‘?; /‘(_. 6 gl aa / .‘r{l “’cl-.

‘ ReEr FrLe
GENERAL @3 ELECTRIC s, rEcH
COMPANY MANUFACTURING SERVICES

MATERIALS SERVICE

570 LEXINGTON AVENUE, NEW YORK 22, NEW YORK ., . . TELEPHONE PLAZA 1-1311

February 8, 1961

Mr., Burt Grad

IBM Corporation

P. O. Box 218

Yorktown Research Center
Yorktown Heights, New York

SUBJECT: GECOM Structure Table
Dear Mr. Grad:

The Integrated Systems Team of the General Electric Company is
delighted in the interest being generated in the Structure Table concept.
Charley Katz has asked that we transmit a copy of the attached paper,
"TABSOL - A Fundamental Concept for Systems-Oriented Languages'',
to each member of the CODASYL Systems Group in case some of you
missed the EJCC Meeting. Charley also asked if we could release some
of the previous internal General Electric Company reports which describe
the development of the Structure Table concept as a systems analysis tool.
After review of the internal reports, it was decided that these contain some
proprietary material and shouldn't be released at this time, However, the
chronological events leading up to the GECOM Structure Table format are
well documented in Mr. Kavanagh's EJCC paper.

If you have any questions on the subject matter in the paper, please
contact Mr. Katz.

Very truly yours,

S. B. Williams, Technical Counselor
Integrated Systems Research and Development
PRODUCTION CONTROL SERVICE

Room 2409 - Extension 2549

Attachment

cc: Mr. C. Katz - General Electric Company - Phoenix, Arizona

TABSOL
A FUNDAMENTAL CONCEPT FOR

SYSTEMS-ORIENTED LANGUAGES

T. F. Kavanagh
Manufacturing Services
General Electric Company

Presented at the

Eastern Joint Computer Conference
December 14, 1960
Hotel New Yorker
New York, New York

MANUFACTURING SERVICES

GENERAL @3 ELECTRIC

NEW YORK, N. Y.

117

TABSOL
A FUNDAMENTAL CONCEPT FOR SYSTEMS-ORIENTED LANGUAGES

T. F. Kavanagh

Manufacturing Services
General Electric Company
New York, New York

Summa.r}[

Lack of efficient methods for thinking
-through and recording the logic of complex in-
formation systems has been a major obstacle
to the effective use of computers in manufac-
turing businesses. To supply this need, this
paper introduces and describes ''decision
structure tables, ' the essential element in
TABSOL, a tabular systems-oriented language
developed in the General Electric Company.
Decision structure tables can be used to de-
scribe complicated, multi-variable, multi-
result decislon systems. Varlous approaches
to the automatic computer solution of structure
tables are presented, Some benefits which
have been observed in applying this language
concept are also discussed. Decision struc-
ture tables appear broadly applicable in infor-
mation systems design.

In addition, they are of interest be-
cause they revise many earlier notions on
problem formulation and systemas analysis
technique. Decision structure tables will be
an available feature in GECOM, General
Electric's new General Compiler, which will
be first implemented on the GE 225,

Introduction

Progress in computers can be broad-
ly divided into two categories. First there is
the work that essentially accepts computers
for what they are, and directs its energies to-
ward further refinement of the original hard-
ware, and operating technique, Research to
improve recording density on magnetic tape
would certainly fit this description. In the
second category are the efforts to advance by
developing new areas of application. This lat-
ter work is directed toward generalizing the
concepts and hardware, so that they apply to
an ever-increasing span of problems and situa-
tions. Obviously, both groups are vital; but
it was this second stimulus -- the desire to

expand the area of economic application --
which motivated the research reported in this
paper. While the earliest beginnings can be
traced as far back as June, 1955, the primary
research effort started in November, 1957,
under the title of the Integrated Systems Pro-
ject. Leadership was assigned to Production
Control Service, a component in General Elec-
tric's Manufacturing Services, The basic pur-
pose of the Project was to probe the potential
for automating the flow of information and
material in an integrated business system.

Then, as now, computers were making
significant contributions in many areas. Unfor-
tunately, one of these areas was not, as some
would have it, in the operation and control of
manufacturing businesses. Important advances
were made in specific applications such ase ord-
er processing payroll, and inventory record-
keeping; but these represented only a smdll per-
centage of the total information processing and
decision-making in even the smallest manufac-
turing firm. BStill these early successes were
very important. They developed confidence in
computer performance and reliability; but even
more, they encouraged systems engineers and
procedures personnel to continue computer ap-
plications research. Similarly, management,
under growing foreign and domestic competition,
rising costs, and a seeming explosion in paper-
work requirements, saw intuitively -- or perhaps
hopefully -- that computers offered a possible
approach to improved productivity, lower costs
and sharply reduced cycle times. It was in this
environment that the Integrated Systems Project
began a comprehensive study of the decision-
malking and the information and material pro-
cessing required to transform customer orders
into finished products -- a major part of the
total business system for a manufacturing firm.

The Decision-Making Problem

Once underway, it was soon apparent

118
3.2

that there was an enormous amount of decision-~
making required to operate a business, Indeed,
the number and complexity of these decisions is
perhaps the most widely underestimated and mis-
understood characteristic of industrial informa -
tion systems today. Tens-of-thousands of ele-
mentary decisions are made in the typical manu-
facturing business each working day. All are
necessary to guide and control the many function-
al activities required to design products, pur-
chase raw material, manufacture parts, assem-
ble products, ship and bill orders, and so on.
The typical factory is a veritable beehive of de-
cisions and decision-makers; for example:

""What size fuses shall we use on
this order for XYZ Company?''--
a product engineer's decision,

. "What is the time standard for
winding this armature coil?''-
a manufacturing engineer's
decision.

'"What test voltages shall be
applied?'"-- a quality control
planner's decision,

""What should be the delivery
promise on this customer's
order?'-- a production control
planner's decision,

‘ "How much will this model coat.''--
an accountant's decision.

