
,

PRELIMINARY MANUAL

7090 FORTRAN

DECISION TABLE SYSTEM

L July 15, 1962

7090 FORTRAN DECISION TABLE SYSTEM

Preface

Of the various activities that go into setting up a procedure for a

computer, often the hardest is obtaining a precise definition of exactly

what is to be done under all combinations of circumstance. The condi­

tions under which each action is to be performed must be enumerated arid

every step specified in detail. The sequence of execution of operations

must be explicit and the exceptions to normal processing must be identified.

Complex procedures have generally been described with block

diagrams, a form of man-to- man communication and documentation. Un­

fortunately, block diagrams may become confusing in complex situations .

Also, they are not a man-to-machine commW1ication.

Many languages have been developed for communication with machines,

some using terminology which closely resembles that of English or mathe­

matics. Most of these languages are oriented toward some particular area

of computing and are powerful within those areas. To use such a language

with equal power in some other area of computing, the language must be

either modified or expanded.

The 7090 FORTRAN Decision Table System is the result of such an

expansion. FORTRAN, by itself, is powerful in specifying arithmetic

- i -

computations and iterative processes. It is less powerful in describing

complex decision logic. Decision tables offer a means of describing such

logic, as they provide a descriptive representation of complex decision

procedures in a manner that is easy to visualize and simple to follow. They

show alternatives and exceptions in an explicit manner, while presenting

the relationships among the variables clearly. They show the sequence of

conditions and actions in an unambiguous manner. Additionally, a computer

procedure written with decision tables, is, to a large extent, its own

docwnentation.

As decision tables were specifically developed to aid in defining decision

logic, it would seem that the combining of decision tables and FORTRAN

would result in an extremely powerful tool for developing scientific and

engineering solutions in a machine processable form.

With this aim in mind, the IBM 7090 FORTRAN Decision Table System

has been developed. Initial studies indicate that the following advantages

are to be gained:

o Significantly easier handling of complex corrlitions and their
corresponding actions.

o Faster program preparation.

o Greater accuracy in program preparation.

o Simpler and faster debugging.

a Continuously accurate, readable documentation.

- ii -

r

r

A preprocessor has been written to convert programs written in decision

table form into standard FORTRAN programs. These programs are then

submitted to the FORTRAN compiler for conversion to machine code . Ex­

perimentation with the specified language is being undertaken. If it is suc­

cessful, suitable modifications and extensions will be made to further impr ove

the system.

Chapter 1 of this manual introduces the concepts of decision tables and

discusses the preparation of decision tables for machine processing.

Chapter 2 shows how these concepts are used in the 7090 Decision Table

System and presents the essentials of the system and language . This chapter

utilizes a graded series of examples - each example becoming progressively

more sophisticated as further concepts are introduced and tied into the

system. Each example has review questions and answers for self- testing.

Chapter 3 is a reference section, describing the details 'of the ianguage

elements and their relationships to FORTRAN and the system.

- iii -

r

r

TABLE OF CONTENTS

Page

Chapter 1 - An lntroduction to the 7090 FORTRAN Decision Table System

A problem 1. 1
Decision table structure • • 1. 4

Chapter 2 - Using the 7090 FORTRAN Decision Table System

Situation 1, Y is a function of X
Situation 2, output subroutine
Situation 3, roots of a quadratic equation
Situation 4, sample program for quadratic equations.

2. 1
2.5
2.11
2.16 ·

Chapter 3 - 7090 FORTRAN Decision Table System Reference Section

Table characteristics
Table format
Row indicator
Table header
Fields . . .

7090 FORTRAN DTS OPERANDS.
7090 FORTRAN DTS statements
Table conditions
Condition operands
Conditional operators
Table actions
Arithmetic statements

MOVE
ASSIGN

Action sequence control
DO
GOTO ..
PERFORM
OTHER ..

lnput/Output Action Operators

• •

3. 2
3.4
3. 5
3.6
3.6
3.9
3. 10
3. 10
3.11
3.11
3.12
3.13
3.14
3.14
3. 14
3.14
3.17
3. 17
3. 18
3.19

CHAPTER 1

An Introduction to the 7090 FORTRAN Decision Table System

Some orderly arrangement of information is necessary for the

logical solution of any problem. Consider, for example , the problem

given below:

Problem: Deduce the names of the player in each position of

a baseball team, given the following facts :

Andy disliked the catcher. Ed's sister was engaged to the second
baseman. The center fielder was taller than the right fielder.
Harry and the third baseman lived in the same building. Paul and
Allen each won $20 from the pitcher at pinochle. Ed and the
outfielders played poker during their free time. The pitcher's
wife was the thlrd baseman's sister. All the battery and in-
field, except Allen, Harry, and Andy, are shorter than Sam.
Paul, Andy, and the shortstop each lost $50 at the racetrack.
Paul, Harry, Bill, and the catcher took a trouncing from the
second baseman at pool. Sam was undergoing a divorce suit.
The catcher and the third baseman each had two chlldren.
Ed, Paul, Jerry, and the right and center fielders were
bachelors . The others were married. The shortstop, the
third baseman, and Bill each cleaned up $100 betting on the
fight. One of the outfielders was Mike or Andy. Jerry was
taller than BilL Mike was shorter than Bill. Each of them
was heavier than the third baseman.

At first glance , thls problem does not seem to lend itself to an easy

solution. However, when the solution of the problem is considered in

a series of orderly steps, the way to the solution is much less complex,

- 1.1 -

One method is to constr uct a table to recor d decisions as they are

made about each player and his position on the team.

Andy

Ed

Harr y

Paul

Allen

Bill

Sam

Jer ry

Mil<e

C

N

p

N

N

1st 2nd

N

3rd SS LF RF CF

N N N

It is now necessary to examine the statements of the problem, one at

a time, and record the decisIons which can be inferred from them. For

example, the first sentence of t he problem implies that Andy is not the

catcher, while t he second statement leads to the decision that Ed is not

the second baseman.

When the entire problem is analyzed in this manner, the pr ocess

of elimination will remove any doubt as to which player is in which

position.

- 1. 2 -

P C 1st 2nd 3rd SS LF RF CF

Andy N N : N N 6) N N I N N
I

Ed

Harry

I G) N N , N N N N N N

CD i
N N N N N N N N

Paul N N ,0 N N N N N N

Allen

Bill

Sam

Jerry

Mike

N (£) 1 N N N N N N N

I I 0 N N N N N
,

N N N I 1 I , ,
I @ N N I N .N N I N N N ,

CD I
N N N N I N N N N I

i (Y) N N N N N , N N N

At the heart of most data processing is a set of decisions

which must be made by the computer regarding data and the sequence of

actions which must be taken as a result of these decisions. The state-

ments may be regarded as a set of conditions which, when satisfied,

cause a certain action or set of actions to be taken.

A decision table allows the defining of all conditions and separating

them from resulting actions. Further, a decision table relates a given

condition or set of conditions to the actions associated with them. A

series of conditions that must result in a given series of actions con-

stitutes a rule. Alternate conditions that result in other actions con-

stitute other rules.

- 1. 3 -

Basically then, a decision table does two things.

(1) It relates a series of conditions and actions.

(2) It aligns alternate rules in a parallel manner.

Decision .Table Structure

.To begin to see what decision tables are all about, look at the

example of a decision table shown in Figure 1-1.

Rule 1 Rule 2 Rule 3 Rule 4

X GE O. GE 10.9 GE 21. 6

X LT 10.9 LT 21. 6 LT 50.

y= 8.72 16. 19 24. 07

PRINT 3, X,Y X,y X,Y

GO TO 10 20 30 99

Figure 1-1. An example of a Decision Table

The decision table contains four rules. It is assumed that a value

of X is read prior to entry into the table. This value of X is then com­

pared to the ranges of numbers specified in the section above the double

horizontal line. For every value of X within a certain range, the value

of Y is a constant.

