
r r 1'11

> I 10(,1 ment "ollows oJ" Pl" nl Z 1 t.l on ,"
t t IlacJsses matf''''11 fr'or:ll,ll(, ItlsJde Jut,
est ,Hailed of thp l'ollowlne; ['ol'm:

NN for sections
decimal poInt

11 . . N room for insertion

p "lpf'et'ence fiilrlllal,
A numoerlng scheme 1.s

A the final character will be alphabetic to indicate
replacement

00) General

10) Basic Language Elements

11)
12)

Character set
For'mation of names

20) Operands

21 Liternls
22 Const"lnts
23 V'lriables
24 Expressions
25 Files - See B. Or'ad
26 T"lecords
27 :'peci'll note - these
28 Tables

30) Opera tor'S

32 ~ Input/output
33 Assignment

33 .2) RAl-1ADD

35~ Control - Go Do
36 Special

Page 7 FlS

follow 28

40) Conditions - nothing - see B. Grad

411 Limited Entry
42 Extended Entry
43 Else

50) Act10ns - nothing - see Tl. Grad

,)lj r Imlted Entry
'i? ,':xtended Ent t'y

amended

J D: t ' , Df'scrlotion

6~ ;'r~~ea 1 'f~g~~d'~re
64 Decision Rules
65 Unconditiona l Tables

70) Forms

71) Dat~ Description - nothing

Header' 71.lj 71.2
71.3

Files, Records, & Variables
Constants and expressions

72) Procedur'e Descriptlon

72 , I lleade r'
72.2 Stub - nothing
72.3 Entr'Y - nothing
72.4 Line n,'mller' - nothing
72 . 5 Rule Numoer - nothing

73) Cards - nothing - See mater'ial at top of coding sheet

73.1) Data Description HeliOder
item
conU nuation

73.2) Pr'ocedure Description Header

So) Pr'oces8or

8ll 22
FloVi Chart
Internal formats

82 . Il
82.2

Symbol table
Macro instructions

83) Conventions

83.1)
83.2)

Index regJsters
Ramac l"outlne

rule control
r'ow
row continuation

84) Sy s t em ('ant l'ol)peration e t c .

SI~.2) System Creations

87) Logic Tables

A7 .1) Program A and B

90) USing T . P.

90)
91)

Machine deflnltlon
System Control, arms etc.
91.1) Ramac Assignments
91.2) Core Assignments

I

93) Objeot program system considerations

94) :c,:! ze limit e

95) Object program ta.b1e layout

99) Operators r1irect~lons

WS :go

(~r I I

T . P .
June 27 , 1961

10 Basic Language Elements

II Character set: H, 48 symbols (lncllildlns 1t 1anlt It)

ABCDEFGHI
JKIJoINOPQR
STUVWXYZO
123456789
1"-*/ () •. $
~ I

IL Standard name :

2/ Literals

the set:
Numbers (0-9)
Letters (A-Z)

is represented by

~ 1 M

1 - 6 characters of which the first must be a letter
and eaoh of the remainder either a letter or a
number .

Must be left justified in fie lds wh ere they appear .

Standard names are delimited by position or separated
by blanks from surrounding text .

The name field may be l eft blank if the systems
engineer chooses . Thus six blanks, while not a ~
legal name, are valid sntries in the name field for
a l l data types . Note that such items cannot be
referenoed, and six blanks is not a valid operand.
It is impossible to "fill in" such names by program-
ming.

Names must be unique j they cannot be repeated in
more than one record .

Numeric :

the Bet:
numbers (0-9)
s igns (+,-)
decimal point (.)

is represented by
N
S
D

L-_____________________________________ Ift ,-----------------

T. p .
June 27, 1961

Signed :
S Nl N2 ·· . N12 DN13 · . . NI B Signed number

S Nl N2 ·· . N12 Signed integer

S D Nl N6 Signed decimal

Unsigned : Nl N2 Nl2DNl3 · .. NlB Unsigned number

Length :

2.2.) Constants :

Nl N2 ... N12 Unsigned integer

D Nl ... N6 Unsigned decimal

Unsigned numeric literals are assumed positive .

Any combination of NLY in any order dellmited by quote
marks. In the character set availabl e quotes are
represented by I .

Hence 'N ... L . .. Y ... I is an alphameric literal . It
cannot be used as a numeric valu~ .

Literals in logic tables may not exceed six characters
not counting the I with alphameric, nor the Sand D in
numeric .

Literals in data tables may not exceed 999 characters
with the same exclusions .

Literals used in arithmetic may not exceed 12 integer
and~ six decimal positions .

A constant is a named operand whose value is assigned in
the Data Description and cannot be changed by the Procedure
Description. Hence a constant is a fixed alue operand .
A constant name may be used to represent any literal
value; a constant can represent either a num~ric or
alphameric literal. A constant has a standard name .

In the Data Description a constant is defined by the
following information :

T. P .
June 27 , 19h1

Card Col Field Name Possible Contents

1- 3
4- 6
7- 8

9
10-15

16-18

19-20

21
22

23-72

Table no.
Line no .
Column no .

Operand class
Name
Integer length

Decimal length

Value type
Continuation
Value

000
nnn
nn* (00 except for

continuation)
c

Standard name (see i. 10)
000-012 for numeric;
001-999 for alphameric
00-06 for numeric;
00 for alphameric
A, for alphameric, N for numeric
blank, or C*
numeric or alphameric literal
(see f/ 21)

on length for numeric - do not count sign or decimal
pOint, only numbers.

on lengbh for alphameric - do not count quote marks,
but do count all other characters including blanks.

* Continuation occurs when the value of the constant exceeds 48
characters in length. This is indicated by C in column 22 of all
cards but the last, and consecutive ascending numbers in column
7-8, beginning with 00 . The I will appear in column 23 of the
first card and the appropriate column of the last card. It will ~
also appear in columns 23 and 72 of any int~rmediate cards . Columns
10-22 of all cards after the first will be ignored and should be
left blank to reduce confusion .

The length will be determined by the number of characters between
the I and the count checked with the integer and decimal fields.
If there is a discrepancy, this will be noted as an error.

~3) Variables :

Variables are the key operands in any 1nformation
processing system. It is their value determination
that is the purpose of the process. Variaules may be
inputs, intermediates or outputs depending upon how
their value is developed. The same variable may serve
as all three .

There are three typed of variables, each of which serves
a particular function:

unassigned, preassigned, and masked.

Unassigned variables are used when the value is devel­
oped through an input or program synthesis. Preassigned
variables give the opportunity to introduce common
constants, and set initial values . Masked variables
are used for outputs of numeric data to provide for
zero suppress ion , dollar amount formation , and other
edi t i ng.

L-______________________________________ ~~ A ______________________________________ ~

Col.

1- 3
4- 6
7- 8

Field Name

Table No .
Line No.

Unassigned

000
nnn

00
v

yes

4-
T. P.
June 27, 1961

P9s8ible Contents
Preasslgnpa Masked

000
nnn

nn
v

yes

000
nnn

00
v

yes
9

10- 15
16- 18

Column No .
Operand Class
Name : standard
Integer length : numerio alphamerio

000- 012,001-999
00-06, 00

num~rio alphameric
000-012,001-999
00-06, 00

alpham r ' r1 c or
001-48

19- 20 Deoimal lpngth: 00
21
22

23- 72

Value typE':
Continuation:

N, A N, A
blank or C

M
blank v"

Value
blank
blank numerio alphampric

literal 11 teral
alphamer1 c
literal

using spec lal
masking
symbols only

Names must be unique; they cannot be repeated'in more than onp
record. A masked variable may not have a preassigned value.

Continuation ocours when the value of the variable exceeds 48
characters 1n length. This is indicated by a c in column 22 of
all oards but the last , and conseoutive ascending numbers in
columns 7-8 (starting with 00) . The' will apppar in column 23
of the first card and the appropriate column of the last card, and
columns 22 and 72 of any intermediate oards . Columns 10-22 of all
cards after the first will be ignored and should be blank to reduce
confusion . .

In the case of unassigned variables, the length will be determined
striotly by the integer and decimal fields. In thn case of
preassigned variables the length will be determined by thp number
of characters between the ' and the count checked with the integer
and deCimal fields . If there is a discrepancy this will be noted
as an error.

