
NEERING

ERVICES

D R AFT MAN U A L

TABULAR DESCRIPTIVE LANGUAGE

January 15, 1962
Technical Report No. 2A2

Thomas B. Glans
Burton Grad

INTERNATIONAL BUSINESS MACHINES CORPORATION

White Plains, New York
© 1962 by International Business Machines Corporation

IBM Data Processing Division
200 Mamaroneck A venue
White Plains, New York

January 17, 1962

To: Recipients of the Tabular Descriptive Language Manual

Subject: Corrections and Additions

The manual that you received is incomplete in anum ber of ways.
Included within this package are a cover page, preface, table of contents
and an errata sheet containing a list of the errors we have found to date .
The corrections are in the same order as the manual itself and therefore
can be made easily.

Three sections of the manual have not yet been completed: Chapter
3 which includes two sample problems and their s olutions, using the
Tabular Descriptive Language; Chapter 2, Example 8, which defines the
use of the input- output operations (input- output is described in Chapter 6);
and finally, Chapter 7, which defines the way in which the various forms
used with TDL are written.

A complete revision of the manual is currently under way. It is
anticipated that this will be printed by the 26th of January. These revised
manuals will include those portions not currently in your hands and will be
sent to you as soon as available.

Your comments, suggestions and recommendations are most welcome
and should be submitted through Mr. D. Hradecky, Education Planning,
Endicott. Any forms that you require can aiso be obtained from Education
Planning. r hope that you will find the Tabular Descriptive Language a
useful tool for system development and documentation.

TBG:mam
Enclosures

Thomas B. Glans
Systems Engineering Services

•

PREFACE

There is increasing evidence to indicate that decision tables are a

useful means of analyzing and portraying systems logic. With this in mind

the Tabular Descriptive Language was developed to encourage experiments,

using decision tables for a wide variety of business problems . The feedback

from the users of the Tabular Descriptive Language will provide a reliable

evaluation of the usefulness of decision tables in problem analysis and

documentation.

The Tabular Descriptive Language is designed to permit systems

engineers to clearly and effectively think through the systems design logic,

record this logic, and then communicate it to other systems engineers or

programmers. The primary purpose is man- to- man communication, as

opposed to man- to- machine communication, for which programming languages

are designed. Various levels of system description can be made using the

Tabular Descriptive Language because of the hierarchical nature of the

language, that is, operands need be specified only to the level of detall

necessary for clear communication, and certain procedures need merely be

referenced in the decision tables without portraying the explicit logic .

This initial version of the Tabular Descriptive Language will provide

a foundation upon which future developments can be built as the needs for

expansion are identified. Therefore, the evaluation, comments and recommen

dations of users will serve to guide future development, so that the full

potential of an advanced systems language can be realized within the near

future .

i

A word about this manual. It is directed primarily at people who

will be experimenting with the language. Chapter'1 presents a quick sketch

of the basic ideas of data processing and decision tables, along with the

environment in which the Tabular Descriptive Language is to be used. Chapter

2 covers the essentials of the Language, using a set of graded examples to

introduce a few new ideas at a time. There are also review questions and

answers after each example. Chapter 3 contains two problems worked through

in the Tabular Descriptive Language. Chapters 4, 5 and 6 are the reference

portion. Chapter 4 defines the structure of the language, Chapter 5 the

operands and Chapter 6 the decision table operations. Chapter 7, the

Appendix, indicates the mechanics of filling out the various forms needed to

describe a system .

We wish to thank Messrs. G. H. Bang, R. N. Barnes, W. L. Kelly,

A. A. Lea, and W. M. Selden for their contributions and suggestions in

defining the Tabular Descriptive Language, Mr. J . L. Mannasmith for

developing the problem solutions of Chapter 3, Mr. L. Weinstein for his

development of sample problems and overall review of the language,

Miss S. Troy for developing sample problems in Chapter 2 and preparing

teaching material and Mr. E. L. Blossom for his assistance in rewriting

the material in the reference portion of the manual.

It is expected that improvements will be made to the language as

suggestions are received from users. Since the Tabular Descriptive

Language is for man- to- man communication there is no implication that

ii

IBM wilI produce a processor to translate this language to any IBM data

processing machine.

January 17, 1962

iii

Thomas B. Glans

Burton Grad

TABLE OF CONTENTS

CHAPTER 1 - A Tabular-form Descriptive Language

A Data Processing System .. . 1. 1
Decision Tables 1. 3
The Language Concept 1. 6

Purpose of tbe Language . 1. 7
Structure and Content of tbe Language . 1. 7

Operand Descriptions . . . 1. 7
Decision Table Descriptions 1. 8

Use of TDL 1. 13
Solving a Systems Problem. . . 1. 14

CHAPTER 2 - Using tbe Tabular Descriptive Language

Introduc tion·
Example 1 • •
Example 2 •
Example 3
Example 4
Example 5
Example 6
Example 7
Example 8 (Not present)

CHAPTER 3 - None

2. 1
2.2
2.7
2.12
2. 20
2.23
2.28
2.32

C HAPTEH 4 - The Struc ture of the Language

Nature of Language. . .
Vocabulary and Grammar
Formation of Operands

Character Set
Names
Special Names

Literals .
Connotative Terms
State Terms . . .
Descriptive Terms

Operator Names . .
For mation of Statements

Condition Statements
Action Statements

Formation of Decision Tables
Table Header
C ondi tion Stub .
Condition Entry
Action Stub .
Action Entry. . •
Rule Header . .
Remarks ...

Formation of System Descr'iption .
Special Decision Tables. . .

STAHT
STCp

Limited and Extended Entry Tables .
Open and Closed Tables.

4. 1
4. 1
4.2
4.2
4.2
4.3
4.4
4.4
4.4
4. 5
4. 5
4. 5
4. 6
4. 6
4. 6
4.10
4.10
4.10
4. 11
4.11
4.11
4.11
4.12
4.12
4. 12
4. 13
4. 13
4.14

CHAPTER 5 - Operands

Types of Operands .
Operand Names .
Information Operands.

Files. .
Records. . . .
Fields
Association Groups
Sub- Fields . . .

Reference Operands .
Reference List Functions
Value Lists . . .
Arithmetic Expressions.
Logical Expressions .
Symbolic Expressions
Constants.

Work Operands .
Work Records
Work Fields .

System Segmenting Operands.
Procedure Names . .
Decision Table Names

Self- describing Operands
Direct Valued Literals

Numeric Literals .
Alphameric Literals .

Connotative Terms
State Terms . . .
Descriptive Terms
Value List
Range

•

•

5.1
5. 3
5. 3
5. 3
5. 5
5. 6
5. 7
5.8
5. 10
5.10
5. 11
5.12
5. 14
5. 16
5. 16
5.16
5. 17
5. 18
5. 18
5. 18
5. 19
5. 19
5. 20
5. 20
5. 21
5. 21
5. 22
5. 23
5. 23
5. 24

CHAPTER 6- Decision Table Q-perations

Conditions.
Value Relational Conditions

Operations . . .
Operands. . . .
Comparison Rules .
Usage

Field Name ..
Value List Name
Arithmetic Expression Name
Symbolic Expression Name
Constant Name . . .
Work Field Name . .
Direct Valued Literal
Connotative Term . .
Descriptive Term. .
Value List and Range

Mechanics.
State Relational Conditions

Operators. . . .
Operands. . . .
Comparison Rules.
Usage ...

POSITNE.
NEGATNE
NUMERIC.
ALPHABETIC
STATUS ..
PRESENT . .
END OF FILE

Mechanics
Actions

Assignment Actions
Operators. .
Opc~ands . . .
Special Rules
Usage

•

•

Individual Value Assignment.
Correspending Value Assignment
Two-operand Arithmetic Assignment
Multiple Factor Arithmetic Assignment

Mechanics.

6. 1
6. 2
6. 2
6. 3
6. 3
6 . 4
6. 5
6.6
6.6
6.7
6. 8
6. 8
6. 8
6. 9
6.9
6. 10
6. 10
6. 12
6. 12
6. 12
6. 13
6. 13
6.13
6. 14
6. 15
6. 15
6.15
6. 16
6.16
6.17
6. 18
6. 18
6.18
6.19
6.20
6.22
6.22
6.23
6. 23
6 . 24
6.26

Sequence Control Actions
Operators ..
Operands . .
Special Rules
Usage

GOTO .
DO ...

Mechanics .
Input/Output Actions

Ser ial- type Files
Operators ..
Operands . .
Control Rules
Usage ..

READ
WRITE
BEGIN
SORT .

Mechanics .
Random- type Files

Operators ..
Operands . .
Control Rules
Usage .. .

READ .
WRITE .
CLEAR .

Mechanics .

6. 28
6. 28
6. 28
6. 28
6. 29
6. 29
6. 30
6.32
6. 40
6. 41
6. 41
6. 41
6. 42
6. 43
6. 43
6. 44
6.44
6.45
6. 46
6. 47
6. 48
6. 48
6. 48
6. 49
6. 49
6. 50
6. 50
6. 52

1.7

1.8

2. 4

2. 8

2. 10

2. 11

2.17

2. 18
2. 19
2. 20
2 . 21
2. 22

2. 23

2. 24

2. 24

TABULAR DESCRIPTN E LANGUAGE
(Technical Report No. 2A2)

ERRATA ill January 17, 1962

P aragraph Line

1

3

2
Ans.l

3

2

Left

1

12

5

9

1

12

Q2

Q3

3

4

5

6

1

9
6

11

5

Ser. 4

4

· .. names of file~. r ecords . . .

Commonly understood names can be .. .

operand 1, operator_, operand 2

Using thi s form the complete .. .

· . . a quantity in the first

What action is . ..

EQ. . . operator

B - A ~ B

B*A ~ B

Action row ~ in . . .
· . . go to t able GETX
· . . action in row 5
· . . introduces
· .. range 2~-24, the . . .

be preceded by . ..

· . . QUAN SOLD: CT * CUST
DISC:WORK A
To refer to these fields the
user must qualify the field name
with the record name WORK A,
e . q ., Q;TY ON HAND: WORK A

~ Paragraph Line

2. 24 3 2
2. 25 3 4
2 .25 Fig. 5c Sa: 4

2. 25 Last 4

2.27 Q4

2. 28 4 4

2. 28 4 7

2. 29 2

2. 31 Ans. 3

Ans. 5

Ans. 5

2. 32 2 10

12

2. 33 1 4

2. 35 2 13

16

3 4

5. 6 6 2

5. 12 1 5

3 2

5. 21 2 8

5.22 1

6

Errata #1
- 2 -

field, AMT EXT_, from ...
For example , serial 6 of. ..
QUAN SOLD N + i
· .. serial .Q of figure 5b, ...

delete question 4 and answer 4

· . . and GO TO table 016.

no idenl.i!Jing marks . . .

... LOC NO, DEPT, EMP NO,
and EMP NAME are
· .. of numeric valued operands with

· .. the bond purchase price is placed . .

and the table is repeated.

DEPT EXP_ REPT.

· .. i s prec~ded by . ..

is prec,,-ded by ...

. . . DEPT NO. From ...

· .. fi eld (the right-mostl.is in ...

· . . is in printwheel _ position 64.

· . . as alphameric, the entire field
is alphameric.

an alphameric literal is enclosed . . .

· .. The value of an expression __
is always . . .

All examples in single quotes (').

. .. ZERO_S

· . . zero_5, .. .

.Errata ill
- 3 -

~ Paragraph Line

6. 1 2 · .. to be described by the

6. 3 4 2 · . . (2) High- order zeros are added

6.4 2 3 · . . is performed positi on Qy
position from

6.6 7 · .. and these operands:

6.8 22 Value_ List Name

23 Value_ List

6. 12 4 5 Delete Record Name

6. 13 15 · .. operands are discussed . ..

6. 15 13 · .. be used with numeric or
alphameric-operands .

6.27 1 The first two form s shown are
limited entry, the last four are

Last · .. the other six are . ..

6. 32 Last PER ASSOC letter
FOR ASSOC letter
PER ASSOC letter
FOR ASSOC letter

6.46 4 K." · , or blank

5 X , · , or blank

7 K." · , or blank

8 X, · , or blank

6.47 2 K." · , or blank

6.52 3 K." · , or blank

16 K." · , or blank

RING

ERVICES

PREL I M I NARY MANUA L

TABULAR DESCRIPTIVE LANG U AG E

Januar y 25, 1962
Technical Repor t No. 2A5

Thomas B. Glans
Burton Grad

INTERNATIONAL BUSINESS MACHINES CORPORATION

White Plains, New York
~ , ,,,,,,,,.n. .. . ,. • _ .

PREFACE

There is increasing evidence to indicate that decision tables are a

useful means of analyzing and portraying systems logiC. With this in mind

the Tabular Descriptive Language was dev e loped to €nC0 1Jrage experiments

using decision tables for a wide variety of business problems. The feedback

from the users of the Tabular Descriptive Language will provide a reliable

evaluation of the usefulness of decision tables in problem analysis and

documentation.

The Tabular Descriptive Language is designed to permit systems

engineers to clearly a!ld effectively think through the systems design logic,

record this logic, and then communicate it to other systems engineers or

programmers. The primary purpose is man-la-man communication, as

opposed to man- ta- machine communication, for which prog ramming languag es

are designed. Various levels of system description can be made using the

Tabular Descriptive Language because of the hierarchical nature of the

language, that is, operands need be specified only to the level of detall

necessary for clear communication, and certain procedures need merely be

referenced in the decision tables without portraying the explicit logic.

This initial version of the 'I'abular Descriptive Language will provide

a foundation upon which future developments can be built as the needs for

expansion are identified. Therefore, the evaluation, comments and re commen

dations of users will serve to guide future development, so that the full

potential of an advanced systems 12.I1guage can be realized within the near

future.

i

A word about this manual. It is directed primarily at people who

will be experimenting with the language. Chapter l. pr esents a quick sketch

of the basic ideas of data processing and decision tables, along with the

environment in which the Tabular Descriptive language is to be used. Chapter

2 covers the essentials of the Language, using a set of graded examples to

introduce a few new idea.s at a tim e . The re are also review questions and

answers after each example. Chapter 3 contains tw '') problems worked through

in the Tabular Descriptive Language. Chapters 4, 5 and 6 are the reference

portion. Chapter 4 defines the s tructure of the language, Chapter 5 the

operands and Chapter 6 the decis ion table operations . Chapter 7, the

Appendix, indicates the mechanics of filling out the various form s needed to

describe a system .

We wish to thank Messrs. G. n. Bang, R. N. Barnes, W. L. Kelly,

A. A. Lea, and W. M. Selden for their cont.ributions and s uggestions in

defining the Tabular Descriptive Language, Mr. J. L. Mannas mith for

developing the problem s oJutions of Cha.pter 3, Iv1r. L. Weinstein for his

developm ent of sample problem s a.'ld overall review of lhe language,

IIfJ.ss S. Troy for developing sample problems in Chapter 2 and preparing

teaching material, eJ.nd Wa- . E. L. Blossom for his assistance in rewritinq

the material in the reference portion of the rnc.nual.

n. is expected that improvements will be made to the language as

suggestions are received from us ers . Sin.ce the Tabular Descriptive

Language 105 for man-ta- man commlulicatio:1 there is no implication that

ii

IBM will produce a processor to translate this language for any IBM data

processing machine.

Since this is a first attempt to formalize the language used for

man-to-man communication there have been many technical difficulties .

As a r esult, there may need to be fur ther changes and improvements as

feedback is received from users. Please note, therefore, that this is a

preliminary manual which will need to be technically modified and rewritten

after ther e has been adequate experience.

Januar y 17, 1962

iii

Thomas B. Glans

Burton Grad

TABLE OF CONTENTS

CHAPTER 1 - A Tabular- form Descriptive Language

A Daia Processing System
Decision Tables
The Language Concept . .

Purpose of the Language
Structure and Content of the Language

Operand Descriptions . . .
Decision Table Descriptions

Use of TDL
Solving a Systems Problem. . .

CHAPTER 2 - Using the Tabular Descriptive Language

Introduction
Example 1
Example 2
Example 3
Example 4
Example 5
Example 6
Example 7
Example 8

•
•

CHAPTER 3 - Sample Svstems Descriptions

Example 1
Example 2

-.

1.1
1.3
1. 6
1. 7
1. 7
1. 7
1. 8
1. 13
1. 14

2. 1
2. 2
2. 8
2.14
2.24
2. 29
2 . 35
2. 41
2.47

3. 1
3.19

CHAPTER 4 - The Structure of the Language

Nature of Language . . .
Vocabulary and Grammer
Formation of Operands

Character Set .
Names
Special Names

Literals .
Connotative Terms
State Terms . . .
Descriptive Terms

Operator Names · . .
Formation of Statements.

Condition Statements
Action Statements . .

Formation of Decision Tables
Table Header .
Condition Stub
Condition Entry
Ac tion Stub .
Action Entry
Rule Header
Remarks . .

Formation of System Description
Special Decision Tables

START
STOP

Limited and Extended Entry Tables
Open and Closed Tables

•

4. 1
4. 1
4. 2
4. 2
4. 2
4. 3
4. 4
4. 4
4. 4
4. 5
4. 5
4. 5
4. 6
4. 6
4. 6
4. 9
4. 9
4.9
4.10
4. 10
4.10
4. 10
4.11
4. 11
4.11
4. 12
4. 12
4. 13

CHAPTER 5 - Operands

Types of Operands
Operand Description Sheet
Operand Names . . .
Information Operands

Files
Records
Fields
Association Groups
Sub- Fields

Reference Operands . .
Reference List Functions
Value Lists
Arithmetic Expressions
Logical Expressions.
Symbolic Expressions
Constants

Work Operands . .
Work Records
Work Fields

System Segmenting Operands
Procedure Names . .
Decision Table Names

Self- Describing Operands
Literals

Numeric Literals
Alphameric Literals.

Connotative Terms
State Terms
Descriptive Terms .
Value List
Range

•

• •

5. 1
5. 2
5. 3
5. 4
5. 4
5. 5
5. 6
5. 7
5. 9
5.10
5.10
5.11
5. 12
5. 14
5. 16
5. 17
5. 17
5. 18
5. 18
5. 18
5. 19
5. 19
5. 20
5.20
5.20
5. 21
5. 22
5.22
5.23
5. 24
5. 24

CHAPTER 6 - Decision Table Operations

Conditions
Value Relational Conditions

Operators
Operands
Comparison Rules
Usage

Field Name
Reference List Function Name
Value List Name
Arithmetic Expression Name .
Symbolic Expression Name.
Constant Name .
Work Field Name .
Literal
Connotative Term.
Descriptive Term.
Value List and Range

Mechanics
State Relational Conditions.

Operators
Operands
Comparison Rules
Usage

POSITNE .
NEGATNE .
NUMERIC .
ALPHABETIC
STATUS .. .
PRESENT ..
END OF FILE

Mechanics •

6. 1
6.2
6. 3
6. 3
6.4
6. 5
6. 5
6. 5
6. 6
6. 7
6. 7
6. 8
6. 8
6.9
6.9
6. 10
6.10
6. 11
6.13
6. 13
6.13
6. 14
6. 14
6. 15
6. 15
6. 16
6. 16
6. 16
6. 17
6. 17
6. 18

Actions
Assignment Actions

Operators ..
Operands ...
Special Rules .
Usage , ...

Individual Value Assignment
Corresponding Value Assignment
Two- operand Arithmetic Assignment
Multiple Factor Arithmetic Assignment

Mechanics
Sequence Control Actions.

Operators ..
Operands ...
Special Rules·
Usage . , .

GO TO .
DO

Mechanics .
Input/Output Actions.

Types of Files
Serial Files

Operands
Operators

READ
WRITE.
BEGIN .
SORT

Random Files
Operands
Operators

READ
WRITE
CLEAR

6. 19
6. 19
6. 20
6. 21
6.21
6.23
6. 24
6. 24
6. 25
6. 25
6. 27
6.29
6. 29
6. 29
6. 30
6. 30
6. 30
6.31
6.33
6. 35
6. 36
6.36
6. 38
6. 38
6. 39
6. 39
6. 41
6. 42
6.43
6.43
6. 44
6. 44
6.46
6.48

CHAPTER 7 - Appendix

FUe Description Sheet
Sample Form- . •
General Headings .
FUe Descriptior. Headings.
Field Description

Reference Operand Description Sheet .
General Headings. .
Sample Form . . .
Operand Description

Constants .
Expression . .
Value List
Reierence List.

Decision Table Forms
Sample Form
Continuation Form .
Decision Table Header
Decision Rule Header.
Table Body

Report Specification
Sample Printer Layout Sheet.
Report Layout Sheet.

Re~ord Heading
Record Descriptio!l .
Edited Fields

Character Representation
Insertion Characters
Replao::ement
Field Adjustment

Ope!'and Summary
Chars.cter Set in Collating Sequence
Functions

Conditiun Summary.
Opzrand Combjnations (V;?.lue Relationals)
Ope,and C"mbina.tioHs (state Relationals)
Fil~ Conditions ~ . . .

Action Si.l.I:O.mary
I'AOVE and SET Operal1ds
Input O..!tpat Opero.tors .

7. 1
7. 2
7. 3
7.3
7. 5
7.11
7. 11
7.12
7.13
7.13
7.13
7. 16
7.16
7. 20
7.21
7. 22
7.23
7. 25
7. 27
7.30
7. 31
7.32
7. 33
7. 35
7.36
7.37
7.37
7.42
7. 43
7.45
7.46
7.47
7.50
7. 53.
7. 53
7. 55
7. 56
7.57
7. 59

CHAPTER I

A Tabular- Form Descriptive Language

Suppose you have been assigned to a leam that is to set
up a data processing system for some application in
payroll, or inventory control, or utility billing, or
insurance, or even in an area of science or engineering .
What do you need to know about data processing in order
to use the Tabular - form Descriptive Language (TDL) on
such a job?

To begin with, we can mention a few areas of knowledge
that are not needed . You need no knowledge of electronics .
You need no knowledge of mathematics beyond high school
algebra (unless, of course, the problem itself is mathe
matical). With the Tabular- form Descriptive Language you
do not even need a detailed knowledge of how any particular
computer system works. However, you do need to know
certain facts about data processing, and eventually, if you
work with the subject for a while, you will pick up certain
detailed facts about particular compulers - but you do not
need these now. For now J the general ideas which you
should have are discussed below.

A data processing system is composed functionally of five
parts, as shown in Figure 1. The input section accepts
information Ilfrom the outside, II and converts it into the
electronic form in which it is manipulated and stored
internally . Externally, information is typically recorded
on punched cards, punched paper tape, or magnetic tape.
In some applications, printed characters can be read
directly. Presently- used business machines cannot recog
nize handwriting or speech. The output section of a computer
has the obvious function of converting from the internal
representation to some convenient external form, such as
printing, punched cards, magnetic tape, punched paper tape ,
or a varie ty of specialized media. Though the speeds of all

1.1

This introductory information is reprinted from the IBM Com
mercial Translator Manual; it also seems appropriate for this
teaching text. "Tabular- form Descriptive Language " has been
substituted for IIC ommercial Translator" throughout.

these devices are much greater than those of manual devices,
they are still generally quite slow compared to speeds of
internal electronic manipulation. The kind and number of
input and output devices naturally depends on the particular
machine and its application.

The storage section of a computer serves two important
purposes. The obvious function is to hold the data on which
we wish to operate. A function less obvious to the newcomer
is to hold coded instructions which we place there to specify
the procedure we wish to follow. A collection of such
instruc tions is called a program. There are usually two
types of storage . One type, though very fast, is of limited
capacity and quite expensive; it is called main storage.
What is frequently termed auxiliary storage can hold much
more information, but is substantially slower,

STORAGE

INPUT CONTROL OUTPUT

LOGICAL -
ARITHMETIC

Figure 1. Schematic representation of the functional parts
of a computer.

The last two sections of a computer are called the logical
arithmetic section and the control section. The actual data
processing is done in the logical- arithmetic section, and the
control section is needed to decode and interpret the instruc
tions in storage.

A most important feature of modern data processing machines
is the way instructions are held in main storage right along

1.2

"

with the data. For this reason we speak of a stored- program
machine. The machine is therefore able to bring in new
inslruc lions when needed so that extremely large and complex
problems can be solved .

The instructions which a data processing machine can
execute naturally vary from one machine to another, but
they can still be grouped into general categories. One
group is used for arithmetic operations, another for making
the elementary II decisions" of which a data processing
machine is capable . Still another group covers input/output
operations and a fourth group carries out miscellaneous
control functions which ar e required because of the way the
machine operates. Most individual operations are quite
elementary, requiring a large number of them be combined
properly in order to carry out a mee.ningful data processing
task. This work, which follows the complete definition of
the processing task, is called programming.

Data processing requires an extremely precise statement
of the problem. We must not say "less than 30" if we mean
"less than or equal to 30. " There is no way we can say,
"make sure the data looks reasonable; II if we want to check
the validity of data, we must specify exactly what tests are
to be made on it.

With electronic data pr ocessing, we are required to detail
our procedures in advance to a degree not found in other
methods . If we were asking a clerk to do a job, we might
end by saying, lIand if you run into anything you don1t know
how to handle , call me and we Ill figure out what to do . 11 In
order to do a similar thing with a data processing machine,
it is necessary first to define precisely what constitutes an
exception, and then to write a procedure to handle it.

Decision Tables

1.3

Of the various activities that go into setting up a data processing

procedure for a computer, the hardest is obtaining this precise definition

of exactly what is to be done under all combinations of cir cumstances.

Every step must be specified. The conditions under which each action

is to be performed must be enumerated. The exceptions to normal

processing must be identified. Necessary sequences of operations

must be precisely indicated .

1.4

Determining what is required of ihe computer system is called

analysis; deciding just how to go about meeting these requirements is

the area of system design; communicating the chosen procedures to

the computer is called programming. In each of these areas a language

is needed for defining ihe data prl"'essing procedures. Ideally, a

language form or structure should be suitable both for man- ia- man

documentation, and for man- ia- machine communication.

Many lanlJUages are used for these purposes. Procedures are

often communicated to the machine in a form closely resembling the

language of its own instructions, but this imposes a heavy and un

necessary burden on the person writing the procedures, since human

language and machine language are quite different. Flow charts are

widely used for man- to- man communication, but they can become con

fusing in complex situations, and the flow chart language is not suitable

for communication with the machine . Logical equations are sometimes

used, but ihey do not display relationships in as graphical a form as

we might wish, and furthermore most system designers do not find

them to be a comfortable form of expression.

Decision Tables seem to hold promise of meeting all of these

needs of a computer language . Decision tables provide a graphical

1.5

representation of complex decision procedures in a way that is easy

to visualize and understand. They show alternatives and exceptions

much more explicitly than other languages . They present relation-

ships among variables clearly . They show the necessary sequences

of conditions and actions in an unambiguous manner . The language

of decision tables can be used equally effectively for system analysis,

procedure design, and computer coding. Thus, a computer pr ocedur e

written as a set of decision tables is, to a large extent, its own ,

documentation.

There is a growing body of experience to indicate that these

claims are justified. Those who have used decision tables for man- to-

machine work say that progr amming is much fas ler and that progr am

checkout time is significantly r educed. They say that the use of tables

leads to greater accuracy and completeness in problem formulation .

They say that pr ogr am maintenance is simpler, and that a pr ogram

written in tabular form is indeed a power ful communication and docu-

mentation device .

For all these reasons it has seemed worth while to develop a

Tabular- fo r m Desc r iptive Language; i. e . , a language using decision

table for mat to structure the communication of pr ocedures and systems

solutions .

To our knowledge this is the first attempt to describe a man- to-

man language with the kind of pr ecision that computer languages possess,

while retaining the ability to describe the system logic rather than

the de tails of a particular solution.

The Language Concept

1.6

In developing such a formal language there are three major con

siderations: Purpose, Structure and Content.

Purpose : The purpose of TDL is to permit systems engineers to

clearly and effectively think through the system design logic, record

this logic, and then communicate1it to other systems engineers or

programmers. It is not a machine- level or programmer- level language

and it is not intended to be implemented automatically. TDL is expected

to provide a clear statement of the solution logic so that a good

programmer can prepare an efficient program. TDL must be usable at

various levels of detail for all types of business data processing . It

must, therefore, have features suitable to the various kinds of problems

found in business systems: report preparation, decision making,

arithmetic processes, file maintenance, etc.

With this broad a purpose, it is evident that the initial TDL can

only es tablish a foundation; extensive work will be required to add

extra features as they are identified, and clarify aspects for situations

not currently visualized . Much, therefore, depends on those who use

TDL at this experimental stage. Their evaluation, comments, and

recommendations will serve to gUide future development so that the

full potential of an advanced systems language can be realized.

Structure and Content: The structure of the language sets up

two classes of information:

(1) Operand Descriptions to enable the systems engineer
to define the meaning and use of various field names,
constants, etc.; and

(2) Decision tables to describe the data transformations.

While operand descriptions are common to many current machine -

oriented languages like Autocoder and COBOL, the attempt here has

been to allow a quite simple and natural way for identifying and·

specifying oper and names only to the level of detail absolutely

necessary for clear communication. The only real requirement is

that names of files , records, fields, etc, be identified to avoid their

1. 7

inadvertent reuse for other operands . The balance of the descriptive

material is only needed for actual communica tion to the programmer

who has to layout and code the job for a particular machine .

To indicate how the idea and nature of the operand descriptions

permit a high degree of flexibility and convenience, let ' s review a few

of the features .

..

Virtually any convenient name can be used for an
item of data. Common names can be used in
many records and distinguished by simply indicat
ing the rec ord name .

Names can represent discrete functions of one or two
arguments - such as, airplane fare between two
pOints.

Names can represent the value of complex arithmetic
formulas.

Names can represent Boolean- algebra type logical
expressions.

Names can represent lines of information resulting
from putting together the values from different Iields.

Commonly accepted words can be used without
definition, such as Branch Office Manager's name,
current month, etc .

Work fields which can be created and changed at will
do not require formal definition.

1.8

The second basic element of the structure of the language is the

one of decision tables. To understand this, let's look at the simple

table shown in Figure 2.

Rule 1 Rule 2 f:;0 ~ Rule 30

age 25- 34 25- 34 W V
? 65

health lIexcellent 11 !excellent!! / ~ ~ IIpoor"

section of
lIeast" Hwest" ~ V "west" country

rate per$1000 1. 57 1. 72 ~ 5. 92

policy limit 200, 000 200,000 -1 W v
20,000

Figur e 2. An example of a decision table .

The first decision rule can be paraphrased: If age is between 25

and 34 inclusive, and heal th is excellent, and sec lion of country is

east, then rate per thousand dollars is 1. 57 and policy limit is 200,000.

The underlined words are implied by the table layout. The quote marks

1.9

are used to differentiate non- numeric values from variable names. The

other rules are alternatives to this one, s::. that logically, it doesnrt

matter which rule is examined first; only one rL~le can be satisfied in

a single pass through this decision table.

The information in Figure 2 is shown in an exploded view in

Figure 4, to show more clearly the parts of a table and the terms that

are used to describe them, The double lines serve as demarc3.tion:

CONDITIONS are shown above the horizontal double line, ACTIONS

below; the STUB is to the left of the vertical deuble lito., ENTRIES

are to the right. Each vertical combination of c onditions and actions

is called a RULE . The essential nomenclature is completed by adding

at the top of the table a title section, called a TABLE HEADER, and by

adding a RULE HEADER over t.he entries .

Tables may be llsed in a slightly different way to state decision

logic, as shown in Fig'..!re 3 .