This list of elementary day-to-day
decisions could be expanded to cover all busi-
ness activities. If this were done, the list
would cover hundreds of sheets of paper before
each activity listed all the decisions for which
it was responsible, Moreover, some of these
decisions are repeated many times each day for
various sets of conditions. In the end result,
one cannot help but be impressed with the multi-
plicity of these detailed choices and selections.
But more importantly, making these decisions
costs money, in many cases more money than
the direct labor required to make the product.
In addition, business performance is greatly
affected by the speed and accuracy with which
this decision-making is carried out.

Composing a detailed list of these
elementary business decisions is more than an
academic exercise, For one thing, such an
analysis of an actual operating business will
demonstrate conclusively that these elementary
decisions are handled quite rationally (which is
somewhat contrary to popular opinion.) One

must be careful not to be misled by quick, super-
ficial explanations which gloss over fundamental
reasoning., In our present-day manual systems
which emphasize files of quick answers, the
logic behind the decision is often left unrecord-
ed. As a result it is easy to lose contact with
their rational nature, and frequently we tend to
feel these decisions are substantially more intui-
tive than is actually the case. At times, some
persistent as well as penetrating analysis (often
through extensive interviewing of the operating
personnel presently on the job) is required to
uncover the true parameters and relationships
on which operating decisions are really based,
This arduous work is more than justified, for it
egtablishes a sound conceptual foundation for
autorhation, and hence the practical application
of the concepts and techniques developed in this
paper. Thus, once it is established that these
operating decisions are rational, it should follow
that they can be structured in a consistent logi-
cal framework. Such a structure is presented
in this paper.

Operating vs. Planning Decisions

At this point let us define terminology
a little more precisely, and stress that we are
speaking about the detailed, elementary decisions
required to '""operate'' a business as opposed to
"'planning' one. First, a decision in its simp-
lest form consists of selecting one unique alter-
native from an allowed set of possible actions.
Operating decisions are defined in the context
of this paper as selecting the appropriate course
of action in accordance with given problem con-
ditions to operate the business successfully.
Operating decisions may be assumed to be made
under ''conditions of certainty.' The solution
for a specific set of problem conditions will al-
ways be the same. Under these premises, the
action or outcome decided on can always be pre-
dicted. In a pragmatic sense, the decislon-mak-
ing process may be classed as ''causal'; that is,
B may be said to follow from A. For example,
an engineer's decision to install fuses might
follow from a customer's requirement for inde-
pendent circuit protection.

The relevant factors or parameters
affecting the decision can also be determined,
The relationship values are known. For ex-
ample, in most homes, the current carrying
capacity of the house wiring is the only para-
meter value one needs to know to select an
appropriate fuse. In an industrial application,
however, the values of at least three additional
parameters are usually required: voltage, time
and type of fuse mounting, The strategy and the
alternate outcomes are known; that is, the per-

missible fuses are known. To continue the illus-
tration, the fuse selection may be limited to
those carried in the stockroom; otherwise the
bounds of the operating decision system are ex-
ceeded and the decision-maker would appeal to

a higher authority,

To approach the analysis of operating
decisions from another viewpoint, it might be
compared to a linear programming problem,
and as will become evident, a linear program-
ming solution might be considered as somewhat
of a mathematical bound for the class of deci~-
slon-making systems under discussion.

These operating decisions are quite
apart from the planning decisions of a business.
The '"planning'', "administrative', or ""policy"
decisions in a business are basically those
prior commitments which permitted all the as-
sumptions about operating decision systems in
the preceding paragraphs (i.e. certainty, caus-
ality, known relationships, etc.) Some examp-
les of planning decisions are:

. "'Shall fuses, circuit breakers, or
both be used on the product line?''--
a product engineer's planning
decision.

""Should this group of parts be
made on the screw machine or

from die castings?''-- a manu-
facturing engineer's planning
decision,

. ""Should this component be inspected
before or after the milling opera-
tion?'' -- a quality control planning
decision,

. "What rule shall be used to deter-
mine the correct order quantity?''--
a production control planner's
decision,

. ""What is an appropriate cost-of-
money?!'-- an accountant's plan-
ning decision.

These are typical planning decisions
made in designing an operating decision system.
To make the distinction clear, consider the de-
sign engineer who is motivated by cost consider -
ations to put fuses on the economy part of the
product line, while specifying circuit breakers
on more deluxe models. Or consider the pro-
duction control planner who selects one of the
common square root formulas for determining
all order quantities. Once he puts this decision

119
3.2

rule in the operating system, order quantities
for every part will be determined using this
square root formula with specific values for
cost, lead time, usage shelf life, etc., appro-
priate to the specific item being ordered,
Assuming the operating decision system is auto-
matic, and this is the intention, the production
control planner need not make any order quanti-
ty determinations himself, Rather he will be
watching the measures of operating system per-
formance (inventory level, number of shortages,
ordering costs, etc.) to see how well his deci~
sion rule is working. Incidentally, it's worth
noting that the production control systems de-
signer will be using a "cost-of-money' figure
supplied by accountants and an annual require-
ments figure projected by salesmen, Of course,
the objective of this fundamental decision analy-
sis is to suggest a conceptual scheme which will
permit automating all the routine operating de-
cision-making required to direct a business,
thus permitting the engineers, planners, and
other technical advisors, to concentrate on do-~
ing a better job in design.

Specifying Decision Systems

But great difficulties still remain, As
already pointed out, operating decision systems
are invariably large and complex, containing
multi-variable, multi-result decision problems
with sequence of solution difficulties thrown in
on the side. One serious problem which arises
quickly is the actual development of the decision
logic itself, Numerous techniques have been
proposed ranging from precise, legalistic ver-
bal statements to complex mathematical equa-
tions. Among these however, it appears that
matrix-type displays and flow charts are the
most common, The matrix-type displays
appear under a variety of names: collation
charts, tabulated drawings, standard time data
sheets, etc. For example, engineers have fre-
quently used collation charts to show direct re-
lationships between end-product catalog numbers
and component identification numbers. Typical-
ly, however, collation charts are a tabulation
of past decisions rather than a description of
the logic used to derive them. Matrix-type dis-
plays often suffer from redundancy and frequent-
ly become large and unwieldy as operating tools,
Similarly, they make no allowance to sequential
decision-making.

