
/ ..

INTROOOCTION

A DESCRIPTION OF THE BASIC ALGORITHM tEED IN

THE DErAB/65 PREPROCESSOR

By A. E. Chapman and M. Cal1.ahan

Draft SP-l99~
September 9, 19b5

While many papers and articles have been written on the uses and advantages of

decision tables, only a few have been written on the algorithms used for converting

a decision table to computer instructions. 1 Additionally, except for a few

of the algorithms used in current decision table compilers or preproces6ore 2,

none have yet been fonnaUy described. This paper describes the conversion algorithm

used in the DETAB/65 preprocessor, which converts decision tables into COBOL. '

Since the preprocessor and tbe language associated with it were developed for

COBOL users, the preprocessor was written in a modular farm in required COBOL-61.

Thus J any COBOL user on any coorput er can use the preprocessor or easily modify

it for his use.

While the use of' a preprocessor introduces 1neITic1encies due to the compile-time

of the preprocessor and the run-time associated with COBOL, the advantages of this

method were great enough to have warranted the effort.

1 r4. S. Montalbano, "Tables, Flow Charts, and Program Logic, II :rIM Systems Journal,
September 1962.
S. L. Polla.ck, "Conversion of Limited-Entry Decision Tables to Caoputer
Pfograms." RAND Corporation Memo RM-4020-PR, May 1964.

J. F. Egler, "A Procedure -ror Converting Logic Table Condi tiona into an Efficient
Sequence of Test Instructions." Communications of the ACM, September 1963.

2 FORTAB by the RAND Corporation, TABSOL and LOOTAB by the General Electric
Corporation, IJl'S by the lHoi Corporation.

-2-

PREPROCESSOR DESIGN CRITERIA

The preprocessor accepts a decision table Within COBOL language called DETAB/653,

which was itself developed fran a language called DETAB-X." It operates pr10r to

the COBOL ccmp1lers and, in operation, does not process regular COBOL statements,

but merely passes them alcmg to the ccmp11er. However, arJ;f decision tables found

within the COBOL program are converted by the preprocessor 1D.to COBOL statements

that are then passed along to the caup1ler. Each decision table will be considered

a COBOL Section, thus meld.:ag any basic cha.nse to the COBOL caup11er 1tsel.:f" wmecesary.

Al:though the generation of efficient code fran decilion tabl.es may requ.1re careful

selection of the sequence for testing condi tiona I and may even involve intermixing

of dec1sion and actions, it was felt that this type at optimization woul.d require

t'l1e preprocessor to be too ccmplex, especially since the preprocessor vas bas1-

cally bu1l.t to allOW' a great variety of users to exper1ment with usiDg decision

tables .

The preprocessor will accept l1m1ted-, extended-, and mixed entry decision tables

(see Figure 1 below).

R, R R ELS R, R, Ro ELS Rl R R ELS

!bon - y N -
C=ll Y N - -
E-F N - Y -
x x - x -
y - x x x

L:lmited-Entry

"" - " r

C= D - -
Eoi F - F

X X - X

Y - x y

Extended-Entry

DECISION TABLES
Figure 1

- A,

- ,,-n

- Eoi

- y

y y

3 Developed by SIGPLAN Working Group 2 of the Los Allgel.es Chapter
of the ACM, 1965.

• Developed by the Systems Group of CCXlASYL, September 196:1.

~ I

y N - -
F - F -

x - x -
- x x X

Mixed-Entry

, ,

· .

Since the algorithm only handles limited-entry decision tables, both extended-

and mixed-entry tables are transformed into limited-entry decision tables, which

are then converted. It 1s not the purpose of this paper to explain this tra.'i.sfonna-

tieDj suffice it to say that both extended-and mixed-entry tables can be described

8S limited-entry decision tables.

DECISION TABLE C!iARACTERISTICS

Condition I
Stub

Action
Stub

Condition
Entry

Action
Entry

A decision table (hereafter known as a I1I') can be loglcal.ly divided into four

sections (See Figure 2 above). The upper tvo sectloDB (Condition Stub and Condi

tion Entry) describes the set or string of conditions that is to be tested. The

lower two sections (Action Stub and Action Entry) describe the set or string of

actions that is to be taken upon satisfaction of a set of cond1tions. A ru.lc

consists of a set of conditions plus a set of actions, and a DT typically consists

of several rules.

Every DETAB/65 DT must contain a special rul.e called the ELSE-RUlE. The ELSE-RUlE
;

must not have any entries in the condition-entry section of the IJr, but may ~

may not have entries in the action entry o:f the table 5. It is generally con ..

sidered the error exit of the IYl'. Sane decision-table d.ef1n1.tioDB are defined

below:

1. A redundancy exists in a decision table if two or more rules do not have

5 If the table contains -;;f rules (where n • no. of conditions), there will not
be any actions specified as the tab~ Will be caJIplete. However, it must be
present.

-4-

at least one Y,N pe.1r 1D tmy of the rows and the actions specified are

identical. R R2
C, - N

C Y Y
A X X
A - -

2. A contradiction or logic error exists in a decision tabl.e 1t two or more

rules do not have at least one Y,N pair in any ot the rOW'S and the actions

specif1ed are not identical.

R, R2

C - N
C Y Y
A, X -
A~ - X

3. Any ruJ.es not specified or implied in the table are assumed to be part of'

4.

the ELSE-RULE. Only the action part or the ELSE-RillE i8 pertinent.
• •

n
An incCJl!Plete decision table 1s one where there are leas than 2 non-redundant

rul.e8 (n equal8 the nwnber or condition8 in the tabl.e). The ELSE-RULE,

however, does not count as one c:L the 2n rules.

5. Each rule number, except for the EIBE-.Rl1IB, will be denoted by R
1

, R
2

, R
3
,. •• :

where Ri 1s the rule number, 1 Q 1, 2, 3, - zO.
6. Each condition Yill be denoted by C1' C2' c

3
' ••• vb!: re C1 is tmy string of

condi tional COBOL statements; 1 • 1, 2, 3, •.• , n.

7. Each action Will be noted by A1 , A2, ~, ••• where l\ i8 any 8tring or non

conditional COBOL statements; K. 1, 2 , 3, ••• •

8. Any entry in the condition am/or action-entry 8ection of a rul.e Will be

referred to as an element of the 00'; thus, a rule can be considered a column

of elements of the DT.

-5-

A rule may consist of any one of the five following entries:

Entry Ilefini tion

l- "y II meaning YES This condition 1s to be tested to see if it is true.

2. "N II meaniDg NO This condition 1s to be tested to see if it is false.

3. " " meaning BLANK This condition does not apply, or this action :':'5 not
to be taken when this rule 1s satisfied.

4. "_" meaning DASH Same as 3.

5. "x II meaning X This action 1s to be taken when all. condi tiona for
this rule are satisfied.

The inputs to the algorithmic generator (hereafter cs.:ued the generator) consists

of:

~. A matrix (which will be called the IYl') canposed of yt s , Nts, and blanks

(dashes are converted to bl..anks). There are the elements of the DT.

2. A vector, Cp C2 ' C
3

' consisting of the n conditions to be satisfied.

3. A vector, Zl' Z2' Z3' ••• Zn consist1ng of the series (or str1ng) of

actions to be performed depending upon the conditions to be satisfied.

4. An ELSE-RULE (which 1s, however, not considered an integral part of the

DT matrix).

All output fran the generator consists cr£ simple COBOL conditional. statemente.

of the l' ollowing type;

where :

1. Cn is the nth condition being tested.

2. DXN is the statement label designating the paragraph name where further

checks are to be made by the conditions (N is a 3-d1git number).

-6-

:I . ATM 16 the statement label that precedes user-defined actions tor specified

rules (ATP 1s another action label.; the two are not the same). M and P

are 3-d1g1 t no.' 6 which are based upon the no. of the rule :fb r vhich the

solution was generated.

l~. ELOOl 1s the error or condition not covered exit. The brackets are used to

group the possible combinations.

TIlE ALGORITHM

Wittl the above tab1e characteristics, definitions, and e8S1~ deduclbl.e corol1.ar1es,

we can nOW' describe the steps invol.ved in convert1llg a typical decision table

(Figure 3) to a series of test instructions. Except tor el1m.1nation of obviously

unnecessary teats, no test optimization 1s attempted.

Generally, several "passes" are made through the IY.r, with each pass generating

COBOL ccxle, that makes tests on the various conditions and leads to actions that

constitute a solution tor one or mare of the rules. These rules are then deleted

fran the DT and the process continues until no more rules exist in the DT.

The DT is then considered to be solved. The number of passes will never be more

n-l thatl 2 ,(where n _ IS DI.lIDber of cwditions in the I1l') and may in tact be less.

tAch condition-entry section will contain one of the f'ollorlng classes of Y I s J

Nis and blanks. It is their satisfaction 'Which will provide information for the

gent!ration of output code.

Class 1 - contains one or more ylS, Nis and blanks in any combination.

Class 2 - contains one or more Y's and N's in any canb1nation.

Class 3 - cootains one or more Y's and blanks in My canbination.

Class 4 - contains one or more N's and blanks 1n an;y combination.

-7-

Class 5 - contains all Y'8.

Class 6 .. contains all Nis.

Class 7 - contains all blanks.

For each pass through the DT, we start with the nth condition in the DT. The

"n" is initially set to one and the follCMing steps m:-e done:

Step 1. .. Examining the Condition Entry Sect10n

The nth condition entry section elements are examined for one ~ the above 1

classes. The following rules are then applied to determine what COBOL code to

generate.

1. It' et least one Y and/or at least one N and arry, but not all blanks

are fOWld 1n any canb1nat1on the generated code will be:

IF C
n

GO TO DXN.

(where DXN 1s a generated label which 16 saved in all. cases by placing

it 1D a push-down l.ist fran which it can be l'popped" up to provide a COBOL

statement label when needed. Th1~ provides for a lIl.ast in-r1rst out 11

requirement) •

2. If only yls are found the generated code 1s:

IF C
n

GO TO DXN ELSE GO TO ELOOl.

and a statement label 1s "popped /I fran the push-dawn list.

3 . If' only Nis are found the generated code 1s:

IF C
n

GO TO ELOO1.

4. If ~ bl.anks Md/ar 'B'st6 are found, no COBOL code 1s generated. The

elements above the blanks (or B) are then examined and the folloviCS tests

per1'ormed:

a. If there are no blanks above this condition, tbat condition's element

is changed to a 'yl.

6 B is a delimiter whose use is expla1ned 1n Step 6.

• ",

' ..
" '

'c

-8-

b. If there are any blanks above this condition, 8 IBI 1s placed in that

condi tion's element.

This continues untl~ all elements of that condit1on have been examined.

Then the next step 1s performed.

Step 2 - Preventing Unnecessary TestiDg of Rules

Before the above mentioned code is 1mp.lemented a check is made after a Y or an

N is found in a rule to determine if the remaining elements in that rule con-

tain all blanks. If they are not all bl..a.nks we go to Step 3; otherwise} since

one solution far this rul.e has been found we generate either an AZM or .AZP

action label for inclusion wi thin the previously generated code (if' a Y -generate

AZM. , or if an N-generate AZP). The number of the rule determines what M or P

will be; i.e., Rule 1. - Generate AZOOl; Rule 2,~ AZ002, etc.).

Step 3 - Last Condition Analysis

If this is not the last condition go to Step 4; otherwise, the following analysis

1s made :

1. If the DT contains only one rule whose l.ast condition equals Y generate

the following code:

IF C
n

GO TO NIM ELSE GO TO ELOO1

2. If the DT contains one rule whose last condition equals N generate the

following code :

IF C
n

GO TO ELOO1 ELSE GO TO ATP.

3. If the DT contains two rules whose last conditions contain a Y and an N

generate the followi.ng code:

IF C
n

GO TO A'J.'M ELSE GO TO ATP (M,.'Y' rule no., p..'N ' rule no.)

4. . If anything else is indicated there exists an inconsi stency or redundancy

i n the l ogic of the DT. Error messages are generated but conversi on is continued.

-9-

After this step 1s performed contro~ goes to Step 6.

Step 4 - Modifying the DT

Each time a condition-entry section has been examined a modified DT is f ormed

(the original. DT 1s saved). This 1s done by deleting frem the DT all rules whose

nth cond.1 tloD-entry section have a Y in it. HCIW'ever, if ~ Y I S are f OWld in

this condition entry section, no del.etions are done and the modified DT remains

the same as the original. (unmodilied) DT.

Step 5 - Iteration

Next increase n by 1 and go back to Step 1.

Step 6 - Ho.ndling the Solutions

When the 1.ast condition-entry section has been examined, one or more solutlt)ns

to the original I1l' have been found. These solutions are then deleted by examin

ing the rules which correspond to these solutions and app1yj.ng the ;foliovlog

criteria:

1. If a SOUJTION rule contains only 'yla' and 'N's', or if the only blanks

found are contained in the last consecutive elements (i.e., n, n-1, etc.,

contains blanks) of the rule, it 1s deleted !'rem the original DT.

Any other case indicates that there is more than one solution to the rlL'..e.

The solution just found is deleted by introducing a del:1m1ter J which we sha.f1

call IBI. By setting blanks equal to fBI, the generator is able to step back

wards up the rule (once each pass) and generate code for all possible canb1na.tions

of conditions in a given rule. The stepping is dore in STEP 7, where the solu

tion vector 1s canpared 1I1th the original DT and a mod1.tied DT tormed contain-

ing tbe next solution tor this ru.le ,md possibly solutions to other rules.

TIlis 1s done in the :following manner.

-10-

2 . The rule is examined for 'B's' and;

a. If alB' 1s found and there are no bl.a.nks 1n the elements above 'B'

in the rule, the element containing the IB' 1s changed to 'Y' and Step 6

1s repeated. If there are one or more blanks above the I B I I then the

b.l.ank nearest the 'B' 1s changed to a IB' and alJ. other 'B's' are re-

placed with blanks.

b. If no 'B's I but ~ ble.nlts are fOWld, the 10W'est blaDk 1n the rule 1s

replaced with a I B I •

~tep 7 - Setting Qp for Next Pass

If the original DT now does not contain any rules, a1l of the code necessary

for testing the conditions has been generated and a complete solution of the

.'Yr has been fcund. The generators work 1s ccmplete. If one or more rules still

exist wi thin the original. DT conversion of the DT continues.

First, a statement label is "popped" !'rem the push-down list. Next, one of the

solutions (Rules) just found 1s saved, n 1s set to one, and all blanks in the

ru1.e (hereafter ca.1J.ed the solution vector) are set to 'Nt. Follow1.Dg that,

the nth element in the solution vector is canpared with each element in the nth

condition entry section of the original DT. If there are any elements in the

nth condition-entry section equal to either blanks or the nth element in the

Golution vector, a special modified DT is found by deleting ~ rules (fran

the original DT) whose nth element 1s not equal. to either blanks or the nth

p.lement in the solution vector. The n is set equal to n + 1. end the above

process repeated until a IY.i' is found which does not satiSfy the above conditions. 7

Irhe n is set to n + 1 end the next lipase" started at Step 1. us1ng the special

modified IY.i'.

7
Note: If n equaJ.s the last condition, redundancy exists within

the DT and 1e so flagged.

-ll-

ERROR CHECKING

COBOL code 1s always generated. &rTors in the logic of the Dr mayor may not

produce errors in the generated code. Redundancies and inconsistencies are

checked for and all errors detected are flagged. Same of these will prevent

completion of the conversion, others serve only as a warning.

CONVERSION EXAMPLE

The following 1s a step by ste~ e~le of the conversion of a DT:
R, 2 , R. EUl

C Y Y

C2 Y Y

C, Y N

A, X -
A~ X X

A, - X

A. - -
Z, Z2

N N

Y N

- N

X -
- -
- X

- -
Z Z , •

-
-
-
-
-
-
X

Zs

Rs - ELSE-RULE

Zn = action string to
be performed.

Set n = 1 and per1'orm Step 1 for C
1

" Since there 1s both a Y and an N in

el , the following code 1s generated:

IF C
1

GO TO DXOOl •

Since DXOOl 'Will be used later as a statement :label, it 1s saved in the pus,'-- ,j"IWll

list.

Next I Step 4 is perf'ormed and the DT becanes:

R, R.

C, N N

C2 Y N

C~, - N -
Z, Z.

N 15 set equal to 2 and Step 1 1s performed for c
2

• There is both a Y and Nl

N in c2 ' but C
3

in R3 is blank and Step 2 1s applied resulting in the following

-12-

benerated code:

IF C
2

GO TO AZ003

St,ep 4 1s again applied and the l1r beccmes:
R

C, N

C2 N .
C, N

Z4
N is set to 3 and Step 1 is perfar.med for C

3
• Since this is the last cond1-

tion Step 3 1s performed and the resul.t1og code is

IF C
3

GO TO ELOOl ELSE GO TO AZOO4 •

NOi since one pass has been made through the DT, Step 6 1s performed and the

original. DT becCIIles
R, R~

C, Y Y

C Y Y .

C, N Y

Z Z2 ,
Since there are 2 rules left 10 the DT 1 step 7 is performed resul.t1.ng in n

being set to 2.

First, C
2

1s examined, which generates the following code:

IF C
2

GO TO DXOO2 ElSE GO TO ELOO1 .

The label DXOO2 1s saved 1n the push-down list and a mod1fied DT 1s formed;

hCN'ever, since C2 contains only Y's the Dr remains the same.

Since there are no N's 1n the C
2

condition-entry sectioD, the statement label

DXOO2 1s set up :fran the "push-down" list. Then n 1s set to 3 and Step 1. 1s

performed for C
3

• Since C
3

contains both a Y and an N, and 1s 8l.ao the last

-13-

condition, Step 3 states that the output code will be:

IF C
3

GO TO AZ002 ELSE GO TO AZOOl.

Steps 6 and 7 are then performed resul.ting in an original. DT with no rules 1:,

it. This signifies that all rules have been solved and a canpl.ete solution of

the IYl' exists. The generator 1s nOW" finished with its job.

The generated COBOL code is thus:

(PASS #1) IF C
1

GO TO DXOO1. (Step 1.1)

IF C2 GO TO AZ003. (Step 1 and Step 2)

IF C
3

GO TO EIJJOl ELSE do TO AZOO4. (Step 3.2)

(PASS #2) DXOO1. (Step 7)

IF C2 GO TO DXOO2 ELSE GO TO ElJJOl. (Step 1.2)

DXOO2.

IF C
3

GO TO AZ002 ELSE GO TO AZOOl. (Step 3.3)

ACTION PROCESSING

Upon the generator's completion, each of the series of actions specified for ,

each of the rules (including the ELSE-RULE, which 1s labeled ELOOl.) are set up

as individual COBOL paragraphs, to be perfonned in the occurring sequence (i.e.,

Al , A2, A
3

, •••) Each rule thlE has its own sequence of actions (sane of which

may be redWldant with another rule). As an example, the following would be

generated for the example above;

AZOOl.

AZOO2.

-14-

AZ003.

Al •

GO TO DEXIT.

AZ004

A3

GO TO DEXIT.

81.001.

A4

DEXIT. EXIT.

GO TO DEXIT is almost always generated since a branch may not exist to allow

normal. exit fran the Dr. DEXJT is the normal return fran the deCision tab~e

if the DT 1s operated 8S a c~OBed COBOL Bubroutine. If it 1s not, the last

action performed by Blly rules action string must be an Wlcondltlonal. GO TO.

lf' it ls, then the "GO TO DEXIT" will not be generated.

DETAB-65 USER'S MANUAL

1. lNTRODUCTION

Decision Tables endow a user with the ability to provide a graphical representa-

tion of a complex procedure in such a way that one individual is able to readily

understand a program written by another.

DETAB-65 1s the decision table language which the preprocessor converts to

COBOL statements for subsequent processing by an appropriate COBOL compiler.

This manual's purpose is to describe to a user how a D~65 decision tabl~

should be written for inclusion Within a COBOL program. It alBa describes the

necessary linkages, ~ormat6, and restrictiOns used in construction of the decision

table.

Since not all definitions will be defined in this manual, it is r ecommended

that the user first study the D~65 documents accompanying this manual.

In addition, a teet program is documented in Appendix B.

2. STRUCTURE OF A DECISION TABLE

A decision table can be logical.l.y divided into four sect ions (See Figure 1

below). The upper two sections (Condition Stub and Condition Entry) descri~

the set or string of conditions that is to be tested. The lower two sections

(Action Stub and Action Entry) describe the set or string of actions that 1s

to be taken upon satisfaction of a set of conditions. A rule consists of a ~et

of conditions plus a set of actiOns, and a decision table typically consists' of

several rules.

Condition Condition Entry
Stub

Action Action Entry
Stub

Figure 1 I ,

-2-

The three types o~ deciSion tables 1n current use today are the 11m1ted-,

extended-, and .mixed-entry types (see Figure 2 below). Eventually 1 t will be

possible to convert all three types of tables via the preprocessor j hCMever I at

the present time the preprocessor is restricted to limited-entry tables.

R, R,

C, N Y

C, Y N

A X -
A - X

LIMITED ENTRY

3. PROORAM FORo\AT

R R2

C -58 -25

C : ,I J • K

A X -
A - X

EXTENDED-ENTRY
Figure 2

,
I R,

C, -58

C, ,1J
A X

A, -
MIXED-ENTRY

R2

Y

N

-
X

Tbe format for a COBOL program ccmta1n1Dg DETAB-65 decision tables must cont'orm

to the requirements for ~ COBOL program, except that a decision table 1s

inserted in the COBOL PROCEDURE DIVISION as a SECTION, and 1s re:ferred to by

6.D. appropriate COBOL statement (see Table T.1pkege).

The DATA DIVISION of a COBOL program incorporating a Dm'AB-65 decision table

is treated as 1s any other COBOL DATA DIVISION. Any symbolic data. reference I

data structure, constant, or working storage used in a decision table must be

declared in the DATA DIVISION.

