LIST OF POTENTIAL PROJECTS
$6_{0} \mathbf{b}^{2}-1$. Production leveling - Optimum Inventory Program.
\checkmark 2. Balanced procurement (mathematical representation of parts lists, schedules and materials requirements).

V3. Integrated plan for determination of order quantity, buffer stocks and delivery dates, reorder paine ese Carnie pipes)
*4. Ordering plan designed to operate on actual needs rather than forecasted needs.
ToM 5. tale or buy.
\checkmark. Projection of usage for accuracy.
$\sqrt{ }$. Re-minte cost of carrying inventory.
-B. Rewrite cost of processing purchasing a infernal
/9. Automatic dispatcher.
Ton 10 . Use of analog computer for lond determination analysis (Production)
$\mathrm{u}^{1 /}$ 11. Use of risk-gain curve for determination of accepting inventory investments.
12. Write up reasons for and methods for obtaining Cost Reductions for Inventory Reduction.
13. Set-up computer program for $A B C$ analysis.
14. Computer determination of labor input load projections (also material input material load).
15. Determination of effective measures of production control efficiency.
16. Set-up standard raw material coderand dur no. syotem
17. Conditions for and against lap phasing. Au Potheen wove.

18, Prediction of Sees in terns if Man amen or 19. Seturive E.O.Q. by Lives Programining.
120. establish a geuersliged feretory nobel for dippoteh 21. Computer for Exploding P.L.'s considering multi- time perse, intermediate stoic, et. Maveructuing Cycle Effacing
23. Snigle Dene ms, multiple here stan explosion
24. Determination of materiel office, haber efficient, mate wiesition officioney.

The soove applicatrove for wendurg machuns incopposatij data pwcerenij-

- Considen vanion caver when people buy infornath (neat a peodut or pluytical sencie)
(i) ticke to plays ohersportug events,
(2) than plays, opera, er.
(2) Hareprostation tichec
(3) Sank depront + withchawal
(4) Inviance poliig iswe (non-life)
(5) Cudit voulhers (for menchande is punchere, ett.)
- Comender cores where sernice is of semple uniform porduct or plyyill
(1) Gesdimi
(2) movie tiillets
- Consder cese of tentoin hoduct or podent is tervic waik \leqslant are differentrits k b cestorer seleetron chterin
(1) made to onder cegentte, cigan, soffeereh.
(2) Sondenich makij, rachine (rent es reusid only)
(3) Slyuded paint, engraved wallates $*$
(F) Sie adiveted produc5: watch bands, ringo, necklow, bracelt
(s) Lipatch, powder. nail prolech

```
    SUGGESTED "HOW-TO-DO-IT" REPORTS
    Economical Order Quantity
    Bin Reserve
    Fiscal Dating
    ABC
    Cost of Carrying Inventory
    Cost of Processing an Order
    Calculating Theoretical Turnover
    Manufacturing Cycle Efficiency
    Measurements for Materials Managers
    Paperwork Processing
Receiving Routines
Raw Material Stockrooms
Planning a Punched Card Study
How to Make Physical Inventory Pay for Itself
Effective Filing - Terminal Digit
Reports - Type and Appearance
In-Process Progress Reporting
To Stock or Not to Stock
Cycle Reduction Program
Inventory Control Program
```

B. GRAD
t/ri/ar

GENERAL (5) ELECTRIC

New York, November 11, 1954

Mr . Burt Grad
Room 2401
Bullding
Dear Burt:

As you lnow, the arithmetic of production explosions in the chain from final schedule back to orders on vendors amounts to matrix algebra. Aside from the elegance which one can have by using matrix notation there seems to be two ways in which the matrix point of view can make a real contribution.

In the first place, when a change in final schedule is made, often the most pressing resultant change is that of notification of vendors. As usually done, these changes are the last available. The matrix theory indicates a way by which these can be immediately available.

Secondly, the restrictions in capaelty of various units of the manufacturing operation place restrictions on final model mix and volume which amount to Inear inequalities involving the final model amounts. If, furthermore, a profit function is defined for the manufacturing organization, then we have an example of linear or non-linear programming, depending upon whether the profit function is linear or non-linear. Of course, the difficulty in applying the latter idea is in obtaining an explicit profit function. However, it should be possible in some cases to relate some of the objectives in a profit function, freeing managerial intuition to consider only the other intangibles. Here, again, our techniques bring us back to the need for education/and close liaison with Managers.
I should be glad to talk this over with you at any time.

Very truly yours,

WLMurdock/h

Dnventoy contal -
onden aty
$\left.\begin{array}{l}A \\ B\end{array}\right\}$
C $\}$ clasification by amme
D - deternivid by infequar unafeneuch a protective hererve
A, B, C are subdividel nits

$$
\begin{aligned}
& A 1, A 2, A 3 \\
& B_{1}, B 2, B 3 \\
& C 1_{1}, C 2, C 3
\end{aligned}
$$

vener o- fived to vavibh Cost nete -
The higren The Ratio the Kiglue the Jolder no anjiund fixel cost is deffied in temm of Equinalent set. up.
Jhender gty is estrblith by my dexinin frlen cotegoy
protective Stan
on eare $A B+C$ itan a poster of the stom is crasitues is the hature of a protective rereme stom the fijiz then stoue depencs on the ersatiomen of demane. The Fotio of mex peird unage to ary penind renge wel dividere by ang perid mage beoves the sidex mumber - When the items we arranged in devenchy seguener
$\left.\begin{array}{l}x \\ y \\ z\end{array}\right\}$ are usex as a clessificatrai
X - most esuntio
y - avy
z - leat enntic
the previon $A B C$ clerificatori Ca be mad t morify the $X Y Z$ are-
for ecauple a $B^{2} C$ item nuigit he upgueded (from y to x or z to y for youmple) Conerpondingly an Arhigh B
ye x y 2 will have angied hy myt devision the genomest of veserve stree fro. each ontegon.

$$
\begin{aligned}
& x-120 \text { day } \\
& y-10 d y \quad \text { an elompes } \\
& 2-30 d n y \quad l
\end{aligned}
$$

Beorder pt = prat stot proi cyeh
Procurenent yele depenes on
actual venter lear thme transportation thin
papewwosh poounixy time -
contrijemel reseme for
sumele or thampotation dely
clasify as

$$
\begin{aligned}
& L \text { - Long cyeh } \\
& M \text { - ibdiun agh } \\
& S \text { - shri guch }
\end{aligned}
$$

again myt decision sets the atual thans for east catyorgo.

Sutchy tim, lav itemen $\xrightarrow{\text { ternmimats dijis }}$ unput-output medin \rightarrow duparal of suples inventry A luege computation
kigt meuruses -
peformence -
Sifulan fied wint
\% stifulars iteme penis

- I stom in inge petation

2. Nite oner stomel

7 map dur pat stat ond 2 ty ine 1.5 max orm a chae pot no 7 term on Bain neer

Iumoven A, B, C
OmentapA -
dericalcor-

Daily feports -
Qtrely analyse-
O.V. punchan -

She deternination of how muck to ordew aun when delving shoved le mude and Low much puturtive stew to cany

Now wieth gosed known prokuctin equeuments weeh hy wah she quantsh to Lider (sumer ho priee desconiss an anvented) shoned be divitly ted the antiapeted nees. However heu the proth is how ruang weht woth- heed a Jeneral Solition.
dely nuet be mader in time for rou first unge - so as t_{0} not jo belou Th pertetivi sta luel.
set Put st as a furatin? ABC

1) Netaminiy Rugt fiffernt applicatere luor thin
2) Estubits dessid protut ve stow

$$
\begin{array}{ll}
\text { A itime } & \text { I dey-lwr } \\
\text { B } & 1 \text { wre }-2 w / r \\
C & 2 w n-Y w r
\end{array}
$$

4) Lend 2ty + Put sth mot to eve excud Intal fohedules Requinmint
5) Onclude Aprily aclowance. then ans in wit computitin.
6) Use Calablated plumed baloner is the stact of fygmi.
\rightarrow plinify PG5-ai The nesput.

Nuackie Coverb ter
Drventiry prosito undes old schedule -
of any - Balawkes or if tos lage phes balanes prepare now shefipery Reladab

What in gu Cost cot i Cangji Jir
entanaly mfa itense

- use seme prinipla as for OV itmon - that
is stipuleten; an OQM-
Loweven, gine mou leviay posily
$+\mathrm{che}$

$$
\begin{aligned}
& x=\sqrt{\frac{2(\Delta(s+p)}{c I}} \\
& x=\sqrt{\frac{2(s+p)}{c I}} \sqrt{U} \\
& x=\left(\frac{2 \pi}{c I} \sqrt{\frac{2}{c I}}\right) \sqrt{\sigma}
\end{aligned}
$$

for any pt^{\prime} - the highes the $\frac{\mathrm{S}}{\mathrm{C}}$ satio is the lagge strese be The oovergtes -
20 stant negit he arbitumy - aprly oly to C item - But selet OQM on konip $\frac{s}{c}$ sotis
$\varepsilon O Q=\sqrt{\frac{2 v(S+P)}{C J}} \quad$ internal puts $=$
defoucsen stability of U.
use A_{1}, B_{1}, ets to mosh pere furits.
Sunt y a fide pute
Unage $=$ pugts - (indenviis - 2wrantual)
setup Reosden pt...

$$
\left.\begin{array}{l}
\text { Pratroth } \\
\text { Proc Cyel }
\end{array}\right\} \text { kavedm elsyen }
$$

Puch pt - Duccersire Aualyei at ea. puii
Buakijg ot -
Buakijs for or. $2 t y$ co he cutor for
freen item Eno.
She Duw + Cabite - Billpreacer aulo slishevoh <2 midel-s.ik notele theis (protiba mish)
disposiect
dispesece
alom thays.

$T=$ temie needed.
als. hove A局 $H=$ arhaund in of Ntact pt. en pt Holo

Rave open er dens (nid \& thamit) eapt. Do11 gty to be delivienal wi whit week D_{012} (t. be cogletid by fenting)
shmihys zots

$$
S=\frac{\text { Promed-PB nented }}{\text { Pts nother. }}
$$

head time for en application of exch put
 Conventiong RM to frimiter pait In asdition we have a vendo proame ment egcle wel P_{c} decued protectiv atrech Call P.
$Q_{0,}^{A}$ Feentity of pt or rued on Applien a A
Furt, what an nees witume 9 qty + thus hut compaie need it Avnilatilfy_

Analypir for pat or uner - apphain A, B, C.

$$
\left.\begin{array}{l}
Q_{01}^{A} \cdot R_{A}^{011}=Q_{01}^{A 011} \\
011-L_{01}^{A}=T_{01}^{A 011}
\end{array}\right\}
$$

$$
\begin{aligned}
& S=\frac{P_{\text {s }} \text { noed }-P 4 \text { needere }}{\text { Pr heeder. }} \\
& p t \text { nenk } x s=\text { Pt ured - Pt neede } \\
& \text { Ptured }=\text { Pt hused }(5+1) \\
& \text { onpt thened }=(1+s) \text { (ptest bo hineesed) }
\end{aligned}
$$

Sort by T campuy anoc Q along

Yueds Dotel gty neeud each mh for ace applintioni

$$
\begin{aligned}
& Q_{011}^{011} Q_{01}^{012} \quad Q_{01}^{013} \cdots Q_{01}^{120} \\
& H_{011}^{010}+D_{01}^{011}-\left[Q_{011}^{011}\right][1+5]=H_{01}^{011}
\end{aligned}
$$

if H is negotive a pt ruv veregeneratere (N) for the quenticy that carryng a Monsta -

$$
\begin{aligned}
& H_{011}^{010}+D_{011}^{011}-P_{5}^{01}-\left[Q_{01}^{011}\right][1+5]=H_{0,1}^{011} \\
& H_{011}^{011}+D_{01}^{012}-\left[Q_{01}^{012}\right][1+5]=H_{0,}^{012} \\
& \text { Nr }
\end{aligned}
$$

Every tivie thet A Soer negativis an N ir pincers es sher then Jero

WEEK No
PT\# $011012013014021 \ldots . .120$
$01 \mathrm{~N}_{0}^{011} \mathrm{~N}_{01}^{012}$

$$
N_{0,}^{120}
$$

howthe questron is -
Do weploce ascie adens hoodify existing oiden.
if sh, which ore + howmuch.
Also how introduce comeept sf non-fixed Scheinh

+ täk inte acet proctrodect year remainif

Smpent case is assumen no existing onder.
 is tome to be - infinib sevee o mil leitu nect if heed. infinib seves o prosibilutur mi bition.
Gover ertablith a Recommended Necai ad 2ty But would hae to be bouec an allignfigree - not Resbitri-
coned have a
 wrole efominie next in no.f uncehs adx Thew inved tejether aux plave onk for Thi giy on dez of $1=$ need. Them Convel raxt thweih f neech + lork for nest news, use A, B, C classification \rightarrow ov, Coved Assume an averye Urage

$$
\mu=\frac{\Sigma N}{\text { coses }} \quad U=\sqrt{2} \mu \text { Than proves }
$$ with ff noot frumer -

wide regt det evil it sume a shome nat un it -
we cones dwelep the OQH bosedis Eco ond $2 t y$ fromular.
use Auti Yealy Urag \times Cont/umit to chanify ABNC
The subchni/d by
Q $\sqrt{\frac{(5+\infty)}{C I}}$ for internal ft
$\sqrt{\frac{P}{c I} \text { fre act pait no no mice deriout }}$

$$
\sqrt{\frac{S_{E}+P}{C_{E}}} \text { wher } \text { worpereng }
$$

hrw values fuit
ligh values fact
$A 1, A^{2}, A_{3}$
Bl
$\mathrm{Cl} \mathrm{C2}, \mathrm{C}$
Cl
llany tual exangles Ceternuiv optemin OQM for en Cotegory

Hen OQMis ane orly gore then as ling ai U vamais selatwily fuxil -

We Coved difmi acuptoba \mid Vanit
huut set upper hinis resthition that
ROQF EN

How about Mudel clayge oue plans.
conese be nityrates ay protthy in hew novel doages nefficiently akeese Itme if dengis an amilabl soon enringh -
nughs determini P_{s}^{01} by formula
Do ant grlan orden in advanu y. Proi Cych t thim until muct revien

Nata Decucr
for a trial dept.
$P_{t} \#$ Qty PerAPPL. Lud time
neut defuie Cot q lanyey कोventrynatio cort proournig an chsen Shtumer vasibie ty of scheduce

$$
\begin{aligned}
& \text { Met 'mes } \\
& \text { II } 3 \text { mo } \\
& \text { i2 mo. }
\end{aligned}
$$

q inture
of eateral
$\underline{P+ \pm}$ cot at $Q+$ Qty.

$$
\begin{gathered}
\text { main morgty } \\
\text { jory }
\end{gathered}
$$

Beter go then Hty byster presentrontrie for determini Sty to ondu-and delaing deto.

Every punchase or w/q plan invelus a Cetan cost

$$
\begin{aligned}
& y=20+2 \cos t \\
& y=\sum_{j=1}^{\pi^{2}}\left(n_{j} \pi_{n}+P\right)+\sum_{j=1}^{5^{2}} \frac{B_{j}\left(\frac{\Sigma \pi_{j} T_{n}}{5 w_{j}}\right)}{5_{2}} C_{I}
\end{aligned}
$$

where $\sum_{1}^{5} n_{i}+B_{i-1} 5 V$ whem n_{i} visicare The

The may nat be necessry
if ofs Eevencentintion $U=$ Antri urage next 12 nionthin
is powpaly deternuiad a dervies forn Production Sekelble $C_{f}=C_{0}+7$ Casmy/; Ammentry ritivi
Bj repuevents the Balanue on hand on of the end of the $j^{r 2}$ week.

Arsustritwi purably will have to entrelveed to show a supplen swivitiy lost for any posdeut remaimip of tes the pursurt yer erpier. If The produt year erpers enly Then a Covesproxi; sur Cost reduchro showed te made

In effert the objectui is to frid taat seres f wis suk that with th gevei B_{j}, and the P_{j}; gerem y is a nuiximem -
Thes poses a very lange comhinatomal protan cur hence requins Arujilifato - muat acoumue sonu sos of relationchif of onder quantity from miv tive to suathe. or estatlis a moxcimen cater jty ewtien a terms of weks supily or an actul fty Comersely a mesi ore yty huger best.

