TABLE OF CONTENTS

Scheduling - February 15, 1954

Information Process Charting - March 15, 1957

Information Process Analysis -November 1969
A Systems Approach to Integrated Systems
Planning - February 1, 1960

The Integrated System Project at General Electric -
March 31, 1960

CODASYL (Proposals for a Systems Engineering
Language) - April 16 & 25, July 11, 1960

The "Explosion" Operator as used in Production
Control - May 15, 1960

Transformation Logic-December 29, 1960

A Model of an Elementary Industrial Processing
System - March 1, 1960

Tables Signal Better Communication -GUIDE
Presentation - June 1, 1961

Tabular Form in Decision Logic-Datamation
Magazine Reprint-July 1961

Py @Ep @

L

Grad
Grad
G. Canning
H. DeRubbo
Grad
G. Canning

Grad

. Grad

. Grad

Grad

Grad

. Grad

. Grad

Grad

NOTHING is to be removed from this book. It is for reference ONLY.

SCHEDULING

In order to determine an optimum input schedule it is necessary to have
some means of testing various schedules and to develop a plan or technique for
finding the best one,

The most straight forward approach to the evaluation of a schedule voﬁld
seem to be the creation of a mathematical model which would simulate the
behavior of the factory under study. Then, the next step would be an evaluation
based upon the results of the factory model operating on a certain input
schedule,

With the faotory model and the evaluation equation determined,the only
remaining variable is the input schedule itself, In the factory, output is
normally specified in terms of customer wants or anticipated wants; this usually
establishes a quantity of a specific product desired at a specific date. There-
fore, the end result, if within the capacity of the shop, is completely specified
and flexibility exists only in the starting date of a lot through the shop and
in the priority system used within the factory to determine individual job
sequence,

Let us look at each of these three phases of schedule determination
separately; for convenience we shall start with the evaluation, then discuss
the factory model and finally the variation of the input schedule itself., In
general the discussion will be centered on a job control operation, since, with
either a batch control or a flow control set-up the problem becomes simpler and

easier to analyze.

|:,;’ ol
EVALUATION -
In evaluating the effects of an input schedule on the factory four
ﬁnuur:l.ng sticks seems most significant:
l. Inventory Carrying cost for the lot being manufactured.
2. Equivalent penalty for late completion of the lot.
3. Noneproductive man-machine time,
L. Set-up costs. -

There is a fifth function - that of the cost of scheduling itself;
however, this tends to be inversely dependent upon the lot size which for the
sake of simplicity, is being omitted from this discussion. Therefore, it will
be assumed that the actual cost of preparing a schedule will be identical in
all cases.

The cost of carrying inventory through the entire cycle can be represented

in two different ways. The more accurate is as follows:

bpr Rlp
Lol m'h-l

$ VALUE

kot RLy
! Lyt RL,

Ms

— —— — —————

a—
5

b = —— - ——

1
i
Da, Ds, I, bla. Oc 5 bt“_' Dcn_,

-3-

Gost, of Carrying ING = T {(Dg - Dy) Mo £ (DD,)(Iaf Ry) }
(Do -Do,)(Ly# RLy) # (Do, = Dg,)(Lo# RIp)% # (Dg = Dc,)(l# RL2)
Foese # (Do 1= Dg)L, ARL)& # (D Do)L .#RL)
(D= Dg)(Laf RL) Y # (42 Dg> Doy), (Dg-Dg,) (Mf L # BL)

Where:

Dso. Date material received
Dgy= Date start lst operation

Deq= Date completed lst operation
Dq = Date due complete

Mo = Material Cost
Ly = Direct Labor 1lst operation

R = Ratio of IME to Direct Labor

I = Cost of Carrying Inventory ratio per day.
A Good Approximation is: |
Cost of Carrying INV, = IAC
A = the Average Inventory over the entire cycle.
C = Entire cycle in days.

Where: A = Mo£ #(L £ RL)
0if Dy £ D¢,

chOn"Dﬂo " {Dd-DOnu Dd> Dcn

-]y

Either of these two equations may ﬁe used for inventory evaluation.

The second method is generally to be preferred for simplicity and ease of
manipulation,

There are three areas of cost which need to be investigated in order to
determine the equivalent penalty for late delivery. If a finished product is
being shipped directly to a customerythe customer dissatisfaction may be measured
through a penalty clause in the contract; however, if there is no such clause then
an estimate must be made of the losses which may be suffered through the customer's
not obtaining a delivery on the date desired; this might be obtained by estimating
the amount which you would be willing to pay to avoid late delivery. Where the
product 1s used asa portion of a final assembly this factor could be a measure
of the direct extra cost which would be caused in the assembly départ.mant in
order to avolid late delivery of the final product. The net cost of customer
dissatisfaction can be expressed as (Dg= Dq) FR, where Dy equals the actual date
the part is completed,Dq equals the date due complete, F equals the full value
of the part,and R equals the customer ciisutiaraction ratio per unit product
value per day.

The second cost of late delivery is involved in the necessity for carrying
the inventory for this lot for a period of time longer than planned., This has
been covered in the cost of inventory for the product, by including the time
period (Dcn' Dd)e

The third area of cost for late d'alivery is the cost of carrying inventory
for other parts which are used together with this part. This is only applicable
where the product is used in further assembly. The cost is equal to (De - Dg) BI
where B equals the inventory value, prior to assembly, of all parts held up pending
delivery of this part and I equals the cost of can"y:lng inventory ratio.

=5a

ITho next basic function to be investigated is the non-productive cost when
the man-machine combination is idle. The first area here is the payment of funds
to operators who have not been able to produce goods because of insufficient part
availnbiiity. This can be evaluated as (Ty)(Wy)e Where T; equals the idle time
in minutes and W, equals the rate of pay per minute.

The second factor is samewhat more complex in that by the machines not
having produced useful goods during the time period T4 a certain loss in output
product has been experienced. This loss in output is only significant in that
normal profit may have been lost and non-direct expenses not liquidated. This
may be expressed as (VR £ Op W) Ty

Where: V = Replacement value of the machine tool
R = Required return on Investment per minute and

Ohws Overhead to Direct Labor ratio
The fourth and last of the evaluation factors is the needed set-up costs.

