Installed
User
Program

SH20-1924-1
ylawsd &
by
/;'-Lv-v-'—.l

APL Decision Table Processor (DTABL)
Program Description/Operations Manual

Program Number: 5796-PJB

This manual provides instructions for the use of a Decision
Table Translator and auxiliary routines that have been im-
plemented to run under several APL systems. Decision
tables can be entered, displayed, edited, saved, and compiled
with DTABL. The results of compilation can be displayed
in several formats - - “abstracts”, COBOL, PL/I, ALGOL,
and APL. APL programs can be generated in executable
form. Programs in other languages can be written on a data
set and be used as input to other language processors. The
decision tables and object code produced from them can be
saved within the APL system for future reference or mani-
pulation in separate terminal sessions.

TSI

PROGRAMMING SERVICES PERIOD

During specified number of months immediately following initial availability of each licensed program,
designated as the PROGRAMMING SERVICES PERIOD, the customer may submit documentation to
a designated IBM location when he encounters a problem which his diagnosis indicates is caused by
a licensed program error. During this period only, IBM through the program sponsor(s), will, without
additional charge, respond to an error in the current unaltered release of the licensed program by issuing
known error correction information to the customer reporting the problem and/or issuing corrected
or notice availability of corrected code. However, IBM does not guarantee service results or represent
or warrant that all errors will be corrected. Any onsite programming services or assistance will be
provided at a charge.

WARRANTY

EACH LICENSED PROGRAM IS DISTRIBUTED ON AN °‘AS IS’ BASIS WITHOUT WARRANTY
OF ANY KIND EITHER EXPRESS OR IMPLIED.

Second Edition (March 1977)

A form for readers' comments is provided at the back of this publication. If the
form has been removed, comments may be addressed to IBM Corporation, Palo
Alto Scientific Center, P.O. Box 10500, Palo Alto, California 94304. Attention:
Mr. H. J. Myers.

© Copyright International Business Machines Corporation 1977

INTRODUCTION AND DECISION TABLE CONCEPTS .
SIGN-CN PROCEDUREe: « o o ® @ s o o o o s =
INITIAL TABLE ENTRYs o o o o s« o o o o o =
CORRECTION OF TYPING ERKRORS: o o o ¢ « o =
STORING AND DISPLAYING DECISION TABLES .
SAVING TABLES ACROSS TERMINAL SESSIONS «
EDITING A DECISION TABLE s ¢ @ s ¢ « o o o
COLUMN MERGING « « & o s » o o s s o s @ =
ADDING AN "ELSE"Y™ COLUMN: ¢ o o o = & o o =
COMPILING DECISTON TAELES: ¢ o = s o o = =
DISPLAYING AND SAVING COMPILATION RESULTS.
SORTING A DECISION TABLE @« o s ¢ * o s o @
TEST CASE GENERATION « s o o o o o o o o o
QUESTIONNAIRE PEOCESSING o o o o s o ¢ o o
PROCESSOR CAPACITY o « ¢ # » o o e & « = @
KEYWORD SUMMARYe = o o @« e o o o o s o o =
MESSAGE SUMMARYe o o & ¢ o ¢ o o o = o o =
TABLE OF RESERVED NAMES: s o o o ¢ o o & o
REFERENCES ¢ @« o ¢ 2 ¢ s o o ¢ s ¢ © o o =

EXAMPLE TEEMINAL SESSION & s o « & s & & @

CONTENTS

- - 010

L - .17

L] - .22

- - .23

s o 26

o o 227

L] - .32

e e 33

Se
6.
e
8.
9.

10.

11.

ILLUSTRATIONS

Anatomy of a Decision Tablesessscescssncsccscesse
Rule Column ConsolidatiOnNessscscscscscscsscscscss
Keyboard Arrangement for APLeccececssscssssssse
Example of Initial Table Entryecsccssceccssccscccne
Initiate Table Editing and Display Tablesecsssces
Example of Selective Display RequesStSeescsescses
Example of a Row Change (CHG)esecesscsscescccsscs
Example of Stub Modification (CHS)eesssssccsceas
Example of Row AdditiOnNessscsscesscsscscscsssenss

Example of a CHG Regquest with FROM
SpecificatiOnecescsscscssccssosnsscsenssnscssncsnsse

Example of Decision Table Sortingesssecsssssescss

PAGE

1

3

4

8

11

12

13

14

15

16

22

INTRODUCTION AND DECISICON TABLE CONCEPTS

This manual provides instructions for the use of a Decision
Table Compiler and auxiliary routines that have been imple~-
mented to run uncder several APL systems (APL.SV, APL/CMS,
and VS APL under CMS,; VSPC or TSO). Decision tables can be
entered, displayed, edited, saved, and compiled wi*h DTABL.
The results of compilation <c¢can be displayed in several
formats —-— "abstracti'y COBOL, PL/I, ALGOL, and APL. APL
programs can be generated in executable form. Programs in
other languages can be written on a data set and be used as
input to other language processorses. The decision tables and
object code produced from them can be saved within the APL
system for future reference or manipulation in separate
terminal sessionse.

Figure 1 is an example of a decision table with an indica-—
tion of significant elements and terminology used in this
manuale

2 3
’____'_/'\._____" rx&\
1 EXAMPLElOODOE 0
|1234567 4
ci | NYNYNYN
5 c2 |INNYYYNN -8
c3 | NN {YF Y
Al | 11 1
6 A2 | 1 1 S
A3 (12
y 4 X1 | 10
{ X2 | xxxx ®/
11

1. Table header

2. Stub secticn

3. Entry section

4. Header section

S5 Condition section

6o Action section

7« Exit section

8. Condition values (Y=yes, N=no, —=don't care)
Se Action sequence numbers
10. Exit indicators

11« Rule column number 5§

Decision Table Anatomy
Figure 1.

The decision table allows specification of program logic,

and the compiler converts this specification into an efii-
cient proceduree. The condition section of the table speci-—

o R

fies one or more conditions to be tested (but does not imply
the order of testing). The results of the condition tests
are recorded in the condition entries. This compiler
handles only "Limited Entry Decision Tables" (LEDTs) =--
leeey those which restrict the values of the condition tests
to yes (Y) or no (N)e. Therefore, a condition test is any
expression (in some particular language) that yields only a
single yes (true) or no (false) answere. Examples of condi-
tion tests are "A<B" (PL/I), ")/A=B" (APL), and WA is less
than B" (English)e. Each column of the entry section |is
considered tc be a rule and contains some (unigue) combina-—
tion of test values. These combinations must exhaust all
possible combinations of test values or the table is incom-—
pletely specified. For example, if there are "n" binary
(two-valued) tests, then there will be 2" combinations in a
valid table.

The action section of the table contains actions which will
be performed (or not) depending upon the results of testing
the conditions in the condition section. An action is any
imperative expression in the 1language selected. Examples
arey, MWA=B+C" (PL/I) and WGive the customer a discount!"
{English)« Note that actions may not specify or imply flow
controle (Branching or GO TO statements make no sense in a
decision table contexte) When a combination of test wvalues
matches those specified in a rule columny, the actions in
that column are performed in the order specified by the
numbers indicateda in that columne. A blank opposite an
action indicates that it is not to be performede. For
exampley, in Figure 1 if all three conditions test to "no"
{NNN) +then rule number 1 is selectedy causing the third
action ({A3) to be executed. If actions carry the same
numbery; no implied order is required for their execution
with respect to each other. There is also to be no ourder
required between actions and tests or among tests.

The exit section of the table is analogous to the action
section. However, exits specify the method of exiting the
tables An exit can consist of the word RETURN, indicating
the program generated from the table is a subroutine which
will return to its caller. An exit can also indicate the
name of some procedural code which can be reached by a
branch from the decision tables (APL decision tables must
always generate subroutines. However, this requirement does
not extend to +the other languagess) In the above example,
the second exit (X2) is taken after execution of A3 in rule
1. There must be exactly one exit selected for each rule
column, and exits will always follow tests and actions when
executeds.

Central to the effectiveness of DTABL is the convention that
no test or action in a given table will change the results
of any test in the same table. This gives the compiler
complete freedom to determine the order of tests in optimiz-
ing the object codes The ordering of actions with respect

-2

to tests 1is therefore immateriale. The user can, however,
specify the order of actions with respect to each other (as
indicated earlier).

For convenience, rule columps way be couwbined by the users.
The conditions allowing two coiumns to be combined are?

1) actions and exits in the two columns are
identical

2) condition values are identical except one

3) the values in the differing condition are "YyW"
and NV,

To consolidate +two columns into one, replace the value of
the differing condition with "don't care" in one column, and
discard the other columne. This function can be performed by
a program (MERGE) that is available with DTABL and described
later in this manual. These two rules were applied to form
column 4 of the decision table in Figure 1. Figure 2a shows
column 4 and the two rule columns (4a and 4b) that it stands
for.

4 4a __4b y4 Za Zb
c1 Y Y Y c1 N N N
c2 Y Y Y c2 Y Y ¥
Cc3 - Y N c3 - - -
Al 1 1 1 Cc4 - Y N
A2 Al 1 1 i
A3 A2
X1 A3 1 1 1
X2 X X X X1 X X X

(a) (b)

Rule Column Consolidation
Figure 2.

Figure 2b shows two columns (Za and Zb) <from some other
decislion table and how they are consolidated into a single
column (Z). Note that columns Za and Zb each stand for two
columns, so column Z stands for four columns. {Note also
that the order or actions Al and A3 in the <code produced
from column Z will be immaterial because they both have the
same selection number (1) in the entry positions.)

SIGN-ON PROCEDURE

There are a variety of terminals that can be attached to an
APL systems The terminal discipline and sign—on procedures
for each are described in [4—8] and are beyond the scope of
this manual. You should be familiar with these procedures
before attempting to use the APL systeme For your conveni-—
ence the APL keyboard is shown in Figure 3.

MAR
REL 1 2

CLR ?
TAB|O|$I
a]l‘ (
A | S C
HMEEARAARAHNARNER ™

Keyboard Arrangement for APL
Figure 3.

ATTN

|
W A
B IA
o
;M IV
G
-V
|m1|.
w <
—_
o>
——
+ 1
X o|e

)
22
2%

Once APL has acknowledged your sign—on procedure you obtain
your initial copy of DTABL from an APL public library by

typing
JLOAD libno DTABL

followed by a carriage return or enter key. Note that you
will always signal that your input is complete and ready to
be acted wupon by pressing the return (or enter) keye. (In
the above line "libno" stands for the library number == such
as 27 -— which is assigned to your installation's copy of
the DTABL processor by the APL administrator.)

To sign off at the end of a session,; type
) OFF

When the APL system responds with your usage statistics, you
then turn off the power on the terminale. If you are using
an acoustic coupler turn its power off and hang up the
phonee.

INITTAL TABLE ENTRY

Your first act in using the DTABL programs will be to enter
a decision table. The initial entry of a decision table is
aided by a program which you invoke by typing "INPUTY
(followed by a carriage return or enter key). You will be
prompted for each input needed to fill out each section of
the table. (Note: If you are wusing an IBM 3270 terminal,
enter "IS3270+~1" before you enter INPUT so that prompting
messages will appear at the proper place on your screens At
the end of this manual is a sample dialogue used to prepare
and manipulate the table shown in Figure 1. The following
corments give the specific rules for entering informatione.

—4-

The following paragraphs are headed by the prompting messag—
es issued by the table—entry programe The paragraphs
explain the significance of prompting. Figure 4, following
these descriptions, shows how the table of Figure 1 was
enteredes A copy of this table is included with DTABL. In
Figure 4 and examples subsequent to it the right—pointing
arrows (=) indicate lines entered by the user. Other lines
are produced by the DTABL programse.

ENTER TABLE HEADER

This table header will be placed in the top of the
table and will be associated with all related output for
identificatione In generated programs (except APL) this
header will be prefixed to all generated labels. Those
programs that require both table and object code (TESTGEN
and PRINTHLL) use this header to ensure compatibility of
their inputs. In APL programs the table header becomes the
function header. (Note that the header may not be emptye.
If it is the input process will be cancelled.)

ENTER CONDITION STUBS

Following this message you enter the condition stubs
one line at a time. You signal the end of the condition
section by entering an "empty line" (carriage return only).
You can place any text that is appropriate to the target
language in the decision table stubse. The stub can also
contain Y“space" information refered to in the section
COMPILING DECISION TABLES. (Note +that you must enter at
least one condition stub or +the input process will be
cancelled.)

ENTER ACTION STUBS

You respond to this message as you did to the condi-
tions messagey, this time entering action stubs. An action
stub can be any text suitable to the +target language. You
enter an empty line (carriage return only) to signal the end
of the action stub sectone. (Note that you must enter at
least one action stub or the input process will be
cancelled.)

ENTER EXIT STUBS

Your response is the same as Wwith conditions and
actions, but you enter exit stubs. Exit stubs are to be
labels +that are suitable to the target Llanguages The
special keyword "RETURN" in an exit stub will be recognized
as a program exit and will generate a RETURN statement in
the object code where the target language contains such a
statement. APL programs will treat all exits as the same
(as a return)e. As before, you enter a carriage return
(empty line) to signal the end of this table sectione. (Note
that you must enter at least one exit stub or the input

-G

process will be cancelled.)
HOW MANY RULES ARE THERE?

You respond by entering the number of rule columns that
you will reguire in the entry section of the table. ALl
subsequent entry input must contain this number of columns.
If you respond to the rule-count request with a zero (0) or
an empty Lline the input program assumes that you want the
maximum number of columnse. It will then automatically
generate all of the condition entries for you in a standard
way. You will also be told how many rule columns there aree.
The standard condition entry seqguence is as follows: The
first condition row will have the first half of its columns
filled with "Y" and the second half filled with "N", In any
subsequent condition row the first half of the columns under
a "YY gsequence in the previous row will be filled with "Y"
and the second half with "WN", This is also true for the
columns under each "N" sequence in the previous rowe. This
rule is followed for all rows so that the last condition row
contains "YNYNYNeeao'e For exampley; if there are four
conditions there will be sixteen columns filled as follows:

YYYYYYYYNNNNNNNN
YYYYNNNNYYYYNNNN
YYNNYYNNYYNNYYNN
YNYNYNYNYNYNYNYN

Following your entry of the rule column count you will be
prompted to supply the entry data. The prompting will
consist of the low—order digit of each column number and the
stub information (that you have previously entered). Figure
4 shows this. You type the entries just as you want to see
them in the final table. If the "standard" conditions were
requested; prompting will start with the actions, otherwise
prompting will start with conditions.

There are certain restrictions on the characters that are
acceptable in each entry section of the table. The condi-
tion section accepts only the characters "Y", "N", and "-",
for "yes", "no'", and "don't care" values respectively. The
action section can receive numbers, letters, underscored
letters, or blanks. These characters allow an ordering of
the actions in a given rule columne. The numbers are lowest,
letters next, and underscored letters highest. A Z (under—
scored Z) has a value eguivalent to 61. A blank indicates
that an action does not participate in a rule. The exit
section accepts an X to indicate that an exit participates
in a particular rule, and is blank otherwise.

BAD INPUT

If any of +the above restrictions is violated, your
input is reprinted with the illegal character(s) replaced by
an "x'"., You can then correct the line by typing the correct
character beneath the Wxu You can also revise any other
characters by +typing (non—-blank) characters beneath +theme
If you want to replace a character with a blank, type a
slash (/) beneath ite You will not be allowed to proceed to
the next line until you have eliminated all illegal charac—
ters from the current line.

OK (NG)

After the last exit entry is accepted, the entire
decision table §is scrutinized for global errors. The
following checks are performed:

o Completeness: All possible combinations of
condition values are accounted for.

o Consistency: No combination of condition wvalues
is accounted for in more than one rule.

o Action/Exit use: Each action and exit should be
used in at least one rule. (warning only)

o Exit consistency: Exactly one exit must be
used in each rule columne.

If the above scrutiny finds the table to be correct, the
letters "OK" are typed. Otherwise,y, detailed diagnostics and
the letters YNG" are printede. These diagnostics are
self-explanatory except for the following abbreviations:

CDN —— Condition number

YCT — Yes count (number of yes's in a row)
NCT —— ©No count

DIF —— Difference between YCT and NCT

The yes— and no—counts are computed taking into account the
"donkt cares" in each columne. A column with one 'don't
care" stands for two columns, so each yes or no in that
column is counted +twices These counts can be useiul in
locating typing errors in the condition section of a table.
For exampley, if the table in Figure 1 had a Y instead of an
N in the second column of condition 2; then you will be told
that for conditiomn 2 the yes—count is 5 and the no—count is
3¢ You are also told that columns 2 and 4 overlape. So the
trouble is narrowed to condition 2y columns 2 and 4. You
are also told that the rule "YNN" is missinge You can then
conclude that if column 2 were changed +to "YNN" +that the
table would be satisfactorye.

- JLOAD DTABL ALOAD DTABL WORKSPACE
SAVED 14:£6:37 08/17/76

- INPUT
ENTER TABLE HEADEF AARROW (-) INDICATES LINES

- EXAMPLE ATYPED BY THE USER. ALL OTHER
ENTER CCNDITION STUBS aLINES ARE OUTFUT FROM THE
cl RSYSTEM. (THE ARROWS ARE NOT
c2 ‘ ANORMALLY PART OF THE LISTING.)

c3

t O A}

ENTER ACTION STUBS

- Al

- A2

- A3 RDOUBLE ARROWS (—-—) INDICATE A

] ACAR#IAGE RETURN PERFORMED BY
ENTER EXIT STUBS ATHE USER.

- X1

- X2

HOW MANY RULES ARE THERE?
- 7
0000000
1234567]|cC1
- NYNYNYN
1234567|C2
- NN YYNN
BAD INPUT ARLANK IS NOT A LEGAL CONDITION.
NNxYYNN|C2
- Y ACORRECT ONLY THE BAD COLUMN.
1234567]|C3
- NNN-YYY
1234567| A1
- 111t

1234567| A2
- 11

1234567 A3
- 12

1234567| x1
- XX

1234567 | x2
- XXXX X

OK ATHE TABLE IS CONSISTENT.
- SAMPLE-SAVE ATABLE SAVED AND NAMED.

Example of Initial Table Entry
Figure 4.

The input process is completed with the typing of OK or NGe.
If there were errors you can correct them as described below
under EDITING A DECISION TABLE . It you should try to
compile a table with errors, the results will be unpredicta-—
blec

You can cancel the input process by entering an empty line
when prompted for the table header,y, or condition, action,; or

- =

exit stubs. (The implication is that a table must have a
header and at least one conditiony, action and exit.) You
can also cancel input if you enter an "x¥ (an APL multiply
sign) in any entrye.

Table verification cam occasionally produce many error
messagese. To terminate these prematurely, press the atten-—
tion button and enter

-=STOPCHECK

You can then edit the resulting table to remove gross
errorse.

CORRECTION OF TYPING ERRORS

If you discover an error in typing a line before you have
given the carriage returny, you camn correct it by backspacing
to the point of error and pressing the attention buttone.
This will erase all of the line aty; and to the right of the
point of errore A linefeed will acknowledge this along with
a caret. You continue the line Jjust below the caret. This
facility is available on all inpute (On an IBM 3270 you
Just backspace and type over the incorrect inpute.) If your
error is discovered after a carriage return, it is better
corrected wvia EDIT.

STORING AND DISPLAYING DECISION TABLES

After you have finished the input process described above,
the decision table exists in a special internal format that
allows efficient processinge We say the decision table is
"loaded" when it is in this condition. To display a loaded
decision table; simply type

SAVE

To place the decision table into a compact form and give it
a name, type

tname~SAVE
An example of this is given as the last line of Figure 4.
In future operatons of editing, compiling, etcey you can
process this table by referring to its namee. (eegey EDIT
tnamey, COMPILE tname). You can both save and display a
decision table at the same time by typing

tname«~[]-SAVE

You are cautioned that none of these processes save the

T

table across terminal sessionse. In naming your decision
table you should avoid the mnames of data structures being
used by the processor. Most of these start with an under-—
scored lettere. Trose that don't are listed in the section
TABLE OF RESERVED NAMES near the end of this manuale.

A decision table can be reloaded ty typing:

LOAD tname
It is seldom necessary to do thisys however, because this
operation is incorporated into all of the functions that
manipulate decision tables.

SPREAD tname
also displays the takle in compact forme. In this display

vertical brars are placed between the entry columns to
improve readability.

SAVING TABLES ACROSS TERMINAL SESSIONS

In the APL system there is &a library facilitye. It |is
implemented through the concept of "workspaces.' When you
sign on you have immediately available a 'clear workspace®
and a private library of (previously saved) workspacese.
Each workspace that is to be separately saved must be
uniquely named. This is done by typing

JWSID myws

where "myws" stands for any name (up to 8 lLetters long) you
choose to give Yyour workspacee. (WSID means "workspace
identifier¥.,)

To save a workspace in your private library you type
})SAVE myws

If you intend to use the contents of a workspace for the
next sessiony; you should save your workspace before signing
off of the current session. When you save a workspace the
contents of any previously saved copy of this workspace are
overwritten. To retrieve a workspace from your private
library type:

JLOAD myws
Note that your initial workspace name (given in the sign—on
instructions) was “libno DTABL". You must rename this

workspace before you save it because the APL system will not
save it under the original name.

Brief explanations of all messages are listed in the section
MESSAGE SUMMARY. If you do not understand a message in your
use of DTABL, you should save your workspace before signing
offe Perhaps a person in your area who is familiar with APL
can help you. If not, you can send your listings to the
maintenance address indicated when you execute the function
DESCRIBE in your DTAEL workspacee

EDITING A DECISION TAELE

You will undoubtably have occasion to <change a decision
table after it has been entered =—— either to correct an
error, or to change the desired logic. The editing process
that provides a ready means to make changes is initiated by
typing:

EDIT tname

This will cause +the named table to be loaded and start the
editing processe. If you want to edit a table that |is
already loaded, type:

EDIT O

The editor allows you to insert rows or columns, delete rows
or columnsy; and to change all or part of rows or columns,
and to display all or part of the table being edited. You
will be prompted with a quad—colon ([:) and you respond with
a request as indicated belowe.

- EDPIT SAMPLE AINITIATE EDIT OF SAMFPLE
C:
- SHOW ALL ADISPLAY TABLE BEING EDITED
AAAAAAA
1234567 AWITH ROW AND COLUMN
VVVVVVY ANUMBERS «

<1>NYNYNYN|C1
<2>NNYYYNN|C2
<3>NNN-YYY|C3
<1> 1 1 11]A1
<2> 1 1|A2
<3>12 |a3
<1> Zx
<2>XXXX X|x2

Initiate Table Editing and Display Table
Figure 5.

Requests are made up of a verb which is usually followed by
row/column specificationse In Figure 5 the table SAMPLE is
loaded for editing. In response to a prompt from the editor
a request (SHOW) is made for a display of all rows and
columns. Notice that each row and column is given a number

-11-

that is printed between angle brackets. Notice also ithat
the stubs are printed to the right of the entries (to speed
up printing)e. These row and column numbers are used in
row/column specifications to select the section of the table
to be displayed or changeds The row numbers start from 1 in
each of the three lateral sections of the table (conditions,
actions and entries). Figure 6 shows examples of display
requests for sections of the table being edited.

C: - Cs
- SHOW COL 4 5 B - SHOW CND 1, ACT 2 3
AN ™ AAAAAAN
45 . 1234567
v - VVVVVVY
<1>YN|cC1 o <1>NYNYNYN|C1
<2>YY|C2 o <2> 1 1]A2
<3>-Y|C3 . <3>12 |A3
<1>1 |A1 .
<2> |A2 .
<3> |A3 .
<1> Xx|x1 .
<2>X |x2 .
Example of Selective Display Reguests
Figure 6.
(Note: Subsequent examples will constitute continued

changes on the table EXAMPLE. The examples are taken from a
sample terminal session that is listed in its entirety at
the end of this manual.)

Alteration verbs are:

CHG (change existing table elements)

CHS (change existing stubs)

ADD (add new rows or columns to the table)

DEL (delete existing rows or columns from the table)
REHEAD (change the table header)

A row/column specification consists of a prefix followed by
one or more numberse. The prefixes are:

COL (column numbers follow)

CND (condition row numbers follow)
ACT (action row numbers follow)
EXT (exit row numbers follow)

The following are special specifications and need no number.

ALLCOL (all columns including the stub column)
ALL (all rows and all columns)

-12-

The reguest
CHG ACT 2 3, COL 5 6

asks to change action rcws 2 and 3 in columns 5 and 6. You
will be prompted with the contents of these elements, one
row at a timee. The change is made like correcting initial
input =— ies.esy nonblanks replacey; and a slash blanks out
those characters under which they are typede. If you want to
change a stuby, you can refer to it as column zero (0) —--—
plus any appropriate row specification. You replace the
contents of a row stub by merely typing new text beneath it.
In this casey everything Yyou type +t0o the right of the
vertical divider will replace the stube. (See CHS for a way
to partially modify a stube.) Note that +the row/column
specifications musw< be separated by a comma, and that the
numbers must be separated by at least one blanke. If a row
specification is omitted, it implies "all rows'",. If a
column specification is omitted, it implies "all eniry
columns®. If you want to refer to all columns (in a change
—— CHG) " including the stub column, use the specification
WALLCOL".

- SHOW CND 2
AAAAAAA
1234567
VVVVVVYV
<2>NNYYYNN|C2
Gz
- CHG CND 2,COL 4 7
YN|C2
3
- SHOWCND ATHE ATTN BUTTON WAS PRESSED
v ATO CORRECT A TYPING ERROR.
- CND 2
AANAAANAAAN
1234567
VVVVVVYVY
<2>NNY-YN-|C2 QELEMENTS IN COLS 447 REPLACED.

Example of a Row Change (CHG)
Figure 7.

The request
CHS CND 1, ACT 2 3

asks to perferm modification of the stubs of condition 1 and
actions 2 and 3. You will be prompted with the image of
each stub and a right arrowe To the right of the arrow you
enter a modification request of the form "/stringl/string2".
Every instance of "stringl" will be replaced by "string2" in
the stube (In the foregoing "/" stands for any character
not contained in the arbitrary character sequences "stringl"

- Y

and "str ing2".) Multiple pairs of strings can be entered at
one time. For example "/A/BB/XX/Y" changes all A to BB and
all XX to Y. After each change you are again prompted by
the arrow to enter additional changes to the same stube
When the right arrow prompts you, you can also display the
results of the previous change by typing one space (blank)
followed by a carriage returne. A single slash (/) followed
by a carriage return will cancel all changes made +to the
current stube. To move to the next stub you enter an empty
lines When all stubs requested have been changed you return
to the normal mode and are prompted with a [J%.

If your modification request starts with a letter or number
it is assumed that you want to entirely replace the stub
with the text you enter. If your modification regquest
starts with an asterisk (*) then it is assumed to be of the
form "¥n/stringl/string2W. In this case you are asking to
replace the nth instance of stringl with string2. Wgnt
means replace the first n instances of stringl, and MW=n"
means replace the last n instances of stringl.

£s
- CHS CND 2 ACHANGE STUB ONLY.
|c2
- -/C/COND/
-B - AARROW B (=B) INDICATES SINGLE
|conD2 ABLANK TYPED TO DISPLAY NEW STUB.
- =/ RCANCEL CHANGE, AND
|c2 ASHOW RESTORED VALUE.

