May 28, 1974

Dear Ms. Ritchie:

Enclosed is a copy of “"Proceedings of the Decision
Tables Symposium” which includes my paper "Structure
and Concept of Decision Tables”.

Thank you for your interest. I trust this will satisfy
your needs.
Yours ft:ruly i ——
P /
B. Grad
/rl
Ms. Dagmar Ritchie
Universitatsbibliothek und TIB

3 Hannover 1, Welfgengarten 1B
Germany

-

.

s

wUNIVERSITATSBIBLIOTHEK DER TECHNISCHEN UNIVERSITAT HANNOVER
UND TECHNISCHE INFORMATIONSBIBLIOTHEK

TeS=737¢

Telefon (Auskunf): (0511) 7622268
Telex: 922168 (tibhn d)

Postansdhrift s Untversitdrsbibliothek und T18, 3 Hannover 1, Weltengarten 18

Mr. B. Grad

IBM Corporation ‘;(/(0/7'1" Pm R(Ca"f& Q.Bawcs.

White Plains, N.Y.

USA
Ihr Zelhen Ihre Nachricht vom Unser Zeidven Telefon (Rearbeiter) 3 Hannover |
{bei Antwort bitte ungeben) Welfengarten 1B
1.1.7 Rit w1y T62 - 4 April 1974

Dear Mr. Grad,

APR 91974

one of our readers is very much interested in your paper
"Structure and concept of decision tables", held at the Decision Tables
Symposium, NYC, September 1962,
Unfortunately we have been unable to trace the symposium in any of our
reference works and any library of this country. We should therefore
appreciate it very much if you could furnishmore detailed information about these
proceedings of the symposium concerning it such as name and place of
pnblishcr, as we wnnt to try to obtain the complete volume for our library.

Grad,]'i :".--i 'I 'a $ tn Svercms i‘-. H Ju rh, Pe-
vers, n I\uH(LJ'ﬂTJ'ytE:I 2, Svracuse. N, Y, Yours faithfully
Grad. B., "Structiure snd Coni 't of Deciric 1 Tehles™ I'roc,
Decitiom Talics Y 3, ‘ Yez 192 3_5cpl, 1SUZY, :)
Grad™ I, l.;!1 T rlll“l in Lieaiston oz pw,” Datamation 7 (7): '
226 fj\m 1961), % 0 . 5
Grad. B.. “Ustug Decision Tablex for Produce Des o Enjzincer- i.A. .
;.,:'\11 [If‘r .Iu.i"“‘h.‘i\'in .'l oh r"t.ul
ing, Ve Feb. 2 19452 |fl" .«‘\; (
! : Dagmar Ritchie)

mwdﬂumwwam ar:mue

&M%M o QAW—J‘Y

May 28, 1974

Mr. Sol Pollack

2700 Nielson Way

Apt. 1336

Santa Monica, California 90405

Dear Sol,

Thank you for the copy of "Proceedings of the
Decision Tables Symposium®, There was a regquest
from the library at Hannover University in Germany.
I sent them a copy and have kept two for myself.

Sincerely,

g:é’:ia é
rl

/
S

/

|
W

.~

- " FL 1-132 'u_-estche_s;; Avenue
White Plains, New York 10604
914/696-1900

International Business Machines Corporation

April 15, 1974

Mr. Sol Pollack %

1901 Avenue of the Stars
Suite 880

Los Angeles, California 90067

Dear Sol:

It has been a long time since we have talked. I hope everything

is going well for you.

Recently I received a request regarding our Decision Table -
Symposium held in New York City in Septenber of 1962. I have

been unable to fina a copv of the presentations that were made

at that time. I am wondering if you might have an extra one

that I could send or, if not, whether you can lend me your

copy so that I might make a copy of it.

I'll look forward to hearing from you.
Sincerely,

i -
’/ /.f
s 4
/ . (A

/e
A Burton Grad

pm
Attachment

cc: Dagmar Ritchie

r:f—

DPH

Tot .

e ¥

\

W W T

Internal Zip City & State

'J. M. Wrenn

Title/Dept. Name:
Internal Zip/City, State:
or U.S. mail addren:

Subject:

Reference:

- 1BM

PADC - 11

4 el . IBM CONFIDENTIAL
. &’roductivity Application Dev,
_ ==
mem owe December 20, 1974 U
Name & Tie/Ext.: R. N. Purdy Xl628

Productivity Application Dept.
1501 California Avenue (69M/037-5)
Palo Alto, California 94304

APPLICATION DEVELOPMENT DISCIPLINE (ADD)

My visit to Los Angeles Scientific Center - December 6, 1974

The purpose of my visit to the L. A. Science Center was to gain some firsthand
knowledge regarding ADD, and to consider the current product potentials of Deci-
sion Table Techniques. Messrs. Lew Leeburg, ADD Project Manager, and Dave
Low presented an ADD overview which included a brief demonstration.

ADD OVERVIEW:

ADD is currently a proposed methodology and architecture for the total repi'é'cement
of traditional application development cycle functions. Its prime objectives are:

1. Replace current application development mechanisms;

2. Achieve high levels of productivity improvement through

--revolutionizing end-user to developer communication,
--enforcing high-quality coding standards,

--supporting Improved Programming Techniques (IPT) throughout the
development cycle;
3. Design from the end-user's and developer's viewpoint rather than that of
the vendor or the customer's "DP establishment”,

v

The Science Center project is an Ad-tech prototype aimed at testing the "achiev-
ability" of these objectives.

The ADD system would be utilized much earlier in the development process than
current mechanisms. ADD would be used in the initial system study phase. It
would become the data collection vehicle and communication medium in estab-
lishing and maintaining application system requirements.

IBM

PADC - 11 -

The top-down design of an application would evolve as increasing levels of detail
are resolved within hierarchies of ADD functional application components. The
hierarchies are:

1. Processes - high level structure of functions within a total application
system;

2. Blocks - logical segmentations within Processes;

3. Decision Tables - detailed specifications of rules, conditions, and appro-
priate actions.

Each class of hierarchy represents increasing detail in providing the total appli-
cation solution,

The additional application components within the ADD functional architecture are:
1. Library procedures - subroutines of procedural or computational code;

2. Message Form - native language dialogs between terminal user and the
ADD system or application system;

3. Response Lists - user responses to Messages Forms;

4. Block Linkages - interface specifications between Processes and between
Blocks.

The Block Linkages play a key role in ADD's ability to be a data collection and
communications medium early in the design process., Block Linkages will pro-
vide for "logical binding" between Processes and Blocks. With this binding,
the "logical continuity" of the evolving application solution should be able to

be tested. The Block Linkage component has not been fully implemented as yet.

ADD embodies a number of variable types. One of the most interesting will be
the customizing variable. This variable is initialized to default value(s). The
variable can then be customized at numerous stages in the development of an
application system. The customizable application system is "executable"
throughout the development process--default values are used for unresolved
customizing variables.

ADD PROSPECTS:

The ADD system is a very interesting proposal for the application development
environment of the future. Most of the Application Components will have been
prototyped before year-end. The prototype implementation is under VM/370
CMS in APL.SV

The product potential of ADD is long term. The current effort is clearly Ad-tech.
The development of the ADD prototype has intentionally ignored all ~f the aspects

of application data base management and access. The rationale for this is based
on the philosophy that application programs should be isolated from application
data bases if true data independence, security, and integrity are to be achieved.

Another L.A. Science Center project is addressing the application data base is-
sues. The two prototype efforts are in coordination, and an interface is event-~
ually planned.

If the objectives of ADD are achieved with the prototype effort, I feel ADD may be
a useful internal tool for gathering Industry application requirements and initial,
solution designs, Industry Marketing MAEP projects would be able to exploit
ADD facilities in achieving study objectives,

PRODUCT POTENTIALS OF DECISION TABLE TECHNIQUES:

The "driving mechanism" of ADD is an exploitation of extended decision table
techniques. The logical power of decision tables has been recognized for some-
time; however, the industry acceptance of these techniques have been dis-
appointing. Some of the reasons are thought to be:

E 1. Originally, documentation tool only;

- 2. Tables were awkward to represent and maintain in source card form

O (fixed length images);

a

& 3. Early interpreters were inefficient and generated inefficient code;
4. Entries were limited making the tables large and logically cumbersome;
5 Techniques didn't seem to lend themselves to commercial DP problems;

and,

6. Little or no marketing incentive apparent.

The marketing incentives and associated support are really the key issues. Im-

proving application development productivity is clearly growing as an incentive

for strategic marketing programs, but without product and market support little

real progress can be anticipated. No marketing or market support commitment

for Decision Table Techniques exists within DPD, I personally feel the only ’//
rationale for aggressively marketing and supporting Decision Table Techniques

falls within the scope of Improved Programming Technology (IPT). If it can be

agreed that decisions tables are an improved technology, the technique can be

addressed by IPT education and marketing programs.

The World Trade PPs, DECTAT for DOS/VS and OS/VS, can be made available
within the U.S. with very little effort, Without an aggressive marketing pro-
gram, it would be unwise to pursue domestic release, however.

k:;' ? “k’?&“’é—-ﬂ

R. N. Purdy
cc: L. Seamons, J. Brittain, S. Shaw DPD/HQ, B. Grad DPD/HQ, L.E. Leeburg

Tg’; S!g ﬂ 7"\, Memosiip IBM
1) 1™ 10)

N Sef T'mj 40

N cal 'ﬁ_ I Pl call
Gz y,afgv-;c,.,;;.,. A
\)f\: 0 Returned your call

. Telephone Number Call Back Nbr.
W +S‘¢S -&
For your [information [J Sign ature \Ploase DHlndh O Prepare nplymylg ature
) Comments [J Approval CIC ulate ADSeerna O And destroy
“’“‘"“'&u \olmo o ger =, < chawce .
eNfou sted him To

F,‘j iwon The g_udKTke
g A‘gocb)é,;j w’Tl\]X’CISJON dQS' -

rom W Pmm | Location Department | Building
% Memo Slip IBM
Date
. w/;,;ég

Fl/0

Name of person calling O Called 1o see you E’Nuu call
O Wishes 10 see you O Wil call again
O Returned your call

Tie line .Enans:on Lmtu(J Area Code rw ?r&:} ‘6321 Back Nbr.

Foryour O information [J Signature | Please [J Handle [File 00 Prepare reply, my signature
O Comments 3 Approval O Return O Circulate [See me O And destroy |
Remarks

Jost Followsy Lp, (Hews Latﬁ
Asted ;jﬂ ouTm 1EA.L f" i

: Pleage call TahoKAw
: OR NeXT a}

From W 1 Phone ‘ Location i Department | Building ‘

Tot .

City & State

)

~
P~
Sy

<

B. Grad 797-TU454 White Plains, N.Y.
Director of Media and Cross Industry Development

[[[rmen]]f

From Date:
MName & Tie/Ext.:
Title/Dept. Name:

Internal Zip/City, Sute:

or US. mail addres:

Subject:

Relerence

October 10, 1974

Robert N. Purdy

Productivity Application Development
1501 California Avenue

Palo Alto, CA 94304

Decision Tables

Your memo to Ms, L. J. Seamons of 10/2/74
Mr. S.P. Kruzansky memo to H.J. Meyers dated March 25, 1974

Bert, I received the S.P. Kruzansky memo when we were working with
the Systems Marketing Productivity Projects Office toward supporting
DPD release of DECTAT. Frank Gatewood was very anxious to release
DECTAT and/or TABSOL as productivity aids.,

Systems Marketing Productivity Marketing and Requirements
maintains they have more than enough to do supporting Improved
Programming Technologies (IPT) marketing programs without under-
taking Decision Tables. I feel Decision tables should be part of

IPT; nevertheless, U.S. release of DECTAT is very unlikely for

want of aggressive marketing sponssorship. The Industry Marketing
response was dismal. We have no other interests in Decision

Table Techniques at this time.

v B

cc: R. Day, DPHQ, 63W
L. J. Seamons
J. M. Wrenn

Ms. Lucie J. Seamons
12 - 630
Palo Alto Development Center

October 2, 1974

B. Grad - x1785

Director of Media and Cross Industry Development
Department 797 - TV454 1
DPH 1133 Westchester Avenue, White Plains, New York

Decision Tables
Attachment
Is there any interest in Decision Tables in Palo Alto? This

was sent to me a few months ago. Frank Dapron was previously
in Product Test. I don't think I know Myers.

pm

Attachment

)/;:c& w au

%

FP////(’JK/ S« j a %(
e 741

(f
b-(Y ‘}-1"*! "57-@‘('
}r'J

Frrst /’/4/{(‘”71' /€d579 ot

/(ﬁ[ﬂ‘ﬁ

o~
o
"
e O
Y
s
&5
o
~
x
=]
—
=
o

L]

Date:

i {Div. & locrtion
5 mail address):
Dept. & Cleg:

siine & Teol. Ext:

Subjeet:

Reterence:

To:

March 25, 1974

ISD/MIAD
SPD Poughkeepsie
213956 Elr\\m
255-7573

EXTENDING DECISION TABLE USAGE TO ALL PHASES

Mr. H. J. Myers

DP Science & Marketina Development Center
D/60A

2670 Hanover St.

Palo Alto, California 94304

The most important, vet undersold advantage of Decision
Tables is their ability to serve as the basic tool in
almost every step of the computer application develop-
ment process. Specifically:

1. Decision Tables (D. T.) are useful to define and
document the external specifications given to the

programmer .

2. The programmer/analyst defines the application
and assures the comoleteness of the specifications,
via the interactive terminal mathmatical verifi-
cation process of the D.T. compiler. Then, by
generating a Flow Chart automatically, he further
logically verifies the DT design of the application.

3. The DT Compiler is then used to generate the code
from PL/1, Assembler, APL or other languages.
This generated code is implicitly well structured

modular code.

4. The DT Complier then identifies an optimal test
case library via the TESTGEN functions. (Optimal
according to product test criteria of 100% of code
execution.)

5. The DT Compiler has the potential to generate the
actual input test transaction. Since a DT also
defines the actions, some of which are outputs, it
should also be able to automatically verify the
successful completion of tests.

o
)
]
o,
o~
o
'
_:’ .
[}
™
x
o
T8
=
m

March 25, 1974 .
Extending Decision Table Usage To All Phases

Mr. H. J. Myers - Palo Alto, California
Page 2

6. For the maintenance vhase, it should be possible to
select only relevant regression tests in a minimum

test library.

The potential for a DT develcpment technology has not been
recognized. TELDAP, which is becoming the FS-5DD modus
operandi, has been found to be unnecessary where DTs were
used; in fact, the Cause and Effect matrix developed in
the course of using TELDAP is a limited form of DT.

Since the 6 previous items describe major processes of
the development of a computer program, DTS could be the
basis of a Specification Language. A Specification
Language, to me, means that if you can define all the
specifications for a program in a concise language, you
should be able to automate the generation of complex, well-
documented, bug-free, implicitly and actually tested
computer programs. Though there are small defects in DTs
that will need special technigues to compensate for them,
the basic economy of reusing the original DT modified to
fit the needs of each phase, will lead to faster and
cheaper program development.

I hope the designers of Specification Languages will
consider the DT format as a basic structure in the lan-
guage. It appears a better approach than some I've heard.

As we started to discuss a few weeks ago on the telephone,
business applications programmers are not interested in
testing at the same level as OS developers, Utility
developers, or even small scientific programs developers.
For business applications, we assume that test variations
or rules that concern user input transactions, control
cards, or input data, must be better tested than those
rules which depend on data already on the data base,
(simply because data base information was created by
programs not by humans.) Similarly we can assume that
system function related rules covering I/0 error handling,
etc. as shown in the Decision Table stub, should have a
lower priority for testing than primary input variations
and data base variations. We have, then, for business
applications, three categories of tests at least;

I. Primary user input and easily observable output.

IX. pata base input and output testable functional
variations or rules.

ITI. System input conditions and intermediate actions
which are more difficult to create and/or to
observe.

o~
o
f m
o
o
o
]
o
o
x
o
w
=
@

March 25, 1974

Extending Decision Table Usage To All Phases

Mr. H. J. Myers — Palo Alto, California

Page 3

Therefore it should be possible to identify and TESTGEN a
weighted set of rules for the selection of tests for various

purposes.

1. For Unit Test - 100% path testing all rules, plus
a limits testing supplement.

2. For Regression Test - All User input and data
base variations generated.

3. For Installation test only valid user interface
variations.

4. For a bug correction (APAR, PEAR, CMISTR, ITR)
we would like to be able to select all the tests
that relate to certain identifiable conditions
or actions so that we can avoid a regression on

n Eiaxs

To be more specific I would like to see the ability to weight
a condition and action in the stub by writing something like:

Cc8
Al
A2

PRICE
CALC
PRINT

PRICE
PRICE

- wa we

e40:
ol0:
ed0:

Y,Nj----1212
o
4444

SField indicating weight as
a primary input variation.

Then when TESTGENPRIMARY is typed at a terminal - the response

could be:

1k L1884

55% of STUB CNDS & ACTIONS EXERCISED

B

5

446 9

68% of LEGS OR ACTIONS EXERCISED

The response is in the order of greatest weight first.
above assumes a single page DT for the program.

a more serious problem:
whole program not just one decision table?

suggest the following scheme.

100% PRIMARY RULES TEST

The
There is

How do you identify tests for a

I would like to

Tests should be related for a whole program by program ID
and alphabetic ID eg. the most complete definition of a
test rule which spans several pages of DTs might be:

EBE7
Load
Module
ID

A 12.

DT —> DT
Page Rule
one NO.
ID

B3.
Rule 3
Page B

E4
Rule 4
on DT
page 5

IBM FOK 28%-029322

March 25, 1974
Extending Decision Table Usage To All.Phases
Mr. H. J. Myers — Palo Alto, California

Page 4

This could mean that if you enter at the terminal
TESTGENPRIMARY EBE7 the response would be

All.B4.D3.H2 100% PRIMARY RULES TESTED

Al4.B8.F5.G4 55% CNDS & ACTIONS EXERCISED

AB8.B9.E2 68% ACTIONS EXERCISED

A7.C6
Al.C7
A3.B3
A5.C
A4

A6

A9

The sequence of the rules in the list would be the rules
with the best test coverage or highest % of actions ex-
ercised listed first.

Now that we have combined tests or rules over many DT pages,
it would be desireable to select a set of tests that apply
to a particular bug or sensitive area in the program.

TESTSELECT E8E7 CND A5 ACT A7 C2 when typed in should
respond with a list of rules that affect the identified
conditions and actions. The sequence of the list linkage
to another page would have an off page call as an Action
or as an Exit. An Exit linage would be a non-returning

call or link.

cc:. R. Haggerty

P. Judge

J. Griffin - sterling Forest
F. Dapron - San Jose

I. Cutter

P. Schlender

22

293

¢
-

M POQY 28

=

Memo Slip IBM

To 7% G \
A Bz
e

Tim
Name of person calling 00 Called to see you
Z . LL/‘—/L{-'W
Tigin | Extqnsi?n Loc.a‘x}dn Area Coc
SE 636

For your] Information [J Signature | Please [] Hanfle &
O Comments [Approval

Remarks
:
2
=
From
T « Memo Slip IBM
o Date
‘ / y
W24
Time 3 ao
Name of person calling O Called to see you O Please call
O wishes to see you O will call again
0 Returned your call
Tie line Extension Location Area Code | Telephone Number Call Back Nbr.
Foryour [J Information [Signature | Please [J Handle O File [Prepare reply, my signature
0 Comments [Approval [0 Return [Circulate O Seeme Ang destroy

Remarks f ke To Mk. LQC 6(&&.

For km would Be Tﬁu

H‘Ert\(")ﬁi\u ’0?&‘ j Ba t

W h o IH UJ C
M ;‘];T

:
- n hin\ LSy rJ -
{ Dwanment Building
- / Memo Slip IBM I
| 7 v ,&/9
/4, Y
/ Time
alled to see you Please call
7 ; Wishes to see you 0 will call again
: O Returned your call
Area Code Ta!aphone Number Call Back Nbr.
R T . F1SYS-63/
yryour LI edannation O Signale 'y | F) ian O Handle O File O Prepare reply, my signature
O Comments [J Approval O Return O Circulate [0 See me O And destroy
Remarks

Department | Building

r | -
From %_ [Phone ‘““'-—-""'TLccatian

Volume

6

Number

2

June 1974

[

-}
A V. Aho
S. C. Johnson 99
U_\:N Pooch | 125

20S0T AN

BZAYNH
4ns

124 . A. V. Aho and 8. C. Johnson

REFERENCES

Ano, A. V., Dexsixe, P. J., axp Untamas, J. D.
“Weak and mixed strategy precedence par-
sing.” J. ACM 19, 2 (1972), 225- 243,

Ano, A. V., Jouxson, 8. C,, axp UnLmax, J. D.
“Deterministic parsing of ll"ll"f"””“ gram-
mars.” Conference Record of ACM Symposium
on Principles of Programming Languages (Ot
1973), 1-21.

Ano, A. V., axp Pererson, T. G. “A minimum
distance error-correcting parser for context.
free languages.” SIAM J. Computing 1, 4
(1972) 305-312.

Ano, A. V., axp Urrmax, J. D. The Theory of
Parsing, Translation and Compiling, Vol. 1,
Parsing. Prentice-Hall, Englewood Cliffs,
N.J., 1972a.

Ano, A. V., axp Untman, J. D, “Optimization of
LR(k) parsers.” J. Compuler and Sysiem
Seiences 6, 6 (1972h), 573-602.

Ano, A. V., axp Unwtmaxn, J. D, The Theory of
Parsing, Translation, and Compiling, Vol, 2,
t;;_u‘rlupfli’llifg. Prentice-Hall, Englewood Cliffs,
AN, BHOR.

Ano, A. V., anp UrLLman, J. D. “A technique for
speeding up LR (k) parsers.”” SIAM J. Com-
puting 2, 2 (1973b), 106-127

Axpersos, T. Syntactic analysis of LR{k) lan-
guages. PhD Thesis, Univ. Newecastle-upon-
I'vne, Northumberland, England (1972)

Asn.r;;e‘s(‘::\", T., Eve, J., axp Homrxing, J i
g 'iill!llt_;_l:;r;:l Ll:lf{gl} parsers.’”" Acta Informatica

Demers, A. “Elimination of single productions
and merging nonterminal symbols of LR(1)
grammars.” Technical Report TR-12 0m-

141 por 127, Com
mter Science Laboratory, Dept. of Eleetrieal
j.‘llll%!li(t:ﬁ-l:;lllg. Princeton Univ., Princeton, N.J,

l)r;l{ll-:lu'r;ft,. j (i P “Practical translators for

'l“I{ {F-_J langn.agfs. ' Project MAC Report MAC
1-65, MIT, Cambridge, Mass_ 1964

l)p:l{}_;!m:n, F. L. “Simple LR(k) grammars."

g Comm. ACM 14, 7 (1971), 453460 4

,Am.li-,\,_.l_ ':.'-\11 efficient context-free parsing

. algorithm."” Comm. ACM 13, 2 (1970). 04 102

FeLoman, J. A, axp Guies, D. ‘“Translator
writir stems.’’ ¢ ACM 2 (1088

: 77—1]:?_: systems.” Comm. ACM 11, 2 (1968),

‘Loyn, . W. “Syntactic analysi

‘-) ! y8is \

. precedence.” J. ACM 10, 3 (l'iI:'i?“'Ii’ll!I]"i‘:if"l"r

Gramam, 8. L., AND Ruobnes, N, l-'_'.nljl;.w:’,m]
?)::ﬂnnt-m error recovery in compilers.”" Con-
erence Record of ACM Sympostum on Prin
f_;;fJPfseé? of Programming Languages (Oct [q;l;;,,'

Guigs, D. Compil ‘onst - I

oty “’Jilv:-r N{.!.:::'!a{rllltrli‘”r:- or Digital

lt_.'lll}l.\li. J. D., axp Monss S l',l‘ffi' techr
0% ' eneritt MWMSE, S. P. “A technique
proc i’fw i in:r:.::;'::f:r I?::“:‘Uﬁ; _Optimal Floyd-Evans
ACM 13, 8 (19_‘_1”-‘_;‘3;";!‘__:];; grammars." Comm.
James, L. R, oy syntax direc

= f irected error recovery
me rre
nethod.” Technical Report ('.‘SHG—]:!.‘ '(‘_‘r.:;;‘

Camputing Surveys, Vol. 6, No. 2, June 1574

‘

puter Systems Research Group, Univ. Te
ronto, Toronto, Canada, 1972

Jorriar, M. L. “On the reduced matrix repy
sentation of LH(k) parser tables.” Pil)
Thesis, Univ. Toronto, Toronto, Canads
(1973)

Kxvrn, 1), E. “On the translation of langusgs
from left 1o right.”" Information and Conlml},
6 (1905), 607-639

Kxurn, D). E. “Top down syntax analys’
Acta !Ia_flrfmufl'tu | T (l'f:l;, 97-110.

Konnxsax, A. J. A practical method of o
structing LR (k) processors " Comm. ACN 1L
11 (1969), 613-623

Lavoxpe, W. R., Lex, E. 8., axo Horxixe, J.J
“An LALR(k) parser generator.” Pre. [FIF
Congress 71. TA-3, North-Holland Publishiag
Co., Amsterdam, the Netherlands (1671), pp
153157

Lreixiva, P. “Error detection and recovery for
syntax directed compiler systems.” D
Thesis, Univ. Wisconsin, Madison, Wi

(1070}
Lewis, P, M., Rosenkrastz, D, J., axo Srisuns
. E. “Attributed translations,” Proe. Fifi
P

Annual ACM Symposium on Theory ¢f
puting (1973), 160-171

Lewis, P. M., axp Steanxs, R. E “3pis
directed transduction.’ J. ACM 15, 3 (199,
464 4NN

McGuurnen, T. *“An approsch to sulomsitg
syntax error detection, recovery, and com-
tion for LR(k) grammars.” Master's Thes
Naval Postgradunate Sehool, Monterey, (sl
1972

McKermax, W, M., Hornixe, J. J., axp Wout
saN, D, B. A Compiler Generalor, Prestit
Hall, Englewood Cliffs, N.J., 1970. :

Paagun, D, A solution to an open :ml!'l“":_!'\
Knuth.” [Information and Conire 17 (189
462473 ¥

Pacen, . “On the incremental a||=pf"3‘|‘ fo let-
to-right parsing.” Technical Report
Information Sciences Program, Univ
Honolulu, Hawaii, 19%72a

Pagen, D). “A fast left-to-right parse for o
text-free grammars.” Technical Heptt L
240, Information Sciences Program, Lo
Hawaii, Honolulu, Hawati, 1972b

Paaenr, D. “On eliminsting unit
from LR(k) parsers.” Technieal
formation Seciences Program Univ
Honolulu, Hawaii, 1974

Prrensox G. “Syntax error detection, €
wsan, T. G Synta " Phi) Thess.

Hawas

Nu:[;;r[:-'l‘»‘

| Repory v
Hawail.

rection and recovery in parsers Tobole®

Stevens Institute of Technology, He

N u72
J4., 1972, —

Winti, N. “PL360—a programming lssgisy
the 300 computers w J. ACM b, 19
37-74. rali

Winti, N, axp Wesen, H. “Evn® if_‘""“j:
zation of Arcol and s formal d“". (i
Comm. ACM 9, 1 (1966), 13-23, and 9.2
89-99,

Translation of Decision Tables

UuDO W. POOCH

Amistant Professor, Industrial Engineering Department, Tezas A & M University

Decomposition und vonversion algorithms for translating decision tables are
surveyed and contrasted under two broad eategories: the mask rule technique and
the network technique. Also, decision table structure is briefly covered, including
checks for redundancy, contradietion, and completeness; decision table notation
and terminology; and decision table types and aspplications. Extensive literature

citations are provided.

Keywords and Phrases: decision tables, systems analysis, dingnostic aids, business

applieations.

CR calegories: 3.50, 3.50, 4.19, 4,20, 4.49, 8.3,

Il INTRODUCTION

The use of decision tables by programmers,
analysts, and other users of computer facil-
les 15 increasing because they provide a
fmple tabular representation of complex
decision logie. Decision tables, although de-
veloped primarily as a vehicle for man-to-
man communiecations, can ease the prob-
lems of programming and documentation in
many applications where the feasibility of
uing the traditional flowchart, narrative
_de!frtptinn, or other communieations media
i questionable [10, 23, 30, 31, 64, 66, 70, 74,
19,84, 88,99, 101],

As higher level programming languages,
such as Conor, Forrray, ALcor, and others,
!’_('falﬂt‘ widely accepted, the communica-
ton gap between the computer specialists
ind the users of computer facilitics was ex-
pected to disappear. However, this has not
been the ease, so there continues to be a
igh degree of misunderstanding in systems
snalysis and design, and in implementing
the chosen procedure into s workable com-
Puler program. This is especially true of
Danagement-to-man ecommunication, spe-
tically because mansgement frequently
'l"f? ot understand this form of program-
ming language communieation. A language
0, or structure, is therefore needed to

bridge these man-to-man and man-to-ma-
chine communiecation gaps in these areas,
Decision tables ean contribute much to im-

prove this communication link (Fergus
[29]).
Decision tables provide an effective

means of communication between those in
and outside the data processing field by de-
fining both the problems and their corre-
sponding logical solutions. In addition, be-
cause decision tables suceinetly display any
conditions that must be satisfied before any
prescribed actions will be performed, they
are becoming very popular in computer
programming and system design as devices
for organizing logic, especially when at-
tempting to handle very complex situations,
and to be able to account for every possible
combination of conditions [23, 32, 57, 62,
66, 89, 92, 104]. Furthermore, the extent
and nature of the changes required to up-
date or revise an application program is
easily provided by the unique form of the
problem statement in decision tables (Auer-
bach [3]).

Flowcharts, a graphic language form that
has also been widely used for man-to-man
communications, that was spcciﬁca_lly de-
veloped for the purpose of representing op-
erations related to computer activities, such

Computing Surveys, Vol. 6, No. 2. June 1014

Udo W. Pooch

126 .

CONTENTS

1. Introduction
Comparison of Decision Tubles and Flowcharts
11. Decision Table Structure
Varieties and Formats of Decision Tables
Decision Table Notation
Definitions
Redundaney, Contradiction, and Complet
Uses snd Applicstions of Devision Tables
1. D sition and Conversion Algorithma
Evolution of Decision Table-to-Computer Program
Translstors
Techni Used in Trunslating Deoisi
Evolution of Tranalating Algorithms
Scanning snd Rule Mask Techniques (Muaking
Techniques)
Rule Mask Algorithm
Interrupt Rule Mask Algorithm
Conditional Testing and Network Techniques (Tree
Structure Techniques)
Quick-Rule Algorithm
Delayed-Rule Algorithm
Ambiguities
Automatic Versus Manual Tranalation
IV. Conelusion
Bibliograpby

Tables

Copyright © 1974, Association for Computing
Machinery, Ine. Genersl permission to republish,
but not for profit, all or part of this material is
g!-nnted, provided that ACM's copyright notice is
given and that reference is made to this publica-
tion, to its date of issue, and to the fact that re-
printing privileges were granted by permission of
the Association for Computing Machinery.

Computing Surveys, Vol. 6, No, 2, June 1§74

as system analysis, system design, program-
ming, documentation, ete., can also fre.
quently be utilized for other noncomputer-
related activities (Chapin [14]).

Compatison of Decision Tables and Flowcharts

The decision table is a convenient form
for expressing any conditional alternatives,
where a particular path to be followed is
dictated by a combination of a number of
conditions. Floweharts in such cases can be-
come very complex and difficult to follow,
and involve testing for each condition more
than once [105].

Decision tables overcome many of the
disadvantages of flowcharts as a means of
describing computer logic. As may be seen
from Tables 1 and 2, decision tables are
generally more suitable for direct communi-
cation with the computer, and are usually
less confusing in the more complex situa-
tions, especially if we consider that a deci-
sion table contains every possible flowchart
which can be drawn for any given problem.
Decision tables afford precisely stated logic,
more explicit relationships between varia-
bles, and simplification of programming
(Klick [62]). Thus they provide a conven-
ient way for the analyst or programmer to
account for every possible combination of
conditions.

It should be noted that the relative mer-
its of decision tables must be weighed
against the relative merits of well-strue-
tured flowcharts. In other words, with the
developing “technology” of structured pro-
gramming and methods for correctness
proof methodologies, the utility of decision
tables must be compared with that of 8
more modern version of programming via
flowcharts, rather than with the less disci-
plined form that was in evidence, especially
in nonscientific programming shops, until 10
very recently. Decisions in a flowchart must
be tested in the order in which they appear,
however in a decision table (except for the
ELSE rule and any specific ordered decom-
positions, such as the left-to-right decompo-
sition (Harrison [42]) the decision can be
tested in any order, depending upon the
particular algorithm used in translating the
decision table, This enables programmers of

—>——4‘

Translation of Decision Tables . 127

TABLE 1. AbvANTAGES/DISADVANTAGES or Frowcnanrs

Advantages

Drisadvaniages

¢ FEasily produced.

¢ Easily learned (few relstively simple rules
and component parts).

o Can be used unambiguously to describe
the way computers handle data, as well as
to represent operations performed by the
computer.

¢ Can be produced by computer algorithms
from source programs.

e Heavily influenced by personal preference
and jargon.

» Difficult to follow if the problem conditions
are complex.

e Revision is difficult.

e Limited in displaying all logical elements
of the total problem.

e Difficult to ascertain if all logical elements
are defined and analyzed, especially if the
problem conditions are complex.

* Floweharts sharing detailed decision logic
are unwieldy, resulting in “macrolizing”
difficult sections,

TABLE 2, Apvantaces/Disapvantaces or Decision Tannes

Disadvantages

Advamtages

¢ Clear enumeration of all operations per-
formed.

* Clear identifieation of the sequence of
operations

s Easily learned.

¢ Effeotive means of communication be-
tween people in and out of the data pro-
eessing field; le., not limited to ecom-
puter appliestions.

* Conecise and compact form of definition
snd description suitable for use in analy-
s, programming, and documentation.

* Easy to eonstruct, modify, and read.

¢ Can be used to document spplicstions in-
volving complex interactions of variables.

* When applied to computer systems, de-
cision tables foster better use of subrou-
tines, promote efficiency of computer run-
time, and provide a complete data check
for debugging.

* Directly adapted (snd possibly
verted directly) to eomputer operations
through symbolic logie and computer
programs.

* Compared with narratives, decision tables
Are more concise and precise

* Essier visualization of relationships and
slternatives.

con-

e For complex situstions, they may become
extremely large.

e Multiple tables may be needed in certain
cases to document decision logic (Dixon
[23], Fergus |28]).

* Many people find the graphie display of
flowcharts more meaningful than a tabular
description of logie.

e Desire for automatic translation ability
causes too detailed requirements for man-
to-man communieation purposes (analo-
gous to the use of programming languages
and their restrictions).

inalysts to econsider the relative fl"(‘q“ﬂ_‘c-"
with which transactions satisfy decision
files, and should lead to more efficient pro-
Pams (Reinwald, et al. [93]). Therefore,

although decision tables are not the answer
to all documentation and programming
problems, they do offer certain advantages
that overcome some of the drawbacks of the

Computing Surveys, Vol. 6, No, 2, June 1974

128 . Udo W. Pooch

flowchart technique [2, 55, 62, 73, 85, 87, 89,
92, 94, 98]. With the state-of-the-art ad-
vancing sufficiently to enable economic con-
version of decision tables, their use will
show a marked increase.

In Section II a broad spectrum of ideas,
including topies on the structure of decision
tables, and the varieties and formats of de-
cision tables, are presented. Section III is
devoted to the analysis of several different
algorithms that can be used for converting
decision tables into computer programs. A
discussion of the advantages, disadvan-
tages, and ambiguities of these algorithms
is given. Finally, it should be pointed out
that Shaw [96] and Denolf [20] present ex-
tensive, annotated bibliographies on deci-
sion tables, and that a recent issue of the
SIGPLAN Notices (Shaw [97]) is dedicated
completely to various aspects of decision
tables.

Il. DECISION TABLE STRUCTURE

A decision table provides a tabular repre-
sentation of information and data. Infor-
mation displayed in this manner is easily
comprehended by eye, even if the table of
information represents a complex logical
problem. A decision table is a structure for
describing a set of decision rules [4, 9, 13,
28, 46, 47, 49, 57, 68, 72, 103]. The basic
structure of a decision table is universally
accepted as that illustrated in Figure 1. Al-
_though other formats of decision tables ex-
ist, some of which are more convenient to
certain input/output devices (Pollack, et al.
[88]), they are all permutations of this basic
format. Decision tables are easy to learn
hecause of their simple structure; and effi-
ciency in using them can be reached with
little experience.

CONDITION CONDITION
STUB ENTRY
ACTION ACTION

STUB " ENTRY
Fi1a. 1. Decision table structure.

Computing Surveys, Vol. 8, No. 2, June 1974

TABLE 3. Basic ELemexTs or A Decision Tane

DICISION | DECISION | DRCISIOm | oEcissw |
maf] | WAEZ ALY | mapd
iF
o
o A
w0 ——ﬁ‘l\\’ .
A A
b ™
[
THEN
[
L
‘_‘\\ “\c-
e _ &
N0 =
o

A decision table ean be divided into four
quadrants [33, 38, 69, 81, 83, 106, 107]. The
upper left quadrant, called the condition
stub, should contain all those conditions
being examined for a particular problem
segment. The condition entry is the upper
right quadrant. These two sections deseribe
the set, or string, of conditions that is to be
tested.

The lower left quadrant, called the action
stub, contains a simple narrative format for
all possible actions resulting from the con-
ditions listed above the horizontal line. Ac-
tion enfries are given in the lower right
quadrant. Appropriate actions resulting
from the various combinations of responses
to the conditions will be indicated in the
action entry. An example of decision rules
and the IF-THEN function are illustrated
in Table 3. .

By considering Table 3, the meaning o
the different sections can be illustrated.
Each decision rule is a combination of r&-
sponses to conditions in the condition entry
quadrant. The decision rules are pumbered
for identification purposes in the rule
header portion of the table. The topmost
horizontal line represents IF, while the re-
II'III.iIIing_ horizontal lines n‘]‘ll‘l"ﬁ’["“l "?D
and the double horizontal line THEN. No®
that the condition half of the table is sp¥
rated from the action half by a double hon-
zontal line and the stub sections are P’
rated from the entry sections by 8 double
vertical line. These lines improve the reads-

bility of a table, and can be preprinted on
forms. Furthermore, many decision table
processors permit ordering on the action en-
tries, thereby making the explicit “AND”
of questionable value.

In addition to the decision table elements
already discussed, each table usually has a
table header. The table header is used for
identification purposes when the decision
table is processed by the computer. The in-
formation that might be found in a table
header includes an associated table number,
4 table name, the type of the table, the
number of decision rules, the number of
conditions, the number of actions, and vari-
ous options available to maintain flexibility
in formats.

If a condition in the econdition stub is
true, a Y is entered for that particular rule
m the condition entry; if the condition is
false, an N would be entered, In a situation
where a particular condition is irrelevant, a
don't-care would be indicated by use of a
dash (~) or an L

Two other entries, the » and $. are used
o indicate mutual exclusion of one condi-
tion with another on a rule by rule basis
(these symbols have been formulated by
Pollack, et al. [88] and King [59]). When-
ever the case arises within a single rule that
the satisfaction of some “required” test (Y
or N entry) makes some other required en-
iy a foregone conclusion, then the special
entries » (in place of N) or 8 (in place of
Y) can be used to indicate this fact. As an
illustration of these inter-condition depend-
encies, consider the example given in Table
i (Harrison [42]). Here, ‘VALUE' must
tqual 1 for Rule R1 to be satisfied, at the
ame time, it may not equal to 3 nor greater
than 2. This implies once ‘VALUE’ = 1 has
been determined, the o will eliminate any
further checks on the other two conditions;
Le. they ean only be false. In other words,
the « condition is required to be false for
that rule, and some other condition for that
same rule is adequate to satisfy the require-
ment, Rule R2, on the other hand, requires
that ‘VALUE' = 3, and therefore is cer-
lainly greater than 2, as indicated by the §.

s, the § indicates that a condition is
Tequired to be true, with some other condi-

Translation of Decision Tables . 129

TABLE 4. ExamprLe oF * aND § ENTRIES

5TuBs RULE ENTRIES
‘VALLE® = 1 Y .
'VALUE* = 3 * Y
"WALLE' » 2 " s

tion available to insure satisfaction of that
requirement. A more complete explanation
of these entries can be found in Pollack, et
al. [88], while an implication of these en-
tries for completeness checking is given in
Harrison [42].

Varieties and Formats of Decision Tables

Three types of decision tables are in cur-
rent use today. The limited entry table is
the most popular and most often used
(King [59]). Extended entry and mized en-
try tables are useful in some cases, but be-
cause they can always be transformed into
limited entry tables, most of this analysis
will be concerned with limited entry tables.
Examples of the three different types of de-
cision tables are presented in Tables 5A,
5B, and 5C.

In the limited entry table the only allow-
able entries in the entry quadrants are Y
(true), N (false), » (implicit N), $ (im-
plieit Y), X (execute action), or I (don’t-
care), and blank. All of the conditions and
actions must be placed in the stub quad-
rants. Each rule of the decision table should
be unique, so logically it does not matter
which rule is tested first. Some of the tech-
niques for selecting which rule to test first
will be discussed in the next section. Only
one rule should be satisfied by a single set
of conditions, and if more than one rule can
be satisfied the table is said to be ambig-
uous (King [58]).

An extended entry table has part of the
condition in the stub quadrant and the re-
mainder of the condition in the entry quad-
rant. The analogous format applies to tl_le
aetion part of the table. For example, in
Table 5B if credit limit is satisfactory and
pay experience is favorable, then approve
the order. By considering Table 5B, it can be

Computing Surveys, Vol, 6, No. 2, June 1074

Udo W. Pooch

130 =

Types of Decision Tables
TABLE 5A. Lismiten ExtrRYy TaBLE

1 2 3 4
CREDIT LIMIT IS SATISFACTORY ¥ L] L] L]
PAY EXPERIENCE IS FAVORABLE . ¥ N L
SPECIAL CLEARANCE 15 OBTAINED - - L L]
PERFORM AFPROVE ORDER X X i
%0 TO REJECT ORDER L]

TABLE 5B, Extexpep Enxtry TasLe
1 2 3
CREDIT LIMIT SATISFACTORY| UNSATISFACTORAY | UNSAT|SFACTORY
PAY EXFERIENCE - FAVORABLE INFAVORARLE
SPECIAL CLEARANCE - - NOT ORTAINED
DRDER RPPROVE APPROVE REJECT

TABLE 5C. Mixep Exstry TasLe

H 3 1
CREDIT LIMIT IS SATISTACTORY |UNSATISFACTORY | oWSATISFACTONY
PAY EXFERIENCE - { "
SPECTAL CLEARANCE - - L]
FERFDR APFROVE ORIER] |}
& TO EIECT ORNER (]

seen that only one action line is required,
whereas in the limited entry table two ac-
tion lines were required. In general, it can
be said that the limited entry table com-
presses a table wvertically, while the ex-
tended entry table compresses it horizon-
tally (IBM Corp. [48, 49]).

The mixed entry table is a combination
of limited entry rows and extended entry
rows (see Table 5C). The PERFORM and
GO TO statements in Tables 5A and 5C
were not just arbitrarily selected. The
PERFORM, as used above, has the same
connotation as the PERFORM verb as used
in CosoL; i.c., execution is temporarily

Computing Surveys, Vol, 6, No, 2, June 1974

transferred into a closed table (or a subrou-
tine), and control is subsequently returned
to the next sequential action of the rule.
The GO TO verb is used to exit to an open
table or subroutine; that is, no provision is
made for control of execution to return to
the initiating table (CODASYL [18]).
When constructing a table, the GO TO
statement should be the last executable ae-
tion within a decision rule,

Decision Table Notation

The basic structure presented in the pre-
vious section is easy to learn and under-
stand, yet a logical step-by-step analysis is
required in the preparation of a complete,
accurate decision table. One of the benefits
of this tabular method of communication is
its adaptability to systematic and analyti-
cal techniques for checking completeness,
contradictions, and redundancies [8, 11, 25,
26, 43, 44, 52, 53, 88]. Before considering
some of the analytical techniques, it is nec-
essary to define some of the notation and
terminology in common use.

