
Marcb 10, 1959 DF-59LS23

LOGTAB _ A LOGIC TABLE TECHNIQUE

J. KING

TG·I013 (1-.52)

FOR USE OF G.E: EMPLOYEES ONLY

GENERAL @ ELECTRIC

TECHNICAL INFORMATIO N S ERIES
Title P'ae

AUTHOR SUBJECT CLASSIFICATION NO.

COMPUTERS. AUTOHATIC LS21
Jane E. King

PROGRAMMING. ~~TE reh 10. 1959
TITLE

LOGTAB - A LOGIC TABLE TECHNIQUE

ABSTRACT LCXJTAB is a method for expressing the logic of a
cmputer program in table form and the subsequent interpre-

bation of the table by the computer. The external and
~;ernal language and the method of interpretation on the

M 704 are described. LOGTAB is an extension of TABSOL
or the IBM 702.

G.E. CLASS 3 RE:PROOUCIBLE COPY FILEO AT NO. PAGES

Tech. Report Library, LST-G
GOY, CLASS. D.pt • • B!!~: 273. room 319. 11 - Schenecta New York
CONCLUSIONS LOGTAB appears to be shorter in length and
faster in execution than other methods of table look-up
for multiple arguments on a computer. These criteria have
not heon tully explored for program logic but it heo tho
advantage of requiring no programming once a table has
been formed. In other vords, the table replaces the f1~
chart and band coding of a program and rel38.ins as a
difinitive and understandable record of the program.

By cuttina out this rectanale and foldina on the center line. the above information can be fitted
into a standard card fiI.,.

For lilt of conlentt-drawin,p. photos. etc. and for distribution see next PlIae

INFORMATION PREPAREO FOR'---_LSIOiT,,-G&-'DuE,n'"--______________________ _

TESTS MAOE BY' _ _ ~ ____ "I):j"----:;"' __ ---'= ___ ""'~ ____ _
COUNTE:RSIGNED H~' ~AGER,~OMPUTAUQliAL..BES.EARCHL ___ _

DIVISIONS LST-G ENGINEERING LOCATlON' _ _ .. S"C"HE"'"NE"CT""'AD""'X".o.-.lW,, ,,'--'YjlC'l:rKk ________ _

ON TENTS OF REPORT

NO. PAGES TEXT

NO. CHARTS

DRAWING NOS.

PHOTO NOS.

DF-59LS23

7

4

GENERAL ELECTRIC COMPANY

TECHNICAL INFORMATION SERIES
CONTENTS PAGE

DI STRIBUTION (15) copies of report to t5T-G Library, Bldg . 273-319 5
(52) copies of title page to LST-G Library, Bldg. 273-319 C

HE CellAghan 59-214 HN c..ntrell 59-244 H
JL Ogle 273-2070 A Sturges 2730-2070 E
HE Ko:r 273-2070 JE King (2) 59-214 N
DB ManMillan Bldg. E-6, room 220\ KAPL DM Bouton Bldg. 32, room 302 E
PM Currier Bldg. 5, room 523 HW Penske Bldg. IS-A, room 400 C
Dr Lange~a1ter Bldg. 37, room 578 JW Pontius Bldg. 5, room 517 T
AH Rau Bldg. 36, room 631 A

Charles W. Libby Lynn Computations, Bldg. 59, River Works , West Lynn 3, Mass.
A Keller Lynn River Works, Lynn, lo\tss.
B) Grad NEW YORK OFFICE, Ms.nufacturing Services.

D
Y

TF Kavanagh NEW YORK OFFICE, Klnufacturing Services.
Hayden E. Williams,Data Processing Operations, Electronics Di v. GE Co. Syracuse, NY
RX Habermann flT·~ Dept., Court St., Syracuse, ~fi
Cortland Diehm Missile-Ordanee Systems Dept., 3198 Chestnut St. Fblla., Pa.
S8 Williams Power Transformer Dept., Pittsfield, Mass. 8ldg. 17-260
Dr. Robert S. KJCready Aircraft Nuclear Propulsion, Cincinnati 15, Ohio
DD Degler T&1 Bldg., Orange & Van Ness St., Tempe , Arizona
AI Benson T&1 Bldg., Orange & Van Ness St., Tempe, Arizona
11M Sassenf'eld T&1 Bldg., Orange & Van Ness St., Tempe, Arizona.
H Tellier Data Processing, Hanford Atomic Products, Ricbland, Washington
GA Hagerty 13430 North Black Canyon liighway, Phoenix, Arizona
CC Lasher 13430 North Black Can;ron Highway, Phoenix, Arizona
ES Spiegelthal 7235 Wisconsin Avenue, Suite 201, Bothesda, Maryland
J Weizenbaum 951 Co~ero1al Street, Palo Alto, California

JA Porter FFLD. Bldg. 305 - EVENDALE
JB Hansen 7235 Wisconsin Avenue, Suite 20l., Bethesda, li!ryland.

