
•

-

o
p
p

•

NGINEERING

SERVICES

PRELIMINARY MANUAL

7 ° 8 °
DECISION TABLE SYSTEM

April 10, 1962

Technical Repcrt No . 2Dl

Thomas B . Glans

Burton Grad

INTERNATIONAL BUSINESS ' MACHINES CORPORATION

White Plains, New York
@ 1962 by International Business Ma.chines Cor p<>ration

IBM 7080 DECISION TABLE SYSTEM

Preface

Of the various activities that go into setting up a data processing

procedure for a computer, the hardest is obtaining a precise definition

of exactly what is to be done under all combinations of circumstances.

The conditions under which each action is to be performed must be

enumerated, and every step must be specified in detail. The sequence

in which operations are to be executed must be precisely stated, and

the exceptions to normal processing must be identified.

Logical operations have generally been described with block dia­

grams, which are a form of man- to- man communication and docu­

mentation. Unfortunately they can become confusing themselves in

complex situations; and a block diagram is generally not suiiable for

communication with the machines, since a computer will accept as

input only alphameric information, not pictures or diagrams.

Many languages have been developed for communication with the

machine in forms which more closely resemble the terminology of

English or of mathematics. These programming systems such as

FARGO, Reports Generators and FORTRAN are oriented toward some

area of data processing for which they are primarily intended such as

input- output, or mathematical equations . Decision tables now offer a

means for expressing complex decision logic in cormection with these

- L-

languages, or independent of them when the essence of the pr oblem is

decision logic .

Logical equations (Boolean Algebra) are sometimes used, but they

do not display relationships in as graphical a form as one might wish,

and furthermore most systems engineers and procedures analysts do

not find them to be a comfortable form of expression.

Decision tables are proposed as holding promise of meeting the

various needs of a computer language . Decision tables provide a des­

criptive representation of complex decision pr ocedures in a way that is

easy to visualize and follow through. They show alternatives and excep­

tions in a much more explicit way than other languages, while pre­

senting relationships among variables clearly . They show the sequences

of conditions and actions in an unambiguous manner . The language of

decision tables can therefore be used equally effectively for system

analysis, procedure design, and computer coding. A computer pro­

cedure written as a set of decision tables is, to a large extent, its own

documentation.

There is a growing body of experience to indicate that these claims

are justified. Those who have used decision tables say that pr ogr am­

ming is much faster and that program checkout time is significantly

r educed. The use of tables leads to greater accuracy and completeness

in problem formulation. Program maintenance is simpler. A program

- u-

written in decision table form is indeed a powerful communication and

documentation device, since it performs the dual functions of man­

to- man and man- to- machine communication.

For these reasons the employment of decision tables for problem

analysis, logic documentation and computer programming should be

given serious consideration. User experience will help in the evalua­

tion of the concept, and will assist in imprOVing its implementation in

terms of processor versatility in translating from decision tables to

computer instructions .

A word about this teaching text. It is directed primarily at people

who will be experimenting with the language. Since many such people

may be stronger in systems work than in programming, the presenta­

tion discusses programming matters more fully than an experienced

programmer requires . However, this redundancy should not detract

from the technical content of the manual.

Chapter 1 introduces the concept of decision tables and discusses

the preparation of decis ion tables for machine processing.

Chapter 2 shows how these concepts are implemented in the 7080

Decision Table System and presents the essential elements of the

system and its language. This chapter utilizes a graded ser ies of

examples -- the first ones are quite simple, but become increasingly

complex as further concepts are introduced and earlier concepts are

- iii -

tied together. There are review ql:lestions and answers after each

example.

Chapter 3 contains a full- scale problem worked out with the 7080

Decision Table System. It shows how the concepts can be applied to a

specific situation.

Chapter 4 is a reference section, describing the details of the

language elelD9nts and their relationships.

It is recommended that the person without extensive programming

background study the entire manual carefully, concentrating on the

examples and questions in Chapter 2. The experienced programmer

will probably want to read Chapters I and 2 and concentrate on

Chapters 4 and 3.

Two final comments:

(1) Because of time limitations and in light of the experimental

purpose of the language, certain functions that might have been in­

cluded were left out. However, the system will nevertheless be useful

in evaluating the concept of tabular programming for a large-scale com­

puter, and along with the evaluation of the overall concept will come

suggestions for improvements in the details . All such comments and

suggestions will be appreCiated.

(2) It should be understood that IDM makes no commiiment to main­

tain or improve this language . Although every reasonable attempt has

- iv -

been made to pretest the processor and to examine various impli­

cations of the language, the accuracy or effic iency of the processor

is not guaranteed, nor are the correctness of results obtained with

its use .

April 1, 1962

- v -

Thomas B . Glans

Burton Gr ad

ACKNOWLEOO MENTS

The development of the 7080 Decision Table System has been a

joint effort between The Boeing Company and IBM. Messrs . Donald

Higgins, Harry Hicks and James O'Malley of Boeing participated in

specifying the language . In addition, H. Hicks did an excellent job in

writing a l"-,ge portion of the processor . J. O'Malley and a member

of his staff, produced the fine sample problem of Chapter 3 which was

also used in checking out the processor.

Messrs. R. N. Barnes, O. Y. Evans and H. W. Stroeve of the

IBM Western Regional Office and C. A. Mabee of the Seattle Branch

Office also partiCipated in the language design effort. In addition they

provided valuable consulting and administrative assistance throughout

the implementation stage of the project.

Mr . H. J. Cash of DP Technical Publications did the major portion

of the writing of this manual. Mr. R. J. Schatz of DP Systems Publi­

cations set up and printed the manual.

- vi -

TABLE OF CONTENTS

Chapter 1 - An Introduction to the 7080 Decision Table System

A problem
The structure of a table
7080 Decision Table Processor
System diagram

Chapter 2 - Using the 7080 Decision Table System

Situation 1, auto classification
Situation 2, utility billing
Situation 3, insurance rate computation
Situation 4, preparing a decision table .
Situation 5, stock classification listing
Situation 6, payroll
Situation 7, expense report
Situation 8, scan a card
Situation 9, manufacturing

Chapter 3 - Sample Problem Using 7080 DTS

Page

1.1
1.4
1.9
1.10

2.1
2.4
2. 7
2.10
2. 13
2. 20
2. 26
2. 32
2. 35

Index for the sample problem 3. 2

Chapter 4 - 7080 Decision Table System Specification

System characteristics
Names ·
Named operands
Other operands .

Literals . .
TABSTOP .
Special names

Conditions
Relational

RuJes for comparison
State·

Actions
Input/Output operators .

OPEN
GET· .
PUT ..
CLOSE ·
TYPE .

Assignment operators
MOVE · ..

Record movement
Field movement
Setting of bit switches
Zero or blank fill . .

•

•

Variable length data movement
Fabrication of variable output record
Generalized indexing

SET·
Two- address arithmetic operators

Sequence control operators .
GOTO· .. .

.'

DO • •
Decision Table headers

Table header . . .
Order of condition rows header
Order of ruJes header
Comment header

N arne Definition ·
Table 0000 - Input/Output files

FILE
RNAME

• •

Page

4. I
4. 8
4. 9
4. 12
4.12
4. 13
4.13
4. 15
4. 15
4.16
4.17
4. 18
4.18
4. 19
4. 19
4. 20
4. 21
4.21
4.21
4.21
4. 23
4. 23
4. 28
4.28
4. 28
4.30
4.30
4. 35
4. 35
4. 37
4.37
4. 38
4.40
4.40
4. 42
4. 43
4. 43
4. 44
4. 46
4. 48
4. 48

Chapter 4 (cont'd.)

GNAME
FLD
PRE .
RPT .
BITCD

Table 0001 - Core files
Table 0002 - Miscellaneous, Variables

ALTSW
ADCON
POINT

Table 0003 - Miscellaneous, Fixed
Expressions

Arithmetic
Symbolic . •

Constants
Value list
Reference list

Name Description header .
Reports
Autocoder

Appendix

Character set
7080 DTS Processor memory map
Notes on pre- processor requirements

Input
Output program
Output messages
Machine setup

Typewriter messages - pre- processor
Typewrite r messages - listing program
Message tape messages
Notes on pre-processing method

Condition area
Action area

Page

4. 50
4. 51
4. 53
4. 55
4. 58
4.59
4. 59
4.61
4.61
4. 61
4. 62
4.62
4. 62
4. 64
4.66
4. 67
4. 68
4. 70
4.71
4. 72

A. l
A. 2
A. 3
A.3
A. 3
A. 4
A. 5
A. 5
A.7
A. 7
A.1 3
A.13
A.15

CHAPTER 1

An Introduction to the 7080 Decision Table System

Some orderly arrangement of data is necessar y for the l ogical

solution of any complex problem. At first blush, for example, the

puzzle below does not lend itself to an easy solution:

Andy disliked the catcher . Ed' s sister was engaged to the
second baseman. The center fielder was taller than the
right fielder. Harry and the third baseman lived in the same
building. Paul and Allen each won $20 from the pitcher at
pinochle . Ed and the outfielders played poker during their
free time. The pitcher !s wife was the third baseman's s ister .
All the battery and infield, except Allen, Harry and Andy, are
shor ter than Sam. Paul, Andy and the shortstop lost $50 each
at the race track . Paul, Harry, Bill and the catcher took a
trouncing from the second baseman at pool. Sam was under­
going a divorce suit. The catcher and the thtrd baseman each
had two children . Ed, Paul, Jerry, the r ight fielder and the
center fielder were bachelors . The others were married. The
shortstop, the thtrd baseman and Bill each c leaned up $100
betting on the fight. One of the outfielders was either Mike or
Andy. Jerry was taller than Bill. Mike was shorter than Bill.
Each of them was heavier than the third baseman.

With these facts determine the names of the men playing each

position on the baseball team.

It is, however, fax less complex than it appears when the pr oblem

i s broken down into a series of steps. What are the facts which deter-

mine the solution?

- 1. 1 -

Obviously (1) the names of the players and (2) their position on the team.

Andy
Ed
Harry
Paul
Allen
Bill
Sam
Jerry
Mike

C

N

P

N
N

1st 2nd

I N

I
I
I

3rd ss LF RF CF

N

.

The first sentence of the puzzle states that Andy is not the catcher,

and the second states that Ed is not the second baseman. Instead, how-

ever, of retaining mentally all such facts, they can be itemized as above

until the process of elimination takes care of all negatives and the re-

maining entries are all lIYes!1. 'TIle solution is stated below:

Andy
Ed
Harry
Paul
Allen
Sam
Bill
Jerry
Mike

P

N
N
~
N
N
N
N
N
N

C

N
N
N
N

®
N
N
N
N

1st 2nd

N N
N N
N N

<Xl N
N N
N N
N N
N ®
N N

3r d ss LF RF

(l) N N N
N ® N N
N N N N
N N N N
N N N N
N N ® N
N N N N
N N N &J N N N

CF

N
N
N
N
N
N

<2l
N
N

At the heart of any data processing problem is a set of decisions

the computer must make regarding the data contained on each record

and the actions to be taken as a result. of these decisions. 'The

- 1. 2 -

decisions may be regarded as a set of conditions and when a given set

of conditions is satisfied then a certain action or set of actions is to

be taken.

In a payroll application, for example, if a salaried employee has

not been absent and if he has not worked overtime, then his salary is

computed with normal deductions . "Compute salary with normal de­

ductions, " in itself, constitutes a set of actions. Of course there are

many more ji considerations in any payroll application, and when a

given set of conditions is not satisfied, another series of actions must

be taken.

A decision table defines all conditions and separates them from

all actions. Further, it relates a given condition to the appropriate

actions in an entry. A series of conditions that must result in a given

series of actions constHutes a rule. Alternative conditions that result

in other actions constitute other rules.

Basically then, a decision table:

o relates a series of conditions and actions

o aligns alternative rules side by side

- 1. 3 -

:,~n(Structure of a Table

To begin to see what decision tables are all about, examine the

simple table of Figure 1 .

Rule 1 Rule 2 Rule 30

25-34 25- 34 !Age

i-------li-----+----Hy.,~7"'l\''*--_l

65
or
over

Health Excellent Excellent Poor

Sec tion of Coun East West West

Hate/lOOO 1. 57 1. 72 5.92

Policy Limit 200, 000 200, 000 20,000

FJ')U1'e 1. An example of a decision table

The first decision rule (columns 1 and 2) can be paraphro.sed:

) ~ ;itJC.~ 'rs lJ"l'eater "r.:i.r~ or equal to 25 and 34 or less, and health is ex-

ceJ1~nt, .ang secti...ll1 uf country is East, thtn set rate per thousand to

1. 57 and set policy h.nit to 200,000. The underlined wor ds are implied

by tho table i.ay"oJL 'The other rules are alternatives to this one, s o

tllPt lC'lTic.:llly, 01ly one rule ca.'rl be satisfiej in a s i'1g1e pass through

Uti:' C3BCiE ion li~.. :.

- 1 1:-

....
en

STUB

Age 11\

Health II \ \

Section of Country II \ \ \

Rate/WOO

Conditions

ctions

Pollcy Limit

STUB

Row

/

/

A Dec ision

Table

ENTRY

. -

Rule 1 t Rule 2

I 1~IR::30 I .JI 25- 34 25-34 / / or over

I
/ II Excellent Excellent I (/ /i/ / /) I PoorJ

// II East West

Conditions RULE
ctions

c-, ,

~
1. 57 1.72

200,000 200,000

}/ / A / / / \ I West I

5.92

20,000

ENTRY
Figure 2. Exploded view of the table of Figure 1.

The information in Figure I is shown in an expl oded ~ew in

Figure 2, to show more clearly the parts of a table and the terms

that are used to describe them.

The double horizontal and vertical lines serve as demarcation:

CONDITIONS are shown above the horizontal double l ine, ACTIONS

below; the STUB is to the left of the vertical double l ine, ENTRIES are

to the right. Each vertical combination of conditions and actions is

cailed a decision RULE.

Tables may also be used in a slightly different way to state decision

logic, as shown in Figure 3.

r Rule No. I 2 3 4

8redit Limit is OK y N N N

Pay Experience is Favorable y N N

Special Clearance is Obtained y N

Appr ove Order X X X

Return Or der to Sales X

Figure 3. A limited entry table

The first rule (the stub and column 1) is read: J!. credit limit is

- 1. 6 -

OK,then approve order. Again, the underlined words are implied by

the form. Note that the form of both conditions and actions is different.

In a limited entry condition or action, the entire condition or action

must be written in the stub; the entry is limited to asserting, reversing,

or ignoring a condition or executing an action. In contrast the extended

entry form (as in Figure 1) has part of the condition or action extended

into the entry. Both forms may be used within one table, but anyone

condition or action row must be of just one form.

Note that the basic concept of a single rule in a table is based on

the tlif . . . then!1 relationship in a straightforward manner . JtA = B and

C is greater than 5 and . . . then assign the value 7 to X and GO TO

Table 10. The alternative rules are explicit; if the conditions in rule 1

are not met, then try rule 2. If none of the rules succeeds, then the

implication is that something is wrong. Now if all Significant possi­

bilities are exhausted, it may be destrable to indicate "Go ahead anyhow

with a special routine. II This is indicated by placing HELSEl! in the last

rule; otherwise, provisions must be made for an automatic error

detection.

The skeletonized table in Figure 4 is directly related to the block

diagram in Figure 5, which shows schematically the way in which a

table is conceptually 1!executed. 11

- 1. 7 -

(

(

Cond 1 Y Y ;-~ ELSE
------.

Cond 2 Y N~
Cond 3 Y N Y ~
Action 1 X X ~ X

Action 2 X X X .~ X
,

Figure 4. A decision table of the loqic of Figure 5

Rulel Rule 2 Rule 3

Cond 1· Cond 1 Jr(Cond 1 lip. ·f" . '<
Yes

I
'(u YU I

I
I
I

Ie Cond 2 Y..s iI
Cond 2 -. ,

Y.s No
I
I
I

Cond 3 (Cond 3 Cond 3 '!.".J
y,~ No y .. '(

J. 1
Action 1 Action 1

Action 2 Action 2 Action 2

1
Figure 5. Schematic representation of the sequence of

tests and actions in executing a table.

- 1. 8 -

Rulen

ELSE "*

J.
Action 1

Action 2

7080 Decision Table Processor

The use of decision tables as a language for prescribing pro­

cedures to a computer has been discussed. It should be noted that a

table cannot be directly executed by a computer. It is necessary first

to translate the decision tables into basic machine instructions. The

set of tables that define the processing to be done by the computer makes

up the source program; this is translated into an object program- - con­

sisting of actual machine instructions- - by a processor which is, itself,

a special type of program. It is the object program that finally directs

the computer to carry out the desired processing of data.

The procedure for going from decision tables written on paper to

final problem r esults is shown in Figure 6.

(1) The first step is the one th at is the primary subject of this

text: planning the procedure and writing it as a set of decision tables.

(2) Cards are punched and verified, producing the source program

card deck (these cards are converted to magnetic tape). The processor

program, mentioned above, is on tape.

(3) The processor program goes into the computer and directs

the translation of the source program into an object program conSisting

of computer instructions. The obj ect program is written on tape. There

are also two listings produced by the processor, giving information

about the source and object program.

- 1. 9 -

SYSTEM bIAG RAM

2. ~----.-.-

DATA

D< " '''.'''0, .. 1--'

TA

""'./"TO p
c.co .. j1

ANY
iA.p£

'2.10 1

''',,''

1'i 'WRm;:
M S.€..

L I ST
ON
401

APE

2.001

~~:1Ii~P.()'.,.I--~~
WD J

7o~o

10iO

- 1. 10 -

." "' ,.
PI<a:(OV~f.

TI'IBLl
~ISTII'JG.

"RjloR
tI'I l.~ o;.A(,.U

i
lISTIt.Jc:,.

AUTO
.nr

PROG-RAM
J-----!~I L\ s. TIN Gr

PRa(j.iV\ M
LIS T (
Mi..s.SAGr ~ S

c..._r:_~oelECT OECII(

(R£4 DY TO caO)

YES

COMPI-ETE
DOCu·

MENT"A,101ol

The processing is in fact done in two steps: one to go fr om

source program to an Autocoder program (Autocoder is anothe r com­

puter language, at a higher level than machine language), and a second

to go from Autocoder to machine instructions. Conceptually, however,

the two parts are not essentially distinct.

(4) The object program is now available on magnetic tape ; it has

not yet been executed.

(5) The object program may now be loaded into the computer to

do the data processing specified by the original decision tables. It is

only at this stage that data is processed. Other computer components

are used as required by the program.

The machine that executes the object program need not be the same

one which processed the source program. Within certain limits, the

two machines need not even have the same features . The machine con­

figuration for each of these jobs is shown in the Appendix.

At this point the basic ideas and use of decision tables have been

presented in rather broad outline. The next step is to learn how these

ideas are implemented in the 7080 Decision Table System.

-1.11 -

: "-: : 1 ,

Situation 1

r

CHAPTER 2

Using The 7080 Decision Table System

The basic ideas of the 7080 Decision Table System are relatively

easy to learn. This chapter presents these ideas in the framework of

a series of problem situations, each chosen to illustrate a few new con-

cepts . At the end of the discussion of each situation there are review

questions, with answers on the back of the same page, ,to permit the

reader to check his understanding of the material before proceeding .

This chapter does not discuss all the features of the language. For

example, it omits some of the details of alternative ways of dOing things .

The complete information appears in Chapter 4 .

For a first example, consider a situation in which it is necessary

to convert an automobile body classification from a code to a readable

abbreviation.

The table on the opposite page can be interpreted fairly readily. In

English :

If the type code of the car body is I, then the model is a
convertible.

If the type code of the car body is 2, then the model is a
hardtop.

If the type code of the car body is 3, then the model is a
station wagon .

- 2.1 -

;
u •• , ,

EL=: ~

Situation 1

In this table, there is one condition row (above the double horizontal

line): The action to be carried ou t depends on whether TYPECODE : 1, 2,

or 3. There is also one action row (below the double horizontal line) :

set MODEL equal to CONVRTBL, HARDTOP, or STATNWGN, depending

on whether TYPECODE : 1, 2, or 3 respectively. This illustrates the

basic idea of a table, that conditions and actions are always related: if

a specified condition (or J more generally, a set of conditions) is satisfied,

then the corresponding action (or actions) is executed. A vertical colwnn

containing one or more conditions above the double horizontal line and one

or more actions below, is called a decision rule . Thus I Rule 1 reads:

If TYPECODE : 1, then SET MODEL EQ 'CONVRTBL'.

TYPECODE is a name for the data field containing the type code;

similarly, MODEL is the name of the field that will contain the actual

abbreviation for the body type. TYPECODE and MODEL are field namesj

they represent variables consisting in one case of a one- digit code and,

in the other, of an eight letter abbreviation . Furthermore, TYPECODE and

MODEL are names of operands - - that is, information fields on which

operations of one sort or another are performed.

In the action part of the table, SET . .. EQ .. . is an action operator which

describes operations to be performed when the appropriate conditions are

satisfied . In this case J the action is to transfer one of the apbreviations,

'CONVRTBL', 'HARDTOP', or'STATNWGN' to the field named MODEL,

depending on which condition is satisfied .

- 2.2 -

· · · , .. - - -" -" -" · · - -· • , I .
.~

. , -
, . • •
• i -

Situation 1

The words 'CONVRTBL', 'HARDTOP' , and 'STATNWGN' are not field

names, but rather are called literals, as indicated by the single quotation

marks . The distinction between a field name and a literal is most important.

Without the quotation marks, Rule 1 would read :

If TYPECODE = 1, transfer the current value of the data
field named CONVRTBL to the data field named MODEL.

This clearly is not the same thing a t all as moving the letters CONVRTBL

themselves to the data field named MODEL .

In fact, in this particular table everything to the right of the ver tical

double line, Le . I the entry part, is a literal : the 2, for instance, refers

to the literal value 2, not to a field name 2. Short numeric literals are not

written with quotation marks s ince they could not be confused with field

names -- which are not allowed to begin with a numeric digit. Alphameric

literals , on the other hand, must be enclosed in quotes to distinguish them

from the names of fields .

If the reader can correctly answer the following questions, he is ready

to proceed; otherwise , some review will help to understand the later material

more quickly . Answers are given on the back of this page.

QUESTIONS

1 . List the field names in Situation 1.

2 . List the literals .

3. What is the difference between a field name and a literal?

4. State Rule 3 in words.

5 . What is an action operator?

- 2.3 -

Answers - Situation 1

1. TYPECODE, MODEL.

2. 1 2 3 'CONVRTBL' 'HARDTOP', 'STATNWGN'. J , , ,

3. A data field is referred to by name, whereas a literal has only

its actual value, and does not refer to pnything else.

4. If TYPECODE = 3, set the field named MODEL equal to the

letters STATNWGN. Stated otherwise: If TYPECODE = 3,

transfer the literal value 'STATNWGN' to the field named MODE L

5. A command to perform some action on one or more operands.

· _ .. _ ..
, : ... - • ,

I . · u ,
--'li,ir' .J , , - • ,

• ,
•
• , • ,

Situation 2

Situation 2 involves a utility billing procedure. The bill stub

that a customer returns witb his payment has punched in it a net

amount and a gross amount. Before tbe bill stub goes onto a card

image tape and into tbe computer system, the letter N or G is punched

into the card to indicate which amount was paid; it is then unnecessary

to punch the amount of tbe payment.

In English, tbis table reads:

Rule 1: If tbe card field named PAID contains 'N ' (for net), transfer

tbe customer's name from the input field named lNPUTNAME to the

out put field named CUSTNAME, transfer tbe field named PAIDNET to

PAIDAMOUNT, write a receipt record, read another bill stub record,

and finally GO TO table 0006.

Rule 2: If the PAID field contains 'G' (for gross), carry out tbe same

actions as for Rule 1, except transfer tbe gross amount from PAIDGROSS

to PAIDAMOUNT as spelled out in action row 2.

The smgle condition row in this example is quite similar to that

in the previous example, with just one difference: since the literals are

alphabetic tbey must be enclosed in quotes.

The SET. . . EQ . .. action operators in tbe first two action rows

are the same as before. The PUT operator, however, is new; it is

the terminology of the 7080 Decision Table System which means to make

data available for tbe writing of an output record.

- 2. 4 -

Situation 2

PUT is part of the specified language of the 7080 DTS; but this

example and the previous example have used named operands which

are not part of the basic language of the system, but rather names

chosen by the problem analyst. These names are for variable data

fields, records and files . A variable data field, of course, contains

a value. A record is a collection of fields, and a file is a collection of

one or more records associated with an input or output device .

. In this situation, PUT RECEIPT specifies making a record from

the file named RECEIPT available for writing -- here the data is the

customerts name and the amount paid. To summarize, the PUT action

operator requires a file name for its operand and it calls for the out­

putting of a reco·rd to this file.

Such data records normally consist of fields which are of known

length and arrangement. Since input and output areas, work areas,

areas for storing constants, etc. J must be reserved in core storage for

all records, their length and arrangement must be specified. These

areas will then automatically be assigned to memory locations in the

order in which they are defined in the program. The specification of

these definitions is made on a 7080 Decision Table Name Description

Sheet. The writing of procedures and operand descriptions are separate

programmer IS jobs and every program requires both. Data description,

being another conSideration, will be explained in another example; so

- 2. 5 -

~ "0' ! I" ~:::!-""C'O:::=:J=='-O!·"·==~ I ' . j -
1' 1 ' ,: 1 , I · ... · ' i
.,.J. , , I" .1..... .. :-;;-;-;;;--iil:;r;---~-.-- -,-'
,....,..:.
1"1;, "

'"
It. ' .

Situation 2

return now to the procedure description.

The GET BILLSTUB action, in combination with information

supplied by the data description, means to make available the next

record in the file named BILLSTUB. This action reads in new vaiues

of the variables named PAID, INPUTNAME , PAIDNET, and P AIDGROSS

(as would be indicated in the data description). The GET and PUT
.

action operators are exactly the same, and provide the same results,

as in Autocoder III since the same IOCS Is called into effect.

The last action is another new one, GO TO. This causes a

transfer of control to the table identified by the operand. In this case,

it is assumed that the current table is table 0006, so this same table

is simply repeated with new values of the fields (obtained by the GET).

A GO TO always transfers to the beginning of a table.

There is no provision for executing a pre- selected rule of a

multiple - rule table . There are, however, provisions for unconditional,

1. e., one rule, tables. For example, in Situation 2 the question of how

to read the first card is ignored. This would be handled easily enough

by an unconditional table, examples of which will be given later.

QUESTIONS

1. List the field names in this table.

2. List the file names.

3. Can it be determined, simply by inspecting this table alone,

that INPUTNAME is a field and BILLSTUB is a file?

- 2.6 -

... , .. - I

Situation 2

. _ .. _ .. _ .. _ .. . : ::::-:-.. - " " .. • • • .. • • • " u " u • • • .. • • • , , - -. - "!'" , - -.. - ._. • • • •
, .

Situation 3

4. What would happen if the GET and PUT actions were

interchanged?

5. What would happen if the last action were GO TO TAB 0941 ?

Situation 3 involves an automobile insurance liability rate compu­

tation, and introduces several new ideas in table structure. First,

more than one condition must be satisfied before the actions in a rule

can be executed. The condition part of the first rule, for instance,

asks, "Is the applicant less than or equal to 25 years of age and a male?"

The blank entry in Rule 1 for the accldente condition row means that

the condition is not r elevant for this rule: a man of 25 or under gets the

risk factor, RISKF ACTOR, added to his rate regardiess of his driving

record.

Notice that there is no combination of age , sex, and accident

record that satisfies the conditions of more than one rule. This is a

requirement of the system: the conditions must be set up so that at most

one rule is carried out each time a table is executed.

This table introduces three of the relational operators: EQ, LE,

GR. The seven available relational operators and their abbreviations

are:

Equal

Unequal

Greater than

Versus

EQ

UN

GR

VS

Less than (lesser)

Greater than or equal to

Less than or equal to

- 2. 7 -

LR

GE

LE

Answers - Situation 2

1. PAID, CUSTNAME, rnpUTNAME, PAIDAMOUNT, PAIDNET,

PAIDGROSS.

2. RECEIPT, BILLSTUB.

3. Yes, but only by implication: the operand in a condition must

not be a file name, and the operand in a GET or PUT action must

be a file name. The data description, if it had been shown,

would of course have left no doubt.

4. The order of reading and writing would be interchanged. Actions

are always carried out in the sequence in which they appear in a

table, from top to bottom.

5. Table 0941, whatever it might be, would be executed next.

: ' ; I I ~ ~ ~~ , , u" • • , I . , " ~ , ~ , , , ,

,

~
I

rMi !
, , ,

Situation 3

These operators are to be tulderstood in the sen~e of a question to

which the answer can be only yes or no. The first condition in Rule 1

thus reads: "Is the age of the applicant less than or equal to 25 years? "

If the answer is lIyes", the condition is satisfied.

The SET operator has a new twist in the first action row: it is

used as a two- address arithmetic operator. It is assumed that the

RATE has already been computed in a previous table; the table here

merely applies special factors if necessary. Rule 1 then says (if the

conditions are satisfied) =

Set RATE = RATE + RlSKFACTOR

The risk factor is added to the rate calculated in a previous table,

thus incrementing its value. In Rule 2 there is no second operand for

this action, so nothing is done to the rate; likewise in Rule 4. In Rule 3,

the action specified is to subtract a special rate factor from the pre­

viously computed rate, i. e., decrement the rate by the special risk

factor. Note that the EQ is omitted when SET is used to perform

arithmetic.

The second action row contains nothing new. The rate, as modi­

fied by now if Rule 1 or 3 is being executed, is placed in PREMRA TE.

The third action demonstrates the use of a limited entry row in

an otherwise extended entry table. In this row, since the same action

is to be carried out for each rule, the complete action specification is

- 2.8 -

I
' I .. ;,' "'''.r. " • ,< ••••• ••
' I ' i) •.• , ,

t.:.,..-• • ~ • • , .J..
I'. I., ~
1"" , ,.1 ~E7

.ti ..
I

...... ,
'~~ .' ~ .. ._. "" Of'

~ :~ .. ,.f~ . ". , ~
_I.

L
'" ~., ~~.

~ • I c.c...t.D.l

"

"

Situation 3

written in the stub part of the table (to the left of the vertical double

line) and X's are placed in the entry part to indicate in which rules

that action is to be executed. As explained earlier, this is called

limited entry; the format of the other rows is called extended entry,

since the statement is Hextended II into the entry portion of the table.