Masks - Department of fuller explanation. A masked variable has no
preaSSigned value. It is treated as an alphabetic field of Ipngth
sufficient to include the entire mask . The mask will be loaded
into the printout area . (Should there be any word marks there,
they will be wiped out. This oould occur only in the case of
improper use of overlapping .) Subsequent to this, some quantity
which will be assumed to be numeric and of proper length will be
placed therein by the use of Move and Edit command. It is assumed
t hat the programmer will properly adjust for all decimal points.
As Autopoint will not be effective with respect to masks, this
technique offers an opportunity for soaling printed results. The
exact editing possible will depend upon special features and RPQ's
ordered for the object machine, and processor will make no checks.
As masks cannot be oontinued, they have a maximum length of 48
characters .

/

*

• .11 ~
c("t 11-"r~ 0(,)

1 ,Jet. ()l

~'". B mater'l al is di t'E'cteri to thp pr'<lcessnr' ['ather' than
··1e l(JllgUQge . '"Chis RPcti.,n will l'ed-'fl'1R var'iol.S pa'ts
of the language as t~elr translators are wrlttprl, and
1 s source matee1al for' deeppr t'nderstand 1 ne; of T , P .

II, rrocesslng '1' . P . will be a tht'ee ~tage '-·pet'atloll :

T . P.
p'·OCE-'SSO " Atltocoder

,

'1' . P .
Object

Machine

'P P 'I' P
A.1tocoder
deck will

so rce lan!jlJa(!;e will be tra;.tll~lted
lnnt:uar.;e vlillcll wIll be 'lsneliluled.
Lecome the T, P . obJeut pt'ogr'ULI,

to legal
The reoultant

11ac11ine specification : ~~ee Section 90

III Data :

Names of all Itemn will be ente,'ed in the nymlol c1. Jle,
toget!ler with l;ype, lengti1, decllll.:!l POSitiOIl, etc. If
the itelll jl1 the 8JlTIol taLle js lOll[ler than eight digits,
the item will be placed j n consecutl Ie disc loc:.t iO'18 and
the disc address only will ue put in the table .

Variables I.lecome Devi' s wj til the li ter'al relll"lj ning in plnce
for alpha 1.nd inset'ted for numer'ic literals. Sign and
decimal point are cleaned up .

The Autocoder cat·ds are puncned inunedlatel" . Ville" over'­
lapped, the last defjned record is etltaLllshed .

Constnnts are treated idelltically except that t ~.e 'lrcrne
always goes into symuol tal.le, und the stCltement GJeo lilto
disc instead of punching ,

Exp ression names are in symuol table ; the compiled routlne
w lich will evaluate the eXpt'ession goes Oil disc.

Record names go in simbol tal.lle vl1th count of l'llllli er 0[' nelda
and routine to set all wOl 'k marks rtS req ... ired uy CE'l'UP as
o pe rator" . i'lote t'lut In the no1' overlapped case ,3ETUI' Is
, 'edundant ~nd string need not we put on dicc ; Lut, it Bl.li"L'lces
to lfLJ.ke ,'"\ count of the m,mber' of" Cie1 ds (for' nove pecord
Opet'3t Lons) .

{

)liles '-lL'e compiled into !'outlnes to r'e:1u rwrl wdte, as the
case Wly LJe, and eorl'espolldlr.g Ga r'ds puner'f::d .

IV . A point of ardel':

Expressions must follow definitiolls of' all names' sed 1n
them and logic taDles follow deflritjon of all names used
1n them . vi", will specify the easier !'l.le vl1r'io'l.bleG and
constants first , then expressions, then t.:lbles . A tVIO pass
approach could free tip this restrictiol1, but does not seem
worth while.

It is Illegal to put constants or expressions between
variables within a s1ngle record or between recor'd5 in one
file, it is p05sible to put con5tants between fl1e3 .

Please note the usage of r'eas[Jigned variables .

Tables ar'e conver'ted into rules containing the tests and
ac1,lo!,s specified for eae" rule (COlU11L'1) . See section 87 .1
for deLails.

The comments associated Ilith eacll table header are listed
to produce a table of cOlltents of the program .

Object program tables wi 11 be assigned to dlslc In consecut1 ve
locations as encountered . The Autocoder' vll1l thr'o gh EQU
si;atements ~·,andle tal,le sddl"esses .

(

2 ~ Expressions

.1 401 T. P.
1 October 1961
Section 24

A combination of allowed operators and operands which define
a value dynamically. c. g .• an expx'cssion is evaluated at the
time of its use. As of now only certain arithmetic expressiOns
al'e permitted. Generally. expressions are formed following
FORTRAN rules.

operands:

operators:

positl Je nUIl"leric literals (no unary minus)
numeric constants
numeric variables

low

high

** highest

delimiters - (

An expres3ion consists of operands . operators and delimiters
properly sequenced by the expression formation rules . Operands
and operators alternate with an operand in both initial and final
position. There must be an eqool number of left and right parenthests.

Blanks within an expression (or even within words) are ignored as
in FORTRAN. Teaching manuals will prescribe usages for blanks.
Words must not be broken at the end of a card. rather insert
blanks.

* * is allowed in the scan. will Cduse transfer to a non-existant
routine; at some la.ter date a routine may be added.

No single expression may contain more than 26 operands.

Expres"ions are entered in T. P. as follows;

T. P Section 24 Page 2

Columns Field Name Value

1-3 table number 000
4-6 line number nnn
7-8 column number nn

9 operand class E
10-15 name standard name
16-18 integer length 000-012 for result value 19-20 decimal length 00-06

21 value type N
22 continuation blank, C
23 value actual expression

Continuation occurs when the expression will not fit on one carel. This
is indicated by C in column 22 of all cards but the last, and consecutive
ascending numbers in columns 7-8 (startinq with 00). The expression
should be written (leaving blanks) as necessary to avoid breaking names
or literals.

The conversion of expressions into machine code to carry out the
function takes place in three staqes.

1. PRESOAN

The source statements are converted to the form A0B00C0D
where 0 is any actual operator includinq parentheses and the
A, B, C are literal values. Also, a table is produced equatinq
A, B, C, etc., with the name or literal.

n. SCAN

An extran scan reduces the expression to a properly ordered list
of three address operations coupled with calls to the proper sub­
routines. A label lookup replaces the single with three character
names.

Ill. POST SCAN

The Post Scan proqram taKes the properly ordered list produced
by Scan and produces a series of T. P. lanquage macro-instructions.
These are placed on the disk.

(

T. P. Section 24 Page 3

IV. MACRO-INSTRUCTION GENERATOR

When it discovers that a name 1s an expression name, looks up
the macro-instructions on the disk and punches out the 1401
Autocoder instructions to evaluate the expression.

NOTE: Certain ways In which expressions in T. P. differ from Fortran:

1) There are no functions (use logic tables).
2) There is no exponentiation (**) operation.
3) All operations assume autopolnt. Neither inteqer nor floatinq

point operations are automatic. Floatinq point Is impossible
and integer is possible only if the values are defined as inteqer.

4) Results are truncated, not rounded. Roundinq may be added
later, as it was specified in the manual.

5) There Is no unary minus leqalln T. P.
6) ' The sequence A(B&C) is illegal, use A*(B&C). Thi.s restriction

should be removed when we have time.

10/3/61
WS:np

(

FILES

- 'I--------------~----------------------,
1!1 11 r. F .
I'. ')\"')0 1961
,s'oct lOll 25

~

A file is a referenced collection of records all on E single '
st orage device. A rile may have from 1 to 9 records (and hence
the same number of fOl~ats .) The purpose of a file is to asso­
ciate an area in hl£h-speed data memory (core) with a particular
f11e mp.dium, one or more types of records, and the variables con­
tained in each recurd type. The system engineer definos a file
as follows:

Card-Column Field Name

1-3 Table No.

4-6 Line No .

7-8 Column No,

9 Operand class
10-15 Name

16-18 Integer length

19-20 Decimal Length

21 Value type

22 Continuation

23 Description

24 Description cont.

25 - Description cont.

Possible Contents

000

nnn

00

F
Standard name.

000-999) the maximum length
of the longest record in
this file - 000 represents
1000. In the case of RAMAC
files the length must be
200 or 000 in the move mode
and 176 or 880 in the load
mode .