- This can most readily be obtained through a direct comparison of the total set-up
dollars expended under one schedule as against the total set-up dollars expended
under a different schedule., In some jobs, especially those that use special
purpose tooling, this factor may be dropped since there are few opportunities for
reduction in set-up costs, except through change in lot size, which has been
omitted from this discussion. It should be understood that set-up costs are con-
sidered to include not only make-ready charges but also tear-down, clean-up, and
put-away costs. Other ways in which this cost may be influenced is by the com-
bining of set-ups on similar Soba and the splitting of jobs for load purposes

thereby causing additional unplanned set-ups. This can be expressed as:
n r

Z £, S

Where S =« actual set-up charge experienced on a given Jjob and a given operatian.

FACTORY MODEL

In preparing a factory model it was deqided to imitate as closely as seemed
practical actual operation, not the ideal or storybook version. This means that
reoognitibn must be made of the effect human errors have on the ovtput of the
factory. In preparing the model the operation of a factory seemed to divide
itself into three areas, The first is the actual job selection method and is
intimately related with the priority system associated with the schedule; this
is frequently called dispatching or scheduling. The second activity is the
actual transformation of the product through physical, chemical, or electrical
means into something different from its original state. This is usually known
as machining, assembly, or processing. The third area is the phyuicai movement
of the material from one location to anoyher. This is material handling or
transportation. Each of these basic areas will now be analyzed.

The dispatching method used in many job shops operates as follows:

A man comes to the dispatcher's window and requests the assignment of a new
Jjob; therefore, the man is the forcing function. The dispatcher has a record by
operation station of the various jobs which are available for that station at
that specific time., In accordance with the existing priority system the dis-
patcher selects the most urgent job and assigns that to the operﬁior. At some
later time the dispatcher will be notified that the job is ready to move to the
next station;'this may be done by having the operator come to the window for a new
job. At this time the dispatcher determines what the next station is and directs
a material handler to transport the material to that area, Wwhen the material
has been delivered to the next station the dispatcher is informed by the material
handler and a record is made at that station that the job is available. This

basic selection technique will vary somewhat between different factories., lowever,

=l

the key point is that no job can be moved until it has been operated upon and
that no operation can be started unless the material is at that station. This
can be modified by uainé "lap-phasing" instead of the more usual "gap-phasing".
They can best be differentiated by looking at a graph of factory progress under
both plans:

CAP PHASING LAP PHASING

| p I “
p— n F'"r'::_‘::;g;:s::;;::’:?VERJJ\P
| Pt e

gy

Time == Time ——o=

In this discussion "gap-phasing" will be assumed. The problems of "lap-phasing"
are‘numeroua such as determining the number of individual deliveries and there-
fore is not too fréquently used in a job control shop; it is frequently employed
in a batch control operation and reaches its ultimate in the flow control shop
when the lot size is uiity. The variable factors to be considered in the dis-
patching mechanism include the delay times in receiving information. Dispatching
in the batch or flow control shop is of a somewhat simpler nature. There, the
starting date may be determined a week or more in advance and it is anticipated
that. the various consecutive operations will be performed on these jobs maine
taining the original sequence. Therefore in these areas a dispatcher only has
to control the starting sequence selection. It is even possible to treat the
entire group of operations as being performed at a single station; this is
especially true where conveyor belts are used,

The station operation model predicts the performance of certain specific
tasks during a finite time interval, 'There are two basic phases to look at,

8=

First is the fixed or pattern data such as
Starting time = T,
Initial quantity = x
Set-up time = e
Time per unit g p
If the operation were perfect and there were no "lap phasing" or human or machine
variations to deal with, it would be a simple matter to predict the completion
time (To)e To = Tof e £ xp
However we do not face any such ideal situation. The following "noise" factors
severely affect the completion time for a lot and their specific impact is on a
somewhat random basis.
Operator efficiency ratio =¥, £ >0
Machine breakdown = b, b m 0 for indicating machine availability.
by o indicates time delay until machine is available.
Operator absenteeism = a, a = o for indicating operator availability.

a » o indicates time delay until operator is available,
Spoilage ratio to original quantity = s, 82 o
Re-work ratio to original planned time - r, r3 o
Hatorial,'tool, blueprint and paperwork availability m m , m w« o for
indicating availability of all factors.
mp» o indicates time delay.until all facto:.'s will
be available,
Therefore, the actual equation which must be used for predicting the anticipated
completion time (T';),still omitting lap phasing is:

Tig = To ¢'17:‘_=' (efdxp) fbfainm

and at Tigy x'w (1 = s)x’

P

where X' = completed quantity and each factor is determined by an appropriate
probability distribution.

One important feature of this probability arrangement is that no single
run-through of a schedule will be sufficient for evaluation. It will be
necessary to use a statistically determined number of t ries or samples in order
to predict with, say 90% accuracy, the mean evaluation for a given schedule,

However, it should be noted that each of these ™oise" factors can, with
the data which is available, be statistically determined and need not be guessed
or estimated. The accuracy with which the probability distributions for these
noise factors is established will, to a great degree, determine the usefulness
of the final results.

The third function in the factory, that of material handling, can also be
analyzed statistically, if necessary. In a batch control or flow control
operation where automatic or semi-automatic movement exists, this transportation
mechanism is exceedingly o:l.mpit in that it is an essentially predictable function.
However, in the job control shop, indications are that this can be a random
relationship not fixed by the source station and delivery station or by their
distance, time of day, or any other determinable factor. 4ll this means is
that the transportation time may have to be derived and used in the same manner
as the noise factors. -

VARIATION OF INPUT SCHEDULING

The basic objective of all this evaluation and factory simulation is the
improvement of the input schedule itself, Two basic approaches suggest themselves:
one is the possibility of random variation of the sequence of items in the input
schedule, thereby providing a set of different priority systems, Each new sequence

10w

that is attempted shouid result in some change in the net evaluation. However,
the difficulty here arises in the tremendous magnitude of the available per-
muta;oions. For instance, for just 100 jobs the total number of a.rraﬁgement.s for
.a. single operation is 10155. If there were, say 10 operations to be performed
on.each job, then this number would have to be raised to the tenth power to cover
all of the various possibilities. Even with the fastest computer on the market
today such a number of trials is not economically feasible especially since the
time consumed would be such to make the data old before an answer was obtained,
A..=.|ecu:am:1 possible fallacy in this random arrangement approach is the absolute
magnitude of the noise factors compared to the average cost variances. It
should be possible statistically to compute at what magnitude of the noise
factors the cost variances are insignificant.

