PRELIMINARY MANUATL

L 7080

L DECISION TABLE SYSTEM

April 10, 1962 Thomas B. Glans
Technical Report No. 2D1 Burton Grad

IBM 7080 DECISION TABLE SYSTEM

Preface

Of the various activities that go into setting up a data processing
procedure for a computer, the hardest is obtaining a precise definition
of exactly what is to be done under all combinations of circumstances.
The conditions under which each action is to be performed must be
enumerated, and every step must be specified in detail. The sequence
in which operations are to be executed must be precisely stated, and
the exceptions to normal processing must be identified.

Logical operations have generally been described with block dia-
grams, which are a form of man-to-man communication and docu-
mentation. Unfortunately they can become confusing themselves in
complex situations; and a block diagram is generally not suitable for
communication with the machines, since a computer will accept as
input only alphameric information, not pictures or diagrams.

Many languages have been developed for communication with the
machine in forms which more closely resemble the terminology of
English or of mathematics. These programming systems such as
FARGO, Reports Generators and FORTRAN are oriented toward some
area of data processing for which they are primarily intended such as
input-output, or mathematical equations. Decision tables now offer a

means for expressing complex decision logic in connection with these

languages, or independent of them when the essence of the problem is
decision logic.

Logical equations (Boolean Algebra) are sometimes used, but they
do not display relationships in as graphical a form as one might wish,
and furthermore most systems engineers and procedures analysts do
not find them to be a comfortable form of expression.

Decision tables are proposed as holding promise of meeting the
various needs of a computer language. Decision tables provide a des-
criptive representation of complex decision procedures in a way that is
easy to visualize and follow through. They show alternatives and excep-
tions in a much more explicit way than other languages, while pre-
senting relationships among variables clearly. They show the sequences
of conditions and actions in an unambiguous manner. The language of
decision tables can therefore be used equally effectively for system
analysis, procedure design, and computer coding. A computer pro-
cedure written as a set of decision tables is, to a large extent, its own
documentation.

There is a growing body of experience to indicate that these claims
are justified. Those who have used decision tables say that program-
ming is much faster and that program checkout time is significantly
reduced. The use of tables leads to greater accuracy and completeness

in problem formulation. Program maintenance is simpler. A program

- iji -

written in decision table form is indeed a powerful communication and
documentation device, since it performs the dual functions of man-
to-man_and man-to-machine communication.

For these reasons the employment of decision tables for problem
analysis, logic documentation and computer programming should be
given serious consideration. User experience will help in the evalua-
tion of the cbncept, and will assist in improving its implementation in
terms of processor versatility in translating from decision tables to
computer instructions.

A word about this teaching text. It is directed primarily at people
who will be experimenting with the language. Since many such people
may be stronger in systems work than in programming, the presenta-
tion discusses programming matters more fully than an experienced
programmer requires. However, this redundancy should not detract
from the technical content of the manual.

Chapter 1 introduces the concept of decision tables and discusses
the preparation of decision tables for machine processing.

Chapter 2 shows how these concepts are implemented in the 7080
Decision Table System and presents the essential elements of the
system and its language. This chapter utilizes a graded series of
examples -- the first ones are quite simple, but become increasingly

complex as further concepts are introduced and earlier concepts are

- {ii -

tied together. There are review questions and answers after each
example.

Chapter 3 contains a full-scale problem worked out with the 7080
Decision Table System. It shows how the concepts can be applied to a
specific situation.

Chapter 4 is a reference section, describing the details of the
language elements and their relationships.

It is recommended that the person without extensive programming
background study the entire manual carefully, concentrating on the
examples and questions in Chapter 2. The experienced programmer
will probably want to read Chapters 1 and 2 and concentrate on
Chapters 4 and 3.

Two final comments:

(1) Because of time limitations and in light of the experimental
purpose of the language, certain functions that might have been in-
cluded were left out. However, the system will nevertheless be useful
in evaluating the concept of tabular programming for a large-scale com-
puter, and along with the evaluation of the overall concept will come
suggestions for improvements in the details. All such comments and
suggestions will be appreciated.

(2) It should be understood that IBM makes no commitment to main-

tain or improve this language. Although every reasonable attempt has

- iv -

been made to pretest the processor and to examine various impli-
cations of the language, the accuracy or efficiency of the processor

is not guaranteed, nor are the correctness of results obtained with

its use.

Thomas B. Glans

Burton Grad

April 1, 1962

ACKNOWLEDGMENTS

The development of the 7080 Decision Table System has been a
joint effort between The Boeing Company and IBM. Messrs. Donald
Higgins, Harry Hicks and James O'Malley of Boeing participated in
specifying the language. In addition, H, Hicks did an excellent job in
writing a large portion of the processor. J. O'Malley and a member
of his staff, produced the fine sample problem of Chapter 3 which was
also used in checking out the processor.

Messrs. R. N, Barnes, O. Y. Evans and H, W. Stroeve of the
IBM Western Regional Office and C. A. Mabee of the Seattle Branch
Office also participated in the language design effort. In addition they
provided valuable consulting and administrative assistance throughout
the implementation stage of the project.

Mr. H, J. Cash of DP Technical Publications did the major portion
of the writing of this manual. Mr. R. J. Schatz of DP Systems Publi-

cations set up and printed the manual.

TABLE OF CONTENTS

Chapter 1 - An Introduction to the 7080 Decision Table System

A problem

The structure of a table

7080 Decision Table Processor -
System diagram - S

Chapter 2 - Using the 7080 Decision Table System

Situation 1, auto classification

Situation 2, utility billing .o
Situation 3, insurance rate computation
Situation 4, preparing a decision table -
Situation 5, stock classification llstmg
Situation 6 payroll 5w
Situation 7, expense report -

Situation 8, scan a card

Situation 9, manufacturing

Chapter 3 - Sample Problem Using 7080 DTS

Index for the sample problem -

DO DO DO DO DY DO DO DO D9

Page

(I
= O S

« 10
.13
. 20
. 26
. 32
.35

» 3.2

Chapter 4 - 7080 Decision Table System Specification

System characteristics
Names -
Named operands
Other operands -
Literals
TABSTOP
Special names
Conditions .o
Relational . .
Rules for comparlson
State - . I
‘Actions .
Input/ Output operators
OPEN . . ‘ -
GET .
PUT .
CLOSE -
TYPE
Assignment operators -
MOVE . o
Record movement
Field movement .
Setting of bit switches -
Zero or blank fill - . .
Variable length data movement .
Fabrication of variable output record
Generalized indexing .o
SET -
Two-address arlthmetlc operators
Sequence control operators .
GO TO - . .
DO
Decision Table headers
Table header - .
Order of condition rows header .
Order of rules header -
Comment header
Name Definition - .
Table 0000 - Input/Output flles .
FILE * .
RNAME

Page

.

R St 3l o a ant all a al o pat a alo ol al o
=
(o]

-
W
{3

s 0O
OO

43

g
T
Do

HS s s s
QoG w

Chapter 4 (cont'd.)

GNAME

FLD -

PRE -

RPT -

BITCD - .
Table 0001 - Core files

Table 0002 - Mlscellaneous, Varlables

ALTSW
ADCON
. POINT -

Table 0003 - Mlscellaneous leed .

Expressions
Arithmetic
Symbolic -
Constants
Value list
Reference list
Name Descrlptlon hea.der e
Reports
Autocoder

Appendix

Character set - IO
7080 DTS Processor memory map
Notes on pre-processor requirements

Input . g W W N e W e

Output program -

Output messages

Machine setup i = 4 b
Typewriter messages - pre-processor
Typewriter messages - listing program
Message tape messages . .
Notes on pre-processing method

Condition area .o

Action area -

P 0 6 3 g i R I G e e g i R e i B g

S S e d s

Page

o NorNerNerNe)Ne)NeorNe)NerNo o) Ko NS RS G
CONObdMNMMNMNMNMHERPPOOODOWRO

~ 3
N

e e = R o WSS RS RSl

o o

CHAPTER 1

An Introduction to the 7080 Decision Table System

Some orderly arrangement of data is necessary for the logical
solution of any complex problem. At first blush, for example, the
puzzle below does not lend itself to an easy solution:

Andy disliked the catcher. Ed's sister was engaged to the
second baseman. The center fielder was taller than the

right fielder. Harry and the third baseman lived in the same
building. Paul and Allen each won $20 from the pitcher at
pinochle. Ed and the outfielders played poker during their
free time. The pitcher's wife was the third baseman's sister.
All the battery and infield, except Allen, Harry and Andy, are
shorter than Sam. Paul, Andy and the shortstop lost $50 each
at the race track. Paul, Harry, Bill and the catcher took a
trouncing from the second baseman at pool. Sam was under-
going a divorce suit. The catcher and the third baseman each
had two children. Ed, Paul, Jerry, the right fielder and the
center fielder were bachelors. The others were married. The
shortstop, the third baseman and Bill each cleaned up $100
betting on the fight. One of the outfielders was either Mike or
Andy. Jerry was taller than Bill. Mike was shorter than Bill.
Each of them was heavier than the third baseman.

With these facts determine the names of the men playing each
position on the baseball team.

It is, however, far less complex than it appears when the problem
is broken down into a series of steps. What are the facts which deter-

mine the solution?

- 1.1~

Obviously (1) the names of the players and (2) their position on the team.

C P 1st 2nd 3rd SS LF RF CF

Andy N
Ed N
Harry N
Paul
Allen
Bill
Sam
Jerry
Mike

Z2Z

The first sentence of the puzzle states that Andy is not the catcher,
and the second states that Ed is not the second baseman. Instead, how-
ever, of retaining mentally all such facts, they can be itemized as above
until the process of elimination takes care of all negatives and the re-

maining entries are all "Yes". The solution is stated below:

H
)]
-

2nd 3rd

&
F
oy
]
Q
&5

Andy
Ed
Harry
Paul
Allen
Sam
Bill

Jerry
Mike

zzzzzz2Q=z2 |v

Z 22222220
zzz2222Q=2 |4

22 2Q=2 2222
2z2@zz222 2

zzzz2Qzzz= |o
222 2 2@z 2 =
2Qzzz2222

Qzzzzzz2zz

At the heart of any data processing problem is a set of decisions
the computer must make regarding the data contained on each record

and the actions to be taken as a resuit of these decisions. The

=1.2~=

decisions may be regarded as a set of conditions and when a given set
of conditions is satisfied then a certain action or set of actions is to
be taken.

In a payroll application, for example, if a salaried employee has
not been absent and if he has not worked overtime, then his salary is
computed with normal deductions. "Compute salary with normal de-
ductions, " in itself, constitutes a set of actions. Of course there are
many more _if considerations in any payroll application, and when a
given set of conditions is not satisfied, another series of actions must
be taken.

A decision table defines all conditions and separates them from
all actions. Further, it relates a given condition to the appropriate
actions in an entry. A series of conditions that must result in a given
series of actions constitutes a rule. Alternative conditions that result
in other actions constitute other rules.

Basically then, a decision table:

o relates a series of conditions and actions

o aligns alternative rules side by side

-=1.8~=

“ne Structure of a Table

To begin to see what decision tables are all about, examine the

simple table of Figure 1.

i 4’111(.

_ Rule 1 Rule 2 Rule 30
[65
. 2654 25-34 "
Health J Excellent Excellent W Poor
Section of Countryj] East West West
—_ﬂ— o o & ¥ ¥
Rate /1000 1.57 1.72 % 5.92
Policy Limit 200,000 | 200,000 20, 000
: 7

Fiqure 1. An example of a decision table

The first decision rule (columns 1 and 2) can be paraphrased:
1 age is greater than or equal to 25 and 34 or less, and health is ex-
cellent, and seciion of country is East, then set rate per thousand to
1. 57 and set policy limit to 200, 000. The underlined words are implied
by the table laycut. The other rules are alternatives to this one, so
that logically, only one ruie can be saiisfied in a single pass through

this decision tal -

4
H>

-Q'I_

STUB Yl

/ﬂ Rule 1 Rule 2 5{ 4 7/ /|| Rule 30
25-34 25-34 { / // 47 Y PuL. -

Age Ro

Health Excellent | Excellent ?//A// /,' ﬁ Poor
Section of Country \\ / | Eas,t Wes;:/' VAN A west
\\ _ // ,/

s A Decision S
Conditions | - Conditions RULE

7NN

Rate /1000 1.57 1.72 f / //// // 2 5.02 |
Policy Limit 200,000 | 200,000 37 7 } 20, 000
A
STUB

Figure 2. Exploded view of the table of Figure 1.

The information in Figure 1 is shown in an exploded view in
Figure 2, to show more clearly the parts of a table and the terms
that are used to describe them.

The double horizontal and vertical lines serve as demarcation:
CONDITIONS are shown above the horizontal double line, ACTIONS
below; the STUB is to the left of the vertical double line, ENTRIES are
to the right. Each vertical combination of conditions and actions is
called a decision RULE.

Tables may also be used in a slightly different way to state decision

logic, as shown in Figure 3.

Rule No. 1 2 3 4
Credit Limit is OK X N N N
Pay Experience is Favorable Y N N
Special Clearance is Obtained Y N
Approve Order p.4 ;.3 X
Return Order to Sales X

Figure 3. A limited entry table

The first rule (the stub and column 1) is read: If credit limit is

-1.6-

OK,then approve order. Again, the underlined words are implied by
the form. Note that the form of both conditions and actions is different.
In a limited entry condition or action, the entire condition or action
must be written in the stub; the entry is limited to asserting, reversing,
or ignoring a condition or executing an action. In contrast the extended
entry form (as in Figure 1) has part of the condition or action extended
into the entry. Both forms may be used within one table, but any one
condition or action row must be of just one form.

Note that the basic concept of a single rule in a table is based on
the "if...then" relationship in a straightforward manner. If A = B and
C is greater than 5and . . . then assign the value 7 to X and GO TO
Table 10. The alternative rules are explicit; if the conditions in rule 1
are not met, then try rule 2. If none of the rules succeeds, then the
implication is that something is wrong. Now if all significant possi-
bilities are exhausted, it may be desirable to indicate "Go ahead anyhow
with a special routine. " This is indicated by placing "ELSE" in the last
rule; otherwise, provisions must be made for an automatic error
detection.

The skeletonized table in Figure 4 is directly related to the block
diagram in Figure 5, which shows schematically the way in which a

table is conceptually "executed."

-1.7-~

»
Cond 1 Y Y / ELSE
Cond 2 N 1él
Cond 3 Y N "

—— 4/%
Action 1 X . / X
Action 2 X X X

1Z.

Figure 4. A declsion table of the logic of Figure 5

Rule 1l

Rule 2

Rule 3

Yes Y&s Yes |
|
!
(% X&s J
Cond 2 ' Cond 2 S
Comi 2) ,
YES No |
|
X 2 . i
(Cond 5 Ymd (Cona 5) ((Cond 3 M. J
' Yeo No Vs Y
Action 1 Action 1 Action 1
l "
Action 2 Action 2 Action 2 Action 2

v

Figure 5. Schematic representation of the sequence of
tests and actions in executing a table.

I

|
!

-1.8 -

7080 Decision Table Processor

The use of decision tables as a language for prescribing pro-
cedures to a computer has been discussed. It should be noted that a
table cannot be directly executed by a computer. It is necessary first
to translate the decision tables into basic machine instructions. The

set of tables that define the processing to be done by the computer makes

up the source program; this is translated into an object program--con-
sisting of actual machine instructions--by a processor which is, itself,
a special type of program. It is the object program that finally directs
the computer to carry out the desired processing of data.

The procedure for going from decision tables written on paﬁer to
final problem results is shown in Figure 6.

(1) The first step is the one that is the primary subject of this
text: planning the procedure and writing it as a set of decision tables.

(2) Cards are punched and verified, producing the source program
card deck (these cards are converted to magnetic tape). The processor
program, mentioned above, is on tape.

(3) The processor program goes into the computer and directs
the translation of the source program into an object program consisting
of computer instructions. The object program is written on tape. There
are also two listings produced by the processor, giving information

about the source and object program.

-1,.9 -

SYSTEM DIAGRAM

2 PP eStItn
START —
'FKBEE RE
Y%
@ 3 e KEY PuNCH $ T

YES

CORRECTIONS

DATA ATA DESC., i__\ REQUIREDY
DesScriPTION
g LIST
SOURCE PROG ON

co To

CORRECTIONS
REQUIRED

DATA DESC.

PRCEOURE
TABLE
LISTING

ERROR
MEESAGES

LISTING

|
|
|
[
|

Fﬂoczmns'
TABLE
LSTING COMPLETE
. ﬁacu-
&,] ENTATION

/AuTo\ et

h'

L

PROGRAM

MESSAGES

JeCT

PROGRAM,

OBJECT DECK

ey (READY TO 6O)

The processing is in fact done in two steps: one to go from
source program to an Autocoder program (Autocoder is another com-
puter language, at a higher level than machine language), and a second
to go from Autocoder to machine instructions. Conceptually, however,
the two parts are not essentially distinct.

(4) The object program is now available on magnetic tape; it has
not yet been executed.

(5) The object program may now be loaded into the computer to
do the data processing specified by the original decision tables. 1t is
only at this stage that data is processed. Other computer components
are used as required by the program.

The machine that executes the object program need not be the same
one which processed the source program. Within certain limits, the
two machines need not even have the same features. The machine con-
figuration for each of these jobs is shown in the Appendix.

At this point the basic ideas and use of decision tables have been
presented in rather broad outline. The next step is to learn how these

ideas are implemented in the 7080 Decision T'able System.

o 1511 =

2] v e semem R RAE L WLE2 RULE 3
a| = |closan = TR D
L WAME | WAME 2
proses sdsqer - 3 -
o + |4 TYP. T— R Lol Ltk
T (%] = I —— - ..‘_..... ‘ E
P2 [GET . MODEL . ; iP f
0 4 |4 i % |
— = —— -+ : A ——t—t

Situation 1

CHAPTER 2

Using The 7080 Decision Table System

The basic ideas of the 7080 Decision Table System are relatively
easy to learn. This chapter presents these ideas in the framework of
a series of problem situations, each chosen to illustrate a few new con-
cepts. At the end of the discussion of each situation there are review
questions, with answers on the back of the same page, to permit the
reader to check his understanding of the material before proceeding.

This chapter does not discuss all the features of the language. For
example, it omits some of the details of alternative ways of doing things.
The complete information appears in Chapter 4.

For a first example, consider a situation in which it is necessary
to convert an automobile body classification from a code to a readable
abbreviation.

The table on the opposite page can be interpreted fairly readily. In
English:

- If the type code of the car body is 1, then the model is a
convertible.

- If the type code of the car body is 2, then the model is a
hardtop.

- If the type code of the car body is 3, then the model is a
station wagon.

-2.1-

E : | semem RULE) CIE] [T E]
ol MAME 1 MAME 2
N TYD 4
b N
0 1 A T
‘A‘ ‘ i "

Situation 1

In this table, there is one condition row (above the double horizontal

line): The action to be carried out depends on whether TYPECODE = 1, 2,
or 3. There is also one action row (below the double horizontal line):

set MODEL equal to CONVRTBL, HARDTOP, or STATNWGN, depending
on whether TYPECODE =1, 2, or 3 respectively. This illustrates the
basic idea of a table, that conditions and actions are always related: if

a specified condition (or, more generally, a set of conditions) is satisfied,
then the corresponding action (or actions) is executed. A vertical column
containing one or more conditions above the double horizontal line and one

or more actions below, is called a decision rule. Thus, Rule 1 reads:

If TYPECODE =1, then SET MODEL EQ 'CONVRTBL'.
TYPECODE is a name for the data field containing the type code;
similarly, MODEL is the name of the field that will contain the actual

abbreviation for the body type. TYPECODE and MODEL are field names;

they represent variables consisting in one case of a one-digit code and,

in the other, of an eight letter abbreviation. Furthermore, TYPECODE and
MODEL are names of operands - - that is, information fields on which
operations of one sort or another are performed.

In the action part of the table, SET...EQ... is an action operator which
describes operations to be performed when the appropriate conditions are
satisfied. In this case, the action is to transfer one of the abbreviations,
'CONVRTBL', '"HARDTOP', or 'STATNWGN' to the field named MODEL,
depending on which condition is satisfied.

-2.2-

MAME | MAME 2

0 1 |af YP:

e

=

1 .
03 |a MODEL Fa .- h

Situation 1

The words 'CONVRTBL', 'HARDTOP', and 'STATNWGN' are not field
names, but rather are called literals, as indicated by the single quotation
marks. The distinction between a field name and a literal is most important.
Without the quotation marks, Rule 1 would read:

If TYPECODE = 1, transfer the current value of the data
field named CONVRTREL to the data field named MODEL.

This clearly is not the same thing at all as moving the letters CONVRTBL
themselves to the data field named MODEL.

In fact, in this particular table everything to the right of the vertical
double line, i.e., the entry part, is a literal: the 2, for instance, refers
to the literal value 2, not to a field name 2. Short numeric literals are not
written with quotation marks since they could not be confused with field
names -- which are not allowed to begin with a numeric digit. Alphameric
literals, on the other hand, must be enclosed in quotes to distinguish them
from the names of fields.

If the reader can correctly answer the following questions, he is ready
to proceed; otherwise, some review will help to understand the later material
more quickly. Answers are given on the back of this page.

QUESTIONS

1. List the field names in Situation 1.

2. List the literals.

What is the difference between a field name and a literal ?
4. State Rule 3 in words.
9. What is an action operator?

- 2.3 -

Answers - Situation 1

TYPECODE, MODEL.

1, 2, 3, 'CONVRTBL', 'HARDTOP', 'STATNWGN'.

A data field is referred to by name, whereas a literal has only

its actual value, and does not refer to anything else.

If TYPECODE =3, set the field named MODEL equal to the

letters STATNWGN. Stated otherwise: If TYPECODE = 3,
transfer the literal value 'STATNWGN' to the field named MODEL.

A command to perform some action on one or more operands.

= 2 = T RULE | 1 el
3| &1 or|
=y = MAME 1 HAME 3
e aqodar e — llﬂllll ; R P e i L U h:
’_.T: A A1D) ‘d__' ‘G
‘R | |
I I
P+ “GET . PAI PALON
o5 [Pt i
0 8 n
o T 1' . = T
0 1 | A

Situation 2

Situation 2 involves a utility billing procedure. The bill stub
that a customer returns with his payment has punched in it a net
amount and a gross amount. Before the bill stub goes onto a card
image tape and into the computer system, the letter N or G is punched
into the card to indicate which amount was paid; it is then unnecessary
to punch the amount of the payment.

In English, this table reads:

Rule 1: If the card field named PAID contains 'N' (for net), transfer

the customer's name from the input field named INPUTNAME to the
output field named CUSTNAME, transfer the field named PAIDNET to
PAIDAMOUNT, write a receipt record, read another bill stub record,
and finally Gd TO table 0006.

Rule 2: If the PAID field contains 'G' (for gross), carry out the same
actions as for Rule 1, except transfer the gross amount from PAIDGROSS
to PAIDAMOUNT as spelled out in action row 2.

The single condition row in this example is quite similar to that
in the previous example, with just one difference: since the literals are
alphabetic they must be enclosed in quotes.

The SET... EQ... action operators in the first two action rows
are the same as before. The PUT operator, however, is new; it is
the terminology of the 7080 Decision Table System which means to make

data available for the writing of an output record.

-2 4 =

0 gl el o e
' [MAME 3]
it e B o L B, L L. TP e ot o P fphegn T g g -—aipee
XN PAID _EQ] o P < o O
% | ‘_L_

b | lgn
L..e0 T
io 1 I.i

Situation 2

PUT is part of the specified language of the 7080 DTS; but this
example and the previous example have used named operands which
are not part of the basic language of the system, but rather names
chosen by the problem analyst. These names are for variable data
fields, records and files. A variable data field, of course, contains
a value. A record is a collection of fields, and a file is a collection of
one or more records associated with an input or output device.

* In this situation, PUT RECEIPT specifies making a record from
the file named RECEIPT available for writing -- here the data is the
customer's name and the amount paid. To summarize, the PUT action
operator requires a file name for its operand and it calls for the out-
putting of a record to this file.

Such data records normally consist of fields which are of known
length and arrangement. Since input and output areas, work areas,
areas for storing constants, etc., must be reserved in core storage for
all records, their length and arrangement must be specified. These
areas will then automatically be assigned to memory locations in the
order in which they are defined in the program. The specification of
these definitions is made on a 7080 Decision Table Name Description
Sheet. The writing of procedures and operand descriptions are separate
programmer's jobs and every program requires both. Data description,

being another consideration, will be explained in another example; so

= 2.5=

a1l ¢ seres | | R
| & = tlesgmaron I"
| | NAME 1 I HAME 2
4 |
....:,. wnadas 1{'; ll'lllIll_' =
AL AlD Q)

0 |a
TR

ol L =74

Eue *CET

Situation 2

return now to the procedure description.

The GET BILLSTUB action, in combination with information
supplied by the data description, means to make available the next
record in the file named BILLSTUB. This action reads in new values
of the variables named PAID, INPUTNAME, PAIDNET, and PAIDGROSS
(2s would be indicated in the data description). The GET and PUT
action operators are exactly the same, and provide the same results,
as in Autocoder III since the same IOCS is called into effect.

The last action is another new one, GO TO. This causes a
transfer of control to the table identified by the operand. In this case,
it is assumed that the current table is table 0006, so this same table
is simply repeated with new values of the fields (obtained by the GET).
A GO TO always transfers to the beginning of a table.

There is no provision for executing a pre-selected rule of a

multiple-rule table. There are, however, provisions for unconditional,

i. e., one rule, tables. For example, in Situation 2 the question of how
to read the first card is ignored. This would be handled easily enough
by an unconditional table, examples of which will be given later.
QUESTIONS
1. List the field names in this table.

2. List the file names.

3. Can it be determined, simply by inspecting this table alone,
that INPUTNAME is a field and BILLSTUB is a file?

-2.6 -

E by € AETION o RULE | 1 RULE)
H = LI TR LT o 'u‘ ’
Ll.l“ L b i i aneradae IJ
01 |M .AID OvYE Y F
TR _L@ e d*' ﬁ
3 |al =, N
°4 "BET . PM P ol 95
N s Al n-r
0 & al
‘ERC - iV
08 A
Situation 2
BT & LI aevion RULE 1 RULE 2 | R RULE 4
af ra o [01Jo02l0a[o0afos[os] orfom Tos] o[mi] | va]val 1s[ral 7] wa| w 2] 21 [22] 23]
PAREE HARE 2 or WANE or WANE 3 or WanE 3 or wanE 2
rcalee oneder " L Rl Bl Bl Rl S B H“‘l{!l"“‘lhﬂ\‘d”ﬁﬂ!*ﬂﬂ “‘l!l'hl";'zlddnn
JNE LE25 r.zf.i
s 7 A m_ \‘ut \F’ .
T3 ACCIONTS L Teda |
+ 1K I I
©3 |MCFT IRATE ... +§w Tod - TFCTA
08 (A T T T
o7 M50 14 K1 . . LD K]
ba |a | |] »

Situation 3

4, What would happen if the GET and PUT actions were
interchanged?
B. What would happen if the last action were GO TO TAB 0941°?

Situation 3 involves an automobile insurance liability rate compu~
tation, and introduces several new ideas in table structure. First,
more than one condition must be satisfied before the actions in a rule
can be executed. The condition part of the first rule, for instance,
asks, "Is the applicant less than or equal to 25 years of age and a male?"
The blank entry in Rule 1 for the accidents condition row means that
the condition is not relevant for this rule: a man of 25 or under gets the
risk factor, RISKFACTOR, added to his rate regardless of his driving
record.

Notice that there is no combination of age, sex, and accident
record that satisfies the conditions of more than one rule. This is a
requirement of the system: the conditions must be set up so that at most
one rule is carried out each time a table is executed.

This table introduces three of the relational operators: EQ, LE,

GR. The seven available relational operators and their abbreviations

are:
Equal EQ Less than (lesser) LR
Unequal UN Greater than or equal to GE
Greater than GR Less than or equal to LE
Versus VS

o

Do

w

Answers - Situation 2

PAID, CUSTNAME, INPUTNAME, PAIDAMOUNT, PAIDNET,

PAIDGRGSS.
RECEIPT, BILLSTUB.
Yes, but only by implication: the operand in a condition must
not be a file name, and the operand in a GET or PUT action must
be a file name. The data description, if it had been shown,
would of course have left no doubt.
The order of reading and writing would be interchanged. Actions
are always carried out in the sequence in which they appear in a
table, from top to bottom.
Table 0941, whatever it might be, would be executed next.

b BRE | Ll : 25

”“”‘EEF‘RATE 1 1 A]_mm! T ""i P

Situation 3

These operators are to be understood in the sense of a question to
which the answer can be only yes or no. The first condition in Rule 1
thus reads: "Is the age of the applicant less than or equal to 25 years?"
If the answer is "yes", the condition is satisfied.

The SET operator has a new twist in the first action row: it is
used as a two-address arithmetic operator. It is assumed that the _
RATE has already been computed in a previous table; the table here
merely applies special factors if necessary. Rule 1 then says (if the
conditions are satisfied):

Set RATE= RATE + RISKFACTOR

The risk factor is added to the rate calculated in a previous table,
thus increment’ing its value. In Rule 2 there is no second operand for
this action, so nothing is done to the rate; likewise in Rule 4. In Rule 3,
the action specified is to subtract a special rate factor from the pre-
viously computed rate, i.e., decrement the rate by the special risk
factor. Note that the EQ is omitted when SET is used to perform
arithmetic.

The second action row contains nothing new. The rate, as modi-
fied by now if Rule 1 or 3 is being executed, is placed in PREMRATE.

The third action demonstrates the use of a limited entry row in
an otherwise extended entry table. In this row, since the same action

is to be carried out for each rule, the complete action specification is

-2.8-

HER | —RuLEd RULE 2 RULE 3 RULE 4 |
21 4 jfemeaaren . oy {01 [02] 03[0al0s] 08| 07 o8 Tos] 101 ve] 12 13| val 1] vel 17| 18| 18] 20] 27| 22[2324 |
S A | Hane g e or MAME 3 or| wawez or HAME 1 or WANE 2
;f_'..f‘.’__._"..'.:if_l__ I __)_-inl_n_ P B, S ot ol el e aad o pin !.)|I-.u£.\|5 symas el 4 03 uu}._.'un 10 % 34 3 r}r'«-r}.!n!un
R AGE LL Cjueed T he2s 1T 2d 111 Erag 1 1.1
N ST ka FARNAN AN TILT T
EENE ACCIDENTS ol Jegal [1. [bRo!T 1.1]
[2% 1 | A i M P] I I
.02 “GET RATE T To4 Ak kAcgatrcrd . | | 1]
Lt oY PREMRATE ; ; T .. IRAT .| RATE . ire . ! |
1 P G0 TOCONPETDISCE] o0 0 bl LKL L L . 'I lp(L.
LS . ! o % A e - bl

Situation 3

written in the stub part of the table (to the left of the vertical double
line) and X's are placed in the entry part to indicate in which rules
that action is to be executed. As explained earlier, this is called

limited entry; the format of the other rows is called extended entry,

since the statement is "extended" into the entry portion of the table.
The second action row could also have been written in limited entry |
fashion, with SET PREMRATE EQ RATE entirely in the stub, and X's
in the "OP" fields of the entries. If an action is not to be executed for
a particular rule then the X should be omitted.
The limited entry technique provides no capabilities not available
with extended entry, but the simplication of the table is often a
convenience, |
QUESTIONS
1. State Rules 3 and 4 in English.
2. List the relational operators.
3. In which direction does data flow when the SET... EQ...
operator is executed?
4. Does the blank in action 1, Rule 2, mean that RATE is
set equal to zero?
5. Could action 2 have been written in limited entry form?

What would this have gained?

-2.9-

[

(S]]

Answers -« Situation 3

Rule 3: Ii the applicant is over 25 and has had no accidents,
regardless of sex, decrement the previously computed rate,
by the special rate factor, set premium rate to the new rate,
and transfer to the compact discount table.

Rule 4: If the applicant is over 25 and has had one or more
accidents, regardless of sex, the previously computed rate iz
used unchanged. The rate is moved to the premium rzte and
control is transferred to the table named COMPCTDISC.

EQ, UN, GR, LR, GE, LE.

Information is moved from the field named as operand 2 to the
field named as operand 1, e.qg., SET A EQ 2 means Ae-Z.

No. A blank in an action operand field mezns that no action is
taken.

Yes, saving a little writing and making it apparent at a glance

that the same action is done in each rule.

The preparation of a decision table can be approached in any
manner the analyst chooses. Examine the following problem statement:
If the quantity ordered does not exceed the order limit and if

the credit approval is "OK", and if there is a sufficient
quantity on hand to fill the order, move the quantity ordered
to quantity shipped, and go to a table to prepare ship release.

If the quantity ordered exceeds the order limit, or if the
credit approval is not "OK", go to a table named order reject.

If the quantity ordered does not exceed the order limit, and if

the credit approval is "OK", but there is insufficient quantity

on hand to fill the order, go to a table named back order.

To prepare a decision table for this problem should the condition
stub be filled in first, followed by all the actions? Or is the real con-
cern with one condition and one action? Should the table be made in
limited or extended entry? Actually there is no set procedure to be
followed.

Examine the problem again:

C1l
If the Qty Ordered does not exceed the Order Limit/

and
c2
if the Credit Approval is OK/

and
C3
if there is a sufficient Qty On Hand to fill the order/

Al

—— —— — — —— — — ———

and

-2.10 -

C4
If the Qty Ordered exceeds the Order Limit/

or
(0]
if the Credit Approval is not OK /

A3

———— — — — — — — — — — — —

C6
If the Qty Ordered does not exceed the Order Limit/

and
cY
if the Credit Approval is OK /

but
C8
there is insufficient Qty On Hand to fill the order/

A4

————— —— —— — — — —— — ——

The solid underlines indicate the conditions; the broken under-
lines indicate actions. Note that the word order is exactly that of the
original problem statement. The conditions and actions are numbered
here simply as a count; there are eight conditions and four actions.
Note, however, that Cl, C4 and C6 are concerned with the same
operands. Further C2, C5 and C7 involve the same operands. C3 and
C8 are also similar.

Spelled out this way, it is obvious enough that there are basically
three condition rows and four action rows. Such diagramming is un-
necessary and is done here solely for illustrative purposes. ' The

decision table itself is an adequate diagram:

-2.11 -

o seTiem RULE | RULE 2 RULE 3 RULE 4 1 RULE §

mE=r

MAME 1 MAME 3
[HanE or MAME 3 or MAME 3 o MAME 3 HAME T

- o1]02[03[0a[o0s[oe] o7[em [os [0 [11] v2[3] 4] 15[6] 7] a| ® sjnl_nln[g_i_i u[o[n[»n
o

pos % 1418 2H{am 2ae A 24 28 Il’.*‘llﬂﬂullﬂl’lll‘l’ll 57 53] b 38 b4 5958 59 00| 03 A7) 00 49 34 38 36 37 20 2 a8 a1 47| & o4 38 3 lahllﬂll

R .

03 | Y An

e amen

o 7

bs %0 T , TITTTTTTITT

12

13

17

e

| ¥ v (>l > > >(>lolpl>

10

21

23

14

>lrlprle»i»

Situation 4, A Limited Entry Table

Name 1 Operator
QTYORDERED LE
CREDITAPRV EQ

QTYONHAND GE

All the condition stubs are stated above.

could then be stated.

QTYORDERED LE
CREDITAPRV EQ
QTYONHAND GE
SET QTYSHIP EQ

GO TO PREPSHPREL
GO TO ORDEREJECT
GO TO BACKORDER

QTYORDERE

Name 2

ORDERLIMIT
1 OK !

D
==

All

ORDERLIMIT
'0K!

QTYORDERED

QTYORDERED |

the action stubs

i
!

The entr§ conditions can then be stated with the appropriate "yes"

and "no" entries, and finally the action entries are completed by filling

in the proper X's for execute.

The final result is shown on the left page.

Note that all conditions and actions are stated in limited entry

form. When this is the case, the two position columns may be used

for the rules, thus allowing many more rules on a single page.

In some situations it may seem more logical as a first step to

state a condition, an action and then an entry as below:

Operator Name 1
CREDITAPRV
GOTO ORDEREJECT

-2.12 -

{
OP Name 2 Rule 1
EQ 'OK' N
X

EM 7656 DECISION TABLE LOGIC SHEET tn.ﬁﬂ”‘n[: ']

w Ty] Tr[me Trasce [ioEmTI. TaBLE WEXT ENROR " e TOEWYT:
PR TH R R Loy e Taaie et i: e "'“'*' ORDER OF COMDITION ROWS
l.&.‘ '.! =u|:u ralie £ T B Al we b.!.!!.‘."" seh e l.||4ul nog n;rli 33 34l 38 3afvr 8 |30 s li @2 O O N
{1600 00[MO TABL EGTWREPORT GETDATA [_feooh CONDORDER] | [| | | l | l | |
El l.‘.%'.‘:!.';..i ORDER OF RULES
= | PROGRAM DATE
a e i ndndrnn ey dudndrdndada .F;-Indnﬂn ﬂuuﬁnﬁnu{nduuFaFju-Fu " n|un
o _ﬂ_ Jl I | [| 1 [i I i | I PREPARED BY PAGE
foass semalar AL L) amE L |
{40003 TITLEDET 11P AND WRILTE REPART LINE
START MEXT CARD: "‘"-! Cal'a. 1.3, Puneh :I‘_- Col. 8,
51 F le] sevion o RULE 1 RULE 2 RULE 3 RULE 4 RULE § s RULE 4
1] ¥ [Flosansros) 01[o2[03]oal0s] 06| orfos Tos 1o vi] 2l a] e[s] el v | wl sl [2a]2s[aa [[[o[9[]31]52
HARE: HANEL or MAME T or) waug? or MAME 3 or MAME 2 oF MAME ¥ or MAME
prases sgeqar AL ALl ELILIR L ERY EL R ERLE B RUEEE PEE fV ﬂ‘l‘.)l?“dblllﬁ! PRl XL NS PO ﬂl’ul‘h‘ﬂu".llﬂl‘ﬂ“l‘l'.ﬂ.)‘nun“ﬂl‘- - o L
AL TOCKTYPE D | [[.[.1a3
el HARES 100000 Y ” o
AR b 1 T P R) 6 7l 77 P P G i i
° ¢ "BET TYPE .. N L o 0 Y) e
°5, |“MavE | ; V; | V. \L
8 MPUTL . REPART N R 77 Bl RN ANNNER R I R O I IO O L
LA <2 T o DR TAR
08 |a) !