Example of Stub Modification
Figure 8.

The request
ADD COL 3.5 3.6

asks that +two columns be added to the table. You will be
prompted to fill these columnse. The new columns are to be
numbered 3.5 and 36 respectively indicating their ordering
among the old columnse. {They will be between column 3 and
4.) When the new columns are added, they do not affect the
numbering of any prior columnse. A row or column therefore
retains a unigue number throughout the editing processe.
When the editing process begins, rows and coclumns are given
consecutive integers starting from 1 in each section of the
tables You can insert columns between 3.5 and 3.6 by adding
a column numbered with any number that falls between them —
say 355 or 3.5896. Fractional numbers with up to 15 digits
to the right of the decimal point can be used in this
fashione Howevery; when you display +the table (described
below) a maximum of three digits will be printed on each
side of the decimal pointe.

-14-

- ADD CND 2.5 ANEW CONDITION ROW TO BE FILLED.

xxxxxxx | x
YYYNNNN C2.5
Cs
- SHOW CND 1 2 2.5 3
AAAAAAA

1234567

VVVVVVY
<1.0>NYNYNYN|C1
<2.0>NNYNYNY|C2
<2.5>YYYNNNN|C2.5 ANOTE NEW ROW.
<3.0>NNN-YYY|C3

Example of Row Addition
Figure 9.

The request
DEL ACT 6

asks for the deletion of action row number 6. If row 6 does
not existy, no action will be taken and you will be so
informede. If both row and column specifications are includ=-
ed in a request for addition or deletion, the entire rowl(s)

and column(s) will be added or deleted. If both row and
column are specified in a change request, only the elements
at the intersection(s) of the row(s) and column(s) will be
affected.

When you request a change or addition (implying that new
material is to be placed in the table) you can specify that
the added data be obtained from another part of the table.
This is accomplished by using a FROM specification. For
example,

ADD COL 4.1, FROM COL 4

requests that a new column (number 4.1) be added to the
tabley, and that it is to be filled with the contents of
column 4.

CHG CND 2 3, FROM CND 3 2
requests that condition rows 2 and J be changed, and filled
with the contents of condition rows 3 and 2. Because such
changes take place "simultaneously", the effect is to
reverse the order of the entry protion of rows 2 and 3. To
specify the reversal of the stubs of these rows, type

CHG CND 2 3, COL 0y, FROM CND 3 2, COL 0

and to reverse the entire contents of the rows, type

CHG ALLCOL, CND 2 3, FROM ALLCOL,CND 3 2

- 15—

Note from the above example, that the order of the specifi-
cations is immaterial (i.e.y row—column or column—-row) but
that the ordering of the numbers within a specification is
significant. In all cases, the FROM specification should be
last.

- CHG CND 2, COL 4 7, FROM CND 2 , COL 2 3

- SHOW CND 2
AAAAAAA

1234567
VVVVVVV

<2>NNYNYNY|C2 RELEMENTS COPIED.

CHG request with FROM specification
Figure 10.

In the event that you wish to cancel a partially entered
requesty; you can abandon it by typing KILL (preceded by a
comma) at the end of the line. For example

CND ACT 2 3, COL 4 54, FROM CND 24KILL

To rehead a table or otherwise modify the table header,
enter the reguest

REHEAD

You will be prompted with the current header and a right
arrowe You can modify the header using the conventions used
in CHS (including display or cancellation of +the modifica-
tion). However, if you merely enter a new header it will
replace the old one.

To terminate an edit session type
END

This will cause the table to be wverified as it is when
initial input is completed. You will receive the O0K/NG
signal as appropriate, and you can save the resulting table
via the SAVE ordere. (The table is in the "loaded" state at
conclusion of editinge«) Before the table is verified, a
check is made to see if there are any x's in the table as a
result of editinge. If there arey, you are not allowed to
terminate and will be prompted by +the [:e You can use SHOW
to see where the errors are.

Verification of the table takes place at the conclusion of
editing and input processinge. 1£ the table has any serious
errors it will be marked so that the compiler will know to
warn yous

The editing process can be aborted at any time you are
prompted with the [: by typing

-1 6=

ABORT

If you do this, the results of the edit are Llost and there
will be no resultant table. You will not lose any table you
have retained by using the SAVE functione.

Self-explanatory diagnostics will be issued if you attempt
to change a non—existent row or columny, or if you omitted a
prefix (COL, CND, ACT, EXT)y or if there is a mismatch
between the number of rows and columns supplied in a FROM
specification and the space it is to £ill. In some cases
vou will be prompted to supply a correctione. If you cannot
properly correct the error, you can KILL the request (by
entering “KILL") and write a new onee. Any time you are
prompted with a [J:, you can KILL a request by typing "KILL"
at the end of the line.

COLUMN MERGING

As indicated in the introduction, columns can be merged by
the introduction of ""don't care" values. You can do this by
hand before entering the table; or you can have +the DTABL
system do it for you by typing

MERGE tname

This will cause the named table to be loaded and the abpro—

priate columns to be mergede. If the table is already
loadedy; type

MERGE 0

To save the table resulting from MERGE, use SAVE. The
merging process will not affect any "don't cares" that you
have already introduceds. There is an example of the MERGE
process in the sample terminal session at the end of this
manuale.

ADDING AN “ELSE" COLUMN

—

During the verification process, if the table conditions are
found to be incompletey; you will be asked if you want to add
an ELSE columne. You may answer YES or NOQO. If you answer
YES, the condition section of the table is completed auto-
matically by the processor. You will +then be asked to
supply the action and exit column contents. If you must add
an action stub to the table for inclusion in the ELSE
column, you should answer NO and use the editor to add these
rows firste. The editor will then ask you again whether you
want the ELSE column added and you can say YES. You will be

-] T

asked to enter an exit name for the ELSE column. You camn
then enter an existing or new exit stub. (Note that the
ELSE column actually may be more than one columne This
happens when it reguires more than one column to represent
all of the omitted condition combinations. The same actions
and exit will be selected in all of the added columnse.
There is nothing special about these columns once they are
addeds.)

You can initiate the addition of an ELSE column yourself by
typing

ADDELSE tname or ADDELSE 0

depending on whether the named table is already loaded.

COMPILING DECISION TABLES

To compile a decision tabley simply type
COMPILE tname

This will cause the table to be loaded and then compiled.
If the table is already loaded, use zero (0) instead of the
table name.

The compiler, using only entry information, produces a
procedural code structure in which the units are condition
tests (that always branch on true), actions, and exits. The
code is initielly in a tree structure with the exits as
terminal elements. Because such a tree often contains many
redundant code seguences, certain optimization processes are
employed to reduce the code to a more efficient form. These
optimizations (detailed in [1] and [2]) remove redundant
codey; reorder condition tests, and relocate actions in order
t0o reduce the size of the resultant code. Unconditional
branches may be introduced at this time, but the logic of
the original form of the program will remain unchanged.

Optimizations OPT2 and OPT3 operate under the assumptions
regarding sequence independence stated earliere. (Optimiza-—

tion options are listed on page 20.) .You are therefore
cautioned to assure that actions in a table do not modify
condition test results. Program lLoops should be avoided

unless they encompass the entire decision table, or are
entirely contained within a single actione.

The code resulting from compilation will be optimized
primarily with respect to spaces There will be a one—to—one
correspondence between the number of rule columns in the
source table and the number of flow paths through the object
code. No path will contain more tests than necessary to
isolate the particular rule that it representse. Each path

-18-

will contain the required actions in the sSpecified order,
and will terminate in the specified exite. Speed optimiza—
tion is limited to the avoidance of redundant +testing in a
given flow path. Because the compiler does not analyze the
meaning of the stub information, no attempt is made to
perform classical optimizations such as common subexpression
elimination or folding. Such a task is beyond the intent of
this compiler.

In the absence of other information, the optimizer assumes
that all actions and conditon tests take the same amount of
space (8 bytes). You can override this assumption by
including a space estimate in the stub section of the table.
The size in bytes should follow the action and condition

information (entry section) and be enclosed in "c D" bhrack—
etse.

If the compiler detects an unverified table it will warn you
but give you the option to proceed with a compilatione. The
resulis of such a compilation will not be reliable. In some
cases the compiler will abort the compilation because of
over Lapping or missing rule columnse.

Several +types of output listings can be produced by the
compiler —— "abstract", COBOL, PL/I, ALGOL, and APL. The
non—abstract outputs are collectively called "HLL" (for
Higher Level Language)s. Examples of these can be found in
the terminal session example at the end of this manuals. (1f
you are able to program in APL you can, with the aid of [2],
readily develop your own HLL 1listing generator for the
language of your choicee.)

The abstract format is analogous to an assembly listing with

a Llabel column, code column, and operand columne. The
op—codes are references to the conditions, actions, and
exits of the original tables "Cnn" refers to condition
number "nn". "Ann" and "Xnn" similarly refer to actions and
exits respectively. All labels are two—digit numbers, and
appear in column 1 followed by a colone. Condition tests
(which are conditional branches) and unconditional branches

{three dashes) have a right arrow followed by a label which
is the label of the branch—targete.

If +the stub section of the decision table is properly
formatted, you can obtain a listing of a valid HLL proce-
dures The condition section should contain relational
expressions; the action section should contain assignment
statements; and exits should be wvalid HLL program labels.
The HLL lister merely places the stub information (excluding
space estimates) verbatim into the appropriate HLL template.
The decision table header should also be a valid HLL label,
both of itselfy, and when suffixed by a two—-digit number.
(Note that stubs can be in English or other natural language
suitable to the user. This is usually the case when the
questionnaire processor will be used. The language selected

=19=

does not affect compilation.)

There are a number of compiler optionse. Prior to compila-—
tion they sould be set as follows:

OPTIONS+~option—-list

The options in the 1list can be placed in any order and are
separated by commas. The options selected will remain in
force until they are explicitly set againe. When a workspace
is saved the options in force at the time it is saved are

retained in the saved workspaces. They will be in force
again when you reload the workspacee. Options can be set at
any time between compilationse. The 1list of options is
belowe.
ALGOL List object code in ALGOL format
APL List object code in APL format
APLG Generate APL program
COBOL List object code in COBOL format
PL1 List object code in PL/I format
SLIST List object code in abstract format
ILIST List preoptimized code (abstract format)
FILE Place output on a file
OPT 1 Perform optimization 1 (duplicate
sequence removal)
OPT2 Perform optimization 2 (duplicate
path removal)
OPT3 Perform optimization 3 (hoisting)
OPTM Perform all optimizations
DETAIL Report details of compilation progress

The option list in the distributed version of DTABL is
OPTM

If an option is omitted from the list, the corresponding
action will not be performed.

If listings are requested the processor will print a row of
periods, rause, and unlock the keyboards You can then
position the paper and signal whenm you are ready for print—-
ing by giving a carriage return.

The FILE option can be specified in conjunction with the
ALGOL, COBOL and PL1 listing options. When this is done,
the listing is placed in a file instead of appearing on the
terminal. The file has the same name as the table header.
The various APL systems use different gqualification conven—
tions to separate user files. There are also varying
protocols for establishing a connection between the APL and
operating system environments. While these protocols are
simple, you must consult the APL User's Guide [4_8] relevant
to your system for details.

=20~

An example of the compilation of +the table in Figure 1 is

shown in the terminal session example at +the end of this
manuale

DISPLAYING AND SAVING COMPILATION RESULTS

The results of compilation are held in an encoded matrix
called MAT. This <can be saved and loaded in a manner
analogous to the saving and 1loading of decision tablese. By
typing

mname~SAVEMAT

yvyou will cause the object matrix to be compressed, saved,
and nameda To reload it, type

LOADMAT mname

Note that saving a matrix with SAVEMAT does not save it
across terminal sessionse. You use)SAVE myws to do thate.

To display object code in HLL format, set the options list
for the desired language and type:

tname PRINTHLL mname
To print object code in abstract format, type
ABSTRACT mname

Note that these requirements Lload the code matrix, and
PRINTHLL also loads the decision table. To request printing
of a loaded matrix or table you can use zero (0) instead of
the namee. The code matrix is loaded and unnamed just
following compilatione.

After these listing routines are invoked, they pause to
allow you to position the paper. You signal that you are
ready by giving a carriage returne The listing routines
print approximately 50 lines per page.

SORTING A DECISION TABLE

It has been discovered that by sorting a decision table
according to certain "rules of dominance'!, one can gain a
better understanding of the relationships among the condi-—
tionse DTABL +therefore provides &a utility sort function.
One condition row is said to "dominate" a second row if for
all of the "yes columns" of the first row, the second row
has all "don't care" values; or for all of the "no columns"

i Y

of the first row the same is true.

The sort
number of
they are

routine first
"don't caresW.
in disjoint

"gr

group if they both have a

in the same

if one row dominates another,
final arrangements.
are sorted as
base-3 number system ("Y"=0,

columns) Fi

After

each column was a numbere.

in ascending

seguence.

sorts rows

oups®. (Two

non—don't care (i.e«y
the rows are

nally,

MNHi=1, and "="=2, and as though
The numbers so devised are sorted
Figure 11 below shows a decision

table before and after sortings.

To load a decision table and sort it,

DSORT tname

As usual,

sorting of the

a zero (0) instead

table tha

t is already

the sorted table in locaded form.

SORT | 000060000111

| 123456788012
C01 |YYNNNNNNNNNN
C02 |-—YYYYYYYYNN
C03 |==YYYYYYNN—
C04 |==YYNNNN————
cos | YYNN
C06 |YNYNYNYNYNYN
A01 | 1111
A02 | 1111
A02 | 1111
A04 | 11
A0S 111111111111
01 X X X2X XX
¥02 | T XXX XX

before

Example of D

TEST CASE GENERATION

In the object code generated from

each rule column in the source
is prepared
object code will be

one path for

test case

instruction in the

in order
Then it sorts

of the table name

the rows
rows are in
" Yll

type:

lLoaded.

SORT| 000000000111

| 123456789012
CCG1 | YYNNNNNNNNNN
C06 |YNYYYYYNNNNN
C02 |=-—YYYYNYYYYN
€03 |=--YYYN-YYYN—
€04 |==YNN==YNN——
C05 |===YN===YN—=-
AO1 | 11 11
A02 | 11 11
A03 | 11 1§
A04 | 1 1
A0S 111111111111
X01 |X XXXXXx
X02 | x XXXXX

after

ecision Table Sorting

Figure 11.

for each

rule column

a decision table there is

tables.
then
executed,

of increasing
so that
the same

sorted so that
it lies above the other in the
the rows are sorted,

though each condition entry was a

the columns
digit in a

will cause
DSORT leaves

and every

conditional branch instruction will be executed for both the
true (yves) and false (no) values of the corresponding
condition. Because of the action of the optimizers it is
often the case that both of the above test c¢criteria can be
met with fewer test cases than there are rule columnse. This
is because the optimizers overlap paths through the object
codee The extent to which testing can be reduced depends
upon the extent to which the paths overlap. To determine
the minimunx set of test cases enter:

tname TESTGEN mname
and you will be supplied with a list of rule column numbers
which constitute +the minimum coverage set. {As wusual you

can use zero (0) for tname and mname if the corresponding
table or code matrix is already loaded.)

QUESTIONNAIRE PROCESSING

It is possible to use a decision table as the basis for an
on—line questionnaire. Each condition stub in the table
constitutes a guestion to be asked which can be answered

"yes" or "no" by a user who is sitting at the terminal.
Each answer determines which question should be asked next,
or whether no further gquestions should be asked. When a

sufficient number of answers are given to enable the isola-
tion of a single rule column, the actions and exits selected
by that column constitute a list of responses to the user.
DTABL contains a guestionnaire processor that operates in
this fashion when the user enters:

0 tname

where tname can be zero (0) for a table that is already
loadeds. The guestionnaire processor appends question marks
to the condition stubs before presenting them to the user.
The answers entered in response to the questions can be any
word containing at least one "Y" (meaning "yes") or one '"N"
(meaning "no") but not both. For example OKAY, YES, YEP, Y
and YEAH would be interpreted as '"yes". NEIN, NOPE, N, NAY,
or NC would mean "no". JA, which has neither a "Y" or "N",
and NYET which has both would be re,jected as ambiguouse.

PROCESSOR CAPACITY

There are few programmed capacity restrictions in DTABL.
You are limited to 255 conditions and a total of 255 actions
and exitse. Furthermore, this restriction applies only if
vou want to use SAVEMAT (described above).

There are, however, restrictions imposed by the APL environ-

-2

ment under which DTAEL is implemented. These restrictions
are in input and output line widths, and in storage capaci-—
tyve Experience to date shows that in practice these limita-—
tions are seldom encountereds.

The maximum stub width 1is 130 characters. If your table
width (including entries and stubs) exceeds this, table
displays will deteriorate =— i.e.y a single row will be
placed on two or more lines. In any event neither half can
exceed the terminal width because an end—of-line cuts off
inpute.

The HLL and abstract printing routines will print only the
two Llow—order digits of a numeric labely, although the
restriction on label values in MAT is over 16 million.

The size of the workspace can affect the size of a table
that can be compiled. DTABL has handled tables with as many
as ten conditions and 35 rule columns without spilling
storage in a 50K workspace.

You can reduce the chances of a storage spill by erasing
those tables or matrices which you have saved but no longer
need. This can be done by typing:

JERASE namel name2 nameld etc.

The 1list of mnames (separated by blanks) are those named
items wyou wish to discarde.

You can LOAD a table and)JERASE the compact (unloaded)
version prior to operating on it.

You can establish a workspace solely for storing tables (or
object codes) and using the)JCOPY facility of APL to trans—
fer vour tables (codes) to ite. After saving your compiler
workspace under the name of your choice, perform the follow-
ing sequence:

)CLEAR

)JWSID mydata

)COPY myws namel name2 eee
)SAVE mydata

Repeat the JCOPY line as many times as needed to save the
desired tables (codes). You can then reload your compiler
workspace and erase the copied tables (codes) from dite

(Don't forget that your library copy of the compiler
work—-space still contains the old version of tables (codes)
until you)SAVE the updated version.)

There are three kinds of overflow messages you can gete
They are WS FULL, SYMBOL TABLE FULL and STACK FULL. APL
maeintains a symbol table of all the names you create (as
well as those that are used in DTABL). Unfor tunately, when

-24-

you)JERASE &a named item, its name is not removed from the
symbol tablee. Your recourse will be to perform the seguence
below if you received the SYMBOL TABLE FULL diagnostice.

) ERASE unneeded tables and object codes

) SAVE myws

)CLEAR

)SYMBOL 500 (= bigger than the current setting)
)COPY myws

)JWSID myws

) SAVE myws

You can then restart the interrupted activity.

If you receive a WS FULL message try erasing unneeded
decision tables then perform the above sequence without the
")SYMBOL" 1linee Then retry the operation that was inter—
rupted.

If you receive a STACK FULL message try the above sequence
with STACK in place of SYMBOL., You can find out the current
size limitations by typing)SYMBOLor)STACK without a number
followinge The amount of free workspace is obtained by
typing [[WA. (Note that space given to the stack or symbol
table is taken from the free workspace.)

Another way to obtain more space is to separate certain
DTABL functions into several different workspacess. To
assist you in doing thls the DTABL workspace has been
divided into six groups as follows:

COMPILER all functions used by COMPILE (includes
listing functions)

EDITOR all functions used by INPUT, EDIT and
ADDELSE

MISC all functions used by MERGE, DSORT,
TESTGEN,y, and Q

NCOMPILER functions not used by COMPILE

NEDITOR functions not used by INPUT, EDIT and
ADDELSE

NMISC functions not used by MERGE, DSORT,

TESTGEN, and (

Each of the first three groups c¢an be used to copy relevant
functions from DTABL into a clear workspaces. The last three
can be used to delete unneeded code from +the workspace you
are working with. For example, if you get a WS FULL during
compilation, you can erase group NCOMPILER and continues

If the WS FULL condition persists yocur needs have exceeded
the capacity of the APL system you are running under. The
remedies available are (1) to increase your virtual machine
or region size, or (2) to move your workspaces to an APL
system that accomodates larger workspace sizese. See your
APL system administrator for assistance.

KEYWORD SUMMARY

Page Keyword

Vel '~ S N N S

10
10
10
10
11
12
12
12
12
12
12
12
i3
13
i4
15
15
16
16
16
17
17
18
18
20

21
21
21
21
22
23
23

JLOAD libno DTABL
JOFF

INPUT
IS53270+-(0/1)
=STOPCHECK
tname+~SAVE

LOAD tname

SPREAD tname
JWSID myws

)SAVE myws

JLOAD myws

EDIT tname (0)
SHOW spec
CND » »
ACT r v
EXT »r » r
COL ¢ ¢ ¢
ALLCOL
ALL

CHG spec
CHS spec
ADD spec
DEL srec
FROM spec
KILL
REHEAD
END

ABORT
MERGE tname(0)
ADDELSE tname (0)
COMPILE tname (0)
OPTIONS«

(o Bl MR T |

ALGOL Algol format

APL APL format
APLG

COBOL COBOL format

PL1 PL/I format

SLIST Abstract format

APL (executable) OPT2

Reminder

Sign on
Initialize workspace
Sign off
Initial table entry
Terminal mode
Interrupt checking
Save decision table
Load decision table
Display table with verticals
Give workspace a name (myws)
Save workspace in library
Load workspace from library
Edit decision table
Show partially edited table
Specify condition rows
Specify action rows
Specify exit rows
Specify columns
Specify all columns & stubs
Spece. all rows, cols & stubs
Request change as specified
Change stub
Pegquest row/column additon
Request row/column deletion
Specify data source
Cancel edit command
Request table header change
Terminate editing
Cancel editing
Merge table columns
Add an ELSE column to table
Compile a table
Set conpiler options

FILE Place output in a file

OPT1 Redundarit Seqguence
Redundant Path
OPT3 Hoisting
OPTM OPT1,0PT2,0PT3
DETAIL Report progress

ILIST Preoptimization Abstract Listing

mname+~SAVEMAT
LOADMAT mname (0)

tname(0) PRINTHLL mname({0)

ABSTRACT mname (0)
DSORT tname (0)

Save results of compilation
Load ob,ject code matrix

Print in High Lev. Lange.
Print code, abstract format
Sort decision table

tname{0) TESTGEN mname(0) Generate test columns

Q tname (0)

Questionnaire processor

MESSAGE SUMMARY

Error Messages

STUB TRUNCATED TO 130 CHARACTERS

EMPTY STUB

NO ACTION

BAD INPUT

NOT EDITING

IN EDIT. NO ACTION

VALUE ERROR n

MISSING PREFIX COL,

STUB MISMATCH

ROW LENGTH ERROR

COLUMN LENGTH ERROR

ERRORS

YES-NO TMBALANCE
CDN, YCT, NCT, DIF

Table stub exceeded 130 characters,
and was truncated to 130.

Stub contains only space datas.

You tried to delete nonexistant
rows or columns, or to add rows or
columns that were already in the
tablee Or you tried to ada an ELSE
column to a complete table.

Incorrect input, ix" peplaces the
bad data shown with this message.

You tried to use the edit commands
without entering the EDIT functione.

You attempted to perform a non—edit
function while editing.

n is a list of invalid row/column
numberse.

ACT, @R EXT
One or more of the listed prefixes
was omited.

The FROM specification does neot
match the CHG specification with
respect to column 0.

The FROM specification does not
match the CHG specification with

respect to the number or rows.

The FROM specification does not

‘match the CHG specification with

respect to the number of columnse.

There is an empty condition, action
or exit section in the table being
edi tede.

There are not an equal number of
Y's and N's in some condition rows.
The counts and differences are
given for the imbalanced rowse.

-2 -

MISSING RULE: cee

RULE OVERLAPI n

NO RULE USES ACTICN(S) n

NO RULE USES EXIT (S) n

The indicated rule column is not
accounted for in the table.

n" is a list of columns which have
overlapping condition values.

n" ig a list of actions not used
by any rule.

"m" js a 1list of +the numbers of
exits not used by any rule.

MISSING CR MULTIPLE EXITS IN RULE(S) n

NG

"n" js a list of rule coluuns
without exactly 1 exite.

The table being entered or edited
is in errore.

tablename TS IN ERROE, LG YCU WISH TGO PROCEED?

PLEASE ENTER YES Ck NO

The compiler has detected an
invalid table. You respond YES or
NQe

You have given an ambiguous

response to a YES/NO gquestionse.
Your response must contain either a
Y or an Ny at least oney, not bothe

RULE n OVERLAP. QUESTIONING TERMINATED
RULE n OVEFLAP. COMPILATICN ABRANDONED

"n" is a list of the rule columns
that have been found by the compi-
ler or questionaire processor to
overlape. Occurs with an invalid
tables

RULE MISSING. QUESTICNING TERMINATED
RULE MISSING. CCMPILIATION ABANDONED

ILLEGAL TABLE

ILLEGAL OBJECT CODE

EMPTY TABLE

Some rule column was discovered
missing by the compiler or the
questionnaire processors Occurs
with an invalid table.

You attempted. to LOAD (possibly
indirectly) an object that was not
a decision tablee.

You attempted to LOUADMAT (possibly
indirectly) an object that was not

a cocde matrixe.

There |is no table loaded (or
saved) .

=28

EMPTY OBJECT CODE There is no code matrix loaded (or
saved) .

INCOMPATIBLE TAELE/CODE You have tried to use PRINTHLL or
TESTGEN with an object code that
does not match the decision tablee.

DEFINITICN ERKROR:

{n] line image You used the APLG opiion to produce
an APL object program, but it could
not be defined because of an error
in the line image displayed. If
the line image is line 0, the error
may be due to the existence in your
workspace of an APL variable or
group with the same name as your
programa You will also get this
message 1f the function you are
trying to define 1is Ypendant" in
Your workspaces.

SYNTAX ERRCR You have entered a coumand improp-—
erly. Look for an omitted comma or
blank or a mispelled keyword.

VALUE ERROR You have mispelled something, or
attempted to save a table that
doesn't exist.

During an attempt to file output you may encounter one of
the error messages Llisted below. The error number (n)
accompanying +the wessage is particular to the operating
system you are using. Your APL administrator can direct you
in seeking help if yonn cannot discover the cause of this
errore

OPEN FAILURE: n Probable cause is that your table
header is not a legal file name.
It is also possible that the APL
shared variable interface is
{temporarily) unavailable (output
will be cancelled)

WRITE FAILURE: n Probable cause is a 1line that is
too long for the file being used.

INTERFACE QUOTA EXHAUSTED
You don't have enough interface

capacity for your file. See your
APL administrator te increase your
quo ta.

NO SHARES. SVP INACTIVE You didn't include APL110U or APL121
when you accessed VSAPL.

—-29~

SV SPACE QUOTA EXCEEDED

WS FULL

SYMEOL TABLE FULL

STACK FULL

xxxx[n]

Prompting and Other Messa

ENTER TABLE HEADER

ENTER CONDITION STUBS
ENTER ACTION STUBS
ENTER EXIT STUBS

HOW MANY RULES ARE THERE?

Too little space for Shared Var ia-—
ble processore. Get more when you
activate APL by entering VSAPL BK
APL110.

Not enough free workspace to
continue <calculationse. See the
discussion under PROCESSOR CAPACI-
TY- g

Not enough symbol table capacitye.
See discussion under PROCESSOR
CAPACITY.

Too many recursions for the execu—
tion stack to handle. See the
discussion under PROCESSOR CAPACI-
TY.