However, this above technique might be applied through random arrangement
of stratified data. For instance, if the various jobs to be manufactured were
arranged in sequence based upon their due complete date and the amount of work
left to be performed then it would seem rational to establish rules that no ‘job
may be moved more than n positions down this stratified table, This approach
can be even further simplified by dividing the jobs into a set of groups of n
items each, Then, within the group random arrangements might be tested, but no
Jjob could be shifted to a different gi:'oup. However, even this approach leads
to voluminous trials since if there were 100 Jobs and 10 jobs to each sub-group
there would be (3.6 x 1.0‘5‘):'° ' trials, Another possibility is testing of each
group independently and then fixing permanently the results of this gz:oup prior
to the testing of the next group. However, this would have to be proven as
statistically valid. All of these approaches require the weekly (or other short
period) re-analysis in order to determine the comparative priority numbers,

-ll-

The second basic way of approaching the variation of the input schedule is
by using an Operations Research type analysis, This involves a study of the
effect that various input factors have on the output factors and by appropriate
correlation establishing the anticipated variation in output from a specific
change in input. Certain examples may be cited which explain more clearly this
approach., As stated previously, an input schedule specified certain factors.
First, it establishes the quantity desired at a certain date, Next, it provides
for each item a starting date supposedly selected so as to meet the due complete
date, Third, associated with the schedule, is a basic priority system which
gives each job in the factory a comparative preference, Since, in normal
operation the quantity and finish date are fixed the only variation that can be
‘made is the starting date and the nature of the priority system itself, Now if
an adequate factory model exists it should be possible to intelligently vary
the basic manufacturing cycles (hence the starting dates) for the various items,
The examination of these results should give excellent clues as to what the
optimum cycle should be for each item., Another series of tests might be conducted
having the factory model choose the jobs in accordance with different priority
systems such as dispatching by due complete date, by starting date, by starting
date for each operation, by selected numbers, or by a comhination of due date
and amomt of work to be done. Upon completion of these studies it would seem to
be lt;tistioally possible to determine for a specific plant the best priority
system to use, These studies need not be done every week, but could be performed
at semi-annual intervals or as the key factors changed, |

There is a further advantage to this approach in that once an effective
factory model exists it would be relatively easy to pre-compute the effect
changing product mix or changing output would have on the factory.

12w

ANALYSIS

From the foregoing paragraphs it seems reasonable to conclude
that excellent savings might be realized from the creation of an effective
factory model associated with a good evaluation pla:n. This entire plan
must be converted to a detailed computer program in order tc obtain a
realistic test. It is essential that the time per run be very brief so
that multiple reviews will be physically and economically feasible,

The potential gain seems great and further investigation using

a computer appears to be extremely desirable.

In order to provide experience on the application of computers
to this basic scheduling problem it was decided to try to imitate manually
the computer operations on a simple set of data. A concept of the overall
flow of information is on the following page:

w3

SCHEDULING INSTRUCTIONS

Search for next unoccupied station at ty

Search for next unoccupied
~station at Ei \.I I

Search for availability in
next time interval tif 1 JL

—-—
_—

\ Search Table 1 at time ti for machine
availability station S] € Sp------ Sn

?

4L§$ unoccupied

i i
Search Table Il stations o
for avail., jobs Jy, J2 ==Jp

Not Avail., | Available

All occupied

¥
Refer to table VI for Job #,
Part # & next oper.# of job
F—>"| available at time t4
L Available o

1

o e ‘¢

VI

Compare preference nos, of jobs
Jl, Janooan

Select lowest pref. no. calculate
planned cycle time of Jy

er Lo table

which next oper. is to be performed

or station at

L La

i operations complete

- =

Noise

Factors

Use Tables IV & V
' <

~

3 ~ a8
Calculate completed time of
Jg on 84 = Enter in Table I
time 84 is occupied.

I[gzg,*
Calc, time Jy will be avail,
for next operation. Calc.
next oper. #.

IVb }
bnter data into table VI getting
data from table II

t ;

Delete entry of J
€| under S; in table II

vy

VIII

[Calc. new pref. no. Enter
Data from Table VI & III

ost in table VII
Jy, time complete

quantity

into table II under 5;447

IX
Delete Jj from Table VI

o1lim

The tables required are included as exhibits and numbered as follows:
I Machine utilization and status by station number
II Waiting operation file by station number
III Planning and routing data by part number
IV Random number generation function accumulator (not included as an exhibit)
V Noise facfor statistical selection (not included as an exhibit)
VI Parts in process by time available
VII Evaluation data
VIII Ipput aschedule
The operations required are desoribed briefly with the results obtained in
the specific problem studied. These results are posted in the tables concerned
with asterisks to indicate the added Hata. For the sake of simplicity the noise
factors are assumed to have 100% probability for the listed value:

§ = 1.0 5u0
bme O re0
amw O neO

Step 1,

Examine time ,1 in table I. for example machine availability:
All machines occupied,

Step 2.

Search table VI. for parts available at time .l:
None available

Step 3. _

Repeat for time ,2:

A1l machines occupied, no parts available,

-ls—

Step L.
Search tableI. for machine available at time .3:

Station 03 is available.
Step 5.
'Search table II. for station 03 for parts available:
Jobs M and O are available,
Step 6.
Compare preference number jobs available and select that job with lowest
preference numbers:
Job O has a preference number of # 47.0; therefore job M with a lower
_preference number will be placed on station 03.
Step 7.
Calculate length of time station 03 will be oocupied in manufacturing Jjob M:
To =@ £ Xp g 2.5
Step 8.
Indicate on table I, machine hours utilized at station 03
Machine will be occupied fyom time 0,3 through time 2,7; T, = (T, = .1) # Tye
Step 9.
Calculate time that part will be avilable for machine operation:
Job M complete at station 03 at time 2,7, Transportation time as obtained
from ;andom number table g .5; therefore time available for next operation
= 3.2,
Step 10,
Obtain next operation number:

Add operation number in table II. to the quantity l; therefore the next
operation number = 2,

~16=
Step 11,
Enter data in table VI. and results of calculations:
Time available, job number, part number, quantity, next operation number
and preference number,

Stee 12 .
Delete entry in table II. under station 03 for job M:

Step 13.

Continue searching table I, for available machine capacity during time ,3:
. A1l machines occupied.

Step 1L,

Search table VI. for parts available at time ,3:
Job F, available part 006 for operation 6,

Step 15,

Refer to table III. for 006, operation 63
Operation 6 says deliver to destination - part is complete; part is
complete at time .3,

Step 16,

Post to table VII:
Part 006 completed.