Situation 5, Decision Table

There could be other methods of stating the decision table which
would be equally valid. The table could be shortened, for example,
by combining the three GO TO commands into one extended entry row
as below:

Action)
Operator Rule 1 Rule 2 Rule 3 Rule 4

GO TO PREPSHPREL | BACKORDER | ORDEREJECT | ORDEREJECT

In summary, the preparation of a decision table is not a cut and
dried procedure, since any approach forces the analyst into a logical
analysis of all aspects of the problem.

Situation 5 is the preparation of a stock classification listing.

This table again exhibits multiple conditions, with one of them in
limited entry form. The second condition stub asks: "Is the number of
shares greater than 100,000?" To satisfy Rule 1, the answer must be
yes. In Rule 2, with its blank for this condition, it doesn't matter. In
Rule 3, the answer must be no in order to satisfy the condition -- t.hé.t
is, the number of shares must be equal to or less than 100,000. (Note
that numeric literals in a table must not contain commas.)

The three rules here do not exhaust all the combinations of the
variables in the conditions. For instance, the stock type might not be
1, 2, or 3, or even if the stock type is 1 the number of shares might not

be greater than 100,000. In this table provisions for such possibilities

-2.13 -

DECISION TABLE LOGIC SHEET [.E;—-___[:j

RN T Tancd S REaT [ALIL]
micaTion | A taais vasie ORDER OF COMDITION ROWS
TABL ESTREPORT GETDATA

|.‘.‘.".'..':..| ORDER OF RULES

ot

PROGEAM DATE
e o
1|[]|1|||[|l||||1, o ot
COoMMENT MEXT PAGE

TITLEDET 110 AND WRLTE QEPART LINE . START MEXT CARD, D Sl'h 1ok Pk ol &
51 ¥ le| savien RULE Y RULE D RULE) RULE 4 I RULE § RULE 4
]| wnsron b o1[ozfos[oafos[osforfoalos[[n][ulwn[wiw oin]a{nu|s(u/o/a[ww|nin]
NARES FApR or [T or| waurd or ant or want 3 or Waut ¥ or waus 3
Branes sesder s ol 0 0 50 0 30 00 o a1 an o on o 0 o] ot 0ol 1] B0 W 50 0 1 00 - e e b L] AP ol 0| nuuquoilul-l -
Lot M TQCKTYPE l
il 2 laonca .. Y |,
7 1 R .
-+ [ET_TYPE NGO R
|

l:‘:%‘?r&iﬁemr , : i A
THA . B (e e

Situation 5, Decision Table

are made with a special designation called ELSE. This rule says what
to do if none of the other rules can be executed. In this example, it

is reasonable to expect that it will frequently happen that none of the
other rules will be satisfied, so that the ELSE is a more or less normal
occurrence. In other tables, failure to satisfy any of the rules might
represent an error in the logic of the table or in the data. In such é
case no provision would be made for an ELSE; now, if no rule is satis-

fied, the program proceeds to the error table named in the table header.

The table header contains in addition to other descriptive and identi-
fication data, a two position field where the rule number for the ELSE is
specified. Rule 04 is specified in this case in the table header, and
rule 04 states GO TO another table to handle this possibility. In this
case, because tl-le ELSE rule takes care of all other possibilities, the
entry in the table header for error table name is left blank.

Since it is possible to set up many tables that will be executed in
the proper sequence to carry out the necessary processing, there are
entries in the table header which must be filled in to relate the various
tables. These entries are largely self-explanatory. For example, the
column "No. Rules" means just that -- how many rules are there in
this table?

Tables are named (or numbered) and these names are used when

the table is referenced in the program (i. e., on another decision table

-2.14 -

EM 100 DECISION TABLE LOGIC SHEET [T

Ak :T‘&T‘ S N i e e HIE 'l.':l‘.'»‘.‘;. ORDER OF CONDITION ROWS
HENMEY HE-

1adss sdodemsamesdisislie alai salat wsla) 1odss o vy s w1 7272 30 75 34 37 5479 39 31 92]13 30135 300 3]0 a8 a2 a3 s aafur anov snsi 3

149.9 00}Mo AL EA T RERERT LETOATA oo gy CONDoRDER| | | .

P e e \oEMTI.

HEE [..m..f[ORDER OF RULES . o

muJu llll“ i e I R e e A C I o O e O O B A T M I e e

]_d”qi [RuLEforoE ﬁibgi) .I | | | l k | | | | LT T PREPARED BY PAGE

Ll

; ¢l _ 4-‘&""'-"-% COMMENT NEXT PAGE
il “#‘ AL LS a 1
003 TITLEDET 1)P AND WRLTE REPART LINE . -] START MEXY caRD, D Caln -8 'R""i‘,'." et

T L] aevioe " RULE 1 RULL 3 RULE 3 UL 4 I RULE § RULE ¢
¥ |Sjomanares ane 1 AN 2 [01020304 [0sTos] o7]os Tos 1o [1] raf1a]va[ssT el o] we[W] o[an[2203 2a [[[] 20 30 [a1 32]
or aug oF| maurl or Maug 3 4 MAME 3 or WA ¥ or MANE]
piasjes odeder 1 aijaranas LR R R D RUR RS PO D CRLERUSREIERT EPRS AT P T S R R L L N e L e C LT

STACKTYPE - Al aclen ol 103 a1 o I "
SHARES GR 10000 Y. . ;

~
r
N
7

ET_TYPE | VNGV
QVE MAEBIE! V. : v

=
-
I ARNREIEAS IR IRIE]

PUT. . REPART. . a8

Situation 5, Decision Table

or within the table itself). Both a name and a number are not necessary,
but if the table is numbered, then when the number is referenced within
a decision table, the letters TAB must prefix the number, as in the

final action of Situation 5.

The letters "S" in the table header stand for "card continuation, "
which is always zero in the table headers. |

Five identification letters can be specified under the column head
"Type" which designate:

L, == limited entry

M -- mixed entry

A -- information to follow is in Autocoder

R -~ infor.mation to follow is report specification

D -- information to follow is data definition.

The details of the table header are given in Chapter 4. Suffice it
to say here that the ordering of rules and of condition rows is a pro-
grammer's convenience to assure an efficient object program. Finally,
the "Comments" section allows the programmer to make any notations
he cares to.

To return to the table itself, the first action operator in the pro-
cedure table is a familiar one, in this case setting a print field equal
to an alphameric literal.

The second action operator is a new one, MOVE . . . TO. This

-2.15 -

TSIV 7ose DECISION TABLE LOGIC SHEET

“|iamTirication

ORDER OF CONDITION ROWS

ORDER OF RULES

DATE

BY,

HEXT PAGE

‘.E fieaTion coumEwy - :
'ﬂ'l ﬂ Dup. Col's. 18, Punch B in Col.
......m'run!l poxr) ’“f Gat's. 78 “II

: v el ssviem] RULE Y RULE 2 | RULE 2 RULE ¢ | RULE § BALEd
e8| = |Sloranaron - wanE 3 1 H]h_[_!l!ijﬂ nlu]n|n|u|u_n_a_}_ujujn[- wiw(n|nnfxls/s/o(xsw efnis]
o3 ododer 141 2483 agaa ll':"“ ‘_'._-l‘d ".‘ it R el B J‘“. - ---"gl‘ ““'4._:‘!- - H- Mﬂ?l’: -
e ! STOCKTYPE : | g J.103, (1 *
.2 HARES . . [6A00aa0 .. Y. ; sl s # : : R I Ll

PSR e

Situation 5, Decision Table

:Fpr o i .-Zf.'Iﬁﬁﬁ.fﬁffﬁﬁlz'q@_u?fé_ffﬁﬁﬁfﬁ..

IBM 700 foay DECISION TABLE NAME DESCRIPTION SHEET FROGRAN
e|T TABLE DATE
=a {Ln |_'I' - T TADLE A] PREPARED BY
e i N ot
—een NEXT PAGE
- WANE aam DECRETION ! o i
T+ RTOCKTYPEIELD
%5 RES
2: ISTocKUALLE 1 .04

sl jon]
EEE
-
t 1t
b
+4
1

- Situation 5, Name Description

is the opposite of SET . . . EQ: it moves the quantity specified by

the first operand to the field named in the second operand. The
difference in usefulness of the two operators may be stated as follows:
SET . . . EQ is valuable when one of several quantities in the second
operand field is to be moved to the first, common, operand field;
MOVE . . . TO is valuable when a quantity in the first operand field

is to be transferred to one of several fields named by subsequent
operands.

The third operator is the now familiar terminology of the 7080
Decision Table System which means to make data available for the
writing of an output report. This action is expressed in limited entry
form.

The names for the variables in this table introduce some addi-
tional processing that is not evident from a study of the decision logic
sheet. As previously mentioned, Decision Table Name Description
Sheets are a convenience so that the decision table can deal with names.
The description forms are required for such details as classifying
data, specifying its length and special characteristics, and specifying
values.

Consider the Decision Table Name Description Sheet shown for
Situation 5. The letters "FLD" in the "Class" column indicate that

this name is a field as opposed to a file, group name, report, etc.

- 2.16 -

EM Vi DECISION TABLE LOGIC SHEET |....:E'.::':[.... : ‘]

it Elr:i R R } T | == | Fal e “arion ORDER OF CONDITION ROWS —!
. . | |= $]® | L L
' L LT 7] s L L E L "
oo I AT T ’i o
ol v | o
i :.. ‘I DATE

00 |RULE . PaGE

:.' MEXT PAGE

: e canh 25 S0 SRR
HEEER ™S] RULE | WULE 3 RULE 3 WULE 4 1 RULE § RULE &
B . ol o1oaloafoajos|ce oviom ool ol nfvafnafrafisT i nfu|wl wn|ninfu|n[ws|s]ne]nin]

it | NiAR2 or ant or __!UII:JI [ManE 3 or wANE 3 or] oF ant 3

IR l‘ﬂl" e LLLTRT PTY AL hll:!l‘!dlill AR N e R e e e L L b L s e A s L]
XML TQCKTYPE o T 1.3

i s S \omoa .. Y. I £ e N, P i r

LAl L i | s i i

pe BET TYPE . LINOLVID” | T BANK N i d

o3 [“MovE | ; J{ﬁr vﬂﬁg

°* MPUT . REPORT. . .] (] 1P 1 X Pl e el S Pil irl [.]

o ? T{l g 1. T % | l I

X I I [1

Situation 5, Decision Table

IBM 7000 DECISION TABLE NAME DESCRIPTION SHEET PROGEAM
DATE
va | s (45 |72 | Tame mase PREPARED BY
OO TARLE L wlr d PAGE
i] NEXT PAGE

- .“-‘“_...,E'L BESCRIP TIoN — comMINTS

- TACKTYPE [FLD
¢ ISHARES
: [STOCKUALUE | O#+08. 02

[IYPE ELD__OlAx

Situation 5, Name Description

The number "2" in the number column indicates that it is 2 digits in
length and the letter "N" under "Description" states that it is numeric.
The name SHARES is classified as a field since the "class"
column is blank; the assumption is made that it is in the same class

as the preceding entry. It is 8 digits in length and numeric.

Under the description of STOCK VALUE, the first position con;-
tains a number sign (#). This signals the processor that a decimal
point is to be defined for a quantity of a specified number with
integers and decimal positions. In this case a signed number with
two decimal digits and eight integers is specified. Alternatively this
ten digit field could have been represented with the more conventional
X's with the decimal point located in its proper position
(+ XXXXXXXX. XX). TYPE is also classified as a field. The code
characters A+ define this field as a non-numerical field whose right-most
character will always provide left protection for an adjacent signed
field. In the absence of left protection, the single character A would
be specified.

VALUE1 and VALUE2 are descriptions for variables in a printed
report. Provisions are made for the suppression of insignificant zeros
in the report by the placement of Z's in non-affected positions. Commas
are used in the normal manner as they must always be; i. e., the fourth

position to the left of a decimal point or sign indicator and then after

-2.17 -

DECISION TABLE LOGIC SHEET

| EROEn L |
OETIFICA Tion

L 1]
;T == i nase | T] : JECRe ORDER OF CONDITION ROWS
.']] ”» " [1 Al B RC R R BLF BT Rt - " &7 ol o b
doi_ [1ase TYEEEaRLEmAm .T a_loth | [
.'.‘....l ORDER OF RULES . -
" FIE R 5 T O R P O O e P ™ (O e . P e s o o Oy
O I O I e pace
COMMENT e
£ START NEXT CARD: °-! E“"!. L,‘—’-“""“"“-"
e B RULE 1 RULE 2 RULE 4 RULE § RULE 4
forenaron 02 03[0405 0s| o7 os Tos [0 11] 12 on[n[nfuln[u]s[x]no]n]n]
HAREQD NANE:Z MAME 2 orF MAME 3 or MANE 3 or MAME T oF MAME 3
ML) PITRE T E R E RUTIES O SRRl O Y 'I’ll ¥ LRI ERLE B U RO R P P 2 SV RO FTRT FrpT e () AN e el a7 N
STQCKTYPE

HARES . . . |6R 1a§nao

| o’ |1

T e i) e

Situation 5, Decision Table

IBM 7000 DECISION TABLE NAME DESCRIPTION SHEET PROGRAM
iy |: ¥ |'nu | - r N s —[J DATE
. PREPARED BY
_10.0,0jo s rJ PAGE
W NEXT PAGE
rl_n"':m:'.__nu DEACRIPTION CORMENTS =I
=

e

. BTACKTVYPEL

¢ [SHARES

. ISToCKJALL $+09. 02 -
TYPE O A .
- NALUE\L

Situation 5, Name Description

every three additional positions to the left. The 15 in the number
column includes a count of all the positions in the operand up to the
first lozenge (xg); i. e., the dollar sign, eight integers, two decimal
places, three commas and one position for sign indication. No sign
indication is specified, and the system will automatically provide
for a - for minus indication and no sign indication for plus or zero.

VALUE1 demonstrates the use of a floating dollar sign; i. e., one
which will appear immediately to the left of the high-order significant
digit. One position is allocated for sign indication following the low-
order digit and then a floating dollar sign is specified bsr the character
$ written between two lozenges.

VALUE?Z2 introduces two new definitions: CR or credit symbol
print-out and asterisk protection. In this print-out the dollar sign
always appears in the position assigned regardless of the number of
digits printed because a floating dollar sign is not specified. Two
digit positions following the low-order integer are left blank for the
print-out of the letters CR. The CR enclosed between lozenges
indicates that the letters CR are to be printed when the value is
negative in the two positions following the right-most digit -- this
will be blank if the value is positive.

The asterisk enclosed in lozenges specifies that asterisks are to

be printed in all blank posifions between the fixed dollar sign and the

- 2.18 -

E'M S0 DECISION TABLE LOGIC SHEET

mROGm AN
IBEMTIFICATION

. x :l DA T
h . € FiCATION COMMENT
A T, L ieis L

1400 03]

|k 5:3“:; "ol | wicirion Tanis }- o e EE ; :!:. V""‘:?“ ORDER OF COMDITION ROWS
[" € . [LR 3
LK-! Y igig L[] LLIET) aedni [U | lleJ_ol il 1l valie_ selnmnsdndm »ﬂ» uu[n 30 3w anlal a3iad aslas aelat an e sa s
qbnoafa.- o |TABL EIGTKREPORT GETDATA j0 00 CONDORDER
il [#esems ORDER OF RULES o
lov slon - ogonor ' e a7 a]ﬂl(rnq)lnlln{n.\{rﬂnqnu{.:q—ndanln P T O O I T A e A T

O £ NN CUT L 21, 0 0 0 U D 0 0 R DO [”

HEXT PAGE

T AND WRLTE REPORT LN
EET Le E i START NEXT CARD: DV Col's. 15, Punch B in Cal. &,
Duie Col's. 7580,

S 11 Saip Col's. 733,
i 20:::::. o RULE ,‘I RULE 2 RULE 3 RULE 4 RULE 5§ RULE &
0| = NAME 1 - o1 [0203 0al0sT 06| o7Jos To9 [o 11 va[1a]ra[1sTve[17] 18] 19] 20] 21 [22[23]2 RREIEIEIEI
oF MAME or MAME 2 or MWAME 2 oF MAME 2 or HAME 2 oF MAME 2
W1eaty odadar AL ALS ERALERE RN 0 G4 IN M 37| 8 0 ‘l‘!?ﬂ::‘n"“"’]'”n"’hul’n““.l B A3 N ek 47) 0 P DA 3N 26 28 30 9 a2 a 6D 434 @ .I"ﬂ"'ﬂ“”u’,’““ A7 Al e d T a0 4

STOCKTYPE EQ 0| o o3
SHARES . . . 6R10nog .. 1Y, .

€ MYPE . EQ UUNOLLG | RANKY || BRak
m&asmmmmﬁa MeELEa v . vALE

PUT. . REPORT. . .| . ; X, X X

3
-
el l>l>]>]>]>

Tol o HEERETE N " : 4_‘_.¢L...,..Iﬁiﬁr

Situation 5, Decision Table

IBM 7000 DECISION TABLE NAME DESCRIPTION SHEET PROGRAM
l} x ramLe [I - I DATE
e |LimE |Elp . 1DENT ABLE MAME PREP“ED BY
n,nlg;? i TABL sl :I:
3 [ST T T T a1 5 I 51 PAGE
R bty NEXT PAGE
PG | LINE NAME CLASS _Jvun] DESCRIP TION TOMMENTS
s 23 ialee ASln nalid Jale va
<z

.

-2 BTACKTYPE FLD AN

i |SHARES 0%

“: ISTOCKYALL | C#409. DA
“IVPE D O7As

- YALUEL RPT _|5! ; sx X
- - | KGR
Tz i] .

Situation 5, Name Description

high-order digit -- which again may vary in position.

The editing functions discussed all appear on the Decision Table
Name Description Sheet. Observe that there is nothing on the Decision
Table Logic Sheet to indicate that editing is to be done.

In summary, Situation 5 has been largely concerned with the
necessity for a table header and for a Decision Table Name Descrip;
tion Sheet and has illustrated a few of their functions. More details
of their many functions will be given in situations that follow and a

complete explanation is given in Chapter 4.

QUESTIONS

1. What is the function of an ELSE condition and under what circum-
stances is it employed?

2. What is the general purpose of a table header?
3. What is the difference between a SET and MOVE operator?

4, How are editing functions specified using the 7080 DTS?

-2.19 -

Answers - Situation 5

1. An ELSE condition provides for an unconditional rule. If none
of the other rule conditions are satisfied the ELSE or "all
others" rule is executed.

2. The general purpose of a table header is to identify the table
and relate it to other tables in the procedure. It also supplies
additional information to the processor to aid in compiling the
program. Other notations permit the analyst to specify re-
ordering for increased object program efficiency without rewriting
the table.

3. SET transfers the value of the second operand to the first: MOVE
transfers the first to the second, e.g., MOVE A TO B means
A— B where SET A EQ B means A¢«—B.

4. Editing functions are specified on a form separate from the
decision table. This form, the Decision Table Name Description
sheet, is used to define operands so that the table itself can deal

with names.
mm _— DECISION TABLE LOGIC SHEET |...:‘,'.°,r.:,'...| I
STt kB T3 [l TeoLH e HERE ORDER OF COMDITION ROWS

RDER OF RULES

]
v,4.,..4.,....4. ﬂnnu494—$nhukdu+nr"nlun '
| [T J | R BY PAGE

DATE

COMMENT T i
1 START MEXT CARDy Dw Col'a. 1%, Pumeh B in Cal. 4,
12) A P RULE 1 RULE 2 RULE D WULE 4 | AULE 5 RULE &
-4 -4 v Lot {o1joaloafoafos| asforfonlos| 0|] 12|13 ulululnl unnnnuuuruna&nl
e MRS o WauE 3 or HANE 2 or or| Maug 3 or MawE 3 o Mans 3
o waten oy 1 L arud ay uuu:l{l*-nﬁt JL e s ke ke oy L --14-4--!- - -I‘l’Tzn‘ e Al ool e guﬂ.dua

mr M \gf_%%?:=\ ’ =41 \&: X

i s - £ 2
o 4
o5 |

THE : N

o et et B X % B U X R R AR R

Situation 6, Open Decision Table

Situation 6 is one aspect of a payroll operation. The table header
states that there are four rules and that it is a mixed entry decision
table. No ELSE rule is specified as all normal conditions have been
covered, and failure to satisfy any of the rules would be an error. If
a special error routine had been set up this would have been specified
under "Error Table Name" in the table header. In this decision tabie
the special operand TABSTOP is specified. TABSTOP causes a program
halt whether specified under "Error Table Name" or "Next Tablé Name"
in the header, or in a GO TO statement as an operand in the table itself.

The single condition row compares the purchase code with three
alphameric literals (which do not require description) in rules 2, 3, and
4. In rule 1, however, the extended entry condition operand DEDLIST
requires definition, since it is a name designated by the analyst. The
definition is not for a variable field, but for a fixed set of values. Fixed
values are not described on the same Name Description sheet as variable
information. Description Table 0003 is used to define fixed values. In
the case of DEDLIST the reference is to a list of constant values used
only in the condition section of the decision table. The class entry VLIST
(Value List) is always used for such a list with the values listed as shown
in the example.

Rule 1 states that if the value of PURCHCODE in the current record

is any one of the entries listed on the value list, then GO TO a table named

-2.20 -

EBM 7080

DECISION TABLE LOGIC SHEET

mACEMAW
IDENTIFICATION

| s . el e) Hnl[[LITEDRE TasLE H (1] TEWROR e | © T T TOEWYTS 4
Ol R A S mieaman) e : borizs TARLE | Lar s ls Fres i ORDER OF CONDITION ROWS i
L- n‘) I=J,_.‘l-| e ulll lﬂil:l sola ___95 Ll‘ul u‘- joule7 ey [R EI)JHFJ" ‘n III lllJll [agla) ayiad salay eaier an|ow a4 32
1260 0 00MoY] | TAame__ TARaTOR | | oot CONDORDER| L1] | |
[art1d [ST ORDER OF RULES
At | £ T e o --n{»q.;{»-h-im'« ED e (S et TN ot

0007 IRULEanEj _”!' I | RN | !] [] PREPARED BY PAGE

COMMENT O
=+ START MEXT CARD: :’-g,':z‘:* Pumah B Ju Gk &

LT F el action ”E 1 RULE | RULE 2 RULE 3 RULE 4 RULE 5 RULE 4
|| S [Fprenatey s ! {0102 03] 0al0s] 06 07 0a [0 | 1001] 12| 13] 1a] 15[1e] 17] 18] 1] 20 21| 22] 23|24 | 25 |26 | 27| 28] 22| 3 | 31 |32 |

.L % HaMK:2 or MAME 2 or HAME 3 or HAME 3 or HAME 2 or MAME 7 or MAME 3
Bioaes omodar ifa a2z anaa ¥ lllqliﬂqunﬂxrnnuul"ll:..\i'un&hlﬂﬂw“mﬁuuuudac‘ Hllhli’”ll-‘daunun‘ﬂ”“ﬂuﬂﬂhﬁu\‘ﬂo L L

o 1 |4 PuRQH(‘nI'F ﬁgﬂr‘ T \ar_,‘_# \g; NAY

7 [Aa 1

0 *MOVE ENPLOYINFOTOEMELY IDENT! kg

o ¢ GET. . STKRALNCE B STKAMOUNT : P [O ; :

R _ N) ivs A

TRL N U 2 G YRired
Ve 60 T aais Eaes & ; Al T T) . . e)

os [4 . B I 1 I [

Situation 6, Open Decision Table

IBM 7080 DECISION TABLE NAME DESCRIPTION SHEET PROGRAM
S | LiNE < : | "‘..0"‘ I ToENT I TANLE W I l NTE
i -
ie 1 | PREPARED BY

L.(Jo.0.0l0 - RO OSTABLE M i

F (RS D) 1%"‘5&—_'{:. ja —vajie e (L6 34 PAGE

e NEXT PAGE

PG | LINE HAME CLASS DESCRIPTION COMMENTS
s AN ulee solge dlry Balne ¥a)
1d°_DEDLIST

"5

T

frod
PG | LinE WANE TLass oo DESCRIPTION COMMENTS
il sl it i) s

o FMPLY Imwﬁw:mmm%

ar ST

SINCK RalalNCE

\RCHASE COLF.

ERE |

KK

Situation 6, Purchase file

OTHERDED. It it is not on the list, the test will fail.

The first action of rule 2 states MOVE EMPLOYINFO TO EMPLY-
IDENT. The operator MOVE . . . TO has been previously explained,
but two new operand types are involved. EMPLOYINFO is the name of

a symbolic expression. Symbolic expressions operate on symbols or

strings of characters in much the same way as arithmetic expressioﬁs |
operate on numbers. The symbolic expression calls for the joining together
of various data elements and treating them as a single field. By defining
the "stringingtogether" of operands in table 0003, reference is made with
one call in this example to LOCATION, DEPARTMENT . . . NAME,
without complicating the decision table with calls to each of these fields.
Note that the description includes the word JOIN. This 7080 decision
table operator is.always used in connection with the other system word in
the class entry SEXP, and causes all the data elements to be treated as
a unit. Variables, constants, literals and other symbolic expressions can
be joined end-to-end by the expression, they need not be adjacent initially.
The other new operand type, EMPLYIDENT, is a group name --
classified as a GNAME. GNAMES, like symbolic expressions allow multiple
operands to be treated as a unit. The distinction between group names
and symbolic expressions is two fold: (1) group names deal with con-

tinuous sectionsin memory; (2) symbolic expressions allow strings of

characters from discontinuous points in memory to be brought together

-2.21 -

TR 7000 DECISION TABLE LOGIC SHEET o

Rt R R -V B B R P [;'!"'-"'"3;:" " oRDER OF CONDITION ROWS 1;
L 0y &) ' | \ R | -
&««mi::‘m R S, 00 L W
f‘l ,:, i | '—‘.‘2'.".'9..1I :loll o: RULES : —| N o
}ﬂ.ﬂ ”‘” AL “ w 1] N AITTRN Y AN LR L L el k. - - LA " W - . - ’
:r 0092 ﬁluulonnuq [1] _._‘1: | [l | [| 1 'T—‘I:I’ PREPARED BY PAGE
_;}i: I rreevion COMMENT NEXT PAGE
| _IIT4 TITLE i STARY MEXT CARD, Dwo. Col'i 15, Punch B in Col. &,
= Bip Col's 7-33, Dep, Cal'
3 F5 5) e]"| T e RULE D RULE 3 nLE 4 | RULE S RULE
H : Clomena ran | | |
‘ U ks il i % n]a::jl:;[as 04 :: T_!'-]nl:l:"_l_‘i_;_ “l“,l::',”l“ : ul:t'[:"n nl: » :;;'.n P %ui —
Biamea o L — __J:I_C:i‘l‘__— o o - —‘-!‘”‘,...Ii._:.: :r‘i | l-l ﬂllﬂll..lall ‘IIMHDJ: R e e L e L e L
o1 |a HCOLE LT M ‘3] MY/ N
KRG . e_.L.._ = %—‘-- — g._.l. e e o e
50 *MOVE FQTGEMPLY. I0EN ' Jul]
| XME STKBALNCE & STkampunt| | | | L s =
ea 14 ' » WA INDS Y STAC YA L O
e |4 cicncadalit 1 0 O 0 0 /ST .
Ve lkor1g.. . .. i ; N7 mw) 3 Ll Ll
b i ! N 51 5 | 4

Situation 6, Open Decision Table

_;L mE PR 2 : -
3 Y il

Situation 6, Deduction file

IBM 7000 DECISION TABLE NAME DESCRIPTION SHEET PROGRAN
[" \caarad :IEP o) TAsLE wamy AT
i = PREPARED BY
7 Pace
B Attt NEXT PAGE

A e N P] il
s “ﬂ‘iaa .

3 B/ ~F PLRC PSR OO0k

-]

! !Eﬁaai EMPLOYEE H“‘* DRGCT EXAT FONQ
=& % :— AMOUNT- - JE 1A L A0 15, 00
_[l o KCHEE RN DU FURCHALE COLE ALK |
=

Situation 6, Closed Autocoder Table

and treated as a unit. The sequence of characters is in the order
in which the operands are specified in the symbolic expression itself.

The first action row of rule 2, then, moves the current values of
LOCATION, T, NAME . .. toa 32 position area called EMPLY-
IDEN’f.

The second action row introduces a new action operator -- DO.

DO is a sequence control operator which causes the execution of the table
named as the operand, and upon execution of this "closed table", control
is returned to the table which referenced the closed table. In contrast
an "open table" takes control without reverting to the table which re-
ferenced it. Open tables are never called with a DO command.

The closed table referenced by action row 2 of rule 2 is named
BUYBONDS. This is a pseudo table as it is written in Autocoder language
on an operand description sheet. It references data described on other
operand description tables. Such procedures must be closed routines.
Note that in the table header this sheet has as the "Type" an entry of.the
letter A. This indicates to the processor that this is an Autocoder pseudo
table. The letter "D" would be the type code for description sheets which
describe operands

| The final action of rule 2 in situation 6 is the familiar GO TO
operator and the operand is TAB0280.

In rule 3 the condition is the PURCHCODE equals the literal 'S'. The

first action row is identical to the operation described for rule 2; i.e.,

- 2.22 -

—_—————n

T2V sess DECISION TABLE LOGIC SHEET e
:. :—!E.‘:':T“.Wrm‘-'::" T ".':‘,:.' | =§E "_“[:va r::' 1 7'15"-'3'_— ORDER OF CONDITION ROWS ;
151 8 sjglag i J | ! I 1 -

' '*3'!" ol . L s Lages vwpasr A e T IJNJ w-uavnbn---n s 23 adss sl --u)
2600 90Moy mu%mﬁm e][R enttee *: N Tt 0
[arrld [e ORDER OF RULES i

3 1 | -
Cades llicr i e au zn:{ 91 1-1 J__Q g 11 ;{n){ndpa{- P o O S O O O . I e e e e e e
|0 j
|

[RuLEorDER | i J, VR O 6 0 10 AENRN PREPARED BY PAGE

[amenni
COMMENTY MEXT PAGE
i asai ~ . "
TITLE [
START MEXT CARD, ::g.::;ﬂn’-"“":"-‘-
R [‘ P ‘“1 B RULE 1 RULE 2 RULE 3 RULE 4 RULE § RULE &
- - e 1 1
-‘ N - i - — [:: 021 03] 0a] 0s] 0e ::_.gbl.:l'm 11: “!“I“T:“I“ : ulﬂ‘{‘::;'nia %a|r|nl'u[a : 2| .
f I NANEY - i Wang Mamg L.
ﬁn aanden " L. u_'a_nuduin- mq-- e ek ‘D';Iluln-ulil.lmﬂll-u- - hIJI-ac_rn'nnan.i\tpnunnuuunduu - -
—— el W T T
Mn I O0DE LaT Ma’ ! 1] NG/ AJ |
7 ————— = —t—t T - . e e e P — - .f_.. — — -

A% N YITACK | RUYA] ;

s RN R AR AR R ARRAR R AR AR RH AR AR

AL
03 [FOTa 1
A

HaMl CLAM DESCRIPTION | COMMENTS =
T

3
HE

-2

Situation 6, Deduction file
R RG-S
HE ;'1:!3 i
;<40 0 010 y t““‘-$!3¥5&3£ﬁ m R— F[QB TOP |
ST F Tl aotiee T TRl “TRuLE? WULE 3 WULE 4 RULE 5 RuLEd ;1
HE ?.m.u-{ o o1 [02] 03[04 0s] o8] 07 os Too [1o [11 [2| 1] aa[as] veT v | o] 20] 21 [22T 2a aa |os [2s [z [z 2920 | 31 |22 |
iy ™ NANE) pantd or WAME 1 or| wawe1z |or WAME 3 oF WAME 3 or MAME 2 or Wt |
a1 amen aasqer i silan amas TEY III-’Ill.ﬂd';-iﬂl.’ﬂ!::'Hlll‘l“li- -n_l_.:l;.n__n—auluh:_n!l_llnﬂq nu]:wuu -on(n;u Lo -a-‘ua’

- i T = 1 1

| Y [!
F

b1

L

' |
.- - :_.' R e B :‘ 7 . e |
R a AR ARRRRARRRRRRR
1 ™t

1 [}
Ladocadal 2 i ~
4:._‘.._-1...l_f - NP T e e e S S 4 -4
L1 | [| I .
aaantid ‘l._._._._'._.q.__y__.__—j_ LI DS Do T -1
aladaka] . Ladatule | PO P | ! bt
s b I i NN \ RN
st st o-i-a--:-———i—-—:—s R s | j-'"' i T TR 4=t t -'-—'—1—"
i 1 B PO TOST:. R O 3L e (R B0 vl L) M Ll 1 tach bl o Lcdibadaik ol

Situaticn 6, Closed Decision Table

transferring a symbolic expression value to a group name of the
PURCHASE file,

The second action specified in rule 3 is a two-address arithmetic
command operating upon two data fields in the input/output area: STK=-
BALNCE and STKAMOUNT. These unassigned variables have names
assigned to them; their length, format and their special characteristics
(i.e., sign, decimal position, etc.) are defined in the operand description
sheet for the input/output areas.

The third action specified in rule 3, as in rule 2, calls for the
execution of a closed decision table, so that control will be returned to
the calling table. Note that the BUYSTOCK table has in its table header
under "Next Table Name" the entry DO -- specifying that it is a closed
decision table.

Consider now the closed decision table BUYSTOCK. This limited
entry table has one condition row and two rules. The first operand of the
condition is STKBALNCE. This field, classified as FLD, and described
in the input/output operand description is part of the file named DEDUCTION.
This entire file can be referenced by referring to its name with input/
output actions, or as in this condition statement a single defined field is
referenced. Note also that all of the fields in the file are classified with
the entry RNAME meaning record name. If there had been occasion in
this program to reference the record as an entity, e.g. with a MOVE, a

name would have been given the RNAME entry.

- 2.23 -

BT & T TeRE] g TR | owmn. T Fasud | mERv T TTEARBE T C
b F oetel T | ereaviow oyt Y] | Fiere
u l - | ..

ik R '

|
EIEKVE SEdquie Siery') = U S L

L3000y | ITASLEPUYETACK . DO ae_tae

je!

P e aemion | |w_’ 1 RULE) ~auies T muLes WOLE 4 RULE 5 RULE 4]
CH- lc s — . o1[o02f 03 0alos] 0a] 07 Tou Tos TsaT 11 12| 1o waisT Vel] 6| w] 28] 21 [2] 32 [24 |25 |8 | 7| 36| 39 0 | 31 |32

: i e or nant 2 or waMT 2 or Want 3 or want 3 o | sz 3 or waus 1
IR T T T » TR Y . “‘-“In_“ﬁll.“--.“ﬂﬂ-l - e e em

N T e T rr e, an-u-.-!a
=1 -

; ! T
zg«;ﬁ%___mm# AP B

13

e]

5 [AGT | ‘ : L, R il
WX o AT - PURG NI o i 4

o3 [*"MavE NS’ TORLRCHC ¥

P |8 O TURALNCE. ANCE . ! ik

Situation 6, Closed Decision Table

IBM 7080 DECISION TABLE NAME DESCRIPTION SHEET pROGRAM
v e Sl [Vs | sasawsive. | } :::mm =
! 3 lo n‘%I -'Ii laf%‘ v EJ PAGE
i e e NEXT PAGE
_"ﬂl .I,illl 'J-- MAME al "u.m P iy T DELCRIPTION L COMMENTY
10 DEOIIST MisT) bﬁm&
1 i - ¥}

S

[REQIT (MION

B 1 F
- 5 ')
g M Y DAIoW) /2

Situation 6, Table 0003

PG | LinE | WAME CLAw Fnu. DEACHPTION COWMENTE
. - aals 1 Dl

e —bus ozt L sxcenfiond

[CATIONP FI1D | 3N
T D

B ER e
L - PURCHPRICE s
e ol .02) g,au SICK, RALANCE
| . PuRCH.ODE | 1A i URCHASE COLE | ‘
2 KK

'PQEi" 3

Situation 6, Purchase file

The second operand in the condition statement, MARKTVALUE,
is a new type of expression. It is classified in operand description
sheet 0003 as MEXP which designates an arithmetic expression. MEXP
as an operand designates that the evaluation of the expression is to take
place at the time it is used: in this case computing the stock's market
value by dividing the sum of the day's high and low selling price by two.

The first four action rows of the decision table named BUYSTOCK
involve the now familiar operators SET and MOVE, a two address
arithmetic operator, and as operands FLD, MEXP, and a literal.