I •
Rule No. 1 2 0 4 v --

c redit limit ok Y N N N --_.
pay experience fav0rable Y N N

special clearance obtained Y N

approve order X X X

return order to sales X

F igure 3.. A limite.d entry table

STUB

age

CONDITIONS

~~~ 
rate per $1000. /; 

policy limit 
ACTIONS 

STUB 

Figure 4. Exploded view of the table in Fjgure 2. 

ENTRY 

Rule 1 Rule 2 

25- 34 25- 34 

!1excellentl1 l "excellentTl 

!least" IIwestll 
, 

RULE 

1. 57 1. 72 

200, 000 200,000 

ENTRY 

, 

Rule :lo' 

~65 

"poor I! ..I 
tlwest" I 

5.92 

20, 000 

~ .. 
'" 



1. 11 

The first rule (columns 1 and 2) is read : If credit limit ok, then 

approve order. Again, the underlined words are implied by the form . 

You may note here that the form of the individual condition or action 

is somewhat different. In a limited entry condition or action, the 

entire condition or action must be written in the stub; the entry is 

limited to asserting, reversing, or ignoring a condition or executing 

an action. In contrast, an extended entry form (as in Figure 2) has part 

of the condition or action extended directly into the entr y . Both'forms 

may be used within one table, but anyone condition or action r ow must 

be of just one form. 

You may note from this example that the basic concept of a single 

r ule in a table is qui te straightforward, being based on the lIif. . 

then. . ." relationship. If A = B, and C is greater than 5, and . 

then assign the value 7 to X, and GO TO Table 10. If the conditions in 

rule 1 are not met, then try rule 2. If none of the rules succeeds, then 

something is wrong . If we have consider ed a~l significant possibilities, 

and we want to indicate, "Go ahead anyhow with a special r outine, II 

then we indicate "ELSE rT in the last rule; other wise, we provide for 

an automatic err or routine . The flow chart in F igur e 5 shows 

schematically the way in which a table is rTexecuted. I I In practice the 

actual solution technique may vary, but the logical r esult remains the 

same. 



Cond 1 

Cond 2 

Cond 3 

Action 1 

Action 2 

Rule 1 Rule 2 Rule 3 

f .)i{ " " - - -y-' 
./ I 

Y "( Y I 
I 
I 
I 

C )! ( N __ if 
I y y 
I 
I 
I 

)0- Il ( 
'LJ 

"( Y Y 

J, 

Figure 5. Schematic representation of the sequence of te·sts and 
actions in executing a table. 

1. 12 

Rulen 

~ 

J. 



For user convenience decision tables may be referred to by 

name or identification code. Groups of tables are referenced by a 

procedure name. Until the job is actually turned over for program

ming many of these tables and procedures may remain undefined. 

They are simply an indication that such a routine will be supplied. 

This also offers the opportunity of using named tables to define a 

particular routine which is used many times . 

Use of TDL 

1. 13 

The general principles of decision tables have been applied to the 

development of a Tabular- form Descriptive Language (TDL) for man

to- man communication. As such, TDL is not a processable language, 

but it is intended to be precise and comprehensive . Certain operations 

which only have meaning for computer coding have been omitted and will 

have to be added by the programmer . The primary goal of TDL is to 

replace flow char ts and narrative description of problem solutions and 

decision logic . It is not intended to replace block diagrams used to 

show physical relations or essentially pure referential processing work . 

But where there are significant conditions and branches, and where there 

are complex decisions involving many factors TDL permits more rapid, 

accurate, effective solution formulation and description with attendant 

savings in compute r programming and machine space and running time . 

TDL uses decision tables to descr ibe the decision logic inv.olved 

in a systems pr oblem. The tabular form is essential to decision tables. 



1. 14 

It provides a means of briefly, unequivocally and completely describ

ing the requirements of an information processing system in a language 

which is easy to write and read. Because the language is also rigor

ously defined and the forms on which the tables are described have an 

effective structure, brevity is possible . The language content and 

structure enable the user to describe complex, logical solutions with a 

relatively small amount of writing. The nature of decision tables induce 

the user to make complete descriptions of the information processing 

requirements. As a corollary to this advantage is the fact that what is 

written in tabular language may be readily checked for completeness 

and correctness. 

Who then will use TDL? Primarily the systems engineer . The 

systems engineer performs the function of systems analysis and 

development. While he may later act as a programmer, when he is 

dOing systems analysis he is concerned with the system on a level above 

that of programming a computer . The system with which a systems 

engineer is concerned is some segment of a company's total information 

processing. It is the function of the systems engineer to analyze the 

requirements and to develop the necessary detail to describe the infor

mation processing system. 

While no one seems to know just how to go about solving a 

particular data processing problem, the following steps always seem to 

come up : 



1. Describe input and output fields, records, and files; 

2 . Describe printed reports, card and tape content; 

3. Define constants, expressions, lists; and 

4. Determine transformation logic to indicate preparation 
of outputs as a function of inputs. 

1. 15 

There may be substantial iteration in these steps, but they have worked 

well enough in the past to serve as an organizing device for the Tabular-

form Descriptive Language. 

The systems engineer will describe the data which is input to or 

output from the system and the processing of the data which must be 

accomplished. Data processing consists variously of recording data 

without change , validating data to show that it is correct, operating on 

data based on certain conditions, and manipulating data arithmetically. 

It is obvious that a description of such processing does not require 

explicit computer instructions or computer hardware or that a particu-

lar computer be used; itl s only necessary that the systems engineer 

describe fully what the data is and what is to be done to the data, in a 

language which is as close as possible to the language in which he thinks 

about the problem and its solution. 

As the systems engineer determines what the inputs and outputs 

of the system which he is developing will be he may describe these 

using the operand description facilities of the Tabular- for m Descrip-

tive Language . As the systems engineer determines what processing 

must be done on the information in his system, he will describe this 

using decision tables. 



1. 16 

Summary 

This then is a general introduction to TDL, a Tabular- form 

Descriptive Language . Intended for precise man-to-man communica

tion it is based on separating the operand definition from the 

transformation logic. The transformation logic is expressed in a 

tabular form for convenience, completeness, and clarity. 

The balance of the TDL manual explains the details of the 

language and the forms used for describing systems solution in the 

language . 

The next two chapters present a teaching text description of the 

language wi th a number of sample problems. The remainder of the 

manual provides a reference description of the language elements and 

forms. 



2.1 

CHAPTER 2 

Using th,d'abular Des~riptive Language 

The purp:>se of language is effective communication. Consider: 

Jobn is big 

as a language statement. It satisfies the requirements of a communi

cation cycle in that a completely defined thought is transmitted by 

symbols over a medium (paper) to a receiver (the reader) who under

stands it. 

For convenience, the format should be standardized, although the 

symbolism may vary. Now consider: 

Jean est gros 

which has the same meaning as the earlier statement, except that the 

symbolism is slightly different. The format, however J remains exactly 

the same in that the leftmost something is related to the rightmost 

something by the something in the middle. 

The Tabular Descriptive Language (TDLl likewise promotes effective 

communication from sender to receiver by conveying defined thoughts in 

symbolized language statements through a sta'ldard format. This chapter 

is addressed to an explanation and description of the TDL standard format. 

In treating the subject, the examples and text will simply be illustra

tive of its potential, since a complete analysis of all the applications, 



Figure 1. Decision Table, Example 1. 



2.2 

situations, and problem solving approaches which the language is capable 

of handling is too extensive for coverage here. Consequently,Jh!l!tipt@r 

should be read thoroughly to acqulre a general understanding of language 

techniques before proceeding to the more rigorous treaUi,,:jnt of the 

language itself in later chapters. 

Concepts of the language are introduced through a series of examples 

which grow progressively more difficult; the associated narrative points 

out and emphasizes the rules of format. Periodically a group of questions 

is inserted which permit the reader to test his understanding of the 

material he has just studied . In this ma.nner, the reader may proceed 

to succeeding pages at his own pace. 

Example 1 (all figures will appear on left facing pages and will be 

repeated to coincide with the narrative) is an excerpt from one form 

used in TDL, showing a simplified version of a decision table . It might 

have applied to a situation where it was necessary to convert code 

classlfications of automobile styles to an understandable abbreviation. 

The table reads, in part: 

IF the type code 
of the car body i s 1 

THEN the model i s a convertible 

or 

IF the type code 
of the car body i s 2 

THEN the model i s a hardtop 

etc. 



Figure 1. Decision Table, Example 1. 



2.3 

Each of these statements is known as a rule, which indicates the 

relationship between a condition and an action in tabular language . 

IF a condltion or set of conditions is satisfied, 

THEN the corresponding action(s) are execuied. 

A rule further is composed of statements located in the 4 major areas 

of a decision table: condition stub, conditio;] entry, action stub, and 

action entry, each one separated from the others by horizontal and vertical 

double lines. 

Decision Table 
Structure 

=~===#=====::;:=r 
8 

Condition 
Rows 

Action 
Rows 

This sketch locates and identifies those major areas in a decision 

table where information may be assigned for later reference . 

The number of rules included in a decision table is limited only by 

the requirements of the system. The condition stub and the action st1-!b 

are common to all the rules, but condition and action entries vary from 

one rule to the next. In example 1, Li1.ere is only one condition and one 

action for each of three distinct rules. In general, a decision table will 

involve a series of conditions with a related series of actions for each rule . 



Figure 1. Decision Table, Example 1. 



2.4 

Each statement in a decision table is constructed from a series of 

components of two different types : operators and operands . Each has a 

distinct function depending upon the context of the statement. The method 

of their relationship in a condition row for a single rule is : 

operand 1, operator, operand 2 

The relationship in an action row is: 

operator, operand 1, connector , operand 2 . 

To show this relationship, rule 1 (rules are numbered consecutively 

starting with the first entry column after the vertical double line) is 

written as follows : 

(]f) TYPE CODE I 
operand 1 

EQ 1 

operator operand 2 

L-S_E_T,---...JJ IMODEL CODE II EQ I I 'CNVTBL'I 

operator operand 1 connector operand 2 

Operands in TDL are of many forms. All have the common property 

of rep!'€senting something and of being the subject or object of some 

statement. Consequently, they can be considered the equivalent of the 

noun in English grammar rules . With the same reasoning, the operator 

may be assumed to take the place of the verb . A condition statement, 

then, can be considered in the form: 

noun (operand) verb (operator) noun (operand ) 

In rule 1, TYPE CODE and MODEL are operands which are the 

names of certain fields. These operands are known as field names and 



Figure 1. Decision Table, Example 1. 



2.5 

r epresent data variables . These operands come under the general category 

of named operands, and identify information that is peculiar to the system. 

In the same rule , the symbols 1 and 'CNVTBL' are also operands. How -

ever, these operands are known as literals since they represent literally 

that which they say , and are classified under the general category of 

self-describing operands. These may be used universally for all systems 

without additional definition since they directly communicate the value of 

the operand. 

The distinction between a named operand and a self-describing 

operand is imp:>rtant, since one implies a variable value and the other 

a fixed value . Therefore, a method must be devised for differentiating 
• 

between them. This is accomplished by the restriction that a named 

operand must start with a letter . Literals, when they are alphameric 

(as 'CNVTBL') are enclosed in quotation marks, so that they are not 

mistaken for named operands . Nwneric literals need not be enclosed 

in quotation marks as they Gannet. be mistaken for field names. 

In this table, two kinds of operators are displayed, one each in 

condition and action statements : 

o The fir st, written as EQ, is referred to as a condition 

operator . Functionally, it relates the field name TYPE 

CODE to the numeric literals, 1, 2, or 3 in the 3 rules 

and therefore acts as a relational o}?erator. 

o The second, recognized by the SET ... EQ . .. notation is 

an action statement. It performs . the function of des-



Figure 1. Decision Table, Example 1. 



cribing actions to be followed if the conditions of a 

rule are satisfied. For this reason, it is more specifi

cally known as an ass ignment operator. 

2.6 

In this case, the action is to transfer one of the abbreviations (' CNVTBL' J 

'HRDTOP', 'STAWGN') to the field named MODEL CODE, depending upon 

the rule satisfied. 

The manner in which a dec ision table is manipulated consists of 

investigating individual rules until the conditions for a rule are satisfied. 

Either rule 1 may be s atis fied or rule 2, or rule 3, but not more than one 

at a particular time . 

QUESTIONS 

1 . How do you read the 3 rules in Example 1 using English grammar ? 

2. What happens if rule 3 is considered before rule 2 in Example 1 ? 

3 . What is the difference between a literal and a field name? How 

is the difference shown in a table? 

4. What does the action s tatement SET ... EQ ... call for in this 

example? 



Figure 1. Decision Table, Example 1. 



ANSWERS 

1. Rule 1 : If the type code of the car body is I, then the model 

is a convertible. 

2.7 

Rule 2: If the type code of the car body is 2, then the model 

is a hardtop. 

Rule 3: If the type code of the car body is 3, then the model 

is a station wagon . . 

2. There is no change in the results. The rules may be investi

gated in any order, regardless of position in the table. 

3. The field name represents a variable that changes according 

to the information placed in it. A literal is its own value. 

Alphameric literal names I which could be mistaken for 

field names are differentiated in the table by enclosing them 

within quotation marks (r r ). 

4. The SET ... EQ ... action moves an abbreviation, which is a 

literal that describes the car body, to the field named MODEL 

CODE . 



I f-I~ 
I-

~ ~III .. 
~ t:< I- !;I 

~ rJ=~ 
I-

~ 
~ I:; I-
I~ I-

L- ~~~ 
w 
.JI-• .. ~ -

III z -
_2-

!!!-

~ -It~ .?;ll>' 
rr-
.. I~ 

! J 1;2 

" I I~ i I~ I@I~ 
Ft- I~ I~ I§ 

i I~ 
:l I Iii 

~I~ ~ I~ 
'-L-tm 

* 
* 

I~ 

tI~ 

I 
t 
~ 

I~ 1.>1 

I@~ 

I~ 
It 

IV I~ 

Ji I~I~ ~ 
11'11" I'" J~ 

Figure 2. Decision Table, Example 2. 



2.8 

Example 2 shows the complete TDL Decision Table form. Here, 

the situation deals with a proxy report, especially that part dealing with 

the selection of stockholder groups. 

The heading, SYSTEM NAME, is filled in with the particular name, 

PROXY REPORT. A system description consists of a group of decision 

tables J each of which is assigned a name and a.."1. identification . The 

entire system description defines a complete information processing task. 

A decision table defines a segment of that analysis. In this case, the 

TABt.8 NAME is BEL STKVALUE GRPS ahj the TABLE IDENTIFICATION 

(usually a 3 digit number) is 005, but the table is a part of the overall 

system called PROXY REPORT. 

A system description, composed o~ many decision tables, must hav.e 

some method oi indlcating t..'1e sequence of going from one table to the 

next . T.'lis is performed tl1rough the usa of t.l-J.e operator GO TO in the 

last action row. nle operand for this operator is the table name KEY 

REPORT. (The table idelltift~ation CQuld also have been used a.,c:; the 

operand.) It is asstilned th.at some previous table or ~ables have been 

completed for this system a..'ld the last a.etian of the previous table con

sidered was GO 'I'O SEL STKVALUE GRPS, the name of this table. 

Likewise, a.ft&r ttUs iable is completed, tile last action called for is 

a transfer of control to the table named KEY REPORT. At the termination 

of ilie processing, transfer of control is made to a table n..'1.med S'l'OP. 



i~ ~il44~4a++++++++++++++++++rrrrrH 
I~ -~1'++-+-ff~~i.J", ++++++++++++++++++++++-H 

~- ~ ~~~44~~~~++~~++++~ 
.. 
~ 
~I~ E 13 ~tt:+I!ll~-H-+-+-+-t-+-t-+-+-+-+~~++++-t-I 

* 
Figure 2. Decision Table, Example 2. 



2. 9 

This table is classified as an ~ table . All open tables must be 

entered by a GO TO operator and must contain a GO TO operator as the 

last action of the table, the only exception to this rule being the STOP 

table. 

This example illustrates another difference in format as compared 

to Example 1. In the previous example, the second operand of all 

conditions and actions were written in the entry portion of each rule, a 

fact that classifies it as an extended entry table. 

Where the complete condition is written in the stub of the table, and 

the affirmation or negation of the condition is indicated by a Y or an N 

in the rule column, the table is referred to as limited entry . It is 

possible that a rule does not require the condition . In this case , the 

column has no entry. For example, the second condition row for the 

three rules of this table could be roughly translated: 

Rule 1. the number of shares is more than 100000 

Rule 2. (regardless of the number of shares) 

Rule 3 . the number of shares is not more than 100000 

The limited entry format may also apply to actions. In this case , the 

complete action is written in the action stub, and is to be executed if an 

X is placed in the column for that rule. If the action is not per tinent to 

a rule (not to be executed ), the entry for that rule is left blank. In this 

example, all three rules require the action GO TO KEY REPORT. Since 



- I I~ 

-I" -.. -

~ ~ e-

li ~~ - e-~ Z . . 

... 
~ 
~ I:; f- , ~ f=13 r~ -
w~ IS -''- n II 

=r~ - 1.;'1 
E9z~ . I:;! 2r-

• 
!!!'-
~ f-It (151 )---

lill I~ I~ I~ 

-=- e-I~ ,@ ~ I$I~ 
1$1 

- I§ 

I!I~ I~ I~ I~~ 
I~I~ i ~ l1:Ii .,. 

* 
* 

I~ 
I~ ~ 

Ip 
II-

I~~ ~ 
II'l ~ 1">1 

Figure 2. Decision Table, Example 2. 



this action applies for all tilree rules J an X is written in the action 

entry for each rule. To qualify as either limited or extended 

entry, a decision table must follow the arrangement rules for each 

consistently. 

A third tabular format is known as mix.ed entry . Example 2 is 

2 . 10 

a mixed entry table . That is J some of the conditions and actions are 

in extended entry form while others are in limited entry form . The 

only restriction in the use of mixed entry is that a single condition row 

or action row must be consistent . It must be either all limited entry 

or all extended entry . The two cannot be intermixed in one condition or 

action row. 

The condition part of rule 1 asks: .. . "Is the TYPE STKHLDR CODE 

equal to 01 and are the number of shares greater than (GR) 1000007" . . . 

The operator GR is another relational operator. In order for the second 

condition to be satiSfied, the question HAre the nwnber of shares owned 

greater than 1000007" must be answered yes in rule 1. The full list of 

relational operators, with their abbreviations, is given below: 

LR less than (lesser) LE less than or equal to 

GR greater than 

EQ equal to 

GE greater than or equal to 

NE not equal to 

These relational operators could be expressed symbolically (e .. g. , ) ,=), but 

the alphabetic notation will be followed throughout this manual . 



~ I~ 

r 
1-1" 
~ .. -

~ ~ -1)-
-

l-I- ~ .. 
~ 
~ ~ r-

M I~ ~18 I 1'Q I-

will -'I-
=r~ - l<! ilia z - lil 
- g-

~~I 
!1! _ 

~ - tr, 1'l3> 
w 

i 
~Isl 

12 .. 
~ I Ig 1$ IslF 

1- I~ 

I~ 11~ I~ 

1111111 
:l1g' I~ 
~I~ ~ I~ I~ .. ~ I~ o-tm 

* 
Figure 2. Decision Table, Example 2. 



Rule 2 reads: 

IF the type stockholder code is 2 

THEN the type of stockholder is a bank 

and 

move the s tock value to bank stock amount 

and 

the table KEY REPORT is entered. 

2.11 

Th!s rule introduces the MOVE operator with the connective TO which 

works as an aSSignment operator just like the SET . .. EQ. _. action. 

It moves the quantity specified by the first operand (STKV ALUE) to the 

field named in the second operand (BANK STOCK AMOUNT). The 

differences between the SET and MOVE assignment operators may be 

stated as follows : SET ... EQ ... is used when one of several quantities 

in the second operand field is to be transferred to the first; MOVE ... 

TO ... is used when a quantity in the first operand field is to be trans

ferred to one of several fields named by the second operand . 

In the action row containing the MOVE operator) the entries are 

INDIVIDUAL STOCK AMOUNT, BANK STOCK AMOUNT, BROKER 

STOCK AMOUNT. If the name<! do not conveniently fit a line, they may 

be hyphenated or broken where most convenient. They are then continued 

on the second line of Ll)e rule, as illustrated in this example. 



I~ I"" 

* 
Figure 2. Decision Table, Example 2. 



QUESTIONS 

1. Read rule 3 

2 . What action is called for by the MOVE ... TO .. . 

action in rule 3? 

3. How does the action of the MOVE ... TO . . . compare 

with the action of the SET ... EQ .. . ? 

4. In rule 1, if the number of shares is equal to 100000, 

are the conditions of the rule satisfied? Why or why not? 

5 . What are the requlrements of an open table? 

2. 12 



$ I~ 

r , 

'-I .. 
II ~ =lll ~ 

fL .< -

I::' ~ I- ~~ 
t- I;~ .. 

~ 1""'1 
~ t; l-

I I~ ~ I ~ 
I-t-

WI-III .JI-
=r~ -

,> '. 

III z -
_2-

!!! -

~ - It "8 
r-r-.. 
j 

. ~ 
1111 

~ .. 

J 
J I~ 1

0 

t- Ig I~ I ~ iffl~ 
I" 

I~ 1~81 I. 

lit I ~ 
~I~ I~ I~ I~ I~ ~Ij ~ 1"lr I~U ~ ~o- ~I ~ I" [!'II: 1">1 jll: 

.......... " 
" 

Figure 2. Decision Table, Example 2. 



ANSWERS 

1. If the type number of the stockholder code is 03 , q.nd 

if the number of sh'!res is not greq.ter th'!n 100000, 

then the type of s tockholder is a broker, and broker 

s tock amount receives the stock value, and anotller table 

cruled KEY REPORT is entered . 

2 . The s tock vruue is placed in tJ:e data field broker s tock 

amount. 

2.13 

3. Their action is opposite. MOVE transfers a qU'!ntity from 

the first field to one of severru fields named by the second 

operand, while SET transfers quantitie s from one of the 

possible second operand fields to a field named by the ftrst 

operand. 

4. No. The condition used with the relational operator is that 

the numher of shares must be greater th'!n 100000 . Equru 

to this number does not satisfy the condition of the rule. 

5. An open table is entered by a GO TO operator, and must 

conclude with a GO TO operator . 



Figure 3a. Decision Table, Example 3. 



2.14 

Example 3 is concerned with an inventory and billing system. It 

applies to that part of the system wtich processes sales transactions 

agai.·lst inventory, checks the quantity sold against the inventory record 

to establish the quantity to be shipped or back ordered, applies a price 

to the quantity shipped to extend the sales amount, and updates the 

inventory record by the qua!1tity shipped in the sales transaction. 

The first conditio" of the first rule is: 

IS INVENTORY TRANSACTI::JNS A T END OF FILE ... ? 

This illustrates the use of a state conditional oJ?erator and a state term. 

The state conditional operator relates a state term to an operand name 

of something that varies. There are two such operators, IS and NT 

(is NoT). In this example, the first operand is the file name, INVENTORY 

TRANSACTIONS, and the operand which is related to it by the operator, 

IS, is the state term END OF FILE. This entry indicates that when the 

answer is yes, there are no more records available. The END OF FILE 

operand may also be abbreviated EOF. 

Prior to discussing the remainder of this example, it is necessary 

to digress and discuss some of the types of named operands: files, records, 

and fields. 

o A file is a collection of one or more records and has 

three characteristics: 

(1) medium - e. g . , card, disk, etc. 

(2) directional type - input, output, retained, intermediate. 

(3) access type - serial, random 



• 

I S'l'8'T£toiI N,a.M1 
j'iYENTOh SaL/Nez 

I:: FlELD .... E 

I SYSTE~ NAME 
IN 'ir NT(iR.Y B'LL- IN(Z , 

I FiLl NMoti 
11'4 E. 0 

I~' FIELD NAME 

, 

~ 

Figur e 3a. Decision Table , Example 3. 

IB~ 
FILE DESCRIPTION 

I ANALYST 
fRANc ,> 

JDATE 
UJ./4,.. , 

I ... 

I ~61 or PIIoGtS I 

Jilli. VALUE . 

Figur e 3b. File Description, Example 3. 

1 
IBM I ANALYST I DATE I .... At6U I FILE OESCR IPTION fRA .... c ls I/U4 2. '" 

.... TVI>C It.4 EDIU'" "'II:c:.oRO NAIotI ... _ ..0_ M 1l .'CO.D~ 

fO r T I=:. ... N·D'~ INvlN r R }N V'N Of 000 , 0 

~!-" J:i ~ .... '" •• 

. 

-- _. -

Figur e 3c . File Description, Example 3. 



o A record is a collection of one or more fields. It 

assumes the attributes of thG file to which it belongs . A 

File Description form should be completed for every 

type of record, listing all the fields which make up the 

record. 

a A field. is a named piece of information with value and 

can be part of a record. 

File names, record names, and field names are operands in a 

decision table. On. figure 3b, the file description of a record of the 

2.15 

file named INVENTORY TRANSACTIONS is shown. This form des cribes 

the record, SALES, of that file. The record is composed of five fields. 

The file name, INVENTORY TRANSACTIONS, the record name, SALES, 

and the field names, ITEM NO, QTY SOLD, SALES QTY SHIP, 

QTY BACK ORDER, and SALES AM'l'J may all be used as operands. 

In figure 3<; a file description is shown for the recor d, INVENTORY, 

which is part of the file, INVENTORY MASTER. This record has nine 

fields . The headings for figures 3b and 3c are explained as follows: 

System Name: 

File Name: 

The name of the system of which the 

file description is a part. In this example, 

both forms are part of the system INVENTORY, 

BILLING. The decision table is also part of 

this system. 

The name of the file , as described above. 



I svsn ... NAM~ 
l .... y £NTO!! r BULIN" 

FlELD NAME 

I SYSTEM NAM£ 
I N i£NT(;R;Y 5.U.INIl , I 

[ -FILl. NAME 

1« L R 

~. F'IElD NAME 

Figure 3a. Decision Table, Example 3. 

IBM 
FILE DESCRIPTION 

I ANALYST 
ERNIe I$. 

Figure 3b. File Description, Example 3. 

IBM ! IoNALYST 
FILE DESCR IPTION FRA NC IS 

!OA,n 
III 16.4 

.. R ...... MIDIVN R"~O NoUoIt: ..... MO Of; ~.!f.e.~P.----I 

", RAN -o,~ INvf.N r R ]"" ... 'N Of 0 0 0 ~ 0 

lUll Pt.'i ~ -• 

\AOU.U, • 

_. --

Figure 3c . File Descr iption, Example 3. 



Dir. TYpe: 

Medium: 

Record Name: 

Abb: 

2.16 

One file is IN, the other RETAINED. 

The medium on which the file is contained . 

INVENTORY TRANSACTIONS is a serial 

card file, and INVENTORY MASTER is a 

random disk file . 

The name of that r ecord which is described 

by the form . In these cases, SALES and 

INVENTORY. 

This entry allows for the abbr eviation of 

long record names. Such abbreviations 

may be used as an operand rather than 

the full r ecord name . 

Average Records: The average number of the record described 

on the sheet. 

Peak Records: The peak number of the record on the sheet. 

After this information is inserted, the field names for the record 

described are then listed in the field name column. The fields need not 

be described in any particular order. For each field, the specification 

must be made as to 

(1) whether the field is alphameric or numeric (A or N), 

(2) the sign possibilities for numeric fields (+, - , E, U) 



l.f!!.1 NAtoli 
II!/l ' T 

I'.:." ... "' ....... 

I SYSTEM NAME 
INv£NT(;R:Y, £"lL.1N(;, 

I f iLl HAWl 
1N (" R 

10::," FIE'" .>.ME 

,~ 

Figur e 3a. Decision Table, Example 3. 

IB~ 
FILE DESCRIPTION 

I A.NAlY8T 
fRANc !\ 

I DATE , 
~b.Jh .. , PAGiS I 

_l~IDIU'" AI:'-OAO NAMI 
StR - CA.Q.O SAI..c:S 

""'. NO_ 0' .l('O.!~ 

VA " ' . 

Figure 3b. File Descr iption, Example 3. 

IBM 
FILE DESCRIPTIO N 

I ANALYST 
fRANC ,S 

lOAn 
" . / 6 2. 

o , 0 0 

M6U 1 

... 
l"'V lN .. 00 0 5 o 

VAU' I , 

Figure 3c. F ile Descr iption, Example 3. 



(3) the maximum total length for that field (and whether the 

field is of fixed length or variable length) and finally, 

2.17 

(4) the maximum number of times that each field will appear 

on each record. 

Serial 5 on figure 3b illustrates these pOints. The field name is 

SALES AMT which is a numeric value (N) of length 4.2. The number 

4.2 indicates four integer and two decimal positions. If only an integer value 

is specified, then it represents the total number of characters . The field 

name SALES AMT occurs only one time j)2r record. 

Serial 9 on figure 3c also amplifies the discussion. The field name 

is ITEM DESCR, which has an alphameric value. Therefore, no sign 

possibilities need be noted. The maximum length of the field is 20, but 

it is variable . This field occurs only one time per record. 

The second condition of the first rule of the decision table asks: 

Is the ITEM NO of the SALES record the same as the ITEM NO of the 

INVENTORY record ... ? This is a case where field names are qualified 

by their respective record names. In other wordS, the field name is 

given (ITEM NO) and then followed by a colon (:) and the record name 

(SALES). The field names are qualified because each of the two types of 

records contain identical field names. If the field names of a record 

are unique (never used in any other part of the system) then the name may 

be used without any qualification. For example, the third condition of 

rule 1 is: 



·.~. 

Figure 3a. Decision Table, Example 3. 

Il=~!!~~Lb! Nla 1 
m,.. 

~ FILE DESCRIPTION I 
FiLl NAMI ~OINiIl T'tPI t.4fOIUN RIC.QAI) NANl ... 1010_ OJ " ."OR!?' -" , T SrR - C ..... P..O SAL'::.s 0 ,0 0 

I:.' FlELD NAME ~ , I:i~ VA.U' "< 

Figure 3b. File Description, Example 3. 

I SYST£1r.4 NAME 

1 
IBM I ANAI..VST j 04TE I .... At6U r IN 'iHITURy '31lL. INY FILE DESCRIPTION FRAIIIc ,s IjJ.l42. 0< • 

I FLI.l N.AME ......... I Jo4f.DlV N I REc.oAO JirU,W1 ... - . OJ ""'z..o~_ 
1r-l £ • Rn R .... N-D' INVf.N r R H/V ' N If 000 , co 

1'.::- FIELD NAME II! ~Ii ~~ \lALU' . 

, 

- -- .-

Figure 3c. File [)escription, Example 3. 



2.18 

QTY SOLD is less than or equal to the QTY ON HAND ... 

Each of these operands is a field of the r ecords SALES and INVENTORY, 

respectively. Hcr. ... ever, they are unique within the system and need not 

be qualified. Since ITEM NO is a field name in both records and there

fore lacks uniqueness, it has to be qualified by being linked to the name 

of the record where it is contained. 

The deCision table in figure 3 illustrates the use of the SET and 

MOVE operators in two operand arithmetic and in multi-operand arith

metic. Action raw 6 for rules 1 and 2 is stated as follows: 

rule 1: 

rue 2: 

SET the Quantity of Issue equal to the Quantity of Issue 

plus the Quantity Sold ... 

SET the Quantity of Issue equal to the Quantity of Issue 

plus the Quantity on Hand ... 

'Dds i.s the SET operator with two operand arithmetic. Two operand 

arith..'TI.etic m9.y br~ used for addition, subtraction, multiplication, and 

division. The results of these arithmetic operatiGns for two fields, A and 

B, are summarized below: 

OPERATOR OPERAND 1 

SET A 

SET 

SET 

SET 

A 

A 

A 

CONNECTOR OPERAND 2 

+ B 

• 
I 

B 

B 

B 

Result is 

A-A+B 

A ~A- B 

A-A*B 

A-A IB 



SYST£M NAME 
INy''E"NT R 1l1-1r,J& 

r::LI.l N.U.o4£ 
!NVE R 

1-.:,' <lEW .""E 

Figure 3a. Decision Table, Example 3. 

IB,.. 
FILE DESCRIPTION 

.... ,.... 
N 

to4(DIUN 

j .t.HAlYST 
ERN« 1$ 

I Rl(.()lllO NANI ..... "0_ OJ Il-';~A!"~ 
o 100 

_U, 

Figure 3b. File Description, Example 3. 

IBM 
FILE OESCRIPTION 

j .t.HAlYST 
fRA"'Ci ":. 

I PI A. T\'M to4ED LUN l,n:t.OIto NAtoli 
~(T RA.N-I)I r .... vE.Nr R 

I\!I~, ~ ~~ 

" 

!O ... TE 
fjll62. 

~..... "0. ~ 1l-!f2. •. !!~ 
INI/ CN .. coo s co 

VALU' . 

'-

Figure 3c. F ile Description, Example 3. 



2. 19 

A is always the receiving field . B is added to, subtracted from, 

multiplied by, or divided into A before the result is placed in A. 

A similar display could be constructed for MOVE: 

OPERATOR OPERAND 1 CONNECTOR OPERAND 2 

MOVE A + B 

MOVE 

MOVE 

MOVE 

A 

A 

A 

• 
/ 

B 

B 

B 

Result is 

B + A _ B 

B - A-B 

B*A --+ B 

B/A_ B 

B is always the receiving field . A is added to, subtracted from, 

multiplied by or divided into B before the result is placed in B. 

'IWo oper and arithmetic may be used in either limited entry or extended 

entry form. 

Action row 7 of rules 1 and 2 illustrates the MOVE operator in multi

operand arithmetic. That part of rule 1 reads : 

... MOVE the UNIT PRICE times the SALES QuanTitY SHIP to SALES 

AMounT. .. The results of multi- operand arithmetic for three fields, 

A, B, and C, are summarized below. 



I SYSTEM NAMe. 
IN 'I£NTCrI<.Y, a'LI.1N(z 

I FI" ..... , 

I~' FIELD NAM E 

1 

Figure 3a. Decision Table, Example 3. 

IBM 
FILE DESCRI PTION 

I ANALYST 
fRJwr I!. 

! OATE 
I /~i'.l. 

Figure 3b. File Description, Example 3. 

IB~ I .v.A.LVST IO .... TE 
F ILE DESCR IPT ION fRA',KI S IIU4 2. 1- '" 

::±ffLT¥P< ' ....... J .. ,-~ 
II!I~~ - "'LUE, 

Figure 3c. File Description, Example 3. 

At.6U I 



2.20 

OPERATOR OP ERAND 1 CONNECTOR OPERAND 2 Result is 

MOVE A TO C A + B -' C 

+ B 

MOVE A TO C A - B --.. C 

- B 

MOVE A TO C A*B->C 

*B 

MOVE A TO C A/B~C 

IB 

OPERATOR OPERAND 1 CONNECTOR OPERAND 2 Result is 

SET A EQ B A - B + C 

+ C 

SET A EQ B A +-B - C 

C 

SET A EQ B A +- B * C 

* C 

SET A EQ B A- B/C 

I C 



• 

I SVSTlM NAMI 
l!:iYiNTO!r B1iLlN" 

~ ...... ... 
~ELD NAME NO 

1 ITt 
T 5 

5AI.£':I> 
Ty 

SAL£S 

Fill N~l 
1,.. E R 

, 
T 

C 
~ 

5 " P 
o~Dt:R 

, 

... 
NO FIELD NAME 

:IT 
.. .1 P \ 

T , 
TY IS 

rr £!L 
''ON 

M 

,p, 

Figure 3a. Decision Table, Example 3. 

I IBM; I ANALYST lOAn I ..... FilE DESCRIPTION fl?JWc l~ 1/.1/'. "" PACoiS I • 
~ I ... ~ 

, i U!NTH OCWRklNCIS , .' ~TMLOUrION 
VALue/REMA.RKS • • ....... 11 'MIl WIN AV. MAx I " ~ II(;.IN INO 

0 

N+ 
• • 1 

Figure 3b. File Description, Example 3. 

IBM 
FILE DESCRIPTION 

! 4NAI.YST 
fRA!:.} ( IS 

. I DlA. T'f'N 

kfT 
WtOtU /<II I f(~(.OAO NAM' 

R"'N ~ O'''' r ... ,.,lNr R 

j DATI! 
f/J.I'~ ... 
!N V£N 

_"'0 Of; 1I_".e..~ 

If 000 ~ 0 

~ i: LENlH OCCORP.f:Nc.tS 
.... ,," ~ WIN A"6 """'It 

:: :: i ~UTM LOUrION 
I ; ~ .161N INO VALue/REMARKS 

• 
o • 

• 
o • 

• • • " o --

Figure 3c. F ile Description, Example 3. 



2.21 

More than three operands can be used in multi- operand arithmetic. 

MOVE A TO D means A*B*C ~ D 

*B 

*C 

SET A EQ B A~B+C+D+E 

+ C 

+ D 

+ E 

Two diVision connectives cannot be used in a single action, although 

addition, subtraction and multiplication connectives can be used more 

than once. 

Action r ow 8 in rule 2 illus trates the use of a connotative term. 

This is an operand whose value is directly implied by the meaning of its 

symbols. This action of rule 2 is read: 

. . . SET the QUANTITY ON HAND to ZERO . .. 

Here, ZERO is a connotative term which represents a string of zeros. 

The number of zeros is determined by the s ize of the field which is to 

be set to zero. In this case QTY ON HAND is a five position field, 

so five zeros are moved to QTY ON HAND. Other connotative terms are: 

BLANK, NINE, ALL 'X'. In the last term, X represents any symbol or 

combination of symbols . For example, ALL '7' would produce 7777 ... . , 

ALL 'ABC ' would produce ABCABCABC ... 



kSYSTt. ... NAMI 
N Y £NTo gy HILLIN" 

SYST£", NA.M£ 
I N .J tNT I( 'lI.. IN 

FIll NAIo4t 
IN £ R 

~. FIELD NAME 

Figure 3a. Decision Table, Example 3. 

IB". 
FILE DESCRIPTI O N 

I NULYST 
fRAt«l!. 

I DATE 
!.I.l/'L , 

Figure 3b. File Description, Example 3. 

IBM 
FILE CESCRIPTION 

I DCA. TVPI ~f.Dt Ultol 

I ANALYST 
FRAt-JetS 

jDATE 
1/l '4;t, 

... 
I~I OF At6£S I 

RII:c.o«D NAIoIt 
I Nvf.N r R I IJ."II:N 11 coo 5' c 

"U",,' 

_. - -

Figure 30. F ile Description, Example 3. 



2. 22 

QUESTIONS 

t. Read the 3rd and 4th rules. 

2. What are the relationships among files, records , and fields? 

3. How maya field be uniquely qualified? 

4. What is the meaning of the follOWing? 

a) MOVE A TO D 

+ B 

+ C 

b) SET A EQ B 

+ C 

5. What is the meaning of the statement: 

SET A EQ NINES 



FiLl NAME 
, T 

I FILl HAIoC E. 
1,.. t: R 

~. FI.LD ...... 

Figure 3a. Decision Table, Example 3. 

IBM 
FILE DESCRIPTION 

10ul'T'I'W 

I It.NA.LYST 
fRAt«: l~ 

j DATE 
, /.1./,,,, 

..1 ... 

Figure 3b. File Description, Example 3. 

IBM 
FILE DeSCRIPTION 

j D.t.TE 
1/1I44 

/ , 

IRl6i or PItoGES I 
NO_ OJ .,;o.!.~ 

,0 0 

.... TVK 1'-4f.DIUN .... . NO OJ • . "2..o..!~ 

Fi[T ~"N -{) ' Il'>tv!. N r R. ! N VlN ~ c oo 5' 00 

11!~l i ~ 

. -

Figure 3c. File Descr iption , Example 3. 



2. 23 

ANSWERS 

1. Rule 3: If it is not the end of the transaction file, and the item 

nwnber of the sales record is not the same as the item nwnber 

of the tnventory record, then go to table GETX. 

Rule 4: If there are no more records in the transaction file, 

then go to the table named SHIPMENI' RELEASE. 

2. A file is a collection of one or more records. 

A record is a collection of one or more fields. 

3. By spectfytng the field name, p;actng a colon after it, and then 

spectfytng the particular record name. 

4. a) This is multi-operand arithmetic with the MOVE operator. 

The ftnal result is that 

D will contatn A + B + C 

b) This is multi- operand arithmetic with the SET operator. 

The final result is that 

A will be replaced by B + C 

5. The field A is to be replaced with the value 9999 ..... ; the number 

of ni.'1es will be determtned by the size of A. 



Figure 4a. Decision Table, Example 4. 

' T M MAM~ I..,.. ANALYST DATI. 
P. REFERENCE OP£R>HD D£stRIPTIO!< ' . .. • - NA.!I.4E ... TYPE VAl-UE 

-L • , LI ? 1 V 2. 2- ~ 

Figure 4b. Reference Operand Descr iption, Example 4. 



2.24 

Example 4 covers the part of a payroll system which checks to see 

if a certain type of deduction is valid. 

The decision table figure 4a is written entirely in limited entry 

form. In preparing decision tables for programmers the systems 

engineer should make an estimate of the frequency that a rule will be 

executed. For this example, the analyst has estimated the conditions 

for rule 1 will be satisfied 6cPb of the time and 35% of the time for rule 2. 

This information is recorded at the top of the column of entries for each 

rule in either the extended entry or the limited entry table. 

In the first 3 examples of this chapter, it is assumed that the several 

rules exhaust all possible combinations of conditions which can ever occur 

in these tables . Therefore, failure t o satisfy at least one set of condi

tions indicates that there is an error in logic or in data, However, 

occasions will arise when the table is not intended to explicitly describe 

all }Xlssible combinations of conditions, or where it is impractical or 

impossible to do so. In this event, some method must be provided to 

recognize unaccOlmted for conditions without inferring that an error in 

logic or data exists. This is covered by the special unconditional rule 

ELSE (E), which provides for action control when none of the other 

rules can be executed. In example 4, the ELSE rule will occur about 

5% of the time (100 - 60 - 35 = 5). This rule will execute action row 5 

which provides for an error table to be entered. 



• 

Figure 4a. Decision Table, Example 4. 

~ I", ~ R DEStRIPt'IOH 

:' NAME T YPE VAI-UE 

Figure 4b. Reference Operand Description, Example 4. 



2.25 

On the limited entry t able, the ELSE rule is indicated by the place

ment of an E in the colwnn where the frequency of the rule is usually 

written; in a nill<ed or extended entry table , the word ELSE is written 

in the appropriate place for the rule to which it is assigned. The ELSE 

rule is always considered last when "examining" a table . There can, of 

course, be no condition entries in an ElBE rule . 

Rule 1 of this example is read as follows: 

1:!... the type of deduction code is on the deduction code list, 

and 

tbe type of deduction code is not 13, 22, 23, or 24, 

then proceed to payroll calculation table. 

With this rule , two kinds of value list operands are displayed simul

taneously. The first DED CODE LIST, is a value list name which r epresents 

a specific collection of one or more values or ranges of values. It is not 

a field, nor does it appear on a r ecord or file. It may only be used in a 

conditional statement and must be defined on a Reference Operand Descr ip

tion form (figure 4b) befor e being used. 

The P.eference Operand Descr iption form is used for the description 

of constants, expressions, reference lists, and value lists. In iiqure 4b, 

the system name, which is the same as the system name for the decision 

table, is placed in the upr:er left- hand corner. Each listing is then 

assigned an individual number. Fer this example, there is only one 



•• 

Figure 4a. Decision Table, Example 4. 

~ I~ 
REfERENCE 0PEIWIl o<StlUPrIQN 

i': NA ..... a TVPE VAL.UE 

Figure 4b. Reference Operand Description, Example 4. 



2.26 

listing, the DED CODE LIST. The type entry is V LIST, and t he values 

are as shown. Each value is either a single entry value (e. g., 3, 7, etc. ) 

or a range of values for which the top and bottom limits are stated 

(e. g., 22-26). All individual values or ranges of values are separated 

by a comma which denotes an exclusive or associated with the value list. 

In other wor ds, the value is 3, or 7, or ... or 22- 26. Consequently, to 

satisfy the first condition of rule 1, the code number must be one of the 

values, or within the range of values given in the list. 

The second kind of value list operand is demonstrated in the second 

condition of rule 1: 

TYPE DED CODE EQ 13 
22-24 

The operand value list (13, 22- 24) reveals that a list of literal values can 

be used directly as the operand in a condition statement without spectfylng 

the list in a Reference Operand Description form. A range (22- 24) is 

permitted, just as with the value list name. 

Ii TYPE DED CODE is 13 in example 4, the condition of row 2, rule 1 is 

not satisfied (N in the entry ) and rule 2 is satisfied (a Y in the entry). 



• ~ ~ ~ m 

:m ~ ~~ ~ 
Figure 4a. Decision Table, Example 4. 

~ 
lUI 

0Esc.R.1PTION 

I':' NAME! TVPE VAL.UE 

~ 

Figur e 4b. Reference Operand Description, Example 4. 



2. 27 

QUESTIONS 

1. How are a list of values ir.dicated in TDL? 

2. What do the rules of this table indicate as far as fr equency 

of execution is concerned? 

3. What is the effect of the ELSE rule? 

4. If the logic required that a code type not be in the range 

72 - 103, how could this be handled? 

5. If a value list has a range of 0 - 53, how maya code type 

be investigated to ascertain that it is not in the range of 

12 - 26, but that it is on the list? 



Figure 4a. Decision Table, Example 4. 

~ I~ 
REFERENCE OI'£RAI«) OEStAIPTION 

I':' NA.~e TVPE. VALUE 

J] 

Figure 4b. Reference Operand Description, Example 4 . 



2.28 

ANSWERS 

1. By giving the list of values a name, and describing them as a 

list on a Reference Operand Description form, or by introducing 

a list of literal values directly in the table. 

2. The analyst who prepared this decisive table has estimated that 

rule 1 will be executed almost twice as often as rule 2, but the 

two rules still do not cover all the possibilities that may occur . 

In 5% of the cases, rule 3 will be executed. 

3. The conditions for this rule are automatically satisfied and the 

actions executed. The ELSE rule is considered only when the 

conditions of none of the other rules are satisfied. 

4. A range literal might be used, as there is no obvious requirement 

that the code types need be part of a defined list. Therefore, a 

statement as: 

TYPE CODE 

satisfies the requirement. 

NE 72- 103 

5. The reference operand form list has the value list described on it . 

OR 

Therefore, the conditions may be stated in two steps: 

1) Is the type code on the value list? 

2) Is the type code in the range 0 - 11 ? 

27 - 53? 

1) Is the type code on the value list? 

2) Is the type code not in the range 12 - 26? 



Figure 5a. Decision Table, Example 5. 



2.29 

Example 5 is rart of the procedure Invoice Preraration in the system 

called Customer Billing, and is concerned with the calculation of an amoWlt 

for extended sales, the calculation of a discount value for the extended 

sales amount, and the writing of a customer invoice. 

Condition row 1 i'1 rule 1, reads: 

Is the customer number on the record named customer heading the 

same as the customer number on work record A . .. ? 

