
May 28, 19H

Dear Hs. Ri tcbie :

Enclosed ia a copy of 'Proceedings of the Decision
Table. Sy.poaiua- which include. wry paper ·structure
and Concept of DecisioD Table.'.

Tbanlc you for your
your needs.

r1ur •. .tIrUly, (
i I (~J '

B. Grad

/rl

interest. I trust thi. will eatiafy

-
Ms. Dagmar Ritchie
Oniversitatabibliothek and TIB
3 Hannover 1., lIelfgengarten 1.8
Germany

,
" ..
~NIVERSIT;O:T S BI B LIOTHEK DER TECHNISCHEN UNIVERSlT iH HANNOVER

UND TECHNISCHE INFORMATIONSBI BLIOTHEK

Hr . B. Grad
IBH Corporation

u""~ 2flcb* ..
n..-. """"ort 10." ,

1.1.7 Rit

D.ar Mr. Grad,

T.I "' .. t ... ft}, . ' 1I7i!11222t11

T.I .. , '22 '61 ItI)

'H ... ~ ••• I

4 April 1974

APR 91974
one of our reader. i. very aucb inter •• ted in your paper

"Structure and concept of daci.ion tabl •• ", beld at the DeciaioD Tabl ••
Sy.poeiua, NYC, Sept.aber 1962.
Unfortunately ve bave been unable to trace tbe ayapoliu. in any of our
ret.rence work, and any library 01 tbi. country . V. Ihould therefore
appreoiate it very .uch it you could furniahmore detailed infor.atioD about th •• •
proc •• din,. of the ayapoeiua coneernin, it euch a. naae and place 01
publiaber, a. ve vant to try to obtain the co.plet, volume for our library.

Your. faitbfully

(no..,. A_ U-'Irf). ~
i . A. '-.Y1j VV\lI-1 O(~

(D.~.r Ritchi.)

• ..

May 28, 197.

Mr. SOl Pollaek
2700 Nieben Way
Apt. 1336
Santa Monica, California 90405

Dear SOl,

Thank you Lor the copy of ·Proceedinq8 of the
Deai.lon Tabl •• Sympoeiua-. There was a reque.t
fraa the library at Hannover University in Ger1I4JlY.
I .ant th_ a copy and have kept tvo for my.elf.

/r1

d- Jirt,Mr-ll bt/I
.l..<~1

I

\)~ ~~N-

W~~~
~/~~
;f .¢ c:::.o :.. p,

;. 700 N laSc\o'! Ii.Jfrf

po. PT l-:SlC,
SAl''''''' ~NIC!t

c: ftL.\f '101{o:;

, .

InlLrn.Jliunal Bu:,in£:s!. t.i3 ... hinl."S Corporat.on

Hr. Sol Pollack ,
1901 Avnnue of the Stars
suite 880
Los Angeles , California 90067

Dear Sol :

1133 \','estches:cr Avenue
WMo Plains, NeN York 10c04
914/Ci9&-1900

April 15, 1974

It has been a long time since \ore have talked. I hope everything
is going well for you .

Recently I received a request regarding our Decision Table -.
SYMPosium held in New Yor]~ City in SCt.'te!nber o~ 1962 . I have
been unable to t1nd a copy of the prpqpntationR that were mad~
at that time, I am \flOndering if you might' have an extra one
that I could send or, if not, whether you can lend me your
copy so that 1 might make a copy of i L.

1 111 look forward to hearing from you.

Sincerely,

& ~ <-.-.
tturton Grad

pm

Attachment

cc : Dagmar Ritchie

Ii

,

,

"-aTIIIft.t,.;

Ti'~N_

"'- z.,IColy. S~.:

Of u.s. _"IdOr~

::;;
CD

--
u a
<t ..

,-

\

InltrNllip Cily 6 SUit

\

J . M. Wrenn
Pl'oductivity Application Dev.

IBM CONFIDENTIAL /' c;:r
/ ~

A

lVE" .t)

December 20. 1974
R. N. Purdy XI628
Productivity Application Dep t.
1501 California Avenue (69M/037-5)
Palo Alto. California 94304

DEli .. " 1974

APPLICATION DEVELOPMENT DISCIPLINE (ADD)

My visit to Los Angeles Scientific Center - December 6. 1974

The purpose of my visit to the L. A. Science Center was to gain some firsthand
knowledge regarding ADD. and to consider the current product potentials of Deci
sion Table Techniques. Messrs. Lew Leeburg. ADD Project Manager . and Dave
Low presented an ADD overview which included a brief demonstration .

ADD OVERVIEW:

•
ADD is currently a proposed methodology and architecture for the total replacement
of traditional application development cycle functions. Its prime objectives are:

I. Replace current application development mechanisms;

2. Achieve high levels of productivity improvement through

--revolutionizing end-user to developer communication.

--enforcing high-quality coding standards .

--supporting Improved Programming Techniques (lPT) throughout the
development cycle:

3. Design {rom the end-user's and developer's viewpoint rather than that of
the vendor or the customer's "D? establishment".

The Science Center project is an Ad-tech prototype aimed at testing the "achiev
ability" of these objectives .

The ADD system would be utilized much earlier in the dcvelopment process than
currcnt mechanisms. ADD would be used in the initial system s tudy phase . It
would become the dat..4 collection vehicle and communication medium in es ta b
lishing and maintaining application system requirements.

,
,

::E
en

--
u
C
<t ..

The top-down design of an application would evolve as increasing levels of de t3.il
are l'csolved within hierarchies of ADD functional ~pplication components. The
hierarchies arc :

1. Processes - high level structure of functions wi thin a tola l application
system;

2 . Blocks - logical segmentations within Processes ;

3. Decision Tables - deta iled specifications of J'ules , conditions, and appro
priate actions.

Each class of hierarchy represents increasing detail in providing the total appli
cation solution.

The additional application components within the ADD functional architecture a re:

I.

2.

3.

4 .

Library procedures - subroutines of proccdul'al or computational code;

Message Form - native language dia logs between terminal user and the
ADD system or application system;

Response Lists - usel' responses to Messages Vorms;

Block Linkages - interrace specifications between Processes and between
Blocks.

The Block Linkages playa key role in ADDis ability to be a data collection a nd
communications medium early in the design process. Block Linkages will pro
vide f01" " logical binding 11 between Processes and Blocks . With this binding,
the "logical continuity" of the evolving application solution should be able to
be tpsled, The Block Linkage component has not been fully implemented as ye t.

ADD embodies a number of vadable types, One of the most interesting will be
the customizing variable. This variable is initialized to default value (s) . The
vadabl'" can then be customized at numerous stages in the development of a n
applica tion system , The customizable application system is l1exccutable"
throughout the de"eiopment process--default values are used for unresolved
custom; zing variables .

ADD PROSPECTS:

The ADD system is a very interes t ing proposal for the application development
environment of the future. Mos t of the Application Components will have been
prototyped before year-end . The prototype implementation is under VM/370
CMS in APL. SV

The product potential of ADD is long t el'm . The current effort is clearly Ad- tech .
The development of the ADD prototype has int entionally ignored all -f the aspec ts

,

::;;
CD

u
o
« ..

, of application data base management and access. The rationale (or this is based
on the philosophy that application progr ams should be isolated from application
data bases if true data independence , security , and integrity are to be achieved.

AnOlher L.A. Science Center project is addressing the application data base is
sues. The two prototype efforts arc in coordination, and an interface is event
ually planned.

If the objectives of ADD are achieved with the prototype effor t . I feel ADD may b e
a useful internal tool for gathering Indush'Y application requirements and initial,
solution designs. Indusb'Y Marketing ~tAEP projects would be able to exploit
ADD facilities in achieving study objectives .

PRODUCT POTENTIALS OF DECISION TABLE TECHNIQUES :

The "driving mechanism" of ADD is an exploitation of extended decision tab le
techniques. The logical power of decision tables has been recognized for some
time; however, the industry acceptance of these techniques have been dis
appointing. Some of the reasons are thought to be:

I.

2 .

J .

Originally, documentation tool only;

Tables were awkward to represent and maintain in source card form
(fixed length images) ; ~ .. .

Early interpreters were inefficient and generated inefficient code;

4 . Entries were limited making the tables large and logically cumbersome;

5. Techniques didn 1 t seem to lend themselves to commercial OP problems;
and ,

6. Little or no marketing incentive apparent.

The marketing incentives and associated support are really the key issues. Im
proving application development productivity is clearly growing as an incentive
for strategic marketing programs. but without product and market support little
real progress can be anticipated. No marketing or market support commitment
for Decision Table Techniques exists within DrO. I personally feel the only
rationale for aggressively marketing and SUppo!·ting Decision Table Techniques
Calls wi thin the scope of Improved Programming Technology (lPT). U it can be
agreed that decisions tables are an improved technology, the technique can be
addressed by IPT education and marketing programs.

The World Trade PPs, OECTAT for DOS/VS and OS/VS. can be made availab le
within the U.S. with very little effort. Without an aggressive marketing pro
gram, it would be unwise to pursue domestic release, however .

R. N. Purdy

cc; L . Seamons , J. Brittain , S. Shaw DPD/HQ, B . Grad DPD/HQ, L.E . Lceburg

/'

Is !

TQ,J~.i Memo Slip IBM / " II / D," /()/ni?'f - { p
~

, "- y'
n_ :;;.':1/-; .. : ~

N'2J. .. , ~~~ J { V;;rr,;,p· ~~ ~' • 0 Will call -oaln

• JI 0 Rttu~ your c.JI

".IIM ""M.~ ~ V,'; I'·'\/' ~~r.s=-b3!l"-N"
For your 0 InlomwUon 0 SIgnaIUfI ~... 0 Hand~ 0 P,~. reply. my ~.tu,..

o Comment. 0 AppfO'f'.1 0 CIrculate 0 s.. 1M 0 And cInttoy

RemarklC1lL \I,)~t,.. you 'je, G\.. c.J,4NC~ •

~{. H~ /V (0 A,) ~4J o..sttJ hit-. To

• FilL you i~o/V -ne~k~
~ A~e &C>~ wITh ~.'S"io/ol ~ •
i
F~

~ I- I location I Department I Building

T~ r$;.J Memo Slip IBM
DolO

IOhlJhtf •

- i:IJ
-:m7'XL. / o Calt.d to ... you ""' ~, o Wl-'" to ... you o Will CllJI Iglln

o Returned your call
Tiell_ [aWMiOI'I '"'([-- T:f¥Sl,lr -63)2'
For your 0 ItIiofmauon 0 Signatura - o Handle 0 File o PT.re reply. my ~Nlture

o CoIn"*'l" O-'P9t'Oftl o ~m 0 Clrcul,'a 0 Sell IIMI 0 ... _

Remarks J OSI Fo 11j)~~ \)~. (HJ~S6JV ~ 4J
qstt~ F"jl. yovTIW A.Lf ,

• Pl~~-e (1" LL T-or-o':'(lDkJ
~

of!. NeXT])1 / II •
F~ I o.p.rtrrIent I Building ~ 1_ lo<a'~

,.,

,._ OM,

~"T*,bt

T'tlillo..n.~

'" ZilVCorr. SUit
orUS_ ~ __

....
B. Grad 79'-TU454 White Plains, N. Y .
Director of Media and Cross lndustry Development

October 10, 1974
Robert N. Purdy
Productivity Application Development
1501 California A venue
Palo Alto, CA 94304

Decision Tables

Your memo to Ms . L. J. Seamons of 10/2/74
Mr. S. p, Kruzansky memo to H ,J. Meyers dated March 25, 1974

Bert. I received the S ,p, Kruzansky memo when we were working with
the Systems Marketing Productivity Projects Office toward supporting
DPD release of DECTAT ' Frank Gatewood was very anxious to release
DECTAT and/or TASSOL as productivity aids.

Systems Marketing Productivity Marketing and Requirements
maintains they have more than enough to do supporting improved
Programming Technologies (IPT) marketing programs without under
taking Decision Tables, I feel Decision tables should be part of
lPT; nevertheless, U.S. release of DECTAT is very unlikely for
want of aggressive marketing sponssorship. The Industry Marketing
response was dismal. We have no other interests in Decision
Table Techniques at this time.

'&LiW
R. N. Purdy C
cc: R. Day, DPHQ, 63W

L. J. Seamons
J. M. Wrenn

-

"-M 1M ,
==- iii

...
•

Me. Lucie J. Seamons
12 - 63J
Palo Alto Development Center

October 2. 1974
B. Grad - x1785
Director of Media and Cross Industry Development
Department 797 - TV454
OPU 1133 Westchester Avenue, White Plains, New York.

Decision Tables

Attachment

Is there any interest in Decision
was sent to me a few months ago.
in Product Test. I don1t think I

pm

Attachment

Tables in Palo Alto? This
Frank Capron was previously
know Nyers.

j

. •

. F ;'pAlfCd/(5«.Jr~~ <l0-t"t
rd~1.. wtJtLfi b-t ;.., t<y ¥,51~i i,1
+k ~ Ii'r-sf 1/II.!f (&. f If'tZ sf) "f-

'/f,tS ~!lf'V-, _~;(~R 11-
J.?R i ~ 'St!'

'f~
" '" N'
o

'" ~ ~ to" , 1~" 1Qon
lI:' 'l " .,"' ,. e 0.,,,, .. &ICl9

.:ri:: .I; ,.~ (al

'"

t·tarch 25 , 1974
ISD/'HAD
SPD Pouqhkeepsie
213956
255 - 7573

... ,-, E)('rENDI~G DECISION TABLE USAGE TO ALL PHASES

h ' Mr . H . J . Myers
OP Science & Uarketi nq Development Center
D/60A
2670 Hanover St .
Palo ~lto , California 9430 4

The most important , yet undersold advantage of Decision
Tables is their ability to serve as the basic tool in
al~ost every step of the comouter application develop
ment process . Specifically :

1. Decision Tables (0 . T .) are useful to define and
document the external specifications given to the
prograrn",er .

2 . The programmer/analyst defines the aoplication
and assures the comoleteness of the soecifications ,
via the interactive ter~inal ~athmatical verifi
cation process of the D. T. compiler . Then , bV
generating a Flow Chart automatically , he further
l ogically verifies the DT design of the application .

3 . The DT Compiler is then used to generate the code
f r om PL/I, Assembler, APL or other languages .
This generated code is imolicitly well structured
modular code .

4 . The DT Com~lier then identifies an optimal test
case library via the TESTGEN functions . (Optimal
according to product test criteria of 100\ of code
execution.)

5 . The DT Comoiler has the potential to generate the
actual inout test transaction. Since a DT also
defines the actions , some of which are outputs, it
should also be able to automatically verify the
successful completion of tests .

. "

N
N

'" ~ N
.) .. .,
"
" <> a. -~ ".

,

N
N

" ~.
o
'" <0 0'

March 25 , 1974
Extending Deci sion Table Usage To All Phases
Mr . H. J . Myers - Palo Alto , California
Page 2

6 . For the maintenance Dhase , it should be possible to
select only relevant regression tests in a minimum
tes t l ibrary.

The potential for a DT development technology has not been
recognized . TELOAP , which is becoming the FS - SDD modus
operandi, has been found to be unnecessary where OTs were
used ; in fact , the Cause and Effect Matrix developed in
t he course of using TELDAP is a l imited form of DT .

Since the 6 previous items describe major processes of
t he development of a computer program, DTs could be the
bas i s of a Specification Language. A Specification
Language , to me , means that if you can define all the
specifications for a progral;'l in a concise lanquaqe , you
should be able to autOMate the generation of complex , \<lell
documented , bug- free, implicitly and actually tested
computer Drograms . Though there are small defects in Drs
that will need special techniques to comoensate for them ,
the basic economy of reusing the original DT modified to
fit the needs of each phase, will lead to faster and
c heaper program development .

I hope th~ designers of Specification Languages \o.'ill
consider the DT format as a basic structure in the lan
guage . It appears a better approach than some I ' ve heard .

As we started to discuss a few weeks aqo on the telephone ,
b us i ness applications programmers are not interested in
t esti ng at the same level as OS developers , Utility
developers , or even small scientific programs developers .
For b usiness applications , we assume that test var iations
or rules that concern user input transactions , control
cards , or input data , must be better tested than those
ru l es \yhich depend on data already on the data base ,
(s i mply because data base information was created by
programs not by humans .) Similarly ·,.;e can assume that
system function related rules covering I/O error handling ,
e t c . as shown in the Decision Table stub , should have a
l ower priority for testing than primary input variations
a nd data base variations . Ne have , then , for business
a pplications , three categories of t este at l east ;

t. Primary user i nput and easily obse r vable output .

II. Data base i nput and out put testable fu nc tional
variati ons o r r ules .

III. Sys tem i npu t conditions a nd i nte r mediate a cti ons
which are more difficult to create and/o r t o
obse rve .

•

,

N
N
~

'" N' o , >

<Il .,

March 25, 1974
Extending Decision Table Usage To All Phases
Mr . H. J . Hyers - Palo Alto , California
Page 3

Therefore it should be possible to identify and TESTGEN a
weighted set of rules for the selection of tests for various
purposes .

1. For Uni t Test - 1 00\ oath testing all rule~ plus
a limits testing supplement.

2 . For Regression Test - All User input and data
b ase var iations generated .

3. For r nstallation test only valid user i nterface
v a riations .

4 . For a bug correction (APAR , PEAR, CMISTR , ITR)
we would like to be able to select all the tests
that relate to certain identifiable conditions
or actions so that we can avoid a regression on
a fix .

To be more specific I would like to see the ability to weight
a condition and action in the stub by \o{riting something like :

C8 PRICE = . 40 , Y, N\---- 1212
Al CALC PRICE . 10 , 1 3
A2 PRINT PRICE ; . 40 , 4444

aFfeld indicatinq \o{eiqht as
a primary input variation .

Then when TESTGENPRI~mRY i s typed at a terminal - the response
c ould be :

11 14 8 ? 1 3 5 4 6 9 100\ PRIMARY RULES TEST

55\ of STUB CNDS • ACTIONS EXERCISED

68\ of LEGS OR ACTIONS EXERCISED

The response is in the order of greatest weight fi r s t. The
above assumes a single page DT for the program . There is
a more serious problem: Row do you identify tests for a
whole program not just one decision table? I would like to
suggest the following scheme .

Tests should be related for a whole program by program ID
and alphabetic 10 eg o the most complete definition of a
test rule which spans several pages of DTs might be :

E8E? A 12 . B3 _ E4
Load DT-=-' DT Rule 3 Rule 4
Module Page Ru l e Page B o n DT
ID one NO . page 5

1D

,
< ,.
c ..
• '"

•

N
N

'" ~

'" • N
0 .. • .
'" " OJ

" 0
~

" "

March 25 . 1974
Extending Decision Table Usage To All Phases
l-1r. H. J. Myers - Palo Alto , California
Page 4

This could mean that if you enter at the terminal

TESTGENPRIMARY

All.B4. D3 . H2

Al4.BS.F5.G4

AS . B9 . E2

A7.C6

Al.C7

A3 . B3

A5.C

A4

A6

A9

ESE7 the response would be

100% PRIMARY RULES TESTED

55% CNDS & ACTIONS EXERCISED

6S % ACTIONS EXERCISED

The sequence of the rules in the list would be the rules
with the best test coverage or highest % of actions ex
ercised listed first .

Now that we have combined tests or rules over many DT pages ,
it would be desireable to select a set of tests that apply
to a particular bug or sensitive area in the program.

TESTSELECT ESE7 CND AS ACT A7 C2 when typed in should
respond with a list of rules that affect the identified
conditions and actions . The sequence of the list linkage
to another page would have an off page call as an Action
or as an Exit . An Exit linage would be a non-returning
call or link .

SPK/gjw

cc: R. Haggerty
P . Judge
J . Griffin - '3terling Forest
F· Dapron San .Tose
I. Cutter
P. Schlender

N
N

~ ,.'

To

Ham. 01 ~ calling

1.

Remarks

F,~

For your 0 In!ormatlon 0 SlglUllure

o Cornmenllo 0 Approval

Memo Slip IBM

PtIOn. Ilocatlon I Dep4rtmenl I Building

Memo Slip IBM

"3 :()()
o C.U..:I to Me"ou o Plell$8 c.ll
o W1ahe1 to_you o WlII ClllI again

o Returned your call

Telephone NumbW

o Handle o Pr.pa ... reply. my .!gratu,.
o Retum 0 Clrcullt. 0 See me Art datroy

Remarks '5~of\'t To /'-1(, ee 6eR.~ ' ttj
Fo(. k~"" \))DIJLJ Be nu~s J)et: .

W ~ hi'"" ' To ,'/11 \)J i>a.c
Tn h~,., \ 'Sr ,l "'>- ~ . ..a.e tJ

,~

7
_ J __

H,'lUr [. 1 ,llnlallNI

o Cornm«lta

Remarks

~:

::J Slgnal~ ' I

o Approvel

Building

Memo Slip IBM
"" ..

o Retumed your call

I-~ ITg;SY:!-bl/~" ."".,,,
o tundra 0 AI, 0 Prepare reply, my .Ign.hire
o Retum 0 Clrcul... 0 see me 0 And dealtoy

6
Number
2
June 1974

A V Aho
S C Johnson

U W Pooch

124 .:I. l ' . ..-1l1ooll(/S. C.JOJUl801I

REFERENCES

AIIO, A. v.,))t:S:-.ISG, P. J.,\:>'o Ul.l..Y,\s, J n.
"Wcak and mixed strategy prei"edence par
fling." J. ACM 19, 2 (1972), Z2S 243.

Auo, A. V., JousSQs. 8. C., .\1\0 UI.LM.\l'I', J D.
"Deterministic parsing of ambiguous gram·
nHlr8." Conlerenc~ Ifuo,d (If ACM Svm~ll4m
Oil P,j1l(;iplu 01 P'OfIro",mtr,g Languog" (Oct
ID73), 1 21.

AlIO, A. V., .\1\0 Pt;n;ltSOS, T. lj "A minimum
distance erro,~orre<:linp; parser for context·
free languages. " SIA.Jf J Compw/ll,g I. 1
(tun) 3(»-312.

Auo, A. V., ASD U1.I..YA:>', J . I). Tilt; rllfflrl/ 01
Po riling, Trantlolion (md Compiling \"01 I,
Parlling. Prentice. Hall , Englc",'(~ Cliffs,
N.J.,1!172a.

Allol A. V., A/OOO U1.l""AN, J D. "Optimiutioll o(
.H(k) Illll'8ers." J ('olllpultr amI t!i1/.le"l

SciencCII 6. 6 (19';2b), 673 OO'l.
AIIO, A. V " ",SD UI.L.\I.\S, J . IJ Thl/! Thtl}rr "I

PO'lIlng, Trando/ion, ond ('Qmplil1l, Va,:!
CQlllpilin,. Prentice · llllll, Engle1\'ood Cliffl\'
N.J., 19i3a. •

AIIO, A. ' :., ASD ULI.Io .. ,\:';, J I, "A t{~hnillue for
speeUmg up LIl (k) parae " SIAM J C(Jlft
pu/ing2.2 (l973b), 106-1:!7 .

A1IiUF;lISO:';, T. S,,1I1OCfic anall/". 01 'ill(k) la,,·
,uogt •. PhD T~is. Univ. Se1\·caatle.upon

. Tyne, Northu!llberland, England (Iun "
ASI)~:II.5?s .. T ., En:, J ., .\:'101) 1I0k:'lOISO, J. J

EflIC1Cilt LR (I) paf&('rtI." Acta '''Iormolico
2 (11);3). 12~39.

DEMERS, A. :'Eliminalion of lIinkle producliona
aile! merglllg nontermmal symbol, Df LH(l)
grnmmat:a." Technical Hepon Tn· I27. Com.

l~.ut~r SCI~lIce ,L.aboratory, Dept of Electrit:al
illglllCCrulg, I nnceton Univ, Princeton ~ •

July 1973. " . ..I,

D~lh;w..;R, F. L. "Practical tranillators h.r
~U(kl languages." Project)'IAC Ueport ~L\C

·65. Jl.IIT, Cambrldgl' M aaa moo
DEItUSER, 10'. L. ":-limple' LH(kl ra~m
;' C~HI'''. A~:11 ... , ; ~1Ui1), 45.1 4fJ)B &I'll.

I.AIIU_l'", . J . }n effiCient ront('xt·free l)arain
F . nlgorlthm. CO,"ut. AC.lI 13, 2 (19iO) !H 10'!"

._I.D .\I~~, J. A., A:';O (;1111. ... J) "Tr'allAl t
wfltmg SystCIIlS." Comm AClj II ., (If!,.,D)' 77- 113 . • • -

1o'U))'D, It.· W. "l'iyntaetic 1\/11,""" d
precedence " J. ACIIIU 3 (lUll an operatl)r

01 .,'." 1003),316--333
!,\!l AM, ": I •. , A/ooll HllolH;a, ~. I' "J>r~tic.1

'

syntaCtiC error recoY<'7 in ('ompilers .. C
~rtnCt; IltctJrd 01 AC,' S"m . I ' fln

Clpltll 0' P • JHn""" (III T1n-52_58. "J rogrommm, l.anflllogU (Oct 19n),

n,,";8, D. Compiler COli I .
Cfnllpl4fcre. Wiley Ne'4' ",ruc,flO lI lor Di,,'ol

IclU !I J I) , f)r • 1!171
(, . ". -\:010 ,\ l oR~l.. l-i. P "A h'
po~~!:nt~~~lrg alm:.t f)ptjlll~1 }o'o~d I~!'~
ACM 13. 8 d9ig)~le508,grammartl.·'('''IOI''.

J A"H;IJ , I •• n. "A sy~tax dj......;.- ..
meth--' ".... h' .~ ... ~ ... ('rror ~vt'".

uu. • ec lucal Hcporl CSUC 13. Com-

Com""" ... ~n..,... Vol. ~' •• J . •• • • lUll! 1'14

.. Erl"f.r df'tf't'lIOCl ud I'f(trmr Iw
dU·f'f'tf'<.1 Ct'.mpJlfr .nlf'llll' 1\1)
rillY WWrc'ntln, ~lld._. I"II!'

Translat ion of Decision T a bles

UDO w. POOCH

.4"IJiuI Pr'O/t._, Irtd ... ,"o/ 1:"1I1"tt""11 IhparltM,d, Tt;uu it &: .11 U1Iit!<tr.i1w

1~,mJM ... ill(m and ("Ilnvt'rlion alsorithll'l8 (or trafUllllling dedsion tablel!! are
lurVtyPd and turilraalC!d undt'r two broad categories: the ffiNlk nile lechnique And
ltwo Iit'lorr(ltk (('("hoi'lut'_ Also, dt'<."illion lable structure is briefly covered, in('luding
the<-Ita (of redundant'", t"olltrlldiNion, And ComlllelenC!III; detision tAble Ilollilion
and If'rmm~lhJY; and dN'lfIion IAbln lypea And applicAtions, EXleneive literature
tllalion. a,.,. !'r.,ndt'd

1\~1fIC>r<1. 011" 1'4,111(': d('rillion IAhlCII, eyatema anlllyaill, diAgnOlltic aidll, bUllil1cl!I:I
1,,!'lit.IIUM

eN co1qnnu; 3 60. 3&.1, I 11), 129, 01 10,83

L INTROOUCTION

nw. of rli-cj"lon tahl('@ by ,)rogmmmef'll,
wl~·.t- and othrr II~"", of romput('r ffu:il
nits it mt'rt&l<JII~ I"'CAU I' tlw)" provide 11
'!lDplt' tahular J'('pmo('nlMioll of romplex
drf~ion luJtlr l~'t'iJ;ion t8hh ,although fIl'
\'!1opr.1 rrimanly u a \'l'hirit' (or lIlan-to
IDlD ('olJlrnunirahon , rnn ('fUi(' th(, prob
- of I'l'Oltanuninr; And dOt'umentfttion in
ftlInyaPlllication ,,·Ii{'rt· tll(' rf'fUlihility or
lIIiDtt Iht' lratlitlonal flowl"harl, narrative
detrrillllfJII, or ot.llrr t'Ommullir8(iona media
~qu('lItiolla"'l' {IO. 23, 30. 31, 64, 66, 70. 74,
i,i S4 &it,99. 101 J.

.U !lidKr 1('\'('1 Pl'OfUamminJ; Innp;u8gc!I,
ruth IlJoI C",o9tlL, FOR'TllAs, AU,(.IJ., "nd olhers,
bttamr "·ldl')Y A("('t'pt('fl, LlI(' C'ommunica
tJoo lUll' iltl,,·('ftl thr t'omput('r tll'K'rialist8
~ tht- u",·,. or romputer rACllili('1II wa~ ('x
Pf't1tod to dll'AllllN&r lIo",(>\·('r. thi luu~ not.
btna ~ (" !IO thrl't' rontinU("II to b(' "
hi~ ~ of mUlundl'tRlAndlllR in ~'''lCIns
lDa!y and d, iJOl, And in imph'Jnl'nlmg
thr _ Q pJ'Ot't'dUrf into a 'IIorkablr rom
p,llfot Irr'OJrarn. nIb I Il('('ially true of
~nt-to-man rommunirAtion. 8pe
rifically bt"et.UH' manajtf'ml'nt. rrf'tlu(,lIt1y
-. not l.IM,'nund thit rorm of program
IDlnllanguap fOrnnltlllit'atKln , . .\ langu8.I;C
r~ or .uurtUN', iI therdort> necdl'<1 to

bridgl' th(';<C man-to-man and mall-to-ma
rhine communication gaps in thcse areas.
Deei.!<ion tablcs can contribute much to im
pro\'e this communication link (Fergus
~J). . .

Deci!lion tables pro\'ldc an cffCCln'C
means or communication bet.ween those in
lind outside the data processing field by de
fining both the problems and their corre
~ponding logicsl SOIUtiOll~. In ad~ition. be
('nu~e decision tables succlllctly display any
conditions that. mu~t. be satisfied before allY
l1rl'!lcribed aetiol1s will be per~ormcd. they
I\r(' bc{'oming very poptJ!ar III computer
progrnlllming nnd systcm d~ign as devices
for organizing logic, espeCia lly ~"hen. at
tempting to hnndle very complex 8ltuah?ns,
anr! to bc ahle to necount. for every l>os81ble
combination of conditions [23. 32, 57. 62,
66 89 92 104]. Furthermore, the extent.
nJ1~1 n~lu~ of the changes required to UI~
date or J"Cvise all application program 18

('asily provided by the unique form of the
problem statement in decision tables (Auer·

ba,h [3)1.
Flow{'harts. n graphic language form that

ha.!' alRO been widely used for I~an-to-mlln
('()mmunications, that was sPCClfica~ly de
. lo.....A for the purpose of rCI>rcscntlllg op\e I~' . ' , h

('rations related to computer actn'llIes, sue

126 Udo IV. Pooc/l

CONTENTS as !!ystclll ann lysis, system design, program
ming, documentation, etc., can also fre
quently be utilitcd for other noncomputer
relnted activities (Chapin {14}).

I. hluaduetion
ColDporioon of ~n Tabl ... nd ~"aru

II . ~ Td>le StruetUft
VorieliN...d Formata 01 DecioIoa ~I.
[)erioi,ooo 'hble ~~ioa
Definlt
Redundancy. Coatradlalon. r.nd ComP~
U_ ... d App/;..tW. 01 ~ Tabl.

III. n..oompo.l'ion and eon-nnion All!Oril
t:"",luUon of Oo!rioion T.W."""COmputer I'l-ocnun

Tra .. I.u.r.
Tec"";",u,, Ute<! i .. T"".,i ... 0e0YI T.bl.
t;volu,lo<> of .-......I.,i laorlthlnl
s..... .. I ... and Rule ~Iuk Tf!do .. l (Wuki ...

Technl")
Rul .. .Yuk I,..;ull.
1 .. ,",""pI. RuM Wu.Ir. Alaorith ...

Condit.ioolal TNti nd N ... ~ T nl" ... rr_
StrUCture T nlq)

Quiek_Ru,," Apw...
Pelt.)'"Ml. Rula AIKorithlll

A",b;.uitiao
Auto_tie V Wanual Tranoolatkla

IV. CODcl
Il!bliocrapb,.

Copyright. © 1974, Association for Computinl
Machinery, Inc. Ceneral perm_ion to republiah.
but not. for profit, all or part of thia material is
granted, provided that. AeM's copyright. notice ia
g.ivcn nn~ thllt. reference is made to thia publica
t Ion, to Ita date of issue, and to the fact. that n"

printing privileges were granted by permissioll af
the Aaaociation for Computing Machinery .

Compa rison o f Decision Ta b les and f lowcham
The decision table is a convcnient fonn

for expressing any conditional altemati\'e!,
"'hcre Ii particular path to be followed is
dictated hy fl combination of a number of
conditions. Flowcharta in such cases can \x>
come vcry comillex and difficult to folio,,',
and involve tcsting for each condition more
than once (lOb).

Decision tables overcome tollny of the
disadvantages of flowcharts as a means of
describing computer logic. As may be 8Ct'n
from Table8 I and 2, decision tables are
generally more suitable for direct. communi.
cation with the computer, and are \bually
less confusing in the more complex ~itua
tions, especially if we con~idcr that a deci
sion table contains e,'ery possible flowchart
which can be drawn for any givcn problem.
Deci!<ion tablcs afford precisely IIUlted logic,
more cxplicit r<'lstionships bctwC('n ,'aria
bles, and simplification of programming
(Klick [62]1. Thus they pro"ide a conven
ient. way for the analyst. or programmer to
nccount for every 1>oS!!.ible combination of
rondilions.

It should be noted that. the relative mer
its of dctision tablet' must. be weighed
against the relath'e merits of wcl\-!ltruc
tured flowcharLCI. tn other worda. with tht
de,-eloping "technology" of strucwred pro
gramming and methods for correctness
proof methodologi~, the utility of deciJ!ion
tables must be compared with that of a
more modern version of programming via
flowcharts, rather than with the l~ di!(i·
plincd form that. was in evid('nCt', e!!I)etially
in nonsci('ntific programming shop!. until to
Ycry recently . Decisions in a flo'Vo'chart mun
\x> tClitcd in the order in which they appear;
howe"er in a deci5:ion table (ex~t for tht
ELSE rule and any specific ordered detOm·
position~, 8uch as the left-to-right. decompO
sition (Harrison (42]l the decision ran be
tcHcd in any order, depending ullOn tht
particular algorithm used in translating the
deci!ion table. This enables programmers or

T.\8LE I

• fMily produrN
JoMily learned (feW' n!IAlively simple rules
and t'Omponent IIArta)
Can ~ I~ unamblluOludy to de8<'ribe
1M .. ay rotnpute,.. handle data, &II; well A3
to rep~Dt operations pt"rformNi by the
tompuler
CAD I,. pruduud by rornl)U ler algorithms
(rom IIoOlirre pro.rams,

O.ar ellumeraW>n of all f'll'trationa per,
oPar Idtnutiration IOf tile Ilequent'CI of
OppnhoN
.... i1)" I .. ~
Hr~llVe nlean.a ,,(I;'('mmunlt'alion he_
t_ ~ple In and Ollt ,., the data pro
teMl", firld, Ie nol hmit.u to com
P'lln awllealln
(4IDdIe and ce'rnpal't (orm f,r definitllm
ud "-'np'l<m .lIluMe rllr IUIf' In allaly
.. , Pft'Cf'&IIUDiMJ, and d,,('umt'ntalion
f ... ,. to t'Oft8lrurt, m .. dlf)', a"d rud
reA bt ~ to d"l"lment apphutlolla IM-
1'f>I\"UII tum plea i"t~fKtl(>llII or varillblea,
_ appliN III e .. mpUlf'f .)"Iu~ma, de
e.ioa taLlN r".lfOf hNter UIM! or a"brou,
tlM!l, p"'m"l~ tlfirlrl.ty "f l'Ulnpult'r run·
llDW'. &Ild IIrl)vld,. a N)mplele data ehed:
(Of dtl,ullPOI
IIItft'tly adalliN (JUid 1~lhly ton
ftrWod dH'ft'ti)') to t'umpu lt'r operations
LIu-'l\Ip .,.mb"h, Jc'll" and tomputer ,..,.,-
c..pand _db n.a.rt1Illvea, d('('~ion labl_
.,. 11M'''' eonc_ and f'rf'f;'-
r 1I'r V"WIJalton tlf n!latumahlpll a.nd
aI~I'"

I.nlfy to I"oru!lfltr tb~ nolati,'e frcqu('ney
~ whirh lran I"tIOM ati .. h,' (Ii't'i"ion
!'lib, aod thouM , to mON (·ffle"il'nt. 1'10·
&r'IIDI I Rt"inwald, t(al. f93] I. Therf.-'forc.

7'ralll;laliall oj Deciaioll Tablea 127

• lieavily influenced by perROnal preference
And jArgon.

• Diflicult to folio .. ' if the problel\! conditions
An! complex,

• Bevision is diHieulL
• Limited in displAying all logical elements

of the to tal problem ,
• mlIicult to ascertain if All logiCAl elements

are defined and Anll.ly:ted, especiAlly if the
problem conditiona are complex.

• Flowchsrls aharing detailed deei.aion logic
a re unwieldy, retlult ing in ·'mll.croli:ting"
dinicu lt sections.

• For complex situlltiona, they may beeome
extremely large,

• Muhiple tablea may be needed in eertain
casta to document deeillion logic (Dixon
[231 , Ferlll!: 1281).

• Many l>eople find the graphic dis play of
ftowcharll more meaningful lhan a tabular
deseription of logit.

• Desire for automatie translation ability
UU8e8 too detailed requirementll (or man
to-man communieation PU'lXlfle8 (analo
goua to the uae of programming languagea
and their tefllrictions),

although decision tables arc not. the nn'iwer
to nil documentation and programming
problems, they do otTer certain Ildnllltllges
that o\'crcome somc of the drawbacks of the

128 Udo IV . Pooch

flowchart technique {2, 55, 62, 73, 85, 87,89,
92, 94, 98]. With the state-of-the-art ad
vancing su fficiently to enable economic con
version of decision tables, their use will
show a marked increase.

In Section II a broad s]>eClrum of ideas.
including topics on the structure of decision
tablcs, and the varieties and formats of de
cision tables, arc presented. Section III is
devoted to the analysis of several different
algoriUuns that. can be used for converting
decision tables into computer programs. A
discussion of the advantages, disadnm
tage8, and ambiguit.ies of these algorithms
is given. Finally, it should be pointed out
tha t. Shaw [96] and Dcnolf (20] present ex
tensive, annotated bibliographies on deci
sion tables, Bnd that a recent i&iuC of lhe
S1GPLAN Notices (Shaw [97)) is dedicated
completely to \'nrious aspects of decision
tables.

II, DECISION TABLE STRUCTURE

A decision table provides a tabular repre
sentation of infonnation and data. lnfor
mation displayed in this manner is easily
~mprehended by eye, even if the table of
mformation represents a complex logical
probl~n.l. A dcci!!ion table is a structure for
descnblllg a set of decision rules [4 9 13
28, 46, 47, 49, 57, 68, 72, 103]. Th~ basi~
structure of a deci!!ion table is universally
a.ecepWd as t hat, illustrated in Figure I. AI
~hough other formals of decision t.o.bl(,8 ex
Ist, s?m.c of which Ilre more convenient to
ccrtallllllpu tjoutputdcviees (Pollack et I
[88}), they nrc all permutations of thi~ ba:i~
format. Decision tables tlrC easy to lea
b~:!eausc. of t~('ir simple structure; and e~~
c.lcncy In ~slng them can be reached with
httlc expencilce.

CONDITION
$11.0

ACTION
$11.0

II

II
FlO. I . Decision table ,tmclure.

COMDtT l DfI
""RY

ACTI'"
ENTRY

TABI~E 3. SAllie EL.:J" "TIl 0,." I)Y.I:'IIUOS T A'LE

-.elm .. ~III. IUlllaI ~~ ." ~. ~. W' ..

". " - .". ;" -
",.,~ ,.t

A dcC'h'ion tnbl(' ('nil be dh'idcd inlO four
quadrants [33, 38, 69, 81, 83, 100, 107]. The
upper I('ft quadrant, rall<.'d the roruiJtio1l
,tllb. Fhould contnin .11 tho~l' rondilioIU
being ('xamin('(1 for 8 particul81 problem
!tCgtllcnt. Th(' rontiition entry If! thf upper
right quadrant. Tht"-(' two ~t'ftion' dc~rribt
the ~et, or ~trinlt. of ('Undillon'" thll.t i~ to bt
t~ted.

Th(' lowl'r left Quadrant, calloo. the artioll
stub, eontaiml 8 ;;implt· narrative!' {onna~ for
all possible aetion~ l'l'Sulting from the roo
dition .. li!<l('Ci aho\"(' (11(' horizontAilint'. Ac
tion cntriu are ginn in the lo""tr riplt
(Iuadrnnt. Approprult(' action" fe<"1lltill!
from the \'&.riOU>I rombination,.; of re'potl--o'S
to the ('ondilion11 will hr indicated in thf
a(,tion ('ntry. An example of d('ri~ion rule!!
and the IF-TilE;": fundion Ilfl' ilIu!traud
in Table3.

By ('oltsiderinK Tahl(' 3, the meaning of
th(' different ~tion~ cl\n br iIlUl'lrairo.
Each clt'(+·~ion rult' ill a rombination 01 It'-

1::'1>011"'e'l to condition~ in the ronflition rntn'
Quadrant. The d('('i~ion rul~ Ilrt' numbrl'fd
for identifi(,8tion purpo. in tiK' rolf
head('r ponion of the l&bl('. The topmo.1

horizontal line 1'C1'r("cnt1l IF ,,·hill' tbt' It'

mainmg horizontal Iint'"I re;)!'t"-,ont. o\~Do
and the double horitontallint' THE~ ~ott
that lhe condition half of thl' table ~ "!'pI
rated from tht.. action half b,- a douhlf' bon
!:ont.al lim.- a.nd tht' P1.ub ~";tioru art ~
rated from the entry ~tion!' by • douhlt

vertical line. ThCl'(' hn~ i.mprove we rttdt-

T ra1!8ialum of Deci8iOll Tablea 129

biJity of a table, and can be preprinted on
fonn!!, Furthennore, many decision table
proce!'.:>Ors p<'rm it ordering on the action en
tri('1l, thereby making the explicit. "AND"
of que--tionable ,'alue.

TABLE" FXA)(PU' OJ' • "ND $ FSTRIES , . "
no., ... , £JITRIES

'YAU£' · , , .
In addition to the dcci!<ion table clements

alread~' discussed, each table usually has 8

table header. The table header is used (or
idt'ntification purposcs when the decision
table is procc!t.-;OO by the computer. The in
fomation that. might be found in a table
header includt'll all fUl, .. ociatcd t.lI.ble number,
• tahle name, the tYIlt> of the table, the
numlx-r of d('Cit;ion rules, the num/)cr of
conditions, thr lIumher of aetioll8, nnd vari
OU! option!!' a\'llilahl(, to maintain flexihility
in fOmlllttl

J(II rendition in the condition stu b is
true, a Y i~ ('nterl'd for that particular rule
in till' ronditiOIl entry ; if W(' (,ondition is
fal!p, an ~ would Ix> (·nterro. In a ~itualion
1rhff't· II partirular condition iA irrelevant, a
don't-can: would be indicated by usc of a
duh I-lor an I

1,,'u oth('r tntriC>', lh(' • and S, al'(' used
to jndiealt mutual exclu!<ion of one condi
tJon "'ith nnoth('r on a rult> by rule basis
!~ !<;ymhol~ hA\'{' bet'n formulated by
Pollat'k, ('t al. (J and King [59]), When
f\'U tht ca arilll: within n ainglt> rule that
thr ~.ti ... farlioll of IIOmr "rcquirecl" t~t (y
or X l'nt')" mak('t! !IOmr othrr I'('(luirNI ('n
lty It (of't"Aorl<' cOl1clu"ion, thrll the sl>ccial
r~tn4 • tin platt· of ~) or S (in Itlnct> of
\ I ran hi, u,..·d 10 indi(·att.' thi" (act. A~ all
i1111'lralion of thl'rlf' inl('f.('onrJition dcpcnd
tnrl(.... ('()n~ld(·r the ('xftlllpir p:iv('n in Table

'Y"I.U[· · , . ,
·W"I.U[• • , . ,

lion tl\'aHablc to insure satisfaction of that
requirement. A marc complete explanation
of these entrics can be found in P ollack, ct
al. (88), while an implication of these en
t.ries for completeness checking is given in
Il arrison [42J,

Varieties a nd Formats af Decision Tables
Three types of decision tables are in cu r

rent usc today, The limited entry table is
the rno:;!. popular and most. often used
(King [59]), Extended entry and mixed en
try tables arc useful in some cases, but be
cause they can always be transformed into
limited ent ry tables, most of this analysis
will be concerned with limited entry tables.
Examples of the three different types of de
cision tables are presented in T ables SA,
5B, and 5C,

In the limited entry table thc only allow
able entries in the entry quadrants are Y
Hrue), N (false}, • (implicit N), S (im
plicit YI, X (ext>eute action), or 1 (don't
Cll re), and blank, All of the conditions and
actions InUiSt. be placed in the st.ub fluad
rants, Each rule of the deciflion table should
be unique, so logica lly it docs not matter
which rule is tested firllt. Some of the tech
niques for l'elccting which rule to test. first.
will be discussed in the next section. Only
one rule shou ld be satisfi ed by a s ingle set.
of conditions, and if more than one rule can
be 8ntillficd the tnhlt> is Mid to be ambig
IIQU. IK ing [58]).

4 tlb.rril;f)lI r42)1. 11('1'(', '''ALVE' must.
!'qual I for Hult' R I to he 8ati!<ficd, a.t the
:lU)\' tinK', it may nOI t'tluftl to 3 nor pcater
than 2 Thi,. nnpli('!l Oll('(> '''ALl'E'.;..; I has
been rj'·I(·nnillt'f1. tht' • will l'Jiminntc any
fut1tltr rh{'("kll on tht otill'r two conditions;
It' thtoy ran only bt' (alIIC'. In other words.
thr • l'(Judaion i. J'('(luin'tt to be (nl!<C for
that rule., and IIOmt· olber condition (or that
lime ml" ill adl-quate to SAti .. fy 11l(' n.>quirc
nrat Rull' R2. on lht OthH hand, require!';
thl' Y\Ll'g' = 3, and thert'foJ"{' is ('er
I.&u:!ly glTat('r than 2, III indicatoo by the S,
Thw,. the S indieall's that a condition is
rtqulted to beo tnH>, .·Ith lOme other condi-

An extended entry table has part. of the
condition in the stu b quadrant and the re
mnindcr of the condition in the entry Quad
rant. The ana logous format applies to the
action part of the table. For example, in
Tahle 58 if credit limit. is .aliafactory and
pay t>xpcrience is fa~orable. then ,approve
the ordcr, By considering Table 5B, It can be

eom""lLIle s.."..,... \ '01 ... No. t. Ju ... IHI

130 Udo W. POQCh

7'IJpea 0/ lJed3ion 7'abfe~

TABL E 5A L IM1TJ"U I~!<."TRY T",IH t ' - -- . -
, , , •

c.un WilT IS S.\T1SfAl;lllln' • • • •
'AT lll'EltlUltt IS fUO_.1 - , • •
$1>[(1111. CUARNItt IS OITAI 1O - - , •
1'(_ oU'f'!I:M Olau • • •
.1OCJU1":' •

TABLE 511 VXTF.XIH'D ENTRY T ,-\Uu:
--

.
, , •

c.:Dll lI'IIT SoIlnf~ tIO$.ITlV~ IJI$II'IVICI...-

,,.. lI'lllOltl . ,~ w.~

VIC'''' CUAaMCl - . ~, 0If':':' -. - - ~"

TA ULE 5C)hXED El'o"'HY T ,uu.£ - -
, , •

taD!! "'!OI' IS 5AI1UII(WIII' IIISJllVACDf YMfl1I'/CIOOI'

... "PUll*:(- • •
'"Cl CI,.LWIIICI - . ,
ot: __ ~1 , , ."' 0_. ,

secn that only one nction line is required,
whereas in the limited entry table t o ac
tion lines were required. In general , it can
be sajd that the limited entry table com
Jl~SCS a table Ycrlicnlly, whill' the ex
tended enlry table oomprcs..~8 it horizon
tully (IB~l Corp. [48,49]).

The mixed entry table is a combination
of limited entry rows and extended entry
rows (see Table 5C). T he PERFORi\1 and
GO TO statements in Tables 5A and 5C
were not. just. arbitrarily selected. Thc
PERFOR)' I , as used above, has the same
connotation as the PERFOR)' I vcrb as used
in CoBOL; i.e., execution is temporarily

Co/npulUl1 Su,..'~. Vol. .. !'i'o. 1. Juae 1174

tra nsferred into a closed table {or t1 tubrou
tinc) , and cont-rol is subsequently returned
to the next. sequential action of the rule.
The GO TO verb is used to exit. to an open
tabl€.' or subroutinei that. is, no pro\-ision is
made for control of execution to return to
the initiating table (CODA YL [18)1 .
When constructing a tAble, the GO TO
statement. should be lht' last. executable ac
tion within a decision nIle.

Decision Table Nototion
Thc basic ~tructure presented in the pre

vious ~ction is caS)' to learn and under
stand, yet. a logical step-by-step analYlOis is
required in the prelluration of a completc,
accurate decision tabh~. One of the ix-nefi18
of this tabular method of communication is
its adaplnbility to sY.tilematic and analyti
cal techniques for ('h('(king compietmeY,
contradictions, and redundancies [8, 11,25,
26, 43. 44, 52, 53, 88). Before cons.idering
some of the analytical techniques, it is nee
eSi!aty to define some of tht' notation and
terminology in common usc.

One of the specific types of Boolean alge
bra functions is used 8$ the basis for most
deeision tables. This function, the .~SD
fundion, is considered to be the orden>d set
of Y, N, 1, or blanks that. apI)Csr in the
condition entry oo,.e8 for n particular deti
sion rule. The application of the OR func
tion can also be made in detbion tables,
howe\'er this anah'~i8 will be limited to lht
A~D function <i-lil'!<chhorn [45]1 Cc~id
cring Table Sa, the following AXD func
tions arc found;

the ANI) function of Rule I = Yll
t.he AND function of Hule 2 = r-.'Yl
the A::"'D funct.ion of Rul(' 3 = X)."Y
lhc A~D function of Rule 4 = XX~
To detennine whether or not a deci!;ion

rule ill satisfied, e\'sluate the AND funclion
for that decision rule, and chet:k that it
equals t.he required tranMclion. For exam
ple , the A~D function of Rule 3 {N'!\'YI in
Table Sa would be the «(!\ected deci~ion rule
if the t.ransaction wa.., to sl>pro\·e the order,
prO\'ided ~pccial dearanre was obtained.
evcn though credit limit and payexpeMcnrt

was unsali::!factory.

Definitions
Two AND CUlictioll! are considered to be

dependent if a tr&nttaction exists that satis
fies both AND functions. If, on the other
hand, a transaction sati~fies one, and only
one, of the AND fum'tions, that AND func
tion Iii Independent.

A 'Pure AXD june'lion is one that con
tainJ:i no I (don't-cares) (Pollack, et al.
(SS]) The (ollowing i~ a pure AND (unc
tion; ~. ~. Y (of Rule 3 in Table 56),
.. hcrt "." il! dcfined ns the Boolean opera
tor ANI).

A d('('i~ion rul(' is .imp/~ if it. contains a
purr AND fUliction. For eXllml)le, Hule R3
in Table nc is I.<imple I!ince it cont.Ains the
filiI'(" ANO functioll N·N·Y. If nn AND
function ronlninll on(' or morc l 'tI, it is con
~irfcred io bf. a mueti AND jurldion. For
ttample the Al\tn function of Rule 2 in
Tlble5C ia N·Y·I, h('nce, Rule 2 i!la COln

pltx deci.l'ion rult'. If nil the deciMion rules
of • d('('i~ion tablc liN' f!implc, the table is
drfim .. 1 aM • jlillioblt; a partial lable is a
df'l'b-Ion table that ha .. tiOme mix('d deeision
nli

l~undal'C)'. Contradiction. and Completeness

&rot'(' dlkUt.l'lOR tll(' problC'lns of rroun
bn('y, rontradlction. and complet.cnC'P. it.
it nt~ry to outhTK' t.wo of the ba.sic rc
qUlJ'('lOl'Il~ for d«ililon tabl~:

'II Ewry d(,(,l"ion rul(' mutlt. tlp<'ciCy at
If"8l!t on(' attion (w("ftk condition).

121 Earh tran"actlon must be able to
.tafy one, and only one, J:lCt. of con
dition, in a d('('iJ<ioli table, Although
thcrt' art" exct'pllon to thi~ require
lIlf'nt. for Ihl' type of "('onvcntionsl"
lablfff fI'ollRrk, ('l 81 [88JI under
f(J~ui('ratioll h('rt'. thi. 1"\"'(luiremcnt
hold .. (~rong conrhtion)

IQ prartlt'f' It I' o(t('n ron\'('nient and in
luitl\,~ to df'finf' all rul('1l 0.(' .• no ELSE)
Implnnr foOmt no artion rul(' ; how('ver, in
~. all of lhnr no-arllOIl rult1I _hould go
to ~ F.I-"'r .. thtrt'for~ tht' n<'t"d (or Re
~t (I' For f'Xampll", ('on"ider the
IltGalaoo "'11,·1'(' tilt' rondltionl'l In a dt'Cifllon
ru!r al'f'; If 1M nu.tomer rt'qu t.8 a first
daq tirkf1. and a finc..-tlau f('al j a\'ails-

Tramfali()1l of Deeisioll 'l'abfca 131

ble, Without 1111 action, such a8 lIissue 8.

first.-cluss ticket," the aoo,'C conditions arc
nonscnsicul. T he seeond requirement, which
is one of the underlying axioms for dceision
table theory, must be true fo r other decision
table rules to be valid. Compliance with
Requirement (2) will also help to insure
completeness of decision tnbles and reduce
contradictions and redundancies llmong dc
cision rulcs.

COlltradictions nnd redu ndancies are
checked by examining the decision ru les to
be certain that between each pair of deci
sion rul<,g there exists at least one condition
row with a Y, N pair for the two rules, If
this Y, N pai r docs not exist, simila r action
entries indicate redundancy, nnd diffcrent
:lction ('ntries indicate contradiction (Pol
lack [80]). Examples of contradiction and
redundancy are illustrfl.ted in Table 6,

Rules R I and R2 of Table 6 arc acc<'l)tn
ble rules because neither is redundant nor
contradictory. However, R,2 contradicts n3
and R 4 becnuJ:ic they all have the same de
cision rule. yet different action cntries, Re
dundancy C'xistB bet.ween R3 and Ro1 be
cause both hll\'e lhe samc decision rule and
the same action,

A quick "isual check. comparing t.wo de
cision rules at a time, can easily identi(y if
any redundancy or contradiction e.xists. If
two or more rull'S do not have at least. OIlC

Y, ~T pair in any of the rows, and the ac
tions specified arc not. i<iC'ntical, then a con
tradiction of logic exists, An ellsy WilY to
mllke this check for redundancy and con
tradiction is to compare the AND functions
of different decision rules. In the following
eXllmple~ the mixed AND fUllct ions nrc

TABLE O. Ex"".I".1'; 01' Ih:uUNI>,\NCY ANI)

CONTH"'DICTION

" " " •
CI , , , ,
"

, • • •
" • • • •
" •
" •
" • •

Computu ... au.....,... \'01, •. No, J. J It'I~

132 Udo 1V. Pooch

broken down into pure AND functions to
corrcct the redundancy problem in Table 7.