The fifth action row utilizes the operator: PUT. The operand
here, PURCHASE, is a file name, described in the input/output operand
description. ri’he PUT operator, with a file name as an operand, causes
the record to be released from the program and plaped in the output area
to be written out automatically by IOCS when a block has been filled.

In summary, Situation 6 is concerned with the relationship of the
various tables which are employed in one data processing operation and
with the data descriptions associated with these tables.

An open table has called upon a closed table with a DO command,
and another DO command has called on an Autocoder pseudo table used
as an auxiliary mode accepted by the system and treated as a closed table.

Data description have enabled the tables to employ a single operand
to call upon continuous sections in the memory (GNAME) and upon dis-

continuous fields in memory with a single symbolic expression in

- 2.24 -

ToRw T]
#ieavion

el e RS it T e Thme
 ahe E : | aE ! ey |
sasmesmia s e e seay " -
0 90| TABLEPUYCSACK DD tag_tae)
2] v le] semon sl ilu’lll : 1-.;:! : 1 I‘.'I“]-“i“ | rIl.ll
o] -] oi[ezfosfoalosTos] orfomlos [0 2 uf sl wlulnle[nnlnfu|s|u/sixnieln
Hanyy vanga or wanE 3 of| waue: or - or Wang 2 |nr waut 3 [or]
ey od v " LIRS E o da 'l":“:‘:l’ﬂﬂﬁlﬂlfﬂtqilll FEEVMPE T EVET UL T UL EIF. FEBE R L EEITL P PTLEVTT ST P L E R g_“lh 54
T

LN TVALEY N |

01 .n|
Situation 6, Closed Decision Table
IBM 700 DECISION TABLE NANE DESCRIPTION SHEET PROGRAM
*a v | - I TaELE masE [DATE
1.Qo00 v El: ::::um BY
R NEXT PAGE
[Fe Tume WAME CLASS E’ DESCRIPTION =T COMMENTS
1Qs- DU ST LIS T |
-t ¥

PREDIT LNION

. K
F:; ! %— IES
8

ISEXP 2 X
3 J 2_

Situation 6, Table 0003

connection with a JOIN operator(SEXP). Arithmetic expressions (MEXP)
have permitted the table to employ a single operand to designate that
the computation described by the expression is to be performed.

Situation 6 has also shown that an entire file, a record within the
file or a single field can be referenced by its name. A Value List (VLIST)
has been used to determine if an input value is the same as a value in the
list. The condition is satisfied if there is a corresponding argument on
the list.

QUESTIONS

1. What class entry is used in describing a list of constant

values and where may such a list be referenced in a decision
table ?

2. What is a SEXP operand and how does it differ in function from

most named operands?

3. When is a GNAME used?

4. What is the only action operator which can reference an Auto-

coder pseudo table? Why is this restriction made?

©. Where is control resumed after the execution of a closed

decision table?

1
ba
0o
{33

!

Answers - Situation 6

[V LIST defines a list of constant values and is used only in the
condition section of a decision table.

2. A symbolic expression differs from most named operands in
that it causes operations to be performed on the data fields.
The JOIN operator of a symbolic expression will "string"
together characters from discontinuous points in memory and
allow them to be treated as a unit.

3. GNAMESs are used to reference a continuous section of memory
as a unit.

4, DO is the only action operator which can reference an Autocoder
pseudo table. This restriction is made because Autocoder pseudo
tables are always closed tables, and only the DO operator is used
to reference closed tables.

D. Control is resumed by the decision table which referenced the
closed decision table. The action immediately following
(in the same rule) the DO statement which referenced the closed
table is the next action performed.

TOENTE:

e ORDER OF CONDITION ROWS

B 7080 _ DECISION TABLE LOGIC SHEET |_m_| I

LT L} A 1l
TamLE TaBLE al o e
[T L= . - C
astar XY LT il e e 0 a3 |0 amler 4 aaar a8
0001

ORDER OF RULES BATE

. D I N e o I mo “ﬂ"J’WHfW L
II[|||I|I|H|| PrEPARED BY race

E E % richrion COMMENT WEXT PAGE
- L .
003 I TLE START MEXT CARD: ::u_'.l.a.mluﬁl.&
"1 & R RULE | RULE D | RULE 3 RULE 4 1 RULE § RULE &
AL i otfo2 o0a[eaos]oe] orfom Tow[o[m [v2] [u[1sTu[wu|win[n[n[nlu|s[ulz[=aln[=|n]n
y - HARES waugRa or mani or WAME 3 or MAME 3 or !ﬂl or MamE 3 o Al 3
ra e .Ju|n uIlll-J‘--llﬂdudu“.nul‘l::iblih\lllllﬂ e L s L ‘-lb*lﬂlneulunat!ld!uu e L L O l'ﬂ
b1 | 3; . m
o2 [a 4 . NP 4¢ alalnzd
o 3 |A b 4 R I % P e 1
lﬂ“ u e e — |====m—‘ :
Pe 00 . EXPENSERPT . X b J XL W ¥
o7 |4 o i T) B -,
o0 [SPUT ILE
b EXPENSE i . ; ﬁ K A
18 . L 1 " ada "
X 11 T

Situation 7, Decision Table

In Situation 7 it is desired that a summary report be printed
listing all acceptable expense transactions. The decision table determines
if the departmental charges fall into acceptable general ledger number
ranges. Also, certain general ledgers are not to be included on the
report. Total lines are to be produced for the previous general ledger
number when a new general ledger number is processed. The conditions
of the table are familiar. The first action row has as its operand
EXPENSERPT. This is the name of a closed pseudo table and the DO
operator causes a report writing routine to be entered. In this report
pseudo table the descriptive language of the 7080 Report/File Writing
system is used. The DTS processor passes these statements along to
Autocoder III as they are.

A 1403 Spacing Chart is used to illustrate the format of the desired
report. The report has a heading of MONTHLY EXPENSE DISTRIBUTION
REPORT, and as part of the heading the letters RPT DATE are stated,
followed by "Xs" to indicate the digit positions of the variable date. A
line is skipped and the column headings, DEPT NO ACCT NO
INVOICE NO INVOICE DATE INVOICE AMOUNT are to be printed.
The succeeding lines specify the length, format and special characteris-
tics of each of the fields of the detail line.

In this example of a summary report, it is desired that each

transaction be listed until a new general ledger number is encountered,

-2.26 -

mx INTERNATIONAL BUSINESS MACHINES CORPORATION !
IBM 1403 SPACING CHART

LINE DESCRIFTION Dl MLADINGS WORD mARKS 6 Lines per inch
—

i

e Ty I ML e LI BB, '

ROV (S U [S PR T W
ng}n) 45678901234567880123454789)

UTILON FEPoR KL XX
0 TNNOIGE NG ITNY
/ -:ﬁﬂt:&_":‘;‘_.’f | X)
OOC oo0likx XX
RRODC 000001 X

fe
X
X

|

tSesssosde
s
|
|

i
|
|
|
|

-*
=
i

i

T

_.E . XX cxx)xu
25
n wiXGEN LEDGER XX K, XKE

muuNiIENN N IR L e L
!

TT L T e bi]

808880000080 0500
i
T

47 =

-

-~
-
]
== =il

Ty !

eecececocsosenee
]
|
T
|
|

©|st 123456788I01234 123456700 123456785(012345670901234 1234

WRL AR OY LR 0% U 0 EY TN 1D 0% BC BT LT BC B0 PO 00 20 1C BC 82

‘— fOLD 10 HWERE

PROGRAM
= I DATE
we Jusee |S3] [[romer | roscemae | PREPARED BY
000 "‘ﬂ TABL J PAGE

[]
et MEXT PAGE

IBM 7080 DECISION TABLE NAME DESCRIPTION SHEET

DESCHIPTION i [T

L Py 2]

.". ll.lﬂl'.l. asE .'D,l!l_‘ﬁ
D MOOE

W wnnnwr ENCERPT, EXCAREAL, EXPARRAR, K10, B, 1, TQ.LOR, . o\

| PARDG
iz ARRC 1 o

- E DLtk VLR
i S DATE .

at which time a total amount field will be printed. The characters
***GEN LEDGER are also to be printed, followed by the two digit

general ledger number. The length, format, and special characteristics
of this total are specified with the appropriate notations in the print
positions desired. The first field in the operand portion names the

field where the number will be taken from; this is followed by the printing
format using conventional RPT notation.

On the Name Description sheet header, the letter "R" for Report
is specified under Type, and the table is named EXPENSERPT. MODE
(Page-Line DO1) must be specified under class at the beginning of a
report, and the entry REPORT made in the description columns. Simi=-
larly, MODE must be specified under class as the last line of the des-
cription sheet followed by the entry AUTOCODER in the description
column.

The entry DREPT (DO02) in the class column indicates that a report
is to be described, and must be given a name to provide the necessary
operand name to be referenced by the programmer when calling for a
line to be written. The description entry references other parameters
of the report definition; these will not be described in this manual.

The entry PAHDG (D03),for page heading, specifies that a line is
required at the top of each page. The entries which follow describe the

constant and variable information contained in the heading line. The

- 2.27 -

: hu&xmaumguzx

IBM 7060 DECISION TABLE NAME DESCRIPTION SHEET PROGRAM
K!Jl TABLE | DATE
% |Ling € -l ~o. ioesY TABLE mamg
0.0,0/0 TABLE PREPARED BY
s 1e 0 74 PAGE
i R — NEXT PAGE
PC | Ling [LA DEICRIPTION COMMENTE
s _als 2ls el - 22
. KR MODE |

o fim] e wlm

Situation 7, Report Discription

entry CARRC (DO4) is made in the class column to specify carriage
control. The first position of the description is a 1 to position the
paper to print the first line at the top of the page. The entry CONST
(DOB) is used to define a line segment which will be the same each time
the line is produced. The numeric column contains the number of
positions in the segment, and the description specifies the words as
numbers to be printed. In this example a 42-position title is specified,
followed by a 10-position constant with the letters RPT DATE (DOS).
The next entry DO7), WDATE is used where the data to be moved into a
line segment may change between object runs, but will be the same
throughout each object run--as in this example the date. The operand
in the description area indicates where the date value can be obtained.
The report writer will automatically move the date to the proper position.

Following the WDATE entry another page head (DO3) is specified
followed by a carriage control entry--in this case 0, which is the code
for double spacing. The column heads are then specified with two CONST
entries (D10, D11).

DTAIL (D12) is used to indicate that the description of a detail line
will follow. Succeeding entries describe the fields in the dstail line.
Each variable field that is to be printed has the field name from where the
value is to be taken, followed by the format in which it is to be printed
expressed in the operand description area. The fields are placed in the

order in which they should appear on the report line. Appropriate spacing

-2.28 -

PROGRAM

lnu 7080 DECISION TABLE NAME DESCRIPTION SHEET
L] [:T: i"-k. oEw ' LIN 3 L3] mn
e e fein e . amLE wa |
+ PREPARED BY
! |
_000j0/F T - W Pace
L I-;-t-t-‘-a;-l NEXT PAGE
e Towe | wamE Teos o DECEPTION CoRmENTY
]

ANDG
ARR

|2
B depdd MONTHLY EXPENSE DICTEIRUTION PLEORT.
E £ S LATE
! CT NO_INVAICE, NG INWGICE DATE, LN
ConST | T
Al ”

£
wl
[y
EEB 5
gﬂg
|

alw

:T
h%é

16
123 3 ¥
34 : |) i .
73 b - . »
IBM 7080 DECISION TABLE NAME DESCRIPTION SHEET PROGRAM
os [uns iE S [iomr | samsaes) =8
55 3b] = T { PREPARED BY
i #‘ﬂ’ m L)] —':J PAGE
RO ottty NEXT PAGE
e Twe |- A oA o] DEEETION TomTaTT
8] EDCER
B CONSTIL 3 %¥¥ GEN LEDGER
F g RECPDOQ GER
| B ONST,
, TOT L"‘Fn!mII-ELE,_m“ LXXE Z2 R
LEPT |
_ | ANThCADER
fre] o T WAME] AR _F;" I DECEP TION - CONMENTE

I:: DEPT

~_INVQICEND

Lo LNVDATE

e | §

A
A
- TNVAMDUNTY 1405

! > -

:) | f

1= 3

and special characters is specified with the CONST entry.

Following the detail line definitions, the entry BREAK (EO1)
appears in the class column. This, as with the other entries, is
normal Report File Writing language. It is a conditional line in the
body of the report which permits testing for changes in the contents
of specified control fields--in this case a change in the general 1ed§’er
number. Total lines are automatically written when this control break
occurs.

Entries following the BREAK, specify the format of the total
line. The entry CLRPT (EO8) terminates the report specification.

As mentioned previously, the final entry (E09) must be MODE, fol-
lowed by the v;rord AUTOCODER in the description column.

The report writer pseudo table creates a routine which is es-
sentially a subroutine within the object program. Other programming
is required beside the Report statements. In Situation 7 these re-
quirements include:

0 Input/Output procedures -- All data fields processed by
the Report/File Writing routine are referenced in the
routine as named operands. The standard Decision
Table Name Description sheet is used for the description
of records contained in the file. The file, itself, is des-

cribed on a 7080 IOCS File Table Macro-Instruction form

- 2.29 -

DATE
PREPARED BY
T3 PAGE
MEXT PAGE
e
1]
e
3
o
73
36
2E *
9 -y 3 ;
.y -+ -
| I |
13 .
4 e s = 2
15 . -
14 \ =
17 i "
-
ML A = A =
20 X o
=
22
13 X 5 = 24 =2 54
24 1
122 i] . e : ¥ . ik
IBM 700 DECISION TABLE NAME DESCRIPTION SHEET PROGRAM
-uu—l:i |"".‘“I"“‘" ‘ TaBLE Basl I e
FREPARED BY
0,0,0] T,
71 PAGE
el) NEXT PAGE
=3 St __uﬁ_; SR
oy FILE. IXED LENTH 1o/ BlocK
- 4
lca
Iag E _[P
24 Li
sk 3
b
G il
< !
12
13),
14
15
1é
17 s o ”
‘E = —
i 5 3
20 : i i = N v " ;
22
b S e B = Z 5 2
4 +
) 4 N o z x N

FORM X22-8913

PROGRAM:

PRINTED W o, S A,

7080 10CS FILE TABLE MACRO-INSTRUCTIONS (LONG FORM)

DATE:

CODED BY:

EXPENSERPT | 0FTA

| ORETUR NTO
s

E NsE feTloeo]EIORETURNTODIORETURNTOD

(E':P ®@WDI) EORbL (T ANDARD AND ARDDL

By RWD2EOFb NONSTAND fEMbBD SPECS TA 1:11:1
LO 3 RUNI d_Q_]ﬁNOHEADER NOTM NONSTANDb NORWDE
LO 4 RUN2 (NONE NOTRA I LER

INGLED GEQUEN CcKp 5 b
@ETT R D MU Th _NONS EQ NOCK PT"IRQDE@O DF)

DUMP DELAYOPEN

|l OFT B

C
Eh*lOC HK) "N OCMP

P mm. INITb HCKLNG GENAREA =5
CDWoTE "B TAcH n nu:@un

PROG

GE T b <
CGUITDNOWORKAREA

Z
o»
w0
mQO
-
-
O w
wn= O

mQow
0 mIT
=

O =® o

(=
o

BOTH

QOND GONE (NoNES

o]
z

(¢)

1OFTC

CKLNG) H{G_P) R EX REA
znbmzl'g'ﬁv)ﬂ“” EAITIEXPA 20

CR B el e
L felel gty
RS
progey . sahgaqin - Y il 1 e

21 F Ja] seviem |" LT | WLE D WULE 3 LD 4 | RULE § RULE §
$| b [Clomanaren ey | ik o1 [oafoa[oaTosToa] or[em Tos a0 11 vafvalva[sl el o] wo| W[[m[:a[23] % pimwiwinin]
or nast or maug) or Mt 3 o Wit 3 o Mt ¥ o 1
e L e bl b L avias rdae L L Iln-_-ﬂ:‘_ L L R e e T b ke L L e L N L L L L
o 1 W —
CRE I) ‘ x
!D.l A

IBM 7040 DECISION TABLE LOGIC SHEET -

3 ble Fiien ORDER OF COMDITIORN ROWS
oo CONGORDER | ; i :
ORDER OF RULES , —
I O O B I T e o T A 1
[LI EL T comn i
COMMENT WEXT PAGE

e ™ = RULE | wULE 3 WULE S WLl 4 1 ULE § WLE &
- - T g 1
€| = WAME | NAME 2 _; “]'ET“I“ : .j.:,]_‘:l,"[“ : "j“..];‘:lgnl‘ : :L%Mg#%a WAME 2
praales sqedar i Avar anaa IR DR R E RO P o e e L e N e e L P P L) - ¥ e 0 e S | oL
o1 |A 3 B 9
0 2 |A "’ . L
e e Bl " " " . " " re . e e .
b4 |4
M 2A . _é P . : i =
os 14 ¥ alad » i Kl L LT .
et [MPUT ILE
po s ¥ i 51 | 4 B 108, @5 4 I
L4 iy 30 i 5 9

Situation 7, Decision Table

= LUl k0 U T | tan |
: “[TAsL tENDOF 308 ‘ SLL J‘
AR WL 1 WoLE 1 L] WLl ¢ [wiii \ 1]
HERL e or — .‘.L“I‘:_l"l"l“ : -_Ig.I!:];n[u : MIU']‘_-I:]_.TJI__!-:) !1.:":: 1] n » ’.,.: .%n Ty
Brasien sneder g __1_1.& e e Ll . ‘-wuuuu-uu-uuu' - L L L L la e L L G O L L ifd ola
PI A e
G2 MPuUT :
oo rves Meno 3o’ L | X1
34 |4 1
KERC] (L] i S
+'°“|‘ P (W Ere (s T " ady m i ~ .
o ca L [: oy - o N

(long or short). An IOCS File Table for Situation 7

is shown, this is preceded by Name Description
sheets which contain input/output tape assignments
(IOT'A) and followed by descriptions of the records
referenced by the Report/File Writing routine.
Entrance to the routine -- Decision table 0005 which
has been given the name VALIDATE has as its first
action a DO command which causes the report pseudo
table to be entered. The line will then be printed and
control will return to the second action of the rule
which had the DO.

Opening the files -- Table 0004 which has been given
the name START causes all files to be opened.
Closing the files -- The table named ENDOFJOB per-
forms the necessary functions for ending the job. The
table name is specified on the IOCS File Table for the
EXPENSE input file under END OF FILE TR ADDRESS
of IOFTA. After the last record has been read and
End of File has been reached, a transfer will go to
table ENDOFJOB. As the sample shows, the total is
printed for the last general ledger, "END JOB" is typed

on the console typewriter, all files are closed and the

- 2.30 -

o

= T
TABL 3 ART ’
3B R - LA | T luu: I F..Tn [ﬁ'ua T [LEd
3 ol I £n|u|u|u|u[u-g_t|u|1||l:!uuuulrrlu D nﬁxll|ii!|z[! 1]
e aald o nans 3 - uasty o e 3 or Mang 3 1] ;_% 1
b Ll AL l!llgi OII‘HF.I.:‘"__ L b '!Il.é'—_.‘uu'l.l.:r-‘ —II’-H-—!- - L .-m -
o 1 aﬂ i N N .
N 2
T UMY . o onsssf .15 56 LI

DECISION TABLE LOGIC SHEET

WERY e
Tasie |= Figavim CRPER OF CONDIUIGR ROW

ORDER OF RULES

wadrad o o v om0 o o ol v o o0 0 il aa s el uni.ﬂ]uq[uTllinu‘anrmru

HERET™ WAE) WULE 2 T RULE 3 WLE 4 | RAL S LS &
HIEE ol - Sk :: niu-]_u}:u_tu:.!y“:‘n 1::1¢Iu_|u !‘u|-%nn‘:‘:u IR :;:"
A i '~y 4 -~ 54
z NN (NRRNR ¢ KL LEELEL,
o . : 5 I 00 0 1 600 9 N 0 0
Situation 7, Decision Table
I Y1)) 5

Blw wielnlein o oxinls

Bamd e wisry

- _‘F : " : A
a r L 5 i | L) 3 : R A %
X I 2 3 I ;

program is halted by the GO TO TABSTOP action.

QUESTIONS

In Situation 6, Autocoder was introduced as another
language called by the decision tables. Situation 7
calls upon another language, Reports/File Writer.
Since the 7080 Decision Table System has its own
language why are these languages intermixed?

What happens when a Reports/File Writer routine
is called?

-2.31 -

Answers - Situation 7

1, Decision tables provide a descriptive representation of complex
decision procedures in a way that is easy to develop, visualize,
and follow through. When a set of procedures does not involve
decision logic, the Autocoder language may be a more natural
form of expression. The report writer language is a highly
developed, but highly specialized language and is used as an
auxiliary mode to perform these report writing functions.

2. The report routine is entered and a detail line is written. If a
control break occurs, the appropriate total lines will be written
automatically. If the last line on the page is written, the report
routine will automatically skip to the next page and write the
heading information.

DECISION TABLE LOGIC SHEET [ecmmenne,
B e HERE ricaTion ORDER OF CONDITION ROWS
sopmn 1 ot egos ospeeT iniy isie " n n pik bl n 0 » 37 28 (3% a8 l4) & |a) 43 aalal a8
00 a1 ONDORDE
ORDER OF RULES ’ . S&ﬂEL.E_nau 5-3-62
33 20 77 T 30031 39 35 34 35 3437 34 39 o a1 7] a3 s 43 wal a7] ot 30 31 5353 5a 33 34| 7 a0 it 63]en wa s aular aaen 7271] vl
of ! L LI T LT DL LI T reeruneoerHTH — race O
COMMENT - . wexronce L
ry i
STARY MEXT CARD: Dope Col's. 15, Punch B in Cal. &,
3t RULE 1 RULE 3 RULES WILE 4 ey rll!l
s wnaron - o1fo2]03]oafos|vs|ozjosfosfww 1] r2]vafvaf1s|rel w[| w| {20222 2a|2s|2s|m|2s|2e] 51]02]
NANEL NAMEZ Forl e or AuE 2 or| ez or Wt 2 [or | a2 [or| wanas
e FIRSTmS | §74 1 ; . B
o2 |a N/ Y Iy Fl] i)
b3 |4 ool X2 Ea s/ ﬂvv
L2 LN YN YN Y S R e =
o ¢ [Mopy 2z.X2 EQ@’ Tk ‘ LT 3
o 7 A.&H_._ T \Q" ok izl i %
o 8 |a ol f X i 2
JAL COUNTER. . EGHE2. st
K e ot Mo o AN AR
o 2%, . 1N A
12 A
T
. e X!, ; o
2 NTLT ; Fﬂ&
) e

Situation 8, Decision Table

Situation 8 illustrates an address modification feature of the
7080 Decision Table System. Address modification utilizes the indirect
addressing hardware facility of the 7080. The 7080 DTS supplies the
programmer with ten tagged pre-defined address constants (ADCON's)
which are used to hold the machine address to be modified. Although
these are not described by the user since they are part of the DTS, fheir

specification is shown below:

2 NAME ‘CLASS NUM. DESCRIPTION b Ccc
Xg, ADCON @@ ., ., . . . , [TEN PRE-TAGCGED,
1 . - | ADCONS, PRONIDED,

Ao it NOCON. | BY, PTS.. REFERRER,
P DS SR S S - L0 8Y, X0, X):as.X9,

i . A DO R I -

The problem which illustrates this address modification feature is
also a portion of the DTS processor. The situation involves a loop used
in editing input cards to replace non-printing symbols.

In the decision table header, the page is numbered BC. Alpha-
betics are permissible as page numbers, providing that they are in
ascending order for successive tables. Note that in the "Order of Rules"
in the decision table header, the rules have been reordered. This has
been done to improve the efficiency of the object program. Rules least

likely to fail are placed leftmost. A "Comment" is made in this table

- 2.32 -

EBM 7088 DECISION TABLE LOGIC SHEET ;:_:..mm

g e —— i — ETT T ——T . -
‘ . .""-T“-l'_.i l;l:t'r'?‘l:"l.-. Tamis -.: ¥ .-m f= T """" T

e TN o f lsi "> ORDER OF CONDITION ROWS
I |
' " 1 | et " ORDER OF RULES m“mmﬁ_uﬂ 5h-2-2

I e E e b) T e L EEIEEN
.1:1 I ; | |] | {1 rmemneosr HTH o)
T Is "
‘ : H| Fizariom COMMENT MEXT m-_Ll_
[e L .._.-__ﬁ'
EE;N#:{ TITLE| 1LNOP T 52 QI OF n] i kb
—W——mlﬂ START WEXT CARD: 9*! g !:'-,'4‘“ n

21 je seviem o~ T T —muLE2 RULE 3 RULE 4 RULE § RULE ¢
31 0 |fjemerarey i | el o1 [03[03 04 0s] 06| 07 o Toa [16111] val vaval vs] vl 12| | w] 20] 23] 23] 23] 2a |25 2] 0| 28] 2930 |21 [02]

] or naE or| wane3d or HAME 3 or MAME 3 or WAME 3 or MAME 3
R L A el 1 avaranas A a0 u_ﬂ-nq-_nnu-u_ ww arfabod s 337 31150 30 20 A0 3 08 o] &7 o du a1 wo 07] o8 48] 30 79

= 2] COL2Z %2 RO/ Y Y | ; ¥ h i
COL2T X2 . EQ'3’ NN 1, . : JEE, |
Y b ! ’ i

o 2037 20 0 om0 a2 cave s aof om0 0] 12 a1 v e it o] 0 e af e
%p. i IRSTPASS TSON Y NN !
L

El

o+ Pepy Coioaxa g [[K I

X AN Y . Ao X 0 i 9 B LT LE
,._n:%: - 1+ 1 { : 1R

COUNTER .. Eaps2 . X Ll]
X2

i
¥
l—
1
=X
}
F
]_

gﬂf

£\ RSTPASS [EQREF AN o 1 |
60 TOPRINTIT AN T I
L[l : F‘ i |

P W S

-
>l 2l sl

Situation 8, Decision Table

header. It is permissible to make any remarks the programmer cares
to make here, and in this example an explanation of the decision
table's function is given: "LOOP TO REPLACE ¥ AND ¥ IN 52 COL.
OF INPUT CARD."

The object of the program is to replace the non-printing symbols
which might appear in columns 23 to 74 of the card. Hence each coiu.mn
must be examined for the presence or absence of either of the two
symbols.

The first condition row checks to see if a Bit switch (a one character
constant set up in the program as a switch) is ON or OFF., If rule 1 is
satisfied, i.e., the Bit switch is found to be ON, the scanning process
is to begin. ’fhe first action specified for rule 1 sets a counter to 52.
The second action sets the Address Register X2 to rCOL23, i.e. the
machine address of column 23 of the card. The third action sets the Bit
switch to OFF and the final action calls for a reiteration of the loop.

In rule 2, the bit switch is found to be OFF meaning that this is not
the starting point. The second and third conditions determine that the
non-printing characters do not occur in the column currently being
examined.

Consider the first operand of these condition statements--
COL23,X2. The Address Register X2 contains the actual address of
the character in question (set in Rule 1), and COL23 provides the format
of the field (1 position alphameric). This is the construction of operands

- 2.33 -

BW iR DECISION TABLE LOGIC SHEET oonosma : H

S [n-n[,| .-...| AR T Vamne 7 “‘.'.e—ﬁ—-r"'"..-.-.‘—*. - , ‘--|—1——-———|——- =5 A e o =
| bhiciod | TaBLE TABLE | Freavion
| - fh3p | AN ey =1 e, | | |L ORDER OF CONDITION ROWS

.

!I'I' aJ-n Jedos E“i‘:. li-c i r ‘"“ ! Gl 1 a 2ac2 S R S A g)
o 090lia e nlu.“%amnoe J’Rmmz_hme N 'L AT LTI 0 0 0 O 4 0 B

]

{3 ; i:]l .‘.‘.u.‘,‘.| ORDER OF RULES | enawSAMPLE. s BB &2
Fs! aqaser 1943 a1 ac 7130 23 24 34 20 37 W 0 1) 3] 0 4&1_: FErn l{ 4 luldalh’!ﬂl!l!l[!)lllﬂlil s{u-ﬂa .u]n..m“.; u!n’;!l)v;‘ .
Mooo2 |RULEORDE{'6 364050401 [‘t LoEy e e HTH sage 1O
ET ; E:I fleseine COMMENT u:nm:_u__
B‘n 'G‘D‘ 3i" ..:;1 TL’E I BEEI E"E 52 QOI OE L'i
C . LQQP Yo X ANDEIN J_NEIL.&#L” — START NEXT CARD: e e B e L 8.
El E k' m..,.._;]”T T RULE | L] RULE 3 RULE 4 RULE § - RULE &
R aramsro E wania o1 {0203 0al0s] 06| 07foa Tos [o[10] v2[na]va] 1s[el 7] wa] o] 20] 23] 227 23] 24 25 (286 [w[28] 29 30 [31 [32]
i o WAME or| wauez o MAME 2 oF MANE 2 or | HAME 2 or MAME 2
lo 1 aajax axaqor 1 ilnqc 3¢ 34 1 u:’.w‘aa_-::_-_:-_n- u-ru.i__-_'-s' I!Hin!lisn o 3940 il 43 a4 as -a)un!!ihhl'l\'lh'-lnﬂ-:]-_--lu-!a:'nu uu-z;l—\ouunad 62 a2 07|
o ln_ FIRSTPAGS ISON Y NN 8 0
B0 COL2Z X2 . EGE/ NN IY YN M
o3 |a Qm_g__x’xz ﬁ\t: N Y Iy
e CONTER . [EQ*D NY NN] T :
LT . , . | T 1 N L i
BO s Ry COL2Z X2, EQNa”, o, o et Nl of d sbuld s
P MSET. o2z X2 EQGNOY Ll | .
0: WAET ICOUNTER. 1 X : el b _
¢ MCET. ICOUNTER . . EGHSR P [o B O I i [el
12 |MGET. . X2 + 11 .o P O I
VY ARET XD e o BRIOADS e K gl " |
2 MGET F1RrSTPAES [EQION {1 IX ;
2 MGET FIRSTPASS EQoEE. .. X L. L 1l], ! 3 4 " :
'+ "GO0 TOSCANLAOR . s]l ' |
[Bcu 60 TOPRINTIT .| [, .. X1 IX 58 , i
" : i =i Rt FA s) A (1% Ak vl L 178 A

Situation 8, Decision Table

used for address modification. To get the next character of the card
X2 will be increased by 1. The fourth condition determines that the end
has not been reached.

The actions then call for (1) decrementing the counter by 1,

(2) incrementing the column address in the Address Register X2 by 1,
and (3) reiterating the loop, so that the next column will be examined.

The third rule determines that the Bit switch is not ON and the-
non-printing characters do not occur in the column being examined, but
in the fourth condition row it is discovered that the last column has been
examined. The actions therefore call for a resetting of the Bit switch
so that on the next iteration of the loop rule 1 (the starting condition)
will be executed. Since the last column has been examined, the only
other action called for is the execution of another table: PRINTIT, which
will print the line.

Rules 4, 5, 6, and 7 each encounter non-printing characters and
make the appropriate substitutions.

In this situation by merely incrementing X2, each of the 52 columns
are examined, and the character in the storage position replaced if
either the character :t: or $ occurs. Termination and printing occurs
when the counter reaches zero after being decremented by one for each

of the 52 columns on the card.

QUESTIONS

1. How much programming effort is involved in address
modification utilizing the 7080 Decision T'able System?

S What is a bit switch (BITSW) and what is its function?

- 2,34 -

Answers - Situation 8

: Very little. The 7080 DTS supplies the programmer with ten
named and pre-defined address constants which are used to hold
an address to be modified. The only programming required is
initializing, incrementing or decrementing these. Address
Registers.

2. One character variables are set up and their 1, 2, 4 and/or A
bits named. Each named bit can then be used by the program
as an ON/OFF switch; i. e., the program may set it to the ON
or OFF condition and at other points in the program its state
can be tested.

IBM 7080 DECISION TABLE NAME DESCRIPTION SHEET PROGRAN
1 : '“nﬂ." oMY | TaEsul - mr!
n‘ :‘:.!L‘E: . : ’1 JE J ::::.I-IED BY
TR BO oty MEXTPADE
f‘;:ﬁﬁu ol nnﬂ.lﬂ LaLhlln el = ez d
6 el ol F [
B o - 2 — .
s Yo R HAK s WMOCKER
i*s Yio lEwo
S = o =34 s ‘
: o, [
: ﬁm&%‘ﬁ]ﬁ
2]
1] sk
Situation 9, Figure 9A
IBM 7080 . DECISION TABLE NAME DESCRIPTION SHEET PROORAN

€ v
e | |; » -5 wem TASLE wisg

ATE Ta] asown % ROLE 1 wigs | MIgs T WL 4 | LY muLEd
s = ki wikas %n[o:i:lu{u : ?[u-{:ilnhs_!: u[u-l:];n] n% » n‘:’u u : II’“II I"HII __2_: s
- or i . aefes an 30 58 50 3 30 0 o v o we n e o] ol 23 9] 0 0l 0 0l 0t 0o o 0 0 0 o ot oo 30 1 e 0 0 - iﬂl-uuﬂn i e o

Situation 9, Figure 9C

Situation 9 is concerned with producing purchase orders, shop
orders, and stock orders for the various parts which make up a product
assembly. The file which contains the manufacturing information about
a particular assembly is composed of variable length records -- a fixed
portion of general information followed by a variable number of variable
size items pertaining to each part which makes up the assembly. These
variable items are referred to as trailer items.

The problem now arises of calling these items from the file since
the length of the next item is not known.

The assembly file shown in Figure 9 Ais shown with certain fixed
header information: ASMBLYID, ASMBLYTIME ... TOTALPARTS. The
variable portion starts with STARTVAR, a one position field. This name
of the first character of the variable portion is used as the operand cof the
ADCON in Figure 9B.

The ADCON named FIRSTITEM will contain the 7080 address of the
first character position of the variable portion of the record. The ADCON
named FIRST ITEM is used to initialize the index pointer INDXA, such that
information can later be moved out of the variable record into the NEXT-
ASMBLY working storage area.

In the first decision table, Figure 9C, GET NEWASMBLY brings in
the first record from the file named ASSEMBLY. The second action sets
the index pointer, INDXA, equal to the address of the first character in

the variable length position of the input record. The third action

-2.35 -

DECISION TABLE NAME DESCRIPTION SHEET

PROGRAM

IBM 7080
[T T] AT
*e fuwe e g ~G, Lk TADLE: N 1 PREPARED BY
—1 pace

NEXT PAGE

COMMENTY

Situation 9, Figure 9D

MOVEV INDXA, 5 TO NEXTASMBLY causes 5 characters to be trans-
mitted to the working storage area. The transmission begins at the
location contained in INDXA. The final action transfers control to a
table named PREPORDER.

Note that there is only one rule to this table. Such tables are
called "unconditional" tables. |

The first five characters (a minimum with the high-speed transmit
called for in the POINT entry) of the variable portion of the record now
reside in the working storage area named NEXTASMBLY. This area
is described in Figure 9D. Notice that the FILE class entry has a 3 in
the numeric portion. This indicates that the area is to be described or
redefined in thl;ee different ways: one for each possible format. After
the first, subsequent RNAMESs have the effect of a LLASN back to the
original RNAME; i.e., the same area may now be redescribed. The
first RNAME in this example is NEXTASMBLY, The first character
is defined as a Bit code (BITCD). The 1-Bit means BUY the part, the
2-Bit means MAKE the part, the 4-Bit means order a SUBASMBLY
(sub-assembly) from the stock room; the A-Bit only goes ON for the
last character in the variable length record to indicate that there are no
more items. The various other fields are then described for this item.
The second RNAME called PURCHASE is then overlapped on the first

area. The format of this item is defined and names are associated with

- 2.36 -

TIBIME 7000 DECISION TABLE LOGIC SHEET —

" e
lipestisization
ARGA 1
| TARLE ' ¥
st |
' 1N

ORDER OF COMDITION ROWS l

5 8 EENE

ORDER OF RULES
PRO DATE
3% ol a0 ad| &) adas sada? aplo® 50000 215D Bal 54 ba{ 37 30 30 b ad fad s G LR D
PREPARED BY PAGE
COMMENT MEXT PAGE
Dup. Cal's. 13, Punch B in Cal, 4,
i *rranuutm o e bl -
HIBEERE ™ = RULE | RULE 2 RULE RULE 4 RULE 3 RULE 4
- - €
L WANE 1 wangy jorjoafoafealosjostorfonlostofnijvalvatalts|ralmrfml wlzofatfzinjalos ||z n]200fatisn]
or HAME or ﬁ&l’ll or MAME 2 oF WAME 7 or NAME 7 or amt 7
- snader e vy ansa L kllhﬂ-lﬂl_lll_ldnw di'do“_-l!"-a—tlﬂlll’ﬂ.u. CE LT -aal-----fauunau-«-n-uu - e L
[1 i
k2 |4 I
03 | 1S i N) ASNELY 3
FRE [] _

T QT T SRR AN S ANR

Situation 9, Figure 9E

the various fields such that they can be addressed directly in the working
storage area. Finally, the third type of item, SUBASBLYRQ, is over-
lapped at the start of the work area.

