LARGE STEAM TURBINE-GENERATOR
DEPARTMENT

GENERAL 6 ELECTRIC

SCHENECTADY,N. Y.

TR

TG-1013 (1-52)

FOR USE OF G-E EMPLOYEES ONLY

GENERAL (3 ELECTRIC

TECHNICAL INFORMATION SERIES

Title Page

AUTHOR SUBJECT CLASSIFICATION NO.

Jane E. Fing COMPUTERS, AUTOMATIC DF-59L823

a . DATE ‘
PROGRAMMING. Marech 10, 1959

T LOGTAB - A LOGIC TABLE TECHNIQUE

1

|‘B““‘°T LOGTAB ig g method for expressing the logic of a
omputer program in table form and the subsequent interpre—i
tion of the table by the computer. The external and

ﬁnternal language and the method of interpretation on the

gBH 704 are described, LOGTAB ig a5, extension of TABSOL
o

r the IBM 702,

G.E. CLASS REPRODUCIBLE COPY FILED AT NO. PAGES |
Tech, Report Library, LST-G =

GOV. CLASS. Dept., Bldg., 273, room 319, 11
= Schenectady, New York | |

CONCLUSIONS T,OGTAB appears to be shorter in length and

fagter in execution than other methods of table look-up |
for multiple arguments on a computer. These criteria have
not been fully explored for program logic but it has the
advantage of requiring no programming once a table has

been formed. In other words, the table replaces the flow
chart and hand coding of a program and remains as a
difinitive and understandable record of the program, \

By cutting out this rectangle and folding on the center line, the above information can be fitted
into a standard card file,

For list of contents—drawings, photos, etc. and for distribution see next page

-
INFORMATION PREPAReD For__ LOST=G DEPT. ety T I L ik AL SRR

TESTS MADE BY L e — — - - | e e 2
SOUNTERIGNED n}‘ E;;_muﬂ,&_'c__mv._rﬁmm,__commﬂom RESEARGH

pivisions_ LST=G ENGINEERING LOCATION SCHENECTADY, New York

D GENERAL ELECTRIC COMPANY
A (1 TECHNICAL INFORMATION SERIES
CONTENTS PAGE

ONTENTS OF REPORT DF-591.523
, 7
| NO. PAGES TEXT

| NO. CHARTS 4

DRAWING NOS.

PHOTO NOS,

| oistrisution (15) copies of report to LST-G Library, Bldg. 273-319 3

(52) copies of title page to LST-G Library, Bldg. 273-319 C

RE Callaghan 59-214 HN Cantrell 59-244, H

' JL Ogle 273-2070 A Sturges 2732070 E

RE May 273-2070 JE King (2) 50-214 N

' DB ManMillan Bldg. E-6, room 2204 KAPL DM Bouton Bldg. 32, room 302 E

PM Currier Bldg. 5, room 523 HW Penske Bldg. 18-A, room 400 ¢

DF Langenwalter Bldg. 37, room 578 JW Pontius Bldg. 5, room 517 T

AH Rau Bldg. 36, room 631 A

D

Y

Charles W, Libby Lynn Computations, Bldg. 59, River Works, West Lynn 3, Mass.
A Keller Lynn River Works, Lynn, Mass.
B Grad NEW YORK OFFICE, Manufacturing Services.
TF Kavanagh NEW YORK OFFICE, Manufacturing Services.
Hayden E, Williams,Data Processing Operations, Electronics Div. GE Co. Syracuse, NY
RK Habermann HYEE Dept., Court St., Syracuse, NY
Cortland Diehm Migsile-Ordance Systems Dept., 3198 Chestnut St. Phila., Pa.
SB Williams Fowsr Transformer Dept., Pittsfield, Mass. Bldg. 17-260
Dr, Robert S. McCready Aireraft Nuclear Propulsion, Cincinnati 15, Ohio

DD Degler T&I Bldg., Orange & Van Ness St., Tempe, Arizona
AI Benson T&I Bldg., Orange & Van Ness St., Tempe, Arizona
HM Sagsenfeld T&I Bldg., Orange & Van Ness St., Tempe, Arizona

