NTEGRATED
YSTEMS
ROJECT

REPORT

TABSOL

A GENERALIZED SOLUTION TO
PROGRAMING DECISION SYSTEMS

MARCH 21, 1959 R59MS301

MANUFACTURING SERVICES

GENERAL @3 ELECTRIC

NEW YORK, N. Y.

FOR USE OF GE EMPLOYEES ONLY

GENERAL @D ELECTRIC

TECHNICAL INFORMATION SERIES

Title Page
AUTHOR SUBJECT CLASSIFICATION | NO.
B Grad Computers, Automatic 05{1159 MS 301
TF Kavanagh Programming I March 21,1959

TITLE
TABSOL - a generalized solution to programming

decision systems

ABSTRACT T ABSOL is a unique concept for formulating and
solving decision systems, Through the use of a special
form called a decision structure table the problem logic
can be readily expressed by a systems designer without
specific computer programming knowledge. This gen-
eralized format can then be solved automatically by an

interpretive comp iter n ram

G.E. CLASS 3 REPRODUCIELE COPY FILED AT NO. PAGES
Production Contrel Service
DTy . New York, New York 31

CONCLUSIONS
TABSOL appears to be a major step forward

in automatic computer programming since it replaces
both the coding and the flow charting. In addition, the
format chosen tends to highlight logical errors. The
general concept of TABSOL looks very promising in other
areas: scientific calculations, specialized function pro-
gramming, etc. This material should not be reproduced
without specific permission of Production Control Service.
The material is also Company Confidential and should
not be referred to with any non-General Electric
employees.

INFORMATION PREPARED FOR,

TESTS MADE BY

Production Control Service

AUTHOR

B, Grad, T. ¥, Kavanagh

COUNTERSIGNED

H. F. Dickie, Mgr. - Production Control Service

SECTION.

Materials Service Location__ _New York, New York

GL-137 1-56 (rev)

Section

(1)
(2)

(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)

(11)

(12)
(13)

(14)

Table of Contents

Contents

The concept of a logical table.

How the variable data fields are set up for use by
TABSOL.

The TABSCOL coding system: tables.
The TABSOL coding system: table descriptors.

The TABSOL coding system: pseudo-arithmetic.

Information supplied to TABSOL by the executive.

The dictionary of table location increments.
Layout of the table tape.
Size and timing of TABSOL.

Errors recognized by TABSCL.

Ready-reference of TABSOL locations for executive

programming.
Flow chart.
Examples of tables.

Snapshot.

11

12

16

18

19

20

21

23

24

26

28

(1) The concept of a logical table

TABSOL is a sub-routine for ""solving' logical tables. A logical table is
a coded representation of a decision-making system. It lists a set of argument

variables and several sets of result functions; only one set of result functions,

for example, is to be executed, the choice of result set being dependent upon the cur-
rent values of the argument variables. In the type of table that TABSOL is able

to solve, to execute a set of functions means simply to assign values, called

results, to other variables, called function variables.

A logical table, therefore, consists of a list of argument variables, several
sets of tests, several sets of results (one set for each set of tests) and a list of
function variables. Figure l(a) below shows how these entries are arranged to
form a table. Figure 1(b) shows a sample table, in an uncoded form; in actual
practice each entry in the table would be expressed in five digits of a special
TABSOL code.

The first column contains the argument variables (above the double line)
and the function variables (below the double line). The second column, and each
column thereafter, contains a set of tests (above the double line) and a set of
results (below the double line). To solve this table, TABSOL would ascertain the
current values of each argument variable, and then apply to each argument values
the test indicated in the second column. If all the tests are satisfied, the second
column is the solution column; if not, the tests in the succeeding columns are
applied, until the solution is found. TABSOL then takes the results in the lower
part of the colution column, and assigns each result as the value of the function

variable indicated in column 1. Note that, as shown in the bottom row of the

example, it is possible to make the number of the table to be solved next depend

upon the solution found for the last table solved. Thus, one can solve table after

table without leaving the TABSOL sub-routine.

col n

col 1 col 2 eol 3
Argument lst set 2nd set
variables of of

tests tests
Function Ist set 2nd set
variables of of

results results

(n-1)'th
set
of
tests

e e o

(n-1)'th
set
of

results

—— ———

Figure 1l(a)

Quantity, rating, diameter, and tolerance of capacitor for AC wattmeter.