Since the variable portion of the input record will contain a variable
number of these items in a random order, they cannot be conveniently
defined and addressed in the input area. Recall now that the first five
characters have been sent into the working area, and the Bit switch can
be tested to determine which type of item has been brought in: PURCHASE,
MANUFACTUR, or SUBASBLYRQ@. This interrogation is made in the
condition area in Figure 9E. Bit switches are tested by the action:

Bit switch name IS ON(OFF)
ON(OFF) IS Bit switch name

In this application only one Bit may be on at a time. In the deci-
sion table 9E, Rule 1 determines if the part should be bought; Rule 2, if
the part should be made; and Rule 3, whether a sub-assembly should be
ordered. In Rule 4, the A Bit (LAST ITEM) is tested to determine if
this is character of the variable portion.

Assume that the BUY Bit of character 1 in the NEXTASMBLY
area is ON, and consider the actions of Rule 1. The first two actions
move up the rest of the item still in the variable portion of the input
area. SET SIZE EQ BUYSIZE moves the value 20 (the length of the

purchase item) to SIZE. BUYSIZE is defined in Table 0003 (Figure 9F)

-2.37 -

EM 7080

DECISION TABLE LOGIC SHEET

TOEM TIFICATION

"] & FEET g [TaRLE [TaEATL TaRLE WEAT €RAGH |
HERHE Rl fpetet Ll - T ORDER OF COMDITION ROWS
L 3 . . -
i Sues Y LELLT] talie L8] et 1
09 do TASL EPREP ORDER

ORDER OF RULES

AEEr 1B F1 .
E l= € i:l:l"” ! M‘l
' " L PO (1) PR e L I I e O I I I T O I T T I T T e
‘ 0044 RULEIORDER l ! | [| | ,l | | | | ‘ | | | l ! | [| t | | 1 PREPARED BY PAGE
Al r e sicarie
b: :] R COMMENT MEXT PAGE
003 TITLE
START MEXT CARD, D% Cal'n 1.3, Punch 8 in Col. 4,
H R ETT™ = RULE | RULE 2 | RULE 3 RULE 4 1 RULE § RULES -
B el S i o1 [02[0a[0alosTos[o7 os Too [v 1 [va| 3] va[1sT e[o] maf w0 nlnlnlululu %]z m[]o]|n]a]
. or wang [WAME] [Mast 3 [Haug 2 or LI [or| f'
b1 asjos aaqar il 2iae anad B 34 30 36 20 30 09 0l ad arfal oo 13 00) 63 A3{ 00 0N be 00 0 a0 i 00 TR ER e R C I anja -ulnguﬂuﬂn Lo
01 Al A N ” 5 e
¢? iy . " e " . " e e " " A " e " " " " i i " s
ML i) K . . Y. g
N | By e Jasioat LD
s |A Sln) ” s
i " i e s A e e e . e e
AL - RSP M
oy [ACET 1T 1 K
JAL INDKA : iR L X K J
L2 |“MOUEINDKA, 5. | X .
AL R MR (N retere _|PRERORDER | .
121 |&
11 |A " | T ™ J q il P 3 I
T i
15 |a NI = o= Bl * T il
18 |A g
17 A P = 2 o f e (279
10 |4 |
1o |a
10 |MN
t) A
22 |M
13 |
24 |M " oy iy i " |
23 (o . L i
Situation 9, Figure 9E
IBM 7000 DECISION TABLE NAME DESCRIPTION SHEET PROGRAN
i T TABLE mAk ::::“m BY
34 PAGE
g NEXT PAGE
[FeTeme], WAME PG T DEICRIPTION COMMENTS -
% _Jﬁ&asazmnsﬁummm
A : 20 .
jo< gﬂﬁ
"5 ISUBSIZE
= LIST 2,20, VE
=1 G I + +
T2 | o - .

Situation 9, Figure 9F

as class PCON, meaning permanent constant; i.e., a constant whose
value does not change during the running of the program, as opposed
to a variable whose value will change. The field names SIZE now con-
tains the value +20. The second action MOVEV INDXA, SIZE TO
NEXTASMBLY will cause the transmission of the first 20 characters
from the variable area to working storage. The command MOVEV
means move variable length.

Action 3 calls for the execution of PURCHORDER, a closed table.
Action 4 calls for the evaluation of FORMULA1 (the expression is
defined in Table 0003, Figure 9F) and the placing of the resulting value
in TOTALPRICE. The next action calls for the incrementing of INDXA
by the size of the item that was last moved up. In this case, INDXA
would be incremented by 20 in preparation for moving the next five
charaéters to the working storage area. Then it can be determined what
the next item might be. Action 6 does just this, it moves five characters
from the location specified by INDXA to NEXTASMBLY. The last com-
mand of Rule 1 calls for a return to the beginning of the table.

A new Bit switch character is now residing in the first position
of the working area and an interrogation can be made to determine what
the next item is; i.e., PURCHASE, MANUFACTUR, SUBASBLYR®, or
the last character in the record.

The table PREPORDER is the main processing table of the program.

-2.38 -

T T Tasuw | 0w
we. | mies

3
[
.
.

152,73l IS P :

TVaRsk

Tin
n“[LTS

=1 Taemsas T -
FamLg 3 |
- .

[TABLEPUr & 55 ‘P RG

I Ty

DECISION TABLE LOGIC SHEET

oettE] ['

- . o=
1 : Pl e ViOm |
|

e

:

ORDER OF CONDITION ROWS |

| B

RULEORDE

__.ﬂ:l_ e IO Wi exsy owemer "}'I Il;l' 4!__._' ';Jj_” hay o ikt 2 sl sple sties 4“""‘1.".” 2
T | e _[CONDIORDER | | | | j ‘ | [I LT 1T 1]
1

ORDER OF RULES

DATE

srindnadar o sl oo M ode 00 A e de el
|i} LLLEL]

J-ﬂu ,1“ !levirf anrtﬁuT -Ir- an-
1

TOE T
e TION
LA AL L] & 1
| TITLE

COMMENT

AL

PREPARED BY

PAGE

MEXT PAGE

START NEXT CARD: D Cale. 13, Punch § In Cal. &,

Skip Col's 7233,

scrion ’. RULE 1 RULE 3 { RULE 4 RULE &
femtaaten o [— 021 03] 64 osT os o7]on Tos [e[11] 12[1 s winlu|w o[n]2l2ln w[pin»n|n]n
or aut 7 or waue 3 or WAME 3 or MAME 3
LA M AL A I‘I‘.Jl‘ » l'_l li_":;lr;’:)‘.{u R el L RN T FRPT PSS PP I_“'I 337 o0 wila? adlea oy L Hﬁ-. - 4 a R L
"ARICLASS) RIC Ll - [
12 4 PARTCLASS | i
- - Wft_“fu ERTAG il ! ||)
Al
R | v
sa JRLIRC HOECRPY. .
T 1 i
. .8 n 0 " sl
D Sp Y
Psrrng;! X, | |
L . . —_—, J

Situation 9, Figure 9G

PROGRAM

IBM 7080 DECISION TABLE NAME DESCRIPTION SHEET -
~ it : | PREPARED BY

n.n,:l il.—m'_'.:n::— i] £ _iJ PAGE

e NEXT PAGE
I3 U T wAME P T DEACRIPTION % TOMMENTE]
i FopmuULAL ‘ 32 | % UNITOEICE
|
Bt SV ZE
P ISUBSIZE

~ NENmaRLET

2,20, VENDORINE
35 .

=17

7y CoNN. X

m-’m,xvz L0 1l

0O POST B,

AT

LOcAL

Situation 9, Figure 9F

As each item identification is brought up from the variable area, its
type is determined and the rest of the item, now that the size is
known, is moved up. Aside from certain housekeeping functions, a
closed table is executed which will prepare a purchase order for a
purchase item, or a shop order for an item which is to be made in the
shop, or a stock order for sub-assemblies which are to be delivered
from the stock room.

The PURCHORDER table in 9G illustrates what one of these
closed tables might look like. Notice that the table is entirely in
limited entry form, thus, the narrow two-position entry columns are
used.

The second condition demonstrates the use of a new operand--

a reference list. The reference list is composed of arguments and
functions (values). (In contrast a VLIST contains only arguments.)

A reference list for Situation 9 is shown in Figure 9F; it is called
VENDORLIST. A reference list has almost the same properties as a
TABLE macro in Autocoder. In the description portion of the first
line, the first value indicates the size of the argument, the second value
indicates the size of the function and the third entry, a name, specifies
where the function is to be placed when a successful search of the table
is made. Subsequent lines are uséd to indicate the argument and

function values; these must be the same leagth as shown in the list

- 2.39 -

EM 70

.

'?-lu&

DECISION TABLE LOGIC SHEET

[onesnse [" ']
|lnll|'l!l¢lﬂ«nl||

v] éT‘.tuu_.'n?:':& anis LA T . | f o ——— i T,
N!I yofeal S5] f i- - A r:' ! [:l | [""““i ORDER OF CONDITION ROWS [
F—'J*J xed _——""—"L" CR— T s SISO EPT S | | " 8w y --:- Angis ant % | |
i]DGIIJII:LIMhQ_[|TA!LE§I‘u|‘ i) fm ‘T | !”]o’o'gf |C'DN50NDER] ! i i
ol « | T o
B |]-.;....I ORDER OF RULES
mie u‘u_lu'x " V{3 2e 8 0 o i e ﬂuqnl{tduq- q]-:qa---qfauinufuqnqun*-ﬂn- u » af v } o~
onuzj Y T T I I p oar Pace
L'E' ¥ [- COMMENT i NEXT PAGE
“Jooofs) TITLE "{
=g START MEXT CARD, D ‘-',"-,‘-*"""l;"-ﬂ-‘-
HERE RS ‘“i‘ RS RULE 1 RULED RULE 3 RULE 4 RULE 5 RULE &
I — L wawes {o1[02T0a]0al0sT 0a] 07 o ovl ol n]l wl vl uwlw o[22 |2 n[w o[n]n]
5 S ane 2 or] _ wam3 or Maut 3 or want 3 or Wast 3 or WAt 3
il Iﬂli*u "h.":"l'..:;'_"i'{:‘..":" ‘1.-;-.,_‘_1‘!“:-llnll"‘ﬂ'mnﬂl - I‘Ilhd”q:-iﬂaT—uuﬂ.*.“”uﬂ.h“’ o6 0 47 40 oo waeh 07 b
P s P ARICLAGS | y YNNT |] i q I | |
B2 - - - Y N I -I[- .
JRE GRICSTRAC - '] :
T cesEmraee NN LT] ettt DL L . : o
0 3 T
i LX(
22 MONE |
0 7 AT = B
XHE 3 XKl N 2
09 |a < [1
£ HPUT PURCHCARD - ‘
11 A _-tP N o
' 2 Am p e N - r
38 PECCAS Y i
(1] ln iy |
Situation 9, Figure 9G
IBM 7080 DECISION TABLE NAME DESCRIPTION SHEET EROGRAN
DATE
P e ey | vaavenane] PREPARED BY
000 J PAGE
ot [] NEXT PAGE
R R B R i —
< _Foemuiad ': el L X UNITPRICE
| |
L poysize | 2420
- MAKESL ZE L Z+bs
i : ISURSIZE N, A28
T NENORLCIRLIET D220 VE :
L0 Apl .ﬁ' ﬁkﬁw
g L N2 26, XYZ Ao adfY CNN I
| + !ﬂ- . +
= J 18, ZELCO
I : —

Situation 9, Figure 9F

header line. Note that a range of values; e.g., 02-29 can be used
when the values are numeric and in ascending sequence. The second
condition of Rule 1, then, checks to see if the value of PARTCLASS,

a field in the PURCHASE item, is contained on the reference list. For
example, if the value of PARTCLASS is 16, the test will be passed
since it is in the range 02-29 and the function XYC CO. 1174 CONN DC
would be moved to the field called VENDORINFO. ;

If the other conditions in Rule 1, Figure 9G, are satisfied, the
first action calls for moving this vendor information (the function found
in the reference list) to the field called ADDRESS on the purchase order.
Subsequent actions call for moving other data to the purchase card and
finally PUT PURCHCARD will make this information available to the
output unit. Since there are no more actions following this command,
control will be returned to the table PREPORDER at action 4 in
Rule 1.

Note that while executing this table the program recognizes that
the current item in working storage is a purchase item whose fomat has
been defined. Consequently, the names and format which apply can be
used directly.

The closed table SHOPORDER and STOCKORDER (not shown) will
be executed in a like fashion if Rule 2 or 3 is satisfied. The first condi-

tion of the PURCHORDER Table is an illustration of a state condition

-2.40 -

DECISION TABLE LOGIC SHEET i emeamew 1T)

lagtEnnaw |
imEmviniza e |
[EL O] TaRLE H RET T Lok [
mEaTIONn MamE 1 Tanie TaRLE }
I auE e |
ot .
|

TABL EPORDER |

T =
’ !'v-l ORDER OF CONDITION ROWS 1

. b inlee nrdisdnadt wmai
(1] [CONDORDE R 1]

ne=r

.‘.‘:‘.‘:.':.1 ORDER OF RULES st
v islia e R O I O I I O O O e T e e e e e
RULEIORDE 1) o N 1] I | | [| [|] | PREPARED 8Y PAGE
S COMMENT MEXTPAGE
R AL i .
LITLE x A - Dup. Cal's 1-5, Pumch B in Col. &,
START NEXT CARD: Db- Cal & -8 »
HER l” ;“'F.! |]w|.|ni_ : Im.ln’ : l"-!“l | l:llu : T“"
2| 2 |Spemunares o102 03] 04 [0s] 06| a7 om Toa [w0 [1a] va] na] va] us] val 171 va| w] 2] 21 [22] 23124 |38 |2 | 2 26| 2] 2 | 31 |32
l i WA NANS2 or want ;_f__;ngnn or MasE T or MAME 3 or Ilull or ANt 3
Peses aeed s nun-nn---_l-:_-l:f__:f:-’.‘l‘_'u-cudnanununua- L L L L L L e
o1 |a e 5 : € f
(N o L, g 8 .. ol
o3 |a 1S X) L ACNEL) ST " i
RML | 1
o3 *QET S L) (1) . .
e "MavEY| ” J&# I OO0 0N 34 O P : ; ' .
0700 PUF ; ARS e 1| Nt 50 1 0) O :
0 & A '[' B P |
o a |
2 X 1% B
—MouVTEe L TONEXT L L L XL | .
RO T & (Hefoepie | . . NewAeLY. e
2 4 A
i ' ! i !
1a A B D I | | | 1 N
s jaf !‘ | 1 1 ;]]] ‘T—*v-—‘
s .] g b et B i I e = e 1|
15 |al | | I | | | | “'
11 |4l) S _[_'_ |.: . " _] 1__;_
ol M - 11
1o |l b { E ! 1 i RS e
T8 A) [I V5 [Y T T
21 A) 3 i —l‘ i 1_ -_"—L: 1 1
ol - l-:—I—AI‘- g ot J
11 |y % i_i | L 4] | i
23 18 5 3 i o o O § v 16 S I ksl : ol
‘11,‘_:7;_;__-L‘ LR i |}

Situation 9, Figure SE

and asks the question--is the value of PARTCLASS all numeric?
If it is entirely numeric, the test is passed. If there is a symbol
other than the digits 0-9 in this field, the test will fail. Other state
conditions are POSITIVE, NEGATIVE, ZERO, BLANK, ON, and OFF,
The state term may be either the first or the second operand in a
condition statement. The condition in PREPORDER shows the state
term ON in the operand one position and the Bit code name in operand 2.
This situation has illustrated a means of using the POINT (in
reality a six-position field containing a 7080 address), to work through |
the variable portion of a record without doing direct address modifica-
tion. The formats of the various items which ﬁay appear in the
variable section are defined in a working storage section in an over-
lapped manner; then, as each new item is moved in, an interrogation
is made as to the type of item; and then the names of the fields of the
item can be referenced directly. At this point the size of the item is
also known and it is possible to increment the index pointer to the
beginning of the next item. If the size of the item appears directly in
the data itself, this information could also be used to increment the
index pointer in working through the data.
The index pointer concept can be used in a like manner on the
output side to fabricate variable length output records. In this case, the

pointer is used to indicate where the next item is to appear. Since the

=9, 41 =

DECISION TABLE LOGIC SHEET [T

5 1 .:i:'.ui.-;.!-'ﬁk"—‘ﬁl:'r'g' e ! ':“..:.‘ e ‘ :l :Jj! o[ORDER OF CONDITION ROWS _i
£ b E ey i O
B n_;_n_g:gg_o_lvgllglm-du 1s)1e 1031 amin aslat sal 1 ogos sor tlie amlie 3ol 1173 23 3073 34 37 2070 30 30 |29 3038 3000 0 3w st s sl aalo s 50}
| looopohy TABLEPREP ORDER, | | [0 901 CONDORDER | | [| | . |
it e ORDER OF RULES -
S g 1 oo i e a:nﬂ:n{:a:-]n:qn)a]u u!nﬂn){n)‘noq.uaqx]‘{-uu|a-[‘uqun]nuis;u{nﬁnd--ﬂauiu.[un‘pmp-n'[-n.
2007 [RuLEoRoE PSS 0 T 0 5 1 S [e pace
I (oRmTE.
FiEATION COMMENT HEXT PAGE
L A 2o &
TITLE Col's. 18, Punch B In Col.
-, ¢ n
[START NEXT CARD: Om Co e D Cal'e 7585,
HEREeET™ ”[RULE 1 RULE 2 RULE 3 RULE 4 RULE 5 RULE &
S| % |Sjomenaron s - o1fo2oafoafos] os[o7Joe Tos T w [a2fa]nafasTvel 7] | w] [] 22[2324 [2s [as [[2s[20T 20 |31 32]
o oF MAME 2 ar __MAMED or WAME 2 aF HAME 2 or HAME 3 or MAME 1
g1 gal3) osodor A ANAR ENES EE R ETRCE LRI ELRE LR .‘I‘I'liluu“Q S 3758 090 60| &7 A0 b 65 me 67| 0 oW 30 X Sb 37 30 0N 00 40|07 4w anfen ar| a0 oW 80 31) 52 AN B0 53 b 37] 50 39|40 4t 67 43 64 40 0 0T 60 00
1 T
0 1 |aj
02 A z
03 A 1.9 gy | . SMRLY. ST iy
i] |) _ A
o5 |"QET. RUYS!] | , Sugell . i .
0 & |a J
+ T T PRy e gt gt
L0 .Rcmqu. g Ki0a
ot GET
0e [ABET X K
L 60 T L PRER CRETDRDER | . [PRERORDER AN 0
12 Al
11 |& * =" : - i T
1a A - y
R
1 & A
17 o T e T o el 4 o -]
18 |a T T
19 |A i
70 A = 5 =X (R =
21 A e
12 |a
23 |4
LFi o i i doa a a L o 4 a a i i i A i e
25
Situation 9, Figure 9E
IBM 700 DECISION TABLE NAME DESCRIPTION SHEET PROGRAN
veimes JBL |72 | morr | vascmmer] =
H al
.,°-°-.°‘.'H. "E.QEH‘[A.B.LEM 1 PaGE
A NEXT PAGE
PG Llull HAME] CLASS M, DESCRIPTION i COMMENTS
13 3 k103 .10 Salee 1y 3slam v
c_SIZE IFLD lUSED To vauw Trem 1eaers
.

- FIRSTITEM ADCON ETARTVAL LOC OF [ST CHAR OP Y AR/ABLE PORTION |

= \NOXA murlL : Gl 5 DEX PCINTER

Situation 9, Figure 9B

size of the current item is often known, this number can be used in
conjunction with the index pointer to move the proper amount of
information to the output area. The pointer is then incremented by
that value to be ready for the next item to be placed in the output area.

ADCONSs are generally used to initialize the index pointers to the
first position of the variable portion of an input or output record.

It is also possible to use an index pointer to move all the data
up to the record mark terminating the record. The format for this
variation is:

MOVE index pointer name, RM TO work area name

A high-speed transmit will be assumed in this case. Recall that in the
definition of POINT the operand field contained HI, this indicates that
high-speed transmit will be used when this index pointer is used. If
increments of other than five characters are to be moved, SER will call

for a serial transmit moving data into or out of a variable length record.

QUESTIONS

1. How is an index pointer initialized to the address of the first
character of a variable length record?

2. How can variable length fields in random order be addressed
by name?

3. What is an RLIST?

4, How is an index pointer used in connection with output?

Answers - Situation ©

The first position of the input is assigned a name on the Name
Description sheet. This name is then used as the operand for
an ADCON. The name of the ADCON is then used to initialize
the index pointer with a SET. .. EQ action operator,

By describing a working storage area in an overlapped manner
for each of the possible data formats and then testing a field of
the trailer item to determine which type of item is present.

A reference list is a series of arguments and functions (values),
used to provide function values based on a certain input argument.
In the example, if PARTCLASS is 01, the function is ABC CORP.
206EbH7 NYC.

The index pointer concept is used to fabricate variable length
output records. The programmer is responsible for maintaining
the proper value of the pointer.

CHAPTER 3

Sample Program Using 7080 DTS

The various capabilities of the DTS are demonstrated in the sample
problem below. The program is not a complete job: the data definition
is thorough but all the tables to handle the entire payroll application are
not shown. For example, many of the fields defined are not referenced
in the procedure portion of the program. Nevertheless, the sample
program will illustrate most of the features of the language for both de-
fining the data and the processing.

The sample program was written to serve three purposes, (1) test
the language to provide feedback on the adequacy of the language, (2) pro-
vide a test probl.em to check out the processor and (3) as an illustration
to be used in this manual.

To illustrate how a 7080 DTS program looks at various points in
time, different formats are used to show the program. The first few pages
show the sheets used to initially prepare the data definition, including the
Decision Table Name Description sheet and the 7080 IOCS File Macro-
Instruction sheet. The remainder of the data definition is shown as it
appears after the cards have been key punched and listed on a printer.
Likewise, the first few decision tables are shown on the coding sheets

(photo reduced), the remainder are shown as they appear on the listing
produced by the 7080 Decision Table System processor (also reduced).

These two listings (data and decision tables) will constitute the documen-

tation the user will receive when using the programming system.

The following list is an index to aid in reviewing the sample problem.

Type of Material
Autocoder

Autocoder Table

AP T e Y e

| Program Identific ation

BEGIN
TIODEFIN

Input/output
File Description

Input Master

I0CS

File Content

Output Master

Input Transactions
Pay Checks
Termination Checks
Exception Record

Miscellaneous Reports

Payroll Register

Core File
Description

Variables

List and Expression
Description
Decision Tables

Control Info
New Hires

Part 1 of a new master
Part 2 of a new master

Delete Master
Work Card
Termination Record
Master Work Area

| Pay Check Record

| 0005, 0008

g
tel
o
=
o

1
—

S RS S Sl e

LWWWWWWWWwW «ww
o ' - e
w .
! <
'

= R s 0O O €O O 00 Oy O

Dk WwWWNhNDMDHE PO O

Qoo LW W Wwwwow
& e % e
=

o
—
|

!
i
|
|
4
!
Description !
|
|
|

0010
0020, 0025, 0030

——

0009, MASTRINGOF, TRANSINEOF,

I

I

|

0031, 0050, 0051

0080, 0061, 0062

i

Report Writer *
Table |
Autocoder Tables !

EOFMROUT, EOFTROUT (0070),

GETTRANS, SEQTRANS, GETMASTER, !
 SEQMASTER

PUTPAYREG
9900, 9901

- 3.2~

.

R

G L (Lo |Co
D
—=

W o
(W]
=

r-u'i.l N Whal LA .m_' % —__—““~'m- : m-“:::u "
I TE | Ri202
e MODEL! §
s aLr_W
+— | —
IBM 7oe0 DECISION TABLE NAME DESCRIPTION SHEET PROGRAM
|7 Tasut AT
1..[:""';. “H&]ﬁﬁlﬂ] Abl - ~j PREPARED BY
e oo JOXOLR = Pace
B C: NEXT PAGE
FI-N ‘Lcuu _w" SR TIoN = ..
z ENT?
= 25000
: P
1: - Jr
= & .
- su Tl :
- 0| 2ax
: SU | W
i ASY !
L2 ASU -
% Ay
S0 Qg . 7
" SU_10lax ‘
LS Syl s . *
i }i%_l) 12 2%
: ASY L3l 0r
: ASU 14
X TR TABOOO%

-3.3 -

IBM 70s0 DECISION TABLE NAME DESCRIPTION SHEET PROGRAM

=% | Liwe : i—!_ b :-.ol.' LT TARLE wasmE s
! L!RHM&JEW&LL e Mt
7 b m i PAGE
R e NEXT PAGE
Eﬁl |"I.'-L e Ty -n'"‘ sely DESCHPTION OO N
Dl (8 1 q .
i SN a0 - ‘
OTA P

X TA | [PACHEC KSa20004X,

TERNCHEC kS 008
- TA R
=i TA TMASTERZ.2I 272 O3,
TA | i -
OTA
aa 'f?pﬁ.fm
i LASN
4
L)
T I -
e] { 1 = B =
T2: 1
22 1 . " [i s . !
T4 ! i &%

FORM x:2-ulll PRINTED IN U, S, A,

7080 1OCS FILE TABLE MACRO-INSTRUCTIONS (LONG FORM)
PROGRAM:

CODED BY:

DATE:

03020 I0FTA [PAYWASTERENGSon'ORETURNTOLIORETURNTO,

TR - T
MASTRINEoFDH

H I @wbDD EORbL GIANDARDS TANDARDD
q;D Q%hawozuEOanNomsTANDEﬂIﬂlb. Ddﬁ‘!ﬂpi‘
o03c30 [e] 3 RUNI &QJ%)NOHEADER NOTM NONSTANDbB NORWDSD
LO 4 RUNZ2 O N NOTRAI LER
________________ —_— e | —— e —
<PR|ME>(5|NGLE>GEQQE!§J K_P R D . DU P - o - e s e b
R
- NOP R T MULTIb_ NONS Eouw.ﬁoo];‘)n -
03040

s3050 orrs CPRCATPnapt MLy dC K LI C i (DG s L EROn 7 Fanrzzan
S PROG

it et i GE T MASTEPIND b
—gnﬁ:?ﬂﬁwmw-
030 60

PAD BOTH BSDb
NOPA DELET _ WO RK
BOTH uog I:!‘:'w 8. -
____________ ON NONE O NE
CKLNGCMPCKLGP ~F
o oo
VERE RS H\oc Hk TNocmeP NODV

IBM 7020 DECISION TABLE NAME DESCRIPTION SHEET PROGRAM

; o DATE

PG I.INIZ clp IDENT TABLE NAME

1 ——’ - — PREPARED BY

C 007010 . R 1 L =5 = tioinai e s spii i
MERE 5|67 [s K E 1516 20 |21 30[31 74 PAGE

g~ s NEXT PAGE

PG }‘ LINE | NAME CLASS P:I‘JM;! DESCRIPTION n COMMENTS o
0.5!9.'95" FILE, |, [TAPE 2000, 2001, ., I50, g.HA.Rv MASTER RECORD FUIXED JANPUT,

M

- MASMM&ME

BT T 1

........
T * —

e e R R AT P e
bt} : —_—te

.._1_

LMANNO. . FLD . | 5N . u MA.bL NUMBER:, T ST DR R

MINAME, e LA AN NAME e

o . MISTATUSCD A STATUS, CODE, A- AQTI\/E T TI:RMIALATED -
" IINACTI\IEi IR S AP ST P

it loRG AN, s DREANIZAT,L.QN, NUMBER R
T _MISHIET B ey JSHLET EMPAOYEE, WORKS: o+ o rtratessssa
ol h..TELLﬁo_Cé.&C.MG vl QN ISOC AL SECORNTY, NUMBER o sttt i]

i_,_,{_‘USE.X,,, e i B N — SEX, QF, gm,E:LIQ,k,g,,,,,, el
' . MIBILRTHDAT L 6N . . IBLRTH DATE —)
> . IMIH[REDATE .ZM. p M LRE, (LN, DATE. s s

L MINEXTVACD

NEX.T, VACATI Ol\l .E.L,,[&._L.B.LLLLK_;DALE.

-MLDEDCODE.

Bl ICD

MMM%—‘%%%*—H—&+A- +—+——+—

o MLLANSDED) W s 52 W20 = D AU (U AL Y P O
e MU’\OA:N - :2‘ : e B + L-QAN ‘ ettt]

U L 1. 3. 62N (RIS ., | S . M(SC, DE.DU.CT(QNS PR S D SO SN N S
-—--'+— s s - B . FLD- + *J A‘+ﬂ— [R S e BL‘AN;K bbb ———t]
~* ‘I—‘ ¢ lNO‘QEEPFﬂNLE + —— ——+ O QEHMM%H—F&—H%—HA—H

L MIRATE
L oMLY TOHRS, |

¥ I— -

RATE & i i

............

| é#fo.aﬁ.%a 11. W A

YEAR-TO - DA E.HG{JE’_.S

p— ﬂ‘mmﬁir—ﬁ——l,—.—.—m

- ~MLYT.DPDWK |

rrrrr

!;Q—I;Q—mwf—*—.—v—fv—k—f—ﬂ-—f—o—w—!—fﬂ-—i— bttt

P VSR |
L

_MLYTDPDUWK. ... |

| :7#+:Q5¢':O¢25 f——t
;7#'{",0:5-:02._ bt 4

i
T

Y, .T, .1:1 PALD WORKED TUME 4 vt ittt b

L MIQTDMONEY

!7#'+0'5&'%O 2%- R

-+

_U.ARJ'ER :Ts() pﬁ-ﬂﬁ MONEY, PAETRENET

et

LR, 1 i UL U A 1 A DNt NN N [k B N M me o o et Imm ey Jiln | =1t 1 LA e e T 1% t ==t LA, D _
ettt t 1 t t =¥ + + = g syt t s —+ T et I.v.ll..l._
Pttt o t —— L | [B el i i e “..vJM__,4 t I e g +
B T o B B T S et S B L o TS | R
% —t—r——t————t + + — —+ Tt ——r———t—t—t—r——t + _ = e b
- —— Attt —+ +—— 1ttt —t—r r—r—4—- -
bt — -t Attt et =t ——t—t .T?%;iil
—t ————— -+ o e S t—t—t——t———r——+ t—+——+t +—+ -ttt + ' v - ——1
— 4+ttt b B ZUR S B e e e e o o e N e e oo e 2 : el s S I s
|
bbbttt et —+ . TLIMiL
A —— A —~—t—tt b 4 ettt i ..Thl
¢ ¥ Tt v ' - SUEE, S
bttt + e A e S S B o s e S ﬁ. L.
AR R .)3 1 G 2) | &“ :_w.dqmﬁﬂuﬁuw. At —————+ i + INTTTY @
b bt_.“7‘ u T ACJ\“__ “.«qm. H.E CMZ"..J_"_..\“E"{ +———t+—+—+ + .«N“_...\“ .wmn‘\ﬂﬁ.ﬁ,m” —t—t—t THRY :MJ..ET_rZ. - “4
=== +———t—————— 42 fw._fd. .,.‘.U. qm...uz;\.:._._qwﬂ =i =t .In_\....:u“:__.“"ﬁ..‘r.“?@ + J/._qm.?_xu])_ :d s 1.w.l._-
b fbb—+ + ../_»QV.J_T_" “.u_.wv.“u. ."_..s.L._\._CZ“d\ Lla.v,_}{& +————t—t + ",...4.% — .,..tm.. %lef - -.,:3... ' _ﬂ o~
———+ =ttt "»_..MV“DU.L.;._”._» + .d.Zu“J A_...,_/\. a _Zunxm.: 7:. =t -+ rﬁﬂ_,.u“;'_\.wﬁm_. =+ + ..,-AL_/J “E. + ”
MMM | o i -4 @ T = R g Iy 7 wuruf, 17
S S LS S S (eE wm:or Nt r-quf “ ' [0 EOF#T JAOSIHIVATIW =0
TS Qu p<43zauuﬁh TICCH 4».@?5\;} i TR O ES DOVSIHISTW I
e ST S OCH T FAVIT xgm MR ko) X i (rigl I OSTSYRTISTN
T T T ORI | YT IR T
" " VT ONTOIOR ITM QST R A Yo) oy w«kéu._izﬂ +._w;
v sc|0c czier itjor Bijst % [2F 2]

SLNIWWOD

NOILdI¥2S3a

"WAN

INVYN

NEA*

od

39Vd LX3N

oe L1
=t naa

39vd

A8 d3dvd3yd
aiva

1] 0E 1z] oz D zl 11 a[c[o] s e[z i
T L) T UL T T T L] T] T] T]] ¥ 1]] o P
m— - 3T e¥- _ +10[0°0- 61—
INYN ITISYL Anaal Q4o amn or_l‘
N

WY3O0ud

133HS NOILJIRMDS3A IWVYN 379V.L NOISID3A

0804 :mﬂ

08010 TITLE
080200UTMASTER IOFTA
08030
08040
08050
08060
o9e1ia FILE
09020MASTERQUT RNAME
1001OMOYTOWTAX
09030MOMANNO
0904LOMONAME
09050MOSTATUSCD
090640
0907AGMOORG
0908QMOSHIFT
09090MOSOCSECNO
09 100MOSEX
09110MOBLRTHDAT
09120MOHEREDATE
09 130MONEXTVACD
09 140MODEDCODE B¥TCD
09 150MOINSDED
09160GMOLOAN
09170MOMLSC
09180

09 190MONODERPEND
0920QMORATE
0921QMOYTDHRS
09220MOYTDMONEY
09230MOYTOPDWK
0924QMOYTOPDUNK
09250MO0QTOMONEY
10020MOYTOFEICA
10030MOSLHRSUSD
10040MOSLHRSACC
10050MOVACHRSUD
10060MOVACHRSAC

IOFTB

FLD

FLD

1007TOMOINSAMT

10080MOLGANRAY
10090GMOLOANBAL
10 100MOMDEDAMT

101 1QMOEND PRE

TERMINAL RECORD MARK

FILE TABLE FOR OUTPUT MASTER
PAYMASTEROO30RIORETURNTOR JORETURNTOTO IORETURNTO®m

HI oloRWDIRNONEaSTANDARDOTM

oSTANDARD nOHSKRWDO

NOPRIOS INGLEaSEQUENDONOCKPTRCDONODPuR

OPoDATAu9uSTACKECKLNGOCMPCKO2aGENAREAOFO 150015000

PUT oMASTEROUTuPAD9oNONEGNONED

TAPE 2102,2103

AMOEND
6(/04.02
5N

17A/

1A

5N
IN
9N
1A/
6N
6N
6N

2

N

1A/

2/
4(/01.03
6(/05.01
7(/05.02
7(/05.02
7(/705.02
7(/705.02
5(/03.02
5(/04.01
5(/04.01
4(/03.01
4(/03.01

5(/03.02
5(/03.02
6(/04.02
5(/03.02
1

a3 B -

150 CHAR MASTER FIXED OUTPUT

Y-T-D WITHOLDING TAX
MAN NUMBER
MAN NAME

STATUS CODE,A-ACTIVET-TERMINATED

[-INACTIVE
ORGANIZATION NUMBER
SHIFT EMPLOYEE WORKS
SOCIAL SECURITY NO.

