
OJECT

MARCH 21, 1959

REPORT

TABSOL

A GENERALIZED SOLUTION TO

PROGRAMING DECISION SYSTEMS

MANUFACTURING SERVICES

GENERAL ELECTRIC

NEW YORK, N. Y.

R59MS301

· .,

FOR USE OF GE EMPLOY!ES ONLY

bENERAL _ ELECTRIC

TECHNICAL INFORMATION SERIES
Title Paae

AUTHOR SUBJECT CLASSIFICATION NO.

B Grad Computers, Automatic R 59 MS 301
DATE

TF Kavanagh Programming March 21,195'
TITLE

TABSOL - a generalized solution to programming
decision s~stems

.. STRACTTABSOL is a unique concept for formulating and
solving decision systems. Through the us e of a special
form called a decision structure table the problem logic
can be readily expressed by a systems designer without
specific computer programming knowledge. This gen -
eralized format can then be solved automatically by an
iDtel:rsI:etb£e

G.E. CLA. 3
compnte 1: cEl:cfj:t:am

REPRoue LE COPY FILEO AT NO. PAGES

Production Control s"rvice
GOV. CLASS. New York, New York 31

CONCLUSIONS

TABSOL appears to be a major step forward
in automatic computer programming since it replaces
both the coding and the flow charting. In addition, the
format chos en tends to highlight logical errors. The
general concept of TABSOL looks very promising in other
areas: scientific calculations, specialized function pro-
gramming, etc. This material should not be reproduced
without specific permiss i on of Production Control Servke.
The material is also Company Confidential and should
not be referred to with any non - General Electric
employees.

INFORMATION 'AEPAAEO FOR _______________________________ _

TESTS MAoE8v __________ ~P~r~o~d~u~c~ti~o~n~C~o~nut~r~o~1~S~e~r~yui~cue~ ___________ __

AUTHoR _____________ ~B~.~G~r~a~d~.~T~.~F~!~K~a~v~a~n~a~g~h~ ____________ _

COUNTERSIGN ED __________ ~H=,:.F..!.'--'Do:.l"'· c",k",l:.;· e,,",-, ~M=g",ro..:... _-~P~r..::o"'d.,u"'c:.t"'i"'o'"'n"_'C=o..,n~t ... r"'o"'l_'S"'e"""'r~v ... i"'c"e_

SECTloN ___ ~M=a""t"'e""r'_i"a"'I"'s'_"S"'e"'r'_v.:.;.:i c:.e"--______ LOCA TI ON New Yo r k. New Yo rk

0[",137 1-56 (rev)

Section

(1)

(Z)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(lZ)

(13)

(14)

Table of Contents

Contents

The concept of a logical table.

How the variable data fields are set up for use by
TABSOL.

The TABSOL c oding system: tables.

The TABSOL coding system: table descriptors .

The TABSOL cOding system: pseudo-arithmetic .

Information supplied to TABSOL by the exect,tive.

The dictionary of table location increments .

Layout of the table tape .

Size and timing of TABSOL.

Errors recognized by TABSCL.

Ready-reference , of TABSOL locations for executive
programming .

Flow chart.

Examples of tables.

Snapshot.

Page

Z

4

6

11

12

16

18

19

ZO

Z1

23

Z4

Z6

Z8

- 2 -

(l) The concept of a logical table

TABSOL is a sub-routine for "solving" logical tables. A logical table is

a coded representation of a decision-making system. It lists a set of argument

variables and several sets of result functions; only one set of result functions,

for example, is to be executed, the choice of result set being dependent upon the cur­

rent values of the argument variables. In the type of table that TABSOL is able

to solve, to execute a set of functions means simply to assign values, called

results, to other variables, called function variables.

A logical table, therefore, consists of a list of argument variables, several

sets of tests, several sets of results (one set for each set of tests) and a list of

function variables. Figure l(a) below shows how these entries are arranged to

form a table. Figure l(b) shows a sample table, in an uncoded form; in actual

practice each entry in the table would be expressed in five digits of a special

TABSOL code.

The first column contains the argument variables (above the double lin!,,)

and the function variables (below the double line) . The second column, and each

column thereafter, contains a set of tests (above the double line) and a set of

results (below the d'ouble line). To solve this table, TABSOL would ascertain the

current values of each argument variable, and then apply to each argument values

the test indicated in the second column. If all the tests are satisfied, the second

column is the solution column; if not, the tests in the succeeding columns are

applied, until the solution is found. TABSOL then takes the results in the lower

part of the colution column, and assigns each result as the value of the function

variable indicated in column 1. Note that, as shown in the bottom row of the

- 3 -

example, it is possible to make the number of t he table to be solved n ext depend

upon the solution found for the last table solved . Thus, one can solve table afte r

table wi thout l eaving the TABSOL sub-routine .

col I col 2 col 3

Argument 1st set 2nd s e t
variable s of of

te sts tests

Function 1st set 2nd set
variable s of of

r esults re su its

Fig ur e 1 (a)

col n

(n-I) "th
set
of

tests

(n -I)'th
set
of

results

Quantity , rating, diame t e r, and tolerance of capacitor for AC wattmeter .

