Power Transformer Department
Core Steel Slitting Problem Analysis
B. Grad - Specialist Production Control Services July 1, 1955

Objective

To devise an economically justifiable technique for minimizing the edge trim waste and/or the creation of excess inventory. At present there are apparently two quite different problems - slitting Silectron and slitting Trancor. For the Silectron there are many sizes (at $1 / 2^{\prime \prime}$ increments) available for slitting. But for the Trancor -- 85\% of the stock is in 30 inch wide reels. Since efforts are being made to have the Silectron received in the same pattern as the Trancor and since the present Silectron losses are relatively small, the proposed solutions deal exclusively with the Trancor problem.

General Considerations

Various assumptions have been made in the proposed solutions:

1. If possible, no narrow width material should be generated. This is true whether or not there is to be a narrow-width customer.
2. Weekly reanalysis and processing will be continued.
3. Inventory limits will be established for each size at levels conducive to optimal profit.
4. A cost of carrying inventory figure will be established for comparative evaluation purposes.
5. Cost of waste losses for various widths will also be established (material plus applicable overhead less scrap credit).
6. The established principles of ABC inventory control will continue to be used.

Manual Techniques

The first key consideration is the amount of money the present plan is costing. Unless it can be reduced below its present level, there is little incentive for going to more elaborate computer-type solutions. At the point that operating costs (clerical expense, excess waste losses, and additional cut inventory) exceeds $\$ 500$ to $\$ 1000$ per week, detailed computer analysis would certainly be desirable. This will be more specifically discussed in later sections.

The present manual plan, of course, can undoubtedly be improved through establishing a more effective set of rules and a more formal computational procedure. This appears to be the most profitahle approach to take -- that of modernizing the manual method.

This leads to two phases of the problem:

1. Planning a set of rules so as to maximize the opportunity for making effective uidization of available combinations and existing inventory.
2. Testing and evaluating the various sets of rules in some manner so that the best plan can be adopted.

With this background then, let us examine in detail one specific set of rules for solving the weekly Transformer steel slitting problem. Here are the key features of the plan:

- The basic analysis is in terms of an average or standard reel 30 inches wide.
. The inventory is expressed in terms of pounds/inch so as to provide a simple, consistent unit of measure.
- The requirements are expressed in terms of standard reels' worth, obtained by using pounds/inch as intermediate calculation.
- A table of all possible perfect combinations is generated prior to any processing. This encompasses only those sizes with net requirements during the week under consideration.
- The combinations problem is solved first in terms of standard reels.
- Next, actual reels are assigned to fulfill the cutting plan.
- Finally, an evaluation is made as to the amount of overage and waste generated. This is designed so as to permit cross-checking to catch errors in calculation.

With the high-lights listed above, let's now go through the step-by-step processing required.

1. In order to determine the weight of a standard reel for each week the inventory figures are added together and divided by the number of reels. This figure is then rounded up or down to give a convenient guide post. The poundage figure is then divided by the width to convert to pounds/inch.
2. The reels in inventory are then listed on a sheet in sequence by weight. Beside each pounds figure the equivalent pounds per inch value is placed. In a going business this can be simplified by maintaining a card file for reel inventory. There would be one card for each reel showing on it the reel number, the weight, and the pounds per inch. This file could be kept in sequence by weight and a special mark put on those reels which had been in stock for more than six weeks (see Exchibit A).
3. The requirements would continue to be determined in the same manner as at present with the gross requiremente being reduced by existing cut inventories. Thesenet requirements then would be converted to pounds per inch by dividing the pounds needed by the width needed. Requirements, in terms of this new
unit of measure, would then be divided by the average reel value. The resultant answer would tell the requirements in terms of number of reels' worth. Experimentation would probably indicate that some allowance could be made for a slititing variance from an integral number of reels. For instance, if the standard reel was 230 pounds per inch and the net requirements for a given size were 250 pounds per inch then the net requirements for that size could probably be expressed as $1+$ reels rather than 2 reels. With this one exception, the rule would be to express requirements as the next highest integral number of reels.
4. A table of perfect combinations would be generated. This could be done by listing down the left hand margin the various sizes required for the week and combination numbers across the top of the work sheet. Starting with the largest size required you could then clerically determine the various combinations which go to make up a perfect 29-1/2 inch match. For instance, here is a sample set of rules used by one of our girls in deriving the $76 \mathrm{com}-$ binations (see Exhibit B for first 14) possible for the week of $3 / 18$ which was analyzed.

- Subtracted number working with from 29-1/2; used balance for checking combinations. If original number was small also subtracted two and three times its value from 29-1/2.
- Kept a list of each of the numbers multiplied by 2, 3, and 4 to check additional combinations.
- Remembered that 5-3/4 plus 4-1/4 equalled 10, often a good combination.

Another approach for generating these combinations readily is by using a triangular graph (see Exhibit C). This might permit a more positive generation of combinations but would have to be approached with care in regard to preparation of the graphs and teaching girls their use. The main drawback to the graphical technique is that combinations using more than three individual sizes cannot be determined.
5. With a formalized work sheet showing the requirements, in terms of reels, for each size, specific combinations could then be selected. A suggested series of rules is:

- Start with the greatest width.
- Look up all perfect combinations for the width selected and write down the number of reels required for the mating widths. Select the best combinations on the basis of:
a. total quantity of mating widths needed
b. pounds per inch matching if all require less than 1 reel
c. avoiding the generation of excess inventory in forbidden widths
- Post the number of reels to be cut of the combinations selected against each size effected. Keep a running balance of the remaining requirements for each width.
- Repeat the process until the problem is reduced to a few remaining sizes. At this time it may be necessary to use 28 inch reels or to generate excess inventory so as to meet the week's needs.
- After all requirements have been met certain alternate combinations may be tried to see if waste can be reduced or excess inventory generated in more usable widths.

A simple means has been devised for testing to see if a certain solution is the best possible. This is a negative type of test since it does not tell you how to get a better solution or even if a better solution can definitely be obtained, but it does tell you the absolute minimum number of reels which can be cut and the absolute minimum number of width-inches which will be surplus. This test is made by multiplying the number of reels required by the width of that requirement. These products are then added together and the total divided by $29-1 / 2$. If there is any remainder after division, then the number of reels must be increased to the next integral value; the minimum amount of surplus width-inches can be calculated by subtracting the remainder from 29-1/2. This surplus c an show up in any one of three ways:
. in the use of $\mathbf{2 8}$ inch reels.
. in the generation of excess edge trim.

- in the generation of excess inventory.

In the problem which was performed the minimum number of reels is 22 and the minimum excess width-inches is $21-1 / 2$ (see Exhibit D).
6. With the combinations established the problem can then be reduced to simply selecting the right reels for the right combinations. This is aided by looking at the planned overages so that the smaller reels are used where the overage (total pounds) is the greatest. This procecure is quite systematic, but cannot be easily expressed in terms of a rigid series of rules. In general, you start by assigning any oversized reels needed, then by using the undersized reels where they will do the most good, and finally by fiting in other reels so as to minimize excess inventory (see Erhibit D).
7. With actual reels now selected, a specific evaluation and measurement of the effectiveness of the assignments can be made. This consists of comparing the excess edge trim and the excess cut poundage with the total pounds required for that week. In the example used the edge trim was reduced to the absolute minimum ($1 / 2$ inch each reel) and the excess inventory was reduced to less than 10% of the total requirements (see Exhibit E). An interesting point here is that a cross check can be made on the accuracy of
the data and calcualtions by computing the excess inventory figure in the following manner:

Total weight of reels to be cut less the edge trim less the net requirements in pounds per week yielding the excess inventory created.

This figure when compared with the summation of the last column on Exhibit E will show whether any errors have occurred. In the example which was used this technique discover ed two errors in the data prepared by Operations Research. The first of these was in the computation of pounds per inches on the inventory values and the second is the net requirement for 14 inch material. This should have been 293 pounds per inch rather than 253. As can be seen this will change the result somewhat; however, it is anticipated that the amount of loss would, if anything, be decreased by this change.

In conclusion, then, the suggested series of rules could be processed in approxdmately 5 to 10 clerical hours after training and should yield systematically better results than the present procedure. In addition the format of the computation is such as to lend itself readily to computer optimization. Therefore, by following this type of program rather than the one suggested by Operations Research you will be getting ready to later pursue a more sophisticated and powerful solution.

Computer Simulation Technique
If a more thorough analysis and study is desirable, then the use of a computer (anywhere from a C.P.C. up to a 705 or UNIVAC) would be definitely justified. There are two levels at which a computer solution can be approached:

1. The purely theoretical, optimal solution derived through solving certain Linear Programming type equations. This will be discussed in more detail in the next section.
2. The second and probably more applicable technique is by programming a computer to solve the problem much the way the girl does today. The advantage, of course, would be in the speed with which a solution could be generated, the accuracy of the solution and the ability (time-wise) to experiment by comparing the results obtained through using different sets of rules.

If a controlled experiment were made using the data from about four widely different weeks, a definite statistically provable answer might result. This would answer two different questions:
. is one set of rules consistently better than any other set?
how much spread is there between the results obtained from different techniques?

If one set of rules is consistentily better than any other then this can be trans lated into an effective manual procedure. Or if there is very little difference between the various solutions then any one of the set of rules, performed mamally, is perfectly adequate. However, if there is substantial spread and no one set of rules is always best, an operating computer solution might well be desirable on a going basis.

This particular project would have a high interest and reward level for the time spent. It would be a fine way for one of your people to become quite familiar with computer programming and processing since the design of an experiment involves a logical simulation of the manual procedures.