The second action row could also have been written in limited entry

fashion, with SET PREMRATE EQ RATE entirely in the stub, and X's

in the "opn fields of the entries. If an action is not to be executed for

a particular rule then the X should be omitted.

The limited entry technique provides no capabilities not available

with extended entry, but the simplication of the table is often a

convenience.

QUESTIONS

1. State Rules 3 and 4 in English.

2. List the relational operators.

3. In which direction does data flow when the SET . .. EQ ...

operator is executed?

4. Does the blank in action 1, Rule 2, mean that RATE is

set equal to zero 7

5. Could action 2 have been written in limited entry form 7

What would this have gained 7

- 2.9 -

Answers . Situation 3

1. Rule 3: Ii the applicant is over 25 and has had no accidents,

regardless of sex, dec rement the previously computed r ate,

by the special rate factor, set premium rate to the nevl rate,

and transfer to the compact discount table.

Rule 4: If the applicant is over 25 and has had one or I:10<'8

accidents, regardless of sex, the previously computed rat(> 1.

used unchanged. The rate is moved to the prC!mium r::':.o: ::"''1d

control is transferred to the table named COMPCTDISC.

2. EQ, UN, GR, LR, GE, LK

3. Information is moved from the field named as operand 2 \9 the

field named as operand I, e. g. , SET A EQ 2 means A 2.

4. No. A blank in a..11 action operand field medI1S that no action)::.;

taltOn.

5. Yes , saviT!g a little writing and making it app..1rent at a glancE'

that the same action is done in each rule.

The preparation of a decision table can be approached in any

manner the analyst chooses. Examine the following problem statement:

If the quantity ordered does not exceed the order limit and if
the credit approval is tlOK !! , and if there is a sufficient
quantity on hand to fill the order, move the quantity ordered
to quantity shipped, and go to a table to prepare ship release.

If the quantity ordered exceeds the order limit, or if the
credit approval is not "OKII, go to a table named order reject. ·

If the quantity ordered does not exceed the order limit, and if
the credit approval is tlOK", but there is insufficient quantity
on hand to fill the order, go to a table named back order.

To prepare a decision table for this problem should the condition

stub be filled in first, followed by all the actions? Or is the r eal con-

cern with one condition and one action? Should the table be made in

limited or extended entry? Actually there is no set procedure to be

followed .

Examine the problem again:
Cl

If the Qty Ordered does not exceed the Order Limit/

and
C2

if the Credit Approval is OK/

and
C3

if there is a s ufficient Qty On Hand to fill the order /

Al
E'Qv~ Jhe 9.t' _OI~eE~ 10_ Q!::t. ~h1P/

and
A2

- 2. 10 -

C4
If the Qty Ordered exceeds the Order Limit/

or
C5

if the Credit Approval is not OK /

A3
Jlo_ t2 £ iaEI~ E'!..m.§<i Qr2~ J:'l~j§g /

C6
If the Qty Ordered does not exceed the Order Limit!

and
C7

if the Credit Approval is OK /

but
C8

there is insufficient Qty On Hand to fill the order /

A4
Jlo_ t2 £ !9-EI~ E,,-m.§<i !2,!>,k Or2~..!

The solid underlines indicate the conditions; the broken under-

lines indicate actions. Note that the word order is exactly that of the

original problem statement. The conditions and actions are numbered

here simply as a count; there are eight conditions and four actions.

Note, however, that el, C4 and C6 are concerned with the same

operands. Further C2, C5 and C7 involve the same operands. C3 and

C8 are also s imilar.

Spelled out this way, it is obvious enough thai there are basically

three condition rows and four action rows. Such diagramming is un-

necessary and is done here solely for illustrative purposes . . The

decision table itself is an adequate diagram:

- 2. 11 -

; , . AMI t ~' ~ " '~

Situation 4, A Limited Entry Table

Name 1

QTYORDERED
CREDITAPRV
QTYONHAND

Operator Name 2 I

ORDERLIMI;JI LE
EQ
GE

'OK'
QTYORDERED

,---- ._-- - -------.--- -_.- -_.---- - .-

All the condition stubs are stated above. All the action stubs

could t hen be stated.

QTYORDERED
CREDITAPRV
QTYONHAND

SET C!:'YSHIP
GO T O P.'i.EPSHPREL
GO TO ORDEREJECT
GO TO BJ.CKORDER

LE
EQ
GE

EQ

The entry conditions can then be stated with the appropriate !tyes II

and uno 11 entries, and finally the action entries are completed by filling

in the proper X's for execute. The final result is shown on the left page.

Note that all conditions and actions are stated in limited entry

form. When this is the case, the two position columns may be used

for the rules, thus allowing many more rules on a single page.

In some situations it may seem more logical as a first step to

state a condition, an action and then an entry as below:

Operator Name 1 OP Name 2 Rule 1

CREDITAPRV 'OK' N

GOTO ORDEREJECT x

- 2. 12 -

m~w ""
. ~;1 . ~·I'··· '·

,~,

. I .,,",.
n "

~
'"-,::0-

~

I ; , .. ".1 .
,
,

~

DECISION T A8LE lOGIC SHEET

.,:", ':iii : ;
,

""." .". . ,

COIII MIIIT

, , , ,
, . ,

~

..
.. '.,-- 'u .. "

. . .

. oe"" ..

....... I D ..

r:: [' -..... , ,,-
u ..

DU .

,~ .
nIT '

~ ~~

Situation 5 , Decision Table

"

There could be other methods of stating the decision table which

would be equally valid. The table could be shortened, for example,

by combining the three GO TO commands into one extended entry row

as below:

Action
Operator

GO TO

Rule 1 Rule 2 Rule 3 Rule 4

PREPSHPREL BACKORDER ORDEREJECT ORDEREJECT

In summary, the preparation of a decision table is not a cut and

dried procedure, since any approach forces the analyst into a logical

analysis of all aspects of the problem.

Situation, 5 is the preparation of a stock classification listing.

This table again exhibits multiple conditions, with one of them in

limited entry form. The second condition stub asks: "Is the number of

shares greater than 100, ooo?" To satisfy Rule 1, the answer must be

yes. In Rule 2, with its blank for this condition, it doesn't matter. In

Rule 3, the answer must be !lQ in order to satisfy the condition -- that

is, the number of shares must be equal to or less than 100,000. (Note

that numeric literals in a table must not contain commas.)

The three rules here do not exhaust all the combinations of the

variables in the conditions. For instance, the stock type might not be

1, 2, or 3, or even if the stock type is 1 the number of shares mighlnot

be greater than 100, 000. In this table provisions for such possibilities

- 2.13 -

,.... . ,.
i! ' I:" :J..' ..iJ:;

0000

~ :
:

'"
~ :
: .. ,

. .
11.' : :

.... -•... -

IIULI II Of

--­..... -
· · : :::::-..

.~I ,
, " ". ,

, .
· lli
•
• , .
,

DECISION TABLE LOGIC SHEET '1

. .. 10WI
.... , : :~: i,L , ,L ,l '''''' ._ .

I " ' " . ._. .- , t ·
0 .. ,

" OIlD t L1..
011'1. .. . U"I' . .. ~ ... _______ D£1' ______ _

". " H . .. ,. ~ ~ to' ' ..

.~'I
-" .. hU .. "_. -" "!'..!l! .. "

.. __ '.!O"

• '0 •• _____ .~. _ _____ _

U.,_I _ ___ _

" It I. " I . " II " ., r> 10 .. " JI
... _.. UIOI. ...

, "' , , , ,

Situation 5, Decision Table

are made with a special designation called ELSE. This rule says what

to do if none of the other rules can be executed. In this example, it

is reasonable to expect that it will frequently happen that none of the

other rules will be satisfied, so that the ELSE is a more or less normal

occurrence. In other tables, failure to satisfy any of the rules might

represent an error in the logic of the table or in the data In such a

case no provision would be made for an ELSE; now, if no rule is satis­

fied, the program proceeds to the error table named in the table header.

The table header contains in addition to other descriptive and identi­

fication data, a two poSition field where the rule number for the ELSE is

specified. Rule 04 is specified in this case in the table header, and

rule 04 states GO TO another table to handle this possibility. In this

case, because the ELSE rule takes care of all other possibilities, the

entry in the table header for error table name is left blank.

Since it is possible to set up many tables that will be executed in

the proper sequence to carry out the necessary processing, there are

entries in the table header which must be filled in to relate the various

tables. These entries are largely self- explanatory. For example, the

column IINo. Rules l1 means just that - - how many rules are there in

this table 7

Tables are named (or numbered) and these names are used when

the table is referenced in the program (i. e. J on another decision table

- 2. 14 -

nrnll;1J " .. DECISION TABLE LOGIC SHEET r:::;.... r' " ' -

~
,~.'''" . ,'" .,,,:. 'Eii . LUi ~ .

(11011 (I' ,
~'

, ..

: ,~ , , ,,, .. " "". 'IIOGII'" D." , , ,
•• ' '0 .. ,~,

.. :. ".::'" CO 111111. T MilT , ..

; ~
, , ~ir~ ,

"

Situation 5, Decision Table

or within the table itself}. Both a name and a number are not necessary,

but if the table is numbered, then when the number is referenced within

a decision table, the letters TAB must prefix the number, as in the

final action of Situation 5.

The letters II~" in the table header stand for "card continuation, II

which is always zero in the table headers.

Five identification letters can be specified under the column head

"Type" which deSignate:

L -- limited entry

M - - mixed entry

A -- information to follow is in Autocoder

R -- information to follow is report speCification

D -- information to follow is data definition.

The detalls of the table header are given in Chapter 4. Snffice it

to say here that the ordering of rules and of condition rows is a pro­

grammer's convenience to assure an efficient object program. Finally,

the "Comments" section allows the programmer to make any notations

he cares to.

To return to the table itself, the first action operator in the pro­

cedure table is a familiar one, in this case setting a print field equal

to an alphameriC literal.

The second action operainr is a new one, MOVE ... TO. This

- 2. 15 -

""
DecISION T AIU LOGIC SHEIT _

til' rl~1 fl ! I, J: ' ~= ,,:it '= ; ~,,-
w..:, ,M '" ,- M"

, ~
p_~n -lil:, COIIII •• T .. n_

,
~'

. ; ~ ~ ~ ~ ~ , I

,
Situation 5, Dec is ion Table

I , "," " -
~ I

Mn
Nfl'AIID I' , -

,

~ ~

:~ **
, Situation 5, Name Description

is the opposite of SET. . . EQ: it moves the quantity specified by

the first operand to the field named in the second operand. The

difference in usefulness of the two operators may be stated as foHows :

SET. . . EQ is valuable when one of several quantities in the second

operand field is to be moved to the first, common, operand field;

MOVE. . . TO is valuable when a quantity in the first operand field

is to be transferred to one of several fields named by subsequent

operands.

The third operator is the now familiar terminology of the 7080

Decision Table System which means to make data available for the

writing of an output rep::>rt. This action is expressed in limited entry

form.

The names for the variables in this table introduce some addi­

tional processing that is not evident from a study of the decision logic

sheet. As previously mentioned, Decision Table Name Description

Sheets are a convenience so that the decision table can deal with names.

The description forms are required for such details as classifying

data, specifying its length and special characteristics, and specifying

values.

Consider the Decision Table Name Description Sheet shown for

Situation 5. The letters "FLD I1 in the t!Class l1 column indicate that

this name is a field as opposed to a file, group name, report, etc .

- 2. 16 -

DECISION TABLE lOGIC SHEET r: r' -..... ,.' ... - 'J

Situation 5, Decision Table

~

.I
~"
"'(''''£0''
,~. I''''·' I ,... l I

. , .I\i! .. ulb. Aj.
HU"A(;(

Situation 5, Name Description

The number 112 " in the number column indicates that it is 2 digits in

length and the letter "Nit under HDescription l1 states that it is numeric.

The name SHARES is classified as a field since the II class ll

column is blank; the assumption is made that it is in the same class

as the preceding entry. It is 8 digits in length and numeric.

Under the description of STOCK VALUE, the first position con­

tains a number sign (iI). This signals the processor that a decimal

point is to be defined for a quantity of a specified number with

integers and decimal positions. In this case a signed number with

two decimal digits and eight integers is specified. Alternatively this

ten digit field could have been represented with the more conventional

X's with the decimal point located in its proper position

(+ XXXXXXXX. XX). TYPE is also classified as a field. The code

characters A+ define this field as a non- numerical field whose right - most

character will always provide left protection for an adjacent signed

field. In the absence of left protection, the single character A would

be specified.

VALUE1 and VALUE2 are descriptions for variables in a printed

repJrt. Provisions are made for the suppression of inSignificant zeros

in the report by the placement of Z's in non- affected poSitions. Commas

are used in the normal manner as they must always be; i. e. , the fourth

position to the left of a decimal point or sign indicator and then after

- 2. 17 -

--_ _ ---
--.~,--

.. UT,.,.;" ___ _

Situation 5, Decision Table

Situation 5, Name Description

every three additional positions to the left. The 15 in the number

column includes a count of all the positions in the operand up to the

fi r st lozenge (ll l ; i. e. , the dollar sign, eight integers, two decimal

places, three commas and one position for s ign indication. No sign

indication is specified, and the system will automatically provide

for a - for minus indication and no sign indication for plus or zero.

VALUEl demonstrates the use of a floating dollar sign; i. e., one

which will appear immediately to the left of the high- order significant

digit. One position is allocated for sign indication following the low­

order digit and then a floating dollar sign is specified by the character

$ written between two lozenges.

VALUE2 introduces two new definitions: CR or c redit symbol

print- out and asterisk protection. In this print-out the dollar sign

always appears in the position assigned regardless of the number of

digits printed because a floating dollar sign is not specified. Two

digit positions following the low-order integer are left blank for the

print-out of the letters CR The CR enclosed between lozenges

indicates that the letters CR are to be printed when the value is

negative in the two positions following the right-most digit -- this

will be blank if the value is positive .

The asterisk enclosed in lozenges specifies that asterisks are to

be printed in all blank positions between the fixed dollar sign and the

- 2. 18 -

• 70 ..
DECISION TABLE LOGIC SHEET 1= ••••• - [' '1 ,-

iJ nr ... ',:.:: I ";;, ' ,or I ; ~ I "' .. " .OU

~~ " " .. : IT t;~ · ...
,. , , , .. ,

[oJ: ","""1 , Dn • , -" " , ..

. ~
' D •• .~.

ill COIiItUIT
NUT ."" • .

~
, .,

; .
~' ~ , , , , ,

""". ,
, ,

,

,

Situation 5, Decision Table

OEOSlOlol TAaLE MA.ME DE!.CRJPTICiII ~En

.~,

, ,

Situation 5, Name Descr iption

high-order digit - - which again may vary in position.

The editing functions discussed all appear on the Decision Table

Name Description Sheet. Observe that there is nothing on the Decision

Table Logic Sheet to indicate that editing is to be done.

In summary, Situation 5 has been largely concerned with the

necessity for a table header and for a Decision Table Name Descrip-

tion Sheet and has illustrated a few of their functions. More details

of their many functions will be given in situations that follow and a

complete explanation is given in Chapter 4.

QUESTIONS

1. What is the function of an ELSE condition and under what circum­
stances is it employed?

2 . What is the general purpose of a table header?

3. What is the difference between a SET and MOVE operator ?

4. How are editing functions specified using the 7080 DTS?

- 2. 19 -

•

Answers - Situation 5

1. An ELSE condition provides for an unconditional rule. If none
of the other rule conditions are satisfied the ELSE or "all
others ll rule is executed.

2. The general purpose of a table header is to identify the table
and relate it to other tables in the procedure. It also supplies
additional information to the processor to aid in compiling the
program. Other notations permit the analyst to specify re­
ordering for increased object program efficiency without rewriting
the table.

3. SET transfers the value of the second operand to the first: MOVE
transfers the first to the second, e . g., MOVE A TO B means
A-t B where SET A EQ B means A~B.

4. Editing functions are specified on a form separate from the
decision table . This form, the Decision Table Name Description
sheet, is used to define operands so that the table itself can deal
with names.

10 ..
DECISION TABLE LOGIC SHEET r.:::;: .. - r , ._.,

•
r'"""

~
,,:i:, ':iii .~ ~ . "' .. " ...,

,

~'"
..

.-~ ~" . . .

........ D ••
_ .

. J''''':. COlllllll T MUT_I

,
~~".~'tJ.

I ; I· ~ ~ , ~ '
, ,

,

Situation 6, Open Decision Table

Situation 6 is one aspect of a payroll operation. The table header

states that there are four rules and that it is a mixed entry decision

table. No ELSE rule is specified as all normal conditions have been

covered, and failure to satisfy any of the r ules would be an e r ror . If

a special error routine had been set up this would have been specified

under "Error Table Name" in the table header. In this decision table

the special operand T ABSTOP is specified. TABSTOP causes a program

halt whether s}:€cified under "Error Table Name 11 or "Next Table Name II

in the header, or in a GO TO statement as an operand in the table itself.

The single condition row compares the purchase code with three

alphameric literals (which do not require description) ill rules 2, 3, and

4. In rule 1, however, the extended entry condition operand DEDLIST

requires definition, since it is a name designated by the analyst. The

definition is not for a variable field, but for a fixed set of values . Fixed

values are not described on the same Name Description sheet as variable

information. Description Table 0003 is used to define fixed values. In

the case of DEDLIST the reference is to a list of constant values used

only in the condition section of the decision table . The class entry VLIST

(Value List) is always used for such a list with the values listed as shown

in the exam pie .

Rule 1 states that if the value of PURCHCODE in the current r ecord

is anyone of the entries listed on the value list , then GO TO a table named

- 2 . 20 -

DECISION TABL E l OGtC SHEET r: - [' 1 • 1010 '._ -.
~ .. "': """"1

',::.:
l ':.:,;; I 'z;i: I,U_

,
! 1"''-'·' ,u .. ,, ' " .. . , .
. ~ . " . , ,

. I 1 ,.,,"" -=,. " ~IIO ~" ,;
" ,

" ,
• 11.00(1' ,y .~ .

,..;. I "'''"- COIIIIIIIT
"UT '0(11

ijli
~.,. '.' -','~'

T ,
~ ~ , , , , , u.,.' ~ I •

, , ,

m
Situation 6, Open Decision Table

IBM 7l.u O!OlolOM TA6L.E II".E DESCRIPTION SHEET

Irl,;.'W ~;;J,;;;!\,'SC"-' I ~ ~ • ~~, "~~i _~ A .. ,

- ",;' ... , .. , .- .- .. ", ... """

:;

Situation 6, Table 0003

= ~

i:f ~ ~ ,
~. ~ ,

Situation 6. Purchase file

OTHERDED. It it is not on the list, the test will fail.

The first action of rule 2 states MOVE EMPLOYINFO TO EMPLY­

IDENT. The operator MOVE ... TO has been previously explained,

but two new operand types are involved. EMPLOYINFO is the name of

a symbolic expression. Symbolic expressions operate on symbols or

strings of characters in much the same way as arithmetic expressions

operate on numbers. The symbolic expression calls for the joining together

of various data elements and treating them as a single field . By defining

the "stringinjtogether " of operands in table 0003, reference is made with

one call in this example to LOCATION, DEPARTMENT ... NAME ,

without complicating the decision table with calls to each of these fields.

Note that the description includes the word JOIN. This 7080 decision

table ot=:erator is always used in connection with the other system word in

the class entry SEXP, and causes all the data elements to be treated as

a unit. Variables, constants, literals and other symbolic expressions can

be joined end- to- end by the expression, they need not be adjacent initially.

The other new operand type , EMPL YIDENT, is a group name -­

classified as a G NAME . G NAMES, like symbolic expressions allow multiple

o}:€:rands to be treated as a unit. The distinction between group names

and symbolic expressions is two fold: (1) group names deal with con­

tinuous sectionsin memory; (2) symbolic expressions allow strings of

characters from discontinuous points in memory to be brought together

- 2. 21 -

llm!l;lJ " .. DECISION TABLE lOGIC SHEET

"',,_._---

. ' I' - I-.. ! I 01 I !"_ ~ II 11 " ., .. " .. " 11 .. ,. to n 11 " ... II • 'to ,. I' n

: , >:" · ·~U~._·~" _~ ~ .. ~ " • - •

, . o
, . . .
, .
, i

Situation 6 , Open Decision Table

• -' .- ••• .."'--
_ .

~ ..
I. '

~
.. ~ ..

~
,

, '
. ,

Situation 6, Deduction flJe

11M ... DtaSlOll 1.1..", ICUI 0ISCII1mCIIW4tU -
wr.li~, I'~"l,::;~ ~ji;w;,. I J

~"
'.I'''-'ID to

'" ilL ! " .~.

-'" . NUT

~ , :!fi: !

~~ 1= . IoU

Situation 6, Closed Autocoder Table

and treated as a unit . The sequence of characters Is In the order

in which the operands are specified In the symbolic expression itself.

The first action row of rule 2, then, moves the current values of

LOCATION, T, NAME • . . to a 32 position area called EMPL Y­

!DENT.

The second action row Introduces a new action operator - - DO.

DO is a sequence control operator which causes the execution of the table

named as the operand, and upon execution of this "closed table", control

is returned to the table which referenced the closed table. In contrast

an "open table" takes control without reverting to the table which re­

ferenced it . Open tables are never called with a DO command.

The closed table referenced by action row 2 of rule 2 is named

BUYBONDS. This is a pseudo table as it is written In Autocoder language

on an operand description sheet. It references data described On other

operand description tables. Such procedures must be closed routines.

Note that In the table IE ader this sheet has as the "Type" an entry oUhe

letter A. This Indicates to the processor that this is an Autocoder pseudo

table. The letter "D" would be the type code for description sheets which

describe operands

The final action of rule 2 in situation 6 is the !am!l!ar GO TO

operator and the operand Is TAB0260.

In rule 3 the condition Is the PURCHCODE equals the literal'S'. The

first action row Is Identical to the operation described for rule 2; 1. e. ,

- 2.22 -

"' 10U
DECISION TABLE lOGIC SHEET

: ~--,--~"-~.~~ ST} - -

~.
.- ~ ., I , -

1 ._. ..- ,I ,
1 . .

'·:·':d ... ""~ " """ .
" ". " ,

I
.. ,

1·"",::- co III T

;:::~

;
" , 1 ~ .
~

~
. iii

. 'm ' -.... "1 ::=, . - -
I .' • " I . ' ..

I • ' '' IL

.. .-

Situation 6, Open Decision Table

.

~ ~

~

Situation 6, Deduction file

; ·:·~·:·I:~=!] ~
.JtXL. -lii3- :;:op 1

r: ~ T'
• _ .. 1._. _ , :

-----,..---. : - . .. ~ - -, ~

,,, .. " , , " ..
ft ' i : I I .• I.

. 1.1-
I

.",,~ DAH

• ., ,0 •• .~,

.u, ,
,

"''''''.0. ~~~.~ .. ~~
~

I

, I

........

Situation 6, Closed Decision Table

transferring a symbolic expression value to a group name of the

PURe: HASE file .

The second action specified in rule 3 is a two- address arithmetic

command operating upon two data fields in the input/output area: STK­

BALNCE and STKAMOUNT. These unassigned variables have name~

assigned to them; their length, format and their special character istics

(1. e., sign, decimal position, etc.) are defined in the operand description

sheet for the input/output areas.

The third action specified in rule 3, as in rule 2, calls for the

execution of a closed decision table, so that control will be returned to

the calling table. Note that the BUYSTOCK table has in its table header

under "Next Tab!e Name" the entry DO - - speci~ying that it is a closed

decision table.

Consider now the closed decision table BUYSTOCK. This limited

entry table has one condition row and two rules. The first operand of the

condition is STKBALNCE. This field, classified as FLD, and described

in the input/output operand description is part of the file named DEDUCTION.

This entire file can be referenced by referring to its name with input/

output actions, or as in this condition statement a single defined field is

referenced. Note also that all of the fields in the file are classified with

the entry RNAME me aning r ecord name. If there had been occasion in

this program to reference the record as an entity, e. g. with a MOVE, a

name would have been given the RNAME entry.

- 2. 23 -

..... , 11

Situation 6, Closed Decision Table

I" .~.

Situation 6, Table 0003

~ ~

~
, ~

Situation 6, Purchase file

The second operand in the condition statement, MARKTV ALUE,

is a new type of expression. It is classified in operand description

sheet 0003 as MEXP which designates an arithmetic expression. MEXP

as an operand designate s that the evaluation of the expression is to take

place at the time it is used: in this case computing the stock's market

value by dividing the sum of the day's high and low selling price by two .

The first four action rows of the decision table named BUYSTOCK

involve the now familiar operators SET and MOVE, a two address

arithmetic operator, and as operands FLD, MEXP, and a literal.

The fifth action r ow utilizes the operator : PUT. The operand

here, PURCHASE, is a file name, described in the input/output operand

description. The PUT operator, with a file name as an operand, causes

the record to be r eleased from the program and placed in the output area

to be written out automatically by rocs when a block has been filled.

In summary, Situation 6 is concerned with the relationship of the

various tables which are employed in one data processing operation and

with the data descriptions associated with these tables .

An open table has called upon a closed table with a DC command,

and anothe r DO command has called on an Autocoder pseudo table used

as an auxiliary mode accepted by the system and treated as a closed table.

Data description have enabled the tables to employ a single operand

to call upon continuous sections in the memory (GNAME) and upon dis­

continuous fields in memory with a single symbolic expression in

- 2. 24 -

: ! ' I:IH"' T" ! : ! ~ : -.

'rll J.' • .
•

:'

-~ ... '~-r"""':'- : :::: - ! . , - .- .::..-: .. -
::3 .

T L "

""". , """. ,
, , I" '

~.

Situation 6, Closed Decision Table

~"
~"
Nf''''fO'Y
.~.

IIU1'AGf
, ...

Situation 6, Table 0003

connection with a JOIN operatoy(SEXP). Arithmetic expressions (MEXP)

have permitted the table to employ a single operand to designate that

the computation described by the expression is to be performed.

Situation 6 has also shown that an entire file , a record within the

file or a single field can be referenced by its name. A Value List (V LIST)

has been used to determine if an input value is the same as a value In the

list. The condition is satisfied if there is a corresponding argument on

the list.

QUESTIONS

1 . What class entry is used in describing a list of constant

values and where may such a list be referenced in a decision

table?

2. What is a SEXP operand and how does it differ in function from

most named operands?

3 . When is a GNAME used?

4. What is the only action operator which can reference an Auto­

coder pseudo table? Why is this restriction made?

5. Where is control resumed after the execution of a closed

decision table?

- 2. 25 -

•

Answers - Situation 6

1 . V LIST defines a list of constant values and is used only in the
corrdition section of a decision table .

2. A symbolic expr ession differs from most named operands in
that it causes operations to be performed on the data fields.
The JOIN operator of a symbolic expression will "string"
together characters from discontinuous poin4' in memor y and
allow them to be treated as a unit.

3. GNAMEs are used to reference a continuous section of memory
as a unit.

4. DO is the only action operator which can reference an Autocoder
pseudo table. This restriction is made because Autocoder pseudo
tables are always closed tables, and only the 00 operator is used
to r eference closed tables.

5. Control is resumed by the decision table which referenced the
closed decision table. The action immediately following

7 ...

(in the same rule) the DO statement which referenced the closed
table is the next action performed.

DECISION TAILE LOGIC SHEET ._- r , L...- -

I ;]lTII
~~;,.

.,'" ':Ell I i I ; I .. ··-·~ ... n ..
~

~
~

,-~ ~"

:f: ~"I'IIoaflI"
_.

. ~. (01111 I'll T _ .. T_

... ~ .

I ; , 11 t¥f. ; .
:ri ~ ~

Situation 7, Decision Table

In Situation 7 it is desired that a summary report be printed

listing all acceptable expense transactions. The decision table determines

if the departmental charges fall into acceptable general ledger number

ranges. Also, certain general ledgers are not to be included on the

report. Total lines are to be produced for the previous general ledger

number when a new general ledger number is processed. The conditions

of the table are familiar . The first action row has as its operand
.

EXPENSERPT. This is the name of a closed pseudo table and the DO

operator causes a report writing routine to be entered. In this report

pseudo table the descriptive language of the 7080 Report/File Writing

system is used. The DTS processor passes these statements along to

Autocoder ill as they are.

A 1403 Spacing Chart is used to illustrate the format of the desired

report. The report has a heading of MONTHLY EXPENSE DISTRlBUTION

REPORT, and as part of the heading the letters RPT DATE are stated,

followed by "Xs" to indicate the digit positions of the variable date. A

line is skipped and the column headings, DEPT NO ACCT NO

rnvorCE NO rnvorCE DATE rnvorCE AMOUNT are to be printed.

The succeeding lines specify the length, format and special characteris-

tics of each of the fields of the detail line.

In this example of a summary report, it is desired that each

transaction be listed until a new general ledger number is encountered,

- 2. 26 -

IBM
,

I:
I:
I:
1= ;
~ .

1=

I;
I;

I:
I: , I ~

~ I::

'"

G L;U E .1

IBM 7010

U;;I!!~,

0: '

... " _ _", (00 '10"0 '

11M 1403 SPACING CH T
6 li por i""h

-

. .

--

.- . <>. ... ~ .. "' -,-
,-

at which time a total amount field will be printed. The characters

***GEN LEDGER are also to be printed, followed by the two digit

general ledger number. The length, format, and special characteristics

of this total are specified with the appropriate notations in the print

positions desired. The first field in the operand portion names the

field where the number will be taken from; this is followed by the printing

format using conventional RPI' notation.

On the Name Description sheet header, the l etter "R" for Report

is specified under Type, and the table is named EXPENSERPT. MODE

(page-Line DOl) must be specified under class at the begtnning of a

report, and the entry REPORT made in the description columns. Simi­

larly, MODE must be specified under class as the last line of the des­

cription sheet followed by the entry AUTOCODER in the description

column.

The entry DREPT (D02) in the class column indicates that a report

is to be described, and must be given a name to provide the necessary­

operand name to be referenced by the programmer when calling for a

line to be written. The description entry references other parameters

of the report definition; these will not be described in this manual.