TABLE OF CONTENTS

INTRODUCTION

GENERAL FEATURES OF LOOTAB

ALLCUABLE TABLE ENTRIES

COMPUTER METHCD

PAGE
1

1

2

6

DF-59IB23

INTRODUCTION DF-59LS2J
1

The IBM 702 program TABSOL is a generalized interpretive tabae solver

prepared by the Integrated Systems Project, Materials Service of General

Electric in New York, New York . TABSOL was studied for possible application

and execution as a 704 program and the resulting program 1s LCXSTAB (L0010

TABLES). The basic principles ot tABSOL were preserved but extensions and

modifications vere made 10 an attempt to make it applicable to a larger

clas8 of problems and to tacili tate implementatlon on the IBM 704. In the

following description of LOGTAB, no attempt is made to distinguish where

TASSOL leaves orf And LOOTAB begins.

GENERAL FEATURES OF LCX:TAB

In using LOGTAB, all logical decisions of a program are expressed in

tables. Each table has four major divisions which W8 shall call quadrants

A, 8, 0, and D and their positlons are shown in Figure 1.

A I B

C D

~ -;0

Figure 1

The contents of each quadrant is as follo~s:

A - references to all items to be tested in making the

decisions included in table

B - 'l'he separate tests to be made on the items in A

C - references to items that are to be modified 4S a result

of meeting the tests made on items in A

D - the specific things to be done to iteMS in C as a

result of tests in B on. i tams in A

All information relating to an item in A or C i8 given in a row ot the table

and all information necessary for one "condition" (tests and results) are

given in a column of the table. In addition, the table must be read trom

lett to right aDd when a set ot conditions (B) are met in one column, the

results (D) for that column are executed and columns to the right are not

teeted. The schematic table (Figure 2) shows how this principle is expressed.

It this this
and it Dot this this

then do (go to this
and next this

column)

Figure 2

ALLOWABLE TABLE ENTRu:S

(not
tested)

DF-59LS23
2

In attempting to make the table prepared for the computer look 8S much

like the table for human consumption as possible, Bome oompromises 1n s,ymbols

and notation had to be made. Rov8ver, as few changes and rules &s possible

\lera _de. As aD example, the les8 than (L) and greater than (~) symbols

in every day USB are not permissible computer characters. Therefore, they have

beeD changed to open and closed parentheses since these allowable characters are

most nearly like these symbols. So we have, L- = (and":::" =). Similarly, the

symbol ~ 1s replaced by the combination =(or (=. Since it 18 impossible

computer-viss to superimpose tvo symbols a8 for "not equal" (I) , this symbol

has been replaced by () meaning 1es8 than or greater than. Another departure

trom -human" nomenclature 1s used to express the absolute value ot a quantity.

Vertical lines are not permissible computer characters 80 an absolute value is

expressed with slashes.

Example, I ABI = /AB/.
The following forms of elements are permissible in the quadrants

indioated,

1.

, ,

Element in
illladrant A
ABC
ABC(2)
ABC(N)
ABC(N+l)

MeanlDi
The quantity identified by the symbol (with

its subscript, it given).

2.

J.

Element in
QuadrAnt A

010
om

(Blank)

Meaning

DF-59LS2J
J

The quanti t;r which caD be found by' oomputing a

funotion identified by a symbol (FQR) or by statement

number 8S 1n Fortran (10)
This implies aD "or" condition. It meaDS that an

additional test 1s to be made on the element

identified in A above the blank or blanks.

A second column in quadrant A givee the condition tor the

sible test. are : (,),=,(= ,=(,)=,=1, and () .

test and the permia--

1.

2.

J.

1.

2.

J.

4.

Element in
Quadrant B

1.75
2

AD
AD(2)
AD(N)
AB(li-l)

010
• FQR

Klement in
QUAdrant C

AD
AD(2)
AB(N)
AD (N+l)

+1

-I

Meaning

The test on the element in A 1s to be made against

the exact value given.

The test on the element in A 1s to be made against

the quantitT identified by the symbol (with it.

subscript, if g1 ven)

'the test on the element in A 18 to be made against the
quantity found by' computing the function identified
by a symbol (FQR) or by a ot.tement number (10) .

