PRELIMINARY MANUAL

7090 FORTRAN

DECISION TABLE SYSTEM

July 15, 1962



7090 FORTRAN DECISION TABLE SYSTEM

Preface

Of the various activities thaf go into setting up a procedure for a
computer, often the hardest is obtaining a precise definition of exactly
what is to be done under all combinations of circumstance. The condi-
tions under which each action is to be performed must be enumerated and
every step specified in detail. The sequence of execution of operations
must be explicit and the exceptions to normal processing must be identified.

Complex procedures have generally been described with block
diagrams, a form of man-to-man communication and documentation. Un-
fortunately, block diagrams may become confusing in complex situations.
Also, they are not a man-to-machine communication.

Many languages have been developed for communication with machines,
some using terminology which closely resembles that of English or mathe-
matics. Most of these languages are oriented toward some particular area
of computing and are powerful within those areas. To use such a language
with equal power in some other area of computing, the language must be
either modified or expanded.

The 7090 FORTRAN Decision Table System is the result of such an

expansion. FORTRAN, by itself, is powerful in specifying arithmetic



computations and iterative processes. It is less powerful in describing
complex decision logic. Decision tables offer a means of describing such
logic, as they provide a descriptive representation of complex decision
procedures in a manner that is easy to visualize and simple to follow. They
show alternatives and exceptions in an explicit manner, while presenting
the relationships among the variables clearly. They show the sequence of
conditions and actions in an unambiguous manner  Additionally, a computer
procedure written with decision tables, is, to a large extent, its own
documentation.

. As decision tables were specifically developed to aid in defining decision
logic, it would seem that the combining of decision tables and FORTRAN
would result in an extremely powerful tool for developing scientific and
engineering solutions in a machine processable form.

With this aim in mind, the IBM 7090 FORTRAN Decision Table System
has been developed. Initial studies indicate that the following advantages
are to be gained:

o Significantly easier handling of complex conditions and their
corresponding actions.

o Faster program preparation.
o Greater accuracy in program preparation.

o Simpler and faster debugging.

o Continuously accurate, readable documentation.



A preprocessor has been written to convert programs written in decision
table form into standard FORTRAN programs. These programs are then
submitted to the FORTRAN compiler for conversion to machine code. Ex-
perimentation with the specified language is being undertaken. If it is suc=
cessful, suitable modifications and extensions will be made to further improve
the system.

Chapter 1 of this manual introduces the concepts of decision tables and
discusses the preparation of decision tables for machine processing.

Chapter 2 shows how these concepts are used in the 7090 Decision Table
System and presents the essentials of the system and langﬁage. This chapter
utilizes a graded series of examples - each example becoming progressively
more sophisticated as further concepts are introduced and tied into the
system. Each example has review questions and answers for self-testing-

Chapter 3 is a reference section, describing the details of the ia.hguage

elements and their relationships to FORTRAN and the system.

= =



TABLE OF CONTENTS

Page

Chapter 1 - An Introduction to the 7090 FORTRAN Decision Table System

RPPOBIBEE 4 « & % 5 T s @ F B e W ® SR S w 1.1

Decision table structure . . . . . . . . . . . b o & B 1.4
Chapter 2 - Using the 7090 FORTRAN Decision Table System

Situation 1, Yisa functionof X . . . . . . . . 2.1

Situation 2, output subroutine . . . . . . . . . . . . .. 2.5

Situation 3, roots of a quadratic equation , . &1l

Situation 4, sample program for quadratic equatlons 2.16

Chapter 3 - 7090 FORTRAN Decision Table System Reference Section

Table characteristics . ¢« « ¢« ¢ « & & & & g % e 3.2
Tabloformat . + v ¢« = o = s = o © @ t & &6 2. 3.4
RO IOCREOE » ¢ « s v « o & % & & 5 @ & & % % @ 3.5
Table header . . . . . . . . R T A A 3.6
PIaAE o 5. 4 5. 5 AL G & 5 RS E R E B 8 @ @b 3.6
7090 FORTRAN DTS OPERAN'DS ..... 3.9
7090 FORTRAN DTS statements . . . . . . . . . . 3.10
Table condition® « s o « & 5 & % & % & % s & @ & 3.10
Condition operands . . . . . . . . 3.11
Conditional operators . . . . . . . TEEE Y 3.11
Table actions . . . vk w whetldmensas 3.12
Arithmetic statements s P R E WA m e @ e 3.13
MOVE 2o i W AT e S e 3.14
ASSIGN Y E T TR 3.14
Action sequence control TErE Y 3.14
O oo d AW A S E NS TRl R S 3.14
BT & o v @ a4 % @ 5 8 & & @ @ e B s e 3.1y
PERFORM . « o « o ¢ & o & & % » % & & & & 3. 17
OTHER s & s + 5 &« & &« #» & ® @ 3.18
Input/Output Action Operators ....... b3 B 5 3.19



CHAPTER 1

An Introduction to the 7090 FORTRAN Decision Table System

Some orderly arrangement of information is necessary for the
logical solution of any problem. Consider, for example, the problem
given below:

Problem: Deduce the names of the player in each position of

a baseball team, given the following facts:

Andy disliked the catcher. Ed's sister was engaged to the second
baseman. The center fielder was taller than the right fielder.
Harry and the third baseman lived in the same building. Paul and
Allen each won $20 from the pitcher at pinochle. Ed and the
outfielders played poker during their free time. The pitcher's
wife was the third baseman's sister. All the battery and in-
field, except Allen, Harry, and Andy, are shorter than Sam.
Paul, Andy, and the shortstop each lost $50 at the racetrack.
Paul, Harry, Bill, and the catcher took a trouncing from the
second baseman at pool. Sam was undergoing a divorce suit.

The catcher and the third baseman each had two children.

Ed, Paul, Jerry, and the right and center fielders were
bachelors. The others were married. The shortstop, the

third baseman, and Bill each cleaned up $100 betting on the

fight. One of the outfielders was Mike or Andy. Jerry was
taller than Bill. Mike was shorter than Bill. Each of them

was heavier than the third baseman.

At first glance, this problem does not seem to lend itself to an easy
solution. However, when the solution of the problem is considered in

a series of orderly steps, the way to the solution is much less complex.

-1.1-



One method is to construct a table to record decisions as they are

made about each player and his position on the team.

& P 1st 2nd 3rd SS LF RF CF

Andy N
Ed N N N N
Harry
Paul
Allen
Bill
Sam

Jerry

Mike

It is now necessary to examine the statements of the problem, one at
a time, and record the decisions which can be in.ferréd from them. For
example, the first sentence of the problem implies that Andy is not the
catcher, while the second statezﬁent leads to the decision that Ed is not
the second baseman.

When the entire problem is analyzed in this manner, the process

of elimination will remove any doubt as to which player is in which

position.

-1.2 -



1st 2nd 3rd LF CF

ZZZZZZZZa

Andy

Ed

Harry
Paul

Allen

Bill
Sam

N
N
N
N
N
N

©)
N

v (¥

At the heart of most data processing is a set of decisions

@’zzzzzzz

Z 2 2 7 2 2 2 7 (<

Jerry

ZZZZZZ@Z‘Z‘*U

zzzz(@ZZZZO
,{"-
%2 =2 2 2% 2 2 2 (K) 2|8

zzzzz@zzz

N
N
N
N
N
®
N
N
N

Mike

which must be made by the computer regarding data and the sequence of
actions which must be taken as a result of these decisions. The state-
ments may be regarded as a set of conditions which, when satisfied,
cause a certain action or set of actions to be taken.

A decision table allows the defining of all conditions and separating
them from resulting actions. Further, a decision table relates a given
condition or set of conditions to the actions associated with them. A
series of conditions that must result in a given series of actions con-
stitutes a rule. Alternate conditions that result in other actions con-

stitute other rules.

-1.3-



Basically then, a decision table does two things.
(1) It relates a series of conditions and actions.
(2) It aligns alternate rules in a parallel manner.

Decision Table Structure

To begin to see what decision tables are all about, look at the

example of a decision table shown in Figure 1-1,

Rule 1 Rule 2 Rule 3 Rule 4
X GE 0. GE 10.9 GE 21.6
LT 10.9 | LT 21.6 LT 50.
Y= 8.72 16. 19 24. 07
PRINT 3, || %, Y X, Y X, Y
GO TO 10 20 30 99

Figure 1-1. An example of a Decision Table

The decision table contains four rules. It is assumed that a value
of X is read prior to entry into the table. This value of X is then com-
pared to the ranges of numbers specified in the section above the double
horizontal line. For every value of X within a certain range, the value
of Y is a constant.