TABL!-; 7. CRt;DIT ApPROVAl..

,
" "

ClI£OIT Ilk , , •
~"y ElP[RIOCl: fAVOItoW.r , , •
f'[Rfl)RII APl'IIO'([om. , ,
co TO II[JrtT OItlER ,

Rule Rl of Table 7 breaks down as follows:

R-H'H
(RI)

Rule R2 of Tahle 7 breaks down as follows:

H-R ·R ,,,,
The common A!\tU function of Rules 1 and
2 is:

y

y

x

This AND function call be eliminated. The
redundnncy-free table is given in Table 8.

TABLF: 8. IhwUH:O CRt:DIT ApPttO\'AL

" " CIl£OIT 1)1(, •
PAl UI'EItIDla: rAWOItAIl(, ,
f'[RfCWfl APPII)Y[Olllln •
00 TO IILl(Cl OIDE.!t

It ha~ ~n 8ho""n how redundancy and
contradiction can be cheeked in decision
rules that have both pure and mixed AXD

ComPIIt"'l SUrw)'a, Vol. t. So. t, Jw. 1.'14

functions. In Table 9 a summary of all the
rules for contradiction and redundancy are
presentOO for a pair of decision rules RI
and R2. The AND function!! of RI and R2
arc represented by AFt and AF2, rCl!pet
ti\'ely, and thl' actions are rcpl'C5enled by
AI and A2, relilledively (Polla('k. ct al.
(88]),

Another problem that always ari~ is
whether or not the decision table is com
plete, and if it iM complete, is there any
redundancy, or rontradiction in the table.
The first step in checking a deci@ion table
for completeness is to alUl.lYle the table to
see if the table containl'! pimple dcc~ion
rules, complex deei8ion rulc!I (don't-cares),
and if any EL.C;E drcillion rull' is pre&'l\t.

Pollack , II iek~, and lIarri!lOn l88] have
develoJ)oo and pron!d that there exist t):.

actly 2~ indelX'ndent pur(' AND func:tiona
in a decision table, where n is the number of
conditions founel in the decision table. For
example, in Table lOA, three (n = 3) con
ditions appl'ar in the deeision table, thM
fore 2' = possible simple decision rules
mm:t exist. All of the deeision rult". in Table
lOA arc simple deeision ruletl becauae there
are no "don't cart" ('ntries. Furthermore,
the decilsion roll'S art.' indcpendent because
in any two deeision rolrs, one of the fune:
tions contain4 a Y and lhe other, an N.
Hence, it can no\\' be stated lhat Table lOs
is a complete dcci ion table (Pollac.'k, et al.
(88]1.

1 f t\ transaclion in Table lOA is Us guert.
asking 1\ bartender to mix him A ctrtain
type (bas<'l of drink," &everal rules could
be combined. Th(' ruletl in Table lOB i\lll!o
trnte how Table lOA could be rewritten to
contain both s imple and complex decision
rules. One way to te!'t Table lOB for com
pleteness would be to expand it into Table
lOA j however, the rollowing preferred
method has been dC\'e1oped (Pollack, et a1.
(88]1 :

(a) Cheek that each decision rule con
tains a~ least. one action.

(b) Cheek each pair of decision rule\l to
see if they are independent. Do tbLl
by cheeking the A NO functiOn! ~f
the decision rules to see that there IS
a Y in at least one po!ition of the

'l'raliaiallOIl oj lJeci$l(m 'J'abie8 133

TABLE d. Co lIITkADlcrlOX AND Ih:oUND;l.NCr

A - ACTION
.\F • ANI) lo'UNCT.ON

function and dle otll('t {unction con
tains A N

lej tihow that th(' 4 rules in Table lOB
tM I~ expanded into 8 decision
rul('!l.

To a(,(,()Ulpii!<h 1('1. f('call that e8ch deei
')em rull- rontaining Iln AND (unction with
an I in r l)()II"itiolltl is rqui\'al('nt to Z" simple
dl'f'i:.101l rule!! (Pollack, ('t. 81. r 11. For ex
amplt', In Tabl(> lOB.

HI h.,2' 2
IUbu;:t I
1Uh.u2'.2
R4hu21 _ I
!Uh .. 2- _ I
Rlhu::-_J

niTA I. Ii slm'u; UF:Cll'IION RrLt.:.'i

TahIr lOB tttl~Ii(.. all of the thrl't' t(, .. 1.S ror
f'om"l('u:nt ", tJlt'r\'foJ't' it i1'\ a oomplcte de
C'l8l01l lIlbl(".

r~,(, \uy to irurure oomplt'tf'nl'o;" in nny
dttlflon t.blt' i~ to incorporate the ELSE
1\I/('lIItO IIll' dj'('i~ion table. The ELSE rule,
by ddinmon, in('lu(it" all tull .. " not ~J)(>Cifi
eaJly p;jwn in tilt, tahlt , (""uslly lh(' ELSE
ruJt. II lIM'I'('I)' tI. t'on\'l.'ni('nt catchall nile
p~ I' the t>Xtf'('m('" right of the tftbh.'
.,th I Il'tl('('iAI nmhol in tht· nll(' h('tl.dcr
that Idcnlilif'1 it'a III1('h Old)ani('1 [69]1.
For df'f'illion 11M,.. tht&t Art' COnvt·rtNi into
tornPUII'r I'rop;rlma, EJ_"'E rule" rrou('(' thc
amount of n('t'(ll-d roding, 111('rt'by makinp:
lko P~m mol'(' ('ffiC"i('nt. JIow('\'('r, the
£1...,£ nd~ liouid rlOt III" u l'd III this way;

TAJ3J."~ lOA. EXI'.l.NOt:U BARTt;ND~1I

, . •

--
"". --__ .. a 1100 __ 1'1.11
wn:1 ___ TII"Uf __

•• n __ If..,." _".1 . , . .. ,.

1'ADL.I~ lOll. BMtTt:NOt:R

-- --, , .
'''TI -.. __ Mil (K.WIIIlflll
0,.,,,. -.. __ 'v Ma ! __ I

111'1(1 __ .. _ 1_",,) ••

III'TD_"'OWlloIUUU' ... lr.I, '.

orll'"'' A $On 0ll0!;

•

it should be used only for those transactions
that anab'lSt~ !lAY CAnnot possibly happen,
and nOl IHI n ('st('hall for thc COn\'cnicnce of
th(' prnctitio,l('~. EV{,II wilh thc ELSE rule
prc"cnt, II dcciAion table must. still allow
(','cr csse to occur. In other words, a table
rnu~l be chet'kt'd for {')(Rctly how many sirn
"It' rules Ilrc in the table, and thai the total
number of ELSE rules docs 1I0t. exceed 2~.
If the total docs exceed 2~, t.hen a contra-

134 UdQ W . Pooch

T\.BU ' II T . FLSF H U I)' , " II). , . 0-

. , , .. ,
, . , .. ,
, ' .
'-".C1l.A11 SIJ!

tIIlauT(Dl'FlIl.oa;

""-tILl" _,

NUMnrm Ofo' POSS I-,
OLE SIMPLE

, ,
, • , ,
, ,
, ,
• , ,

, • • , , • , , •
• • •
• , ,

, ,

,
, ,

HULES ... 2" _ 2' .. 32
:N"UMBER OF SL.\IPLE

BULES REPnE.

=

SENTED .. 2' FOR EACII HULIo:
/(1 _ 2" _ 4
H2-21 -4
1t3-2" -8
IN _ 21_Z
n5 -2-- 1

NUM_BER OF nULf;S
RErllESENTEO BY

19

E I.sI~ HULE ... 32 - 19 ... 13
Convel'3ioo of EXlendt!d Entry to Limited Entry

diction or redundancy exists. If the total is
Ie tban 2-, it. may be readily determined
how many simple rules arc represented by
the ELSE rule (Poll ack, ct a1. [88]). An
ilIust.ration of the number of decision rules
that. may be represented by an ELSE rule
is proyided by Table 11. Since there a rc he
conditions, there nrc 2~ = 32 pos.sible sim
ple decision rules. T he number of simple
rules actually present in the table is (2: +
2~ + 2~ + 21 + ~) = 19. The difference, 13
(32 - 19), is the number of rulcs repre
!>Clltoo by the ELSE rule.

In summary, checking for completeness
in decision tables has been discussed with
the following three possible constraints:

1) Simplc dech;ion rules only.
2) A decision table with both siml)le and

('omplex decision rules.
3) Decision tables with an ELSE rule.
It should be kept in mind that even

though a decision table is a full table n
check for redundancies and contradicti~ns
is still a requirement. Once a table has been
found to contain no redundancies or contrn-

CompuWli: Surv,.,... \'01. t. So. I. J une 11i14

dictions, n check should he made to deter
mine if it is complete.

Uses end Applications of Decision rebles
Decililion tables are useful in many are&!

of application. This S('(tion will analyIt'
some broad-ba:;ed uses of decision tabl~,
includinp; one specific application.

In Simula tion -'1 odell

The pre\'iously cmph~i~ed ad\'antagcs of
decision tshlrs in handling complex logic
mak('fl them a definite aid in fonnulating
the logical How 01 l!"lmulatioll model!;. Tht
queueing !!'truclurcs invoh'ed in " model are
governed by decision rulef! which can be
easily del:lCribcd by decillion tAble usage. In
II model employing d('('i"ion tables, the ta
ble "tructUfl.' is mainh' Utiro to delerminr
whetllt'r a subprogram ill to he t"XetUlOO at a
particular time In the !imulation. Dcci.i;ion
table~ ulso pro\'ide It. diagno~lic aid for the
progrnmmer, I1S well lUI improving the gen
ernl communication bttwct:n the program
mer and hi~ problt'm (Ludwig (661).

In an Oraanization

Deei~ioll tables can be w·ed at clifferent
levels und for different fUnctions in an or
ganization, Policies of top management
may oftl'lI be expfC!.,.ro labularly. Tabl
may be apillicd to area~ 8uch as engineer
ing, mathematics, personnel. and account
ing. Furthermore, dct'~ion tables Call lit
combined with a deC'i~ion documentation
plan ",ueh as that of Fergus [29). Feature;
of this Illnn are:

1) Use of tables throughout an orgBniu
lion to document all dNkion making
that deserves documentation.

2) Tabk'8 and their rolt'>- are c~-rerer·
eneed. .

3) All datil elementt. U.i'ed in an orgam·
zation nre cataloged and roded.

41 All the,..e tablell, d"ta elemenl rodt'!,
nnd cros.~.refercncinft information are
maintained under computer mnttO!.

Following this plan pcnniUl: I, ~)i .. plny of documented dec:ision mak
mg,

7'rolllllatioll of Decillion Table8 135

2) Instant. traring of the effect of deti
I!ions throughout. the documented
slructUI'('.

day entitlement lIlay both be influ
(meed by length of servicc; the general
decision table structu re would COJl -3) Rapid reflection and implementation

of d('('i~ion rule ehangcp at aI/ related
lower I('\·el!<.

,<;ider all the relevant states, but the
element considers only those which
affect olle derivatioll, pensions or holi
days, ill this case.

41 IlllproV('JnCnt in .. tudy nnd de1:lign of
la.rge jnt('~ratcd SYtitC'IUS while provid
ing a total vit·\.\' of the organization's
natn lIowl!! find r<'quirelnenls.

51 EIl.~il.'r application of nd\'nnct'd tech
nique6 for Ii)'tol('ms III111ulntion Rnd in
(ormation fio", l:'tllrli('s,

2) The e'primal1' conditions" determin
ing when an clement. is performed, arc
introduced.

:-:UAA{~t('(1 Ht'p. (or ('\'olving a derision
tabl!' u!'ag{' pltHI in an organization can be
outlin('(f 8'1 10110"," (F{'rgus f29J) :

I) Ar1luirr a bri('{, brond picture of what.
tfN'i!<ion table ulI'ag(' i.'! nllabouL

3) Substitute a "usc" list. for "go to" in
formation in the action entry of a
general decision table form. (This usc
list. contains the nallles of other ele
IDent..s that use the derivative.)

Tllis variant decision hlble form is consid
(' roo to be more manageable /)ecau!:lC the
entrie~ nrc limited to the combinations of
couditions that. yield the d('rivation of only
one item. The ne\\' table is output-oriented
in that the designer cnn work bnck through
the output 3Ild dct{'rmine exactly which
rules have been used for a particular dcri
'·ation. The new table form also avoids any
processing sequence, and therefore permits
directing attention to any olle clement, ig
norlllg the rt'~t of the ~ystem (Grindley
[40)1.

2J lIa\'(· At kfl,~t one individual in the
Ol1l:lInittltion h('rom(' nn expert with
11('(il'ioll tl\bl(....

31 .\ntl('ipRt{' prohl('m~ to i)(' illcurrC'd
throu~h W.~Jtl'.

..JI Uan 4 ff·ft'rl'II(,(· dOCUffi('nt.

.'il Enrol/rag{' thl' 111-(' o(d{'ei .. ion tables.
61 Explain table. thoroulthly to sytltems
71 Follow up 011 01(' program:

at Idl'mity Ami rorr(>("1 problems.
hi Look (or ar('s!! that are not u'''ing

tabll·'. and find out why they ate
not IH'ing u.~('(1.

t'l Kf"'P up \-\"Ittl fh,\,('lopml:nt.s in the
f1'ltdnitlUiol1 lhllt might :mggest
t'hMW in lilt' liN' o(lnbll'l'I.

/'1 9'/'",0(1('.

~Y~II'lIIatl(, (40,4I,!i6J i~ II ~('t. of tech
niqll' for ,h'!IIiItJlil1lt IIl1d d(' .. crihing iufor
ib:Iltorl Y h'rn" whit'h ,)('mlit tf\l' u"('r to
tOI:If'f'fltra'l' Oil till' dl'I'iJEn and r/("'('ription of
a rfttom _Ithout hninll to ('on~idf'r prob
lem. f'O!lt'('rn,..,1 "-Ith fl' (('m impl('menta-..... .

The- bruit tall'nwnt in i!f\'l'It('matiefil is
(,.t11f'd an 111''''(111 nllt ('1('Iut'lIl is Actually a
'Pf'tiaJ I'1Uf' of • d~1 ion table. Three fell

of thl! d«itlon tabl('-likt" elf'm('1ll arc:
II III tOnlitltff to pro\'idin~ rul('1J (or
ot)(.t;IIlIbC one II, flntion only. For~
ampw. 'If'DIoMJII ('onlflt.ulioll and hoh-

I" Automatic Tell Equipment System,

The usc of a progmmming language,
"a~1 on decillion table techniques, permits
t.he te><t cngin<'Cr to write te!:lt statements
(-,Il~ily, :tlld permits programming II test
specification with minimal knowledge of
progrillmnillg techniquC8 nnd of the ilJlccific
te~l equipment system involved.

The envisaged program involves the
process of trllnslnling tel'lt. rC<luircments into
8 te~t program, A testing system must auto
maticall." perform Ilny !.'cquence of tel't..s on
Il unit bcinp; tested, nnd must chooS:" a ne\\'
li-Cquencc of tel:'t.'" in accordance With prc
\'ioll'" results. .

A modified d('('ision table structure IS

u.'ol'd with the t('.4 ('onditiOIl~ placed in the
rondition statements quadrant of the table,
with the rt'><ultant test. actions being placed
in the 8.<'0011 statemellts quadrant and the
ncce!',·l\ry· t~ting parameters til!ing in the
rule:-< portion. The ad"anlages gamed by the

CompuWIC bu"..,... "01. t 0. 2. JUM 11'14

136 Udo \1' . Pooch

decision table structure are, once again, to
enable lhe test engineer to d ivorce himl'C1f
from ooth kno\\'lcd~e of programming tech
nique~ and the test. ('quipment. it.sclf.

III. DECOMPOSITION AND CONVERSION

ALGORITHMS

Evolution of Decision Toble-fo-Computer
Progrom Tronslolors

Systems analYiOts And individuals involvoo
in program developmcnt. wcre con fronted
with situations in which exist.ing methods of
problem descriptions, such as flowcharting
and narrative:!, were inadeqUAte. As n re
sult, <ieci!;ion tahlcs were im·cntcd (1\ Ic
Daniel [67}. Pollack [84]). Truth tahh.'s like
that. in Figurc 2 and logic tables, such IlS

Federal Income Tax forms, had cxistc<i
prior to the introductioll of decision tabl~;
but they did not hfwe 1\ standard format,
nor ere they automatically com·crtible
into computer prop;rams (Quine [90, 9111·
The logic \1:;('(1 in lhoec truth tables pro
vidcd a ready springboard for pioneers in
the de\'elopmC'nt of detision tabl~. The
truth table in Figure 2 indicates the truth
valuCl'i that. X and Y can assume. as well a"
the truth \-alues of the logical statement!l
"X OR Y" a nd "X A~D Y". An up-to-date
discussion of the application of decision ta
bles to tax fo rms is given by Ain~lie and
Kenney [J}.

In 1957 a task group lit General Electric.
onc of thc earliest. users of decision-slruc
tured tAbles. dc\'eloped such lables, and a
computerized method of solvi ng thelO. Thc
processor for sol\'ing these tllbles initially
operaled on un lBi\J-702 . and was s\lbs~
quently implemented on lhe tB'M-3DS 650
and 704 . An improved processor and' lan~
guage called TABSOL (Tabular . ystcms

, , • v • • A • , , , ,
, , , ,
, , , , , ,

-
,

FlO. 2. Truth ll.ble

Compuu s.uv..,. .. \'01. l. N'o. 2. J" ... 1114

-~ n_

• • . ,
c·

-_. .-
n •

• • n.
••
••

.~ .
,~.

"10. 3. lIorilt,,,Ual "lie furmat (l"IUI"'L~

Oriented Lnnguag(') wao, implelll{'nted on
th{' GE-225 in ('nrly 1901 {3t;, SQ, 51. 63,
88}. With the T.-\II!'OI. J1roeh~or, an analytl
could by pas;; th(' proltrAmlllf'r, and inllUt
thc prepared dl'ci!lion tahh· directly to the
compiler for Jlroc(·~illg. Thill IlrO('C,ooor,
which is I:'till in IN', utihu's the horisontBI
rule formnl, III \\'hieh tht' dl'ei~ion rnk~ Bft'
rend hori1.ontally. For ('xamp\(', tlU' fit'l!t de
cj,;ion rolt' of FigUfl' 3 n'Blk If It(,111-.-\ EQ
3 Bnd I t('m- B ~ B 4 and I h'm C ~.:Q 20 thca
GO TO TABI.I';"2

About the ~lIm(' timl'. H t" ·eil\l rommittee
for the CoI)"~Yl. (('(Jnfl'n:ll('(' on DAta
.~Y~tcm$ 1 ... llnRUag\·.;1 Groull ... ludyinJt d«i
:-iOll table,,;, dt·\·elol)("ll a d('('i:oion taille lan
gunge known nO, Dr.-us-X. Itlt·.,i .. ion Ta
ble!', Exp(·riult'ntsil (i. 16. 17. 19. 69. 77, is,
79, SO. 82. 861 111 196;",. a follow-up by a
working groul' of tll(' I..&.- .\nllt'! Ant
~lCPL'\~ (~Pt'('i4IIlItt·rt·~t c,rou,) for Pro
grtllnming Langua~t'lIl n: .. ulll'd In an im
pro\"oo l>roct''''';()r raIh-fl IlETAS-{),'l. Th~
proce,.."or. inu·gratt'fl into a C(lIJOL rolllpill'f.
\\'1\:- n !<ignifirnnt d!t.ta prorl.,..~inlt II! velar
ment [82, 9:i, H).I).

Otht'r d('ci,..ion tnhll' iUlloyaton- in the
enrly J96(b WNl' Hunt Food!! and tht' :,uth
(>rland Company. Ahout thi!! timE', work hr
I B:\I in ('olljunNion 'nIh til€' Rand ('ofllO"
ration, '('..;ull(·d in It I'ror('-o-or rll.llOO
FORno, u~inR tlu !;<'il'ntlfie prottn'mrninR
langunge FORTRAS (F('rp;u~ (21)1. prior to
FORT"', mO!"1 nr till' prO('("t,";()TlI h:t,l ul<l"li
COBOL. TIll' In:ouranc{' COml,any of :oiorth
America, Ilroduc(-d n 11('('i.. .. i(1O tahle rrote'
~or cnlll'(l I.onoc which Wt\.!l u .. ed on the
18~1-70s0 [21,22 36.371.
~\'eral p;OH'mmt"nl Itl:l·nril'tl al!'lO parUti

pftt('(1 in thi ... ('srly tlt.wlnplU,,·nt. CExnB
\\:a.~ de\"t'lopro through fa joint f'lJon of dlt
l nllro :-IAU", Burt'au of tht" C(·n~~ and
Sperry Rand. A Pf'O('(" r i-ub8tqu("(\1 to
CE." ... o wa ... T .. \B-iC whleh. Iikl" fOKfd.

u~l FORTRAS as itM ba,,<, programming lan
guage_

One of the mon' unique proc('K."Ors devel
oped during til(' I~ called Pt:r (Prcpro
('(':;.-or of Enrorif.od Tabll's) W8~ 8 product of
Bell o(Cansds. PET, '''''lllg a PI... I decision
[able lallgualtl' program, j>rodurcd PL, I
<;()Urtt' l!!atcmtntJo. I Frrgull {27] I Some o(the
mort rt'C'rlltly dnl'lol'\('fl proet'.-.:sors include
DE'TRA.", Dr.TOC', O.:r" .. , DETAB-70 (~Ic
Daniel [68]l, TAHTRAs, :--.v .. , DF,(:U"l'S (Pol
lack, et al. {88j), and J..ooTAD (King [54]).
"1th an applit'lltion in l!Yt4t('mlltics [40, 41,
.16}

:\Ian~' la\'orftble C'omm('nts huvr come
(room thl' 1I ·r..: o(rlt'C'i"joll tnl;l(' ... TIlt' 8U

J)(In·I"lIr of Im'flar/Ulon 01 computer pro
gram" (or thl' I9fH ('('n",u!l o(Agriculturc
~[atl'tllhltl lhr \'l'r\" ('xtl'lI!'!i\'(' lind rompr{'
n..n><I\· .. (,()1ll'i~t(·nC'~: I"l'('rk .. and ttl!' r('l'ult
inR dt'footrsh/c adjtl!ltllt('n~ in dntll could not
hur ht'('n ('omput{'ri%('fl without th(, use o(
drt"inoll tablt'l!l l,\frllltJlid (69j)

7'rallslatio1/ 0/ Deci8ion 7'ablc8 137

should be bnsed on efficiency criteria estab
lished by the user {2, 12,24, 73, i6, 85, 87,
89,92,94,98. 108}.

Efficiency of n decompos.ition IIlgorithm
usually IlIlIs into one 01 two claSSifications;
namely minimi!:lltion o(storage neccssary
(or the object. program (PoUnd. [85J.
Sprngu{' POOH and minimization of proc
e~ing time (King [551, !l lontalbnno [71]1.
It is impossible, with turrent t('chniquC5, to
design nn algorithm that would he glohally
optimal in alll!itlllllions, so it is neCClSlS!lry to
unalyze th(' constraints in each situation
before determining what kind 01 IIIl algo
rithm to consider. Once nn algorithm has
heen !<el{'ct{'(l, it rllll {'ithl'r be used ill a
hand coding tcehniqu(' or huilt. into a pre
proce.~!<Or compil('r for automntic trllllsla
tion of tables (Pollack, et al. [8811.

An txtrt'ffi('ly rompl('x flI(· mainttnnncc
rrollllm fttolle at tht· l":4AF AR~ IAUlO
autir Rf'IIul'ply 1..o"'~lJr:-'y t('1n 1 at XortOIl
.\FD. Calif .\lmOflI \·('11 man y{'atS had
bctn ,,"·m trying to (/(·6/1(- tlt(' I>roblcm U!l
IbC RarraU\·I' fll-.. C'tlillion. and fiowchsrt.8,
but to liull, nail . TII(-n ft cr8 .. h program
UIUl.g dt't'UIIOII ttlbl,' ,,"M ilUfllt,mented_
Four allalyn IIJM'II! 011(' Wl'i·k t-.tabli .. hinp:
, 11'"1'I-IOn tahl(' (onnal. Thn't' w('('k~ Inter

Pl'Ohl"rn" II rurnplr\(... 1 (Fi",lll'r (32) I,

.:\lost of th(' decomposition algorithms
d('al with Iimit('{1 ('ntry deci;:ion tables
rMh('r than the extended ('nlry or the mixed
entry de('ision tables [85, 92, 94, 98)_ This
doc,>, not ("reat{' a 11roblem i}('cauS(' extended
alld mix{'(/ eniry d£'eision tahles can be cag
ily changed into limited entry decision tn
bles_ An extended entry table is illustrated
in Tnbl£' 120 and an equivalent limited ell
t1"\" "{'r$ioll in Table 12b_

'There nn' two mlljor wnys of trtl.Il!<laling
a limited entr\' !able into a computcr pro
gram, Th{' fir~t technique, railed scanning
lor, at more llOphil'ti('utcd levels, the Tille
mall.' techniqlu' (5, 28, 55, 105]), involves

TecMiques th.d in Transloli~ Deciston Tables
nl" purpo,"" 01 thi~ "I-(-,iOIl i~ to di.!'cu~

!hI' ltanlilatmn M dl'C"I'ion IJlbl{'1I into rom
pull r ,'fl)J!:ram . For thi" Ilurpo,.;(', nn or
IkTl~' rll'Or''I.ltm·, or .Jp:orilhm, iN" n('('(/{'(I to
Inu)al .. the tat",'ar ttut'tur(' u(the d('ci
son '.hlt' into an t,mrlf"lIt ('Cjut'nc(> of lIla
ehmr-(>ll'tt.llahlr iflf'trurtlOn!f, Th<, tf:nn de·
~por,t.O" 11 o~1 to ,I, rril,... An), o(the
ItdmiqUfl by "hie-h ,If"('i!<ioll tnhle,. Itr<'

torn't"t'ti tnto too\'«'nllOnal 1I('(,I",ion tn'('ti

lit "~nlRlJJlK lanKUARI' f Pollack, ('t AI.
~'\, T .. o main rl~ or dt'f'l.!4ion table
·~h-t proruam rom·N'.ion algorithms
AI't 1V1i1ah1t' !tft', Ot fltt"·ork, "ltUrture
IIartbod. 171 , . , 92 , 9-1 981 anti rnuk JJl('~h
ada '.5.), 62 9J nu. alr.:orithm '1['ClIon

TABLE 12A. OHIOIN\I. EXT';:oro'IU;I) I~STIlY

• • • , .
-.,. . . , , . , .. , . ' ,

TABLE 12H. =' &1\ LllIIT);!) ESTlty

,
"" · . , •

• •• , .. • , . , ...

O;.mpuuq s..n~. Vol •. No.2, Ju,,", 1t74

138 Udo IV. Pooch

testing each transarlion again"'l all perti
nent conditions in a single rule and [lean
ning (lcross the rules until one is found in
which all conditions are satisfied. T he solu
tion i'i said to be in that rule, and conse
quently the actions associated with this rule
are cxeeut~l. To minimi~e run-time for the
resultant Jlrogram the rules are often or
dered on the frequency in which lhey are
expected to be selected (Fergus [281, Pol
lack, et al. [88]). An example of the scan
ning t('ehniquc is illustrated in Figure 4,
u~ing T able 13 as a sample decision table.

Scanning Technique

T ABJ. Jo: 13. SUII'!.': ScANNISG T AUL&

" • •
• •
"
"

,,-;-_ n.--:--"-T-

'I •
• " • •
.\ , , ,

"

• •
FlO. -I. Tesling sequence of sample lable.

for example, thc "AND" function
C I ·C2·C3·C4·C5.)

The second technique for t ranslating lim
ited entry decision tables into computer
programs is called condition telling, or the
netU'ork technique {Fergus [281.)Iontal
bano [71 11. This method tests one condition
at a time and requires the rul~ in the deei
::;ion table to be unambiguous; i.e., one
transaction cannot Mllisfy more than one
rule. The network technique .takes ad\'an
lage of this rC<luirement and sC('ks to isolate
the unique rule satisfied by each transac
tion entry. It is primarily rondition-ori
ented (Pollock, et al. ISS}). A typical dc~
composition tret' for a deciaion table. is
given in Figure 5 (Fife (3 1)).

It. can be obt<ter:cd from Figure:; that one
row of the original decillion ha!'i been se
lected as the starting point. The particular
row that. i~ selected for a !Eluting point. tan
be based on t;C\'cral different criteria that
arc discussed later. The condition in the
,;elected row becomes the fi~t rompsri.tIOn
in the tree structure. The original decision
table is then det'ompo::;ed into two 1011btable!

"'-.,-
" . .' " «

...
The transaction vector is compared with
one condition at a time in cach rule. For
example, test the table at the fir:;t. pertincnt
condition and if the first. condition is satis
fied, test the transaction entry against the
fi r:;t pertinent. condition of the second rule.
The complete scanning technique of Table
13 appears in Figure 4. (Note that. Table 12
contains mutually exclusive conditions such

" a

,

• •

Ef1
I' •

lll.at, M soon as "Y = I" hIlS been deter-
mined, no further checks on the "Y" values

•
need be made. Thc • notation eliminates, FJ(~. 5

Computmc &'1"'1!11'. \'01 ••. No. J JIAM! 1174

7'ral/8laliotl 0/ Deci8iol! 'I'ab11'8 139

I«mtaining one I(>!o..'; row). one subtllble and
one rule, or two rulcs; <'ll('h o(the.<:e is 8SS0-

('isted ~'Ilh each hranch or th(' compnrison.
A row i:: thtn 8('ICtted from each of these
~u!Jtable.s and i13 rondition is tcslt'd. This
pro('(·"~ 18 contlllu('(1 until tsch ntle of the
original dl"Ci~ion table or nn ELSE rule np
""Sf'!; as one of the branrhC8 or a oondition
,Pollack r85J).

cally handle the EI E rulc and isolate any
redundant. or contradictory decision rules
during the conversion proccss.

A different process thaL used a rule mask
technique was dCI'eloped by Kirk [62]. This
tC<.'hnique resulted in the optimization of
storage requirements, but was inefficient in
""erage execu tion time because it required
the sensing of nil conditions by way of a
IUllsk which is used to screen out. llonperti
nent conditions according to the input data
prior to scan ning the decision rules. Further
work in this nrcu \\'ns done by Pres.'! [89]
whose method offered bet.ter run time op
timization than Kirk's teciJn iqul'. Another
technique that. expnnded '(irk's work was
dl'\'eloped by I(ing r55]. One of the nssump
tions ill this technique is thnt. advance in-

In lit'aling with tI)(-'~e "1)('ci6r8 of th(' two
pl't"'iou:;ly lll<'ntiOIl('fJ dt'<'omJlQt'ition tech
niqu~, tht' action Jlart or th(, d{'('i .. ion table
l' omiut'fl Iwtnu.'<t' tll(> nlgorithmR nrl' de
'11!fIro to i~latc a uniqu(' rule willch, in
tum, d('fines an nrtion ~('(. (On ly limited
rnl~' tabll'lI" at(> di!«"u ... !Wt'1 ht'CIlUlI(' lht' ('x
I('ndro elllr~' Ill'('i1<ion lnlllt'll ('nn 1)(> COIl

l'f1tf1Ito limilt'(] ('II try lahlf'" I

E¥oIution of Tromlotitlg Algorithm.
~14bot 01 tht df,("I"ltln tahle t(>('hniqu(' ... diil
, .. I in til!' hl('raIUrt" fUo WR!O fI('('n in thr

Pl"f'rlO1 lion, rAn IW' lil\"id('(1 into two
hrold ralt'J'otu , TC'rhniflu('M that optillliz('
Ulrf' ~I(lr~", and th(».t' thAt optlmiu' t'x('('u
lIO!I lll%w: !-Omt' {{'("hnilIIIt'S atlf'mpi to 01'
timitf. llOth rstl'troriNl,

'Iontalbano 111}, tlw fin-I to d(,\·i .. (' 1('('11-
1Iiq for ol'laimnlC romput('r progrRm!l to
IIS-'tlUlllf' ~Iora n"qllirt'nwIIIN and cxe('u
!IOU tJlIk'. dt'\'f'lo'I('(ltwo m('lhorf~ ('sUrd the
(Iwj R"/~ .11""(1(/ Am! Ihr /)tlnyctl Rllit
llttW TIlt' oliJ('("ti\"f' 01 th .. qui(,k-rule
mrthot:I I .. In l)t'rfunn. lUI I'O()II Ali I)()l'<:ible,
~ lf1>l~ ~hif'/I \"111 i"Olah' 8 rul .. a~
qtlk'kl~' ~ 1~1"11' TId 1II1'IIIOtII" ('ml'it'nt
-llh 11'-/1(1'1 10 I'tOntlCf' n'(lulr('IIl('llt~. The
aOltt1I\'I' or tht· flt'la\'('fI-tulf' 111('11u,,1 i~ to
driar IfJr If I '!IOlailt1K tuft' tu(IOIlf:t a!o
JIObiblf> Till!! nM'lhod ill ('ffiri('ut with 1"('

IPf'tt 10 l"('raR' UI'<'lIliou tllm'. :\IOl1tnl-
, .!(Irk • ...,. uiK'd It J't Im"i for the

't'blUqUndnI'JofW....J IIy Pullark. rs.5).
Tbr ob;t't'li\"(' o(l'ollad,'jI Ii,...t AI~orithm

• to ron,', rt • dtorl!lOn ta"I,' 10 8 ooJOputt'r
11OIh.rn Ibina tht' minunlUn numher 01
1CQrl(P Ioratmo., In 'Jill ""rood alJtOtllllm,
:lit ob,/ftfl\'(' .. to ('onn" a d('t"u,iol1 t81JIr

• t'ODlput"r l'toRntm tn ",hit'h rompftri
.... ':&It I~ 1'':'11'(''1/1..,1 til mimmum IIm('
'Poltatk 'It-'JL TIw algonlllm'" ftutomsti-

fonnatioll on evalunt ioll times tlnd fre
quency of oecurrcnce of rules is !H'uilable.
King's method offers II marked ~av inb.g ill
('omputcr rlln time in comparison with
Kirk's, hut it. U8es morr COre stornge space
!)('cau8(' of the inrrcascd complexit~· of the
branching stnl('tUte,
~me techniquC8 for programming deci

"ion tables in higher level languages were
('xplorcd by Bjork r6J alld Veillott (104).
Spc('ifically, they u;:cd FORTRAN, COOOI., and
AWOL in their translation of decision tables
to programs. Ol1e of the most. rigorous
work" on translating decision tables into an
optirnn.J brunching St'quellce hus been done
In' Reinwuld and Soland [92, 94]. They
h~\'e developed two tligorithllls that mUIl

mi%(' run time :lIld corC' stortlge plus optim.
izing til(' rel'iuJting tClSt. licquenee, Furlhcr
mot'(' they claim that the two a lgorithms . .
('It.n br romhillC'd to> ~'i{'ld a t('~hng i!equcnce
thnt minimizes the total l'OSt. of both core
U"fi~t.' and rUIl tilll(' (Pollock, et at. (881).
En'1l though the ... e algorithms lire quite ef
ficienl the,' ore nOl widC'ly us('(1 becau5C of
their ('~mpiexity, Be"ides lhey require pr.ior
inlonnation ('on('(' rni ng the fre("Juenty With
whi('h lhC' decif;ion nllrs arc 8a.tisficd,

Further work on Pollllrk's algorithm has
I)('('n done hy ,hw8yder 198). He pror.osed
Iwo altcrnnti\'{'s to Polla('k's algorithm
whirh he Jld,'b~ will re"ull in lower execu
tion time. lIi;\ fir.';t altetllllti\'e U8('8 the

,
140 Udo 11'. Pooch

communications concept. of cntropy (i.e., B

mCI\!;ure of the variability of n 8ci of mes·
sngcs~ and Shannon's noiseless coding theo
rem. This algorithm is most effective when
the cstil1l1llcd frequency of the ELSE rule is
\'cry low. SIHlnnon's noiseless coding theo
rem can he used to find t.he average code
word length, which is neccssnry in order to
minimize average code-word length.
Shwaydcr's second modification completely
t(>l,ts the ELSE rule, hut results in greater
run time. These alternatives do not. ncces
~lIrily lend to globally optimal f'o\utions be
cnusc they suboplimite one :subdcci~ion tn
hlc nl 11 lime.

A technique for parsing large dcci:sion tn
IMs into smnller oncs i~ offcrcrl by Chapin
[12, 14] who denloped n technique whcrcb~'
n dt'cision table ('!In shrink to O1\e twenty·
fourth of its original ,;;ize by usc of parsing
lll('lhoo;>. Another parsing technique, pro·
l'lOsed by II . Stronz [102], pcnnil.s parsing
utilizing only the s~'ntaetical eharacteri!'tie
of thc d~isioll problem. 1t requires a de·
,,(' ription of the problem in cieci!:;ion grid
char i. format, and 3110W8 the development. of
decision tabl('$ within defined limits by
I\\'oiding, or at. least. minimizing, rcpctition
of conditions and actions in the resulting
tables. Some of the factors affecting deci·
sioll table p!lf,ling are indicated in Figure 6.

II ierarehics for different levels of decu.ion
toblt'" can be e".tBblishcd by u"ing the inler
relalion!:'hips of Figure 6. An example of
wrticlIl parsing would IX' ~epnf(1le lnbles
dealing with datA at various le\'els such ns

r DU. !«JIlln

I
-l -'-- I fI'ol"!III .. "

.,' ,0.6. Panlil1g of dC('illiol1 lable..

file, volume, record, field, character, and bit
level. Pnrf3.i ng of data to recognize hori
zontal structu re would utilizc separ8te
tables for head, body, and tail of the data
sets. Job ond hardware prioritiefl would
depend on til{' typc of environment in which
the d~ision table is procesecd.

Data content can be tested or sorted, and
t.hen groUIX'<1 into separate decision table..
Rccording to eontenl. Tht' paning, lacto~
~ho\\'n in FibrufC 6 cnn be gin'n different
priorities, depending upon the type of Ilf'O('·

e~ing cn\·ironment.
Another nwthod of parsing the tables i

the lise of prol)('r, or more rffceti\'e, Iinkagr
bet.ween hlblei!l. It is pOS$ible, in an ft(lion
ent ry in one d('ci:<ion tllble to rlil't'Ct rntry
into another table. Ir the IH:W table i~ en·
tered without. qunlifications, thrn it mu,t be
11rore~1 from the bcginnin~. If the dirtt·
tive Hntem(,llt i~ nrtually a return to 8. l}Ar·
t icular rule III R table from whirh an exit
Wrul originally ma(\(', then it ('an lK' S1id
that. the lat<.k has I)('('n broken into paru;
thlll is, inst('nd of lhe complclt· proN"'lng
of ('neh ltlblf', only part~ of ('{!.('h table truIo)'

IX' nt're""'ary to pro('('~.s and 1!o8til'ry input
data (Chtlpin [12])

Scanning and Rule Mask T echniques (Ma~ing
T echniquet.l

Th(' 8trai~ht "CRnning tl'thniq'lc, which
11M: all'l'luly 1)I.'('n di!"cu~'<'<I, i" lIll'fficlt'nt
with rt'''P('('t to th(' utilization 01 ('Oft' ~Ior·
nge nnd run timl'. Thi~ tl'<'hnique has 00

remembt.'rinp: rapahility in its lNin~ !It'.
quen('(·, l"O the flame rondition 1Il8\' he inter
rogated lIlany tim~. On(' WRY l~ imrro\·t
f:~allllin~ is hy u!<ing the rule mal'k {cch·
IlIqu(' {Bnnlnrrl [5], Kirk [62]1.

HIlle .1/(1111.- Aigon'OIl1.

:7\lany of the authors refer din.'ftiy to
Kirk'3 article [62J and hitl: algorithm. then'
fore 9. fairly rlt'lailt-d outline of lh~ algo
rithm i~ gi\'en:

II Prepare Il hinsry imalt,c of the- rDJldi·
tion matrix of the tAble hy lliarinlt II.

" J" in ('nth l~ition in whith lht' orig·
inal table hlt~ u "Y" and a "0" in all

Trallslalion oj Dcciwll Tables 141

olhrr flOl!itiolls_ Tabl{' J4 i!l the origi
nal ('rtdil "\PI1ro\"sl d{'('i~ion tnh/c,
.nd Table 15 !'how:; thl' table matrix
for Table 14

41 Th{' actual scanning operation is
mad" rule by rule, The fiNt rule of
llw ma"king matrix i~ logically multi
plied hy the trnnsactioll "cetor to
(·liminale the nIle's nonpcrtirl('nt COI1-
ditioll!l from th{' transaction "cctor.
Til{' rrsuit i~ thell compated with thc
first rul{' \'C('tor of th{' tabl{' matrix, If
the two Ill"(' <'qUltl. the rule is satisfied,
If not, th(' ~Ctlll procNXIs to the next
tule. Tahle 17 iIIufltrnles til(' scanning
opcrntioll. and it indicatcs lhut Rule 2
~ath,fi(·~ th(' trnnsaction entry,

T\81.,.: II C'n.OIT ."'''Ro\' \L

" • " • (1nn, .-f" •
... lW",\.:I • • ... :, 4J_. ." , ·r
••• l

T_\8U: IS. Tuu.M \TlIllC IIIK ('''I:IHT AI'I'1I0\' \L

~--l-.!!." ,-"-....... , " . . .
q ••••

" •

21 .\ lIl~king lIlatrl.'(ill Ilf'f'ffl'ti to l<('r('{'n
out nOI1,,~'rtlllf'nl ('onflitionl! from til('
tran..a('tion or datu vt'i"tor prior to
M'lInninlt till' luhlt· mulrix A mad:illg
lIotnr i.'I mad.· hy Illfl('in~ 11 "'"
,."tll·n·\W lh(, uriamal d('i'i~ion table'
abo"" a p.'ftlllf·1l1 ('ouclition {"'}'" or
.. :\"1. j'\'rrytJIIJlg (""(' ilt ,.N to Zl'ro,
TIII.lt· 16 I"ho\\ lilt' nltI:-kllll(matrix
(lit T,b1t· 't

TAltU; III \I'~kl/lf'l '''TIU'("UK ('Kl:OIT

\rrllll\' u.

" q

• •
L,' "

31 }In'loan' fl Illnan' trnn"urtion \'(,NOt
Ily "Iarilla; • " "; UI "1\('h 11'11(' rondi
hon fJOfonion and a "0" in nil oth{'t
JlOflllOn ..\ IIJlpl,· trltll ll"l ion ('nl ry
an" it "I'f'"tot i.ot "huwn in FiguN' 7

,. I ". -." 1:]

q,
...
"'~ .- _ ...]

'*' -. "'-UO- I(lIlT
"'~ • • , · • , , , , • · • • • , • • · • " • , , · • • , , • , · , , m , , • · • •

In l{'tms of total storllge requiremcnts
thii!- approach npp('aNl to be \'{'rr ('fficient.
Each le:-.t need appe!l.r only ollce in the pro
~rnm; ami additional 8tomgl' required to
gent'rnt{' nnd intcrpr{'t til{' mask mn)' not be
much gr{'tltcr thall thnt uSNI for trnn~fcr
in;.;lructions to llchi{'\'e 111{' branching inher_
('IH in til(' ('onclitionnl te;;.tinp; tcchniquel!,

With rcspl'ct to a\'rrng{' pro('{'ssing time,
hmn'n'r. thi~ npJlro:lch il' not \'Cry {'fficictlt,
I<in('{' 1111 conditions must be t('.~t('d t{'gard
I(·.~.~ of tilt' nature of til(.' input, and nddi
tiOWll tim{' must be lIJ)('nt g('llcrflting nnd
int('rpreting thc mask (Rcinwald [92,9411.
.\ IIlNhod for lIdding tlom{' imprm'{'nwnts to
IIl1' rille Ilul.,k tc'rhniqu{' i~ til(' intcrrupt
rule IIIn!'k m{'thod,

Interrupt Hille .1Ju6k Algorithm

()IU' of the dl'llwbacks to th{' rul(' mn~k
t{'chI1lCfU(·. as prc:-entcd nlx)\"(', is thai it
lIultht producc oi>Ject progrnms of IOllger
run time thnn n('c('&;nry (King [55]!_ A
modification of thE:' rule mask tedllllque,
dit'('ul)..--ed below, takes into I1ccount both

142 Udo IV. Pooc/l

rule frequencies and relative times for eval
uating conditions. The interrupted rule
mask procedure, due to }(jng [55], docs not
eva luate the rules of a decision table in a
sequential mnnner like the rule mask tech
nique. Before discussing the strategies for
interrupting the testing sequence, a few
tenus need to be defined; therefore, let

T = expected execution time for a pro
gram;

I, = evaluation time for each condi
tion;

h = frequency of occurrence for each
rule;

S = time for carrying out the testing of
trnnsaction vector for 11 single
rule;

;s.h = total frequency.
Some of the abo\·e conditions must be

detenninoo or estimated for the decision ta
ble under consideration. The total run lime
(SC(' Table 18) can be dctemlincd for the
simple rule mask technique by using the
following formula:

T = (tl + lz + la + S)fl + (tl + tz + t3

+ 2S)f~ + (tl + t~ + ta + 3S)f. + (L I +

t, + t, + 4S)f,

Testing according to frequency of occur
rence. and substituting the values of Table
18 into the formula gives:

HI (2 + 7 + 4 + I) . 35 - 490
U.J(2+7+.J+I+I) . 30-450
1t3 (2 + 7 + .. + I + 1 + I) .20 _ 320
H2 (2 + 7 + .. + I + I + I + I) .15 - 2M

Total Hun Tinle 1515

TABI.E IS. C.\LClILATION8 rOR isT&RIU1PT HU Ll;
1\1,,;;1(TOCIINIQUF. .

'J,E', ••• • •• ... • ••
"" .. • • ..
" • " • •

" • " • " "
, -,

"
, • , • • - •

a • , • , • - ..,
n , , . • , • •

Note : Alllume f - I for mUh iplyinp; the dllu
vector by th.e mlUlking vector and compare thf.
l'eiIuh with the tranllaction vector.

CompQ 811,... \'ol. e. So. I. J 1174

There nrc scveral strategies that. can be
used to decrease the run time. Th~e strate
gies usunlly yield different results, and the
one that. produces t\ tesling sequence with
the lowcst totnl run time should be selected
for usc in genernting the translated code,
The strntegies do not guarantee optimal
testing sequences in all cases, but they do
show an improvement in minimizing objed
program run time (King [55]).

STRATEGY A tests tlle conditions in de
scending order of magnitude of relevance
frequency (~M. This is based on the sup
po~ition that it may be best to e\'aluate
fir ... t tho"c conditions most. likely to be per
tinent. With this !:trategy, the rt'latin' timcs
of evaluation of the conditions are ignored
The testing !:'cquence for Table 18 uF'ing this
strategy would he CI-C2-R3-C3-RI-R4-
R2:

tt3 (2 + 7 + I) . 20 .. :m
RI {2+7+1+4+1' . 35-6~
1t4 (2 + 7 + I + 4 + 1 + I) . 30 ... 48)
112 (2 + 7 + I + ~ + 1 + 1 + II . 15 - 25Ii

Total Hun Ti~ 1400

S7'IlA 7'E01' IJ lesta the condilion!!; in de
scending order of ~/llt •. This is ba~cd on
the 8Ulll)08ilion that it may be bel<t to e\'al
unte fin-t. those conditions with t.he I!hOr\.Cl!t
evsluntioll tim~ c\·en though they may be
lC':!s likely to IX' rcrtinent. Thb rcsulu in a
te:;ting :-l'quence of CI-C3-R2-C2-Rl-R4-
R3:

R2(2+4+1) _15_103
HI (2 + 4 + I + 7 + 1) . 35 52.5
R4 (2 + .. + I + 'i' + 1 + 1) • :.I - 48)
III (2 + .. + I + 7 + I + I + I) • '20 .. :uo

Total nlln Time I~ro

STRATE(iY (' t~ls the rule~ in d<:;ccnd
i~g order or frequency, c\!alua1inl!. roodi-
1I01l!< on Iv wht.'n the .. ' beromt' nl'f'C'''1ln' for
tClSting thc mit'. The-l~ting ~uencc of Ta
ble 18 lI!'Iing thi..: :-trategy would be CI-C2-
C3-Rl-H4-R3-R2:

R I (2 + 7 + 1 + l)
IH (2 + 7 + 1 + 1 + I)
III (2 + 7 + .(+ I + 1 + 1)
R2(2+7+4+1+1+1+1l

• 35 .. 4110
. :.I-~
• 20 • 3'll
. 111-2$5

Total Run Timt 1515

TT(J7I8latiOtI oj Dcci8iQn 7'alJlc/j 143

STR,-trEGl' /) t('t'(:'1 thl' rules in de
seending onl('r hi ~tj, Thi,~ is hlll'led on the
SUPI~ltion thlll. It may 1)(' best to tl'St. first.
those relet! with n:>htti\'('ly ~horter condition
('\'.luRtion lilJws, ('\'('11 though they may
han' low('r frt'qu<'ncies. Thi:. resullS in a
tenlng Sf'qucn('(' of CI-(,2-C3-BI-R4-B3_
R2 for Tabl(' I and Il lOllll run lime of
1515

TABI.I': 19. QU1CK-UU1,t: Ih:cU:!IoN ' r ,\1IU;

~ -, . , , , , , .
-For Tablf> 18, tilt' bl'"t teh'ling "'('quencc is

dmn'(l by U~IIl~ STHATEGY a, which
~itld8 a total t('.~l tllD(' of 14[.10. This strllt
rgy would Ihrll 1)(' u!o('(l to i.run8In(' th('
dl'('islOn t"hll' into II machinf' "xl't'utnhl(> st'
quenC€' of lIlt;tmrllOIl".

Th" mtf'rmpt roll' lIla~k techniquc will
u."t' more ,staraRt' than thr ~lml)lt' rull' nll~sk
tttIIniqur l)('('ttuH:' of ~rt'nter progrum COnl
plicallon Tht' "ll(orithm rt'IiNl 011 uscr-tmp
plifotl ronditioll t('fItlnR tllnN! and rule fre
qtlf'nt"y of ()(-'curn'n('{" Thl'''' di~a.d\'l\ntag('lj
tan bt out\l,'('i~I1("rl hy lilt' nlnrkt-d i'llwings
In run tillll', 1'0 U)o.('", tllllt h8\'(' larf.:(' tahles
Ihoold roll."ilkr lI~inK thi~ ml'thod rathrr
than Uti' 11111.1" rult, ma~k h't'hniqu{'.

Conditiona) T bring end Network Techniques
IT," Structure T echniqlHnl

Tbt 1)fL.'1 for tll(' mul'(' I'oOphi"li('otro Ilt'l

work or t"~, 1\'('lIl11qu(an' two ftlp;orltlIl1l8,
dtw to 1'reM 189). rur ,,\'.IUlUIIIR nonnmlJig
IIOUI limited {,Iltry IIIlI'I ('xt('nd('(1 ('ntry dr
rision tabl ••

In tilt qUl('k-rel£" IIIc'1horl thl.' oiJj('('ti\'c i~
10 makt" fUl fiOOn ., 11OtR<ibh', tho~ U·"tfi
.. bjrh .. ill i..-.olnt!' ft rule. ThiM l('('hnique
ff'dIU:t'1l mt' amount of toraJ(' rt-quir{'('i 1)('
ClU$r' it. minim itt· tilt' numlx'r of hrtlnrhing
11Il1lUriion ,

• , .
•• , ,
, .

slruct.cd to tCllt. the relll(ullIng rule~, Row
two alld row three hoth hnve the same
~mnllcst Oct'urrenrc \':lIul', SO they are inter
rognted, and this isolntes the remnining
rul£'S. Th{' flow dingrnm in Tltble 19 depicts
the final r£'Sult of the quick-rulr method IlS

npl)licd to the table,
The objecti"r of the delayrd-rule mrlhod

is to dels)' the te!'t.~ whirh i!'lolut(· nlies ns
long RS poS!'!ilJlc. Thi,; r{'''lIlts in minimizing
the n"crage numlX'r of ex{'euted instructions
(~ Iontnlbnno [71JI. An rxnmple of the de
Invl'd-rulc method is 8ho\\'n in Table 20,
H~rc, the row collnt matrix is srnrchl'd for n
conditionlll interrogntion which will divide
til(' tnhle into two sublnhles ns t..'f)unl in !Size
as poSt'iblc. In Tnhl{' 20 th{' originnl tnble is
dh'i<icd {'venly into two !<uhtnhlrs lmd lhl'ir
r CJ:;j>ecti\'e row ('ount mnlri('es. Thr flow
diagram indicates the testing sequence of
the conditional rows with resperl. to mini
mum row counl oc('urrenc('s in the subtu
bl£'8, Comparing Tables 19 nnd 20, it cnn be
obsen'ed thnt {ewcr instructions will be r(!
quired to isol:1t(' a rul{' wling th{' delnyrd
rule method, The delayed-rule lIl('thod
minimi~cs the a\'rrnge number of exeeuled
in!'tructiolls. !!O it will have It'S! run time

I~ Tali)!, 19 tlu' ('Ullliitlon portiOIl of n
1fQ<)"n aillt' is .110,,"11. On ttl!' right or the
table I.1i lilt> row rount matrix whirh incJi
talf'S tJlf' rumhr'r of OC'rum'nrN of {'ach
1'lIur tn tht' rollthtlun ('ntric'S or cadi row.
fotf'Xaml,Je, in lhl' 6,.,.t row (Iwrt' art' three
''1' ... a.od ~ "0". It ran 1M' II«'n that lh{'
IillllJIt!t bOnVTO numh('r 10 lh(' row count
lllatru: LJ In row one .0 Ih(' rondilional in
IoT11lptlOnl a.ot'latl'd 'nth lhi" row would
bt'Dad,. Th" .. oulrt IMlal(' rul(' 3 lUI" mdi
".attd 1lI ttl(' Ro. diaRfam in Tahle 19 A
"tIlLtaMt and ro .. ' rount nmlrix an.' ron·

than the quick-rule method, ,
The foregoing network t.ype nlgorlthms

(,1.m d{'\'elop greater {'fficil'ncy in lrnnslnting
a d('('ision table into :1 computrr program

('omp\It" .. Su,... "e>!. t, No.2 June It7~

144 Udo 11'. P(}(J(;h

TABLE 20. Dt:"ATEI)~Ruu: 1).:cUOlOS T.\lu ... :
0 -,

" • " • , •
l~

, , • ,
• , • • , • , •

, , , ,

-, ... (,
r;; 0 -" "
, • • • , .

I~
, ..
•

" • • . , I~
, • , ,
• • • , , , • •

, aEJ "

by using t\ more complex algorithm. If sev
eral pre-known conditions, such ns rule fre
quency, dash count, delta count, and
weighted dash count arc available, more ef·
ficient algorithms can be used for minimiz
ing core storage, and minimizing run lime.
Se"eral terms needed to be defined before
discu ing lhe algorithms.

The Column Count (eel for a rule is
equal to 2"", where r is the number of dnshes
(don't-care entries) in the rule. The Della
Count (Delta) for fl row is the absolute
value of the difference between the number
of V's in n row and number o f N's in that
row. In each row, the Da8h Count (DC) is
equal to the sum of the column counts of all
rules that have a dash entry in the row. A
Weighted DlJ8h Cqunt (WDe) for a row is
equal to the sum of the products of rule
frequencies and column counle of all rules
that. have a dash entry in the row.

The testing sequence for both algorithms
is (Pollack [85]):

I} One row of the origina l decision table
is selected-the criterion for selection
differs for the t.wo algorithms.