If ammal olving plan is to be cantivices then prier will not be a variables
2his smiplifis the Chenry planwe ane b specify sebiery amimb

MAY BE A MAX DELY QTY
stoned defining gty be estrohided w fenms? weeh of connerge (on day)

MAY HAVE PREFERNEO MULTIPLES
Prit sth is deperedent on

1) varerbibly en peotent demen $<$ owe lungth pormenent ayde
2) Peleikility f veudos promes
3) Cost \& rumning oset of simentiy
4) Cost 7 canging Anventory
5) Ander $2 t_{y}$ /yearly ange ratió

$$
x_{i}=\text { onden } 2 \pi_{y}=\sum_{j=i}^{i+M} N^{j} \quad U=\sum_{j=1}^{5 x} N^{j}
$$

when M con toke an Certesi value
ect $I=$ maconher of i
Assume M to semani Cowetant durnig entiv Droguen
then $y=U R+I P+\left[H^{000}+\right.$

Inventory pictur

$$
\begin{aligned}
& H^{\prime}=H^{0}+D^{\prime}-R^{\prime}-P_{S} \\
& H^{2}=H^{2}+D^{2}-R^{2} \\
& H^{3}=H^{2}+D^{3}-R^{3} \\
& O-H^{3}=N^{3} \\
& A^{3 A}=H^{3}+N^{3}=0 \\
& H^{Y}=H^{3 n}+D^{4}-R^{4}
\end{aligned}
$$

Juentily

time \longrightarrow

device plan for curating a schedule of Factory Require vent.
fabricated Part plod
sept hes frito mfg dead mu cement unity Sam
 shaving number bend out

$$
\begin{aligned}
& \text { - } \\
& \text { anew no. } \\
& 2 \text { by open } \\
& \text { due yet daze }
\end{aligned}
$$

$$
\begin{aligned}
& 2-2 \text { B } \\
& \text { 4-4 C }
\end{aligned}
$$

The put also tas a m/g cyole loppromemant timie)
\rightarrow If the asóy cycles an shot enough it nay te posith t essume that all appliestionis for a pact lave The seue " m / g Mead tive of Thei i no why bathen uning sthen tilen muet iph rwech erack times.

Can a reover pt primipa be unel evick the caren gty determines
 be determiner ly $A B C$ clanrificatini + subrlassificatron by $5 / \mathrm{c}$ satis. The seasen ot waved iquae hior stht ra/g cych.

How can rue texp traer of unhur ine on pence the only withohavas ace in termin of completed units. woued need sonce sot of fartory completien document for coek put.
what routive is presently used to det when to orken, how with to res, whent eypurt dieing.
hust therfre maintain a stoin ruorl f souts No cpt tichets

Therefer nuet plan ta operate on a total no. I pact net yet shyires.

$$
\begin{aligned}
& \text { of } k=0 \\
& \text { che } y=, y \angle \sigma_{0} \\
& \text { if } k=1 \\
& y=I T \sigma_{0}^{\prime}+.4 L_{\sigma_{D}}-.165 \angle \sigma_{0}-.5 L_{\sigma_{D}} \\
& \quad+.33 \angle \sigma_{D} \\
& y=I T \sigma_{D}+.065 \angle \sigma_{0} \\
& y=2
\end{aligned}
$$

t. 2k=1
objestwie - minangy following Equation'

$$
\begin{array}{r}
k I T^{\prime}+\int_{0}^{\infty} L n^{\prime} p(h)-\int_{0}^{k} L n^{\prime} p(n)-\int_{0}^{\infty} L k p\left(n^{\prime}\right) f \\
\int_{0}^{h} L h p\left(n^{\prime}\right)
\end{array}
$$

Duativ: whatis oftion pret ath \in
$Y=$ Datal Cot ifcarzjir k nat π

$$
y=K I T^{\prime}+\int_{K / /_{0}}^{\infty} L \cdot\left(n^{\prime} \sigma_{0}-K\right) P_{K^{\prime} \sigma_{0}}
$$

whem $p_{n^{\prime}}=$ cheme that iso wiel oecan

$$
\begin{aligned}
& y=K \Sigma T^{\prime}+\int_{\frac{S}{\sigma_{D}}}^{\infty} L P_{i i_{D}} r i \sigma_{D}-\int_{\frac{D}{\sigma_{D}}}^{\infty}\left\langle K P_{i \sigma_{D}}\right. \\
& \frac{K}{O_{D}}=k \\
& y=k \sigma_{D} I T^{\prime}+\int_{k}^{\infty} L p_{i \sigma_{0}} i^{\prime} \sigma_{D}-\int_{\hbar}^{\infty} L^{k} p_{i \sigma_{0}}
\end{aligned}
$$

$$
\begin{aligned}
& \int_{0}^{\infty}\left\langle P_{i \sigma_{0}} n^{n} v_{0} \approx 4<4<\sigma_{0}\right. \\
& \int_{0}^{\infty} \angle K \rho_{n \cdot \sigma_{0}}=\quad . \bar{S} L k \sigma_{0}
\end{aligned}
$$

$$
\begin{gathered}
\frac{d y}{d x}=I T^{\prime}-L C_{n^{\prime} \sigma}= \\
\text { at } I T^{\prime}=L C_{h^{\prime} \sigma} \\
y=\min
\end{gathered}
$$

$$
\begin{array}{c|}
K \pm T^{\prime} \\
\left(n^{\prime} \sigma-k\right) L C_{n^{\prime} \sigma}
\end{array} \quad L=f\left(n^{\prime}\right)
$$

$$
\begin{aligned}
& \left(h^{\prime} \sigma-k\right) L C_{n^{\prime} \sigma} \\
& 0 \leq n^{\prime} \leqslant \infty
\end{aligned}
$$

$$
c \leqslant, 5
$$

$$
i k=10
$$

$$
\operatorname{can}=\frac{k}{g}
$$

$$
\begin{aligned}
& \text { if } k=0 \\
& c=5 \\
& k=1 \\
& c=1,17
\end{aligned}
$$

n^{\prime}	c_{n}
1	.33
2	.47
3	.49
4	.5
0	.5
1	.17
2	.03
3	-01
4	.0001

$$
\begin{aligned}
& y=U T^{2}+A I T^{\prime}+N P \\
& n=\frac{U}{N} \\
& T^{2}=\frac{s^{2} / n}{n}+c^{*} \\
& T^{\prime}=\frac{s^{\prime}}{n}+c^{\prime} \\
& A=\frac{x}{2}+R \\
& N=\frac{U}{n} \\
& y=\frac{U S}{n}+U C+\left(\frac{n}{2}+R\right)\left(\frac{s^{\prime}}{n}+C\right) \Sigma+\frac{U}{n} P \\
& y=\frac{R \dot{S}}{n}+\frac{S S}{n}+\frac{U P}{n}+U C+R C I+\frac{S I}{2}+\frac{\operatorname{Cin}^{n} I}{2} d \\
& i f \frac{d y}{d n}=0 \quad y=\operatorname{man} \\
& \frac{d y}{d n}=-\frac{R S I}{n^{2}}-\frac{U S}{n^{2}}-\frac{U P}{n^{2}}+\frac{C I}{2} I=0 \\
& \frac{C I}{2}=\frac{R S^{I}+U S+U R}{n^{2}} \\
& n^{2}=\frac{2\left(\cos ^{5}+v s+v r\right)}{C I} \\
& R=m V \\
& n=\sqrt{\frac{2 U(S+P)+2 R S^{\prime} I}{C^{\prime} I}}=\sqrt{\frac{2 U\left(S+P+m S^{\prime} I\right)}{c^{\prime} I}}
\end{aligned}
$$

call Xrence have wiste ip mailets merill - suckid houid

$$
\begin{aligned}
& y=U N+A S+N P \\
& y=U T+A I+N P \\
& T=\operatorname{setc} \frac{5}{U / N}+c \\
& A=\left[\left(\frac{U}{N}\right) \frac{1}{2}+R\right]\left(\frac{s}{n}+C\right) \\
& \frac{d y}{d x}\left(c x^{r}\right) \quad n=\frac{U}{N} \\
& =r C x^{R-1} \quad Y=U \frac{s}{n}+U C+\frac{n}{2} I+R I+\frac{U}{n} P \\
& \sum_{-2 e^{-3}}^{2 x^{-2}} \quad Y=\frac{U S}{n}+\frac{U D}{n}+\frac{n I}{2}+U C+R I \\
& \text { if } \frac{d y}{d n}=0 \text { then } y=\text { num } \\
& \frac{d y}{d n}=-\frac{U S}{n^{2}}-\frac{u P}{n^{2}}+\frac{I}{2}
\end{aligned}
$$

$S_{E}+C_{F}$

$$
\begin{aligned}
& n=\frac{Q \sqrt{U}}{V}=P\{U\} \\
& U
\end{aligned}
$$

how i D O = distributm
$K=$ put ith

$$
\begin{aligned}
& N=0 \quad k=0 \\
& 10>0 \\
& C=\text { chan a } / D^{\prime o k e n-r} \text { 万 } \\
& \angle=\operatorname{lol} \text { / Kony / bucit } \\
& \begin{array}{l}
y=K I T^{\prime}+\left(D^{\prime}-D x_{x}\right) L c_{0} . \\
y=K I T^{\prime}+\left(D_{0}-K\right) L c_{0} .
\end{array} \\
& y=k I T^{\prime}+\left(n_{\sigma}-k\right)<c_{n_{F}}
\end{aligned}
$$

of $\frac{d y}{d k}=0$ than $y=$ an

$$
\text { of } r=1
$$

$\operatorname{and} k=1$
$h_{o n}$ \& \$1 pu nivir

$$
\begin{aligned}
& \sum_{n^{\prime}=k}^{\infty}\left(n^{\prime} \sigma-K\right) L C_{n^{\prime}} \\
& y=K I I^{\prime}+\int_{n^{\prime}=k}^{\infty}\left(L^{\prime} r^{-k}\right) L C_{h^{\prime}} \\
& \frac{d y}{d k}
\end{aligned}
$$

Cetuel hon $=\angle\left(D^{\prime}-D-K\right)=\angle\left(n^{\prime \prime} \sigma_{D}-K\right)$
Sotin Gir Carmpjlut $=K I T^{\prime}$
cueve $T^{2}=2 \operatorname{tas} \cos 1$ it it

$L=$ Lon pu avit
$D=$ huan dem ased
$\sigma_{0}=$ sta devinten 7 denenand Carn
$D^{\prime}=D+n^{\prime} \sigma$
$\theta^{\prime}=D+n^{\prime} \sigma$
\&xaison $n^{\prime} \geq 0$
$D^{\prime}=$ NTxal dem and
\qquad

why fuctor siflumer perietins

$$
\begin{aligned}
& \text { pondust mis } \\
& \text { Setrin inice pisk ot tur } \\
& \text { chin trine } 7 \text { Ane then (natin) } \\
& \text { mivant buldutain cany } \\
& \text { ypan pat never }
\end{aligned}
$$

miget the tyimene for an

prenctio: ? futture sequiemerts -

9 posase pattom

- arturel infincte aunk in yosicicies send gencieler sicuto

Enounig
h

$$
\begin{aligned}
& \frac{t}{\theta}-\text { set } \partial=f(t, L, a) \\
& (1)-\text { unir }=f(t, \theta, d)
\end{aligned}
$$

preit -

$$
\frac{l}{\alpha}=f(l, e, r, r)
$$

mut pudit atoterticilly logeial avenvern
A1 $\{3$ have sigin wave chructenition
$\left.\begin{array}{l}\text { A } \\ \text { c1 }\end{array}\right\}$ staygit lime aruwa $\left.\begin{array}{l}C 1 \\ \mathrm{~B}_{2}\end{array}\right\}$
$\left.\begin{array}{c}A_{2} \\ C_{21} \\ \text { B1 }\end{array}\right\}$ nux typertolic
$\left.\begin{array}{l}C 21 \\ B 3\end{array}\right\}$ or plicutie fun t oi

Keep Your Inventory Carrying Costs Down

By R. C. Hartigan
and B. Grad
Turbine Department
General Electric Company

\rightarrow What does your inventory cost you?

Abstract

How can you cut your overhead and increase profits by inventory control? To make the most effective business decision, it is vital that you know the cost of carrying inventory for your plant. Here is how.

WHAT DOES your inventory cost you? How much can you reduce your overhead and increase your profits by controlling your inventory level?

To make the most effective business decisions it is vital that you know the cost of carrying inventory for your plant. The following method for determining this cost introduces a somewhat different approach and should encourage you to investigate its application in your own plant.

The cost of carrying inventory will generally consist of four basic factors:

I. Possession Costs

II. Value Losses

III. Return On Investment

IV. General Business Influences

In determining inventory carrying costs you should consider only those costs which are chargeable to inventory, those which vary with a change in inventory level independent of a change in output. In evaluating the effect of each factor this question must be answered; "What can be done with the facilities and funds made available by reducing inventory?"

The nature of the product and the overall economic conditions will affect the evaluation of the four key factors. You will, of course, be accounting for the nature of your product when you evaluate these factors in terms of your own business. In the following analysis you will find that each factor has been considered in the light of three common economic conditions:

1. Conditions poor-market poor-expansion not desirable.
2. Conditions good-market good-expansion restricted by lack of floor space.
3. Conditions very good-market very good-expansion vital to maintain position in the field.
For simplification, it can be assumed that under conditions 2 and 3 there is a productive use for money freed by reducing inventory and that it will earn the present return on investment.

Factors Which Determine Cost of Carrying Inventory

I. Possession Costs-Those costs chargeable to inventory which are normally considered part of overhead.

Space

Economic condition 1-Productive space made available by reducing inventory would not be utilized because no market is available for increased output. Cost of space chargeable to inventory is zero because an inventory reduction does not affect the cost of space. If consolidation into fewer buildings is possible, the cost chargeable to inventory will be interest on the resale value of buildings vacated.

Condition 2 -Space made available by reducing inventory would be utilized for increased output. Since inventory ties up this space, the cost chargeable to it is the cost of equivalent floor space equal to the area occupied.

$$
\begin{aligned}
\mathrm{F} & =\text { Cost per year of present floor space in } \\
& \text { \$/sq.ft. } / \mathrm{yr} . \\
\mathrm{A} & =\text { Area occupied by inventory in sq. } \mathrm{ft} . \\
\mathrm{I} & =\text { Value of inventory } \\
\% \text { Cost } & =\frac{\text { FA }}{\mathrm{I}} \times 100 \%
\end{aligned}
$$

Condition 3-Expansion will take place, thru new construction if necessary. Reduction of inventory will avoid construction of new space or reduce the amount required. In effect, the cost of space was reduced by reducing inventory. The cost chargeable to inventory is the cost of additional space equal to the area occupied. Cost of utilities is included here because heating and lighting of new space is also avoided.

$$
\begin{aligned}
\mathrm{U} & =\begin{array}{c}
\text { Cost of utilities in } \$ / \text { sq.ft. } / \mathrm{yr} . \\
(\mathrm{F}+\mathrm{U}) \mathrm{A}
\end{array} \\
\% \text { Cost } & =\frac{\mathrm{I}}{} \times 100 \%
\end{aligned}
$$

Equipment-Cranes, vehicles, bins and racks. Condition 1-Inventory reduction would permit the sale of part of this equipment because less equipment is required to handle less inventory. Money obtained from this sale would not be reinvested because the market will not support it. Cost is therefore the interest which could be earned on the resale value of the equipment.

$$
\begin{aligned}
\mathrm{V} & =\text { Resale value of equipment in } \$ \\
\mathrm{R} & =\text { Interest rate in \%/yr. } \\
\mathrm{I} & =\text { Value of inventory in } \$ \\
\% \text { Cost } & =\frac{\mathrm{VR}}{\mathrm{I}}
\end{aligned}
$$

Condition 2-If floor space were available, additional equipment would be obtained to support expansion. Since we can avoid purchase of new equipment by reducing inventory, the cost is the equivalent of the yearly depreciation of existing equipment.
$\mathrm{D}=$ Cost of equipment in $\$ / \mathrm{yr}$. (Depreciation)
$\%$ Cost $=\frac{\mathrm{D}}{\mathrm{I}} \times 100 \%$
Condition 3-Additional equipment will be obtained to support expansion. Cost is the equivalent of yearly depreciation of existing equipment as in Condition 2.

Handling

Conditions 1, 2 and 3-Under any conditions handling labor is proportionate to the inventory level. Cost chargeable to inventory is the sum of all material handling labor expense. This includes crane operators, crane followers, fork truck drivers, stock room handlers and move men.
$\mathrm{H}=$ Total handling labor expense in $\$ / \mathrm{yr}$.
$\mathrm{I}=$ Value of inventory handled

$$
\% \text { Cost }=\frac{H}{I} \times 100 \%
$$

Insurance

Two types of insurance costs must be considered. First, consider those costs based directly on floor space, such as fire insurance on buildings:
Conditions 1 and 2 -Cost chargeable to inventory is zero because insurance would be paid on this space whether it is occupied by inventory or not.

Condition 3-Additional floor space would make additional insurance necessary. Cost chargeable to inventory is the cost of insurance on the area occupied.
$\mathrm{D}=$ Cost of floor space insurance in \$/sq.ft./yr.
$\mathrm{A}=$ Space occupied by inventory in sq.ft.
$I=$ Value of inventory on the area

$$
\% \text { Cost }=\frac{\mathrm{DA}}{\mathrm{I}} \times 100 \%
$$

The second type of insurance cost is that based directly on inventory value, such as fire insurance on inventory.
Conditions 1, 2 and 3-The cost is obviously the cost of insurance.

$$
\begin{aligned}
\mathrm{D} & =\text { Cost of insurance in } \$ / \mathrm{yr} . \\
\mathrm{I} & =\text { Value of inventory insured } \\
\% \text { Cost } & =\frac{\mathrm{D}}{\mathrm{I}} \times 100 \%
\end{aligned}
$$

Taxes

As with insurance the same two types of taxes must be considered. For those based on floor space such as real estate tax:

Conditions 1 and 2-Cost chargeable to inventory is zero because taxes would be paid on this area whether occupied by inventory or not.