SEX
BIRTH DATE
HIRE DATE

NEXT VACATION ELIGIBILITY DATE
DEDUCTION CODE

INSURANCE

LOAN

MISC

BLANK

NO.OF DEPENDANTS

RATE

YEAR-TO~DATE HOURS
YEAR-TO-DATE MONEY

Y-T-D PAID WORK TIME

Y=-T-D PAID UNWORKED TIME
QUARTER TO DATE MONEY

Y-T-D FICA

SICK LEAVE HOURS USED

SICK LEAVE HOURS ACCUMULATED
VACATION HOURS USED

VACATION HOURS ACCUMULATED

AMOUNT FOR INSURANCE DEDUCTION
PAYMENT AMOUNT FOR LOAN

BALANCE OF LOAN
AMOUNT OF MISC. DEDUCTIONS

7080TP

12010 TITLE FILE TABLE FOR INPUT TRANSACTIONS
12020 INTRANS IOFTA TRANSACTINOOOOOIORETURNTOOIORETURNTOOTRANSINEOFO
12030 Al oloRWDT1oNONEaSTANDARDOTM oOSTANDARD OHSKPRWDD
12040 PRIMEOS INGLEOSEQUENONOCKPTRCDaNODPOn
12050 IOFTB IPoDATAu8nSTACKOCKLNGOCMPCKO2aGENAREAODFO80n800n
12060 GET OTRANSINONONEDEQOF9SOoNONED
13010 FILE TAPES 210052101 80 CHAR FIXED TRANSACTION INPUT
13020TRANSIN RNAME ATIEND
13030TRCD FLO O2N TRANSACTION CODE
13035TRMANNO 5N
13040 T2A
13050TIEND 1
7080TP
14010 TYTLCE FILE TABLE FOR PAY CHECKS RECORDS
14L020PAYGHEGKS IOFTA REGPAYCHKSOO10oIORETURNTOoIORETURNTOOIORETURNTOO
14030 HI OOoRWD IoNONEoSTANDARDETM nSTANDARD OHSKRWDO
14040 NOPRIOSINGLEaSEQUENEGNOCKPTRCDaNODPano
14050 IOFTB OQOPoDATAmSOSTACKOCKLNGOCMPCKO2uGENAREABDFO095809500
14060 PUT oREGCHECKOPAD oNONEONONED
14070 FILE REGULAR PAY CHECKS- 95 CHARS~TAPE 2004
T40BOREGGHECK RNAME ARPAYCKEND
14090 FLD @93A
14 100RPAYCKEND 2
_ 708071P

15010 FTETLE FILE TABLE FOR TERMINATION CHECKS
1502QTERMCHEEKSIOFTA TERMCHECKSRO10OIORETURNTOUIORETURNTORIORETURNTOR
15030 HI oQoRWD IoNONEGSTANDARDuTM ©OSTANDARD OHSKRWDO
15080 NOPRIOS INGLEOSEQUENENOCKPTRCDaNODPaD
15050 IOFTB OQOPuDATAoIoSTACKOCKLNGOCMPCKn2uGENAREAOFu(Q95n0950n
15060 PUT oTERMCHECKOPAD oONONEONONED
15070 FILE TERMINATION PAY CHECK = 95 CHAR RECORD - TAPE 2005
15080 TERMCHECK RNAME ATCHECKEND
15090 FLD 93A
1S10QTCHECKEND 2

- _ 708071P
16010 TITLE EXCEPTION RECORD FILE
16020EXCEPTIONSIOFTA PAYROLLEXPoOOI10oIORETURNTOOIORETURNTOOIORETURNTOD
16030 HiI oQoRWDI1oNONEoSTANDARDoTM @oOSTANDARD ,0HSKRWDO
16040 NOPRIOS INGLEOSEQUENONOCKPTRCDoNODPuODELAYOPEND
16050 IOFTB OQPoDATAOIaSTACKOCKLNGoCMPCKO2oGENAREAOFo080o(08Q0O
16060 PUT BEXCEPTRECOPAD9ONONEONONERD
16070 FFLE EXCEPTION RECORDS- 80 CHARS FIXED- TAPE 2104
1608B0EXCEPTREC RNAME AEXPRECEND
16090EXCEPTINFOGNAME EXCEPTREA
16093EXTRCODE FLO 2N EXCEPTION TRANSACTION NUMBER
16095EXTRMANNO 5N MANNO
1609TEXCEPTREA 25A EXCEPTION REASON
16099 b7
16 10QEXPRECEND 1

-3.9 -

rT080TP

17010 TITLE MISC REPORTS FILE
17020MISCRPTS IGFTA MISCREPORTOO10olORETURNTOOIORETURNTORIORETURNTON
17030 HI oQURWDIONONEoSTANDARDGTM OSTANDARD OHSKRWDH
17040 NOPRIOSINGLENSEQUENGONOCKPTRCDBNODPRDELAYOPEND
17050 IOFTE OPuDATAD20STACKOCKLNGECMPCKu2aGENAREACGFOOB80a08000
17060 PUT oMISCRECOPADYONONEGNONED
17070 FELE MEISC REPORT RECORDS - 80 CHARS FIXED =TAPE 2108
17T080MISGREC RNAME AMISCRECEND
17090Q FLD 79
17100MISCRECEND |

70801P
18010 TITLE PAYROLL REGISTER =
18020PAYREG IOFTA PAYROLLREGEOV10DIORETURNTODOXXXXAREOROIORE TURNTOUD
18030 HI o1ORWDIONONEoSTANDARDOTM oSTANDARD oHSKRWDO
18040 NOPRIGS INGLEOSEQUENTGNOCKPTRCDONODPTD
18050 IGFTB OPuDATAoBaSTACKONOCHKaoCMPCKO2oAREAGIVoFo125a1250m
18060 IOFTC 2uNOCHKOCMPCKoNOOFOPAYREGREC 1uPAYREGREC 20
18070 FFLE PAYROLL REGISTER RECORD AREAS-USED BY REPORT WRITER
18080PAYREGREC IRNAME APREGRIEND TAPE 2002-2003
18090 FLD SO
181QGPREGR 1END 1200 PAY REGISTER REC 1 ENn
18110 PRE | GROUP MARK TO STOP WRITING AREA 1
18120 FILE PAYROLL REGISTER RECORD AREA2 FOR uevonr WRITER
18130PAYREGREC2RNAME APREGR2END
18140 FLD 50
1815GPREGR2END 1200 PAY REGISTER REC 2 END
18160 PRE 1 GROUP MARK TQ STOP WRITING AREA 2

- 3.10 -

3007000 QGUITABLE

31010 FILE
3102GTRCOOO RNAME
310307C0G FLO
31040 TCODUMMANNO
31050TCCUTCFDATGNANME
31060TCCOYR FLD
31070TCCOMO
310807CCODA

3109GTCPAYDATE GNAME
311007CPDYR FLD
31110TCPDMO
311207TCPODA

31130

31140TROCEND

CORE FILES

HOLD AREA FOR TRANSACTION OO0O-CONTROL INFORMATION

ATROOEND

2N

5N
TCCODA

2N

2N

2N
TCPDDA

2N

2N

2N

60A

1

RECORD MARK

TRANSACTION CODE 00

DUMMY MANNG OF ZEROS FOR SORT
PAY PERIOD CUTOFF DATE

YEAR

MONTH

DAY

PAY PERIOD PAY DATE

YEAR

MONTH

DAY

708071P

32010 FILE HOLD AREA FOR TRANSACTION O1 =NEW HIRES
3202QTRCODO1 RNAME ATRO1END

32025TRCDIPARTIGNAME NHRATE GNAME FOR SETUP OF NEW HIRE MASTER
3203Q7CO01 FLD 2N

32040NHMANNO 5N

32050NHNAME 17A/

3206QNHSTATUSCD 1A

3207ONHORG 5N

3208QNHSHIFT IN

3209QNHSOCSECNO ON

32 100NHSEX 1A/

32110NHBLRTHDAT 6N

32120NHHLREDATE 6N

32 130NHNEXTVACD 6N

32 14QNHDECCODE BETCD

32150NHINSDED 1

32 160NHLOAN 2 INVALID FOR A NEW HIRE
321 70NHN1SC b

32180 FLD 1A/

3219QNHNCCEPEND 2/

32200NHRATE 4(/01.03

322 10NHINSAMT 51(/03.02

32220NHMDEDANMT 5(/703.02

32230TROVEND 3

-3.11 -

7080TP

33010 FILE CREATE MASTER TRANSACTION 02,PART 1 OF A MASTER
33020 TRCDO2 RNAME ATRO2END
330307C02 FLD 2N
33031CMPART] GNAME CMYTDHRS
33040CMMANNO FLD 5N
33050CMNANE 17A/
33060CMSTATUSCD 1A
3308QCMORG SN
3309QCMSHIFT IN
33100CMSOCSECNO 9N
33110CMSEX 1A/
33120CMBLRTHDAT 6N
33130CMHEREDATE 6N
3314QCMNEXTVACD 6N
33150CMDEDCODE BETCD
33160CMINSDED 1
33170CMLOAN 2
33180CMMLSC 4
33190 FLD 1A/
33200CMNODEREND 2/
33210CMRATE L{/01.03
3322QCMYTOHRS 6(/05.01
33230CMMDEDANMT 5(/03.02
332LQTROZEND 2
_108071P

34010 FFLE CREATE MASTER-TRANSACTION 03,2ND PART OF A MASTER
34020 TRCDO3 RNAME ATRO3END
340307C03 FLO 2N
34040 1A/ BLANK FOR LEFT PROTECTION
34050CMPART2 GNAME CMLOANBAL
34060CMYTDMONEYFLD 7(/05.02
35070CHMYTDPOWK 7(/£05.02
34L08GCMYTODPDUNK 7(/705.02
34090CMQTDMONEY 7(/05.02
34 100CMYTOWTAX 6(/04.02
34110CMYTDFICA 5(/£03.02
34 120CMSLHRSUYSD 5(/04.01
34130CMSLHRSACC 5(/04.01
34 140CMVACHRSUD 4(/03.01
34 150GCMVACHRSAC 4(/03.01
34160CMINSAMT 5(/03.02
34 170CMLOANPAY 5(/03.02
34 180CMLOANBAL 6(/04.02
3u190TRO3END 4

: 70801P
35010 FILE TRANSACTION O4 — DELETE MASTER
35020 TRCOO4 RNAME ATRO4END
35030TCOM FLO 2N
350400DMMANNO 5N
35050 72
35060 TROMEND 1

-3.12 -

7080TP

TRANSACTION 07 - WORK CARD,

36010 FILE
36020TRCDO7 RNAME ATROTEND
360307CO7 FLD 2N
36040WCMANNG SN
36050WCORG 5N
36060WCSHEFT IN
36080WCPAYINLIUV 1A
3609QWCPAYADVAN 1A
36100 1A/
36 110WCAGCTHRS 4(/03.01
36120WCOTHRS 4(/03.01
36130WCVACHRS L(/03.01
36 14AWCSLHRS 4(/03.01
36 150WCHOLIHRS u(/03.01
3616QWCPLLHRS 4(/03.01
36 17TQWCPADVHRS 4(703.01
36180 35
3619QTROTEND 1

RECORD MARK
37010 FY¥LE
3702QTRCOCS RNAME ATROBEND
37030T1C08 FLD 2N
37040TMMANNO SN
37050 TMDATE 6N
37060TMSERVPAY 1A
37070 1A/
37T080TMSRAYAMT 5(/703.02
37090 59
3T7T100TROBEND 1

ro8orTe
TRANSA

= TERMINATION RECORD

TRANSACTION CODE OF 07
MAN NUMBER

ORGANIZATION

SHIFT

PAY-IN-LIEU CODE OF AN A
ADVANCE PAY CHECK IF AN A
BLANK

ACTUAL HOURS WORKED
OVERTIME HOURS WORKED
VACTION HOURS TO BE PAID
SICK LEAVE HRS TO BE PAID
HOLIDAY HOURS TO BE PAID
PAY=IN-LIEU HOURS
PAY-IN-ADVANCE HOURS

TIME WORKED,SICK LEAVE--

TRANSACTION CODE 08
MANNO
DATE

SEVERANCE PAY CODE- A IS YES

BLANK
AMOUNT OF SEVERANCE PAY

.13 -

IS A TERMINATIO

38010 FILE
3B020WAMASTER RNAME
38025WAMASPART ICNAME
38026 WAMASNHPT IGNAME
38030WAMANNO GNAME
38032WAMANNOY FLC
38034 WAMANNOL
38040WANANE
3805QWASTATUSCD
3806QWAORG
3807TOWASHIFT
38080WASOCSECNO
38090WASEX
38100WABERTHDATGNAME
38110WABDYR | FLD
38120WABOMO
38130WABODA
3B140WAHLREDATEGNAME
38150WAHDYR FLC
38160WAHDMO
38170wWAHDDA

38 1BOWANEXTVACDGNAME
3819QWANVYR FLD
3820QWANVNO
3821QWANVEA
38220WADECCODE BILITCD
38230QWAINSDED
3B240WALOAN

38250WAMLSC

38260 FLD
3827AWANODEPEND
3827TAWARATE
3827T9WAMASNHACCGNAME
38280WAYTDHRS FLOD
39010WAMASPART2GNAME
39020WAYTDMONEYFLD
39030WAYTOPDWK
39040WAYTCPDUNWK
39050WAQTDMONEY
39060WAYTDWTAX
3907AWAYTDFICA
39080WASLHRSUSD
39090WASLHRSACC

39 100WAVACHRSUD
391 10WAINSAMT
39120WALOANPAY
39130WALOANBAL

39 140WAMDEDAMT
39150WA01END PRE

rosore

MASTER WORK AREA-FOR SETTING-UP NEW-MASTERSJETC

AWAO1END
WAYTOHRS
WARATE
WAMANNOL4

OIN

LN

17A/

1A

5N

IN

9N

1a7
WABDDA

2N

2N

2N
WAHDDA

2N

2N

2N
WANVDA

2N

2N

2N

1
2
"
1A/
2/
4(/701.03
WAMDEDAMT
6(/05.01
WALOANBAL
7(/05.02
7(/05.02
7(/05.02
7(/05.02
6(/04.02
5(/03.02
5(/04.01
5(/04.01
4(/03.01
5(/03.02
5(/03.02
6(/04.02
51/03.02
1

GNAME FOR SETUP OF NEW HIRE MASTER

BIRTH DATE YEAR

MONTH
DAY
HIRE DATE YEAR
MONTH
DAY
NEXT VACATION DATE YEAR
MONTH
DAY

GNAME FOR ZEROING OUT NHIRE ACC FLDS

-3.14 -

7080TP
40010 FILE PAY CHECK RECORD-BOTH REGULAR / TERMINATION
B0020PAYCHECK RNAME APCHECKEND
L003GPCMANNO FLD SN

4OOLQAPCNAME 17A/7

40050PCORG 5N

4OOG6QPCSHIFTY IN.

4007APCCUTOFFDA 6N

400BAQPCPAYDATE 6N

40090 1A/

LOTOOPCHOURSHK L(/03.01 HOURS WORKED IN THIS PAY PERIOCD
4OT110PCHQURSPD 4(s703.01 HOURS PAID IN THIS PAY PERIOD
4O12QPCGROSS 7(/05.02 GROSS PAY FOR CURRENT PERICD
40130PCNET 7(/705.02 NET FOR CURRENT PERIOD
LOTLQPCWTAX 6(/04.02 WITHHOLDING TAX FOR CURRENT PERIOD
LO15QPCFECA 5(/03.02 CURRENT FICA

LOT60PCLOANDED 54/703.02 CURRENT LOAN DEDUCTION
LOT70PCINSDED 5(/03.02 CURRENT INSURANCE DED

40 180PCMLSCDED 5(/03.02 CURRENT MISC DED

40185 5A

40190PCHECKEND PRE 1
7080TP

I
Ca
[
n

1

5001000 0002VABLE VARIABLES

S002GCUTOFFDATEGNAME COYEAR DATE FOR PAYROLL REGISTER
S50030COMONTH PRE 202

50040 I=

5005QC0DAY 212

50060 1=

SO07ACOYEAR : 262

S500B0EOFSKS 8k7CO

S009GEOFONMAST 1 ON IF EOF HAS OCCURRED ON MASTER
SOT0QEOFONTRANS 2 ON IF EOF HAS OCCURRED ON TRANSACTNS
SO11G0RGDESCRIPFLD 15A DESCRIPTION OF ORGANIZATION

50120PAYDATE GNAME PODYEAR
SO130PDMONTH PRE 202

50140 -
S50150PDDAY 212
50160 i 1-
S5017GPDYEAR 262
50310 THTLE AREAS FOR SEQUENCE CHECKING MASTERS AND TRANSACTIONS

S5032QPREVMASNO FLD 5N
S0330GPREVTRANNOFLD SN

50340 TYTLE BITCD TO INDICATE RELATIONSHIP BETWEEN PREVIOUS
50350 TRANSACTION AND PRESENT TRANSACTION
S036QTRANSCOMP BFTCD

50370PTHEGH | PREVIOUS TRANS HIGH TO PRESENT
50380PTLON 2 PREVIOUS IS LOW TO PRESENT
50390PTEQUAL 4 PREVIOUS IS EQUAL TO PRESENT
50400DUPNASTER GNAME ADUPMASEND

50410 PRE 22DUPLICATE MAN NUMBER

S0420DUPMANNO 512346

SO430DUPMASEND 3

S044LQAMASSEQERR GNAME AMASSEQERRI

50450 PRE TRASTER

SO0L6QSEQERMANNO 512346

50470 : 17 OUT OF SEQUENCE

S504B8AMASSEQERR] 1

S50600NHCONZERO GNAME NHCONZERON ZEROES FOR NEW HIRE MASTER
50610 PRE 5200000/000000/000000/000000/000000/00000/0000/0G00/00:
5062GNHCONZERON 2800/00070000/0000700000/70000/

50630 TETLE MATH WORK AREAS

50640 PRE 01

S506S5QFICAWORK FLOD 05(/03.02 FICA WORK AREA

506600DEDWORK FLD 061/04.02 DEDUCTION WORK AREA

51010 TETLE REASONS FOR A TRANSACTION BEING AN EXCEPTION
51020EXREA1 PRE 25N0 MASTER RECRD

5103QEXREA2 25TRANS FOR NN NOT O7

S1040EXREA3 25TRANS FOR DELETED MASTER

51050EXREAL 25TRANS 02 WITHOUT AN 03

S1100EXREAS 25INVALID ORG FOR NEW HMIRE

S1110EXREAS 25TW0 TRANS 7 FOR 1 MASTER

S1120EXREAT 25INSUFF NET FOR PEDUCTION

-3.16 -

5501000 0003TABLE
55020 TITLE
55030
S50400RGYLIST VLIST
55050
55060
55070
55080
55090
55100 TITLE
55110
5S51200RGRLIST RLIST
55130

551k4Q

55150

55160

55170

55180

55190

55200

55210

55220

55230

55240

55250

56010 TITLE
56020 TOTALHRSPDME XP
56030

56040 TITLE
56050 TOTALMONE YME XP
56060 TITLE
5607TO0TOTALHRSWKME XP
56080 TETLE
56090CALNETPAY MEXP
56100 TITLE
56110CALWTAX MEXP
56120 TYTLE
56 130CALRICA MEXP
56140 TITLE
56150ENGBONUS MEXP
57010 TETLE
57020
57030SEXREXREA 1 SEXP
57040SEXREXREA2SEXP
57050 SEXREXREA3SEXP
57060 SEXPEXREALSE XP
57070SEXREXREASSEXP

S5TOBQSEXREXREAGSEXP
STO9QSEXREXREATSEXP

EXPRESSIONS

THE FOLLOWING VALUE LIST IS USED TO FIND THE
ENGINEERING ORGS THAT RECEIVE A BONUS
510000

11010

43200

45000

71000

82300

THE FOLLOWING REFERENCE LIST IS USED TO CONVERT
ORGANIZATION NUMBER TO A DESCRIPTION FOR A REPORT
05+ 15,0RGDESCRIP

10000,ENG. GROUP 1 A

10500, MANUFACTING 3 A

11010,ENG. SCHEDULING

25000,QUALITY CONTROL

33000,PRODUCTION CTL

43200,ENG. RESEARCH

45000,ENG. EXPERIMENT

S1000,PLANT SERVICES

61000,PLANT MAINT.

7T1000,ENG. PLANNING

B2300,ENG. DRAWING

85000,PLANT BUDGET

91000,DATA PROCESSING

CALCULATE TOTAL HOURS TO BE PAID

(/703.01 WCOTHRS # 1.5 /7 WCACTHRS / WCVACHRS /
WCSLHRS / WCHOLIHRS

CALCULATE TOTALMONEY - HOURS TIMES RATE
(/05.02 PCHOURSPD = WARATE

TOTAL HOURS WORKED IS OVERTIME HRS PLUS ACTUAL HRS
(/03.01 WCOTHRS / WCACTHRS

NET PAY IS GROSS MINUS WTAX MINUS FICA
(£05.02 PCGROSS = PCWTAX - PCFICA

CALCULATE WITHOLDING TAX

(/04,02 § PCGROSS - WANODEPEND +* 13.00 o = .18
COMPUTE FICA

(£03.02 PCGROSS = .03125

COMPUTE BONUS FOR ENGINEERING DEPARTMENTS
(/05.02 PCGROSS +« .03

JOIN TRANS NO., MANNO AND EXCEPTION REASON
FOR EXCEPTION MESSAGE RECORD

32JO0INZTRCD TRMANNQ,EXREA 1D

32JO0INSTRCD, TRMANNO,EXREA2D

32JOINZTRCOD, TRMANNQ, EXREA3D
SZJOINzTRCDlTRHQNNO,EXREA“B
32JOINETCO1,NHMANNO,EXREASD

32JOINZSTRCD, TRMANNO, EXREAbD
32J0[N!TC07.HCHANNO.E*RE#TH

-3.17 -

E@M —_— DECISION TABLE LOGIC SHEET Ttz "|

TABLE | TONMT | TamLE HERT T L T e
[we] B

|':' . |§!'I‘i’ £ FicaTion TanLE 1 Tami “I picai ORDER OF CONDITION ROWS
. O * ey . : 1
m&@mmpimm I B L rcoﬂmwe e
: ifgz [e ... ORDER OF RULES N
l-u!u.u. e s i e R e rTn :l){aia R O e o e o O e B I e T e e e
I._Wﬁ: R"“la‘wl: |] .1' I | | I | [| I O | T PREPARED BY PAGE
HIENE L.
l?if .!” . COMMENT] NEXT PAGE
0003 ‘I' T
| ITLE ART |_OF HOUBEKEERILNG ' START WERT €anoy D o' 15, Ponch B0 Gl o,
S ¥ el serion I”i RULE 1 RULE 7 RULE 1 RULE 4 | RULE 5 RULE &
2 2 [Fleee R 174 " 1 01|02 03]0alos]os] orfom Ton o[ne] a3l us]] [| w] o[21 2] 23 12 | s MEIEIEIEIme |
- s or maug Y or -gn‘l; or nant 3 or waut 2 or gga or wani 3
B EE9) sWede AL a 1R . W e et e} A el 0 A e 0 b W e © . --"nln..d".l o adles il bl e Lo L bt bt b el -
- T 15 1 - P e e
1’]"‘ ! *OPEN X i 2
a3 [B TATRANSCOME 1X " ;
* *MOVE P X ir 2
X TOPREVMASNO X
2t AMAVE BLANK TOPREV. TRAN . i
0 1 [MMaVE XL, [TAEQESWS ; 5
04 'DO
il GETHASTEQ = i I
10 |al) '
el I ety HER RECE ORDER OF COMDITION ROWS
i . ‘. %RSTQP ' jpoot ..élo_’;q;_’nill” . "":" -‘_: S ‘_ I
Ert T3 ORDER OF RULES .
ovages sdsuer . I I eI e e l‘l{al1-%‘1'1N19101|'1!*l¢h-h (42 stlos m v 53]1a vl
00 RUL l I |] I l EF BY PAGE
HE T COMMENT MEXT PAGE
0 TITLEPART 2 0F HOUSEKEEPING s “*“‘:“,"""““'.“"'“
T T TR RULE | RULE 2 I RULE 3 WULE & I RULE 3 RULE &
Rt vom = 01021 03] 0a0s[0s| o7 [ow Tos [0] v1] vaf1a] val ns va| w7 wa| w] 20[21|22 33 (2 J2s |2 [z 28] 29] 20 | 31 [32
MAME) WAME 2 ~— i or| wame3 or WaME 3 or Waut 3 or wane 3 or Wan 2
i e iy AT anaa FURRT FOL e B RN PR L C R EER U R PR T AL TR RO T | W04 3 e 30 0 W a0 @] 47 alfia anfas 47| of % 08 0] B0 B0 b6 55 S 30 00 0 a0 00| 2 o
Edp | TRen EQI Y | PR P 0 1508 0 I N O
R T e
° 2 "MOVE ITRaNGIN. . TdtRCDan . X
il TCYR TOCOYEAR
©5 [AMMOVE TACHMO TOAMONTH
20 MMoE [TCConA TACADAY. .
P INMOVE |TCPDYR., .. TdPoYEAR .. IX
> [Mave [TeToNg [T WX
°r MMove ITCIDNA TOPODAY. -
12 1*Do . |BETTRANS X .
1 [ar -['n-r . N L Y | sl ol 4R X
' 2 N80 TATARSTLP .
11 (A i oL N

-3.18 -

€3

PROG DATE “TABLE TABOOUY ELSE WULE OB NEXT TABLE ERROR TABLE TABOOTS PAGE NO 1
~ COWMENTS DETERWINE TRANS YYPE AND PROCESS L)
=T =-==-= STUB -=-=-=-=-= == 0T UZ 03 0% 05 06 OT 08 ToN
PG LW _ACTION NMAME | OP NAME 2 NO
6301 A TRMANNO VS MIMANNO ® GR EQ LR LR LR EQ EQ o1
5302 A TRCD EQ O O Y N N 02
6303 A TRCO EQ 02 . Y N 03
~— 5308 & TRLO EQ 0% O v ok
6307 A TRCD EQ OT . ¥
) % ¢
SOENSEEEARRERARRES L] - LLEL L] SRS RRORCRREOS RN RSN RERRERERARRNRRNRROERRRERREN
"X
___6310 A GOTD _TABOOOD® "X =
|| - X
6312 A MOVE TRCOIPARTI TO WAMASNHPTI e X
[) v ERD TO WAMASNHACC o X
4315 A GOTO TABOOIOD ° X
_T - :
__ 8317 A PUT _ MISCRPTS . X
] X
6319 A DO GETTRANS . X
1iF4)) X
5321 A __WOVE _TRANSIN TO TRCDD2 . X
¥ X
6323 A GOTO TABOD3D . X
AT e X
6325 A PUT EXCEPTIONS . X X
6326 A GO ABOODY . X X
__6330 A MOVE MASTERIN TO WAMASTER . X X
3 — PR DETE TRECE TABUU0Y ELSE RULE U8 WEXT TABLE —— ERWOR VAELE TRBOOTY — PAGE RO 7
T CUWNNERYS DETERWIWE TRANS TYPE AND PRUCESS [}
=== === S TUW oS- == T o UT Uz 0T O US U5 0T 08— b Ton
PG LN ACTION MAME | DOP NAME 2 NO
6331 A NOVE _ TRANSIN TO TRCDOT . X
] X
6333 A GOTO TABO06O . X
- x
6336 A GOTO TABOO50 . X
PROG DATE TABLE MASTRINEOF TAB ELSE RULE NEXT TABLE OO ' ERROR TABLE ' PAGE MO 1
COMMENTS A
~mmccema STUD =======-= 01 coN
PG LM ACTIOM NAME | OP NAME 2 "o
a0l A SET EOFOMMAST EQ OM o
6802 A GOTO [IORETURNTO .
PROG DATE TABLE TRANSIMEOF TAB ELSE RULE NEXT TABLE DO ERROR TABLE PAGE NO 1
COMMENTS i
- - = e === §TUB === = = - == 01 con
PG LM ACTION MAME | OF NAME 2 nO
6501 A SET EOFONTRANS EQ ON . x
6502 A GOTO IORETURNTD X
PROG DATE YasLe TABODIO0 ELSE RuULE MEXT TABLE FRAOR TABLE PAGE ND)
CORMENTS OHECR MEw HIRE FOR VALID ORG NUMBER -
s mesmma STUD =% ==-== - 01 02 coN
_ PG LN ACTION MAME | OF MAME 2 v0
6601 & NHORG €0 ORGYLIST oy M)
L1l '-'.....l.l.....‘-.-...-‘-..'.-.""'.....l.l-..l...I.‘l'....-...I»".......‘-.....'...-.'.....‘l
._‘“*gi_!___ﬁ'. EXCEPTINFO EQ SEXPEXREAS = X
A T EXCEPTIONS . x
608 A GETTRANS .]
[= e X x

TO TABDG20

-3.19 -

LT T S T T T weaman =1 r ry T TOEETET
- k2 i e 1' 'E] [- : i | ORDER OF COMDITION ROWS
! Ll [{

(RT3 L TR i e N T . -,h ﬁ! :"! g ﬂrn‘ !s“!ugn o) aJ‘ " .- I.nld,ﬂn;nnﬂ]n-
/o QEras imtmtﬂ P il | poy cowclosbew | | [[| { [[1 { 71 |
i: E I‘i | Incn':-l— ORDER OF RULES
e € ¢4 | i DATE
u‘;"L agraar [LLT S 2o 1 RE [LE 1T ﬂnuuﬂlldaia -ﬂ_-{n-m-' 30 02100 04 44 000 17 340 00 e 43 [o3 o fud] 47 ata® Pa]1 73]%3 0
| looay RULEIDRDER 1_ | PREPARED BY PAGE

IﬁT ADE N T
" COMRRIY MEXT PAGE

START NEXY caRD, Ov9- Cal's. 1-5, Punch 8 In Cal. &,
E b lel aemien | onl H RULE Y RULE 2 RULE 3 RULE & %{%&n RULE &
€| s waner |1 isiasws !: ”“ﬂ:-r’!ﬁ :: o ! M‘l:‘lllll [F] : 1| t::ﬂ:[’m u ; o[n[n[nlu|s][slo[s]oo]s]n]
e
L Lh b heke s vy e an-r-:--_-::_.in_ ‘--J_r“v 12 1 ve 40 20 900 9400 01 02 k0 ol el & @ = - —:‘:.‘..,.g:....,m"_':-
| X EquiaL . 190N Y T)
1. XL TRCD EQON Y
Y Jal e ——— e - = s - -
2 MOME WAMASTER | TAOMASTEROUT IX | IX x = '
05 [MPUT . IQUTHASTER X e -
0 ¢ *Mave TR . . ToMigcree . K. 1. g % e [IO R il 0 0 .
p 2 1NPyT Miscrers |l LTS .
o) [MQET EXCEPRTINEQER X
0 NPUr EXCEPTIONS! | X i P N O G
LI s TRANSIN . . [T Wy eyl X » 1 Do I 1
LLND0 . GETIRANS AR i 5
' 'G0 TOTARNaX] o | by i g =
2 %60 TOTARIo& |
1a [1 1
e
“FROG DATE TABLE VABO02Z5 ELSE RULE NEXV VABLE ERROR TABLE FAGE WO 1 v
= COWNENTS DELETED WASTER ROUT INE Ly V
-------- T AT) [S e
PG LN ACTION MAME 1 OP MAME 2 _ M0
1S ON Y N N ol
T00Z A PTEQUAL 15 ON . Y N iy L'T 4
Y005 A nuto TABO009 - . X
7 XCEPTINFO EQ SEXPEXREAZ » x
—1% A ruf EXCEPTIONS . X
7006 GETTRANS . XX
'io%f Eoru TABOO25 . ==
L BATE “TKBLE TABOOI0 ELSE RULE WEXY VASLE ERNON YRSLF FRCEWS T r
= WASTER TRANSACTION AND 3 L] v
B ST UB -=--=-+--+- o7 02 03 (4.7 g
Pl LN ACTION MAME | OP MNAME 2 1] -
7301 A '{%g_ull. és OFF .Y : : _{}
. .
...IIll..l...l:.ll!l-l.'.lglzi.llI.Il. seEsaRess LL L] aes ‘m____._lﬂ._'.l.l.l..l.’_‘.l.lllll..‘
“EXCEPTINFO EQ SEXPEXREAN » X X S
7304 n rul EXCEPTIONS dnxt K
[] TAB X X
7306 A MOVE TRANSIN 10 u 3 . x)
T 7307 A MOVE . x
7308 A MOVE CMPART2 10 n PART2 = X —
v WMDEDANT TO WAMDEDAMT » x
7311 A DO GETTRANS . : - _
-

- 3.20 -

L DATE —YasCE TABOOST EUSE WULE WEXY YEBLE EWNDN YISCY PIGE WU T

- m:,rmmm' L}
=-=====-= 3TUN --=-=-=-==-=010Z0Y T T

MO

0

v

0

PG LN _ACTION NAME | OP MAME 2
7501 A PTEQUAL 15 On

TQor

7505 A TACD o8

OO OO O O O N O L O O O N O O I I O O I L O O O O L L T L L L L T L T L]

T A MOVE TRANSIMN T0 TRCOOT
TS06 A GOTO TABOOAD

TS00 A GOTOD TVABDOSO

e S
TTABOGOY

- .le
= -«
- =<

e g

|

Sle ve oo ale
Rl

PROG ORTE TAGLEY - TABDoS0 ELSE ®wJLg NE¥YT TABLE ERAYTE TREIT TRAGEWO T
“CORAENIS " TEAMIRKTTON ROUTTRE WITHUUT & WORK TRRD = TR OT

.
T STUR —=—====s==0102 03 L]
PG LN ACTION NAME | OP NAME 2 LI}
01
—oT"

7601 A THSERYPAY EQ (Al
Te0TZR WAORG EQ ORGALTST
ssssdndnsosssscesonnncblinscsssnsnsninnen

. g
-
-
=

- . seen -

10
Toe02 A WOVE THMANND T0 PCHANND

ToDh A MOVE WAOR 0 PLOAG

FT
To06 A MOVE THDAT 10 PCCUTOFFDA
To0B A SET PCHOURSWA EQ ZERO

T410 A MOVE THSPAYAM 0 PCGROSS

Tel2 A SET PCINSOED EQ LERO

Telh A SET PCMTAX EQ CALWTAX

FITK
Tols A MOVE PCFICA T0 FICAORK
141]

S e e S S e e e e

7o 3 pa bl b 0] 5 el 30 el 0 el e 3l e B
P LR BB R R LR e

T6l8 A GOTO TABOOS!