Ib for input only.
bO for output only.
TO for input and output.
L for load mOdeJ'~ M for move
mode .

Blank

1-9 (number of record types .)

(Medium name which must be.)
CARD, n for reader or punch;
n is the stacker number 1,2,
4, or 8 . The, and the n
are both omitted If the fea­
ture is not used.

PAGE for printer
MAGTAPE for tape
MEMORY for core (working stor­
age)

- [-

Car l C <..1 wnn

'~ '\ 1 l....

.ll J,,) jqt 1
l't. un ,-')

Po(',sible COlltcntc:

RA1>IAC, nnnnn-nnnnn fer' 1405
dl.Jk storage . The nnI1lUl-ll11nnl1
imllcntes the lower and UPP0l'
bounds of the RftJ1AC region oc­
cupied by this file,

Record descriptIons for the r-ecords In a filc must follow the
file . Enough memory is assigned to Lacll rl1e to accolTUllOdate
the longeot recorJ in it . All inLt l'll(l,l data areno (all var­
iables) lncluding those 1'01' 'IIorkJnr: ,' tc,rage of' Jntermed.Lat<::
value3 must be within M..~i(,hY fl1eo. Any file whose type Is
CARD or- PAGE must hnv," the val ue type M. If' description is
CARD integer length muat be 080 . Ii' deocr-lptlon ill PAGE in­
teger length mus t be h ss than 133 . ilor MAGTAPE wi tl1 Loau
mode the integcl' 1enrtll is tile a.:tunl number of data charac­
ters (not inr,ludlng wOl'k markG .)

W. Selden

Hs/nbr

C

- 1 -

nF ~(n,x-'

A r~ (,;01'1 10 Q ,!olleet lon vi' varl able t'l elds witt ch 1.G ufJd'ul to
cvnf" d('r aD an (nl; 1 t" E3Ch r, (;c·rr1 contain" a (ler' nit 1 mmb"I'
uf 1"(,ld3, It' a 1'11e eontall1D mor'(t.1:all "n' rc::curu thc,f arc'
overlapped; ~ho.t 1s to cay only "nc r','ce'rd may be preuent at
one tim" 111 ~ f1le ar(:il. 'l~lC fl" "tern ('nglneer Jel'ines recordc
aD fulloW:J :

Cal'd Cclurnn I"l'ld N'-l.ITK Porn] : ble Ccntt'nts

1-3 'l'ablE 1'0 . 000

4-6 Llnc Ilurnbel' nnn

"(-3 Col U1l1Il No. 00

9 (peraml class R

10-15 Nnme Standar'l Nrun"

IG- 1I3 Integer I<l'n,th 000 - 999 , number of' churac tf·rs
per reeor 1. 000 l'(,prc:acnt

19-20 DeCimal Length 1000. 01-99 number' of varla-
blo[J per recoI'J .

21 - Blank

A record must be fol101~ed b. the description of the varIable3
in tile r€'cord . FvC?ry varlable mUDt be a memb,r of ['Oml recor'J.
(No te that it's not neccssar-J to define an;, internal val'l abIes
if the variables are not.. [oing to be addressed. CorlC'tan~G and
expr"8sions w j 11 not be def' ned to be wi thin the rocOl'd nu mat­
ter where placed by the I'rOrT<lnuner .)

'I'he descript10n of a Record in a 1<"le must follow the dcfln1tion
of the i~Jle and rrecede the defin1\;ioll 01' all:. othel' ,,'lIe . 'rh,_
definition of oaeh record is tmmedlatd J followed b:! the 1ef1 -
nltlon of' the variables withl n that record. Note that l1' the
system «nglneer does not w I ~lh to z'erer to an)' of the var1 ab l eG
In a part lcular I'eeord he need not define them, but Ii' ho de ­
flnes any variables withtn a reeoru 11e must define all of them. /

Co~stants and expressions will not be deftned to be within a
record no rna ~ter where placl?ri by the r ro!-rrunmer . Note, 1101'1-
evOl', that !'I'casslgned val" :1bl<'s will full wlthln the record .

(

• •

1 .. tu.!. I "
,

~.~ . (. , , t 1 .il h . , I . 1
!n a. I I 1 n' , ,

I " 1 • "-1 tll .. ! {)I , ,
r ~'l'l ,.. { ~!1 • 1'1 r. L I

~ 1. . , (,j,.~ J , :
TlIT. e • J ! t ... "'C

00 1

- 3 -

GEJDO cont .
"All" "pen l,r()cedur,~ tabl" mtlj; no '1'0 11:" 11' . "

\';' 10n

t h1. I r I f;.t'

ill I D1'l1 C

1 -, '"') .)

r
-:-_ - _ .. --

r, ad tl , '1 t .. t t'
Ir. rn. raJ' .ur. i:, I"l C:

..x ~(H) , : a"' , ' l~,
"H :wny'

all l;l. - f'")/(1,
ven 1 •

r.t r. 1 , ~ lane I] '1' 1I ,1 (.!

~ 19 II) .
1 q .' I •• be' I ~II,I 1" plac'

,
;< 1lE" hi

(3) M:-'E; - an c.peratlon whll h r'cw.n,lu rnagneUc tape unit: ard
\'11': t~ 0 ',apr, marka 11' l"cqU I reel.

form - cr,v~E rile - name .

anal"sin "he 1nput magn!'tlc tape unlt r ('fcrenced in the datu
d€:::;cr'p~lon for that file name j::; r·('~Ic.UI1U . A tape marl~ I:.;
wr" ten on the output tap€: rc'l'ercnccu in tire data dl.l;(;l"Pt' vn ~
and tt Is rewound .

' .

(

RAMADD

1401 T P.
6 Sept. 61
S"cti on 33.2

The use of an assignment operator SET,
MOVE, SET - etc., placing data 'n RAMADD will cause a

7 s~ek to that address. RAMADD must not be defined by
--~t~he System Engineer, but w1ll be def lned by the T. P .

s ystem. RAMADD will be a five character field; 2 digit
face, 2 dIgit track and 1 digit sector number. Arm ..
and Unlt wIll be capable of be l ng changed by system
control cards . All data In one T . P. problem wlll have
to be on one unit and accessed by one arm, all t ables
wi ll be on one unit and accessed by one arm, but either
the unit or the arm or both may be different for data
and tables. flltEc.t44 ~ 1 'C. A Tl o fV

RAMADD wlll ,! X
'
s t Wi thin a 9 character

field end l ng I. n a Worle mark, Group mark character . The
name of the h1 gh order position of the field will be
RAMATh$. Thus Processor System Housekeeping will punch
EQU cards defining RAMADD and RAMAD$, will place an
initial entry in the s ' mbol table establishing RAMADD
as a 5 Inte~er numeri c . Ma cro Generator will punch a
SD to RANAC~ following each ass 19nment into RAr>lADD,
Object S .• e t em Housekeeping will establish the initial
values for the remaining dlgit poeitions of
RAMAD$

W. &! lden/ jb

cO!
•

; and X' otand as I 1'1n d In th ... lanna· 1.1'1n tion Tnc.mrrand1lln
dated au -/<'-'1 I , pan r.
Insert an adJlt'onnl sLntuncp lL the analysis of GO TO .

RAMADD

The digits a r e Interpreted :

Disk Face
nn

'I'raclc
nn .

~ etlcn 3tJ.
SPACE remain::; 'l.S (.h::flned 'n the language del'lllitiotl
dum Ja ted 6/25/01, pa,;;e <28 . me;m(lran -

RULE FOR PROCESSING LOGIC TABLES

1401 T. P.
14 .July 1961
Section 60

1) Sc,n lhe condition stubs to locate limited mtdes. Replace each
limited entry in a given row with a Be E to a ch'lrJ.ct"'r in a list. (Equal
compare to a I for satisfif]d and 0 far not satisfied in the stub under the
Y onclition, rc)verse the logic for N.) Nothing for blank (NP).

2) Define a list of characters which will be tested by the limited entries.

3) Produce the macroinstructions which will make the tests specified
in lhe lirnlted entry stubs and stot'e the results (l for satisfi8d and 0 for
not 5fllisfied) 111 the list produ~ed in 2. Write macroinstructions on Ram.