Flow charts handle this sequence prob-
lem very nicely., This graphic method describes
a decision system by the extensive use of sym-
bols for "mapping'' the various operations. A
variety of flow chart techniques are used in
factory methods and office procedures work.

120
3.2

They are particularly effective in relatively
straightforward, sequential decision chains but
run into difficulty when describing multi-vari-
able, multi-result decision processes, As an
illustration, flow charts have been used exten-
sively to document the detailed logic of compu-
ter programs; but some harried computer pro-
gramming supervisors still maintain that the
best way to transfer program knowledge is to
reprogram the job. The difficulty of interpret-
ing someone else's flow charts is certainly one
of the major trials in today's computer technol-

ogy.

In addition to these more popular tools
numerous other diagramming or charting techni-
ques have been useful in limited problem areas.
However, the basic problem remained: there
was really no effective, uniform method for
thinking about and specifying decision systems
as complex as those required to operate a busi-
ness. To help solve this problem, the Integrat-
ed Systems Project developed a new technique
which combines key characteristics of earlier
methods and adds some new features of its own.
This new technique is called the decision struc-
ture table, The balance of this paper will des-
cribe what decision structure tables are, how
they work, and the results of their use in
General Electric.

Structure Table Fundamentals

Structure tables provide a standard
method for unambiguously describing complex,
multi-variable, multi-result decision systems.
Thus, each structure table becomes a precise
statement of both the logical and guantitative
relationships supporting that particular elemen-
tary decision. It is written by the functional
specialist in terms of the criteria or parameters
affecting the decision and the various outcomes
which may result.

A structure table consists of a rectan-
gular array of terms, or blocks, which is further
subdivided into four quadrants, as shown in
Figure 1. The vertical double line separates the
decision logic on the left from the result functions
or actions which appear on the right. The hori-
zontal double line separates the structure table
column headings or parameters above {rom the
table values recorded in the horizontal rows be-
low. Thus, the upper left quadrant becomes
decision logic column headings, and is used to
record, on a one per column basis, the names
of the parameters (PO) effecting the decisions,
The lower left quadrant records test values (Plj)
on a one per row basis, which the decision para-

meter identified in the column heading may have
in a given problem situation. The upper right
hand quadrant records the names of result func-
tions or actions to be performed (Ry;) as a re-
sult of making the decision, once ag on a one
per column basis, Similarly the lower right
quadrant shows the specific result values (ryy)
which pertain, directly opposite the appropriate
set of decision parameter values. Thus, one
horizontal row completely and independently
describes all the values for one decision situa-
tion,

There is, of course, no limit to the
number of columns (decision parameters and
result functions) in any given structure table.
Even the degenerate case where the number of
decision parameters goes to zero is permiss-
ible. Also there is no limit on the number of
decision situations (rows). Thus, the dimen-
sions (columns by rows) of any specific struc-
ture table are completely flexible, and are a
natural outgrowth of the specific decision being
described, A series of these structure tables
taken in combination is said to describe a de-
cision system,

Rather than become further involved in
abstract notation, let's consider some actual
illustrations to develop an insight into the nature
of structure tables., For example, the over-
simplified illustrative structure table in Figure
2 states that an elementary decision on transpor-
tation from New York to Boston in the afterncon
is (according to the person who developed the
decision logic) a function of three decision para-
meters: Weather, Plane Space, and Hotel Room,
Weather has only two value states, Fair or Foul;
Place Space is either OK or Sorry; and Hotel
Room can be Open or Filled, In terms of re-
sults, Plane or Train are the only permissible
means of Transportation. Following the illus-
trative problem, we see by inspection that the
solution appears in the second row. Therefore,
‘Traln is the correct value for Transportation,
Other Instructions are Cancel Plane, and this
is the End of the decision problem.

The intent of this simple structure
table is to provide a general solution to this
particular decision situation, and if the problem
of afternoon trips to Boston ever arises (and one
assumes that it frequently does), then an opera-
ting decision can quickly be made by supplying
the current value of Weather, Plane Space, and
Hotel Room, and, of course, solving the struc-
ture table, Solving a structure table consists
of examining the specific values assigned the
decision parameters in the problem statement
and comparing or ''testing'' these values against

the sets of decision parameter values recorded
in the structure table rows. Testing proceeds
column by column from the first decision para-
meter to the last (left to right) and thence row
by row (top to bottom). If all tests in a row are
satisfied, then the solution is said to be in that
row and the correct result values appear in the
same horizontal row directly opposite to the
right of the double line, When a test is not sat-
isfied, the next condition row is examined,

When a particular structure table has
been solved, it is often necessary to make more
decisions. To specify what decision is to be
made next, the last result column of the struc-
ture table may be assigned as a director to pro-
vide a link to the next structure table. Notice
the last row in the illustrative structure table
which specifies that for any value of Weather,
with no Plane Space, and no Hotel Room, the
decision-maker is directed to solve the next
structure table, Transportation, New York-Bos~
ton, a.m, =-=- which is another structure table
describing how to select a means of transporta-
tion in the morning.

In a similar fashion, the systems de-
signer would use a whole system of structure
tables to describe a more realistic operating
decision problem, He completely controls the
contents of each table, as well as its position in
the sequence of total problem solution. He may
decide to skip tables, or, if desired, he may re-
solve tables to achieve the effect of iteration,

In any event, the entire system of tables, just
as each individual structure table, will be solv-
ed using specific decision parameter values ap-
pearing in the problem statement. In other
words, solving a set of structure tables consists
essentially in re-applying the systems designer's
operating decision logic.