The first rule of this table (consisting of the general column to the
left of the double vertical line and the rule 1 column) is expressed as

follows:

-1.4 -



If the value of X is greater than or equal to zero, and if the value
of X is less than 10.9, then assign the value 8.72 to Y, and print
the values of X and Y, and go to table number 10.

The underlined words of this rule are implied by table layout.

The condition area above the double line consists of one or more IF
statements that are answerable by either yes or no. If more than one
statement is present, then all statements are connected by logical
AND's.

Due to this logical AND connection, it may be seen that all portions
of the conditions of a rule must be satisfied in order for the rule to be
invoked.

Similar requirements of connection are also made for the action area
below the double line. That is, every action is performed. In addition,
every action is performed in the order given.

Figure 1-2 is an exploded view of the components of the decision
table of Figure 1-1, to show more clearly the parts of the table and
the terms used to describe them.

The horizontal and vertical double lines serve as lines .of demarca-
tion, to divide the table into logical portions. The entire area above
the horizontal double line is the condition area. The area below this
line is the action area. For each of the areas, the portion to the left
of the double vertical line is the stub. The portion to the right of

this line is the entry area.

- 1.5 -



Sqe, UOTSTO( B JO Sjueuodwo) ‘g-1 ambrd

- 1.6 -

Ayin2 IS
LORZ [ B9 | yL'8 "
B SR IR
0y Q1Q
< MNDIAIQNDD
O 17 |21 | LoD b 4
39 [0y 39| ‘039 X

Ay Q0L



Each table then consists of four separate areas -- condition stub,
condition entries, action stub, and action entries.
The entry area, both condition and action is further divided into
columns. Each column constitutes a rule. Any decision table may
have as many rules as required, limited only by the format of the
system in use.
A ruleis specifically defined by its conditions. The stub area is a
portion of each rule and is assumed to be contiguous to each of the
rules. Therefore, a decision table rule consists of the vertical column
of condition and action stubs in conjunction with a single vertical column
of condition and action entries. The general form of the rule is:
rule n = 1st condition stub, 1lst condition entry of column n,
last condition stub, last condition entry of column n;
1st action stub, 1lst action entry of column n,
last action stub, last action entry of column, n.

For example,

rule 2 = If X is greater than or equal to 10.9, and if X is less
than 21. 6, then assign the value 16. 19 to Y, and
print the values of X and Y, and go to table 20.

Each continuous action row, a stub and entry of a rule, is a complete

-1.7-



FORTRAN statement in the 7090 FORTRAN DTS. For instance, the
first action row, using rule 2 is:

Y =16.19
with the same connotations as the exact FORTRAN statement. The
format shown in Figures 1-1 and 1-2 is known as the extended entry
format. In this type of format, the statement is begun in the stub and
extended into the entry column.. The statement may be split wherever
desired since the stub and the rule column are the components of the
entire statement.

It is important to note that the conditions of any set of rules of a
decision table must take care of all possible conditions. It is seen
that the first three rules of Figurel-2 do cover all circumstances of
the value of X in the range of X equal to O to X less than 50. The
fourth rule has been designed to take care of everything else. It
would be assumed that the value of X that has been read in is in the
required range of values. But to cover the situation where this is
not the case, rule 4 reads:

If the value of X is not in the range of O to 50, then go to
table 99.

It is not necessary that a decision table contain the else rule, so
long as the values to be tested cause one rule of the table to be executed.
Conditions should not be written such that more than one rule

satisfied for any one pass through the table.

-1.8-



An alternate method of composition for fhe decision table is
shown in Figure 1-3. Again, the components of the table are identical
and in the same place. Only the method of writing the statements, and
the indication of performance is different.

Rule Rule Rule Rule Rule

1 2 3 4 B
X GE 0. N Y

X GE 10.9 N

X GE 21.6

X GE 50. N Y
Y =8.72 X

Y = 16,19 | -

Y = 24,07 , L : X

PRINT 3, X, Y X | X

GO TO 99 X * l X
GO TO 10 X !

GO TO 20 [ X i

GO TO 30 i %

Figure 1-3 - Limited Entry Decision Table.
The same general definition of a rule is still. true. For example,

rule 3 of this table reads:

-1.9-



If the value of X is greater than or equal to 10.9, and the value of X is
not greater than or equal to 21. 6, then assign to Y the value 16. 19,
print the values of X and Y, and go to 20.

Again the underlined words are implied by the format of the decision
table. By comparing rule 3 of this table, with rule 2 of the previous
table, it is seen that they are indeed exactly alike.

In fact, the entire table is identical, with only the form of the con-
ditions and actions being different. This format is known as limited
entry. In a limited entry condition or action, the entire condition or
action is written in the stub and the entry is limited to asserting,
negating, or ignoring the existence of a condition or the execution of
an action.

Either the extended entry format or the limited entry format or
both may be used in any single decision table. It is strictly a matter
of convenience. However, any single row of the conditions or actions
must be of only one form.

The skeletonized table in Figure 1-4 is directly related to the
block diagram in Figure 1-5, which shows schematically the way in
which a table is conceptually "executed. " In actuality, the processor
will eliminate much of the apparent redundency when translating to

FORTRAN.

-1.10 -



»
Cond 1 Y | v 7
Cond2 Y N VA
Cond 8 Y | N | ¥

Action 1 X X

Action 2 X | x | x X

Figure 1-4. A declsion table of the logic of Figure 1-5.

Rule 1 Rule 2 Rule 3 Rule n
(Cond 1"\ Cond 1 )'-:-'i( Cond 1 ) F--¢= Ese )
Yes ~|Yss Yes :
I
i i
(Cond 2 )4 (Ccond 2 )*-4
Y&3 No {
4 ! :
( Cond 3 “ymol (cond 3 ) (cond 3 .l
Yee No  Ves Y
— —
! : 1
Action 1 Action 1 ’ Action 1
Action 2 | Action 2 | Action 2 Action 2

Figure 1-5.Schematic representation of the sequence of

tests and actions in executing a table.
- 1,11 -



At this point the basic ideas and use of decision tables have been
presented in rather broad outline. The next step is to learn how these

ideas are implemented in the 7090 FORTRAN Decision Table System.

P2

Situation 1 - Decision Table

-1.12 -



CHAPTER 2

Using the 7090 FORTRAN Decision Table System

The basic ideas and concepts of the 7090 FORTRAN Decision Table
System are relatively easy to learn. This chapter presents those ideas
in the framework of a series of problem situations, each chosen to
illustrate some new concepts. At the end of the discussion relating
to each situation, there are review questions with answers on the back
of the same page. This self-test is included to permit the reader to
evaluate his understanding of the subject material before proceeding
to new ideas.

This chapter does not fully discuss all the features of the language.
For example, all of the statement types are not shown. Complete
information on the 7090 FORTRAN DTS will be found in Chapter 4,
the reference section of this manual.

For a first example, consider the situation where the value of Y
is computed differently depending upon the value of X. The decision
table on the opposite page is easily interpreted. In English, the table
reads:

If the value of X is less than 1, then the value of Y is computed
by squaring X.

If X is equal to 1, then the value of Y is set to 1.

2
If X is greater than 1, then Y is set equal to the expression -X- + 4X -2.

-2.1-



-
<
\
™
10
e T

Situation 1 - Decision Table




The format of the table allows this easy translation into logical

thought. In this table, there is one condition row. This is the row

above the horizontal double line, which establishes the desired relation-
ships between X and 1. 0, i..e., less than, equal to, or greater than.
There is also one action row, below the double horizontal line. The
action row states what is to be done for each condition, i.e., set

Y equal to X.z, orl, or -X.z + 4X -2. The evaluation and assignment
performed by the action depends upon the value of X which satisfies

one of the conditions previously noted.

This illustrates the basic function of a table. That is, that con-
ditions and actions are always related. If a specific condition, or more
generally a set of conditions, is satisfied; then the corresponding action
or set of actions is executed. The conditions which are satisfied

and the corresponding actions make up a decision rule. A vertical

column containing one or more conditions above the horizontal double
line and one or more actions below that line is a rule. Thus, rule 1
of this table reads:

If X is less than 1, then Y is set to the value of X * X, where X
is a standard FORTRAN variable. Similarly, Y is the variable
which will contain the actual computed value of the expression to

the right of the =.