A) At this paint, space considm"ation may dictate :::;loring the l ... bl column
wis' on th0 ram retainlng in memory only the stubs dnd one column.

iJ) Ruform the extend3d entries so the stubs are consumed into thc bOl('s
ie. ·?ach coLumn will stand un its own feet.

6) :::opy oUL qach box in lhe form specified for input to the macroinstruction
gen' .rator.

7) The first ntry at lhe top of each column will be supplied a generatl'd
labe 1.

8) E, ch cJndition will be followed by a conditional branch to the head of
Lhe ncxt column, exc, pt th: t Lh·~ t,sts 1'1 the la,st column will branch to
eno'" table routine. Sec tabli" on page 3 of "T. P. Implementation. "

9) For thl')se and other purposes (ynerato>d labe l:.> may be of the form
Lnn'm$, wh re L is the lett·':)r indicative of the pha::;e A for I B for 2 etc.
nnnn is gener'ltcd $ is r (a ro::;e is a. rose).

t;l Nolie th::tt at obj'Jct time in a given t:'l.ble as soon as the firs t action
is ncvunter",d th/~r' will bu no mol'C ~ondition and no mol' ~ columns con­
.Jid'rad

11) If a bbl; GOES or dops itself it will be nec'ssary to re-evaluate all
formubs aml re-asse.;s the limited entry (;ondition::;.

W. Gelden
Pl'Ojcct Co-ordinator (Pro Tem)

WG/ pm

Sect i on 72 .1
Logie Table Header

1ST CARD

Co1U!11P

fr=~
7-8
9-13

14-15

16-17

18-19

,....... 20-22

23-26

27-46
" 47-64

65-72
73-80

2ND CARD

1-3
4-6
7-8
9-13

14-72

73-80

SUBSEQUENT

NlUlle

table header
line number
column number
identification
conditions

actions

rules

next table

Error table

Analyst
date
Systems nlUll9
Identification ~

table header
line number
column number
identification
column numbers

Identit'ioation

Contents

3 numeric · digits
000
00
TABLE
2 digit number ot'
condition rows
2 digit number of
action rows
2 digit number ot
entry colums
3 digit number ot'
table to go to next
3 digit number of table
to go to in case of
error
name of analyst
date
name ot' system
identifications ot
progrlUll

3 numeric
000
01
ORDER •

digits

n n, n n, n n, etc.
column numbers in the
order to execute
Identification of
progr/Ull

•

ORDER cards may be
previous in having
number.

"'Z
used, ~ach differing from the ~ •
conse~tive higher sequence '

•

COMMENT CARD

1-3
4-6
7-8
9-13

14-72

- 2-

table header
line number
col. number
NOTE I;

3 numeric d1gits
000
2 numerio d1gits
NOTE
Comments

Subsequent cards are identioal exoept ascending
numbers are punohed in columns 7, 8 ,

Table headers will be pr1nted as a table of oontents
of the job .

dtw
7/ 12/61

7~ ... I

.// 7

(,VP K

1/7)1--- 91 --~d
TO Tn

SY" S "'" Sbl.

r /j~I.J.- Jil flU:

OUt-(T
5'/sT E'M

C(' IV T 11.01.

j

00 -G t.)
I l _ S; v B R.u "-,, ,,- :5

I-ilL> --1
~ IlJ eo (U;) uT Ifl..r.: !.

•

,
.j ,

,-
(

~

~

\
)

(;) -

CO(..L.e(r

,:v./'flt:""SSJO""s

r i: ~~~--'-l
r"'uz'«'i -,----

<'.- --

,: I L p(ffl~£ 1€ s, T(.O
" ..,../ ,-- -

- ,PIfIlS€ TC'sr

SYSTc ,t} TEST

•
I
;
I

\

I

•
SYMBOL TABLE

A) Itnm Dnscription:

Ii Item W:~s :

Numel'i~ Constant
Alphcl. Constant

Num~ric Vd.rLble
A lphd. V d.rhbl
Expression
Mask

Record

Col 1- 5

R~m.J.c Address
Ramac Address

bbbbb
bbbbb
bbbbb
Symbol

R;;.m.J.c Address

File Symbol
"RAMADD" bbbbb

(B) Tcl.ble Description:

6- 8

Integer
Inbger

Integer
Integ,r
Integer
Integer

I '1t"ger

Int"CJ ~r
005

140l T. P.
8 Sept. 61
Section 82. 1

9 - 10 11- 16

Decimal Symbol
bb Symbol

Decimal Symbol
bb Symbol
Der'fglfcl
** slgned plu~ymbol

1If! Symbol

DO Symbol
$$ RAMADD

Th, symbol tabL ~ontains 55 of thes,' 16 character it'ms, It is followed by
a Word Mark d.nd Group Mark ch.J.r..J.cter in position 88L It is prec,d ,d by
eith- 'r one of two things:

8 digit Ramac ",ddress and WDMGM charact,~r
6 char .l.cb~r symbol Jr lookup pr,cE'ded by two workmarks.

The symbol table nOl'm;;.lly st..J.rts in loc.J.tion 1240, howt:)ver this may change.
The symbol wble is d,fined in th; p.ickd furnished, and this definition should
b' us·'d If the td.ble is to bl,) in standard position.

C) Us ing the 'Symbol Table:

The symbol table is filled from th(. low order (right hand) location first
working backward. Index register I is reserved during the data division to
indicolli} the location of the next .J.V'<.1ilable space in the symbol table. The
area in variable storage named SYMRAM contains the address of the next
ram track for the symbol table, that is to say it contains the number of
tracks already written.

To write the symbol table the Ramac Address should be placed in front of
\

(

SYMBOL TABLE

A) Item D0s.s:r~ption:

If Item W:ls: Col 1- 5

Numeri~ Constant R.m-J.c Address
Alph Con:;liint Rami.1c Address

Numeric VdrLble bbbbb
Alph..1 Varilble bbbbb

Mask Symbol

Record R~m-J.c AddresG

File Symbol

B) T-J.ble Descr!ption:

6- 8 9- 10

Inti)ger Decimal
InLger bb · .
Integer Decimi.11
Integ';r bb

Integer **
Inl~ger #11

Int.)gd

1401 T. P.
18 July WGI
Section 82. 1

11- 16

Symbol
Symbol

Symbol
Symbol

Symbol

Symbol

Symbol

Th" symbol t.tble (;ontains 55 of thes" lEi char-J.ctf'r iVms. It is followed by
<l. Word Mark ,,,nd Group M.1rk ch..1r ... cter in position 881. II is prec·,d ' d by
<Jith· r one of tw.J things:

8 digit R.i.mac address and WDY.GM ch l'-J.ct·'r
G ;::har .Lcter symbol or lookup pnc,:,dod by two workm Irks.

The symbol tabl ~ norm.illy st,<rts in lac ,lion 1240, how·;;wr this m.1y ('hang, .
The symbol t.::.ble is d iincd in th , picket furni:;hed, und this d·>finition should
lJ' usr d if the l...ible is to boJ in :;t.:.J.nci...rd position.

C) Us ing the .~ol Table:

The symbol wble is fill"d from th' low ordf'r (right hand) location first
working backward. Ind'2x register 1 is r~s, 'rv<:d during the ckta division to
indicJ.t," the loc",tion of the n,"xt .:.V'",il-J.bh spJ.ce in the symbol tab le. The
area in varuble storage named SYkRAY. cont.tins the address of the n·:'!xt
r.lm tr.lck for the symbol tabl,), that is to s<.y it cont.tins the number of
tracks already written.

To write the symbol table the Ramac Address should be plOlcd in front of

(

Page 2

tho b.bl,' J.nd the table written SYMRAM incremenlc)d.
7

18 July 1961

To r," d the symbol table proceed "S u.bove for writ') using Read command.

To se'", rch the symbol Labl ' (s eria lly) place the symbol being looked for
direct ly L,it of the table and branch to SEARCH.

WS/ pm

CONVENTIONS:

1401 T. P .
August 22, 1961
Section 83

The following conventions J.pply to the T. P. Proc ·ssor. Please observe
them.

1. No phase may contain a Groupm;;,.rk Word Mark character. This char­
acter will b(; pc:rman Jntly lmot .it TOP currently 3090.

2. 1 here will be a packet of cards whi 'h should b·' .ldd~d to each ph;;.se
as it is assembl >d. Th' basic f nction of this p;;.cket will b= to pro­
vidr communic,.ltion betw en the ph.J.se uS writt 'n and th,] op ; r",tion of
Syst8m Cr0ation and Syst m Control.