Having completed this quick and very
simplified introduction to structure tables, let
us now return to consider each structure table
element in greater detail. This will provide a
deeper insight into the power of the structure
table technique, as well as a better understand-
ing of how they are used to describe operating
decision systems. The illustrations are drawn
from actual operating decision problems,

Structure Table Tests

Comparisons or tests between prob-
lem parameter values (pv) and decision para-
meter test values (tv) need not be simple identi-
ties, such as those used in the previous illustra-
tion. Actually the problem parameter values
may be compared to the decision test values in

121
3.2

any one of the following ways in any structure
table block:

EQ pv = tv problem value is equal to
test value.

GR pv > tv problem value is greater
than test value.

1s pv £ tv problem value is less

than test value,
NEQ pv # tv problem value is not
equal to test value,
GREQ problem value is greater
than or equal to test value.

PY 2 tv

problem value is less than
or equal to test value.

LSEQ pv & tv

This broad selection of test types (or
relational operators as they are known techni-
cally) greatly increases the power of individual
structure tables and sharply reduces size. It
pernvts testing limits or ranges of values rather
than only discrete numbers. In Figure 3, TABLE
1000 uses several difference test types to brack-
et continuous and discontinuous intervals. Also
note in Figure 3, that the relational operator
may be placed in the test block immediately pre-
ceding the test value, or in the column heading
immediately following the decision parameter
name. When this latter notation is used, the
relational operator in the column heading applies
to all test values appearing immediately below,

Test values are not limited to specific
numbers on alphanumeric constants (indicated
by quotation marks); a test block may also refer
to the contents of any name. In this case of
course, the current contents of that named field
are compared to the problem parameter value
in accordance with the test type, For example,
TABLE 1005 in Figure 3 tests the current value
of INSULA TEMP against MAX~ TEMP to make
certain that insulation temperature ratings are
satisfactory.

In addition to these simple comparisons
it is also possible to formulate compound struc-
ture table blocks involving two decision parame-
ters or test values using a relational or logical
operator.

The following logical operators may be
used:

first test value or the
second test value,

OR tv)OR tv,

122

3.2

AND pv AND pv, first problem value and
second problem value,
NOT tv)NOT tv, first test value and not
second test value,

Also the truth or falseness of a com-
pound decision parameter or test value state-
ment can be tested with the symbols:

T true
F false

Lastly, any arithmetic expression
may be used in place of a parameter name, and
complicated blocks invelving several names and
operators are also permitted. Although in thie
latter case, it is worth noting that the language
capability far surpasses any requirements ex-
perienced to date in formulating operating deci-
sion systems.

In writing structure tables, the situa-
tion often arises where, except for one or two
special situations, one course of action is ade-
quate for all input values. The concept of an
"all other' row was introduced to avold enum-
erating all possible logical combinations of the
decision parameter values. The ''all other' con-
cept can be verballzed as follows: "if no solution
has been found in the table thus far, the solution
is in this last row regardless of the problem
values.' While this greatly reduces table size,
it also implies that the problem was stated cor-
rectly and does indeed lie within the boundaries
of the decision system, The related concept of
"all" which appears in the Transportation: New
York-Boston, p.m. can be similarly verbalized:
''regardless of the problem value proceed to the
next column.' It was introduced so that a given
table need not contain all permissible states of
any given decision parameter and also to handle
the case where a test in a given column had no
significance. In all the above situations the ap-
propriate structure table blocks are left blank
signifying no test.

Structure Table Results

Similarly structure table results are
not limited to assigning alphabetic constants or
numeric values to the result functions or actions
named in column headings to the right of the
double line. Actually there are four result func-
tions:
"ASSIGN" - which is implied when a
named field appears as a
result function, This indi-

cates that the result value
appearing in (or named by)
the solution row is to be
assigned or placed in the
field named in the column
heading.

"CALCULATE'" - which is implied by the use
of an equal sign after a name
appearing as a result value,
This indicates that the results
of the formula evaluation nam-
ed in the structure table block
should be assigned to the field
named as the result function
in the column heading.
Actually this is not the only
way to perform calculations
as any arithmetic expression
may be used as a result value,
PERFORM - which performs the data pro-
cessing or arithmetic opera-
tions referred to in the label
appearing in the result value
block, When this is complet-
ed, the next result function
is executed,

GO - links the structure table to
the label appearing in the
result value block, There
is no implied return in a
GO function.

Most of these result functions are il-
lustrated in Figure 3 and Figure 4. In Figure 4,
for example, TABLE 2000 assigns the alphabetic
constant "FLAT-STRIP'" to ASSEMBLE. In the
first and third result columns, arithmetic expres-
sions appear as result values, In TABLE 2005
the implied CALCULATE is used for formula
evaluation. TABLE 2005 also uses the PER. -
FORM function to solve TABLE 2008 or carry
out some other data processing operations de-
pending on the particular solution row, TABLE
2005 is linked by the GO operation to TABLE
2010, 2015, 2020.

TABLE 1005 in Figure 3 shows an
interesting use of the GO function. After the
winding has been specified in TABLE 1000,
assumedly on a lowest cost basis, the product
engineer evidently wants to check the insulation
temperature rating with the maximum expected
operating temperature, If the insulation temp-
erature rating should turn out to be greater
everything is fine and the decision-maker pro-
ceeds to TABLE 1007, If not, first TYPE-N
and then TYPE-T insulation are specified to

supercede TYPE-F, thus getting progressively
higher insulation temperature ratings by redir-
ecting the structure table to solve itself,

Frequently, a result function-or action
will not have a value for all rows., This is com-
mon when several result functions are determin-
ed by the same structure table. In this situation
the phrase ''not exist'' has been used in verbaliz-
ing and the structure table block is left blank.

The use of formulas as structure
table results can greatly reduce the size of the
table, As an illustration, suppose that a given
result function has twenty-six values (10, 12,

14 16, ...60). Ostensibly, the structure table
to select the appropriate result value would have
twenty-six rows, This decision could be reduced
to one row by calculating the result value as
some function of the decision parameter as
shown in Figure 6. Obviously, all result rela-
tionships are not so conveniently proportional
but a surprising number of result functions can
be described with simple linear and exponential
expressions. The curve fitting problem can be
greatly simplified by using structure table rows
to break the curve into convenient intervals that
can be represented by such simple mathematical
expressions.