You have stopped in function "xxxx"
at line "n"., This was caused by an

interrupt (sometimes due to 1line
noise)e. To resume execution enter

"—.n“.
ges = = = = = = = = = - - -

Enter the header of the decision
tables.

Enter at least one condition stub.
Enter at least one action stub.
Enter at least one exit stube.

Enter the number of rule columns
for this tablee.

STANDARD CCONDITIONS (n RULES)

INPUT CANCELLED

You have requested "standard"
conditions. There are "n" prule
columns.
You have cancelled the input
process.

DO YOU WANT TO ADD AN ELSE COLUMN?

Your +table has wmissing rules,; do
you want them added? Answer YES or
NO.

¥ -

nnn:ACTICNS "nnn" is the action row numbers for
the ELSE column you are addinge.

ENTER EXIT NAME Enter the exit stub for the ELSE
column you are addinge.

HEADER IS header You have requested REHEAD. "head-
er" is the current header expres-—

sion of the table you are editinge.

OK The decision table has been veri-
fied following INPUT or EDIT.

COMPILING tablenane Compilation has startede.

n LINES CCMPILED IN s CPU SECONDS
Compilation is completed.

esssssenne You are prompted to position the
paper on your terminal to receive a
program Llistinge. Enter a carriage
return to start printinge.
FILING to tablename Signals start of filing output
END OF FILED OUTPUT Signals filed output conplete
The following messages are printed during compilation when
you have selected the DETAIL optione.
n LINES GENERATED FROM tablename (prior to opts. 1 and 2)
LOCATE DUPLICATE SEQUENCES IN n LINES (opt 1)
n SEQUENCES TO BE EXANINED
REMOVING REDUNDANT GOTOS FROM n LINES
REMOVING REDUNDANT GOTOS FROM n LINES
REMOVING REDUNDANT EXITS FROM n LINES
REMOVING DEAD CODE FROM n LINES
FURTHER SEQUENCE REDUCTION IS POSSIBLE
NO FURTHER SEQUENCE REDUCTION IS POSSITBLE

THERE ARE n LINES OF CODE LEFT (optl)

ATTEMPTING DUPLICATE PATH REMOVAL (opt2)

TABLE OF RESERVED NAMES

ABORT CHS

ABSTRACT CND

ACT COBOL

ADD COIBM

ADDELSE COL

ALGOL COMPILE

APL COMPILER

APLG DEL

CHG DESCRIBE

REFERENCES

i. Myers, He Jey
Tables",

16 No.

2e DTABL System Guidee.

DETAIL
DSORT
EDIT
EDITOR
END
EXT
FILE
FROM
ILIST

Sy September 1972,

3. APL Languagee.

4. APL Shared

or SH20-9087

Se APL/CMS User's Guide.
6o VS APL for CMS:
Te VS APL for VSPC:

8. VS APL for TSO:

SH20-1872

Yale

GC26-384"7

Terminal User's Guidee.

-32-

INPUT
KILL
LOAL
LOADMAT
MAT
MERGE
MISC

NCOMPILER

NEDITOR

"Compiling Optimized Code
IBM Journal of Research and
pages 489-503.

Variables (APLSV) User's

SH20—-1846

Terminal User's Guidee.

NMISC
OPTIONS
OPTM
OPT1
OPT2
OPT3
PL1
PRINTHL
Q

REHEAD
SAMPLE
SAVE
SAVEMAT
SHOW
SLIST
SPREAD

STOPCHECK

TESTGEN

from Decision

Development, V¢l

(Licensed Material) LY20-2282

Guides

SH20-9067

SH20-1460

SH20-9066

University Terminal User's Guide.

EXAMPLE TEKMINAL SESSION

i

t I t

tl)

JLOAD 27 DTABL
SAVED 14:56:37 08/17/76
INPUT
ENTER TABLE HEADER

EXAMPLE

ENTER CONDITION

c1
c2
c3

ENTER ACTION STUBS

Al
A2
A3

ENTER EXIT STUBS

X1
X2

ALOAD DTABL WORKSPACE

RARROW (=) INDICATES LINES
ATYPED BY THE USER. ALL OTHER
ALINES ARE OUTPUT FROM THE
ASYSTEM. (THE ARROWS ARE NOT
ANORMALLY PART OF THE LISTING.)

ADOUBLE ARROWS (—-) INDICATE A
ACARRIAGE RETURN PERFORMED BY
ATHE USER.

HOW MANY RULES ARE THERE?

7
0000000
1234567|c1
NYNYNYN
1234567|c2
NN YYNN
BAD INPUT
NNxYYNN|C2
Y
1234567|c3
NNN=-YYY
12345¢7|41
11 11
1234567| 42
1 1
1234567 A3
12
1234567|x1
XX
1234567|x2
XXX X
0K

SAMPLE«~SAVE

ABLANK IS NOT A LEGAL CONDITION.

ACORRECT ONLY THE BAD COLUMN.

ATHE TABLE IS CONSISTENT.
AT ABLE SAVED AND NAMED.

-33-

SAMPLE ADISPLAY TABLE NAMED SAMPLE.
EXAMPLE| 0000000

|1234567
(o | | NYNYNYN
c2 |NNYYYNN
c3 | NNN-YYY
Al | 3 A%
A2 | 1 1
A3 |12
X1 | XX
X2 | xxxx x
EDIT SAMPLE RINITIATE EDIT OF SAMPLE
e
SHOW ALL RDISPLAY TABLE BEING EDITED
AANAAAAN
1234567 AWITH ROW AND COLUMN
vV VVVVY ANUMBERS «

<1>NYNYNYN|C1
<2>NNYYYNN|C2
<3>NNN-YYY|C3
<1> 1 1 11|A1
<2> 1 1]A2

<3>12 |A3
<1> XX |x1
<2>XXXX X|x2
e
SHOW CND 1, ACT 2 3

AAAANAN

1234567

VVVVVVV QASELECT IVE DISPLAYS

<1>NYNYNYN|C1
<2> 1 1]A2
<3>12 |A3
2
SHOW COL 4 5

AN

45

vv
<1>YN|cC1
<2>YY|C2
<3>-Y|C3
<1>1 |A1
<2> |A2
<3> |aA3
<1> x|x1
<2>X |x2

-4

-B

——

SHOW CND 2
AAAAANA
1234587
VVVVVVV

<2>NNYYYNN|C2
£
CHG CND 2,COL 4 17
YN|C2
Cs
SHOWCND
v
CND 2
ANAANAAAN
1234567
VVVVVVYV
<2>NNY-YN=-|C2
Ca

CHG CND 2, COL 4

=

SHOW CND 2
AAAANAA
1234567
VVVVVVYV

<2>NNYNYNY|C2
-

CHS CND 2
|c2
-/C/COND/
|conD2
-/
lc2
Cs

ADD CND 2.5
xxxxxxx | x
YYYNNNN C2.5
L3

SHOW CND 1 2 2.5

AAAAAAA

1234567

VVVVVVYVY
<1.0>NYNYNYN|C1
<2.0>NNYNYNY|C2
<2.5>YYYNANN|C2.5
<3.0>NNN-YYY|C3
L2

DEL CND 2.5
G2

ADD COL 4.5 4.6,

ATHE ATTN BUTTON WAS PRESSED
ATO CORRECT A TYFPING ERROR.

RELEMENTS IN COLS 4,7 REPLACED.

7, FROM CND 2 4, COL 2 3

RELEMENTS COPIED.

ACHANGE STUB ONLY.

AARROW B (=B) INDICATES SINGLE
ABLANK TYPED TO DISPLAY NEW STUB.
ACANCEL CHANGE, AND

ASHOW RESTORED VALUE.

ANEW CONDITION ROW TO BE FILLED.

ANOTE NEW ROW.

ADELETE ROW JUST ADDED.

FROM COL 1 1

-35-

SHOW ALL
AAAAAAAAA
123444567

a9 a9 88090

000056000
VVVVVVYVVY
<1>NYNYNNNYN|C1
<2>NNYNNNYNY | C2
<3>NNN-NNYYY|C3
<1> 1 1 11] A1
<2> 1 1|42
<3>12 |aa
<1> xXx |x1
<2>XXXXXX X|Xx2

C:

11

DEL
ACTION

DEL

ADD
ACTION

coL 2

CHG CND 1
SHOW ALL
AAAANAAN
1234567
VVVVVVYV
<1>NNYNYNY|C2
<2>NYNYNYN|C1
<3>NNN-YYY|C3
<1> 1 1 11]A1

<2> 1 1]42
<3>12 |A3
<1> XX |x1

<2>XXXxX X|x2
Cs
CHG CND 1
NY|C2
YN
YN|C1
YN
s
END
0K

COL 3.

COL 4.

ANOTE THAT CONDITION ROW 2.5
RHAS BEEN LELETEDy AND COLUMNS
A4.5 AND 4.6 HAVE BEEN ADDED.

S
ACOLUMN 3.5 DOESN'T EXIST
S 4.6
ACOLUMN 2 ALREADY EXISTS.
2y ALLCOL, FROM CND 2 1, ALLCOL
ANOTE THAT CONDITION ROWS 1
AAND 2 ARE REVERSEDe.
2, coL 4 7

ATABLE IS CONSISTENT.

-36=

ASAMPLE USE OF
MERGEXAMPLE

MERGE| 00000000011111111112222222222333

| 12345678901234567890123456789012

c1
c2
Cc3
c4
CcS

| YYYYYYYYYYYYYYYYNNNNNNNNNNNNNNNN
| YYYYYYYYNNNNNNNNYYYYYYYYNNNNNNNN
| YYYYNNNNYYYYNNNNYYYYNNNNYYYYNNNN
| YYNNYYNNYYNNYYNNYYNNYYNNYYNNYYNN
| YNYNYNYNYNYNYNYNYNYNYNYNYNYNYNYN

Al
A2
A3
A4
AS
A6
A7

{11111111111111111111111111111111
|1111

j1111

I 11111111 1111
(111111221111 11141111111111111111
[t 1 1 1 1 1 1 1
|1

1 31 11 11 11 ‘11 11 11

X1
X2

| XxXxx XX XX XX XX XX XX XX
XX XX XX XX XX XX XX XX
MERGE MERGEXAMPLE

SAVE

MERGE| 000000000111111

| 1234567892012345

c1
Cc2
c3
c4
C5

| YYY==—YYY=——NNN
| YYYYYYNNNNNN———
| YYYNNNYYYNNNYYY
| YYNYYNYYNYYNYYN
| YN-YN=YN=YN=YN=-

Al
A2
A3
A4
AS
A6
A7

|111111111411111
[111

|111

[111111
j111111111111111
I3 4 1 %X a
|1

i 11 11 1% 11

X1
X2

| X X 2 X X
| XX XX XX XX XX

MERGE

AS AMPLE COMPILATION.

SAMPLE
EXAMPLE| 0000000
| 1234567
o | [NYNYNYN
G2 | NNYYYNN
c3 | NNN-YYY
Al | 11 11
A2 | 1 1
A3 |12
x1 | XX
X2 | xxxx X

OPTIONS+~OPTM 4 COBOL4,PL1;APL,SLIST
COMPILE SAMPLE
COMPILING EXAMPLE
14 LINES COMPILED IN 2 CPU SECONDS

e es cse ssaase

EXAMPLE.
IF Cl THEN GO TO EXAMPLEOQO3.
IF C3 THEN GO TO EXAMPLEQ4.
IF C2 THEN GO TO EXAMFLEOS.
EXAMPLEO1l. AQ3.
GO TO X2.
EXAMPLEQ3. Al.
IF C2 THEN GO TO X2.
IF C3 THEN GO TO X1.
GO TO EXAMPLEO1.
EXAMPLEQ4. IF C2 THEN GO TO Xl1.
Al.
EXAMPLFEQS5. A2.
EXAMPLEQ6. GO TO X2
COMMENT END OF EXAMPLE.

o9 o8 0000

——

EXAMPLE: BEGIN;
IF C1
IF €3
IF Cc2
A3;
GO ToO
Alj
aF C2
IF C3
GO TO
IF C2
Al;
A2;
GO TO

EXAMPLEQ1:

EXAMPLEQ3:

EXAMPLEO4:

EXAMPLEQS:
EXAMPLEQG6:

THEN GO TO
THEN GO TO
THEN GO TO

X23
THEN GO TO
THEN GO TO

EXAMPLEO1;
THEN GO ToO

X2:

EXAMPLEQ3;
FXAMPLEOQ4;
EFXAMPLEQS;

END /% OF EXAMPLE %/;

seo s s0eew

EXAMPLE
—-(Cc1)/6
-{c3)/10
-(C2)/12
A3

-0

Al
-(Cc2)/0
-(c3)/0
-4
-(C2)/0

(1]
[2]
[3]
(4]
[5]
[6]
[7]
(8]
[91]
[10]
[11] a1
[12] A2

EXAMPLE
000| c01-03
001| c03-04
002| C02-05
003|01:403
004 | X02
005|02:x01
006|03:401
007] c02-06
008 | c03-02
009| ———-01
010]|04:c02-02
011 AO01
012]|05:402
013|06:x02

SH20-1924-1

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, N.Y. 10604

IBM World Trade Americas/Far East Corporation
Town of Mount Pleasant, Route 9. North Tarrytown, N.Y., U.S.A. 10591

IBM World Trade Europe/Middie East/Africa Corporation
360 Hamilton Avenue, White Plains, N.Y., U.S.A. 10601

1-vZ6L-0ZHS ‘V'S'M Ul paiuilg [enuepy suonesadp/uonduasaq wesboly (gv.LQ) J0ssed0uy 8jge | uoisiva 1dv

Staples can cause problems with automated mail sorting equipment.
Please use pressure sensitive or other gummed tape to seal this form.

Note:

APL Decision Table Processor (DTABL) READER’S
Program Description/Operations Manual COMMENT

FORM
SH20-1924-1

This manual is part of a library that serves as a reference source for systems analysts, programmers, and
operators of IBM systems. This form may be used to communicate your views about this publication.
They will be sent to the author’s department for whatever review and action, if any, is deemed appropriate.
Comments may be written in your own language; use of English is not required.

IBM shall have the nonexclusive right, in its discretion, to use and distribute all submitted information,
in any form, for any and all purposes, without obligation of any kind to the submitter. Your interest
is appreciated.
Note: Copies of IBM publications are not stocked at the location to which this form is addressed.
Please direct any requests for copies of publications, or for assistance in using your IBM system, to
your IBM representative or to the IBM branch office serving your locality.
Possible topics for comment are:

Clarity Accuracy Completeness Organization Coding Retrieval Legibility
If you wish a reply, give your name and mailing address:

(Optional Wording)

What is your occupation?

Number of latest Newsletter associated with this publication:

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM
office or representative will be happy to forward your comments or you may mail directly to the address
in the Edition Notice on the back of the title page.)

SH20-1924-1

Reader’'s Comment Form

Fold and tape Please Do Not Staple

Business Reply Mail
No postage stamp necessary if mailed in the U.S.A.

Postage will be paid by:

International Business Machines Corporation
Department 825

1133 Westchester Avenue

White Plains, New York 10604

Fold and tape Please Do Not Staple

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, N.Y. 10604

IBM World Trade Americas/Far East Corporation
Town of Mount Pleasant, Route 9, North Tarrytown, N.Y., U.S.A. 10591

IBM World Trade Europe/Middle East/Africa Corporation
360 Hamilton Avenue, White Plains, N.Y., U.S.A. 10601

Fold and tape

—————————— —— = — = —3uI7 6UOIY PIO 40 IND = — — ——

First Class
Permit 40
Armonk

New York

Fold and tape

L-Z6L-0ZHS 'V'S'N ul palulyy |enuejy suonessdp/uondiiosaq weibold (gy.LQ) 405580014 9|qe | uolsidaq Tdv

Staples can cause problems with automated mail sorting equipment.

Note:

Please use pressure sensitive or other gummed tape to seal this form.

APL Decision Table Processor (DTABL) READER'’S
Program Description/Operations Manual COMMENT

FORM
SH20-1924-1 oR

This manual is part of a library that serves as a reference source for systems analysts, programmers, and
operators of IBM systems. This form may be used to communicate your views about this publication.
They will be sent to the author’s department for whatever review and action, if any, is deemed appropriate.
Comments may be written in your own language; use of English is not required.

IBM shall have the nonexclusive right, in its discretion, to use and distribute all submitted information,
in any form, for any and all purposes, without obligation of any kind to the submitter. Your interest
is appreciated.
Note: Copies of IBM publications are not stocked at the location to which this form is addressed.
Please direct any requests for copies of publications, or for assistance in using your IBM system, to
your IBM representative or to the IBM branch office serving your locality.
Possible topics for comment are:

Clarity Accuracy Completeness Organization Coding Retrieval Legibility

If you wish a reply, give your name and mailing address:

(Optional Wording)

What is your occupation?

Number of latest Newsletter associated with this publication:

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM
office or representative will be happy to forward your comments or you may mail directly to the address
in the Edition Notice on the back of the title page.)

SH20-1924-1

Reader's Comment Form

Fold and tape Please Do Not Staple Fold and tape

Fold and tape

First Class
Permit 40
Armonk

New York
[Ees==l
Business Reply Mail ===
No postage stamp necessary if mailed in the U.S.A. e e—
=]
[T
i == o]
X ; [m=2_— —

Postage will be paid by: -

International Business Machines Corporation
Department 825

1133 Westchester Avenue

White Plains, New York 10604

Please Do Not Staple

International Business Machines Corporation

Data Processing Division

1133 Westchester Avenue, White Plains, N.Y. 10604

IBM World Trade Americas/Far East Corporation
Town of Mount Pleasant, Route 9, North Tarrytown, N.Y., U.S.A. 10591

IBM World Trade Europe/Middle East/Africa Corporation
360 Hamilton Avenue, White Plains, N.Y., U.S.A. 10601

Fold and tape

T e T e = = = = — DU|T] BUO|Y PO 10 IND = — — ——

I-bZ61-0ZHS 'V'S'N Ul palully [enuej suonesadQ/uodiosaq wesbold (gv.LQ) 10ssao0id sjqe| uojsioaq Tdv

A

NS

|

JU)
JI)

J I ABI

N

=

a

>oU

/S Jb -

AND

¢
[ON

 Ze

— <C
> ()
P
<~

(D2
(2
(O
AN

TO0 UNDERSTAND

MMmI X
2 2 JTT =]

- ANITNGFUL
I ON

S ON LOGIC

ReSULTING PROGRAMS AR

<

<

I

QUICKER TO WRITE
MORE RELIABLE
CASIER TO MAINTAIN

|

LESS COSTLY TO HAV

IF C THEN A uHILE C DD A

REPEAT

A UNTIL C

v

T

DECISION TABLE

A
|

BLOCK

S ————

CIZSION TAZSLE ANATOMY

-) I
9 |l
i — o~ — — - f LE C X
| TABLE HEADER | 93il ta111
i | | i
; |
CCNDITION STU3S =0
(YES/NO QUEST ICNS) {/]
| ;
A {)
i /‘:)
; >
h <
ACTION STUBS ; %
4 =
ll A{/ﬂ'\
f =B
EXIT STUBS H J

ENTRIES \Rthrﬂfgﬂﬂ

— (")
v O\

v=—{ v

=0

O

)
[L

0)

|

()

. S T T
>Z 0 0 00
b b oI Ao B
b e S
p o SN N A
D= Pl L D
P P e P e B
b e P e s
P>~ 0
B g D | e
= i | BT
b ol ol SR
D> > 0 >0
>=>=>= 1 > 1
& L
it OF)
<r <t M
=)
) < 2
O N\ i W
bl YOl
(=t <2
(Y0 (X =1 (Y

O <CMO~LMO
CIN LI 0, LY,
(L, LLOE [if¥
OF O M3l =g
Ol -
X mOomoo
(FEQONOON
L b QL 2 bt (1 37 b

i —{

] —f
i e v~

et
o v —

ABEND 613

MMy

X

I XX X XX X XX
IX X X X X
l

QO
L Z)
MW

O<<A

“_EMENTS SAME EXCEPT 1 CONDITION
_ZS IN CONDITION ARE YES AND NO
TWUO EXAMPLES

21 .l Y YY Cl | N NN

22 LY YY C2 | Y Y Y

23 1LY N - C3 i - - -
——————————— C4 | Y N -

A1 111 1 meeeeeeme o

L2 | Al 11 11

A3 | A2
----------- A3 11 11

~w A R O S

X2 1 X X X X1 I X X X

AMBIGLOUS

LOGIC_VALIOATION

N CONDITIONS REQUIRE

UNIQUE RULE COLUMNS

REDUNDANT
C1 .. YY.
CZ2 1. . NN.
C3 ..YY.
Al .. 11.
A | e

INLUNPLETE
Cl I'YNN
C2 I -YN
L3 f——%
Al 111
AZ 12 1
X1

«Ur T IMIZING PRE-COMPILER
(APL ., COBOL. PL/ZI)

- TEST CASE ADVISOR

TABLE MANIPULATION
COLUMN MERGING
TABLE SORTING

- QUEST IONNAIRE PROCESSOR

ey A

(
<

OPTIONS+~0OPTM,PL 1
COMPILE O-~D190QF3

D190F3 100000000011111
112345678901234
ERROR LYYYYYYYYYYYYYN
111 ERROR_DXCCW4 IYYYYYYYYYYYYN-
ROBCK PARAM LYYYYYNNNNNNN- -
Nnon JFCBIND2 | e i YYYYYNN- -
[/0 ERROR | YNNNNYNNNNYN - -
ROBCK _PARAM ACAIN [=YNNN-YNNN- - - -
MOD JFCBIND3 | =-YNN--YNN----
[/0 ERROR FOR BSF J=a=YNe=aYN=2s.
SET TO BSF l
BSP TWICE 11111111111
SET CCW1 TO BYPASS TM HDRI 11 11
BSF | 1111 111111
St UP ABEND 613 T 11 11
190061 I XX X XX X XX
BEND IX X X X X
190F4 [X
ONPILING D190F3
20 LINES COMPILED IN 1| CPU SECOND

ssssssssss

D190F3: BEGIN;

[F ERROR THEN CO TO D190F301;
T0 D190F4; '

D190F301: {% E?§8R1DXECU4 THEN CO TO D1S0F302;
(90613
D190F302: ROBCK PARAM THEN CO TO D1S0F304;

g 10 BSF:
1/0 ERROR THEN CO TO D190F303:
CO_TO D190G1:
D190F303: SET UP ABEND 613;
GO TO ABEND:
D190F304: BSP TVICE:

AEF]/O ERROR THEN GO TO D130F303;

[F ROBCK PARAM AGAIN THEN GO TO D190C1:
[F MOD JFCBIND3 THEN GO TO D190GI:
SET CCW1 TO BYPASS TM HDR:

_ [F 1/0 ERROR FOR BSF THEN GO TO D190F303;
DI9GE305: GO 10 D1906T;

END 7+ OF DI1S0F3 ¢/

GO
LF
b
ég Fo0 JFCBIND2 THEN GO TO D190F304;
BS
[F
0

. e e

D1S0F3
D1S0E3
R
! 14
{XG3) <C02>
i
(X01)
D190~ 3100000000011111
| 123455/2901234
<CO1> IYYYYYYYYYYYYYN
“CN2> IYYYYYYYTYYY TN~
<CO3> 1 YYYYYNNNNNNN- -
LL08=E {s==s= ¥YYYY YNN - -
<CO05> 1 YNNNNYNNNNYN - -
<C08> | -YNNN-YNNN--~--
<C07> |--YNN--YNN----
<C08> |---YN---YN----
[AD1] | 11
[A02] 11111111111
[AQ3] | 13 11
[AOZ] | 1111 111111
[AGS] 11 1 1 11
(X01) | XX X XX X XX
(X023 IX X X X X
(X033 | X

O TESTGEN O
1 2358 11 12 13 14

_-621
<C03>---=--- -
L !
<CD4x>=%>2== = |
i 04:
[AO1] [AC2]
i .
L AC4] T—-<C05>
t !
<COS>-*: [AD4]
: .
(XG1) } <COG> ==
1
: <COAZ~)
.
I [AO3] 1
L il |
B e = G <C08> :
I I
! | i
034 LD o=~
[AOS] (X01)
il
(X02)

" QUESIIONNAIRE

Q@ CISCOUNT
CUANTITY>10G2 YES
GUANTITY>3S0C0? NO

FERRED CUSTOMER? YES
PCT DISCOLNT
PCT DISCOUNT
G NEXT

APPLY 1
APRPLY
U0 BIL

=
.l

Q@ CISCOUNT
QUANTITY>100C7 YES
GUANTITY>50C? YES
PREFERRED CUSTOMER? NO
APPLY 20 PCT UISCOUNT
20 BILLING NEXT

Q- DISCOUNT
QUANTITY>10G7 NO
PREFERRED CUSTOMER?Z? YES

- e e e e e o = e -

APPLY S PCT DISCOUNT
DO BILLING NEXT

DISCOUNTS 0000800

1123456
QUANTITY>100 INNYYYY
QUANTITY>500 I - -NNYY
PREFERRED CUSTOMER | YNYNYN

APPLY 10 PCT DISCOUNTI 11
APPLY 20 PCT DISCOUNT I 11
APPLY © PCT DISCOUNTI1 2 2

D0 BILLING NEXT P XXXKAXX

e 1100R JOUrnal of
September 1972 researCh and
development

Vol.16 | No. 5

H. J. Myers

Compiling Optimized Code from Decision Tables

IBM Copyright 1073 by International Duslness Machines Corp
I'rlulrd in U.8.A.

H. J. Myers

Compiling Optimized Code from Decision Tables

Abstract: This paper reviews the structure of decision tables and methuds for converting them into procedural code. It describes new
optimization methods, which are applied before, durmg, and after code generation, Some results from an experimental decision table

processor are provided,

Introduction
Decision tables have been in use for over ten years,
principally in business applications, to state problems
that contain a relatively high proportion of programmed
_tests. Numerous compilers have been built that convert
the logic expressed in decision tables into algorithms
that are executable by computer. Emphasis in decision-
tuble compilers has typically been placed on producing
logically correct code, on checking the decision table lor
completeness and consistency. and on ordering condi-
tion tests Tor efficient execution, Most decision table
compilers produce code that is in a higher-level lan-
guage, leaving optimization of the produced ohject code
up to the gh level kingoage compiler. However, the
structure of the code produced by typical decision-table
compilers is of a type that is improved little by any of
the optimizing algorithms used by commercial compilers
today.

Gieneral-purpose support programs (systems pro-
grams) are also typilied by a high proportion of pro-
grammed tests. It would therefore appear that effective
use of decision tables could be made in describing sys-
tems programs, However, systems programs must also
be comprised of highly optimal code. This paper de-
sefthes some deciston-table compiling algorithms that
provide o program structure of high enough quality 1o
satisfy most systems programming needs, The output can
be used either by a post-processing compiler or by a pro-
grammer as a guide in hand coding.

IFor the project, we constructed a running compiler
and support system into which were introduced numer-

SEFTEMBER 1972

ous decision tables based on actuil systems programs.
From these decision tables, procedural code tin m
format) was produced. Some samples of the code strue-
ture produced are included in the Appendix to enable the
reader to judge the effectiveness of the compiler. The
system was produced in an interactive Arl. environment.
which allows considerable flexibility in revising and
augmenting algorithms.