-2.2 -



Situation 1 - Decision Table




The action row of the second rule is:
Y=1.0
This is readily seen to be a standard FORTRAN statement. However,
note the method of writing the statement in the decision table format.
The Y is written in the area to the left of the double vertical line.
This area is known as the stub area. The area to the right, where the
rules are delineated, is the entry area. Every statement of a rule
consists of the information for that statement in the stub plus the infor-
mation for that statement in the entry. Thus, the rule 3 action state-
ment reads:
Y=-X*X+4, *X -2,
This table also introduces three of the condition: operators,

LT, EQ, andGT. The available condition operators and their abbrevia-

tions are:
EQ EQuals
UN or NE UNequal or Not Equal
GR or GT GreateR or Greater Than
LR or LT LesseR or Less Than
GE Greater than or Equal to
LE Lesser than or Equal to
VS Versus (compared to)

These operators (except VS) are to be understood in the sense of a question

to which the answer can only be yes or no. The first condition of Rule 1

-2.3-



é'_‘

Situation 1 - Decision Table




reads, "Is the value of X less than one?" If the answer is yes, then
the action of the first rule is carried out. If the answer is no, then
the conditions of the next rule are investigated.

If the reader can correctly answer the following questions, he is
ready to proceed; otherwise, some review will help to understand the
later material more quickly. Answers are given on the back of this

page.

QUESTIONS - Situation 1
)R What is the meaning of rule 2?

D If the value of X, as previously read, is equal to
1. 64, is any rule satisfied? If so, why?

3. Is there any possibility that two of the rules might be
executed at a single pass?

Situation 2 is a subroutine defined in the 7090 FORTRAN DTS. This
particular table handles the writing of output information for different
conditions of value of the variables.

In this situation, the decisiontable calls upon regular FORTRAN
statements, i.e., the FORMAT statements. A compléte program may
consist of a combination of decision tables and FORTRAN statements.
With the use of decision tables, there are some limitations. For example,
in rule 1, the action called for is the writing of an output tape. .

This is readily recognizable as an outpyt statement in FORTRAN.

- 2.4 -



ANSWERS - Situation 1
1. If Xisequal to 1., then assign the value of 1. to Y.

2. Yes, rule 3is satisfied. The condition of rule 3
asks explicitly if the value of X is greater than 1.,
and that is all.

3. No. Rules are mutually exclusive. That is, the value
of X cannot be both greater than one and one at the same
time.

Situation 2 - Decision Table

1 2 3
| 2 31415] 6 g8l 9 |10 |2
o [oz[az]oafoslos o7 [osiosio] 11[i2]13]14]15]16]i7]18]19 zol zt[z'.:]za 25/26[27 28{29(30[31 |38 53 34{35(36 | 37 [0 0lecs 1 |a2}asle 45 |agar|
| sdddmor;wle aujrpar | ‘ “]|
lel | | ! 11 i L]
25 TABLE. ryp'e ﬂzm. FelgM MIx|EM ClovdIITL|eMs |2,
e ilg,-,-r_gzgg 2, Rot€eS 3| |EUSE 31 HERE R Al
(4 B 1 2 i HEE AR
X7 _ZMAé £4 0. 1y T
1 REIAL E@ o+ | | 1 Iy
' INEEETETNINEEE ENEE NN R
wg*rrs SuTPuT TAPE 3.| 130 REAL |3 RITIMAEYIO, RALIL
[ReTVRlY R ha EREEE' Ix
CERNANFEEES ot la B L1
E | Rewe = A, B ¢ x1REA [XIR AL
| RTMA6-. A, B xi1ziMAlg- |x2|rim4E &
| Racl = g 8, C x1 Rl 1 zmas] AaR\Ese L 2TMAS
 [daisT] SESINEENERNARY ERERED T
3.d |F d»r{;*f,y- 1PHETS. 4, |23]0.1¢ )| !
35| [FloRmar (1.4 1 PRETS 4| 12639, ¢
4.0 | rmr'{fjh{ 1. P7E 7S, o
i | [ - ! : i 1|




FORTRAN statement 30, the FORMAT statement, is not allowed
within the decision table. Other than in the table itself, it may be
placed in any position in the program. In this example, the

FORMAT statement follows the table. This exclusion also applies

to other non-executable statements such as COMMON, EQUIVALENCE,
and DIMENSION, ‘.

In the previous situation, it was noted that the FORTRAN state-
ments within the body of the decision table were initiated in the stub
and completed in the entry portion of the rows. This type of format is
called extended entry, as the statement is begun in the stub and
extended into the entry.

In the condition area of this table, a different format is used. In
this style, the entire condition is written in the stub and the entry is
limited to asserting, ignoring, or negating the condition. Such format

is called limited entry. For example, in rule 2, the conditions are

read:

If X1 IMAG is not equal to zero, and X1 REAL is equal to zero,
then write an output record and return from the subroutine. The
Y (yes) and N (no) are used to indicate whether a condition must be
true or false to satisfy a rule. The blank means "not pertinent for the
rule."

Note the appearance of the entries in the limited form when used in

the action rows. In limited entry form, the entire action statement is

- 2.0~



12

LS

i

1

|

1 |a2|asiadlas mr!at

._.2
v

o ,W

® 184 Ll jed L1

] e -

~2 ! -+

Cﬁ%

o ]

TxIED|,

35, R rrnﬂ.?gﬂ o =4R3!L|=__

ELSE 3] |

2627 !28{29{30{31

1
L

..
1™
3

W

R

A ltmag, xl2klEalL, Ix2imag

| EBOLM)

=1|

AL

[El1

1}

€15, 4] J2Els 0l 4]

P

7

=| A, el

|
L
AR
!

TN 1pe

(18 NP7 ELS. 4]

1 T|E| puTP LT TAP
- ,

ET LN
|

=

%1

R

LASTl.

a ozmoa?elos 07 |ososl10] 11 '2.1""1" 15]16]17}18]19]20] 21 [22f23]

¢l |

[E
H
E
(]

Situation 2 - Decision Table



entered in the stub area, and the rule entries are then marked with

an X, to signify the execution of that action for that rule, or a blank (a
decimal point in the entry is equivalent to the blank) would ir}dicate that
this action is not required in the execution of that rule.

Decision tables may be written in a completely extended format, a
completely limited format, or any combination of the two. However,
when the combination of forms is used, any single row must be written
in a consistent format. This is illustrated in the action rows of this
table. The first action row is in the extended form, and the second
in limited form.

A single coding form allows for either the extended or limited entry
format. Although a table may be as long as required vertically (extend-
ing on other pages), it may not use more than 72 positions horizontally.
A standard limited entry table consists of a one-character row indicator,
a 23-character stub, and twenty-four 2-character entry columns. A
standard extended entry table consists of a 1-character row indicator,

a 23-character stub, and six 8-character entry columns. In this example,
the format is extended entry. The double lines of demarcation which
separate the components of the table may be drawn on the coding sheet,
but are ignored by the keypunch operator.

This decision table also introduces the concept of the table header.

The table header contains information about the decision table which
must immediately follow it. Several fields are required in every table

header.

- 2.6 -



L % |
m.um.i o I T3
—_ - - - N B . L A
-Ig v) < «
..m11 T |
m “ - =
ol - i 19 . 3 L
= = . mrl X
31” & < l...H.u,..
2 Z £ €
"I5 g = W/
J L | & o)
S :
t W >
A EErEECEEEPESSLUNES
oy ] Lo [ I~ i
v & &= H = [sx M X e
. -] T - @ W 1+ 0o
k4 ™ W o] A o m
<8 ] o» NN [ (oW
= \uj > X % Wi
b T
s ~ Ted = -~ .1.“....
] = iK: %.m eaeaicsl
lm..lTr I . At Wy 41 9 9
= o+ od \n o
~) Q. 1 S [y b Kot i e -
EHESS . X > | W
L = A | I - 5 b~
EIRS§ | A HE= K26 B eialal |
- o Q e | o=
= AL ] | & g g o A I L
21 = i I T o ==
L = [ oo | | ddgq | |-
21 x| 1949 |- O T I T L
=1 L o N L O 1 O OO OO o 8 B - O
= o |
bR EREECEERILE
mm“! ) o I BRI - K=
2 : W
S|V J...N ﬁm
8 wil |wo .
8 Had [w i 18 o <9
3 i | S (N A Vi ) o —h
8 | et | W) <
S >4 4 R« <
sl To < (ALK

Situation 2 - Decision Table



The first required field is the number which is assigned to the
decision table within the program. This number is written in the form,
as shown:

25 TABLE.
Each table number must be unique and always below 20, 000. The
table number is used when the table is referenced in the program,
either by a decision table or a FORTRAN statement. Note that
although the FORTRAN statements external to the table are numbered;
those within the table are not numberedby the programmer. This isa
matter of reference and control. The statements within the various rules
of the table cannot be executed independently of the table. Therefore, the
whole table is referenced, rather than any single portion thereof.