2) The original decision table is then de-

Compomnc Su.....,., Vol ... So. 2. J_ 1114

31

41

composed into two subtnbles (con
taining one less row), one subtable
and Olle rule, or t.wo rules; esch of
these is associated with each branrh
of the comparison.
A row is then selected from each of
these Bubt.nbles, nnd a condition be
COOles nttached to the pre,·jously tIe

lccted condition; i.e., a single condi
tion row is selected and becomes lhe
next comparison of the testin~ se
quence.
The IlrO~ is continued until each
rule of the original decision Lable or
all ELSE rulc appears as one of lhe
branches of the condition, or n !<ubta
hie indicnlC8 thut. the originnl table
eontuiul'fl redundant. or contradictory
nllcs.

Quick-Rule Algorith"l

The objecth·c of the Quick-rule algorithm
to be discussed is to minimize the number
of storage locations (Pollack (85)1. This
procedure is illustrated in Table 21, and the

••
" 0
D

"

TAHI.E 21. MINIMUM CoRt: STOJtAOl:

•
" "

I'''OOMD.AK'-''·
• ,

•

• • " • •
•
• •

• 0"

~'IO. 8. .lawthart of Table 2 1

rm.t1tin lt teat !('qllcnce tlhown in Figure 8.
Tbt 11('1)8 In tlie algorithm are:

(II Ch('('k the tAbl(' (or redundancies
and rontradiction~ I r two rules do
not ('Ontain at ICMlt. one row wh('rc
on~ rule hu a Y ('nlr)' nnd the
other hill! an N Clltry. the t.wo rules
are t'ithrr redundant or contradic·
tory : tlll'Y all" n'dundant ir they
han' t.M ""m(' action and oontra
dlctory ir tlwy do not

121 CalruJlltt' lht' column ('Qunt (CC)
alld da..~h ('Qunt (DC).

131 r>':t('nninr tile' row thnt h8M the
minimum dftl'lI <'QUilt. I r two or
more roWI 118\'(' thr minimulll dash
roont, (It'lt"f't tlie row that htl~ the
maximum IX-ltD.

141 Takin~ lllf' row 1I('1(,('t('(J in (3), usc
the YF;$·NO brand} to crente t.wo
,"lilabl", ('aril ('onlnining one or
mort' rul('lf, wilh on(' row 1(>88 lhan
tJw. Orill"'" row.

(51 If tht aubtab!e oontAina morc thnn
Ol)f' rul~ rdum to (I) .

'61, If 1M- lIublablt' hn. euactiy ont" rule
that ("(Jntainl only da he8, thnt rule
hu llI'Ml itolatt'd .

llibl II the lUittaltlt· hAll t'xactlv one rule
that rootaiflll only duh';', choose
LIly flUI-d II row and dil'('riminate
011 it Thi. ·.rill)'u·ld a IUbtable
from tht- MtU!fifod rondition and an

Troll slotiOll oj Decision Tables 145

(60)

(Gd)

ELSE rule isolat ion from the op
I)()sing brunch.
1! no suhtnbJe is produced an
ELSE rule isolation is indicated.
If the 8ubtuble has exactly one rule
that. has onc condition with 1'1 Y or
N entry, discriminate on thc condi
tion. The satisfied branch isolates
the rule, while the opposing branch
isolates the ELSE rule.

Delayed-Rule Algon'lhm

The objective of the second a lgorithm is
to couvert. a decision toble to n program
whose comparisollS can be executed ill mini
mum lime (Pollack (85]). Some of the as
gumptiollS in this a lgorithm nrc: n) nny
rules not. specified or implied ill the table
nrc nssumed to be part. of lin ELSE rule; b)
systems nnalysts can provide estimatcs of
how ortcn each rule in the table will be
Mtisfied by an average batch of transac
tions to be tc:;tcd; a nd c) relatively few
transactions will satisfy the ELSE rule. Ta
ble Z2 iIIustrat~ the procedure for the sec-

TADl.E 22. M Hmmw HUN Tnn: ___ ·r

, • 100 " 10 10

" •
o
" .

ce., 1 I
, • ICt 10 10

,
•

,u _

• OK ••

• ,. ,. ,.
tc • ~ I (
,. n LO 10

• • . ,.

•

•

CompuWII: fkI"~ Vol. t . No. I . Ju ... 1t7~

146 {'llo IV. Pooch

oml algorithm, and J;'igure 9 show8 the re
sulting tcsL sequence. The algorithm's p ro
cedure follows:

(Il , (2) 8nme as the previous algorithm.

"

a

,

•

. "" ,

. "" •
FIG. O. Flowchart 1)(Tllble 22.

TABLI': 23. CoMI'''RI80Sor TAau:.a21 "'"'022

U, TlIU 1I '~n - • , • ,-
, •• 10' .. J. M'IM

, l • ~. • , • ti • • , , , 10 • • I • '" • , J • 10 • • •• III • •
"" n.,<) • , . • Il.'<) , • • " -.,

• _ number of COlllpl'Iri!l()nll.
b _ expecLed frequency.

-
N

,

c _ average number of eomp:\.riaons for 3
EI.sl-~ brl'lnchee.

(3) Determine
minimum
(\vDC).

those rows that have a
weighted dash count

(3n) I{ two or more roWI!J have a mini
mum WOC, scl{'('t from among
thl'm the row that. hM t.he minimum
Delta. 1£ among th('8(' there 8tHi ex·
i~t two or more rows, select the row
with the minimum dlU~h count. If
til('rc are two or more such rows,
select. anyone of them. The test on
dash count d~ not afred. running
time, but. can M"(' memory !pSct
without adding to ntnning t.ime.

(4), (5), (6) arne 8.11 the first algo·
rit.hm .

A compnrisoll of the {',,('('ution times of
the two algorithms depicted in Tables 21
Dlld 22 is shown in Table 23 The e,,('(ution
lime is based on processing 100 transsctions
which have n frequency distribut.ion as in·
dicated ill Tnblc 22. A~uming each (olldi.
t.ionnl intcrrognlioll takes one time unit, the
total ICllt. times arc indicntt'<1 in Table 23. It
cnn he flCCn that. the IK'cond ulgorithm i~
mor(' eflicient in nlll time hecause it uses
288 time units to pf'0«'!'8 the 100 transac·
tions, whereas the fir.st algorithm uses 318
time units .

A summary of the variou8 decomposition
nnd ('onven:oion nlgorithmfl is given in Table
24. This table contains both til(' short (tom·
mon) nnd the long clllSS nnme, as well as
major references.

Ambiguities
An 1\!lI>C<.'t that is ohen ignored in deri·

s ion table proccssing is thl\t. of ambiguit.ies
in the tnbles. These need to be somchow

TABLE 24 CLASSES or CoSVl'R510S Al.OOkITHJI~ . . .
JMo1 " lpo('U! "H'''''''
..... , .. '-,- ko., .. _ ..,,~ ,_,_

.." "
• , .. 1"'1

'.1M<Wt ..".~. ","""
•• .. IMI .. , ,,...-

'_lU. ... '_'_ '-,,-, , - ... "'_ 1111 111<1' -,- Dol::'",~:::;J1I:--.1.1
"'''1<1 I_ -,.,

CompuUIL& Swv.,... Vol ••• No. I. JUDe 1074

I

Tra llslatioll 0/ Decision 7'ables 147

reponed to the tHlalyt;t Ot thc programmer
(.\Juthukti~hnan, ct "I. [73J'. King {58) BUg

gc!I18 that the rul~ tou('ctning redundancy-,
contradiction, and rornpINen('$lI. on which
th~ diagnosti(' rRciliti('8 or IlroC{'&;ors fot
tramlatin~ d('ti~lon t.ubl('.~ to progrnm" nre
baH'd, are unMtil'ral'tory li e ~tates that
tht iml)()rtanl a,.pert. of rh('rking A. table is
to rlimiIJ8te tunbiguitit,. li t nSt-crts that n
cbt-'tk-oUl or dt't'il<iOIJ labl(-' input (in cheek
ing ror amhiguilit'(l) tlhould consist of t.wo
paril! l) if no nmbiguily i/o! po~~iblc in a
panlt'ular tablc, thi8 I!lhould be noted; 2) if
thl'1't' Art" amblguili(-':lt then all out<'OIUCS in
"'hich thl'Y ()('('Ur IIhould IX' produced, len,'
inK it to tllr d{'('il<ion tnhle originnto~ to
tiwrk tli('CIt' larN or til£-' tnbl(-'.

pi npoint. the errors in logic, instead of pass
ing the task to the systems analyst, Pollack
[87J tmd King (61J have dispuwd this idea
and stale that it is hetter to find ambigui
ties duri ng rorupiJation rather than during
exccution. In their work, l\Iuthukrishnnll
and Rajaraman devcloped two nlgorithms
for programming detision tables, which
have the merits of simplicity or implemen
talion, and detection of ambiguities at exe
cution time. The first algorithm is for lim
ited en try dccision tables, and clari fies thc
importance o f proper coding in simplifying
the mechanics of rule mntching; the second
nlgorithm programs a mixed entry decision
tablc directly, without any intermediate
convcrsion, to a limited entry form, which
results in storage ecouomy, KInJ!t, m 8 I"IN pallf'r [61] preRents a

'lighOy ditrl'r{'flt appro.th thnn the one
rolj' oonVf'ntlon to ambikuitir~ Involving
multi-rull' dN'i~ion tablt't, This approach
rrl4in.- tnt' i.l('I that lilt· . N of artions ror
mpoooing to olily on(' rult· iJol Sf'1('('uod fot a
particular tranl'artion. 1I0w(·\,(,t, it dO('!' not
iDtun' It II)' IlllowinR only on(' rule to be
ntjp,tj(od, hut p,.'nmtA t o or 1110r(' rulefl to

Iati~Ii('lf PfO\'ldf'(! the~ .. h,,\'(' lhe ij,8,me
action taln.... .\rt"Offfinl(ly. if mot(' thlln
DDt rult ('an boI, N.li~fihf In' ,. transaction
,ub NI'tItil'A1 artion tnttll' ., tilf' ambiguity
If I-,lKI to Ix· "apJl8n'nt," Wh('r(,RM If tran!"-
• ttio~ tll'f't'i(~' riitr('t{'nt Mlion t'ntril'~, lIll'
lIDbllr;Uny ill Mid to lx, " r('al," requiring
f'.Oltt'ftlOn (Kma;{6IJl
. Ex~tlon tirnl' diRgne»otir" for 1h('lI(' am

b%rtnti , ft~ opj)o. td to NJUlpJlC' lIm{-' diag
DOIitJt'I<, It(' nnplf'lnrntc'(l b\' ('ondition tCflU
IJuiI pro\'ulc' rollll,lf'tt' lII(orumhon about
tht f'CJndllif)lI~ and thtlt r('lalion to the
dill ~ lnoo n1dhod ('an nOt f(>ftlly cope
-lib n'al amhift\jiu(, ami the rule I1]BI'k
lrrhruqUl'fo. do not ronllich'r tlwH). Ex<,cution
- dialtl'kJllit8 for th(<<, nmbiguilit'1l l'n
ilantt tht, \'alul' of d('C'ltion tabl(' UfI:8Rt' in
J'"'KramJlung f)'Julhukrililmao, rt al. {73]J,

Ont of tb", JaIl 1 tt-rhniqut d(·,'('loped is
~-'1tt of :\JulhuknAhnan and Rajaraman
ill _bH!b Wl' f'Xf,(,,!llion urn'. diagfl&.-tics

II PIIl:tMmItUltl: ambif(Ullini In d('('i~ion 18-
bb Tbt·y roQIMltJ that f'Xt"('lJtion tunc' di
'CboIti art of jom)(on \"alu~ in thN'king
out dtriricm LaMC1I. t~.II" thc'y ,)I'("eit'Cly

Automotic VerJus Monuol Tronslation
Effective programming efforts arc tC

quired to com·er t decision tnbles into opera_
lional computer programs, This conversion
lIl('sns that tabular rrpresentation of infor
mation and dsta must be converted into
machine language instructiOIl~, The tceh
niQues of program rouvcrsion ha"c been
w{-'II de,·eloped in thc past few yea rs. There
are four principtd nppronches which esn be
IlSed: manU4l, Bemwutomatic, interpreta
tion, and automatic C'onvCT'ions (Glans,
el.1. [39]) .

Manual proccSBing is accomplished by
programmer r{-'writing of each decision table
ror more efficient nnd compact. representa
tion, This method offers fl exibili t.y , and a l
Ion., the programmer to tllke lId\'untage of
testing certain rules or eouditions in II pllr
ticulllr sCQuenee, In genera l, manual pro
gramming from decision ta ble~ ~s com:cn
ient, and leads to realKlnably efilclent. obJecL
progrturn; (G lans, et. al. (391), AllY of the
higher h~\'el langusges or ns.sembly lan
guage mny be used for writing the pro-
grom]ol. ,

Some people tall the Ifemiaulomatlc COll
,'C'rl/ll)'fl a transistor. Basically they src the
t-am(-' tiling, so the t.wo terms will be used
i)~rnonvmously. Tnis method COIl\'('rta a de
c·il'ion - table ronnat. into another program
ming language thnt ill arceptuble Ils .1l com
puter input language, One advan18ge of

Coln''''\.lq Sun.,... \ 'col. ., So, t, J 11174

148 Udo or. Pooch

proce ... sing It table in this manncr is that it
can be com·crted into a language such as
FORTRAN or COBOL. Thus a table can subse
quently bc run on any machine thnt accepts
FORTllAN or COBOl.. O ne disadvnntage of
thi" mclhotl is its rc\ntive incfficiency. It
re'quirt'S n two-gtep process, bc('nuse the de
cision tnble has to 1)(' translntt'<l into n pro
l,'f:lmming language, and then this !>Ource
language hm; to lK> C'Ompiled or a.s..-.emblcd
into an objc:et program.

Th(> interpretive conversion nllows for di
rcct ~torap;c of the decision tnbll", usunll~· in
1\ ('()(Icrl or compact. fonn, thereby in~uring
easier mnintennnce (~Icnanicl [57}). It is
necessary to have th(> interpretivt' program
in ('ore I~fore inputting the SQur(>e program,
The main disad\'antnge is the slower ~Iu
tion ~rccd. These programs usually have
rome restrictions on the type of format and
,'oealmlary u"cd in tht' &)urcc program.
While this method lack,!! the sophistication
of the other conversion m(>thods, it offers
(>asicr program mnimcnnnce.

tllIlomnlic conversion programs arc those
which will accept. decision tables written in
!\ IIser '!!OllrCC languagc, und completely con
vert them to a fully acceptable input,
usually at the machine language level (Mc
Danic.l [67]\. Generally, an automatically
convcrte<1 dC(ision table will require less
cxecution timc than intcrpretive and &'mi
automatic cOl\\"ersions. This method forces
a higher degree of standardization, thus it
may encour age more effecti\"(' communica
tion. Thc disadvantages of automatic con
version nrc that it. tends to be inflexiblc and
is computer-oriented. Conversion of such a
processor from one machine to another
would require a considerable amount. of
reprogramming, unless, of course, the
processor is writtcn in a higher le,"el lan
guage, such as CoOOL; e.g., DETAP (Pollack,
c\.1. [86]).

Before selecting the method of conversion,
it is dL':8i rable to analyte the methods pre
viously discussed, and then to select. the one
that best fits the situation. Some questions
that should be asked during the evaluation
arc: (l) Is it. possible to use the method of
com·ersioll? (2) What arc the restrictions of
the possible methods of com·efl:;ion'? (3)

Docs the processor produce an (>fficicnt. code
that satisfies the requirements? (4) With
respect. to the processors that. satisfy (3),
is the cost. o f running the processor worth
the sen 'ire it. provides (Gilderslccve (34])1
A Her nnswerin g tileS(' qu('Slions and com·
paring the different com·ersion mcthodll, it.
may bt' found lIH1t the most. erollomical
solution i~ to hand code the programs from
d('Cision tahlt's, and not to use a preprOffi!!Dr
n!. all.

Adding, dcleting, and rcstructuring tabll't
is comparable to developing original tables
and programs. H a change is to lK> made
in n table , usually extensh'e hand con\'ersion
is n('('(led, ngnin adding more o\'crh(>ad to
til(' desired change, (The!tC overhead coste
must bc included when considering long
term mninu·nanrc.)

IV. CONCLUSION

Deci8ion tables ('an be fl powerful aid in
programming, do('umelltntion, and in eft'rt·
tj'·e man- to-mnn and man-to-machine ('om·
municntions, Inhercnt in the d<'Sign of Il

decision tahle is the visunl presentation of
comillex programming logic with relath'e
ellSC for modification, implementation, nnd
automlltic com·ersion into executable pro
grams: .. "ernl such algorithms for com'ert
ing dctit'ion tables to progrtuns, by either
manual or nutomatic t.edmiquC8, wcrt
shown to be fefll!ible, as well as practical
for implementation.

An ille"itable outcome of inrrcasing U!'C

of d('eiflion tablN! in programming hfUI been
the dc,'elopmenl. of a large number of pnrk·
age proce!S..<lOrs and lranslntors for the con
'·ersion of decision tables to fum·tional pro·
gram form. These decision table \lr0e<-'8S0nI
are soft.ware progrn~, which are available
for almost ally langusgl.' fUld hardware oon·
figuration. Each proctssor has standard~ a5

to size, {ommt, word" in the statetn('nt per·
tion, and other required charactl'ristics
which must be Illet by tnblr::; prior to
processing. :\1c:eting these standnrd~ will
usually require some manual checking of
the tables prior to the preparation of thl'
cOlllputer input. Then, the pf'OCC:l>SOr may
re,'csl redundancies, missing .!!ituations, and

oonltadicliol16 within the table (McDaniel
[68]).

Since each table gem'rates a I:;eparate seg
ment of roding, each IK'gment can be traced
bark to the tabl(' thnt p;enrrRlcd it: therr
fore, rhangt'i! ran Ix> t'a1o;ily Illllde by rework
iag onc or mort' of lh(' tnblt'>l, nnd the ('IT('Ct
of such changrs Ob~r\'M,

Earh J)ro«~r g{'IICrRtl'lol ~lraightforward
roding, Iree of programming trirks; thus 11
programmer .tohouJd be allll.' to follow allY
program in II gil'cll installation, and Illake>
lin)" ~ftry dlltllgt'~.

A dt'tniltd rt,rrr(,Il('(' 1a/)l(' if'! gh'cn in
~It'Danicl'" "D('('i~ioll Tllhl(' Roftwarc" [68J.
Irhirh ('xamjri('~ ehllrarH'rip.;tir!' of llIany of
tilt' pl"O({>l<..o«l~, illcluding til(> lanp;ungl.' of the
jlrQ("(>-.~r and th(' outpUt language; the
hanl",·an.' for whirh n pro('('.~r has I)('('n im
pltmt'ntcd (in k)m(' ('IlH'!I th(' hnrdwnrc for
",-hirh it I!< heing d('\'dopl'(I); the typCl! of
laMh arC('llt('(1 all input hy a givrn prorCi!
!lOr, th(' rmt allfl aVAilahility of a givcn
Jlrott'--or; lilt' numl)('r 01 tshlt_·.;, rules, ron
dltion , and arti(.n.!, 8110\\'('(1 by a givcn
r ~Ir, an.1 othl'r notabll' rharMt('ristics.

Tilt alg(.rlthm and lran"lutor Ul'{'({ in COI1-

\"trUnK II d('('u,lon (flhlf' into tl ('ompuler pro
J;J'am Wlll thtn:fon.' 1)(' dl.'l('rmin('d by the
nll'ot 01 the PI"O(' IIlg rtlCiJiliC'1! and the
ro~lrajnll 01 tll(' application progrATIl. To
br ahlt' to Ill'(' ditr('rtlll Algorithms lind
lramlatorl'l pro\'id('ll more flexibility for the
5t'f'lo anti ~'('l work.tl aglllllf't th(' popularity

of dl't'l~ion tAhll.'~ in progrAmming I>ecAU:o.c
mort' indh·iflual (·ITorl ill rC<ltllrcd in detcr
nutting whit'1! RI~oritlun Rnd trsnlliation
i'ffKt 10 U.~' <

ACOow""""""

n. aUfbi.r ill d ... ·ply ind .. LIC'CI to IIII' n'1e.f?I'a (or
i.u- ,alu.aJ:>ko "I~li"na amI, 1ft partit'ula.r, 10

:111 ~f'"", wh<, puUltf'(J bUl • maJor mniaion III

IJw f",tuW maAlPC"npt and pruvldNl ~nt'Our.AI'·
"()"'~"IC Ihll .htbt'uh)

7'ra1l8iation 0/ Dec18ioll 7'ab/cf> 149

2. ,\RNOLD. H. O. "Utilization 01 II de<:imon table
translator for basic PfORrnm creation." SIG
PLAN Noticu. 6, 8 (Sept. 1071) , 12-19.

3. AUDUUCII. "Deciaion table&-U.cir genernJ
construction and acceptance in progrnmming."
Auvbach Standard EDP H~porl, (1968), IIp.
23:030: 100-103.

4 . AIOIElWISO, G. W . "PORTAB: II dC('iijion
table languAJre for ecientific computing Ililpli
ratioM." Rand Corporntion. ItM-3306-PR
(Sept. 1002), p. 39.

5. B.'\If. ... UlD. T. J. "A new rule muk teehnique
for interpreting deciaion tnblC8." The Com
puter Bulletill, Vol. 13 (May 1009), 153.

6. IlJORK. HAI!l!l". "Dceision tables ill M.GOl.
60." BIT, 8{JOOS), 1>17- 153.

7. CALKINS, L. W. "Pllloo of decision IlIbl{'6 flnd
DETAB_X." ProceedillO' Deci,rio" Tablet
SV"tponlHlI (Scpt. 1002) . 9-12.

8. CASNING. It G. "lioll' to usr dl'cision tllbll.'fl."
ED!' l i M/iller 4, 5 (Mil), 1006).

O. CANTHt:U •• N. H .• KING. J .. ANti KINO, F. C. H.
"',.ogic Itmctul"(' tablt'll." Com",. ACM 4,
6 {JUIIC 1001).272-275.

10. CANTRt:LL, N. H. "Comml'rcial and engi
neering applieatiolUl or decision tnbl('t!." !'ro_
ueding, Dec.Vian Table. SII"'po.rillm (Sept.
1002).55-61.

11. Cu"rls. i\"D. "A Guide to decision tabll'
utiliralion." Dala Proca.illg PrQCeedin~
l tJ66, Vol. II (006).327-329.

12. CUM'IS. N£O. "Pllnling or dreilion tllblefO."
Com",. AeM 10. 8 (August 1007) .507-612.

13. CUAPUI. Nw. "An introduction 10 dedKion
tablC8." DPMA Quarter/II 3, 3 (April 1967) ,
>-23.

).I . CIIAI'IN. :\£0. nowcharll. ~\uerbl!l(lh l'ub
libhcrs, Princeton. :\..1 .. 1971, pp. ro-21.

16. CUAi'ltAN. "- E., AND CALUIIAS. M. A. ""
dUICnptlon 01 thl' buic a lgorithm used in the
DETAB/65 17cpro<.'CMOr." Comm. ACM, 10,
7 (July 1967),447-->146.

16. CODASYJ. S~lIlems Group and Joint Ueel'll or
ACM. Proceedirll;' DeNio" Tab/e, SlImpa
,iurn ($cpt. 1962).

17. COO/\SYJ. $ystclflJI Ol'vclOprnenL Group.
"Decillion tabl('8 tutorilll Wling DET/\ll/X"
(1002).

18. COOASYL SystNI'IIl Croup. DET/~~X. "Pre_
limiuary "'llCCifiCAIIOIlll ror a <lcel"'-Ioll tublCl!
siruetured Allguagl''' (062).

10 CODASYL, IX>ei,ion Table Task .Force of
S\1Items Commitl{'('. "Ornll 01 d('eiaion table
8iandurdl!" (March 1966).

20. 01.:."'01.r, 11 . "Decillion tablea: all annotat('(/
bibliograllily." lAG Quorterlv I (1968),67-82.

21 D£v £. D. J. "Lonoe, logical businCllll
on('nted t'Odin(l:." llUIuraDCC! Company of
)Oorlll America, Oct. 1962.

22 Dr:v.-'"£, D. J. "Decillion tablCtJ u • bMis or a
pro,tnlmminl(Iangua«e." DPMA Quarlerill 7
(005).461-466.

23. DlXo!(. P. "Deciaion tables and their aPllli
calion." Computer, and A1l1omtltwn 13, 4
(Apri.l I964).I-t-19.

eoml'llWoIJ &on..,... VoL •• So. ,. J t174

150 Udo IV. Pooch

24. Ectzll, J. F. "A Procedure for COD\'Crting
logic table conditiol1!l into an efficient lie-
qUl'uee of teat lna:troction." Comm. ACM 6,
8 (Sclli. 1963), 510-514 .

25. b:u .Jl:I, J. "Decision ULblCII, Ii U~I'fI' guide."
W~'IItem Electric Compan)" June 1007.

26. EVANS, O. Y. "Reference manuru for decision
IJI,hlea."lBM, Sept.. 1001.

27. Fi:aaU8, R. M . '~ision tabJCIf-fln appli.
cation anaIyllt/programmer'e view." Date
ProeeNino 12 (196;),85-109.

28. Ft:ltCU8, R. M. "An introduction to deciBioo
ublea." SII,lema and Prouduru Joumnl
(JuIY-J\ ugun 1968), 2+-27.

29. FuGuIl. R. M. "Good decision tsbltll and
their UIJ(!fI." Slide"" and Procedure. JOllTfUli
(Scpt.-Oct. 1968), 1S-21.

30. FIfl~, R. C. "Decision tables, UNIVAC 81)-

)
lliC4lion rc'port." SprimJ Joint Computer Con
crenal oj SVlI8m1 (lrld ProccaurC3 A.o

ciatioll (April 1965).
31. FU'K, R. C. "Deci8ioD IAblC8." Sysl.en18 Pro

gmmmiug Dept .• UNIVAC, 1966.
32. FI8I1U, D. L. "Data Documentation and

Decision Tables." Comm. ACM 9, 1 (Ja.a.
l006},26-31.

33. Jo"um:HEIl, G. R. "Scmin.llr on deci!ion
tablee.n 8ureAu of the Cel"lll\d, Seplo 1969.

301. GILDDlSu:£VIt, T. R. Decifton Tabla and
Their Protti.col AJn)licotion in Dato Pr~
ing. I'reotic:e-Hall; Englewood Cliffll, NJ.,
IDiO.

M. Gr:S!:fL4.L I':I.I:cnuc CoMI'ASY. "GE~225 TAD~
SOL rderente manual and GE~224 TAHSOI.
appliclilion IIllmual." CPU-147D. June 1962.

36. Gl.Ali8, R. B., ASD GIUD, B. "Tabular dc_
8Crillth'e languague." 111M Tuhni.col Report
t-46 (Jan. 1962).

37. GUliS, R. B., AliD GIUD, B. "7080 decision
table .!I)·stem preliminary manual." IBM
T«hmcol Rqort !DI (April 1002).

38. GIlAD, B. "St.rueture and concept of deci
lion tables." Proutding. Dtci.io,. Tabla
SlIm,xmum (SepL 1962), 19--28.

39. 9RAD, ~: "Jo:ngineeriDg data protel!l!ing us-
109 decl!!lon tables." Dala Ptoct43ing 8 (1966)
467-476. '

40. GRISDI.Y.T, C. B. D. "The U8C of decillion
lablClil witJlin Il)"stemlltiea." The CompUltr
Journal I I, 2 (Augulil lOO8), 128-133.

41. GKlSDI.,£Y, C. B. B. "SYItematic&-& non
prO(tTflmmin& language for deeigning and spec_
Ih'ing commercial il}"lItelll! lor compuu.IlJ."
The Computer JOurMl 9, 2 (AUguIL 1966)
124-128. '

42. ~~RKl80S, W. J. "Pl"llctit!all)· comJlleu. de
CWO? lable.: a I"IInRe approach. SIGPLAN
Noll.CU 6, 8 (Sept. 1971),89-93.

43. llAWP, M. K. "The need for)Irecisc defioi
li.on." Proceeding, De~ Table, SVmpo-
flum (Sept. 1002), 13-18,20-21.

4-1. HAwtiI, M . .K. "The Ullt" or decillion tablCl!l
tor llroblem gpecificationa." Prouedln(l'
~~IVAC U«r. Auoaation (Allril l965), 56-

45. HtIf!CUII()It.'1, E. "Simplification of a d8.!B

of Boolean funetiou." J. ACM S. I (Jb.
1958),67-75.

46. HO!'lr.rwlu h.c. An lnt,odueholl 10 Dta
eion Tablu-A PrOOTQmmed Tal, In Ed.,
Oct. 1060.

47. l-i ucuriS, M . L., liAS"", R. M ., ASP 8TtlN, K
S. "Decision tables." M Dl Publi~tiOIlll,
1968.

48. IBM Co.II'OItATIO)l. "1401 deciBion legit tnDl
lator U2Q.{l()63," a.od " 1401 dOOsion IOjpe
tranaJalor 9 20-0-1021." Deciti.oa Toblu
Proct~ Problenq and Sol"lioJu, 1963

49. IBM ~TIO~. "l)ecWon labl~ t)-..
lelfllJ dCIIlgn and documcotahon ~ruqu"'"
IBM, F20-8102 (1002), p. 21 .

50. KAVASAOII, R. F. "TABSOL-a fundalllt'Dlai
coocept for 1}"lIte.me ori~tC'd lan~I.p'L"
EtU/ern JOint Comww Con/erente, Vol . 18
(l);:oc. l OOO), 13-16, 117- 136.

51. KAlAN'AOII, R. F. "TABSOI tll(' lanKU~(
of decillion mllklD(Ij." Compute,., lind Auloma·
lion 10,0 (SepL 1001), 15, 18-22,

52. KAYANAGII, n , AND ,\ I.J.,I;.", M "1'1le ~
of decWon tftblH." PNXUdlllg. 1963 CtHlltt
tnct 0/ In/erMlloll6l DPMA, 318.

53. !UV""""GII. R. F~ A~D SclUUllT, D. T, "U ...
mg ~on Itructure tablet!, Part. I : Pnpo
pll'll Iud pn-panolloo; Pan 11 : MllDfacwrilll
application." Da/oma/lOn, Vol. 10, (Ftb.
March,I064) .

M. KIM, J. E. "J.OGTAB: It I~c labl"
t('chniclue." Gefterol Electric: Mardi 1959.

55. Klso, P. J II . "Com'e.mop of decWOo lablN
to COlll11111t'f IIT'Ogl"llmB by rule mll.8k tech
niqul'Jl.' Comm . ..tCM 9, II (No,'. 1966),796-
SOl.

56. KISO, P. J. n. "Some commcotA on a,.
lernalic:a." The Compula JOIlflUJI IO. I (Mil'
1007) 116-119.

57. KIM, P. J . 11 "Jk.cirrioo taWN." TM COlli
pul~r Jounwl 10, 2 (August 1967), 135-142

58. Ku'!o .. P. J . H wAmblptily III limned ell.tf)'
deciJtion tablee." Com ... ACAI II. 10 (Oct.
1968), 6SCHI84

59. KINO, P . J . ll . "~iDtel'])f'elaUon of hmi ted
enlry decimon. table format and I'1'latiOMhi~
among; coodluorw." The COmptder JOllfMl
12,4 (Nov. 1969),320-326.

61. KINO, P . J. 11 ., A!'"D J OIIN80.", R. G, "Solt"ll'
commcnll on 1h(' uec of amblgl.lOUll dl'i:ll10n
tablca: lind their eonvertion 10 compu~r flro
KnllllI." Com",. ACM 16.5 (M,,· 1973),280-
>00. .

62. Klu , G. W. "Ulle of decilioo table. ID tOm
""(I('r P!'OKnomrniD«." Com",. ACM 8, I
Jan. 1005),41-43_

63. KI.I~X:, D. C. "TABSOL." PnornntA of Sum
manee of Paper flreIeD~ at Nauonal ACAf,
Paper 10, 1}.2 (sept_ 1961).

&1. l..olllltlAlUll , I •. A_ "A general busin~nenU'd
languag(! balk'd 00 dt'ciIJion exflnwiODl.~
Comrn. AC/ol 7. 2 (f.·eb. I964), lIN- Ill .

65. LoNDON', K. Duanan Tabln: A Pnlctioll
-1pprooch jor 00/4 Prouui14(l. Auelbaeh Pub
hsheTS, PnnCl'IOn, NJ .. I972.

66. Lunwlo, H . R. "Simulation 1I"ith dt'OIIOIl

l.bICl!l:' Journal 0/ Dola M anogcmelli 6 (Jnn.
1(68),20-27.

67. McD"'~I.u.. II A ppl~lion.. 0/ Dectnon
Tabln. Hntndoa!Sy.t{'rtlII Pn'tIII, PnncNon,
NJ.,I970.

t58. McO"-,,,n., H DrriN1n T(lblc- SoJtIM~.
Brandon , ... ttn. p~, PnnCC'tOD , N.J .• IIno

1\19, M("D.'~In., H An httrodllctitrn to DCNion Log.,. Tflblu. John Wilf'Y, Nl"W York, 1968.
iO McYr .. , n. J .. ~i8ion UlblCIJ l1li nil <,,,IJ"D.

lion 10 pr'OIp'amnuDK languages," DO/fl i'mc"""II' 8 (1165), 4n-4~
71 Mo~'T"'I.&\l'Io. M "T.bIN, flo"chl~ and

pro,nm 10000ic." IBM SIIIltm. JourMl ($coPl.
1962), .51-33

i2 Ma.ux. J . J "J:lrt.n.UOD tables." MOPlllflt:.
IUIIt Snl-t«4 (Jan.-FI-h. 1965), 13-18.

13 M t."Tlll'ItIlIlIl:':.I,H, C. R , M"D ltuAIlAXAH. V
"On thfo 000"'('"'100 of dt"("ullon tahl<", 10 rom_
IlIllf'r lIf'Op;l'IItnIt" ('ornm_ AeM 13. 0 (JUIl f'
19iO), !H7-2SJ

• 4 XU.UfIlU,}' "A}'phnttJon of decisIOn tahlN
to mAllAf:'rn£'DI IQ(ormatlon IJ)1ItclDII," Pro
r.trillfg' DtCWfOfl Tablu Svmponum (St-pl,
11162). 63 .. :; ..

j3 ~Int-.~. n C. " .-\0 l'n«;int'enofl; .Plllu,.,_
Ii"n oll~t' lOUt'lUI"l' lable.:' Com,". ArM
4. II (No\' , 1961). 516-620

111 Pm.. HOGO ... Dto("~ion '"bl{' lI1lIUlilil ioll ."
T41 ('ompllln Bulldi,. 13, 12 (.Drc. 1000) .

i7 PfIU.oICJ;. R I.. " Wh,u UII OETAB-X f" Pro
tHti • ..,. DUWIInI Tobl, .. Svmpohllm (Scl)t.
1002),

i'l """-'rc. $, t "DETAU-X : an Improl·td
bt.-.o~trd tompult'r laD~A,e," Hand
CorpoI'llUOlI Memo JlM--3273-I'R (Au~.t
19112).

19 1)«..LAt'c. S 1_. OU~U W.IQIIT, K. R. "Dlta
dNtoripliOD for D!ITAB-X" Jt.Dd CorpoNl
hoa MI'TnO Il M-30IG-J'R (Ma rdi 1962) ,

J) f'ou..u;c. R L "AnalY"'1 01 the dN"1llon rulea
III ~OCI lab""" Rand CorporatloD Mro:mo
Rlf~PR (Ma,· 1(163) ,

81 Pou.4nt, ~. L "n ow 10 huild and Inalyle
dtorw.oD ~." Rand Corporlllon Mcomo
p·2829 (Nov, 1963).

82 P(lU.l.C"c, S. I.. "CODASYt., COBOL, And
DJ..:TAB--X" DlltOrotolW,. 9, 2 (F"b. 1003).

" &1 Pou.u-c. S I. "'Tbf' d,·\,t'lopmtnt and ana1)"-
- flf ckriIion lahitl!" IdbUI Jor- .\It''lllDt'"tllt,
19G4, J.olf"l"DatJoftll S'}1It4'mI Af l"t'IINI;. S,'.lt'mI
&Ad Proerdu"" .o\aonallon, PhiJadelptu., 1964

a. ~. S I.. "Of.r.IOD labl,.. for ~lIU'mI
dtt'UL .. DP,'!A QWlJrlf'rl~ 8 (1006),

Ij$ ~rc. S. I.. "CoD\·I',..ion 01 IImitNt l'nlq;
d. rlillOD tabl,.. 10 C'Om l>ut~r pfOfp'tml.
Co",,,,, AeM a. II (Nov. 1006) 677-G82

., ~c. S L~.AJlfD JI-AIUUJIO!'<. W J. "DETAP
~ 1JI....,..plck .. IMI.JuJ)" 1969

T ramlalio" oj Dcci8i()1/ 'l'abies 15 1

89. PRI'.88, 1.. J . "Con\'el'i!ion of decision table!!
to oompUl('r progrtullII." Commlm. ACM 8,
6 (June 1006) ,3&-390.

90. Ql'Isr.. W. B. "The problem o f aimlllifyin~
truth funelioIll." American Math. Mon .• Vol.
59 (1952),521-631.

91. ql· ISr.. W. n. "A l'nt,· to lIimplify lruth fun e
I/Ollll." AmenCll1l Mll th. M Oil., Vol. 62 (1965) ,
627-631.

!l2. Ih:t:lWA I.I.I , r.. T., .lSI) SoL.,\S tI, H . M. "Con
VCNliOIl or limited entry decision t/lbles to
oplimlll computer prOIU'aIM, I : Minimum
I\\'eragl' I)~ing lime." J. ACM 13,3 (July
1966). 331l-3.'i8.

93, ROSWALD. 1... T . " An inlroduetion 10
TA040." Reeclrch Analysis Co'1>Ol1Ition, Nov.
1006.

9-a. lb;n' AUI. I.. T .. .ISO SouNII. Il . 1\1. "Coli
\,c ... ion of limi ted enlry decillion lables to
optimAl eonlputer progrflnls, I I : Minimum
slornfl;(' ~Iuirements." J. ACM 14, 4 (Oct.
loo7), 742-758 .

~. ROIIIS I:!OS, P. " Prot'OiI8inp: of decision tables
In COBOL." Computer li'f'ekl" No. 222m3
(Dee. 1070).

96. S IIA\\, . C. J . "Decision lahl<'8-&1I annotated
bibliOflraphy." S. D. C., Tl\1·2288/OOOtoo. Dec.
1006.

07. SIIAW, C. J . (ED,) "Decillion tnbl('ll." SIG
"LA N Notice, 6, 8 (SepL I!)7I) . 1- 11 1.

98. SUWAY'Or.". K. "Conl'ention of limiied eDtr)"
d ecISion tables to computl' r pfOgnulls--II
propoecd mo(hfiro:alion to paUllek'1! algorithm."
Comm. ACM I 2 (Feb. 1!)71). 69-73.

00. I.ACt.E. J. R. "An efficient. algorithm lor
finding CC'rtam minimum COlt .procro:dUfC8 for
making hinltf)' deeisioIll ." J. 100M J I , (1964),
pp. U3-26of.

100. SrllAGulI:. V. O. " Lctl('11!1 10 til(' Edi tor" (On
StOnllW Space or Decillion Tabll'S). Comm.
ACM 9, 5 (Mil.)" 19(6),310.

101. Sr. CUI., P. R .. J a. "Decisio n tablell c1ea.r
Ih~ wa,. for Iharp I!eleeliOD." Computf'l' DeCl
, iortl 12, 2 (Feb. I9iO), 14- 18.

102. SntUl'i%, R . "The de \'elopmf!nt ,?f. dee~on
tablca via parsing of complex d~lon SHull.
t iOM." Conlm. ACM 16,6 (June 1973), 366-....

103. TAY'tofI, JI . Df'cilion Table Technique f or
Compllter SII.teml. Hirsch feld P rt'IIII, PhilA_
delphia. Pa., 1968.

I().I V~:o-OTT , C. O. " Pl'OfCramming d<'ti£ion ~;
bles in }o'ORTRAN, COBAL. or ALGOl. •
Comm. ACM 9, 1 (Jan. 1966), 31-35.

105. Va"',.-.L8T. 1\1. " Prooe<iUtei for finding opti.
mal and n('lI r optimal test 8t:':QUCIl0e8 for IIpply
ing rul(' mMk 1C'cltlliqu('ll in object programs
derhcd rrom d«i8ioD Ulblt'8." lAG Quarterlll
I. (1008) , 47. .

106, VPIfY.UJT. 1\1 . "A TG~hQniquc I,.', 00 ~, 'rn(I~)g
d('('i.!ioD labIN." 110 ",arln II , ~ •

Ii Pau..c-.::, S L. "'Commmt OD the con\'~nao~
01 ~. tablet 10 romJlUlt'r vqrama.
C_", AC.V 14. I CJ 1970,52

'l7. tabl ..
107 WU,LI.OtIfi W. K . "Decision .lnlC:tu~ CII.

• VAA Bul/etln, No. 9 (1965).~.

~. 8, 1... lhcu. n . oUtD fiAJuuao"l, W
J lhn.io" Tobin TIof'DrI/ aad PrachU.
Wiky. Nh' York.llnl

~\'1l0IlT. K. n. "AI)proAeh~ ~o decillion table
lOS. p~rI." t'rouedlrl(l DCClllofl Table, S"",

po.illln (Sept. 1962) 41-44 .

CompuIUIC s...,...,... Vol. I, No. I, J """ lt7t

~

~

I :> ~

~

~ ~

~ ~

•

I
I
I
I
I
I

..
1111
1111

TABLE OF CONTENTS
FOREWARD... 3

WHAT IS DECIBLE 111...........•.. 3
LANGUAGE......................•.......... •.......•.... 3
HARDWARE REQUiREMENTS•.. , ,............... 3
TRAINING ,........... 3
THIS MANUAL ,.. 3

1. INTRODUCTION , ,.............................. 5
USE OF DECISION TABLES..................................... 5
USE OF DECIBLE III ... 5

2. SYSTEM DESCRiPTION ,................ 7
GENERAL DESCRiPTION....................................... 7
INPUT TO DECIBLE III... 7
OUTPUT OF DECIBLE.. 7
DECISION TABLE PROCESSING ,........ 8
SHORTHAND PROCESSiNG...... 8

3. SOURCE LANGUAGE LIBRARY MAINTENANCE SySTEM.............. 9
PURPOSE OF SySTEM........ 9
GENERAL DESCRiPTION....................................... 9
SEQUENCE FIELD......... 9
INSERTING RECORDS , 10
INSERTING A BLOCK OF RECORDS 11
REPLACING AND DELETING RECORDS 12

4. SHORT·HAND TRANSLATION SySTEM.... 13
GENERAL DESCRiPTION 13
ABBREVIATION DEFINITION STATEMENT 13
EXAMPLES OF ABBREVIATION DEFINITIONS 14

5. WRITING DEC1BLE III DECISION TABLES 15
GENERAL DESCRiPTION IS
EXTENDED AND MIXED ENTRY DECISION TABLES 1 S
CODING INSTRUCTIONS 15
DECISION TABLE IDENTIFiCATION 17
CONDITION STATEMENTS 17
ACTION STATEMENTS ... 17
INITIAL SET ACTIONS ... 17
DECI BLE III SPECIAL ACTION STATEMENTS 18
ELSE RULE 18
END OF DECISION TABLE 19
LIMITED/ EXTENDED ENTRY COMPARiSON , , .. .•... . .. 19

• • • • 1.

• • •
III
UI

T ABLE OF CONTENTS
6. DECIBLE III STATEMENTS 21

GENERAL DESCRiPTiON 21
DECIBLE OPTION STATEMENT 21
DECIBLE TABLE STATEMENT 24
X STATEMENT 26
DECIBLE SET STATEMENT 27
DECIBLE COMMENT STATEMENT 28
ABBREVIATION DEFINITION STATEMENT 29

7. PROGRAMMING GUIDLINES 31
TABLE ORDER 31
TABLE UNI QUENESS 31
VALUE RANGES 31
CONDITION STATEMENTS 32
ACTION STATEMENTS 32
RULES 32

APPENDIX A A.l
DIAGNOSTiCS A·l

APPENDIX B - LIMITED ENTRY EXAMPLE B.l
INPUT LISTING B· l
OUTPUT LISTING B·3

APPENDIX C - EXTENDED ENTRY EXAMPLE C·l
INPUT LISTING C·l
OUTPUT LISTING C·3

(~

• • •

I

FOREWORD
WHAT IS DECIBLE III

DECIBLE III is a preprocessor that is used to translate decision tables inlo
optimized compileoble coding. It olso contains a source language library main
tenance system and a short-hond translation system.

LANGUAGE

There are three versions of DECIBLE III available; 0 COBOL, a PLIl, and a
FORTRAN version. All versions ore written in DECIBLE III produced COBOL
coding. Thismonuol is intended for use with the COBOL version. Separate manuals
for the PL '1 and FORTRAN versions ore available.

HARDWARE REQUIREMENTS

DECIBLE III is available on any computer offering 0 standard COBOL compiler
with 0 minimum available core size thot is ,he equivalent of 64k bytes or 28k
bytes plus overloy capability. For utilization of the source language library
maintenance facilities, two tope drives or one disc drive is required.

TRAINING

INDEPENDENCE COMPUTING & SOFTWARE CORPORATION p,o,ides 011 usees.
as port of the installation of DECIBLE III, a complete training course. This
training course generally consists of complete training in the use af decision
tobles ond the use of DECIBLE III.

THIS MANUAL

Thismanual is intendedta be a user training and reference guide. An understanding
af the COBOL programming language and decisian tables is assumed.

3

I

1.
INTRODUCTION

USE OF DECISION TABLES

Decision tobles were developed as a fool for communicating logicol procedures
from person to person. T heir superiority over narrative descriptions and flow
charts is rapidly becoming recognized. Norrative descriptions ore usually difficult
to follow, lend 10 be either ambiguous or incomplete, and are eosily misinter
preted. Flowcharts ore mote ex.act thon the narrative description but ore more
difficult to prepare, lend to be quite bulky and hard to follow, and, because
cerloin tests or conditions must be shown more than once, con be error prone.
In addition, flowcharts ore usually very inflexible and difficult to chonge. A sim
ple change in the logic of 0 problem may couse rewriting pages of flowcharts.

Decision tables, however, are not only easy to prepare, but can be read byany.
body without special troining. Most people, in fact, have worked with decision
tables of one type or another; tax tobles and mileage charts on road mops are
good examples of 0 type of decision table. Logic that may require pages of
flowcharts can generally be shown in one or two simple decision tables. By
their very nature, decision tables preclude the most common logic errors -
ambiguity and incompleteness. The formal of decision tables enables even major
changes to the logic to be mode very easily.

USE OF DECI BLE III

Decision tables can then be seen to be a major advance in the ability to commun·
Icate ideas and logic from person to person. DECIBLE 111 gives the user a means
of taking this human communications tool and converting it directly into com·
puter programs. By creating the programs directly from the definition of the
problem, the difficulties of program logic errors, misinterpretations of problem
definition, and lock of proper program documentation are solved.

Moreover, the coding produced by DECIBLE III IS completely optimized, insuring
that optimum coding for your installation will be produced from the decision
tables. This optimization reduces the run lime and core requirements of programs
written in decision tables.

S

•
JIll

I

2.
SYSTEM
DESCRIPTION

GENERAL DESCRIPTION

DECIBLE III accepts any combination of COBOL statements and decision tables
and translates the decision tobles into optimized compileoble COBOL coding.
The decision tables become NOTE parographs within the produced program and
therefore provide complete documef1totion within a single listing.

Shorthand definitions ore placed at the beginning of the program if they ore to be
used throughout the program (global definitions) Or at the beginning of a decision
table if they ore to be used only within thot table (Iocol definitions).

INPUT TO DECIBlE III

The input to OECIBLE III consists of the following:

• 80 column punched cords, or

• a mognetic tope source longuoge file , or

• a disk source longuage file

If the input is a tope or disk source language file, cords can be used to update
and change the program simultaneously with the processing of the program.

OUTPUT OF DECIBlE III

The output of DEC/BLE III consists of the following;

• printer listing of program and diagnostics, and

• compileable COBOL program on cords, magnetic tape, or disk, and

• (optionally) a source language rile on tope or disk

7

DECISION TABLE PROCESSING

DECIBLE III produces complete COBOL procedure division sections from each
decision table. The section nome used is the table name assigned by the user in
the DECIBLE TABLE statement. Therefore, decision tobles may be executed in
the same monner as COBOL sections. The program con PERFORM a decision
tobie, GO TO a decision toble or pass info 0 decision toble from the coding
preceding the decision toble.

SHORTHAND PROCESSING

Shorthand abbreviations anywhere within the program ore replaced by their defin
itions. If a definition does not fit in the record with the abbreviation, another
record is created to continue the stotement. The break occurs at the lost space
chorocter that will fit on the record.

Shorthand abbreviations that appear within a decision table are translated in the
produced coding but not within the body of the decision toble.

8

I
I
I

•
I
I

•

3.
SOURCE LANGUAGE
LIBRARY MAINTENANCE
SYSTEM

PURPOSE OF SYSTEM

The DECIBLE III source longuoge library mointenance system serves different
purposes for different users. For those users whose current software does not
include 0 source longuage file maintenance system, DECIBLE III provides (]
convenient means of keeping source language programs on tape or disk and
greatly reduces the amount of cord handling required to update and compile
programs.

For those users whose current software includes a source longuoge fi Ie mainten
ance system, the DECIBLE III library system provides maintenonce facilities
against the users files simultaneously with the processing of the decision tobles.
This eliminates the need of (] separate maintenance and processor pass of the
file and reduces the computer run requirements.

GENERAL OESCRIPTION

The basic input to OECtBLE tit can be specified as being on cords, tope, or disk.
If the input is on tope or disk, cards con be used to updote or chonge the program.
A new progrom tope or disk file, including all chonges, can be specified. The
OECtBLE OPTION statement (see Chopler 6) is used 10 specify the input ond
output devices.

SEQU ENCE FIELD

The COBOL statement sequence field (columns 1 through 6) is used to control
updates against 0 tope or disk file. All progroms are automatically resequenced
by 0 factor of 10. The listing produced shows the sequence number field of the
input immediotely to the left of the new sequence number. All cords input into the
system must be in sequence, except for those cords used in 0 block odd (see
below). All out-of-sequence cards ore indicoted by three ostericks (...) to the
left of Ihe statement on the listing and are ignored.

9

INSERTING RECOROS

When the input is specified as being on tope or disk, a cord will be inserted into
the file if it has a sequence number that is not the some as a sequence number on
the tope. In the example below, two cords ore to be added into the file between
records 002420 ond 002430:

file input:

cord input:

002420
002430

002424
002426

EXAMPLE

A MOVE 10 TO COUNTER·A
A RE·ENTER

442 2
664 4

A MOVE COUNTER·A TO SUBSCRIPT·B
5 S 3 3

output listing (note resequencing):

002420
002424
002426
002430

002630
002640
002650
002660

A MOVE 10 TO COUNTER·A 4 4 2 2
A MOVE COUNTER·A TO SUBSCRIPT·B

5 5 3 3
A RE·ENTER 6 6 4 4

10

I I
I

I
I I
I I
I I
III

• • • • •

•

INSERTING A BLOCK OF RECOROS

Any cord read with blanks (spaces) in the sequence field is assumed to follow
the cord immediately preceding it. In this way, a block of records can be inserted
in 0 desired location. This is the only exception to the rule thot all cords must
be in sequence. In the following example , a block of records is to be inserted
into a file.

file input:

cord input:

000840
0008S0

00084S

output listing:

000840
000845

000840
000850
000860

001020
000850 001030

EXAMPLE

03 FILLER PICTURE X(54).
01 INPUT·RATE·TRANSACTION.

01 MONEY ·TRANSACTION·A.
03 CARD· TYPE PICTURE X.

, •• (ADDITIONAL INPUT CARDS)

03 IDENTIFICATION·AREA

03 FILLER
01 MONEY· TRANSACTlON·A.

03 CARD· TYPE

'*.

PICTURE X(8).

PICTURE X(54).

PICTURE X.

03 IDENTIFICATlON·AREA PICTURE X(8).
01 INPUT·RATE·TRANSACTION .

11

REPLACING AND DELETING RECOROS

When the sequence number of a cord is the some as a sequence number on the
input file, the record on the input file is deleted. If columns 7 through 80 on the
cord contoins all blonks (spaces), the cord acts lust as a delete cord. If there is
any non-blonk in any of the columns 7 through 80 on the input cord, thot cord
replaces the file record. The following example shows a record be ing replaced
and 0 record being deleted.

file input:

cord input:

001070
001080
001090
001100
001110

001080
001085
001090

output l isting:

001070
001080
001 085
001100
001110

001070
001080
001090
0011 00
001110

01
03
03
03

EXAMPLE

COUNTERS.
NUMBER·RECORDS
NUMBER·FIELDS
NUMBER·ERRORS

PICTURE 9(5).
PICTURE 9(5).

COMPUTATIONAL·3
PICTU RE 9(5).

03 NUMBER·RECORDS COMPUTATIONAL·3
PICTURE 9(5).

01 COUNTERS.
03 NUMBER·RECORDS COMPUTATIONAL·3

PICTURE 9(5).
03 NUMBER·ERRORS COMPUTATIONAL.3

PICTURE 9(5).

12

•
•
•
• • • • • • • •

•

4.
SHORT-HAND TRANSLATION
SYSTEM

GENERAL DESCRIPTION

The DECIBLE III shorthand system permits three choracter abbreviations for
programmer selected phrases. Global abbreviations ore defined at the beginning
of the program and may be used anywhere within the program. Local abbreviations
ore defined in 0 decision toble and may only be used for thot table.

All abbreviations ore three characters long preceded by a semi-colon (;) and may
contoin any alphanumeric or special choracter including spaces. All global
abbreviations must be unique; local abbreviations con be used in different tobles
with different definitions .

The choraclers in the definition will replace the semi-colon and three character
abbreviation. If the number of characters exceeds the amount permitted on a line,
the line is continued on a new record. The continuation occurs at the lost space
that will fit on the line.

Abbreviations used in a decision table will be translated in the DECIBLE III
produced coding but not in the decision table itself. This helps maintain the
format and clarity of the decision table .

ABBREVIATION DEFINITION STATEMENT

The ABBREVIATION DEFIN ITION statements 0'. used to deline DECIBLE III
srn,rthond abbreviations. Global definition statements oro the first records fol.
lowing the DECIBLE OPTION statement. Local definitions immediately follow
the DECIBLE TABLE statement.

The definitions may be one to fifty·four characters long and may contain any
characters in the COBOL character set. The definition is contained within
quotes. If a quotation mark is desired os part of the definition, it is indicated by
two quotation marks in the definition. One definition may not contain another.
See Chapter 6 for a description of the ABBREVIATION DEFINITION statement.

13 (~

EXAMPLES OF ABBREVIATION DEFINITIONS

EXAMPLE I.

DEFINITION ,
STATEMENT,
GENERATES,

EXAMPLE 2.

DEFINITION,
DEFINITION,
STATEMENT,
GENERATES,

;NEF ' IS NOT EQUAL TO " FINISH '"
ITEM·PROCESS ;NEF
ITEM·PROCESS IS NOT EQUAL TO 'FINISH '

;NUM 'COMP·3 VALUE 0 PICTURE S9(5)V99 '
;SAL 'EMPLOYEE·WEEKLY ·SALARY'
03 ;SAL ;NUM.

