
,

l

l

o
o
o

NGINEERING

5 ERVICES

P RE L I MINARY MANU A L

1 401

TABULAR PROGRAMMING SYSTEM

October 15, 1961
Technical Report No . 1 J 2

Thomas B. Glans
Burton Gr ad
William M. Selden

INTERNATIONAL BUSINESS ' MACHINES CORPORATION

White Plains, New York
o 1961 by International Business Machines Corcoration

r

r

<

1401 TABULAR PROGRAMMING SYSTEM

Preface

There is increasing evidence to indicate that decision tables are a

useful means of analyzing and portraying program logic. With this in

mind the 1401 RAMAC®Tabular Programming System was developed to

encourage experiments using decision tables for a variety of business

problems . The feedback from these experiments will provide a reliable

evaluation of the usefulness of decision tables in problem analysis , program

documentation, coding, and debugging .

Programming systems such as FARGO, Reports Generator and

FORTRAN emphasize some particular aspect of data processing - inputs ,

outputs, mathematical equations, etc . But expressing complex decision logic

has been largely ignored. While logical operations can of course be described,

it is generally not in a convenient and efficient manner. Decision tables may

fill this void.

A word about this teaching text. It is directed primarily at people

who will be experimenting with the language. Since , many such people may be

stronger in systems work than in programming, the presentation discusses

programming matters more fully than an experienced programmer requires .

However, this redundancy should not detract from the technical content of the

manual .

Chapter 1 presents a quick sketch of the basic ideas of data processing

and of decision tables without attempting to be complete. Chapter 2 covers

all the essentials of tables and of the 1401 RAMAC Tabular Programming

System, using a set of seven examples to introduce a few of the ideas at

i

a time . There are also review questions and answers after each example .

This chapter ends with three problems using tables. Chapter 3 contains

a full - scale problem worked through tn 1401 Tabular Programmtng language;

it shows how the ideas can be applied to a specific situation . Chapter 4

is a reference section, describing the various language elements and their

relationships .

We suggest that the person without extensive programmtng background

would profit by reading the entire manual carefully, with special attention

to Chapter 2 . The experienced programmer will probably want to just

skim Chapters I and 2, and turn rather quickly to a s tudy of Chapters 4 and 3.

We wish to thank Messrs. E. L. Blossom, D. W. Hradecky, D. D.

McCracken, L. R. Smith, and R. R. Smith, for their contributions to

the concept and preparation of this text.

Two final comments :

. (J) Because of time limitations and in light of the experimental

purpose of the language many techniques that could have been tnc1uded

were left out. Furthermore, at this stage of language development many

improvements--both mtnor and major- - may need to be made. We

anticipate that this initial version of the language will nevertheless be useful

in evaluattng the concept of tabular programmtng, and that along with the

evaluation of the overall concept will come suggestions for improvement in

the details. We welcome all such comments and suggestions.

ii

(2) It should be understood that IBM makes no committment to

maintain or improve this language. Also, though every reasonable attempt

has been made to pretest the processor and to examine various implications

of the language, we do not guarantee either the accuracy or efficiency of the

processor J or the correctness of any results obtained with its use .

iii

j

TABLE OF OONTENTS

Chapter 1 - A Tabular Form Language

A data processing system
Decision tables

The structure of a table
The 1401 Tabular Programming System Processor

The system diagram
SU1!lmary .

Chapter 2 - Using the 1401 Tabular Programming System

•

Introduction
Situation 1 .
Situation 2 .
Situation 3 .
Situation 4 .
Situation 5 .
Situation 6 .
Situation 7 .
Exercises

Chapter 3 - Expense Report Program

Problem description
Data description table
Procedure description tables

1.1
1.3
1.6
1.11
1.12
1. 13

2.1
2.1
2. 4
2. 7
2.9
2. 13
2. 19
2. 23
2. 27

3.1
3. 6
3.11

Chapter 4 - 1401 Tabular Programming System Specifications

Machine requirements
Basic language .

Character set
Names .

Operands.
Data Description

Files .
READER
P UNCH
PRlNTER
TAPE .
RAMAC
CORE .
INQUIRY

Records
Variables

Unassigned
Preassigned
Masked

Constants
Expressions

Other Operands .
Literals
Special operands

Procedure tables .
Procedure form .

•

Limited and extended entry .
Table header
Stub and entry sections .
Writing a program

Conditions
Numeric values .
Alphameric values

Actions .
Input/output operators

READ
WRlTE
CLOSE .

Assignment operators
MOVE ... TO ..
SET ... EQ .. .
MOVE ... j: •
SET .. . + .
LAYOUT ...

Sequence contr ol operators
DO . ..
GOTO ·

•
•

Page

4. 1
4. 2
4. 2
4. 4
4. 4
4. 4
4.9
4.12
4.12
4. 13
4. 13
4. 14
4.15
4. 15
4. 17
4.18
4.19
4. 19
4. 21
4. 22
4. 24
4. 26
4.26
4. 27
4. 28
4. 29
4. 30
4.32
4. 35
4. 37
4. 40
4. 42
4.43
4.43
4. 45
4. 45
4. 46
4. 47
4. 48
4. 48
4. 52
4. 53
4. 55
4. 56
4. 58
4. 58
4.60

SJ>ecial o}>erator
SPACE •

Program assembly and operation • . • . • • •
1401 Tabular Programming System diagram •

•

• •

Page

4.61
4.61
4.62
4.65

CHAPTER I

A Tabular Form Language

Suppose you have been assigned to a team that is to
set up a data processing system for some application
in payroll, or inventory control, or utility billing, or
insurance, or even in an area of science or engineer
ing. What do you need to know about data processing
in order to use the Tabular Programming language on
such a job?

To begin with, we can mention a few areas of knowledge
that are not needed. You need no knowledge of electronics.
You need no knowledge of mathematics beyond high school
algebra (unless, of course, the problem itself is mathe
matical). With the Tabular Programming language you
do not even need a detailed knowledge of how your particular
computer system works. However, you do need to know
certain facts about data processing, and eventually, if
you work with the subject for a while, you will pick up
certain detailed facts about your particular computer - but
you do not need these now. For now, the general ideas which
you should have are discussed below.

A data processing system is composed functionally of five
parts, as shown in Figure 1. The input section accepts
information !lfrom the outside I II and converts it into the
electronic form in which it is manipulated and stored
internally. Externally, information is typically recorded
on punched cards, punched paper tape, or magnetic tape.
In some applications, printed characters can be read
directly. Presently-used business machines cannot recognize
handwriting or speech. The output section of a computer has
the obvious function of converting from the internal representa
tion to some convenient external form, such as printing, punched
cards, magnetic tape, punched paper tape, or a variety of

This introductory information is reprinted from the IBM
Commercial Translator Manual; it also seems appropriate for this
teaching text. n Tabular Programming" has been substiblted for
"Commercial Translator" throughout.

1.1

specialized media . Though the speeds of all of these
devices are much greater than those of manual devices)
they are still generally quite slow compared to speeds
of internal electronic manipulation. The kind and
number of input and output devices naturally depends
on the particular machine and its application.

The storage section of a computer serves two important
purposes. The obvious function is to hold the data on which
we wish to operate . A function less obvious to the newcomer
is to hold coded instructions which we place there to
specify the procedure we wish to follow . A collection of
such instructions is called a program. There are usually
two types of storage . One type, though very fast, is of limited
capacity and quite expensive; it is ca.lled main storage .
What is frequently termed auxiliary storage can hold much
more information, but is substantially slower .

STORAGE i
..

INPUT CONTROL

LOGICAL-
RITHMETIC

Figure 1. Schematic representation of the functional parts
of a computer

1.2

The last two sections of a computer are called the logical
arithmetic section and the control section. The actual data
processing is done in the logical -arithmetic section, and the
control section is needed to decode and interpret the instructions
in storage .

A most important feature of modern data processing machines
is the way instructions are held in main storage right along
with the data. For this reason we speak of a stored- program

machine.

The instructions which a data processing machine can
execute naturally vary from one machine to another, but
they can still be grouped into general categories . One
group is used for arithmetic operations, another for making
the elementary t1decisions II of which a data processing
machine is capable . Still another group covers input;

1.3

output operations and a fourth group carries out miscellaneous
control functions which are required because of the way the
machine operates. Most individual operations are quite
elementary J requiring a large munber of them be combined
pro:perly in order to carry out a meaningful data processing
task . This work, which follows the complete definition of
the processing task , is called programming.

Data processing requires an extremely precise statement
of the problem . We must not say "less than 30" if we mean
"less than or equal to 30. I I There is no way we can say,
umake sure the data looks reasonable II; if we want to check
the validity of data, we must specify exactiy what tests are
to be made on it.

With data processing, we are required to detail our procedures
in advance to a degree not found in other methods . If we were
asking a clerk to do .a job , we might end by saying, II and if
you run into anything you don't know how to handle, call me
and we'll figure out what to do ." In order to do a similar
thing with a data processing machine , it is necessary first
to define precisely what constitutes an exception, and then to
write a procedure to handle it.

Decision Tables

Of the various activities that go into setting up a data processing

procedure for a computer, the hardest is obtaining this precise definition

of exactly what is to be done under all combinations of circumstances .

Every step must be specified in detail . The conditions under which

1.4

each action is to be performed must be enumerated. The exceptions

to normal processing must be identified. The sequence in which opera

tions are to be executed must be precisely stated .

Determining what is required of the computer system is

called analysis; deciding just how to go about meeting these

requirements is the general area of programming; communicating

the chosen procedures to the computer is called coding . In each

of these areas a language is needed for defining the data processing

procedures . Ideally, a language should be suitable both for man-to-man

communication and documentation, and for man- to-machine communica

tion.

Many languages are used for these purposes. Procedures are

often communicated to the machine in a form closely resembling the

language of its own instructions, but this imposes a heavy and unnecessary

burden on the person writing the procedures, since human language and

the machine's language are quite different. Flow charts are widely used

for man- to- man communication and documentation, but they can become

confusing themselves in complex situations, and the flow chart language

is not suitable for communicati0IJ. with the machine. Logical equations

are sometimes used , but they do not display relationships in as graphical

a form as we might wish, and furthermore most system designers do

not find them to be a comfortable form of expression.

We propose decision tables as holding promise of meeting

all of these needs of a computer language. Decision tables provide

a graphical representation of complex decision procedures in a way

that is easy to visualize . They show alternatives and exceptions in

a much more explicit way than other langllatJ€s . They pres~nt

relationships among variables clearly. They show the sequences

of conditions and actions in an unambiguous manner , The language

1.5

of decision tables can be used equally effectively for system analysis,

procedure design, and computer coding . Thus, a computer procedure

written as a set of decision tables is , to a large extent , its own

documentation.

There is a growing body of experience to indicate that these

claims are justified . Those who have used decision tables say that

programming is much faster and that program checkout time is

significantly reduced . They say that the use of tables leads to

greater accuracy and completeness in problem formulation . They

say that program maintenance is simpler, and that a program written

in tabular form is indeed a powerful communication and documentation

device .

For all of these reasons , therefore, we suggest that you give

decision tables serious consideration . Your experience will help in

the evaluation of the concept, and will assist in improving its implementa

tion in terms of processors to translate from tables to computer instructions .

1.6

The Structure of a Table

To begin to see what decision tables are all about, let ' s look

at the simple table of Figure 2.

Rulel Rule 2 Rule 30

Age "" 25 '-"'25 ,:, 65
< 35 '" 35

I

I Health Excellent Excellent Poor
I

Section of Country East West West

Rate/lOOO 1. 57 1. 72 5.92

P olicy Limit 200,000 200,000 20,000

Figure 2. An example of a decision table

The first decision rule (columns land 2) can be paraphrased :

IL age is greater than or equal to 25 and less than 35, and health is

excellent, and section of country is East, then rate per thousand is 1. 57

and policy limit is 200, 000 . The underlined words are implied by the

table layout. The other rules are alternatives to this one, so that

logically, it doesn't matter which rule is examined first; only one rule

can be satisfied in a single pass through this decision table .

The information in Figure 2 is shown in an exploded view in

Figure 3, to show more clearly the parts of a table and the terms that

are used to describe them .

ENTRY

STUB
Rule! Rule 2 Rule 30 '

n . 1 --. " --I--I~7"'1
~65 I Age

1--.. ------
"'25 j ::,. 25

. ::?? ... ___ .. _ <3_5 -1-(4'
i \
'Health , CONDITIONS Excellent I Excellent Poor
L. __ -.... --.-.. -- \
!SeC[ion of 'Country \. \
, :\ \\

, '\\ ' , . '
'-'.. ' \ \,\

, " , ~" , , , . , '.

,
I

East I West
--·---- 1 H

/

._ .- - -1

West I
,---~

.../' ~-.- ...----
,.--::-:=---

RULE
" , -'" ----.·1 / U , , .:-...:---_

." \ , '-

- ----..::----~----- -- _----------------------~<,,-'~~----~ ~-~ 'l/ ,-"

t~t=:'~~~~- .. ---....
Policy Limit

\. ". "'- ',...... 1. 72 ·-~~7~ -- '-2~~~OO ~. ", ~: .. 5.~ .. '-'-1-2~O, o~o'- -l l / /0 I

200,000 . 1. __ ~4-.~1 __
ACTIONS

,
",_, ._..L __ ~---" .

STUB
ENTRY

Figure 3. Exploded view of the table of Figure 2.

1 '

~

....,

1.8

The double lines serve as demarcation: CONDITIONS are shown above

the horizontal double line, ACTIONS below; the STUB is to the left of the

vertical double line, ENTRIES are to the right. Each vertical combination

of conditions and actions is called a RULE . The essential nomenclature

is completed by adding at the top of the table a title section, called

a TABLE HEADER , and by adding a RULE HEADER over the entries.

Tables may be used in a slightly different way to state decision

logic, as shown in Figure 4.

l Rule No . 1 2 3 4

Credit Limit is OK y N N N

Pay Experience is Favorable y N N

Special Clearance is Obtained y N

Approve Order X X X

Return Order to Sales X

Figure 4. A limited entry table

The first rule (columns 1 and 2) is read: .lLcredit limit is OK then approve

order. Again, the underlined words are implied by the form , You may

note here than the form of the individual condition or action is somewhat

different. In a limited entry condition or action, the entire condition or

action must be written in the stub; the entry is limited to asserting,

reversing, or ignoring a condition or executing an action . In contrast,

1.9

an extended entry form (as in Figure 2) has part of the condition or action

extended directly into the entry . Both forms may be used within one

table) but anyone condition or action row must be of just one form.

You may note from this example that the basic concept of a

single rule in a table is quite straightforward , being based on the

lIii ... then!r relationship. lLA = B and C is greater than 5 and ...

then assign the value 7 to X and GO TO Table 10. The alternative

rules are implied; if the conditions in rule 1 are not met, then try

rule 2. If none of the rules succeeds, then the implication is that

something is wrong . Now if we have considered all significant possi

bilities , and we want to indicate, Tl Go ahead anyhow with a special

routine", then we indicate II ELSEn in the last rule; otherwise, we

provide for an automatic error routine . The flow chart of Figure 5

shows schematically the way in which a table is lT executed. I I

1.10

Rule I Rule 2 Rule 3 Rulen
.- 1/ }'y.(w .f - - -?- " Cond I) "\.

y I

Y y I
I
I
I

Cond 2 ~ (N __ iI

I
y y

I
I
I

Cond 3 ()!!.. ("- -j ..
y y y

~ 1
Action 1

Action 2 C
1

I
j , ..

Figure 5 . Schematic r epresentation of the sequence of tests and actions in
executing a table .

We shall see in the next chapter how it is possible to set up

many tables so they will be executed in the proper sequence to carr y

out the necessary processing .

•

-
-0'

1.11

The 1401 Tabular Programming System Processor

We spoke of the use of decision tables as a language for expressing

procedures to a computer . This is not literally true, of course : a table

cannot be directly executed by a computer . It is necessary first to

translate the decision tables into basic machine instructions . The set

of tables that define the processing to be done by the computer make

up the source program; this is translated into an object program -

consisting of actual machine instructions - - by a processor . It is the

object program that finally directs the computer to carry out the desired

processing of data.

The procedure for going from tables written on paper to final

problem results is shown in Figure 6 .

1. The first step is the one that is the primary subject of this

text : planning the procedure and writing it as a set of tables.

2 . Cards are punched and verified, producing the source program

deck . The processor program, which is itself a large set of computer

instructions, is also a deck of cards.

3 . The processor program goes into the computer and directs

the translation of the source program into an object program consisting

of computer instructions . The object program is punched out as a deck

of cards . There are also two listings produced by the processor, giving

information about the object program .

1. Fill oub
table forms

2 . Source
program and
processor
program on
cards

3. Process
source program

4. Object
program on
cards

abIes on
aper forms

(Source
Program)

Object
program

Listing

5. Execute
object
program

Disk
storage

Reports

/'

1401
Process
source
program

Object
program

140 1
Execute

object

Processor
program

1.12

Data cards

MagnetiC
Tapes

(As required)

pro~~

[ca_:_d_S _ _ ...J

Figure 6. The steps in going from decision tables to final results, using 1401 TP.

1.13

The processing is in fact done in two steps : one to go

from source program to an Autocoder program, (Autocoder is another

computer language, a level above basic machine language.) and a second

to go from Autocoder to machine instructions . Conceptually, however I

the two parts are not essentially distinct. As a matter of practical

operation, the programmer is ordinarily not even aware that an

Autocoder stage is involved, if the computer details are done by an

operator . Card handling procedures are described elsewhere .

4 . The object program is now available as a deck of cards; it

has not yet been executed.

5. The object program may now be loaded into the computer

to do the data processing specified by the original tables. It is only

at this stage that data cards are processed. Other computer components

are used as required by the program .

The machine that executes the object program need not be the

same one which processed the source program. Within certain limits,

the two machines need not even have the same features. The machine

configurations for each of these jobs are shown in Chapter 4.

SUMMARY

This chapter has presented the basic ideas of decision tsbles

in rather broad outline . The next step is to learn how these ideas are

implemented in the 1401 Tabular Programming language, which is done

1.14

in the next chapter, using a series of examples. The first ones are

quite simple; the later examples tie together the concepts introduced

earlier. To help you check your understanding of the concepts in

these examples I there are review questions following each example,

with answers given for all questions .

2.1

CHAPTER 2

Using the 1401 Tabular Programming System

The basic ideas of the IBM 1401 Tabular Programming System are

relatively easy to learn. This chapter presents these ideas in the frame

work of a series of problem situations, each chosen to illustrate a few new

concepts . At the end of the discussion of each situation there are some

review questions, with answers on the back of the same page, to permit

the reader to check his understanding of the material before proceeding.

This chapter does not discuss all the features of the language. In

particular it omits some of the details of alternative ways of doing things,

and it omits details such as the maximum permiSSible sizes of fields.

The complete information appears in Chapter 4. The reader may choose

to refer to the appropriate parts of Chapter 4 as he studies the examples,

or to give the current chapter a reading for the broad outline before be

coming concerned with the detsils in Chapter 4. The latter course is

recommended.

For a first example, consider a siruation in which it is necessary to

convert an automobile body classification from a code to a readable

abbreviation.

OP NA.ME OP NAME OP ~AME OF' NAME op 'NAME.

IT, Y.P.c.<IIU E,"", II, z. 3.
IS,"1; E,,,, \ CNVT .P!.L' \H ,~ ,D.:;-,~p ; S T.,,,,,".N

Situation l-- Procedure Description Table

The table on the opposite page can be interpreted fairly readily. In

English:

- If the type code of the car body is 1, then the model is a

convertible.

- If the type code of the car body is 2, then the model is a hardtop.

- If the type code of the car body is 3, then the model is a

station wagon.

In this table, there is one condition row (above the double horizontal

line): The action to be carried out depends on whether TYPCOD = 1, 2,

or 3. There is also one action row (below the double horizontal line):

set MODEL equal to CNVTBL, HRDTOP, or STAWGN, depending on

whether TYPCOD = 1, 2, or 3 respectively. Thus we see the basic idea

of a table, that conditions and actions are always related: if a specified

condition (or, more generally, a set of conditions) is satisfied, then the

corresponding action (or actions) is executed. A vertical column con

taining one or more conditions above the double horizontal line and one

or more actions below, is called a rule . Thus, Rule 1 reads:

If TYPCOD = 1, then SET MODEL EQ 'CNVTBL'

2. 2

TYPCOD is an abbreviated name for the data field containing the type

code; similarly, MODEL is the name of the field that will contain the

English abbreviation for the body type . TYPCOD and MODEL are variable

names; they represent variables consisting in this case of a one-digit code

and a six- letter abbreviation respectively. Furthermore, TYPCOD and

OF> NA.ME O F> NAME OP NAME OP NAME Op 'NAME

Ir,Y, D.(.0.D EG>, Iz. 13,

<;,E;T. IM4nE.L E./il \ C.NV"'[~L' \ ,H ,R~D';-, '" pi
--

, S T .A.V.&.N

Situation l-- Procedure Description Table

MODEL are names of operands--that is, information fields on which

operations of one sort or another are performed.

In the action part of the table, SET .. . EQ is an action operator which

describes operations to be performed on operands when the appropriate

conditions are satisfied. In this case, the action is to transfer cine of t he

2.3

abbreviations CNVTBL, HRDTOP, or STAWGN to the field named MODEL,

depending on which condition is satisfied.
, I , I r I

The words CNVTBL, HRDTOP, and STAWGN are not variable

names, but rather are literals, as indicated by the quotation marks.

The distinction between a variable name and a literal Is most important.

Without the quotation marks, Rule 1 would read:

If TYPCOD = 1, transfer the current value of the variable

(data field) named CNVTBL to the data field named MODEL.

This clearly is not the same thing at all as moving the letters CNVTBL

themselves to the data field named MODEL.

In fact, everything in this table to the right of the vertical double

line (the ~ part) is a literal : the 2, for instance, refers to the literal

value 2, not to a variable named 2. Short numeric literals are not written

wi th quotation marks since they could not be confused with variable names- -

which are not allowed to be pure numeric or even to begin with a digit .

Alphameric literals, on the other hand, must be enclosed in quotes to

distinguish them from variable names .

OF' NAME OP t;AME OP NAMe OP NAME Op ·NAME

Y,P,ca\O EoQ, II 12. 13.
Is,e,t I","nn IE,Q \ ,C,NoV:'- ,J> L ' \ I ' s:r ,,",,,,OJ

Situation l--Procedure Description Table

OF' NAME OP t;AME OP NAMe oP NAMe

lilA.! ,,,-

~
\ ,1\1 I , ,,.. I

IS,c,T,
l!:,""r, >r, lEI>. l"n~< T • or- DS

\J,g" ,T,*" L-:, [>PC.H, 1(, Il P,c.H. ,
. MOAn Irn n

" ,6 ,T6

Situation 2-- Procedure Description Table

This table describes a data processing procedure to be carried out,

and is therefore called a Procedure Description Table .

If you can correctly answer the following questions, you are ready to

proceed; otherwise, some review will help you to understand the later

material more quickly. Answers are given on the back of this page.

QUESTIONS

1. List the variable names in situation ill.

2. List the literals.

3. What is the dlifer ence between a variable and a literal ?

4. State Rule 3 in words.

5. What is an action operator?

Situation il2 involves a utility billing procedure. The bill s tub that a

customer returns with his payment has punched in it a net amount and a

gross amount. Befor e t he bill stub goes into the computer sys tem, t he

letter N or G is punched into the card to indicate which amount was paid;

it is then unnecessary to punch the amount of the payment.

In English, this table reads :

2.4

Rule I : If the card field named PAID contains 'N' (for net), t r ansfer the

customer 's name from the car d input field named RDNAME to the card

punching field named PCHNAM, tr ansfer the field named RDNET to PCHAMT,

write (punch) a card, read a card, and finally GO TO table 006.