The decision table(s) are placed at the end of the PROCEDURE DIVISION sloce they

are to be treated as COBOL subroutines. Thi.s is the onl.y difference between a

COBOL program and " COBOL with decis ion table (B) progr

4. TABLE LINKAGE

In compilation a decision table will be treated as a closed COBOL subroutine.

Thus, a deciSion table shouM not be entered via the normal operating sequence,

-3-

but oDl.y by using COBOL GO TO or PERFORM verbs. 1

Since a GO TO results in an uncond1t1on transfer, a retUl'Il or transfer pain"\;

must be specified by the user 1n the decision tables action stub or the pro-

cessing sequence will be lost. It 1s recaameoded that the GO TO verb not be

used when referring to a table fran the main sequence of the program.

When transferring control to a decision table by the use of a COBOL PERFORM

verb, 8 normal return to the processing sequence will be made by the compiler

unless the user specifies otherwise in his actions. Specifically, the preprocessor

will generate a Hao TO DEXIT. ", far every rule whose last action does not end

in a "GO TO ___ .11, no matter hCN the table was entered.

Tables may be chained together by placing GO TO's and PERFORM ' 8 in the Action

Stub of one or mare tables. HOW'ever, it 1s advisable to keep very, very close

track of this as it is possible to generate errors due to the way various

COBOL ccmpilers set up their procedure sections.

5. DEFINITIONS

The following is a series of decision table derinitions to be used in descr1b-

1ng a DETAB-65 decision table:

5 . 1 TABLE- ID

Identifies to the preprocessOr that a D~65 decision table has be~n

encountered. The ID is always 4. numeric characters consisting of 4.

zeros (0000).

5.2 RULE-ID

Identifies to the preprocessor that the rule-card 1s present (for

error cbecking purposes). The ID 1s always 4. numeric characters in

length and consists of (0001).

5.3 TABLE-NAME
This is a 30 alphAnumeric character or less name which is then used to

identify the COBOL section generated by the preprocessor .

1 It is possible to enter a table from the main sequence but the trouble
this can entail does not make 1 t worthwhile.

-4-

5 .4 FQR.!

Designates the kind of table is present (i.e., l1m1 ted-, extended-,

and mixed-entry tables) and is always an al.phabetic character (L, E,

M, left-justified).

5.5 COND RG/S

Designates the number or conditions in the Condition Stub of the table.

Thi. is 3 numeric character" (right-justified).

5.6 ACTION RG/S

Designates the number of actions in the Action Stub 01' the table.

This is 3 numeric characters (rigbt-Just1fied).

5.7 RULF.'l

Designates the number at rules in a table. This includes the ElSE-RULE

and i. 3 numeric characters (right-Justified) .

5.8 RUlE NUMBERS

These are 3 nmneric characters each used to ident1t'y each rule. The

ELSE-RULE is the only exc4t1on and 1s designated by the 3 alphabetic

characters ELS.

5.9 CONDITION STUB
Contains logical, ar1tbmet1c, or relational conditions answerable by

a yes (Y) or a no (N).

5.10 CONDITION ENTRIES
'lhese indicate which condition must be met to satisf'y a rule. This

can be a Y, N, BLANK (), or DASH (-). A blsnk or dash mean. tlRt

the user does not care if the rul.e 18 Y or N as it m.kes no difference.

Al..so known as the elements of' a task.

5.11 ACTION SWE

Contains imperative statements to be performed as indicated by the

ACTION ENl'RIES of a rule when the rule is satisfied.

5.12 ACTION ENTRIES

These 1n:l1cate which actions must be performed if a rule is satisfied.

The character used to signify this is an X.

-5-

6. CONVElIl'IONS AND lilllTRICTIONS

When wr1 ting DETAB-65 decision tables the following words cannot be used (this

is in addition to COBOL restricted words) 6.1 - 6.6.

6 .1

6.2
6.3

6.4

DXN (where N 1s

AZM (where M 1s

AZP (where P 1s

EIDOl

6 .5 DElUT

6.6 ElS

a 3 dig1 t number)

a 3 digit number)

a 3 d1g1t number)

6.7 Maximum of 50 entries in Condition Stub.

6 . 8 Maximum of 50 entries in Action Stub .

6.9 Maximum of 50 rules (includes ElSE-RULE).

6.10 Maximwn of 12 and minimum of 3 columns in a rule.

6.11 Maximum of 58 and minimum of 12 colLmlIlS in the Condition & Action Stubs .

6.12 EL.sE-RULE (ELS) must always be present.

6.13 TABLE END card ($ in Column 7) must always be present.

6.14 EOF card (999X in ColUlllIlS 4-7 must a1ways be present.

7. DETAB-65 DECISION TABLE

The table itself is written in a mixture of f'ixed and. :free tannate. The following

lists the various sections ShC7W1ne; theproper way to set up a DETAB-65 dec1s:;'on

table.

7.1 Header

The header contains information used by the preprocessor to 1n1tate the

conversion of the table and allow it to check for errors.

COLUMN(S) DEFINITION

4 - 7 TABLE lI>

9 - 38 TABLE NAME

39 -40 FORM

41 - 43 CONn-RawS

44 - 46 ACTIOO-Ra./S

47 49 RULES

-6-

All other columns in the header are blank . •
7.2 Rule

The rule pa:-t of the I)ETAB-65 table contains information "'hieh allows

the preprocessor to determine the size of the stu~ area. The size of

the largest entry in either the condition or action stub determines the

si~e of the stub a~~~.

COLU:.rN(S)

4 7
9 - XX

DEFDIITION
RULE- ID

Blank . This 1s the size of the stub area.

The rules (RULE-NUl.ml';RS) start immediatel.y after the last column in the

stub area and are terminated by a dollar sign ($). The onl.y exception 1s

if the last rule occupies column 80, thus putting the dollar sign in

column 81.

7. 3 Body

The body part of the table conta1~s the Condition and Action Stubs and

:!:ntries . All actions are perfonned in the order of their occurrence j

if it 1s desired to do series of action in a different order, it 1s

necessary to repeat them in that order in the action stub.

7.4 End

The end part notifies the preprocessor whe~: the input 1s over

and conversion 1s to begin. It consists of a dollar sign ($) in column 7.

Preprocessor Output

The preprocessor will convert a DET~65 decision table into COBOL statement5

of the following format:

IF C
n

GO TO
DXN
AZN
ELOOl

• ElSE GO TO AZP
ELOOl

Where Cn is the condition to be tested} and th~ brackets output formats.

Errors

All errors detected during the preprocessors operation will be listed upon

the l.iut tape . For a full description of all errors see Appendix A.

4 NOTE: Columns 1-3, 4-6 may contain a sequence number (except for header
and rule cards).

-7-

8 . ~OF Card

To tell the preprocessor when to terminate operations a special card is used

called the EOF card. This consists of a 999X in columns 4 - 7, and is t he lest

cord processed. This means that if more than one program 1s to be pr ocessed

the EOF card is placed after the l.ast program.

Deck Outline

The following shows the deck structure of a COBOL program containing a

DETAB-65 decision table.

COBOL PROGRAM
CARDS

C EOF CARD

~ ;OBOL PROGRAJ1
. CARre I I
----y

~ - --- ---I VUl~','Nl!

Sample COBOL, DEI'AB-65 Program Deck

APPENDIX A
-8-

1. PRESENTLY TABLE RESTRICTED TO LIMITED ENTRIES

FOR-1 does not contain an 'LI.

2. TABLE-NAME MISSING FRCM HEADER CARD

Processing "ill be halted and table skipped.

3. RULES CARD MISSING

Processing will be halted and table skipped.

4. LESS THAN 3 RUlE COLt.J.1NS SPECIFIED

A rule contains 2 or less columns for processing, conversion will be
halted and table skipped.

5 • PRESENTLY, CONTINUED RULES NOT IMPI»IENTED

Column 8 bas an entry.

6. CONDITION STUB EXCEEDS 58 COLlJoINS

Condition stub exceeds limit proces"s1.ng halted and table skipped.

7. NlWlER OF RULES ENCOUNTERED DISAOREES WITH RULE CARD

Number of rules entered 1n header card (RULES) differs fran that
specified by the user.

8. MORE THAN 50 ACTION OR CONDITION EN1RIES

Action or Condition stub contains more than 50 entries, processing
halted and table skipped.

9. DECISION TABLE LOOIC ERROR. PROClliSING HALTED.

Check over rules for either redundancy, inconsistency or both.

.SEGIN JOB af6 08/10/65

.C J OP,9~101.!~TAe~5.S/!S.56.~5555,~ •
• COBOL.X.

IDENTIFICATION DIVISl~N.
PROGRAM-rD, P~AY90Y.
AUT~O., CHARLES CREe.
DAT6-COHPILED. 08/10/65
REMARKS. THIS IS A SIMPLE DATA ReTRIEVAL PROORAM TO

ILLUSTRATE THe US~ -OF DETAB/6,.
ENVIROHH@NT DIVISION.
CONFI~uRATION SECTION.
SOURc!-COHPUT&R. CONTROL DATA 160.-A.
OBJ&CT-COHPUTER. CONTROL DATA 1604-A.
INPUT-OUTPUT SECTION.
F I U;-CONTAOL.

S~LECT CANDIDATES ASSIGN TO SySTEM-INP UT _TAPE,
SELEcT RAT~D-'ILE ASSIGN TO SYSTEM-OUtPUT_TAPE.

DATA D I v ! S I ON •
FlU; SECTION.
FD CANDIDATES

lABEL RECORDS ARE OMITTED
DATA RECORD IS INASC.

01 INREc.
02 FIllER PICTURE X(80,.

FD RATED-rIll;
LABEL RECORDS ARE OHITTEe
DATA RECORD 19 EVAL.

01 EVAL.
02 FILLER PIcTURE X(48,.

WORKING-STORAGE B~CTInN.
77 TOP-eTR piCTURE 9(7, COMPUTATIONAL.

SYNCHRONIZED RIGHT. VA[UE ZERO.
77 N~XT-BEST-CTR pICTURE 9(7, COMPUTATIONAL.

SYNCHRONIZED RIOHT. VALUE ZERO.
77 lAST.RESORT-OTR PICTURE 9(7) COMPUTATIONAL,

SYNCHRONIZED RIGHT. VA(UE ZERO.
77 TOTAL-NO piCTURE 9(5) COMPUTATIONAL,

SYNCHRONIZED RI~~T. VALuE ZERO,
01 WIR,

02 SKlp·eTl ~IeTURE x,
02 RATING PICTURE X(12),
02 W8Rj,.

OJ IDNO PICTURE 9(71.
03 SEX PICTURe x.

88 FeMALE VALUE ~F~.
OJ AGE PICTURE 999.
03 HEIGHT PICTURE 999.
03 WEIGHT PICTURE 999.
03 HAIR PICTURE X(9).

88 BLOND VALUE _BLOND_.
OJ EYes PICTURE X(5).

88 BLUE-EYES VALU~ _BLue_.
03 I-a PICTURE 999
Q3 FILLER PICTURE X.

PROCEDURE DIVISION.
PN01.

OPEN INPUT CANDIDATES.
OPEN OUTPUT RATED.FILE.

PN02.
READ CANDIDATES INTO WSR1~ AT END GO TO PNEOJ.
PERFORM CHOICE-PIcK.
GO To PN02.

PNEOJ.
CLOSE CANDIDATES WITH LOOK. RATED-FILE WITH LOCK .
DISPLAY ~TOPS COUNT = ~ ToPRCTR.
DISPLAY _NEXT COUNT = ~ NeXT-BEST.eTR.
DISPLAY ~LAST COUNT = ~ LAST&RESORT-CTR .
DISPLAY _TOTAL = _ TOTAL_NO.
STOP RUN.

00 1'JO f!1l CH OICE-PICK L 010008008
()10001 - ~~~J02003D040u50~600'cLS~
0101;;! FEMALE Y Y Y Y Y Y Y
010 i{;2 AGE GREATER THAN 18 Y Y Y Y Y Y Y
010103 AGE LESS THAN 38 Y N Y Y Y N Y
010104 BLONI) Y N N
0101015 BLUE.EYI:;S y N N N
010106 WEIGHT GREATER TWAN 89 Y Y Y Y Y Y Y
010107 WEIGWT LISS THAN 133 Y Y Y N Y N Y
010108 HEIGWT GREATER TWAN ~9 Y Y Y N Y N Y
010109 HE!GWT LASS THAN 68 Y Y Y Y N
010110 I-e GREATER THAN 99 Y N Y Y N N

010112 MOVE _TOPS- TO RATING X X)(

010202 ADD 1 TO TOp-CTR X X X
010203 MOVE _NEXT 8E5T_ TO ~ATING X X
01020~ ADI) 1 TO NEXT-BEIT-CTR X X
01020. MOVE _LAST RESORT_ TO RATING X)(

010206 ADD 1 TO LAST-REtORT.CTR X)(

010201 WRITE EVAL FROM WSR X X X l(X X X
010207 ADD 1 TO TOTAL-NO X X X l(X)(X W

S

* -------------- ---
CHOICE-PICK seCTION.

I DXOOO.
.-I IF F"&HALE .-I ,

GO TO OXOO1 ELSE GO TO ELOD1.
OXODl.

If' AGE GREATliA THAN 18
GO TO 0)(002 ELSE GO TO ELOn1.

OX002.
IF AGE LESS TWAN 38

GO TO 0)(003.
IF' BLOND

GO TO 0)(004.
IF' BLUE-EYSS

GO TO 0)(005.
Ir WmlGHT GREATER 'WAN 89

GO 'to OX006 ELSE GO TO ELOO1.
OX006.

IF WEIGHT LESS THAN 133

GO TO OX007,
IF HEIGHT GREATER T~AN 59
~O TO ELOO1.

IF 1.0 GREATER THAN 99
GO TO EL001 ELSF GO TO AZ006,

OX007.
IF HEIGHT GREATER THAN 59

GO TO D)(008 ELSP GO TO ELOO!.
OX008.

IF HllGHT LESS THAN 68
GO TO DX009 ElS~ GO TO ELOO1,

OX009.
IF 1-0 GREATER THAN 99

GO TO AZOD2 ELSF GO TO ElOnl.
OX005.

IF WEIGHT GREATER THAN 89
GO TO DX010 ElSF GO TO ELOG1.

OX010.
IF W!IGHT LESS THAN 133

GO TO OX011 ELSF GO TO ELOG1.
DX011.

IF HSIGHT GREATER THAN 59
GO TO D)(1!12 ELSF. GO TO ELOG1.

OX012.
I

IF HEIGHT LESS THAN 68 C\J
.--!

GO TO OX013 ELSf!! GO TO ElOO1. I

DX013.
IF 1.0 GREATER THAN 99

GO TO AlOO2 ELSf!! GO TO ELOG1.
OX004.

IF WeIGHT GREATER THAN 89
GO TO 0)(014 ELSF GO TO ElOn1.

OX01.4.
IF WeIGHT LESS THAN 133

GO TO OX015 ELS!! GO TO ElOnl.
DX015.

IF H!IGHT GREATER THAN 59
GO TO 0)(016 ELSF GO TO ELOG1,

OX016.
IF HEIGHT LESS THAN 68

GO TO D)(017 ElSF GO TO ELOG1,
0)(017.

IF' 1.0 GREATER THAN 99
~O TO AZ002 ELSF GO TO HO !l 1.

DX003.
I' BLONO
00 TO OX018.

I' BLUE-EYES
00 TO OX019.

I' WIIQHT GReATER T~AN 80
BO TO OX020 ELSfi GO TO ELOIl1.

DXoaO.
J' " W!JGHT LEst THAN 133

BO TO DX021.
I' HEIGHT GREATER THAN 59
00 ,.0 EL001.

H' 1.0 GREATER THAN 99
GO TO AZ004 ELSI! GO To ELOO1.

DX021.
I' HEIGHT GReATER THAN 5'1

1)0 TO OX022 ELS~ GO TO ELOO1.
OX022.

I' HEIGHT LESS THAN 68
1)0 TO OX023.

I' 1.0 GRUTER THAN 99
GO TO EL001 ELSI! GO TO AZ007.

OX023.
I Ir 1.0 GReATeR THAN 99

(Y"\

GO TO AI005 ELS!i= GO TO AZOIl3. .-l
I OX019.

Ir WeIGHT GREATER THAN 89
00 TO DX024 ELS~ GO To EL001.

OX024.
I' WilGHT LES! THAN 133

1)0 TO OX025.
Z, HIIGHT GREATER THAN 59

GO TO ELOO1.
Ir 1.0 GREATER THAN 99
00 TO AZD04 ELse GO TO ELOO1.

OX025.
I' HeIGHT GREATER THAN 59
00 TO OX026 ELSFI GO TO ELont.

OX026.
I' ~FIGH T LESS THAN 68

GO TO ELOO1.
l' 1.0 GREATER THAN 99

laO TO ELon1 ELSt- GO TO AZOo7,
OXD18.

I' BLUe-EYSS
GO TO DX021.

I' WEIGHT GREATER T~AN 8~
00 TO OX028 ELS~ GO TO ELOtl1.

0)(028.
I' WelGHT LESS THAN 133

laO TO D)(029.
I' H~IGHT GREATER THAN 59

GO TO EL001.
III' 1.0 GReATER THAN 99

GO TO AZOO4 ELS~ GO TO ELOtli.
OX029.

IV H&IGHT GREATER THAN 59
GO TO OX030 ELse GO TO EL001.

DX030.
IF HElGHT LESs - THAN 68

GO TO OX031.
IF' 1.0 GREATER THAN 99

GO TO EL001 ELSF GO TO AZOo7,
I 0)(031. ~

r-l IF 1.0 GREA HiR THAN 99 I

GO TO AZ005 ELSF GO TO ELOO1.
OX027.

IF' BLUE-EYES
GO TO 0)(032.

IF WeIGHT GREATER THAN 89
GO TO OX033 ELSF GO To Elon1.

DX033.
IF' WeiGHT LESS THAN 133

GO TO DX034.
IF' HEIGHT GREATER THAN 59

GO TO ELOOi.
IF' I-a GREATER THAN 99

GO TO AZOO4 ELSF GO TO ELon1.
OX034 •

IF HilGHT GREATER THAN 59
GO TO 0)(035 ELSF GO To ELo n1.

0)(035.

I

'" r-I
I

IF HeIGHT LESS THAN 68
00 TO ELoot.

IF I-Q GREATER THAN 99
00 TO EL001 ELSF GO TO AZOD7.

OX032.
IF W&IGHT GREATER TWAN 89
00 TO DX036 ELSP GO To EL001.

OX036.
IF W&IGHT LES! THAN 133

GO TO DX037 ELSE GO TO EL001.
OX037.

IF HeIGHT GREATER T~AN S~
GO TO OX038 ELSF GO TO ELOD1.

OX038.
IF HEIGHT LES! THAN 68

GO TO AZOOl ELSP GO TO EL001.
AZ001.

MOVE _TOPS_ TO RATING.
AnD 1 TO TOP-eTR.
WAITE EVAL FROM W~R.
ADD 1 TO TOTAL-NO.
GO TO OEXIT.

A2002.
MOVE _LAST RESORT_ "TO RATiNG.
ADD 1 TO LAST_REsnRT-CTR.
WAITe EVAL FROM W!R.
ADD 1 TO TOTAL-NO.
GO To DEXIT.

AZ003.
MOVE _NEXT BEST~ TO RATING.
ADD 1 TO NEXT-BEST-CTR,
W~ITE EVAL FROM W8R.
ADD 1 TO TOTAL-NO.
GO TO DEXIT.

AIOD4.
HOVE _LAST RE90RT_ TO RATiNG.
ADD 1 TO LAST-RESORT-CTR,
WAITe EVAl FROM W!R.
ADD 1 TO TOTAL-NO.
GO TO OExn.

AZ005.
MOVE _TO~S_ TO RATING.

.JJ
rl ,

ADD 1 TO TOP·eTR.
WRITe EVAl FROM wsR.
ADD 1 TO TOTAL-NO.
GO To DEXIT.

AZ006.
HOVE _TOPS_ TO RATING.
ADD 1 TO TOP-eTR.
WRITe EVAl FROM wsR.
ADD 1 TO TOTAL-NO.
GO To DExn.

HD07.
HOVE _NEXT BEST~ TO RATINn.
ADD 1 TO NEXTRBEST-CTR.
WRITE EVAL FROM wsR.
ADD 1 TO TOTAL-NO.
GO To DEXIT.

ELOO1.
ADD 1 TO TOTAL-NO.

DEXIT. EXIT.

END PROGRAM.
999X

END DETAB/65 PREPROC~SSOR RUN,

0010000 CHOHlE-PI CK L 010008008
010001 001002D03004005006007ELSS
0111101 FEMALE Y Y Y Y Y Y Y
010102 AGE GREATER THAN 18 Y Y Y Y Y Y Y
010103 AGE LESS THAN 38 If N Y Y Y N Y
010104 BLOND Y N N
01Dl0!:! BLUe .. e'w:ES y N N N
010106 WEIGWT GREATER TWAN 89 Y Y If Y Y Y Y
0101D7 WEIGWT LeSS THAN 133 If Y Y N Y N Y
010108 HEIGWT GREATER TWAN ~9 Y Y Y N Y N Y
010109 HEIGHT LSSS THAN 68 Y Y Y Y N
010110 f .. C GREATER THAN 99 Y N Y Y N N

0111112 MOVE _To~S~ TO RjTIN~ X X X
010202 ADD 1 TO ,0p~CTR X X X
010203 HOVE _N!~T BEST_ TO R'TING X X

~
010204 ADD 1. TO NEXT-.Bi81-CTR X X
010204 HOVE _LAS' R~SORT_ TO RATINa x x
010206 ADD 1. To LAST-ReSQR1.eTR x if g: 01Q201 WR!Tf ' EVAL FROM WSR X X X X X X X

§ 010207 ADD 1 TO rOTA~·NO x x x)(x)(x If ... S
I ~ END PROGRAM. /-

M

~ 9991(
I

l/"\
\0

I

I

-.!.
;:::j

I

~
0
0
::t:;
p..