There are a number of reasoms for doing this type of comparative evaluation on a compuser. They include the ability to set up a relatively rigorous and specifically defined procedure, the elimination of personal bias and manual errors and the ability to operate with a controlled mix during a comparakively short period of time.

In setting up such a project it would probably be desirable to have consultative assistance in the original programming and experiment design. This will enable you to get the show on the road more quicldy and less expensively with more assurance of usable warth-while results.

Mathematical Optimal Solutions

It was suggested that the slitting problem might be solved through the technique known as Linear Programming. However, the approach generally used in this type of problem produces matrices (tables) so large as to be unwieldy and expensive to solve. It is our concept that this problem can be handied on an optimal basis by separating it into two phases, similar to what was done in the manual technique. a method known as "Transportation Solution" the combination selection problem could be performed on a computer with the guarantee that the best combinations would be chosen. Secondly, the specific inventory assignment problem could be handled through a manual "Simplex" solution method.

Alchough the techniques described above are in advanced mathematical areas it has been demonstrated by a group at Carnegie Tech and at the RAND Corporation that these methods can be readily taught to operating people; moreover the actual solution techniques have already been programmed for various computers.

If it is desired to pursue this final approach, it would be necessary to have professional mathematical assistance so that the prohlems could be set up right in the first place; however, if the losses are great enough, this type of research might well be warranted and cowid pay dividends of a high magnitude.

Summary

With all this discussion then, the following recommendations are made:

1. The present manual system be improved through the adoption of an effective set of rules and a formal computational routine. The plan described in this writeup might well serve as a basis for a better manual approach.
2. If a more thorough analysis is desired, then work should be initiated on a computer simulation experiment. This would permit pravable selection of the best set of rules and possibly contimue with actual use of the computer for week-to-week answers.
3. Finally, if a real research project is desired, work should be initiated on the possibilities of a Linear Programming type solution to the problem.

TRANCOR STEEL

> "muH Coils"

Week Ending 3/18

28"Reels
Pounds

Rounds/in.
6940
7100
:---:
254

"X"ed colls used in weak' = cutting

Pounds	Pounds / in
4708	157 X
4900	163 X
4850	165 X
5120	171 X
5170	173
5340	178
5440	181
5620	187
5740	191 X
6050	202 X
6100	204
6130	204
6200	206 X
6220	207 X
6220	207 X
6220	207
6320	211 X
6430	214 X
6520	218
6620	221
6660	222
6700	223
6700	223
6740	224 X
6820	228 X
6850	228 X
6880	229 X
7060	236 X
7140	238 X
7140	238
1200	240

30. Reel Selection Graph

Transformer Slitting
$\$ 600$ per week loss beyond edge trim Distribution Transformer 20 ton per week $\$ 8000$ per week Feel that they need a narrow width customer
transportation and prepare for ship
If no narrow width customer lose $10 / \operatorname{ton} \$$ with instead $11 / 2$ ton
$5 \mathrm{hrs} / \mathrm{wk}$ on Combination and determination
Little cost associated with excess size generation --
if Cost of Carrying inventory $=25 \%$ per year
1 extra week stock of $\mathrm{N} \$$
Extra Cpst $=\mathrm{N} \$ x^{\frac{1}{52}} \times 25 \%=\left(\frac{1}{4}\right.$ of $\left.1 \%\right) \mathrm{N} \$$
if $\mathrm{N} \$=\frac{5}{5} \$$ Used or Extra Cost $=.1 \%$ of $\$$ cut
\$120, 000 per wk

$1 \%=\$ 120$ per wk

carrying $1 / 2$ wk cut size inventory

$$
\begin{array}{r}
\frac{3 / 2}{52} \times 25 \% \times \text { avg, weekly wage }(3 / 4 \text { of } 1 \%) \\
=\$ 800 \text { per wk }
\end{array}
$$

How to measure comparative solutions
Different problem Trakcor-Silectron today since width available in Silectron
always pick combination weights (for cutting) from central portions of wt distribution -- use $6000+6000$

$$
\text { le rather than } 5000+7000
$$

Line up Inventory by wt ascending sequence

- Use equivilent length $\mathrm{U} / \mathrm{M}(\# / \mathrm{in}, \mathrm{ft})$
- Formal L/o -. patterned calculation
- Triangular graph for discovering possible combinations -- up to 3 (+ doubles) sizes
optimal -- reduced size -- Transportation -- Solution
Testing -- Computer -- Solution . . .

1. if variance low
2. or 1 set of rules consistently better than manual solution best answerjif neither 1 nor 2 is true then computer analysis weekly advantageous
Manual
Separate Inventory Selection from combination selection problem by using a standard size reel $30^{\prime \prime} \times 7000 \mathrm{lbs}$.
Translate reg'ts to Reel Multiples - (next largest)
T. T. Kwo

Use continuous roll -- stipulating a min length to cut - (smallest reel)
Sizes $/$ Combinations $=$ perfect

> Minimize Excess \& Wastage

Transportation Solution of Combination Selection Matrix
combinations

pick lst set; try alternates evaluate per excess reels (wanted - unwanted sizes)

Inv. weights ascending seq. group by \#200 range
reels to cut.

Selected Combinations
No. of reels Available

Measurement technique

- Linear vs. non-linear cost evaluation
- \$ summary of various costs
excess
wastage
setups
inventory
Computation Procedure Improvement
Test to see what happens if no small size customer

General Proceedings of the Power Transformer Lamination Steel Slitting Problem

June 20, 1955
Manufacturing Services Division
Production Control Services
New York City

Called By Production Control Services
Time \& Location June 20, 1955 at the New York Office

Participants

Mr. R. Habermann, Jr.	Mr. H. F. Dickie
Analytical Eng. Apparatus Sales	Production Control Services
Mr. W. Hoag	Mr. D. C. Dopp
Power Transformer Dept.	Production Control Services
Mr. T. T. Kwo	Mr. B. Grad
Home Laundry Department	Production Control Services
Mr. F. C. McClintock	Mr. E. C. Throndsen
Power Transformer Dept.	Production Control Services

Mr. R. W. Newman
Operations Research \& Synthesis
Problem Presentation and Current Approach
Details of the problem, which were initially set forth and distributed by Mr. Throndsen in May, were restated by Mr. McClintock. Important facts highlighted were:

1. Current steel usage is approximately 175 tons per week with an anticipated rate of 300 .
2. Based upon the expected rate of 300 tons, the past six months have shown a loss of $\$ 600$ per week in scrap beyond the normal edge trim. This is approximately $1 / 2$ of 1% loss.
3. Until recently, Distribution Transformer was taking 20 ton per week of the narrow widths.

The current method of solution was presented by Mr. Hoag who distributed a set of working papers used during the preceding week.

New Approaches
After briefly exploring a computer application and indicating the problem was too vast for an optimum solution by present day methods and equipment, Mr. Newrnan presented a formalized manual approach somewhat similar to the current one.

Assumptions were made (stated in his write-up distributed at the meeting) which they felt necessary to define the problem and framework within which to operate. Using one of the assumptions, that coil width and length may be treated separately, they sought a normalizing process and decided upon lbs. per inch (i.e., the equivalent weight of a coil one inch in width). This converted the unit of measure to one that may be more readily handled and visualized.

Thirteen operating rules were formalized to use as a guide in: making the combinations and reel selections. These rules were not considered to be final as product conditions could change which would warrant their review. Likewise, since the rules were based upon the original assumptions, a change in management policy would necessitate a reappraisal of the operating rules.

One way to evaluate the performance of a system would be to plot on a control chart the ratio of certain critical quantities. So long as the points remained within the limits established, no action would be required; out of limits would require investigation by supervision before releasing the slitting schedule.

Mr. Newman felt he would like to do more testing on his approach and would keep us informed of the results.

Mr. Grad stated he thought there were ${ }^{3}$ possibilities, dependent upon the amount of loss.

1. There is the possibility for a computer solution if the losses become great. However, because a purely optimum solution is not considered feasible at this time the problem could be approached by making all known perfect combinations manually and then forming a matrix of the remaining sizes for a computer solution.
2. The possibility of a testing procedure on a computer also exists. This would allow the rapid testing of a number of different rules or sets of rules each week to determine if one set is consistently better than others or if there is very little spread in the results and no one set the best.
3. An improved and formalized manual system may well provide the immediate answer. This is explained more fully and an example shown in an attachment by Mr. Grad.

Mr. Kwo held somewhat the same views expressed by Mr. Newman and Mr. Grad about the improbability of a perfect optimum solution on a computer. If, however, the size of the matrix could be reduced to approximately 20 by 150 it would then be feasible for known computer programs. One way of reducing the combinations would be to assign each size a weighted factor and then eliminate all those below a certain figure. The remaining sizes could be solved
by a computer leaving the others for a manual solution since their importance would be relatively small.

Mr. Haberman suggested that in a linear program or iterative technique it is possible to stop the solution somewhere near the lower end and still be close to a working value since the perfect solution may not warrant the extra expense.

He also emphasized the need for an evaluation or measurement of any method to maintain control of the operation. One such unit of measure would be that of dollars. This could be arrived at by assigning an ascending value with time to excess inventory, an inventory carrying charge, and the dollar value for scrap.

It was pointed out that some economic basis might be found for developing small width users as a means of reducing excess inventory or losses.

Summary

Evolved from the meeting were these two important points:

1. A solution approach.
2. A concept of management.

It was pointed out that since the only thing gained by an optimum solution in the middle sizes is less excess inventory, it would be more economical to sub-optimize. In that regard, it was considered most expedient to improve and formalize the manual system and concurrently maintain very close control over the procedure and results in order that it may be reevaluated at a later date for a mechanized approach.