In the paper, we [irst review the structure of decision
tables and the procedures used o map them into code.
However, the main emphasis is on the upmnia’aliinn
methods we use before. during. and afier code genera-
Lon,

Decision tables

In order to make this paper reasonably self-contained.
we review here the structure of decision tables and the
general methods used to convert them into procedural
language. We attempt to emphasize those aspects of the
process that provide opportunities for optimization,

A sample decision table is shown in Fig. |,

The stub portion (2) of the table gives descriptions of
condittons (5.6) actions (7.8) and exis (9,00, The for-
mat ol the stub contents is generally constramed by the
target Language into which the table is being transhited.

QOur processor places no constraint on the contents of

the stubs; if correct pu/i code is 1o be produced. 1he
condition stubs must contain one pr/i relational expres-
sion each; the actions should contiun a e/t assignment
statement, call statement (or other nonbranching execut-

489

COMPILING OFLIMEZLD conl

90

« L. MYLRS

? 3
1 DPUT |oocoo0no &
11234567
WANE FIELD PRESENT |WYNYNYH

S OPERAND 1 IN REG. NOTATION|NNYYNNY &

FILE DEFINED INKN=-YYY
GENERATE NANE 11111

7 ERROR 1 l 12 2 8
ERROR 2 112

9 PUTTWHO | XX 10
FINISH Ixxxx x

1 Devivion table name
2. Stuls pantion
oty parton

4 Lable header

£ Comdition stubs,

LAY enfiies (Y yen, ¥ o, Aot cned
T A "

£ A wes Emumbers imdicate exevubnon seguenve)
9 Fit stubs
10. Exit entries (X indicates exit taken)

Figure 1 Sumple decision table.

able statement); and the exit stubs should contain only a
valid ri./t name, The table name should also be valid in
pL.

Each column in the entry portion (3) of the table repre-
sents o rude. Rule numbers (two-digit numbers read ver-
teally) and the table name appear in the rable header (4).
Rule 02 in Fig. 1. for example, indicates that if a NAME

SLIELD IS PRESENT (Y means yes) and if OPERAND 1
IS NOT IN REGISTER NOTATION (N means no) and if
FILE 1S NOT DEFINED, then the actions taken are
GENERATE NAME and ERROR 2 (in that.order), fol-
lowed by an exit to FINISH. In general, o rule specifies
that for a unique combination of conditions. some select-
ed actions are performed and a selected exit is taken,

The decision-table representation of logic does not
impose any strict ordering on the sequencing of condi-
tion tests. Furthermore, actions in a given table are not
allowed to modifly factors that would canse a change in
the outevme of o condition test m the same table. This
gives the compiler more latitude in selecting an optimal
aordering of comdition tests with respect to each other
and with respect to actions.

The ordering of actions with respect to each other can
be loosely delined. In Fig. | the order required is speci-
fied by an integer opposite a selected action. If there is
no integer. the action is not selected. Within a given rule,
actions are executed in the order specified (e.g.. in rule
07 GENERATE NAME occurs before ERROR 1). Exactly
one exil is taken after execution of the actions of the se-
lected rule.

In this experiment, we consider limited-entry type
decision tables, in which the value of a condition is limit-
ed 1o yes or no, The alternative, extended entry tables,
allows values that are numbers or number ranges, How-

7 Rl St ol 8 e o el i g

ever, as Press [1] demonstrites. these can be converted
into limited-entry tables. so that our methods apply lo
both types of decision tubles.

The occurrence of a third value (=) in rule 04 of Fig. 1
does not contradict the two-value restriction. Rule 04 is
actually a condensation of two rules (say 4a and 4b),
which have identical action und exit entries, but whose
condition entries are:

Condition da 4b 4c
1 Y ¥ ¥
2 Y Yy
3 Y N -

Rules 4a and 4b mean that the specified actions and ex-
its are to be performed when conditions | and 2 are both
yes, regardless of the value of condition 3. Therelore in
rule 04, condition 3 is immaterial —a don't-care condi-
tion, As will be shown later, in the code produced by the
compiler, there will be no test for condition 3 in the low
path for which conditions | and 2 are both true.

Because conditions in a limited-entry table are binary
valued. there are 2" unique combinations of the values of
n conditions, and therefore 2* rule columns. In practice,
the number of rules is greatly reduced by the introduc-
tion of don't-care entries and consolidation of the rules
as shown for rule 04, 11 rules 4a and 4b had been counted
as part of the table in Fig. 1, that table would have 8 (2%)
rules for 3 conditions, A detaled discussion of column
combining is presented later in the section on pregenera-
tion optimization.

With the 2" requirement on the rule count. one can
program a verification of the rule entries that ¢hecks for
both consistency and completeness. However, as will be
seen, the check does not extend o an interpretation of
the stub information and so it cannot be regarded as
complete check.,

Decision-table code production
One of three methods is generally used to map decision
table logic into procedural representation, In the rule
mash method [2-4] every condition is first tested and
then v selection mash is created, Next, Tor cach action
and exit. an action mash (created ar compile time) s
compared 1o the selection mask. 11 the masks coincide.
the action (or exit) 1s performed.

In the second method. a variation on the rule-mask
method, a unique power of 2 is assigned 10 each condi-
tion, which is then tested and its number added to o
counter il the condition is true. At the end of condition
testing, the counter is used as an index into a brimeh ta-
ble and control is transterred 1o the appropriate action-
exit sequence. (Note that the branch table must have 2"

TN L RES, DRV OO0

ik

il resssssssssssssansissssssn

L} Oud
assssssssgenesns w00 ssssnssa "Ny
LE) L]] L]
Qs eerrnnn CCDArsnsannsn [An1] CCNYswssannsn

+ 934 4 14 ‘ L nse
[402) fa01] [403] txo1) (4021 L4011 Can1]
t!é!l tA021 u_tég: RS :5531 (4031 'iél’
LR l{ég) R1 Ru (5531 RG

A7 R2
Flowchan conventions

| Condition test m, (yes branch
I¥es s horzontal. and no branch
can .« b overtical downward)

INn
nﬂ: Label in (pencrated by the compiler)
[ima] Miwnn

timn) Dalw

Figure 2 Tree corresponding to sample decision table,

entries for n conditions.) These two methods require
that all tests be performed regardless of the don't-care
entries in the table. They tend to produce (when bit
masks are used) a small program that runs longer than is
usually necessary.

We use the third scheme, called the condition tree
method, which causes the peneration of a tree-structured

program with condition tests at each node. Each action-
" exit sequence is placed at the leaves. Figure 2 shows an
unoptimized tree corresponding to the decision table of
Fig. 1. The rule numbers lor each action-exit sequence
are placed under the leaves for clarity,

Notice the one-to-one correspondence between the
leaves of the tree in Fig. 2 and the rule columns of the
decision table shown in Fig. 1. Notice also the large
amount of redundancy in the code generated. In this
case, the penalty for this redundancy is not lengthened
cxecution sequences, bul excessive storage consump-
tion. Figure 3 shows the effect of the optimization algo-
rithms on the tree of Fig. 2.

Figure 4 shows an abstract listing ol the program dia-
prammed in Fig, 3. This listing is called abstract because
nothing in it refers o the actual (concrete) conditions,
actions. or exits that are described in the table stubs. In
lact, the processing algorithms ignore the contents of the
stubs except for listing purposes.

Because we are principally interested in compilation,
the abstract format is the one used in this paper. Howev-
er, with little difliculty, concrete listings can be produced
for any procedural language.

Figure 5 is a concrete listing in pi/t format of the pro-
gram shown in Fig. 4. Because the stubs in the original
table (Fig. 1) do not follow pr/t conventions, the result is
ot et procedure,

SErTEMBER 1972

pPhT

L]
€fN]dsssesssn

2 [l Ak
arrrrssesrrrrrrrrrs N2 4711
034 4 i
e e L] BrsseprarerercTNs
' 054 ' ' '
’ [A01) 4 fricesisana. o
' ' o0l
ferrctssesy + <M Yressssasn
+ + +]
Qlijesersrsssssrses i 0z
[402] (4031 (rn1)
' '
(xo02) (x02) R4, &
R3,R4 . R? R1,R2
Figure 3 Optimized tree,
Figure 4 Optimized listing.
LINE BRANCH

NUMBERS LABELS OPERATIONS OPERANDS

\ooo\ cn{--oa’/

oo1| Co2+03
002101:C03+02
003] AD3
oou| Xo2

005|02:X01
D06103:C03+08
o070k A02

noa| Xoz2
003|05: 401
o10| ' L]
o11|06: A0
dl.'l Careny
01yl |

Note: Can o ndicates a conditional branch, and
= == o dndiwates an wacamditnenal branch

Figure § Concrete listing.

DPUT: BEGIN;
IF HAME FIFLD PRESENT THEN GO TO DPHTE
IF OPERAND 1 IN REG. NOTATION THEN G0 TO NPUTY,
DPUTYs IF FILILE DEFPINED THEN GO TO PHTTHO,
ERROR 2;
GO TO FINISH;
PPUT3I: IF FILE DEFINED THEN GO TO DPUTS;
DPUTs: ERROR 1;
GO TO FINISH;
DPUTS: GENERATE NAME;
uy PO DruTe
DPUTE: GENERATE NAME;
I¥ OPFRAND \ [N REG. NOTATIOR THYEN G0 TO DPHTw;
GO T DPUT1; b
END;

* Code generation

Various methods exist for the generation ol tree-form
code from decision tables [S=7]. Bricfly. one selects (hy
criteria described later) a condition. The rule columns
are then partitioned into two groups —a no-group and i
yes-group—according 1o the values in each column of
the selected condition. I the condition vilue is don't-
cire in g particular column, that colimn is placed in both

491

COMPHLING OPLIMIZLD Corn

LR I IRV 8 et b S i A1)

YDA IPOD PrIP DAEI| UAjo sampadosd asay g sypad
MO apndip Jo uonEpiosued pur apoa jo sasuanb
-8 dueddnp o [eAowar apnpul sampasosd uonez
-twndo vonuauadiso, (Aunsioy,, se sappad Juium
=1)1dios ul umouy Ajuownuoed a0 sEng C| g | ur Aoy
=ipueaadd pajed st anbwgaay 1200 ag 1) suonom joo | Sul
SI00IN,, DL PURE SISD] HOIIPUOD L J0 TULIDPAO 4 s
PALIIIVOD DA VOHDUIT DPOD FULINp 100 PILLID dam
L SPOLI woTEzaundo g a e e jo uorpaod dpng
YL OIUE SIN[EA DIED-1,U0P FTUNPOLIUE PU SULIOD dI
Aunuposuod jo sisisuod vonezuundo vonpuadaid ang)

sanbiuyosa) uopeziwndgo

swiadoad swoisAs J0) a|quins s aumonns
widosd ay1 pur *apod jurpunpar JuiAOwl Ul $$333ns
A[QRIIPISUOD SMOLS 0uaLadxa anQ) "siuawasinbal aseds
Fuidnpad e pawie aw spoyiaw voneziundo ano jo jsopy
(poyiawr ayy a0y [T1] 298) papraotd aom uonRuLIojul
Luanbagp o paacadw aaygumg ag pinoa 11 casuanbas 153
UAAET 1 U S1sa1 CHESS202UUN o ST 1] uonEziu
-d0 Dy Jo mata Jo 1uod L) Wodp 2pod JU|[RIXd saonp
“oad ssan0ad BoILAUTE disiyg A ssaooad noneziundo
jrut g uo siseydwd gofing e uonouad apos aag)e
pun “durmp arojaq pandde ane sassasoad voneznundo
128N 3Y) WOoL) 22UPING JO JUNOWR Wwntuiw B ypm aziu
-ndo o) dwane saded sy ur pagunsap spoylaw oy |
AN PALLITD U 1L Jou seY S0 01 Spo
-J1aw siy Jo uosuedwod [njaaed a3y pajuasald asoy)
10 2wos dupaao 01 wads suoneznundo sy usiayip
styarosdde sy ydnoyiy papnpuod sum §10m siy) asuls
paysignd waaq sey [1] Aapng) Aq sadued juadar v
1 suawapdiun ey wsiuey 2w
punpasord ay) wodp pannbar aFo) agr jo vonemdas ayy
— 21} UOISLIAP A Jo ygaudy peddund ag) saanpas sjen
S SH T TUAIND DRI O] 1S I U0 WA HOLZIvu
-do oy pased aauy s1ossadoad snotaaad CLmwwns g
sapasaad 11 ey Jut
1591 [RUONIPUOD 2] JO JWOINO0 Y] JO $$IPArdal pawio)
-1ad 3 01 S UONOE ur udYm PIMOJIR SIpuR faujnop
toaud Paged stSIYL AL Ayl Jo voraod wonipuod ay)

oqur suonae aupd 01 AAILA YR DY SMOJ[OS] [

(Junsar o voneziundo aenbape apraoad oy saued
SLUOPR A20POGIUL O pur K831 HOHIPUOD 130 O 1290m
-ajqun a1 vodn $21120 1]) “s20udanbds Fulsa) juupunpal
aa0wals jJou sa0p g (uoneznundo aseds w) sasuanbas
uonae u Launpunpalr sasnpar gossaooud i oy
SAUANbas nodE Jo uonuZiwn
U0 DU DO 01U AN JOU O NG TISD] UOTIPUOD (e
UM PARIDOSSE 2 S1803 Wl pue adiio)s eyl annbad
swiyiode asay | "aowds pur awin 01 190dsal yim apod
1dalgo ewndo jo uomuaudd sog (spooad £q pavoddns)
swyodie aaI3 (701] purjo§ pun pemulay dur
-182) UOHIPUOD JO JIPI0 Y] U0 NUIdU0D uoneziwndo
APOD 192(Qo YIm PALLIAdLOD SIUnodde paysignd 1sopy

168 stossad0ad dat o ueyl apod
Ja110q duiptaodd ‘suonoe paiaudd ayl ur Asunpunpas
$22Npad SI1Y |, “01 payul| 111 3]nd 3yl Ul 11 0] Futpuodsaitod
uo01de Ayl 0} youraq w Aq pase|dal st uoroe payui] 151y ay)
SPALIDUAT S1 2POD UIYAY TYSHIDISE U LG payIRIL 2 S1ND
SUONEME PANUI-SSOLY 211 "9 S ur taphinaxa ao |opniwggo)
PayuI] an: £341 13| A1 0] P WOS UL SHUdWI Fuipuods
SOLI0D AU UYMINIL SPOUXD SIOSSIIINS PIIIIDS S| pue
WOHME W08 J] 1] S0 01 Sa0UanDas JNd-unian a1 oy
paiedwod s1 20uanbas IxXa-uondL ary panLaudd suon
DIt JO S2DURISUL JO JdGInu Y] adnpas 01 | 8] Jossadoad
(L7 sopquy. papoouz] 1o) 1ossanoadatg g1 ur pasn
S1UTUEYN =SSO PIJED CWLILIOTNE SIY) JO UOISUIXD Uy
pEiiH]
Passnasip aq pim yorym ‘saanpasosd uonuziwndo puw
Sa[NI 282 Fuipury J0) apew ade $1831 [eIdads JayiQ)
SANRUILLDT OIS
pur panuaudd s1 20uanbas PIXI-UONDE 1 TPUNOJ SE U
SO R YANS J] USILOUD 2RI UOP DAV SHOHTPUOD) o
JIV LA UL WO AU HULEDOL JO SISINUOD S Yoty
ruonipuos o dunoudd da0jag ape
AN EAUS 1 SUOLIPUOD 203 Bop o aduasanl g
JO ISNEIIG] UWNOd eyl woa) pasnposd uayl s1asuanh
-3S 1IX2-u01de Y | TUILILWAL UWN[od NI U0 AdNX3
q PINOYS Y] AW SIYL Y PAIdDIRS g 01 Juluiw
=21 UONIPUOD OU ST DI2Y) UM PIITUILLIDL ST UOIKINDDY
AN UItW ay) 01 snodorue S2anPNsYRs jo pasod
-2 ade sdnosd-ou puw -$24 3yl eyl Uads ag ued 1|
' ‘dnoad
-534 Ayl ol dnosd-ou Yl WOI] MOp) J0U [[IM |o1IH0D
SIXD U UL SIRUIWIDL 22UaNbas uodE AIIAD 2SNEIdY

Isnw

dnoad —sax
dnoni —ou
== o] <)

20—]

SO0 se
sieadde aunonns Junnsad ay L (Mol Uonipuod palnajas
ay) wmoynm) suwnjod dnotd-sak ayl yum pasajua-al si
10112027 a1 pur paanpatd st (ue-p2qng) pge) paesauad
YD IXIN CWAY] WOL) PIAOWAL MOL UOHIPUOD PIIdIDS
YL Yum Ing suwnjod apa jo dnosd-ou o) jo Junsisuod
AYEIYNS 1 Y A[DAISINDAL PAIDIUI-IL U] SI IOIIUDE
IPOD DL I P U ST (1) DAYM PN §I

w—12aqe] <« wu)

U] AL NRYD SWNSNY o1
SIPUOD PIIAAS Y] Jo) paonpodd udy) s1oapo)y sdnosd

*§20u3anbas 1IX3-UOIOE Payul|-ss01) § andig

sl] «| of o 1 Ly
-1 L S L3 ¥
vl A 1 (4
sl 1 1 I v
El N £ & | 2w

SHIAWN TN

(434

chains, and other dross in their wake, which is cleaned
up by some scavenger optimization methods, A final
opltimization process was introduced into the program
that we use to create i concrete vi /i listing. This process
is an example of a scavenger procedure. lis purpose is to
remove unneeded conditional branches to exits, which
are themselves branches. These optimization methods
are discussed in the succeeding sections,

e Pregeneration optimization
The first optimization method used is that of consolidat-
ing rules where possible so as to introduce don't-cares
into the condition entries. We call this the merge pro-
cess. Figure 7 shows the initial state of a decision table,
which we will use to illustrate the process.

Twao rule columns can be combined into one if:

* They are identical except for one condition entry,
and

* In the differing entry, one column has Y and the
other has N (neither is a don't-care).

The algorithm used first groups rule columns according
1o action-exit sequences. In Fig. 7 the grouping gives

(07 08 09) (10 11 12 12 14 15 16)

(Note thal groups containing only one column are ig-
nored.) 1t then forms subgroups according to don't-care
patterns, 10 two rale columns were

they would have the same don’t-care pattern and would
be put into the same subgroup. Becuuse there are no
don’t-cares in the table in Fig. 7, all elements of each
group have the same don't-care paltern, so that the
groups default to subgroups. Within each subgroup, the
condition entries are compared 1o determine if a differ-
ence exists in exactly one position, Two columns from
Fig. 7 that qualify can be combined as follows:

11 11
s ns
Yy ¥
NN N
Yy) 4

NY (DIFFERENT) - (DON'T CARE)

The value at the position of difference is replaced by a
don't-care value and one of the rules is discarded. Once
a pair of rules is consolidated, it is removed from the
subgroup because its don't-care pattern has changed.
The remaining columns in the subgroup are processed
similarly until no further combinations can be found,

SEPTENE I V72

PUTL10000700001111111

117305670901 230 %6
c1 ruyry
2 Yy
3 rrrre
(o) AYaxy

111
1111
111111111

X1 | XXXXXXXXXXXXXXXX

Figure 7 Decision table initial state.

After all subgroups have been processed, the combined
columns ure regrouped and reprocessed. This iterative
process continues until no new combinations ire possi-
ble. (Note that the particulur combinations that occur
depend upon the order in which the columns are
matched.)

The effect of this optimization on basic code genera-
tion (in the absence of other optimization methods) is to
remove unnecessary condition testing. 1t therefore im-
proves both lhc.spncc and time costs of the resulting
code.

Fipure 8 shows the results of the merge provess and
examples ol its effects, as well as the effects of dillerent
ardering (in the absence of other optimization methods),
On the other hand, in the presence of other aptimizition
procedures, the effect is reduced because of overlap of
optimization function. This pregeneration optimization
gives the user a better insight into his decision table. 1t
also reduces, at an early stage, the amount of work that
the other optimizers have to do. This method generally
results in a nel reduction in compile time,

Both of the compilers that we examined [8.9) require
that the user perform this optimization in order to pro-
duce better code. It is often convenient for the user 1o
do part of this optimization himself when the situations
wiving rise to don’t-cares are patently obvious. (1t allows
him to greatly reduce the number of rule columns he has
to deal with) The use of don't-cares also can be a trick
that allows conditional test dependencies (a violation off
decision-table ground rules): therefore the implemented
merge function was designed to leave onginal don't-
cires intact.

ILis instructive 1o compare our merge process to the
electrical engineering problem of circuit simplification.
Recall that we identified two groups from Fig. 7 having
the same action-exit sequence. Consider rewriting the
condition entries of the second of these groups as fol-
lows so that they look like a Boolean expression,

493

COMREIED ENGE CHEREMZ T DY oy

494

.}, MYLRS

Figure]

PUTIA

ECN1rsatssasssstdrsisnsan

‘ LI R
AHTIAI09090095303111111 [CLEA] .+
11224567A901 20656 " ar4 i
---------------------- asesssd Ny sea"0l> .
1 1AYNEYEERENAIRILY ‘ g i ireesnes
c? VRATLY=ATXAITINNY " " i i
c3 VRN ALREINENNAYY ' i B et]
a0 CARNETYAREENLANY 074 i i 094
---------------------- secCOT> L B hesssaCus
an | [ERR RS S ' ' A8y ani .
A2 [I I B ! bl sin2ses L4821 (aMm) [FLEA
Ad "] L] L] L] 1] L] ' L)
I P m sensld | " [[i [}
as 1 (B4 LAT] i " " P " [
tr 1 (T21] Lads] ¢ LAY eethae g dt) LAds)
At (ERSAREERE! ' i " " + =]
A8 (] 1 [‘ . Srssgeemes - 1]
---------------------- Ohiseee L] . LY} .
1 IXAXXXXRNTITNTRRY [A961 (X21) tx21) faou] [a07)
+ =T] .
txa1) tra) [ann]

i
TANLE WITHOUT DPOR'T CARES txn)

purig

*

(CAressssssmssssnsnssres

] LA R

PUT1.1100009090011 (407 seseselfNDS
112345678901 ' L31]]
----------------- sessrsmnnsnseenc07s seew [
1 IHyiyia--y o6 0 3 “ ‘
[| IRATTIIATINT alDNpswsssse E L TR e e T L N Fat S BT L I
=3 (F b dad il a i ‘ .o i o
Al o1y " ' i [fresaren

e e e e [] 1] [[TR]

M 1 (881 g ' ' Ay LT vess
[B I 1 [4nu]) JesasecrANs seaAd> (4211 A0y
1 11 + 024 " i u . “

s 1 1 «niress [A0ST [A0N) 4 4 (xo1) 40
FEY 1 11 .] .] 0]]

it I 111 ' sesapasaseans e w IFLTR!
A7 1111 1 & ‘ . . “ '
1"] 1 . Nlisssercaprres 354 "
""""""""""" . L . . .

LB LIEAAARARARY l{]!l [426] l{:i\ 2921 I LAN
i i i

(xa1) (xo1) [A081
.

TAALE WITR COLUMAS COMPRESSED (rol)

Effects of merge process.,

11111l
gl'-.:.-.

i.t’l‘!'-l'yﬁﬁ.‘l'
YYYYYYY
NYNYNYY

The equivalent Boolean expression with A, B, C, and D
representing conditions | through 4, respectively. is:
ABCD + ABCD + ABCD + ABCD + ABCD + ABCD
+ ABCD.
Note that each rule represents a term in the expression.
amd that all tales are inoeffect ored 1) together, The
clements within a ke columi are anped. The decision
tuble effectively states in this case, "1 all of the condi-
tions o aay column are met, the common action/exit
sequence is performed.”

Now if we use the Quine-McCluskey technique [13].
to find the optimal Boolean expression, the result is:

AC +BC 1 CD,

The equivalent decision-table rule columns are:

b s

Investigation of the code generated from a table so
optimized shows no improvement over that for the
merge method, This is because the Quine MoClushey
method introduces don't-cares that ultimately cause the
code generator lo place a rule column in two subtables.
It can therefore be concluded that Quine-McCluskey
optimization methods are not applicable 1o the decision-
table optimization process. Note that the first two col-
umns actually overlap (e.g.. the condition sequence
NNYY could apply to either one of them). Indeed. if it
were not for the fact that both columns specily the same
action-exit sequence. the decision table would be incon-
sistent,

o Optimization during code generation

The code generation process we used has already been
outlined. However, the method of selecting the “next
test” was deferred to this section since it has an impact
on the quality of the code produced.

The most significant work published relating to code
optimization is, in the author’s opinion, that of Reinwald
and Soland in Refs, [10] and | 14], Primary papers have
also been published by Montalbano [6] and Polluck [7].
and contributions made by King [2] und Press [1].
Most recently, Shwayder [12] extends the work of Pol-
lack. King describes the rule-mask technigue, which
produces compact code but requires that all condition
tests be performed regardless of the logic needed, The
other papers deal with optimizing methods for sequential
testing procedures (the condition-tree method),

Press takes advantage of an efse column, reducing the
number of instances of tests o a minimum (both staticul-
ly —presence in storage —and dynamically —presence in
a flow path). However. the Reinwald and Soland work is
the most general and requires that the time and space
costs of performing tests be included as input to the op-
timization process. Reference [10] describes time op-
timization and Ref. [14] deseribes space optimization,
Both papers provide formulas for calculating the extria
cost involved in performing test i after test j has been
performed. They nest demonstiate ameans tor deter
mining a lower bound on the extri costs of all tests per-
formed after test /. Then they provide an algorithm for
searching a subset of all possible generated testing se-
quences 1o find the sequence with minimal lower bound.
They prove this sequential procedure to be optimal in
terms of the number of tests. The costs of actions were
not considered. This, we presume. is becinse action

M) RES. DENVT O

sequences were considered by them to be atomic units
and therefore could not be subjected to reorganization,
It should be noted that the time consumed by the search
algorithm goes up rapidly with the number of condition
tests in the table. (This approach falls in the area of
combinatorial mathematics and is akin to the “traveling
salesman’ problem.)

Qur initial approach to test selection followed along
the lines suggested by Pollack [7]. It was the simplest,
and our attention was focused on postgeneration optimi-
zation —a subject treated only lightly elsewhere. The
first eriterion was the selection of the condition row with
the Tewest don't-care values, Beyond that, it a tie had to
be broken, the row was selected that had the mintmum
difference between the number of Ys and N's (again on
the advice of Pollack). Later this was compared to the
Press method.

It was found that the Press method

* Required more compile time,

« Did not improve object code in the presence of post-
generation oplimization, and

* Interfered with “hoisting™ optimization steps.