C!
"4
E-o

~
"4

ffi
0

g
E-o

ir:
i:1

3278215F03106711~BLACK
0567982F025065119BLOND
1425893F021062110RED
005324705005514~BALD

GRFEN106
BLIlE 103
GRF'Y 101
BRMIN98

TOPS
TOPS
TOPS

32782i5r0310611159LACK
1425a03r021062110RBD
0~67082F025065119ALOND

TOPS COUNT. 0000003
NEXT COUNT a 0000000
LAST COUNT. OOOOOOD
TOUl • 001104

GREeNl06
GREY 101
BlU~ 103

Tilt vitw~. conclusions, or rtcommendal.ons elpruud in IlIls document do not MetS' 'If'1Ml 88/ /
s.ilrll~ rellecl Iht ofliclal _.twS or policies 01 aetnctts of tht United Stalu Government. U INIUCI ?2 000 00

U.S. GOVERNMENT CONTRACT..,... ::t'C~.
ThiS documlnt fIIU produced by SOC in ",rlorm,nce 01 contllct .:';':';'-=-'-'-==-=-=":'CC \.]J.'v1-.J C. J . Shaw

nCHNICAl
E. H .

• EWSI
E. H.

D. Drukey

5YStllll D.nlo,mlnt C.rporallon / 2500 Colondo A.,. / Santi Monic., C.llfornl. .AII 4-12-65 ... 1 1 orJ.!±..-.....

DECISION TABLES--AN ANNOTATED BIBLIOGRAPHY

ABSTRACT

Decision tables allow complex decision rules to
be represented 1n easily grasped, tabular rO~J
making it easy to see what actions are to be
taken tor each possible combination of conditions.
This b1bliography' containe • brief introduction
and 42 references, mostly annotated, to the subject.

Althou.h thiS (\O(um,n' conl,inl no cl.ss.fi,d Inform.tiOfl. it hn not bHn cI .. "d 'Of
open PIIbhc.llon by Ille OIPiltm.nl of Oe'.nse Open PIIbhUIIOfl, WllolI, or In !)lit, is
IIrQlllbtl.d _11I'Ioul Ihe IIflor '"lII'ov.1 001 Ih, Sysl.m Olll1l1ollm.nl Corpor.llolI,

12 April 1965 2

IlITRQWCTIO!!

A decision table 1s a way of representing complex decision rules in an easily
grasped, tabular form, which makes it easy to see What actions are to be
taken tor each possible combination of conditions. Let us look at a typical
decision rule.

1f CO!!DITION-A and CO!!DITION-B and
C-O!!DITION-C ho1~them do ACTION-1
!!!!! ACTION -2, and ACTION -3 •

•
This same rule could be expressed &8 a column in a decision table.

rule
,

CO!!DITION -A Y

CONDITION -B Y

CONDITION -C y ,

ACTION-1 X

ACTION -2 X

ACTION-3 X

In such a t able, the top rovs represent conditions, the bottom rows represent
actions. The entri es 1n a column corresponding to a rule are chosen from the
relloving symbols:

b 1 symto meaning

y Yes, this condi ticn must hold for the rule to apply

N No, this condition must n2! hold for the rule to apply

- don't care if t his condi ticn holds

X do this action if the rule applies

(blank) do not do - this action if the rule applies

\l1t.h these symbols , we could add other rules to t he decision table.

12 April 1965 3 TM-2288/000/00

CONDITION-A Y Y N -

CONDITION -B Y - N -
CONDITION -C Y N - -

ACTION-1 X X

ACTION-2 X X

ACTICfi-3 X X

Conventionally, the rules are examined one at a time tram left to right, only
the first applicable rule 1s applied, and the actions are taken one at a time
1n the order they are listed. Other convent ions are f easible, t hough .

Decision tables Where the entries are limited to the symbols used 1n the table
above are called limited entry tables. Extended entry tables are possible
~ereln part ot the condition or action 18 entered 1n the rule columns . The
follOWing taxonomy 1s an example ot an extended entry decision table.

nWl'lber of lege .4 .4 .4 >4 -
length of nose long short l ong - ---
I "nct '!". of neck short long long - -

then animal 1s elephant giraffe hallucination centipede unknown

go to zookeeper zookeeper psychiatris t exterminator bl01og1&t

Extended entry tables can be much more compact than limited entry deCision
tables, as you vould see by expanding the table above i nto l imited entry form.

12 April 1965 4 TM-2288/ooo/oo

BIBLIOGRAPHY

Armerding, G. FORTAB: A DECISION TABLE LANGUAGE FOR SCIEN?IFIC COMRJTING
APPLICATIONS. in Proceedings of the Decision Tables Symposiua, pages 81-87.
20-21 September 1962. Also RAND Corp., RM-3306-PR, 37 pe.ge9~ September 1962.

Scientific computer programs, like business programs, orten involve programmed
decision logic. Decision tables, which have seen uae in ~U8!~e8. and comme:
cial computer applications, can a18~ be applied to ~c1ent!t1c and engineering
problema. FORTAB 1s a dec1s10n table language based on the FORTRAN acientific
computing language. Programs vr1 tten in the combined roRTAB and FORTRAN lan ...
gua808 can be compiled tor a FO~ pre-processor ~rogram Yhl~~ haa been COD
structed tor the IBM 7090 computer. Initial experiments =onducted ua1ng tfie
FORTAB language indicate that a dec1810n table languase added to • Ici.ntitic
computing lansuAie relulti in a powerful combination ot programming tooll.

Brown, L.M. DECISION TABLE EXPERIENCE ON A FILE MAINTE."iANCE SYSTliM. in
Proceedillil of the Decision Tab1 .. Sympoo1um, pap. 75-80. 20-21 September 1962.

A decilion table language and computer program pre-compiler ver. developed &t
the lnlurance Company ot North America to facilitate desisn, implacentation
and maintenance ot a larse tile maintenance prosram. The resultl o~ ~hio
ettort indicate that dlcilion tables can have application over the entire
lyeteml d'lign-programming area. Decidon tabl •• aleo torce a d1.ciplin.~
modularity in the design ot a program which can enable a compiler to accom-
plish lome or the program organization function.

.
Clakins, L.W. PLACE OF DECISION TABLES AND DETAa-X in Proceedings of

the Decision Tables Symposium, pagea 9-12. 20-21 Se~ember 1962.

Cantrell, R.N., J. King and F.E.H. King. LOGIC-STRUCTURE TABLES. in
Comnunicationa ot the ACM, Vol. 4, No.6, pagea 272-275. June 1961.

Logi c tables are an excellant way of developing and expressing the logic re
qui r ed in procedures, operations, systems and circuits. A set of rulea for
writing and using logic tablea is explained by means of some 5imple examples.
Then the log1c structure of a vend1ng machine is given in vhich t~ logic
tabJ.e s are used. Logic tables are tva-dimensional in nature, enabling us to
fully express and consider both the sequential and parallel aspects of logic.
They can be compiled directly into a computer program and , so eliminate the
need for flov charting and hand coding.

12 April 1965 5 'lM-2288jooojoo

Cantrell, R.N. COMMERCIAL AND EIDllIEERmJ APPLIC:ATIOim OF DECISION
TABLES. 1n Proceedings of the Decision Tables S~o81um, pages 55-61.
20 -21 September 1962.

This paper covers our experience with decision tables, from the time we first
heard about them through experiments in different application areas, t o our
present rather widespread use of tables 1n systems design and programming.
We will discuss Bome of the difficulties we h ave had. 1n using decision tables
and Bome of the advantages we think we have gained trom them.

DECISION TAIlLES-A SYSTEMS ANALYSIS AND DOCUMENTATION TECHNIQUE. IBM
Corp., F20-8102, 21 page.. 1962.

Describes the basic concepts · of decision tables and a minimum set of conven
tions tor their use 1n systems analysis, procedure design, and documentation.
Such tables provide information in a concise fo~t that 1s easy to read and
und~rstand. The tabular approach is used to express complex decision logic
in a manner that encourages the analyst to reduce a problem to its simplest
form by arranging and presenting logical alternatives under various condi
tions. While the concepts in the text are presented on a level tor compre
hension by students in basic computer courses, the techniques are applicable
at all levels ot sophistication by everyone in a data processing environment.

DECISION TABLES, PRACTICE PROBLEMS AND SOLUTIONS. IEII Corp., R25-1685-1,
11 page.. 1963.

These four practice problems, with solutions, are deSigned to aid the student
1n learning how to use and prepare limited entry Decision Tables.

DETAIl-X, PRELIMINARY SPECIFICATIONS FOR A DECISION TABLE STRlC1IJRED
lANGUAGE; CODl\Sn. Systems Group, 1962.

The Systems Group of the Development Committee of the Conference on Data Sys
tems Languages (CODASYL), as a first step in creating a data-processing lan
guage based on decision tables, has developed D~-X, a decision table lan
guage based on COBOL-6l. Because decision tables are structured differently
from the free -fonn procedure statements of COBOL-6l, some modifications to
COBOL-6l are requi red; however, these are held to a minimum and are of such
a nature as to enable a relatively simple preprocessor to convert the decision
tables statements to COBOL-6l statements which can then, in turn, be processed
by a COBOL-6l compiler (or processor) .

12 April 1965 6 1Y.-2288/000/00

The benefits to be derived fram a tabular format are many. First, it 1s most
important that, by the very nature ot the table format, omissions 1n problem
logic are easily spotted. Second, the analysis inherent 1n listing the condi
tions upon which a given action 1s based tends to clarify complicated parts
of a problem. Third, the format simplifies a total systems organization
through modularity. Fourth, this format 1s easy to use and for others to
understand. In addition, the Group believes that the tabular format can be
a significant tool 1n the building of compiling systems themselves.

This DE'tAlI-X manual has been prepared as a language specification reference
publication, supplementary to the official COBOL-61 manual published by the
United States Government Printing Office . It provides sufficient 1nfo~t1on
to permit experimentation by many COBOL users.

Dixon, P . SPECIAL REPORT, DIX:ISION TAllLES SYMPOSIUM. 1n Standard EDP
Reports, Vol. 1, P"8eB 23 :030.100-23:030.601. December 1962 .

Dixon, P. DECISION TA:&.ES AND 'mEIR APPLICATION. 1n Computers and
Automation, Vol. 13, No.4, pages 14-19. April 1964.

Describes the fundamental prinCiples of decision table design, with examples.
Indicates the paver and applicability of the technique to increase the effi
ciency of systems analysis and programming . Includes directions for further
development and an eleven -point summary of the advantages.

Egler, J.F. A PROCEWRE FOR CONVERTmO LOOIC TABLE CONDITIONS mTO AN
EFFICIENT SEl<UENCE OF TEST TIfSTRJCTIONS. in Communications of the ACM, Vol. 6,
No.8, pages 510-514. September 1963.

Evans, O. Y • REFERENCE MANUAL FOR DttISION TABLES. IBl Corp. September
1961.

This manual is 'Written to provide a base language (point of departure) for
using decision tables. The language is not all-inclusive and in Omany in
stances has been arbitrary in the interest of simplicity. It provides a
l anguage that interested persons can use to experiment w1th decision tables
1n documenting problem definitions. This language is very rigorous in order
that it may be used at the detail level of documentation. People experi
menting at higher levels of man to man communication can °adJust this rigor
to their needs o

12 April 1965 7 TM-2288/oo%o

Evans, O.Y. A ME'J}{OD FOR SYSTEMATIC DOCUMENTATION --KEY TO IMPROVED DATA
PROCESSrnC ANALYSIS. In Computer Applicatlons n 1961, The Macmillan Co.,
Nev York, pages 14-34. 1962

Evans, O.Y. GENERAL INFO~TION MANUAL, ADVANCED ANALYSIS METHOD FOR
INTEGRATED ELECTRONIC DATA PROCESSING. IBM Corp., F2C-BoI<7, 21 pages. 1960.

The analysis method presented here can be best described as a systematic
method for collecting, recording and maintaining all pertinent information
regarding a complete data processing system. The method 1s particularly
useful 1n that it requires a complete explanation of the characteristics and
utilization of each piece of data involved 1n the system. In addition" it
introduces a tabular fannat for the dl'!flnltion 0 f proced\J!"~s.

Among the advantages gained through tte use of such a documenting analysis
are:
1 . A definite and orderly method of documenting analysis data is achieved.
2. The analysis is virtually independent of thc processing media (i.e.}

manual, unit record, or high speea computer).
3. The tabular approach to procedure definition aids the analyst in visual

izing the numerous relationships and alternatives .
4. The documented analysis and the cross -reference listings permit the data

rules to be readily reviewed for omissions and inconsistencies before
they are buried in detailed flow charts, control panel wiring and tech
~1ral machine instructions.

' J. It provides flexibility in changin'g any portion of the analysiS.
o . By rcquiring the frequency of execution of a process, the best process:!n~

medium, process organization, programming and eqUipment requirements can
he more readily determined.

7. The analysis provides material for auditing procedures.

This method of analysis was conceived and experimented with 1n the fall of
1958 . The experiment was to res~ate an analysis of a computer process Which
contained 200 typewritten pages of ~arrative, tables, flow charts and block
diagrams. The analysis was characterized by omissions, inconsistencies and
errors. The restated analysiS was depicted in tabular format on five 3' x 5'
sheets. From this experiment the abov~ and other advantages were gained.
Many other concepts with great potent1~ 1n the deSign of automatic program
ming systems have resulted.

Grad, B.
peae. 22-26.

TAIlJLAR FORM IN DECISION LOGIC.
July 1961.

in Datamation, Vol . 7, No . 7,

Tabular form has shown promise of being an effective way to 'organize and pre
sent decision logic for systems analysis and computer programming. Experience

12 April 1965 8 TM-2288/000/00

to date clearly indicates the need to determine its range of application and
assess its future potential. This report has the dual purpose of sketching
the historical background on the development of tabular form, and indicating
ita possible advantages.

Grad, B. STHJC'lURE AND CONCEPT CE' ~ISICIf TABL&S. 1n Proceedings of
the Decision Tables Sym;posium., pages 19-28. 20-21 September 1962.

DecisIon Tables, a recent development, provide a means of presenting complex
decision logic 1n a way that 1s relatively easy to prepare and understand. A
deGislon table shows the specific alternative courses ot action to be taken
un~er various combinations of conditions. This permits an analyst or pro
grammer to concisely and completely record logical decision rules tor analysis,
documentation and programming.

Hawes, M.K. ntE NEED FOR Prux=ISE PROBLEM DEFINITION. in Proceedinss of
the Dec1Bion Tables SympOSium, pages 13-18. 20-21 September 1962.

The need for precise problem definition is one of the greatest facing the
users of electronic computer systems today. Experience indicates over 65~ of
the costs aSSOCiated with programming data processing problems can be attri
buted to this need. Looking ahead to real-time information processing sys
tems, the need becomes even greater and, furthermore, must be handled at the
systems leveL

Hawes, M. K. , et. al. DEX:ISION TABLE TUTORIAL USm:; DETAB-X.
49 pages. 1962.

COIlASn.
Systems Development Group,

Holstein, D.
REPETITIVE DESIGN.
August 1962.

DEX:ISION TABLES, A TECHNIQUE FOR MINIMIZING RruTINE
in Machine Design, Vol. 34, No. 18, pages 76 -79. 2

IBM 1401 DEX:ISION LOGIC TRANSLATOR (1401-BE-<l5X), APPLICATION DESCRIP
TION. IBM Corp., H20-oo63~, 2 paaes.

This program accepts decision tables written 1n a FORTANooOrlented language
and automatically translates them into a FORTRAN II source program, giving

12 April 1965 9 'IM-2288/om/co

pertinent diagnostics 1n the process.

I~ 1401 DECISION LOGIC TRANSLATOR (1401-SE-05X), PROGRAM REFERENCE
WlNUAL. IBM C0IJ>" H20-<)o68-o, 54 pages.

Design logic 1s captured using a FO~-orlented dec ision table language.
The logical statements ot this language are the input to the Decision Logic
Translator system. Atter decoding the statements of a table, the system
sorts them according to commonalities 1n rove and columns 1n order to produc~
an efficient output program. '!he Borted rules are then trAnFl' At.llld into
FORTRAN statements. This process 1s continued table by table until all tables
of any single run are translated into FORTRAN statemente.

Kavanagh, T.F. TAIlSOL, A FUIIJlAi.!!:lfrAL CONCEPT FOR S:tSTEMS-oRIENTED LAN
GUAGES . 1n Proceedings of the Eastern Joint ComPuter Conference, Vol. 18,
pages 117-136. 13-15 December 1960. •

Lack of efficient methode for thinking-through and recording the logic of
complex information systems haa been a major obstacle to the effective use o~
computers in manufacturing businesses. To supply this need, this paper intr!)
duces and describes decision structure tables, the essential element in
TABSOL, a tabular eystems-or1ented language developed by the General. Electric
Company. Decision structure tables can be used to describe comp11cated,
multi-variable, multi-result decision systems. Various approaches to the
automa~ic cOmyuter solution of decision structure tables are presented. Some
~'<!'1ef1 ts vhich have been observed in applying this language concept are also
discussed. Decision structure tables appear broadly applicable 1n informati0n
systems design . In addition, they are of interest because they revise many
earlier notions on problem formulation and systems analysis techniques. De
c1~1on structure tables vill be an available feature in GECOM, General
Blec tric 's nev General Compiler, Vhich vill be first implemented on the GE 225.

Kavanagh, T.F.
and Automation , Vol.

TABSOL--THE LAM}iJAGE OF DECISION MAKING. in Computers
10, No, 9 , pages 15, 18-22 . September 1961.

Kavanagh, T.F. MANUFAC'l\lRING APPLICATIONS OF DECISION STRUC'IURE TABLES.
in Proceedings of the Decision Tables ,Symposium, pages 89-97. 20-21 September
1962.

12 April 1965 10 '1l'.-2288/000/00

Kirk, H.W. USE OF DECISION TABLES IN COMPUTER PROGRAMMIIIl . in Camnuni
cations of the ACM, Vol. 8, No.1, pages 41-43. January 1965 .

A d~c!s1on table 1s a tabular f orm for displaying decision logic . Decision
t able s have many inherent advantages from the programming point ot vlev: (1)
amount of computer memory used is drastically reduced, (2) programming 1s
simplified, and (3) documentation is brief and clear.

The technique to be illustrat ed puts these advantages to use 1n that it en~
abIes one to program directly from a decision table. The technique 1a baaed
on the creation of a binary ~e of a limited entry decision table 1n com
puter memory. A binary 1.ma.6e of a given set of input conditione can also be
cr~&ted. This data image 1s used to scan the decision table image to arrive
a t t he proper course of action.

Ja.ick, D.C. TABSOL: A DECISION TABLE LANGUAGE FOR 'nIE GE 225.
rints of Summaries of Pa era Presented at the 16th National Meet!n

stioD for C2mRutlng Machinery, paper lOB .. 2. 5 r . _.' J •

Lombardi, L.A. A GENERAL BUSINESS-ORIENTED LAI«lUAGE BASED ON DECISICIi
EXPRESSIONS. in Communications of the ACM, Vol. 7 J psses 104-111. February
1964.

Montalbano, M. '£ABLES, FLO\rI CHARTS, AND PR<XiRAM LOGIC. 1n IBM Systems
Journal, Vol. 1, pages 51-63. September 1962.

Decision tables are introduced with rereren~e to business data processing. A
method of verifying both the completeness and consistency of a problem de
scription 1s given. The conversion of tables to computer programs 18 con
s idered and a technique of obtaining a computer program which minimizes the
branching requirements vi th respect to both memory and execute time 18 in
cluded. Program debugging and program modification are also discussed.

APPLICATION OF DECISION TABLES TO MANAGEMENT INFO_TION

Sin=e 1958, Sutherland Company has been
ment1ng management in£ormat1on systems.

poge. 63-74.

employing decision tables tor docu
MaJor advantages · real1z.ed thro1J8h

12 April 1965 II TY.-2288/ooo/oo

these techniques may be enumerated as follows: (1) The ability to clearly ari
concisely state system requirements totally independent of procedures and
processing media; (2) A uniformly high quality 1n the statement of system
requirements; (3) The ability to associate defined decisions Vith responslbl,e
organizational entit1esj (4) An effective method for man-to~ communlcat1ohsj
(5) The ability to establiSh an information repository for system specifica
tions. '!he cauposlte result may be summarized as the capability fO,r complet~

and accurate def!n! ticn of the "'What" of a system, independent of, but relat
able to I the myriad of procedural details const! tuting the "how."

Nickerson, R.C. AN ENGINEERlNG APPLICATION CD;' LOGIC -STRI1CiURE TAJI[.ES.
1n Communications of ·the ACM, Vol. 4. No. 11, pages 516-520. November 1961.

Pollack, S.L. and
TAJI[.E, EXPERIMENTAL).

K.R. Wright. DATA DESCRIPTION FOR IlETAB-X (DD::ISION
RAND Corp., RoI-3Q10-PR, 46 pages. March 1962.

Pollack, S.L. DETAB-X: AN DlPROVED Il1SINE8S-0RIENTlID CCIoIPUTER LA!I:lUAllE.
RAND Corp., RM-3273-PR, 18 pag.s. August 1962.

This Memorandum describes DETAB-X (Decision-Tables, Experimental). In an
effort to illustrate aome ot the teatures ot D~B-X, it ia compared With
COBOL-61 (Cammon Business-Oriented Language), using examples of data and
procedures-Written in both-languages.

Pollack, S.L. WHAT IS DETAB-X? in Proceedings of the Decision Tables
SympOSium, pages 29-39 . 20 -21 September 1962.

DE~B-X 1s an experimental language that combines COBOL-6l and decision
tables. It 1s a proposed supplement to, not a replacement of, COBOL-61.