i vm@gg_g@gmmm_""_;_» 100 | 2 100 | =2>100 [2> 200 |= 200 | = 200

_Voltage rating IS 125 | < 125 | €125 | < 250 | <250 | € 250
Number of phases I =1 =3 =3 =1 =3 =3
Shock characteristic - Hishock Comm - Hishock | Comm.
Quantity 1 2 2 1 2 2

|_Rating in A4F _— . 039 . 027 . 039 . 027 . 022 . 027
Diameter, in inches || 7/16 | 7/16 7/16 3/8 7/16 7/16
Tolerance (%) 5 10 5 10 - 10
table to solve next ﬂ_‘ 004 017 017 004 017 014

Figure 1(b)

il

(2) How the variable data fields are set up for use by TABSOL.,

(i) The variable data upon which TABSOL operates is broken up into fields
of fixed length. A field may be numeric (i.e. each digit is an unsigned number
0 through 9) or alphameric. An alphameric field is defined as any field that
is not numeric. It may contain any number, letter of the alphabet, or other
typewriter character, except that the first character may not be &, ., I , -,
or §.

(ii) The variable data fields are divided into 3 ''lists'', as shown below,.
There is also a print image area, where results may be stored, but from which

arguments cannot be taken

List name Symbol Field length and type Contents
SPEC - 4-digit numeric or alphameric Customer specifications

Product characteristics, etc,

INT & 4-digit numeric or alphameric Intermediate characteristics
TIM $ 5-digit numeric Time values
PRNT P 4-digit alphameric or numeric Results required for
Q 5-digit numeric printing only, not for future
reference.

(iii) To address a field in the Spec, Int, or Time lists, one gives the list
ssrm'bol foilowed b&r fhe sell-..ial entrly numbe; of the field within the given list: -0005,
&0127, $0063. In a few instances only 4 characters are available in which to ex-
press the address; in these cases, the leading zero of the entry number is dropped,
and &0127 is written &127. It follows that the maximum permissible entry number

is 0999. The lowest entry number is 0001, not 0000.

(iv) The print image area has no fixed format; a four- or five-digit
result may be stored anywhere in the image. One addresses the area by giving
the symbol P (or Q) followed by the number of the print image position in which
the ri"ght-most digit of the result is to be stored: P0025, QO0167, P1204.

The maximum permissible image position number is 9999. Code P, the
one most commonly used, causes a 4-digit result to be stored; code Q causes a 5-
digit result to be stored, and should be used only with numeric¢ results. The
executive program must supply the record mark needed to define the division of
the print area into.lines,

(v) The location within memory of the lists and the print area is not fixed
by TABSOL. The executive program informs TABSOL of the starting location

assigned for each area.

(3) The TABSOL coding system

We list and explain below the permissible codes that may appear in the
argument, test, result and function areas of a table. Each table entry is five
digits in length.

(a) Arguments

May be the name of a field in the SPEC, INT, or TIM areas only, e.g.
80127, the 127th field in the INT list. If the argument is a TIM field,, the tests
appearing in the same row must be comparisons to other TIM fields; errors will
result from any attempt to compare a five-digit TIM field to a four-digit SPEC,
INT or literal field.

(b) Tests

(i) The first digit of a test entry is the comparison type-code, showing

what type of comparison is to be made between the argument variable and the

test value, The possible type-~codes are:

Symbol Comparison Indicated
b E identical equivalent
G > greater than
H 2. greater than or equal to .
L < less than
M é less than or equal to
U Make no comparison, skip to do next

test.

N

Make no more comparisons, this column
is the solution column.

(ii) The last four digits of a test entry either give the literal test value,
or give the address of a variable to be used as a test value. The latter case is

called a non-literal value, Thus, the last four digits may be:

1234 - numeric literal
VANE - alphameric literal
-005 2

&127 (- non-literals

$063)

(iil) The argument is always compared to the test value, i.e. H0200
means ''is the argument » 0200'",

(iv) Note that a time field may be used as a non-literal test value only if
the corresponding argument is also a time-field.

(v) Note also that the comparison type-code Z may occur only in the top row
of the last column. It indicates an '"all-other' column.

(vi) Since there are only four characters available in which to write a non-
literal test value, the leading zero of the entry number is dropped, i.e. &0127 be-
comes &127.