Answers - Situation I

1. TYPCOD, MODEL.

2. 1, 2, 3, 'CNVTBL', 'HRDTOP', 'STAWGN'.

3. A variable is referred to by name, wher eas a literal has only

its actual value, and does not refer to anything else.

4. If TYPCOD = 3, set the variable named MODEL equal to the

letters STAWGN. Stated otherwise: If TYPCOD = 3, transfer the literal

'STAWGN' to the field named MODEL.

5. A command to perform some action on one or more o:perands.

OP N~ME OP NAME OP NAME OP NAMe.

~a I~ '" \ .>.! ' , .&'
I<; .E".T I~. '" '''N'''''~ .
I< .~.T. IDr, I~." lonNET . r s

"'.0 " ,T,,,", ',npc~ Ic,npr ,
I. __ ft

(Me An, Ie O.Q ,~.A. n
Ic;.,of, ,T ""

Situation 2- - Procedure Description Table

r

, ,
Rule 2: If the PAID field contains G (for gross), carry out the same

actions as for Rule 1, except transfer the gross amount from RLGRS to

PCHAMT.

The condition row in this example is 9uite similar to that in the previous

example, with just one difrerence: :::;,inCe tile literals are alphabetic they

must be enclosed in quotes.

The SET . .. EQ action operators in the first two action rows are the

same as before . The WRITE operator, however, is new, requiring the

introduction of some new terminology .

We have seen that a variable data field contains a value. A record is a

collection of variables, and a file is a collection of one or more records

associated with an input or output device. In this situation, WRITE CDPCH

specifies writing a record from the file named CDPCH on the card punch,

or , more specifically, punching a card containing the customer 's name

and the amount paid. To summarize: the WRITE operator r equires a file

name for its operand; the operator calls for the output of a record from this

file .

A data description table is requtred in every program, to give the

processor a variety of information about the variables, records, and files

in a program. The data description table for this situation, for instance,

would specify that CDPCH is the name of a file associated with the card

punch. We shall investigate the contents of a data description table in a

later Situation, and see how to fill it out.

2.5

OP NA.ME OP NAMe OF' II"",,! OF' NAME

~1r'T
iW"TTl IILQ ' ,N I ',& I -',Q ,

., .U IF,a '" >< T • or.. DS

\",p" ,ToE, : ,npC,H, '.np., .. ,
• ~O~An Irnp . .n

k. .. ,T'& IT.A ,

Situation 2--Procedure Descr iption Table

r

-

2. 6

The READ CDREAD action, in combination with information supplied by

the data description, means to read a record (card) in a file named CDREAD.

This action reads in new values of the variables named PAID, RDNAME,

RDNET, and RIX7RS (as would be indicaied in the data description).

The last action is another new one, GO TO. This causes a transfer of

control to the table identified by the operand. In this case, we assume

that the current table is table 006, so this same table is simply repeaied

with new values of the variables. A GO TO always transfers to the beginning

of a table; there is no provision for executing just one rule of a table, for

instance. The table to be execuied at the beginning of a program must be

given the number 001, since table 001 is automatically carried out first.

We are ignoring here the question of how to read the first card. This

would be handled easily enough by an unconditional table, of which we shall

see examples in laier situations .

QUESTIONS

1. List the variable names in this table.

2. List the file names .

3. Can we iell, Simply by inspecting this table alone , that RDNAME

is a variable and CDREAD is a file?

4. What would happen if the READ and WRITE ac tions were

inierchanged?

5. What would happen if the last action were GO TO TAB941 ?

Answers - Situation 2

1. PAID, FCHNAM, RDNAME, FCHAMT, RDNET, RWRS.

2. CDFCH, CDREAD.

3. Yes, but only by implication: the operand of a SET act i on cannot

be a file name, and the operand in the READ and WRlTE action must be a

file name . The Data Description, if it had been shown, would of course

have left no doubt.

4. The order of card reading and ptmching would be interchanged.

Actions are always carried out in the sequence in which they ap'pear in a

table , from top to bottom.

5. Table 941, whatever it might be , would be executed next.

op N" ME op NAME OP N ME 0. NAME 0, NA.ME OP NAME

•• l E ,X LE , '" ."

S " 'Q 'M' , , '
A C,DNTS E 0 .R 0

' ,T, ArE 5 (~A C. , - R C

S.<.T, p,v,ftA'" E Q ' ,HE H UH T,E,

""R,IT E ,,.T EC.D " Ix ,

Situation 3--Procedure Descr iption Table

Situation #3 involves an automobile insurance liability rate computation,

and introduces several new ideas in table structure .

We have here our first example of a table in which more than one con-

dition must be satisfied for the actions in a rule to be executed. The con-

dition part of the first rule, for instance, asks, "ls the applicant male and

less than or equal to 25 years of age? " The blank entry in Rule I for the

accidents condition row means that the condition is not relevant for this

rule : a man of 25 or under gets the risk factor RSKF AC added t o his rate

regardless of his driving record.

Notice that there is no combination of age, sex, and accident record

that satisfied the conditions of more than one rule . This is a requirement

of the system: the conditions must be set up so that at most one rule is

carried out each time a table is executed.

This table introduces three of the relational operators: EQ, LE, GR

The six available relational operators and their abbreviations are :

Equal
Unequal
Greater than

EQ
UN
GR

Less than (lesser)
Greater than or equal to
Less than or equal to

LR
GE
LE

These operators are to be W1derstood in the sense of a question to which

the answer can be only yes or no. The first condition in Rule 1 thus reads:

"Is the age of the applicant less than or equal to 25 years?" If the answer

2. 7

is flyes, n the condition is satisfied. This way of viewing relational operators

allows a simplification of the writing of conditions , as we shall see in a

later situation.

OP N"ME OP NAME OP NAME OP NAME 0, NAM E OP "-lAME

OE L , •• 5. LE ~ U. u.
SEX 'Q • M' • F '

ACDN T S E 0 .. 0

E.T. H.Ec RS':f'"AC - .$p R F C

S •• • T. IP,U,R II ,. E Q I.,.'" '.M .• A"" I~.H'

..... ,',T £ IRA T EC ·O , X ,

Situation 3--Procedure Description Table

The SET operator has a new twist here: it is used as a two- address

arithmetic operator . It is assumed that the RATE has already been

computed in a previous table; the table here merely applies special factors

if necessary. Rule 1 then says (if the conditions are satisfied):

Set RATE = RATE + RSKFAC

In other words, the risk fac tor is added to the rate already in core

storage. In Rule 2 there is no second operand for this action, so nothing

is done to the rate; likewise in Rule 4. In Rule 3, the action specified is

to subtract a special rate factor from the previously computed rate . Note

that the EQ is omitted when SET is used to perform arithmetic .

The second action row contains nothing new. The rate, as modified

by now if Rule 1 or 3 is being executed, is moved to PURATE, a field in

the punch area of storage .

The third action is new , but only in format. Since the same action is to

be carried out for each rule, we write the complete action specification

in the stub part of the table (to the left of the vertical double line) and

place X's in the entry part to indicate in which rules the action is to be

executed. This is called limited entry; the format of the previous tables

is called extended entry J since the operand is trextendedll into the entry

portion of the table . The second action could also have been written in

limited entry fashion, with SET PURATE EQ RATE entirely in the stub,

and XIS in the nopn fields of the entries . If an action is not to be executed

for a particular rule then the X should be omitted.

2.8

OP N"""E 0' NAME OP NA ME OP NAME O. NAMe 0, NAMI!

iP,G' L , • .s, L E ~ ,t.<, ",s.

S e< 'Q
,

• F '

AC. ,PN T S , 0 •• 0

AH RSKF:IIC. . ~f.RF.A , C
;,C,T , AATE '. I,'," I,U" ATE " • ["ATU ' X X, ,

Situation 3--Procedure Description Table

OP N"ME OP NAME OP NAMe 0' NAME 0, NAME OP """ME

SoT" Y,' ,0, 00 • ,,' . E l"~J'

S,H,AR'S "R. 00000

S,U YPE < ,0 , ' 1.N.o.I" I 'B,iN,K I \ .8 .1\ .0 Ie E t

',' ,Y' S,i ,IeVA. Ir,o, I",ALUE I Iv.A L u,f .i! Iv... u '-'.
S,P.A,c " , ZLl .N' S I.,

~

R,l:TE .E P.t!.R 1
,, ~ ,T ,O, T

Situation 4--Procedure Description Table

r

The SET operator has a new twist here: it is used as a two- address

arithmetic operator . It is assumed that the RATE has already been

computed in a previous table; the table here merely applies special factors

if necessary. Rule 1 then says (if the conditions are satisfied):

Set RATE = RATE + RSKFAC

In other wordS, the risk factor is added to the rate already in core

storage. In Rule 2 there is no second operand for this action, so nothing

is done to the rate; likewise in Rule 4. In Rule 3, the action specified is

to subtract a special rate factor from the previously computed rate . Note

that the EQ is omitted when SET is used to perform arithmetic .

The second action row contains nothing new. The rate, as modified

by now if Rule 1 or 3 is being executed, is moved to PURATE, a field in

the punch area of storage.

The third action is new, but only in format. Since the same action is to

be carried out for each rule, we write the complete action specification

in the stub part of the table (to the left of the vertical double line) and

place X's in the entry part to indicate in which rules the action is to be

executed. This is called limited entry; the format of the previous tables

is called extended entry, since the operand is "extended" into the entry

portion of the table . The second action could also have been written in

limited entry fashion, with SET PURATE EQ RATE entirely in the stub,

and XIS in the "opr fields of the entries. If an action is not to be executed

for a particular rule then the X should be omitted.

2.8

O P N ~M E OP NAM E OP N M E 0 . NAM! O. NA M E OP NA M E

OE L E H LE " HS, U ,

SEX EO
, ,

" '
ACPNTS E 0 ,,0

ET ATE RS ,;-F"G - SP"FA.C.

S,<,T, Ip,\J,A A"T E EO T< .n , .. .,.. IR.\, T,E,

!.i,' ,I ,TE A,ToE,C,D, • I • ,

Situation 3- - Procedure Description Table

O P NA.M E OP N AME OP N AM E 0. NAM! O. N", M !. OP NAM E

's ,T ,KT Y, P, ,0 . 0> • l. , E,L,S,'

SoH.AII'S ,.R 0 0000 y

$., 'T yp , ' . f .ND.:!1/ I , ' ' .S.R. .61C" 11

" ,Vi ',0, ALUf I kJ. ... L U.l .':: u.,.
S,P""C,E, L.1.tH S I., ~ ~~~

,/,R J T E: ·,p'(M r

.. "" .T ,O, T

Situation 4- - Procedure Description Table

,

2.9

The limited entry technique provides no capabilities not available

with extended entry, but the simplication of the table is often a convenience.

The next illustration shows how limited entry can also be used in writing

conditions.

QUESTIONS

1. State Rules 3 and 4 in English.

2. List the literals .

3. List three variable names in the condition area, and

two in the action area of the stub.

4. Does the blank in action 1, Rule 2, mean that RATE is set

equal to zero?

5. Could action 2 have been written in limited entry form?

What would this have gained?

Situation 114 example uses limited entries in another way, and intro

duces two new action operators. The application is the preparation of a

stock classification listing.

This table again exhibits multiple conditions, but this time one of them ts

is in limited entry form . The second condition s tub asks : Ills the number of shares

greater than 100, OOO? " To satisfy Rule 1, the answer must be~ In

Rule 2, with its blank for this condition, it doesn't matter . In Rule 3, the

answer must be no in order to satisfy the condition-- that is, the number

of shares must be equal to or less than 100,000. (Note that numeric

literals in a table must not contain commas .)

Answers - Situation 3

1. Rule 3: If the applicant is over 25 and has had no accidents,

regardless of sex, subtract the special rate factor from the previously

computed rate , move the new rate to the punch area, and punch a card.

Rule 4: If the applicant is over 25 and has had any accidents,

regardless of sex, the previously computed rate is used unchanged. The

rate is moved to the punch area and a card is punched.

2. 'M ' 'F' 0 25 , " .

3. ACDNTS, SEX, AGE : RATE, PURATE. (RATECD is a file

name, by implication: the operand of a WRITE operator must be a file

name.)

4. No. A blank in an action operand field means that no action is

taken.

5. Yes, saving a little writing and making it apparent at a glance

that the same action is done in each rule.

0. N"ME OP NAME OP ""Me 0. NAM! Op NAME OP NAME

S.T .Io;T'f.P. '.0. 0> < 'J. . "
S-'"4.ARE S , .•. 00000 v

$. v yp , N I V ' NK' ,
fl..flCElI

<d.H I.T".VA," T .• . VLI+...t. U E I AL.VE~ 0"'.
S.P"".,.<. , .loW'S ! • • l~ ~ .~~

~.R 1:T E .E Pl~.R 1

,. ~ .T.' . T ..

Situation 4-- Procedure Description Table

The three rules here do not exhaust all the combinations of the vari

ables in the conditions. For instance, the stock type might not be 1, 2,

or 3, or even if the stock type is 1 the number of shares might not be

greater than 100,000. In this table. we have provided for such possibili

ties with a special "condition" called ELSE. This rule says what to do if

none of the other rules can be executed; here we simply say to go to

another table to handle this possibility. In this example, it is reasonable

to expect that it will frequently happen that none of the other rules will

be satisfied, so that the ELSE is a more or less normal occurrence . In

other tables, failure to satisfy any of the rules might represent an error

in the logic of the table or in the data. In such a case we might not pro

vide an ELSE; now, if no rule is satisfied, the program proceeds to the

error table named in the table header, which we consider in situation #6.

The first action operator in the procedure table is a familiar one, in

this case setting a print field equal to an alphameriC literal.

The second action operator is a new one, MOVE ... TO. This is the

opposite of SET ... EQ: It moves the quantity specified by the first operand

to the field named in the second operand. The difference in usefulness of

the two operators may be stated as follows : SET . .. EQ is valuable when

one of several quantities in the second operand field is to be moved to the

first operand field; MOVE ... TO is valuable when a quantity in the first

operand field is to be transferred to one of several fields named by the

second operand.

2. 10

O. NAME OP NAME OP HAM E OF NAMe: op NAME OP NAME

S ,1 ,", Y, P, ' ,0 . 01 < >J, f L.S.~

SHARES ; .•. 00000

$.",1 YPE E,O, ' ,INP,I" I 'B).,tJK 1 \ ,5 ,11, ,1',/11(e 11 ,,,,V, 5,T,',v A L r,rj, V,ALUE I MAl.lJfi! V.U U' ,>.
S,P.II,G,E, ZLl.NES Ix ~~

~,R I:r E .Ii P,rJ,R 1
... ,T,O,

Situation 4- - Proce dure Descr iption Table

'0 I • , ,. 21 Z2 2 3t 55 ..
NAME lI,mGt ." .~ DESCRIf'TION

.~ I I

C I I

~ I . I

'"' I I
5 ,7,<7 Y p 10,D2 00 I I

' S,H,A,~ E S 008 O. I I

STKV.AL 008 o ~ I I

;-, , I I

<, I I
....

I I

"T~PE: 00& 00 I I ,

\/,A,L ,U ,E I 011/ 00 ' , ~ In .
,

I

V.A,," ," ~ ,2 o I . ~ Do ' ,I. '1 0
,

1 .
:/, I I

'2. I I

Situation 4--Data Descr iption Table (incomplete)

r

r

The third operator is new, but fairly obvious . SPACE 2UNES

causes an immediate space of two lines. One, two, or three lines may

be spaced with the space operator. Spacing is independent of the WRITE

operator--that is, in 1401 terms, an immediate space is performed,

rather than an after- print space. This action, and the writing that

follows it, are in limited entry form.

The data description for the variables in this table introduces some

additional processing that is not evident from a study of the procedure

table alone. Consider the variable descriptions shown in the data de

scription for Situation 414 . The first three describe the variables STKTYP,

SHARES, and STKV AL. For each, the V establishes the description as

that of a variable. The N means that the variable is nlll'rieric. For

STKTYP, the integer length is 2 and the decimal length is zero, meaning

that the quantity has two places to the left of the decimal point and zero

places to the right. In other words, STKTYP is defined as a two-digit

integer . In a similar fashion, SHARES is defined as an eight- digtt integer.

STKV AL is defined to have eight places to the left of the decimal point and

two to the right.

The other three variable descriptions are for the variables in the

printed report. TYPE is established by the code of A as an alphameric

variable. For VALUE 1 and VALUE 2 there is a code of M, which stands

for masked. and the masks themselves are written in the description

field with quotes . Masks are used to insert punctuation and to delete

2.11

'0 , • , ,. 21 Z2 2 3Z 55 .,
NAME INTEI;f. DEC II DESCRIf'TION

.~ 1 I

.c' I I

c' I I
/'

I 1

I<:T K"f Y P 100" 0 0 I I

IS.H .• .•• 5 DOe 0 0 I

15 T K.v .A L o 0 ~ o Z. I I

.,-, I I
::; 1 1
<..

'1 I .

T~P .:: D O ,~ 00 I I

V.ALI EI 0'" 0 0 ' ~ In
,

I .
V,AL ,U,E " o , , ~ Do ' ,I, '1 0

,
I

:/, I I

2 1 I

Situation 4--Data Descr iption Table (incomplete)

,

leading zeros before printing. Masked variables are handled in a

special way by the object program: When a quantity is transferred to a

field that has been deSignated in the data description as masked, the

mask is first placed in the field and then the quantity is moved. This

double action gives an edited field as an end result. Observe that the

2.12

use of a mask is specified in the data description; there is nothing in the

procedure description to indicate that masking is to be done.

A more complete explanation of how masking operates may be

found in Chapter 4 of this manual. For a quick indication of what

masking does, we may note how a few numbers would be printed under

control of the mask in .this situation.

Number

1234567899

0012345678

0000001234

0000000000

Printed as

$12, 345, 678 99

$

$

$

123, 456. 78

12. 34

O. 00

OP N"ME OP NAM E OP NAMe 0. NAM! O. NAME: 0. NAMe

s.T.KH.P. ,.0. " < 'd. E l,S.'

5 ... R" S , .• 00000 V

$.'i." yP' '.a. 'IN.D,IV' ' BA,rJ,r/ \ .8,11,," K E 11

,j,V< S,U,V, ," r.lII. I/,ALUE J v,,,, L 1I,E,C: y,,", u'.>.
S,PA.C". 2l.1 ,NES Ix

~

i.MR t:r E: '£p.~.R 1

",. .T.'. ITA'.,~3.

Situation 4- - Procedure Descr iption Table

'0 I • 1 I. ;1.1 Z2 2 3t 55 <2

N.AME INTEGE ." I~ DESCRIPTION

~ I I

.C-: I I

C I . I
--' I I

S.T,<T Y P 10 .0 Z 00 I I

IS.H.A .R • 5 008 00 I I

STl(vAL a 011 a Z I I

;--, , , I I

<, I I
"- I I

T y: Pi:: 006 00 I I

V.A,loU,E I all/ 00 ' ,$ In
,

I

V,A.,L ," E.2 01 .' Do ' .S . '1 0
,

J .
:-7. I I

L. 1 I

Situation 4-- Data Description Table (incomplete)

r

QUESTIONS

1. State Rules 2 and 3 in words.

2. What is the difference between the SET and MOVE actions?

3. What is a mask, and how is a mask specified?

4. State the distinction between a procedure description table

and a data description table.

5. What is meant by an ELSE condition?

6. What three letters can be used in the "code" column of a

variable description, and what do they mean?

7. Must there be a Y or N in each condition entry space of a

limited entry condition?

Situation j/ 5 requires the preparation of a listing and summary

from information on a magnetic tape. Ea ch tape record contains the

following fields .

Field Length Type

Customer number 6 Numeric

Part number 6 Alpha

Description 17 Alpha

Quantity Sold 5 Numeric

Total Price 6 Numeric

The tape records are in ascending sequence on customer number.

2. 13

Answers - Situation 4

1. Rule 2: If the stock type is 02, set TYPE equal to 'BANK: move

stock value to VALUE2, space two lines on the printer, and print the

r ecord named REPORT.

Rule 3: If the stock type is 03 and the number of shares is not
, ,

greater than 100, 000 set TYPE equal to BROKER, move the stock

value to VALUE2 , space two lines , and print.

2. SET tr ansfers the value of t he second operand to the first; MOVE

transfers the first to the second.

3. A mask specifies the insertion of punctuation and the deletion

of leading zeros (plus certain other operations not discussed here). That a

variable is masked is denoted in the variable description by a code of M;

the mask itself is also entered in the data description.

4. The procedure description table specifies actions to be carried

out, as selected by stated conditions; the data description table specifies

the characteristics of the data, intermediate values, and results .

5. It designates the rule to execute if no other r ule is satisfied.

ELSE must therefore be the last- tested condition.

6. N for numeric J A for alphameric J and M for masked.

7. No; it may be blank.

I I

NAME 'E< DESCRIPTION

IT U" liT In4 C 10 I IT."" I TN '"" ~ TA" I? t I

,~ n In < I I

IT r. U< T In ,., , In n I I

l",p.AR .T . I~ ro In n I I
IT "~ • , I" , ID" I I

I_~~~ 1".".< 10.0 I I

ITO .• , .1". In , I I

Situation 5- - Data Descr iption Table

2. 14

A report is to be printed, witb tbe information in each tape

record becoming one line on the report. -The items are to be spread out

for readability, and tbe price edited. After pr inting all tbe records for

one customer, one line will be spaced, the total price of goods sold to

tbat customer printed, and tbe paper advanced to tbe top of tbe next

page. The process is tben repeated for tbe tape r ecords of tbe next

customer .

Two external files are involved in this application, one associated

with a tape unit and one with the printer. Two other IIflies II are set up

in core storage, to meet a requirement that every variable be a mem

ber of a file .

The first line of the data description table is tbe file description

for tbe input data, which is assumed to be on tape unit 1. Reading across

the line, the meanings of the var ious entries are:

F Identifies tbis description as tbat of a file .

INPUT The name given to tbe file .

040 'Ihe number of characters in tbe longest record (tbe only

record, in this example).

01 The number of types of records in tbe file.

M Reading is in tbe Move Mode - a 1401 detail.

TAPE 1 IN The tape is mounted on tape unit #1, and tbis is an input

file .

EOF TAB123 When tbe end-of- file indication (tape mark) is reached, go

to table 123.

'0 , , ,. 21 12 2 1Z 35 •
NAME INTEGt DEC I~ DESCRII'TION

TINPll7 In40 01 CrAP£.1 IN £I¢.F .T.A.8. 1 '.1. I
IRI 1040 oS I I

TC.vS"T to.D .• In Q N I . I
T.P.A .R T 10.0.6 o OA I I
TQ£SC 0' 7 DO I . I
T"~y. 00.<' DO N I I

T .P .'. l .C. ' 00 .• 02 N I I

Situation 5--Data Description Table

to / b I 19 ~~' 1!i"!Ji2~====:J'!r'l!"C====3.illijc====::m
NAME INTEGt OEc.lif OE.SeRI ~TION

IR.oPORT :<? 2 PRr~T£R I I •
. I

ID '.u .S.7. 0 .1 0.0' "4' 'Ij . ~l I I

Ip.PA.R.T 0.1100 I I I

IpJ>.f. S.C ' 2, 0 0 I I I

I""'.TY. 0' 0 .0 '.o.t.ta .•. ;l I

Ip.P.R.l.C E 0. 1 DO '.1. 0 I f.lI.i.a."/ I I

IPT.<2i.1ALIl. i .lO,o ' .t .. 0 . · 1 I I

f) .S ~ 0 .0 c' I I I , I I I I
I I I

I

, I

Situation 5- - Data Description Table, continued

The second line is a record description for the one type of record

in the file. The name of the record is left blank here - this record is

never referred to by name. The record contains 040 characters and

05 variables.