St.E 17,
Delete job F from table VI:

Step 18,
Continue searching table VI for parts available at time .3:
| No parts available,
Step 19, .
Search table I. and table VI for time .L:
All machines occupied, no parts available.

SteE 20.
Search table I, and table VI. for time .5:

All machines occupied, no parts available,

Stﬂ Ez 21 .
Search table I. at time .63

Station Ol available,

Step 22,

Search table II. for station Ol for parts available:
Jobs A., C.y, Jup, L., and N. are available.

Step 23.

Compare preference numbers and select job with the lowest preference number:
Job A £ 32.8
Job C, £ 1.5
Job J. - 15.6
Job L. £ 5.0
Job N. - 23.9
Therefore job N, is selected for assignment,
Step 2L,
Calculate length of time station Ol will be occupied in manufacturing job N:
To = 346
Step 25,
Indicate on table I, machine hours utilized at station Ol:
To = Lk
Step 26,
Calculate time job M will be available for next operation:
Lo £ o1 = LS

-l8e
Step 27,
Calculate next operation number:
241=3
Step 28.
knter data in table VI:

Step 29.
Delete entry in table II. for station Ol under job N:

Step 30,
Continue to search table I for unoccupied machine at time .6:
A1l machines occupied.
Step 31.
Search table VI. for parts available at time .6:
No parts available,
Step 32.
Search tables I and IV for time .T:
All machines occupied, no parts available,
Step 33.
Search tables I and IV for time .8:
All machines occupied, no parts available.
Step 3L.
_ Search tables I and IV for time .9:
All machines occupied, no parts available.
Step 35.
Search table I. for machines available at time 1.0:

All machines occupied,

wlOw

Step 36.
Search table VI for parts available at time 1,0:
Job D., part 006 available for operation #3.
Step 37.
Refer to table III for part 006:
Operation 3 to be performed at station 02,

Step 38.

Calculate new preference number:
!
‘Tf I7T p‘ SF(Gz {xpz)- =3.3

Step 39.
Enter data under station 02 in table II:

Job number, part number, preference number, operation number, set up,
time per unit, and quantity; data obtained from table II and table IV,
Step LO.
Delete Job D, from table IV:
| This process is continued until the week's schedule has been planned,
For this problem the priority system is based on the use of a preference
number calculated from the due complete date of the job and the amount of work
remaining to be performed. The formula used for énlculating the preference
number is: |
T = Dy - SF(e £ xp)
Where:
Dy = date due éompleto
‘fr = preference number

«20=

SF = ¥
Mfg. cycle efficiency

L]
1]

set-up time

x = quantity

per unit time
M = Mfg. Cycle Efficiency

r
M = Y M:' where there are "r" jobs possible to manufacture.
r ,
M: w T
J
%
h
TJ - £ o # xPy
A

y 2 D° - D where there are n operations per part.

A good approximation is:

Jar = ver
. E‘.‘,c,;-t-x Paﬂ E'-e,-*xaj-'
: P -
EC Zc

-J—J-— J=| J

Where C = planned cycle,

" This in effect compares the total plan & machine time to the
actual time that the job was in the process of manufacture,

~21l=

This simple approach to the problem of scheduling production through
the use of an electronic computer should provide a good beginning for
computer programing, Additional studies will be performed in the near
future in an effort to determine the computer time required for performing
the necessary calculations as well as an evaluation of the potential
savings to be realized,

Burton Grad
: Production Control Services Section
BG:D 2/15/54

. . i - - 1 w— S
SO 25 O . N k] . L L el mw,,_r.!_ - s‘.w..wl, _:n_I " -M_ H bt .I_, ; . S,
¥i |x sof fxt 1l ol i 4]
¥

(% <
[
;o
-4
I
‘ 03.0 1S
B
]
B
{
B |
{

i

PN X S S

1

[

t
b
|

- r-u basn) 4 P
R |
NS
L
X
s sl o
A)
=1
TN AT S ANAGT N wEAN) i A et Lyl ey
. s 1 :
!
) 1 A
|

s b at e, o

.
4

T

o -
1

1
|
;xxxx :xpx.
|
s |
1
{
.

[SN R S
—.-.];...-4,
A
4
!
H
.

J
Y
A
*
2 §
ok

s e e

L
Q.
IR XA K

1

]
1

L A (W e S OF R

i
3
dod

”
|
?..L-.
b
4
!
|

L]

.

-.--.J,.-- —t--{i

[-y

2t

1 Q¥
-
(o

i
N PN, SO .

L
Cld
==

T
L

-1

kel pad
-

P
Do
X
V)

> % [%|%

]

|

{

! '
iy
i

F

Bl 4

1o oaha "

A

RS

'
i

b

:] :
AR ORI L I O O I
ol Ty e
) .vm.ﬁr‘..“ T,....im..,.a“..l“. ...si.“i ml..m.. - u» e ut e
LT T T T

e s |

' . - B A - R - o P/t s -5
By 9 § f (i >* \.N ... 2 TN F 8% B, gl o h
covitrpn T, IACLE L~ Wlagpss:. Uldq e deére
»* 1 . -
=8

|
/1 m

awhd

JhB

F i !
.!....mnnl.._”.

ﬂ A S £
x| |1 IXi o
X i “

;

T

|

SamT

1

b o -

doead.

