Pay Y
Read Multiple Account Record X
Setup & Write Multiple Account Record X X
Change Dictionary Track this item X X X X
Change Multiple Account Record X X X
Set Transaction Switch = =" i,
Read Input Card X X X
Set T'ype of Transaction = blank X
GO TO TABLE 002 011 011 002 002

YSTEMS
NGINEERING

CLEARINGHOUSE REPORT

TABLES SIGNAL BETTER

COMMUNICATION

June 1, 1961
Ref. No. 1F1 Burton Grad

;INTERNATIONAI. BUSINESS MACHINES CORPORATION
White Plains, New York

Attachment D Tables Signal Belter Communication Side 1 of 4

Talk Given by Burton Grad, Manager IBM Systems Engineering Development

The pilot is preparing to land his single engine plane at the airport; it is late at night and his fuel supply is low, He calls to the radio tower and asks
for landing instructions, All he hears in return is a babble in a foreign language which he can't understand.

The executive has spent the last hour of his day dictating an important speech; the next morning he comes in and wants to review the material, His
secretary is out ill. The other girls in the office all read Gregg, not Pitman,

A design engineer has carefully prepared a number of complex Boolean equations to explain the operation of a new computer circuit, He shows these
to the manufacturing engineer to give an indication of what needs to be constructed. The manufacturing engineer says, "I don't understand Boolean
algebra,"

We could go on and on citing examples |ike these of events and occurences where lack of a common language for communication causes difficulties
ranging all the way from the most trivial to the deadly. Systems Engineering faces communication barriers as serious as those of any profession. The
systems engineer today does not have a |language to communicate with management; he does not have a language to communicate with computer pro=
grammers; he does not have a language to communicate with functional specialists; he does not even have a language to communicate with other sys-
tems engineers, :

Programmers who have learned one computer at the machine language level can't understand the programming of another machine at the machine lan-
guage level without spending the time necessary to leam the second machine's special codes and instructions, For this reason (among others) there
has been intensive effort to develop comman languages |ike FORTRAN, Commercial Translator and COBOL which will be applicable to a number of
machines, But the communication hetween programmer and machine is merely a small part of the total problem.

For Systems Engineering it |s vital to develop tools and techniques to permit a manager to state his decision criteria and decision rules. We must
find a common language so systems engineers can communicate with product engineers, accountants, and manufacturing planners, to find out their
decision rules and decision logic; that is critical to determine the characteristics of the system that is going to be modelled or controlled. A method
must be found for two-way communication with computer programmers to be sure that the intended decision rules are In fact being executed. A tech-
nlque is needed to aid Lthe systems engineer in establishing complete decision rules and in predetermining that these rules will accomplish the in-

tended goals.

In the past, this problem has not been as severe. Because of the limited size of business systems problems, we could depend on the programmer to
understand the particular problems well enough to be sure the logic was correct and to check the problem out thoroughly, However, as the systems
we are trying to solve become larger and more complex, this expedient is no longer satisfactory. Systems engineers must take on the responsibility
for designing the decision logic and for insuring that it is being executed properly. To do this systems engineers must have a professional language
which will serve for effective intercommunication.

What has caused the communication void? What has caused this communication moat surrounding the systems engineer? There are at least three
major factors involved:

1~ The inahility to clearly and concisely express decision logic and decision rules for describing business systems.
2= The inability to show cause-effect relationship between conditions and actions.
3~ The inability to guarantee or even aid in achieving logical completeness in establishing decision rules.

Today, we have available a number of techniques which have been applied to solving the communication problem: we've tried to use narrative, flow
charts and even logical equations. But none of these has filled the bill, Each has major drawbacks; the failure of these known techniques has led
to consideration of another alternative: decision Lables,

Decision Tables

Decision tables are a formal method for describing decision logic in a two-dimensional display. The layout.clearly shows the cause and effect rela-
tionship between conditions and actions; it explicitly relates decision allematives .

Decision tables use a format which is familiar to us from analytical, financial, and statistical tables. Since the days of the Babylonians, people have
used tables as a means of organizing information where the relationships were complex or the amount of data gyreat. These data tables appear to be
superior Lo many other forms of information organization because:

1- They provide clarity and conciseness through data classification,
2= They clearly show relationship of dependent to independent variables .
3~ They explicitly indicate omissions,

Decision tables use tabular format to represent dynamic situations. Where we have used flow charts, narrative, or logical equations to describe
decision logic, or an operating procedure, we now find it possible to use decision tables for these same jobs. The argument in favor of tables is
their relative convenience and effectiveness, not that they can describe systems thal cannot also be described in other ways,

Tabular form has been used by programmers since the earliest days of computers. The most common use of tables has been to relate some funclion to
an argument, Given the value of one factor, the table provides the value of another dependent factor. For example, a table might relate capitals to
states (Figure 1), Given the state name, determine the name of the capital,

arate Aabaea | Aam)| wromins In this example State appears above the double line and Capital below; each different state name
e Dy et is in a column and physically below it, the name of the corresponding capital, If the State is Ala-
1 bama, then the Capital is Montgomery; if the State is Alaska, then the Capital is Juneau.

An extension of this concept is seen in Figure 2 in the use of a matrix to display the value of a particular factor as a function of multiple variables.

LT
A ELLENT G0N FAIR PoOR

i) 1h2 1.9 m

Insurance premium rates are shown as a function of health and age. In the example, if health is

1 | L LN R excellent and age is belween 25 and 35, then Lhe rate is $1.27. However, if health is poor and
e = in Tate T s age between 55 and 65, then the rate is $8.73. Unfortunately, the visual effectiveness of a

- Sl s matrix is reduced when the number of independent variables exceeds two or the number of dependent
an am aw | e | oam variables is greater than one.

L]) .LL:"I) n.4% e 0.0

Because of the natural benelits from using tables, it seems that there should he some way to generalize tabular form so that any number of independent
and dependent variables might be shown with clear visual correspondence. Figure 3 (on the next page) shows a Lable with four independent and three

Attachment D (continued) (Tables Signal Better Communication) Side 2 of 4

dependent factors where clarity, interrelationship and comprehensiveness have been maintained.

Health Facellent Encollent 1S Paor

[% 3 | m, % ¢ “®

Bosion Eamt rem Weat In this example, the decision table indicates insurance premium rate, policy limit, and type of
—_— s e e policy as a function of health, age, section of country, and sex. If the applicant is in excellent

health, between 25 and 35 years of age, from the East, and is a male, his rate is $1.27, the

prowium e | 11| w | 9.8 insurance limit is $200,000, and he may be issued policy type A, B, or C. All of the alterna-
“batiey Limi || 0,000 | 100,000 |0 tives are clearly set forth, one by one, across the table,

Type of Follay (| A, B, or G| A, B, or R’

To obtain a better understanding of a decision table, let's look at its fundamental elements as shown in Figure 4,

Eeclalon Rula The double lines serve as demarcation: CONDITIONS are shown above the horizontal double lines,
TFABLETEADER | WOLEWEABER ACTIONS helow. The STUB is to the left of the vertical double line, ENTRIES to the right, A
condition states a relationship. An action states a command.
Condition Condivion
= —r If all the conditions in a column are satisfied then the actions in that column are executed. Each
such vertical combination of conditions and actions is called a RULE. In the same column with
Action Action

ab ey the entries for each rule, there may be specialized data relating to that rule; this is called the RULE
HEADER, Similarly, each table may have certain specialized information which is called the
TABLE HEADER,

Consider another sample table which contains all the same elements, but has some different properties, This table is Figure 5.

TADLECREOTT [fued | Rue® | Rde3 | Rulsd The first rule would be read: If credit limit is OK, then approve order. The second rule would be
B read: |f credit limit is not OK and pay experience 'i5 Tavorable, then approve order, In this LIM-

1a 0.k ¥ N " N ITED ENTRY table, the entire condition or action must be written in the stub, The condition entry
Pay exporionce is limited to indicating whether the corresponding condition should be asserted, negated or ignored;

in (avorable Y N N ; - > .

i the action entry indicates if the action stub should be executed or ignored,

PR L : This is in contrast, as you may nole, to the table shown in Figure 3, which is called an EXTENDED
Approve ondir X X % ENTRY table. In this case the individual condition or action information extends from the stub into
Totuw oy X the corresponding entries, In any given table, we can, of course, mix extended and limited entry

form, whichever is more convenient for a particular condition or action,

The Use of Decision Tables

To this point sample decision tables and their elements have been discussed to describe concept and structure. Now the application and use of deci=
sion tables will be presented. A number of experiments conducted over the past four years have used decision tables on a variety of problems; these
will be reviewed briefly.

While | was project leader for General Electric's Integrated Systems Project, the potential application of tables to a wide variety of problems was
explored including its use for product design, operation planning, cost determination, factory scheduling, etc. The resulis certainly revealed the
opportunity of using decision tables as a major new tool to clarify communication among different technical specialists as well as between these spe-
cialists and computer programmers. |t was stimulating to watch a manufacturing engineer suddenly grasp product design decision logic and then point
out where restraints had been introduced by the producl engineer that were of little value to anybody, Through this kind of examination, significant
improvements might be made in the total product.

At Sutherland Company, a consulting firm in Peoria, Illinois, management decision rules have been studied with various customers and expressed in
tabular form, These decision tables have been applied to Air Force logistics and various commercial situations such as accounts receivable, accounts
payable, etc, From all reports, this work has permitted a more effective and comprehensive statement of the current decision logic and provided more
meaningful and understandable communication between systems men and programmers .,

An area of experimentation already familiar to many of you is the work done at Hunt Foods and Industries by Mr. O, Y. Evans, who is now with IBM,
Mr. Evan's work was directed toward communication among different systems men, and from systems men to programmers , concering the complex
decision rules involved in stock control, sales analysis, etc. The results demonstrate that this approach was aneffective formal way to state very
complex logic without requiring knowledge of Boolean algebra or any other precise mathematical technique.

IBM has been working with several of its customers investigating potential applications of decision tables to a wide variety of problems. From these
experiments, it seems clear that decision tables are frequently easier to prepare than comparable programming methods , and that they are an effective
aid to systems analysis, In these experiments, communication between systems engineer and programmer has been substantially improved; communi-
cation between systems engineer and management has also benefitted from the common description of decision rules,

To convey how tables can be developed, let's follow the process through the significant problem of file maintenance . The block diagram in Figure
6 indicates the essential elements of the problem solution,

master. The purpose of the update logic is to modify the incoming master file by the detail infor-
mation to produce an updated master file containing any additions and changes and from which de=
leted records have been eliminated.

e A detail file and a master file are the two inputs. The updated master file and an error file are the
principal outputs . Within the computer, three basic areas are assigned: master, detail, and new

Figure 7 (on the following page) is one of two tables prepared to perform this job,

Rule 1 states the starting condition. AL the start, one master record and one detail record are read into the corresponding memory areas. At this
point, sequence control returns to the beginning of the table,

Rule 2 and all the following ones are now pertinent. Rule 2 specifically handles the end of job conditions, i.e., end of detail and end of master,
In this case, control is transferred to End, a closing routine to provide for sentinels, tape marks, etc.