The entry PAHDG (D03),for page heading, specifies that a line is

required at the top of each page. The entries which follow describe the

constant and variable information contained in the heading line. The

- 2. 27 -

S1tuat1on 7, Report D1scr1pt1on

entry CARRC (!Xl4) is made in the class column to specify carriage

control. The first position of the description is a 1 to position the

paper to print the first line at the top of the page. The entry CONST

(!Xl5) is used to define a line segment which will be the same each time

the line is produced. The numeric column contains the number of

positions in the segment, and the description speCifies the words as

numbers to be printed. In this example a 42- position title is specified,

followed by a lO-position constant with the letters RPT DATE (!Xle).

The next entry !Xl?), WDATE is used wher e the data to be moved into a

line segment may change between object runs, but will be the same

throughout each object run--as in this example the date. The operand

in the description area indicates where the date value can be obtained.

The report writer will automatically move the date to the proper position.

Following the WDATE entry another page head (!Xl3) is specified

followed by a carriage control entry--in this case 0, which is the code

for double spacing. The column heads are then specified with two CONST

entries (DlO, Dll) .

DTAIL (Dl2) is used to indicate that the description of a detail line

will follow. Succeeding entries describe the fields in the detail line .

Each variable field that is to be printed has the field name from where the

value is to be taken, followed by the format in which it is to be printed

expressed in the operand description area. The fields are placed in the

order in which they should appear on the report line. Appropriate spacing

- 2. 28 -

D!O!.lOtl T"'aLE N"'lIf D!~IIIPTlON SHEET

IBM 1010 DEOIJON T.t.BLE NAlI! Df.~RlPl'ON ~EET

lj;-;:!nt~"J;;~ll, -
-~

...... .- •..

,' :

.l

~o:x.lI.l"

~"
I'IIl ''''II(D tv
,~

IIUl.A(;l

~"
~"
~EPAl~D IT

,~.

"~

and special characters is spe cified with the CONST entry.

Following the detail line definitions, the entry BREAK (EOl)

appears in the class column. This, as with the other entries, is

normal Report File Writing language . It is a conditional l ine in the

body of the report which permits testing for changes in the contents

of specified control fields -- in this case a change in the general ledger

number . Total lines are automatically written when this control break

occurs .

Entries following the BREAK, specify the format of the total

line. The entry CLRPT (E08) terminates the report specification.

As mentioned previously, the final entry (E09) must be MODE, fol­

lowed by the word AUTOCODER in the description column.

The report writer pseudo table creates a routine which is es­

sentially a subroutine within the object program. Other programming

is required beside the Report statements. In Situation 7 these re­

quirements include:

o Input/Output procedures - - All data fields processed by

the Report/File Writing routine are referenced in the

routine as named operands . The standard Decisi on

Table Name Description sheet is used for the description

of records contained in the file. The file, itself, is des­

cribed on a 7080 lOCS File Table Macro- Instruction form

- 2. 29 -

I

I~.;.",

IDI_

1:1

~

I

,

~~
.~

CIIQSIOM TA&I! lIAR ~ IHHT

I
,

~*' ~

§

I

-~n
I'ItIl'AAl"Dn ,-

~_ .. "''--0.'' _"'~~D'" U

7(E() loeS FILE TABLE MACRO-INSTRUCTIONS (LONG FORM)

~OGRAM, ______________________________________ ___
CODED BY; DATE: EEffi

rXpe.IJ'SE,f;?ir O FTA lit X p , tJ !. t! It t T ItJ~ tJ lOR E T URN T 0 [] I 0 It E T URN T 0 [] l OR E T U ~ N '" 0 0

------------ -- - - --

------------ - - - - - ---

lO
lO

,.Q-.«WDD EORb i'fI:ANPARQ) CST AN DARO!?J
o'"T""o R W D 2 0 E 0 f beN 0 N S I AND 06 M b 6>0 S P E CST A N b aeB SKit W 0)0

J RUNl ~QIH NOHEADER NOTM NON SIA Nob NOltWDb
.. RUN2 NOND N OTRA ILE R

P R I M---.! rs I N G L 0 cs::ra U EN) CKPTRCDSb DUMP DELAYOpf;-,'.
(NOP Ii DoMU I b O NON S rQo~OCK PT RcOlJ,NO DP)&OOE lAVb!DtJ

-------- -----~~~~~~~~~~~~~~~~~~~~~~~~~~;;~~~~ I p 0(0 A T A)OrlflD..!. NIT b C I(L NG t M P C to '-1 G E N ARE A fi"')
IOFTB Cl!D woltk: ..-....-rtTA C r9crN OCH g;>[JNOCMP[J~O(AREAGIY>rrv[JI007010IQ.,OOIo

________ p ROG

------------ GETb PAD BOTH B D

aUIIa> NOWORKAREAoNOPAoOELEToWORKa
BOTH 00 EOF9S WPSD

___ ________________ cNONO<EOND <S ON D

---------- -------=---=--::-:-:-:-::-~;;::;;::---;;;;::;--;;:::-~-----:-=-:-:-=-=---=-=~----
ZOC K l N G rJ.CM P C I9c®rfEt.l!x PA. e .. i a~x PA i."A ~ It

______ _______________________ ...:I.t::N:O:C::"::::9 ___ N ___ O_C_M ___ f ____ N_O ____ V ____________________________________ -------------------------------
I 0 FTC

..... , 1

llrnll:1) " If
DECISION TAIlE l OGIC SHEET 1

. _ , ___ _ N" ____ _

.. IMftD" ____ ' _ ___ _

... ',..1, ___ -

Situation 7, Decision Table

~
.u .. ~~ ~ , ,

,

,
,

(long or short). An loeS File Table for Situation?

is shown, this is preceded by Name Description

sheets which contain input/output tape assignments

(IOTA) and followed by descriptions of the records

referenced by the Report/File Writing routine.

o Entrance to the routine -- Decision table 0005 which

has been given the name VAliDATE has as its first

action a DO command which causes the report pseudo

table to be entered. The line will then be printed and

control will return to the second action of the rule

which had the DO.

o Opening the files -- Table 0004 which has been given

the name START causes all files to be opened .

o Closing the files -- The table named ENDOFJOB per­

forms the necessary functions for ending the job. The

table name is specified on the loeS File Table for the

EXPENSE input file under END OF FILE TR ADDRESS

of 10FT A. After the last record has been read and

End of File has been reached, a transfer will go to

table ENDOFJOB. As the sample shows, the total is

printed for the last general ledger, "END JOB" is typed

on the console t ypewriter, all files are closed and the

- 2. 30 -

~ , ,: . i ~. "'-1. . - f:,'"
:~: i .- .-

,
fAa", 'II<f -

.~ .. --:-:. : : . _ .. -

.. ."
•

_ .. _ .. _ .. _ .. _ .. _ ..
.. " • " • • .. • " • " " " " • " • • • • " " • • • • " , ."11 •

_ .
• .,... • - • _. _. • _.

• • • . --- " • --. . --- • • • • - • -. . •

~ 7111
DECISION T LE LOGIC SHEfT [::··:,-r 1

: • fl .- .." ._. -C."II.'.T --

Situation 7. Decision Table

program is halted by the GO TO TABSTOP action.

QUESTIO}'TS

1. In Situation 6, Autocoder was introduced as another
language called by the decision tables. Situation 7
calls upon another language , Reports/File Writer.
Since the 7080 Decision Table System has its own
language why are these languages intermixed?

2. What happens when a Reports/File Writer routine
is called?

- 2. 31 -

Answers - Situation 7

1. Decision tables provide a descriptive representation of complex
decision procedures in a way that is easy to develop, visualize,
and follow through. When a set of procedures does not involve
decision logic, the Autocoder language may be a more natural
form of expression. The report writer language is a highly
developed, but highly specialized language and is used as an
auxiliary mode to perform these report writing functions.

2. The report routine is entered and a detail line is written. If a
control break occurs, the appropriate total lines will be written
automatically. If the last line on the page is written, the report
routine will automatically skip to the next page and write the
heading information.

DECISION TABLE LOGIC SHEET

Situation 8, Decision Table

, •• ~uD.yHTH _I~I",O,---__

wIIT_.J.ILI __

Situation 8 illustrates an address modification feature of the

7080 Decision Table System. Address modification utilizes the indirect

addressing hardware facility of the 7080. The 7080 DTS supplies the

programmer with ten tagged pre- defined address constants (ADCON's)

which are used to hold the machine address to be modified. Although

these are not described by the user since they are part of the DTS, their

specification is shown below:

NAME DESCRIP TI ON

The problem which illustrates this addr ess modification featu r e Is

also a portion of the DTS processor. The situation involves a loop used

in editing input cards to replace non- printing symbols.

In the decision table header, the page is numbered BC. Alpha­

beties are permissible as page numbers, providing that they are in

ascending order for success ive tables . Note that in the "Order of Rules II

in the decision table header, the rules have been reordered. This has

been done to improve the efficiency of the object p r ogram. Rules least

likely to fail are placed leftmost. A "Comment n is made in this table

- 2. 32 -

cr

DECISION TABLE LOGIC SHEET , - itlQl....

~": ==-~ ':'"!f.' ',;1'- :J I. ~. I 1"'-''0, ,,, .. " """". " ..
, .. l.!ti' . ~," I~~ ,,, , " . ' . '

[.,!" " ", .. " ' : " ' , . .~~_St\I1E' E "., - "' ~
, o., HIH .~ . 10

.:, ! : '",:.,~ COI,,"IIT NUl_. 11 ..
, ;

u~~;1'~
I ~ , , ~ N , 1 •

, , " ,

$I
,.

I

,

fii: ,
,

~ ,
,

Situation 8, Decis ion Table

header. It is permissible to make any remarks the programmer cares

to make here, and in this example an explanation of the decision

table's function is given: "LOOP TO REPLACE t AND '" IN 52 COL .

OF INPUT CARD. "

The object of the program is to replace the non- printing symbols

which might appear in columns 23 to 74 of the card . Hence each column

must be examined for the presence or absence of either of the two

symbols .

The first condition row checks to see if a Bit switch (a one character

constant set up in the program as a switch) is ON or OFF . If rule 1 is

satisfied, i.e ., the Bit switch is found to be ON, the scanning process

is to begin . The first action specified for rule 1 sets a counter to 52 .

The second action sets the Address Register X2 to COL23, i.e . the

machine address of column 23 of the card . The third action sets the Bit

switch to OFF and the final action calls for a reiteration of the loop .

In rule 2, the bit switch is found to be OFF meaning that this is· not

the starting point. The second and third conditions determine that the

non- printing characters do not occur in the column currently being

examined.

Consider the first operand of these condition s tatements - ­

COL23, X2. The Address Register X2 contains the actual address of

the character in question (set in Rule 1), and COL23 provides the format

of the field (1 position alphameric). This is the construction of operands

- 2. 33 -

DECISION TABLE l OGIC SHEET

I: "
., ,:!!: - , ."" '"'' L;, I I ' :,.!' ,n .. " no, , , .

~;;; '~~'.' i " " " "
, . ,

1 lrA ,! I I . ' , ,
; : I , " ." "'-" ~ oo",,_Stlt::1E': L. E 0 ... 5- 3 - ~ 2.

". " " " ,
~ o • • HTH 1O .~.

l1.1.' I C O lolll lM T NUThG. I I
, ,

u •• "" ,.,:" ,-.,~

~;
.

I I •
• • , , ,

I
..... . ,

. . . .

1

!

g-
I

to:>::
,

~ I

Situation 8 , Decis ion Table

used for address modification. To get the next character of the card

X2 will be increased by 1. The fourth condition determines that the end

has not been reached.

The actions then call for (1) decrementing the counter by 1,

(2) incrementing the column address in the Address Register X2 by 1,

and (3) reiterating the loop, so that the next column will be examined.

The third rule determines that the Bit switch is not ON and the

non-printing characters do not occur in the column being examined, but

in the fourth condition row it is discovered that the last column has been

examined. The actions therefore call for a resetting of the Bit switch

so that on the next iteration of the loop rule 1 (the starting condition)

will be executed. Since the last column has been examined, the only

other action called for is the execution of another table: PRINTIT, which

will print the line.

Rules 4, 5, 6, and 7 each encounter non- printing characters and

make the appropriate substitutions.

In this situation by merely incrementing X2, each of the 52 columns

are examined, and the character in the storage position replaced if .

either the character +- or f occurs. Termination and printing occurs

when the cOWlter reaches zero after being decremented by one for each

of the 52 columns on the card.

QUESTIONS

1. How much programming effort is involved in address

modification utilizing the 7080 Decision Table System?

2. What is a bit switch (BITSW) and what is its function?

- 2. 34 -

. ..
: .

•

Answers - Situation 8

1. Very little. The 7080 DTS supplies the programmer with ten
named and pre-defined address constants which are used to hold
an address to be modified. The only programming required is
initializing, incrementing or decrementing these. Address
Registers.

2. One character variables are set up and their 1, 2, 4 and/or A
bits named. Each named bit can then be used by the program
as an ON/OFF switch; 1. e . , the program may set it to the ON
or OFF condition and at other points in the program its state
can be tested.

11M 7010

fJ;:ill
0 . -,.

· ,
:,
· ,
' . .
:, ,
..
· ,
· ,

Dt;OlolON TAILI NAME otSCaiPTION !oMEI!T

..I;""J;;; ,[, -
.1, .

.-

. .-

.-
~

-' .. -
", ... -
~ ~

Situation g, Figure 9A

Situation g, Figure 9B

. .. ::.'

.MII ,

Situation g, Figure 9C

_.
J

~u

I'It" ED IY ,-
Hlft ''''''I _ .

Situation 9 is concerned with producing purchase orders, shop

orders, and stock orders for the various parts which make up a product

assembly. The file which contains the manufacturing information about

a particular assembly is composed of variable length records -- a fixed

portion of general information followed by a variable number of variable

size items pertaining to each part which makes up the assembly. These

variable items are referred to as trailer items .

The problem now arises of calling these items from the file since

the length of the next item is not known.

The assembly file shown in Figure 9Ais shown with certain fixed

header information: ASMBLYID, ASMBLYTIME .. . TOTALPARTS. The

variable portion starts with STARTV AR, a one position field. This name

of the first character of the variable portion is used as the operand of the

ADCON in Figure 9B.

The ADCON named FIRSTITEM will contain the 7080 address of the

first character position of the variable portion of the record. The ADCON

named FIRST ITEM is used to initialize the index pOinter lNDXA, such that

information can later be moved out of the variable record into the NEXT­

ASMBLY working storage area.

In the first decision table, Figure 9C, GET NEWASMBLY brings in

the first record from the file name d ASSEMBLY. The second action sets

the index painter, INDXA, equal to the address of the first character in

the variable length position of the input record. The third action

- 2. 35 -

~"

.l
~"
P~EPJ.II[[) IV
,~,

-,~ , ~UT ~,«;[

.~

~ '$
,

II, l: ~
~

Situation 9, Figure 9D

MOVEV INDXA, 5 TO NEXTASMBLY causes 5 characters to be trans­

mitted to the working storage area. The transmission begins at the

location contained in INDXA. The final action transfers control to a

table named PREPORDER.

Note that there is only one rule to this table. Such tables are

called 1'unconditional'! tables .

The first five characters (a minimum with the high- speed transmit

called for in the POINT entry) of the variable portion of the record now

reside in the working storage area named NEXTASMBLY. This area

is described in Figure 9D. Notice that the FILE class entry has a 3 in

the numeric portion. This indicates that the area is to be described or

redefined in three different ways: one for each possible format. After

the first, subsequent RNAMEs have the effect of a LASN back to the

original RNA!v1Ei i. e., the same area may now be redescribed. The

first RNAME in this example is NEXTASMBLY. The first character

is defined as a Bit code (BITCD). The i - Bit means BUY the part, the

2- Bit means MAKE the part, the 4-Bit means order a SUBASMBLY

(sub-assembly) from the stock room; the A- Bit only goes ON for the

last character in the variable length record to indicate that there are no

more items. The various other fields are then described for this item .

The second RNAME called PURCHASE is then overlapped on the first

area. The format of this item is defined and names are associated with

- 2.36 -

m:il~ DECISION TABLE lOGIC SHEET '1
:; i ; J:~nrL':'::~' .~ ,,~, ' ,:;r-; ,,, .. " ""'"'' "., I
f;.l~~· ~ ~~~~U~~~~ff" ffiE'w~LTIjl.LLJ
~,~, : .~, ~. ~g.~·ttf'E"ill:IJJJ""Il"· !""!"E""E"'ill;;;Q;nll"~ ,~~~ O"'_~_ F. .. r f~.. .""1 __ -

J:"'''' 1. co 1101 T

.... 1

Situation 9, Figure 9E

the various fields such that they can be addressed directly in the working

storage area. Finally, the third type of item, SUBASBLYRQ, is over­

lapped at the start of the work area.

Since the variable portion of the input record will contain a variable

number of these items in a random order) they cannot be conveniently

defined and addressed in the input area. Recall now that the first five

characters have been sent into the working area, and the Bit switch can

be tested to determine which type of item has been brought in: PURCHASE,

MANUFACTUR, or SUBASBLYRQ. This interrogation is made in the

condition area in Figure 9:E. Bit switches are tested by the action:

Bit switch name IS

ON(OFF) IS

ON(OFF)

Bit switch :'lame

In this application only one Bit may be on at a time. In the deci­

sion table 9E, Rule 1 determines if the part should be bought; Rule 2, if

the part should be made; and Rule 3, whether a sub- assembly should be

ordered. In Rule 4, the A Bit (LAST ITEM) is tested to determine if

this is character of the variable portion.

Assume that the BUY Bit of character 1 in the NEXTASMBL Y

area is ON, and consider the actions of Rule 1. The first two actions

move up the rest of the item still in the variable portion of the input

area. SET SIZE EQ BUYSIZE moves the value 20 (the length of the

purchase item) to SIZE. BUYSIZE is defined in Table 0003 (Figure 9F)

- 2.37 -

lllIDl/;;j " .. DECISION TABLE LOGIC SHEET r:;; __ r
I •• 1

·';,Mjf ~:~:.~
'if.>: ',,,, ; I"····· ,,, .. " , " .. .

,,, .. ,, '" . . :Jl ~ ~"

'., ID •• ~.

. :l'l. ..,,:::.. COIIIIIM T ... 'NoH .

; ~ ~
~. , , J

..
•

~ $¢
t-'.

•
,

•
•
• ,
,
•

Situation 9, Figure 9E

.~.

Situation 9, Figure 9.F

as class peON, meaning permanent constant; i. e . , a constant whose

value does not change durtng the runntng of the program, as opposed

to a variable whose value will change. The field names SIZE now con­

tains the value +20 . The second action MOVEV INDXA, SIZE TO

NEXTASMBLY will cause the transmission of the first 20 characters

from the variable area to worktng storage. The command MOVEV

means move variable length.

Action 3 calls for the execution of PURCHORDER, a closed table.

Action 4 calls for the evaluation of FORMULAI (the expression is

deftned tn Table 0003, Figure 9F) and the plactng of the resulttng value

in TOTALPRICE. The next action calls for the tncrementtng of INDXA

by the size of the item that was last moved up. In this case, INDXA

would be tncremented by 20 tn preparation for movtng the next five

characters to the worktng storage area. Then it can be determtned what

the next item might be . Action 6 does just this, it moves five character s

from the location specified by INDXA to NEXTASMBLY. The last com­

mand of Rule 1 calls for a return to the begtnntng of the table .

A new Bit switch character is now residtng in the first position

of the working area and an interrogation can be made to determine what

the next item is; 1. e . , PURCHASE, MANUFACTUR, SUBASBLYRQ, or

the last character tn the record.

The table PREPORDER is the main processing table of the program.

- 2 .38 -

DECIS ION TABLE lOGIC SHEET

I . : :, ili i.!-'· • .,:!: .",;. '3Eii : : . f i , . .1 I. __ ~ .
.~ .. ,

, . . . • 1 """
I

u'! I

1'"·'''- (O""'"T

; , Iw: ~ ' ~ , , , , ,
• 1 . . ~ . . . , ,

~=
:~ .

-~ ~ ,

,
,

Situation 9, Figure 9G

Situation 9, Figure 9F

"'~"'''.'- , , " .. ",
..

1
.-~

• • t D ••

~

,~.

"UT

,

, ..

_ DUf

.~ .
""'''Gf

~

As each item identification is brought up from the variable area, its

type is determined and the rest of the item, now that the size is

known, is moved up. Aside from certain housekeeping functions, a

cl osed table is executed which will prepare a purchase order for a

purchase item, or a shop order for an item which is to be made in the

shop, or a stock order for sub- assemblies which are to be delivered

from the stock room .

The PURCHORDER table in 9G illustrates what one of these

closed tables might look like. Notice that the table is entirely in

l imited entry form, thus, the narrow two- position entry c olumns are

used.

The second condition demonstrates the use of a new operand- ­

a reference list. The reference list is composed of arguments and

functions (values). (In contrast a VLIST contains only arguments .)

A reference list for Siiuation 9 is shown in Figure 9 F; it is called

VENOORLIST. A reference list has almost the same properties as a

TABLE macro in Autocoder. In the description portion of the first

l ine, the first value indicates the s i ze of the argument, the second value

indicates the size of the fwlction and the third entry J a name, specifies

where the function is to be placed when a successful search of the table

is made . S'..lbsequent lines are used to indicate the argument and

function values; these must be the same length as shown in the list

- 2.39 -

!ll.lJlli) "" DECISION TABLE LOGIC SHEET "
~

,;I . }~ . ,.'":;-, .. -!. "'" C·;·:·;· I
:.::~: --, : r ; 1 r '·'···· ~ i , " " """. " .. I . I . ., ., . , , r 1::' . ~ . , ~ .. ,...-" "" . .-~ OATI . ..

PUOUIO" .~. I""," CO''''''IIiT
IO U' rAG. ,

I ;
M ,

[wi
~~ =

.... ~ •• ~.o,· . "_~

~'

~

~
,

=
Situation 9, Figure 9G

IBM,. O1!a~ T"au: ' ,1; Dt:!.CRlPTIQM SHEfT ~

~i!& ~ '~' I "" I I .l
~"
PR~P""W BY ,. m,v· LU?'TCliEDu PACir _.' ,
"'ElT P f " ..

• ,- .- n_' .. ", ... - OO-Ion

• , .
" ; -r.-

~-
, !

• - • , • ,
I .

" .. .
!i' . " .,

I , • , I '- ,
, ,

Situation 9, Figure 9F

header line. Note that a range of values; e . g . , 02-29 can be used

when the values are numeric and in ascending sequence. The second

condition of Rule 1, then, checks to see if the value of PARTCLASS,

a field in the PURCHASE item, is contained on the reference list. For

example , if the value of PARTCLASS is 16, the test will be passed

since it is in the r ange 02 -29 and the function XYC CO. 1174 CONN DC

would be moved to the field called VENDOR INFO.

If the other conditions in Rule 1, Figure 9G, are satisfied, the

first action calls for moving this vendor information (the function found

in the r efer ence list) to the field called ADDRESS on the purchase or der.

SUbsequent actions call for moving other data to the purchase card and

finally PUT PURCHCARD will make this information available to the

output unit. Since there are no more actions following this command,

control will be r eturned to the table PREPORDER at action 4 in

Rule 1.

Note that while executing this table the program recognizes that

the current item in working storage is a purchase item whose fomat has

been defined. Consequently, the names and format which apply can be

used directly.

The closed table SHOPORDER and STOCKORDER (not shown) will

be executed in a like fashion if Rule 2 or 3 is satisfied. The first condi­

tion of the PURCHORDER Table is an illustration of a state condition

- 2. 40 -

DECISION TABLE LOGIC SHEET ,

l~ -tfrF ~
,

':"5: ','" i ~ I I ' "". " "." n.. --i I

....... '" ". ~
,-

, L LI
• .00 0 " • ,

, " " "
, ,

HI"UOU .~.