'" . . - - -
yoltp.ge rating . .. -. --~ . 100 :;;;. 100 ~ 100 :;;. 200 .> 200 .:;;;. 200 . - _. , ..

-..Y.()ltage . r a ting ~ 12 5 :s;;; 125 ~ 125 ~ 250 .- 250 .:; 250 .- - --. _._-

_!:::!\~!>-'=.!....!?!Y. ha s e s = 1 = 3 = 3 = 1 = 3 = 3
I

.~ .-

Shock character istic - Hi shock Comm. - Hi shock Com.m,

Quantitv 1 2 2 1 2 2 - ...

f--~.t:inz.2.~ F . 039 __ "-._,P27 , 03 9 .027 ,022 , 027

Diameter, in inche s ___ ?.J.J_6.... 7/16 7/16 3/8 7/1 6 7/16 -_._- -
"'n'a¥'~ <, e (%l 5 10 5 10 - 10

/I table to so lve next 004 017 017 004 017 01 4

Figure l(b)

~ 4 -

(2) How the variable data fields are set up for use by TABSOL.

(i) The variable data upon which TABSOL operates is broken up into fields

of fixed length. A field inay be numeric (i. e. each digit is an unsigned number

o through 9) or alphameric. An alphameric field is defined as any field that

is not numeric. It may contain any number, letter of the alphabet, or other

typewriter character, except that the first character may not be &., ., t:r ' -.

or $.

(ii) The variable data fields are divided into 3 "lists", as shown below.

There is also a print image area, where results may be stored, but from which

arguments cannot be taken.

Li8t name Symbol Field length and type

SPEC 4-digit numeric or alphameric

INT &. 4-digit numeric or alphameric

TIM $ 5-digit numeric

PRNT P 4-digit alphameric or numeric
Q 5-digit numeric

Contents

Customer specifications
Product characteristics, etc.

Intermediate characteristics

Time values

Results required for
printing only, not for future
reference.

(iii) To address a field in the Spec, Int, or Time lists, one gives the list

symbol followed by the serial entry number of the field within the given list: -0005,

&.0127, $0063. In a few instances only 4 characters are available in which to ex-

press the address; in these cases, the leading zerO of the entry number is dropped,

and &.0127 is written &,127. It follows that the maximum permissible entry number

is 0999. The lowest entry number is 0001, not 0000.

- 5 -

(iv) The print image area has no fixed format; a four- or five-digit

result may be stored anywhere in the image. One addresses the area by giving

the symbol P (or 0) followed by the number of the print image position in which

the right-most digit of the result is to be stored: P002S, 00167, Pl204.

The maximum permissible image position number is 9999. Code P, the

one most commonly used, causes a 4-digit result to be stored; code 0 causes a 5-

digit result to be stored, and should be used only with numel:ic results. The

executive program must supply the record mark needed to define the division of

the print area 'into .lines.

(v) The location within memory of the lists and .the print area is not fixed

by TABSOL. The executive program informs TABSOL of the starting location

assigned for each area.

- 6 -

(3) The TABSOL coding system

We list and explain below the permissible codes that may appear in the

argument, test, result and function areas of a table. Each table entry is five

digits in length .

(a) Arguments

May be the name of a field in the SPEC, INT, or TIM areas only, e. g.

&0127, the 127th field in the INT list. If the argument is a TIM field" the tests

appearing in the same row must be comparisons to other TIM fields; errors will

result from any attempt to compare a five-digit TIM field to a four-digit SPEC,

INT or literal field.

(b) Te.ts

(i) The first digit of a test entry is the comparison type-code, showing

what type of comparison is to be made between the argument variable and the

test value. The possible type - codes are:

Symbol

b

G

H

L

M

u

z

Comparison Indicated

:; identical equivalent

> greater than

~ greater than Or equal to

< less than

~ les 8 than or equal to

Make no comparison, skip to do next
test.

Make no more comparison., this column
i8 the 801ution column.

- 7 -

(ii) . The last four digits of a test entry either give the literal test value.

or give the address of a variable to be used as a test value . The latter case is

called a non-literal value, Thus. the last four digits may be:

1234 numeric literal

VANE alphameric literal

-005 1
&127
$063

non-literals

(iii) The argument is always compared to the test value. i. e. H0200

means "is the argument ~ 0200".

(iv) Note that a time field may be used as a non-literal test value only if

the corresponding argument is also a time-field.