Condition 3-Additional floor space would increase taxes. Cost is the tax expense on the area occupied.
$\mathrm{S}=$ Tax expense in $\$ / \mathrm{sq} . \mathrm{ft} . / \mathrm{yr}$.
$\mathrm{A}=$ Space occupied by inventory in sq. ft .
$I=$ Value of inventory on the area SA
$\%$ Cost $=\frac{}{I} \times 100 \%$

The second type of tax expense is that based on inventory.
Conditions 1, 2 and 3 -The cost chargeable to inventory is the cost of taxes.

$$
\begin{aligned}
\mathrm{T} & =\text { Tax expense in } \$ / \mathrm{yr} . \\
\mathrm{I} & =\text { Value of inventory taxed } \\
\% \text { Cost } & =\frac{\mathrm{T}}{\mathrm{I}} \times 100 \%
\end{aligned}
$$

Cost Of Taking Physical Inventor-

Conditions 1,2 and 3-The cost depen aly on the inventory level and is not directly an oted by the economic conditions. Cost chargeabl of inventory is the cost of taking inventory.

$$
\begin{aligned}
\mathrm{P} & =\text { Cost of taking physical in fory in } \\
\mathrm{I} & =\text { Value of inventory } \\
\% \text { Cost } & =\frac{\mathrm{P}}{\mathrm{I}} \times 100 \%
\end{aligned}
$$

II. Value Losses

Decrease in value of inventory due to ane of the following factors:

Obsolescence

Conditions 1, 2 and 3 -Obsolescence is th chance that a part will become unusable due to s ineering changes and is not directly affected hs economic conditions. It is determined by two factors:
$p=$ Percent chance that design of any purt will change in one year.
$i=$ Percent chance that parts will be allected by that change.
The factor " i " accounts for the possibility that a part may be used before the change is effective. For an established product "i" will be relatively low since most changes are of an improvement nature and are incorporated with a minimum of obsolescence loss. For a product in the development stage where engineering changes are in the nature of design corrections " i " will be relatively high because the desirability of using a part is frequently overridden by the urgency of the change. Obsolescence $=i \mathrm{p}=\%$ Cost
Alternate Method of Evaluation-If records of actual dollar losses due to obsolescence are available, the following is an easier and more accurate method of evaluating costs chargeable to inven-
tory:

$I=$ Value of inventory
$\%$ Cost $=\frac{0}{I} \times 100 \%$
Natural Deterioration, Loss and Damage
Conditions 1,2 and 3-These value losses in-
ciude repair and replacement costs of those parts which have been lost, damaged or made unusable by such natural forces as moisture. They do not depend on economic conditions. Although loss and damage are probably negligible in heavy industry, such commonly accepted practices as the sandblasting of rough castings to remove rust are actially repair operations made necessary by natural turioration.

$$
\begin{aligned}
V & =\text { Repair and replacement costs in } \$ / y x . \\
I & =\text { Value of inventory. } \\
\text { ost } & =\frac{V}{I} \times 100 \%
\end{aligned}
$$

III. Return on Investment

profit earned expressed as a percentage of
the vestment.

dition 1-Dollars freed would only be used to eis the going interest rate since the market will ui upport reinvestment and expansion. The cost of itential gain chargeable to inventory is the if ${ }^{\text {ast }}$ which could be earned on the inventory

$$
\begin{aligned}
\mathrm{R} & =\text { Interest rate in } \% / \mathrm{yr}, \\
\text { Cost } & =\mathrm{R}
\end{aligned}
$$

ditions 2 and 3 -The dollars freed by redan g inventory would be reinvested in the busin. and earn the return. Cost of potential gain is the core the return on investment earned by the bu mess.

$$
\begin{aligned}
\mathrm{T} & =\text { Return on investment in } \% / \mathrm{yr} . \\
\text { Cost } & =\mathrm{T}
\end{aligned}
$$

IV. General Business Influences

Cost Improvement-Reduction in costs due to technological improvements. This is generally accepted as a steady trend regardless of business conditions at about 3%.

This figure should be higher for a new business. $\%$ Cost $=3 \%$

Value of the Dollar

Condition 1-This condition indicates a deflationary trend. Inventory purchased this year would cost less next year. Cost chargeable to inventory is the yearly decrease in first cost.

1. Possession Costs	ECONOMIC CONDITIONS		
	1	2	3
Space	0	1.4	1.9
Equipment	. 1	1.0	1.0
Handling	3.7	3.7	3.7
Insurance	. 1	. 1	. 2
Taxes Cost Of Taking	. 6	. 6	1.6
Inventory	. 5	. 5	. 5
II. Value Loases			
Obsolescence Deterioration	$\begin{array}{r} .8 \\ 1.2 \end{array}$	1.8	. 8
III. Return On Investment	4.0	20.0	20.0
IV. General Businass Influences			
Cost Improvement Value Of Dollar	3.0	3.0	3.0
	3.0	0	-3.0
	17.0	32.3	30.9

CARRYING COSTS in per cent per year of inventory value.
$\mathrm{C}_{\mathrm{n}}=$ First cost at beginning of the year
$\mathrm{C}_{n}=$ First cost at end of the year

$$
\% \mathrm{Cost}=\frac{\mathrm{Cn}-\mathrm{C}_{\mathrm{n}}}{\mathrm{C}_{\mathrm{n}}} \times 100 \%
$$

Condition 2-This condition indicates fairly stable prices. Cost is therefore zero.

Condition 3-This condition indicates an inflationary trend. Inventory purchased this year would cost more next year. Since this is actually a savings the cost figure becomes minus and is the yearly increase in first cost.

$$
\% \text { Cost }=\frac{\mathrm{C}_{\mathrm{n}}-\mathrm{C}_{\mathrm{n}}}{\mathrm{C}_{\mathrm{u}}} \times 100 \%
$$

Clerical and management costs are sometimes considered a cost of carrying inventory. A reduction of these costs in some operating sections will result from inventory reduction. However, this inventory reduction is only obtained by increasing clerical and management costs of the control functions such as inventory control, machine loading, etc. There is probably no net change in clerical and management costs as a result of reducing inventory.
An accurately determined cost of carrying inventory, revaluated periodically to account for changing costs, can be applied to:

1. Accurately predicting changes in costs with change of inventory level. Cost reductions may be based on savings resulting from reduced inventory.
2. Determining the desirability of carrying stock inventory. By separately evaluating the costs of carrying stock and non-stock inventories those additional costs incurred by stock can be determined.
3. Recommending disposition of surplus and obsolete inventory. The cost of continuing to carry this inventory once it is on hand will depend on the resale value because full value cannot be realized.
What does your inventory cost you?

COST OF PROCESSING AN ORDER

In examining the costs related to the processing of an order, a certain viewpoint must be established. It involves looking at the problem from the following standpoint -- which costs are directly assignable to the number of orders placed or processed and which costs are dependent upon the size or complexity of the order. This means that certain costs which are definitely part of the processing charges must be ignored, since they are not controlled by the number of orders placed. Certain examples of this include 100 percent inspection, foremen's duties, supervisory responsibility and general overhead.

Therefore, in this analysis we will consider only those charges which are directly assignable to the existence of an individual order. These charges can normally be broken down into four phases:

1. Origination of the order
2. Processing and/or procuring the material
3. Storing and disbursing
4. Recording and paying

As a further sub-division, it will frequently be advisable to break down your orders into the following types:

1. Outside vendor
2. Contributing division
3. Allied plant
4. Internally machined
5. Combinations of the above

Where a problem of ordering both stock and non-stock material exists, you may want to make a further breakdown into these two headings.

On the attached page are listed some of the factors which must be considered in evaluating the cost of processing an order for a specific department.

These are two ways of establishing these detailed costs. The first which might come to your mind is to use some sort of a time study approach whereby you actually examine how much time it takes, as an example, for an order clerk to write one order card, multiply this by his hourly rate and come up with the cost of writing one order. However, it has been found that a second approach seems more realistic. This involves the accumulating of output data from each of the various functions. These output figures, taken over some period of time as, for instance, a month or a year, are then divided into the total amount of money spent for that activity during this
same period. These data are readily available in most departments and benefits are obtained just from the analysis alone. For instance, in Steam Turbine it enabled them to specifically allocate every person's activities to a particular function associated with the processing of an order.

The existence of these data should serve in the following ways. First, as aiding in the decision of an economical order quantity to purchase or manufacture. Second, as a guide to areas of potential cost reduction; and third, as control figures to supervision to enable them to compare their own standings to that of the department as a whole.
B. Grad

Production Control Section
$9 / 8 / 53$

Outside Vendor

1. Originate
a. pull order cards from P. L.
b. write order, mark PL
c. type 3×5 hecto master
d. duplicate paperwork
e. distribute paperwork
2. Process and Procure
a. place and expedite order by Purchasing
b. maintain progress file
c. file stockroom P.W.
d. maintain Receiving File
e. expedite order by

Production
f. Receive
g. Inspect and Lab

Release
h. Deliver to stockroom
3. Store and Disburse
a. Place in location
b. Store
c. Accumulate
4. Record and Pay
a. Authorize payment
b. Pay (Accounting)
c. File (Cost)

Internally Machined

1. Originate
a. pull order cards from P.L.
b. write order, mark PL
c. type 3×5 hecto master
d. duplicate paperwork
e. distribute paperwork
2. Process and Procure
a. attach blueprint
b. Plan
c. type or dupl. vouchers
d. maintain progress file
e. file stockroom P. W.
f. maintain Prod. Index File
g. Expedite order by Prod.
h. Deliver to factory
i, Dispatch
j. Move in factory
k. Follow Prod. in factory
3. Inspect
m. Deliver to stockroom
4. Store and Disburse
a. Place in location
b. Store
c. Accumulation
5. Record and Pay
a. Pay (Payroll \& Timekeeping)
b. File (Cost)

DISPATCHING BY COMPUTER

 operations currently assigned to factory dispatchers. A list of dispatchers' duties might include:1. Maintenance of a file indicating the present location of each part in the factory.
2. Maintenance of a file indicating the operations still to be performed on any part.
3. Maintenance of a file indicating which parts are in operation.
4. When requested to do so by an operator to assign a job or jobs to that operator which are in accordance with the station at which he works and the operator's individual ability.
5. To direct the material movement in transferring parts from one location to another.
6. To validate vouchers.
7. To forewarn foremen and production supervision of excessive loads at any station or group of stations.
8. To process the paperwork necessary to correct the files when authorized Alteration
by an inspection report or an Autherisetion Notice.
9. To maintain a deadload of jobs coming into the factory so that future loads might be predicted.
10. To obtain blue prints for the operators and detailed plemmin shuts
11. To arrange for the preparation of continuation vouchers where needed. status
12. To advise production expediters when requested as to current parts stocks.

In order to accomplish these functions, it would be necessary for the computers to have combination input and output devices at various factory locations. This should provide for the operator to key in his pay number and station (this could be automatic through an Addressograph type device) as well
as the drawing number of the job which he has completed and the number of pieces completed. The device should provide him with a voucher for that part which he should work on next. The central computer would require in its memory the following information:

1. The detailed planning/each part indicating each station through which it goes indicating the time per piece at that station and the caliber of employee required to do the operation.
2. A record as to the physical location of each part at the present time.
3. A record of capacities of each machine.

It would probably be undesirable for the machine to produce either a blueprint or a detailed planning sheet (the operation description) for the operators use. Therefore, it is postulated that both of these documents would be of such a form as to travel directly with the material itself from station to station.

There would of necessity be certain auxiliary equipment at the central point of the computer which would provide the payroll section with a voucher so that the man might be paid and a progress report so that production would know where various parts were located. It should be possible to accumulate total loads for a limited future period through auxiliary sorting equipment.

It is visualized that the machine would have to work at high speed, but this might be reduced considerably by the machines precalculating what job to give each operator before the operator asks.

The discussion has been centered on the requirements of a job shop but might be applied to a lot or flow type area. No estimates are included as to anticipated costs as this would depend primarily upon the department being studied. It is suggested for survey purposes that a large department such as

Large Steam Turbine-Generator or Motor-Generator be studied.
It is my recommendation that a study team be organized consisting of one advance manufacturing trainee and one very well experienced dispatcher who would function under my guidance in preparing a detailed survey as to the costs and savings to be realized from developing an electronic computer for dispatching.

Burton Grad
$6 / 17 / 54$
BG:D

Each job wover haur to haun a clesnfication as to opecator creitre requide (D, T, C)
the ruator on epproaching Th unit Snves his cand - (namie, pay no, calitue, stithon =(3) mochive hes in umivedeite menry The top pririty jot ongibs lupto 2 no. of t planmel wack) for each sta for ex cabbir enployen. the emplezer weil receive a three pat form (pumhers n typed) wide - therst oft $\#$, aty 7 pait, location, fouty 12 deijet dere of operatroi lieation to he herved to upon conpletion - pice per unit, set up prier if any widek the jot wowed he The $\mathrm{B} / \mathrm{p}+$ Plog Reend - On cony of mowher ure teher, one cory is opeetor: Neits one is Jray rowesi? to the terned in Savery an rucher pupantion, pes typing Set a guncher Cons trucher antountrid?
for onyrod t eost.

The tion 7 git selection women be a primith sptten pulticel an ant dat
 overining negative proinitu - Sens bis Pr exaypb rifft got an antometi bomen of - to oto - The aragniment f avuribry grivithei wernel huets 4 Clinely contrelep by the porn fiun the Crdew Cail itiff woves he sent to the Centins Congritas officir wher it corver bu enterve on a alesi hoor tope. Dhi deas wh inily boar tope wowen be requencel at
 Upor Recejity RM RM avil
tieker nomer be formones to the computes unit when an arpurpuits Noptin; woves mener on the Ahen to toin fortry wis pernhis the as wiel
ace jots unny Ron cansies on stow woued have heer cobled propuly upon initiol entiy to the Dirist 2 ruex Ench wech thon job due to be staties durnig the Avereedn; weeh woved he selested frim the beas lane trun. Shes new tqu woned the bu used to select form the opecation t Peng File torn the moterio lafor needed. This wried the permit the piniting at the spufi remote spennow as appopuits belere form - provely 2 cope one ts sewres an IDtay +1 to be minted in aine or not yint ion of releane or lnavailabiety \times If relerend to delviered to boention urved hav bee tiñel shen gols ane then aveedto the hive hoad tapu t a prinity celueres
(
objective of Jnvesting fumes Within definiture limits ol Risk \& Gain potentialite.
Choose that Imventmont which wiel Minimize the area minder the curne
proposel Inver $\$ 100$ in strcking pale β 多 $\# x y z$
object: Shaw Risk Gain Gum

$$
\begin{aligned}
& \text { facto: curnentusage } \\
& =7 \text { pucurik } \\
& \text { prob design ohs - } \\
& .02 \text { - } 6 \text { mos } \\
& .051 \text { y } \\
& .10 \text { 18 mos } \\
& .25 \quad 2 \mathrm{ym} \\
& \text { Deterionatim dergen } \\
& \begin{array}{l}
\text { Savip avial abb } \\
\text { my mass Buyny - }
\end{array} \\
& \text { Pric u doua fun } \\
& \$ 110 \text { to } \$ 120
\end{aligned}
$$

3-1 unut fund

$$
\begin{aligned}
& r=0 \\
& \sum_{0}^{\infty} p(r)=.75 \\
& \sum_{r=0}^{\infty} p(r)=.25 \\
& p(.25)=.5 \sum_{p}^{0} p(-) \\
& p(15)=.4 \sum_{p 1 r)}^{0} \\
& p(110)=.1 \sum_{-\infty}(n)
\end{aligned}
$$

(1) $\frac{1}{28}+$

$\frac{72}{2}$

Cummod hakt-

Get Costredutrion fr drontory Pernetois.
ducina wist Ind.
su siellemafor buch sumt.

1. Cyce Repeti- $12=\frac{1}{4}$
2. Punh \{ lleb axpuntrese
3. EOQ amentum procijel fuminas
Rwentoy nfg lost.
5.Renctio in plamed stako Fiminu
4. vesionslaf oberex.
5. Sesugi atacosations
6. Leval of rtawl

- un of collatron dhals.
a) Oncentrie
b) faimus

Cont i C Cony. G

$$
\left.\begin{array}{l}
\text { Ret on } 2 w \\
\text { Obs + del } \\
\text { Posssain }
\end{array}\right\} \begin{aligned}
& 25 \% \\
& \text { apmie }
\end{aligned}
$$

Division

FOR ATTENTION \qquad FOR APPROVAL
\qquad RETURN WITH COMMENTS
\qquad REPLY sending me copy
\qquad NOTE and ReturnPER TELEPHONE conv. of today
\qquad NOTE and \qquad
\qquad
\qquad
\qquad
From. \qquad
Division
Location ...5/54/9
Telephone No. \qquad Date. \qquad

SUBJECT

-

COPIES:

Schenectady, October 28, 1953

Managers-Finance

Gentlemen:

Enclosed for your review are several copies of a draft of a proposed revised General Accounting Instruction on Cost Reductions,

This revision has been prepared by J. W. Thurlow of Cost Accounting Services after survey of the cost reduction practices in several Departments and consultation with a number of you and your cost people. The purpose has been to amplify the Instruction in certain respects and to make a clearer distinction in others in an attempt to reconcile the primary factor of supervisory incentive with the supplemental objectives of integrity and consistency in the reports. Since portions of the approach represent basic modifications, we would greatly appreciate receiving your frank opinions and suggeslions.