Pollack, S.L. ANALYSIS OF TIlE DECISION RULES IN DECISION TABLES.
RAND Corp., RM-3669-PR, 69 pages. May 1963.

'!his memorandum develops a theoretical structure for decision tables. 'lb.e
theorems deveJoped in this paper provide a basis for system analysts and pro
grammers to verify the logic of their analYSis. Rules are established that
enable them to insure the fo1.loV1ng: (1) that all possible combinations ot

12 April 1965 12

conditione for the problem have been considered; (2) that the system does not
prescribe different actions for the same situation; and (3) that the system
describes each situation and its action once only.

The immediate effect ot achieving the above 1s an improvement 1n computer
programming by reducing the number of computer instructions, shortening com
puter runnlD8 time, and decreasing programming and debugging time. In the
tut\~e, we can expect computers to take over the task of checking dec1s10n
t4bles for completeness, redundancies, and inconsistencies, using the rules
developed here. The text also presents an extension of decision table theory.
Moat current dec1s10n tables consist of decis10n rule. for which every condi
tion 1n a set of conditions must be satisfied before a aeries of actions can
be taken. This memorandum provides a basis tor havina add1 tional decision
rules in which a series ot actions can be taken it anyone ot a set ot sped
fied conditions is satisit1ed. This type ot decision rule can be extremely
usetul in edit1ns: and 1n:t'ormation retI1eval. This extension should prove
valuable 1n many data processing areas.

Pollack, S.L.
p-2829, 11 poge •.

HOW TO BUILD AND ANALYZE DEX:ISION TABLES.
12 November 1963.

RAND Corp.,

Des~ribes the conversion o:t' system applications to decision tables, a process
whieh entails making dec1sions on how large the ind1vidual tables should be
and what system parameters 8hould be included. A technique tor reducins the
number at written decision rules i8 a180 de.cribed.

Once decision tables are written, they should be checked tor com~eteness and
conAistency. This paper will describe and ilJustrate the rules that enable
system analysts to insure the tollowiJl8: (1) that all p::!ssible combinations
of 0Onditions for the problem have been considered; (2) that the system does
not prescribe different actions for the same situation; and (3) that the
8Y8~em describes each situation and its actions once only.

Pollack, S. L. CONVERSION OF LIMITED-ENTRY DECISION TABLES TO CCMPUTER
PROGRAM. RAND Corp., R11-4020-PR, 15 pages. May 1964.

Decision tables are usetul for describing com~ex decision rules based on
giVEn sets at conditions. Algorithms that can efficiently convert the tables
into computer programs will extend the usefulness at decision tables to com
puter users. This Memorandum describes two such algorithms, based on work
done by M.S . Montalbano and extended here to handle dashes and ~decision
rules. The first algorithm minimizes the CClD.p.1ter storage space required tor
the resultant program, the second minimizes computer running time. During
the conversion process, both pinpoint any contradictions or redundancies
among the rules in a table.

•
..

12 April 1965 13 1M-2288/000/00

A necessary adjunct to minimizing computer storage or running time 1s the
allowable reduction of the number of rules 1n a decision table. This Memo
randum describes a technique to effect this reduction for pairs, tr1plets
and quadruplets of rules. The system analyst vlll find this method most help -
ful for pairs, and generally unprofitable for n-tuplets greater than three.
'!he technique can be done manually or accomplished by the computer as a pre
lude to executing one of the two aLgor1thms.

Pomeroy, L.K. Jr. ROAD MAPS TO DEX:ISIONS. in Navy Manyement ReView,
Vol. 10, No.1, page. 4-5. January 1965.

PROCEEDINJS ar THE DECISION TAllLEB ImIPOSIUM. Spon.ored by the CO~
Systems Group and the Joint User. Group of ACM, 116 pagel. 20 .. 21 September
1962.

This document containa the proceedIngs of a Symposium on Decl110n Tables pre
aented September 20-21, 1962 1n Nev York City. 'lhe Sympolium was co-.ponlored
by the Syatema Group ot COWn., and by the Joint Users Group.

Schmidt, D.T. ""d T.F. KaVIJl&gh. UBINJ DECISION BTRUC'ruIU! ~BLB:B. in
Det tion, Vol. 10, NOl. 2 and 3, pag .. ~2-49 &n4 48-5~. robruary an4 March
1964.

These articles emphasize manufacturing applications because most of our ex
perience i8 in this area. DeCision structure tables coupled With computers
are paying off because they alloW' you to: define and think through m&l'Iufac
turing problems, often providing new lnll!ghts and understandina which have led
to improved performance; formulate and record decision systems tor lubsequent
use and communication; simplify computer implementation Where mechnizatlon 1s
desirablej get manufacturing to using computer •.

There 1s a wealth of potential computer applications in manufacturing. They
offer great opportunity. Without structure tables, application coats would
be exorbitantly high. It is easy to learn how to use decision structure
tables, and, further, the user requires minimum computer knowledge and back
ground. Later in these articles a structure table application using computers
1s descrlbed--PRQNTO.

12 April 1965

TAIISOL APPLICATION MANUAL,
CPB-147A, 2 3 pages. June 1961.

14
(last page)

INTROruCTION TO TAIISOL.

'I.Y.-2288/000/00

GE Computer Dept.,

TlME TO CONSIDER DErISION STRUC'lVllE TAllLES AND EDP DESIGN SESSIONS. in
EDP Analy!er. Vol. 1, No.4, Canning Publications, I nc., 10 pages. May 1963.

Decision structure tables provide a powerful tool tor systems anal;ya1e, tor
prescribing clerical procedures, and tor programming. De.lgn 8e •• 10nl can
help develop the vitally necessary support ot middle management tor your EDP
program . What's more, both are easy to use.

Wr1ght, K. R. APPRat\CHES TO DEX:ISION 'I!Am..E PROCESSORS. in Proceedinss
of the Decision Tables SympoBium, pages 41-44. 20-21 September 1962.

DiS,? U8ses the four basic types ot proce88orL or methods of converting dec ision
tabl es to a machine language. TheBe are (1) the manual processor, (2) the in
t erpretive processor, (3) the translator, and (4) the compiler .

•

ABSTRACT

T~e DETAB/65 preprocessor converts limited-entry decision tables con
tained within COBOL programs into a form acceptable by a COBOL compiler.

The preprocessor was designed to facilitate easy modification for various
COBOL ~plementations. It can be used either alone (as a preprocessor)
or incorporated into a COBOL compiler.

The preprocessor has been successfully compiled and executed upon the
CDC 1604-A, 3400,)600 and on the laM 7040, 7044 and 7090/94 computers.

The Preprocessor Package consists of the following:

1. ABSTRACT

2. The DETAB/65 Language

3. A Description of the Basic Algorithm Used In the
DETAB/65 Preprocessor

4. DETAB/65 Uaerte Manual

S. Decision Table Bibliography

6, Preprocessor Card Deck and Listing

7. Teet Deck

THE DETAB/65 LANGUAGE

PREFACE

In June of 1963, Work Group 2 of the Special Interest Group on Programming Languages
(SIGPLAl'l) of' the Los Angeles Chapter of the Association for Computing Machinery ,,".6

formed to develop a preprocessor for DETAB-X, a COBOL-oriented decision table language.
The results of that effort are partially reflected 1n this manual, a revised set of
~pecif1catlon6 that, since they differ significantly from those originally set forth
for DETAB-X, 1s denoted 8S DETAB/65.

The Booree document for this manual is HPre1.1minary Specifications for a Decision
Table Structured Language-DETAS-X, t1 issued by the CODASYL Systems Group at a symposium
on decision tables co-sponsored by CODASYL Systems Group and JUG (Joint Users Group)
1n New York in September 1962. Upon these f1PecLf'lcatlons the SIGPLAN work group has
based fUrther efforts to develop detailed program specifications. In doing so, these
basic deviations from DETAB-X have resulted:

1. DETAB-X prescribed extensive revisions to the structure of the COBOL
Data Division, most notably a fixed format for data declaration. In
viev of the efforts of other groups in developing fixed formats for
COBOL, this portion of the DETAB-X language specifications was deemed
an unnecessary and redundant effort.

2. In the interests of conserving space, DETAB-X specified several short
forms and substitute expressions (00 rather than PERFORM, SET rather
than COMPUTE, etc.) and placed restrictions upon allowable COBOL ex
pressions within decision tables. In the interests of maintaining
maximum compatibility with the OOBOL language, placing 8S fev restric
tions on the programmer 8S possible, and keeping the decision table
processor as simple as possible, these short forms and limitations
have been removed. Any COBOL expression (legal or illegal) is per
missible and may be used at the programmers' discretion.

3. 'lhe expression NOT has been added to Extended Entry Cond1 tion Entries,
meaning all conditions not otherwise specified.

4. A special section of table-specific formulae were specified in DETAB-X.
In DETAB/65, formulae too long to be part of the Condition or Action
Stubs or Entries are relegated to COBOL code.

5. In DETAB/65, a decision table input to the preprocessor results in a
COBOL Section being generated. These sections are set up as closed
subroutines and must be treated as such by the accanpany1ng COBOL
code.

6. Several other changes of a more minor nature are treated in the text
that follovs.

•

-2-

SIGPLAN (DETAB) Working Group 2 was chaired by Wtm Boerdam of Rlchtlel& 011 The
?rincipal participants were:

Mike Callahan
Anson Chapman
Charles M. N. Cree
Robert L . Dover
Stanley Naftaly
Soloman L. Pollock
Wylie Robertson
Richard W. Senseman
Ralph Shoffiler
Barry Sln1 th
N. E. WUlmorth

Sys tem Development Corporation
System Development Corporation
International Business Machines
Control Data Corporation
Lockheed Aircraft
North American Aircraft
International Business Machines (originally Northrop)
UNIVAC
Informatics
Control Data Corporation
System Development Corporation

Other participants have been George Amerd1ng of RAND Corporation, ..mo advised the
group on FORTAB, R. T. Fife (nov of UNIVAC), Leonard Longo (then of Douglas),
C. J. Shsv of SOC (and presently Chairman of SIGPLAN), Charles Powell of Richfield,
and Ed. Mandertield of North American Aviation and. previously Chairman ot BIGPLAN .

These specifications and the DETAB/65 processor are being distributed through JUG.
Requests for copies of the specifications or for the DETAB/65 processor should be
addressed to:

Miss Joan Van Horn
Secretary, JUt
MITRE Corporation
Bedford, Massachusetts

or an affi liate of the JUG organization. Correspondence on technical error, comments,
criticisms and suggestions may be directed to:

ni.ch f't f' l(l .) i. ,_ \"orpoJ.'u " ~,,-,.,
645 Sou th l-larlposa
Los Angeles, California

-3-

CHAPTER I
THE DETAB/65 LANGUAGE

PURPOSE

The purpose of DETAB/65 is to provide a practical foundation for experimenting with a
iecision-table based language. The language is designed to be convenient for pre
paring a preprocessor to go from DETAB/65 to COBOL-61. As such, many restraints and
limitations have been placed upon the language to make it readily compatible with
COBOL- 61.

'!he DETAB/65 language is designed to fit vithin the i'rameW'ork of the COBOL language.
Decision tables input to the DETAB/65 processor will be output as closed subroutines
am. treated as COBOL sections. Nonnal COBOL program formats are used. Symbolic
data references made inside decision tables must be declared 1n the DA~ DIVISION
just as for non-decision table sections . Formulae whose namea are given in a table
must be expressed in the PROCEDURES DIVISION prior to entering the DETAB/65 section
that gives the formulae values. Within a decision table all normal. COBOL express! ons
may be used, plus a few minor language extensions and symbology necessary to the
direction of the DETAB preprocessor and construction o£ DETAB expressions.

DECISION TABLES

Of the various activities that go into setting up a data-processing procedure for a
computer, one of the more difficult is the development of a definition of exactly
what is to be done under all combinations of circumstances of the data processing
problem. Every problem step must be specified. The conditions to normal processing
Dust be identified. Necessary sequences of operations must be precisely indicated.

Detennining what is required of the ccmputer system is called analysis; deciding how
to go about meeting these requirements is the area o£ system design; and communic~ting
the chosen procedure to the computer is called programming. In each of these areas
a language is needed for defining the dat~-processing pr ocedures . Ideally, a language
form or structure should be suitable for man-to-man am man- to-machine communication.

Many languages are used for these purposes. Procedures are often communicated to · the
machine in a form closely resembling the language of the machine . Symbolic logic and
equations are sometimes used, but this imposes a heavy and unnecessary burden on the
person writi ng the procedures . This condition occurs because human language, used for
rnan-to-man communication, and machine language are quite different. Flow charts are
widely used i'or man-to-man ccmmunication about data-processing procedures. However,
~uch charts have several drawbacks: Flow charts can becone confusing in comp1.ex
Situations; it is relatively difficult to check all possible paths; and the fiow chart
form is not particularly sui table for direct communications with the machine. Flo\(
charts sometimes present logical equations, but they do not displ~ relationships in
as graphical a fonn as one might ..,ish. Furthermore, they are not a canfortable form
of expression for most system designers, except to the person who designed the program.

Decision tables offer the promise of nullifying and correcting many of these language
objections. Decision tables provide a graphical representation of complex procedures
in a way that is easy to visualize and understaoo.. They show alternatives and. ex
ceptions much more explicitly than other language fo~s. They present relationships
amons variables clearly. They sho~ the necessary sequences of conditions and actions
in an unambiguous manner. Decision- table form can be used vith equal ei'fectiveness

-4-

for system analysis 1 pr~cedure design, and computer coding. TlrJ.s, a computer pro
cedure written as a set of decision tables is, to a large extent, its own documentation.

RULE 1 RULE 2 RULE 30

AGE GREATER THAN 25 25 65

AGE LESS THAN 35 35

HEALTH EQ:JAlS " EXCELLENT" " EXCELLENT" "POOR"

SECTION-OF'-CCXiNTRY EQUAlS "EAST" "WEST" "WEST"

SET RATE-PER- lOoo E"UAL 'l': 1.57 1.72 5·92

SET POLICY -LDlIr EQUAL TO 200000 200000 20000

FImiRE 1. AN EXAMPLE OF A DECISION TABLE

There is a gro~ing body of evidence t o indicate that these claims are justified. Those
who have used decision tables for man- to-machine work say that:

1 . programming is much faster;

2 . program check~ut time is significantly reduced;

3 . the use of tables leads to greater accuracy and completeness in
problem formulation;

4. program maintenance is simpler; and

5 . a program written tn tabular form is indeed a powerfUl communication
and documentation device .

STRUCTURE OF A DECISI0~ TARLE

Figure 1 is an example of a simple decision table. The use of such a table . is illus
trated in the follow-i ng statements about Rule 1:

Rule 1 says ; If age is greater than or equal to 25 and age is less than 35, and
health is excellent, and. section of country is east, then rate per thousand is
1.57 and policy l1mitts 200,000. 'll1.e und.erlined w-ord.'86re implied by the table
layou~ The quote marks in the table are used to differentiate non-numeric values
from names (as in COBOL-61). Each:rule of a decis i on table is an alternative to
each other rule. '1l1erefore, logically it does not matter which rule is examined
first; at most, one rule can be satisfied by a single set of conditions.

-5-

To more clearly indicate the parts of a table and the terms that are used to desc:..'ibe
them, the information 1n Figure 1 is shown 1n an exploded view in Figure 2. The
double lines serve as demarcation : The condition stub is shown in the upper left
corner j the action stub below; the condition entry 1s 1n the upper right portion; and
the action entry 1s 1n the lower right. Each vertical combination of condit i on and
action entries 1s called a decision rule. The essential nomenclature 1s complete~
by adding at the top of the table a title section, called a table header, and by
adding a rule header over the entries .

A more detailed description of decision table structure showing the actual location
of the various segments of this sample table on a coding form may be found 1n Chap
ter III .

As shown in Figure 2, tables may be used in a slightly different way to state decision
logic .

RULE NO.
TABLE-CREDIT-APPROVAL 1 2 3 4

CREDIT-LIMn'-OK Y N N N

PAY-EXPERIENCE-FAVORABLE Y N N

SPECIAL-CLEARANCE-OBTAINED Y N

PERFORM APPROVE-ORDER X X X

PERFORM RETURN-ORDER-TO-SALES X

FIGURE 2 . A LIMITED ENTRY TABLE

Note that the form of the indi vidual conditions and actions is somewhat different
between Figure 1 and Figure 2. In a limited entry tabl e the entire condition or
action is written in the stub; the condition entry is limited to 'Y,' ' N,· ' - ' or
blank. That is, asserting (Y), reversing (N), or ignoring (- or blank) a con
dition. An act i on entry is limited to 'X' or ' -' or blank . That i s, executing
(X) or skipping (- or blank) an action . In contrast, an extended entry form
(as in Figure 1) has part of the condition or action extended directly into the
condition or action entry area. Both forms may be used within one table, but aQY
one horizontal row (condition or action) must be entirely limited or entirely
extended .

-6-

This example points out that the basic concept of 8 single rule in a table 1s quite
str!lghtforvard, being used on the "if ... then ... " relationship. If A .. B, and. C 1s
greater than 5, and . .. then assign the value 7 to X, and GO TO Tabu 10. 'Ihe1nterpre
tat ton 1s: If arr-the conditions in rule 1 are not met, then try rule 2, etc.
Continue for rules 2 and 3, 3 and 4, etc., until a rule 18 satlatield. The program
must st!ll be told what to do if all rules have been considered and the set of con
ditions that exist do not satisfy any of them. 'Iherefore, the last rule in every
decision table is the ELS-rule in 'Which we tell the program what "else" to do if no
rule is satisfied . An ELS 1s written in the rule header entry 8S the last rule in
the table. If no ELS is given, the program will enter an autcmatlc error routine.
'1lle flow chart in Figure 2 shows schematically the way in which a table is executed.
In practice, the actual solution technique m~ vary, but the logical result remains
the same.

I
."

~
ij

i
~

,

~

Ale

Age

Health

Section -of-
" ~untry_

- - -. -, --, ,

DETAB- X

--

GE

IR

EQ

EQ

,

,

, ,

,

, , ,

, ' , ' , '

, ,

, ' , ,

---,

, '

~ Codina: Fo rm -----~ , ,

!
....

, , , , , , , , /

Set Rate
per -IOOO r Set P;ll~y-:'
Limit

,

Stub

, ,

, ,

, ,
, , ,

EQ

EQ

, ,
/

!
I

I

I
I

I

I

,

,

Conditions

,
\

,

, , , , ,
, , ,
,

, , , , ,
, ,

, , , ,
, "

I , ,

I I ,

,
I ,

, ,

, ,
I I , , , ,

I
,

I
I

Actions

,

,

,

, , , , , , , ,

,

, , ,
, , ,

, , ,

, , ,
, , , ,

, ,

,

,
,

I

,
, ,

, ,

Ru le I Rule 2

25 25

35 35

'ExceUent" "Excellent'

"East" 'W est"

- '"

-

Ent ry

\~
Rul e 3u

65

\ "Poor"

'W est"

--

Decis ion Rule

-- , - --- -,

,
''ri=N==r=~'=r=-'' 0) I 2:::~ 1 1. 72 1. 57

200000 20.0000

Entry

o
o

-8-

D ECISION TA BLE

Rule I Hul E' 2 Rule 3 Rule N

Cond I Y Y Y N

Cond 2 \' N

Y N Y

Action I x x x

Ac tion 2 x x x x

F LOW CHART OF ABOV E DECISION TABLE

Ru le 1 Hule 2 Rule 3 Rule N

Cond 1

Cond 2

Cond 3 (

A c tlon 1

A chon 2

N f N r \N r
\. / \.

Y Y Y N

Y- Y-
Y N

Y Y Y-
Y N Y

! ! ! !
FIOORE 4. SCH»IATIC REPRESENTATION OF TIlE SEQUENCE OF

TESTS ABD ACTIOIIS IIi EXECUTING A DECISION 'I!AlII.B

\ Y

/

-9-

Ol{;ANIZATION OF THE MANUAL

The balance of this language specification manual covers the individual areas of the
language, indicating the characteristics and restrictions. In general, the rules
of COBOL-61 are followed explicitly except in matters of format. Where there are
differences, these are noted or are self-evident through the text itself.

-10-

CHAPTER II
SOURCE PROGRAM FORoIAT

The format for a COBOL program containing DETAB/65 decision table expressions must .
conform to the requirements for any COBOL program, except that a decision table may
be inserted in the PROCEDURES DIVISION as a SECTION . In compilation a decision tabl~
will be treated as a closed subroutine; that is, as a closed COBOL PROCEDURE. Within
the table, of course, transfers to other than the normal return point may be specified.

IDENTIFICATION DIVISION

A uormal COBOL division name falloved optionally by a PROGRAM-ID and other identifYing
information must be gi ven. No special requirements are levied by DETAB/65.

ENVIRONMENT DIVISION

The Environment Division must be f illed out as required by the particular implemen
tation of COBOL- 61 . Minimum required entries are CONFIGURATION SECTION with SOURCE
COMPUTER, OBJECT CCMPUTER and SPECIAL NAMES, INPUT-OUTPUT SECTION vi th FILE CONTROL
and I - O- CONTROL.

DATA DIVISION

The Data Division for a program ln~rporatlng DETAB/65 sections 1s treated as is any
other COBOL Data Division . Any symbolic data re ferences used in a decision table
must be declared in the Data Division a6 for any other COBOL pr ocedures section. Any
data structures, working storage and constants used by the program must be de8crlbe~
in the Data Division. Symbolic references used within a decision tabl e must conform
to the requirements of COBOL data references . Any COBOL data description forms that.
have been implemented in a particular COBOL processor may be used.