Thi.:.; packet must be usc'd. To rep'_.J.t it is strictly forbidd.'n to refer to
:.my portion of core outsid" your phase by ",bsoluL ..J.dciresses. The ob­
viou reason for this rul~ If th",t wh 'n th" syst m control progrJ.m is
modified in some way it will be m"'r~ly nl~ccssary to "lter th' packet con­
taining E0U cards and re ssC'mble all ph;;.s,,,s r",ther than having to closely
,_xamin<3 and recheck each phase.

3. The beginning point of oach phase is th, first charo.ctcr thereof.

4. Th':rc will be a commu~\Ld.tion region d<3fhed wher i"uormation r e­
quired by more th,_m on! phase will bC' placed. Thc>se items will be
d fined in th", packet m nion ,d abov,' .

5. Th,~ phases cannot aesume that storagl will b<3 cleaNd prior to th':)ir
operation. If clear stord.g is r ,quired positiv-,ly ensur> it by use of
DCW or dynamicJ.lly by exectu1'ion during proc,~ssor housekeeping of
Cle",r Storage commo.nd.

6. During the phasC's dco.ling with the dJ.t'l division Ind"x r'~gister 1 is
rserv)d for the location of the next aV'd.ilJ.ble spac~ in the symbol
wbl "

PROCESSOR INPUT/OUTPUT

1 ()l
'1 J\.!ly 1 •
Sec tiO.1 ",3.2

Use of the standard package and system control will mal{e
available a ~~C reading/writing and checking routine. The
programmer will need only use a Read or a Write command and a
Branch to RAMAC. The system will seek the address and, in the
case of writing commands, issue a write check. The routine
will reset the nap and will reseek and repeat the operation in
the case of error.

Restrictions

The RAMAC operation specified in line will not be exec~ted
there but will be moved into the routine, therefore it is always
necessary that the Branch to RAMAC immediately preceed the I/O
operation. The B address of the I/O operation will be the high
order position of the disk record address preceeding the I/O
area in core.

Upon successful completion of the specified operation control
will be returned to the next instruction folloWing the I/O
operation.

EXAI<IPLES

B RAMAC
WD label

B RAMAC
RDTI. label

The permissible operations are: RD, RDT, RD\-I, RDT\I
WD, WDT, WDW, WDTW

The Write check i8 illeg~l (it is performed by the routine)
and ita use by the programmer will gum up the works.

(

r p' lees (oction d4.1 Ind 8~.2 of l~ ~~l

1401 T. P.
August 28, 1961
Section 84

Operation of f3ystem Control, Housekeeping, etc.

The program identified as above comprises several quite distinct sub
programs.

Package The first few positions (currently I 060 to 2 160) consist of
the package which is present in all phases, controls certain
system functions, and ties the system together by EQU state­
ments. V'hile all phases will show DCW's in the listing of
their section the processor will employ the constants assigned
in System Control Program. This will permit independent
phase testing using different values in certain instances but
should be wat hed tor a possible source of error.

RAMAC The second item (currently 000 through 480) is RAMAC a
generalized RAMAC handling routine explained in Section
83. ~.

SYSCTL The third section (currently 10 010 through 10 999) accepts
certain control information and reads in a phase consisting of
one or more 880 character tracks and branches to the begin­
ning of the phase. SYSCTL uses RAMA8.

RDCD The fourth section could be considered a part of each of the
phases in the data division be ause it reads in the data divi­
sion cards (after the header) and, if necessary, reads In the
proper phase. It is overlapped by the logic division program.

System Housekep.ping The fifth section (currently 13 010 through 13 060
located at 1175) sets Index registers and branches to begin
proceSSing. This section is overlapped after it is executed
once.

System Creation The sixth section (currently 1 05 through 3 20) is the
system creation program which writes phases on the RAMAC.

Primer Mention will be made of Primer. This is a separate program
which is frequently shown as the last sheet of the listing for
::'ystem Control and Creation, etc. Primer is the item identi­
fied on the system flow chart as "process card". Its function
is to "prime the pump ' , L e. read the system control program
into core from the RAMAC and branch to it.

1401 r, . P.
August 28, 1961
Section 84. 2

OPERATDNAl DESCRIPTION OF SYSTE:rvT CREATION AND OPERATION

The reader will do well to read carefully Section 84. ~':aler1al here des­
ribes the steps to create and run a processor, including operating in­

structions and also describing functions of the 1401.

System Deck

A system deck is obtained from the union of all phases as they corne from
Autocoder. The first must be the System Control, Creation, Housekeeping,
etc. phase and the last be the Primer. Otherwise ordr>r is immaterial, but
phases must be kept together. The System must be preceeded by the clear
memory and bootstrap cards, the other decks may include these, but need
not. The END card wlll branch To ~'YSCRE. The first few cards of each
phase wlll contain c"rtain control information which should be checked for
consistency, particularly th~ material loaded into PROFT3 which includes
the PROce3sor Arm, Unit Face Track Sector designations. The track
must differ from all other tracks u3ed by the processor. The rest of the
numbers excp.pt arm must be the same for all phases. Chang1ng values
here wlll change the face required, but the change must be made for all

(phases in an identical manner.

Place cards in card reader and push card load button. :rvTemory will be
cleared and Cystem creation et al read in. The END card of System cre­
ation will branch to write the first phase, (System Control, etc.) on the
RAMAC. Detailed procedure follows:

The value in PROFTS determines the RAMAC Address used for
the first track for this phase. The value in NOTRAX is the num­
ber of tracks required for this phase and the high ordertof the
8 character addrr>ss preceeding the first character of the phase
is in PHASAD. All of these values should be established by
DCW's. The writing procedure places word mark group mark
characters where needed and places the eight character track
address addresses where needed. It also conserves the char­
acters within the program that were destroyed by these items.
However, other characters outside the phase itself may be de­
stroyed.

E'ystem Control uses RAMAC to write lh" phase (one track at a time) and
then branches to read more cards. It skips over card:> serial 001, 002,
and 003 if present and uses tho;> normal loading procedure for the rest.

Subsequent phases are written using thp. new values loaded into NOTRAX,
PRASAD, and PROFT': by these programs.

(

1401 T. P.
August 28, 1961
Section 84. 2

Primer is used to start processing the first program or to restart pro­
cessing subsequent programs so long as T. P. remains undisturbed on
the RJ\J,iA.. II contains the normal lear storage and bootstrap cards
and reads in the System Control Program from track 00. The unit and
face must agree with the similar assignment in writing the program on
RAV1A~. Arm need not be the same but normally will be. Primer con­
tains its own Read and Check (the RAMAC routine will not be in core at
this lime as Primer clears storage).

A glance at the listing wi 11 show that the values initially assigned to
PHJ\S8T and TRACK w111 read in the System Housekeeping phase (this
feature not yet installed.) In addition, LOCPHA (,:3) ~ontains the address
of the hlgr OI!DEe. (left hand) character of the 8 character RAWAC address
preceeding the phase. This reduces the requirements on Primer and the
hous'!keeping portion of this program. As these are th~ values that will
exist initially. each Phase as It desires to read in another phase must dy­
namically (not through D8W's) put the correct values in place. Note
particularly that this Is dire tty opposed to the nrocedure for the control
of cr~ation whpl'e the values must be placed by D~W's and may not be
placed dynami ally.

An example of this feature may be found in the instructions starting at
SY:T. and extending to but not through CLEARl (currently 12 020 through
12 070) in '=>'ystem Creation et al phase. The clearing of memory is not --in general necessary, but is needed if the phase being replaced might.
creat~ wor l;\ mark group mark characters inside itself.

The process which reads phases from the RAMAC restores any characters
displaced within a phase but it will leave a word mark top and bottom of the
phase which may interfere with reading phases into other locations in this
program.

NOT =: : In Gour:::o I.an<Ju'J,rJcs
:;tub:.. !::C ::;har:lcL,)l's
";nlrjr ~ 10 Characters

0;::::: TrON 87

i 40 1 '1' e.
14 july 61
Section 87

(GU f lOt Te) 1r < limit (2000 ch~,ractcrs at present)

\\ i1,;l'C Nc is number uf c;l']Uy columnG.
Nr 1:) n~n,l'cl' of ~ntry row~ .