(c) Results

(i) A result, like a test value, may be literal or non-literal. Literal results

occurring opposite a TIM function must be five-digit numerics. Literal results oc-
" urring opposite a PRNT function may be a four-digit numeric or alphameric (e.g.
bl234, bVANE), or five digit numeric (e.g. 12345, 00654). We list the possible
types of result fields below:

b 1234 4-digit numeric literal:

b VANE 4-digit alphameric literal

12345

&0127
-0005

$0063

U bbbb

Z bbbb

F 0012

5-digit numeric literal; can occur only
opposite TIM or Q functions.

4-digit non-literal
4-digit non-literal

5 digit non-literal, can occur only opposite
TIM or Q functions.

no result to be stored, skip to do next re-
sult row.

no more results, skip to solve next table, as
shown in director,

the result value is to be found by evaluating a
formula (see below for further explanation).

(ii) When a result is not equal to a known literal or variable, but must be

found by evaluating a formula, the necessary ''"pseudo-instructions'' are written

immediately following the table. The result entry in the table shows the number

of the pseudo-instruction at which to start, i.e. F0012 means transfer to execute

pseudo-instruction 12 and continue executing pseudo-instructions until a ''last

instruction' code is encountered. Further details are given in the section on

Pseudo-Arithmetic.

(d) Functions

(i) A function may be any of the following:

-0005
&0127
$0063

P0025
Q0025

#bbbb

address of function variable to which result value
is to be assigned.

store result value in print image area, with right-
most digit of result going into 25th position of print
image. i

the result value is the number of the table to be
solved next. In this case the result must be literal

and be £ 999.

-9 -

(ii) Whenever a result is stored as a time variable, it is also added into
a six-digit ""total time accumulator'. The executive program is responsible for
re -setting this accumulator to zero whenever necessary. Any overflow beyond
six digits will be lost.

(iii) A TIM non-literal result must not occur opposite a SPEC or INT
function. However, a SPEC or INT non-literal result may appear opposite a TIM
function; a leading zero will be added to the result value before it is stored.

(iv) Similarly, a SPEC or INT non-literal result may appear opposite a
PRNT function; a leading zero will be added, and the result will be treated as five-
digit.

(v) The method of storing the result in the print area depends upon whether
the function code is P or Q.

Code P causes the right-most four digits of the result value to be placed in
the print area without change.

Code Q causes all five digits of the result value to be placed in the print
area by means of a '"store-for-print' instruction. Storing starts with the right-
most digit of the result; any decimal points or commas encountered in the print
image are skipped over, and any zeros or commas to the left of the most significant
figure are obliterated and replaced by blanks. Zeros occurring to the right of a
decimal point are not obliterated. Also the position to the right of the one addressed
by the print function is automatically set to a blank; any character previously placed
there will be lost.

We show some examples on the following page.

= 30 =

Function Result Value Print image before Print image after
19——>26 19—>»26
P 0025 12345 bbbbbbbb bbb2345b
Q 0025 12345 bbbbbbbb bbl2345b
Q 0025 12345 b, bbb. bb ‘1, 234. 5b
P 0025 00789 bbbbbbbA bbb0789A
Q 0025 00789 bbbbb. bA bbb78. 9b

The print functions may have any value from P 0004 to P 9999, or from
Q 0005 to Q 9999.

The ""'store-for-print' instruction works correctly only if the quantity to be
stored is numeric. Using print code Q in conjunction with an alphameric result will
cause unpredictable errors in the field actually stored in the print image

(vi) When it is desired to return control to the executive routine, the result
field bbbb* is written opposite the # function. The # code may occur only in the last

row of a table.

- 11 =

(4) The TABSCL coding system: table descriptors

(i) Each table is immediately preceded by a 14-digit ""descriptor', contain-

ing the following information about the table:

GGNNN - identification number cof table. GG is the table
group number, NNN number of the table within
the group.

RR - total number of rows (argument and function).

cC - number of columns, including the first.

AA - number of argument rows, i.e. number of rows
above the double line.

DDD - the '"director''.

The fields are written in the order given above.

(ii) The director is normally used only when the last function of the table is
not #. In this case, the director contains the three-digit number of the next table
to be solved. If it contains bb*, control will be returned instead to the executive,
as described above.

For a table having a # function, the director shows the number of the table
to be solved next if it is found that the table currently being solved has no solution,

i.e. none of the sets of tests is satisfied.

s 12 =

(5) The TABSOL coding system: pseudo-arithmetic

(i) All pseudo instructions are five characters in length. The first character
is an operation code, describing the type of operation to be performed. The remain-
ing 4 characters are the operand, i.e. the field upon which the operation is to be
performed. The operand may be literal, e.g. 1234 or non-literal. Non-literal
operands may refer to the Spec, Int, or Tim lists, or to a "holding' area. There
are five holding areas, HOO0l through H005; they are used for temporary storage of
intermediate sums or products.