(v) Note also that the comparison type-code Z may occur only in the top row

of the last column. It indicates an "all-other" column.

(vi) Since there are only four characters available in which to write a non-

literal test value. the leading zero of the entry number is dropped. i. e . &0127 be-

comes &127.

(c) Results

(i) A result. like a test va lue. may be litera l or non-literal. Literal results

occurring opposite a TIM function must be five-digit numerics. Literal results oc-

. : urring opposite a PRNT function may be a four-digit numeric or alphameric (e . g.

b1234. bVANE). or five digit numeric (e . g. 12345. 00654). We list the possible

types of result fields below:

b 1234 4-digit numeric literal ·

b VANE 4-digit alphameric literal

12345

&0127

-0005

$0063

U bbbb

Z bbbb

F 0012

- 8 -

5-digit numeric literal; can occur only
oppos ite TIM or 0 functions .

4-digit non-literal

4 -digit non-literal

5 digit non-literal. can oc cur only opposite
TIM or 0 functions.

no result to be stored. skip to do next re­
sult row .

no more results. skip to solve next table. as
shown in dir ector.

the result value is to be foum by evaluating a
formula (s e e below for further explanation) .

(ii) When a result is not e qual to a known literal or variable. but must be

found by evaluating a formula. the necessary " pseudo-instructions " are written

immediately following the table . The result entry in the table shows t he number

of the pseudO - instruction at which to start. i. e . F0012 means transfer to execute

pseudo-instruction 12 and continue executing pseudO - instructions unti l a "last

instruction" code is encountered. Further details are given in the section on

Pseudo -Arithmetic.

(d) Functions

(i) A function may be any of the following ;

-0005)
&0127
$0063

P0025
00025

*bbbb

address of function variable to which result value
is to be assigned.

store result v.!llue in print image areil. with right­
most digit of result going into 25th position of print
image.

the result value is the number of the table to be
solved next. In thie case the result must be literal.
and be , 999 .

- 9 -

(ii) Whenever a result is stored as a time variable, it is also added into

a six-digit "total time accumulator". The executive program is responsible for

re-setting this accumulator to zero whenever necessary. Any overflow beyond

six digits will be lost.

(iii) A TIM non-literal result must not occur opposite a SPEC or INT

function. However, a SPEC or INT non-literal result may appear opposite a TIM

function; a leading zero will be added to the result value before it is stored.

(iv) Similarly, a SPEC or INT non-literal result may appear opposite a

PRNT function; a leading zero will be added, and the result will be treated as five­

digit.

(v) The method of storing the result in the print area depends upon whether

the function code is P Or Q.

Code P causes the right-most four digits of the result value to be placed in

the print area without change.

Code Q causes all five digits of the result value to be placed in the print

area by means of a "store-for-print" instruction. Storing starts with the right­

most digit of the result; any decimal points or commas encountered in the print

image are skipped over, and any zeros or commas to the left of the most Significant

figure are obliterated and replaced by blanks. Zeros occurring to the right of a

decimal point are not' obliterated. Also the position to the right of the One addressed

by the print function is automatically set to a blank; any character previously placed

there will be lost.

We. show some examples On the following page.

Function

P 0025

Q 0025

Q 0025

P 0025

Q 0025

Result Value

12345

12345

12345

00789

00789

- 10 -

Print image ,before

19-~,>26

bbbbbbbb

bbbbbbbb

b, bbb . bb

bbbbbbbA

bbbbb . bA

Print image after

19-_>26

bbb2345b

bb12345b

·l,234.5b

bbb0789A

bbb78.9b

The print functions may have any value from P 0004 to P 9999, or from

Q 0005 to Q 9999.

The "store-for-print" instruction works correctly only if the quantity to be

stored is numeric. Using print code Q in conjunction with an alphameric result will

cause unpredictable errors in the field actually stored in the print image

(vi) When it is desired to return control to the executive routine, the result

field bbbb* is written opposite the 1/ function. The 1/ code may occur only in the last

row of a table.

- 11 -

(4) The TABSCL coding system: table descriptors

(i) Ea c h table is immediately preceded by a 14-digit "descriptor", contain-

ing the following information about the table :

GGNNN

RR

cc

AA

DDD

identification number of table. GG is the table
group number, NNN number of the table within
the group .

total number of rOws ·(argument and function).

number of columns, including the first.

number of argument rows, i. e . number of rows
above the double line .

the "dire ctor".

The fie lds are written in the order given above.

(ii) The director is normally used only when the last function of the table is

not 1#. In this cas.e , the director contains the tqree-d'igit number of the next table

to be solved. If it contains bb*, control will be retu rned instead to the executive,

as described above .

For a table having a 1# function, the director shows the number of the table

to be solved next if it is found that the table currently being solved has no solution,

i. e . none of the sets of tests is satisfied.