To determine if it will be necessary for the department to have a narrow width outlet, it was suggested that the previous months could be tested, disregarding the outlet, and determine the trend and position they would be in today. The possibilities of cultivating a narrow width outlet on an economic basis should also be considered if it is shown that too much excess inventory is created.

It was considered extremely important that some type of measurement be established and maintained that would give the magnitude of dollars involved in the operation since the application of a computer is dependent almost solely on the possible savings to be realized.

Mr. Throndsen stated that if a decision was made in view of subsequent evaluations to employ a computer, the Production Control Services would be glad to assist in the programming or in what ever ways possible.

E. C. Throndsen/D. C. Dopp - PRODUCTION CONTROL SERVICES, Materials Services Department - 570 Lexington Avenue

STEEL SLITTTING PROBLEMM

Introduction

E. C. Throndsen, Consultant, Manufacturing Consulting Services, asked OR \& S for a solution to the Power Transformer Department's problem of slitting large steel Mill Coils. A copy of the data supplied by Mr. Throndsen, together with a May 20, 1955 supplement is attached as Appendix "J".

Each week the sizes of steel required for the following week's manufacture are accumulated and a clerk attempts to assign each size to one or more of a series of Mill Coils then in stock. This selection is done to minimize the scrap losses and maintain the minimum inventory of rarely used sizes and a minimum to nominal inventory of the larger and more frequently called for sizes. (Wastage) has been averaging about $4 \frac{1}{2}$ tons of steel per week which represents about $\$ 90,000$ loss per year. Management is additionally concerned less changes in product mix suddenly cause much greater losses and inventory unbalances.

We do not consider the slitting problem the basic one in this area: it is a symptom rather than a cause. Forty individual laminations are currently required to manufacture the power transformer line. It is apparent that this great variety of material requirements, manifesting itself in this one area in the form of a slitting difficulty, is symptomatic of a disease which must be hampering the entire manufacturing activity. More comments will be made on these factors later.

Basis of Approach

Four central ideas have dominated our concept of the slitting problem:
I. Wastage, as distinguished from excess inventory, occurs from not utilizing the total width of the Mill Coils.
II. For the purposes of manipulation, coil width and length (weight) may be treated separately.
III. The pattern of usage shows a large enough variation in required widths so that (in general) no width need be lost as scrap except the $\frac{1}{4}$ " trim of each edge.
IV. The smaller sizes which Management does not wish to have in inventory in excess of current requirements can be kept at very low overage by matching them against the best possible combination of available coil lengths.

Methodology

Our solution can best be understood by following through a typical calculation. For this purpose, actual data were abstracted at random from those supplied by Mr. Throndsen. Exhibit A of Appendix J gives the requirements of Transcor Steel to meet the needs of the week starting $2 / 28 / 55$. Exhibit C, Page 1 of the same report gives the inventory of Transcor Mill Coils in stock for the week ending $3 / 18 / 55$. (These data are the nearest to the date of $2 / 28 / 55$ which were supplied.)

Proceed as follows:
I. Record the coil sizes required for the week as indicated in Appendix K. Underline those sizes for which a minimum overage is wanted as determined by Management. (Appendix J, Supplement Page 1, Rule 9 a and b.)
II. Below the coil sizes, record the required pounds of steel for that size.
III. Subtract the pounds of these sizes currently in inventory to determine the amount for cutting.
IV. Convert these to equivalent "lengths" (equivalent pounds of s strip l" wide) by dividing the weight required by the width of each coil size. The sizes have now been normalized and may be manipulated by adding and subtracting.
V. Arrange the weights of the available Mill Coils in weight order (by widths) as indicated in Appendix L. Divide these weights by the width of the Mill Coils. The resulting "lengths" are now on the same basis as the required slit coils.
VI. It is inmediately apparent that some overage must be made. A "length" of only 16 units is required of the $13^{\prime \prime}$ size and the shortest Mill Coil is 160 units.
VII. There can be no wastage (as distinguished from overage) if coil sizes are chosen so that these widths add up to the useful width of the Mill Coils. The slitter must take a $\frac{1}{4}$ " trim on each Mill Coil edge to result in a straight, accurate cut. Therefore, the useful width of the coil is currently $\frac{1}{2} "$ less than the Mill Coil width.

DECISION RULE 1. CHOOSE ONLY COMBINATIONS FOR SLITTING WHICH ADD UP TO THE FULL USEFUL WIDTH OF THE MILL COIL.
VIII. It is more difficult to find the combinations which meet the criteria of Decision Rule l, as the size of the required slit coil increases or as the width of the Mill Coil decreases: therefore, start by making matched sets utilizing the larger coils, and dispense with them at a time when sufficient sizes are available for matching. A good breaking point seems by inspection to be the $12^{\prime \prime}$ size. (Experience may dictate larger sizes than $12^{\prime \prime}$ to be the "break even point" in this respect.)

DECISION RULE 2. CHOOSE THE LARGEST COIL SIZE FOR MAKING THE FIRST MATCHED SET.

In the example being considered, $16^{\prime \prime}$ was the largest size: 75 units are required. By inspection, it is economical to utilize the shortest coil length (160 units as shown in Appendix L) for the $53 / 4$ coil, as this has heavy inventory restrictions upon it. The 169 unit length coil was chosen and matched with $6^{\prime \prime}$ and $7 \frac{1}{2}$ " coils to meet the criterion of Rule 1.

DECISION RULE 3. CONTINUE THE PROCESS OF ELIMINATING THE LARGER SIZES DOWN TO BUT NOT INCLUDING $12^{\prime \prime}$ WIDTH.
IX. It is advantageous to choose coils from stock which match as closely as possible the actual length of steel required. This, in general, can be done by inspection. The process can be simplified by dividing the total length required by 2,3 , etc. until lengths near the medium length in stock is obtained. It is then fairly easy to match the required lengths by addition or subtraction.

DECISION RULE 4. MATCH THE LENGTH OF A SIZE AS CLOSELY AS PRACTICAL (THIS GENERALLY MEANS WITHIN A UNIT OR TWO) WHEN THAT SIZE WILL BE DEPLETED BY THE PARTICULAR SLITTING INVOLVED.
X. The Mill Coil lengths near the medium lengths are less valuable for manipulative purposes, and reduction of overages, than those at the extremes. It is, therefore, desirable to utilize the coil length toward the middle of the region whenever practical.

DECISION RULE 5. WHENEVER PRACTICAL, CHOOSE COII LENGTHS NEAR THE MIDDLE OF THE COIL LENGTH DISTRIBUTION.
XI. The coil widths inventory which Management wishes to control most strictly should be paired next, since the available matching sizes and the distribution of coil lengths are greater at this point.

DECISION RULE 6. WHEN THE LARGER SIZES ARE COMPLETED, MATCH THE SIZES IN WHICH INVENTORY SHOULD BE MOST STRICTLY CONTROLLED.
XII. The $\frac{11}{4}$ sizes, must in general, be doubled or matched with each other to permit Rule 1 to be fully utilized.

DECISION RULE 7. MATCH THE $\frac{1}{4}$ SIZES WITH BACH OTHER OR THBMSELVES.
DECISION RULE 8. THE SIZES WHICH ARE MOST STRINGENTLY CONTROLLED, INVENTORY-WISE, SHOULD BE GIVEN PREFERENCE AS FAR AS SHORT COII LENGTHS ARE CONCERNED.
XIII. It is easier to balance out the coil widths if no one width requirement is enormously greater than the others.

DECISION RULE 9. PREFERENCE SHOULD BE GIVEN TO THE COIL SIZES REQUIRED IN GREATEST QUANTITY FOR MATCHING FIRST. MULTIPLE CUTS OF THESE SIZES SHOULD BE MADE WHEREVER POSSIBLE.
XIV. It may be necessary to make a decision between purposely creating scrap, (i.e. in failing to meet the criterion of Decision Rule 1) or making a size for inventory. Management has made a decision that a maximum of one week's probablistic inventory of the strictly controlled sizes and six weeks' inventory of other sizes can be permitted. On these bases (the rationalism of which can be questioned) a decision rule may be formulated.

DECISION RULE 10. IN CASE IT IS NECESSARY TO CONSIDER CUTTING COILS IN A WAY NOT TO UTILIZE THE FULL USEFUL WIDTH OF THE MILL COILS, THE DECISION MAY BE MADE BY MEANS OF THE EXPRESSION:
$Z=I-P+Q(W-S)$
$I=$ Inventory ceiling of the size, pounds
$P=$ Present inventory of this size, pounds
Q = Weight of mill coil being slit, divided by its width
S = Size of coil in inch widths which will be created
$\mathrm{W}=$ Waste which would be created by not choosing a matching size. (i.e. adding up to useful width of mill coil inches

Z $=$ Decision function: make waste if positive; make inventory if negative

This follows, since we are comparing the loss in pounds of material by not utilizing the full Mill Coil to the loss caused by obsolescense of inventory as defined by Management:

QW = pounds which would be scrapped as waste
$P+Q S=$ pounds inventory after cutting size S
$(P+Q S-I)=$ pounds which are waste by Management decision actually $=f\left(\frac{P+Q S}{I}, I, P+Q S\right)$
$Z=Q W-(P-Q S-I)$
$Z=I-P+Q(W-S)$
XV. It is advantageous to reduce the number of set ups to a minimum for three reasons:
A. Set up labor cost
B. Inefficient utilization of machinery which may require second or third shift operation
C. Idle, or poorly used, production labor during set up period.