We felt that concentrition on postgencralion oplimiza-
tion should be continued, and no further effort was ex-
pended on enhancing condition test selection. Clearly.,
further investigation is warranted. The original selection

_algorithm is therefore retained. Because an else-column
capability was desirable in o decision-table processor, it
wis provided. The implementation was simply to con-
struet the missing condition rule entries and to supply
them with & common action-exit sequence (specified by
the user). These added columns are compressed via the
merge routine and require no subsequent special treal-
menl. Test selection and hoisting are applied equally to
all columns,

Sehiwayder [12] shows how 1o incorporate frequency
information into test selection. Although this was not
mcorponited into the processor, the impact on our cur-
rent generation technique of including Schwayder's algo-
rithm was investigated. If the frequency information
specifies the rule [requencies, only one line of APl code
need be added to take them into account. Another
line ol ap1. code would be required if condition test fre-
quencies are given. More effort would be required to
incorporate frequency specification in the decision table
format than in making use of it in code generation. Inclu-
sion of optional frequency information is recommended
for follow-on work, (As will be described later. some
postgeneration optimization methods may destroy some
ul the effectiveness ol test selection,)

The second optimization performed during code gen-
eration is that of “hoisting.” When one or more actions
are (o occur in all low paths following from a single

sErtam e 1972

NORT
NOHOIST | .
SRS [4n11
el B B R +
P o014 ersssres "] >
[A01] CO2rmasmesne 01 ‘
]] 024 «C022++0 (X011}
(x01) [(A01) [401) i y e
L3 L} & e
[403] [a021] [024
' i [4n3] fa021
(X02) (xo1) i ‘
(xn2) (xnt)

WITHOUT HOISTING
WITH NOISTING

Figure 9 The eflfects of “hoisting.”

condition test, it does not destroy program logic to move
(hoist) these actions o a position in front of the condi-
tion test. This is a space optimization, because duphcate
instances of these actions can be removed [rom all suc-
cessor paths o the test. Figure 9 demonsirates the ef-
fects of hoisting,

It should be noted that an action cannot be hoisted
past another action that must precede it in sequence,

Hoisting can most readily be performed during code
generiation, Just prior to selection of o condition test, the
sublable is examined for an action that:

= Is performed in all remaining rules, and-
« Is not required to follow an action that is not per-
formed in all the remaining rules.

Any actions that fulfill these criterin are immediately
generated and removed from the subtable.

The action entries accepted by the processor allow the
user to indicate an ordering, a lack of ordering. or a par-
tial ordering requirement on the actions. This is a degree
of freedom not provided in procedural descriptions.

It is not always easy for the user o recognize hoist-
able actions because he cannot easily recognize the subti-
bles. However, he always has o clear picture of the or-
dering requirements (or their lack) on the action. Auto-
matic hoisting lets the user specily his logic require-
menls in terms most easily understood by him.

Unfortunately, hoisting ciun. on occasion, exerl a neg-
ative inflluence on duplicaie sequence removal, an op-
timization procedure that occurs after code generation.
This problem is discussed after the description of the
alfected optimization. But a way has not been discov-
ered to detect the situation without exhaustive (time
consuming) combinatorial analysis of the entire table,

Fortunately. in the practical examples we have exam-

ined, hoisting is more often good thin bad. (1t seldom
had any effect on duplicate sequence removal.) We ex-
plivitly resist taking the voute of the PLET. processor,
which requires that the user control this optimization.
As mentioned carlier, post-generation hoisting might
improve the situation, but was not investigated deeply.

495

COMPEEENSG O EINEZE DY)

196

1.

MAL RS

003| Co2+16 035 £02-02
oo A01 036 A01
oos| A02 0371 AD2
006|02:C03+03 038|16:C03=17
007| o1 0a3gq! Xo1
nod|o3rAo? oun|17: 407
ana | C0T+2% out| 'n7+13
o101 ~e-=18 ou2|18: 404

Figure 10 Possibly duplicate sequences.

= Postpeneration optinization

The two principal postgeneration optimization pro-
cedures are duplicate sequence removal (DSR) and di-
plicate path removal (DPR). In addition, “'scavenger”
optimization techniques remove

* Dead (unreferenced) code,

* Redundant condition tests.

* Redundant unconditional branches (branch chains),
* Redundant exits,

The major effect of these optimization procedures is to
SAIVE space.

* Duplicate sequence removal (DSR)

The code generation technique we use assures the per-
formance of all testing required to isolate a rule. If don't-
cares are inserted by the user or the merge process, then
no tests are performed beyond those actually needed to

Adsolate a rule. Note that rule frequencies are not taken

into account, and that a reduced execution time cannot
be assured, Average performance can be varied by
Changig the otder of testing, but the minimum amount
of testing required to isolate a rule cannot be varied
[10]. Bevond reducing the tests to a minimum, one can
atlempt to restructure the generated code so as 1o re-
duce the number of duplicated code sequences. This is
done by replacing one of the duplicate sequences with a
branch to its equivalent (DSR). In this way a small time
loss is introduced (to execute the branch) to save storage
space.

DSR is easy to perform because the code generator
produces code containing easily noticed patterns of du-
plicated code. Pairs of code sequences with identical
operation codes are first isolated and then more carefully
serutinized (longer sequences fist) 1o assure logical
equividence, I they are logically equivalent, one of them
is replaced with a branch to the other, The compared
sequenves e considered not equivalent for the Tollow-
ing reasons:

* They are dissimilar at any point,

* One sequence overlaps a portion of the other, or

* A portion of either sequence has been previously
removed (because it was equivalent to some other
sequence).,

IF any of these conditions occur. the unequivalent por-
tions of the sequences are masked off and the remaining
"good™ portions are individually compared by a recur-
sive procedure. Any duplicated sequence longer than
one line of code is removed if it is logically equivalent (o
another.

Figure 10 shows two possibly duplicate sequences.
Note first that lines 010 and 042 are not included in the
sequences being compared, but are shown because they
are. germane (o the detailed comparison. Operation
codes in lines 003 through 009 match those of lines 0715
through 041. The flow paths following these sequences
pass to lines 010 and 042, which are scen to be equiva-
lent. The branch paths from lines D03 (035) and 006 (028)
are readily compared becuuse they lie within the two
sequences being compared. These can be certified as
being logically equivalent by comparing the offsets of the
branch targets from the beginning of the sequences.
Note that in the case of the 003=035 pair the branch tr-
gets are across sequences but that this fact does not mat-
ter in the comparison. A lengthy analysis must be per-
formed only on the paths emanating from the pair 009—
041, This requires a line-by-line comparison of the code
starting at label 25 with that starting at label 13,

The cross-link process performed by the P.E.T. pro-
cessor is an attempt to eliminate duplicate code, Its ef-
fect, however. is to eliminate only common trailing por-
tions of action sequences (those that end in an exit), Our
algorithms remove all trailing sequences of redundant
code, including redundant test trees. In addition. all non-
trailing redundant sequences are removed i they flow
into logically equivalent code. In general, the results
have been very good when applicd to actual system pro-
grams, as shown by the examples in the Appendix,

It was mentioned earlier that the hoisting optimization
can have a negative eflect on DSR. because hoisting of
an action may remove it from one of a pair of duplicate
sequences. When this happens. the pair no longer quali-
fies for consolidation. It is possible. for example, for
hoisting to remove two lines and prevent the removal of,
say. ten or twelve lines of duplicated sequences. On the
other hand, the removal of un action from a sequence
could also cause that sequence to match another, when
it would not have done so otherwise. Some cases like
this were actually encountered., such as Tables 8 und 9
in the Appendix. Through use of compiler oplions,
selective chmination ol hoisting is allowed. Further
work should be done 10 try 1o establish an effective
method for predicting the eflect of hoisting on DSR,

Deferment of hoisting until the post-generation phase
was considered. Hoisting at that time is much less con-
venient and will definitely lead to longer compile time,
More information must be carried and maintained to

keep track of the rule column(s) that were the source of

IR s N o

a particular action, The problem is made more complex
by the folding actions of the other optimizers. On the
other hand, reasonably good results were obtained with
the algorithm used. and we judged the effort-to-payoff
ratio too high to implement delayed hoisting.

o Duplicate path removal (DPR)

The second major postgeneration optimization technique
is duplicate path removal (DPR). When two flow paths
that emanate from a condition test have identical leading
logie, the leading portion of these paths can be consoli-
dated by moving the condition test down the paths to the
point(s) where they differ, Figure 11 illustrates DPR.

As can be seen, DPR may cause reordering of condi-
tion testing. The method is to isolate as potential candi-
dates those flow paths emanating from the same condi-
tion test and that start with the same operation code.
Then a test is selected whose branch target and succes-
sor lines contain the same operation code. For each such
test, the flow paths are compared and points of differ-
ence (POD) are located, (Note that il there wre no
PODYS: the testis redundant and can be removed imme-
diately.) The two paths emanating from the test will be
referred to as the “tull-through path™ and the “branch
path.” Conceptually, the process is as follows. Locate
the POD's in cach of the two paths. Remove the test
and place a copy of it just in front of each POD in the
fall-through path. The address of each test copied is
changed to point to the corresponding POD in the
branch path.

With the removal of the original test, it is expected
(but not guaranteed) that a large portion of the branch
path will become dead code. However, there is no sim-
ple way (o determine this prior to performing DPR,
I herefore a copy of the code is saved before performing
DPR. If the code resulting from DPR shows improve-
ment. it replaces the old cade. 17 not the old code is re-
stored. Some time was spent trying to develop some cor-
relition hetween the amount of improvement and both
number of POD's and number of lines in the duplicated
paths. However, nothing developed that was useful.
Furthermore. the conceptual algorithm described above
did not work. This was because DPR was applied after
DSR. and DSR could destroy the tree nature of the orig-
inal unoptimized code. Therefore, DPR has to contend
with the interesting possibility that the two flow paths
being compared might merge. or cross over, In fact,
some cases examined had a single line in the code turn
up as-POD's in two dillerent paths. This caused the
same test to be inserted twice in the same place.

The algorithm finally developed avoids the problems
by muking a separate copy of the fall-through path, and
placing at cach POD (in the duplicate) a copy of the
original test with the target of the POD in the original

SEULE A 1972

p20075%
. prante
Laas) S Tk
i Tans
e L e] !
[Al T S B
efhlrves @ Nir=e] ‘
l ¥ ‘ + I T R T
Py Lt T | srersn AT @ i ' a4 ’
014] b 054 ' ' i ' et Traasi e
€C03r=s (XN2) & <COI>== (X1} 4 b ' a Lo
i + ‘ i + i + isssssann vy
[} [ETETY [[sssnw ¥ 1\] i .
i nai i ' a6 i [i LI A
(X02) «COux=4 (XO1) LI UE S + “ + 4
=t i § e i i i a + Tan2)
[A21) + Al 4 i) ' [l
i # 4 i 13 i IE AR
[a021 4 (4021 4 [' ' 1
) ‘]]] R e
f4031 [CLES M l i [
i i i i i] aaw)
«C05»+ 1) «CNSast i i [
i) b] Bassfrsssssssnssasans
[Aau] [Aou] & N1
‘ L] L) 1 Ll L e T
‘ ¥ i " “ a7
D)irees A7 heven txn?} trn1)
(xo2) fxn1)
WITH I N WIilHu

Figure 11 The effects of duplicate path remaoval.

branch path. This test is followed by an unconditional
branch whose target is the POD in the fall-through path.
At the end of the path compurison, the original test is
replaced with an unconditional branch to the duplicated
code, which is placed at the end of the code body. Both
the branch and full-through paths then become candidates
for dead code removal,

Because DPR reorders condition testing, it may de-
stroy the effectiveness of optimization procedures that
depend upon test ordering. Since DPR never increases
storage consumption, only time optimization can be
adversely aflected. This is a typical time-space trade-oll
situation, Unlortunately, the user may wish (o trade ofl
differently Tor different points of application of DPR
within code from a single table. At present. sullicient
information is not carried in the generated code to calcu-
late the overall time costs. A recommended follow-on
would be to try 1o include this.

DPR can recognize only those duplicate paths that
emanate lrom the same condition test. Some tables that
were processed contained duplicate paths that did not
emamitle from the same point and couldn’t be removed
by the processor. When these paths were removed
manually. it was discovered that they could be removed
only at the expense ol inserting additional tests in the
paths, The resulting code then would contain two tesls
for the same condition in a single path. This is typical of
a situation in which the programmer would ordinarily set
a switch for later testing. Table 6 in the Appendix con-
tains this type of program structure, No alporithm was
discovered that conld expeditiously locate daplicine

497

CONTEEE IS O IAEA Y v

498

10 MY RS

vl ve's
oou) --~+07
| e
p0n|07:---+08
waid ae
V11| 0B:===»]1T
T | vae

0150117:...

BEFORE

Figure 12 Branch removal,

Figure 13 Reordering.

votl A0
AT s
pajou: Co2+17
018l o
MelobiA0N

sgta) vie's
noul “e-el?
| T
009|07:---+17
| P
011]08:-v=217
ey | i

015127340

AFTER

LN Ab)
nael .-
paadjoG:AOY
eonl .la'd
013 ~-=»03
DIU|OHzO2=17

(REMOVEY

020| Xo1

020| --=-+03
021l12:405% 021112:405
BEFORE AFTER

Figure 14 Backward branch movement.

012] A03 012| A03
013 ADN (REMOVE)
01h] -.-207 0113} -==207
sl o nin| F A
sl e sna) P
I | A 0yl AU
wr Aunn o lorsdon
ORI 0T: 404 0271 40y
BEFORE AFTER
Figure 15 Dead code removal.
012] --==07 0121 “=-e07
013] » A0G o1l -
coel e ceil === UREMOVE)
0211 Xo1 021l -dim
0?2:09:40? 022109:402
) s s v
026l Xou 0261 e
nAL s Ann 0211
el ool cos LRENOVED
oaul —ees0? 0ao| .-

0AL |12 C06A00 0311120060 0y

BEFUORE AETER

*NO LAREL PRESENT

paths of this nature. This is also an area that needs fur-
ther exploration,

* Scavenger optimization
Scavenger oplimization procedures, as their name im-
plies, clean up the Teavings of other aptimizers, The

scavenger procedures to be described in the paragraphs
below are

« Redundant branch removal,
o Redundant exit removal,
Redundant test removal, and
* Dead code removal.

-

. Redundant branch removal is a procedure for secking

out branches that receive control from other branches
and removing them. (Sequences of directly connected
branches are called branch chains.) Labeled branches
are readily detected. All references (in other instruc-
tions) 1o the label on a branch are replaced with the
branch operand, effectively removing the branch from
the chain. The labels can then be removed. Figure 12
illustrates branch removal.

The second step is to locate all branches that are pre-
ceded by either an unconditional branch or an exit and to
remove them. All branches whose targels are exits are
repliaced with the exits themselves. 1T a branch has o tar-
get that can receive control only from the branch (ie..
the target is preceded by an unconditional branch or an
exit), then the branch can be eliminated by reordering
the code. This is done, therchy placing the target and all
code physically following it (up to a branch or exit) in
place of the branch, Figure 13 indicates the method.

While cleaning up branches, this optimizer can perform
one additional optimization step, which, strictly speak-
ing, is not redundant branch elimination. It is a type of
reverse hoisting. If the predecessor line 1o a branch tar-
get 15 the same as the predecessor to the branch, the
branch predecessor can be removed, and the branch
address reduced by one. to refer to the predecessor of
the former target. Figure 14 shows this optimization
method,

Redundant exit removal is o procedure to remove all
exils of any one type that are preceded by a branch or
another exit. Care must be taken. however. that there is
always one exit of each type left. All conditional branch-
es that have exits as thewr targets are set so that all refer-
ences toan exit of one type refer o the siame exit. This
reduces the requirements for instances of exits to a mini-
mum. (Note that unconditional branches (o exits were
climinated by the branch optimizer.) No lurther process-
ing by the exit optimizer is necessary.,

Redundant test removal requires that the flow paths
emanating from each conditional branch be examined. IT
the fall-through path is logically equivialent to the branch
path, the test is eliminated. No other clean-up is per-
formed by the test optimizer,

Dead code removal is a procedure that first removes
all unreferenced labels. It then locates any unlabeled
[nes that Tollow exits or unconditional branches, | hese

AL B RES, DN Lo,

"

lines are dead and can be removed. Any unlabeled line
following a dead line is also dead and can be removed.
All dead lines are located and removed at one time.
However, because a dead line may have been a branch
(conditional or unconditional), the removal of dead lines
may give rise o more unreferenced labels. Therefore,
the process is iterated until there are no more such la-
bels. Figure 15 illustrates dead code removal.

o Imteraction of the optimizers
The order ol all optimization procedures is:

Pregencration
Merge
Generation
Test selection
Hoisting
Postgeneration
Duplicate sequence removal (DSR)
Neavengers ¢
Redundant branch removal
Redundant exit removal
Redundant test removal
Dead code removal
Duplicate path removal (DPR).

The postgeneration optimization procedures are itera-
Jtive whenever their application can possibly introduce
new program structure that would be susceptible to their
further application. Further, the scavenger steps are
cilled by both DPR and DSR, and DSR calls DPR.
Specifically, DSR processes all of the sequences it can,
then calls the scavengers, 1t then determines whether
code was reduced. 11 so, it repeats. To the case of DPR,
after each test instruction is processced. the scavenger
procedures are called, followed by DSR. (Calling the
scavenger procedures before entering DSR speeds up
the latter.) Then DPR checks for code improvement as
described earlier.

Concluding remarks

About seventy decision tables taken from actual applica-
tion areas have been compiled by the system. The code
for only two of these could be improved by hand. Fur-
thermuore. the compiler anning times under the arn sys-
tem were short enough to allow the experimental model
to operate as a production tool, Although there must he
mantal mtervention between processing a decision table
and the production of the final code. the processor as il
stands has already proved to be a useful aid to some
programmers by helping them organize their code. It can
be concluded that the processor can be used now to
paintul ends, 10 the algorithims described above were

SEETEAMER 1972

recoded into a more fully automated environment, pro-
gram production could be improved even more.

As has been noted earlier, certain optimization prob-
lems are yet unsolved. These are:

» The interference among test-order selection, hoisting,
DSR and DPR, and

+ Duplicate path removal where the paths do not start
at the same condition test.

Some additional optimization procedures could be added
to the processor. These are:

« The use of frequency information in test-order selec-
tion, .

* The use of timing information in conjunction with
space/speed priority setting for DPR, and

* The reversal of condition tests.

An investigation of the benefits of post-generation hoist-
ing should also be made.

The optimization methods deseribed in this paper Jdo
not include all possible program optimization pro-
cedures. We have concentrated on optimization methods
that are not usually done by higher-level language pro-
cessors, namely, the gross arrangement of program flow
structure. Specifically ignored are such optimization
methods as loop analysis, common subexpression elimi-
nation, code motion (except for hoisting and forward
code motion), and subsumption [15]. To perform these
would require analysis of the information in the deci-
sion-lable entries, and would require a restriction on the
language permitted in the entries. It was felt that a wider
service could be performed by providing a framework
that would accept any language for entry statements. In
this way, optimization procedures that were not per-
formed could still be accomplished by passing the output
from the decision-table compiler through another optim-
izing compiler. Minor revisions 1o the ri/i printing pro-
gram can cause it to produce output acceptable o FORr-
TRAN, ALGOL, and cosoL compilers (some of which per-
form optimization), and even to an assembler macro-
processor.

It should be noted that if a decision table has » rule-
columns. then there are exactly n ways of traversing the
generated program, This should suggest that exactly #
test cases need be prepared to thoroughly test the pro-
duced progrim. Such a test battery would be guarantecd
Lo excente every instruction in the program, and o exe-
cute every conditional branch Tor both yes and no condi-
tions, Because the optimizers fold the program so that
some paths through the program execute the (physically)
same instructions, it is often possible to completely exer-
cise the program with fewer test cases than the number
of rule columns. A test-case generator could easily se-
lect nosubset of the rule columns that would exereise all

499

COMPILING OFHIMIZED Com

of the code. It is recommended that such a generator be
added 1o the system,

Acknowledgments

The author is indebted to D, H. Manning and P, C. Ja-
cobs for first bringing the problems of decision table
compiling to his attention. D. H. Manning, and R. E.
Gaiduk are to be thanked for their enlightening discus-
sions on the subject, and our thanks go to May Li and
1. H. Manning for providing some “real™ decision tables
against which the processor was tested, RoHL Williams
contributed to the solution of DPR problems.

Appendix: Samples of decision table compilations
This appendix contains decision tables and flow charts
of code compiled from them. The reader is invited to
browse them to obtain a subjective appraisal of the ef-
fectiveness of the compiler. The tables are representa-
tive of those examined during the development of the
compiler. They were selected to demonstrate several
points.

The range of table complexity,

Compile-time range,

‘I he eflects of various optimization procedures,
Comparison with other methods,

Some unsolved problem areas.

In addition to these points the reader should also be able

“ 1o verily that:

500

H.), MYERS

There is a unique flow path through the object code for
ciach rule column,

A given flow puth contains no redundant tests,

Hoisting situations are not always readily seen in a deci-
sion lable by the user,

The compiler produced correct code,

The code cannot be improved by hand except where
naled,

Table 1 lists the sample decision tables. the time re-
quired to compile them on o System/360 Model 50, and
the number of lines of object code produced.

In reference to Table 8, note that in some cases the
order of condition row selection is arbitrary. When this
happens, it is possible that different orderings will pro-
duce different amounts of final object code. The condi-
tion rules were reversed in D1901°3 in Tuble 8 to create
DIVOEF3IR. The code produced from DI90EF3R was 26
lines compared with 20 lines produced from DI90F3.
Careful examination ol the produced code shows that
the reversal of selection of conditions 3 and § (in the
subtable for condition 2 = yes) cansed a dillerence in
the hoisting of action 4. When action < was hoisted
twompiling DIVOER), a pair of duplicate paths appeared,
one of which was removed by the optimizer.

Table 1 Decision tuble compile times.
TARLE TINE LINES OF
HANE (SEC5) COonE

CHECK 15 17
CHECKI . 15
D190F3 25 20 —
D190F3R 26 26
D1a0ru 50 11
PLIOFuM 26
nooriz 11 4
p200¢19 7 1
p20003 ¢ u
n200c9 2 3
p200as wl 1%
220007 14 1
nnnia L] n
PrARCD 204 wil
rE 19 2
Fin2 19 26
HapET 10

Table 2 Examples of simple decision tables and their corres-
ponding flow charts.

pzoocy|nnn

p2o00c9i0 1123 nannca
11 poocy eeeeeee-.. TTT v

--------- U €01 | PN essclnls

«Co1» |- [Anm] ey J-¥Y 4 [

PR ¥ msssssss=s ¥ NI pesmssses

(4011 11 [aA02] [an1l | | ' [

fanzd | o eeeseseces aeeny '

-------- {1y (TSI T LR ks

(xo1) IX txe2y fr oy (§ Gl [RRER
ninany
aae et
SRR

DIAAPLZINATA «f D]y een

nz00C19 10000 1120s S £
1173m L T N T e taar1
.............. : T «CAY» | YAun * i
<Col» |Yras P I S) 2202 =T «T923 043
<o |==¥¥ 024] L B I EL + i
«C03» | ¥l-- [A01] #+eel02) scesecmcecen fapal
............ " i + [A011 11118 ‘. L]
(A03] I «CoIr+=4 (X0 [Aa2) | 222 efnvsvey
............ ' i = Lannl | 22 ' ‘
(xo1) Ixr x ' PE— [Aanu]) “ [Acwl 3
(x02) | X i o1 fansl 159%s ‘ ‘
(X03) | X (xo2) (EOLY ssedekiesaass : $
(XN1) IXXXY Nlssssss
ELLR
L
fxay)
Table M A comples table.
D20055
=is -
L4951
[
wec(CN1>

D20085|000009002111 4 '
112356709012 4

cTONreescan

-------------------) | 211
<COy> | Yynuanananae s ‘ €CNYrsvseae
«C02> |==YYYYYYYYNN i ‘ T
<CNA» | ==YryyYyYYut-- + btrssenan L e Y
«CObs» |e=YYHUN-=== & i ' [
NS> Jo=e=YVNee=e [AN
<COR> |YNYNYAYHTUYL 4 '] ‘
------------------- ‘ 4 + [An2]
[a01] | 1111] i) i
[402] | 1111 ‘ B s [an
(4031 | 1111 ' i i ‘
[anu] | 11 ¥ jresssssenscnec Nha
{40587 (11111101210 i ' i
---------- —e s emus . i i | Ava)
(xat) IX x x x x x 4 [i
(A02) | X X X X X X svssjeasrssqanssstnsne

a1

iz e s nnn

i N2y
(xnz) (xn1)