The first rule of this table (consisting of the general column to the

left of the double vertical line and the rule 1 column) is expressed as

follows:

- 1. 4 -

JLthe value of X is greater than or equal to zero, and if the value

of X is less than 10.9, then assign the value 8.72 to Y, and print

the values of X and Y, and go to table number 10.

The underlined words of this rule are implied by table layout.

The condition area above the double line consists of one or more IF

statements that are answerable by either yes or no. If more than one

statement is present, then all statements are connected by logical

AND's.

Due to this logical AND connection, it may be seen that all pertions

of the conditions of a rule must be satisfied in order for the rule to be

invoked.

Similar requirements of connection are also made for the action area

below the double line. That is, every action is performed. In addition,

every action is performed in the order given.

Figure 1-2 is an exploded view of the compenents of the decision

table of Figure 1-1, to show more clearly the perts of the table and

the terms used to describe them.

The horizontal and vertical double lines serve as lines of demarca-

tion, to divide the table into logical pertions. The entire area above

the horizontal double line is the condition area. The area below this

line is the action area. For each of the areas, the pertion to the left

of the double vertical line is the stub. The pertion to the right of

this line is the entry area.

- 1. 5 -

c.-
o-

~ - c-
c<

y '"
0 >-, '0

ri

.,..
)< 19

l-

e-< :r-

2
ri

i.!J
!1:

I-

l!J

. r, ~.
2

-J) X w -'" 0:
d 9

N
~

UJ !J
r- Y, 0 ~

'"
m)<. - E-<

" £
.~
0

~
oj

....
0

!Il

1j
%l

J ~
0

0 -
~

L u

D
a

2 !:i
C'i

a
I

oj
a: rl

Q)

i
r..

"

- 1. 6 -

r

Each table then consists of four separate areas -- condition stub,

condition entries, action stub, and action entries.

The entry area, both condition and action is further divided into

columns. Each column constitutes a rule. Any decision table may

have as many rules as required, limited only by the format of the

system in use.

A rule is specifically defined by its conditions. The stub area is a

portion of each rule and is assumed to be contiguous to each of the

rules. Therefore, a decision table rule consists of the vertical column

of condition and action stubs in conjunction with a single vertical column

of condition and action entries. The general form of the rule is:

rule n =

For example ,

rule 2 =

1st condition stub, 1st condition entry of column n,

. .. ,

last condition stub, last condition entry of column n;

1st action stub, 1st action entry of column n,

. .. ,

last action stub, last action entry of column, n.

If X is greater than or equal to 10. 9, and if X is less

than 21. 6, then assign the value 16.19 to Y, and

print the values of X and Y, and go to table 20.

Each continuous action row, a stub and entry of a rule, is a complete

- 1. 7 -

FORTRAN statement in the 7090 FORTRAN DTS. For instance, the

first action row, using rule 2 is :

Y = 16. 19

with the same connotations as the exact FORTRAN statement. The

format shown in Figures 1- 1 and 1- 2 is known as the extended entry

format. In this type of format, the statement is begun in the stub and

extended into the entry column . . The statement may be split wherever

desired since the stub and the rule column are the components of the

entire statement.

It is important to note that the conditions of any set of rules of a

decision table must take care of all possible conditions. It is seen

that the first three rules of Figure 1-2 do cover all circumstances of

the value of X in the range of X equal to 0 to X' less than 50. The

fourth rule has been designed to take care of everything else. It

would be assumed that the value of X that has been read in is in the

required range of values. But to cover the situation where this is

not the case, rule 4 reads:

If the value of X is not in the range of 0 to 50, then go to

table 99 .

It is hot necessary that a decision table contain the else rule, so

long as the values to be tested cause one rule of the table to be executed.

Conditions should not be written such that more than one rule

satisfied for any one pass through the table.

- 1. 8 -

An alternate method of composition for the decision table is

shown in Figure 1- 3. Again, the components of the table are identical

and in the same place. Only the method of writing the statements, and

the indication of performance is different.

Rule Rule Rule Rule Rule
1 ~ ~ 4 fi

r
XGE O. N Y

X GE 10.9 N Y I
X GE 21. 6 N Y

XGE 50. N Y

Y = 8.72 I X

I
I
I

Y = 16.19 I X
;

I I
Y = 24.07 I

, X

PRINT 3, X, Y I X X I X
I

GO TO 99 X
I X I

I
I

GO TO 10 X . , I GO TO 20 I
I

X

GO TO 30 i X

Figure 1- 3 -- Limited Entry De';isi"li. Table ..

The same general definition of a rule is still. true. For example,

rule 3 of this table reads:

- 1. 9 -

.!lthe value of X is greater than or equal to 10. 9, and the value of X is

not greater than or equal to 21. 6, then assign to Y the value 16.19 ,

print the values of X and Y, and go to 20.

Again the underlined words are implied by the format of the decision

table. By comparing rule 3 of this table, with rule 2 of the previous

table , it is seen that they are indeed exactly alike.

In fact, the entire table is identical, with only the form of the con­

ditions and actions being different. This format is known as limited

entr y. In a limited entry condition or action, the entire condition or

action is written in the stub and the entry is limited to asserting,

negating, or ignoring the existence of a condition or the execution of

an action.

Either the extended entr y format or the limited entry format or

both may be used in any single decision table. It is strictly a matter

of convenience. However, any single row of the conditions or actions

must be of only one form.

The skeletonized table in Figure 1- 4 is directly related to the

block diagram in Figure 1- 5, which shows schematically the way in

which a table is conceptually "executed. " In actuality, the processor

will eliminate much of the apparent redundency when translating to

FORTRAN.

- 1. 10 -

(

(

(

,

Cond 1 Y Y Y '~ -
Cond 2 Y N

Cond 3 Y N Y ~ Action 1 X X , ~ X

Action 2 X X X ~ X

Fiqure 1.4, A decision table of the loq1c of Fiqure 1-5,

Rule 1 Rule 2 Rule 3

Cond 1, }r(110 .(Cond 1 Cond 1 - --,-..
I

'lIS YU YQ I
I
I
I

Cond 2 v..s iI
Cond 2 --

I
Yes No

I
I
I

Cond 3 }IIIC Cood 3) , Cond 3 _J
y;~ No Y'$ y

J, 1
Action 1 Action 1

Action 2 Action 2 Action 2

Fiqure 1- 5,Schematic representation of the sequence of
tests and actions In execuUnq a table ,

-1.11-

Rulen

Else)

J. ,

Action 1

--

Action 2

At this point the basic ideas and use of decision tables have been

presented in r ather broad outline . The next step is to learn how these

ideas are implemented in the 7090 FORTRAN Decision Table System.

• 0 GT •

= •

Situation 1 - Decision Table

- 1.12 -

CHAPTER 2

Using the 7090 FORTRAN Decision Table System

The basic ideas and concepts of the 7090 FORTRAN Decision Table

System are relatively easy to learn. This chapter presents those ideas

in the framework of a series of problem situations, each chosen to

illustrate some new concepts. At the end of the discussion relating

to each situation, there are review questions with answers on the back

of the same page. This self- test is included to permit the reader to

evaluate his understanding of the subject material before proceeding

to new ideal:?

This chapter does not fully discuss all the features of the languaqe.

For example, all of the "tatement types are not shown. Complete

information on the 7090 FORTRAN DTS will be found in Chapter 4,

the reference section of this manual.

For a first example, consider the situation where the value of Y

is computed differently depending upon the value of X. The decision

table on the opposite page is easily interpreted. In English, the table

reads:

If the value of X is less than I , then the value of Y is computed
by squaring X.

If X is equal to 1, then the value of Y is set to 1.

If X is greater than 1, then Y is set equal to the expression -X~ + 4X - 2.

- 2.1 -

! I ,
, , , ,

, ',0 ,0 ,
,)()(1,0 - , -i!.

Situation 1 - Decision Table

The format of the table allows this easy translation into logical

thought. In this table, there is one condition r ow. This is the row

above the horizontal double line, which establishes the desired relation-

ships between X and 1. 0, i_e., less than, equal to, or greater than.