DECISION RULE 11. WHENEVER POSSIBLE, CHOOSE MATCHING SETS WHICH WILL PERMIT MULTIPLE USE OF THE SAME MACHINE SET UP.

The cost of set ups at the present time is calculated at $\$ 5.00$ each. This is equivalent to the cost of 25 pounds of steel. Since this is a small item, it was not felt necessary to express this decision in what would be complex mathematical terminology.
XVI. When the sizes over $12^{\prime \prime}$ and the strictly controlled inventory sizes have been scheduled, it is advantageous to total the "lengths" of each size and determine the balance of sizes now required, as shown in Appendix K.
XVII. If it is not obvious how to best slit the remaining sizes, a simple matrixlike tool can be used. This tool may be expanded to permit a mathematical solution. It is not felt that this will normally be required. The process and the equations are shown in Appendix M.

> DECISION RULE 12. THE REMAINING SIZES MAY BE MATCHED BY MEANS OF A MATRIX IN WHICH THE ROWS ADD UP TO THE USEFUL MILL COIL WIDTH AND COLUMNS REPRESENT THE RRMAINING SETS OF COILS TO BE MATCHED FOR SLITTING. ALL POSSIBLE COMBINATIONS OF THESE COILS, INCLUDING MULTIPLE USAGE OF INDIVIDUAL COIL SIZES SHOULD BE INDICATED. TOTAL THE NUMBER OF MARKS IN THE COLUMNS: FOR THIS PURPOSE A MULTIPLE MARK SHOUD BE COUNTED BUT ONCE. THE COIL SIZE TO BE CHOSEN FIRST SHOUD BE THE ONE WITH THE MINIMUM NUMBER OF AVAILABLE SLITTING POSSIBILITIES.

In the example there are only two ways of cutting the $9^{\prime \prime}$ coil, so it was chosen first. The matrix is a convenient method for systematically indicating combinations which are exhausted by the depletion of a coil size. In the example, (1) is placed over the $10^{\prime \prime}$ and the $10 \frac{1}{2}$ " columns, since these are consumed in completing the $9^{\prime \prime}$ requirements. The notation (1) is placed opposite the rows using the $10^{\prime \prime}$ and $10 \frac{1}{2}$ " sizes, as shown next to rows A, D, E, H, I, J, K, L and M. None of these rows may be utilized without increasing the inventory. Similarly, as the $9^{\prime \prime}$ coil is completed, a (2) is put on top of that row and possibility "F" is eliminated.

Tri-axial graph paper, one sheet for each useful Mill Coil width, could help in giving the additive information to complete the matrix. All the coil sizes used, and their multiples, would be marked on the lines of the graph. The intersections with the size being matched will represent one or two matching sets of coils meeting Decision Rule I.
XVIII. The remaining sizes may require a repetition of the matrix technique, choosing if needed, sizes for making matching sets which are in low inventory. By definition, the size being cut during the particular week have been at zero inventory. It is desirable to choose these sizes, not only from this viewpoint but because it will mean less handling of additional sizes in the warehouse, less record keeping, etc.

DECISION RULE 13. CHOOSE MATCHING SETS FROM THE SIZES REQUIRED FOR THE WEEK'S SLITTING WHENEVER THIS WILL NOT INCREASE THE INVENTORY ABOVE THE LIMIT SET BY MANAGEMENT.

A purely mathematical solution to the problem might be obtained by generalizing the matrix technique, indicated under point XVII, expanding to include all of the combinations and the requirements of the original problem. The larger matrix required, and difficulties involved in stating boundary conditions result in an advantage for the procedure outlined previously.

Closing the Feed Back Loop

It must be recognized that some of the Decision Rules may well be arbitrary and must be checked against actual experience. The results must be compared and fed back so as to reassess these rules on a continuing basis. A convenient method of reassessment is the utilization of the Shewart Control Chart technique. Four charts should suffice, although a fifth chart might prove useful. The functions proposed in these charts are crude approximations to reality, but are capable of predicting trends which might prove disastrous if not watched.

Each week, these data should be plotted before slitting:

Chart I	Pounds of excess material to strictly controlled inventory
Chart II pounds cut	
	Lbs, excess material to less strictly controlled inventory
Total pounds cut	

Chart III

Chart IV

Chart V

Lbs. material to waste

> Total pounds cut
$\frac{\text { No. of set ups }}{\text { No. coil sizes required }}$

Time required to make calculations No. of coil sizes required

It is probable that better criteria can be found. Neither the number of coil sizes nor the number of pounds to be cut is an entirely adequate normalizing factor. (Chart V, for example, is also a function of the number of Mill Coils in stock since they require calculation time.) The assumption that these are linear ratios must be checked by experience. The charts, however, should give warning signals and indicate general trends, or changes in environment and product mix, which require Rule modifications.

If any of the Charts I to IV are out of control for the week, the operator of this system should be instructed to report to her Supervisor before ordering the slitting operation. If out of control for two consecutive weeks, the Rules should be reexamined. In this way, no large changes in scrap or inventory can occur without Management being aware before it occurs.

The General Problem

The reader will recognize in much of our solution to this problem an approach which might have been developed by a Procedures Section. A procedure is static. Feedback helps to turn a partially static solution into a dynamic one: it in itself, however, cannot do the whole job. Isolated problems do not stay solved unless they are being restudied constantly and factored into the pattern of the whole business operation.

We offer a solution to the problem raised: but is it really the problem? This must be symptomatic of a whole series of related problems which in their addition are more involved than their simple arithmetic sum.

Forty sizes of laminated strip are required for the Power Transformer Product line. This raises some questions, though perhaps the wrong specific ones. Pure intuition, based on our past experience, and with limited knowledge of the transformer business structure, makes us concerned about this large variety of coil sizes.

We can visualize forty styles of winding forms, forty sets of tie rods, forty shapes of insulated cores, forty groups of insulated bolts, forty tank sizes and forty sets ad infinitum, all moving about in a manufacturing area, looking for their proper home: storage difficulties, inventory control problems, stock records and paper work forms, pile-upon-pile, wondering if they are in the optimum quantity and in the correct place at the right time. What does this variety cost in delivery time, in customer service, in inability to rearrange production schedules?

Why are these large variety of parts required? If it is economic to have forty lamination sizes, why not eighty? What could be saved by reducing them to twenty? to ten? Is the basic cause of the variety a marketing one, a somewhat arbitrary industry "standardization" or are engineers sub-optomizing theoretical engineering factors resulting in almost unmanageable manufacturing variety? Do we have the correct impedence match between the engineering design, available manufacturing methods, and the market? Have we logically structured our manufacturing, engineering and marketing activities into the larger business pattern?

What is the real function of the power transformer? What does the customer think he wants? Does he know or does he specify from habit? Can we teach him to specify rationally? What patterns of power usage will develop? What sizes will be required for use tomorrow? How can general patterns of these real needs be developed in the light of Design and manufacturing problems so as to optimize the whole Power Transformer Department operation rather than the efficiency of an engineering idea or a slitting machine? What are the underlying economic facts of this business?

It would appear that these problems, these questions, are the ones requiring a solution. They seem to be the fundamental ones where many times more returns are available in an area pregnant with possibilities.

These problems can be faced only by continued study and research into the operations and in day-to-day contact with the actuality of the business structure of the Power Transformer Department.

Appendix K
WEXK STARTMN $2 / 28 / 55$
Trancor Ilteel

NOTES

1. Sizes doubly underlined are to be kept to less than one week's inventory overage: the strictly controlled sizes.
2. Actual data showed for $7 \frac{1}{2}$ " size $7100 / \#$ needed, 1300% in stock, 6800 \# required. 7100 \# should have been 8100 페.
3. Start with large size as it is hardest to pair, but since overages are not too critical on this "wanted size", it is not minimized at expense of the $53 / 4$ " size which should use shortest mill Coil.
4. Strictly controlled sizes (i.e., the $6 \frac{1}{2}{ }^{\prime \prime}$) are not chosen for pairing with the large sizes unless there is enough of this size remaining after the pairing to match with at least two full mill Coils.
5. The $\frac{1}{4}$ " sizes can only be matched among themselves. They are matched next. The 160 mill Coil is the shortest in stock so no better one can be used - i.e., excess in the $53 / 4^{\prime \prime}$ size is at theoretical minimum.
6. The other $\frac{1}{4}{ }^{\prime \prime}$ size is disposed of, using the $11 \frac{1}{2}$ " as a match, as more of it is required than any other size.
7. 237 is needed of the strictly controlled $5 \frac{1}{2}{ }^{\prime \prime}$ Coil. The nearest size mill Coil to cover it is 240 . This is a theoretical best match.
8. The high demand $11 \frac{1}{2}$ " size is used whenever possible.
9. This completes the "large sizes" and the strictly controlled sizes. A "trial balance" indicates the additional Coil sizes and lengths required.
10. The negative signs show overages.
11. A "matrix" of the possible $29 \frac{1}{2}$ " sets is made of the remaining sizes. This is attached as Appendix M. There are only two possible $9^{\prime \prime}$ combinations, so this size is matched first.
12. The 12 " size has the next fewer number of possibilities so it is completed.
13. Try combinations of $7 \frac{1}{2}{ }^{\prime \prime}, 8^{\prime \prime}, 11 \frac{1^{\prime \prime}}{}{ }^{\prime \prime}$, including the use of the $28^{\prime \prime}$ strip. Use any other needed size slit that week to match, if necessary. If no match can be found, use a matching size from the less strictly controlled sizes in low inventory. This approach is required as the matrix is now filled.
14. Only 234 pounds were generated in strictly controlled sizes. No scrap was made. Of the theoretically avoidable overages, only the $6 \frac{1}{2} ", 9 \frac{1}{2}{ }^{\prime \prime}$ and $10^{\prime \prime}$ are important. These total 7600 pounds. 14 resettings of the slitter were required -- 4 more than chosen by the present operator for the same week. This "costs" $4 \times 5=\$ 20$.
15. The sizes "xed" have the theoretical best value under the conditions set up in the problem: no exhaustive solution could better them.