- 12 -

(5) The TABSOL coding system: pseudo-arithmetic

(i) All pseudo instr u ctions are five characters in length. The first character

is an operation code, describing the type of operation to be performed . The remain­

ing 4 characters are the operand, i. e. the field upon which the operation is to be

performed. The operand may be literal, e . g. 1234 or non-literal. Non-literal

operands may refer to the Spec, Int, or Tim lists, or to a "holding" area. There

are five hOlding areas, HOOl through HODS; they are used for temporary storage of

intermediate sums or products.

(il) The actual operand, by which we mean either a literal operand or the

field stored at the address given in a non-literal operand, must be numeric. A

non-numeric operand causes an immediate exit from TABSOL to the error return

location in the executive program.

Actual operands may be either 4-digit (literals, or fields from the Specs

or Int lists) or 5-digit (fie lds from the Tim list or from a holding area). Four­

digit operands are treated as the four least significant digits of a five-digit operand,

i. e . a leading zero is added before the pseudo-operation is executed.

(iii) The results of pseudo-operations appear in a register called the pseudo­

accumulator (PAC) . PAC is ten digits long . Addition and subtraction are done in the

right-most five digits only; if any six-digit sum is formed, the left-most digit of the

sum will be lost. All operands are unSigned and assumed to be positive; if any sum

of negative value is formed, the negative sign will be lost .

(iv) We list below the 11 pseudo operation-codes. In the following, Y

sumbolizes the five -digit actual operand, as defined in (il) above. PACx means

the xth digit of the PAC register .

Code

B

A

S

M

D

L

R

Q

H

E

x

Name

~ring

Add

Subtract

M ultiply

Divide

Left shift

~ight shift
and Round

sQuare
root

Hold

Transfer

eXit

- 13 -

Effect

Clear PACI_IO ' Place Yin PAC6_l0'

Add Y to contents of PAC6_10l store sum in PAC6_l0 '

Subtract Y from contents of PAC6_10; store result in

PAC 6-10'

Multiply Y by contents of PAC6-l0; store ten-digit product
in PACI-IO.

Divide contents of PAC l wl) by Y; store ten-digit quotient in
PACI-IO·

Shift contents of PAC 1-1 0 to the left Y places. Digits shifted
to the left of PACI are lost. Replace shifted digits by O.

Shift contents of PACI _ IO Y places to the right . Digits shifted
to the right of PACI O are used to round the digit in PACIO'
then dropped .

Find square root of number in PACI_IO_ assuming a decimal
point PACS and PAC 6 . Store result back in PACI_IO' with
decimal point similarly placed .

Store contents PAC6 _10 in hold entry Y. Y must be I, 2, 3,
4, or S .

Transfer to execute pseudo-instruction number Y .

The number now in PAC6_10 is the value of the formula.
Return to the main routine to store this value as directed.

Operation codes Q and X must have an operand of 0000 .

Operation codes Hand E must have literal operands .

(v) We show on the following page the changing contents of PAC as a series

of pseudo-instructions is executed .

- 14 -

Actual
Ins tr uction operand PAC Comments

B 98'16 0987 6 00000 09876

A $024 54321 00000 64197

A $007 44444 00000 08641 Six·~iigit sum; high-order digit lost.

S 1234 01234 00000 07407

S -063 09639 00000 02232 Negative result; sign lost.

L 0004 - 00223 20000

D &127 00192 00001 16250

R 0002 - 00000 01163

H 0003 - 00000 01163 011 63 stored at 3rd hold entry.

B $009 00225 00000 00225

L &07'7 00005 00225 00000 Shift may have non-literal operand.

Q 0000 - 00015 00000

R &077 00005 00000 00015

A H003 011 63 00000 01177

B $007 44444 0000044444

D $019 23432 00000 00002 Note need to shift dividend left before
dividing to obtain sufficient number of
digits in quotient.

During the execution of a divide or square root instruction the answer is

computed to One more place than is shown in the final result stored in PAC . This

result is obtained by rounding off the extra digit.

- 15 -

(vi) The sequence of four instructions shown for finding the square root

of 225 cou ld also be coded thus:

B $007

L 0001

Q 0000

R 0003

00000 00225

00000 02250

00000 15000

00000 00015

" 225 x 10-4

"-J225xlO- 2

Provided that the actual decimal point is an even number of places away

from the assumed decimal point, the correct answer will result, though it will be

shifted from its true position in PAC .

(vii) If a zero divisor is detected when a divide pseudo-instruction is about

to be executed, the divide operation will not be performed, and control will be

returned to the error return location in the executive.

(viii) The contents of PAC and the hold areas are never cleared out b y

TABSOL, i. e . they are unchanged except by a pseudo-instruction that operates on

their contents.

(ix) When a formula evaluation is completed, a five-digit result is obtained.