03 EMPLOYEE ·WEEKLY ·SALARY COMP·3 VALUE 0 PICTURE S9(5)V99.

14

• • •

•

5.
WRITING
DECIBLE III
DECISION TABLES

GENERAL DESCRIPTION

Writing decision tables fo r DECI BL E III is simi lar to wrIting decision tables
thot ore not processed automat ically, except thot all condition s tatements are
valid COBOL conditional statements, and all action stotements ore valid COBOL
procedure division statements .

EXTENDED AND MIXED ENTRY DECISION TABLES

DECIBLE III permits the use of decision tables contoining extended entry
statements. T hese tables may consist entirely of extended entry statements
(extended entry decision tables) or a combination of extended entry statements
and limited entry statements (mixed entry decision tables),

In on extended entry stotement the rule entry consists of the continuation of the
action Or condition statement. While the length of the rule entry (in mixed or
extended entry tables) is fixed at four characters, the use of the Shorthand
Translation System (see Chapter 4) odds greatly to the flexibility of extended
entry tables.

CODING INSTRUCTIONS

DECIBLE III decision tables can be coded on any standard COBOL coding
sheets or an the coding sheets provided by ICS Corporation. (See page 16 for a
sample coding sheet). On all decision table records, columns 7 through 11 and
column 72 must contain a blank (space) charocter.

Extended or mixed entry decision tobles can have a maximum of twenty records
for individual action Or condition statements. limited entry decision tables hove
no maximum number of records for on individual statement. In any case, the totol
number of records (exclusive of COMM ENT statements) in a single table may
not exceed the limit set for your particular installation {usually one hundred
records}.

15 (~

f- __ I ~ ~ f-' ~f-f-~~L~

I-~ __ rf-f- f-f- rf-~f-f-f-~~rf-f-~~ -~~ ~f- _ ~ f-~ r-f-f-~~' ~ ~ - f-f- - P

'f- _ '- _ r ~ ~ - ~ f--f-~f--~-f- ___ f-.

z
9

f-_I-_~_~_~-f-f--=~I-I-I- -I- " • I- - I- I- - = ~ ~ ~ t ~ - ~ - - o.

• •

• o

~ -
~

~ f-

I- I-
I-

o
.~ - I-- '-

I-- f- I--
~

~ f-
I- ~ ~ ~ I-
I- ~ - l- I- ~

r ~

I-- :... l- f-

'- - I- -
- -
- f- :...
I--r-~-

f- ~ f-

I- 1--'--:

~ - I-
~ f- I- 1---1- =

~ ~ l-

I--
I-- ~ I- I--

- -
-
- -
f-

~

I- f-

I-- - I- I-- f- ~

I- f- ~

• • 0
0 • • •
Z • • •

a

" • n •
~
<;
z

• • 0
0 • • • • •

: •
" •
z • • •

f..-a
~
"

-.-• o •

~

" ~
m

" g
" g

" 0
3
'0
§
Z;
~

'" 0
R
~
~

0" m 0
n " -'0 m ·
r
m

n
o
2
z

"

• • • •

• •
I
II
II

DECISION TABLE IDENTIFICATION

Each decision toble is assigned a nome and a number (see the DECIBLE TABL E
statement). The user may assign any valid COBOL procedure name up to thirty
characters long (if the COBOL compiler permits). As this nome becomes the
COBOL section nome, all tables must hove a unique nome. If no nome is assigned
by the user, OECIBLE III will assign one.

The decision toble number is used to provide unique paragraph names within the
produced coding and for user documentation. All tobles within a program must
hove a unique toble number. If the user does not assign a toble number, DECIBLE
III assigns them in descending order storting with 9999. Tobie numbers may be
one to four digits.

CONDITION STATEMENTS

The condition statements can be any valid COBOL conditional statement except
that the ward 'I F' is left aut. They can be as complex as required and contain
any combination of 'AND' or 'OR' qualifiers as the COBOL compiler allows.
They must not, however, contain any imbedded nested IF statements.

ACTION STATEMENTS

The action stotements may be any valid COBOL sentences containing as many
statements as required. They may be as complex as the COBOL compiler allows,
but they must not contain conditional statements. There should be no periods (.)
in the oction statements except as non-numeric literals or as decimal points

within numeric literals.

INITIAL SET ACTIONS

Initial set actions are actions to be performed immediately upon entering the table
and prior to the testing of the conditions. They can be used for setting counters
and switches, reading input, etc. They may be any valid COBOL statements
except conditional statements, GO TO statements or DECIBLE III special actions
(see below).

An important aspect of initial set actions is that they are standard decision table
actions with the added feature that they are also performed prior to testing the
conditions. Therefore, they are coded with the other actions within the lable and
may have entries within the rules and be used the some as any other actions.
The initiol set actions are performed in the order coded.

17

DECIBLE III SPECIAL ACTI ON STATEM ENTS

In order 10 facilitote the use of DECIBLE III decision tables in looping opera
tions and to provide a common ending point, DECIBLE III provides the following
special oc,ion statements;

I. LOOP
This oction produces coding to bronch bock to the beginning of the condition
testing logic . If there ore any initial set actions present they will nol be
executed ogain.

2. RE·ENTER
This aclion produces coding to bronch bock to the beginning of the decision
toble. Any initial set actions present will be executed ogoin.

NOTE:
As the distinction between the LOOP and RE·ENTER oction statements
concerns whether or not the initial sel actions will be re-executed, the LOOP
and RE-ENTER actions should not both be used in 0 decision table that does
not contoin on initial set rule.

3. EXIT
This oction produces coding to bronch to the end of the decision table . If the
table was called by the COBOL 'PERFORM' verb, control posses to the
statement following the PERFORM statement; otherwise control posses to
the coding or decision tables following that decision table.

ELSE RULE

The else rule is on optional rule whose octions are to be performed only if none
of the other rules can be satisfied. Normally, rules must satisfy every possible
combination of conditions, but in some coses thp- user of decision tables is inte
rested only in certain specified sets of conditions. For example, a decision
table used for validity checking may have hundreds of different combinations of
conditions, only some of which are invalid. The standard rules moy explicitly
show the invalid combinations, with the ELSE rule handling 011 the valid combin
ations.

The ELSE rule is indicated by having the right most rule in the table have condi·
tion entries consisting of all dashes {-}.

18

IJ

• • •

I
I
I
I
I

END OF DECISION TABLE

The end of the decision toble is indicated by any statement that does not
fit the formot of a DECIBLE III statement. Specifically, this would be
any cord with a non-blank character in columns 8 through 11, or any
character other than a C, A, $, *. or space in column 12, or on end·of-fi Ie
indicator.

Therefore, a procedure nome (in margin A of the stondard COBOL coding
format), a COBOL statement starling in column 12, another decision
tobie, or an end of file indicates the end of a decision toble.

LIMITED/ EXTENDED ENTRY COMPARISON

ITEM LIMITED ENTRY EXTENDED OR MIXED
TABLES ENTRY TABLES

OECIBLE TABLE
STATEMENT some as limited entry

X STATEMENT Must not be used Must be used

EXTENDED ENTRY
STATEMENT Must not be used Must be used

WIDTH OF RULE 2 Columns 4 Columns

CONDITION RULE
ENTRIES Y, N, o. dosh (.) 4 characters, NONE, or

dash for extended entry
or Y, N, Or dash

ACTION RULE
ENTRIES X, dash, or numeric 4 characters or dash for

value extended entry or X or
dash

NUMBER OF CARDS
PER STATEMENT Unlimited 20 cord limit

RULES CONTINUE
ON ADDITIONAL CARD NO YES

RULES START AT Free format Column 30

19

•
II

I

6.
DECIBLE III
STATEMENTS
GENERAL DESCRIPTION

Three stotement cord types plus a comments cord ore used to code deci·
sian tobles in DECIBLE III. They ore the DECIBLE TABLE stotement
(used to identify decision tobles), the X stotement (used to identify a
decision tahle as extended or mixed entry), and the DECIBLE SET slate
menl (used to code condition and action stotements),

Two stotemenl cord types ore used by the source longuoge library system
and the shorthand translation system. They ore the DECIBLE OPTION
stotemen' {used 10 set the input/output options} and the ABBREVIATION
DEFINITION stotement (used to define shorthand abbreviations).

DECIBLE OPTION STATEMENT

The OECIBLE OPTION stotement is used to sel the input 'output options.
It con olso he used to control the printer listing produced during the
DECIBLE run. The options can be listed in any order desired.

STATEMENT FORMAT

COLUMN CONTENTS

I - 6 sequence number

12 - 23 NOTE OPTION

24 - 49 options, separated by commas

SO - 72 listing heading

The listing heading field in the DECIBLE OPTION statement is printed
at the top of each page in the listing. Any subsequent option statement
with any entry other than spaces in the listing heading field will couse
the listing to skip to the top of a page and the new heading will replace
the one previously entered.

21 (~

If the listing heading field in 0 DECIBLE OPTION statement consists of
all spaces, the previous heading entered remoins and no skip to the top
of the page occurs.

If the first card in the cord reoder is not an option cord. the input is
assumed to be on cords and the run is assumed to be 0 syntax check run
only, producing only a printer listing output. The following options ore
used only when the DECIBLE OPTION cord is the first card in the card
reoder:

TAPE
This option indicates that the primary input comes from a source
longuoge Ii Ie on tope.

DISK
This option indicates thot the primary input comes from 0 source
language file on disk. The TAPE and DISK options cannot both be
used in the some program. In the absence of both of the two options,
the primary input file is assumed to be on cords.

NEWT
This option indicates that a new source language file is to be created
on tope.

NEWD
This option indicates thota new source language file is to be created
on disk. The NEWT and NEWD options cannot both be used in the
some program.

COMC
This option indicates that the compileable program produced by
DECIBLE III is to be punched on cords.

COMT
This option indicates that the campi leable program is to be created
on tope in a format acceptable to the COBOL compiler for the system
in which DECIBLE III is implemented.

COMD
This option indicates that the compileable program is to be created
on disk in a format acceptable to the COBOL compiler for the system
in which DECIBLE III is implemented. It should be noted that some
operating systems do not permit the input to the COBOL compiler
to come from disk. When DECIBLE III is implemented on these
systems, the COMO option will not be accepted.

22

•
•
1M

I~

III
III

III

II

I
III
III

I ,

I
I

Only one of the options COMe, COMT, or COMO con be used in a DEC
ISLE III run. In the absence of any of these options, DECIBLE III oper
ates in syntax check mode only.

The following options con be used anywhere within the program. They
ore used to control the printer Ii sting.

NOPR
This option stops the DECIBLE 111 printer listing. All diagnostic
messages, along with the input line previous to the diagnostic, will
sti 11 be printed.

PRNT
This option causes DECIBLE III to resume the listing if the NOPR
option hod been previously entered.

EXAMPLES OF DECIBLE OPTION STATEMENT

1. Input on cords, no library. compi leable output on tope

000010 NOTE OPTION COMT

2. Input on cards, creote tope library file, syntax check only

000010 NOTE OPTION NEWT

3. Input on lope, compHer output on lope, no listing

000010 NOTE OPTION NOPR, COMT, TAPE

4. Input on disk, creote new disk file, compileoble output on tope

000010 NOTE OPTION DISK, NEWD, COMT

5. Input on disk, create tope library file, compileoble output on disk

000010 NOTE OPTION NEWT, DISK, COMO

23

DECIBLE TABLE STATEMENT

This statement is used to indicate the beginning of a decision toble . The
table nome moy be any valid COBOL PROCEDURE nome up to 30 chor
acters long. If 0 toble number is assigned by the user, the nome is immed
iately followed by a comma and the table number. The table number may
be one to four digits long. All tobles within 0 program mus t hove unique
table numbers.

If no table number is assigned, then DECIBLE III assigns them in de
scending order, storting with 9999.

STATEMENT FORMAT

COLUMN CONTENTS

1-6 sequence number

12 - 23 NOTE DECI BLE

25 - 72 in free format. toble nome fol-
lowed (if desired) by a comma
and 0 table number

24

• • • • •
II

I I

II
I

• • •
•

EXAMPLES OF DECI BLE TABLE STATEMENT

1. DECIBLE III assigns unique toble nome and number

009320 NOTE OECIBLE

2. User assigns table nome, DECIBLE III assigns table number

009320 NOTE OECIBLE CALCULATE·PAY ·RATE

3. User assigns toble number, DECIBLE III assigns toble nome

009320 NOTE OECIBLE, 136

4. User assigns toble nome and number

009320 NOTE DECIBLE CALCULATE·PAY·RATE, 136

25 (~

•

X STATEMENT

The X statement is used only in extended or mh(ed entry tables to indi
cate thot the toble is not a limited en try decision table and 10 give the
number of rules within the toble. It immedia tely follows the DECI BLE
TABLE statement.

The X statement contoins on X in column 12 of the ca rd and the number
of rules (right justified) in columns 14 and 15. Columns 17 through 72
may contoin comments if desi red.

STATEMENT FORMAT

COLUMN CON TENTS

1 - 6 sequence number

12 X

14 - 15 number of rules in table

17 - 72 commen ts

26

II

I I

II

I I

II

III
III
I

• • •
•
~

DECIBLE SET STATEMENT

The DECIBLE SET statement is used to code condition and action stote
ments. Limited entry condition and oction statements con be continued
on as many records as required; extended entry statements have a limit of
20 records. The maximum total number of statement records in 0 table
is 100, not counting comment cords.

STATEMENT FORMAT

COLUMN CONTENTS

I - 6 sequence number

12 set type (on first line only)

14 - 71 statement, followed by rule entries

72 space

The set type (column 12) indicates whether the set is a condition (e),
action CAl, or initial set oct ion (S). The extended entry indicator (column
13) indicates whether the set is limited (blank) or extended (X). Extended
entry sets con only be used in an extend!!d or mixed en try toble.

Rules in a limited entry table may start in any column from 30 through 70
of the last cord of a set . limited entry tables use two columns per rule.
Va lid condi t ion ru le entries are Y, N, or dosh (-) and volid action rule
en tries a re X, dosh {-}. or any number from 1 to 99. All rule en tries ore
righ t justified. Limited entry rule entries must be contained on Ihe lasl
record of 0 set.

Rules in on extended or mixed entry table are four columns wide and must
start in column 30. If more than ten rules are used, the remaining rules
are coded in on additional record, again starting in column 30. limited
entry condition entries coded in a mixed entry table must he Y, N, or
dash (-) and limited entry action entries must be X or dash (.). Note that
action sequence numbers are not permitted in 0 mixed entry toble .

27 (~

{~

In extended entry statements , the rule en Iry is 0 dash (.), the continuation
of the condit ion or action , or DEC/B l E special entries (see Chapter 5).
The entries moy be one to four characters long and righ t justified within
the rule. DECIBLE shorthand abbreviations orc valid rule entries.

Conditions or actions must end at leost two columns before the beginning
of the rule entries. On all records of a set. column 72 must be blank.
Special core should be used in the coding of the first set as this is the
one DECIBLE III uses to determine the posi t ion and number of rules in
limited entry tables. Rule entries should never be all spaces .

DECIBLE COMMENT STATEMENT

Comment cards may be placed anywhere within a decision toble.

STATEMENT FORMAT

COLUMN CON TENTS

1 - 6 sequence number

12 asterisk (*)

14 - 72 any comments

28

I

ABBREVIATION DEFINITION STATEMENT

The ABBREVIATION DEFINITION statements a,e used ta deH,. DEC·
ISLE III shorthond abbreviations. They must immediately follow the first
DECIBLE OPTION statement.

The definitions may be 1 to 54 characters long and contain any characters
in the COBOL choracter set. The definition is contained within quotation
marks. Any quotation mark embedded within the definition is indicated
by two quotation morks. One definition may not contoin another (nesting).

Abbreviation definitions ore copied on the DECIBLE 111 library system
file, but do not appear in the COBOL compilation listing.

STATEMENT FORMAT

COLUMN CONTENTS

1-6 sequence number

12 semi·colon (;)

13 - 15 abbreviation

17 - 72 in free format , the
definition contained
within quotes

EXAMPLES OF ABBREVIATION DEFINITIONS

EXAMPLE 1.

DEFINITION:
STATEMENT:
GENERATES:

EXAMPLE 2.

DEFINITION:
DEFINITION:
STATEMENT:
GENERATES:

;NEF 'IS NOT EQUAL TO "FINISH'"
ITEM·PROCESS ;NEF
ITEM·PROCESS IS NOT EQUAL TO 'FINISH'

;NUM 'COMP·) VALUE 0 PICTURE S9(5)V99'
;SAL 'EMPLOYEE·WEEKLY ·SALARY'
0) ;SAL ;NUM.

0) EMPLOYEE·WEEKLY·SALARY COMP.) VALUE 0 PICTURE S9(5)V99.

29

I

7.
PROGRAMMING
GUIDLINES

TABLE ORDER

The algorithm used to translate the decision table is completely inde
pendent of the order of the rules except thot the "ELSE" rule must al
ways be the lost rule in the table. The produced coding witl test the rules
in the most efficient order to reduce running time and core requirements.
Only if it is immaterial to the efficiency of the produced coding will
DECIBlE III lest the conditions in the order coded. It should be noted
that in different bronches of the condition testing logic, the some condi
tions may be tested in a different order.

The actions ore executed in the order of their sequence number and,
except for the initial set actions, it is immaterial in which order they ore
coded. The initial set rule is executed in the order coded.

In order to take full advantage of the action optimization routines, if a set
of actions is performed by more than one rule, these rules should perform
those actions in the same order.

TABLE UN1QUENESS

In order to assure the unique generation of procedure names, no two tables
should hove the some name or number. Alsq no coding produced by the
user should have a procedure or data nome the some as a table nome or
begin with 'Dnnnn', where nnnn is a four digit number.

VALUE RANGES

NUMBER OF TABLES
DECI BlE 111, will handle 9999 tables; each table must have a unique
table number and table nome.

31

(~

NUMBER OF RULE5
The minimum number of rules is 1.

The moximum number of rules (including the ELSE Rule if spf'cified)
is 20.

NUMBER OF CONDITIONS

The minimum number of condition stotements is zero.

The maximum number of condition statements is 20.

NUMBER OF ACTIONS
The minimum number of aclion stotements is 2.

The maximum number of action stotements is 30.

NUMBER OF CARD5

A decision toble may contain up to 100 cords, not including the
DECIBLE TABLE card and COMMENT cards.

CONDITION STATEMENTS

Condit ion stotements may be any valid COBOL conditional stotement
except thot they may not contoin nested IF stotements. They may be com
plex condit ions and conto in any combination of " AND" and "OR" state
ments permitted by the compiler.

ACTION STATEMENTS

Action stotements may be any valid COBOL statements except condi.
tionol statements.

RULES

All rules must contain at leost one action stotement and the lost action
to be executed within each rule (the entry with the highest action se·
quence number) except the initial set rule must be 0 tlGO TO" I "RE·
ENTER" , " LOOP" , "EXIT", or "STOP RUN".

32

• • , •
II
II
III

II

APPENDIX A
DIAGNOSTICS
There are two different types of diagnostics - error and warning
messoges. In addition, all input cords out of sequence ore indi
coted by printing three astericks (•••) to the left of the input
card. All cards out of sequence ore ignored.

A warning message indicates thot on error condition exists that
the system con correct. In some cases these corrections may in
volve assumptions about the intent of the programmer and may be
incorrect. All warning messages should be checked to see that
corrections mode truly reflect the intentions of the programmer.

An error message indicates that on unrecoverable error has been
made and further processing of a toble is impossible. In that ease,
the section produced by DECIBLE III will contain only the COBOL
note paragraph containing the decision table itself.

All error and warning messages contain a number key that con be
used to reference this section for further information. The fal·
lowing is a list of all warning and error messages:

OJ MORE THAN ONE LIBRARY INPUT FILE OPTION
The first DECIBLE OPTION stotement contains both the
TAPE and DlSK opt;on •.

02 MORE THAN ONE LIBRARY OUTPUT FILE OPTION
The first DECIBLE OPTION statement contains both the
NEWT and NEWD opt;on ••

03 INCORRECT NUMBER OF ACTIONS
This message indicates that the table contains less than 2
or more than 30 actions. It may be coused by a cord with other
than a C, A, 5, ., or blanks in column 12 within the table or
coding in margin A. In either case, DECIBLE III tokes this as
the end of the table.

04 INCORRECT NUMBER OF CONDITIONS
The toble contains more than 20 conditions.

A-l

05 NO RULES IN FIRST STATEMENT
The first DECIBlE SET STATEMENT contains no rule entries.

06 INVALID ACT STATEMENT or
INVALID COND STATEMENT

The DECIBLE SET STATEMENT did not contoin 0 valid
action or condition statement.

07 INVALID ENTRY ACT RULE nn or
INVALID ENTRY COND RULE nn

The rule entry for on action was not a numeric volue, X, or
dash{-} or the rule entry for a condition was not Y, N, or dash.
'nn' is the rule number with the invalid entry. DECIBlE III
assumes a dash (-) entry for this rule.

08 INCOMPLETE TABLE ELSE RULE ASSIGNED
There is no ELSE rule, but all possible conditions have not
been accounted for. An ELSE rule containing a 'STOP RUN'
action is created.

09 RULES nn AND mm NOT UNIQUE
The some set of conditions will pass rules 'nn' and 'mm'.

10 'IF' STATEMENT NOT ACCEPTED AS ACTION
A conditional statement is not a valid action.

11 LOOP AND RE-ENTER USED - NO INITIAL SET
Since the only distinction between the special actions LOOP
and RE-ENTER involve the initial set, they should not both
be used in 0 table with no initial set.

12 NO ACTIONS IN RULE nn
Rule 'nn' contains no actions. A 'STOP RUN' action is added
to that rule.

13 COLUMN nn CONTAINS INVALID CHARACTER

14 MISSING TABLE NAME
OECIBLE assigns 0 table number.

A-2

• • •
III
III

II
II

II

I

15 MORE THAN 10 RULES NEED CONTINUATION
In on extended entry tobie, there is only room for ten rules
per card. Therefore, more thon ten rules require the rules to
be contained on more thon one cord. The action or condition
flogged by this message did not hove the required number of
cords.

16 00 ERRORS bb WARNINGS cc TABLES
Thi 5 message appears five times at the end of every program
and gives the total number of errors, warnings, and tobles in
the program.

17 SYSTEM DIAGNOSTIC
Notify Independence Computing and Software Corp. immediately
should this message occur.

18 NUMBER OF RUL ES LOGICALL Y INCORRECT
A decision toble with no conditions contains more thon one
rule, or a decision toble with one condition contoins other
thon two rules.

19 CONDITION STATEMENT OUT OF ORDER
A condition statement follows CJ1 action statement in a toble.

20 MORE THAN 100 CARDS IN TABLE

21 0000 IS AN UNKNOWN OPTION
The DECIBlE OPTION STATEMENT contains the unknown . , ,
option 0000.

22 MORE THAN 20 CARDS IN EXTENDED STATEMENT
DECIBlE SET STATEMENTS used in extended entry tables
may contain no more than 20 cards.

23 DUPLICATE SHORTHAND ABBREVIATION
This abbre iation has been previously defined.

24 BEGINNING QUOTE OF DEFINITION MISSING
Definition must be enclosed in quotes.

... -3 (~

25 END QUOTE OF DEFINITION MISSING
Definition must be enclosed in quotes.

26 UNDEFINED SHORTHAND ABBREVIATION iOOO

The abbreviation ;000 used in a statement has not been defined
;n on ABBREVIATION DEFINITION STATEMENT.

27 SHORTHAND STACK OVERFLOW
There ore more thon 600 shorthand definitions or their combined
length is greater thon 15,000 characters.

28 ACTION ENTRY IN RULE nn GREATER THAN 90
Sequenced action entries can not be greater thon 90.

A-4

"

"

•
'" I

"

•

•

..

..
•

,

"

"
•

..

YII,tllllfl,HU (" ml",I' }'ol i • f 1./1"" ,. 1' ,1 ~ .''' 11 " ... , "'r" (CIlI ''' .. , .. _ " J M ' O'

0(. 0(1 10 IQEtlllrttAll0f.. OIVISIO"'.
ooCOlO ~ROCRA~-IO . UPOATE.
000C30 AUTHOR. CHARLES STERBAKOV .
000040 Ef..VIRONMENT DIVISION.
ot Ot' 50 CONFICURATIC,,- SEtTlO,...
OC~(60 SCURC£-CO~PuT[R. 1£~-)bO .
OCC(;70 CBJECT-COHPUHR. 18",-360 .
oooole INPUT-CU1PUT SECTION .
OOij~90 SELECT CARDIN
cealOO ASSIGN TO UT-S-CAROIN .
000110 SELECT lAPEl'"
ODOl20 AS SIGN TO ~T-S-TAPEIN.
ceOl30 SELECT TAP[OUT
000140 ASSIGN TO UT-S-TAPOUT.
000150 OATA DIVISION .
000160 FILE SECTION.·
000170 Fa CARDIN
00(180 R£CORO'f..G MODE F
~0190 LA8EL RECORDS OMITTED
DOOlOO DATA RECORD IS CARD- RECORD.
ODOllO 01 CARD-RECORD .
OOO~Q 0) C~RD-SEQUE~CE
ODOllO 0) CARD-DATA-AREA
OOtl40 03 FILLER
000250 Fe TAPelN

- (01)260 ltecoJtOJNG HODe F
000270 BLeCK 5 RECORDS
000280 LA8eL RECORDS STANDARD
IKIlJl90 DATA -RECcltO rs INPuT-IteCORC.
000300 01 INPUT-RECCRD.

.PltlURE
PI c:TURE
PICTURE

-'_.LeLl ..
X 16(') •
X181.

QG0310 03 TAPE-SEQUENCE
OOO]2U""" -0) FftleR

PICTURE 9161.
PiCtURE X1741.

000))0 FD TAPEOUT
000340 RECCROING MODE F
000]50 DIecl< 5 ffE'tmtDS
000360 LABeL RECORDS STANDARD
ooe370 DATA RECORD IS OUTP~T-RECORO •
00'IfJ81rlJT OlJ'TPUT~CORO .
000)90 03 OUTPUT-SeQUENCE
Q90400_ 0) FILLER

PICTURE 9161.
PtCTUREJl1U •

000410 WORKING-STORAGE SECTION .
000420 HISC_OATA .
00(.430 03 LAST-OUT-SEQUENCE
000440
000450 03 CARO-FJLE-EOF VALUE 'N'
000460 0) TAPE-FILE-EOF VALUE ' N'

--DCiWiD~ -PRCCEOliRE DIVTSI0N.
000480 If..ITIALIZE SECTIO~.
000490 INlTIAL.

VALl:_E 10
PICTURE
PICTURE
PICTURE

000500 OPEN
000'10

INPUT CARDIN
INPUT TAPE IN
OUTPUT TAPEOUT.

NOTE DECIBLE HEI\GE-ROUTINE"

COHPUTATIOf..Aj.-3
9161.
X.
X.

000'20
oo-on-o
OC O'40
0005!)0
"000560

C CARO-FILE-EOF = 'Y' Y Y N N ~ N t
C TAPE-FILE-EOF = 'Y' Y ~ Y N N ~ N
C CARD-SEQUENCE IS LESS THAN TAPE-SEQUENCE

z »
." ."
C ."
--i m
C Z
Ul 0
--i -- X Z
G> o:J

• •

,,,,/'j,,,,/,.IIr<- (,mlm (, ',' il""" I ,i' " ""~u "ol _uo COl~ ,.,c;\WOOO ~ .N'

• •

w __ y '" I. '"
C CARD-SEQUENCE IS EQUAL TO TAPE-SEQ~tNCE

... Y Y N
C CARD-DATA-AREA : SPACES Y N ...
•
S Rfl.O CA~Oltl.

AT E~O HOVE 'V' TC
CARD-F J LE-EOF

S READ TAPEIN
AT END Hove 'V' TO

lo 4

TAPE-FllE-(eF ... 4 4
A CLOSE CARDIN TAPEI~ TAPECUT

STOP RU~ 2 _
A ~OVE I~PUT-AECORO TC CUTPLT-AECQRQ

-2----2
A HOVE CARO-RECORD TO OUTPUT-RECORD

A PERFORM ~RllE-TAPE
A Re-ENTER
A LOOP

WRITE-TAPE SECTION.
WRI TE-TAPE-RECORO .

2 2 ... 2 -
666-46

2 , -
-888--8

Hove LAST-OUT-SEQUE~CE TO CUTPUT-SEOUENCE .
WRITE OUTPUT-RECORe.
ADC 10 TO lAST-OUT-SEQ~ENCE •

-

...----- - - ---------_. _. -_. - -

'" I
w

..

-
"

•

"

•

•

"

"

•

. ,
•

"

"

•

"

/N,/rjt'N'/' IJ'''('''',AIII' ''1~ 1./1"",. t"t' " ", M,1I _,' ."l _ ul (OI.~'''''' ''_ • • ','f'

Ie ! DE C. I ELE '" VC R) CH • .to

OOOl l O IDENTlflCA~JON DIVISION.
Ole020 PROGRAM-Ie. UPDATE.
O!)(; AUTHOR. tl lARlES !.TER!AKOV .
at 'l 4 0 ENVIRo,.. .. e ... T OJvt S IO
0\. !;;O CONFI CURATION SeCTION .
OOOC 60 SOURCE-CC~PUTER. IEM-lbO.
oett l e OBJECT-COMPUTER . 18H-360.
OtOL8 0 INPUT-O~TPUT SECTION •
c~ 90 SEL ECT CARDIN
00, I t(. A~ ~· IGN TO IJT-S-CAROIN .
OC: lie !:ElCCl lAPEIN
00C 120 AS S IGN TO ~l-S-T~PEIN.
0 00130 SELECT TAPEOUT
000 140 AS ~ ICh TC UT-S-TAPOUT.
OOC 150 DA1A DIVI S ION.
0~0 160 FILE SECTION.
Ot0 170 FC CARDIN
000 180 RECORDING HODE F
000 190 LABEL RECORDS CHITTED

OC OO l O
OCC020
CC.C.; 3 G
Od '-I,(
Olit.;.~C

000C60
OC.00 7C
0000 8C
OOr.;(. 9 0
OO(10C
0('e 110
00012e.
000130
000140
OCC t5 0
0 00 1600
00C 170
000180
000190
OOQ20Q
OOC 210
000 220

_C()Q 23 0
000240
0002,0
000260
OG(.-27 0
o e0 280
000290

0 0020 0 DATA REcORD IS 'AAD-~COR~
OOOZ I C 0 1 CARD-RECCRD.
ooa2Z0 03 cARD-SEO~[NC[
00u 23 0 03 CARO~DATA-AREA

000 240 03 FILLER
000250 FO TAFEI~
000 Z60 RECORDING ~OOE F
OOC Z7C BLOC K 5 RECCRDS
oeL2eo LABEL RECORes STANO~RD
C00290 O~TL RECORD IS INPUT-RECORD.
C00 3C O 01 I'NPUT-R£c15RO.
000 310 03 TAPE-SEQUENCE
ooe320 03 FILLER
0(0)30-- FO TAPECUT
00C 340 RECOADI~G HODE F

PIC TURE
PICTURE
PICTURE

9161.
)I: (6" 1 •
x lSI.

PICTl'RE 916J.
PIC.1URE XIHJ.

r=
~o.

000310
000320
(00) 30
DOOHO
000),0
000360
000370
000)80
~J96
000 40 0
0 0<>41 0 =ro
OOO'\)O
00041,,0

""Ilm"(50-
000 4t;. O
000410
Ni048D
000490
000'00
0 00'10
000 '20

00C 350 BLeCK 5 RECORDS
00C360 LABEL REtORDS STANDARD
000370 DATA RECORD IS OUTPUT-RECORD.
000380 01 OUTPUT-RECORD.
000 390 03 OUTPUT-SEQUENCE
00C 400 0 3 FIL LER

PICTURE 9(61.
PICTU"-E X1741 .

>

c

000530

00C 410 WORKING-STORAGE SECTION.
0"00420- 10011 Sc-O.(T/I..
000430 03 LAST-OUT-SEQUENCE
00 0440

CCMpUTATIONAl- 3
9(6) •

0004-'-0 '03 tMlo-~m-tDF
00(460 0 3 TAPE-FILE-EOF
00(470 PROCEOURE DI VISION .
00 0480 fNITIALIZE SECTION.

VALUE 10
PICTURE
PICTURE
PiCTURE)(.

,. VAliJ£~l
VALUE 'N'

000490 INITIAL.
000'00 · OPEN INPUT CARDIN
00C5 10 INrUT TAPEtN
COC5Z0 OUTP UT TAPECUT.
00(530 HEAGE-RO~TINE SE CTICN .
000 5"0 D0005N.
000'50 NOTE OECIBLE HERCE-RDUTJNE,5

-

o
C
--i
."
C
--i
r--Vl
--i -Z
G>

...

,
•
•
I • !
i
" ,
~ , • • ,

" • , u , , ~

• ~ • w
>

";-

" , ,
" w
"-

" "
Q

~ ,
"' u ,

w 1- u

~ , ,
~

-,\ u ,
~

" ,
'"

w
zzv:;.::wZI

Z u zzwzz>z
~ w

Z~OIZ~»
u a

ZZ"'>wl , ~

Z>W I I
~ w

>2 '" ~
~ ~

» ~

~
w

»"
~

II II

~~u

OOu
wwZ , ,w
ww~
"~a __ w

~~~ , , , 
owo 
.. « ••• u~u 

uuu 

~ 
w 
U • ~ 
~ 

" • w 
~ • , 
• 
~ • o , 
o 
~ • u 

N 

a • 
• 

g ~""'o,) 
~ 3.-(.0 
<Ii: N W ..0 , ~ 

~ Nt-' I 

~ " ~ o ~ ~ 
w ~ ~ 
~ ~ ~ 
• u ~ 
~ 0 

u 
~ 

o 
~ Z -w a 

>- >- a.. or; 
-II. - .... 4l 0 

o 01- '-' 
...... 101... W 
;> I > I z a: ZCwzow_ I 

-%....1-:&;. ... 0 ..... 
o _w_a:~ 

a:o .... a..o .... za.. 
"';0::1«210:1..:: 
UWQI-W W "'_ 

~ ~w 
o .... <coI-""""a..w 
..... u CCi-cO> 
W w -'I-U 
at « u""x. 

~ 
a 
~ 
a 
u 
w 
f 
o 
~ • u 
w 
> a • 
• 

00000000000000000000000 
~ 11\ 00 r- ID 0' 0 ... N "" • on .., ... G:I 0' 0 -' N 1"\ " 11\.0 
on.., 11'1 on ",on '" '" ..,.0 .0 .0 .., '" .0 .0 r-- ,.. ,..,.. ,..,..,.. 
gg z15 ~g gg 2 3g gggig gg:8 gg gggi 
OOOOO OOO OOO OOOOOOOO[]·[]OO 

J l 
M • · , • " 

., 
1 L 
, • 

6-4 

n 
o 
u 
o 
o 

w 
II 1\ a.. II 

w 
u 
Z 
w 
~ 
a 
w 
~ , 
w 
~ • ~ 
o 
~ 
~ 

"W .u ". a~ 
w~ 

• • 11.......... . .... W~' . ww 
,00 NOI'\ ",va:: 
wwz ~w."\zonz ... 1o') 
11_ 1 onw 11'1 ... 1 11\ 
wwo owu~o~"'u 
-'-'''' 0 ... 0 0011-.0 
-_,",,2 0_0 o ... eo 
........ u~ 011.0"'0,,",0 ·0 
1,« I I I I 
Ow... OwOOODOO "a.. II) a.. ..... Go t- at .... «a: ..... 
"'''DC ..... oCC 

o 

o 
~ 

u 
~ 

w o ~ 
~ > • 
o - ... I
U 0 , 
... ww W 
or; >1 I-
12 0 ... _In 

........ 2:: ... Cl: 0 
:Jw ~o 
0:1..0..0'" [] 
2,,",ZI ltO 
_I- 'ww at 

u ........... wOI-QuO ........ Owt.:l ow e 
~ ua 

... "" • u..1-
<Ott-IDa: 

~ wa 

n~'" o 

"'''''''0.:» \:I 0.:1 0.:1.., .., .... > .. 
1I.u... -' II. ..... .... ... -' "'Ow 

W W ",x.a: 
o 
o 
o 
a 

o 
o 
a 

-.l 

• , , • " • , • 

• • 
, • • 



- - - - - - -- - - - - - --- - - ~ I 

" 

.. 

-
'" I 
~ " 

• 

" • 

.. r 

" 

" 

.. 

" 

.. 

" 

.. 

1.."1.-;-,,.,/,.,.,, (,m,A"/''' rIll"" I." ~n.~"'to\'.~~'1 .. ,,,[01. .... _ .. _ .. 

I C S CEC.19LE 1;; 'IEF 3 GE"''' 

cev770 
000780 
000790 
00010 0 
OOC810 

0(,1110 
OCllle 
0; 1130 
0:,11100 
0,,1!50 
0(1160 
001170 
DOlleo 
Ofl1190 
OU120( 
OL1210 
001220 
0 0 1230 
001240 
0')1250 

••••• 16 WARNI~G 

·····a .WARNING 

••••• 16 WARNIt. C. 

•• ••• 16 WARNING 

--.- It. WAANlt.C; 

DODO,!:') . 
MOVE CARD-AEeCAO TO CUTP~T-RECORO . 
RHO CARCI,., 

AT E~O ~CVE ' V' TO 
CARC-FIlE - Eor. 

GO TO 0000'58. 
DOOC'!:Ob . 

~OVE CARD - RECORD TO OUTPUT-AECORD. 
PERFORM WRITE-REtOKD . 
CC 10 DOl )55 . 

WRITE-TAPE SECTICN. 
WRITE-TAPE-RECORD. 

MOVE LAST -OUT-SEQVE~CE TO OUTPUT-SEQUENCE . 
WRITE OUTPUT-RECORD. 
AD: 10 TO L.t.ST - OlfT-$EOUEt.;CE • 

o fAKDRS o .. ARHINGS 

o ERRORS o WARtilNGS 

o ER"ORS o \oAR!l.INGS 

o ERRORS o WARNINGS 

o ERRORS o W,ARNIH.GS 

1 TABLES 

1 TAaLE.S 

1 TABLES 

TABLES 

.1 JA.Bl.E..S 

••••• 
•• ••• 
... '. 
••••• 

••••• 



n 



n 
.!.. 

-------- - ----
1",1.1""'/""" 1..1111",/'11,/1 I./I,,,,,.I"J 

C< J( 10 IOENTIFICATIOt.; DiviSION. 
~OOZO PROGRAM-tO. SOR1KEV. 
000030 AUTHOR. CHARLES STERBAKQV. 
OOCO~O ENVIRONMENT DIVISION, 
00<;('50 CaNFIGURATIO~ S(CTIO~'. 
OOC,i.bO SOURc:E-CQ~PUTE~. 18/'1-360. 
00(C70 CBJECT-COMPUTER. IBM-360 . 
000D80 INPUT-OUTPUT SECTION. 
000090 FILE-CONTROL. 
000100 SELECT INPUT-fILE 

., "'· .11 ""'1 ""I .0£" tOll_'_ .. , ~,-. 

COO II 0 AS!.IGN TO l;T-$-TAPEHl . 
OVOl2e SELECT QUTPLT-FILE 
~~130 AS!IGN TO ~T-S-TAPOUT. 
OG0140 OAT. DIVISION, 
000150 FilE SECTICN. 
000160 FO INPer-FILE 
000110 RECORDING MODE F 
ceo leD BLOCK 10 RECORDS 
000190 LABEL RECORDS STANDARD 
000200 OAT' RECORD IS INPUT-RECORD. 
000110 01 INPUT-RECaRD. 
000220 03 FILLER PICTURE X141 . 
000230 03 POCL-TYPE PICTURE X. 
0('2'+0 03 FILLER PICTURE X1151. 

OC0250 03 RISK-CODE PICTliRE X. 
000260 ~O) FlL L Ell. PICTURE X1191. 
000270 03 ITEH-COOE PICTURE 99 • 
000210 0) FILLER PICTURE X1381. 
00(.290 FO OUTPUT-FILE -
ooe30t RECORDING MODE F 
000310 BLOCK 10 ReCORDS 
000320 LABEL ReCORDS STA~DARD 
000330 DATA RECORD IS INPUT-ReCORD . 
000340 01 DATA ReCORD. 
OOOHO- If3 EXPA~DED-ReCORO PICTURE )((801. 
000)60 0) SORT-KEY PICTURE 9. 
000370 PRGCEDURe DIVISION , 
000380 INITIALIZE SECTION. 
000)90 STA~T-PROGRAH. 
ooQ400 __ O~ INPUT-FILE 
000410 OUTPCT-FilE. 
000420 NOTE DeCIBLE SET-SCRT-KEYS 

~~".lD )(01 . 
000440 CXPOtiL-TYPE = 'N' 'N' 'S' 'T' 'T' 'T' 
000450 _ C)tRiSK-CODE = 'A' '8' - 'A' 'c' 'c' 
OQ.\M6.0... t..llll"'CQDE = U OR .ZQ OR 3JL 
000470 Y '" 
000480 S READ I~PUT-FILE 
000490 AT END GO Tt. END-JOB 
000500 
000'10 A HOVE 'AI TO RISK-CODE 
000'20 )( 
000530 AXCCHPUTE SCAT-KEV = 
0005'+0 1 2 1 ) 4 5 0 
OC05!0 A HOVE INPUT-RECORD TO f)(PA~P~o-REtCRD 
000560 WRITE OUTPUT_RECORD 

-Z 

" C 
--l 

r--(/) 
--l -
Z 
G) 

> 
" " m 
Z 
o ->< 
() 



• ; 
• 

~ 
~ , 
i 

i , 
; 
" 

.-
~ , .., , 
1-

" \ 
" , 
~ 
~ 

• u 
o 
~ 

~ 

~~ 

~
-~ 
~, 

,~ z _~ 

«0 .;JQ. 
11.1_ Il..~ 

1-1- Z.::J..: 
zu '-0:::' 
WWIIl ..:: 
I IIIC .... W 

W ... Ill.., 0-
KIIIIQUD 

O%.-' .... ~ • ...,..,UU"" ,-
OZ Z_ 
~~ 

QOOOOOO 
"' .. '" O_N.., ",on",,,,.o..o.o 
... OOO~ -', ... 

588883g 

C-2 



I 
I OUTPUT LISTING 
I 
I 
I 
I 

, 
, 
r 

i 
• 

r 
I -
~ • 

~ • ~ 0 

• - -oM ~ .-11' _ ;1.: )(XlO(>CXO'X 

... WWWWWlW 

~~ u:a:a:a:a:CG: 
~:::I:::I:::I::::I.::::I:::I 

~~""""I-I-"" UUUUU .... U Uu -------""a..a.. ... a..~a.. •• 

: • , • , , ~ 
~ 

I u 

• M , 
• « • ~ 

• > 

"<-

" , , 
~ ~ 

~ ~ 
~ 

" >-, 
u 

" • ~ 

1- 0 

~ , 
~ 

1 u , 
~ , 

C-3 

, , 
z 

~u 

> 
~u 

~< 

~ 
0 
M ., 

~ ;":CQ,4 

~ 
- - 0 
__ 0 

«N 
« 

~ 

~ 0 u 0 , u " , , 
.z ':l 0 

";0 

~ 
~ 

~- -
~~ " II II 

~~~ 

i
.00
>uo
~uu , , ,

o. ~,,~ , tJon w
~ ... , u_~

0 • >
~z •• ~
~W • - U ,
~o ~
,~ u «
~b ~ 0 .,
.U
~ • W
_0 ~

Z ~
OW W • • > ~ w_ 0 u

or: .. t-;o A."'- «. ~ u
ozo .. K
..... o-zx uuu ~ • • , .
~.
~.
.,0

000000000000000
--IN ~4'''' ..,,..aJO" 0 _NfO'I '"
., on on on on
010 Od~ DOD 0000 00::)
ClOodoOOOOO,QOQOD o 0JOo 0000 00 0 00 0

. 0000000000
~M~"'<O"'ClCI'O"'N""

~
.O: .. _ -.# ",,,,on on

OODOOOOOOQ
0000010 0 0,0 0
00000,00000

n ,
~

"/~INr(r: "'foil",'! ~.,. ("/I",rH ('¥ ,,A I n 'Il _" J "u. (OU • ..a"WOOO " J CIe'O '

ItS o [C J B L E II, VER 3 tEN It

-~

000540
OOQ~ !lO
000560
DC? 570
Ot;u,ao

000560
000570
CC;i 58C
0 t.0590
O ~ ... 60l
000 61(;
000620
OOC630
oe; 640
0(';065C
0 ,", 6('0
000670
00(1680
OOOb90
000100
aCCllO
00 U720
0001)0
OOOHO
000750
000760
000770
00 0780
000190
000800
000810
ooca2:0
0(.08)0
00CII40
oOoUo
0 00160

_ ___ 0 00170
000800
000890
00090C
000910
0 0092.0
000930
OOt940
000950
000960
00 0970
00 09'0
090990
00100C
001010
°JU.ozo
001030
001040
001050
001060
OC1010
001080
001090
0011 00

1
A HOVE INPUT-RECORD TO

~RITE CCTF~T-RECORO ,
2 131,

EXPANOfD-RECORC

A RE-E~T(R ~

ENC.
O,?'l9S .

REAO INPl.;T-FILL.
AT E~O GO TO ENC - JCB .

09 ~ ;,. .
IF POl.L-TVPE. ::.

'.'
IF RISK-CODE ::. '. ' GO TO 09Q<;r>'l
ElH
Ir "ISK-cooe =

'.'
GO TO 0999952

ELSE
Ge TO Of9"'}!!7.

I F rOOl.-TYP['"
'S'
GO TO 0999953.

If POeL-TYPE :=

'T'
If RlSK-COOE =

'A '
CO TO 09<';1 <;<; ,1,

ELSE ,-

IF RISK-CODE =
'C'

, ,

If ITEM-CODE := l' CR 20 O~)0
co Te 09999 ,!>

ELSE
GC TO 09999~'6.

GO TO 09999'7 .
0999 9,3. -:ccc~-c~

MOVE • A' TO R I SK - CODE ,
D991i9,1.

COM PI"T.L.AQRT -I5EY :=
1 •

09999,8.

, , , ,

MOVE lNPUT-RfCO@O TO fXPANOJO~ECO~O
WRITE OU TPUT -RECORt.

CO TO 09<;99S,
0999 "" '2.

COJolPUTE sal\.T-I(EY •
2 .

GO TO 09999",~.~.c-__ ~ __ ___
C99~9'1, : ~

COMPUTE SCRT-KE Y :=

J.
GO TO 09999't.

09999",

, ,

,
, ,

o

, ,

.-. __ -- ___ -____ - _ - __ _ - .- - I

n
I
~

I"N,I'N""(';"'!"/',.'1~ /'/1",,,, I,,! .U (_ ·~.UIU' ~_ M J "'a.
I C S DEC I Ii L E I

. , .. V[P 3 GEN 4

OOllle COHP~TE SORT-kEY =
001120 ••
0~1 ! 30 GO TC 09 r . 5 • •
011.40 09' '''!ib .
DC1.l'O CO.:PUTE SCf>.T - !tU =
001160 5 .
001170 c.C TO 099"9'8 .
001180 09990;57 .
Ov 1190 CC":PUTE SORT- KEY =
Oq;:Ol O.
0 :.1 1210 GO TG [;:9')'" 58 .

000600 001220 FINI SH-JOB.
000610 001230 CLOSE INPUT-FIL[WIT H LOCk.
000620 001240 CLOSE OUTPUT-FILE.
000630 OV1250 STOP RU/I, .

••••• 16 WARNING o ERRORS o WARNINGS 1 TABL.ES

••••• 16 WARNING o ERRORS o WARNINGS 1 TABL.ES

•• ••• 16 WARNING o ERRORS o WARNINGS 1 TA8LES

••••• r,WUJHNG o ERRORS o WARNINGS 1 TABLES

..... I' WARNING o ER RORS o WARNINGS 1 TABLES

•••••
•••••
•••• •

•••••
•••••

,

I
I
I
I
I
I
I
I
I

Copyright, 1971 by Independence Computing & Software
Corporation. All rights reserved. Copies of this manual, in whole or in
part, in any form, are not authorized without written approval.
Additiona l copies may be ordered from Independence Computing &
Software Corporation.

I

INDEPENDENCE COMPUTING & SOFTWARE CORPORATION ,, __ _

235 WHITE HORSE PIKE, WEST COLLINGSWOOD, NEW JERSEY 08107

PROCEEDINGS OF' THE

DECISION TABLES SyrlPOSIUlI

•

. •

1
(Page 2 Blaok)

FORE'tlORD

This document contains the prOC •• dil~3 of a Symposium on DeciSion Tables pre
sented September 2(J, 19<'2 in !lo~ Ye.rJ, City. ~e technical conter.t is the re
s ult or excensiv. vork by the Systems Group or CODASYL, chaired by ~~ . Les
Calkins . The f,ymposlum was co-spensore; by the Syste.cs Group and by the JOint
User" GrouT-. The Syste.,s Group vas responaiblc for th technical content and
presentation or the material. The JOirlt. Users Group as responSible COl" 8.r
rUll8ea;ents, including reservations and tlutol!cntion of these proceedings .

The JOint Uscrn Group (JUG) is a speci,l c~~ittec o~ the ASSociation ror
Computing 1"Cbillery. It "as OUicially accepted by the AC.. in /.!ay 1961. JUG
is composed of repreSentatives or other computer user groups. It is intended
t o be a catalyst for action on problems C","",on to seve"ol user groups . Its areas of' interest are :

1. CODrnon progrll.ltlm1ng languages and. other rneuns of Com:tt:nlcation between Computing machines .

2 . F.r.t.abli&Q'!P-nt enl ~'!lnt.en~nt'c Co. c~an.::lard:; :'"r ~omlllr.!(illl, I1 t
dtfitr1hlltion of cO!!!;.'Utcr prclP'"'!:::: o..:Jd t::c!-.. ,lqli.cs .

3 . Exchanee of i.nfornut1on on pr(,blems arising from the operation of
a Compuiel' installation .

4. CQ~'Unicatlon of methods and techniques ror comparir~ tbe effective_
ness of computer procle~ Solving techniques .

5. Con
s

ideret1or. of' hardlrr.'are sta.ndards in cooperation '""1 th other interested agenCies .

At pr"~ent the f'ollo ing USer groups are formal members of JUG :

.EXCHA.~GE
SllARE
GF.'J'
f'EUG

•

lPJA
POOL
RUG
USE

•

•

•

•
3

(Page 4 Blank)

Systems Group of CODASYL

Les W. Calkins, Chairman of COD,'\SYL • United States Steel Corporat.ion

Lynn Brown • Insurance Company of North Am~rlca

Orren y . Evans - Internatlonal BuSincGs Hachlnes Corporation

J obn J . Feldman . The Howard Suving~ Institute

Burt Grn1 . International BuSiness Machines Corporation

Hot."o.rd T. Hallo\1cll, III • Standard Pressed Steel Company

Mary K. HIl\rro'es - Rad!o Corporation of America

Charles Katz - General Electric Company

tsO.1 YO.1.1acK - 'i'ne .tiluW Corporutl.OIl

John R. Smith - Runt Foods and Industries, Incorporated

Malcolm D. Smith - Remington Rane

Juck A. Strong . Computer Sciences

Richard J. Sullivan - General fl.otors Research Laboratories

Richard E. Utman - Remington Rand Univac Division

Kendall Wright - The Churcb of Jesus Christ of tatter- Day Sai nts

Joint Userp G~oup

Leonard V, Parent, Chairman of the Meetings Co:mn1ttee - Trunk.line
Cas Company

Burt L. Ueff - ro1etropoHtan Life Insurance Company

WilHam 8m! th - Lehigb Un! versi ty

J erry L. Koory , Chairman of JUG - System Development Corporat i on

I

•

•

•

5
(Page '6 Blank)

TABLE OF CONTENTS

Decicion Tables Symposium
Joseph Cunningbam, Associate Director of Data
Autoreation, United States Air Force

Place of Decision Tables Rnd DETAB-X
Les W. Calkins, United States Steel Corporation

The r:ced :for PreciSe Problem Definition
totary K. Hawes, Radio Corporation of A'lIerlca

Structure and Co 1Cj'pt of Decision Tables
Burton Grad, International Business Machines Corporation

What Is Dw~AB-X1
Solomon L. Pollack, The RAh~ Corporation

Approaches to Decision Table Proceasors
Kendall R. Wright, The Church of Jesus Christ of
Latter-Day Saints

Question and Answer Period , t·!orning of September 20, 1962

Commercial and r~lneerlng Appllcation~ of Decision Tables
H. II. Cantrell, General Electr Ie Corporation

Application of Decision Tnbles to ~~nagernent Information Systems
Frederick Naramore, The Sutherland Company

Decision Table Experience on a File ~~intenance System
Lynn r·t. Drown , Insurance Company of Nortb America

FORTAB: A Decision Table L&nguage far Scientific Computing Applications
G. \01. Arr1erd1na, The RAND Corporation .

Manufacturing Applications of Decision Structure Tables
T. F. Kavo.nagh, Ceneral Electric Corporation

Question and Ansver Period, Afternoon of September 20, 1962

7

9

13

19

41

45

55

75

81

89

99

I

I
I
I

•
i

i

I

I

:
0 1

"
:"; 1

•

•

•

7

DECISION TABI£S f;YMPQ!)lUH

Joseph Cur.nlneh~

I 'Welcome nnd appreciate tbe opportun1ty to po.rtlclpa.te 'W~.th you In the
SympoSium for the next t'Wo days. We In CODASYL hepe that it will be a ml1e
stor,e in our l:lutUal quest to in;.prove the contrlhutj on that we in the data pro
ceasing canr,unit.y can make by progressively improving, or \lorking toward the
improvement of those techniques ",hil'h we employ, lini by introducing new con
cepts which ofter potentjal for the future.

If we re-live the past rev years, to bring us up to tbe point 'Where 'We are
today, you 'Will recall that the Conference on Data Systems Language 'Was con
vened 1n Washington 1n ,.jay of 1959, to consider +;he progran:.~ing langutlge prob
lems then existing. It ~~s observed that the co~unlty recognized that as
long as there as a direct relationship between an individual piece of bardw
.... are, and the software accompanying it, e 'Jould have a deterrent toward capi
talizing on hnrd\.:a:e advances . The Conference realized th&t the individual
attempt~ to drvclop indp:pendent pr061'B!r~j...i.r.g lSI1RUUKes to ::;cl va tb~s problem
were resulting in a second order, or senerntlon, of t~e captivity nature of
the Situation then existing •

The Conference concluded that the solution to the problem was to develop a lan
guage free from nny direct hardware relationship, and that the actions which
were required, and their sequence, as as follo 5:

1. To provide a language \.lhich as "prohlem-orler,ted, but machine
independent," By adopt ing such a language, or developing one,
.... e would be in a POSition to accept ne hard are improvements as
the.>' came along wit.hout s6.crificlng the progrwnm.lng investment
which had accrued over the years. This was tbe immediate, or
short - ran8e , task in which time as of max1m~~ importance,

2 . A second otep ~as to express, or find a language for expreSSing,
man&gernent systems 1n ~ "~h a ... ay tb~t; they ~ere "systems-oriented
and cOl.'!pUter-independl?nt. I, By such a le.nguOS'-' e aule! have the
flexibility of expreSSing systC":rs 1n Q. manner which \lou.ld)'X'rm1t
implementation, either mecbanlc&lly, by people, or by corr.puter,

3. A third and more distant sup W9.~ the attempt to interrelate bUSi
ness system la;lg".Jages i...h l.t",coe usel iti expreSSing the scientific
or computational type r~qulrerr,ent • To expl'ess this in more cur
rent terms, the possible intcgrJ.tion of hat e now knoh' as COBeL, 'With the ALGOL or FOR':R!t.U lo.ngu 1£",9 .