Preambles and Postscripts

Each structure table is preceded by a
heading which identifies the table by number and
indicates its dimensions in terms of decision
parameter columns, result function or action
columns, and value rows. Tables may be num-
bered from TABLE 1 to TABLE 9999999 and
allowance is made for up to 999 decision para-
meter or result functions. Provision is also
made for 999 condition rows.

Following the heading is a NOTE which
may contain any combination of alphabetic or
numeric characters. The NOTE may be used to
give the structure table an English name and
provide a verbal description of the decision be-
ing made. Subsequent to this any labels naming
expressions or arithmetic calculations referred
to by "CALCULATE'" or PERFORM operators in
the body of the structure table may be defined,
For example, note the definition of TIME A~ 1 and
TIME 42 in TABLE 2005 of Figure 4, The struc-
ture table proper follows BEGIN.

If no solution row is found in the struc-
ture table proper, or if the structure table has
executed all results or taken all actions without
reaching a GO function then control is passed
to the area directly below the structure table.

123
3.2

Here are recorded any special instructions per-
taining to that particular decision. Of particular
note is the situation where no solution row has
been found. Such a failure is regarded as an
""error.' In certain types of decision systems,
this may be exactly what the systems designer
intended. However, error conditions most often
indicate a failure of the decision logic to cope
with a certain combination of input values, The
systems designer should set up to notify himself
whenever such an error occurs by designing an
error routine which will provide him with a
source language printout identifying the table
that failed and the problem being solved at the
time, With this problem printout and the source
language structure tables, the systems designer
has all the data he needs to trouble shoot the
system in his own terminology. Thus, each
structure table should be followed by the state-
ment: IF NOT SOLVED GO :

In this way any structure table failures will al-
ways be uncovered, Frequently, the situation
arises, as mentioned earlier, that regardless of
the solution row, the next structure table solved
is the same. In this case the statement:

GO . may be written after or
below the preceding error statement, to serve
as a universal link to the next structure table.

The areas immediately preceding and
succeeding the structure table proper may also
be used for input-output, data movement, and
other data processing operations,

The Dictionary

The precise name and definition of
each decision parameter and result function are
recorded in a "dictionary." This dictionary be-
comes an important planning document in the
systems engineer's work for it provides the
basic vocabulary for communicating throughout
the entire decision system. The dictionary
should note a parameter's minimum and maxi-
mum values, as well as describe how it behaves.
If the parameter is non-numeric in nature, the
dictionary should record and define its permis~
sible atates. Significantly, the systems engin-
eer formulates both the structure table and the
dictionary using his own professional terminol-

ORY.

The dictionary will also prove useful
in compiling and editing structure tables for
computer solution. It also follows that problems
presented to the resulting operating decision
system must also be stated in precisely the
same terms as the structure tables. To those
as yet uninitiated to the perversity of computers,

this may seem a simple matter; unfortunately,

124
3.2

it is not. Interestingly however, one of the
more promising application areas for structure
tables appears to be in stating the logic for com-
pilers and edit programs.

Summary

The foregoing description of decision
structure tables is not meant to be a fully defini-
tive language specification. The intention is to
introduce the reader to the decision structure
table concept and to discuss their characteris-
tics in sufficient detail to provide the reader with
enough understanding to evaluate their inherent
flexibility and application potential. Many addi-
tional features are available which aid in formu-
lating concise, complete decision structure
table systems and also to facilitate input-output
operations, but the reader will find that the
fundamentals already described are adequate
for structuring most operating decision logic.

Automatic Solution of Structure

Table Systems

Decision structure tables have proven
to be an excellent method for analyzing or formu-
lating the logic of complex industrial information
systems, but after taking such great care to pre-
cisely record each elementary decision in this
highly structured format, it is only natural to
speculate on the possibility of solving structure
tables automatically with an electronic computer.
Before plunging into the computer world, how-
ever, it is worth noting that some systems en-
gineers have had very favorable experience us-
ing structure tables on a manual basis -- especi-
ally as a problem analysis technique, and also
in limited applications in manual clerical sya-
tems.

Numerous methods for solving struc-
ture tables automatically suggest themselves,
First, the tables could be coded by hand. Such
an approach would use structure tables as a di-
rect substitute for flow charts. Actually this
really isn't as bad as it initially sounds. Many
benefits would accrue from making this precise
readable format the standard method for stating
decision logic. It also offers the possibility that
a series of macro-instructions could be develop-
ed, thereby permitting untrained personnel to
code tables without detailed knowledge of compu-~
ters or programming., However, this approach
suffers some distinct disadvantages in compari-
son with the other alternatives outlined below.

Second, a generalized interpretive
program could be written to solve any structure

table, This offers the possibility of using a
translator to work directly from keypunched
structure tables without any manual detail cod-
ing. This approach makes economical use of
memory since the basic programming to solve
any table appears only once and the structure
table itself offers a compact statement of deci-
sion logic. This reduces the amount of reading
time required to bring the problem logic into the
computer, File maintenance via recompiling
structure table tapes also appears quick and
simple. However, interpretive programs usu-
ally run more slowly; and this implies some
penalty in total machine running time.

A third approach would be to create a
structure table program generator in which an
object computer program would be generated
from the source structure tables. This approeach
would provide faster computer running times
for maximum efficiency. A generator program
would probably require more complicated coding
than an interpretive translator, In addition, the
generated object program would not be as con-
cise as the structure tables themselves., How-
ever, where computer running time is of para-
mount concern, this approach has considerable
appeal,