We shall appreciate it if you would let us have your comments by November 28, 1953.

Very truly yours,

GMM: ad
Enclosures
Keys 1,2 and 3
Group Executives
Division and Department
General Managers

GFNERAL ACCOUNTING

INSTRUCTIONS

(For Use of G-E Employees only)
TAB
No. 301
I. GENERAL

The purpose of this Instruction is to outline a standard basis for measuring specifically the effectiveness of certain cost reduction efforts.

In order to facilitate the prompt measurement of actual accomplishments against cost reduction objectives and budgets, it is customary (1) to compute cost reduction results in terms of budgeted rather than actual output and (2) to report in the current period the estimated savings for a full year rather than only for the remaining months of the current year. For these reasons, the aggregate amount of the specific cost reductions reported in any one year will not be fully reflected in operating results for that year. Rather the profit and loss statement of a Department for the current period will reflect the results of only a portion of the cost reductions reported in the current year plus the results of reductions reported in prior years. This discrepancy between the period in which cost reductions are reported and

whyine amis

 the periods in which they are included in operating results should not, however, affect the basis of computation of cost reductions. The amount of each cost reduction should represent the saving in cost or expense which will be reflected in the Company's income from sales (although not necessarily in the current year) provided actual output is equivalent to budgeted output.
II. DEFINITION

Cost reductions may be defined as the lowering of the accepted standards of cost of either a product or a specific element of cost not directly related to a product. A cost reduction should result from a specific project, program or individual effort for the purpose of reducing costs by means of simplification of design; improvement or elimination of a method or procedure; conservation of materials and supplies, or substitution of less costly materials, supplies, or services; purchasing negotiations affecting previously established sources, prices and terms of purchase; or any combination of these.

While it is recognized that cost reductions do occur as a result of changes in investment, because of the relatively high proportion of intangible factors entering into the evaluation of such cost reductions, they should not be included in cost reduction budgets. Likewise, the reporting of such cost reductions should be confined to a memorandum basis.

In the foregoing definition, the term cost includes not only direct material and direct labor but also specific elements of indirect manufacturing expense, product engineering costs and expenses, distribution expense and administrative expense.

III. EVALUATION

Reported savings should represent only actual validated instances of the decrease in or avoidance of expenditure. The following consideractions should be taken into account in evaluating savings for various cost elements:

1. Direct material

Reports of direct material savings should represent reductions in usage or usage at less cost accomplished through the efforts of the Department as a result of planning or design changes or negotiated reductions in established prices. Savings reported from the substitulion of a purchased item for an item manufactured in the reporting Department or the reverse should ordinarily be evaluated by comparing the vendor's delivered selling price with the normal shop cost of the item.

Market fluctuations, voluntary price cuts and corrections of $\}$ how about errors on invoices should not be included as cost reductions.

2. Direct labor

Reports of direct labor savings should be confined to reductions in the cost of direct labor resulting from changes in planned labor operations or reduced piecework prices as the result of product redesign or replanning the job. Savings resulting from a change from established daywork to incentive may be included as a cost reduction.

3. Spoilage and extra costs

Spoilage and extra costs savings should be considered cost reductions only when the project resulted in a change directed specifically at reducing spoilage losses and extra costs, and only when the saving can be definitely attributed to the change rather than a general impprovement in efficiency. Elimination of rework due to defective tools which are correctable through normal maintenance operations should not be included as a cost reduction.
4. Indirect manufacturing, product engineering and commercial and administrative expenses

Savings should be limited to specific reductions in (1) expense labor which is actually removed from the payroll or transferred without replacement to an activity representing an additional volume of work or
 (2) expense materials. Savings in total indirect manufacturing and product engineering expenses that result from a decrease in production volume or savings in unit indirect manufacturing and product engineering expenses that result from an increase in production volume should not be considered cost reductions.
\qquad

All cost reductions involving a labor saving should also include provisions for reductions in overhead expense directly related to the labor involved. This does not mean that the normal overhead rate or theoretical overhead factors should be applied to labor reductions but rather the items of overhead expense that are actually eliminated as a result of labor savings, for example, Employee Benefits expense.

Savings which require the purchase of new machine tools or replacement of an old machine tool should be reduced by one year's depreciation at normal rates (in the case of new tools) or the net annual increase in normal depreciation (in the case of a replacement tool). Full cost of new machine tools and their installation will not be considered in evaluating the saving. tow is this deprecated

In the redesign of a product or a change in method or material, the savings should be measured in terms of the specific differences in direct material, direct labor, and those manufacturing expenses which are affected by the change. These savings should be adjusted by the deduction of one year's amortization of the engineering and tool expenditures which were necessary to create and put into effect the change in manufacture. Expenditures for new dies, jigs, fixtures, templates, etc. should, for this purpose only, be considered as amortizable over the expected useful life of the tools.

5. Transportation

Savings in incoming or outgoing transportation because of change in terms, freight classification, reductions in weight, etc., as the result of cost reduction effort should be reported as cost reduction savings.

6. General

Savings on new products or products redesigned for higher performance standards should not be inflated by the reporting of decreases in starting costs. Only savings which can be realized after the elimination of starting cost difficulties should be considered cost reduclions.

Where a cost reduction involves both increase and decrease in cost and the two are obviously related and readily ascertainable, only the net of the increases and decreases should be reported as cost reduction savings. Changes of a temporary nature only should not be reported as cost reductions.

Cost reductions should be reported at such time as the proposed changes are incorporated into the regular operating routine and should be computed on an annual rate basis as follows:

1. Products included in original budgeted manufacturing load:

Annual rate based upon the original budgeted production rate for the current year.
2. Products not detailed or included in original budgeted manufacturing load:

Annual rate based upon the anticipated annual production rate at a normal production level.
3. Special equipment or design that will be discontinued during the year:

Base computation on the specific order or the quantity still to be manufactured.

V. REPORTS

A report of cost reductions, evaluated and computed in accordance with this Instruction, should be submitted monthly to the Manager-General Accounting Services Department on a form similar to the attached Exhibit A in those cases where accumulation and consolidation of such data has been requested by the responsible Group Executive.

In instances where two or more Departments cooperate in effecting a cost reduction, they should matually agree upon the portion of the reduction to be reported by each.

In certain cases cost reductions originated by one Department have application in other closely allied Departments and are adopted bv the two or more Departments at about the same time. In these instances the Department originating the cost reduction should report (1) the portion applicable to its own operations as a regular cost reduction and (2) the amount of saving realized by the other Departments on a memorandum basis, as recognition to those responsible for the work. The other Departments which have benefited from the idea may report the portion applicable to their operations provided the origin of the reduction is clearly indicated by footnote.

A budget of anticipated cost reductions may be requested each year showing information similar to that on the attached Exhibit A.

It is essential that the budgeted amount and the budgeted percent of output be established on the same basis as will be used in reporting actual results so that a correct measure of accomplishment in relation to budget is subsequently shown.
\qquad Department
COST REDUCTION REPORT
Period ending \qquad
Current Month
at an Annual Rate

Annual Budget $\%$ of Output-a)

Savings affecting own operations

Direct Material
Direct Labor
Expenses:
Nanufacturing
Engineering
Transportation
Commercial and Administrative

Total

As a memorandum:
Savings effected for other Departments-b)
(a- Annual budgeted output at manufacturing cost
(b- Show details by Department and type of reduction

Hof EL LSWORTH -

1) Nefur t desentho detecmuntin of ABE Clati.
2) I/o olyitiues samp. os plivitrosek
A) Arkunig $2 \ln$ in Prod tives
(B)
C)
3) Econ $a_{0} H_{1}+T \ldots .$.
4) Desplete + Surplus

Paformang an $A B C$ andlya. for Snventry Continl Purpose

1) Seltermine level of analyou - firitt
2) Mith mes | int fo $\overline{=} \rightarrow$
$\begin{array}{ll}\text { Moth miy } \\ \text { hob } & \text { ind } \\ \text { Stark oury }\end{array}$ mun to mily subames.
3) Agregat in somis inteleyeir
powt hami
Pymen witc n ank cogs
Pmincho sum
4) Bet berajet ant lita on in ite.
5) Gale yu\} mlen
6) anaye in dexcentryi Agunion
7) Semmange tetae \& er 1%.
8) plit nemes of ? romu 5 ? ppors
9) motherkeal' pte

Libor Smpet delermintion

Puppacs for mate det.

\rightarrow 9 dif codes

Mona for Eigny 2 m

Combie fuet setion on ea mach

$$
\begin{aligned}
& \text { Do puespection - filed widerelumit } \\
& \text { on Call - hull I narte } \\
& \text { put sio, } \mathrm{reg} \text { co } \\
& \left.\begin{array}{l}
\text { ispanto } \\
\text { int }
\end{array}\right\} \text { both corue; }
\end{aligned}
$$

fill ai qta, souting an heate-Sounce (Crt cale gity on deut. cony) Lup rthegri fi/e +1 cone. ofte lom to 2 sendw $+1 / 2+1 / 2$ math, ut dentecil set excentany $18 \% /-\frac{1}{2}$

\qquad

$$
\frac{1}{19} \text { sen } 11=30 \text { temes }
$$

$$
\frac{3 \times 20}{1 \times 2}=6
$$

+ GenC ta

$$
32 \text { lams }
$$

$$
\begin{aligned}
32 \times 25= & 800 \text { Caud } 500 \text { nup } \\
& =\text { actund }
\end{aligned}
$$

may ajeh $=9$ nos.

$$
\begin{array}{r}
25 \times 37 \times 9=8325 \text { max } \\
9500 \text { act }
\end{array}
$$

Pine foked

$$
21 \text { montho }
$$

fly Tan (Crs)
fuik out all mate cands to Tom Gole thet $d=1$

$$
c=l
$$

Feh

$$
\begin{aligned}
& d=1+2 \\
& c=1+2
\end{aligned}
$$

fortal 4 :

$$
\begin{aligned}
& d=9 \\
& c=9
\end{aligned}
$$

Cp qty $\%$ en cosce for ra bu ea carar
स $32 \times 100=3200$ 告

chaer

KP mate tomel caves for ea mo.

$21 \times 3=63$ cach to reprerent entri prad seled.

$$
\begin{aligned}
& M^{t} \\
& t=1,2, \ldots, 12
\end{aligned}
$$

$$
L^{t}
$$

$$
t=1,2, \ldots, 12
$$

$$
m^{t}=\sum_{i=1}^{J} \sum_{i=1}^{J}\left(M_{i j} \cdot Q_{j}^{t+\alpha_{i j}}\right)
$$

$J=25$

$$
I=32
$$

$$
\begin{gathered}
L^{t}=\sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{c=1}^{c}\left(L_{i j}^{e} \cdot Q_{j}^{t+c}\right) \\
C=9 \\
J=25 \\
I=37
\end{gathered}
$$

GENERAL ELECTRIC

COMPANY
1 River Road, Schenectady 5, N. Y.

UNITED STATES SAVINGS BOND

This Bond is of value only to registered owner. Finder Please Return to Owner or to General Electric Company

STRICTLY PRIVATE

KEEP IN A SAFE PLACE

The enclosed United States Savings Bond was issued against the accumulated deductions in your installment account at the end of the month and year shown in the upper right-hand corner of the bond.

This bond should be carefully examined, and any discrepancies in amount, denomination or inscription should be immediately reported to your payroll division. Changes in address on Series E bonds already issued need not be made.

Do not cash this Bond except in a real emergency. The longer you hold it, the better it gets.
$\left.Q_{i}^{t}\right\}$ - Eevitence or key columin -
Each cal to hase time t and significanc. The $\operatorname{trg}_{\text {to }}$ to inkicater Ay the pruine sunching
If month $1 \operatorname{con}$ tor 1 mo Need 24 cas at max. 20coses on so? 4 ro dyjs 1 menry, seation
\(\left.\begin{array}{l}M_{i n}

d_{i j}\end{array}\right\}^{-}-\)| sdijits fin monny |
| :--- |
| zdijit fo mane col |

\qquad
anty min cosh 1-80 fore cash use lea mun uni egeni. conerzum, t cal an Q Cns

Aisy ita onde. zohjitmem.

Masta cans
1-2 xtancos - entiri cans (i)
3-4 hashenh - (1)
5-6 hoonth cole (d)
7 it out $M_{i j}$
$12-[Q+7$ inte ; in $\ldots(t+c)]$
1] ficher we

7 mendes percost $3 \cos h / j \mathrm{~s}$

Snt $Q \cos$ by d celotr; GP Sout out acar in resut fo dev M4. Csy

Analyoi of material + dekn seput Thterminats
Nefintion:
$M_{i}=$ materil $\cos t$ o iten i
$L_{i}=$ Sabor cot of iten i
$M_{i j}=$ materil cost f itenniusere in mence
$L_{i j}=$ lobsecot f itmen ased in moralj

$$
d_{i j}=
$$

materie leare this for part i on mave j
$L_{i j}^{c}$ - Lebor cort $\}$ itai i nad in an.el j 1 dunn toin bere the $e^{\pi /}$ penil of timis byfor shep nent of π nereve
$Q_{;}^{t}=$ Juantity of mande jnchedidel to be sipmied deming peuist.
The prosevetion Schedule speafies Q_{j}^{t} for en timi peuaid from $0 \leqslant t \leqslant T$. we wif asemus that $d,=$ and t anoce in the san units of this, days, whech, wovethe etz

Jatles an availatle estsblesking:
$M_{i j}$ and $\alpha_{i j}$ for every i and j
$\angle_{i j}^{c}$ for every i ans j
Thenfor -

$$
M_{i}^{t}=\sum_{j=1}^{J}\left(M_{i j} \cdot Q_{j}^{t+d_{i j}}\right)
$$

when e $J=$ the last hovel ho.
Sotendeng This

$$
M^{t}=\sum_{i=1}^{I} \sum_{j=1}^{J}\left(M_{i j} \cdot Q_{j}^{t+d_{i j}}\right)
$$

where $I=$ last item
Similarly for The labor

$$
L_{i}^{t}=\sum_{j=1}^{J} \sum_{c=0}^{c}\left(L_{i j}^{c} \cdot Q_{j}^{t+c}\right)
$$

when $C=$ max such for any pat
and Therefore

$$
L^{t}=\sum_{i=1}^{I} \sum_{c=1}^{c} \sum_{j=1}^{J}\left(L_{i j}^{c} \cdot Q_{j}^{f+c}\right)
$$

Yo2/ Ye minut wia.a fora prationke t

$$
\begin{gathered}
\longleftrightarrow \\
402
\end{gathered}
$$

$$
t-c
$$

Later dota Canv-

$t=$	$5-7$	
Q_{11}	Q_{1}	16
Q_{12}	Q_{2}	22

Pare Sched Cand

$\overline{\text { PSD }}$ sy hy $\frac{t 78}{48}$

Labor 2mput

hute 2unt
.0.0 (i)
… miven |t.a) a.M
328 blokletes

The hight the $\frac{M_{0}}{L_{0}}$ wotto the kiglen the Cw.
Dhe lighen the $\frac{x_{F}}{L_{E}}$ wotes the fover the Cnv. The C na. ai the nomiol burenin weib In less that, lemen the bigh th कीज nate the hythe The C no. she $\frac{X_{1}}{L_{0}}$ sotio is su inherent checacteritio of a budenan + not Contwellaik by sanagenil efficiony.
The $\frac{x_{\Sigma}}{L_{L}}$ satio depences an $\frac{x_{0}}{t_{0}}$ and the shepe - binth (i) of the cyele of manupertur

$$
\begin{aligned}
& \angle M H G \\
& \text { OUTPNT. } \\
& \left.\begin{array}{l}
\text { M } \\
10.2 \% \\
\text { IME }-\frac{35 \%}{22 \%} \\
27.2
\end{array}\right\}_{25.2}^{\cos T}
\end{aligned}
$$

InNENTorey

$$
\begin{array}{r}
\angle-8 \% \\
M-76 \% \\
\operatorname{IME} .205 \% \text { of } 8 \% \\
(16.4 \%)
\end{array}
$$

$$
7.0=4.5
$$

13 WK MAEG. EYCLE

$$
F 3 \quad 145 \quad 3640
$$

$$
\begin{aligned}
& \text { COct ang Cych }=\frac{1}{\text { To }}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Dhr }=\operatorname{Cgch} \times \operatorname{cost} / \mathrm{um} t \times \text { no unver/h }
\end{aligned}
$$

$$
\frac{M_{I}}{L_{I}} \text { oxtumin co ainipitfores }
$$ Suzvien -

$$
\begin{aligned}
& \text { Eflych }=\frac{\text { dwt }}{\text { ant }} \times 12 \\
& \frac{1}{10}=\text { Iffent Gel } \\
& 3 \text { - avzat Eyca } \\
& \frac{1}{70} \\
& \text { Plonned Gela }
\end{aligned}
$$

$$
\begin{aligned}
& 600
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\Delta T_{0}}{T O_{1}}=\frac{\left(Q_{2}+R_{2}\right)\left(P_{1}+R_{1}\right)-\left(Q_{1}+R_{1}\right)\left(P_{2}+R_{V}\right)}{\left(P_{2}+R_{2}\right)\left(P_{1}+R_{1}\right)} \frac{L_{0}}{L_{1}} \times \frac{\left(P_{1}+R_{1}\right)}{\left(Q_{1}+R_{1}\right)} \frac{L_{1}}{L_{0}} \\
& \frac{\Delta T_{0}}{T D_{1}}=\frac{\left(Q_{2}+R_{2}\right)\left(P_{1}+\dot{R}_{1}\right)}{\left(P_{2}+R_{2}\right)\left(Q_{1}+R_{1}\right)}-1
\end{aligned}
$$

define:

$$
\begin{aligned}
& A=Q+R \\
& B=P+R
\end{aligned}
$$

$$
\frac{\Delta T_{0}}{T_{0}}=\frac{A_{2} B_{1}}{B_{2} A_{1}}-1
$$

* $\quad \frac{\Delta T_{0}}{T_{0}}=\frac{A_{2}}{B_{2}} / \frac{A_{1}}{B_{2}}-1$

$$
\begin{aligned}
& A=\frac{M_{0}}{L_{0}}+2 M E \text { nate }+1 \\
& B=\frac{M_{I}}{L_{I}}+\text { mME note }+1
\end{aligned}
$$