WORK A is an illustration of a work operand, which is used for the tempor

ary holding of either records or fields . The names of these operands must 

always be preceded by the word WORK. 

A work operand always takes on the characteristics of the field or record 

which is placed in it, except for the name. It is assumed that there is 

sufiicient sp:3.ce to contain all work records and work fields . The work 

operand will retain the value last placed in it, Wltil something else is 

placed in it. 

In this eX3.mple, a record has been previously placed in the work record. 

A field in this record (not shown) is now being comrnred for correspondence 

with a field value of another record abbreviated CUST HEDNG (also not shown) . 

Action row 11 of rule 3, demonstrates the placing of this record in the work 

record in preraration for the ne>.i. rass through this table. This portion of 

rule 3 reads as follows: 



Fiqure 50. Decision Table, Example 5. 



2. 30 

... move the record named customer heading to the work record 

named A ... When the contents of a record are moved into a work record, 

the work record contains all the fields, and also the same field. names as 

they appeared in the original record. The record then exists in identical 

form in two di fferent places. To refer to these fields, the user must 

qualify the field name with the record name, WORK A, e. g. , QTY ON 

HAND: WORK A. 

A work operand may be either a work record or a work field. 

Action row 6 of rule 1 is read as follows : 

... the work field, WORK TOTAL, is incremented by the value of the 

field, AMT EXT, from the record named CUST INV .. . 

A value has previously been placed in the work field. It is now replaced 

by thi s value plus some other value. The remainder of the work record 

does not change as a result of this action. 

The movement of one record to another is different. When records 

are assigned to other records, only those fields with corresponding names 

are assigned. To illustrate this, consider two records A and B. They 

are defined: 

Record A, contains fields named Q, R, S, T, U, V, and W. 

Record B, contains fields named ~ R, X, Y, Z, S, and T. 

With the operator MOVE in the statement 

MOVE A TO B, 

the values of correspondi ng fields, ~ R, S, and T of record A, are moved 



.. ~~ 

Figure 5a. Decision Table, Example 5. 



2.31 

to record B. Fields X, Y, and Z of record B are unchanged. The original 

record A is also unchanged. A similar operation can be performed with the 

SET operator. Note that the corresponding fields of A and B are moved 

regardless of their position on the record. This illustrates the fact that a 

file description is made up without regard to the positions of the fields. 

Action row 3,8 , and 11 illustrate assignment of records! 

Condition row 2 (on figure 5a) of rule 1 teads: 

... Is the discount (defined as a function of the item number and 

quantity of that item sold according to a record named CUST TRAN ) 

present ... ? 

This condition row introduces an operand which has not been previously 

described, a reference list function . A reference list serves a purpose 

similar to that of a matrix or table of values . Each reference list function 

(like discount) is a function of either one or two arguments (two in our 

example: item number and quantity sold). These arguments may be con-

sidered as the vertical and horizontal axes of a tabular array, as shown 

below: 

rrEM Cot. 1 Cot. 2 Cot. 3 
NOS. 1- 30 31 - 100 101 - 1000 

00000 
Row 1 - 22040 + .98 +.95 + . 88 

50000 
Row 2 - 79999 + .97 + . 94 + .87 



Figure 5a. Decision Table, Example 5. 

~nh04 No\M£ IBM AN.t.I.VST DATI. 
cus rc ..... .:: ... &,,-,-,,,,(;.- REFERENCE OPERN() OESCIUPTION p.,.' (. , ~ , ~ ~, " 
• • N A M E TYPE VALU E 
NO 

>, " 
, - ~A .- 'V '" -

- -
• " - • - • . ~ .. 

- ~ .. c - ~.c • 
.. ~4IO - - Q 

I) DOO - - cd • - 0., . 10 - • 

Figure 5b_ Reference Operand Description, Example 5. 

hSVSTIiM ~1. 
¢U,rOMf. " f.>!L I.. IN~" 

-::'" FIELD NAME 

IB~ 
FilE DESCRIPTION 

IAHAI.VST 
FRANC . !. 

W(OIUN J Rt:(.ORO NANI 
s~ ·c....RQ COST TR"N 

Ii 

Figure 5c. File Descr iption, Example 5. 

, 00 0 

.. 

, 000 



2.32 

This tabular array can be described as a reference list and written on a 

Reference Operand Description form, shown partially on figure 5b. Here, 

the two axes of the original table are expressed in -list form. For example, 

serial 6 of figure 5b expresses the information contained in row 2, column 2 

of the matrix above. The quantity range is 31 thru 100, the range of item 

numbers 50000 thru 79999, and the function of these two arguments, diSCDlillt 

quantity, is +.94. 

When a range of values is used as an argument in a reference list, 

both the top and bottom limits of the range should be given. Arguments 

may be single entry constant values, ranges of values, or the names of 

value lists. If the name of a value list is given, the values represented 

by that name should be separately defined on a Reference Operand Des -

cription form as noted in example 4 . 

Reference lists cannot be modified by the actions of a decision table. 

Using condition row 2 as the illustration, specific entries within a 

list are referred to in this form : 

Reference list 
function name 

(first argument 
(variable 

second argument ) 
variable ) 

DISCOUNT (ITEM NO: CUST TRAN, QUAN SOLD: CUST TRAN) 

Here variables 1 and 2 are field names on the input record CUST TRAN. 

They are not unique nam es and consequently are qualified in the normal 

manner. If they were unique names, the reference of condition row 2 

would be: 

DISCOUNT (ITEM NO, QUAN SOLD). 



Figure 5a. Decision Table, Example 5. 

~ 
IBM ~ 

REfERENCE 0PEJUIrI) OEStRIPTIOH 

I:' NAME TYPE VAL.UE 

ftt 

Figure 5b. Reference Operand Description, Example 5. 

hSVSTtM ........... 1 
cU$ro'1f.'S \}II ..... N-:-.,. 

~
---

FIll HAM' 
CU\LOA,,., 

FIE.LD NAM£ 

IBM 
FilE DESCRIPTION 

IAHAI.YST 
F~"NC ·S 

I tI ... TIE 
'1./~114 , ... 

CT 

Figur e 5c. File Description, Example 5. 



2.33 

To record information externally, an input/output operator WRITE 

is used, as noted in action row 9. The cperand (e. g., TOTAL BILLING) 

always appears in the second operand position of the action. For limited 

entl"j tables like Figure 5a, this muld 'oe in the action stub; for extended 

entrYI it is lo::atect in the entry area of the rule. 

The remaL~der of the decision table shown in Figure 5a is self-

explanatory, except for a new notation in the condition and action entries. 

This is the placement of a period (. ) in the entry for a rule when that 

condition or action entry is not pertinent. This is a convenience which 

signifies that the analyst has considered the action or condition of that row, 

and has decided that it does not apply to the rule. A per iod has exactly 

the same meaning as the blank entry. 

QUESTIONS 

1. What is a work operand? v..That are its characteristics? 

2. What happens when O!1€ record is moved to another record? 

3. How is a specific entry of a reference list referred to in a 
decision table? 

4. What is the operation specified in action row 4 of the decision 
table shown in Figure 5a? 

5. W1lat is the operation specified in action row 10 of the decision 
table shown in Figure 5a? 



Figure 5a. Decision Table, Example 5. 

~ Tft.A NAME. IB", ANALVST PAT&: 
~ CU'STOt"hl" 6.~, .... ~ REfERENCE 0I'aW() I)£stAlPTlON "'C.I ~ , .2. .L'" " • 

•• NAME T Y PE VALUE 
NO 

>, " 
, - /?tRNCru C. v .. N , 

, S '4"'61 rta>!" - -
~ " - • - • .. ~ 

• - ~ DV~ - DO O • 
• '.00 - - • 
" DOO - - e" • 
/U>." - • 

Figure 5b. Reference Operand Description, Example 5. 

IBM 
FILE OESCRIPTION 

I ANAlYST 
!''',. ,.J etS 

I DATi 
1 1. 1z.. 1/~ 1 

Figure 5c. File Descr iption, Example 5. 

IMM Of M6U I 



ANSWERS 

1. A work operand is an operand used for the temporary storage 
of either records or fields. It has the character istics of the 
last item assigned to it. 

2.34 

2. An assignment operator used with records speciiies the movement 
of corresponding fields of the sending record to the receiving 
record. The only exception to this operation is the movement 
of a record to a work record. In this case, the entire record is 
moved to the work record. The work record is then a carbon 
copy of the sending record. 

3. A specific entry of a reference list is referred by writing the 
function name, and enclosing in pa.rentheses the variables which 
correspond to arguments. If necessary, the variables are quali
fied in the usual manner. 

4. This is an example of multi-operand arithmetic using the SET 
operator with arithmetic connectors. The operation performed is: 

The unit price, from the record CT, is multiplied by the value 
of the quantity sold from the same record, which in turn is multi
plied by the value of the customer discount. The customer dis
count was derived previously from the reference list and moved 
to the WORK A record. 

5. This is an example of moving a literal to a work field. Since the 
work field takes on the value of the field which is last placed there, 
WORK TOTAL now contains the single digit zero. 



•• 

• • 

.5 Do 

I SYSTt~ NAME 
PAYROll. 

1 ,Ie, ",," 

I~ FIELD NAME 

I SYST£M NAME 
P .... "llo/.4. 

FlU. NAME 

FIELD NAME 

L 

=F.i. 

Figure 6a. Decision Tables, Example 6. 
IBM 

1 FILE DESCRIPTION 
I ANAL.vST 

:rON!§ 
!OATE 

1/1/41,1 I ..... 01' Plt.6ES I 
, ....... I-

IN: LENTH ~ 

--

Figure 6b. File Description I, Example 6. 

IBM 
FILE oeSCRIPTION 

.......... Io4l0lUN 

! ANALYST 
:rCNEs -

~ 
VALUE . 

--

PIoGI-S J 

MO 0" ."0110" -



2.35 

Example 6 treats a stock and bond purchase procedure, which should 

be easy to follow upon careful examination of the three tables. 

The situation described in tables 011, 012, and 013 of figure 6a, is a 

deduc hon computation for stocks and bonds . It is assumed that prior to 

the execution of these tables I a record has been read that contains a code 

to indicate employee participation as follows: 

N Neither bond nor stock 

B Bond 

S Stock 

A Bond and stock 

The record also contains the various fields shown on the File Description 

form, figure 6b. 

Table 011 of figure 6a tests for participation in either or both plans. 

Rule 2 reads: 

The employ~e is buying bonds 

various employee information is placed in a field 

named employee identification 

and 

his previo\ls bond balance plus the amount of this 

bond deduction is placed in the field named bond balance 

and 

DO table 012 

and 

GO TO table 016 



I SYSTEM NAMI 
PAYRoLL 

I FILl NAME 
OED UC: T.ON .. , 

FIELD NAME 
"" 

Jr:MP NAM.t:: 

.. 
; , 

, r" ilAL 
-

g -
-

0 

I SY$T',.. NAME 
~""'Rc:P_L. 

I r:1L( NAWI 

1-.:,' .. HD ...... 

Figure 6a. Decision Tables, Example 6. 

I IB~ I ANAL.YST 

FILE DESCRIPTION :rON C, S. 
I DATE 

lit/a'; 1-. 0< ~s l 

.... TV<>< ... II)lU .... .. lc.oAD NAtoIl I ... "0 01 .'(.J~_.o,. 

"" S< • CA "0< 0<0 e. 0 

! ! LEN'TH QCtURNWC.U I .' !MUTM LOC.ITIOM 
VA\..UE/REMA.RKS • ' j • "' ..... 'tIM IIo!IN ... ..... ~ "c;.IN INO 

0 l. 0 

• 
- ' . 

• 
• :I. 

- . .-
3 

Figure 6b. File Description I, Example 6. 

IBM 
FILE oeSCRIPTlON 

IDut. TVPl 
:!oil • C. 01 

I\!I~ 

I AHAL.V $T 
:reNE s 

I DATE 
1731v~ 

","-UE . 

......... ...... - - --~ -- .. . -.- .... T:'I _____ ,_ a 

- -

-

. 

1""t;,1 Of """"'" I 



2. 36 

In the r emarks section of the decision table it is noted that the EMP is a 

symbolic expression name (denoted by SE) . In the table, this name has 

no identifying marks to indicate that it is such an expression. A symbolic 

expression relates various symbolic values much like an arithmetic ex

pression relates numeric values . JOIN is the only operator; it describes 

the stringing together of two or more fields to form a new field . When

ever expressions like this are used in decision tables, they are immedi

ately evaluated, and re- evaluated every time they appear . 

In this example, the fields LOC NO, DEPT, EMP NO , and EMP NAME 

are qualified as being par t of the record (see figure 6b l which is abbreviated 

BS . Since these are separate fields 1 it is not possible to say whether or 

not they are physically adjacent to one another . In order to be able to 

use them as a single value, the analyst describes the joining of the appro

priate fields . If the expression is used only on a single Decision Table 

form, it need only be defined in the remarks , but if the expression is used 

throughout the system, it should be defined on the Reference Operand 

Description form . In either case, it is defined by writing the expression 

name, the type SE (symbolic expressionl, and the operator JOIN . The 

fields to be joined are then placed in parenthesis after the operator. As 

usual , the fields are qualified if they are not unique. 

The JOIN operator may be used to form symbolic expressions by the 

joining of fields, literals, constants, descriptive terms, work field names, 

and refere~ce list function names. 



•• 

• • 

I SYSTEM Nlt.ME 
PAYROI.L 

I ftL[ NAME 
OE O U<' Tl oN 

I'!:' FIELD NAME 

, 

I SYSTEM NAME 
P ...... RaL4 

... .. I='I£LD NAME 

-

L 
z 

I010tIlf 

, -

Figur e 5a. Decision Tables, Example 5. 

I IBM I NU.LVST I DATE 

FILE OESCRIPTION JON C.& ./ t/o ;l 

.. ~TVH MEOIUN RIC.OAO NAJiIII ... 
rN so . c, ,~o< 0< 0 es 

W~, I l"!i' """ " 

, 

Figure 5b. F ile Descr iption 1, Example 5. 

IBM 
FILE DESCRIPTION 

! AoNALVST 
:reN E. S 

.... ""'" 1 MlDIUN I Rl(.(JlltO NAWf. 
~ r. -c. oJ. P...:«?c It. i. 

jDA.TE 
1131t- A ... 

I I I 

~ 

I .... 0< Plt6ES I 

110 Of' ~1f!.u" 

00 

-

.. - -

Plt6ES I 

I l <RKTH 
• • "'All 

: ;! IMuTlVlUlCAfIOM 
; : _ alGIN aND '+otI'\..VE/REMARKS 

• 
+ 
• 

o 
o 

... ~ _ __ ~ a~ 

. , . 1 



2 . 37 

The next to last action of rule 2 in table 011 is: DO 012. DO is a new 

operator which calls for executing the table specified, and then returning 

to the action which follows the DO in the particular rule . This corresponds 

closely to the linkage with a closed subroutine in normal programming. It 

relinquishes control to the identified table, and then returns when that 

table has been executed. 

The type of table which is entered by a DO operator is a closed table. 

If a closed table contains a GO TO operator the return will be broken for 

that rule. Both open and closed tables may contain DO operators. 

Rules pertaining to open and closed tables can be summarized in 

this chart: 

n------ ---,------.. -.-.. .... - -.... --

ent_er_e_d_bY _ __ .JI..-_: __ : __ :_:_bl_e _ _ ~-~t=:~;~~:_e :~~_---_-~ ___ ~ 
GO TO I' (automatic return 

to calling table l 
exited by 

f--------. --------.--- -. .i---- .. - .... ---- .... -- -.. -.--

may contain DO, and GO TO ._l_.~.~. __ _ 
The use of the automatic return for a closed table is shown in table 012. 

This table is entered by the DO operator of rules 2 or 4 of table 011 . 

There are two rules for table 012; rule 1 is: 

If the bond balance is greater than or equal to (GEl the bond purchase 

price, 

t.l-ten the bond purchase price is placed in the bond price, a rB' is 



•• 

• • 

I SYSTEM NAME 

. PAY ROLl_ 

I FIL," NAME 
DEOl l<: T ION 

$O' 

"" 

; 

, 
! 

,0 -

1=IELD NAME 

.. 
Klt.L 

-

TK SAL - , 

I Fill NAME 
C ... ... 
L 
Z 

FlElO NAME 

, 

, , ,~ 

Figur e 6a. Decision Tables, Example 6. 

IBM 
FILE OESCRIPTION 

MEDIUN 

Si . C ... 

, ! LENTH oc.cuRIUiNC.ES '" . I ~' • 101 ... " '#oR "IN .&.,,& lolA'" 

• - ' . 
• 
• 

3 

1 

1 

l .t.NALVST 
JON c. §> 

RICORO NAME 
5l'oe OE.D 

1Mu.TM. LOUTION ",- :5 ; ! .. 61H "NO 

I DATE 
'/I /h~ ... 

65 

F igure 6b. F ile Descr iption 1, Exa mple 6. 

IBM 
FILE DESCRIPTION 

.... T'>'OC N£DIUhI 

5. ~ -c- ol. 

I i: \.!.NTH occ.uRNNGlS 
• • .. All MlN .. ". MAli: 

• 
+ 
+ 

o 

! .-.HALYST 
:rClNE :0; 

a;&(.OIitO NAMl 

r',,;RC A c. 

: ~I !lftlU.TNl LOUnOM 
J . ~ _ IU6IN INO 

... 

1Al.61E Of C¥o6ES I 

VALUE/REMARKS 

-

Al6(S ) 

NO OJ iIIlC,2,;U' -----l 

0 00 

\lALUE/REMA.RKS 



2 . 38 

placed in the purchase code, subtract the purchase price from the bond 

balance, prepare a purchase order I and do this table again. 

The second time the table is entered, this time by its own DO operator I 

the actions of rule 1 are executed again if the condition is still satisfied. 

When the bond balance is not greater than or equal to the bond purchase 

price, then the conditions of the rule are not satisfied, and the ELSE rule 

is called . The ELSE rule has no actions, so the table is complete and 

control is returned to the original table (te.ble Olll, and to the action 

following the first DO action . 

Rule 3 of table 011 specifies the logic for a man who participates in 

the s tock purchase plan only, and rule 4 cover s the employee who is in 

both plans. 

Table 013 differs from table 012 in that the current market value of 

the stock is used in place of the fixed purchase price of the bond. The 

current market value is developed through the use of an arithmetic 

expression (AE ) explained at the base of the form in the remarks section, 

as was the symbolic expression . An arithmetic expression is a descrip

tion of a combination of operands and arithmetic operators which has a 

numeric value when evaluated. The operands can be numeric fields J 

numeric constants, numeric literals, numeric work fields and reference 

list function names. The five operators used in arithmetic expressions are : 

+ addition, - subtraction, * multiplication, / division, ** exponentiation . 



•• 

• • 

1'11'1 

~. 
~TD 

I SYSTEM NAME 
PAYROLL 

I FILl NAME 
O£OUC TION 

••• FIELD N"-ME NO 

+ lI1f' NAM';; 

--
; -

• TI( BAl -
Z -. 
0 

I SYSTIE"" NAME 
P ... ... qaLL 

Fill NAME 

FIELD NAME 

1 

~ , 

Figure 6a. Decision Tables, Example 6. 

1 
IBM I ANALYST ! DATE I .... FILE DESCRIPTION JONC.§ 1/1/0 .1 0< ~I 

I OIR. TYPt M(DIU .... AlCoO'tD NAME ... NO eM: .,c.oaps 

<N 50 . CA ~,..oc 0< 0 e. 0 

I' . LEN'TH ()C(.URP.lNC.U I .' ItlUTNl L.DUrIOM 
VAI..Ue/REM.RKS ' . ' j ~ ,,61N 'NO . . '-44'J1.""" ""'N "'v. MAX 

::c /.. ~ 

• 
- '. 

• .. 1-• 1 
-

3 

Figure 6b. File Descr iption 1, Example 6. 

IBM 
FILE DESCRIPTION 

I ANALYST 
::reNE S 

j DATE 
,-"ItA ... 

T;'I~ ' _ T"'\ ____ ~_ ... : __ t') T':' ..... __ ,_ a 

-

-
. 

000 



2.39 

If an arithmetic expression is described in the remarks section of a 

table, it is a local arithmetic expression. When it is used throughout 

the system, it should be described on a Reference Operand Description 

form. In figure Ba, the local arithmetic expres sion is the market stock 

value. It is defined as: The day's high price for the s tock, plus the 

day's low price for the stock; the sum divided by two. 

QUESTIONS 

1 . What are the differences between an ~pen table and a closed table? 

2. What is the definition of a symbolic expression? How is it used? 

3 . What is the definition of an arithmetic expression? Where is it 

defined in TDL? 

4. What is the sequence of actions for rule 4 of table 011 of this 

example? 

5. In table 012, read both rules . 



.. , 

• • 

I SYSTEM NAME 

. PAt BO.la.L-

I FtL[ NAME 
D£Ot.C, TION 

I S'VSTU04 NAME 
P ..... ,;>gL4 

Fill NAME 
C 

I: : F"IELD NAME 

Figure 6a. Decision Tables, Example 6. 
IB~ 

FILE OESCRIPTI ON 
1.t.NAI..YST 

TON t f, 

DlIt. TVPI. Iro4EDIUN Rlc.oRO NAMI 

!N S i . CA 'S l oe ()I.O 

~Ii~ 

I ... 
s 

Figure 6b. File Descr iption 1, Example 6. 

IBM 
FilE DESCRIPTION 

DO"-'- WEOIVIIII 

:5.£ -c. 01, 

! ANALYST 
aCN E s 

I Iitl~o NAWI 
r~R( It. c. 

lUI ~Ii ~ 
'n 

... 

P!I6U I 

o 

". 

-

I .... 0< AI6U J 

_ 01' IIIc.o"D' ::J -r.,oo 

""''''' I, 



2.40 
ANSWERS 

1. An open table is entered by a GO TO operator and terminates with 

a GO TO operator . The closed table is entered by a DO operator 

and returns automatically to the action after the DO action of the 

same rule of the table from which it was called . 

2 . A symbolic express ion causes a stringing together of two or more 

fields to form a new field . 

3 . An arithmetic expression is a combination of numeric operands with 

arithmetic operators . This expres3ion has a numeric value when 

evaluated . It may be defined either in the Remarks section of the 

tables or on a Reference Operand Description form. 

4. If the conditions of the rule are satisfied, the actions are carried 

out to the DO a.c!.ion. The first DO action calls table 012, and the 

return is to rule 4 for the next DO action . This DO action calls 

table 013; return is to rule 4 again for execution of the GO TO 

016 action . 

5 . a ) If the bond balance is greater than or equal to the bond purchase 

price, then the bond purchase price is placed in the bond price, a fBI 

is placed in the code of t.1.€ purchase record, the bond purchase price 

is subtracted from the bond balance, a purchase order is prepared, 

and the table is repeated. 

b) If the condition of the first rule is not satisfied, the ELSE rule 

is called, the table is completed and return is to the next action 

of the rule in the table from which it came . 



ry NAMe: 
Db't UP M£PT 
a CONSTANT 

l DO'T I(TolII. • V 

l. LUGl" TOT'Y 

Z [Ill mwT·1J 

4 CONSTANT 

SYH01 QPE!$[ DrST. ANALYST g,." DATE" I vz.&/r;.r PAGE_O~ __ 

110llTHLY [KI'EN5£ o r5ur8UTrON REPORT It£P OAT[ ""U 
AAA .N MNNN MINN 

OHT 

" 
IIUlIi 

ACCT 

" 
UIUM 

InOICE 
'0 

IIiVO/CE 
DATE 

rMVOIC( 
""OUIIT 

i!, Ul, Zli!, /liteR 

LAST PAEI[ 

Figure 7a Report Layout Sheet, Example 7. 



2.41 

The r ules of format for prepar ing repor ts in Tabular Descrip-

tive Language are described in the contExt of their application to the 

following forms: 

(1) Report Layout sheet, Figure 7a 

(2) File Description for ms, Figures 7b, d, and e 

(3) Dec ision Tables, Figure 7c. 

Example 7 involves the compilation and printing of a Monthly 

Expense Distribution Report in the systE.m EXPENSE DIST. The collec -

lion of records needed to make up the report are indicated in the left 

hand margin of the Report Layout sheet. In this case, the r ecor ds 

LELGER TOT and DEPT DETAIL are par t of the file DEPT EXP REPT, 

which represents a complete report description. 

Information at the very top of the layout is filled in by the 

analyst: 

SYSTEM NAME 
ANALYST (name) 
DATE (the sheet is pr epared) 
PAGE (number of number) 

MONTHLY EXPENSE DISTRIBUTION REPORT, DEPT NO, 

ACCT NO, INVOICE NO, INVOICE DATE, and INVOICE AMOUNT are 

headings. Constant information that is to be printed in the same loca-

tion on every page of the report is identified by the r ecord name CONSTANT 

and so mar ked in the left hand margin of the Report Layout sheet. Every page 

will carry this exact same information, printed in the same position, 



nu: NAME. 
0ll'T txt' I\'["PT 
8COHSTANT 

l. LEIlGEA TOT-V 

2: EIII rowr-V 

4 CONSTANT 

SY'STot DPENSE Oln AHAL'fST 3,P.M. PAGE_O, __ 

t10HTHLY [XPENSE D15TR111UTION R(POIH UP OAT( P~GE 
AAA liN "NNN IIMIIN 

OUT 
NO 

NNWII' 

ACCT 

'0 
IINNIIH 

I NVQtC( 

" 
AIHINNN 

1NVOla 
DArt 

INY01C[ 
""ourH 

IN iN liN ll,li!i!.HMCIt 

i!, liz, lZi!. 11110: 

LAST PAGE 

Figure 7a Report Layout Sheet, Example 7. 



2.42 

automatically and witho:>t instructions. CONSTANT is prefixed by a 

number (e. g., 8) to state the number of lines that comprise the record. 

No File Description form is required, since no supplemental information 

is needed. 

The representative date and page number fields are considered 

part of this record even though the ir values will change; the programmer 

has the responsibility for inserting sequential page numbers and the 

current date on each page . 

Record names (e. g. , DEPT DETAIL) are suffixed with a V or F 

which designate vertical placement of the final printed line on the form. 

V means that printing may occur at any position on the page, except 

where the space has been pre-empted by the higher priority CONSTANT. 

F indicates that the position of the final printed line is fixed at that 

vertical pOSition on the page . Since the term CONSTANT denotes fixed 

position, no suffix is needed. 

The number preceding record name indicates the number of lines 

required for that record. Reading from the Report Layout, DEPT DETAIL 

and LEIXiER TOT each r equir e two lines. Here, even though just one 

line is printed, the blank line will be skipped before the next record is 

written. The number includes the actual number of printed lines as well 

as the lines not to be printed. 

Any r ecord described by the analyst may be composed entir ely 

of pre- assigned information or some combination of pre-assigned and 

variable information. 



flU: NAME. 
KPTUP RtPT 
a CONSTANT 

10(1'1' .TAI. - V 

zoowwr-\/ 
4 CONSTANT 

SYSTot EXPENSE DIST. ANALYST "P.M. DATE: II/za/c;/ PAGE_O~ __ 

"OHTHlY [XPENSE DI5TKISUTION REPO~T KEP DATE fA6E 

DEPT 
NO 

NUll 

ACCT 
NO 

UlIINM 

I nOleE 
NO 

AA-NN/tM 

AAA _H MMNN MMMM 

I NV OIC[ 
DATE 

Z,1ll,lli! . III1CR 

LAST PAGE 

Figure 7a. Report Layout Sheet, Example 7. 



2.43 

The record END REPORT is an example of pre-assigned informa-

tion. This is a record consisting of two lines, one of which is blank 

and the other contains the words LAST PAGE . The LAST PAGE designa-

lion will print at least five lines from the bottom (four CONSTANT). 

On the Report Layout sheet, the instruction in the left margin specifies 

exactly what information will appear and its precise position vertically. 

Variable information on a record is specified by indicating where 

it is to appear within the record with the use of special editing charac-

ters. Some of these are described below, but others are given in the 

reference section of the manual. 

CHARACTER 

N 

• 

A 

z 

, 
CR 

MEANING AND USE 

An N indicates that the character position 
will always contain a numeric character. 

A decimal or period will occur where 
indicated. 

An A means that the character position can 
contain any alphameric character. 

The character Z specifies zero suppression 
of the indicated characters. This is the 
process of replacing unwanted left-hand zeros 
by blanks . 

A comma will be inserted only if the value is 
large enough to have non-zeros to the left of it. 

The symbol CR appears at the right end of 
the field description and occupies two charac
ter positions. \I.'hen the value of the field is 
negative, this symbol will be placed at the 
right end of the item. 



I SYST'M NAME I IBM !ANALYST lOAn I .... Ed¢MSf ol,)f FILE DESCRIPTION J ,,1"f. 0/,,1.,/1.1 0< At6U I 

~ ~ I- g~-I 

-: ~ELD NAME B!I ~ Ii ~ '" 
- I- i-

~ -:1;; - - -

Figure Th. File Description 1, Example 7. 

I SYST'M NAME I IBM I.t.HALYST 
E,cPt.H$£ p.r~ r. FILE DESCRIPTION '1"11 

I DATE 
n/.ur.Z+, 11>Il.6i '" PAG(S I 

I .......... ~ ' ...... I ... g, ....:J 

... FlELD NAME ~ ~ LlNTH occ.uRNNUS i .' IttUTlVi LDtA'\'IOM 
VALUE/REMA.RKS ... • ..... " .. \/All .... IN ""' ..... ,,'111 ' j ~ atc;.IN ,NO 

J £ TN J . ._ -
·c -

" ,. , • I l. «T "0 
.; • .3 I 3 oS " 

NV N~ "T P • 
" " HV A • .~ --
NY -TrJv C,/ITt 

-
H I 2 

, N A 
(I " • 3 • '''' AT' 

-" DI\r- -
Figure 7d. File Description 2, Example 7. 

I SYSTEM NAMf. I IBM I Akl.LYST I DATE 1-Ft. PEl(fef liU T. FILE DESCRIPTION J!'11 /I/u/'/ "" AklO I 

r:CLi "'.\Mt l OlA TWI MEDIVN IIIIIC.ORD HAMil I ... .0 01" '1"'0.0. 
~ 

- T L ~ 'T' L 7. ... 
r-IELD NAME ! ! LENTH oec.URIUN(.iS : ~t jItIUTlVi \.OUTl(1N 

VALUE/REMARKS NO • I .~ 
" • ...." ':( 'I.UI .'N AV' .... ! alGIN 'NO 

L£. oM; 1\ rt 0 " " "- 1 u 
t(x Tflr L~& r;. ~ " c/,i. -

Figure 7e. File Description 3, EY.amp1e 7. 



2.44 

All of these editing char acters are di splayed in Figur e 7a. 

For example, the record DEPT DETAIL "onsists of several fields. 

The first of these is a four character numeric field, the second a five 

character numeric field, etc. 

A File Description form (Figure 7b for DEPT DETAIL output, 

7d for EXPENSE DETAIL input, and 7e for LED3ER TOT) is pr epared 

for each record in the file to report positions with field names . Pre

assigned information cannot be included Urrough the File Description. 

For each field, the position of the character located farthest to the 

right is specified in the END column of RELA TNE LOCATION; the 

BEGIN column tndicates which line of the recor d contains the field. 

If there may be confusion, the begirming position may also be shown: 

INVOICE NO 1, 34 37 

The first field of Figure To to be printed is DEPT NO. From the 

File Description, this field is a numeric, unsigned field of four charac 

ters, printed on the first line of the record, with the last character in 

position 13. Another example is shown with the field INV AMT. This 

is a numeric field, which can be either positive or negative, and has a 

length of five tnteg·er and two decimal characters. The field is written 

on t,e first line of the record and the character farthest to the right is 

in positIon 64. On the Report Layout sheet INVOICE AMOUNT has a 

field length of 11 characters counting commas, per iods, and the final 

CR. This differ ence in length between the Repor t Layout sheet and the File 



Figure 7c. Decision Tables, Example 7. 



2.45 

EJ'escription sheet (5 . 2) indicates that editing characters such as 

commas and decimal points, are not cDu:lted in tl'E total length of 

the field. 

The decision tables shown in Figure 7c reveal the operation of 

writing the report described in the previous text. Rule I of table 006 

is a typical example of the sequence of operations. The condition of 

rule I requires that the value of the fields GEN LEIDER NO of 

records ED and LT are identical. When such is the case, the record 

EXPENSE DETAIL is moved to the record DEPT DETAIL. This is 

the output record which is to be printed on the output report. The next 

action of rule 1 is to actually write the lines for DEPT DETAIL. The 

remainder of the decision table shows the sequence of making up and 

printing the output record. 

QUESTIONS 

1. 'What are tile requirements for the description of the output 
records on the File Description forms? 

2. What are the meanings of the characters Z, A, and N on the 
Report Layout sheet? 

3. What is a CONSTANT record? 

4. On the Report Layout sheet, how is a record identified? 

5. Read rule 2 of table 005. 



,~, 

Figure 7c. Decision Tables, Example 7. 



2.46 

ANSWERS 

1. The output records are described 0:1 the File Description forms 
and should contain all the variable fields of the record, plus a 
description in the column labelled RELATNE LOCATION. This 
description must describe the line of the record in which the 
field is written, and the position of the right hand character of 
the field. 

2. Z, A, and N are used for editing. The characters A and N 
specify alphameric and numeric data respectively, while the Z 
indicates zero suppression. 

3. A CONSTANT record is one which describes those parts of a 
report which reappear in exactly the same position from page to 
page with the same information. 

4. A record name is indicated with a prefix and a suffix in the left 
column on the first line where its format is described. The pre
fix indicates the number of lines to the record, and the suffix 
indicates whether the rec ord is in a fixed vertical position or if 
it may vary in vertical position. 

5. If EXPENSE FILE is at end of file, write the ledger total, write 
the end r eport, and go to the STOP table. 



"vaTU" NAM& 
6rL~...r/J Gr ..... 

• • 

•• 

Figure Sa. Decision Table, Example S. 

IBM 
FILE Oi:SCRlPTtON 

Figure Sb . File Description 1, Example 8. 

[s-..;a:rF..t.4 ~tAf ~ IBM ~AL.YST ~E 1Al.6i 
FILE OESCRIPTION 

0< cw.u I 
J,: .u II{Gr - p"A-<tlc.r s V~ / 1. A 

filS N~E. 
~~t:!.J:/..JJ J '(P~ 

b TYPI. ! t.4~DII~N Jl.c.o.;:o ~1. 
'UtuH!9 AAN' - ",...~ ,"1A ~J(. I~" ~ OIl ,uco.old v·· In .. · ... l="iELD N..\MF. :J1:!#.r" oc.c.ulUtlWUS , -' IttU.TlVll,6C4T1CIH \A1.UE/REMARKS 

,~ WIN AVe. MAX I ., 
~ t.IGIN aND • • "",,'I. ...... , 

I - =£M #0- I --: 
- ~ 

- - --
U"S.5 C-, Z~t1. J~ 0g -

't c:r..~ .'-~~... .6..L I 

-r~ =' UI.l ""Y~ 'M::+f ,>, 
- - -

. - _L 

r:'" q r.r-"'11....1L~~'L-<, It -' ..J.. , --
Figure Bc . File Description 2, Example S. 



2.47 

Example S demonstrates a number of approaches for r eading 

and writing records in files and explains the various ways of correcting 

files, depending on their classification. The procedure outlined in this 

example is part of the system BILLING and includes (1) r eading item 

cards in a file, (2) getting an inventory master, and (3) proceeding with 

invoice preparation. 

The first action in the open table 071 shown in Figure Sa is: 

DO NEXT ITEM 

which is the title of table 072. Control is temporarily transferred to 

this table through the DO oI'!' rator. 

Table 071 differs from earlier samples in that no conditions have 

been written into its structure. Whenever this happens, actions are 

executed upon entry from another table, and the arrangement is referred 

to as an unconditional table. 

In closed table 072, the first action: 

ITEM CARD IS EOF 

tests whether the item card file is at the end of the file . This action is 

used only wtth a. special kind of file, one in which records appear one 

after the other as in a deck of punched cards or a magnetic tape . When 

a file is to be treated in this way, it is known as a serial file . 

A detailed summary of the ser ial file ITEM CARD is supplied in 

l'le File Deseiption for m, Figure Sb . Across the header essential 



• 

5vr.n.M JroIAM& 
6r~L Ilil c;. 

F!E.LO NAME 

Figure Sa. D:;cision Totble, Example S. 

IBM 
FILE DcSC~:PTION 

+ DlR. TV"- I ~£DI(;/I.t I Rlc.oll.O ~, 
;1:...J _-LSi!e.-~ ;r"-rU..:L 

Figure 8b. File Description 1, Exa.mple 8. 

IBM 
FILE DESCRIPTION J 

FIgure Bc. File Description 2, Example 8. 



2.48 

descriptive data concerning the file is entered: 

File Name - ITE M CARD 
Dir . Type - INPU T 
Medium - SER-CARD 
Record Name - lTEM 

etc. 

The EOF (END OF FILE) notation looks ahead to see whether there 

are any more records to process before reaclling the end of the file . 

Y signifies there is no next record; if this c andition is not checked at 

this pOint, and further operations are called for (e.g., READ ITEM CARD), 

they will be ignored if the end of file has been r eached. An N denotes 

there is at least one more record. 

Table 072, rule 2 calls for the execution of: READ ITEM CARD 

which arranges for the storage in memory of values for the 5 fields in the 

r ecord as they are described in Figure 8b . When the EOF is reached, the 

DO STCP action provides for the completion of certain closing routines . 

The operator READ is always used for providing input from a 

serial file . The operand is always a file name, and the next record in 

the file is read into memory. 

Control now returns to table 071 to get the inventory record for the 

item number on the item card . In this cycle from the initial 00 action in 

table 071, through the steps in table 072 and back to 071 again, table 071 

assumes the role of master coordinator for several closed tables. 

Basically J it calls on these tables for a series of actions, then asks for 



I Sy.,.~~ ~ .. 
flL~ .. /lI.././ Go 

OATE 

.. ~' 
I 

, ~" 

~~ 

. I 

• • 

Figure Sa. Decision 'I"d.ble, Example S. 

IBM 
FILE DESCR:PTION 

F!E.LD NAME 

Figure Sb. File Description 1, Example e. 

DIM 
FILE DESCRIPTION 

IOA'TE 
v~ It. A 

--
FIgure 8e. FHe Description 2, Example 8. 

1- .. ...... 



return of control to issue further instructions. The cycle may be 

repeated as often as necessary, depending on the complexity of the 

procedure. 

2. 49 

To get the inventory record for the item number on the item card, 

the file INVEN MASTER is required. An examination of its File 

Description form in Figure Bc reveals that this file is on disk and is a 

retained random disk file. As such, it requires different treatment. 

A retained file is one which is used over and over in a system; it 

exists as an input at some time during the processing cycle and still 

exists at the end of that cycle. 

In a random file, as differentiated from a serial file, reading and 

writing are performed on the basis of location or information content. 

A random file has no begirming or end, and each record is viewed as it 

turns up in the loop. New data may be added to a record while it is in 

memory, but this new information is superimposed on the previously 

recorded data, so the older data is lost unless explicitly recorded else

where . This provides a way to correct the file automatically . 

For the current example, information will be obtained by address. 

The field LOC ADD is given a value from an arithmetic expression called 

ITEM FORMULA. 

The DO NEXT ThTVEN action calls for table 073 ; the first condition: 

ITEM NO: ITEM EQ ITEM NO: MASTER 



ftVr.T&."" .......... K 

UJ.~r; 

• 

•• 

I DATE 
,1/ ... /, . 

~, 

Figure Sa. I:>3c;ision T"d.ble, Example 8. 

Of, !. U;I'lTH lor.cORRlWC.iS ,. 
t! 2 M"~ .... 1rt4IN ""'If, M4:.: i VALUE/REMARKS 

--+ + 
s , ...... 

~ Ccn.E '" I.' , 

~<i.$ r . N:;:; . _ '" ~~ .r T£./'1 tr._ _. _!/ Co 
1'1 SIT!&> N 4 
",,'Lr <>4.I<-","._,. . ;\~ ____ -r-r-

- I-
L .. _ _ 
L L --

Figure 8b. File Description 1, Example 8. 

tsya:·rI:'M NA.ME =1 IBM fj;~T I Do';!'!':' 
FILE OESCRIPTION . -sHc~ s '/4(1.4 ~I'ic;.-

I"" ..... , ! ... TV>< ~ ) ".w, 1-

.~~ c:';ELD )tAME IfIT~ 

'~~irt1 H .. 

I-
' x. ,.,N-

..oF 

Figure 8e. File Dascription 2, Example 8. 

IM.GE Of 

.. ~ 
~I 



2. 50 

This is unlikely to be true the first time through, unless the same 

item number shows up twice in a row for a single customer; the N path 

(rule 2) will probably be satisfied first. In rule 2, Lex:: ADD is incre-

mented by 1, then the action READ INVEN MASTER PER Lex:: ADD is 

executed. Table 073 is repeated again. When the Y condition is 

satisfied, control returns to table 071. Incrementing of Lex:: ADD is 

simply one way of chaining if the first address is incorrect. 

The READ operator for a random file is somewhat different in 

construction than in a serial file: 

Operand 2 Connector Location Name 

READ PER 

Here the operator obtains the record at the location. If no record is 

there, the READ is not executed. 

By definition, a random retained file is automatically updated with 

modifications at the same location. 

In table 071, a number of actions now take place : 

1. Quantity on hand is decremented (reduced) by the 
quantity sold. 

2. Price extension (an arithmetic formula name) is 
moved to net price. 

3. The record item is moved to the record item line. 

After these actions, a DO INVOICE HEADER appears, which is once 

more the signal to call on a closed table, this time 074, for execution. 



.. 

•• 

---

Flgure 8a. Decision T'd.ble, Example 8. 

IBM 
FILE OeSC;:~:PTtON 

j,uu,l.YBT 
" lid (ric l" S 

I 

Figure 8b. File Desc ription 1, Example 8. 

IBM 

1- .. 

l 
I~ ~ ~sl 

VALUE/REMARKS 

FILE DESCRIPTION . AtI~.z S 
JDA'!'E 

'I" If. 4 

T.---~ 
~LL1 H~E ~ TVPI: MEOII:". • 'c..cJf:D NNotI ... ... In··· AItAl- Pn HAs '<II! ••• -DL'a~~ ~I) ... FiElD HAME :ID1'1U!t<T" ()C.(.tJRIllWUS :. ~l !-cUTM Lbtm'tOH \A\..IJF./REMARKS ... 

_ _ ." : ""'"_ " 'N ,"V#J, MAX I . ~ ~ HGIN ONO 

I . E,M 1I<r11 ~ . ~ 0-

f ~"H In r"r'lI1J~ + -r c:-<J( ."-I! c. . 
<#5..c:J.~a.l~_ $b :loa c_ L 

.r r.::: lR n:-"UI ...lL"'~.&' - !j . f...----l-...J. -, -
Figur e Be. File Description 2, Example 8 . 



2 . 51 

This table checks to see if the customer number on the item 

record is the same as the customer number on the header. If they 

are, then an item line is written (ITEM LINE is a record name on a 

serial file which is appropriately described on a Record Layout sheet 

and a File Description form). If they are not equal, then these actions 

are executed: 

DO TOTAL CALC 

DO PROCEDURE "EADER PREP 

DO 074 (i. e . , repeat this table) 

The next time through the table the condition will be satisfied and the 

action WRITE ITEM LrnE is executed . 

Control then reverts to table 071 to continue the master cycle. 

The WRITE actions, designating output, are essentially the same in 

application whether for random or serial files except on random files 

a location must be specified. 

The DO PROCEDURE HEADER PREP action brings up a procedure 

name for the first time. A procedure is one or more decision tables 

which together form a distinct and logical segment of an information 

processing system. The procedure name must start with an alphameric 

character and be unique. In this series of tables, for example, the pro

cedure name is rnvorCE DETAIL. The first table in a procedure must 

be marked as FrnST under TABLE TYPE as in table 071. 



I &Y"'T~1oII ........... 
ML4ItlG: 

• 

I-.. 
• 

•• 
I-~ 

~"""'.I mM 
to.J" C[ QirA1L DfCl5iION T":'Ll 

I ANA,lV$T 
f!1t .,4fC rS I OATO 

// ... /,). 

~ ~~~ 

~ 

Figure Sa. Decision Table, Example 8. 

IBM 
FILE OESC~IPTION 

I ANALYST 
~MfrI,a 

f\lc.cIU'I IllAMI. 

~" -L 

, 

I .... '" ..... 
~ 

I 

I 

VALUE/rtEMA.RKS 

J..... 
L 

, 
l ·r 

Figure 8b. File Description 1, Example 8 . 

IBM 
FilE DESCRIPTION 

I OA'!E 
V""/"'" 

Figure Be. Fll" Description 2, Example 8. 

I 



2.52 

QUESTIONS 

1. What is the significance of EOF for files? Is it equally applicable 

to random and serial files? 

2 . How does the READ operator differ in construction between serial 

and random files? 

3 . What does DO PROCEDURE accomplish? 

4. In what ways is an unconditional table different from other tables? 

5. What is the relationship of table 071 to 072, 073 and 074? 

Trace the pattern of movement from one table to another. 



• 

.V."""" Nootr.toIK 
6.r1.~1/J y. 

=~ 

I ~!l.F. N.t.M1l -
I 1:t.l:1 """'ZA. f1 J:) 

F!ElD t.!A.ME 

~DU"""".I IBM 
(q./ <' E OfUU L Ott1SIOM TMLI I .... 

I 

. I 

Figure Sa . Decision Table, Ey.ample S. 

IBM 
FILE OcSC~:PTION 

Figure 8b. File Description I, Example 8 . 

IBM 
FILE OESCRIPTION 

IO .. ,.e:. 
V~ It. .a 

FIgure 8e. FUe Des~ription 2, Example S. 



2.53 

ANSWERS 

1. EOF (END OF FILE) has meaning only for serial files. A random 
file, which acts like an endless conveyor belt, has no end of file. 

2. For a serial file, the form is: 

READ file name 

For a random file, the form is: 

READ file name PER location name 

Specification of location is necessary for a random file. 

3. The DO PROCEDURE, as used here, avoids specifying ihe pro
cedure at this time . The DO PROCEDURE normally states tha t 
anoiher series of tables will be called upon to carry out a 
separate procedure within the system. 

4. An unconditional table has no conditions. The table is entered 
from another table and actions are carried out as displayed. 

5. The looping pattern for ihe four tables in INVOICE DETAIL: 

TABLE 071 to 072 

072 to 071 

071 action 

071 to 073 

073 to 073, etc. 

073 to 071 

071 action 

071 action 

071 action 

071 to 074 

074 to 074, etc . 

074 to 071 

etc. 



3. 1 

CHAPTER 3 

Sample Systems Descriptions 

Two systems are described using the Tabular Descriptive 

Language. The first, CREDIT RESERVE, is a complete description. 

It is written in the fullest detail possible using the Tabular Descrip

tive Language. The second system, POLICY FILE MAINT., is a 

partial system description. This example illustrates the hier a r chical 

use of TDL by showing various levels of detail. The example may be 

taken to represent the status of a system description at a point in time 

prior to the completion of the documentation of the detailed analysis . 

SYSTEM: 

Credit Reserve 

PURPOSE: 

Example 1 

The purpose of Loe Credit Reserve 8'Jstem is t.o establish 

adequate reserves for insurance issued to lendors {banks, c redit 

unions, etc.} in the amount of and for the duration of loans which they 

have made. 

SCOPE: 

This system deals only with those policies for which Ule full 

pre~iU1!l is paid in advance. 



3. 2 

DESCRIPTION: 

There are two types of loans: 

1) ~clining Balance Loans - Loans for which there is periodic 

repayment during the term of the loan. 

2) Level Balance Leans - Loans which are repayed in one lump 

sum at the end of the term of the ban. 

In the case of a Ceclining loan, the liability of the insurance 

company decr eases during the term of the loan. The liability of the 

insurance company r emains fixed, however I during the term of a 

Level loan. 

Reserves are established and maintained ior each policy. 

P olicies are issued to lendors . Since a lendor may make many 

different l oans, which he wants insured under one policy J loans whose 

term and expirati 0:1 date ar e the same must be summarized and 

amortized togeL'1ar. When file maintenance is done, this function will 

be performed ar.d the output r epor t r:Monthly Reserve Ljst" is produced. 

A policy may ccver loa..TJ.s which are of both Level and .Declining. On 

the output report, totals 'Nil! be produced for each type of loan within 

a policy and for each policy. 

Input nActivityn l'ecords wi.n contain i!1iormation on additional 

loans to be covered by a policy, and information on new policies. 



[ SYSTEM NA=M"'E ___ --J IBM 
I CREDIT R£.SFBIIC 1 ~ILC. LlC;)\...r\It"" IIVN 

FILE N ..... E DIA.TVPE MEDIUM 

AC. T IV,-V <;" IN ;c a ~.L T~DC 

SEA FIELD NAME P • LEN"TH OCCURRENC.ES 
NO ;! • 1: WAV. VAR MIN AVO, MAX 

I PI"JLlC V "J,., rJ " I I 
2. ~o,' '~" O N ' , ,-

Crp " .,~" ~ 'J "' ,-
rUIM >J Il r-.& i 

t:\r<l T ,,)C, ,. c- IN 0 I 

-

ReMARK5: 

[ANALYST 1 DATE 
I )I\.\(W. I tll?!b2 IM .. E 01' -I , 

RE.C.OA:O NAME Aaa NO O~ RE'OROS 

"" ACT,ViTV 1M" 10 000 
, 

0 0'-' 

~ -t: i REUTNi LOUTION 
VALUe/REMARKS . ,. 

• I • IEGIN END 

I 
2.. -

i'l 

" 

-

w 
w 



IBM I ANALYST I DATE I SYSTEM NAME 
e.R~O I T BESEKV E. 

• 
FILE DESCRIPTION I M K·W. I ,//Up- II¥.GE OF PAGES I v , , 

I FILE NAME 
1 n ASTER, FILE 

ISla I.'ELO NAME NO 

I I POLICY N t) 

2.. I ~OAN en Dr 
I EXy CAH 

4 I T l RM 
5 I AI'l T IN '" 

nla~ 

lo~ T .Cl ),lJ L. r:. 

IN lui 1 
lu lu l I 

3 
ilLl /J 1 2 
,1\<1 1.7. 

1 MEDIUM I R",OAO NAME 

JsEW' I't1A& TA.Pti 

I 
I " '-

I 
. I 

I - I I I I I I I I I I I 

1---+- III II I IIIII 

1-+ III I I I I IIII 

r-r-----·- +I-tl-tl--tll 1 1 1 1 

1--+-----·--+1-+1-11--1 1 1 1 1 1 

REM .. RKS: 

NO O~ RIiC.OAD 
I ....... !UI4! I "IAk 

50, 000 7 0, 000-

I .... 
~ 

VALue/REMARKS 

'" 
" 



~ 

j" 

I I"m • 
•• 

iK 

l4 
.. :z: 
u 
,,~ 

I 
z~ 

~~ 
5;! 

'" ~~ -

I 
~ 

• 
i -

I 
:lJ 

I!~~ 
~ ill In 

~ I~ 

~ II I I II I 
~.h ~. 

~jY 
~~~ = 