There is also one action r ow, below the double horizontal line. The

action row states what is to be done for each condition, i. e. , set

Y equal to X2 , or 1, or -X~ + 4X - 2. The evaluation and assignment

performed by the action depends upon the value of X which satisfies

one of the conditions previously noted.

This illustrates the basic function of a table. That is, that con-

ditions and actions are always related. If a specific condition, or more

generally a set of conditions, is satisfied; then the corresponding action

or set of actions is executed. The conditions which are satisfied

and the corresponding actions make up a decision r ule . A vertical

column containing one or more conditions above the horizontal double

line and one or more actions below that line is a rule. Thus, rule 1

of this table reads:

If X is less than 1, then Y is set to the value of X * X, where X

is a standard FORTRAN variable . Similarly, Y is the variable

which will contain the actual computed value of the expression to

the right of the =.

- 2. 2 -

,
,

~ m
IXI

Situation 1 - Decision Table

The action row of the second rule is:

Y=1.0

This is readily seen to be a standard FORTRAN statement. However,

note the method of writing the statement in the decision table format.

The Y is written in the area to the left of the double vertical line.

This area is known as the stub area. The area to the right, wher e the

rules are delineated, is the entry area. Every statement of a rule

consists of the information for that statement in the stub plus the infor-

mation for that statement in the entry. Thus, the rule 3 action state-

ment reads :

Y = - X * X + 4. * X - 2.

This table also introduces three of the condition. operators,

LT, EQ, andGT. The available condition operators and their abbrevia-

tions are:

EQ

UN or NE

GRor GT

LRor LT

GE

LE

VS

UNequal or :t;rof Equal

GreateR or Greater Than

LesseR or Less Than

Greater than or Equal to - -

Lesser than or ~qual to

Versus (compared to)

These operators (except VS) are to be understood in the sense of a question

to which the answer can only be yes or no. The first condition of Rule 1

- 2. 3 -

,
,

• ItlQl , . 0
~

.0

, X 1.0 - ..I1'I'ltI ... i!.

Situation 1 - Decision Table

r

r

reads, "Is the value of X less than one? " If the answer is yes, then

the action of the first rule is carr ied out. If the answer is no, then

the conditions of the next rule are investigated.

If the reader can correctly answer the following questions, he is

ready to pr oceed; otherwise, some review will help to understand the

later material more quickly. Answers are given on the back of this

page.

QUESTIONs - Situation 1

1. What is the meaning of rule 2?

2. If the value of X, as previously read, is equal to
1. 64, is any rule satisfied? If so, why?

3. Is there any possibility that two of the rules might be
executed at a single pass?

Situation 2 is a subroutine defined in the 7000 FORTRAN DTS. This

particular table handles the writing of output information for different

conditions of value of the variables .

In this situation, the decision table calls upon regular FORTRAN
,

statements, 1. e., the FORMAT statements. A complete proqram may

consist of a combination of decision tables and FORTRAN statements.

With the use of decision tables, there are some limitations. For example,

in rule 1, the action called for is the writing of an output tape .

This is readily recognizable as an outp~t statement in FORTRAN.

- 2. 4-

C
E

ANSWERS - Situation 1

1. If X is equal to 1., then assign the value of 1; to Y.

2 . Yes, rule 3 is satisfied . The condition of rule 3
asks explicitly if the value of X is greater than 1. ,
and that is all.

3 . No . Rules are mutually exclusive. That is, the value
of X cannot be both greater than one and one at the same
time.

I 2 rc;'~~~
I 2 3 4 5 6 7 8 9 1 10 I I 112

1.'1 ' E fiL e f).

'" LIT .l'UTP« r
, IT"VIRIH . :

I I
1 ' LI , I :Ii: ,

, . , 1 , ,

s

.,.

SIEl '
i '

IY' 1 , ,

1 i

: i
. ~ I, 'Il , E L ,.

, , . Iy ,I 7

'e 1 1
If l'

I

L iy i,
, ,

,

o

,.2

,
,

1 ,
2.:

L

'

"Mr . 1H Ii' is;I:S-,, . , 2it . • '

~tt!1+~ ~ff'~I: r:j:.=I'E:
M
, H+1' l!~it'~:;+·+~' +4+~' Q:ti:t=+ttit:;:qttitt I , ,,1 I , I I '

I I I . , :;, I P I I

Situation 2 - Decision Table

,
FORTRAN statement 30, the FORMAT statement, is not allowed

within the decision table . Other than in the table itself, it may be

placed in any position in the program. In this example , the

FORMAT statsment follows the table. This exclusion also applies

to other non-executable statements such as COMMON, EQUIVALENCE,
,

and DIMENSION.

In the previous situation, it was noted that the FORTRAN state-

ments within the .body of the decision table were initiated in the stub

and completed in the entry portion of the rows . This type of format is

called extended entry , as the statement is begun in the stub and

extended into the entry .

In the condition area of this table , a different format is used . In

this style, the entire condition is written in the stub and the entry is

limited to asserting, ignoring, or negating the condition . Such format

is called limited entry . For example , in rule 2, the conditions are

read :

If Xl !MAG is not equal to zero , and Xl REAL is equal to zero,

then write an output record and return from the subroutine . The

Y (yes) and N (no) are used to indicate whether a condition must be

true or false to satisfy a rule. The blank means 'hot pertinent for the

rule. 11

Note the appearance of the entries in the limited form when used in

the action rows. In limited entry form, the entire action statement is

- 2 . 5 -

k 1

;;fl1
,P

1111. ,1 'T'

,c.1 J
lEI '
lei 1

• 3
• 2 3 4 5 6 7 B 9 10 11 12 , •

E:l I

I", " .I.l ,., . '· 1
1

ilIOT PuT" ,T' A' ; '0 ,
I

= A' R ' I 'A
' . AB ,ie " m:,

; • Ai • ' . I' ! I I . I ~I"I,
I , ! , I I I . I '

, , i , ,
t ! I

" E 1~. ' . 1 ~ 101
• '"

, ! r ! ~ r ' r

i ! i I

. ". '"
1

, r , : lIl!w
'3 ,! !

o
1,1

EA 1 , ,

:
, 1

Situation 2 - Deci s ion Table

,

i

entered in the stub area, and the rule entries are then marked with

an X, to signify the execution of that action for that rule, or a blank (a

decimal point in the entry is equlvalent to the blank) would indicate that

this action is not required in the execution of that rule.

Decision tables may be written in a completely extended format, a

completely limited format, or any combination of the two. However,

when the combination of forms is used, any single row must be written

in a consistent format . This is illustrated in the action rows of this

table. The first action row is in the extended form, and the second

in limited form .

A single coding form allows for either the extended or limited entry

format. Although a table may be as long as required vertically (extend­

ing on other pages), it may not use more than 72 positions horizontally .

A standard limited entry table consists of a one -character row indicator ,

a 23-character stub, and twenty-four 2-character entry columns . A

standard extended entry table consists of a l-character row indicator,

a 23-character stub, and six 8-character entry columns. In this example,

the format is extended entry . The double lines of demarcation which

separate the components of the table may be drawn on the coding sheet,

but are ignored by the keypunch operator .

This decision table also introduces the concept of the table header.

The table header contains information about the decision table which

must immediately follow it . Several fields are required in every table

header.