Make no test on element in A.

Moaning

Replaoe the quanti tT identified by the symbol (wi tb

ita subscript, if given) as indicated in D.

Increase I (where X 1s of the form in 1 above) b.r
the amount indiCated in D.

Decrease I by the amount indicated 1n D.

Execute the indicated operation 1n D.

~I

1.

2.

3.

Element in
Quadrant D

1.5
.375

ABD
ABD(2)
ABD(N)
ABD(N-l)

• 10

• PQR

"XYZ
**140

Meaning
DF-59LS23

4

Use exact value as indiCated in C.

U.e the quantity identified ~ the symbol (with

its subscript, it given) as indicated in C.

Compute function identified ~ symbol (PQR) or ~

statement number (10) aDd. U8e a8 indiCated in C •

Go to funotion or table identified ~ symbol (XYZ)
or by statement number (140).

Note that the ~bol * essentially means "go to and come back here" and that **
means "go to unconditionally·.

Figure :3 shows a sample LOGTAB table. Reading it in English, it says: It

(the absolute Value ot the Nth element in the array AB) is less than 1.75, and it

(the re8ult ot computing function called PQR) is les8 than or equal to (the

result of computing function called AZ), and if the quantity IR2 is les8 than H;

then, replace (the third element in the array SP) with (the result of computing

the tunetion called RS), increase the qll8.ntity IR2 by 1, compute t"unetion called

DUZ, and go to tunetion n6 (this may be another table). But if one of the

previous conditions WaS not met, and it (the absolute value ot the Nth element in

the arrq AS) is less than).5, and if the quantity IR2 is less than N or it

it is = Nj then, inorease the quantity IR2 by 2, decrease the quantity AX by 1.5

and go to the function or table T12. However, it none ot the previous oonditions

were met, inorease the quantity IR2 by 1, decrease the quantity AX by (minus N),

and go to n2.
Note that all columns in quadrant D end. with a ** (go to).

,.

~ .1 ~ ... ,..
~.J-. '" " . ~ . ~/-t. v

DF-59LS23
5

p-5 ,
/'

IABIN}I I 1 . 75 3.5 -

*PQR 1= 'AZ - -

IR2 I N N -

= - N -

SPI3} *RS - -
+IR2 1 2 1

-AX - 1. 5 - N

"DUZ **T12 **TI2

**T16

FIGURE 3

COMPUTER IlETHOD

DF-59LS23
6

Several methods of machine expression of the tables and machine interpre­

tation of these expressioDs vere studied. The follOwing observations were made:

L A given table, if stored in its entirety in the machine, required

too much spaoe because of the redundant nature of table elements.

2. A program to unravel the details of 8. complete table required too much

time per entI7, a1 thougb the interpretation routine i taBU did Dot require much

space.

3. If the information ot the given table Was Packed into the computer to

save space, the exeoution time for unpacking and testing Baoh entry was excessive.

Therefore, it was neces~ to find a way to transform the LOGTAS table

into 80me computer table that did not require much storage and wbioh could be

interpreted fast. The following format 1s the result:

A given table 18 axpressed in the computer in three distinct but highly

interrelated Parts . Part I is a table ot va1 ues of the different elements of a

row of the original table. By entering only the different elements, it is

possible to take advantage of redundancy in the original.. Part II is a table

of the same length as Part I with a one-to-one correspondence between their

entries. It oontains a bit pattern shoving in which column or columns the

value in Part I aPpears. A particular bit position In a Part II entry cor­

responds to a oolumn in the original table. Part III consists of a group of

calling sequences (in 704 language) to subroutines which look tor matches

between the input data and the table entries and then extract the proper results

and act on them as specified in the table.

The principle can best be shoVll by an example. Figure 4 is a table which

is designed to show two of the machining operations to be performed on a

bucket vith certain characteristics (dovetail type, tenon shape (rectangular or

profile), and nature of the dovetail sides.) ~pres8ed as a LOOTAB table it

takes the tOni. shown in P'igure 5. Note that some, but not all, of the redundancy

1n the original has been reduced in changing it to LOGTAB to but that it i.

etill hUJllllnly readable. Reading it in English it ssy.: It dovetail .ide. (DS) =
ANGLE and if TENOlI = RECT and if the dovetail typo (DT) = 22 or 23 or 24 or 25

or 43 or 48 or 49, then operation No. 2 (OP2) = 25. If at least one of these

conditions vas not met, then we go on to the next column, etc. Quadrant D ··'8
have been ond tted.