~, J:"""'~ C OIOIO.IO , ... T _

u Col'. ,

~ ~
,

~ , ~
,

. ... I

- , , ,

,

I ,

~~~ 
if 

~:Jfki ~ , C IT' 

I 
, I H-' n---; , 

, , 
, 

, , I , 

t 
I I , , 

I I I 
, 

! ! 

Situation 9, Figure 9E 



and asks the question--is the value of PARTCLASS all numeric? 

If it is entirely numeric , the test is passed. If there is a symbol 

other than the digits 0-9 in this field, the test will fail. Other state 

conditions are POSITIVE, NEGATIVE, ZERO, BLANK, ON, and OFF. 

The state term may be either the first or the second operand in a 

condition statement. The condition in PREPORDER shows the state 

term ON in the operand one position and the Bit code name in operand 2. 

This situation has illustrated a means of using the POINT (in 

reality a six- position field containing a 7080 address), to wor k through 

the variable portion of a record without doing direct address modifica­

tion. The formats of the various items 1.<hich may appear in the 

variable section are defined in a working storage section in an over­

lapped manner; then, as each new item is moved in, an interrogation 

is made as to the type of item; and then the names of the fields of the 

item can be referenced directly. At this point the size of the item is 

also known and it is possible to increment the index pOinter to the 

beginning of the next item. If the size of the item appears directly in 

the data itself, this information could also be used to increment the 

index pointer in working through the data. 

The index pointer concept can be used in a like manner on the 

output side to fabricate variable length output records . In this case, the 

pointer is used to indicate where the next item is to appear. Since the 

- 2. 41 -



m~lliJ Ton DECISION TA8LE lOGIC SHEET r:: .,..... ro 1 , ... ,. , .. .... 

[ 
~ 

'.7 .... :1. .:~: o~': ',;;; I I"· .. ·•· "' .... .,., . . . ; • 0 • 

; • : I f , 

~ 
.. , .. 

I; , ..... . , .,," 
~ to<:ll'" OATf 

, , , .. 
0 "'" T ~ ..... ~to •• .~. 

I "":~ CONNINT NUl P4C:! 

"" 
0 

"0'"" 

rT I~ 0 0 0 ~ ~ 
N ..... I 

I UNII 

, " , 

M 

0 ~ 
0 

0 

0 

0 

0 

0 

Situation 9, Figure 9E 

0< 

c 

Situation 9, Figure 9B 



size of the current item is often known, this number can be used in 

conjunction with the index pOinter to move the proper amount of 

information to the output area . The pointer is then incremented by 

that value to be ready for the next item to be placed in the output area. 

ADCONs are generally used to initialize the index pointer s to the 

first position of the variable pDrtion of an input or output record. 

It is also possible to use an index pointer to move all the d~ta 

up to the record mark terminating the record. The format for this 

variation is: 

MOVE index pointer name, RM TO work area name 

A high-speed transmit will be assumed in this case. Recall that in the 

definition of POINT the operand field contained HI, this indicates that 

high- speed transmit will be used when this index pointer is used . If 

increments of other than five characters are to be moved, SER will call 

for a serial transmit moving data into or out of a variable length record. 

QUESTIONS 

1. How is an index pointer initialized to the address of the first 
character of a variable length record? 

2 . How can variable length fie lds in random order be addressed 
by name? 

3. What is an RLIST? 

4. How is an index pointer used in connection with output? 

- 2. 42 -



Answers - Situation 9 

1. The first position of the input is assigned a na..-rne on the Name 
Description sheet. This name is then used as the operand for 
an ADCON. The name of the ADCON is then used to initialize 
the index pOinter with a SET ... EQ action operator . 

2 . By describing a working storage area in an overlapped manner 
for each of the possible data formate and then testing a field of 
the trailer item to determine which type of item is present. 

3. A reference list is a series of arguments and functions (values) , 
used to provide function values based on a certain input argument. 
In the example, if PARTCLASS is 01, the iunction is ABC CORP. 
206E57 NYC . 

4. The index pointer concept is used to fabricate variable length 
output records. The programmer is responsible for maintaining 
the proper value of the pOinter. 



CHAPTER 3 

£lample Program Using 7080 DTS 

The various capabilities of llie DTS are demonstrated in the sample 

problem below. The program is not a complete job: the data definition 

is thorough but all the tables to handle the entir e payroll application are 

not shown. For example, many of the fields defined are not referenced 

in the procedure portion of the program. Nevertheless, the sample 

program will illustrate most of the features of llie language for both de­

fining the data and the processing. 

The sample program was written to serve three purposes, (1) test 

the language to provide feedback on the adequacy of the language, (2) pro­

vide a test problem to check out llie processor and (3) as an illustration 

to be used in this manual. 

To illustrate how a 7080 DTS program looks at various points in 

time, different formats are used to show the program. The first few pages 

show the sheets used to initially prepare the data definition, including the 

Decision Table Name Description sheet and the 7080 lOCS File Macro­

Instruction sheet. The remainder of llie data definition is shown as it 

appears after the cards have been key punched and listed on a printer . 

Likewise, the first few decision tables are shown on the coding sheets 

(photo reduced), the remainder are shown as they appear on the listing 

produced by llie 7080 Decision Table System processor (also reduced). 

These two listings (data and decision tables) will constitute llie documen­

tation the user will receive when using the programming system. 



The following list is an index to aid in reviewing the sample problem . 

Type of J.1ate.!~.ru. __ _ Name Page No. 
3. ~ _ _ .. 
3.3 

Autocoder --_._-- 12ro.\I!'.@l Ir;!§ntif~cation 
BEGIN Autocoder Table 

input/output 
File Description 

Core File 
Description 

IODBFrN 
Input Master 
lOGS 
File Content 
Output Master 
Input Transactions 
Pay Checks 
Termination Checks 
Exception Record 
Miscellaneous Reports 
Payroll RENister 
Control Info 
New Hires 
Part 1 of a new master 
Part 2 of a new master 
Delete Master 
Work Card 

'I Termination Record 
Master Work Area J Pg.y _CheGk;.B.El.cQJ'd 

~.4 

3.5 
3 .6-3.7 
3.8 
3.9 
3.9 
3 . 9 
3.9 
3 .10 

.. __ ._. __ 1.0.19 . _ _ 
3.11 
3 . 11 
3 . 12 
3.12 
3.12 
3 . 13 

i 3.13 
13 . 14 

Variables , 
"_j 3,15 

3.16 
Description ! 

I List and Expression I I 3.17 
Description I I 

Decision Tables i 0005, 0006 i 3. 18 i 0009, MASTRINGOF, TRANSlNEOF, 13 19 

Report Writer 
Table 

Autocoder Tables 

r06~6,2 0025, . 0030 . .+-'-:=--1 . . i 3.20 
I 0031, 0050, 0051 i 3.21 
I 0060, 0061, 0062 13.22 

I EOFMROUT, EOFTROUT (0070), i 3.23 
GETTRANS, SEQTRANS, GETMASTER,! 

! SEQMA,sTE}l. _ _ ___ ._ _ _ _ . J ____ _ ., ' 

PUTPAYREG ' 3 . 24-3 . 25 
9900,9901 . 3.24 

- 3.2 -



.-,." 

1 

, 
I , 

~i , 

~ 
~' , 

, 

- 3. 3 -



IBM "" 

" .-, I , , 

, , 
· . 
· . 
, 
· 
, 
· • , 
• · 

-, , 
, ., , , 

'n , , , , , I 

.- n., 

, , , 

I 

.. 

- 3. 4 -

_. 
~" 
H:("'ARfD" 

.~. 

NUl'"",( .. 



~o .... ,,,,- •• ,, ~ '''NT ~O 'N ",5, ". 

7000 IOCS FILE TABLE MACRO- INSTRUCTIONS (LONG FORM) 

PROGRAM, ______________________________________ __ CODED BY; DATE, I II I 1[: 

[P ,., Y M. A ~ T E. ~ b lo[QOQOQj 0 l OR E T URN T OO l OR E T U R N T 0 lOR [ T U R ~4 T e 
o 30 2.0 I 0 F T A 

0..303 a 

------------- - - - - --

03 oLi 0 
, 
'" 
'" 

HI 

~ 
L 0 

~ ([w D]) EO R b 
O~ORWD20EOFbONONST 

3 RUN 1 B.Jl.,I...!:I NO H E A 
4 RU N 2 ('f\iON E 

- -

°MA5TR~,."eoF O 

AND Ocr:M b ~'"S P E C~S I A N b .lodtS K R w!Po 
OER NorM NONSTANDb NORWDb 

NOTRAI LER 

TA~'''ARDb 

~tM "Des I N G l D (S E QUE N,) ~ K e T R C 0 S ~ 0 U M P 8 E t " I' 0 ~ ~ 14 
NO P R I D MU l T I bON 0 N SEQ DO C K P T R C P (f[o OD D r~ 0 B ( l"'" b b 0 

- - - - -- -- - ----------:::::::::-:::,:::::::-~-=--;:::::;:~==:::=---::::==::===-:::::--~~-

<I1::\:,~IJ""u.:. N IT b r:!i 0 NG\..,<& M P c"3) IJr.nIJ~' NA R' A)Ji)1J1 1.1"011J1/ $0 011J 
1130S0 I O F TB OP wOR K l2J Q, TAC i:> NO CAyuNOCMP LV AREAGIV V' - . 
________________ P ROG 

------------- - ------- GET A ~"'b PAD B O T H BSO 

P ONOPAOOELETOWORK O 
0 30 (; 0 BOT H 0 0 IT 0 F"9:t> w 8~ 
____________ _ ________ ¢fONQ N ONE a:ro~) 

- --- - ---------------------------------------------------------------------~--------------------------------

1 0 FTC OCK LN GOCMPC KO GPOFOO 
NOC H K NOCMP NO V 

--------- --------------------------------------



IBM 7080 DECISION TABLE NAME DESCRIPTION SHEET PROGRAM ------

[~c;l L I H~ ~: lDENT T ... BLI: N .... "'E DATE 

~z J ' e I J , " 112' 18 ,,' . 10 i ' 10 st ----~- - • • --',- ::~:ARED BY _______ _ 
IOINT. I Itt I I I 

71 .0 NEXT PAGE 

.sl .. '01 .. nl .. n l" " 
PO 'I· LINE , .. .1. NAME CL ASS "'UM. DESCRIPTION COMMENTS 

d '.' t " " T" o. "00 ,"0' ' 0' " 0 •• "'" """," ,',' H." ," 0'" 
j . _ M~~T~:~" lo". ~~ AI .. I nln 

M Ii b n ~,,\ hloN N"M"£)l I 
"",,' hMC I,. A'+ "'" NA t<1~ 

-~~ r'lJ(::T ATIlc.cn IA ,C;'TAT I I~ r/)M A-,ACT\.v ,~,),I-I,EB.,MlJ;I,t!T.fD 
T_T NAr"T" ,I e 

~-- !'\;"OC.' 'N "0,",,,'''i1 7<>,, nhl Nil"'''.'' ", '" , , I 
~r~:,MJ.5HI"T I '~i lsHI,T FM DL()V>E: ,~nk' c. ______ ",:,:: 

~. _1t1.I ,SOC,s,ILP"1 'Q" I"flr, A, 5FI"'O I T >" ""MaE.&. ........ ",, " ' ~_+-+-I 
, ___ {1. ' ".>! 'I A+ I" , x fir "M O, nV E> 

to _ . iI'\.La\ B.t HDA,T b~ IA,a ," n~.,..c ,',,"', ',""" ,~ " , . I 
~ _ _ i'1.1.H..Lll ,nAT'" II-II 0" '" nAT'~ , ,,, ' ' ''' ' '' " '~" " 
~ __ MI/\II'X T IIAC. r 61{ 1/\1 "", ""'"'lIT1ilJIl ,E b.I ,G,I ,Blbl,LJ: ,OAT,E., " 

l_M' nl'nrnnF lRl ,er _I ~~_ ' " , , , " be"lJr, , ,,,I (" - , , 1 , 

+_,_~~,~,~E.D . 2. -+--+-0 I ~:~/J,A,N,c,E , , , , ........... ~ , ' , , , , , , , , 1 , , , H~ 
'=J=- MIMIC.'r>'·l\ It<! I C(' n.n, II"" nNe; ._~_:..:~~~~ 
r+-IM'" >< ", FhD , i ~~+ ~()"~; nCD r=.'M"TC? " "" , ~-' " , : : : : I 
. 1-----

;............,_-+M1..l.SA.T~ I ' i 14.~> ... t) I . . n :.:: I~AT F: I I I I I ' I I ' I I I , I I I I I I I I , I I ! I~ I I I I 
_ ..... I"\J YIQMRS, : , ' ,6"'+ 0"' . 0 ' I'{"'AD -Tn - ~~" 14 ~,,',,' __ ~, , , , , ' 

, , , 1M ,..tI,D.t\QJi,,7 "';;11' + 05.0'2 '/- T-rl """I ~v , , , , , , 
f- "MIYIQP'DWK I , i , 7~tOI), 02. hi- T-Q ,PAI ,Q ,'..-.(Q R,K:£;C\ ,1,11'11:: , " ,', ' ,"" ,-1 

,M.LYT.D.P,DUWt< .,' 1,7 +,Q5 .,02. .. , , , , " Y.-.T-.oPAI.D .UNw.nRI<E.O. Tll'i11O. . . . . ..... , . I 
IN., iilT,r1MO N~~~.;i . : :' : 7~.+:O:5:.~Q2. ':"':' : ,-:-:-: :., QUA:R.TER-:r~DAT :E. 1<1 ON ,"-V' _ : L==~-:-~:' L I 



>-
'" o 

" '" « '" '" « 

, . , 

'" ~ .. 
'-' w 0.. W I­
Ol-W~X .... 
a::: <: 0::: ..:( W I­
a..o o..a..zz 

• 
} 
o , u 

>- I 
w 

, 
w 

'" ~ z 
0 ;::: 
C-
o.: 
U 
~ 

I w 
0 
w .. « z 
w 
..J 
CD • « , 
>- < , 
z w 
0 J • 
~ < 

0 " 
w 
0 

t 
1 i 
t 

T • 

i 
I 

! i 
, 

1 T 

t i , 
T j T 
T 

t t 1 
f 
1 

j 



08010 TITLE 
080200U~NAStER IOfTA 
08030 
08040 
08050 IOfTB 
08060 
09010 fflE 
09020MASIEROUT RNAME 
1001QMOYTDWlU 
09030MONANNO flO 
09040MONAME 
090S0MOSIATUSCD 
09000 
09070MOORG 
0908QMOSHJfl 
09090MO!OCSEtNO 
09100MOSEX 
09110MOB'RTHDAT 
09120MOH'REQATE 
0913QMON6XTVACD 
09140MODIDCOOE B'TCD 
091S0MOJNSOED 
09160MOlOAN 
09170MOM.SC 
09180 flO 
09190NONODEPEND 
09200NORAoTE 
09210MOYTDHRS 
09220MOYIOMONEY 
09230NOYIOPOllK 
09240HOYIOPOUJjK 
092S0MOQlOMONEY 
10020MOYIOfiCA 
10030MOS~HRSUSD 
1 OO_OMOU HRSACC 
100S0MOVACHRSUD 
10060MOVACHRSAC 

fiLE TA8LE fOR OUTPUT MASTER 
PAYMASTERa030alORETURNToalORETURNTOalORETURNTOD 
HJ DIDRWOluNONEDSTANDARDaTM aSTANDARD aHSKRWDa 
NOPRlaSINGLEaSEQUENaNOCKPTRCDDNODPaa 
opaDATAa9aSTACKaCKLNGaCMPCKD2aGENAREADfalS0a1500D 
PUT aMASTEROUTaPAD9aNONEDNONED 
TAPE 2102,2103 150 CHAR MASTER fiXED OUTPUT 

AMOEND 
61104.02 
5N 

17AI 
lA 

5N 
IN 
9N 
lAl 
6N 
6N 
6N 

2 
4 
lAl 
21 
4(101.03 
61105.01 
71/05.02 
71105.02 
7110S.02 
71105.02 
51103.02 
51104.01 
5H04.0 I 
41103.01 
4 (103.01 

51103.02 
S1I03.02 
61104.02 
51103.02 

Y-T-D WITHOlDING TAX 
MAN NUMBER 
MAN NAME 
STATUS CDOE,A-ACTIVE,T-TERMINATEO 
I-INACTIVE 
ORGANIZATION NUMBER 
SHIFT EMPLOYEe WORKS 
SOCIAL SECURITY NO. 
SEX 
BIRTH DATE 
HIRE DAtE 
NEXT VACATION ELIGIBiliTY DATE 
OEOUCTION COOE 
INSURANCE 
LOAN 
MISC 
BLANK 
NO.Of DEPENOANTS 
RATE 
YEAR-TO-DATE HOURS 
YEAR-TO-DATE MONey 
Y-T-O PAlO WORK TIME 
Y-T-D PAlO UNWORKED TIME 
QUARTER TO DATE MONEY 
Y-T-D fiCA 
SICK lEAVE HOURS USED 
SICK LEAVE HOURS ACCUMULATED 
VACATION HOURS USED 
VACATION HOURS ACCUMULATED 

AMOUNT fOR INSURANCE DEDUCTION 
PAYMENT AMOUNT fOR lOAN 
BALANCE Of LOAN 
AMOUNT Of MISC. DEDUCTIONS 

10070NOIN!ANl 
10080MOlOANRAY 
10090MOlOANBll 
10100MOMOEDAMT 
10110MOEND PRE 1 

TERMINAL RECORD MARK 7080TP 

- 3.8 -



12010 
12020lNTRANS 
12030 
12040 
12050 
12060 
13010 
13020TRAN5IH 
13030TRCD 
13035 TR~ANNO 
13040 
13050T I END 

laiD 10 
14020PAYGHEUS 
14030 
14040 
14050 
14060 
14070 
14080REGOHECK 
1.090 
1410QRPAYCKfND 

TITLE fiLE TA8LE FDR INPUT TRANSACTIONS 
10FTA TRANSACTINaOOOclORETURNTOCIORETURNTOCTRANSINEOfC 

AI alaRWOloNONEoSTANOARDoTM oSTANOARO DHSKPRWOo 
PRIMEaSINGLEcSEQUENCNOCKPTRCocNoopaa 

JOFTe IPDOAT~D8DSTACKoCKLNGDCMPCKo2oG(NAREADFo80D800D 
GET oTRANSINoNONEoEOF9S0NONEo 

fiLE TAPES 2100.2101 eo CHAR FIXEO TRANS~CTION INPUT 
RN AME A TIENO 
fLO 02N TRANSACTION COOE 

5N 
72A 

1 
70eOTP 

nnE FILE TABLE fOR PAY CHECKS RECORDS 
IOFTA REGPAYCHKSaOl0alORETURNTOciORETURNTOalORETURNTQa 

HI aoaRWOlaNONEaSTANDARoaTM aSTANDARD aHSKRWOa 
NOPRlaSINGLEcSEQUENaNOCKPTRCOaNooPaa 

IOfTB OPcOATAa6aSTACKaCKLNGaCMPCKa2aGENAREAafa095a0950a 
PUT DREGCHECKaPAD aNDNEaNONEa 

fiLE REGULAR PAY CHECKS- 95 CHARS-TAPE 2004 
RNAME ARPAYCKEND 
FLO 93A 

2 
loeorp _ 

IsOla TITLE 
15020TERMCHEtKSIDFTA 
15030 

FJLE TABLE FOR TERMINATION CHECKS 
TiR~tHECKsaOl0aIORETURNTOaIORETURNToaIORETURNTOa 
HJ aQaRWOloNONEaSTANOAROaTM oSTANOARO DHSKRWDD 

150_0 NOPRlaSINGLEaSEQUENaNOCKPTRCOaNoopab 
15050 IOFTB OPaDATAaiaSTACKaCKLNGaCMPCKa2aGENAREAaFa095a0950c 
15060 PUT aTERMCHECKaPAD aNONEaNONEa 
15010 
150eOTERMCHICK 
15090 
15100TCHECKBND 

fiLE TERMINATION PAY CHECK - 95 CHAR RECORO - TAPE 2005 
RHAME ATCHECKENO 
FLO 93/1 

16010 TITLE 
16020EXC6PTIONSIOfTA 
16030 
lb040 
lb050 IQFTB 
16060 
lb010 ftLE 
lb080EXCfPTREC RNAME 
lb09QEXCEPTIHfOGNAME 
16093EXTRCODE FLO 
lb095EXTRMANlfO 
lb097EXCEPTREA 
16099 
lbl00EXPRECEND 

2 
1080TP 

EXCEPTION RECORD FILE 
PAYROLLEXPaOl0alORETURNToalORETURNToalORETURNTOc 
Hl aOaRWO 1 oNDNEoSTANOAROoTM as T ANOARO ,DHSKRWOo 
NOPRlaS1NGLEaSEQUENaNOCKPTRCDaNODpaDELAYOPENa 
opaDATAaiaSTACKaCKLNGaCMPCKa2aGENAREAaFa080a0800c 
PUT aEXCEPTRECaPAD9aNONEaNONEa 
EXCEPTION RECORDS- eo CHARS FIXED- TAPE 2104 

AEXPRECEND 
EXCEPTREA 

2N 
5N 

25A 
H 

1 

- 3. 9 -

BCEPTION 
MANNO 
EXCEPTION 

TRANSACTION NUM8ER 

REASON 



7080TP 
TITLE MISC REPORTS FilE 1701. 

11020M15CRPt9 
17030 

IOFTA MISCREPORTaOl0alORETURNToalORETURNTODIORETURNTOD 
HJ aOaRWOlaNONEaSTANDARoaTM DSTANDARD DHSKRWDII 

-------------------.-~ -- -

11040 NOPRlaSINGLEaSEQUENaNOtKPTRtoa~oopaOElAYbpENa 
17050 IOfTe OPaOATAa2aSTACKaCKLNGaCMPCKa2aGENAREAdFaOeOD0800D 
17060 PUT aMISCRECDPA09DNONEDNONEa 
17010 F~LE MISC REPORT RECORDS - BO CHARS FIXED ~TAPE 210S 
110eOMl5GREa RN~ME AMISCRECENO 
17090 FtO 79 
17100MI5'RE'INO 1 

7080te 
lB010 TrfLE PAYROLL REGISTER FILE-PREPARED BY REPORT WRiTEA 
18D20PAYREG IO~TA PAYROLLREGaOl0alORETURNTODXXXXARfORDICRETURNTOII 
18030 HI alaRWOlaNONEDSTANDAROaTM DSTANDARD DHSKRWDII 
1 eO.40 NOPR.IDS I NGL EDSEQUENDNOCKPTRCDaHODPDa 
18050 IOFTe OPDOATAD8aSTACKaNOCHKaCMPCKa2aAREAGIYDFD125D1250D 
18060 IOFTC 2aNOCHKaCMPCKaNODFDPAYREGREC1DPAYREGBEt2D 
18070 FILE PAYROLL REGISTER RECORD AREAS-USED BY REPORT MRITER 
18080PAYREGRECIRNAME APREGRIENO TAPE 2002-2003 
18090 FLO 50 
1810QPREGRIENO 1200 PAY REGISTER REt I END 
18110 PRE 1 GROUP MARK TO STOP WRITING AREA I 
18120 FI'LE PAYROLL REGISTER RECORD AREA2 FOR REPORT WRIUR 
18130PAYREGRIC2RNAME APREGR2ENO 
18140 FtO 50 
181S0PREOR2iND 1200 PAY REGISTER REt 2 END 
18160 P~E_~I ___ _____ G~R~O~U~P~M~AUR~KLJT~Q~$~T~Q~e_W.R~ILILluN~G~A~B~E~A~2~ 

- 3. 10 -



3001000 - (jQ(jTTA-BlE CORE FlU,S 
31010 FILE 
31020TRCOCO RHAME 

HOLO AREA FOR TRANSACTION OO-CONTROL INFO RMATI ON 
ATROOENO 

31030TCOO FLO 
31040TCOUMMANNO 
31050TCtUTGFOATGNAME 
31000TCtOYR FLO 
31070TCEOMO 
31080TCCOOA 
3109QTCPAYOATE 
31100TCPOYR 
31 I 10TCPOMO 
31120 TCPOOA 
31130 
3111.0TROOENO 

GNAME 
flO 

2N 
5N 

TCC OOA 
2N 
2N 
2N 

TCPOOA 
2N 
2N 
2N 

OOA 
I 

TRA NS ACTION COOE 00 
OU~MY MANNO OF lEROS FOR 
PAY PERIOO CUTOFF OATE 
YEAR 
MONTH 
OAY 
PAY PERIOO PAY DATE 
YEAR 
MONTH 
OAY 

RECORO MARk 7080TP 
32010 FILE HOLO AREA FOR TRANSACTION 01 -NEW HIRES 
32020TRCOOI RNAME ATROIENO 

SORT 

32025TRCDIPARTIGNAME NHRATE GNAME FOR SETUP OF NEW HIRE MASTE ~ 
32030TCOI FLO 2N 
320~ONHMANNO 5N 
32050NHNAME 17AI 
32000NH'TATUSCO IA 
32070NHORG 5N 
32080NHSHIFT IN 
32090NHSOCSEtNO 9N 
32100NH56X IAI 
32110NHB1RTHOAT oN 
32120NMH1REOATE 6N 
32130NHNEXTVACO 6N 
321_0NH06CCOOE BITCO 
32150NHINSOED 
32 160NHlOAN 
32170NH~lSC 

321BO FLO 

I 
2 
4 

tAl 
32190NHNOCEPENO 
32200NHRATE 
32210NHINSAHT 
32220NHMOEOAMT 
32 230 TRO lENO 

21 
4(101.03 
5(103.02 
;(103.02 
3 

- 3. 11 -

INVALIO FOR A NEw HIRE 



33010 
33020TRt002 
33030TC02 

FrlE 
RNAME 
FLO 
GNAME 
FLO 

33031 CMPAIH 1 
33040CMMANNO 
330S0CMNAME 
33060CMSIA TUSCO 
330BOCMORG 
H090CM5H IFf 
33100CMSOCSECNO 
33110CMStiX 
33120C MB1RTHOAT 
3313aCMH~REOATc 
3314QCMN6xr VACD 
33150CMDBOCOOE BR TCO 
33160CMINSOf D 
33110CMLOAN 
33 180CMM1SC 
33190 FLO 
H2DOCM~ODEREND 
3321 aCMR A'TE 
33220CMYTDHRS 
33BOCMMDEDAMT 
33240TRC2ENO 

34010 
34020TRC003 
34030TC03 
34040 

FtlE 
RNAME 
FkO 

340S0CMPART2 GNAME 
34060CMYTOMONE YFlO 
34070CMYTD POWK 
34080CMYTOPOUWK 
34090CMQTDMONE Y 
3410aCMYlDWUX 
34110CMYTO FICA 
3'120CMSlHRS~SD 
3 4130CMSLHRSACC 
34140CMVACHRS UD 
34150CMVACH R5AC 
34160CMINS AMT 
34110CMlOANPA Y 
3 41 S0C MlOANBAl 
3 4190TR03ENO 

350 10 
35020 TRC 004 
35030TC04 
j5040D HMANNO 
35050 
35060TR04END 

F ILE 
RNAME 
FLO 

CREATE MASTER 
ATR02END 
2N 

CMYTOHRS 
5N 

I1A/ 
lA 
SN 
IN 
9N 
lAt 
6N 
6N 
6N 

1 
2 
4 
tAt 
2/ 
41101.03 
611.05.01 
5(103.02 
2 

10S0Tp· 
TRANSACTION 02,PART 1 OF A MASTER 

IgBOTP 
CREATE MASTER-TRANSACTION 03,2NO PART OF A MASTER 

ATR03 ENO 
2N 
lA/ BLANK FOR LEFT PROTECTION 

CMLOANBAl 
7(105.02 
7IJ05.02 
7(105.02 
1(105.02 
61t04.02 
511.03.02 
5(104.01 
5(104.01 
4(103.01 
411.03.01 
5 (103.02 
5 (10 3 .02 
61/04.02 
4 

TRANSAC T ION 
ATR04END 
2N 
5N 

72 
1 

IOBOTP 
04 - DELETE MASTER 

70 BOT" 

- 3. 12 -



36010 
36020TRC007 
36030TCQ} 
36040WCH_NNQ 
36050WCORG 
36060WCSHIH 
36080WCPAY I NLI U 
36090WCPAYADVAN 
36100 
36110WCACTHRS 
36120WCOtHRS 
36130WCVACHRS 
36140WC5LHRS 
36150WCHOLJHRS 
36160WCpnHRS 
3617QWCPAOVHRS 
36180 
36190TR07ENO 

37010 
37020TR£008 
37030TC08 
37040TMHANNO 
370S0THDUE 
37060TMS6RVP.AV 
37070 
37080TMSRAYAM,T 
37090 
37100TROBENO 

FHE 
RNAME 
FLO 

TRANSAC TION 
ATR07END 
2N 
5N 
5N 
IN 
IA 
lA 
IAI 
41103.01 
4(103.01 
4 (103.01 
41103.01 
'4(103.01 
41103.01 
41103.01 

35 
I 

RECORD HARK 
FleE TRANSActioN 
RNAME ATROBEND 
flO 2N 

5N 
6N 
IA 
lAl 
51103.02 

59 
1 

07 - WORK CARD, TIME WORKED, SICK LEAVE--

TRANSACTION CODE OF 07 
MAN NUM8ER . 
ORGAN Il A TlON 
SHI FT 
PAY-IN-LIEU CODE OF AN A 
ADVANCE PAY CHECK IF AN A 
BLANK 
ACTUAL HOURS WORKED 
OVERtiME HOURS WORKED 
VACTION HOURS TO BE PAID 
SICK LEAVE HRS TO BE PAlO 
HOLIDAY HOURS TO BE PAID 
PAY-IN-LIEU HOURS 
PAY-IN-AOVANCE HOURS 

7080TP 
08 - TERMINATioN RECORO 

TRANSACTION CODE 08 IS A 
MANNO 
OATE 
SEVERANCE PAY COOE- A IS 
BLANK 
AMOUNT OF SEVERANCE PAY 

TERMI~ATlOI 

YES 

- 3. i3 -



1080TP 
38010 FILE MA STER WORK AREA-FOR SETTING-UP NEW-MASTE RS. ETC 
38020WAMASTER RNAME AWAOIENO 
38025wAMA~PART IGNA M E WAYTOHRS 
38026WAMASNHPT IGN AME WARATE 
38030WA~ANNO GN AME WAMANN04 
38032WAMANNOI FLC OIN 
38034WAMANN04 4N 
38040WANAME 17AI 
38050WASTATUSCO IA 
38060WAORG 5N 
38070WA5HIFT IN 
38080WA50CSECNO 9N 
3809QwASEX IAI 
38100WA81RTHDATGNAME WA8DDA 
38110WA80YR FLO 2N 
38120WA80~O 2N 
38130WA8DOA 2N 
38140WAH'REDATEGNAME WAHDDA 
3815DWAHDYR FLO 2N 
38160WAHDMO 2N 
38170WAHDDA 2N 
38180WANEXTVACDGNAME WANVOA 
38190WANVYR FLO 2N 
38200WANVMO 2N 
38210WANVOA 2N 
38220WA06CCOOE 8 1TCO 
38230WAINSD60 
38240WALOAN 
382S0WAMISC 
38260 FLO 
38270WANOOEPENO 
38270WARAfE 
38279WAMASNHACCGNAME 
38280WAYTOHR5 FLO 
39Ql0WAMA5PART2GNAME 
39020WAYlOMONEYFLO 
39030WAYfOPOWK 
39040WAYICPOUWK 
39050WAQTOMONEY 
39060WAYlOWUX 
39Q70WAYfOFICA 
39080WA5~HRSUSO 
39C90WA5LHR5ACC 
39100WAVACHRSUO 
39110WAINSAMT 
39120WALOANPAY 
39130WALOANBAL 
39140WAMDEOAMT 
39150WAOIENO PRE 

I 
2 
4 
IAI 
2/ 
41101.03 

WA MO EOAMT 
61105.01 

WALOAN8AL 
71105.02 
71105.02 
71105.02 
7(/05.02 
61104.02 
51103.02 
51104.01 
51104.01 
41103.01 
51103.02 
51103.02 
61104.02 
51103.02 
I 

GNAME FOR SETUP OF NEw HIRE MASTE R 

BIRTH DATE VEAR 
MONTH 
OAY 

HIRE OATE YEAR 
MONTH 
OAY 

NEXT VACATION OATE YEAR 
MONTH 
OAY 

GNAME FOR lEROING OUT NHI~E Ace FLO S 

- 3. 14 -



40Q1Q 
4002QPAYOHHK 
4003QPCMANNO 
4004QPCNAMf 
4005Q PCOR G 
400&QPCSHIFT 
4007QPCtuTOfFOA 
4 00S0PC PAYOATE 
4009Q 
4010QPCHOURSWK 
401 10PCHO URSPO 
4012QPCGROSS 
40130PCNE i 
40 140PCWTA X 
40 150PCF tCA 
4016QPCLOANOEO 
40 170PC IN SOEO 
40 180PCM'SCOE O 
401 85 
4019QPCH6CKENO 

FILE 
RNAME 
fLO 

PRE 

PAY CHECK 
APCHECKENO 
5N 

17AI 
5N 
IN . 
6N 
6N 
lA1 
41103.01 
4 (/ 03 .01 
7(105 .02 
7(105.02 
6 11 04 .02 
5 1103 .02 
5 1/03.02 
5 1103.02 
5 (10 3 . 02 
5 A 
1 

7086TP 
RECORO-BOTH REGULAR 1 TERMINATI ON 

HOURS WORKEO IN THIS PA Y PE RIOO 
HOURS PAlO IN THI S PAY PERIOD 
GROSS PAY FOR CURRENT PERI OO 
NET FOR CURRENT PERIOO 
WITHHOLOING TAX FOR CURR ENT PERI OO 
CURRENT FICA 
CURRENT LOAN OEOUCTION 
CURRENT IN SUR ANCE OEO 
CURREN T M I SC OE O 

70 BOTP 

- 3. 15 -



5001000 0002TABlE 
50020CUTOFFOATEG~AME 
50Q30CONONTH PRE 
50g40 

VARIABLES 
COHAR 

202 
OATE FOR PAYROLL REGISTER 

1-
50050COOAY 212 
50060 1-
50010COVBAR 262 
500eOEOFSWS BITCO 
50090EOFONMAST I ON IF EOF HAS OCCURREO ON MASTER 
50100EOFONTRANS 2 
501100RGDEiCRJP~lO 15A 
50120PAVDAT& GNAME POVEAR 
50130POMO~TH PRE 202 

ON IF EOF HAS OCCURRED ON TRANSACTNS 
DESCRIPTION OF ORGANIZATION 

50140 1-
50lS0PODAV 212 
50160 1-

50110PDV6AR 
50310 TiTLE 
50320PRE~MASNO FLO 
50330PREV{RANNO~LO 

262 
AREAS 

5N 
5N 

FOR SEQUENCE CHECKING 'MASTERS AND TRANSAnION~ 

5034Q TtTlE 
50350 

BITCO TO INDICATE RELATIONSHIP BETWEEN 
TRANSACTION AND PRESENT TRANSACTION 

PREVIOUS 

50360TRANSCOMP BiTCO 
50310PTHlGH I 
503eOPTlDW 2 
50390PTEQUA~ 4 
504000UPNASTER GNAME AOUPMASEND 

PREVIOUS 
PREVIOUS 
PREVIOUS 

50410 PRE 22DUPlICATE MAN NUMBER 
504200UPNANND 512346 
504300UP.NASBNO 3 
50440MASSEQIRR GNAME AMASSEQERRI 
50.50 PRE l"aSTER 
50460SEQtiRNANNO 512346 
50410 11 OUT OF SEQUENCE 
50480NASSEQlRRI I 

TRANS HIGH TO PRESENT 
IS lOW TO PRESENT 
IS EQUAL TO PRESENT 

506GONHCONZlAO G~AME NHCONZERON ZEROES FOR NEW HIRE HASTER 
50610 PR E 5200000/000000./000000/000000/000000/00000 I 0000/00001 00. 
50620NH[ONZIRON 2BOO/000/0000/0000/00000/OOOOI 
50630 T(TlE HATH WORK AREAS 
50640 PRE 01 
50650FICAWORK f.LO 051/03.02 FICA WORK AREA 
506600EOWORK FLO 061/04.02 DEDUCTION WORK AREA 
51010 TITLE REASONS FOR A TRANSACTION BEING AN EXCEPTION 
51020ExReAI PRE 25NO MASTER RtCRD 
51030EXREA2 25TRANS FOR NH NOT 01 
510.0EXREA3 25TRANS FOR OElETEO MASTER 
51050EXR6A4 25TRANS 02 WITHOUT AN 03 
51100EXR6A5 251NVAlIO O~G FOR NEW HIRE 
51110EXREA6 25TWO TRANS 1 fOR I MASTER 
51l20fXREA 1 251NSUFF NET' 1'"011. - DlOUCTlOll 

- 3. 16 -



5501000 0003TABLE 
5502Q TITLE 
55030 
550400RG VLI ST VLIST 
55050 
55060 
55070 
550BO 
55090 
55100 T~TLE 
55110 
551200RGRllST RlIST 
55130 
55140 
55150 
55160 
55170 
551BO 
55190 
55200 
55210 
55220 
55230 
55240 

55250 
56010 T'TlE 
56020TOTAlHRSPDM~XP 
5b030 
5~040 T'TLE 
56050TOTALMONEYMEXP 
56060 TITLE 
56070TOTALHRSWKMiXP 
56080 TtTLE 
56090CALHETPAY MEXP 
5610Q TITLE 
5bll0CAlWlAX MiXP 
56120 trTLE 
56130CAlAICA MEXP 
56140 TITLE 
56150ENG80NUS MiXP 
57010 TrTLE 
57020 
57030SEXAEXREA1SEXP 
57040SEXREXREA2SEXP 
5 7050 SEXR EXREA3SHXP 
57060SEXREXREA4SEXP 
57070SEXAEXRiA5SHXP 
570S0SEXAEXREA6SEXP 
57090SEXREXREA7SEXP 

HPRESSIONS 
THE FOLLOWING VALUE LIST IS USED TO FINO THE 
ENGINEERING ORGS THAT RECEIV~ A BONUS 

510000 
11010 
43200 
45000 
71000 
B2300 
THE FOLLOWING REFERENCE LIST IS US~D TO CONVERT 
ORGANIZATION NUM~ER TO A O~SCRIPTION FOR A REPORT 
05,15.0RGDESCRIP 
10000,ENG. GROUP 1 A 
10500,MANUFACTING 3 A 
11010,ENG. SCHEDULING 
25000,QUALITY CONTROL 
33000.PRODUCTION CTL 
43200,ENG. RESEARCH 
4S000.ENG. EXPERIMENT 
5l000.PLANT SERVICES 
61000,PLANT MAINT. 
71000.ENG. PLANNING 
B2300 . ENG. ORAWING 
B5000,PLANT BUOGET 
91000.DATA PROCESSING 
CALCULATE TOTAL HOURS TO BE PAlO 
(/03.01 WCOTHRS 0 1.5 1 WCACTHRS 1 WCVACHRS 1 
WCSLHRS 1 WCHOLIHRS 
CALCULATE TOTALMONEY - HOURS TIMES RATE 
(/05.02 PCHOURSPD 0 WARATE 
TOTAL HOURS WORKED IS OVERTIME HRS PLUS ACTUAL HRS 
(/03.01 WCOTHRS 1 WCAC THRS 
NET PAY IS GROSS MINUS WTAX MINUS FICA 
(t05.02 PCGROSS - PCWT AX - PCFICA 
CALCULATE WITHOLDING TAX 
It04.02 , PCGROSS - WANODEPENO 0 13.00 a 0 .18 
COMPUTE FleA 
(t03.02 PCGROSS 0 .03125 
COMPUTE BONUS FOR ENGINEERING DEPARTMENTS 
(/05.02 PCGROSS 0 .03 
JOIN TRANS NO., MANNO AND EXCEPTION REASON 
FOR EXCEPTION MESSAG E RECORO 

32JOIN.TRCD.TRHANNO.EXREAla 
32JOIN.TRCO.TRMANNO,EX REA2a 
32JOIN'TRCO.TRHANNO,tX REA3a 
32JOIN'TRCD.TRMANNO.EXREA4a 
32JOIN'TC01 ,NHMANNO, EXREA5a 
32JOIN.TRCD.TRMANNO,EXR EA6a 
32 JOIN'TC07.WCHANNO,~XREA7a 

- 3. 17 -



m;Jlli,( , .. , DECISION TABLE lOGIC SHEET r:;;"- [' '1 ........... -
; ::'! : i~ ""-' : '!:!.i ; , I""'" , ,, .. " '"'''''' " .. " 

'~ , 
, .. 

, , , 
, ,.-," " "". f I ~OIOCIt ... DAT, , , 

• : " " 0' , 

19 ... ..... D .T .~ . 
, ). CO"II.)I T ."'hell ~ . ; ~ , -~'. , ". ~," "'"--!. ; ..... , . 1 '-"a ~ I 

. , 

= ,,, 

#' .~ 
','" J, 'E,.-

',OJ ~~ 
, .. ". " " .. 

,~; " .,,' ' , " 

.. , 
1..1.. 

.~- DAn ... . , 
p • U ... UDa. .~ . 

~r 
CO .... III l MU ........ 

~ 
~-.. ..,' 

I ; ~ , , , 
U"" .... , I 

,~ 

'~ 
, 

lllE~ 
iii: 

, 
" 
" , 

, 

- 3, 18 -



3 

, 

HOC bd' lun IUbooO un 100E Oi iil ItT flile 

tOOillhTS bunllilil IUiiS 19n • NO 'lbUS! 

- .. - -- - - S i 0 • -- -- - - - - 01 Dt oj h oS OC or tl8 
"10 ell "'UM ,- , 

" ,u. , .. " . ..,,-
=Elt 

I ; : : 
;;;; ; • 

~ 
; : 

• : 
I : • 

.. -.... liilt Imlbltt un 'UU 01 ux, tail. 

COiNilS M ............. S to! ilIb "OtbS 

~ , u • -dlDZbJhbSa&DfO' 
"LlI "'t,Ott IIM{ I 01' II.IIt 2 

• 

NK OAIf '''LI ".SUIIIIOf' ... hU",'U IO,XT IUH 00 

t~ .. u 

--- - - s , u • ----- " " LIt _CUM ,- , 
" .u • , 

.. 01 • ,n "III'_Si .. ~ • • no, • .,,' 1000nUIUIYa • 

"~ hU UIU U'''!I''fM '" nSf IUU ..ur lUll 00 

'_lin 
----- s , u • -- - - - " '10 LII foC:TlOIII ,- , 

" "'"l , 
'~I • .n 1000OOOU...s .. ~ , 
'H' • "" IOIIU..-UD , 

----- S,UI ____ _ 0 1 O~ 
'10 LII KlIOII _, 01> ..... I 

CUol ,lIl1 rUbO H 

hidi /Un iiibblJ 

IUOII u.,u 

UIOll "II.I 

'''0. u," 

"tiI 11O I 

• 
toli 

" 

hLt NO 

. ... ~ 

.... ~ 

eou .. 

• 
,," .. 

• 
,~ .. 

'" ., 
_, • _, UI OItfi¥LI~' • V • . , 
.......................................... . ................................................ 0 ••••••••••••••••••••••••••••••••••• • 

MoD •. 511 
~', .. --.u, ----=: Dfo 

tllCtn, .. o U n.'tuu~ 
fllC('HOIrS "" .... , 
'"~1i--

, , . ,-

- 3. 19 -

, 
, 

~ 



r ·~~:"------,;;.~,~.~.:-";.:-"','.::,:,:,:,,::.--:.:,:.'.' 

~OIO ...... __________ ~" ___________ __ 

., 
~.I ... U •• , _________ .~. ___________ _ 

CO I"'''''T 

-"Ji" liin Uill "ilf fUlt tUlSA IIiU ",a iiO 

-..,." ... ~"."".----~Oi!crno "dlU _oullill • 
- _ _ _ s , u-.---_--=-_-:.-:;-;.- ;-;;-lIT-n-U--- ---------"·---------------- COlI 

'R .~ III A( TI "" .AIIt I Of' ,,&lit 2 

PI.bC ' u lli fiR. 

-~l)IIIihn UUn IIASfU hOll IUlOuff lod ' ''O! 

---------- -

• • +--------

---_._---

: --------------

- 3. 20 -

, ... 
• 

tOW .. 



"" Din "Ill '''abll leu lOti lilll ,UlI .... hili , ... • 
Ca"IU NbQU fUNi iI'U '"" '''' I .. USfIl • 
-- - - - • , u • - ---- 01 02 as Cf4 
H .. 1oCT!. .... , ~ .u. • .. 
MI ~ "'QIIoM. IS 011 '" II ,Wi' 'kb--- II Of , • 01 
IWIA '11(0 n ... _, os 
............................................. " ............................. II ................... -.. hl ......................... .. .... • Mft 'UNS," " ntDOJ • PSb • .. ""UI! • . -• ... , uuon • rAr • IINI 'IDill to "'DOl • • .... • w" "'toon . • 1M • MI"I IlUlst .. '0 .. stOIil' • • -----
"" • NO 01./110&".1. • nil • con filA" • 

0"-". T",\ '15 00",0 

- fU." •• ," _00. ,Nt .,1 ....... I ibn tUD:a ,I 0' • a.. "OM ___ _ 

., l" ."'!)It ...... , 0* ..... t J 
01 en n CA .. 

Jtll" ~,g 'UOOSI • • • 

nbC: lilT' flill fllln. nSl! lOCI liflt nlU T",600' 111M "IU PI .... 

(lIMiTS tlli".,1 noun.", nUtlinfOil 

--01010) 
"LI' &( fI 011 

- 3. 21 -

• 
tIM .. 

r 



o -~ •••• ~r---"""<'----~'''h.''.,--.--~" •••••••••• ~,." ••• -•••• ".n>'T'~'."'T'-'.'.'"'<'-'."w~"'r' --........ .-..... ,.------. ........ .--.----.• 
,.,..." 1011 ,iUUti 1M 110. , • 
~.----- - I i 0 • ---- - ---02 O. iU O. OS a. 01 tbq -. 
" u _ell "" 1I.1\t I .. NUt ~ .. 

f 
, 

~ 
, , .. ; ; , 

l::' 
; ; . 

=-1h; ;;;;, 
~ §i . 

-
- : : 

un _ 
'0'0 

1 ___ 0 . • • . 
- - - --

3 ,..... alit ,"u "'00" UA .... , .11, 'liLi ,UOOil ..... ..... ."'" .. 

---O ...... --;'"nT.,,-,. .. ,,-.......... ,',----------- --------------------------,-----.-CO .... ti,S tOlttiO! tRIllS •• _ i 

~ • u • OIDzOiA • _ , or 

• 

.... bAt! fllli '"oon lUI lOCI lUi tllU UIM fill t n", 110 

, .... ts ttll'U"'l ,U ... S t hbtUS • 
OIUU" 'OM .. 

------- ... _-----_ .. -

• • .. --

- 3. 22 -



31 ::::~':'OG::::::::::;":;':':;~:;~~:':':':':'::.:":.:.~"::':;~:':.:.::~~':':.~:':";:'::::::':':':' :':':':':':::::::::::::':':':":::':':"::'::'&:':':':":::::::':"':::"'::::::::::::::: Cd_litiS 1M lOUIiN ........... ·'0 , 0 10J·, ..... is auo .. to' • 

- - - - - $ f u • - - - - - - 01 ell 
" l ll AU,OII MAIlE ' 0' /lU. Z 10' ---"'-'-'--'=C---=="--'---"-_-'=-'---- ___________ _ 
110. A fOJOHU ..... S IS 011 • , Dl 
.0101 ........ . ... .. 11 .......... . .......... ..... 11111111 .............. ............ .... ........................ ............... .. .. 
'102. 10010 .. 10070 •• 

not oul filll iOh'ouf theon un iOCI IIUt fUll Illbi fllLE Uti NO 