- 2.6 -

I 2 5
, 21' • , • 1 1 8 9 '0 " 12

CI oz 03 04~ 01 ,~ 10 II 12 13 1413"17 I' 1'1201 21 , • • " .iJojo '" ,
; I , J'11 I , 1 I I ,

, , , , , , , I , , 1 I ,

'25 r",a' .~ : ''-V ,P It; : Jt6 :P1! ! , ,:. i~ 'rlal l ... 2: ,

,"'''L< :2.: IR'UL:':,5, '~ Ir;jl I
, I ! I

; , , , : : , , , ,
, 1'~IA" ~t:> ,Il ' , , 1

I. ', I '"'' " !. , ,
I ; ,

I
. -.. , , ,

1 - - -, , , , , , ,
' _ ;.,.I~I Ill".,. pi",- ' :riA !pl ',,' , , '0 , , 13 <" 0

, fr : I"," I , , , I ,
,

I ,
, = Ai B , I , , ,

1 i. ' AS , Ie. ,
I ", I , , I, I." , 1" elA 1'2 ,. ,
, , , , , , , , ,

I.A i
, , I , i I ,

, I, ": ipi41E ~. ' . I f" i~lo ' • ,
Hl , !P3 'e', 'S"i. I 1.i"I3.0. <11) , , , , ,

, , ; " I. : :);.., : , i
, ,

" i I ! ,
I I

, ,
i I I I ;

, , , , , , , , , ,

Situation 2 - Decision Table

r

The first required field is the number which is assilflled to the

decision table within the program. This number is written in the form,

as shown:

25 TABLE.

Each table number must be unique and always below 20, 000. The

table number is used when the table is referenced in the program,

either by a decision table or a FORTRAN statement. Note that

although the FORTRAN statements external to the table are numbered,

those within the table are not numbered by the programmer. This is a

matter of reference and control. The statements within the various rules

of the table cannot be executed independently of the table. Therefore, the

whole table is referenced, rather than any single portion thereof.

The manner of entering and referenCing a deCision table is the subject

of the second field of the table header , Table Type. There are

two types of tables, closed and open. The closed table will be discussed

in a later illustration. An open table is entered by a GO TO from either

a FORTRAN section or another decision table. Control then resides

with the open table . If TYPE is not specified in the header, it is

assumed to be OPEN.

- 2.7 -

~
I 2 , , ,

, ,
, , i ,

, ! : ii i , , , I
'25 I.,. ... '. " :,.'y,p' , 'Dl ,P E '>1 : cl , 2 '

•
, . 1",',: :r: ' ' ~ I ", ',3 ~ ! ,

I
, , ,

•

, I
~ tj .n' ! , ,

' " ~ I .. L r:-,a ()
" "

,
, ' , I , , , ,

: :. '-r DloTP 'Ur ' , : ; '3 , ; ,
13:

, , 1,1
,

: , I A' , B , I~ I
I . A. ' A , if' ,

'. ~r".
, ,

I , , , , ;-
, , ,

I I , ,
, " ~, I , I 'oj
, 1. , lEt.. ,
; ., I w: , , I ,

.I";n , , ,
I , I , , , , I

Situation 2 - Dec ision Table

The third field of the table header is the field, FORM . This

alludes to the limited or mixed format as previously explained . In

this situation, the table header :

25 TABLE, TYPE OPEN, FORM MIXED, etc .

indiates that open table number 25 has ita information contained in

the 1- position r ow indicator , the 23- position stub, and the six

8- position rule columns . Mixed form uses the extended entry format

but in fact may also contain individual statements in limited entry

format . If FORM is not specified in the header, it is assumed to be

MIXED.

The first two rules of this table do not exhaust all the combinations .

of the variables in the conditions . In this table, provisions for such

possibilities are made with a special designation called ELSE . This

rule specifies the actions to be per formed if none of the other rules

can be executed . In this example, it is reasonable to expect that

occasionally neither of the first two rules will be satisfied , so that the

else rule is more or less a normal occurrence . In other tables , the

failure to satisfy any of the rules might represent an error in the logic

of the table or in the dat a . In such a case, an error table would be

indicated rather than an ELSE rule . The ERROR entry in the header

would specify another table or FORTRAN statement to be consider ed

when none of the rules are satisfied . The table header must specify

either ELSE or ERROR .

This table header contains the specification of a rule number for

ELSE, i.e. , rule 3. In this case, because the ELSE rule takes care

- 2.8 -

I

'123"167 112
I I J I I I I

I: I" ,'"
I , ! : I :
'2 1.,. .. 6', ~ ,'V ,:~ 'III ;PF I, ,

' 1'5 :2. ''' ; ;' ' ' : ~ ,5 , ' ' < . l ld,
i ' :'

!, ,
, ,

, I I
I I

lEI . , ~. i~
I ,,'. : :r

I ..
i

! '

1315 ,H ,

H--H!tf't-~ ... :'-i-: ...--,'N_: t-H-, : +, +-t-t-'-~ +-++-14-1+,-+-1-, +-++-1'+;-,: ++-H-+-H

Situation 2 - Decision Table

r

of all other possibilities, the entry allowed in the table header for the

number of an error table would not be used . The explicit table header

details are given in Chapter 4 of the manual .

There are three header fields which are always required . Those

specifying the dimensions of the table, i.e., number of rules , number

of condition rows, and number of action rows. In an unconditional table

(one rule), only the number of actions is required. In addition to indi­

cating the start of a decision table with a header, the end must be

specified by placing the notation (LAST.) following the table starting in

or beyond Column 2.

In the 7090 FORTRAN DTS, subroutines, such,as is illustrated in

this situation, may be written in either FORTRAN or the decision table'

format. Since this is a subroutine, it would be expected that the sub­

routine is called by some FORTRAN statement or decision table action

statement elsewhere in the program . The subroutine can consist of one

or more tables and FORTRAN statementa . Likewise, it is expected that

control will return to the calling table or statement when any rule of this

table is executed . For example, the last action of every rule is RETURN.

This is a decision table statement which calls for return of control to

the calling statement .

This illustrates one of the basic concepta of a decision table . That

is , that every rule of every table should transfer control to some other

place in the program. The RETURN in this table is the control transfer

operator for a subroutine . Other control operators will be discussed in

later examples .

- 2 . 9 -

, 1 p

, , 'or

" I "I

j ! I , I

11"""'" ' 'T 'y ,P , :~ : PE ltI '

, :

I .. L 1".:2 () , I, '
, , '

""T ,or ' ,T'. ,
I '

I
, " Ia

: 1';111
I I

a ' R

, A A

; ., I '

1

I I

11 1

. ' ~

2

' lo 'SI7.

I":

lv '

! I '

I. I '
I

,

,

y ,

,
'vl, l.

Situation 2 - Decision Table

•
1'011 112

;

, ,

it 141M. '

,

A final concept introduced by this example is the use of the

defined expression. The statements following the table show examples

of the use of this tool. Rule 1 , action 1, reads:

WRITE OUTPUT TAPE 3, 30, REAL

where REAL is defined to be the list, by the following statement :

REAL = A, B, C, Xl REAL, X2 REAL.

A defined expression can be any legal FORTRAN statement or string

of characters which make up part of a statement. It is a method of

providing a· synonym for part of a statement. An expression name may

be used only in the entry part of the table. As the table is being

processed, the expression name will be replaced by the characters

in its definition. The expression is only defined locally in the table

where used. A different definition can be used with the same name in

another decision table within the system.

Only one other point should be noted at this time . That is, that

comments may be included anywhere in either the FORTRAN statements

or in the decision tables. They are identified in the usual manner by

placing a C in column 1 of the coding form.

QUESTIONS - Situation 2

1. Is it possible to use an EQUIVALENCE statement within a
decision table to equate two defined expressions?

2. Are comments allowed in the table?

3 . What is the difference between extended and limitsd entry?