H Tellier Data Processing, Hanford Atomic Products, Richland, Washington

GA Hagerty 13430 North Black Canyon Eighway, Phoenix, Arizona
CC Lasher 13430 North Black Canyon Highway, Phoenix, Arizona
ES Spiegelthal 7235 Wisconsin Avenue, Suite 201, Bethesda, Maryland
J Weizenbaum 951 Commercial Street, Palo Alto, California
JA Porter FPLD, Bldg. 305 - EVENDALE

JB Hangen 7235 Wiscongin Avenue, Suite 201, Bethesda, Maryland

'Pi

TABLE OF _CONTENTS DF-59L523
PAGE
INTRODUCTION 1
GENERAL FEATURES OF LOGTAB 1
ALLOWABLE TABLE ENTRIES 2
COMPUTER METHOD 5

Fi

INTRODUCTION DF-52L523

The IBM 702 program TABSOL is a generalized interpretive table solver
] prepared by the Integrated Systems Project, Materials Service of General
i Electric in New York, New York, TABSOL was studied for possible application
and execution as a 704 program and the resulting program is LOGTAB (LOGIC
TABLES). The basic principles of TABSOL were preserved but extensions and
modifications were made in an attempt to make it applicable to a larger
class of problems and to facilitate implementation on the IBM 704. In the
following description of LOGTAB, no attempt is made to distinguish where
TABSOL leaves off and LOGTAB begins.

GENERAL FEATURES OF LOGTAB

In using LOGTAB, all logical decisions of a program are expressed in
tables., Each table has four major divisions which we shall call quadrants
A, B, C, and D and their positions are shown in Figure 1.

Figure 1

The contents of each quadrant is as follows:

A - references to all items to be tested in making the
decisions included in table

B - The separate tests to be made on the items in A

C = references to items that gre to be modified as a result
of meeting the tests made on items in A

D - the specific things to be done to items in C as a

result of tests in B on items in A

All information relating to an item in A or C is given in a row of the table
and all information necessary for one "condition" (tests and results) are
given in a column of the table. In addition, the table must be read from
left to right and when a set of conditions (B) are met in one column, the
results (D) for that column are executed and columns to the right are not
tested. The schematic table (Figure 2) shows how this principle is expressed.

B e L

DF-59L523
2
1f this this (not
and if || not this this tested)
then do || (go to this
and next this
column)
Figure 2

ALLOWABLE TABLE ENTRIES
In attempting to make the table prepared for the computer look as much

like the table for human consumption as possible, some compromises in symbols
and notation had to be made. However, as few changes and rules as possible
were made. As an example, the less than (<) and greater than (>) symbols
in every day use are not permissible computer characters. Therefore, they have
been changed to open and closed parentheses since these allowable chargcters are
most nearly like these symbols. So we have,Z = (and =), Similarly, the
symbol £ is replaced by the combination =(or (=. Since it is impossible
computer-wise to superimpose two symbols as for "not equal" (¥) , this symbol
has been replaced by () meaning less than or greater than. Another departure
from "human" nomenclature is used to express the absolute value of a gquantity.
Vertical lines are not permissible computer characters so an absolute value is
expressed with slashes.
Example: |AB| = /AB/,

The following forms of elements are permissible in the quadrants
indicated:

Element in
Quadrant A — Meaning
1, ABC) The quantity identified by the symbol (with
ABC(2
ABC(N) its subseript, if given).
ABC(N+1)

2.

3.

A gecond column in quadrant A gives the condition for the test and the permis-
gible tests are:

4.

1.