Attachment D (Continued) (Tables Signal Better Communications) Side 3 of 4

Rule 3 describes the situation when the end of detail has been reached, but not the end
of master. Since there can be no further changes, additions, or deletions to the original
master, the actions are to write the updated master from the master area, read another

beaniecuoe muse | o Jon [0 ot | o0 || [master, and then return to the beginning of the table,
In Rule 4, the end of master has been found, but not the end of detail; the remaining de~
e R 3. 31 B R 2 R O 1 1 T - tails should only be additions, Therefore, the information in the detail area is moved to
End of detall L N T T the new master area, the addition switch is set on, a new detail record is read, and con=
B of Masar v e jeiwfuin | | trol transferred to the Change Table,
Dwtall cplasiar tManiar =Manipr
" o Rules 5, 6, and 7 are concerned with cases where neither the detail nor the master file
| . has ended, The identification number in the detail area is compared to the identification
number in the master area. Rule 5 considers the event when the detail is less than the
Do Rrror Routine 'L x master; in this case the detail should be an addition in order to follow the same logic of
Move bMastar 1o New Master e | Rule 4, In Rule 6 the detail is greater than the master; consequently the same logic as
Miove Deial 1o New Master x| s Rule 3 applies. Rule 7 covers the case where master and detall are equal, The infor-
Dot Addition Swtich T | On o | | mation in the master area is moved to the new master area, and control is transferred to
Wrile Master X R 70 i the Change Table.
::’ : : i = | - The final rule, Rule 8, is the ELSE Situation. When this occurs something has gone
e | {7 [s ey wrong, since all legitimate possibilities have already been examined. An error routine

is carried out; then another detail record is read. Rule 8 will take care of cases in-
volving sequence errors in the master file and certain types of sequence errors in the
detail file (if the out-of-sequence detail is not an addition). It will also take care of any
non-matching detail which is not an addition,

The table can be rearranged to aid programming efficiency: columns with higher frequency of success should be moved to the left and those with lower |
frequency to the right. Rules 1 and 2 would be way over to the right since they accur only once in each program. Depending upon the particular data,
Rule 6 (the column where the detail is greater than the master) will probably be the most frequent case and should be the first one considered, One
recommended order is: 6, 7,5, 3,4, 1, 2, 8, ' L

Another concept for improving program efficiency is to rearrange the conditions to present the most discriminating condition at the top and the least
discriminating at the bottom. For example, the start condition, which is shown first, probably should be last since this only distinguishes one case
out of all the thousands that will occur, A similar statement can be made about end of detail and end of master, It seems evident that the comparison
of detail to master would be the most discriminating criteria and therefore placed first in the table,

The Case for Tabular Form

Look once more at Figure 7 and compare its statement of the update decision logic with that in the following narrative. Which is clearer and more
concise, which shows cause-effect relationships better, which aids more in determining logical completeness.

Mr. T. F, Kavanagh speaking at the 1960 Eastern Joint Computer Conference had this to say: "the decision, .. table is a fundamental language
concept. .. broadly applicable to many classes of information processing and decision making problems. .. tables force a step=-by-step analysis of
the decision. .. are easily understood by humans regardless of their functional background (they are) simple and straightforward (enough) that. . .
specialists can write tables, .. with very little training, .. tables are easy to maintain (and) errors are reported at the source language level."

Mr, 0, Y. Evans states of his work on tabular techniques: "The tabular approach. .. aids... in visualizing the numerous relationships and alterna-
tives, .. (and) permits data rules to be readily reviewed for omissions and inconsistencies... (in addition it) provides flexibility in changing any por=
tion of the analysis."

" The CODASYL Systems Group, part of The Development Committee of the Conference on Data System Languages, has been looking into the use of
decision tables. In a recent release the following statement was made: "Investigation... indicates that the systems analysis method discussed
above (decision tables) will provide a precise and orderly method of documenting the analysis independent of the processing method. It will offer the
analyst an aid in visualizing the relationships and alternatives of the problem, will provide flexibility in changing any portion of the analysis, and
will establish a framework for the complete definition of the systems problem. The CODASYL Systems Group will continue to develop and experi-
ment with these concepts."

. To further indicate the potential results from use of tabular form, the following statements paraphrase various user opinions: Clarity and conciseness
== Decision tables are easy to prepare, read, and teach to others; experience shows that non-programmers can learn to prepare satisfactory tables in
less than a day. The amount of writing, or number of words, lines and symbols used in describing complex decisions, is reduced by 25-50% as
compared to flow charting. For certain specific cases, problem statement and programming time combined have been reduced significantly.

Meaningful Relationships -~ Table structure serves to improve systems logic by aligning alternatives side by side. It also sharpens cause and effect
understanding, so relationships which are accidental or incidental become clearer, Furthermore, actions based on similar or related conditions are
apt to be drawn into the same table, making it easier to appreciate and consider interdependent factors.

Completeness == Tabular form allows effective visual or deck debugging both by the analyst and the reviewer, There are fewer errors to start with
since the analyst tends to catch his own mistakes; moreoever, the reviewer will typically detect a high percentage of the remaining errors by visual
examination. Finally, experience shows that with this foundation and suitable test problem construction, it is easy to rapidly detect the balance of
the errors during machine debugging.

The evidence quoted on the advantayes of decision tables for systems analysis and computer programming is based on actual study projects. Some of
these studies even tested decision tables on various data processing machines. There are many current studies which are experimenting with a
variety of tabular forms,

A Plan for Action

With all its gotential advantages, it is apparent that tabular form has not yet achieved full growth and stature; there are major technical and applica-
tion areas stn!l unprobed, awaiting only the touch of creativity to make practical breakthroughs. While current table methodology does not yet pro=
vide a drawbridge to cross the communications moat surrounding systems engineers, it appears to offer the greatest chance for a significant advance.

To bring these possibilities to fruition requires experimental development. Tabular form will have to be tried and used on a wide variety of applica-
tions to provide practical evaluation and determine desirable characteristics. Along with this field pre=testing, there will be a need for effective
technical developments to explore new table concepls and structures .,

Attachment D (continued) (Tables Signal Better Communication)

There are many areas which need experimental and technical development:

1. Table structure
-= multiple successes per table
-= interspersing conditions and actions
== explicit control of sequence of actions

2. Relations among tables
== priot fule concepts
~= use of |ibrary functions
-~ use of open and closed subroutines

3, Language consideralions
-- statement construction
== macro or jargon operators
-- machine independence

4, Associated data description
-= defining factors and expressions for man-to-man and man-to-machine use
-= conditioned definitions
~= input/output format
== preassigned values and constants

5. Implementation considerations
-- compiling vs. interpreting
== sequential vs, random access to tables
==~ possibility of made~to-order processors
-- ability to introduce specialized operators and table structures

Side 4 of 4

The explosive innovations in computer hardware have not been matched by corresponding developments in systems communication, But we are on the
threshold of a major breakthrough, we are on the verge of a significant advance. It's up to you and it's up to us to show equal creativity in software

to that shown in hardware: To use tabular form to develop a clear, concise, meaningful, comprehensive Systems Engineering language.

T. J. Watson Research Center
Yorktown Heights, New York
August 21, 1961

Subject: Tabular Techniques Distribution #4, and
Confidential Nature of Releases

We hope you have found releases from the Systems Engineering Services
Clearinghouse to be informative. These reports cover new developments
in computer "software'; Tabular Techniques, one such development,
shows promise of aiding our customers in evolving new applications

for IBM equipment.

Many consider tables to be useful in performing the analysis necessary
in designing a new system; some maintain that they are more powerful

as a programming tool; others claim that the greatest benefit is

derived when used as a standard documentation technique. But regardless
of the area of use, we feel that IBMers need to be kept posted. For
these reasons we have gathered reports of work done by customers,
consultants, competitors, and IBM. Often the information contained

in these papers is strictly proprietary. Two such reports were contained
in Distribution #3: "Information Processing System Analysis" by
Sutherland Company and "An Insurance File Maintenance Problem" by

B. Grad. It is incumbent on the recipient to ensure that these reports
are not duplicated or shown to non-IBMers without approval of the
Clearninghouse. Your cooperation in this regard is absolutely essential.

Enclosed in this distribution are two new items:

1. An article by B. Grad, entitled "Tabular Form in
Decision Logic", reprinted from Datamation magazine,
July, 1961.

2. A manual entitled '"GE 226 TABSOL Application Manual
(Introduction to TABSOL)" by the GE Computer Dept.,

Phoenix, Arizona,
W
Burton Grdd, Manager

Systems Engineering Services
BG:eh
encl

YSTEMS
NGINEERING
ERVICES

CLEARINGHOUSE REPORT

{ TABULAR FORM IN
DECISION LOGIC

July 1, 1961
Ref. No. 1G1 Burton Grad

TABULAR

FORM

IN

DECISION LOGIC

by BURTON GRAD, IBM Corporation,
Thomas J. Watson Research Center,
Yorktown Heights, N.Y.

Reprinted from DATAMATION Magazine, July 1961

An F. D. Thompson Publication

application to computers

Since the early days of computer development, program-
mers have used analytical tables to convert arguments into
precise functional values; they have also employed matrix
structure and notation to handle common information with
relatively complex structure, In the past few years, how-
ever, there has been substantial interest in probing the po-
tential applications of tabular form for recording the deci-
sion logic itself. This exploratory work in developing deci-
sion tables has involved consideration of man-to-machine as
well as man-to-man communication.

In systems analysis and computer programming, decision
tables, like conventional data tables, retain a two-dimen-
sional structure to portray significant relationships. The
form, however, is considerably more elaborate to show
multiple conditions and actions interlocked through posi-
tion. Within a decision table any language from a business
jargon to the most machine-oriented may be utilized to ex-
press the decision logic.

There are other well-known methods to describe a busi-
ness system: narrative, flow charts, and logical equations.
Narrative form, unfortunately, is often wordy, requiring
prepositions, conjunctions, and other superfluous elements
for readability; there is a certain lack of form and physical
relation which may lead to inaccuracy and inconsistency if
the user is not extremely careful. Flow charts require lines
and connectors to show relationships; when these become
too numerous, the logic may be difficult to follow and the
layout may demand excessive space. Logical equations are
symbolic and abstract as, for example, Boolean algebra ap-
plied to computer programming. The main limitations are
the need for special skills and background to algebraically
describe decision rules and the attendant difficulty in com-
municating equations in a business environment. Shortcom-
ings in these well-known methods have encouraged systems
analysts to take a harder look at other altermmatives,

Tabular form for decision logic seems likely to satisfy this
search since it compensates for many of the limitations of
the other forms by providing compact expression of decision
rules, visually effective display of meaningful relationships,
and straightforward indication of logical correspondence.
The significant difference between tabular form and other

Age

CONDITIONS
Health

Section of Country

Rate/1000

ACTIONS
Policy Limit

STUB

methods is not in the notational scheme used, but rather
in the physical layout for recording the systems description
or programs.