- 2.10 -

~
o

~

w
i

lIFf - i- -
- --

---- , -- -
--
- -

- -

-~
::tit- ~ .. ~
N

2
~

-=m=-
~

~ = .E -- :£
L= = ~ --

~ -~ ~
:~ .; '::'.1:

'- --

=~ ~

--'" --.
~

IN
W - "
~ ,- -:; I" r c ---
• i- ,-

.: i- f-N

~ 1-- I,
-

~~~I~ 3 - I~ 'I t-- I- ~ ~1i: 
IT -" 1;::- ~I~I~ l- I'; !. 
~ -

~~ u 
, , 

= , " r--

: ~ ,,' ~ 
! al 

~ 
I ~ 

." 
--- ~ ! 

- i "; 
'u 

r---

- f - i---
1-- r-

i--

r- 0-- r--

-- -- i 

i- f---

i - r--



r 

4. Could the first action row be written in limited form 
so that the whole table is in limited form? 

5. What fields are required in the table header? 

Situation 3 involves a decision table used in the evaluation of the 

roots of a quadratic equation. This example introduces several new 

concepts of table structure, format, and usage. 

The first rule of this table reads: 

If the discriminant (DISC ) is less than zero, then Xl REAL is 

assigned the value of - B/2A, and X2 REAL is assigned the value of 

Xl REAL, and Xl IMAG is assigned the value of the square root of 

minus the discriminant divided by 2 times A, and X2 IMAG is assigned 

the value of minus Xl IMAG . 

The Wlderlined words are understood in the table format. Of 

course, the conditional statement, If ... .. .. , requires the affirma-

tive answer for the execution of the rule, as previously discussed . The 

action state menta are all connected by the AND. In addition, they will 

be executed in the order given. 

- 2. 11 -



ANSWERS - Situation 2 

1. No, for two reasons . First, the EQUIVALENCE 
statement is not allowed within the decision table. 
Second, a defined expression is only defined locally 
and must be redefined in each table in which it is used . 

2. Yes, comments are allowed anywhere in 7090 FORTRAN 
DTS. They are indicated by the usual C in column I of 
of the coding form. 

3. In extended entry, the statement is begun in the stub 
and extended into the entry. In limited entry, the 
statement is written in the stub, and the entries are 
limited to Y, N, X or blank. 

4. Yes . This would involve the writing of three state­
ments in the stub and placing an X in the proper 
rule eniries. The header ACTIONS field must 
be changed to ACTIONS 4. 

5. The number of rules, number of conditions, number 
of actions, and either the ELSE or the ERROR designa­
tion. 



r 

r 

In the previous example, an open table was discussed. A closed 

table is shown in this example . 

As a FOR TRAN subroutine is always entered by the action operator 

CALL, the closed table is always entered by the action operator PERFORM, 

followed by the table number . In this example, it may be assumed 

that in some previous table of the program, there is the action 

statement: 

PERFORM 20 

Upon execution of this statement, control is relinquished to the closed 

table. One of the rules of the table is executed and then control 

returns to the action statement following the calling statement. 

For example , the table is entered, as previously noted, by a 

PERFORM 20 and the value of the DISC is equal to zero , Xl REAL 

is assigned the value of - B/2A, X2 REAL is assigned the same value, 

and Xl lMAG and X2 lMAG are set to zero . Program control is then 

transferred back to the action s tatement which succeeds the original 

PERFORM 20. PERFORM is a legal statement only within decision 

tables. 

In the FORM field, in the table header, a different notation is illus­

trated . In previous examples , the limited format and the extended format 

have been discussed . Here is an example of the third format of the 7090 

FORTRAN DTS. In this format, the special format, a decision table 

- 2 . 12 -



~ 
0 

I 
W W 
~ 2 ~ 

w 
m 3 n 

1__ l­

~j_ --I­
t:.t-iliH - -.1---

- I-
- -- --• I-r-. ----

~+'--

~~tjL -

. . 

• • 

m - \-
~ • • -

N 

~ • • 
__ I C 

~-~ • 
~ -• r l, 

, , 
}. 

• -- - - --
• 

~ • -- l--
N • > 

- , 

~ 
, 

~ -- ! 

" s 
· , < 

1- -

-

I-
- 1--- -1--

-
1---

-- I---- I-- /- -

I-
II 1 



may be written in such a manner that it is designed to fit other require­

ments of the programmer . He can essentially design his own table 

format. When this format is used, it must be so noted in the table 

header . In addition, the field requires the insertion of special informa­

tion. In this example, 

FORM SPC (12, 32, 52, 72) 

indicates that the sJ::ecial format is used, and the rule boundaries are 

defined. The number 12 indicates that the last column of the stub 

ends in column 12 . The numbers 32, 52, and 72 allude to the last 

columns of the three rules. The special format allows the use of any 

size fields and any number of rules, with the follOwing restrictions : 

a . There must be a 1- character row indicator. 

b . There must be a stub of at least 2 characters. 

c. Each entry must be at least 2 characters wide. 

The table header also contains one of the optional fields, that is, 

R ORDER (2/50, 1/30, 3/20) 

R ORDER alludes to the order in which the programmer wishes the 

rules in the object program to be considered . The numbers to the 

left of the slash indicate positionally the order of testing the conditions , 

in this case, the preferred order is 2, 1, 3 and rules would be arranged 

in that order for processing . This technique allows the programmer 

to arrange his rules in any order as they occur to him, and later to 

have them reordered in the light of more efficient processing. 

- 2 .13 -



~~ r-
-- , - 1---- -

----

- I---- :~-

q:w~ .. ] 
~ -
~ 

I" -= 
-~ ~ -= 

" 
- -~ - ~-r-

_ 0 

I" 
~ 

~I- ~ 1= 1-- - ~ 

"1 9 ::'tl , 

m 1- r-

f:tIt{ i'" 
~-" -- r -

I ~ 
f -

)"' I~ 

~ 
1- -- .. 

:= .: ~ 
- - I-

I~ 
:- 1-

. - ~ I~ I--- I----, ~ I~ 
1-

l;i i~ 1-- -- c- o 

~t: 10 -. 
" 

, c 

I';; 
~ 

I-J~ _ ~I : ~I ,!I~ 
1 -, < )[ '" I- f-

p " i --
I- -- , -

-~ -~ " " , 
1--1 ~ ~ , -- I----
f- f t lli 

~ 
- i-i: 

1---1 ~ I;~ I~ -- I- --

it! l~,)c 



.' The number below the slash, within the parenthesis, indicates the 

frequency with which the rules of the table are expected to have their 

conditions satisfied. For example, rule I is executed 30% of the time 

and rule 2 is executed about 50% of the time, while rule 3 will only be 

executed about 20% of the time . If the frequency of success is not 

known, or not desired, they may be omitted (together with the /) and 

the rule numbers alone entered for ordering. 

QUESTIONS - Situation 3 

1. What is the difference between a closed table and an 
open table? 

2 . What is the special format? 

3. What follows the special format in the table header? 

4 . What is R ORDER? 

5 . Must the rule frequency always be included in the 
R ORDER statement? 

Situation 4 is an example of a complete program written in the 

7090 FORTRAN DTS . The object of the program is the reading of 

the coefficients of quadratic equations , the solution of the quadratic 

equations, and the writing of an output reIX'rt with the coefficients 

and the roots . This p,ogram incorporates both the subroutine dis ­

cussed in situation 2, and the closed table discussed in situation 3 . 

- 2.14 -



ANSWERS - Situation 3 

1 . An open table is entered by a GO TO type statement 
and in tW'n indicates where to go next. A closed table 
is entered by a PERFORM statement with control re­
verting to the original table when the actions for a rule 
are completed . 

2. A free form, up to the programmer's discretion . 
However, it must have a l-character row indicator, 
and every entry must be at least two columns wide. 

3. The indicator of the last column of the stub and of 
each rule of the table, all enclosed within parentheses. 

4 . An optional entry in the table header which cites the 
preferred order of rules, and the relative frequency 
of satisfying the rules. 

5. No. 



r 

This example serves to illustrate more clearly how FORTRAN and 

decision tables complement each other in the 7090 FORTRAN DTS. 

Most of the concepts and ideas illustrated in this example relate 

to information previously given . One new concept is the use of the 