Because of the available time and
money, all the early efforts of the Integrated
Systems Project toward automatic structure
table solution were essentially interpretive, It
is interesting that a simple, yet adequate, tabu-
lar systems-oriented language could be provid-
ed in this way for somewhat less than a man
year's effort. Similarly work to date in the
area of formula calculations indicates that a
comprehensive system of mathematical notation
like that required for scientific work is probably
not necessary in many operating business deci-
sion systems, Initial efforts on the IBM 702
were followed with experimental TABSOL langu-
ages for the IBM 305, IBM 650 and the IBM 704,
These applications to different computers repre-
sented more than simple extrapolations to differ-
ent pieces of hardware. In each an effort was
made to expand capabilities of the language, In
addition, the peculiarities of the equipment were
explored, since one great concern was to free
the user from a programming system usable on
one and only one computer, As you might sus-
pect, this wasn't always completely possible on
the smaller computers, lacking tape or core
memories. Nevertheless, the most recent
Manufacturing Service effort on the IBM 650
produced a language with named fields, index-
ing, a two-address arithmetic, completely
generalized structure table formats, and con-

sidering the alphabetic restrictions of the

equipment, remarkably flexible output formats,

Although'these experimental languages
proved quite adequate, one could not help but
look toward the tremendous power of one of the
more conventional languages, For one thing,
the prospects for structure table application in
other problem areas brightened, and it seemed
reasonable that this power would be desirable in
future work, Further our own tabular systems
language development had brought us to the point
of direct competition with the major language
efforts already underway. Here General Elec-
tric's Computer Department entered on the
scene, The Computer Department was develop-
ing a new concept in compiler building for use
with General Electric computers, The first
version of this new General Compiler, called
GECOM, will be available to GE 225 users in
May, 1961. It is designed primarily around
COBOL, with some of the basic elements of
ALGOL, and is now to contain all of TABSOL.
To state the results of joining TABSOL with
GECOM simply, it places the power of a full-
fledged language at the command of every struc-
ture table block. Within General Electric, we
obviously have a very high regard for the contri-
bution of decision structure tables in information
systems design. Significantly, the same com-
mittees who developed COBOL are now actively
investigating tabular systems-oriented languages
as the language of the future. By drawing on the
CODASYL work and utilizing the extensive re-
search and development experience already
available within General Electric, the Computer
Department expects that GECOM will provide
users with a system compatible with both the
present-day common business language, COBOL,
and also the tabular systems-oriented language,
TABSOL. Incidentally, the decision structure
tables appearing in Figures 3, 4 and 5 are writ-
ten in conformance with GECOM specifications.

Applications of Structure Tables

As somewhat implied in the illustra-
tions a substantial amount of experience has
been gained in applying structure tables to a
wide variety of operating decision-making prob-
lems over the past three years., But perhaps the
most interesting experience, at least from the
researcher's point of view, was the very re-
search work which spawned decision structure
tables themselves., Earlier, it was mentioned
that the Integrated Systems Project undertook a
careful study of the essential information and
material processing required to directly trans-
form customer orders into finished products,
For example, the product must be engineered

125
3.2

prior to shipment, but the payroll, though rever-
ed by all of us can well be done at some gther
time, out of the main flow of events. Using this
rough rule of thumb, the following activities
were studied (Figure 7): order editing, product
engineering, drafting, manufacturing methods,
and time standards, quality control, cost ac-
counting, and production control. These activi-
ties account for a fairly substantial portion of
the business system., Normally, they would in-
clude 100% of the direct labor and 100% of the
direct material as well as about 50% of the over-
head. All the production inventory investment
lies within the scope of this system and obvious-
ly most of the plant and equipment investment,
Fortunately, the inputs and outputs to this sys-
tem are simple and well-defined: the customer
order comes in and the finished product goes out.
With this in mind, it was possible to treat all
activities within these bounds as one integrated,
goal-oriented operating decision system and
develop decisgion structure tables accordingly.
Working with a small product section in one of
the Company's Operating Components, a signifi-
cant portion of the functional decision logic was
successfully structured, Further the resulting
structure tables were directly incorporated into
a computer -automated operating decision system
which transformed customer orders for a wide
variety of finished products directly into factory
operator instructions and punched paper tape to
instruct a numerically programmed machine
tool. This prototype system was demonstrated
to General Electric management in November,
1958, Starting at the beginning, (Figure 8) the
computer system edited the customer order and
using the product engineer's design structure
tables, developed the product's component char-
acteristics and dimensional details, These in
turn were used in the manufacturing engineer's
operation structure tables to develop manufac-
turing methods and determine time standards.
And so the flow of information cascaded down
through the various business functions comput-
ing the quality control procedures, the product
costs and the manufacturing schedules; eventu~
ally issuing shop paperwork and machine pro-
gram tapes.

Since the completion of this work
further research and development of the struc-
ture table concept was conducted in a variety of
functional areas for different kinds of businesses
in General Electric: defense, industrial appara-
tus, and consumer-type products, In addition,
structure tables have been used in entirely dif-
ferent applications such as compilers. They
also appear to hold great promise in complex
computer simulation programs.

126

Benefits of Structure Tables

As a result of these efforts, we have

come to believe that the decision structure table
is a fundamental language concept which is
broadly applicable to many classes of informa=-
tion processing and decision-making problemas,
They offer many benefits in learning, analyzing,
formulating and recording the decision logic:

1,

Structure tables force a logical,
step-by-step analysis of the decision.
First the parameters affecting the
decision must be specified; then suit-
able results must be formulated. The
nature of the structure table array is
such that it forces consideration of
all logical alternatives, even though
all need not appear in the final table.
Similarly, the precise structure table
format highlights illogical statements.
This simplifies manual checking of
decision logic. The decision logic
emphasizes causal relationships and
constantly directs attention to the
reasons why results are different.
Personal design preferences can be
resolved and intelligent standardiza-
tion can be fostered.

This is no mean capability. Indeed,

it was very instructive to witness the
development of methods and time
standards logic in parallel with the
development of the engineering logic
during the initial Integrated Systems
Project study. Through analysis of
the decision structure tables written
by the various functional specialists,
everyone was able to achieve an in-
sight into the product and the business
rarely obtained in so short a period
of time. The facts of life in product
design, factory methods, and standar-
dization were brought into the open
very rapidly.