FROG DATE TABLE YASOUST ELSE RULE WEXY VABLE TABGocq ERNON VABLE PAGE WO T

T CDRNENTS CONTTROE PROCESSTNG TERWINATTON

==-=-=--- STUF -=---=-=~--010208

T701 A THSERYPAY EQ (Al
L3

L}

Tow

PG LN ACTION __ NAWE 1 OP MAME 2 L1
A

ve

e
=<
<<

= {S0.00
TTOs A4 SET PCFICA = FICAWORK

i TT06 A SET PCMET EQ_CALNETPAY

i 7708 A MAYT /__PCGROSS

IT10 A SET YTOMTAX ; A

T712 A WOVE !liﬂﬁtl TO TERMCHECK
K5

7715 A DO PUTPAYREG

TTIT A PUT OUTHASTER

s ole ele ais ole sle s|e o|® sie o
20 el e 00 BEEME 3l 36 M{3C B 3 Bt
ba 3 e el 0 BEPDE 3| Je B 3G MG M

7719 A DO GETTRANS

-3.21-

- T PROG DETE TRBCE

“TRBUUSU ECSE WULE U7 WEXT TABLE TABUUST ENRON TEWCE

T CURNEWTS EDTY VRANSACTTON RO- T

= STUE®
PG LM _ACYION NAME 1 op NAME 2

== s = ====-UZ 0N OS UK US UT UT

L]
[1L]
O
7805 A WACACHRS 1§ POSITIVE =Y ¥ ¥ ¥ v o9
—ri%rr* WCOTHRS 5 POS *7T ¥ ¥ ¥y o T
TEOT A MCYACHRS |5 POS " Y ¥ Y Y Y 1
—TH08 A WCSLWRS TS POS "Y Y V V V T
TBOY A WCHOLIMRS 15 POS sY Y Y Y ¥ 03
TY ¥V V V¥ %
7011 A MWCPADVHRS IS POS oY ¥ ¥ X ¥ “
TS (0 BNN BN BN SN AN 4
___Te03 A WCPAYIMLIU EQ (A{ "N N Y ¥ N or
i - M i
. Y N
1 Chessannae g wes sene Teand . ¥ m‘%
TBIZ A WOVE WCPILHRS TO PCHOURSPD x
THEPADVHRS PO X
T8IN A NOVE IERQ TO PCHOURSP . X X X
TBIS A § U X% % K X X%
7818 A SET PCHOURSWK EQU TOTALMASWK & X X X X X
T8 AL =X X X X X
7818 A SET PCMET EQ ntuﬂur e X X X X X
L33 T K X X &
_ TB20 A SET__ PCFICA EQ CALFICA *X X X % x
Ta2 v K =X ¥ ¥ X %
gg; A :Ei :gzpigui :§ :}!ruu;g. .
TB25 A PUT _ EXCEPTI .
-

_ Te2s A DO GETTRANS

-
Ll - P

7825 A GOTO _TABOOGOD

3 —PROG -1 TRECE T VTKBUUBT ELSE WUCE WEXT TABLE TABOUSY ERRON VRECE e o L N
T CUWWENTS CONTTNUE YRANS 7 PROCESS : '
== = - = = = = STUN -----=---010Z07 0% CON T
PG LN ACTION MANE 1 OP MAME 2 0
L]
T903 A FIGAWORK «Y N ¥ N . ol
TYON K WCORG Y NN T A U7 v
PEONNEENSEEBNNNPENRERES L] NEsRssseRSRARRRERRE ROl . o deaid
= L1 1 LA x
T906 A SET PCFICA = FICAMORK L X
] =X X X X
T908 A MOVE WANAME TO PCNANE AR %X X % -
« X X K ¥
T910 A MOVE MCSHIFT T0 PCSHIFT "X X X X 2
"X XYY
T912 A MOVE TCPAYDATE TO PCPAYDATE e X X X X
« X X X
T91a A MOVE WALOANPAY TO PCLOAMDED- » X X X X
« X X X X
TOIT A SET WAYTOMOMNEY / PCGROSS «-X X X X
T X XX
T919 A SET NAQTDMONEY /7 PLGAOSS ek X X X
sk X XX
7921 A SET MAYTOMTAX / PCWiAX "X X X X 3
TU DRCUESCRIP ™ & T X
TOZ3 A MOVE WAINSANT 10 DE RK “X X X x
T TVI% kK SET DEUWNORK [AY s X X X
T92% A SET DEDWORK / WAMBDEDAMT » X X X X e

—COWNENTS COWTTHUE TWANS 7 PROUCESS
- 'L B T
=== - 3YU¥ --------0lT0Z0% & t“
PG LN ACTION MAME | OP MARE 2 =
01
8001 A PTEQUAL 1S _ON Y Y N T, o7
TY vV 03
DWORK LR PCNET "Y N N e e L A &
. l. w Eﬁi-'?tﬂn‘l‘hfﬂ'l‘::e_ Wdsnananans Besae
800N A SET PCMET - DEDWORK . x . X 4
-
A PUT EXCEPTIONS . X X casiiarae D s srs i o
i o7 PAYCHECK 10 REGCHECK 3 X X X X et
A P PAYCHECKS ~X X X = STy N ~ .
i .M.‘i—ug!—_MMW‘ et e T
8010 A MOVE TRANSIN T0 TRCDOA . : :
“TOT0 YABDOSU -
8012 A MOVE MAMASTER TO MASTERDUT e E K B e ey e e :
T OUTHA R St . X
GETMASTER . X % s S—————— = i = =
015 .—§ “GETTRANS R O -
OIS A GOYO YABOOO? . X x

- ae

UATE

TABLE EUFRROUT TA® ECSE WULE

3 PRUG- WEXT TRELE

~— CUWNENTS EOF WOUTINE FOR WASTER-GUTU EUJ-TRANS TS ALSU KT EOF

sTUE

- =======10T

PG LN ACTION MAME 1 0P NAME 2

8101 A EQOFONTRANS I5 ON

.Yy
FEYEY LL]

8102 A GOTO TABOOTO s X

T PROG

OATE TABLE EOFTROUT TABOOTO ELSE RULE

WEXT VABLE
N 0J ROUTTNE-ENTER

WHEM

PG LN _ACTION

OF NAME 2

o
-

5Tu
NAME |

TON
NO

8201 A E;ose INMASTER
6202 A CLOSE PAYCHECXS

203 A CLOSE TERMCHECKS
208 A CLOSE INTRARS

B205 A CLOSE OUTMASTER
206 A CLOSE EX

8207 A CLOSE MISCRPTS

#le e s|n w8
ECER S E]
|

PROGwL

FRUG UATE

3
v
T CUMRERTS ROUVINE TU GET & TRANSACTTION

PG LN ACTION

3 TUHE
NAME 1

oP

8500 A GET INTRANS

— PR0G DATE TABLE SEGTRANS TAB ELSE RULE WEKXT TABLE DO ERROR VABLE

PAGE WO

T

T COWWENYS SEQUENCE CHECH THE TRANSACYTONS

PG LM ACTIODN or NAME 2

aTuUnmn
MAME 1§

OF MARE 2

Ll
oP

T .RULE 02 RULCE 03

OF MAME 2

RULE RULE

TE U
NAME 2 0P NAME 2 OP

NAME 2

RULE
op NAME 2

[1:L]
NO

8601 A PREVIRARND vS TAMANNKG * LR EQ GR

01

L N P e T T T

L O T L e e T T e T
8602 A SET PILOW EQ - oN

L] O oF ON OF
8605 A MOVE TRMANNO TO PREVTRANND » X
-

HIGH oF [L]

3 e

PACE WU

- = e = ====07

STUOV¥
PG LM ACTION MAME 1 OF MARE 2

CoN

NO

8701 A GET INMASTER

LR
e

—FR0G DATE TABLE SEQWASTER TAB ELSE RULE NEKT VABLE 00 ERADR TABLE

[1 [3

PG LN ACTION

0P MANE 2

5TUB
NAME 1|

RULCE OT RULE 02 RULE UF
or NAME 2

OP NAKE 2 oP NAME 2

NOULE RULE
op MNAME 2 oP

8801 A PREVRASND w5 WIMANNO . LA E0 GR

8802 A WOVE

O L T e e e T e R L L

WIMANNO TO . PREVMASHD

SEQERMANND

LI
DUP HANND
w X

-3.23 -

Q00100R 9800TABLEPUTPAYREG

90020
90030PUTPAYREG
906040
20050
90060
90070
20080
90090
90100
P AR
90120
90130
90140
Q0150
90160
Q0170
90180
9Ci9q
90200
eaz10
90220
90230
90240
91010
21020
91030
91040
21050
91060
91070
91080
21090
91100
91110
91120
21130
91140
21150
21160
21170
91180
91190
91200
91210
91220
91230
91240
91250
92010
92020
92030
92040
92050

MOCE REPORT

DREPT PAYREG,PAYREGREC1,PAYREGREC2,X10,P¢54,120,EOQR,
PAHDG

CARRC 1

CONSTH2

CONST33P A YR O L L REGLSTER
PAHDG

CARRC

CONST39

CONST12CUTOFF DATE

WOATEOBCUTOFFDATE,

CONST11 PAY DATE

WDATEOBPAYDATE,

PAHDG

CARRC 0

CONST52MANNO NAME SOC SEC NO ORC DESC
CONSTS52 SH VACDATE NO.DEP RATE YTDHRS YTDMONE
CONSTI0Y VYTDWTAX

PAHDG

CARRC

CONSTS2YTD FICA SL ACC VAC ACC INS AMT LOAN BAL MISDED
CONSTS52 CURHRSWK CURHRSPD CURGROSS CURNET CURWTAX CURF
CONSTOLICA

DTAIL

CARRC

RECRDOSWAMANNO,

CGNSTO2

RECRD17WANAME,

CONSTO2

RECRDO9WASOCSECNO,

CONSTOZ2

RECRDOSWAORG,

CONSTO1

RECRDI50RGDESCRIP,

CONSTO3

RECRCOTWASHIFT,

CONSTO2

RECRDOGWANEXTVACD,

CONSTOS

RECROOZWANODEPEND,

CONSTOL

RECRDOGWARATE (Xe XXX (4

CONSTO1

RECRDOBMAYTDHRS s (XXXXXaX {4

CONSTO]

RECRDOIWAYTDMONEY s (XXXXXaXX (4

CONSTO2

RECRDO7TWAYTDWTAX, (XXXXaXX (4

DTAIL

CARRC

CONSTO1

RECRDOTWAYTDFICA, (XXXoXX (o

CONSTO2

-3.24 -

92060 RECRDO7WASLHRSACC,y [XXXXeX (4

9207Q CONSTO2

92080 RECRDO6WAVACHRSUDy (XXXeX (4

92090 CONSTO3

9210Q RECRDO7TWAINSAMT , (XXX.XX (,

92110 CONSTO2

92120 RECRDO7WALOANBAL » { XXXo XX (4

92130 CONST02

92140 RECRDO7WAMDEDAMT o (XXXo XX (,

92150 CONSTOL

92160 RECRDOSPCHOURS WKy (XXXoX (4

92170 CONSTO2

92180 RECRDO6PCHOURSPD, (XXXoX (,

92190 CONSTO2

92200 RECRDO9PCGROSS » (XXXXXoXX (4

92210 CONSTO1

92220 RECRDO9PCNET o (XXXXXoXX (4

92230 CONSTO1

92240 RECRDOBPCHTAXe (XXXXo XX (,

92250 CONSTO1

92260 RECRDOTPCFICA. (XXX XX (4

93010 BREAKO 1P,

93020 0 1WAMANNO1,

93030 CARRC 0

93040 CONST15

93050 TOTALTUPCGROSS » (£X o XXX ¢ XXX o XX (4
93060 CONSTO5

93070 TOTALI2PCHTAX, (XXX ¢ XXX XX (,
93080 CONSTO5

93090 TOTAL12PCFICAs (£XXXoXXXoXX (4
93100 CONSTOS

93110 TOTAL I4WAYTDMONEY, (£X¢XXXg XXXoXX ¢
93120 CONSTOS

93130 TOTALI2WAYTDWTAX o { £XXX ¢ XXX o XX (o
93140 CONSTO5

93150 TOTAL12WAYTDFECA, (£XXX ¢ XXX XX
93160 CONSTO1

93190CLRRTENTRYCLRPT _ [DENT

93200 MODE AUTOCODER

990100A 9900TABLE PROGHLT

9902Q TETLE HANDLE OBJECT PROGRAM HALTS
99030 TYPE (OBJECT PROGRAM HALT ENCOUNTERED (m
990LQ HLT)6000

99045 TR 8-5

990500A 9901TABLE PROGERR

99060 TETLE HANDLE 900 SERIES AND ANY AND TAR
99070 TYPE (900 SERIES,ANY,OR TAR CONDITION (m
99080 HLT 16001

99090 TR -5

99999F INAL END

- 3,25 -

CHAPTER 4

7080 Decision Table System Specifications

While this chapter is essentially a reference section, the general
characteristics of the system are explained initially. Aspects of the
system are defined and related to other aspects of the system so that
the system can be seen as an entity. This general description is fol-
lowed by detailed specifications, rules, and restrictions beginning

with the caption CONDITIONS.

System Characteristics

The specific operations needed to perform a data processing job
are specified through a set of decision tables. These tables reflect the
decisions of the system and the actions needed to produce the proper
results.

Three distinct procedure languages are permitted in the 7080
Decision Table System.

1. Decision tables

2. Autocoder III pseudo tables

3. Report Writer pseudo tables.

Procedure and operand descriptions are separate. Four operand
(data) description tables are used to define the operands used by the
program. A single form, the Decision Table Name Description sheet,

is used for the description of all operands except the 7080 IOCS File

-4.1-

Table form which is used to define input-output files. Various types

of operands fall into each operand description table.

0000 --

0001 --

0002 --

0003 --

I/0 FILES -- All input/output files used in the program
must be described in this table. This will include the
7080 IOCS File Table Macro-instructions followed by the
definitions of the records contained in the file. Field
definitions will define the format of the records as they
will exist in core storage. (Tape assignment entries will
precede the description of the various input/output
files.)

CORE FILES -- Working storage records are described
in this section. Table 0001 is omitted if not needed.
MISCELLANEOUS, VARIABLE -- This section is used
to define temporary locations for variables, switches,
address constants and index pointers.
MISCELLANEOUS, FIXED -- This section is used to
define arithmetic expressions, symbolic expressions,

constants, value lists, and reference lists.

The table form is the primary procedure form accepted by the

system. Two basic types of tables are recognized in the 7080 Decision

Table System -- "open" and "closed" tables. An open table corresponds

to normal programming or open subroutines which may be transferred .

-4.2 -

to by GO TO commands and in turn have GO TO's to indicate the next

table to be considered. They may also call on closed tables with the

DO command. Closed tables correspond to closed subroutines and

can only be executed when called by a DO command (corresponds to
Autocoder LINK), which controls the entrance and the exit of the routine.

A closed table should not have GO TO commands within it (it can have other
DO's, however).

Autocoder and Report Writer pseudo tables are auxiliary modes
accepted by the system and treated as closed tables. They are written
in their normal form with a suitable table header preceding each. Thus,
entry is permitted by the "DO table name" in a normal decision table.

In a decision table, conditions are written in the top portion,
actions in the lower portion. The condition and action stubs are to the
left, the entries to the right. The four quadrants are separated by
vertical and horizontal double lines. Table headers pertinent to the
entire table are written above the main body of the table.

Conditions, in the upper portion of the table, are written in
limited or extended entry form. Based upon the satisfaction of one or
more conditions, certain actions specified in the action portion of the
table are carried out.

Two categories of conditional statements are recognized by the

system: relational, where two values are compared for identity or

-4.3 -

collating relationship, and state, where values or switches are tested
to see if they are in a certain state; e.g., ON, POSITIVE, NUMERIC,
ZERO, etc.

Actions, in the lower portion of the table are used to assign values,
obtain input data, provide output data, and control the sequence of the
program. Actions, like conditions, can be represented in either
limited or extended entry form. In limited entry form an X in the entry
indicates "execute" while a blank means "do not execute"; while in ex-
tended form the second operand and sometimes part of the operator
appear in the entry.

A rule consists of one or more conditions followed sequentially
by one or more actions that are executed if all the conditions are
satisfied. These actions will be executed in the order written.

An analyst may explicitly indicate all possibilities to be covered
with a set of rules. When unexpectedly no rules are satisfied, an error
table named on the Decision Table Header will be considered.

When all possibilities have not been considered by the analyst,
and it is possible that the conditions of none of the rules will be satis-
fied, an ELSE or "all others" rule number is specified in the table
header. This rule number references a rule within this table in which
no conditions appear (an unconditional rule), but appropriate actions

are stated. An unconditional rule is used when certain cases have been

-4.4 -

written, but when they do not apply, the unconditional rule is executed.
An unconditional rule must, of course, be the last one considered in
executing a table.
The general form of the relational statement is:
Operand 1 Operator Operator 2
The operator may be:

EQ stands for is equal to

UN is not equal to

GR is greater than

LR is lesser than

GE is greater than or equal to
LE is lesser than or equal to
VS versus

Operand 2 can be used in the stub with an appropriate Y, N or
blank in each entry (limited entry form) as shown below:
STUB ENTRY
i’ Rule 1| Rule 2 RuleS‘l
MASTERID EQ DETAILID H Y 1 N |

Or operand 2 may occur in the entry itself (extended form).

STUB ENTRY

Rule 1 Rule 2

MASTERID EQ | DETAILID NORECORD

VS is used in the limited entry form to compare two values speci-
fied in the stub - then in the entry the other appropriate symbols are

used for the particular relationship with the implication that the symbol

-4,05-

is substituted for the VS in the particular rule; e. q. ;

STUB ENTRY
| Rute 1] Rute 2| Rule 3| Rule 4
MASTERID VS DETAILID | GR | GoR ‘ LR | EQ

In extended entry the relational operators (EQ, GR...) can be in
the stub (when the comparison is the same for all rules) or in the entry
as shown above.
The general form of the state condition is:
Operand 1 Operator State

Only two operators exist in this type of condition statement:
IS
NT (is NoT)

Four state categories are recognized:

1. POSITIVE (POS) (Either the full word POSITIVE/

NEGATIVE or the abbreviations
NEGATIVE (NEG) POS/NEG may be used.)

2. ON
OFF

3. ZERO
BLANK

4. NUMERIC

State conditions, like relational, can be written in either limited

or extended entry form.

-4.6-

For relational statements there are rules for comparison, and
for both relational and state conditions there are restrictions on the
operands or names which can be used. For a more complete explana-

tion see CONDITIONS.

Action operators are concerned with (1) the movement of the
value of one field or record to another field or record, (2) the movement
of data to and from input/output units, and (3) the control of the sequence
in which operations are performed.

Examples of the general forms of actions operators are shown

below:
MOVE Operand 1 TO Operand 2
SET Operand 1 EQ Operand 2
GET File name
GO TO Table name
DO Table name

Actions are spelled out more fully under Input/Output Operators,

Assignment Operators, and Sequence Control Operators.

-4, 7 =

Names

Operations are performed upon specified data which may be a
file, a record within a file, an associated group of fields, various types
of variable data fields, constants, as well as expressions which cause
data manipulations. Each of these is named and defined on one of the four
Decision Table Name Description Sheets (0000 . . . 0003).

A name may contain up to 10 characters in any pattern of letters
(A - Z) and numbers (0 - 9) with the restriction that a name must start
with a letter, and may not contain imbedded blanks, or special
characters. Names chosen by the analyst should be descriptive of the
value they represent to improve the communicability of the program.
Names are always written left justified.

Table Names -- Decision tables are named (or numbered) in the
table header which precedes each table. These names are used when the
table is referenced in the program.

A table name is constructed like any other name in the system
(10 alphameric characters), for example, GROSSTONET. If desired,

a table may be given a 4-digit numeric identification in the table header.

These tables may be referenced in other tables or within the table

itself by affixing this number to the letters TAB, for example, TAB0024,
TAB9621, etc. If a table has a name and a number they are considered

as synonyms.

-4.8 -

A data description table (0000. ..0003) may be given a table
name, but this name may not be referenced from another part of the
system.

Named Operands

FILE -- A file is a collection of one or more records associated
with an input or output device. The file itself is named and defined on
the 7080 IOCS File Table. The records which compose the file are
described on data description table 0000.

RNAME =-- Record names are assigned in data description table
0000 to identify the logical record (the amount of data delivered by I/O
operators),. and on table 0001 to identify working storage areas.

GNAME =-- Group names permit a continuous section of storage
to be given a name. GNAMESs are used in tables 0000, 0001 and 0002.

Variable Field Names -- These are names for signed and unsigned
numeric fields, alphameric fields, report fields to be edited, characters
used for bit switches, and preassigned value fields. When these fields
describe records contained in the I/O files, they are defined in data
description table 0000. For working storage records, they are defined
in table 0001, and when they define temporary storage locations they are

described in table 0002. The classes of variable field names follow:

- 4,9 ~

FLD - The name, length and special characteristics (such

as sign or decimal position) of numeric and alphameric fields is
specified with this class entry.

PRE - The name, length, special characteristics, and
specific values of preassigned variables are specified with
this class entry.

RPT - Report field formats are specified with this class
entry. Such editing functions as placing commas, decimal
points and dollar signs for printed reports are accomplished.
BITCD - One character variables are set up and their 1, 2, 4
and/or A bits named. Each named bit can then be used by
the program as an on-off switch.

PCON -- Permanent constants that are never or very seldom
changed, such as 3. 1416,are specified in data description table 0003
and classified as PCON.

ADCON =-- Address constants are utilized by closed Autocoder
pseudo tables and in developing initial base addresses when using index
pointers for operation on variable length input or output files (see below).

POINT -- Index pointers are designed in the system as
point names for fields containing a 7080 address. The address is
controlled by the programmer in manipulating variable length input/
output records.

Indirect Address Registers -- Ten pre-defined address constants,
tagged X0 through X9, are provided by the system. These may be used

to effect address modification in referencing data fields.

-4.10 -

ALTSW -- Alteration switches are named with his entry class.

Expressions -- There are two types of expressions: arithmetic
and symbolic. These are named and specified in data description
table 0003.

MEXP - Arithmetic expressions are specified in much the
same manner as for the MATH macro in the Autocoder
system. The expression name is referenced in the program,
thus calling for the proper computation. Arithmetic ex-
pressions are further explained in the description of

Table 0003.

SEXP -- Symbolic expressions allow several fields of data
to be treated as a single operand. Variable names, constant
names, symbolic expression names and literals may be
operands in a single symbolic expression. Symbolic ex=
pressions are further explained under Table 0003 in this
manual.

VLIST -- A value list consists of a list of constant values
that can be used in the condition section of a program' table. A value
list is named in data description table 0003 and described. It can then
be named as an operand in a decision table to see if the current value
of an input item is contained on the list. Value lists are further

explained under Table 0003.

-4,11 -

RLIST =-- A reference list provides a set of constant
arguments and values to be specified by the user. Reference lists
are named and described in data description table 0003. It is then
possible to determine if a particular argument is in the table and use the
function as the operand in an action. Reference lists are described more
fully under Table 0003.

Other Operands

The following operands can be utilized in the program without
being described on a Decision Table Name Description form:

Literals

A literal is the value itself rather than the name of a value (e.g.,
the value is expressed in the program, whereas constants are
described). Literal values up to 8 characters in length may be used
directly in the table -- when more positions are needed they are des-
cribed in the operand description as a constant. Two types of literals
are available -- numeric and alphameric.

Numeric literals must consist of all digits, up to 8 are permitted.

A sign may precede the value. An unsigned literal is considered to be
positive. If the value is other than an integer (whole number) a decimal
point must be included to indicate the number of integers and decimals.
Further, there must always be a sign associated with a value containing

a decimal point. The sign and point are not part of the literal value

-4.12 -

itself. No special symbols are needed to indicate that it is a numeric
literal.

No signs or decimal points are used with an alphamerjc literal

(the symbols . + and - may be used but they do not connote sign or
decimal). It may have up to 8 positions also, but to Idistinguish it from
names of values special symbols must surrouhd it. The single quote (')
symbol is used. This symbol is keypunched as #. Examples are:

|LGA|
128-T P8}

All symbols of the character set may be used except the quote symbol
which delimits the literal. A constant which contains this symbol may be
described in the operand description along with values that are more than
8 positions in length.

TABSTOP

A program can be halted by using the operand TABSTOP in a
GO TO statement, the "next table" position, or the "error table" in
the header. This will cause a dead-end halt in the object program. If it
is desired to do other than stop at intermediate points or at job com-
pletion, other programming must accomplish the waiting loép or what-

ever is needed.

Special Names

There are a number of'system words" which may be used by the

- 4,13 -

programmer without identifying them in the Decision Table Name
Description sheet. The use and meaning of these words is described
where they are used in the condition and action portions of decision
tables. The words are:

ZERO
BLANK
NUMERIC
NEGATIVE
NEG
POSITIVE
POS

ON

OFF

-4,14 -

CONDITIONS

Relational
As enumerated under systems characteristics the relational

operators may be:

EQ stands for is equal to

UN is not equal to

GR is greater than

LR is lesser than

GE is greater than or equal.to
LE is lesser than or equal to
VS versus

Both operands should not be literals, constant names, value list
names or reference list names. Operand 1 or operand 2 can be the name
of one of the following:

Variable name

Variable name, Xn

Group name

Group name, Xn

Arithmetic expression name
Symbolic expression name
Constant name

Literal (the value itself)
Value list name

Reference list name

Conditions may be in limited or extended entry form. VS is used
in limited entry to compare two values in the stub, with the appropriate
operators (above) in the entry. Xn is the designation of one of ten special
registers available for address modification (this topic is covered more

thoroughly later).

-4.15 -

Rules for Comparisons

For numeric values, if the number of decimal and integer

positions for both values agree, a simple comparison of values is
made. Otherwise, the value with the lower number of decimal posi-
tions is zero-filled in its low-order positions until the number of
decimal positions in both values agree. The value with the lower
number of integer positions is zero-filled in its high-order positions
until the number of integer positions for both values agree. For
example:

Operand 1 87654. 32

Operand 2 321. 98765
Three low-order zeros are added to Operand 1 and two high-order
zeros are added to Operand 2, giving:

Operand 1 87654. 32000

Operand 2 00321. 98765
The values are now compared, position by position. Note that all nega~
tive numbers are considered smaller than positive numbers. Further,
when two negative numbers are compared, the number with the smaller
absolute value is considered the larger number.

For alphameric values, if the number of positions in both values

agree, a simple comparison is made. Otherwise, the value with the

smaller number of positions is filled with blanks in its low-order posi-

- 4-‘16"

tions until the number of positions in both values agree. For example,
Operand 1 ABCDEF
Operand 2 ABCD
Two blanks are added to the right of Operand 2, giving:
Operand 1 ABCDEF
Operand 2 ABCDbDb
Comparison of the values is then made, position by position,based on
the collating sequence.

Conditions: State

Only two operators exist in this type of condition statement:
IS
NT (is NoT)
Only certain operand types can be tested to see if they are in a
certain state. Four state categories are recognized:
Variable name

IS POSITIVE (POS)
NT) | NEGATIVE (NEG)

1. { Group name
Arithmetic expression nam
Either the full word POSITIVE/NEGATIVE or the abbreviations
POS/NEG may be used. The value of the group name must have only a

single conventional sign indicator.

Bit switch name { 8 g ON
2.
Alteration switch name NT OFF

- 4,17~

Variable name

Arithmetic expression name { (18) { ZERO
3. {Symbolic expression name i | NT| B
{ Group name)
Variable name 1 18
B Group name) u/ NT‘ NUMERIC
Symbolic expression name | ‘

State conditions, like relational, can be written in either limited
or extended entry form. State conditions cannot use the address modifi-

cation feature of the system (X0 - X9).

ACTIONS

Input/Qutput Operators

The functions of the 7080 IOCS package will be available to the
7080 DTS user. The instructions which call for these functions will be
written in the decision tables themselves in the format of 7080 DTS.

The user may use the particular JOCS package that he desires.
The definition of the files and the functions required will be included in
the operand description portion. In general, the format of the
Autocoder system will be used in this regard.

Note: This specification will not attempt to make a precise defini-

tion of all the functions of the IOCS package or how they are to be

described in the 7080 DTS, or in fact, how it will operate in the

object program. (See Preliminary Manual--Input/Output Control

Systems for IBM 7080--No. J28-6188). It will suffice to

- 4,18 ~

indicate the input/output operators and format that are useable
in the decision table itself. Five action operators are recog-
nized in the input/output section.

OPEN... The OPEN command is used to tell IOCS to start the reading
of all input files, do the necessary label checking if called
for, and get the first block of information into the machine.
In the case of output files, label records will be created if
desired, and any other functions called for in the IOCS
package. No operands are required, since all files will be
opened by generated linkage to IOCS.

GET... This action operator is a means of providing the next logical
record of the file. Two forms of the command exist:

GET filename

GET filename IN recordname
The first command provides the next record in a working
area provided by IOCS. The second command, with two
operands, first moves the next logical record into the
working area and then a move command is generated to
place this information in the area identified by the record
name. The connector IN must appear in the action stub,
otherwise the second operand (record name) will be ignored.

End of file is reached when the last record has already been

-4.19 -

PUT... .

processed; transfer is made to the open table identified in the
file section of the operand description.
Deblocking of records is handled automatically with the GET
action. The I/O processor will insure that the next block
is read into the machine when a block is depleted. The user
need not concern himself about actual read commands.
The PUT action is the counterpart of the GET action on the
output side. Two forms of the command are available.

PUT filename

PUT filename FR (FROM) recordname
With the PUT filename command, the record in the output
area is released by the program and goes into the output
area to be written out automatically by IOCS when a block
has been filled. The user need not concern himself with
blocking of output records. The blocking factor itself is
specified in the operand description area.
The PUT filename FR recordname first causes the movement
of the information of a record area to the standard working
storage position of the file, and then to the output blocking
area to be written when the block is full. If no blocking is
called for, the PUT command will write the record as soon

as an I/0 device becomes available, The connector FR must

- 4,20 -

CLOSE...

appear in the action stub, otherwise operénd 2 will be
ignored.

This action is used when the program is finished with a
particular file. CLOSE must have as operand 1 the

name of the file to be closed. This file name must be

the name of a GET/PUT type file. In the case of input,
after doing any record counting or such called for in the
operand description, the tape is merely rewound. On

the output side, the last block will be written on the output
device, a tape mark and trailing label will be written, and
then the tape will be rewound.

This command will be available for putting out small
amounts of information either on the console typewriter

or on the on-line printer. Acceptable operands for this
command will be record name, group name, variable name,
constant name, literals, and symbolic exﬁression name. An
arithmetic expression is not an acceptable operand for
TYPE, since there is no way to move a group mark

immediately behind the expression to halt the type-out.

Assignment Operators

MOVE...TO... 'This operator is used in conjunction with two

operands to move the value of one field or record to

-4.21 -

another field or record. Several types of operands can
be used, but only the following combinations of operand 1
and operand 2 are allowed: |

1. MOVE Record name TO Record name

(Variable name
Group name
Constant name Variable name
2. MOVE /{ Literal TO

Arith, expr. name

Symbolic expr. name

\ Reference list junction

i

Group name

3. MOVE TO Bit switch name
OFF
ZERO Group name

4. MOVE TO (Variable name
BLANK Record name

Index pointer name
Index pointer name, RM
Index pointer name, Var. name

Index pointer name, xxxx
MOVEV TO Record name

Record name

Variable name ‘Index pointer name)
8. MOVEYV (Constant name TO {Index pointer name, xxxx

Literal {Index pointer name, RM j
Expression name

{Variable name} Xn TO { Variable name}

Group name Group name
7. MOVE

Variable na.me] TO {Variable name\

Group name Group name } ’

Operand 1 is always the name of the sending area and operand

2 the name of the receiving area.

-4,22 -

Record Movement

If records are to be moved, both operands must have
been defined with the RNAME class code. All I/O records
are a multiple of 5 characters (an IOCS requirement) and
s0 must be internal records defined for warking storage if
they are to be moved with the MOVE record name actioﬁ.
Also, they must end with a record mark since high-speed
transmit will be used.
Note: If a record does not have these characteristics, the
record can, in addition, be defined as a group (GNAME) and
then a MOVE group name TO group name can be utilized.
‘Field Movement

The second type of MOVE, the most common, is used
to move values from one field to another. The general form
and the permissible operands are shown below:

Group name
Variable name

Constant name Variable name
MOVE ¢ Literal TO
Arithmetic expr. name Group name

Symbolic expr. name
Reference list function

The MOVE group name TO group name command operates
in much the same way as the MOVE record name in that the
characters are peeled off from the left of the sending field

and placed in the receiving field starting from the left.

-4.23 -

The transmission of characters is stopped when the end

of the shorter area has been reached. This is comparable
to the normal Autocoder move. When the longer area is
the sending area, the excess characters are truncated.
When the shorter area is used as the sending area, the

excess characters of the resulting field are unaffected.

When information is being moved into a variable field,
special rules will be in effect. Again, the shorter of the
two operands, as specified in the operand description
tables, delimits movement of data. However, when
numeric data is being moved and operand 1 is the shorter
field, low-order decimal positions and high-order integer
positions in the receiving field are zero-filled up to the
number of decimal and integer positions specified in the
receiving field. For example:

Before the MOVE. .. TO... action:

Operand 1 987.65

Operand 2 6 integer and 4 decimal
positions specified

After the MOVE...TO,.. action:
Operand 1 987.65

Operand 2 000987. 6500

-4.24 -

When operand 2 is the shorter field, low-order decimal
positions and high-order integer positions of operand 1
are truncated to satisfy the number of decimal and integer
positions specified for operand 2. Before low-order
truncation, half adjustment will take place. For example:
Before the MOVE...TO... action:
Operand 1 98765. 4321

Operand 2 4 integer and 2 decimal
positions specified

After the MOVE.,..TO... action:
Operand 1 98765. 4321
Operand 2 8765. 43
When alphameric data is being moved and operand 2 is the
longer field, low-order positions of operand 2 are blank
filled. For example:
Before the MOVE,..TO,.. action:
Operand 1 ABCD
Operand 2 6 positions specified
After the MOVE, .. TO,.. action:
Operand1l ABCD
Operand 2 ABCDbb
When operand 2 is the shorter field, low-order positions

of operand 1 are truncated. For example:

- 4,25 -

Before the MOVE,..TO,.. action:
Operand 1 ABCDEF
Operand 2 4 positions specified
After the MOVE...TO... action:
Operand1 ABCDEF
Operand 2 ABCD
Numeric data can be moved either to a numeric field o? to
an alphameric field. When moved to an alphameric field,
the numeric field is treated as though it were an alphameric
field. Alphameric data can be moved only to an alphameric
field. When numeric data is moved, the sign of the sending
field (operand 1) is moved to the receiving field (operand 2).
When operand 1 is an expression name, the value of the
expression is computed, and then this value is moved to

the receiving field.

When operand 1 is a numeric literal, its decimal and integer
length is established as written. The rules for zero filling
and truncation of the receiving field are the same as for
other types of operands in the sending field. Note that the
total number of decimal and integer positions for a numeric
literal cannot exceed 8. When operand 1 is an alphameric

literal, its length is established as written. The rules for

- 4,26 -

blank filling and truncation of the receiving field are the
same as for other types of operands in the sending field.
Note that the number of positions for an alphameric literal

cannot exceed 8.

When the JOIN operator of a symbelic expressibn is used
to develop a field to be moved to another field, it will be
treated as a single value and hence, the ruleé for blank
fill will apply. Even if the value developed is all numeric,

it will be treated as an alphameric value.

A special situation exists in the case of moving a function
value from a reference list. In the condition area the argu-
ment and the table name are identified and a sea_rch is made
to see if that argument exists in the table. If it 'does, the
corresponding value is moved to the location indicated in the
first line of the table definition. This name can then be used
in the action portion of the table to obtain the value. If the
user has not tested to find out if the argument is in the table
in the condition area and he calls for the movement of that
data in the actions, the last value placed in this position will
be moved. It is the responsibility of the user to insure that

the proper value is there.

- 4,27 -

Setting of Bit Switches
The third kind of MOVE sets a Bit switch ON or OFF.,
‘ON)
MOVE } TO Bit switch name
(OFF)
The MOVE ON/OFF command can use only a Bit switch
name as operand 2. The effect of this is to turn a Bit on
or off such that it can later be tested in the condition area
or can be part of the output record.
Zero or Blank Fill of Operands
The fourth type of MOVE is used to zero or blank-fill
an operand named in the second operand position.
ZERO Variable name
MOVE TO < Group name
BLANK

Record name
The system will automatically generate the number of zeros

or blanks required to fill the receiving field. Anything
currently in the receiving field will be erased.
Variable Length Data Movement

The fifthtype of MOVE is used to move information out
of a variable length input record. It will be the responsi-
bility of the programmer to work through an input record
obtaining the pertinent input values and manipulating them as

required. Index pointers can be set up in the system to

- 4,28 -

assist the user in this regard. The pointer, in reality,

is a B-position signed field containing an expanded 7080

address. This address may be initializéu (presumably to

'ﬁhe beginning of the variable length portion of the récord).

{Field name } |
SET Index pointer name EQ
Adcon name

The address is then manipulated as trailer items and flelds

are moved out to a working storage area where they can

be addressed directly when the particular item is identified.

The value of the index pointer is maintained by the pro-

grammer using the appropriate arithmetic. The pointer

may be advanced by the length of the item just moved to be

ready for the next item, or if the record itself contains size

or number of occurrences information, these values can be

used to modify the index.

The MOVE operator is suffixed with a V (variable) to indi-
cate that this is a special move operation.
Index pointer name

Index pointer name, xoxx
MOVEV Mdex pointer e, RM D Record name

Index pointer name, Variable name
The xxxx can control the number of characters, or the record

terminating record mark can control the movement (RM option).

-4,29 -

Fabrication of a Variable Length Output Record

The sixth type of MOVE is used to fabricate a
variable length output record. This is also described
under Table 0000 in the operand description portion of

this document.

Record name Index pointer name

Variable name Index pointer name, xxxx
MOVEYV {Constant name TO ’

Literal Index pointer name, RM

Expression name Index pointer name, Var. name

When information is to be moved, and only an index pointer
name is given as operand 2, the length of the sending area
determines size. When the xxxx option is used, xxxx indi-
cates the number of characters. The RM option will transmit
data until a record mark in the sending area stops trans-
mission (sending area must be multiple of 5 and end in a 4
or 9 position). If a variable name (signed or unsigned) is
used, the number found in the variable name field will control
the number of characters moved. It is, of course, the
responsibility of the programmer to maintain the proper value
of the index pointer.
Generalized indexing

The seventh type of MOVE permits the use of predefined
address registers (X0 through X9) for effecting address

modification. The 7080 Decision Table System utilizes the

- 4,30 -

indirect addressing facility of the 7080 to accomplish
this. Indirect addressing allows address modifications
without changing the addresses of instructions within the
decision table, and allows the DTS to remain non-
introspective; i.e., the DTS does not modify its own
program.

{Field name, Xn } {Field name, Xn }

MOVE To
Group name, Xn Group name, Xn

In operation the 7080 DTS will supply the programer with
10 tagged pre-defined address constants (ADCON'S) which are
used to hold the addresses to be modified. They are tagged
X0 through X9, and are referred to as Xn in the description

that follows:

Initialization: Any of the Xn may be set to an initial address
by the SET or MOVE action command.

{Fiald name]
SET Xn EQ
Adcon name
{Field name
MOVE ; TO Xn
Adcon name

In the case of Field name the initial address will reference
the right hand end of the data field; when Adcon name is used,
the ADCON must contain a right hand address.

-431-

Modification of Registers: Any Xn, once initialized, may
be incremented or decremented by the SET or MOVE com-

mand (see two-address arithmetic).

SET Xn

+

Field name '
Arith. expression
Literal

Xn

+

Field name

MOVE ¢(Arith. expression
Literal

Note that the *, / (multiply, divide) operators may not be

used in stepping Xn.

The amount of the increment or decrement is determined by
the number of characters from the current right hand

address to the desired right hand address.

Using the Address Registers: Any Xn may be used to supply
the address portion of a command in either the condition or
action section of a procedure table, as follows. Both
Operand 1 and Operand 2 may be modified.

MOVE FLD1, X2 TO FLD 2, X6

SET FLD 3, X2 EQ ZERO
The Address Registers can also be used in the condition
portion of a table as noted earlier.

FIELD 1, X1 EQ FIELD 2, X2

TAG 2, X4 GR AERO

- 4,32 -

In each case, the field name preceding Xn supplies the
format of this operand, and the Xn supplies the address

of this operand. (It should be noted that the format

field will usually be the same data name used to initialize
Xn.) Therefore, only the address part of a commaéand can be

modified. The format (size) of an operand is fixed.

In any cases in which the MOVE or SET verb results in
instructions which require other than right hand addresses,
7080 DTS will automatically adjust Xn during execution.
Xn's value will not be changed itself, only its value with
regard to the instruction requiring the adjustment. There-
fore, the programmer need only be concerned with right

hand locations throughout a tabular program.

Restrictions: The address modification feature may not be
used with any of the input- output or sequence control actions

or with the following operand types:

OPERATOR OPERAND

MOVE, SET Any receiving field defined as
a RPT field.

MOVEV Neither. MOVEYV is a special

purpose action developed exclu-
sively for moving variable length
segments. It can be used with a
defined POINT only.

-4.33 -

MEXP, SEXP No member of a math or symbolic
expression may contain an indirect
reference. In addition, since
expressions are not generated
adjacent to each other (even though
defined one after another), address
modification may not be used to step
from one expression to another.

- 4,34 -

SET...EQ...

The SET...EQ. ..

command is the direct counterpart of the MOVE com-

mand. The MOVE command moves information specified in

operand 1 and moves it to the location named in operand 2; the

SET moves information named in operand 2 to the location named

in operand 1.

Otherwise, all rules for the SET... EQ...

operator

are as defined above with the MOVE command, except that there

is no SET V action operator.

L SET Record name
Variable name

2. SET { Index pointer name
Group name

3. SET Bit switch name
Variable name

4, SET (< Group name
Record name

Two-Address Arithmetic Operators

E@ Record name

Variable name
Group name
Constant name

EQ { Literal
Arithmetic expr. name
Symbolic expr. name
Reference list function

ON
EQ
OFF

(’ ZERO {
EQ ¢ ;
| Brawg)

Both the MOVE and the SET commands can incorporate two-

address arithmetic.

The following arithmetic operators are permitted:

+ (punched &) for addition, - for subtraction, * for multiplication,

/ for division.

- 4,35 -

The general form of the SET is as follows:

'Variable name

4
- |) Literal

ET Variabl j

S % B \ “/" | Constant name

(
| . . .
| | Arithmetic expression name

SET A+ B Means A« A + B
SET A - B A+—A - B
SET A * B A«——A * B
SET A/ B A«—A / B

The operands used for this action can be numeric values only.
Algebraic rules are followed when considering the sign of the action
operator in conjunction with the signs of the two operands. In all cases,
operand 2 operates on operand 1 with the appropriate arithmetic
operator and the value is then stored in the field named in operand 1.