£ , i c..:. ~ :..!...!.. ~ 191

I SYSTEM NAME
CREDIT RESEB.ve-

FILE NAME

I I'lOIliTHLY II~S .. I S T

.ER FiELD NAME NO

j IE)(P DArE.
2 lIE Rl'I
.~ Ann I)Q,,-

>l- II M.,.. (. , "'

.Ar~T RES
Am.,- '" or.
-rbl..Ic'Y ~(1

f? 1..0 A)oJ (' ror. ,

~

.

- ---.

IBJ.t
FILE DESCRIPTION

DIR TYPE MEDIUM

", IT i.1>

U • LENTH OCCURRENCES
• ;' Z MAX VAR MIN AV6 MAX

~ I
IN '2.

12 .
IJ ~ 1~2. I

F ?2 I
' ? I

, I ? I
N U I I

. _-- '
- -

. .

-

REMARKS:

1 ANALYST 1 DATE

n, K. \II, 1/, tit. ').. I""&E I OF ,!PAGES I
F •

REC.ORD NAME 0.88
NO 0 1= RlEC.OAOS ...

VlA)oJ ClE.-r LQ ,~n, 000 l?o 000

i
, ii REUTIVE LOCATION

VALUe/REMARKS .' .: ~ IEGIN END ,
I 2
I ~

I Lf
I .5~ , 71
I ?,<;
I I!>
I 1<;

.

w

'"

I SYSTEM NAME
CRr: D IT Rf5f e VE

FILE NAME

MOIH>! LY RES LI >T

SEA
FIELD NAME NO

I !AfflT OR,& TOT
'l.. ,('r}T ' lJQ TO,.
3 qro ' - -·C TO T
q >I ,' T ,'" Ff)Q TnT

REMARK5:

IBM .,
FILE DESCRIPTION

DIR.TYPE MEDIUI'o<

CU, So'" "'\~, .. , ""'T
II • LENTH OCCURRENCES

• ! , • MAX VAA MIN AVG MAX

N V 7. 1 I

N £ '/ 2. I
N £ n? I
N V 7 :2. 1

I ANALYST I DATE
IM.\<,.W, ,/ ,fh.. IPO.GE2.0F'fPAGESI ,

REC.ORD NAME Aas NO O~ IUC.OROS " .. ,
LE v TOT LT 2000 2 '-100

i
, • RELATIVi LOCA1'ION

VAlue/REMARKS
.,-
': ~ • BeGIN ENO

I 'j "
I 5 " , 77

I 6 5

'"
--01

I SYSTEM NAME
CREDIT RESERVS:

FILE NAME

LY KES LIST

SER ;:II,LO NAME NO

I Al'\T nR, t. TOT
2 A t'lT 0 .JR TOT
3 "'OT Q, ~ TO T
y 'MT ,. tnO r~T

IBM 0,
FILE DESCRIPTION

OIR.TVPE MEDIU,",

OUT ISER. '1

l, • LENTH OCCURRENCES E, • ~. ~ MAX VAA MIN AVG MA')(

N II.; V ... I
.:1-

N E • .",

tJ ' ~. 2 ,. I
_ ..

,

..

. -
- ..

i

[ANALYST [DATE
[M.K.VJ. [,f,p!& 2.., [IItoGE30F4PAGES [•

REC.ORD NAME Aa& NO O~ R'C.ORPS
PIIAW.

I DEe. TO~ DT 2000 I ,,--"00 -
~ • ~ RELAT1V£ LOCATION

VALUE/REMARKS
~. • 0: ~ .EGIN ENO • •

I 42

".
I 7 '7 -
I be;

,

w
en

I SYSTEM NAME
C-RE DI I H£StRvf

FILE NAME

"y ,,~~ LiS T

SEA FIELD NAME NO , A.1T . IO T
:1. :' MT ',)0,,,1"
j Arc'r ~rs T()T

~ AI"lT "J .,-R .,-" T

REMARKS:

IBM .. ,
FILE DESCRIPTION

OIR TYPE MEDIUN
In,,- ~ EO , ~r

I~ • LENTH OCCURI<ENGES ., • ~. • t-AAXVAR MIN AVe:, MA'lC

N 11. 1,Z ,
N - 1 ,) ,

• 7'2.. ,
N I) : 1 7 I

,

-

!.llNALYST ! DATE

, , ! M,X,W. ,I,rh,').. !""GE ,\oF'\~S 1

R'C.ORO NAME .. 8&
NO O~ RIiC.ORDS

AX

""'- TO r PT 1000 J~ I~O 0

> • i RELATlVE LOCATION
VALUe/REMARKS • ." ; .: ~ IEC>'N END ,

;I. , ;~ , 77 , 65

-

--

W

<0

IBM I ANA~YST I DATE ~SYSTEM NAME
G.RE. DI r R£.Se.P\JE '" FILE DESCRIPTION \<\ ,K, W, I II e7 66_ IAAGE oF PAGES I , ,
I FILE HAM!: I OIR. TYPE MEDIUM REC.ORD NAME ,,88 NO O~ R~C.~PS
I INPUT HOL ,', IINHR. ,_~.". ~R" HOLD Q EC \-,R i ,

ISEA I
NO FIELD NAME VALue/REMARKS

II-~X? D8iL I,," u.. ___ I_ ! +- I 1-~_ . U c t,,--_ I", It ~.I- - --- r-;- -""""1 I I
1-.3 I 9M T O.R1.(T -u' -j',
. ~ I AIIiT C.UP. NIF 7"1.. I' --t . I
5 . i!U.-..E,.£ S I ~I I" '/. 2. I i
" _aJ"'.LL.h"IL. i'QPC'; I U 7·"1. I I

_ J..--r-t.(:))_1 C. Y M 0 ~ I ~I U ? :
if L(),'" CDDE N U } , I I
. q f\frJY I N.S - I t: 1.) +. I . -

---t-I +1-111- +-+--l i-+++
~ I ---______ ._- I ! i=ti· f-- ___ -- - I

I +------ ,- f f -- ,- 1" . ; .--t=
f .,.~ =3 ' i; . .

, '::E-I-+- W ' ~
H- i II L+~::P:~ '.\-I- I n----t- ----f-- I I

I I II I j-t-~± III
-1 I I I .~--------~

f--+--------tl-tl+ I I --1--+ I +t-I +I--t---+---- --------I
-H- 1 I 1 I 1 f---t----

I I I++-+-+-! I I i-++I-+--+-----------I

~~.:~
'"
~

o

3.11

I

I I I
I I I III I I ! III I I r

: C.R<OIT R,SERvE
I SVSTE.M NAME I PROCEOURE NAME

UU;I~ION TABL.t:

rW'1 TAaLE ... A.flAa TAaL& TYPE I I I I I I I
lin I OPeR oPIRAND 1 OP OP!AAND1 OS> QPlRAMOZ,

~ o. o • .. ~ o • ., ..
* ooJ START O~N

1 R[A D ACTIIIIT>' FIL£ IX
O'Af) : FILl'- X

3 G? TO OOJ. ~

K'" "', IW,T ~(>cf"\ "Fr. OPFN

~ !)C. Tn) ,,... V
I "

M>

2 S V ~OLO R<" ,() n V I n
3 Wlv, "ilT "'<"'"6" ""- rO IMIr ' <R
"- "'r., A, 0< r"(_c' Ao".T t() AMT '"~' .0

11, M) 1>0. VI n F Il
b (;n Tn 00' ~

REMARKS:

I ANALYST DATE
M. K. W, 1/1?/6L -
I I I 1 qUE Nj:.V I I I I I

01' •• 0_2 01' OH 01
, , " , 11 .4- '" 07 , ,. 10 1.1 3.2. ..

195
N

0 I· "

, .
)(

1- OF _S I
I I I I I I I

OP OPERANO 2.
•• u .. " •• •• ~

'" ~
'"

I SYSTEM NAME I PROCEDURE NAME I IB~ I ANALYST DATE I
Q.R;D !T R E. ~fRY~ • DECISION TABL..E ~ do(. W. Ihflb LIWiE IOF 2PA6ES

Type I I I I I I I I I I . jFR'iqu NF-.... I I I I I I I I I I I I
OPERAND Z. OP OPiRAND 2. OP <> OPIRAHOZ OP OPIRANO 1. op 0 OPERAND Z. HOZ OP <> OPIRANO 1. OP <> OPERAND Z.

- .. 01. O. <I" 01 06 07 06 ott 10 "1 n 1+ 16 '6 1'7 ,. ,. 20 1.\ '11 ., a .. as a6 t:J' 2~!.f!0 "

:.J.:' I CPt:..)' , '
" '6 1'7 ,. ,. 20 1.\ '11 ., a .. as a6 t:J' 1. ~ .0"

. "
"A, Y I~ IN I N

/iO. L t

G::I.:: ' _ - - - -~ ",,_~"T "'_q,. u , _" I Y
"._ • • • _ . _ •. 11 ••

1:_ ~1~1~ __ :~~ ~'_~~~_~ _~!'S£1 Ar. ! j C""''''K
'1t':;n tllt')- lh,:r: ___ 1~
-~?~,)~
, __ ~ l~ti P,~-(\T I~J F06Cr.: 11;). ,I;Q
~~':-f~---.PLS : HR EQ

, ~l l..~

__ :.ti:---=:------.LOB. ~J Dz T Tc.o HOL.E~ R I:/'"

LL:j_t.d: if <- l. tJAF\J \:)-'. T
I :(V)~ ~ fI:'Y'I,- Ch!;{",. " HR h _

....-.... ---

I~-T I ,
jy
IX

in:..!.::. lYm
iiS

\ill-
!I'E ,

l'!. 1)(

[.;;1", U: lli: 111m" bR" (,
,"W, ; (.,)~ .. -a-~11ill'lt;' f\rr:'; I~J V,.c.f.. : , Ij). 1f'1~

fr?t----:-[~
----- - -- - ------r-..

~E f!l'fl: r?F_S." R of,

Ifl l ,,: ~ T Q r.i..LQ.£:J&': H..!:<.. __ __ k_:~'_-:~_-_-=~~-=~_R
·.,1 r·1r;'Jf. J-JO l,O R~(. I -,0 ~ {,(, . .,::..,,- r?

I'll V<} R.l.I...k.... trI A':-~ T I:" K

__ TO

I ,

10'

"

-,_. ,. -:<! • - .

Ix
Ix

REMARKS:DEc..L I~ FO I T -K P G.,· He:=iC~~-"JT DAT&.,"fI)/TE:i?ro: t-I R

D£C_ L-----.R£ 5 _ __ AL AfI1L IN _sop.cr. alp. ~ .i P DtITf. : ,.1#1. -..d C_l)'Kio'H !T u(" T":::. III) +- . 00.

1'1

Icd!

LEV IN FOB AI:. Bf!JJ ORI Gcj HP- t ArrI Ct),o.!. ~ tie.
U : V Qt:..~ A~ AmT 1M ~() Q r.~~ f-I K~(E X P DIln. :H R - . .;t('.JJ"'R~.J ' Dlln S) t ,OOO l S

'"
~

'"

".

" m
~

~
'" If)

,

91 "0

" "
(3 f-c !><> J6::1' 11I f<' 7'> - ~ is ~

~ 11:. F. F In
2 ~§ p~ - 0%

;; ;:"'~ !~
~, f~ ;.. ~ r

I

~~I P ~ iii <I' fu 0

~ ~,~ ~ ",./ g , .. TO 11
0" " ... ,
co ..

I P
0 ..

~ '0

i ~ 'V I-
f" , • f-• l-

101-
~ I I :If-
t!! ,

l i I-
'" ~ 01-

" s ..

~
- ~ I-

i" f'l ~ - '-

" " ~ - -
- 0 r,;-

~ ." - - .. ~ r ~ ; i .0
I _0 C

ON

i"-K ·O~
~ ~ ~

~ -" ~ - -(f" P I" t' : if-- z : ... -
R , :i .-,
In ~or-

:"r-•
~

~
-=01-

IN
,.

: v0r-
I" '0 f-

".1! 'r ~ • I-, ; l-
I-

"-"" r>

"" Ih -;U>

;JJ~
m

~
~ ..

1
m
0
c:

" '"
~
m

'::-'-
5
!!l_
~ta
iliC ID ·
:;;

~
~~
f-Z

~ en ...

-
I:::. ..
~~
hil

~
~ ...

i
IA

L...

**

I SYSTEM NAME ~
C.REDIT R~SERlL~_ DEClSIO

IBM
"

ANALYST DATE

- --- -- - - - - -- --- - - - ~
TABLE t.ONT ON t'\'Y"'i '! ,F!&L I l ... 2._

~~ FREQI ENCY
SER OP 05 OPiRNlO2 "" OPERANC 2 0. OPERAH02 ... OPeRANO'l. OP OPiRAN02. OP OPERAHD2

"03 Z.
.l~

2. Y
, Y

. . - - . --- . -

\

, ,
n

U:V IN oR .
'i. LEV RfS I

. '1 :i
10 l(--
J 1 c..~~ T rv , TTl- :

,-
-1 , . . •. - '1. .

1.3 Ai"l- IN mp.
,nT" l T -

T - . L. .
15 'x
iI,-

I? "in 4

~~K5: - - - -- ... ----~-.

co
>" ...

L ,'S

* *

"'H-t+n-il- i 'I n &-, li t< 1'1 r: F § ~'''' I I Ci I ii! !6 ! t» ~ : , II 'I I i I I '0 ,' " I E z~
n

" ' 1 'i ' I " '-' ' I I i i 'I i 1 }1 ~ ~
, I ' !! 0:li

' iii i I ~1++fII-' ffi---tt;j"n I t-t-H 11 H1,'f-i i +tl t' -H-t-
'I
HI-rI ! :1 ~ I , l" , I I I " I ' I I I I i,; I i I I Ii ~

I i I I i I !! ! I I II I I I Ii i, l1" I I I I ' I ' I I Si ' , I I ' I

: I I 1 : i i ' I ! I I~ N!,. -1lI:f
'I I I , I ' i' 11 -W+t++nf+H-itM

I, r--r-n-t it-~+I ~I !' -ll'--r _L r-t j-1 I ' \: ~
:, , I , I, !, I " s .J:
' !: I I I I I ' I I I !' 0

1
~

~
!!!
o z

I i 'I , I , I, I Ii ~ §o

I I ! I Ii .. ~ z ; I ' I " ,.,-,

I I -'t-r, I I Ii ~ ~ ~ ~
I I I I ii I I i I II 2 r.-- ~
I III , 'I 'I it ' 1

01
., 'I ',' i i i I, I , II i"

' " I I 'I

i ! il I i II I i I I i il
" ! I i ! I : I I , I ~+f++++fttiitltt11TJl _ , : ' i-IT' ~'Il+- , i, % ~

I i ! , I ' i I 1'1 ! q
I I ' I 0

'I I j l! "
! II ~

I I I,
i IJ 1
! II j I,

;' ,I
" I I UJJJl111LLLUJJll~lljLI LLUU~~'~' ~~ __ ~

91 '8

b SYSTEM NAME ± ~DURE NAl\.:e I IBM i ANALVST DATE 1
CREDIT RESEB"i; _____ J OECISION T~·~LF. M.t: W. 1!1~/i-').. ~~ _PAGES r ,

''''It'l TAal..E NAME T"'U TYPE I I ~ LID [f I JJ I ,,"o\Qf>1";EVTI I I I 1 I I I I I I I 1
OP OPEAAND~ 0;> OP6RAMDi- "O'P oJ ' opmM02 -OpollOPERANO.t QP040PERANO z.

_ I o~1 OJI 1,*1....-106;01' 100 [04 fto flTT1fTT' f 14 i I" II' lIT 1181'~TfcTirh)1 nll.lu I" rn luld'toT"
1 .. & CPU OPGR"ND I

••

• • OOb .-~ - ()f'ft:i sols' 'I .' ill ' I'i:f;l-t±l' I I ') ,,..,~ Nr. · ~ T 1:/'1 ZED"": " jd 1 . 1 I, _ I l __ i ! Lbw.,. u,~ ~ __ _. " _

, 8~1'E. lUO -+~o~;'-_~ CT ~ , I'~ --t I ! H±±ffj I f~~ ~±' ttt~
.. ~""Jt=(:"',E LO' - -~~~j5'=:~_ =--1:; -:~'-' 'I++J +++T- , :~T(t:-~ m

1 S~ I'tlT"BIG -'vI; L~~_~f.R" - IX '-+--l- +-t- ::tt-~t l 1.-1-+ . '++"!-ttt!- _ ,
2. " E'- CuR r • L~~HQ -- ~A-~-+-l-If-f- 1 ' -!-~ , f--LL, , ++ I I I I I I
' . 3,"· ;"< r: LT I ~Q 7.eRO X.J-1-+_I_L t I r-l+ ' -! j r I-+-+-t--t-t-I--t-j
4 S(I1"111'FQtl TOT; LJj;6 "'-. R~ __ "++-H-+ -t: r-b-- '! :--

- -- . -r~~=F+~+ =t±.~tt.t~~~+1
'~ ~",W IK. - _~~;~:<c:? - - ":""--+-'r-F 1 1tp~j9--' - H

~t5..t:.1.1Wri Ol{;/,~ ,or CS ~ ~:~() ~: I I 'I -Tt- I 4-' I 1 . --tt i- -:J:+ ' . .
., 1':"1: 0 (\ ~., --:"""O r."""T:f) t,:. ;.(J 1.<.~() ~ • I 1 --- I L _I -.J...... - ! m ~ - .I--....... _~_.:.u..:...:_ _ " ; -r I 1'-- , I I .