(ii) The actual operand, by which we mean either a literal operand or the
field stored at the address given in a non-literal operand, must be numeric. A
non-numeric operand causes an immediate exit from TABSOL to the error return
location in the executive program.

Actual operands may be either 4-digit (literals, or fields from the Specs
or Int lists) or 5-digit (fields from the Tim list or from a holding area). Four-
digit operands are treated as the four least significant digits of a five-digit operand,
i.e. a leading zero is added before the pseudo-operation is executed.

(iii) The results of pseudo-operations appear in a register called the pseudo-
accumulator (PAC). PAC is ten digits long. Addition and subtraction are done in the
right-most five digits only; if any six-digit sum is formed, the left-most digit of the
sum will be lost. All operands are unsigned and assumed to be positive; if any sum
of negative value is formed, the negative sign will be lost.

(iv) We list below the 11 pseudo operation-codes. In the following, Y
sumbolizes the five-digit actual operand, as defined in (ii) above. PAC, means

the xth digit of the PAC register.

Code Name

B Bring

A édd

S §_ubtra.ct

M Multiply

D Rivide

L _I__._eft shift

R Right shift
and l{_ound

Q a(_.)uare
root

H _I-lold

E Transfer

X eﬁit

- 13 -

Effect

Clear PAC)_)p- Place Y in PACq_j0-
Add Y to contents of PACg.)i store sum in PACg.10-

Subtract Y from contents of PACy_; i store result in
PAC .10

Multiply Y by contents of PAC¢.10; store ten-digit product
in PAC]1-10-

Divide contents of PAC; |,by Y; store ten-digit quotient in
PAC)1.10-

Shift contents of PAC) .o to the left Y places. Digits shifted
to the left of PAC) are lost. Replace shifted digits by 0.

Shift contents of PAC, _, Y places to the right. Digits shifted
to the right of PAC)(are used to round the digit in PAC(,
then dropped.

Find square root of number in PAC)_10, assuming a decimal
point PACs5 and PAC;. Store result back in PAC;_,o» With

decimal point similarly placed.

Store contents PACy_g in hold entry Y. Y must be 1, 2, 3,
4, or 5.

Transfer to execute pseudo-instruction number Y.

The number now in PACy_)o is the value of the formula.
Return to the main routine to store this value as directed.

Operation codes Q and X must have an operand of 0000.

Cperation codes H and E must have literal operands.

(v) We show on the following page the changing contents of PAC as a series

of pseudo-instructions is executed.

= 14 =

Actual
Instruction | operand PAC Comments
B 9876 09876 00000 09876
A $024 54321 00000 64197
A $007 44444 00000 08641 Six-digit sum; high-order digit lost.
S 1234 01234 00000 07407
S -063 09639 00000 02232 Negative result; sign lost.
L 0004 - 00223 20000
D &127 00192 00001 16250
R 0002 - 00000 01163
H 0003 | - . 00000 01163 01163 stored at 3rd hold entry.
B $009 00225 00000 00225
L &077 00005 00225 00000 Shift may have non-literal operand.
Q 0000 - 00015 00000
R &077 00005 00000 00015
A HO003 01163 00000 01177
B $007 44444 00000 44444
D $019 23432 00000 00002 Note need to shift dividend left before
dividing to obtain sufficient number of
digits in quotient.

During the execution of a divide or square root instruction the answer is
domputed to one more place than is shown in the final result stored in PAC. This

result is obtained by rounding off the extra digit.

w 1B

(vi) The sequence of four instructions shown for finding the square root

of 225 could also be coded thus:

B $007 00000 00225

L 0001 00000 02250 = 225 x 10-4
Q 0000 00000 15000 = N225 x 10-2
R 0003 00000 00015

Provided that the actual decimal point is an even number of places away
from the assumed decimal point, the correct answer will result, though it will be
shifted from its true position in PAC.

(vii) If a zero divisor is detected when a divide pseudo-instruction is about
to be executed, the divide operation will not be performed, and control will be
returned to the error return location in the executive.

(viii) The contents cf PAC and the hold areas are never cleared out by
TABSOL, i.e. they are unchanged except by a pseudo-instruction that operates on
their contents.