One of the specific types of Boolean alge-
bra funetions is used as the basis for most
decision tables. This function, the AND
function, is considered to be the ordered set
of Y, N, I, or blanks that appear in the
condition entry boxes for a particular deci-
sion rule. The application of the OR fune-
tion can also be made in decision tables,
however this analysis will be limited to the
AND function (Hirschhorn [45]) Consid-
ering Table 5a, the following AND fune-
tions are found:

the AND funetion of Rule 1 = YII

the AND funection of Rule 2 = NYI
the AND funection of Rule 3 = NNY
the AND function of Rule 4 = NNN

To determine whether or not a decision
rule is satisfied, evaluate the AND function
for that decision rule, and check that It
equals the required transaction. For exam-
ple, the AND funection of Rule 3 (NNY) in
Table 5a would be the selected decision rule
if the transaction was to approve the order,
provided special clearance was obtained,
even though credit limit and pay experience
was unsatisfactory.

RS

Definitions

Two AND funetions are considered to be
dependent if a transaction exists that satis-
fies both AND functions. If, on the other
hand, a transaction satisfies one, and only
one, of the AND funetions, that AND func-
tion is independent.

A pure AND function is one that con-
tains no I (don't-cares) (Pollack, et al.
[88]). The following is a pure AND func-
tion: N*N:Y (of Rule 3 in Table a6),
where “+" is defined as the Boolean opera-
tor AND,

A decision rule is simple if it contains a
pure AND function. For example, Rule R3
in Table 5C is simple since it contains the
pure AND funetion N-N-Y. If an AND
funetion containg one or more I's, it is con-
sidered to be & mired AND function. For
example the AND function of Rule 2 in
Table 5C is N-Y-I; henee, Rule 2 is a com-
plex decision rule. If all the decision rules
of & decision table are simple, the table is
defined as a full table; a partial table is a
decision table that has some mixed decision
rules,

Redundancy, Contradiction, and Completeness

Before discussing the problems of redun-
dancy, contradiction, and completeness, it
I8 necessary to outline two of the basic re-
quirements for decision tables:

(1) Every decision rule must specify at

least one action (weak condition).

(2) Esch transaction must be able to

satisfy one, and only one, set of con-
ditions in a decision table, Although
there are exceptions to this require-
ment, for the type of “conventional”
tables (Pollack, et al. [88]) under
consideration here, this requirement
holds (strong condition).

In practice it is often convenient and in-
titive to define all rules (i.e., no ELSE)
mplying some no aetion rules; however, In
theory all of these no-sction rules should go
0 the ELSE, therefore the need for Re-
Guirement (1). For example, consider the
Situstion where the conditions in a decision
rile are: if the customer requests a first-
elass ticket and a first-class seat is availa-

Translation of Decision Tables . 131
ble. Without an action, such as “issue a
first-class ticket,” the above conditions are
nonsensical. The second requirement, which
is one of the underlying axioms for decision
table theory, must be true for other decision
table rules to be valid. Compliance with
Requirement (2) will also help to insure
completeness of decision tables and reduce
contradictions and redundancies among de-
cision rules.

Contradictions and redundancies are
checked by examining the decision rules to
be certain that between each pair of deci-
sion rules there exists at least one condition
row with a Y, N pair for the two rules. If
this Y, N pair does not exist, similar action
entries indicate redundancy, and different
action entries indicate contradiction (Pol-
lack [80]). Examples of contradiction and
redundancy are illustrated in Table 6.

Rules R1 and R2 of Table 6 are accepta-
ble rules because neither is redundant nor
contradictory. However, R2 contradicts R3
and R4 because they all have the same de-
cision rule, yet different action entries, Re-
dundancy exists between R3 and R4 be-
cause both have the same decision rule and
the same action.

A quick visual check, comparing two de-
cision rules at a time, can easily identify if
any redundancy or contradiction exists. If
two or more rules do not have at least one
Y, N pair in any of the rows, and the ac-
tions specified are not identical, then a con-
tradiction of logic exists. An easy way to
make this check for redundancy and con-
tradiction is to compare the AND functions
of different decision rules. In the following
examples the mixed AND functions are

TABLE 6. ExampLe oF REDUNDANCY AND
CONTHADICTION
Rl R | R2 R
cl ¥ Yol oy
c2 Y N N N
€3 N N NN
Al 1
2 X
Al X X

Computing Surveys, Vol. 6, No, 2, June 1974

132 . Udo W. Pooch

broken down into pure AND functions to
correct the redundaney problem in Table 7.

TABLE 7. CrepiT APPROVAL

]E! R2 | R3
CREDIT OK Yl1 N
PAY EXPERIENCE FAVORABLE 1]y N

PERFORM APPROVE ORDER X1 X

60 TO REJECT ORDER X

Rule R1 of Table 7 breaks down as follows:

i

(R1)

Rule R2 of Table 7 breaks down as follows:

1 ¥ N
Y % Y
—e
K X b 8
(R2)

The common AND function of Rules 1 and
2is:

X

This AND function can be eliminated. The
redundancy-free table is given in Table 8.

TABLE 8, Revisen CreEpir APPROVAL

Rl | B3
CREDIT OK Y N
PAY EXPERIENCE FAVORABLE Y N
PERFORM APPROVE ORDER X
60 TO REJECT ORDER X

It ha[s been shown how redundancy and
contradiction can be checked in decision
rules that have both pure and mixed AND

Computing Surveys, Vol, 8, No. 2, June 1974

functions. In Table 9 a summary of all the
rules for contradiction and redundancy are
presented for a pair of decision rules Rl
and R2. The AND functions of R1 and R2
are represented by AF1 and AF2, respec-
tively, and the actions are repregented by
Al and A2, respectively (Pollack, et al
[88]).

Another problem that always arises is
whether or not the decision table is com-
plete, and if it is complete, is there any
redundancy, or contradiction in the table.
The first step in checking a decision table
for completeness is to analyze the table to
see if the table contains simple decision
rules, complex decision rules (don't-cares),
and if any ELSE decision rule is present.

Pollack, Hicks, and Harrison [88] have
developed and proved that there exist ex-
actly 2 independent pure AND functions
in a decision table, where n is the number of
conditions found in the decision table. For
example, in Table 10A, three (n = 3) con-
ditions appear in the decision table, there-
fore 2* = 8 possible simple decision rules
must exist. All of the decision rules in Table
10A are simple decision rules because there
are no “don’t care” entries. Furthermore,
the decision rules are independent because
in any two decision rules, one of the func-
tions contains a Y and the other, an N.
Henee, it can now be stated that Table 108
is a complete decision table (Pollack, et al.
[88]).

If a transaction in Table 10A is “a guest
asking a bartender to mix him a certain
type (base) of drink,” several rules could
be combined. The rules in Table 10B illus-
trate how Table 10A could be rewritten 10
contain both simple and complex decision
rules. One way to test Table 10B for com-
pleteness would be to expand it into Table
10A; however, the following preferred
method has been developed (Pollack, et al.
[88]):

(a) Check that each decision rule con-

tains at least one action.

(b) Check each pair of decision rules %0
see if they are independent. Do this
by checking the AND functions of
the decision rules to see that there
a Y in at least one position of the

T'ranslation of Decision Tables . 133
TABLE 9. CoxTrADICTION AND Repuspancy
Li} | -4 LN RS | Re mr
AFT AND ATT ABE DEPINDONT L Y [Y [Y []
Ml - Amp 1 AN ERE
AL = A2 1 Y ¥ ¥ Y Y N
AFL 13 '_1.! 1 1 T [] N 1
A7 13 PORE = B S S R R S
AF] BRD AFT ANE WALID I L 1] 1
AF] AND AFR ABE NOT VALID I
REmDANT RLE 13 A7 1 1
SEmMOANT BAT |3 AF) 1
AF] D n_'r_mmm WDRNDANT LTS] | X 1
AF} W AFT 00 WGT COMTAIN REDUNDANT RLLS X
AF1 AND ATT ARI CONTRATCTONY T
”]ﬂﬂ“mm'wtﬂm | X 1 L] L
THIS WAL 1% IOSTINL =
A = ACTION.
AF = AND FUNCTION.
fu_nctinn and the other function con- TABLE 10A. Exrannep BArTenpER
tains a N, T3
o . 1js |8 1
(¢) Show that the 4 rules in Table 10B Bast 3 53108 8 (3 N3
can be expanded into 8 decision Sin mase v el wle [alv]n]e
ﬂlll'ﬁ. voomA BASK Y wlvlvInlslvln
: To accomplish (¢), recall that each deci- [0 oo ox siw aw vowoom vwaros I* 1] =] 2] ||
sion rule containing an AND function with [0 wea s o s (soawenvon [[* | | 1] 5 %
an L in r positions is equivalent to 2% simple [v o vowro aacr twooor wery [[¥][] -
decision rules (Pollack, et al. [88]). For ex- [s wwom owar) f2fs]s] |x
ample, in Table 10B, (ILAASMN. S0 TR, (0. i) g :
OFFER GUEST A SOFT cRINK L
Rl has 2! = 2
R2 bss 2¢ = |
Ribina 2 = 2 TABLE 10B. BArTEXDER
B has 2' = 1 BaETEAGER
RS has 2% = | 1zl 3[al5]s
RE has 2¢ = |} RN B vjefmfrjn]w
. S8 st nennnr
TOTAL 8§ SIMPLE DECISION RULES YOORA AL slglrinluln
i OFFCE WOORA Of GIN AND widsurms (mAstint) foje | ¢ 3
Table 10B satisfies all of the three tests for OFFIH YOORA ANO ORANGE JUICE [SCRTMERIVER))| 1 X
Wl’l"mﬂl‘ﬁﬁ. therefore it is a complete de- oerEn voous a80 tomers sutce oo manyll 3| | 5
tiston table. OFTTR BOUNDOR ANTI VERMOUTH {MARHATTAN) i ¥
Qm- way to insure completeness in any DFFER ROURRON AND WATCR (KB FASHTON] d o :
decision table is to incorporate the ELSE DFFLH GEST A SOFT Wine X

rule into the decision table. The ELSE rule,
by definition, includes all rules not specifi-
cally given in the tables. Usually the ELSE
rile is merely a convenient catchall rule
placed at the extreme right of the table
With u special symbol in the rule header
that identifies it as such (McDaniel [69]).
For decision tables that are converted into
famputer programs, ELSE rules reduce the
imount of needed coding, thereby making

program more efficient. However, the
ELSE rule should not be used in this way;

it should be used only for those transactions
that analysts say cannot possibly happen,
and not as a catehall for the convenience of
the practitioners, Even with the ELSE rule
present, a decision table must still allow
ever case to occur. In other words, a table
must be checked for exactly how many sim-
ple rules are in the table, and that the total
number of ELSE rules does not exceed 2",
If the total does exceed 2%, then a contra-

Computing Surveys, Vol. 8, No. 2, June 1974

134 . Udo W. Pooch
TABLE 11, Tue Eise RunLe
1 2 3 4 5 |fLSE
A=1 T L] 1 1 "
g=2 1 | 1] L]
C=3 1 L L] L] L]
D=4] H L] L] Y
E=5 [1 1 ¥ ¥
CALCWATE SUM |
CALCILATE DIFFERENCE X
CALCWLATE PRODUCT L} L}

NUMBER OF POSSI-,

BLE SIMPLE

RULES -2 =28 = 32
NUMBER OF SIMPLE

RULES REPRE-

SENTED = 2r FOR EACH RULE
Rl = 22 =4
R2 = 2! = 4
R3 =2=28
R4 =20 =2
RS =20 = |
19
NUMBER OF RULES
REPRESENTED BY
ELSE RULE =32-19=13

Conversion of Extended Entry to Limited Entry

diction or redundancy exists. If the total is
less than 2", it may be readily determined
how many simple rules are represented by
the ELSE rule (Pollack, et al. [88]). An
illustration of the number of decision rules
that may be represented by an ELSE rule
is provided by Table 11. Since there are five
conditions, there are 2% = 32 possible sim-
ple decision rules. The number of simple
rules actually present in the table is (2* +
27 + 2% 4+ 2' + 29 = 19. The difference, 13
(32 — 19), is the number of rules repre-
sented by the ELSE rule.

In summary, checking for completeness
in decision tables has been discussed with
the following three possible constraints:

1) Simple decision rules only.

2) A decision table with both simple and

complex decision rules,

3) Decision tables with an ELSE rule.

It should be kept in mind that even
though a decision table is a full table. a
check for redundancies and contradictions
is still a requirement. Once a table has been
found to contain no redundancies or contra-

Computing SBurveys, Vol, 6, No, 2, Juns 167¢

dictions, a check should be made to deter-
mine if it is complete.

Uses and Applications of Decision Tables
Decision tables are useful in many areas
of application. This section will analyze
some broad-based uses of decision tables,
including one specifie application.

In Simulation Models

The previously emphasized advantages of
decision tables in handling complex logie
makes them a definite aid in formulating
the logical flow of simulation models. The
queueing structures involved in a model are
governed by decision rules which can be
easily deseribed by decision table usage. In
a model employing decision tables, the ta-
ble structure is mainly used to determine
whether a subprogram is to be executed at &
particular time in the simulation. Decision
tables also provide a diagnostic aid for the
programmer, as well as improving the gen-
eral communication between the program-
mer and his problem (Ludwig [66]).

In an Orgamzation

Decision tables can be used at different
levels and for different functions in an or-
ganization. Policies of top management
may often be expressed tabularly. Tables
may be applied to areas such as engineer-
ing, mathematies, personnel, and account-
ing. Furthermore, decision tables can be
combined with a decision documentation
plan such as that of Fergus [29]. Features
of this plan are:

1) Use of tables throughout an organize-
tion to document all decision making
that deserves documentation.

2) Tables and their rules are eross-refer-
enced, :

3) All data elements used in an organi-
zation are cataloged and coded.

4) All these tables, data element codes,
and cross-referencing information are
maintained under computer control.

Following this plan permits:

1) Display of documented decision mak-

ing.

D |

2) Instant tracing of the effect of deci-
sions throughout the documented
structure,

3) Rapid reflection and implementation
of decision rule changes at all related
lower levels.

4) Improvement in study and design of
large integrated systems while provid-
ing a total view of the organization’s
data flows and requirements.

9) Easier application of advanced tech-
niques for systems simulation and in-
formation flow studies.

Suggested steps for evolving a decision
table usage plan in an organization can be
outlined as follows (Fergus [29]):

) Aequire & brief, broad picture of what

decision table usage is all about.

2) Have at least one individual in the
organization become an expert with
decision tables,

Anticipate problems to be incurred

through usage.

4) Have a reference document.

5) Encourage the use of decision tables.

6) Explain tables thoroughly to systems

users,

Follow up on the program:

a) Identify and correct problems.

b) Look for areas that are not using
tables, and find out why they are
not being used,

¢} Keep up with developments in the
organization that might suggest
changes in the use of tables.

3

7

In Systematics

Systematics [40, 41, 56] is a set of tech-
tiques for designing and describing infor-
mation systems which permit the user to
foncentrate on the design and description of
A &¥stem without having to consider prob-
lerns concerned with system implementa-
tion.

The basic statement in systematies is
talled an element. The element is actually a
pecial case of a decision table. Three fea-
tures of this decision table-like element are:

D 1t is confined to providing rules for

obtaining one derivation only. For ex-
ample, pension contribution and holi-

Translation of Decision Tables 135
day entitlement may both be influ-
enced by length of service; the general
decision table structure would con-
sider all the relevant states, but the
element considers only those which
affect one derivation, pensions or holi-
days, in this ease,

2) The “primary conditions” determin-
ing when an element is performed, are
introduced.

3) Substitute a “use” list for “go to” in-
formation in the action entry of a
general decision table form. (This use
list contains the names of other ele-
ments that use the derivative.)

This variant decision table form i consid-

ered to be more manageable because the

entries are limited to the combinations of
conditions that yield the derivation of only
one item. The new table is output-oriented
in that the designer can work back through
the output and determine exactly which
rules have been used for a particular deri-
vation. The new table form also avoids any
processing sequence, and therefore permits
directing attention to any one element, ig-
noring the rest of the system (Grindley

[40]).

In Automatic Test Equipment Systems

The use of a programming language,
based on decision table techniques, permits
the test engineer to write test statements
casily, and permits programming a test
specification with minimal knowledge of
programming techniques and of the specific
test equipment system involved.

The envisaged program involves the
process of translating test requirements into
4 test program. A testing system must auto-
matically perform any sequence of tests on
a unit being tested, and must choos_e a new
sequence of tests in accordance with pre-
vious results, ‘

A modified decision table structure is
used with the test conditions placed in the
condition statements quadrant of the table,
with the resultant test actions being placed
in the action statements quadrant m}d the
necessary testing parameters ﬁ]'ling in the
rules portion. The advantages gained by the

Computing Surveys, Vol. 6, No. 2. June 1074

g—

136 . Udo W. Pooch

decision table structure are, once aga_in. to
enable the test engineer to divoree himself
from both knowledge of programming tech-
niques and the test equipment itself.

lil. DECOMPOSITION AND CONVERSION
ALGORITHMS

Evolution of Decision Table-to-Computer
Program Translators

Systems analysts and individuals involved
in program development were confronted
with situations in which existing methods of
problem descriptions, such as flowcharting
and narratives, were inadequate. As a re-
sult, decision tables were invented (Me-
Daniel [67], Pollack [84]). Truth tables like
that in Figure 2 and logic tables, such as
Federal Income Tax forms, had existed
prior to the introduction of decision tables;
but they did not have a standard format,
nor were they automatically convertible
into computer programs (Quine [90, 91]).
The logic used in those truth tables pro-
vided a ready springboard for pioneers in
the development of decision tables. The
truth table in Figure 2 indicates the truth
values that X and Y can assume, as well as
the truth values of the logical statements
“X OR Y” and “X AND Y". An up-to-date
diseussion of the application of decision ta-
bles to tax forms is given by Ainsglie and
Kenney [1].

In 1957 a task group at General Electric,
one of the earliest users of decision-strue-
tured tables, developed such tables, and a
computerized method of solving them. The
processor for solving these tables initially
operated on an IBM-702, and was subse-
quently implemented on the IBM-305, 650,
and 704. An improved processor and lan-
guage called TassoL (Tabular Systems

I R I
- et wm wh |-

<
o 1

FiG. 2. Truth table.

Computing Surveys, Vol. 6, No. 2, June 1974

(TIn-A s | mec N ® 10
03 we | LE.] -7

L (L L (LR} Tami-3 |
NS LB m l a2 J
s 1w 1o we | s |

Fi6. 3. Horizontal rule format (Tanson)
Oriented Language) was implemented on
the GE-225 in early 1961 [35, 50, 51, 63,
88]. With the Tassow processor, an analyst
could bypass the programmer, and input
the prepared decision table directly to the
compiler for processing. This processor,
which is still in use, utilizes the horizontal
rule format, in which the decision rules are
read horizontally. For example, the first de-
cision rule of Figure 3 reads: If Ttem-A EQ
3 and Item-B NE 4 and Item C EQ 20 then
GO TO TABLE-2.

About the same time, a special committee
for the CopasyrL (COnference on DAta
SY¥stems Languages) Group, studying deci-
sion tables, developed a decision table lan-
guage known as Dertas-X (Deeision Ta-
bles, Experimental) [7, 16, 17, 19, 69, 77, 78,
79, 80, 82, 86]. In 1965, a follow-up by a
working group of the Los Angeles ACM
SIGPLAN (Special Interest Group for Pro-
gramming Languages) resulted in an im-
proved processor called Deran-65. This
processor, integrated into a CoboL compiler,
was a significant data processing develop-
ment [82, 85, 104].

Other decision table innovators in the
early 1960s were Hunt Foods and the Suth-
erland Company. About this time, work by
IBM in conjunetion with the Rand Corpo-
ration, resulted in a processor called
Forras, using the scientific programming
language Forrrax (Fergus [27)). Prior to
Fortan, most of the processors had used
Cosor. The Insurance Company of North
America, produced a decision table proces
sor called Lonoc which was used on the
IBM-7080 [21, 22, 36, 37)

Several government agencies also partici-
pated in this early development. CENTA
was developed through a joint effort of the
United States Bureau of the Census and
Sperry Rand. A processor subsequent 10
CexTAB was TAB-7C which, like FoRTAS,

used FORTRAN as its base programming lan-
guage.

One of the more unique processors devel-
oped during the 1960s called Per (Prepro-
cessor of Encoded Tables) was a product of
Bell of Canada, Per, using a PL/I decision
table language program, produced PL/1
source statements (Fergus [27]). Some of the
more recently developed processors include
Derrax, Detoc, Dertar, Dertas-70 (Me-
Daniel [68]), Tawnrrax, Smp, Drcisvs (Pol-
lack, et al. [88]), and Loatan (King [54]),
with an application in systematies [40, 41,

Many favorable comments have come
from the users of decision tables, The su-
pervisor of preparation of computer pro-
grams for the 1964 Census of Agriculture
stated that the very extensive and compre-
hensive consistency checks and the result-
ing desirable adjustments in data could not
have been computerized without the use of
decision tables (MeDaniel [69]).

An extremely complex file maintenance
problem arose at the USAF Arus (Auto-
matic Resupply Logistie System) at Norton
AFB, Calif, Almost seven man/years had

n spent trying to define the problem us-
g narrative deseriptions and flowcharts,
but to little avail. Then a crash program
using decision tables was implemented,
Four analysts spent one week establishing
the decision table format. Three weeks later
the problem was completed (Fisher [32]).

Techniques Used in Translating Decision Tables

The purpose of this section is to discuss
the translation of decision tables into com-
puter programs, For this purpose, an or-
derly procedure, or algorithm, is needed to
franslate the tabular structure of the deci-
fion table into an efficient sequence of ma-
thine-executable instructions, The term de-
Composition is used to deseribe any of the
techniques by which deecision tables are
tonverted into conventional decision trees
o programming language (Pollack, et al.
88]). Two main classes of decision table-
16-computer program conversion algorithms
i available: tree, or network, structure
Wethods (71, 85, 92, 94, 98] and mask meth-
ods [55 62, 89]. The algorithm selection

Translation of Decision Tables . 137

should be based on efficiency criteria estab-
lished by the user (2, 12, 24, 73, 76, 85, 87,
89, 92, 94, 08, 108].

Efficiency of a decomposition algorithm
usually falls into one of two classifications;
namely minimization of storage necessary
for the object program (Pollack [85],
Sprague [100]) and minimization of proe-
essing time (King [55], Montalbano [71]).
It is impossible, with current techniques, to
design an algorithm that would be globally
optimal in all situations, so it is necessary to
analyze the constraints in each situation
before determining what kind of an algo-
rithm to consider, Once an algorithm has
been selected, it can either be used in a
hand coding technique or built into a pre-
processor compiler for automatic transla-
tion of tables (Pollack, et al. [88]).

Most. of the decomposition algorithms
deal with limited entry decision tables
rather than the extended entry or the mixed
entry decision tables [85, 92, 94, 98], This
does not create a problem because extended
and mixed entry decision tables ean be eas-
ily changed into limited entry decision ta-
bles. An extended entry table is illustrated
in Table 12a and an equivalent limited en-
try version in Table 12b.

There are two major ways of translating
a limited entry table into a computer pro-
gram. The first technique, called scanning
for, at more sophisticated levels, the rule
mask technique [5, 28, 55, 105]), involves

TABLE 12A, OnrtciNan Exrenpen Extry

T 3 A =5 ILSE
is o 2] ; 1
£ 1 a 1 f 3
COMPUTE 2 = -9 F+rlx=-v% I:ll‘
TABLE 12B. New Limitep ENxTrY
] 2) ‘ 158
=2 - L 4 . -
I=a - - ¥ 4
=g L] . - .
T} Y . ¥ -
F=3 * ¥ = ¥
COMUTE 2o %o ¥ P |
P 2o k- Y] i

Computing Surveys, Vol. 6, No. 2, June 1074

L‘—_—

138 . Udo W. Pooch

testing each transaction against all perti-
nent conditions in a single rule and scan-
ning across the rules until one is found in
which all conditions are satisfied. The solu-
tion is said to be in that rule, and conse-
quently the actions associated with this rule
are executed. To minimize run-time for the
resultant program the rules are often or-
dered on the frequency in which they are
expected to be selected (Fergus [28]. Pol-
lack, et al. [88]). An example of the scan-
ning technique is illustrated in Figure 4,
using Table 13 as a sample decision table.

Secanning Technique

TABLE 13. Samrre Scannine TABLE

1 1 3 L] ELSE 1

€l ¥ N ¥ N

(=4 N - T L]

c3 ¥ 7 L

(3] L)] 1 §

L] T L]
cL s =
T L] tl

Y L
[+] Q -

Fic. 4. Testing sequence of sample table.

The transaction vector is compared with
one condition at a time in each rule. For
example, test the table at the first pertinent
condition and if the first condition is satis-
fied, test the transaction entry against the
first pertinent condition of the second rule.
The complete scanning technique of Table
13 appears in Figure 4. (Note that Table 12
contains mutually exclusive conditions such
that, as soon as “Y = 1" has been deter-
mined, no further checks on the “Y" values
need be made. The * notation eliminates,

Computing Surveys, Vol. §, No. 2, June 1974

for example, the “AND” function
C1-C2-C3-C4-C5.)

The second technique for translating lim-
ited entry decision tables into computer
programs is called condition testing, or the
network technique (Fergus [28], Montal-
bano [71]). This method tests one condition
at a time and requires the rules in the deci-
sion table to be unambiguous; i.e., one
transaction cannot satisfy more than one
rule. The network technique takes advan-
tage of this requirement and seeks to isolate
the unique rule satisfied by each transac-
tion entry. It is primarily condition-ori-
ented (Pollack, et al. [88]). A typical de-
composition tree for a decision table is
given in Figure 5 (Fife [31]).

It can be observed from Figure 5 that one
row of the original decision has been se-
lected as the starting point. The particular
row that is selected for a starting point can
be based on several different criteria that
are discussed later. The condition in the
selected row becomes the first comparison
in the tree structure. The original decision
table is then decomposed into two subtables

=

3] D

Q L] -

4] v -

e - . L L

: O - " L
allr - - T K
s v N e i

Y - 1 »

(2]

ay - gy - o L] o
ay - CigY » (= L) 1]
0 L

F16. 5. Decomposition tree of a decision tree.

(containing one less row), one subtable and
one rule, or two rules; each of these is asso-
ciated with each branch of the comparison.
A row is then selected from each of these
subtables and its condition is tested. This
process is continued until each rule of the
original decision table or an ELSE rule ap-
pears as one of the branches of a condition
{ Pollack [85]).

In dealing with these specifies of the two
previously mentioned decomposition tech-
niques, the action part of the decision table
1 omitted beeause the algorithms are de-
signed to isolate a unique rule which, in
turn, defines an action set. (Only limited
entry tables are discussed because the ex-
tended entry decision tables ean be con-
verted to limited entry tables.)

Evolution of Translating Algorithms

Most of the decision table techniques dis-
cussed in the literature, as was seen in the
previous section, can be divided into two
broad eategories. Techniques that optimize
fore storage, and those that optimize execu-
tion time; some techniques attempt to op-
timize both eategories.

Montaibano [71], the first to devise tech-
niques for obtaining computer programs to
optimize storage requirements and execu-
ton time, developed two methods ealled the
Quick Rule Meothod and the Delayed Rule
Method. The objective of the quick-rule
method is to perform, as soon as possible,
‘h'_)‘-" tests which will isolate a rule as
fuickly as possible. This method is efficient
with respect to storage requirements. The
objeetive of the delayed-rule method is to
delay the tests isolating rules as long as
Pssible. This method is efficient with re-
et to average exceution time. Montal-
10 work was used ns a basis for the
teehniques developed by Pollack, [85].

he objeetive of Polluck's first nlgorithm
10 convert & decision table to & computer
WOfam using the minimum number of
:Tﬂfngp locations. In his second algorithm,
- objective is to convert a decision table
% 3 computer program in which compari-
™ can be exeeuted in minimum time

'PDHM“E '&',]i The algorithms automati-

Translation of Decision Tables - 139
cally handle the ELSE rule and isolate any
redundant or contradietory decision rules
during the conversion process.

A different process that used a rule mask
technique was developed by Kirk [62]. This
technique resulted in the optimization of
storage requirements, but was inefficient in
average execution time because it required
the sensing of all conditions by way of a
mask which is used to screen out nonperti-
nent conditions according to the input data
prior to scanning the decision rules. Further
work in this area was done by Press [89]
whose method offered better run time op-
timization than Kirk's technique. Another
technique that expanded Kirk's work was
developed by King [55]. One of the assump-
tions in this technique is that advance in-
formation on evaluation times and fre-
quency of occurrence of rules is available.
King's method offers a marked savings in
computer run time in comparison with
Kirk's, but it uses more core storage space
because of the increased complexity of the
branching structure,

Some techniques for programming deci-
sion tables in higher level languages were
explored by Bjork [6] and Veinott [104].
Specifically, they used Fortran, CosoL, and
AvrcoL in their translation of decision tables
to programs. One of the most rigorous
works on translating decision tables into an
optimal branching sequence has been done
by Reinwald and Soland [92, 94]. They
have developed two algorithms that mini-
mize run time and core storage plus optim-
izing the resulting test sequence. Further-
more, they elaim that the two algorithms
ean be combined toryield a testing sequence
that minimizes the total cost of both core
usage and run time (Pollack, et ﬂl._{SS]}.
Even though these algorithms are quite ef-
ficient, they are not widely used l'wraust’_of
their complexity. Besides they require prior
information concerning the frequency with
which the decision rules are satisfied.

Further work on Pollack’s algorithm has
been done by Shwayder [98]. He proposed
two alternatives to Pollaf'k's algorithm
which he advises will result in lower execu-
tion time. His first alternative uses the

Computing Surveys, Vol. 8- No, 2, June 1074

140 . Udo W. Pooch
communications eoncept of entropy (l.e., a
measure of the variability of a set of mes-
sages) and Shannon’s noiseless coding theo-
rem. This algorithm is most effective when
the estimated frequency of the ELSE rule is
very low. Shannon’s noiseless coding theo-
rem can be used to find the average code-
word length, which is necessary in order to
minimize average code-word length.
Shwayder's second modification completely
tests the ELSE rule, but results in greater
run time. These alternatives do not neces-
sarily lead to globally optimal solutions be-
eause they suboptimize one subdecision ta-
ble at a time.

A technique for parsing large decision ta-
bles into smaller ones is offered by Chapin
[12, 14] who developed a technique whereby
a decision table can shrink to one twenty-
fourth of its original size by use of parsing
methods, Another parsing technique, pro-
posed by H. Strunz [102], permits parsing
utilizing only the syntactical characteristic
of the decision problem. It requires a de-
seription of the problem in decision grid
chart format, and allows the development of
deeision tables within defined limits by
avoiding, or at least minimizing, repetition
of conditions and actions in the resulting
tables. Some of the factors affecting deci-
sion table parsing are indicated in Figure 6.

Hierarchies for different levels of decision
tables can be established by using the inter-
relationships of Figure 6. An example of
vertieal parsing would be separate tables
dealing with data at various levels such as

DATA 1EENTITY
.
WERTICA HORT PRI
L pivision
oF DATA SEISION OF DATA
TARE
s G
DATA M8 AnD
CONTINT WARDMARL
RELATIONSHIP PUIDANTIES
Fia. 0. Parsing of decision tables.

Computing Surveys, Vol. 6, No. 2, June 1974

file, volume, record, field, character, and bit
level. Parsing of data to recognize hori-
zontal structure would utilize separate
tables for head, body, and tail of the data
sets. Job and hardware priorities would
depend on the type of environment in which
the decision table is processed.

Data content can be tested or sorted, and
then grouped into separate decision tables
according to content. The parsing factors
shown in Figure 6 can be given different
priorities, depending upon the type of proc-
essing environment.,

Another method of parsing the tables is
the use of proper, or more effective, linkage
between tables. It is possible, in an action
entry in one deecision table to direct entry
into another table. If the new table is en-
tered without qualifications, then it must be
processed from the beginning. If the direc-
tive statement is actually a return to a par-
ticular rule in a table from which an exit
was originally made, then it ean be said
that the task has been broken into parts;
that is, instead of the complete processing
of each table, only parts of each table may
be necessary to process and satisfy input
data (Chapin [12]).

Scanning and Rule Mask Techniques (Masking
Techniques)

The straight scanning technique, which
has already been discussed, is inefficient
with respeet to the utilization of core stor-
age and run time. This technique has no
remembering capability in its testing se-
quence, so the same condition may be inter-
rogated many times. One way to improve
scanning is by using the rule mask tech-
nique (Barnard [5], Kirk [62]).

Rule Mask Algorithm

Many of the authors refer directly to
Kirk’s article [62] and his algorithm, there-
fore a fairly detailed outline of this alge-
rithm is given:

1) Prepare a binary image of the condi-

tion matrir of the table by placing 8
“1" in each position in which the org-
inal table has a “Y” and a “0” in sl

—>—4

other positions. Table 14 is the origi-
nal Credit Approval decision table,
and Table 15 shows the table matrir
for Table 14.

TABLE 4. CreptT Arrrovar

"
[:.I‘U!' LMY L !
| Y EPTRINT rapan ¢ a]
LA ctAvac metains : -l ,J'ﬂ
gm BT] ' f k J
Er RN aya] ﬂ

[f;_"_'_.
S AR

2) A masking matrix is needed to sereen
out nonpertinent conditions from the
transaction or data vector prior to
scanning the table matrix. A masking
mafnr is made by placing a “1"
wherever the original decision table
shows a pertinent condition (“Y" or
“N"); everything else is set to zero.
Table 16 shows the masking matrix
for Table 14.

TABLE 10, Masxing Marmix vor Crepir

AFPFROVAL
! L L4 L8] 1
=
§ oy ;
| : 1 1
t:__ = 3 1 el

3 Prepare a binary transaction vector
by placing a “1" in each true condi-
Bon position and a “0" in all other
positions. A simple transaction entry
and its veetor is shown in Figure 7.

Swrtim) .oy [s
(ST T . Tmy
CITTION 5 - Tmg 5 |

Fra 7
.7 Trihmnun vector

Translation of Decision Tables . 141

4) The actual scanning operation is
made rule by rule. The first rule of
the masking matrix is logically multi-
plied by the transaction vector to
climinate the rule’s nonpertinent con-
ditions from the transaction vector.
The result is then compared with the
first rule vector of the table matrix. If
the two are equal, the rule is satisfied.
If not, the scan proceeds to the next
rule. Table 17 illustrates the seanning
operation, and it indicates that Rule 2
satisfies the transaction entry,

TABLE 17, SoanninG Orgrarion

[Deft [omr | 500 | s [s
] i | . 0 i

1 I L]] . n L] L.
H]] - o n
o] 1 . n o

2 1 L ! - 1 1 s
1 ' 0 d 0 o

In terms of total storage requirements
this approach appears to be very efficient,
Each test need appear only once in the pro-
gram; and additional storage required to
generate and interpret the mask may not be
much greater than that used for transfer
mstruetions to achieve the branching inher-
ent in the conditional testing techniques.

With respect to average processing time,
however, this approach is not very efficient,
since all conditions must be tested regard-
less of the nature of the input, and addi-
tional time must be spent generating and
interpreting the mask (Reinwald [92, 04]).
A method for adding some improvements to
the rule mask technigue is the interrupt

rile mask method.

Interrupt Rule Mask Algorithm

One of the drawbacks to the rule m_n:i'k
technique, as presented above, is that it
might produce object programns of _lmlgcr
run time than necessary (King [5:;]_]. A
modification of the rule mask technique,
discussed below, takes into account both

Computing Surveys, Vel, 0, No, 2, June 1974

Udo W. Pooch

142 .

rule frequencies and relative times for eval-
uating conditions. The interrupted rule
mask procedure, due to King [55], does not
evaluate the rules of a decision table in a
sequential manner like the rule mask tech-
nique. Before discussing the strategies for
interrupting the testing sequence, a few
terms need to be defined; therefore, let

T = expected execution time for a pro-
gram;

t, = evaluation time for each condi-
tion;

f; = frequency of occurrence for each
rule;

S = time for carrying out the testing of
transaction vector for a single
rule;

3f; = total frequency.
Some of the above conditions must be

determined or estimated for the decision ta-
ble under consideration. The total run time
(see Table 18) can be determined for the
simple rule mask technique by using the
following formula:

T=(t+ta+ta+S)h+ (Li+latis
+ 28)fs + (81 + ta + ty + 38)fa + (4 +
f=+£s+45”.'

Testing according to frequency of oceur-
rence, and substituting the values of Table
18 into the formula gives:

RIC+74+44+1) =35 = 490
RIQ2Q+T7+4+1+1) =30 = 450
RE@24+7+44+14+1+41) =20 = 320
RER24+7T+44+1+14+14+1) 15 =25

Total Run Time E

TABLE 18, CawcvraTions For INTERRUPT RULE
Mask TecaNique

1y 125 2.0 | 25|22 | 2a
=y 1l ele |
' 5 |15 |m |

T I O T 20

s L L] v L] ? 100 8

e O] | e a e

a A L - L] [~ »

Note: Assume | = 1 for multiplying the data
vector by the masking vector and compare the
result with the transaction vector.

Computing Surveys. Vol. 8, No. 2, June 1974

e

There are several strategies that can be
used to decrease the run time. These strate-
gies usually yield different results, and the
one that produces a testing sequence with
the lowest total run time should be selected
for use in generating the translated code.
The strategies do not guarantee optimal
testing sequences in all cases, but they do
show an improvement in minimizing object
program run time (King [55]).

STRATEGY A tests the conditions in de-
scending order of magnitude of relevance
frequency (Xf;). This is based on the sup-
position that it may be best to evaluate
first those conditions most likely to be per-
tinent. With this strategy, the relative times
of evaluation of the eonditions are ignored.
The testing sequence for Table 18 using this

strategy would be C1-C2-R3-C3-R1-R4-
R2:

RBE+74+1) » 20 = 200
RIE2+74+1+4+1) 35 = 525
R4 24+T4+1444+1+41) e 30 = 480
R2(E2+T4+14+4+14+14+1) 215 =258

Total Run Time 1460

STRATEGY B tests the conditions in de-
scending order of Xf;/t,. This is based on
the supposition that it may be best to eval-
uate first those conditions with the shortest
evaluation times even though they may be
less likely to be pertinent. This results in a
testing sequence of C1-C3-R2-C2-R1-R#-
R3:

R2(24+441) e 15 = 105
RI(24+44+147+1) o35 = 525
R4 @2+44+14+7T+1+1) * 30 = 40
RE(Q2+44+1+7+14+141)+2 =30

Total Run Time 1450

STRATEGY C tests the rules in descend-
ing order of frequency, evaluating condi-
tions only when they become necessary for
testing the rule. The testing sequence of Ta-
ble 18 using this strategy would be C1-C2-
C3-R1-R4-R3-R2:

R1Q2+7+4+1) o35 = 40
RAQ+7+441+4+1 30 = 40
RI@2+7+4+14+1+1) 20 = 30
R2(247+4+14+1+1+1)015=2

Total Run Time 1515

STRATEGY D tests the rules in de-
scending order f,/3t,. This is based on the
supposition that it may be best to test first
those rules with relatively shorter condition
evaluation times, even though they may
have lower frequencies. This results in a
testing sequence of C1-C2-C3-R1-R4-R3-
R2 for Table 18 and a total run time of
1515.

For Table 18, the best testing sequence is
derived by using STRATEGY B, which
yiclds a total test time of 1450. This strat-
egy would then be used to translate the
decision table into a machine executable se-
quence of instructions.

The interrupt rule mask technique will
use more storage than the simple rule mask
teehnique beeause of greater program com-
plication. The algorithm relies on user-sup-
plied condition testing times and rule fre-
quency of occurrence. These disadvantages
ean be outweighed by the marked savings
in run time, so users that have large tables
should consider using this method rather
than the simple rule mask technique.

Conditional Testing and Network Techniques
(Tree Structure Techniques)

The basis for the more sophisticated net-
work or tree techniques are two algorithms,
due to Press [89], for evaluating nonambig-
Uous limited entry and extended entry de-
tision tables.

In the quick-rule method the objective is
10 make, as soon as possible, those tests
which will isolate s rule. This technique
feduces the amount of storage required be-
cause it minimizes the number of branching
mstruetions.

In Table 19 the condition pertion of a
tecision table is shown, On the right of the
tahle s the row count matrix which indi-
fales the rumber of occurrences of each
value in the condition entries of each row.
F",' example, in the first row there are three
15" and one 0", It ean be secen that the
*mallest nonzero number in the row count
BANX is in row one so the conditional in-
“rogations associated with this row would
be made. This would isolate rule 3 as indi-
fied in the flow diagram in Table 19. A
"% sublable and row count matrix are con-

Translation of Decision Tables . 143

TABLE 19, Quick-Rune Decisron TasrLe

ROW

COUNT

Mo R M 1]n

t B FuE piay V[T

e 0 | P n 2|2

& £ 8 1l ke 7|2
SIBTABLE |

Bt

Rl L] 4 110

[: 1 1 100

@2 0 10 12

€1 1 n n l_];

structed to test the remaining rules. Row
two and row three both have the same
smallest oceurrence value, so they are inter-
rogated, and this isolates the remaining
rules. The flow diagram in Table 19 depicts
the final result of the quick-rule method as
applied to the table.

The objective of the delayed-rule method
is to delay the tests which isolate rules as
long as possible. This results in minimizing
the average number of executed instructions
{Montalbano [71]). An example of the de-
layved-rule method is shown in Table 20.
Here, the row count matrix is searched for a
conditional interrogation which will divide
the table into two subtables as equal in size
as possible. In Table 20 the original table is
divided evenly into two subtables and their
respective row count matrices. The flow
diagram indicates the testing sequence of
the conditional rows with respect to mini-
mum row count occurrences in the subta-
bles. Comparing Tables 19 and 20, it can be
observed that fewer instructions will be re-
quired to isolate & rule using the delayed-
rule method. The delayed-rule method
minimizes the average number of executed
instructions, so it will have less run time
than the quick-rule method. .

The foregoing network type algorlth‘ms
can develop greater efficiency in translating
a deeision table into a computer program

Computiog Surveys, Vol. 6, No. 2, June 1974

144 . Udo W. Pooch

TABLE 20. Deravep-RuLe Decision Tanre

OM

ot

e [| m t]n

G Tl n 1 3l

2 o |1 n) 13

3 o llo 1 0 2|2
SUBTABLE 1 SUNTARLE 2

a 1
= [

=] 1 (=]

—-ﬂbc
e e
falle o
G
oy
D:'H‘

by using a more complex algorithm. If sev-
eral pre-known conditions, such as rule fre-
quency, dash count, delta count, and
weighted dash eount are available, more ef-
ficient algorithms can be used for minimiz-
ing core storage, and minimizing run time.
Several terms needed to be defined before
discussing the algorithms.

The Column Count (CC) for a rule is
equal to 27, where r is the number of dashes
(don't-care entries) in the rule, The Delta
Count (Delta) for a row is the absolute
value of the difference between the number
of Y's in a row and number of N’s in that
row. In each row, the Dash Count (DC) is
equal to the sum of the column counts of all
rules that have a dash entry in the row. A
Weighted Dash Count (WDC) for a row is
equal to the sum of the products of rule
frequencies and column counts of all rules
that have a dash entry in the row.