If the function corresponding to this res u lt is a SPEC or INT or P function, only the

right-most four digits of the result value will be stored. If the function is a Time

or Q function, all five digits are stored.

('

- 16 -

(6) Information to be supplied to TABSOL by the executive program

(i) At the end of. TABSOL space has been left for various pieces of informa-

tion that ml,st be supplied by the executive before TABSOL is enter e d. We show

below their names, symbolic locations, actual locations (relative to F, the starting

location of TABSOL) and significance:

Name Symbolic Loc.

TAB 59 . 90 . 0

SPEC 59 . 91.0

INT 59 . 92 . 0

TIM 59.93 . 0

PRNT 59.94 . 0

RET 59 . 95 0

10 59 . 96. 0

Significance

Loca tion of 1st digit of 1st table in
group . (au toma ti cally set to 10,001
lm less specifie d othe rwi se)
(Location of I st digit of spec. list) -I

(Location of I st digit of into list) -1

(Location of 1st digit of time list) -1

(Loca tion of 1st dig it of print im­
age) -I

Re - e ntry location in executive pro­
gram .

5 -digit identification number of table
to be solved .

(ii) The first five quantities will normally be fixed for any given executive

program . If TABSOL is to be assembled along with the executive, it is suggested

that the actual values assigned be p unched in the symbolic TABSOL cards.

\
The last quantity, 10, will normally be res e t each time TABSOL is ente red

from the executive.

The re turn address, RET, may be fixed (and punched) before assembly, or

reset at each entry to TABSOL.

(iii) If TABSOL recognizes an error condition (see below) during the solu-

tion of a table, it will return control to the instruction at RET + 5 in the executive.

- l7 -

(iv) The six addresses mentioned may be in either lower memory or upper

memory, as desired. However, the tables them,selves must lie either wholly in

lower memory or wholly in upper memory. Hence, a gr o~lp of tables may not

exceed 9999 digits in size .

(v) TABSOL has no ability to pass from tables in one group to tables in

another group . To accomplish this, contrbl must be returned to the executive (by

means of the asterisk code), which reads in the new group of tables and the new

dictionary for the group, resets all five digits of lD, and then re-e nters TABSOL .

(vi) 1 tis assurtled that the dictionary follows TABSOL. The dictionary

must be in lower memor y.

- 18 -

(7) Dictionary of Table Location Increments

(i) The executive is responsible for bringing into memory the tables

themselves, and also a "dictionary" showing the starting location of each table

relative to TAB, the starting location of the first table.

A dictionary consists of a series of 4-digit entries, one for each table

in the given group. If a particular table is missing, i. e. table 3 is followed

directly by table 5, a dictionary entry of 0000 must be written for the missing

table. The dictionary entry for a given table is computed by summing the sizes of

the preceding tables in the group .

Example of dictionary: 0000

0127

03 65

0000

0483

98 76

entry for table 1.

entry for table 2

entry for table 3

entry for missing table 4

entry for table 5

entry for last table in group.

(ii) Since a group of tables cannot exceed 9999 characters, the largest table

location increment possible is somewhat less than 9999.

(iii) The dictionary normally follows immediately after TABSOL in memory.

If this is inconvenient, insert the desired symbolic (or actual) starting location

minu s 1 in the address (or value) field of card 59 . 09 . O. Do not omit the plus sign

in column 19 of this card.

(8) Layout of Table Tape

Dict.
for

Grp. i

Dict.
for

Grp.2

- 19 -

EJ---- lct.
for
last
ro

Last
Group

(i) Ea ch group of tables (a group being ony convenient bunch of less than

ITape I Mark

10,000 digits in siz.e) forms one record on the ta'ble tape. Each group is preceded

on the tape by the dictionary for that group; the dictionary also forms one record.

(ii) A tape mark exists on the tape after the last group of tables, i. e. there

is only one file of information On the tape.

(iii) It tak/'s approximately. 72 seconds to read one dictionary and one grou p

of tables into memory, assuming that the group contains 100 tables and is 9999 digits

long.

(iv) TAB SOL is unable to pass from a table in one group to a table in another

group. It is the responsibility of the executive program.to read a new group of

tables into memory.

(v) The first five digits of any group of tables are the identification number

of the first table in the group, e. g. 07001. This field, or the first two digits thereof,

can therefore be used to identify a group.

- 20 -

(9) Size and timing of TABSOL

(i) TABSOL occupies 2332 locations in memory. This includes instructions,

working storage, program constants and the basic information supplied to TABSOL

by the executive. It does not include the space occupied by the dictionary, which is

variable.

(ii) TABSeL takes about 10 milli-seconds to do each of the following :

(a) Prepare to solve the next table.

(b) Make on e tes t.

(c) Store one result.