The manner of entering and referencing a decision table is the subject
of the second field of the table header, Table Type. There are
two types of tables, closed and open. The closed table will be discussed
in a later illustration. An open table is entered by a GO TO from either
a FORTRAN section or another decision table. Control then resides
with the open table, If TYPE is not specified in the header, it is

assumed to be OPEN.

-2.7-



Te8LE. T

1 2 3
| 213|415 7 9 |10 1 |1I12
01[oz]os |osfosjosfo7lososliol 11 12 [13]14]15]16 [17]18]19]20] 21 [22fe3| 2425 | 2627 28{28) s0[3i [sef33[3ef35[36 37 ]3a 1|02 jaskeadas|odar]
| shlale'glutitne! BoreluT | fr
el || SHIRENINININERIE E '
! Y. P s '

X.1: rm{aﬁ EQ 0o . .
%l REOL EQ 0o | |
Claeis e[ poTonT TRPE
RET RN
¢ | |
‘i
E |
16
| |LlAlSIT
30
357
4'_

Situation 2 - Decision Table




The third field of the table header is the field, FORM. This
alludes to the limited or mixed format as previously explained. In
this situation, the table header:

25 TABLE, TYPE OPEN, FORM MIXED, etc.
indiates that open table number 25 has its information contained in
the 1-position row indicator, the 23-position stub, and the six
8-position rule columns. Mixed form uses the extended entry format
but in fact may also contain individual statements in limited entry
format. If FORM is not specified in the header, it is assumed to be
MIXED.

The first two rules of this table do not exhaust all the combinations
of the variables in the conditions. In this table, provisions for such
possibilities are made with a special designation called ELSE. This
rule specifies the actions to be performed if none of the other rules
can be executed. In this example, it is reasonable to expect that
occasionally neither of the first two rules will be satisfied, so that the
else rule is more or less a normal occurrence. In other tables, the
failure to satisfy any of the rules might represent an error in the logic
of the table or in the data. In such a case, an error table would be
indicated rather than an ELSE rule. The ERROR entry in the header
would specify another table or FORTRAN statement to be considered
when none of the rules are satisfied. The table header must specify

either ELSE or ERROR.
This table header contains the specification of a rule number for

ELSE, i.e., rule 3. In this case, because the ELSE rule takes care

- 2.8 -



' 3
MEARAE, [[o 3 BTN BT
o foz|as o4 o7]osos|iof 11|12 ]13]14]18]16]17]18]19]20] 21 | 2225|2428 |26 f27 -~ 49}4«71.‘
| shieegutitne durevr || ?1
iC o S - :r i .
25 , i

R
OEEE
}
|1 : :
LA ST L }
3j0 T.(1 0 1PHEN S, 4], ! IE3I0
4o e aT (14 1P7.€15.4] i
1le i |
T I || | ]

Situation 2 - Decision Table




of all other possibilities, the entry allowed in the table header for the
number of an error table would not be used. The explicit table header
details are given in Chapter 4 of the manual.

There are three header fields which are always required. Those
specifying the dimensions of the table, i.e., number of rules, number
of condition rows, and number of action rows. In an unconditional table
(one rule), only the number of actions is required. In addition to indi-
cating the start of a decision table with a header, the end must be
specified by placing the notation (LLAST.) following the table starting in
or beyond Column 2.

In the 7090 FORTRAN DTS , Subroutines, such as is illustrated in
this situation, may be written in either FORTRAN or the decision table’
format. Since this is a subroutine, it would be expected that the sub-
routine is called by some FORTRAN statement or decision table action
statement elsewhere in the program. The subroutine can consist of one
or more tables and FORTRAN statements. Likewise, it is expected that
control will return to the calling table or statement when any rule of this
table is executed. For example, the last action of every rule is RETURN.
This is a decision table statement which calls for return of control to
the calling statement.

This illustrates one of the basic concepts of a decision table. That
is, that every rule of every table should transfer control to some other
place in the program. The RETURN in this table is the control transfer

operator for a subroutine. Other control operators will be discussed in

later examples.

- 2.9 -



Situation 2 - Decision Table

1 2 3
1 12|3]4]5]| 6 sl 9 o] |i2
o [oz]os[osfoslos o7 losos{io] i1 [i2Tia]1a] i is i7]ia]is[20] 21 [22k2s 7] 31 [s2f33 /5435036 |57 1|e2 uImr!’
| SR guTINE GuTe uT | |
e ! SENEEANSERRELE -' SEREL SN R
25, Ta8lE. TYPE @eeN,. lrglRm mrx|ED], claginiD fxdrm,s;_
: i > ER{U LIIE:S; 3 > ELS! 3| L [ 1 L | er
L L3 AN ' 1]
&1 HEEIRN
1 , TN T :
. i ! il I W 1]
‘ aPE 3, lsol, Renll 3], Rl 4o, RlaLiL] |
. L4 Ll 1 |
ﬂ [ leglal = o, @l e, x1 JIxi2lRlElai]
| Gl=_A, B, X1 X2 C1 'E
E] | L =] @8l i ST x[2IRIE AL, Ix2ML
lc] EREENERENEHNERLDE B NS K
| |LlalsiTl.] | bt ]! 3 ,
30| |F T.(1 8 [1PdES. M, |E3lo.[4)
5 T(1H 1 p3E1S. 4] [2Els 0l d)
4o aT.(C1H \p7E15.4]) |
Lllepl [T T | - |
| | Yt | i i i ! i 1




A final concept introduced by this example is the use of the
defined expression. The statements following the table show examples
of the use of this tool. Rule 1, action 1, reads:

WRITE OUTPUT TAPE 3, 30, REAL
where REAL is defined to be the list, by the following statement:
REAL =A, B, C, X1 REAL, X2 REAL.
A defined expression can be any legal FORTRAN statement or string
of characters which make up part of a statement. It is a method of
providing a synonym for part of a statement. An expression name may
be used only in the entry part of the table. As the table is being
processed, the expression name will be replaced by the characters
in its definition. The expression is only defined locally in the table
where used. A different definition can be used with the same name in
another decision table within the system.

Only one other point should be noted at this time. That is, that
comments may be included anywhere in either the FORTRAN statements
or in the decision tables. They are identified in the usual manner by

placing a C in column 1 of the coding form.

QUESTIONS - Situation 2

L5 Is it possible to use an EQUIVALENCE statement within a
decision table to equate two defined expressions?

2. Are comments allowed in the table?

3. What is the difference between extended and limited entry?

- 2.10 -



[
_ _
| | HENE
{ R [
BEEER
m A __ B m_ | __| !
, W RERE ZNER |
| m _ _ _ “ 1 _ |8 w
_ ” _ HEEREE
] i | _ _ __ i 2 _ _ — i
| _ | _ HREEEEE BN
i ! i ! ! . } |
i L | | I i
! HNEEE ERENERNE & i
: I EAREN . EEE RSN R
B i i B | | aEEE
| ﬁ 1 __ 1 i | : { ﬂ _
Y ! QLM# ! i M ML__.@E Y=g
‘10 1] OO (R~ 2] Z|(P5 29 - )3 TI®T =
TR _ Acwn.mnu\:w@u B T eEdTXE
(eEEE3psy NERINE
(T T T 1 [ T 1 N e : ety § ok ot :
| p3 | IEENURS M . *0 XV JOSIT i
(]| NEEREED DL 550 P E>: 78T Eo i =
EERNREREN - CLEL B2 N S et RS L R 1
“([O2)/E["TOE AT [05]/2DIRTFR| 8" (T4 5 [2e 2[¥D[Id[5| [W3Pd |32 10 T AL “ITeU ) (0T
i ENNA & HENERE q _ IR IINEEAERERNRE NN
suvcLfe] 12 jozles|wel EERICEEE 3T 1 ’C ST CRCEEE ZEEEEES gnw“m_iﬁ“m%_ L1]9i{sijwi|er{21] 11 [orjecko| cofsofsofvo|eojzo] k
ve|e2 |22 1z]oz] e |[si| ufofsi[wm]erfa[unfofe]ls|zs]|o|s]e|e]z]"
9 $ 3 £ 2 1

31iva L
40 39vd 1938 a0




4, Could the first action row be written in limited form
so that the whole table is in limited form?

9. What fields are required in the table header?
Situation 3 involves a decision table used in the evaluation of the
roots of a quadratic equation. This example introduces several new

concepts of table structure, format, and usage.