(ix) When a formula evaluation is completed, a five-digit result is obtained.
If the function corresponding to this result is a SPEC or INT or P function, only the
right-most four digits of the result value will be stored. If the function is a Time

or Q function, all five digits are stored.

- 16 -

(6) Information to be supplied to TABSOL by the executive program

(i) At the end of TABSOL space has been left for various pieces of informa-
tion that must be supplied by the executive before TABSOL is entered. We show
below their names, symbolic locations, actual locations (relative to F, the starting

location of TABSOL) and significance:

Name Symbolic Loc. Significance
TAB 59.90.0 Location of lst digit of 1st table in

group. (automatically set to 10,001
unless specified otherwise)

SPEC 59.91.0 (Location of 1st digit of spec. list) -1

INT 59.92.0 (Liocation of lst digit of int. list) -1

TIM 59.93.90 (Location of 1st digit of time list) -1

PRNT 59.94.0 (Location of 1lst digit of print im-
age) -1

RET 59.95 0 Re-entry location in executive pro-
gram.

ID 59.96.0 5-digit identification number of table

to be solved.

(ii) The first five quantities will normally be fixed for any given executive
program. If TABSOL is to be assembled along with the executive, it is suggested
that the actual values asasigned be punched in the symbolic TABSOL cards.

The last quantity, 1D, will normally be reset each time TABSbL is entered
from the executive.

The return address, RET, may be fixed (and punched) before assembly, or
reset at each entry to TABSOL.

(iii) If TABSOL recognizes an error condition (see below) during the solu-

tion of a table, it will return control to the instruction at RET 4+ 5 in the executive.

= % =

(iv) The six addresses mentioned may be in either lower memory or upper
memory, as desired. However, the tables themselves must lie either wholly in
lower memory or wholly in upper memeory. Hence, a group of tables may not
exceed 9999 digits in size.

(v) TABSOL has no ability to pass from tables in one group to tables in
another group. To accomplish this, control must be returned to the executive (by
means of the asterisk code), which reads in the new group of tables and the new
dictionary for the group, resets all five digits of ID, and then re-enters TABSOL,

(vi) It is assurned that the dictionary follows TABSOL. The dictionary

must be in lower memory.

e 18 &

(7) Dictionary of Table Location Increments

(i) The executive is responsible for bringing into memory the tables
themselves, and also a ''dictionary' showing the starting location of each table
relative to TAB, the starting location of the first table.

A dictionary consists of a series of 4-digit entries, one for each table
in the given group. If a particular table is missing, i.e. table 3 is followed
directly by table 5, a dictionary entry of 0000 must be written for the missing
table. The dictionary entry for a given table ia computed by summing the sizes of

the preceding tables in the group.

Example of dictionary: 0000 - entry for table 1.
0127 - entry for table 2
0365 - entry for table 3
0000 - entry for missing table 4
0483 - entry for table 5
9876 - entry for last table in group.

(ii) Since a group of tables cannot exceed 9999 characters, the largest table
location increment possible is somewhat less than 9999.

(iii) The dictionary normally follows immediately after TABSOL in memory.
If this is inconvenient, insert the desired symbolic (or actual) starting location
minus 1 in the address (or value) field of card 59.09.0. Do not omit the plus sign

in column 19 of this card.

« 19w

(8) Layout of Table Tape

Dict. Dict. g Last Tape
for ‘ Group 1 for Group & |[=eve— - last Group Mark
Grp. 1 Grp. 2 ro -

(i) Each group of tables (a group being any convenient bunch of less than
10, 000 digits in size) forms one record on the table tape. Each group is preceded
on the tape by the dictionary for that group; the dictionary also forms one record.

(ii) A tape mark exists on the tape after the last group of tables, i.e. there
is only one file of information on the tape.

(iii) It takes approximately .72 seconds to read one dictionary and one group
of tables into merory, assuming that the group contains 100 tables and is 9999 digits
long..

(iv) TABSOL is unable to pass from a table in one group to a table in another
group. It is the responsibility of the executive program to read a new group of
tables into memory.

(v) The first five digits of any group of tables are fhe identification number
of the first table in the group, e.g. 07001. This field, or the first two digits thereof,

can therefore be used to identify a group.

- 20 -

(9) Size and timing of TABSOL

(i) TABSOL occupies 2332 locations in memory. This includes instructions,
working storage, program constants and the basic information supplied to TABSOL
by the executive. It does not include the space occupied by the dictionary, which is
variable.