$E=$ Comparative Measure of Effectiveness

$$
E=\frac{\left[\frac{\Delta T T_{0}}{T_{0}}\right] T_{0}^{a t}{ }_{1}^{a t}-T_{O_{2}}^{a t}}{T_{0_{2}}^{\text {att }}}
$$

$$
\begin{aligned}
& \frac{6.24}{5.84} \times \frac{9.11}{9.51}=1 \\
& \frac{1.068}{5 . 8 4 \longdiv { 6 . 2 4 }}-03 \\
& \frac{584}{6000} \quad 3.2 \% \\
& \frac{1) 4}{4960} \text { I/0 } \\
& \begin{array}{r}
4960 \\
4612 \\
288
\end{array} 2.4
\end{aligned}
$$

$$
\begin{aligned}
& 1.068 \frac{4755}{1550} \\
& \frac{9)^{-8} 14}{144} \\
& \begin{array}{l}
154^{4} \\
5340
\end{array} \\
& 910 \mathrm{~V} 4^{4}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\begin{array}{l}
M_{0} \text { - material } \\
L_{0}-2 \text { Lator } \\
H_{0}-2 m_{1} \varepsilon .
\end{array}\right\} \text { eir outpuet } \\
& \left.\begin{array}{l}
H_{s}-\text { hatuivil } \\
L_{2}-\text { Labov }^{H_{0}}-\underset{\text { dime }}{ }
\end{array}\right\} \text { in inv. Thy } \\
& T_{0}=\frac{\text { autnet }}{\text { inventry }}=\frac{m_{c}+L_{0}+H_{0}}{M_{s}+L_{c}+H_{y}} \\
& \frac{M_{0}}{L_{0}}=Q ; M_{0}=Q L_{0} \\
& \frac{M_{1}}{L_{2}}=P \quad ; \quad M_{I}=P L_{I} \\
& H_{0}=(R-1) L_{0} \quad R=\text { IME rate }+1 \\
& H_{I}=(R-1) L_{x} \\
& T_{0}=\frac{Q L_{0}+L_{0}+(R-1) L_{0}}{P L_{I}+L_{I}+(R-1) L_{2}} \\
& T_{0}=\frac{(Q+R)}{(P+R)} \frac{L_{0}}{L_{I}} \\
& T_{O_{2}}-T_{0}=\frac{\left(Q_{2}+R_{2}\right)}{\left(C_{2}+R_{2}\right)} \frac{L_{0}}{L_{2}}-\frac{\left(Q_{1}+R_{1}\right)}{\left(P_{1}+R_{1}\right)} \frac{L_{0}}{L_{I}} \\
& \Delta T_{0}=\frac{\left(Q_{2}+R_{2}\right)\left(P_{1}+R_{1}\right)-\left(Q_{1}+R_{1}\right)\left(P_{2}+R_{2}\right)}{\left(P_{2}+R_{2}\right)\left(P_{1}+R_{1}\right)} \frac{L_{0}}{L_{I}}
\end{aligned}
$$

C

$$
\begin{aligned}
& , O 1=101 \times\left[\frac{O L}{O L \sigma}\right] \text { 万parame } \\
& (\mathrm{OL}) \text { madmos }
\end{aligned}
$$

$$
\begin{aligned}
& T_{0}=\frac{M_{0}+L_{0}+H_{0}}{M_{I}+L_{I}+H_{I}} \\
& H_{0}=\left(C^{\prime \prime} L_{0}\right. \\
& H_{2}=\left(C^{\prime}\right)_{2} \\
& M_{0}=Q L_{0} \text {, or } Q=\frac{M_{0}}{L_{0}} \\
& M_{I}=P L I \quad P=\frac{M_{I}}{L_{I}} \\
& T_{0}=\frac{Q L_{0}+L_{0}+C Q_{0}}{P L_{I}+L_{2}+C L_{2}}=\frac{(Q+1+C) L_{0}}{(P+1+C) L_{I}} \\
& T O_{2}-T O_{1}=\frac{\left(Q+1+C_{2}\right) 40}{\left(P+1+C_{2}\right) 4}+\frac{\left(Q+1+C_{1}\right) 40}{\left(P+1+C_{1}\right) 4=} \\
& \left(p+1+c_{1}\right)\left(a+1+c_{2}\right) u_{0}-\left(a+1+c_{1}\right)\left(p+f+c_{2}\right) L_{\text {. }} \\
& \angle=\left(p+1+c_{2}\right)\left(p+1+c_{1}\right) \\
& =\frac{L_{0}}{L_{2}} \frac{\left(P+1+c_{1}\right)\left(Q+1+c_{2}\right)-\left(Q+1+c_{1}\right)\left(P+1+c_{2}\right)}{\left.\left(P+1+C_{2}\right)\left(P+1+c_{1}\right)\right)}
\end{aligned}
$$

$$
\begin{aligned}
T_{0} & =\frac{Q L_{0}+L_{0}+(C-1) L_{0}}{P L_{I}+L_{I}+(C-1) L_{I}} \\
T_{0} & =\frac{Q L_{0}+C L_{0}}{P L_{1}+C_{I}}=\frac{L_{0}(Q+C)}{L_{I}\left(P+C_{2}\right)} \\
T_{O_{2}}-T_{0} & =\frac{L_{0}\left(Q+C_{2}\right)}{L_{I}\left(P+C_{2}\right)}-\frac{L_{0}}{L_{I}} \frac{\left(Q+C_{1}\right)}{\left(P+C_{1}\right)} \\
& =\frac{L_{0}}{L_{2}}\left[\frac{\left(Q+C_{2}\right)}{\left(P+C_{2}\right)}-\frac{\left(Q+C_{1}\right)}{\left(P+C_{1}\right)}\right] \\
& =\frac{L_{0}}{L_{I}}\left[\frac{\left(P+C_{1}\right)\left(Q+C_{2}\right)-\left(Q+C_{1}\right)\left(P+C_{2}\right)}{\left(P+C_{1}\right)\left(P+C_{2}\right)}\right] \\
& =\frac{L_{0}}{L_{1}}\left[\frac{L_{Q}+C_{1} Q+C_{2} P+C_{1} C_{2}-Q P-C_{1} P-Q C_{2}-C_{1} C_{2}}{\left(P+C_{1}\right)\left(P+C_{2}\right)}\right] \\
& =\frac{L_{0}}{L_{F}}\left[\frac{C_{1} Q+C_{2} P-C_{1} P-C_{2} Q}{\left(P+C_{1}\right)\left(P+C_{2}\right)}\right] \\
& =\frac{L_{0}}{L_{I}}\left[\frac{C_{1}(Q-P)-C_{2}(Q-P)}{\left(P+C_{1}\right)\left(P+C_{2}\right)}\right] \\
& =\frac{L_{0}}{L_{1}}\left[\frac{\left(C C_{1}-C_{2}\right)(Q-P)}{\left(P+C_{1}\right)\left(P+C_{2}\right)}\right]
\end{aligned}
$$

$$
c_{2}=S C_{1} \quad S=\frac{c_{2}}{c_{1}}
$$

$$
\Delta T_{0}=\frac{L_{0}}{L_{2}}\left[\frac{\left(C_{1}-S C_{1}\right)(Q-P)}{\left(P+C_{1}\right)\left(P+S C_{1}\right)}\right]
$$

In nowed Buswar $P>Q$
fthin is so

$$
\begin{aligned}
& \text { for } s>1 \\
& \Delta T 0=\frac{l_{0}}{L_{1}}\left[\frac{(-1(-)}{t}\right]=7 \\
& s=11 \\
& 1 \\
& \Delta 7_{0}=\frac{L_{0}}{L_{5}}[0]=0
\end{aligned}
$$

$$
s<c_{0}=\left[\frac{(+1-)}{t}\right]=
$$

Evaluation of Jumaver Taritin

$$
\begin{aligned}
& \text { (1) } \\
& M_{0}=37 \% \text { Mco } \\
& L_{0}=14 \% \mathrm{Mco} \\
& \frac{M_{0}}{L_{0}}=2.64 \\
& \text { 2ue }=2.2 \\
& M_{I}=65 \% 56 I \\
& \angle 5=11 \text {. SCE } \\
& \frac{M_{E}}{L_{I}}=5.91 \\
& A=2,64+2,20+1,00 \\
& =5.84 \\
& A=4.15+2,20+1,00 \\
& 7.75 \\
& B=5.91+2.20+1.00 \\
& =9.11 \\
& B=5.91+2.20+100 \\
& =9.11
\end{aligned}
$$

$$
\frac{\Delta T_{0}}{T 0_{1}}=\left(\frac{7.75}{5.84} \cdot \frac{9.11}{9.11}\right)-1
$$

if only IHE changes anse $J M E=2,2, M 1 E_{2}=2.6$

$$
\begin{array}{lll}
A_{1}=5.84 & A_{2}=6.24 & \frac{\Delta T_{0}}{T_{0}} \quad .032 \\
B_{1}=9.11 & B_{2}=9.51 &
\end{array}
$$

Eech Businves hes an $\left[\frac{A}{B}\right]$

$$
\begin{aligned}
C=\frac{A}{B} & =\frac{M_{0} / L_{0}+2 M_{\sigma_{n}} t+1}{M_{I} / L_{I}+\partial M_{\sigma} \text { nate }+1} \\
C & =\frac{M_{0} / L_{0}+\text { IME mate }+1}{M_{I} / L_{I}+I M E \text { nate }+1}
\end{aligned}
$$

for comparing two tienereses:

$$
\begin{aligned}
& E=\text { mesam of sthetivinen } \\
& E=\frac{\text { Toat }_{1}+\left(\frac{c_{2}}{c_{1}}-1\right) T_{0}^{\text {at }}-T O_{2}^{\text {at }}}{T_{0}^{\text {att }}} \\
& C=\frac{\frac{M_{0}}{L_{0}}+\frac{L_{0}}{L_{0}}+\frac{L_{0}}{L_{0}}}{\frac{M_{I}}{L_{I}}+\frac{H_{I}}{L_{I}}+\frac{L_{S}}{L_{I}}}=\frac{\frac{M_{0}+H_{0}+L_{0}}{L_{0}}}{\frac{M_{E}+H_{E}+L_{L}}{L_{I}}}=\frac{H_{0}+H_{0}+L_{0}}{L_{0}} \cdot \frac{L_{0}}{M_{2}+L_{+}+L_{S}} \\
& T_{0}=\frac{M_{0}+H_{0}+L_{0}}{M_{x}+H_{x}+L_{z}} ; \\
& C=\frac{M_{0}+\mu_{0} L_{0}}{H_{s}+H_{5}+L_{x}}+\frac{L_{x}}{L_{0}}=T_{0} \frac{L_{x}}{L_{0}}
\end{aligned}
$$

I

$$
\begin{gathered}
l=f(t) \\
\text { Arew }=\int_{0}^{T} t d t=\int_{0}^{T} f(t) d t
\end{gathered}
$$

$$
\begin{gathered}
m=g(t) \\
\text { Area }=\int_{0}^{T} m d t=\int_{0}^{T} g(t) d t
\end{gathered}
$$

- proil C_{2} mowh thet

$$
\int_{0}^{T} L_{I} d t=\int_{0}^{T} f(t) d t
$$

foni $M=$ sunk that

$$
\int_{0}^{T} M_{2} d t=\int_{0}^{\pi} g(t) d t
$$

$$
M_{z} T=\int_{0}^{T} g(t) d t
$$

ath $t=7$

$$
f(t)=M
$$

$$
t=0
$$

$$
s(t)=0
$$

$$
\begin{aligned}
& w h t=7 \\
& f(t)=L_{0} \\
& w w^{t}=0 \\
& S(t)=0
\end{aligned}
$$

$$
\begin{aligned}
& l=k t \\
& \int_{0}^{T} l d t=\int_{0}^{T} k t d t \\
& = \\
& \left.=\frac{k T^{2}}{2}+C-C\right]_{0}^{T}=\frac{k T^{2}}{2} \\
& = \\
& \frac{L}{2}=\frac{K T}{T}=k
\end{aligned}
$$

$$
L_{z} t=f(t) t
$$

$$
\begin{aligned}
& \angle=k t \quad=k T \\
& \int_{\text {/or }}^{T} k t k=\left[k^{2} t\right. \\
& \left.\frac{k^{2} J^{2}}{2}+C\right]_{0}^{2} \\
& \frac{k^{2} t^{2}}{2}+\frac{k^{2} T^{2}}{T^{2}}
\end{aligned}
$$

$$
\frac{T_{0}}{T_{0_{2}}}=\frac{\frac{\text { Gumit }}{\text { Tim }}}{\frac{\text { num }}{x}}
$$

1

Lo

$$
\begin{aligned}
& \text { Mo if sitfive. } \\
& \frac{L o r}{M o r}>\frac{L_{0}}{M O_{1}} \quad \text { if haminer }
\end{aligned}
$$

for funthe Guntysi asome

$$
\frac{H}{L}=\text { ConthT }
$$

$$
L_{I}=
$$

 dount cyoli for
hate + Pht

$$
\frac{L_{I}}{L_{0}}=
$$

$$
\underbrace{f_{n=1}+1}
$$

$$
M f=\sum_{N}^{0} g(t)
$$

$$
\varepsilon_{r}^{0} f^{(t)^{0}}
$$

$$
\begin{aligned}
& \frac{T O_{1}}{T O_{2}}=\frac{\left(1+R_{2}\right) L_{0}, M_{0_{1}}+1}{\left(1+R_{2}\right) L_{O_{2}} / M_{0_{2}}+1} \times \frac{\left(1+R_{2}\right) L_{I_{2}} / M_{2}+1}{\left(1+R_{1}\right) L_{I_{1}} \text { IMO }+1} \\
& T_{0}=\frac{L_{0}+M_{0}+N_{0}}{L_{I}+M_{+}+H_{2}}=\frac{\frac{L_{0}}{M_{0}}+1+\frac{R L_{0}}{M_{0}}}{X} \\
& =\frac{\frac{(1+R) L_{0}}{H_{0}}+1}{\nless}
\end{aligned}
$$

$$
\begin{aligned}
& I=M_{I}+L_{I}+H_{I} \\
& 0=M_{0}+L_{0}+H_{0} \\
& T / 0=\frac{0}{I} \\
& M_{I}=K L_{I} ; \quad K=\frac{M_{I}}{L_{I}} \\
& M_{0}=R L_{0} \quad R=\frac{M_{0}}{L_{0}} \\
& H_{I}=Q L_{I} \quad Q=P=1+Q \operatorname{RN} \quad T_{0} \\
& H_{0}=Q L_{0} \quad P=\frac{R L_{0}+L_{0}+Q L_{0}}{K L_{I}+L_{I}+Q L_{E}}=\frac{L_{0}}{L_{I}} \frac{(R+1+Q)}{(K+1+Q)} \\
& T / 0=
\end{aligned}
$$

$$
\frac{L_{I}}{M_{I}}=\frac{\sum_{n}^{0} f(t)}{\sum_{n}^{0} g(t)} \frac{L_{0}}{M_{0}}
$$

$\frac{L_{1}}{M_{0}}$ is an intuent prut y a buesmei mearm nian ? pechut degur it ity.etan

Let's Simplify -

$$
\begin{aligned}
& M_{2}=M_{0} \\
& L_{I}=\frac{L_{0}}{Z} \\
& \text { DME nate }=2.00 \\
& \frac{M_{I}}{L_{I}}=\frac{2 M_{0}}{L_{0}} \\
& \frac{M_{0}}{L_{0}}=\frac{2.5}{1} \\
& C=\frac{2.5+2 \cdot 0+1}{5.0+2.0-1}=\frac{5.5}{8.0}
\end{aligned}
$$

Beiter mange ment

Det up soo ar 2ty call
by Somen rugren nuy tahigion
wise bo minivize ut youg cot

$$
\begin{aligned}
& \text { Gi guncoting fun } 7 x_{i 0} \\
& N_{1}=5 y \text { cian } \\
& =A_{1} x_{1}+\frac{B}{x_{1}}
\end{aligned}
$$

when $A=$ 2iventry \cos f furctivi
$B=$ aveluyg +atip, cor function

$$
\begin{array}{rl}
\psi_{1} \geq U & U=\text { yoly unge } \\
\psi_{1}=q & F=\text { minime s sty } \\
\frac{x_{1}}{q}=I & I=\text { intager } \\
\psi_{1} \sum_{0} & \\
N_{1}=I & I=\text { citge }
\end{array}
$$

$$
p=\text { prie defferntil for Gua nis pundens }
$$

Applicaton I a
quentegor fiofry ander

1) Dut rew sikedily tuh-
2) Det new depmitimy puluin
3) Dut mune Wo or reterman sontury
4) Int shenged m / g yoles
5) Dest revind nutemons plans

6) x It for Ahesfatfeintifis

SCHEDULING

In order to determine an optimum input schedule it is necessary to have some means of testing various schedules and to develop a plan or technique for finding the best one.