The first rule of this table reads:

If the discriminant (DISC) is less than zero, then X1 REAL is
assigned the value of -B/2A, and X2 REAL is assigned the value of
X1 REAL, and X1 IMAG is assigned the value of the square root of
minus the discriminant divided by 2 times A, and X2 IMAG is assigned
the value of minus X1 IMAG. '

The underlined words are understood in the table format. Of
course, the conditional statement, If....... , requires the affirma-
tive answer for the execution of the rule, as previously discussed. The
action statements are all connected by the AND . In addition, they will

be executed in the order given.

-2.11 -



ANSWERS - Situation 2

L.

No, for two reasons. First, the EQUIVALENCE
statement is not allowed within the decision table.
Second, a defined expression is only defined locally
and must be redefined in each table in which it is used.

Yes, comments are allowed anywhere in 7090 FORTRAN
DTS. They are indicated by the usual C in column 1 of
of the coding form.

In extended entry, the statement is begun in the stub
and extended into the entry. In limited entry, the
statement is written in the stub, and the entries are
limited to Y, N, X or blank.

Yes. This would involve the writing of three state-
ments in the stub and placing an X in the proper
rule entries. The header ACTIONS field must

be changed to ACTIONS 4.

The number of rules, number of conditions, number
of actions, and either the ELSE or the ERROR designa-
tion.



In the previous example, an open table was discussed. A closed

table is shown in this example.

As a FORTRAN subroutine is always entered by the action operator
CALL, the closed table is always entered by the action operator PERFORM,
followed by the table number. In this example, it may be assumed
that in some previous table of the program, there is the action
statement:

PERFORM 20

Upon execution of this statement, control is relinquished to the closed
table. One of the rules of the table is executed and then control
returns to the action statement following the calling statement.

For example, the table is entered, as previously noted, by a
PERFORM 20 and the value of the DISC is equal to zero, X1 REAL
is assigned the value of -B/2A, X2 REAL is assigned the same value,
and X1 IMAG and X2 IMAG are set to zero. Program control is then
transferred back to the action statement which succeeds the original
PERFORM 20. PERFORM is a legal statement only within decision
tables.

In the FORM field, in the table header, a different notation is illus-
trated. In previous examples, the limited format and the extended format
have been discussed. Here is an example of the third format of the 7090

FORTRAN DTS. In this format, the special format, a decision table

-2.12 -



.
B _
| 1 | I
o I L
! ! FTTT
e
ENEREERERREEN T
m 1 an_ _ i m . | __
| _ “ fria T i
r m " _ i _ I} _
| A W
| [ L ] |
| BERE N1 “
” } " " ._Iﬁ — L __
_. ! _ “ i | __n q|
_ | ; ; “ _
i 1 __ _
3B _ T
REE YUY o.m—m | T PREuT Y
BEE 0[*0 EERE OOy (EX*2[) /(95 =0 - J3TIBT
L] Bl 21 (E*=2) C&w‘ st ENENEENY BIERENUL LA
T (eX 2D/ (B2 it/ a0 B NN R A
Bl _ (o) 3 3ps 18 RBEER
B Y SR R I 5 [ RN BN : e
EEER o P23 T e B RS R ) "
ERERE bl EREEAENIENEFEEE XAFRBEEN FERRES LR SRS ’
EEERRIEERREREN ¢ Heb IPIFI o SV I [T SNGIZITNZD © L ) TN
s e /El IgE 0S| /ie )IRAFE| E (Z4 25 [ZE 2V DPE WeR S T[@IF@ T 3 AL TTITeN ) [0
REERNEE RND i NI N _ _ Lo HEERERN m
o] 62/ 8] /e | sjwliesfee |12 jozles[esp opesisotvaice]as i fos el e bl anbe] exfas| 1foc| evlbe [Lope Seib ity 20 () oc| 1| sefsefeciocier isfosis2|ez L a.ﬂ!_nw“___%mmo_ 81121 91{s1lvil g1 21] 11 |or]eowo| .0f sofso}wo| sojz0] k

ARAARA PAERENRE AR ARI I IS RN R AR A

9 S ¥ £ 2 i

40 39ovd 1038 ac




may be written in such a manner that it is designed to fit other require-
ments of the programmer. He can essentially design his own table
format. When this format is used, it must be so noted in the table
header. In addition, the field requires the insertion of special informa-
tion. In this example,
FORM SPC (12, 32, 52, 72)

indicates that the special format is used, and the rule boundaries are
defined. The number 12 indicates that the last column of the stub
ends in column 12. The numbers 32, 52, and 72 allude to the last
columns of the three rules. The special format allows the use of any
size fields and any number of rules, with the following restrictions:

a. There must be a 1-character row indicator.

b. There must be a stub of at least 2 characters.

c. Each entry must be at least 2 characters wide.

The table header also contains one of the optional fields, that is,
R ORDER (2/50, 1/30, 3/20)
R ORDER alludes to the order in which the programmer wishes the

rules in the object program to be considered. The numbers to the
left of the slash indicate positionally the order of testing the conditions,
in this case, the preferred order is 2, 1, 3 and rules would be arranged
in that order for processing. This technique allows the programmer
to arrange his rules in any order as they occur to him, and later to

have them reordered in the light of more efficient processing.

- 2.13 -



i |
Tl
| _ L]
| ]! 11
EERAE .
; _ — . |
i i : ! 1 _|d. RS _ i E : ]
_ | { M : ) 11 | Ey ] ﬁd __ |
_ 11! __ RENERN _ ! EREENE
_ H .m RN ik
[ | Pl BEEE i | _
| | iR L] HEEE EEAXE |
L IEE RN SRAENIRNEY ENEN
T T SRR REANRNY T
__ﬁ_ L i _u _ i i | - H.._ __
“ 11, LI BE
il _ IREEN il
| _ _ : . | __ ! i |
BEN o ! 11 . CTWE Y =T E
EE ‘0 T W*2[) .m_l.ah EE@n E
NEND TeE[ (EF=12) | 1 BEE WL AT S
BEE RNt N (N D) iR _ i..f\ms :
| . ( _ — .
| o e s i 144 I : } ! _
” __ B ! TP E ! . .o T ST
= 3l B BB ! _ .
B 1h R BN B R g [B[E6] I@IF3[ 16 |S , ahaﬂi&d_l_..umlﬂ._lqﬁ 1
“([OZ|)/E[" e AT [05]/2))IF T O R R 2D ! ﬂuw.dJa FIAL “ITYE Y (0T
BETERA NS L1, AR AR 1 1.1 | L] O e e T e ]
08| 6218412 2j5¢| Siwe! 1Ljosles|wmy! BICEE EIES jeviee coprwevi20]| e ic | seiscpaissler iclosselee 12seis2 nﬁ_iﬁa_?_ 21{91/61{w1|£1{21] 11 jorlecmo] 0js0jc0ivo|cofz0f s
I ZARTA A R AR R A AR grgei|njojegjs| L s|sv |E]2 1
9 s ¥ £ Z 1 f _ !
31va e = = 3w
40 39vd 1935 1S




The number below the slash, within the parenthesis, indicates the
frequency with which the rules of the table are expected to have their
conditions satisfied. For example, rule 1 is executed 30% of the time
and rule 2 is executed about 50% of the time, while rule 3 will only be
executed about 20% of the time. If the frequency of success is not
known, or not desired, they may be omitted (together with the /) and

the rule numbers alone entered for ordering.

QUESTIONS - Situation 3

A What is the difference between a closed table and an
open table?

2. What is the special format?
3. What follows the special format in the table header?
4, What is R ORDER?

o. Must the rule frequency always be included in the
R ORDER statement?

Situation 4 is an example of a complete program written in the
7090 FORTRAN DTS. The object of the program is the reading of
the coefficients of quadratic equations, the solution of the quadratic
equations, and the writing of an output report with the coefficients
and the roots. This program incorporates both the subroutine dis-

cussed in situation 2, and the closed table discussed in situation 3.

-2.14 -



ANSWERS - Situation 3

1:

An open table is entered by a GO TO type statement
and in turn indicates where to go next. A closed table
is entered by a PERFORM statement with control re-
verting to the original table when the actions for a rule
are completed.

A free form, up to the programmer's discretion.
However, it must have a 1-character row indicator,
and every entry must be at least two columns wide.

The indicator of the last column of the stub and of
each rule of the table, all enclosed within parentheses.

An optional entry in the table header which cites the
preferred order of rules, and the relative frequency
of satisfying the rules.

No.



This example serves to illustrate more clearly how FORTRAN and
decision tables complement each other in the 7090 FORTRAN DTS.