(d) Do one pseudo-instruction .

If the test or result code is U (make no test, store no result) the time re-

quired is about 5 milli-seconds.

(iii)

A B

U C

U U

F t'

B

D

E

F F

B

D

F

Change in test is shown by change
in letter.
U indicates IImake no test".

The average time taken to solve the above table, supposing the solution to

lie with equal frequency in each column, is computer as follows. (We suppose that

one of the results is always a six-instruction formula.)

Set-up time: 10 m . s.

Average test time: 1 /4 (2 + 3. 5 + 6 + 9) x 10,a. 50 m. s.

Result time :

Pseudo-op tim!!:

. . Total time : =

(10) Errprs recognized by TI),ElSOL

- 21 -

40 m. s.

60 m. s .

160m. s .

(i) TABSOL recognizes 4 different types of error. Each one of them causes

a la-digit error l'Ilessage to be placed in the "errqr ~ause" location with TABSO~,

and then returns control tp the !Ierror re -entry" location in the executive . The

identification number of the table currently beinl! so~ved is also available to the

executive at 10.

(ii) When the executive has taken appropriate action to record the occurrence

of the error, it may wish to return to TABSOL and continue solving more tables in

the same group'. This is accomplished by re-entering TABSOL at syml>~lic location

57. 01. O. The nl.!rIlber of the next table to be solved will under these circumstances

always be taken from the director, regardless of the presence or absence of the II

functipn in the table.

(iii) The four possible types of error, and the resulting error messages are

shown below:

(a) WTI - wrong table identification . The table number in the descriptor

of the table about to l>e sQlved does not match the table numqer in ID, which is the

number of the table it is desired to solve . This error is not probable, b ".t could

occur if the dictionary ',lIere incorrect or if TABSOL were directell to solve a table

that is missing. The error message is :

WTlbb GGNNN

where GGNNN is the identification number found in the table descriptor.

- 22 -

(b) No solution . TABSOL has done all the colillTlns of tests without find-

ing a solution column. The error message is:

NO b SOLN bbb

(c) NNO - non-numeric operand . The actual operand of a pseudo-instr u c­

tion is not a numeric field. The pseudo-instruction is not executed and the error

message is :

F XXXX bb NNO

where F XXXX i s the result entry currently being evaluated by pseudo-arithmetic.

(e . g. FOODl, F 0012)

(d) ZD - zero divisor . The actual operand of a pseudo divide instruction

is zero . The division is not executed, and the error message is:

F XXXX bbb ZD

where F XXXX is again the result entry currently being evaluated.

- 23 -

(11) Ready reference of TABSOL locations of intere st to the executive

We list below all locations in TABSOL to which the executive prog ram may

have occasion to refer. The " card number" is a 3-digit field punched in coltunns

7/ -79 of each card in t he symbolic TABSCL deck. All symbols refer to the right-

most digit of a field.

Card No. Symbolic Loc . Length

001 5

004 50.01.0 5

00 7 51. 01. 0 5

401 57 . 01. 0 5

456 59.09 . 0 4
479 59. 61.0 14
487 59 . 69 . 0 10
489 59 . 71. 0 "
490 59.90.0 4

491 59.91.0 4
492 59.92 . 0 4
493 59.93.0 4
494 59.94 . 0 4
495 59 . 95.0 4
496 59.96.0 5

Significance

Assigns the starting location for TABSOL
assembly.
Entry point to TABSCL if RET changed since
las t e ntry, or if this is fir st entry made .
Entry point to TABSOL is RET unchanged since
last e ntry.
Entry point after e rror has occurred; causes
table whose number is given in director of current
table to be solved next.
Addre s s of 1 st digit of dictionary -1.
Duscriptor of table currently being solved.
Contains error message.
T otal time accumulator (contains blanks
vriginally) .
TAB - address of 1st character of 1st table.
Contains 0001 unless punched otherwise.
SPEC - address of spec. area -1.
INT - address of into area -1.
TIM - address of time area -1.
PRNT - address of print area -1.
RET - normal executive re -entry addr eBS .
ID - identification number of table c urrently
being solved.

I
I

- 24 -

(12) Flow chart

Entry I)@se RET to set u the transfer back to executive

Entry II Locate des cri tor and move to W. S.

IfD~o~e~sLii~d~e~n~t=.=n~o=. =i~n~d~eUsUc~r~i~p~t£o~r~m~a~t~c~h~t~h~alt=i~n~ID~===========~~n~o~~>-eerror 4

~(yes

I Compute Al and ROWS. Set COLC to I, TI = AI.
I

do next V
r'C:.cO:.cI:.:l='m=n:...o:::f:.ct:.:c:.;s:.ct:.:a=--~Increase TI by 5. Set ROWC = 1.

to AI, test address to Tl.
Se t arg o address to

<.10 next te s t Move next test cnt,y to TEST. Is 2nd digit b or ~ A . t--
t no

IInte rpret no-;-li~~:!';j~ddress.

t
I yes

IStor e actual test va lue aT TESTV (4 or 5 digit) . k-

t
IMove next argume nt entr.'l.J.£..ARG. I

t
IInterpret non-literal address. I

t
ILOgd actual ergument into ace.

t
A (4 0- 5 digit) I

iMake com.l'arison between
bv 1st digit of TEST .