The most straight forward approach to the evaluation of a schedule would seem to be the creation of a mathematical model which would simulate the behavior of the factory under study. Then, the next step would be an evaluation based upon the results of the factory model operating on a certain input schedule.

With the factory model and the evaluation equation determined, the only remaining variable is the input schedule itself. In the factory, output is normally specified in terms of customer wants or anticipated wants; this usually establishes a quantity of a specific product desired at a specific date. Therefore, the end result, if within the capacity of the shop, is completely specified and flexibility exists only in the starting date of a lot through the shop and in the priority system used within the factory to determine individual job sequence.

Let us look at each of these three phases of schedule determination separately; for convenience we shall start with the evaluation, then discuss the factory model and finally the variation of the input schedule itself. In general the discussion will be centered on a job control operation, since, with either a batch control or a flow control set-up the problem becomes simpler and easier to analyze,

EVALUATION

In evaluating the effects of an input schedule on the factory four measuring sticks seems most significant:

1. Inventory Carrying cost for the lot being manufactured.
2. Equivalent penalty for late completion of the lot.
3. Non-productive man-machine time.
4. Set-up costs.

There is a fifth function - that of the cost of scheduling itself; however, this tends to be inversely dependent upon the lot size which for the sake of simplicity, is being omitted from this discussion. Therefore, it will be assumed that the actual cost of preparing a schedule will be identical in all cases.

The cost of carrying inventory through the entire cycle can be represented in two different ways. The more accurate is as follows:

$$
\begin{aligned}
& \text { Cost of Carrying INV }=I\left\{\left(D_{c_{n}}-D_{s_{0}}\right) M_{0} \nleftarrow\left(D_{c_{1}}-D_{s_{1}}\right)\left(L_{1} \not f L_{L_{1}}\right) \frac{1}{2}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.\nrightarrow\left(D_{c_{n}}-D_{s_{n}}\right)\left(L_{n} \not+R I_{n}\right)\right\} \notin\left(\text { if } D_{d}>D_{c_{n}}\right),\left(D_{d}-D_{c_{n}}\right)\left(M_{0} \not \subset L \neq R L\right)
\end{aligned}
$$

Where:

$$
\begin{aligned}
& D_{s_{0}}=\text { Date material received } \\
& D_{S_{1}}=\text { Date start list operation } \\
& D_{c_{1}}=\text { Date completed list operation } \\
& D_{d}=\text { Date due complete } \\
& M_{0}=\text { Material Cost } \\
& L_{1}=\text { Direct Labor list operation } \\
& R=\text { Ratio of IME to Direct Labor } \\
& L=\sum_{i=j}^{n} L
\end{aligned}
$$

$I=$ Cost of Carrying Inventory ratio per day.
A Good Approximation is:
Cost of Carrying INV $=$ LAC
$A=$ the Average Inventory over the entire cycle.
$C=$ Entire cycle in days.
Where: $A=M_{0} \neq \frac{1}{2}(L \not \subset R L)$

$$
c=D_{c_{n}}-D_{s_{o}} \nleftarrow\left\{\begin{array}{l}
0 \text { if } D_{d} \leqslant D_{c_{n}} \\
\left.D_{d}-D_{c_{n}} \text { if } D_{d}\right\rangle D_{c_{n}}
\end{array}\right.
$$

Either of these two equations may be used for inventory evaluation. The second method is generally to be preferred for simplicity and ease of manipulation.

There are three areas of cost which need to be investigated in order to determine the equivalent penalty for late delivery. If a finished product is being shipped directly to a customer, the customer dissatisfaction may be measured through a penalty clause in the contract; however, if there is no such clause then an estimate must be made of the losses which may be suffered through the customer's not obtaining a delivery on the date desired; this might be obtained by estimating the amount which you would be willing to pay to avoid late delivery. Where the product is used as a portion of a final assembly this factor could be a measure of the direct extra cost which would be caused in the assembly department in order to avoid late delivery of the final product. The net cost of customer dissatisfaction can be expressed as ($D_{c}-D_{d}$) $F R$, where D_{c} equals the actual date the part is completed, D_{d} equals the date due complete, F equals the full value of the part, and R equals the customer dissatisfaction ratio per unit product value per day.

The second cost of late delivery is involved in the necessity for carrying the inventory for this lot for a period of time longer than planned. This has been covered in the cost of inventory for the product, by including the time period ($D_{c_{n}}-D_{d}$.

The third area of cost for late delivery is the cost of carrying inventory for other parts which are used together with this part. This is only applicable where the product is used in further assembly. The cost is equal to ($D_{c}-D_{d}$) BI where B equals the inventory value, prior to assembly, of all parts held up pending delivery of this part and I equals the cost of carrying inventory ratio.

The next basic function to be investigated is the non-productive cost when the man-machine combination is idle. The first area here is the payment of funds to operators who have not been able to produce goods because of insufficient part availability. This can be evaluated as $\left(T_{i}\right)\left(W_{m}\right)$. Where T_{i} equals the idle time in minutes and W_{m} equals the rate of pay per minute.

The second factor is samewhat more complex in that by the machines not having produced useful goods during the time period T_{i} a certain loss in output product has been experienced. This loss in output is only significant in that normal profit may have been lost and non-direct expenses not liquidated. This may be expressed as (VR $\not \subset \mathrm{O}_{\mathrm{h}} \mathrm{W}_{\mathrm{m}}$) T_{i}

Where: $\quad V=$ Replacement value of the machine tool
$R=$ Required return on Investment per minute and
Oh= Overhead to Direct Labor ratio
The fourth and last of the evaluation factors is the needed set-up costs. This can most readily be obtained through a direct comparison of the total set-up dollars expended under one schedule as against the total set-up dollars expended under a different schedule. In some jobs, especially those that use special purpose tooling, this factor may be dropped since there are few opportunities for reduction in set-up costs, except through change in lot size, which has been omitted from this discussion. It should be understood that set-up costs are considered to include not only make-ready charges but also tear-down, clean-up, and put-away costs. Other ways in which this cost may be influenced is by the combining of set-ups on similar jobs and the splitting of jobs for load purposes thereby causing additional unplanned set-ups. This can be expressed as:

Where S = actual set-up charge experienced on a given job and a given operation.

FACTORY MODEL

In preparing a factory model it was decided to imitate as closely as seemed practical actual operation, not the ideal or storybook version. This means that recognition must be made of the effect human errors have on the output of the factory. In preparing the model the operation of a factory seemed to divide itself into three areas. The first is the actual job selection method and is intimately related with the priority system associated with the schedule; this is frequently called dispatching or scheduling. The second activity is the actual transformation of the product through physical, chemical, or electrical means into something different from its original state. This is usually known as machining, assembly, or processing. The third area is the physical movement of the material from one location to another. This is material handling or transportation. Each of these basic areas will now be analyzed.

The dispatching method used in many job shops operates as follows:
A man comes to the dispatcher's window and requests the assignment of a new job; therefore, the man is the forcing function. The dispatcher has a record by operation station of the various jobs which are available for that station at that specific time. In accordance with the existing priority system the dispatcher selects the most urgent job and assigns that to the operator. At some later time the dispatcher will be notified that the job is ready to move to the next station; this may be done by having the operator come to the window for a new job. At this time the dispatcher determines what the next station is and directs a material handler to transport the material to that area. When the material has been delivered to the next station the dispatcher is informed by the material handler and a record is made at that station that the job is available. This basic selection technique will vary somewhat between different factories. However,
the key point is that no job can be moved until it has been operated upon and that no operation can be started unless the material is at that station. This can be modified by using "lap-phasing" instead of the more usual "gap-phasing". They can best be differentiated by looking at a graph of factory progress under both plans:

In this discussion "gap-phasing" will be assumed. The problems of "lap-phasing" are numerous such as determining the number of individual deliveries and therefore is not too frequently used in a job control shop; it is frequently employed in a batch control operation and reaches its ultimate in the flow control shop when the lot size is unity. The variable factors to be considered in the dispatching mechanism include the delay times in receiving information. Dispatching in the batch or flow control shop is of a somewhat simpler nature. There, the starting date may be determined a week or more in advance and it is anticipated that the various consecutive operations will be performed on these jobs maintaining the original sequence. Therefore in these areas a dispatcher only has to control the starting sequence selection. It is even possible to treat the entire group of operations as being performed at a single station; this is especially true where conveyor belts are used.

The station operation model predicts the performance of certain specific tasks during a finite time interval. There are two basic phases to look at.

First is the fixed or pattern data such as

$$
\begin{aligned}
& \text { Starting time }=T_{o} \\
& \text { Initial quantity }=x \\
& \text { Set-up time }=e \\
& \text { Time per unit }=p
\end{aligned}
$$

If the operation were perfect and there were no "lap phasing" or human or machine variations to deal with, it would be a simple matter to predict the completion time (T_{c}). $\quad T_{c}=T_{o} \neq e \not x p$
However we do not face any such ideal situation. The following "noise" factors severely affect the completion time for a lot and their specific impact is on a somewhat random basis.

Operator efficiency ratio $=f, f>0$
Hachine breakdown $a b, b=0$ for indicating machine availability.
b>0 indicates time delay until machine is available.
Operator absenteeism $\bar{a}, a=0$ for indicating operator availability.
$a>0$ indicates time delay until operator is available.
Spoilage ratio to original quantity $=s, s \geqslant 0$
Re-work ratio to original planned time $=r, r \geqslant 0$
Material, tool, blueprint and paperwork availability $m m, m=0$ for indicating availability of all factors.
$m>0$ indicates time delay until all factors will
be available.
Therefore, the actual equation which must be used for predicting the anticipated completion time ($T^{\prime}{ }^{c}$), still omitting lap phasing is:

$$
\begin{aligned}
& T_{c}^{\prime}=T_{0} \not \frac{1 \not f r}{f}(e \notin x p) \notin b \not f \cdot a \neq m \\
& \text { and at } T^{\prime} c, x^{\prime}=(1-s) x
\end{aligned}
$$

First is the fixed or pattern data such as

$$
\begin{aligned}
& \text { Starting time }=T_{o} \\
& \text { Initial quantity }=\mathrm{x} \\
& \text { Set-up time }=\mathrm{e} \\
& \text { Time per unit }=p
\end{aligned}
$$

If the operation were perfect and there were no "lap phasing" or human or machine variations to deal with, it would be a simple matter to predict the completion time $\left(T_{c}\right) . \quad T_{c}=T_{o} t e \notin x p$

However we do not face any such ideal situation. The following "noise" factors severely affect the completion time for a lot and their specific impact is on a somewhat random basis.

Operator efficiency ratio $=f, f>0$
Machine breakdown $n \mathrm{~b}, \mathrm{~b}=0$ for indicating machine availability.
b>0 indicates time delay until machine is available.
Operator absenteeism $=a, a=0$ for indicating operator availability.
a >0 indicates time delay until operator is available.
Spoilage ratio to original quantity $=s, s \geqslant 0$
Re-work ratio to original planned time ar $r \geqslant 0$
Material, tool, blueprint and paperwork availability $m m, m=0$ for indicating availability of all factors.
$m>0$ indicates time delay until all factors will be available.

Therefore, the actual equation which must be used for predicting the anticipated completion time ($T^{\prime} \mathrm{c}$), still omitting lap phasing is:
$T^{\prime} c=T_{0} \notin \frac{1 \not f r}{f}(e \notin x p) \notin \mathrm{b} \notin \cdot \mathrm{a} \notin \mathrm{m}$
and at $T^{\prime} c, x^{\prime}=(1-s) x$,
where $x^{\prime}=$ completed quantity and each factor is determined by an appropriate probability distribution.

One important feature of this probability arrangement is that no single run-through of a schedule will be sufficient for evaluation. It will be necessary to use a statistically determined number of tries or samples in order to predict with, say 90% accuracy, the mean evaluation for a given schedule.

However, it should be noted that each of these "noise ${ }^{\text {a }}$ factors can, with the data which is available, be statistically determined and need not be guessed or estimated. The accuracy with which the probability distributions for these noise factors is established will, to a great degree, determine the usefulness of the final results.

The third function in the factory, that of material handling, can also be analyzed statistically, if necessary. In a batch control or flow control operation where automatic or semi-automatic movement exists, this transportation mechanism is exceedingly simple in that it is an essentially predictable function. However, in the job control shop, indications are that this can be a random relationship not fixed by the source station and delivery station or by their distance, time of day, or any other determinable factor. All this means is that the transportation time may have to be derived and used in the same manner as the noise factors.

VARIATION OF INPUT SCHEDULING

The basic objective of all this evaluation and factory simulation is the improvement of the input schedule itself. Two basic approaches suggest themselves: one is the possibility of random variation of the sequence of items in the input schedule, thereby providing a set of different priority systems. Each new sequence
that is attempted should result in some change in the net evaluation. However, the difficulty here arises in the tremendous magnitude of the available permutations. For instance, for just 100 jobs the total number of arrangements for a single operation is 10^{158}. If there were, say 10 operations to be performed on each job, then this number would have to be raised to the tenth power to cover all of the various possibilities. Even with the fastest computer on the market today such a number of trials is not economically feasible especially since the time consumed would be such to make the data old before an answer was obtained. A second possible fallacy in this random arrangement approach is the absolute magnitude of the noise factors compared to the average cost variances. It should be possible statistically to compute at what magnitude of the noise factors the cost variances are insignificant.

However, this above technique might be applied through random arrangement of stratified data. For instance, if the various jobs to be manufactured were arranged in sequence based upon their due complete date and the amount of work left to be performed then it would seem rational to establish rules that no job may be moved more than n positions down this stratified table. This approach can be even further simplified by dividing the jobs into a set of groups of n items each. Then, within the group random arrangements might be tested, but no job could be shifted to a different group. However, even this approach leads to voluminous trials since if there were 100 jobs and 10 jobs to each sub-group there would be $\left(3.6 \times 10^{6}\right)^{20}$ trials. Another possibility is testing of each group independently and then fixing permanently the results of this group prior to the testing of the next group. However, this would have to be proven as statistically valid. All of these approaches require the weekly (or other short period) re-analysis in order to determine the comparative priority numbers.

The second basic way of approaching the variation of the input schedule is by using an Operations Research type analysis. This involves a study of the effect that various input factors have on the output factors and by appropriate correlation establishing the anticipated variation in output from a specific change in input. Certain examples may be cited which explain more clearly this approach. As stated previously, an input schedule specified certain factors. First, it establishes the quantity desired at a certain date. Next, it provides for each item a starting date supposedly selected so as to meet the due complete date. Third, associated with the schedule, is a basic priority system which gives each job in the factory a comparative preference. Since, in normal operation the quantity and finish date are fixed the only variation that can be made is the starting date and the nature of the priority system itself. Now if an adequate factory model exists it should be possible to intelligently vary the basic manufacturing cycles (hence the starting dates) for the various items. The examination of these results should give excellent clues as to what the optimum cycle should be for each item. Another series of tests might be conducted having the factory model choose the jobs in accordance with different priority systems such as dispatching by due complete date, by starting date, by starting date for each operation, by selected numbers, or by a combination of due date and anount of work to be done. Upon completion of these studies it would seem to be statistically possible to determine for a specific plant the best priority system to use. These studies need not be done every week, but could be performed at semi-annual intervals or as the key factors changed.

There is a further advantage to this approach in that once an effective factory model exists it would be relatively easy to pre-compute the effect changing product mix or changing output would have on the factory.

ANALYSIS

From the foregoing paragraphs it seems reasonable to conclude that excellent savings might be realized from the creation of an effective factory model associated with a good evaluation plan. This entire plan must be converted to a detailed computer program in order to obtain a realistic test. It is essential that the time per run be very brief so that multiple reviews will be physically and economically feasible.

The potential gain seems great and further investigation using a computer appears to be extremely desirable.

In order to provide experience on the application of computers to this basic scheduling problem it was decided to try to imitate manually the computer operations on a simple set of data. A concept of the overall flow of information is on the following page:

SCHEDULING INSTRUCTIONS

Search for next unoccupied station at t_{i}

IVb
Enter data into table VI getting data from table II

IVc
Delete entry of J_{1} under S_{i} in table II

The tables required are included as exhibits and numbered as follows:
I Machine utilization and status by station number
II Waiting operation file by station number
III Planning and routing data by part number
IV Random number generation function accumulator (not included as an exhibit)
V Noise factor statistical selection (not included as an exhibit)
VI Parts in process by time available
VII Evaluation data
VIII Input schedule
The operations required are described briefly with the results obtained in the specific problem studied. These results are posted in the tables concerned with asterisks to indicate the added data. For the sake of simplicity the noise factors are assumed to have 100% probability for the listed value:

$f=1.0$	$s=0$
$b=0$	$r=0$
$a=0$	$n=0$

Step 1.
Examine time .l in table I. for example machine availability:
All machines occupied.
Step 2.
Search table VI. for parts available at time .l:
None available

Step 3.