I
I

•

•

•

8

Through the efforts of u wide ~~ber of people (whose nameS I would like to
mention but 111 not. because of the time lTIvolveJ. and the probability that I
would overlook one or more of the participants and contrlbu~ors) the language
which we now know as COBOL was developed and is at t~ls point reaching the
stage where its effectiveness C~ Le evaluated, since compliers ~ve been, and
are now beins, developed. One of the pltfall6 of evaluation Is the distinction
betveen the language efnc!..ency and the efficiency of the conpller - it is all
too easy to Juige the lang~age on th~ basiD of :he compiler perrorw~ncc .

During the period of de'/c!C'pment of COBOL, the CODASYL Executive Com.'tlittee re
cognized thfl..t it \Jas ImrH':)$sl~le to ncco,'ll;nodnte all of the competence and talent
vhlcb was available within the data proceSSing co:mnu!'lity. The Short Range
Co~ittee, ~orklng against tl~el contained a good eross-sect~on of the data
processing com::runlty. To tbe best of' its ability the £y.ecutive committee fre
quently re~u€sted tbat individuals commun1cate v1tb the C~~ittee any ideas or
proposals ""bieh would benefit the language, The attempts to secure input from
the car.munlty generl:.lly produced v~ry 11 ttle constructi ve suggestions . Time
did not pe~lt going to ~he comxuntty in sessions such as we have here today

and tomorroY.

Concurrently, tn'.? tx:'I'?lo)Jlr.';lIt Cum%lI1t.t,;c. .:.f (:O!),o\S'Y1 ... -.:.'!'::!'!~ t-1'> I-lhl,," direction
1nititt.lly or HT. Bob Curry, and sl,.;,b~equent!.y &.nd prescn·~ly of Dr. Arnold
llestenes, bas worked e.:tive-)y 1n the secor.1 and third phases ""hich I previously
mentioned . The work of ex~~n1r.g the posSlbl11tles of facilitating the expres
sion of mnnueerr.~nt systnms 1n such a manner as to make theM useful for com
p.lters and ca:npt.. tel' progra.'ItD.1ns, but also for othe:' met.hods of accomplishing
the data pr~eS51ng needs~ has been underway. It has reached a point in on~
area ""here1t 15 now approprlste ~o present to you one of tbeir recommenda
tions _ the DeciS::':;'In 'Tables ':'hiS 1S being done t. day md tcmorroW' throogh

this SympoS1.UM.

It was the intention of the Develop.:;ent Canm.!ttE"e - Les Calkins and Jack Strong,
in partl~ular _ that th!~ SympoSiUM ~onld be ~ veb1cl~ whereby ~he entire data
proceSSing canntJ.n: 11 wc.ule be invited to listen to &.n explanation of the pro
duct, to learn how ~~ vas intended to be ~sed, to cons~d~r It, and es 8 result
providp to tbe Jot&lntE'ne.nce ('CIIll11itte~ the feedback so necessary to their con-

tinued endea'>'OTa

We are gratefu~ tc JrG rOT th~1r 'Willingness to underWl'ite t,hts financially,
and to you for yOl ... r e)."Pres~ion of jntercst., d~monntrat~d by your attendance
here. We sincerely hope tha'. thiS session 'Will be mut ally profitable.

"" " -

T

;

I

~

•

•

•

9

PLACE OF DECISION TABLES AlID DETAP-X

L. W. Calkins

Good morning ladies and gentlemen!

I went to tnke this opportunity to ~elc(e you to this S)~poSlum on Decision
Tables and the introouctlon of DI-:'TAB-X for YOUT consldp,ration.

I feel that it is extremely important to provide you w1th SOtrle background be
fore proceeding to the Actual agenda topiC for wh_ch r a.'ll re&ponslble . The
background ~111 be brief, and yet I hope by your exposure to it that a founda
tion can be established upon which DETAB-X can be placed in its ~roper per
spective.

On flAY 28 and 29, 1959, a r.leeting was called 1n the Pentagon for the purpooe
o~ considering both the desirability and feasibility of establishing a common
language for the programming of electronic computers 1n bu~lne5s-type data
proce361ng . Representatives from users, Goverr~~r.t installations, computer
r,Vl.nu t'acturers and other ~ nt.erest.pd pnrt1 eB were prf>Bent.. With almost unani
mous flgl"eC':acnt, the CCDJ.SYL effort \. .. ;::.s fonn~d, In tbe interest of brevity
and "'ith the risk of crlticisQ for interpretation, a Task Force ... as created
'Whose Job it was to submit specifications for a "·1achlne Ir.dependent, Procedure
Oriented Language ," Their efforts resulted in tbe publication of COBOL in
April, 1960. Without delving into the detaI1e, the l'xecut1ve Committee of
CODAsYL has established the necessary groups to provide for the updating and
maintenance of COBOL .

Within the CODASYL effort 1s a group known as the Development Committee . The
Development Co~~ittee has been subdivided into two groups y~ovn as the Systems
Group and the Language Structures Group. The cbnrge 81 ven to the Development
Co~~lttee was to provide the specificat10ns for a 'Machine Independent, Systems
Oriented Language." Note here the dlf'ference bet\Jeen the t o aSSignments ; ours
1!'" "Systems Oriented" 'olhile that of' COBOL \ffl.S directed to "h'ocedure Oriented ."
For me at this point 1n time to define clearly tor you jue-t '"'bat is meant by
the term "SYfitems Oriented" H: pl'err.a.turej or lUore honestly stated, r em just
not sure of its definition . \-i'e as e co:nm1ttee are sure of one thing, however,
and that is that thel'e is a great decl more that must be learned before we can
truly approach the task given us. In this l1ght then, I believe it "'i)~ be
come apparent why we aN presenting this Symposium on DErAB-X to yO!l

The Systems Group has devoted a considerable amount of time to date in discus
Blng poSSible approaches to solving the task glvcn it. We have invited and
received many outside pre~~nta~ions coverlng a ~1de l~titude of techniques
associated 'With various concepts. WI;! bave c~o~cn to explore the tabular

I

-

•

•

•

10

format. This C'~oie£', ho ... ·ev('r, t!.t..s'" be ql!~~llf1ed for y'Jl.t, In that it repre
sents n p~th cf exp~r~en~at1o~ and it sha~:d not be considered a final selec
tion.

What tl~r. is 'the place of Decision Tables and DEl'~~X? What are some of the
attributes of this l!'.ethodo1.ogy that have led. us to exper1me:1t with it?

First of all, a Cec!.s1on Taele 1s a \le.yJ .s.nd. more part!cule.rly, an organ12.ed
way of eX}lressir.e tnt!' loglc~!. dE-cls!o!ls th'it mus't be made, or that are 10-
volv€'d, !n a g!" ... en pro~ll!m 0::- sys-:;em, ard tre resulting e.ctlons to be taken
based Upv" those d"'ci:ilons. h'e believe this a?pro~cb to be convenient 1n
areas '.;herE' the log:1c 1s cOOl?lex. We expect this convenience to persist to
lower levels of complex!ty; hO~~'ler, the degree to which this will be true is
dependcn~ .. upcn actual ase end the resultant eval:lation of the experience de
rived. Permit me to jn~erject at this point that ve hope to determine thiS,
among many tb1.ngs, from the feedback from yOo.l in USing this method .

Reflecting e. moment upon ou= g1 ven task--~hat 1S, "A Systems Oriented, lo~cb1ne
Indepe~dent ~age"-- tbjs method offers the possibility of beIng an effec
tive tool for tb.e s:{s:'e!!le man 1n the area of problem analysis; and · ... ltb the
1noerent r~eXl~111ty 10 sett1ng i: up, the connot&tion CQUid be made that it
1s systems oriented .

furt her, I think ve "'ill all e.gree th!1t a fairly l6.rge :percentage of the time
bet",een the decision to met'banize and the e.ctUE.l produ.ction running of an ap
plication 18 devoted to problem definiticr.. We have had indicetione that tbis
methodology can rM:terlally reduce this time. In this light , it can, it proven,
be an effeceive meens ot reducing cost.

It voul~ be F03s~ble to continue this conjecture at great le~gtb regarding the
possibilities which ,,'e 1n the Systema Group ca.n envision. It is only fair,
however, to le~ve the validity of 6uzh conjectcre to a sound evaluation of the
commer.ts and fa.t'~1..,.e..l !.nform':.t1on reeei ved arA compiled from users of the
method ,

Now let l.i.E' tu!"!l to DETJ.3-Z specifically and ettempt to place it 1n the proper
perspective . Fir::t, :f't me <!icpel ar.y i<!ee. !on your mind about this as being
a language . T:xiay \l'e b2.ve r.lore l8.l"-8l:.ages than ""e MOV what to do with. Per
haps I can ~w an an~ogy for you which Vill clearly set ~crth our position
in th1s regl1.-d. t hea.---d a s":.ory '':he other eay concerning tyo Israelites vbo
ventured !.n!o Areb c~nt:y :nd ;;ere pr:::mptly captured . Of course a speedy
triel \l'as condUCTed ~~ the t~o "'ere sente~ced to eie before a firing squad .
The day of execution de\tJled e.nd the t·, vere led tv a courtyard and placed
with their bscks t~ a wall. An Arab approached the first Israelite and asked
him if he vented a bl~ndfold, vhereupon the Israelite spit in his eye . His
co~...nlon turned to him w1th ~ne6s in his eyes and Eaid, I~·teyer , by are you.
always trying to r:".:;.ke trouble? II

•

•

•

11

We are therefore not here to present DETAB-X as a language and to cause any
trouble 1n that regard. We have 1n fact used COBOL as the language insofar as
we could . This in my opinion was for convenience. First, the operators were
available and defined . Second, the work Ctlrrently being done by the various
manufacturers on COBOL co:npllers would perhaps ease the problem for them In
producing machine language from DE'l'AB-X . [;0 clearly them, the objective is to
have you experiment with Decision Tables per sc, as defined by DETAB-X .

In the Intereost of clea.ring up any poz.,ible misundcrutandlng and In tbe light
of wanting to put to rest once and 1'0.1' &11 any rumors you may have heard, let
me emphatically state that DETllB-X 19 not intended In any wa:y to replace
COBOL ' 61. Again this emphasizes, at the risk of being redundant, that ve
vant you to experiment with DETAB-X in the context of the Decision Table meth
odology .

.
Now let me tell you of our objectives as they relate to the feedback we want
from you in using DETAB- X .

First, would Decision Table format be useful as an additional form for the
Procedure Division of COBOL '61? J.P.t me say here that I want to emphasiz.e the
word "ad.ditional" and this sbould not, at this point in time, be misunderstood
to imply replacement .

Second, would Decision Table format be useful for problem analysis and within
what range of complexity is it effective? In this regard, we hope', by the
careful consideration of your opinions, to determine the weak points of tbe
m~thod and take corrective steps wherever possible .

Third, does it act as an effective tool in the area of man ~to-man communica
tion and solution documentation? This particular area is one tbat has plagued
us all since the very beginning of mechanization.

Fourth, and in conclusion, would Decision Table format be valuable in an ad
vanced systems- oriented language? This perhaps 10'111 be the most c~~lex con
sideration of all . Of all of our objectives, this one can only be resolved by
the most serious and careful discussions possible . If your feedback end our
discussions confirm this point, th~n this ~ill naterially affect the future
.... ork 1n the development of a "Systems Oriented, Machine Independ.ent Language"
by the Developnent Coounittee.

I trust that what I have told you in my remarks this morning has in some way
laid the groundwork for the presentations that are to folIo.... . 1 further hope
that I have provided a fr~~e ork and attitude vitb1n which you will accept
DETAB- X for hat it is .

In any research effort, there is
your work within the laboratory .

a time when you can no longer
You muS'!. expose your efforts

afford
to the

to keep
reality

•

•

•

12

of those who could be the ul~lma~e user and be guided by his reaction and con
structive criticism. :n this ~ight, we &.re bsking for YO,!T help by using
DETAB- X ~o aid us 1n re~chlng our objectives.

So that 'ole may effectively coordinate yO:.JI rcs'PGnses, we ba.ve estacl1sbed a
focal point of contact t~Jough which you may send y:ur c~~ents either ~itten
or verbal as ~ell as ex~ples of yOlr work. The ~oint of contact is as follows:

~x . Sol p~llackJ ~ne R~lD Corporatio~, 1700 V~ln Street, Santa

Monica, California

This '01111 insure that the Systeocs Group will receive ell feedback in an orderly

V"" ,
In closing, I hope y01 will f1nd the presentations both interesting and Informa
ti ve and that you \1111 E.l'?ly DETAS-X tlpon your retu:-n bane. Thank you·

,

"

I

- '

•

•

•
13

THE llEED FOR PRECISE PROBLEM DEFItIITIOll

Ma.ry K. Hawes

Sl1M!.fARY

The need for precise problem definition is one of the ereatest facing tbe
users of electronic computer systems today. Experience indicates Over 65~ of
the costs associated Witb prograrrming data prOCessing problems can be attribu_
ted to this area . Looking ahead to real-time information processing systems,
the need becomes even greater and, furthermore, must be handled at tbe systems level .

l nt roductfon

Management bas asked that a method be developed for defining inforeation pro
CeSSing type problems at a systems level So tbat management can be aSSured (1)
tbat tbe problem bas been completely defined (2) that its implementation USing
electronic computer systems will cost in both time and money the approximate
amounts]''OJ"O'."., (:;) th~t the l'lu.l""""v" cycl. meet toe SpeCit'1

ca
tions, and

(4) tba" there be the ability for modifying the problem in accordance witb tbe
dicta tes of the dynamic nature of OUr World of today . I question if tbere are
any in the aUdience who do not bave some reser.ation regarding tbe possib1lity
of attaining tbis goal because of experience with information type problems .
1I0¥ever, I am also certain tbat , at tbe same time, tbe mansgement persons among
you are ayare tbat it is a goal that must be met --it is from yoU tbat tbis
cballenging taSk bas come Witb tbe full knOWledge that it will take tbe con
certed effort of many to develop and refine techniques for defining informa_
t ion prOCeSSing type problems at the systems level .

In listing management' s reqUirements in terms of (1) problem definition, (2)
comput erized implementation, (3) meeting of production reqUirements, and (4)
ability to modify, the need for preCise and complete problem definition was
placed first because it is perhaps both the most important and the most diffi _
culty to achieve, espeCially in light of the influence it bas on tbe remaining
three areas . Anotber aspect of problem definition that is an integral part of
the other areas and whicb might well bc thOUght of as £ separate requirement
for emphaSiS, is adequate documentation . The lack of adequate documentation
t hat eXists today regarding da.a procesSir~ systems is deplorahle and in some
cases is being r ecognized as a Situation tbut cen leaJ to legal action . It is
not to be inferred that tbe apPlication ot: electronic CO"Puters to problems of
bUSiness and industry has reSulted in tbe oreation of such a Situation; but,
rather, their application bas resulted in disco,erind the eXistence of ques _
tionable procedur es and data errors of "hicb there was little kllo"ledge . PrOb
lems t hat bave been put on electronic computer systems are t:ar better det:i ned,

•

•

•

14

controlled, a~d Dor~ error free than ever be!~re. In fact, this improved con
trol can be con.::iae:reo. to; be c.! grn.te-r importance 'to business and !.ndustry
than the increbsed ra~e of processing th~~ js achieved through the use of com
pute!"s. This jm:!-roved c ,;;ntro! of • .. eich mans.ger.lent be.s had a taste , 1s directly
res?onslble for rnansgem~n~ ' s re~ue5~ for complete problem def!nitlon at the
systems level ~nd for ,h~ noticeable trend in planning f~r real-time l~forma
ticn processing syste!!ls e.s ,)p?~sed to the more cO!l'Jllonpla.::e serleJ. data proces
Sing systems of' t?ClE.~· ..

Syste~s -Level Language

There are: seme of us today wtc feel this need for pr~cise problem definition
can be achieved through tt.e development of a syst.eres-le·rel ~angue.ge for infor
mation processing Tee que~tion then arises as ~~ v~~t 1s meant by a systems
l evel la~g~~e. A syst~ms-tevel lang~age for 1nformatlon processing can mean
a method Yo~ describing s l~rge and complex info~tlon processing problem in
terms of a rjgorcus ~ngueg~ With veIl defin~d rules so ~hat such descriptions
can be fed into a computer ~·:.r processing l.Ihich \01111 result in t)-~e c.etailed
design o~ the required inforrrLf:! .. lon proceSSing system togetber vith the required
machine 1nsi;n:.ct~ ·,l"s, ~·per'!."'1:.g procedures and adeque.te d-:>cwtent6.t1on. It is
:;. •• t::'Cl~i..::;! t:...:: .. ;;l.. : !. e. t', ~l<:'lu J.<:'D<.-l.·.Lpt..1.()lI lllit~;ili.. UI::' in l.enn::. 0; UUI...-pui.. ,e
quirE:ments, lnput. ci,.::"'1 rel~tionships of l.np:lts tu out}.."Uts, tin:.e requirements,
system conStr~.ints . rre:.n~gement p~liciesJ and other related facts vbich can be
tagged as env1rvDlDer.t.

Costs of' Problem Lefj tl~. -': j on

I n attemrt1r~ ~~ stress tbe Lmport5nce of precise problem definition in a very
llmit~d Brr.c.unt 0: t1me., : s.t,.._l EUlI!D'.ariz.e .!.n rather ge:J.eral t.ems our experi
ence to c.s1:~ c.n thE !"el&.~i\'e costs associoted ·..I1th pr,;blem -:ief1nition and then
spend the maJcr 6lnC"U(lt :>f timE" prcject.ing tfie Type of inform5.t.lon pr-:>eessing
systec.s we e.:-e (cr..-.empl.llf.lng lind t;be lJtplica';1ons l;here1n for problem defini
tion .

Cost analysis s:l..a~~s ca.r:r!.e-d en "toy mar.y ut:ers cf elec'trvr"ic ccmputer systems
indicate +;bb.t p:r .. '"lgrem:r.!np: c,;3ts are &.~r·'JUJT."J,.~e~' equi·.-alent roo those of the
eomp.:..t.er sysl.-€:m:r. t.,·h1·h tl:.E> :pl"'(>ble:n ~a to be prc.<"essed . Programming 1s de
f ined as 1~cl:..d1r.g t :~e :na!:ement and d~f'i.."llt.l,:m o~ the problem (· ... hieh by its.
very r...e.t~e 1r..,zlJ1.~s ; :!. les.s"':: .;s. 'tentt:".t1ve solut1on ill fair detail), the coding
of the problem in some l~n~~ge ae~e~~ble t~ a r.o~p4t.~r system. the debugging
of tbe proble!li.1 anc! t.be dcx.W!.!:-ntatlon -:>f the prC'blem \litb its solution so that
changes can be made to the problem as suct teru~e nece5s~. Experience indi
cates that .o;he cost of d~fim.ng t-ne problem &.:.counts f';r 65 to 7; percent of
the progr~rn~~g costs. ~~y of the time delays, :receding and eXTre debugging
can also be ~t~ributed to 1nadequ~te problem def1niticn~ The costs of docu
mentation ba~seld~~ b~en excessive due to redvcumentat:on resulting from inade
quate proble~ definition; excessive costs can, however , be fl.ttributed to the
lack of documentation.

•

•

•

15

Impact of Problem-Oriented Languages

Great strides have been made during the rest few years to develop programming
languages wbich are oriented to the l~~guagc of the user. COBOL, ALGOL, JOVIAL,
and IPLV are examples of such la~~uages. In each of the above languages, pro
cedural statements are written as inputs to the language system from which ma
chine instructions are generated. The order ot the proced~ral statements
prescribe explicitly the sequence of machine instructions as they will finally
appear and also the exact order of the processing which w1ll be done . These
lunguagea, to~ethel' ith their supporting programs, have helped In cutting dovn
the coding, debugging and documentation time . Some of the error analysis rou
tines may also have contributed to decreasing the problem definition costs .
However, e find ourselves ithout any generally accepted standard tools and
techniques for the description of a problem at the systems level that ill as
sist in the design of an inforwation processing system. It is this void which
we hope to partially fill through decision table techniques .

Both COBOL and JOVIAL have inforw.ation processing syste~ ~licatlons . Some
of the basic concepts of an operating data processing system are reflected in
the file and data descriptions of COBOL together with the implied Input/OUtput
Control System. It 1::; possible to do 50l1".e file oT~anj?.at.1nn f>y!pl'·"I",,,.n+p":i~!'l

on a t.r1a..L and error bas:ts using COBOL; in fact , some COBOL co:npl1lng systems
are beginning to incorporate file design criteria which reflect the results of
their experience . Any of the progra:nmlng languages that lend themselves to
autOOlatic segmentation of the implemented progre.'fIs encourage a mcxlular concept.
The procedure module concept 1s not new in tbat a subroutine for computing tbe
Sine of an angle is a procedure module . The sa'fle concept bas been extended to
cover many data proceSSing procedures such as 1.1atch , Update, SORT, FILE and
LIST . Other data proceSSing procedures that reflect management policies can arso be developed as modules, such as Vacation Due , Economical Size Lots,
Reorder POint , and Credit Standing .

Some Aspects of a Systems - level Language

At the present time we have no progran~ing language that translates some state
ment of the problem made in ter.ms of the entire system into the procedural
statements that are required for a solution to the problem . At the present
time, progrwruning languages handle each run as a separate problem . The pro
grammer is entirely responsible for deSigning the entire s,Ystern into a series
of runs. The progra:;.ming system assumes the procedural state:-:lcnts as written
by the progrwa~r reflect the proper usage of the specified equi~ent . One of
the major reasons for ~antlng a systems-level language is to make it possible
to automatically generate the required procedural statements and then segment
such into optimum ''bites'' consistent with good sy::;tems analYSiS and proper
usage of eqUipment fol' a smootb operating system.

I

•

•

•

16

Considerable experience has :ee~ acc~~ulated O~ a~tomatlc segmenta~ion vhen
the procedural s:a:e:menr.s ha\'e been packEged l!'!.':.o proced.u-e modules. So the
major problem ccr.!"rontir.g us 1s the.t cf de "lcplr,s e. method fer defl:1:1ng the
systems-level problez:!. frOO) .. hleh ;.;e CB .. n generete the spe~lflc procedJ.ral mod
ules required . ft~ aaded refln~ment ~0uld be i.O include extensl~e syStems
analysis t.h.&.t 'W' r)uld e'/aluate dlflere!'lt PTOCe-Qural approaches, different organi
z.ation of files Infcrmatic!'!. together 1tb d.~!·ferent e1ulpment ccnf1gurations
1n order tQ generate ~n optimally des igned system.

An added requlreeent; tt?~'!: of the uP-to-the-minute infClrmation m.:>dule, must be
added to the above hen we recognize ~he rebl-tlme i:1!ormsiJon pr~~essjng sys
tems that are eUl'rently being pl!i.:1ned. Such sysiE:IUS are the n6.tural out;gro~h
of the dyna!uic M.tl:.Z'e of our business and. sCier.ti.fic environment. Such sys
tems vill incorporste communicatJon networks and m03~ processIng WIll ~e done
Vithout human l:1terventlon rram the time a trensectl~n enters :~e system, an
inquiry 1S made, or a s~~lal Tep~rt 15 requeSted untl~ the results have been
furnished.

Relatively few of us cave bad experIence vlth re~.time info~tion processing
systems. It might be ve!l t~ pr~ject some of the aspects of such systems 1n
order to reU1ze bOil ~,,"en mor~ ::'myvr"",'l«' jf" 'Wi:l.l be to de-lin£' Ir r .. ' h! .. !!!CI
~~;!.ctc!..; c-uJ. !'.~c.l~e_y .

The first prerequisi:e ~f re~~-time jn!v~~~lon pro~e~slng systems 15 to have
ava1lable or e.s.sl1y 8.':'cess1ble .• .!ll:! flle :nfonn&.:l':::; :h~~ is likely to be used
along with the prcx.edu!'ee fc:- Jde-ntifY!:-18, verjf'yJng and p:-ocessing the input
1ntorma~ion. As a.'l .?C'c·:.rr.p·s.,\V!:lg r(Ooulro;'mf:n~1 V;trl0·.ts !'ec'rds n:.ust reflect the
above ac.tIons for p<.ll"l'Cse:o .," sl.tseqc'?-n:- !:.c-t1c!1s; euc.1 t T.rails ... safety of re
cords ... ma.").e.gereent ~n!Ol'ms::lor :""'''ld '1~.r!.:us stat!'rt.lC·9J. s':lJd!.es .:;,f a dyn'i!n1c or
postoperative r.a~urfo. Sllch sys!f;'ms Ul reqUjre milhons ..:>r b111i,:.ns of .. char
acters 1n mass Stcr~g!'-. He=e IIl'::SS st·:.rage .I.S deL ned h~ auxllja~y 6tOl'''lge to
t he computer lfL!n a:.en:ory Ii!':d 1m:;:!es relaUvely shert aC"ces~ time "WhE're acces
ses can be 1:1 a ~·&r..dcn: ordE'r '·l1th re:>specr to tr.e !'<':'ft itPm Qc.::essed. It is
interestlng "::0 re6.1) 2"= \lhs.~ ~;.\~b mS3S s:'vr!6:e means in ·A~·rl"!S ?f ~O!:iputer pro
grams; rOT p.X&.::lple- 1 !of cO bll..:.! C.'r. chE..r6..e::er~ :!' st7~·~e are !'E''J.ulred for d.ata
s toruee , wna: :lbcu ~-., add:.. .. ll)r..cU ad 1 1011 or ten million cnar9.c · ers fl')r pro
grates ar.d progra:Ji (' :·r.lrol ?:'cls in 1 tse-l r re:::u1ts 1 n d1ffE'renr; approaches to
programming ~echnlq~E'S 6..;d system c~ntrol.

Having mass st~rage a~11ahl~ need not nec.essarily imply tna~ 611 proceSSing
\lUI be of a rehl-:I:r:e na~urF. It is c.ul~e orl')oable t;hs.!: most large S}'3tems
v iII use b&t~h P~~ES31ng ~~ ~ ccnsideret!e ey.~er.t ~f:('B~se of t;lme ~nd cost
cons1derations "h.!.s prC'Jec:1on IS be.sed on the f=Sswnption that; conslde::-able
time will be 5aved oy paek~lr~ slmll~ types of input, even 1f the procedure
modules used e.re the S6Jne ones \lhich ould have bE-en used b6.d real - time been

~I

4It employed. It 1s contemplated that partial processing vill be employed to de
termine vhich inputs are to be processed tmmediately, vhich are to be stored
temporarily to be processed later, or to be batch processed at so~e scheduled
bour. It is also contemplated thnt in some cases of batch processing, verifi
cation procedures may be processed in odvence of the remaining procedures so
that action can be initiated if s~~e clarification is needed vith regard to
the input .

•

•

The greatest difference vill co:ne 1n the organization of the infonration it
self together vith a parallel mode of opel'ation as opposed to a serial mode.
By this latter statement is meant that the changes to the information content
of a "master record, " brought about as a result of a given transaction, will
be reflected in all affected areas essentially in parallel. In serial proces
Sing, the effect of a group of transactions is applied to the given files of
similar information, and at subsequent intervals of time, reprocessing is per
formed on those files for various reports and studies . A static file 1s kept
ort all stages of development. When using dynamiC mass storage, tbere vill be
many semi- complete modules of information mucb like subassemblies in a manu
facturing operation , Such information modules vl11 also be assembled mucb as
the subassemblies in tbat they vill be put together in some prescribed manner ,
With or vithout additional processing or finishing. They differ Significantly
from the manufacturing process vbich has been used as an analogy, in that the
1!'1fnrmA,t.1nn ,"Mll1~ ~A"i"'~ 1:-ee!':

put is st11l available for use
C'......,. .. ~~~ -r------ ---

as many times as it appears to be necessary .

Another major difference anticipated that v1ll have an impact on audit proce
dures and accuracy checks in general, is that there vill be less moving of data
from one place to another to indicate a given process has been perforzed, The
completion of the process vill freqlently be indicated by changing the label
associated vith tbe data . The actual phYSical location of both data and in
structions vill be less significant and need only be known by the processor .
Extra care vill have to be exercised witb the labels since unlabeled or incor
rectly labeled data vill be difficult to locate or to identif,y in case it i s
found .

We are familiar with the roaster -file record information module ; hovever , there
are others which must be available at all times. These are similar to the in
termediate results that are being developed and 6£cumulated during various runs
in au)" current serial type procedures. An example of such are the variOUS
figures beins accumulated fOr sales analysis , f.:a.rket proJections, rate of
change in inventories, etc . Such inforru.ation modules should be kept at the
lowest meaningful level to balance costs of storage and costs of processing .
It should be kept in mind when developing a given system that once digital
values have been combined, the identity of the indi viiual elements are usually
lost and cannot be obtained by fracturing the resul~ant value , It will be ne
cessary ~o anticipate the types of' special reports managt>r.Jent ill be requir iog
in order to have the appropr1at"e Inforrr.ation Inodules in a se:ni- finished form .

. I

= -0
:::c ..,.
"', I

•

•

•

18

There will be insufficient time to generate this type 1nfo~a~ion for mcst re
ports requeEted !n an ~nscheduled m~ner .

Let us r~turn f~r a few minutes to the procedure mvdules ~~i realize the impli
cations cn real-~ime Informa~lon processing syste~s An eaSy ~ay to visualize
the sltiJuuon 1S to &.ssume 'that all the TltnS for tl g!. en data -pr?Cesstng sys
tem are sl,.i.!den:"y only one rc.n end that all lnst,ructiol1S &.re either in main
IQemory or can esslly ~e brought 1nto main mem~ry as rE~uired. ~e pr~edural
modlJ.le concept 1S extremely irr.port~!lt 1n th9.t E.. giver. m:x1'_ll.e t..sed 1n 11 number
of different runs -::a.n now probably exist 1n only one. i>l6.ce . :w-thermore, once
a given lnput hE,s been identified, the procedure m:xi' .. lt''3 which are to ~e used
1n proce~slng vill prob~bly be identified ty en 6Bsocl~~ed pattern. ~~s ~lll
ue somewhat dlff~rent from the serial precessing 1n ~~~ch a s~ries of condi
tions and actions are aU intermixed so 'that Ii. gi· .. -en l:T6.n~UCt..on cay not be
fully defined ur.t.ll a~ter it has been c?aPlete~y rr:~~~~eQ ,

roe task cf !.n:,o::"p::Irs.t::..ng c.ba.::.ges to t.he sys::e:n i:.ejo;"e ')!) d6.d.ed c.::;:or in th9.t
these ch~nge3 must take ploce dyn~cally. Spec1ei :e:'~~Lques must be devel
oped to assure nc j~9ge i9·done vhen programxi~~ er~~!S C~ QC~ur. c~plete
1 ags ImlS'; also be kt'J:.t ::ond ~ renee ~ed l:l !>u:: 1:. :n.ar.~"'!'1e'n" re'P·:-r S as If.s.y be
involved. "tt:~ 9.n"t:e:~.-";I:s.ted th""t mnst ,=r.a;18es ~n sur,:) -:to ~?srem ",,,u.:..o. 01: ':"11
the natuU. Jj' ~'tittion:l or deletions at: a moCule Ie"e... t.T"nen enangE's !'ire in
corporated to re-flect 6.':' !.:hyroved procedu.re .. : ... sr"'.J:d be' jOssible T.t: mxt1fy
the app~:Ji'r'6.-:.e :p!":;:ed~e mocule c-r m.~'..;':€-s !tb-:-u·. t.'Y> (l:l.;...::h :rot;.ble 1n "teat
module-s 'lle seli - C')nto.!. ne:d. ::;t \liL .. bE> G.tso':'l.i.~.I;':': .. n£"·:r;s~e.r:" l.':- set up tig!"lt
controls 6;) t~Cst unEal"tl'zrizec. cr..anges e.s.n~-;t l:1!' ~o:;. ~~J.ete documer.ta"t~en
1s an ~c.'3')lu",:1; l"P.;ulT5-!IIen:: and, therefcrE, s!':.:».o:c! l;Je" i"'!1l' a...-::oma:.1cally to as
sure its 'o~:ng et,:;.:.o:r.t:1o:.he6. 1~ an unt.ers:&.n.ie.L~e r.:.an~~r

ConcluSiO:-. . .,
Ml.;.ch ork i'!'> yr;"t 1;0 "be done 1n order to ~;.ee1fY .!!:::._:o d .. rlne sue:' e. syst..em 1n
detail \oi1tn '.:'t- dt>gre· of pre.:-isEness tL'l': H re':t..~:-,~a .:J-::~:"':' mc:::-~ v..:·rk "'ill
be re~ull'E'd .. ., tp.~ - c.:id modif"",... :r:E- v8rl:-1..~ s:,s:er,·le·/t-i.. ... :Ul{(..I.&gE" c.evelopments.
We d.e fell -M::. tE-: si.:m :8.t.1.e::: vll; r,e mes'; l:.s~fl.l~ ~r~ t"l-,fl.

f
; ~y experit!*ntlng

with rea.l. 1 ~"Ie pr.-;b:iE'-If.£.. '.Ie should arr::. .. .:e 9.: ... :~n1; 'i.l:e d~f: 01 ' .. iO:1S and tech
niques tl)::..; U!.. l.ent. ~:.em3eIves t.: ire..r-r::-"eft!!'"''': " .. 6 \0''' J.E:dr~ mo:.-e about desig~-
1I'o8 end can ' :.-c.Llr.@ TPe...l..-:une lnfolCue.:;!..or. pr:.<:e::s!.;lb £\·~!.e:US.

I

•

•

•

19

STRUCTURE AND CONCEPT OF DECISION TABLES

Burton Grad

People are different . Some prefer foreign compact cards; other want roomy do
mestic models . Some people like chocolate ice cream; others favor strawberry.
Differences 1n taste and preference are personal considerations which make life
more interesting and encourage industry to turn out a continuous 6trea~ of new
and unique products.

Individual differences also appear 1n the Beveral philosophies and approaches
to designing bUSiness systems . Some look at all bUSiness problems as an exer
cise in file maintenance or information retrieval. Others Bce the same prob
lems 1n the framevork of mathematics or arithmetic statements . There 1s an
other school which views problems 1n terms of input tran8far~tlon or output
preparation . Still others are principally concerned with the procedures and
operational sequences.

While each of' these individual approaches is perfectly valid in cprta1n RH.lI _
ations, none of them can be rec~~ended as a univernal tcchnique for solving
all bUSiness systems problems . The reason for this is that the systems design
must cope with such a large variety of problems that different techniques are
needed for maximum efficiency . For example , it wouldn't seem reasonable to
use the same rod and reel ror trout fishing as you would use to take marlin .
As the classes of problems bandled by computers become increaSingly more com
plex, new and improved tools and techniques are needed to solve them .

Decision Tables , a recent develo~~ent, provide a means of presenting complex
decision logic in a way that is relatively easy to prepare and understand. A
decision table shows the specific alternative courses of action to be taken
under various combinations of conditions. This permits an analyst or program
mer to concisely and completely record logic&l decis10n rules for analYSi S,
documentation and progranL~ing . By discussing decision table structure and
concept, you Will begin to see why dec1sion tables rosy soon bec~~e another im
portant tool for systems deSign .

BASIC STRUCTURE

Tbe basic outline of a deciSion table indie:ates the four most signifi cant
quadrants (see figure 1) . Conditions are sho~, above tbe borizontal heavy
line. The condition stub contains the common condition in.formation . Figures
or words whicb supply a concrete value or range of values to the condition
na~ed are shown in the upper right-hand, or the condition entry area. Names
or titles of resulting actions are written in tbe action stub, in tbe lower
lett portion or the table . Related val~es and ranges of values for each action
named are located in the lO'ol'er right qiJa,1rant. .

•

••

•

20

Special Identlflc~tlon 1nformation common to the entire decision table 1s en~

tered in~~ a tsb!e he£d~r, which includes table number or name, se~uence con
trol ins~ruct!ons, ~d t~e number of conditions and actlon~ in the table.
Cat~ c~v~ to the sever~l rules In a table are ylaced in a rule header. This
might cont~~n ~e n~~ber and 1requency of occurrence.

When all the conn!tlcns 1n & single entry column of
tben ~l ~tt!ons s~~w~ direc~ly belov are executed
dl;ions ~d ~ct~ons !s c2l1ee a decls~on rule.

'i tF..ble are satisfjed,
~Dls combination of con-

These seve'1 '":erms $i:..luW' us to :-efE'reno:e the V'ir.!.cus t.re~ of!;. table. Let's
eXJ..m.ine .-i. st..mplf? Insur~nC'e premtwn dec) sj on t&.b~e \/: o;c r<jUT independent end
thrE>e dej:oE"m!e::t f.s.c·ors (see figure 2).

Condltlcns f~r 1~s~~r8 s pelicy are stated ~s Heal~h, Age, Sect~on of Country,
and Sex; ~hete "~mes arE" s~ovn 1n the condition ~tu~ . Each condttion na~e has
e. seriE's ~f v31c.ps. "·!::.lch erE" 9.::-::-ayel! 1n t~e cond1.r1:O::1 I!ntry a.re.s.. 'i'})us,
beeJ.th t:'£.:1 OE e,oro ~'\r 'P"::or; sect!.,)::1 of ",:luntry ':: -<;'1; be E"b.!:ot or vest.

Tn a l-:.cl'- "::lo.:"l:"E:-:-, :1.!::!I"~ c-f ~':-t1 ·Jr.s are 11.:;ted 10 the ~"'jO:1 stub for Prenrlum.
Rate, PC.l:;'!.t"~. !"!Jr~f:, ar;.a ~ of P'ollcy .

"IT fi :ce.rs.::,'e Ce6.:tb 1s exC'e:lent, .lU1d :he j)eTS,:)!l 1s between
2;-end 35 yE'!::"S of :.ge . Uld lives in ... teo ee.st;Corn sE'ct1on o~
"~,, (·JlJl"-Y f'_~C ~ e ::~ th'eit?.1f' sex, '1'!-~"~ (\1 s !lre:nl.1.Jn ratE" is:
$1.27 ~T thcu;';".!'ld, ~I! r::1S ~1cy maynot 'jE' ·.rritten ror more
tt3..i ~C=OO;OOC(" ~~ h~l~ 1ssue-d oc4.icy t~/pt:' ." •• "

l'be worl! I_r;· Jlref'f.cE"~ a :::i.':'t ot' (.or;.G~t1nns; the 'Word :E?:N !s. used to sbv'i "ran
s ... t.1r;05 !r.:xn ~CI"'.1:1 t ir;.n'i -:'0 .l!.C'ticns. '!be CQr:nec~!.ve p~u :'5 £:.1"'"8.Y5 USI!<! to in
dic8.'f.e ,t.E' rels't':,,:,n ~f ·:m'l' cc.nd1-:1cn t.O E..!'1othe-r, or ~,,!;,> seq.l.te-nce- of !Jne e.ct.io!'l
to ar.)'t"ler.

Tur::!L'1g ~!'l(k - ~ "::hf' j r.~t.I 2r.C'~ ':ablE" I the last Tu:'e rec..df":

".iF a pP.!"s":.r:·". beE4 th i s p:;1~r ~ &nd age 1S 6,; or ';)VE'!", s.nd
th~ 'FeISO., : .. "e5 in the West , :l::d -!S fe-n:.s.le, lIEN t.he policy
n-a.":e :'5 $9 oC; ~r ::~ousc.nc! . e.ndthe- po_~icy liiTt!s $lC, ?CXl,
2:~ '!. t:rpe !1. :;.~:'!('y :I s 1 ssue-d7'

In read1ng t~ese two ruies, indiVidual cond~t1on and ac~1on 1nrormat10n for
e6.ch TO,," i!- extEnr!ed !:rom the stub tc- the- co!'re-spone.!ng ent:::y TO"" of the table,

•

•

•

21

e.g .) "If sex is male; if sex is female , II This characteristic establishes the
fact that this is an extended entry table.

In this table, only one set of actions can take place since only one set of
conditions can be satisfied at a time, i . e.} there is only one successful rule
per pass through the table.

CREDIT TABLE

Having considered the basic table terminology and its application w1.th an
extended entry table, another type of table call now be introduced .

For example, this credit table (figure 3) while similar to the insurance table,
has a number of different properties . Rule one reads :

"IF credit limit is OK, ~ approve the order . "

And the second rule would be read:

IllF the credit limit is
favorable, ~ approve

not OK, and pay experience is
the order:-"

This 1s a Limited Entry Table, and differs from extended entry form in that
the entire condition or action is written in the stub area of the table .
Notation in the condition entrJ area of the table is limited to indicating
vhether 0. particular condition should be asserted (Y), negated (nL or ignored
altogether (blank or dot) . In action entries} an X indicates that the corres
pondina: action should be executed, hile a blank means that 1 t should be
ignored.

A table hich includes both extended and limited entry ro s is called a Mixed
Entry Table.

Use of l~ted entry format permits including more rules than is physically
possible with extended entry . But excessive use of limited cntry tends to
extend a table vertically. A balance between these tvo is achieved by em
ploying the mixed entry form. The prevailing conditions an analyst meets
in a study often help decide which form to usc.

An unconditional table is composed of one or more actions, but no conditions.
As is the practice in all tables, the actions are executed in the order they
are witten.

Tva major types of sequence control can be exerted through an action rev com
mand:

1 . When an action row is reached, control can be temporarily trans
ferred to another referenced table,and vhen that table has been
processed, control will revert back to the succeeding action in
the original table.

=

•

•

..

22

2. ~~en the last action 1n a rule 1s reached, control can be directed
to a ne.., table.

A table may be entered at only one point, elthougb there may be as many exits
from a table as there are decision rules 1n it .

Where the exit 1s always to the same table, no matter vhl~h rule Is satisfied,
th~n space can be conserved by inserting the sequence control command in the
table header for aut~at1c execution after each series of actions bas been com
pleted. With this ability to signify temporary or perm~nent transfer to other
tables, a data proceSSing system can be divided into logical segments and
structured for erfective problem analysis.

FILE ~?DATE TABLE

Up to this point ve bave examined tables ..,hieh "'ere ~eady prepared. No'"
letls st~ froo scratch and build up a table for a typical file malnt~nance
problem. The basic problem elements are: a mas~er file and a detail file serve
as inputs; (i. ne\l master file and an error file &.re produced as outplts. Within
the computer, three basic areas are assigned~ master, detail, and new master.
The task is to determine and record the log~c by which the incoming master file
is modified f'rem information in the detaU fUe to prepare a new and updated

cords have been el1mina:ted •

The rules 1n figure 4 Will be considered sequentially . Wh~t are the appro
priate conditlons and actions for the starting situation? This requires a
single condition, seart, and actions for reading one master card and one detail
record. card into the 1r corresponding memory areas. The final action returns us
to the beginning of th1s table.

We will need a rule to handle an end-of-Job condition when the end-of-detail
end end-of·~s~~r are reached. Therefore , \Ie add two conditions to the condi
tion area of the table under rule 2, and also indicate 1n the last action row
a transfer of contrOl to a closing routine wbich prov1des for sentinels, tape
marks e.nd so forth.

Next, 'Je must consider ·Jhb.t hIlppens vhen the end-of-detail is reached, but not
end-of-mhst~r. Since there csn be no further cb~~es, additions , or deletions
to the original mas~er hen this occurs, \Ie need one new action in rule 3:
vrite ~he u~t~d master from the master area. Then we re6d anotber master
and return to the beginning of the table.

In rule 4, ve v~nt to take care of the condition where end-of-master hns been
found, but not end-of·detail . Consequently, the remaining details vill be ad
ditions to the master. This is slgnified by a new condition row and t~o new
e.etion rovs. Tbe addition switch 1s set 'bN." The inform&tion 1n the detail

•

•

1 -
J

J.
l -

23

area 1s moved to the ne~ master area; a new detai l r ecord Is read ; and sequence
control 1s transferred to another table identified as CHANGE .

The next three rules are concerned with cases where neither the master nor the
detail file has been completed, and an identification number must be compared
between the two records .

Rule 5 conSiders the case yhen the detail identification number Is less than
that of the master, and, therefore, the logIc of rule 4 should be followed .
In rule 6, the detail is greater than the master , and tbe logic expressed 1n
rule 3 applies .

Rule 7 coverS the case where the master identification number is the sa~e as
that of the detail record; information in the master area Is moved to the new
master area, 'With control transferred momentarily to the CHANGE table .

The final rule is n special one which ~ill be executed only upon failure to
satiSfy any other rule . Since all legitLmnte possibilities for +.his situation
have been exp11cit~ covered, such failure may represent a logical error or in
valid data; therefore, an error routine 1s carried out , another detail record
is read, and control returns to tbe beginning of the table. This ELSE rule
will also take care of sequence errors in the master file , any non- mat ching
detail which is not an addition, and certain types of sequence err ors in the
!:::'t=.il fil~

Some tables are written purposely so that the rules do not exhaust all combina
tions of conditions, and in tbis Situation, the unconditional rule ELSE tells
what to do if none of the other rules can be executed.

SUMMARY

A decision table i s divided into four major areas , separated by heavy (or dou
ble) horizontal and ve r tical lines . Conditions are located above the hor izon
tal line , actions below . Names of values are placed in the stub to the left
of the vertical demarcation line ; specific values and ranges of values are a r
r ayed i n columns of the entry area, to the right .

Conditions and actions have a cause and effect relationship; no act i ons may
appear in the condition area; no conditions can be indicated in the act i on
area .

Information common to the table is written in the table header; information
pertinent to each rule is placed in the rule header .

A decision rule is read by proceeding sequentially down a vertical col umn of
the entry area a nd combining related information from the stub area with its

•

•

•

associated en~ry to ~oduce a complete statement .
exist, all conditions oust be satisfied before the

Where multiple conditions
actions for that rule can

be executed.
There can only be a single succeSs for anyone pass through a table, i.e ., no
more than one set of actions can be executed for any given set of input values .

In limited entry table form, the entire conoition is vritten in the stub; the
entry area is used to show vhether a certain condition is true, false, or not
pertinent. If an action is to be performed, it is noted by an X; otherWise

the action entry is blank.
Extended entry tables differ from limited entry in that part of the condition
or action statement is extended into the entry aree . Both types of entry may

be sho~ 1n a mixed entry table.

One special type of table is the unconditional, or one rule table.

Sequence control within a table requires that action be executed in the order l~s~.n ~tveen teoles, sequence control can provide for a temporary switch
to another ~sble, or a complete .ranoie, . 7~= t~~l. h··

npr
can also be used

for sequence control information .
A table msy be entered onlY at a single entry point, but it may have multiple

exit points.
The "all other," or ELSE rule provides an unconditional rule to be used whOn

none of the other rules 1s satisfied.

In succeeding presentations, these same basiC conventions will reappear time
and time again in essentially the same form and pattern tbey have been pre
sented bere. \/bile some of these conventions may seem restrictive, they pro-
vide a co:nmon basiS and rrame'Work for initial experimentation .

• • •
TABLE ~EADER RULE ~EADER

D

CONDITION 19 CONDITION
STUB ENTRY s

I
O. I L I '" '"
N

ACTION I~ ACTION
STUB ENTRY E

. I I I ,

I

Figure 1. Decision Table S~ructure

~~\ldO 1

• •
~EALT~ EXCELLENT EXCELLENT

AGE >25,<35 >25,<35 - -
SECTION OF COUNTRY EAST' EAST

SEX MALE FEMALE

PREMIUM R,!\TE 1.2.7 1.16

POLICY LIMIT 200,000 100,000

TYPE OF POLICY A B

Figure 2. Insurance Table

SfJ lidO
~"====~~~----~?

••

~(POOR

1/ >65 -~

))
WEST

FEMALE

S!,

\
9.82

10,000

\\ R

• • •
TABLE:CREDIT RULE 1 RUI.E2 RULE3 RUlE4

CREDIT LIMIT Y N N N IS OK.

PAY EXPERIENCE '(N N IS FAVORABLE

SPECIAL CLEAnANtE y N IS OBTAINED
~

,

APPROVE ORDER X X X

RETURN ORDER X TO SALES .
.. . --- ------ - - - - - - --- - -- ---- -- --- -------- ---- -

F1gure 3. Credit

S f7 HdO

• • •
TAilLE: UP DATE RULE"

01 02 03 04 05 06 07 08

START y N N N N N N ELSE

G~.JD OF Or.:TAIL y y N N N N

l!iJD OF tJASTliR Y N Y N N N

DET.tIL VS. MASTER < :;:> --
" .. DIiTAIL IS At.! ADDITION y V

DO li£llaOR ROUT/Ne X

i:'O\::;: t.:A~n;R TO u:t'J MASTllR X
[\\

MOVE D:iTAIL TO IJEW MASTER X X

51:1 ADDI'fIOtJ S.·.JITCI~ ON ON OFF

I:JRlTE t.1AGTE~ X X

READ Mt.STER X X X

READ DETAIL X X X X

GOTOTACLE
up· ENe) up· CHG. CHG. up· CHG. up·

DATE DATE DATE DATE

Figure 4. File l1J: -Date

r:t lI~n

.'

•

•

WHAT IS DllrAB-X'/

Solomon L. Pollack~

Burt Grad's talk has described · ... hat decisIon tables are. I ould like to tell
you about a specific decision- table language, DETAB-X (Decision Tables ,
Experimental), an experimental language that combines COBOL-61 and decision ta
bles . It Is a proposed suppleocent to, not a replacement of, COBOL-61 .

The CODASYL Systems Group has designated DETAB-X as an experimental language
In order to emphasize that it is available on a test basis to those in the
business data processing or scientific field ho are w111ing to experiment with
it . Hopefully, users of the language "'111 provide feedback concerning its
merits and deCects to the CODASYL Systemr Group . **

Since COBOL-61 1s an integral part of DETAB- X, let us turn to the first chart .
As most of you kno~J source progra~s written 1n COBOLR6l consist of four major
divisions : IDENTIFICATION, EHVIRONr.tENT, DATA, and PROCEDURE. The chart lists
in brc!ld outline hat 1s contained in each division: the COROL- f)l manlla1 T\rl"l_
vides the detailed specifications.

The specifications for the IDENTIFICATION and ENVIRO~MENT DIVISIOllS of DETAB-X
source progra~s are exactly as prescribed in the COBOL-ol manual . The DAXA
and PROCEDURE division speCifications , however , differ enough from those of
COBOL-6l to require a supplementary manual.***

DETAB-X 1s designed so that source programs written in DETAB-X can be trans
lated by people or a computer preprocessor to COBOL-6l, hich can then be
translated to an object (computer) program by a COBOL compiler {most of which
will be available by the end of this year}. This is not to preclude

* Any views expressed 1n this paper are those of the author . They should not
be interpreted as reflecting the views of The RAND Corporation or the offi
cial opinion or policy of any of its govel'n:r:ente.l or private research spon
sors . Papers are reproouced by The RAND Corporation as a cow-tesy to members
of 1 ts staff .

** Criticisms and suggestions co~cernlng DETAB- X should be sent to Sol Po~ack,
The RAND Corporation, 1700 ~win Street, Santa Monica, California .

*** This supplementary !!".anual, ''Preliminary Specifications of DETAB-X, n w11l
be distributed to the attendees of this syoposium .

•

•

•

30

Chart I. Divisions of COBOL-61 Source Progra~

.!DENTll'ICATION DIVISION

llA'IE OF SOIJ'RCE PROGRA1~
Atm!OR
DATE
lID'.ARKS

ENVIRONMENT DIVISIOlI (EQUIPMENT)

NAl>lE OF Cor~UTER

1) FOR CO!1!'ILmG SOURCE PROGRA'.!
2) FOR RUIIN ING OBJECT PROGRA~

/oID·I0RY SIze:
IM!llER OF TAPE UNITS
PRINTERS, ETC .

DATA D:.vISION

1. FILE SE~ION
2 . 1I0RlGliG SroRAGE SECTION
3 · CONSTANTS SECTION

PROCEDURE DIVISIOlI

SECTIONS AND PARAGRAPHS

• 31

•

•

enterprising users or manufacturers from writing compilers that will translate
DETAB- X Source programs directly to computer object programs .

Let us now turn our attention to DATA DIVI~rON. 1~Ere 1s one major difference
bet\leen tbe DATA DIVISION specification of t'ETAB- X tr..nd that of COBOL-61.
DETAB-X uses a table format for descrlblr~ data; COBOL-61 uses a free - form
English rannat. To illustrate J on Chart 2 \Ie ShOl' some data described accord
ing to COBOL-61 Specifications . You wl11 llote even 1n this Small example a
great deal of redundancy . Also, it is very difficult to cbeck that all the
attributes of each data item have been Spec1fied.

In Chart 3, we have described the same data as 1n Chart 2, but have used tbe
t able structure of DETAB- X. Notice that the headers in this chart eliQinate
the many redundancies appearing in the COBOL-6l example; ~e have thereby re
duced tbe amount of writing by the syst., analyst or programmer . Also, because
in the DETAB- X data description ve have all data attibutes in the heading, the
chances or leaving out a necessary attribute or any data are decreased .

From a communications point of viev, the system deSigner vill find the people
i n the applications are more dis""sed to h.l!"ne h<~ "h~<k tho iot, doo:~i;:
tion ir it is in tabulgr ro~ a~ contrasted with the free - form style of COBOL-
61 . The table isn't as cluttered as free - form Eng11sh style and therefore 1s much easier to read .

Wh11e ve have made some impr ovements in data descr1pt10n for DETAB- X, the b1g
payoff is in the Procedure Division . In this area we use deCiSion tables for
describing tbe many deCiSion rules that exist 1n bUSiness Operations . To i l
l ustrate the differences betveen COBOL-61 and DETAB- X in descr1b1ng procedures ,
I bave extracted an exa~ple from Jean Sammet's article on COBOL- 61 in t he May
iSsue of tbe ACM Communications and Copied it onto Cbart 4 .

Not e that COBOL-61 is serial i n nature. The COillpQ.risons and the actions based
on those comparisons must occur 1n the order in which they are Specified .
Note also that thls fOrll! does not lend itself eaSily to analYSis or to checks
for completeness and accuracy . It 1s difficult to tell whether all the appro
priate Comparisons on Stock- on -hand, current order, and secondary_supply have
been made. Also, 1f a compar1son 1s made aga1nst several values , it 1s very
difficult to spot wrong values , because corresponding values appear in differ_
ent paragraphs, Some distance from each otber .

Let us turn to Chart 5 wh i ch shows these same rules in decision-table form .
Not i ce that having the conditions laid out in tabular rorm enables the system
deSigner to better determine if he has conSidered all the POSsible combina.
t ions of conditions that might OCcur. He knows :ror example that if there are
t hree conditions that can be satiSfied or not satISfied, there is a total of
2

3
or 8 different rules he might rorm .

,

•

•

•

Chart 2 . S~:~ ::=oL-61 Data Description

01 IN'lEN1'ORY REeO?':'" ::";.55 IS Afoi

03 ON-HAND-QUAtIT::-!; ·'Z; .:-E IS COMPUTATIONAL;
SIZZ IS 6

03 ON- ORDER-QlIA!;71.:-!j '~':';:;E IS COt-lPUTATIONAL;
PICTURE IS ;. (:.,

01 SALES-REPORT; c:.;.3: :S M~

02 DISTRICT-SALES; v:~~£ 103 TIMES

03 DISTRIC':'-:\L~rnER; '_'oS;.::=: :5 DISPLAY; PICTURE IS 999

03 UNIT-SALES; USAG~ :. :O!.IPLTATIONAL;

02

!'IG':'",'TIE I~ :;~::.::;:;;.;;;

TOTAL-SALES; US.lC~ :~ :O:.YuL'ATIONALj
PICl'URE IS 9;':::::::;:;','91

,

j

•
Line Level
No. No .