(ii) TABSCL takes about 10 milli-seconds to do each of the following:

(a) Prepare to solve the next table.
(b) Make one test.

(c) Store one result.

(d) Do one pseudo-instruction.

If the test or result code is U (make no test, store no result) the time re-
quired is about 5 milli-seconds.

(iid)

A B B ! B
8] C D D Change in test is shown by change
U U E F in letter.
U indicates ''make no test'".
F F F

The average time taken to solve the above table, supposing the solution to
lie with equal frequency in each column, is computer as follows. (We suppose that
one of the results is always a six-instruction formula.)

Set-up time: 10 m. s.

Average test time: 1/4(2+3.5+6+9)x10==50 m.s.

e N

Result time: 40 m. s.
Pseudo-op time: 60 m. s.
...Total time: = 160 m. s.

(10) Errors recogﬂized by TABSCL

(i) TABSOL recognizes 4 different types of error. Each one of them causes
a 10-digit error message to be placed in the ""erraor cause'' location with TABSOL,
and then returns control to the !'error re-entry' location in the executive. The
identification number of the table currently being solved is also available to the
executive at ID.

(ii) When the executive has taken appropriate action to record the occurrence
of the error, it may wish to return to TABSOL and continue solving more tables in
the same group. This is accomplished by re-entering TABSOL at symbolic location
57.01.0. The number of the next table to be solved will under these circumstances
always be taken from the director, regardless of the presence or absence of the #
function in the table.

(iii) The four possible types of error, and the resulting error messages are
shown below:

(a) WTI - wrong table identification. The table number in the descriptor
of the table about to be solved does not match the table number in ID, which is the
number of the table it is desired to solve. This error is not probable, but could
occur if the dictionary were incorrect or if TABSOL were directed to solve a table
that is missing. The error message is:

WTIbb GGNNN

where GGNNN is the identification number found in the table descriptor.

- 30 g

(b) No solution. TABSOL has done all the columns of tests without find-
ing a solution column. The error message is:
NO b SOLN bbb
(c) NNO - non-numeric operand. The actual operand of a pseudo-instruc-
tion is not a numeric field. The pseudo-instruction is not executed and the error
message is:
F XXXX bb NNO
where F XXXX is the result entry currently being evaluated by pseudo-arithmetic.
(e.g. 0001, F 0012)
(d) ZD - zero divisor. The actual operand of a pseudo divide instruction
is zero. The division is not executed, and the error message is:
F XXXX bbb ZD

where F XXXX is again the result entry currently being evaluated.

- AE -

(11) Ready reference of TABSOL locations of interest to the executive

have occasion to refer.

We list below all locations in TABSOL to which the executive program may

The '""card number' is a 3-digit field punched in columns

7(=79 of each card in the symbolic TABSCL deck. All symbols refer to the right-

most digit of a field.

Leng_t_l'_l_

Card No. Symbolic Loc.
001 50.0¢ 9 5
004 50.01.0 5
007 51.01.0 5
401 57.01.0 5
456 59.09.0 4
479 59.01.0 14
487 59.09.0 10
489 59. 71,0 o
490 59.90.0 4
491 59.91.0 4
492 59.92.0 4
493 59.93.0 4
494 59.94.0 4
495 59.95.0 4
496 59.96.0 5

Signiﬁcance

Assigns the starting location for TABSCL
assembly.

Entry point to TABSCL if RET changed since
last entry, or if this is first entry made.
Entry point to TABSCL is RET unchanged since
last entry.

Entry point after error has occurred; causes
table whose number is given in director of current
table to be solved next.

Address of lst digit of dictionary -1.
Descriptor of table currently being solved.
Contains error message.

Total time accumulator (contains blanks
criginally).

TAB - address of 1st character of lst table.
Contains 0001 unless punched otherwise.
SPEC - address of spec. area -1.

INT - address of int. area -1,

TIM - address of time area -1.

PRNT - address of print area -1.

RET - normal executive re-entry address.
ID - identification number of table currently
being solved.

- 24

(12) Flow chart

Entry I ~——>{Use (RET) to set up the transfer back to executive

y

Entry II ——ﬂ.ocate descriptor (using dictionary) and move to W, S. |

|Qoes ident. no. in descriptor match that in ID

—12 serror 4

\ 4

yes

|[Compute Al and ROWS. Set CCLC to 1, Tl = Al.

do next

|

Y

columnoftests ,|Increase Tl by 5. Set ROWC =

to Al, test address to TI1.