Repeat for time .2:
All machines occupied, no parts available.

Step 4.

Search table I. for machine available at time . 3:
Station 03 is available.
Step 5.
Search table II. for station 03 for parts available:
Jobs M and O are available.
Step 6.
Compare preference number jobs available and select that job with lowest
preference number:
Job 0 has a preference number of $\not \subset 47.0$; therefore job M with a lower preference number will be placed on station 03.

Step 7.
Calculate length of time station 03 will be occupied in manufacturing job M:

$$
T_{0}=e \not x x p=2.5
$$

Step 8.

Indicate on table I. machine hours utilized at station 03:
Machine will be occupied from time 0.3 through time 2.7; $T_{c}=\left(T_{s}-.1\right) \& T_{0}$. Step 9.

Calculate time that part will be avilable for machine operation:
Job M complete at station 03 at time 2.7. Transportation time as obtained from random number table $=.5$; therefore time available for next operation $=3.2$.

Step 10.
Obtain next operation number:
Add operation number in table II. to the quantity 1 ; therefore the next operation number $=2$.

Step 11.

Enter data in table VI. and results of calculations:
Time available, job number, part number, quantity, next operation number and preference number.

Step 12.

Delete entry in table II. under station 03 for job M:
Step 13.
Continue searching table I. for available machine capacity during time . 3 :
All machines occupied.

Step 14 .

Search table VI. for parts available at time .3:
Job F. available part 006 for operation 6.
Step 15.
Refer to table III. for 006, operation 6:
Operation 6 says deliver to destination - part is complete; part is
complete at time 3 .
Step 16.
Post to table VII:
Part 006 completed.
Step 17.
Delete job F from table VI:
Step 18.
Continue searching table VI for parts available at time . 3 :
No parts available.
Step 19.
Search table I. and table VI for time . 4 :
All machines occupied, no parts available.

Step 20.

Search table I. and table VI. for time . 5 :
All machines occupied, no parts available.

Step 21.

Search table I. at time .6:
Station OI available.

Step 22.

Search table II. for station 01 for parts available:
Jobs A., C., J., L., and N. are available.
Step 23.
Compare preference numbers and select job with the lowest preference number: Job A. $\quad+32.8$ Job C. $\quad \neq 71.5$ Job J. - 15.6 Job L. $\quad \rightarrow 5.0$ Job N. - 23.9 Therefore job N. is selected for assignment.

Step 24.
Calculate length of time station 01 will be occupied in manufacturing job N :

$$
T_{0}=3.6
$$

Step 25.
Indicate on table I. machine hours utilized at station 01:

$$
T_{c}=4.4
$$

Step 26.
Calculate time job M will be available for next operation:
$4.4+.1=4.5$

Step 27.

Calculate next operation number:
$2+1=3$
Step 28.
Enter data in table VI:
Step 29.
Delete entry in table II. for station 01 under job N :
Step 30.
Continue to search table I for unoccupied machine at time .6:
All machines occupied.
Step 31.
Search table VI. for parts available at time .6:
No parts available.
Step 32.
Search tables I and IV for time .7:
All machines occupied, no parts available.
Step 33.
Search tables I and IV for time .8:
All machines occupied, no parts available.
Step 34.
Search tables I and IV for time .9:
All machines occupied, no parts available.
Step 35.
Search table I. for machines available at time 1.0:
All machines occupied.

Step 36.

Search table VI for parts available at time 1.0:
Job D., part 006 available for operation \#3.
Step 37.
Refer to table III for part 006:
Operation 3 to be performed at station 02 .
Step 38.
Calculate new preference number:
$\pi^{\prime}=\pi+\operatorname{SF}\left(e_{2}+x_{2}\right)=-3.3$

Step 39.

Enter data under station 02 in table II:
Job number, part number, preference number, operation number, set up,
time per unit, and quantity; data obtained from table II and table IV. Step 40 .

Delete Job D. from table IV:
This process is continued until the week's schedule has been planned.
For this problem the priority system is based on the use of a preference number calculated from the due complete date of the job and the amount of work remaining to be performed. The formula used for calculating the preference number is:

$$
T_{1}=D_{d}-S F(e+x p)
$$

Where:
$D_{d}=$ date due complete
$\pi=$ preference number

```
SF = 
e = set-up time
x = quantity
p = per unit time
M = Mfg. Cycle Efficiency
```


where there are "r" jobs possible to manufacture.
$M_{j}=\frac{T_{j}}{R_{j}}$
$T_{j}=\sum_{i=1}^{n} e_{i}+x p_{i}$
$R_{j}=D_{c_{n}}-D_{s_{o}}$ where there are n operations per part.

A good approximation is:

Where $C=$ planned cycle.

This in effect compares the total planned on machine time to the actual time that the job was in the process of manufacture.

This simple approach to the problem of scheduling production through the use of an electronic computer should provide a good beginning for computer programing. Additional studies will be performed in the near future in an effort to determine the computer time required for performing the necessary calculations as well as an evaluation of the potential savings to be realized.

Burton Grad Production Control Services Section 2/15/54

1-Working time
TABCE I. Twachine Uhligaturn

x-Working rime.

- - Tale time
lot station

DAY
$2 \operatorname{con}^{2}$ as a alack $(\mathrm{sin}) \mathrm{m}$ xix
\qquad
 -4 $+1$ 1! $+\square$ $+1$ $-1{ }^{2}$ +i
\qquad
\qquad

WAITING OPERATIOH FHLE

Job Number
Station \#01

A	003
C	004
J	007
L	002
N	001
M^{*}	004^{*}
H^{*}	005^{*}
O^{*}	003^{*}
E^{*}	002^{*}
$\mathrm{~B}^{*}$	010^{*}
$\mathrm{~L}^{*}$	002^{*}
R^{*}	001^{*}

Station \#02
D^{*}
N^{*}
M^{*}

006*
001*
004*
Station

M		
0	004	
$\mathrm{~J}^{*}$	003	
$\mathrm{~N}^{*}$	$007 *$	
D^{*}	001^{*}	
H^{*}	006^{*}	
Q^{*}	003^{*}	
$\mathrm{~S}^{*}$	002^{*}	
		010^{*}

Station \#04

I	007
B*	010
D*	006
K*	008*
J*	007*
J*	007*
p*	$001 *$
R*	$001 *$

Station \#05

E	002
K	008
G*	009
J*	007
L*	002*
I*	$007 *$
N*	001 *
A*	003*

-3.3^{*}

- 7.3*
+51.5*

Pref. N
+32.8
+71.5
-15.6
+5.0
-23.9
$+42.0^{*}$
$+9.0^{*}$
$+51.7^{*}$
$+18.9^{*}$
$+50.7^{*}$
$+34.1^{*}$
$+52.4^{*}$

+31.3
+47.0
-10.0^{*}
$+9.8^{*}$
$+4.0^{*}$
$+18.4^{*}$
$+62.3^{*}$
$+34.1^{*}$
+51.7
$+33.2^{*}$
$-.3^{*}$
$+54.7^{*}$
-1.0^{*}
$+13.5^{*}$
$+60.1^{*}$
$+45.6^{*}$
\$12.5
$+44.9$
+40.9*
$+2.8^{*}$
+26.4*
456.4*
$+21.3^{*}$
+38.6*

Oper.
1
4
l^{1}
3
2
2^{*}
4^{*}
4^{*}
5^{*}
5^{*}
5^{*}
2^{*}

3* $3 *$

3*

3
4*
4* *
5*
3* *
5*
1*
1*

4 4 5^{*} 4^{*} 4^{*} 4^{*} 5^{*} 2^{*}
 2*

.1
.5* .4*
.3*
.4*
$.2^{*}$
.3*
S.V.
.2
.3
.5
.5
.3
$.2^{*}$
$.2^{*}$
$.1^{*}$
$.4^{*}$
$.5^{*}$
$.4^{*}$
$.3^{*}$
.7
.7
.2
.9
.9
$.6^{*}$
$.4^{*}$
. . *
$.2^{*}$
$.2^{*}$
. . *

2
2
1
4

5
4
3*
5*
l*
4*
$5 *$
5*
3*

$.1^{*}$	$.2^{*}$	3^{*}
$.4^{*}$	$.9^{*}$	4^{*}
$.1^{*}$	$.6^{*}$	3^{*}

. 8	3
. 9	1
.4*	4*
.6*	4*
.2*	$3 *$
.6*	5*
.6*	2*
.5*	4*

4*

5
5*
3*
2*
4*
4*
$2 *$
3*
.2
$.8^{*}$
$.3^{*}$
$.1^{*}$
$.2^{*}$
$.1^{*}$
$.5^{*}$

*

.3
.9
$.3^{*}$
$.5^{*}$
$.3^{*}$
$.5^{*}$
$.5^{*}$
$.9^{*}$

Part Number Operation Station Number Part \# 001

1	04
2	01
3	02
4	03
5	05

1	03
2	02
3	01
4	05
5	01

. 5
. 6
. 4
.5
. 3
$\frac{.4}{2.1}$
.3
01
STU.

.1	.5
.3	.9
.4	.9
.3	.6
.5	.5
1.6	3.4

.5
. 9
. 6
$\frac{.5}{3.4}$

Part \# 002

01
 05
 03
 01
 02
 3

$\begin{array}{r}.2 \\ .1 \\ .2 \\ .1 \\ .1 \\ \hline .7\end{array}$
.7
Part \#. 003
1
2
3
4
5

03
 01
 02
 01 05
 05

$\begin{array}{r}.1 \\ .2 \\ .1 \\ .3 \\ .2 \\ \hline .9\end{array}$
. 8
. 6
. 6
4
5

01
03
02
01
03

.3
.5
.4
.2
.2
1.6

2RERE III (Cont.)

Pert Hather	Operation	Station Number	S.U.	Oper. Time $/ \rho C$
Part 007	1	01	. 5	. 2.
	2	03	. 5	. 4
,	3	04	. 1	. 2
	4	05	. 5	. 5
	5	04	. 2	. 1

Part \#. 008

1	01	.5	.7
2	04	.1	.3
3	01	.5	.3
4	05	.5	.9
5	04	$\frac{.1}{1.7}$	$\frac{.1}{2.3}$

Part \# 009

1	03	.2	.2
2	02	.1	.6
3	05	.3	.2
4	04	.1	.9
5	05	.2	$\frac{.3}{2.2}$

Part \# 010

1	03
2	04
3	05
4	04
5	01

03
04
05
04
01
$\begin{array}{r}.3 \\ .1 \\ .3 \\ .1 \\ .5 \\ \hline 1.3\end{array}$
.5
.5
. 6
.8
$\frac{.9}{3.3}$

Oper. 6 - across the board deliveries to destination part complete

2RER III (Cont.)

Pert Wather	Operation	Station Number	S.U.	Oper. Time / ρC
Part 007	1	01	. 5	. 2.
	2	03	. 5	. 4
-	3	04	. 1	. 2
	4	05	. 5	. 5
	5	04	. 2	. 1

Part \# 008

1	01	.5	.7
2	04	.1	.3
3	01	.5	.3
4	05	.5	.9
5	04	$\frac{.1}{1.7}$	$\frac{.1}{2.3}$

Part \# 009

1	03
2	02
3	05
4	04
5	05

.2	.2
.1	.6
.3	.2
.1	.9
.2	$\frac{.3}{2.2}$

Part \# 010

1	03	.3	.5
2	04	.1	.5
3	05	.3	.6
4	04	.1	.8
5	01	$\frac{.5}{1.3}$	$\underline{.9}$
			3.3

[^0]

EVALUATION DATA TABLE

TABLE VII

Job \#	Part \#	Wkg. Days Date Due	A	$D_{\text {d }}-D_{s}$	B	time opt.	Qty. cpt.
A	003	8	$\$ 42.42$	10	$\$ 2596$		
B	010	9	102.55	10	1703		
C	004	10	48.90	10	8674		
D	006	1	155.40	10	1857	12.5	3
E	002	3	62.82	10	7585	14.5	4
F	006	8	53.30	10	8482	.3	1
G	009	6	236.78	10	5099	6.0	5
H	005	4	92.85	10	3499	17.1	5
I	007	9	104.80	10	1030		
J	007	2	84.65	10	9235	13.8	4
K	008	7	34.18	10	6738	11.6	2
L	002	5	77.35	10	9458		
M	004	10	142.65	10	6990	15.6	4
N	001	4	118.20	10	7767	15.6	4
O	003	7	22.00	10	3962		
P	001	12		10			
Q	002	12		10			
R	001	12		10			
S	010	12		10			

INITIAL SCHEDULE

Thoughts on "Manufacturing Cycle Efficiency"

Problem: To establish a measure of performance for Materials Management. Criteria of measurement
a. Must be valid; i.e., must actually measure the Materials function, in whole or in part.
b. Must be interpretable into action; i.e., must provide a basis for subsequent improvement.

Definition of Manufacturing Cycle Efficiency*
a. Time basis--a comparison of the actual make time with the total elapsed time from start to finish, of a part, sub-assembly, final assembly or complete product assernbly.

$$
\frac{\Sigma W_{i}}{\Sigma T_{i}}
$$

b. Inventory investment brsfs--a comparison of the summarized individual make times, weighted by the value of each item, with the summarized total elapsed time, also weighted by the value of each item. $\frac{\sum w_{i} c_{i}}{\sum T_{i} c_{i}}$
These two definitions state clearly that the manufacturing cycle begins at the first operation of the chronological first part and ends at the final assembly operaion (in some cases, packing is included).

Quite another definition is offered on page 4 of the Inventory Management book, dated March, 1950:

Define (Manufacturing cycle) as the time from the receipt of material until the time the product is shipped.
*Excerpt from Home Laundry Dept. -- Production Control and Inventory Control Appraisal--Novernber 1, 1955.

Well, What Is It?

Since definitions vary so widely, we must look to our criteria for help. What is the most valid measure and can it be interpreted easily for subsequent action? Here the narrow definition is weak. For example: Thls, then, akould comprias
the cycEXco company measures manufacturing cycle efficiency from
first to last operation, or

$$
\text { Eff } \%=\frac{\text { E Operation Times }}{\text { E Total Elapsed Times }}=\frac{100 \mathrm{hrs} .}{500 \mathrm{hrs} .}=20 \%
$$

3. Storage to Maechise

Suppose also that shop cost is divided as follows:
Raw Material 30%
WIP

| Finished Stock | 50% |
| :--- | :--- | :--- |$\quad 20 \%$

We are thus measuring the "efficiency" of 50% of the materials responsibility for cycle. Note alas thin no matior what type of bublionow-job or flow, produath or inventory investments. Now eXco plans to buy 40% of its present manufactured praceas-- thin comptete tevantory reapanisitity lime tin included. The formula for parts from specialty vendors. Assuming homogeneous operation hours/total hours,
 the efficiency remains the same $60 / 300=20 \%$, but now manufacturing cycle efficiency accounts for only $.6 \times 50$ or 30% of inventory dollars. Albeit an exaggerated example, the truth remains that the measurement base is constantly shifting. Also, the innate weight is far different for various businesses. In certain flow shops with short in-process time, the measurement is tied closely to the Dorneming icisatny? facilities plan and is almost entirely uncontrollable. In a long cycle job shop on the other hand, in-process inventory may be highly controllable, depending on the coz imporament. It is then an finccurbie fit of acales, vald becaune wefght in ind degree of perfection of the scheduling plan. Again, will this restricted definition
 of manufacturing cycle give us an important measure of materials efficiency over tuccamb a broad range of departments?

[^1]
What Should It Be?

Manufacturing cycle as related to the materials function encompasses far more than machine time. Responsibility for inventory dollars begins when material is received and ends when the product is shipped. This, then, should comprise the cycle, compounded of the following time spans:

1. Receipt to Inspection
2. Inspection to Storage
3. Storage to Machine
4. Machine to Packing
5. Packing to Storage
6. Storage to Shipping

Note that of these 6 spans only one--\#4--fits the narrow description of manufacturing cycle. Note also that no matter what type of business-job or flow, product or process--the complete inventory responsibility time is included. The formula for manufacturing cycle efficiency, using the time spans $1-6$ is:

$$
\text { MCE } \%=\frac{\sum T_{04}^{?}(\text { operation times })}{\sum\left(T_{1}+T_{2}+T_{3}+T_{4}+T_{5}+T_{6}\right)}
$$

This formula is concomitant with the first of our criteria. It recognizes the importance of total inventory responsibility time. It measures the materials job.

Something Missing?

Criterion B is still unsatisfied. The formula does not yet provide a sound basis for improvement. It is like an inaccurate set of scales, valid because weight is indicated, but useless because you are on the fence whether to gorge yourself or succumb to a starvation diet. Materials people are not generally measured by time per se, but rather by weighted time. So in order to grease the wheel that squeaks,
we must factor in dollars of inventory. This merely means multiplying each time span by its average inventory value, as follows:
$\frac{\sum\left(T_{04} C_{04}\right)}{\left.\sum_{1} C_{1}+T_{2} C_{2} \cdots+T_{6} C_{6}\right)} \quad$ where C_{04}^{\prime} is the inventory investment of material on machines and $C_{1}-C_{6}$ is the inventory investment of all material, not-in-machines.