(Oiiiihfi EOJ iouW,f-i"fIiiEO .. liEU to' Oii 1Ullis • 
"'1,011 II!": ~ I -;,;.:::;.;.;.;.~,;::-::-~.:'==:::::::::::::::::::::::::::::::::::::: C04 

" 

,.'" b&it ,II" ttl,U"'$ ... .Cst 10l. .. ex . Ult. 00 ..... ..IU 

CO"""",. lOU"N. 10 lOt. I 1 .~'ICTTaW,----------------------------------------,.;-----r 
.c. LII '''1011 

1501. IOU 
1501. 00 

"1)( 

S I 0 • o. 
... IIE I 01' ... M. 2 

U TU.loIS • SUitUNS • 

f"u nor""s hi un hILi! Ntil fUll Db 11lG( Ilill Utt NO 

t tlll 

" 

---",., ..... ,.,".,---.11'.'''., •• ,""""""'-"Hf"-""""'"'"""', .... ,------- ----------------------------------------------------------------------, • .-------r 
Stu. -- --- « 0 l f 01 . « U (E 02 • U (I OJ • U l , • U L E iuLl tON 

,~ 1I. At II 011 0' It ... " 1 ~ o 

.. 0 1 A "lVlU.1IIOO W' UIWIIOO La iQ "" 01 

..... .... 111" .......... ..... ................ ........... . ............ i ........... i1i1iiOi ..................................... .. 

"OS i 
• .oS • 
Ubi 1 

ill _. 
in 

u (oon 
UII""'"' .T.d"" 

" (0 , g 'IIfWUAltf40 , II. " .. " 

31, ___ "., ........ " ____ , .. " '.""""',, .. ,,, ••• ,,.,;.~~ .. ~:': .. ::':'i: •• :::':.:'._-----,, ________ .t __ ._" __ ' ___ -.~"."''''".".''''-.'''---------",.,., ••• -,' ••• , .",------------. ••• ,,"" •• ,,-,--------,-
. "_NIi W, • "iSTU In;wO , 

" 1I. ""011 
no." "' 

, i U • 
.UIf I Q' 

OJ --- -------------,"'..-.-~ ., 
1102« DO 

hOG 
CIlIiMUT$ 

.... nu • RUICU I U , I 

out I1lil1 nodUli TU _lit tlill 00 

stOOhCE eUH. IIii' IIUrU ,,'OliOS 

$ l ul - ---­
•• ..., I II' .... " f a 

• 0 t t b l «0 l t til .0 (l OJ «U C E 
00' ... . t 1 01' ~'''f 2 0' ""., l Of ..... ! 

Elibi TIki " CI lid 

• D ( ( M ._ COl 

"' 
~::!.! ........ ::::::!~ •. ::.:~:t:t!.i . i. : .~: ..... ii .. i .. ~~i.iii.I ..... ~: ... iiii ... i .. i ...... i i .. ii i ......... i .. ii ... , .... . TI".".::::----
1I0~ . IO(IVf .n ..... _ TO '~nus .. o 0lI0 .... _ nou ... _ 
nbJ I 'Of _nUMb I 

- 3, 23 -



900100R 9S001AelEPUTPAYKEG 
MOOE REPORT 90020 

90030PUTPAYREG 
9G040 
9 00S0 
900bO 
90010 
900S0 
90090 
90100 
9011Q 
90120 
90130 
90140 
901S0 
901bO 
90110 
901S0 
90190 
90200 
90210 
90220 
90230 
90240 
91010 
91020 
91030 
91040 
910S0 
910bO 
91010 
910S0 
91090 
91100 
91110 
91120 
91130 
91140 
911S0 
911 bO 
91110 
911S0 
91190 
91200 
91210 
91220 
91230 
91240 
912S0 
92010 
920 20 
92030 
92 040 
920S0 

OREPT PAYREG,PAYREGREC1,PAYREGREC2,Xl0,P,54,l20,EOR, 
PAHOG 
CARRC 1 
CONST42 
CONST33P A Y R aLL 
PAHOG 

REGISTER 

CARRC 
CONS139 
CONST12CUTOFF OATE 
WOATEOSCUTOFFOATE, 
CONSTll PAY OATE 
WOATEOSPAYOATE, 
PAHOG 
CARRC a 
CONSTS2MANNO 
CONSTS2 
CONST10Y 
PAHOG 

SH 
YTOWTAX 

CARRC 

NAME 
VACOATE 

SOC SEC NO ORG 
NO.OEP RATE YTOHRS 

OESC 
YTOMONE 

CQNSTS2YTD FI~A SL ACC VAC ACC INS AMT LOAN SAL MISDED 
CONSTS2 CURHRSWK CURHRSPO CURGROSS CURNET CURWTAX CURF 
CONST041CA 
OTAIL 
CARRC 
RECROOSWAMANNO, 
CONST02 
RECR011WANAME, 
CONST02 
RECR009WASOCSECNO, 
CONST02 
RECROOSWAORG, 
CONSTOI 
RECR01S0RGOESCRIP, 
CONST03 
RECRC01WASHHT, 
CONST02 
RECR006WANEXTVACO, 
CONSTOS 
RECR002WANOOEPENO, 
CONSTC4 
RECR006WARATE,ex.xxx c, 
CONSTCI 
RECROOSWAYTOHRS,IXXXXX.X I, 
CONSTOI 
RECR009WAYTDMONEV, exxxxx.xx (, 
CONSTC2 
RECR007WAYTOWTAX,exxxx.xx (, 
OTA Il 
CARRC 
CONSTOI 
RECR001WAYTOFICA,IXXX.XX I, 
CONST02 

- 3. 24 -



92060 RECR007WASLHRSACC,(XXXX.X (, 
92070 CONST02 
92080 RECRD06WAVACHRSUD,(XXX.X (, 
92090 CCNST03 
92100 RECR007WAINSAMT,(XXX.XX (, 
92110 CONST02 
92120 RECR007WALOANBAL,(XXX.XX (, 
92130 CONST02 
92140 RECRDG7WAMOEDAMT,(XXX.XX I, 
92150 CONST04 
92160 REeRD06PCHOURSWK,IXXX.X (, 
92170 eONST02 
92180 RECR006PCHOUR5PO,IXXX.X (, 
92190 CONST02 
92200 RECR009PCGROSS,IXXXXX.XX I, 
92210 CONSTOI 
92220 RECR009PCNET,IXXXXX.XX I, 
92230 CONSTOI 
92240 RECR008PCWTAX,(XXXX.XX I, 
922S0 CONSTOI · 
92260 RECR007PCFICA,(XXl.XX I, 
93DI0 2REAkOlP, 
93020 OIWAMANNOI, 
93030 CARRe 0 
93040 CaNSTIS 
93050 TOTALI4PCGROSS,I~X,~XX,XXX.XX I, 
93060 CO NSTOS 
93070 TOTALI2PCWTAX,liXXX,XXX.XX (, 
93080 CONSTOS 
93090 TOTAlI2PCFICA,liXXX,XXX.XX I, 
93100 CONSTOS 
93110 TOTALI4WAYTDMONEY,(iX,XXX,XXX.XX t, 
93120 CONS·TOS 
93130 TOTAlI2VAYTOWTAX,liXXX,XXX.XX I, 
93140 CONSTOS 
93150 TOTALI2WAYTOFfCA,liXXX,XXX.XX I, 
93160 CONSTOI 
93190CLRRfENIRYClRPT IOENT 
93200 MOOE AUTOCODER 
99010QA 9QOOTA2LE PROGHLT 
99020 TfTLE HANDLE OBJECT PROGRAM HALTS 
99030 TYPE 10BJECT PROGRAM HALT ENCOUNTERED la 
99040 HLT 16000 
99045 TR .-S 
990S00A 990lTABlE PROGERR 
9906Q TrTLE HANDLE 900 SERIES AND ANY AND TAR 
99070 TYPE 1900 SERIES,ANY,OR TAR CONOITION la 
99080 HlT 16001 
99090 TR .-S 
99999FINAL ENO 

- 3. 25 -



CHAPTER 4 

7080 Decision Table System Specifications 

While this chapter is essentially a reference section, the general 

characteristics of the system are explained initially. Aspects of the 

system are defined and related to other aspects of the system so that 

the system can be seen as an entity. This general description is fol ­

lowed by detailed specifications, rules, and restrictions beginning 

with the caption CONDITIONS. 

System Characteristics 

The specific operations needed to perform a data processing job 

are specified through a set of decision tables. These tables reflect the 

decisions of the system and the actions needed to produce the proper 

results. 

Three distinct procedure languages are permitted in the 7080 

Decision Table System. 

1. Decision tables 

2. Autocoder ill pseudo tables 

3. Report Writer pseudo tables. 

Procedure and operand descriptions are separate. Four operand 

(data) description tables are used to define the operands used by the 

program. A single form , the Decision Table Name Description sheet, 

is used for the description of all operands except the 7080 IOCS File 

- 4. 1 -



Table form which is used to define input- output files. Various types 

of operands fall into each operand description table . 

0000 - - I/O FILES -- All input/output files used in !be program 

must be described in Ibis table . This will include !be 

7080 IOCS File Table Macro-insiructions followed by !be 

definitions of !be records contained in !be file . Field 

definitions will define !be format of the records as they 

will exist in core storage . (Tape assignment entries will 

precede the description of the various input/output 

files . ) 

0001 - - CORE FILES -- Working storage records are descr ibed 

in Ibis section . Table 0001 is omitted if not needed . 

0002 -- MISCELLANEOUS, VARIABLE - - This section is used 

to define temporary locations for variables, switches , 

address constants and index pointers . 

0003 -- MISCELLANEOUS, FIXED -- This section is used to 

define arithmetic expressions, symbolic expressions , 

constants, value lists, and reference lists. 

The table form is !be primary procedure form accepted by !be 

system . Two basic types of tables are recognized in !be 7080 Decision 

Table System -- lIopen" and IIclosed" tables. An open table corresponds 

to normal programming or open subroutines which may be transferred . 

- 4 . 2 -



to by GO TO commands and in turn have GO TO 's to indicate the next 

table to be considered. They may also calIon closed tables with the 

DO command. Closed tables correspond to closed subroutines and 

can only be executed when called by a DO command (corresponds to 

Autocoder LINK), which controls the entrance and the exit of the routine. - . 

A closed table should not have GO TO commands within it (it can have other 

DOrs, however) . 

Autocoder and Report Writer pseudo tables are auxiliary modes 

accepted by the system and treated as closed tables. They are written 

in their normal form with a sultable table header preceding each. Thus, 

entry is permitted by the liDO table name!! in a normal decision table. 

In a decision table, conditions are written in the top portion, 

actions in the lower portion. The condition and action stubs are to the 

left, the entries to the right. The four quadrants are separated by 

vertical and horizontal double lines. Table headers pertinent to the 

entire table are written above the main body of the table. 

Conditions, in the upper portion of the table, are written in 

limited or extended entry form. Based upon the satisfaction of one or 

more conditions, certain actions specified in the action portion of the 

table are carried out. 

Two categories of conditional statements are recognized by the 

system: relational, where two values are compared for identity or 

- 4.3 -



collating relationship, and state, where values or switches are tested 

to see if they are in a certain state; e. g. , ON, POSITNE, NUMERIC, 

ZERO, etc. 

Actions, in the lower portion of the table are used to assign values, 

obtain input data, provide output data, and control the sequence of the 

program. Actions, like conditions, can be represented in either 

limited or extended entry form. In limited entry form an X in the' entry 

indicates tlexecute ll while a blank means lido not execute ll
; while in ex­

tended form the second operand and sometimes part of the operator 

appear in the entry. 

A rule consists of one or more conditions followed sequentially 

by one or more actions that are executed if all the conditions are 

satisfied. These actions will be executed in the order written. 

An analyst may explicitly indicate all possibilities to be covered 

with a set of rules. When unexpectedly no rules are satisfied, an error 

table named on the Decision Table Header will be considered. 

When all possibilities have not been considered by the analyst, 

and it is possible that the conditions of none of the rules will be satis­

fied, an ELSE or Hall others II rule number is specified in the table 

header. This rule number references a rule within this table in which 

no conditions appear (an W1conditional rule), but appropriate actions 

are stated. An unconditional rule is used when certain cases have been 

- 4. 4 -



written, but when they do not apply, the unconditional rule is executed. 

An unconditional rule must, of course, be the last one considered in 

executing a table. 

The general form of the relational statement is: 

Operand 1 

The operator may be : 

EQ stands for 
UN 
GR 
LR 
GE 
LE 
VS 

Operator Operator 2 

is equal to 
is not equal to 
is greater than 
is lesser than 
is greater than or equal to 
is lesser than or equal to 
versus 

Operand 2 can be used in the stub with an appropriate Y, N or 

blank in each entry Qimited entry form) as shown below: 

STUB 

MASTERID EQ DETAILID 

ENTRY 

II Rule 1 I Rule 2 

II Y I 
Rule 3

1 

, 

N 

Or operand 2 may occur in the entry itself (extended form). 

STUB ENTRY 

Rule 1 Rule 2 

MASTERID EQ I DETAILID NORECORD 

VS is used in the limited entry form to compare two values speci-

fied in the stub - then in the entry the other appropriate symbols are 

used for the particular relationship with the implication that the symbol 

- 4. 5 -



is substituted for the VS in the particular rule; e. g. ; 

STUB 

Rule 1 

MASTERID VS DETAILID GR 

ENTRY 

Rule 21 
GR ! , , 

Rule3 Rule4 

LR EQ 

In extended entry the relational operators (EQ, GR. . . ) can be in 

the stub (when the comparison is the same for all rules) or in the eptry 

as shown above. 

The general form of the state condition is: 

Operand 1 Operator state 

Only two operators exist in this type of condition statement : 

IS 

NT (is NoT) 

Four state categories are recognized: 

1. POSITIVE (POS) 

NEGATIVE (NEG) 

2. ON 
OFF 

3. ZERO 
BLANK 

4. NUMERlC 

(Either the full word POSITIVE/ 
NEGATIVE or the abbreviations 
POS/NEG may be used. ) 

State conditions, like relational, can be written in either limited 

or extended entry form. 

- 4. 6 -



For relational statements there are rules for comparison, and 

for both relational and state conditions there are restrictions on the 

operands or names which can be used. For a more complete explana­

tion see CONDITIONS. 

Action operators are concerned with (1) the movement of the 

value of one field or record to another field or record, (2) the movement 

of data to and from input/output units, and (3) the control of !he sequence 

in which operations are performed. 

Examples of the general forms of actions operators are shown 

below: 

MOVE Operand 1 TO Operand 2 

SET Operand I EQ Operand 2 

GET File name 

GO TO Table name 

DO Table name 

Actions are spelled out more fully under Input/Output Operators, 

Assignment Operators, and Sequence Control Operators. 

- 4. 7 -



Names 

Operations are performed upon specified data which may be a 

file, a record within a file, an associated group of fields, various types 

of variable data fields, constants, as well as expressions which cause 

data manipulations. Each of these is named and defined on one of the four 

Decision Table Name Description Sheets (DODO . .. 0003). 

A name may contain up to 10 characters in any pattern of letters 

(A - Z) and numbers (O - 9) with the restriction that a name must start 

with a letter, and may not contain imbedded blanks, or special 

characters. Names chosen by the analyst should be descriptive of the 

value they represent to improve the communicability of the program. 

Names are always written left justified. 

Table Names -- Decision tables are named (or numbered) in the 

table header which precedes each table. These names are used when the 

table is referenced in the program. 

A table name is constructed like any other name in the system 

(IO alphameric characters), for example, GROSSTONET. If desired, 

a table may be given a 4- digit numeric identification in the table header. 

These tables may be referenced in other tables or within the table 

itself by affixing this number to the letters TAB, for example, TAB0024, 

TAB962l, etc. If a table has a name and a number they are considered 

as synonyms. 

- 4. 8 -



A data description table (0000 . .. 0003) may be given a table 

name, but this name may not be referenced from another part of the 

system. 

Named Operands 

FILE - - A file is a collection of one or more records associated 

with an input or output device. The file itself is named and defined on 

the 7080 Ioes File Table. The records which compose the file are 

described on data description table 0000. 

RNAME - - Record names are assigned in data description table 

0000 to identify the logical record (the amount of data delivered by I/O 

operators), and on table 0001 to identify working stor age areas . 

GNAME -- Group names permit a continuous section of storage 

to be given a name. GNAMEs are used in tables 0000,0001 and 0002. 

Vartable Field Names - - These are names for signed and unsigned 

numeric fields, alphameric fields, report fields to be edited, characters 

used for bit switches, and preassigned value fields. When these fields 

describe records contained in the I/O files, they are defined in data 

description table 0000. For working storage records, they are defined 

in table 0001, and when they define temporary stor age locations they are 

described in table 0002. The classes of variable field names follow: 

- 4.9 -



FLD - The name, length and special characteristics (such 

as sign or decimal position) of numeric and alphameric fields is 

specified with this class entry. 

PRE - The name, length, special characteristics, and 

specific values of preassigned variables are specified with 

this class entry. 

RPr - Report field formats are specified with this class 

entry. Such editing functions as placing commas, deciII)al 

points and dollar signs for printed reports are accomplished. 

BrrCD - One character variables are set up and their 1, 2, 4 

and/or A bits named. Each named bit can then be used by 

the program as an on- off switch. 

PCON -- Permanent constants that are never or very seldom 

changed, such as 3. 1416,are speCified in data description table 0003 

and classified as PCON. 

ADCON -- Address constants are utilized by closed Autocoder 

pseudo tables and in developing initial base addresses when using index 

pointers for operation on variable length input or output files (see below). 

POINT -- Index pointers are designed in the system as 

point names for fields containing a 7080 address. The address is 

controlled by the programmer in manipulating variable length input/ 

output records. 

Indirect Address Registers - - Ten pre- defined address constants , -
tagged XO through X9, are provided by the system. These may be used 

to effect address modification in referenCing data fields. 

- 4. 10 -



ALTSW -- Alteration switches are named with his entry class. 

Expressions -- There are two types of expressions: arithmetic 

and symbolic. These are named and specified in data description 

table 0003. 

MEXP - Arithmetic expressions are specified in much the 

same manner as for the MATH macro in the Autocoder 

system. The expression name is referenced in the program, 

thus calling for the proper computation. Arithmetic ex~ 

pressions are further explained in the description of 

Table 0003. 

SEXP - - Symbolic expressions allow several fields of data 

to be treated as a single operand. Variable names, constant 

names, symbolic expression names and literals may be 

operands in a single symbolic expression. Symbollc ex­

pressions are further explained under Table 0003 in this 

manual. 

VLIST -- A value list consists of a list of constant values 

that can be used in the condition section of a program table. A value 

list is named in data description table 0003 and described. It can then 

be named as an operand in a decision table to see if the current value 

of an input item is contained on the list. Value lists are further 

explained under Table 0003. 

- 4. 11 -



RLIST A reference list provides a set of constant 

arguments and values to be specified by the user. Reference lists 

are named and described in data description table 0003. It is then 

possible to determine if a particular argument is in the table and use the 

functirn as the operand in an action. Reference lists are described more 

fully under Table 0003. 

other Operands 

The following operands can be utilized in the program without 

being described on a Decision Table Name Description form: 

Literals 

A literal is the value itself rather than the name of a value (e . g. , 

the value is expressed in the program, whereas constants are 

described). Literal values up to 8 characters in length may be used 

directly in the table -- when more positions are needed they are des­

cribed in the operand description as a constant. Two types of literals 

are available -- numeric and alphameric. 

Numeric literals must consist of all digits, up to 8 are permitted. 

A sign may precede the value. An unsigned literal is cons idered to be 

positive. If the value is other than an integer (whole number) a decimal 

point must be included to indicate the number of integers and decimals. 

Further, there must always be a sign associated with a value containing 

a decimal point. The sign and point are not part of the literal value 

- 4 . 12 -



itself. No special symbols are needed to indicate that it is a numeric 

literal. 

No signs or decimal points are used with an alphamer~c liter al 

(the symbols. + and - may be used but they do not connote sign or 

decimal). It may have up to 8 positions also, but to distinguish it from 

names of values special symbols must surround it. The single quote (') . 

symbol is used. This symbol is keypunched .as i/. ExaII)ples are: 

'LGA' 
'123 - T P S. ' 

All symbols of the character set may be used except the quote symbol 

which delimits the literal. A constant which contains this symbol may be 

described in the operand description along with values that are more than 

8 poSitions In length. 

TABSTOP 
, 

A program can be halted by using the operand TABSTOP In a 

GO TO statement, the "next table II position, or the "error table II in 

the header. This will cause a dead-end halt in the object pr ogram. If It 

is desired to do other than stop at intermediate points or at Job com-

pletion, other programming must accomplish the walting loop or what-

ever is needed. 

SpeCial Names 

There are a number oftsystem words ll which may be used by the 

- 4. 13 -



programmer without identifying them in the Decision Table Name 

Description sheel. The use and meaning of these words is described 

where they are used in the condition and action portions of decision 

tables. The words are: 

ZERO 
BLANK 
NUMERIC 
NEGATIVE 
NEG 
POSITIVE 
POS 
ON 
OFF 

- 4. 14 -



CONDITIONS 

Relational 

As enumerated under systems characteristics the relational 

operators may be : 

EQ 
UN 
GR 
LR 
GE 
LE 
VS 

stands for is equal to 
is not equal to 
is greater than 
is lesser than 
is greater than or equal.to 
is lesser than or equal to 
versus 

Both operands should not be literals , constant names, value list 

names or reference list names. Operand I or operand 2 can be the name 

of one of the following : 

Variable name 
Variable name, Xn 
Group name 
Group name, Xn 
Arithmetic expression name 
Symbolic expression name 
Constant name 
Literal (the value itself) 
Value list name 
Reference list name 

Conditions may be in limited or extended entry form . VS is used 

in limited entry to compare two values in the stub, with the appropriate 

operators (above) in the entry . Xn is the designation of one of ten special 

registers available for address modification (this topic is covered more 

thoroughly later). 

- 4.15 -



Rules for Comparisons 

For ..!!!!!!!..eric values, if the number of decimal and integer 

positions for both values agree, a simple comparison of values is 

made. Otherwise, the value with the lower number of decimal posi­

tions is zero-filled in its low- order positions until the number of 

decimal positions in both values agree. The value with the lower 

number of integer positions is zero-filled in its high-order positions 

until the number of integer positions for both values agree. For 

example: 

OperandI 

Operand 2 

87654. 32 

321. 98765 

Three low- order zeros are added to Operand 1 and two high- order 

zeros are added to Operand 2, giving: 

Operand 1 87654. 32000 

Operand 2 00321. 98765 

The values are now compared, position by position. Note that all nega­

tive numbers are considered smaller than positive numbers. Further, 

when two negative numbers are compared, the number with the smaller 

absolute value is considered the larger number. 

For alphameric values , if the number of positions in both values 

agree , a simple comparison is made. Otherwise, the value with the 

smaller number of positions is filled with blanks in its low-order posi-



tions until the number of positions in both values agree. For example, 

Operand 1 ABCDEF 

Operand 2 ABCD 

Two blanks are added to the right of Operand 2, giving: 

OperandI 

Operand 2 

ABCDEF 

ABCDbb 

Comparison of the values is then made, IX>sition by position,.based on 

the collating sequence. 

Conditions: State 

Only two operators exist in this type of condition statement: 

IS 

NT (is NoT) 

Only certain operand types can be test ed to see if they are in a 

certain state. Four state categories are recognized: 

Variable name 

1. Group name 

Arithmetic expression nam 

{
IS l j POSITNE (POS) } 
NT J I NEGATNE (NEG) 

Either the full word POSITNE/NEGATNE or the abbreviations 

POS/NEG may be used. The vaiue of the group name must have only a 

single conventional sign indicator. 

{

Bit switch name 1 
2. Alteration switch name } 

- 4. 17 -



• 

3. 

4. 

(Variable name 
)Arithmetic expression name t 
) Symbolic expression name ( 
i Group name , 

{

Variable name \ 
Group name 
Symbolic expression name ) 

NUMERIC 

State conditions, like relational, can be written in either limited 

or extended entry form. State conditions cannot use the address modifi-

cation feature of the system (XO - XIJ). 

ACTIONS 

Input/Output Operators 

The functions of the 7080 rocs package will be available to the 

7080 DTS user. The instructions which call for these functions will be 

written in the decision tables themselves in the format of 7080 DTS. 

The user may use the particular IOCS package that he desires. 

The definition of the files and the functions required will be included in 

the operand description portion. In general, the format of the 

Autocoder system will be used in this regard. 

Note: This specification will not attempt to make a precise defini­

tion of all the functions of the rocs package or how they ar e to be 

described in the 7080 DTS, or in fact, how it will operate in the 

object program. (See Preliminary Manual- - Input/Output Control 

Systems for IBM 7080--No. J28 - 6188). It will suffice to 

- 4 . 18 -



indicate the input/output operators and format that are useable 

in the decision table itself. Five action operato;rs are recog­

nized in the input/output section. 

OPEN. .. The OPEN command is used to tell l OCS to start the reading 

of all input flles, do the necessary label checktng if called 

for, and get the first block of tnformation into the' machine. 

In the case of output files , label records will be created if 

desired, and any other functions called for tn the lOCS 

package. No operands are required, since all files will be 

opened by generated ltnkage to lOCS. 

GET. . . This action operator is a means of providing the next logical 

record of the file . Two forms of the command exist: 

GET filename 

GET filename IN recordname 

The first command provides the next record in a working 

area provided by l OCS. The second command, with two 

operands, first moves the next logical record into the 

working area and then a move command is generated to 

place this tnformation in the area identified by the record 

name. The connector ill must appear in the action stub, 

otherwise the second operand (record name) will be ignored. 

End of file is reached when the last record has already been 

- 4.19 -



processed; transfer is made to the open table identified in the 

file section of the operand description. 
, 

Deblocking of records is handled automatically with the GET 

action. The I/O processor will insure that the next block 

is read into the machine when a block is depleted. The user 

need not concern himself about actual read commands. 

PUT. . . The PUT action is the counterpart of the GET action on the 

output side. Two forms of the command are available. 

PUT filename 

PUT filename FR (FROM) recordname 

With the PUT filename command, the record in the output 

area is released by the program and goes into the output 

area to be written out automatically by lOGS when a block 

has been filled. The user need not concern himself with 

blocking of output records. The blocking factor itself is 

specified in the operand description area 

The PUT filename FR recordname first causes the movement 

of the information of a record area to the standard working 

storage position of the file, and then to the output blOCking 

area to be written when the block is full. If no blocking is 

called for, the PUT command will write the record as soon 

as an I/O device becomes available. The connector FR must 

- 4.20 -



appear in the action stub, otherwise operand 2 will be 

ignored. 

CLOSE . .. This action is used when the program is finished with a 

particular file. CLOSE must have as operand 1 the 

name of the file to be closed. This file name must be 

the name of a GET/PUT type file. In the case of input, 

after doing any record counting or such called fOr in the 

operand description, the tape is merely rewound. On 

the output side, the last block will be written on the output 

device, a tape mark and trailing label will be written, and 

then the tape will be rewound. 

TYPE. . . This command will be available for putting out small 

amoWlts of information either on the console typewriter 

or on the on- line printer. Acceptable operands for this 

command will be record name, group name, variable name, 

constant name, literals, and symbolic expression name . An 

arithmetic expression is not an acceptable operand for 

TYPE, since there is no way to move a group mark 

immediately behind the expression to halt the type-out. 

Assignment Operators 

MOVE . • • TO. • • This operator is used in conjunction with two 

operands to move the value of one field or record to 

- 4.21 -



another field or record. Several types of operands can 

be used, but only the following combinations of operand 1 

and operand 2 are allowed: 

1. MOVE 

2. MOVE 

Record name 

Variable name 
Group name 
Constant name 
Literal 
Arith. expr . name 
SymbOlic expr . name 
Reference list junc tion 

3. MOVE {ON I 
OFF) 

4. MOVE {ZERO I 
BLANKJ 

TO Record name 

TO fvariable name} 

lGroup name 

TO Bit switch name 

{

Group name } 
TO Variable name 

Record name 

[

Index pointer name, 
5. MOVEV InInddex po~teter name 

ex pom r name, 

xxxx Lo 
Jndex painter name J 

RM 
Var. name) 

Record name 

\ 

6. MOVEV 

Record name 
Variable name 
Constant name 
Literal 
Expression name 

TO 
{

Index pOinter name 
Index pOinter name, 
Index pointer name, =j 

{Variable name} ,Xn TO {Variable name} 
Group name Group name 

7. MOVE 
(Variable name) TO {Variable name) ,Xn Group name Group name 

Operand 1 is always the name of the sending area and operand 

2 the name of the receiving area. 

- 4.22 -



1. Record Movement 

If records are to be moved, botb operands must have 

been defined witb tbe RNAME class code. All I/O records 

are a multiple of 5 characters (an IOCS requirement) and 

so must be internal records defined for W(l' king storage jf 

tbey are to be moved witb tbe MOVE record name action . 

Also, tbey must end witb a record mark since high-speed 

transmit will be used. 

Note: If a record does not have these characteristics, the 

record can, in addition, be defined as a group (GNAME) and 

tben a MOVE group name TO group name can be utilized. 

2. Field Movement 

The second type of MOVE, the most common, is used 

to move values from one field to another. The general form 

and tbe permissible operands are shown below: 

Group name 
Variable name 
Constant name 

MOVE Literal 
Arithmetic expr. name 