The testing sequence for both algorithms
is (Pollack [85]):

1) One row of the original decision table
is selected—the eriterion for selection
differs for the two algorithms,

2) The original decision table is then de-

Computing Surveys, Vol. 8, No. 2, June 1574

I’ s e

composed into two subtables (con-
taining one less row), one subtable
and one rule, or two rules; each of
these is associated with each branch
of the comparison.

3) A row is then selected from each of
these subtables, and a condition be-
comes attached to the previously se-
lected condition; ie., a single condi-
tion row is selected and becomes the
next comparison of the testing se-
quence,

4) The process is continued until each
rule of the original decision table or
an ELSE rule appears as one of the
branches of the condition, or a subta-
ble indicates that the original table
contained redundant or contradictory
rules,

Quick-Rule Algorithm

The objective of the quick-rule algorithm
to be discussed is to minimize the number
of storage locations (Pollack [85]). This
procedure is illustrated in Table 21, and the

TABLE 21. Miximum Core STorack

COLUMN COUNT » 3 i []
N E o = O L)
3] . -] 0
] » v . . |
(=] v - . . .
- Ll L | 1
e L & 32 =13 &
o M X [& K]
a i . 2 -) Ty 5 B
a sy ¥ & @ - » 4
oy - n - ' i

L

Fio. 8.

1] [i8

Flowehart of Tuble 21.

resulting test sequence shown in Figure 8.
The steps in the algorithm are:

(1

(2)

(3)

(4)

(5)

(6a)

(6b)

Check the table for redundancies
and contradictions. If two rules do
not contain at least one row where
one rule has a Y entry and the
other has an N entry, the two rules
are cither redundant or contradic-
tory: they are redundant if they
have the same action and contra-
dictory if they do not.

Caleulate the column count (CC)
and dash count (DC).

Determine the row that has the
minimum dash count. If two or
more rows have the minimum dash
count, select the row that has the
maximum Delta.

Taking the row selected in (3), use
the YES-NO branch to ereate two
subtables, each containing one or
more rules, with one row less than
the original row.

If the subtable contains more than
one rule return to (1).

If the subtable has exactly one rule
that contains only dashes, that rule
has been isolated.

If the subtable has exactly one rule
that containe only dashes, choose
any non-dash row and diseriminate
on it. This will yield a subtable
from the satisfied condition and an

Translation of Decision Tables . 145
ELSE rule isolation from the op-
posing branch.

If no subtable is produced, an
ELSE rule isolation is indicated.

If the subtable has exactly one rule
that has one condition with a Y or
N entry, discriminate on the condi-
tion. The satisfied branch isolates
the rule, while the opposing branch
1solates the ELSE rule,

(6c)
(6d)

Delayed-Rule Algorithm

The objective of the second algorithm is
to convert a decision table to a program
whose comparisons can be executed in mini-
mum time (Pollack [85]). Some of the as-
sumptions in this algorithm are: a) any
rules not specified or implied in the table
are assumed to be part of an ELSE rule; b)
systems analysts ean provide estimates of
how often each rule in the table will be
satisfied by an average batch of transac-
tions to be tested; and c) relatively few
transactions will satisfy the ELSE rule. Ta-
ble 22 illustrates the procedure for the sec-

TABLE 22, Minimus Rux Time
COMNCOINT =2 4 4 2
fe% 3 0 0 L
a1 W ¥ L] ELSE _WDC
5] Y N . [
€2 " - Y A 100
(4] L - - N 40
o - N Y 106
.p tCed 2 1
Lf-;oio {o f=25 30 10
Wi R WA Wi 2R M
alls v W o Ezll- v W o
caff v N w0 | L _ il - LIS £
<] B, ; 100 21| LA]
2 1
e 50 10
N
3 - el 3 [] o 2y -
l;l 4 [l T 1% o -
L3
.
[st K1 L]
1 b - - B
1
L5 n
L
'Y nua

Computing Surveys, Vol. 8, No. 2. June 1974

146 . Udo W. Pooch
ond algorithm, and Figure 9 shows the re-
sulting test sequence. The algorithm’s pro-
cedure follows:

(1), (2) Same as the previous algorithm.

Fia. 9,

Flowchart of Table 22.

TABLE 23. Compamisox oF TaBrLes 21 ANDp 22

mAE TASLE T TARE 7
W -] b - I »
1 4x 50 = 30 1 x 50~ 150
2 Palie @ 2225 @0
] 210 0 Ixld= MW
] Jule B LERLEAL]
ELSE H.i‘I 5= 0 I).ﬁci = 5= 1

ne ™)
a = number of comparisons.
b = expected frequency.

¢ = average number of comparisons for 3
ELSE branches.

(3) Determine those rows that have a
minimum weighted dash count
(WDC).

If two or more rows have a mini-
mum WDC, seleet from among
them the row that has the minimum
Delta. If among these there still ex-
ist two or more rows, select the row
with the minimum dash count. If
there are two or more such rows,
seleet any one of them. The test on
dash count does not affect running
time, but can save memory space
without adding to running time.

(4), (5), (6) Same as the first algo-

rithm.

A comparison of the execution times of
the two algorithms depieted in Tables 21
and 22 is shown m Table 23. The execution
time is based on processing 100 transactions
which have a frequency distribution as in-
dicated in Table 22. Assuming each condi-
tional interrogation takes one time unit, the
total test times are indicated in Table 23. It
can be secen that the second algorithm is
more efficient in run time because it uses
288 time units to process the 100 transac-
tions, whereas the first algorithm uses 318
time units.

A summary of the various decomposition
and conversion algorithms is given in Table
24. This table contains both the short (com-
mon) and the long class name, as well as
major references,

(3a)

Ambiguities

An aspect that is often ignored in deci-
sion table processing is that of ambiguities
in the tables. These need to be somehow

TABLE 24. Crasses or CONVERSION ALGORITHMS

Short (lass Naww

Mesking Technigque

Long Class Mase

Scanning and Rule Mask Technique

Sut-Algnrd thes

Bale Masr Algaritee
wire (82)

Interrupt Wule Mk A)goritee
Cing (55}

Tree Structurey Technigue

Cengitiona) Testing aed
Networs Technigert
Press (B9)

Quich-Bule Algarithe
FentaThess (T1), Pelloci

Delayed Bule AL the
Mentaitens (71),
Fallack (88}
Shugyder [98)

Computing Surveys, Vol. 6, No. 2, June 1074

reported to the analyst or the programmer
(Muthukrishnan, et al. [73]). King [568] sug-
gests that the rules concerning redundancy,
contradiction, and completeness, on which
the dingnostic facilities of processors for
translating decision tables to programs are
based, are unsatisfactory, He states that
the important aspeet of checking a table is
to eliminate ambiguities. He asserts that a
check-out of decigion table input (in check-
mg for ambiguities) should consist of two
parts: 1) if no ambiguity is possible in a
particular table, this should be noted; 2) if
there are ambiguities then all outcomes in
which they occur should be produced, leav-
ing it to the decision table originators to
check these facets of the table,

King, in a later paper [61] presents a
slightly different approach than the one-
rule convention to ambiguities involving
multi-rule decision tables, This approach
retains the idea that the set of actions cor-
responding to only one rule is selected for a
particular transaction, However, it does not
insure it by allowing only one rule to be
satisfied, but permits two or more rules to
be satisfied provided they have the same
action entries. Accordingly, if more than
one rule can be satisfied by a transaction
with identical action entries, the ambiguity
% said to be “apparent,” whereas if trans-
sctions specify different action entries, the
smbiguity is said to be “real,” requiring
torrection (King [61]).

Execution time diagnostics for these am-
biguities, as opposed to compile time diag-
Hosties, are implemented by condition tests
that provide complete information about
the conditions and their relation to the
data. The troe methods can not really cope
¥ith real ambiguities, and the rule mask
techniques do not consider them. Execution
Ume disgnosties for these ambiguities en-

te the value of decision table usage in
Pogramming (Muthukrishnan, et al. [73]).

One of the latest techniques developed is

 of Muthukrishnan and Rajaraman
fnf.‘ which uses execution time diagnostics

" pmpointing ambiguities in decision ta-

- They contend that execution time di-
ics are of immense value in checking
ot derision tables, because they precisely

Translation of Decision Tables . 147
pinpoint the errors in logic, instead of pass-
ing the task to the systems analyst. Pollack
[87] and King [61] have disputed this idea
and state that it is better to find ambigui-
ties during compilation rather than during
execution. In their work, Muthukrishnan
and Rajaraman developed two algorithms
for programming decision tables, which
have the merits of simplicity of implemen-
tation, and detection of ambiguities at exe-
cution time. The first algorithm is for lim-
ited entry decision tables, and clarifies the
importance of proper coding in simplifying
the mechanics of rule matching; the second
algorithm programs a mixed entry decision
table directly, without any intermediate
conversion, to a limited entry form, which
results in storage economy,

Automatic Versus Manual Translation

Effective programming efforts are re-
quired to convert decision tables into opera-
tional eomputer programs. This conversion
means that tabular representation of infor-
mation and data must be converted into
machine language instructions. The tech-
niques of program conversion have been
well developed in the past few years. There
are four principal approaches which can be
used: manual, semiautomatic, interpreta-
tion, and automatic conversions (Glans,
et al. [39]).

Manual processing is accomplished by
programmer rewriting of each decision table
for more efficient and compact representa-
tion. This method offers flexibility, and al-
lows the programmer to take advantage of
testing certain rules or conditions in a par-
ticular sequence. In general, mqnual pro-
gramming from decision tables is conven-
ient, and leads to reasonably efficient object
programs (Glans, et al. [39]). Any of the
higher level languages or gg&embly lan-
guage may be used for writing the pro-
grams. X :

Some people call the semiautomatic con-
version a translator. Basieally tl!ey are the
same thing, so the two terms will be used
synonvmously. This method converts a de-
cision table format into another program-
ming language that is acceptable as a com-
puter input language, One advantage of

Computing Surveys, Vol. 6, No, 2, June 1974

Udo W. Pooch

148 .

processing a table in this manner is that it
can be converted into a language such as
Foriran or Cosor. Thus a table can subse-
quently be run on any machine that accepts
Fortran or CosoL. One disadvantage of
this method is its relative inefficiency. It
requires a two-step process, because the de-
cision table has to be translated into a pro-
gramming language, and then this source
language has to be compiled or assembled
into an objeet program.

The interpretive conversion allows for di-
rect storage of the decision table, usually in
a coded or compact form, thereby insuring
easier maintenance (MeDaniel [67]). It is
necessary to have the interpretive program
in core before inputting the source program.
The main disadvantage is the slower solu-
tion speed. These programs usually have
some restrictions on the type of format and
vocabulary used in the source program.
While this method lacks the sophistication
of the other conversion methods, it offers
easier program maintenanee.

Automatic conversion programs are those
which will accept decision tables written in
a user source language, and completely con-
vert them to a fully acceptable input,
usually at the machine language level (Me-
Daniel [67]). Generally, an automatically
converted decision table will require less
execution time than interpretive and semi-
automatic conversions. This method forces
a higher degree of standardization, thus it
may encourage more effective communica-
tion. The disadvantages of automatie con-
version are that it tends to be inflexible and
is computer-oriented. Conversion of such a
processor from one machine to another
would require a considerable amount of
reprogramming, unless, of course, the
processor is written in a higher level lan-
guage, such as Cosov; e.g., DErar (Pollack,
et al. [86]).

Before selecting the method of conversion,
it is desirable to analyze the methods pre-
viously discussed, and then to select the one
that best fits the situation. Some questions
that should be asked during the evaluation
are: (1) Is it possible to use the method of
conversion? (2) What are the restrictions of
the possible methods of conversion? (3)

Computing Surveys, Vol. 6, No. 2, June 1974

Does the processor produce an efficient code
that satisfies the requirements? (4) With
respect to the processors that satisfy (3),
is the cost of running the processor worth
the service it provides (Gildersleeve [34])?
After answering these questions and com-
paring the different conversion methods, it
may be found that the most economical
solution is to hand code the programs from
decision tables, and not to use a preprocessor
at all.

Adding, deleting, and restructuring tables
is comparable to developing original tables
and programs. If a change is to be made
in a table, usually extensive hand conversion
is needed, again adding more overhead to
the desired change. (These overhead costs
must be included when considering long-
term maintenance.)

IV. CONCLUSION

Decision tables can be a powerful aid in
programming, documentation, and in effec-
tive man-to-man and man-to-machine com-
munications. Inherent in the design of n
decision table is the visual presentation of
complex programming logic with relative
case for modification, implementation, and
automatic conversion into executable pro-
grams. Several such algorithms for convert-
ing decision tables to programs, by gither
manual or automatic techniques, were
shown to be feasible, as well as practical
for implementation.

An inevitable outcome of increasing use
of decision tables in programming has been
the development of a large number of pack-
age processors and translators for the con-
version of decision tables to funectional pro-
gram form. These decision table processors
are software programs, which are available
for almost any language and hardware con-
figuration. Each processor has standards as
to size, format, words in the statement por-
tion, and other required characteristics
which must be met by tables prior to
processing. Meeting these standards will
usually require some manual checking of
the tables prior to the preparation of the
computer input. Then, the processor may
reveal redundancies, missing situations, and

contradictions within the table (McDaniel
[68]).

Since each table generates a separate seg-
ment of coding, each segment can be traced
back to the table that generated it: there-
fore, changes ean be easily made by rework-
ing one or more of the tables, and the effect
of such changes observed,

Each processor generates straightforward
coding, free of programming tricks; thus a
programmer should be able to follow any
program in a given installation, and make
any necessary changes.

A detailed reference table is given in
McDaniel's “Decision Table Software” [68],
which examines characteristics of many of
the processors, including the language of the
processor and the output language; the
hardware for which a processor has been im-
plemented (in some ecases the hardware for
which it is being developed) ; the types of
tables accepted as input by a given proces-
sor; the cost and availability of a given
processor; the number of tables, rules, con-

ditions, and actions allowed by a given
processor; and other notable characteristics.

The algorithm and translator used in con-
verting a decision table into n computer pro-
gram will therefore be determined by the
extent of the processing facilities and the
constraints of the application program. To
be able to use different algorithms and
translators provides more flexibility for the
users and yet works against the popularity
of decision tables in programming because
more individual effort is required in deter-
mining which algorithm and translation
Process to use.

ACKNOWLEDGMENT

The nuthor is deeply indebted to the referees for
their valusble suggestions and, in particular, to
the referes who pointed out a major omission in
the ariginal manuseript and provided encourage-
Ment in overcoming this difficulty

SBUOGRAPHY

L Ao, R J, axp Kexwer, A. A. “A tool for

tax practitioners.” The Tax Advisor (June
1972), 338-345

Translation of Decision Tables .

149

2. Arxowp, H. O, “Utilization of a decision table

basic program creation.” SIG-
PLAN Notices. 6, 8 (Sept. 1971), 12-19.

3. AverBacH., “Decision tables—their general
construetion and acceptance in programming.”
Auerbach Standard EDP Reports (1988), pp.
23:030: 100-103.

4. ArmerviNG, G. W. “FORTAB: a decision
table language for seientifie com uting appli-
cations.” Rand Corporation, -33 R
(Sept. 1962), p. 39.

5. Barxaro, T. J. “A new rule mask technigue
for interpreting decision tables.” The Com-

« puter Bulletin, Vol. 13 (May 1960), 153,

6. Byork, Harry, “Decision tables in ALGOL
60." BIT, 8(1968), 147-153.

7. Cankins, L. W. “Place of decision tables and
DETAB-X" Proceedings Decision Tables
Symposium (Sept. 1062), 0-12,

8. Canning, R. G, “How to use decision tables.”
EDP Analyzer 4, 5 (May 1066).

9. Canmue, N, H., Kixg, J., axp Kino, F. G. H.
“Logic structure {ables.” Comm. ACM 4,
6 (June 1961), 272-275.

10. Cavrrent, N. H. “Commercial and engi-
neering applications of decision tables” Pro-
ceedings Decision Tables Symposium (Sept.
1962), 55-61.

11. Caariy, Nen, “A Guide to decision table
utilization.” Data Processing Proceedings
1968, Vol. 11 (1966), 327-329.

12. Cuarix, Neo, “Parsing of decision tables.”
Comm. ACM 10, 8 (August 1967), 507-512.

13. Cuary, Nev. “An introduction to decision
tubles.” DPMA Quarterly 3, 3 (April 1967),
3-23.

4. Cuarix, Neo. Flowcharts. Auerbach Pub-
lishers, Princeton, N.J., 1971, pp. 20-21.

15. Crapyan, A. E, axp Cantanay, M. A, “A
deseription of the basic algorithm used in the
DETAB/65 Preprocessor.” Comm, ACM, 10,
7 (July 1967), 447-446.

16. CODASYL Systems Group and Joint Users of
ACM, Proceodings Decision Tables Sympo-
stum (Sept. 1062).

17. CODASYL Systems Development Group.
“Decision tables tutorial using DETAB/X”
(1062).

18. CODASYL Systems Group, DETAB-X. “Pre-
liminury specifieations for a decision tables
structured langunge” (1962).

19. CODASYL, Decision Table Tusk Force of
Systems Committee. “Draft of decision table
standards” (March 1966).

. Dexorr, H. “Decision tables: an annotated
bibhiography." JAG Quarterly 1 (1968), 67-82.

21. Devise, D, J. “LOBOC, logical business
oriented coding,” Insurance Company of
North America, Oct. 1962. -

. Deving, D. J. “Decision tables as a basis of &
frogrnmming Innguage.”" DPMA Quarterly 7
(1965), 461-466, : _

. Dixox, P. “Decision tables and their n;pl:-
cation.” Computers and Automation 13, 4
(April 1964), 14-19.

Computing Surveys, Vol. 6, No, 2, June 1874

150

2.

45.

. Evaxs, 0. Y.

. Femaus, R. M.

. Gexeran Evecrric CoMmpany,

. Graxs, R. B, axp Gman, B.

. Gran, B.

. Udo W. Pooch

Ecuer, J. F. “A Procedure for converting
logic table conditions into an efficient se-
quence of test instruction.” Comm. ACM 6,
8 (Sept. 1963), 510-514.

Erus, J. “Decision tables, a users’ guide.”
Western Electric Company, June 1967.
“Reference manual for decision
tables,” IBM, Sept. 1061.

. Fenous, R. M. “Decision tables—an a pli-

eation analyst/programmer’s view." Data
Processing 12 (1967), 85-109.

“An introduction to decision
tables,” Systems and Procedures Journal
(July-August 1968), 24-27.

Fercus, R. M. “Good decision tables and
their uses.” Systems and Procedures Journal
(Sept~Oct. 1968), 18-21.

Fire, R. C. “Decision tables, UNIVAC ap-
plication report.” Spring Joint Computer Con-
ference of Systems and Procedures Asso-
eiation (April 1965).

. Firg, R, C. “Decision tables." Systems Pro-

gramming Dept., UNIVAC, 1066,

Fisugr, D. L. “Data Documentation and
Decision Tables.” Comm. ACM 9, 1 (Jan.
1966), 26-31.

Frercaer, G. R. “Seminsr on decision
tables.” Buresu of the Census, Sept. 1960.
Guuoersieeve, T. R. Decision Tables and
Thewr Practical Application in Data Process-
l;ﬂ% Prentice-Hall, Englewood Cliffs, N.J.,
970,

“GE-225 TAB-
SOL reference manual and GE-224 TABSOL
application manual,” CPB-147B, June 1062.
AN “Tabular de-
scriptive languague.” IBM Technical Report
245 (Jan. 1962).

. Grans, R. B, axp Grap, B. “7080 decision

table system preliminary manual.”
Technical Report 2D1 (April 1062).

IBM

. Grap, B. “Structure and concept of deci-

sion tables.” Proceedings Decision
Symposium (Sept. 1962), 19-28.

“Engineering data processing us-
ing decision tab?e.:." Data Processing 8 (1965),
467-476.

Tables

. Grisprey, C. B. B. “The use of decision

tables within systematies.” The Computer
Journal 11, 2 (August 1968), 128-133.

. Guismey, C. B, B. “Systematics—a non-

programming language for designing and spec-
|f};mgc commem.?l m}eémn for computers.”

e Computer Journa 2 (August 1 .
o)y s (August 1966)
Harmisox, W. J. “Practically complete de-
cision tables: s range approach. SIGPLAN
Nolices 6, 8 (Sept. 1971), 89-93.

. Hawes, M. K. “The need for precise defini-

tion." Proceedings Decision Tables Sym
sium (Sept. 1962), 13-18, 20-21. S

. Hawes, M. K. “The use of decision tables

for problem specifications.” Proceeds:
‘I;;NJ AC Users Association (April 10&5),‘&

Hmscanory, E. “Simplification of a class

Computing Surveys, Vol. 6, No. 2, June 1974

47.

49,

&

57.

59.

61.

R

. Kavanaou, R. F.

. Kavanaon, R. F.

. Kavanacn, R. F, anp Aviex, M.

. Kixag, P. J. H.

. Kmxa, P. J. H.

. Kmg, P. J. H.

. Kmg, G. W.
- Kuex, D. C.
. Losuanmr, L. A.

. Losvon, K. Decision

of Boolean functions J. ACM 5, 1 (Jan,
1958), 67-75.

Hoxeywers, Inc, An Introduction to Deci-
sion Tables—A Programmed Text, 1st Ed,
Oet. 1969.

Hucnes, M. L., Suaxk, R. M., aso Stas, E.
S. “Decision tables” MDI Publications,
1068

! IB&{ Conroramion. “1401 decision logic trans-

lator H20-0063," and “1401 decision logic
translator H20-04021." Decision Tables—
Practice Problems and Solutions, 1963,
IBM Corroratiox. “Decision tables—a sys-
tems design and documentation technique.”
IBM, F20-8102 (1062), p. 21.

“TABSOL—a fundamental
concept for systems oriented langusges.”
Eastern Joint Computer Conference, Vol. 18
(Dec. 1960), 13-15, 117-136.

“TABSOL—the language
of decision making." Computers and Automa-
tion 10, 9 (Sept. 1061), 15, 18-22,

“The use
of decision tables.” Proceedings 1963 Confer-
ence of International DPM A, 318.

. Kavaxaocn, R, F., axn Scamwor, D. T. “Us-

ing decision structure tables, Part I: Prinei-
ples and preparation; Part 11: Manfacturing

application.” Datamation, Vol. 10, (Feb.-
March, 1964).
.Kmzvg, J. E. “LOGTAB: a logic table

technique.” General Electrnie March 1959,
“Conversion of decision tables
to computer programs by rule mask tech-
niques.”” Comm, ACM 9, 11 (Nov. 1966), 796-
801

“Some comments on sys-
tematics.” The Compuler Journal 10, 1 (May
1967) 116-119.

Kixg, P. J. H. “Decision tables” The Com-
puter Journal 10, 2 (August 1967), 135-142.
G, “Ambiguity in limited entry
decision tables.” Comm. ACM 11, 10 (Oct.
1968), 650-684.

Kwvg, P. J. H. “The interpretation of limited
entry decision table format and relationships
among conditions.” The Computer Journal
12, 4 (Nov. 1069), 320-326.

Kmxg, P. J, H,, axp Jonsson, R. G. “Some
comments on the use of ambiguous decision
tables and their conversion to computer pro-
grams." Comm. ACM 16, 5 (May 1973), 287

“Use of decision tables in com-
puter programming.” Comm. ACM 8, 1
(Jan. 1965), 41-43.

“TABSOL."” Preprints of Sum-
maries of Paper presented at National ACM,
Paper 10, B-2 (Sept. 1961).

“A general business-oriented
language on decision expressions,
Comm. ACM 7,2 (Feb, 1064), 104-111.
Tables: A Practical
Approach for Data Processing. Auerbach Pub-
lishers, Prineeton, N.J., 1972,

. Lupwia, H. R. “Simulation with decision

i 8

8, Pottack, 8. L.

L
m.

-}

. McDasmr, H,

. Moxtatsaxo,

. Nicksmson, R. C.

. Preet, Roo,

. Poutack, 8, L, axs Wrianr, K. R.
. Powtacx, 8, L.
. Potzacx, 8. L

. Pourack, 8. L.

tubles.” Journal of Data Management 6 (Jan.
1068), 20-27.

Applications of Decision
Tables. Brandon/Systems Press, Princeton,
NI, 1870,

McDasien, H. Decision Table Software.
Brandon/Systems Press, Princeton, N.J., 1970,
McDasmer, H. An Introduction to Decision
Logic Tables. John Wiley, New York, 1068.
Meven, H. I. “Decision tables as an exten-
sion to programming languages.” Data Proc-
easing 8 (1965), 477-453.

. M. “Tables, flowcharts and
program logic.” IBM Systems Journal (Sept.
1962), 51-63.

Mosasx, J. J. “Decision tables” Manage-
ment Services (Jan-Feb. 1965), 13-18.

. Murnvkrsasan, O. R, axp Rasamamax, V.

“On the conversion of decision tables 1o com-
puter programs.” Comm. ACM 13, 6 (June
1970), 247-251.
Naravore, F. “Application of decision tables
to management information systems” Pro-
ceedings Decision Tables Symposium (Sept.
1962), 63-74.
“An engineering applica-
tion of logie structure tables.” Comm. ACM
4, 11 {Nov. 1961), 516-520.
“Decision table translntion.”
The Computer Bulletin 18, 12 (Dee. 1969).
Powtack, 8. L. “What is DETAB-X?" Pro-
mﬁugl Decuion Tables Symposium (Sept.
).

Pouacx, 8. L. “DETAB-X: an improved
business-oriented computer language.” Rand
F&?‘;:ntiﬂu Memo RM-3273-PR (August
“Dﬁt.ﬂ
description for DETAB-X." Rand Corpora-
tion Memo RM-3010-PR (March 1062).
“Analysis of the decision rules
in decision tables.” Rand Corporation Memo
RM-3860-PR (May 1063).

“How to build and analyze
decision tables,” Rand Corporation Memo
P-2829 (Nov. 1963).

“CODASYL, COBOL, and
351‘:\8—.\'." Datamation 9, 2 (Feb. 1003),

. Portacx, 8. L. “The development and analy-

#s of decision tables.” Ideas for Management,
1964, International Systems Meeting, Systems
and Procedures Association, Philadelphia, 1964,

. Pouack, 8. I.. “Decision tables for sysiems

design.” DPMA Quarterly 8 (1065).
“Conversion of limited entry

iion tables to computer programs.
Comm. ACM 8, 11 (Nov. 1965) 677-682.
Potiacx, 8. L., axo Hasxison, W. J. “DETAP
version 11T user's guide.” /M1, July 1989.
Pottacx, 8. L. “Comment on the conversion
of decision tables to computer programs.
Comm. ACM 14, 1 (Jan. 1971), 52. .
Pouaex, 8. 1., Hicks, H., axo Hansisos, w.
J. Decwion Tables: Theory and Practice.
Wiley, New York, 1971.

Translation of Decision Tables .

89,

90.

o1.

M.

100.

101.

102.

103

104.

105.

. REINwaALD,

. Romixsox, F.
. Suaw, C. J. (En)

. StacLe, J. R.

" decision tables.” JAG Quarterly 2, 1 (1969),
27

151

Press, L, J. “Conversion of decision tables
to computer programs.” Commun. ACM 8,
6 (June 1965), 385-390.

Quine, W. B. “The problem of simplifyin
truth functions.” American Math. Mon.. Vof.
50 (1952), 521-531.

Quing, W. B. “A way to simplify truth fune-
tions.” American Math. Mon,, Vol. 62 (1965),
627-631.

- Retxwatn, L. T., axp Sorans, R. M. “Con-

version of limited entry decision tables to
optimal computer _programs, I: Minimum
avernge processing time.” J. ACM 13, 3 (July
1966), 339-358.

L. T. “An introduction to
'll‘ge;?m." Research Analysis Corporation, Nov.
Renswaw, L. T., a8p Sotann, R. M. “Con-
version of limited entry decision tables to
optimal computer programs, I1: Minimum
storage requirements,” J. ACM 14, 4 (Oct.
1967), 7T42-758,

of decision tables

“Processin,
‘eekly No. 222/223

in COBOL." Computer
(Dee. 1970).

. Suaw, C. J. “Decision tables—an annotated

bibliography.” 8. D. €., TM-2288/000/00, Dec.
1965.

J “Decision tables.”” SIG-
PLAN Notices 6, 8 (Sept. 1871), 1-111.

. Suwavyoer, K, “Conversion of limited entry

decision tables to computer programs—a
proposed modification to pollack’s algorithm.”
Comm. ACM 14, 2 (Feb. 1971), 69-73.

“An efficient algorithm for
finding certain minimum cost Cpromedures for
making binary decisions.” J. ACM 11, (1964),
pp. 253-264.

Serague, V. G, “Letters to the Editor” (On
Storage Space of Decision Tables). Comm.
ACM 9, 5 (May 1986), 319,

Sr. Cramr, P. R., Jr. “Decision tables clear
the way for sharp selection.” Computer Deci-
sions 12, 2 (Feb, 1970), 14-18.

Smusz, H. “The development of decision
tables vin parsing of complex decision situa-
tions.” Comm. ACM 16, 6 (June 1973), 366-
360

Tavwon, H. Decision Table Technique for
Computer Systems. Hirschfeld Press, Phila-
delphia, Pa., 1968. oy
Vemorr, C. G. “Programming decision ta-
bles in FORTRAN, %OBAL. or ALGOL",
Comm.ACM 9, 1 (Jan. 1966), 31-35.
Vernerst, M. “Procedures for finding opti-
mal and near optimal test sequences for apply-
ing rule mask techniques in object programs
derived from decision tables.” TAG Quarterly
1, (1068), 47. ’
Vennerst, M. “A Technique for constructing

W';Lunus W. K. “Decision structure tables.’

" NAA Bulletin, No. 9 (1965), 55-62.

Wront, K. R. “Approaches to decision table

" processors.” Proceeding Decision Tables Sym-

posium (Sept. 1962) 41-44,

Computing Surveys, Vol. §, No. 2, June 1974

EEEERERERR

TABLE OF CONTENTS

FOREWARD .o . cavaessdveniansmnnisesanvinonsssesaessanayesseineass 3
WHAT (SIDECIBLE N5 555 s caamas s i daisnn ais sniglesio'slsanis s s s e 3
LANGUAGE. < o505t s otnn tadsssnmentonionson sibsin o ey sk s ovhovnnss 3
HARDWARE REQUIREMENTS i va sincinsine suwhins basaosaesals’s 3
FRAINING o205 5 s svivie it siyalbin s /a5 vinie 9190 an 418 MRS 8 3 wTsIntn n 500 3
TS BARNUAL v e s o h o s s s b w08 A s A AR 9% b a6 WS ch 3

1. INTRODUCTION <scuicevussssasnsssnssosnsessnasensssosssvasnsesss S
USEOF DECISION TABLES ¢« o aaiia s it dtiaeisssivaly pivisis »/sloiriocs oisv 4o/ 5
USE OF DECIBLE T 253 et /ia:eiobi wina e s viorasachind viasny it 53 0wisis 5

2, SYSTEM DESCRIPTION..ccoscessssnnssscssscnsnssnnsasssossesacnse 7
GENERAL DESCRIPTION . 5u oo 055706 a/sv sisiais/slioie s o siss ain s/0sTa 30/ s(s's 7
INPUT TODECIBLE T 05 Mo L de et vns wolhiasis masimisioos sis.o swisiwiasios's 7
OUTPUT O DECIBLE. ;5 ¢ shs conenmpined s e eaisine covmiiesy sy s 7
DECISION TABLE PROCESSING < v:.viiscnessninsnsamansivenssnas 8
SHORTHAND PROCESSINGcocorsasasacsvnnansssssossesones 8

3. SOURCE LANGUAGE LIBRARY MAINTENANCE SYSTEMc00veenn 9
PURPOSE OF SYSTEM.. i oot vcunisiavismsavsans e edanarsrmnaes? 9
CENERAL DESCRIPTION .« s5a - 40 520k duieiivin oo wininit o4 wisle wibis sis 16w 9
SEQUENCE FIBLD . & S iins vasnanaiva s pam s sn s agos sadanyessvges 9
INSERTING RECORDS ¢ n o enaon < 6oniain s es s s 9isamrscnionaisin e vinls 10
INSERTING A BLOCK OF RECORDS i..cvvisnnssnassessscinscunes 11
REPLACING AND DELETING RECORDS.c.oviveriinininnnrnes 12

4, SHORT-HAND TRANSLATION SYSTEM +.vvvvvivnnernnnsnrsnnrsnnnnns 13
GENERAL DESCRIPTION 25050 ls o v ai950 6in o8 oin 813 v A s $ o tiachin s 13
ABBREVIATION DEFINITION STATEMENTcooviiiiiiiininnn. 13
EXAMPLES OF ABBREVIATION DEFINITIONSovvivinniiiannns 14

5. WRITING DECIBLE Il DECISION TABLES.......ccvviiiviiinaninanns 15
GENERAL DESCRIPTION ... coiviscinvasiassvsorasnsaanssasnsse 15
EXTENDED AND MIXED ENTRY DECISION TABLES............... 15
CODING INSTRUCTIONS s s s v 0a v smsstunnnnnseeissionesesnsnsenisssen 15
DECISION TABLE IDENTIFICATION i:iovuvesvassnsasnssosssosais 17
CONDITION STATEMENTS «vvvevsivssmssmoorsssssaseneossscavsss 17
ACTION STATEMENTS 4 5uive vitivslonsasncais oombn e 17
INITIAL SET ACTIONS .. ooicaeimssasansaadessiosssnnsasiessssssias 17
DECIBLE 111 SPECIAL ACTION STATEMENTS. ...ccvveniinnnnann.. 18
BLSE RULE . 0o st csdl s tobuanin G oy sa s sl salestaie sWihis siasio sioise 18
END OF DECISION TABLE. ... ccossinnacsiosnsensisonessavessas 19
LIMITED/EXTENDED ENTRY COMPARISONcovvivininnnnn. 19

TABLE OF CONTENTS

6. DECIBLE IIl STATEMENTSovvvens sevane vesevemeNeERsEE e 21
GENERAL DESCRIPEIONI L. 02 005 b it 60855 sinlers 6i51in ai sio-o7a w siosesie 21
DECIBLE OPTION STATEMENT < Jicqcor s svnnsorans v dessswassive 21
DECIBLE TABLE STATRMENT v n% 8 bt by arV B Biom s e bisis-visinee 24
K STATEMENT 55 e vaensnbva smss als slasbalvias i sAmin s g0 s b s a4 4 26
RECIBLE SET STATEMEN T 055005405 053 siairsle siasts v poy aib\vaiaissn 27
DECIBLE COMMENT STATEMENT! s o5t miss caeie solnsvisosinensasis vinen 28
ABBREVIATION DEFINITION STATEMENTcoovviiiiininnnnn. 29

7, PROGRAMBING GUIDLINES . ..o s v v vsiovan canpboiitiessnssbbhissasssss 31
TABLE DRDERCIR cosoh s dsn i ol wuals fale aleh s salhiiesss Kot ales s le 31
FABLE URIQUENE S 3 o 53 satcvaineysonive suuorvinaiscessdososnoss 31
VALUE RANGED . oo visc aieltin ntinatnensasiosionsusiasesssesses e s 3]
CONDITION'SIATEMENTS 7o oo v cavbasnbl s rsh i rers vaonsvsveses 32
ACTION STATEMEN ISt . 2501 e serenks casotmaonmaeeshimtsivans ons 32
Lt R S e g T D R S R e S A 32

APPENDIX A icicocacnvsacessosssansesssssossosssnsnssnnsesssesssos A-1
DIRNENOSTICS | 3 e s lonnn oaas st sl e VA ik 3 bl v s & a s b ens A-1

APPENDIX B — LIMITED ENTRY EXAMPLEcoviviiiiiiiiiiniianenss B-1
INPUT LISTING 0050005 daisieivasbinesivi wisnionibaisioaion s v ouls sbaeas s B-1
U B i Ry et RS e S R e O S A o T T B-3

APPENDIX C — EXTENDED ENTRY EXAMPLEcvvviiviiininnnnans C-1
IRPUT LISTING it o bome o vnmsasunicsne sk a6 sasih i e beanpot s C-1

OUTPUT LISTING . oo cilaccode cvsaneconessanons S A A C-3

IIIHIIIIWNIIIN.IIIIA

FOREWORD

WHAT IS DECIBLE Il

DECIBLE Ill is a preprocessor that is used to translate decision tables into
optimized compileable coding. It also contains o source language library main-
tenance system and a short-hand translation system.

LANGUAGE

There are three versions of DECIBLE |ll available; @ COBOL, o PL/1, ond @
FORTRAN version. All versions are written in DECIBLE |ll produced COBOL
coding. This manuval is intended for use with the COBOL version. Separate manuals

for the PL/1 and FORTRAN versions are available.

HARDWARE REQUIREMENTS

DECIBLE Ill is available on any computer offering o standard COBOL compiler
with o minimum available core size that is the equivalent of 64k bytes or 28k
bytes plus overlay capability. For utilization of the source language library
maintenance facilities, two tape drives or one disc drive is required.

TRAINING

INDEPENDENCE COMPUTING & SOFTWARE CORPORATION provides all users,
as part of the installation of DECIBLE Ill, o complete training course. This
training course generally consists of complete training in the use of decision

tables and the use of DECIBLE Ill.

THIS MANUAL

Thismanual is intended to be o user training and reference guide. An understanding
of the COBOL programming language and decision tables is assumed.

1.
INTRODUCTION

USE OF DECISION TABLES

Decision tables were developed as a tool for communicating logical procedures
from person to person. Their superiority over narrative descriptions and flow-
charts is rapidly becoming recognized. Narrative descriptions are usually difficult
to follow, tend to be either ambiguous or incomplete, and are eosily misinter-
preted. Flowcharts are more exact than the narrative description but are more
difficult to prepare, tend to be quite bulky and hard to follow, and, because
certain tests or conditions must be shown more than once, can be error prone.
In addition, flowcharts are usually very inflexible and difficult to change. A sim-
ple change in the logic of a problem may cause rewriting pages of flowcharts.

Decision tables, however, are not only easy to prepare, but can be read by any-
body without special training. Most people, in fact, have worked with decision
tables of one type or another; tax tables and mileage charts on road maps are
good examples of a type of decision table. Logic that may require pages of
flowcharts can generally be shown in one or two simple decision tobles. By
their very nature, decision tables preclude the most common logic errors —
ombiguity and incompleteness. The format of decision tables enables even major
changes to the logic to be made very easily.

USE OF DECIBLE IlI

Decision tables can then be seen to be a major advance in the ability to commun-
icate ideas ond logic from person to person. DECIBLE Il gives the user a means
of taking this human communications tool ond converting it directly into com-
puter programs. By creating the programs directly from the definition of the
problem, the difficulties of progrom logic errors, misinterpretations of problem
definition, and lack of proper program documentation are solved.

Moreover, the coding produced by DECIBLE Il is completely optimized, insuring
that optimum coding for your installation will be produced from the decision
tables. This optimization reduces the run time and core requirements of programs
written in decision tables.

@

2.

SYSTEM
DESCRIPTION

GENERAL DESCRIPTION

DECIBLE Il accepts any combination of COBOL statements and decision tables
ond translates the decision tables into optimized compileable COBOL coding.
The decision tables become NOTE paragraphs within the produced program and
therefore provide complete documentation within a single listing.

Shorthand definitions are placed at the beginning of the program if they are to be

used throughout the program (global definitions) or at the beginning of o decision
table if they are to be used only within that table (local definitions).

INPUT TO DECIBLE Il
The input to DECIBLE Ill consists of the following:

¢ 80 column punched cards, or
¢ a magnetic tope source language file, or
¢ a disk source language file

If the input is a tape or disk source language file, cards can be used to update
and change the program simultaneously with the processing of the program.
QUTPUT OF DECIBLE 11l

The output of DECIBLE Il consists of the following:

¢ printer listing of program and diagnostics, and
¢ compileable COBOL program on cards, magnetic tape, or disk, and
¢ (optionally) a source language file on tape or disk

(€

DECISION TABLE PROCESSING

DECIBLE Il produces complete COBOL procedure division sections from each
decision table. The section name used is the table name assigned by the user in
the DECIBLE TABLE statement. Therefore, decision tables may be executed in
the same manner as COBOL sections. The program can PERFORM a decision
table, GO TO o decision table or pass into o decision table from the coding
preceding the decision table.

SHORTHAND PROCESSING

Shorthand abbreviations anywhere within the progrom are replaced by their defin-
itions. If o definition does not fit in the record with the abbreviation, another
record is created to continue the statement. The break occurs at the last space
character that will fit on the record.

Shorthand abbreviations that appear within a decision table are translated in the
produced coding but not within the body of the decision table.

- O O O N T e O T T T O e v e v o wm w |

—

= E EEE

I
i

[
il
il
Il
[

3

SOURCE LANGUAGE
LIBRARY MAINTENANCE
SYSTEM

PURPOSE OF SYSTEM

The DECIBLE Il source language library maintenance system serves different
purposes for different users. For those users whose current software does not
include a source language file maintenance system, DECIBLE Il provides a
convenient means of keeping source language programs on tape or disk and
greatly reduces the amount of caord handling required to update and compile
programs.

For those users whose current software includes a source language file mainten-
ance system, the DECIBLE Il library system provides maintenance facilities
against the users files simultaneously with the processing of the decision tables.
This eliminates the need of o separate maintenance ond processor pass of the
file and reduces the computer run requirements.

GENERAL DESCRIPTION

The basic input to DECIBLE Il can be specified as being on cards, tape, or disk.
If the input is on tape or disk, cards can be used to update or change the program.
A new program tape or disk file, including all changes, can be specified. The
DECIBLE OPTION statement (see Chapter 6) is used to specify the input and
output devices.

SEQUENCE FIELD

The COBOL statement sequence field (columns 1 through 6) is used to control
updates against a tape or disk file. All programs are automatically resequenced
by o factor of 10. The listing produced shows the sequence number field of the
input immediately to the left of the new sequence number. All cards input into the
system must be in sequence, except for those cards used in a block add (see
below). All out-of-sequence cards are indicated by three astericks (***) to the
left of the statement on the listing and are ignored.

(€

INSERTING RECORDS

When the input is specified as being on tape or disk, o card will be inserted into
the file if it has a sequence number that is not the same as o sequence number on
the tape. In the example below, two cards are to be added into the file between

records 002420 ond 002430:

EXAMPLE
file input:
002420 A MOVE 10 TO COUNTER-A 4422
002430 A RE-ENTER 6 644
card input:

002424 A MOVE COUNTER-A TO SUBSCRIPT-B
002426 39 303

output listing (note resequencing):

002420 002630 A MOVE 10 TO COUNTER-A 4 4 2 2
002424 002640 A MOVE COUNTER-A TO SUBSCRIPT-B

002426 002650 3 9 33
002430 002660 A RE-ENTER 6 6 44

10

INSERTING A BLOCK OF RECORDS

Any card read with blanks (spaces) in the sequence field is assumed to follow
the card immediately preceding it. In this way, a block of records con be inserted
in a desired location. This is the only exception to the rule that all cards must
be in sequence. In the following example, a block of records is to be inserted

into a file.

file input:

000840
000850

card input:

000845

output listing:

000840 000840
000845 000850
000860

001020
000850 001030

EXAMPLE

03 FILLER PICTURE X(54).
01 INPUT-RATE-TRANSACTION.

01 MONEY-TRANSACTION-A.
03 CARD-TYPE PICTURE X.

+ (ADDITIONAL INPUT CARDS)
03 IDENTIFICATION-AREA PICTURE X(8).