Let’s now examine the use of decision tables. It is not
intended to suggest that this form is superior to existing
languages where they are appropriate for a specialized class
of problems, e.g., FORTRAN for algebraic calculations, re-
port generators for preparing output documents, Rather,
the feeling is that no method today is well-designed for
systems men to use for describing complex logical decisions;
therefore, decision tables may well fill a current void in a
total systems analysis and programming package.

extended entry tables
One type of decision table is called EXTENDED ENTRY,
Figure 2 illustrates a simple application:

Figure 3

B Rule 1 Rule 2 || Rule 30
2B 22 [—

Age <35 <35 ———— .
Health Excellent | Excellent |mm—p o .
Section of —
~ Country East West — West
“Rate/1000 || 1.57 172 | — 5.92
“Policy Limit | 200,000 | 200,000 |mmm——l 20,000

Figure 2

The first decision rule (columns 1 and 2) can be para-
phrased: If age is greater than or equal to 25 and less than
35, and health is excellent, and section of country is East,
then rate per thousand is 1.57 and policy limit is 200,000,
The underlined words are implied by the table layout. The
other rules are alternatives to this one, so that logically, it
does not matter which rule is examined first; only one rule
can be satisfied in a single pass through this decision table.

As in most disciplines, a vocabulary is needed to describe
the special properties and characteristics of decision tables.
Fortunately, a glossary of terms for tabular form is already

>25
<35

Excellent | Excellent

East

1.57
200,000

200,000 20,000

in existence from the statistical and financial fields; these
supply an appropriate starting point.

Using the information from the insurance example (Fig-
ure 3), the decision table is shown in an exploded view,
Figure 3 to show recommended titles: (see preceding page).

The double lines serve as demarcation: CONDITIONS
are shown above the horizontal double line, ACTIONS be-
low; the STUB is to the left of the vertical double line, EN-
TRIES are to the right, Each vertical combination of con-
ditions and actions is called a RULE, By adding to the
elements shown a title section at the top of the table which
is called a TABLE HEADER, and a RULE HEADER
over the entries, the essential nomenclature is complete.

limited entry tables

LIMITED ENTRY tables offer a different approach to
stating the decision logic. This type of table is shown in
Figure 4:

Credit Pay Special Return
Limit |[Experience is| Clearance ||Approve| Order

is OK| Favorable [is Obtained|| Order [to Sales
Rule 1| Y Y
Rule 2| N Y Y:
Rule 3| N N Y Y
Rule 4| N N N Y

Figure 4

The first rule (rows 1 and 2) is read: If credit limit is
OK then approve order. Again, the underlined words are
implied by the form. In limited entry tables the entire con-
dition or action must be written in the stub; the entry is
“limited” to reversing a condition or ignoring a condition
or action. In contrast, extended entry tables have a part of
the condition or action “extended” directly into the entry.
While this decision table (Figure 4) is arranged quite differ-
ently, the same table elements are present. Structurally, the
table appears as in Figure 5:

Condition Stub Action Stub

Action Entries

Condition Entries

Figure 5
Limited entry permits only a few values in an entry:
= yes
N =no

Blank = not pertinent (e.g., condition or action need
not be considered in the current rule)

business applications

Examples of successful applications of decision tables in
business are as yet few in number, but some of the pioneer-
ing work can be reviewed briefly.

Initial work on the use of tabular form for recording de-
cision logic was performed by General Electric’s Integrated
Systems Project from the fall of 1957 through 1959; during
that period, I was the project leader, Many individuals were
involved in this development work which concentrated on
the use of tabular form to express the logic of product de-
sign, operation planning, cost determination, quality as-
surance planning, etc. This project developed extended
entry decision tables for man-to-machine communication.

Mr., T. F. Kavanagh, in commenting on this work at the
1960 Eastern Joint Computer Conference,(t) noted, “the de-
cision , . . table is a fundamental language concept . . .
broadly applicable to many classes of information processing
and decision making problems; . . . tables force a step-by-
step analysis of the decision, . . . are easily understood by

humans regardless of their functional background . . . (they
are) simple and straightforward (enough) that . . . special-
ists can write tables . . . with very little training; . . . tables

are easy to maintain (and) errors are reported at the source
language level.”

From late 1958 to the present time, Sutherland Com-
pany, a consulting firm in Peoria, Illinois, has been using
tabular form for expressing what they call management de-
cision rules. They have applied these techniques to a num-
ber of their clients’ problems (e.g., a logistics study for
Norton Air Force Base) with quite satisfactory results, In
particular, they have used decision tables to record the logic
for payroll, order processing, sales analysis, general ledger
accounts, accounts payable, accounts receivable, and cost
accounting. There has been no published material to date
on the Sutherland work but available information indicates
that limited entry decision tables are being used.

In 1959, Hunt Foods and Industries began experimenting
with tabular form for man-to-man communication in com-
puter systems planning. Material on this approach was the
first to be released, in late 1959, describing how limited
entry tables were used for systems analysis. Explorations
were also carried out on complex relationships among in-
dividual decision using prior rule and sub-routine tech-
niques. Many business systems were documented with
decision tables: stock-control, credit analysis, sales analysis,
and traffic,

In his report on the work at Hunt Foods, Mr. O, Y.
Evans states, “The tabular approach . . . aids . . . in visual-
izing the numerous relationships and alternatives . ., . (and)
permits data rules to be readily reviewed for omissions and
inconsistencies; . . . (in addition it) provides flexibility in
changing any portion of the analysis,”

Since early 1960, IBM has been actively engaged in ex-
ploring the value of tabular form both for systems analysis
and for computer programming, The company has initiated
joint projects with several customers to evaluate the effec-
tiveness of various tabular forms, to explore alternative
methods of implementation, and to investigate opportuni-
ties for incorporating these developments as an adjunct to
existing languages. Since there are many different aspects
of tabular form which still need to be examined, language
implementing programs have not been prepared. These
studies have developed and formalized mixed limited and
extended entry tables, stubless tables, and unconditional
decision tables.

The CODASYL Systems Group, which is part of the De-
velopment Committee of the Conference on Data Systems
Languages, has been looking into the application and use
of decision tables since late 1959, Their particular goal has
been the creation of a systems-oriented language which
would enable systems analysts to communicate their basic

decision logic either to computer programmers or to auto-
matic program compilers. This organization contends that
tabular form is one currently known technique which would
aid in achieving effective mutual understanding of business
decisions while maintaining machine independence. Their
efforts have included research on generalizing tabular form
to combine limited and extended entry format in a given
table, as well as studies on more complex methods of
sequence control, rule structure, and rule execution logic.

an example

To illustrate some of the possible advantages of decision
tables, a composite tabular form is shown in Figure 6;
these tables describe the logic of a file maintenance pro-
cedure. There are two input files (Detail and Master), each
sequenced by identification number. The principal output
is a similarly sequenced Master file incorporating additions
and changes and omitting deleted records. The logic is
based on having three internal areas: (1) Detail, (2) Master,
and (3) New Master. “Read” as used here means “obtain
the next record in the referenced file.” “Write” means “pro-
duce an output Master record from the indicated source
area.” These are not detailed, precise tables for machine
compilation, but rather the equivalent of a block diagram.

value of decision tables
So far, decision tables have been discussed in the light of
known applications and attributed values and advantages.

TABLE 001 — Update

Though many current developments are still in the realm
of “company confidential,” several projects have indicated
results that enable us to discuss the value of tables in con-
crete terms.

Recalling the three benefits mentioned previously, some
studies claim that decision tables appear to be superior to
other methods for representing complex decision logic in
that they provide or encourage:

clarity and conciseness

completeness

meaningful relationships
To indicate the potential results from use of tabular form,
the following statements paraphrase various user opinions:
Clarity and conciseness — Decision tables are easy to pre-
pare, read, and teach to others; experience shows that non-
programmers can learn to prepare satisfactory tables in
less than a day. The amount of writing, or number of
words, lines, and symbols used in describing complex de-
cisions, is reduced by 25-50% as compared to flow chart-
ing. For certain specific cases, problem statement and pro-
gramming time combined have been reduced significantly.
Completeness — Tabular form allows effective visual or
desk debugging both by the analyst and the reviewer.
There are fewer errors to start with since the analyst tends
to catch his own mistakes; moreover, the reviewer will
typically detect a high percentage of the' remaining errors

| Rule No. 01 02 03 04 | 05 06 07 08
Start Y N N N i N N N ELSE
End of Detail N N N Y 3 N
End of Master N N Y N Y N
Detail <Master | =Master >Master
Detail an " Addition" Y Y

Do Error Routine 3 X
Move Master to New Master X
Move Detail to New Master X X
Set Addition Switch OFF ON OFF ON OFF OFF OFF OFF
Write Master X X
Read Master X X X
Read Detail X X X X
GO TO TABLE 001 002 002 002 001 END 001 | 001
TABLE 002 — Change

Rule No. 01 02 03 04 05 06 07
Detail <New Master| >MNew Master| >New Master/—MNew Master|—New Master)—New Master| ELSE
Addition Switch ON Y N Y N
Detail a “'Change" Y
Detail a "Delete" Y Y

Write New Master X X

Do Error Routine X X
Do Change Routine X

Do Delete Routine X X

Read Master X X

Read Detail X). X X X
GO TO TABLE 002 001 001 002 001 001 002

Figure 6

by visual examination. Finally, experience shows that with
this foundation and suitable test problem construction, it is
easy to rapidly detect the balance of the errors during
machine debugging.

Meaningful relationships — Table structure serves to im-
prove systems logic by aligning altermatives side by side.
It also sharpens cause and effect understanding, so relation-
ships which are accidental or incidental become clearer.
Furthermore, actions based on similar or related conditions
are apt to be drawn into the same table, making it easier
to appreciate and consider dependent factors.

The evidence quoted on the advantages of decision
tables for systems analysis and computer programming is
based on actual study projects. Some of these studies even
tested decision tables on various data processing machines.
There are many current studies which are experimenting
with a variety of tabular forms,

future direction
With all its potential advantages, it is apparent that tabular
form has not yet achieved full growth and stature; there
are major technical and application areas still unprobed,
awaiting only the touch of creativity to make practical
breakthroughs. Current table methodology, for example,
does not yet provide an effective systems-oriented lan-
guage. Unable, then, to describe the decision logic in a
systems-oriented language and untrained to an adequate
degree in knowledge of equipment capabilities, the systems
analyst often severely constrains the computer programmer.
What then of the future? Would it be desirable to di-
rectly incorporate tabular form into existing language proc-
essors such as Autocoder, FORTRAN, Commercial Trans-
lator, or COBOL, to describe complex decision procedures
with decision tables? Would this approach significantly im-
prove logical analysis? Would it simplify programming, de-
bugging, and maintenance?

Would it be advantageous to try to create a systems-
oriented language using tabluar form as a primary method
for describing decision logic? Should we carefully consider
the relative advantages of using interpretive rather than
compiler techniques for applying tabular svstems-oriented
languages to computers?

We are witnessing a literal explosion in scientific tech-
nology, not the least of which is the rate of innovation in
computer hardware. Laboratory shop-talk treats subjects
like thin magnetic films, microminiaturization, and masers,
as if they were accomplished facts; and before we realize
it, they often are. Progress in language concepts, though,
lags seriously behind hardware advances. Failure to keep
pace can be attributed to several factors: inadequate effort,
requirements for compatability with existing systems, and
lack of problem recognition. Facing opportunities like
automated product engineering and real-time control, we
are handicapped by the limitations of current ways to de-
scribe business systems. Tabular form, one significant new
tool for methods and systems people, may help to ac-
celerate business language development and to advance
systems technology.