Element in
Quadrant A
* 10
I}QR

(Blank)

(!)s=,(=s=(:)=’=)’ and (). £ las i
Element in
Quadrant B Meaning
1,75 The test on the element in A is to be made against
2 the exact value given.
AB The test on the element in A is to be made against
ig%ﬁ; the quantity identified by the symbol (with its
AB(N-1) subseript, if given)
*10 The test on the element in A is to be made against the
* QR quantity found computing the function identified
by a symbol (RQR) or by a statement number (10).
- Make no test on element in A,
Element in
Quadrant C Meaning
AB Replace the quantity identified by the symbol (with
igfﬁ; its subscript, if given) as indicated in D,
AB(N+1)
+X Increase X (where X is of the form in 1 above) by
the amount indicated in D,
-X Decrease X by the amount indicated in D,
(blank) Execute the indicated operation in D. - ‘i:ii,jt‘

DF-591.823
3

Meaning
The quantity which can be found by computing a
function identified by a symbol (FQR) or by statement

number as in Fortran (10) y
This implies an "or" condition. It means that an , *

additional test is to be made on the element o
identified in A above the blank or blanks.

-

4 Al <
7 ’j;f
I

DF-59LS23

Element in Meaning 4
Quadrant D
1. 1:5 Use exact value as indicated in C,
I375
2. :gg(z) Use the quantity identified by the symbol (with
i
ABD(¥) ts subseript, if given) as indicated in C.
ABD(N-1)
3. * 10 Compute function identified by symbol (FQR) or by
* FQR statement number (10) gnd use as indicgted in C.
b *HYYZ Go to function or table identified by symbol (XYZ)
#%140 or by statement number (140).

Note that the symbol * essentially means "go to and come back here" and that **
means "go to unconditionally".

Figure 3 shows a sample LOGTAB tgble. Reading it in English, it says: If
(the gbsolute value of the N*® element in the array AB) is less than 1.75, and if
(the result of computing function cajled PQR) is less than or equal to (the
result of computing function called AZ), apd if the quantity IR2 is less than N;
then, replace (the third element in the array SP) with (the result of computing
the function called RS), increase the quantity IR2 by 1, compute function called
DUZ, and go to function T16 (this may be another table). But if one of the
previous conditions was not met, and if {the absolute value of the ch element in
the array AB) is less than 3.5, and if the quantity IR2 is less than N or if
it is = N; then, increase the quantity IR2 by 2, decrease the quantity AX by 1.5
and go to the function or table T12, However, if none of the previous conditions
were met, increase the quantity IR2 by 1, decrease the quantity AX by (minus N),
and go to Tl12,

Note that all columns in quadrant D end with a ** (go to).

/AB(N) 7/ (1,75 345 -
-.1II *POR (= A7 - =
:l IR2 (N N -
= - N -
I
SP(3) ¥RS - -
+IR2 1 2 1
~AX - 145 -N
*DUZ *%¥T12 *%T12
**T16
FIGURE 3

DF-29LS23

COMPUTER METHOD

Several methods of machine expression of the tables and machine interpre-
tation of these expressions were studied. The following observations were made:

1. A given table, if stored in its entirety in the machine, required
too much space because of the redundant nature of table elements.

2. A program to unravel the detajls of , complete table required too much
time per entry, although the interpretation routine itself did not require much
space.

3. If the information of the given table was packed into the computer to
save space, the execution time for unpacking and testing each entry was excessive.

Therefore, it was necessary to find a way to transform the LOGTAB table
into some computer table that did not require much storage apd which could be
interpreted fast. The following format is the result:

A given table is expressed in the computer in three distinet but highly
interrelated parts. Part I ig a table of vajues of the different elements of a
row of the original table. By entering only the different elements, it is
possible to take advantage of redundancy in the original. Part II is a table
of the sa,e length as Part I with g one-to-one correspondence between their
entries. It contains a bit pattern showing in which column or columns the
value in part I appears. A particular bit position in a Part II entry cor-
responds to a column in the original table. Part III consists of a group of
calling sequences (in 704 language) to subroutines which look for matches
between the input data and the table entries and then extract the proper results
and act on them as specified in the table.