Note that in Figure 4 there are only eight possible solutions and these are

indiCated b.r asterisks. These eight solutions are now shown as t he eight columns

in Pigure 5.

DF-59LS23
7

Figure 6 sbows Part I and Part II of the computer representation ot the

LOGTAB table. Looldng at the table for dovetail side (DS) v. see that it

contaiDs only the tvo dlUerent entries that caD appear a8 compared to 80

entries in the original and 8 in the LOGTAB form. Their distribution within

the LOOTAB table Is ahovn by the corresponding bit pattern in Part II. ANGLE

wbich Is the entry in columns 1, 2, 5 and 6 Is represented by l's in bit positions

1, 2, 5, and 6.

To read or interpret the table we must fInd the intersection or logiCal

produot of the expreeeioDs in Part II corresponding to matches made between

input data and elements in Part I. '!'his 10gioal product is then matohed vith

the Part II representation of the result table to find the correct solution.

As an example, take the following input values: DS = ANGLE, TENON = RECT,

and DT = 72. The bit pattern for DS = ANGLE 10 11001100 and for TENON = RECT it

is 1010'1.010. The logical product of these tvo expressions is 10001000 aDd

therefore our final result must be in column 1 or column 5. Next ve find that

the bit Pattern for DT = 72 i. OOGGllll and the logioal product of it and our

previous product i8 00001000. This means that oolumn 5 ot our LOGTAB table

oontains the solution ve are seeking. Continuing vith our bit pattern, ve match

it to the entries tor Opl. again by a logical product.

OOOOJ.000 = input

OOOOUll = No. 23

OooGlooO = product

The product for (OPl = 23) Is not zero and, therefore, Opl. = 23 Is the

desired result. In forming the SaMe product vith entries for OP2 ve find

that the desired result is OP2 = 25.

It is po •• ible that vith some tobles the input viII yield a multiple

solution bit pattern (I.e., more than one I-bit in the logical produot). But

our LOCTAB tables are so constructed that vhen one oolumn in the B quadrant

matches our input ve do not test the other columns. Therefore, to find a unique

solution ve only have to change all I-bits after the first one in the product

bit pattern to zeroes.

Part III tor the example table consists of calling sequences to subroutines

to do the follOwing steps:

1 - Set bit pattern tor re.ult to all 1'8.
2 - Get input value for DS and go to routine to fInd DS match in Part I

and COllpute logical product ot bit pattern result and corresponding DS bit pattern.

3 - Sam. a. 2 for TENON

4 - Same as 2 tor DT

DF-59LS23
8

5 - Go to routine to se t bit pattern result for unique solution

(pr.serv. only first I-bit).

6 - Go to routine to rind OPl by first non-zero 10g1oa1 product ot bit

pattern tor result and bit pattern for various on values.

7 - s..... as 6 Cor OP2.

The combined oomputer expressions 1n Hlrts I, II and III require only

about 100 vorde oomp!lred to 136 entries in the LOOTAB table (quadrants B and D)

and 400 entries in the original table. The complete interpretation was

equivalent to exeouting approximately 200 704 instruotions. This corresponds

to executing about 1.5 program steps for each entry in the LOGTAB table (B and D

quadrants only) and only 0.5 steps per entry in the original table. In actual

time, it requiree about 5 milliseconds to tim a solution in this original

table on tbe 704.

Tbe subroutines to make all of the interpretations require a total of

about 160 \lords ot memory but they are used for every table and theretore appear

only once. 'or speed there are separate subroutines for making the tests tor

the various conditions (L, ~,etc.). It 1s for thJs purpose and tor simpli1)i.ng

the interpretation that the LOGT~tables may test tor only one oondition per

rw (1.e., all Values in a rev must be tested for the same condition).

A complier 115 planned and is presently being programmed wbich Yin accept

a LOOTAB table on punohtK! cards and translate it into the computer representa­

tion of Parts I , I I, and III.

I

DF- 59LS23
9

OVT OVT OPER OPER OVT OVT OPER OPER
TYPE SIDES TENON NO.1 NO . 2 TYPE SIDES TENON NO . 1 NO . 2

• 22
ANGLE REeT - 25 49 ANGLE RECT - 25 I

• 22
ANGLE PROF - 21 49 ANGLE PROF - 21

• 22 NO REeT - 22 49 NO RECT - 22

• 22 NO PROF - 24 49 NO PROF - 24 .