BIBLIOGRAPHY

(1) Kavanagh, Thomas F., “TABSOL—A Fundamental Con-
cept for Systems Oriented Languages,” Procead-
ings of the 1960 Eastern Joint Computer Con-
ference.

(2) Evans, Orren Y., “Advanced Analysis Method for
Integrated Electronic Data Processing,” IBAM
General Information Manual, £F20-8047.

YSTEMS
NGINEERING
ERVICES

CLEARINGHOUSE REPORT

* GE TABSOL
APPLICATION MANUAL

July 15, 1961
Ref. No. 1G2 GE Computer Dept.

This material is distributed to keep IBM perscnnel informed
of new developments. Selection is based on interest; this department
makes no claim for the desirability of this approach nor necessarily
recommends its use.

If additional copies are desired, please contact the Clearing-
house. No part of this material should be reproduced or distributed

outside IBM without approval of the Clearinghouse.

TABSOL APPLICATION MANUAL

(INTRODUCTION TO TABSOL)

GENERAL ELECTRIC
COMPUTER DEPARTMENT
PHOENIX, ARIZONA

GENEHAL@ELEHMG

ACKNOWLEDGEMENT

The bulk of the material presented in this manual is
based on information contained in the various publica-
tions of the Integrated Systems Project and the Services
of the General Electric Company. Particular credit is
due to Messers. T. F. Kavanagh, E. F. LaChance,
D. F. Langenwalter, S. A. MacMullen, H. W. Nidenberg,
D. T. Schmidt, and T. N. Wilcox, all of the General
Electric Company, whose efforts and reports on the
subject were utilized extensively in the preparation of
this document.

General Electric Company

Computer Department
Phoenix, Arizona

I
L.
Iv.

VL.

TABLE OF CONTENTS

INTRODUCTION e A B s e T S A BN W B B AP STES 1
DEVELOPMENT OF TABSOL B S A O A B B S G 3
HOWTO READ STRUCTURE TABLEScoccimiiiniiiminccanmarsos vanmnsn o smenns 5
TR A PP A IO . . o s ot i S mom e he e s i b A S — 7
A. Manufacturing e e I S R A R S T e e e o e 7
1. NG PRBNMINGE == « « - oo o it e R o B § A e i e RIS Rt s e s v 7

2. QUACOINN] oo onoan s i A g S Do AT e TR TR R o ST e AR s e el 10

B Deilgn Engeeiiig £ - roo ook 55 e o sl e i T T s el et R e g e s s e 12
IS ATIONBDEE ininio s, Anagme i b ey B Y T T N B S i et B A ST AR Ly B S i S e b Al sV e 15
7.3 e B e Do Sl R i N I B S S 19
IR RN TIN5 s s ol v R T o S R A T B G+ SR A L T SN 23

The purpose of the TABSOL Application Manual
is to impart a basic knowledge of the concept and
applications of TABSOL and to make present and
potential customers of the General Electric Company
aware of the scope and range of this new language.

No previous knowledge of TABSOL is required
and a limited knowledge of computer operations is
sufficient to obtain full benefit from the use of this
material. The Computer Department reserves the
right to make changes in the language specifications
for purposes of providing the latest computer tech-
niques to its customers.

Perhaps many of you have heard the word TABSOL
and have wondered "Just what is this concept that
everyone is taking about." It is to those of you who
have never heard of this term before, that this publi-
cation is directed.

The objective is to remove the aura of mystery
from the subject and presentina clear, concise manner
the history, development, and potential use of thisnew
language in the industrial world. Illustrations of po-
tential applications of the TABSOL language in the
areas of Manufacturing, Engineering, and Financeare
described in detail and the tremendous power that
GECOM (General Compiler for GE Computers) lends
to TABSOL is demonstrated.

TABSOL, which stands for Tabular Systems Ori-
ented Language, is basically a structuring technique
used to systematically describe the step by step de-
cision logic in the process of solving a problem. The
basic advantage of the TABSOL language is that it is
probably one of the most easily learned and understood
and can be applied to many analytical situations.

The tabular technique is not new to industry.
Tables have been used for sometime asanaid in prob-
lem solution. When the manufacturing planner sets up
a price table for the planning of coil forming he uses
a tabular technique. When the air conditioning design

INTRODUCTION

engineer refers to the refrigerant pressure vs. temp-
erature table he is also using the tabular technique
to aid in solving the problem. Tables are designed to
aid the user in determining specific relational char-
acteristics.

The TABSOL structuring technique involves the use
of a table to facilitate the function of specifying deci-
sion logic. Computer programming is aperfect exam-
ple of the job performance that can be improved with
the application of this method. The computer program-
mer receives functional specifications and decision
logic from the systems analyst and, inturn, translates
this logic into a language that a computer understands.
When the programmer speaks to an engineering analyst
he must converse in engineering terms. When involved
with an accounting analyst a different language isused.
The translation of these terms for computer usage
generally involves displaying the system logic by
means of a flow chart from which the program is
written.

TABSOL - 225 which is the union of TABSOL with
GECOM enables the advantages of tabular structured
decision logic to be supplemented with all the power
of the mostup to date compiler ever written. This mar-
riage permits the systems analysts to prepare all in-
clusive decision tables for direct input to General
Electric Computers, significantly reducing program-
ming time and effort.

TABSOL APPLICATION MANUAL

GE 225

Il. DEVELOPMENT OF TABSOL

A General Electric Company task force, formed in
1957, developed a system which converts customer
orders into finished products automatically. The sys-
tem covers order editing, engineering design, manu-
facturing operation planning, product cost determina-
tion and manufacturing control. In developing anauto-
matic system with the many inherent complexities it
was apparent that some means of reducing program-
ming and coding effort was required. The structure
table was developed to satisfy this requirement and
defines the precise manner in which information must
be written in order that all elements of the logical de-
cision are in the proper position.

The solution of these structure tables ina computer
is simplified by the use of TABSOL, a generalized,
automatic method by which a computer can solve any
structure table regardless of content. The Integrated
Systems Team used this feature to carry information
through from the customer's order to shipment of the
finished product.

The first efforts of the General Electric taskforce
were directed toward writing interpretive type TAB-
SOL programs. These programs were first used at
the Company's Instrument Department and the team
had achieved a major breakthrough in automatic lan-
guage development. However, from that point on until
the development of TABSOL 225 there still existed the
serious limitation that despite the effort of the design
engineer, manufacturing specialist, and others, incon-
structing their decision logic in tabular form it was
still necessary to expend considerable effort in a de-
tailed coding operation to put the tables in a language
the computer could understand.

But progress was being made andi‘despite this
obstacle, the concept of structuring itself offered such

potential that a great degree of interest was generated
within General Electric Company. Other components
of the Company, with the aid of the interested service
organizations began to explore the possibilities in
their own fields and with their own machines.

TABSOL was applied to design engineering prob-
lems, manufacturing planning and quality control
problems, and financial and cost control problems.
The enthusiasm that was generated began to multiply.
In 2all cases the language was a powerful tool towards
the development of an integrated mechanized system
with the resulting cost savings.

During the rapid growth in the development of the
concept, there still remained the problem of the de-
tailed coding requirements. To be sure, the techniques
were improved to such an extent that anyone could do
the coding with little knowledge of the content of the
table.

However, in late 1960 the General Electric Company
made two announcements of great significance. The
first was the formal announcement to the public of
TABSOL - A Fundamental Concept For Systems Ori-
ented Language by T. F. Kavanagh, who was instru-
mental in the development of the tabular concept, at
the Eastern Joint Computer Conference in New York.
The second announcement was by the General Electric
Company's Computer Department concerning the Gen-
eral Compiler (GECOM) for GE machines. Partof the
release stated "The Computer Dept. now offers with
the GE 225 the Tabular Systems Oriented Language
(TABSOL 225), the first "Systems Oriented'' language
to be processed by a compiler".

This was the breakthrough for which the early
table user's were waiting. It meant thatthe power of a
full fledged language was at the command of every
structure table entry. With this automatic program,
it was nowpossible to feed decisiontables, as prepared
by the analyst, directly to the General Compiler for
processing. The program produced by the compileris
tailored according to the analyst's specifications and
the GE 225's capabilities. Thus, a new language that
can be used by itself or inconjunction with all the fea-
tures available in GECOM, puts control of the elec-
tronic computer within the reach of additional scores
of engineers, scientists and systems analysts.

TABSOL APPLICATION MANUAL

GE 225

lll. HOW TO READ STRUCTURE TABLES

In order to demonstrate the use of the tabular
concept and the method by which it is interpreted, let
us consider an illustration. Consider the problem of
a foreign car manufacturer who must add anti-freeze
to the cooling system of his car in varying amounts
depending on the delivery point of the automobile. Of
course, the amount and type of anti-freeze dependson
the value of two controlling factors - these are the
highest and lowest temperatures to which it is expected
the car will be exposed. The decision pattern that he
uses is as follows:

(1) If the temperature is greater than 32°F add
no anti-freeze.

(2) If the temperature range is from -20°F
and below to less than 75°F, add 10 quarts
of type A anti-freeze.

(3) If the range is from above -20°F to less
than 75°F, add .2 (32 - lowest temp) quarts
of type A anti-freeze.

Is
Lowest Temp
> 32°

(4) If the rangeis from 0°F andbelow to 100°F,
add 10 quarts of type AA.

(5) If the range is from above 0°F to 100°F, add
.2 (32 - lowest temp) quartsof type B anti-
freeze.

(6) If the range is from above 0°F to above
100°F, fill the whole cooling system with
type C anti-freeze.

(7) If the range is from 0°F and belowto above
100°F, then protection is impossible.

If a computer programmer were given this prob-
lem, his first step would be to set up a flow chart
which would depict the steps required for the computer
to proceed through the decision making process. His
flow chart might look like this:

LT = Lowest Temp

Add no
ANTI-FREEZE

Is
Yeos Highest Temp Ho
_ <15° /
Is
Lowest Temp
> 0°
Is
Yes Highest Temp
> 100°
Yes
4 4
Add Add Add Fill Whole Add Protection
10 Quarts .2(32-LT) .2(32-LT) Cooling System 10 Quarts is
Type A Type A Type B With Type C Type AA Impossible

TABSOL APPLICATION MANUAL

GE 225

Although the flow chart is a clear, concise state-
ment of the problem to its original author, it could
present a serious problem in interpretation to anyone
who attempted to use it as a basis for giving a com-
puter detailed instructions for its solution.

As a matter of fact, one of the most serious prob-
lems existing in the programming field is that of
communication between programmers on problems
already solved. It is a widely held axiom that it may
be better to re-write a flow chart and program rather
than to try to interpret those written by someone else.
This problem is considerably reduced with the use of
TABSOL.