In Stock
TRANCOR SITEEL
"Mill Coils"

Coil Sizes
(4) (2)
(1) (1)
(3) Row $611 / 281010121 / 2111 / 212$ Ident. $\begin{array}{ll} \\ \mathrm{XX} & \mathrm{X} \\ \mathrm{X}\end{array}$ x

	X	A
	X	B
	C	
X		D
X		E
X	X	F
X	G	
X		H
		I
		J
		K
X		L
		M
		N

$\begin{array}{llllllllll}\text { Total Possibilities } & 4 & 4 & 6 & 2 & 4 & 7 & 3 & 6 & 3\end{array}$
The numbers over the columns refer to order of cutting. The same numbers to the side of the rows indicate the possibilities which are eliminated with the depletion of the coil size.

The problem can now be expressed in the form of equations, which, however, do not lend themselves to a simple solution.

The columns are set equal to the remaining "lengths" of the column size required, with overages held to a minimum. X_{i} is this remainder function.

$$
\begin{array}{ll}
A+B+M+N & =665+X_{1} \\
2 B+2 D+G+N & =326+X_{2} \\
C+D+E+I+2 N & =734+X_{3} \\
2 F+J & =1182+X_{4} \\
C+D+K+2 L & =133+X_{5} \\
A+B+E+H+I+J+2 K & =881+X_{6} \\
J+I+M & =953+X_{7} \\
E+F+G+H+I+M & =1063+X_{8} \\
A+C+G &
\end{array}
$$

(1) $\sum_{i=1} X_{i}=$ minimum
(2) $x_{i} \geqq 0$
(3) other unknowns, A to $G>200$ or $=0$

Condition (3) states that the lengths of the Mill Coils may not be used partially.

TABLE OF 30° COMBINATIONS

$$
\begin{array}{lllllllllll|}
15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 \\
\hline
\end{array}
$$

	34	35	$3{ }^{\text {S }}$	36	37	$\begin{array}{r} 38 \\ 10 \frac{1}{2} \\ \hline \end{array}$	39	40	41	42			44	14		46	47
16																	
14																	
13																	
12																	
112																	
10, $\frac{1}{2}$	1	1	1	1	1	1	1	2	2								
10	1									1	1	1	1	1	1	1	2
912		2								1							1
9	1			1													
8 童								1			1						
8					1							1					
$7 \frac{1}{2}$						1	1						1		1		
$6 \frac{1}{2}$			2											3	1		
6			1			1						1	2				
5-3/4				1			2			1							
					2	1					2	1			1.	2	
$4 \frac{1}{4}$				1					2	1						2	
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

BASIC ANALYSIS TABLE

Ret Analysis: 0 excess edge waste
13 set-ups
Ponds to cut $($ from Inventory $)=142910$

$$
1 / 2 \text { in Edge tree: }=2382 \mathrm{lS5} \text {. }
$$

net excess to smentory $=12378 \#$

Reel Combination selection table

Nay B. 2955

Messes H. P. Diakie
D. On M111er
B. Grad -2
T. P. Kavanagh
D. C. Bop

Gontloment

For your goneral information, I an attaching an outline of a problem faced by the Power Transformer Dopartaent concerning alltting of lainInaction steel. Vie have bean rogieated by Mr. P. Hiclisnteak, ManagerBiteriale, to saint in solving the material control problem.

Presently the problem has been fanned out to the following people who have indicated an interest, and who are individually attempting to arrive at a solution:

$$
\begin{aligned}
& \text { Mr. Stuart Dreyfus } \\
& \text { AGI, Numerical Analysis } \\
& \text { Dr. Melvin Salveson } \\
& \text { Major Applianoo Business Research } \\
& \text { Mr. Rudolf llaberann, Jr. } \\
& \text { Analytioal Engineering, Apparatus Sales } \\
& \text { Mr. Harlan D. Mills } \\
& \text { Operation Research \& Synthesis }
\end{aligned}
$$

Several other interested persons will be invited to tackle this proclem also.

Within several weeks we plan to owl everyone together here in Hew York to explore the several solutions in an effort to oome up with the best approach for the Fowor Transformer Department.

I thought you might be generally Interested ta this problem and if you have any thoughts regarding a possible solution, I should be happy to receive then.
E. C. Thryboton

Problem of Slitting Lamination Steel

How many pounds of steel of specified sizes and grades should be slit from same thickness coils, received daily but which vary by coil weights, widths, and grades, so that given weekly production requirements can be filled in the most economical manner?

What is the procedure that should be used to answer the problem on a weekly basis, considering that input to inventory of mill coils and and next week's production requirements are static at the end of each week?

The circumstances which cause this problem together with a background information and statistical data are outlined in the following paragraphs:
I. General Background Information
II. Data, including some Operating Rules
III. Present approach to problem
IV. Problem solution-economic considerations
I. General Background Information. Steel slitting machinery capable of slitting 30 inches and wider coils each weighing a little under 5 tons, into 6 or less strips as may be required, was recently installed in Pittsfield, Mass, by the Power Transformer Department. Operational savings have already been realized by purchasing wide coils from the mills and performing the slitting operation per current practice, compared with previously having purchased numerous specific strip widths and weights direct from the mills. However, additional savings above that presently enjoyed, may be realized, if a definite procedure for determining the most economical coil cuts can be learned compared with present "seat of the pants" procedure.
II. Data, including some Operating Rules.

1. One thickness (.014) Silicon steel of two grades, Silectron and Trancor are purchased from two suppliers at a total weekly rate varying from 150 to 400 tons, with deliveries received daily.
2. Supplier "A" furnishes 30 " wide coils with understanding that widths of $26^{\prime \prime}$ or $28^{\prime \prime}$ are acceptable up to a limit of 15% of total supplied. Weights of coils vary anywhere from 4000 to 9000 lbs . each.
3. Supplier "B" furnishes 25 " wide coils with understanding that widths of $23^{\prime \prime}, 23 \frac{1}{2} \frac{1}{2}^{\prime \prime}, 24^{\prime \prime}$, and $24 \frac{1}{2} \frac{1}{2}^{\prime \prime}$ are acceptable. Weights of coils vary anywhere from 4000 to 9000 lbs . each.
4. However both suppliers are delivering coils which vary in widths from sizes given in (2) and (3) above actual experience shows the following coil widths are currently being received:--

Silectron
$20^{\prime \prime}$
$21^{\prime \prime}$
$22^{\prime \prime}$
$23^{\prime \prime}$
$23 \frac{12}{2 \prime \prime}$
$24^{\prime \prime}$
$24 \frac{1_{2}^{\prime \prime}}{2 \prime}$
$25^{\prime \prime}$

$\left.\qquad \begin{array}{l}\frac{\text { Trancor }}{\left.24-3 / 4^{\prime \prime}\right)} \\ 26^{\prime \prime} \\ 28^{\prime \prime} \\ 30^{\prime \prime}\end{array}\right)$

* Shipments of Trancor steel
always contain 85% of $30^{\prime \prime}$
Trancor steel.

4(a). No two coils are of the same weight - all vary.
5. Weekly production requirements for both grades of steel are apecified at the end of each week, per exhibit A and B attached, giving the next weeks requirements.
 $22^{\prime \prime}$ usually in the incremental steps as follows:

$5(b)$. Slit coil poundage required may range from several hundred pounds to several tons in not less than 100 lbs . increments.

5(c). Sequence slitting for each day is another consideration which will be handled separately. Later investigation of this problem should also yield savings.

5(d). For the present generally one week's inventory of slit steel is permitted between the slitting operation and the next operation of punching. This permits flexibility in slitting of coils without concern to punching sequence. (However examination of data discloses that rule is not fully exercised.--Further comment will be made later.)

5(e). To further complicate present situation it is required to keep steel separate after slitting by vendor indentification for given special jobs as designed by engineers.
6. At all times it is desired to slit a complete coil. Coils partially slit through are not wanted.
7. Slitting operation includes trimming of mill coil edge and it is desired that this waste be not more than $\frac{1}{2}$ " on each side or not more than $1^{\prime \prime}$ waste per coil. This rule establishes minimum waste per coil but not applicable to any coil weight base for coil widths vary. Minimum waste relationship to mill coil width exists. See Exhibit "D". Also if subsequent slit coils are reslit, edge trim waste also results.
8. Typical week ending inventory status reports covering current four weekends are given in Exhibit "C".
9. Slit surplus of steel above actual requirements is to be minimized. (This rule to be further defined and clarified.)
10. Historical usage pattern of various sizes is given in Exhibit "G" and "G".
11. Reslitting of slit coils should be minimized for not only extra edge trim waste, results but extra machine set up and labor are incurred.
III. Present Approach to Problem: The present procedure for determining slitting instructions is carried out by a clerk (female) under the direction of a Production Supervisor. A Friden caloulating machine is used by the clerk in calculating the arithemetic of the procedure. The steel is slit on a machine which can cut a maximum of six sizes from a coil at one time. Since two different kinds of steel silectron and trancor are used, weekly requirements must be calculated separately for each kind, but the mechanios are the same in both cases. Steel is received from the mill in various sizes of coils as previously listed in II Data.