(A) and TESTY as indicated I
~

not sa tisted satis ied cod Z

I
Iner. COLC by I , I COLC" error I Ine r . argo &teat Incr. ar 3 .& test

cornE· to CC. = CC
addresses by ROWS addresse s :Oy
Iner. ROW C ":I 1. AA by ROWS

COLf < CC t t
(ROWCbY~

I~
nO

Is ROWC>AA Incr.

yes

\
o.c. nt::xt result ..

: F
r--- -- _.J._ - ----,
L E '!..e.E;do .:.~.!:.i tlu2,e '~Lc-l

I
I

- 25 -

1
ISet function address to last argument address.
Set result address to last test a ddress. -------,-'-----r

Ove next result entrv to TEST

t "-- .~

IExam ine fi r s t dig it of result entry,

, It
$, & Or -

II nterEret non-literal address , -'t

I

I
0- b{. U

I (ReplaCe b
bv O.

I I
L __ - _ ---)ojStore 5 -digit a c tual result value at TES TV

1/

ROWe
~ RR

Entry III

I

,

t
IMove ne~t function entr ~ to ARG. I

IExamine first digit of f unction' entry. I
~

$ & or - "'* -~
-{ Load 4-) II nterpret no,, - llteral address. I . diait result

*' s~ore -l?r - cJ
I[nload a ctual resu.lt va ue, 4- or ~ -(llg1t. ~

print 5 -digit
result

~

r
ncreaae Rowe bv 1 and compare to RR. I

RCWG >RR

"
It

Move 3-di!lit director from descriptor toTESTV I

t
s last dill it of TESTV an *.

-}no

I~as t 3 digits of TESTV are ident. no. of next I
table. Place new table no. at ID.

to Entry II

yes

to execl.<tive
re -entry

F or an explanation of symbols used above see section (14), paragraph (v) .

z

- 26 -

(13) Sample tables and data as used to check out TABSOL

(i) Information supplied to TABSOL

Loc. Card Contents

2647 3 8 6 1 3 5 0 0 3 5 6 0 3 6 '2 0 3 7 '"4 0 3 4 9 4 0 4 0 0 I

Table 1

TAB SPEC-I INT-1

(ii) Dictionary

Loc. Card Contents

2676 0 0 0 0 I 0 1 3 91 0 3 1 3

(iii) Variable data

Loc. Card Contents

3501 0101 I 0202 I COIL I 8000 I 01001

3741

3860

12341 VANE I 5678\ 0000 \0100\

234561222221333331 44444 1555551

I . 51 10,
15

1 20, 25/ ,30
1

i

RET lD

Spec .. fields.

Int. fields

Time fields

Skeleton print image

To define print image

3861: 04001 1 051 051 031 003 .. <E----causes table 3 to be solved next

3675:
-0002 U H 0200 H 0202 Z

&0001 L 1000 H 1240 M ' 1240

-0001 U lu 1M 0100

-000& b 4321

&0007 b 9999

Table Z

4000 :

4014:

Table 3

- Z7 -

0400Z I 08 I 041 03 \999 -E('-----nllot used, since * function takes
precedence

&,0003 500 G ...

- 0006 In G

&,OOOZ U U

$0001

I
POOIZ I

POOZO I
- '- I ,

&,0007 I

*
I

5000

5000 L

1 -•.

0

U

5678

5000

VANE

1111

BRAK

0148

* ~ .--
causes return to

executive

4174 : 04003 I 07/ 05 I OZ I OOZ

4is6: I I
&0007 L : - 001 G i -001

$0001 U I T I $005

&000 6 I

P003Z !

-0007 I

$OOOZ

* I

G - 001

L $003

- 0001

~ $ I 0001

F 0001

F 0010

I OO~

T

Z
,
I

I

,

!
I

I ,

I
causes table OOZ
to be solved next

B-OOZ I MOOZ51 HOOOZ I B&0071 L00031 D - OOI I ROooll SHOOZ I xOOOO

B$OOI I M00071 L00041 00000 I ROOOZ \ A&007 I XOOOO

- 28 -

(14) Snapshot

(i) Snapshot is the name of a useful technique for obtaining "pictures" of

TABSOL's working storage area at certain preselected points during the execution

of TABSOL. There ar.e liix of these points, and each one may be individually ac­

tivated, 1. e. caused to produce a snapshot. The method of activation is to inaert

one (sometimes two) cards at the back of the assembled TABSOL deck; the cards

replace TABSOL instructions by transfers into the Snapshot routine .