Let us express the same process in the form of a
structure table.

same time. For example, if the temperature range in
a particular location were from 10° above zero to 70°
above, then the conditions for rows 3 and 5 are both
satisfied. However, since we proceed row by row
until the conditions are satisfied, we can obtain only
one solution to any table - in this case, row 3. This
particular point illustrates the care that is necessary
in constructing tables so that they actually represent
the problem to be solved. This care, of course, is
not required if the table can be constructed with row
independence, that is, where one and only one row can
be a solution to the problem. When tables are con-
structed with row independence, then those rows that
are most likely to be solution rows should be placed
at the top of the table offering potential speed advan-
tages. Of course the systems analyst must weigh the
alternatives when constructing the tables.

Amount of
Highest Expected Lowest Expected Anti-Freeze Type of
Temperature Temperature in quarts Anti-Freeze Go to Table

- > 32 0 - 6

<75 < -20 10 A 6
<75 > -20 .2(32-LT) A 6

< 100 <0 10 AA 6

< 100 >0 .2(32-LT) B 6

> 100 >0 Capacity of C 6

cooling system
> 100 <0 - - 6

This method of expressing decision logic is easily
learned and easily understood.

A structure table is composed of conditions and
actions. The conditions are stated to the left of the
vertical double line and above the horizontal double
line. The actions are stated to the right of the vertical
double line and above the horizontal double line. In our
example the conditions are:

1. Highest expected temperature
2. Lowest expected temperature
While the actions are:

1. Amount of anti-freeze in quarts
2. Type of anti-freeze

3. Go to table

The table is then composed of any number of rows
necessary to specify the possible alternatives of the
problem situation. Each row is evaluated in sequence
proceeding from the top row to the bottom row. If all
the conditions of a roware satisfied thenall the corre-
sponding actions in that row are executed and the table
is considered solved. It is, of course, possible that
the conditions in a number of rows are satisfied at the

It is common practice in reading structure tables
to insert the word if before the stated condition, the
word and for each vertical single line, and the word
then for the vertical double line. If any particular con-
dition is not significant to the solution it may be left
blank in the table or the letters N.S. (not significant)
may be inserted. For example, the reading of the
third row of our example would be something like this.
If the highest expected temperature is less than 75°
and if the lowest expected temperature isgreater than
minus 20, then the amount of anti-freeze in quarts is
.2(32-lowest temp) and the type of anti-freezeis A and
go to table 6.

Again, it should be noted that if either condition is
not satisfied, the program proceeds to the next rows
successively until a solution row is obtained.

This, then, is a basic illustration of the concept of
TABSOL, and all tables written in the language are
interpreted in this manner. Of course, in a typical
manufacturing application the number of tables re-
quired for solution of the problem could easily exceed
100 and the numbers of actions, conditions and rows
would vary up to the limits of the computer. The only
requirement of the system is that the entire problem
be clearly thought through so that all elements affect-
ing the solution are consideredin the tabular formation.

With this knowledge of the tabular concept and the
method of interpretation, we can now proceed to ex-
amine the potential that it offers to computer users.

TABSOL APPLICATION MANUAL

GE 225

IV. TABSOL APPLICATIONS

As with any new industrial development, it is nec-
essary to educate potential users in the application of
the new tool so that it may be applied to their opera-
tion. Since the development of TABSOL has occurred
over the past 5 years with a major breakthrough occur-
ring just months ago, there is a wealth of information
to be disseminated. The purpose of thispresentationis
to show some of the typical applications of TABSOL and
the potential that these applications offer. The applica-
tions described are, of course, only illustrative such
that no conclusions about the actual data used should be
drawn or questioned. The only objective is to demon-
strate the potential uses of TABSOL.

A. Manvufacturing

The Manufacturing Section of a business normally
consists of the following operations:

Materials - Procurement, Scheduling, Dispatch-
ing, Inventory Control

Manufacturing Engineering - Operations Planning,
Machine Development

Quality Control - Appraisal, Testing

Shop Operations - Manufacture and Assembly of
Parts and Components

Administrative - Personnel, Budgets, Systems.

It would be impractical to give a detailed desecrip-
tion of a TABSOL application for each of these areas.
However, there are two typical applications which
would serve our purpose. In theseillustrations enough
detail is given to provide a clear picture of the actual
system but not so muchdetail that the picture becomes
confusing.

A.1 TABSOL in Manufacturing Planning

A typical application is a system that provides com-
plete manufacturing operation planning for the as-
sembly of cast rotors.

Consider the planning operation in a motor manu-
facturing concern. The specific operation to be
planned is to stack and to press a specific rotor.

The planner, in issuing detailed instructions to the
factory may issue a pre-printed planning form that
looks something like that shown in Figure 1.

GENERAL ELECTRIC COMPANY
OPERATION PLANNING SHEET

stack @ Stacks @ inches

Drawing Number Shop Order Number Quantity Schedule Date
Operation Set-up
Oper. Operation Description Work Time Time Total
Number Station (Minutes) (Minutes) | Price
1 Get D 0.D. @ High Arbor (0]

Get ® LD. @ 0.D. (® Thick Collar

Figure 1

TABSOL APPLICATION MANUAL

GE 225

In order to fill in the form he must determine the fol-
lowing information: (The numbers correspond to those
in the blanks on Figure 1)

(1) Lamination OD

(2) Arbor Height

(3) Lamination ID

(4) Collar OD

(5) Collar Thickness

(6) Number of Stacks

(7) Stack Height

(8) Operation Time

(9) Set up Time

(10) Operation Price

Regardless of what model motor must be planned, the
planner must make a determination of each of the above
quantities.

Assume that planning is required for a motor with
the following characteristies (for the rotor):

2 pole rotor
Stack height 12"
Lamination OD of 10"

The planner, with this information, plus his own
"planning lore" can now fill in the blanks of the op-
eration card.

His own logical thinking process flows in the fol-
lowing pattern:

Planner Thinking:

a. '"It's a two pole motor, therefore the lamination
ID is 5.0 inches" (he writes lamination ID
equals 5.0 inches)

b. "The stack height is 12 inches; therefore the
stack height - arbor height conversion table
says the arbor height is equal to 17.0 inches"
(he writes arbor height equals 17 inches)

¢. "Collar thickness equals arbor height minus
stack height; equals 5 inches" (he writes collar
thickness equals 5 inches)

d. "Do we have a collar with that thickness avail-
able ?" (Checks list and finds that collars are
available from-1 to 5 inches in 1/8 inch incre-
ments) "There is a 5 inch collar available."

e. "If the lamination OD is less than 15.00inches,
the collar OD is 7.00 inches."” (he writes down
collar OD of 7.00 inches)

f. "The stack height - stack quantity table shows
that only 1 stack is required."” (he writes down
number of stacks equal to 1) He then calculates
the stack and press operation time:

For 12 inch stack height the stack andpress
operation time equals 110 minutes + 5 min-
utes for each inch of stack height = 110 + 60
= 170 minutes and the set up time = 25 min-
utes.

The price for this is (looking up the table for
prices on stack and press operations) $.02
/minute plus .015/minute set up. Therefore the
price is $3.775 for this operation.

At this point the planner has gone throughall the gyra-
tions necessary to obtain the required information for
the planning card. After a few passes through some-
thing as simple as this the planner becomes quite pro-
ficient at preparing planning sheets such as these.
However, the routine is quite repetitive with but minor
changes in the various measurements. If some way
were devised such that these figures could be inserted
for any rotor we could easily computerize thisdecision
routine. It would provide the further advantage of be-
ing universal in that all rotors of all motors could be
passed through the system and data could be generated
automatically.

Consider the same logic pattern in tabular form.

Recall that inputs to the system are number of
poles, stack height and lamination OD.

No. of Poles Lamination ID Go to Table
=2 5 inches 2
> 2 N. S. 10

TABLE 1

This table is read "If the number of poles equals 2
then the lamination ID is 5 inches and go to table 2".
If the table did not solve in the first row it is read "If
the number of poles is greater than 2 then the lamin-
ation ID is not significant (tothistable)and go to table
10"which presumably leads us down the road toward
finding the lamination ID for motors with more than
2 poles.

Since the rotor now in question is a 2 pole rotor,
the computer remembers that the lamination ID is
5 inches. It then proceeds promptly to Table 2 to cal-
culate the arbor height collar thickness, operation
time, and set up time for the job.

TABSOL APPLICATION MANUAL

GE 225

Overall Stack Arbor Collar Stack & Press Stack & Press Set up
Height Height Thickness Operation Code Operation Time Time Go to
>2 <5 T T - Stack Height 100 + 5 (Stack Height) 20 Min Table 3
>5 <10 12 12 - Stack Height 100 + 5 (Stack Height) 20 Min Table 3
>10 <15 17 17 - Stack Height 100 + 5 (Stack Height) 25 Min Table 3
F18 <20 22 22 - Stack Height 100 + 5 (Stack Height) | 25Min | Table 3
> 20 < 25 27 27 - Stack Height 100 + 5 (Stack Height) 25 Min Table 3

TABLE 2

In Table 2, Row 1, the computer asks:

(1) Is overall stack height greater than or
equal to 2 ? Ans. Yes.

(2) And is overall stack height less than5?
Amns. No.

Since it did not solve in the first row of the table it
proceeds to the second and subsequent rows until all
questions before the vertical double line are answered
"yes", which in this case occurs in row 3. The com-
puter then records in its memory that the arbor height
is 17 inches, that the collar thicknessis 17 minus stack
height or 5 inches, the operation code is1, the opera-
tion time is 110 minutes plus 5 minutes for each inch
of stack height for a total of 170 minutes The set up
time is recorded as 25 minutes and the computer
passes to TABLE 3.

Lamination OD Collar OD Go To
>5 < 10 7.00 inches
> 10 <15 10. 00 inches TABLE 4
> 15 N.S. 13. 00 inches

TABLE 3

Reading table 3 we see that the collar OD is strictly
dependent upon the lamination OD and since our lam-
ination OD is 10 inches the computer determines that
the collar OD is 7.00 inches andproceedsto TABLE 4
to determine the pay rate for this operation.

In table 4 we have the rate per minute for each opera-
tion. Note that this table is used for more than the
stack and press code (code 1).

Price Calculation After table 4 the computer enters
this part of the program and determines that the job
price equals operation time times rate per minute plus
set up time times set up rate per minute.

In our example Job Price equals 170 (.02) + 25
(.015) = 3.775. The computer after performing this
calculation proceeds to the output portion of the pro-
gram and generates on preprinted forms the neces-
sary planning data. (Figure 2)

The computer has thus carried out the same routines
that the planner had in a much shorter time. Through
the tabular method it was able to make all required
logical decisions.

Although the planning operation could have been
computerized by conventional programming methods,
let us examine the advantages obtained by using the
structure table concept.

By structuring the problem a precise and complete
documentation of the logic involved is awvailable.
Additionally this logic is broken down into several
individual packages (the tables themselves) each of
which can be examined for consistency. This break-
down aids in bringing errors to light and points out
potential opportunities for standardization.

Another major advantage is that changes can
readily be incorporated into the system promoting
increased accuracy in control systems. Some present
day methods of operation are so cumbersome that
many changes are not incorporated because the im-
plementation cost is more than could be justified by
the improved accuracy.