1. The Production Supervisor is advised as to what jobs must be produced in a given week and can then determine how much steel is needed to produce these jobs. The clerk's first step is to combine jobs and arrive at the total requirements for the week for each kind of steel. See Exhibits A and B.
2. Deduct the amount that is in inventory (slit in previous weeks but not used), from the weekly requirements, (see red figures in Exhibits A and B). The balance is the amount and sizes to be slit.
3. Combine the sizes that are to be slit together from a coil. The clerk begins by selecting the largest size required, then fitting in smaller sizes. See Exhibit E. From Exhibit A the clerk knows the largest size of Trancor steel coil to cut from, but wants to avoid generating more than the $\frac{1}{2}$ " edge trim waste which must be trimmed from each coil. The clerk also wants to avoid slitting too many small size widths since there is little demand for the small widths. Keeping these facts in mind the clerk has selected a combination of $16^{\prime \prime}$ and $13^{\prime \prime}$ leaving a $1^{\prime \prime}$ band of waste. Several questions now come to mind. First, why didn't the clerk select a $28^{\prime \prime}$ coil and use a combination of $16^{\prime \prime}$ and $10^{\prime \prime}$? Two inches of waste would have been generated, and of course this selection was hence avoided. The second question you may be asking is why we selected $13^{\prime \prime}$ when there is an excess of 775 pounds oreated? This is because the clerk knows that although the excess would be created, some will be used the following week on another production order, (?) and since $13^{\prime \prime}$ is a size with a high usage, the remainder will probably be used in the near future. It is in this area that our difficulties arise. Are the best combinations possible being selected?
4. The clerk then selects from among the coils on hand in the Pittsfield Warehouse, the coil weighing the closest to the desired weight. The actual weight is then recaloulated against the desired weight to arrive at the actual pounds that will be slit from the coil. These actual figures are entered in the inventory. (Usually this presents no problem, since the weight desired per coil can usually be matched closely with the weight of an actual coil. The clerk receives notice of the weight of each coil of steel as it is received in Pittsfield by the Receiving Department. The material handler brings the coils which are desired from the warehouse to the slitting machine and the steel is slit in the widths desired.)

Exhibit A Trancor Steel required to meet production requirements for the
Week Starting $2 / 28 / 55$

* sizes range from $2^{\prime \prime}$ to $22^{\prime \prime}$

For simplicity, only those sizes are shown which are required for the week's output of $2 / 28 / 55$

Exhibit B
Silectron Steel Required to Meat Production Requirements for Week Starting 2/28/55

* sizes range from "2" to 22 "

For simplicity, only those sizes are shown which are required for the week ${ }^{\prime}$ s output of $2 / 28 / 55$

Inventory of Jumbo Reels
Week Ending 3/18
(in lbs.)

(Cont.)
page 2
Inventory of Jumbo Reels
Week Ending 3/25
(in lbs.)

Inventory of Jumbo Reels
 Week Ending 4/1
 (in lbs.)

23	232 $\frac{1}{2}$	24		28	30
5810	7579	3368	7913	5160	7280
	6540	5541	6249	5540	6600
	5433	5905	5465		7880
	6760	5260	6121		7360
	5784	5924	6183		6120
	5184	7560	5865		7060
	5614	8099	4447		7420
	5053	7213	6309		6150
	4981	7746	6425		7050
	5850	7793	6286		6750
	6603	7971	6085		7850
	5430	8256	6357		7160
	7255		6317		6840
	5336		5760		7580
	6259		5533		7460
	7682		8703		7400
	7640				7320
	7378				7340
	7580				7200
	7412				7900
	7496				7700
					7600
					7260

Exhibit "C" (Cont.)
page
Inventory of Jumbo Reels Week Ending 4/8
(in lbs.)

4748	5400	5764	6538	8291	4627	5160	7280
4377	5096	7110	8180	7890	7896	5540	6600
2390	4990	7109	8070	8419	7778	6650	7880
5290	5190	7420	7740	8563	6013		7360
		6020	7823	8209	5307		6120
		7440	8571	7787	7920		7060
		7857	8450	6687	7980		7420
		6090	8287	8621	8190		6150
		7380	7496	6350	8440		7050
		6440	7580	6828	6249		6750
			6603	7870	6183		7850
			5784	7760	6309		7160
			6540	8400	6425		6840
				7035	6357		7580
				8320	6864		7600
				8530	7980		7700
				8157	8360		7620
				6864	8110		
				7577	7810		
				6926			
				7830			
				7830			
				8287			
				8450			
				7850			
				7840			
				7980			
				8100			
				8360			
				8110			
				7810			
				5905			
				7793			
				7971			

Exhibit "C"
Inventory of Amounts Previously Slit and Not Used
page 5

(Continued on next page

12	16480	8873	3216	6901
$12 \frac{1}{2}$		2816	2816	25599
13	9124	14621	28858	29244
$13 \frac{1}{2}$	5431	5431	5431	5431
14	3545	54047	16056	36510
$14 \frac{1}{2}$				
15	1173	7126	24610	28399
16	4888	24651	24465	17651
17			19886	9929
18	85674	76683	12252	13825
20	26998	8104	4767	9672
22				

2400	2400	2400	4848
806	806	806	7288
50	3569	3569	3569
3000	3000	3006	3006
		25551	10890
4246	4246	4246	4246
5374	5374	5374	5374

Exhibit D

Edge Trim Waste relationship to coil widths

Exhibit E

Tranoor Steel Combinations - Week Ending 2/28/55

Exhibit "F"

Silectron Steel Combinations - Week Ending 2/28/55

Reel Number	Width Combination	Width of Reel		$\begin{aligned} & \text { sired } \\ & \text { eight } \\ & \hline \end{aligned}$	Waste	Excess
1	$18^{\prime \prime}-91625 \frac{1}{2 \prime \prime}$ - $2800 \#$	$24^{\prime \prime}$	12	216	254	0
2	$18^{\prime \prime}$ - $206396^{\prime \prime}$ - 6880	241 $\frac{1}{2}$	28	092	573	
3	$16^{\prime \prime}-67007^{\prime \prime}$ - 2933\#	231 $\frac{1}{2}$	9	846	210	$7 \prime \prime-633$
4	$15^{\prime \prime}-73968^{\prime \prime}$ - 3943	$23 \frac{1}{2 \prime \prime}$	11	585	246	$8^{\prime \prime}-1043$
5	$14^{\prime \prime}-41039^{\prime \prime}-2637$	$23 \frac{1}{2}$	6	886	146	0
6	12" (2 strips) 3600	241 $\frac{1}{2}$	3	675	75	0
7	11" - 6700 (2 strips)	$22 \frac{1}{2}$	6	852	152	0
8	$\begin{aligned} & 10 \frac{1}{2} \prime \prime-3696,7 \frac{1}{2} \prime \prime-2640, \\ & 6^{\prime \prime}-2112 \end{aligned}$	$24 \frac{1}{2}$	8	624	176	$6^{\prime \prime}-1092$
9	10" (2 strips) - $77003^{\prime \prime}-1155$	$23 \frac{1}{2}$	9	048	192	$3^{\prime \prime}-955$
10	$\begin{aligned} & 9 \frac{1}{2}-1501,8^{8 \frac{1}{2}-1343} \\ & 3-3 / 4-593 \end{aligned}$	22 $\frac{1}{2}$	3	555	118	$9 \frac{1}{2}-101$
11	$9^{\prime \prime}\left(2\right.$ strips) - $153204 \frac{1}{4 \prime \prime \prime}-3617$	23	19	575	638	$9^{\prime \prime}-4907$
12	$\begin{aligned} & 8 \frac{1}{2 \prime \prime}-6337,7 \frac{12}{2 \prime \prime}-5592, \\ & 4-3 / 4-3541 \end{aligned}$	$21 \frac{1}{2}$	16	029	559	$\begin{aligned} & 4-3 / 4^{\prime \prime}-3141 \\ & 8 \frac{1}{2}=-480 \end{aligned}$

Exhibit "G"
 Historical Weekly Usage Pattern of Various Coil Widths
 (Total for both Trancor and Silectron)

Width	1/1/53-6/30/53	10/1/53-3/30/54
12"'	90	465
$1-3 / 4 \prime$	585	450
$2^{\prime \prime}$	1695	475
$2 \frac{10}{4}$	730	910
$2 \frac{1}{2 \prime \prime}$	440	310
$2-3 / 4^{\prime \prime}$	1660	1520
$3^{\prime \prime}$	1570	2730
$3 \frac{10}{4}$	2095	1915
$3 \frac{1}{2}$ "	2065	1720
$3-3 / 4^{\prime \prime}$	1970	1715
$4^{\prime \prime}$	3460	4495
$4 \frac{1}{4}$ "	2815	3155
$4 \frac{1}{2}$	5735	6690
$4-3 / 4^{\prime \prime}$	4450	3315
$5^{\prime \prime}$	6150	8665
$5 \frac{11}{4 \prime}$	7225	6935
$5 \frac{1}{2 \prime \prime}$	7820	7265
$5-3 / 4^{\prime \prime}$	2905	3995
$6^{\prime \prime}$	16330	15395
$6 \frac{1}{2}$ "	11395	5335
$7{ }^{\prime \prime}$	17955	11965
$7 \frac{1}{2 \prime \prime}$	15565	10955
$8{ }^{\prime \prime}$	25485	21580
$8 \frac{11}{\prime \prime}$	13605	7625
$9^{\prime \prime}$	23500	18700
923"	16040	14995
$10^{\prime \prime}$	29550	22635
$10 \frac{1}{2 \prime \prime}$	11555	12615
11 "	27550	20760
$11 \frac{1}{2}{ }^{\prime \prime}$	18310	13190
$12^{\prime \prime}$	40605	46205
$13^{\prime \prime}$	30850	25830
$14^{\prime \prime}$	44150	38905
$15^{\prime \prime}$	30020	18870
$16^{\prime \prime}$	42120	34790
$18^{\prime \prime}$	49100	33810
$18 \frac{1}{2 \prime \prime}$	35890	12855
$20^{\prime \prime}$	25635	17570
$22^{\prime \prime}$	19290	16755