The principle can best be shown by a, example, Figure 4 is a table which
is designed to show two of the machining operations to be performed on g
bucket with certain chargcteristics (dovetail type, tenon shape (rectangular or
profile), and nature of the dovetail sides.) Expressed as a LOGTAB table it
takes the form shown in Figure 5. Note that some, but not all, of the redundancy
in the original has been reduced in changing it to LOGTAB form but that it is
still humanly readable. Reading it in English it says: If dovetail sides (DS) =
ANGLE and if TENON = RECT gnd if the dovetail type (DT) = 22 or 23 or 24 or 25
or 43 or 48 or 49, then opergtion No. 2 (OP2) = 25. If at least one of these
conditions was not met, then we go on to the next column, etc. Quadrant D **'s
have been omitted.

Note that in Figure 4 there are only eight possible solutions agnd these are
indicgted by asterisks. These eight solutions are now shown as the eight columns
in Figure 5,

DF-591.523
7

Figure 6 shows Part I and Part II of the computer represent.tion of the
LOGTAB table. Looking at the table for dovetail side (DS) we see that it
contains only the two different entries that can appear as compared to 80
entries in the origingl and 8 in the LOGTAB form, Their distribution within
the LOGTAB table is shown by the corresponding bit pattern in Part II. ANGLE
which is the entry in columns 1, 2, 5 and 6 is represented by 1's in bit positions
1, 2, 5, and 6,

To read or interpret the table we must find the intersection or logical
product of the expressions in Part II corresponding to matches made between
input data apd elements in Part I. This logical product is then matched with
the Part II representation of the result table to find the correct solution.

As an example, take the following input vajues: DS = ANGLE, TENON = RECT,
and DT = 72, The bit pattern for DS = ANGLE is 11001100 a,d for TENON = RECT it
is 10101010. The logical product of these two expressions is 10001000 and
therefore our final result must be in column 1 or column 5. Next we find that
the bit pattern for DT = 72 is 00001111 and the logical product of it and our
previous product is 00001000, This means that column 5 of our LOGTAB table
contains the solution we are seeking. Continuing with our bit pattern, we match
it to the entries for OFl again by a logical product.

00001000 = input
00001111 = No. 23
00001000 = product,

The product for (OP1 = 23) is not zero and, therefore, OF1L = 23 is the
desired result. In forming the same product with entries for OP2 we find
that the desired result is OF2 = 25,

It is possible that with some tables the input will yield a multiple
solution bit pattern (i.e., more than one 1-bit in the logical product). But
our LOGTAB tables are so constructed that when one column in the B quadrant
matches our input we do not test the other columns. Therefore, to find a unique
solution we only have to change all 1-bits after the first one in the product
bit pattern to zeroes.

Part III for the example table consists of calling sequences to subroutines
to do the following steps:

1 - Set bit pattern for result to all 1's.

2 - Get input value for DS and go to routine to find DS match in Part I
and compute logical product of bit pattern result and corresponding DS bit pattern.

3 - Same a8 2 for TENON

4 - Same as 2 for DT

DF-591523
8

5 = Go to routine to set bit pattern result for unique solution
(preserve only first 1-bit).

6 - Go to routine to find OF1 by first non-zero logical product of bit
pattern for result and bit pattern for various OFl values.

7 - Same as 6 for OF2,

The combined computer expressions in Farts I, IT gqnd III require only
about 100 words compared to 136 entries in the LOGTAB table (quadrants B gnd D)
and 400 entries in the original table., The complete interpretation was
equivalent to executing approximately 200 704 instructions. This corresponds
to executing about 1.5 program steps for sach entry in the LOGTAB table (B and D
quadrants only) and only 0.5 steps per entry in the original table. In actual
time, 1t requires about 5 milliseconds to find a solution in this original
table on the 704.

The subroutines to maye all of the interpretations require s tota] of
about 160 words of memory but they are used for every table and thersfore appear
only once. For speed there are separate subroutines for making the tests for
the various conditions (£, £,ete.). It is for this purpose and for simplifying
the interpretation that the LOGTAB tables may test for only one condition per
row (i.e., all vagjues in a row must be tested for the same condition).