The variable descriptions are not greatly different from those we

have seen before. All the names have been chosen to start with a T,

to remind · us that they are part of the iape record. This will make

clearer the distinction between the variables in the iape record and

those in the printer record when studying the procedure description.

2.15

The printer file description and the associated record and var

iable descriptions are similar to those for the iape . The main

difference is that masking is used extensively, partly to insert

punctuation and suppress leading zeros, and partly to obtain extra space

at the right of the printing fields; this latter is the function of the

ampersands <") in the masks. To obiain extra space for the alpha

meric variables, which cannot be masked, the field sizes are made

five characters longer than the variables to be printed.

Notice that after the variable named PI'OTAL there is a variable

with no namE'. This is called a preassigned variable since there is a

"value " given for it, although in this case the value consists only

of the 53 blanks required to fill out the printing line to 132 characters.

Observe that the blanks are enclosed in quotes, and fuat a "C" appears

in the continuation column of the first line to indicate that the value is

continued to a second line.

• , • , • • n
Iol"'M I! .. ~ .. , OE!iCRIPT 10N

R< , I I

I.n · I I

V ,".' .r . ,0 , I I

0 · I I

I.H .' . \ 1 .O.A. • . SA. ' • . , . "C, • ;
,

13 .. , I

0 , I

B.uN,'
, ,
, I !
, ,

Situation 5-- Data Description Table, continued

OP NA....."E OP NAME OP NAME OP NAME

IT,e,u.s r §GJ 1r..u.s .T. y , N,

'M,dlv,E; IBLAN,KR, w;: L I ,ME x ,
<;,!;,T, P,T,d,T,A,L ~,Q, fr,M A L X
SP/I,C,E LI tJ e)(, ,

tJ,R r T,£, REP,IM,T, , X

MQ, ~,,, iRL.A.NKV "',d, Ip:r:IJ,"T,A.L x
S,P,A.G, E, 0\ C,Ii,AN x .

S,E,~ p,C,U , ~'-; <;,0 h;c u ST X, X,
<; .E:r, PP"RT E ,r), lr;p,AR,T)(lx,

~.,. 'P,D,ESt:, Q, IT.D/Os.c, i.. lx ,
SET: P,Q T,"': ~, r), 1r.(;l,T,~ lx, lx ,
5,[,T, P,P,R, I G EO E.Q cPR I C,E; lx, Pc
,""R,t ,ToE R,T , , lx, lx,
S,\;,T, .r.0.T,,,-L 11P,R,1 ,~ , £: E~ Ir:PR.l.G,E:
SET e.u.S,T. :,Q, rr.C u,s. T Ix
.... n . TI NPUT lx, Ix.

G, ,0, ,T,(;\ .,. ",R,,, ~' o X lx ,

Situation 5--Procedure Description Table

2. 16

This file description contains a second type of record, consisting

also of 132 characters. This record is used to contain a line of instruc

tions to the computer operator, that is printed at the completion of the

job.

The third and fourth file descriptions are for core storage llfiles. It

These are not files in the same sense as the others, since they are not

associated with any input or output devicej they are set up this way for

consistency, and to satisfy the requirement that every variable be a

member of a file . Notice that the two files are not named, and that the

record in the first file is not named. The second file and record have been

set up to handle a situation that arises in the procedure description,

to which we now turn.

The procedure description should not be difficult to follow, with

the file and vartable arr angments now clearly in mind. Recall that we

must list each tape record and print a summary line whenever we reach the

end of the group of records for one c_ustomer. The only condition, there

fore, is whether or not the ta.pe record most recently read is for the

same customer as the previous one. If it is, we move the information

from the tape record to the print record, print it, add the price to the

total, read another tape record, and repeat (go to) this table.

If the customer number in the tape record is not the same as the

previous customer number, we prepare to print the total for the previous

OF' NAME OP NAME OP NAME OP NAME

IT:c.u.s r: :.U.S.T. Iy, /I,

IM.tt.V.E IRLAN.KR. L.1.w.~ x.
I~ . <.T. P. T.d:r. A L ..Q. ·r~ . 1 A L X.
SPA.C f L I .r-If X.

" ,R! T,E, R oP.';.R.T. X.
- , ISL,A.NKV IT.~ P.r.d.1.A.L X

, ~ ..•. In \ c.H.A.N Ix.
51'.7: , 10. '~ . o. TCUST Ix. l><
$,E.l . RRART E.Q. I;;p.A.R:r X Ix.

"T Ip,D,ESC. H). IT.oo; .sc. ')(. be
SET: P.I:l.T.V. E.Q fcGlT.y. ~ . Ix
~ .E .T. lp.p.R.1 C E" E.Q Ir.PR \ C.f; X. ~

"'.R.t .T.E "R.T . X. x .
;;,T, .f.rAT L r.p.".I.C .e: E,G tP.R.l .C.E;

SET ,,~ r;;.Q. rr.cu . .s. T)(. x .
Il.EA." . 1! NP.u.T. X. x.
G. .fl .. T.<~ .,.. "-,, <Co X X

Situation 5--Procedure Description Table

•

.•

customer. In order to do this, it is necessary first to clear out the

previous detail line contents . This is done here by moving a record

consisting of all blanks to the record in the printer file. We see that

the MOVE ... TO operator applies to records as well as variables;

2. 17

this operator , SET ... EQ ... , and LAYOUT are the only three that do

apply to records . We next put the total for the previous customer group

in the print record, space a line, print, blank out this total so it wonrt

print in the following detalllines, and skip to the top of a new page .

This last is done with the SPACE operator , using an operand that refers

to the carriage control tape on the pr inter . When all this has been done,

the first record in the next customer group is still in the tape record area,

and has not yet been processed . We therefore go ahead and process it

just as before, with one difference: instead of adding the price to the total,

we set the total equal to the price . This has the effect of discarding the

pr evious total , which has by now been printed and is no longer of any use .

One table remains : the one that is executed when the end- of- file

condition is detected on the tape , indicating that no more records

follow . In the file description for the tape we specified that the end

of- file table (EOF) was 123, which will automatically be executed on a

GO TO basis . When this happens, where are we? Looking back at

the main table we can see that the last deteil line will have been

O P N M E OP NA ME OP NAMe

!M,o\,V" Ie. "lk.R '1:'" LUI E Ix.
ET Ip,T,O,TA,L !',G. Ir,<h.?" AL I~ ,

S PA r." I L.I N,", b<
"",R,r ,1 ,E, "f P,J,R" ~ .

C Lo ll,s ~ 1 . r ·N Pu T ;(.

S ,P,Ar. e- 0·1 C HAN X,

L A ;(,<J"U T F,r N.A L "-
<.E'.T. · ·llo1.· ·L .": . E'" •• S' , , X .
.. >0 1 E I" .EP .• R,T . bt ,
I"PA C £; 1n,J ,r., >-I.A N Ix
G,,", r.aJ bc'+,A, <,nIlJ? 1<

Situation 5- - End- of- file Procedure Descr iption Table

r

2.18

printed, but not the total for the last group. In the EOF table, therefore,

we begin by setting up and printing the total. Next we CLOSE the tape

file, which rewinds the tape. After this we skip to the top of a new

page, and prepare to write a line of instructions to the computer

operator. Now we face a problem, however: we would like to move a

whole line of comments, with no regard for the previous arrangement of

fields but the previous word marks are in the way. To reset word marks

for the new record, we use the LAYOUT operator, naming the new

record. This clears previous word marks and sets the new ones. Now

we can write the message, feed the paper, and STOP.

This is an example of an unconditional table, since it has no

condil:ons . Such a table can obviously have only one rule, with the

actions simply being carried out in sequence.

QUESTIONS

1. Must every file, record, and variable be given a name?

2. Are TPRlCE and PPRlCE the same variable?

3. What kind of operand is required with the LAYOUT operator?

What does the operator do?

4. How do we indicate the procedure to be followed on an end-.of- file

condition?

5. What is an unconditional table?

AnsVlers - Situation 5

1. No. Input and output files ordinarily have names, since

the READ and WRlTE operators r equire file names, but names may not

be required for r ecords (frequently) and variables (occasionally).

2. No. From the standpoint of the application they are the same

quantity, but in terms of the Tabuiar Programming System they are

entirely different: different names , different storage locations, different

records, and different formats (since PPRlCE is masked).

3. A record name. The core area for the file of which the record

is a member is cleared of word marks and the proper word marks for the

new record are set.

4. By writing the end- of- file table number in the description area

of the file description.

5. A table with no conditions and only one rule.

I"~' I"" ",",.rm:; I ~
I~ •. : ~ .I!t ~"'XL

"., ItlEN"T O<ttlI:R 01" R VI.W.$

~
011: 0 r •

•
liNE IO(... T t COMMIINT

0.",*,.' NOT,£, IT.H,t ,s r:A,IJ~,£ 1U,I',E,ilt..S U .T .•. ,", , ll.'.' .. oN •
COl. 01 C:OI. 01 ""'I. 0 5 ",. ..

"
,

0. N#.""'f. o. NAME OP H#.M E 0 NAMI 0, NAME OP "'AM~

c •••• , , , , , ,
. , , ,

, 0

,.oM.

". ' < irA

Situation 6--Procedure Description, Table Oll

r

2.19

Situation #6 outiines a stock and bond purchase procedure, the method

of which will be clear from the tables themselves as we proceed.

The Fl'ocedure Description Tables are shown with table headers ;

every table, whether procedure or data description, must have a header .

The table header provides to the Tabular Programming System process

or certain identification and control information, as nlay be seen by

inspecting the example.

While most of the information in the procedure description header

has an obvious purpose certain items require further explanation.

"Next Table" is used to designate the table to be executed next

in the absence of a GO TO in the table actions for a rule. Even if every

rule contains a GO TO, however, something must be written in the

Next Table position. If there is a choice as to which table number to

enter, the table most likely to be executed next should be specified,

this may speed the execution of the program. HError Table lt is used

to specify the number of the table to be executed if no set of conditions

is satisfied. Since such a situation indicates an error in the data

or in the logic of the table ilseif, the word STOP can be written.

nOrder of Rules " can be used to indicate the order in which the

conditions should be tested, if they should be tested in some order

other than the normal left- te- right manner . The idea is that to con

serve time in the rwming program, the first set of conditions tested

ought to be the one that is most likely to be satisfied . The programmer

will often write the rul.es in this order anyway, but if after filling out

~
DATE I

~~ ,.,b .• . ,. '" "

""' !DE"" OI:l:DEIII: 0" RUl.tt$

o 0, Oil D I'll , , . I . I , r , " .
~lt4f '" IDf",T C O M 1-'1 II N T

'0 .. N O"Ttt 1", .1 IH .I<: ,. 6:" £.11.$ or · D.~ r " ., , ,
C<:IL co I COl.. 0 2 (.0:11_ CIS ~" ...

"
,

O. N " M! ,. NAM~ 0' ""ME 0 NAMIl 0, NAM! 0' NAM!!

, ~.' '.' ' '.<. ' , .. ' -, . , ,
, , , ,

0 on;> ~ ,. r .. o ,

"" .T.'

Situation 6- - Procedure Description , Table 011

the table he decides that the order as written is not the best, the Order

of Rules line can be used to specify a different testing sequence. The

line is not used , if it is not needed.

The Situation descr ibed by tables 011, 012, and 013 is a stock and

bond deduction computation. It is assurre d that prior to the execution

of these tables, a card has been read that contains a code to indicate

participation, as follows :

N Neither bond nor stock

B Bond

S Stock

A Bond and Stock

The car d also contains:

In field named the quantity

Read1 Name and employee number

2.20

Read2 Previous balance for bond purchase

Read3

Read4

Read5

Amount of this deduction for bond
purchase

Previous balance for stock purchase

Amount of this deduction for stock
purchase

Table 011 tests for participation in either or both plans. Rule 2

says that if the man is buying bonds, his name and address are placed

in a punch field named NAME NO, his previous bond balance is placed in

BNDAMT, the amount of this deduction is added to the balance, and we

then "DO" Table 012 .

~
,
~ • .J ;-;;-; rt ,.

U"' lOUt, 1 OIitOIEIit ~ tl'VI.!.S

0 0' oRDr;II~\ b ,.J . 1 I . II IT ~
U"I£ '" 1l)(OJT c o: NT

00 0' NOT E, If,JI; S r,A.8 ,U:; R''',£,ItS T:~ .". j,I.~ t.~, ,., <"0 ~L' ,.N .4 -",

COI.OI COl.. 0 2 COl.. 0.11 Co. '" .. ,
0. N e: 00 N,.. "",!: OP HAME 0 NAME "' NA E 0. NAMe:

C.'" ', ,, , ; , I, . ' , , ,
,

E.' , "'~ ' .0 " #0.0.1

<U. b ." " "c.. ~Jil J):o; fjl'P2.

,"", "D
'n, , .. . <. ,., p<

'"
, ,

Situation 6--Procedure Description , Table on

r

r

2.21

DO is a new action, which means to carry out the table specified,

then return to the action following the DO. The action corr esponds closely

to the linkage to a closed subroutine: it sets up a transfer to the named

table, and the return when that table has been executed. Looking ahead,

we notice that Rille 3 calls for a DO of table 013, and Rille 4 calls for a

DO of both 012 and 013. The sequence of execution of these related

tables is shown more clearly in a schematic diagram:

Rille 4

00 TAB 012

J:X;ll TAB 013

GQI TQI TAB 016

TAB 012

TAE 013

TAE 016

The final action in Rule 2 is to GO TO table 016; if Rille 2 is

satisfied and executed, this command overrides the "next table"

specification in the header, which designates the iable to execute next

in the absence of a GO TO.

Rille 3 of table 011 specifies corresponding actions for the man

who partiCipates in the stock purchase plan only, and Rille 4 covers the

employee who is in both plans.

OP NA.ME OP NAME OP NAMe OP NAME
b",.,.~~ G,E 1,11 .• . 75- iE.~ 5 If

1.1. "'.0. ~ .. 7.s,
S ••. ." ip.IJ,C.ur .1> ~. Il '.B.'

181'>'
o<AR07.1,Eo I~. x.
)),<2\ '.2. ..

Situation 6--Procedure Description Table 012

OP NA,ME OP NAME OP HAM e OP NAME
-

~. ~ '0 If,L S E

IPN.C~". I -
-

""'"
. - ---

"L

, , '" (,.n ".r.> 'S'
..... 1 - '0 ,H

,E. ".",or " Ix .
MI !r.1\ 6Q 1.3, X ,

Situation 6--Procedur e Description Table 013

Table 012 determines whether the employee's balance for bond

purchase, including this pay period's deduction, is great enough to buy

one bond at $18. 75. If it is, the $18. 75 is placed in the punch area,

2. 22

a code of "B" is set up in the punch area, $18.75 is subtracted from the

balance for buying bonds, a card is punched and the same table is repeated.

If the bond balance is not as much as $18. 75, which is covered by the

ELSE condition entry, we merely return to the original table. In

either case, contr ol is returned to table ·011 . Table 013 performs an

analagous computation for stock purchase; the only difference is that

the current market value of the stock is used in place of the fixed $18.75.

We may notice in the headers for tables 012 and 013 that the next

table entry is uDOII , whjch indicates to the processor that this is a

closed table-- ie, that it is entered only by a DO action in some other

table, and that control is always returned from this table to the "calling"

table. An open table is one which does specify a next table by number.

A closed (DO) table may not contain a GO TO.

QUESTIONS

1. What action is specified by a DO?

2. State rule 3 of table all in words.

3. When a rule does not end in a GO TO action, what table is executed next?

4. Can a closed table be referred to by a DO in more than one table?

5. Can one DO table DO another table?

Answers - Situation 6

1. Execute the table named in the operand and return to the

next action in the same ru l e .

2. If the code is S (for stock), put the employee's name into

the print area, put the previous balance for stock purchase into STKAMT,

add the amount of this deduction, DO table.013, and GO TO table 016.

3. The "next table" specified in the table header.

4. Yes .

5. Yes .

2.23

Situation #7 involves an inventory file in disk storage. There are

4000 items in the inventory; each item is assigned to one sector in the

rnnge of sector addresses from 15000 to 19999, which is 5000 sectors .

The part numbers are eight digits in lengih. The extra lengih over what

would be required to identify each item uniquely, is used to code certain

information about the parts. We are given a part number, and asked

to read the corresponding record from disk storage. Other tables, not

shown here, would process the record.

The fundamental problem is how to locate the proper record, or,

stating it another way, how to transform the part number into a sec

tor address. The method to De used here is fatrly standard (although

it should be understood that no one method is satisfactory for all applications).

We divide the part number by 5000 and add the remainder to 15000 to get

a sector address. The remainder on division by 5000 will of course be

a number between zero and 4999; adding this to 15000 gives a number

between 15000 and 19999, which is the assigned range of sector numbers.

Thus, for example, the part number 39582067 leads to the sector address

17067.

The problem is, many other eight-digit part numbers also lead

to the same sector address; for instance 57202067 and 12347067 also

give sector address 17067. Since there are only 4000 items in the

inventory, we don 't expect a great many sector address duplications,

but there certainly could be some. This leads to the idea of a chained

file, in which we have a chain of records corresponding to the part

TAil<. LINE COL IOE»T 'M Jo.IS i OWS
.r~ I ~!:e: '"

. SO OOOOOTA~L..E ()P I O;lr ! OO~ "7 9' 1 3~ IS ". r7 201. 27

OP N A.ME OP NAME OP NAME

Q A " ,AD.D, ~4 AD 0,,,-,, "-
~E'''''O . . , "".<;/'<;
1,;« .• r";, A,e ,1 (),o. Ix.

Situation 7--Procedure Desc r iption Table 050

~ .. 2111 nn • ,
NAM E INTElOt '" DEseRl PT10N

In.D .• 10. : .• .B.' , ,
ID.OR 10. 1 , .1 I

I T ' .01 I . 1 1 I

'""~ ,s, .O .T. _ , (, o. 0 ,,/ <On ,) ,,. .<nnn 1+ < n 'D, 1
Ir .~,v'''tI. Ill., M . I .',D.OIO .. 1, H 1,'j, ,I I 1

1M . , I I I
1,.0 0 I , I I . I

I.e, NC · I I

'r U .• T ,n I · I I
;;;r ,

,0, , ,
E~ I · I I I

V,.,O, 1 , I

L" I , I I ,
I I I I

I I I , I

Situation 7-- Data Descr iption Table

numbers which give duplicate sector addresses. After applying the

address computation formula, we read the record at that address,

which is called the home record of the chain. Then we compare the

part number in that record with the original part number. If they are

the same, the home record is the correct one a:..'ld we proceed with the

computation. If they are not the same, we look in the home record for

the sector address of the first overflow record of the chain, read it,

and again compare part numbers . If this still isn't the proper record,

we go down the chain, etc. , etc.

2. 24

Before proceeding to the tables for this situation, we should

investigate the question of how to obtain a remainder when the program

ming system does not provide it directly. All that is necessary is to

obtain the quotient as an unrounded integer (whole number) and then

do a little additional arithmetic. For an example of the procedure,

suppose we wanted the remainder from dividing 23 by 4. The exact

quotient is 5. 75; the unrounded integer quotient is 5 (not 6). Now

multiply this quotient by the divisor, giving 20, and subtract from the

dividend: 23 - (5' 4) = 3, which is indeed the remainder.

Look now at table 050, which introduces a new feature; the first

operand calls for the evaluation of an expression1 named ADDRS .

To see what computation is sped tied, we look to the data description

table. There we find that ADDRS is of class E, for expression and in

the description area we see the expression

PART - (PART / 5000)' 5000 + 15000

TABlE LINE COL \O E l<JT 'M "'5 ; 0"'5 r-PleTI ~!:~R 'N "T RUI.. , cE

.- '.:' ,:,. 000 0 0 TA 8 L E ,,- . . ~ -, 00 .:\- ¢p , . . '
U 7 89 13 14 IS ",1"1 " '0 , • "

OP NAM E OD NAME OP NA ME

kE" Q A " .A n.n. '" ... lAoo ."-,, "-
"'",.A.O. ~, flv £': N ".
6a •• ub, 11,(:\.[() 0 . t

Situation 7- - Procedure Description Table 050

,. ,
'" ~Il~ 2 3t 5' .. " !-lAME Ilml;l '" DESCRI f>TlON

0 0.1 :.'.R E I · I

,.10 I

' AR T 0 0 L I

'0 oR S .A - . (0 • . ' T . • ~ .l ~o 0 .0 1+ . • 1 (.n o b I

I .N .V.fili . RAMA<: . . I.S.D.Dlo. .1. ', i I. 1. · I I I
2.0 .' I I I . ,. I I I . .1

PC . I I I • I

"".Ar I I I ,
? I I . ,

n. I I

,,~ I

V",., , I I

~" I I I

I I I
I I I . I

Situation 7- - Data Description Table

O P NAME OD NAME OD NAME oP NAMe op NAME

II? PART ie.f.). O.DT Iv . IJ, /J.

IR.c..>l.N C .D. ·.c ~ a

P,c> E.'1. 1o, ,AUI. Ix
Irl.l .I,(£>I. . be .

t;/b , .TiD, iT:A./I 7 ~ .0. T,AB/oo TAB;3,Of>,

Situation 7--Procedure Descriptior. Table 100

r

2. 25 .

The symbols here call for arithmetic operations in a fairly obvious

manner:

Addition

Subtraction

Multiplication

Division

+

*
/

The ordinary rules of precedence apply in an expression: parentheses

indicate operations to be performed first, lben all multiplications and

divisions are done, then all additions and suttractions. Thus the first

computation will be lbe division of lbe part number by 5000. Wilb all

variables and the final result being integers, this division will give

an integer quotient, as required, and the arithmetic system supplied

by the processor happens not to round-- so we have exactly what we want.

This quotient is next multiplied by 5000, lbe product subtracted from lbe

part number giving the remainder--and the remainder is finally added

to 15000, giving lbe sector number.

This result is the value of the expression ADDRS, which is trans

ferred by lbe SET .. , EQ operator to a special variable named RAMADD.

This sets up lbe complete seven-digit disk file address. The READ lben

brings lbe record from disk storage into core storage, and lbe GO TO

takes us to table 100.

Table 100 determines whether this home record is the right one,

and proceeds down the chain if not. Here we meet a slight problem:

O F' NAME O F' NAME OP NA M E OP NAMe. 0. 'NAME

R,PIl.RT ".Gi. ID. o y, W, N,
1,r .>l.N.c .1>, E .(;. II. " .010. - . - - .. -. . .. -

.

'A P,I> <;;' IUru., ~ X •
'JI ,~EN,)(,

;0, ,TI/), fr:A.A 7 O.n. !r.AR/ oo In~"'DO

Situation 7- - Procedure Description Table 100

it could happen that the part number was incorrect, and that no record

in this chain is the correct one . For this reason the chained records

have been set up with a chain continuation code, which is one if more

records in the chain remain, and zero if not.

2.26

The first rule in this table simply asks whether the part number in the

disk record is the same as U,e part number with which we started. If it

is, then we GO TO table 200 to carry on with the processing, whatever

it may be. If the part numbers are not the same, rule 2 asks whether

there is a record in the chain remaining. If there is, RAMADD is set

equal to the address of the next record in the chain, which address is

contained in this record, reads it, and returns to repeat this table.

If the part numbers do not match and no records remain, then the input

part number must have been wrong and we GO TO table 300, which

would handle the error condition.

QUESTIONS

1. After having read the home record, would it have been possible to

proceed with the part number comparison in the same table?