Exhibit Gl

Historical Weekly Usage Pattern of Various Coil Widths in order of greatest usage

Width	1/1/53-6/30/53	Width	10/1/53-3/30/54
$18^{\prime \prime}$	49100	12"	46205
$14^{\prime \prime}$	44150	$14^{\prime \prime}$	38905
$16^{\prime \prime}$	42120	$16^{\prime \prime}$	34790
$12^{\prime \prime}$	40605	18"'	33810
183 ${ }^{\frac{1}{2}}$	35890	$13^{\prime \prime}$	25830
$13^{\prime \prime}$	30850	$10^{\prime \prime}$	22635
$15^{\prime \prime}$	30020	8"	21580
$10^{\prime \prime}$	29550	11"	20760
11 "	27550	15"'	18870
$20^{\prime \prime}$	25635	$9^{\prime \prime \prime}$	18700
$8^{\prime \prime}$	25485	$20^{\prime \prime}$	17570
$9^{\prime \prime}$	23500	$22^{\prime \prime}$	16755
$22^{\prime \prime}$	19290	$6^{\prime \prime}$	15395
$11 \frac{1}{2 \prime \prime}$	18310	$9 \frac{1}{2 \prime \prime}$	14995
$7{ }^{\prime \prime}$	17955	$11 \frac{1}{2 \prime \prime}$	13190
$6^{\prime \prime}$	16330	182"	12855
$9 \frac{1}{2 \prime \prime}$	16040	$10 \frac{1}{2 \prime \prime}$	12615
$7 \frac{1}{2} \prime$	15565	7"'	11965
82/"	13605	$7 \frac{11}{\prime \prime \prime}$ $5 \prime \prime$	10955
$10 \frac{1}{2 \prime \prime}$	11555	$5^{\prime \prime}$	8665
$6 \frac{1}{2}$	11395	$8 \frac{1}{2 \prime \prime \prime}$	7625
$5 \frac{1}{2}{ }^{\prime \prime}$	7820	$5 \frac{1}{2 \prime \prime \prime}$	7265
$5 \frac{11}{4 \prime \prime}$	7225	$5 \frac{1}{4 \prime \prime}$	6935
$5^{\prime \prime}$	6150	$4 \frac{1}{2 \prime \prime}$	6690
$4 \frac{1}{2 \prime \prime}$	5735	$6 \frac{1}{2 \prime \prime}$	5335
$4-3 / 4^{\prime \prime}$	4450	$4^{\prime \prime}{ }^{\prime \prime}$	4495
$4^{\prime \prime}$	3460	5-3/4"	3995
5-3/4"	2905	$4-3 / 4^{\prime \prime}$	3315
	2815	$44^{\prime \prime \prime}$ $3^{\prime \prime}$	3155 2730
$3 \frac{11 \prime}{\prime \prime}$ $3 \frac{1}{2 \prime \prime}$ 3	2095	$3{ }^{\frac{1}{4 \prime \prime \prime}}$	2730 1915
$3{ }^{3}{ }^{\prime \prime}{ }^{\prime \prime}{ }^{\prime \prime} 4^{\prime \prime}$	2065 1970	32,"	1720
$2^{\prime \prime \prime}{ }^{\prime \prime} 4^{\prime \prime}$	1970	$3-3 / 4^{\prime \prime}$	1720
$2-3 / 4^{\prime \prime}$	1660	$2-3 / 4^{\prime \prime}$	1520
$3^{\prime \prime}$	1570	$2 \frac{1}{4 \prime \prime \prime}$	910
$2 \frac{17}{4 \prime \prime}$	730	$2^{\prime \prime}$	475
$1-3 / 4^{\prime \prime}$	585	$1 \frac{1}{2 \prime \prime}$	465
$2{ }^{\frac{1}{2} \prime \prime}$	440	$1-3 / 4^{\prime \prime}$	450
$1 \frac{1}{2 \prime \prime}$	90	$2 \frac{1}{2 \prime \prime}^{\prime \prime}$	310

After reviewing the data presented on the Transfonior Slitting problem the following conolusions were reached:

1. The prosent manual approach is. felatively inexpensive to operate and apparently inexpensive in terns of inventories and waste. It is not immediately evident as to why this should be so; however, it may be that the nature of the data is such as to lend itself to simple manual optimal-type solutions.
2. A Linear Programming or optimising approach to the whole problen dan be postulated in terns similar to that used by M. E. Salveaon in his Rine Balancing Problem". The complicating factor here is the definition of a basic unit, since the availablo reel sizes differ so greatly one from the other.
3. The size of a Linear Programing solution for the whole problem might well be prohibited, however, certain intuitive assumptions might be made which would raduce the manitude of the variable portion of the problem to a handleable size.
4. It would not be a difficult ohore to imitate the manual procedure on a Large-Scale Digital Computer (or medium sized one, for that matter), but a means would have to be discovered for producing comparatively random variates of the initial solution so that a sorias of non-redundant trials could be made. By evaluation of the resulte of each of these trials in teran of waste factor cont and inventory expense, a selection of the best solution could be made.
5. With adequate study on an actual model such as proposed above it would be a rolatively simple matter to deteraine the distribution of costs for various solutions to the basic wookly problam. For instance, It might be evident that the inherant variation ts of such a small magnitude that a simple manual method would be far superior in terms of total cost.
6. The manual method might well be improved by establishing more rigid combratorial rules and less rigid inventory reptriotions. This might well be oxplored through $A B C$ analysis of historioal requiretients and study of actual inventory experience both week-by-week and adqumulative since the new program was initiated.

In conclusion then, if the losses have been great enough over the past few months fustlfication could be found for the approach suggeated in steps $\&$ and 5 . Then if thia atudy show adequate savings potontial botween the best and worst plans wori on steps 2 and 3 would be of morit. If the present costis are low or the initial computer work indicates ifttle variability in expense then attention should be directed to atep 6 and improvement of the mannal methods.
B. Grad
$6 / 2 / 55$

Exhibit A Trancor Steel required to meet production requirements for the
Week Starting $2 / 28 / 55$

* sizes range from $2^{\prime \prime}$ to $22^{\prime \prime}$

For simplicity, only those sizes are shown which are required for the week's output of $2 / 28 / 55$

Exhibit B
Silectron Steel Required to Meat Production Requirements for Week Starting 2/28/55

Production Weight Order \# Tons	+	$3 \frac{3}{4}$	444	$4 \frac{3}{4}$	$5 \frac{1}{2}$	6	7	7\%	Sizes 8	8*	7	$9 \frac{1}{2}$	10	$10 \frac{1}{2}$	It	12.	14	15	16	18	20	22
703678-1 23.2			1400			2rool		3100			1600					3600	4100		67008	23500		
703X051-1 27.0															2400			7400		6300	8200	\%
703877-1 16.1			3300			4300		5200		4100	16100											
701444-2 6.2		700					1500			2200			3700		4300							
701455-1 2.9	800				2800		800			1200		1400										
701455-1 2.9	-			400		1200			2900				3800	3700								
751921-1 6.																						
Totals R^{v} qd. to meet prod Schedule 81.4	0	${ }^{3} 0$	$\left\lvert\, \begin{array}{ll} 3 & \\ 0 & 0 \end{array}\right.$	16	$\stackrel{8}{\infty}$		$\left\lvert\, \begin{aligned} & \omega_{0} \\ & 0_{0} \\ & 0_{0} \end{aligned}\right.$					x_{0}				${ }^{3} 6_{0}$	$\frac{5}{0}$				${ }^{8}$	
Deductamt Previously	Slit																					
Balance-Amts \& Sizes to be Slit																						

* sizes range from "2" to 22 "

For simpliaity, only those sizes are shown which are required for the week ${ }^{\prime}$ s output of $2 / 28 / 55$
page 1
Inventory of Jumbo Reels
Week Ending $3 / 18$
(in lbs.)

Inventory of Jumbo Reels
Week Ending 3/25
(in lbs.)

Inventory of Jumbo Reels Week Ending 4/1
(in lbs. 1

(Cont.)
page
Inventory of Jumbo Reels
Week Ending 4/8
(in lbs.)