covil

- -

e S

X

== 33 —i O) S i K. o B S
T ixt % X, 11| Oi 1! X!
ad e 4 oared - :W{l\.._ - e "t. o we ; S s e ' o~
D I T e il | Xi 1o
T S S I C L N HER
! “ ; _.t,.mlh.v.h.» 5% PN fin=ait| THNORL 18 —u..lr w..r.i.*fl-,r.ﬁ 3 lji......“vl...mlf.‘llili
d J] . : ‘. s 0 “x 'l I_ 1 i k) O—
] (]] i ! Q . .0 . 1 L “ t e ..i.- oo SRR | e : g .lTI-F..I-L-I'O._ 1 3
%11 bo? i1uel A it e ged et 15 s g t i T t 1 3 Qu
NI L) Oi 1 ili o, Ix: dAxi q1] 4 o il 10)
& o P B8 S B O R e & I P [3 e o - g
i w- ho 1.0 0. i : .o ”rq.l‘u-m .JMO..TPW ll.lM-..!w...I!T ﬁpln_i‘mrx..rljvi
H g) 4 ’ * \ s \._ ' ! * i ‘
“ b ol Iw‘nU.» p @. . ,.04 e o Tl »Oi.: : -+.t.%n“..l;. :IJ!...L.. \w...--.ri
TS0 GO MR K] ER N T) A
ﬂ'l..liﬁu -4 l.!.m.q - lpr - 9 v ~4 .._.vllc w u.! - M... h. h ...w. - cln.m. . !’ﬁvld?\ll‘l e Bt B ¢
P! o o d £ | [O b i 0,])
- .P!I:f A i s . . ¢ =p- - M! wu*. - - iu. + st +.l¢ur..4.(4!¢ — ek :
- . o N o Y L W 5 EE T
-t T e Bl i i e P Pt e ¥ 3 P :
R O . b :O : LO. ' ,..._:{1_! .L.:L.m.!m ._.FD
R — . m—) - - - - - -— - _.,- 4.” - - - .|H..I ’ ‘—‘I
Bl 0 X © % po: Wi s 2 b 0 i1g 10
o | ..l.!... -~ - . t_u..-r —— . = : - lQ ; . u
] i0; X e 0 o .u.O; -t 4 . ..0. 1 ..-w.o
RN BE : X . b O O
H uo O . ub o n 0. . 1 5 . AT no..ui..w.x 3
"sl..w, I.‘. - p ’ 4 "% s 3 £ ’ i (o 0 1 - MD
i1i O &) ; O .AOT Q..!L LA T TV, oo >, I .
3 o T~ N [AP . (i : \ 3 S
: 'o* o) . i e o) o, bl fo) L8 i 10
IR [. : m P : i ¥ : t - : :
T - IIM mrl.‘ B | = ,.L..o - - M - .h...le I»w .D.l.l-ll ll”.@l.v |ir+ - .m ﬂfl'lx.ll - .40‘1.!&*{ -uﬂlNl\J‘-
2 : i e : : 0. 15 1% 0. 1 D
4 m. 1 O} : (“ O " i LOM 1O .:O.hl.T g 2"} % 0; 1 ;
W e 2 sl b B {7 s M /Nt frS v S Tl A !
bt 470 O 1 1. 7% 8] 8L 101 xmﬁ;-h_:,T,vW L w m
' 1 . I H 2 m J ' i [, 3 ¢
o] LSRN N LI =) 10,F+ S RS R TRY. ST .
5 . ”~C 3 X] 4 F
P e i
. C
o

e P e oy

.. . & wv - & e P - 1 4 — e — I\.-Tnn!ﬂlv I..—IT
3 ! 7 2 I : s v
0 : 4 4. ‘_Dm. TR § 5 iRl s aiet st o e |
F 10T o ¢ i SN
— .“.. - - - . IR S R ..m -ln..v B e T .‘J P s ok 4 v.-:.a..lué...m-,-a..r.nr
: 3 i { 1D h. H
-I.l...w. |*|y|“... ._m..r..l - - !m.ll.*.Xl T et !.*. - .“MO JAO\\M,I” !hl.rl ,ménl - -;ll....l.wlu!“.
' ' ! { : ? ¥ i
O B R B
i o i d 1]y dei gt IX] I =
; '..r.lbim!v.ll.? o ﬁv.fo wewd < |m o g e B 4.-%Imnjlv+.|l,+.l|$ - B et]
—— Yo i1 - 1 it o il ot i F e
i*.wm_? st S 5 __ S UGS B 5 1 QU L2 SRR & AR Lw, :”:M B I -
3 Y 11§ ! ! Y : ’ i i
X e e A e e Ly L

-—

Ao

-~

————a

@
L Foes

ST s

SRR 3 T

BN
g gt
. F
SRS TR W
- - S
v -1 _
———® ~ -
H

i N Riscing + jaes, : Y L L i R s 2ty & ' 22 “NM -
0 - Hx_ww.-*”_._.m,..,w ATATo ik i i . o 1.1... L 1 . .._. ! I Y e
A lm‘\\- M.M. * ol t.l_ﬂhmf (.i.m \‘n‘..w. .;._nm “ﬂw ﬁmh.. - ...w " -.qm.. .\N“ ?-H 5.,“ .._...\,I...,z._%\.v.,.lﬂ i.— y _\Ilw < m‘t. _ ...—.. - a H i
__1rzavz H ISR S V- I F USSR N S T 55 S
BN ECONTINTT .S N Y O S 0 S
o i X m | P
0 1N r i k]
o) _,.., {1
o] X . a A
o] iXi 111 .. |t
D .||.M x P Lvir..._Au - uI S ..ﬂv_tef
Ci i RS i ! .
ol { _ ! .
el i | X 1 [
ol . |
ol 1 : A .
A e R e :
ml —‘(.v .M . et
: : { i
M!.....-L.w w = *
Sl .
X Tol i1 IX _
X |0 | | i
ol 1]1 f ERY NN
IIBREIENIINIIERR “ |
ol i} 1~ : .
. ol 1 1 X
: X :
J 3
“ ” - W.l - B e] .. & ._.-al.* : wlau-l s
: I RN MR NN
T e AR ERREE ERE
- S . — L I B sl sy Sian B e B G T e et
T X B ey e O

=3 ¢ - Py \\n.”r.,lu....‘...h..\ !nN- - .\..N.\,.NNP FLi, m\H. .. F, .}..n\.d......v.g. : “
o - — —— R tinsyieatpmiitupert, = =3 = = ¥ o
3 g wr NS i
H "_w.“ .w\ p STAT o o} & .“ : i = gy T M 2
0 PP v P 21 I 2 I R 0
- I\.“b.l!.‘lll-‘ e - - LT, ol .'1! < - - — ‘ - - ‘w m #
LAY | I ._ Lok - _...l e I A _M.t.....!. R m.t 1Y e
i F g H 3
- - l.l-tl e ..Ii-lnll.%l‘.l..“.lln. - - _ - i i A L ll.ivl.l.l!u-‘aulf -J.ml .. -).. STV 5 R,
n i | | ot
‘3= s L b y B T T — —— - ——— — 3 ——— A § SIS, ey rih mnnd
_ $ NE RN
e -+ = ¢ s -
Jrevesde. .ll.u t.ltw\u.c. - |
i . I { ;)
s B R 1 y i il.llx Il!._vl.g . S e ~ ul} o (S m
~ w‘ —l e = 2. i — -y # lﬂ ”.
SIEE 3 n. wP Ilvnxluii wl.ll — e N e/ -
] # .