The normal COBOL character set , as implemented in a particular computer, may be used.
to form NAMES.* One such name will be a DEj:ISION-TABLE- NAME, which is a name given
to the procedure table that describes a series of conditions and actions, and which
is equivalent to a PROCEDURE- NAME in COBOL- 61. A DECISION- TABLE-NAME is a SECTION
NAME and ma,y be composed of alphabetic, nlJ.Illl!ric, alphanumeriC, or ccmbinations of
these characters Joined by one or more hyphens (-) . The DECISION-TABLE-NAME must
be used to call a table from the main sequence of COBOL instructions.**

*NOTE: Special symbols suggested by the DETAB-X Manual have been rejected in favor
of' nonnal COBOL fonos, i .e . , I:: (not equal), < '" (less than or equal), >:: (greater
than or equal to) are rejected.

**NarE: The so- called "short form" of decis i on table names specified in DETAB- X
will not be implemented in DETAB/65 . Neither will the capability of calling the
TABLE- ID (e . g., GO TO TAB XXX) rather than the table name.

-ll-

PROCEDURES DIVISION

The Procedures Division of a COBOL source program 1s used to specify the logical
decisions and actions that provide the desired processing. Procedures are normally
written 8S COBOL SENTENCES that are combined to form COBOL PARAGRAPHS, one or more
of which may be combined to form a COBOL SECTION . .

However, within a section that 1s a decision table, the normal sentence structure
of the COBOL language is abandoned in favor of the more formal structure of the
decision table. The syntactic content of the decision table structure may be
interpreted as a complex set of condltlohal atatements, plus the information
necessary to initialize the closed subroutine that the table represents. A decision
table may not be entered via the normal operating sequence and may be referenced
by a GO TO, or a PERroRM, but not by an ENTER. A GO TO results in an unconditional
or conditional transfer to the specified decision table. For a GO TO from the main
processing sequence from another table, a return or transfer point must be specified
by the programmer in the decision table actions or the processing sequence will be
lost.

If the transfer to the table is accanplij:lhed by a PERFORM, a normal return to the
processing sequence will be made unless the programmer specifies otherwise. Spe
cifically, the DETAB/65 processor will ~nerate a GO TO DEXIT for ever,r rule that
does not end in a GO TO, however the tabie was entered.

-12-

CHAPTER III
DECISION TABLES

Th1s chapter describes the decision table format expected by the DE~/65 processor_
The processor will accept both extended and limited entry tables.

Each of the sections of a decis i on table will be discussed and each of the entries
permissible in a section will be described and the reasons for the various require
ments and rules governing the entries are given. The description assumes that punched
card or card images are used as the input mode. If punched tape, typewriter keyboard
or other continuous input mode 1s adopted considerable revision of the D~/65
processor Data Ddvis10n would have to be respecified .

A decision table consists of 6 parts or sections: a Table Header, a Rule Header,
a Condition Stub, a Condition Entry Area, an Action Stub, and an Action Entry Area.
The functions of these sections are demonstrated briefly in Chapter I . A sample
DETAB/65 specification form is shown in F1gure ~ to provide a ready reference tor
the reader as the decision table sections and entries are discussed.

roRM HEADER

'lbe Form Header serves to identify system, program, and author of completed Decision
Table Input Forms , and to specify the data of completion and enumerate the pages.
None of this information is part of the decision table proper.

TABLE HEADER

Each table has two header lines: 1) a Table Header that serves to identify the table
and provide information that covers the table as a whole and 2) a Rule Header that
is used to indicate rule numbers.

A table may require more than one page, either because . of a large number of rules,
or because of a large number of conditions and actions. The table header card for
the subsequent pages should not be filled in, but, in the case of rov continuation
(i .e., due to more rules than will fit on a page), a continuation :flag - the number
"1" - should be set in the RSET rules set entry area of the initial header card.
'lbe flag should not be set for multiple pages due to condition and action overflow
(i.e., overflow of the entries for a rule or other column onto another page).

The entries in the Table Header are :

TA.BLE ID

Each table must be identified by a three-digit number (e . g . , 001, 074, 694). This
numberisromlnative only and table ID's need not be sequential nor ordered in sny
way, but each table ID must be unique vi thin a program .* The Table ID is repeated
for every rov of a table.

*NOTE : DETAB-X specifications permitted the TABLE ID to be substituted for the Decision
Table Name in calls to the table. This has not been implemented in DETAB/65. TABLE ID
serves only to distinguish one table from another in sequence checking or EAM processing
of cards.

z
o
(/)

>
Cl

--'
< a::
::>
Cl
(.)

o
a::
a..
10
ID

'
CO
<
f....
Cl

I
a
z
w
0
< •

w
>-
< a

>
m
a
w

" < • w

" •

z
a ->-
U
w
~

,
w
>-
~

>
~

• •
5

° • •
• " 0 :;; ~ .
:I t> i : .
• • .0, ". 8i ,

•
" •

UJ

" '" z
UJ
.J
III
<
>-

COl

..I_ Z '"

· ' • • · "
• " . ••
• c ~

.
, ,

1

j

i 1

J

. ,

,
i

I j
! 1 j , , ,

f- -L...!
j ,

1

0 -
0 0
0 0 '" a 0

.

-14-

Ro No.

'!be RoW" Number is a three -digit number that for tr,e Table Header 1s always 000. This
designation indicates to the processor that this 13 a Header Card.

Line

The Line entry is one alphanumeric character that for the Table Header is always 110".
Thi[designation indicates to the processor that this 1s a Table Header Card .

RSET

The Rules Set (RSET) entry is left blank unless more rules than can be specU'led on
one page (Le., card) are required. If more than one page is used, a numeral "1" is
entered in the RSET entry of the Table Header Card . If an entry 1s made in the RSET
entrJ of the Table Header, a single numeric dig! t must appear 1n the RSET entry of
all other rOW'B of the decision table.

Table Name

A table may be given any name that conforms to tr.e specifications of COBOL for a~
procedure-name, usually indicating the :f\lnctiC"l or content of the table. That i 1,
a procedure-name may be ccmposed of alphabetiC' numeric or alphamuneric characte ~ 's

(lit least one but not more than thirty) ,or seta of such characters separated by
hyphens (-). However, a hyphen may not begin ')r end a name. Names must be unique.
The Table Name may be referenced by GO 'It) and PERFORM operators . '!he DETAB/65
processor will use this name in generating a COBOL section-name tor the table. A
dummy pa~graph-name must also be generated and inserted after the section-name.

Form

Three basic formats are permitted for de.:1s10n tables : 11m1 ted entry (L), extended
entry (E), and mixed entry (M). The fo~t of the decision table being specified
is indicated by placing one of these three values (L, E, or M) 1n the Form entry.
That is, one alphabetic character .

Cond RoW's

A three-digit number containing the number of conditions rows (not lines) in the table .
That is, this entry specifies the number of conditions that are contained in the table.
Leading zeros must be given .

Action Ro'ol's

A three-digit number containing the number of acti on ro'ol'S (not lines) in the table.
That is, this entry specifies the number of actions t~are contained in the table.
Leading zeros must be given.

Rules

A three-digit number specifYing the total number of rules in the table. '!he ELS rule
should be included in the count. Leading zeros must be given.

-15

RULE HEADER

'!he second header card is the Rule Header used to specify the rule numbers for the
table. Besides rule numbers, it will contain the ident ifying information given for
every line of a decision table. As many Rule Header cards will be used as are re
quired to specify all rules.

Table ID

Aluays the same as the Table Header.

Row No.

'!he Row Number (ROW- NO .) for a Rule Header Card is always 000, indicating that this
is a Heade r card .

Li ne

,

'!he Line (LINE) entry for a Rule Header is always "1" indicating that this 1s a Rule
Header .

RSET

'!he Rules Set (RSET) entry will be blank except when the number of rules specified
req'!lires more than one page . If more than one page 1s required, the RSET entry w111
be "1" for the first page {or card} and fall.ow1ng pages will be numbered sequentially.

Rule No .

A Rule Number must be a three -digit number (e.g . , 001, 002, 142, etc.) or ELS .
(Every table must have an ELS- rule as the last rule to be given .) The f'irst Rule
Number is entered in the Rule Header Card in the £irst space available beyond the
longest entry in the Condition Stub, although blanks may be le£t between the last
character of the longest corrlition and the :first Rlle Number. The column that the
first digit of the first Rule Number occupies defines the point at which the
DE~/65 processor construes the Condition Entry Area to begin. Spaces occupied
by Rule Numbers may vary fran three through twelve, but the Rule Number must begin
in the leftmost column of the area to be reserved ror the rule . The spaces beginning
with the first digit of one Rule Number and ending at the last digit before the next
is. interpreted by the DETAB/65 processor as the number of spaces that are reserved
fo.:" the condition entries subsumed under that Rule: The number of spaces thus
reserved must be equal to or greater than the longest Condition Entry in that rule .
The number of spaces reserved may vary from rule to rule, but must not be less than
th':'ee nor more than twelve. The end of the last rule, and the end of the rules, is
indicated by placing a "$" in the first space beyond the last space required by the
last rule (i.e., the ELS-rule) .* A rule entry may not be split between pages.

*NOO'E : An exception is made in the case where the last (ELS) rule includes the &>th
column of the card. That is, if RSET = 0, 'the card column cCJUnt = So, the rule header
entry i s ELS, and the spaces reserved less than or equal to 12, then this is the last
rule. Otherwise , an error has occurred .

-16-

If, in an extended entry table, there are not enough cOlumns left on a page to contain
all of a particular rule, a new page must be started and an 1ntennediate end-of-rule
marker (a 11$") set to define the end of the preceding rule and to inform the processor
to go on to the next card. When the processor encounters a $, it will check the pre
ceding rule for an ELS-rule. If the preceding rule is an ELS, search for further rules
is stopped and the processor proceeds to the next card . NOTE: Although Rule Num)era
should be sequential and entered in ascending order (e .g., 001, 002, 003, etc.), this
does not imply that the rules will be executed in that order. The DETAB/65 processor
evaluates the matrix of condition entries and optimizes the decision tree for effieient
processing.

CONDITION AREA

The cards following the Rule Header Card. are used to specifY sets of conditions. Each
row specifies the states, specific values, or ranges of values that a particular piece
of data may assume, or relationships to other data or combinations of these states
that the data may assume, and upon which decisions are to be based.

Structurally, a condition consists of two parts: (1) a Condition Stub and (2) a Con
dition Entry. The Condition Stub area consists of the entries for Table ID, Row No.,
Line, RSET, and a conditional statement, or portion thereof. The Condition Entry
area consists of entries specifYing the values of the data or condition specified in
the stub that will satisfY the decision requirements of the rules.

The presence o,t a Condition Area in a table is not required; however, if it is absent,
the table can have only one rule in the action area.

TABLE ID

As above, a three-digit entry uniquely identifYing a particular decision table.

Row

Row number is a three-digit number used to identifY particular conditions, actio~s,
br Dotes. Condition and 'action row numbers m8¥ vary from 001 to 899; 900 to 999
:'",111 designate Notes. Conditions must have lower row numbers than do actions. Row
~umbers should be, but need not be, assigned in ascending order. Sequential numbering
improves legibility of tables for later reference, but the processor may reorder the
conditions in sorting to minimize the decision tree. Leading zeros must be filled in
and duplicate row numbers are not permitted.* A row may cover as many lines on &
specification form as are required to vrite out the operators and operands of an
expression, up to the maximum permissible value of LINE (i.e., 9) .

*NOTE: Presently, the number of conditions is limited to 50, although row number,3
may run much higher.

-17-

Line

Line 1s a one-digit entry used to specifY continuations of a rov. A Line entry may
be blank or range from 1. to 9. Lines, if specified, must be specified 1n exact
sequence because following lines are considered 8S a continuous description of the
condition, action, or comment being given. A blank entry signifies that only one
line will be used; if a digit 1s given, the DETAB/65 processor will look for oon
tim.atians of the line until the Row Number changes. For limited entry tables,
line numbers greater than 1. may be dropped on continuation pages. For extended entry
tables, lines not required by the condition entries may be dropped.

REET

The Rules Set entry may be either blank or contain a dig! t fran 1. to 9 or the symbol
"$." As specified above, RSET 1s used to number the sub- tables required to specify
all the rules of a table . If more than one sub-table is required, they are numbered
sequentially; that is, the RSET entry will be the same for each condition, action or
comment of any sub-table. RSET applies to row continuation horizontally and not
vertically. The sheets containing the Condition and Action stubs are considered
sub- table 1 no matter how many physical sheets are used. If more rules are required
than can be contained in nine sub - tables, a new table must be created, using the same
conditions and actions, and to which the ELS~rule may transfer if none of the rules
in the first table are satisfied. The $ is used to indicate the end of the table.
'!he entry for the end. card will contain 9999$.

Deck Sequence

The entries for row, line and continuation are used in sequencing the deck for pre
sentation to the processor. The expected deck order will be a sort on (1) row,
(2) RSET, and (3) Line. The deck make -up is illustrated i n Figure 6.

rmc
,..J.~

r
rOOOl - ..

[0000 I--..
/ ..

I--..
I ..

..
DE

DETAB

DETAB/65 FILE Eh'DCARD

TAB/65 TABLE END 'CARD

/65 SOURCE DECK

DETAB/65 RIJLES CARD

DETAB/65 HEADER CARD

COBOL SOURCE DECK

FIGURE 6 . DECK FORMAT roR A DETAB/65 PROGRAM

-18-

eoodi tien Stub

Beginning in column 9 of the specification sheet and continuing for as many lines Jf
~ row (up to 9) as are necessary to contain it, any condl~on that constitutes a
legitimate COBOL conditional statement (with the IF implied) may be specified. A
condition stub must contain at least one operand. A condition stub entry 16 bound~d
by column 9 of the input card fonnet and the first column of the first rule, but may
be continued on several lines. A condition stub entry must be contained entirely
upon one page (i,e" the first logical sub - table) 1n row-line length, but additional
lines may be given on subsequent physical pages. Continuation of lines do not require
hyphenation since continuations are treated as part of a single entry. Blanks other
than those required because of language specifications are ignored at the beginning
and end of lines, permitting the user to indent or organize operands in various ways
to increase legibility.

D~spite this flexibility in specifYing conditions, it is recommended that condition
stub entries be kept as short and concise as possible. Any lengthy calculations
should be relegated to a separate expression and assigned a name that may be referenced
in a condition stub entry.

Entry

A condition entry 1s specified within the bounds of a rule . That is, it begins in the
column containing the left-most digit of its rule number and. ends where the rule ~
immediately to i ts right begins. A rule must not be less than three nor ~ore thar.
twelve columns in width, but an entry may be continued on the subsequent lines of \ row.

,
Three kinds of condition entries are permitted: Limited, Extended, and Mixed. Ii a
limited entry form, each rule or entry is three columns wide. Permissibl.e entries
are (a) Y (i .e., Yes), signifying that the stated conditi on must be true to satisfy
the rule, (b) N (I.e., No), signifYing that the condition must be false to satisfY,
(c) - (1.e., a hyphen or blank), signifYing that the condition m83' be either true
or false, that the programmer doesn ' t care which it is. The entry must be made in
the second, column of the rule and have a bl.ank space both to the right and to the
left within the rule.

In extended entry form, leading and following blanks are permissible, but not required.
Permissible entries are (a) and operator and an operand, (b) an operand, (c) -, or
(d) a blank. In mixed entry format, the entries for any one condition may be either
ext nded or limited, but not both .

In extended and mixed entries, a condition entry too long to be contained within the
allotted 12 spaces m~ be continued on successive lines of a row. Limited entries in
a mixed table must still contain a leading and trailing blank and appear in the second
column of the rule.

The last rule will be the ELS- rule. The ELS- rule must be given, but all condition
entries for the ELS-rule must be blank (or 11 _").

Neither names nor values may be split between stub and entry.
or operand and verb must appear in the stub, and at least one
given for each condition. (Except in the case of the 'empty'
entries are made .)

At least one operand
condition entry must be
table in which case no

A condition entry may
Rule Header section.)
exceeds the available
or multiple lines may

-19-

not be split between pages or IIsuh-tsbles." (See Rule No.,
If there is less than 12 spaces left on a page and the entry

space, the entry must either be made on a neW' page or sub-table,
be used.

Fbrmula references must not duplicate any data references made in the data division.

On sub-tables beyond the first (i.e., RSET <:1), condition entries must begin in
column 9 of the DE~ specification sheet; that 1s, the first rule number on continu
ation pages should begin in column 9 . Limited entries must still be in the middle
column of the entry and extended entries may or m~ not have leading and trailing
blanks.

In r~l sub-tables, condition entries must start 1n the first line of a row. For
limited entry tables, only Line 1 or a row need be given in sub-tables beyond. the
first since all condition entries on other lines would be blank. The programmer
may wish to retain the vertical alignment, however, to help avoid mistakes. In
constructing a condition matrix for a limited entry table all lines except Line 1
will be rejected (i .e., not read into the matrix) and entries so misplaced will be
lost.

For extended entries, the programmer may include as many lines as are necessary (up
to ,nine) to express the longest entry; however, this number of lines m~ vary as
required from sub-table to sub-table of the specifications. In writing extended
entries, no continuation marks, such as hyphens, need be given since each line is
pic..::ed up as a continuation of the row. Blanks should therefore be inserted where
appropriate to avoid two words being read as one. In setting up the condition matrix,
the input editor will continue reading cards into the matrix until a new row number
is encountered, creating an image of the input condition matrix area.

In Ul extended entry table, the programmer may desire to specifY a condition such
tha t the value specified is not any of the values specified in any other concii tion
entry in that row. He may dO"'this by specifYing "Nor." In the processor this
expression will be expanded into an liN" entry and row in combination \Ii th every othel'
condition in the row for which a value is given. Don't care entries (11_11 or blank)
will be ignored . In illustration, consider this example:

- 20-

CONDITION SruB RULE NO.

COND o 001 002 003 004 005 006 007 008 009 010 011 012 ELS

001 A • 12 Y Y Y Y Y Y N N N N N N

002 B· 5 10 N¢T 5 10 N¢T 5 10 N0T 5 10 N0T

003 C • OPEN Y Y Y Ii N N

004 D - SUNDAY Y Y Y N N N

This expands to ' .

001 002 003 004 005 006 007 008 009 010 011 012 ELS

001 A • 12 Y Y Y Y Y Y N' N N N N N

002 B • 5 Y N N Y N N Y N N Y N N

003 B • 10 Y N Y N Y N Y N

004 C • OPEN Y Y Y N N N

005 D • SUNDAY Y Y Y N N N

Aft~r optimization th i s table will read "

001 004 002 005 003 006 007 010 008 011 009 012 ELS

001 A • 12 Y Y Y Y Y Y N N N N N N

002 B • Y Y N N N N Y Y N N N N

003 B • 10 Y Y N N Y Y N N

004 C = OPEN Y N Y N Y N

005 D • SUNDAY Y N Y N Y N

FIGtffiE 7. EXAMPLE OF THE EXPANSION OF " NOT" AND OF OPrIMIZATION

-2l-

Action Area

The action area is used. to specifY the actions the program 1s to take when the con
ditions satisfying the various rules are met. 'nle actions represent the "THEN" part
of the conditional statements for wp.1ch the conditions are the "IF" portion. All
the rules and principles stated for conditions apply equally to the action area. The
action area consists of an Action Stub and an Action Entry area just as the Condit1o~
Area consisted of a Condition Stub and a Condition Entry area.

Table ID

The Table ID eIl:try must be the same unique identifier BS for the rest of the table.

Rov

Row Number entries are a continuation of Row'Numbers for the Conditions. However, .
while the rows need not be numbered 1n sequential order, it 1s reccm:nended that they
be so ordered, for they will be canpl1ed and executed 1n the numbered sequence. tthat
is, while condition rows are subject to reordering in the optimization process, acti?ns
are not , thus insuring that the program will take a sequence of actions in the order
specified by the programmer . '.that is, the processor will not create any logical errors
by reordering actions. ('!he programmer, however, is free to create his own .)

Line

The Line entry should be left blank, if' an action can be specified on a single linej
otherwise the digits 1, 2, 3, etc . , must be used in precise sequence 80 that the
proper action statement is picked up.

RSET

The RSET entry is left blank if only one sub-table is required. If more than one
sub-table is required to contain the additonal rules, RSET will be numbered 1, 2, 3,
as required, up to 9·

Action Stub

'Ihe Action Stub must contain at least an operator. In a limited entry table it vill
contain the entire action in a single "row" using as many lines as re required to
specifY the entire action to be taken . In extended entry tables an expression may
be split betveen the Action Stub and the Action Entries . Although names and values
may be broken a.OO. continued from line to line, they may not be split between the Stub
and an Entry. This does not prevent subscript values of a name being used as entry
values to speci:f'y different table destinations resulting from different rules being ,
satisfied.

While no restriction is placed on the kind or length of actions taken (with a procedure
or another conditional, if you vish), it is recommended that all lengthy Action Stub
and Action Entry entries be defined outside the table and referenced by an appropriate
name.

Although, agai n, no restrictions are imposed, it is recommended that all calls to system
(COBOL) subroutines be made in a general fashion. E . G., an I/O order should be ex
pressed PERFORM READ, PERFORM WRITE, etc. This convention will enable the programmer
to write a program that is compatible with the manner in which various COBOL I/O
modifiers (AT END, EOF, ON SIZE, En::.) have been implemented 1n different COBOL pro
cessors.

-22-

Action Entry

For limited entry tables, any action that 1s associated with a given rule will be
indicated by placing an !IX" in the central column of the three column entry space
of line 1 (the first line) of the action row. '!he "XII must be followed and pre
ceded by a blank.

Extended action entries will be treated. in the same manner 8S extended condition
entries. Care will be taken in generating COBOL statements not to disturb the
basic operating sequence specified by the programmer.

NOTES

P. note 1s a descriptive statement that has no functional significance and that cal~r1eB
the same uses and restrictions as notes in COBOL-61. A note haa the same Table ID
as the table that it 16 applied to. Notes are g1 ven a row number of goO to 999 and
note linea are numbered 1, 2, 3, etc., 8S for other rows and 11nes to maintain their
sequential order. Notes ma.y be wr1Uen a.nywhere in the table except between the Table
Header and Rlle Header Cards. When the processor encounters a note row designator I
it will transfer the card into the COBOL code area as a note without further processing.