HIEM 0 RES. IV

Table 4 “Tuble compiled by our processor and by P.E.T,

220011
+ KapPET
D200M9|N0000D ewe<COl> L o
l123us + srrrnsrec(0]
e - b €C023+srararnen 014]
<COYs [PYHSN b ‘ <CAdsess cCNP34s4ssmse
C0I> |=-THN asssay [' l ‘ 01
w03 | FN-¥Y a14 03+ (XN2) 4=e<Cnis (xna)
SN L s <C013s+s (X07) == i el
(dor] 11 1t [] i Erseen i
Lan2] 11 1 ‘] 074 f
~~~~~~ e . nae (401 (xon2y
P e txaz) t401) + =
tdo2) | x «x ) Lan21
teody | x [A021 '
‘ txny)
SUUNRCE TAALE txa1)
HY P.E.T. COMPILER
Y OUR COMPILER
Table 6 Manually improved example, :
ni1anFulf
<] >++ssass0
i 01
R R R N I I I A A I B A A {xXn1Y)
i ]
L T e T AL R T
i i
L I R T I S ]
02 +
<05 +bpbn ot +e [Anu]
4 03+ '
(Xxo2) 4011 (Xn3)
T PRODUCED 4 B
MANUALLY [AD2]
+
L LT S S ¥ oy | T2
54 +
seesec{’NT > SN2 rssbrsrrn
-4 + + 4
b <COR>++sss+n CCO3>sssssbs i
+ + nA+ b oY+
¥ brdrrrsrc 09> (X03) [A05]
+ 06+ + == 4
+ [A03) (Xou) (X03)
i ] " =
(RN
'} i
R T
1 i
¢ Lads)
] 4
e}
074 219084
(xou) 4
€Nl s+ssssssa
+ 104
L e S e A A I {xn1 )
' + mEE
+ <£01>
06+ +
<CN5rsssrstrn COOU D+t bbb bbb bt bbbk bb 8
+ 07+ + n14
(Xo02) [A011] [404] b gt AL
== + o 024 *
[402] (Xo03) [401] (x02)
[} + o
R Tl 1) [4an2)]
nay L] i
LRICER R | Ay ) COMrILEn S
4 4 i ] nai
Vo0 frere (X0OD) fxnay N7 evn
1 1 ] — T [ i
] 1] wER e ¥ ¥
" 4 brre e <"08> 4
+ + 054 + +
i prrersrr <0G > [A03] 4
b 094+ * + +
+ [A023] (Xou) (4051 4
+ + + +
L s e -+ - Y ] '
13 QUbesssa
(Xxou) (Xnu)

S M (972

Table 5

N200G7 10000anoon1Ll

1123456709017

A more complex table.

TR RS S A T ] ' e
v | HPFRIYIi--= ' ' Yl
<c0ds |¥YIHLL 1 i P P
srans | ¥rEY ' ' b #
wrnsy ¥, i hrasassennw [ 1] L]
R . LAY} L}
[401] Jrrnesnnnenny ' Tyaud Ty
favz] 1111 L] L] ¥
L4020 J1nt e i
Laosl | 111111 [ }
fans ) Trrnnitnnnan AR A e s e et e o ol
fannl 13 1 v 4 (AR ]
Ay 131 41 11 11 wadainim i MG
................... nti ]
tio1) | £ X £ X lans] Q:“
(Xa2) 1k} X4 XX X» "
L} (R}
X Lani )
K
ting)
PianFulannannrant LTIy ?
T 2ARSE IR 2anseTaan
«nls i
<N 2> 2
LT e Y 3
<t | rYrYyYyrw
<(MS> |=YYYYYNYYYYYRYYYYV-
<COG> |=YYYYN=-YYYYU-FY VPl
<CNT> | YNNI == YNIN == Y1 -~ -
<COR> | ==FYN---Y¥H---YYY
Lo N e e e L e
[A01] | 11111 11111 11111
(40271 | 11111 11111 11111
[An37 | 11 T 5 s
[Anu] | 1
[aAns] | 1 1 1
(xn1) |Xx
(xn2) | X X ¥
x93y | & ¥ Xx
(xnmy | Xxxx xxxx vxxy
Table 7 Another example of manual improvement.
cf0]lr2sremmansn
€f0l>vanrssnn + 034
i RN [A02] [4091]
[an2] [A0731] + '
[ i [103] {xn1)
chacxjonono [403] (xo1) + e—
[12345 i Rt <(N2sess
e - €C02>rserrsnn i ¥
<Ch1>|¥ + 024 [A26]) &
<0022 -¥, [408] [AOu] [ i
<0032 | -=-¥h) + + eI 4
<o) ==Y ee+<COI> [ i ! i
----------- [ [ i LAl
La01]] 6 + [407] i [ ' |
[A02]] 1111 i ' + + [aoal
[A0V )| 2222 i [anad ¥ + 4 i
fAvn )] 2 ] ] ] b e e s
Lans 11 wury o LAon i I i i
[anall 2333 | [ [ oTan1l
lAat )| Wi [ERIETA 1T i i i |
[ana]) ft ] + i ] i i
LAou] |1 ¥ Laply 4 t Dl)seses
T T ] L T e o Y + [aon]
(Xo1) lxxxxs R ] '
014 b w )
[A05] 024
‘ [a05]
(xo1) i
{x21)
conriLEn
MATTALLY TRPROVED 501

CONMPUING OPFHIMEAL D G



Tahle 8 Fflects of arbitrary condition row selection. Tahle 9 Effects of detrimental hoisting.
D190F3 FEM
el
D e 1A B I“"“'"“"ﬂ:l'
014 + A T MNP sssssnne
<C02>+=e  (X03) 0S4 7 [l na
P190F3]|00000000011111 + ‘ - t40s) tao1) tant R mapon
112345678901 23% : '";;: tase) 14071 14921 fa011 tansl
BT e R ety Rl + [ [ [
<CO1> |YYYYYYYYYYYXYN (X01) e++<C03> AC02reen seesss [407] txn1) l-h‘.r’l1
<C02» |YYYYYYYYYYYYil- i i + ' ' ' e )
<CO3> |\ YYYYYQURRURE=-~ vesvserseCOUD H e ' : '
<COW> |=====YYYYYIl-- 054 i : :
<CO5> |YHORUYLiiliyd-- [4a02]) [401] tra2) t4031 3 tann) txa2)
<CO0G>» |=YNIH=Yilil==== + L] f40%) o+ fanvd
<COT> |==YRN==YWM=n== esnsC05> [A0n] : y :
<CORY [s==Tfaendll===s y 3 FED Ioanang : ...;”
e TV hesdsbavio b + [aow) C0Brvee TFETT (XN {1anl
Lany ) | 11 ' ] [ | A
LA02) 11ttt b <COh>ssessasi ] «Colr [ XHYHIN (xn2)
[A02] | 11 11 i “ ] i €02 |T-M3-¥ - - %
[dow) | 1111 111111 I ACDTrearssani i oot :f;f;f; PRI R L BT IR I T R T Y &b B
(408 13 13 11 [ + 034 i et
memss—ssansestncs .- + [403) (xo1) taos) 11 1 reng
(xo1) | XX X XX X XX ‘ + = i [a02] 13 1 o i
(X02) 1% XX XX Wb b bbb 8 4 (4n3] 111 B e e L T B
(x03) 1 X ' + + [A0s] 11 034 4
taas) 111y 1 (A s snanasne iTANIssrssaan
€CO8rssesasay + [A06] 11 1 ' e f na
+ IR ] {a07] | 1 [a01) 03 resssanas FAALY sene=nay
(xo1) [a05] f4on) 121 1 ' i any H i '
- 4 ;1,;;_1-,.;.- [an2) ] IFLAR laam 8 =y
(] ‘ [ ‘ ] b
(xoz) (X02) |xxx xx i ] Lanml ra:11 IS LI
] . W ) " i
4 fromasssnss [A4mY
) i ] 1)
D190F3R|00000000011111 ! e e S S
112355678901234 ' tans ra1s1
ceccaEsecsam e m - " 1 i
<COB> |meaflleeallloces T T T ]
«C0T» | --YAZ--Yililean- g i
«C06» | =YNIR-YUAN - [RLRR 111
<COS> | YNRUUYUNAIYN -~ ' X
<Cou> f-----YYYYYLil-- tn tx32)
<C02> | YYYYYHRUIINNI-- 4 b AR S Ry e
CaT> | FYYYYYEFYYYNN-
<Col> | YYYYYYYYYYYYEY
ETC. less 11
D190F3 WITH CONDITONG Table 10 A very complex tuble.
REVERSED
PTRRT DTABCD|00000000011111111112222222222333313
___‘__E |12345678901234567A901230567090123u5
- <co1> <CO1> |YYYY=YY-=-YYYYNNNNNUNN==-=UNIHRANNE
014 b <CO2> |YYYYNUNNNNNNNNYYYYYYYYAUUNNRENINO SN
b (x03) €C03> === YYYNURUNNK-===--=- YYYYyanuauney
¥ 024 €COUr [-m=n-nn YUURNUN === mmmmemmm = nnnnann
(x01) LCO5mennntdd €053 |===mmcenPHUNNN-=semcanasmanan BHNINENY
+ 064 €C06> |=moccmcac YN =nnmmnmmmeme s NIEIRSNY
(404] [40s] <COT> |YYYNUNH---YYYNYYYYUXNRYYYYNYYYYNYUNN
' : AL Lt PrecYERNPYRNYYRR-PYRNYYIN

Btaesaa e 000

AR R

N L R B 2 ety cemefermanana
i [ ] [ <CLO> |FYN-~¥N-=-FY¥N-YNYNYNINYNYN-YRYUYNYN
fresssarscCIND CCOUs»abrot | eessssssssssssmsmsnestserans s e rannenanann

oM ‘ . 074 (4011 |1 1 11 1 1
L4v2) [401) (4a01) [402] [A02) | 11 1 1
i + + + [4a03] | 1

*++<C06> (xo1) [ao0u] (x02) [aou] | 11 11

+ + = + [408] | 1

$+e<C07> (Xx02) [A06] | 1

+ + [A07] | 1 11

+ [A03] 4008] | 1

‘ i [a091 | 111

4 ‘CUBF----!"“: fA10) | 9 L] 9999993919 9999

] « . eeemess sesccsmssmce e Peresemsemen

. + (xo01) | XX

ou+ 05+ (xo02) | XX XX
(xo1) [A05] (x03) | XX XX
+ (xou) | x
(Xx02) (X05) |XXXXX XXXXXXX XXXXXXXX Xxxx

502

1. ). MYERS

AL 3, RIS I

e,



-

Table 10 A very complex table (continued).

DTABCD
-
we<702>
' ' %
t <COI>+4e -— .
P 164
4 «C0U>++rbse <CN7> "
v + + 204
serepe<C05> '] CMNArsssbrb s I LEE ST Y
15+ 4 ' ‘ ' 194 ' 214
[A0B]) 4 <COG>++sesi serertcC01> [A071 ' secC10>
' Voo + + ' [ T i
b seaad ' + ' + Vo ‘
+ 014 134 174 ! + $ 0
. - v €o7> [AD7]  <C10>+s (XOD4) (X05) b4 [A02)
+ i i + + g NES B ' [ [}
1 D e e o ) + ¥ & 4 4
¥ ‘ + b seans (O '
074 + 144 + 16+ 4 + +
CCOLl>sessrrsstsriss se<C01> [AD9] [408] fA0s5] i + i
[ 106+ 4 ‘ i + 1 ‘ '
PO s sessre (10> ) <CORYee (XOS) txni) (xo1) ' B '
' i i i i i . i R=s i ' ] [
'] 1] ] 4 4 drsene tesrsstbsrrrra + ']
o ‘ ' | i i 4 '
+ L] i + 4 + L] + +
i o1l + + 024 05+ + +
[A04] + <COB>+e (X0S) # <Cl0>+e <C103=e 84
£ n e M O A T + '
I T R O S U P
$ & ok A [ Vol ' '
L T S Y S by B +
0B4eses 4 124 4 03+ 064 & '
+ . ' [ '
<C10>+e (X0S5) [401] + [AD2)] [A01] & +
i $ ERE + + + + ] |
+ b deessssey -
1] CE e + + + +
¥ 0a+ T - +
(X03) (Xo2) (X05) s+tspssssssss
T T T ol
(a10]
+
(xo5)
Relerences
1. 1. 1. Press, “Conversion ol Decision Tables to Computer 11, W. H. Dailey, “Some Notes on Processing Limited Entry
Programs.” Comm. ACM 8, No. 6. 385-390 (June 1965). Decision Tables.,” SIGPIAN Notes 6. No. R, Bl -KY
2. . J. H. King, “Conversion of Decision Tables to Com- (Sept 1971
puter Progrums by Rule Mask Techniques,” Comm. ACM 12, K. Schwayder, “Conversion ol Limited-Entry  Decision
9, No, 11, 796=R01 (Nov. 1966). Tables into Computer Programs,” Comm. ACM 14, No. 2,
3. M W, Kirk, *Use of Decision Tables in Computer Pro- 6973 (Feh, 1971).
grivmming.” Comm, ACM 8, No, 141 =43 (Jan. 1963), 13, 1L 0 Myers and M, Y. Hsiao, “An APL Algorithm for
4. C. R, Muthukishnan and V. Rajaraman, “On the Conver- Calculating Boolean Differences,” Procecdings of the HEET
sion of Decision Tables to Computer Programs.” Comnt. Svmpoxivm on Ervcor Recovery Systems (1969),
ACM 6,No. 13,347 =351 (June 1970). 14, 1. T. Reinwald and R, M. Soland. *Conversion of Limited

b,

S8 L Pallack, "Conversion of Limited oty

b FL Egler, "A Procedure for Converting Logic Table

Conditions into an Elicient Sequence of Test Instructions,”
Comm, ACK 6, No, 6, 510=514 Clune 1963,

M.OS. Montalbano, " Tables, Plow Chants, and Program
Logic,” 1BM Svstemys Journal 1, S1 =63 (Sept 1962),
Decision
Fables to Computer Progeams,”” Cosee. AACN R, No, |
677 =682 (Nov. 1965),

. Bell Canada, “P.ET. (Preprocessor for Encoded Tables)

Processor. Users Manual™.

. H. B Towne., LTjg USNR. "NAVTABTRANS-C", a

computer program. NAVCOSSACT, 1969,

. 1L T, Reinwald and R, M. Soland, “Conversion of Limited

Entry Decision Tables to Optimal Computer Programs |
Minimum Average Processing Time." Jowrnal ACM 13,
No. 3, 319-358 (July 1966),

sepreamr 1972

.

IS

Entry Decision Tables to Computer Progruns 112 Mini-
mum Storage Requirement,” Jowrnal ACM 14, No, 4,
T42=T56(0¢L 1967,

1L 8. Lowry and CO W, Medlock, "Ohbject Code Optimiza-
tion” Comr. ACM 12, Nas 1, 13=22 (Jan. 1969),

\ Received February 18, 1972
Revised April 14,1972

The author is located at the IBM Systems Development
Division Laboratory, San Jose, California 95114,

503

COMPILING OFHINMIZLDY o



DATA RULES

o
-~ -
- [ -
..(-. —— J—— — - - ™~ T EE—————— e — i — " - — -
|
I
- el 3
L — L /-'
2 -
..... 1 A
- -
¥
A
¥ 4
"8 £




Line Reference Target LRT-BE4-V2

DATA RULES




Line Reference Target LRT-BE4-V2

DATA RULES




Line Reference Target LRT-BE4-V2

DATA RWLES




Line Reference Target LRT-BE4-V2

DATA RULES




Line Reference Target LRT-BE4-V2

DATA RULES
=




Line Reference Target LRT-BE4-V2

DATA RULES




Line Reference Target LRT-BE4-V2

DATA RULES




Line Reference Target LRT-BE4-V2

DATA RULES




Line Reference Target LRT-BE4-V2

DATA RULES




IRV 7080 DECISION TABLE LOGIC SHEET ey

P T[NO.[ ¢ [ TABLE | IDENTI- TABLE NEXT ERROR P TDERTTS
& ' cly| B L NO. FICATION NAME TABLE TABLE A | c FICATION ORDER OF CONDITION ROWS
G N cl|l¥| L s NAME NAME G N c
E E E|l € E E E
s
01 02|03 OS0&07108 O10 18{12 15|18 2021 3o 40/41 50 10203 0sj0sl07 1112 15(18 20[21 221 23 24 2524 77 18 ?V3J3| 32033 34| 35 34{17 IB|39 40|41 42|43 44145 46 (47 4849 50|51 52
0000 = “|TABL E|~ = , 000 CONDORDER
i i : i L L i i A i 1 L : ] ' i ) i i i i 1 i s I i i s i i i i A i 1 i i . i i A A A 1 A Il I} A i i i 1 i s 'y '
P 1 IDENTI-
Al v | FICATION ORDER OF RULES
G : P ROGRAM DATE
E
010203 050607 112 1518 20| 21 221 23 24 25 24| 27 28(29 30| 31 32| 33 34| 35 34 37 3&3940 41 42| 43 44 45 46| a7 48|49 50|51 52|53 54|55 54| 57 5B] 59 40|41 62 |63 64 |45 46| 67 £B|6F 70|71 72|73 74
0002 . |RULEORDER PREPARED BY PAGE
i L ' i i A i A A L A A il A i L] A I} i ' 'S L A ' 1 A L L L 3 i - L L i L L3
P \ c IDENTI-
e c FICATION
s | COMMENT NEXT PAGE
j0102{03 00607 1518 2021 7
0003 TTEE
I P T Vi T oty (Y e e | I T S | L L L P T | | S B T, S | ’
T | i AL T W A P Tl B S8 P T N TP e B R SR S o i S TRY R TR S S PO [ e, [ B L bl START HEXT CARD; DUP. coll 8. ]_5‘ PI.I'I‘N:"! B l'l'l c°|. 6‘
Y Skip Col's. 7-33, Dup. Col's. 75-80,
AE3rTm RULE 1 RULE 2 RULE 3 RULE 4 RULE 5 RULE 6
N c
¢ | N |ClorzraTor P —— 01 02] 03] 04 05] 06| 0708 [o9 [ 10 [ 11 12| 13[14] 15[ 16 17] 18| 19] 20[ 21 22[ 23 24 |25 [26 [ 27| 28] 29 30 | 3132 | 33|34 [ 35 36
oP NAME 2 OoP NAME 2 oP NAME 2 oP NAME 2 oP NAME 2 oP NAME 2
0102/03 oOs0807 1112 21(22 23124 33l| 34 35| 36 37| 38 39] 40 41|47 43| 44 45| 46 47| 48 49| 50 51) 52 53| 54 55| 56 57) 58 59| 60 )| 62 &2 4 &5 &4 67| 6B 9] 34 35| 36 37| 38 IF| 40 41/ 42 43|44 45)46 47| 4B 49| 50 51) 52 53| 54 55] 56 57158 59| 60 61| 62 43| 64 63 66 67| 68 49
) Y
L 1 I i i L L .1 A i i i L il ' 3 i i 1 L i ] il L L] L L Il L3 L L 1 - ] 1 Ll A - 1 - L L L [} ] ] ’lll '} L} L3 - L 1 i i L 1 1 i 1 L i 1
I. A '
i A i L A i i i i [} L5 L 3 i i i Ll A ' L i i L i Il L} L i ] L] L L i 1 ] 1 ] 3 ] L L i L Ll i L i 1 L] i 1 i 1 i i L L} '} i i L 1
L L i Lo g iy f gty ] glogi tprtary 4 s 3 g i i 1 L ] i [} i i i [} i 1 ] L] L 1 A L ] i L] i L ] i i L 1 1 [} 1 i i ]
i i i A i i 3 L} A 1 1 L} il A 1 i L} i A A i i 1 i i A ] Ll 1 i L i L i i [} 1 [} [} '} 1 1 L] 1 L 1 ] 1 1 1 1 i L : i L i 1 ' i '
0 i
\ =i L e, T T [ S S S YR L NLAT M ASE V. R Y ' i i i L A L ' 1 L i L : ' s f L i ' L L L L L L i L L L i i i L L
i Ll - | (T , " TN Y - | i TATE FARTT LI I L ] [l ] - S i Il i i L ] i L L L L] ] /) L L L] L L] Il L 1 ] L] ] L L L 1 1 L ]
[ [ A4 1 1 A0 A 8 s 4 4 8 0 i T T T DO e | L] i i L} 1 i L i i L ] 1 L] Il 1 i 1 (] i L] [] i 1 (] i 1 1 L L] L] ] 1 L i I ]
I3 i i i X i A L i i A 1 A A i i 1 i L ' i ' ' '} L1 3 i - A ' — Il 1 1 L1 i ] i ' i (] 1 i A A 1 i} A L1 1 i '} 'S e e . 1
i - i i3 1 Ld 1 F Bl e i | 1 1 AL 1 il i L i i s 1 L} L 1 L3 1 1 L 1 i 1 . ] L L 1 i} L L L] L il i i L] L i i (] A i ] ] L "l — i 1
i L 1 i e ] 1 L] L L i L 4 1 [ 2 1 1 As= i i i =l ] ] ] i L 1 i ] i i ol L A i i i ] 1 ] ] i 1 i 1 i L] i i 1 L L A i [l i
3 'l L ' 'l L} i A : L] Il ] L i f i i L i i 1 A i [} i i i Ll i i ' i i A 1 1 '} 3 L i ] 1 i L 1 1 1 i i L ] i L i i L i e A L i
i [} i Ll i 1 L] L] 1 i} A A i L] s i il 1 i i ' i i L] i i Il i 'l ' 1 1 i L 'l L i Il L1 1 1 1 i L] 1 ] 1 i 1 4 L3 A ' i A i i ' i L
i 1 1 S — i ] 1 i ! 1 s I ' i f 4 L i ] _l_’;i V._I i i 1 i i 1] i i i i ] Il ] L '} I i i i A i i L] i A A i A i 1 ] i i i 1 1
\ T (Lol W AT VAW NSy ) ) L A7 NI O] WY T YU A | L i i i I I i i L i =k T AT ' i L ' i 1 i L i t i i L i ' i i L i i L 1 "
1 [} 1 1 1 1 L | I} : I} L L} i i ‘-I 1 L i 1 i i i 'l i !] (] A 1 i 1 L] L] 1 L 1 A i i i L L} ] i - i i A i i i I} 3 ' ' i A '} L ' 1
i il L% i ' il L 4 . A1 1 ] 1 i L] i L i1 s | L1 4 i ' [ L} L1 [l L] A i i i L i L i o L ] 1] ' 1 i i L A i LS L A L L i A I i L i
A 1
3 1 / Ll 'l 1 iy 1 L] i L1 ] i 1 1 i i L i 1 i 1 A A1 i Il 1 i i 1 1 1 L) L i ] L] i i L] 1 L] 1 i i 1 1 1 1 L] 1 1 A L L 1 ' '} L i L
i i (heA ) N b O T L T T T T i .’-"l LA .1 Wia 4 L L i i L i ' s i i ' | 1 i " Il i 1 i 1 L ' L L n I L L L ' ' L L L L s
- ‘
i ] L 1 i 1 IS i) A i A L i i i A A s L i i i ' i 1 i ' i 1 s 1 L L 1 i L L L A L 1 L 1 L 1 '} al 1 3 . A I} L 'S A i
|
L L peady 4 MYy ey A g I A ST N Ly Y A I | i e ' I L L ' ‘;J =l V2 A ' ' 1 i 11 I i i L L s fo Py 1 L i L | I L L L L '
" i e i /n S L A PN W SR WA ST SN S T | 2 i i i i s i : . i 1 i s 20 4 i . i i Ay i ' L s s . " i i " i 4 s . s
i = L L] i A (] ] i i A ' A A A ' i L) A 'S A 1 ' i A i 1 i i i [} i A i i i 'S A A A i '} 1 1 i A - . A
3 7 4 -3 ]
1 (=4} T ST - i LA et i " TP (RN Y Vi s SIS [T ] L i L i A il LW, rin 1 ' i i L a1 1 i L . 5 L i i r
2 -4 %
L L] 1 i L 1 L 1 i L] L L1 1 i L] 1 L i i 1 i i i ] 1 i L L L ] 1 i i [} i i i 1 A i i [} i i i i i 1 ' i i £l ] i i i i A L 4 i
E : p -
el S} —te s [ [T TR TN S TN TN NN | i L I i i i L i i i i [} i i L Il - i 1L 1 i L i L L i i Il i i i I i :

REMARKS:



INBIML 7080 DECISION TABLE LOGIC SHEET —

P T[NO:[ g [ TABLE | IDENTI. TABLE NEXT ERROR éc;ﬁgu
A | &vl i e NO, FICATION NAME TABLE TABLE ORDER OF CONDITION ROWS
G N felPl L | s NAME NAME
E E E|l E E
s
1 02/03 05080708 0910 11112 15{16 20§21 3031 40(41 50 11j12 15|16 20] 21 221 23 24 25 24 27 !J?F JJ 31 32]33 34|35 3437 38|39 40|41 42 |43 4445 46|47 4B |49 50|51 52
0000 _|TABLE-_ : £ 2 el R CONDIORDER
i P 1 s L e TS T | 4 L AT 7 A I Ay ey b )8 A W L ) T TR T T T T | A= S I L i I i L L 5
P IDENTI-
A 1 g FICATION ORDER OF RULES
: : PROGRAM DATE
010203 osodo7 112 15016 20| 71 22 73 24 25 28] 27 28|79 30| 31 32] 33 34| 35 36 37 38 19 40| 41 42| 43 a4 45 46| 47 4B| 49 50|51 52|53 54|55 56 57 58| 59 40{61 62|63 64 |45 64| 67 &B|6Y 70|71 72|73 74
i 0|0l0 2 i i i L] Rl U‘L’E 0IRIDI EIR i i L3 i i L3 i i 'l i i 1 i '} 1 i ' ' 1 L — 1 'l ' A i 'l PREPARED BY PAGE
: - c IDENTI=
c FICATION
¢l COMMENT NEXT PAGE
0102/03 0506/07 1818 20§21 74
0003 T I'TLE| =% : L ¢ r
n " [ AT —_ - | A — | e ot call ool | ol NVl Al L i VS, L Ol T R A T T s 1.7 I TN UM (PR WNNCT TN TN NN N CLNI [N (N Py TUN PO NN PSS vt W S [T NSO L G e | =_ START NEXT CARD' D“pu Col's. 1_5' PIJI'ICI'I B h\ CQ’. 6,
¥ * Skip Col's. 733, Dup. Col’s. 75-80,
P E el acrion RULE 1 RULE 2 RULE 3 RULE 4 RULE 5 RULE 6
G N c .
¢ [ N [ClorEraToR CAME 1 ——_— 01]02] 03] 04] 05] 06| 0708 [09] 10] 1] 12| 13 14] 15[ 16[ 17] 18] 19] 20[ 21] 22] 23[24 |25 |26 [ 27| 28] 29[ 30 | 31|32 | 33] 34 [ 35] a6
oP NAME 2 oP NAME 2 oP NAME 2 oP NAME 2 oP NAME 2 oP NAME 2
0102(03 050807 1112 21|22 23124 33| 34 35] 36 370 38 39) 40 41]47 43| 24 45} a5 47| 48 49| 50 51| 52 53| 54 55] 56 57|58 59| 60 61| 62 63 44 65 66 67| 68 69] 34 35| 36 37| 38 39| 40 41| 42 43|44 4546 47) 4B 45 50 51| 52 53| 54 55| 56 57|58 59| 60 61| 62 63| 64 63 66 67| 68 69
¥ . ™ . - o -
" PR L3 .1 LR GOITE A 4 G ph RS Y N IR S e | i L ‘ . i i i b e i oA i I i i ' g i i i 1l b Fa L i i i A [ 1 i s ' i i L '
F y ’