action statement GO TO, shown in the last action of table 15. For the 

first and thtrd rules, the transfer of control is right back to the 

beginning of the table, in rule 2 it is to the FORTRAN input statement, 12 . 

In the last rule, the transfer is to 45 . This is the statement number of 

the first FORTRAN statement for the end of job procedure. 

Table 15 also indicates the action statements used to enter closed 

tsbles and subroutines . The closed tsble illustrated in situation 3, 

table 20, is entered by means of the statement: 

PERFORM 20 (action 3, rule 2) 

The subroutine of situation 2, table 25, is entered by means of the 

statement: 

CALL OUTPUT (also in rule 2) 

The complete transfer of control in this program is more evident 

when rule 2 is read in English: 

If A is not equal to zero , and NPAGE is not equal to 1, and if the 

number of lines (on the output report) is less than 40, then set 

DISC = B2 - 4AC, PERFORM 20 (execute closed table number 20 

satisfy one of the conditions of that table , assume rule 3, which seta 

- 2.15 -



~ 

I~ 

~ ~ I!) ~~ fs • I! 
f-

~ -
~ I~ .. 

~ 
1= -. ~ 

I'" ~ .. 
Iml -.~ 

.. 

I~ 
~ 

N 0 ---
f-

~-: 
~ . ~ jj 

w 

~ • 1- 1-+ " f . . 1+ 
1- ]I JCl . . 

-

~ l= ,~ 

~v ;.::. . I~ f'" 
.. 

~I--
:'" 

~ 
io t.., 

~ ~~ I ~ i-
re: f-- I ~ '" 

l; I ~ -: He i ~ I~ ~ 
Ir I ~ :,. >' iP ~ u 

I~ I ~ 
. ! :l l>! :!_; [" , : ~ 

I ~ 
j~ 

:~ Ie . ~ . 

.~ . ~ ~ 
~I·~ 1-· · 

. :~; ~ j ~ ~ j ~ .~ -

.. \- : . ~ c- .- H -

~ 
~ [-': 

-
~ . w 

m I '! 



Xl REAL = - ElM 

X2 REAL - Xl REAL 

Xl IMAG = O . 

X2 IMAG = O. 

and then return to rule 2 of table 15); CALL the output subroutine 

(enter the output subroutine, under the conditions shown, rule 1 

is satisfied, the report line is written for the listing, and control 

is returned to rule 2 of table 15); set LINES = LINES + 1, and go 

back to the READ statement (12). 

Table 15 also illustrates a second example of the special format 

as evidenced in the table header. The last stub column is 32, rule 1 

finishes at column 42, rule 2 at column 52, etc. The remalnder of 

the program is fairly self-evident. 

- 2 . 16 -



JOB _____ _ 5£CT. _____ _ PAGE 0 ' __ 

NAME CATE ,- -. • 
~; 

, 2 I, 4 ,rsl;I B 91,0 11 112 , , , , >1" I , , , I I I I 
i . . , . I . i ! , I . , 

, I , 

· mMM" 0/ 1, 1 ·' :.1. ,R", ~7. I , 
'"T , 

I,,:. . , 
' ~I r i , I , : , I I , 

. , i , , , , 
• • 

, , I" -,,",~-N 1> " , I I I j , 
' r~ ... ' : <'~ ' I , 

I : 
4 -.r;;o 

, , 
I 

'<" ;. ~ft~ 1,<1. i, , 'I' 11N~ ,-<.ul' 
- ; -, , I , I ' I I , I I.. , I 

10=,,, , , 
• --, K;;;":; . 1,, '.,: '[: .. , , I"': , 

, Ai --IJ -I il< IE' 
1';,. 1 .... ., 

' I~ 
I7vT 

? '~ , ' . , I i 
<i I" , , loJ , 

1 I,;, ,..,'. ! ; ; . , I. , :, , 
.,-.. ' ;3 1 : I:.;0.il I.. 

I , 
I : : ' "d 1 

i , , 
I 1 'AI , I , , , 

lA, 1 I xi 1 
, II 

, : , , , , 
, , 

; 

. 1<11 , 
leI .. l" I , 

i ll I I 

Situation 4 (continued) 



r 

r 

CHAPTER 3 

7090 FORTRAN Decision Table System Reference Section 

The 7090 FORTRAN Decision Table System has been developed 

to evaluate the use of decision tables in conjunction with FORTRAN in 

the solution of scientific and engineering problems. The language 

used with the decision tables coincides very closely with FORTRAN 

except that decision logic statements are written to take full advantage 

of the decision table format. The 7090 FORTRAN DTS provides the 

means to replace all IF statements with decision tables. 

The initial version of 7090 F ORTRAN DTS has been designed for 

the 709/90 family of FORTRAN dialects . Little consideration has 

been given to the restrictions or differences imposed by other 

FORTRAN dialects. The system has been designed to make use of 

the current FORTRAN monitor system for the 709/90 (vers ion ill and 

requires the same machine configuration as that sys tem. 

The character set for the 7090 FORTRAN DTS is the FORTRAN 

character set denoted by IBM as set ItH. II This set includes the 

apostrophe in place of the redundant 8- 4 minus . 

When a program is written in 7090 FORTRAN DTS, the programmer 

may assume either FORTRAN or 7090 F ORTRAN DTS to be dominant. 

The combined language operates either entirely as FORTRAN, enttrely 

- 3. 1 -



as 7090 FORTRAN DTS, or as any combination of the two at the discre-

tion of the programmer. 

Table Characteristics 

The followinq information pertains to decision tables in the 7090 

FORTRAN D'rS: 

o The table structure is vertical with conditions and actions listed 
on successive lines. Decision rules are read from top to bottom. 

o Decision tables are always enter ed at their top left. There 
is no other access. Tables may be open (in line) or closed 
(callable) . 

o There is never more than one successful rule per pass through 
a table . Therefore , each rule has an exclusive set of conditions. 

o Since each r ule has an exclusive set of conditions the analyst or 
processor may rearrange rules without affecting the table logic. 

o Decision tables without conditions are allowed. These uncon­
ditional tables signify the execution of a stipulated single set 
of actions whenever the table is entered. 

o If the conditions of no rule are satisfied and an ELSE rule 
is not specified, an ERROR table must be specified . 

o An open table may be entered by a GO TC statement, a closed 
table must be entered by a PERFORM statement. 

o An open table may be exited from by means of a GO TC statement 
or by the specification of a next table in the Table Header. A 
closed table automatically returns to the table which called it. 

o A TALLY facility is included in the language to allow automatic 
tracing of the path of control through the program tables. 

o The decision table preprocessor provides a listing so that the programmer 
is encouraged to work with the latest compiled ver sion of his program. 

o All table actions are performed in the listed order . 

- 3.2 -



~ ~ 

~ 

~~- \ -
t ­,--

~ I­
.~ 1-

~ I--

\ = 1-­
[Q ~-

- --

,-

t: 

-- - ~: 

I -

I 

\ 
! 

I 
I 

1--

-

---

1-

-, --

, 

I-

1---

1--

I--

1-

I -

1--

1-

I -

I-

I-- i- -

- - 1--

I-
I - I 

-- - -

e 3, J -' 

, - I -

- --

, -

1-

l-

\- 1- I -
-H -



r 

r 

Table Format 

A 7090 FORTRAN DTS program is made up of a series of FORTRAN 

statements intermixed with decision tables. The statements of the decision 

tables are also FORTRAN s tatements with modifications that will be discussed 

later in this chapter . 

A sample of the coding form used for the insertion of information 

is shown in figure 3- 1. All information for decision tables must appear 

in columns 1 through 72. As usual, columns 73 through 80 are not 

processed. 

Comment cards may be used freely within the tables. A C in column 

1 of the coding form indicates that the statement is a comment. The 

card is not processed by the table processor, except for listing . 

FORTRAN statements that are separate from the decision 

tables within the 7090 FORTRAN DTS system are written in the usual 

manner. 

Each decision table within the 7090 FORTRAN DTS has the following 

general form: 

Condition stub Condition entries 

Action stub Action entries 

The double lines indicate logical divisions of the table. They may be 

drawn on the coding form, but are ignored by the keypunch operator. 

- 3. 4 -



The input format of the programmed tables may be free form; a 

standard limited entry form and extended entry form is also defined . 

F or both of these forms , the table may continue vertically on additional 

pages ; however, it may not be wider than 72 horizontal positions. 

The standard limiied entry table consists of a 1- characier row 

indicator (c6lumn 1), a 23-character slllb (columns 2 through 24) and 

twenty- four 2- character entry columns (25 through 72). The rules are 

numbered 1 through 24 just above the card column numbers (see Figure 3. 1). 

A standard extended entry table consists of a 1- charac ter row indicator, 