03 FILLER PICTURE X(54).
01 MONEY-TRANSACTION-A.
03 CARD-TYPE PICTURE X.

e

03 IDENTIFICATION-AREA PICTURE X(8).
01 INPUT-RATE-TRANSACTION.

11

©

REPLACING AND DELETING RECORDS

When the sequence number of o card is the same os o sequence number on the
input file, the record on the input file is deleted. If columns 7 through 80 on the
card contains all blanks (spaces), the card acts just os a delete card. If there is
any non-blank in any of the columns 7 through 80 on the input card, that card
replaces the file record. The following example shows a record being replaced
and a record being deleted.

EXAMPLE
file input:

001070 01 COUNTERS.

001080 03 NUMBER-RECORDS PICTURE 9(5).

001090 03 NUMBER-FIELDS PICTURE 9(5).

001100 03 NUMBER-ERRORS COMPUTATIONAL-3

001110 PICTURE 9%(5).
card input:

001080 03 NUMBER-RECORDS COMPUTATIONAL-3

001085 PICTURE 9(5).
001090

output listing:

001070 001070 01 COUNTERS.
001080 001080 03 NUMBER-RECORDS COMPUTATIONAL-3

001085 001090 PICTURE 9(5).
001100 001100 03 NUMBER-ERRORS COMPUTATIONAL-3
001110 001110 PICTURE 9(5).

\ \ | A - - - -
L

4,
SHORT-HAND TRANSLATION
SYSTEM

GENERAL DESCRIPTION

The DECIBLE Ill shorthand system permits three character abbreviations for
programmer selected phrases. Global abbreviations are defined at the beginning
of the program and may be used anywhere within the progrom. Local abbreviations
are defined in a decision table and may only be used for that table.

All abbreviations are three characters long preceded by o semi-colon (;) and may
contain any alphonumeric or special character including spaces. All global
abbreviations must be unique; local abbreviations can be used in different tables
with different definitions.

The characters in the definition will replace the semi-colon and three character
abbreviation. If the number of characters exceeds the amount permitted on a line,
the line is continued on o new record. The continuation occurs at the last space
that will fit on the line.

Abbreviations used in o decision table will be translated in the DECIBLE I
produced coding but not in the decision table itself. This helps maintain the
format and clarity of the decision table.

ABBREVIATION DEFINITION STATEMENT

The ABBREVIATION DEFINITION statements are used to define DECIBLE IlI
shorthand abbreviations. Global definition statements are the first records fol-
lowing the DECIBLE OPTION statement. Local definitions immediotely follow
the DECIBLE TABLE stotement.

The definitions may be one to fifty-four characters long and may contain any
characters in the COBOL character set. The definition is contained within
quotes. |f a quotation mark is desired as part of the definition, it is indicated by
two quotation marks in the definition. One definition may not contain another.

See Chapter 6 for a description of the ABBREVIATION DEFINITION statement.

©

EXAMPLES OF ABBREVIATION DEFINITIONS

EXAMPLE 1.
DEFINITION: ;NEF ‘IS NOT EQUAL TO “FINISH™"
STATEMENT: ITEM-PROCESS ;NEF
GENERATES: ITEM-PROCESS IS NOT EQUAL TO ‘FINISH’
EXAMPLE 2.
DEFINITION: ;NUM ‘COMP-3 VALUE 0 PICTURE S9(5)V99’
DEFINITION: ;SAL ‘EMPLOYEE-WEEKLY-SALARY'
STATEMENT: 03 ;SAL ;NUM.
GENERATES:

03 EMPLOYEE -WEEKLY-SALARY COMP-3 VALUE 0 PICTURE S9(5)V99.

(@ 14

L

==

)

WRITING
DECIBLE i
DECISION TABLES

GENERAL DESCRIPTION

Writing decision tables for DECIBLE Ill is similar to writing decision tables
that are not processed automatically, except that all condition statements are
valid COBOL conditional statements, and all action statements are valid COBOL
procedure division statements.

EXTENDED AND MIXED ENTRY DECISION TABLES

DECIBLE Ill permits the use of decision tables containing extended entry
statements. These tobles may consist entirely of extended entry statements
(extended entry decision tables) or a combination of extended entry statements
and limited entry statements (mixed entry decision tables).

In an extended entry statement the rule entry consists of the continuation of the
action or condition statement. While the length of the rule entry (in mixed or
extended entry tables) is fixed at four characters, the use of the Shorthand
Translation System (see Chapter 4) adds greatly to the flexibility of extended
entry tables.

CODING INSTRUCTIONS

DECIBLE Il decision tables can be coded on any standard COBOL coding
sheets or on the coding sheets provided by ICS Corporation, (See page 16 for a
somple coding sheet). On aoll decision table records, columns 7 through 11 and
column 72 must contain a blank (space) character.

Extended or mixed entry decision tables can have a maximum of twenty records
for individual action or condition statements. Limited entry decision tables have
no maximum number of records for on individual statement. In any case, the total
number of records (exclusive of COMMENT statements) in o single table may
not exceed the limit set for your particular installation (usually one hundred
records).

15

(€

Aﬁ@ INOEPENDENCE COMPUTING & SOFTWARE CORP.
DECIBLE CODING FORM ICS FORM DEC-02
PROGRAMER TABLE NAME TABLE NO. DATE PAGE OF
PROGRAM NAME DESCRIPTION ﬂﬂ_ _ _ __ a0
1 kA 6 qn 11 _wn J1a | pa | J22 | e | LI | J3s | |28 | jaz2 | Jas | |so | |54 | |ss | |sz | Jes | |70 | 72|
L1 1) BEEEEREEINOITIE) (DIEICIUBILIE |) 1 ¢ 4 gt 8 68 1) g bt gt rpnyt
T L S e T R) SV TS TS) RS I S (v (S5 SN U e A ST s B SR S AR IS
Rl hE B0 BT [A U0 TR I A T ey T T S S 05 S = I T O S Y ST S v Y) Dl IS 0 Y e T LY ST
el 5T N I I (7 T VT VT OO AR Y) 5 0 P It ST, MY (AT i O (IS) T Y ST I (@ (TS sl e R ST I 1Y T
S S i 1 IR SERR SRS E 5 N AR A ST e] G A L DT W e TR I AT ST SN s 0 W e WS Ty
170 N R T Ll 15T o IS5l O T T (0 (15 o] O (O eI) TS VS B A [T S LS £ O IS 1 el B % () D I L
10 i F5 i Ui R O T 1 55 I W o L Y 1 T (I 55 0 G 1 5) o DR 1 M S) S5l 1) 8 1 0 154
L1 1| | S T R WS 15 S S V51 T T SV) 0 0) A S o (ST P TR 2 5 O S D S W) 8 = Wt s 0T
_____.__,@_.r_.m__l__ '35 0700] KO8 VS 1 A O O 1l) SN) T (T TN IS 0 ol S T O T e S AV AT
L1 1| | [I 65 Nl 50 S 50 1 O P) U9 1 e) ST S (O L) TS S R ST e 1A (e 8] T BT (R R
T L T S 1 T i VY O 1) R S I (RTINS A O OB U TS O LV Gl O S R e ST U AT
=y 9121l 4 2 ST R 5 e) (T8 T T W 1 VO o 0 0t 15 T (PS80 8 S (18 &8) S
i T ____:_______:_______________________
o i o 0TS 1) e 5 e L T 0V o S U0 T/, S8) T 57 () 5 A 6 T O % T (S))) T o el O
S T il 5 e T T TS Tl Y5 T O L M 1 A IS M T T o YR R ST o A NV o O o (T (80 Tl oo T SN T LS
N TR e £ U v IS S T VO A O AT 57 R ol o S S) IO o s Tl S 5 NS I Al O 1R el v i A (A B
i (A 0 8 I v i) 1SR T S () S N 1 5 S R o e R R O (5
P 5 5 o R 1 8 P) I R 15775 M T T 5 191 81 D10 S L) L ot 1 I B G S
8 0 e i 5l [S TS P Tl o (0 VI IO U] S) RO O) T It VO [IS [el B ____..11
" [T T (10 o I) O IS VTR TR ST I TR = o N) U L) Dl S T TR A AN [LG
STy 1 O R T O L) s A T o 5 1 8 S () (S 0 M il 0 [| IR
T Ve Y Y S O T O Y T Y it i 00 PV S Y O M P M) (17300 W TS V0) R Ml S) (7
CHEVETEES i T O B ST O\ TR R T S S B R TS 1 o S 3) S A S L T)
T ST i] 5T 1 Y o vl U 8 ST S R VA Y S 5 O 6 (T A (T (B TS e T [(S i
= ISRV TRl G T 3 O 1 VS (57 T O T OO O] s 8 W S S IO TSR ot I
_ S 5 e VI RS ey 2 R 6 ST LSV o) M) T (VR USTT TE T TS TAN YTEO S) [IS R O IO S ST e SN YR (00 SN (TR
a8 12 14 18 22 26 130 34 aa 42 a6 |so =4 58 6z L1 70 ﬂl

DECISION TABLE IDENTIFICATION

Each decision table is assigned a name and a number (see the DECIBLE TABLE
statement). The user may assign any valid COBOL procedure name up to thirty
characters long (if the COBOL compiler permits). As this name becomes the
COBOL section name, all tables must have o unique nome. If no name is assigned
by the user, DECIBLE Il will assign one.

The decision table number is used to provide unique paragraph names within the
produced coding and for user documentation. All tables within a program must
have o unique table number. If the user does not assign a table number, DECIBLE
Il assigns them in descending order starting with 9999. Table numbers may be
one to four digits.

CONDITION STATEMENTS

The condition stotements can be any valid COBOL conditional statement except
that the word ‘IF' is left out. They can be as complex as required and contain
any combination of ‘AND’ or ‘OR’ qualifiers as the COBOL compiler allows.
They must not, however, contain any imbedded nested |F statements.

ACTION STATEMENTS

The action statements may be any valid COBOL sentences containing as many
statements as required. They may be os complex as the COBOL compiler allows,
but they must not contain conditional statements. There should be no periods (.)
in the action statements except as non-numeric literals or as decimal points
within numeric literals.

INITIAL SET ACTIONS

Initial set actions are actions to be performed immediately upon entering the table
and prior to the testing of the conditions. They can be used for setting counters
and switches, reading input, etc. They moy be any valid COBOL statements
except conditional statements, GO TO statements or DECIBLE Ill special actions
(see below).

An important aspectof initial set actions is that they are stondard decision table
actions with the added feature that they are also performed prior to testing the
conditions. Therefore, they are coded with the other actions within the table and
may have entries within the rules ond be used the same as any other actions.
The initial set actions are performed in the order coded.

17

@

@

DECIBLE Il SPECIAL ACTION STATEMENTS

In order to facilitate the use of DECIBLE IIl decision tables in looping opera-
tions and to provide a common ending point, DECIBLE Il provides the following
special action statements:

Iey L LOOP

This action produces coding to branch back to the beginning of the condition
testing logic. If there are any initial set actions present they will not be
executed again.

2. RE-ENTER
This action produces coding to branch back to the beginning of the decision
table. Any initial set actions present will be executed again.

NOTE:

As the distinction between the LOOP and RE-ENTER action statements
concerns whether or not the initial set actions will be re-executed, the LOOP
and RE-ENTER actions should not both be used in a decision table that does
not contain an initial set rule.

3. EXIT

This action produces coding to branch to the end of the decision table. If the
table was called by the COBOL ‘PERFORM’ verb, control posses to the
statement following the PERFORM statement; otherwise control passes to
the coding or decision tables following that decision table.

ELSE RULE

The else rule is an optional rule whose actions are to be performed only if none
of the other rules can be satisfied. Normally, rules must satisfy every possible
combination of conditions, but in some cases the user of decision tables is inte-
rested only in certain specified sets of conditions. For example, a decision
table used for validity checking may have hundreds of different combinations of
conditions, only some of which are invalid. The standard rules may explicitly
show the invalid combinations, with the ELSE rule handling all the valid combin-
ations.

The ELSE rule is indicated by having the right most rule in the table have condi-
tion entries consisting of all dashes (=).

b
w
b
w
n
N

_

END OF DECISION TABLE

The end of the decision table is indicated by any statement that does not
fit the format of a DECIBLE Ill statement. Specifically, this would be
ony card with a non-blonk character in columns 8 through 11, or any
character other than a C, A, S, *, or space in column 12, or on end-of-file
indicator.

Therefore, a procedure name (in margin A of the standard COBOL coding
format), o COBOL statement starting in column 12, another decision
table, or an end of file indicates the end of o decision table.

LIMITED/EXTENDED ENTRY COMPARISON

ITEM LIMITED ENTRY EXTENDED OR MIXED
TABLES ENTRY TABLES

DECIBLE TABLE

STATEMENT some as limited entry

X STATEMENT Must not be used Must be used

EXTENDED ENTRY

STATEMENT Must not be used Must be used

WIDTH OF RULE 2 Columns 4 Columns

CONDITION RULE

ENTRIES Y, N, or dash (-) 4 characters, NONE, or
dosh for extended entry
or Y, N, or dash

ACTION RULE
ENTRIES X, dash, or numeric 4 characters or dash for
value extended entry or X or

dash

NUMBER OF CARDS

PER STATEMENT Unlimited 20 cord limit

RULES CONTINUE

ON ADDITIONAL CARD NO YES

RULES START AT Free format Column 30

—. — e— | — e— 4
ﬁ..ﬂHIIIIIIIIIMHlllli

6.
DECIBLE il
STATEMENTS

GENERAL DESCRIPTION

Three statement card types plus a comments card are used to code deci-
sion tables in DECIBLE Ill. They are the DECIBLE TABLE statement
(used to identify decision tables), the X statement (used to identify a
decision table as extended or mixed entry), and the DECIBLE SET state-
ment (used to code condition and action statements).

Two statement card types are used by the source language library system

and the shorthand translation system. They are the DECIBLE OPTION
statement (used to set the input/output options) and the ABBREVIATION
DEFINITION statement (used to define shorthand abbreviations).

DECIBLE OPTION STATEMENT
The DECIBLE OPTION statement is used to set the input/output options.

It con also be used to control the printer listing produced during the
DECIBLE run. The options can be listed in any order desired.

STATEMENT FORMAT

COLUMN CONTENTS
1-6 sequence number
12 -23 NOTE OPTION
24 — 49 options, separated by commas
50 - 72 listing heading

The listing heading field in the DECIBLE OPTION statement is printed
at the top of each page in the listing. Any subsequent option statement
with any entry other than spaces in the listing heading field will couse
the listing to skip to the top of a page ond the new heading will replace
the one previously entered.

21

(€

If the listing heading field in o DECIBLE OPTION statement consists of
all spaces, the previous heading entered remains and no skip to the top
of the page occurs.

If the first card in the card reader is not an option card, the input is
assumed to be on cards and the run is assumed to be a syntax check run
only, producing only a printer listing output. The following options are
used only when the DECIBLE OPTION card is the first card in the card

reader:

TAPE
This option indicates that the primary input comes from a source
language file on tape.

DISK

This option indicates that the primary input comes from o source
language file on disk. The TAPE and DISK options cannot both be
used in the same program. In the absence of both of the two options,
the primary input file is assumed to be on cards.

NEWT
This option indicates that a new source language file is to be created
on tape.

NEWD

This option indicates that a new source language file is to be created
on disk. The NEWT and NEWD options cannot both be used in the
same program.

CoMC

This option indicates that the compileable program produced by
DECIBLE Ill is to be punched on cards.

COMT
This option indicates that the compileable program is to be created

on tape in a format acceptable to the COBOL compiler for the system
in which DECIBLE 1l is implemented.

COMD

This option indicates that the compileable program is to be created
on disk in a format acceptable to the COBOL compiler for the system
in which DECIBLE Ill is implemented. It should be noted that some
operating systems do not permit the input to the COBOL compiler
to come from disk. When DECIBLE Il is implemented on these
systems, the COMD option will not be accepted.

22

|

|
|

Only one of the options COMC, COMT, or COMD can be used in a DEC-
IBLE Il run. In the absence of any of these options, DECIBLE Ill oper-

ates in syntax check mode only,

The following options can be used anywhere within the program. They
are used to control the printer li sting.

NOPR

This option stops the DECIBLE Ill printer listing. All diagnostic
messages, along with the input line previous to the diagnostic, will
still be printed.

PRNT

This option causes DECIBLE Ill to resume the listing if the NOPR

option had been previously entered.

EXAMPLES OF DECIBLE OPTION STATEMENT
1. Input on cards, no library, compileable output on tape
000010 NOTE OPTION COMT
2. Input on cards, create tape library file, syntax check only
000010 NOTE OPTION NEWT
3. Input on tape, compiler output on tape, no listing
000010 NOTE OPTION NOPR, COMT, TAPE
4. Input on disk, create new disk file, compileable output on tape
000010 NOTE OPTION DISK, NEWD, COMT

5. Input on disk, create tape library file, compileable output on disk

000010 NOTE OPTION NEWT, DISK, COMD

€

DECIBLE TABLE STATEMENT

This statement is used to indicate the beginning of a decision table. The
table name may be any valid COBOL PROCEDURE name up to 30 char-
acters long. If a table number is assigned by the user, the name is immed-
iately followed by a comma and the table number. The table number may
be one to four digits long. All tables within a program must have unique

table numbers.

If no table number is assigned, then DECIBLE Ill assigns them in de-

scending order, starting with 9999.

STATEMENT FORMAT

COLUMN CONTENTS
1=~6 sequence number
12-23 NOTE DECIBLE
25 =72 in free format, table name fol-
lowed (if desired) by a comma
ond a table number

24

EXAMPLES OF DECIBLE TABLE STATEMENT
DECIBLE Ill assigns unique table name and number
009320 NOTE DECIBLE
User assigns table name , DECIBLE Il assigns table number
009320 NOTE DECIBLE CALCULATE-PAY-RATE
User assigns table number, DECIBLE Il assigns table nome
009320 NOTE DECIBLE, 136

User assigns table name and number

009320 NOTE DECIBLE CALCULATE-PAY-RATE, 136

25

(&

X STATEMENT

The X statement is used only in extended or mixed entry tables to indi-
cate that the table is not a limited entry decision table and to give the
number of rules within the table. |t immediately follows the DECIBLE
TABLE statement.

The X statement contains an X in column 12 of the card and the number
of rules (right justified) in columns 14 ond 15. Columns 17 through 72
may contain comments if desired.

STATEMENT FORMAT

COLUMN CONTENTS
1-6 sequence number
12 X
14 - 15 number of rules in table
17 - 72 comments

DECIBLE SET STATEMENT

The DECIBLE SET statement is used to code condition and action state-
ments. Limited entry condition and oction statements can be continued
on as many records as required; extended entry statements have a limit of
20 records. The maximum total number of statement records in o table
is 100, not counting comment cards.

STATEMENT FORMAT

COLUMN CONTENTS
1 -6 sequence number
12 set type (on first line only)
14-71 statement, followed by rule entries
72 space

The set type (column 12) indicates whether the set is a condition (C),
action (A), or initial set action (S). The extended entry indicator (column
13) indicates whether the set is limited (blank) or extended (X). Extended
entry sets can only be used in an extendad or mixed entry table.

Rules in a limited entry table may start in any column from 30 through 70
of the last card of a set. Limited entry tables use two columns per rule.
Valid condition rule entries are Y, N, or dash (-) and valid action rule
entries are X, dash (-), or any number from 1 to 99. All rule entries are
right justified. Limited entry rule entries must be contained on the last
record of a set.

Rules in an extended or mixed entry table are four columns wide and must
start in column 30. If more than ten rules are used, the remaining rules
are coded in an additional record, again starting in column 30. Limited
entry condition entries coded in a mixed entry table must be Y, N, or
dash (-) and limited entry action entries must be X or dash (-). Note that
action sequence numbers are not permitted in a mixed entry table.

27

€

In extended entry statements, the rule entry is a dash (-), the continuation
of the condition or action, or DECIBLE special entries (see Chapter 5).
The entries may be one to four characters long and right justified within
the rule. DECIBLE shorthand abbreviations are valid rule entries.

Conditions or actions must end ot least two columns before the beginning
of the rule entries. On all records of a set, column 72 must be blank.
Special care should be used in the coding of the first set as this is the

one DECIBLE Ill uses to determine the position and number of rules in
limited entry tables. Rule entries should never be all spaces.

DECIBLE COMMENT STATEMENT
Comment cards may be placed anywhere within a decision table.

STATEMENT FORMAT

COLUMN CONTENTS
1-6 sequence number
12 asterisk (+)

14 - 72 any comments

28

AR B AR N RSN N |

ABBREVIATION DEFINITION STATEMENT

The ABBREVIATION DEFINITION statements are used to define DEC-
IBLE 1l shorthand abbreviations. They must immediately follow the first
DECIBLE OPTION statement.

The definitions may be 1 to 54 characters long and contain any characters
in the COBOL character set. The definition is contained within quotation
marks. Any quotation mark embedded within the definition is indicated

by two quotation marks.

One definition moy not contain another (nesting).

Abbreviation definitions are copied on the DECIBLE Il library system
file, but do not appear in the COBOL compilation listing.

STATEMENT FORMAT

COLUMN

CONTENTS

1-6

sequence number

12

semi-colon (;)

13-15

abbreviation

17 =72

in free format, the
definition contained
within quotes

EXAMPLES OF ABBREVIATION DEFINITIONS

EXAMPLE 1.

DEFINITION:
STATEMENT:
GENERATES:

EXAMPLE 2.

DEFINITION:
DEFINITION:
STATEMENT:
GENERATES:

03 EMPLOYEE-WEEKLY-SALARY COMP-3 VALUE 0 PICTURE $9(5)V99.

;NEF ‘IS NOT EQUAL TO “FINISH™
ITEM-PROCESS ;NEF
ITEM-PROCESS IS NOT EQUAL TO ‘FINISH’

;NUM 'COMP-3 VALUE 0 PICTURE S9(5)V99’'
;SAL 'EMPLOYEE-WEEKLY-SALARY'
03 ;SAL ;NUM.

29

(8

e
PROGRAMMING
GUIDLINES

TABLE ORDER

The algorithm used to translate the decision table is completely inde-
pendent of the order of the rules except that the "ELSE" rule must al-
ways be the last rule in the table. The produced coding will test the rules
in the most efficient order to reduce running time and core requirements.
Only if it is immaterial to the efficiency of the produced coding will
DECIBLE Ill test the conditions in the order coded. It should be noted
that in different branches of the condition testing logic, the some condi-
tions may be tested in o different order.

The actions are executed in the order of their sequence number and,
except for the initial set actions, it is immaterial in which order they are
coded. The initial set rule is executed in the order coded.

In order to take full advantage of the action optimization routines, if a set
of actions is performed by more than one rule, these rules should perform
those actions in the same order.

TABLE UNIQUENESS

In order to assure the unique generation of procedure names, no two tables
should haove the same name or number. Alsg no coding produced by the
user should have a procedure or dato nome the same as o table name or
begin with ‘Dnnnn’, where nnnn is a four digit number.

VALUE RANGES
NUMBER OF TABLES
DECIBLE Ill, will handle 9999 tables; each table must have a unique

table number and table name.

31

(&

(&

NUMBER OF RULES
The minimum number of rules is 1.

The maximum number of rules (including the ELSE Rule if specified)
is 20.

NUMBER OF CONDITIONS
The minimum number of condition statements is zero.

The maximum number of condition statements is 20.

NUMBER OF ACTIONS
The minimum number of action statements is 2.

The moximum number of action statements is 30.
NUMBER OF CARDS

A decision table may contain up to 100 cards, not including the

DECIBLE TABLE card and COMMENT cards.
CONDITION STATEMENTS
Condition statements may be any valid COBOL conditional statement
except that they may not contain nested |IF statements. They may be com-

plex conditions and contain any combination of “"AND’ and ""OR"’ state-
ments permitted by the compiler.

ACTION STATEMENTS
Action statements may be any valid COBOL statements except condi-

tional statements.

RULES

All rules must contain at least one action statement and the last action
to be executed within each rule (the entry with the highest action se-
quence number) except the initial set rule must be o GO TO", “RE-
ENTER", “"LOOP", "EXIT", or ‘‘STOP RUN",

32

APPENDIX A
DIAGNOSTICS

There are two different types of diagnostics — error and warning
messages. In addition, all input cards out of sequence are indi-
cated by printing three astericks (***) to the left of the input
card. All cards out of sequence are ignored.

A warning message indicates that an error condition exists that
the system can correct. In some cases these corrections may in-
volve assumptions about the intent of the programmer and may be
incorrect. All warning messages should be checked to see that
corrections made truly reflect the intentions of the programmer.

An error message indicates that an unrecoverable error has been
made and further processing of a table is impossible. In that case,
the section produced by DECIBLE [ll will contain only the COBOL
note paragroph containing the decision table itself.

All error and warning messages contain a number key that can be
used to reference this section for further information. The fol-
lowing is a list of all warning and error messages:

01 MORE THAN ONE LIBRARY INPUT FILE OPTION
The first DECIBLE OPTION statement contains both the
TAPE and DISK options.

02 MORE THAN ONE LIBRARY OQUTPUT FILE OPTION
The first DECIBLE OPTION statement contains both the
NEWT and NEWD options.

03 INCORRECT NUMBER OF ACTIONS

This message indicates that the table contains less than 2
or more than 30 actions. It may be caused by a card with other
than a C, A, S, *, or blanks in column 12 within the table or
coding in margin A. In either case, DECIBLE Il| takes this as
the end of the table.

04 INCORRECT NUMBER OF CONDITIONS

The table contains more than 20 conditions.

A-1

05 NO RULES IN FIRST STATEMENT

The first DECIBLE SET STATEMENT contains no rule entries.

06 INVALID ACT STATEMENT or
INVALID COND STATEMENT
The DECIBLE SET STATEMENT did not contain a valid

action or condition statement.

07 INVALID ENTRY ACT RULE nn or

INVALID ENTRY COND RULE nn
The rule entry for an action was not a numeric value, X, or
dash (-) or the rule entry for a condition was not Y, N, or dash.
‘nn' is the rule number with the invalid entry, DECIBLE Il
assumes a dash (-) entry for this rule.

08 INCOMPLETE TABLE ELSE RULE ASSIGNED
There is no ELSE rule, but all possible conditions have not
been accounted for. An ELSE rule containing a ‘STOP RUN’

action is created.

09 RULES nn AND mm NOT UNIQUE

The same set of conditions will pass rules ‘nn’ and ‘mm’.

10 °IF* STATEMENT NOT ACCEPTED AS ACTION

A conditional statement is not o valid action.

11 LOOP AND RE-ENTER USED - NO INITIAL SET
Since the only distinction between the special actions LOOP
and RE-ENTER involve the initial set, they should not both

be used in a table with no initial set.

12 NO ACTIONS IN RULE nn
Rule 'nn' contains no actions. A ‘STOP RUN’ action is added
to that rule.

13 COLUMN nn CONTAINS INVALID CHARACTER

14 MISSING TABLE NAME
DECIBLE assigns a table number.

[

BB B EE=E

15 MORE THAN 10 RULES NEED CONTINUATION

In on extended entry table, there is only room for ten rules
per card. Therefore, more than ten rules require the rules to
be contained on more than one card. The action or condition
flagged by this message did not have the required number of
cards.

16 oa ERRORS bb WARNINGS cc TABLES

This message appears five times at the end of every program
and gives the total number of errors, warnings, and tables in
the program.

17 SYSTEM DIAGNOSTIC
Notify Independence Computing and Software Corp. immediately
should this message occur.

18 NUMBER OF RULES LOGICALLY INCORRECT
A decision table with no conditions contains more than one
rule, or a decision table with one condition contains other

than two rules.

19 CONDITION STATEMENT OUT OF ORDER

A condition statement follows an action statement in a table.
20 MORE THAN 100 CARDS IN TABLE

21 gaaca IS AN UNKNOWN OPTION
The DECIBLE OPTION STATEMENT contains the unknown

option ‘aaad’.

22 MORE THAN 20 CARDS IN EXTENDED STATEMENT
DECIBLE SET STATEMENTS used in extended entry tables

may contain no more than 20 cards.

23 DUPLICATE SHORTHAND ABBREVIATION
This abbreviation has been previously defined.

24 BEGINNING QUOTE OF DEFINITION MISSING

Definition must be enclosed in quotes.

25 END QUOTE OF DEFINITION MISSING

Definition must be enclosed in quotes.

26 UNDEFINED SHORTHAND ABBREVIATION ;aaa
The abbreviation jaaa used in a statement has not been defined

in an ABBREVIATION DEFINITION STATEMENT.
27 SHORTHAND STACK OVERFLOW

There are more than 600 shorthand definitions or their combined
length is greater than 15,000 characters.

28 ACTION ENTRY IN RULE nn GREATER THAN 90

Sequenced action entries can not be greater than 90.

:

-4

=

=

&

|2

ym/.’r/: nilenry /. " m[ﬁuﬁm/} ‘.’/.r//n PR r/

23 WWITE WORSE Pir

gsnﬂiﬁ_LDENTIFlC&TIBh DIVISION.
C020 PROGRAM-1D. UPDATE.

000030 AUTHOR. CHARLES STERBAKOV.
000040 ERKVIRONMENT DIVISICN.
000USC CONFICURATION SECTION.
00LL 60 SCURCE-COMPUTER. I1EM=360.
0CCCT0 CBJECT~-COMPUTER. IEM=-3€0.
0000BC INPUT-CUTPUT SECTION.

000090 SELECT CARDIN
0C0100 ASSIGN TO UT=S=CARCIN,
000110 SELECT TAPEIN ™
oocl2o ASSIGN TD UT=S5-TAPEIN.
000130 SELECT TAPEGUT el .
000140 ASSIGN TDO UT-S-TAPOUT.

000150 DATA DIVISIDN,
000160 FILE SECTION,~

WIEST COLLINGSWOOD, W | omiD?

~ 000170 FD CARDIN

00C 180 RECORDING MODE F
000190 LABEL RECORDS OMITTED

I 000200 DATA RECORD IS CARD-RECORD.

| 000210 01 CARD=RECORD,

000220 03 CARD-SEQUENCE PICTURE
000230 03 CARD=DATA-AREA PICTURE
00C240 03 FILLER PICTURE

000250 FC TAPEIN

[000280 RECORDING MOOE F
000270 BLOCK 5 RECODRDS
000280 LABEL RECORDS STANDARD

X {-5 Pi—
X(66]),
X(8).

" 000290 DATA RECORD IS INPUT-RECORD.
000300 01 INPUT=-RECCRD.

060310 03 TAPE-SEQUENCE PICTURE

9(6).

| CO03Z0 03 FILLER ~ . .LFICYTURE
000330 FD TAPEOUT

] 000340 RECCRDING MODE F

X(74),

G0C350 BLOCK 5 RECORDS

000360 LABEL RECORDS STANDARD

006370 DATA RECORD IS OUTPUT=-RECORD. Sl
1 OUTPUT-RECORD.

000390 03 OUTPUT-SEQUENCE PICTURE 9(6).

000400 03 FILLER PICTURE X(74), RV e

000410 WORKING-STORAGE SECTION,

000420 MISC-DATA,

000430 03 LAST-OUT-SEQUENCE VALUE 10 COMPUTATIONAL =3 ks

000440 PICTURE 9(6).

000450 03 CARD-FILE-EOF VALUE 'N' PICTURE X,

000460 03 TAPE-FILE-EOF VALUE 'N' PICTURE X,

OUCA7C PROCEDURE DIVISTON.
00G480 INITIALIZE SECTION.
000490 INITIAL.

000500 OPEN INPUT CARDIN
000510 INPUT TAPEIN
000520 OUTPUT TAPEDUT.
NOTE DECIELE MERGE-ROUTINE.S
0C0540 C CARD~FILE=EOF = ty! Y Y'NNNKNEK
000550 C TAPE-FILE-EOF = 'Y'* Y NYNNRNEN
[000860 2 C CARD-SEQUENCE 1§ LESS THAN TAPE~SEQUENCE

ONILSIT LNdNI

4 XIAN3ddV

——

.wa:ﬁ: wilener /- afroe iy o 00t r ' ,/} 4 WHITE HORSE PIRE. WEST COLLINGSWOOD. W | 08
001570 - == YNKNN
00C580 C CARD-SEQUENCE 15 EQUAL TD TAPE~SEQUENCE
000590 e e Yy ON

. 000600 C CARD-DATA-AREA = SPACES e e YN -
000610 .
00C 620 S READ CARDIN
ocC630 AT END MOVE '¥' TC
000640 CARD-F1LE-ECF - -y by - - =
000650 S READ TAPEIN
A 000660 AT END MOVE 'Y' TO
000&T0 TAPE-FILE~ECF -4 = == =4
000680 A CLOSE CARDIN TAPEIN TAPEOQUT
N 000690 STOP RUN £ = = = - -
DOD700 A MOVE INPUT-RECDRD TC CUTPUT-RECORD
000710 Cadlir oo ol SR
" 000720 A MOVE CARD-RECORD TO CUTPUT-RECORD
00CT30 -=22=-2 -
QCCT40 A PERFUORM WRITE-TAPE - 666~ 46
M 0'00750 A Rf‘ENTER - - = o= Jh -
' 000760 A LOpP -B8B8BB~~-8

000770 WRITE-TAPE SECTION.
n 000780 WRITE=TAPE~RECORD.

000790 MOVE LAST~OUT~SEQUENCE TO CUTPUT-SEQUENCE.
ocoBoD WRITE OUTPUT-RECORD.
= 000810 ADD 10 TO LAST-QUT~SEQUENCE.

-9
|
|
|

e - =

|

I
i
[
I
Il
Il
Il

TR T Ol T R T EE R D N D S O N O R Al

£-g

r ! r
erdf/'lM/fﬂﬂ ‘, m/ﬂfu:g ’ A/KNHN {- r/‘ 200 WHITE HOBSE MKL WEST COLLINGAWOUD N 4 Ofliu

1 CS DE & T QL E 11 VER 3 GEN 4

0CO010 00UC1C IDENTIFICATION DIVISION.
. 0CCO20 OLCO20 PROGRAM-1D. UPDATE.
060036 0CC-3C AUTHOR. CHARLES STERBAKOV.
OLlD4C O 0L4&0 ENVIRONMENT DIVISION.,
0UCLGSG 00L(SC CONFIGURATICN SECTION.
000C60 000C60 SOURCE~CCMPUTER. IEM=360.
0CO0TC 0CCC7C DBJECT~COMPUTER. IBM-360,
" ~_ooocsc O0COLBO INPUT-DUTPUT SECTION.

000GC90 OLCL9C SELECT CARGIN
0GC100 00L10C ASSIGN TD UT-S-CARDIN.
1 ____bLElio oculilc SELECT TAPEIN
00012C 00C120 ASSIGN TO UT~S-TAPEIN.
000130 000130 SELECT TAPEOUT
: 000140 000140 ASSIGN TG UT-S-TAPDUT.

- 0CCYI50° GOC150 DATA DIVISION.
000160 0CO160 FILE SECTION.

T __0DC170 0CG170 FO CARDIN . i y
000180 000180 RECORDING MODE F (:)
000190 000190 LABEL RECORDS CMITTED
A & _000200 00020C DATA RECORD 1S CARD-RECORD, 2 C
00C210 ©0021C 01 CARD-RECCRD. —
000220 000220 03 CARD-SEQUENCE PICTURE 9(6). e
= C00230 00023C 03 CARD-DATA-AREA PICTURE X(66),
000240 000240 03 FILLER PICTURE X(B). =
000250 00C250 FD TAFEIN e
s | 000260 000260 RECORDING MODE F L 1
oGe270 0CC27C BLGCK 5 RECCRDS
0co28c 00C280 LABEL RECORDS STANDARD
% 000290 C£C0290 DATA RECORD 1S INPUT~-RECORD. : e —
S 000300 000300 01 INPUT-RECORD. w
000310 000310 03 TAPE-SEQUENCE PICTURE S(6). -
» 000320 000320 03 FILLER PICTURE X(74). e - —
000330 000330 FD TAPECUT Z
000340 000340 RECORDING MODE F
£ 000350 00C350 BLCCK 5 RECORDS e 5 SN O T (:)
000360 00C360 LABEL RECCRDS STANDARD
000370 000370 DATA RECORD IS OUTPUT=-RECORD.
- 000380 000380 01 OUTPUT-RECORD. i
= 00390 000390 03 OUTPUT-SEQUENCE PICTURE 9(6).
000400 00C400 03 FILLER PICTURE X(74).
o 000410 000410 WORKING-STORAGE SECTION. i, = N e o
j 000420 000420 MISC-DATA,
000430 000430 03 LAST-CUT-SEQUENCE VALUE 10 COMPUTATIONAL=-3
n 000440 000440 PICTURE 9(6). > o=

00C450 0CO450 03 CARD-FILE-EOF VALUE "NV PICTURE X.

000460 00C460 03 TAPE=-FILE-EOF VALUE 'N' PICTURE X,

e 000470 00C470 PROCEDURE CIVISION.

= 000480 000480 INITIALIZE SECTION,
[000490 000490 INITIAL,

W 000500 000500 OPEN INPUT CARDIN s
000510 000510 INPUT TAPEIN
000520 Go0520 OUTPUT TAPEGUT,

0CC530 MERGE-ROUTINE SECTICN,
000540 DOOOSN.
000530 0cos550 NOTE DECIBLE MERGE~ROUTINE+S

2

N —_— L
N I ESSEEEEEEEEESE EE A -
— "
*50000 OL 09 001100 _
*3IdVi-3L1HM WHO4H3d 060100 i
*§550000 080100 g
*403-3114-3dVL 0L0100
04 As 3AOW ON3 LY 090100 e
NI3dvl avay ‘060100 "
“Q¥023¥=1NdLND Ol QHOIIY=LNdNI IAOW 0%0100
B " M N TN A | et S N *2560000 0€0100
9550000 OL 79 620100 2
mmqm 010100
. ___—§80000 QL O , 020100 —
$39vdS = quaqunnnuqu 41 066000 i
3ININDAS=-34YL OL TvNdD3 SI IININD3IS-aUVYI 4d1 086000
*€550000 0l 09 0L6000
IINIABIAS-IAVL NVHL 5837 ST IINInDBIS-0uvd 4T 096000 "
*£650000 01 09 086000
g 0L s e : ! 1Ay = 403-3114=-3d¥1l 41 0%6000 =
$2550000 oL 09 0€6000 "
ERRE] 026000
- — =t) _NNY 4018 016000 s
IND34VL NI3dvi NIO¥WYD 350719 006000 =
1Ay = 403-3114-34d7L 41 068000
Leh i _aAs = 403-311d4-0uyD 41 088000 i
*60000 0.8000 "
*403-3114~-34VL 098000
] : 0L yAy 3AOW ON3 LV ggiagge o ST T e b]
NI3dVL av3y 0%8020 4
*403-37114-0%Y2 0€8000
0L sAs 3AOW ON3 LV ozgogg LRl
NIGY¥Y2 avay 018000 vk o
*$5000Q 208000
X i e Bl *ON3 064000 Ny R el
8 - =-838898 - doal v 0BLOOO 09L000 -
-9 2 - === 43ANI-3Y ¥ 0LLOOO 0SLD0O
9 9 =999 - AdVLI-3L1dM WuOdudd ¥ 09LDDO D%L200 =
W = - i = 06.L000 0O€L000 a
Qu023¥=ANdLNa DL OYOIId=-AYYD 3IAOW ¥ 0%L000 021000
2 === =7 - 0€LN00 0O1LOD0 he L
a¥DIFU-INJINT 91 GuUDIIU-1NdNI IADW ¥ 02L000 00L000 B =
- - - = - =7 NNY dOLS 0T1L00D0 069000
__lno3dvl N13dvl NIOQ¥YD 350719 V¥ cOLY00 089000 000
b = = = = % = 403-3714=3dV1 0699000 0L9000 p
OL s+Ay IAOW ON3 LV 089000 099000
NI3dVL Ov3d § O0L90C00 059000
-—-—-% b o o 403=-3114-04vD 099000 049000 "
AL sAx IAOW ON3 LY 0S9000 0E9070
NIQ¥v) av3y § 0%95C0 029020
. 0€9200 019000 !
= NA=-=== §33vdS = V3Idv-viva-auvd 2 029200 009000
NAA= === 019000 065000
JININDIS-I4VL 01 TVABI S1 JININDBIAS-AHYD 2 409070 088070 ?
NNNA=-=-- 265500 0LGUD0
IININDIS-IAVL NYHL 3537 SI 3IININDIS-A¥YI 2 086270 095900
NNNNANA tAy = 403-3714=3dVL 2 0LS200 05S000 .
NNNNNAA vAy = 403-3714-08Y0 2 0950C0 0%SN00
¥ NI9 £ H3IA W4 Ii1al12331 - |
L13IN0D | N QOOMSINITION L8IM Inid 1580M JLHM G0 2 _\.\ »\ \.hb_‘\\‘__ r \u\\\.w\s\m\\ \\\) \\\.-\‘_\\t\kﬂ

[|

¢-d

ynf‘ﬁf ﬂi/rﬂ” /:()ﬂ‘ﬁﬂfltv ’ .- I,'f.rf W / ¢ fﬁ SES Wil nO8SE MEL WEST COLLINGAWOOD W L

| N 2E C.I 8 LE 103 VER 3 GEN 4

0C1110 DOOOSS3.

0Gli120 MOVE CARD~RECCRC TD CUTPUT=-RECORD.
001130 READ CARDIN

oulisl AT END MOVE 'Y* To

Gulls0 CARC-FILE=-ECF,

0C1160 GO TG Docosss,

001170 DOOOSS6,

o0lleo MOVE CARD-RECORD TO OUTPUT-RECORD.
0oni1so PERFORM WRITE-~RECDRD.

gui200 GC YO DOUOUSS.

: 0CLT70 001210 WRITE=-TAPE SECTICN.
000780 001220 WRITE-TAPE-RECDRD.

000790 0c1230 MOVE LAST=-DUT-SEQUENCE TO OUTPUT-SEQUENCE.
000800 001240 WRITE CUTPUT-RECORD.
00C810 001250 ADD 10 TO LAST-OUT~SEQUENCE.
' ssses 16 WARNING 0 ERRORS 0 WARNINGS 1 TABLES ewses
" ssese 16 WARNING 0 ERRORS 0 WARKINGS 1 TABLES ®ssss
sesss 16 WARNING 0 ERRORS 0 WARNINGS 1 TABLES sesss
=
sesss 16 WARNING 0 ERRORS 0 WARNINGS 1 TABLES swess

1 ssee® 16 WARNING 0 ERRORS O _WARNINGS 1 TABLES esesss

L]

"

L
L
I
L
Il
L

N

| &= 8 83 2 = == EERERELE

00 0C10
odonao
000030
00CO40
Qucoso
poGLel
pOCCTO
oooos0
006090
000100
000110
060120
0CC130
0C0140
000150

f f i ¥
/m/:/: nt/f'ﬂﬂ‘ /»‘ m/ﬁﬁuy (/ fir et re f r/ T34 WHITE HONSE PIRL. WEST COLLINGSWOOO. W | caio?

IDENTIFICATION DIVISION.
PRCGRAM~-1D. SORTKEY

AUTHOR. CHARLES S1ERBAKUV-
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. 1BM=360.
CBJECT~COMPUTER. [BM-360.
INPUT=OUTPUT SECTION.
FILE-CONTROL.,
SELECT INPUT=-FILE
ASSIGN 10 UT-S-TAPEIN.
SELECY DUTPUT=FILE
ASEIGN TC UT~-S~TAPOUT,
'DATA DIVISIDN.
FILE SECTICN.

00C290 FO CUTPUT-FILE

000160 FD INPLUT-FILE
000170 "RECORDING MODE F Tl iy
000180 BLOCK 10 RECORDS
00C190 LABEL RECORDS STANDARD Tty P el W
000200 DATA RECORD IS INPUT-RECORD,
000210 01 INPUT=-RECORD.
000220 03 FILLER _PICTURE X(4).
0006230 03 POCL-TYPE PICTURE X.
00240 03 FILLER PICTURE X(15).
000250 03 RISK-CODE , PICTURE X.
o 000260 FILLER PICTURE X(19).
1 000270 03 I1TEM-CODE PICTURE 99,
— 000280 03 FILLER PICTURE X(38).