2. Why was the second condition in Rule 1 of table 100 left bank?

3. Why was it acceptable to omit file and record names for the core

storage file? Why was it essential that a name be assigned to the

disk file?

4. How is a sector address spec ified before reading or writing in a

disk file?

5. What must be done to use an arithmetic expression?

Answers - Situation 7

1. Absolutely not I Doing so would r equlr e conditions in the

action area, which is not permitted.

2. If the part number in the r ecord is the same as the original

part number, it doesn't matter whether there are more records in

the chain.

3. The core file and record are never referred to by name; the

disk file is .

4. By placing the five-digit sector address in the special

variable named RAMADD.

5. Write E for the class in the data description, and write the

expression itself in the data description. These r efer to the name of

the expression in the procedure description.

EXERCISES

The following three problem situations are accompanied by

complete tables, but each table contains a few errors.

Identify Them .

2. 27

OP NAME. OP NAME OP NAME OP NAME Op NAME

TyPf .,Q, Poe ']),c, "DC

~. "~,L rs €S.o R .<".t'

S£,t P L !6,Q. lx, x Ix
kET I~, ~,"u R,l\IS E.rJ, .T'I, 4 ,{), , <"0

Is ,E,"'" MlS,T,ZE. EO ZA, lx, lx, ~

~,RJ:,TE ~ARD
G,dJ, ,11 II! ~A.al Q,3 .x, lx , lx,

Problem I

7 8 '0 , . , ,. 21 Z2 2 51! 53

LltiE Co, NAME INitCt 'EC I~
Flp,A,T.A. ID1' .D 10.1 M Ir. A ~ " R~AD<1R

" 1/)90 1() 4 I

3 ID ... :r.A.1 I/) D ., hz , I , I , I ,

,4 \'~A,~, 10,/ ,~ 10,D I
,t; ID,Ir,T,A,3. h ,D,~ 10,3 I
t. VID.A:r.A ,4 , 10 ,0 I Ih,D 1

". v In, 1 ,D 10, 1 • Q " 1

,i' 0 ,1< , 10, I ,2. I D,2. I
,q 'TtoM.P ,/ 1(),O,b I () , ~ I

/ ,0 T ,E,,.,,?? 10,0'< 10.< I

. 1.1 R.E,P,d>,R ,T 10,40 10,/ PI> 7 ,N ,T.E,R, 1 • I ! , , , ,
1,2 I~ los I

/.3 "lIS,1 ID,I ,~ 10 ,0 1

1.4 ,
11:\0 ,7 00 ' ,S, ," 1 I

,} ,5 ,0./ $,3, 10,1 D O,D I

I b "S,4, I n.n,' Ill .,., 1

Problem 2

OP N ME OP NAME OP NAME Of NAMe 0. NAME OP NAME

ISH "tJ '.",' 'M' ' ,M ' , ,F. '

I,M. <,R Ill.
:.d.o't ' .0.

CT' • C -
;,f ," £ " NM,E I",

Is,',T, ,},,, ,RR, '." '" ..•
"T,"

.,~, ,,,1\

Problem 3

1. A card has been read, containing certain information about a

voltmeter: model number, the letters AC or DC to indicate alternating

or direct curr ent, and the vOltage r ating. You are to punch a card

containing model number, number of turns, and wire size, with the

2.28

latter two being determined by the following rule: an AC voltmeter always

has 33 turns of size 24 wire; a DC voltmeter has 40 turns of size 24

wire if the vOltage is less than 50, and 50 turns of size 28 wire otherwise.

2. T.he data description shown here contains many error s, which you

should be able to identify without mowing anything about the problem.

3. The.procedure description table shown here contains several

errors, one of them fundamental.

• o

3

• o

-

t
S

w
>
< •
% ~

" , "

• ,
~

• ,
<

" z

c

I~

8 "h..+-'-4--H-+-:
-

-

-

,

o
,
• w " ,

<
z

L
o

c

<
z

L
o

- -

I ~

o

~ 0 0 0

o 0
o 0 o co

•
OQ OOOO

. - "
o

r

4. Previous tables have established values for the fields sex ,

department, hours worked, deduction code, and rate. A table is

required to do the following:

- If the employee is a male in department 47 who worked less

than 40 hours and whose deduction code is B or D, GO TO

table 010.

- If the employee is a female, works in department 48, 49,

or 50, worked less than or equal to 40 hours, and either has

2. 29

a deduction code of C, or has an hourly rate of more than $2.50

then GO TO table 020 .

- If the employee satisfies neither of these conditions, GO TO

table 030.

The table shown for this task is incomplete; nothing written in it

is incorrect, but a number of boxes are not filled in.

Complete the table .

2.30

5. Given a deck of cards as input to a customer billing procedure. For

each cLEtomer, there is a heading card giving certain information about

the customer, followed by one or more cards representing purchases.

You are required to print an invoice for each customer, with a heading

at the top of the page, followed by a line for each purchase, followed by

the total of the pur chases .

Heading card

Cols 1 - 6

7 - 29

30 - 65

80

Purchase cards

Cols 7 - 12

20 - 36

37 - 42

80

Heading line

Positions 1 - 6

12 - 34

40 - 75

Purchase line

Positions 3 - 8

12 - 28

34 - 39

Account number

Name

Address

Zero (to identify heading card)

Catalog number

Description

Price

One (to identify purchase card)

Account number (suppress leading zeros)

Name

Address

Catalog number

Description

Price (suppress leading zeros and
insert punctuation.)

r

Total line

Positions 32 - 39

2. 31

Total price (suppress leading zeros
and insert punctuation.)

A blank line should be left between tbe heading and tbe first purchase

line, and between tbe last purchase line and tbe total line.

Write tables to handle tbis processing, including all table headers and

tbe data description table. Include any tables necessary to read tbe

first card and to handle tbe last card.

r
CHAPTER 3

Expense Report Program

3 .1

This pr ogram prepares a weekly and monthly expense report for

department managers . The report shows the expenses incurred on a

month- te-date and year- ta- date basis. For the managers ! convenience

the report shows the budget allowance for the particular time period

and the actual expense variance from budget.

The overall processing diagram is shown below:

1401 RAMAC

Report

.

3.2

The inputs to the program are received through the card reader .

There are three types of input cards .

I . Budgets - The amount of expense allowed by the budget for

or

each type of expense.

code (numeric one)
account number

1) Div. number
2)Dept. number
3) GIL
4) S/L

monthly budget amount in dollars

. monthly budget allowance

2. Year to Date Correction - a correction to the year - ta-date actual.

code (numeric two)
account number {same as budget
amount of correction

3 . Actual Expenses - the expenses incurred during current week,

code (numeric three)
account number (same as budget)
amount 01 expense

The RAMAC contains a master for each existing account number .

The master fields are

account number
- Division
- Dept.
- GIL
- S/L

month- to- date actual
year - to-date actual
budget allowance per month
"budget allowance year - to-date

3.3

The RAMAC also contains a table of Sub Ledger definitions .

This enables the program to interpret the SIL number and print an

alphabetic description of the expense type.

The account number is eleven digits and has four significant

parts.

1. Division Number
2 . Department Number (within Division)
3 . General Ledger (major type of expense)
4 . Sub Ledger (minor expense type)

I DIV.! DEPT. i GIL :SjL :
2 2 . 4 : 3 ,

Account numbers are used in much the same way that charge

account numbers are used in retail sales. However, account numbers

also include information on the type of expense. For example, the

functional accountnurnber
4221- 5100- 301

is read. as Division 42, Dept. 21, major expense type 5100, minor expense

type 301.

For this problem the following tables define the expense types :

GIL (major expense types)

5100 Manufacturing Expense
5200 Sales Expense
5300 Advertising Expense
5400 Administrative Expense

3.4

100 Salaries
200 Indirect Labor
301 Shop Supplies
305 Stationary Supplies
307 Maintenance Supplies
400 Tools
402 Tool Development
500 Overtime Payment
501 Supper Money Payments
507 Maintenance Labor
520 Second Shift Premium
521 Third Shift Premium
601 Freight In
602 Freight Out
605 Dunnage
700 Product Test
802 Medical Expense
890 Facilities Rental
900 Travel Expense
905 Sundry Expense
910 Automobile Expense
925 Legal Fees

990 Scrapped Product
991 Inventory Adjustment
999 Redisiributed Expense

Using these definitions of major and minor expenses the previous

example
4221 - 51 00- 301

reads Division 42, Dept. 21, Manufacturing Expense (5100), Shop

Supplies (301).

Department number ranges also indicate further the type of

junction involved, as only certain types of expenses can occur in

certain departments.

r

3 . 5

Below 50 are manufacturing units which may have

5100 expense only. 50- 69 are administrative units

which have only 5400 expense . 70- 79 are advertising

units which have only 5300 expense . 80- 99 are sales

units which have only 5200 expense .

1 1

!L~'DiJl 'o , " I 19 2 1 ~ 1t ') .. 55 102 '- 7.2

LI NE CO l.. N A M E INTEGt DEC. DE5CRlfI'TION

NZco F ' A .• .T £ /(i'2.oo ". I M AM .A.C. .LO.C-. <l O.,,, .. qq.'1. I I I

(. , '{ t G ~.~ . h "'''' i~ Q , , . , I
" '''t V 10 11 1,,~2. I,., o , , 1 ,

. :.~ .0 H.D .• P T I"" , c • , 1 I . 1

V. ... I "H. ~.~ 0 .c .30" II , 1 I 1

010 <"'.0 I~ . "..D OGo .e .. 2.~ 1 I 1 1
,", 1 4 C· b VtlV.t:X .D ''' 0 '2 , , 1 . ,

ko .1 .f. 0.0 v l~ . Q .tJ O f . , .".~ 0 .0 1 I 1 , • I

It: . .• <. I", 1. 0 o Go·.e 00 1 I 1 . : . .

10 .2. <:1 '-'.0 OLA .. /J . 10.0.5 0 D ~ '1 1 1 .'
C'l. 'l. · .o V S .. ., ,, I , 1 I

, , I I
10:." , ,,FiR .. F.' .r . 12 .0 010.1 H !1,AI1.A.C. .'<' ,0 0 0 "0 . 6~q, . , . , I ,

I O.~. l "o In • . r= . f2[(' " I 1 , '

11'l.1., .n Is. '." . ", '?' oo N 1 00 1 1 I 1

03~ec ~T.'I. P . t Ic.2"1,,.,,'" '.S . ~ .L.A~ . I . I:.5.1 • I ' I I .
i~ " V , .7 ·1 ",p , , 1 1 .

, , I , .

. 4 .n i2,.1 (.C.R.E: 1 1 1 1

0 .4 . I~" I~o.o • . 2 1 i I I
o.'{ .~ . ~A ,Ii< 0 ,0 ' O.C c<"'C' c· 0 0,",,00 0000 0 0.0.<1"" c 00 <> 0,0,0,01'" 0 ocoo,," oo.~ " I

0. " · 5110.0 dO' 1 1 , , I

O.~6ollli! , c , , I ,

O.4 .l. 0 ~ . I 1 I I , . .

1 1 1 1
I :i! :5.,. !I " 7 a .,. /0 /I II::' ~ '" 15 ~ IT .e 19201.1 22 l 3a(,lS . Z7an30 3 1 Un" .5S • .l7 J11J9 .f0 4 ' ~"$,. , '

w

'"

,

IBM® 1401 TP DATA OE5CRIPTION
T'Xi>
!,..,).,

TA!5LEllIN.!..lcOll \DENT

ooc
8 9 Il ,., 15" I " I 20 24 Zf12B

, .. 1 • 1 " 21¥p
LINE CO. NAME INT£Gt DEC

0.6.0 ic.A. R\> 0.80 0.1 'E' A "D"""
I" ,,? "X.E"" • 1'.0 II"!

" "U V~on£ ,,1 In

IO.M VU 'V " .0 "

Cl.~$ 'I D.l:. "T o . , II

0 . 7 .0 Vlr •. ~ 0 .0 .'1 00

0 .7 ,2 vls. ~ " o:~ 00

kl ,78 I ~" ""T " " ,j 10, 2M

0 , ; , 0 '2..0 0.,

O. 1 , ~ In, v ' '" " 0." 00

bAo VI~ .. v", 00,'2
" 0

' , ~ , 2 VIO.AY. 1",.0." 0,0

088 v , '-,1+, " 0 ," 00

.<l . viv.· ~ " 10,0.'2 00 N

p.e,s ,
"

0 ,9 ,0 0 0, " ,Co" , In .A,C io , \ Ip<J ,/./ ~,I/,
O,'} ,2 ."O.Re 10,Bo ~ 0 , I

' ,Q U 00 "AO " . 0

"'" o,c, F P .R.' ." .T , ,'3 .2 , 1M I!',R, , .., T,,,1t

~ , 97 0,£ RPR I '3 ,2 0 , ,

lo,q 8 100 V 1'32 00

,

'.:3;;01..10

AtlA~Y5T OATE

4

:n 55 ..
DESCRlf'TlO",

I'fI'JF .ao'tit. 1 I
1 I . I

I I I

I I I

I I I
I I I

I I I
I I I

I I I , I
I I ,
I I I

1 I I
I I I
I I I , . I I

I I I

I I I
I I ,
I I I

I I I

I I I

I I I
I , ,
I I I

51

5

TA .. L"N A"", SYST~M IIO£tr.ln FIClTIOi
IoJA..,e '-I "ME

,'I" 7
m7S----S0

". "
1
I

I

· I
I
1

· I
, I

;

, . ,
· ,

I

I . ,
I .

· I ,

I ,

I

I

I

I

I

I

I
I

~UI~lj~~~ '7~~~~runM~~~.n~~u~ .J,Sa. 7.51J9.,., .. ''''-?''" ""' ... · 1 ... 4)' ;:11

'" ...,

."....

000
I

LINE

, .oJ)

'Of)

ICa

I 0.2

I 0

" .0 6

" ,2

" , ~

,2. °
,2",

I 2,,,
.1

Id,,,
,1 ."

,'1 ,'

, ~ , "

,<\.

.h~, O

I"U.
I. w,y

,I 'I ~

1 , ,

IBM® 1401 TP .ATA DE5CRIPTI01'I ~
LI~1. Coo. IDENT ANAI..V5T Q"TE T~ .. '-h.f!. 5"""T~ \O{':J~i'QI , .. Lt,,", e-

~oo 0,' TA~I..! 00 O .C 0 ,< /qooc Io,ooc
I! I I I , ,0 .. "" • , H

7 ., I ,. " liZ 3Z '3 • 55 n

"" NAME \NTE~ DEC I ~ OEseRI PTICN

r. I" c.AO.T. .", 00 \ Ty •.•. "'. r; .P,,, ...,.<1,. . 1'-1" • I .EX.p r. 1 a u n ,_"' I

0 . 1 C 'T VAR "AIV. c.E I /C . • P~"' . '~ . 1 "'-IJDr-, ' r 1 A 2 . I.AAI '

0 .2 'C.E 1 .1 1
. I 1

o 0 e L.J\)'I, K S 007 0,0
,

I 1 I 1 , I

t , E I cs,1l,T o o,e 00/1 0, 0 0 0 1 I 1 I

• .n c~,. ~ Ii 1" .11l 0,' n 0 ('.0.("><_0 0 0,," I j I

• I~. £."o cr. " .,~ 10,1." oOc..o O Ooc>,O,O 1 I , 1

o 0 ~ " .RAJ 1.. 00,1 1.3 DAY .S. I D A YI" ° I I , 1 , .
00 IRA M CA ,L O D S o 0 ~ H<L • ,~,o" 010 1 I i

oP I",~ L lo,o,s 0,0 N A , < <-;T~ , f>, - ,b ,A.<..,-' ,J,J,O /14.0 .",00 ,*" .4.010"" , .\ ,f, , I "c.a.:)
I I I ' I

00 \. ",,2 0.1 :,Q,RG. I L I I

• R ~,E,A , t> ,<\ ,2 II" I I I I ,

'. Y
0,0 6 '" \ ,n,E ,p,T, I I I I 1

o. VIR.D I v 0,0 " I I I I

" ROEPT 0,0 ,2 0 ,0 I
,

I I I

Ie. 00,6 a,'' \ ,I\, A,T,e; I I I I I ,

'·V n .? I", •• I I 1 I ,

• V 10 .• ,1 10 ,0 \ I 1 1 1 I

• 0
VRMO .T.N 0 ,,, ,2 I. , ~ I I I I

oD 10 ,0 , I 10,0
, I 1 I I I

I",,, ~.Y,",A , l ''' ,0.2. 10,0 . I I j I

"D •. 4 ,7 1o ,. ,
>4ln ·"'.T,H, 1"-,0 ,n.AJ I I

o.v • .L .I 10 ,0 C. \ ,Ve A ,' . I :r.o, ., ... E I I ,
0 .1 \ 1 I 1 I 1

/""]:.,. ... "70 10/1 I ' I$" ', I."...,iL'Ull.ZS:llloZ7 •• IOJI , -- '-,.,---

'"
0>

1

IBM® 1401 TP DATA DE~CRIPT'ON , ~
,. ... l.E 1I~1. COL 'DENT At\A~""ST t> A, E "T ~ A'8,.hf!.. SV$T~M. jt>(~~~~T1C11 NAMe.

000 000 O,C TA6~! 00 O.C OC booc Iooo,c
I " H I I I I 2 0 .. •• • " • " 80

7 .. I , ,.
" ". n 55 • 55 • • n

LINE coe NAMe INTEIOt DEC Il OEseRI PTION

" t)
-0 "K " G~ ,,/ COR .,- , , / I I

'C .? ooR ob3 09 , , , I

S~ 00 1=. R.IH_M.O 10,0. 1 ,,3~ I . I I I

1,5..6 00 VH.r;1l ,.~ .'2 I I I , I

5." 00 ,.A. ' .",~ ~ ' W I I I I

. b,O 00 V Y:r. D . oo~ - I I I I

J 6,:/. 00 V YT,O.B, 0,0 I I I , I

/ 6 ,~ 00 1,/ <> <> , ~ " "II I I j , I

,6 ,6 10 .. V ~.", " ,,~ " I I I , ;

,b, ~ 00 E .O,".:r , 001 I", ~ 0 '1 I I , , I ,

,7,0 0 A-, D, D,R , 00. I I I ,
I I I I

/.",0 00 , .. 0, I ~ CO.R.E' 'I I I I ,

.t<,1 00 R A DC,A ,LC o 'iJ,C o ,~ I I I I

J,p.. 00 0,/ 0001 I I I I

1!.I',b 01> v ,W,D,M " / 100 W I • I I I
/ ,f!;t3 ." V o 6,e 00 I I I I ,

I I I I ,

II,Q , 0,0 , 1.,2 GO,R,E, I I I I

II,., ,2 Ot> Rlr .O''' ,A, " , .7 I" ,:3 j I I I
I/,IM o.t! V '"0, \ v, 10.0<. 10,0 ~ , I I I , I ,

/ . " o.v k: ,D, te, Po TL I", ,,~ 0 ,0 fil l , I ' I I I

'I ." ~ 00 V : .0 ,<; . " 10 . • . ~ oo~ , I I I I ,

2 ,,~ "0 R c. 0 C A-. L- '" Io.o ,? o I I I I I ,

1- ot. 00 V It,,c c. r; IJ,~ 007 00 I I I I
• 2 '5 ~"7 et y /0" '2 I., 14 15 ... 17" IJ1I;lz., U l3ao12S:I6.,!Ttazt56 JI N15"... .JS"~T""""/ ~"1,""'''''111''''

'" <0

,

,

IBM®
TAlI .. LIJ.ll. Co< IDENT

000 000 o(T'~L~ 00 oc oc Ioooc ooo.c
I 13 .. , I I I "" ..

, '0 , . , ,. Z. le2 2

LIP-IE CO, NAME lNTE!;E .E< rm
12./ LJ 10.0 132 i 0.1 k.o.".
b,~ "Jll~TA L "'!~ . . ~
I~ \. 0 1001 I" 0

\ ,
~. I . ' Ie>,o ViD.T,">(P,E 10,20 10,0

1 , ~ 10.' 0 ,0 1 00
, I

111o,' oc VillN<'l o " olAl

12.1. .1 " C 1/ 10 .0:.> 10 A
, I

b ,lo'! 00 IDJ1,E .• ,p " 0.1 .1 o oK \

.. 2. .I: C()V 001 00
, I

il ,Ulic .. oJ Dn,\!o.u.D ,(I~ \ I 00
\ ,.

i'lr. ,,1/ 0" I 00
, ,

12" ." CO ill 11 V ,~,,~ I ,I .. ,0 !HI ,
1l ,!M 00 ",".~ 0,0

, I

l2. ,1,{, .. ,)(,. 10, 1.1 ooli
,

, ~

' , ~ ,<I. e" .0, (.1\ •• \ ,
[,'I C ,,~ O,Y.II,v ,Q t Ie-I ",Q K

,
~42 iD,. c.1 C O

, ,
... ,.e ~,y.v ,~ .R. 10 ,1 ,\

,
G

_,4 ,4 1D.c I .. " \ ., A \ I

,
, , ,

,

.
, < S

, , ,
)

1401 T? O,t.TA OE5CRIPTION ti
,t.HAL.VST t>ATE "T,.tA~e.. S"".TeM 100'IT~,'!~TlOl t<J,,~e. .. • 5 67 SO

!t 55 < " n
OESCRII'TIO>J

I I 1 1

I I 1 I

I . I I I

I I I I
1 I I 1

I , , , ,
I , I I , I

I -' , I I I -
I I I . ,
., - ' , I , ,
, . I , , I

I _ / I I I

I I I I , ,. 1-/ I I I ,

I I I , I
I _, ,

I I \

I I I I ,

I • I I I I

I I , I

I I \ I

I I I I

I I I I

I I I \

I I I I

I I I I
. ,

5 " 7 5 /0 /I I'Z IJ "" 15 17 " 191D il1 U Z3 .. Z$" Z7" n.50 S/ JZ .53,toO ~ ,,"" .. , 4l<U,,- 1 ... "'!O

'" . ,....
o

, ,

IBM® 1401 TP PROC~DURE OEseR PTION ~
IOe:wT C~M ,",S l : NtxTl~::~~ ANAl.'1'ST OATE T:.8,.!;i S"t'ST&M 'D£~~~r_lO~

""ITl, &}- E 0 0 0,1 0 1 i"",2 1"'0",..1::'" :5 " cr, \\. OG,"I." '2. .J ~,61 1Z;,v,J.r./,Al., I , !a v,P, ... "r IR,~ PL>J2 T b~t"
1+ 1 ".,.., I ZO' 2' , 7 S7 1.7 75 80

WEN" O'P{DER 01= RU\.ES

, 110" D, E,RI , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 • 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 1 START " • .,. CAOO
'-__ . J __ I.

IDEI<JT COMMENT

11<.1, O;T ,E,
01

L

COLOt co\.. 02 c.c\. 03 eol. ~ Co"" 0$
7f. 9 10 II

l1Hf COL OP

() OJ.! ~o rt> . ~. A.n

N~ME iffop .. _ _ 31j~;
Ix.

NAMe IOF NAME lopl "NAMe; NAME Ol=' HAM5

,o,3lo,Cl

10,

100

. 0 . .,10 <=l

c.L

.0010.0 1 .

I,,:ol:!' " ""I"""' !::I """'!'!' 1,1 1,1 , I I _L _1-..1 II I I I .L..1. ---'-----L...L l, .L --'---'------'--' ,-,- -,-- 1 _. I I : ,,·tl I ' ,3 P : : : :: :: ::':: :: ' , :: : : : : : : I
",.iO,C

l:d~:~j "" j""''' j''' j' ' '''' i'j''' ''' ' ''''''' , j1 II, "",1,1 II '"'''' , I I , , , , I ,

\,.,R:
~o/OI=

i t IPiop
.,z,.jo,c

'"

,

IBM® 1401 TP PR'OC~I RE D£5CtlII'TION ~
TA51 Li"!lco< IOfWT <~M " =~~ ANAI.YST DATE TAS':: SV6T5M lOE~~~flOl

NO ...