Logic hill):, .';ill h~ r;~.d Column tr"U1::;formaLi·)n will be hO'1or"d and
tll" cnt l'i s mrlV'd i'1to the pr-Jpcr coluMn and l' OVl ,

Rule POI' qeal'r~n'J()mcnt :

1. ::;hC(;l{ rov. ·'.n 1 c)lumn c IU"lt fJr tDO g:cat ::;iz' by f)rmul" ::thove,
(As II! PY and DIV 'Hr> not ::p df] Jen PI' ;'Jl'1m by ;3Ql'i~": of addili:)f:s and
:.;hifts. If tJ) 1 rr," , m "":::;:lg" an,j t'-j .:'c[,

~ . ':::st['biLl. lj"t :.;hONin<J mt.. ' 'li1U add!'L: r of n.. locatio:\ 01 first ::;1 t
nnd fil':;t (ntl'Y L\ ~al'h c-Jl Imn; t'le mO.:im 1m numbcl' of column, ~ j::; GO.

1-3 lac stuI'
4- l) loc entry 1
7 - 9 1.)(; \ nb'} 2
10- 1:0 lac entry ~l

~tc .

4. :to/avo? e:lCh fie ld fl 'om Li1" C'll'd lu th. n:J.Jiti::m i :1di ~nl J by th..; tabl,' , and
incI'oment trtbb by 10 (or GO for _tub).

5. Check for t:lO many rows or "J lumn::..

P/om

1401 T. P.
L8 July 1:J01
Se-: ion 87 . 1

Aftur thn D tl D'scl'inti if! Ubi ru::l L 'n p~'o ' ::l;~d, Cyst m Cmtl'oJ
willl1N l ' ,d into :;;t.Jl'J.g J. Logk T",blo Hr. d.!'. AI.:;o 0 flyc:t m Control
1lJ.~ r " ,d il1lo 8l)1'.J.g '" 1 o']ic Hc",d 1', it will th '11 "c"d int S.Ol' '(.I'~
. PROGRAM A which I:;; ..:tor·d on th.: RAMtl~ .

' PROGRAM! will p dorm III following:

1) ANAL YZE LOGIC rPBLE HEf,DER
2) TEST FRAN ORDER OR Cm.'MEW:S ::::/,RDS
:) L01'O lOGIC TABLE INTO STORAGE
4) BRt:AK THE LOGIC rM'LE INTO ITS rULE8; Wf<1TE EACH RULE

ON THE RAM IC *
.) RETURN TO SYSTEM CmlTROL

Aft l' . PROGRAM II' h~s b·'cn xcul d. Sy.:;t m Control will II] '11 rG lU

i..,) St)I·· ... 1J 'PROGR.M B ' .

I PROGRf.M B' will p~rfol'm lI' followi 19:

II READ IN~O STORt.CE: EACH RULE, AlJD PROCES" ElICH RUU~,
OUTPU:' t.S INPU r TO MOEN,

G) r·UnURN TO SYGTSM CON THOL. ' .

'" rhi:;; will ",Iso chang·] limil· d ntl'] t·J Qxt,'nd"d nt1'Y.

ws:plT'

TO: T. P. List

SUBJE T: Machine Definition

l~OI T. I.
30 August l : IGI
Section 00

/4<>' rP
".:...c \ \,,~

Looking at the orders, j i.3 clear mosl machines will have advanc",d pro-
gramming and hi~h-low- 'C'\u'll ·~"mp~l'e, about half will be 4K and hutt
lurger. Multiply/ D1<Jid€. will be ra.rf'. Consid ring all data, I declare
the tollowing machine r",quit'em ·nts:

Pro,'" ssor
Sb-,p 3

Core Size lK

Additional core

used if availahle NO

1402 1

1403 1

1405 1

one arm ,

2nd arm ~

Tape 0

Compare feature

Advanced programming t

MPY/DIV 0

o = not used, m 'lY bf' pl'0Sunt
1 = required

legend 2 = used if prcsl'nl., optional

Autolod, r
Step 4

4.K

YES

1

1

0

0

0

4

1

0

3 • used if requir" j by object pl'oqram
4 • four tapes n~quircd

Object
Step 6

4.K

YES

1

3

1

1

" u

3

I

3

,Earl has suggest8d that the initial oVf"rtures to p.stal.lish expcrlrrents explor",
the customers with 8K or largL,r systems. Our initi .• l system will work on a
4K machlne, but until the mechanisms for overlapping and logic table break­
up are complete the larger m8mory sizes will permil more attractive sample
programs.

•

(

TO: T. P. List

SUBJECT: 10achin,' Definition

17 July 1901
Sectlo~ 90

You have seen Lhe I)()sl availabl" it1iormatl)n conc<'rni:lCJ th,) 1401
Ram",c systems to b, dellverd thL yC':,r. 'VI hil;~ IDt compl. L or lOW
accur<ltc, we have no choice but to C0me to a d,)ci!:;ion at this Urn\).

Clearly most machines will hav" advanc d pro'JI'ammin'J ',nd high-l,jw­
equal compare, about half will be 41\: nd half larg'r. !I 1.1llipl//Divid,;
will be rare. Consid]ring all data, I declare the fo11o",l.ing machine
i'equirements:

Processor Autocoder Object

Core Size 4K or more 4K or more 4K or m01'e
1102 yes y"s yes
1403 ye::.; y~' u Y,::3:;

1405 y"s not u::v'd Y':!s
Arms one or more not used o~e or more
Tap" Unit;:, not used 4 of-

Comp.lre yes yes y'~s

Advnnc~d yes yes yes
Programming

MPY/DIV no no *
'" Means lhis feature is required if u.3f)d in SOUl'C," hngl.(l<J'. It is always
possible for Lhe system l'ngineer to prolJram multiplic Jtlon ant! division
using one or more tables.

This decision is an important one, and will oif"cL T. P. in a num\'l'r of
ways. I l'equesL that any disagreements 01' sU9<JcdiJn;:; be commu.licaied
to me.

Earl has lJuCJlJested that Lhe initial over Lures Lo ,establish cxp01'lments
explore the customers with 8K or lom]"r syst'TIls. Our initial ~Y2tcm will
work on a. 4K machine, but until the mechani"ms for ov,'rlappirlg and lugic
table break- up are complete the) "l'CJ·)I· memOl'Y .,1.;('s will permit more
attractive sample programs. I h,"artily endurs8 this ~ugg"st1on.

I ,j ~((f . ~
W, Seld'n
Project Co-ordinato!' (Pro-Tom)

WS/pm

(

System Control

1401 T.P.
6 Sept. 61
Section 91

Arms. The f1 e1d ACOUNT cOl1tains either a 0 or 1.
system housekeeping will add this nwnber to the arms
indicated for those system uses which can practically use
the second arm. A s1mi1ar function will use the second
arm if ava1lab1e for tables !n the object program.

Memory. The f1eld X1TEMP contains the value for
the CTL card to be used by the object program. This will
control the maxilllum sIze of objeot program that Au tocoder
will compile.

Tapes The tape Error routine will exist as a

Ramac Track. The tape reading routine in T.P. will use
•

the DO mechanism to use this program as though it were

a table.

W.Selden/jb

(

, . ,
-'

r

"

r ,

" .i,
,3, -1
~;\ [)
1.7
')8, 9
1 .

" '

;~f , '", 1
4t.:, ~;3
,~.~ I ~_':...r
~ ,
i,t.

2~)J 3' '
;'1, ;..·t
"",, . , ,

4,', 'li
'- ",! 'J

hoI "J'

)

L'l !
J. r,--'Ir.::.- .. :~\ r

.' ID
; F;],

\mtr'
, ~p'.

Lx; I

iV (..Ai::.i 1::)
,(,m'

1-:~ I i 'I'

, .

t') 1 ," •..• ' r
"' t,

1

..

, ,
, .

\'

,
\ ,

1401 T . P .
6 September
Section 91 .1

Bam8C ass1gnments .