DATA RECORD IS INPUT-RECORD.

00630C RECORDING MODE F
000310 BLOCK 10 RECORDS
000320 LABEL RECORDS STANDARD
_ 000330
, 000340 01 DATA RECORD,

000350 03 EXPANDED-RECORD PICTURE !{BOI.
00Cc3s60 03 SORT=KEY PICTURE 9.

0 00C370 PROCEDURE DIVISION. il i R
000380 INITIALIZE SECTIDN.
000390 START=PROGRAM,

____boc400 OPEN INPUT-FILE L .

000410 OUTPUT=FILE,
000420 NOTE DECIBLE SET-SCRT-KEYS

000430 A 07 E —_— —— - — - == |
000440 CXPOGL~TYPE = IN' TNY S ITY T aTr o
000450 CXRISK~-CODE = Al gy = 1pF Tpy ICH -

L 000460 C ITEM-CODE = 15 OR 20 OR 30 L -
000470 - - - - Y N -
000480 S READ INPUT-FILE
000490 AT END GO TG END-JOB g
000500 - - - - - - -
000510 A MOVE 'A'* TO RISK-CODE

000320 @@ I = = Te X et e e s

000530 AXCCMPUTE SORT-KEY = ,
000540 1 2 L 30 &) 50
0CO550 A MOVE INPUT=-RECORD TO EXPANDED-RECCRD
000560 WRITE CUTPUT+-RECORD

| e e e e e

ONILSIT LNdNI
O XIAN3ddV

H B A" " EEE s RS EEEREE

C-2

*NNY d0LS 0E9CO0
*3714-1ndiNo 35213 029000
*HI07 HLIM 31J-LNdNI 35071 019000

*80r=-HSINIZ 009000
*NOILD3S 80r-aN3 065000

X X X X x X X 43LN3I-34 ¥V 085000
X X X X 4 4 x oLs N0
OIBG T N OOOMSINITIO) 1SIM Tuid TSHOMN J1iM 518 \k .\ serhgf o= ‘_,_\v..?__\.e‘ﬁ«\ ...\..._-,_t.v‘.: :_\.u\:\\

.[

= A3N=130S 3ILNdWIIXY 055000 0ESO00

=t g (T A e : 0%§000 025000 =
3002=-3%31Y J1 ¥ 3A0W ¥ 0ES000 016000
- - - - - = 026000 205000
__+80r-0ON3 0L 09 ON3 LV 015000 06%000
3714=1ndNI Ov3d § 008000 08¥000
N ¥4 - - N B 06%000 0L%000
0O€ ¥0 0z ¥0 ST = 3003-Will) 08%000 094000
I N Y - Hy WY = 3000-A514x3 0L%000 0s%00
sde ke b aSe N Ny = 3dAL=103dX2 09%000 0%%000
LO X 064000 0E%000
— SAIW=1¥OS-13% 3ITE1II0 IJION 0%%000 02%000
*N6666Q 0E¥000
*NOILI3S SAIN=-L¥0S-13S 0Z%000
—_ T"31I3=IndIng O0T%000 OT%000
3714=4NdNT1 N3dO 00%020 00%000

_ *WYHOOM4~LHVLIS 06€000 06£000
“*NOTL33S JZITVILINT 0@€000 08€000
*NOISIAIQ 3¥N0370¥d 0L€000 OLE0OO

“6 JWNidld AIN=1¥0S €0 09E000 09€000
Floeix JWALIl4 T 0¥0D3¥-030NVdX3 €0 QSE000 0s€000
*0¥023¥ VivQ 10 0HE000 O%E00D

. "0¥003u-iNdNI ST OWOJ3Y Viva ~ 0£€000 0€€000
QYVONYLS Sa¥023¥ 138V 0Z€000 0ZE000

Sa¥Od3y 01 M08 01€000 01€000

i - 4 300W INIQu0I3IY 208000 _00€000
3714-1ndiND Qa4 062000 062000

OUTPUT LISTING

¥ N39 € ¥3A it - i [R e i s

(0IB0 T W OOOMEOMITION LETM “Tuid TS0 Limm S0 .“\ s\ b\h\&*\s\ ¢ “%as\t\%h\\\wt‘ih\\\.*
4 J - P J

2

*(8E)X 3IWNLDI4 ¥33114 €0 0822000 082000
_*66 3¥NLII4 - 3002-W3L] €0 0LZ000 0LZ000
“(6T)x 3unLIId 431114 €0 092000 092000 &
*X 3¥NLILd 3002-%S1¥ €0 062000 0S2000)
"(ST)X 3unidid — = NN §0 _ _G¥EORA- _AyEND. - -
¥ 3¥n1d1d 3dAL-130d €0 0€2220 0€2000
(%)X 3¥NLIId ¥i1114 €0 022000 022000
__ "0¥023¥-indNl 10 012000 0OTZ000
“040939-1NdNT ST a¥od23W viva 002000 902000
QYVONVLS SA¥0D23W 138Y7 061000 061000
_50M023¥ O %2073 081000 081000
4 3004 9N10¥0I3M L1000 0L1500
3I4=1NdNT G4 091000 991000
—L - __°NDILI3S 3714 061700 061900
*NOISIAIQ 7Lv¥Q 0%1000 0%1000
*1N0dYL-S-L1N OL NOISSV 0E1200 O0ET000
3114-1ndiN0 123135 021000 021030
*NIJIVI-S-IN DL No1csy 0fT35n0 011500
3714-LNdNT 123138 9010090 101000
. *I0YLNDD-3114 052500 089000
*NOIL33S LNd1ND-1NdNT 080900 080000
*09€~WBI *¥ILNJWOI-123r30 0L2000 0LLCI00
*09€-481 *¥3ILNdWOI-IIUNOS 090000 090000
*NOTLIO3S NOILVHADIINDD 06700 35400
*NOISIATO LNIANIHIAND 293200 092090
*AONYEd31S S3ITYVHI *HOHLNVY O0E1330 OE)I030
*AINLYOS *“al-WYHOOud 022000 020090
*NOISIAIO NOILVII4ILN3Ol 010000 0lp0no0

L —— e ————————.

Mwhlf{;mﬁuﬁny ;’ .l,f//n wrr ‘r.ﬁ/" 215 WHITE HORSE PIRE. WEST tou.mﬂsto?o N) Omi07
ILt's DIE CT B L (E 111 VER 3 CEN 4
000540 00C560 1 2 1 3 4 5 0
000350 000570 A MOVE INPUT-RECORD TO EXPANDED=RECORD
000560 COO580 WRITE CUTFUT-RECORD
0C9570 0ULO590 M A T X
QCoS80 0CLGOL A RE-ENTER B o e W Y
000616 END.
000620 D99995.
Qo0Cc630 READ INPUT=FILE
000640 AT END GO TO ENC-JCB.
0C065C D9559,
0CC 660 IF POLL~TYPE = =
000670 T
000680 If RISK=-CODE =
000690 "AY - =
000700 GO TC D99ces1
0CGT10 ELSE
. 000720 1f RISK~CODE = A
B 000730 ‘Bt
000740 GO TO 0999952
. . 000750 ELSE
000760 GC TO D997°957.
0O0770 1f POOL~-TYPE =
ov07BO 1 .,
~ = 000790 GO TO D999953,
000800 IF POOL-TYPE =
@) ___Ooos10 AUt . s W7 Y
| = 000820 IF RISK-COpDE =
o 000830 "AY
~ 0U0B40O GO TO D995554 Jdl o
000850 ELSE
000860 IF RISK=CCDE =
Q00870 o i o T = e e LT}
000BED If ITEM-CODE = 15 GR 20 DR 30
000BS0 GO TC D99995%5
00090C ELSE - . = 2
~ 000910 GC 70 D9999%6.
000920 GO TO D999957.
Qo0 0 ORISR, o e B = ==
000940 MOVE 'A' TO RISK-CODE.
000950 D99%951,
= 000960 COMPUTE SORT-KEY =
000970 1s
000980 D999958,
= 000990 MOVE INPUT-RECORD TO EXPANDED-RECORD
00106GC WRITE GUTPUT~RECORC,
0Cc1010 GO TO D9%99S,
e = 001020 D999952, PR .
001030 COMPUTE SORT-KEY =
001040 2.
o OV iy 001030 GO 7O D999958. .
001060 C%95554,
061070 COMPUTE SGRT=KEY =
001080 g,
0010%0 GO TD D99995¢,
001100 D999955.

§=2

2 s A
'ﬁl’ ”l'/(.ﬂ(f /N‘ M/”"”t’ ff - /-‘//ﬂ' e /l’ I/ T3S WHITE MONSE PIRE. WIST COLLINGYWOOD. N 1 OBIDY

L iC S DECTBL

Q0l1l1icC
001120
001130
OUl140
QCclisc
001160
001170

001180
001190

00120t

001216

0GCs00 o01220

000610 001230

000620 001240

C00630 001250
essns 16 WARNING
sssss 16 WARNING
sssee 16 WARNING
ssnss |5 WARNING

sepee 16 WARNING

E

COMPUTE
4.

VER 3 CGEN

SORT~KEY

GO TC D9u<':58,.

Do rase,
COMPUTE
5'

SCRT-=KEY

GC TD D999958.

D999957.
COMPUTE
0'

1]

SORT-KEY

GO TG p9sv“ 58,

FINISH-JOB.

&

CLOSE INFUT-FILE WITH LOCK.
CLOSE DUTPUT-FILE.

STOP RUN.
0 ERRORS 0 WARNINGS
0 ERRORS 0 WARNINGS
0 ERRDRS 0 WARNINGS
0 ERRORS 0 WARNINGS
0 ERRORS 0 WARNINGS

1 TABLES
1 TABLES
1 TABLES
1 TABLES
1 TABLES

essas

LA AT]

Copyright, 1971 by Independence Computing & Software
Corporation. All rights reserved. Copies of this manual, in whole or in
part, in any form, are not authorized without written approval,
Additional copies may be ordered from Independence Computing &
Software Corporation.

-

(&

INDEPENDENCE COMPUTING & SOFTWARE CORPORATION.
235 WHITE HORSE PIKE, WEST COLLINGSWOOD, NEW JERSEY 08107

| s ‘- 2 T 1 "
. i . L X .. L 1 U1
¥ Ny v
I y >)
Orrer Y. E r Tnit . X be o r . A W e
L]) ! Il i Nness M nines |\ "POratlion
Yohr " -
A » 4 LT ce
] v s } v]
i v y LA = . ANy
v
wd i £ Ly -
. ' 74 T ; ‘
T T
L M. ¥ -
I 1 £ §
J b 1 - i -
1:d n - Remington Uni D 1
el v 1 " r » ¥ v ¥
LAY I'=1 Y
Tt 1Y
u]
1 1y T 2 " =
i Y« 28 Ly C1 -] 19 -
¥ AIUNKT 1
B T '
e 4 - T
Wl i e ¥ L
vy 1 0y ; 4
L f Yy 1 y ¢ A v ticn

Fatts]
i i

Da y
e

{ W
i + =

. W AT

m

3 r ¥

| L]

————— e b N ———

10

format. This cholce, however, must be quelified for you, in that it repre-
sents & path of experimentetion and it should not be considered a final selec-

tion.

Whaet then is the

e place of Decision T
attributes of this

ables and DETAR-¥? What are some of the
methodology that have le

ed us to experiment with it?

First o‘ all, & Decision Tsbtle is a wey, and more particularly, an organized
way of expressing the logieczl decisions thet must be made, or that are in-
volved, ina given problem or system, and tke resulting sctions to be taken
based upon those decisions. We believe this approach to be convenient in
areas where the logic is camplex. We expect this convenience to persist to
of complexity; however, the degree to which this will be true is

lower levels
dependent upon actual use and the resuitant evaluation of the experience de-
rived. Permit me to interjsect at this point that we hope to determine this,
" among many things, from the feedback from you in using this method.

(

Reflecting & moment upon our given task--that is, "A Systems Oriented, Machine
Independent Language"-~ this method offers the possibility of being an effec-
tive tool for the systems man in the erea of problem analysis; and with the
inherent rliexibility in setting 1t up, the connotation could be made that it
is systems criented.

Further, I think we will all =gree that a fairly large percentage of the time
between the decision to mechanize and the actusl production running of an ap-
plication is devoved to problem definiticn. We have had indications that this
methodoclogy can meteriglly reduce this time. In this light, it can, if proven,
be an effective meens of reducing cost

It would be possible to continue this conjecture at great length regarding the
possibilities which ve in the Systems Group can envision. It is only fair,
however, to leave the validity of such conjecture to a sound evaluation of the
commerits and factuel informwtion received and compiled from users of the
method.

Now let ue turn to DETAB-Z specifically and ettempt to place it in the proper
rerspective. First, let me dispel any idee IZn your mind about this as being
a languege. To>day we have more languages than we know what to do with. Per-
haps I can draw an ansliogy for you which will clearly set forth our position
in this regard. 1 heard a story the other day concerning two Israelites who
ventured into Arsb country and were promptly captured. Of course a speedy
triel was conducted and the two were sentenced to die before a firing squed.
The day of execution dawned end the two were led to a courtyard and placed
with their bscks %o & wall. An Arab approeched the first Israelite and asked
him if he wented & blindfold, whereupon the Israelite spit in his eye. His
companion turned to him with sadness in Lis eyes and said, "Meyer, why are you

alweys trying to mske trouble?"” ~

Gh Hdd

11

We are therefore not here to present DETAB-X as a language and to cause any
trouble in that redard. We have in fact used COBOL as the language insofar as
we could. This in my opinion was for convenience. First, the operators were
available and defined. Second, the work currently being done by the various
manufacturers on COBOL compilers would perhaps ease the problem for them in
producing machine language from DETAB-X. &o clearly them, the obJjective is to
bave you experiment with Decision Tables per se, as defined by DETAB-X.

v')

In the interest of clearing up any possible misunderstanding and in the light
of wanting to put to rest once and for ulL any rumors you may have heard, let
me emphatically state that DETAB-X is not intended in any way to replace
COBOL '61. Again thu euy"aize‘, at the risk of being redundant, that we
wvant you to experiment with DETAB-X in the context of the Decision Table meth-
cdology.

Now let me tell you of our objectives as they relate to the feedback we went
from you in using DETAB-X.

First, would Decision Table format be useful as an additional form for the
Procedure Division of COBOL '617 lLet me say here that I want to emphasize the
word “additional” and this should not, at this point in time, be misunderstood
to imply replacement.

Second, would Decision Table format be useful for problem analysis and within
what range of complexity is it effective? In this regard, we hope, by the
careful consideration of your opinions, to determine the weak points of the
method and take corrective steps wherever possible.

Third, does it act as an effective tool in the area of man-to-man communica-
tion and solution documentation? This particular area is one that has plagued
us all since the very beginning of mechanization.

Fourth, and in conclusion, would Decision Table format be valuable in an ad-
vanced systems-oriented language? This perhaps will be the most complex con-
sideration of all. Of all of our objectives, this one can only be resolved by
the most serious and careful discussicns possible. If your feedback and our
discussions confirm this point, then this will materially affect the future
work in the development of a "Systems (Oriented, Machine Independent Languege"
by the Development Committee.

I trust that what I have told you in ny remarks this morning has in some way
laid the groundwork for the presentations that are to follow. I further hope
that I have provided a framework and attitude within which you will accept
DETAB-X for what it is.

In any research effort, there is a time when you can no longer afford to keep
your work within the laboratory. You must expose your efforts to the reality

i
!

f He

-

——— =
P

oy

1

1d

"3

3
)

il

ALidal

E

-

(8]

u
chal L

YOt

controlled, and more error free than ever before. In fact, this improved con-
trol can be considered tco be cof grester importance to business and industry
than the increased rate of processing that is achieved through the use of com-
puters. This imzroved control of which mansgement hes had a taste, is directly
responsible for ma2nagement's requesti for complete problem definition at the
systems level =nd for tha noticeable trend in planning for real-time informa-
tion processing systems &s ocpucsed ta the more commonpliace seriel data proces-
sing systems of todey.

Systems-level Language

There are scme of us today whc feel this need for precise problem definition
can be achieved through the development of a svstems-level languege for infor-
metion processing. Tas question then arises as to what is meant by a systems-
level langusge. A systems-level language for information processing can me&n
a method for describing s lsrge and complex informstion processing problem in
terms of a rigorous lenguege with well defined rules so that such descriptions
can be fed into a computer for processing which will result in the detailed
design of the required informstion processing system together with the reguired
machine instructions, opereting procedures and adequete documentation. It is

2 thGt sush & problem descripiion might be in terms of ouitpul i1e=
quirements, input dsta, relstionships of inputs te outputs, time requirements,
system constraints, mznagement pclicies, and other related facts which can be
tagged as envircnment.

Costs of Problem L[efinition

In attempting to stress tbe importsnce of precise problem definition in a very
limited amount of time, I skz.l summarize in rather general terms our experi-
ence to date on the relative costs associated with prcblem definition and then
spend the majcr amouant of time projecting the type of information processing
systems we ave ccntemplating and the implications therein for problem defini-
tion.

LY

Cost analysis studies carried on by many users cf electronic computer systems
indicate that progremming ccsts are approximately eguivalent to those of the
computer system on which the problem is to be processed. Programming is de-
fined as including the stetement and definition of the problem (which by its.
very neture ircludes 2t lesst a tentstive solution in feir detail), the coding
of the problem in some lsnguage accepteble to a computer system, the debugging
of the problem, ard the documentation of the prcblem with its solution so that
changes can be made to the problem as suck tecome necessary. Experience indi-
cates that the cost of defining the problem accounts for 65 to 75 percent of
the progremmirg costs. Many of the time delays, recoding and extrz debugging
can also be attributed to inadequate problem definiticn. The costs of docu-
mentation haweseldcm been excessive due to redocumentation resulting from inade-
quate problem definition; excessive costs can, however, be attributed to the

lack of documentation.

15

Impact of Problem-Oriented Languages

Great strides have been made during the past few years to develop programming
languages which are oriented to the language of the user. COBOL, ALGOL, JOVIAL,
and IPLV are examples of such languages. In sach of the above languages, pro-
cedural statements are written as inputs to the languasge system from which ma-
chine instructions are generated. The order of the procedaral statements
prescribe explicitly the sequence of machine instructions as they will finally
appear and also the exact order of the processing which will be done. These
languages, together with their supporting programs, have helped in cutting down
the coding, debugging and documentation time. Some of the error analysis rou-
tines may also have contributed toc decreasing the problem definition costs.
However, we find ourselves without any generally accepted standard tools and
techniques for the description of a problem at the systems level that will as-
sist in the design of an information processing system. It is this void which
we hope to partially fill through decision table techniques.

Both COBOL and JOVIAL have information processing system implications. Some
of the basic concepts of an operating data processing system are reflected in
the file and data descriptions of COBOL together with the implied Input/Output
Control System. It is possible to do some file organization experimentation
on a trial and error basis using COBOL; in fact, some COBOL compiling systems
are beginning to incorporate file design criteria which reflect the results of
their experience. Any of the programming languages that lend themselves to
autaomatic segmentation of the implemented programs encourage a modular concept.
The procedure module concept is not new in that a subroutine for computing the
sine of an angle is a procedure module. The same concept has been extended to
cover many data processing procedures such as Match, Update, SORT, FILE and
LIST. Other data processing procedures that reflect management policies can
also be developed as modules, such as Vacation Due, Economical Size Lots,
Reorder Point, and Credit Standing.

Some Aspects of a Systems-Level Language

At the present time we have no programming language that translates some state-
ment of the problem made in terms of the entire system into the procedural
statements that are required for a solution to the problem. At the present
time, programming languages handle each run as a separate problem. The pro-
grammer is entirely responsible for designing the entire system into a series
of runs. The programming system assumes the procedural statements as written
by the programmer reflect the proper usage of the specified equipment. One of
the major reasons for wanting a systems-level language is to make it possible
to automatically generate the required procedural statements and then segment
such into optimum "bites" consistent with good systems analysis and proper
usage of equipment for a smooth operating system.

 Hdd

-l

¢

Considerable experience has ceen accumulated 02 automatic segmentation when

the procedural statements have been packsged into Procedure modules. So the
major problem confronting us is that of develcping e method for defining the
systems-level problem from which we C&n generate the specific procedural mod-
ules required. An addeg refinement would be to include extensive systems
anelysis that would evaluate different procedural approaches, different organi-
zation of files information together with different e€guivment ccnfiguretions
in order to generate an optimaelly designed system.

An edded reguirement,; that of the up-to-the-minute information module, must be
added to the above when we recognize the resl-time information processing sys-
tems that are currently being plenned. Such Systems are the natural outgrowth
of the dynamic nature of our business and scientific environment. Such sys-
tems will incorporste ccmmunication networks and most processing will be done
without human intervention from the time a trensection enters the System, an
inquiry 1s made, cor a Special report is requested until the results have been
furnished.

Relatively few of us have had €xperience with reel-time information processing
systems. It might be well to project some of the aspects of such systems in
order to realize how 2ven more iamportant it will be to define aar nrohlemes

-~ a 2 ~ 1@ -
'33:"1::;;; UL preclsely.

Real-Time Infcrmatinn System Reguiremen*s

The first prerequisite -f reg.-time information Processing systems is to have
avallable or easily accessible. all file informaticn that is likely to be used
along with the procedures for identifying, verirying and processing the input
informetion. As an accampanyving reguirement, various records must reflect the
above actions for parposes 57 subsequent &cticns, sudit trails, safety of re-
cords, manegement informsticr sad varicus statistical studies of a dynamic or
Postoperative nature. Such systems will require millizns or billions of char-
acters in mass storags. PFere mess storage is defined as auxiliary storage to
the computer me:n memory and imrlles relatively shcrt access time where acces-
8eS can be in a randcm order with respect to the lest item accessed. It is
interesting <o reelize whs+ such mass storsge means in terms of computer pro-
grams; for exemple, if 20 billfon cheracters of storage are rejuired for data
storage, wnat about sn additinsral milijon or ten miilion charac-ers for pro=
grams and program control? This in itself results in different approaches to
pProgramming technigues and system control.

Having mass Storage aveilehle need not necessarily imply that all processing
will be of & resl-time nature. it is quite probable that most large systems
will use batch Processing Tvo & consideratle externt because of time and cost
considerations This projection 1s besed on the &Ssumprion that considerable
time will be saved by packsging similar types of input, even if the procedure
modules used ere the same oneés which would have been used had real-time been

CP HdO

«17

employed. It is contemplated that partial processing will be employed to de-
termine which inputs are to be processed immediately, which are to be stored
temporarily to be processed later, or to be batch processed at some scheduled
hour. It is also contemplated that in scme cases of batch processing, verifi-
cation procedures may be processed in advance of the remaining procedures so
that action can be initiated if some clarification is needed with regard to
the input.

The greatest difference will come in the organization of the information it-
self together with a parallel mode of operation as opposed to a serial mode.
By this latter statement is meant that the changes to the information content
of a "master record," brought about as & result of a given transaction, will
be reflected in all affected areas essentially in parallel. In serial proces-
sing, the effect of a group of transactions is applied to the given files of
similar information, and at subsequent intervals of time, reprocessing is per-
formed on those files for various reports and studies. A static file is kept
o all stages of development. When using dynamic mass storage, there will be
many. semi-complete modules of information much like subassemblies in a manu-
facturing operation. Such information modules will also be assembled much as
the subassemblies in that they will be put together in some prescribed manner,
with or without additional processing or finishing. They differ significantly
from the manufacturing process which has been used as an analogy, in that the

information modnle having been used in o preseribed menner for a specific out-

put is still available for use as many times as it appears to be necessary.

Another major difference anticipated that will have an impact on audit proce-
dures and accuracy checks in general,is that there will be less moving of data
from one place to another to indicate a given process has been performed. The
completion of the process will frequently be indicated by changing the label
associated with the data. The actual physical location of both data and in-
structions will be less significant and need only be known by the processor.
Extra care will have to be exercised with the labels since unlabeled or incor-
rectly labeled data will be difficult to locate or to identify in case it is
found.

We are familiar with the master-file record information module; however, there
are others which must be available at all times. These are similar to the in-
termediate results that are being developed and accumilated during various runs
in our current serial type procedures. An example of such are the various
figures being accumulated for sales analysis, warket projections, rate of
change in inventories, etc. OSuch information modules should be kept at the
lowest meaningful level to balance costs of storage and costs of processing.

It should be kept in mind when develcoping a given system that once digital
values have been combined, the identity of the individual elements are usually
lost and cannot be obtained by frecturing the resultant value. It will be ne-
cessary to anticipate the types of special reports management will be requiring
in order to have the appropriate information modules in a semi-finished form.

b Hdd

¢

ormation

memory

Gl 0§

nnt
now

s

LH H

&

sl sl B o

19

STRUCTURE AND CONCEPT OF DECISION TABLES

Burton Grad

People are different. Some prefer foreign compact cards; other want roomy do-

mestic models. Some pecple like chocolate ice cream; others favor strawberry.

Differences in taste and preference are personal considerations which make life
more interesting and encourage industry to turn cut a continucus stream of new

and unique products.

Individual differences also appear in the several rhilosophies and approaches
to designing business systems. Some look at all business problems as an exer-
cise in file maintenance or information retrieval. Others see the same prob-
lems in the framework of mathematics or arithmetic statements. There is an-
other school which views problems in terms of input transformation or ocutput
preparation. S5till others are principally concerned with the procedures and
operational sequences.

While each of these individual approaches is perfectly valid in certain situ-
ations, none of them can be recommended as a universal technique for solving
all business systems problems. The reason for this is that the systems design
must cope with such a large variety of problems that different techniques are
needed for maximum efficiency. For example, it wouldn't seem reasonable to
use the same rod and reel for trout fishing as you would use to take marlin.
As the classes of problems handled by computers become inereasingly more com-
plex, new and improved tools and techniques are needed to solve them.

Decision Tables, a recent development, provide a means of presenting complex
decision logic in & way that is relatively easy to prepare and understand. A
decision table shows the specific alternative courses of action to be taken
under various combinations of conditions. This permits an analyst or program-
mer to concisely and completely record logical decision rules for analysis,
documentation and programming. By discussing decision table structure and
concept, you will begin to see why decision tables way soon become another im-
rortant tool for systems design.

BASIC STRUCTURE

The basic outline of a decision table indicates the four most significant
quadrants (see figure 1). Conditions are shown above the horizontal heavy
line. The condition stub contains the common condition information. Figures
or words which supply a concrete value or range of values to the condition
named are shown in the upper right-hand, or the condition entry area. Names

or titles of resulting actions are writiten in the action stub, in the lower
left portion of the table. Related values and ranges of values for each action
named are located in the lower right quadrant.

St Y AR
INSTRA!

e nf tal . Toadte

ezs of & table. let's
B il e vl o o i —
indepenaent and

- —

21

e.g., "If sex is male; if sex is female." This characteristic establishes the
fact that this is an extended entry table.

In this table, only one set of actions can take place since only one set of
conditions can be satisfied at a time, i.e., there is only one successful rule

per pass through the table.

CREDIT TABLE

Having considered the basic table terminology and its application with an
extended entry table, another type of table can now be introduced.

For example, this credit table (figure 3) while similar to the insurance table,
has a number of different properties. Rule one reads:

"IF credit 1imit is OK, THEN approve the order.”
And the second rule would be read:

"IF the credit limit is not OK, and pay experience is
favorable, THEN approve the order.’

This is a Limited Entry Table, and differs from extended entry form in that
the entire condition or action is written in the stub area of the table.
Notation in the condition entry area of the table is limited to indicating
whether a particular condition should be asserted (Y), negated (N), or ignored
altogether (blank or dot). In action entries, an X indicates that the corres-
ponding action should be executed, while a blank means that it should be
ignored.

A table which includes both extended and limited entry rows is called a Mixed
Entry Table.

Use of limited entry format permits including more rules than is physically
possible with extended entry. But excessive use of limited entry tends to

extend a table vertically. A balance between these two is achieved by em-

ploying the mixed entry form. The preveailing conditions an analyst meets

in a study often help decide which form to use.

An unconditional table is composed of one or more actions, but no conditions.
As is the practice in all tables, the actions are executed in the order they
are written.

Two major types of sequence control can be exerted through an action row com-
mand :

l. When an action row is reached, control can be temporarily trans-
ferred to another referenced table,and when that table has been
processed, control will revert back to the succeeding action in
the original table.

b Hdd

-

C

2. When the last action in a rule is reached, control can be directed
to & new table.

table may be entered at only one point, although there may be as many exits
from & tzble 2s there are decision rules in it.

Where the exit is always to the same table, no matter which rule is satisfied,
then space cen be conserved by inserting the sequence control command in the
table header for automatic execution after each series of asctions has been com-
pleted. With this ability to signify temporary or permanent transfer to other
tables, a data processing system can be divided into logical segments a&nd
structured ror effective problem analysis.

FILE UFDATE TABLE

Up to this point we have examined tables which were already prepared. Now
let's start from scratch and build up a table for a typical file maintenance
problem. The basic problem elements are: & master file and a detail file serve
as inputs; a new master file and an error file are produced &s outputs. Within
the camputer, three besic areas are assigned: master, detail, and new master.
The task is to determine and record the logiec by which the incoming master file
is modified from information in the detail file to prepare a new and updated

o - - - -~ - a3
magster file cortaining any changes and additione, and from which deleted rée-

cords have been eliminsted.

The rules in figure 4 will be considered sequentially. What are the appro-
priate conditions and actions for the starting situation? This requires a
single condition, start, and actions for reading one master card and one detail
record card into their corresponding memory areas. The finel action returns us
to the beginning of this table.

We will need a rule to handle an end-of-job condition when the end-of-detail
end end-of-mester are reached. Therefore, we add two conditions to the condi-
tion area of the table under rule 2, and also indicate in the last action row
a transfer of contradl to a closing routine which provides for sentinels, tape
marks and so forth.

Next., we must consider what happens when the end-of-detail is reached, but not
end-of-master. Since there can be no further changes, additions, or deletions
to the original masver when this occurs, we need one new action in rule 3:
write the updated master from the master area. Then we read another master
and return to the beginning of the table.

In rule 4, we want to take care of the condition where end-of-master has been
found, but not end-of-detail. Consequently, the remaining details will be ad-
ditions to the master. This is signified by a new condition row and two new

ection rows. The addition switch is set "ON." The information in the detail

GP Hdd

23

area is moved to the new master area; a new detail record is read; and sequence
control is transferred to another table identified as CHANGE.

The ne
detail
between the two records.

0

Rule 5 consid jetail i tification number is less than
that of the the lc¢ of rule should be followed
i re

In rule 6, the

3

rule 3 applies.

Rule T covers the case where the master identification number is the same as
that of the detail record; informe in the master area is moved to the new
master area, with control transferred momentarily to the CHANGE table.

1 be executed only upon failure to
mate possibilities for this situation
represent a logical error or in-

-
out, another detail record
=~

The final

satisfy any
have been explicitly IVE - uch ilure
valid data; tI
is read,

will also
detail wi

™

e table. This ELSE ru
r file, any non-matchi
of sequence errors in the

LilC

not an addition, and certain ty

rules do not exhaust all combina-

Some tables
c he unconditional rule ELSE tells

tions of
what to do

SUMMARY

A decision table is divided into four major areas, separated by heavy (or dou-
ble) horizontal and vertical lines. Conditions are located above the horizon-
tal line, actions below. Names of values are placed in the stub to the left

of the vertical demarcation line; specific values and ranges of values are ar-

ec
rayed in columns of the entry area, to the right.

ct

Conditions and actions have a cause and effect relationship; no actions may
a no conditions can be indicated in the action

e .
g — -

appear in the condition A

area.

Information common to the t
pertinent to each rule is placed in

ical column of

A decision rule is read by proceeding sequentially down a vert
the entry area and combining related information from the stub area with its

a ¥

[~

.
L

I
e

Q
4 -l
9 4+
(3]
- o

.

Q

i

o]

«

2

| >
) | =

1 1
> r
b= -
L s

4 G ¥ ']
il L&) o
it

sl

shown

e

0

oy

“Ra

Q *
o O

wi Q)

Py
e}
u o

eT

7Y |
LS
Ll

ot

"all
a COMmn

ne
id

Th

TABLE HEADER RULE HEADER
e RN
CONDITION | € | CONDITION
STUB ! ENTRY
R PR T
N
U ACTION
L ENTRY

Figure 1. Decision Table Structure

G Hdd

S

\
HEALTH EXCELLENT| EXCELLENT < POOR
AGE 225,435 | >25,435 \,\, >65

[
SECTIONOF COUNTRY | EAST EAST % WEST
SEX MALE |FEMALE 1/(,5! FEMALE
SR TR G R S T e Do & 5 VRt e IR
PREMIUM RATE 1.27 1.18 K 9.82
POLICY LIMIT 200,000 |100,000 ‘Q 10,000

| 1

[

TYPE OF POLICY A S R

Figure 2.

Insurance Table

e

TABLE:CREDIT RULE1 [RULEZ2 |RULE3 |[RULE4

CREDIT LIMIT

1S QK. Y . >, e
e | v [~ |
APPROVE ORDER | X X X

RETURN ORDER 3¢
TO SALES |

Figure 3. Credit

Sh Hdd 1

CH H4Q

TABLE:UP DATE c8
START ELSE
END OF DETAIL
END OF MASTER
DETAILVS. MASTER

| DETAIL 1S AN'ADDITION” |
DO ERROR ROUTINE EE
MOVE MASTER TO NEW MASTER X
MOVE DETAIL TO MEW MASTER X | X
SET ADDITION SIVITCH ON | ON OFF
WRITE (MJASTER X X
READ MASTER X X X
READ DETAIL X 3 ESe b3
GO TO TABLE oare [END |pare | CHG| CHG.|gire |CHG. |

Figure 4. File Up-Date

ge

WHAT IS DETAB-X?

Solomon L. Pollack¥

Burt Grad's talk has described what decision tables are. I would like to tell
you about a specific decision-table language, DETAB-X (Decision Tables,
Experimental), an experimental language that combines COBOL-61 and decision ta-
bles. It is a proposed supplement to, not a replacement of, COBOL-0l.

The CODASYL Systems Group has designeted DETAB-X as an experimental language

in order to emphasize that it is available on a test basis to those in the
business data processing or scientific field who are willing to experiment with
it. Hopefully, users of the language will provide feedback concerning its
merits and defects to the CODASYL Systemg Group.¥**

Since COBOL-6l is an integral part of DETAB-X, let us turn to the first chart.
As most of you know, source programs written in COBOL-61 consist of four major
divisions: IDENTIFICATION, ENVIRONMENT, DATA, and PROCEDURE. The chart lists
in broad cutline what is contained in each division; the COBOL-61 manual pro-

vides the detailed specifications. i

The specifications flor the IDENTIFICATION and ENVIRONMENT DIVISIONS of DETAB-X
source programs are exactly as prescribed in the COBOL-61 manual. The DATA
and PROCEDURE division specifications, however, differ enough from those of
COBOL-61 to require a supplementary manual.*¥*

DETAB-X is designed so that source programs written in DETAB-X can be trans-
lated by people or a computer preprocessor to COBOL-61, which can then be
translated to an object (computer) program by a COBOL compiler (most of which
will be available by the end of this year). This is not to preclude

* Any views expressed in this paper are those of the author. They should not
be interpreted as reflecting the views of The RAND Corporation or the offi-
cial opinion or policy of any of its governmentel or private research spon-
sors. Papers are reproduced by The RAND Corporation as a courtesy to members
of its staff.

** Criticisms and suggestions concerning DETAB-X should be sent to Sol Pollack,
The RAND Corporation, 1700 Main Street, Santa Monica, California.

¥%% This supplementary manual, "Preliminary Specifications of DETAB-X," will
be distributed to the attendees of this symposium.

¢ Hdd

30
Chart I. Divisions of COBOL-61 Source Program

IDENTIFICATION DI VISION

NAME OF SOURCE PROGRAM
AUTHOR

DATE

REMARKS

ENVIRONMENT DIVISION (EQUIPMENT)

NAME OF COMPUTER
1) FOR COMPILING SOURCE PROGRAM

2) FOR RUNNING OBJECT PROGRAM
MEMORY SIZE

NUMBER OF TAPE UNITS
PRINTERS, ETC.

DATA DIVISION

1. FILE SECTION
2. WORKING STORAGE SECTION
3. CONSTANTS SECTION

PROCEDURE DIVISION

SECTIONS AND PARAGRAPHS

&

F Hdd

enterprising users or manufacturers from writ ing com
DETAB-X source Programs directly to computer objec

Let us now turn our atten
between the DATA U]V'TIO”

DETAB-X uses g table format *S & free-form
English format. To illust described accord-
ing to COBOL-6] Specificat small example a

great deal of redundancy. Also, it 1is ver eck that all the

attributes of each data item have been spec

In Chart 3, we have describ e same data as in Chart 2, but have used the

! headers in this chart eliminate

61 example; we have thereby re-

] Or programmer. Alsa, because
in the heading, the

are decreased.

the many IL*UPIHPCI“
duced the amount of
in the DETAB-X d:
chances of leaving

From a commuy 1§ point of vie he systen gner will find the pecple
iﬂ t:n‘r_x ap ¢ : 3 : 1 r‘rf.\l_‘ + nn Tn+ n d?:::’

tion if 1
6l. The

free-form SLyle o? Co
ore

e big

While we have made some improvements in lata descr iption for DETAB- X, th
i 5 &rea we use decision tables for
T

payoff is in the Procedure Division. 1In thi
describing the many decision rules that exis o il-

lustrate the dixler ences between DETAB-X in deseribing Procedures,
I have extracted an example from Jean Sammet's article on COBOL-61 in the May
issue of the ACM Communications ang copied it onto Chart U,

st in business operations,
|
!

{""
U

Note that COBOL-61 is Serial in nature. The comparisons and the actions based
on those cpm1qris;nc MuUsStT occur in thas order in which they are Specified.
Note also that this form does not lend itself easily to analysis or to checks

for completeness and accuracy. It is difficult 211 whether all t}

Priate co; Stock-on Secondary-supp hay
been made. & comparis values, it is very
difficult to SPOT wrong values ues appear in differ-
ent paragraphs, some distance
Let us turn to Chart 5 which shows these same rules in decision-table form.
Notice that having the eonditions laid ou in tabular form enables the system
designer to better determine if he has considered all the possible combina-

S 1diti - I

'ons that might occur. He Knows for example tha
three cond = i
23 or 8 ai

Chart 2. Sampls TZ30L-61 Data Description

01

o
L

PART-NAME; USAGE =

o
L

ON-HAND-QUA

QT 75
[= B, d

03 ON-ORDER-QUANTITY; UZAGE IS COMPUTATIONAL;
PICTURE IS S (Z,

0l SALES~REPORT; CLAZZ IS5 AN

02 DISTRICT-SALES; CCTURS 103 TIMES

N py e T— - P——

o o : oy ey e Rtk
03 DISTRICT-XNUMBER; TZASZ IS DISPLAY; PICTURE

WY if ol B 11 'n#‘_{

=)
(Y

USAGE ~3 COMPUTATION

- -
did Do 772722

)2 TOTA RS, 2ART =5 AOMDIITATTONAT
02 TOTAL-~ SALES; USAGZ -2 COMPUTATIONAI 2
PRI R PR
ALiVUNL 1o YixsS29v5y

e sl &

PSSP PR T =

—
~—
— 4
a—

4

33

Chart 3. Sample DETAB-X Description
[Line ‘Level Use | Desc | Pic Ref Repets
No. No. Name Abbr Code | Type | or Value |[Min | Max
001| 01 INVENTORY-RECORD | INV-REC
002 03 PART-NAME D P | na(11)
003| 03 ON-HAND-QUANTITY | OHQ ¢ P | 9(6)
ook | 03 ON-ORDER-QUANTITY | 00Q C P | 9(6)
005 | o1 SALES-REPORT SAL-REPT
006| 02 | DISTRICT-SALES DI-SALES 103 | 103
007| 03 DISTRICT-NUMBER DI-NR D P | 999
008! 03 UNIT-SALES c P | 9999999V99
009 | 02 TOTAL-SALES TOT-SAL c P | 9999999V99

S E—— L---...q

CP Hdd

34

Chart 4.

Sample COBOL-61 Procedure*

IF STOCK-ON-HAND IS LESS THAN CURRENT-ORDER THEN IF CURRENT-
ORDER IS GREATER THAN SECONDAY-SUFPPLY GO TO EMERGENCY-ORDER-

ROUTINE; OTHERWISE PERFORM SECONDAY-SUPPLY-ROUTINE:
SUBTRACT CURRENT-ORDER FROM STOCK-ON-HAND.

Chart 5.

Sample DETAB-X Procedure

OTHERWISE

Rule 1

STOCK-ON-HAND LR CURRENT-ORDER

CURRENT-ORDER GR SECONDARY SUPPLY

GO TO

TABLE 3

SUBTRACT CURRENT-ORDER FROM

f—— e ——

NOTE:

TABLE 4 is a seconday-supply rou

TARLE 3 is an emergency-order routine

tine

STOCK-ON-HAND

e e e et e —— .

¥ Borrowed from Jean Semmet's article, "Basic Elements of COBOL-61," in

Communications of the ACM, May, 1962.

CH Hdd

35

DETAB-X differs from COBOL-61 in that rules in the table do not have to be
executed in the order they have been written, i.e., rule 1 does not have to be
executed first. This gives the compiler freedom to determine the order of
rule execution based on some paraneter such as frequency of occurrence. For
example, if a particula rule is executed 90% of the time while the remaining
rules are executed only 10%, it is certainly more efficient to have that 90%
rule executed first. The format of DETAB-X makes it easy to specify the param-
eter for each rule so that more efficient object programs can be developed.

When the rules of a table have been specified, the system designer can add a
final rule to the table - ELSE GO TO TABLE - This rule, by definition,

is always referred to last, i.e., if the conditions of each of the other rules
have not been satisfied. This feature will prove very valuable to business
systems. If after a data processing system has become operaticnal, a condition
arises that was not anticipated by the system designers, this "else rule" will
bring this condition to the attention of the staff. For example, suppose Rule
3 in Chart 5 had been omitted from the teble and some time after the system be-
came operational the stock-on-hand was not less than the current-order. Rules
1 and 2 would be tested and found to be unsatisfied. The "else rule" would
then be automatically referred to and the computer could print out that speci-
fied rules had not been satisfied. Thus an incomplete table could be spotied
the first time the missing conditions were met.

To further illustrate the difference between COBOL-61 and DETAB-X, Charts 6
and 7 describe the rules for computing depreciation and lease expenses.

The language used in the decision tables of DETAB-X is a modified COBOL-61.

The deviations of DETAB-X from COBOL-61 (deletions and additions) are described
in the DETAB-X Specifications Manual and will be discussed in detail at tomor-
row's tutorial sessions. Let me again emphasize that source programs written
in DETAB-X (using modified COBOL-61) can readily be translated to standard
COBOL-61.

One more point. As you have provavly inferred from Burt Grad's talk on deci-
sicn tables, there is little point to forcing a series of unconditional actions
into a decision-table structure. DETAB-X therefore allows portions of the
Procedures Division to be written in COBOL-6l sections and paragraphs. How-
ever, where there are decision rules (sets of actions based on sets of condi-
tions), we Strongly recommend that decision table structures be used.

In Chart 8 we have listed some desired goals for future business languages.

It is our hope that DETAB-X is a step in this direction. We feel that DETAB-X
can help users in documenting their system and that programs written in

DETAB-X will provide improved communication between system designers, program-
mers, and functional specialists. DETAB-X is also expected to increase the
accuracy and completeness of provlem statement achievable by existing languages.
It is available to anyone willing to try it and the Development Committee would
appreciate receiving any information on the merits and defects of the language.