001 01

002 03

003 03

004 03

005 01

006 02

007 03

• 008 03

009 02

•

33

Chart 3 . Sample DETAB-X Description

Use Deoc
Name Abbr Code Type

INVENTORY-RECORD INV- REC

PART-NAME D P

ON-HAND-QUANTITY OHQ C P

ON-ORDER-QUANTITY OOQ C P

SALES-REPORT SAL-REFT

DISTRICT-SALES DI-SALES

DISTRICT-NUXBER DI-NR D P

UNIT-SALES C P

TOTAL-SALES TOT-SAL C P

Pic Ref
or Value

LA(ll)

9(6)

9(6)

Q9Q

9999999V99

9999999V99

Repets
Min ~:ax

103 103

"" -0

=
"",:.:1

•

•

•

Cbart 4 . Sample COBOL-61 Procedure*

I F STOCK- ON- HAND IS LESS THAN CtJRRE;IT-ORDER TIlEJ' IF CURREIIT
ORDER IS GREATE.q THA.~ SECO:IDAY -SUPPLY GO TO EMERGENCY - ORDER-
ROUTIlIE ; OTHERWISE PERFOR:.1 SECOlIDAY- SUPPLY-ROUTllIE : OTHERWISE
SUllTRACT CURRENT- ORDER FROM STOCK- ON-HAIID .

Chart 5. Sample DETAB- X Procedure

--
Rule ~ Rule 2 Rule 3

STOCK-OII-HA.~ LR CURRENT- ORDER Y Y N

CURRENT-ORDER GR SECOtIDARY SUPPLY Y N -
- -

GO TO TABLE 3 TABLE 4 -

SUllTRACc CL~NT-ORDER FROM - - STOCK- ON-HAND
- - ----.

NOTE : TABLE 3 ~s an emergency -order routine

TABL.E II 1s a seconday - supply routine

*" Borrowed. frOUl Jean Sazr.met 's art icle, "Basic Elements of COBOL-61, II in
Communications of the AC~·1, ll.ay , 1962 .

•

•

35

DETAB-X differs from COBOL- 61 1n that rules in the lable do not have to be
executed 1n the order they have been written, i.e . J rule 1 does not have to be
execut.ed first. This g1 Yes the compiler fl'eeJ.o:;t to determine thC"Order of
rule execution based on Jane para.neter such as frequency of occurrence. For
example, if' a partlcula-' rule 1s executed ~ of the time while the remaining
rules are executed only 10%, it 1s certainly more efficient to have that 9~
rule executed first . The I'orulat of DETAB-X makes 1t easy to specify the param
eter rer each rule so that more effiCient object progr~ns can be developed .

When the rules of a table have been specified , the system deSigner can add a
final rule to the table - ELSE GO TO TABLE This rule, by definition,
is always referred to last, i . e . , if the conditions of each of the otber rules
bave not been satisfied . This feature yill prove very valuable to bUSiness
systems . If after a data processing system bas become operational, a condition
arises that \liaS not antiCipated by the system deSigners, this "else rule" will
bring this condition to the attention of the staff . For example, suppose Rule
3 in Chart 5 had been omitted from the table and some time after the system be
came operational the stock-on-band was not less than the current- order . Rules
1 and 2 ould be tested and !'ound to be unsatisfied . The "else rule" would
tben be aul~~atically referred to and the complter could print out that speci
fied rules had not been satisfied. 'l'hll~ Rn in':C.::!plctc t::.'Ol.: c.:.;.:..!.>! ';",.:. .,lNi,.i.
the ficst time the mhsing condi tioes were met .

To further illustrate the difference between COBOL-61 and DETAB-X, Charts 6
and 7 describe the rules for computing depreciation and lease expenses .

The language used in the decision tables of DETAB-X is a modified COBOL-51 .
The deviations of DETAB-X from COBOL-ol (deletions and additions) are described
in the DETAB- X Specifications Manual and yill be diDcussed in detail at tomor
row's tutorial sessions . Let me again emphasi ze that source programs wri tten
in DETAB-X (USing modified COBOL-ol) can readily be translated to standard
COBOL-6l.

One more point. As you have probably inferred from Burt Grad's talk on deci
sicn tables, there is little pOint to forcing a series of unconditional actions
into Q decision- table structure. DETAB-X therefore allows portions of the
Procedur:'!G DiviSion to be vritten in COBOL-bl sections ani paragraphs . How
ever, ;.;here there are decision rules (sets of action!> based on sets of condi
tionsL we strongly !'ecOOl.':l.end that decision table structures be used .

In Chart 8 we have listed some desired goals for future bUSiness languages.
I t is our hope that DETAB- X is a step in tbis direction . We feel tbat OETAB- X
can help users in docu.llenting their system and that progra.."l1s ritten In
DEl'AS-X w11l provide improved co;n.'~unication beh:een s:r!>tem deSigners, program
mers , and functional specialists, DETAB- X is also expected to increase the
accuracy and C~"l1pleteness of problem statement achievable by eXistin~ languages .
It is available to anyone • ... l1ling to try it and the Dcvelop::'lent Committee ""ould
appreCiate receiving any information on the r.:crits and Jef~cts of tht: lant:i,uage .

=
"

,

..,.
,_;l

•
1000

1010

1020

1030

1040

1050

1060

1070

•

•

Chart 6. Sample COBOL-61 Procedure

DEPRECIATION EXPENSE OR LEASE EXPENSE

IF ASSET- LEASED GO TO 1050.

IF PROPERTY-CLASS IS LESS THAN "A" GO TO ERROR- ROUTINE.

IF PROPEHTY-CLASS IS GRE:ATER TlWl "J " GO TO ERROR- ROUTINE .

IF ASSET_NEW _WREN_PURCHASED COMPUTE SUM_OF_DIGITS-EXPENSE;

GO TO 1070 .

CO~!PUTE STRAIGlIT- LINE- DEPRECIATION; GO TO 1070 .

IF ASSET-GOVT- COST- FRE!: WRITE LOCATION- RECORD.

CO~ CURRENT- LEASE-AMOUNT .

ADD CURRENT- EXPEHSE TO EXPEllSE-TO- DATE .

,

• 37

Chart 7. Sample DETAS-X Procedure

DEPRECIATION EXPEI/SE OR LEASE EXPENSE

Rule 1 Rule 2 Rule 3 Rule 4 ELSE

ASSET-LEASED Y Y N N -

ASSET-OOVT-COST-FREE Y N - - -

PROPERTY-CLASS IR "All - - N N -

PROPERTY-CLASS OR 1t.I" - - II N -
ASSET-NEW-WHEN -PURCHASED - - y N -

WRITE LOCATION-RECORD X - - - -
DO - Table 5 Table 6 Table 7 -• ADD CURRENT-DATE TO EXPENSE-
TO-DATE - X X X -

PRINT ERROR - - - - X

NOTE : TABLE 5 computes current - lease amount .

TABLE 6 computes sum- of-d1gits-expense.

TABLE 7 computes stra1ght-line-depreciaLion - expense .

•

•

•

•

Chart 8. Goals for future Business Languages

1 . IMPROVED Cm-lt·lUlIICATI011 AND DCCc11E11TATIOll

2. INCREASED EFFIC m,CY OF COMPUTER PROORAM

3 · REDU'CED CO~!PU1'ER-PROORAM CHECKOUT TIME

4. INCREASED ACCURACY IN PROBLE!~ STATEMENT

5 · COMPLETENESS OF PROBLE!·l STATE1lE1iT

-

•

. •

•

39
(Page 40 Blank)

REFEREnCES

1. HO'oro.rd Bromberg, "COBOL and Compatibility," Datamation,
February, 1961, pp. 30-34 .

•

2. DOD Document - "COBOL, 1961 Report to CODASYL (Conference on
Data System Languages) II (for sale by Superintendent. of Documents,
U. S. Government Printing Officc , Washington 25, D. C.).

3. Burton Grad, "Tabular Form 1n Decision Logic," Datamation, July,
1961.

4 . Orren y , Evans, "Advanced Analysis r-12tbod for Integrated
Electronic Data Processing," IBM General Information Manual
{}F2o-804 7 .

5. Charles A. Phillips , "Current Status of COBOL, " Proceedings of
the USAF World Wide Data Systems and Stati stics Conference,
October 26. 1901 .

6 . Systems Group (CODASYL) , "Preliminary Specifications of DETAB-X, II
August J 1962.

•

•

•

41

APPROACHES TO DECISION TABLE PROCESSORS

K. R. Wright

nll'RODUCTION

My family and I were out traveling one day, looking at the sights . We came to
a scientific museum . Since my sons think they want to be scientists , we
stopped to see vhat we could learn . As we traveled througb the exhibits, look
ing at all the marvels of the modern age and all the fabulous things they
could do, we came upon one gigantic piece of equipment. There were wheels,
and be11s, and arms, and pulleys, and leversj everything orklng fUriously,
around and back and forth and up and down. The thing-as making a tremendous
amount of noise , as though it were accomplishing almost all tbe work 1n tbe
world all by itself . It was built so that you could see all the wheels and
gears turning and the levers carefUlly moving back and forth. Everything
seemed to be running Just finej then ve read the inscription on the base of
the big machine. Its specific purpose vas just to run. It had no practical
ub~ . I~ ~~~ ju~t nice ~o 100R a~ and see all energy being expended .

We didn't vant to be in the posit1on of having decision tables nice to look at ,
a wonderful idea, but not able to accomplish anything . We knev that in order
to be useful decision tables needed to be translated into a machine language
so that they could be processed by a cOOlputer.

TYPES OF PROCESSORS

There appears to be four basic types of
decision tables to a machine language.
(2) the interpretive processor, (3) the

Manual Processor

processors or methods of converting
These are (1) the manual processor,
translator, and (4) the compiler .

The manual processor is the progr~~er who sits dovn Vith a decision table and
translates the decision table into a rrachine understandable language . By a
machine understandable language I mean either a machine code or a language
that is acceptable by some other processor .

The manual processor has a number of advantages. Since a person is interpre
ting the meaning of the entries in the table , the language of the table does
not need to be restricted. In fact , as with a standard flow chart, the lan
guage of tbe table can be adjusted to each problem and each individual working
on the problem. This r equires only the definition of a very few rules to be
able to use a decision table. In tbe beginning this is an enormous advantage

•

•

•

42

since it means that the theory of the decision table can be tested without
having to completely define all the rules Bnd without haVing to establish a
special language.

These advantages, ho~ever, tend also to be dls~vanteges. Since we hope to
make the decision table a docun:entatlon of the proble;n, ""e ere defeating one
of our purposes. The decision tE'.ble 1s a replacemen't tor m'll",y floW' cha.~s 1

and it can suffer the same fa.te as a .flo chert 'Nben changes have to be made
they can be made in the machine usable language rather than 1n tbe decision
table. The decision table can end up not being the correct document~tlon of
the problem. If the decision t!lble 1s not preclJ3e~ not everyone can under
stand hat it says. It bas to be trAnslated by the person ,,-ho pre-pared it.

The manual procesSor does make possible the immediate use of deciSion tables.
A minimum of instruction allows the analyst and the progr~~r to communicate
witb each other ~lth a technique that lends itself to precision of definition.

Inte~retive Processor

An interpretive proceSSor is essentially an object progra~ made up of a series
of sub-programs in a machine langullge. The Interprp1.1 vp !,rr'~ ... p",! 1<:: P'.lt i:r.tc
~be computer. The decision t~ble, in a machine languag~J is then read into the
computer by the interpretive processor. As the processor examines e decision
table it recognizes the various Situations that can arise. As it encounters
each Situation it transfers to the special sub- program that understands ~his
type of Situation. This sub-program processes thet p6rt of the table , tben
transfers back to the main program to find out which of the sub-progr&~s is
needed to process the next part of the table.

The interpretive processor has a number of advantages . Since each situation
in the decision table must be well defined, this type of procesSor requires a
very precise language . But, since each Situation requires a sub-p~ogram to
process it, the proceosor normally has e. very liml ted vocabul~:ry. Because the
processing 15 done direct fr~~ the decision ta~le, the decision table must be
kept up to date at all times. Therefore, ~hen the program of the decision ta
bles 1s debugged, ready to process ac~ual data, the docucentation 1s up to
date .

Tbe major disadvantage of the interpre~ive processor is th~ operating ineffi
ciency of the program. Since the object program is the same for all problems,
it cannot be modified to take advantage of Situations as they occur . There
fore, It 1s normally an inefficlen~ object program and takes more oachine time
to process a decision table than should be required.

= ""0

= ..,.
':";1

•

•

•

•

Translator

A translator 1s a processor that takes one language and translates i t into an
other lang~ge . For exazple , 1n DET~X the language of the decision tables
has been developed so that it 1s readily ~ranslatablc into the COBOL l anguage.

This type of processor has a number of advantages. Probably one or the most
important 1s that the writing of the processor 1s much simpler than with any
other type of machine processor . So that the language can be translated, it
must be a precise language vh1cb 1s needed to make documentation under standable
to other e than the author .

Of course , there are disadvantages also . Since the language restrictions used
wer e not developed specifically for decision tables , tbere are some ineffi
ciencies 1n the language . For this reason, we have modified tbe COBOL language
sli ghtly to make it more easily usable in decision tables. Tbe placing of an
i ntermediate language -- in this case COBOL--betveen ~he source language and tbe
machine language gives the progr2.lT:':::'e.r a cha.."lce to make corrections and modifi
cations to the program in ~he intermediate language . Thus, tbere vill be a
tendency to not keep tbe decision tables up to date . Hovever , COBOL is a
fairly good documentation language so this may not be as much a disadvantage
~c; ! :!: c.tb.c::- 1ntcr:.c.!:!.atc ~6.rllSU~e:., ullt :.huu.lll be u!bt.:ou.rased .

The insertion of an i ntermediate language means that tbe compile time or time
from decision table to machine language ... 111 be increased . The restriction of'
going from decision tables to another language vil1 introduce certain minor
inefficiencies in tbe object program . The processors vill not be able to make
t be most efficient object pr ogram that could be made for decis i on tabl e pro
cessing .

Compiler

Tbe l ast type of processor is the compiler . The compiler t akes some kind of
source l a nguage a nd translates this into a machine language . This type of com
piler has also been described as a generator in that the compiler looks at a
statement in the source lang~age snd trom this generates the instructions ne
cessary for the computer to follo~ the procedures indicated b¥ the source
statement . I t is normally refer red to as an English language or higber lan
guage compiler.

A cO!llpiler has =nan,y advant.ages over other types of processors . The source
1anguabe can be developed so as to be the most e:fective ~ype language for use
with decision tables . The fact tbat it req ires a precise language is i n it
sel f an advantage . A:3 the processo:- ... auld be developed for the specifi c pur
pose of proceSSing decision tables, it vill b~ possible 'to prepar e it so that
we could obtain the most efficient object ~rogram fo~ proceSSing decis i on ta
bles . I f the compi ler was vr:!.tten so as to go direct froo ~he decis i on tabl e

•

•

•

to the machine language, then the corrections would normally be made to the de
clsion tables rather than to some intermediate language. This would mean that
the decision tables ~ould be an up- to- date docum~ntatlon of tbe problem def i ni_ tion .

The main disadvantage of a C~~pl1er Is the t1m~ required to actually wr i t e the
processor and debug it So that it 1s OJ)E'ra:lonal. To do an effective Job the
compiler would take several times as long to get operetlon~~ ~6 would either a
tranSlator or an interpretive type processor. Tl:.tu wm.ld deorease our abil i t y
to test decision tables 1n a number of areas at the same time.

CONCLlJSION

Our goal in develOPing DETAB-X was to develop a language for deCiSion tables
that ,""QuId 81 ve us the best POSsible abl11 ty ror testing tbe t3.bles . ~le could
get tbe biggest range or POSsible testing ir it we~e POSsible to use all rour
different types of processors. On examining the restrictions or the various
pr ocessors} it appeared to us that the one that was the most restrictive was
the translator . This is because a translator requires, for ense of writing,
Lu..~ t~,c l"r u::,;o ,·cu a:-e tr·".J"tl"~ from be comOOtible With the language you
are translating to . We knew that even thOUgh the lnnguege developed for t he
t ranslator might be slightly restrictive to the other types of procesSors

l still they could be fairly effectively used for proceSSing tbe DETAB- X language .
As COBOL is the language that is being most Widely 1mplement~d in data proces
Sing} \Ie decided that the DETAB-X language should be compatible lo11 th COBOL .
This Would give us the \lidest range of ma~hines and work on which to test the
deCiSion tables . This stil l does not deter the testing or deCi Sion tables wi t h
other types of pr ocessors and with other languages.

There are processors curr ently available in each of the other categories. At
least one program has been written that is interpr~t!ve and processes deciSion
tables on an i nterpretive basis. One tranSlator has been \lri~ten ~hat trans
l ates from deciSion tebles to the FORTRAN language . At lE:a.st one comp1ler has
been wri tten that compiles deCision tables directly 1n~o a ~~1ne l~nguage .
A number of installations have done man~al prOCeSSing of deCiSion tables} PUt
t ing them i nto such other source 16.nguages a.s FORTRAIi, C~rC1t:..l T:-anSlator a nd symboli c assemblers •

•

•

•

QUESTION AlID ANSIiER PERIOD

MORNING OF SF.PTEMBER 20, 1$162

MODERATOR: L . W. Calkins

PANEL: Burton Grad
f.1ary K. Ha es
Solomon L. Pollack
Kcndc.ll Wright

CALKINS : We have received some written questions, four or five of them, and I
vill start 'With these . For others, Just raise your hand, I will acknowledge
you; state your question; I will then repeat it for the audience and assign it
to myself or one of the panel .

The first question is, '~o has wr~tten compilers for Decision Tables, specifl
co.lly?" Ken, I think that falls in your cateeory.

\fflTCHT ' W"!'ll. th"!'r'" ".2.'!e b"!e:1 ~ :"l1=her ~! ~o::pi!.!:=: ".."'r1tt::r.. ~·!c !1:::o.rc. .:l"C~ .. .;,'t
several of them up at SHARE last week . The RA1ID Corporation has a cO::lpiler .
You will hear about th~t this afternoo~. a .E. has a compiler that 1s inter
pretative . a.E. also has a compiler that ~s written from a table into the
machine language, as part of' their program system for the 225 . And our manual
processor .

CALKINS: The next question is : "Have you had any experience vith decis i on
table processors?"

WRICHT: As I say, I am a manual processor. I had to write a program for sal
ary distributio:1. Most salary distribution is quite messy in thc logic , so I
used the decision tables to describe the logic, and translated from this into
the FORTRAn languaGe oonually . That '.:as before Ceorge Armerding wrote that
FORTAB proces 5 •

CALKINS: Another question here 15, "For hat kind of problems are decision
tables usefUl?"

GRAD: It 'WaS alluded to about six million tirtes this mornine:. But basically,
i t's problems with conditions in it. To elaborate just for a second on it,
there must be so~e sense of elternatives of parallel logic, if you will, of'
multiple conditions effecting given actions that you will take. It's clear
that if there is but a single condition, scd it is a "Yes - no" state, there is
little to be gained in a technique t~t is principally aimed at co~lex deci
sion logic. Because th~t isn't complex! In ge:1cra1, it 15 elso here you have

•

•

•

- --
"

46

an interaction of conditions. Where no one condition of all determines fifty
actions, and then some other conditions determine fifty o~her actions . But
",here it 1s joint, it 1s the interaction of the conditions that determines the, r.
actions to be taken . And generally, I should think, also, that the more com-
plex the problem, the bigger the problem, you tend to find greater advantages
in decision tables . An analogy has been drawn by (lane people that the advan-
tages are not linear 1n a small program that would result in, say, t o or three •
tables or a hundred to tva hundred instructions . It ju::.t couldn I t matter less Ji
'What you usc, almost. When you get to very large programs, it becomes a
greater and greeter advantage. These are the kinds of claims that are made .

CALKINS ; Another question here; "Arc processors necessary for the use of
deci::iion tables or can you manually code from tables?"

GRAD: Well, Ken has already ans'Jered this . Of course, you can manually code
from tables . I think, perhaps, the question should be interpreted this way :
''Where is the greater advantage in the use of tables?" In the use of them as
an automatic input to the machine or as an analysis and documentation tool to
provide a problem analysis for the programmer . And I just think it ' s entirely
premature to answer this . It I s obvious that people have used tables and have
wr~"t.t..eu lo:oJ.e f'rcili. it . O!'le menu:)l processor sits to my right here . Others
have, of course . What the advantage is of actually having a processor Lor l~,
I don ' t know. It ' s one of the things we are going to find out in the next
year . Where 1s the greatest value,and how much relative effect should be put
in these different directions?

HAWES: I 'Would like to add a comment . I found that the usc of the decision
tables, even while you are trying to define the problem in areas that nll
not be used on computers, has been very promising . I think this is one of the
gr-eatest uses, really . Because you ha.ve it not only for the computer use,
this is only part of the problem; we must not forget the human factor when 'Je
are talking about computer systems, and I think this 1.nterrelationship is very
important . Definitely, even outside the areas that will be computerized, de
clsion tables are very useful.

CALKINS : I have one here: "Are the format restrictions introduced because
of DETAB- X, or are they desirable for other reasons?"

GRAD : That , unfortunately, is a very difficult question to answer . Most of
the restrictions I described end talked about this morning 'Were developed in
dependently of the DETAB- X specifications. There has been experimentation,as
m:my of you may kno'W, over the past three to five years on this forln3t, and by
having tried different kinds of restrictions, or different kinds of freedoms
of rules, we find that same lead to errors. It destroys the value of the ac
curacy area, for example, whereas, other restrictions tend to produce better
operational programs and. more loglcD.l statements . People lea.!"n them more read
ily and use them more readily . In general, therefore, the restrictions were
introduced independent of DETAB-X . J:evcrtheless, certain changes were made

= -0

=
"'" ""

••

•

•

47

because of the particular language. A simple one 1n the DETAlJ-X language as
such, is the torrrat introduced there. There 1s quite a large stub area. This
1s bEcause you can have quite long statements 1n COBOL, and since we are com
patible with COBOL, you allow for this .

The forms introduced are : a form for limited entry; a rorm for extended entrYi
and the size of each of the columns is affected by what can or cannot be done
in COBOL and, therefore, 1n DETAB-X . I mean, they are not the other vny around,
if I may. I think a restriction for convenient use of tables 1s to permit you
to see things as a whole . If you let the table stretch out too much horizon
tally or vertically, you begin to lose ~he ab1lity to see the things any longer.
So things introduced into DETAB-X, shol~en1ng of words and shortening of some
of the operators, are done specifically to take advantage of the tabular format .
So I flipped the question, and the restrictions tended to go the other way .
They tended to reflect the language rather than the language introducing the
format.

WRIGHT: I vould like to make one corunent. At the SHARE meeting last week, I
found out there is at least one installation who has written a processor to go
froo the dntc. description 1n coaor" to COEOL l:l:'tgJ.:lgc. Th~y J. ... du.~ l.ilts.i. Ii.
was easier to do a data description in tabular form and write a processor for
the 401 to translate from the tabular form into the COBOL a description state
ment. This has been vritteo and is operating now in at least one installation.

CALKINS: Are there any questions from the floor?

VOICE: From what I can tell, there is a reduction in vords and rearrangement
of vords in DETAB-X. But the major problems in writing a compiler or a pro
cessor, such as COBOL, are still syntactical and scmantical problems. Hov
would they differ 1n this problem? Would they still be confronted w1th the
same problem as the COBOL-type processor?

WRIGHT : The question, as I understand it, was, is DETAB- X going -to do away
With all syntactical problems vhen you 'Write a compiler? Is that right?

VOICE: Not do away with all syntactical problems, but how is a DETAB-X pro
cessor easier to write than the COBOL processor where the major problems are
the s~~tical and analysis problems? I don't expect it would do away with
all of them.

WRIGHT: As near as I can tell, the syntactical problems will be exactly the
same. We aren't trying to change at all the syntactics of COBOL . They are
all there. The things that we have c~Anged are a few of the verbs . We have
added some, and we have made some modifications to cake them eas1er to use in
tables. I'm afraid that ve are stuck with the syntactical s1tuation with pro
cessors as long as we have a formal language .

•

•

•

48

POLLACK: I Will try to cut at your question 1n another ~y . If you are going
to actually build a compiler directly for DETAD- X, you do not necessarily have
to get involved with the syntactical problems of COBOL . It appears to me, for
example, you will notice in the data description one of the columns is called
"abbreviation," and this 1s equivalent to the COBOL renames . Now, if you vr1te
what Kendall calls a translator, and you wnnt to go from DETAB-X to COBOL-61,
you have to get a statement from that table which says so and so, the particu _
lar abbreviation, renames, and you then list the other data item . I n the case
of gOing directly from the data description of DETAB- X to an object program,
you no loncer need to do this, and it seems to me that you would have the
partjcular abbreviation right next to the data name for Which it i s an abbre
Viation, and you thereby skirt some of the problems of, let1s say, the rename clause .

GRAD: Let me give another example . The question i s di sconcerti ng for those
Who still haven

1
t heard the original question. What effect does DETAB- X have

upon the compiling of the syntactical problem they have in compiling? Does i t
have any substantial effect? One of the diffi Culties, I believe, in preparing
compilers for COBOL 1s the fact that you must completely decompose free form,
and mnny different things can happen next. We have the compound conditions t.o
Xl::,:!.!:::, -.1{:' JK.i.-I~ L}j\: implied subjects, the implied objects, things like this,
particularly in the conditional area . The fact of the matter is, the way
DETAB-X is written you are always working on a comparison of' two itel!'.s . They
are aJ:ways going to appear in certain phYSically MO',," locations . The f'ac't
that you are controlling position and location shOUld solve certain problems
of compiling, certain problems in the compiler itself. The problem of going
from a name, though, to some kind of symbol table is not changed in any wny at
all . This has no impact. But in Some of the procedural statements, particul_
arly in the conditional area, there ought to be SOme Simplification out of
eliminating the compound statement, the i mpl i ed subjects, the implied objects , things of this type .

VOICE: It has been said from the platform that deCision tables as a technique
are particularly useful for analyzing COmplex systems problems . On the other
hand, it has been stated tp~t as the table extends more .nd more horizontally
and vertically with more rules and conditions, it becomes less useful as a
clear presentation or the problem. How are these two statements compatible?

GRAD: I think the answer is clear . It doesn't, that ' s all . Two different
speakers aald it, and 'thet's it. The POint WOUld be, of course, if you write
i ndividual tables larger, you begin to lose perspective . The thing you have
to do 1s to break the proble~ up into a series of logical segments . If the
problem, of its nature, does not sub-dh'ide , you have had it . You have had it,
no matter which way you turn . But cost problems that have been tackled so far
Where there's any attempt co represent human reasoning, human logic , the human'
thinking process, we rind that the deSigner or manUfacturer, the plant super
visor, inventory controlman, 1s operating With tour or five conditional

•

••

•

•

49

variables at a time and often no more than fifteen or twenty particular action
variables. And GO, there 1s a somewhat of a self- limiting thing that occurs .
You can break a problem down, apparently from the experience to date, into
reasonable chunks and, therefore, the system does not consist 1n a complex
case c. ... one tremendous table crossing from here over to where Les 1s J but,
rather, it consists of a set of tables; many times ten, twenty, thirty tables,
that each express some 10g1cal chunk of the problem .

Now, it 1s also true, when you do that you lose the ability to see the inter
action between the tables; you lose some of the values of the decision tables
a..."ld. there's no Yay around it at the present time that e have been able to dis
cover . to'.a.ybe some of you will .

WRIGHT: r think that , maybe, there's an analogy here . It used to be the pro
grammer who said they could not vrite an entire program of twenty thousand in
structions with no breaks. The programmers have learned they can break their
problems up into small pieces now; they vrite small sub- routines and bring
them together. If we have to take the same approach with the decision tables,
.... e must break our problem up . The human mind cannot comprehend a complex de
cision table,anyway .

V01~~: the sts~ement was made tha~ the use of DETAB-X leads to increased pro
gram efficiency . I have a two-part question on this . First , increased effi
ciency over what? Over COBOL? And second, does this efficiency refer to the
acount of storage space used or to the execution time?

WRIGHT : The version I \0'8.5 thinki ng of was that ve can write rules for optimiz.
ing a series of condit i ons . These rules have been written ~ainly in Boolean
as a general practice, where these statements are boiled down to the most op
timum statements, at least, the number of "snds" and "ors ." We can do thi s .
We can write these rulea, and we can give 'them to a processor, and a processor
i s goi ng to use them all the time . lo1aybe they do them, and sometimes they
don ' t . Sometimes they use them, and sometimes they don't . So the table gi ves
us the ability to put into a processor rules to optimiz.e the way that the con
diti ons are considered and the ways the answers are used better than a person
Cffn do it, because people don't follow a complete or an accurate set of rules;
• trey do it on a rando:n basis . This =-rtir:dzat10n can be done t,,-o .;nys: We can
build cocpilers nov that optimize ei'ther tl~e or space; it can be done either
or both ways, either optimizing both time and space or getting some kind of
agreement between the two based upon our requirements .

POJ...LACK : I would like to add this cGmrr.ent : You must remember that decision
to.blcs rave really not been C0:llPUed to any great degree and, therefore , not
I:n1ch is kno,,"" to date . What are the parameters 'that really make for more ef
f1c1ent programs! With free for:n statements it's pretty hard to look at them
hnd say, let's go through all of these and see if we can do these more effi
Ciently; see i f there are redundancies ot certain decisions , and so forth .

= -0

=
"'" "',

•

•

•

50

Now ~th dec i sion tables,for the first time you have a potential for being
able, number one, to determine if there are redundant decis i on rules . TVo,
you now, for the first time, have the ability to state for each decision rule
the frequency vith which you expect it to occur . In other words , the number
of times you expect a transaction to come 1n to hi t that decision rule . So
that , i f you have a table on 'whi ch, let's say, there are :fi ve decision rules
and one of them gets hi t by ni nety per cent of the transactions and the other
four get hit for the remaini ng ten per cent, on the surface of it, it would
seem to appear that one ought to hit that decision rule first . This 1s only
one of the parameters that I have expressed for decision rules . I think, as
people think about it, they begin to find others . For instance, in a decis i on
table there may be as many as five to ten conditions, each one of which applies
t o each decision rule . And there are some i n whi ch only one of the condit i ons
1s of interest to the decision rule . And in the other case, there may be ten .
Now, i t may very well be that the combination of the number of conditions which
you are actively interested in are, It yes or no," not the "I don ' t care" type
and the frequency ~ith which you expect to hit th~t decision rule . These are
the parameters that will probably deteroine the order 1n which you will actu
ally run those dec i sion rules in your object program .

I hope T hRven't ro'1!'USpO it fl"\T" you

VOI CE : COBOL seecs to figure very largely in the use of
have a question that's really directed at the audience .
of hands of those who represent co~panies that are using

dec i sion tables . I
May I ask for a show
COWL?

CALKINS : The question is to the audience . Can we have a show of hands of all
companies represented here that are nov using COBOL?

VOI CE : Thank you .

WRIGHT: Why don ' t you ask, hov ~~ny plan to use COBOL that are not nov us i ng
i t ? The second part of that question is , are you really telling the truth?

VOICE: I have a quest i on to ask Mr .
but seeing we do not rAve the tables
pr obably, isn't the approprinte time
tomorrow . Maybe ve'll get a shot at

CALKINS : What i s your question, sir?

Pollack
with us
to ask .
it then .

regardL~G hiz decision tables ;
nov, the examples he used, this
~aybe I should leave that for

VOICE: Well , 1n the one on Inventory, I take exception to the fact that i n
Rule Three you specified a uUo" -- on Condi t i on Two . I claim it should not
have been applicable .

POLLACK : That ' s very good . I 'e glad this came up, because th i s is one of my
contentions, that if I had shown that statemen~ to a free form English program
mer, he could never have picked it up . I v1ll rest my case .

•

•• •

•

•

•

51

VOICE: I wondered whether anyone ~10WS whether IBM 1s working on any proces
sors to translate decision tables into any o~ its languages?

GRAD: This is very easy to answer. As you all well know, IBM does not dis
cuss nny potential future language processors .

VOICE: Some of the orl£lnal wo~k v1~h the tabular analysis tables ~~s used
for the processor, the string of actions that take place after you determine
which table to go to. Now, do you say that this should still be done or do
you usp. the strict paragraphs on it?

POLLACK: Those procedures that you have ~hat don't involve decisions should
not be put into a decision table . Use stralghtfor~rd COBOL paragraphs and
sections if you are sping to be writing your procedure 1n a mixture of COBOL
and decision tables . It's just that simple.

Now, if you have three or four decision rules; again, with whom are you deal
ing? How good they are at visualizing relationships that only involve about
four deci~ion rules. If' they cgn see 1. t, and yO'.J. feei you don't want to rr.ake
a table for it, go ahead and 'JTite it . It seems to me that anytime you have
at least four decision rules you are 1n a good position to use decision rules .

CRAD: I 'WOuld like to make a comment. Sol and I disagree practicall.y on every
thing. We make a practice of it. This is a very interesting point . The ques
tion really bolls down to: "It's obvious that the decision table format in
the case of the unconditional situation buys you nothing new." This is clear .
I t's nothing. It's no gain for you because it can't. The only possible table,
in general., lies in the shOwing of all te:nns. nevertheless, if you were going
to feature one format, and you ere trying to take advantage of this modular
property that's been mentioned here a few times this morning, there could very
well continue to be an advantage to you in writing unconditional tables to main
tain this modularity, to maintain the continuity of format . It will come no
faster for you that way. You obviously aren't g~ing to save any time . It may
even cost you a little bit. The question is whether you find it worthwhile
for the standardization of the documentation and, for this modular property, to
go in this direction .

POLLACK: I am not the only one who disagrees with Bert on that .

GRAD: Tha t 's for sure .

HAWES: I know of at least one tabular processor in Yhich their experience is
to go to tabular format for everJthing.

VOICE: Does the DETAB- X concept permit the action of a decision table to mod
ify the current decision table or another table?

•

•

•

52

GRAD: No . This 16 a real pOint. This has been argued all kinds of ways .
Nov} correct m"! if I am. wrong, It\Y memory tells me that COBOL 1s nonlntrospec
tlve, 1s 'that co::-re.:t? Doe.:; u:1ybody recall that there 1s a COlllIlldl'l.i in COBOL
that vill che.nge i;he COBOL etatemeuts? Tha.t ' s not implemented on many of the
processors . 'l.'his 19 6. vE.ry 1mpoctant point . 1'1115 has been a:rgued and dis
cussed. We t.~1r~ +'hat o~e of the potential adv(L~tages, net 1~ Just tabular
fonn, but in other l~ee:.1 is tlds una.l'tcratJl11ty. It has the e.dvantage
thai. r.o-ch1ng C"l1! ~e chat1lg~d in yoar program, thereto:-e, if you have to over lay
mcmO!"",{ ",!t.h ol~h.?r fcr'!l3, you den It h:lve to bother to write out hat you had in
memory . W~ use tne pm-ase IInonintl'ospect1ve . " Does anybody else ever use it?
Well, I'! me.rle it: up, like all 'the other words you heard this morning. We
spend hours making \I] Jle~ .. • .terds . Dl-.."TAB-X is written 8.3 a nOnin1:rcspectlve
language.

HAWES: I th1!lk ve should keep in mind that there are a nwnber of problems in
DETAl3-X vhich havE' Ilot been spelled out even in your manual. This is one of
the reasons why this :1.s called Decision Table Experimental. There ore many
extension.;; that ve are vorking on 'Which are not yet included. I 'Would say
that this also is onE' of th~ big problem areas .

vorCE: The reflSC\'. it seerr.s 1:0 me, is tha't the a"Oproach ;.tould tend. to make
the table ba1loo~1 iJP, espe::1ally hor:1.zo11tn.1ly or ver'tically, end number two,
the fact that this can ~-,.rer be Boolean-optimized is the one glaring wea.trness,
I thill.'\{, "in the 'l.fhc!.e approach; that ls, the lack or "OR-1.ng. II If' you have
a series of cond:!.';.1ocs which nre more or less exceptions to the rule in case
of A or B or C or Il, then do somethingj all your parameters have to be re
peated for every such en'try . I think this is one glaring weakness. 'Whoever
hea.:-d of a Boolean specification 'Without the IIOR_ing" factor.

POLI..ACK : As J'ou kncv, a declaier. rule consists of an "11''' condition one and
condition two anti cc.1d.1tIou three, etc. Then take actions one, actions two,
etc. !low, these various conditions that need to be sat19fl~c.. are connected
by "ands," and as pOL-i-ted C'.rt.. by the speaker, there are many cases , nwriber
one, ,,'hen you would like to COntlect your condltions by "ot', II a!ld eve~ 'Within
a decisIon tabl e, '1;.0 s ave a lot of Wl"Ulng, it wO'.lld be usel'.ti to have a
series of conditions cor.nected by "C!)'" ." This is particularly tlue in those
cases where you t~Jt. for instance, for el·ror. You ant to cb.::c k that all the
dig1'ts are IIUI:1e!"ico..!., a."1d yO"l go to each of the rules, t!ltUt.ing sure that all
the digits are lJU..rr.f:rical; athel".,ise, you h.e.ve invalid Infol1ll!Lt!cn. Finally,
you wa.'1t a e.ec1siQn rule the.t says that if the digits are blphabo:"tic or if
some othel" conditions exist, then your data is invali.li this .. ould be really
usefUl.

In ~. own pa..'l""ticullZ C('St: I hG.ve begun to do work. O!l the theory of deCision
tables, enQ. I 'rot. t .3'..t"!Sb thrl.T.. ult:hulltely we nll have decl.sion taolcs tr...at
really b:.-~ak up ! ~to t-~ /v p;;.:!' t.,: o;j,ll? 1n W'h1ch evc:rytt~1ng to "tr2 lett of some
double line e::-e 'the t!ecisi:m t"'..1le s tmt in ol e "and.'· connectives hetvt::en the
conditions; atld te· tb~ rigc.'t of the dO'J."clell!:le is a d.~ ·~ i9tOU rule that o.llO\olS

•

•

•
-

for the connection of "or ' 5 ." It seems to me that thi s kind of extension
ought not to be too difficult afte~ awhile, but some further work needs t o be
done . I n the early stages, certainly, we are ~rylng to get people to use
dec i sion 1iables to i ntroduce the idea of both "ands" and "ors."

vorCE: And
belongs up .

thi s I s the
I f you had

reason that it tends to be vertical, anyway .
the "or " facilities you could t.lghten up the

The table
table.

CALKI NS : I thi nk your critici sm 1s just, and r think the only thing we can
say at this poi nt 1n time is that we are tryl~g to crawl before we walk, that ' s
a l l . Hopefully J as we learn and devise new techniques I 'We can i mprove upon It .
Thi s is not a finished product . You have to take it In the light of bei ng ex
perimental ; hopefully, some of the people here might find a way of do i ng thi s .

VOI CE : I don ' t really thi nk it's a matter of not being developed, I thi nk
'What you have i s a tool for usefUl analysis. n:w this can be developed i nto a
t ool of synthesis , that would be the difference, rather than not being develop
abl e, because nov you state all the conditions and, if you can modify these in
some \~y to arrange for synthesis to take place, you are proving the analysis
of 'Whatever the rule i s . I n our own application, vhich is an insurance appli
cation , 'We have been using decision tables for a long time . We do not program
fro::;, ~!:C::il , t.O ;:VCl- . TIle! t= ' S b. qUe::> tion of document~ng certal.n tlnd.s or manage
ment rules , and because of the fact t~t 'We did not have to apply it to COBOL
'We ass i gned the "or" problems, at least for docU!nentation satisfaction, by
ha ving multiple conditions, vhere a sinsle line 'Will have a condition, !''Will
A OR B OR C, " and then, "yes" or "no," We have gotten around thi s "OR_ing" in
thi s ~y . But, as I say, this is not progr8L~-oriented yet .

GRAD: I think 'We ought to finish what he was fiSyinC if the rest of you d i d
not hear . What they have done 15 actU!llly put into that roY an "OR" state
ment , "if A OR B OR COR D" 1n the stUb, let's say , and then i n the ent ry area ,
they i ndi cate simply "yes " which applies to &:1y one of these thi ngs being t rue .
I know of other people \tho \lUl have i ntrcxiuced. the "OR " on that one- line
baS i s , "if A equals three OR four OR six OR eight," and have actually impl e
mented this . I t ' s not so much, I think, a technical problem here , although
t her e a r e techni cal consideratio:1s. The~e are que~~ions sGRin of format,
phy61c~1 l i mits } w~~t you ~~t to allow a~d ho~ frequently it is used . ~i s
i s aeain something you can only feei beel: and tell us . Do you need. the "OR,"
i s it necessary , 1s it valuable?

As f ar as this Boolean reduction t.l).i!!.g 1e conc'i!:rne<i, however, that has no im
pact on i t, because you could ~ite a p~oce~~or vh!ch \lould look ~or result
rules that had identical. act.ions end could ~h("a st.!ck tt.e "OR" in between those
r esult rules and produce your Boolean redu~tions.

VOICE: You have to scan your Yhole table before you can do it thoue h .

•

•

•

.. ~-

54

ORAD : That's right .

CALKINS: We have time for about one more question .

VOICE: Would anybody care to speculate on how long a period of time before
the X comes off the DETAB?

CALKINS : I vill stick my neck out. I vould say it would reasonably be between
six and twelve months . The reason I say that 1s tha~ hopefUlly,we will get
some feedback substantiating the position. Assumlna that we do get proper
feedback and evaluate it, it would be favorable . Then most assuredly we will
be in a position to recommend this to the Executive Committee of Codesyl as
an addition to the procedure division .

•

•

•

55

CCMMERCIAL AND ElIGINEE'JUNG

APPLICATIONS OF DECISIOl{ TABLES

H. N. CantreU

This paper covers our experience witb decision tables, from the time we first
heard about them, through experiments 1n different application areas, to our
present ratber vide spread use of tables in systems design and progra~lng. We
vi11 discuss some of the difficulties 'We have had 1n using decision tables and
some of the advantages we think we have gained from tbem .

A little background 1n our history and the kinds of computer work we do may be
helpful in understanding the scope of our decision table uppllcatlons . We have
used computers in our Department for about ten years . For the last six years
we have bad a 704 computer. We did our prograTming in symbolic machine lan
guage until FORTRAN became available and then gradually converted to FORTRAN
programming. A few years ago we began phasing out of FORTRAN and into alan·
~8J;I;e of 0111"' r'llm .; ... vel ~c:':.t , l.:u-gc.!.y 'te ... d.IJ,.:oe 1..1Jh language inc.lud.es decision
tables and is adapted to both data proceSSing ~nd engineering and scientific
progra:r.m1ng . Parenthetically, we might remark tbat the job of writing com
pilers for a high- level language would scarcely have been feasible for us with
out extensive use of decision tables in progr~~ng the compilers themselves .

In applications, ~e do a vide variety of scientific, engineering, and business
data proceSSing work . Currently our machine load 15 about balf scientific and
engineering vork and about half business data processing vork with a total of
about 200 active progr&~s.

We first beard about dec ision tables a few years ago when ... ·e vere 1n the midst
of trying to figure o~t hov to program manufae:turing planning work. This 1s a
particular type of computer application in that each Job consists almost en
tirely of a large number of decisions a~d choices . We had already determined
that ,",e could not afford to program this · ... ork using classiCal, flow charting
methods or simple table- look-up methods. Thus, vhen ve beard of some of the
early decision table ,",ark which had been done elsewhere in General Electric ,
ve immediately took up tables as the answer to our problems in programming
this type of application.

At that time ve recognized that decision tables "'ere a new, different, and po
t entially better ... ·ay of designing and expressing the logic of' computer programs
as compared to the flov cbarting methods we bad been using. In making the
transition from machine language program..'lling to FOR'!'RAN progre.'llI1ling e bad
saved a lot of detailed coding effort but e ere spending as much time flo
charting and debugging the logic of FORTRAN programs as e bad ith macbine

•

•

•

language programs . We ~ere quite excited about tbe potentiali ties of this new
decision table method but we didn ' t know if it would work for anything other
than manufacturing planning applications.

We did know that decision tables were the answer to programming manufacturing
planning work, and we had a lot of this work to do, so ve proceeded to design
snd write a decision table complIer called LOCTAB for Log1c Tables. We found
immediately that decision tables are a very fine way of designing and expres
Sing the logical decisions which must be made in a compiler . Thus our first,
real-life application of decision tables was 1n the LOGTAB compiler itself.
Our next applications were 1n the manufacturing planning work which we had been
trying to do .

At about this time ve ~ere planning for a large upsurge in business data pro
cessing programming. Neither FORTRAN nor machine language coding for tbe 704
are very ~ell adapted to this kind of work and we did ~ant to be able to use
decision tables . We didn lt kno~ if tables would york in business data proces
sir~ programming but we had higb hopes . Finally, after a very careful language
deSign effort and very extensive use of decision tables , we invested a man-year
of programming and wrote a compiler system for a general- purpose data processing
language .

We now had a complete language system, with decision tables for logic, formulas
for arithmetic processing, and data descriptions for input and output editing
and for tape file handling. Thus with all of our problems happily solved, we
ran unknowingly into a major difficulty in decision table application.

To explain this problem, as we finally understood it, we must discuss same of
the philosophy of deciSion tables . The chief value of tables is that they are
much easier for people to use than claSsical flow charting methods. But this
assumes that the people making this cOOlparison are equally familiar with both
techniques. We were working with programmers and systems deSigners with years
of experience with the flow charting or sequential decision method of designing
and expressing logic . These people reported that decision tables were not
easier to use and that they could see no advantage in using tables in their
work. This was quite a blow since e didn It kno for sure that tables could
be used effectively in the work these people were doing. Eventually we found,
from experience in other areas, that the trouble here was psychological rather
than technological . A programmer or systems deSigner using tables must do his
thinking in terms of the parallel relationships bet~een decisions . This is en
tirely different, and , in fact , incompatible with thinking in terms of th~
series or sequential relationships bet~een deciSions 1n a flow chart . We ere
aSking people to unlearn a mental process vhich they had developed over a
period of years and learn an entirely new and different thought process . It
is not surprising that these people could see no value in using tables . Tables
were, to them, a harder way of doing the Job .

•

•

•

•

•

57

Having recognized this unlearning and new learning process for vbat it Is, we
have attempted to solve it by giving ne and relatively hard Jobs to experi
enced people ith instructions to 10 these Jobs uslr.g decision tables even
though this appears to them to be a harder ay to work . (We find they are
much more likely to recognize the value of tables ' ... ben doing a bard job .)
Usually, after a fev months of this ork ith decision tables, our people have
enthusiastically embraced them and continue to do allot their ork using this
technique.

Up to this time, we had concentrated on decision table applications In the busi
ness data. processing ru"es. Put e no had a language system, including deci
Sion tables, which could be used for englneering a~d scientific ork. We ere
searching for a good, low priority engineering job to use as a guinea pig,
when we were hit with an extremely complex, high priority Job of writing a
computer program whose output would control a tbree·dimensional contouring
automatic machine tool . thiS ~as as complicated an engineering· scient~fic Job
as we had ever done. We had had. experience Vith s1.milar jobs in the past and
were reasonably certain that we could not do this one at all 1n the time avail
Bble. This new decision table technique was available but it bad never been
tried on any kind of engineering-scientific Job, let alone one of this complex
ity . But , since this was our only hope of getting this Job done , we decided
to put all our effort into a decision table approach for both systems design
and programming. The results still surprise us as we look back on them. Tbe
engineering, systems design, program:n:1ng and debugging "'ere all completed in
a total elapsed time of four months- -at least three or four times as fast as
our most optimistic estimates for the job using flow charting methods. Even
this 1s not the vhole story . The complete debugging job on thiS program was
done in the last three weeks of this four-month period by an engineer who had
never worked on this job before while the engineer who wrote the program was
on vacation.

A more complete story of this project is given in the November 1961 ACM
Cn~nlcatlons 1n a paper by R. C. Nickerson, the engineer who did the Job .

In this job and the previous compiler writing Job, ve had achieved hat we con
sider to be remarkable perfonmance . Much of ~he credit for this must go to
the use of decision tables, but ~e did a lot of other things ~igbt too . We
bad very capable , experianced people who ~ere given rull authority and respon
Sibility for the job to be done , vith a minimum amount of time lost 1n commu
nications, di scussions and approvals. We don't always do this well. Decision
tables are very valuable but they aren't a magiC and that makes all of our
problems disappear.

Our success vlth decision tables on these jobs convinced us that ~e ought to
apply them across-the-board on &11 vork, so we immediately included instruc
tion on the use of decision tables in our programmer training courses. We
found that our new people bad very little trouble lebrolng to use tables .

•

•

•

Tbey didn't have to unlearn past habits and found tables a very natural way of
thinking and expressing themselves . Today we have a generation of progralMlers
who have always usp.d decision tables and are turning out work In a vide variety
of application areas.

Beyond the pOints already covered we have reached some other conclusions fr om
our experiences with decision tables.

1.

2.

3·

Value.

The value of decision tables, or the advantages of tables over the
flow charting, sequential deciSion method, varies with the complex
ity of each individual job . Decision tables have no use, and,
therefore, no value in a Simple , straightforward Job which contains
no deciSions at alL If a job bas only a fey decisions .. bleb are
easy to flov chart, then these decisions can be expressed just as
eaSily, and probably more reliably, in tables . As ~e consider
more and more complex Jobs the margin in favor of decision tables
increases rapidly. For extremely difficult jobs, decision tables
may be as much as ten times as effective as flow cbarting methods .
We can ' t 'Prove this because we can't bring onr6plvPA "t.n til") "thQA'"

jobs twice, once vith tables and once ~ltbout, as an experiment ,
but we don ' t think 10 to 1 is exaggerated . We have seen complex
f low- charted jobs bog down almost indefinitely ~ith logic bugs .

Range of Application.

We see no evidence that the application area, mathematiCS , engin
eering, finance , manufacturing, compiler writing, etc ., has any
relation at all to the value of decision tables . If the applica
tion has decisions in it, then decision tables are the way to do
it. We have found no applications where all of the decisions
have to be made, one at a time, in sequence , with actions inter
spersed between decisions.

Most of our experience with decision tables has been in computer
applications but ~e ha~e also found these tables to be an excel
lent vay to define and express logical procedures of any kind,
quite apart from their value in computer applications.

Computer Program Design .

One of the striking features of programs written USing decision
tables is tha~ this technique nature~ly leads to extreme subrou~

tinization in program design. The program consists of tables,
and subr outines vhose actions are controlled by the tables . This
extreme modularity makeb deciaion table prcgrams unusually easy
to change .

-
•

•

•

•

4.

59

Since the final program 1s going to be made up of tables and sub
r outines , it Is natural for the progra~er to plan and describe
the complete decision structure of the program first . The final
version of the plan is also the source language statement for the
decision tables part of the program, so e naturally obtain a COl'll

plete, explicit and final plan ith all decisions contained 1n
one or more levels of tables. Subroutine programming to imple
ment the actions called for 1n the tables is no quite stralght
forw.rd.

In terms of time and effort required, the planning pbase often Is
harder and takes longer than the subroutine progr~~lng pbase,
but tbe over-all time savings are very impressive.

This natural separation between decision table planning and sub
routine programming gives management a series of key events and
distinct activities • ... hich can be estimated, scheduled, revie ed
and measured . This is a big advantage in managing a large systems
deSign and prograumdng organization .

We also take adV8.ntBge of t.h1" sf'parAtion of np.('1s1n,,"" AJ'ld fI t"10"Q
in the debugging phase. We find that a trace of t&ble name and
column executed provides a very compact but complete description
of exactly wbat the program has done during execution. This bas
been very helpful in reducing debugging time.

Errors in Logic.

People do make mistakes in decision tables , but the error inci w
dence rate in tables is, if anything, less than the error rate in
writing formulas or in keypunching . Logic errors are much less
frequent than in flo wcharted programs and are much more easily
detected and corrected.

5. Documentation.

DeciSion tables are qul~e understandable by people . Thus, they
are an important and explicit part of the documentation of a pro
gram . We have been particularly impressed 'Jith tbe ease with
'Wbich a program:ner can take over sor.;.eone else's job in Illid- stream .
We bave bad to do this en several different jobs in various stages
of completion . In every case the tranSition as accomplished ith
very little loss of tir,le . This has been tremendously valuable to
us. In fact, decision tables ould be orth using Just for tbis
feature alone.

=
-Q

=
"'" C:.;l

•

•

60

6. Object Program Efficiency.

7·

CONCLUSIONS

There are many ~~ys of implementing decision tables 1n actual com
puter instructions. Some of these are efficient and some are not .
The method that we use In OUT LOG~AB compiler 1s quite efficient
for large tables ,,·1th many columns and many redundant decisions
and actions. It is adequate for mos~ otber tables but can be in
efficient for small tables 1n tight loops where the table "over
bead." instructions arc a significant fraction of the total number
of executed instructions 1n the loop . We believe tbat it 1s pos
sible to implement tables with a compiler technique which would
give very efficient programs for these small tables and much less
efficient progr&~s for large tables. Tben with both complIer
metbods available we could use the best method for each table.
We have not yet done this . If we find that a few of the small
tables in a program can hurt its efflc1ency~ we express those ta
bles 1n "IF" statements ratber than 1n table language. This 1s
not much of a problem, so over-all we feel that the use of deci
sion tables has little or no effect on the efficiency of our run
ning programs.

Learning to Use Decision Tables .

We have tried many approaches to the dual problem of teaching peo
ple to use decision tables and convincing people of their value.
We find that examples are useful in teaching the format and me
chanics of table use and the tricks-of-the- trade, such as looping
through a table, USing "CR" conditions, etc . But examples Simply
describe the end product . Tbey do not describe the process of
getting to this end product or give much of an indication of the
advantages of using this process.

The only good ... ·ay we have found to learn to use decision tables
1s to use them. An individual should start with the knowledge of
the requlrecents of a Job and design tbe logic for doing the Job
in tables. We found very early in the game tba~ a Job which al
ready bas bad its logic described in a flow chart is a poor start
ing point for a decision table application . It is harder to un
wind the flow chart to get back to the baSic requirements of the
Job than it is to express these basic requirements in decision
tables .

This bas been a descrip~ion of our experience with decision tables over the
last t va to three years . At the present time we have about 40 computer programs
running which use decision t~bles and about halr of our programming staff ac -

~ tlvely progr~~ing wl~h dec 810n ~ables.

<::>

"

•

-e

•

•

61
(Page 62 Blank)

As far as we are concerned, the advantages or the decision table approach have
been amply proven and there 1e no question that this 1s the way to do system~
design and programmlng work .

•

•

•

APPLICATION OF DECISION TABLES

TO MANACEMENT INFORMATION sYSTE2<1S

Frederick Naramore

SUMMARY

Since 1958 Sutherland Company bas been employing decision tables, as part of
its Management DATIS System, for documenting management informatl?n systems.
Major advantages realized through these techniques may be enumera~ed as follows :

1 . The ability to clearly and concisely state system requirements to
tally independent of procedures and processing media.