i i i i I -] -5 LN T TR i i U R T | 44 i i i i i A AL 1 1 L i L] i A I} 1 1 L] 4 A 1 ] i L] ] 1 i I i i ] 1 ] i L [
I ..i 1 1 L i} A A L L L 1 L i '} L L 3 i 1 | i [} [} L I} L I} L} L) i I} 1 A (] 1 1 i 1 L) 1 1 [} 1 L — L i 1} A I‘ 1 i A i i /'I';I L L A » L
A
'S 'l 1 A i Ll i § A i i} L3 L i i L 1 L L i A i i A L} I} L ' L 1 1 '} 1 i L] L] 1 i i —t i i L] i i A A L ] L] i '-‘ A i A L 'l
(3 L1 Il L BT WLAT L Yy 1 Il T V- -] i i 1 I i i 1 i I [} i 1 L i 1 ] ] ] 1 L= L [} 1 A 1 i i L 1 L 1 1 i i L — i
i L1 i L] L ' L1 L i i 1 1 i A L L L1 1 L i i 1 i 'l 1 L} i L} L1 L i i L 1 L] ] 1 L 1 ] 1] 1 1 1 L i ] 1 1 L 1 i i L 1 1 i 1 4 L
i [ -] ey Wl = "l T S ) i h, ] S | 1 T T e (P [ S R | ] 1 1 i 1 i L ':_I F i i L] i ] L ] 1 1 (] 1 L d 1 1 1 | ] | 1 [} i ] i L i ] [
1 L A A L L L i A L L i i i i i i i L ' Il 1 L 1 3 [} i ] L L 'l i i A I} i A 1 A i '} 'l I} 3 1 L] [} L i i 'l i i 'l
i ) L] (] A [] 4 A 4 ] i A i | = i 1 il A i ) 1 A i (] i L] A i 1 B L] i L] 1 I} 1 i 1] i Il 1 L] i I i ] i L] Il L] i i 1 -1 A i i i i
i i i L] i i i L] (1 A L ] ] [} (] 1 1 A 1 i i i i A - =1 -l L] i L] 1 L L] 1 1 L 1 1 1 1 L A1 L 1 L] ] i i i A L ] 1 L] i i L 1 1 —t L
i i ] A1 (] I ) i L] - | i ' 1 L] 1 ] ' 1 1 3 1 | ] 1 ] 1 'l L] i L I 1 [ i} 1 'l L] 1 i 1 i ] i i L] i ] [ A A i Il i A A
A 3 i T Ll L L} L L} L L i} i L A A lr AL 1 A i“* A A L) i 1 1 L A '} i) A L} L i i i I} L] L 1 i 1 A L 1 A i i i 1 L ' 'S i L i L I = L
i L] i {'-l i 1 i —';‘l| i (] : L] i i L -'| i i | T i_: 1 i i L] L i i i [} i i i i i 1 L] 1 i L L] 1 1 1 L 1 L] 1 1 1 i ] I i i i — AL i
L i i i 1 i (] 1 I_I 2 ] 1 L 1 1 1 A 1 L 1 L v I 2 1 1 L 1 i i A L L i 1 | i | 1 i L] L L] i i il i L] i 1 i i A Ll A A i A L i L i
i Ll i ‘I i i '| ] 1 i L Il '} Il L 1 ' 1 1 1 L 1 1 1 L ’l 1 i i ] i il L} A 1 1 1 ' 'l i L} [} L i L1 i 1 L 1 L} ] i ' 1 L 1 L T - i
- -
A ] I 1 i L] L5 1 L] '} i} L} A '} 3 i %4 T 1 ' i [} i 1 L 1] '} Ll i A i L 1 1 L 1 1 1 s A L L] A Al 1 il i 'l il i i i i ' i i ' A i i
i i ] =1 et 1 1 -] i1 [} 1 3 SN T R T R S T i 1 i i i 1 1 L] i [l 1 i 1 i 3 1 ] i i [ 1 1 i [ [} i i i i 1 i 1 I 1 i i
ns L} i L] L} 1 '} L L] 1 1 1 1 i L} 1 i i Il # 1 i i i i i 1 i Il i i i i [} ' 4 L '} i il i A i - - A '} 'l i ' 1 1 1 i A i 1
¢ ’ 5 4 ! 7
. i - i i 'l A i A A i 'S i i s 'l i A A i i i i i Ll A i A L 'S i L 1 i L L) e i i L] i I A 1 L 'S i A i L A 'S 1 Al L L
i) i L) i i A1 ] N ! L] 'l 1 1 'l i L] 1 i i 1 i L i 1 1 i - L i A [] i 1 A i A 1 1 i i L] L] L ] L] Il ] A 1 i i A i i 1 i i i i
L i L L 1 L} L A i i L A - A 1 A L I} A ] 1 ' L 3 '} - ' A i i) 1 L L A i i L '} A 3 A A 1 A i A [} L L L L L 1 L L L A 1
z A
i 3 il i i i i 3 i A A e i L i i i A ' i L i A 4 A Iy A i i A i s i i L AL i s A A i A '] A A A
i L] L] i il 1 i 4 i A i R T i i L i 1 i i i A i i A i i i A i i i i L i ' 1 1 i i L A A i A A A i i
)
i L] i i N — i1 8 1] ] L 4 i 1 1 1 1 1 i i1 1 i i L] i W i ] 1 i 1 i i i i 1 L L i L] i i 1 i i - i i i i i Il 1 i i i 1 'l L
(] i il ] L i 1 i i — A 1 A - i ' i i '} i '} '} L i A L A i A 1 A 1 A i L} 3 i ' 1 L s 1 1 1 I} 1 A 1 ' i 1 i i i 'l i i 1 i

REMARKS:



DECISION TABLE LOGIC SHEET

78 LL|
PROGRAM

IDENTIFICATION

P L T[NO:T e [ TABLE | 1DENTI- TABLE NEXT ERROR r 0 ;Eﬁﬂ:gN
A \ eyl 8| & NO. FICATION NAME TABLE TABLE A | c ORDER OF CONDITION ROWS
G N clPl L | s NAME NAME G N c
E E E| E E E
s
01 02/03 oOslos0708 0si0 1112 15(18 20§21 30ja 40[41 50 10203 08/08/07 1112 18/18 20|21 220 23 24] 75 24 27 2629 30| 31 32|33 34| 35 36{37 38|39 40 |4) 42 {43 44}45 46|47 48|49 50|51 52
0 0 0[0]| TABLE } y 0001 CONDORDER
i i I il A Y N | ey il e ) a1 i P PR (TIPS O (e | i i At A T I T ) i A i i i i I i i L M
P L & IDENTI=
A T - FICATION ORDER OF RULES
G z PROGRAM DATE
E
0102(03 O0X0&07 1412 i5(18 20| 21 7N 23 24) 2524 27 28429 30]3' 32] 33 34 35 3437 Sd 39.40| 41 47| 43 4445 44] 47 4B|49 50|51 S2]53 54|55 56|57 5!3596061 62|83 64 |65 66| 67 6B|6% 70|71 72|73 T4
L0089 . . RELERRPER L, . PP O TP P P e P PREPARED BY PAGE
: :- c IDENTI.
c FICATION
¢ w COMMENT NEXT PAGE
0102[03 0506/07 1818 20]21 74|
000[3 TETTEE ,
i i i i i i P S . | i i S T | i My e s b L) i o T R R | L e S A d .}k il i1 i it 1 8 i i R 1 4 i h— D" COI s 1_5 PI.II'IC"I B iﬂ CQI 6
START NEXT CARD: P ' ’ S
\i Skip Col's. 7-33, Dup. Col's. 75-80,
P& ] acrion RULE 1 RULE 2 RULE 3 RULE 4 RULE 5 RULE 6
™ c
6 | N [CloreraToR —— e - 01]02] 03] 04| 0s] 06| 0708 [09 [ 10 11] 12| 13 14] 15| 16] 17] 18] 19] 20 21] 22] 23] 24 |25 26| 27[ 28] 29[ 30 | 31|32 ] 33] 34 [ 35] 36
OF NAME 2 oP NAME 2 OoP NAME 2 oP NAME 2 oP NAME 2 oP NAME 2
102(03 osogo7 1112 21222324 aall 34 38] 36 37| 38 39 40 41]42 43| 44 as] 44 27| 48 25| 50 51| 52 53] 54 55| 56 57] 58 59| 60 61 62 63 64 65 66 67| 68 69| 34 35] 36 37| 38 39| 40 41|42 43|44 45]48 47| 4B 49| 50 51) 52 53| 54 55| 556 57|58 59| 40 61| 62 63| 64 63| 66 67| 68 69
A P L T e VI AT VA ] U | L-.. Y0 LT VIR ] VO T ey S | i ' i / i L L ' 1 i L 1 i L 1 1 ' i i i L ' i I i i L i i ' L i i A L f
Il PI PR TR T | 1= vl P | Sl T 1B |_ L4 & 4 3 3 3 3 i 3 1 s [ I i i L s ] i i i i 1 1 i L 1 i 1 i [] A i i L I i i i i 1 i
i 1 i I} Al T A Tt B T T i i -y TR WY AT T 1 L 1 i i ] [ i 1 1 i ] L i ] L] I I [ 1 L 1 1 '] 1 L i A 1 = | i 1 1 (] L] 1
- Il A L A 2 A L ' 'l L] AL ] 'l i ] i i L L [} i L] L i L] 1 i L i 1 ' i 1 i L3 L3 i 'l L [} 1 L 1 L} L i 1 A i 1 i 1 1 1 L L s
) I. ] B T - 1 'l (] L] i L L L] 1 1 i Il i 1 L i 1 L] 'l i i ] L A L [l 1 1 L] i 1 L] [ ] i i ] i [} Il A 1 1 A Il i A Ll 'l A A A v i
{
I 1 1 Ll i 1 L =) i 1 { Wl 11 1 i 1 i i [ Ll I L 1 L [} ! L L i 1 1 1 [} L I L L Ll i i 1 L 1 1 L) 1 1 1 1 1 L 1 L L 1 ' 1 ]
1 ] | i i i i L] L i i A I L 1 i l‘_I_IL_l_L ] 'l 'l [} 1 i [} 1 i s ] i L] i L i i ] 1 L] ] 1 i 1 1 L L 1 i ] 1 L L L 1 i
L 1 i i L i) L] A 1 — A i i i i i i i i i il i i i i (] 1 A () i i i A i [} '} = = i Il Il i i i i i 1 ] L] (] '] L Il i i 1 1 i
i} i _l. L L (3 i (] ] L L} i L L 1 L] ' 1 1 1 1 L L L L A 1 ] 1 L i 1 1 i B 1 L L 1 1 1 i L] i I} i ) 1 A A L} L A i A i 1 L i '
i 1 L (] ] i i i i i i i ] i i 'l 'l 1 i i i L i ] : L i 2 i i L A i i i L L 'l I} 'l | . L] L] i 1] 1 i ' ] 1 ] 1 1 1 1 A i i
i - i i i1 g s 14 i i T L1 1 i A L (] i i i i 1 i i | i (] i L 1 i i 1 i 1 i 1 i ] L 1 1 i i i I 1 L i L
i i 1 '} ¥ i ] A ' L3 L L i 3 i i 1 L L} L ' L} 1 L] L L i AL L A 1 i i ' 1 i L L L] L L i i 1 L L i 1 i A L i i 'S A L i i A L)
' ] Il 1 A L 4 i L Il ' L3 1 i i i 'l i i L] 3 2 A L] L] i i '} '} Ll L i A i A il i 1 ' i L ] 1 i L 1 A . 1 i 'l i 1 L1 i A i A ' s
A A A i ] i ] i — L] i L 1 L L i i 1 ] i L ' 1 1 L] 1 - A - 1 L (] L] i 1 i L = | 1 i i i L 1 ) L (] L] '} 1 . i 1 L 1 L 1 1 A i i
[ L 1 i L ] L Ll i L] ] i ] i A i i i 1 L i L 1 i 13 ] i i il 1 i ] ] i 1 ] A i 1 i i L] 1 i A i ] i 1 i 1 ] ] 1 i i L i i L 4
] ' 1 1 i L] L 1 3 ' A i 3 i i ] i ' A 1 i 1 'l A A 1 ] L] A L} A 1 1 L [} L] 1 1 | i L1 3 i 1 L i i} i 'l i 1 i i i i i i L
i A ) L L i i i i i i [} il A L i L 1 ] i L i 1 1 1 i L L L i L i ] 1 1 1 (] i i 1 1 1 L 'l 1 L 1 L 1 i i i i 12 i L L i L 1 1
L (] L] 1 L Il 1 L] L] i i ] 1 L : L i A i i 'S i A §—) s A L i A i i i - i i i i L1 1 A L] 1 'S 1 i A i L i ' i 1 i i 1 i . 1 L i ]
A L L i i 'l A A i 3 i A A i i s A 4 1 i A 1 i ! i L A L 1 L i i L} 1 A L ' i ' i ' A A ' i A A i - 4 A i
i - L -] P13 i N TR T ] i L | T ] - -] -] i L L L i i ] 1 L i i 1 i i 1 L] i A 1 (] i ] i L 1 L i} i ] i L i i i i
o
i i i i L 2 A i i i 'l i s i A A i 1 A L i 1 i i A L I 1 Ll A i Il i ] i ] ' L i A 'S 3 1 A ' i i ' 1 1 s il i
' Ih1 L L 1 i A A i3 A A A A i i L A ' i i A L i L [} A A L 1 A1 'l 'l 1 A 1 1 1 1, i i 1 i A i i i A L
[ L] i i L3 2 'S . - 3 I i i i I i '} A i 1 i L i A i 4 - L i L ' i 'l i L i i i A 1 s s i L
2-4
Il Ll i i 1 T N | L1 1 i i At ¢t ¢t 4 4 8 1 & i i i A i 1 1 ] (] i i [ 1 i i 1 L] i ] i i i i A [ i [} [} 1 i i A A i i 1
5 A v
L} L L L L 1 1 4 i L L L ' (! s 3 L L L '} L A A A 1 A L i A L A A —d. A ! L [} '} L L L 1 1 | 1 i i A A ‘I " A i L L A 1. Il L A 1

REMA

RKS:



75 80
DECISION TABLE LOGIC SHEET PROGRAM
7080 IDENTIFICATION
) T|NO.| ¢ [ TaBLE | I1DENTI- TABLE NEXT ERROR - L TDENTT-
A | cly s o NO. FICATION NAME TABLE TABLE i | c FICATION ORDER OF CON DITION Rows
G N Jele| £ s NAME NAME G N |e
E E E 5 E E E
o1 02j03  osjoelo708 0910 1112 1518 20[21 30(31 40|41 50 010203 osjos07 1112 15/18 20{21 22 23 24] 25 24 :?75193431 32|33 24[ 35 36|37 38|39 4041 42|43 44|45 46|47 48|49 50|51 52
000[0]. TABLEr 0001 CONDORDER
i i L & S L i I} i A i A I3 [ i [ T I | i i i i i i i i i i i 4 i Il i I i i i i A A i i i ' A A I — L ' s A A A i A "
P L IDENTI-
A T - FICATION ORDER OF RULES
G : PROGRAM DATE
E
010203 o0H0407 1412 isj1e 20{ 21 27 23 24) 25 24 ???J:Hu 31 32 33 34 35 34 37 38 39 40| 41 42| 43 4445 46|47 48|49 50|51 52|53 54|55 56| 57 se] 59 sofe1 4263 a4 a5 66| 67 s8le9 70[71 72{73 74
oo . RULEORDER I 4 (1 bt P 0 ¢t b b 4 Vb bl b L bl ) T ] ey PAGE
» | c IDENTI-
c FICATION
s | ~ COMMENT NEXT PAGE
lotoz2joa osoejo7 1518 20]21 74
00 0[3 TITLE - e AP ot .
s i " i i i - i 4 i e L ' i i i i 1 i 1 1 I's X i i i i i i [l i 1 i i i L [ I i TS Rk 1T i i i 1 1 L} i i i i A1 i i i i i A Il ' A 1 2 L A e
START NEXT CARD: Dup. Col's. 1-5, Punch B in Col. 6,
Y Skip Col’s. 733, Dup. Col's. 75-80.
: :' | acTion RULE 1 RULE 2 RULE 3 RULE 4 RULE 5 RULE 6
N |e
S| N |SlorEraToR i AME 2 01]02] 03] 04 05[] 06| 07]0s [oo ] 10] 11| 12| 13[ 14] 15[ 16] 17] 18| 19] 20] 21] 22] 23[24 |25 [ 26 | 27| 28] 29| 30 | 31|32 | 33] 34 [ 35] 36
oP MAME 2 OFP NAME 2 oP NAME 2 OP NAME 2 oP NAME 2 oP NAME 2
0102/03 osodor 112 21|22 23(24 33| 34 35] 36 37| 38 39 40 41(42 43| 44 45| 46 47| 48 49| 50 51| 52 53| 54 55{ 54 57| 58 59| 60 61| 62 63 &4 65 86 67| 68 69| 34 35| 36 37) 38 39| 40 41|42 43[44 45)4s 47|48 49) 50 51| 52 53] 54 55| 564 57|58 59| 60 41| 62 63| &4 65| 66 67| 68 69
L — % L 1 1 i Pl | il 1 L 1 ] i [} () 1 i | —— L ] i} 1 i 1 Il 1 ] 1 ] 1 1 " - 1 1 i [] 1 L] i L ] L] ] L3 L 1 i L] i 1 ] L] ] ] i [
i et N T ] L S T Sl N i ) T | SN S S VR | L i A 1 i i L] [} 1 1 i i 4 i 1 i 1 i ] i L 1 I ] [} [ L i A A 1 L] i i i i [}
i i L i i I i i i i L 1 1 1 '} [} Dt i i L i i 3 A A 1 L L i 1l [} i 1 1 i L} L i L L] 1 i [} i i i 1 i 1 i i 1 i (] L i i L i 1
i i L A i L i i I3 A i i} L} 1 L] 1 3 'l i i A i A A i L L] i Il 1 I} L L i A i L i - 1 1 L] 1 (] L L] 1 i L L L i [} L L L i i i i
L] L ' i i} L i i i i L1 i A A 1 i i1 13 i i i 1 i L L 1 1 L 1 1 i i ] Ll i ] L i 3 L i ' L} [} L1 i i '} A ' ' s 'S '} 'S - i i i i
i - Il 1 1 L] I 1 L M W ET 1 1 i I | -1 i i i i1 L] i i i 1 1 1 L] 1 A Il 1 1 ] 1 i i L] i L] i 1 1 i i i i 'l 1 1 1 i [l
i i 4 i L} 1 i 1 2 i L] L1 i 1 Ll i i i | Lol =44 L i L} . A L 1 1 i 1 i 1 1 L i 1 1 1 1 L] 1 ] ] 1 i 1 1 L i - . - ] L 'l i 'l L 1 1
L 1 L 1 L I i i i i 1 i i i ' 3 ' s A i A i ' i I 1 '} I} '} i i A i i L i i 1 L i i i i A L o i i 1 i ] i i i ' A1
bl - S (e B 2 T Lo TR TS TR | -dl st T Y TS T -] A i ] i i ] ] i i ' i i i i i | L] (] [ i 2 A A i i i i L] i i i A 1 1
i i i 1 i 120 i ' i i i | - i i i 1 1 1 - i i i i i 1 [] i i i i 1 i i i i i 1 i [} 1 L] L] 1 ] i i i i i i i i 1 i i i i
i i i L i i i ] i L} L} 1 1 i L A ' 1 i 1 i '} A i 1 [} N 1 1 i L 1 I} i i A i i L i L i i i 1 i i ] i L] L] i L 1 i i i '} i '} i
i L3 i L L L 1 3 i} 1 L} A1 1 1 i3 i i 1 L L} 1 1 i} A i} 1 A L i L] i i 1 L] i} I i 'l i 1 L 1 ] (] i L il [} 1 '} '} '} A i 'S 1 1 i i i '3
L Ll | -1 i L] j TR T | N -] i i A i i L] il ] i §— A i L i i i 1 1 1 i [] i i i 1 Il (] ] i i ] i ] 1 1 i i i i i 1 A A i i 1
i i i i i i i i i i ' i i 1 1 i i i i i i 11 i 1 [l L L L i L 1 1 L] 1 (] 1 L 1 i 1 1 [} 1 L [} L [] ] L L [} L i L i L ] i i ] ]
'} i L A A L L] 5 [} 1 i 1 1 i i} i i '} i L i L A [ L I} I} i L i} i L ] [} 1 i i i L 1 A i ] L] i L 1 I} [} i L i A L] L i L 'l i L i L
i 1 L] Il i 1 [l 2 1 L] 1 1 L] L1 L} ] 1 ] i i i L i i i i [ 1 ] i L} i [] i 1 L L '} '} L ' 1 L i i i i Il i i L A L A '} L i 1 L 1 i
i i i ] L 1 L L ] i Ll 1 L L} i L} 1 1 1 1 i ) 1' L i L 1 L L L 1 1 L] L] 1 1 1 1 1 L i} 1 1 i 1 1 1 1 i 1 1 i I L i ] i L ] i ] 1
L 1 1 L L3 'l L 1 1 1 1 1 1 1 1 1 1 L 'l i ' i A A i i A i L i s L 1 L AL A ' L] i ' 1 A4 L 'l i 1 1 i L ' s . i - - A i i i
L i i i i i i i i i i i i 1 i i i A - L L L i i i A ' i i Il ' 'l i i L] 1 i i I} i i 'S . A A L i
A Il L] i A i L] Ll i Ll L Ll i 1 1 i i i i i 1 i 1 L L i i e i 'l i ] ] i -~ = i i N i L1 1 1 L] L] L 1 L} 1 L} 1 L L A L '} AL L i AL i i il
A L i s i ' i 1 A i i i A 1 A i i A A A s 1 i 'S i L i i L] L} L} i A i i AL . 'l 3 i L 1 1 — - A L A A i A 'S A i i Il i I '
i A L A ' i 3 i i A s 4 4 i 1 'S i A A A e A L1 i L i i A 31 i i i i i -
i '} i i 'l A i i i i 3 Il I} s A 'S L A A A A £l I i i 4. - i 1 1 '} i i i i i A
' ] i A L i ] i 1 L] L] L] i i 1 i 1 1 i 1 1 ' 1 i A i 1 i i i 1 L] i L] i i L i i 1 i i i i i 1 i A A A 4 i) A A i i i i i i i
'} [} ' i i A A i A i i i |‘.f l_ A i} i 1 1 1 i A ' AL A A i i A i i i L il i 1 L] L 1 i i i i L i il L L} A i i A A i A A i i i 1 i
REMARKS: LTl
- § v s



)
75 80
PROGRAM
3 DECISION TABLE LOGIC SHEET e T
L o 4 B o o
7080 W B LY,
P "D T “:- £ | TABLE | IDENTI- TABLE NEXT ERROR P L ;F‘;EFT'I;IO-N
A | cly| g W NO. FICATION NAME TABLE TABLE A | c ORDER 0 F CON DlTIoN Rows
G N |c(P| L | s NAME NAME G N |e
E E E|l E | E E E
-3
1 02/03 OB080708 010 14|12 1518 20[21 3031 40[(41 50 |01 0203 0sjosi07 1112 isj1e 20|21 72123 24 25 28 ???5293431 32133 34| 35 36{37 38|39 40[41 42 |43 44145 44|47 4R |49 50]5) 57
0 000|M /s . ‘:-TABLEI- TAH 2 o S a0/ pie 0001 CONDIORDER|, , |~ 2| 4
Xoe o) i AE - by =k i i (LT XA LA B 5 PO A T S S i it PR a3 Al lE 1 My T bl o Ta Y] s " . : L s M i
L] IDENTI-
A T FICATION ORDER OF RULES
: o P ROGRAM DATE
010208 o0Yo0d407 112 18]18 20| 21 2 23 24 25 28 27 7629 30| 31 37 33 34| 35 3437 34 kL ld 41 42) 4] 4445 46|47 48[-!9 Wls'i 52|53 54| 55 56|57 5B 5’60!6’ 62163 64|65 68|67 63}69 70|71 72173 74
0002 RULE/IORDER
L i 1 1 1 ] i L A i L i L i i i [} [} ' L) 1 ] 3 i i i 1 A ] i i i ' L} L i i i '} 1 L] PREPARED BY——- PAGE
‘: ; c IDENTI- }
c FICATION
& X COMMENT NEXT PAGE
01 02(03 OHDBLOT 18018 20{21 T4
0003 TITLE| 74/~ AR o N el R ? 43P
i P PR ST T S (R S T O S P | i TS S O WL W T SN e VR Bl ol T~ A T SITORL SRR e SR AT L o ol S WY U TR G TN SN WHNY Gl ENNN S SRS SN (S NN NN SN S T S S SN S M A | Du CD‘. 1-5 Punch Bin Cnl 6
f#_ START NEXT CARD: P+ e ' B3
Skip Col's. 7—33, Dup. Col's. 75-80.
': el acTion - RULE 1 RULE 2 RULE 3 RULE 4 RULE 5 RULE é
N <
¢ | ¥ |S|oreraTon — — 0102 03] 04 0s] 06| 0708 oo [ 10 11 ] 12| 13[ 14] 15 16 17] 18| 19| 20 21] 22] 23] 24 | 25 [ 26 | 27 28] 29 30 | 31 | 32 |
OP NAME 2 OP NAME 2 oP NAME 2 oP NAME 2 oP NAME 2 oP NAME 2
0102/03 080807 112 21/222324 33 34 35/ 36 371 38 39 40 41|47 4] 44 451 44 47] 48 49| 50 51| 52 53| 54 55| 56 57|58 59| 60 41| 62 63| 64 65 66 67| 68 69] 34 I5| 36 37| 38 39| 40 41|42 43|44 A5)d6 47| 48 49 50 51| 52 53] 54 55| 56 57]58 9] 60 61| 62 62 64 63{ 66 67( 66 69|
3./ o - s LV, / \ / A
i - A ] W et by .lr/.‘:1 i 3 =TV T T P St WA S | ".\n L X i L L /.( L e | (= i i1 i i I i 1 /(’ 1 ' ' s [ ] I Il L] A L /’-{ L i i 1 :
-"cr ¢ 5 o) r ' | - -
i it (O Y S | PES T R el el = BN RN L o [ IR WY (NS (NN W (G S (N 1 ;'_,.C__’:’L h:__ i s ‘—E & ;t/ L = 1'” I ) [] [ 1 [ 1 1 1 1 i ] .l i i L i i L] i ! i i i
L | TS -] R od Ty g . ] - P T TS VA I T | Lo :"-' /a- L i i ] ’n flf’..L 1 ] [l i ] 5 i i L L o e ] i i ] i i i 'n— Il ] i I -J" [l L
, €’ z ,
i TR PR T L 'i PRI THR T Y WA TN =¥ L T T T T T 1 i i I L 1 i 1 i i i i i i 1} i i i i I L [ 1 1 & i L I ] 1 /l L I i L "
] - =ty :"{'1.1;4 ‘l IS Y L T S 1l .I.‘"l T T T T S | i 1 L 3 1 i i 1l 1 - L Il 1 ) ' I i 1 'l I ] L L L i i L L I I " L L I 1 :
2 : 3 ¥
i L\ L L) A Ny 4 i /I FT‘ll " A T N LY Y [N T 1 '] 1 L] 1 i i ] 1 1 L] i l},l 1 i [l i 1 i [ ] L] ] 1 L L L] L] i ] I Ll i [ i i !
ad r |f-'l
' L < WA TR | /5 s T | T S i IS A N T O ' i i i 1 L i i i 1 i L i L ' i L i il i i i | i L { 1] A | [ i A L i i | '
- i ) X Y.
L o — ] (] L i ] 1 A l"l-‘ M. . i ] L =y i i L i il 1 (] L L 1 1 L [} i L} '} L (] i L Ll 3 L L 5 ] 1 ] i i A L L L] : L i L L 1 Il i
2~ =1 gy P " 4 o = — # ~ LT . | -
i 2 A i f”u §L L otlhd , s 7 R T N AT [RY N S R i »fj’_{ . L 4 i i -’”ll . ' L 1 s VPO 3 i ' i 491 i L 1 i sl Nry L L ' i Al 1 L 1
T S ONE A AL 2 2 2 . oy . £ W
L i nds. s pa ¥ie f’n-r‘ /"“'n ’Lg T W] NS T A Y 1 J!"-- af 1 i L /ﬁ’ AT Jars i L i ‘|7 ' i i . (/_ 8] ' 1 W s ¥ 1 i I 1 el L N s i
" Fal = Ld = = T iV, ¥ ' - . 7 A y -~ {17 i L-
i i 4 T T (I i WP T T T WA ' T e =y o T I . i P 1YY, Il = = o i d i e ol { i vdd X sl NV g et L lad L A~ a0 N
i T L:’“- I ' L —H‘-’"i 'u"l R T TR T I TV Pl T U T Y N Sl '.'l 1 i L i i ‘I"l 1 [ I i i "l i i 1 1 A Ny [ 1 i i i ‘J i i i I i //4 i i L i
A L] i Il 1 i L] i Il 1 1 L] il L] 1 1 1 i 1 (] L] 1 ] i 1 L 1 L i 1 ] i 1 il 1 L 1 L] 1 i L L] i 1 1 i i L} i i 1 i ] 1 L] i 1 i il i 1