~OO.CIoPTAa~~I.' D2 4&
'"7 l' 17 20 • • 7 .7 7' •

UNE Ieol tDE~T O~DER OF 1\'U\.I.S

~Of 0\ OR 0 'ER I I . I I I I ,I I I I, I I I I I I . I . I I I. I I I . I , I , I START IU)C1" CAR' .. , ~ .. " " .. n TAIL lt~E: COl.
lIti'£: COL IDEt.JT COMME N'i

0.1
10,0~ 02 NOTE , .

COL 01 1 CO\. 02 1 co~ 03 1 Coc~ Co\., 0$., 1 .. 7 .. " 7 7 ,... 10 "
UNE COL OF' NA,ME OF' NAME OP NAME 01' NAME 0. 'NAME. OP NAME OP NAMe

~.o , 00 ' .t'>. 11~ E.';~ ft. IN.
oz 00

DO' 00 kg" I!; R. :"t:!. IF. 'x ,

0 00
I .. "" " II>AY, rr:o. IRnA.". " •

as O,c 14m",:.. 111,0,,, -,; II, 1",6 1">fOAlTH. 1)(.
0,' I~ tI~ ,",E ". 1],;0. IR. -,~ , Ix.

~ ~ R ;;.A.n. c"un.)(

0 0< , "" Ix.
. 0 00 16,0 .r"" ~"'''<:ro.P.
I ·. 00 ,
1 1 00

12 00 ,

1 ~
I~ o,e . ,

. 1 .• co
I ~ 00

1.1 ~

~ !O!' .
1,9 IOf

i<>c ,

"" ~ ..,

,

1 1 ,

----® 1401 Tf> f>IlCCEIiURE OE5C'"PTlCN A1o)'
TA6l LINE Coo. \t)~"'T

1M ... 510 Ifl..'G ~!:~R ANALYST DATE I -rA8~: I S~6T~r IDOI~~~\TIO ON • .E I'J '''M

O,/~ OO,C~p TA 1!lC ~31o,~ 0 Sb,l.l
6>7 I I J"17 2.0 • , 7 ~CL..T'- <'1f'~7

'5 ,
UN' CO ICENT O~I)E.R O~ RUI.ES

~eF 0\ OR OER o31o,1 1o,~.21<> ,s\ I I I I, I I I I I I I I I I I I I I I I I I ST~RT K[y:I" CARl

... , . " , '" 3Z 54 :n, ... 0 n TAIL Lot N£: COl.
l.lt.tE COL lOEI<JT COMME N'i

0.,1
00.0 02 NOLTE! 14/, '';':, ,A _.0 ~,," £L2"

10,100. , ,
COL. 0 I C~ 02 co\. 03 CO .. C>\- eo,- 05

" • '41 .. 7 .. .7 T 7 "
.,. . ~ " LINE COL 01' N~ME. OP NAME CP NAME CP NAME Op "NAM E. OP NAME 0.1' NAME.

0 0' Co. "',-n~ kQ 'iq, 6,Q, , 7' e;~s,e:

02 00 1o,"~T: .R. Iso 70 IRa
p,o 3 00 It> L. I lOG) Is I ,Db , !j,2ao 5,;30£), ISA,OO ,

0 CO ,

" ,0 5 00. E £)(,9,",'" S rco <- Ix
Ob O,C IO(~I,TE P" w<-H Ix
0 ,7 p,o, ,EA,D, O'~D Ix

10,0,. o,c /T,o. ;r,c 121. 00 \ t:J.
,0, Co ,

I. 00.

I I 00 ,
12 00

"
0 ,0

"
c,e

ilil 0,0 , ,. CO ,

...ili! ~

I. 0.,0 ,

19 0.,0
,.~ Of> , , . , , , , , , , . . , , . , , , , , , , , , . , . , , , , , , , ,

co

'" co

1

IBM® 1401 TP PROCEDURE OE5e'UPTIO"l ~
TA51 LINE COL lC~~T

1M I-IS IO .<XT ~!:~R ANA~'1'5T DATE "A8~: &"'6T~r IOf~~~:;'~TION
ON • .AM

oJ/ o o,c "p TA I!Iceb2. 0 IDJLo?'/:O'~' I <:r.L. - "'''1"
• 7 I I "n zo 2 • , 7 " 75

U"' CO IDENT oRPER 011= RUI..ES

~o" 01 OF/: OER I I I I I I I I I I I I I I I I ,I I I I I I I I ST~RT N.u:r CARD

~ , K ~ '" ~z Jot J' ... " TAIL L.\Nf 'OI. lI~E COl. IOEJ.JT COMME NT
C,E

OO~ 02 N~;:r ~. 0-,< """' ,""'"",,PI- '" t-+ '" I '1.lZ ,",;rNt., , MIS ,
COL. 0 I c~o2 COl.. 03 Coc~ COl.. 05

41 • , .. 7 .,. J7 7 "
,. • 10 " r

LINE COL OP N~ME. OP NAME OP NAME OP NAME op ·NA.ME. OP NAME 0'" NAME

",,0 , 00 P I li ~Q ~lUV ,y, I t./, ,
02 00 ~& y, /oJ.

03 0 ,0 , ,
1>,0 00 11:I(J, ,~." l\. x:

OS 00

00 00 ,
C,7 0

0 ,0 0 ,0

.0, 00

r. 00

, , 00 ,
,2 00

'3 op , ,. o,e

.LS co ,
~, . 00

',1 ~ ,
, . lO,e
'9 o,e

,Z,O op , I , , , , , , , , , , , , , , , I , , , , , , , , • J, L

,
'"

,

IBM® 1401 TP PA'OCEPURE DE5C~\P ION ~
TAil<. LINE COl. IQE-NT 'M " 10 l.r~ I ~!:~: ANALYST DATE TA8~: ftY6Tii M IDOI~~~flO'

'N NAM

0.13 00 OPT"&"Eb,~~a
.7 1}4. 1 1"7 20 Z • . , .7 ,. •

UN' COL IOENT O~PER 0'= f?UI..E.S

OOp 01 OR C ER: I I J I START KIf)C1" CARt

4 • , .. '" 3'l 54 3~ '" " TAB!. 'l. INE co..
lIf'.1E COL IO'NT COM ME N.T

0,6
000 02 "'O"TE

I COLOJ I co\. 02 cc\. 03 Cc .. ~ co,,- 05

4 " • \ \ •• 1 .. 51 7 " ~"
,

LINE COL 01' N~ME 01' NAME OP NAME OP NAME op 'NAM Eo op NAME 01' NAME.

10, 0 , 00 ~QDe: IEQ I IZ 3 trL.s,£,
02 00

O. 00 10,a T.A Ix. Ix. k
° 00 l-tO'hE, IToo, 1)(,
OS 00 $£,7, ~,y ,!OlGB I-tr , Ix. Ix.

" Ob 0.0 I <;,E,~ ""x,p, I., k
0 , 0,0

""o,e 00 c Ir.o. to x:
I~o , . 0.0 , 0 - " Xc

10 00

0, , 00 D~An n lx,)(,)(,)(,

12 00 '. ~,o ,

"

o,e

.5 co

"

00 , ,

\ ,7 ~
\ . b ,e ,

\ . o,e

.z ,C op , , , , , , , , . , . , , , , . . , , , , , , , , , . . . , , , , .. , , , .. , .. , ,

'" ~
en

,

IBM® '''TV' I ,.- ~""", ~ "'E~"'''' 1"'""""" ~ ' .,...~

TA81 LINE COl ICfWT
1M "'So,O N<><T ~::e~ ANALYST DATE "AB~: S~&AT~r lDE"t.lTtF1C~"lOt.I

'" NAM

1.2.8 OO,Or? TA &L.E C,' 0B'P, l~"p: .:.,,;~P::S
7 I 141 j"n 20 2 , . • 7 "

,.
UN_ CO tDEN" ORDER Q1t RUI..E.S

,<01' OJ OR e'ER I START KfX1" CARD

4 • , ~ .. Z2 , ... ~ TA.8L LIJ.Jf: COL
LINE COl IO£hJT COMM~N.T

O,!
OOf 02 J<.IOTE ew' ,

I COl.. 01 COl.. 02 COl.. 05 Co .. ~ Co,- 05
ilJl~ 7 "

, !7 7 .. '" 9 ~ \I ,
LINE caL or> NAME OP NAME OP NAME OP NAME 0, 'NAME. OP NAME 00' NAME

p,o' 00 ie"o".z; E;Q, II, X,

02 00 1).0. 1.-. 'F> ",
b,o 3 0 ,0 D,o ~.~ ~, ,

0 00 en.n ~Q " ~ , ,

P,o. 00 1tI.R., ,-r"" lu, X,

Ob 0 ,0

0 0

0 ,. 0 ,0

.0. 0,0

I. 00

, 1 Of>
'2 00

13 op
i4 O,C ,

.1 5 00

, I • 00 . ,

I ,' ~

...ili! 0 ,0 •
,9 O,C

,z,o 00

to

'-'
0>

1

IBM® 14-01 TP PR'OC~PU"E OE5ClltiPTION ~
lTAeu lC~NT e~M ... I~ ... ~ ~::e; ANAL'1'ST DATE T,!'A8~: SV6T.M 1'D£mtF~rI04

O.;rTA&~Eio,ll,~;2l;o P.=,PT T.OF" I- I
1 .7 20' '7 ,

tDEN" O~D~~ O~ RULES

~ , D , . ,RI . I , I. I , I . I , I , I , I , I , I , I , I , I , I . I . I. I . I . I . I . I . I . I . I . I . I . I , I . I , I I START ,. O.RO
iii

IN,O,T,E,
COMMEN'i I DUJT

TA8L~ LI~el~Ol
ioE ,

1 COL. 01 COL. 02 GO\. 03 Col.. QoI4. Co,- 05

I"NEI COLI 01" I N"'ME I 01" t NAME lopl NAME IOF NAME lOp 'NAME. IOpl ' NAME 101"1 MAN> E

jO.?=l°,o1 IEO,F:I Is~ I', Iy, I 1M I I ' I I I I I
>.0 J ,;:: ' ,., 1:7:1') , I"" , , , , , , 1><.. I , , , , , , , lx,

Fo,o ~lo'JM,Q,V'E' , If' , , , , , , ~o, , IwtGx,Pt1 , b' I ' . , , , , , fx' I ' , , , , , , I ' I ' , , , , , , I ' I ' , , , , , , I 'I " '" I
.... na , . . T,() , fJ.H.~u.D6 , , . , . . " I X I

~,pp[I1;:~; : b=~ : : : : ~~ : I~;; ~~: : I! I : : : : : : : ~:
t:::I;,*:~~~ : ~~ : : ~=: ~7-~~~~: ~: I: : : : :: : I~: I : : : : : : : I: I : : : : :: : I: I :: : : : : : I: I : : : : : : : I
"I ,OO,O ... ,E.,T, I t Y,7:0I1 , I r " ,To/). , I " x , "." , ,)(,
• I I OO~O.fI.<" ~ 7raA T.a Ian b<.. Ix,
"'-L<OOw'o.v.,;; , l,T:fJl? r,-, lv , x

I 3C),O~o, fI. '" ' 7:",07:,0 " , 70" la7:Yp.~ I.,)(I I I I I I I I
1<>" .00 ".E:, IO,,"TAl I L rp~,q lx, 1)(, I ' I
', 1,5°,° t'l!O,L/E, I ~&,A(, , I r,a , W""..D , , . ,)c. I. --'-..l lx,

1o , , ~.IO,ollf,Q,v,<:, , !aT.Sh" . , , Ir..-:. , L):r.o . . .• Ix. t . L~~
I In lz:""I6;I/,T, r.t>. D 1)(. I.
I ,t.o./,{~ IrBI, Golf" ToLl I" rna){ X , , ~

• I 9~ 1.1'"", I"" " 1:' Ix. X " , , , , , , ,~ ':;
10.2 10000.l'A , Sol,/)., " , , '" I I I I I , , , • , X,

1

IBM® 140. TF' PR'OC:EliuRE OE5CII'PTION ~
TAB< UN! ICOI. ICfwT

1M IJ, 10 N<><T ~!:~R ANALYST DATE TA8~: &VfoT~~ 1D£~~,~fION ,. .AM

,1.0 oO,olop TA I!IL E~,O 0710 ~
1 I ,,,n 20 • 7

M' T,IE I'tR~
.7 ,.

UNE CO \ DE~T oRDER O'IC ~UI..E.S ,,0 0\ OR OER I START I'u:xr CA~D
4 • , ~ JZ 54 3" ,.

" TAB" I.INf COL
l. INE COL IOE'ItJT COMM!: NT

~E
000 oz NOTE. Poll' NT ,H;E,A,DilV!'- , 1-1

COL. 0 I CO\.. 02 c:.o\. 03 Co,,~ co,- OS'

• 7 , . .. 7 55 57 7 "
.,. . ~ " ,

LINE COL OP NA.ME OP NAME OP NAME OP NAME Op 'NAME. op N.AME 0'" NAME

0' 00 ""O,V, ,,,]),I.v, Ir,o, 1 • . 1>.1 V X L

oz 00 '" E,O:r: Ie" ~DE ,P ,T. " .
03 00 Hll.\lL, ~ f A .D, rr,,,. Oil., X ,

0 00 E 0 \ CH,AN 'X, ,

o. 00 ""~, , ;T ,f P,"HI:I':)I. ,

o. oc E H. E~,D,T, if,o. P,R I\. ,
0 ,7 pp 10',1'..1 T,E, p,,,, ,W,'!: X
O,g O,C

. 0 • 00 , ,. 00

•• 00 , ,
.2 00

~ bp

•• O,c:

,1,5 00 , I. 0 ,0

...J..L.] O!'J

..ili! OF' ,

.9 0 ,0

..JUOF' ,
'" ,
>-'
(»

3. 19

~ • I •
~

<
x

I~ ~

• • , •
" < , z
v -

t '" ..
~ • ,
" <
8 z

-
•
o " '" • •

II~
§

I~ Ii • • ,

I~~
• • <
~ I ~
f-- Ii I! ~I"
f--

i j
.~

; j
g I.

I: I~ I, I~
~

I~ I~
I~ 1%

~
I~ 11,,1- I ~ i) I; I ~
i%IP~I~I~ I ~I ~ ; ~ , ~ I ~

I ~ I ~ I~ I. I] I-
I ,

~. i ~ ~
I:I~ I~ I~

..

]j:ml
j

~

3. 20
-

~ • 0
,

~
<
z

~

• • 0 • J
3 ~

-

~

. ~ • ,
J <
3 z

-
• _ 0 IJ 1.01 Ij 11

~ ~I; 1: : I ~ i lill l3 I ~

~ Ii
I,' i-' ~~

I;

l-

I ~
I-

I~i-' I~ •

:
I~ i-'

i-' !2.1 ,
l

i-'

I-
I~I' I, I: III,

I- I~
~

I~
1I1-~1 []l

m~mm
r: 1 : 1 ;

IBM® 1401 TP PR'OCEOURE OESCR PTION ~
TABl UNE \O~WT

1M o.IS I O NtxT I~!:e~ AN"'~,(5T DATE TA8~: SV6T.M lD£l(fIF'.S.~TIO I Co, eN ~ 1 TAM NAM

1£.')1" CC,4)p TA &~~ 0.2\0 ~
"7 l' ,.I, 2.0' , . .. 7 " ., ,. •

U.E COl 'CENT O~OER Of: RU\.£,S

P'Cf 0.1 OR DER I 1 . 1 1 I . 1 . 1 1 1 1 I . 1 1 I, 1 1 1 . 1 . 1 1 I . 1 1 I , 1 . 1 , 1 5T~RT KIf)C1" CARt

~ . , ~ .. '" , .. " .. " TA!W L. \ IJE. cc,.
lI~E CO\. IOE:twT COM ME: NT'

0.,1
CC~ C. NOTE .

1 COL 01 1 CO\. 02. co\. 03 1 CO,~ CO~ 05

• I I 22 7 .. !7 7 .. ,.. 10 "
LINE co, CP NA.ME CF NAME CP NAME CP NAME Cp "N"ME. OP NAME CO' HAME

0' 00

0 ' co. 15,0:, T. I~"' ,",' ,D ,D , I., lx,
0 0 3 Co. I ... An, Hoi., -,-,.-,(1. lx,

0 Co ,

os 0 ,0 ,
Ob 0.0.

0 ,1 10,0
0 " c ,C

. 0 • Co

i. Co.

I , 00 , ,. 00

13 lOp ,

"
o.,e

,5 0.0.

I ~ co ,

I ~

!-ill ~,C ,

"
c,e '"

j:'l
.LZ 00 ,

1 , , 1

TXP
'.~® I~I TP PROCEDURE DESClltlPTION ;ko)..

I l UI ~!t.IT e~M t-ISf: N~I~~:~~1 ANAL."1'STf DATE 1 Tt 8,.!;: I &.,.s-r~!1 IIOfN,.'!;I!~~TIOt41

'.&~EI"I ~ nA1,ln/\
I IS J" f1 2.0 ~

~ IDENi I Of{DE.R Of: RU\.ES

,." R oe,R , I , I , I , I ' I , I , I , I , I , I , I , I , I , I , I , I , I , I , I , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 11 START "'Xl" CARD

ITASL, " "~I'OLI IOEh,lT COM ME NT
06 , rnr'\t"Ilf'l,It.J,... ~ ,

COL 01 CO\.. 02 -, CC\.. 03 Col. ~ co,- 05

N A.ME. NAME NAMe OP NAME Op -NAME. opl NAME lopi NAM5

N.ru v AI J1 JJ k'< foi,
M

Ix.
IRE,~, , k-o, , RM , , , , , Ix.

t o;Jo.olno, '4 ,""

.100 C,1loALM le,Q, I" ,ft Ix
Ob 0.0 Or. 1 . .0 .~ .• 16",151 """D .• , III
0 ,1 p,o ,,",,,!> III A E,Q k.H,AI ,N Ix.

1."' ~, ',R

. 1M,,. T" I It .. X ,

I. 0.,0. 15,L T;<> I,.,," x. ,
1 1 00 "D,V,~ , rD" T,o., "o,."n)(

"
ao IIM,v ... DI" IT,o. ' hbl ,' X I",

13 b,c I
I' C,cj

I 50.,01
, ~

1 " ~,ot
I. p,oI
19 CC

Ac L..u!

w

'" '"

1

IBM® I~t TP P~OC"PURE OEseR PTtON ~
TABlE LINe \ O~t.lT

, M ,",S i O • <>IT I ~!:~R ANA~Y5T DATE "A8~: SV6T~:, IOfNTU'~~TIO COL ON • NOM

17.5,c CC,C 00. TA&l...E Ill. 11 S 07-IDO lE, 0"
.7 • , ., /6of7 '0 , 212' • 7 S7 " "

" NE [col 'DEN" O~DEo;;t 09= RU\.ES

PEf 0.1 OR DER 1 1 I I , I , I I I , I ,I I I I , I I I , I , I I I , I , I I I I START HotXl' CARD

4 , .. ~ Zo 3 3. .. 0 " TABL. L.INE; COL
LINE COL IOEI<JT COMMEN'i

0,1
CCf 0.2 NO"TE ,

I COCOI ~ COC 02 I COl. 03 Coc~ COl.. 0$

" • , ..
7 "

,
"

,. . ~ " LINE COL 01" NA.ME OP NAME OP "'AME OP NAME 0. 'NAME. OP NAME 01" NAME

100 , 00 ~, 'M/> ~'" I~ ~, W.
oZ 00

o. c ,e M,u,v, E; IMS,L tr.o laMa)(I>< , ,

Io, o~ 00 IS,c,T, IO D.D , Ie;Q IPMlt"A ~ I" , ,

, 05 00 'r> - " fr,Q W " ,
,0. o.c le ,~ "' le,Q Ict\, ~ BUll, , 1)(,

a 10,0 - Ivl I"m 10M 9 \1 oCr " Ix
Io,o,e o,e <!" ::r I 'T, DG ft; t.I ~ ,

, 0 • Co. Is,e; T. 1'1,,,, II , fr , 1M i!:X • ''II ,
10 CO " ~loI!')(, . P. fr.ll Iw", >c. 1><.
I , 00 ~I <' ,v, t " .. l ~,o, 'u>IE.!<. ~" I" I~ ,

12 00 Is,~ T 'W, "i '::0; IVi h(

~ ~p /.;c' ,T, w , II'IE"" l')(I, ,. C,C I,e ,II '" lea In,. ,/ ao" Ix I~

, ,5 CO. I ' ,E , r, "','01 ." 1O,."", Ix I~

0" Co. L, ' ,T , I""y, 1l.II.o .. EQ Iww Ix ,

10" - IJvi Ix Ix
• I , l,e.v,E, w,w ~Q ID.V , e.v ,D.l~ II(, lx, ,

w

1a19 0. IY,T,'O, "",,",,Q Ix Ix t:l
Io,l 00 IHD ,v ..- "" '.X.", T:~, liv I~)(

, ,

IBM® 1401 TP PROCI .. 'URE DE5CII,P' ION ~
TA51 UN! COl IO!.WT

1M" 10 N<xT £~:e: ANM.YST DATE TA8~: S~SAT~; lD£~Z~~TlO <N .AM

~ OO,OPPTA&~E I
7 I

I '" r7
20 • • , 7 .7 '5 •

UNE ~L IDEN" O~OER Of: RU\.E.S

~o~ 0\ O~ De-R I I I I I I I I I I I. I I I I I I I I I I I I I I ST~RT K[)I:r CARl .. , ~ ,
" 12

TA!" \. \ ~f '0<. lltiE COL 100I<JT COMMIE NT
O,E

OO~ 02 NOTE 1000CI",rl /D.v

• COCOI ~ CO\.. 02 ~ 7 CO\" 03 CO .. ~ COt. 05
7 I ..

7 " " • 10 " LINE COL 0 .. NAoME OP NAME OP HAME OP NAME Op 'NAME OP NAME OF NAME

0' 00 I.., ~O, 11>\10: •• "" X,)\

I 91Z 00 ... ~"', - .. " .t. • . • . ., l/ ,

I 01'3 0 ~W 170. V· ••• > X, X:

0 00 IA ,"~". 1I . 1I .

05 0 1,Y, P,~, T". Ill"""" e .. . lI .

Ob 0 .0 - 10 .. ,1: ,e T,O, IQ~ X ,)t.,

0 0 ,0 f.!tl. \ ,.,.,., 1~a.1 ,II,T,)(X
0 0 ,0

00 "
0 ,

I. 00

I I 00 ,

"
00

> ,
...J..!.J e.p

I 0,0

, 1,5 00

"
00

1,7 ~ ,

~ ~ ,

~ I~ , ... ~ L I I I J , . .. , , , , , , • , , , • , I , , , , . , , , , , , , . , . , , , • , , • I , . . , , , .. ,

to>

~

4. 1

CHAPTER 4

1401 Tabular Programming System Specifications

Although the basic philosophy and techniques of 1401 Tabular

Programming have been explained in previous sections, detailed specifi-

cations for writing Tabular Programs are required. This section covers

the basic language of 1401 Tabular P rogramming and the preparation of

the data description table and procedure tables.

A 1401 Tabular P rogram is assembled in two major phases. The

source program (punched cards) is first converted to Autocoder language

by the TP Processor. Minimum 1401 system requirements for this

procedure are:

1401 P rocessing Unit with 8K Storage, Compare Feature, and
Advanced P rogramming Feature.
1402 Card Read Punch.
1403 Printer with 132 positions.
1405 Disk Storage Unit (1 access arm).