Structure tables are easily understood
by humans regardless of their func-
tional background. This does not
imply that anyone can design or create
new structure tables to describe a
particular decision-making activity;
but it does mean that the average
person, with the aid of a dictionary,
can readily understand someone
else's structure tables, Thus, struc-
ture tables form an excellent basis for

communication between functional

specialists and systems engineers.
Structure tables also go a long way
toward solving the difficult systems
documentation problem,

Structure table format is so simple
and straightforward that engineers,
planners, and other functional spe-
clalists can write structure tables
for their own decision-making prob-
lems with very little training and
practically no knowledge of compu-
ters or programming. Given a few
ground rules, regarding formats and
dictionaries, the structure tables
written by these functional people
can be keypunched and used directly
in operating decision systems with-
out ever being seen by a computer
programmer. This cuts computer
application costs as well as cycle
times.

Structure table errors are reported
at the source lanqua.ge level, thus
permitting the functional specialist
to debug without a knowledge of com-
puter coding.

Structure tables solved automatically
in an electronic computer offer levels
of accuracy unequalled in manual
systems, Note, however, that any
such mechanistic systems lose that
tremendous ability of humans to
compensate for errors or discrepan-
cies,

Structure tables are easy to main-
tain. Instead of changing all the
precalculated answers in all the
files, it is often only necessary to
change a single value in a single
table, For example, when changing
the material specified for a compo-
nent part under current file refer-
ence systems, it would be necessary
to extract, modify and refile all
drawings and parts lists calling for
any variation of the component part.
Using structure tables, it would only
be necessary to alter those structure
tables which specified the component
material,

Summary
In closing, we recommend that the

reader demonstrate the effectiveness of decision

structure tables to himself by ''structuring" a
few simple decisions. For example, write a
structure table which will enable your wife to
decide how to pack your suitcase of any business
trip, Perhaps a simple business decision such
as those mentioned earlier would provide a more
instructive example. The first structure tables
are usually difficult to write, because most of
us do not, as a general rule, probe deeply into
the logic supporting our decisions. However,
once this mental obstacle is overcome, ''struc-
turing'' facility develops rapidly. If the reader
will take the time to ''structure' a few decisions
and actually experience the deeper insight and
clarity which this technique provides, then deci-
sion structure tables need no apologist, they
will speak for themselves,

Acknowledgement

In contrast to most technical papers
which essentially document only the work of the
author, this discussion reports on the efforts of
over seventy-five General Electric men and
women, In particular, credit is due Mr. Burton
Grad, who though no longer with General Elec-
tric, was a principal originator of the decision
structure table concept. Mr, Malcolm C. Boggs,
Mr. Daniel F. Langenwalter, Mr. Herbert W.
Nidenberg, and Mr, Theodore E, Schultz repre-
senting Service Components and personnel from
some fifteen different Operating Components
within General Electric have contributed toward
bringing these ideas to their present state of
development and application, Acknowledgement
is also due Mr, Charles Katz of General Elec-
tric's Computer Department who was instrumen-
tal in joining TABSOL and GECOM.

Decision
Structure Table

. ..a rectangular
array of terms,
or blocks...

...vertical
double line...

...horizontal
double line...

« » « Btructure
table
values., ..

Decision
Logic

Results or
Functions

Column headings

Table Values

Po1[Foz |Fosl| Ror [Roz [Ros |[Roa
P11 P12 P18 171y [Piz 1*13 |*14
P21 | P22 [P23 || T21 |%T22 [*23 |T24
P3; | P32 (P33 || %31 |F32 [F33 [¥34
P41 | P42 [P43 || T4l |T42 |*43 |T44

Figure 1

Problem Statement: Select Transportation, New York - Boston, p.m.

Weather: Foul

Plane Space: OK
Hotel Room: Open

Decision Structure Table: Transportation, New York - Boston, p.m.

Weather Plane Hotel Trans- Other In- Next
Space Room portation structions| Decision
Fair OK Open Plane End
Cancel
Foul OK Open Train Plane End
Sorry Open Train End
Cancel NY -Bost.
OK Filled Plane a.m.
Sorry Filled N ~Bont:
a - m -

Solution:
_I_f the value of Weather is F_ou_ll_, and
the value of Plane Space is OK, and
the value of Hotel Room is Open,

Then

the value of Transportation is Train, and

the value of Other Instructions is Cancel Plane, and

the value of Next Decision is End.

Figure 2

TABLE 1000.

DIMENSION C4 A5 R10.
NOTE TABLE FOR DETERMINING DETAIL VARIABLE PART CHARACTERISTICS FOR A
LINE OF SENSING COILS IN ACCORDANCE WITH CUSTOMER END PRODUCT

SPECIFICATIONS.

BEGIN. INSUL
lSERVICE EQ| UNITS EQ VALUE VAITUE |ITURNS| DIA RESIST INSUL T EMP
"DGC "MAMP" | GR 180 LS 450 |[0.3/1 |.001 [2.6*TURNS |"TYPE-F"| 150
HDG "MVLT" | GREQ 45 | LsEQ 150|| 26 |.o08 1.84 nTYPE-F'| 150
HDGH "MVLT" | GR 150| LSEQ 330f 13 |.oo02 0. 46 NTYPE-F"| 150
HDCH "VOLT" | GREQ 0.9| LSEQ 300f 60 |.o02 39.0 nTYPE-F'| 150
HDGH "VOLT" |GR _ 300| LsEQuoofl 120 |.002 137.0 "TYPE-F"| 150
: : ; : - . : : :
HAGH TWATT" 230 |.o002 150.0 "TYPE-N'"'| 200

IF NOT SOLVED GO ERROR~COIL.
MOVE "COPPER'" TO MATERIAL.
GO TABLE 1005.
END TABLE 1000.

TABLE 1005.

DIMENSION C2 A3 R3.
NOTE TABLE TO MAKE CERTAIN THAT INSULATION TEMPERATURE RATING EXCEEDS
MAXIMUM OPERATING TEMPERATURE.

BEGIN.

MAX~TEMP INSUL INSUL INSUL~ TEMP GO
LSEQ INSUL~TEMP TABLE 1007
GR INSUL~TEMP "TYPE-F" N"TYPE-N" 200 TABLE 1005
GR INSULr~ TEMP "TYPE-N" "TYPE-T" 250 TABLE 1005

IF NOT SOLVED GO ERROR~COIL.
END TABLE 1005,

Figure 3

TABLE 2000. DIMENSION C3 A3 R4.