Most of the concepts and ideas illustrated in this example relate
to information previously given. One new concept is the use of the
action statement GO TO, shown in the last action of table 15. For the
first and third rules, the transfer of control is right back to the
beginning of the table, in rule 2 it is to the FORTRAN input statement, 12.
In the last rule, the transfer is to 45. This is the statement number c-:.f
the first FORTRAN statement for the end of job procedure.

Table 15 also indicates the action statements used to enter closed
tables and subroutines. The closed table illustrated in situation 3,
table 20, is entered by means of the statement:

PERFORM 20 (action 3, rule 2)

The subroutine of situation 2, table 25, is entered by means of the
statement:

CALL OUTPUT (also in rule 2)

The complete transfer of control in this program is more evident
when rule 2 is read in English:

If A is not equal to zero, and NPAGE is not equal to 1, and if the

number of lines (on the output report) is less than 40, then set

2

DISC = B -4AC, PERFORM 20 (execute closed table number 20

satisfy one of the conditions of that table, assume rule 3, which sets

- 2.15 -



as ; e
(* ST 2 :
3 . o[ APSIE-)PREESE | = eI [T
IEP[ W ( a-a__u _Jw.ﬂ_ﬂ;m = R3] |2
(¥ “RPI/8[- (BF*1ZD] /T 3[FB[-1) EGEAIE REE T[%
C E [ T PR
i 3
i .oww . *0[ 3 Lﬁ
§ : p I el P A el piv] L alv@d] gl SNy
(CEVE PEIZE PIS/IZD m_quﬁl_u.ﬁ BNES NN LR B el e e
| _ | AR T |
Pl [ N 5 EEEEREENEEEAN; |
_+mufm B UCBREEEE A5I SENERT _._ﬁ._ 5 Houdn
N BEECEL m EREEEENRERECECEL
ul | ERE e
i i L] ] IEREEEER Q2| Wi M._.m_m__a
| N N U W A
| | __ FoEIN |"5 "€ FeE I TUgIOP [T |
L * : AENERANEEN L L1
. -
Wl EAPE (T
HOLLBE SLE E
L He !
2 EREN T
e AN R0 o ) s i e _
ve|e2|ee]| 12joz| & |81 aifsifsifw
9 S ¥




X1 REAL = -B/2A
X2 REAL - X1 REAL
X1 IMAG = O.
X2 IMAG = O.
and then return to rule 2 of table 15); CALL the output subroutine
(enter the output subroutine, under the conditions shown, rule 1
is satisfied, the report line is written for the listing, and ¢ontrol
is returned to rule 2 of table 15); set LINES = LINES + 1, and go
back to the READ statement (12).
Table 15 also illustrates a second example of the special format
as evidenced in the table header. The last stub column is 32, rule 1
finishes at column 42, rule 2 at column 52, etc. The remainder of

the program is fairly self-evident.

- 2.16 -



JoB SECT. PAGE OF
Nb.ME=_ DATE
1 2 3
I 2 3145|686 71889 101 ]12
ol |oz]os|osfos]os|o7 fomos{i0] 11 [12 [13[14[15]16[17]18]i o20[ 21 [2223]adf2s 26l 7T2nl2ef30(5i [ s3Fsaf 35156 | 37 [3a ] 1|42[430 445 4da7|od
< f AIEEESERREENENER i ;'
¢ ETINENENPRED L] | : g |
[ il hl.‘:‘:‘g.f B | ! i 1
; j{CoMMo V. A4 AL C XL REML |2 Relael, xlalrlmnle |x2ltrael |
el | ' | Ty ! ! : !
ly's] leln] 'eic'iel 3 | T | T
|| jRewzNpl 2 . [ [ HHH r
| REWIND 3 | R 5 ' '
; RINT So || !
L 47 sTep . i
¢ by b TERE P |
.50 |cgemat (1 4H]
- IR I G S N
IRERS N =T RN ENERY L
. sn:g:gqg: INE O
| legumen_ 4, B, RE,
2.5 ffﬁi‘é.l TY PE N, :
iAo iTaNs 2,1 RolLels” 3], El 3
el 11 SRRERdE : . .
x4 EQ b, ||| . y e EENE
xla wlelai s el [0 ; y |||
ke NEN . EREER N | |
| wlelr el Morelor ralee 3 13l eleall |ssl,[elcimlagldol; el
lelelrlolela 11 [T TP R PLET h 3
1 NG . | H
£ eelL = & gl c xieedd [xalReql 1
E Iz mag = AL &Ll xi.j‘l‘.‘meﬂg ,x!z.r.rnnk |
€ Rﬁx. L= an sl el wiarealll v lTmlaal, xl2ieleln]d] x| 2| dnlale
c L] j f i1 '
| {LlalsT EEEN
2| |elsemalri(Ld] |1leldiEl1|5]. 1], |e3lal.]4])
35l |FlgRmaT (|1UH [2P|31IS5ld],| |2/E3/0].
Jlo| |Elglelmalr| (e |1e slel4
I 1 .

Situation 4 (continued)



CHAPTER 3

7090 FORTRAN Decision Table System Reference Section

The 7090 FORTRAN Decision Table System has been developed
to evaluate the use of decision tables in conjunction with FORTRAN in
the solution of scientific and engineering problems. The language
used with the decision tables coincides very closely with FORTRAN
except that decision logic statements are written to take full advantage
of the decision tgble format. The 7080 FORTRAN DTS provides the
means to replace all IF statements with decision tables.

The initial version of 7090 FORTRAN DTS has been designed for
the 709/90 family of FORTRAN dialects. Little consideration has
been given to the restrictions or differences imposed by other
FORTRAN dialects. The system has been designed to make use of
the current FORTRAN monitor system for the 709/90 (version II) and
requires the same machine configuration as that system.

The character set for the 7090 FORTRAN DTS is the FORTRAN
character set denoted by IBM as set "H." This set includes the
apostrophe in place of the redundant 8-4 minus.

When a program is written in 7090 FORTRAN DTS, the programmer
may assume either FORTRAN or 7090 FORTRAN DTS to be dominant.

The combined language operates either entirely as FORTRAN, entirely

-3.1-=



as 7090 FORTRAN DTS, or as any combination of the two at the discre-
tion of the programmer.

Table Characteristics

The following information pertains to decision tables in the 7090
FORTRAN DTS:

o) The table structure is vertical with conditions and actions listed
on successive lines. Decision rules are read from top to bottom.

o Decision tables are always entered at their top left. There

is no other access. Tables may be open (in line) or closed
(callable).

o There is never more than one successful rule per pass through
a table. Therefore, each rule has an exclusive set of conditions.

0 Since each rule has an exclusive set of conditions the analyst or
processor may rearrange rules without affecting the table logic.

o} Decision tables without conditions are allowed. These uncon~

ditional tables signify the execution of a stipulated single set
of actions whenever the table is entered.

o If the conditions of no rule are satisfied and an ELSE rule
is not specified, an ERROR table must be specified.

0 An open table may be entered by a GO TO statement, a closed
table must be entered by a PERFORM statement.

0 An open table may be exited from by means of a GO TO statement
or by the specification of a next table in the Table Header. A
closed table automatically returns to the table which called it.

o A TALLY facility is included in the language to allow automatic
tracing of the path of control through the program tables.

o The decision table preprocessor provides a listing so that the programmer
is encouraged to work with the latest compiled version of his program.

o All table actions are performed in the listed order.