The integer and decimal lengths of the receiving field, operand 1,
determine the number of integer and decimal positions in the total
resulting from the arithmetic. Thus, the decimal positions in operand 2
in excess of the number specified for operand 1 are first half-adjusted
and then truncated. High-order integer positions that result are truncated
before the value is stored in operand 1. Any carry from the high-order
position of operand 1 is truncated; thus, if the user desires to get over-
flow control he must use the arithmetic expression which gives him an
option for overflow protection.

The same rules apply for the MOVE command in doing two-address
arithmetic except that operand 2 is the receiving field and operand 1 is

the sending field.

- 4,36 -

Variable name -
Literal - g
MOVE Constant name % Variable name
Arithmetic expression name] \/
MOVE A+ B Means B + A—B
MOVE A - B B - A—B
MOVE A * B B * A—3B
MOVE A / B B/ A—B

Sequence Control Operators

GO TO... This operator is used to specify the next table to be executed.
It can be thought of as an unconditional transfer. The GO TO com-
mand can only reference an open table (one never executed under the
control of a DO - see below). This action can also reference the
special operand TABSTOP, which causes the program to come to
a dead-end halt. Three forms are available:

GO TO Table name

GO TO TABnnnn

GO TO TABSTOP

The user may refer to a table either by name or by its number

(if both are given in the header they are considered synonymous)
with the special prefix TAB for table. Tables are named and/or
numbered in the table header. The normal 'next table' or special
'error table' can be specified in the table header; when 'next table'
has an entry and the rule also has an entry, the rule GO TO will

take precedence.

- 4,37 -

DA, .. .

The GO TO action must be the last action executed in any
rule. GO TO must be written in the stub, the table name or number
may be written in either the stub or in the entry portion of the table.
This operator may only refer to a closed table. The table
referenced may be a closed decision table, a closed Report Writer
pseudo table or a closed Autocoder pseudo table. Report Writer
and Autocoder sections can only be executed by a call from a
decision table, utilizing the DO command. (The DO action can be
thought of as an RCV (exit point) TSL (entrance point)).

The general form is:

DO Table name
DO TABnnnn

The DO action calls for the execution of another table, entering
at the top (decision tables can only be entered at the beginning) and
returning after the last action of the rule whose conditions were
satisfied has been carried out. Closed tables (those executed under
the control of a DO) can also be unconditional (1 rule) tables for
carrying out a single procedure. Since the DO command also con-
trols the return to the original table containing the DO, the 'done'
table cannot have any GO TO commands in it. A DO table is noted
by placing the letters 'DO' in the 'next table' portion of the header.

It is permitted, however, for the 'done' table itself to have

DO's of its own calling on other tables or pseudo tables. This is

-4.38 -

called mesting.' It is important that a table not 'DO' itself

or any table above it in the nest. Any level of nesting is per-
mitted if the above rules are adhered to and the user can keep it
straight in his own mind.

After a table has been executed, control returns to the_
calling table (the one with the DO command in it) at the action
following the DO. If the DO is the last action of a closed table,
control will revert to its calling table. If it is the last action of
an open table, the 'next table' will be used to direct control to the
next table. The illustration below shows the action portion of a

rule calling upon two tables and then transferring to another

table.
H:Rule 4
D@ TAB 0012 | o e
— - —]
D@ 1 TABOOLS o !
GO TQ || TAB 0016

A '5 TA%]:OOIZ

- 4,39 -

The sequence of events is: execute table 0012, return, execute
table 0013, return, transier to table 0016.

A 'mext table" may not be specified in a closed table since
this is effectively a GO TO command, which is not permitted.

Also, an 'error table' may not be in a closed or 'done' table since
control might also be lost. The unconditional (ELSE) rule should
always be specified in cases where all possibilities are not covered
by the rules.

In summary, the GO TO acts like a normal unconditional
transfer to another open decision table (not a Report Writer or
Autocoder pseudo table). The DO acts like a RCV - TSL or LINK
macro to a closed subroutine. Certain characteristics, as noted
above, pertain to the nature of the closed subroutine. DO must
always be written in the stub; the table name or number can appear

in either the stub (limited form) or in the entry (extended form).

Decision Table Headers

The Decision Table Logic Sheet has four header entries--the first,

the table header, is required; the other three are optional. Asterisks

indicate that the entry must be filled in.

Table Header

* Pagel -2 Page is written in conventional Autocoder form.

Page may be either numeric or alphameric, and
written in ascending order.

- 4.40 -

—TT m g
-ttt -ttt -tttV T T T T T B
v| vl
g - — —— ™ el e
v| ZZ
+ ——— e — et S PR — g
. v| 0O
v &1
v g1
—t+t-t—t-ttrtr+—T—ft Tt =ttt ——r—t— T T T T T T T i
¥1 L)
v g1
vl s 1
- —t—t-tt——t——ttt Tttt —t—t—tt-—tT—trr1T—t—1t——1 et T e
v| ¥ 1
v) |
¥l 21
i ¥l L
- - —i e e —t Tt —— % Roge
v| e 9
e e e e S S S S S T ST N N A S A B T i] vl =0
-r~-tr--r—r--r—rr--tr—s-rs------ -+ttt t---—r-r--r-r-rfr—rr-rrrerertrrrt
v LD
‘ vl 90
¥y m.L.‘
v T T T L3 T T v T L T T T T T v v T £y T T al T ™ T T T T T T T T ™1 T LB A & T T ni s
7| v
™ T T Y T T T T T T T T T T T o an e T T T T T ™ ™7 T T T T T T T T T T T YTy g | L v
¥| £ 0
. _q [
r—t—t-—t—1r-—t—t——tt———t— -ttt B e e B A T = man e
4% G |c? 99 59 99 [CO 29 |19 09 45 D5 LS 95 (V5 #5 [0 £ |16 OF W wr [or Po|Gr pr(Cv £v (1v OF J6C SC 2C 9C [5C 00 fav 09 (20 09 K9 o9 K0 29 |10 0P |4 06 % W6 {55 15 [0S 25 (15 06 jar av v or e v |oe L [iv or joT 0T ke ot T g leE yERE IELT Tk LOBOBO EO[Z0 1Dy
Tanvm d0 T ANV 40 T aANVYN d0 TaAnYN 40 T AWVYN d0 T INVN 40
L AWVN 1 3INVYN ~ ~
[zef1e] oe |6z [8e [sz [z |sz|wve|ee 2z |1z faz |et Jor [41 [o1 [st [[evfer [ui]orTeo] eo|z0 [0 [so[vo[co]zo[to p woivusaols| w | 3
TERL] s 30y raind £ 310y R0 L3703 it) ot MR
08—SL "=, q EE-L 7,190 9
.o._uu_._._n_.ni.m.mn_...._nuw.!n.nuqu...xuz»c¢»m >) R . MLNEEPUIS T e gy s
3Ll gjooo
23 (§.-14 L1 1 Lo 0 €ojEoin
39vd LX3N = 3
LNIWNWOD NOILYDI4 5] %]2
“lAMIAI a - .
- . — - — —T T
e O e e A B e T S S A e I i S N L O aa gy oifst T B_x_ﬂn €920 10|
alva WYHO0ud |
$31n¥ 40 ¥3q¥O0 HOM wIta
ls30¥0laN0D thoo M...n_.._n(h
W5 15[05 0w gr|we Srpre Dv Dr Lr(0v 40 B0 S0P ST IrC CC[EE 10 PO 8L PE <L PO SE plCL L2 iLj02 wija TRk Lamges hn-.:m o8 ror VBT iTjor [LD
b) a3
2| N o 3
SAO¥ NOILIANOD d0 ¥3g¥O0 NOILY D14 u_ U aave | it I N wHo1LYIIe | oM
“lamIal | o WONHS ! LX3IN ITEvL -iiMB0I | 3VEvL

NOILYIldIANIa)
MYEDOMa

133HS D19017 318V1 NOISID3g

ILine3 -5 Line identification is written in conventional
Autocoder form. All header line numbers are 000.

Card Continuation (CC) 6 Zero in the table header. Columns
1 - 6 are used for sequence checking in 7080 DTS.

Type Two identification letters can be specified under
this column head which designate:

L - limited entry table (when using 2-column
entry columns)

M - mixed entry table (when using 12-column
entry columns)

No. Rules 8 -9 A count of the number of rules, including the
"ELSE" rule, is entered here. A maximum of 32
rules is permissible.

ELSE 10 - 11 The rule number of the rule which is to be executed
when none of the other rule conditions are satisfied
is entered here.

Table No. 12 - 15 If desired, a table may be given a 4-digit
numeric identification and specified in this area of
the table header. These numbers may be referenced
in other tables or within the table itself by affixing
this number to the letters TAB, for example, TAB0024.
If a table has a name and a number they are considered
as synonyms.

Identification 16 - 20 Always TABLE.

Table Name 21 ~ 30 A 1 to 10 character name. This name is
used to reference this table from some other table
or from within the table itself. A decision table must
have either a table name or a table number.

Next Table Name 31 - 40 For "open" tables this may contain the
identification of the next table to be considered. If a
rule has an explicit GO TO, the GO TO operand will
override the "next table™ designation.

For "closed" tables, the letters "DO" must appear
in this field.

- 4,41 -

Error Table Name 41 - 50 The name of the table to be trans-
ferred to when none of the rules is satisfied. Will
never be used if there is an ELSE rule specified.
An "error table" cannot be specified for "closed
tables"; the ELSE rule should be used.

51 - 74 Not used.

Program Identification 75 - 80 Normal Autocoder usage.

Order of Condition Rows Header

Page and Line 1 - 5 Same as above.
Card Continuation 6 Always 1.

Order 21 - 52 The order in which the programmer wants the condition
rows re-ordered for efficiency reasons. In general,
for execution speed, the most likely to fail should be
placed at the top; for least space, the rows with the
most blanks (not pertinent) should be placed toward
the bottom. Starting in column 21, two-digit numbers
corresponding to the row number are written indi-
cating the order. For example: If

01 AEQB!YN

02 CLED! N
}

03 E EQ FiY|Y|N|N

- LT el
is reordered |21 22 |23 24 |25 26| 27 the table
would be compiled as though it were written,

E BQ F|l ¥| v| ~n| N
A BQ B|Y|N
C LE D | v| N

A maximum of 16 condition rows may appear in a
single table.

- 4,42 -

b3 - 74 Not used.

75 - 80 Program identification.

Order of Rules Header

Page and Line 1 - 5 Same as above.
Card Continuation 6 Always 2.
12 - 20 RULECORDER

Order of Rules 21 - 74 The rules may be re-ordered by speci-
fying a rule order for efficiency reasons. The two-
digit rule numbers are listed in the order in which they
are to be considered. For execution speed, the high-
frequency rules should be moved to the left. The
ELSE rule must always appear last since it is un-
conditional. If all rules are not re-ordered, the
remaining rules will be taken in the order in which
they are written. A maximum of 32 can exist in a
single decision table.

75 - 80 Program identification.

Comment Header

Page and Line 1 - 5 Same as above.

Card Continuation 6 The first Comment card is 3; if others are
needed, the next would be 4, and so on up to 9.

16 - 20 TITLE

Comment 21 - 74 Any remarks or comment. The comment
will appear on the decision table listing.

75 - 80 Program identification.

-4.43 -

NAME DEFINITION

Names are assigned to operands to be used in the program.
These operands may be input/output files, records and fields, working
storage items, expressions, etc. The Decision Table Name Description
sheet is used to define these operands. This sheet is also used for
report specification and Autocoder pseudo tables. A suitable table |
header will precede and identify each of these sections, the TYPE entry
will indicate which kind (D for tables 0000, 0001, 0002, 0003, R for

reports, and A for Autocoder). The form is shown below:

DECISION TABLE NAME DESCRIPTION SHEET v
IBM ml'l DATE
- |ur]2 . o T raseE wane I J PREPARED BY
() |D O.QIg Ils 'HAALET !iﬂ J i
el N A e
3 WANE = '.“__Em T DECTP TioN R P COMBENTS af

-4.44 -

boMas xZienbll) W T

7080 10CS FILE TABLE MACRO-INSTRUCTIONS (LONG FORM)

PROGRAM: B CODED BY: DATE: = I
IORETURNTO _IORETUR NT O _—+—6f+t+Fh—F—
_________________ H 1 "?-RWDI eR++ ST AND ARD STANDARDSD
R Rl fnd o BDfs) T A TMb b o S—RebuC—fToAbi-b HS KRWD _
O«0 a O | |
-+=6— 3—“-&-1—& R - e o e S I e S SV V'Y wbmmn—b
+6— —4 RPN NONE G IRt b LLE R
________________ PRIME ST NG LE SEQU EN —KPFfBbuir —BtMpfe BFtrh¥-Off-i-
L il s = e e -GBE A Y b b
&L&D—ﬂ.—ln - IJNOCKPTRCDE[NODPD o
e e -
2
e
o
—

| P DAT A b CKLNG CMPCK GENAREA F
| OFT B o EDDSTACKU | o€ PmDulﬂE EI'E-V—DI,'EQ olzs oolo

Table 0000 - Input/Output Files

A completed table header line (table 0000) must precede the
first input-output file description. Subsequent input-output file
definitions are not preceded by a header.

Each file is described for IOCS using the long or short version
of the IBM IOCS File Table form. A segment of the program in
Chapter 3 is used to illustrate the use of the form. Note that lines
03020 through line 03060 correspond to the I/O File Tables A and B
on the 7080 IOCS File Table macro-instruction form shown on the

opposite page.

___LOZOOD OOOOTABLE - IOUDEFIN

01030 = 16€s. s A -

01035 __LASN @500 _ o o i
01040 IOTA _ INMASTERD2000820010

01050 _ ICTA PAYREGHE2002020030 N .
01060 . IOTA PAYCHECKSOD2004o =n B .
01070 IOTA TERMCHECKST20050

01080 I0TA INTRANS®Z2100D21010 _ R

0l109¢ @~ I0TA OUTMASTER®2102021030 - o B
01100 [OTA EXCEPTIONSO21040

01110 . IOTA MISCRPTSDZ2105n

O1120 10TA ENDa

03005 LASN 230000 i

03010 TITLE FILE TABLE FOR INPUT MASTER

03020INMASTER [OFTA PAYMASTERDOQOOIORETURNTGOIORETURNTOOMASTRINEOFD
03030 h]l oloRWDIONONECSTANDARDGTM oOSTANDARD OHSKRWDO
0304C _ ~ PRIMFOSINGLECSEQUENCNOCKPTRCDGNODPED.

03050 IOFTB [PODATAD9uSTACKOCKLNGOCMPCKO4OGENAREADFO150a01500C
03060 GET oMASTERINONONEQEQOF9SONONED

Note that table 0000 also contains input-output tape assignments
(I0TA) and may also contain I/0 tape assignments for special functions

(I0TS). (See Preliminary Manual--Input/Output Control Systems for

IBM 7080--No. J28-6188.)

- 4,46 -

Each IOCS file definition is followed by a description of the
records which compose the file. Records with different formats may
be described with suitable names assigned to fields and groups of
fields. The standard Decision Table Name Description Sheet is used
for this purpose. A table header line is not required here, as only
one is required per section (0000, 0001, ...). A segment of the
program in Chapter 3 which is preceded and followed by IOCS file
descriptions is used to illustrate IOCS file definitions--lines 05020
through 06040.

Table 0000 must be preceded by an ENT80 macro, to indicate
to the 7058 processor that the program will operate in 7080 mode. .An
Autocoder table will generally precede table 0000 giving appropriate
assembly commands such as NOSTP, EEM, ASU, etc., and finally,
a table name or number indicating where the execution of the object

program is to start, e.g., TR TAB 0005. (See 7058 Processor

General Purpose Macro Instructions - No. C28-6130.)

= i, AT =

05010 FILE

TAPE 2000,20C01 150 CHAR MASTER RECCRD FIXED INPU

050Z0MASTERIN RNAME (AMIEND o i,
05030MIMANND FLD SN MAN NUMBER

O5040MINAME = 17A& MAN NAME -
05050MISTATUSCD 1A . ~ STATUS CCDE,A-ACTIVE,T-TERMINATED
05051 I-INACTIVE i
05060MI0RG 5N - _ _URGANIZATION NUMBER
O0507OMISHIFT LN SHIFT EMPLOYEE wORKS
05080MISOCSECND 9N ~ SOCIAL SECURITY NUMBER N
05090MISEX — 1A ___SEX OF EMPLOYEE N E——
05100MIBIRTHDAT 6N " BIRTH DATE

O5110MIHIREDATE 6N ~ HIRE IN DATE

O05115MINEXTVACD 6N NEXT VACATION ELIGIBILITY DATE
05120MIDEDCODE BITCD DEDUCTIGN CCDE

O0512IMIINSDED 1 T INSURANCE e]
05122MILOAN 2 LOAN -
05123MIMISC 4 ‘MISC DEDUCTTIONS

05130 B FLD 1AG — BLANK -)
05140MINDDEPEND 2¢ “NO OF DEPENDANTS

051S50MIRATE 4#601.03 " RATE

O051L60MIYTDHRS 6#605.01 YEAR-TO-DATE HOURS

051 7TOMIYTOMONEY T#805.02 “¥Y=T-D MONEY

0>172MIYTDPDWK T#805.02 Y-T-D PAID WORKED TIME
05174MIYTDPDURK T#£05.02 Y-T-D PAID UNWORKED TIME oo
05180MIQTDMONEY 7#£05.02 CUARTER-TO-DATE MONEY
O05190MIYTOWTAX 6KE04.02 Y-T-D WITHOLDING TAX
05200MIYTOFICA 5#503.02 Y=T-D FICA

05210MISLHRSUSD 54#604.01 SICK LEAVE HOURS USED
C5220MISLHRSACC 5#604.01 ~ SICK LEAVE HOURS ACCUMULATED
05230MIVACHRSUD 4%E03.01 VACATION HOURS USED]
05240MIVACHRSAC 4%603.01 VACATION HOURS ACCUMULATED

05250M1 INSAMT 5#E603.02 INSURANCE AMOUT TO DEDUCT
C6OLOMTLOANPAY 5#603.02 PAYMENT AMOUNT FOR LOAN
06020MILOANBAL 6#804.02 ~ BALANCE OF LOAN

06030MIMDEDAMT 5#603.02 = AMOUNT OF MISC DEDUCTIONS
C6040MIEND [#§03.02 AMOUNT OF WMISC DEDUCTTONS

08010 TITLE FILE LE FOR OUTPUT MASTER)
0B0200UTMASTER IOFTA PAYMASTERGO30OIGCRETURNTCOIORETURNTOGIORE TURNTOGD
08030 HI OloRWOLGNONEGSTARDARDGSTM oSTANDARD oHSKRWDE
06040 T NOPRIOSINGLECSEQUENONOCKPTRCDENCDPOG o
08050 IOFTB OPoDATAD9uSTACKOCKLNGECMPCKu4nGENAREATFOI50015000
08060 PUT CMASTEROUTGPADSUNONEONONED -
09010 FILE TAPE 2102,21C3 150 CHAR MASTER FIXED OUTPUT
09020MASTERCUT RNAME AMOEND . _—

090 30MOMANND FLD 5N ~ MAN NUMBER
03040MONAME LTAE MAN NAME

09050MO0STATUSCD 1A ~ STATUS CODE,A-ACTIVE,T-TERMINATED
09060 I[-INACTIVE
09070MO0RG 5N ~ ORGANTZATION NUMBER

09080MOSHIFT IN SHIFT EMPLOYEE wORKS
09030MUSOCSECRO In SOCTAL SECURTTY NO. =i
09100MOSEX 1AL SEX

-4.48 -

A description of the entries used in describing input-output
files is given below. This information follows that given in the IOCS
definition and appears on the Name Description sheet.
FILE

As each file is to be described there must be a class code FILE.
The coding form is filled out as follows:

NAME - The file name given in the IOCS File sheet is
written in the Name field.

CLASS - The Class code for this entry is FILE.

NUM - The number of different types of records that are
going to be described is specified here. If all the
records in the file have the identical format, this
entry should be left blank or have the entry O1. If
more that one record type is to be defined, the
appropriate number is specified, e.g., 02, 03 ...
The processor will expect this number of RNAME
class entries (see below) to follow before the next
FILE class appears.

DESCRIPTION - The information specified in the description
portion is for documentation purposes only. Itis
suggested that the I/O media (tape unit number, etc.),
maximum record size, etc., be written in this area.
See sample above.

The FILE class entry is converted to an Autocoder TITLE card
before it goes to the Autocoder assembly system.
RNAME

The record name (RNAME) entry is used to identify the logical
record (the amount of data delivered by the GET and PUT commands).

This entry allows different formats to be associated with a file area;

- 4,49 -

there will be a RNAME entry for each different type of record in a

file. The name can be referred to by certain input-output and assign-

ment operators, thus allowing the entire record to be operated on.

NAME -

CLASS -

NUM -

A standard name is assigned. If no reference is
to be made to the record in the program, the name
may be left blank, unless it is the first of two or
more RNAMES being defined.

RNAME (record name)

This entry is used to specify the starting position
for this record, i.e., O for O or 5, 1 through 4 for
an address endingin 1 - 4 or 6 - 9. If blank, the
next available position will be used. If an area is
being redefined for more than one record type, the
start position must be the same for all records.
The NUM of the first RNAME in a file will be used
to locate all subsequent RNAMESs in that file.

DESCRIPTION - The name of the last field in the record is

specified in the first portion. Auxiliary information
for documentation should be included, such as record
size, whether fixed or variable length, etc. The
auxiliary information starts at the beginning of the
comments column.

This entry will be converted to a standard NAME entry before

going into the Autocoder processor.

give the effect of a SASN to the beginning of the file area, thus allowing

Subsequent RNAME entries will

a redefinition to occur. As a new file is to be described we get the

effect (LASN) of starting storage assignment just above the definition

of the longest record in the previous file.

GNAME

The GNAME (group name) class entry permits a continuous

- 4,900 -

section of storage to be given a name. These groups can then be
broken down into individual fields. GNAME operates much like that
of the NAME entry in Autocoder III. (Note exception below.) Groups
of fields may be nested within other groups--there can, however, be

no overlapping of these definitions.

PERMITTED NOT PERMITTED

NAME1l | GNAME NAMEGS NAME1l| GNAME NAMES
NAMEZ | FLD NAMEZ| FLD

NAME3 | GNAME NAMES NAME3| GNAME NAMEG
NAME4 | FLD NAME4| FLD

NAMES | FLD NAMEDS

NAMES6 | PRE ; NAMESG!

A GNAME entry used in table 0000 (input-output definition) may
not contain a value in the numerical column, since the starting position
is indicated with the RNAME entry.

The name of the ending field of a group is specified in the descrip-
tion portion of the sheet. The ending field is included within the group.

FLD

This is used to assign names to data fields in the input-output
areas, specify the length, and special characteristics of the
data. Unassigned variables are specified in this manner.
FLD corresponds to RCD of Autocoder.

FLD appears in the class column of the Name Description sheet.
If subsequent entries are also field descriptions, FLD need not
be written, as they are considered to be the same as the previous
entry.

The length of each field within the record is written in the
numeric column of the program sheet. Memory space is

- 4,051~

allocated equal to the number of positions specified for éach
field. When a field length exceeds 99 positions, overflow from
the two-digit numeric field may extend up to three placed to
the left (into the class column) if the class column is blank.

Individual fields within the record should be defined according
to the type of field by placing one of the following codé charac-
ters in the first (or first and second) position(s) of the descrip-
tion portion of the sheet.

N if the field is an unsigned integer
+ if the field is a signed integer

A if the rightmost character of the field may not always
provide left protection for the adjacent signed field

A+ if the field is a non-numeric field whose rightmost
character will always provide left protection for an
adjacent signed field

In addition to the aforementioned code characters, the format of
all numeric fields which contain a decimal point should be out-
lined in the operand column with x's immediately following the
code character. The position of the decimal point should be
properly noted within this field of x's. Another means of speci-
fying decimals may be used alternatively. The format is
#+xx.yy where + represents the sign (blank for unsigned), xx
the number of integers, a decimal point, and yy the number of
decimal positions. Record marks and/or group marks are
indicated by placing the characters in the operand column. If
these characters are to be considered as terminating some field,
all of the terminal characters should be defined on the same line
of the sheet.

1 I'ﬁ' .lN'! .]. MAME F CLASS rrarr] Y DESCRIPTION COMMENTS

o1]01 EYTDU.SE_ Fio 110] LUNITS OF JISE THIS YEAR TO 2 PLACES

reserves an area in memory for a twelve-position signed integer
for the year-to-date units of usage. Two decimal places are
specified.

PG |Lm E— T o
Po | L I_L Manl 1y AR |] DESCRIFTION COMMENTS

0]]08 imsra; ot éixxxx XX o610) B 4] S I\ i 2 1L U |

Although the class column is blank, the entry is understood
to be an FLD as the most proximate previous entry is an FLD
'(0107). Six positions are allocated for this field.

'_F:]:ﬁﬁ, E WAME z _‘cﬂ'ﬁ_-ﬁnﬂu TESCRIPTION Sl COMMENTY o
nglos 1)GFACCOUN [FLD I 'q! CCOUNT NUMBER.

Seven positions are being reserved for an unsigned account

number
'IFB.LIJHI i HAME = “ﬁ.ul] DESCRIP TION . COMMENTE a
oR0Y NISENANE IFLD R20A+ LGTOMER NAME ACPEARS ONAY ON NEW , |
05 1 15, .

A twenty-position field is being reserved for the customer's
name. The A+ in the operand indicates that the name will always
be a non-numeric field whose rightmost character will provide
left protection for an adjacent signed field.

." .I.III.L MAME = CLAM o DELCMFTION COMMENTE
¢ _LOMAFIELD [FLD 129
BE | SA
tes]

Two lines are needed to define a field in excess of 99 positions

in length. If the class column is blank, the three rightmost posi-
tions may be used in conjunction with the numeric column to define
a five-digit record length.

PRE

Used to name, indicate size, and specify values for data fields.
These preassigned variables are specified in the same manner

- 4,53 -

as CON in Autocoder. The entry PRE must appear in the class
column of the operand sheet for the first line of the constant
being defined. All immediatdy succeeding entries with blanks
in the class column will be understood to be PRE entries. Any
combination of alphabetic, numeric, special characters and
blanks may be specified as a preassigned variable.

The length of the constant is written in the numeric column.

The value is placed in the description column. Although a con-.
stant may be of any length, only 52 characters can be written on
any one line. This is the number of positions on the operand
sheet. Consequently, when the actual value written on the pro-
gram sheet uses the entire line, the highest permissible number
in the numeric column is 52. If a number higher than this is
written in the numeric column, the system will add zeros to the
right of a signed value, and will add blanks to the right on an
unsigned value. When the length specified in the numeric column
is less than the actual number of characters, the system will
shorten the value to the length specified in the numeric column by
omitting the right-hand characters.

Record marks and/or group marks are indicated by writing the
character(s) in the description column. If these characters are
to be considered as terminating some field, all the terminal
characters should be defined on the same line.

A numeric field may be signed by writing a plus or minus 8ign
preceding the field. Only numeric constants should be signed.
This results in the signing of the last digit. When defining a
signed value which contains decimal digits, the decimal point is
not included in the count of characters which is written in the
numeric column. However, when defining an unsigned value con-
taining decimal places, the decimal point must be included in the
count of characters.

The following are some examples of PRE entries.

e SEcHPTIoN T
A o el

- 4,64~

A 38-position field of blanks is defined.

Fe ’I.ﬂl 11 AN LA DECHIP TION COumENTY
i + aainn

5 ;mq\‘s;m;;-u PRE 1B

A record mark is defined.

PG | LINE HAME (=Y F‘ DESCRIFTION COMMENTS
sl 1 Al sal spls)

06 RATE

Although the class column is blank, the entry is understood to
be a PRE as the most proximate previous entry is a PRE (0705).
A rate of +.870 per unit is defined as a preassigned factor. As
this is signed, the decimal point is not included when specifying
the number of characters in the numeric column.

RPT

This is used to define report field formats, also indicating form
and size. The entry RPT must appear in the class column of the
program sheet when defining a format for a numeric field in a
printed report. Actions referencing fields defined by RPT have

the ability to produce the coding necessary to place a numeric

field into the desired format containing decimal places, commas,
sign indicators, floating or fixed dollar sign and asterisk protection
to the first significant digit to the right of a fixed dollar sign.

The numeric column of the RPT entry contains the number of
positions required by the entire report format field. In deter-
mining the size of an RPT field, allowance must be made for the
maximum number of numeric digits, the dollar sign, commas,
decimal points and the number of characters (1 or 2) used for
sign indications.

The description of an RPT entry must appear in the following
order:

ks When a dollar sign is desired, the first character of the

field must be a dollar sign which is followed by a repre-
sentation of the field as it is to appear in the report. X's

- 4,55 -

are used to indicate numeric characters. If the printing

of insignificant zeros is desired, Z's must be used instead
of X's in the affected positions. Z's must be continuous in
the RPT format field starting from the low-order position.
If any commas are used, they must appear in the normal
manner, i.e., the fourth position to the left of a decimal
point or sign indicator and thereafter every three additional
positions to the left. Only one decimal point may be used.
The positions allocated for sign indication must be indicated
as blanks preceding the first lozenge.

The dollar sign will always appear in the position assigned
regardless of the number of digits printed unless a floating
dollar sign is specified. If a floating dollar sign is specified,
any dollar sign printed will appear immediately to the left

of the high-order digit. In order to specify a floating dollar
sign, the character $ must be written between the first and
second lozenges.

The spaces between the second and third, third and fourth,
and fourth and fifth lozenges are used for negative, zero and
positive sign indication respectively. Any of the following
symbols may be used for sign indication:

Length Symbol
1 Sign indication omitted (lozenges may

be placed back-to-back, but one blank
position is generated.)

1 =

2 CR

2 DB

1 *

2 Blank followed by =
2 Blank followed by *
9 ok

i § B

- 4. 56 -

If no sign indication is specified, the system automatically
will provide & - for minus indication and no sign indication
for plus or zero. When specifying the length in this instance,
the automatic minus indication must be included. If no
dollar sign control is desired, but sign indication is to be
used, all five lozenges must be specified, the first two
lozenges being placed back-to-back.

The following are some examples of RPT entries.

'E‘Tu_.l.— MAME o, ceAs | Fud DEITHIPTION T COMMENTS
(401 ianuic.E RT3 TN Z CURRENT LISE

A seven-position field is specified with one decimal position.
Insignificant zeros will be printed in the low-order position. No
sign indication is specified; therefore, it is assumed that the auto-
matic sign indication provided by Autocoder is desired. The "7"

in the numeric column includes the automatic - for minus indication.

re | LIME l HAME CLASE M| DESCRIPTION COMMENTS
Hr als slee i abiie

051 3 EI'JELU"-E ReT it W Z INERID USE

An eleven-position field is specified with one decimal position.
Insignificant zeros will be printed in the two low-order positions.
Automatic sign indication will be generated as in the previous
example.

llﬁ 1 LINE HAME LA h\ﬂ-f DESCRIPTION COMMENTS]
LR 2ls anie siae)

Pﬂhﬂ_pu.mwufapr OiSX: AXXZZ S, AMOUNT R1J1ED-"FLOATING ROLLAR SIAN |
L]
1

A ten-position monetary field is specified. The ten positions in-
clude all the positions in the operand up to the first lozenge, i.e.,
the dollar sign, four integers, two decimal places, one comma, one
decimal point and one position for sign indication. Insignificant
zeros will be printed in the two decimal places. A floating dollar
sign is specified. As in the previous examples, no special sign
indication is specified; therefore automatic sign indication will be

- 4,97 -

provided by the system. Note that it is permissible in this
instance to omit the lozenges for sign indication.

re Ln_]_ e e DESCRIPTION ahe COMMENTY i
1
|

RPT

I i o : i v E)

Insignificant zeros will print in the cents and two low-order
dollar positions of this monetary field. A fixed dollar sign
with asterisk protection is specified along with a CR symbol
for negative indication, an * for zero amounts and nothing for
positive indication.

BITCD

This is used to permit the naming of various bits in a character.
Later they can be tested for ON or OFF in the condition area,
and can be put ON or OFF by the MOVE and SET commands.

The BITCD definition permits the user to associate a meaning
with the presence or absence (the ON or OFF state) of individual
bits. The BITCD header signals the system that a single charac-
ter position is to be set aside for a set of up to four codes. The
1, 2, 4 and A bits of that character location may be used as
ON-OFF switches to indicate the presence or absence of some
condition. The entries which follow the BITCD should be blank
in the class column. The numeric column is used to specify the
bit (1, 2, 4 or A) with which a particular condition is to be
associated. The condition itself is named in the name column.

Specifying more than one condition at a time is possible as more
than one bit may be present within a character at one time.

The following is an example of a BITCD entry which could be used
in a payroll application.

:

-”-:ﬁa-‘nla e “[“-nm snli pelas mdbina se =
©_DEDUCT _IBI

Since any number of three bits of the memory position occupied
by this BITCD entry may be on, payroll deductions may be made
for none, any or all of the three options available.

-4, 58 -

TABLE 0001 - Core Files

Working storage files (core) are described immediately following
the table header information identifying this section. The files
and records described here are never read into or written out of
the machine directly; they are for intermediate values. A number
of possible uses are seen: when more than a single input record
must be available they can be moved into the intermediate area,
when various output records are being fabricated at one time for
later movement to an output file, e.g., multiple total and heading
lines, and for multiple definitions of an area when operating on
variable length records. The RNAME entry is used to reinitialize
back to the beginning of the area when a new format is to be described.

The rules for describing these files are precisely the same as for
input/output files, except that an IOCS File Table is not prepared.
Information cannot be read into or written out of I/O devices directly
from these areas, except that they can be the second operand of a
GET or PUT action. In this case the data is moved to/from the I/0O
area after or before the I/0 action takes place. When more than a
single format is desired for a core file, the RNAME entry will permit
the redefinition. If multiple record areas are to be defined, even if
they are eventually to be outputted on the same file, separate FILE
entries should be made each with a single record described.

TABLE 0002 - Miscellaneous, Variable

Free or unassociated variables of one kind or another are described
behind this table header. Eight classes of entries are permitted.

GNAME
FLD
RPT
PRE
BITCD
ALTSW
ADCON
POINT

Except when grouped with the GNAME class, there is no physical
connection assumed among any of the entries. No FILE or RNAME
entry is allowed in Table 0002. This section is for temporary
storage fields, program bit switches, preassigned variables, altera-
tion switch specification, address constants, and index pointers.

- 4,5 -

GNAME -

Used when multiple items are to be considered as an entity.

Example:
CURDATE | GNAME | 08 | YEAR
MONTH | FLD | 02 | N
DAY f | 02 | N
YEAR ; ‘ 02 | N

Any combination of RPT, FLD, PRE, BITCD, ADCON and POINT
can be grouped and treated as an entity by this entry.

FID -

To define an unassigned variable, e.qg., TEMP1, ERASE],
PREVMANNO. Defined in same manner as described above.

PRE -

To define a preassigned variable, i.e., starting with an initial
value, e.g., COUNTERI, INITIALVAL, YITDTOTAL. Defined
in same manner as described above.

RPT -

To define a variable and associate particular editing symbols.
Defined in same manner as described above.

BITCD -

To set up a one-character variable and then name the 1, 2, 4,
and/or A bits such that they can be turned ON or OFF by the
program. They can also be interrogated by the program to see
if they are ON or OFF.

DEDUCTIONS | BITCD |
BONDS .-
STOCK | 1
BLUECROSS ’
INSURANCE ',

- 4,60 -

ALTSW =

This permits the naming of an alteration switch, The designation
of the proper alteration switch, A for 0911, B for 0912...
F for 0816, is placed in the numeric column.

QUARTERLY | ALTSW | c |

ADCON =

Address constants will have limited use in the 7080 DTS, .Three
primary uses are seen (1) by closed Autocoder pseudo tables, (2)
for use in developing initial base addresses when using index
pointers for operation on variable length input or output files, and
{3) the pre-named Address Registers RO ~ RO used for effecting
address modification. ADCON 4, 5, 8 are not allowed in the
Decision Table Name Description.

POINT -

The POINT (index pointer) entry is used to identify a 6-position
field to be used in conjunction with the MOVEV command when
operating positionally on data. Normal arithmetic is used to
modify the field in preparation for use. At the time of use, the
system will convert this to a proper 7080 address. It is always
considered to be an integer value of length 6. The field may be
either signed or unsigned (signed is more efficient).

The name of an index pointer may be from one to five characters
in length, The numeric column is not used.

PNTR1 | POINTII{’IS{'IER}

The operand HI indicates that the POINT will be initialized to a
high speed address, modified by a number divisible by 5, and

that the number of characters to be moved via the POINT will
always be divisible by 5. The operand must be a RECORD name
(RNAME) if HI is specified. If the operand is blank, SER (serial)
will be assumed. POINT generates a 6 position signed constant of
zeros. An index pointer can only be initialized with the SET...
EQ... command.

-4,61 -

TABLE 0003 - Miscellaneous, Fixed

This table includes items that do not have changing values--either
constant values or expressions that have a value only when con~
sidered. Since they have this characteristic (like the program
tables) they can, if desired, be stored with the tables as part of
the program using them in some external medium to be c¢alled for
when needed. Included are:

Expressions
Arithmetic
Symbolic

Constants

Value Lists

Reference Lists

EXPRESSIONS -

Two types of expressions are used--arithmetic to operate on
numeric values, and symbolic to operate on strings of symbols.