Symbolic expr. name 
Reference list function 

TO {Variable name) 

Group name 

The MOVE group name TO group name command operates 

in much the same way as the MOVE record name in that the 

characters are peeled off from tbe left of tbe sending field 

and placed in tbe receiving field starting from tbe left. 

- 4.23 -



The transmission of characters is stopped when the end 

of the shorter area has been reached. This is comparable 

to the normal Autocoder move . When the longer area is 

the sendmg area, the excess character:s are truncated. 

When the shorter area is used as the sending area, the 

excess characters of the resulting field are unaffected. 

When information is being moved into a variable field, 

special rules will be in effect. Again, the shorter of the 

two operands, as specified in the operand description 

tables, delimits movement of data. However, when 

numeric data is being moved and operand 1 is the shorter 

field, low-order decimal positions and high-order integer 

positions in the receiving field are zero-filled up to the 

number of decimal and mteger positions specified in the 

receiving field. For example: 

Before the MOVE ... TO. .. action: 

Operand 1 987.65 

Operand 2 6 integer and 4 decimal 
positions specified 

After the MOVE ... TO . . . action: 

Operand I 987.65 

Operand 2 000987.6500 

- 4.24 -



When operand 2 is the shorter field, low-order decimal 

positions and high- order intege r positions of operand 1 

are truncated to satisfy the number of decimal and integer 

positions specified for operand 2. Before low-order 

truncation, half adjustment will take place. For example: 

Before the MOVE ... TO. •• action: 

Operand 1 98765.4321 

Operand 2 4 integer and 2 decimal 
positions specified 

After the MOVE ... TO. .. action: 

Operand 1 98765.4321 

Operand 2 8765. 43 

When alphameric data is being moved and operand 2 is the 

longer field, low-order positions of operand 2 are blank 

filled. For example: 

Before the MOVE ... TO •.. action: 

Operand 1 ABCD 

Operand 2 6 positions specified 

After the MOVE •.. TO ••. action: 

Operand 1 ABCD 

Operand 2 ABCDbb 

When operand 2 is the shorter field, l ow- order positions 

of operand 1 are truncated. For example: 

- 4.25 -



Before the MOVE ... TO. .. action: 

OperandI ABCDEF 

Operand 2 4 pOSitions specified 

After the MOVE .. . TO. . . action: 

Operand 1 ABCDEF 

Operand 2 ABCD 

Numeric data can be moved either to a numeric field ot to 

an alphameric field . When moved to an alphameric field, 

the numeric field is treated as though it were an alphameric 

field. Alphameric data can be moved only to an alphameric 

field. When numeric data is moved, the sign of the sending 

field (operand 1) is moved to the receiving field (operand 2). 

\Vhen operand 1 is an expression name, the value of the 

expression is computed, and then this value is moved to 

the receiving field . 

When operand 1 is a numeric literal, its decimal and integer 

length is established as written. The rules for zero filling 

and truncation of the receiving field are the same as for 

other types of operands in the sending field . Note that the 

total number of decimal and integer pOSitions for a numeric 

literal cannot exceed 8. When operand 1 is an alphameric 

literal, its length is estsblished as written. The rules for 

- 4. 26 -



r 

blank filling and truncation of the r eceiving field are the 

same as for other types of operands in the sending field. 

Note that the number of positions for an alphameric literal 

cannot exceed 8. 

When the JOIN operator of a symbolic expression is used 

to develop a field to be moved to another field, i~ will be 

treated as a single value and hence, the rules for blank 

fill will apply. Even if the value developed is all numeric, 

it will be treated as an alphameric value . 

A special situation exists in the case of moving a function 

value from a reference list. In the condition area the argu­

ment and the table name are identified and a search is made 

to see if that argument exists in the table. Ii it does, the 

corresponding value is moved to the location indicated in the 

first line of the table definition. This name can then be used 

in the action portion of the table to obtain the value . Ii the 

user has not tested to find out if the argument is in the table 

in the condition area and he calls for the movement of that 

data in the actions, the last value placed in this position will 

be moved. It is the r esponsibility of the user to insure that 

the proper value is there. 

- 4. 27 -



3. Setting of Bit Switches 

The third kind of MOVE sets a Bit switch ON or OFF. 

MOVE 
' ON ) 

[OFF } 
TO Bit switch name 

The MOVE ON/OFF command can use only a Bit switch 

name as operand 2. The effect of this is to turn a Bit on 

or off such that it can later be tested in the condition area 

or can be part of the output record. 

4. Zero or Blank Fill of Operands 

The fourth type of MOVE is used to zero or blank-fill 

an operand named in the second operand position. 

MOVE {"ERO} 
BLANK {

Variable name} 
TO Group name 

Record name 

The system will automatically generate the number of zeros 

or blanks required to fill the receiving field . Anything 

currently in the receiving field will be erased. 

5. Variable Length Data Movement 

The fif th type of MOVE is used to move information out 

of a variable length input record. It will be the responsi-

bility of the programmer to work through an input record 

obtaining the pertinent input values and manipulating them as 

required. Index pointers can be set up in the system to 

- 4. 28 -



'assist the user In this regard. The pointer, In reality, 

Is a 6-posltion signed field contalnlng an, expanded 7080 

address. ThIs address may be lnlt!allzec. (prestunably to 

'the beginning of the variable length portion of the record). 

i'Field name } 
SET Index pointer name EQ ' 

Adcon rIalne 

The address is then manipulated as trailer lteni~ and fields 

are moved out to a working storage area where 'they can 

be addressed direcUy when the particular, Item Is idenWied. 

The value of the Index pointer Is maintained by the pro­

qrammer using the appropriate arithmetic. The pointer 

may be advanced by the length of the item just moved to be 

ready for the next Item, or if the record itself contains size 

or number of occurrences lnlormation, these values can be 

used to modify the Index. 

The MOVE operator Is suffixed with a V (variable) to Indl-

cate that this is a special move operation. 

{

Index pointer name } 
MOVEV Index pointer name, xxxx :ro 

Index pointer name, RM ' 
Index pointer name, Variable name 

Record name 

The xxxx can control the number of characters, or the record 

terminating record mark can control the movement (RM option). 

- 4.29 -



6. Fabrication of a Variable Length Output Record 

The sixth type of MOVE is used to fabricate a 

variable length output record. This is also described 

under Table 0000 in the operand description por tion of 

this document. 

Record name Index pointer name 
Variable name Index pointer nam~, xxxx 

MOVEV Constant name TO 
Literal Index pointer name, RM 
Expression name Index pointer name, Var. name 

When information is to be moved, and only an index pOinter 

name is given as operand 2, the length of the sending area 

determines size. 'Nhen the xxxx option is used; xxxx indi-

cates the number of charac ters. The RM option will tr ansmit 

data until a record mark in the sending area stops trans-

mission (sending area must be multiple of 5 and end in a 4 

or 9 position) . If a variable name (signed or unsigned) is 

used, the number found in the variable name field will control 

the number of characters moved. It is, of course, the 

responsibility of the programmer to maintain the proper value 

of the index pOinter . 

7. Generalized indexing 

The seventh type of MOVE permits the use of predefined 

address registers (XO through X9) for effecting address 

modification. The 7080 Decision Table System utilizes the 

- 4.30 -



Indirect addresslnq faclllty of the 7080 to accomplish 

this . Indirect addreSS1nq allows address m,od11icaUons 

without chanqlnq the addresses of Instructions witb1n the 

decision table, and allows the DTS to remaJn non-

Introspective; 1. e., the DTS does not m~ i~ oWn 

proqram. 

{
Field name, Xn } 

MOVE 
Group name, Xn 

To 
{

Field name', Xn 1 
Group name, Xn 

In operation the 7080 DTS will supply the proqr~er with 

10 taqqed pre-defined address constants (ADCON's) which are 

used to hold the addresses to be modified. They are taqqed 

xci throuqh X9, and are referred to as Xn In the description 

that follows: 

Initialization: Any of the Xn may be set to an 1n1ttal address 

by the SET or MOVE action command. 

SET Xn EQ (Field nam& ) 

Adaon name 

MOVE {Field name J TO Xn 
Adcon name 

In the case of Field name the 1n1t1al address will rtferenc. 

the r1qht hand end of the data field; when Adcon nam. 1, u .. d, 

the ADCON must oontaln a r1qht hand addreas. 

- 4.31 -



Modification of Registers: Any Xn, once initialized, may 

be incremented or decremented by tbe SET or MOVE com-

mand (see two- address aritbmetic) . 

SET Xn 

{

Field name ) 
MOVE Aritb. expression + 

Literal -
Xn 

Note tbat tbe *, / (multiply, divide) operators may not be 

used in stepping Xn. 

Tbe amount of tbe increment or decrement is determined by 

tbe number of characters from tbe current right hand 

address to tbe desired right hand address . 

Using tbe Address Registers: Any Xn may be used to supply 

the' address portion of a command in either the condition or 

action section of a procedure table, as follows . Botb 

Operand 1 and Operand 2 may be modified. 

MOVE FLD 1, X2 TO FLD2, X6 

SET FLD 3, X2 EQ ZERO 

Tbe Address Registers can also be used in tbe condition 

portion of a table as noted earlier. 

FIELD 1, Xl EQ FIELD 2, X2 

TAG 2, X4 GR 3ERO 

- 4. 32 -



In each case, the field name preceding Xn supplies the 

format of this operand, and the Xn supplies the address 

of this operand. a t should be noted that the format 

field will usually be the same data name used to initialize 

Xn. ) Therefore, only the address part of a command can be 

modified. The format (size) of an operand is fixed. 

In any cases in which the MOVE or SET verb results in 

instructions which r equire other than right hand addresses, 

7080 DTS will automatically adjust Xn during execution. 

Xn's value will not be changed itself, only its value with 

regard to the instruction r equiring the adjustment. There-

fore, the programmer need only be concerned with right 

hand l ocations throughout a tabular program. 

Restrictions: The address modification feature may not be 

used with any of the input- output or sequence control actions 

or with the following operand types: 

OPERATOR 

MOVE, SET 

MOVEV 

OPERAND 

Any receiving field defined as 
a RPT field . 

Neither . MOVEV is a special 
purpose action developed exclu­
sively for moving variable length 
segments. It can be used with a 
defined POINT only . 

- 4. 33 -



MEXP, SEXP No member of a math or symbolic 
expression may contain an indirect 
reference. In addition, since 
expressions are not generated 
adjacent to each other (even though 
defined one after another), address 
modification may not be used to step 
from one expression to another. 

- 4.34-



SET ... EQ ... 

The SET ... EQ ... command is the direct counterpart of the MOVE com-

mand. The MOVE command moves information specified in 

operand 1 and moves it to the location named in oper and 2; the 

SET moves information named in operand 2 to the location named 

in operand 1. Otherwise, all rules for the SET . .. EQ .. . operator 

are as defined above with the MOVE command, except that there 

is no SET V action operator. 

1. SET Record name EQ Record name 

2. 
{

Variable name ~ 
SET Index pointer name EQ 

Group name 

Variable name 
Group name 
Constant name 
Literal 
Arithmetic expr. name 
Symbolic expr. name 
Reference list function 

3. 

4. 

SET Bit switch name 

{

Variable narneJ 
SET Group name 

Record name 

Two-Address Arithmetic Operators 

EQ {::F! 
( ZERO J EQ . 
( BLANK 

Both the MOVE and the SET commands can incorporate two -

address arithmetic. The following arithmetic operators are permitted: 

+ (punched & ) for addition, - for subtraction, * for multiplication, 

/ for division. The general form of the SET is as follows : 

- 4.35 -



r , [Variable name } 
Variable name 

Literal 
SET . . ( t Constant name 

( / I \ Arithmetic expression name 

SET A + B Means Af-A + B 
SET A - B A<-A - B 
SET 

A • 
B A<--A • B 

SET A / B A,- A / B 

The operands used for this action can be numeric values only. 

Algebraic rules are followed when consider ing the sign of the action 

operator in conjunction with the signs of the two operands. In all cases, 

operand 2 operates on operand 1 with the appropriate arithmetic 

oper ator and the value is then stored in the field named in operand 1. 

The integer and decimal lengths of the receiving field, operand 1, 

determine the number of integer and decimal positions in the total 

resulting from the arithmetic . Thus, the decimal poSitions in operand 2 

in excess of the number specified for operand 1 are first half-adjusted 

and then truncated . High- order integer positions that result are truncated 

before the value is stored in operand 1. Any carry from the high-order 

position of operand 1 is truncated; thus, if the user desires to get over-

flow control he must use the arithmetic expression which gives him an 

option for overflow protection. 

The same r ules apply for the MOVE command in doing two-address 

arithmetic except that operand 2 is the receiving field and operand 1 is 

the sending field . 

- 4. 36 -



r 

MOVE 
[

Variable name j f+ J Lileral -
Constant name * 
Arithmetic expression name / 

Variable name 

MOVE A + B Means B + A~B 
MOVE A - B B - A_B 
MOVE A * B B * A~B 
MOVE A / B B / A~B 

Seguence Control Ollerators 

GO TO. . . This operator is used to specify the next table to be executed. 

It can be thought of as an unconditional transfer. The GO TO com-

mand can only reference an open table (one never execuled under the 

control of a IX) - see below). This action can also reference the 

special operand TABSTOP, which causes the program to come to 

a dead-end halt. Three forms are available: 

GO TO Table name 

GO TO TABnnnn 

GO TO TABSTOP 

The user may refer to a table either by name or by its number 

(if both are given in the header they are considered synonymous) 

with the special prefix TAB for table. Tables are named and/or 

numbered in the table header. The normal 'next table' or special 

'error table' can be specified in the table header; when 'next table' 

has an entry and the rule also has an entry, the rule GO TO will 

take precedence. 

- 4.37 -



The GO TO action must be the last action executed in any 

rule. GO TO must be written in the stub, the table name or number 

may be written in either the stub or in the entry portion of the table . 

DO. This operator may only refer to a closed table. The table 

referenced may be a closed decision table, a closed Report Writer 

pseudo table or a closed Autocoder pseudo table. Report Writer 

and Autocoder sections can only be executed by a call from a 

decision table, utilizing the DO command. (The DO action can be 

thought of as an RCV (exit point) TSL (entrance point». 

The general form is : 

DO Table name 

DO TABnnnn 

The DO action calls for the execution of another table, entering 

at the top (decision tables can only be entered at the beginning) and 

returning after the last action of the rule whose conditions were 

satisfied has been carried out. Closed tables (those executed under 

the control of a DO) can also be unconditional (1 rule) tables for 

carrying out a single procedure . Since the DO command also con­

trols the return to the original table containing the DO, the 'done' 

table cannot have any GO TO commands in it. A DO table is noted 

by placing the letters 'DO' in the 'next table' portion of the header. 

It is permitted, however, for the 'done' table itself to have 

DO's of its own calling on other tables or pseudo tables. This is 

- 4 . 38 -



called 'nesting.' It is important that a table not 'DO' itself 

or any table above it in the nest. Any level of nesting is per -

mitted if the above rules are adhered to and the user can keep it 

straight in his own mind. 

After a table has been executed, control r eturns to the 

calling table (the one with the DO command in it) at the action 

following the DO. If the DO is the last action of a closed table, 

control will revert to its calling table. If it is the last action of 

an open table, the 'next table' will be used to direct control to the 

next table. The illustration below shows the action portion of a 

rule calling upon two tables and then transf erring to another 

table. 
Rule 4 

D$l) TAB 0012 - - _. . -- - -----1 

+-
DOl TAB 0013 -

---- ----
Gil> T(l) TAB 0016 <; l 

I --

1 ! TAB 0012 
, , 

- I 
i 

TAB 0016 

~~ 0013 

. ---

L I 
_ --'1--_' 

- 4. 39 -



The sequence of events is: execute table 0012, return, execute 

table 0013, return, transfer to table 0016. 

A 'next table' may not be specified in a closed table since 

this is effectively a GO TO command, which is not permitted. 

Also, an lerror table 1 may not be in a closed or 'done 1 table 'since 

control might also be lost. The unconditional (ELSE) rule should 

always be specified in cases where all possibilities are not covered 

by the rules. 

In summ'3.ry, the GO TO acts like a normal unconditional 

transfer to another open decision table (not a Report Writer or 

Autocoder pseudo table) . The DO acts like a RCV - TSL or LINK 

macro to a closed subroutine. Certain characteristics, as noted 

above, pertain to the nature of the closed subroutine. DO must 

always be written in the stub; the table name or number can appear 

in either the stub (limited form) or in the entry (extended form) . 

Decision Table Headers 

The Decision Table Logic Sheet has four header entries--the first , 

the table header, is required; the other three are optional. Asterisks 

indicate that the entry must be filled in. 

Table Header 

* Pagel - 2 Page is written in conventional Autocoder form . 
Page may be either numeric or alphameriC, and 
written in ascending order . 

- 4. 40 -



r. , 
" " '0 .-
" " .. 

J 

.... 
w 
w 
::z: 
'" u 
~ 
o 
~ 

w 
~ 

'" ~ .... 
z 
o 
'" u 
w 
o 

~ • o -z 
o 

o 
z 
o 
u 

-~ o -o 

·1 , , , 
• 

'" '0, ", ", ., 

, 
it­
it-, , , 
'L 

" 

'f_ , 

, 
'f_ 
:f_ , 

z 
o 

'U 

, 

----il-

~: ,-
" .' " -. 
• o· .' " , 

, 

, 

....... 01--
.- " .. ;j2-

.1 0 
j_~" c:> 

• 0 

.. ~." : 

-~ o -o 

;: .­
" .' • 0 -, 

, 

• : 

~ 
o • • 
~ • • • 

;1-
;1-
I-
'l-
i-
,-
'-
'­
'-
;­
:­
;­
;­
: ,-
'-
;-
'-, 
'I­
'I­
:1-
"j-

'I­
~I­
:1-
:1-

w 
o -, 0 _ w 
~ 

~ , -

• : 
= • z 

~ 

z 
~ 

2 
2 
o 
U 

~~ ,-
" .' ., -. 

, 

• 

..r .. lit i 
, , 1-;t--:r--j--t--jf-j--:r--j--t-jf-j--f--l--j--jf-f--lf--l--I-1--t---f--!---l---I--i ~~ lI; i 
;'J: • i;~, H-JH-t-t-+-+++++++++-+-+-+-+-+-1-1-1-1-1 
Ai ~ ~ z! ~;1--r-1--t--r-t--t-1--t~t-i--+~~i--t-i--t-i--i--t-i--+--t-i--+--1 

• , • • 
~ r-t;.;rtl-:'~t--r-;r--r-J--t--t--t--t~f--r-if-1--l--l--t--f--t~f-4--1--1--!--1--!--i ... ;\ : , 
" a 

, • ",r'l't--:r--j---t--jf--j--:f--j---t--jf--j---f--l---I--1---f--lf---l---I--1---t---:f--!---l--1---i 
: ~ ;IL·;'t--:f--j---j--jf--j--:f--l---j--1---j-.;f--!---I--je.;\--lf--l---I--1---t-.;f--!---I--1---i J " ~;:; II 

• -, 1 

• , 

, 

• 
~ 

" ' - ..... ::; 

• 0 ~~ •. t--t--t--t--f_i-_l--f_--t--t--t--t__t--t_i---t--t-_+--t__+--t__t--1t-_t--1--i 
~ s %e,;'+---t--j--,f--+---j,--t---I-'-i---f--f--i---!--i---f--i---!---!--i---t---f--l---!---!--1---1 s 

" • 
~ , 

• 
~ , 

.. .. '" 

, 

, . 
, , 

, 

" ,~ ., .... 
I-----{; I~o+.,-,,- 1-"--
~ ...... 



* Line3 - 5 Line identification is written in conventional 
Autocoder form. All header line numbers are 000. 

* Card Continuation (CC) 6 3ero in the table header. Columns 

* Type 

1 - 6 are used for sequence checking in 7080 DTS. 

Two identification letters can be specified under 
this column head which designate: 

L - limited entry table (when using 2- column 
entry columns) 

M - mixed entry table (when using 12- column 
entry columns) 

* No. Rules 8 - 9 A count of the number of rules, including the 
"ELSEn rule, is entered here. A maximum of 32 
rules is permissible . 

ELSE 10 - 11 The rule number of the rule which is to be executed 
when none of the other rule conditions are satisfied 
is entered here. 

Table No . 12 - 15 If destred, a table may be given a 4- digit 
numeric identification and specified in this area of 
the table header . These numbers may be refer enced 
in other tables or within the table itself by affixing 
this number to the letters TAB, for example, TAB0024. 
If a table has a name and a number they are consider ed 
as synonyms. 

Identification 16 - 20 Always TABLE. 

Table Name 21 - 30 A 1 to 10 character name. This name is 
used to reference this table from some other table 
or from within the table itself. A decision table must 
have either a table name or a table number . 

Next Table Name 31 - 40 For "open" tables this may contain the 
identification of the next table to be considered . If a 
rule has an explicit GO TO, the GO TC operand will 
override the ITnext table rr designation. 

For rrclosed lf tables, the letters "0011 must appear 
in this field. 

- 4. 41 -



Error Table Name 41 - 50 The name of the table to be trans-

51 - 74 

ferred to when none of the rules is satisfied. Will 
never be used if there is an ELSE rule specified. 
An If error table 11 cannot be specified for II closed 
tables"; the ELSE rllle should be used. 

Not used. 

Program Identification 75 - 80 Normal Autocoder usage. 

Order of Condition Rows Header 

Page and Line 1 - 5 Same as above. 

Card Continuation 6 Always 1. 

Order 21 - 52 The order in which the programmer wants the condition 
rows re-ordered for efficiency reasons. In general, 
for execution speed, the most likely to fail should be 
placed at the top; for least space, the rows With tite 
most blanks (not pertinent) should be placed toward 
the bottom. Starting in column 21, two- digit number s 
corresponding to the row number are writteh indi­
cating the order. For example: If 

01 A EQ B I y N 
\ 

02 C LE D I y N 

03 E EQ F 
! y y N N '1 it 

is reordered 03 01 02 ~----'r'-

~f 22 23 2~ 125 26\27 
the table 

would be compiled as though it were written; 

E EQ F I y y N N 
I 

A EQ B 1 Y N .1 , 
C LE D 

i! 
Y 1\ N 

A maximum of 16 condition rows may appear in a 
single table. 

- 4 . 42 -



53 - 74 Not used. 

75 - 80 Program identification. 

Order of Rules Header 

Page and Line 1 - 5 Same as above. 

Card Continual: ion 6 Always 2. 

12 - 20 RULEORDER 

Order of Rules 21 - 74 The rules may be re- ordered by speci-

75 - 80 

Comment Header 

fying a rule order for efficiency reasons . The two­
digit rule numbers are listed in the or der in which they 
are to be considered . For execution speed, the high­
frequency rules should be moved to the left. The 
ELSE rule must always appear last since it is un­
conditional. If all rules ar e not re - or dered, the 
remaining rules will be taken in the order in which 
they are written. A maximum of 32 can exist in a 
single decision table . 

Program identification. 

Page and Line 1 - 5 Same as above . 

Card Continuation 6 The first Comment card is 3; if others are 
needed, the next would be 4, and so on up to 9 . 

16 - 20 TITLE 

Comment 21 - 74 Any remarks or comment. The comment 
will appear on the decision table listing . 

75 - 80 Program identification. 

- 4. 43 -



NAME DEFINITION 

Names are assigned to operands to be used in the program. 

These operands may be input/output files, records and fields, working 

storage items, expressions, etc. The Decision Table Name Description 

sheet is used to define these operands. This sheet is also used for 

report specification and Autocoder pseudo tables . A suitable table 

header will precede and identify each of these sections, the TYPE entry 

will indicate which kind (D for tables 0000, 0001, 0002, 0003, R for 

reports, and A for Autocoder). The form is shown below: 

IBM 10lIl NaSION U,8LE IWIE ODCJaPnOM SIIE£T 

["[;-;."\"! I''''' r,;;~ r ..... - I 
~.~ .!1;!. ".' ,,[, i[, ." 

!'" , .. , 

, " 

, . 

. , 

.;; 

" " . 

. - ••• 

- 4.44 -

~ 

J ::ARfnIY 
NUT PAG! 



." .. ,C,.,.," M""."; I~ ". .. 

7080 IDes fiLE TABLE MACRO-INSTRUCTIONS (LONG fORM) 

PROGRAM __ _ CODED BY: DATE: 1IIIIf 
---------------------------------

I 0 f T A IPAYMA5Tl.R lo~o lOR E T URNTO O ' OR ETU R N T 0 lOR E f I:l A ~j" 0 
O"' ASTE P, I H 0 ~ 0 

------------- -----HI -Q- RWDI (OAb STANDARD STANDARDb 

~ 0 ~O R \II D l 0 Ii 0 FeD ~I 0 ~I , T " ~I Q C 1 M b b [:] i Pi' $ T /' 1>1 k 
~ .,.. R U ~I I a 0 T hi ~I 0 t.I i ; Q Ii It 1>10 T.. ., 0 ~I i 1 t ., D e 
-t-e- ....... A W . , iii NON E +10 T R ., , L-E-a. 

HSKRWD n 
D"'OA"'Db W 

------ -------- -- --- -PRIM E SINGLE SEaUEN EKP"RCDib 91:lMP eEl"'VOPE~ • 

<---------- - - - - - - - - - - - - - - --
~ 

~ 
en 

• 1 0 P A I 0;' U I. T I '- D~' 0 tl' Ii Q 0 NO C K P T ReD 0 NOD P 0 '4 0 9 Ii l A ¥ b b 0 

,--------------------------------------------
I 0 f T B 

t POD A T A 000 I ~l I leO e K LNG 0 C M P C K 000 G E N ARE A 0 foil .r 0 Icll S 0 0 10 
~ W 0 A K 5 T A C K ~I 0 C 11K t. 06 It\ P ,Itt A [ A 6 I V ""¥-

n " ~ ~ ________ "00 

---GETb i", .. sr.s:BIN I ............ !'''" ~s •• 
P 'oJ T b olN 0 W 0 R K ARE AD t. 0 P ... 0 9 • l f I W 0 ~ K Cl 
80llol -e-e- EOf9S

0
W8SQ 

-------- ------

________ _________ NONE "e~j( N O NE 

-------- - ----------------------------------------
LLL-'=-_L r: o C '" l ~l G 0 C WI P C K D~ r:t+-o 0 

,of 0 C II K '40 E Ir'l P '1 0 \' 

-----------------------------~--------



Table 0000 - Input/Output Files 

A completed table header line (table 00(0) must pr ecede the 

first input- output file description. Subsequent input- output file 

defirdtions are not pr eceded by a header. 

Each file is described for rocs using the long or short version 

of the IBM rocs File Table form. A segment of the program in 

Chapter 3 is used to illustrate the use of the form. Note that lines 

03020 through line 03060 correspcnd to the r/o File Tables A and B 

on the 7080 rocs File Table macro- instruction form shown on the 

opposite page. 

' Ol02000 OOOOTABlE IODEFIN 
9J03Q. _ H,CS_ -=-==-

Jl..lO!-'3,,·S,--_. ___ lASN@50 0 _____ __ _ 
Ol040 IOTA INM ASTERD2000D200 l0 
OlOSO _______ IOTA _ PAY REG!,~q02!,.20o.~o __ 
Ol060 Hl~--"-A-"CHEC!,>S.!'~OJ)~O ____ _ 
01070 IOTA TERHCHECKSo2005D 
01080 IOTA IN1RANS~~J0902l 0!O 
.910_90 _ __ IOTA OUT MAST E.R}l2.!.q~ o2l030 
OllOO I OTA EXCEPTI ONSo2l04D 
01llQ. 191 A_ ~t~C~PTSo2105D 
WlO __ IOT L _ ENDD 

_9 3005 lA SN . 30000 
0301Q _ _ _ TITLE FilE T'"'A'"'S""L"E"""'F"O"'R INP UT MASTER -- .- ---------

1'-10201 NHAS!ER_ I Of TA !,;'YMA~JERDOO'pO I OR~ T UR~ T O D I ORET\!RNfOOHA~R INEOfD _ 
03030 hI OloRwOlaNONEoST AND AR OaTM DSTANDARO DH$KRWOD 
030~<L p~J Kf~S I NGLf:c$EOUENcNOCKP TRCOn"WO~D~ . 
. 03950 (OFTS IPa DATAD9a S TACKcCKL~g~CMPtKD4DGEN'R~'DF~15Q~1500c 
03060 GET oMASTERINoNONEOEOFQSoNONEa 

Note tha t table 0000 also contains input- output tape assignments 

(IOTA) and may also contain r/o tape assignments for special functions 

(IOTS). (See Preliminary Manual--Input/Output Control Systems for 

IBM 7080--No. J28- 6188.) 

- 4. 46 -



Each rocs file definition is followed by a description of ihe 

records which compose ihe file . Records wiih different formats may 

be described wiih suitable names assigned to fields and groups of 

fields. The standard Decision Table Name Description Sheet is used 

for this purpose. A table header line is not required here, as only 

one is required per section (0000, 0001 , .. . ) . A segment of ihe 

program in Chapter 3 which is preceded and followed by rocs file 

descriptions is used to illustrate rocs file definitions-- lines 05020 

ihrough 06040 . 

Table 0000 must be preceded by an ENTSO macro, to indicate 

to ihe 7058 processor ihat ihe program will operate in 7080 mode. . An 

Autocoder table will generally precede table 0000 giving appropriate 

assembly commands such as NOSTP, EEM, ASU, etc . , and finally, 

a table name or number indicating where ihe execution of ihe object 

program is to start, e . g., TR TAB 0005. (See 7058 Processor 

General Purpose Macro Instructions - No. C28- 6130.) 

- 4. 47 -



C5010 FILE rAPe 2000.200l 
O ~Q):OMA:S TER lIi~ KN~"-£..@<J END -
O'O)OMIM'~NO FLO 5~ 
O')040fr11!i~ME _ __ . __ ! lA~ 
OsQ5Q"1 S T!I_tUSCO __ .l.~ ___ ~_ 
05051 

MAN NUM bER 
MAN NAM.~_ _ __ . __ _ 
~ r A TU~-.J:.cD E t.!I-~CJJ Y_ELT-U_R_M.lNA UO 
1-INACTl~E 

--~----------------------------- . 

-0 s06-0M '-ORG-~= =-- ~!< -'::"'--::.-_ 
05070MiSf1 IFT I N 
0 5080MISOCSECNO 9N 

. -. -- - URGANllATIONNUMBER - .--­
--SHIf T EMPdfvEf-;-ORK-S- --- - --­

SOCIAL SECUR ITV NUMBER - -- - -
O ' O~OMISEX IA& 
0'100MISDffHOAT 6N 

sex OF EM PlOVEE 
--B~IRrf1- OA rE~~-~- -- ---- .. -

OS110MIHIREOATE 6N HIRE IN DATE 
-0 " 115MfNTi< TV A C 0 6N __ ~- -=--='- ~~,xuc ~~~~Ti~/~ IG I Bjl: I TV_ DATJ 
O,120MlOEOCOOE 81 fco --- .- , 

-"2l1lMIIi 
-~d~: . ,~E 

" , - , -0 5 'MILOAN -- .- - - - ._-_. -

" 
'''IMlse HI SI OEOUC T IONS 

U' >L lA< 
-- BLAb~ DEI . "'.----~ - ~ 

,41)M NOOEPENO 

.>I )M R ~ '&01.03 f ,.U,.U, "- [U-QA[t 

. II)MY ,y '''05.02 v-T-
, 

" " .02 V- 'A 
5'E " I1Mt -0 5 .~I >. Ul ~u ,K [t :-

- -0 >190M IVTDWTAX 6'&04.02 v T 0 klTHOLOING TAX 
0 52 00HlvTOFICA 5.&03.02 v T-o FICA 

, 05210MISLHRSUSO 5'&04 .01 ' -~-5 It-~ LEAVE HOU;;;R~S~U~S ~EO~;:;;;';;=== 
OS220MISLHRSACC Sj&04.01 SICK LE AvE HOJ~S ACCUMULATED 
05230MlvACHRSUO 4.t03.01 VACATIO, HOURS USEO 

05240MIVACHRSAC 4'&0).01 VACATION HOURS ACCUMULATED 
05250MIINSAMT 5'&03.02 INSURANCE AHOUT TO DEDUCT 
06010MILOANPAV 5.&03.02 PAVMEN T AMOUNT FOR LOAN 
06020MILOANBAL 6.&04.02 ---~BACAiijCE OF LOAN 
060)OM I MOE DAM T SO& 0).02 ------A- M-OUN T O';;F':'-"MTI >'SC;::.:,O" E"'O"U"C-·T-.I"o;o;NrS----~ 