-3.2 -



I - ¢ aanbr g

ﬁ _ “
| L
_ SiENELE
| _. ! T
_ T ™1
| _ | G | 1 | _.
| | T s | 5 | 1
o - |
i " R A
| i | | | | ﬁ |
| _ b !
_ _ | - 1 ._ m “ . _ _—.“
i 1 ' 1 1 1 SN I G | Y T -
, | EESSESRERS RS EHLE
_" A __ | HAERINEE L1
N N N Y AR SNERNNEAN
| B | i | P11 | il
i M i i | B 2 1 1 1 1
1 i 1 T | B 1 1
{ 1 : i | _ [ | _. 1
| | | il | HIBBE IR
“ ] T i LI __ — _ |+
i 1 | ! A 1 i ] i3 h b1
i 1 ! Bl i ! | ; I
i 1 i i i } i 4 i w
_W | 1] ARRE ENER AR RTERE,
. ! 1] ERE B B ™
I _ § | | i [ it = .
R TR E 3 N . L)
| ] | ] 1 L1 "
i i m | ﬁ N kT { '
! | | I 4 h_ | | L " __ ! '
1 ! t = 1 i 1
s HE EEERARA RN FRRREE SEENEERTE
RS 1] | HEINAER Y | i L
5 B M ! It i Tl T |
BRER _ n {1 By o1l ;
. , _ T R 1
I A : + 4 +
] | h . LG
B RE [ HEEERE | b
( i [ ! T 1 ! !
; _ . | # IM m ! L] H i 1
Pl . ! | I y | |
— 1 - _w e : : S— o
38 I i | | i } A
¥ } _ i | q b - | 1 | | 1 [
I i I . 1 | j ! h_ T | ! i1 _I“. 1 | o
| i i | £ i i | | i i ] + : { : ; ! I O | Log 4l = 8 108
Jos 62/82s 2ja | suimiisfes |12 oL les|wey ws[29] 1908 65{0s| 15ps ssps| esfas | 150c] onpe Lvpr Srivettvize )| 96| 46 | sloe e icjosiezfez 14szicelyz|e2iz2] 12 o261 [81] 21 {91 1| ei]c1{ 21| 1 |oiJecko; cofsolsolvolsofzof o
ve|cc|ze|icjoz| e || aforfsi w|erfar[unlo]efe]s[ofs]e]e]z]
9 S £ e 1
31va IWYN
40 39%d 133S

8or



Table Format

A 7090 FORTRAN DTS program is made up of a series of FORTRAN
statements intermixed with decision tables. The statements of the decision
tables are also FORTRAN statements with modifizations that will be discussed
later in this chapter.

A sample of the coding form used for the insertion of information
is shown in figure 3-1. All information for decision tables must appear
in columns 1 through 72. As usual, columns 73 through 80 are not
processed.

Comment cards may be used freely within the tables. A C in column
1 of the coding form indicates that the statement is a comment. The
card is not processed by the table processor, except for listing.

FORTRAN statements that are separate from the decision
tables within the 7090 FORTRAN DTS system are written in the usual
manner.

Each decision table within the 7090 FORTRAN DTS has the following
general form:

Condition stub Condition entries

Action stub Action entries
The double lines indicate logical divisions of the table. They may be

drawn on the coding form, but are ignored by the keypunch operator.

-3.4-



The input format of the programmed tables may be free form; a
standard limited entry form and extended entry form is also defined.
For both of these forms, the table may continue vertically on additional

pages; however, it may not be wider than 72 horizontal positions.

The standard limited entry table consists of a 1-character row
indicator (column 1), a 23-character stub (columns 2 through 24) and
twenty-four 2-character entry columns (25 through 72). The rules are
numbered 1 through 24 just above the card column numbers (see Figure 3. 1).
A standard extended entry table consists of a 1-character row indicator,

a 23-character stub, and six 8-character entry coldmns, numbers 1 through

6 in Figure 3. 1.

The programmer uses either of these standard forms, or a special
form of his own choosing. A special form table must contain the
1-character row indicator (column 1) but the rest of the table format is
divided as the programmer wishes. The only definite requirement is
that the stub and each entry must be at least 2 characters in width. For
example, a programmer might require a l-character row indicator, a
27-character stub, and five entry columns consisting of 2 characters,
2 characters, 10 characters, 10 characters, and 20 characters. For
clarity, the programmer should draw in with heavy lines the vertical
rule dividers he has chosen.

Row indicator

The 1-character row indicator within the decision tables is used

for three purposes:

-3.5-



(1) A C in this column indicates that the card is a comment.

(2) A number in this column indicates that this is a continua-
tion of the stub to another card. The continuation is in-
dicated by placing a 1 in column 1 of the first continuation
card, a 2 in column 1 of the second continuation card, ...
up to a maximum of nine, indicating a total of ten cards.
The continuation numbers must start with 1, and must be
consecutive integers.

(3) The letter E in this column indicates that this card is an
expression definition. The formation of an expression is
described later in this chapter.

Except for these three uses, the row indicator column is left blank

within the decision table. The stubs for all tables begin in column 2.

Table Header

Each table must be preceded by a table header statement. This
statement provides information to the table processor. The general
form of this statement is:
nnnnn TABLE. field 1, field 2, ... , field m.
The nnnnn is the table number. It is always unique and less than 20, 000.
Following this table number will be a number of other fields. Several
are required; the remainder are optional depending upon program needs.

Fields (*indicates required fields)

TYPE t wheret is either OPEN or CLOSED,
(If not specified, OPEN is assumed.)

FORM f where f is LIM or LIMITED if the table is the
standard limited entry form.

- 3.6~



where f is MIX or MIXED if the table is the
standard extended entry form.

where f is SPC or SPECIAL if an optional
format is defined. If the special format is
indicated, the FORM entry must be followed
by a set of parenthesis enclosing a description
of the desired format of the input card:

FORM SPC (c1, ¢9, €3, «+«+ 5 Cpn)

Each c¢ indicates the last column of a field on
the card. c3 indicates the last column of the
stub, c9 indicates the last column of rule 1,
etc. For example,

22 TABLE. TYPE OPEN, FORM SPC (28, 30, 32, 42, 52, 72)
(If not specified, MIXED is assumed.)

NEXT N where n is the number of the next table or
FORTRAN statement. This field can be
used in place of a GO TO statement in the.
various rules.

RULES R where r is the number of the rules in the table.
(Not required for unconditional tables. )

TALLY which indicates the TALLY feature is to be exercised
whenever the table is entered. The TALLY
feature has been included to provide a trace
through the tables during debugging. The
table number and rule satisfied will be printed
each time the table is executed. If TALLY is
punched on a continuation card, it may be
easily removed after the program has been debugged.

COND c¢ or CONDITIONS ¢

where ¢ is the number of conditions in the table
(Not required for unconditional tables. )

-3.7-



ACT a or ACTIONS a
where a is the number of actions in the table.

EISE r where r is the number of the rule whose actions
are to be exercised in the event that the conditions
for no other rule are satisfied.

or

ERROR n where n is the number of the table or statement to
which transfer is made in the event that the condi-
tions of no rule are satisfied and an ELSE rule is

| not specified. The ERROR destination should not

- be specified if there is an ELSE rule.

R ORDER (ry, T9, «oe 5 Tp)

where rq through r,, are the numbers of the rules
in the table arranged in the order in which they
are to be considered. If this information is not
specified in the table header, the rules are
considered in the order given in the table. Rules
not mentioned in this field will be arranged in
their given order after the mentioned rules.

R ORDER (ry/f1, ro/fy, «v. , ry/f))
where £, through £ are the relative frequencies
of success for each rule. Each frequency must
be specified as an integer. This field also
specifies rule order, as above.
Some examples of the uses of these optional fields are given below:

98 TABLE, TYPE CLOSED, FORM MIX, R ORDER (3/40, 1/40, 4/10, 2/10),
RULES 4, CONDITIONS 3, ACTIONS 10

(This table is #98, a closed table of mixed form, with four rules that are to

be rearranged in the order, 3, 1, 4, 2. Rules 3 and 1 have a relative

i Bl



frequency of success of 40% each, while rules 4 and 2 have a relative
frequency of success of 10% each., There are 3 condition rows and 10
actions.

18799 TABLE, TYPE OPEN, FORM MIX, RULES 4, COND 3, ACTIONS 7
(This table is #18799, an open table of mixed form, with four rules.
There are three conditions and seven actions in the table. )

7080 FORTRAN DTS OPERANDS

The operands in decision tables within the 7090 FORTRAN DTS
are FORTRAN expressions. One other operand of the 7090 FORTRAN
DTS is the defined expression name. The general form of the definition of-
this operand is:
E name = expression,
where the name is any legal FORTRAN variable name and the expression

is any legal FORTRAN expression or character string.

E OUTLST = 3, K, S(N), P(N)
E ROOT = SQRTF (-B + B*¥*2/2*A**3)
Whenever any such name is used in the entry portion of the table, it will
be replaced automatically by the expression so defined. The definition is
local and holds only for the table in which it is used.
On the coding form, expression definitions are indicated by placing E

in the row indicator (column 1) as previously noted.

- 3.9 -



7090 FORTRAN DTS Statements

The formation of statements for 7090 FORTRAN DTS is similar to
the formation of statements in FORTRAN. The following exceptions
are noted:

o All FORTRAN statement numbers and decision table numbers
must be less than 20, 000. All higher numbers are reserved
by the system.

o No fixed point variables of the form NXXXXX or floating point
variables of the form OXXXXX, where XXXXX is five numeric
characters, may be used. These are reserved by the
system.

o Statements within a decision table cannot be numbered.

o Certain standard FORTRAN statements are excluded from
action statements of the decision tables. These exceptions
are enumerated in the section of this chapter titled ACTIONS.