* A second 1405 access arm is used if provided.

Next the Autocoder program is converted to a machine language

object program by the Autocoder processor. Minimum 1401 system

requirements for this procedure are:

1401 Processing Unit with 4K Storage, Compare Feature, and
Advanced Progr amming Feature .

1402 Card Read Punch.
1403 P rinter with 132 print positions .
729 n or IV Magnetic Tape Units (4 required) .

*Additional core storage is used if provided.

4. 2

M;nimum 1401 system reqUlrements to run the object program are:

1401 Processing unit with 4K Storage , Compare Feature, and
Advanced P rogramming Feature.
1402 Card Read Punch.
1405 Disk Storage Umt (1 access arm).

Additional features that can be used by the Object Program are :

Additional Core Storage
1403 Printer with 132 print positions.
A second access arm for the 1405.
729 II or N Magnetic Tape Units.
Multiply- Divide Feature

Basic Language

Character set

Tabular P rogramming for the 1401 assumes the use of IBM Character Set H.

Character Set H is shown in Its collating sequence in Figure 1.

All source programs must be punched us;ng this character set. The

user can also use the other characters in the 1401 set for data, but should

be careful when so domg . For example, certain characters might result m

unexpected results when operated on by the MOVE record- name command

since the machine move record command is employed. Also, the mput/output

commands will not operate according to speCifications if the characters to

termi.nate reads and writes are included Wlthin the data. Likewlse, some of

the special characters will not print; see the 1401 reference manual for a

complete list of characters.

r

4. 3
Written Card 1401
Character Code BCD Code Print as

Blank C
r 12-3-8 BA8 2 1 . .

) 12-4-8 C B A 8 4 }:(

+ 12 CBA &
$ 11-3-8 CB 8 21 $
• 11-4-8 B 84 •

11 B
r / 0-1 C A 1 /

, 0-3-8 C A8 21 ,
(0-4-8 A84 %
= 3-8 8 21 II

4-8 C 84 @
A 12-1 BA 1 A
B 12-2 BA 2 B
C 12-3 CBA 21 C
D 12-4 BA 4 D r
E 12-5 C BA 4 1 E
F 12-6 CBA 42 F
G 12-7 BA 421 G
H 12-8 BA8 H
I 12-9 CBA8 1 I
J 11-1 CB 1 J
K 11-2 CB 2 K
L 11-3 B 21 L
M 11-4 CB 4 M
N 11-5 B 4 1 N
0 11- 6 B 42 0
p 11-7 CB 421 P
Q 11-8 CB 8 Q
R 11-9 B 8 1 R
S 0-2 C A 2 S
T 0-3 A 21 T
U 0-4 C A 4 U
V 0-5 A 4 1 V
W 0-6 A 42 W
X 0-7 C A 421 X
Y 0-8 C A8 Y
Z 0-9 A8 Z
0 0 C 8 2 0
1 1 1 1
2 2 2 2
3 3 C 21 , 3
4 4 4 4
5 5 C 4 1 5
6 6 C 42 6
7 7 421 7
8 8 8 8
9 9 C 8 1 9

Figure 1 - Character Set in its collating sequence .

4. 4

Names

A standard name consists of one to six alphabetic or numeric

characters (not special characters) of which the first character must be

alphabetic . The special characters are used to form masks for data to

be edited for printing. Special characters are also used to form expres

sions and literals .

Tabular Programming for the 1401, similar to other types of

symbolic programming, utilizes specified operands and operators to state

the logic of the pr ogram in the form of one or more procedure tables . There

are seven types of operands: files, records, variables, constants, expres

sions, literals, and special operands. Except for literals and special

operands, all operands are identified by unique names, which must be defined

and described in the data description table. There are five types of operators:

conditional, input/output, assignment, sequence control, and special purpose.

The section on Procedure Tables contains detailed specifications for the use

of these operators .

Operands

The five types of operands which must be explicitly defined are shown

first under the heading Data Description. Following this , other permissible

operands are described.

Data Description

Tabular P rogramming for the 1401 utilizes one or more procedure tables to

express the logic of a program. The data referred to by these deciSion

tables is described in detail in the data description table . A biank data

description form is shown on the next page (Figure 2).

l-
I/)

)
J
<

Il.Z
1-<

0
~

,,®
• ...

l-
x
'" " -
~
~ ..
'Z
:;

~

~

" N

0

°it
0
0
0
0 ~ -() -
0:
O~
O~ .. ~
J

to ..
I- •
0
0
0
0
0
0 o _

-
'"

-------- - - - - ~ - - : - - - .- , - - - - - - - - -:
~
~

~ •
~
~

- - ----1---- - - 1- - = - - -1 - .. - - - I - I - -;
~ ..
It

v ~
~- - ----- ---- ~ • 0 - - - ,- - - - - - ' - - - - - " ~ • • e

N

N
N

~ N

W • 0

- tJ
I"

" -
"' r
<
'Z

2

" -0 , u ..
z
J

- - - - - - - - - ~ -

• .0
~ <
~,

~ I

l - - - - - - - - - - - - -~~

4.6

Each 1401 Tabular Program utilizes only one data description table .

However, this table may require a number of pages (see sample problem,

Chapter 3). The table is divided into a number of lines and columns. The

first line is the table header which contains certain identifying infor mation

that is punched into a single IBM card. Subsequent lines each contain

required information concerning a single oper and. This information is

expre ssed in columnar form according to established rules. The data from

each of these lines is also punched into a single IBM card.

The table header contains preprinted information in columns 1

through 27. This information must always be keypunched in order to

properly identify the data description table during program assembly.

Columns 28 through 80 contain spaces for information that may be entered

by the programmer at his discretion. Columns 75-80 contain the program

identification and should be punched in every card of the program.

As stated previously, subsequent lines of the data description table

are divided into columns each of which contains specified information con

cerning a single operand. The first column is headed LINE, and is used to

number in ascending order each item of the table . Usually one or more

consecutive numbers are omitted between each line number to allow for

later insertion of items that may have been overlooked. The second colwnn

is headed COL for column number . The digits 00 are usually entered in

this space . Exceptions to this can be constants, preassigned variables, and

expressions. These can require more than one line of the table, in which

4.7

case the line number remains Ule same and the column number is

increased to 01, 02, etc., as required. The processor will check to see

tllat the cards are in ascending order based on table number (000) J line

number, and column number.

The third column is headed CLASS for operand class . Of the seven

operand classes utilized in 1401 Tabular Programming five may appear in

the data description table. These are file, record, variable, constant, and

expression. For each operand the first letter (F, R, V, C, and E) of the

operand class appears in the class column.

The fourth column is headed NA1v1E, and is used to designate the

unique name for each operand. As in other types of symbolic programming,

the name of an operand is usually selected for its mnemonic value . When

an operand is not referenced in the program, it need not be named, and the

NAME column can be left blank .

The fifth column is headed INTEGER, and is usually used to indicate

the number of integer positions in the operand.

The sixth column is headed DEC for decimal, and is usually used to

indicate the number of decimal positions in the operand. Exceptions are

noted under FILE and RECORD headings below.

The seventh column is headed CODE, and is used to further describe

the operand. In the case of FILE, the letter M for move or the letter L for

load is placed in this colwnn, depending on the mode of operation desired.

For oU1er types of operands (except records, where it is not used), the

4.8

letter A for alphameric , N for numeric , or M for masked is placed in 'the

code column.

The eighth colwnn is headed CONT for continued, and is used in

the case of operands that require more than one line on the data description

table . As stated previously these types of operands are constants, pre

assigned variables, and expressions. The letter C is placed in this column

for all lines of a continued item except the last. For example, if an ex

pression takes two lines on the data description form, the first line would

contain a C and the second line would have a blank in the CONT column.

The ninth and last column of the data description table is he acted

DESCRIPTION. This column is used to specify the device where a file is

stored: RAMAC, reader, punch, or tape for example. It is also used to

specify the exact values of constants, preassigned variables, and masks

(edit words) for masked variables. Expressions are written in this portion

of the form also.

Note that each named operand used in a 1401 Tabular Program must be

specified in the data description table . This includes operands used to

designate blank spaces on input or output media and also to specify work

areas in core storage.

Each of the five types of operands that must appear in the data description

table is now discussed in detail. Specifications for completing the data

description for each type of operand are also given.

4. 9

Files

A file is a collection of records in a single input, output or storage

device. Its purpose is to associate an area in core storage with a specified

input/output device, or to reserve a work area in core storage.

Each reserved area in core storage is assigned a file name. Only

one record can be stored in a file area at a time. However, at different

times, a maximum of 9 types of records can be stored, i. e. a single file

can contain records with different ,formats, each of which can be described

independently. Each of these records in turn can contain a maximum of 99

variables.

As an example of the organization of a file in core storage, consider

a deck of 80- column cards representing inventory data. The file is named

INV, and contains three different types of cards (records); ADD, DELETE

and CHANGE. Each record- type contains one or more variables (fields).

A description of this file might be:

File name: INV

Record name:
Variable name:
Variable name:
Variable name:

Record name:
Variable name:
Variable name:

Record name:
Variable name:
Variable name:
Variable name:

ADD (representing item added to inventory)
PARTNO
QOH
USAGE

DELETE (representing item deleted from inventory)
INVNO
FILL

CHANGE (representing change in stock status)
NUMBER
QUSED
QRCVD

r

,

4.10

If the name INV is associated with the card reader, the instruction

READ INV in a procedure table causes a card to be read. No name, other

than INV, should be associated with the card reader, and INV should not

refer to any other file . Furthermore, the names P ARTNO, INVNO and

NUMBER all refer to the part number, but different names are required

because each variable must be uniquely named.

A complete description of each file, record and variable must appear

in the data description. Only a single file can be associated with the card

reader, punch, printer, tape units, or region of the RAMAC (more than

one region can be defined, however). Work areas in core storage, and the

inquiry station (see restrictions below) can have more than one file associated

with them. Entries in the data description table to describe a file are:

CLASS
NAME
INTEGER

DEC

CODE
CONT
DESCRIPTION

F
standard
000-999 (maximum length of any r ecord type appearing
in the file -- 000 represents 1000)
1st position V, if r ecords are variable length (otherwise
zero or blank)
2nd position 1-9, number of r ecord types in file.
L (load mode) or M (move mode)
blank
see Figure 3

Directly following each file descriptlon must appear descriptions of

each of the one or more records that are a part of that file . Each record

description entry is followed by descriptions of the one or more variable

fields that are a part of that record. The formats of the different possible

file entries that may appear in the data description table are illustrated in

Figure 3. The exact formats shown must be used since the processor will

pick up the information based on position.

1

IDENT

, '0 " , ..
LINE CO. t>lAME INTE(;f 0",

n.r.c c

F O.iU ."
c Of ,

nv ,~

- (]. 9, Lr)

F ()J'

- , ,," ,n

1_ I.n

F

,n

,r.

r.

nn
,

F

, ,

,n o

,

, t:.1! ~ ~~ ~~ , , '"" .. " I; DEseRI PTIOI-l

QI A.n. £R. I I l no,·~" l p'coKd I

IV' .: ;J /\ '. ;.' " 1 1 1. - lLH.2. I
Ir - <nl'R " rU r A R , 1 1 I

Ip,E,A,D,E,!?, ,F,~ ~, ,ToIIJI, ,~ ,n I I ' I ,
I I I I

iPOl I1U.# I 1'" 0 .. ~_I ,b", ,,,.t.rl
Ip u ' r< U . I 1 1"1~ 'f#t-' I , ! , ,

I I I , I

P, R.I .tJ, ToE.R, I I I . I

I I I , ! I I , I , I I ,
'r ,A, p, ,- , I .N, I I 1 _ /l.- ~ , , ,

- T .A .P , C, , ,AI, ., ,, :r .A. " . I In - 11 - ,< I

I,A.P.i,:!:l Il~=, IZl~P£'a11 ,:2.,I.L, L, I I I I , , I , I I I Ill,:'.-'),-,5, I I I I I I I I I I I I

n -" ,1 '/ ,71 APi= , n ,I T ~ [,118,0'0'''' In,.,Q'-'~~'!!l • .a-LL, 'l!Jot,a " " ,
T A. p" ,".",T, 1 ~ 1 m,' .Q,- (I
!r .A P, ,: f J.U , r. I.c: n,,, T.A P. n,< 1m '''' . - ~ . I

, /1 I I I ,

p, a , ,,,, ~ I' , .Ilf. ;' ! .1. 1..H .h I iJ,LLLt. • ,/.0 '", ,L , '"" , f ,
I ~ I r I, ,Lt,.1, t. • ,J.. ' nIh I , ; f ,

(' ,(). /?, C I I , l,-,.."j", ,c. ,c" , F ~< I - T. r , ,h ,c·,.
I I IF r- " ,F n, T.I , • :q.(- ,,,,,o.

" /." .R, y, I

'~ RoY .. . tJ,M ,r ,!i.A. I I I I I I I ' I • I I , I
/

I I I I
I I I I

I .c '5 ~"7 a 7 /0 /l1.eIJ ~lt'"'!flfJ~' U 13e4~.Z"."30" U.D_.JS ~ +;>." ~'fJ ., 1 T~

!'"
~

f-'

4.12

The different devices associated with files are now taken in turn to point out

any peculiarities or special restrictions that are imposed by the system.

READER -- Only one input file name can be associated with the READER .

INTEGER length is always 080, designating the number of columns in

a standard IBM card. One of the digits 1 through 9 is placed in the

units position of the decimal column, indicating the number of different

record types in the READER file (the format of each record must then

be displayed). Code is always M for move mode . The word READER,

followed by the digit 1 or 2, is written in the description column. The

number indicates the pocket into which cards are to be stacked. If no

number appears the "normal II pocket is used. An end- of-file (last

card) condition is indicated by the letters EOF followed by a blank

position, the letters TAB, and three digits. The three digits indicate

the table number to which control is transferred on a GO TO basis

when an end- of- file condition occurs . When the end- of- file indication

is not given, and the program tries to read a card after end- of-file is

reached, the program will stop.

P UNCH -- Only one output file name can be associated with the PUNCH.

INTEGER length is always 080, indicating the number of columns in

a standard IBM card. One of the digits 1 through 9 is written in the

units position of the decimal column, indicating the number of different

record types in the output file. Code is always M for move mode. The

4. 13

word PUNCH, followed by the number 4 or 8 is written in the

description column. The number indicates the pocket into which

cards are to be stacked. If no number appears, cards are stacked

in the "normal It pocket. Note that pocket 8 on the punch side of the

1402 and 'pocket 2 on the reader side are the same pocket, hence,

an inter- leaving of cards is possible . No end- of- file condition is

possible with the punch.

PRINTER -- Only one output file name can be associated with the

PRINTER. INTEGER length is always 132, indicating the number

of print positions required for the 1403 Printer. One of the digits 1

through 9 is written in the units position of the decimal column, indi

cating the number of record types in the file. Code is always M for

move mode. The word PRINTER is written in the description column.

TAPE -- Magnetic tape units can be used either as input or output

devices. Therefore, each tape unit used in the program must be

designated as either an input or an output device, and only one input

or output file name can be associated with each tape unit. However,

the same file name can be associated with both an input and output

tape unit. Integer length is 000 through 999 (where 000 indicates

1000), indicating the maximum length of any record type in the file .

The letter V is written in the tens position of the decimal column if

variable length records appear in the tape file . One of the digits 1

4.14

through 9 is written in the units position of the decimal column,

indicating the number of record types in the tape file. Code can be

either M for move mode or L for load mode, depending on the mode

of operation desired. Move mode is used when word marks are not

to appear on the input or output data. Load mode is used when word

marks are to read in as written out with the word marks associated

with the fields.

For an input tape unit, the letters TAPE followed by one of

the digits 0 through 5, a blank position, and the letters IN are written

in the description column. The digit indicates the number of the tape

unit to be assigned. An end- of- file condition is indicated in the same

manner as for the card reader.

For an output tape unit, the word TAPE followed by one of

the digits 0 through 5, a blank position, and the letters OUT are

written in the data description column. For an output tape file , end

of- file is indicated in the same manner as for the reader and input

tape files. The same file name may be used for both an input and

an output tape unit, but different tape units must be specified.

RAMAC -- Each continuous region in RAMAC can be designated as

an independent file, each with a different file name. Only one file

name can be associated with each RAMAC region, but this name can

be used for both input and output operations. INTEGER length,

designating the length of records within a file, must be either 200 or

4.15

000 (1000) for move mode, or 176 or 880 for load mode. One of

the digits 1 to 9 is written in the units position of the decimal column,

indicating the number of different record types in the file . Code can

be ei ther M for move mode, or L for load mode. The word RAMAC

followed by a blank position, a 5 digit number, a comma, and another

5 digit number are written in the description column. The two 5 digit

numbers represent the beginning and ending addresses respectively

of each RAMAC region. These numbers are of the format 'fftts',

where ff = face , tt = track and s = sector. No end- ot- file condition

is possible for RAMAC operations.

CORE -- All intermediate values, utilizing work areas in core

storage, must be part of a record, which in turn is part of a file.

There may be any number of files in core storage J each file having

a separate area of storage assigned to it. INTEGER length (000

through 999) specifies the maximum length of any record type in the

file . One of the digits 1 to 9 is written in the units position of the

decimal column, indicating the number of different record types in

the file . The code column is left blank, because mode is not appropri

ate for core files. The word CORE is written in the description

column. An end- of- file condition is not possible for intermediate

core storage .

INQUIRY -- Two types of input and one type of output operation are

possible with the 1407 Console Inquiry Station. Each of these types

4.16

of operation may be designated by a distinct file name. INTEGER

length (000 through 999) designates the maximum length of any record

type in the file. One of the digits 1 through 9 is written in the units

position of the decimal column to indicate the number of record

types in each file. Code can be either M for move mode or L for

load mode.

For the first type of input operation, the word INQUffiY is

written in the description column. When the appropriate file name for

this type of operation appears in the program, the INQUffiY latch is

tested. If the latch is not on, the program stops and waits for the

latch to be turned on, manually, by the operator. At this time, data

required by the program may be typed by the operator.

For the second type of input operation, the word INQUffiY

followed by a comma, the word ON, a blank position, the word TAB,

and a 3 digit number is written in the description column. This type

of operation is indicated when the operator may desire to make an

inquiry of the program . In this case, the program is written to peri

odicaily test to see if the inquiry latch is ON. When it is not, the

program continues, when it is ON the program transfers on the GO TO

basis to the table number indicated by the 3 digit number following the

word TAB.

For the single type of output operation ailowed, the word

INQUffiY is written in the description column. This ailows the 1407 to

be used as an output typewriter .

4. 17

Records

A record consists of one or more related variable fields. Typical

records are 80 column cards, 132 character print lines, magnetic tape

records, RAMAC records, and reserved work areas in core storage . Al-

though a file can provide only one record at a time, a number of record types

can be r epresented by a file name, each recor d type identified by a unique

standard name . The entries made in the data description table to describe

a record are:

CLASS
NAME
INTEGER

DEC

CODE
CONT
DESCRIPTION

R
standard name
000- 999 (number of characters per record,
including blank fields -- 000 represents 1000)
01 - 99 (number of variables per record, includ
ing blank fields)
blank
blank
blank

When a file contains more than a single record type, each of the

different r ecords must be descr ibed along with the variables of which it is

composed. An illustration of this was given under the FILE heading, where

a card file contained three types of cards -- CHANGE, DELETE and ADD --

each with different formats . Each format is shown to enable the processor

to suitably address these fields when they are used in procedures. Also, the

processor uses these descriptions to correctly place the void marks in the

core areas associated with the record. The processor automatically sets up

word marks for the last (or only) record defined for each file. The LAYOUT

record- name command, which will be described under Procedure Tables, is

used to clear old word marks and to set new word marks corresponding to the

4. 18

desired recor d format, during the rwming of the object pr ogr am.

The following illustration shows the for mat of the RECORD entry :

"'
, '. 2112 5 2 55 •

t>l AM E INTEI;t DEC Il D ESC RiPT IO

I . I I
I"T A II OR? II t. .YD. ('.0. n, . WIIII I. h V::IF' ,,~. I

_L . I
1 3 2 0 ,7 J'l2, /" -d R".~ n ,l/,r. 7 ,Po, E '--""

JF M ,. I JoIn " m .AI' 'u, .I , -m IN -U,

P~Dr.'R" ,r.", \."- ,1w.!), flAil 11>1 L",T p,

. , T ",n',,., JU

I I - -

The descr iption for each r ecor d type must be followed by a

descr iption for each of the variable fields within that record type.

Note that every variable field must be a part of a recor d, including

blank fields between data fields _

Variables

Variables are the operands most used in any data processing program.

Determination of the values of these variables is usually the purpose of

the program. Variable names may represent input, intermediate , or

output values, depending on how these values are developed in the pro-

gram . As noted previously I each variable must be uniquely named and

must be a part of a record , which in turn is a part of a file .

Ther e ar e three types of variables used in 1401 Tabular Program-

ming ., unassigned, preassigned, and masked variables. Unassigned v~i-

abies are used when the value is developed through an input oper ation or by

4.19

calculation. Preassigned variables are similar to unassigned variables,

except that they can be assigned an 5.nitial value in the description column

of the data description table . Masked variables are used for printed output

of numeric data, under Ole control. of a mask (edit wor d) that is written in

the description colUIl'" of the data description table.

,

Unassigned Variables -- An unassigned variable can be either

numeric with a maximum of 12 integer and 6 decimal positions,

or alphameric, with a maximum of 999 positions, including blanks.

Entries in the data descr iption table to describe an unaSSigned

variable are:

NAME

CLASS
NAME
INTEGER
DEC
CODE
CONT
DESCRIPTION

OECiin
I

V
standard name
numeric 000-012, alphameric 001-999
numeric 00-06, alphameric 00
N (numeric), A (alphameric)
blank
blank

DESCRIf>TI,oN

, I
n.~,w, " D"M .t , " c, • ~ 2., pc IJJ£"

,,/oJ m 51 .U . " r.~ ,..., U, . . ,,,.r., - I Y . JR.r;~.r P'. , ,e ."

" ,. :J , "'., 'n 1'" . AI '" F , o . I
,i P , ,n,' ~, "",".0, lib, f,

.!Jt. ,z,. o. "
I ,

Preassigned Variables -- A preassigned variable is used in the

same way as an unaSSigned variable, except thatan initial value

,
I

r

r

•

,.

4.20

is assigned t o it. If numeric , the initial value and values that the

variable assumes during the progr am are limited to 12 integer and

6 decimal positions. The initial value appears in the data descrip-

tion with its sign (to the left of the value) and decimal pOint. The

decimal point must be written unless the value is an integer. When

unsigned, a positive value is assumed. If alphameric, both the

initial and assumed values of the variable are limited to 999

positions, including blanks. The initial value of an alphameric

variable appears in the data description enc losed in quotation marks.

Entries in the data desc ription table to describe a preassigned

variable are:

CLASS
NAME
INTEGER
DEC
CODE
CONT

DESCRIPTION

V
standard name
numeric. 000- 012, alphameric 001 -999
numeric 00- 06, alphameric 00
N (numeric), A (alphameric)
C, if preassigned value will not fit on a
single line and an additional card(s) is
required. Otherwise J blank.
Ac tual preassigned value . If alphmeric,
enclose in quotes.