L Ll VR Y T W TR O ORI S S T | i U CRNT S VAR St M AR T ] i 1 I i L i ' L 1 1 i 1 i i i i i L i L i ' i i i i ' i L L i i : . i
L] el AL L] L ] ] ] L] 1 L ] L L 1 L i L 1 L il ] ' 1] ] ] A 1 L 1 i i 1 i L . i3 L 1 1 L LE L L L 1 L A L 1 L ' I L s ' 'S
L] ] i i 1 1 L L] - L L L] i i ' A i i ] i i L L] 1 i i 1 i i i L i 1 L i Il L L] i L 'l '} i 1 A i ] L i ] i A i . ' A
i L Mo g g g | I TR TN Yy T i L ) 1 1 L L I L ] . i i i i i i i i i i i i [l i i i i L Lk i L i 1 1 i i 1 I
- A i i L] ] i L] 3 i 4 3 1 il L] i 1 i A A i —— i AL 4 i i L A 'S i ' ) i i A ' L1 L A - L i ' ] L L1 'l i i ] ] i 1 Ll Il A i i L 1
A 4 ] 1 A i i A i 1. i i L] i i A AL i i i i I i 1 A A A L '} 1 ——1 A A4 "l A Ll '} A i i L] i 4 i 1 A L 4 ] ] L] i i A
L] il L] 1 ] 1 L] L] 1 L] L 1 1 1 1 1 1 1 1 L L 1 L (] ] 1 1 1 1L 1 L L] ] 1 ] 1 L 1. 1 1 1 L] L ' ' . 1 1 1] i L L] 1 1 i L 1 A 1 L 1 A '
1 i A i L A L A i L I I L A A A i L ' i I} 1 L L A i L] L L ) L ' Ll L A L ) A i ] L] i '} (] A L A i A i AL 'S i 1 i i
A L 1 L ] ] i A A A ] ] i i i i i i i A A i i i Il L i (] ] i L] L] A A i i 1 [l 1 ' A L s i A L L i A 1 L i L A A i
3 L i ] L] L] ] i i i L Il Il Il A i i i A i L i Il i i i i ] L] L] i ' - A i | - ' A i A ' 1 I} A L A A i (1 i A i i A
L i ¢ R R | I FEICY Sl Y N Y ST, S | I - W A S T T B L | ] 1 i i 1 ;T 1 . i 1 1 i | S i | i ] L 1 1 1 s L 1 . 1 il . . 1 L 1 L n — i
] 1 A A A A i i A 1 i il [l i A 1 A 1 L 1 i i 1 'l ] i 'l ] 'l ] i A 1 L] 1 1 'l i 1 L L 1 i L] L] i i A il i A i ' 'S = = 'S i

REMARKS: _-E‘ .t"/ - '/ -I.'t- = &



]
5 B
DECISI TABLE LOGIC SHEET pROGRAM
7 0 a o IDENTIFICATION
o ™ T[NO. £ [TaBLE | IDENTI- TABLE NEXT ERROR ] L TOENTI-
A | cly 5 L NO. FICATION NAME TABLE TABLE A | c FICATION ORDER OF CONDITION ROWS
G N ci{P| C 5 NAME MAME (-1 N c ~
E E E E E E E
1 02(03 08080708 0910 1112 1518 2021 30(31 a0(41 30 010203 085/08j07 11)12 1518 20(71 72| 23 24| 25 24 27 2829 30| 31 32|33 34| 35 3637 36[39 40[41 42|43 44]45 46[47 48(49 50[31 &2
F ;
0000}/ 1 ~|TABLE 0001 CONDORDER
) ) bl s (o abr 4 PR I ST VI T S U T i i oy 8 .k A LR A T I P PR THT S 1 ia i PR S i f s . f " L
P | IDENTI-
A T FICATION ORDER OF RULES
: : PROGRAM DATE
10203 050807 1§12 1s5{18 20] 21 22324 252¢{ 27 2 ?"30‘3" 32|33 34 35 2437 39‘dll 42| 4] 4445 46| 47 4B| 4% 50| 51 52]53 54 553&5?50]5960]6167 63 64 65“6?68]6970 TV 72|73 7a
0002 RULE|ORDER
[} i i i i L] L] A i i A i i A i e L] 'l 1 - 3 'l i L L 1 i ' 1 A i 'S L ] i L 1 A s A PREPARED BY PAGE
: Il- c IDENTI-
< FICATION
s | w COMMENT NEXT PAGE
0102{03 0%Os07 1518 2021 74
0003 Tl TLE
" - ro_g. v 3 Tk Ak L S SN N T I O A LY - PO (R UL YO O U O VRN NN N Uy R WA ST AT NS NAY U (Y SLY NSRS (WU SN DT S A TUNNT NS WS T TN T R T N S L ) 1_5 Pum:h B iﬂ C°| 6
START NEXT CARD: Dve. Col's. 1-5, . 6
Y Skip Col's. 733, Dup. Col's. 75-80,
A1 T el aerion o RULE 1 RULE 2 RULE 3 RULE 4 RULE 5 RULE 6
L+4
€| N |Sloreravor e N 01 02] 03] 04] 05] 06| 0708 [o9 | w011 ] 12| 13[ 14| 15[ 16] 17 18] 19] 20 21] 22] 2324 [25 [ 26 [ 27] 28] 29[ 30 | 31 |32 |
oP NAME 2 OP NAME 2 oP NAME 2 oP NAME 2 oP NAME 2 oP NAME 2
L:!ozna o808 07 1912 2112223124 33| 34 38 36 37 38 39| 40 41|42 43) 44 450 44 47| 48 49|50 51| 52 53 54 55| 56 571 58 59| 60 61 62 61 64 64 66 67| 68 67] 34 35| 36 37| 38 39| 40 41]42 4344 45046 47) 48 49 50 51| 52 53| 54 55| 56 57|58 59| a0 &1| 67 63| 84 &3 66 67| 68 49|
. r A v | y W/ z\/ : J
Lk Y W I | b1 =y f/ W TR i Y T Tl T A R T \l'u " "' .’II f'r-i Arl i L i i 1 i i i L i i i i i i ‘ i i i L i i L ' ' ) i '
- . / § Aty 4
s PR IS T W AT R S T e e A piale NCaly 4 b WM i _'J; 4 i s i Il ' 1 i i L I i 1 ' L 1 1 i i ' [ Il i i i i ' 1 i i i '
’ r |
¥ L , " 1 \/
i Ld R iy /---.(‘U; f‘l | S T | i i ‘--"‘. e Y ot e ST AT '/l L ;‘__l’. i e [} I [ 1 1 [] 1 [l i i L] L L (] L ] i i i) i A Il i i 1 L i ] i ] L ]
- ’ . il
i N T S T T (ST R VA T S T T i w0 T L W T I o Il ] 1 = i i = i i ] i L I 1 i o L ] i I I i i ] [ Il i ' i I i
i 4 Y A A
L] ] 1 i 1 3 1 W] =4 i R 1 1 | — :l L] 3 (Wl | i i i L] I} 1 i Ty i 1 'S i i L (] i ' 11 A [} '} A A '} ) 1 i 1 i L] 1 i ] L '} L i - 1
i L TR T T A4 ) b i 4 ¢ i L 1 o AT T L NS O T B T 1 L] [ i i i 1 L A | [ [l ] ] 1 1 L] ] 1 1 [ i} i (] 1 i i i} ] 1 i L 1 1 1 L ]
7 - por i Vs y
r} i e ey LN L f 4 Lt L L T S R T | ] i i i L it i T [} 1 L ] [} [l 1 L L I3 1 L} L] 1 L 1 i ol ] i (] i i i i - L L]
1 i AL \/t_l I - L1 L U aT T i 1 i L i i 1 i i L i i A L 1 1 = L 1 1 1 L] 1 i 1 L} "3 i i L] 1 L] s 1 i i L L] ] L] L '} A1 i i i
T e PO L T T T [ G | H o o ey fs 4 g 8 ' i s i L i i i 1 ‘ i ‘ i . i I L ' ' ' i i i i i i ' L i ' L i L 1 i L
— i A .J i i L (P I ] i i L4t 4 4 & 3 i __1 (] i i i i 1 i 1 i - i 4 i i i i i (] i ] [} i ] i i i i 1 i 1 1 1 'n 1 1 L
] L (] i 1 ] (] I L 1 L] i ;' i i} i 1 ' L] s 1 i il i i L] I_! 1 ] ] 3 i L i Il L i L i L L 1 ] i 1 i 1 i L L] L1 L L L1 L [ L 'S A
i -1 1'__1 ] b ey T—} L] 1 I S S ST I S O | i ‘J.l i - 1 i 1 ] 1 1 (] i i i i L L 1 A 1 L i i JEL 1 i L i L i i i i [ i L]
= o . o s VAP & s
i T gy S L5 s 4 4 PO TR I ey P i ! O S W T ' A i iy I i i i L It i I ' i) I ' . s 4 i i i i i i i i : i 3 L e S ) L L :
7 Y ~n " - e : r.“
i L '/".‘"":' bt W ey b b 4 ) L (L T T Y P Y1 2 T BT 1 L i &) L i i ] i ! L i 1 i i i ! 1 ' : 1 L 2 L i 1 i L L i i | i X
o 4 / ’ s Fadll J' 1 e =
i L1 e i o Bl i dySher, o |7, (i f IR 4 I 1 i i i 4 Il i L i s ' i L L ' ' i ' 1 ' L i i i s =i i L L ' i 4 .
P g 4 T & {7 N
Il i e S L pbe N LSy 27 SNV I R VA WY Y VN el | ' 1 i /\1 i i [l 1 i L L 1 i i i ] I i A L ) i i 1 [ 5 i i I i ' 1 L L
Ve o e 4 L/r -y L !'.
' (I T L eV { A WA T i IR SN S T G SO T T | i i AT 1 I i ' ] 1 L i 1 1 i ] 1 ] i 1 : L L i i 1 L i L i 1 i L i i i A
i 1k = S ) 'J; W £ T8 24 i e e L Y I S R B T WO S @+ L - L L ' ' i i L L ' L 1 ' ' e 1 . L i L L I i i L i s L L i o i L
- i 1 e i L 1 L A i i A . — L L 1 A i 4 i A i i L i il i i L 1 i i i 1 L i 1] i ' A 'l L [} L A i A
L : R . S [ O Y [ L N S, | i Y T N Y St Y T | i e L L L : i : i A 1 L i i 1 ' ' L T (") Y T} ' i L 1 i al L 1 i L i i i
A i i ' 4 1 A 'S i i i i A i i A i A i i A i 'l i A i A ] L i - i 4 1 i i i i 4 L ] i i i 2 A 1 L L i i i - - L i
. ] L i L L L A L i A ] L i i i (3 il A 'S A 1 i L ' A A i A i 1 L 1 i L 1 L L i 1 1 2 A i 1 i A i 1 i i L A 1 L L 'S 4
1 CIRY N T 1 T T T T? PR Y Vi TN Sy SO T | i L i i " s " L . . : L . i i L " M i i i " e i " s L i i
L L [ B S S S T S ) L A1 | 1 U T T T T Y ' L i s ' ! i 1 . L i i L L L 1 ' L L i L i 1 ) i L . L ' ' L L i 1 i i
2 i AT T T | A48 5 & A 8 4 2 ] A A4 bbb 4 4 ) I i i L A i i -l A I i ] L i i L [ 1 i = I . [} i 1 L i i i i i 1 L ] A i

REMARKS:




i
DECISION TABLE LOGIC SHEET —
7080 IDENTIFICATION | .~ 7 7 . =
/!;_li ¥ o4
P T[NO. ¢ [ TasLE | IDENTI- TABLE NEXT ERROR P L TOENTI-
A ] clv| R L MO, FICATION NAME TABLE TABLE A \ c FICATION ORDER OF CONDITION ROWS
G n o lelel B s NAME NAME o we e
E E E ’E E E E
{1 02|03 09060708 0910 1112 1518 20021 3031 A0{41 50 010203 035/08/07 11412 i5{16 20|21 270 23 24) 25 24 27 2829 20| 31 32|33 34| 35 36{37 38|39 40|47 47|43 44|45 46(47 28 (4P 50|51
006131,_.- : TABL E| 2,05, 207 @ = 00 0|1 CONDORDER
T 2 : L i AL a N PRl . iy QM P L L P £ s PRt PR - PR i . . . . N r . 2 %
P X IDENTI-
A T - FICATION ORDER OF RULES
: N PROGRAM DATE
01 0203 O0%0807 1§12 15{18 20f 21 22 23 244 25 2] 27 28129 30| 31 3| 33 34 35 34 37 38 39 40) 41 22| 43 2445 26|47 48 4950’55 52|53 54| 55 56| 57 58] 59 60161 62 |6 64|65 ﬁﬁ’é? 68 70|71 72|73 7a
02 RULEORDER
00884 ABRPLEORAEN L1 e L0 N O S R 6 P [ P (O W PO P O I P - PAGE
: - c IDENTI-
c FICATION
AR COMMENT NEXT PAGE
|01 02j03 O%08i07 is8/1a 20121 74
0003 TITLE| 2 min 72 1 24 Loy LD * 2 JREE, g
i Al I i P T Y=, L L AT | STV A WO 0 WY Wl ol W gy Loy gy gl a Sy Wy gty ey Ny e b v e b Co 15 Pun:h Bin Col &
START NEXT CARD: Dvp. Col's. 1-5, . $,
Y Skip Col's, 7-33, Dup. Col's. 75-80,
PT & [ acrion o RULE 1 RULE 2 RULE 3 RULE 4 RULE 5 RULE 6
4 N |ClorERATOR 01|02|03|04|05|06[ 07|08 |09| 10|11 12]13| 14| 15| 16| 17| 18] 19| 20| 21| 22| 23|24 |25 |26 | 27| 28| 29| 30 [ 31 [32
Y - NAME 1 NAME 2
OP NAME 2 oP NAME 2 oP NAME 2 oP NAME 2 oP NAME 2 OoP NAME 2
010203 OomMOH0O7 1412 21222324 33| 34 35 36 37] 38 39 40 41|42 23] 44 25) 45 47] 48 29 50 51 52535355—{56515859606‘6?01 64 45 66 67| 68 65] 34 35 36 37) 38 37| 40 41| a2 43|24 45]44 47| 48 49) 50 51] 52 53] 54 55| 56 57|58 59| 60 61| 62 &3] 62 &5 &b 67| 68 £
- - I" - 0 7
I T O T S é‘. & O T L L.'.‘!‘: 1, 9 TR U T N iy W f‘ i i i i 1 ] 1 1 L A I L A L | L ] i i i i I A 1 L ' ] i ( s i i L 1
I - I ] L S . | i} A4 A A % 3 L 2 )} L i 1 i ] ] i [ i ] : 1 ] i i 1 - i i i L i L] A 1 i ] i 1 L] i 1 1 E i |
L A = W A l"“j i J_l- T | "‘! ILI S L N i L i i (] ] 1 [ 1 1 ] 1 i L 1 | L] L 1 L] Il i L | i i I (] i i i ] i 1 i L] x ]
Y 7 / N0 4 J—- v £
A A | T AT i Y ] I T ] PSS T S T S — ] i [ : ' = 1 1 1 i I 1 ] I} i ] 1 i I} 1 ] L i i i i ] | i i i i 4 1
- Py % - v v/
] L4 =i L g LR & N T 1 (SR S U WA, T R DU s S ™) i i i i i i : 4 L i i L ' . ' i i i ' i i i i i ' L i s L i i L s
i Li ] -1 T I I TN O TN | L A1 4 ¢ 4 4 3 4 3 ) i ] ] L I L ] 1 L ] ] (1 i 1 [l ] 1 i i L} i L] i | i i [} ] i (] 1 1 i 1 Il 1
{ -} i i - | LI - i L AL v b i & } ) i L] e = '} I L 1 L ] i i 1] ] L] i 1 L L L] 1 L] L] i L L} L ] i 1 L] i 1 L ] i L]
1 L i 1, L] i A 1 L 1 A i ' i 3 A  — i '} 'S 1 1 (] 1 L L L] '} i L 1 i 1 L] Y = 1 i ' 1 i i i i i L A s '} L] A '} A L A L
2 R 1 : TEN T 3 PO S T (] (L T S | i i i i i 4 i i 1 ' i i L " i | i ' ' i L i i i i i i i I i L 1 i A i L
| " T T T [ — el ¢ T ] T Y S S (M| AT T - L] ] L ] L] 1 I — 1 L 1 i i i 1 L 1 L] 1 L] L A (] (] ] 1 [} 'l | 1 1 1 i 1 i 1
] L\ L bbb Akl (SN TR N | [ Lt s b 4 b 1 3 ) 1 i L] i (] A i ] I i i ] i ] L [} 1 1 ] =S 1 L ] i I i L [l i i i i 2l A i
L L Y Los s X Jt- 3 i TR Y N T S TG LY i L i 1 i 1 i ' = i L I L ‘ I i i i i i i Il i i i ' 1 i i s i i L
L i ' L ' L} Il ] 'l (] ] ] A 'l A 1 4 VRS T O A ] L] i L 4 AL i i - - i i ] L - I L L 1 L] L] L 1 i L i i L i L i L - £ i '} L Il
Il ok W Lt i [ N T ) i (] { Y S TSN I S T T | L] - i i 1 L i 1 1 L 1 1 1 i (] L L] 1 1 1 1 1 1 L ] L i I i i i i i i |
A [l (O S| I Y S T i TS T AN U S SR TS T | : i L L i 1 i L L i i i i i i 3 (] ' L 1 i i I i 1 i L i i . L ' i s i .
i i Y ST T 3 YIS R S YO AT 1L U i ? Y TN TR IR ST WA A VI | ' i s I ' i i 1 i L ' i 1 L L L i i L i T i L 1 4 i I i L ' i X 3 A 2
1 - [ Y P | Lt | A S P | 1 W R - ; -] i il i A i i L 1] Il 1 L 1 = - L] L] ] 1 1 L i 1 i ] L] ] i i i 1 i i [ i i i
1 il A (e | [ e = T S T 1 L [ TSSOE] R Y PN [N MOESS (A cet | L e 1 = & i 1 Il i L 1 L 1 1 1 A i Il 1 L L 1 1 L == L L i i i 1 ] i i i L L
i '} A A L i 1 At A i A i ' ' A i 3 i il ' L] s L s 1 L . i . ] i 1 L L1 i L 'l L I} i 1 L '} A ' L s A L s A i
i b I Y | )b I S, 1 [ L RN (Y VOSSO TSNA] W TN A L 1 i | L i i L i L L l ' i i ' A L : i ' i i i i i L 1 i i i L L i
A i L i i L3 i i A i i A 4 A i i i A 1 Il i A L3 i i L i I} L i i ' i i L1 L L i Ll i i A i A ’ ] 1 L i 'l i i i i
. ] L} | ] i i A A i " (! i 1 i A 1 L L | - L} - A L 1 1 L 1 A A 1 . 1 i i 1 'l i i i 1 L L A i i A A i
L. L] ] i - il i 'l L i A A L L i i i i A A A A [} -t I y —— A i - L1 i i i i L i i i i 'S A i "
1 sk IS T - | | T | VI L IS Il TR LIS T T 1 T i 1 Il ] L ] -} ] 1 A '} 1 ] ! ) Il i 1 L i 'l L ] 1 L I 1 ] Il L Il 1 i 1
A i i A A s A L s ' '} L '} i Il L Il i A L A 4 il A i 'S il 'S Il A i L 'l i Il A 1 i L] A i | i i i i ] i A 'l i A ] i 1 A '} i A

REMARKS:




Line Reference Target LRT-BE4-V2

DATA RULES

jeinss i~ 2 Ik

| S s .
=
' L




Line Reference Target LRT-BE4.V2

DATA RULES




Line Reference Target LRT-BE4-V2

DATA RULES




Line Reference Target LRT-BE4-V2

DATA RULES




Line Reference Target LRT-BEA4A-V2

DATA RULES

- — ——— - —_— . — il
i
A -
-
- -
b
T
]




Line Reference Target LRT-BE4-V2

DATA RULES

s Lo . _ .

. Vi
4 !

'

i

. _’l |

e = Mg - p— — 1 | T

’

o | ,
]
1
-




Line Reference Target LRT-BE4-V2

DATA RULES

- —_
[
I
Fe
- —_—— . —a -
]
f
-~
| -
| £
e aaa S S e
>
-
-y
i 4
o re ) ] g




Line Reference Target LRT-BE4-V2

DATA RULES




Line Reference Target LRT-BE4-V2

DATA RULES

\ = - J —— — e
L
13
a -
( ) T
t
]
[ 4




Line Reference Target LRT-BE4-V2

DATA RULES

- - — ¥ - _—
1 T
— —_—ee — — — - —,—— e -—— = — S p——— — T ——
| — ¥ - —_—— —_— —— — . ———
- - —— — —_— — - — — ———— — —
| 2

)
|
’




Line Reference Target LRT-BE4-V2

DATA RULES

e i i —— — — e — — " -
&
[ 4 i
"
£ ! ]
&
vy » b - i
- — e - S— - - -
v
b
1 [ 3
. [ = ~ i il K i
-
i "
}
| =
. —— <3 : * ]
-
o
&
. 4 1S
L
” 4 T 3




Line Reference Target LRT-BE4-V2

DATA RULES

TS L $) (&) l(4 E 4




Line Reference Target LRT-BE4-V2

DATA RULES

— - — —- — — = — E - e —— — — - — e —— ————— — - —— —— —
| ¢
- Y




Line Reference Targe!l LRT-BE4-V2

DATA RULES

- — — - — — e

|

‘ — — —
. l - £ ) ] P EFY o8 N

-
| N—
! — - T -4
|

> N — - - ———— - - - — —_— - e ———————————————————————————— — ——————— - —= I - e A " = el . S 1. S

|

b 4

| |

|

' T

« -
Pe————— e ——— _— - — - - - - - - - — - E—

| - = - L 2l AT e I - ’ . o — . . - ——— e r— d——
b
)
—_ _— SR N <2 = - - ——— . — S—
e —————— = | ———— — = -




Line Reference Target LRT-BE4-V2

DATA RULES

|
4 - ¥
& s
T 2 ’- : : ;
J 2
| : ‘
|
|
|
i e | e
—E 7 FJ,
¥ t s
l -
|
{ — : g
+
!
- % >
| Mowvg -
=7
- i X | X \
? x W ~
oS¢ T & . S
=c ¥ T = x
- = | —— ! - -
| -
t

'
e




Line Reference Target LRT-BE4-V2

DATA RULES

\
— — -—— -
¢ - I -
- 2 -—
" A
8 1
-
|
. b + 5
| .
i
f il
- — —_—— — - T
- == =1




Line Reference Target LRT-BE4-V2

DATA RULES

| 1
o - - F7
¥
AC
b e N i ) 3 e s il / g = : ; — : | — : ‘
v
t
R ————— - ] L .
) -
~
-
I =

! -~ )

Py i

=1 4 3 -
f |
R —————— e y 0 | : I 1

» £
£ o %
=
' = Y
x




Line Reference Target LRT-BE4-V2

DATA RULES

& - |
} o =
/ ‘i >~ ) /
¥
\/
¥ J(
F OF
¥
) y A X
3 7 + "
X
4
| X
o X
|
- - /
— - I N . Rk @ =
X
b
L i

. s I W § . 3
1 [ <) 1> | X |




Line Reference Target LRT-BE4-V2

-_— - - ——

DATA RULES

- - e




Line Reference Target LRT-BE4-V2

DATA RULES

+




Line Reference Target LRT-BE4-V2

PATA RULES

s
r — —— —— - FE— —
’
#
¥
- -
- v i A -
| - -t i
-
"-
]
-
M
L




Line Reference Target LRT-BE4-V2

DATA RULES

—

3
v ’
= S E L
jpe—— — -
1 -
I -~
| : —- 3
H b
— —— - _ S =
b
X




Line Reference Target LRT-BE4-V2

DATA RULES

—_—
2 - — —

———— s
|

= —




Line Reference Target LRT-BE4-V2

DATA RULES

ya
-




Line Reference Target LRT-BE4-V2

DATA RULES

= 1 €
=1 v -
!
]
- it ! S | ! A ' A
= gy ¢ = T - ¢ 2 = = e = e
3 !
+
L 4 -
.{
——————————————— el
]
N i— R — — e —
~ o
|
. 1 3 : = { 'I r
]
T [
3
| ¥ ~ Loy | )
- ¥ [ ! ’ i ]
| " 1 3
— — . _‘T——— —




Line Reference Target LRT-BE4-V2

DATA RULES

= | ~ -
\ ¥l
b
| ==
| ' - Lam d R | O Y i
— —_ — —— — T — - — —= - :
- ' \ /
- e — - .
' (Y
1
Ly
’
7
Y v
| -~ o - ol 3 e
|
}
x | )
|
— —— -—— - — = —_ - - — ".__‘ T
1 §
4
' -
X
o
A i
- - § M S e ~ ] -
& : X
o




Line Reference Target LRT-BE4-V2

DATA RULES

/)
»
> T
— — - — = = (. |
3
——
. =i T | 3ges ¢ p
|
|
| -
r
F
|
i
'
- | bl d L — -
i ]
ry ;
o
— . - - e — - |

. T




Line Reference Target LRT-BE4-V2

DATA RULES

\ &
>
b— ———
!
| | -
| — i~ T 1 — - - -
- s - ""'1 J K - - o — —
P )N
- - .
1 -
.(.
.’.

3 -
— -
3

—— e e =

X
4 7




Line Reference Target LRT-BE4-V2

DATA RULES

— — - — _ 1
.\I
b —_— - —
b - = — . - -
I |
| o + —— — — — R _— - — —_ _ E— — — — e o - e ———— e — — E— —— -— — — — — —
| Y
| |
} . -
}
—_ ——e _ _— — - — —_——— - - - — - = = = = - — -4 - =
[ +
|
}
!
i y -
|
b
\
NS S S— - - —. Bl e —_— ———— e = == : = S ——
1=
\ .
P — — e —— —— e ' —— e e e I D I—— ]
L




Line Reference Target LRT-BE4-V2

DATA RULES

—
T
| ; ¢ A Y / 3
.= s . - —, | — b ] - { vl | wNm
| — — ————— -— _— e — — —— —_— e — — — 1 ALLSEES
L L ) ¢ B - £ s A/ I " 4
! I { ! 2 -1 ! ¢ ‘
. h - /
| - i { » - -
! . + -
| = ' | . - - — — — - - —
3 - . . '.' (4 ("\
13 . . . u" -
o ’
—_— -— — -— - - -
—r— T - - - - . - . — - —_— —
: . + : { r -
o< v & ¥
A ¥ : 4
- L~ 7 . e ~
S 1 T .
<
‘"‘ | : o ¥ &
~ ; Lqcr ST
. 1 o L : I
' ! ! i | - - s
' . = -
- . . Yz - ¥ T - -~ -
-
¥ - - .
b + - o e "
- ’
P | p H A ! >
' " : ! - L =
TA - - - - . e 2 3
I - - — - + = L == I L STl S e = | g ! = - Vi =
H ’ I - ‘ { Y
r + — ! # e -
1 £ . 7 £
1 £ » ¥ /’ e £
' . . i . "
mpis - ” g F X i
# | 4
f | 3 A b A o
- = 0S| b 1 . | "l R ]
+ — S— - 11 i - — —— = - — —— S - - — —_—
! ’ 2T ’ - x ° “
4 4 . : .
f ¥ '» & i
< : | i 4 & H ‘ ‘
- - & -
et L i L - | - 1 - - -
} | X -
4 | .
o &b = 4 2 v 1 ’_, - — - y - ¥
1 1 - - 4 +
- - ' - n
- - (s~ “ i b
—————————— — - -
T T . - e ——————— = - - - - = — b PN — e —i ' . - — - e ———
+ : F, 3 i 5 - —
' - ‘ . - 2 -
+ 3 1 . X | :
- - ' | T " - of
f + + i . u 4 - | | - 4 4
1
e Le T =
" : € 4 v 5 ’ . | i A i
- i | - _ A8 otk 7 1
” T
~0 TLC A M - ) ¢




	102726573-05-01-acc
	102726573-05-01B-acc