Table Conditions

Condition statements are analogous to IF sfatemehts of FORTRAN.
Each condition statement consists of a stub and an entry. Each condition
statement is a two operand test. That is:

operand 1 operator operand 2.
The first operand is always in the stub. The remainder of the statement
may be split anywhere and placed in the stub and entry, or the entire state-
ment placed in the stub., The latter condition is the limited entry format,
where the entire statement is written in the stub and the entry is limited

to asserting the condition, negating the condition, or ignoring the condition.

- 3.10 -



For example:
where operand 1 is B
operand 2 is A*C*LOGF(A*C**2)
and the operator is equals (EQ)
The statement is
B EQ A*C*LOGF(A*C**2),

and can be written in the condition area as:

stub entry
B EQ A*C*LOGF(A*C**2) ||Y (limited entry)
B EQ A*Cx r]LOGF (AXC*%2) (mixed entry)
B r]EQ A*C*LOGF (A*C**2) (mixed entry)
B EQ E_}A*C*LOGF(A*C**Z) (mixed entry)

Condition Operands

Each condition operand is an expression in the FORTRAN sense
of the word. That is, an operand is a variable, a subscripted variable,

a constant, a functionusage, an expression name, or any combination of these

linked by the appropriate FORTRAN operators. For example:

ROOT (variable)
31.675 (constant)
SQRTEF (B**2) (function usage)

Conditional Operators

The condition operators in the 7090 FORTRAN DTS are shown

below:
-3.11 -



Operator Meaning

EQ EQuals

UN or NE UNequal or Not Equal

LR or LT LesseR or Less Than

LE Lesser than or Equal to

GR or GT GreateR or Greater Than

GE Greater than or Equal to

VS VersuS (compared to)

stub entry

ROOT EQ 0.0 l X (limited entry)
ROOT i GR 50.0 (mixed entry)
AL1E i B (mixed entry)
AVS B l GR (limited entry)

Table Actions

Action statements provide for all value assignment, sequence con-
trol, and input/output operations in decision tables. 7090 FORTRAN

DTS action statements include all FORTRAN statements except as noted

below:

a. No IF statements

b. No non-executable statements: DIMENSION, FORMAT,
COMMON, FREQUENCY, or EQUIVALENCE

-3.123 -



c. No function definition

d. No subroutine definition

Certain additional operators will be introduced later in this section.

The programmer may use either the limited entry format or the
extended entry format for all actions. In the limited format the entire
action is placed in the action stub, and the notation of X, blank, or . is
placed in the action entry to indicate the requirement or nonrequirement
of that action for a particular rule.

In the extended format, the action is begun in the stub and completed
in the entry. The statement may be split at any location desired. The two
areas are assumed to be contiguous for each individual rule,

Arithmetic Statements

The nominal value assignment statement is identical to the F;ORTRAN

arithmetic statement:

operand 1 = operand 2,
where operand 1 is a variable or subscripted variable and operand 2 is an
expression in the FORTRAN sense, or a defined expression as previously
explained. For example:

P=17.109

R = A*B/(A-B)

Q = DISC (where DISC is a defined expression)

-3.13 -



MOVE

An additional value assignment operator is MOVE... TO.... The
form is:
MOVE operand 2 TO operand 1
This operator is identical to the FORTRAN arithmetic statement:
operand 1 = operand 2
The allowable operands for the MOVE... TO... action operator are

the same as the FORTRAN arithmetic statement.

MOVE 7.109 TO B 8] D
MOVE A*B/(A-B) TO R1 R2
MOVE VAL TO TEMP1 X X

ASSIGN
The third value assignment statement is the FORTRAN
ASSIGN i ton
and is used in an identical manner.

Action Sequence Control

DO

The first action operator of the sequence control operators is the
FORTRAN DO, expressed in the following form:

DO i=mj, my, mg
This action operator must always have in its sequence of actions, the
action operator CONTINUE. It is the last statement in the range of the

DO and delimits the DO,

< 3,14 -



with the usual FORTRAN rules. Unlike FORTRAN no statement number
is used with the DO operator used within tables.
DOJ=1,20, 5

-

CONTINUE
Nested DO's are permissable provided each DO has its own separate
CONTINUE
DO J =1, 200 =

DOI=1, KK, 2 )

_______________ $ outer

________________ > middle

CONTINUE ol

CONTINUE ]

CONTINUE _J

DO and CONTINUE are always paired within a table.

-3.15-



The DO statement used as an action may be in either limited or ex-
tended entry format. If the DO statement action entry is blank, neither
the DO statement nor any statement within its range is executed. If the
DO statement action entry is not blank, then the statement is performed
but the statements within the range of the DO are performed or not de-

pendent upon the appearance of their action entries.

This is illustrated in Figure 3 - 2. In this table, (of which only the
action statements are shown) rule 1 does not allow for the performance
of any of the DO statements as the entry is blank for that rule. In rule 2,
the first DO (the outer DO) is executed, but only two of eight statements
within its range are performed. None of these are DO statements (no

nested DO's).

Rule 1 Rule 2 Rule 3 Rule 4

S AP . ERweR TR

ENT N E

{]
™

S [ [ [3< o< [ I =< =

CONri NUE BiRE 5 ] BE
o

_—

3 LR EEEEEEE R R RN DN /A RN N

Figure 3-2. DO Sequence Control

- 3.16 -



The same general rules apply for nested DO's and are illustrated in
rules 3 and 4 of Figure 3 - 2. In rule 3, all the nested DO's are executed,
but only one statement within the range of each is performed. In rule 4,
all the DO's and the statements within their ranges are performed.

GO TO

A second sequence control action operator is the GO TO, expressed

in the following form:

GOTO n

In this case, n is a decision table number (of an open table only, see
PERFORM) or a FORTRAN statement number. This action statement
can be used when automatic control is not specified in the table header
information, to supply the exit from the open decision table. The GO TO
takes precedence if there is a "next table" specified in the header.

GO TO 612 (table number)

GO TO 500 (FORTRAN statement number)

PERFORM

The action operator used to execute a closed decision table is the
operator PERFORM, used in the following form:

PERFORM n
where n is the number of the closed decision table. The return from a
closed table is automatic, to the action subsequent to the PERFORM in

the rule of the table where called. Since this return is automatic, the

- 3.17 -



use of the action operator GO TO in a closed table should be used
only with caution since the use of the GO TO would destroy the automatic
return to the calling table.

In summary, an open table has no automatic return and for every

action list there must be an indication of where to go next. A closed

table has automatic return and normally does not contain GO TO statements.

A closed table which is executed by the PERFORM statement is written

in all other aspects as an open table. Each closed table must physically
appear after all other tables which make use of it.
OTHER

Other sequence control operators are summarized below:

GO TO (n1, ng, ng, .. , Ny, i
which is the FORTRAN computed GO TO.

GO TO n (ny, ny,...ny)
which is the FORTRAN assigned GO TO.

CALL name (arguments)

RETURN
which is used in a decision table within 7090 FORTRAN DTS in the defini-
tion of subroutines to indicate return to the calling table or statement. It
is the logically last statement of each rule of the table which terminates the

subroutine.

- 3o 18 =



PAUSE n
STOP n

where n is an integer constant, as is normal FORTRAN.,

Input/Output Action Operators

The action operators for input/output commands are used in the manner
identical to FORTRAN, A list of the allowable input/output operators is
given below:

BACKSPACE i

END FILE i

PRINT n, list

PUNCH n, list

READ n, list

READ DRUM i, j, list

READ INPUT TAPE i, n, list

READ TAPE i, list

REWIND i

WRITE DRUM i, j, list

WRITE OUTPUT TAPE i, n, list

WRITE TAPE i, list

-3.19 -



ERRATA

7090 FORTRAN Decision Table System

Page Location
1.8 L 2nd from bottom
2.9 Left page--L 2 of
table and subsequent
left pages
2.8 L4
2,41 Left page
L 7, Rule 2
2.16 Between L 1 and 2
3.1 Left page
L4
3.8 L, 4th from bottom
3.9 L4
3.12 I, 13
3.18 L 14

September 25, 1962

Correction
. more than one rule is ...
‘bbbbbb COMMON A, B, C,
X1REAL, X2REAL, X1IMAG,
X2IMAG
25 TABLE,

SQRTF(DISC)
Same as 2. 5 above.

Delete

98 TABLE.

18799 TABLE.

AVS B GR (mixed entry)

GO TOn, (n1;N9..+hm)