a 23- character slllb, and six 8- character entry columns, numbers 1 through 

6 in Figure 3. 1. 

The programmer uses either of these standard forms, or a special 

form of his own choosing. A special form table must contain the 

I - character row indicator (column 1) but the rest of the table format is 

divided as the programmer wishes . The only definite requirement is 

that the stub and each entry must be at least 2 characters in width. For 

example, a programmer might require a I - character row indicator , a 

27-character stub, and five entry columns consisting of 2 characters, 

2 characters, 10 characters, 10 characters, and 20 characters . For 

clarity, the programmer should draw in with heavy lines the vertical 

rule dividers he has chosen . 

Row indicator 

The I-character r ow indicator within the decision tables is used 

fo r three purposes: 

- 3.5 -



(1) A C in this column indicates that the card is a comment. 

(2) A number in this column indicates that this is a continua­
tion of the stub to another card. The continuation is in­
dicated by placing a 1 in column 1 of the first continuation 
card, a 2 in column 1 of the second continuation card, ... J 

up to a maximum of nine, indicating a total of ten cards . 
The continuation numbers must start with 1, and must be 
consecutive integers. 

(3) The letter E in this column indicates that this card is an 
expression definition. The formation of an expression is 
described later in this chapter. 

Except for these three uses, the rrm indicator column is left blank 

within the decision table. The stubs for all tables begin in column 2. 

Table Header 

Each table must be preceded by a table header statement. This 

statement provides information to the table processor. The general 

form of this statement is : 

nnrmn TABLE. field 1, field 2, . . . , field m. 

The nnrmn is the t able number. It is always unique and less than 20, 000. 

Following this table number will be a number of other fields . Several 

are required; the remainder are optional depending upon program needs. 

Fields ('indicates required fields) 

TYPE t where t is either OPEN or CLOSED. 
(If not specified, OPEN is assumed. ) 

FORM f where f is UM or UMITED if the table is the 
standard limited entry form. 

- 3.6 -



NEXT N 

* RULES R 

TALLY 

where f is MIX or MIXED if the table is the 
standard extended entry form. 

where f is SPC or SPECIAL if an optional 
format is defined. If the special format is 
indicated, the FORM entry must be followed 
by a set of parenthesis enclosing a description 
of the desir ed format of the input card: 

FORM SPC (q, c2, c3, ... , cn) 

Each c indicates the last column of a field on 
the card. c 1 indicates the last column of the 
stub, c2 indicates the last column of rule 1, 
etc . For example, 

22 TABLE. TYPE OPEN, FORM SPC (28,30,32,42,52,72) 

(If not specified, MIXED is assumed. ) 

where n is the number of the next table or 
FORTRAN statement. This field can be 
used in place of a GO TO statement in the . 
various rules. 

where r is the number of the rules in the table . 
(Not required for unconditional tables. ) 

which indicates the TALLY feature is to be exercised 
whenever the table is entered. The TALLY 
feature has been included to provide a trace 
through the tables during debugging. The 
table number and rule satisfied will be printed 
each time the table is executed. If TALLY is 
punched on a continuation card, it may be 
easily removed after the program has been debugged. 

* COND c or CONDITIONS c 

where c is the number of conditions in the table 
(Not required for unconditional tables. ) 

- 3. 7-



• ACT a or ACTIONS a 

• 

ELSE r 

or 

ERRORn 

-

wher e a is the number of actions in the table. 

where r is the number of the rule whose actions 
are to be exercised in the event that the conditions 
for no other rule are satisfied . 

where n is the number of the table or statement to 
which transfer is made in the event that the condi­
tions of no rule are satisfied and an ELSE rule is 
not specified. The ERROR destination should not 
be specified if there is an ELSE rule. 

R ORDER (rl' r2, . .. , rn) 

where rl through r n are t he numbers of the r ules 
in the table arranged in the order in which they 
are to be considered. If t his information is not 
specified in the table header, the rules are 
considered in the order given in the table. Rules 
not mentioned in this field will be arranged in 
their given order after the mentioned rules. 

wher e f 1 through in are the relative frequencies 
of success for each rule. Each frequency must 
be specified as an integer. This field also 
specifies rule order, as above. 

Some examples of the uses of these optional fields are given below: 

98 TABLE, TYPE CLOSED, FORM MIX, R ORDER (3/40, 1/40,4/10, 2/10), 
RULES 4, CONDITIONS 3, ACTIONS 10 

(This table is #98, a closed table of mixed form, with four rules that are to 

be rearranged in the order, 3, 1, 4, 2. Rules 3 and 1 have a relative 

- 3. 8 -



frequency of success of 40% each, while rules 4 and 2 have a r elative 

frequency of success of 10% each. There are 3 condition rows and 10 

actions. 

18799 TABLE, TYPE OPEN, FORM MIX, RULES 4, COND 3, ACTIONS 7 

(This table is #18799, an open table of mixed form, with four rules. 

There are three conditions and seven actions in the table. ) 

7090 FORTRAN DTS OPERANDS 

The operands in decision tables within the 7090 FORTRAN DrS 

are FORTRAN expressions. One other operand of the 7090 FORTRAN 

DTS is the defined expression name. The general form of the definition of 

this operand is: 

E name = expression, 

where the name is any legal FORTRAN variable name and the expression 

is any legal FORTRAN expression or character string. 

E OUTLST = 3, K, seN), peN) 

E ROOT = SQRTF (- B + B**2/2*A**3) 

Whenever any such name is used in the entry portion of the table, it will 

be r eplaced automatically by t he expression so defined. The definition is 

local and holds only for the table in which it is used. 

On the coding form, expression definitions are indicated by placing E 

in the row indicator (column 1) as previously noted. 

- 3. 9 -



7090 FORTRAN DTS Statements 

The formation of statements for 7090 FORTRAN DTS is similar to 

the formation of statements in FORTRAN. The following exceptions 

are noted: 

o All FORTRAN statement numbers and decision table numbers 
must be less than 20, 000. All higher numbers are reserved 
by the system. 

o No fixed point variables of the form NXXXXX or floating point 
variables of the form OXXXXX, where XXXXX is five numeric 
characters, may be used. These are reserved by the 
system. 

o Statements within a decision table cannot be numbered. 

o Certain standard FORTRAN statements are excluded from 
action statements of the decision tables . These exceptions 
are enumerated in the section of this chapter titled ACTIONS. 

Table Conditions 

Condition statements are analogous to IF statements of FORTRAN. 

Each condition statement consists of a stub and an entry. Each condition 

statement is a two operand test. That is: 

operand 1 operator operand 2. 

The first operand is always in the stub. The remainder of the statement 

may be split anywhere and placed in the stub and entry, or the entire state-

ment placed in the stub. The latter condition is the limited entry format, 

where the entire statement is written in the stub and the entry is limited 

to asserting the condition, negating the condition, or ignoring the condition. 

- 3. 10 -



For example : 

where operand I is B 

operand 2 is A*C*LCGF(A*C**2) 

and the operator is equals (EQ) 

The statement is 

B EQ A*C*LCGF(A*C**2), 

and can be written in the condition area as: 

stub 

A*C*LCGF(A*C**2) ! I Y 

A*C* , I LCGF (A*C**2) 
! 1 

entry 

B EQ 

B EQ 

B 
' I I :EQ A*C*LCGF(A*C**2) 

B EQ ,A*C*LCGF(A*C**2) 

Condition Operands 

(limited entry) 

(mixed entry) 

(mixed entry) 

(mixed entry) 

Each condition operand is an expression in the FORTRAN sense 