A compiler is plapned and is presently being programmed which will accept
a LOGTAB table on punched cards and translate it into the computer representa-
tion of Parts I, II, and III.

DF-59L523

9
DVT VT OPFR OPER DVT DVT OPER OPER
TYPE SIDES TENON NO.1 NOe2 TYPE SIDES TENON NOel NOo2
* 22 ANGLE RECT = 25 49 ANGLE RECT = 25
* 22 ANGLF PROF - 21 49 ANGLE PROF = 21
* 22 NO RECT - 22 49 NO RECT - 22
* 22 RO ___EROF = 24 49 NO PROF = 24
23 "ANGLE RECT = 25 50 ANGLE RECT 23 25
23 ANGLE PROF = 21 50 ANGLE PROF 23 21
23 NO RECT = 22 50 NO RECT 23 22
23 NO PROF. _ « 4o s 28 50 NO PROF 23 24
24 ANGLE RECT = 25 53 ANGLE RECT 23 25
24 ANGLE PROF = 21 53 ANGLE PROF 23 21
24 NO RECT = 22 53 NO RECT 23 22
PEST NO'! PROF - 24 53 NO PROF 23 24
25 ANGLE RECT = 25 62 ANGLE RECT 23 25
25 ANGLE PROF = 21 62 ANGLE PROF 23 21
25 NO RECT = 22 62 NO RECT 23 22
25 NO PROF = 24 62 N0 PROF 23 24
* 42 ANGLE RECT 23 25 64 ANGLE RECT 23 25
* 42 ANGLE PROF 23 21 64 ANGLE PROF 23 21
* 47 NO RECT 23 27 64 NO RECT 23 22
* 42 NO PROF 23 24 64 NO PROF 23 24
43 ANGLF RECT - 25 1T 6% ANGLF RECT 23 25
43 ANGLE PROF = 21 65 ANGLE PROF 23 21
43 NO RECT = 22 65 NO RECT 23 22
43 NO PROF = 24 65 NO PROF 23 24
b4 ANGLE RECT 23 25 70 ANGLE RECT 23 25
44 ANGLE PROF 23 21 70 ANGLE PROF 23 21
44 NO RECT 23 22 70 NO RECT 23 22
4 NO PROF 23 24 70 'NO PROF 23 24
46 ANGLE RECT 23 25 ' i | ANGLE RECT 23 25
46 ANGLE PROF 23 21 71 ANGLE PROF 23 21
46 NO RECT 23 22 71 NO RECT 23 22
46 NO PROF 23 24 71 NO PROF__ 23 24
47 ANGLE RECT 23 25 FR ANGLE RFCT 23 25
47 ANGLE PROF 23 21 72 ANGLE PROF 23 21
47 NO RECT 23 22 72 NO RECT 23 22
47 NO PROF 23 24 72 NO PROF 23 24
48 ANGLE RECT = 25 1 74 ANGLE RECT 23 25
48 ANGLE PROF = 21 T4 ANGLE PROF 23 21
48 NO RECT = 22 74 NO RECT 23 22
48 NO PROF = 24 74 NO PROF 23 24

FIGURE 4

DF-59L523
10

DS = ANGLE ANGLE NO NO ANGLE ANGLE NO NO
TENON = RECT PROF RECT PROF RECT PROF RECT PROF

DT = 22 22 22 22 42 42 42 42

23 23 23 23 44 44 b4 by

24 24 24 24 46 46 46 46

25 25 25 25 47 47 47 47

43 43 413 43 50 50 50 50

48 48 48 48 53 53 53 53

| 49 49 49 49 62 62 62 62

| - - - - 64 64 64 b4

| - - - - 65 65 65 65

| - - - - 70 70 70 70

; - - - + 71 71 71 71

- - - - 72 72 72 72

- - - - 74 74 74 T4

OP1 - - - - 23 23 23 23

OP2 25 21 22 24 25 21 22 24

FIGURE 5

PART I

DS A.\'GL:'— | i
NO

TENON RECT .

PROE

DT 22 -

w3
v

0OP1 29

Op? 1