If a."l alphameric value will not fit on a single line, each line

up to but not incb.ding the las t must have a C in the continuation

col umn , al l lines must have the quote mark in the firs t

and l a s t posi tions of the description field . , , ,. 21 " ,. .Jilij of?I"n
NAME INTE!;, DEC DE SCRIf'TIO>J -

~ , , , , I , , , , , , , , , I , , , , , , ,

81

• ..J
V5UI>II1Il · In tH, !O .L Mil' ~ " "'" ,., .L...... , , , , , , , I , , , , , , ,J

(OU.,T I" " I~ 1 . no / , I , , , , I , , , , , , , , , I , , , ,
. U E a n. 01 .4 'A . "

\ :~ I) ,"on .1I.nJn..JL,N,r,
,

I ,~ , , , , , , , , , , ,
I" " 10,,, / , I ~~

- , , , , , , I , , , , , , , , , , , , , , , , , , , I

4. 21

Masked Variables -- A masked variable is an unassigned numeric

variable with a maximum of 12 integer and 6 decimal positions.

Al though the variable to be masked must be numeric , the mask

itself (edit word) associated with this variable is limited to a maxi-

mum of 48 alphameric characters enclosed in quotation marks, and

appearing in the description column of the data descr iption table.

Whenever information is assigned to this variable it will be operated

on by the mask in the description area. The process first moves in

the mask and then the value to be assigned. This is used primar ily

in developing a print line . Entries in the data description table to

describe a masked variable are :

CLASS
NAME
INTEGER
DEC
CODE
CONT
DESCRIPTION

V
standard name
001 -048 (length of mask)
00
M
blank
Actual mask (edit word) enclosed in quotes

In forming masks, certain characters have special significance.

These characters and the functions they perform are listed below. Further

information on editing can be referenced in the 1401 Reference Manual,

A 24- 1403- 4.

Control Character

b (blank)

o (zero)

. (period)

, (comma)

CR (credit)

r

- (minus)

& (ampersand)

• (asterisk)

$ (dollar sign)

'0 1 , " " '"
~AMe I .. n;t. ."

TO.TAL f?d III ,r) S
!.If:. T. lo.r. o I"." ,

/

4.22

Function

This is replaced with the character from the
corresponding position of the sending field.

This is used for zero suppression, and is
replaced with a corresponding character from
the sending field. Also the right- most non in
the control word indicates the right- most
limit of zero suppression .

This is undisturbed in the punctuated data
field, in the posi lion where written. It
functions as a significant character.

This is undisturbed in the punctuated data
field, in the position where written, unless
zero suppression takes place, and no signifi
cant numeric characters are found to the left
of the comma.

This is undisturbed if the data s ign is negative.
It is blanked out if the data sign is positive.
Can be used in body of control word without
being subject to sign control.

This is the same as CR.

This causes a space in the edited field. It can
be used in multiples.

This can be used in singular or in multiple,
usually to indicate class of total.

This is undisturbed in the position where it is
written.

:!It 55 <2

DE5CRIf'TIO'"

I I
,rJb .h.1 I I/ - I I 1

I I ,.

4.23

Constanta

A constant is a named operand whose value is assigned in the data

description and cannot be changed. A numeric constant can have a maximum

of 12 integer positions and 6 decimal positions plus sign and decimal point.

If unsigned, a positive value is assumed. An alphameric constant can

have a maximum of 999 positions, including blanks, and must be enclosed

in quote marks in the data description. Exampl'3s of named constants

might be TXRA TE, Ss..'<ATE, and PI. Constants should be entered in the

data description form along with the description of intermediate variables

and expressions, rather than with the description of input/output files .

Entries in the data description table to describe a constant are:

CLASS
NAME
INTEGER
DEC
CODE
CONT

DESC RIPTION

C
standard name
numeric 000- 012, alphameric 001 - 999
numeric 00- 06, alphameric 00
N (numeric), A (alphameric)
C, if alphameric exceeding 48 positions.
Otherwise, blank .
Actual value of constant. If alphameric,
enclose in quotes.

r

• , •
oj" i~·!W '" , o • •

0 '.
"/1 ~ _ . . :.- ~:.... 1' 1..'1. -. -.I- !

~ E:;C ~, P- : " , .. -
!. . . 1. '1,1.6, •••. 1.........-•. . _ _ _ • l \

- ~.e. ~ • .. •. I ____ .. _ . _. - . .

4. 24

e!",......,
(~ . • .or- ' .TV."

, . ,
I

'-,; •• f .6, . ,£,fl..ttp,R,' • • , 0-" • • • • - - _ . _ • • ••.• - -, :-:::::::=-:e:<084
...............~ ... -"_ •• . 1. "fII..P.c,.t\"' {i:j ,z, , "I .,.P.~,.., .. ~ L"-' . •. ~

P • .2. • ,-, I •• ,R,\'\l.,E. ,1.1 •• ,R-V,l,E, ,'1, I , • ,II.O,L.,I::, l30 J I .dt.U.L.E.....~ c " - -
-L-L. ~ ...IW.!I.~~, .JS. 6--' " , , •. " , , • I , , , J • I , , ,I, '-, , , , I

-

Expressions

An arithmetic expression is a combination of operands and arithmetic

operators, which when executed yield a numeric value. The operands can

be previously defined unsigned numeric literals, numeric constants, or

numeric variables. Numeric literals may have up to 12 integer positions and

6 decimal positions. A maximum of 26 operands can appear in an expression.

The operators + - * / (representing addition, subtraction, multiplication and

division respectively) can be used.

Parentheses serve to delimit the effect of any operator, but where

not specified by parenthesis the hierarchy of operations (from left to right

through an entire expression) is first, multiplication and division, and

second, addition and subtraction. An equal number of left and right

parentheses must be used. All operands, operators, and parentheses

should be separated from each other by one or more blanks . An example

of typical expr ession is:

A +B*(C - D)

This would be executed -- subtract D from C, multiply by B, and add to A.

FORTRAN rules of hierarchy and pa:enthesizing are used in determining

the order of evaluating an arithmetic expression.

4.25

The name of an expression, together with the actual terms of the

expression, appears in the data description. Where more than one line is

required to write an expression, an operand must not be split between two

lines. An expression is not evaluated unless it is called by the appearance

of its name in a procedure table . Then the expression is evaluated, using

up to 12 integer and six decimal positions, as required. After this, suf-

ficient low- order decimal positions are truncated to satisfy the number of

decimal positions (maximum of 6) specified for the expressIon name. Suf-

ficient high- order integer positions are truncated to satisfy the number of

integer positions (maximum of 12) specified for the expression name. For

example, the computed value of an expression, for which eight integer and four

decimal positions are specified, might be :

987654321.123456

After trunc a tion, the value appears as:

87654321. 1234

The example shows that car e must be exercised to specify sufficient integer

and decimal positions.

Entries in the data description table to describe an expression a r e :

CLASS
NAME
INTEGER

DEC

CODE
CONT

DESCRIPTION

E
standard name
000- 012 (integer length of computed value
of expression)
00- 06 (decimal length of computed value of
expression)
N
C, if length of expression exceeds 50
posi lions Otherwise , blank
Actual expression.

4. 26

~=::.." -=-. __ "1~ _ -.-. '·1- ! "
- -- --_._-- - --

, , , ,~. UIM~ • . ,), ~L-<M~t:""oD' -L"""""" J.

. .. -----I

Other Operands

As mentioned earlier, there are two other types of operands that

need not be explicitly defined in the data description table . The first are

literals (actual values, rather than names of values) and the second, special

operands, which are part of the system vocabulary and have special meaning.

Literals

A literal is a s igned or unsigned numeric value or group of alpha-

merie characters that are used in the program procedure table. Numeric

literals can also be used in the data description table in defining an expres-

sian. A numeric literal can have a maximum of six pOSitions plus sign and

decimal point in a procedure table, and a maximum of 12 integers and 6

decimals in defining expressions. If unsigned, a positive value is assumed;

the sign precedes the literal value. The decimal point is used to show the

assumed decimal position. An alphameric literal can have a maximum of

six positions and must be enclosed in quote marks (designated by an

apostrophe in character set H). Examples of literals are:

+123.45

-987. 654

456789

'STKOH '

'4THQ'

'PLANT3'

4.27

All special characters of set H can be used to form a literal except

the quote mark, which is reserved for designation of alphameric literals.

Special Operands

Six special operands are reserved for specific conditions and actions in

procedure tables. These operands may not be used for any other purpose, and

do not appear in the data description table. The special operands and their

purposes are:

LINE(S)

CHAN

RAMADD

TAB

TABSTOP

E LSE

1403 carriage line spacing

1403 carriage skipping

1405 address conversion

abbreviation of "tablet!

stop the program

unconditional rule

Detailed instructions for the use of the special operands appear in the

section titled P rocedure Tables.

r

r

r

r

4.28

P rocedure Tables

In tabular programming, a procedure table is an organized means

for expressing the logic associated with the solution to a problem. With

other programming methods this logic is usually expressed in the form of a

flow chart, after which the program is coded in some symbolic language;

hence two steps are required. In tabular programming only one step is

required since the procedure tables serve both as a flow chart and the result

ing progr am.

A solution to a problem can usually be described by indicating sets

of logical conditions and the actions that result. In tabular programming,

these conditions, actions, together with certain other jnformation is recorded

in a procedure table . The general form of a procedure table is shown in the

illustration.

Table Header

Condition Stub Condition Entry

Action Stub Action Entry

The general form (Figure 4) should be compared with an actual pro

cedure table to identify the elements of the table . The table header requires

certain information, portions of which cannot be provided until the rest of

the table has been completely written. The condition and action sections

contain the logic of the problem to be solved. These sections are further

divided into stub and entry portlons. Note that the double line separating

,

--"-00
TA81 LINE eo.. 'M WS.iO N<XT lCf.wT <" TOO

00;, Op TA&L..E
H • ., Ho l!i 07 , 20

U~E CDL IDENi

poe , 0\ OR oeR I I I I
" , 14 IS 160 • •

U~f COL 1D£t.JT

000 O. NOTE

'7 • ,. , 2. ..
LINE COL OP NAME OP

0' 00

02 00

O. o ,C

0 00 ,

,os DC

0 ,. loe
0 ~o
0 0 oc

,09 00 .
I . 00

, , op

I' IoC
,. bP
, A 0.< ,. O.C

I .' 00

~ Ie;(
be , ' ,

., . o,c , Ioc j l.

, , I 1 1 1

1401 TP PR'OCEI>URE DESCRIPTIO .. MoI\
~!:~R T .E ANALYST DATE TA8!;: ~VST&M I~~!S~W)" "AM

, 7 " ,S

O~Oe:R CIF RULES

I START ~f:X1" CAR'O

" 1Z

COMMENT
ThSL LI~£: COL

~! , ,
T COL. O. I CO\. 02 co\. 03 Coc_ Co\.. 05

7 .. 1 Sf 7 .. • 10 " NAME OP NAME OF NAME op 'N AME. op NAME 0" NAMe=:

,
,

, .

FIGURE 4

"'
'" <0

r

r

4.30

conditions and actions is not shown on the form. This allows the number

of actual condition rows to determine the location of the double line.

Limited and Extended Entry

There are two basic ways of writing condition and action rows,

limited entry and extended entry. Limited entry, (when a condition or action

is written entirely in the stub section of the table) is generally used when the

condition or action is common to many rules. For example, if for every

rule of a table we want to read a card, the action is written in the stub and

marked with an X in each entry box. Likewise if a particular condition

applies to a number of rules . The condition entry portion of the table is

then marked with a Y (yes) or N (no) to indicate whether the condition must

be true or not true to satisfy that condition. If a condition is not pertinent

to a rule, the OP column is left blank. Specific actions to be executed for

a rule are indicated by writing ihe letter X in the first position of the OP

column. The limited entry technique is illustrated by this Simplified version

of a procedure table. This table is written entirely in limited entry form, in

ihe 1401 Tabular Programming System, it is possible to mix limited and

extended entry form .

4.31

Rule 1 Rule 2 Rule 3 Rule 4

A EQ B Y Y N

C GR D Y N Y

E LE F N N Y N

MOVE X TO Y X X

READ CARD X X X

GO TO TAB 123 X X

In a limited entry table, all operands and operators appear in the

condition and action stub portion of the table . The only entries in the entry

section of the table are the letters Y and N, indicating required conditions,

and the letter X, indicating required actions.

In extended entry form, the second operand of a condition or an

action can be written in the entry portion of the table. Thus, a single row

can contain a number of different conditions or actions. For example, in a

condition row the stub might contain an operand which is to be compared with

a number of values (TYPe code = 1,2,3,4 .. .). The table below shows a

combination of limited" and extended entry form .

4. 32

I

!ftULE 1)ULE 2 JULE 3

I
I I
I I

STUB ENTRY

OP NAME OP NAME OP NAME OP NAME OP NAME

METAL EQ 'ALUM' 'COPR'

VOLTS GR 110 Y N

A GR B C

READ MASTER X X

MOVE BLANKS TO TOTAL SUBIOr

GO TO TAB023 TAB264 TAB116

Table Header

The first three lines of a procedure table are reserved fo r table header

information. With certain exceptions, columns 1- 27 of the first line must be

completed. Columns 26- 80 can be completed at the discretion of the pro-

grammer, as can the second and third lines of the header . Each of the three

header lines is key punched into an IBM c ard.

A three - digit iable number (e . g. 001, 012, 987) is written in columns

1- 3 of the first line . Because the first iable executed in a program is table

001, there must always be a iable 001. Any number up through 999 can be used

for subsequent tables . Although not shown on the form, table number must be

key punched in columns 1- 3 of all cards associated with a procedure iable.

Pre - printed information appears in columns 4- 13. Columns 14- 19

specify the dimensions (number of condition rows, actions rows, and rules)

4. 33

of the table. Usually, the table proper must first be completed to determine

its dimensions.

With ce rtain exceptions columns 20- 23 of the first line specify the

NEXT TABLE to be executed. This is indicated by a left- justified three

digit number. If a table is executed as a result of a DO command (see

Action Operators) appearing in one or more other tables, the word DO is

written in columns 20- 21. This causes control to be returned to the

originating table after execution. If a table terminates a program, the word

STOP is written in columns 20- 23 . Except for a DO- type table, the next

table to be executed may also be indicated by a GO TO command as the last

action of one or more rules of a table . In this case, the next table entry is

ignored.

Columns 24- 27 of the first lme specify an ERROR TABLE. Should

none of the sets of conditions in a table be satisfied, an error in programming

logiC is indicated. 1n this case, the number of the table In error is printed

and the program transfers to the error table (a left- justified three - digit

number). If a program is not to conbnue after an error, the word STOP is

written in columns 24- 27. An ERROR TABLE may not be indicated in a closed

table, if an error occurred, there is the error type out and the program

returns to the table where the DO occurred. However, for a non DO-type table,

transfer to an error table can be effected by a GO TO command as the last

action under an ELSE condition entry (see Condition Operands) . Although

ELSE ser ves other purposes, its appearance as a condition of a table

precludes the need for an error table entry.

4. 34

As stated previously, columns 28- 80 of the first line are used at

the discretion of the programmer . However, this information can be

useful when a printed program listing is made . Note that columns 75- 80

are used for IDENTIFICATION NAME , and that these columns are r eserved

for all cards of the procedure and data description tables.

The second line of the pr ocedure table header is used to spec ify the

order in which the rules in the table proper are to be considered. Columns

4-1 3 contaln pre- printed information. Columns 14-73 allow a maximum of

30 two-<ligit (C OL) numbers to be written. The rules are considered in the

sequence these nwnbers are written. Thus, rules that are written in some

logical or der can be consider ed in a differ ent order. This is done by putting

the high frequency rules to the left to improve program efficiency. If more than

30 rules are required in a table, columns 14- 73 cannot be used; the table itself

must be arranged for efficiency. If no or der of rules is indicated, the rules

are consider ed in sequence fr om left to right, as written in the table proper .

Column 74 is left blank, and columns 75- 80 are reserved for IDENTIFICATION

NAME.

The third header line is r eserved for comments . Column 4- 13 contaln

pre- printed information. Any comments that the programmer desires can be

entered in columns 14- 74. Columns 75- 80 are reserved for IDENTIFICATION

4. 35

NAME. If more than one comment card is desired, subsequent cards can

be used, but the number in columns 7- S must be incremented for each

subsequent card.

Stub and Entry Sections

Each line of the table proper is key punched into an IBM card. The

table number (1-3) is punched in every card. Line numbers (4- 6) must also

be punched for every card (must be in ascending sequence) as well as column

numbers (7- S)' Column number will be 00 for the first card of each line in

the table proper. Because of the SO-column size of an IBM card, the stub

section and only four rules can be punched into a single card. If more rules

are required, additional cards can be punched. Each additional card has

space for six rules (10 card columns per rule) plus identifying information in

columns I -S and 75- S0. The standard procedure table form provides space

for 13 rules. Rules 5-10 are punched into the second card, and rules 11- 13

are punched into the third card. In each of these cards, table number is

punched in columns 1-3, and line number in columns 4- 6. The first rule

number (COL) in each additional card is punched in columns 7- S (05 for the

second card, 11 for the third card, etc .).

If more than 13 rules are required, the form can be extended by using

additional forms . Rules 14- 16 are continued (after 11-13) in the third card.

Rules 17- 22 are punched in card columns 9- 68 of the fourth card, rules 23 - 28

in the fifth card, etc . J up to a maximum of 64 rules. As noted previously,

r
4.36

card columns 1- 8 of each addl tional card must always be punched. Columns

7-8 are punched with the first rule number appearing in that card (17 for the

fourth card, 23 for the fifth card, etc .).

The number of condition rows and action rows in the stub and entry

sections of the procedure table can exceed the 20 for which space is provided.

In this case, the table proper section of additional forms can be used. Note

that the pre-printed line numbers (card columns 4- 6) must be changed io show

the numbers 021 and higher. A new header is not permitted, but all other

parts of the form are used exactly as for the original form.

Because of limitations in storage and in the 1401 tabular language

processor the following restrictions apply:

1. Maximum of 999 tables.

2. Maximum of 64 rules per table .

3. Maximum of 54 condition rows plus action rows (line numbers) per

table.

4. The larger the number of rules per table, the smaller the number of

conditions plus actions that are allowed, as shown below.

4. 37

No. of No. of No. of
No. of Conditions Conditions Conditions
Rules & Actions Rules & Actions Rules & Actions

1 54 10 14 23- 25 6

2 42 11 13 26- 30 5

3 34 12 12 31 - 37 4

4 29 13 11 38- 47 3

3 25 14 11 48-64 2

6 22 15 10

7 19 16- 17 9

8 17 18- 19 8

9 15 20- 22 7

Writing a Program

A tabular program is written by entering specified operands and operators

in the columns of the stub and entry sections of one or more procedure tables .

Whether limited entry, extended entry, or a combination of both types is used,

at least one column in the entry section (to the right of the double line) must be

use d. Each such column, together with matching entries in the stub section,

constitutes a rule . A rule is composed of a unique set of conditions and

actions; the actions are to be performed if all the conditions in that rule are

satisfied. In some special cases a rule can consist of only conditions or only

actions.

With any specified set of input data, only one set of conditions can be

satisfied; and therefore only one set of actions can be executed . Note that it

r

r

4. 38

is possible that no set of conditions is satisfied. This can be the result of

a logical error in writing the program, or it can be the result of deliberate

action on the part of the programmer. For example, the presence of invalid

data can be checked. If none of the conditions are satisfied, the data is

invalid, and the program transfers to the error table. If any set of con

ditions is satisfied, the data is valid and transfer to the next table occurs .

In this case, the 'next table' contains the next logical steps of the program.

The various types of operands that can be used in 1401 tabular program

ming have already been discussed. Specific rules govern the use of these

operands in condition and action statements of a procedure table .

The operators that can be used in 1401 tabular programming are

divided into three categories. Conditional operators, which can be used only

in the condition section of a procedure table, action operators, which can be

used only in the action section, and special operators, which can be used in

certain condition and action statements.

The conditional operators and their meanings are:

LR Less than (lesser)

LE Less than or equal to

GR Greater than

GE Greater than or equal to

EQ Equal to

UN Unequal

Action operators are further divided into three classes; input/output,

assignment. and sequence control.

4.39

The input/output operators and their meanings are :

READ read a file from card reader 1 tape, RAMAC or

Inquiry

WRITE write a file on printer, card punch, tape, RAMAC

or Inquiry

CLOSE rewind input tape, or write tape mark and rewind

output tape .

Assignment operators are used to control the handling of data and to

perform certain aritlunetic operations.

SET ... EQ . . sets the first data field equal to the value of the

second data field

MOVE . .. TO. .. moves the value of the first data field to the

SE T ... + . . .

SET ... - ..•

MOVE ... + .. .

location of the second data field - - similar to

SET .. . EQ .. . except sending and receiving fields

are reversed

increases the value of the first data field by the

value of the second data field

decreases the value of the first data fie ld by the

value of the second data field

similar to SET . . . + . . . except fields are reversed -

hence second field value is increased by first field

value

r

r

r

MOVE ... - . . .

LAYOUT

4.40

Similar to SET . .. - ... except fields are reversed

controls the setting of field word mar ks in record

areas.

Sequence control operators are used to control the sequence of the program.

GO TO

DO

transfers control from one procedure table to

another

similar io GO TO, except that at the conclusion of

the second table the program returns io the first

procedure table

Special oper ator to control the 1403 P rinter Carriage.

SPACE causes line spacing, and skipping of the printer

carriage under carriage tape control

Detailed specifications for writing the conditions and actions of a

tabular pr ogram, using the operands and operators previously descr ibed,

are given in the following sections.

Conditions

In a procedure table, a rule is formed from one or more conditions

together with one or more resultant actions. All conditions within a rule

must be satisfied for the actions of that rule io be executed. A condition

testa the value of one operand against the value of another operand io deter

mine whether a specified relationship is satisfied. The general form of a

conditional statement is:

Operand 1 Condi tional Operator Operand 2

4. 41

This general form can be expanded to show the exact locations of the

operands and the operator in the stub and entry portions of a procedure

table for both limited and extended entry formats.

Stub Entry

Operator Operand

1

1

1

1

Operator

c

c

c

Operand

2

2

Operator

y

N

c

Operand

2

2

The numerals 1 and 2 designate operand 1 and operand 2. The letter C

designates the conditional operator. The letters Y and N (yes and no)

are extensions of the conditional operator used only in the limited entry

form . The first two forms shown are limited entry, and the last two

extended entry.

Each operand can be :

1. Numeric or alphameric literal.

2. Numeric or alphameric named c onstant.

3. Named expression.

4. Numeric or alphameric named variable .

However, the following restrictions apply;

1. Both operands c annot be expression names.

4.42

2. Both operands cannot be literals. Both operands cannot be

constants names . One operand cannot be a constant name if

the other operand is a literal.

3. Both operands must be numeric or both must be alphameric.

4. A masked variable cannot be used as either operand.

5. All operands are written left justified in the spaces provided.

The procedure for comparison of numeric values is different from that for

alphameric values.

For numeric values. if the number of decimal and integer positions

for both values agree, a Simple comparison of the values is made . Other

wise, the value with the lower number of decimal positions is zero 'filled in

its low order positions until the number of decimal positions in both values

agree. The value with the lower number of integer positions is zero filled

in its high order positions until the number of integer positions for both

values agree. For example:

Operand 1

Operand 2

87654. 32

321. 98765

Three low- order zeros are added to Operand 1, and two high- order

zeros are added to Operand 2, giving:

Operand 1

Operand 2

87654. 32000

00321. 98765

The values are now compared, position by position. Note that all negative

nwnbers are considered smaller than positive numbers, all zeroes are equivalent

4. 43

. -
(0 = 0 = 0). Furthermore, when two negative numbers are compared, the

number with the smaller absolute value is considered t he larger number.

For alphameric values, if the number of positions in both values

agrees, a simple comparison is made . Otherwise, the value with the

smaller number of positions is filled with blanks in its low order positions

until the number of positions in both values agree .