2. A uniformly high quality 1n the statement of system requirements .

3. The ability to associate defined decisions with responsible organi
zational entities .

4. An effective method for man-to-man communications.

5. The ability to establish an information repository for system spe
cifications.

The composite result may be summarized as the capability tor comrlete and ac
curate definition of the "-'hat" of a system, independent of, but relatable to,
the myriad of procedural details constituting the '~o II

DOCUMENTATION CONSIDERATIONS

A prerequisite for any scheme of systems documentation is the resolution of or
ganizational responsibilities considering th~ inter ests and technical qualifi
cations of its personnel. This understan11n~ then serves as a basis for
establishing docureent require~entsJ their ~rticular purposes, and hence level
of content. To date tbere bas been an un~ort~~ete tendency to prepare single
level systems specifications, ~itb considerable procedural orientation, and use
these for both management and technical purposes.

Inherent in any systems development project are three distinct functions. In
sequence of occurrence, it is necessary to;

1 . Formul~te a precise definition of the system's requirements.

r

•

•

•

64

2 . Design a procedural flov, selecting a particular complement of ma
chines and personnel to operate the system.

3 . Prepare detail operating procedures which define the sequential
operating steps which process the data through the system.

From the preceding, it may be concluded that the quality of an operating system
cannot exceed that of the original definition of the system's requirements . In
essence, the procedural system represents an operational plan to satisfy the
basic requirements . As an operational plan it Is subject to revision based on
new mixes of personnel and machines. Such changes , In themselves, do not alter
the basic system's requirements .

'l'he availability or b0:18 fide systems specifications stating the "what" of a
system as opposed to procedural specifications stating the "hol.' , " has been in
fluenced decidedly by organizational structures in respect to separation or
consolidation of analysts and programmers.

Generally speaking, an organization which separates systems analysts and pro
grammers recognizes the distinction between the first and third development
!'.!n':;'i;icn. The resJ,:'cnsibilit:!,o, f'or :1e.'~hir..e ~yste=ts deSign how'!'!e!" !:!..!"'! n~t .. ~
readily recognized and def'ined. Consequently, they continue as a source of
minor or major irritation by entering into the original systems definitions .

Much of this intrusion by systems analysts in programming procedural areas is
the direct result of documentation techniques . Typical documentation, consist
ing of flow charts and supporting narratives, is a holdover from earlier indus
trial engineering methods. This combination of material whicb supposedly rep
resents a definition of systems requirements is deficient in several respects ,
namely:

1. Detail reviev and approval by operating management is difficult
if not impossible due to the extensive mixing of basic management
decisions l.'ith procedural considerations.

2 . The specifications quite often presuppose procedural solutions
prior to resolution of the system's details. Too often such solu
tions are at the expense of adequate system requirements defini
tion .

3. They are replete with arbitrary sequences inherent in charting
techniques, thus artificially imposing constraints on progr~ers
and other procedure writers.

4. The difficulties in indentifYing and superimposing changes on the
or iginal specification documents presents a task so formidable
that it defies effective maintenance .

•

•

•

Organizations vhicb consolidate both systems and programning responsibilities
solve the foregoing documentation difficulties through the simple device of
not establishing the original requirement for sucb . In these environments two
classes of documents generally evolve .

1. Presentation type material to portray a general definition of tbe
system supported by selected details to imply knowledge .

2. Programming procedures vrl tten 1n tbe particular language or lan
guages of the assembly or compiling system .

In either environment, it 1s evident that operating management 1s not the mas
ter of his own house. For all practical purposes he 1s never quite certain of
the degree to which bis , and only his , decisions have been incorporated 1n the
object systems.

In addition, the ability to associate management decisions with object proce
dure statements to facilitate systems changes is virtually impossible without
the availability of an individual analyst or programmer who bas emerged as the
Ryst~m ~~ria11st .

Quite often, the net result is a series of operating procedures which is not
readily associated with, or Justified by, particular manage~ent decisions .
Under such Circumstances , the problem of change control, including the determi
nation of change impact and assurance of full implementation, is, at the very
least, unduly expensive and time- consuming .

Tbe desire to alleviate these types of problems , which stem from inadequate
documentation techniques, prompted our experimental use of decision tables
early in 1958. Tbe initial objective was to obtain a workable solution to the
first level requirement. That is, the co~unications between operating manage
ment and systems personnel, which would promote more accurate definition of
system requirements .

REQUIRD>1EI;TS SPECIFICATIO~S

In actual practice the term "systems analys't" has ; •. eant all things to all peo
ple , hence specific responsibilities vary by Job description. One thing, how
ever, is certain . That is, in defining the requirements of a system, an analyst
is acting as a licensee of operating management. Acting in this capacity, his
first obligation is to positively identity and formally record the policy deci
Sions expressed by operating management. This relationsbip need not conflict
vith nor detract from his unique responsibilit1es in the procedural areas .

Decision tables, or r-tanagement Rules as \Ie refer to them, have proved extremely
effective in the area of defining basic system requirements. The character
istics of deciSion tables lend themselves to ~he logical expression of policy

= -0

•

•

•

66

i nterpretations independent of procedures . For example , a credit policy re~
quirlng knovledge of :

1. Credit rating of customer,

2 . Current accounts receivable balance , and

3. Net invoice a~nt

may be completely described ~lthout prescribing, implying, or restricting the
procedural steps necessary to execute the policy In the production system .

Management Rules are the formal expression of management dictates stated lnde ·
pendently of both processing media Qnd detail procedures . Being i ndependent
of ultimate procedures they are independent of each other except in limited
situat i ons where sequence is essential to the end result.

Complete requirements specifications , produced by the management systems ann
lyst , a re composed of three basic types of information. These are :

2 . I nput and output data descriptions , and

3. 11anagement Rules .

Each wi ll be briefly discussed .

An element of data may be defined as the smallest unit of information which
may be separately identified and described . As the basic unit of information}
it i s the foundation for the rest of the specifications. To assure uniform
usage and understanding} defined elements are cataloged i n an element library.
By i ncluding the characteristics and configurations of the element as part of
i ts defi n i t i on, subsequent system definition is exempted from such details.

Data r equirements of the system are grouped in terms of action input data sets ,
reta i ned data sets and terminal output data sets. As a z:rl.nimwn these are de
scr iptive r equirements initially . As particular formats evolve in the pr oce
dural phase , they are used to supplement the original descriptions.

Management Rules , in terms of defined elements and data sets , formalize the
logi c of a management policy by prescribing the particular action or actions
t o be executed when specific conditions or condition combinations occur .

At first glance these requir ements may appear identical to those which are com
monly considered as a system specification. Such is not the case . This level

=
"'" =
"",I

•

••

•

•

67

of specification completely excludes processing oriented operators, or verbs ,
as you may prefer.

Take for example the considerations associated with the refl11ng of an updated
master record. Management personnel have described the conditions or limiting
factors under which they ~111 accept or reject various transactions . In addi
tion, they have stated how such activity should alter the permanent records
and to wbat extent selected reports or notices should be prepared . Without
explicit procedural statements management has implicitly stated:

1. As a retained data file which bas been altered, a need exists to
ref1Ie the current version.

2. The record can be ret1Ied when no further transactions are pres
ent which require this specific record.

The determination of ho~ and when to return the record to file is a procedural
matter dependent upon the particular file medium involved in the production
operation.

DISSEMINATION OF REQUIREHENTS SPECIFICATIONS

Use of decision tables in the preparation of requirements specifications bas
enabled the development of solutions to two vital problems in tbe distribution
and control of policy decisions l namely :

1 . The body of rules can be subjected to manual or machine processes
which objectively exa~ine the network of interdependent relation
ships ~lth the end result being a schematic diagram. It should
be noted that these interrelationships are derived from the con
tent of the rules themselves--not from rule connectors .

2 . They can be reproduced or converted to machineable records for
distribution and filing in accordance with organizational require
ments without translation.

The ability to objectively produce a scbematic diagram depicting the decision
network 1s of utmost value in several respects .

1. It reveals areas of policy conflict within or between organiza
tions.

2. It affords operating management an opportunity to review their
policy deciSions for completeness.

3. It provides an impartial roadmap against which the production
system can be designed .

•

•

•

68

Equally significant 1s tbe ability to "unitize It the specification components ,
that Is, elements , data sets , and ~~nagement Rules ; and distribute selectively
without retranscription to other forms. Thus, selected duplicates of the orig
inal specifications can be fUrnished to :

1. Operating management 1n accordance with their respective organiza
tional responsibilities as part of the over-all system.

2 . The information repository for change control.

3. The programming and procedures personnel segmented for tbe partic
ular operation .

Th~ divergent requirements which are satisfied by the original specifications
definitely establish decision table structures as an effective multiple purpose
tool.

APPLICATION EXPERIENCES

Our initial application ot decision tables dealt vith a highly complex file
maintenance operation in 1958. After tbe expenditure of approximately eight
to ten man-months using conventional methods, no accurate specification bad
been produced. The specifications being produced at the machine run level vere
ambiguous and contradictory. This was due to the lack of a logical frame of
reference to which the analyst could continuously refer. Both the narrative
specifications and flo charts were replete with situations here "A" vas de
pendent on ''H, '' ''B'' dependent on "C," and. "c" dependent on "A." Had the equip
ment been programmed on this basis it could have operated perpetually on any
one of a number of transactions .

A crash program to correct the situation using decision tables as the basic
form of documentation as completed In approximately three calendar veeks util
izing an average of four analysts. Perhaps one fourth of this time was expend
ed in developing the rationale for completing the tables. By today's standards
of disciplined table entries, tbese ere rather elementary and could best be
described as a free form mixture of limited and extended entries supported by
numerous notes. TVo significant poin~s were crystal clear, hovever:

1. Tbe hierarchy of deciSions could be objectively determined and
the entries ere logically audltable .

2 . The use of tables did not imply or impose arbitrary sequ~nces
.... hich artificially influe~ced programming .

Since our original use of decision tables, tbey have contl~ed to serve as an
integral part in documenting system reqUirements for a Vide variety of systems .

'='
"

~ Primarlly these bave been associated vith organizations involved 1n tbe manu
. facture or preparation of products for national or international distribution.

Representative segments of the manageu.ent decision areas that have been r educed
to Management Rules are outlined belovo These have been selected for illustra
tion purposes not so mucb for uniqtie problems encountered 1n documentat i on but
rather for the cross section of management represented. This should serve to
dispel oft quoted remarks to the effect, ''That 1s fine for his problems but my
problems are different. II

The area of accounting spanned general accounting, fa.cility accounting, ac
count s receivable , billing, accounts payable , cost accounting, standard costs ,
and product pricing .

Sales areas are represented by such functions as order proceSSing, inventory
control, warehousing and distribution , marketing analYSiS, sales forecasting ,
and inventory levels.

Manufacturing fUnctions in~lude material requirements (acquisition and control)
t ogether with production scheduling of multiple facilities.

Under the broad category of adminis~rative services, tbe areas of payroll, both
vage and hour . tax reporting at all jurJsd i ct.1ru1A1 lpw·lQ.1 t:r"pnQ.po!""~. t;'!'! !"'.:'".!":

iDgs, transportation tariffs and import -export tariffs have been completed.

~e significance of this list Is that ~ny of tbe related requirements specifi
cations have been produced within the same organization independent of proce
dural details . In addition, they have been produced in a standard manner to
the satisfaction of operating management witb diverse backgrounds and i nterests .
Reviews and approvals have been accomplished on tbe basis of the logic of the
policy witbout introducing the host of backdrop material previously deemed ne
cessary.

An appreciation of tbe compl exity of decisions required might best be realized
by conSidering characteristics of the products themselves. CompOSite cbarac
teristics would include size ranges, quality, seasonal usage, sectional usage ,
standard and special packaging variances, age and private brands. The inf'lu
ences of these characteri stics of course impact heavily on the policy areas of
sales, manufacturing and accounting .

ADVANTAGES REALIZED IN THE USE OF DECISIO~ TABLES

While the advantages realized through tbe media of decision tables for the
most part have been empirically determined , they are compatible w1th the exper
iences of other users .

•
ti '

•

•

•

70

Undoubtedly the number one advantage 1n our experience is tbe ability to effec
tively record the detail decisions representing operating policies, thus ob
taining a problem statement approaching ~he preciseness of a mathematical
formula .

As the processes involved 1n obtaining such definitions are not confused witb
procedural developa.~nt details, actual prel~atlon can just as readily be ac
complished by management represer.tatlves as by systems analysts or programmers .
In practice, superior requlremen~s specifications have been developed by man
agement representatives untrained 1n procedural details.

Usine a limited number of 6tylized recording standards, the resulting defini
tions can be manipulated mechanically or manually to produce a schematic of
the decision network . Accep~ance of the network after comprehensive review of
both the schematic and the details of the policy decision constitutes an effec
tive proof of tbe requirements specifications .

By appropriate cross- referenc!ng or crossfiling elements of data, data sets,
and l·~nagement Rul.es an effective repository is available for future change
control . For example, the definition of aD element of data may be expanded or
madp more restrictive . Under such circumstances it is necessary to review all
r ules ~nvolving dec~s~ons or actions based on "he fonn~r el~)I.,t:lIl. ut:i.iul:"luH .
Similarly the impact of this cbange must be revie ed. for impact on all data
sets of whicb it is a member.

The schematic of the decision network, in addition to serving as a "proof" of
the problem definition, provides an objective fra~ework for deSign of the ne
cessary production system . AsSignment of procedure numbers to the decision
rules on the original schematic serves to assure the complete accounting for
reqUirements specification details .

The ability to treat decisions as independent modules results in another major
advantage in terms of accuracy . The reproduction of the original tables can
be segmented and regrouped to serve as basic specifications for specific pro
cedural areas. Tbe ab1lity to segment and '\:nitize" this information without
translation to another form eliminates tbe losses in original meaning vhicb
are common in translation processes.

Of equal Significance is tbe subject of improved personnel utilization. Its
order in tbe over- all list of advantages does not imply its relative importance.
It is merely that the preceding discussion substantiates some of the conclu
sions .

By tollo~ing tbe logical order of a development project, that is:

1 . Problem definition,

-
-•

•

•

.71

2. System des i gn, and

3 . Procedure pre~at1on,

a reduction of approximately thirty percent 1n total man -months should be
realized . This reduction 1s attributable to a fifty ~rcent reduction in ana
lysts I time. Table I l11ustl"ates tbe effect on the total effort.

Table I . PERSONNEL REQUIREME!ITS

USing Narratives & USing Decision
Flo'W Charts Tables

Weighted Weighted
Pers . Pers . Pers .

Function Equlv . Weighting Equjv . W'f"jght.1ne P,qll i v R"d'.!ct!c!"

Analysis 1 0 · 75 0·75 0.375 0·375 50'f0

Systems Design 2 0 . 05 0.10 0.05 0 .10 -

Procedures 2 0 . 20 0 .40 0 . 20 0 . 40 -

TOTALS 1.00 1.25 0 .625 0.875

This r eduction 1n the analysis area 1s evident 1n view of the f olloving aspect s
of problem definition .

-

•

•

•

72

Results of a study of approximately 1, 000 documents averaging 30 elements per
document ar e sbown 1n Table I I .

Table n. 1, 000 DOCUMENTS

Use of Elements Percent

Superfluous 8

Recopied (Document t o Document) 73

Decision Purposes 7

Art tb:netic Results 12

TOTI>L 100

By el1minating procedural considerations from the requirements specifi cation,
t he management analyst focuses his attention on less tban ~ of the entries.
Thi s segment in effect represents the pertinent contents of the decision tables
1n the sense of detail statements of condition-action relationships .

The second major contributor to time r eduction is the use of an element libr ary,
By establishing standard definitions once, it 1s not necessary to repetitively
and, hopefully, consistently redefine elements of data 1n each specification .
This approach eliminates a major distraction that 1s present 1n many specifica
tions j that is , tbe lengthy details vhich describe vhat elements are to be val
idated and bOll they are to be validated.

Folloving t he Management Rule approach it is necessary only to indicate dispo
sition actions for invalid information. The test parameters are explicit in
t he element definition library.

No attempt has been made here to indicate reduction in progrwa~ng and proce
dure writing as this has fluctunted videly due to tbe simultaneous introduction
of a host of nev programming source languages . To the extent they have been
adequately tested and released on schedule, effective reductions bave been
realized . Unfortunately th1s has not been the case 1n our major appl i cati ons .
I t i s r easonable, hovever , to project equivalent reductions in the programming
areas based on the rolioving considerations .

•

-.

••

13

1. It is not necessary t o have programmers participate in the defini
tion phase to obtain background experience which 1n effect 1s in
t ended to overcome tbe deficiencies of normal documentation.

2 . PrOgr~~TS do r.ot have to study extensively an arbitrary proces
Sing 10g1c ofte~ for the express ~~po3e of substituting their
o"'n.

3. Procedure preparation 1s not s~bJect~d to false starts and exten
sive revi&ions which occur "'hen problem definition and procedure
development progZ"eS6 on &.r. 9.l.rc.ost parallel basis.

4 . The committee approach, that is, Joint analyst and programmer de
velo}Xllent and revieY of a procedure, has no Justification 1n con
tinuing.

CONCLUSIONS

Much of the material presented today substantiates our experience and optimism
1n the past and future role of deciSion tables . If our vieYs differ from those
of others it i s in the sense of the level of usage.

Constantly we hear re1erences to commercial or OUS1ness languages as 6olu~iunb
to the management -analyst -programmer cowmunicat1ons problem. lndeed, remarks
have been made to the effect that munagemen~ can write their own progr~s thus
assurinM policy recognition and compliance. Whjle this undoubtedly can be
done, such occurrences are unique. In lieu of requesting :ilonogement to write
or at least fully review the ultimate procedures, we must assure, insofar as
poSSible, that that which he has approved res1des 1n the ultimate procedure
unaltered .

Our initial effort, as previously stated, was to obtain precise problem defini
tion from management without procedural overtcnes, this constituting the mini
mum essential requirement on management . Decis:;.on t.ables have proved effective
in this respect . Thus the goals of the initial objectives have been realized .

The second segment of the problem, that is, to assure pOSitively that approved
decisions reSide unaltered within the procedl.res, 15 sti.!.l to be resolved. As
an inte~ediate solution, the ava~1&bl1ity of Dl~AB-X holes mjre promise than
the present bUSiness language programs. This is qCite reasonable, as a more
direct corr espondence be~veen specification and procedure can be r etained.

A more enduring and certainly more pOSitive solution, however , rests in the
ability to accept the poliCY sta~ements and to euto~atic&lly ~oduc~ tbe pro
cedural system. Undo~btedly man~ ~f th~ co~e~e~s end spEakers bave consid
ered particular approaches. Tt is a~r impreSSion that pilot systems of this
type are not too far off in the future . Briefly, such systems have to:

=
-0

=
.."
t."

•

•

•

74

1 . Develop a decision network relationship (Schematics),

2 . Complete data descriptions and test parameters (Elements of Data),
and

3· Insert the procedural control logic (Table Processors).

Realization of this objective vill return operating control back to operating
management from whom it bas been wrested gradually over the years .

In closing, I should like to offer one last testimonial ascribing to the value
of decision tables by relating the follow!ng experience. A Sutherland Company
representative was recently assigned to develop the requirements specifications
of a particular system . Based on an analysis of pertinent procedures and policy
memoranda supplemented by personal interviews be committed his newly acquired
knowledge to decision tables. Upon completion, the mater1al was presented to
various segments of management for review . Undoubted~y this generated the
first comprehens1ve review of a long series of policy determinations, The net
result--wbat had been previously considered and published as nonproprietary in
!'O::-:n.:l.tic:l -,;=.:; .. :. endorsed "CUbptloflY Coni"iuentitil. /'

<:::>

" ::t::

"'" C:."

• DECISION TABLE EXPERIENCE ON

A FILE MAINTEIIANCE SYSTEM

I¥rm M. Brown

SUMMARY

A decision table language and computer program pre-compiler vere developed at
the Insurance Company of North America to facilitate design, implementation
and maintenance of a large file maintenance program. The results of this ef
fort indicate that decision tables can have application over the entire systems
design-prograaming area. Decision tables also force a disciplined modularity
1n tbe design of a program which can enable 8 compiler to accomplish some of
the progra~ organization function .

INTRODUCTION

The best way to relate experience vltb decision tables at the Insurance Company
of North A~rlca 1s to tell bow L~A became involved 1n usln~ them. This 1s a
brief history of the development of a home-grown decision table language called
LOBOC, which was concurrent with the implementation of a file maintenance com-e puter program.

•

About two years ago the Electronics Research Department began implementation
of a system to maintain a master policy file for a new type of direct-bill
automobile insurance. The keystone of this billing system was a very large
and complex program which ould run on the compu:ter every other day . The pro
gram as to have a life expectancy of several ye&rs . During this period, gov
ernment, management, co~petition, computer technology and programming-systems
errors ould force continual revision.

The normal file maintenance program tends to have at least t o categories of
data error:

1. Detail transac tions enter the system hich contain incorrect
fields .

2. Detail transactions enter the system hich are incompatible ith
tbe master file in their content.

A system hicb runs every otber day 1a beg1nning to have some of the problems
that Itreal time!! systems must encounter, and it has a third category of error:

•

•

•

3 . Detail transactions e nter t he sys t em ybicb create a combination
of conditions for vhieb the program bas no definition of action .
These ~st be detected, reco~e~ and bypassed with no effect on
tbe mast~r r~e. Analysis of the trouble on one transaction can
not delay the er-tlre sy5~em.

The progra~1ng-systeKs person~~l asslgned ~o tbe job vere bavi ng considerable
trouble in laying o~t the prcg~em . The ve~y l~ge number of combinations of
conditions poss!.ble when a det£.:l transaction !.;e.s rr.atcbed against the master
f ile made no,", che.rt ing dlfflc'otl t As further def!n! ticn came to light, the
combinations of ~ondltlons forced re-deslgn. Original E!ov charts were redrawn
many t imes .

I t appeared that a procedurally oriented lan~~age like flow charti ng vas too
inf lexible for the problem.. Since Al:.tocoder and. other program:ning coding lan
guages were also proce~ral in nature, we w~re concerned about the economy of
revisir~ the machine run over its long life expectancy .

Too many programmer3 ane systems people approach a large problem on the basis
t hat, given complete def1n~t10nJ they can devise a strict procedural flow for
".: !:: j~= ·M.!ll:.h \:12.1 b~ the ~o~": ~ff1cient po~sihlp f ()r He entire life. This
met hod implies en abse:nce of c.har.ge beth d'J.:'it~g and after their deSign work .
Over the life of a program written i:1 thiS manr·er, the original procedural
f low may be patched to the point that a mOjster is created .

Tbe only thing consist~nt about buSiness data processing is the need for its
systems to be dynamic. Therefore, any strict procedural flow method of design
would seem to be 1n trouble . More flexibility is required .

DEVELOPMENT OF A DECISION TABLE LJ,N,~':A,JE

The main deficiency in the strict procedural flow method seemed to be that it
t e nded to scatter condlt~on testing and a~tion performance . In other words ;
- t est a condition - -do en ~t.l~n- -test anether condition- -do another actlon- ,
etc. In the co:uplex ~:)l; :NA was att:e:npt1ng : hey \ll.shed to group and analyze
conditio:'!. testing end ac~ion :tK!::-fo~!lce ~eyara~ely. This might be likened to
t esting all ~or.d;..ti"n$ a~pl.l.cab.le to a par·~1c.cl6.r transaction first and then
picking a specific pa.th through ~~he varicrJs actions for that combination of
condI tions . !f the progra~ was unable to coreple~e the condition testing suc
cessfully, it meant that the defini :!on _~ lacking and the transaction record
must be earmarked and oypaseed. i.lntl.l th~ p::ogra.'tl bad determined whether it
could hanc.l.e a partj,c·.;.la!" transilctton . no action affect-ing the master file was
t aken. By analyzt!'"~ the condition test:..r.g end action performance separately,
l ogic errors c~d ~ more appa~ent .

•

•

•

77

A progrwD design language vas patterned on this concept . It provided for de~
scription of a rule which ~as made up of a statement of conditions and a state
ment of actions to be taken !f the conditions were .'iatlsf1ed.

I F condition (aL and condition (b), and condit1on (c) are true, THEN
do action (1), ~ctIOri (2), action (3), and ac>1on (4) .

Since each of tbese rules st~ted an independent combtna~lon of conditions, one
or more rules could be changed individually ~lth r.o effect on the rest. A set
of rules (a decis10n table) was assigned to each ~ransaction . The tables
could be also changed independently with little effect on eacb other .

A rule might state, "If' the Status Code is normal, and tbe Billing Date is
equal to the Current Date, tben prepare a Con~lnuatlon Notice and go to the
Master Control Table. "

After writing several r~es as English statements, it was found that the pro
grammer kept referring to the same data names .t condition names and action de
scriptions in rule after r~le and table after table. Writerls cramp and mis
takes began to creep in. Synonym lists to represent tbese elements as codes
'Were set up.

Example of Synony:n Lists:

01 = The data name "Status Code II
I I'N II used ..,itb "Stat-J.s Code" = The cond!.tion name "Normal"

"x" used with "Stah ... s Code" -- The condition name "Exceptional"

02 = The data name "Billing Date"

03 = The data name "Current Date "

AM - The action description IIprepare a Continuation Notice"

AAB - The action description ":0 to the Maste,.. Control Table"

Thus a rule could be stated in a "deciSion algebra: It

01 ~ N, 02 = 031 - -- AAA, ftJlB

B,y developing a format for recording the decision algebra it was possible to
put a rule on two runch cards . One card was used for the con~ition portion of
the state~ent and the other for the ac~lon portion. A file of these cards rep
resented definition of the problem to date. It W85 much easier to change than
a flow cbart. Machine sorting and co~lating could aid analysis. Individual
cards could be changed at Vill .

•

•

•

78

The original intent was to use a listing of this file from which to code the
program. However, it soon became apparent that tbe definition vas in a data
form tbat a rather simple pre-co~11er could use to generate opt~~ condition
testing . It could produce the result 1n Auto~oder for final co~pilatlon on
tbe 1&17058 Processor . By put'tlng the syno:1Yl'l1 lists on punched cards, the
pre -compiler could write co~~ent descript~on at each place a data name , condi
tion name or action vas referre~ to in the generated coding .

Data description and action performance macro coding were added to tbe file so
that the output of the pre-compiler would contain a complete program input for
the 7058 Processor .

As an additional documentative output of tbe pre-compiler the rules and synonym
lists vere used to compose English language statements describing the defini
tion of the system.

COBOL compilers received English statements as input and produced coding. INA's
compiler r eceived a kind of coding as input and produced English statements,
so they called it LOBOC--COBOL spelled backvards.

Theoretically the English statements vere good. Technically they vere Just as
r eadable as COBOL, but they vere too complicated to follov . They definitely
gave the impreSSion tbat the sentence and paragraph structure of the Englisb
language is not the best medium for expressing complex decision logic . Tbe
documentative output of the pre -compiler vas changed fro~ English language
s tatements to Englisb language decision tables. This format appeared super ior
in sh~ing complex decision logic .

THE RESULTS

The rather crude home-grovn pre-compiler vas frozen at this point and used in
the implementation of the automobile master policy file program. There vere
several weaknesses in this version of the compiler and the decision table lan
guage. These veaknesses vere bypassed by USing Autocoder directly in some sec
tions of the program.

1 . The linkage control from one table to another as not flexible
enough .

2 . Autocoder entries to perform actions sbould have been more disci
plined in format .

3. The condition testing as vee.k 1n tbe fact that it vas too re
strictive in some arees and tbe generation not optimum from eitber
a speed or space standpoint l~ other cases.

•

•

•

79

Measuring the effectiveness of a lang~age on one application 1s both difficult
and unreliable; however, a poll of the experienced programming- systems person
nel i nvolved brought forth the following range of estimates .

''l'be total systems -prograrnm.lng effort \las cut about 2fY1, ."

"We could not bave implemented as advanced a system vltbout it . It

There was general agreement tha~ decls10r tables were valuable not only in the
coding, but over tb~ entire 6ystems-progr~~ng effort. A twenty percent cut
in this area vas more valuable t~an a fifty percent reduction in a coder's ef
forts. A part of this cut js attr!butable to a c~~n language for systems
design and programming ~rsonnel .

The resuiting program ·..ras organized in a very consistent :pattern by the pre
compiler which made for easy maintenance . The layout of the program within the
IBM 705 II core storage and magnetic drum was rearranged automatically by tbe
pre- compiler for each new set of r~v!sions to the decision tables . When sec
tions of the program were allocated to the ~agnetic druo, all loading and link
age to them was generated autanatically . With implementation of this program
on a recently delivered IBM 7080, the pre - compiler vill lay the entire program
jn the]argpr ~n~p mp~~~y

Previously, organiZing a program within a computer was a design fUnction of
the progrWTh~er . It 1s believed that the reason that a rather crude pre- compiler
could do this was because of the modular nature of programs written with deci
slon tables. The modularity represents a discipline which is forced on pro
gramming-systems deSigners. A single decision table represents an entity which
can be analyzed by a compiler as a unit. Since tbe machine instructions repre
senting a decision table are a self-contained lUlit, their sequential location
in relation to other :;x>rtions of" the program. is unimportant. A compiler can
put this fact to valuable use in organizing the entire job, especially if the
entire definition is in decision tables .

FUTURE APPLICATIOIIS

INA now bas several different types of sys~ems in varia~s stages of implementa
t ion using advanced eeitions of our deciSion table language and pre-compiler .

For t hese systems tbe pre-compiler viII have tbe follOWing nev features :

1. Ability to write tbe entire program in a decision table language.
:

2 . Ability to sect!onallze a program to prov1de for "overlay" of
portions or a program.

•

•

•

80

3 . Ability to sectlonallze a system definition into one or more pro
grams on a semi- automatic basis.

4. Ability to generate the 1nst~~ctlons to perform a particular BC
tion, either ''In line" or "1n one location 'With automatic linkage,"
based on a foran:.la us1ng tvo factors:

CONCWSIONS

a . The number of tjmes the action is required by all decision
tables.

b. The number of instructions req~lred to perform the action.

For example, an action which is only referred to once, or
which requires only a few instructions to perform, would al
ways be placed ''In line. II In any other situation tbe 'Weights
assigned to variables a and b above can be changed to reflect
any desired speed and space relationship.

1. Decision tables proved a very valuable tool 1n the desIgn, imple
mentation and maintenance of a large file maintenance progra~ in
botb the systems and programming area because:

a. The individual rules and/or tables were easy to change vith
little effect on the remainder of the definition of the pro
gram .

b. The program desjgn and a major part of the coding \tere done
in the sa'lle l.anguage .

c. The decision table format allo~ed a compiler to automatically
do a portion of the organization of the program within the
computer .

2. If dec1sion tables are used exclUSively they may enable a compiler
to assume some of the program design ~~nction .

•
81

FORTAB : A DECISION TABLE LANGUAGE FOR

SCIElITIFIC COMPUTING APPLICATIONS*

G. W. Armerdlng

SUMMARY

Scientific c~~puter programs , like business programs, often involve progr~~d
decision 10glc. Decision tables , which have seen use 1n business and coa~er
cla1 computer applications , can also be applied to Bcientific and engineering
problems .

FORTAB 1s a decision table language based on the FORTRAN scientific computing
language. Programs written 1n the combined FORTAB and FORTRAN languages can
be compiled by a FORTAB pre -processor program which has been constructed for
the IBM 7090 COlnplter .

Initial experiments conducted using the FORTAB language indicate that a decl
fjjcm t.able lan!!1I8fp. added to a scientific computing language results In a 'POV
erf'Ul canbinatlon of programming tools.

• DECISION TABLES FOR SCIENTIFIC PROBLmS

•

In describing problems which are solved with the aid of digital computers , we
typically classify them into two major groups : "bUSiness problems" and "sci
entific problems . It

The classical ''business'' problem is a data manipulating job. Data is read
into the computer ; programmed logic determines how the data should be pro
cessed ; processing is accomplished; the results are then printed . We charac
terize such problems as being "input- output limited ."

The classical "scientific" or engineering type of problem is characterized as
being "compute limited . II A relatively small amount of data is read; a large
amount of stra1ghtllne or iterat1ve computing takes place, based upon that
data; the results are then printed.

In pract1ce, the number of problems which fall neatly into the classical ''busi
ness " category or classical "scientific" category is small. The usual problem

* The author gratefully acknowledges the assistance of Burton Grad and Thomas
Glans of International BuSiness t-!achines Corporation, who participated 1n the
design of the FORTAB language .

I

•

•

•

I

82

1s 8 hybrid. II'.any business problems involve relatively long computations
vlthln the computer. Iterative routines 1n business problems are not uncommon.
In the scientific realm, many straigbtllne programs do exist, but again a hy
brid 1s usually the case. Some scientific Jobs involve great amounts of data
and require complicated decision mechanisms to determine what particular com
putational processes are to be invoked.

The true scientific computer problem 1s therefore quite different from the
"classical" s~lentjflc problem. Although many classical scientific problems
do exist 1 tbe vast majority of scientific and engineering York-on computers
does involve making progr~ed decisions. Before and during tbe processing
part of tbe scientific problem, decision logic must be performed in order to
decide vhat particular computational processes are to apply, \lhat iterative
techniques are to be folloved, if' any, and "..hat actions are to be taken in the
case of discrepancies or errors. Even Bo-called straigbtline and Simple itera
tive codes contain decision logic which is executed as the computations pro
ceed .

In another type of' scientif'ic problem, digital Simulation, typical programs
consist of complicated log1c which determines how the simulation is to progress,
de~n1ir.& ~;on ~LC stat~ or Q l~rge numoer Of conditions within the program and
... Uhin the ... orking data. Simulation programs are largely "decision logic n pro
grams .

Just as the clussical scientif'ic problem is rare, 60 is the classical scientific
type of c0mp4ting installations. In instal1.a~ions where the computing equip
ment is oriented to\lard scientific applications, we often ftnd that the same
equipment is used for business problems. If the business problems do not war
rant computers or their own, or if, for flexibility reasons, it is desired to
maintain only a single type of computing machinery in the installation, we
find that business-type computing is being done on what ve wculd otherwise
classify as scientific-type computing machinery.

In scientific jnstallatlons, we also otten find that the business applications
are programmed uSlng scientific-type progr~ng languages . This is done for
reasons of compa~1b111~y Rnd flexibility. The progra~ing staff and the com
puters can be flexibly applied to either scientific or business problems as
tbe needs and priorities develop and change.

The above discussion indicates that ''business'' compu.ting installations do not
have a tr.onopoly on prograt!ls \lhieb contain deciSion logic . While programmers
in business-tY?e insta~ations might feel that decision logic 1s their forte ,
we of the scientiflc -type installations encounter the same type of logic in
our programs. We have needs similar to those of persons in the business com
puting communl.ty who are presently concerned about computer prograztming \lith
the a1d of tabular techniques. Decision tables and tabular techniques have a
useful place in sCier,tlfic computing insta1.1.ations . The advantages of such

(

•

•

•

83

t echniques are : completeness, accuracy and ease of problem statement, reduced
programming effort, self-documentation, and readability . All of tbese apply
to scientific problems 'Which involve progrananed ~oglcaJ. decisions .

COMPILED DECISION TABLES

One approach to uSl~ tabular ~echnlq~es 1n prcgramming 1s to construct deci
slon tables for the problem at the ti~e of problem formulation. This step 1s
then ralloved by a ~~nual transcrlptlcn of the tahles into a computer-recog
nized language yhlcb results 1n the comF~ter program itself. In this type of
usage, the decision table supplants the typl~el flo'ol chart j the programmer
works from a table rather than !'rom a flo'; chp...r.. 'l'he table 1s u sed not only
as a programming aid but also as part of the f!nal documentation of the prob
lem. Thus , as 1s the cese o~ ell docuaentation. the original tables must be
kept current as changes are made to th~ yrogram itself.

The use of a decision table lang·..:age imbedded within a programming language
has several advantages over the ~~n~el use of tebles described above. The user
of tbe tables does not need to manual~v transcribe tbe tables into computer
program logic. This step, with its inherent susceptibility to error, is elimi
nated by imbedding a table language into a computer-recognizable language .
The problem nf decision tabJe documen~ation ffiaintenance is also eliminated .
As the programmer makes changes to his pro~am tables , tabular documentation
is automatically updated.

DECISION TABLE COMPILERS

Several compilers exist whicb are useful for scientific and engineering compu
tations involving formula evaluation and manipulations of mathematical expres
sions. Such compilers see extensive use today 1n almost every scientific
computing instal!ation. The pr1~ary aivantage of these compilers is tbe
ease ith ni ch the computer can be directed to perform arithmetic operations,
input-output operations, end other pr~edures typi~al of scienti fic computer
programs . Where the langueges of these compilers are historically eak is 1n
their ability to express complicated program logic 1n a relatively simple form .
Decision tables, of course, provide this ebillty.

A combination of a scientific comput!.r.g la.'1b""U:~.ge w·1th a deciSion table language
.... ould merge the comple:nentary 8l!.r:9.ntages of each. Building a compiler or pro
cessor to accept the combined form or tteee t~o languages ould provide the
scientific programmer ith a doubly po~erful tool: the ma~hematical language
f or expression of the computational steps of :he problem, together witb a de
cision table language to expreas the program logic.

This approach has, of course, been applied by the d~signers of the GECOM com
piler language and the L03TAB prOCEssor, both of ~hlcb ere developed by people
at the Ceneral Electric Company .

•

•

•

84

THE FORTAB DECISIO~ TABLE L4NGVAGE

Recently, to'e at the RAND Corporation became interested in the possibility of
merging a decisien nable language with the FORTRAN scientific computing
languaee. Our ins t-ailatlon is categorized 8S a "scientific" installation Bnd
'We use the F'ORTRAIi langu.e.ge extensively 'Jith our IBM 7090 computer. With the
assistance of Burton Grad Bnd Thomas Glans, both of the International Business
Machines Corporation : we developed 8 "decision table ithin FORTRAN" language
'Which we call FORTRAB.

In developing the FORTAB language, a number of objectives ere upheld :

1 . The language of the decision tables should complement the tradi
tional FORTRAN language. The FORTRAN language itself should be I
unchan ed and the FORTAB language should add only those elements
ne~essary to provide a decision table logic facility to the
FORTRAN programmer.

2. The decision 'table language should be easy for the FORTRAn pro~
grammer to learn. For this reason, the elements of the FORTAB
language should look as much like FORTRAN as !IOFtc;j hJ A

3· The decision table language should be processed automatically for
the programmer. He should be allowed to write programs consist in •
of both decision tables and regular FORTRAN statements. This com.
b1nation should then be processed auto~atically, in its entirety}
by the FORTRAN compiler and its monitor system.

All EXPERIMENTAL FORTAB PRE-PROCESSOR

Throughout its desi r n End ~mplementation, the FORTAB language was considered to
be experimental. We ""ished. to test the value of decisioo tables as applied to
scie,-tific problems. ~r basic hypotheSis vas that decision tables ~ould be
usefuj in a scientific computing environment. The experiment was designed to
test that hypcthesis.

Further, we wished t o experireent ~ith methods of adding a decision table lan~
guege to an eXisting compiler language. In particular, we wished to experiment
with n compiler imbedd~ in a monitor operating system.

We decided to construct a pre~processor for the FORTAB language . The pre ~
processor would operate prior t o the FORTRAN compiler. In operation, the pre
processor ~uld not process the regular FORTRAN statements, but would merely
pass them along to the complIer. Tables ~ithln the FORTRAN progra~, however,
would be converted by the pre-processor into FORTRAN statements which ~ould
then be presented to the compiler. The compiler itself would require no modi
fication . It Yould only be necessary to construct a facility for the

•

•

•

85

t r anslation from deci sion tables to FORTRAN on an automati c basi s , wit hout any
over t action on the part of the programmer .

Such a pre-processor WBS constructed and has bpen oper~t1onal 1n our FORTRAN
operating system since July 1962. Beca\lse of t hI!: Uv:lnner 1n • ... b l eh the FORTRAN
monitor system h9.ndlcs ! nput to "'~:"le FOR:r~rJ ('omrHcr, it was relatively s i mple
to i nsert the pre-prccessor 1n~~ the mvn1~or. The pr~-processor scans each
statement of the program; \.Then u table. h enco'.<.nt.er",d, it is read , converted
t o FORTRAN statement!3, linted together -w!th tt.e generated FORTRAN statements I
and then presented to the compiler a~ FORTM!1 statements. No separate pre
processing run 1s ~equ1red by the progranmer. As far as he 1s concerned, the
FORTAB lunguage has n.w been merged wi1.h the FOR'l'&\N language . Once t he pro
grammer has learned the ~len:"'n':.s of FORl'AB, llC is free to write programs whi ch
are mixtures of FOR'f'-AB ar:d FOR'IRA!r . 'r'he ~e he compiles and executes just as he
formerly compiled and executed H pure " FORTRA.."'l' programs.

EVALUATION OF FORTAB

In using the FORTAB laneuage combined ",i th FORTRAll, we have experienced. the
several 8dv8nt~res of dec!slo~ tables, thnt is. improved statement of program
l ogic, complete 8~d accure~e sta~ement of the problem, reduced programming ef
fort, ir.rprovcd documen'tat:!..on, and ease C'f usag~. We have also experienced
several specific advantages of the ~01t:'A~ language and It.~ imvleUiellto."t:1c.01 f» !'
the I BM 7090 computer .

The ability to present decision tabl~s to the cccputer through a compiler is a
u sef'ul :feature of our FORTAB pre-procee:sor. Y.a.m:al use of dec i sion tables i s ,
of course, a helpful tool. H~wever, vc have fo~nd it beneficial to be able to
construct program logic in tabular form and thEn to present the resulting
tables directly 'to the FORTRt..:f cCtmpller l,i"hout mar.usl transcription into
e i ther FORTRAN statements or ae&embly !a~g48ge ~od!ng. We believe that the
add i tion of FORTAB to the eXis'til1g FORTRAN language re-~ults in a powerful com
binat i on. Presumably, this. uset'\:'lness \rIcu:"d. derive from the addit i o n of a d e
ci sion table language to othe-r compiler langu~gea also .

Traini ng in the use of the FORTAB lan~~ge is acco~p11shed ~th little d i f fi
culty . FORTRAN prograr.lm.ers '::3.0 learn T:.r.e !o'Q!t1'A1! language without fonna.l. trai n
i ng in a short t1~~. Th~ FORTr\B r~f~r~~~~ me~ual conGists of 16 double- spaced
typewritten pages . This reference mamtal !nclude~ a complete program example .

The FORTAB pre-processor li6~S each table os it appears, in context with t he
FORTRAN statements h!ch surrou~d i-; ,if any). ~he li~tin~ , ''''hlch i s i n an
expanded form for readab!l1 ty. tia;s c':>~l-'r:f!~3 !! Jajor ;>art of the proGr am docu
mentation . This docu-'1:"mtat1on is kept. ¢Ulren;,. autotatically as the program 1s
r ecompiled for the purJ.X>se .;f C'laking co:-r·:cd"n~ and changes . Because tables
written in the FORTRAU- llke noLst ion of f'O?-J'A..q 'lre '1e::-:; readable , i t i s also
poss i ble :for someone ott.er tbe.n tne orie:ln.:11 J:,!"ce",:rarr.:ne:· to !"ead the pri nted.
lis t ing and quickly understand th~ logic ~t t~~ prog:a~ .

•

•

•

86

After the FORTAB pre-processor has read a table, it lists the FORTRAN state
ments ~hlch it generates. Although this Is not partlculerly usefUl Inforrratlon,
it 1s given to satisfy program:ners I curiosity . The IBM: 7090 FORTRAN compiler
supplies, upon request, a listing of the assembly language program which has
been compiled . T~e programmer ~~S co~lete knowledge of the conten~s of both
the generated FO~~ statements and their assembly language equivalents .

COST OF USING FOHTAB

Use of the FORTAB language is not free, of course . From comparative tests we
have found that FORTAB programs result 1n longer compiled programs and thus
longer compilation times than the corresponding program vritten 1n FORTRAN
language alone. A typical FORTAB program takes about twice as long to compile
as its corresponding FORTRAN program. The resulting object program occupies
about one- third ~ore words in the computer's memory. The running time of the
compiled FORTAB program, however, is almost identical vith that of the same
program written in FORTRAN. This is partially due to the fact that a compiled
FORTAB program 1s more methodical in its flov than are typical hand-vritten
programs. It is 'lot unreasonable to expect. that, in many cases, compiled de
cision tables wi] run faster 'than the corresponding program written vithout
the use of a deci~ion table compiler.

Because of the vanner of operation of the IBM 7090 FORTRAN monitor in vhich
the FORTAB pre-processor does 1t.s york, the actual translation from a table to
FORTRAN stat~ents is essentially free. During FORTAB pre-processing, tape
input-output 1s buffered; much of the pre-processor's operations take place
during tape mavement.s. FORTRAN programs vritten vithout decision tables are
not hindered in any way by 'the PORTAB pre-processor.

The penalties of longer compilation time and larger compiled programs evidenced
by PORTAB-produced programs must, of course, be veighed against the advantaG~s
of the use of FORTAB for problem solution . Neglecting, for the moment, the
reduced programming effort vhich tabular presentation affords, the longer com
pilation time must be of~set. by a reduced number of compilations required for
program checkout . Our early experience indicates that the savings effected by
the FORTAB language program's reduced number of compilations to checkout will
more than offset the l~c~eased compilation time . This will be due to the fact.
that programmers w111 have a higher incidence of "first- time" and "second- time"
correct programs. Programs which normally vould require several compilations
before loeic has been s'tated properly will nov require only a fey compilations
(probably only one, in many cases). Coupling this advantage with the reduced
programminc effort r~quired to express a problem solution 1n the FOREAB lan
guaee, the net result 1s a substantial saving of computer nnd prograu~er re
sources .

•

•

•

87
(Page 88 Blank)

The extra program memory space required by FORTAB- comp11ed programs 1s a fact
of life which must be endured . It should be restrictive only infrequently .
Our experience has been that, 1n FORTRAN programs, data requires a far greater
proportion of the storage space of the primary memory of the 7090 than does
the program itself. Thus a one- third increase 1n program size will not be
noticeable 1n most cases . In those cases where increased program size ~~uld
be restrictive, a programmer using tables must reallocate memory to allow the
program and its data to fit available space.

"

•

•

•

MANUFACWRING APPLICATIONS OF DECISIOIl STRUCTURE TABLES

As you have no doubt. noted, this is the ccncludlne: !)3.per of the day . To a
Manufacturln~ maD, the ar.:hor assignmenl seems particularly home-like and
f'8lI',111ar. You see in our nc:-r.al industrial envi:-on.'TIent J 1 t turns out that
after the researchers have researched, the engineers haye ene-ineered, the
salesmen have sold, and the account!:.nt.s have accounted, then it falls to
Manufocturi ng to ~ke the product and prove tr~t it yor ks . Apparently, com
puter symposlum~ aren't very different. And, therefore, at this point, you
can legltlDately ask if deci£icn structure tables have any value to the ~~ 1n
the mill, shop, and factory "'no must cor .. vert these plans and predictions to
reality . The answer - - a stralghttor~urd yes .

To appreciate the situation, it w~uld be vell for us at the outset to share a
co:nmon understand.ing of Just wr.at Manu.factu:dnB 1s -- as opposed to f.arketlng,
Finance, Engineering, Employee Relations, etc . In ceneral, ~Bnufacturing con
verts marketing engineering sp~clfi~atlons into finished, useable products -
it buys tools and materials, 1~ runs factory machines, it assembles parts , it
tests and inspeC'tF p"~II ... tSI 1~ ;:l.c:~c thc~ and 6hipti them toO custO!T.crs. More
t han juzt doing the actual ""ork, l-".anu.f'acturlng also CO:'lcerns itself with de
velop!n£: the most efficient processes and vork methods -- and this, of course,
is the area of our interest today. Just as there are product design engineers
who are in~erested 1n the functional s~undness and appearance of products ; so
also there are erl€:ineers in lIanufacturing "'"ho concern themselves with ;

What 1s the best machine or process?

How fast should it run; what tools should be used?

When sho::ru.ld 'We cake the pa!"ts, ho"" many?

How can 'We be sure that the parts are good?

All of these, and thous3.nds more quect1or;s like them, are the everyday pro\rince
of the engineer in ~~nufactu!"ing -- in equipme~t design, methods, wage rate,
production and inventory control, quality control, shop operations, etc. Get
ting better answers to these questions neans ~ore efricient shop operations,
lower manufacturing costs and improved values fo~ customers . This i s the work
or ManUfacturing.

MANUFACTURING VIS-A-VIS COI.fFU1'ERS

There are three factors in M.l.nufactul"1I"'g ' ~ relatlonship ith computers that you
should kno'W to completely appreciate t~e applications btories which I am about

•

I

•

•

•

90

to relate. First, cornput~rs are still relatively new to the Manufacturing
function . Where they have been employed, the computer r~s been used 1n larGe
meaS!.l1'e to pel'form routir-e clerical operatlo!'ls such as rUing, sorting, print
ing, and the like. ParadoXically, the concept of information pro

ce
s31ng has

not penetrated very far In the world of materials processing . Rarely, for ex
ample, does thE: comput.er enter into Manui'acturing deciSion- making . The reasons
are manifold . The tremendous volume of information and the many complex, de
tailed interrelationShips have made it extremely difficult and costly for
ManUfacturing people to formalize their logic. ManUfacturing still relies
heavily on "experience" and "art" as oppoced to explicit analytic procedUres and quantified deSign techniques.

Second, computer hardwure development 1. only nov beginning to provide the Size,
capability and cost yhich ManUfacturing needs to install computer equipment at
attractive cost reductions -- that is, numerical methods using computers are
now only beginning to Come up with better, cheaper, faster answers than the "artisan "

Third, tc ~y's ¥anufacturing man knows very little of electronic COmputers and
even less abc~~ programming them . Though equally intel~igent and bright, many
have not had the good. t'ortune to receive the educational background 'W'hlch mORt

of you possess. If cowputers are to make rp~l 1~r~Gb, we must find direct,
pr£l.ct1cRl Vf>,r!: ~..:l .::.huw 'tne ~.anufacturir.g man \/hat the computer can 40 ror him,
and also develop efficien't methods whereby he can learn to Use them himself .
We cannot tru1n enough programmers to program the problems that eXist in the
ManUfacturing f'unct ion. Even if \Ie had the money, I am f"earful that our hurnan reSOurces \lould fa11 us.

From this introduction you can gather the fundamental appeal \/hich deciSion structU1"(,; t ables have for J.1!tnufacturing .

1. With deCiSion structure tables , ye can quickly teach Manufacturi ng
men now on the Job to write their own computer programs , thus
avoiding the trnining of computer programmers .

2 .

3.

The tabular format of deCiSion structure tables is a reasonably
familiar language form. It is not 8 tremendous departure from
the tables ""'hi ch the M..'lnufacturing man has used in rr.ethods plan
ninS, time standards, lot size determination, sampling and so on .
He quickly grasps 'the power of the structure table to accurately
describe logjcal and mathematical relationships .

Structure tables are easy to maintain . Ins.tead of changing all
the precalcuJ&ted answers jn all the files, it is often only nec
essary to chsnge 8 fey tables . In this way the computer i s al
wafs in pOsition to calculate the' up- to-date answers~

•
•

•

•

•

91

4. Decision structure tables provide a simple, uniform format for
recording logic which facilitates technical communication within
the Manufacturing oreanlzatlon end provides a formal disciplined
documentation procedure. This 1s becoming increasingly important
1n the~e days of m~u~l-r~~ctlonal intecrated systems . Further,
it 1s a tremendous help in training new people .

MAlIUFACTURIIIG AFPLICATIO:lS

Thus the Manufacturinc applications problem 1s really not one of verb vcrsus
verb, or microseconds ~Btchln~ microseconds . At this time we are concerned
primarily vith making ~hnufacturi~g avare of tha ~y practical th1nCs comput
er s can do ; our problems are demonstrating technical feasibility, proving
economic valuej defining problems; organizing and ~aintaining large amounts of
data; training people; and so on. Our experience indicates that decision struc
ture tables can really help us in this endeavor . These applications stories
on rotors, gears, and inventory control provide some reasons for our belief .

CAST RO'IORS

General Electric has an understandable interest in electric motors. In one of
the earlier V~nufacturing structure table applications projects, a study was
made of the centrifUgal casting process used to make rotors for a line of al
i.e, .Id.::'':' .. ~ ':Ul"l·;::-."t r:::>"tC:'::l. :\s Y(I'.!. rr'py Tf"(,Al] from hie:h school or college days,
electric octors consls~ of two bgsic parts : a stationary fra~e or stator, and
a rotating element or rotor. The rotor was made from slotted steel laminations;
and copper bars or strips ~ere vedged into the slots . The bars were connected
or "shorted" at each end to form a complete electrical circuit . When placed
under the energized electro~gnetic poles on the stator, torques were set up
~hich made the rotor spin around. The basic theory of electric ~otors hasn't
changed very much ; however, if you take apar~ your washing machine, you will
very likely find thet the copper bars have been replaced by aluminum. Further,
the aluoinum was not wedged into the slots, but rather the rotor has been molded
together as one solid piece . In addition, odd- shaped protrusions may be stick
ing out from the end. These fins serve as fan blades for cooling the motor.
Many of these cast rotors are made using a centrifugal castins process -- that
1s, the mold is rotated at. high speed so that the liquid o.luminurn metal \d.ll be
forced evenly into all the rotor slots, fan blades and other crevices in the
mold . In addition, the spinning also helps to prevent the formation of bubbles
and voids in the alur.linu.o itself.

In the particular line of cast rotors that was selected for study, over 100
varieties were currcntly active and., of coursc, ne· ... \·a.rieties might appear at
any time . The differences in the rotors were basically caused by the differ
ent design techniques and ccnfi(;U!'81 ions used ~o cool \'<!rious horsepo~er motors .
To the fa.ctory operators this involved different assen:bly procedures in putting
together the molds a~d also the rotor laminations. In addition, depending on a

=
"U

=

•

•

•

•
92

number of other vari ables , there wer e also differences 1n the detai led casti ng
procedure .

The first step In the structure table development project was to extract these
methods snd procedures as well as thei r supporting logic from videly scattered
sources 1n the current manual system . A considerable portion of the required
i nformat i on existed coly In the minds of the folks doing the Job . The results
were sumcarlzed In approximately 60 dec i si on structur e tables. These tables
covered not only the 100 varieties then active, but also provided the planning
logic for some 44 , 000 rotor confi gurations then possible .

I n addition to describi ng the factory operating procedure, these structure
tables also developed the t i me standards -- that is, the "allowed" or nonr.ally
expected. opera'tion times . The resulting computer program printed out both the
labor vouchers and also 'the detailed factory operator instructions which told
the shop people how to build each rotOr. The en'tire project was completed in
s i x weeks by a man who was then unfamiliar with structure tables, computers or
the rotor casting process.

Subsequent to the completion of' this \lork, i t ".I8S decided to essentislly "re
do " the project with a new man using flow charts and what were then more con
":::::.t!c:-..::.!. P:i.·C.t9·~t1b I.. C"I.:!utlques . Thls ou.la. mak.e about as controlled. 8n ex
periment as is possible in an i ndustrial environment . One cannot really gen
erali ze trom one observation, but perhaps you might be interested in a fev
comparative statistics . The second project took 14 weeks in contrast to s i x.
The Be~ond computer program produced similar output, but required 8 5~ larger
obJec~ program than was developed using structure tables . However, the struc
t ure table program ran one- third slower. The size and speed differ ences were
largely due to different approaches to computer implementat i on . However , it
was clearly demonstrated that both approaches had their meri ts -- but the 14
weeks versus six weeks really seemed like a good omen .

So much for our experi ence with cast rotors , now let's tur n our attention t o
another problem .

GEARS

"tany General FJ.ectri c departments share a common interest in the production of
gear s . This component appears in hundredS of the Company's products . However,
many are uo.&ware that the coma:.-on gear is an uncommonly complex thing to produce.
Indeed, ~~ny engineers - - and some ~ntire companies . - devote all of thei r in
terests to the proper manufacture of Just this one type of component .