1 Face 00

0 Face 01

0 Face 02

1 Face 03,04

0 Face 05

1 Face 06,10

W Selden Ijb

T. P. Processor
Track 00

01,2
03,4
05,6

g~,9
10

15
16,7
18,9
20,21
22,23
24,25
26,7,8
29,30,1
32,33

40,41
90,99

Symbol Table

Constants

Working Storage

(PROFTS)
System Control
Constants and Variables
FlIes and Records
Pre-Scan and Scan
Post :Jean
Log1c Table Header and Housekeeping
Processor housekeeping

MOEN Control and Punch
MOEN SET and MOVE
f.1GEN Expressions w'th SET and MOVE
MOEN Input Output and Misoellaneous
MOEN Comparison
MOEN Expressions with comparison
Prol~ram A
Program B
Program C

Processor End of Job
Temporary S orage for MOEN

(SYMFTS)

(NEWRAM)

for Logic Tables (TABFST)

Input to MGEN from Program "c"

OUtput of Postsoan (MACFTS)

r--~~ /vo

l ,

. , ~, .;. .l ' '

Il t 1() I 1 ' f .t, "c We> mrll have tv re.i11ocate C')Ie
1 , 1

,
W f'l:" LJ "Ol"! • . r thlL , PC tn£' I'eE ,It w1l1 '1e ~ , .,

DA. P, DJVI£l° tl

J l'
' , 1

3
11':11 ..

jf 1x l1',1-1b8
'Jr' Il'

v 11<)9 p • , (:X r, PI f.1e~ dot : h.O III O-"~_) ..
'tr'4 p ,. r.

,.
2,<'0 '"

J
)r lx 29~H-2SJ2&

,'I p ~l: 2:.;29
f lxl" , ~(;~v C L ~ ~-JO 10' ..

'.1." [,. 1 , 31f"
(3107 - ~lO'

_l": {, r ,
lIr'lHi.l(._tl,

l~ jlO'J- lole

l' ~ .. <;ywbo 1 l"f'Ia'lle .-111,
1 t ,', ..;11 - ',Q1

~ ~'l3."
f. r <19. ,{

(
l~ , I·

t! - vI Ii.. t ., t 1'1"1,1 to ,iul.t £''la L

'1 n 1, ,
~ 1

"
, \ f ~ " •• ... f' L I H't ';"d

" 1 ,r, ' , t. , ~f trere 1
(v, I , vin} • i' 0 " I Ciwe i ec .. " ... "',

Ie " i f .~Il 'I 1O.) t ~ ...ar'i f'aut...
1 ~ . 11 , , , t I t t t 1 , '1"(1 i.\)f ud

1 r ~ [~) ('
,

o' j.. f , Ie 1 ., .. plr ,E
II

1 , L [r

'" t , ~
• 1.1 - l 1t .I. 1 '" tt ': lcli,,)

(~l' r ,
~ .1 ~, I 1 ,

"f l. fC',' the
1 " II " i ..))J: :'..1;rc i 1', tiC'

, , r , he ~:I Itt] lUI [,) 'ecp fl,

" 1 " l<

t 1 , t tc

, , r ~ (" ' .Jll. t ... : :J trr llC 1 , r
1 r r r to I, t , 1 .. ~

t
"

1401 T. P.
5 Sept. 1961
Se ction 93

Object Program system creation and system control.

The functi ons of creating and controll i ng
an a TP object program are almost exact analogues of the
simi lar functions for the processor. Si milar programs will
be used with the symbols ident1cal with those for the
system funct i ons of the processor except that the sixth
(or last) character of the names will be a $. Initially
the programs will be the same as the processor, located
in the same place etc. Prior t o release of t he s ys tem
the obj ect program system func ti ons wi ll be reassembled to
utilize space more effic lent l y.

The Processor housekeeping and lO~1c d1vislon
housekeeping programs will punch out equals (EQU) cards to
provide the loca ti ons for t he follow ing functi ons (and others
as needed) .

GOTO$
00$
LAYOU$
etc.

W Selden/jb

Branch he re for GO TO
Branch here for 00
Branch here for LAYOUT

·'

Size Limits

:tczut
1401 T.P.
28 July 1961
SECTION 93

There are ~ number of items in T.P. for whioh there 1s
a limit of size, for example 6 oharacter name length; or of
quantity, for eXample there may be no more than 26 operands
in an expression. We collect all of these size and quantity
limitations here as a handy reference and as limits are most
apt to change as T.P. develops with further programming.

The phrase unlimited is to be understood in a relative
sense, as aseembly and other programming are finite processes
an infinite number of anything is impossible; rather we mean
by unlimited that if n of anything is operable then there
will be no specifio bar to n + 1; however, this rule is not
recursi ve. -

There is a general limitation of 10 or 20 million
charaoters in the size of RAMAC. As in general, all of any
program (except the oomments) has to stored on RAMAC,
there 1s an obvious but very large limit on source and object
programs.

Labels I 6 charaoters each: unlimited number.

Short 11 tera 18 Used In tpgic Table:
6 characters not counting the @ in alphabetiC nor the
. + or - in numeric literals, or restatin~a total of
8 characters.

Long Literals Used In Data Tablel
Numerio: 12 integer positions plus 6 deCimal positions.
Alphabetic: 999 positions.

Data DiviSion Items: Unlimited.

Number of Tables: 999

Size of Table I
This is restrioted in several ways. No one of the
following restrictions may be exceeded.

Rules: no more than 13 on the coding sheet (more
sheets possible)
no more than 30 if rearranged via header
no more than 64 in programming of T.P. pro­
cessor

Actions: 99 coding sheet
Conditione I 99 coding sheet

Overall restriotion on the size of table is expressed
in the follOWing table:

1401 T.P. - 2 - 28 July 1961

Number of Rows
Number of Rules Actions Plus Rules Rows

Conditions

1 54 13 11

2 42 14 11

3 34 15 10

4 29 16 - 17 9

5 25 18 - 19 8

6 22 20 - 22 7

7 19 23 - 25 6

8 17 26 - 30 5

9 15 31 - 37 4
(10 14 38 - 47 3

11 13 48 - 64 2

12 12

(

Size Limits

1401 T. P.
3 October 1961
SECTION 94

There are a number of items in T. P. for which there is a limit of
size, for example 6 character name lenqth; or of quantity, for example,
there may be no more than 26 operands in an expression. We collect
all of these size and quantity limitations here as a handy reference and
as limits are most apt to change as T. P. develops with further
programming.

The phrase unlimited is to be understood in a relative sense, as assembly
and other programming are finite processes, an infinite number of any­
thing Is impossible; rather we mean by unlimited that if ~ of anything is
operable, there wlll be no specific bar to n + 1; however, this rule is
not recursive. -

There is a general limitation of 10 or 20 million characters in the size
of RAMAC. As in general, all of any program (except the comments)
has to be stored on RAMAC, there is an obvious but very large limit
on source and object programs.

Labels: 6 characters each: unlimited number.

Short Literals Used In Logic Table:
6 characters not counting the @ in alphabetic nor the . +-or -
in numeric literals, or restating, a total of 8 characters.

Long Literals Used in Data Table:
Numeric: 12 integer positions plus 6 decimal pOSitions.
Alphabetic: 999 positions.

Data Division Items: Unlimited.

Number of Tables: 999

Size of Table:
This is restricted in several ways. No one of the following
restrictions may be exceeded.

Rules: no more than 13 on the coding sheet (more sheets possible)
no more than 30 if rearranged via header
no more than 64 in programming of T. P. processor

Actions: 99 coding sheet
Cond1t1ons: 99 coding sheet

· '

(

1401 T. IJ. section 94 -2- 3 October 1961

Overall restriction on the size of table is expressed in the followinq table:

Nwnber of Rows
Actions Plus

Nwnber of Rules Conditions Rules Rows

1 54 13 11

2 42 14 11

3 34 15 10

4 29 16-17 9

5 25 18-19 8

6 22 20-22 7

7 19 23-25 6

8 17 26-30 5

9 15 31-37 4

10 14 38-47 3

11 13 48-64 2

12 12

DO

There is a limit of 10 DO's in a nest at one time. There is no limit of
the total number of DO's in a proqram. A table may appear at any
nwnber of level In a nest; it is up to the system engineer to figure out
what he wants to happen.

Processor Track Assignments

The processor at present uses part or all of 10 tracks, 00-09. This
imposes the followinq limitations:

Not over 2000 constants in a single program

Not over 1000 operands in all expressions in a single proqram.