Note, however, that as presently constituted all notes would. be sorted to the end. of
the table by preprocessing to put the cards in order. If it is desired that notes
be inserted in place, the cards may be hand-ordered if'more than one page or sub-table
is used, or not sorted if' only one Bub-table (the first) is used.

RESTRICTIONS AND USAGES

certain restrictions and peculiarities of usage become apparent as decision table
speCifications are used in combination v1th the COBOL languages. These restrictions
ure, in ~neral, not serious, but minor logical errors may be avoided if the programmer
1s aware of these.

LINKAGES

A decision table may be entered in a variety of wa;ys. 'lhe preferred mode of entr(is
through a PERFORM verb, in which case a linkage back to the main control sequence
may be ~nerated. If the table is to be used iteratively on a succession of inpu.ts
:;>r cases (as in a scan routine), then PERFOHoi is the logical choice. If tables an
nested, the PERFOIM verb should be used to step from one table to the next and bapk.
If a table m~ be entered fran any one of a set of points, the PERIDRM verb and R!:'lURN
'entry are most convenient.

A table may be entered through a GO rro, but in this case the processor has no meap.s
of knowing what location to return to in the main control sequence unless this loca
tion is explicitly stated in conjunction with the separate rules. Of course, if one
of the 1'unctions of the table is to sw1. tch control to various program regions, depend
ing upon the conditions encountered, this may be the preferred mode of speCification.
A sequence of tables may be stepped through with a series of GO 'IO's, but it is felt
that this mode is inferior to the use of PERFORM's.

-23-

Note that a table • may not be entered via an ENTER verb, nor may an ENTER verb be
used within a table ..n.thout creating difficulties. All information necessary tor
the processing of the tabl e and its COBOL statements are contained in the header
cards .

Note also that t ables cannot be entered at any point except at the beginning. It'
entry is desired. at i ntermediate points in a set of cood1t1oDS, this eff'ect may be
achieved by creati ng a sequence of tables and chaining them together. If tables
are nested, however, returns to points in the Action Area of previous tables may be
made tllrough the operation of the PERFO}fI{ verb and normal. exits, or may be specified
directly by a GO TO .

Note that if a GO TO table- name- l is given within the range of a COBOL PERFORM •••
THRU that the sequence of contr ol may be lost unless the programmer has established
instructions that will get the sequence back within ghe loop. However, no such
trouble should be encountered when a PERP'OlM table- nsme-l is given unless the tabl.e
contains only explicit GO TO's that pick up the sequence elsewhere.

-.

•

,
,

ACKNOWLEDGMENT

-----~--------
The DETAB/65 Preprocessor wa. prepared by Working
Group 2 on Decision table. of the Special Inter.at
Group on Programming Lansuage. (SIGPLAN) of the
Lo. Angel •• Chapter of the ACM.

the initial dl.trlbut1on 1. beins mad. by ACM
Headquarter. on behalf of the Joint U.er. Group.

000000
000005
000010
) OO OIS
000020
000025
) OOHO
000035
000040
000045
000050
)00055
000060
000065
000070
) 00075
000080
000085
) OO OqO
)00095
000100
OOO lO ~
000 liD
000115
0 00120
000125
0 0()130
[)0013~
000 140
000145
)00150
0 0015~
000160
000165
000170
000 I 7S
000180
000185
000190
0001115
000200
000205
000210
000215
000220
000225.
J 00230
000235
000240
000245'
000250
000255

DETAB/65 COBOL PREPROCE SSOR LISTING

IDENTIFICATION DIVISION.
PROGRAM-ID. PREPROCESSOR FOR OETAB-oS.
AUTHOR. ANSON CHAPMAN.
DATE-WRITTEN. 12/30/64.
DATE-COMPILED.
REMARKS.

"

DU 4S-05
DH AS-b'>
ijGJ,AS-65
DH~a-0 5
DETAS-6 5
DETAS-65

THE GENERATOR PO~TIO' OF THE PREPROCESS~R A~ALllES A
DECISION TASLE AND GENERATES SIMPLE CONDITIONAL STATEMENTS
FOR Y'S, N'S AND ~LANKS AND WILL GENERATE IF STATEMENTS FOR
ONE PATH THRU THE TREE THE ACTION CORRESPONDING TO THE PATH
IS GENERATED IN STMTS OXOl4 T~RU DX032 THIS PATH IS DELETED
FROM THE TREE IN DX016 THRU DXD2D DX301 THRU DXD61
REINITIALIZES THE TREE, FINDS THE LAST NODE :DNNECTED TO
THIS PATH AND COMES , SACK TO DX003 FOR ANOTHER PASS THRU THE
NEXT PATH THIS PROCESS IS REPEATED UNTIL IF STATEMENTS
HAVE BEEN GENERATED FOR ALL PATHS THRU THE DECISION TABLE
TREE . STRUCTURE.

DETAS- 65
DETAB-O S
DETAS-6S
DETAS-6S
DETAS-65
OETAS-6S
oETAS-oS
DETAS-6S
DETAS-oS
OETAS-05
DEUS-oS

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. CONTROL DATA 1004A.
JBJECT-COMP~TER. CONTROL DATA 1004A.
SPECIAL-NAMES.

SYSTEM-INPUT-TAPE IS SIT.
INPUT-OUTPUT SECTION.
FILE-CONTROl.

SELECT CARD-INPUT. ASSIGN TO SYSTEM-INPUT-TAPE MULTIPLE
SELECT CARD-OUTPUT. ASSIGN TO SYSTEM-PUNCH-TAPE.
SELECT LIST-OUTPUT. ASSIGN TO SVSTEM-OUTPUT-TAPE • .

DATA OIVI SID'.
FILE SECTION.
FD CARD-INPUT

LABEL RECORDS ARE OMITTED.
DATA RECORDS ARE TEST-CARD.

01 TEST-CARD.
02 FILLER

FD CARD-OUTPUT
PICTURE XlSOI.

LASEL RECORDS ARE OMITTED.
DATA RECOROS ARE CRO-OUT. DETAS-CRD. DUM-I.

01 eRO-OUT.
02 FILLER
02 SOOY.

03 FILLER
03 S-MARG

02 IOHO
01 DETAS-CRD.

02 FILLER
02 IDENT.

PICTURE X17I.

PICTURE
PICTURE
PICTURE

Xl41.
Xl &11.
XISI.

PICTURE XXX.

03 ROW-NO PICTURE 9q9.
03 LINE-ID PICTURE X.

02 FILLER PICTURE Xl731.
01 DUM-I.

02 CRO-COL PICTURE X

oETAS- 05
DETAS- 6S
DETAS-oS
DETA8-6S
DETAS-6S
DETAS-6S
DF. TAB- b5
oer A8 ~ ' .• :;

REEl.DETAS-6>
OETAB-65
OETAS-65
OETAS-&S
Dr, UB-6 S
DETAB-05
0F. TAS-6S
D\' TAS-& S
0"I: TA8-65
OF- TAS-O S
DI' TAS-05
DFTAS- 65
O~TAS-6 5
01' TAS-65
0~TAS-6S
OETAS-05
D(US-65
DETAB-0 5
OET4S-65
Oli T4S-65
DEUS-oS
DETAS-65
DEUS-05
DETAB-6S
DEUS-65
OETAS-OS
DETAS-oS

FO LIS T-OUTPUT
LABEL RECOROS ARE OMITTED,
DATA RECORD IS TAPE-LIST.

01 TAPE - LIST.
02 FILLER
02 CARDX
02 fiLLER

• DRKING-S TORAGE
71 Al
17 CARDCN T
77 COLI X
n COLUM
71 DUMIX
71 ELMeT
17 ELMex
17 ELHRX
77 EXIX
77 KEY-I
17 KEY- 2
77 KEY-3
77 LABIX
17 LAaNO
77 NACTS
77 NCOLS
77 NO RL S
'77 NoCON
77 NRLS
77 NROWS
77 RoWI X
01 DUM-2.

PICTURE Xllll.
PICTU~E 999.
PICTURE XI661.
SECT ION •
PICTU~E XX
PICTURE H9
PI C TURE 999
PI CTURE 999
PICTURE 999
PICTURE 999
PICTURE 999
PICTURE 999
PICTURE 999
PICTuRE 999
PICTURE 999
PICTURE 999
PICTURE 999
PICTURE 999
PICTUH 999
PICT URE 999
PICTURE 999
PICTURE 999
PIC TURE 999
PICTU~E 999
PICTURE 999

VALUE 'AZ'.
C OMPU 14 TI ONAL
COMPUTATIONAL
COMPUTATIONAL
COMPUTATIDNAL
COMPUTATIONAL
COMPUTATlON,iU.
COMPUTATIONAL
COMPUTATIONAL
COMPUTATIONAL
COMPUTATIONAL
COMPJTATIONAL
COMPUTATIONAL
COMPUTATIONAL
COMPUTATIONAL
COMPUTATIONAL
COMPUTATIONAL
CDMPUTATIONAL
COMPUTATIONAL
COMPUTATIDNAL
COMPUTATIONAL ,

02 FILLER OCCURS 50 TI MES.
COIIPUTAT 10NAL
COMPUTA TI ONAL

03 STRTCOL PICTJRE 99
03 NMCOLS PICTURE 99

DUM-3.
02 COLS
OUM-4.
02 EGOTO
DUM-5 .

PICTURE X

PICTU~E X

OCCURS 12 TI MES.

OCCURS 5 TIMES.

02 TEMP PICTURE X OCCURS 58 TIMES.
OU~10 PICTU~E XI81 VALUE 'SECTION.'.

DUM-12 R EDEFI~ES DUM-l0.
02 NMSEC PICTURE X
HEADER.
02 FILLER
02 TBLNME
02 FORMIO
02 NCONO
02 ACTNS
02 NORULS
02 fiLLER
DPRIH.
02 DLABH.

PICTURE
PICTURE
PICTURE
PICTUH
PICTURE
PICTURE
PICTURE

XISI.
XC 30 I.
XX.
9131.
9131.
9131.
XC 511.

03 fiLLER PICTURE XI71
03 OUM-6.

04 LAB~H PICTURE XX.
04 LABVL PICTURE 9131.

03 FILLER PICTURE X
02 DGOTO.

OCCURS 8 TI MES.

VALUE SPACES.

VALUE ••••

OETAB-65
DETAII-65
OETA8-65
DETAB-65
OETA8-65
DElU-65
OETAB-65
OETAB-65
OETAB-65

SYNCHRONIZED RIGHT.OETA8-65
SYNCHRONIZED RIGHT.OE TA~-65
SYNCHRONIZED RIGHT.OET Aa-65
SYNCHRONIZED RIGHT.OETAB-65
SYNCHRONIZED RIGHT.OETA8-65
SYNCHRONIZEO RIGHT.DETAB-65
SYNCHRONIZED RIGHT.DETAB-65
SYNCHRONIZED RIGHT.DETAB-65
SYNCHRDNIZED RIGHT.OETAB-65
SYNCH~DNIZED RIGHT.OETAB-65
SYNCHRONIZED RIGHT.DETAB-65
SYNCHRONIZED RIGHT.OETAB-65
SYNCH~ONIZEO RIGHT.DETAB-65
SYNCHRONIZED RIGHT.DET A8-65
SYNCHRONIZED RI~HT.DETA8-65
SYNCH~ONIZED RIGHT.DETAB-6S
SYNCHRo~IZED RIGHT.DE TA8-65
SYNCHRONIZED RIGHT.DETA8-65
SYNCHRONIZED RIGHT.DETA B-b5
SYNCHRDNlzeo RIGHT.DETA B-b5

DETA8-6S
DfTA8-65

SYNCHRONIZED RI;HT.DETAB-6S
SYNCHRONIZED RIGHT.DETAB-~5

DET~B-65
DET AB-65
DfT AB-6S
DETAB-65
DET A, B-65
DETAII-65
DETAB-65
DETAB-6 5
DfT~8-65
DETA8-65
OfTAB-65
DfTA8-65
DET~B-65
DETAB-b5
DETA8-6S
DETA8-65
DETAB-6S
DETAB-65
DETAB-65
DfTA8-65
DETAB- 65
DETA8-b5
DETA8-65
OETA8-65
DETAB-b 5

000260
)00 265
000270
)00275
000280
)00285
)00290
)00295
)00300
0003 05
)00310
000315
)00320
000325
)003}0

)00335
oOoHo
)00H5
000350
)00355
000360
000365
000370
)00375
000380
000385
)00 390
000395
000 400
000405
000410
)00415
000420
000425 01
000430
000435 01
000440
000H5 01
000450
000455 01
000460 01
000465
000470 01
000415
000480
000485
000490
000495
000500
000505
00051 0 01
00051 5
000520
000525
000530
000535
000540
)00545
)005 50 03 FILLER PICTURE AI71 VALUE • GO TO '. DElAB-6S

.,) 00 '\ 51)
) 00 '. 60
) 00 ~ 6~

)00~70

000~7~
) OO ~SO

000~S5 01
0 00590
)OO~9~

)00600 Ol
OOObO~
000610
00061~
000620
000625
000630
000635
0006"0
0006"5
)006S0
000655
000660
000665
000670
000675
0006S0
0006S5
)00690
000695
000700
000705 01
000710
000715 Ol
000120
000125 01
000130
000735
0007100 01
OOOHS '
000750
000755
000760 01
000765
000770
000775 ,
0007S0
000785 01
000790
000795
OOOSOO
OOOSOS 01
OOOSIO
000SI5
000S20
000S2S
000S30
000S35
OOOS"O
)00S"5

03 OGOL~.
04 DGOLB PICTURE XX.
0" DGO~D PICTURE 999.

02 HOUSTON.
03 CNOI
03 ATBL

1I NEl • .

PICTUIE XI5S. OCCURS 50 TIMES.
PICTUIE XI5S1 OCCURS 50 TIMES.

02 FILLER
02 COND
TEXAS.
02 LlNE2.

PICTURE XII'"
PICTURE XI5SI.

03 'F ILLER PICTJRE AIIII.
a) COOPR PICTURE X1121.
a) PIF PICTURE
D) OE~SE PICTURE
03 ELOPR PICTURE
03 PELSE PICTURE
03 FILLER PICTURE

02 LINE} REDEFINES
03 FILLER PICTURE
03 ONAME.

x.
X161.
X1121.
X.
AI29 ••

lINE2.
X171.

VALUE '

04 TCOLS PICTURE X OCCURS SS TiMES.
03 FILLER PICTURE X171.

02 FILLER REOEFINES LINE2.
03 FILLER PICTURE XIII ••
03 BNA~E PICTURE XI5S'.
a) FILLER PICTURE XXX.

02 DECISION-TABLE.
03 ROW

04 COL~N PICTURE X
EliMT.
02 Ell MC
MAT IT.
02 MATIX
MlCOESCR.

PICTURE 999

PICTURE 999

02 POPUL PICTURE 999
02 SAVCL PICTURE X
WRNING-PRINT.
02 FILLER PICTURE XIIT'

I •••••• WARNING. I.

OCCURS 50 11 MES.
OCCURS lOa TIMES.

OCCURS 2S 11 MES.

OCCURS 12S TIMES.
OCCURS 2S liMES.

VALUE

02 WRNING-IMA.E PICTURE XI52 ••
WARNING-MESSAGES.
02 WRNING-I PICTURE XI521 VALUE

IF '.

'NO ELSE RULE CARD. LAST RULE PROCESSED
'VALUE

AS ELSE RULE.'.
02 WRNING-2 PICTURE X.31.

'REDUNDA~CY. CHECK THESE RULES -'.
ERR-PRNT.
02 FILLER PICTURE X130. VALUE

••••••• E~R)R. TABLE SKIPPED. I.

02 ERR-IMAGE PICTURE XI53'.
ERROR-MESSAGES.
02 ERR-I PICTURE XI"SI VALUE

'PRESENTLY, TASLES RESTRICTED TO LIMITED ENTRIES.'.
02 ERR-2 PICTU~E XI421 VALUE

'TA8LE-NAME MISSING FROM TABLE HEADER CARD.'.
02 ERR-3 PICTURE XI191 VALUE

'RULES CARD MISSING.'.
02 ERR-4 PICTURE X139' VALUE

'LESS THAN THREE RULE COLUMNS SPECIFIED.'.

DETA8-6S
DEU8-6S
0t;TAS-65
OHU-6S
OHAS-6S
OETAS-6S
OEUS-!>5
OF-US-65
OEUS-65
OETAS-6S
OF.TAS-6S
D~U8-65
DEU8-65
OETAS-6S
OETA8-6S
OHA8-6S
Of: U8-6S
OETA8-6S
DETAS-6S
DfTA8-6S
DETAS-65
DEUS-l>5
DEU8-6S
DEUS-loS
DETAS-6S
D£ TA8-6S
DETAS-l>S
DETA8-l>S
DETA8-6S
OETA8-6S
OETAS-6S
DETAil-loS
DETAS-6S
DETA8-6S
DETAS-65
De TA8-l>S
DETAB-6S
D~TAS-6S
DETAS-6S
DETAil-loS
DHAS-l>S
DETAS-l>S
DfTAS-6S
DHAS-6S
OETAS-6S
DETAS-6S
DE'TA8-l>S
DETA8-65
DETA8-6S
DETA8-l>S
DETA8-6S
DETA8-65
OEIAS-65
DETA8-6S
DETA8-l>S
DETA8-l>5
DCTA8-6S
DETA8-6S
DETA8-6S

000850
J00855
J00860
000865
000870
000875
000880
000885
000890
000895
000900
000905
00091 0
00091 5
000920
000915
000910
000 915
000 940
0 00945
000950
000955
000960
000965
000910
000915
000980
000985
000990
000995
001000
001005
001010
001015
001020
001025
001030
0010 35
001040
0 01045
001050
JOI055
301060
001065
001 oro
00 101;
00 1080
001085
001090
001095
001100
001105
001110
JOI115
001120
001125
001110
001115
0011"0

02 ERR-5 PICTURE XI431 VALUE
'PRESE~TLY, CO~TI~JEO RULES NOT I MPLEMENTED.'.

02 ERR-6 PICTURE XI401 VALUE
'CO~DITIJN STU8 ENTRY EXCEEDS 58 COLUMNS.' .

02 ERR-7 PICTURE XI261 VALUE
'MORE THA~ 12 RULE COLUMNS.'.

02 ERR-8 PICTURE XI531 VALUE
'NUM8ER JF RULES ENCOUNTERED DISAGREES ~ITH RULE CARD. '.

02 ERR-9 PICTURE XI411 VALUE
'MORE THAN 50 ACTION OR CONDITION ENTRIES.'.

02 ERR-I0 PICTURE XI461 VALUE
'DECISION TA8LE LOGIC ERROR. PROCESSING HALTeo.'.

P~OCEoURE DIVISION.
OETA865 .

OPEN INPUT CARo-I~PJT, OUTPUT CAIO-OUTPUT, LIST-OUTPUT.
OTOOI.

PERFORM READ-I.
IF '0000' • 10ENT OF oETAB-CRD GO TO MONITDI.
WRITE DEU8-CRO.
GO TO DTOOI.

MONITOR.
MOVE DETAB-CRo TO HEAOER.
IF TBLNME • SPACES GO TO EN02.
IF FORNIo OF HEADER NOT • 'L' GO TO EMOI.
MOVE SPACES TO HOUSTON, TEXAS.
MOVE ZEROES TO OUM-2.
MOVE TBLNME TO DUM-5, DNAME.
PERFORM RSCAN.
PERFORM OT005 VARYING EXIX FRDN I BY I UNTIL EXIX • 9.
PERFORM READ-I.
IF 10ENT OF OETA8-CRo NOT· '0001' GO TO EM01.

NOTE RULES CONVERSION SECTION.

MOVE 0 TO CAROCNT.
MOVE 1 TO NUS.
MOVE 9 TO CDLUM, STRTCDL INRLSI.

DT050.
IF CRD-CDL ICOLUMI • SPACE GO TO oT051.
IF CARoCNT IS LESS THAN 1 GO TO EM04.
NOVE CARoCNT TO NMCDLS INRLSI.
IF CRD-COL ICDLUMI • 'S' GO TO DT055.
ADO 1 TO ~RLS.
NOVE COLUM TO STRTCOL INRLSI.
MOVE 1 TO CARoCNT.
ADD 3 TO CDLUM.
IF COLUM IS GRElTER THAN 80 GO TO EM05.
GO TO OT050.

oT005.
MOVE NMSEC IEXlXI TO TCOlS loUM·IXI.
ADD 1 TO DUM IX.

OT053.
ADD 1 TO CARoCNT, ADO 1 TO COLUM.
IF CARDCNT IS NOT GREATER THAN 12 GO TO OT050.
IF CARoCNT IS GREATER THAN 58 GO TO EM06.
IF NRlS • 1 GJ TO oT050 ELSE GO TO EMor.

oTD55.
SUBTRACT 1 FROM NMCOlS INRlSl, SUBTRACT I FROM NRtS.
IF NRLS NOT. NDRJLS GO TO EN08.