- - :C' "' . P;' 7(.-r D' --, f. ~ U~---lV ' , i I ~- - +tt' -l- ' H-+' ++-HH-+-+
~ :- t. r 1\ ~;N - . . r ·~pc. I : -? :_JJ_!......_.___. I . r -J-l-.!r .-t-+--I-+.+++--H . b I! \ I!

~~~ 
_, (T ,~~f CI;E -1.Q1 ' "-.- ~.- . ->- +- - - -T ~ 

;, ':;' Uu1I p"'-_'y)~' PI _~Q. ~'po_ 1;' 1-4++ - --j __ ,.+1- ii-- : : ! 
it ' E.LM.U I" ,np " : P . 2.. c ,,-'----- XII ~-H,+i+1- +t t:t~ , 

.---.---- ___ . ___ n__ , -~ I lJ ~rr....tt~r~--i~!±ttttttttttt=t=~~ 

t= t --.------ -i--t I ---l- , I ~ i i 11 
8-1-- -------1=--- -==-- - 1 =1-, 1 i I hrf ~ """4~! ~ 

-t-H-+-!-++- I +=I±t 
~EMARKS: 

c.> 

.... 
'" 



SYSTEM: 

Policy File Maintenance 

PURPOSE: 

Example 2 

The Pu!"pose of this system is to perform all file maintenance 

functions r equired for the POLICY W.aster File. 

SCOPE: 

This system describes the file maintenance of the POLICY 

Master File for all pOlicies issued by the company. 

DESCRIPTION: 

For any r ecord in the POLICY W.L2.ster File, file mainten2.nce 

may be re~uired for one or bolh of the following r easons : 

1) There are input transactions affecting mas te r records . 

3. 19 

2) Cata in the index raccrd s2.t.isiies c;)ar.i.itJl'm: which establish 

a Daed for certain p!'0cessj n';:J to be perfOl'med, e . g., billing 

date , armiversary, nO!'ipaym~mt. 

In addition to an updated POLICY 'Master Fih~, the :::ystem will 

produce other outputs for other syste!lls. PJl !'iles are not described 

in this example. 

As stated earHer) t'!is 12 not a :~omplete system description. 

The dOCl!ffientatiO!1 shows the variGu~~ levels or dccis:ons l but only 

a shlgle ,ath is covered at L'1e next lower le vel. After the House

keeping procedure 1 Tab19 002 determines the varioc.s types of activity, 



Table 032 shows the next level for decision for one type of ac tivity 

(Automa tic changes) by deter mining the c lass of change (Billing, 

Late Pay, Nonpayment, e tc. ), Table 050 shows loe l ogic for one 

3. 20 

class (Nonpaympnt). Tahles 082 and 083 define the Procedure to 

de termine Cash Value called for by loe DO PROC EDURE CASH VALUE 

action of Ser ial 7 Table 050. 

Light .shading js used where subsequent tables will i~r ther 

define lJ1e dccisicn logic. 



~
' 

SYSTEM NAME 
Po,-,,"\, "LE M AII';T 1 IB", 

FILE DESCRIPTIO 

ti2' IMEDIUN fiLE NAME lOlA. TYPE 
POLI C Y MF IRETA'",," I DIS\( 

~"o" ! FIELD NAME I! • LEtITH OCCURRENCES 
: ~i VAR MIN A.VG MA.X 

r; l') k l C Y ">!Q... N l) 

" ..- I 
LJ 

.. -
2. '0 , C r TYP~ N ...L I 
~ LA,' CElf)~ IN I ) 3 t I 
'f l iN T RAT F_ IN lJ I 

5 I MAT AI!. F I", " 2 -
I- I SS A r. O IN tJ 2 , 
~ S€x .N , I , 
j I NAMt LAST 'NS A \! I .. 
( I LA;T DAT E U 5 I 
II) DA Y _tlS 'T T"A '" U " 

i-'U 1'10 LASI T"Ahl 
,:1. YR .. 1.8'I '1lV<\j N ; 
1,3 I MIT I ..... , , h I 
,if I Stif<2 0 CD :A I I 
,Ii J?fl"'~ CD. I 

II , IS-:'l'£..... U I 
1 IND DATE "lss .. 

I" R /)ATJ.....ISS , 

I' IPAlf To 01'.,. 0 Iv \ I 
I ~_O Mo PAm ,(1 IN V 2. -- t--. -
' 2 ' Yii P/:\IQ 10 1111 IL 2 , -
IH. STATIJ~ I", !Z.-
2~ ~ FQR.E.~" I 

","' '\.Aj"V \ / -...... IV V • /' "- I 
v v v I 

"- V , 

Ra~: 

'--.---

I ANALYST I DATE 
LJ::::~~ ~ 1/ I f/ ., J... _ II'i<GE Of PAGES I 

!..al REU>OIO NAME NO O~ RiC.OADS .... 
I'Okll'.Y IN"..., ] PoI 2.ao 00("') I .2...?.:t. ao€, 

: .' ~ !ReUTlVf.lOCATION 
VAL.Ue/REMARKS • o~ ~ nGIN liND 

, 

I I P LA r-J 
2- .3 D, n CD""--

I 2- I-AST rR "'''' "AT .. 
,"5 '+ LAST "'Obl "'" r. 
5 5 1-, AS TR "'''' DAI~ 

" " '" -" IS"-,'" 

" b OAT" I s.sUE. 

I Z PA/l'i TO 
3 4 PA,/) ,f) 

V- i"- /". /" /'.. /' ...... / ....... 
" .. ~ / 

'7 V 

. 

w 

'" ~ 



1 ANA~YST 1 D"TE I~;:,~~,M =~Il I,"T I IBWI 
FILE DESCRIPTION I L. J. T. I he/66, 1""'10£ 01' PAGES I 

F • , 

i ~;L£ H,wE I DlR. ~ 1 NEDIUN I RSc.oRO ........ & I .... 
-YilL. DIV ~Ar£ IRETAIWID If<<lllC'l DISK [CAStt VAL-- lev 

N 
AWN 
,-on 

iffi:Oi 

I';~o 
r-~: - Ii i L.E~H OC:CURI>ENC.ES ~ .! !l RlUTIV£LOUTION / ' N" I FIELD "'''ME l' .~" VAA MIM !/NG MAX ~ '; ~ alCOIN END VAl.UE REMARKS I p- ---

, ?l.AI·J C.()",;--- IN..!.!..>; 1 j ! ' 
I !SS ~~ 

.ll:!bI fI(., E 
[pr,~ DuO 

L.£lliL rAr.IO;'>~ 
1 (>:;; lot VA~EA 
LPlL 

TA 
NI"i021 [' 

1 .. 

It< 

._-++-i-.++ I I [ I 

---'--

w 

'" '" 



, 

I I I I I I 

I I I I I i , i 
, 

I j I , 
i , , , , 

I i I I I I I I I I ! 1 
, i 
I i I , 

, , , . 
, I 

. L..!. , ' 



3. 24 

w 
~ 
Q -

w 

j 

I 

* • 



3.2 5 
~ r-T"" 

1111 ~ l-

i ~r~ 

I~ 
I~ 

, 

I-
I- I ~ 

III 
~ d l-
Q~ I-

"" 
I~ 

c::: Li 

1-1 
~ 

I~ 

~I~' ~ 
'" - l- I~ 
LL 

... 

.J 

:E"~ 
IQz 

I ,~ 

... 2 ~~ III 

~ 

~ 

I~ 

III 

i I~III I ~h I~ .. I ~ 

I 
1 : ::18 

I~ 

I ~ I"~~p l ~ l~ 
I~ 

I~ I: 

I " 
, 

I~ 

.. <I: 

I ~ 

;1 so: 1< 
I 

~Iu 1 I 

II ;; 

;11 : I; 

I~ 

~~ Id~l~ I~ If 
~I> Iii ~I':' 

Ij 

~ l1:ii1 1m ~N 
:~ ' ?i< k5 1<1 
! ,:.j c- 1>< I:r 1 :: liX 

* * 



3.26 

r;;F 

J!I 
~ 1 
" I 

• 
.. I 

m 
o I 

I ~ --l4 
I r -

1 
w 1 
~ .. ,-or.:. 

EJ. 

~ 
I~ ~ 

, ~I 
I 

i -
~ I a I' 1 , 

I 1 
, 

I~ 
,-::;-[ 

[ ' 

1 

UI 

lot I 

~I 
:E" ~ r 

I 

~ ~r 

I ; 

.... iii r 

I ! 

~r 
.. ~ 

, 
I I i ' I 

I f I ~ 
I I 

1 
I I 

W 

I i I I 
i 

I I 
, I~IIII' " 
I 

j , 1 ' 

I 

I : I 

III 

1:~llq~ 
j ..l 

II: 

'I I 

" 
1= ~ ~ 

, I I 

~ ~ tl 
, , . I 

1 I I : 
I ' I i I I 

L 

I j 
" I 

~ 
r I l 

I 

I I I • I 1 
1 . ~I~ 1~lfllt 

1 I : I I 

i - F' 

I I , 
~I ~ Ii 

I~ 

I , 

J 

::i 1 ~ 

I.- I 

~I~ I~ ,..10 

It: ~It rID lSI JL: 
.&.: * 



3.27 
,.... 

I 
\'I 

It 
~ 

I It 

.. 
~ ... --

I ' 

) ' I mtH+HH+U+-WJ 
, , . :' 

" 

I" II " 



3.28 

r-
IO I- 1=1 

I -
~ 

I ~ -
1;: 

I~ 
i-
f--

i 
f--
l-

ra: 
11 

l-

• 
Ill! I i 

- ~ . 
• 

,. IIY 
1I1lI 

I! 
-+ 

~ 
~ I-' 1-= 
~IF f-.1- 1° 

I~ 
I~ 

.J 
I ' UXl 

~-

I~~ 
~: 

" ' e 
~ 

I ~ 11 

~~ 

• 

~Cf:: 1-1-
• 

w 

I , 
oW .; 

~ ~ iI II 
I~ I~'~ 

I" 

~ ~ 
I~ 

I~ 1< I .~ " I~ I 
I-

I t 111111~ 1>< 

I~ 

I~ I~ 
I~ 

:l I~II 
j!!1 c 

~ lill~; I~ 
!'.i 

, II 
1£ 1m ~+ -; I" I.., t>o kr 1£1 liil 



3. 29 

.... 
IO l-I ~I" 
~ f-

-""-II ~~;H--t-l--
.1:1 



r 

r 

4 . 1 

CHAPTER 4 

The struc ture of the Language 

Chapters 4, 5, and 6 are the reference portion of this manual. The 

structure of the Tabular Descriptive Language is described in this chapter. 

Chapter 5 describes the formation and use of operands; and Chapter 6 

describes the operators used in the TDL system. 

The Tabular Descriptive Language allows systems to be developed 

and described in a convenient manner. As a documentation device it 

provides a rigorous statement of the logic of an information processing 

system that can be easily understood by others. It is a tool for the 

systems analyst, and as such is capable of describing complex decision 

logic in a concise and unambiguous way . The systems analyst describes 

systems at various levels of detail; thus, the language must be 

hierarchical in nature, permitting both high-level and detailed 

descriptions of a system. The Tabular Descriptive Language has been 

designed to serve these fW1ctions. 

Any language.· requires a vocabulary and a grammar. The 

vocabulary of the Tabular Descriptive Language is the operands and 

operators, together with the character set used to form them. The 

grammar is the rules used to form logical statements of conditions 

and actions. The construction (vocabulary and grammar) is described. 



Formation of Operands 

A set of characte:r:s is used to construct words. These words are 

in turn used to construct operand names, o:perators, indicate particular 

values, etc. The characters used in TDL are based on the character 

set of ·the IBM 1401 and 1410. The collating sequence is covered in 

Chapter 7. 

Alphabetic 

Numeric 

Punctuation 

(A - 2:) 

(0 - 9) 

blank ( ) ; , ? 

Other Special Characters ( + $ * - / % = " , ~ iI 

~<'*A @ >"'-'t ) 

Zero is assumed to be an unsigned value; thus zero is neither positive 

nor negative for numeric comparison. 

Names 

Names are used to identify the various operands used in the system. 

With a few exceptions (see below), names are developed by the systems 

analyst to represent the elements upon which the operators work, (e. g. J 

files J records J fields J expressions J lists J etc.). Names are constructed 

as follows: 

The firs t character must be alphabetic; the characters following 

4.2 



r 

the first can be alphabetic, numeric, any of these special 

characters ( # $ % ~ . @ Q ), or a blank. The blank is 

represented by an underscore (_) when its meaning might 

be confused. Names can be of any length convenient to the 

user. For example : 

SALES $ 

GROSS % 

YEAR TO DATE 

GROSS PAY 

SALARY 

INVENTORY AMOUNT 1961 AVG. 

The same name can be used for fields of data appearing in 

different records or files by appending a record name to insure that 

no ambiguity exists . Certein other names may also be qualified as 

explained in Chapter 5. When a name is qualified at a higher level, 

the name is followed by a colon ( : ) and then the qualifying name. 

When names are unique, no such qualification is needed. Examples 

of qualified names: 

GROSS AMOUNT 

GROSS AMOUNT 

INVENTORY 

TRANSACTION 

YEAR TO DATE AMOUNT: TOTAL LINE 

NUMBER OF SEATS : INPUT SEGMENT 

Special Names 

In addition to names developed by the user to identify operands, 

another class of operands, which is essentially sell-descriptive, is used. 

4.3 



These have special significance . 

Literals - The user may state the value itself in a decision table 

rather than a name which represents the value. Numeric 

and alphameric literals are permitted. Numeric literals 

start with a numeral (0 - 9), a sign (+ , -) or a decimal 

point (. ) and are thus distinguishable from 

names , which start with a letter. Alphameric literals 

must be enclosed in quotation marks to differentiate 

them from operand names. Examples of numeric and 

alphameric literals are: 

+3.1416 

'SEDAN' 

14 

'OUT OF_STOCK' 

.03125 

-. 03125 

'123 - 24/649' 

Connotative Terms - A word which connotes its value. 

BLANK, ZERO, NINE, ALL 'any alphameric literal' 

State Terms - A word which indicates a particular state of a variable . 

For example: 

POSITIVE, NEGATIVE, NUMERIC, ALPHABETIC 

4 . 4 



4.5 

PRESENT, END OF FILE , STATUS 

Descriptive Terms - A word which describes its value 

1/ CURRENT DATE 1/, 1/ BRANCH OFFICE ADDRESS 1/ 

None of these special names need to be described i:1 the operand 

description portion of the syste m docume ntation . Their narnes alone 

are sufficient to identify them . These self-describing operands are 

defined fully in Chapter 5. 

Operator Names 

There are various operator s used in forming statements in TDL. 

These names are pres elected and have a defined meaning. Examples are: 

EQ 

NE 

MOVE 

SET 

READ 

WRITE 

SORT 

Formation of Statements 

Two type.3 of statements are made in d6cision tables -- condition 

statements and action statements . These statements arf; formed by 

the proper placement of operators ('Jenerally verbs) and operands (nouns). 



4.6 

The construction of a cO!"ldition statement is: 

O;'i8rand 1 Operator Operand 2 

Examples: '{EAR TO DATE FICA GE 150.00 

TOTAL ·IS POSITIVE 

ill: MASTER EQ ill : TRANSACTION 

DEDUCTIONS EQ BLANK 

STATUS IS NONPAYMENT 

The construction of an action statement is: 

Operator Operand 1 COlmector _ Operand 2 

or 

Operator Operand 2 

Examples: MOVE AMOUNT TO TOTAL 

SET YEAR TO DATE FICA + FICA 

READ MASTER 

DO PROCEDURE GROSS TO NET 

Formation of Decision Tables 
= 

A decision table is formed from sets of condition and c.ction 

statements. The elements which make up a decision table are dis-

cussed with referance to this diagram. 



4.7 

Table Header R~e HJader 

Condition Stub Condition Entry 

Action Stub Ac tion En try 

I 
Remarks 

A condition consists of a condition stub with one horizontally asso-

e iated condition entry. An action consists of an action stub with one 

horizontally associated action entry. A decision rule consists of the 

conditions and actions associated vertically in an entry column in conjunc -

tion with the stub . A decision rule can be characterized as (where the 

underlined wor ds are implied): 

1!. condition I is true and condition 2 is true and .. . .. . 

condition n is true then execute action 1 and then execute 

action 2 and then .... execute action m . 

A specific combination of conditions associated with a decision rule 

must be logically unique. Thus, decision rules can be examined in any 

order since only one rule can be satisfied for one pass through the table. 

Figure 4- 1 is a sample decision table form . The various elements 

will be br iefly explained. There is a more detailed description in Chapter 7. 



~" 

:." 
I:' 

'@ 

" ... , 
>-" 

I SVSTEM~£ 
... ~ -

-----
tt' TAaLE ..... M. 
~ .... R ONQAPltO 1 

TA12LE_ 

-
CQNDIT.lQN -------- -

f- -------
r-- --

---
t-- -- ---

--
-- -

--
r·- ,..------

-
ACTION 

I 

- -

REMARKS: 
L ___ 

I PROCEDURE NAME I IIS~ 
: : DECISION TAIILE 

TA8 ... TYPS I I I I I I I 
OP 01'_2. OP ""_:t -~ O. M " .. .. .. HEADER 

--
STIl]3 Ie ~J 

-

---
-

STUB 

- I , 

..... ALYST 

I I I IPR~UI 
0 .. 0_2 , ,. , , 

I 

I 
n iT T IT Ie 1\ E 

A I 0 IN E 

DATE _ OF _S 

N;:. .... I I I I I I I I I I I I 
Of' OPCIIAND :t oP OPERAND 2-

'" 
, .. .. " .. .. .. .. OT • • .. ~ 

I -
~ T IF -

-

N T RIY 

--r-j-j 
I I ' 

, 
. -
I . 
I 

H-rt+' i 

... 
CD 



- .. 
" " !5Ff ,--I , 

I I ~ I 
1 , 

1 !I! I '" , i: 
, 

I 1 II I I 

I~I I .. 
I 
I -
I 01 I~- ~ I 
I 

g 

I~I i '" '" 
l 
m 

I~ I- L-'--
I- ~ - --5 .... _zta 

-, - ~.J: 
J -~ 

m 

:>- b I~-I-< -
H I-< '-
Z z 1=4 

0; 1",1 I!!E Izl I-~I 
IHi 19. 
I~I -

Ki 1><1 -
-

"I-
, ~-1<lnl-

I~I". !-

!- I~ -
-
I-

, 111 l- '--. 
8 V 



4.9 

Table Header: The table is identified by both a name and an identifica

tion code . These may be referred to in the same or other decision tables. 

The header is also used to indicate whether the current table is "open" 

or I1closedl! (described later in this chapter). 

More than a. single table can be written on a page--each table being 

given a unique name wd identification. Two asterisks are placed in the 

margin next to the table header to indicate the start of a new table . 

Condition Stub: The condition stub may contain the entire condition state 

ment (limited entry form), or it may contain just the first operand or the 

first operand and the operator (extended eniry form). 

Condition Entry: The condition entry may contain the second operand or 

it may contain the second operand and the operator (extended entry form) . 

In other cases the condition entry may contain eifuer Y, N, . or blank 

(limited entry form). Y is to be interpreted as an assertion of the condi

tion statement rm.de in the stub. N is interpreted as an assertion of the 

negative of the condition stated in the stub . For exa.mple, if the condition 

stub says A = B and there is an N in the associated condition entry, then 

we are examining the assertion that A does not equal B. The. 01' blank 

can be interpreted two ways. The basic jntBrpretatlon is tl-Iat this condi

tion is not pertinent. The second interpretation is that this condition is im

possible. In the last decision rule, all the condition entries may 

have periods or blanks, indicating an unconditional rule. The word ELSE 

is written in the rule header area. The actions in L'1at particular rule are 



4.10 

executed if no other ru1e is satisfied. 

Action Stub: The action stub can contain the entire statement, just 

the operator, the operator and first operand, or the operator, the first 

operand and the connector. 

Action Entry: The action entry can contain the second operand, or 

the connector and the second operand, or the only operand, if it is 

a one-operand statement. In other cases it contains an X, which 

means "execute", or a blank or period (. ) which means ignore or do not 

execute (limited entry form). Actions are executed in the order written. 

A GO TO action must be the last action for every ru1e, except in closed 

decision tables and the special decision table named STOP. 

Rule Header: For each decision rule there is a header which indicates 

specifically the ru1e number and may show its frequency of occurrence . 

Ru1e number does not specify the order of consideration of the rules, but 

rather is simply a means for identifying each rille. Frequency indicates 

the relative number of times a rule will be executed. As such, it need 

not be exact, but suggests a possible ordering for most efficient solution 

of the decision table. Frequency is used to indicate the per cent of time 

that a particular set of conditions is likely to succeed. This means that 

the sum of all the frequencies shou1d add up to 100. 

Remarks: The remarks area provides an opportunity for making local 

definitions and descriptions; for example, arithmetic, logical and symbolic 

expressions can be defined when they apply only to the decision tables on 

that page. Comments to aid others in understanding the description are 

also useful. 



4.11 

Formation of System Description 

An entire system is described by two types of operand description 

forms, standard printer spacing charts, and decision table forms. The 

File Description form describes files, records, and fields. The 

Reference Operand Description form d~scribes expressions (arithmetic, 

symbolic and logical), value and reference lists, and constants. The 

printer chart specifies printed report formats. The I::le!cision Table form 

(and a continuation form) specify the logic of the system. The amount of 

detail in preparing these descriptions depends upon the level of system 

specification desired. 

Each type of record is defined on a separate File Description. The 

form and content of the File Description and Reference Operand sheets is 

described in Chapters 5 and 7; sample sheets are included at the end of 

this chapter (figures 4-2, 4-3). 

A description of the system logic is given through the use of many 

decision tables, suitably connected to demonstrate logical flow. Two 

special decision tables are used (START, STOP) for beginning and ending 

the processing. In addition, there are two table formats used (limited 

entry tables and extended or mixed ent.ry table s), and two major classes 

of tables (open, closed). 

Special Decision Tables 

Two special decision tables alwaleS appear in each system documented 

by the systems analyst. The: first table to be executk:d in a system is 

labeled as the START table. The word" STAHT" .. ill be used for the table 



4.12 

name. The last table to be executed within a system is labeled as the 

STDP table. Both the START and STDP tables are OPEN tables. There 

is no action operator with the name "STOP. ,. If the systems analyst 

wishes to stop all processing, he can do so by transferring control with 

a GO TO action to the STDP table . 

The START and STOP tables can be in limited or extended entry 

form. 

Limited and Extended Entry Tables 

In a limited entry table all operators and operands for both condi-

tion and action statements are written in the stub area (left of the vertical 

double(line). The condition entries are Y for yes, N for no, and period or 

blank for not pertinent. ~ction entries are X for execute, aJld period or 

blank for do not execute. Since the entry is limited to these items, the nar

row rule columns are used to specify the combinations of conditions and 

actions. Thus, a maximum of 32 rules can appear on a Decision Table Sheet. 

In extended entry tables, the condition entry can contain till~ second 

operand or the operator and the second operand. The action entry can 

contain the second operand 01' the connector and the second operand. In 

an extended entry table the wide rule areas (each composed of 8 narrow 

columns) are used. 'Thus, only four rules can appear on a Decision Table 

sheet. If more rules are needed a Decision Table Continuation sheet is 

used for the (?dditior..al rules. The extended entry table form may 

include both limited and extended statements (in different rows). These 

are called mixed er.try tablea. 



4.13 

Open and Closed Tables 

An OPEN table is one to which control is transferred by means of 

a GO TO action. A CLOSED table is e!lteI'ed only by a 00 action which 

"also controls the return to the origir..ating table . An OPEN decision table 

may contain one or more DO actio!1 operators, but the last actiO!1 of each 

rule should be a GO TO. A CLOSED decision table may contain one or 

more DO action operators, but generally will have no GO TO action 

operators. After the CLOSED decision table has been executed, control 

is automatically returned to the originating table, to the action statement 

following the 00 action operator which called the CLOSED table. li a 

CLOSED table has a GO TO in any rule this will effectively destroy the 

return path for that rule. The table header specifies whether a table is 

CLOSED or OPEN. 

The following chart sUI(I.marizes thls L'lformation O!l OPEN and 

CLOSED decision tables. 

OPEN AND CLOSED TABLES 

Table Type May Contain Entered By Must Contain 

- -
Open 00, GO TO GO TO • GO TO 

Closed 00, GO TO 00 

* As last statement of each rde, except STOP Table. 



4.14 

This chapter has described the structure of the Tabular Descriptive 

Language, its vocabulary and grammar. The details of }:articular operand 

and operator specifications are given in the next two chapters along with 

additional informati on and illustrations of how they are used. 



4. 15 

-

I 
~ ~ 

II( 

i '" 1 w 

$ 
~ 

~ 
, 

! '" !c 
0 

I 0 
z .. .... 

~ II ~ z 

i ! Ii! ... "'" ..... , 
TO 

A'.~ 

Z .. i I 0 ~ 
I- z 

i .. 
:E.~ ~ mil( J ! -M 

~ w 
0 :r 
w 

~ 
!i ~ ..J ~ :I u: ., ... _. -

! I I 

w .. 
~ ~ 

~ Z I 

9 I .. 
~ i I .. ~ I- ~ ~ ~ :~ 

.. 
II: 

Figure 4··2 



4. 16 

~I 
~ , 

I 

~ 

I I I 
I 

E 
I I I 
! I 

0 I 
III I 
:J 
J 

, , 

~ 
§ 

, 
I I 

z 
~-
~ I ti: - , I 

i I I 

I I 
I 

II 
, 

I 
~ III . I 

n , 
~ )0-

i l-
I I I 

I 
; 

I I 11 I , 
III I I I 

; I 
w 1 , I I I I 

I I 
~ « I I 

Z I I I I I 
~ I 
w I I I I 
I~ Ii ! 

Fimn' p. 4- ~ 



5. 1 

CHAPTER 5 

Operands 

In order to document a logical solution to a problem, a means 

must be provided to identify and refer to data associated with that 

problem. 1n the Tabular Descriptive Language this means if provided 

by operands. An operand serves a function similar to that of a noun in 

an ordinary English language sentence. Operands, used in conjunction 

with operators (see Chapter 6) , allow the various conditions and desired 

actions associated with the problem to be expressed in a simple, concise 

form. 

'TYpes of Operands: Operands in TDL are divided into two major 

classifications : Named Operands and Self-Describing Operands. Named . . 

Operands identify data associated with a particular information process-

ing system. Their names do not indicate actual values, and therefore, 

they must be defined in the system in which they are used. Self-

Describing Operands do not need to be described for each system and 

can be used universally, as ac tual values are specified. 

Named Operands are classified in four major types : Information, 

Reference, Work, and System Segmenting Operands. The Operands 

used in the TDL System are as follows : 



Named Operands 

Information Operands 

File 
Record 
Fleld 

Reference Operands 

Reference List Function 
Value List 
Aritlunetic Expression 
Logical Expression 
Symbolic Expression 
Constant 

Work Operands 

Work Record 
Work Field 

System Segmenting Operands 

Procedure 
Decision Table 

Self- Describing Operands 

Lilerals 
Connotative Terms 
State Terms 
Descriptive Terms 
Value List 
Range 

5.2 

Operand Description Sheets: Three forms are used to describe 

operands: FHe Description, Report Description, and Reference 

Operand Description. The File Description form describes files, 

records, and fields within records. The Report Description is a 



standard printer layout sheet that describes both fixed and variable 

information appearing on a printed report. The Reference Operand 

Description describes reference lists, value lists, all types of ex

pressions, and constants. Work operands and System Segmenting 

Operands are defined by their use in decision tables. 

5. 3 

Operand Names: The name of an operand is composed of a group 

of characters. The first character of a name must be alphabetic, but 

the remaining characters can be any of the letters (A - ZL the numerals 

(0 - 9), or the special characters (I, $, @, %, C:-, 8_, decimal point, 

or a blank). A name should be selected that is meaningful for the data 

described. The length of a name is not limited, but should be kept to 

a minimum without sacrificing readability or comprehension. Here 

are examples of operand names: 

STOCK NO. 

QUAN ON HAND 

DISCOUNT % 

DEPT NO . 

T 127 

There are special rules for naming work operands and self

describing operands. 



INFORMATION OPERANDS 

Files 

5. 4 

A file is a uniquely named group of one or more types of records. 

It has two other fundamental properties that must be described: medium 

and directional type. Medium is the method of recording information 

within a file . Examples are magnetic tape , paper tape, punched card, 

printed report, disk, inquiry station, core memory, transmission line, 

etc. While the medium of a file must be described, no specific input; 

output or storage device is named. For example, the medium of a file 

can be indicated as punched card, but a particular card reading is not 

specified. 

A fIle can be specifled as having one of eight directional types : 

serial- input, serial- output, serial - intermediate, serial- retained, 

random- input, random- output, random- intermediate, or random

retained. The term "serial II indicates that only the next record of a 

file is available (e. g . , tape or card) . IIInput" and "output" indicate 

whether the information comes into the system or is provided to other 

systems. II Intermediate 11 indicates that a file is used exclusively 

within a system, and is not retained for future use (a temporary file). 

Retalned indicates that a file is available initially, but must be main

tained for future operations either inside or outside the system (e . g. , 

a master file) . 



5. 5 

The system description does not imply that the actual program 

must keep files physically separate , or that a file cannot be split into 

two or more files. For example, a systems analyst can indicate that 

the medium for a file is magnetic tape . The programmer can place this 

file, and one or more other similar files, on the same reel of magnetic 

tape; or he can split the file, placing some of its records on one reel of 

tape, and the remaining records on another reel of tape. This need not 

concern the systems analyst, nor will it invalidate the system description. 

For each input, retained, or intermediate file it is assumed that 

there is a single area in memory for each file large enough to contain the 

largest record of a file. For output files, it is assumed that an area has 

been reserved in memory that is sufficient to store one of each of the 

record types at the same time. 

Records 

A record is a uniquely named group of fields which belong to a file . 

The systems analyst's description of a record should not be considered 

to be a record layout, for he is describing the content of the record, not 

its format. A record may be read into or written from a system by use 

of the READ and WRITE operators (see Chapter 6). 

Each record in a file is described on a separa te File Description 

form. Thus, the description of a file is a collection of record descrip

tions. Printed reports, which are considered to be files, are described 

on a Report Description form, in addition to a File Description form. 



5.6 

However, the order in which fields appear on a line of a Report 

Description form is the order in which they are to appear on the ac tual 

report. The record corresponds to one or more pr inted lines . For 

any record except lines on a printed report, the programmer can 

arrange the fie lds of a r ecor d in the most efficient orde r . 

All fields should be explicitiy noted in describing a record. 

Because only one record from each input file is available at anyone time, 

a means is provided to save such records for subsequent use . Either a 

work record can be created or an intermediate file can be used. When 

identical field names and descriptions apply to two different records, the 

File Descr iption of one record can refer to the other record which has 

already been def:ned. 

Fields 

A field is a named item of information that has a value and is part 

of a record. A sub- field is a part os a field. Fields and sub- fields have 

the same characteristics and are both normally referred to as fields. 

Because a fleld has value, the relative position of its characters 

is significant. A field value can be all numeric, all alphabetic, all 

special characters, or a combination of these. A field in either an inter

mediate or .output record can have a pre- assigned value . The systems 

analyst must indicate this pre- assigned value . 

When describing a field, the systems analyst should indicate the 

maximum size it can attain and whether its length can vary. If a 



numeric field contains a decimal part, the systems analyst should 

describe its maximum decimal length. 

The sign of a pre- assigned numeric field should be indicated. 

5. 7 

Also, the sign possibilities should be indicated for all other numeric 

fields . The systems analyst should indicate that a numeric field will 

always be zero or greater (+), zero or less (- ), either positive or 

negative (E for either), or will be unsigned (U) . 

There should be no inconsistency between a field and any sub- fields 

which are part of it. A sub- field can be ciefined as part of a numeric 

field that is Signed and contains integral and decimal parts. If this is 

done, the sub- field must be a continuous part of the field, and must 

have the same sign possibilities as the field. If a sub- field contains 

integer and decimal parts, its decimal position must be consistent with 

the position of the decimal point in the field. 

The same field can occur more than once in a signle record. Such 

a multiple - occurring field can be assigned a Single name, permitting the 

systems analyst to describe, just once in a decision table, the process

ing for each separate occurrence of the field . 

Association Groups: To facilitate the preparation of decision tables 

for multiple occurrence fields, all fields on the record having a logical 

relationship to each other can be grouped and identified by an 

Association Group code . 



5, 8 

Ii • LENTH OCCURRENCES • FIELD NAME • • ~ • MA'X. VAl WIN ING 101"''' 
~ ~ T NO IA 01 0/ ,.., .~"': IA 1 ,S' /')/ 
L ,.,r, G OnF ,.,2 />, "c 'I"> 

ILIlCA I,c- IA It;' I') "c II') 

Ie L" c<,C 0 DE W u D/ ILJI a/ f> ,; 
f:J T Y ,., IV W A Ai.J2 IAI 1">1-. /1/ /')/ ,.. 
PR GE coDE 0/ 1 1>1 ,)/ 04 C 

!(N'/iT PRI C F VI, + IHI, 2 10 / 1m of C 

In the p:1'6ceding illustration there are three Assoc iation Group codes. 

CLAH) CODE 2.nd QTY ON HAND are in the same group (E) because 

qucmtity or: h2 .. nd is always recorded for each class code . 

Associ?ted To: In addition, Association Group codes are utHized 

tc indlr:am t.he logical hierarchy of the individual Asso:~iation Gr oups 

to e?.ch other. 



5.9 

The group of fields in Association Group B are recorded a maximum 

3 times for each group of fields in Association Group A. Similarly, the 

fields in Group A occur a maximum of 10 times for each record. 

Sub- Fields: If a systems analyst wishes to refer to only part of a 

field, he must establish a sub-field and name it according to the rules 

for naming operands. For example, the six- digit, unsigned numeric 

field DATE can be divided into four sub- fields. One sub- field, defined as 

occupying the two left- most posItions of the field, can be called DAY. A 

second sub- field MONTH can be defined as the third and fourth posi tions 

of the field. A third sub- fIeld YEAR can be defined as the fifth and 

sixth pOSitions of the field. A fourth sub- field MONTH AND YEAR DATE 

can be defined as the third through the Sl.xth characters of the fIeld. 

One or more sub-fields can be specifIed for a field by indicating 

the posItions of the f~eld that form each sub- field. To do thlS, the positions 

of the field are numbered from left to right beginmng with the number 1. 

To specify a sub- field, the positions of the field that form the sub- field 

are indicated in the File DescrIptIon. 

Even though one or more sub- fIelds are spec':fled for a field, sub

fields for all parts of the field are not regUlred. For example I only the 

first four positions of a ten- position field might be specified as a sub- field . 

Sub-fIeld names are unique within a record type. A sub- field can 

occur only once within a field. Thus, a field name need not be added to 

a sub- field name to qualify it. However, It may be necessary to append 



5.10 

a record name to a sub- field name when that sub- field occurs in more 

than one type of record. 

Sub-fields can overlap one another within a field. A sub- field, 

however, cannot be part of one field and part of another field. A field 

can be an entire record and be divided into as many levels of sub- fields 

as needed. 

REFERENCE OPERANDS 

Reference operands have values defined through an operand 

description. These values will be present or will be computed at the 

time the operand is referred to in a deciSIOn table . Reference operands 

are descrlbed on a Reference Operand Description form. 

Reference List Functlons 

A reference llst is similar to a matrix Ol:' table of values. Each 

reference hst function is related to one or two arguments. These 

arquments may be thought of as the vertical and horizontal axe s of a 

tabular array. A reference lisl provides the systems engineer with a 

convenient form for describing a dIscrete set of values as functions of 

other values. An insurance rate table can be a reference list, wit.h the 

function, rate, bemg dependent on the values of the two arguments, age 

and health . 

Each reference lIst function value must be an expliclt constant 

value. The argument valUeS may be constants, ranges, or even names 

of value lists. AJphameric values are enclosed wlthin quotation marks. 



5. 11 

Numeric values do not require quotes. If a range js used as an argument, 

the upper and lower limits of the range are separated by a hyphen. If 

any part of a range (upper or lower limit) is alphameric both values 

must be enclosed Wlthin quotes. The collating sequence specified for 

TDL determines whether a particular value falls within the range . 

Reference lists cannot be modIfied by action within decislOn tables. 

To refer to a specific entry within a reference list this form is used: 

Reference List .Funct.lOn Name (argument 1, argument 2). 

The reference list function name is the name of the function on the list. 

Argument 1 and argument 2 are designations of operands which may 

match the argement values of the list. Thus, a request for the rate for 

age 32 In the eastern seCUon of the country can be specified as: 

RATE (32 , "EAST"). If the rate to be determined is for the age and 

section of the count.ry on an input record called APPLICATION, the 

form would be: 

RATE (AGE: APPLICATION, SECTION OF COUNTRY: APPLICATION) 

Value Lists 

A value list is a group of two or more values or ranges of values 

that are idenlifle d by a single unique name. For example, a 115t of cities 

m which a company has warehouses can be called WAREHOUSE CITY. A 

field of an input record, Wlth the name SHIPPll'J,,} CITY, can be compared 

to the cities identified by the name WAREHOUSE CITY by the condition 

statement: SHIPPING C1TY EQ WAREHOUSE CITY. If the speCific value 



5. 12 

of the input field is "Albuquerque", the value list named WAREHOUSE 

CITY is examined to determine whether it contains the valu!:.. IIAlbuquerquelT . 

A value list can only be used in condition statements; it has no use in 

action statements. 

The values or ranges of values appearing on a value list can be 

either numeric or alphameric . Each value or range of values is separated 

by a comma. The upper and lower limits of a range are separated by a 

hyphen. A numeric value can be written directly but an alphameric value 

is enclosed within quotation marks. For c.;onsistency, if one part of a 

range is alphameric, then both parts should be in quotes. When ranges 

of values appear on a value list, the collating sequence determines whether 

any specific value falls within one of the ranges specified. 

An example of a value list is: 

+4, - 6. 2, "RRII - 1I3A1I 

A condition statement comparing a field with this value list will result in 

the reply lIyes ll if the field value is +4, - 6.2, or in the range from RR 

through 3A. 

Arithmetic Expressions 

An arithmetic expression is a named operand whose value is an 

arittunetic function of one or more operands. The value of an expression 

is always calculated at the time of its use in a decision table using current 

values of the operands forming the expression. Each time the expression 

name appears in a decision table, its value is recalculated. An 



5. 13 

arithmetic expression must be given a unique name which will represent 

a numeric value There is no practical limit to the number of operands 

and operatOrs that may appear in an arith.metic expression These 

numeric operands can be fields, constants , literals, reference list 

functions, descriptive and work fields. The five operators used in the 

expr€SSlOn are: 

+ AddltlOn 

SubtractlCn 

* Multiplication 

/ DivislCn 

.t :t Exponentiation 

In addillon to these flve baslc operators used in arithmetic expres-

sions, special mathemat.ical functions lIke SIN, COS, TAN, SUM, NEG , 

POS, and ABS may oe used Tr.ese are explained In Chapter 7. 

Some examples of ari tlunetic expresslOns follow· 

C IS the expression name for A + B, mdicanng that 
the sum of orerands A and B produce the value 
represented oy operand C. 

D represents A + B / C, indicatmg that the resull of 
adding operand A to the quotient of Band C is the 
value represented by opera nd D. 

C repre sents A ·" B, indica ting that the value of 
A to the Bth power ;s represented by operand C. 

An arithmellC expresslOn is evaluated from left to right, using this 

hierarchy of the flVe baslc operators: first- - exponenbation, second--



5. 14 

multiplication and division, and third--addition and subtraction. The 

second example shows the quotient would be formed first, then the sum. 

Parentheses can be used to establish the order and effec t of any 

operator when the normal hierarchy is not desired. Operations within 

parentheses are always evaluated first. If there are parentheses within 

parentheses, the inner most operations are carried out first, then the 

next until effectively the parentheses are cleared and the normal hierarchy 

applies. An equal number of left and right parentheses must be used. As 

indicated above -- A + B / C would indica", that B is first divided by C 

and then added to A -- however, (A + B) / C would cause A to be added to 

B and the sum divided by C. All operands, operators, functions, and 

parentheses can be separated by one or more blanks to make an expression 

more readable. 

If an arithmetic expression is only to be used for one decision table 

it is called a local arithmetic expression and may be described in the 

remarks portion of that table. Its name need only be umque for that 

decision table. Local arithmetic expressions have the same character

istics as other arithmetIc expressions . 

Logical Expressjons 

A Logical expression is an ordered combination of operands and 

operators that can be evaluated to be either true or false. Any operand, 

except the name of another expression (arithmetic, logical, or symbolic), 

can be used in a logical expression. 



The operators that can be used In a logical expression are: 

1. The three Logical Operators: AND, OR and NOT 

2. The six Relational Operators: 

LR < lesser than 

EQ = equal to 

GR > greater than 

LE <= lesser than or equal to 

NE /= not equal to 

GE >= greater than or equal to 

3. The flVe Arithmetic Operators: + - * / *>io 

4. The two State Operators ' IS and NT 

Examples of logical expressions are : 

MARITAL STATUS = 1 OR MARITAL STATUS = 2 OR 

MARITAL STATUS = 4 - ? 

5. 15 

PAY EXPERIENCE = "OK" AND BALANCE LE 10000.00 

The logical operator OR is interpreted to mean either or both; 

lnat is, It 18 incluslVe. The operator AND means that the two conditions 

joined by the AND must both be true for the logical expression to be true. 