o] e
{
1
- J .
CETTY =
. S 1
}
)
-
{
i
j!
r—
e

e Ot

-..1}-....;1 . _,1 se W-{
l
et

"
I
<
i
L
!
‘L
-
i
L
|
|
J
!

|

S S
1

i
B
i
[

-
|
I
|
o
}-
.
i
i
J

‘lﬂ-. ‘
...j!......- o .
}
1
i

——— - —— iy Sy —y -
T . ¢ 1 ! { ; : '
— r . B |%h|| - — .ll#'.'*ll _I.ll. ———— - m ¥
H '] ¢ s
i A S S S B S ; -
L]
i

|
1

= T .
O .
nmi
i
|
il
L.
;
|
¥
kL
:

i
4
NN
] { \ '
NE 2 o
I
-
e
ST
. !
¢
1
f
1
B el
l
,}
F 1

5

1
E { '
.--}....4....*......1 s

f

5
i
andhe
'.)
1 _i
m-" w4
1 i

r
— A

\
1
'

|

5

|

Ees

! i
RS, IR S
.
L

Pt

L

|
]

)
! ..!.Tl.ﬁ m s .—!JT: X

.
-
o e m—
e i
3 \
] »

i
]
1

f o

{

[-

} (]

H F !

L} L)

\ 4

] i

I ' v
I S, S Sp—"

:

L

..null.lll\ - e ————— !.H ~ - R e e e ._l‘-... . . i . . =
. 1 1 " . . - ; K. . 4 w "l - .M-.,-. m - ol =
,L w h. r.., £32 o Tﬁ_ _m..._, ~ _:n — : ! - “, ; | et
dag waipeas o o (R Gt G S ot ot o ! L e T e I PO Thit naces Sroan: <hane St \oskee Sine aeesin et -
| ey | _ BE:CEEEREENRENEDER SIS
- T T
- _ m - ey et v _rll 1—' . - n.l\.nLl_lr -y .#..ﬂ.d ﬂlts!.r. - -.“.-
| NREN b

1

+

Lk

g .

)
L

s i — "—l..ll. ST ¥
]
s lhl- e W e b
f ;
——— Ay » P N -
s 1 m ! A
I..l*r...._—.il . s —w. P et R l.a...‘ t
] e e -
} i R T Y
fomstad mmt = P auigtilers AT d?...:chl - - - L g Rt R e o e A
i i i b SLTHA o
& S GRS S T B oo | - + Poegioeteindsass. " 1
!
1

S ot

M -

i

| Rk

; | o £ o

|u b A ¥
; w - . gt

1

T . T
| i

L

{

£

. h‘. - wpe L wg e LD v gy !u‘.mu.ii-r -
“ I.M *\ i B
- | LI
¢ . i *
L D
{ ! { | , § _
....f,llv-r-..a = TS s s ll..!—l. aca e ...L1|.l.4. e e !..l.w-\mt..kuralwil.-” - m? R—
w LMl Lm . i _ - - " %.r‘n‘um.‘i:mia.uufrl. S
" \..u- - . u.t‘....lalﬁ-lr! — — Mf drv.lf- - .M + = [aiiad | ki .”\ -~
l‘lll‘_ﬁ1.1 Jln__.n . I S-S S— B e , e e .'lﬂlul.lbll\Ml‘.q... . . ”
.f. Wlll_ * W m:.ll 1-‘13. = :

!

e
§
.
¢
1 a0 BT
¢ (]
o S
"
»
s
1
]
2
11

(]
o iq-
i

{

e r—\}mﬁ. i
{
Adow ol —
]
!
L
¢
i
i

~

{1 { ;

- !’.ll-rﬁ.sv.d B e S "l‘.r ~ B b s B o
5 4 :
HENERR i
— e — ~ e f £ i

1 i i a4) i
_ _ w : { 3

Tty e ‘EJr - e Rt A 2l - ILI-‘...“ o s o eyt »

| m :
i |

{ o —yra
-

!
!
i
i

-
"

“‘-—ml—-u.u-l
L aend

v 1
& 1&"

P | 3
;WS da M s me

-

JL

=y
4

-
I

-
|
4

.
.
T i v gl ¥ n'rnl—

TABLE II

WAITING OPERATION FILE

ob Number Part Number Pref, Number Oper. § 8.9. Time/Unit Quan,

Station §01
A 003 +32.8 5 8 ol 2
o 004 +71.5 4 3 o7 1
N , 007 =15.6 1 . 3 4
L 002 + 5.0 3 9 .9 S
N 001 C =23.9 2 o3 .9 4
M#* 004% +42,0% 2% 2% .6% a»
H* 005* + 9.0% . 4% 2% A% S*
o* 003* $51.7% 4% kg A% 1%
E#* 002% +18,.9% 5% AN 2% 4%
B* 010% +50,7% o* S* 9% 5%
L#* 002% £34.1% 5% A% " 5%
R* . 001* $52,.4% 2+ L 9% 3=
Station t02
* 006* - 3.3% 3 J* 2% 3
N# 0ol1#* - 7.3% 3 A% O 4%
M#* 004* #51.5% 3% A% .o 3%
Station #03 '
004 #31.38 1 ol .8 3
0 003 +47.0 3 3 .9 i}
J» 007* =10,0% 2% O A% 4%
N#* o0o1* + 9.8% 4% 3% 6% 4%
D#* 006% + 4.0*% o A% A I
H* 003* £18,.4% S5* =~ 6% S
Q* 002#% £62,.3% 1% 5" 6% A
S 010* $£34.1% 1+ 3 o 4%
Station #04 ;
I 007 #51.7 3 A 2 S
B* 0l0%* £33,2% 4% 1% I S*
D#* 006* - L3* 4% l® 3* 3%
K* 008* £54.7% o 1% «1® 2%
J= 007+ - 1,0% 3% 1 ® 2® 4%
J# 007* +13.5% 5% 2% 1% 4%
p* 001 # +60.1% 1+ J® ¥ 2%
R* 001* #45.6% 1= 1 S 3
M%%ﬂi
002 +12.5 4 3 »3 4
K 008 £44.9 4 S «9 2
G* 009* 440,9% 5" 2% 3% 5
J* 007+ + 2.8% 4% O O 4%
L* 002* #26.4% 4" J3% 3% 5%
Iw 007* +56.4% 4» 5% S5 5%
N# 001* +21.3% 5% % 0 4%