Operation Rate/ Set up
Code minute | Rate/min. Go To
1 $.02 $.015 Price Calculation
2 . 025 .015 Price Calculation
d .03 . 015 Price Calculation
4 . 035 .015 Price Calculation
TABLE 4

TABSOL APPLICATION MAMNUAL

GE 225

GENERAL ELECTRIC COMPANY
OPERATION PLANNING SHEET
ABC Drawing 123 X Feb. 30,1961
Number Shop Order Number Quantity Schedule Date
Operation Set-up
Oper. Operation Description Work Time Time Total
Number Station (Minutes) (Minutes) Price
1 Get_10" O.D._ 17" High Arbor 1 170 25 $3.775
Get 5" I.D. T O.D. 5" Thick Collar
Stack 1 Stacks 12 inches
2
Figure 2

The biggest advantage however, and one which can
be obtained only with the use of TABSOL 225, is that
the functional specialist can now write, check and up-
date the tables for direct input to the GE 225 computer.
There isno longer any communication problem between
analyst and programmer.

With TABSOL 225 the planning specialist nowneeds
only to develop the logic of the system as direct input
to the manufacturing planning operation. The manipula-
tion of numbers is transferred from the planner to the
computer which performs these operations much more
economically offering complete mechanization of rou-
tine planning.

The key to success, as wehave seen, in these appli-
cations is a basic understanding of the logic behind de-
cisions. It is necessary to capture and define this logic
if the planning system is to make decisions without the
aid of the planning specialist, onparts that were never
physically produced before. The structure table repre-
sents the most efficient and easily understood method
for specifying the planning decision logic.

A.2 TABSOL in Quality Control

The quality control operation of the manufacturing
function is responsible for the assurance that the
product being shipped to the customer conforms toall
engineering specifications. It is, therefore, the group

that performs the necessary inspections, testsand re-
liability studies to ensure the manufacture of a quality
product.

In order to perform the inspection portion of the
quality control operation, the inspector must be pro-
vided with the knowledge of what to inspect, what equip-
ment to use, how often to inspect, size of sample, etc.

The structure table providesa convenient, econom-
ical method for providing the decision logic and TAB-
SOL 225 makes the mechanization of this logica fairly
simple process.

Consider the requirementsatanin-processinspec-
tion station for bevel gears. The objective is to provide
the inspector with sufficient information to completely
appraise the gear.

Sufficient information may consist of:
a) Inspection points

b) Dimensional characteristic of eachinspec-

tion point
c)

d) Tolerances permitted

Required inspection tools

e) Classification of characteristics

TABSOL APPLICATION MANUAL

GE 225

10

Front Back
Number of Teeth | Diametral Pitch Tooth Length Gear O.D. Af,gfe Angcle Go to
20 6 . 650 3.5 51° 45° Table 2
23 5.50 . 875 4.6 50° 45° Table 2
23 5.25 . 950 4.7 49° 45° Tablé 2
25 5.00 1.000 5.2 49° 45° Table 2
25 4.50 1,500 8.1 49° 45° Table 2
27 20 . 1.4 48° 45° Table 2
- - - - - - Table 100
TABLE 1 Main Winding Number of Turns
With this information in the hands of the inspector IGear 0.D. Front Angle Run Out Go to
ge will be able to perform the necessary operations to
etermine whether o t
i e r not the producthas been made to >0 <2 0007 Table 4
In the bevel gear example it is necessary to inspect >2 <4 - 0010 Table 4
the tooth length, gear outside diameter, the front
angle and the back angle. The actual dimension for >4 | =6 -0011 Table 4
these characteristics is dependent upon the number of
teeth and the diametral pitch of the gear. Table 1 >8] &8 - 0014 Table 4

(above) can then be set up to provide the decision
logic for this operation.

The first line of the table says "if the number of
teeth is 20 and ifthediametralpitchis 6 then the tooth
length is .650 and the Gear O.D. is 3.5 and the front
angle is 51 degrees and the back angle is 45 degrees
and Go to Table 2". Proceeding to Table 2 the inspector
is provided with the proper pinpoint micrometer sizeto
check the tooth length of the particular gear. The tooth
length was an output of the previous table.

Pinpoint
Tooth Length Micrometer Size | Go To
>0 <1 1 inch Table 3
>1 <2 2 inch Table 3
>2 <3 3 inch Table 3

TABLE 2 Main Winding Wire Diameter

This type of table is generally used to provide prop-
er equipment selection for required dimensional
checks in any quality control system. Now that the
inspector has been provided with the characteristics
requiring measurement and the tools required to
appraise that function he must alsoknow the tolerances
for each of the listed dimensions.

The tolerance of the runout on the front angle is a
function of the size of theoutside diameter. The larger
the O.D. the greater the tolerance. The actual allow-
able tolerance is shown in Table 3.

TABLE 3 Main Winding Wire Material

Of course certain tolerances are fixed, i.e., they are
constant regardless of the dimension of the particular
characteristic. These tolerances can be generated for
any quality control operation as shown in TABLE 4.
Since the conditionsin TABLE 4 are alsonecessary for
the classification of characteristics, it can be utilized
for this purpose as well. The classification of charac-
teristics is necessary for the proper utilization of
sample size tables toward attainment of the desired
quality level.

Characteristic Tolerance Classification
Tooth Length .01 Major
Gear 0.D. .05 Major
Front Angle 0° 8 Major
Back Angle G Minor

TABLE 4 Main Winding Wire Specification

The inspector is now able to perform the appraisal job
for the bevel gear. For any gear in production the
computer, by means of the structure table, will be able
to_generate the written data required to adeguately
perform the appraigal function. GE TABSOL 225 makes
the implementation of this type of program feasible for
any quality control operation.

Other potential applications within quality control
which lend themselves particularily well to the struc-
turing technique include Process Capability Tables,

TABSOL APPLICATION MANUAL

GE 225

Quality Time Standards determination, Acceptable
Quality Level (AQL) determination, etc. A good
quality control system will include all of these opera-
tions in the process of measuring product quality.

Some of the positive benefits that quality control op-
erations obtain with the use of structure tables are:

a) reduction in total quality cost - by providing a
rapid and regenerative means for developing quality
instructions.

b) better product quality - due to the increased
ability to provide specific, accurate and pertinent
instructions to the shop for each manufacturing opera-
tion.

¢) provides the quality plann.ng and process con-
trol requirements automatically, through the use of
a computer to shop operators, inspectors and testers.

d) improves manufacturing cycles by reducing
production delays due to poor quality.

e) provides a disciplined and automatic means for
integrating the quality needs of a product line be-
tween engineering and manufacturing.

SUMMARY

Thus the application of TABSOL to two primary
operations within the Manufacturing function has been
described. There are others, inMaterials, Shop Oper-
ations, etc. which are not desecribed here, that offer
equally great opportunity for improved operations and
cost savings.

Because of total system complexity the method used
for organization of data must, of necessity, be versa-
tile. The structure table technique by itself satisfies
this requirement. The fact that this same system can
be used as a direct input to the computer demonstrates
the vast power of this new methodology.

By using the structuring technigue described here
the Manufacturing Systems analyst has great oppor-
tunity to reduce cost and increase the ability of the
Manufacturing Section to deliver high quality products
on time. The technique is such that all of manufactur-
ing can be tied together into a smooth working unit
with the decisions of each of the components falling
into a flow pattern.

B. Design Engineering

Much effort and progress in the utilization of the
structure table technique has occurredin the engineer-
ing function. Since engineering design information is
used extensively throughout Manufacturing and Finance
it is desirable that documentation that can easily be

used by these other operations be provided. The struc-
ture table thus provides a two fold benefit. For the
finance man or manufacturing man we have a commu-
nication technique whereby the engineer can be easily
understood. Whereas in the past it may have appeared
that design decisions were made strictly at random,
it is now possible to communicate the long sought
after logic behind the decision. With this new-found
knowledge the Manufacturing and Finance people are
able to offer positive recommendations to Engineering
regarding the effects of engineering decisions on
their operation.

The second benefit is that the structure table en-
ables a design engineer to see the entire scope of a
component at any particular time. An entire group of
structure tables can convey the data for all compon-
ents of all models. Since our new form of documenta-
tion is more compact than the present drawings and
parts lists, it is much easier to manipulate information
in the study of particular design problems.

Consider the applications of structure tables tothe
design function. Most design decisions are determined

by:

a) Customer Requirements

b) Process Capability
¢c) Cost
d} Technology

With this information known the individual design engi-
neers begin to design the product. The problem facing
the engineer at each decision step is whether or not
he is using the optimum material at this point or the
optimum dimensional characteristics in light of what
has been designed before. Proper decisions at this
point can reduce material costs, cycle time and labor
costs, all of which are direct elements of manufactur-
ing. What then is required is some means by which the
design engineer can have this information available so
that the best possible decision can be made. Design
Structure Tables provide this flexibility as the logic
behind the design decisions are recorded. When anew
product of a particular product line is designed it can
easily be incorporated into the present design struc-
ture. The technique of designing an entire productline
at one time rather than individually tends to provide
a reduction in cost because of the ability to maintain
consistency between products. For example, in one
case a variety of thicknesses of sheet metal had been
selected to make chassis for electronic equipment.
This variety included fourteen different thicknesses

whereas a subsequent engineering examination re-
vealed that three could have served just as easily.

These situations arise because the design engineer
making the decision in many cases does not have
readily available the information necessary to deter-
mine the optimum characteristics.

TABSOL APPLICATION MAMNUAL

GE 225

12

Let us look at some designtables to see how struc-
ture tables apply to this and other design engineering
problems. Since we are now able to read the tables
with greater ease and facility we shall go into a little
more depth at this stage:

Consider an Instrument Armature. The design
engineer is required to specify the following items of
information:

a) Main Winding Wire Diameter
b) Main Winding Number of Turns
c¢) Main Winding Wire Material
d)
e)

1)

Main Winding Wire Specification
Damper Winding Wire Diameter
Shaft Body Length

g) Shaft Body Diameter
h) Shaft Body Material

The input information that the engineer receivesfrom
Marketing is typically

a) Type of Service ACorDC

b) Rating - in AMPS, MICROAMPS, MILLIAMPS,
MILLIVOLTS, VOLTS and WATTS

With these items of information he sets out to provide
the required design data. The firsttableis established
to determine the Main Winding Wire Diameter.

Reading the first line we ask: I the type service is
DC and if the rating units are microamps and if the
unit rating value is greater than 180 and if the unit
rating value is less than 450 then the wire diameter
in mils (.001) is 1.0 and go to Table 2. Note that the
last row is designed such that if none of the previous
conditions were satisfied we proceed to Table 100
which will follow the procedure required for a special
instrument. Table 2 is a continuation of the same proc-
ess but is designed to provide the number of turns in
the main winding.

All the design tables for the process of specifying
the characteristics for the instrument line are repro-
duced here. From this setoftables it becomes obvious
that consistency between models will be maintained.
The reasons behind each of the decisions is clearly
stated.

Again take note that if none of the conditions are
completely satisfied we proceed to Table 100 for han-

dling of specials.