23 ANGLE RECT - 25 50 ANGLE REeT 23 25
23 ANGLE PROF - 21 50 ANGLE PROF 23 21
23 NO RECT - 22 50 NO REeT 23 22
23 NO PROF - 24 50 NO PROF 23 24
24 ANGLE REeT - 25 53 ANGLE REeT 23 25
24 ANGLE PROF - 21 53 ANGLE PROF 23 21
24 NO RECT - 22 53 NO REeT 23 22
24 NO PROF - 24 53 -"'0 PROF 23 24
25 ANGLE REeT - 25 62 ANGLE RECT 23 25
25 ANGL E PROF - 21 62 ANGLE PROF 23 21
25 NO REe T - 22 62 NO RECT 23 22
25 NO PROF - 24 62 NO PROF 23 24

• 42 ANGL E RECT 23 25 64 ANGLE RECT 23 25

• 42 ANGLE PROF 23 21 64 ANGLE PROF 23 21

• 42 NO RFCT 23 77 64 NO RECT 23 22

• 42 NO PROF 23 24 64 NO PROF 23 24
43 ANGL E RECT - 25 65 ANGLE RECT 23 25
43 ANGLE PROF - 21 65 ANGLE PROF 23 21
43 NO RECT - n 65 NO REO 23 22
43 NO PROF - 24 65 NO PROF 23 24
44 ANGLE RECT 23 25 70 ANGLE REO 23 25
44 ANGLE PROF 23 21 70 ANGLE PROF 23 21
44 NO RECT 23 22 70 NO RECT 23 22
44 NO PROF 23 24 70 NO PROF 23 24
46 ANGL E RECT 23 25 71 ANGLE REeT 23 25
46 ANGLE PROF 23 21 71 ANGLE PROF 23 21
46 NO RECT 23 2? 71 NO R~CT 23 22
46 NO PROF 23 24 71 NO PROF 23 24
47 ANGLE RECT 23 25 72 ANGLE RECT 23 25
47 ANGLE PROF 23 21 72 ANGLE PROF 23 21
47 NO RECT 23 22 72 NO RECT 23 22
47 NO PROF 23 24 72. NO PROF 23 24
48 ANGLE RECT - 25 74 ANGLE RECT 23 25
48 ANGLE PROF - 21 74 ANGLE PROF 23 21
48 NO RECT - 22 74 NO REO 23 22
48 NO PROF - 24 74 NO PROF 23 24

FIGURE 4

-, .. --...

os = ANGLE ANGLE NO NO

TENON = RECT PROF RECT PROF

OT = 22 22 22 22
23 23 23 23
24 24 24 24
25 25 25 25
43 43 43 43
48 48 48 48
49 49 49 49

+

OP1

OP2 25 21 22 24

FIGURE 5

DF- 59LS2)
10

ANGLE ANGLE

RECT PROF

42 42
44 44
46 46
47 47
50 50
53 53
62 62
64 64
65 65
70 70
71 71
72 72
74 74

23 23

25 21

NO NO

RECT PROF

42 42
44 44
46 46
47 47
50 50
53 53
62 62
64 64
65 65
70 70
71 71
72 72
74 74

23 23

22 24

DF- 59LS23
11

PART I PART I I

DS ANGLE 1 1 0 0 1 1 0 0

NO 0 0 1 1 0 0 1 1

TENON RECT 1 0 1 0 1 0 I 0
PROF 0 1 0 1 0 I 0 1

DT 22 1 1 1 1 0 n " n
23 1 1 1 1 0 0 0 0
74 1 1 1 1 0 0 0 0
25 1 1 1 1 0 0 n n
42 a a n n I I))

43 1 1 1 1 0 0 0 0
44 0 0 0 0 I I I)

46 0 0 a 0 1 I 1 I
47 a 0 0 0 1 I I)
48 1 1 I I 0 a 0 n
49 I)) I 0 0 0 0
50 0 0 0 a 1 1 1 I
53 a 0 0 n I 1 1 I
62 0 0 0 0 1 I I I
64 n 0 n n 1 1 1 I
65 0 0 0 0 I 1 I I
70 0 0 0 0 I I I I
7! 0 a 0 0 1 I I I
72 0 0 0 0) 1 1 1
74 0 0 0 0 I I 1 1

OPI 23 0 0 0 0 1 1 I I
1 1 I 1 0 a 0 0

OP2 21 0 1 0 0 0 I 0 0 n 0 0 1 0 0 0 I 0
24 0 0 0 1 0 0 0 1
25 1 0 a 0 I n n 0

F IGURE 6