A% 003* +#38,6% 2% 1% 9% 2%

' Table III

Part Number Operation Station Number S.U. Oper. Time/f‘_
Part # 001
i 1 04 . i § .5
2 01 3 .9
3 02 .4 9
4 03 .3 o6
5 05 o5 5
1.6 3.4
Pa f 002
’ l 03 '5 .5
2 02 4 .9
3 01 5 .9
4 05 .3 o3
6 01 L -
dsl 2.9
Part # 003
1 0l .8 4
2 05 o1 .9
3 03 +8 .9
4 0l ol .4
5 02 1 4
ol .
Part # 004
1 ‘03 vl .8
2 01 e .6
3 02 il .6
4 () o S
S 05 2 8
.9 3.5
Part # 005
1 0l .3 .6
2 03 l5 12
3 02 o4 .8
4 0l » 2 o4
5 03 22 =6
1.6 2.6
Part # 006
1 . 038 3 o {
2 0l alds .4
3 02 ol o3
4 04 o 8 «3
5 03 .) .2

Part Number Operation

Part # 007 a !
2
3
4
5
Part # 008
1
2
3
4
5
Part # 009
p |
2
3
4
§
Pa 010
p
2
3
4
5

Station Number

0l
03
04
05
04

TABLE III (Cont.)

SQU-

.9
o5
ol
«9
=2
1.8

5
.1
]

Oper. 6 = across the board

deliveries to destination

part complete

TABLE VI

PARTS IN PROCESS

cn491833905329630903807307039548405466154
. L - . = - .« & ® = » w© = =
VDO A AN NOODOWNVRTO 911294418382625895415
MO A NN A O <+~ w NAAHONEIHOTOWW
[N I+~ 1 4%4% 134 19441 1% LI B 3 .:..J-...-...-.J_...-...-....-. 4~

Next OEr . t

FMOUWVLDOSIFIOIDLSEFVNIOISIFLIFONOFSISFODANDOODNDWLOW

ggntitx

Part t
006
006
010
005
009
004
001
003
002
006
010
009
007
001
002
008
007
006
001
007
007
007
005
008
006
001
002
007
005
003
002
004
001
005
003
001
002
004
007

FPOAMENUOUEZOMAMUOHEZ AMOAZYHOHhIOMAZMADIE < I =0 i 0 3 5

Job §

2

. = LI - . = -
1234—34344866808391013312543?6788099901
—~ A A A A A A A A A A A A AN A A AN N

* % & % & ¥ ¥ % %k % ¥ %k ¥ ¥ ¥ ¥ ¥ ¥ ¥ k ¥ ¥ * ¥ ¥ & ¥ ¥ ¥ ¥ ¥ ¥ ¥ &

Time Available

EVALUATION DATA TABLE

TABLE VII
Days . time Qty.

Job # Part § Date Due A Dg = Dg B opt. opt.
- A 003 8 $ 42.42 10 $2596

B 010 9 ‘102,55 10 1703

c 004 “10 48.90 10- ° . 8674

D 006 p 155.40 10 - 1857 12.5 3

E 002 3 62.82 10 7585 14.5 4

F 006 8 53.30 10 8482 3 1l

G 009 6 236.78 10 5099 6.0 5

H 005 4 92.85 10 3499 17.1 5

I 007 9 104.80 10 1030

J 007 2 84.65 10 . 9235 13.8 4

) 4 008 7 34,18 10 6738 11.6 2

L 002) 77.35 10 9458

M 004 10 142,65 10 - 6990

N . '001 4 118,20 10 7787 15.6 4

o} 003 2 22.00 10 3962

P 001 12 10

Q 002 b & 10

R 001 . I8 10

s

010 . 12 . 10

TABLE Vil
INITIAL SCHEDULE
_ AVAIL.
JoB # PART # QUANTITY DATE DUE AT OBet§ STARTED AT STATR #
A 003 2 8 1 01
: B 010 5 9 3 - .6 05
c 004 1 10 4 | 01
D 006 3 1 2 - .8 01
E 002 4 3 4 05
F 006 1 8 5 - .4 03
G 009 5 6 4 - .5 04
H 005 5 4 3 -7 02
I . 007 5 9 3 04
J 007 4 2 1 01
K 008 2 7 4 0S
L 002 5 5 8 01
M 004 3 10 1 03
N 001 4 4 2 01
0 003 1 7 3 03
it P 001 2 12 1 04
Jobs Q 002 2 12 1 08
R 001 8 12 1 04
s 010 4 12 1 03
/4 009 5 13 1
u 005 3 13 1
\ 002 5 14 1
W 008 1 14 1
X 008 5 15 1
Y 008 2 15 1
A 009 5 16 1
AR 007 4 16 1
AB 010 4 17 1
AC 009 4 17 1
AD 009 4 18 1
AE 003 3 18 1
AP 001 5 19 1

INFORMATION PROCESS CHARTING

Burton Grad
Manufacturing Services
General Electric Company

Richard G. Canning
Consultant
Vista, California

Ralph H. DeRubbo
Specialty Motor Department
General Electric Company

March 15, 1957

Manufacturing Services
General Electric Company
570 Lexington Avenue
New York 22, New York

Page 1.

INTRODUCTION

The information process charting which is discussed in
this write-up is aimed at helping to analyze the so-called
"office automation'' aspect of the project. It is a technique
to be used during the data gathering phase of the project,
when we are trying to find out as much about the present busi-
ness as time will allow, It should be emphasized, however,
that this process charting technique is only part of the over-
all data gathering phase. In addition to this charting, we
must also obtain a considerable amount of statistical data
about such things as the flow of information and the size of
the files. Similar types of studies must be made of the fac-
tory operations, too.

The sequence of presentation in this Information Process
Charting write-up will be:

I Description of the charting symbols used, together
with a brief discussion of some of the less obvious
points.

II Description of the charting form used.

ITI Discussion of the overall charting technique.

IV Definitions of terms, to aid in understanding the dis-
cussion.

Page 2

I. PROCESS CHARTING - GENERAL

We are interested in learning what the mechanized system
must be able to handle. For the "office automation' aspect of the
Project, then, we are interested in the following types of infor-

mation:

1.

The logically necessary alternative procedures which are
needed in the business, for handling the main flow as
well as the so-called “exception' cases.

The management control reports that are developed by
the organization, and method of use.

The reports and other pieces of information that must be
transmitted outside of the organization, for legal or
other reasons.