of the word. That is, an operand is a variable, a subscripted variable, 

a constant, a function usage, an expression name, or any combination of these 

linked by the appropriate FORTRAN operators. For example: 

ROOT 

31. 675 

SQRTF (B**2) 

Conditional Operators 

(variable) 

(constant) 

(function usage) 

The condition operators tn the 7090 FORTRAN DTS are shown 

below: 

- 3 .11 -



Operator 

EQ 

UN or NE 

LRor LT 

LE 

GRor GT 

GE 

VS 

stub 

Roar EQ 0. 0 

ROOT 

ALE 

A VS B 

Table Actions 

Meaning 

EQuals 

UNequal or l;lot Equal 

b esseB or Less Than 

besser than or Equal to 

greateB or greater Than 

Gr eater than or Equal to 

yersU§ (compared to) 

entry 

Y (limited entry) 

GR 50. 0 (mixed entry) 

B (mixed entry) 

GR (limited entry) 

Action statements provide for all value assignment, sequence con-

trol, and input/output operations in decision tables . 7090 FORTRAN 

DTS action statements include all FORTRAN statements except as noted 

below: 

a. No IF s tatements 

b . No non- executable statements: DIMENSION, FORMAT 
COMMON, FREQUENCY, or EQUIVALENCE. ' 

- 3. 12 -



c. No function definition 

d. No subroutine definition 

Certain additional operators will be introduced later in this section. 

The programmer may use either the limited entry format or the 

extended entry format for all actions. In the limited format the entire 

action is placed in the action stub, and the notation of X, blank, or . is 

placed in the action entry to indicate the requirement or nonrequirement 

of that action for a particular rule. 

In the extended format, the action is begun in the stub and completed 

in the entry. The statement may be split at any location desired. The two 

areas are assumed to be contiguous for each individual rule. 

Arithmetic Statements 

The nominal value aSSignment statement is identical to the FORTRAN 

arithmetic statement: 

operand I ~ operand 2, 

where operand 1 is a variable or subscripted variable and operand 2 is an 

expression in the FORTRAN sense, or a defined expression as previously 

explained. For example: 

p ~ 7.100 

R ~ A'Bf(A- B) 

Q ~ DISC (where DISC is a defined expression) 

- 3. 13 -



MOVE 

An additional value assignment operator is MOVE ... TO .. .. The 

form is: 

MOVE operand 2 TO operand I 

This operator is identical to the FORTRAN arithmetic statement : 

operand I = operand 2 

The allowable operands for the MOVE ... TO ... action operator are 

the same as the FORTRAN arithmetic statement. 

ASSIGN 

MOVE 7. 109 TO 

MOVE A*B/(A-B) TO 

MOVE VAL TO TEMPI 

B 

RI 

X 

C 

R2 

D 

R2 

X 

The third value assignment statement is the FORTRAN 

ASSIGN i to n 

and is used in an identical manner. 

Action Sequence Control 

DO 

The first action operator of the sequence control operators is the 

FORTRAN DO, expressed in the following form: 

DO i = ml l m2 , m3 

This action operator must always have in its sequence of actions, the 

action operator CONTINUE. It is the last statement in the range of the 

DO and delimits the DO. 

- 3. 14 -



with the usual FORTRAN rules. Unlike FORTRAN no statement number 

is used with the DO operator used within tables . 

DO J = 1,20, 5 

CONTINUE 

Nested DO's are permissable provided each DO has its own separate 

CONTINUE 

DO J = 1, 200 

DO I = 1, KK, 2 

DO K = 90, 100, 1 

CONTINUE 

CONTINUE 

CONTINUE 

inner 

DO and CONTINUE are always paired within a table. 

- 3. 15 -

outer 

middle 



The DO statement used as an action may be in either limited or ex-

tended entry format. If the DO statement action entry is blank, neither 

the DO statement nor any statement within its range is executed . If the 

DO statement action entry is not blank, then the statement is performed 

but the statements within the range of the DO are performed or not de-

pendent upon the appearance of their action entries . 

This is illustrated in Figure 3 - 2. In this table, (of which only the 

action statements are shown) rule 1 does not allow for the performance 

of any of the DO statements as the entry is blank for that r ule. In rule 2, 

the first DO (the outer DO) is executed, but only two of eight statements 

within its range are performed. None of these are DO statements (no 

nested DO 's). 

Rulel Rule 2 Rule 3 Rule 4 

. 
1> '!.. ~ : .1 s'O' , , , ! 
~ 

'. ! Lx : , , 
, , , , 

I .- - - , l , 
~'" ~-... :z.. . ¥ o~ ';1) I , I I • i 

I 
, , t 

, 
! ~ , , , 

~ ! , ; , , , i 
tJ I 1K: .:.ci.O " 1. I , , , I , 

, , , , I , , , ! , , 
, : ! ,L i 

, , , ; 

,,' ' lIf ' I.!. . ~ 
, 

I 
, , Ii u , , , 

(.' ,r-I ,1Ij u.: , ! ! , I 
, , 

J ' T' , • " Iii ; , ; , , , , , , 

Figure 3- 2. DO Sequence Control 

- 3 . 16 -



The same general rules apply for nested DO's and are illustrated in 

rules 3 and 4 of Figure 3 - 2. In rule 3, all the nested DO 's are executed, 

but only one statement within the range of each is performed. In rule 4, 

all the DO's and the statements within their ranges are performed. 

GOTO 

A second sequence control action operator is the GO TO, expressed 

in the following form: 

GOTO n 

In this case, n is a decision table number (of an open table only , see 

PERFORM) or a FORTRAN statement number. This action statement 

can be used when automatic control is not specified in the table header 

information, to supply the exit from the open decision table. The GO TO 

takes precedence if there is a !lnext table 11 specified in the header . 

GO TO 612 (table number) 

GO TO 500 (FORTRAN statement number) 

PERFORM 

The action operator used to execute a closed decision table is the 

operator PERFORM, used in the following form: 

PERFORM n 

where n is the number of the closed decision table . The return from a 

closed table is automatic , to the action subsequent to the PERFORM in 

the rule of the table where called . Since this return is automatic, the 

- 3.17 -



r 
r 

r 

r 

use of the action operator GO TO in a closed table should be used 

only with caution since the use of the GO TO would destroy the automatic 

return to the calling table. 

In summary, an open table has no automatic return and for every 

action list there must be an indication of where to go next. A closed 

table has automatic return and normally does not contain GO TO statements. 

A closed table which is executed by the PERFORM statement is written 

in all other aspects as an open table . Each closed table must physically 

appear after all other t ables which make use of it. 

OTHER 

other sequence control operators are summarized below: 

GO TO (nl , n2, n3, . . , TIn), i 

which is the FORTRAN computed GO TO. 

GO TO n (nl, n2, '" nm) 

which is the FORTRAN assigned GO TO. 

CALL name (argnments) 

RETURN 

which is used in a decision table within 7000 FORTRAN DTS in the defini­

tion of subroutines to indicate return to the calling table or statement. It 

is the logically last statement of each rule of the table which terminates the 

subroutine . 

- 3. 18 -



PAUSE n 

STOP n 

where n is an integer constant, as is normal FORTRAN. 

Input/Output Action Operators 

The action operators for input/output commands are used in the manner 

identical to FORTRAN. A list of the allowable input/output operators is 

given below: 

BACKSPACE i 

END FILE i 

PRINT n, list 

PUNCH n, list 

READ n, list 

READ DRUM i, j, list 

READ INPUT TAPE i, n, list 

READ TAPE i , list 

REWIND i 

WRITE DRUM i, j , list 

WRITE OUTPUT TAPE i , n, list 

WRITE TAPE i, list 

- 3.19 -



ERRATA 

7090 FORTRAN Decision Table System 

Page Location Correction 

1.8 L 2nd from bottom more than one rule is , .. 

2.5 Left page - -L 2 of 1ml5bti6 COMMON A, B, C, 
table and subsequent X1REAL, X2REAL, X1IMAG, 
left pages X2IMAG 

2.8 L4 25 TABLE. 

2.11 Left page SQRTF(DlSC) 
L 7, Rule 2 

2.16 Between L 1 and 2 Same as 2. 5 above . 

3. 1 Left page 
L4 Delete 

3. 8 L 4th from bottom 98 TABLE. 

3.9 L4 18799 TABLE. 

3. 12 L 13 A VS B GR (mixed entry) 

3.18 L14 GO TO", (nl, n2, . .. nm) 

September 25, 1962 