NOTE TABLE TO SPECIFY VARIABLE FACTORY OPERATION CHARACTERISTICS FOR THE
INITIAL SENSING COIL WINDING FROM PART CHARACTERISTICS.

BEGIN.

SUPPORT~ TYPE EQ | MATERIAL EQ| TURNS START~W ASSEMBLE FINISHAW
"TABED-HOLE" "COPPER" TURNS

"FLAT-STRIP" "COPPER" LS 100 2 "FLAT-STRIP" | TURNS-2
"FLAT-STRIP" "COPPER" GREQ 100 |[TURNS/2 ['FLAT-STRIP" | TURNS/2
"FLAT-STRIP" "ALUMNM'" TURNS "2 FLT-STRP"

IF NOT SOLVED GO ERROR~COIL. GO TABLE 2005,
END TABLE 2000.

TABLE 2005. DIMENSION C2 A3 R3.
NOTE TABLE TO CALCULATE TIME STANDARD FOR PREVIOUS OPERATION.
TIME~1 = 125%DIA*TURNS.

TIME~2 1000%DIA/SQRT (TURNS).

BEGIN

TURNS | TURNS || TIME PERFORM GO

1.5 15 TURNS + 0.88 SETUP TABLE 2010
GREQ 15 L.s 100 TIME~1 = SETUP TABLE 2015
GREQ 100 TIME~2 = TABLE 2008 | TABLE 2020

IF NOT SOLVED GO ERROR~COIL.,
GO TABLE 2005,

Figure 4

1€l

TABLE 1010. DIMENSION C2 Al R3.
NOTE COIL QUANTITY DETERMINATION.
BEGIN.

SERVICE EQ |UNITS NEQ "WATTS" ||COIL~QUAN
"nACH 0

"DC" OR"AC" T QUAN
npcH F 2*QUAN

IF NOT SOLVED GO ERROR~COIL. GO TABLE 1100.

END TABLE 1010.

TABLE 1500. DIMENSION C4 A3 R10.
NOTE COIL LOAD DATA AND CYCLE TIMES.
BEGIN.

SERVICE EQ UNIT EQ CY EQ|INSP EQ |INORM~CYCLE MIN+~CYCLE|COIL~LOAD
TACH TAMPS" OR "TMAMP" 1 'COML™ 15 11 QUAN
"AC" "WATT" 1 'COML" 15 11 2.2% QUAN
npoH "AMPS" OR "MAMP" 2 "COML 15 9 0. 9% QUAN
"DG™ "VOLT" OR "MVLT" 2 ['COML" 15 9 0. 9% QUAN
"DC" "AMPS'" OR "MAMP" 1 ['GOVT" 20 16 1.4% QUAN

IFF NOT SOLVED GO ERROR~COIL.
MIN~DATE = TODAY + MIN~CYCLE.
NORM~DATE = TODAY + NORM~CYCLE.
GO TABLE 1510.

END TABLE 1500,

Figure 5

TABLE 1510. DIMENSION C2 AZ R3.

NOTE COIL PROMISE DATE DETERMINATION .

BEGIN.

COIL~LOAD LSEQ CUST DATE PROMISE GO
CUM~CAP (NORM~DATE)| GREQ NORM~DATE CUST~DATE NORM~LOAD
CUM~CAP (MIN~DATE) GREQ MIN~DATE CUST~ DATE RUSH~LOAD
CUM~CAP (CUST~DATE) CUST+DATE EMER~LOAD

IF NOT SOLVED GO OVERLOAD.

END TABLE 1510.

Figure 5a

P R
0 10
1 12 % 5 R
2 14
3 16
- 0 25 (2%p) + 10
25 60

+se+. The use of formulas as structure table results can
greatly reduce structure table size, as shown by the simple
straight line expression above, Structure tables may also be
used to partition complicated curves into convenient segments
as shown below.

/ ”» P P R
'_——‘--—_’____.}f'——_'
// 0 Pl Ix +a
/
Py P2 mx + b
.'-le"—'__-__——‘—__-
/
/
/
4
P1 P, P3

Figure 6

PRESENT MAIN LINE SYSTEM

CUSTOMER ORDER

REFERENCE
INFORMATION

&

4

.&

777
/DATA Fi LES

0

’ BLUEPRINTS

11111111111111

H

T

PLANNING
CARDS

= "o)

@ AND WAGE RATE

PLANNING

TR
r—b Znscono%

(A1 I 11,

UALITY
PLANNING Z

PRODUCT COST Y COST
FILES =4 DETERMINATION
/INVENTORYZ] | ‘PRODUCTIO

@E ==I’ CARDS
/// S0
I((EE ORDER

FILES

—*R?C//NTRO//é

'PURCHASING

==iil VENDOR ’
s MATERIAI.

Figure 7

VOUCHERS

LIRS BLUEPRINTS

CPARTS %’INSPECi Ing

. ASSEMBLIE / SHIPMENT/
U/ /77 7 ///////////

i
L

INTEGRATED MAIN LINE SYSTEM

CUSTOMER ORDER

ORDER TRANSLATION

TRANSLATION LOGIC

¥ W

ORDER EDIT
PRODUCT DETAILS

PRODUCT DESIGN
STRUCTURE

METHODS AND
TIME STANDARDS

MANUFACTURING
OPERATION
STRUCTURE

QUALITY
PROCEDURES

QUALITY CONTROL
STRUCTURE

PRODUCT COSTS

COST STRUCTURE

MAN, MACHINE AND
MATERIAL TIMING

MANUFACTURING
CONTROL STRUCTURE

P

C O M P UTER

VENDORS
SUPPLY
MATERIALS

AUTOMATIC
OPERATOR RUN

MACHINES: ‘

PROGRAM
TAPE
INSTRUCT.

® PARTS ® SHIPMENT
® ASSEMBLIES ® AUDIT

Figure 8