~~~~gMlENO TITLE lnn~hLE FOR -0~7~~~T H~~T~!S C DE DUCTIONS ---~ 
080200uTMASTEK IOFfA PAVHA STER0030ol c RETURNT OoiORET UR NTOOIORETURNT OD
08030 HI clcRwolaNONE c $TANDARDDlR aSTANOARO aHSKRWDa
080iiQ--' - 'OPRIDSTNGLEoSEQUENONOCKPTRCOcNOO PDO
08050------'I"OFTB OPOOA T ADqo S r ACKoC K UfGiiC MPCK040r,-E'N" A"R"'E" A"o"'F"'o"1'S"'0,"oCfl"5"0=OD-"
08060 puT DRAS1EROUlcP AD9UNaNE DNONED
09010---'- FILE--TAPE 2102.210} ---r50 'CHAR MASTER Fi XED OUTPUT '
0902 0MAS TEROUT RNAME AMOE~D-- ---- .--- -
090 30MOMANNO FLO 5N MAN NUMBER

09040MONAME 17A& MAN NAME
090~OMOS TATUSCO - IlA--' STATUS tObE.A~AClIVE~f~TERMINAtEO
09060 I-I NAcTIvE

-OQ070MOOR G .. - -- '$", ORGAN'llAllON Nljj.-S-ER - -_ ...
-09080MOSHIFT l " - SHIFT EMPTilYEE.OR-KS
Oq090MOSDCSEt~O 9N sOCIA L SECURITy NO .
09100MO'SEX - - - 'IA& SD ---

- 4,48 -

A description of the eniries used in describing input- output

files is given below. This information follows that given in the IOCS

definition and appears on the Name Description sheet.

FILE

As each file is to be described there must be a class code FILE.

The coding form is filled out as follows:

NAME - The file name given in the IOCS File sheet is
written in the Name field.

CLASS - The Class code for this eniry is FILE.

NUM - The number of different types of records that are
going to be described is specified here. If all the
records in the file have the identical format, this
eniry should be left blank or have the eniry 01. If
more that one record type is to be defined, the
appropriate number is specified, e . g . , 02, 03 .. .
The processor will expect this number of RNAME
class eniries (see below) to follow before the next
FILE class appears .

DESCRIPTION - The information specified in the description
portion is for documentation purposes only. It is
suggested that the I/O media (tape unit number, etc .),
maximum record size, etc., be written in this area.
See sample above.

The FILE class eniry is converted to an Autocoder TITLE card

before it goes to the Autocoder assembly system.

RNAME

The record name (RNAME) entry is used to identify the logical

record (the amount of data delivered by the GET and PUT commands) .

This entry allows different formats to be associated with a file area;

- 4.49 -

there will be a RNAME entry for each different type of record in a

file. The name can be referred to by certain input-output and assign-

ment operators, thus allowing the entire record to be operated on.

NAME - A standard name is assigned. If no reference is
to be made to the record in the program, the name
may be left blank, unless it is the first of two or
more RNAMEs being defined.

CLASS - RNAME (record name)

NUM- This entry is used to specify the starting position
for this record, i. e., 0 for 0 or 5, 1 through 4 for
an address ending in 1 - 4 or 6 - g. If blank, the
next available position will be used. If an area is
being redefined for more than one record type, the
start position must be the same for all records.
The NUM of the first RNAME in a file will be used
to locate all subsequent RNAMEs in that file.

DESCRIPTION - The name of the last field in the recor d is
speCified in the first portion . Auxiliary information
for documentation should be included, such as record
size, whether fixed or variable length, etc. The
auxiliary information starta at the beginning of the
comments column.

This entry will be converted to a standard NAME entry before

going into the Autocoder processor. Subsequent RNAME entries will

give the effect of a SASN to the beginning of the file area, thus allowing

a redefinition to occur . As a new file is to be described we get the

effect (LASN) of starting storage assignment just above the definition

of the longest record in the previous file.

GNAME

The GNAME (group name) class entry permita a continuous

- 4. 50 -

section of storage to be given a name. These groups can then be

broken down into individual fields . GNAME operates much like that

of the NAME entry in Autocoder m. (Note exception below.) Groups

of fields may be nested within other groups-- there can, however, be

no overlapping of these definitions .

PERMITTED

NAME 1 GNAME
NAME2 FLD
NAME3 GNAME
NAME4 FLD
NAME5 FLD
NAME6 PRE

NAME6

NAME 5

NOT PERMITTED

NAMEI
NAME2
NAME3
NAME4
NAME5
NAME61

GNAME
FLD
GNAME
FLD

NAME 5

NAME6

A GNAME entry used in table 0000 (input- output definition) may

not contain a value in the numerical column, since the starting position

is indicated with the RNAME entry.

The name of the ending field of a group is specified in the descrip-

tion portion of the sheet. The ending field is included within the group.

FLD

This is used to assign names to data fields in the input-output
areas, specify the length, and special characteristics of the
data. Unassigned variables are specified in this manner.
FLD corresponds to ReD of Autocoder.

FLD appears in the class column of the Name Description sheet.
If subsequent entries are also field descriptions, FLD need not
be written, as they are considered to be the same as the previous
entry .

The length of each field within the record is written in the
numeric column of the program sheet. Memory space is

- 4. 51 -

allocated equal to the number of positions specified for each
field. When a field length exceeds 99 positions, overflow from
the two-digit numeric field may extend up to three placed to
the left (into the class column) if the class column is blank .

Individual fields wi thin the record should be defined according
to the type of field by placing one of the following code charac­
ters in the firs t (or first and second) position(s) of the descrip­
tion portion of the sheet.

N if the field is an unsigned integer

+ if the fie ld is a signed integer

A if the rightmost character of the field may not always
provide left protection for the adjacent signed field

A+ if the field is a non-numeric field whose rightmost
character will always provide left protection for an
adjacent signed field

In addition to the aforementioned code characters, the format of
all numeric fields which contain a decimal point should be out­
lined in the operand column with x's immediately following the
code character . The position of the decimal point shOuld be
properly noted within this field of x's . Another means of speCi­
fying decimals may be used alternatively. The format is
iI+xx. yy where + represents the sign (blank for unsigned), xx
the number of integers, a decimal point, and yy the number of
dectmal positions. Record marks and/or group marks are
indicated by placing the characters in the operand column. If
these characters are to be considered as terminating some field,
all of the terminal characters should be defined on the same line
of the sheet.

reserves an area in memory for a twelve-position signed integer
for the year-to-date units of usage . Two dectmal places are
specified.

- 4. 52 -

,

PRE

1

Although the class column is blank, the entry is understood
to be an FLD as the most proximate previous entry is an FLD
'(0107) . Six positions are allocated for this field .

..... ,

Seven positions are being reserved for an unsigned account
number

.1

A twenty-position field is being reserved for the customer's
name . The A+ in the operand indicates that the name will always
be a non- numeric field whose righimost character will provide
left protection for an adjacent signed field.

Two lines are needed to define a field in excess of 99 pcsitions
in length. If the class column is blank, the three righimost posi­
tions may be used in conjunction with the numeric column to define
a five-digit record length.

Used to name, indicate size, and specify values for data fields.
These preassigned variables are specified in the same manner

- 4.53 -

as CON in Autocoder. The entry PRE must appear in the c lass
column of the operand sheet for the first line of the constant
being defined. All immediatcly succeeding entries with blanks
in the class column wlll be understood to be PRE entries. Any
combination of alphabetic, numeric, special characters arid
blanks may be specified as a preassigned variable.

The length of the constant is written in the numeric column.
The value is placed in the description column. Although a con- .
stant may be of any length, only 52 characters can be written on
anyone line . This is the number of positions on the operand
sheet. Consequently, when the actual value written on the pro­
gram sheet uses the entire line, the highest permissible number
in the numeric column is 52. If a number higher than this is
written in the numeric column, the system will add zeros to the
right of a signed value, and will add blanks to the right on an
unsigned value. When the length specified in the numeric column
is less than the actual number of characters, the system will
shorten the value to the length specified in the numeric column by
omitting the right-hand characters.

Record marks and/or group marks are indicated by writing the
character(s) in the description column. If these characters are
to be considered as terminating some field, all the terminal
characters should be defined on the same line.

A numeric field may be signed by writing a plus or minus sign
preceding the field. Only numeric constants should be signed.
This results in the Signing of the last digit. When defining a
signed value which contains decimal digits, the decimal point is
not included in the count of characters which is written in the
numeric column. However, when defining an unsigned value con­
taining decimal places, the decimal point must be included in the
count of characters.

The following are some examples of PRE entries.

- o.K"'_ .t
.J

I

- 4. 54 -

RPT

A 38- position field of blanks is defined.

&000

1
A record mark is defined.

""""".n

1
Although the class column is blank, the entry is understood to
be a PRE as the most proximate previous entry is a PRE (0705) .
A rate of +. 875 per unit is defined as a preassigned factor . As
this is signed, the decimal point is not included when specifying
the number of characters in the numeric column .

This is used to define report field formats, also indicating form
and size . The entry RPT must appear in the class column of the
program sheet when defining a format for a numeric field in a
printed report. Actions referencing fields defined by RPT have
the ability to produce the coding necessary to place a numeric
field into the desired format containing decimal places, commas,
sign indicators, floating or fixed dollar sign and asterisk protection
to the first significant digit to the right of a fixed dollar sign .

The numeric column of the RPT entry contains the number of
positions required by the entire report format field . In deter­
mining the size of an RPT field, allowance must be made for the
maximum number of numeric digits, the dollar sign, commas,
decimal points and the number of characters (lor 2) used for
sign indications.

The description of an RPT entry must appear in the following
order:

1. When a dollar Sign is desired, the first character of the
field must be a dollar sign which is followed by a repre ­
sentation of the field as it is to appear in the report. x's

- 4. 55 -

are used to indicate numeric characters. If the printing
of insignificant zeros is desired, Z's must be used instead
of X's in the affected positions . Z's must be continuous in
the RPT format field starting from the low- order position .
If any commas are used, they must appear in the normal
manner, 1. e. , the fourth position to the left of a decimal
point or sign indicator and thereafter every three additional
positions to the left. Only one decimal point may be used.
The positions allocated for sign indication must be indicated
as blanks preceding the first lozenge. .

2. The dollar sign will always appear in the pOSition assigned
r egardiess of the number of digits printed unless a floating
dollar sign is specified. If a floating dollar sign is specified,
any dollar sign printed will appear immediately to the left
of the high-order digit. In order to specify a floating dollar
sign, the character $ must be written between the first and
second lozenges.

3. The spaces between the second and third, third and fourth,
and fourth and fifth lozenges are used for negative, zero and
positive sign indication respectively. Any of the following
symbols may be used for sign indication:

Length

1

1

2

2

1

2

2

2

1

Symbol

Sign indication omitted (lozenges may
be placed back-to-back, but one blank
position is generated.)

CR

DB

*
Blank followed by -

Blank followed by *

**
+

- 4. 56 -

If no sign indication is specified, the system automatically
will provide a - for minus indication and no sign indication
for plus or zero. When specifying the length in this instance,
the automatic minus indication must be included. If no
dollar sign conirol is desired, but sign indication is to be
used, all five lozenges must be specified, the first two
lozenges being placed back-to-back.

The following are some examples of RPT eniries .

A seven-position field is specified with one decimal position .
Insignificant zeros will be printed in !be low-order position. No
sign indication is specified; therefore, it is assumed that the auto­
matic sign indication provided by Autocoder is desired. The " ?!!
in the numeric column includes the automatic - for minus indication.

~~ ... ~ .- I"·?" -r4'! 3'r IEUI(.F ":RPr d8iOO<XXX,Z· z
«-'.11

An eleven-position field is specified with one decimal position.
InSignificant zeros \-rul be printed in the two low- order pOSitions .
Automatic sign indication will be generated as in the previous
exa..'I'!lple .

A ten-position monetary field is specified. The ten pOSitions in­
clude all the positions in the operand up to the firs t lozenge, i. e . ,
the dollar sign, four integers, two decimal places, one comma, one
decimal point and one position for sign indication. Insignificant
zeros will be prL'lted in !be two decimal places . A floating dollar
s ign is specified. As in the previous examples, no special sign
indication is specified; therefore automatic sign indication will be

- 4. 57 -

provided by the system. Note that it is permissible in this
instance to omit the lozenges for sign indication .

rrt .- i
Insignificant zeros will print in the cents and two low- order
dollar poSitions of this monetary field . A fixed dollar sign
with aslerisk prolection is specified along with a CR symbol
for negative indication , an * for zero amounts and nothing for
positive indication.

BITCD

This is used to permit the naming of various bits in a character .
Laler they can be lested for ON or OFF in the condition area,
and can be put ON or OFF by the MOVE and SET commands .

The BITCD definition permits the user to associate a meaning
with the presence or absence (the ON or OFF state) of indivtdual
bits . The BITCD header signals the system that a single charac ­
ler position is to be set aside for a set of up to four codes . The
1, 2, 4 and A bits of that character location may be used as
ON- OFF switches to indicate the presence or absence of some
condition . The entries which follow the BITCD should be blank
in the class column. The numeric column is used to specify the
bit (1, 2, 4 or A) with which a particular condition is to be
associated . The condition itself is named in the name column .

Specifying more than one condition at a time is possible as more
than one bit may be present within a character at one time.

The following is an example of a BITCD entry which could be used
in a payroll application.

«-I."

Since any number of three bits of the memory position occupied
by this BITCD entry may be on, payroll deductions may be made
for none, any or all of the three options avallable.

- 4. 58 -

TABLE 0001 - Core Files

Working storage files (core) are described immediately following
the table header information identifying this section. The files
and records described here are never read into or written out of
the machine directly; they are for intermediate values. A number
of pJssible uses are seen: when more than a single input record
must be available they can be moved into the intermediate area,
when various output records are being fabricated at one time for
later movement to an output file, e. g. , multiple total and heading
lines, and for multiple definitions of an area when operating on
variable length records. The RNAME entry is used to reinitialize
back to the beginning of the area when a new format is to be described.

The rules for describing these files are precisely the same as for
input/output files, except that an IOCS File Table is not prepared.
Information cannot be read into or written out of I/O devices directly
from these areas, except that they can be the second operand of a
GET or PUT action. In this case the data is moved to/from the I/O
area after or before the I/O action takes place. When more than a
single format is desired for a core file, the RNAME entry will permit
the redefinition. If multiple record areas are to be defined, even if
they are eventually to be outputted on the same file, separate FILE
entries should be made each with a Single record described.

TABLE 0002 - Miscellaneous, Variable

Free or unassociated variables of one kind or another are described
behind this table header. Eight classes of entries are permitted.

GNAME
FLD
RPT
PRE
BITCD
ALTSW
ADCON
POINT

Except when grouped with the GNAME class, there is no physical
connection assumed among any of the entries. No FILE or RNAME
entry is allowed in Table 0002. This section is for temporary
storage fields, program bit Switches, preassigned variables, altera­
tion switch specification, address constants, and index p::>inters.

- 4. 59 -

GNAME -

Used when multiple items are to be considered as an entity.
Example :

CURDATE
MONTH
DAY
YEAR

GNAME
FLD

06
02
02
02

YEAR
N
N
N

Any combination of RPT, F LD, PRE, BITCD, ADCON and POINT
can be grouped and treated as an entity by this entry.

FLD -

To define an unassigned variable, e. g. , TEMPI, ERASEI,
PREVMANNO. Defined in same manner as described above.

PRE -

To define a preassigned variable, i. e. , starting with an initial
value, e. g., COUNTERI, INITIALVAL, YTDTOTAL. Defined
in same manner as described above.

RPT -

To define a variable and associate particular editing symbols.
Defined in same manner as described above.

BITCD -

To set up a one- character variable and then name the 1. 2, 4,
and/or A bits such that they can be turned ON or OFF by the
program. They can also be interrogated by the program to see
if they are ON or OFF.

DEDUCTIONS
BONDS
STOCK
BLUECROSS
INSURANCE

BITCD

- 4. 60 -

1
2
4
A

ALTSW -

This permits the naming of an alteration switch. The designation
of the proper alteration switch, A for 0911, B for 0912 . ..
F for 0916, is placed in the numeric column.

QUARTERLY I ALTSW I C I
ADCON·

Address constants will have limited use in the 7080 DTS. .Three
primary uses are seen (1) by closed Autocoder pseudo tables, (2)
for use in developing initial base addresses when using L'1dex
pointers for operation on variable length input or output files, and
(3) the pre-named Address Registers RO - R9 used for effecting
address modification. ADCON 4, 5, 6 are not allowed in the
Decision Table Name Description.

POINT -

The POINT (index pointer) entry is used to identify a 6- positlon
field to be used in conjunction with the MOVEV command when
operating pos itionally on datIL Normal arithmetic Is used to
modify the field in preparation for use. At the time of use, the
system will convert this to a proper 7080 address. It Is always
considered to be an integer value of length 6. The field may be
either signed or unsigned (signed Is more efficient).

The name of an index pointer may be from one to five characters
in length. The numeric column is not used.

PNTR1 POINT I I {HI 1
SERj

The operand HI indicates that the POINT will be Initialized to a
high speed address, modified by a number divisible by 5, and
that the number of characters to be moved via the POINT will
always be divisible by 5. The operand must be a RECORD name
ffiNAME) If HI is specified. If the operand is blank, SER (serial)
will be assumed. POINT generates a 6 position signed constant of
zeros. An index pointer can only be initialized with the SET . . .
EQ. . . command.

- 4. 61 -

TABLE 0003 - Miscellaneous, Fixed

This table includes items that do not have changing values--either
constant values or expressions that have a value only when con­
sidered. Since they have this characteristic nike the progtam
tables) they can, if desired, be stored with the tables as part of
the program using them in some external medium to be Called for
when needed. Included are:

EXPRESSIONS -

Expressions
Arithmetic
Symbolic

Constants
Value Lists
Reference Lists

Two types of expressions are used--arithmetic to operate on
numeric values, and symbolic to operate on strings of symbols.