The operator NOT means the negation of a condition. For example, NOT 

(A AND B) means if eIther A IS not true or B is not true then the expres

sion is satisfled. The expresslOn NOT (A OR B) means both A and B 

must be not true for the expressIon to be satisfied. 



5. 16 

Parentheses can be used effectively to indicate meaning and improve 

readability of logicai expressions. If parentheses are used, an equal 

number of left and right parentheses are required. The hierarchy of 

the logIcal operatcrs is: AND then OR then NOT. For example, A AND 

B OR C is :nterpreted as (A AND 3) OR C. 

Great caution should be exercised in the use of logical expressions 

since they can reaillly lead to errors. It is suggested that decision tables 

normally be used instead of such expressions. Even where a logical 

expression seems necessary qr convemenl, it may be helpful to work oUl 

the logic with a deClsion table. Local logical expressions may be used 

through definition m the remarks portion of a decision table . 

Symbolic ExpresslOns 

A symbolic expression is a means for operating on values with other 

than arithmetlc operators. The Reference Operand Description can be 

used to specify that ITEM IDENTIFICATION is the name for JOIN (LINE 

CODE, STOCK NUMBER), which means that the value of ITEM 

IDENTIFICATION is determmed by joining the value of LlNE CODE and 

STOCK NUMBER, in that order. Any number of fIelds, constants, 

literals, and reference list functions can be joined in a symbolic expres

sion; the operands are wntten after the operator JOIN within parentheses 

in the order in whlch the values are to be put together; the operands 

are separated by commas. Local symbolic expressions may be 

described in the remarks portion of a decision table . 



5.17 

Constants 

A constant is a uniquely named operand whose value cannot be 

changed by operation of the system. There IS no limit to the size of a 

constant. Constants are described on a Referep.ce Operand Description 

sheet. A constant may represent a signed or unsigned integer or decimal 

number or an alphameric value. 

WORK OPERANDS 

Work operands are used for the temporary storage of a value or a 

set of values (fields or records). Each work operand must have a 

dIfferent name but all of them are preceded by the letters WORK. No 

formal definition is required for either of the two types of work operands: 

work records and work fields . 

Other than its name, a work operand assumes all the characteristics 

of any operand that is placed :n it; these characterlstlcs remain un

changed until a new operand is placed in ~ t Thus, each work operand 

always cont.a1ns lhat wh!ch was placed m it most recently by an action in 

a decision table For example, at one Hme a work operand may contain 

a ten- character numeric field; at a later time II may conia.in a fifteen

character alphameric fleld. If a systems engineer desires to delete the 

contents of a parllcular work operand, he may do so by placing blanks in 

that work operand. 

Care should be exercised by the systems engineer m the use of work 

operands He must be careful not to destroy data that will be required 

at a later ume . 



It is assumed that there will be sufficient space to contaln the 

contents of all work records and work fields. 

Work Records 

5. 18 

A work record will contain as many fields as the record which is 

moved into it. When the contents of a record are moved into a work record, 

the work record will contain all the field values (and names) associated 

with the original record. These fields will have the same names as when 

they appeared in the original record. For example, if a record named 

STOCK STATUS is moved into a work record named WORK RECORD 1, 

each field in the work record gets the same name except it must be qualified 

by WORK RECORD 1. The systems engineer may refer to a field as: 

STOCK NUMBER: WORK RECORD 1. If later TRANSACTION is moved 

to WORK RECORD 1 then tile fields in TRANSACTION can be referenced 

by their name qualified by WORK RECORD 1. 

Work Fields 

Each work field will assume the characteristics and the value of 

what is moved to it. These characteristics and value will persist until 

something else is placed in the work field. Each work field name will 

be unique and begin with the letters WORK. Work fields are not defmed 

in any operand description, 

SYSTEM SEGMENTING OPERANDS 

Two types of operands are defined on Decision Table sheets and need 

not be defined elsewhere . These operand names are procedure names 

and decision table names or Identifications. Their primary purpose is 



5. 19 

to allow a system to be segmented into lOgICal poriions. These tables 

and procedures can then be referred to from other decision tables to 

provide sequence controL 

Procedure Names 

A procedure is a group of one or more decision tables that form a 

logical segment of an mformation processing system. The procedure 

need not be developed to refer to it in a decision table. This permits a 

system speciflcation to be developed at a level above detail analysis. A 

payroll system could can for procedures to determine FICA deducbon, 

Federal Wilnholdlng Tax, etc., assuming that the detailed procedures 

would be specified at a later dace . 

The first table of a procedure :s indIcated by writIng FIRST in the 

Table Type section of the DeciSIOn Table form . A procedure may be 

open or c.lcsed dependlng upon how it wlll be used ~n the system. A 

procedure name must begm with a Tetter and must always be p!'eceded 

by the word PROCEDURE) when It 1S referred lo. No two procedure 

names can be idenucal. A procedure name should be indjcative of the 

functions performed in t.he decisJOn tables whjch comprise it.. 

Decision Table Names 

A decision table is a logIcal assOclatton of conditions and actions. 

Since it usually takes many decision tables tc make up a sys tern ) it is 

necessary to be able to refer from one decision table to another . This 

is done by using a decision table name or a decision table identifica tion. 



5. 20 

A decIsion table name is assigned using U1€ rules for name construction 

and must be unique within a system. Decision table identifications are 

three characters in length with the first character numeric ; the other 

two characters may be either numeric O!' alphabetic . Each decision 

table will be asslgned a different identification. 

SELF- DESCRIBING OPERANDS 

Self- describing operands can be used universally without being 

speciflcally defmed for a particular system. There are six types of 

self- describing operands: literals, connotative terms, state terms, 

descriptive terms, value bsts, and ranges. These permit direct con

sideration of factor values instead of creating names and then referring 

to the ir values indirec,ly. They are speclally useful in handlIng relation

ships or standards which are not apt to change . 

Literals 

A literal deSIgnates its own value rati1€r than being the name of a 

value. The re are tw:) types of literals: numeric literals and alphamerIc 

literals. 

A numeric literal may be a signed or unSigned fixed point number 

or a signed or unsigned floating pOint number. Tnere are no restrictions 

on the length of a lHera!. 

A fixed point number may consist of all integers, which may be 

preceded by a slgn. Unsigned values are assumed positive if used in 

arithmetic Examples of integers are : 



r 

5. 21 

+ 42 

- 689 

7254 

A fixed point number may also consist of integer and decimal 

digits. It may be preceded by a plus or minus sign; unsigned, the value 

is assumed poslt~ve . A decimal point is shown between the integer and 

decimal part of the number Examples are; 

+ 42.6 

- 68.253 

O. 567 

793 

A floating point llteral is constructed like a fixed point literal, 

except that it also contains an exponent, representing a power of ten. 

This exponent can be Indicated as shown in these examples: 

Floating P oint 
Noiatlon 

14F + 7 

11. 7F - 3 

+ 14.269F21 

- 11F - 15 

Interpretation 

14 x 10
7 

11 7 x 10- 3 

+ 14. 269 x 1021 

- 11 x 10- 15 

An alphameric literal consists of any combination of numeric, 

alphabetic, or special characters. To differentiate it from a name or 

number it is enclosed within quotation marks. A blank is a value charac -

ler. designated by an underllne A single blank between two sets of 



5. 22 

characters can be left as a space. Quote marks in literals may lead 

to confusion so these should be handled by constant names and definitions. 

Examples of alphameric literals are: 

Connotative Terms 

'JANE DOE _ _ _ SECRETARY' 

1+ _ * / **1 

'369A4' 

'+ 12. 57' 

A connotative term is one whose value IS directly implied by its 

name. The following is a list of the acceptable connotative terms: 

ZERO or ZEROS 

BLANK or BLANKS 

NINE or NINES 

ALL 'any alphameric literal ' 

The first three connotahve terms represent respectively one or 

more zeros, one or more blanks, and one or more nines. The connota

tive term ALL 1S used to represent repetitions of the same character or 

group of characters. The alphameric literal may be any character or 

group of characters; it is enclosed in quotes. ALL 17' would represent 

one or more 7 15 . ALL 'ABC' would represent one or more repetitions 

of ABC , such as ABCABCAB 

State Terms 

A state term represents a characteristic or class of values. The 



state terms that are included in TDL are: 

POSITNE or P OS 

NEGATNE or NEG 

NUMERIC or NUM 
y 

ALPHABETIC or ALPHA 

STATUS 

PRESENT 

END OF FILE or EOF 

5. 23 

The state term POSITNE relates to all numeric values greater 

than zero, NEGATNE to all numeric values lesser than zero. NUMERIC 

pertains to a field containing only numbers or blanks; ALPHABETIC field,s 

may contain only letters or blanks . 

The state term STATUS can be related only to a logical expression 

name. It indicates that the value of the associated loglCal expression is 

true or not true depending upon the operator used 

I>escriptive Terms 

A descriptive term indicates by means of its commonly understood 

meaning the value represented by that name . It is always enclosed within 

number symbols (ill . Examples are: 

iI CURRENT YEAR iI 

iI MONTH END CLOSING DATE 1/ 

Descriptive terms represent values which change . In Lhis sense they 

differ from connotative terms whose values are always the same. A 



5.24 

descriptive term is not deflned by the systems engineer since he can 

assume that Hs correct value wIll be provlded by the programmer where 

required. 

Value List 

A value list consists of two or more literals or ranges. A value 

list can be used dIrectly in a deciSIon table as an operand. The same 

rules apply to not~ng values in a value list as when used In a Reference 

Operand DescrIption. However. for convemence. each value may be put 

on a separate .1.ine without commas in betlkeen; similarly a range may be 

put on a single line. 

Range 

An exarnple ~ 

Another examp1e' 

13 

15 

17 - 27 

42 

II MIA I! 

lISFO" 

lILAG!! 

"LAXH 

"JOLI! 

A range is sImilar in use to a value 118L, except that It contains but 



5. 25 

a single range of hteral values. The upper and lower limits of the range 

are separated by a hyphen. Ranges are indicated as a distinct type of 

self- describing operand because, unlike most value lists, they can be 

written on a smgle line of a decision table The rules for writing each 

individual literal (upper or lower hmit) of a range operand are the same 

as those for writing any other type of literal except that if one boundary 

of the range is alphameric both must be encl osed in quotes. The range 

is considered inclusive at both ends. 



6. 1 
CHAPTER 6 

Decision Table Operations 

Operands are the nouns of a language; operators are the verbs . Operators 

combined with operands permit dynamic procedures to be described by 

the systems analyst. 

Operators are generally intended to work at a system analysis level 

rather than at a programming level. Thus, certain assumptions and 

statements will be made concerning automatic processes that may in fact 

be quite complex for a particular computer. 

Only actions can change the values of operands . These actions 

are usually taken only if specified conditions are satisfied. Two major 

types of operations provide for these basic capabilities : testing a set of 

conditions and executing resultant actions. 

Conditions -- to interrogate values and states 

Actions -- to change values, provide input/output and 
control sequence 

Because pyramiding of all conditions within a single decision table 

makes a system description unwieldy J a means is provided to describe 

systems using many tables. Action operators are available to control 

the sequence of table execution. 

Conditions 

Conditions can be determined to be either true or false. Conditions 

are the means for asking questions; as such they can be used to control 



6. 2 

the actions which are to be executed. 

A condition is true or false, depending on its operator and the 

value of its operands. Each individual condition should be stated as 

simply as possible to avoid inaccuracy and difficulty of interpretation; 

complex interactions among conditions are s hown through position in 

a decision table. Those within the same rule bear a logical AND r ela, 

tionship to one another. Individual rules express an OR relationship. 

There are two major categories of conditions: Value Relational 

and State Relational. Each of these is discussed under the headings: 

OPERATORS 

OPERANDS 

COMPARISON RULES 

USAGE 

MECHANICS 

Value Relational Conditions 

All value relational conditions are constructed as follows : 

form: Operand 1 Condition Operator Operand 2 

example: QUANTITY ON HAND LE 1000 

read as: IF QUANTITY ON HAND is less than or equal to 1000 



6. 3 

OPERATORS 

The following operators may be used in a value relational condition: 

Symbolic Mnemonic Read As 

= EQ is EQual to 

.,. GR is GreateR than 

> = GE is Greater than or Equal to 

<'. LR is LesseR than 

< = LE is Lesser than or Equal to 

/ = NE is Not Equal to 

An operator can be written in symbolic or mnemonic representation. 

OPERANDS 

These operands can be used either as operand 1 or operand 2 of a 

value relational condition: 

Field Name 
Reference List Func tion Name 
Value List Name 
Ari thmetic Expression Name 
Symbolic Expression Name 
Constant Name 
Work Field Name 
Literal 
Connotative Term 
Descriptive Term 
Value List 
Range 

• 



6. 4 

COMPARISON RULES 

Since an operand may represent either a numeric or an alphameric 

value of different lengths it is necessary to state what happens under 

various circumstances. Value relational conditions usually require that 

both operands be numeric or both be alphameric. 

Numeric: If both operands are numeric , comparison follows 

normal algebraic rules: (1) Decimal pOints are aligned, (2) High- order 

zeros are added to the shorter integer operand, (3) Lmw-order zeros 

are added to the shorter decimal operand, (4) All negative values are 

less than zero, (5) All positive values are greater than zero, (6) For 

negative values larger absolute magnitude is considered smaller value, 

(7) Comparisons are permitted between fixed and floating point numbers 

by considering floating"point number to be converted to fixed 'point 

notation, (8) Integers are treated as decimal numbers with the decimal 

pOint to the right of the least significant position. 

Alphameric: If both operands are alphameric, the comparison 

follows usual practice: (1) Line up left- most positions, (2) Add low 

order blanks to shorter operand (3) Comparison is performed position 

by position from left to right, using character collating sequence, 

(4) The first unequal character position determines the result of the 

comparison. 

Mixed: Comparisons between numeric and alphameric operands 

are permitted and are interpreted on this basis: (1) The rules of 



6. 5 

alphameric comparison apply . The numeric value is considered an 

alphameric operand, (2) The sign and decimal point (if any) of the 

numeric value are not considered in the c:;,mparison, (3) Low or der 

blanks are added to the shorter operand, (4) Floating point numbers 

are converted to decimal notation before comparison. 

USAGE 

Special combination rules apply to the use of the operands and 

operators in value relational conditions . 

Field Name : A Field Name can be used with any value relational 

operator and these operands: 

Field Name 
Reference List Function Name 
Arithmetic Expression Name 
Symbolic Expression Name 
Constant Name 
Work Field Name 
Literal 
Connotative Term 
Descriptive Term 

A Field Name may be used only with the EQ and NE ope rators 

and these operands: 

Value List Name 
Value List 
Range 

Reference List Function Name: A Reference List Function Name 

can be used with any other value relational operator and these operands: 



Field Name 
Reference List Function Name 
Arithmetic Expression Name 
Symbolic Expression Name 
Consiant Name 
Work Field Name 
Literal 
Connotative Term 
Descriptive Term 

6.6 

It can be used only with .EQ and NE operators and these operands : 

Value Lis t Name 
Value Lis t 
Range 

If the arguments of a Reference List do not appear in the reference 

list the comparison will fail regardless of what value it is compared with. 

For example, 

and 

PAY ('CARPENTER', 7) 

PAY ( 'CARPENTER ' , 7) 

LE 4. 50 

GR 4. 50 

will both fail if the Reference List skips from ('CARPENTER', 6) to 

( 'CARPENTER',8). 

Value List Name: A Value List Narrie' C'an.bs ouS.ed only with the 

EQ and NE operators and these operands: 

Field Name 
Reference List Func lion Name 
Ari thmetic Expression Name 
Symbolic Expression Name 
Consiant Name 
Work Field Name 
Literal 
Connotative Term 
Descriptive Term 



6. 7 

The EQ comparison is considered true if any item in the Value 

List matches the value of the other operand. The NE comparison is 

considered true if no item in the Value List matches the value of the 

other operand. 

Arithmetic Expression Name: An Arithmetic Expression Name 

can be used with any value relational operator and these operands: 

Field Name 
Refer ence IJst Ennction.Name 
Arithmetic Expression Name 
Symbolic Expression Name 
Constant Name 
Work Field Name 
Literal 
Connotative Term 
Descriptive Term 

It can be used only with EQ and NE operators and these operands: 

Value List Name 
Value List 
Range 

The value of the arithmetic expression is determined dynamically at 

the point of usage and redetermined each time it is used. Since an 

arithmetic expression always develops a numeric value , this should be 

considered when selecting the other operand. If it is alphameric, the 

results may be in error. 

Symbolic Expression Name: A Symbolic Expression Name can be 

used with any value relational operator and these operands: 



Field Name 
Reference List Function Name 
Arithmetic Expression Name 
Symbolic Expression Name 
Constant Name 
Work Field Name 
Literal 
Connotative Term 
Descriptive Term 

It can be used only with EQ and NE and these operands: 

Value List Name 
Value List 
Range 

The value of a symbolic expression is deter mined dynamically 

6. 8 

at the point at which it is used and redetermined each time it is used. 

Since the value can be either an unsigned integer or an alphameric value, 

the comparison rules are determined by the other operand. When 

compared with another symbolic expression, the rules for alphameric 

comparison will apply. 

Constant Name: A Constant Name can be used with any value 

relational operator and these operands: 

Field Name 
Reference List Func tion Name 
Arithmetic Expression Name 
Symbolic Expression Name 
Work Field Name 
Descriptive Term 

It can be used only with EQ and NE with a Value List Name. 

Work Field Name: A Work Field Name can be used with any value 

relational operator and these operands: 



Field Name 
Reference List Function Name 
Arl thmetic Expression Name 
Symbollc Expression Name 
Constant Name 
Work Field Name 
Literal 
ConnotatIve Term 
Descrlptive Term 

It can be used only with EQ and NE and these operands : 

Value List Name 
Value List 
Range 

6, 9 

A Work Field can only take on value that has been assigned to it; 

therefore, a comparison with a Work Field Name which has never been 

assIgned any value will be treated as an undefined comparison and will 

fail ever y type of test 

Literal: A Llteral can be used with any value relational operator 

and these operands' 

Field Name 
Reference Llst FunctlOn Name 
Arlthmetlc Expression Name 
Sym bol le ExpresslOn Name 
Work Field Name 
Descr lpLve ""['erm 

It can be used only witn EQ and NE with a Value List Name, The 

value type is interpreted as written. An unSigned integer is handled 

in accordance with thE" other operand's type. 

Connotallve Term: A Ccnnotallve Term can be used with any 

value relaLonal operator and these operands: 



Field Name 
Reference List Function Name 
Arithmetic Expression Name (unsigned inieger only) 
Symbolic Expression Name 
Work Field Name 
Descriptive Term 

It can be used only with EQ and NE with a Value List Name . The 

length and value type are inierpreied by the other operand. 

I)escriptive Term: A Descr iptive Term can be used with any 

value relational operator and these operands: 

. , , 
,-.; 

Field Name 
Reference List Function Name 
Ari thmetic Expression Name 
Symbolic Expression Name 
Constant Name 
Work Field Name 
Literal I 
Connotative Term 
Descriptive Term 

It can be used only with EQ and NE and these operands : 

Value List Name 
Value List 
Range 

- ' 

A l)escriptive Term takes on the form of the operand to which it is 

compared. For example) 

!/ MONTHLY CLOSING DATE !/ EQ 12/31/61 

or !/ MONTHLY CLOSING DATE !/ EQ DEC 31, 19M 

are both acceptable. 

6. 10 

Value List and Range: A Value List or Range can be used directly 

in the decision table only with the E,?<,and NE operators and these 

operands: 



Field Name 
Reference List Func lion Name 
Arithmetic Expression Name 
Symbolic Expression Name 
Work Field Name 
Descriptive Term 

6. 11 

The EQ comparison for a Value List is true if any item in the Value List 

matches the value of the other operand. The NE comparison is true if 

no item in the Value List matches the value of the other operand. 

The EQ comparison for a Range is true if the other operand is 

greater than or equal to the lower bound 0f the Range while less than 

or equal to the upper bound. Unsigned integer ranges are interpreted 

as alphameric or numeric, depending upon the other operand value type . 

MECHANICS 

A value relational condition can be expressed in either limited or 

extended entry form. These are the permitted arrangements : 



6.12 

STUB ENTRY 

Operand! EQ. - Operand 2 Y. N. or blank - . 
NE, / = 
GR, > 
LR, < 
GE, >: 
LE,(r. 

--- -
Operandl. EQ. • Opera.-,d 2, or blank . 

NE, /. 
GR, > I LR, < 
GEt )= 

LE,<= -- ._ --
Operand! EQ. : Operand 2, or b . lank 

NE, /= 
GR, > 
LR, < 
GE, > : 
LE, < -

Operand 1 VS Operand 2 EQ. : , or blank . 
NE, /. 
GR, > 
LR, < 
GE, .,-
LE, < : 

The first form shown is limited entry with Y meaning yes (or true), 

N meaning no (or false) and II. I' or blank meaning not pertinent or 

impossible . The second form is extended entry using a common value 

relational operator for all rules expressed in the entry columns. The 

third iorm is extended entry with different relational operators for 

each rule. In both of these It. I I or blank means not pertinent. The 

fou;:th form is a special type of limited entry where VS (interpreted 

as Versus) is used to represent the specific value relational operator 



6. 13 

in each rule. Each rule is read as though the operator in that rule were 
'. 

substituted for the VS. 

State Relational Conditions 

All state relational conditions are constructed as follows : 

form: Operand 1 Condition operator Operand 2 

example: AVAILABLE BALANCE IS POSITNE 

read as: IF AVAILABLE BALANCE IS POSITNE 

OPERATORS 

Either of two state relational operators can be used in a state 

relational condition: 

Mnemonic 

IS 
NT 

Read as 

IS 
is NoT 

There are no symbolic representations for these operators. The 

mnemonic representatives should be used. 

OPERANDS 

In a state relational condition, operands 1 and 2 may be inter-

changed, but readability is often impaired . In general, operand 2 

should be the state term, however, operand 1 or operand 2 can be any 

of these operands: 



File NaJ.l1e 
Field Name 
Reference List Function Name 
Arithmetic Expression Name 
Symbolic Expression Name 
Work Field Name 

When Operand 2 is one of these state terms: 

POSITNE 
NEGATNE 
NUMERIC 
ALPHABETIC 
PRESENT 
END OF FILE or EOF 

Operand 1 can be the State Term STATUS if Operand 2 is a Logical 

Expression Name . 

COMPARISON RULES 

6.14 

Comparison rules are determined by the particular State Term 

used in the state relational condition. Generally, an incorrect match 

of value class (e. g., alphameric value against POSITNE) results in 

failing the test. 

USAGE 

The rules for usage of the various operands are discussed for 

each permissible State Term. Multiple occurring Field Names may be 

used wherever a Field Name can be used except that they must only 

appear in a closed decision table under association control from a pre-

ceding DO statement. 



6.15 

P ositive: The Staie Term POSITIVE can only be used with 

numeric valued operands. An operand is POSITIVE if its algebraic 

value is greater than zero. The following operands can be used when 

they represent a numeric value: 

Field Name (per Operand Desc,-iption) 

Reference List Function Name (per Operand Description) 

Arithmetic Expression Name 

Symbolic Expression Name (if composed only of numeric 
valued operands) 

Work Field Name (per description or cha,-acieristics of 
previous field value which entered the work field) 

All unsigned numeric values except zero will be considered POSITIVE. 

If a Reference List Function Name is not defined for the arguments 

indicated, the comparison will fail. 

Negative: The State Term NEGATIVE can only be used with 

numeric valued operands . An operand is NEGATIVE if its algebraic 

value is less than zero. The following operands can be used when they 

represent a numeric value : 

Field Name (per Operand Description) 

Reference List Function Name (per Operand Description) 

Arithmetic Expression Name 

Symbolic Expression Name (if composed only of numeric 
valued operands) 

Work Field Name (per description or characieristics of 
previous field value which entered the work field) 



6.16 

Unsigned numeric values are considered positive and will fail a test 

for NEGATNE . If a Reference List Function Name is not defined for 

the arguments indicated, the comparison will fail. 

Numeric; The State Term NUMERIC can be used with operands 

defined as numeric or alphameric. An operand is NUMERIC if all of its 

characters are from the set 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, or blank. The 

following operands can be used: 

Field Name 
Reference List Function Name 
Symbolic Expression Name 
Work Field Name 

If a Reference List Function Name is not defined for the arguments 

indicated, the comparison will fail. 

Alphabetic ; The State Term ALPHABETIC can only be used with 

alphamer ic ally defined operands. An operand is ALPHABETIC if all of 

its characters are letters (A, B, C, ... , X, Y, Z) or blank. The 

following operands can be used where they represent alphameric values. 

Field Name (per Operand Description) 

Reference List Function Name (per Operand Description) 

Symbolic Expression Name (if composed only of alphameric 
valued operands) 

Work Field Name (per description or characteristics of 
previous field values which entered the work field) 

Status; The State Term STATUS can be used with a Logical 

Expression Name only. STATUS is written in the Operand 1 position. 



6. 17 

The logical expression name is written as Operand 2. For example : 

STATUS IS MARRIED 

The comparison is satisfied if the value of the logical expression 

MARRIED is true .. It is not satisfied if the value of the logical expres

sion is false . 

Present: The State Term PRESENT Can be used with a Reference 

List Function Name only . If the function is defined for the arguments 

given, then the function is considered PRESENT. If the function is not 

defined for these arguments, the function is not considered PRESENT. 

PRESENT can be used to prevent miss:ing factors in a reference list 

from destroying a legitimate calculation; it is also useful to check 

existence of special circumstances. For example, 

SPEClAL FARE ('BOSTCN', 'NEWARK') IS PRESENT 

might be used to determine if a regular mileage-based fare should be 

used or if there is a special fare agreement. 

End of F ile: The State Term END OF FILE can be used with a 

F ile Name only. File name IS END OF FILE is satisfied when there are 

no more records available on the file. If another record is available, 

the test will fail. This State condition can be used for serial files only. 

Also, END OF FILE (can be abbreviated EOF) is only pertinent to input, 

retained and intermediate files when they are being treated as input to 

the system. For example, 

TRANSACTION IS EOF 



6. 18 
. 

will only be satisfied when there are no more records in the 

TRANSACTION file. 

MECHANICS 

A state relational condition can be expressed in either limited or 

extended entry form. These are the permitted arrangements: 

STUB ENTRY 

Operand 1 IS POSITIVE Y, N, . or blank 
NT NEGATIVE 

NUMERIC 
ALPHABETIC 
PRESENT 
END OF FILE 
EOF 

STATUS IS Operand 2 Y, N, . or blank 
NT (Logical Ex-

pression Name) 

Operand 1 IS POSITIVE , . or blank 
NT NEGATIVE 

NUMERIC 
ALPHABETIC 
PRESENT 
END OF FILE 
EOF 

STATUS IS Operand 2 , . or blank 
NT (Logical Express ion Name) 

-
Operand 1 I IS POSITIVE , . Or blank 

NT NEGATIVE 
NUMERIC 
ALPHABETIC 
PRESENT 
END OF FILE 
EOF - - . 

STATUS IS Operand 2 , . or blank 
NT (Logical Expression Name) .-



6.19 

The fi rst two forms shown are limited entry. The remaining 

forms are extended entry . 

Actions 

Actions change values, specify input/output, and control the 

sequence within a set of decision tables . Within a single table, each 

action is executed in the order written, and must be logically completed 

before a subsequent action is initiated. 

Actions are stated as commands, and are indicated by their 

position in a decision table . The three major categories of actions are: 

assignment, sequence control , and input/output. These are discussed 

under the headings: 

OPERATORS 

OPERANDS 

SPEClAL RULES 

USAGE 

MECHANICS 

Assignment Actions 

The cohstruction of an assignment action is : 

form : Action operator Operand 1 Action Connector · ·.Operand 2 

example: MOVE EMPLOYEE NAME TO CHECK NAME 

read as; Assign the value of employee name to the field called check 
name. 



~ . 20 

OPERATORS 

The following operators can be used in assignment actions : 

MOVE 

SET 

With MOVE these action connectors can be used: 

Symbolic Mnemonic Read as 

- TO inTO 

+ PL PLus operand 2 into operand 2 

SU SUbtrac ted from operand 2 into operand 2 

* MU MUltiplied by operand 2 into operand 2 

/ DI DIvided into operand 2 into operand 2 

With MOVE, Operand 1 specifies the sending value and Operand 2 

specifies the receiving area. 

With SET these action connectors· can be used: 

Symbolic Mnemonic Read as 

.- EQ EQual to 

+ PL PLus operand 2 into operand 1 

SU SUbtract operand 2 into operand 1 

* MU MUltiplied by operand 2 into operand 1 

/ DI DIvided by operand 2 into operand 1 , 
• 

With SET, Operand 1 specifies the receiving area and Operand 2 

specifies the sending value. With both MOVE and SET, either the 



6. 21 

symbolic or mnemonic rep,resentations of the action connectors can be 
/ . 

used. 

OPERANDS 

These operands can be used as the sending operand (Operand 1 

with MOVE or Operand 2 with SET). 

Record Name 
Field Name 
Reference List Func lion Name 
Aritlunetic Expression Name 
Symbolic Expression Name 
Constant Name 
Work Record Name 
Work F ield Name 
Literal 
Connotative Term 
Descriptive Term 
Special Arithmetic Expression 

These operands can be used as the receiving operand (Operand 2 

with MOVE and Operand 1 with SET). 

Record Name 
Field Name 
Work Record Name 
Work Field Name 

SPECIAL RULES 

Since an operand may represent either numeric or alphameric 

values of different lengths, it is necessary to state what happens under 

various circumstances . Usually, both operands are numeric or both 

alphabetic . 



6.22 

Numeric: If both operands are numeric, the assignment of value 

is controlled by the receiving operand. When both oper ands have the 

same decimal and integer length, the function of the MOVE and SET 

operators is apparent. If the sending and receiving operands have dif

ferent decimal and integer lengths, the sending field is rounded from the 

right or zeros are added to the right until the decimal lengths correspond, 

and is truncated from the left or zeros are added to the left until the in

teger lengths correspond. 

If the sending operand is in floating-point notation, but the receiving 

operand is fixed POint, the sending operand is first converted to fixed 

point. When both operands are in floating-point notation, the floating 

point format is retained. If the number of positions in the exponent 

and/or mantissa are different, the rules for length stated for fixed point 

apply. If a fixed point operand is moved into a floating point operand, it 

is modified to retain the most Significant positions and is then converted 

to floating point. 

On arithmetic MOVE or SET actions, all sending oper ands are 

operated upon in fixed or floating as per receiving operand, and the re

s ult after the arithmetic operations is adjusted to fit the length and deci

mal restrictions of the receiving operand. 

Alphameric: If both operands a r e alphameric, the assignment of 

value is controlled by the receiving operand. When operands are of the 

same length, the function of the MOVE and SET operators is apparent. 



6.23 

If the sending operand is shorter, it is left justified when moved into the 

receiving operand, and low- order blanks are added to fill the receiving 

operand. If the sending operand is longer before the MOVE, it is 

truncated from the right until its length is the same as the receiving 

operand. 

Mixed: Alphameric valued operands can be moved into numeric 

valued operands only if the actual c haracters moved are all numeric . 

In this case, the sending operand is treated as an unsigned integer and 

the rules for numeric assignment are followed. Numeric valued operands 

which are unsigned integers can be moved into alphameric valued 

operands and the rules for alphameric assignment are followed . 

When records are assigned to other records, only fields with 

corresponding names are moved. Each field moved follows the rules 

that apply for individual field assignment. 

Ii the receiving operand is a report Field Name that is to be 

edited, it is assigned on a non- edited basis. The editing occurs when 

the WRITE command is executed. 

USAGE 

A number of special rules apply to the selection of specific operands 

to be used with various connectors . Therefore, specific usage is dis 

cussed under four categories : Individual value assignment, correspond

ing value assignment, two- operand arithmetic assignment, and 



6. 24 

multiple-fac tor arithmetic assignment. 

Individual Value Assignment: This is the basic operation which 

assigns one value to a Field Name or Work Field Name The sending 

operand can be: 

Field Name 
Reference List Function Name 
Arithmetic Expression Name 
Symoolic Expression Name 
Constant Name 
Work Field Name 
Liter al 
Connotat1ve Term 
Descriptive Term 

The four forms are: 

MOVE sending operand TO receiving operand 
MOVE sending operand -+ receiving operand 
SET receiving operand EQ sending operand 
SET receiving operand +- sending operand 

If a Reference List Function Name is undefined for the argument 

values specified, then no assignment takes place; that is, the receiving 

operand i~ not changed. 

Assignment to a Work Field Name makes the work field take on 

all the properties of the sending field, except its name . 

The sending operand is never aiiected by the aSSignment. 

Comspondinq Value Assignment: This operation assigns values 

whose Field Names correspond from one record to another. The sending 

operand and the receiving operand must be a Record Name. 

The four forms are: 

MOVE sending operand TO receiving operand 
MOVE sending operand .... receiving opera"d 
SET receiving operand EQ sending operand 
SET receiving operand +- sending operand 



6.25 

The only fields assigned are those whose names are the same in 

bot1i. records. All rules for in~vidual value assignment apply. The 

sending record is not affected by the assignment. 

Note: Ii the receiving operand is a Work Record, all fields in the sending 

record are assigned to the work record and their original names are re-

tamed. The original names can be used, but they must be qualified by 

the Work Record Name. 

Two-Operand Arithmetic Assignment: This operation provides 

for two-operand arithmetic when a specific receiving operand is to be 

increased, decreased, etc. The sending operand can be: 

Field Name 
Reference List Function Name 
Arithmetic Expression Name 
SymbOlic Expression Name 
Constant Name 
Work Field Name 
Literal 
Descriptive Term 

The receiving operand can be: 

MOVE 
MOVE 
MOVE 
MOVE 

SET 
SET 
SET 
SET 

Field Name 
Work Field Name 

A + B means A plus B into B 
A - B means B minus A into B 
A * B means A times B into B 
A / B means B divided by ·A into B 

A + B means A plus B into A 
A - B means A minus B into A 
A * B means A times B into A 
A / B means A divided by B into A 

Multiple Factor Arithmetic ASSignment: This operation provides 

greater facility in arithmetic operations without using &.rithmetic 



6. 26 

expression names. The recaiving opera.'ld must 'be a Field Name or a 

Work Field Name. The sending operand can only be a Special 

Ari'Uunetic Expression. 

The forms are: 

M0VE sending operane! TO receiving operand 
MOVE senc\ing operand ..... receiving operand 
SET receiving operand EQ sending operand 
SET receiving operand - sending operand 

The factors in a special arithmetic expression can be: 

Field Name 
Reference List Function Name 
Arithmetic Expression Name 
Symbolic Expression Name 
Constant Name 
Work Field Name 
Literal 
D3scriptive Term 

The receiving operand can be: 

Field Name 
Work Field Name 

Any reasonable number of factors can be used with special 

ariUunetic connectors between each of the factors . The rules are: 

(1) Connec tor is + (plus) 
(2) Connector is - (minus) 
(3) Connector is * (times) 
(4) Connector is / (divided by)--only a single division 

permitted 
(5) Connector is ** (exponentiationl- - onlya single 

exponentiation permitted 

l"arentheses cannot be llsed. The computation takes place from 

top to bottom. except that exponentiation always takes place first, then 

multiplication a.nd division, then additjon a."1d subtraction. 



6.27 

MECHANICS 

An assignment action can be expressed in either limited or 

extended entry form. The following arrangements are permitted fo r 

two- operand arithmetic . 

STUB ENTRY 

MOVE Oper and) TO Operand 2 X, • or blank 
-+ 
+ 
-
* 
/ 

SET Operand) EQ Operrmd 2 X, • or blank -+ 
-
* 
/ 

MOVE Operand I TO Oper and 2 , . or blank 
...... 
+ 
-
* 
/ 

SET Oper andI EQ Oper and 2 , . or blank -+ 
-
* 
/ 

MOVE Operand) TO Operand 2 , • or blank -+ 
-
* 
/ 

SET Oper andI EQ Operand 2 , . or blank -+ 
-
* / 



6. 28 

The first two forms shown are limited entry, the others are 

extended entry. 

With multiple factor arithmetic, the sending operand is more 

complex, but the assignment operations are limited to a basic MOVE 

sending operand TO receiving operand, or SET receiving operand EQ 

sendina operand. These can also appear in limited or extended entry 

form as shown. 

STUB ENTRY 

MOVE factor a TO Operand 2 X • • or blank 
+ factor b 
- factor c 

• • • 
+ facto r n 

-
SET Operandl EQ factor a X , • or blank 

+ factor b 
- factor c 

• • • 
+ factor n 

MOVE factor a TO Operand 2 •• or blank 

* factor b 

* factor c 

SET OpeI'2l1d 1 EQ factor a •• or blank 
* factor b 
* factor c 

MOVE fa~tor a TO Operand 2 •. or bl 
,; factor b 

ank 

SET Operand 1 EQ factor a •• or blank 
/ facto r b 

MOVE factor a TO Operand 2 , . or blank 
** factor b 

SET Operar,d 1 EQ factor a , • or blank 
** factor b 

• 



6.29 

The first two forms are limited entry, the other six are extended 

entry. 

Sequence Control Actions 