DETAd-65
oETAB-65
OET Aa-o 5
OETAB-65
OETAB-65
OETA~-65
DETAB-65
OETAB-6~
oEUB-65
DETAB-b5
DEUB-65
DETAB-65
DE UB-65
DET AB-65
OE TAB-65
DeTAB-65
OETAB-65
DETAB-65
OEUB-05
OET AB-oS
OE UB-65
OETAB-65
oETA8-6 5
OET AB-65
OET~ B- 65
DET AB- 05
OET A8-o5
DET AB-65
DETAB-05
DETA B-05
OETAB-6 5
OET A8-65
DET~B-65
DET AB- 65
OE nB-oS
oET MiB-65
OETAB- b5
DETAB- 05
oETAB-05
OET AB-05
OE H8- b>
DET ,t8-6~
OEU B-o '
DE HB-65
OErA B- 65
OET AB- b5
DET.~B-b5
oETAB-b5
oETAB-65
DE U S- b5
OETA'B-65
OETAB- 65
OETAS-o~

DETAS- 65
oETAB-65
DETAB-65
DElAS-oS
OETAB-b'
oETAB-05

U,)1 : 45
0 0 1 150
l. J l l ljlj

00 11 60
00 1 165
J OI1TO
001115
001180
J01l85
J01l90
J01195
001200
001205
001210
001215
J01220
001225
001210
001235
0012~0
0012'>5
001250
001255
001260
001265
001270
001275
JOl280
001285
001290
001295
001300
001305
001310
001315
001320
001125
001330
001135
001340
001345
001350
001355
001360
001365
001370
001375
001380
001385
001390
001395
001400
001405
JOl410
001415
001420
001425
J01HO
001435

NOTE OETAS CA~O SECTION.

ADO 1 TO N~LS.
MOVE ST~TCOL IN~lSI TO COLUM.
IF C~O-COL ICOLuMI = 'E' GO TO OT056.
MOVE "~NING-l TO W~NING-IMAGE.
W~[TE TAPE-LIST FROM WR~IN~-P~INT.

OT056.
HOVE 1 TO KEY-2, KEY-], ROWIX.

OT05T.
PERFORM READ-I.
IF ROW-NO JF OETAS-C~O' 999 GO TO OTOS7.
MOVE 1 TJ KEY-I, COLIX.
IF LINE-IO OF OETAS-C~O • '.' GO TO TBLPROC.
HOVE STRTCOL [KEY-II TO COLUM.

NOTE CONOACT SECTION.

HOVE SPACES TJ OUM-5.
HOVE I TO EXIX.

CONOACT.
MOVE CRO-COL ICOLUMI TO TEMP [EXIXI.
[F EXIX GREATER NHCJLS [KEY-II GO TO OTOS1-1.
ADO I TO EXIX, AOD I TO eOLUM, GO TO CONOACT.

OT057-1. ,
[F KEY-2 [S GREATE~ THAN 50 GO TO EM09.
IF KEY-2 IS GREATE~ THAN NCONO GO TO OTOS&.
MOVE OUM-5 TO CNOI [KEY-21.
ADO 1 TO KEY-2.
GO TO OT059.

OT058.
[F KEY-3 [5 G~EATER THAN 50 GO TO EM09.
MOVE OUM-5 TO ATSL [KEY-)'.
ADO 1 TO KEY-3.

OT059.
PERFORM OT060 THRU

KEY-l IS GREATH
ADO 1 TO ROWIX.
GO TO OT057.

OT060.

I
OT061 VARYING
THAN NRlS.

HOVE STRTCOL [KEY-II TO COlUM.

NOTE VARAMOVE SECTION.

MOVE SPACES TJ OUH-).
MOVE I TO EXIX.

VARAHVE.

KEY-l FROM 2 BY 1 UNTil

MOVE eRO-COL ICOLJM' TO eOLS IEXIXI.
IF EXIX GREATER NMCOLS [KEY-II GO TO OT060-1.
ADO 1 TO EX[X, ADD 1 TO COLUM. GO TO VARAMVE.

OT060-1.
EXAM[NE OUM-] REPLAC[NG ALL ,-, BY SPACES.
[F OUM-3 - SPACES GO TO OT061.
EXAMINE OUM-) TALLYING UNTIL FIRST 'N'.
[F TAllY' 12 MJVE 'Y' TO COLliN [ROW[X, COLIX' ELSE

MOVE 'N' TO COLMN IROWIX, COLIXI.
OT061.

ADO 1 TO COLIX.

OETA8-6S
DUA8-6S
DtTA8-65
Df,UB-6S
DI TA8-6S
DETA8- 6S
OETA8-o5
DfTA8-oS
DEU8-6S
DETA8-6S
OEUB-6S
DETA8-65
OETA8-6S
0t,U8-6S
OETA8-oS
DETA8-6S
DETA8-oS
DETA8-6S
DETAS-6S
DUAS-6S
DETA8-6S
DETA8-6S
DETA8-6S
DEU8-6S
OETAS-6S
DETA8-65
DeU8-6S
DETAS-oS
DETAS-6S
D~UB-6S
DUA8-6S
DETA8-OS
DETAS-6S
DETAS-oS
DETAB-6S
DETAS-6S
DETA8-oS
DETA8-6S
DETA8-oS
DETAS-65
DETAS-05
DETAS-6S
De TA8-6S
D~ TAS-6S
DETA8-6S
aETA8-oS
D~TA8-6S
DETA8-oS
DETA8-oS
DETAS-6S
DETA8-6S
DETA8-6S
DI'TAS-6S
DETAS-oS
DETAS-6S
OETAS-6S
DETAS-6S
DETAS-6S
DETAS-6S , ,

•

00 . ~ 4 ,

0014' ~
001.50
001.55
001400
001405
001470
0014 75
00H80
001485
00H90
001495
001500
001505
001510
001515
001520
001525
00153 0
J01515
001540
001545
001550
001555
001500
)01505
001 570
001575
001580
001585
001590
001595
001000
001005
0010 10
001015
00102 0
001025
001030
001035
001040
001045
001050
001055
001660
001665
001670
001675
001 680
001685
001690
001695
001 700
001705
001710
001715
001720
001725
001730

TBLPROC.
PER f OR~ L20UT THRJ RITAB.
~OVE 'OXOOO' TO OJM-b.
PERfORM OLOUT THRU RITlB.

NOTE OECISIJN SECTIJ~.

MOVE ZERO TO LABIX, LABNO.
MO VE ACTNS TO NACTS.
COMPUTE NORLS : NORULS - I.
~OVE NCONO TO NOCON.
PERFORM OX042 VARYI~G COLIX fROM 1 By I UNTIL COLIX • NORlS.

OX042.
MOVE COL IX TO MATIX ICOLIX).

OXOOI.
PERFORM OX002 VARYI~G COLIX FROM 1 8Y 1 UNTIL COLIX • NORLS .

OX002.
MOVE COLIX TO ELIMC ICOLIX).

OX050 .
MOVE NOCON TO NROWS.
MOVE NORLS TO NCOLS.
MOVE 0 TO RJWI X.
GO TO DX004.

OX003.
PERFORM Ll0UT THRJ RITA8.
PERFORM L20UT THRU RITl8.

OX004.
MOVE SPACES TJ LINE2.

DX005.
AOD 1 TO ROwIX.
NOVE ZERO TO DUMIX.
IF ROWIX a NOCON GO TJ OXOI4.
MOVE 1 TO COLI X.

NOTE ARE THERE ALL SLANKS IN THIS ROw.

DX005-1.
IF COLIX GREATER NCJLS GO TO DX005-2.
MOVE ELIMC ICOLIX) TO ELMCX.
If C.OLMN (It (hHX, ElMCXI a , , Illt '8'

NEXT SENTENCE ELSE GO TO OX051.
ADO 1 TO COLI X.
GO TO OXOO5-1.

OX005-2.
PERFORM OX400 THRU OX402 VARYING COLIX fROM 1 BY 1

UNTIL COLIX IS GREATER THAN NCOLS.
GO TO OX005.

OX400.
MOVE ELINC ICOLIX) TO ELMCT.
MOVE 1 TO ELMU.

OX400-1.
IF ELMRX • ROwlX GO TO OX400-2. ··
IF eOLMN IElHRX, ELHel1 • , ,

MOVE 'B' TO COLMN (ROWIX, ELMcr)
GO TO OX402.

ADO 1 TO ELMRX.
GO TO OX40D-l.

0X400-2.

;

MOVE 'Y' TO COLMN (ROWIX, ELMCr).

OETAS-6S
OETAS-b5
OETAS-bS
OETAS-05
DEI AS-oS
OETAS- oS
DETAS-05
DEUS-oS
OETAS-oS
OE U S-6 S
OET~S-6 S

OETAS-6~

OETAS-o S
OETAS-o S
OETAS-oS
OETAS-6S
OETAs-oS
DETAS-6S
DETAS-o S
OETAS-05
OET48-tt5
OETAB-oS
OETAS-o S
OETAS-6~
OETAS-oS
OETAS-oS
OETAS-6S
DETAS-o>
DETAS-6S
DETAS-05
DEaS-oS
DETAS-o S
DEUS-6~
DETU-oS
DETAS-oS
DETAS-oS
DETAS-oS
DETho8-b 'i.
DETAS-o'>
DE d ,s-os
OETA8-6 ~
DETAS-. '
DETU-o~
DETA8-6~
DEUS-oS
DEUS-o,
DETAS-6S
DE nS-oS
OETAS-05
OET AS-oS
OETAS-oS
DET AS-oS
OETAS-o'
OET AS-'5
DETAS-.>
OE TAS-oS
OET AS-o S
DETAS-b'
DETAS-0 5

001 115 O~402.
001740 EX IT.
001145 OX051.
001150 ' MOVE CNOI IROWIXI TO CONO.
001155
001 160
)01165

NOTE IS THERE A Y OR N IN THIS ROW.

001110 MOVE I TO COlIX.
001115 OX051-1.
001180 IF CalIX GREATER NCOlS GO TO OX051-2.
~01185 MOVE ElIMC (COlIXI TO ElMCX.
0,01190 ' If COlHN I ROW I X. ElHCX' NOT • 'N' GO TO
001195 , ADO I TO CalIX.
ODI80Q GO TO OX051-1.
001805 ~X051-2.

~~:::~ " =~~~ ~~~~~I~O T~O~~~:N.
001820 GO TO OX202.
001825 OX052.
001830 MOVE ROWIX TO ElHRX.
001835

OX052.

001840
001845
001850
001855
001860
001865
001810
001815
001880
001885
001896
001895
001900
001905
001910
001915
001920
001925
001930
00193~
001940
001945
001950
001955
001960

NOTE ARE THE REST OF THE ELEMENTS IN THIS COlUMN 8LANK.

001965
001910
001915
001980
001985
00199(J
)01995
002000
002005
0020U)
002015
002020
002025,

OX052-1.
IF ELMRX - NOCON GO TO OX052-2.
COMPUTE ElHCT • ELMRX • I.
IF COLMN (ElHCT. ElHCX' NOT ••
ADD I TO ELMRX.

, GO TO DX20i'.

GO TO OX052-1.
OX052-2.

IF NCOlS - 1 THEN MOVE
MOVE CalIX TO OUHIX.
GO TO OX202.

ROWIX TO NOCON GO TO DX014.

NOTE PUSH lAST-IN-FIRST-OUT LIST.

OX201.
MOVE ·OX· TO OGOl8.
AOO 1 TO lA8NO. ADO 1 TO lABIX.
MOVE lA8NO TO OGONO. POPUl (LA8IX'.
MOVE OGOTO TO COOPR.

OX202.
MOVE 1 TO COLI X.

NOTE IS THERE A N OR A 8LANK IN THIS ROW.

OX202-1.
IF COllX GREATER NCOlS GO TO OX202-2.
MOVE EllMC ICOlIX' TO ElMCX.
IF COlMN IROWIX. ELMCXI NOT • 'Y' GO TO
ADO 1 TO caLIx.
GO TO OX202-1.

OX202-2.
MOVE 'ELOOt' TO DGOLN.
MOVE • ELSE • TO OElSE.
MOVE OGOTO TO ElOPR.
PERFORM OX204 THRU OX205.
GO TO OX300.

OX053.

OX053.

DHA8-65
DaAB-65
DETA8-65
OETA8-65
OETAB-M
OETA8-65
OETA8-65
OETAB-65
OETAB-65
OETA8-65
OETAB-65
OETA8-65
DETAB-65
DETAB-65
OETAB-65
OETA8-65
OETAB-65
OETAB-65
DETA8-65
DETA8-65
OETA8""65
DETAB-65
DETAB-65
OETA8-65
OETA8-65
DETA8-65
OETA8-65
DETAB-65
DETA8-65
0i:TAB-65
OETAB-65
OETAB-65
O~TAB-65
D.TA8-65
DETA8-65
DETAB-65
D~TAB-65
DETA8-65
DETAB-65
Dt'TAB-65
DiTAB-65
OHAB-65
DlTAB-65
OeTAB-65
D~TAB-65

Of: TAB-65
DETAB-65
OETAB-65
OETAB-65
OETAB-65
OETA8-65
OETA8-65
OETA8-65
0I'TA8-65
OETA8-65
DETAB-65
DETAB-65
OETAB-65
DETAB-65

)J l 0 10
Jno}>
J OZ04 0
• , ''',}45

.) 050
l 0 55

n OlOoO
.... 7 065
,) Ol070
) 02 0 7 1)

' ''0''0
J OZ085
~Ol 090
"'07. 095
• ') ll OO
~Ol105

"'02110
)0211S
3 01 120
": "~l Z5

', 0 2 130
002l 3S
, ... , 'to

) {'Il l45
)0215 0

, - 15 5
. ~' bO
J ;!1 65

, ~ o z 170
lil TS

'. O.? l SO
0 <7 185

"''''~ 19 0

:O l1 95
'U l lOD

:1 L Z05
r: ~ 2l0

' 32 2 15
022 Z0

Jl) Zl2 5
i Ol 23D

,Z 235
Jnl 2 40

J 02245
OOl250
J 02255
'Qu oO
; 02205
• J Z 210
'i)' 275

i)? Z80
', l 85

,.0 2290
.10729 5
0 02300
!:IOl3 05
0 023 10
"'023 15
. ~Zj 20

MOVE ROW!X TO ELMIX.

NOTE ARE THE REST OF THE ELEMENTS IN T~!S COLUM ,~ BLANK.

OX053- 1 •
IF ELH RX = NOCON ~ O rJ OX053-2.
COMPUTE ELMCT • 1 • ELMRX.
IF COL MN (ELMer, ELMCX) NOT = , ,

MOVE '.' TO PI F. GO TO OX204.
ADO 1 TO EL~RX.
GO TO OX053 - 1.

OX053- 2.
MOVE ROWIX TO NOCON.
I F OUMIX NOT ' ZER O OR NColS • 1 THEN GO TO OXOI4.
MO VE CaLIx TO ElMRX •
HO VE AZ TO OGOlS.
MOV E ElMCX TO a GO NO.
MO VE • EL SE • TO OELSE.
MO VE OGa Ta TO ELlP R.
PERFORM DX Olb THR U QX020.
PERf OR M o XOll THRJ OX055.
MOVE NoCO N TO ROW)X.
MOVE NRo WS TO NO CON.

OX300 .
MOVE ' •• TO PELSE.
PERfORM LIOUT THR U RITAS.
PERfO RM L20UT THRU R)TAS.
IF NORLS • ZERO GO TO OXOlB.
MO VE 'OX' TO LA8NM.
MOVE POPUl IlAS!X! TO LASVl.
SUSTRA CT 1 FROM LASIX.
PERFORM OLOUT THRU RITAS.
GO TO OX004.

OXl04.
I f OUM)X • ZERO GO TO OXl05.
MOVE ROW!X TO NJCON.
MO VE AZ TO OGOlS.
MOVE EllHC 10UMIX! TO OGONO.
HOVE OGOTO TO COOPR.
MOVE OUMIX TO COlIX.
PERFORM OX010 THRU OXOlO.
MOVE NOCON TO ROW!X.
HOV E NROW S TO NOCON.

OXl 05 .
EXIT.

OX 009.
PERFORM OX010 THRU OXOS5 VARYI~G ElMRX fROM 1 SY 1 UNTIL

ELMR X IS GREATER THAN NCOlS.
GO TO OX0 03 •

NOTE DELETE FROM PATH INDEX ALL COLUMNS THAT HAVE A Y
IN THI S ROW.

OX010.
HOVE ELIMC IELMRX! TO COl!X.
I F COLMN 'RJWIX, c aLIX' NOT. 'Y' GO TO oxaS5.

OXO 11.
SUSTRACT I FRJM NCOLS.
PERFORM OXOLl VARY!NG ELMCX FROM ElMRX BY I UNTIL ELMCX

OETAU-05
OETAS-oS
aETAS-o S
DETAS-o S
DETAS- o)
OETAB- bS
OETAS-oS
OETAS-oS
OETAo-oS
OETAS-oS
DEUS-oS
DETA S- oS
aETAS-oS
OETAS-6S
OETAl\-05
oETAS-65
DEUS-oS
DETA8-6S
DETAS-oS
OETAS-oS
OETAB-o S
OETAS-6S
OETAS-oS
OETAS-05
OETAS-05
OETAS-6S
OETAS-oS
OETAS-o S
OEUS-65
OETA.B-65
OETAS-oS
OETAS-oS
OETA3 -65
DETAS-6S
aETAS-oS
OETAS-0 5
OETAS- 05
OE TAS-o S
OET4S-6 S
OETAS-o S
OETAS- 6S
OETA,S-05
OETAS- o S
OETAS-o S
OETAS-o S
OETAS-0 5
OET AS-0 5
OE TAS- 6 S
OETAS-0 5
DEUS-oS
OET AS-65
OETAS - o'
DETAS- b
OETAS- b ~

oETAd- o ~
OETAS-",
OET AS- o S
DETAd- 0 5
OETAS-o ~

002 325
002330
002H S
002340
J02345
0023 50
002 355
002360
002 365
002 370
002 375
002 380
002385
Q023 90
00239~
002'000
002.05
0024 10
002'015
0 02'0 20
0021t2~

0 02'030
00243 5
002440
0024.5
0024 50
002 455
002.60
002 465
0 024 70
002'0 75
002480
002485
J02'o9 0
002'095
0025 00
0025 05
002510
002515
002 520
00252 5
002530
002535
002540
0025H
0 02550
002 555
J 025 60
00256 5
0 02570
002 575
0 02 580
002 58 5
00 2 590
0 02595
00260Q
0 02 605
0 02610
002 615

GREATER THAN NCOLS.
SUBTRACT I FRJM ELNRX, SUBTRACT I FROM COLIX.

OXOI 2 .
CONPUTE ELMer. 1 + ELMCX.
MO¥E ELIMe (ELMer, TO ELIMC IELMeXI.

OX05 5.
EXIT.

oxoa.
MO¥E ELIMt III TO CaLIX.
PERFORM DX015 ¥ARYING ROWIX fROM 1 BY I UNTIL RO~IX • NROWS.

DXOI5.
MO¥E COLMN IROWIX, eOLIXI TO SA¥CL IROWIXI.

OX056.
NOH 4 TO OUMIX.
PERFO RM OX022 THRU DXOll ¥ARYING COLIX fROM 1 BY 1 UNTi l

CaLIX IS GREATER THAN NCOLS.
GO TO OX032.

NOTE DETERMINE ACTION LABELS AND tHECK fOR REOUNOENCY.

OX0 22 .
MO¥E ELIMC ICOLIX' TO ELMCX.
IF COlHN (NOCON. ElMCX) NOT s .Y· GO TO aX029.
I F OUM I X = 3 OR DUMIX • 1 THEN GO TO OXD59.
IF DUMIX • 2 MO¥E 3 TO DUMIX ELSE MO¥E 1 TO DUMIX.
ND¥E Al TO DGOLB.
MO¥E ' ELSE ' TO DELSE.
MO¥E ELMCX TO OGONO.
MOVE DGOTO TO eOOPR.
GO TO OXOll.

DX059.
MOVE WRNING-2 TO WRNING-IMAGE.
~RITE TAPE-LIST FROM WRNING-PRINT.
PERFORM OX028 ¥ARYI NG ELNRX FROM 1 8Y I UNTIL ELMRX • NtOlS.

OX028 .
MO¥E ' RULE' TO TAPE-LIST.
MOVE EllNt IElMRX' Ta eAROX.
WRITE TAPE-LIST .

OXD13.
EXIT •

DX029.
IF COlMN INoeON, ELMex, NOT' 'N' GO TO DXOll.
I F DUMIX • 3 OR DUMIX • 2 PERFOR~ OX059 THRU OX013,

GO TO OXOll.
IF OUM I X • 1 MO¥E 3 TO DUMIX ELSE MOVE 2 TO OUMIX.
MOVE AZ TO OGOLB.
MOVE ' ELSE ' TO OElSE.
MO¥E ElMex TO OGONO.
MO¥E OGaTa TO ELOPR.

OX03 1.
EXIT.

OX032.
MOVE 'ElOOI' TO OGOlN.
HOVE '.' TO PElSE.
IF OUMIX • 2 MO¥E OGOTO TO COOPR ELSE

IF OUMI X = 1 MO¥E OGaTa TO ElOPR.
MOV E eNOl I NoeONI TO eONO.
PERFORM OXOl6 THRU aX02D VARYING ~OLIX FROM 1 BY 1 UNTIL

COllX IS GREATER THAN NeOLS.

OElAB-65
DETAS-loS
DfUB-6,5
OEU8-6S
OEU8-65
DETAS-lo5
DEU8-65
0~U8-65
DEll8-65
OEU8-65
0!;TA8-65
DEU8-65
DETA8-65
OEU8-65
DETA8-65
OEU8-lo5
D~TA8-605

OfTA8-605
DETA8-605
D"UB-65
OETA8-605
OUA8-lo5
0~TA8-605
DETA8-lo5
DETA8-65
DETA8-lo5
OETA8-lo5
DETA8-lo5
DEU8-lo5
DEllB-lo5
DEU8-lo5
DETA8-605
DElA8-lo5
DETA8-6S
DEUS-loS
DETA8-6S
DETAB-lo5
DETA8-loS
DETA8-6S
DETAB-65
O'ET A8-05
OElA8-lo5
°FTA8-loS
OETA8-lo5
OHA8-oS
~ETA8-65
OElA8-loS
DElA8-lo5
DETl8-lo5
OfTA8-lo5
OElA8-lo5
0~U8-65
OHA8-65
OElAB-loS
OETA8-65
OHA8-lo5
OEll8-605
DETA8-lo5
OEU8-65

)02.20
)02625
)02630
)02635
)02640
)02645
)02650
)02655
)02660
)0 2665
)02670
)02675
)02680
)02685
)02690
)02095
l02700
002705
002710
002715
002720
002725
002730
l02735
002740
002745
002750
002755
002760
002765
002710
002175
002780
002785
002790
00279S
002800
002805
002810
002815
002820
002825
002830
002835
002840
002845
002850
00285S
002860
002865
002870
002875
002880
002885
002890
002895
002900
002905
002910

GO TO OnOI.
oXOl6.