Exhibit＂C＂
Inventory of Amounts Previously Slit and Not Used

$\stackrel{\sim}{*}$	3／18	$\begin{aligned} & \text { Silectron } \\ & 3 / 25 \end{aligned}$		$\xrightarrow[4 / 8]{ }$
$1 \frac{1}{4}$				
1 $\frac{1}{2}$				
1－3／4				
$2 \frac{1}{4}$				1371\＃
2 $\frac{1}{2}$	2369\＃	1669\＃	1699\＃	1669
2－3／4	1379	698	698	698
3	677	677	2708	2031
$3 \frac{1}{4}$	3276	2467	2467	2467
3交	3548	4879	4879	4879
3－3／4				
4	410	1977	6789	9037
$4 \frac{1}{4}$	902	902	902	902
4	1286	1286	1286	3436
4－3／4	1850	1988	1988	1988
5	2039	2039	2039	2039
$5 \frac{1}{4}$	1501	1501	6996	6996
5 $\frac{1}{2}$	29291	8280	8403	8425
5－3／4	2970			1299
成 6	1845	10407	8431	3777
6\％	3062	1928	3579	6340
6－3／4		1511	1511	1511
6－5／8	1511			2680
7	4757	3051	3676	7015
71	5682	3807	12824	10853
7－31．4	15692	10138	10138	10138
8	5368	12452	4770	21053
81 $\frac{1}{2}$	2630	2630		6148
9	3881	1891		7673
$9 \frac{1}{2}$	1578		10973	15910
10	11649	7558	2870	8069
101		2647	427	19566
11	14250	14772	16136	16815
III交	10692	10692	9398	11995

（Continued on next page

Exhibit "C"

Cont.

12	16480	8873	3216	6901
$12 \frac{1}{2}$		2816	2816	25599
13	9124	14621	28858	29244
$13 \frac{1}{2}$	5431	5431	5431	5431
14	3545	54047	16056	36510
$14 \frac{1}{2}$				
15	1173	7126	24610	28399
16	4888	24651	24465	17651
17			19886	9929
18	85674	76683	12252	13825
20	26998	8104	4767	9672
22				

2400	2400	2400	4848
806	806	806	7288
50	3569	3569	3569
3000	3000	3006	3006
3410	10890		
4246	4246	4246	4246
5374	5374	5374	5374

Edge Trim Waste relationship to coil widths

Exhibit E

Trancor Steel Combinations - Week Ending 2/28/55

Exhibit "F"

Silectron Steel Combinations - Week Ending 2/28/55

Reel Number	Width Combination	Width of Reel	Desired Weight	Waste	Excess
1	$18^{\prime \prime}-91625 \frac{1}{\prime \prime}{ }^{\prime \prime}$ - $2800 \#$	$24^{\prime \prime}$	12216	254	0
2	$18^{\prime \prime}-206396^{\prime \prime}$ - 6880	$24 \frac{1}{2}$	28092	573	
3	$16^{\prime \prime}-67007^{\prime \prime}$ - 2933\#	23交	9846	210	$7^{\prime \prime}$ - 633
4	15" - $73968^{\prime \prime \prime}$ - 3943	$23 \frac{1}{2}{ }^{\prime \prime}$	11585	246	$8^{\prime \prime}-1043$
5	$14^{\prime \prime}-41039^{\prime \prime}-2637$	$23 \frac{1}{2}$	6886	146	0
6	12" (2 strips) 3600	$24 \frac{1}{2}$	3675	75	0
7	11" - 6700 (2 strips)	$22 \frac{1}{2}$	6852	152	0
8	$\begin{aligned} & 10 \frac{1}{2}{ }^{\prime \prime}-3696,7 \frac{1}{2 \prime \prime}-2640 \\ & 6^{\prime \prime}-2112 \end{aligned}$	$24 \frac{1}{2}$	8624	176	$6^{\prime \prime}$ - 1092
9	$10^{\prime \prime}$ (2 strips) - $77003^{\prime \prime}-1155$	$23 \frac{1}{2}$	9048	192	$3^{\prime \prime}$ - 955
10	$\begin{aligned} & 9 \frac{1}{2}-1501,8 \frac{1}{2}-1343 \\ & 3-3 / 4-593 \end{aligned}$	22 $\frac{1}{2}$	3555	118	$9 \frac{1}{2}-101$
11	$9^{\prime \prime \prime}(2$ strips $)-15320$ 4 ${ }^{\prime \prime}$ " -3617	23	19575	638	$9^{\prime \prime}-4907$
12	$\begin{aligned} & 8 \frac{1}{2 \prime \prime}-6337,7 \frac{1}{2 \prime \prime}-5592 \\ & 4-3 / 4-3541 \end{aligned}$	$21 \frac{1}{2}$	16029	559	$\begin{aligned} & 4-3 / 4^{\prime \prime}-3141 \\ & 8 \frac{1}{2}=480 \end{aligned}$

Exhibit "G"
 Historical Weekly Usage Pattern of Various Coil Widths

(Total for both Trancor and Silectron)

Width	1/1/53-6/30/53	10/1/53-3/30/54
1年"	90	465
$1-3 / 4^{\prime \prime}$	585	450
$2^{\prime \prime}$	1695	475
$2{ }^{\text {de" }}$	730	910
$2 \frac{1}{2 \prime \prime}$	440	310
$2-3 / 4^{\prime \prime}$	1660	1520
3 "'	1570	2730
31"	2095	1915
312"	2065	1720
$3-3 / 4^{\prime \prime}$	1970	1715
$4^{\prime \prime}$	3460	4495
$4 \frac{1}{4}$ "	2815	3155
$4 \frac{1}{2} \prime$	5735	6690
$4-3 / 4^{\prime \prime}$	4450	3315
$5^{\prime \prime}$	6150	8665
$5 \frac{10}{4 \prime \prime}$	7225	6935
$5 \frac{1}{2 \prime \prime}$	7820	7265
$5-3 / 4^{\prime \prime}$	2905	3995
$6{ }^{\prime \prime}$	16330	15395
$6 \frac{1}{2}$ "	11395	5335
$7{ }^{\prime \prime}$	17955	11965
$7 \frac{1}{2 \prime \prime}$	15565	10955
$8{ }^{\prime \prime}$	25485	21580
812"	13605	7625
$9{ }^{\prime \prime}$	23500	18700
$9 \frac{1}{2 \prime \prime}$	16040	14995
$10^{\prime \prime}$	29550	22635
1012"	11555	12615
11"	27550	20760
112"'	18310	13190
$12^{\prime \prime}$	40605	46205
$13^{\prime \prime}$	30850	25830
$14^{\prime \prime}$	44150	38905
$15^{\prime \prime}$	30020	18870
$16^{\prime \prime}$	42120	34790
$18^{\prime \prime}$	49100	33810
$18 \frac{1}{2 \prime \prime}$	35890	12855
$20^{\prime \prime}$	25635	17570
$22^{\prime \prime}$	19290	16755

Exhibit G1

Historical Weekly Usage Pattern of Various Coil Widths in order of greatest usage

Width	1/1/53-6/30/53	Width	10/1/53-3/30/54
	49100	$12^{\prime \prime}$	46205
$14^{\prime \prime \prime}$	44150	$14^{\prime \prime}$	38905
$16^{\prime \prime}$	42120	$16^{\prime \prime}$	34790
$12^{\prime \prime}$	40605	$18^{\prime \prime}$	33810
183'1	35890	$13^{\prime \prime}$	25830
$13^{\prime \prime}$	30850	$10^{\prime \prime}$	22635
$15^{\prime \prime}$	30020	8"'	21580
$10^{\prime \prime}$	29550	$11^{\prime \prime}$	20760
11 "	27550	15"'	18870
$20^{\prime \prime}$	25635	9"'	18700
$8{ }^{\prime \prime}$	25485	20"'	17570 16755
9"'	23500	22" ${ }^{\prime \prime}$	16755 15395
$22^{\prime \prime}$	19290	$6^{\prime \prime}$	15395
111"'	18310	9 ${ }^{9} \frac{1}{2 \prime \prime}$	14995 13190
$7^{\prime \prime}$	17955	1112"	13190
$6^{\prime \prime \prime}$	16330	182"'	12855
$9 \frac{1}{2 \prime \prime}$	16040	102"	12615
$7 \frac{1}{2}$	15565	$7{ }^{\prime \prime}$	11965
8\%"	13605	$7 \frac{11}{\prime \prime}$ $5 \prime \prime$	10955 8665
102"',	11555	$5^{\prime \prime \prime}$	8665
$6 \frac{1}{2}$	11395	812"	7625
$5 \frac{1}{}{ }^{\text {a }}$	7820	51/"	7265 6935
$5 \frac{11}{}$	7225	54"	6935
$5^{\prime \prime}$	6150	42"'	66935
$4 \frac{1}{2 \prime \prime}$	5735	612"	5335 4495
$4-3 / 4^{\prime \prime}$	4450	$4^{\prime \prime}$	4495 3995
$4^{\prime \prime}$	3460	5-3/4" ${ }^{\prime \prime}$	3995
5-3/4"	2905	$4-3 / 4^{\prime \prime}$	3155
42"10	2815	$3^{4 \prime \prime \prime}$	2730
	2095	32"1	1915
$3 \frac{17 \prime \prime}{\prime \prime}$ $3-3 / 4^{\prime \prime}$	2065	32"'	1720
$2^{\prime \prime \prime}{ }^{\prime \prime}$	1695	$3-3 / 4^{\prime \prime}$	1715
$2-3 / 4^{\prime \prime}$	1660	2-3/4"	1520
$3^{\prime \prime}$	1570	$2 \frac{10}{1 / 2}$	910
$2{ }^{\frac{1}{4}}{ }^{\prime \prime}$	730	$2^{\prime \prime \prime}$	475
$1-3 / 4^{\prime \prime}$	585	$1 \frac{1}{2}{ }^{\prime \prime}$	465
$2{ }^{\frac{1}{2} \prime \prime}$	440	$1-3 / 4^{\prime \prime}$	310
12" ${ }^{\prime \prime}$	90	$2{ }^{\prime \prime}$	310