Arithmetic -

Arithmetic expressions are defined in much the same manner as for
the MATH macro in the Autocoder ITI system. The following
operators are available:

addition
subtraction
multiplication
/ division

¥ 1 +

A single level of parentheses is permitted to alter the normal
precedence of operations, which calls for parenthesized portions
of an expression first,with * and / always taking precedence over 4+
and -. A left-to-right order of operation then is assumed.

An arithmetic expression is named in the normal manner. It is
this name that is referenced in the program, thus calling for the
proper computation.

The class entry is specified as MEXP for mathematical expression.

- 4,62 -

The numeric column is used to indicate the type of error protec-
tion desired by the user. Three codes are available:

1. © Overflow Overflow occurs when the developed
value is larger than the defined result
field. A transfer to the open decision
table specified at the end of the ex-
pression takes place when overflow
occurs. If no name is specified, the
table given in the last expression will
be used.

2. T Truncate The result will be truncated rather than
rounded (the normal procedure).

3. OT Overflow/Truncate The value is truncated and transfer
is made to the table specified if the
value is too large.

The halt protection code (H) is not permitted, also the chaining
code (X) is not permitted.

The description field is used to specify the format of the result,
the expression itself, and if desired, the transfer point for the
overflow protection option.

The format of the final result is indicated by #xx. yy, starting in
the first position (column 31) of the description field. The +
indicates that the result should be signed (a blank will indicate an
unsigned result); xx, the number of integers; a period; yy the
number of decimal positions in the result; a comma.

The format specification is followed by the expression to define the
computation. The operators are +, -, *, /; the delimiters left
parenthesis, right parenthesis, and @ (if overflow protection is
desired); the operands literals, constants, preassigned fields,
variable fields, and previously defined arithmetic expression
names; and special intermediate value format indicators (a comma
followed by an x for each integer, a period, and an x for each
decimal --, XXXX. XX).

Numeric literals should not be enclosed in literal indicators @#),

and may not be given a sign--they are all positive values. Also,
the unary operator - may not be used, i. e., the construction

-4.63 -

FIELD A+ - FIELD B is not allowed. The format indicator after

a parenthesized expression or single variable will cause that format
to be used before the next operation takes place. Blanks should
precede and follow each operator &, -, *, /) in the expression.

If overflow protection is specified in the numeric column (© or ©T)
the expression is terminated by the @ symbol and followed by the
name of the open decision table to which control is sent on over-
flow. Otherwise the @ symbol is not used. In no case is the result
field specified here as in Autocoder (the tag is specified in the name
field on the operand description sheet). If overflow is indicated

and no address is given, the last specified address is used.

Note that the left parenthesis, right parenthesis, and plus sign are
used in writing the expression; these are keypunched as %, ¥t ,
and &, respectively.

Examples:

FIELDA | MEXP #+ 04. 02, FIELDB + FIELDC * FIELDD

ABLE |MEXP| ©|#02.04, B+ (C * 1.5), xx. xxxx - (I-J) @ OVFTABLE

X

MEXP | T|#+06.02, (A-B*C)+D/(F-G*H) - (I+7)

NOTE: There is no permanent value of an expression; every time
it is referred to it is recalculated. The value can be saved
of course by moving it to another field. A previously
defined expression can be used as an operand in an
expression.

All continuation cards (up to 9 permitted) must be blank in
columns 6 through 22 and begin in column 23. Comments
on any card of a MEXP will be lost.
Symbolic -
Only a single symbolic operator is available, the JOIN operator.
This operator allows strings of characters to be joined together
from discontinuous points in storage and then treated as a single
value,

Variable names, censtant names, symbolic expression names, and

-4.64 -

literals may be operands in a symbolic expression. The operands
are separated by commas and as a group are enclosed in paren-
theses. Remember that (will be keypunched as % and) asxy .

Example:

SORTKEY SEXP | 14 | JOIN (MAJOR, INTERMED, MINOR)

ERRORMESG | SEXP | 22 | JOIN ('TAPE ERROR ON UNIT',
TAPEUNIT)

IDENTNO l SEXP | 15 | JOIN (DEPTNO, '- ', DIVND, '/,
MANNO)

In this last example if the current values of

DEPTNO = 726
DIVNO = 14
MANNO = 123456

the resulting value of the expression would be
726 - 14/123456

The numeric column is used to specify the total length of the
resulting value. The quote symbol (') is used to delimit alpha-
meric literal values. This is keypunched as the number sign #).

It can be seen that an entire print line can be created in this
manner by listing the appropriate carriage control character,
blanks, constants, and variables, e.q.,

JOIN ('...',IDNUMBER,' ',NAME,' ', ADDRESS, "***! _)

A symbolic expression can call upon another previously defined
symbolic expression by including its name in the list of names
and literal values. It cannot call upon itself; this causes an
error condition. Up to 9 continuation cards are permitted; they
must be blank in columns 6 through 22.

- 4,65 -

CONSTANTS -

Permanent constants that are never or very seldom changed,
e.qg., 3.1416, are specified in this section. The format and
manner of specification is the same as Autocoder IIT except that
the class is PCON and no value can be moved to the field in the
program, i.e., they are 'read only' constants.

PI PCON 06 +3.14159
RATE PCON 03 + .875

Numeric signed constants are indicated by placing the sign

first (+ or -) followed by the value. An assumed decimal point
is written in the proper position. No point is needed for integer
values. The numeric column gives the length of the value; its
sign and point indicator are not counted in determining the total
size.

Alphameric constants are also written in the description area,
following the length specification in the numeric column.

- 4,66 -

VALUE LIST -

A value list consists of a list of constant values that can be
used in the condition section of a program table. For example,
in a condition it might be desirable to see if the current value
of an input item, e.g., department number, is contained in a
list of many department numbers which might require special
action, e.qg., 214, 284, 319, 727, 914.

NAME - A name is assigned to this list--this name is
then used as an operand in the program to
refer to the entire list.

CLASS - The class code is VLIST (Value List)

NUM - The number of positions of each value in the
list--all values must be of the same length
(blanks or zeros permitted front or back).

DESCRIPTION - The values are listed one per line starting in
the first position of this area. Only constant
values can be specified--no names of values (tags).
No duplicate values should appear. The values
need not be enclosed within special symbols. The
values may be either numeric or alphameric.

Example:

MIA
OHR
SFO

- LGA

. IDL

SABRECITYI VLIST | 3 1 ATL
'. |'

The values in the list need be in no particular
order; when interrogating the list, a serial search
will be assumed.

- 4,67 -

REFERENCE LIST -

A reference list provides a set of constant arguments and values
(functions) to be specified by the user. It is then possible to
determine if a particular argument is in the table (in a condition)
and use the value as the operand in an action.

NAME - The name of the reference list
CLASS - RLIST (reference list)

NUM - Blank

DESCRIPTION -

Header Line - Three parameters are specified in the first line.
A two-position size of the argument, a comma, a
two-position size of tke value (function), a comma,
the name of the field where the value is to be placed
if the argument is found when searching the table.

Subsequent Lines - The name, class, and numerical columns
must be blank. Beginning in the first position of
the description field (Column 23) and extending
through the comments field, the argument and
function are written separated by a comma. The
argument (characters prior to the comma) and
function must occupy exactly the same number of
positions as specified in the parameter of the refer-
ence table definition. The first position of the argu-
ment may not be defined as a plus (+) or minus (-).
An entry definition may not be continued on the next
card.

If there are many arguments associated with one
value and if the arguments are numeric and in
ascending order, a range argument may be used
which can save the writing of many entries. This is
expressed by giving the low limit and the high limit
separated by a dash (02-05, MIDDLE ATLANTIC).
The arguments for this type of entry must be pure
numeric. Care should be taken to write this entry
correctly. For example, 0100-1000 will generate
901 entries.

-4.68 -

STATELIST‘ RLIST! ‘02, 04, STATE
| |01, CONN
| oz, Mass
| |04, TENN
| 107, KANS

Arguments or function values can be either alphameric or pure
numeric (note restriction in use of range above). The arguments
may or may not be in ascending sequence.

NOTE: A maximum of 25 RLISTs is allowed in a single program.

-4.69 -

DECISION TABLE NAME DESCRIPTION SHEET

PROGRAM

IBM 7030

|7 DATE
PG | LINE Clp IDENT TABLE NAME
1 ulolo 0 L L 1 L]] TlA IBIL'lE] 1 (] 1 1 1 1 L
1 213 5 |e|7 | iz 1s1e 20 [21 3031 74 PAGE
PG | LINE NAME CLASS NUM. COMMENTS
] 3 sls 1sjie 20(21 22|23 Ta
. PR W e " M — PR U Y Y M PO AT VT TRNLT WY AT VIS ST VI AL T T PR W
—t——t +— + + $ ——t bt $ 4 + —t ————t————d —+ ——t + +
PO o S s R L — 4 IS R T T | PN SRR (TN O SN S W - T T TR | d | N S | PR Y POR T W S | PR SR A N TR RT SR L S
——1—— +—+ bt + + AN o P + s o + — et N R [y JiE GuE JuE SE CEER AR
N P " . nbanchiebied P ST (L VR S, UL W g R (R i PO, GV DR Y | PR S S SR | P TR W Y A 4
—t Prosachtp + +—t + st T e R
+ - —4 n e L ’ IR TR o TR 4 PR W SRET R M T | =] ST IS R SR S TREY W [SAe] T Sl S Ve ! 1 — T VAR R O e | F—
+ + +—+ + + + i t + —t—tt —t —p———p————trY i ——t
P N PR S 4 3 - T PR T | + o FEET R S G- S NP W, SR e, S + VL VI e B
+ f—t—t et + L e e oo o +) Lo + + + ——t— +—+ —t—t—t—t +
il ‘ P PR Y S\ " AP AR Y Y | IR L VR LY T 4 I O T W FIAPRRAY AP PR Y (AN F VRIS VNP HARNRT U TS MR (AT 1 AR Y VPG | RS JOEY YEoct e o Aty U LT) (o it Lo
—+ —t —t t et + et | [P, Ssre o e s ET —r—t—t | KEI) ot (e e STh fme P bt Do S MO e S Eo e o [e R s o [Te RN ST M T M BN
" P P P PR 4 ' BT T ST T PN S VY ST MY T | F I —" " PO ORI Sl LY WSy LI U PR RS - W WU I S G [1 M PV S L 4 4
+—+ + + + —t—t—t— e ——t frejef e e —— it —t—t—t t t
ey] + " + IR T + T T ot ! (M LRI M 1L T i R {1 PRT fe T | P T R 1 =" s FURIN] B LW Tt S o 1 St Lo e R T ! Dy
+ + + + +—t— + it y +—t+—r+ — e s e —t +— ettt prfrp—t—t—tr—tr""r—t—r—p—p—¢
+ + -3 g &3 bk a1 4 FEN T S PR T (S [T TR GO N [| R S 1 FINEY MY NN IS NS G VRN U NET SHY ST SRR W NEEY DN S Sl TR S TR URNS: THAS VIS Tels) W L TN
+ ——tt + ———t———t + + —t bt —l— + et
" —t b o e . 4 ey 4 P (T W R R T M T UMY WY M T, | VI B T | T S W (T Pty GRS WY WIS Wew TR St rel’ AN N (I NI UM M UMY e S e | et T T O T
+ — ittt y T L BEat, e sl THS jSNES e mme i, —r—r—t ~—rr—Tr s+ T rreTrrer st C NN DE e vamy EEN)
-3 — s i " bbbk " PR T T S 1 O A W W CE S T M 1 PR S S e T SHT MY DA TN U SENF NI T T G L (O R S S T S (S U S [RAL A
+ +—t——t ——————i—t \ + + -ttt vttt
4 — [-1 AR W TR - PR TR S T | i3 PR Y DU T | PR R 1 ORI T Y T ST W LT Sl [D e U R AT R PR S R T PR
-t + +—+ —r —r— + + + + + i +—t —r— ——+
+ ot PR S i — PR S 4 .3 & 4 PV T S WY S T o L T MREY BN LU (AN TN S TN P, YN (T N (NN SET N CON W DN N N UYWL VO T VRT S
+ +—+ + + + + —+ + } + + +
Il PR S T WESI e A | b I) 4 b -} L) -1 i R f— i PR - 5 3 i I I I —4 i e e e
B . e e .t s = + + + —r—r—T — —r— SRR TR e Cmm o AL TRER o e o me, ——r—r—rree—rererererererer
+ g iy S N, W |) FEEE S -y 5 P PR Sl S A VAT W (WY PO . | PUSEL S SR N TS S SN RN N SNF NN UMM SJNY (SUSY WNNT WAL NN (RN (N ST (MY A (N T ST VR S T -
+ +—— + —t—r—1—t e —t—r—t o —ipet—t—t—24 49 4+—"1"—"1r-1-r—"rr—T—r—prr—rr i ot rr
- 4 M P Pl 4 PRy GO I S R T R S U S T AT T T 1 R WY e T (- SRR T T S e WP ST (S GA LIS? SUMSY NS W GOSN GG VN i UMY T "
— ——t — ——t— t T 1t —r—r -—tr—tr--r—r--r-r—frtr—rrrerrr e rr T
- 3 I — i I — o Y PR T — } P . I U T C U - n - 4 bt U T T S S 4 n — i — -
r—r—+ T —r—r Tt —r=—r—t-rrr-r —r r—tr—r—tr trr rtr rr-rr L Gl s e r —t—t =T —t
A 1 TN T SR TONAY T PYSY WY n (R e Vi — | AR TRY TR W W U TR T 4 PR W 1 PR T S TR SR TR T T S S S T\ (S TEmmer metd =l | +
™— + + ———t e e] + * T —— —r— —t—t—r—r—r—tt i pemrry—— +
I —i e R 5 'l | VT Y o S | i - i i L1 1 | I — -1 PR - | T T TR S | |) —l T - i - i i 1 | I f—1 L
* g ' + —tt t — Y e R e fanc e mmr pe 2) s o e —r—t—trr—r—r—tr—rTrr—r— | (R A Ceohy ST SEE NN M . ons mas GBS Zaenoonn S i |
} T F— T (- 4 - i " T 4 bl J—1 ' " E Pl (S S | T | ra— - R —1 1| | | { OO W [S e | i f—) T S [S W _—
r—tr——t —t + —tr—rr e —r—r—t —rt e e
& b IR TR] W s - R T ki e TN T S TN S UM LN L 3 il S S LS TN TS S N CNNY S GRS SN [N N VNN NN SN (R (S DU S (NN [N F S Y S (R R |
—r t u et +—+ —t———t t t 1 + ¥ttt 4 e — %+
i
+ +—t — TR | 4 —— 4 TV ey VLS VAR A W (R it S Il ST 1 I T R PR T S Tl G LI (T U 11 (S ey [W N [t NS FNNSUTT VAR, W 1M LR (RS S i (S L |
2 =7 — L JESE P | y ™t T 1 1t 3 S G BN (R SERN (NS N SN | e e, EENG B (I TR A CaMY RS (e Eo [SRS TN e SSN Gom S N Somu Sy Gt St SN IENT [N HNEE RN T
4 i | A T S S W | L I 1 R T N N gt AL 4 gl P Y | TN S TN GO TR (L) N VI AN SN N | I (ST WU YR DO AU UM (N [JUMS MO AV I
. * ¥ — A ™ y —r—r— T r—r—t T T + FEN A e e con e yome Baes r— pEn e o o s SNy om) Aot S SE SR T
“ 4
— O W 4 i el 4 PR W T W 3 e Ui ! oy R ! I | | | O | AT R FI Py Wy TN S P 1 PR T VERY SN SN USSP LU SUSY TSI TR S/ VGt NSSY o T S (M R
+ + + +— + +—+—+ —— s ———t + —t ——— +—+ it et
)
i —i I P [G T | i el i ——3 1 3 — I | PHNT S U T TR S VR ST T Y W e SN T R TN T S TN AN TV —
+ +— +— —t -+ + —t et + L e Tt y T —tr—t—t e o —rrr—r—tr—y

Name Description Header

1-5
6

7

8~-11
12 - 15
16 - 20
21 - 30
31 - 74
74 - 80

Page and Line are filled out in the normal fashion.
All cards entering the system must be in ascending
sequence.

Always zero.

Type for operand description should be the letter
D (description).

Since this same form and header are used for Report
and Autocoder pseudo tables, a code is used to identify
each. R is used for report and A is used for Autocoder.
Blank.

Table Number is specified in this position. Only four
numbers are possible:

0000 Input/output File Description
0001 Working storage files

0002 Miscellaneous, Variable
0003 Miscellaneous, Fixed

Each table gets only a single header card; if a par-
ticular operand description table is not used, no header
is specified. A maximum of four name description
headings may appear (ignoring report or Autocoder
pseudo tables which are really part of the procedure
description).

Identification always TABLE. NOTE: TABLE cannot
be used in these positions except to identify an operand
or procedure description table.

Table Name may be specified as documentation but is
never referenced from another part of the system.

Blank or used for remarks.
IDENT is used to identify the cards as part of a par-

ticular program, is never referenced by the program,
i.e., normal Autocoder use.

- 4.70 -

REPORTS

It is of course possible to prepare reports using regular 7080
decision tables, but since many of the functions are automated in Report
Writer the user may wish to call upon this facility. Each different report
that he wishes is specified in a separate pseudo table starting with a
table header. The report is named in the header; this name is used
as the operand of the DO command when the report routine is to be exe-
cuted. Table type is specified as 'R' (report).

The report is then described using the operand description sheets
(same format as Autocoder) in the same manner described in thé Report/
File Writing manual of the 7058 Processor series.

Three other special rules apply: (1) The transfer-out addresses
(before or after control breaks) must reference a closed decision table
only. This table can perform all the processing at the control break or
call for other tables or Autocoder sections on a DO basis. At the com-
pletion of this excursion, control returns to the report routine and then
back to the original calling table. (2) A MODE REPORT entry must
precede Report Writer statements and a MODE AUTOCODER entry must
follow the last statement. Both entries must be included in the 'R'
table. (3) The DREPT statement, the first statement of a Report

section, must be tagged with the report Table Name. The programmer

will DO table name to execute a Report Writer table.

~ 4,71 -

AUTOCODER

Pseudo tables can also be written in the Autocoder language.
Again, a table header must precede the routine (table type is A for
Autocoder). The procedure written in Autocoder must be a closed
routine, i.e., it may not transfer out to other tables or pseudo tables.
The program refers to the elements of data described in the operand
description tables (0000 - 0003), rather than defining data in the
Autocoder section. The Autocoder TABLE macro in particular must
be avoided. No restrictions (except transfers noted above) are placed
upon the instructions written in the Autocoder sections. The programmer
need only code the routine itself without entry and exit points. Entry
will be at the first command, exit will occur after the last command.

(See Reference Manual--Programming the IBM 705 Using the Auto-

coder III System--No. C28-6057.)

- 4,72 -

APPENDIX
Character Set

The character set for source programs (reference set) is shown be-
low with the appropriate card codes. The printing characters which
differ from the reference set are shown in the second column (X , &,

%, #). This chart also shows the machine collating sequence. Charac-
ters that may appear internally (although not part of the external charac-
ter set) are shown in their collating position and marked with an asterisk
(¥ , 6, 0, ¥). It is expected that the key punch operator will substitute
thew , &, %, # for), +, (, '(quote) as she punches the cards (the pro-
grammer may also use the printing set if he desires).

Printing Set :
Reference (where Reference
Set different) Card Code Set Card Code
Blank
. 12-8-3 M 11-4
) v g 12-8-4 N 11-5
E3 * (@) 11-6
+ & 12 P 11-7
$ 11-8-3 Q 11-8
* 11-8-4 R 11-9
“ 11 -f *
/ 0-1 S 0-2
, 0-8-3 T 0-3
(% 0-8-4 U 0-4
' # 8-3 v 0-5
@ 8-4 W 0-6
0 * X 0-7
A 12-1 Y 0-8
B 12-2 Z 0-9
C 12-3 0 0
D 12-4 1 1
B 12-5 2 2
F 12-6 3 3
G 12-7 4 4
H 12-8 5 5
{ | 12-9 6 6
0 * 7 7
J 11-1 8 8
K 11-2 9 9
L 11-3

-A1l-

7080 DTS MEMORY MAP

System
500
IOCS
23,500
|
| Common
F'ile Tables IO Buffers and Routines -
2 100 Work Areas GET, PUT
, 750 PRINT
450

Constants, Tables, Work Areas, etc. for Data Definition Processing

18, 500

Constants, Matrix, Tables, and Work Areas for Condition and Action Processing

11,000

Data Definition Processing

11, 000

Condition and Action Processing

7,000 |
. Library | Literals
Subroutines
550 800

- A 2-

79 9q9gq

Notes on Pre-processor Requirements

The 7080 Tabular Programming Pre-processor is written for an 80K,

2 channel 7080, with a typewriter. It operates in non-stop mode using
the 7080 IOCS package. It may be run on a 160K, 2 or 4 channel 7080

with no modification.

Input

Input is unblocked 80 character records on tape. The first Tabular.Pro-
gram on tape must be preceded by a run control card as follows:

col 16-20 ASMBL
col 23-29 TABULAR

This card may be preceded by a DATE and/or MODEL control card as
described in the 7058 Processor specifications. Each Tabular program
on tape must be separated by a card having END punched in col 16-18.
The final program on tape must be ended by a card as follows:

col 6-10 FINAL
col 16-18 END

Input is limited to a single reel. A tape mark on the input tape is con-
sidered to be FINAL END.

Output Program

The processed Tabular Program will be unblocked 80 character records on
tape, and will be acceptable to the 7058 Processor. Since the 7058 pro-
cessor is unable to accept multi-reel input, no program may extend over
one reel.

If end of reel on output does occur in the 7080 DTS the following will occur:
o Input will be rewound.
2. Output will be tape-marked and re-wound.

3. A message will be put on the message tape indicating
' that the current program will be re-processed.

4. A message to the operator will be typed. The operator
must mount a new output reel and press key 252.

B | o L

B. 7080 DTS will then search the input tape until the
first card of the program being processed is found.
At this point, an ASMBL card will be generated and
placed on the new output tape, and processing of
the program will begin again.

Output Messages

Output Messages will be 120 character records blocked 5, on tape. The
format will include the 7080 DTS Pre-processor page and line number and |
the input page and line, tag, and operations of the entry to which the error
message applies, a critical/non-critical indicator, and the text of the
message.

Messages for each program will begin on a new page, and each page will
be headed by a line containing the program identification and date of pro-
cessing.

Messages may be printed on a 720 or 1403 printer under program control.

Machine Setup

Non-stop switch on
Alteration switches

911 on for testing the processor
off at all other times

912 off

913 on if the operator desires the
processor to search for END
cards and give the option of
processing the program follow-
ing a found END card or con-
tinuing the search.

off otherwise

914 off

915 off

916 off

- A 4-

Tapes

2001 Tabular program input Hi or Low
Density, Model II or IV tapes.

2101 Tabular program output will be Hi
Density Model IT or IV tapes.

2103 Message output will be Hi Density,
Model II or IV tapes.

Tape assignments may be changed by patching the Tape Table entries which
begin at actual location 500. _

No checkpoints will be taken, and no records will be dumped. If an un-
correctable read or write error occurs, new tapes must be mounted and
processing must be started over.

When a program has been completely processed, (an END card has been
found) a message will be typed containing the program ident., and in-
dication of what kind of errors were found (major, minor, or none), and
giving the operator the option of processing the next program, or going
to end of job.

When a FINAL END card ends a program, the same message i$§ typed,
but no option is given. End of job follows automatically.

Typewriter Messages - Pre-processor

The following typewritten messages may appear during the compilation of
a 7080 Tabular Program.

7080 TP

appears at the beginning of a compilation
run only.

XXXXXX, MO-DA-YR
where XXXXXX is the identification of the
Tabular Program to be compiled. Typed

at the beginning of compilation for each
program.

- A.D -

Xemew= X. - IMPROPER CONTROL CARD. -2-ACCEPT, -3-READ NEXT

where X----- X is the PGLN, TAG,
OPERATOR of the control card in
question. May appear at the beginning
of a compilation run only. -2- will
assume an ASMBL TABULAR control
card, output an ASMBL ORIGINAL card,
and begin processing. -3- reads the

next card.
ASMBL X---=-- X IMPROPER. -2-ACCEPT,-3-QUIT
an ASMBL card with operand X----- X

has been found at the beginning of a com-
pilation run. -2- will assume TABULAR,
output card as is, and begin processing.
-3- will go to end of job halt.

XXXXXX IS NEXT. -2-SEARCH, -3-PROCESS

where XXXXXX is program identification.
Will appear when 913 is on at beginning of
a run. An END card has been found and
XXXXXX is the next program on tape. -2-
continues the search -3- generates an out-
put. ASMBL ORIGINAL control card and
begins compilation.

XXXXXX COMPLETE, YYY ERRORS. -2-NEXT ASSY, -3-EOQJ

Program XXXXXX has been compiled, and
YYY is the class of errors found. Will be
NO if no errors found, MIN if Minor errors
found, or MAJ is a critical error found. The
option section of the message will appear if
an END card, not FINAL, indicated the end
of the current program. If FINAL END en-
countered, end of job is automatic, and the
message will be truncated at the period.

- A B=

Typewriter Messages - Listing Program

XXXXXX NEXT, -2-LIST, -3-BYPASS
XXXXXX NOT LISTED.
XXXXXX LISTING COMPLETE,

Message Tape Entries

I. Operand Description Section

A. Message Format

freseiceingeyirie
| CRIT | MESSAGE TEXTi IDENT l

| 1

TP. PGLN] \PGLN .[NAME, CLASS
Oy (P |

Where;

TP. PGLN is the Page/Line Number assigned to the first output entry of
this item by 7080 DTS.

PGLN, NAME, CLASS are the first 20 positions of the input entry.
CRIT is blank if this error is minor; is *** if this error is considered a
major error. Major errors are those errors which are difficult or im-
possible to correct at output (Autocoder III) level.
IDENT is the input program identification.
B. Message Texts:
DUPLICATE TAGS - EXPRESSION OR LIST

The tag of this item is the same as the tag of a previously defined
expression, list, index pointer, or is a state relation name.

EXPRESSION REFERS TO ITS OWN TAG.
An arithmetic or symbolic contains its own tag as one of its numbers.

EXPRES. NOT TAGGED OR BLANK OPND-PROCEDURE TABLE
(CRITICAL)

An expression, list, or index pointer is not tagged, and cannot

ol T o

be referenced. See procedure table error messages for
explanation of second half of message.

FIRST RNAME IN FILE NOT TAGGED-WILL TAG

The first RNAME entry in a File which contains 2 or more
RNAME definitions is not tagged. 7080 DTS will create a
tage for this RNAME and subsequent RNAMES within this
file will be L.ASNed to this tag. This L.ASN will not be ef-
fective in the Autocoder assembly.

IMPROPER TYPE FOR CURRENT TAB NO.

This item is a valid class type for an Operand Description,
but is not allowable within the present TABLE number. Entry
is processed normally.

L. H. BRKT NOT LOC. -ASSUME EXP BEG. COL28.

The-left hand bracket of a symbolic expression does not

appear in col. 28 or 27 of the input entry. De-coding of
this expression will begin at column 28 of the input record.

LES RNAMES THAN DEFINED-LAST FILE
The numeric column of the previous FILE entry contained
a number greater than the number of RNAME entries pro-

cessed before reaching the present FILE entry. Processing
continues normally.

MORE RNAMES DEFINED THAN FILE CALLED FOR

The current RNAME entry is over the number of RNAMESs
which the previous FILE contained in its numeric column.

NO EXP TYPE-ASSUME JOIN

The current symbolic expression has an invalid or blank
expression type in col. 23-26. The JOIN type is assumed.

OUT OF SEQUENCE

The Page/Line of the current entry is lower than that of the
previous entry.

- A.8-

OVER 9 CONTINUATION CARDS FOR EXP. -IGNORED (CRITICAL)

The present entry is the 10th continuation card of an Arithmetic
or Symbolic expression. It will be re-coded as a TITLE entry
and the expression will end at the end of card 9.

OVER 25 RLISTS - TREATED AS VLIST

The current RLIST entry is number 26 or above. No move-
ment of a function will occur as the result of its use in a
condition statement.

TAG OF POINT OVER 5 CHAR. LONG

The current index pointer name is 6 or more characters in
length. It will be processed normally.

TBL. TYPE INVALID TAB. NO. -ASSUME XXXXXX

The current TABLE header is type "D" (data) but has a Table
Number greater than 0003 (only the numeric portion of a Table
number is used in this test). An assumption of Table number/
type will be made on the basis of the operator of the following
entry. If ORDER, a procedure Table is assumed. If FILE,
Table 0000 is assumed. If neither, Table 0003 is assumed.

UNKNOWN OPERATOR TYPE

The operator of the current entry is not in the list of acceptable
operand description classes. The entry will be put out as is.

***¥EOF OUTPUT -PROCESSING RE-STARTED**

End of file on the output tape has occurred. The current pro-

gram will be recompiled from the beginning. Error messages

up to this point will be repeated on the next page of error messages.
Xeemmmm X QUESTIONABLE OPERAND FOR EXPRESSION

The current arithmetic or symbolic expression references an
index pointer name, list name, or state relation. May be im-
proper usage.

A g

INVALID, TAB. NO. -USING NAME ONLY

The Table Number of an Autocoder (A) Table is not pure
numeric or is less than 0004. All procedure Table must
have pure numeric Table Numbers greater than 0003. The
Table Name will be used to tag the first generated instruction
of the Table. DO statements referencing Table number will
generate incorrectly.

II. Procedure Section

A. Message Format

fTP. PGLN\ ‘TAB. NO. H TAB. NAME ‘ CRIT [MESSAGE TEXT | IDENT

Where:

TP. PGLN is the Page/Line number assigned to this output entry by
7080 DTS.

TAB. NO. is the current Procedure Table number. TAB. NAME is the
current Procedure Table name. CRIT is blank if this error is minor;
is *** if this error is considered a major error.

MESSAGE TEXT is a description of the error.
IDENT is the input program identification.
B. Message Texts:

Xemmmmm X Yemomm- Y BOTH LISTS-1st IS ARG
Both operands of a condition statement are list names. The first
operand will be processed as the name of the argument, the
second operand as a list name. This is improper usage, and
should be corrected prior to Autocoder assembly.

b CLEE L X Yoommoem- Y BOTH STATES-1st IS TAG

Keommmm= X, Y- Y are operands of the current condition
statement and are both state relation names. Operand 1 will
be processed as a field name.

- A.10 -

Xemmmmm X- EXPRESSION IMPROPER IN THIS OPERAND

Xemmma X is an arithmetic or symbolic expression name and
is the resultant or receiving operand of a MOVE or SET

action. No linkage to the expression routine will occur; and
this operand will be processed as the name of a signed field.

XX - IMPROPER OPERATOR TYPE FOR CONDITION

XX is the operator of the condition statement being processed,
and is invalid. The operator is assumed to be EQ, and pro-
cessing continues.

Kemmmmm X- IMPROPER STATE FOR ACTION AREA

Xeommmm X is an operand of the action statement currently
being processed. It is a state relation, but is not ZERO,
BLANK, ON, OFF. These are the only state relations
allowed in an action statement. X------ X will be pro-
cessed as a field name.

SET SET EQ
XX-INVALID OP TYPE-ASSUMING
MOVE MOVE TO

XX 1is the operator of a SET or MOVE action and is not EQ,
+, -, /, ¥ XX is assumed to be EQ.

Xemmm X - LIST NAME INVALID IN ACTION AREA
Xemmmmm X is an operand of the action statement currently

being processed. List names are not allowable in the action
area.

MOVEV Xe=nmee- X Yeomoe- Y NO POINT, DID MOVE (Critical)
Neither operand of this MOVEV action statement is an index
pointer name and neither operand contained a comma. The
action was assumed to be MOVE and processed accordingly.
Xemmmmm X - POINT NAME UNDEFINED - ASSUME SER.

Xemmmm- X is the operand of the action statement being processed,

and contains a comma. The name to the left of the comma is not
an index pointer name, but will be assumed to be the name of a

- A 11 -

SER index pointer.
Xemmmmn X - STATE IMPROPER IN THIS OPERAND

Xemmmmm X is the operand of the current action statement. It
is a state relation name and is improperly used. It will be
processed as a field name.

Xemmmmm X - UNKNOWN ACTION - OPERATOR TYPE (Critical)

Kemmmam X is the action/op of the current action statement. It

is not a member of the valid action/op list. A NOP, tagged with
the tag of this action, and with an operand of this action's operand
1,will be generated.

EXPRES. NOT TAGGED OR BLANK OPND-PROCEDURE TABLE
(Critical)

One of the dperands of the current procedure table statement
being processed is blank. Improper coding will be generated as
a result. '

Xemmmmm X TABLE VS STATE-ERROR-NO TABLE SERCH

The present condition statement related a List name and a

state name. This is improper usage. The List name will

be processed as a field name.

CHECK. NO ELSE RULE OR ERROR TABLE NOTED

Possible error, programmer should make sure all possibilities
have been considered.

INVALID. RECORDS BYPASSED TO NEXT TABLE
Unknown record type following actions.

RECORDS MISSING OR OUT OF SEQ - TAB BYPASSED
ZERO ORDER. RECORDS BYPASSED TO NEXT TABLE

ZERO NO. RULES. TABLE BYPASSED.

- A.12 -

INVALID ACTIONS. RECS BYPASSED TO NEXT TABLE
Probably no actions for this row.
CHECK. NEXT TABLE IS BLANK.

Possible error, programmer should check to assure a
GO TO for each rule.

Listing Program Messages (printed after heading 1)

RECORDS MISSING OR OUT OF SEQUENCE. TABLE BYPASSED.
ERROR. NO. OF RULES IS ZERO. PRINTED AS 6.
ERROR. HAVE ZERO ORDER. RE-ORDER DISCONTINUED.

Notes on Pre-processing Method

The 7080 DTS pre-processor (compiler) converts from programs written
in decision table form to acceptable Autocoder I form.

Operand Description =-

The compiler makes almost a direct conversion to Autocoder, the major
exceptions being that expressions are compiled as part of the data des~
cription and are set up to operate on a closed sub-routine basis. IOCS
entries are passed without change; FILE is changed to TITLE, RNAME to
NAME, GNAME to NAME, FLD to RCD, PRE to CON, RPT is unchanged,
VLIST and RLIST to TABLE, MEXP to MATH, SEXP to a special macro
GATHR, PCON to CON, BITCD unchanged, ALTSW unchanged, and POINT
to ADCON. Address Registers X0 through X9 are changed to 6 digit signed
ADCONS.

Procedure Description --

The condition and action statements are converted to Autocoder macro
instructions - a number of new macros are used.

Condition area - The entire condition area is in core storage at one time.

A slightly different approach is used in scanning depending upon whether: the
row is in limited or extended entry. Each limited entry test is made before
going into the entry portion - a bit is turned "on" if the test is met, i.e.,
limited entry conditions are pretested, extended entry conditions are not.

If this same test must be made more than once, the bit test is very rapid,

- A 13 -

thus speeding up the process of finding a "satisfied" rule.

The condition area is then scanned to eliminate horizontal redundancies
(marked * in examples below); in addition the reverse tests are eliminated
if there are no tests to be made above it in the same rule (marked by &

rr). The rule entries so marked are ignored when the final tegting net«
work is compiled. Rearrangement of condition rows and decision rules
can greatly affect the number of test to be made in the object programs.

The not pertinent (blank entries) should be moved toward the bottom for
space efficiency and often for time efficiency. Other things being equal,
the most discriminating (most likely to fail) should be toward the top.
Rules should be arranged such that the high frequency rules are at the
left, since object testing starts at rule 1. Note examples below, tests are
made only when a Y or N (in limited entry) remains.

Blank entries produce the same efficiency at far left or far right if at
bottom.

Examples:

P Y Y produces - » *

Y N N Yy H
Y N ¥ B

Y Y

b 4 Y Y 4 * *

N N ¥'§ N " jw

N Y N 17

24 ¥

But blank entries intermingled generate more tests.

Y Y Y Y * %
Y N Yy X
Y N N Y N N
Y Y

Blank entries at the top (either left or right) give the worst
possible arrangement.

No redundancies

=g
K2
KZ2

- Al4-

The rule to remember is: the row above must be *before a

|:{ or * can replace the test. *'s are assumed to be before
the first row. Therefore when table forms a tree, blank entries
should be at the bottom.

Action area - Each action appears only once in the compiled program
(unless the user writes the same action more than once).: During com-
pilation a control word is set up for the actions of each rule (actually
Bit switches), "on" indicates "execute" it, off indicates "skip" it. The
proper control word is set up when the conditions of a particular rule is
satisfied, then the Bit corresponding to each action is tested in turn -
if "on" execute, if "off" go to the next Bit and test, and so on for each
assigned action in the table. For example:

Rule 1 Rule 21 Rule 3

fomitia e s {.-___._.,.___.

, |
— ~ I e — : -

Action 1 "
Action 2
Action 3 :
Action 4 [
Action b
Action 6 |

MM KR
MoK MM

M MW M

Rule 3 would have a control word -ON-OFF-0ON-OFF-ON-ON, and Actions
1, 3, 5, and 6 would be executed. Rule 1 would have actions 1, 2, 3, 5, 6
executed. If long sequences are to be executed for a number of rules they
might be written as a separate "closed" unconditional table and executed by
a DO Table name action command.

-A.15 -