This results in a measure of efficiency of materials dollars--a measurement fully compatible, for purposes of comparison, with inventory turnover (also dollar weighted). There is thus a road to improvement, but not quite direct.

Don't Kill Time, Just Leave It Out

We have a formula, but still not as simple as it could be. In other words, why not leave time out entirely? Example:

The eXco Company measures manufacturing cycle efficiency by the weighted time method. Consider a single operation:

Operation time $=1$ hour $=T_{0}$
Avg. WIP inventory value $=\$ 10=C_{0}$
Pre-operation storage time $=1$ hour $=T$
Pre-operation inventory value $=\$ 5=C$
$\mathrm{MCE} \%=\frac{\mathrm{I}_{0} \mathrm{C}_{0}}{\mathrm{~T}_{0} \mathrm{C}_{0}+\mathrm{TC}}$
$=\frac{1 \times 10}{(1 \times 10)+(1 \times 5)}$

$$
=10 / 15=67 \%
$$

Note that 67% is the same efficiency obtained by dropping time from the equation:

$$
M C E \%=\frac{C_{0}}{C_{0}+C}=10 / 15=67 \%
$$

Now let us double storage time:

$$
\mathrm{MCE} \%=\frac{1 \times 10}{(1 \times 10)+(2 \times 5)}=\frac{10}{20}=50 \%
$$

By dropping time from the equation, we get:

$$
\frac{10}{10+5}=67 \%
$$

The first equation of 50% MiCE would seem correct, since we have increased storage time and hence reduced efficiency. But the actual result is to give the formula a double weight. Here is why:

> When eXco doubles storage time from . . .

> Lstorage operation
to
Lstorage operation
. . it must also double inventory dollars in storage, assuming a balance between storage and operation. This is axiomatic, since the operation still demands Y pieces per time period, yet storage time T is doubled. Therefore, the number of inventory dollars Z must double to maintain Y pieces in operations. The relationship is thus:

$$
\begin{aligned}
& T_{1}: T_{2}=Z_{1}: Z_{2} \\
& T_{1}=\text { Time in hours before change } \\
& T_{2}=\text { Time in hours after change } \\
& Z_{1}=\text { Inventory dollars before change } \\
& Z_{2}=\text { Inventory dollars after change }
\end{aligned}
$$

Since the ratio exists in all near-equilibrium conditions, it is correct to leave out time. Otherwise we "double-weight" the MCE\%. In the example above, equilibrium under the weighted time method would not be 50% but:

$$
\frac{1 \times 10}{(1 \times 10)+(2 \times 10)}=\frac{10}{30}=33 \%
$$

Under the dollar method, this is:

$$
\frac{10}{10+10}=10 / 20=50 \%
$$

The latter is correct. Efficiency is not inordinately exaggerated as in the weighted time method.

The MCE formula is now:

$$
\mathrm{MCE}=\frac{E C_{04}}{E\left(C_{1}+C_{2}+C_{3}+C_{4}+C_{5}+C_{6}\right)}
$$

What's This About Equilibrium?
Equilibrium is a classical economist's term for "We know this is non-existent, but our textbooks can't have more than 500 pages. " Equilibrium is the shorthand of economics, just as formulas are the shorthand of mathematics. It foreshortens an otherwise incomprehensible subject. In the context of manufacturing cycle efficiency, it is highly valid. What we want to measure is not the pile of steel waiting at the machine because Johnny Order Clerk pointed off the wrong decimal place, but rather the day-in, day-out paralysis of sub-standard materials performance. It must be assumed that Johnny's steel will be processed. The question is: What is it costing us? Equilibrium is not synonymous with efficiency, for a 5% MCE may reflect smoother material flow than one of 35%. However, it does allow us to observe the operation at a single point of time and interpolate meaningful data. This is the whole basis for dropping time from our equation, since it is a function of investment dollars, or vice-versa. While the day-to-day balance
*The individual factors will admittedly differ, depending upon the number of time spans and their mathematical expression. However, the dollar concept still holds true.
\qquad
between storage and operation may be . . .

Inventory \$
(at raw material cost)

Stor. Oper. Stor. Oper. Stor. Oper. Stor. Oper. DAY 1

DAY 2
DAY 3
DAY 4
. . . monthly, it would look like this:

Inventory \$
(at raw material cost)

Stor. Oper. Stor. Oper. Stor. Oper. Stor. Oper. MONTH 1 MONTH 2 MONTH 3 MONTH 4

This must be so, since operations are sustained by material and conversely, material must be operated upon.

Have We Forgotten Time?

In order to satisfy the second criterion, that of providing a built-in tool for improvement, it can be argued that we must consider time: shortening the cycle reduces inventory and improves customer service. Granted, but time is inherent in the formula, since it is a function of inventory dollars, and correlates closely with dollar weight.

Doubtless, MCE can be nothing more than a thermometer, indicating a malady. The cure must wait for diagnosis. Likewise, the inventory or scheduling specialist cannot reduce inventory or cycle time until he analyzes the elements that comprise MCE. Here a time cycle chart is invaluable. However, the omission of time from

MiCE is not hereby invalidated, since MCE is only an indicator. Otherwise, as shown by the "double weight" argument, the indicator itself is faulty.

A Rose By Any Other Name

Now for the matter of terminology. True, MCE has been described by word and formula. However, the raft of definitions for manufatur yllal conclu manufacturing cycle will perforce cause misinterpretation. Better to tailor the name to the circumstances than vice-versa, and we're talking now of inventory cycle, the span(s) of time during he materials function holds responsibility for inventory dollars. A better then, is Inventory Cycle Efficiency, of which the manufacturing cycle is

ke-progeas (thom firek opgration throadh iani mornumion) Measuring ICE

10 Inventory Cycle Efficiency can now be measured easily, continuously, without the need for time studies, * work sampling* or the like. The dollar value of material being worked upon is divided by the dollar value of all other material! in storage, in transit or float, in finished stock, and so on. The formula: The $\operatorname{ICE}=\frac{I C_{0}}{E C}$

where C_{0} is the cost of inventory on machines or otherwise being
processed or fabricated and C is the total cost of all inventory.

Quo Vadis, Customer Service?

It may be argued (anticipating some argument, eh what?) that ICE dilutes the weight given customer service since service is dependent, for the most part, on

[^2]the manufacturing eycle per se (from first machine through last machine.) This is admittedly true, but the importance of including total materials responsibility precludes the more restricted formula. However, and this is most important, ICE is not the last word. A ratio of operations dollars to total in-process dollars would be necessary to isolate bottlenecks in the manufacturing time cycle. As a vital corollary of ICE, then, a second formula for In-process Inventory Cycte Efficiency follows:

In-process ICE $=\frac{E C_{0}}{E C_{I P}}$
where C_{0} is the cost of inventory on machines or otherwise being processed or fabricated and $C_{I P}$ is the total cost of all inventory in-process (from first operation through last operation).

ICE Related to Inventory Turnover

There is a logical relationship here. An inventory turnover of 12 means 1 month of inventory dollars to cost of sales on hand. An ICE of 10% says that of this one month's inventory, only 10% is being enhanced in value through manufacturing. An In-process ICE of 30% further describes the actual period during which value is added. It says that out of 10 inventory dollars in-process, only 3 are efficient; i. e., are being worked upon. The remaining 7 are in abeyance and are actual or potential deterrents to customer service.

Writer's Cramp
Inventory Cycle Efficiency and its logical offspring can be soliloquized ad infinitum and perhaps beyond, but because this script is already protracted beyond the normal
readable length (there must be a formula for this), I shall cease fire and await the return volley.
R. P. O'Brien
$5 / 31 / 56$
arbitionel

Patrotor stow determination
llaye otcon
Probution
thater prey devision
\qquad
Peturn on dwestrent deternuivation
in of meeherigstar, electomes or in tho but.
list $?$

Cost of caryjig smentery
Computer futcise lies in departmental integutite If dote prouring funetorin -
why une SBNe equip in Jlow type shops

- ABe - fivirite up a how to dost.
- Receiving fontuis
- Use of E.O.Q. - ala chap II of this myt man
- Cost ff fuuning ner of Srwentory.

Optimum Scheduling usnig hivian Programming
Chemini
Panit kuahn;
a goss eany thehed purv.
seetromiel,

4o mules cover protatey teat ade geinustatini mix of deciscon

Jurnowe anely yi

Nevilop thrue IME. PEEE, TR Sxymit cumer.
\rightarrow aniage why T/o hane> exclude aac-

- In cule cotof cony; oñ moreed Thi nuhe any deffires - How atrut Emploza pay lag.
\rightarrow selyp methat for competiniy plemed

Tunover Computotem
are they moking in enn in calculaty,
Hlo- sew way.

$$
T_{i}=\frac{\left(s c O_{i+1}+s c O_{i+2}+s c 0_{i+3}\right) \frac{W D_{y}}{W D_{i+1}+w D_{i+2} w D_{i+3}}}{I_{i}}
$$

Sco $=$ surp cat output

$$
w_{D}=\text { why Jays }
$$

$I=$ Liventry

$$
\begin{aligned}
T O_{y}= & \sum_{i=1}^{12} T O_{i} \\
T O_{y} & =\frac{\left(S C O_{z}+S C O_{3}+S C O_{4}\right) \frac{W D_{y}}{W D_{2}+W D_{3}+W D_{4}}}{I_{1}} \\
& +\frac{\left(S C O_{3}+S C O_{4}+S C O_{5}\right) \frac{W D_{y}}{W D_{3}+W D_{4}+W D_{5}}}{I_{2}} \\
& +\cdots+\frac{\left(S C O_{13}+S C O_{14}+S C O_{i 5}\right) \frac{W D_{y}}{I_{12}}+W D_{1, ~}+W D_{15}}{I_{12}} \\
T O_{y}= & \frac{W D_{y} S C O_{2}+W D_{y} S C O_{3}+W D_{y} S O_{4}}{I, W D_{2}+I, W D_{3}+I_{1} W D_{4}}+\frac{W D_{y} S C O_{3}+W D_{y} S C O_{4}+W D_{y} S C O_{5}}{I_{2} W D_{3}+J_{2} W D_{4}+I_{2} W D_{5}} \\
& +\ldots+\frac{W D_{y} S C O_{13}+W D_{y} S C O_{14}+W D_{y} S C 0_{15}}{I_{12} W D_{13}+I_{12} W D_{14}+I_{12} W D_{15}}
\end{aligned}
$$

if essume

$$
I_{1}=I_{2}=\ldots_{1,1}=I_{12}=I_{i}
$$

$$
T O_{y}=\frac{W D_{y}}{I_{i}} \frac{\left(\mathrm{SCO}_{2}+5 \mathrm{SO}_{3}+5 \mathrm{SC}_{4}\right)\left(D_{e n}-W D_{2}-W D_{3}-W D_{4}\right)+\ldots}{W D_{2}+2 W D_{3}+3 W D_{4}+3 W D_{5}+\ldots+3 W D_{13}+2 W D_{14}+M D_{5}}
$$

$$
\begin{aligned}
& D e w=W D_{2}+2 w D_{3}+\ldots+W D_{1}- \\
& D_{\text {ew }}=3 W D_{y}+3 W D_{13}+2 W O_{14}+W D_{15}-W O_{3}-2 W D_{2}-3 W D_{1} \\
& \text { nuser }=\left(S \mathrm{SO}_{2}+S \mathrm{CO}_{3}+S \mathrm{SO}_{4}\right)\left(\mathrm{Dem}_{\mathrm{N}}-W D_{2}-W D_{3}-W D_{4}\right)+\ldots+ \\
& \left(s \mathrm{SO}_{13}+\mathrm{SCO}_{14}+\mathrm{SCO}_{1,-}\right)\left(\operatorname{Den}-\mathrm{WO}_{3,3}-\mathrm{NO}_{1,}-\text { WD, },\right. \text {) }
\end{aligned}
$$

if $\mathrm{SCO}_{i}=C W D_{i} \quad$ alue $C i=$ a Contant

$$
\begin{aligned}
& \text { them } \\
& \text { suem }=\left(C W D_{2}+C W D_{3}+C W D_{4}\right)\left(D_{\text {N }}-W D_{2}-W D_{3}-W D_{4}\right) \\
& +\ldots+\left(C W D_{13}+C W D_{44}+C W D_{15}\right)\left(\operatorname{den}-W D_{13}-W D_{14}-W D_{15}\right) \\
& \text { num }=C\left\{\left[\operatorname{Den}\left(W D_{2}+W D_{3}+W D_{4}\right)-\left(W D_{2}+W D_{3}+W D_{4}\right)^{2}\right]\right. \\
& \left.+\ldots+c\left[\operatorname{Den}\left(W D_{1,}+W D_{1,4}+W D_{, r}\right)-\left(W D_{1,3}+W D_{1,1}+w D_{1,}\right)^{2}\right]\right]
\end{aligned}
$$

$$
\operatorname{let} A_{i}=W D_{i+1}+W D_{i+2}+W D_{i+3}
$$

then

$$
\text { num } \left.=C\left\{\operatorname{Den}\left(A_{1}\right)-A_{1}^{2}\right]+\ldots+\left[\operatorname{Den}\left(A_{12}\right)-A_{12}^{2}\right]\right\}
$$

$\operatorname{and} \quad 1 \leqslant A_{i} \ll \operatorname{Den}$ now if $A_{G}<A_{1}$

$$
\operatorname{Den}\left(A_{1}\right)-A_{1}^{2}>\operatorname{Den}\left(A_{6}\right)-A_{6}^{2}
$$

Inee Dermone for the yer by present tekingiu

$$
\begin{aligned}
& T O_{y}=\frac{12\left(\mathrm{SCO}_{2}+2 \mathrm{SeO}_{3}+35 \mathrm{SO}_{4}+\ldots+3 \mathrm{SCO}_{13}+2 \mathrm{SCO}_{14}+5 \mathrm{SeO}_{1,5}\right)}{36} \\
& n T_{y}=\frac{\mathrm{SCO}_{2}+2 \mathrm{SCO}_{3}+2 \mathrm{Sco}_{i_{M}}+5 \mathrm{Sc}_{,},+3 \sum_{i=y}^{3} \mathrm{sco}_{i}}{3 \sum_{i=1}^{2} I_{i}}
\end{aligned}
$$

She WDtechnique shoned yiold Thi: Qusenar.

Produat Eoplosion
Qrderning prows
2 srunces to dact out proven Custonnei: onden Scheome of wants
must aperify:

$$
\left\{\begin{array}{l}
\text { model no. } \\
\text { Qty } \\
\text { Date to he completed }
\end{array}\right.
$$

from this une muist determme
gras paits nequiements by exploding the morde into its pait.
yow perform 2 step

- muetijily 2ty by 2 ty 1 part/meet emel up
- fubtront assy leartinie form ary un complete dute to get pacts dum implet date.
This procedure con be $\left\{\begin{array}{l}\text { Suigh levee } \\ \text { Conpriner leve } \\ \text { hniergia level }\end{array}\right.$
con 1 be profomene by syuthers.
woaking from a where-usls file
Pesuet is: st no
Qty
date
date neure complet.

Parts bued doun cinto then eseentiot charaters:

TO NEED VS TO STOCK
PURCH VS MFD
any "to strice"part unturduces a cushion hetween seed aure orderThis neouet in the ovden gty, detes beny different in the puncteres pait

But thei is even suore tegni ficent mi the mife iteme, where haw matimid:" anythy that tes furtar operation faformere to it othes tha asambly.
to pructs nues, thet wothen to stea oven nued.
tue nout then decien whetres se are ofreation a entrivores explonin plan or do-it once - evary monsh-ma plan.

Fient steps regendless is to anarge need caid by pait isuntification sumber and due cruplow deate; muy bu tivat ivay form
a seyptheri tyre explosem Pass these cards against a master stow file (of yow an presasigning the ar actively be the dour balaver master file). This will select the stow items auk put them in a separate stack, living the nom-Stock (to rel) interns. $^{\text {now }}$)

Each "to ser" item is then to the suateruil ave operation file * Las remover from file the decal for that item. By reperdacaing thai in an YBM 528 nuetipa outfit caves can be tamed. She first carr is the RM canc often upurduction 1 the conesponding zara canc is extended aud the requetant cark. matched against a Pew material Atom deck. If the item is not stow the card becomes a "to need" cause, purchase
aud gres to Punhocing. If it stom it is heer for lote puasacegimerr procesang.

He stour parts ane sem thew a stica contrid proens and where onthour, an ovien qter foel betron ohe sender fot. a srew orden sueve caes. papaces. Nhis then freems the same soutime an a \%o need card

Fundly the RM cand ane fromonern
 osten canses go to Purckasing.
\rightarrow Explocion ael the way to RM, neel aney be combinies for non- stoun parts ov if all stomis greamjeses r voun corvergy never exceled scheduled comonit mens.

[^0]: Oper. 6 - across the board deliveries to destination part complete

[^1]:
 To in atdew tu freanen qus elteel

[^2]: *These techniques, however, are used in the second, or improvement, stage.