1. Setarg. address to]

Y

do next iest > Move next test entry to TEST. Is 2nd digit b or > A.

e

no

!J:n_terpre t non-literal address.

——y—

Y

|Store actual test value of TESTV (4 or 5 digit).

[Move next argument entry to ARG.

v

[Interpret non-literal address.

v

||,,0§,d actual argument into acec. A (4 ci b digit)

Make comparison between (A) and TESTV as indicated

by 1lst digit of TEST.

not satisflied

Y

Incr. COLC by 1, COLC y error 1
t comp. _to CC. = CccC
|
| COLE < CC
Fe no

] yes
e
|
2
|
satisfied cod¢ Z
\

Incr. arg. &test
addresses by ROWS

Incr. ROWC iy 1.

Incr. arg.& test
addresses by

AA by ROWS

\

Y

Is ROWC> AA ‘

Incr. ROWC by AA

yes

[

¥

©

- 25 -

Set function address to last argument address.
Set result address to last test address.

\
de t 1t
_Ul_uac&_ﬂhdove next result entry to TEST, |
s . .
|[Examine first digit of result entry. |
I""'————J’—F-'—'-— $\(& or - U
L_Eg_egio_algitlu“cucj [Interpret non-literal address. Repla.c:e b
by 0.
!
I
I
bty st wStore 5-digit actual result value at TESTYV.
{

[Move next function entry to ARG. |

IExamine first digit of function entry. !

" A FrCE
[I nterpret non-.ieral address. | itois mepili

tore-for -
print 5-digit

[Onload actual result value, 4- or 5-digit.

% result
< € EORWRC I ncrease ROWC by 1 and compare to RR. |
RCWC|>RR
Entry III Sl

Y

|_Move 3-digit director from descriptor to TESTV]

(al.
1 s last dicit of TESTV an %, J——

yno yes

Lasi 3 digits of TESTV are ident. no. of next
table. Place new table no. at ID.

Y
to executive
re-entry

Y
to Entry II

For an explanation of symbols used above see section (14), paragraph (v).

« TE =

(13) Sample tables and data as used to check out TABSOL

(i) Information supplied to TABSOL

Loc. Card Contents

2647 386 1|3500|35%0|3630|3770 3494(04001
TAB SPEC-1' INT-1 ' TIM-1 'PRNT-1 RET ID

(ii) Dictionary

Loc. Card Contents

2676 0000'0139’0313
(iii) Variable data

Loc. Card Contents

3501 o101 | 0202 | corL | 8000 | o100] Spec. .fiélds

3561 1234| vang | 5678 | 0000 | 0100] Int. fields

3621 23456 zzzzz| 33333| 44444‘ 55555| Time fields

3741 ') 5' lol lsl 20, 25’ '30I Skeleton print image

3860 # To define print image

Table 1

3861: 04001 | 05 ' 05] 03 | 003 <«———causes table 3 to be solved next

3675:
0202 Z

M

-0002 U H | 0200

80001 L| 1000 JH | 1240 [M |-1240

-0001 8] 0

-0006 b_| 4321
&0007 ll b | 9999

Table 2

- B

4000: 04002 | 08 l 04 | 03 \ 999 <——mnot used, since # function takes

a2 precedence
4014
80003 500 5000 5678
-0006 (U | 5000 |L | 5000
0002 18] U VANE
$0001 .l 1| 1111
|__Ppooi2 | BRAK
P0020 i .I = 0 | 0148
&0007 : U .
,, | o R ikl
Table 3
4174; 04003 | 07 | 05 | 02 | 002
4186; ! !
80007 L: =001 |G -001 [Gg! =001 [z
$0001 U l]T$005 L | $003
&0006 | - | 0001
P0032 | $ | 0001
-0007 i F | 0001
$0002 E I 0010 . causes table 002
i r ODZk”’T—_—_ to be solved next

B~002 ' M0025| HOOOZI B&OO?I L0003| D-001 I ROOOI' SHOOZI X0000

B$001 | M0007 | L0004 | Q0000 | Roooz | A&007 | X0000

.28 -

(14) Snapshot

(i) Snapshot is the name of a useful technique for obtaining ''pictures'' of
TABSOL's working storage area at certain preselected points during the execution
of TAB3CL. There are gix of these points, and each one may be individually ac-
tivated, i.e, caused to produce a snapshot. The method of activation is to insert
one (sometimes two) cards at the back of the assembled TABSCL deck; the cards
replace TABSCL instructions by transfers into the Snapshot routine.