While some simple gears can be molded out of plastic, the ~~re substantial
variety .- i n hich we are interest ~·i -- i s typically wade from flat round
metal d i scs called. ''blanks.'' Typi cally, these blanks are forged ind i vidually
or cut from lengths of bar stock . In general terms, an average gear might be

•

•

•

92

numbe r of other variables, there ere also d1:"!'::-- "o;:nces 1n the nett! ' 11'C'1 cl1sting
procedure.

The first step in the structure table develop::,_;-- ,:,!"oJect vas to ""t t'uet these
methods and procedures as well as their suppo::--! - logi c from ",j '··'.V crnttered
sources i n the current manual system. A con:;1_=:" __ e portion of lilt' t"l!qulred
i nfortr.B.tlon existed only in the minds of the !'c:' - ioing the Joll. 'I'he results
were summarl zf...od In approxiaately 60 decision 5'::-': ~ure tables. '1'l1t':11.: t.ables
covered not only the 100 vari eties then active, ". also provldt I lit' planninc
lor-Ie for svme 44,000 rotor configurations the~ ;:;ible.

In Rddition to clescrlblng the factory operating - -ocedurc, these :l ll'ucture
tables also developed the time standards -- t.he.- __ . the "a110 1,,'(1" (II' normally
expected operation times , The resulting co!!Ipu:&:':" ~:-ogram pr1ntt.."I:1 Illlt. both the
labor vouchers and also the detailed factory CFe~~' :or instruction;1 whi ch told
the shop pcople ho to build each rotor. The :::-,,:," .-1"E: project was C'\,tT1plcted in
si-x w~eks by a man who 'WaS then unfamiliar witt. ~"'!" .::"Ilcture tables, \'\lmputers or
the rotor casting process.

Subsequent to the completion of this work, i t · .. ~s ::.~clded to eSGl'nllully "re
do" the proj ect with a ne man using flo\l chan,;; . .::.. vhat ",ere tIv"1I more con
ventional prograt:uninj:; tec!1nlaues . '!'hi" would ","p',- h("'\ll t '1, ""!Ttr-n11 . .. 1 ~n P'(

periment as is possible in an industrial envirc:-..::.~· -:... One cannot !'I'ully gen
erali ze from one observation, but per haps you :::._ ~-:. be interestt.. .. 1 til u few
comparat i ve statistics. The second project toc:!: _ eeks i n contl'~t:;t to six.
The suomI. compolter program produced. similar oc.':.;"::' _ but required II 50~ .larger
object program tha.1 "'as developed using struCtu:- -:'.:o.b]es . Ho",ev~I' , t.he struc-
ture "table program rnn one-third slover. The 5:":: end speed difft'I'\'UCC5 ",ere
l argely due to different approaches to computer :.._- __ ementat1on , 1I(\\o',"~ver I it
"'as clearly :iemonstratecl that both approaches r.a:.::.. ~neir mer i ts _. hut. the 14
weeks versus s ix weeks really seemed l i ke a go~ -~en ,

So much f or our experience \lith cast rotors , now _~C~'S turn our attention to
another problem,

GEARS

Jolany Gene!'al FJ.ectr1c departments shure a co:r.rr.on _ ,_e:rest in the Ilrv.luc tion of
gears , This co:nponent appears i n hundreds of t:'l: _:T.::p8ny's produel;;, However,
many are uru:.. ... "Sre that the cOIII.lr.on gear I s an uncc==-:..:...ly complex th~lIf to produce .
Indeed., r-.any engineers -- and soce (:ntire co:np9...,,"!:'.l:.. -- devote all \ll' thcir in
terests to the proper manuf6.cture of Just this c:-,&: ~J.'Pe of comporlt'lIl.

While some simple gears can be molded out of pla.:-:.:._, the more 6ub:JtHnUal
variety - - i n "Which "We are interestEl -- is ty?!.~ ___ ·1 Irade from flut. round
metal d i scs called '"blanks," Typlco.lly I these i:;:'~;:,; .. ~s a r e forged in.lhldually
or cut frotn lengths of bar stock. In general te:---=._ an average geuE' mI ght be

•

•

•

• 93

rranufactured as follows: First the blank Is rough machined front and back to
provide a gripping surface; this also eliminates scale and some excess mater i al .
Then the center hcle ~ight be drilled, bored and reamed to provide a concentric ,
perpendicular locating surface for nub~equent machining operations . Perhaps a
key way or a spline viII be formed inside this center hole using a broach .
Once these operatjon~ are co~le~~~ ~he Cenr ~v then be finished machined
front and back giving the veb and flan~e l~s fjnal shape . It 1s only at this
point that the gear Is ready to start hobbing -- which 1s one of the conven
tional processes used ~o cut teeth. Follo\nng thl~ the teeth and other parts
of the gear are ground to provide a smoott surface and close dimensional toler
ances . In between ~hesc operations frequ~nt ~~ips ~o the annealing fUrnace
are required to re~leve the 1nt.err.al stresses which tr.9.chin1ng has set up \.11th in
the metal itself . A sun'ey of m.9.chinL'I1 parts shoW'S that the average part goes
through five operations; gesrs average around 30. I think the point is obvious ,
gear manufacturing can. be a comp~e~ Job to say the least.

In this applications project, the task was to write the decision structure
tables to completely describe the operation planning for all factory operations
in a large family of complex gears. This is t.he task of determining which ma
chine shall perform what metal working operat.ions, in vbat sequence, and with
what speeds and feeds, ~hat dimensional tolerances, vhat tools, and lastly, how
long should it take. The results of these decisions were to be furnished to
fact.ory operators in the form of printed instructions which contained enough
detail to pernit them to actually make the gears in question .

At the time that the tables were written, this family of gears was already sev
eral hundred strong, howeyer, the objective \ofBS to automate the pla!'lning for
expected additions as veIl as to si~plify file maintenance and clerical opera
tions on the g~ar planning already in existence . The project to write and de
bug the 3,OOO-odd f'truct.u.re tables 'Which resulted 'took approximately t .. "O- and
one- half can years. Tne resulting ccmputer program contained over 60,000 in
structions. The structure t.ables ~ere written completeLY by the ~anufacturing
planning technicians woo knew nothing about the world ot computers . As a re
sult of their endeavors, the cycle for planning a new addition to this gear
family lo'aS reduced frat::! four \leeks t.o 20 minutes of GE-225 computer time. The
use ot the dec1sion structure tables ~reatly facilitated the documentation of
the logic and uncovered many op;.ortun1ties fo:- etand":lrdizntion . The decisi on
5tructure table p:-ogrG!n h9.s no'" ~C:t;.0m"" the o.!'f1c1al t_ncacturing £ngineering
documentation of the york, fUnct1cn!n~ 1r. much the sem~ fashion as engineering
blueprints. The progr!Cl! 1s • arking nc and 1s expected to break even in the
first six months of operation .

HIV'lITORY cOtrrRoL

In a completely different type> of pI'oject, dec is-ion structure tables vere used
to describe inventory control declsion roles ani also as a simulation language .
Here ve faced an added difficult.y 1n applying computers. In auto~Atic inventory

= -0

•

•

•

control sy~tems, as opposed to mechanized ractory planning, ye are dealing with
~ore intangible statistl~al variables over extended periods of time; as a re
sult performance eval~~ion cannot be as precise or immediate. Really there
1s nn such thing as prototype testing. New inventory control decision rules
an installed directly in actual operating systems for a period of time 1n
o:-d~r to be evaluatEd . ThE cost of failure is high . For exar.lple, too u,uch
custo~er dissatisfaction or inventory obsolescence can cost a man his Job .
Needless - to-say, most industrial inventory systems are designed with high
safety factors and Itost. innovations are regarded with suspicion. Progress is
slav and co3tly. Further, evaluating new innovQtloos 1s extremely difficult.
If the idea appeared to ,,"ork the first time!: it was tried, then it W'aS consid
ered COed; if something vent wrong, it was considered bad. Often folks ~re
never too certain \1hether 'the changes in performance could be positively at
tributed to the new idea at all. Sometimes Other events -- such as a rise or
fall in business volume -- were much more directly responsible for the adjudged
"success" or "failure" than any influence of the new idea itself.

TRDt - - 8 compu'ter simulation model to T.est Bules for Inventory ~agement, _'as
developed 'to provide a controlled environment Laboratory, where the systeas de
Signer can experimen't freely with a variety of inventory control decision rules
without disturbing the real world. TRIM, like most computer slmul~tion programs,
ofil!rs 'three D'.d..1or advAntl'lcpQ nvpr re!.l erle. :c:;t!ng. Fh".::.t., TIUI-i op~ra:tt::s
much faster than real tiu.c . TRIM can simula'te 50 time- periods of inventory
SystCL.S activity in t o to five minutes . Second, because it is a computer
model, it is possible to explore extreme situations ithout risk of destroying
the model -- or perhaps more important - - the actual inventory system itself.
Third, corllput.er simulation provides a controlled. experimental envirol"'.J!lent bere
cause and effect rel&tionsbips can be established v1th a much higher degree of
certainty than can ever be done in the real "WOrld,

The best way ~o describe how structure tables ere used in this project 1s to
describe v}:at 'l'RIM is and how it operates . TRIM e!;sentially makes the CE-225
compu+er beh~ve like e c~mplete single-stage inventory system. It processes
cust.om~r de~nd5J estimates fUture requiremento, places and receives replenish
!!'.ent orderli, purges over- age inventory, cancels over- extended. back orders, etc .
TRIM e150 r<:ports ho" \';ell the inve~tory decision rules succeed in balancing
customer oerv1~e, order!n~ costs and inventory carrying char£~s 1n accoluance
'dth [;peciflc elghts th~ user attaches to these measures of perfon:;ance.

TRIM is cont!'"olled by a so- called "master clock." Each significant activity
t'orecast!I~!t orcierin;-:, etc. -- is ass1b"ed a separate alarm clock. The func
tion or thie e!a!" .. :l c!o ·1;: i5 to let TRIM k110\J" 'When this particular activity or
tt·ansaction v111 occur ne-;ct. Tne alarm. clocks nre carefully seque~'::!ed so U".a t
if there should be Q tie -- tt.at Is, two or ~ore alarm clocks going off at the
sa~e time - - TRDt v111 h'!!.:ldle the activities 1n proper logical, as \lell as
chronoloE'iC'el, order The rester clock constantly records "current timE" and
coor1i!!<.1te~ all the actl,":1ty alarm clocks. TRH!'s internal activities in their
logicnl order of occurrence in~lude:

•

•

•

95

1. Purr;e Obsolete Inventory Subroutine which rer:1oves from the on- hand
balance any inventory which 1s over-abe, that is, has exceeded its
shelf life . The Pllrr,e Subroutine examines each ent.ry in the re
ceipt list that has alre(ldy been received - - 1.e . , 1s currently
1n inventory -- to determine how lonz it h~s been 1n inventory .
I f this time is ~reater than t.he shelf life of the item, this
"receipt" 1s rerroved i'rOr!1 inventory . ~lhen all receipts have been
examined, the pro3ram modifies the on-hand fisure and tallies any
purged inventory for reportln~ ptL~oses . This routine occurs
:first because TRII~ ould not Hunt to !;hlp any o\'er-aue inventory
1n respon~e to ~cw deL~nds; nor c&lculnte order quantities based
on the supposed availability of' thl0 over-age inventory .

2 . Cancel Obsolet~ Bacl~ Orders Subroutine removes demands which ha\'e
beeo bac)Qoeeed so lO~3J that TRIM must assu~e that the customer
would h~ve cancelled them . ~fuen the TRIM Executive calls the
Cancel Subroutine, e~ch entry in the back order list is e~ined
to determine how lon~ it has been in the back order state. If
this time exceeds the limit specified by the user, then the demand
i s reooved and a cancellation report is printed. The failure of
the systeo to meet this demand 1s ~oted by add1n~ the c~~cella
taoo qua.llt~'ty 'to a .LOl;;t units coum;er . Cancel come~ t:l:irly lu 1,.llt:

logical sequence of transactions, because TRn1 would not want to
calculate order quantities based on demand vhich wasn't really
there, and because TRIM vould not ~~nt to fill these obsolete
orders with stoch arriving on new receipts .

3. Receive to Stock Subroutine receives replenishment orders and
makes the necessary bookkeeping transactions. After a receipt
the back order list is examined to see if any back orders can nov
be shipped . Naturally, in logical sequence J TRIM · ... ould \l8.!lt to
receive before processing demand.

4 . The Forecast Subroutine as might be expected makes esti~ates of
future demand. h foreca~t can estimate future requirements by
predictinc the future or projp.cti:1p; the pastj TRDl provides for
either or both e~ternatlves. Predictions are incorporated through
a "ba3e series" which is essentially a list of multipliers. Using
the base series it is p~ssible to anticipate seasonal corrections,
vacation3, chnnzed levels of business activity and other siollar
influe~ces on future deoand. Accurate predictions can signifi
cantly improve inventory ~ystems perforuance .

TRIM also contains n wide \~riety of built-in forecasting tech
ni Q.ues -- r.loYln~ oyer-aCe, s incle , double, BrA triple s'!OOthinS -
for projecting pe3t e:<pcrience. In addition, the user specifies
numerous constants ar.d r.rultipliers \,'hich further control

I' •

; forecast! ng perf'ormance . In developing a composite f'orecast,
TRIM flr~t projects past experi ences and then modifies this pro
jection W1th bas~ 5eries predictions . TRIM forecasting also con
ta i ns SOl:!C notions of' adaptive control . Thus, if forecast errOrs

become excessive, 11 "panic" :forecasting policy can be invoked 1n
an ef:fort to regain control.

· •

•

5. The Orders Subroutine handles the problem of calculating order
points, order quantities, and placing replenishment orders when
r equired . TRIM uses either a fixed order point specified by the
user, or a calculated order point . In calculating an order pOint,
TRIM really asks the question: do I have enough on hand to keep
de~~nd sati sfied until I can tet Some more -- assuming I pass up
this opportunity to order? TRIM poses this question by calculat
i na a proposed order size. If the proposed order size turns out
to be ~ero or less, then TRIM concludes it has enough stock on
hbnd and. no ordcl" is placed . If the proposed order size exceeds
zero, an ordcr is placed . Ho~ever, the actual size of the replen
ishment order may be quite different than the proposed order
quantity previously developed . TRIM allows the user to iCDose
~!~ed ~~~~ q~nt~Llcb, uld~r ~n1mums, order maximums or economic
lot. sizes .

Since TRIM 1s a Simulator I it must someho establish ~hen a re
plenishment ordcr will be received . Lead times can be established
thl'ee \.'Ilys:

(l) Fixed lag time assigned to all replenishment orders .

(2) La~ time determi ned by random selection fro~ a cumula
~iv~ probability d i stri but.ion function of lead times
pr ovided by the user as initial input .

(3) La.:!: time determined by schedul1ng a small factory flow
shop .

6 . '!'he PrOC"CS[; D '.r.and Subroutine performs the bookkeep1nr: associated
uith itshlppjn~" a ne demand from inventory . All demand is
treated ~G current demand and shipped 1~mediately if adequate in
vento!')' i; on- hSlLd. If' adequate inventory is not on- hand, TRIM
\11)1 he.tHe the situation 1n accordance ith partial shipment and
1::ttck or\'lC'r' polic1l!s specified by the user .

7 . The Plo~ ~ubl'outine is one of the optional report features in TRDI
vnich)it : 1'~1:~ the user to get a graphical printout of TRUt' s in
ternal opo.'!ratioos

•

. •

•

97
(Page 98 Blank)

TRUt cO:'1to.lns over 100 dec i sion structure tables 'Which generated approximately
8,000 • ... 0 \13.5 of programming . It requires 0. minimum configuration GE- 225, card
input with on- line printer or punch . It simulates 50 time-periods of inventory
system activity in two to five minutes . The original program vas done completely
1n decision structure tables by a two- man team 1n about three months. The pro
gram 1s operational and has been successfully used by 8 number of General
Electric product departments to analyze existing or proposed inventory systems .

CONCLUSION

In summary, we have used decision structure tables 1n a number of Manufacturing
applications. They work well , they appear to offer some definite advantages .
But more than anything else it appears that decision structure tables can ac
celerate the introduction of computers into Manufacturing . In closi ng, I would
like to thank the members of Advanced Manufacturing Engineering, Production
Control and Quality Control Service, as well as the various operating depart
ments, who participated in these projects for the privilege of reporting this
work. Particular mention should be made of the Company's Computer Department
which, as you know, has included decision structure table capabilities in
GECOM -- the language for the OE- 225 ·

I
I

•

•

•

•

99

QUESTION AlID ANSWER PERIOD

AFTERNOON OF SEPTEMllZR 20, 1962

MODERATOR: L. W. Calkins

PANEL: George Armerding
Lynn Brow
H. N. Cnntrell
T . F . Ka.vflnaugh
Frederick Naramore

CALKINS : There 1s one comment that has been threaded through this entire pres
entation~ and I would like to co~nt on it to you for what it 1s worth. I
will leave yau with a question. We have talked about clear and concise docu
mentation . Now, how many of you here arc 1n your second generation of equipment
and what kind of left- handed factor did you throw into the estimate of conver
sion for the lack of documentatlon1

I do have some written questions that I can start this off with, and we will
f'n11n'W t.he same urocedure that e did this morning . One question that hils
been handed me is : "Are there any plans for distributing li'OR'~ to ot-ner ;($V

u scrs 'l "

ARMERDIIlG: Yes, e plan to distribute FORTAB through the regular SHARE organi
zation ..,ho \01111 distribute FORTAB to 7090 users . We expect that there should
be a mi nimum effort on the part of the receiving people to put this into their
monitor systec . It replaces one entire section of the FORTRAN monitor . If
you have made any changes of your mm to that section, you will have to throw
your own modif i cations in, but it shouldn ' t be too. much trouble .

CALKINS: What advantages are obtained using dec i s i on tables to prepare test

data?

NARAMORE: On our past experi ences, aside from the accuracy of the programs
theoselves (that they have been coded properly), does the system itself repre
sent what the original systeos analysts had intended . For some of this prob
lem 'We have resorted. to a very formal. procedure for the establishment of test
data, and. the use of decision tables has been particularly valuable in this
respect . That i s, the systecs analyst can proceed through the logic of each
table and at least assure himself that a set of conditions or transaction rec
ords, master files , end so forth, 1s availabl.e which does in fact represent
the various possibilities of conditions . At the same time, he can then pro
duce predetermined results from these same tables. This has produced, again ,

I

•

•

•

100

6 sys~ems level so that it 1n turn, being turned over ~o the programmers, forms
~he basis ror most systems acceptance testing.

CALKINS: Was it not expensive for a user to develop decision table language
and precompiler?

BROWN : The prcgrem that we were reckoning with at the time (~hlch ~s the
basis for pl.tt.lng together the 1aneuaBe) wns so lerce that the development of
the lan~age, ve feel, over that one program ' s life ~ll be completely paid
for . B':)th the langue.ge and the compiler . It 'WaS valuable enough to have it
for that one large program, and we feel i~ paid for itself right there . From
that point on it's all gravy, and ~e learned quite a bit about how to write a
compiler in the first place, and we learned vhere to put more power into our
language froIQ the first job . So I think that probably 'the expense was Justi
fied .

CALKINS: Another question here: "Do tables assist in the maintenance of sys
tems? "

NARAMORE: Using the basiC decision tables and, as I pointed out earlier, also
elements of dat~ ar.d da~a set descriptions and establishing the repository of
systems specifications, again independen't of the other procedures, eives a con
t! .. ".;!:':.;; !,,:,,:::~c::·,;::,,!~ !!~i:':.!:"t 1"h"'''~ tqt,I 'h~.,epc; ,..~rt hp PV~'IIA+Pt1 . FOl" eXA.mpte.
any change in value elements and so forth can be examined against the selected
rules wh!ch treat this element and, therefore, the particular decisions on ~hic~
the prior definition applied can no~ be e~~mlned to see what impact this has on
the preeen~ specifications . In that sense, this is considerably easier th£n
poring through numerous flo~ charts, narratives, or act.ually going down through
the programmir.g details.

CALtaNS. Another ques'tion here was: ItHow efficient ;{ere the object programs
produced by the I.N.A. tabular compiler'!"

BROWN: We felt that the coding generated. was Jus~ about as good as a good pro
grammer wuld 't-...rn out .

Now that d.eFer,ds on your definition of good programn:er. It was not quite as
good as t:le next one ~e tUrned. out.. Ho~ever, this is a small thing, in a way,
because a prog:"an~r always thinks of what he can turn out as of one point 1n
tiae if he has all the definitions and if he has everything laid out perfectly .
H~ never re~ches that point on a large program . So in over six months we vill
beat him all hollo~ no mat~er ho~ good he 1s because ~e have the ability in
the compiler to crganize the tables in a modular fashion which makes them eas
ier to check and the ircidence of error and rerun to correct mistakes is much
less. So what he can do as of one pOint in time is completely theoretical . I
don It ttJink he ever does it . So '.Ie think we beat h1m} especially over a pro
gram that has a long life expectancy •

'.

•

, 101

CANTRELL: I 'Would like to amplify that a 11 ttle b1 t . I think anyone 'Who has
ever written a program has had the feeling, or made the statement, that now
that I have finished I really know how to do it . I can do a heck of a lot
better the next time. This 1s something that does not seem to happen 'With
decision table programs. I think the reason it happens with Don-decision
tables programs is t.hat, having cO!lIpleted a job, you now understand it
completely and are in a position to plan it co!:!pletely before starting on it .
With decision tables you do plan it c~letely and, in fact, our programmers
that are writing deciSion programs do not feel that they could do better the
second time around .

KAVAJ'AGR: I ",ould like to add another aspect of this hich I think is
particularly pertinent to those of us ho are not really interested in point
zero five increase in efficiency and object program .

So frequently you see coding written in such a 'Way that if you stood ten
feet away from it and looked on the lett hand margin, you 'Would see "I am
smart", 'Written instead of the program sheet. If there is a vrinkle , a
left-threaded nut or so:netbing in that IrAChine that can be possibly used to
squee~e a microsecond out of the coding, it has been used, and the devil take
anyone who has to cane in af'tervards ani take over that program to maintain
it.

I think that those of us who are familiar 'With, or working 'With, the structure
table area are particularly impressed with tbe ease 'With 'Which new people
can come in and take over 'What 'Was done by otbers . Because it is nov logi
cal..ly and completely specified. Where you B...~ .raced vith high personnel
turnover, and 1.n some cases ",'!th expanding staffs; in other cases 'With
documenting what "Good Old Joe·1 has done before he moves on to another and
more important assignment, this is extremely important, and I think it's a
fact that is often overlooked in the documentation area.

CA.TJCINS : There is
or to you, George.
AWOL?

another question that I will throw either to you, Harry,
Has any work been done to include the decision tables in

ARl.rERDD1G : Not to my knowledge.

NARAMORE: Or to mine .

CALKINS : Does anyone here know? I would hate to have one go unansver ed .
I knO'J of nothing.

CANTRELL: I can make a state:r.ent. This is rea.ll.y not an answer to this
question, perhaps it ' s simply a statement that should be made .

You are familiar ..nth the algorithms that are publisbed in the A.C .M., using

-

•

. •

•

102

AUiOL as a canmunlcat1.on language for algorithms, which 1s another \lOrd for
theorems, or procedures for a specific pw-pose. We found sometiI1es in the
mathematical and engineering and scientific programming that ve will have
algorithms which are a decision table. For example, we have one on a simple
method of one variable iteration, Nevton'~ method, which 1s primarily a
procedure. It is not a mathema~lcal statement. The method itself is
primarily a procedure. The logical definition of 'this procedure in a decision
table forms an explicit algorithm vh1ch is a lot more understandable than the
corresponding ALGOL statement.

CALKINS: Are there any questions i'rom the floor?

VOICE: I would like to ask Mr . Armerding aboll't the numerical integration
procedure and how he vent about uaing decision tables in it?

ARMERDING : Well, it wasn It rrry program, it waG someone else IS .

He had a scheme whereby he would look over sub-intervals of his integration
and decide what would be the best method of integrating over that smaller
sub-interval. of the vhole interval which he eventually had to integrate. He
vrAlld llFle different procedures, depending on what he found in those sub
intervals . In fact, be used the table in ~ne J..lrst place:: t.v ~:rc~!:. ''':'~ ~~
entire interval into those sub-intervals to decide hoy tbe integration was
to be done. 'l'his is how the program was progral:llled originally; as soon as
he heard about FORTAB he knew it would fit wonderfully in that context , and
be redid it; and, indeed, it turned out much simpler.

VOICE: It was a property of the function he could test and make a decision op?

ARMERDING : Right . He could do this dynamically in the subroutine itsell .

VOICE: I vonder, if in the manufacturing orea anything has been done vi th
decision tables for sequencing jobs in a job sbop in order to reduce set-up
time.

KAVANAGF': Yes. I think the problem is straight- forward, of course . The
problem 1s J if you go to one task fran anotb'!r J it frequently requires that
manufac1.urlng machines be converted . These conversions can be facilitated
if the amount of change is min1mized. If the s&me tools possibly can be
used, or ones that are very close to it, and if you know the properties of
the jobs bebJnd the work station, it is a very sicple matter for you to ~et
uF a decision structure table to sequence that job in the string or queue
behind tbe work station which has the most desirable properties .

There are a couple of places in our corporation ",bere this bas been done in
tabular form .

•
.

•

•

' •
•

103
•

CAIJaOlS: I would like to ask a question in this regard. In the past, the
problem has been memory limitation in keeping Vith the s1z.e of job that you
are trying to wrk OD . NOW', hat kind of size have you been able to handle?

KAVAnAGH : Well, I think you probab ly would be able to deduce some order of
magnitude from the fact that we are deal1J".g with some three thousand struc
ture tables in the gear project and. some sixty thousar..d 1n the progr8J:l,
which obviously run out to the size of the GE-225 . So, ~herfore, there 1s
a certain Q..'uount of program organizatio:1 which has to be done .

We have found, h"""ever I that we can handle very large programs very vell
using decision structure tables in the manufacturing area. 'there 1s a cer
tain amount of sequential flov associated w1th the problem, and they tend to
lend themselves to segmentation very nicely .

VOICE: I 'Would like to ask Mr. Armerd1ng if the FORTAB could be used on
smaller IBM equipment.

ARl-tERDD:G: No. It was specifically vritten for the 7090 computer.
i8, really, no reason vhy you couldn It implement the FORTAB language
some other FORTRAN, however.

There
far

VOICE: What is ava1~able to the 7090 user in regard to decision tables?

BROWN : I will take a stab at that, since I just came back fran the SHARE
meeting. Nothing.

CAIKDlS: As I ventured a comment about documentation, I vould also like to
venture another thought for you here.

It has often been said and talked abou"tf of how tight my program is and how
little memory it uses and hOW' ~ object time is min1m1zed. People seem to
be a little bit afraid of using a little bit more memory or a little more
object time. I dare say that if you vere to actually and truthfUlly sum up
your costs as they pertain to computer application, probably the cheapest
thing that you have 15 machine time. I am throving that out to SaDe of the
people 'Who like to vaive the honor keys as such in terms of programming.
Can 'We have another question?

VOICE: Granted, that the tabular system would serve some of the needs in
problem definl tion documentation. Does it serve also the needs in program
ming? What about those people who have no TABSOL as G.E. does, or FORTAB?
Can the progrB.l!t!1er program directly from a tabular format, or must he then
draw a flov chllrt f'rom that?

BROWN: I might take a crack at that, because I think I have tvo ans\reI'S to it:

=

•

•

•

104

One, if B.!'lythins, it 1s easier to program directly fran a tabular format than
it 1s from a flow chart . This 1s for sure .

Tvo, g1ven the use of tabular formats, I hope we have made the point here
that it 1s not too difficult, to \lri"te processors . We vrote one. It took
three people; we have never had mo:oe than three people on this kind of' a
thing . All of us here are vriting processors to the tune of ten, fifteen,
twenty thousand dollars . You canpare this to the yearly rental of any
ccmputer, and the number of yearly slll.ar1es of all the programmers associated
with it, it's not very ttUch money.

Two answers: Sure, yO'.1 can program manuallYi two, it ' s not really very hard
to vrite a processor.

BROWN: One other poInt 1n this regard. In our beginning 'W'e had some sy!ltem
desig:'lerD lay sane things cut in tabul.ar format, and then delivered to a
progra:t!r.le!'. The only kick against the tabular format vas (be did the ""bole
job), "What am I supposed to do, sit here and codc?" And it ""as relatively
easy to code.

':c:rc~. H':::-.:l~ th" p!' 1 (I'lbi:. canment on thc size of the eff'ort required to
put into decision tables the program, or problem definition to check des1gn,
logical cesign, o~ a digital computer such as the 70C)0 itsel~. This Is, a
complex problem \11th "OR-lng" in it and many, many elements .

CANTRELL: We have given a little thought to this .

First, the p::'oblem of designing the lOgical design of the digital cat!puter
is analogous tc the problem of defining the logic of' a parallel or dra\ling a
flu~ chart . It 15 entirely possible, although ve have not tried it, that
decision tf,.bles are a good tool for designing the logic of a digital computer
-- the el~ctron1c logic .

Second, I "oc..l:' guess that if you could express the internal logic of a
machine like the 7090 in a decision table, the very expression of it vould
'oe 6. check 01' 'the logic of the machine. You could then, of course, run the
thing on the machine and see how it vorks; but I suspect that the property
that dech;!C:l tables haye of making errors in logic relatively obvious to
the hUI!l8.!1 bel:lg who is making the decision table, ",ould itself uncover most
of the lOgic bugs In the cachine .

CALKTNS: Are there any other comments from the panel?

KAVAlLWH: About two years ago a paper vas published by a chap in General
ElectriC about using st:-J.cture tables in the design of computers . If there
are some computer department people here, they might look for the questioner
and see if ve could get him the rull name of the author and the peper number .

= -.::>
=
"" 0..'

• l~

•

•

experimentation and development. Instead of nsking us the question, perhaps

.... e should be asking you.

CALKIIlS: I can lend substa"ce to that. In Pittsb'.lTgh ve have installed a
UllIVAC 490_Real-Time Computer, operating vith a plant tventy-five miles a .. ay·
It's a research project to see ~he<her or not it is possible to operate in
conjunction .. ith recording equipment in the plant, over the leased lines.

VOICE: In our application, .. e tied to an executive routine a list structure
.. ~d .. e .. ere able to take up some of this time tha< you .. ould ordinarily lose
\luting for a device or devicesj e used that. time to make decisions .

cAIJOlIS: Well, even further, it depends upon the hardware that you are
talking about. I.et' s talk about the fJJX, I.T.T.' s message s .. itching equip""nt,
the priority interrupt scheme, .. here tMre i .. a memory location assigned to
the line c6using toe interrupt, and yoo arE at that location in t""nty micro
seconds and toe release back <0 the posi tion prior to interrupt takes, I think,

another ten. It I s built in the hardware.

',vICE:
things

•
; , I rc>c ::. .""",,'It.7 tn analyzing a real-time system, one of the

that the system analYst has to do firs< of all 1s es<abUsh ; l.~=.,;; .
Is there enough time to digest the fl~ of data that's coming into .the system.
The thing he .. ants to knO'" or describe to a progra=er, is hoow to -.rite a
program for this thing. "First of all, is 1t feasible?" Yes, it very defi
nitelY is, and I .. ant to sboow you ho .. it is. I don't .. ant to describe it to
the programmer using a flo" chart, because <hiS is his function in program
design. llut if I could use, say, some table like this and functionally
describe exsctlY .. hat thingS have to be done and in .. hat priority so that you
can establish .. hat must be done, and very definitely thiS can be done in the
length of time available .. ith the maximum data flo" expected, then you could

at }.east define the bounds of the problem.

CALKlllS: Well, I think that you can throu!lh the nble describe the functions.
As to .. hether you have a true measure of .. hether you are going to be computer

ltmited, I don't kno
CAllTRELL: One co=ent on real-time programming, at the risk of scaring
people off fran decision <ables. 'There 1s one kind of appli

c
at10n that .. e

have run into .. here decision tables apparentlY do not .. ork . ThiS is the
type of application "herein you nave deC1s1ons to make, but the rate of data
coming into thc computer is sUch tha< yoo have sa::e ~ata available, .. hich
1s enough to make some decision and take some action before the next amount
of' data comes in on "hich you can take more decisions and take more actions.

No-., a decision table requires that you have all of the data and all of the
b ... es for your decision tefore you take your action. We have hit a fev cases,

•

•

••

•

•

105

CAIJCnlS: Are there any otber questions?

VOICE : Does anybody knw or any use that ' s being made nov, or any contemplated
use, or perhaps any feeling for the difficulties that might be encountered in
using these tables for real-time programs in which arbitrary interrupts or
arbitrary data rates occur?

BROO1: I have no experience on real- time systems. Hcnrever I the modular
design of a program put together with declnlon tables seems to be the type
of general thing you need available. We have heard ~ntioned here two or
three times that you can put together r ather large programs vith decision
tables. In ~ understanding of real-time eppllcat.lons, and. there are several
descriptions of them, it means to me that there 1s an awfUl lot of declsion
making ability available at one time 1n the ccu:IpUter at the time any trans
actions hits it, and it seems to me that this modular approach to the design
of what's in there at that time becomes more and more important than it did
with what people call batch processing .

CAIJCINS: May I ask the gentleman ..,ho asked that question, even though the
application 1s real- time in the sense that it does take an entry item on
demand, are you stili not faced with just the hancU1ng 01' the interrupt
thrv"r.4&l i. £x.:.c-...ti":c .o ... t! .. c 'to gc't to "th: lc::s:tio!"_ • ... he!"e int"! ... ·u.' ri P ".R nr
modules of logic are executed?

VOICE: The essence of the question is ..,hetber the mechanics of expressing
this in a table - - in other \fords, nolo: is it obvious when an interrupt can
occur? When 1s it possible to interrupt the table and get back 1n the flow?
If' I give this to a management person who W8!lts to describe this program,
how can he determine when these interrupts ~ occur and how they vill be
automatically processed, and then the flow vill continue on sane sub-priority
process? How can he determine that there are no logical erros 1n the essence
of this process?

CALKINS : Well, I think,really, vhat must be expla.:1ned is the f\m.ction of an
executive routine which sets aside the conten~s of the registers at the end
of n given execution on in'terrupt and the r et.urn rout.ine to the point used
prior to the interrupt, and then going on. :s this the essence of your
question?

VOICE : Perhaps .

CAm'RELL : I think you have us here at a point where nO!!e of us have done
this . Haybe there ' s sor.tebody in the audience that has 1 but I }-1..aven't heard
of them yet. None of us have any experience of ~ttlng decision tables to
work on real- time problems. We don't know hat; their advantages or disad
vantages are . We don ' t even knoW" if there are ad.d1t1cma.1. language features
that are needed . And personally} I think this is a heck of a good. field for

•

•

•

107

like read1ng cards fran the on-line card r eader of a 704 vhereln the real- time
aspect of the hard are 1s such t.hat you are forced to n:ake decisions, and then
actions , and then decls!.o:18, a....1'ld. then actions. If you have this kind of a
situation -- and we have :J.t very ra.:.:'ely -- I dO:l It }meN ho'o(you can use a
decision table for it.

VOICE : As a folla.t-np to that) ouJ.d!I ' t it be advan~o.g~OI,.;,s to have in core
a gencrall~ed progr~ ~blch ~OU:d interpret thece decislOLiata as data,
working against, pre~UlI3bly, a. master ftle an.d.. net t.hrrugb. +.hls pre- compiling
stage, as the FORTR.A?Ps p::-o.:p:-allI. Thle: lends itself to r'!al time . We have
done this.

We come in 1th this tabuls:r data; since there' 5 too nn.1ch to be assembled in
core et one t1JJ;.e I lie have 'to c CIte in p!.ecernes.l. in 'the ma.1n master file
sequence. It cores in, it IS inte:-preted, and it 1s execut.ed against the data .
Additional data tabl es are read i~l expcuted against the master file data,
and so forth . And it's one pass; rather 'than having it going through any
preprocess1ng work . It h&1 "0R_ing" and "AND-1.ng" ami eVc;>JYth1.ng . If you
can do th1s, isn't 1 t 1W!"e &dvant.ageO'l.ls than going over the compi11ng stage
w1th your decision Lsble data?

Can you make a question out of that?

CAIJans: '!hat's the next questi~n . I thought you ..,ere gc.ing to start that
one out ..,1 th "Four score snd seven."

VOICE: We heard this morning Il.~out the possibility of havLl1g decision tables
modify thet\Selves. Perhaps this i'3 just the case vhere it is required - - for
real time. For exampl-e, if you make a decision, as Mr. Grad says, based upon
preliminary infOr:i"..!!.LiQu, this now t~s a course of action which nOW' becomes
a condition for subseq,uent information which corres in... aLd 'the process 1s
turned over and over &.gain.

CALKINS: Any other questions?

VOICE: I am thinking in t~rms 0::: the larger pr:l"olems . Would it not be
i!!!portant to have F.lnot.her ~ect:!.011 F.i~~ixec! to the t<;lbl~J '\o'hi('b \to-lid indicate
fr om hat table you a!'rived. at a part!c'llar table? I think you know l.thc:.t I
am referring to, If' you. have to make e. change 1;0 a table, th~, if you have
come to that table :from other t!1bleE, you rr.ay have 'tc refp.r back to see if
some other tables ;.rill have 'to be mOOif1ed, and so f.rth, on Uf: the J we. I
was wondering if you have any comments to make s.long th<,se lines \lith regard
to some of the experlencea yw 118.d.?

BRCMN : We do nothing at obj~t't 't1Jr._~ to t;~11 this, but 1o'e do h'9,.;re a 113t1.ng
that comes out that tells yhl('h tables relate to ~&Ch at~~. L~ effect, it's
a listing 'Which in.i1cat~s the lido' s" wd IIgo' s". I";:ls sort~d by "do ' 5" and

--- --~-

=
""0

I
r

I

II
-~

•
108

"go's" and the resultant f1eld~ vhere it 16 going to, so this 1s helpful. It
1s not an object time. At object time it 1s not too difficult to do something
like that, because in many tabular systems the linkage bet'W'een tables 1s
handled by one execut1 ve type routine vhich handles the lido IS" and "go I 5 II •

So it 1s possible to put into one location in memory, the identification of
the table, or something like that, during the process of hopping from one
table to another. This 15 another advantage in this modularity of going to
another place, someplace else, via the same vehicle.

VOICE : But when you are compillr..g the table initially, you may refer to one
table several times. Nov, if you have to make a change to this one particular
table, it may be that, let's say, five tables had referred to it, maybe there
'W'ould have to be no changes made to four of 'thea, but a change may be in
order for the fifth one. So it seems important. you would have to have infor
mation handy that vould permit you to go back as well as forward. You have
a vay of stepping dO\ll'l, but you have no way of stepping back up again .

CALKI115 : If I might take the liberty of rephrasing your question, I think
you have asked this: Having done the application, and a change comes into
the lo~ic. if I make that chan~e. how do I know that I have encompass~d all
of its effects, is that right.?

e VOICE: Yes.

•

CALJaNS: In other words, when I change this particular point, what kind of
chaining effect does it have? In other words, do I know that all logical
decisions are correct hen I Br.l through lth that change?

Do yoo. have any comment on that?

NARAf'.10RE: Our experience wi'th the decision tables as such has not been
oriented at a programning levelj in other words, a machine-run level. But
as part of our procedures, the orig1nal set.s of decision tables that are
produced for a given system are subjected to what e refer to as a leveling
technique. This is, essentially, similar to taking a bill of materials for
hardware items and developir~ a listing which references items either upwards
or downwards, componen'ts to assemblies, or assemblies to components . Taking
management rules as such, you could have a schematic, or procedure, which
represents each of the independent relationships.

In other words, hat tables are dependent on o'ther tables. This is not at
a progranmt1ng level, however; it would be a guide in the sense of changes
to knOll what tables were related.

CANTRELL: I think this is a good suggestion . Probably the only reason it
hasn't been implemented is that it isn't necessary to provide this information

109 •
in order to compile the program. You only vant the program to go frontwards,
not backwards; but from the point of vicw of the people who want to look at
it both backYards and forwards, this is very desirable . Howver, I point out,
this same requirement on forward and backward applies to everything in a
program; not only decision tables, but formulas and everything else. Probably
what 'We need 1s a ''vere used list; 11 '''-rere used" and ''were generated, \I perhaps .
Here 1s a variable; it 1s used in all these different places, including this
table.

VOICE: Yes. I think all of us who have done any coding have found it very
advantageous to have, as Remington Rand calls it, an analyzer . mol calls it
something else .

Where you have to change a particular part of your program, it ' s very impor
tant to know from what other areas 1n your program this area has been
referred to .

BROWN ; This was one of our reasons in gOing into the 7058 processor of IBM.

At the risk of giving a commercial, 'We get this as an output automatically,
and. lt. rus.!;; tI. "ef'erc:l:c !n hC't.h directions. This probably should be explained.
Some other compilers donlt have this; they give you an a~ticmLly li=·~; nr
~ometh1ng like that, but it I S a very valuable too1.

•

VOICE: But you don It have this until yO'J. get do-.m to object time, until
you compile a program. In other words, you are leaving the burden on the
programmer, I believe, rather than on the system generally.

BRCMN: The particular format that we write in allOW's us to sort the cards
that the progra:lIIller writes up on tab equipment.. Since he ,",arks directly
onto a card format: and gets a punch right awy J 'We do have the ability to
do it, al.though 'We have had very little need. to do socething like that so
far. Usually, 'We get aD to the ccmp1ler and actually compile before the
program is fifty per cent complet.e just to get this sort of information out,
even though this particular compilation of the Irogram, as far as instructions,
vill never be used .

VOICE: Sir, I am not sure I fully understand his question . I am just
'Wondering, is this nothing more than getting that. close to these decision
tables, that these different tables are closed subroutines? I think that's
.... hat you are driving at . Because, actually, if you put in your statements
"go to" and then come back to "and do this," if' you make a change , if you have
to perform a certain fUnction, to put a df!cision table at the beginning of
the table, later on you have to do the same thing, you are at a different
stage in your program, you have to go back ~d access this table . Would it
not be better to make this a closed subroutine as opposed to repeating this
table down belO",1?

•

•

•

•

110

CALKINS : Right.

VOICE: And I think this 1s the question he is drl ving at.

VOICE : In other ords, you leave out the "go-to" statements, or the lido"
statements to do th3.t, you ,",auld have to build that as an integral part of
your program and let the tables stand by themselves?

CANTRELL: You have to be a little careful about making tables closed. Ha.ny
tables require dozens, or even hundreds, of items of data . And this 1s a
very long key punch.

VOICE: I will buy tht!t . It depends on the length .

ARMERDING: I Just ant to mention that 'We do have closed tables in our
system, and. one of' the ac tions which you can perform on any table 1s hat we
call the "perform." Th:lt sends you off to another table where you can perform
all your c onditions and actions for that table. You can do this to any level
you likej in fact, these can be referenced by other parts of the program,
also, and it will thread its 'Way backward .

VOICE: rt'l'I A !l!.!!in p~ r::! yO"~ prog ... a.uJ. . It has ~o oe .

Let me give you Just one illus~ration •

Subroutines A, B, C, D, and F all require subroutining to perform a certain
function in order to canplete what is required to be done . You found that G
has to be changed to satisfy certain other conditions outside of this sub
routine. Well, then it's impor~ant to knoy that A, B, C, D, E, and F have
used this particular subroutine BJld , therefore, you must go back and check to
see that the changed G now ~ll satisfy what was originally required of it .
Maybe in the case of A, B, C, D, BJld E this is still the case , but not in the
case of' F; this is my only paint, 1£ that helps to clarify it.

CALKIns: Yes, sir .

VOICE: A couple of speakers have ~ntioned that the object times of programs
using decision tables structure incorporated into another compiler system
have been longer than when the compiler system has been alone . I would like
to knOW' whether this is caused by the use of the decision table technique,
or lr:let her it is perhaps ret her due to the forced incorporation of a new pro
cedure into an existing compiler which wasn't designed in the first place to
cope with it?

You see, Iauld normaJ.ly expect that, if I had an analytical system which
gives me a good logical definition froma program, I would get a more effi
cient object program. That's why I don't understand why these object programs
were less efficient than those produced Without decision tables .

=
"'" ::c

"" .. ,
~ I

•

111

L II1G: In the first place, our programs have not been less efficient.
The one where we ~e the extensive tests actually ran slightly faster 1n the
FORTAB than it did in the FORTRAN program.

KAVAnAGH: Your decision structure table processor ",hich vas used in the cast
rotor did indeed coapl1e down . It vas immediate. This vas a whole Job, this
was not married to another pseudo-language . The contrast here, and approach
to the computer, was not at language level, it vas s~Jrce. One generated an
object program, the other approach was interpretive. Let's put it like this;
the interpretive program used considerably less memory, required less program
ming and did take longer objective time, because ycu alw~s had to ask 'What
you were doing. So, really, the differences in time here were not due to a
shotgun marriage between tables and some existing pseudo- language , but rather
in the difference in lar.gu.age approach to the computer itself. One, a pseudo
language 'Which generated an object program, and in another case a sane'Wbat
interpretive language, if you 'Would, 'Which has a processor associated with it.

CANTRELL: I would like to summarize these statements .

Given a la..nguage which incorporates decision tables in the original. design of
the compiler, there is no reason 'Why the use of decision tables should in any
Yay hurt the efficiency of object programs or increase the amount of storage
rCquirea .

• ere I s nothing in the decision table technique, 'Wbich necessarily has to be
slover or use more storage.

We may see lots of examples, because we are throving these things together
r ather helter- skelter, where these things are not as good, but this 1s not
the fault of decision tables . In many cases, I think ve will find improve
ments in both storage capacity and object program ef'flciency through the
use of decision tables .

KAV ANAaR: Hear J hear.

VOICE: I woold like to make an observation -- this is not a question -- in
relation to a statement made by Mr . Cantrell that real-time applications
present probletlS because of incompleteness of data at various stages .

A chap vorking for me wbo did a certain amount of research on tables arrived
at a conclusion that you could set up a priority where rules read left to
right, the left rule having a higher priority . In this particular test case,
it was possible to go through the table using this, in addition to the
technique . This is strictly a suggestion .

CALKDlS : Any other questions?

•

•

•
-

112

VOICE: You mentioned that decision tables do not lend themselves to modifi
cation. In other words J they are not self-modified .

Certainly, if a programmer can indicate 0. switch in a program, cannot he also
indicate a condition which can be tested by a later table?

ARM&RDDiG: Sure. Our programmers do this all the time .

KAVAI'lAGH: This 1s the essence of a simulation program. We do this all the
time . ThiS 1s the body of it.

CANTRELL: In this sell- modification thins, a decision table operates on
information} on variables and on constants, too. NO\IJ there is no reason at
all why you can't modify the variables that it operates on and have it go down
dlrferent paths. You may have a decision table which is a loop in which all
but one colUDh~ of the decision table exits back to the table itself . You go
through this thing, modifying the variables as you go, until you finally have
completed the loop and cane out .

I think ",hat these people vere talking about in "Introspective Decision
Tables," or sanething like that -- mod.1:f'y1.ng the structure of the decision
table at execute time, adding some more columns or some m:>re rws, or chang
iM the type of decision vh1ch you make, so:nething Yhich you can It do by
changing the vS!"iables. At the moment, 1 am comple'tely 1:S.t. &. loo.s; 't;:; !~~".
'W'hat you can't do by changing the variables . You can put dummy variables
into counter-columns and blank out other things. We have done a lot of this .
We haven't seen the need for introspective decision tables -- if we kno'W' ~hat
they are.

VOICE : Does the decision table technique do any more than list all possible
paths?

KAVANAGH: I will ofrer one thing. I em sure the others vill add. more . One
thing that it does do, of course, is Just not that . It does not list all of
the things that could happen by pernru.tat1ng all of the variables; Just the
things that it will allOW" ~ One thing it does for you is to limit the range
of possibilities that offer feasible solutions.

CM"TRELL: I might cite a fre--1nstancc on the possible paths . We had one
machine-language 'Written program which had onc little hunk of logic in it
that VSJ;JJ,'t right, and we were trying llfter the fact to find out what 'Was
wong with it and fix it . After an e.wt'u.l lot of york we finally decided
the only way \oI'C are go1..ng to figure out what this little piece of logic did
was to put it in a decision table, so we did . We found it had sixteen
possible paths, of which, eight were logically blocked off' in the flOW' chart
by things such as the testing of A equals B, and a little further on A does
n ot equal B and, therefore, it wouldn1t work . Four more of them were blocked

= -0

=
~

c."

•

•

•

113

off by characteristics of the data; that is~ A must be greater than ten, but
never in this problem can A ever be as big as one .

In the fin31 result we found there were four paths of these sixteen paths
that had meaning, and as a result we Yere able to take the original machine
1e.nguage logic and decrease its complexity by about four to one.

CAIKnlS: Other questions?

VOICE: Sir, it strikes me that in doing this you yere doing one of the
things you yould preach against by people that don It use this syste:n. The
situation might not be as ridiculous as it might appear . In laying out a
1ogicc.l flO'ol chart, you !!light recognize that here I s a condition ybich ye
should not tolerate . Maybe it could not exist anyway; but it's not worth
while going back and saying let me put a stop in here, even though, maybe,
I don 't need it; so you. get some more instI"Uctions in there. Uow~ you are
say1.ng that you increased the efficiency of the memory requirements because
you. eliminated it for the logical table. But wouldn't this really be an
investment 1n something that didn It matter anyway? You are preaching not to
worry about using more melnOry or more t1me .

CALKD1S: This was me?

VOICE: Right -- yet yru are pointing out her~ an example of bO\l you can save
memory .

CALKDIS: Well, seriously, that's his machine. It's really to each his own.
I merely made the comment that, 1n reality, of the total cost from the time
you say, let's mechanize doorknob accounting until you have doorknob account
ing running, one of the cheapest things 1s machine time. Maybe sane scien
tific 1nstal1atio~3 '~d not agree.

VOICE: I 'Would like to point out that the 7090 costs bet'Ween four and six
hundred dollars an hour I and if in a large installation you save a hundred
dollars a day, you have a hundred thousand dollars to play with.

CALKIllS: That's 'Why I say the scientif'ic people might object.

VOICE: I can see how decision tables can replace flO"W charting . I wonder
if anybody has any thought yhether decision tables will replace PERT.

CAIJC[IlS : Will a decision table replace PERT?

ARl,1ERDlllG: I don It know.

VOICE: I just wonder if he could give me an approximate date as to wben this
1090 FORTAB vi11 be available through SHARE •

1 .. "_ •• • ==

•

•

•

114

ARMERDD:C: We have not found any major bugs in it in quite a long while , GO

as soon as 'W'e can get around to getting it in proper shape to submit to SHARE,
we will .

C ALKnlS : How long? George, do you have any idea how long t h is will take you ?

ARMERDDlG : Well, we are working on it right now .

CAIXD1S : Is it r easonable to say three months?

ARMERDING ; Yes .

CALKINS : Are there any other questions?

VOICE : Have tables been used for information retrieval? And if so, by whom?

POLLACK : LA.S. has used it . Adv8..?lced Information Systems has attempted to
do Bome ork with information retrieval.. They are, as a matter of fllCt~ the
outfit that was interested in being able to use "ORs" rather than"ATIDs " for
the kim of thing they are interested in: This OR that OR that , THEN I "'ant
this particular document .

CALKINS: Any other questions?

VOICE: Just one comment about this "this and this and this, " and this allied
subject . We talked about this this morning, the business of operators . I t
seems to be some marriage between the decision tables and, possibly, paren
theses, might give you the operators you want, connectors between the variables
involved . There does not seem to be any real apparent way that this marria~
could be done right now, but if somebody really ants all the operators, vby,
you can get them that; way .

CALKINS : Well, we would certainly like to get some feedback .

VOICE : There 'Was a question I had this morning, but I couldn ' t get the floor .
This dealt with decisions . The rule - - decision rule, I guess it is . There
vas an illus'trat1on, I think. by f.fr . Grad.

CAI.JCDIS: Is)'11". Grad here?

GRAD: I am here .

CAIKlJIS; All right.

VOICE : It illustra.ted lines going out the bottom of 0. table . If this set of
conditions were met, then you 'Would take the set of actions below it . Then,
be said, you can take one, two or three, or as many as you want , as far as

115

• actions are concerned . This 1s the part that confused me .

S;lppose, nov, if this 1s the case -- I can see, possibly, how you could take
ac-:.loD, set rnunbcr ene, action, set ro.unber tva -- if I understand the illus
tration properly -- and actioD, set number three. I think he had that . And
t:!:::en, cotling da.tn, you have decision rule 1. 0 . wtl8.t set of actions can you
take there? Can you take two? And hOW' do you write -'I ,,-ant to take t o, and
then one?" I 'Was ,.,andering hOY you would illustrate this in a table?

G:?.AD: As far as I know, the purpose of the slide in that case vas to show
that. you could not take er.y action except that set of actions directly belO\l
tte set of conditions that ""ere met .

VOICE : The one ytrll shO\lcd, shQ'l.{cd you could take possibly four with one
decision rule .

G.JtU) . Four different rules.

VOICE: One entry pOint .

GRAD: All that vas sbowing was branching. You came in at the top, depending
on .. h1ch set of conditions "'ere satisfar.tory. YOlI lI'Itgh+ gl) thrOl.!c.l). the fi.:"::Jt
rule or the second or the third or the fourth .

erCE: Oh . You illustrated it with arrcrfls, that ' s the part that confused me .

CAL~i5 : Any otber questions?

VOICE: Tbis question pertains to the implementation in the object language,
or possible implementation. Does the tabular structure carry over into the
object program, or does it decompose into a series of conditional Jumps?

CA!i3....'C'JJ.L: It could be both . In the particular compiler that 'We have the
te."::I".1lar structure does carry over into the implementation. This is a com
piler which compiles bit patterns, one bit per column, and one bit pattern
per reT.I. The "AIID-iDg" ani OR-ing" decisions are then rne.de by logical
"A!~-lng" or "OR- ingl! of these bit patterns 'toge'ther f'or different roW's . 50
in :~s particular implementation, the columnar structure and. the rO\l struc
tu=e of the table does carry over into the tmplement6.tion .

~nlG: In our case, as a condition of the table, it is nothing but a
ser':es of conditional JWDps . But in the action area of the table we perform
sc::::e logical steps 'Which, to my knowledge, progrenmers do not use today in
'the ~RTRAlj language, even though they cou1d . These steps are easy to set
up !:::l the preprocessor. In fact, they \lork quite nicely to test whether a
pe::.!cular action 1s to be taken or not; so 'We use them at each pOint in
the actionery table .

•

•

I

r

•

•

• CALKIlIS: Well, it ' s a little al'ter 1:1ve o 'clock nO\l. lle:fore we break, r
Just want to emphasize nga1n for those of you that Will not be With us
t omorrow that the fOCal point of contact that has been set up for your com_
ments or your work or your criticism is Hr . Sol Pollock of the Rand Corpora_

116
(Last Pase)

tion, 1700 Main street, Santa MOnica, Ca11.fornia.

I hope that you have enjoyed this day as much as ve have enjoyed PUtting on
the program for yOU. Don ' t sell this thing short. Don ' t take a qUick look
at it and say: Well, I am Just going to by-pass it . Give it a try . llecause
we do need your help, and I think that there are SOme vorthwhile things here . So, please, give it a try,

Thank you very much for your attendance .

Meeting adjourned .