Thus we see that the computer can go through the
tables and give complete specifications for almost all
instruments. Those that are special (not provided for
in the tables) go to the design specialists who, depend-
ing upon his analysis of the situation, decides whether
or not to expand the tables for their provision. The
tables, therefore, are not taking any decisions away
from the design engineer. Indeed, they are only a
structure of the logic for those decisions the engineer
has already made. The design engineer is now free to
devote all his time to the design problem of specials
at which point the structure table tool is also a posi-
tive aid. We have thus provided a method of operation
for the design engineer which provides the advantages
listed following Table 8.

Service Rating Units Rating Value > Rating Value < Wire Diameter in MILS Go to Table
DC HA 180 450 1.0 2
DC uA 450 900 1.25 2
DC MA 0.90 1.80 1.50 2
DC MA 1.80 4,50 2.0 2
DC MA 4.50 9.20 2.5 2
DC MA 9.20 13.50 3.0 2
DC AMPS 0.8 66.0 8.0 2
DC MV 45 330 8.0 2
DC VOLTS 0.9 300 2.0 2
DC VOLTS 300 1100 1.5 2
AC WATTS -—- --- 2.0 2
AC VOLTS -—— - 2.0 2

- -- -— - --- 100
TABLE 1 Main Winding Wire Diameter

TABSOL APPLICATION MANUAL

GE 225

13

Service | Rating Units | Rating Value > Rating Value < Number of Turns Go to Table
DC MA 0.18 13.5 300,1 3
DC MA 13.5 18.0 26 3
DC MA 18.0 23.0 15 3
DC AMPS 0.023 66.0 13 3
DC VOLTS 0.9 300 60 3
DC VOLTS 300 1100 120 3
DC MV 45 150 26 3
DC MV 150 330 13 3
AC WATTS --- --- 230 3
AC VOLTS --- -—- 230 3
-- -- -—- -—- -—- 100

TABLE 2 Main Winding Number of Turns

Service | Rating Units Rating Value > Rating Value < Wire Material Go to Table
DC MA 0.18 13.5 Copper 4
DC AMPS 0.0135 66 Aluminum !
DC MV 45 330 Aluminum <
DC VOLTS 0.9 1100 Copper <
AC WATTS -—- -—- Copper =
AC VOLTS - -—- Copper <

TABLE 3 Main Winding Wire Material

Service Rating Units Rating Value > Rating Value < Wire Specification Go to Table
DC MA 180 220 B50W133C 5
DC MA 0.22 13.5 B50W133B 5
DC AMPS 0.0135 66 B50W217 5
DC MV 45 330 B50W217 5
DC VOLTS 0.9 1100 B50W133B 5
AC -- -- -~ B50W133B 5

TABLE 4 Main Winding Wire Specification

GE 225 TABSOL APPLICATION MANUAL

14

Service Rating Units Rating Value > Rating Value < Wire Diameter in MILS Go to Table
DC MA 180 220 3.0 6
DC MA 220 450 4.0 6
DC AMPS 0. 00045 66 8.0 6
DC MV 4.5 330 8.0 6
DC VOLTS 0.9 1100 8.0 6
AC -—- .- -- NONE 6
TABLE 5 Damper Winding Wire Diameter
Length Go to d) The table format shows the boundaries of the
Service Rating Units (Inches) Table design and clearly points out incompleteness or
inconsistency.
DC -- 2.121 7
e) The tables can be a direct input to manufactur-
AC AMPS 1.979 | T ing in an integrated system.
AC VOLTS 1.979 7
f) Structure tables are easily solved by the GE225
AC WATTS 3.981 7 computer.
TABLE & Shaft Body Length C. Finance
Now that we have explored the potential of struc-
ture tables in design engineering and manufacturing we
- = can consider expanding the system to include product
Service Dizmetor Go to Table costing. The major requirement for this development
DC 0. 0061 8 is that manufacturing, engineering and finance must
. work in a completely integrated fashion so that all
AC 0. 072 8 necessary financial data is obtained or generated at
- the most logical point in the system.

TABLE 7 Shaft Body Diameter To provide some understanding of the methods used
to develop the cost of a product, the present method
shall be described before the new methodis developed.

: . Model lists, material lists and drawings are ob-

Serviee Materinl G0 o tained from engineering. The Finance Section makes up

> Rout a separate costcard for each part, assembly and model

i Al s e and enters the following data on the cost cards:
e i A —— a) Dimensions or weight of material

a) Structure tables are easy to read and under-

stand.

b) The design logic is presented in a simple,

straight forward manner.

¢) The tables become auseful information source.

GE 225

TABLE 8 Shaft Body Material

b) Material Specification
¢) Quantity of parts

d) Name of part, assembly or model

Finance then obtains from Manufacturing the opera-
tional planning cards and adds more information to
the cost cards, namely.

a) Time value or price of each labor operation

b) Job rate
c¢) Sequence of operations

TABSOL APPLICATION MANUAL

The standard labor values and standard material
values are then calculated for each part and they are
summed and entered on the cost cards. These steps
are repeated until the standard cost of each part,
assembly and model is determined. These cost cards
are used for obtaining the standard direct material
and the standard direct labor values ofa completed or
partially completed part or assembly. These data are
required in order to obtain:

a) Cost of production
b) Cost of Shipments
c¢) Cost of Scrap

d) Cost of inventory

It is apparent from a systems point of view that the
present method is based onthe file reference technique
rather than on the regeneration concept.

If structure tables were used to generate product
costs, the computer would go through the following
steps to determine the cost of a model.

a) The parts characteristics, which are output
from the engineering structure tables are input to the
Finance Structure Tables. These characteristics de-
termine the cost values that will be obtained for a
particular part or assembly upon the solution of the
cost structure tables.

b) After the proper cost value is obtained for the
specified parts characteristicsitis temporarily stored
in memory until all of the cost tables have been solved.
When the model costs are calculated the parts cost
will thus be available.

¢) A series of structure tables will then be used
to build up the costs in the proper order for the par-
ticular models.

An example may be in order at this point to illus-
trate the types of structure tables that would be used
to calculate the direct material cost and direct labor
cost of a sample product.

In our example take note of the fact that the inputs
to the cost structure tables are outputs from Manufac-
turing and Engineering.

The first table will be one in which the cost per
hundred pounds of material is determined.

Thus if the material specification is B50W70 and the
wire diameter is 2 MILS then the cost per hundred
pounds is $150.00 and we go to Table 2 to determine
the material weight per hundred coils. Note that Table
2 requires a knowledge of the number of turns in the
coil, which is also an output fromthe design structure
tables.

Material Wire Diameter || Cost per | Go tce)l
Specification (MILS) C Lbs. | Tabl
B50WT0 2 $150.00 2
B50WT0 4 $120. 00 2
B30WT0 6 $100. 00 2
B50W200 8 $ 95.00 2

TABLE 1 Material Cost Table

Kind of Go to
(Material Material Weight per C Coils Table
B50WT0 Turns x (Diam)2 x . 000082 | Cost
Formula
B50W200 || Turns x (Diam)2 x . 000025 | Cost
Formula
Material Cost = Cost per Hundred Pounds x Weight
per C Coils
TABLE 2

Note that the cost formula is not in tabular form as
there would be no need for itinthe computer program
since it is the same for all materials, shapes or form.

The direct labor costs are generated in the same
manner as the material costs were developed. Note
that inputs to these tables are outputs from manufac-
turing and engineering design structures.

Number of Turns Allowed Time in Seconds Operator Class Go to Table
>0 <15 15 1 4
> 15 < 100 40 2 4
> 100 150 + ¥ no. of turns 2 4
TABLE 3

TABSOL APPLICATION MANUAL

GE 225

Operator Job Rate
Class ($ per second) Go to
.030 LABOR FORMULA
2 .040 LABOR FORMULA
. 050 LABOR FORMULA

Labor Cost/C= Time Allowed x Cost/Second x 100
TABLE 4

These tables serve as an illustration of the method
by which an automatic costing system would be de-
vised. Greater potential is obtained, of course, if the
systems philosophy is extended to include the Engi-
neering and Manufacturing functions.

This new structuring concept will result in a better
understanding, by the cost people, of product design
logic and methods of manufacture. It will enable them
to obtain:

a) More effective cost analysis

b) Better cost information for decision making
purposes

c) Simplified costing procedures

The financial area is one that probably offers the
greatest opportunity and potential for economies and
cost reduction. With a forward thinking systems group,
TABSOL, and the powerful GE 225 computer these
breakthroughs can be realities in the immediate future.

TABSOL APPLICATION MANUAL

GE 225

17

Computer Depariment, Phoenix, Arizena CA-13 (10-50)
I
- -
ol o
™ w
! =
[K‘ L
d = ==
. w ud)
2 o a
D > o
< [3 i
2
S z z
¥k = . 5 S
3k = 3
B 2 1) -
o < v v
™ [+] 1 K4 z ~
Hilel=|=|=1l= ol -
) o = X
] Oll> o =
hoi | = o °
E o -
3 =
L —) H|l—|A|mgiln ul ~
" L - vl 4\
A a 3 1 -
3 Q .3 o = = e —
o 2 W o i o > <
[F] > > w? |l
> © £ — £ 0
® = w u < < -
w o -~ o W =2 =z aud
mo o =z < <] |
= W Q < - - ™M
mE o + - [*] = - ~
V] Q = w o v [~
4= u a N 4 <«
ﬂ_._.T. W oo < ol o o - w =
Zz = DIES =] w] wi aolw 5 =)
._.w._E | o [FlIEl ¥ > <] 4 [
i wi Q| < HEEEE = —
4l ula [<| <|w|lw| < o
w ~w ¥ k4 | nd] >]| 2 =l + wl] ~
-~ oo Wy LY wl| 9| | 4] =€ x A ~
~ 1T - Ql o] «| <] - w| — -
| o] | o | 5 wld| 2]z & | wl <]
1| ulf wf> - alo|l<|<|n |~ 2| -
| Q «l o -] ol o
wi| A 1 z o al«| 3] o] W —
o] <l © o J ofal «f f | -
X[E | — N & ofw H o] w|~f=
w Ql < WA | ;| << vjalolJ «| - =
A ~ &| Q] O - - w ENEEE
[} 2] <l @ » WS Of o[| o o | w o Q) o
4 ; ~| & w £ . | W] af » 2|+ W] 1| w] <
F = NEEEDE a = rlvirla
(2] = ~ S d > Wi 4 wliol9l2
— Z| = al= <= u al |4 @ 2 o] | w
[~ o = — Ql &1 - T ~ [=
Ld o = w oW & <] ol T 4 © [T
(1] = M = ¥ olulw x| |w el < Bl e[a
[FT] o = YT ES o w) 3) Zl—-{0
= ol §3 alo]wiwlx] o o[o| o] o] o] ~[
L E W Ol & ~ W w wllol~|=lo] - el 2| Flol&l 2n
ﬁ = wli 1T = { > 1w 3
@ o = Q ~ m u o Q
’ ¥ B o wy < ~ > k4
o be | < Lol ola] 0] v olw] Olw of | ol | O] v o|w
&= A" ~| ~| | A o3 lenlglivyl wlwni w B o~~~ dafta o] T
L] =z |-MR { |
= 2 Bl == 1
I | 2=
bdd o | =l &5 !
o [Al=* |

nm NNm TABSOL APPLICATION MANUAL

18

V. TABSOL & GECOM

The culmination of the General Electric Company's
progress in the use of TABSOL came in the union of
TABSOL and GECOM. This development servedtore-
lease the full power of the structure table.