Arithmetic -

Arithmetic expressions are defined in much the same manner as for
the MATH macro in the Autocoder ill system. The following
operators are available:

+ addition
subtr action

* multiplication
I division

A single level of parentheses is permitted to alter the normal
precedence of operations, which calls for parenthesized portions
of an expression first, with * and / always taking precedence over +
and - . A left-to-right order of operation then is assumed.

An arithmetic expression is named in the normal manner. It is
this name that is referenced in the program, thus calling for the
proper computation.

The class entry is specified as MEXP for mathematical expression.

- 4.62 -

The numeric column is used to indicate the type of error protec ­
tion desired by the user. Three codes are available:

1. 0 Overflow

2. T Truncate

Overflow occurs when the developed
value is larger than the defined result
field . A transfer to the open decision
table specified at the end of the ex­
pression takes place when overflow
occurs. If no name is specified, the
table given in the last expression will
be used.

The result will be truncated rather than
rounded (the normal procedure).

3. 0T Overflow/Truncate The value is truncated and transfer
is made to the table specified if the
value is too large.

The halt protection code (Hl is not permitted, also the chaining
code (Xl is not permitted.

The description field is used to specify the format of the result,
the expression itself, and if deSired, the transfer point for the
overflow protection option.

The format of the final result is indicated by il+xx. yy, starting in
the first position (column 31) of the description field. The +
indicates that the result should be signed (a blank will indicate an
unsigned result); xx, the number of integers; a period; yy the
number of decimal positions in the result; a comma

The format speCification is followed by the expression to define the
computation. The operators are +, - , *, I; the delimiters left
parenthesis, right parenthesis, and @ (if overflow protection is
desired) j the operands literals, constants, preassigned fields,
variable fields, and previously defined arithmetic expression
names; and special intermediate value format indicators (a comma
followed by an x for each integer, a period, and an x for each
decimal- - , XXXX. xx).

Numeric literals should not be enclosed in literal indicators (#l,
and may not be given a sign- - they are al l p.Jsitive values. Also,
the unary operator - may not be used, 1. e. J the construction

- 4. 63 -

FIELD A + - FIEW B is not allowed. The format indicator after
a parenthesized expression or single variable will cause that format
to be used before the next operation takes place. Blanks should
precede and follow each operator (+, - , *, f) in the expression.

If overflow protection is specified in the numeric column (0 or 0T)
the expression is terminated by the @ symbol and followed by the
name of the open decision table to which control is sent on over­
flow. Otherwise the @ symbol is not used. In no case is the result
field specified here as in Autocoder (the tag is specified in the name
field on the operand description sheet). If overflow is indicated
and no address is given, the last specified address is used.

Note that the left parenthesis, right parenthesis, and plus sign are
used in writing the expression; these are keYPWlched as %, It ,
and &, respectively.

Examples:

FIELDA MEXP iI+ 04. 02, FIELDB + FIEWC * FIELDD

ABLE

x

MEXP 0 iI 02.04, B + (C • I. 5), xx. xxxx - (j- J) @OVFTABLE

MEXP T iI + 06. 02, (A - B • C) + D / (F - G • H) - (j + J)

NOTE: There is no permanent value of an expression; every time
it is referred to it is recalculated. The value can be saved
of course by moving it to another field. A previously
defined expression can be used as an operand in an
expression.

All continuation cards (up to 9 permitted) must be blank in
columns 6 through 22 and begin in column 23. Comments
on any card of a MEXP will be lost.

Symbolic -

Only a single symbolic operator is avallable, the JOIN operator.
This operator allows strings of characters to be joined together
from discontinuous points in storage and then treated as a single
value.

Variable names, ccnstant names, symbolic expression names, and

- 4.64 -

literals may be operands in a symbolic expression. The operands
are separated by commas and as a group are enclosed in paren­
theses. Remember that (will be keypunched as % and) as .t/ .

Example:

SORTKEY
ERRORMESG

IDENTNO

SEXP 14
SEXP 22

SEXP 15

JOIN (MAJOR, INTERMED, MINOR)
JOIN ('TAPE ERROR ON UNIT',

TAPEUNIT)
JOIN (DEPI'NO, I - I , DIVND, I / I,

MANNO)

In this last example if the current values of

DEPTNO
DIVNO
MANNO

= 726
= 14
= 123456

the resulting value of the expression would be

726 - 14/123456

The numeric column is used to specify the total length of the
resulting value. The quote symbol (') is used to delimit alpha­
meric literal values. This is keypunched as the number sign (#).

It can be seen that an entire print line can be created in this
manner by listing the appropriate carriage control character,
blanks, constants, and variables, e . g. ,

Jom (', .. ',IDNUMBER, I ',NAME,1 ',ADDRESS, '*** ', . ..)

A symbolic expression can call up:m another previously defined
symbolic expression by including its name in the list of names
and literal values. It cannot call upon itself; this causes an
error condition. Up to 9 continuation cards are permitted; they
must be blank in columns 6 through 22.

- 4. 65 -

CONSTANTS -

Permanent constants that are never or very seldom changed,
e. g. , 3. 1416, are specified in this section. The format and
manner of specification is the same as Autocoder ill except that
the class is PCON and no value can be moved to the field in the
program, i. e . , they are 'read only' constants.

PI
RATE

PCON
PCON

06
03

+3 . 14159
+ .875

Numeric signed constants are indicated by placing the sign
first (+ or -) followed by the value . An assumed decimal point
is written in the proper position. No point is needed for integer
values. The numeric column gives the length of the value; its
sign and point indicator are not counted in determining the total
size.

Alphameric constants are also written in the description area,
following the length specification in the numeric column.

- 4.66 -

VALUE LIST -

A value list consists of a list of constant values that can be
used in the condition section of a program table. For example,
in a condition it might be desirable to see if the current value
of an input item, e . g., department number, is contained in a
list of many department numbers which might requir e special
action, e. g., 214, 284, 319, 727, 914.

NAME -

CLASS -

NUM -

A name is assigned to this list-- this name is
then used as an operand in the program to
refer to the entire list.

The class code is VLIST (Value List)

The number of positions of each value in the
list--all values must be of the same length
(blanks or zeros permitted front or back).

DESCRIPTION - The values are listed one per line starting in
the first position of this area. Only constant
values can be specified- - no names of values (tags).
No duplicate values should appear . The values
need not be enclosed within special symbols. The
values may be either numeric or alphameric .

Example :

SABRECITY I VLIST I 3

i

ATL
MIA
OHR
SFO
LGA
IDL

The values in the list need be in no particular
order; when interrogating the list, a serial search
will be assumed.

- 4. 67 -

REFERENCE LIST -

A reference list provides a set of constant arguments and values
(functions) to be specified by the user. It is then possible to
determine if a particular argument is in the table (in a condition)
and use the value as the operand in an action.

NAME - Tbe name of the reference list

CLASS - RLIST (reference list)

NUM - Blank

DESCRIPTION -

Header Line - Tbree parameters are specified in the first line.
A two-position size of the argument, a comma, a
two-position size of tie value (function), a comma,
the name of the field where the value is to be placed
if the argument is found when searching the table .

Subsequent Lines - The name, class, and numerical columns
must be blank. Beginning in the first position of
the description fie ld (Column 23) and extending
through the comments field, the argument and
function are written separated by a comma. Tbe
argument (characters prior to the comma) and
function must occupy exactly the same number of
positions as specified in the parameter of the refer ­
ence table definition. Tbe first position of the argu­
ment may not be defined as a plus (+) or minus (-).
An entry definition may not be continued on the next
card.

If there are many arguments associated with one
value and if the arguments are numeric and in
ascending order, a range argument may be used
which can save the writing of many entries. This is
expressed by giving the low limit and the high limit
separated by a dash (02-05, MIDDLE ATLANTIC) .
Tbe arguments for this type of entry must be pure
numeric. Care should be taken to write this entry
correctly. For example, 0100-1000 will generate
901 entries .

- 4.68 -

STATELIST RLIS 102,

1

01,
02,

104,
07,

04, STATE
CONN
MASS
TENN
KANS

Arguments or function values can be either alphameric or pure
numeric (note restriction in use of range above). The arguments
mayor may not be in ascending sequence.

NOTE: A maximum of 25 RLISTs is allowed in a single program.

- 4.69 -

IBM 7080 DECISION TABLE NAME DESCRIPTION SHEET PROGRAM

, ' DATE ,
.0 Lo i N!: , . IOttH T TAISLE; t.4£

PREPARED BY
0,000 T A B,L E

• •• • • , . " . " I. zo ill SO 11' , PAGE
.DENt . I I I I I I I NEXT PAGE " ..

PO LINE N ' CLASS UM. DESCRIPTION COMMENTS , " " IS t. .0 I' u .. ,. u ,.
r .
~

,
f-- -t--

I

r- -

.

,
, ~

~ ,
, ,

'. -
, ' .
2 ~

Name Description Header

1 - 5

6

7

8 - 11

Page and Line are filled out in the normal fashion .
All cards entering the system must be in ascending
sequence .

Always zero .

~ for operand description should be the letter
D (description).

Since this same form and header are used for Report
and Autocoder pseudo tables, a code is used to identify
each. R is used for report and A is used for Autocoder.

Blank.

12 - 15 Table Number is specified in this position. Only four
numbers are possible:

0000 Input/output File Description
0001 Working storage files
0002 Miscellaneous, Variable
0003 Miscellaneous, Fixed

Each table gets only a single header card; if a par­
ticular operand description table is not used, no header
is specified. A maximum of four name description
headings may appear (ignoring report or Autocoder
pseudo tables which are really part of the procedure
description) .

16 - 20 Identification always TABLE. NOTE: TABLE cannot
be used in these positions except to identify an operand
or procedure description table.

21 - 30 Table Name may be specified as documentation but is
never referenced from another part of the system.

31 - 74 Blank or used for remarks.

74 - 80 !DENT is used to identify the cards as part of a par­
ticular program, is never referenced by the program,
i. e., normal Autocoder use .

- 4.70 -

REPORTS

It is of course possible to prepare reports using regular 7080

decision tables, but since many of the functions are automated in Report

Writer the user may wish to call upon this facility. Each different report

that he wishes is specified in a separate pseudo table starting with a

table header. The report is named in the header; this name is used

as the operand of the DO command when the report r outine is to be exe­

cuted. Table type is specified as 'R' (report) .

The report is then described using the operand description sheets

(same format as Autocoder) in the same manner described in the Report/

File Writing manual of the 7058 Processor series.

Three other special rules apply: (1) The transfer-out addresses

(before or after control breaks) must reference a closed decision table

only. This table can perform all the processing at the control break or

call for other tables or Autocoder sections on a DO basis. At the com­

pletion of this excursion, control returns to the report routine and then

back to the original calling table . (2) A MODE REPORT entry must

precede Report Writer statements and a MODE AUTOCODER entry must

follow the last statement. Both entries must be included in the 'R'

table . (3) The DREPT statement, the first statement of a Report

section, must be tagged with the report Table Name. The programmer

will DO table name to execute a Report Writer table.

- 4.71 -

AUTOCODER

Pseudo tables can also be written in the Autocoder langUage.

Again, a table header must precede the routine (table type is A for

Autocoder). The procedure written in Autocoder must be a closed

routine, i. e., it may not transfer out to other tables or pseudo tables.

The program refers to the elements of data described in the operand

description tables (0000 - 0003), rather than defining data in the

Autocoder section. The Autocoder TABLE macro in particular must

be avoided. No restrictions (except transfers noted above) are placed

upon the instructions written in the Autocoder sections. The programmer

need only code the routine itself without entry and exit points. Entry

will be at the first command, exit will occur after the last command.

(See Reference Manualnprogramming the IBM 705 Using the Auto-

coder ill System--No. C28-6057.)

- 4. 72 -

APPENDIX

Character Set

The character set for source pr ograms (refer ence set) Is shown be­
low with the appropriate card codes. The printing characters which
differ from the reference set are shown in the second column (It , &,
%, iI). This chart also shows the machine collating sequence. Charac­
ters that may appear internally (although not part of the external charac­
ter set) are shown in their collating position and marked with an asterisk
(:f , 0, 5, 1'). It is expected that the key punch operator will substitute
the If , &, %, iI for), +, (, '(quote) as she punches the cards (the pro­
grammer may also use the printing set if he desires).

Printing Set
Reference (where Reference

Set different) Card Code Set Card Code

Blank
12-8-3 M 11-4

) '!:t 12-8-4 N 11-5

* * 0 11-6
+ & 12 P 11-7
$ 11-8-3 Q 11-8
* 11-8-4 R 11-9

11 t *
/ 0-1 S 0-2
, 0-8-3 T 0- 3
(% 0-8-4 U 0-4

II 8-3 V 0- 5

~ 8-4 W 0-6
0 * X 0-7
A 12-1 Y 0-8
B 12-2 3 0-9
C 12-3 0 0
D 12-4 1 1
E 12-5 2 2
F 12- 6 3 3
G 12-7 4 4
H 12-8 5 5
I 12-9 6 6
5 * 7 7
J 11-1 8 8
K 11-2 9 9
L 11- 3

- A.1 -

7080 DTS MEMORY MAP

System

500

IOC S

23,500

IO Buffers and
Common

File Tables R outines -
Work Areas GET, PUT 2, 100 750 PRINT

450

Constants, Tables, Work Areas, etc . for Data Definition Processing

18,500 .

I
I

Constants, Matrix, Tables , and Work Areas for Condition and Action Processing

11,000

Data D efinition Processing

11, 000

Condition and Action Processing
I

7, 000
I ,

, , ,

Libr ary Literals
Subroutines

550 800

- A. 2 -

Notes on Pre- processor Requirements

The 7080 Tabular Programming Pre- processor is written for an 80K,
2 channel 7080, with a typewriter. It operates in non- stop mode using
the 7080 IOCS package. It may be run on a 160K, 2 or 4 channel 7080
with no modification.

Input is unblocked 80 character records on tape. The first Tabular . Pro­
gram on tape must be preceded by a run control card as follows:

col
col

16-20
23-29

ASMBL
TABULAR

This card may be preceded by a DATE and/or MODEL control card as
described in the 7058 Processor specifications . Each Tabular program
on tape must be separated by a card having END punched in col 16-18.
The final program on tape must be ended by a card as follows:

col
col

6- 10
16-18

FINAL
END

Input is limited to a single reel. A tape mark on the input tape is con,
sidered to be FINAL END.

Output Program

The processed Tabular Program will be unblocked 80 character records on
tape, and will be acceptable to the 7058 Processor. Since the 7058 pro­
cessor is unable to accept multi-reel input, no program may extend over
one reel.

If end of reel on output does occur in the 7080 DTS the following will occur:

1. Input will be rewound.

2. Output will be tape- marked and re- wound.

3. A message will be put on the message tape indicating
that the current program will be re- processed.

4. A message to the operator will be typed. The operator
must mount a new output reel and press key 252.

- A. 3 -

5. 7080 DTS will then search the input tape until the
first card of the program being processed is found.
At this point, an ASMBL card will be generated and
placed on the new output tape, and processing of
the program will begin again.

Output Messages

Output Messages will be 120 character records blocked 5, on tape. The
format will include the 7080 DTS Pre- processor page and line number and
the input page and line, tag, and operations of the entry to which the error
message applies, a critical/non-critical indicator, and the text of the
message.

Messages for each program will begin on a new page, and each page will
be headed by a line containing the program identification and date of pro­
cessing.

Messages may be printed on a 720 or 1403 printer under program control.

Machine Setup

Non- stop switch
Alteration switches

9ll

912

913

914

915

916

- A.4 -

on

on
off

off

on

off

off

off

off

for testing the processor
at all other times

if the operator desires the
processor to search for END
cards and give the option of
processing the program follow­
ing a found END card or con­
tinuing the search.
otherwise

,

Tapes

2001

2101

2103

Tabular pr ogram input Hi or Low
Density, Model II or IV tapes.

Tabular program output will be Hi
Density Model II or IV tapes .

Message output will be Hi Density,
Model II or IV tapes .

Tape assignments may be changed by patching the Tape Table entr ies which
begin at actual location 500.

No checkpoints will be taken, and no records will be dumped. If an un­
correctable read or write error occurs, new tapes must be mounted and
processing must be started over .

When a program has been completely processed, (an END card has been
found) a message will be typed containing the program ident., lmd in­
dication of what kind of errors were found (major, minor J or none), and
giving the operator the option of processing the next program, or going
to end of job.

When a FINAL END card ends a program, the same message is typed,
but no option is given. End of job follows automatically.

Typewriter Messages - Pre- processor

The following typewritten messages may appear during the compilation of
a 7080 Tabular Program.

7080 TP

XXXXXX, MO- DA- YR

appears at the beginning of a compilation
run only.

where XXXXXX is the identification of the
Tabular Program to be compiled. Typed
at the beginning of compilation for each
program.

- A. 5 -

X-----X. - IMPROPER CONTROL CARD. - 2-ACCEPT, -3-READ NEXT

ASMBL X-----X

where X- ----X is the PGLN, TAG,
OPERATOR of the control card in
question. May appear at the beginning
of a compilation run only. - 2- will
assume an ASMBL TABULAR control
card, output an ASMBL ORIGINAL card,
and begin processing. -3- reads the
next card.

IMPROPER. - 2- ACCEPT, - 3- QUIT

an ASMBL card with operand X- ----X
has been found at the beginning of a COm­
pilation run. - 2- will assume TABULAR,
output card as is, and begin processing.
- 3- will go to end of job halt.

XXXXXX IS NEXT. - 2- SEARCH, - 3- PROCESS

where XXXXXX is program identification.
Will appear when 913 is on at beginning of
a run. An END card has been found and
XXXXXX is the next program on tape. - 2-
continues the search - 3- generates an out­
put. ASMBL ORIGINAL control card and
begins compilation.

XXXXXX COMPLETE, YYY ERRORS. -2-NEXT ASSY, - 3- EOJ

Program XXXXXX has been compiled, and
YYY is the class of errors found. Will be
NO if no errors found, MIN if Minor errors
found, or MAJ is a critical error found . The
option section of the message will appear if
an END card, not FINAL, indicated the end
of the current program. If FINAL END en­
countered, end of jab is automatic, and the
message will be truncated at the period.

- A. 6-

Typewriter Messages - Listing Program

XXXXXX NEXT. - 2-LIST, - 3- BYPASS
XXXXXX NOT LISTED.
XXXXXX LISTING COMPLETE.

Message Tape Entries

I. Operand Description Section

A. Message Format

Where:

TP. PGLN is the Page/Line Number assigned to the first output entry of
this item by 7080 DTS.

PG LN, NAME, C LASS are the first 20 positions of the input entry.

CRlT is blank if this error is minor; is *** if this error is considered a
major error. Major eTrors are those errors which are difficult or im­
possible to correct at output (Autocoder III) level.

IDENT is the input program identification.

B. Message Texts :

DUPLICATE TAGS - EXPRESSION OR LIST

The tag of this item is the same as the tag of a previously defined
expression, list, index pointer J or is a state relation name.

EXPRESSION REFERS TO ITS OWN TAG.

An arithmetic or symbolic contains its own tag as one of its numbers.

EXPRES. NOT TAGGED OR BLANK OPND- PROCEDURE TABLE
(CRITICAL)

An expression, list, or index pointer is not tagged, and carmot

- A. 7 -

be referenced. See procedure table error messages for
explanation of second half of message.

FIRST RNAME IN FILE NOT TAGGED-WILL TAG

The first RNAME entry In a File which contains 2 or more
RNAME definitions is not tagged. 7080 DTS will create a
tage for this RNAME and subsequent RNAMES within this
file will be LASNed to this tag. This LASN will not be ef­
fective in the Autocoder assembly.

IMPROPER TYPE FOR CURRENT TAB NO.

This item is a valid class type for an Operand Description,
but is not allowable within the present TABLE number. Entry
is processed normally.

L. H. BRKT NOT LOC. - ASSUME EXP BEG. COL28.

The ·left hand bracket of a symbolic expression does not
appear In col. 28 or 27 of the Input entry. De- COding of
this expression will begin at column 28 of the input record.

LES RNAMES THAN DEFINED-LAST FILE

The numeric column of the previous FILE entry contained
a number greater than the number of RNAME entries pro­
cessed before reaching the present F.ILE entry. Processing
continues normally.

MORE RNAMES DEFINED THAN FILE CALLED FOR

The current RNAME entry is over the number of RNAMEs
which the previous FILE contained In its numeric column.

NO EXP TYPE-ASSUME JOIN

The current symbOlic expression has an invalid or blank
expression type In col. 23- 26. The JOIN type is assumed.

OUT OF SEQUENCE

The Page/Line of the current entry is lower than that of the
previous entry.

- A.8 -

OVER 9 CONTINUATION CARDS FOR EXP. - IGNORED (CRITICAL)

The present entry is the 10th continuation card of an Arithmetic
or Symbolic expression. It will be re-coded as a TITLE entry
and the expression will end at the end of card 9 .

OVER 25 RLISTS - TREATED AS VLIST

The current RLIST entry is number 26 or above . No move ­
ment of a function will occur as the result of its use in a
condition statement.

TAG OF POINT OVER 5 CHAR. LONG

The current index pointer name is 6 or more characters in
length. It will be processed normally.

TBL. TYPE INVAUD TAB. NO. - ASSUME XXXXXX

The current TABLE header is type "D" (data) but has a Table
Number greater than 0003 (only the numeric portion of a Table
number is used in this test). An assumption of Table number/
type will be made on the basis of the operator of the following
entry. If ORDER, a procedure Table is assumed. If FILE,
Table 0000 is assumed. If neither, Table 0003 is assumed.

UNKNOWN OPERATOR TYPE

The operator of the current entry is not in the list of acceptable
operand description classes. The entry will be put out as is.

***EOF OUTPUT -PROCESSING RE-STARTED**

End of file on the output tape has occurred. The current pro­
gram will be recompiled from the beginning. Error messages
up to this point will be repeated on the next page of error messages.

X------X QUESTIONABLE OPERAND FOR EXPRESSION

The current arithmetic or symbolic expression references an
index pointer name) list name, or state relation. May be im­
proper usage.

- A. 9 -

INVALID, TAB. NO. - USING NAME ONLY

The Table Number of an Autocoder (Al Table is not pure
numeric or is less than 0004. All procedure Table must
have pure numeric Table Numbers greater than 0003. The
Table Name will be used to tag the first generated instruction
of the Table. DO statements referencing Table number will
generate incorrectly.

II. Procedure Section

A. Message Format

fTP. PGLNI - I;;~··~o·n-;~~· NAME rCRlT f ME;SAG~ ~~~~ JrnENT I
Where:

TP. PGLN is the Page/Line number assigned to this output entry by
7080 DTS.

TAB. NO. is the current Procedure Table number. TAB. NAME is the
current Procedure Table name. CRlT is blank if this error is minor;
is *** if this error is considered a major error.

MESSAGE TEXT is a description of the error.

IDENT is the input program identification.

B. Message Texts:

X------X y ------ y BOTH LISTS- 1st IS ARG

Both operands of a condition statement are list names. The first
operand will be processed as the name of the argument, the
second operand as a list name . This is improper usage, and
should be corrected prior to Autocoder assembly.

X- -- ---X y ------ Y BOTH STATES- 1st IS TAG

x ------x, y- ----- Yare operands of the current condition
statement and are both state r elation names. Operand 1 will
be processed as a field name.

- A. 10 -

X------X- EXPRESSION IMPROPER IN THIS OPERAND

x --- ---x is an arithmetic or symbolic expression name and
is the resultant or receiving operand of a MOVE or SET
action. No linkage to the expression routine will occur; and
this operand will be processed as the name of a signed field.

xx - IMPROPER OPERATOR TYPE FOR CONDITION

xx is the operator of the condition statement being processed,
and is invalid. The operator is assumed to be EQ, and pro­
cessing continues.

X- - ----X- IMPROPER STATE FOR ACTION AREA

x- --- --x is an D}:erand of the action statement currently
being processed. It is a state relation, but is not ZERO j

BLANK, ON, OFF. These are the only state relations
allowed in an action statement. X--- ---X will be pro­
cessed as a field name.

SET

[~
SET EQ

XX-INVALID OP TYPE-ASSUMING
MOVE TO MOVE

XX is the operator of a SET or MOVE action and is not EQ,
+, -, I, *. XX is assumed to be EQ.

X------X - LIST NAME INVALID IN ACTION AREA

x------x is an operand of the action statement currently
being processed. List names are not allowable in the action
area.

MOVEV X-- ----X y----- - Y NO POINT, DID MOVE (Critical)

Neither operand of this MOVEV action statement is an index
pointer name and neither operand contained a comma. The
action was assumed to be MOVE and processed accordingly.

x-- -- --x - POINT NAME UNDEFINED - ASSUME SER.

x------x is the operand of the action statement being processed,
and contains a comma. The name to the left of the comma is not
an index pointer name, but will be assumed to be the name of a

-A.1l -

SER index pointer.

X- -- - - -X - STATE IMPROPER IN THIS OPERAND

X------X is the operand of the current action statement. It
is a state relation name and is improperly used. It will be
processed as a field name.

X------X - UNKNOWN ACTION - OPERATOR TYPE (Critical)

x-- ----x is the action/op of the current action statement. It
is not a member of the valid action/op list. A NOP, tagged with
the tag of this action, and with an operand of this action's operand
1, will be generated.

EXPRES. NOT TAGGED OR BLANK OPND-PROCEDURE TABLE
(Critical)

One of the operands of the current procedure table statement
being processed is blank. Improper coding will be generated as
a result. .

X------X TABLE VS STATE-ERROR- NO TABLE SERCR

The present condition statement related a List name and a
state name. This is improper usage. The List name will
be processed as a field name.

CHECK. NO ELSE RULE OR ERROR TABLE NOTED

Possible error, programmer should make sure all possibilities
have been considered.

INVALID. RECORDS BYPASSED TO NEXT TABLE

Unknown record type following actions.

RECORDS MISSING OR OUT OF SEQ - TAB BYPASSED

ZERO ORDER. RECORDS BYPASSED TO NEXT TABLE

ZERO NO. RULES. TABLE BYPASSED.

- A. 12 -

INVALID ACTIONS. RECS BYPASSED TO NEXT TABLE

Pr0bably no actions for this row.

CHECK. NEXT TABLE IS BLANK.

Possible error, progra=er should check to assure a
GO TO for each rule.

Listing Program Messages (printed after heading 1)

RECORDS MISSING OR OUT OF SEQUENCE. TABLE BYPASSED.

ERROR NO. OF RULES IS ZERO. PRINTED AS 6.

ERROR HAVE ZERO ORDER RE·ORDER DISCONTINUED.

Notes on Pre- processing Method

The 7080 DTS pre·processo~ (compiler) converts from PrO<Jrams written
in decision table form to acceptable Autocoder ill · form.

Operand Description·-

The compiler makes almost a direct conversion to Autocoder, the major
exceptions beinq that expressions are compiled as rart of the data des­
cription and are set up to operate on a closed sub-routine basis. IOCS
entries are passed without chanqe; FILE is chanqed to TITLE; RNAME to
NAME, GNAME to NAME, FLD to ReD, PRE to CON, RPT is unchanqed,
VLIST and RLIST to TABLE, MEXP to MATH, SEXP to a special macro
GATHR, PCON to CON, BITCD unchanqed, ALTSW unchanqed, and POINT
to ADCON. Address Reqisters XO throuqh X9 are chanqed to 6 diqit siqned
ADCONS.

Procedure Description --

The condition and action statements are converted to Autocoder macro
instructions - a number of new maCros are used.

Condition area. - The entire condition area is in core storaqe at one time.
A sliqhtly different approach is used in scanninq dependlnq upon whether..the
row is in limited or extended entry. Each limited entry test is made before
qoinq into the entry portion· a bit is turned "on" if the test is met, 1. e. ,
limited entry conditions are pretested, extended entry conditions are not.
l! this same test must be made more than once, the bit test is very rapid,

- A.13 •

thus speedinq up the process of finding a "sattsfied" rule.
"

The condition area is then scanned to eliminate horizontal redundancies
(marked * in examples below); in addition the reverse tests are eliminated
if there are no tests to be made above it in the same rule (marked by a
I:t'). The rule entries so marked are ignored when the fina1 testinq nat­
work is compiled. Rearrangement of condition rows and decision rules
can greatly affect the number of test to be made in the object proqramS.

The not pertinent (blank entries) should be moved toward the bottom 'for
space efficiency and often for time efficiency. other things being equal,
the most discriminating (most likely to fail) should be toward tbe top.
Rules should be arranged such that the high frequency rules are at the
left, since object testing starts at rule 1. Note examples below, tests are
made only when a Y or N (in limited entry) remains.

Blank entries produce the same efficiency at far left £! far rlqht if at
bottom.

Examples:

Y Y Y
Y N N

Y N
Y

Y Y Y
N N Y
N Y
Y

produces y
y

•
* Y 1:(

Y

Y * •
N * l:1
N 1:(
Y

But blank entries intermingled generate more tests.

Y

Y

Y
Y
N

Y
N
N
Y

Y

Y

•
Y
N

* tf
N
Y

Blank entries at the top (either left or right) give the worst
possible arrangement.

Y
Y

Y
N
Y

Y
N
N
Y

No redundancies

- A. 14 -

r
The rule to remember is: the raw above must be *before a
t.~(or * can replace the test. * IS are assumed to be before

the first row . Therefore when table forms a tree, blank entries
should be at the bottom.

Action area - Each action appears only once in the compiled program
(W1.less the user writes the same action more than once). During com­
pilation a control word is set up for the actions of each rule (actually
Bit SWitches), lion" indicates rlexecute ll it, off indicates IIskip" it. The
proper control word is set up when the conditions of a particular rule is
satisfied, then the Bit corresponding to each action is tested in turn -
if "on" execute, if "offll go to the next Bit and test, and so on for each
assigned action in the table. For example:

Rule 1 Rule 2 Rule 3

I
I

I -- -
I ._-

Action 1 X X X
Action 2 X X
Action 3 X X
Action 4 X
Action 5 X X
Action 6 X X X

Rule 3 would have a control word -ON-OFF-ON-OFF-ON-ON, and Actions
1, 3, 5, and 6 would be executed. Rule 1 would have actions 1, 2, 3, 5, 6
executed. If long sequences are to be executed for a number of rules they
might be written as a separate "closed II unconditional table and executed by
a DO Table name action command.

- A. 10 -