Ch HAQ

3

Chart 6.

DEPRECIATION E

1000 . IF ASSET-LEASED GO TC 1050.

AT AT ~ T EOea MEAR ;
-CLASS IS LESS THAN "A

.C:.— LCJ:J rI::E .

r Apy Mptt ~ AT AT T
THAN "J" GO TO ERROR-ROUTINE.

S CREATE
o GRLRL L

AT ST
CUMEPULL SUM=-C

ATAMITAN . 0 T - .
RECIATION; GO 10U 1U[V.

7 SUREHOR MO RYPENSE-TO-D .
lk'[‘—v' . =LA DINVOD LV BAPENSE=LU=DRALL.

‘l’ 37

Chart T. Sample DETAB-X Procedure

DEPRECIATION EXPENSE OR LEASE EXPENSE

Rule 1 | Rule 2 | Rule 3 | Rule 4 |ELSE

ASSET-LEASED Y Y N N -
ASSET-GOVT-COST-FREE Y N - - -
PROPERTY-CLASS IR "A" - - N N -
PROPERTY-CLASS GR "J" - - N N -
ASSET-NEW-WHEN-PURCHASED - - X N -
WRITE LOCATION-RECORD X - - - -

DO - Table 5| Table & | Table T|-

. ADD CURRENT-DATE TO EXPENSE-

TO-DATE - X X X .

PRINT ERROR - - - - X

NOTE: TABLE 5 computes current-lease amount.

TABLE 6 computes sum-of-digits-expense.

TABLE T computes straight-line-depreciation-expense.

P Hd(

-

.

Chart 8. Goals for Future Business L

nguag

1. IMPROVED COMMUNICATION AND DOCUMENTATION
2. INCREASED EFFICIENCY OF COMPUTER PROGRAM
3+ REDU COMPUTER-PROGRAM CHECKOUT TIME
4. INCREASED ACCURACY

. COMPLETENESS OF

\wun

39
(Page 40 Blank)

REFERENCES

Howard Bromberg, "COBOL and Compatibility," Datamation,

Pebruary, 1961, pp. 30-34.

DOD Document - "COBOL, 1961 Report to CODASYL (Conference on
Data System Languages)" (for sale by Superintendent of Documents,
U. S. Government Printing Office, Washington 25, D. C.).

Burton Grad, "Tabular Form in Decision Logic, " Datamation, July,
1961.

Orren Y. Evans, "Advanced Analysis Method for Integrated
Electronic Data Processing," IBM General Information Manual
#F20-8047T .

Charles A. Phillips, "Current Status of COBOL," Prcceedings of
- rd ’ ’
the USAF World Wide Data Systems and Statistics Conference,

October 26, 19cl.

Systems Group (CODASYL), "Preliminary Specifications of DETAB-X, "
August, 1962.

— e i

b1

APPROACHES TO DECISION TABLE PROCESSORS

K. R. Wright

INTRODUCTION

My family and I were out traveling one day, looking at the sights. We came to
a seientific museum. Since my sons think they want to be scientists, we
stopped to see what we could learn. As we traveled through the exhibits, look-
ing at all the marvels of the modern age and all the fabulous things they
could do, we came upon one gigantic piece of equipment. There were wheels,
and bells, and arms, and pulleys, and levers; everything working furiously,
around and back and forth and up and down. The thing was making a tremendous
amount of noise, as though it were accomplishing almost all the work in the
world all by itself. It was built so that you could see all the wheels and
gears turning and the levers carefully moving back and forth. Everything
seemed to be running just fine; then we read the inscription on the base of
the big machine. Its specific purpose was just to run. It had no practical
use. IL was just nice to lock at and see all energy being expended.

We didn't want to be in the position of having decision tables nice to look at,
& wonderful idea, but not able to accomplish anything. We knew that in order
to be useful decision tables needed to be translated into a machine language
so that they could be processed by a computer.

TYPES OF PROCESSORS

There appears to be four basic types of processors or methods of converting
decision tables to a machine language. These are (1) the manual processor,
(2) the interpretive processor, (3) the translator, and (4) the compiler.

Manual Processor

The manual processor is the programmer who sits down with a decision table and
translates the decision table into a machine understandable language. By a
machine understandable language I mean either a machine code or a language
that is acceptable by some other processor.

The manual processor has a number of advantages. Since a person is interpre-
ting the meaning of the entries in the table, the language of the table does
not need to be restricted. In fact, as with a standard flow chart, the lan-
guage of the table can be adjusted to each problem and each individual working
on the problem. This requires only the definition of a very few rules to be
able to use a decision table. In the beginning this is an enormous advantage

CP Hdd

————— e e

k2

since it means that the theory of the decision table can be tested without
having to completely define all the rules and without having to establish a
special language.

These advantages, however, tend also to be disedvanteges. Since we hope to
make the decision table a documentation of the problem, we are defeating one
of our purposes. The decision teble is a replacement for many flow charts,
and it can suffer the same fate as & flow chert. When changes have to be made
they can be made in the machine usable language rather than in the decision
table. The decision table can end up not being the correct documentation of
the problem. If the decision teble is not precise, not everyone can under-
stand what it says. It has to be translated by the person who prepared it.

The manual processor does make possible the immediate use of decision tables.
A minimum of instruction allows the enalyst and the programmer to communicate
with each other with a technigue that lends itself to precision of definition.

Interpretive Processor

An interpretive processor is essentially an object program made up of a series
of sub-programs in a machine language. The interpvretive program i= put inte
the computer. The decision table, in a machine language, 1s then read into the
computer by the interpretive processor. As the processor examines a decision
table it recognizes the various situations that can arise. As it encounters
each situation it transfers to the special sub-program that understands this
type of situation. This sub-program processes thet part of the table, then
transfers back to the main program to find out which of the sub-programs is
needed to process the next part of the table.

The interpretive processor has a number of adventages. Since each situation
in the decision table must be well defined, this type of processor requires a
very precise language. But, since each situation requires & sub-program to
process it, the processor normally has e very limited vocabulery. Because the
processing is done direct from the decision table, the decision table must be
kept up to date at all times. Therefore, when the progrem of the decision ta-
bles is debugged, ready to process actual data, the documentation is up to
date.

The major disadvantage of the interpretive processor is the operating ineffi-
ciency of the program. Since the object program is the same for all problems,
it cannot be modified to take edvantage of situations &s they occur. There-
fore, it is normally an inefficient object program and takes more machine time
to process a decision table than should be required.

e D

G Hdd

43

Translator

A translator is a processor that takes one language and translates it into an-
other language. For example, in DETAB-X the language of the decision tables
has been developed so that it is readily translatable into the COBOL language.

This type of processor has a number of advantages. Probably one of the most
important is that the writing of the processor is much simpler than with any
other type of machine processor. So that the language can be translated, it
must be a precise language which is needed to make documentation understandable
to others than the author.

Of course, there are disadvantages also. Since the language restrictions used
were not developed specificelly for decision tables, there are some ineffi-
ciencies in the language. For this reason, we have modified the COBOL language
slightly to make it more easily usable in decision tables. The placing of an
intermediate language--in this case COBOL--between the source languege and the
mechine language gives the programmer a chance to make corrections and modifi-
cations to the program in the intermediate language. Thus, there will be a
tendency to not keep the decision tables up to date. However, COBOL is a
fairly good documentation language so this may not be as much a disadvantage

as with other intermediate languages, but should be discouraged. .

The insertion of an intermediate language means that the compile time or time
from decision table to machine language will be increased. The restriction of
going from decision tables to another langusge will introduce certain minor
inefficiencies in the object program. The processors will not be able to make
the most efficient object progrem that could be made for decision table pro-

cessing.

Compiler

The last type of processor is the compiler. The compiler takes some kind of
source language and translates this into a machine language. This type of com~
piler has also been described as a generator in that the compiler looks at a
statement in the source language and from this generates the instructions ne-
cessary for the computer to follow the procedures indicated by the source
statement. It is normally referred to as an English language or higher lan-

guage compiler.

A compiler has many advantages over other types of processors. The source
language can be developed so as to be the most elfective type language for use
with decision tables. The fact that it requires & precise language is in it-
self an advantage. As the processor would be developed for the specific pur-
pose of processing decision tables, it will .be possible to prepare it so that
we could obtain the most efficient object program for processing decision ta-
bles. If the compiler was written so as to go direct from the decision table

CH Hdd

LYy

et - 1
) The machi lansu

o C

CONCLUSION
e il

+5h1oe
vables

We coul

3
Ll

There are
_].C‘a.‘"; t one
tabl

irrently availe

en writte

>

i N

-

lks

QUESTION AND ANSWER PERIOD

MORNING OF SEPTEMBER 20, 1962

MODERATOR: L. W. Calkins

PANEL: Burton Grad
Mary K. Hawes
Solomon L. Pollack
Kendall Wright

CALKINS: We have received some written questions, four or five of them, and I
will start with these. For others, just raise your hand, I will acknowledge
you; state your question; I will then repeat it for the audience and assign it
to myself or one of the panel.

The first question is, "Who has written compilers for Decision Tebles, specifi-
cally?"” Ken, I think that falls in your category.

Tlha Tmmesd =t meed
e sbvhad e WU

WRICHT: Well, there have been z nmumber of compilers written.
several of them up at SHARE 1ast week. The RAND Corporation has a compiler.
You will hear about that this afternoon. G.E. has a compiler that is inter-
pretative. G.E. elso has a compiler that was written from a table into the
machine language, as part of their program system for the 225. And our menual

processor.

CALKINS: The next question is: "Have you had any experience with decision
table processors?"

WRIGHT: As I say, I am a manual processor. I had to write a program for sal-
ary distribution. Most salary distribution is quite messy in the logic, so I
used the decision tables to describe the logic, and translated from this into
the FORTRAN language manually. That was before George Armerding wrote that
FORTAB process.

CALKINS: Another question here is, "For what kind of problems are decision
tables useful?”

GRAD: It was alluded to about six million times this morning. But basically,
it's problems with conditions in it. To elaborate just for a second on it,
there must be some sense of alternatives of parallel logic, if you will, of
multiple conditions effecting given actions that you will take. It's clear
that if there is but a single condition, ard it is a "Yes-no" state, there is
little to be gained in a technigue that is principally aimed at complex deci-
sion logic. Because that isn't complex! In general, it is also where you have

CP Hdd

46

an interaction of conditions. Where no one condition of all determines fifty
actions, and then some other conditions determine fifty other actions. But
where it is Joint, 1t is the interaction of the conditions that determines the
actions to be taken. And generally, I should think, also, that the more com-
plex the problem, the bigger the problem, you tend to find greater advantages
in decision tables. An analogy has been drawn by some pecple that the advan-
tages are not linear in a small program that would result in, say, two or three
tables or a hundred to two hundred instructions. It just couldn't matter less
what you use, almost. When you get to very large programs, it becomes a
greater and grester advantage. These are the kinds of claims that are made.

CALKINS: Another question here: "Are processors necessary for the use of
decision tables or can you manually code from tables?"

GRAD: Well, Ken has already answered this. Of course, you can manually code
from tables. I think, perhaps, the question should be interpreted this way:
"Where is the greater advantage in the use of tables?" In the use of them as
an automatic input to the machine or as an analysis and documentation tool to
provide a problem analysis for the programmer. And I just think it's entirely
premature to answer this. It's obvious that people have used tables and have
writien code frem it. One mamial processor sits to my right here. Others
have, of course. What the advantage is of actually having a processor Ior ii,
I don't know. It's one of the things we are going to find out in the next
year. Where is the greatest value,and how much relative effect should be put
in these different directions?

HAWES: I would like to add a comment. I found that the use of the decision
tables, even while you are trying to define the problem in areas that will
not be used on computers, has been very promising. I think this is one of the
greatest uses, really. Because you have it not only for the computer use,
this is only part of the problem; we must not forget the human factor when we
are talking about computer systems, and I think this interrelationship is very
important. Definitely, even outside the areas that will be computerized, de-
cision tables are very useful.

CALKINS: I have one here: "Are the format restrictions introduced because
of DETAB-X, or are they desireble for other reasons?”

GRAD: That, unfortunately, is a very difficult question to answer. Most of
the restrictions I described and talked about this morning were developed in-
dependently of the DETAB-X specifications. There has been experimentation,as
many of you may know, over the past three to five years on this format, and by
having tried different kinds of restrictions, or different kirnds of freedoms
of rules, we find that some lead to errors. It destroys the value of the ac-
curacy area, for example, whereas, other restrictions tend to produce better
operational programs and more logical statements. People learn them more read-
ily and use them more readily. In general, therefore, the restrictions were
introduced independent of DETAB-X. HNevertheless, certain changes were made

E—— it i . e 4 S Sl . LSty S b #_‘ e . ._._‘T_._E_:
. TR

G HdC

b7

because of the particular language. A simple one in the DETAB-X language &s

such, is the format introduced there. There is quite a large stub area. This
is because you can have guite long statements in COBOL, and since we are com-
patible with COBOL, you allow for this.

The forms introduced are: a form for limited entry; a form for extended entry;
and the size of each of the columns is affected by what can or cannot be done

in COBOL and, therefore, in DETAB-X. I mean, they are not the other way around,
if I may. I think a restriction for convenient use of tables is to permit you
to see things as a whole. If you let the table stretch out too much horizon-
tally or vertically, you begin to lose the ability to see the things any longer.
So things introduced into DETAB-X, shortening of words and shortening of some
of the operators, are done specifically to take advantage of the tabular format.
So I flipped the question, and the restrictions tended to go the other wWaYy .
They tended to reflect the language rather than the language introducing the
format.

WRIGHT: I would like to make one comment. At the SHARE meeting last week, I
found out there is at least one installation who has written a processor to go
from the data description in COBOL, to COBOL language. They decided that it
was easier to do a data description in tabular form and write a processor for
the 401 to translate from the tabular form into the COBOL a description state-
ment. This has been written and is operating now in at least one installation.

CALKINS: Are there any questions from the floor?

VOICE: From what I can tell, there is a reduction in words and rearrangement
of words in DETAB-X. But the major problems in writing a compiler or a pro-
cessor, such as COBOL, are still syntactical and semantical problems. How
would they differ in this problem? Would they still be confronted with the
same problem as the COBOL-type processor?

WRIGHT: The question, as I understand it, was, 1s DETAB-X going to do away
with all syntactical problems when you write a compiler? Is that right?

VOICE: Not do away with all syntactical problems, but how is a DETAB-X pro=-
cessor easler to write than the COBOL processor where the major problems are
the semantical and analysis problems? I don't expect it would do away with
all of them.

WRIGHT: As near as I can tell, the syntactical problems will be exactly the
same. We aren't trying to change at all the syntactics of COBOL. They are
all there. The things that we have changed are a few of the verbs. We have
added some, and we have mede some modifications to make them easier to use in
tables. I'm afraid that we are stuck with the syntactical situation with pro=-
cessors as long as we have a formal language.

=
g
o =
=,
o

48

POLLACK: I will try to cut at your question in another way. If you are going
to actually build a compiler directly for DETAB-X, you do not necessarily have
to get involved with the syntactical problems of COBOL. Tt appears to me, for
example, you will notice in the data description one of the columns is called
"abbreviation," and this is equivalent to the COBOL renames. Now, if you write
what Kendall calls a translator, and you want to 80 from DETAB-X to COBOL-61 ,
you have to get a statement from that table which says so and so, the particu-
lar abbreviation, renames, and you then list the other data item. In the case
of going directly from the data description of DETAB-X to an object program,
you no longer need to do this, and it seems to me that you would have the
particular abbreviation right next to the data name for which it is an abbre-
viation, and you thereby skirt some of the problems of, let's say, the rename
clause,

GRAD: Let me give another example. The question is disconcerting for those
Who still haven't heard the original question. What effect does DETAB-X have
upon the compiling of the syntacticel problem they have in compiling? Does it
have any substantial effect? One of the difficulties, I believe, in preparing
compilers for COBOL is the fact that you must completely decompose free form,
and many different things can happen next. We have the compound conditions +to
heandle, we have the impliied Supjects, the implied objects, things like this,
pParticularly in the conditional ares. The fact of the matter is, the way
DETAB-X is written you are always working on a comparison of two items. They
are always going to appear in certain physically known locations. The feet
that you are controlling position and location should solve certain problems
of compiling, certain problems in the compiler itself. The pProblem of going
from a name, though, to some king of symbol table is not changed in any way at
all. This has no impact. But in some of the procedural statements, particul-
arly in the conditional area, there ought to be some simplification out of
eliminating the compound statement, the implied subjects, the implied objects,
things of this type.

VOICE: It has been said fronm the platform that decision tables ag & technique
are particularly usef'ul for analyzing complex Systems problems. On the other
hand, it has been stated that as The table extends more and more horizontally
and vertically with more rules and conditions, it becomes less useful as a
clear Presentation of +the problem. How are these two statements compatible?

GRAD: I think the answer is cleap, It doesn't, that's all. Two different
speakers said it, and that's it. The point would be, of course, if you write
individual tables larger, you begin to lose Perspective., The thing ;ou have
to do is to break the problem up into a series of logical segments., If the
problem, of itg nature, does not sub-divide, you have had it. You have hag it
no matter which wWay you turn. But most problems that have been tackled so far,
where there's any attempt to represent human reasoning, human logic, the human
thinking process, we find that the designer or mamufacturer, the plant super-
visor, inventory eontrolman, is operating with four or five condi%ional

' 140

rl

L9

S
m
ct
(W N
8
1]
o
I
(=1
o
]
‘—é.
M
b |
= |
=]
Q
Lo |
"
ct
=
)
5
(=0
4
ot
m

variables ¢
variables.

) 3 B -1 merd s i

You can bre the expex nce to nto
- 1 a ~ ~ i P) : . |

reasonable d not consist in a complex

Q
=
b
M =
o
= g
w
)

case ¢ one tremend

C o I
rather, it consists of a set of tables:; many
s 1

that each express some logica

Now, it is also true, when you do that you lose the ability
action between the tables: you lose
gnd there's no way around it

cover. Maybe some of you will.

s
w
ne of the values of the d at
1t time that we have been able to dis-

e. It used to be the pro-
gram of twenty thousand in-

they can break their :

(

vOlCx: The statement was
gram efficiency. I have
ciency over what? Over C

amount of storage space us

WRIGHT: The version
ing a series of
as a general practi
timum s

We can write these ru
is going to use them a
don't. BSometimes they use them,
us the ability to put into a
ditions are considered 1 1

can do it, because pe

-+ - " -
catements gy &

)
ct
SR

3

to a processor, and a processor
and F

they do it on a random
build compilers now £
~ ¥ + 3

or both ways, e

ithe
n

y
agreement betwee

POLLACK: I would like
+ nh

.2bles have really not been comp
y n com

mich is known to date. What ar
oF] s . -
Ticient programs? With free form
and o, ik 0 v 1

{ say, let's go through all of
ciently; see if there are re

50

Now with decision tables,for the first time you have a potential for being

able, number one, to determine if there are redundant decision rules. Two,

you now, for the first the t ate for each decision rule

the frequency with which you expect it to occur. In other words, the number
c on rule. So

I

of times you expect a transaction to come in to hit that deci

that, if you have a table on which, let's say, there are five decision rules
and one of them gets hit by ninety per cent of the transactions and the other
four get hit for the ning ten per cent, on the surface of it, it would
seem to appear that one ought to hit that decision rule first. This is only
one of the parameters that I have expressed for decision rules. I think, as
people think about it, they begin to find others. For instance, in a decision
table there may be as many as five to ten conditions, each one of which applies
to each decision rule. And there are some in which only one of the conditions
is of interest to the decision rule. And in the other case, there may be ten.
Now, it may very well be that the combination of the number of conditions which
you are actively interested in are, "yes or no," not the "I don't care" type
and the frequency with which you expect to hit that decision rule. These are
the pﬁr&mf*érs that will probably determine the you will actu-
ally run those decision rules in your object program.

T hone T haven't econfused i+ for vop

VOICE: COBOL seems to figure very largely in the use of decision tables. I
have a question that's really directed at the sudience. May I ask for a show

& ik
< . £ Lime . v} - T, - = hn+ = 1321 v e T
of hands of those who represent companies that ere using COBOL?

tion is to the audience. Jan we have a show of hands of all
that are now using COBOL?

VOICE: Thank you.

WRIGHT: Why don't you =
it? The second part of

VOICE: I have a questior

but seeing we do not h

probably, isn't the appro
1

tomorrow. Maybe we'l

CALKINS: What is your question, sir?

VOICE: Well, in the one on Inventory, I take exception to the fact that in
Rule Three you specified a "No" -- on Condition Two. I claim it should not
have been applicable.

PUSIS T — S T T

it

51

VOICE: I wondered whether anyone knows whether IBM is working on any proces-
sors to translate decision tables into any of its 1unguag:7?

As you all well know, IBM does not dis-

processors.

GRAD: This is very easy %
cuss any potential future

VOICE: Some of the original . 1 th lar alysis tables was used
for the processor, the string of = ns that take place after you determine
which table to go to. Now, do you say the his should still be done or do

C
you use the strict paragr:

at don't involve decisions should
ion 1ablo. Use straightforward COBOL paragraphs and

POLLACK: Those pro
d
rocedure in a mixture of COBOL

not be put into a
sections if you are pgo
and decision tables.

Now, if you have three or four decision rules; agai wit hom are you deal-
ing? How good they are at i lati ' ly involve about
four decision rules. f th ! 't want to make
a table for it, go ahead and write - >ms to me tha nytime you have
at least four iecision rules decision rules.

GRAD: I would like to make a comment. Sol and I disagree practically on every-

thing. We make a practice of it. This is a very interesting _oint. The ques=-
tion really boils down to: "It's obvious that the decision table format in
the case of the unconditional si nothing new." This is clear.

It's nothing. It's no gain for you because it can't. The only possible table,
in general, lies in the showing of all term Nevertheless, if you were going
to feature one format, and you this modular

property that's been mentioned
well continue to be an advanta
tain this modularity, to me

take advantage

i
25 this morning, there could very
ting unconditional tables to main-
ity of format. It will come no
to s

faster for you that way. oing to save any tlre. I+ may
even cost you a little bit T fi

for the standardization of the to
go in this direction.

POLLACK: I am not the only one who disagrees with Bert on that.
GRAD: That's for sure.

HAWES: I know of at least one tabuler processor in which their experience is
to go to tabular format for everything.

VOICE: Does the DETAB-X concept permit the a
ify the current decision table or another tabl

“'!‘.r
o+
(=
CJ
(o]
i
o
fo M
]
(e
Y
w
P
(o]
p= |
rf"
D‘
it
)
o
8
Q
(N
1

b Hd(

-

52

a real point. This has been argued all kinds of ways.
am wrong, my memory tells me that COBOL is nonintrospec-
t? Does anybody recall that there is a command in COBOL

.

I
he COBOL eststements? That's not implemented on many of the

GRAD: No. This is
Now, correct me if
tive, is that ccrr
that will change %}

€

processors. This is a very important point. This has been argued and dis-
cussed. We think thai one of the potential advantages, noct in just tabular
form, tut in other langmages, is this unalterability. It has the sdvantage
that nothing can bDe changed in your program, therefore, if you have to overlay
memory with other forms, you den't have to bother to write out what you had in
memory. We use the pvrrese "nonintrospective.” Does anybody else ever use it?
Well, we mede it up, like ail the other words you heard this morning. We
spend hours making w2 aew werds. DETAB-X is siritten as a nonintrospective

language.

"HAWES: I think we should keep in mind that there are a number of problems in
DETAE~-X wnich have not been spelled out even in your manual. This is one of
the reascns why this 1s called Decision Table Experimental. There are many
extensions that we are working on which are not yet included. I would say

that this also & one of the big problem areas.

VOTCE: The reascn, it seems to me, is that the approach would tend to make
the table balloon up, especially horizontally or vertically, snd number two,
the fact that this can never be Boolean-optimized is the one glaring weakness,
I think, "in the whcle approach; that is, the lack or "OR-ing." If you have
a series cf condivions which are more or less exceptlions to the rule in case
of Aor Bor C or D, then do something; all your parameters have to be re=-
peated for every such entry. I think this is one glaring weakness. Whoever
heard of a Boolean specification without the "OR-ing" factor.

POLIACK: As you knew, & decision rule consists of an "if" condition one and
condition two and ccadition three, ete. Then take actions one, actions two,
etc. Now, these various conditions that need to be satisfied are connected
by "ands," and as pointed cut by the speaker, there are many cases, mumber
one, vhen you would like tc connect your conditions by "or," and even within
a decision tabie, To save & lot of writing, it would be useful to heve a
series of conditions connected by “cr." This is particularly true in those
cases where you test, for Instance, for error. You want to check that all the
digits are mumerical, and you go to each of the rules, making sure that ell
the digits are rumerical; otherwise, you have invalid informaticn. Finally,
you want a Cecision rule that says that if the digits are alphabetic or if
some other conditions exist, then your data is invalid; this would be really

useful.

tables, end I would gu<ss that ultimately we will have decision tables that

really bresk up IZate two parts: e in which everything to the left of some
double line ere the dscision rules that involve "and" coanectives between the
conditions; and to the rignt of the doubleline i{s a decisicom rule that allows

In my own particulsr cese I have pegun to do work on the theory of decision

23

for the connection of "or's." It seems to me that this kind of extension
ought not to be too difficult after awhile, but some further work needs to be
done. 1In the early stages, certainly, we are trying to get people to use
decision tables to introduce the idea of both "ands" and "ors."

VOICE:
belongs up.

And this is the reason that it tends to be vertical, anyway. The table
If you had the "or" facilities you could tighten up the table.

CALKINS: I think your eriticism is just, and I think the only thing we can
say at this point in time is that we are trying to crawl before we walk, that's
all. Hopefully, as we learn and devise new techniques, we can improve upon it.
This is not a finished product. You have toc take it in the light of being ex-
perimental; hopefully, some of the people here might find a way of doing this.

VOICE: I don't really think it's a matter of not being developed, I think
what you have is a tool for useful analysis. Now this can be developed into a
tool of synthesis, that would be the difference, rather than not being develop-
able, because now you state all the conditions and, if you can modify these in
gome way to arrange for synthesis to teke place, you are proving the analysis
of whatever the rule is. In our own application, which is an insurance appli-
cation, we have been using decision tables for a long time. We do not program
from them, however. There's a question of documenting certain kinds of manage-
ment rules, and because of the fact that we did not have to apply it to COBOL
we assigned the "or" problems, at least for documentation satisfaction, by
having multiple conditions, where & single line will have a condition, "will
AORBORC," and then, "yes” or "no." We have gotten around this "OR-ing" in
this way. But, as I say, this is not program-oriented yet.

GRAD: I think we ought to finish what he was saying if the rest of you did
not hear. What they have done is mctually put into that row an "OR" state-
ment, "if A OR B OR C OR D" in the stub, let's say, and then in the entry area,
they indicate simply "yes" which applies to any one of these things being true.
I know of other people who will have introduced the "OR" on that one-line
basis, "if A equals three OR four OR six OR eight,” and have actually imple-
mented this. It's not so much, I think, a technical problem here, although
there are technical considerations. There are questions again of format,
physical limits, what you want to allow and how frequently 1t 1s used. This
is again something you can only feed back and tell us. Do you need the "OR,"
is it necessary, is it valuable?

As far as this Boolean reduction thing is concerned, however, that has no im-
pact on it, because you could write a processor which would look for result
rules that had identical actions and could then stick the "OR" in between those
result rules and produce your Boolean raiuctions.

VOICE: You have to scan your whole table before you can do it though.

| CP Hdd

GRAD: That's right.
CALKINS: We have time for about one more question.

VOICE: Would anybody care to speculate on how long a period of time before
the X comes off the DETAB?

CALKINS: I will stick my neck out. I would say it would reasonably be between
six and twelve months. The reason I say that is that, hopefully,we will get
some feedback substantiating the position. Assuming that we do get proper
feedback and evaluate it, it would be favorable. Then most assuredly we will
be in a position to recommend this to the Executive Committee of Codasyl as

an addition to the procedure division.

CP Hd(

55

COMMERCIAL AND ENGINEERING
APPLICATIONS OF DECISION TABLES

H. N. Cantrell

This paper covers our experience with decision tables, from the time we first

heard about them, through experiments in different application areas, to our

present rather widespread use of tables in systems design and programming. We
had in using decision tables and

will discuss some of the difficulties we have

some of the advantages we think we have gained from them.

A little background in our history and the kinds of computer work we do may be
helpful in understanding the scope of our decision table applications. We have
used computers in our Department for about t 8. For the last six years
we have had a TO4 computer. We did our programming in symbolic machine lan-
guage until FORTRAN became available and then gradually converted to FORTRAN
programming. A few years ago we began phasing out of FORTRAN and into a lan-
guage of our own development, largely because this ’awguage includes decision
tables and is adapted to both data processing and engineering and scientific
programming. Parenthetically, we might remark that the job of writing c
pilerg for a nlbn levﬂl lanéuago wou 1 cely have been feasible for us with-
gramming the compilers themselves.

ct
|_l
A

-

M-

o

In applications, we do a wide variety of scientific, engineering, and business
data processing work. Currently our macuﬁrc load is about half scientific and
engineering work and about half business data processing work with a total of
about 200 active programs.

We first heard about decision tables a few years ago when we were in the midst
of trying to figure out how to program menufacturing plenning work. This is a
particular type of computer application in that each job consists almost en-
tirely of a large number of decisions and choices. We had already determined
that we could not afford to program this work using classical, flow charting
methods or simple table-lock-up methods. Thus, when we heard of some of the
early decision table work which had been done 01”9 here in General Electric,
we immediately toock up tables as the answer to our problems in programming
this type of application.

, and po-
er programs
ng the
we

had

At that ti"e we recognize

tentially better way of d t

as compared to the flow char been using. In maki
1 OR

transition from machine

angu (o] TRAN programming w
saved a lot of detailed coding effort but we wers spending as much time flow
charting and debugging the logic of FORTRAN programs as we had with machine

b Hdd

G

56

-

language programs. We were quite excited about the potentialities of this new
decision table method but we didn't know if it would work for anything other
than manufacturing planning applications.

e . ———
=+ =

We did know that decision tables were the answer to programming manufacturing
planning work, and we had a lot of this work to do, so we proceeded to design
and write a decision table compiler called LOGTAB for Logic Tables. We found
immediately that decision tables are a very fine way of designing and expres-
sing the logical decisions which must be made in a compiler. Thus our first,
real-life application of decision tables was in the LOGTAB compiler itself.

Our next applications were in the manufacturing planning work which we ‘had been
trying to do.

o LN] ey P

-—
ol A

At about this time we were planning for a large upsurge in business data pro- _
cessing programming. Neither FORTRAN nor machine language coding for the TOk4 i T
are very well adapted to this kind of work and we did want to be able to use
decision tables. We didn't know if tables would work in business data proces-
sing programming but we had high hopes. Finally, after a very careful language :
design effort and very extensive use of decision tables, we invested & man-year 1
of programming and wrote a compiler system for a general-purpose data processing

language. i

We now had a complete language system, with decision tables for logic, formulas
for arithmetic processing, and data descriptions for input and output editing
and for tape file handling. Thus with all of our problems happily solved, we
ran unknowingly into a major difficulty in decision table application.

To explain this problem, as we finally understood it, we must discuss some of
the philosophy of decision tables. The chief value of tables is that they are
much easier for people to use than classical flow charting methods. But this

assumes that the people making this comperiscn are equally familiar with both i
techniques. We were working with programmers and systems designers with years |
of experience with the flow charting or sequential decision method of designing

and expressing logic. These people reported that decision tables were not o'®

easier to use and that they could see no advantage in using tables in their
work. This was quite a blow since we didn't know for sure that tables could
be used effectively in the work these people were doing. Eventually we found,
from experience in other areas, that the trouble here was psychological rather
than technological. A programmer or systems designer using tables must do his
thinking in terms of the parallel relationships between decisions. This is en-
tirely different, and, in fact, incompatible with thinking in terms of the
series or sequential relationships between decisions in a flow chart. We were
asking people to unlearn a mental process which they had developed over a
period of years and learn an entirely new and different thought process. It

is not surprising that these people could see no value in using tables. Tables
were, to them, a harder way of doing the job.

5T

Having recognized this unlearning and new learning process for what it is, we
have attempted to solve it by giving new and relatively hard jobs to experi-
enced people with instructions to do these jobs using decision tables even
though this appears to them to be a harder way to work. (We find they are
much more likely to recognize the value of tables when doing & hard job.)
Usually, after a few months of this work with decision tables, our people have
enthusiastically embraced them and continue to do all of their work using this
technique.

Up to this time, we had concentrated on decision table applications in the busi-
ness data processing area. PBut we now had & language system, including deci-
sion tables, which could be used for engineering and scientific work. We were
searching for a good, low priority engineering job to use as a guinea pig,

when we were hit with an extremely complex, high priority Jjob of writing a
camputer program whose output would control a three-dimensional contouring
automatic machine tool. This was as complicated an engineering-scientific job
as we had ever done. We had had experience with similar jobs in the past and
were reasonably certain that we could not do this one at all in the time avail-
able. This new decision table technique was available but it had never been
tried on any kind of engineering-scientific job, let alone one of this complex-
ity. But, since this was our only hope of getting this job done, we decided
to put all our effort into a decision table approach for both systems design
and programming. The results still surprise us as we look back on them. The
engineering, systems design, programming and debugging were all completed in

a total elapsed time of four months--at least three or four times as fast as
our most optimistic estimates for the job using flow charting methods. Even
this is not the whole story. The complete debugging job on this program was
done in the last three weeks of this four-month period by an engineer who had
never worked on this job before while the engineer who wrote the program was

on vacation.

A more complete story of this project is given in the November 1961 ACM
Communications in a paper by R. C. Nickerson, the engineer who did the job.

In this job and the previous compiler writing Jjob, we had achieved what we con-
sider to be remarkable performance. Much of the credit for this must go to

the use of decision tables, but we did a2 lot of other things right too. We

had very capable, experienced people who were given full authority and respon-
s8ibility for the job to be done, with a minimum amount of time lost in commu-
nications, discussions and approvals. We don't always do this well. Decision
tebles are very valuable but they aren't a magic wand thet makes all of our
problems disappear.

Our success with decision tables on these jobs convinced us that we ought to
apply them across-the-board on all work, so we immediately included instruc-
tion on the use of decision tables in our programmer treining courses. We
found that our new people had very little trouble learning to use tables.

CP Hdd

58

They didn't have to unlearn past habits and found tables a very natural way of

thinking and expressing themselves. Today we have a generation of programmers

who have always used decision tables and are turning out work in a wide variety
of application areas.

Beyond the points already covered we have reached some other conclusions from
our experiences with decision tables.

1.

2.

Value.

The value of decision tables, or the advanteges of tables over the
flow charting, sequential decision method, varies with the complex-
ity of each individual job. Decision tables have no use, and,
therefore, no value in a simple, straightforward job which contains
no decisions at all. If a job has only a few decisions which are
easy to flow chart, then these decisions can be expressed just as
easily, and probably more reliably, in tables. As we consider
more and more complex jobs the margin in favor of decision tables
increases rapidly. For extremely difficult jobs, decision tables
may be as much as ten times as effective as flow charting methods.
We can't prove this because we can't bring onrselves to do these
Jobs twice, once with tables and once without, as an experiment,
but we don't think 10 to 1 is exaggerated. We have seen complex
flow-charted jobs bog down almost indefinitely with logic bugs.

Range of Application.

We see no evidence that the application area, mathematics, engin-
eering, finance, manufacturing, compiler writing, etc., has any
relation at all to the value of decision tables. If the applica-
tion has decisions in it, then decision tables are the way to do
it. We have found no applications where all of the decisions
have to be made, one at a time, in sequence, with actions inter-
spersed between decisions.

Most of our experience with decision tables has been in computer
applications but we have also found these tables to be an excel-
lent way to define and express logical procedures of any kind,
quite apart from their value in computer applications.

Computer Program Design.

One of the striking features of programs written using decision
tables is that this technigue naturally leads to extreme subrou-
tinization in program design. The program consists of tables,
and subroutines whose actions are controlled by the tables. This
extreme modulerily makes decision table prcgrams unusually easy
to change.

e | T —

-—

L

.
SR - b

1 Hda

i L

-

[N

29

Since the final program is going to be made up of tables and sub-
routines, it is natural for the programmer to plan and describe
the complete decision structure of the program first. The final
version of the plan is also the source language statement for the
decision tables part of the program, so we naturally obtain a com-
plete, explicit and final plan with all decisions contained in

one or more levels of tables. Subroutine programming to imple-
ment the actions called for in the tables is now quite straight-
forward.

In terms of time and effort requirei, the planning phase often is
harder and takes longer than the subroutine programming phase,
but the over-all time savings are very impressive.

ion between decision table planning and sub-

zives management a series of key events and
distinet activities which can be estimated, scheduled, reviewed
and measured. This is a big advantage in managing & large systems
design and programming organization.

This natural separat
routine programming g

(.’} ._'!‘ l—"

We also take advantage of this separation of decisions and setigns
in the debugging phase. We find that a trace of table name and
column executed provides a very compact but complete description
of exactly what the probram has done during execution. This has
been very helpful in reducing debugging time.

Errors in Logic.

People do make mistakes in decision tables, but the error inci-
dence rate in tables is, if anything, less than the error rate in
writing formulas or in keyounching. Logic errors are much less
frequent than in flow-charted programs and are much more easily
detected and corrected.

Documentation.

Decision tables are gquite understandeble by people. Thus, they
are an important and explicit part of the documentation of a pro-
gram. We have been particularly impressed with the ease with
which a programmer can take over someone else's job in mid-stream.
We have had to dc this on several different jobs in various stages
of completion. 1In every case the transition was accomplished with
very little loss of time. This has been tremendously valuable to
us. In fact, decision tables would be worth using Jjust for this
feature alone.

P Hd(

]
.
-

CONCLUSIONS

This has been a description of our expe
last two to three years. A
running which use decisi
tively progr

Object Program Efficiency.

There are many ways of implementing decision tables in actual com-
puter instructions. Some of these are efficient and some are not.
The method that we use in our LOGTAB compiler is quite efficient
for large tebles with many columns and many redundant decisions
and actions. It is adequate for most other tables but can be in-
efficient for small tables in tight loops where the table "over-
head" instructions are a significant fraction of the total number
of executed instructions in the loop. We believe that it is pos-
sible to implement tables with a :cupilﬁ technique which would
give very efficient programs for these small tables and much less
efficient programs for large tables Then with both compiler
methods available we could use the b st method for each table.

We have not yet done this. If we find that a few of the small
tables in a program can hurt its efficiency, we express those ta-
bles in "IF" statements rather than in table language. This is
not much of a problem, so over-all we feel that the use of deci-
sion tables has little or no effect on the efficiency of our run-
ning programs.

Learning to Use Decision Tables.

..14:...'?!1.[‘5{_-, with

We have tried many approaches to the dual problem of teaching peo-
ple to use decision tables and convineing people of their value.
We find that examples are useful in teaching the format and me-
chanics of table use and the tricks-of-the-trade, such as looping
through & table, using "CR" conditions, etc. But examples simply
describe the end product. They do not describe the process of
getting to this end product or give much of an indication of the
advanteges of using this process.

The only gocd way we have found to learn to use decision tables

is to use them. An individual should start with the knowledge of
the requirements of a job and design the logic for doing the job
in tables. We found very early in the game that a job which al-
ready has had its logic described in a flow chart is a poor start-
ing point for a decision table application. It is harder to un-
wind the flow chart to get back to the basic reguirements of the
Job than it is to express these basic requirements in decision

tables.

e with decision tables over the
v e n e we have about 40 computer programs
n tﬁtlea and & half of our programming staff ac-

o)
decision tables.

!
:
i
1

61
. (Page 62 Blank)
l As far as we are concerned, the advantages of the decision table approach have

been amply proven and there is no question that this is the way to do systems
design and programming work.

63

APPLICATION OF DECISION TABLES
TO MANAGEMENT INFORMATION SYSTEMS

Frederick Naremore

SUMMARY

Since 1958 Sutherland Company has been employing decision tables, as part of
its Management DATIS System, for documenting management information systems.
Major advantages realized through these techniques may be enumerated as follows:

1. The ability to clearly and concisely state system requirements to-
tally independent of procedures and processing media.

2. A uniformly high quality in the statement of system requirements.

3. The ability to associate defined decisions with responsible organi-
zational entities.

k. An effective method for man-to-man communications.

5. The ability to establish an information repository for system spe-
cifications.

The composite result may be summarized as the capability for complete and ac=-
curate definition of the "what" of a system, independent of, but relatable to,
the myriad of procedural details constituting the "how."

DOCUMENTATION CONSIDERATIONS

A prerequisite for any scheme of systems documentation is the resolution of or-
ganizational responsibilities considering the interests and technical qualifi-
cations of its personnel. This understanding then serves as a basis for
establishing document requirements, their perticular purposes, and hence level
of content. To date there has been an unfortunete tendency to prepare single
level systems specifications, with considerable procedural orientation, and use
these for both management and technical purposes.

Inherent in any systems development project are three distinet functions. In
sequence of occurrence, it 1s necessary to:

1. Formulate a precise definition of the system's requirements.

CP HdQ

2. Design a procedural flow, selecting a particular complement of ma-
chines and personnel to operate the system.

3. Prepare detail operating “"O“edures which define the sequential
operating steps which process the data through the system.

From the preceding, it may be concluded that the quality of an operating system
- *H

b
cannot exceed that of the criginal definition of the system's requirements. In
sence, the procedural system represents an operational plan to satisfy the

ba"ic requirements. As an operational plan it is subject to revision based on
new mixes of personnel and machines. Such changes, in themselves, do not alter
the basic system's requirements

The availability of bona fide systems specifications atat*ng the "what" of a
system as opposed to procedural specifications stating the "how," has been in-
fluenced decidedly by organizat;cda* structures in respect to separation or
consolidation of analysts and programmers.

Generally speaking, an organization which separates systems analysts and pro-
grammers recognizes the distinction between the first and third development

function. The responsibilities for machine systems design however ere not so
readily recognized and defined. Consequently, they cont a source of
minor or major irritation by entering into the original syste definitions.
Much of this intrusion by systems analysts in programming procedural areas is
the direct result of documentation techniques. Typical documentation, consist-
ing of flow charts and supporting narratives, is a holdover from earlier indus-
trial engineering metl 'his combination of material which supposedly rep-

i r
ms requirements is deficient in several respects,

resents a definition of
namely:

1. Detail review and epproval by opereting management is difficult
if not impossible due to the extensive mixing of basic management

decisions with procedural considerations.

u k ystem's e | 1
tions are at he expense of adequate sys tem requirements defiini-
tion.
3. They are replete with arbitrary sequences inherent in charting
rtificially imposing constraints on programmers

techniques, thus a:
and other p”ocad re

k. The difficulties in indentifying and superimposing changes on the
original specification documents presents a task so formidable
that it defies effective maintenance.

P Hd(@

G

65

Organizations which consolidate both systems and programming responsibilities
solve the foregoing documentation difficulties through the simple device of
not establishing the original requirement for such. In these environments two
classes of documents generally evolve.

1. Presentation type material to portray a general definition of the
system supported by selected details to imply knowledge.

2. Programming procedures written in the particular language or lan-
guages of the assembly or compiling system.

In either environment, it is evident that operating management is not the mas-
ter of his own house. For all practical purposes he is never quite certain of
the degree to which his, and only his, decisions have been incorporated in the
object systems.

In addition, the ability to associate management decisions with object proce-
dure statements to facilitate systems changes is virtually impossible without
the availability of an individual analyst or programmer who has emerged as the
system specialist.