Sequence control actions are constructed as follows : 

form: Action Operator Operand 2 

example: GO TO UPDATE 

read as: Transfer control to the decision table called UPDATE. 

Notice that there is only one operand, and this always appears in the 

Operand 2 position (see Mechanic s). 

OPERATORS 

There are two sequence control operators: 

GO TO 

00 

These operator s are used to transfer control to a specified decision 

table or procedure. GO TO transfers control permanently. 00 

transfers control, but control is later returned to the originating table. 

OPERANDS 

The following operands Can pe used: 

PROCEDURE Procedure Name 
Decision Table Name 
Decision Table Identification 



6.30 

SPECIAL RULES 

The last ac tion in each rule of an open decision table except 

table STOP must be a GO TO. A table can GO TO or DO itself. All 

tables are entered at the beginning; therefore a specific rule or action 

cannot be selected by a GO TO or DO action. 

USAGE 

GO TO and DO provide the means for a complex logical problem 

to be subdivided into manageable segments. Theoretically, they can be 

eliminated by writing just one decision table for a job. However, 

experience indicates that effective system analysis and description occurs 

when the problem is subdivided into smaller parts. 

GO TO Sequence Control Action: The GO TO action can only be 

the last action in a decision table rule . There must be a GO TO action 

in each rule of an open table, which transfers control to the table or 

procedure specified. A rule of a closed table may have a GO TO action 

but this is usually not the case, as the return path to the originating table 

is destroyed. 

The three operands that can be used are: 

PROCEDURE Procedure Name 
Decision Table Name 
Decision Table Identification 

The first table of a procedure is entered when control is transferred 

via the GO TO action. The first table of a procedure is identified by 



6. 31 

writing FIRST in the Table Type area of the Decision Table form. The 

initial table of the procedure must be an open table . 

DO Sequence Control Action: A DO action can appear in either an 

open or a closed decision table . It always transfers control to a closed 

table or procedure, but retains the return path to the originating table, 

After carrying out the logic in the closed table referenced, control is 

transferred back to the originating table to the action following the DO. 

A table may DO itself; there may be any number of levels in a series of 

DO tables; that is, table 1 may DO table 2 which may DO table 3, etc . 

Eventually the 00 path is retraced to the original table, unless there has 

been an intervening GO TO action which destroys the return path. Three 

operands may be used with DO: 

PROCEDURE Procedure Name 
Decision Table Name 
Decision Table Identification 

If a procedure is refere nced, the first table in the procedure is enter ed and 

it must be a closed table . In fact, all tables in a procedure to be r eferred 

to by a DO must be closed. The FIRST table then may call upon other 
\ 

closed tables which make up the procedure. No GO TO actions may appear 

in the procedure unless it is desired to leave the procedure without return-

ing. 

Association control provides a means of handling multiple recurring 

fields or associations of fields. 



Operand 2 can have either of two forms: 

Decision Table Name or Identification 

PER ASSOC I 

PER ASSOC J 

etc. 

I and J represent non- related association codes indicated in the File 

Description for multiple recurring fields . 

Decision Table Name or Identification 

PER ASSOC I 

PER ASSOC J 

etc . 

6. 32 

I and J represent related association codes indicated in the File Descrip

tion for multiple recurring fields . 

In the first form (PER ... PER), the association values indicated 

are all set to I to start with . The first time through the specified closed 

table, the first of the association fields is used for conditions and actions . 

After execution of the table , and when there are more occurrences of all the 

fields in the associations, association values are incremented by 1 (set 

equal to 2 the second time around). The next time through the same 

closed table, the second occurrence of the association fields is used. 

This continues until one of the associations runs out of recurring fields. 

This is a very powerful format allowing many independent fields or 



6. 33 

groups of fields to be var ied simultaneously. However, it ca n lead to 

errors if not closely analyzed. Association values can be directly 

analyzed in conditions in a table just as any other Field Name, but then, 

values cannot be changed by MOVE or SET. A table can be repeated for 

each value of the association until completion, but particular conditions 

can inhibit actions except under controlled circumstances. 

The second form (PER ... FOR) provides hierarchy control of 

associations . If Assoc J varies within Assoc I, then J is incremented 

and exhausted for 1 = 1; 1 is then advanced to 2, J reset to 1, and the 

procedure continued until Ass oc I is exhausted. 

MECHANICS 

The operand always appears in the Operand 2 position, which is the 

second column of the stub or the entry column. Procedure Name is 

always preceded by the word PROCEDURE . Since a DeCision Table 

Name starts with a letter and a Decision Table Identification starts with 

a number, these can easily be differentiated. Either limited or extended 

entry form can be used. lllustrations are as follows: 



6. 34 

STUB ENTRY 

GO TO PROCEDURE procedure name X, . or blank 
decision table name 
decision table identification 

DO PROCEDURE procedure name X, . or blank 
decision table name 
decision table identification 

GO TO PROCEDURE procedure name 
, or blank 

decision table name 
decision table identification 

DO PROCEDURE procedur e name 
, or blank 

decision table name 
decision table identification 

DO decision table identification X, . or blank 
or name 

PER ASSOC letter 

DO decision table identification X, . or blank 
or name 

PER ASSOC letter 
FOR ASSOC letter 

DO decision table identification 
or name 

PER ASSOC letter, . or blank 
PER ASSOC letter 

DO decision table identification or 
name, . or blank 

PER ASSOC letter 
FOR ASSOC letter 
PER ASSOC letter 
FOR ASSOC letter 

The first and third forms are limited entry and the second and fourth 

forms are extended entry. 



, 

Input/Output Actions 

Of all the operations required in a descriptive language those 

relating to input and output are the most complex and cause the greatest 

difficulty. The reasons for this include: 

a) Current input and output devices have certain limita

tions and conventions not directly comparable to manual 

filing and recording systems. 

b) The concept of "memory" as different from input/output 

devices has no ~alogy in manual data processing. 

c) Users seem less willing to accept constraints and 

artificial mechanics when dealing with records and 

files than with fields and character positions . 

Thus, the input/output portion of any language is a compromise between 

wlrestricted generality with resultant implementation inaccuracies 

and constrained mechanical manipulation with loss of logical clarity. 

The compromise chosen here considers the capabilities and structure 

of various input and output devices, but allows the user to think about 

these in the most convenient way. Although certain internal or memory 

records may be used for intermediate information, they are not involved 

in input/output actions. 

" 



6.36 

Types of Files 

Files are classified in two ways, by the function they serve, and by 

the type of access to them. Functionally, a file can be input only, output 

only, intermediate (input and output), and retained (input and output). 

Two types of access are allowed for files, ' serial and random. 

For a specific file, the type of access depends largely on the medium 

on which the file is written. A serial file allows access to only the next 

physical record on the file, and is represented by many c ommon media 

(e. g., punched cards, magnetic tape, printed reports, punched paper 

tape, and Teleprocessing lines). A random file allows access to any 

record of the file, but each such record must be specified. Typical 

media for random files are magnetic drum and disk. Under certain 

-
conditions, a specific mediwn can be used for both serial and random 

files. For example, a magnetic drum can be read serially by sequential 

addressing; and a magnetic tape can effectively be read randomly by 

searching for a specific record (rejecting all other records). 

The input/output action operators, and the functional types of files 

with which they can be used, are discussed separately for serial and 

.' random files. 

Serial Files 

Consider a serial file as a roll of film, each frame holding one 

record. Only one frame can be viewed or eXpJsed at a time. 



An Input file is a r oll of exposed film. The r oll is read ser ially 

from the first to the last frame. 

6. 37 

An output file is a r oll of unexposed film . A frame at a time can 

be exposed starting with the first frame. A whole series of frames 

(records), e ithe r wholly or partially ready for recording, can be avail

able at a time . 

An intermediate file is similar to an output file, but after a number 

of frames are exposed (and cut off), it CM be used as an input. After use 

as an input, it can be saved, or it can be destroyed and a new roll given 

that same name. While being exposed, an intermediate file is treated 

just like an output; while being viewed, it is just like an input. 

The retained file is somewhat mor e sophisticated. As each frame 

comes into viewing poSition, it is cut off the r oll. It then can be added 

to a separate output roll or discarded. New frames can be added to the 

output r oll or old frames modified before being re- exposed. After read

ing a retained file the input r oll is destroyed and only the output r oll 

retained. This in turn may be further read and written. 

The onJ.y condition meaningful for a serial-type file is: 

File Name IS END OF FILE 

If END OF FILE is not checked and a READ is given beyond the last 

record, the READ operation does not occur. 



6. 38 

Sequence is maintained for an input file as specified on the File 

Description. Input files cannot be sCI",ed. An output file is presumed 

to be in the sequence specified for the data from which it was developed. 

unless a different sequence is specified through the SORT operator. 

This also applies to intermediate files. P_ retained file is pr esumed to 

be in the sequence specified and this sequence cannot be changed. If 

no sequence is specified, then none can be obtained operationally. 

OPERANDS 

Record names and file names are the principal oper ands used with 

the input/output operators for serial files. However. symbolic expression 

names and field names are used with the SORT operator. 

OPERATORS 

Four input/output operators are used with serial files: 

READ provides for obtaining information from a file by 

making one record from that file available in memory 

for processing. 

WRITE provides for recording information on a file by 

placing one record from memory in that file. The 

connector ON can be used with WRITE. 

BEGIN enables one to start over again to READ or WRITE 

a particular file. 



SORT rearranges the records on a file according to 

particular keys on those records . 

READ (Serial File) 

The READ operator is used in the form: 

READ operand 

The operand must be a file name. This action is used to r ead the next 

record of an input, intermediate, or retained file into a memory area 

that is large enough for the largest reCOI d of the file. 

STUB ENTRY 

File Name x, . or blank 

6.39 

x 

X 

X 

X 

X 

X 

READ 

READ File Name J • or blank 

The first form shown is limited entry, and the second form is 

extended entry. 

WRITE (Serial File) 

The WRITE operator can be used in two forms: 

WRITE 

WRITE operand I ON 

operand 

operand 2 

The first form requires that the operand be a record name for an output 

or intermediate file. It can be a record name or a file name for a retained 



6. 40 
file . WRlTE cannot be used with an input file. The second form r equires 

that operand 1 be a record name from some other file (including internal 

files), and that operand 2 be a file name . This form can only be used for 

a retained file. A WRlTE places the record selected in the next record 

area on the file . For output and intermediate files, there is one memor y 

area for each type of record while these files are being wr itten. There 

is only one common record area for each retained file . 

STUB ENTRY 

x X X WRlTE Record Name X, or blank 

X WRlTE File Name X, or blank 

X WRlTE Record Name ON File Name X, or blank 

X WRlTE Record Name ON File Name, . or blank 

X WRlTE Record Name ON File Name, . or blank 

X X X WRlTE Record Name, . or blank 

X WRlTE File Name, . or blank 

The first three forms shown are limited entry. The remaining forms 

are extended entry. 



6.41 

BEGIN (Ser ial File) 

The BEGIN operator is used in the form : 

BEGIN operand 

The operand must be a file name . This action can only be used with 

input, intermediate, and retained files . For an input BEGIN means 

"prepare to read the first record agair: It . f'or an intermediate file it 

means "return to the first record position I I . If the next action on the 

file is to be a READ, the file is considered an input file; if the next 

action is a WRlTE, it is considered an output file . For a retained file, 

BEGIN means "return to the first record of the newly constituted file 11. 

If BEGIN is used while processing a r etained file, the portion of the 

STUB ENTRY 

x BEGIN File Name x, . or blank 

x x BEGIN File Name, . or blank 

The first form shown is limited entr y. The second form is extended 

entry. 



6. 42 

SORT (Serial File) 

The SORT operator is used in the form: 

SORT operand 

The operand is : 

file name 

PERkey name 

The key name can be a symbolic expression name or a field name common 

to all records of that file. The file is always sorted into ascending order 

according to t he defined collating sequence. The file name must be an 

output or intermediate file. An intermediate file must first be operated 

on by tbe BEGIN operator to insure that the file is ready for reading. 

STUB ENTRY 

x X SORT File Name 
PER Symbolic X, . or blank 

E.;xpression Name 

X X SORT File Name 
PER Field Name X, . or blank 

X X SORT File Name, . or blank 
PER Symbolic Expr ession 

Name 

X X SORT File Name, . or blank 
PER Field Name 

The first two forms shown are limited entry. The remaining forms are 

extended entry. 



Random Files 

Random files have the same functional classification as serial 

files : 

Input 

Output 

- - read only 

- - write only 

Intermediate -- a temporary file 

Retained - - a permanent file 

6.43 

Consider a random file as a group of film slides that are in a box 

containing a series of slots, each slot identified by a location. Each slot 

holds one slide (or frame). A slide must be raised to be examined; to 

raise another slide the one just raised must be lowered. Changes can 

be made to the raised slide, just as though it were only partially exposed. 

New slides can be inserted into empty slots, or be inserted into occupied 

slots by removing (and destroying) the pr evious slide in that slot. A 

particular slide can be destroyed by clearing the slot in which it is 

stored. 

There is no meaning to END OF FILE for a r andom file because of 

the media usually used by such files. 

OPERANDS 

Record names and file names are the principal operands used with the 

input/output operators for random files . However, logical expression 

names and location names are used for controlling the READ and WRlTE 

operators. 



6. 44 

OPERATORS 

Three input/output operators are used with random files: 

READ provides for obtaining a s})€cific record from a file. 

WRITE provides for inserting additional records in a file. 
The connec tor ON can be used with WRITE. 

CLEAR is used to remove tulwanted records from a file. 

READ (Random File) 

The READ operator is used in the form: 

READ operand 

The operand can be either: 

file name 
PER location name 

or 

file name 
PER logical expression name 

READ file name 

PER location name 

obtains the record at the location specified by location name. If there 

is no record at that location, the read op=ration is not executed. 

READ file name 

PER logical expression name 

obtains the first record for which the logical expression value is true. 

This operation is defined on a circular basis. It starts searching from 



the location of the previous r ecord that was read, and continues through 

the end of the physical file and around again to the same record. If 

there is no record that s atisfies the conditions of the logical expression 

the READ does not take place . 

READ can be used with input, intermediate, or retained files . 

There is just one memory area for the file . A READ temporarily re -

moves the record from the file . For an input file, it is automatically 

returned in its original location just prior to the subsequent READ of 

that file . For an intermediate file and a retained file, the r ecord is 

x x X READ 

x X X READ 

but it may have been modified. 

STUB 

File Name 
PER Location Name 

File Name 
PER Logical 

Expression Name 

ENTRY 

X, . or blank 

X, . or blank 

6.45 

x X X READ File Name, . or blank 
PER Location Name 

x X X READ File Name, . or blank 
PER Logical Expression Name 

The first two forms shown are limited entry. The remaining forms are 

extended entry. 



6.46 

WRITE (Random Files) 

The WRITE operator can be used in two forms : 

WRITE operand 

WRITE operand 1 ON operand 2 

In the first form, the operand can only be a record name for an output 

file. For an intermediate or retained file, the operand can be a record 

name or a file name. The second form can be used only for intermediate 

and retained files. Opera.'1d 1. must be a record name, and operand 2 a 

file name . 

The operand in the first form has this construction: 

file name (or record name) 
PER location name 

file name (or record name) 
PER logical expression name 

The same construction is used for operand 2 in the second form, except 

that a record name cannot be used. 

After WRITE the record in memory is not affected. 



f! 
6. 47 

fi 1; i' R ~" ~ ~ ~ STUB ENTRY 

X X X WRITE Rec ord Name 
PER Location Name X, or blank 

X X WRITE File Name 
P ER Location Name X, or blank 

X X X WRITE Record Name 
PER Logical X, . or blank 

Expression Name 
X X WRITE File Na.me 

P ER Logical X, . or blank 
Expression Name 

X X WRITE ON File Name 
Record Name 

P ER Loca tion Name X, . or blank 
X X WRITE ON File Name 

Record Name 
PER Logical X, . or blank 

Expression Name 
X X WRITE ON File Name, . 

Recor d Name or blank 
PER Location Name 

X X WRITE ON File Na me, . 
Record Name or blank 

PER Logical 
Expression Name 

X X X WRITE Record Name 
PER Location Name 

X X WRITE File Name 
PER Location Name 

X X X WRITE Record Name 
PER Logical 

Expression Name 
X X WRITE File Name 

P ER Logical 
Expression Name 

X X WRITE ON F ile Name, . 
Record Name or blank 

PER Location Name 
X X WRITE ON File Name, . 

Record Name or blank 
P ER Logical 

Expression Name 

The fir st six for ms shown a r e limited entry. The remaining forms 

are extended entry. 



6.48 

CLEAR (Random File) 

The CLEAR operator is used in the form: 

CLEAR operand 

The operand is: 

file name 

CLEAR can be used only with intermediate or retained files to 

remove an unwanted record from the file. An intermediate file is 

assumed to be cleared prior to the start of the process. CLEAR 

prevents the last record read from being returned to the area from 

which it was read. 

STUB ENTRY 

X X CLEAR File Name 

x X CLEAR 

X, . or blank 

File Name, 
or blank 

The first form shown is limited entry. The second form is 

extended entry. 



CHAPTER 7 

Appendix 

The appendix provides detailed explanations on filling out the 

various forms plus compact summaries of certain features of the 

language (e. g., which operands may be used with which operators, 

effect of different value class on conditions and actions, etc. ). 

The categories are as follows: 

File Description Sheet 

Reference Operand Description Sheet 

Decision Table Form 

Report Layout Sheet 

Operand Sum.,nary 

Conru lion Summary 

Action SUmmary 

FILE DESCRIPTION SHEET (See Figure 7- 1) 

7.1 

The File Descrlption Sheet is used to describe files, records, and 

fields . Each type of record within a file is described on a separate File 

Description Sheet. In addition certain information about the file itself is 

placed on each sheet. The complete description of the file is contained 

on the several sheets used to describe the records which make up the 

file. 



fSYST~M-m"ME 1 
r mE NAME 

G2) 

SEA FIELD NAME NO 

\lot (15 

_ . 

REMARKS: [.2. 'f) 

IBJt1 
FILE DESCRIPTION 

I ANALYST I DATE 
L ® ~ 11>ol.<>E(9)0FG)iAGES I 

"'A. TYPE MEDIUN A'c.oRO NAIoIE .... NO 01= ,."C.ORO. 

<:J) (Q.(j) . Cl.Q>. ([0 (lg) I ~ 

Ii • LENTH OCCUR1<ENC".ES i • I REUT1V£ LOU!ION 
VAI..Ue/REMI\RKS 

.r • ," , MAX,VAA MIN .. v~ MA)( ~ a,61N ENO 

~ HI (2 ~ ru; (Ji.7) ~f) 

. 

-

- --

. 
-- I r- I '1 

-J 

'" 



General Headings 

At the top of the sheet the systems engineer will indicate: 

(1) the system name 

(2) his own name 

(3) the date of preparation or revision 

(4) a seriai ascignment of page number, and 

(5) the total number of pages which should normaily 
equal the number of records names in the file ; it 
will be greater if any record takes more than one 
page. 

File Description Headings 

(6) The file name is shown 

(7) For directional type the systems engineer will 
indicate: 

IN, OUT, RET (for retained), or INTER (for intermediate). IN 

represents a file used only for input; OUT represents output only; 

retained (RET) represents a file retained for reuse; intermediate 

(INTER) represents a flle Originated and used by the system but not 

available for subsequent use. 

7. 3 

Medium covers two entries. (8) The first relates to whether the 

file is to be considered in a serial (SER) or random (RAN) manner . 

Serial files can be read and wntten one record after the other without 

need to control location. Random files are read and written per location 

or content. Serial files have an explicit End of File indication after the 

last record; random files do not. Serial Files cannot be interrogated 



7.4 

without being read (except for End of F ile); random files can. Serial 

retained and intermediate files must be written to be preserved; 

random files do not. 

(9) The second aspect of medium is related t" the specific 

medium on which the file will appear . SUitable entries include simple 

abbreviations for: 

Punched Card (PC) 

8' Channel ' Punched' P aper' Tape- (S' PAP TAPE) 

Magnetic Tape (MAG TAPE) 

8 1/2 x 11 Printed Continuous Form (8 1/2 x 11 CONT) 

1301 Disk 

Inquiry Station (INQ) 

(10) A unique record name is inserted togethe r with (11) 

a suitable abbreviation which must also be unique. Abbreviations are 

normally used for field name qualifiers to reduce writing . (12) The 

average number of this type of record in the file is noted and (13) the 

peak number expected. Other volume information may be shown under 

remarks (29). 

Record Continuation 

If there is a need to use more than one sheet for a single record 

the general heading (1 through 5) should be written, along wi th the file 

name (6) and (10) the record name with the letters CO NT in parentheses; 

e. g., CUSTOMER RECORD (CONT). 



7. 5 

Field Description 

The fields which may appear on the record need not be described 

in any particular order. There is no implication that the reference 

order establishes relative position of these fields. Sub- fields do have 

positional implication as do fields on printed report records. 

If all field descriptions (14- 28) of a record are identical to 

another record in the same file or even a different file, enter the general 

heading (1 - 5) and the file description heading (6- 13) . (14) Enter Serial 

Number as 001 and (15) the words SAME AS followed by the record name 

of the File Description Sheet that contains the appropriate field descrip

tions . 

SERIAL NUMBER (14) A serial number is assigned to each field or sub

field. Serial numbers will begin with 1 or 001 and continue as far as 

required. Serial numbers can begin with 1 for each record description 

since they are only unique within a record description. If additional lines 

are required for any field the serial number is not changed; it may 

therefore be omitted on the subsequent lines. 

FIELD NAME (15) Under field name the name of each field will be inserted. 

While there is no limit on the length of a field name, it should, for con

venience J be kept brief and mnemonic. Lengthy names may use more than 

one line with the break being shown by a hyphen if it is in the middle of a 

word. Names for sub- fields will also be placed in this column. Descrip

tive information about a field will be written on the first line for that field. 



7. 6 

ALPHA/NUMERIC (16) In the alpha/numeric column the field is indicated 

as: N for numeric meaning that the value is always composed of the 

digits 0 through g, A for alphamerlc meaning that any characters, 

including letters, numbers, and special symbols may be used; or F for 

floating point numbers. A numeric field may represent an integer or 

decimal and is acceptable for arithmetic manipulation; similarly for a 

floating point field . Alphamerlc fields while they may only have numeric 

characters in them at any given time are not suitable for arithmetic since 

nelti1er sign nor decimal point are defmed. 

SIG"! (17) Under the sign column w1ll be indicated for each numeric and 

flcatmg point field ltS sign possibIlities. A field which is always zero 

cr ~ositive will have a plus sign (+) . A field whlch is always zero or 

negab.ve will be marked by a minus sign (- ) . If a field may be both 

posihve or negative an E (for either) is inserted. Unsigned numeric 

fields, which are treated as positive in arithmetic are marked as U. 

Alphamenc fields have the sign column left blank . The sign possibilities 

for floating point numbers Will always relate to the mantissa. 

LENGTH -- The systems engineer will indicate (18) under MAX the 

maximum length for the value of the field . For a number (eithe r N or 

F) the maximum integer length will be noted, then a decimal point, and 

finally the maximum decimal length. The sum of these indicates the 

number of significant positions. For all numbers the sign, decimal 

point, plus the floating point notation (including the F and the sign and 



7. 7 

integer which follows) will not be considered in determining the length 

of the field (e. g., +16 has a MAX of 2, -17 . 350 has a MAX of 2.3, +27.1F-3.5 

has a MAX of 2 . 1). For an alphameric field its maximum length will 

be indicated. (19) If the length of a field may vary considerably (like in 

name and address) this will be indicated by placing a check mark in the 

VAR column. 

OCCURRENCES -- Certain fields may occur more than once in a record. 
, 

If a field always appears exactly once per record a 1 is placed under MAX 

(22). If it is sometimes absent then this is shown by placing a 0 in MIN 

(20) and the proper average under AVG (21). A field which always occur s 

a fixed number of times greater than one, will have that number inserted 

in all three columns. If the number of times that a field appears on a record 

varies, the systems engineer will indicate the minimum, average, and 

maximum number of times that the field occurs on the record. Sub- fields 

will be blank in the occurrence columns because they can occur only once 

per field. Occurrences are always in terms of the tlassociation toll as 

explained next. 

ASSOClA'I'ION - - On multiple occurring fields there is a need to be able 

to keep track of which particular field is being handled and to know which 

other field3 occur in association with this field . For these reasons an 

association code lelter is inserted under (23) ASSOC to indicate mutually 

dependent fields . As sociation code is blank for sub-fields because they 

have the same association as the parent field. Fields which occur a 



7.8 

maximum of once per record may not belong to an association. Associa-

tion codes may be any lelter and need only be unique for a record since 

they can be qualified by record name when used. All associated fields 

in a record will carry the same association code . 

This one level association scheme works conveniently for fields 

whose occurrences only vary per the basic record. Items per invoice 

might well be one association including item number, item name, and 

item price, while taxes per invoice might be another independent 

association incorporating tax type and tax amount for federal, state, and 

local taxes. 

A more complex problem is how to handle associations which are 

nested . For instance, there might be many operations to make a particu-

lar product; each operation might callan many different fixtures and 

tools; certain fixtures and tools might call for special instructions. To 

take care of this, each association or field which doesn't vary directly 

with the record is related to the controlling association by noting the 

controlling associatlOn code under (24) ASSOC TO. The following example 

may clar ify how these columns are used : 

Occurrences Assoc . 
Field Name 

Ava . 
Assoc. To Min. Max. 

Part Number 1 
Operation Number 1 5 25 A 
Operation Desc ription I 5 25 A 
Operation Time Slandard I 5 25 A 
Tool or Fixture Number 0 2 5 B A 
Tool Location 0 2 5 B A 
Special Instruc lions 0 . 2 1 C B 



7.9 

Occurrences for items in an association must be identical. This means 

that association A which occurs 1 to 25 times per the record consists of 

operation number, operation description, and operation time s tandard. 

Association B consists of two fields, tool or fixture number and tool 

location; these occur 0 to 5 times per operation (hence 0- 125 times 

per record). Special instructions, Association C, is associated to and 

occurs 0 to 1 time for each tool (hence will occur 0 to 125 times per 

recor<ll-

SEQUENCE -- If a file is to be considered as ordered, the systems engineer 

will indicate in (25) SEQUENCE the fields on each record which are used 

to sequence the file and the relative order of these fields . Numbers are 

indIcated in the column, 1 for major, 2 for intermediate, etc . If any 

records in a file are orde red all must be ordered. A common named 

field must be included in each record to indicate the overall sequence of 

the file. For input and retajned files sequence may be used. If used for 

intermediate or output files this can be nothing but informative to the 

reader. The analyst must still indicate through a SORT operation the 

particular sequence he wishes if this is different from the sequence in 

which it was developed . Files which are not considered sequenced 

have this column blank; sequence may still be introduced operationally 

by using SORT for intermediate and output files. Additional sequencing 

information may be indicated in the remarks section (29). 



7. 10 

RELATIVE LOCATION -- There are two uses for relative location : 

to indicate the relation of a sub- field to its parent field, and 

to show the line of the record and beginning and ending locations 
for fields on printed reports . 

Each field which has sub- fields must have a length which doesn't vary 

(e . g., Length: VAR is blank). This allows positional reference to the 

field by the sub- fields . The sub- field has indicated the relative beginning 

position (of the referenced field) in (26) BEGIN and the ending position in 

(27) END. The referenced field name is lloted in (28 ) the value/remarks 

area. An example may help explain: 

Length Relative Location 
Field Name Max. Begin End Value/Remarks 

DATE 8 

MONTH 2 1 2 DATE 

DAY 2 4 5 DATE 

YEAR 2 7 8 DATE 

The other use of relative position handles actual print position on 

a printed report. With the Report Layout sheet filled in the analyst must 

relate each field name to the print positions on the Report Layout sheet 

and the line of the record. Hence (26) the line of the record is shown 

for each field and (27) the ending print position of the field. If there is a 

possibility of misunderstanding the beginning print position, enter the 

beginning print position in (26) BEGIN after the line number of the record 

and separated from the line number by a comma; e. g . , 2, 42 47. 



7.11 

VALUE/REMARKS (28) The value/remarks column will be used for 

several purposes. If a file is an output or intermediate and the systems 

engineer wants to describe an actual value which a particular field will 

always have) he may do this by writing the value as a lileral. If a sub

field is described on the line, the name of the field of which the sub- field 

is a part will be noted. If values are assigned to sub- fields, the value 

will follow the field name separated by a comma. This column may also 

be used by the systems engineer for any brief remarks which he desires 

to make about any field such as format, possible values, accuracy, etc . 

REMARKS (29) At the bottom of the File Description sheet any remarks 

concerning the record or file may be made: information on sequencing; 

variations in record SIze or number of records; source of input or 

destination of outputs. 

REFERENCE OPERAND DESCRIPTION SHEET (see Figure 7- 2) 

The Reference Operand Description Sheet is used to describe 

constants, expressions, value lists, and reference lists. None of these 

operands can have their values changed by the decision tables. 

General Headings 

At the top of each sheet will be indicated (1) the name of the system, 

(2) the name of the systems engineer or analyst, (3) the date the sheet is 

prepared or revised and (4) the page number. After completion, (5) the 

total number of pages of the Reference Operand Description sheets is 

shown for control purposes. 



.. 

-

... 
~ o 

~~ 
~ 
Z 
~w 

7,12 

~ I ~ r I.;) 

IIt.lntHtHtHtHtH+rt+K+~~~]~ 
~ ~ I I I I 

,...::;~ 'I Ii I I . 11 

!I 'I i ! I 
1 I' I . " I 

I I I I 1 

I I ! ,I / 
W 

~I ~ 
Z 

. I JI,I II I ' j I II I I I r-H-W-+l i ,I Ii I(;! ',,! I' ; I I ~_~_~~~_iU_l~i~~J-LLUiUJllllLU 



7. 13 

Operand Description 

(6) A different serial number is used for each operand. These 

should start wi th 1 and continue sequentially as far as needed . The 

serial number may be a 1 - 3 digit integer. 

Because the use of the form varies considerably for different 

types of operands, the form will be discussed under an appropriate 

heading for that operand. 

1f an operand requires continuation beyond the initial page the 

general headings (1 - 5) should be repeated, the serial number (6) also 

repeated, and (7) the name of the operand with the letters CONT in 

parentheses written after it. 

CONSTANTS 

(7) The constant name will be written in the name column. Names 

can be continued to more than one line if needed; if this requires break 

ing in the middle of a word then a hyphen should be inserted . (8) Under 

type is written CONSTANT or CON. (9) In the value column will be 

indicated the value of the constant exactly as it is to be used. If the 

value is numeric it is to be shown directly as with any literal. Alpha

meric values are to be enclosed in quotes. There is no length limit 

for constants. 

EXPRESSION 

(7) The name assigned to an expression will be written in the name 

column. (8) Under type will be written a mnemonic code to indicate the 



type of expression: 

Mnemonic Code 

ARITH EXP or AE 

SYMB EXP or SE 

LOG EXP or LE 

Interpretation 

Arithmetic expression 

Symbolic expression 

Logical expression 

7. 14 

(9) The expressions themselves will be written in the value column, 

using as many lines as are required; an operand should not be hyphenated. 

An arithmetic expression will be written using the arithmetic operators, 

functions, parentheses, and operands as allowed. Individual factors in 

the arithmetic expression may be set off by blanks to aid readability. 

(9) For symbolic expressions the value column will also contain 

the expression. The Symbolic Operator name (currently only JOIN is 

available) will be followed by a left parenthesis; then the operands whose 

values will be put together to create the value for the expression will be 

written. Each of these operands will be separated by commas and written 

in the order they are to appear in the resultant value. The expression is 

terminated with a right parenthesis. 

Suppose IDENT NO were given as the symbolic expression name for 

the expression JOIN (DEPT NO, ' - ', DIV NO, ' / " MAN NO) . If the 

current values of the operands are: 

DEPT NO = 726 

DIV NO = 14 

MAN NO = 123456 



7. 15 

the value for IDENT NO would be 726- 14/123456. 

(9) A logical expression will be written in the value column using 

the operands, relational operators, logical operators, arithmetic 

operators, and pa rentheses required. Blanks will be used to insure 

readability . In constructing logical expressions note the following : 

1) The simplest form consists of a two operand condition 
like MARITAL STATUS = 1 

PAY AMOUNT = 24.00 

2) Following generally the same rules for constructing 
conditions, each of these operands may be more complex. 
Note the use of THRU instead of the hyphen for ranges . 

For example, BOARDING CITY EQ IIATL'I 11 MIA II II LAG II , , 
TAXABLE INCOME EQ 4000.00 THRU 7999 . 99 

3) Arithmetic express ions may be introduced for either operand 
following the same rules as those for constructing arithmetic 
expressions. An example is: 

CREDIT BALANCE + NEW ORDER AMOUNT GR 
(CREDIT CLASS * CREDIT RATE) + CREDIT BASE 

4) Similarly, special arithmetic functions may be used: 

SUM (OPERATING INCOME, INVESTMENT INCOME, 
TAX RETURNS) LE (# DOW JONES IND AVERAGE 
CURRENT YEAR # / # DOW JONES IND AVERAGE 
LAST YEAR #) * INVESTMENT BASE 

Symbolic expressions may be used: 

JOIN (NAME, " " RANK) = "JOSEPH JONES, 1ST LT" 

5) Finally, in even more complex situations multiple conditions 
may need to be considered . This is done by using OR, AND, 
or NOT . NOT should be used very infrequently since there 
is a full set of relational operators . AND means both, and 
OR means either one or both. Examples include : 



VALUE LIST 

RATE (HEALTH, AGE) GR 4.25 AND POLICY 
REQUEST AMOUNT GE 25000 
STATUS IS SENIOR OR AGE GR 23 

7. 16 

(7) The name of the value list will be inserted in the name column. 

(8) The analyst will write VALUE LIST or VLIST under type. (9) In 

the value column the literal values comprising the list will be noted 

separated by commas. Each entry may be a single entry value or a 

range . The upper and lower limits of a range will be separated by a 

hyphen; the range is considered inclusive at both ends. The range itself 

will be separated from other entries by a comma. Numeric values are 

listed directly while alphameric values are enclosed in quotes. If either 

the upper or lower limit of a range is alphameric, both are individually 

enclosed in quotes. Values may continue on succeeding lines. Values 

need not be in any sequence. Alphameric and numeric values may be 

mixed in a list. 

NAME TYPE VALUE 

RECENING CITY VALUE LIST 1, 3, 7, 9- 11, 13, 16, 87, 2 

SHIPPING CODE VALUE LIST "ATL" IIGEO u "NOLI! , , , 
"4AI! - 1!4HI! , 
181 - 189 "LAG" , 

REFERENCE LIST 

(7) The name of the reference list is given under name. This will 

usually contain some word like table or matrix to indicate the nature of 

the operand. (8) Under type the words REF LIST or RLIST is entered. 



7. 17 

(9) On the top line the name of the first argument is shown - this name 

need not be unique since it is never referenced. If no obvious name 

suggests itself then ARGUMENT 1 or a suitable abbreviation should be 

used. A column should be drawn with this argument name as the title. 

The second argument name should be entered also on the top line and a 

column drawn. Finally the function name should be entered; this must 

be a unique name (or will be when qualified by the reference list name). 

A third column is drawn. (7) On the second line under name the reference 

list function name is written with the two argument names in parentheses 

following it. (8) Under type FUNC NAME is entered followed by a left 

parenthesis, then the number of values of the first argument, a comma, 