(

Object Program Track Assignments

1401 T. P.
3 October 1961
Section 95

At present the object proqram produced by T. P. uses Faces 10-19 for
the logic tables leaving the rest of the RAMAC free for data. <Note
the processor uses faces 00-09.) Tracks are used consecutively on
RAMAC and so short proqrams will not use the hiqher numbered faces.
One million characters are available for storage of T. P. object proqram.
Jlst how much Is used by each program w1ll depend upon the size of the
proqram and in particular the degree that long constants and expressions
are used.

Core Size

The object proqram will occupy core as follows:

First the system control program, including the standard ~rdware I/O
areas, DO list, etc. Not more than 1700 characters, hopefUlly about
1200. Note we require exactly 1106 characters at present, but It is not
fUlly checked out, and tape error will require about 35 more. We are
allowing 1700 at the moment for convenience.

Next will come the files. These w1ll require the length of the maximum
record plus about 35 to 50 characters for each file (except core).

Finally will come logic table area immediately following the data division.
As many tracks will be read in as are required to accommodate the table
at 880 characters per track. I assume that a good rule of thumb will be
that each box filled in will result In uslnq 10 characters, but this 1s a
guess, not even an estimate.

10/3/61
WS:np

(

, ,

Varto\"11 phau, II w .. Lll ~£lve certalr. ['motione WJ.th
o cl Jflct 3yStf!Il)l'blUl~<;itto:i_ .. wl11 indicate here!"

1 6(,'1 In~ r.r tl')g w t t h • de; fe I·:t'd f&d tuI'C'1J • '!'he deferred .11 r,.
f: • t I. r-'
t..! ,_

r : l' :.Inl- 'ov~ • \..,"ltn5 time ",y al 'owl,18 f,r more thac, one
IJ" C ,·rlB ideI'e'i " b lo,)h. " \; 'I toU if d at em", time lmd "lso

to (t". tE '." 5ingl'? tahle Wl1cat 1s too 1 I'I5'" t-.l fit jn C-lre at
t ~'1~', ;t •. ~ ... ·oJ"!·,)I' 1e d','uLI'ac',t' Lf t.l re,"r'l se~C'ri..l sm",ll tables

Oi.,:t'tLt, 'lOb,"; 'lnd th ~il.ttl·ill deslI'd)le if' ther')
r,' 1"f:" '>c;'rE's" .J" ,mel c"r: .. t ,ntr 1:1 one tdtJle.) We wl1l.

i.:t tH., l in, '" ,~w (,Pi." (,)'k rl('t,:ru) {'vI' tl':e information the

) ,

-;
<

,

.'
.)~

:') "C .Hl ['(q~ J. ~'tc sp ... ce will be fllled wlth

r

VI ro ... 'Jcf·n,11'1; ~nm.,;,.tdb~litJ ane:. to permit Jlliill~
L J PI', ,r'm W'tJ tl.e ... p. l'(lt'res are lnstall'~d.

'llfI .

~t , • t t 1,' , l .. t,·'r
• ror \, , • 'rl! ... 11:
.. 'r rc , , 'T!"(I .1, ;
1 ' t:'I r, ,t t c' , t hL ie

t);

[.. ~. th'E • _,J t: r
E-' .n. ,f t~ l t '.t I 'J

• : ~\ " J, L: !J l d:; t
t ;.,,1.1. &J \.t,.;. " , ,

• . : I ... :lL ,I r(' L' 1 h
I' d I' L tt . , :t t-&t· ... 4

\ I)1 . ~, r , , -,~" . , (.. • 11. \.' , ,'. " ' .

£.!.~ in hy

PrOI~riiin I,

I rOGrar. t .
l'rogr"m P
K ... cro G"r ~ri1 tor

l<\acro Cl<'r,"r. t'1'

J J ~'

<f

J J1'1. J ~ .1 !. ' rr"~nt.:

r

. , { (

r •

(

b L. 11..,

l t,·I":' 11.;;' tel. J 1;11·]',11 tJoc" 'Nlli (, .. J! t 1. ,;.J /'>'.11 ,.lk.J 1::, tne ()HI, iAEl.E~i
•• J I It ~ p...... ,LT_ j

, ,

'-

.. eo "',1 r'} I ~,r
- -_.-

1 • t r;,l,:.j ~ lJ) .,' I,. c'." ,f Llc r: ..

~I -j'''' ',i' :.("f: l' J!t ... ·,fl.~l,

, . ,

, I

T .1.

.1

I f:lC

f-

r (

r

.:

< c

:

',~ jf < .llll~.j,'~lpr::; 'J"'·lf'~.l'<'1
.)e> l'" t: 01;,'

.. , I' l~ I(

!7 , ., ' r~ I..

1:: . I ,r ,'i 1 .jl

1401 T. P.
22 September 1961
Section 99

T. P. System Operation

The operation of the T. P. System will be described with
reference to the diaqram previously distributed.

STEP 1

Step 1 consists of writinq the program, both data description
and procedure deSCription, keypunchinq the cards, listing the cards
on the 407, and viSually checking for accuracy.

The important items to check for here are correct column
alignment, correct spelling, correct usages of zero and "0", correct
usage of 1 and I, and other normal keypunching problems. Speeial
points to check for T. P. in the data division: There must be one
header card for Table 000 which will come from the first sheet and the
there may US!.! be header cards from the second sheet. In the loqic
division, there must be one header card for each table. There may
be, in addition, an "order of rules card" and a comment card. There
may be more thap. one comment card. However, all of these cards
must appear before the first line of the procedure division proper.
If the procedure division has to be continued to a second page, you
may not repeat the header on the second paqe. All cards, without
exception, must be in ascending sequence, but except for continua­
tion, they do not ned<! to be ' consecutive.

STEP 2

Step two consists of taldnq the processor deck furnished and
loadinq the processor on the 1401. Upon completion of the loadinq,
the computer will hanq up attemptinq to read a card. Push START
on the card reader to read the last two cards at which time the 1401
will hang up. The system 1s now loaded.

STEP 3

Place the primer program which is about six or seven cards
in the card reader followed by the source lan9U8.qe program prepared
in Step 1. Press the CARD LOAD button and at the end of the process
press the START button to read the last two cards. There is no

· .

(

T. P . Section 99 -2- September 22, 1961

mechanism for an END card at the end of the source deck. During
running of the processor, an Autocoder language program wUl be
punched and certain mater1al will appear on the printer. This
material will form an index of the object program.

The deck of cards produced from T. P. w11l contain control
card and job card. It is a wise precaution to mark the top of the
deck or to interpret it so that it does not get out of proper sequence.
The deck produced by the processor is ready to go to the Autocoder.

STEP 4

A normal Autocoder assembly will be performed on the cards
produced in Step 3. The control card furnished is 661 to produce a
system to run on a 16000 character 1401. This machine is available
at Endicott; 1f the machine to run the Autocoder assembly 15 smaller,
you should make a substitution of the control card. Autocoder system
operation consists of mounting the system tape on Tape Unit 1, work
tapes on units 4, 5, and 6, placing the card deck in the card. reader
and using the tape load procedure. A listing of the card deck will be
produced by the Autocoder. Note should be made of the error messages
connected to the Autocoder assembly. In general, the proqramproduced
by the Attocoder will be in the same order as the program wrl lten in
T. P. source language. An examination of the listing will demonstra.te
the source of duplicate symbols, undefined symbols, and object program
too large to fit in memory. Two exceptions to the general rule are the
constants and expressions will appear within each logic table where
they are used rather than remaining with the data division where they
were wr1tten.

STEP 5

Step 5 cons1sts of loading the object program on the RAMAC 1401
combination. The procedure is analogous to Step 2 except that this time
the program being loaded consists of the object control system deck
furnished by our group followed by the output of the Autocoder assembly
in the T. P. program. These decks are put in the card reader, card
load is performed and again at the end of the cards the START button is
pushed to feed the last two cards.

· ,

(

1. P. Section 99 -3- September 22, 1961

STEP 6

In step 6, the obje ct proqram runs on the object machine. The
object procp-am primer deck of about 5 or 6 cards 1s placed in the card
reader and card load executed. The object pro~ will beqin with
the execution of table 001 and wU1 operate In accordance with the
instruction written in the source lan\1Uage proqram. If data cards are
called for, they may be placed In the card reader following the primer.
Good luck. .

WS:np
9/22/61

,