MOVE EL[MC (COL[X' TO oUM[X.
MOVE 1 TO ROW[X.

oXoI6-1.
[F ROW[X GREATER NOCON GO TO oXOlo-2.
[F COLMN (ROWIX, oUM[X) ~ 'S' GO TO OX504.
ADO 1 TO ROW IX.
GO TO oXOI6-1.

0)(016-2.
MOVE 0 TO ROWI X.

oXOI6-3.
[F ROWIX = NOCON GO TO OXOI6-4.
COMPUTE ELMCX • NOCON - ROW[X.
IF COlMN (ELHCX. DUHIX) ~ • • THEN

MOVE'S' TO COLMN (ELMCX, OUMIX., GJ TO OX020.
ADO 1 TO ROW[X.
GO TO OXOI6-3.

OXOI6-4.
SUBTRACT 1 FROM NORlS.
PERFORM OX100 VARYING ElMCX FROM 1 SY 1
UNTIL ELMCX [S GREATER THAN NORLS.
GO TO OX020.

OX100.
COMPUTE ELMCT • ELMCX • 1
IF MATIX (ELMCX' IS NOT LESS THAN OUMIX

MOVE MAT[X IELMCT' TO MAT[X (ELMeX'.
OX504.

MOVE 1 TO ELMCT.
OX5D4-1.

[F ELMel - ~OWIX GO TO OX5D4-2.
COHPUTE ELHCX a RDW[X - ELHCT. '
[F COLMN IELMCX, DUH[X) - , , GO TO OX507.
ADO 1 TO ELMCT.
GO TO DX504-1.

OX504-2
MOVE 'Y' TO eOLMN (ROWIX, DUMIX'.
GO TO OXOI6.

OX507.
MOVE'S' TO COLHN (ELMeX. OUMIX'.
PERFORM OX508 VARYING ELMCX FROM ROWIX 8Y 1

UNTIL ELMCX - NOCON.
GO TO OX020.

OX508.
IF COlM~ (ELHCX. DUHIXJ • '8' \

MOVE' , TJ COLMN IELMeX. OUMIX ••
OX020.

EXIT.

NOTE PDP LASl-I~-FIRST-OUT LISl.

O,nOI.
PERFORM LIOUT lHRJ R[lA8.
PERFORM L20UT THRJ R[lA8.
[F NORlS = ZEROES GO TO OX03S.
HOVE 'OX' TO lA8NM.
MOVE POPUL ILA8[X. TO LASVL.
SU8TRACT 1 FROM LA8[X.
PERFORM OLOUT THRU R[TA8.

OETAS-65
OEHS-65
OEUS-65
OETAS-65
OETA,S-65
OETAS-65
OETAS-65
OEUS-65
OETA'B-65
OETAS-65
oET,,8-65
OETA8-6S
OErA&-65
OET~S-65
OETA8-6S
"'ETA8-65
DETAS-65
DETA'S-65
DETA8-65
OETol8-6S
OETA8-6 ~ ..
DET"8-C~,)
DEU,8-6~

OETA8-6S
DETA8-6S
OETA8-6S
DETA8-6S
OETA8-65
OETA8-6S
OETA8-6S
DETAS-65
OETA8-6S
DETA8-oS
OETA8-6S
OETA8-6S
DETA8-loS
DETA8-6 5
DETA8-loS
DETA8-loS
OETA8-lo~
OETAS-6S
OETA8-65
OEU8-65
DETA8-65
OETA6-65
OETA8-65
OETA8-6S
OETAS-lo5
OETAS-65
OETA8-65
DETA8-65
OETAs-65
OETAS-6S
DETA8-65
OETA8-6S
OETAS-65
OETA8-65
DETAS-65
DETA8-6S

0'02915
00292 0
002925
002930
J02935
0029.0
0029.5
002'150
002955
002960
002965
002910
002915
002980
00298 5
002990.
002995
001000
003005
001010
001015
001020
001025
001030
001035
0030.0
001045
JOl05 0
003055
001060
301065
001010

NOTE SETUP INOEXES FOR NEXT PASS.

DXl02.
MOVE
MOVE
MOVE
MOVE

OXl02-1.

NORlS TO NCOLS.
NROWS TO NOCON.
HAlIT TO EL lilT.
1 TO ROWI X.

IF ROWIX • NDCON
MOVE ERR-IO TO ERR-INAGE
WRITE TAPE-LIST FRDH ERR-PRNT
GO TO OTOOI.

NOTE DELETE THAT PATH GENERATED ON THE lAST PASS AND
FIND THE NEXT HIGHER NODE ON THE TREE.

NOVE I TO COLI X.
DX014-1.

IF SAVCl (RDWIXI • , , NOVE 'N' TO SAVCl IROWIXI.
IF COllX GREATER NCOlS GO TO DX004.
MOYE EllMt (COlIXI TO ElNtX.
IF COlMN (ROWIX, ElMCII • , \ OR tOLNN IROWIX, ELMCXI

• SAYCL IROWIXI GO TO Dxb3.-2.
ADD 1 TO CDLlX.
GO TO DXOH-I.

DXOH-2.
PERFORM DX031 VARYING

OX011.
CDllX FIOM 1 BY 1 UNTil COllX • NeOLS.

MOYE ELiMt /COLlXI TO ElNtX • .
MDYE COllX TO ElMRX.
IF COtMN (ROWIX. ElMCxt NOT ~ •

NOT· SAVtL IROWIXI PERFORM 003015
001080 OX06I.

, AND COlMN (ROWIX, ElNtXI
OXOll THRU OX055.

00308~ ADD I TO RDWIX.
003090 GO TO DX102-1.
001095 OXOlS.
003100 NOVE SPACES TO LINEl.
003105 CONPUTE KEY-2 • NORULS - 1.
OOlllO PERFORN DX039 THRU OXDl9B VAlUING CDLIX FRDH 1 BY 1
001115 UNTIL CDllX • KEY-2.
003120 DXO]9.
001125 NOVE AZ TO lA8NN.
001130 NOYE COllX TO lASYl.
001115 PERFORN DlOUT THRJ RITAS.
00ll.0 ADD 1 NCOND GIYING KEY-I.
003145 PERFORM DXAOI THRU OXA04 YARYING EXIX FRON 1 BY I UNTil
001150 EXIX IS GREATER THAN NACTS.
003155 MOYE SPACES TO CRD-OUT.
003160 EXANINE OU~5 TAllYING UNTil FIRST 'G'.
001165 IF TAllY. 5B GO TO OX039H.
001110 IF TAllY NOT. ZERO, THEN
003115 IF TEMP ITAllYI NOT. SPACE GO TO OX019H.
0011BO COMPUTE DUNIX • TALLY. 1.
0011S5 PERFORN OX039F YARYING TAllY FRDN I 8Y 1 UNTil TAllY· 6.
001190 GO TO OX019G.
001195 OX01'1F.
0012 00 MOYE TEMP 10UMIXI TO EGOTO (TAllYI.
001205 ADO 1 TO DUHIX.

DETAB-U
DEUS-65
DHAS-U
DEUS-65
OEUB-6S
DfTA8-U
DEU8-6S
DEUS-6S
DETAB-6S
DtTAB-6S
DEUB-6S
DETAB-6S
DEUS-loS
DEUS-6S
DETAII-'S
DUAS-6S
DEUS-6S
DETAS-U
DETAS-65
DETAII-6S
DETAS"'6S
DeTAII-6S
DETAS-6S
DETAS-65
DETAII-6S
DETAB-6S
DFTAB-U
DETAB-U
DETAS-6S
DETAB-6S
D~TAS-6S
DETA&-6S
DETAI-6S
DETA&-6S
DETAS-6S
DETAS-6S
DETAB-6S
DETAS-6S
DETAS-6S
DETAB-6S
De TAB-loS
DETAB-6S
DETAS-6S
DETAB-6S
DErAB-6S
DETAS-U
DETA8-6S
DETAB-6S
aETAS-6S
DETA8-6S
DETAB-6S
DETAB-6S
DElAB-6S
DETAB-65
DETAS-6S
DETAS-6S
IIETAS-6S
DETAS-6S
DETAB-6S

10 j 1 1
10 3 215
101220
IOJ225
1032}0
iO}Z35
103240
103245
101250
'03255
'03260
'03265
• 03270
'0)275
'0)280
'0)285
)0)290
)03295
)03)00
)0)305
)03310
)03315
)03320
)03325
)03330
)03335
)03340
)03345
)03350
)03355
)03360
)03365
)0)370
)03)75
)03380
)03385
)03390
)03395
10]400
,)03~OS

)01410
103415
103420
1034~5
003430
003435
003440
003445
003450
)03455
(0)460
003465
003470
003475
003480
003485
003490
003495
001500

QXAal.
IF COlMN (KEY-1, COlIX' : , • GO ra QXA04.
MOVE ATSL IEXIX) TO OUM-5, BNAME.
PERFORM RseAN.
ADO 3 TO OUMI X.
MOVE '.' TO TeOLS (OUMIX).
PERFORM L20UT THRU RITAB.

OXA04.
100 I TO KEY-I.

OX039G.
IF OUM-4 = 'GO TO' GO TO OX039B.

0~039H.
MOVE 'GO TO OEXIT.' TO B-MAR. OF eRO-OUT •
MOVE eRO-OUT TO TAPE-LIST.
PERFORM RITIB.

OX039B.
EXIT •

D,J(040.
MOVE SPACES TO LINE).
COMPUTE KEV-1 z N:ONO + 1.
MOVE NORULS TO eOLIX.
MOVE I TO EXIX.
MOVE KEY-I TO TAlL V.
MOVE 0 TO NRlS.

OX04G-2.
If Ellx GREATER NAers GO TO OX040-3.
IF eOLM ,~ (TAllY, eOllX) NOT." ADD I TO NRlS.
ADO I TO TALLY, ADO I TO EIIX.
GO TO OX040-2.

OX04G-3.
If NRLS • ZEROES GO TO OX040-1.
HOVE 'ElOal' TO DUM-6.
PERfORM oLOUT THRJ RITAB.

OXQ4G-I.
PERFORM oXAol THRU OXA04 VARYING EXIX fROM I BY I UNTIL

EXII IS GREATER THAN NAeTS.
MOVE SPACES TO eRO-OUT.
MOVE 'oEXIT. EIIT.' TO BOOY Of eRO-OUT.
MOVE eRG-our TO TAPE-liST.
PERFORM R IT AB.
GO TO orool.

L10UT.
MOVE llNEI TO eRa-our. rAPE-liST. GO TO RlrAB.

l20ur.
MOVE LINE2 ro eRO-OUT, TAPE-liST. GO TO RlrAB.

OLOUT.
MOVE OlABEL TO eRa-OUT, TAPE-LIST.

RITAB.
WR ITE TAP E-li ST.
WR ITE eRa-OUT.

RseAN.
MOVE 5B ro OUMII.
PERFORM RSOOI THRU RS003.

RSOOI.
If rEMP 10UMIX' = SPACE GO TO RS002.
ADD 2 TO DUM IX.
GO TO RSOO).

RS002.
If OUMIX • I GO ro RS003.

DETAB-6S ,
DETA3-65
OETAB-65
oETAS-6S
oETH-6S
oETAB-65
oETAB-65
oErIa-05
DETL-65
oETAB-65
uHAS-65
DETAB-05
oETAB-65
DETA8-65
DETAB-65
DETAB-65
DETH-65
DETAB-6S
DETAB-65
DETAB-65
DETAB-65
DETA8-65
DETU-65
DETAB-65
DEU8-65
DETA8-6~
DETAB-6'
DETAB-65
DETA8-65
DETAS-6S
OETAS-65
DETAS-05
DE TAB-oS
DETAS-6S
DETAS-65
DETA8-65
DETAS-lo5
DETAS-65
DETl..S-65
DETj·8-65
DETAB-65
DETAS-65
DEU8-65
DETAS-65
DETAB-65
DETAS-65
DETA8-65
DETAS-65
DETAS-lo5
OETAB-65
DETAS-lo5
OETAS-65
DETAS-6S
DETAS-65
DETA~-65
DETA8-6S
DETAB-65
DETAB-65
DETAS-65

00]505
003510
J01515
003520
003525
003HO
003535
0035~0
003545
001550
003555
0035bO
0035b5
003570
003575
003580
003585
003590
003595
003bOO
003b05
003bl0
003bl5
003621)
a0162~i

003b30
00)635
0036.0
001M5
003b50
00165~
0036loO
0016bS
003670
003675
003b80
003685
003b90
003lo9S
003700
003705
001710
003715
00]720
003725
001730
003735
003740
001HS
003750
00]755
OO]7loO

SSTOP

SU8TRACT I FRJM DUMIX.
GO TO RSOOI.

RSOO}.
EXU.

NOlE DIAGNOSTIC SECflON.

EMOI.
MOVE ERR-I TO ERR-IMAGE.
GO TO EM99.

EMOl.
MOVE . ERR-2 TO ERR-IMAGE.
GO TO EM99.

EMO}.
MOVE ERR-} TO ERR-IMAGE.
GO TO EM99.

EMO".
MOVE ERR-" TO ERR-IMAGE.
GO TO EM99.

EMOS.
MOVE ERR-S TO ERR-IMAGE.
GO TO EM99.

EM0lo.
MOVE ERR-lo TO ERR-IMAGE.
GO TO EM99.

EM01.
MOVE ERR-l TO ERR-IMAGE.
GO TO EM99.

EM08.
MOVE ERR-8 TO ERR-IMAGE.
GO W EM99.

EM09.
MOVE ERR-9 TO ERR-IMAGE.

EM99.
, WRlTti TAPE-LIST FROM ERR-PRNT.

READ-I.
READ CARD-INPUT INTO OETAS-CRD, AT END GO TO EOF.
MOVE SPACES TO 10FLD. i
IF fDENT OF DElA8-eRD • '0000'
MO~E '0' TO rAPE-LIST.
WRITE UPE-L1 ST.

WRITE TAPE-LIST FROM OETAS-cRD.
IF IDENT OF DETAS-CRO • '999X' GO TO EOF.

SKIPOI. .
IF LINE-ID OF OETAS-CRO NOT ~ 'S' GO TO READ-I.
GO TO OTOOI.

EDF.
MOVE 'OEND DETA8/lo5 PREPROCESSOR RUN.' TO TAPE-LIST.
WRITE TAPE-LIST.
CLOSE CARD-INPUT WITH LOCK.
CLOSE CARD-OUTPUT WITH LOCK, : LIST-OUTPUT WITH LOCK.
STOP RUN.

DElAII-loS
D&U8-loS
DET AS-loS
OUA8-loS
O~ T AII-l>l
DETAS-loS
DETAS-loS
DHAS-loS
OEUB-loS
DETAB-05
OhUB-05
DET AS-lo5
OETAS-loS
DSTAS-loS
DETAS-oS
DETAS-oS
DETAil-oS
DETAS-loS
Df-TAS-lo5
OHAS-6S
DETAS-loS
DETAS-lo5
DETAS-loS
DHAS-lo5
DETAS-lo5
DETAS-lo5
DHAS-05
DETAS-lo5
DETAS-lo5
DF-TAS-lo5
DETAS-lo5
OETAS-loS
D,;r AS-loS
DETA8-loS
DEUS-loS
OETAS-oS
DETAS-6S
DETAS-65
DiHA8-lo5
DETAS-loS
DElAS-65
OETAS-lo5
DETAS-lo5
dETAS-loS
DETAS-65
DETA8-lo5
DF-US-lo5
OETAS-65
OE TAS-lo5
DETAS-05
D~US-65
DETAS-loS

•
OETAB/65 COBOL PREPROCESSOR TEST DE CK LISTING

1 0000 TABLEXX L 004001003
OOOl 00lO02ELSS

Cl N ,~

C2 ~
C3 N
C4 y ~ •
Al ,

S
1 0000 TABLEX" L 004001004

OOOl 00lO02003ELSS
Cl Y Y Y
C2 Y N
C3 N N
C4 Y N N
Al ,

S
1 0000 TABLEXX', L OObOOlOO"

OOOl 00lO02303ELSS
Cl Y Y Y
C2 y N
C3 N N N
C4 N N
C5 N N
C6 N Y N
Al , , ,

S
1 0000 TEST-DOL L 00300100"

0001 001002003ELH
C-l Y Y N
C-2 Y Y Y
C-3 Y N Y

ACTION-l , , , ,
S

1 000 0 TEST-002 L 002001005
0001 00100200300HLSS

C-l y N Y N
C-2 N Y Y N

ACTION-l , , X X X
S

1 0060 TEST-003 L 003001009
0001 00100200300"00SODb00700aELSS

C-l y Y Y N Y N N N
C-2 Y Y N Y N N Y N
C-3 Y N Y Y N Y N N

ACTION-l X , X X X X X X X

•
1 0000 TEST-DO" L 00"001017

0001 00100200300"00500b00700a00901001101201301"015016ELSS
C-l y Y Y Y ~ Y Y N Y N N Y N N I'l N
C-2 Y Y Y N Y Y N N N Y Y N N N Y N
C-3 Y Y N Y Y N N Y Y N Y N N Y N N
C-4 Y N Y Y Y N Y Y N Y N N Y . N N N

ACTION-l X X , , X X X X X X X , X X X , X
S

1 0000 TEST-ODS L 00"001003
0001 001002ELSS

C-l Y Y
C-2 Y Y

(-] Y Y
C-4 y " AC T ION-I X X X

S
I 0000 TEST-OOb l 004001004

0001 0010UZ003ELSS
C-I y y y
(-2 y y y
C-3 y y N
C-4 y " y

AC T 10·'-1 X X X X
S

I 0000 TEST-007 l 004001005
0001 00100Z00300HlSS

C-I y y N
C-2 y y y y
C-3 y y y N
C-4 Y N y y

ACTION-I X X X X X
S

0000 TEST-009 l 003001009
0001 001002003004005006007008ElSS

C-I y y N N Y N N y

(-Z Y Y Y N N N Y N
C-3 Y N Y Y Y N N N

AC T10N-I X X X X X X X X X X
S

I 0000 TEST-OIO l 007001009
0001 00100ZOO)004005006007008ElSS

(-1 y y y y N N N N
(-2 y y N N Y N Y N
(-3 Y N Y N N y y N

A(TION-I X X X X X X X X X
S

I 0000 TEST-Oil l 005001005
0001 00100Z003003ELSS

(-I y y y N
C-2 y y y y
(-) y y y y
(-4 Y Y N Y
(-5 y N Y Y

ACT 10,-1 X X X X X
S

I 0000 TEST-OIZ L 003001009
'0001 00100Z003004005006007008ELSS

(-1 N N N N y y y y

C-2 N N Y N Y N N Y
C-3 N Y N Y N Y N Y

ACTION-l X X X X X X X X X

S
I 0000 TEST-OD l 005001005

0001 00100Z003004ELSS
(-I Y Y Y Y
(-2 Y Y Y N
(-) Y Y Y Y
(-4 Y Y N Y
C-5 y , y y

AC T 10'-1 X X X X X

f
1 0000 TEST-014 l 010001010

'0 001 00100200300.005006007008009ElSS
C-I y N Y Y Ii Y Y N N
C-2 Y Y Y Y Y Y N
C-3 Y Y Y Y Y N Y Ii Y
C-4 Y Y Y Y Y N Y N Y
C-5 Y Y Y Y Y Y Y Y Y
C-6 Y Y Y N N N
C-7 y Y Y Ii N
C-8 Y Y N Y Y Y Y N Y
C-9 Y Y Y Y Y Y y y Y
C-IO Y Y Y N Y Y y y Y

ACTJON-I X X X X X X X X X X
S

I 0000 TEST-OIS l 010001010 •
0001 00100200300.005006007008009ElSS

C-I Y Y Y N Y Y Y Y Y
C-2 Y Y Y Y Y Y Y Y Y
C-) Y Y Ii Y Y Y Y N Y
C-. Y Y Y N Ii
C-5 Y Y Y N N N
C-6 Y Y Y Y Y Y Y Y Y
C-7 y y y y y N Y Ii Y
(-8 y y y y y N Y N Y
C-9 Y Y Y Y Y Y N
(-10 Y N Y Y N Y Y N N

AC TI ON.,.l X X X X X X X X X X
S

1 0000 TEST-016 l 005001005
0001 001002003004ElSS ·

C-I Y Y Y Y
C-2 N Y Y Y
C-3 Ii Y Y
C-. N Y
C-5 N

ACTION-l X X X X X
S

I 0000 TEST-017 l 005001005
0001 00100200300.ElSS

C-l Y Y Y Y
C-2 y Y Y N
C-3 Y Y N
C-. Y N
C-5 N

ACTlDN-1 X X X X X
S

I 0000 TEST-OlB ICHOI SE-P ICKI l 010011010
0001 001002003004005006007008009ELSS

'. CI Y Y Y N Y Y Y Y Y
C2 Y Y Y Y Y Y y Y Y
C3 y Y N Y Y Y Y Ii Y
C. Y Y Y N N·
C5 Y Y Y Ii · N
C6 Y Y Y Y Y Y Y Y Y
C7 Y Y Y Y Y N Y N Y
C8 Y Y Y Y Y N Y N Y
C9 Y Y Y Y Y Y N
CIO Y N Y Y N ' y Y N Ii
Al X X X X X X X X X X

A2 X X

"
X X

44 X X

~'>
X X

:~ 6
X X . , X X

A" X X X X

A i X X X X

Ala x x x X

All X X

•
9" :; X