then the number of values of the second argument, and a right parenthesis. 

If the actual values are not to be inserted until later the different 

values of each argument may be shown in the appropriate columns with 

the note in the third column saying Tlall combinations !! or something 

expressive of how long the list will be. If the entries are to be inserted, 

each legitimate combination of argument 1 and argument 2 should be made 

with the approprlate value for the function. Figure 7- 3 gives an example 

of such a reference list filled in. 



SYSTEt¥! NA/l;tE 

sail NAME NO 
TlIIR l'I A'T'R M A O'''TY 
RATE AGE SEC -

TJON OF TN-
HHI 

-

1---, 
I--f--

- - -- -
-

-

IBJ¥I 'AN.t.LVST REfERE~~~)DESCRIPTION : 

TYPE VALUE 

LIST 1\'GE SECTION OF COUNTRY 
IF! N NA u-~ !IEAST!' 

6 4) IrWEST" 

" " 
11 NORTH" 

10- 19 I'EAST!' 
"WEST" 

I IIS0tJ'T H" 
V' " " 

?o- ?( 'l 'RA,qr II 

r "WEST'I 

" " 
" II NORTHII 

30- 39 IIEAST" 
"WEST1' 

11S0UTH" 
~ I, NORTH II 

40- 49 IIEAST" 
I1WESTII 

"SC " 
" " 

50- 59 IIEASTII 

IIWEST" 
IISOUTHII 

J.- "NORTH" 

Figure 7- 3 

IOATE 

RATE 
l . <:U 
0.20 
0.15 
0. 10 
0.35 
0 . 30 
O. ,A 
O. 0 

o "" C~O 
0. 45 
0.25 
0.80 
0 . 80 
0.60 
0.40 
1.10 
1 05 
0.95 
0.80 
1. E5 
1 . 50 
1. 30 
1.10 

I~~ 00: PAGes 

..., 
~ 

00 



SUMMARY OF ENTRIES FOR NAME (7), TYPE (8) AND VALUE (9) 

USE OF REFERENCE 
OPERAND DESCRIPTION 

Constant 

Expressions 

Value List 

Reference List 

, 

NAME (7) 

Constant Name 

Arithmetic 
Expression 
Name 

Symbolic 
Expression 
Name 

Logical 
Expression 
Name 

Value 
List 
Name 

Reference 
List 
Name 

and 
Function 
Name 
(Argument I, 
Argument 2) 

TYPE (8) 

CONSTANT 
or 

CON 

ARITH EXP 
or 

AE 

SYMBEXP 
or 

SE 

LOG EXP 
or 

LE 

VALUE LIST 
or 

V LIST 

REF LIST 
or 

R LIST 
and 

FUNC NAME 
(Count- Argu-
ment 1 values I 
Count- Argu-
ment 2 values) 

VALUE (9) 

Literal value of constant 

Actual arithmetic expression 

Actual symbolic expression 

Actual logical expression 

Literal values 

Argument A,.gument Function 
I 2 Name 

Name Name 
and and and 

Argument Argument Function 
I 2 Values 

Values Values ..., 
~ 

<0 



7.20 

An abbreviated version would look this way: 

Name Type Value 

SPECIAL FARE REF LIST 
TABLE 

BOARDING CITY DESTINATION FARE 

FARE (BOARD
ING CITY, 
DESTINA TION 
CITY) 

FUNC NAME 
(5, 3) 

l1ATLANTAII 
HBOSTON" 
"MONTREAL" 
" WASHINGTON" 
u:MIAlv1pl 

DECISION TABLE FORMS (See F igures 7- 4 and 7- 5) 

"NEW YORK" 
"PIDLADEL

PHIAl! 
1tCHICAGOtl 

ALL 
COM
BINA
TIONS 

Decision table forms are used to describe the procedure logic of the 

Eystem. The Decision Table Continuation sheet is used for horizontal 

continuation of a decision table . Extended entry or mixed entry tables 

will often require continuation since only 4 rules are provided on the 

Decision Table sheet. Since limited entry tables have 32 rules provided 

no special continuation form has been prepared. It is recommended that 

a limited entry decision table generally not exceed 32 rules; rather, the 

original table should be split into 2 or more tables. However, the 

Continuation sheet can be used for limited entry tables by drawing the 

proper vertical lines. 

The type of data entered on the Continuation sheet is the same as on 

the Decision Table sheet. Therefore, the index numbers (circled numbers 

on figures 7- 4 and 7- 5) are the same and the entries will not be discussed 

separately except where noted. 



7. 21 

r ~ 
on II" ~ 

~I; 
i ~ l 

rr-

i; W I 

~~r o -lW 
I ~I!I. 

I 

~r n 
1~ - ~ 
~ ~_E!-
~ ~~ 

",-

'" , 
a: r--

".. 
X'I! 

Q) =E! 
!l, 

",zr-

.~ 

.... S! -

~ ~ 

~-
~r-

rr-- , w 

i ~ I~ i 11 I I 
'": 

~ I 
", . 
D 

I i ~~ 
I 
I 

rr· I J 1:- I 

I I i II~ . I 
~ 

1'<: • 

I:i 

"I 

I 
:II I 

I ~ 

~. 
I 

~f I 
~ I , 

~ 
~ . I I 

Inl tml * I J9. I 

* 



7. 22 

.... ... ); 

j 1'= 

~ !~ F 

.. ~ 
~~ 

13 
I'" 

.. f co 
~ 
c 
~ Is I~ 

z 
0 

~ 
Q) 

~ 
.~ 

r>.. 

:E" § 13 
!! i I .. 

~ 

z 
0 
iii 

~ 
I ~ 

... 
:I 
0< 
Z 

::I .. .. 
III 

~ I ~ 
I 

.~~ ~ 

* * 



7. 23 

General Heading 

At the top of each sheet will be indicated: ( 1) the name of the 

system, (2) the name of the systems engineer, (3) the date the sheet is 

prepared or revised, (4) the page number , and (5) the total number of 

pages for this decision table . Each page of a decision table is numbered 

consecutively starting with 1. (6) On the Decision Table sheet ente r the 

procedure name if the table is part of a procedure; otherwise leave 

blank. A s ingle page may not contain tables from two different procedures, 

nor may it contain some tables which are part of a particular procedure 

and some which are not. 

Decision Table Header 

The fir s t line of each decision table will be indicated by placing two 

asterisks (* *) in the left hand margin of the sheet. 

On the first line of each decision table enter (7) the table identifica

tion, (8) the name of the table, (9) the table type (OP EN or CLOSED); if 

the decision table is the first table of a procedure (10) enter F IRST . The 

table identification is a 3 character field; the first position must be 

numeric to dis tinguish it from a table name, but the other two positions 

may be letters or numbers. The identification must be unique within the 

system as must table name. 

If a table requires continuation to another sheet, the general head

ings (1 - 6) are inserted, as is (7) table identification and (8) table name; 

(9) CONT should be inserted under table type . More than one decision 



7.24 

table may be described on the same sheet by placing two asterisks on 

the margin of ihe new table header line. Page 2 is used for ihe second 

vertical pagel then page 3, etc . 

If horizontal continuation is needed to handle additional decision 

rules then a Decision Table Continuation sheet is used. The general 

headings are inserted (1- 5) wiih ihe page nU'llber of ihe first horizontal 

continuation sheet following the page number of the last vertical decision 

table sheet. An illustration may help. 

Dec Table Form Continuation Form Continuation Form 
page 1 of 9 page 4 of 9 page 7 of 9 

Ser 1 - 10 Ser 1 - 10 Ser 1 - 10 
rules 1 - 4 rules 5 - 10 rules 11 - 16 

Dec Table Form Continuation Form Continuation Form 
page 2 of 9 page 5 of 9 page 8 of 9 

Ser 11 - 20 Ser 11 - 20 Ser 11 - 20 
rules 1 - 4 rules 5 - 10 rules 11 - 16 

Dec Table Form Continuation Form Continuation Form 
page 3 of 9 page 6 of 9 page 9 of 9 

Ser 21 - 30 Ser 21 - 30 Ser 21 - 30 
rules 1 - 4 rules 5 - 10 rules 11 - 16 

Figure 7 - 6 

There are certain special tables. The initial table of the system is 

called START. Control will always begin at ihat point. START must be 

on open table. There must also be one STOP table per system. This 

provides for ending ihe procedure. The STOP table must also be an open 

table . In every procedure there must be a first table to which control 



7. 25 

will be transferred when entering the procedure. The first iable of a 

procedure must be open if the procedure is entered by a GO TO action. 

If the procedure is entered by a DO action then the FIRST iable must be 

closed. Since the DO is interpreted as applying to the whole procedure 

the return outside the procedure is retained even if a GO TO is encountered. 

Hence, within a procedure, a GO TO in a closed table does not destroy 

the return path to the table which called the procedure . 

Let's review the GO TO and DO actions relating to open and closed 

tables. Whenever a DO is encountered a return point is set up in a push 

down list to bring control back to the action following the DO action. If 

further DO actions are encountered additional return pOints are placed 

one on top of the other in the push down list. A DO can only call on a 

closed iable . A closed iable must have at least one decision rule with no 

GO TO action. If there is a GO TO in a closed iable the entire contents 

of the push down list are destroyed (only within the current procedure, 

however). An open iable may only be referenced by a GO TO action, and 

must have an explicit GO TO for each decision rule (except within a 

procedure when a decision rule without a GO TO will return control to 

the iable calling on the procedure). 

Decision Rule Header 

(11) Rule numbers are preprinted on the Decision Table sheet. The 

rule number for extended entry form is at the top of the row; it is at the 

bottom of the row for limited entry form . If a I:.:ecision Table Continuation 



7. 26 

sheet is used, the rule numbers must be entered in the same relative 

position as on the Decision Table sheet. 

(12) Frequency information can be inserted on the first line of 

each rule by noting a 2 digit number to indicate the percent of times 

that each rule will be satisfied. The percents should add up to 100. 

OPER OPERAND 1 OP OPERAND 2 
01 02 

80 20 ~Frequency 

CREDIT LIMIT EQ'LIMITE:!' Y N 

If 80% of the customers had limited credit, it would be expected 

that 80% of the time rule 01 would be satisfied. Rule 02 would then be 

satisfied 20% of the time. For extended entry form the percentage will 

be entered in the left- most part of the rule column.' 

If all possible combinations of conditions are not written and it is 

expected that the data to be processed will not always satisfy the explicit 

rules, an ELSE rule will be entered. The ELSE rule will be the first 

rule coltunn to the right of the last written rule. For extended entry, 

enter (12) the word ELSE in the left- most part of the column. The letter 

E will be entered (12) for the ELSE rule on limited entry form. The 

frequency of the ELSE rule is presumed to be 100 minus the sum of the 

percentages of the other rules . 



7. 27 

Table Body 

The balance of the decision table is called the table body . The 

stub is separated from the entry by a preprinted, vertical double line. 

The condition statements will be separated from the action statements 

by drawing a double horizontal line after the last condition statement. 

Condition Condition 
Stub Entry 

Action Action 
Stub Entry 

(13) Serial Number - A 1 to 3 digit serial number is assigned to each 

condition and action row in the table. Serial number is only unique for 

a single decision table. If a horizontal continuation is necessary, the 

serial numbers will be repeated for the corresponding rows of the 

continuation sheet. If multiple lines are required for a single statement. 

the serial number need not be indicated on the subsequent lines . A single 

heavy line will be drawn under each row when multiple lines are used. 

Conditions - For each condition row there will be (13) a serial number 

assigned. This number can be used for reference purposes, but does 

not indicate the order of examination. All condition serial numbers 

should be smaller than any ac tion serial number . (15) The first 

operand name or value is shown under operand 1. If the name requires 

continuation it will be split where a blank actually occurs or else a hyphen 

will be used at the end of the operand 1 space. In limited entry form 



7.28 

(16) the operator and (17) the second operand will be shown in the stub 

except when VS (versus) is entered. (18) In the entry area on the first 

line of each condition enter Y (yes or true), N (no or false), period or 

blank (not pertinent or impossible) for each rule. If VS (versus) is 

entered in the stub, any relational operator may be shown in the 

condition entry, e . g ., LE, GR, <., etc. These act just as though 

they were substituted for the VS. 

In extended entry form the operator may appear in the stub (16) or 

the entry (18) . The operator normally will appear in the stllb area (16) 

if it is common for the row. If it varies, it must appear in the entry 

area (18). Operand 2 always appears in the entry area (19). 

Actions - For all action rows, the action operator (14) will be entered 

in the stub . Operand 1 (15) is entered for action operators SET, MOVE 

and WRITE (when the WRITE operator is used with the connector ON). 

Limited entry example 

(14) 

WRITE 

( 15) 

RECORD 

The other action operators do not require an operand l. 

(16) 

ON 

(17) 

FILE 

The operators SET, MOVE and the two operand form of WRITE use 

connectors. The connectors are entered as shown in Figure 7- 7. 

In extended entry form operand 2 (19) is entered in the action entry 

area on the first line of the action statement. If the action is not to be 

taken, leave the entry area (18, 19) blank. 



7.29 

CONNECTOR 
DESCRIPTION OPERATOR CONNECTORS LOCATION 

-
LllVlITED ENTHY 

Output WRITE ON (16) 

Value assignment SET EQor _ (16) 

Two operand arithmetic SET + - * or / , , (16) 

Multiple operand arithmetic SET EQor +- (16) 

+, -, * , / or ** (16) 

Value assignment MOVE TO 01' ----+ (16) 

Two operand arithmetic MOVE + - * or / (16) 

Multiple operand arithmetic MOVE TOor -. (16) 

+, -, * , / or ** (14) 

EXTENDED ENTRY --
O,ttput WRITE ON (16) or (18 ) 

Value assignment SET EQor _ (16) or (18) 

'IV:o operand arithmetic SET + - * or / , , (16) or (18) 

Multiple operand arithmetic SET EQor __ (16) or (18) 

+ - * / or ** , , , (18) 

Value assignment MOVE TOor ~ (16) or (18 ) 

Two operand arit.~metic MOVE + - * or / , , (16) or (18) 

Multiple operand arithmetic MOVE TOor_ (1 6) or (18) 

+, -, * , I or ** (14) 

Figure 7-7 



7. 30 

An operand may be continued on as many lines as required. An 

operand should not be split between pages of the dec ision table . Either 

split at a blank or insert a hyphen. 

(20) Remarks - At the bottom of the sheet, space is provided to permit 

comments to aid others in understanding the decision tables entered on 

the page , e . g . , the desired length of the result of an arithmetic expres

sion. If appropriate, reference may be made to the serial number of 

the condition or action. If more than one decision table is on the page 

the remarks should reference the table. 

Any expression, (arithmetic, logical, or symbolic ) that is refe rred 

to only by the decision tables on the page may be defined here instead of 

on the Reference Operand Desc ription sheet. This is called a local 

expression. The name of the expression is written, then the type of ex

pression (AE, LE, SE), and the expression itself following the same 

rules as noted for the Reference Operand Description sheet. 

Appropriate local abbreviations may also be indicated under 

Remarks by indicating the abbreviation, then ABB, then the full name or 

value . 

REPORT SPECIFICATION (See Figure 7-8) 

Report format and content are described by using a Report Layout 

sheet (Figure 7-8 ) and one or more File Description sheets. 

The Report Layout sheet will be used to specify; 

1. The position of records and fields 

2. The size of records and fields 



i! •• , -
1 i 

I'" 



7. 32 

3. The pre - assigned content of records 

4. The editing of variable fields . 

A separate File Description sheet will be prepared for each 

record of a report which contains one or more fields which will vary 

in value. The report is considered a file and the report name the file 

name . The File [)escription sheet is used to : 

1. List and relate the names of the variable fields 

to the characters in the printer layout sheet which 

describe the position, size and editing of the fields . 

2. Specify the unedited size of the variable fields . 

The systems engineer will specify in decision tables the conditions 

for assigning different values to variable fields and the conditions for 

printing non- constant records. Many housekeeping type details are 

assumed to be taken care of automatically and hence need not be 

procedurally specified by the analyst. 

REPORT LAYOUT SHEET (See Figure 7- 8) 

General Heading 

(1) The system name, (2) analyst name, (3) date of preparation or 

revision, (4) page number, (5) total number of pages for the report, and 

(6) the report name (file name) are entered. 

Figure 7- 8 is one of many printer layout sheets that may be used 

for Report Layout. If another layout sheet is used, the general headings 

may appear elsewhere on the sheet. 



A heavy rectangle is drawn on the printer layout sheet to show 

the relative size of the desired report page . 

Record Heading 

7. 33 

Each different line, or inseparable, continuous group of print 

lines, may be considered a record. When a record consists of more 

than one print line, all lines are printed when the WRITE action occurs 

for the record. 

For operational control of variable spacing between printed lines, 

one or more blank lines may be designated as a record and written when 

desired . 

Line Count (7) Enter a I or 2 digit number to indicate the number of 

print lines in the record. The line count will immediately precede the 

record name. 

Record Name (8) The name of the record is entered on the first line that 

is used to describe the record. To continue a record name on a sub

sequent line, either break at a blank between words or enter a hyphen in 

the last character position. A record composed of fixed data fields and 

written in the s ame position on every page is called a constant record. 

All such records will be given the record name CONSTANT. A constant 

record may contain commonly understood variable fields . Presently 

Page Number and Date are the only variable fields that may be included 

in constant records . It is presumed that the programmer will supply the 



7. 34 

proper page number and date on each page of the report. Other fields 

will be included if the need arises. Writing of CONSTANT records is 

not required. It is assumed that the programmer will make the 

necessary arrangements. 

(9 ) Record Position 

Records, when printed, may always appear in the same page position 

(Fixed) or they may appear anywhere on the page (Variable) except where 

CONSTANT records appear . To indicate print positioning, enter a code 

immediately after the record name J separated from the record name by 

a hyphen. 

V 

F 

2 D igit Num.ber 

Meaning 

Variable - The record will be printed 
in the next available non- constant 
position. 

Fixed - The record will be printed on 
the lines corresponding to the lines on 
which it is described. 

Fixed - The record will start on the 
line specified by the numeric code . 
The code may not specify lines 
occupied by CONSTANT records. 

Normally, the record which is to be fixed in position (Code F ) 

will be described on the lines on which it is to be printed. When two 

or more fixed records must appear on the same or overlapping lines 

on different pages, the number code is used. If the fixed position on the 

current page has al ready been passed, it will be printed on the next page 

at the deSignated position. 



7. 35 

(10) Record Description 

A record may be composed of all variable value fields, all fixed 

value fields, or a combination of both . Except for pre- printed informa

tion, fields will be qescribed in the body (10) of the Report Layout sheet. 

Pre - printed information will be shown by including a sample pre - printed 

form (or a picture thereof). The relative vertical and horizontal position 

for each field within a record will be shown on the Report Layout sheet. 

Fixed Value Fields Fields that always have the same value are called 

fixed value fields . These will be indicated by writing their values in the 

proper positions on the Report Layout sheet and not referencing these 

positions in a File Description sheet. 

Variable Value Fields Fields whose values change are called variable 

value fields. Their values must be supplied by the decision table 

procedure. Only variable value fields will be described on a File 

Description sheet. 

If the same field can appear in a record more than once) it will 

be shown on the Report Layout sheet each time it can appear . The field 

will be described on the File Description sheet in the same manner as 

any other field except tha t all possible line numbers and print positions 

will be entered on separate lines in the Begin and End columns res pec 

tively . Variable value fields are shown by proper use of the symbols N 

or A; N r epresenting numeric valued fields and A for alphameric . 



7. 36 

Edited Fields Various characters are used on the Report Layout sheet 

to show the editing of variable value fields. The following desc ribe s 

the lise of these characters. 

There are four types of editing characters used on the Report 

Layout sheet: 

1. Character Representation 

2. Field Adjustment 

3. Replacement 

4. Insertion 

When the field description on the File Description sheet (unedited 

field) differs from the edited field description on the Report Layout sheet 

(edited) field, the edited description will control. If the edited field is 

longer, zeros will be substituted for the missing high order integer and 

low order decimal positions, for numeric fields. Low order blanks will 

be added to alphameric fields. Decimal pOints will be aligned for 

numeric fields . If a decimal point is not specified, it is as£umed to be 

immediately to the right of the right- most digit. For alphameric fields, 

if the edited field is shorter than the unedited field, the high or der values 

will be printed and the extra low order positions dropped. For numeric 

fields, if the edited field is shorter , the high order decimal positions 

will be rounded and printed and the low order integer positions will be 

printed. 



7.37 

Character Representation 

There are two characters used to indicate the character repre -

sentation mode, A and N. A character will be printed for each of these, 

unless the character in the source field is blank. 

CHARAC- UNEDITED DE SCRIP- PRINTED 
TER MEANING VALUE TION VALUE 

N the character position 0164 NNNN 0164 
is always numeric 03040 NNNN 3040 
(0- 9) or blank 24 NNN 024 

A The character ABCD AAAA ABCD 
position may be any ABCD AAA ABC 
character (0- 9, A- Z ABCD AAAAA ABCD_ 
or a special symbol). 

Insertion Characters 

Insertion characters add to the length of the printed field . They do 

not by themselves replace any character that would otherwise be printed. 

There are four types of insertions : special, floating , conditional , and 

normal . 

Special - There is only one special insertion character. This is the 

decimal point (. ). 

CHARAC - UNEDITED DESCRIP- PRINTED 
TER MEANING VALUE TION VALUE 

Decimal point. For 00123 NNN 123 
numeric fields the 00.123 N.NN 0.12 
decimal points will 00. 127 N. NN o. 13 
be aligned. !fa . 134 N.NN 0 .13 
decimal point is not 
indicated, it is 
specified by the File 
Description sheet. 



7. 38 

Floating Inser tions - All floating insertion character s suppress lead zer os 

and lead blanks. The first floating insertion character will be placed next 

to the high or der position of the edited field description and continued to 

the r ight for as many positions as a re to be suppressed. On floa ting 

insertions, a minimum. of b,llo insertion characters must be indicated. 

These are three floating insertion character s : 

$ 

+ 

CHARAC- UNEDITED DE SCRIP- PRINTED 
TER MEANlliG VALUE TION VALUE 

$ Dellar sign. The 123 $$NN $123 
dollar sign will be 012 $$NN $12· 
printed in the r ight- 12 $$NN $12 
most character 000 $$NN $00 
position that is $$NN $_-
suppressed 012 $$$$ $12 

000 $$$$ 

+ The plus sign cause s +123 ++NN +123 
a plus sign to be 012 -.+NN +13 
placed in the right- - 001 ++NN -01· 
most position in 000 ++NN +00 
which suppression 
occurs if the field 
is not negauve_ A 
min,"s sign will be 
placed in the right-
most position in 
which suppression 

~ o.:>curs if t.he fleld 
is negative . 

'-. .. - --



7. 39 

CHARAC- UNEDITED DESCRIP- PRINTED 
TER MEANING VALUE TION VALUE 

- The minus sign - 123 - -NN - 123 
causes a minus +123 - - NN 123 
sign to be placed -012 - - NN - 12 
in the rightmost +012 --NN 12 
position in which -000 - - --
suppression occurs 
providing the field 
is negative. If the 
field is not negative, 
insertion is not made 
made but lead zeros 
and blanks are 
suppressed. 

Conditional Insertions - The conditional insertion characters are inserted 

in the exact position shown. only if one or more cond itions are satisfied. 

There are five conditional insertion characters: 

+ 

CR 

DB 



7.40 

CHARAC- tuNEDITED DESCRIP- PRINTED 
TER MEANING VALUE TION VALUE 

+ A pI us sign in the -123 NNN+ 123-
high order or low +123 +NNN +123 
order position of the 123 NNN+ 123+ 
edited field de scrip- - 001 +NNN -001 
tion will cause the 
placement of a minus 
s ign in the specified 
location providing 
the field is negative . 
If the field is not 
negative a plus sign 
will be placed in the 
specified position. 

- When a minus sign - 123 - NNN - 123 
is the high order or +123 - NNN 123 
low order position - 123 NNN- 123-
of the edited field - 001 - NNN -001 
description, it will - 001 NNN- 001 -
cause the placement 
of a minus sign in 
the indicated position . 
If the field is -
not negative no char-
acter will be printed 
in that position 

CR When these char- +123 NNNCR 123 
acters are the low - 123 NNNCR 123CR 
order position of the 
edited field descrip-
tion, CR will be 
printed if the field is 
negative, If the 
fie ld is not negative, 
the characters will 
not be printed. 



7.41 

CHARAC- UNEDITED DESCRIP- PRlNTED 
TER MEANlNG VALUE TION VALUE 

DB If the fiel d is +123 NNNDB 123DB 
negative CR is -123 NNNDB 123CR 
printed; if the 123 
value is positive 
DB is printed; 
if the value is 
zero nothing is 
printed. 

, A comma will be 1234 NN,NNN 1,234 
printed in the pos- ---010 NN,NNN 010 
ilion indicated 1030 NNN,NNN 1,030 
only if there are 
non- blank char-
acter s preceding. 

Normal Inser tions - Insertions will be made in the character position 

specified by the placement of the insertion character . Any numbers or 

special character may be inserted. 

CHARAC- UNEDITED DESCRIP- PRlNTED 
TER MEANlNG VALUE TION VALUE 

0 - 9 The character 123062 NN- NN- NN 12- 30- 62 
Special specified will be 123062 NN/NN/NN 12/30/62 
Symbols inserted exactly 312.34 N@-$NN.NN 3@-$12 . 34 

as shown in the 
field. It may not 
be the leftmost 
or rightmost 
character . 



7.42 

Replacement - Replacement characters are used to change the value of 

a field. They never add length to an edited field , because they will only 

replace existing characters. There are two types of replacement 

character s; Conditional and Normal. 

Conditional - Conditional replacement characters specify the replace-

ment of high order zer os or blanks of a field. There are two conditional 

replacement characters: 

* 
Z 

CHARAC- UNEDITED DEXRIP- PRrnTED 
TER MEANll'lG VALUE TION VALUE 

* Asteri sk replace- 12345 **~NN 12345 
ment. Replaces 00123 ***NN **123 
leading zeros or 00100 ***NN **100 
blanks of a field 00000 ***NN ***00 
with asterisks. 01000 ***** *1000 

00000 ***** ***** 
--100 ***NN **100 
---00 ***NN ***00 
----- ***** ***** 

Z Suppre ss lead 12345 ZZZNN 12345 
zer'os for numeric 00123 ZZENN 123 
fields ONLY. This 00100 ZZZNN 100 
character is used 00000 ZZl'rNN 00 
when it is desired 00100 Bfl£l% 100 
to replace zeros 00000 ZZZl<:l'r 
that appear in the 
leftmost positions 
of a field with 
blanks. 



7. 43 

Normal Replacement - Replacement characters replace the value of 

whatever character appears in the field with themselves. There are 

two normal replacement characters: 

o (stands for zero) 

B 

CHARAC- UNEDITED DESCRIP- PRINTED 
TER MEANING VALUE TION VALUE 

0 Zero Replacement 12345 OOONN 00045 
for numeric fields 12345 NNOOO 12000 
only. The place- 12345 OONN 0045 
ment of zero in an 12345 NNOO 2300 
edited fie ld will re-
place the corres-
ponding char acter 
in the unedited 
field with a zero. 

B Blank Replacement. 12345 BBBNN 45 ---
The placing of B in 12345 NNBBB 12 ---a field is tl1e same 12345 BBNN 45 - -
as zero except the 12345 NNBB 23 - -
character is re - ABCDE BBBAA DE - --
placed with a blank ABCDE AAABB ABC - -
instead of a ze ro. 

Field Adjustment: - The field adjustment characte r s are used to specify 

the truncation or rounding of a field. Where they are written they specify 

the location of the rightmost character of the field. There are two fie ld 

adjustment characters: 

T 

R 



7. 44 

CHARAC- UNEDITED DESCRlP- PRINTED 
TER MEANING VALUE TION VALUE 

T Truncate. When 12345 NNNT 1234 
the unedited value 112.345 NN. NT 12. 34 
is longer than the 12.3 NNT 12 
edited description 
and the high order 
posi tions are to be 
printed, a Tis 
placed in the right-
most position. The 
fields will be left 
justified. 

R Round for nume ric 12345 NNNR 1235 
fields only. Similar 12345 NNR 123 
to Truncate except 5 123.45 NNN.R 123. 5 
is added to the right- 456.78 NN.R 56. 8 
most position to be 
dropped, the carry, 
if any, is made, and 
the field is truncated. 
The fields will be 
left justified. 

If decimal points are aligned and the edited decimal position is shorter, 

rounding will occur unless truncating is specified. 



7.45 

OPERAND SUMMA.RY 

The permissible operands ar e listed in Figure 7- 9. The character 

set in proper collating sequence is listed in Figure 7- 10. The character set 

listing includes the character names and information concerning the use of 

the various characters. 

OPERAND '.wHERE DEFINED WHERE USED 

Information Operands 

File File Description READ, WRrrE, SORT, BEGIN, 
Report Layout CLEAR, State relational 

Record WRITE, MOVE, SET 
Field MOVE, SET, value reiationals 

Reference Operands 

Reference List Refer ence Operand MOVE, SET, reiationals 
Function Description 

Value List value relationals 
Constant MOVE, SET J value relationals 
--- - - - - - - - - - - - - - - - - - - - - - - - - - - - - ---- - -
Arithmetic Expression ·Reference Operand MOVE, SET, r elationals 
Logical Expression Description MOVE, SET, relationals 
Symbolic Expression Remarks in MOVE, SET, relatfonals 

Decision Table 

Segmenting Operands 

Procedure Decision Table GO TO, DO 
Decision Table Headers GO TO, DO 

Wor k Operands 

Work Record WRrrE, MOVE, SET 
Work Field MOVE, SET, relationals 

Self-Describing Operands 

Literals MOVE, SET, value reiationals 
Cormotative Terms MOVE, SET, value relationals 
Siate Terms State relationals 
Descriptive Terms MOVE, SET, value relationals 
Value list value relationals 
Range value relationals 

Figure 7- 9 



7.46 

CHARACTER SET in COLLATING SEQUENCE 

Cha,.,cter Name Use 

Blank other than first position in operand 
names; to set off operands from 
operators 

· Period or Decimal Point to show decimal position in number 

l:1 Lozenge 

( Left !>J.renthesis for delimiting portions of expressions 

<- Less than relational operator 

'1' Group mark 

+ Plus sign for addition; for positive numeric 
literals 

$ Dollar sign for editing on reports; for other than 
first position of operand names 

* Asterisk for multiplication; for editing on reports 

) Right !>J.renthesis to delimit positions of expressions 

• Semicolon 

6. Delta for other than first. position of operand 
names 

- Minus s ign or Hyphen for subtraction; for cor..tinuation in the 
middle of a word; for negative numeric 
litera.ls 

/ Slash for division 

• Comma for editing on reports 

% Percent sign for other than first position of operand 
names 

~ 

EquaJ relational operator; wiLl, SET operator 

Figure 7-10 



7. 47 

Character Name Use 
, 

Single quotation mark to set off alphameric literals 

" Double quotation mark 

~ Cents sign for other than first position of 
operand names 

iI Number sign for other than first position of 
operand names; to set off descrip~ 
live terms 

@ At sign for other than first position of 
operand names 

. Colon between qualified names . 

> Greater than relational operator 

r- Radical 

7 Question Mark 

A to I Alphabetic Characters for operand names 

I Exclamation Point 

J to R Alphabetic Characters for operand names 

'1' Record Mark 

S to Z Alphabetic Characters for operand names 

o to 9 HUlIl eric Characters for other than first position of 

I 
operand names 

Figure 7- 10 (cont. ) 

Functions. 

Special mathematical fu....1.ctions may be used in arithmetic expressions. 

A functiGn consists of a fUIlction name and, in parentheses, one or more 



7. 48 

a rguments. The a rguments are field names, literals, arithmetic expressions, 

or functions. 

If a multiple occurring fjeld is used in an arithmetic expression, the 

arithmetic expression may be refer:oed to only in a closed table . The rules that 

apply to the DO statement for handling multiple occurring fie lds are applicable 

as though the arithmetic expression is p:Lrt of the closed decision table. 

The following flUlctions are explicitly defined with values as accurate as 

any other in the expression or as accurate as the receiving or comparing 

field in the decision table. In the case of cornf9,r ing two arithmetic expres

sions each consisting only of fWlCtion8 , the result will be carried to the 

same number of significant positions as the argument value. 

Mnemonic Code Name 

SIN Sine * 

COS Cosine* 

TAN Tangent* 

* all values of argum ents are expressed in degrees 

Examples: 

SIN (ANGLE) 

COS (RATE (HEALTH, AGE ) ) 

TAN ( LENGTH 1 - LENGTH 2 ) 

SIN (36. 2) 

COS (SIN (B)) 

TAN (WOHK ANGLE) 

Form 

SIN (arg 1) 

COS (arg 1) 

TAN (arg 1) 



7.49 

:MneL"lOnic Cede Name Form - --
ABS Absolute ABS (arg 1) 

NEG Negative NEG (arg 1) 

The sign of the 
argurneilt will 
be reversed. 
A wtary minus. 

Examples; 

ABS (Q1'Y ORDERED - QTY DELIVERED) 

A + NEG (B) 

---
1 IIfnem onie Coda Name Form 
-- -

&'UM - Summation SUM (arg 1, arg 2, .. . , arg n) 
Only field names, 
work fie] d names, 
literals, reference 
list fu..'1ction name::" 
C'.nd functions may 
be used. 

Examples: 

The result is A+ B+ C + D 

SU}i! (Sin (A), COS (B» The rzsult is SIN (A) + COS (B) 

Other functions may be addad later as experience indicates their need 

ar..d. vaine. For Insta!lce, these arithmetic fWlctions are under consideration: 

11AX (arg 1, arg 2 ... " I arg n) 
- - picks the l3.1'ge8t vabe of the •. 1'gl1Inents. 

1flN (arq 1; arg 2, . . . J arg n) 
-- picks tha smallest value of the arguments. 



AVG (arg 1, arg 2, . . . , arg n) 
-- adds the argument values and divides by the 

number of arguments. 

REM (arg 1, arg 2) 

7.50 

-- the remainder after dividing argument 1 by argument 2. 

!NT (arg 1, arg 2) 
-- the integer value from dividing argument 1 by 

argument 2. 

Other logical and symbolic functions are also being examined. Recom-

mendations as to the need for such functions is requested. 

CONDITION SUMMARY 

Certain operands may not be used together in condition statements. 

Also, certain of these operand Piirs may only be used with the equal and 

not equal operators. The rules are summarized in Figure 7-11 with 

examples shown in Figur e 7-12. 

v,'hen the State Relational Operators (IS and NT) a re used in a condi-

tion statement, one of the operands must be a Named Operand and the 

other must be a State Term. The perm itted combinations are shown in 

Figure 7- 13 with examples shown in Figure 7- 14. 



Operand Combinations with Value Relational Operators 

Operand 2 I ! 
May I 
Be I ! Ref. 

If Value Arit..lJ.. Symb. List Work 
Operandl Field List Expr . Expr. ! F tmc . Const. Field 

is Name Nam.e Na,.'fIW Name Name Name Name 

Field Name X X' X X X X X 

Value List Nam8 X' X* X* X* X* X' 

Arithmetic I X X* X X X X X 
Expression Name 

Symbolic X X' X X X X X 
Expression Name 

Reference List X X* X X X X X 
Function Name 

Constant Name X x* X X X X 

Work Field Name X X' X X X X X 

Literal X X* X X X X 

Connotative Term X X* X X X X 

Descriptive Ter m X X* X X X X X 

Value List X* X* X* X* X* 

Range X* X* X* X* X* 

Note: X means any operator permitted. 
X* meaRS only the EQ and NE Value Relational Operator s may be used. 
Blank means that the operand pair is not legitimate . 

Figure 7-11 

Literal 

X 

X* 

X 

X 

X 

X 

X 

Connot. Desc. 
Term Term 

X X 

X* X* 

X X 

X X 

X X 

X 
, 

X X 

X 

X 

X X 

X* 

X* 

Value 
List 

X' 

X* 

X* 

X* 

x* 

X* 

Range 

X· 

X* 

X* 

x* 

X* 

X* 

I , 
, 

i 

..., 
'" ~ 



7. 52 

. -r !'. .. -
I r= 
~ r~-Il; 

!~ 

slU .. 
l!£ 

~ 

~ l! 
I.-" 

0 r- ~ 
[-t~ ~~ 

:rl 
~ r 
~ r 

r=3 I ~ 
~ II 

co ..... , :ri 111 t-

ID 
L ~ 

illiZi 
N ...: .~ 

Ii< 

.... ~-
L: ~ L!! i r=~ ~ L2:: F~ 

~ 
r 

I~ 
III 

j 
Il I~ Ie I! 

III 

l~J III 
111 " 

Iii: 
.. 
is 

I ~ 11 I~ ~ i [- li I~ i~ rr 
I: 

~ ~ I~ I~ I / 
,. 

I~ i IVI 
!~ I; 

11 lI! 
I' ::l 

~ 
i!! I~ I~ 1< ~ ~ 1<-

r~ I~ l1: Jl l.i: ~ k_ tID JBl. 

* 



7,53 
Operands with State Relational Operators 

State 
Terms POSI- NEG A- NUMER- ALPHA- PRES- END OF STATUS 

Operan TNE TNE IC BETIC ENT FILE 
Names (EOF ) 

File Name X' X" 

Field Name X X X X 

Reference 
List Function 
Name X X X X X 

Arithmetic 
Expression 
Name X X 

Symbolic 
Expression 
Name X X X X 

Work Field 
Name X X X X 

Logical 
Expression 
Name X 

NOTE: In general, State Terms may be either operand 1 or operand 2, 
Readability is improved if the State Terms,except STATUS) are operand 
2. STATUS reads best as operand 1. 

X means the combination is permitted 
blank means the combination is not permitted 

* random only 
** serial only 

Figure 7-13 



7. 54 

:;- , F! 

J ~li~ 
~ ~~~ 
I ' ..::ill. 

,.1; , 
w -

, ~ , 
e I-

I· , 
... 
~ z r-< 

=l3 1O 

- I- ~r~ 
'" ~ 

w ~II , 
c-

..J_ 

'" 
:E"~ 

~ I!I~I- r 
·rl 

rx. 
-I-

~ 
1ft 

~ =~r- ~~ 
L~ ~ 

F F L:: ~ I" w 

j 
i~ I~ I 

'" I .. 
!: 

I i~ I i I I I ~ !<£ !~ I~ I~ l~ I ' -
I: i~ 

i~ 
I I 

I 
I 

I 

1"1 i~ I Ii I ' I I ( 11 
I :Ii I !;' I~ I'. ,~ I I ~I I . 

)'!I I I I Iv 
JJ lii L~ Ii .il 11 

* 



7. 55 

File Conditions 

There are two permissable condition statements that may contain a 

File Name as one of the operands. One statement pertains exclusively 

to serial type files, while the other pertains exclusively to random type 

files . 

Sertal Files - It is presumed that a serial file has a detectable end beyond 

which data is not recorded. The statement used to detect this condition 

has the following appearance : 

file name END OF FILE 

The IS condition is true if the last record in the file has already been read. 

The NT condition is true if the last record in the file has not yet been read. 

Random Files - Because of the characteristics of random files, it is sorn8 -

times necessary to determine if specific data is recorded in the file. The 

statement used to make this determination may have the following forms: 

file name 
PER logical 
expression name 

file name 
PER location 
name 

file name 
PER logical 
expression name 
PER location 
name 

{~ } PRESENT 

PRESENT 

PRESENT 

The IS condition of the first form is true if any location is found whose 



, 

7. 56 

values satisfy the specified logical expression. If no location is found, 

the NT condition is true. The IS condition of the second form is true if 

the specified location exists, otherwise the NT condition is true. 

The logical expression may be any logical expression permissable 

in TDL. The location name may be: 

Field Name 

Reference List Function Name 

Arithmetic Expression Name 

Symbolic Expression Name 

Constant Nam e 

Work Field Name 

Literal 

ACTION SUMMARY 

The following action operators are used in TDL: 

SET 

MOVE 

DO 

GOTO 

READ 

WRITE 

BEGIN 

CLEAR 

SORT 

With SET and MOVE only certain operands can be used. These are 

listed in Figure 7 -15. 



Operands with Assignment Operators 

MOVE AND SET 

Sending Operand Receiving Operand 

Record Field Work 
Name Name Record 

Name 

Record Name * * 
Field Na.me X 

Reference List 
Function Name X 

Arithmetic 
Expression Name X 

-
Symbolic 
Expressio!l Name X 

Constant Name X 

Work Record Name * * 
-

Work Field Name X 

Literal X 

Connotative Term X X X 

.C'escriptive Term X 

x = L'ldividual value assignment. 
* = Corresponding value assignment. 

NOTE: With MOVE, operand 1 is sending operand, 
o}::erand 2 is receiving operand. 

With SET, operand 2 is sending operand, 
operand 1 js receiving o}Jerand. 

Figure 7-15 

7. 57 

Work 
Field 
Name 

X 

X 

X 

X 

X 

X 

X 

X 

X 



J 

I 

7.58 

DO and GO TO are used only with a Decision Table Name or identi

fication numbers, or with a Procedure Name . 

The use of input/output operators is summarized in Figure 7- 16. 



Input Output Oper ators 

File Type Serial 

Directional Type Input Output Inter. Ret'd. Input 

Sequence Contr olled 
by File Description 
Sheet X X 

Number of Records 

0 Available in Memory 1 0 1 1 

Record is Deleted By 0 
SORT X X 

READ X X X X 

WRITE -
Record Name X X X 

WRITE -
File Name X 

WRITE - Record 
Name ON File Name X 

CLEAR 

BEGIN X X X 
I 

® 1 of each type 

® 1 for READ, 1 of each type for WRITE 

® READ no WRITE 

®CLEAR 

Figure 7- 16 

7.59 
\ 

) 

Random 

Output Inter. Ret'd. 

0 1 1 

@) 

X X 

X X X 

X X 

X X 

X X 