Quite often, the net result is a series of operating procedures which is not
readily associated with, or Jjustified by, particular management decisions.
Under such circumstances, the problem of change control, including the determi-
nation of change impact and assurance of full implementation, is, at the very
least, unduly expensive and time-consuming.

The desire to alleviate these types of problems, which stem from inadequate
documentation techniques, prompted our experimental use of decision tables
early in 1958. The initial objective was to obtain a workable solution to the
first level requirement. That is, the communications between operating manage-
ment and systems personnel, which would promote more accurate definition of
system requirements.

REQUIREMENTS SPECIFICATIONS

In actual practice the term "systems analyst" has meant all things to all peo-
ple, hence specific responsibilities vary by job description. One thing, how-
ever, is certain. That is, in defining the requirements of a system, an analyst
is acting as a licensee of operating management. Acting in this capacity, his
first obligation is to positively identify and formally record the policy deci-
sions expressed by operating management. This relationship need not conflict
with nor detract from his unique responsibilities in the procedural areas.

Decision tables, or Management Rules as we refer to them, have proved extremely
effective in the area of defining basic system requirements. The character-
istics of decision tables lend themselves to the logical expression of policy

interpretations independent of procedures. For example, & credit policy re-
quiring knowledge of':

l. Credit rating of custonmer,
2. Current accounts receivable balance, and
3. NKet invoice amount

may be completely described without prescribing, implying, or re:
procedural steps necessary to execute the poliey in the producti

Management
pendently
of ultimat

situations w

I d
here sequen

5
{0
-

Complete requirements s; i , produced by the management systems ana-
lyst, are composed of three basic types of inf

3. Management Rules.
Each will be briefly discussed.

information which

unit of information,

To assure uniform
an element library.

An element of data may
may be separatel)

it is the foundat
usage and understan

A
By iﬁﬁludwri he char
0S5

Data requirements of the
retained data sets and termi
scriptive requirements ini m
dural phase, they are use rplemen h gin: rlptlons.

Management Rules,
logic of a managem
to be executed w

At first glance these requirements may aprpear identical to those which are com-
monly considered as a system specification Such is not the case. This level

P Hdd

&

67

of specification completely excludes processing oriented operators, or verbs,
as you may prefer.

Take for example the considerations associated with the refiling of an updated
master record. Management personnel have described the conditions or limiting
factors under which they will accept or reject various transactions. In addi-
tion, they have stated how such activity should alter the permanent records
and to what extent selected reports or notices should be prepared. Without
explicit procedural statements management has implicitly stated:

1. As a retained data file which has been altered, a need exists to
refile the current version.

2. The record can be refiled when no further transactions are pres-
ent which require this specific record.

The determination of how and when to return the record to file is a procedural
matter dependent upon the particular file medium involved in the production
operation.

DISSEMINATION OF REQUIREMENTS SPECIFICATIONS

Use of decision tables in the preparation of requirements specifications has
enabled the development of solutions to two vital problems in the distribution

and control of policy decisions, namely:

1. The body of rules can be subjected to manual or machine processes
which objectively examine the network of interdependent relation-
ships with the end result heing a schematic diagram. It should
be noted that these interrelationships are derived from the con-
tent of the rules themselves--not from rule connectors.

2. They can be reproduced or converted to machineable records for
distribution and filing in accordance with organizational require-
ments without translation.

The ability to cbjectively produce a schematic diagram depicting the decision
network is of utmost value in several respects.

1. It reveals areas of policy conflict within or between organiza-
tions.

2, It affords operating management an opportunity to review their
policy decisions for completeness.

3. It provides an impartial roadmap against which the production
system can be designed.

Ch Hdd

Equally significant is the ability to "unitize" the specification components,
that is, elements, data sets, and Management Rules; and distribute selectively
without retranscription to other forms. Thus, selected duplicates of the orig-
inal specifications can be furnished to:

l. Operating management in eccordance with their respective organiza-
tional responsibilities as part of the over-all system.

2. The information repository for change control.

3. The programming and procedures personnel segmented for the partic-
ular operation.

The divergent requirements which are satisfied by the original specifications
definitely establish decision table structures as an effective multiple purpose
tool.

APPLICATION EXPERIENCES

Our initial application of decision tables dealt with a highly complex file
maintenance operation in 1958. After the expenditure of approximately eight
to ten man-months using conventional metheds, no accurate specification had
been produced. The specifications being produced at the machine run level were
ambiguous and contradictory. This was due to the lack of a logical frame of
reference to which the analyst could continuously refer. Both the narrative
specifications and flow charts were replete with situations where "A" was de-
pendent on "B," "B" dependent on "C," and "C" depéndent on "A." Had the equip-
ment been programmed on this basis it could have operated perpetually on any
one of a number of transactions.

A crash program to correct the situation using decision tables as the basic
form of documentation was completed in approximately three calendar weeks util-
izing an average of four analysts. Perhaps one fourth of this time was expend-
ed in developing the rationale for completing the tebles. By today's standards
of disciplined table entries, these were rether elementary and could best be
described as a free form mixture of limited and extended entries supported by
numerous notes. Two significant points were crystal clear, however:

1. The hierarchy of decisions could be objectively determined and
the entries were logically auditable.

2. The use of tables did not imply or impose arbitrary sequences
which artificially influenced programming.

Since our original use of decision tables, they have continued to serve as an
integral part in documenting system requirements for a wide variety of systems.

GP Hdd

69+

Primarily these have been associated with organizations involved in the manu-
~ facture or preparation of products for national or international distribution.

Representative segments of the management decision areas that have been reduced
to Management Rules are outlined below. These have been selected for illustra-
tion purposes not so much for unique problems encountered in documentation but
rather for the cross section of management represented. This should serve to
dispel oft quoted remarks to the effect, "That is fine for his problems but my
problems are different.”

The area of accounting spanned general accounting, facility accounting, ac-
counts receivable, billing, accounts payable, cost accounting, standard costs,
and product pricing.

Sales areas are represented by such functions as order processing, inventory
control, warehousing and distribution, marketing analysis, sales forecasting,
and inventory levels.

Manufacturing functions include material requirements (acquisition and control)
together with preduction scheduling of multiple facilities.

Under the broad category of administrative services, the areas of payroll, both
wage and hour, tax reporting at all jurisdictional levels, transportion rout-
ings, transportation tariffs and import-export tariff's have been completed.

.The significance of this list is that many of the related requirements specifi-
cations have been produced within the same organization independent of proce-
dural details. In addition, they have been produced in a standard manner to
the satisfaction of operating management with diverse backgrounds and interests.
Reviews and approvals have been accomplished on the basis of the logic of the
policy without introducing the host of backdrop material previcusly deemed ne-

cessary.

An appreciation of the complexity of decisions required might best be realized
by considering characteristics of the products themselves. Composite charac-

teristics would include size ranges, gquality, seasonal usage, sectional usage,
standard and special packaging variances, age and private brands. The influ-

ences of these characteristics of course impact heavily on the policy areas of
sales, manufacturing and accounting.

ADVANTAGES REALIZED IN THE USE OF DECISION TABLES

While the advantages realized through the media of decision tables for the
most part have been empirically determined, they are compatible with the exper-

iences of other users.

f Hdd

-t

(

Undoubtedly the number one advantage in our experience is the ability to effec-
tively record the detail decisions representing operating policies, thus ob-
taining a problem statement approaching the preciseness of & mathematical
formula.

As the processes involved in obteining such definitions are not confused with
procedural develcopment details, actual preparation can just as readily be ac-
complished by management representatives as by systems analysts or programmers.
In practice, superior requirements specifications have been developed by man-
agement representatives untrained in procedural details.

Using a limited number of stylized recording standards, the resulting defini-
tions can be manipulated mechanically or manually to produce a schematic of
the decision network. Acceptance of the network after comprehensive review of
. both the schematic and the details of the policy decision constitutes an effec-
tive proof of the reguirements specifications.

By appropriate cross-referencing or crossfiling elements of data, data sets,
and Management Rules an effective repository is available for future change
control. For example, the definition of an element of data may be expanded or
made more restrictive. Under such circumstances it is necessary to review all
rules involving decisions or actions based on the former elemeul definillon.
Similarly the impact of this change must be reviewed for impact on all data
sets of which it is a member.

The schematic of the decision network, in addition to serving as a "proof" of
the problem definition, provides an objective framework for design of the ne-
cessary production system. Assignment of procedure numbers to the decision
rules on the original schematic serves to assure the complete accounting for
requirements specification details.

The ability to treat decisions as independent modules results in another major
advantage in terms of accuracy. The reproduction of the original tables can
be segmented and regrouped to serve as basic specifications for specific pro-
cedural areas. The ebility to segment and "unitize" this information without
translation to another form eliminates the losses in original meaning which
are common in translation processes.

Of equal significance is the subject of improved personnel utilization. Its
order in the over-all list of edvantages does not imply its relative importance.
It is merely that the preceding discussion substantiates some of the conclu-
sions.

By following the logical order of a development project, that is:

1. Problem definition,

oTl

2. System design, and
3. Procedure preparation,
a reduction of approximately thirty percent in total man-months should be

realized. This reduction is attributable to a fifty percent reduction in ana-
lysts' time. Table I illustrates the effect on the total effort.

Table I. PERSONNEL REQUIREMENTS

Using Narratives & Using Decision
Flow Charts Tables
Weighted Weighted
Pers. Pers. Pers.

Funetion Equiv. | Weighting | Equiv. Weighting | Equiv Reduetion
Analysis 1 0.75 0.75 0.375 0.375 50%
Systems Design| 2 0.05 0.10 0.05 0.10 -
Procedures 2 0.20 0.40 0.20 0.40 -
TOTALS 1.00 1.2% 0.625 0.875

This reduction in the analysis area is evident in view of the following aspects
of problem definition.

b Hdd

[I

72

Results of a study of approximately 1,000 documents averaging 30 elements per
document are shown in Table II.

Table II. 1,000 DOCUMENTS

Use of Elements Percent
Superfluous 8
Recopied (Document to Document) 73
Decision Purposes T
Arithmetic Results 12
TOTAL 100

By eliminating procedural considerations from the
the management analyst focus his attention on 1
This segment in effect represents the pertinent c
in the sense of detail statements of condition-ac

requirements specification,
ess than 20% of the entries.
ontents of the decision tables
tion relationships.

0 o
u-' 0

ct O O
Pp'g 0

w

n

The second major contributor to time reduction is the use of an element library.
By establishing standard definitions once, it is not necessary to repetitively
and, hopefully, consistently redefine elements of data in each specification.
This approach eliminates a major distraction that is present in many specifica-
tions; that is, the lengthy details which describe what elements are to be val-
idated and how they are to be validated.

it is necessary only to indicate dispo-

Following the Management Rule app
The test parameters are explicit in

'!'
sition actions for invalid informa
the element definition library.

cach
tion.
No attempt has been made here to indicate reduction in programming and proce-
dure writing as this has fluctuated widely due to the simultaneous intrcduction
of a host of new pr’grax:ing source languages. To the extent they have been
adequately tested and 1 1 schedule, effective reductions have been
realized. Unfortunately this has not been the case in our major applications.
It is reasonable, however, to project equivalent reductions in the programming
areas based on the following considerations.

s ol

73

l. It is not necessary to have programmers participate in the defini-
tion phase to obtain background experience which in effect is in-
tended to overcome the deficiencies of normal documentation.

2. Programmers do rot have to study extensively an arbitrary proces-
sing logic often for the express purpcse of substituting their
own.

to false starts and exten-
definition and procedure

3. Proceds
sive r
development progress on &n almc parallel

o
’

k. The committee a
velopment and r
tinuing.

sroach, that is, joint analyst and programmer de-
uiew of a procedure, has no justification in con-

CONCLUSIONS

Much of the material
in the past and future ro
L T

presented today substantiates our experience and optimism
Ire 1 P dec
he sense of the level of usage.

on tables. I our views differ from those

roial or business languages as solutions
nmunications problem. Indeed, remarks
own programs thus
oubtedly can be

assuring p

done, such are unigue. In lieu o ! ement to write
or at leas aw the ultima edures, we must assure, insofar as
4

e 3
possible, that that which he has dpprJ\‘J resides in *be ultimate procedure

unaltered.

Our initial effort, as previously stated, was to obtain precise problem defini-

tion from management without procedural overtcnes, this constituting the mini-

mum essential requirement on management. Decision tables have proved effective
|

in this respect. Thus the goals of the initial objectives have been realized.

The second segment of the problem, that is, tc assure positively that approved

2 J » 1 8.
decisions i] procedures, is still to be resolved. As
an intermediate bility of DETAB-X hold

the present business .l.-'u;;.;ua € Programs. 'T"hi.".'- 18 aqu
= = - = s
direct corres ndence between specifica and pro
o 2 D

A more enduring and certainly more positive sclation, § in the

ability to accept the policy eme automaticsa e the pro-

cedural system. Undoubtedly >raes gnd speakers have consid-
hes. f this

ered particular apprc
type are not too far off in the futare.

74

1. Develop a decision network relationship (Schematics),

2. Complete data descriptions and test parameters (Elements of Data),
and

3. Insert the procedural control logic (Table Processors).

Realization of this objective will return o

perating control back to operating
management from whom it has been wrested gradually over the years.

In closing, I should like to uf4v one last testimonial ascribing to the value

> >erience. A Sutherland hﬂullnj
representative was re equlj ass jbled Lo develop the requirements specifications
of a particular system. Based on an analvsis of pertinent procedures and policy
memorande supplemented by personal interviews he committed his newly acquire
knowledge to decision tables. Upon ?“mpleyiun, the material was
various segments of management for review. Urdcu‘*ejly this gene
first comprehensive review of a long series of policy determination
result--what had been pre iously considered and ;u'~”"

(o]
hb
e
Ly
(¢
[
v
e
o}
=]
C
o
o’
H
1
m
oy
(<
l
i’
o
o
ct
, i
,:
ct
o
[Y
8]
|
H
Q
b
i
[
v
|r4

<

e
resen
£

ns &
lished as nonpropr ietary

Prvemnd d mwm o - - 3 MHes

<OSNSLiln WAE now endorsed vompany Confid

75

. DECISION TABLE EXPERIENCE ON
A FILE MAINTENANCE SYSTEM

Lynn M. Brown

SUMMARY

A decision table language and computer program pre-compiler were developed at
the Insurance Company of North Americe to facilitate design, implementation

and maintenance of a large file maintenance program. The zusults of this ef-

fort indicate that decision tables can th- appli cutioq over the entire systems
design-programming area. Decision tables also force a disciplined modularity

in the design of a program which can enable a compller to accomplish some of !
the program organization function. |

INTRODUCTION

s 1surance Company
in using them. This is a
s 3

£

5‘3
.‘
o
=
(4]

The best way to relate experience with decisicn table
of North America is to tell how INA became involved
brief history of the development of a }"-'W-L';“c-'f.""- dec
LOBOC, which was concurrent with the implementation of

. puter program.

i n table language called
file maintenance com-

About two years ago the Electronics Research Department began implementation
of a system to maintain a master policy file for a new type of direct-bill
automobi‘e i;ua.;n»g. The keystone of this billing system was a very large
and complex program which would run on the computer every other day. The pro-
gram was to have a Li fe expectancy of several years. During this period, gov-
ernment, management, competition, computer technology and programming-systems

errors would force continual revision.

The normal file maintenance program tends to have at least two categories of
data error:

l. Detail transactions enter the system which contain incorrect
fields.
2. Detail transactions enter the system which are incompatible with
o2

the mast ile in their content.

A system which runs every other day is beginning to have some of the problems
that "real time" systems must encounter, and it has a third category of error:

76

3. Detail transactions enter the system which create a combination
of conditions for which the program has no definition of action.
These mist be detected, recorded and bypassed with no effect on
the master file. Analysis of the trouble on one transaction can-
not delay the entire system.

The programming-systems personnel assigned to the Jjob were having considerable
trouble in laying out the prcgram. The very large number of combinations of
corditions possible when a deteil transaction waes matched against the master
file made flow cherting difficult. As further definition came to light, the
combinations of ~onditions forced re-design. Original flow charts were redrawn
many times.

It appeared that a procedurally oriented language like flow charting was too
inflexible for the problem. Since Autocoder and other programming coding lan-
guages were also procedural in nature, we were concerned about the economy of
revising the machine run over its long life expectancy.

Too many programmers and systems people approach a large problem on the basis
that, given complete definition, they can devise a strict procedural flow for
+hs Scb which will be the most efficient possible for fts entire life. This

method implies an absence of change boih during and efter their design work.

Over the life of a program written in this manrer, the original procedural

flow may be patched to the point tha® a monster is created.

The only thing consistent about business data processing is the need for its
systems to be dynamic. Therefore, any strict procedural flow method of design
would seem to be in trouble. More flexibility is required.

DEVELOPMENT OF A DECISION TABLE LANZUAGE

The main deficiency in the strict procedural flow method seemed to be that it
tended to scatter condition testing and action performance. In other words:
-test a condition- -do en action- ~test ancther condition- -do another action-,
etc. In the complex job INA was attempting +hey wished to group and analyze
condition testing end action performance separately. This might be likened to
testing all conditions applicable to a particular transaction first and then
picking & specific path through ihe vaerious actions for that combination of
conditions. If the program was unable to complete the condition testing suc-
cessfully, it meant that the definitlon was lacking and the transaction record
must be earmarked and bypassed. fintil the program had determined whether it
could handle a particular transaction, no action affecting the master file was
taken. By analyzing the condition testing and action performance separately,
logic errors could be more &pparent.

GP Hdd

A program design language was patterned on this concept. It provided for de-
scription of a rule which was made up of a statement of conditions and a state-
ment of actions to be taken if the conditicns were satisfied.

IF condition (a), and condition (b), and condition (c) are true, THEN
do action (1), action (2), action \3), and action (4).

Since each of these rules stated an independent combination of conditions, one
or more rules could be changed individually with no effect on the rest. A set
of rules (a decision table) was assigned to esch transection. The tables
could be also changed independently with little effect on each other.

A rule might state, "If the Status Code is normal, and the Billing Date is
equal to the Current Date, then prepare a Continuation Notice and go to the
Master Control Table."

After writing several rules as English statements, it was found that the pro-
grammer kept referring to the same data names, condition names and action de-
scriptions in rule after rule and table after table. Writer's cramp and mis-
takes began to creep in. Synonym lists to represent these elements as codes
were set up.

Example of Synonym Lists:

Ol = The data name "Status Code"
/ "N" used with "Status Code"
"X" used with "Status Code"

The condition name "Normal"
The condition name "Exceptional”

nn

02 = The date name "Billing Date"

03 = The data name "Current Date"

AAA = The action description "Prepare a Continuation Notice"

AAB = The action description "o to the Master Control Table"
Thus a rule could be stated in a "decision algebra:”

OL = N, 02 = 03, --- AAA, AAB
By developing a format for recording the decision algebra it was possible to
put a rule on two punch cards. One card was used for the condition portion of
the statement and the other for the action portion. A file of these cards rep-
resented definition of the problem to date. It was much easier to change than

a flow chart. Machine sorting and collating could aid analysis. Individual
cards could be changed at will.

CP Hdd

et ik e I i v S TN PR SN SIS TR N Dl i vt b i A e L i

78

The original intent was to use a listing of this file from which to code the
program. However, it soon became apparent that the definition was in a data
form that a rather simple pre-compiler could use to generate optimum condition
testing. It could produce the result in Autocoder for final compilation on
the IBM TOS58 Processor. By putting the synonym lists on punched cards, the
pre-compiler could write comment description at each place a data name, condi-
tion name or action was referred to in the generated coding.

Data description and action performance macro coding were added to the file so
that the output of the pre-compiler would contain a complete program input for
the 7058 Processor.

As an additional documentative output of the pre-compiler the rules and synonym
lists were used to compose English language statements describing the defini-
tion of the system.

COBOL compilers received English statements as input and produced coding. INA's
compiler received a kind of coding as input and produced English statements,
80 they called it LOBOC--COBOL spelled backwards.

Theoretically the English statements were good. Technically they were just as
readable as COBOL, but they were too complicated to follow. They definitely
gave the impression that the sentence and paragraph structure of the English
language is not the best medium for expressing complex decision logic. The
documentative output of the pre-compiler was changed from English language
statements to English language decision tables . This format appeared superior
in showing complex decision logic.

THE RESULTS

The rather crude home-grown pre-compiler was frozen at this point and used in
the implementation of the automcbile master policy file program. There were
several weaknesses in this version of the compiler and the decision table lan-
guage. These weaknesses were bypassed by using Autocoder directly in some sec-
tions of the progran.

1. The linkage conirol from one table to another was not flexible
enough.

2. Autocoder entries to perform actions should have been more disci-
plined in format.

3. The condition testing was weak in the fact that it was too re-
strictive in some areas and the generation not optimum from either
a speed or space standpoint in other cases.

9

Measuring the effectiveness of a language on one application is both difficult
and unreliable; however, a poll of the experienced programming-systems person-
nel involved brought forth the following range of estimates.

"The total systems-programming effort was cut about 20%."

"We could not have implemented as advanced a system without it."

There was general agreement thet decision tables were valuable not only in the
coding, but over the entire systems-programming effort. A twenty percent cut
in this area was more valusble than a fifty percent reduction in a coder's ef-
forts. A part of this cut is attributable to a common language for systems-
design and programming personnel.

The resuiting program was orgenized in a very consistent pattern by the pre-
compiler which made for easy maintenance. The layout of the program within the
IBM TO5 II core storage and magnetic drum was rearranged automatically by the
pre-compiler for each new set of revisions to the decision tables. When sec-
tions of the program were allocated to the magnetic drum, all loading and link-
age to them was generated automatically. With implementation of this program
on a recently delivered IEM 7080, the pre-compiler will lay the entire program
in the larger core memory.

Previously, organizing a program within a computer was a design function of

the programmer. It is believed that the reason that a rather crude pre-compiler
could do this was because of the modular nature of programs written with deci-
sion tables. The modularity represents a discipline which is forced on pro-
gramming-systems designers. A single decision table represents an entity which
can be analyzed by a compiler as a unit. Since the machine instructions repre-
senting a decision table are a self-contained unit, their sequential location

in relation to other portions of the progrem is unimportant. A compiler can

put this fact to valuable use in organizing the entire Job, especially if the
entire definition is in decision tatles.

FUTURE APPLICATIONS i

INA now has several different types of systems ir various stages of implementa-
tion using advanced editions of our decision table language and pre-compiler.

For these systems the pre-compiler will have the following new features:

1. Ability to write the entire program in a decision table language.

2. Ability to sectionalize a program to provide for "overlay" of
portions of a progran.

b Hdd

¢

.

3.

80

Ability to secticnalize a system definition into one or more pro-
grams on a semi-automatic basis.

Ability to generate the instructions to perform. a particular ac-
n

tion, either "in line" or "i
based on a formuzla using two factors:

3

a. The number of times the action is regquired by all decision
tables.

b. The number of instructions required to perform the action.

For example, an action which is only referred to once, or

one location with automatic linkage,”

which requires only a f
L]

ways be placed "in line.

few instructions to perform, would al-

n

In any other situation the we
A e

assigned to variables a and b above can be changed to r
any desired speed and space relationship.

CONCLUSIONS

1. Decision tables proved a very valuable tool in the design, imple-
; mentation and maintenance of a large file maintenance program in
. both the systems and programming area because:

a&. The individual rules and/or tables were easy to change with
little effect on the remainder of the definition of the pro-
gram.

b. The program design and a major part of the coding were done
in the same language.

c. The decision table format allowed a compiler to automatically
do a portion of the organization of the program within the
P < Prog
computer.

2. If decision tables

a sively they may enable a compiler
to assume some of the prog

Ny

ign function.

b Hd(

i

i
|
|
|

R

81

FORTAB: A DECISION TABLE LANGUAGE FOR
SCIENTIFIC COMPUTING APPLICATIONS*

G. W. Armerding

SUMMARY

Scientific computer programs, like business programs, often involve programmed
decision logic. Decision tables, which have seen use in business and commer-

cial computer applications, can also be applied to scientific and engineering

problems.

FORTAB is a decision table language based on the FORTRAN scientific computing
language. Programs written in the combined FORTAB and FORTRAN languages can
be compiled by & FORTAB pre-processor program which has been constructed for
the IBM TO90 computer.

Initial experiments conducted using the FORTAB language indicate that a deci-
sion table langnage added to a scientific computing language results in a pow-
erful combination of programming tools. i

DECISION TABLES FOR SCIENTIFIC PROBLEMS

In describing problems which are solved with the aid of digital computers, we
typically classify them into two major groups: "business problems" and "sci-
entific problems."

The classical "business" problem is a data manipulating job. Data is read
into the computer; programmed logic determines how the data should be pro-
cessed; processing is accomplished; the results are then printed. We charac-
terize such problems as being "input-output limited."

The classical "scientific" or engineering type of problem is characterized as
being "compute limited." A relatively small amount of data is read; a large
amount of straightline or iterative computing takes place, based upon that
data; the results are then printed.

In practice, the number of problems which fall neatly into the classical "busi-
ness" category or classical "scientific" category is small. The usual problem

* The author gratefully acknowledges the assistance of Burton Grad and Thomas
Glans of International Business Machines Corporation, who participated in the
design of the FORTAB language.

82

is a hybrid. Many business problems involve relatively long computations
within the computer. Iterative routines in business problems are not uncommon.
In the scientific realm, many straightline programs do exist, but again a hy-
brid is usually the case. Some scientific jobs involve great amounts of data
and require complicated decision mechanisms to determine what particular com-
putational processes are to be invoked.

The true scientific computer problem is therefore quite different from the
"classical" scientific problem. Although many classical scientific problems
do exist, the vast majority of scientific and engineering work:on computers
does involve making progremmed decisions. Before and during the processing
part of the scientific problem, decision logic must be performed in order to
decide what particular computational processes are to apply, what iterative
techniques are to be followed, if dny, and what actions are to be taken in the
case of discrepancies or errors. Even so-called straightline and simple itera-
tive codes contain decision logic which is executed as the computations pro-
ceed.

In another type of scientific problem, digital simulation, typical programs
consist of complicated logic which determines how the simulation is to progress,
depending upcn the state of a large number of conditions within the program and
within the working data. Simulation programs are largely "decision logic" pro-
grems.

Just as the classical scientific problem is rare, so is the classical scientific
type of computing installations. In installdtions where the computing equip-
ment is oriented toward scientific applications, we often find that the same
equipment is used for business problems. If the business problems do not war-
rant computers of their own, or if, for flexibility reasons, it is desired to
maintain only a single type of computing machinery in the installation, we

find that business-type computing is being done on what we would otherwise
classify as scientific-type computing machinery.

In scientific installations, we also often find that the business applications
are programmed using scientific-type programming languages. This is done for
reasons ¢f compatibility and flexibility. The programming staff and the com-
puters can be flexibly applied to either scientific or business problems as
the needs and priorities develop and change.

The above discussion indicates that "business" computing installations do not
have & monopoly on programs which contain decision logic. While programmers
in business-type installations might feel that decision logic is their forte,
we of the scientific-type installations encounter the same type of logic in
our programs. We have needs similar to those of persons in the business com-
puting community who are presently concerned about computer programming with
the aid of tabular techniques. Decision tables and tabular techniques have a
useful place in scientific computing installations. The advantages of such

SR oveemry. | |

83

techniques are: completeness, accuracy and ease of problem statement, reduced
programming effort, self-documentation, and readability. All of these apply
to scientific problems which inveolve vrogrammed logical decisions.

COMPILED DECISION TABLES

One approach to using tabular techniques in programming is to construct deci-
sion tables for the problem at the time of problem formulation. This step is
then followed by a manual transceripticn of the tables into a computer-recog-
nized language which results in the computer program itself. In this type of
usage, the decision table supplants the typicel flow chart; the programmer
works from a table rather than from & flow chari. The table is used not only
as a programming aid but also as part of the final documentation of the prob-
lem. Thus, as is the case of ell documentation, the original tables must be
kept current as changes are made to the program itself.

'_I:
4
"

The use of a decision table language imbedded within a programming language

has several advantages over the mamial use of tables described above. The user
of the tables does not need to manually transcribe the tables into computer
program logic. This step, with its inherent susceptibility to error, is elimi-
nated by imbedding a table language into & computer-recognizable language.

The problem of decision teble documentation maintenance is also eliminated.

As the programmer makes changes to his program tsbles, tabular documentation

is automatically updated.

DECISION TABLE COMPILERS

Several compilers exist which are useful for scientific and engineering compu-
tations involving formula evaluation and manipulations of mathematical expres-
sions. Such compilers see extensive use today in almcst every scientific
computing installetion. The primary esdvantage of these compilers is the
ease with which the computer can be directed to perform arithmetic operations,
input-output operations, and other procedures typical of scientific computer
programs. Where the languages of these compilers are historically weak is in
their ability to express complicated orogram logic in a relatively simple form.
Decision tables, of course, provide this ebility.

A combination of & scientific computing language with a decision table language
would merge the complementary advantages of each. Building a compiler or pro-
cessor to accept the combined form of these two languages would provide the
scientific programmer with a doubly powerful tocl: the mathematical languages
for expression of the computational steps of the problem, together with a de-
cision table language to express the program logic.

This approach has, of course, been applied by the designers of the GECOM com-
piler language and the LOGTAB processor, both of which were developed by people
at the General Electric Company.

| CP Hdd

—_*—__7

8l

THE FORTAB DECISION TABLE LANGUAGE

Recently, we at the RAND Corporztion became interested in the possibility of
merging e decision table language with the FORTRAN scientific computing
language. Our installation is categorized as a "scientific" installation and
we use the FORTRAN language extensively with our IBM 7090 computer. With the
assistance of Burton Grad and Thomas Glans, both of the International Business
Machines Corporation, we developed & "decision table within FORTRAN" language
which we call FORTRAB.

In developing the FORTAB language, & number of objectives were upheld: J

2

1. The language of the decision tables should complement the tradi-
tional FORTRAN language. The FORTRAN language itself should be
unchanged end the FORTAB language should add only those elements
necessary to provide a decision table logic facility to the
FORTRAN programmer.

2. The decision table language should be easy for the FORTRAN pro-
grammer to learn. For this reason, the elements of the FORTAB
language should look as much like FORTRAN as possible

3. The decision table language should be processed automatically for
the programmer. He should be allowed to write programs consisting
. of both decision tables and regular FORTRAN statements. This com-
bination shculd then be processed automatically, in its entirety,
by the FORTRAN compiler and its monitor system.

AN EXPERIMENTAL FORTAB PRE-PROCESSOR

Throughout its desiyn and implementation, the FORTAB language was considered to
be experimental. We wished to test the value of decision tables as applied to
scientific problems. Our basic hypothesis was that decision tables would be
useful in & scientific computing environment. The experiment was designed to

test that hypcthesis.]

Further, we wished to experiment with methods of adding a decision table lan-
guage to an existing compiler language. In particular, we wished to experiment
with a compiler imbedded in a monitor operating system.

b b —— o

We decided to construct pre-processor for the FORTAB language. The pre-
processor would operate prior to the FORTRAN compiler. 1In operation, the pre-
processor would not process the regular FORTRAN statements, but would merely
pass them along to the compiler. Tables within the FORTRAN program, however,
would be converted by the pre-processor into FORTRAN statements which would
then be presented to the compiler. The compiler itself would require no modi-
fication. It would only be necessary to construct a facility for the

o

‘g o

¢F HdA

LS

85

translation from decision tables to FORTRAN on an sutomatic basis, without any
overt action on the part of the pregrammer.

operational in our FORTRAN
manner in which the FORTRAN
er, it was relatively simple
to insert the pr Ere-processor scans each
statement of the pr n; when & tabie is T:.H'nLUYzJ, it is resd, converted
to FORTRAN statements, listed together with the generated FORTRAN statements,

; ements. No separate pre=-
; mer. far as he is concerned, the
_ with the FORTRAN language. Once the pro-
of FORTAB, he is Tree to write programs which
RANN. Theze he compiles and executes just as he
"pure" FORTRAN programs.

Such A pre-processor was
operating system since J
monitor system handles

and then presented to th
processing run is r“ﬂ”‘rf‘
FORTAB language has now
grammer has learned t}e
are mixtures of FORTAB and
formerly compiled and execute

EVALUATION OF FORTAB

od with FCRTRAN, we have experienced the
that is, improved statement of program
logic, complet: problem, reduced programming ef-
fort, improved cu . ge. We have also experienced
several speci ?i, advantages of the FORTAB languege and 1is implementelion for

the IBM 7090

In using the FORTAB lanpuage combi
several adventares of decision t

The ebility to present decision taoleﬁ to the ccmputer through a compiler is a
useful featur f our FORTAB oC Manual use of decision tables is,

“avc found it beneficial to be able to
construct program log .abular form and then to present the resulting
tables directly to the FORTRAN compiler uwithout manual transeription into
either FORTRAN statements or assembly language coding. We believe that the
addition of FORTAB to the existing FORTRAN lanmiage results in a powerful com-
bination. Presumably, this UEEPPJH“:Q wouid derive from the addition of a de-
cision table language to other compiler languages also.

"y
of course, a hrlp?ul too

Training in the use of the FORTAR language is accomplished with little diffi-
culty. FORTRAN programmers can learn the FORTAB language without formal train-

e RNy

ing in a short time. The FORTAB refarence ual c ists of 16 double-spaced
typewritten pages. This refersnce manusl !ﬂ:;:ﬁv: a complete program example.

The FORTARB pre-processor
FORTRAN statements whic!
expanded form *o* readabili
mentation. This doc Mtat
recompiled for the purpose of
written in the FORTRAN-like &
possible for someone ctke

.] sting, whi ch is in an
thus comprises & major part of the program docu-
: DUy sutcmatically es the program is
making correctione and changes. Because tables
stion of FORTAB are very readable, it is also

1€ original prozrammer to read the printed

1
-

lists each table as it appears, in context with the
s i {4 - a

listing and quickly understand the iogic or the progranm.

b Hdd

G

86

After the FORTAB pre-processor has read a table, it lists the FORTRAN state-
ments which it generates. Although this is not particulgrly useful information,
it is given to satisfy programmers' curiosity. The IBEM 7090 FORTRAN compiler
supplies, upon request, a listing of the assembly language program which has
been compiled. The programmer has complete knowledge of the contents of both
the generated FOPTRAN statements and their assembly language equivalents.

COST OF USING FORTAB

Use of the FORTAB language is not free, of course. From comparative tests we
have found that FORTAB programs result in longer compiled programs and thus
longer compilation times than the corresponding program written in FORTRAN
language alone. A typical FORTAB program takes about twice as long to compile
as its correspending FORTRAN program. The resulting object program occupies
about one-third more words in the computer's memory. The running time of the
compiled FORTAB program, however, is almost identical with that of the same
program written in FORTRAN. This is partielly due to the fact that a compiled
FORTAB program is more methodicasl in its flow than are typical hand-written
programs. It is not unreesonable to expect that, in many cases, compiled de=-
cision tables wil. run faster than the corresponding program written without
the use of a decision table compiler.

Because of the manner of coperation of the IBM TO90 FORTRAN monitor in which
the FORTAB pre-processor does its work, the actual translation from a table to
FORTRAN statements is essentially free. During FORTAB pre-processing, tape
input-output is buffered; much of the pre-processor's operations take place
during tape movements. FORTRAN programs written without decision tables are
not hindered in any way by the FORTAB pre-processor.

The penalties of longer compilation time end larger compiled programs evidenced
by FORTAB-produced programs must, of course, be weighed against the advantapges
of the use of FORTAB for problem solution. Neglecting, for the moment, the
reduced programming effort which tabular presentation affords, the longer com=-
pilation time must be offset by a reduced number of compilations required for
program checkout. Our early experience indicates that the savings effected by
the FORTAB language program's reduced number of compilations to checkout will
more than offset the increased compilation time. This will be due to the fact
that programmers will have a higher incidence of "first-time" and "second-time"
correct programs. Programs which normslly would require several compilations
before logic has been stated properly will now require only a few compilations
(probably only one, in many cases). Coupling this advantage with the reduced
programming effort required to express a problem solution in the FORTAB lan-
guage, the net result is a substantial saving of computer and programmer re-
sources. 2

87
(Page 88 Blank)

The extra program memory space required by FORTAB-compiled programs is a
of 1life which must be endured. It should be restrictive only infrequent
a

Our experience hx" been that, in FORTRAN programs, data ‘e;uiref a far greater
d

space of the primary memory of the 7090 than d
e

proportion of the storage of
] in propram size will not be

the program itscﬁf. Thus a one-third incree T
nouiccablo in most cases. In those cases where increased program size would
must reallocate memory to allow the

15
=)

be restrictive, a programmer using tables mu
program and its data to fit available space

89

MANUFACTURING APPLICATIONS OF DECISION STRUCTURE TABLES

As you have no doubt noted, this is
Manufacturing man, > i
familiar. You see
after the resear

salesmen have
Manufacturing

reality. The answer -- a straight

To appreciate the situation, it would be well for us at the outset to share a

common understanding of jJ ing 1 to Marketing,
Finance, E 1 facturing ccn-
verts mar 1 o products ==

it buys too i . p | assembles parts, it

tests and inspects nroducts, it packes them and ships them to customers. More

than just doing the tual work, Manufacturing '173 col

methods

» When should we make the parts, how many?
. How can we be sure that the parts are good?

All of these, ant

of the engineer in

o ¥
—t
L

-2
production and inven 3 , shop operations, etc. Get-
ting better answers t efficient shop operations,

| ts and improved values for customers. This is the work

MANUFACTURING VIS-A-VIS

There are three factors in Manufacturing's re
a >

ationship with computers tha
should know to c i

Hd(

¥

C

to relate. First, computers are still relatively new to the Manufacturing
function. Where they have been employed, the computer has been used in large
measure to perform routine clerical operations such as filing, sorting, print-
ing, and the 1ike. Paradoxically, the concept of information brocessing has
not penetrated Very far in the world of materials Processing. Rarely, for ex-
ample, does the computer enter into Manufacturing decision-making. The reasons
are manifold. The tremendous volume of information and the many complex, de-
tailed interrel&tionships have made it extremely difficult ang costly for
Manufacturing people to formalize their logic. Manufacturing 8till relies
heavily on "expericnce" ang "art" as opposed to explicit analytic proeedures
and quantified design techniques.

Second, computer hardware development ig only now beginning to Provide the size,
capability and cost which Hanufacturing needs to install computer equipment at
attractive cost reductions -- that is, numerical methods using computers are
now only ?eginning to come up with better, cheaper, faster answers than the
"artisan "

Third, tc ay's Manufacturing man knows very little of electronic computers and
even less abcut Programming them. Though équally intelligent and bright, many
have not had the good fortune to receive the educational background which mos+
of you possess. If computers are to make real inroads, we must find direct,
pPractical ways 5 show the Manufacturing man what the computer can do for him,
and also develop efficient methods whereby he can learn to use thenm himself,
We cannot train enough programmers to Program the problems that exist in the
Manuracturing function. Even ir we had the money, I am fearful that our human
reésources would fail us.

From this introduction you can gather the fundamental appeal which decision
structure tables have Ffor Manufacturing.

l. With decision structure tables, we can quickly teach Manufhcturing
meén now on the job to write their own computer Programs, thus
avoiding the training of computer programmers.

2. The tabular format of decision structure tables is & reasonably
familiar langusge form. It 15 not a tremendous departure from
the tables which the Manufucturing man has used in methods plan-
ning, time standards, lot size determin&tiou, sampling and so on.
He quickly EYasps the power of the Structure table to éccurately
describe logical and mathematical relationships.

3. Structure tables are easy to maintain. Ingtead of changing all
the precaleculates answers in all the files, it is often only nec-
essary to change a few tables. 1In this way the computer is g]-
ways in position to calculate the up-to-date answers.

o1

L. Decision structure tables provide a simple, uniform format for
recording logic which facilitates technical communication within
the Manufacturing organization and provides a formal disciplined
documentation procedure. This is becoming increasingly important
in these days of multi-functional integrated systems. Further,
it is a tremendous help in training new people.

MANUFACTURING APPLICATIONS

Thus the Manufacturing applications problem is really not one of verb versus
verb, or microseconds matching microseconds. At this time we are concerned
primarily with making Manufacturing aware of the many practical things comput-
ers can do; our problems are demonstrating technical feasibility, proving
economic value; defining problems; organizing and maintaining large amounts of
data; training people; and so on. Our experience indicates that decision struc-
ture tables can really help us in this endeavor. These applications stories

on rotors, gears, and inventory control provide some reasons for our belief.

CAST ROTORS

General Electric has an understandable interest in electric motors. In one of
the earlier Manufacturing structure table applications projects, a study was
made of the centrifugal casting process used to make rotors for a line of al-
teruatiag current moters. As you may recall from high school or college days,
electric motors consist of two basic parts: a staticnary frame or stator, and
a rotating element or rotor. The rotor was made from slotted steel laminations;
and copper bers or strips were wedged into the slots. The bars were connected
or "shorted" at each end to form a complete electrical circuit. When placed
under the energized electromagnetic poles on the stator, torgques were set up
which made the rotor spin around. The basic theory of electric motors hasn't
changed very much; however, if you take apart your washing machine, you will
very likely find thet the copper bars have been replaced by aluminum. Further,
the aluminum was not wedged into the slots, but rather the rotor has been molded
together as one solid piece. In addition, odd-shaped protrusions may be stick=-
ing out from the end. These fins serve as fan blades for cooling the motor.
Many of these cast rotors are made using a centrifugel casting process -- that
is, the mold is rotated at high speed so that the liguid aluminum metal will be
forced evenly into 211 the rotor slots, fan blades and other crevices in the
mold. In addition, the spinning also helps to prevent the formation of bubbles

and voids in the sluminum itself.

In the particular line of cast rotors that was selected for study, over 100
varieties were currently active and, of course, new varieties might appear at
any time. The differences in the rotors were basically caused by the differ-
ent design techniques and cenfigurations used to cool various horsepower motors.
To the factory operators this involved different assembly procedures in putting
together the molds and also the rotor laminations. In addition, depending on a

¢ h Hdg

92

number of other variables, there were also differences in the detalled casting
procedure.

The first step in the structure table development project was to extract these
methods and procedures as well as theilr supporting logic from widely scattered
sources in the current manual system. A considerable portion of the required
information existed cnly in the minds of the folks doing the job. The results
were summarized in approximately 60 decision structure tables. These tables
covered not only the 100 verieties then active, but also provided the planning
logic for some 44,000 rotor configurations then possible.

In addition to describing the factory operating procedure, these structure
tables also developed the time standards -- that is, the "allowed" or normally
expected operation times. The resulting computer program printed out both the
labor vouchers and also the detailed factory cperator instructions which told
" the shop people how to build each rotor. The entire project was completed in
six weeks by a man who was then unfamiliar with structure tables, computers or
the rotor casting process.

Subsequent to the completion of this work, it was decided to essentially "re-
do" the project with a new man using flow charts and what were then more con-
wventicnal programming Lechnigues. This would make about as controlled an ex-
periment as is possible in an industrial environment. One cannot reslly gen-
eralize from one observation, but perhaps you might be interested in a few
comparative statistics. The second project took 1k weeks in contrast to six.
The second computer program produced similar output, but required a 50% larger
object program than was developed using structure tables. However, the struec-
ture table program ran one-third slower. The size and speed differences were
largely due to different approaches to computer implementation. However, it
was clearly demonstrated that both approaches had their merits -- but the 14
weeks versus six weeks reeally seemed like a good omen.

So much for our experience with cast rotors, now let's turn our attention to
another problem.

GEARS

Many General Electric departments share a common interest in the production of
gears. This component appears in hundreds of the Company's products. However,

many are unaware that the common gear is an uncommonly complex thing to produce.

Indeed, many engineers -- and some entire companies -- devote all of their in-
terests to the proper manufacture of just this one type of component.