For example:

Operand 1 ABCDEF

Operand 2 ABCD

Two blanks are added to the right of Operand 2, giving :

Operand 1 ABCDEF

Operand 2 ABCDbb

Comparison of the values is then made, position by position.

The special operand ELSE is used to designate a condition that is

always satisfied when none of the other conditions in a procedure table are

satisfied. ELSE can only appear in the last rule to be examined, and is

always the only condition in that rule . It is usually followed by one or more

actions, the last of which may be a GO TO command that transfers control to

an error table or a regular processing table .

Actions

As noted previously, a rule usually consists of one or more condi-

lions followed by one or more actions that are executed if all the conditions

4. 44

are satisfied. These actions will be executed in the sequence written. An

action is used to assign values, obtain input data, provide output data, and

control the sequence of the program.

An action statement can include either one or two operands. When a

one- part operator (e. g. , READ ...) is used only one operand is required.

When a two-par t operator (e. g. , MOVE ... TO . . .) is used two operands are

required. Furthermore, an action can be represented in either limited entry

or extended entry form. The general forms in which an action can be

wri tten are:

STUB E NTRY

Oper ator Operand Operator Operand Oper ator Operand

s 1 X

s 1

d 1 i 2 X

d 1 i 2

d 1 i 2

1n the illustration, the numerals 1 and 2 represent Operand 1 and Operand 2,

respectively. The letter s represents a single (one- part) oper ator . The

letters d and i represent the designator and the indicator portions, respectively,

of a two- part operator. Note that the first and third examples ar e limited

entry form, utilizing the letter X as an extension of the action operator, while

4.45

the r emaining examples are in extended entry form. Detailed specifications

for the use of each of the action operators are now given.

Input/Output Operators

READ -- This operator is used in conjunction with a single operand to obtain

data from an input device (card reader, RAMAC, magnetic tape unit, or

inquiry station) and store it in a predetermined location in core storage . The

operand must always be a file name; thls represents the input device and the

associated area in core storage, as defined in the data description table .

Complete data description is important because it controls such things as the

area reserved in core storage, mode of data movement, stacker selection,

and end- of- file procedure. The generai forms of the READ action is shown.

READ

READ

MASTER

II

x

MASTER

Note that the operand (file name) MASTER can appear in either of two loca

tions. The first example shows limited entry form, the second, extended

entry form.

When the operand in a READ ac tion represents a file in the card reader,

the next card is read. When the operand represents a file jn a magnetic tape

urut, the next tape record is read. When tile operand represents a file in

RAMAC a record is read from the disk . However, previously the proper

RAMAC address must have been assigned to the special system location called

RAMADD. This must be accomplished by one of the assignment operators.

SET

MOVE

RAMADD

expression name
or variable name

EQ

TO

Expression
name or
variable name
RAMADD

4.46

Before any read command can refer ence a RAMAC file, some value (computed

or determined in some fashion) must be placed in RAMADD. RAMADD is

defined as a five digit integer value of the form ff tts--where ff= face, tt=

track and s = sector. If the programmer wishes to reference the file by

the chaining techniques he must write the procedure himself, since no standard

chaining method is automatically supplied.

When there are no more cards in the reader or when a tape mark is

sensed, an end- of- file condition exists and a transfer of control is effected to

the table specified in the data description. If none is written, a stop will occur.

WRITE -- This operator is used in conjunction with a single operand to provide

data to an output device (printer, card punch, RAMAC, magnetic tape unit, or

inquiry station) from a predetermined location in core storage. The operand

must always be a file name that represents the output device and the associated

area in core storage, as defined in the data description table . Complete data

description is important because it controls such things as the area reserved

in core storage, mode of data movement, stacker selection and end- of-file

(for tape only). The general form of the WRITE action is shown.

WRITE PAYREG

II PAYREG

x

WRITE

4. 47

Note that the operand (file name) PA YREG (pay register) can appear in either

of two locations. The first example shows limited entry form, the second,

extended entry form.

When the operand in a WRITE action represents a file for the printer, a

line is printed. When the operand represents a file for the card punch, a card

is punched. When the operand represents a file for a magnetic tape unit, a

record is written on magnetic tape. When the operand represents a file ir:t

RAMAC a record is written on disk utilizing the address found in RAMADD. As

in the READ action, a value must be assigned to RAMADD before the WRITE

occurs.

After a WRITE action using the printer, channel 12 of the carriage tape

is checked. If the carriage tape is at channel 12, control is transferred auto

matically on a DC basis, to table number ggg. If the program does not have a

table ggg , a standard routine will advance the carriage tape to channel 01, and

the program continues. If the carriage tape is not at channel 12, the program

continues.

A tape end- of- file condition exists when the EOF reflective spot on the tape

has been sensed; if an end- of-file table has been specified control will revert

to that table, otherwise a stop will be executed.

CLOSE - - This operator is used in conjunction with a single operand to control

input and output magnetic tape units only. With an input tape unlt, the CLOSE

action causes the tape unit to rewind to the load point. With an output tape

unit, the CLOSE action causes a tape mark to be written and then the tape

4.48

unit to be rewound to the load point. The operand must always be a file

name that represents the input or output tape unit desired, as defined in the

data description table. The general form of the CLOSE action is shown.

CLOSE

CLOSE

INV

II

x

INV

Note that the operand (file name) INV (inventory) can appear in either of two

locations. The first example shows the limited entry form, and the second

example the extended entry form.

Assignment Operators

MOVE . . . TO. .. - - This two-part operator is used in conjunction with two

operands to move values from one field or record to another field or record.

Several types of operands can be used, but only these combinations of Operand

1 and Operand 2 are allowed:

1. Operand 1 - record name

Operand 2 - record name

2. Operand 1 - literal

constant name

expression name

variable name

RAMADD

Operand 2 - variable name

RAMADD

4. 49

The general form of the MOVE. . . TO . . . ac tion is shown.

STUB E NTRY

Operator Operand Operator Operand Operator Oper and

MOVE

MOVE

1

1

TO

TO

2 x

2

Operand 1 is always the sending area, and Operand 2 the receiving area.

When both operands are record names, data in Operand 1 is moved to the

storage area represented by Operand 2 in the move mode. Thus, word marks

in Operand 1 are not moved and any word marks in Operand 2 remain unchanged.

The lengths of the records must ei ther be the same J or the sending record

shorter. When the receiving record is the longer record, remaining charac

ters in the receiving record are unchanged, except that one extra character is

moved (a characteristic of the 1401) thus destroying one position of the

receiving recor d.

When Operand 1 and Operand 2 are other than record names, the shorter

of the two operands, as specified in the data description table , delimits move

ment of data. When nwneric data is being moved, and Operand 1 is the shorter

field I low order decimal positions and high order integer positions in the

receiving field are zero filled up to the number of decimal and integer positions

specified for the receiving field . For example:

Before the MOVE ... TO . .. action:

Operand 1

Operand 2

987. 65

6 integer and 4 decimal positions specified

-

After the MOVE . . . TO . .. action:

Operand 1

Operand 2

987.65

000987. 6500

4.50

When Operand 2 is the shorter field, low order decimal positions and

high order integer positions of Operand 1 are truncated to satisfy the number

of decimal and integer positions specified for Operand 2. For example :

Before the MOVE ... TO . .. action:

Operand 1 98765. 4321

Operand 2 4 integer and 2 decimal posi tions specified

After the MOVE .. . TO .. . action:

Ope r and 1

Oper end 2

98765.4321

8765. 43

When alPhameric data is being moved and Operand 2 is the longer

field, low order positions of Operand 2 are blank filled . For example:

Before the MOVE . .. TO . . . action:

Operand 1

Operand 2

ABCD

6 positions specified

After the MOVE ... TO . .. action:

Operand 1

Operand 2

ABCD

ABCDbb

When Operand 2 is the shorter field, low order positions of Operand 1

are truncated. For example:

Before the MOVE ... TO .. . action:

Operand 1 ABCDEF

Operand 2 4 positions specified

After the MOVE ... TO ... action:

Operand 1

Operand 2

ABCDEF

ABCD

4. 51

Numeric data can be moved either to a numeric field or to an alpha

meric field. When moved to an alphameric field, the numeric field is treated

as though it were an alphameric field. Alphameric data can be moved only to

an alphameric field. When numeric data is moved, the sign of the sending

field (Operand 1) is moved to the receiving field (Operand 2). When Operand

1 is an expression name, the value of the expression is computed, and then

this value is moved to the receiving field.

When Operand 1 is a numeric literal , its decimal and integer length

is established as written. The rules for zero filling and truncation of the

receiving field are the same as for other types of operands in the sending

field . Note that the total number of decimal and integer positions for a

numeric literal cannot exceed 6. When Operand 1 is an alphameric literal,

its length is established as written. The rules for blank mling and trunca

tion of the receiving field are the same as for other types of operands in the

sending field. Note that the number of positions for an alphameric literal

cannot exceed 6.

4.52

The sending field (Operand 1) cannot be a masked variable. Further

more, the receiving field (Operand 2) can be a masked variable only if the

sending field is numeric .

The receiving field (or sending) can be the special operand RAMADD,

which is required for READ and WRITE ac tions to determine the RAMAC

address.

SET . . . EQ ... -- This two- part operator is used in conjunction with two

operands to set the value of one field or record equal to the value of another

field or record. Several types of operands can be used, but only these com

binations of Operand 1 and Operand 2 are allowed:

1. Operand 1 - record name

Operand 2 - record name

2. Operand 1 - variable name

RAMADD

Operand 2 - literal

constant name

expression name

variable name

RAMADD

The general form of the SET . .. EQ ... action is shown.

4.53

Oper ator Operand Operator Operand Oper ator Operand

SE T 1 EQ 2 X

SE T 1 EQ 2

SE T 1 EQ 2

'Operand 1 is always the receiving area, and Operand 2 the sending

area. Otherwise, SET . . . EQ ... is identical to MOVE . . . TO ... for all types

of operands specified.

MOVE . . . + ...

MOVE . . . - . . .

These two- part operators are used in conjunction with two

operands to add the value of the first operand to the value of the

second operand or to subtract the value of the first operand

from the value of the second operand. Several types of operands can be used,

but only these combinations of Operand 1 and Operand 2 are allowed:

Operand 1 - literal

constant name

expression name

variable name

RAMADD

Operand 2 - variable name

RAMADD

The general form of the MOVE 1" action is shown.

MOVE

MOVE

MOVE

1

1

1

+

+

2 x

+

2

2

4. 54

The operands used with the MOVE :t action can be numeric values

only. Algebraic rules are followed when considering the sign of the ac lion

operator in conjunction with the signs of the two operands.

The integer and decimal lengths of the receiving field (Operand 2)

determine the number of integer and decimal positions in the total resulting

from the addition of Operand 1 to Operand 2 or the subtraction of Operand 1

from Operand 2. Thus, the decimal positions in Operand 1 in excess of the

number specified for Operand 2 are truncated. High order integer positions

in Operand 1, beyond the number specified for Operand 2 are truncated.

Any carry from the high order position of Operand 2 is also truncated.

Consider these examples, in which the sign and number of integer and

decimal positions shown for each operand is that specified in the data des

cription table .

4. 55

Sign of Before MOVE ± After MOVE ±
Operand Operator Action Action

1 + +321. 654 +321. 654

2 +456. 123 +?7??77

1 + +456. 123 +456. 123

2 - 123. 456 +332.66?

1 - - 123. 654 - 123. 654

2 +456. 321 +579 . 975

1 + +123 . 65 +123 . 65

2 +456. 321 +579 . 971

1 + + 23 . 654 + 23 . 654

2 +456. 321 +479 .975

1 + + 23.65 + 23 . 65

2 +456 . 321 +4?9. 971

1 + +654. 321 +654. 321

2 +543 . 876 +198 . 197

1 + +321. 654 +321. 654

2 + 23 . 45 + 45. 10

SE T . .. + . .. These two- part operators are used in conjunction with

SET . .. - . .. two operands to add the value of the second operand to the

value of the first operand or to subtrac t the value of the

second operand from the value of the first operand Several types of

r

4.56

operands can be used, but only these combinations of Operand 1 and Operand

2 are allowed:

Operand 1 - variable name

RAMADD

Operand 2 - literal

constant name

expression name

variable name

RAMADD

The general form of the SET ± action is shown.

SET

SET

SET

1

1

1

+

+

2 x

+

2

2

Except that Operand 1 is the receiving field and Operand 2 is the

sending field, the SET :t action is identical to the MOVE :t action. That is,

Operand 2 is added to Operand 1 or subtracted from Operand 1. Otherwise,

all r ules applying to the MOVE t action apply to the SET :t action.

LAYOUT -- This operator is used in conjunction with a single operand,

which must always be a record name, to provide word marks in the area

re served for the file to which this record belongs. The general form of the

LAYOUT ac lion is shown.

LAYOUT

LAYOUT

Record name x

4. 57

Record name

The LAYOUT action is required only when there are multiple record

types in a file, and when these records are read in move mode. Execution

of this action causes the word marks required by a specific record type

within a file, to be inserted in the core storage area reserved for that file .

The word marks are inserted according to the lengths of the variable fields ,

as specified for the record in the data description table. Any word marks

currently in the file area in core storage are removed. In a procedure

table, the LAYOUT action should always precede any MOVE or SET action

in which the receiving field does not contain the proper word marks. Thus,

for example if YTDPAY (year to date pay) is a record type within the file

named PA YREG (pay register), and GRPAY (gross pay) is to be added to

YTDTOT (year to date total) to obtain the value of the new year to date total

prior to printing PAYREG, the following actions should be written in the

procedure table, if the file area is not already set up with the format of

YTDPAY.

Operator

LAYOUT

MOVE

WRITE

Operand

YTDPAY

GRPAY

PAYREG

Operator

+

Operand

YTDTOT

Operator

x
X

X

Operand

4.58

When only one type of record appears in a file, the programmer need

not concern himself with word marks s ince they are automatically installed

by the processor. It is only when the same core area must handle more than

one format (differ ent length fields, thus different word mark positioning) that

the LAYOUT action must be used to insure that the proper word marks are

in place . By analyzing the different formats described in the data description,

the processor is able to generate the proper word marks. This action takes

place when the LAYOUT record name command is executed.

Consider a detail file with two types of records (change and delete).

Change --1~ 1~1~1 """c"f"'" I

D>lete -- I~ I~~ I

Cl EQ 'CHI 'DE'

LAYOUT CHANGE DELETE
MOVE C2 TO PRNT 1 X
SE T C4 + C3 X
MOVE C4 TO PRNT 2 X
WRITE PRINT X
MOVE D3 TO PCH 1 X
READ CARD X X
GO TO TAB022 TAB023

Sequence Control Operators

DO .. . This operator is used only in conjunction with the special operand

TABnnn, where nnn is the number of a closed procedure table. The general

form of the 00 ac ticn is shown.

DO

DO

TABnnn

4.59

TABnnn

The DO action calls for the execution of another table. For example,

if in performing actions in one table it is desired to test the conditions and

perform the action of another table, the DO TABnnn action is used. Control

will then revert to the beginning of TABnnn, it will be executed, and control

will then revert Ie the original table Ie the action following the DO.

A closed procedure table (a table executed by a DO) is one that may

not permanently transfer control to another table, and therefore it carmel

contain a GO TO action or a NEXT TABLE number in the table header. Instead,

the NEXT TABLE entry contains the word DO, which causes control Ie auto

matically return to the calling table in the program when it has been completed.

It acts like a closed subroutine in normal programming.

Any procedure table (closed or open) can contain any number of DO's.

Closed tables can be nested up to a level of 10. That is, each closed pro

cedure table can in turn DO another closed procedure table up to a maximum

of 10 such referenced tables . A table can DO itself, or any table previously

done in a nest of DOrs, but each such 00 counts as one level of the nest.

While it is possible that none of the sets of conditions of a closed

procedure table will be satisfied, an ERROR TABLE number must not

appear in the table header, since this wruld break the linkage to the calling

r

4. 60

table in the program. If no conditions are satisfied, an error message is

printed and control reverts to the calling table.

GO TO. .. This operator is used only in conjunction with the special

operands TABnnn and STOP, where nnn is the number of an open pro

cedure table. The general form of the GO TO action is shown.

GO TO

GO TO

GO TO

GO TO

TABnnn

TABSTOP

x
TABnnn

x

TABSTOP

An open procedure table is one that can permanently transfer

control to another table, and therefore cannot be referenced by a DO action

in a previous table. Permanent transfer of control is achieved by a GO TO

action in the rule or a NEXT TABLE number, or an ERROR TABLE number

in the table header.

When a rule contains a GO TO action, it must be the last action in

the rule. When the operand TABSTOP is used with GO TO, the program

stops. STOP can be used alone in the NEXT TABLE and ERROR TABLE

entries.

Any procedure table (open or closed) can contain any number of DO's

and these can be nested up to a level of 10 (see 00 . . .).

4.61

Special Operator

SPACE . .. This operator is used only in conjunction with the special

operands nLINE, nLINES, and nnCHAN to conirol spacing and skipping of

the 1403 Printer carriage. The general form of the SPACE action is shown.

SPACE

SPACE

SPACE

SPACE

SPACE

SPACE

nLINE

nLINES

nnCHAN

x

X

X

nLINE

nLINES

nnCHAN

The SPACE actions with the operands nLINE or nLINES cause the

printer to line space n lines, where!! can be 1, 2, or 3. The SPACE action

with the operand nnCHAN causes the printer to skip to channel nn where nn

can be 01 through 12 (see WRITE .. . for special actions after sensing channel

12).

The SPACE action is independent of the WRITE action and can be used

at any point and any number of times in a procedure table.

4.62

Program Assembly and Operation

The assembly and operation of a 1401 Tabular Programming System

is described with reference to the 1401 TP system diagram.

STEP 1

Step 1 consists of writing the program, both data description table

and procedure tables, keypunching the cards, listing the cards on a 407, and

visual checking for accuracy.

Important items to check are correct column alignment, correct

spelling, correct usages of zero (0) and the letter 0 (11), correct usage of

1 and I, and other normal keypunching errors. Special pOints to check for in

the data description are: (1) There must be one and only one header card for

Table 000, which comes from the first sheet. For the procedure tables,

there must be at least one header card for each table. Also, there can be

an !larder or rules card n and one or more comments cards. All these cards

must appear before the first line of the procedure table proper. If a pro

cedure table must be continued on a second page, the header on the second

page cannot be used. All cards, both data description and procedure, must

be in ascending sequence (based on columns 1- 8). Expressions must follow

description of the operands it references .

STEP 2

The TP processor deck is loaded into the 1401- 1405. When the card

reade r stops, press the START key on the card reader to read the last two

c ards . The processor 1S now loaded .

4. 63

STEP 3

Place the primer program (about six or seven cards) in the card

reader, followed by the source language program prepared in Step 1. Press

the LOAD button on the card reader. When the card reader stops, press the

START key to read the last two cards. An END card is not required at the

end of the source deck. r::::uring running of the processor, an Autocoder

language program is punched and an index of the object program is printed

by the 1403.

The deck of cards contains a control card and a job card. Mark the

top of the deck so that proper sequence 15 maintained.

STEP 4

An Autocoder assembly is next performed, using the cards punched

in Step 3. The control card furnished is 661 to produce a system to run on

a 16000 character 1401. This machme is available at Endicott; if the

machine to run the Autocoder assembly is smaller, you should make a

substitution of the control card. Mount the Autocoder system tape on Tape

Unit 1, and work tapes on units 4, 5, and 6. Place the card deck in the card

reader and use the tape load procedure . A listing of the card deck is pro

duced by the Autocoder processor. Note should be made of the error

messages during the Autocoder assembly . In general, the program produced

by the Autocoder will be in the same orde!' as the program written in TP

source language . An exammation of the listing will show the source of

duplicate names, undefined names, and whether the object program is too

r

4. 64

large for storage. Two exceptions to the general rule are that constants

and expressions appear in each decision table where they are used rather than

remaining with the data description where they were wntten.

STEP 5

The object program is loaded mto the 1401. The procedure is similar

to Step 2 except that this time the program consists of the object control

system deck followed by the object program. These decks are put in the card

reader, card load is performed, and again at the end of the cards the START

key is pressed to feed the last two cards.

STEP 6

The object program can now be run. The object program primer

deck of about 5 or 6 cards is placed in the card reader, and card load is

executed. The object program begins with execution of table 001 and

operates in accordanct: Wlttl the instructions written in the source language

program.

r

STEP I

11 P1II.O('C OVI".
~SC.fll"Tl0N

""T~
D .. 5 .:. ,..'0 ...

S,ltEC"T".$

5TEP2.

snp, H4

SOU J\c.£

p~Ofi.""'''''''

STF P 5

I-

•

5T"& I R ON C""'R'])

I
Y

{UN'" c.""OS

\ 401

--I

)

t<. 'V RAMAC

) ~

1401

COIlUt.'''''O~'

~

paoc.· oue.
))ATA oe~. ------

~OVAc:l"

PA06AAM

P~E$501\

--~ 0.
~AMA(.

1
l..1"'" :0 ","01' 'FofI:

~_~O.TIN&

OR r":::::~A:/~,;::=:::?i

AUTOC.O~R
PAO(l.ltAH

(ONTl;ol. (AIIID

LMo OI&.JIk:T 1"1111(11 •

1401

..
Au", ODJlCT PP\.O(i.

1401
OGJS:c.."I'

MAC.W.,.,. t
,

[p5 1

,

, ,

PflOCPlI 'IM

IV, As,.,,,,,,,,,,,
lI~OI

"VTO(.('O,. """' ... w.
Av"TocooUt
Ll$T"IH&

O~"E~T

PRQc;,.RAM

0,.. A.AMA(.

. , ,
,.8

., C A •• PUNLH

, , -' AI. IlJQulA.Y

S'TAT 10

CJ

1401 T P. SYSTEM DIAG-MM

ANSWERS

Problem I
1. Quotes missing around "AC" and "DC".

2. The specification on DC meters said 1I1ess than 50 volts. "

The relational operator is incorrectly written as LE, which

means "less or equal." Change to LR. Similarly, change GR to GE.

3. The variable name NaTURNS has seven characters; only six are

permitted.

4. 'The action line for wire size is an illegal combination of limited

and extended entry. Place the 24 in Rules 1 and 2.

5. The WRITE CARD line will do nothing; place X's in the rules.

Problem 2
Line 001. Word CARD should be deleted.

Line 002. The number of characters in the four variables does not

add to 80 as stated here .

Line 005. The decimal length of an alphabetic variable must be zero.

Line 007 -008. The file description says the longest record has ten

characters, but the record description says it has twelve . The name

WORK is used twice, which is illegal.

Line 011. A printer file must be of length 100 or 132 .

Line 012 . This record description says there are five variables

in the record, but only four variable descriptions are given.

Line 014. The integer length should be ten, the total number of

characters in the masked field, rather than seven, the number of

digits in the variable.

Problem 3

The main trouble is that the conditions for Rules 1 and 2 are both

satisfied by a male with code 1 who is over 35; this violates a basic

assumption of the system. Other errors: there should be no EQ on the

set when used as an arithmetic operator; RATE cannot be used both

as a variable name and a file name--or else the writer of the table

forgot that the operand on a WRlTE must be a file name .

Problem 4

Shown on table.

Problem 5

No answer.

r

r

r

• o

3

-

-

• ,
< •
% ~

• • • • 8 ~

-

,
• u ~

-

t ,

• • < x

• ,
< z

•

u

8 ••• I-'-+"f+-H
-
'0 ,
8

-
• o
j ,

-
o ,
8

-

o

• ,
<
%

o

· -~ z

o

· -,
<
%

• ,
<
x

• o

o o ol~1 o 0
o 0

- . •
-: '