Each snapshot includes working storage, executive input to TABSOL (i.e.
TAB through ID) and the dictionary. Jiach snapshot is written on tape 8 as one
record; the record will produce 2 or 3 lines of printed output, depending on the
length of the dictionary.

After each snapshot has been taken, the program comes to a halt, The
halt number is unique for each type of snapshot taken, and thus provides the pro-
grammer with a means of seeking, at the console, just what course TABSOL is
taking during the solution of a particular table,

(ii) A symbolic SNAPSHOT deck is provided along with every TABSOL
deck. It is punched on card nos, 497 - 535, occupies symbolic locations 59,96.1 -
59.99.9, and when assembled takes up 195 memory locations.

Card No. 497, symbolic loc. 59.96.1, assigns the starting location for the
assembly of Snapshot. It is currently set to 9800, but can be changed if desired,

(iii) The "activator'' cards must be prepared anew after each assembly,
since they refer to locations within TABSOL and within Snapshot whose actual

values are not known until after assembly.

- 39 .

We give below the instructions for preparing the activator cards. The
real equivalent of the symbolic TABSOL address shown under '"Locations', less 4,
is to be punched in cols. 10-13 of the activator card., The real equivalent of the
symbolic Snapshot address shown under '"Address'' is to be punched in cols, 17-20
of the activator card. The character shown under "Op.'" is to be punched in col. 16
of the activator card. The digits 05 should be punched in cols. 14 and 15 of all

activator cards.

Loc. Op. Address
51.27.0 1 59.96.2 Activator for halt 7003,
52,76.0 1 59.96. 6 Activator for halt 7005,
:g g?'g 11{ :3 32 g} Activator for halt 7006,
53.48.0 1 59.97.3 Activator for halt 7007.
57.24.0 1 59.97.8 Activator for halt 7008.
54,85.0 1 59.98.1 Activator for halt 7009.

(iv) The status of TABSOL at each halt is as follows:

7003 Set up done, i.e, table located in memory.
7005 One column of tests done, no solution found.
7006 One column of tests done, this is solution column,
7007 One result stored (does not occur if corresponding function
is #).
7008 Table solved, ready to solve next table (does not occur if table

results in a return to the executive).

7009 One pseudo-instruction done (does not occur after X or E
instructions).

- 30 =

(v) Each snapshot shows the following:

Name Length Signed

HALT

COLC

ROWC

ROWS

OPER

M

Tk

DESC

ARG

TEST

INST

Al

TI

PAC

HOLD

ERRC

TESV

TTA

TAB

SPEC

4

2

14

10

25

10

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

No

Significance

Number of the halt that followed the snapshot,
Column counter.
Row counter.

Number of characters in one row of the table,
i.e. 5x CC.

Actual operand of pseudo-instruction, expanded to
5 digits and signed plus.

Number whose square root is to be found, reduced
to lst seven significant digits.

Square root.,

Descriptor of table currently being solved.

Argument or function field currently being interpreted.
Test or result field currently being interpreted,
Pseudo-instruction currently being interpreted.
Computer address of 1st argument in table.

Computer address of top test field in column being
done,

Psuedo-~accumulator,
The five '""hold' locations.
Most recent error message to occur,

The actual test value or result value of the test or
result currently being done.

Total time accumulator.

As explained previously.

o Bl -

Name Length Signed Significance
INT 4

TIM 4

PRNT 4 As explained previously.
RET 4

ID 5

Following ID comes the dictionary. It is the record mark at the end of the
dictionary that defines the snapshot area; it is therefore essential that this record
mark be present, even if the dictionary has been loaded from cards instead of
read in from tape.

(vi) The snapshots are placed on tape 8. This number can easily be altered
by changing the select instruction on card no, 522.

The halt after each snapshot can be made inoperative by changing the halt
code on card no. 523 to a NO-OP code.

(vii) Assembling Snapshot along with TABSOL causes no alterations to
TABSOL itself. The Snapshot cards are discarded, once Snapshot's usefulness has

expired, and the remaining TABSOL deck is in perfect working order.

T. F. Kavanagh, Specialist
Production Control Service

Miss J. H. Kelly
Computer Usage Company, Inc.

8-21-58