Each snapshot includes working storage, eXecutive input to TABSOL (i. e.

TAB through IIl) and the dictionary. E ach snapshot is written on tape 8 as one

record; the record will produce 2 or 3 line s of printed output, depending on the

length of the dictionary.

After each snapshot has been taken, the program comes to a halt. The

halt number is unique for each type of snapshot taken, and thus provides the pro­

grammer with a means of seeking, at the console, just what course TABSOL is

taking during the solution of a particular table.

(ii) A symbolic SNAPSHOT deck is prov.ided along with every TABSOL

deck. It is punched on card noa. 497 - 535, occupies symbolic locations 59.96.1 -

59.99.9, and when assembled takes up 195 memory locations .

Card No. 497, symbolic loco 59.96.1, auigns the starting location for the

assembly of Snapshot. It is currently set to 9800, but can be changed if desired.

(iii) The "activator" carda must be prepared anew after each assembly,

since they refer to locations within TABSOL and within Snapshot whose actual

values are not known until after assembly.

- 29 -

We give below the instructions for preparing the activator cards. The

real equivalent of the symbOlic TABSOL address shown under "Locations", less 4,

is to be punched in cols . 10- 13 of the activator card . The real equivalent of the

symbolic Snapshot address shown under "Address" is to be punched in cols . 17-20

of the activator card. The chara.cter shown under "Op. " iI to be punched in col. 16

of the activator card. The digits 05 should be punched in cols . 14 and 15 of all

activator cards .

Loc. £!:: Address

51. 27 . 0 1 59.96.2 Activator for halt 7003 .

52 . 76 . 0 1 59. 96 . 6 Activator for ha.lt 7005 .

52 . 6S.0 K 59.97 . 0] Activator for halt 7006 . 52 . 91.0 1 59. 96 . 9

53.4S.0 1 59. 97 . 3 Activator for halt 7007 .

57 . 24.0 1 59 . 97 . S Activator for halt 700S.

54. S5.0 1 59. 9S . 1 Activator for halt 7009 .

(iv) The status of TABSOL at each halt is as follows ;

7003

7005

7006

7007

700S

7009

Set up done , 1. e . table located in memory .

One column of teste done , no solution found .

One column of tests done , thi s is soh:tion column.

One result stored (does not occur if corresponding function
is II) .

Table solved, ready to s olve next table (does not occur if table
results in a return to the executive).

One pseudO - instruction done (does not occur after X or E
instructi ons) .

- 30 -

(v) Each snapshot shows the following:

Name Length Signed Significance

HALT 4 Yes Number of the halt that followed the snapshot.

COLC 2 Yes Column counter.

Rowe 2 Yes Row counter.

ROWS 4 Yes Number of characters in one row of the table,
i. e. 5 x CC.

OPER 5 Yes Actual operand of pseudo-instruction, expanded to
5 digits and signed plus.

M 7 Yes Number whose square root is to be found, reduced
to 1 st seven significant digits.

YI 7 Yes Square root.

DESC 14 No Descriptor of table currently being solved.

ARG 5 No Argum.ent or function field currently being interpreted.

TEST 5 No Test or result field currently being interpreted.

INST 5 No Pseudo-instruction currently being interpreted.

AI 4 No Computer address of 1st argum.ent in table.

TI 4 No Computer address of top test field in colum.n being
done.

PAC 10 No Psuedo-accumulator.

HOLD ·25 No The five "hold" locations.

ERRC 10 No Most recent error message to occur.

TESV 5 No The actual test value or result value of the test or
result currently being done .

TTA 6 No Total time accum.ulator.

TAB
As explained previously.

SPEC

- 31 -

Name Length Signed Significance

INT 4

TIM 4

PRNT 4 As explained previously.

RET 4

10 5

Following ID comes the dictionary. It i8 the record mark at the end of the

dictionary that defines the snapshot area; it il therefore eaeential that this record

mark be present, even if the dictionary has been loaded from cards in.tead of

read in from tape.

(vi) The lnap.hotl are placed on tape 8. This number can calHy be altered

by changing the select instruction on card no . 522 .

The halt after each snapshot can be made inoperative by changing the h;l.lt

code on card no. 523 to a NO-OP code .

(vii) Assembling Snapshot along with TABSOL caules ~ alterationl to

TABSOL itself. The Snapshot cards are discarded, once Snapshot's usefulne •• has

expired, and the remaining TABSOL deck i8 in peifect working order.

T . F. Kavanagh, Specialist
Production Control Service

MilS J. H. Kelly
Computer Usage Company, Inc.

8-21-58