Let us consider an example to develop an insight
into the manner in which TABSOL is used in the Gen-
eral Compiler. The problem is to search a master
employee file (recorded on magnetic tape) to determine
the number of male employees who fall into the follow-
ing job categories:

Experience
Job Level (Years) Title
6 2 Programmer
1 3 Programmer or Analyst
8 More than 3 Analyst
9 More than 4 Analyst or Sr. Analyst
10 More than 4 Sr. Analyst

For each employee we find having these qualifications,
we are to write his department number, name, title,
level and experience on the computer's typewriter.
At the end of the run the total for each category is
also typed on the typewriter.

The core of this problem is the decision that must
be made on the information stored in the records of
the master file. These decisions are conveniently ex-
pressed above in narrative form. With only minor
alteration, this form becomes the program statement
of our problem. The table and sentences are punched
into 80 column cards exactly as they appearin Figure
1. When this is done they may be given directly to the
compiler for processing.

As illustrated in our example, General Compiler
sentences may be used to support the logic of the
table. These sentences accomplish the following:

OPEN - Sequence Number 10 - Declares that the
MASTER-FILE is input and validates its tape
labels.

READ - Sequence Number 15 - Delivers the next
record from the MASTER-FILE and tests for an
end-of-file sentinel. When this sentinelis detected,
sequential program execution is interrupted, and
control passes tothe portion of the program labeled
END-RUN.

IF - Sequence Number 20 - Eliminates those data
records which contain information about female

employees.

EXPERIENCE - Sequence Number 25 - Calculates
the employee's total experience and assigns the
value to the field named EXPERIENCE.

The word TABLE informs the compiler thatit must
process a decision table; EXAMPLE is a name or
label which was givento the table. The size of the table
is stated next by giving the number of conditions,
actions and rows contained in the table. This informa-
tion is used only by the compiler and is not executed

by the compiled program.

Table execution begins at row 1 (sequence number
40). Using our narrative definition of atable, Row 1 is
interpreted as follows: "IF the job LEVEL field equals
(EQ) 6 AND the EXPERIENCE field equals (EQ) 2 years
AND the employee's title is PROGRAMMER THEN
assign the value 1 tothe subscriptI; GO TO the part of
the program having the label TYPE-OUT."

If one of these conditions cannot be satisfied, row 2
is evaluated starting again with the left-most con-
dition. Sequential execution of the rows continues until
either all conditions in a given row are satisfied or
all rows are exhausted. When the latter situation
occurs, the sentence immediately following the table
is executed. Proceeding from here, the sentences in
our example accomplish the following:

GO - Sequence Number 65 - Interrupts sequential
program execution and passes control to the part
of the program labeled GET-RECORD.

WRITE - Sequence Number 70 - Writes the current
contents of the DEPARTMENT, NAME, TITLE,
LEVEL and EXPERIENCE {ields onthe computer's
typewriter.

TOTAL (I) = TOTAL (I)+ 1 - Sequence Number 75 -
Increments the counter by one.

GO - Sequence Number 80 - Passes control to the
part of the program labeled GET-RECORD.

CLGOSE - Sequence Number 85 - Rewinds the MAS-
TER - FILE and performs the file's closing con-
ventions.

WRITE - Sequence Number 90 - Writes totals for
each category on the typewriter.

STOP - Sequence Number 95 - Terminates proces-

sing and writes the word END-RUN on the type-
writer.

TABSOL APPLICATION MANUAL

GE 225

19

By General Compiler standards this example rep-
resents relatively simple conditions and actions. In
formulating these entries, the programmer may take
full advantage of the compiler's capabilities.

Figure 2 and Figure 3 show how the manufacturing
planning tables developed inSection IV-A would appear
in the GECOM format.

For more detailed explanations of the conventions
and manner in which conditions and actions may be
formed and entered in tables as well as a detailed

explanation of the General Compiler, refer to the fol-
lowing Computer Dept. publications.

a) TABSOL 225 - Reference Manual
b) General Compiler Manual - 225

Keep in mind the relative ease with which the table
was entered for the computer operation. There was
no translation process from the System Analyst's
language to the computer language. The fantastic
power is that functional specialists can now write
tables directly for computer entry"'

TABSOL APPLICATION MANUAL

GE 225

Computer Department, Phoenix, Arizene CA-13 [10-60)

™
-
o
=
~ >
|
3
Q
= " S
3k =
-3
o]
b [
SN0 Qlw|W|wn
9 Flct] Al
= w
I
[m
= z
i ™ el <] =]~
3 LS offr] 2] 2[2]®
s U]] wif Wl owi W
m] | R RIS
B 3 : wl = =1 =]~
= o efl=] =] ==~
) =
o = w w r =
o - 1= = =
Hm Q oli—l =1—] =] =
= a = = = jF o
S u i (S
s ol |~ = R —
za = 2 2 J)
pn_."h“m) L2 o x| =
g & = £ =1 [b B =|[— v
“E (=] [wl v =l ==l=1=
- =) H |
-1 ...r < *®| W x| 2| x| x|
= = ajl-| =]+
~) W << L™ ol © = I S e
E =R L Bt v |
e S I b +| + Oll~] ~| I~ | =
- T wy 2 ol = z = =
= <l - o =|w Q ol ©
: o)) = = -~ ol —
lD. | =< ~ S == o
< LD = OJjw] ws = . ~| |~ | |~
o Q< Q P | | a ") o e 1 s
2 ~=Ela 2 = o =
0 v < =) o<l = o) T
.2 I) Wi~ 9] = =
. o == S MRS EIAT
&= el = -~ | -~ o A — = ~= =1 -l
e ks = Q=] = 13 =i
(== o =) . T . ala ...M*SSSSS
| and & = Wy o] w <) SIS b B e B B
e K x[z|0o| | = 3 =
fTT] ¥ E METNEY 5] = H— T tetetuls
— J H al a| w w“ e 7 = o
= “lu w| Q| e (1) will] o 2 1l = 3
@ o | = LY ; 3 — -4 = 7] B . o~ MR T
= Q ~ | & ollal= = = s o e et
d| (- = W < a [C) < = —Iw = CEIE D
- 2| L b) — e =1+ b
Q -
M L wlolw o vy B9 PP 7 R 5 B —
A ~] ~ ot o~ onim < T al @ < @ ~] ~ %l
bt X In“ﬂ
w3 B e3
o |[E || %=

ﬂm NNM TABSOL APPLICATION MANUAL

21

TAAE b

TV¥NNYW NOILVIIddY 1058V1

oEoTLY ‘x|uRoy) "isawpodag seinducy

GENERAL COMPILER
GENERAL @B ELECTRIC o g e
POGRAN porem STACK & PRESS GPERATION DATE =
[PROGRANMER COMPUTER TEET 2
|]z|l|d 887 |a .!||l|l|lilJ.Q‘II|!|7||! |g|!glulll[llLl !IEILI QIQ'IQI;;I""I“ Iﬂlllll ll.’l‘ﬂLllllllJllL!LaL1 ulnllnln[nl|ll]u|l|J.u.|lrllanLn nIl!LlL-LaluLiL-L-'ﬂr]nju11 ll’ll1ll!1llllll]1
SEQUENCE)
HUMBER
Qof |TIAIBILUE| [TIHIRIEIE A [clojn|p|r|r|ie|als] [I |AlelTl!]o|Ml |3] [Rlow|s

9|5 LIAIMo|D|||LlAMo|b clofL| L|A|R[~o|p)

ol |I6IR NIGIR| |10l 7|. |00 i

/0|51 GIR[|/|O]|INGIR| |15 0. |ole

Lol [LIeIR] |15 /13|. |ojo

7151 [TA[8|LE] |Flojuvlal, | [I] |clolale|i |rilo|n] [2] |Alelr]slolals] [4] |&|o|w]s]|.

/|2|e clo|plEl]]|o|r|~|RIA|T|E SETup'uRATE!

/LS / « 0|10 . 0] |5

/|3|e 2] . |O[L|5 Lol |5

/13| 5] 3 . |o|3|0 0|/|5]

/14|06 4 NEEIR 0] 1] 5]

H415] |PIR[L] E|~le AL PIRITIC[E] [=] [OP|~|T[1|M[E|*|0|P|~R|A[TIE| [+| [s|E[T|u|r|%S|E |T|UlP|~|RIA|T|E

115e] lalo| [tlo| lolulrlplulr]~ B

(o501} €1-¥2

VI. CONCLUSION

Examples of the application of TABSOL applied to
manufacturing, engineering and financial problems
were presented to illusirate the power and scope of
the structure table concept.

The fields discussed are by no means the extent of
potential application - TABSOL may be applied to all
functional operations. In manufacturing, in addition to
Quality Control and Operation Planning previously dis-
cussed, we can structure:

a) the decisionlogic for inventory control including
the ABC inventory techniques.

b) production scheduling and dispatching with
many variables and decision requirements.

¢) shipping and traffic control to determine pre-
ferred shipping instructions depending on cost, time
and urgency.

In Marketing, structure tables have been used to
formulate propositions. Such tables show the relation
between market requirements and resulting engineer-
ing decisions, together with estimated cost. In proc-
essing these tables, the cost is accumulated as the
engineering proceeds from table to table, resulting
in a final set of specifications for the proposition and
the estimated total cost.,

A proven result of the application of structure tables
to the business decision process is the advantage of
providing a clear understanding of the interraction of
the complex forces in every-day business life.

There are many other benefits derived from learn-
ing, analyzing, formulating, and recording the decision
logic for a structure table application including the
following:

a) Structure tables force a logical step by step
analysis of the decision.

b) Structure tables force consideration of all
logical alternatives.

c) Structure tables are easily understood and thus
form an excellent basis for communication between
functional specialists and systems analysts.

d) Structure tables can be written by the functional
specialist for direct input to the GE 225 computer
without having togo through the computer programmer,
thus reducing computer application costs.

e) Structure tables are easy to maintain, and a
system may be easily revised by changing a single
value in a single table. In some manual systems
inaccuracy is tolerated due to the expense of up-
dated files. This inaccuracy is no longer necessary.

f) The GE 225 electronic computer offers unsur-
passed accuracy, ability and economy in the process-
ing of structure table logic.

The greatest potential of this new language concept
lies in our ability to apply it toward the development
of a completely integrated business system. The enor-
mous number of daily, routine decisions made by
trained and talented personnel are now within the range
of mechanization.

The task of completely structuring this logic isthe
challenge facing our computer users today. When this
challenge is met we can truly expect to see a com-
pletely automatic business system. An automatic sys-
tem to take an order received as input and transfer it
to a finished product as output, without manual inter-
vention will be the normal business practice. TABSOL
is the key to this tremendous progressand the GE 225
Electronic Data Processing System is todays answer to
the challenges it offers.

TABSOL APPLICATION MANUAL

GE 225