While some simple gears can be molded out of plastic, the more substantial
variety -- in which we are interested -- is typically made from flat round
metal discs called "blanks." Typically, these blanks are forged individually
or cut from lengths of bar stock. In general terms, an average gear might be

R

hHA0

-5

—_—

92

number of cther variables, there were also diff=r-<nces in the detniled casting
procedure.

The first step in the structure table developm:zn= project was to extract these

methods and procedures as well as their suppor-i:- logic from wildcly scattered
sources in the current manual system. A consiizr-:ulle portion of the required
information existed cnly in the minds of the fol.- dJoing the job. The results
were summarized in approximately 60 decision str: -Ture tables. Thesc tables
covered not only the 100 verieties then active, -.u: also provided the planning
logic for sume 44,000 rotor configurations then -::zssible.

In addition to describing the factory operatins —-r-ocedure, these stlructure
tables also developed the time standards -- ti 12, the "allowed" or normally
expected operation times. The resulting compu srogram printed out both the
labor vouchers and also the detailed factory oper==tor instructions which told

the shop people how to build each rotor. The sa-i:re project was completed in
six weeks by = man who was then unfamiliar with :zt:Tucture tables, computers or

the rotor casting process.

iscided to essentiully 're-

.
'

Subsequent to the completion of this work, it

i W

ct ¥

do" the project with & new man using flow char 2Z what were then more con-
ventional progremming technigues. This would me shomt as controlled An ex-
periment as is possible in an industrial envircrz:z-st. One cannot really gen-
eralize from one observation, but perhaps you =:. =t be interested in a few
comparative statistics. The second project tock _ - weeks in contrust to six.
The second computer program produced similar outzut, but required o 50f larger
object program than was developed using structur= =zbles. However, the struc-
ture table program ran one-third slower. The sizz &and speed diffcrences were
largely due to different approaches to computer i-—:ilementation. However, it
was clearly demonstrated that both approaches hz: <tneir merits -- but the 14
weeks versus six weeks really seemed like a gocd -Tmen.

So much for our experience with cast rotors, now _:ict's turn our attention to
another problem.

GEARS

Many General Flectric departments share a common --2terest in the production of
gears. This component appears in hundreds of ths .ompany's producls. However,
many are unaware that the common gear is an uncom=-culy complex thHing to produce.
Indeed, many engineers ~- and some entire companizs. -~ devote all of their in-
terests to the proper manufacture of just this on= <Type of componcnt.

While some simple gears can be molded out of plasti:c, the more substantial

variety -- in which we are interestel -- is typizs_l.y made from flut round
metal discs called "blanks." Typically, these tlznuxs are forged individually
or cut from lengths of bar stock. In general ter—:=., an average geur might be

CH HAN

Al ks i L o

7

kel Ju—

s e .. e . e . it A Bl

kel =

N

B s e e

T

93

nd back to

ss material.

e a concentric,
tions. Perhaps a

Hn]u using a broach.

be finished machine

e It is only at this

the blank is rough machined fron

manufﬂctured as follows: First

provide gripping surface; this also eliminates scale and
r nc dr a
1

Then the cente e might
perpendicular
key way or a spl
Once these opera
front and back rivinr the

point that the gear is read

tional processes used to cut e teeth and other parts

of the gear areground to p close dimensional toler-

ances. In between these op the annealing furnace

are required to relleve the machining has set up within
11 A survey the average part goes

the metal itself. A survey
through five operations

t
; hink the point is obvious,
gear manufacturing cen be & st

In this applications e decision structure
tables to complete for all factory operations
in & large family th of determining which ma-
chine shall perfox working operations, in what sequence, and with
what speeds and fe dimensional tolerances, what tools, and lastly, how
long should it take 1ts of these decisions were to be furnished to
act *h d

ono n over O 1
strucbi y by the Manufacturing
p]a“nlq, techn omputers. As a re=-

']
J

i

o

n to this gear

N P -y =

Y

ct\n = n
ct
e
C

sult of thei
family was reduc I
use of the decisior truct: -ables - .y facilitated

0
'l.
=

'
&
m
s |
t
b
=
w
®

)
o h
(o]
e
-
3
1]
=
o %
o
e
O
o
o
L]

+he vl ™ awnd s+ arAe ot 4 - v -] 4

the logic and standardization. The decision
structure tabl *ial Manufacturing Engineering
documentation the seme fashion as engineering

r‘;‘ .
H
m
o
w
m
-]
1)
- -
[
o |
ct
=
1]

llu-priwts. expected to

INVENTORY CONTROL

In a completely

to des cribe inver

lays - £ -) s - &4 $vr Aiw Y i d v P e e e o
Here we faced an added difficulty in applying computers. In aut

control systems, a2s opposed to mechanized factory planning, we are dealing with
more intangible statistical variables over extended periods of time; as a re-
sult performance evaluation cannot be as precise or immediate. Really there
is nn such thing as prototype testing. New inventory control decision rules
are installed directly in actual operating systems for a pericd of time in
oxder to be evaluated. The cost of failure is high. For example, too much
customer dissatisfaction or inventory obsolescence can cost & man his Jjob.
Needless-to-say, most industrial inventory systems are designed with high
safety factors and most innovations are regarded with suspicion. Progress is
slow and costly. Further, evaluating new innovations is extremely difficult.
If the idea appeared to work the first time it was tried, then it was consid-
ered pood; if something went wrong, it was considered bad. Often folks are
never too certain whether the changes in performance could be positively at-
tributed to the new idea at all. Sometimes other events -- such as a rise or
fall in busiﬂess volu*n -- were much more directly responsible for the adjudged
"suecess" or "failure" than any influence of the new idea itself.

TRIM -- a computer simulation model to Test Rules for Inventory Management was
developed to provide a controlled environment laboratory, where the systems de-
signer cen-experiment freely with a variety of inventory control decision rules
without disturbing the real world. TRIM, like most computer simuletion programs,
offers three major advantaces over resl world testing. TFirst, TRIM uperates

mach faster than real time. TRIM can simulate 50 time-periods eof inventory
systems activity in two to five minutes. Second, because it is a computer
model, it is possible to explore extreme situations without risk of destroying
the model -=- Or perhaps more important -- the actual inventory system itself.
Third, computer simulation provides a controlled experimental environment where
cause apd effect relationships can be established with a much higher degree of
certainty than can ever be done in the real world.

The best way to describe how structure tables were used in this project is to
describe vhat TRIM is and how it operates. TRIM essentially makes the GE-225
computer behave like a complete single-stage inventory system. It processes
customer demends, estimates future requirements, places and receives replenish-
ment orders, purges over-zge inventory, cancels over-extended back orders, etc.
TRIM also raports how well the inventory decision rules succeed in balancing
custcmer service, orderinz costs and inventory carrying charges in accordance
with specific weights the user sttaches to these measures of performance.

so-called "master clock." BEach significant sctivity --
forecasting, ordering, etc. -- is assigned a separate alarm clock. The func-
tion of thie 2larm clock i1s to let TRIM know when this particular zctivity or
transaction will occur next. The alarm clocks are carefully sequenced so that
if there should be & tie -- that is, two or more alarm clocks going off at the
same time -~ TRIM will handle the activities in proper logical, as well as
chronologicael, order. The master clock constantly records 'curren; time" and
coordinates all the activity alarm clocks. TRIM's internal activities in their
logical order of occurrsnce include:

TRIM is controlled by a

no

95

Purge Obsolete Inventory Subroutine which removes from the on-hand
balance any inventory which is over-age, that is, has exceeded its
shelf 1ife. The Purge Subroutine examines each entry in the re-
ceipt list that has alresdy been received -- i.e., is currently
in inventory == to determine how long it has been in inventory.
If this time is greater than the shelf life of the item, this
"receipt" is removed from inventory. When all receipts have been
xamined, the program modifies the on-hand figure and tallies any
purged inventory for purpcses. This routine occurs
first because TRIM wo ot want to ship any over-age inventory
in response to new 3*1 ; nor celculate order cuantities based
on the supposed v511~0111tj of ‘“1" over-age inventory.

ancel Obsolete Back Orders Subroutine removes demands which have
been backlopgred so longz, that TRIM must assume that the customer
would have cancelled them. When the TRIM Ex cutr'n calls thc
Cancel Subroutine, each entry in the back order 1ist is examined
to determine how long it has heen in the back order state. If
this time exceeds the limit specified by the user, then the demand
is removed and a cantellatiun report is printed. The failure of
the system to meet 1‘119'. demand is noted by adding the cancella-
tion quantity to a lost units counter. Cancel comes early in the
logicel sequence of tv”“*ﬂct*opc because TRIM would not want to
calculate order quantities based on demand which wasn't really
there, and tec:L = TRIM would not want to fill these obsolete
orders with stock arrlviu; on new receipts.

Receive to Stock Subroutin eplenishment orders and
makes the necessary bookke ctions. After a receipt
the back order list is exam if any back orders can now
be shipped. Naturally, in lo icﬁl sequence, TRIM would want to
receive before proscssing demand.

The Forecast Subroutine as might be expected makes estimates of
future demand. A forecast can estimate future reguirements by
predicting the future or projecting thc past; TRIM provides for
either or both alternﬂ?i"u:. Predictions ere incorporated through
a "base series" which is essentially a ljst of multipliers. Using
the base series it is passible to anticipate seasonal corrections,
vacations, chanzed levels of business activity and other similar

influences on future demand. Accurate predictions can signifi-
cantly improve inventory systems perflormance.

TRIM also conteins a wide variety of built-in forecasting tech=-
nigues -- moving averare, single, doukle, and triple smoothing --
for projectinpg vast experience. 1In addition, the r specifies
numerous nstants and multipliers which further

P Hdd

96

forecasting performance. 1In developing a composite forecast,
TRIM first projects past experiences and then modifies this pPro-
Jection with base series predictions. TRIM forecasting also con-
tains some notions of adaptive control. Thus, if forecast errors
become excessive, a "panic" forecasting policy can be invoked in
an effort to regain control.

The Orders Subroutine handles the problem of calculating order
points, order guantities, and placing replenishment orders when
required. TRIM uses either = fixed order point specified by the
user, or a calculeted order point. 1In calculating an order point,
TRIM really asks the guestion: do I have enough on hand to keep
demand satisfied until I can get some more -- assuming I pass up
this opportunity to order? TRIM poses this question by calculat-
ing a proposed order size. If the proposed order size turns out
to be zero or less, then TRIM concludes it has enough stock on
hand and no order is placed. If the proposed order size exceeds
Zero, an order is placed. However, the actual size of the replen=-
ishment order may be quite different than the proposed order
quantity previously developed. TRIM allows the user to impose
fixed order guantities, order minimums, order maximums or economic

-

lot sizes.

Since TRIM is a simulator, it must somehow establish when a re-
plenishment order will be received. Lead times can be established
three ways:

(1) Fixed lag time assigned to all replenishment orders.

(2) Lag time determined by random selection from a cumula-
tive probability distribution function of lead times
provided by the user as initial input.

shop.

(3) Lag time determined by scheduling a small factory flow

The Process D-mand Subroutine performs the bookkeeping associated
vith "shipping” & new demand from inventory. All demand is
treated as current demand and shipped immediately if adequate in-
ventory is on-hand. If adequate inventory is not on-hand, TRIM
will handle the situation in accordance with partial shipment and

tack order policies specified by the user.

The Plot Subroutine is one of the optional report features in TRIM
vhich purmits the user to get a graphical printout of TRIM's in-
ternal operztions.

GH HdO

97
(Page 98 Blank)

TRIM contains over 100 decision structure tables which generated approximately
8,000 woids of programming. It requires a minimum configuration GE-225, card
input with on-line printer or punch. It simulates 50 time-periods of inventory
system activity in two to five minutes. The original program was done completely
in decision structure tables by a two-man team in about three months. The preo-
gram is operational and has been successfully used by a number of General
Electric product departments to analyze existing or proposed inventory systems.

CONCLUSTION

In summary, we have used decision structure tables in a number of Manufacturing
applications. They work well, they appear to offer some definite advantages.
But more than anything else it appears that decision structure tables can ac-
celerate the introduction of computers into Manufacturing. In closing, I would
1ike to thank the members of Advanced Manufacturing Engineering, Production
Control and Quality Control Service, as well as the various operating depart-
ments, who participated in these projects for the privilege of reporting this
work. Particular mention should be made of the Company's Computer Department
which, as you know, has included decision struciure table capabilities in

GCECOM -~ the language for the GE-225.

b Hdd

G

TR 7T

QUESTION AND ANSWER PERIOD

AFTERNOON OF SEPTEMBER 20, 1962

MODERATOR: L. W. Calkins

PANEL: George Armerding
Lynn Brown
H. N. Cantrell
T. F. Kavanaugh
Frederick Naramore

CALKINS: There is one comment that has been threaded through this entire pres-
entation, and I would like to comment on it to you for what it is worth. I
will leave you with a question. We have talked about clear and concise docu-
mentation. Now, how many of you here are in your second generation of eguipment
and what kind of left-handed factor did you throw into the estimate of conver-
sion for the lack of documentation?

T do have some written guestions that T can start this off with, and we will
follow the same procedure that we did this morning. One question that has
been handed me is: "Are there any plans for distributing FORIAB to other [UNU
users?”

ARMERDING: Yes, we plan to distribute FORTAB through the regular SHARE organi-
zation who will distribute FORTAB to 7090 users. We expect that there should
be a minimum effort on the part of the receiving people to put this into their
monitor system. It replaces one entire section of the FORTRAN monitor. If
you have made eny changes of your own to that section, you will have to throw
your own modifications in, but it shouldn't be tco0. mich trouble.

CALKINS: What advantages are obtained using decision tables to prepare test
data?

NARAMORE: On our past experiences, seside from the accuracy of the programs
themselves (that they have been coded properly), does the system itself repre-
sent what the original systems analysts had intended. For some of this prob-
lem we have resorted to a very formal procedure for the establishment of test
data, and the use of decision tables has been particularly valuable in this
respect. That is, the systems analyst can proceed through the logic of each
table and at least assure himself that a set of conditions or transaction rec-
ords, master files, and sO forth, is available which does in fact represent
the various possibilities of conditions. At the same time, he can then pro-
duce predetermined results from these same tables. This has produced, again,

CP Hd

100

in turn, being turned over to the programmers, forms
+

acceptance tet

L

how to write =

power into our

ange. +hia
sense, tThis

rative
rratives,

turned o However, this is a small thing, in

can turn ot as ¢ > point i !

« 101

CANTRELL: I would like to amplify that a little bit. I think anyone who has
ever written a program has had the feeling, or made the statement, that now
that I have finished T really know how to do it. I can do a heck of a lot
better the next time. This is something that does not seem to happen with
decision table programs. I think the reason it happens with non-decision
tables programs is that, having completed a job, you now understand it
completely and are in a position to plan it completely before starting on it.
With decision tables you 4o plan it completely and, in fact, our programmers
that are writing decision programs do not feel that they could do better the
second time around.

KAVANAGH: I would like to add another aspect of this which I think is
particularly pertinent to those of us who are not really interested in point
zero five increase in efficiency and object progranm.

So frequently you see coding written in such a way that if you stood ten

feet away from it and looked on the left hand margin, you would see "I am
smart", written instead of the program sheet. If there is a wrinkle, a
left-threaded mut or something in that machine that can be possibly used to
squeeze a microsecond out of the coding, it has been used, and the devil take
anyone who has to come in afterwards and take over that program to maintain
it.

I think that those of us who are familiar with, or working with, the structure

table area are particularly impressed with the ease with which new people
can come in and take over what was done by others. Because it is now logi-
cally and completely specified. Where you are faced with high personnel
turnover, and in some cases with expanding staffs; in other cases with
documenting what "Good 0ld Joe" has done before he moves on to another and
more important assignment, this is extremely important, and I think it's a
fact that is often overlooked in the documentation area.

CAIKINS: There is another question that I will throw either to you, Harry,
or to you, George. Has any work been done to include the decision tables in

AIGOL?
ARMERDING: Not to my knowledge.
NARAMORE: Or to mine.

CALKINS: Does anyone here know? I would hate to have one go unanswered.
I know of nothing.

CANTRELL: I can make a statement. This is really not an answer to this
question, perhaps it's simply a statement that should be made.

You are familiar with the algorithms that are published in the A.C.M., using

CP Hdd

102

AIGOL as a communication language for algorithms, wvhich is another word for
theorems, or procedures for a specific purpose. We found sometimes in the
mathematical and engineering and scientific programming that we will have
algorithms which are a decision table. For example, we have one on & simple
method of one varisble iteration, Newton's method, which is primarily a
procedure. It is not a mathematical statement, The method itself is
primarily a procedure. The logical definition of this procedure in a decision
table forms an explicit algorithm which is a lot more understandable than the

corresponding ALGOL statement.
CALKINS: Are there any questions from the floor?

VOICE: I would like to ask Mr. Armerding abodt the numerical integration
procedure and how he went about using decision tables in it?

ARMERDING: Well, it wasn't my program, it was someone else's.

He had a scheme whereby he would look over sub-intervals of his integration
and decide what would be the best method of integrating over that smaller
sub-interval of the whole interval which he eventually had to integrate. He
wem1d use different procedures, depending on what he found in those sub-
intervals. In fact, he used the table in the iirst place Lo break up his
entire intervel into those sub~-intervals to decide how the integration was
to be done=. This is how the program was programmed originally; as soon as
he heard about FORTAB he knew it would fit wonderfully in that context, and

he redid it; and, indeed, it turned out much simpler.
VOICE: It was a property of the functicn he could test and make a decision on?
ARMERDING: Right. He could do this dynamically in the subroutine itself.

VOICE: I wonder, if in the manufacturing area anything has been done with
decision tables for sequencing jobs in a job shop in order to reduce set-up

time.

KAVANAGH: Yes. I think the problem is straight-forward, of course. The
problem is, if you go to one task from another, it frequently requires that
manufacturing machines be converted. These conversions can be facilitated
if the emount of change is minimized. If the same tools possibly can be
used, or ones that are very close to it, and if you know the properties of
the jobs behind the work stationm, {t is a very simple matter for you to get
ur a decision structure table to sequence that job in the string or queue
behind the work station which has the most desirable properties.

There are a couple of places in our corporation where this has been done in
tabular form.

CP Hdd

103

CALKINS: T would like to ask a question in this regard. In the past, the
problem has been memory limitation in keeping with the size of Job that you
are trying to work on. Now, what kind of size have you been able to handle?

KAVANAGH: Well, I think you probebly would be able to deduce some order of
magnitude from the fact that we are dealing with some three thousand struc-
ture tables in the gear project and some sixty thousand in the program,
which obviously run out to the size of the GE-225. So, therfore, there is
a certain amount of program organization which has to be done.

We have found, however, that we can handle very large programs very well
using decision structure tables in the mamufacturing area. There is a cer-
tain amount of sequential flow associated with the problem, and they tend to
lend themselves to segmentation very nicely.

VOICE: I would like to ask Mr. Armerding if the FORTAB could be used on
smaller IBM equipment.

ARMERDING: No. It was specifically written for the TO90 computer. There
is, really, no reason why you couldn't implement the FORTAB language for
some other FORTRAN, however.

VOICE: What is aveilable to the 7090 user in regard to decision tables?

BROWN: I will take a stab at that, since I just came back from the SHARE
meeting. Nothing.

CAIKINS: As I ventured a comment about documentation, I would also like to
venture another thought for you here.

Tt has often been said and talked about, of how tight my program is and how
little memory it uses and how my object time is minimized. People seem to
be a little bit afraid of using a little bit more memory or a little more
object time. I dare say that if you were to actually and truthfully sum up
your costs as they pertain to computer application, probably the cheapest
thing that you have is machine time. I am throwing that out to some of the
people who like to waive the honor keys as such in terms of programming.
Can we have another question?

VOICE: Granted, that the tabular system would serve some of the needs in
problem definition documentation. Does it serve also the needs in program-
ming? What about those people who have no TABSOL as G.E. does, or FORTAB?
Can the programmer program directly from a tabular format, or must he then
draw a flow chart from that?

BROWN: I might teke a crack at that, because I think I have two answers to 1t:

CP Hdd

104

One, if anything, it is i
it is from a flow chart. This i

Two, given the use of tabular formats, I hope we have made the point here
sors. We wrote one. It took
e people on this kind of a

e |

that it is not too difficult, to write p

three peo

thing. Al lere are writing processors to the tune of ten, fifteen,
twenty thou lars. You compare this to the yearly rental of any
camputer, and the nmumber of yearly salaries of all the programmers associated
with it, it's not very much money.

Two answers: Sure, you can program mamually; two, it's not really very hard

»
to write a processor.

BROWN: One other point in thi
designers lay some things out
pProgrammer 1y 1

:}Ob), "‘u’h’i
easy to co

[}

The
ne

A
- o
am I supposed to do, sit he

e.

="

VCICE: Wounld the rermeliste comment on the size of the effort required to

put into decision tabls
logical design, of a di

g 1is is, a
complex problem with "OR-ing

DT T - T o rdvra a 13++] ¢ nght 1
CANTRELL: We have given a little thought to th

awing a
that

computer

Secend, I woulld gu
machine like the T090 in
be & check of the logic of
thing on the c
that decision tables

ct
- i
{0
+
L
-
0 O
=
3 0
Q
|_.l
(o7
M
3
P'f
M
t
1]
o*
= g
(1]
e
e |
ct
m
2}
o |
o
'.~J
[
o]
1]
p.u
g
o
L]
"]

eble, the very expression of it would

m
ct =
']

{2
}4

>, You could then, of cowrse,
but I suspect that the pr
in logic i

aking the decision table, would

=
]
8
b}
i

0
e
|
Lt
oo
(]

=5

"

e ln
=g N - 4

c+
o
m
=
£
B
el
13]
Y b
(v
-l d
L ¢]
=
e
L&)
-
t
o
e oob

of the logic In
CALKINS: Are there any other comments from the panel?

KAVANAGH: About two years ago pay as published by a chap in General
r f computers. If there
look for the questioner

he author and the paper number.

Electric ebout using structure
are same computer department p e ;
and see if we could get him the full name of

106

experimentation and development. Instead of asking us the question, perhaps

we should be asking you-

CALKINS: I can 1end substance 10 that. In pittsburgh we have installed &
UNIVAC 490-Real-Time Computer, operating with a plant twenty-five miles away.
Tt's & research project to Se€ whether or mnot i+ is possible to operate in
conjunction with recording equipment in the plant, Over the leased lines.

VOICE: In our application, W€ tied to an executive routine & 1ist structure
end we were eble to take up sOme of this time that you would ordinarily lose
waiting for & device or devices; W& used that time to make decisions.

CALKINS: Well, even further, it depends upon the hardvere that you are
+alking about. 1et's talk sbout the ADX, 1.7.T.'s message switching equipment,
the priority {nterrupt schems, where there 15 & memory location assigned toO
the line causing the interrupt, and you are at that location in twenty micro-
seconds and the release back TO the position prior to interrupt takes, I think,

another ten. It's built in the hardware.

VOICE: May I make 2 pomment.? In analyzing & regl-time system, one of the
edtd N L dan

things that the system.analyst has to do firstT of all is estapiish feasioiiizy-

1s there enocugh time to digest the flow of data that's coming into the system.
The thing he wants to know, OF describe to & programmer, is how to write &
program for this thing. First of all, is it seasible?” Yes, it very defi-
nitely 1is, and I want to show you how it is. I don't want to describe it to
the programmer using a flow chart, because this is his function in progream
design. But if I could use, Sy, some table like this and functionally
describe exactly what things have to be done and in what priority so that you
can establish what must be done, and very definitely this can ve done in the
length of time available with the maximum data £1ow expected, then you could

at least define the bounds of the problem.

CALKINS: Well, T think that you can through the table describe the functions.
As to whether you have & true measure of wnether you are going to be computer

1imited, I don't knov.

CANTRELL: One comment on real-time programming, at the risk of scaring
people off from decision +tables. There 1s one kind of application that we
have run into where decision tables apparently do not work. This is the
type of aprlication wherein you nave decisions tO make, but the rate of data
coming into the computer is such that you have some date available, which
is enough to make some decision and take some action before the next esmount

of data comes {n on which you can take more decisions and take more actions.

e data and 2ll of the
take your action. We have hit a few cases,

Now, & decision table requires +hat you have all of th
bases for your decision before you

j T e

105

CALKINS: Are there any other questions?

VOICE: Does anybody know of any use that's being made now, or any contemplated
use, or perhaps any feeling for the difficulties that might be encountered in
using these tables for real-time programs in which arbitrary interrupts or
arbitrary data rates occur?

BROWN: I have no experience on real-time systems. However, the modular
design of a2 program put together with decision tables seems to be the type

of gerneral thing you need aveilable. We have heard mentioned here two or
three times that you can put together rather large programs with decision
tables. In my understending of real-time applications, and there are several
descriptions of them, it means to me that there is an awful lot of decision=-
meking ability available at one time in the computer at the time any trans-
actions hits it, and it seems to me that this modular approach to the design
of what's in there at that time becomes more and more important than it did
with what people call batch processing.

CALKTNS: May I ask the gentleman who asked that guestion, even though the
application is real-time in the sense that it does take an entry item on
demand, are you still not faced with just the handling of the interrupt

2 Ve 1. . —an = memds f ap e s B e e o . 9 "
thirough an executive routinec to get to the locetion vhere internal pieces or

modules of logic are executed?

VOICE: The essence of the question is whether the mechanics of expressing
this in a table -- in other words, now is it cbvious when an interrupt can
occur? When is it possible to interrupt the table and get back in the flow?
If I give this to a management person who wants to describe this program,

how can he determine when these interrupts may occur and how they will be
automatically processed, and then the flow will continue on scme sub=-priority
process? How can he determine that there are no logical erros in the essence
of this process?

CAIKINS: Well, I think,really, what mst be explained is the function of an
executive routine which sets aside the contents of the registers at the end
of a given execution on interrupt and the r eturn routine to the point used
prior to the interrupt, and then going on. Is this the essence of your
question?

VOICE: Perhaps.

CANTRELL: I think you have us here at a point where nore of us have done
this. Maybe there's somebody in the audience that has, but I haven't heard
of them yet. HNone of us have any experience of putiing decision tables to
work on real-time problems. We don't know what their sdvantages or disad-
vantages are. We don't even know if there are additional language features
that are needed. And personally, I think this is a heck of a good field for

CP Hd(

107

like reading cards from the on-line card reader of a 704k wherein the real-time
aspect of the hardware is such that you are forced to make decisions, and then
actions, and then decisions, snd then actions. If you have this kind of a
situation -- and we have it very rarely =-- I don't know kow you can use a
decision table for it.

VOICE: As a follow-up to that, wouldn't it be advantageous to have in core
a generalized program which would interpret these decision data as data,
working against, presumably, s master file and nct through this pre-compiling
stage, as the FORTRAN's prozram. Thie lends itself to rzal time. We have
done this.

We come in with this tabuler data: since there's too mch to be assembled in
core et one time, we have to came in pilecemeal in the main master file
sequence. It comes in, it's interpreted, and it is execuved against the data.
Additional data tables are read in, executed against the master file data,

and so forth. And it's one pass; rather than having it going through any
preprocessing work. It has "OR-ing" and "AND-ing" and everything. If you
can do this, isn't it more advantageous than going over the compiling stage
with your decision table data?

Can you make a question out of that?

CAIKINS: That's the next guestion. I thought you were going to start that
one out with "Four score and seven."

VOICE: We heard this morning abtout the possibility of having decision tables
modify themselves. Perhaps this is just the case where it is required - - for
real time. For exampls, if you make a decision, as Mr. Grad says, based upon
preliminary information, this now tskes a course of action which now beccmes
a condition for subseguent Irformation which comes in, and the process is
turned over and over again.

CAIXINS: Any other questions?

VOICE: I am thinking in terms ol the larger problems. Would it not be
important to have another section affixed to tha table, which would indicate
from what teble you arrived st a particular table? I think you know what I
am referring to. If you have to make & change to a table, then if you have
come to that table from other tables, you may have to refer back to see if
some other tables will have tc be modified, and so forth, on up the line. I
was wondering if you hsve any comments to make slong those lines with regard
to some of the experlences you had?

BROWN: We do nothing at object time to tell this, btut we 4o have a listing
that comes out that tells which tables relate to each ctrer. In effect, it's

a listing which indicates the "do's" and "go's". It is sarted by "do's" and

€ Hdd

i

108

"go's" and the resultant field, where it is going to, so this is helpful. It
is not an object time. At object time it is not too difficult to do something
like that, because in many tabular systems the linkage between tables is
handled by one executive type routine which handles the "do's" and "go's".

So it is possible to put into one location in memory, the identification of
the table, or something like that, during the process of hopping from one
table to another. This is another advantage in this modularity of going to
another place, someplace else, via the same vehicle.

VOICE: But when you are compiling the table initially, you may refer to one
table several times. Now, if you have to make a change to this one particular
table, it may be that, let's say, five tables had referred to it, maybe there
would have to be no changes made to four of them, but a change may be in
order for the fifth one. So it seems important you would have to have infor-
mation handy that would permit you to go back as well as forward. You have

a way of stepping down, but you have no way of stepping back up again.

CALKINS: If I might take the liberty of rephrasing your question, I think
you have asked this: Having done the application, and a change comes into
the logic, if I make that change, how do I know that I have encompassed all

of its effects, is that right?

VOICE: Yes.

CALKINS: In other words, when I change this particular point, what kind of
chaining effect does it have? In other words, do I know that all logical

decisions are correct when I am through with that change?

Do you have any comment on that?

NARAMORE: Our experience with the decision tables as such has not been
oriented at a programming level; in other words, a machine~run level. But

as part of our procedures, the original sets of decision tables that are
produced for a given system are subjected to what we refer to as a leveling
technique. This is, essentially, similar to teking a bill of materials for
hardware items and developing a listing which references items either upwards
or downwards, components to assemblies, or assemblies to components. Taking
management rules as such, you could have a schematic, or procedure, which
represents each of the independent relationships.

In other words, what tables are dependent on other tables. This is not at
& programming level, however; it would be a guide in the sense of changes
to know what tables were related.

CANTRELL: I think this is a good suggestion. Probably the only reason it
hasn't been implemented is that it isn't necessary to provide this information

109

in order to compile the program. You only want the program to go frontwards,
not backwards; but from the point of view of the people who want to look at

this same requirement on forward and backward applies to ex»:"*nir- in a
program; not only deci] but

=
C' »
s
L el
o
=
[
!
L)
-

Here is a variable; i these different places inuluding this

table.

g have found it very
an analyzer. IBM calls it

=24 =

hink all of us who have done

VOICE: Yes. I t
0 have, as Remington Rand cal

advantageous t
something els

]

Where you have to change a particular part of your program, it's very impor-
tant to know from what other areas in your program this area has been
referred to.

BROWN: This was one of our reasons in going into the TO58 processor of IBM.

At the risk of giving a commercial, we get this as an output automatically,
and it has a refercnce in hoth ﬁf"e“:icns. This probebly should be explained.
Some other compilers don't have this; they glve you an assewbly lictins, or

&omcthir:g like that, but it's a vory v&u:xb.le tool.

VOICE: But you don't have this until you get down to object time, until
you caompile a program. In other words, you are leaving the burden on the
programmer, I believe, rather than on the system generally.

BROWN: The particular format that we l1lows us to sort the cards
that the programmer writes up on tab e Since he works directly

onto a card format and gets a punch ri /e do have the ability to

do it, although we have had very 1littl o something like that so

far. Usually, we get on to the compil ally compile before the
program is fifty per cent complete Jus this sort of information out,
even though this particular compilatio rrogram, as far as instructions,

5D
will never be used.

VOICE: Sir, I am not sure I fully understand his question.
wondering, is this nothing more than getting that close t
tables, that these different tables are closed subroutines?
what ycu are driving at. lecause, actually,

"go to" and then come back to ”and do this," 1
to pnrf orm a certain function, to put a cisi
the table, later on you have to do the
stage in your program, you have to go bac
not be better |
table down belo

statements

ct
*&
f)‘_
Lt
ct
o
[=
L4]
o
N
I_l
o]
7]
(1]
a7
[45]
=

3

i

it both backwards and forwards, this is very desirable. However, I point out,

isio ; hing else. Probably
what we need is a Were used list;" "were used” and "were generated," perhaps
t is n

7 Hd(

v

Y

CAIKINS: Right.

VOICE: And I think this is the question he is driving at.

VOICE: In other words, you leave out the "go-to" statements, or the "do"
statements to do that, you would have to build that as an integral part of
your program and let the tables stand by themselves?

CANTRELL: You have to be a little careful about making tables closed. Many
tables require dozens, or even hundreds, of items of data. And this is a
very long key punch.

VOICE: I will buy thet. It depends on the length.

ARMERDING: I Jjust want to mention that we do have closed tables in our
system, and one of the actions which you can perform on any table is what we
call the "perform." That sends you off to another table where you can perform
all your conditions and actions for that table. You can do this to any level
you like; in fact, these can be referenced by other parts of the program,
also, and it will thread its way backward.

VOICE: Tt's s main pert of your progiam. It nas to be.

______ pexrt of
Iet me give you Just one illustration.

Subroutines A, B, C, D, and F all require subroutining to perform a certain
function in order to complete what is required to be done. You found that G
has to be changed to satisfy certain other conditions outside of this sub-
routine. Well, then it's important to know that A, B, C, D, E, and F have
used this particular subroutine and, therefore, you must go back and check to
see that the changed G now will satisfy what was originally required of it.
Maybe in the case of A, B, C, D, and E this is still the case, but not in the
case of F; this is my only point, if that helps to clarify it.

5
8

CALKINS: Yes, sir.

VOICE: A couple of speakers have mentioned that the object times of programs
using decision tables structure incorporated into another compiler system
have been longer than when the compiler system has been alone. I would like
to know whether this is caused by the use of the decision table technique,

or viether it is perhaps rather due to the forced incorporation of a new pro-
cedure into an existing compiler which wasn't designed in the first place to

cope with it?

You see, I would normally expect that, if I had an analytical system which
gives me a good logical definition froma program, I would get a more effi-
cient obJject program. That's why I don't understand why these object programs
were less efficient than those produced without decision tables.

P Hdd

-

~

111 \ :

gﬂ:ﬁDB.u In the first place, our programs have not been less efficient.
The one where we made the extensive tests actu ually ran slightly faster in the
FORTAB than it did in the FORTRAN program.

KAVANAGH: Your decisi

able processor which was used in the cast
- 4 +

rotor did indeed Cgmp*- as immediate. This was a whole Job, this
was not married to an nguege. The

to the computer, was not

object program, the other approach was interpretive. let's put iu like this;
the interpre:ive program used considerably less memcry, required less program-
ming and did take longs ybjective time, because ycu alway 12d to ask what
you were doing. So, im e not due to a
shotgun marriage betwe some uxist1ng eudo-language, but rather

in the difference in . One, a pseudo-
language wh genera se a somewhat
. -
w

interpretive

CANTRELL: I would like to summarize these statements.

Given a language which incorporates decision tables in the original design of
the compiler, there is no reason why the use of decision tables should in any
way hurt the efficiency of object programs or increase the amount of storage
required.

.There's nothing in the decision table technigue, which necessarily has to be
slower or use more storaﬁc.
We may see lots of examples, because we are throwing these things together
rather helter-skelter, where these things are not as good, but this is not
the fault of decis;:r tables. In many cases, I think we will find improve-
ments in both storage capacity and object program efficiency through the
use of decision tables.
KAVANAGH: Hear, hear
VOICE: I would like to make an observation -- this is not a question -~ in
relation to a statement made by Mr. r"-'m.rell that real-time applications
present problems because of incompleteness of data at various stages.

A chap vorking for me who did a certain amount of research on tebles arrived
at a conclusion that you comld set up a priority where rules read left ¢

right, the left rule having a highe
it was possible to g et
technique. This is

priority. In this particular test case,
1 this, in addition to the

CALKINNS: Any other questions?

f Hd(

112

. VOICE: You mentioned that decision tables do not lend themselves to modifi-
cation. In other words, they are not self-modified.

Certainly, if a programmer can indicate a switch in a program, cannot he also
indicate a condition which can be tested by a later table?

ARMERDING: Sure. Our programmers do this all the time.

KAVANAGH: This is the essence of a similation program. We do this all the
time. This is the body of it.

CANTRELL: In this self-modification thing, a decision table operates on
information, on variables and on constants, too. Now, there is no reason at
all why you can't modify the variables that it operates on and have it go down
different paths. You may have a decision table which is a loop in which all
but one column of the decision table exits back to the table itself. You go
through this thing, modifying the variables as you go, until you finally have
completed the lcop and come out.

I think what these people were talking about in "Introspective Decision
Tables," or something like that =-- modifying the structure of the decision
table at execute time, adding some more columns Or some more rows, Or chang-
ing the type of decision which you make, scmething which you can't do by
changing the veriables. At the moment, 1 am completely ai & 1055 Uo kacw

. what you can't do by changing the variables. You can put dummy variables i
into counter-columns and blank out other things. We have done a lot of this. ¢
We haven't seen the need for introspective decision tables -- if we know what

they are.

VOICE: Does the decision table technique do any more than list all possible
paths?

KAVANAGH: I will offer one thing. I am sure the others will add more. One
thing that it does do, of course, is just not that. It does not list all of
the things that could happen by permutating all of the variables; Jjust the
things that it wiil allow. OCne thing it does for you is to limit the range
of possibilities that offer feasible solutions.

CANTRELL: I might cite a for-instance on the possible paths. We had one
machine-language written program which had one little hunk of logic in it
that wasn't right, and we were trying after the fact to find out what was
wrong with it and fix it. After an awful lot of work we finally decided

the only way we are going to figure out what this little piece of logic did
was to put it in a decision table, so we did. We found it had sixteen
possible paths, of which, eight were logically blocked off in the flow chart
by things such as the testing of A equals B, and a little further on A does
not equal B and, therefore, it wouldn't work. Four more of them were blocked

b Hd(

|
|

713

off by characteristics of the data; that is, A must be greater than ten, but
never in this problem can A ever be as big as one.

In the final result we found there were four paths of these sixteen paths
that had meaning, and as a result we were able to take the original machine
language logic and decrease its complexity by about four to one.

CAILKINS: Other questions?

VOICE: Sir, it strikes me that in doing this you were doing one of the
things you would preach against by people that don't use this system. The
situation might not be as ridiculous as it might appear. In laying out a
logical flow chart, you might recognize that here's a condition which we
should not tolerate. Maybe it could not exist anyway; but it's not worth-
while going back and saying let me put a stop in here, even though, maybe,
I don't need it; so you get some more instructions in there. Now, you are
seying that you increessed the efficiency of the memory requirements because
you eliminated it for the logical table. t wouldn't this really be an
investment in something that didn't matter anyway? You are preaching not to
worry sbout using more memory or more time.

CALKINS: This was me?

VOICE: Right -- yet you are pointing out here an example of how'you can save
memory.

CAIKINS: Well, seriously, that's his machine. It's reelly to each his own.
I merely mede the comment that, in reality, of the total cost from the time
you say, let's mechanize doorknob accounting until you have doorknob account-
ing running, one of the cheapest things is machine time. Maybe some scien-
tific installations would not agree.

VOICE: I would like to point ocut that the T090 costs between four and six
hundred dollars an hour, and if in a large installation you save a hundred
dollars a day, you have a hundred thousand dollars to play with.

CALKINS: That's why I say the scientific people might object.

VOICE: I can see how decision tables can replace flow charting. I wonder
if anybody has any thought whether decision tables will replace PERT.

CALKINS: Will a decision table replace PERT?

ARMERDING: I don't know.

VOICE: I Jjust wonder if he could give me an approximate date as to when this
7090 FORTAB will be available through SHARE.

Ch Hdd

114

ARMERDING: We have not found any major bugs in it in quite a long while, so
as soon as we can get around to getting it in proper shape to submit to SHARE,

we will.

CALKINS: How long? George, do you have any idea how long this will take you?
ARMERDING: Well, we are working on it right now.

CALKINS: Is it reasonable to say three months?

ARMERDING: Yes.

CAIKINS: Are there any other questions?

VOICE: Have tables been used for information retrieval? And if so, by whom?

POLLACK: T.A.S. has used it. Advanced Information Systems has attempted to
do some work with information retrieval. They are, as a matter of fact, the
outfit that was interested in being able to use "ORs" rather than"ANDs" for

the kind of thing they are interested in: This OR that OR that, THEN I want
this particular document.

CALKTNS: Any other questions?

VOICE: Just one comment about this "this and this and this,"”" and this allied
subject. We talked about this this morning, the business of operators. It
seems to be some marriage between the decision tables and, possibly, paren=-
theses, might give you the operators you want, connectors between the variables
involved. There does not seem to be any real apparent way that this marriag
could be done right now, but if somebody really wants all the operators, why,
you can get them that way.

CALKINS: Well, we would certainly like to get some feedback.

VOICE: There was a question I had this morning, but I couldn’'t get the floor.
This dealt with decisions. The rule -- decision rule, I guess it is. There
wvas an illustration, I think by Mr. CGrad.

CALKINS: Is Mr. Grad here?

GRAD: I am here.

CAIKTNS: All right.

VOICE: It illustrated lines going out the bottom of a table. If this set of
conditions were mst, then you would take the set of actions below it. Then,
he said, you can take one, two or three, or as many as you want, as far as

Ch Hdd

115

actions are concerned. This is the part that confused me.

Suppose, now, if this is the case ~- I can see, possibly, how you could take
gection, set number cne, action, set number two =- if I understand the illus-
tration properly -- and action, set number three. I think he had that. And
then, coming down, you have decision rule two. What set of actions can you
take there? Can you take two? And how do you write "I want to take two, and
then one?" I was wondering how you would illustrate this in a table?

GRAD: As far as I know, the purpose of the slide in that case was to show
that you could not take any action except that set of actions directly below
the set of conditions that were met.

VOICE: The one you showed, showed you could take possibly four with one
decision rule.

GRAD, PFour different rules.
VOICE: Ome entry point.

GRAD: All that was showing was branching. You came in at the top, depending
or which set of conditions were satisfactory. You might go through the first
rule or the second or the third or the fourth.

‘CE: Oh. You illustrated it with arrows, that's the part that confused me.
CAIXINS: Any other guestions?

VOICE: This question pertains to the implementation in the object language,
or possible implementation. Does the tabular structure carry over into the
obj=ct program, or does it decompose into a series of conditional jumps?

CANTRELL: It could be both. In the particular compiler that we have the
tebular structure does carry over into the implementation. This is a com-
piler which compiles bit patterns, one bit per column, and one bit pattern
per row. The "AND-ing" and OR-ing" decisions are then mede by logical
"AD-ing" or "OR-ing" of these bit patterns together for different rows. So
in this particular implementation, the colummnar structure and the row struc-
ture of the table does carry over into the implementstion.

ARMERDING: In our case, as a condition of the table, it is nothing but a
series of conditional jumps. But in the acticn area of the table we perform
sc>= logical steps which, to my knowledge, progresmmsrs do not use today in
the FORTRAN language, even though they could. These steps are easy to set

up in the preprocesscr. In fact, they work quite nicely to test whether a

particular action is to be taken or not; so we use them at each point in

=% 2116
(Last Page)

CALKINS: Well, it'g 4 little after five o'clock Now. Before we break, T
Just want to emphasize again for those of you that will not be with us
tomorrow that the focal point of contact that has been set up for your come
ments or your work or your criticism 1s Mr. Sol Pollock of the Rang Corpora-
tion, 1700 Main Street, Sants Monica, California,

I hope that you have enjoyed thi

the Drogram for YOu. Don't sely this thing s
at it ang Say: Well, I am Just going to by=p
wWe do need your help, and T think that there are
So, Please, give it a try,

§ day as much a8 we have enjoyed putting on

4 Don't take a quick look
t. Give it g ry. Because
ome worthwhile things here,

s
o
{
=1
1
ct

Thank youy Very much for your attendance.

Meeting ad journed,