At first, a preliminary pin-pointing of all complex com-
putation operations and decision areas. Later, we will
need a more detailed understanding of these operations,

Conversely, there are certain types of information in which we
are not interested:

1,

We are not interested in the manual procedures that are
used, per se--e.g. how many clerks and typists work
on a form during its preparation, or points along its
route where the form is stored temporarily.

We are not interested in the fact that several people are
involved in an operation, each doing part of the overall
job.

We are not interested in the layout of the clerical work
area or the types of office equipment used.

We are not interested in the ""exceptions'" which arise
due to internal clerical errors (however, we are inter-
ested in the types of errors in information transmitted
into the organization from outside, over which the
organization has no control).

Page 3

The more conventional charting techniques have not proved
themselves adequate for uncovering the types of information in
which we are interested. Such conventional techniques have
generally been aimed at one of two objectives: (a) trying to find
out where human clerical time is being spent, so as to shorten
the overall process time, or reduce the man-hours to do a job,
or (b) lay out a prescribed sequence of operations in a reason-
ably complex job, for the guidance of the clerks and operators--
e.g. flow charts of punched card operations. We are not yet
interested in either of these objectives, in this study, so it is
not surprising that their associated charting techniques turn
out to be relatively ineffective for our present purposes.

Rather, to obtain the understanding we require, we must
learn the flow of information throughout the business, for di-
recting manufacturing and the other activities, and for feedback
and control. All uses of the information must be accounted for,
80 we soon find the scope of the project spreading throughout
the entire organization.

To accomplish this objective, we have designed and tested
a new technique which we call Information Process Charting.
This technique 18 based on (a) reasonably precise definitions of
basic data processing operations, represented in the form of
symbols, and (b) a charting procedure to make sure that the
necessary descriptive information accompanies each symbol,

Page 4

PROCESS CHARTING - SYMBOLS

Fundamentally, there are only seven symbols in this tech-
nique, five of them representing "operations' (where someone
does something), and two representing conjunctive, or connec-
tive devices. These basic symbols are shown below:

OPERATIONS

O)

Selection Arrangement Writing, Comparison, Computation,

Erasing Branching Decision
%ONNE CTIONS

Entry Exit

As will be seen shortly, there are different variations for
some of these symbols, so that in practice 11 different symbols
are used, Each of these 11 symbols is defined on the following
pages.

SELECT, SEARCH (SR)

Page §

Search always means to look for a
specific record in a file, and not
to look for a field of information
on a record.

In searching, the file is always
assumed to be present and avail-
able.

Indicate which file is being searched,
the field(s) of information by which
the search is made (the key), and
which record the search key was ob-
tained from.

Search implies that the file is se-
quenced by the key being used;
otherwise, a Separate operation
should be used.

Always indicate both the Find and
the No Find cases; even though the
latter may be impossible, unlikely,
or trivial.

We are interested in analyzing those
cases of No Find that are logically
important - e.g. there has not yet
been time for the record to reach
the file, the record has not been
created, etc,

Both the input records and the selected
file record are available at the output.

If the record is a separate unit record
(e.g. a separate form), it is assumed
to be removed from the file by the
search operation, and must be merged
back with the file if that is its disposi~
tion. If the record is simply an entry
on a line, such as an entry in a log
book, then it stays in the file but is,
of course, available at the output also,

SELECT, SEPARATE (SP)

&

1.

ARRANGE ,SEQUENCE (AS)
1 o

Page 8

Separate means to select one or more
records from a group or file accord-
ing to some “"key*'~-e,g. separating

copies of a form according to the dis-
tribution field, or separating a batch
of incoming mail by type of document.

Name what is being separated - e.g.
multiple copies of a specified record,
records of a specified file, etc.

Indicate the key by which the separa-
tion is being made, It is generally
sufficient just to name the type of
document, without giving details
about the key.

A separate operation may have numer=-
ous outputs, one of which usually is
the ""main line" being charted. Use
exits for all the other outputs, and

use a separate line on the chart for
each such exit, so asto be able to
describe it properly.

. If some outputs go to a simple filing

operation, use the ""file, then stop'"
exit described under Exits.

If multiple copies of a form are being
separated, the disposition of all
copies must be shown.

Sequence means to arrange a group
of records into ascending or de~
scending order. It does not mean
“gort into different groups*™, which
is the Separate operation.

Name the records being sequenced,
and indicate the key on which the sort
is being made., If more than one
field, indicate their order.

There is only one input and only one
output to a sequencing operation,

ARRANGE, MERGE (AM)

5

Page '/

. Merge means to combine two or more

sequences of records into one sequence,

. Merging assumes that all records and/

or files are already sequenced by the
key

. Merge also covers the operation of

placing a record into a file in proper
sequence. In this operation, the file is
assumed to be present and available.

. Name the records and/or files being

merged and fields by which the merge
is made.

. There are always at least two inputs

to a merge operation, and always just
one output.

. In a "file, then stop" operation (de-

scribed under Exits) use a merge and
a dead-end exit, both in the exit
column.

MODIFY, INSERT (-})

MODIFY, DELETE (-)

Page 8

Modify insert means

(a) To create a new record, e.g.
a new Purchase order;

(b) To add one or more fields of
information to an existing record;
e.g. signing a freight bill,

Indicate the record from which data
is taken, the record into which it is
inserted and the field(s) being in-
gserted.

If a new document is created, show
the disposition of both old and new

documents.

It is usually not necessary to chart
out the insertion of each field in a
report (as discussed under Compute).
Use one Insert for the whole report,
or at least that amount which is done
as one job.

As discussed under Search, a record
should not be Searched to obtain a
field of information prior to an insert.
It is assumed that the entire record
is read "at a glance' and all fields in
that record are available. If there is
a logical liklihood that a certain field
will blank, use a Compart and Branch,
comparing the contents of that field
with "blank.

Modify delete means to delete one or
more fields from an existing record.

Indicate record and field deleted.

Complete records are destroyed by
means of a dead end exit, and not by
means of a Delete operation.

Page 9
COMPARE AND. BRANCH (C.3).

1. Compare and branch is a basic choice
operation involving a defined or pre-
scribed decision; e.g. if x is greater

(CB) > than y, take one course of action, etc.

2. Compare and branch is one of the op-
erations to be used for showing how
alternative processing paths are se-
lected - for locating the “"exceptions".

(Other operations which do similar

but not identical functions in this re-

gard are Separate, Search, and
Decision~Making).

3. If at all possible, the two things that

P are being compared, x and y, should
CB be expressed as numbers. For in-
stance, ""compare the number of

- copies with 1' to determine if there
are zero, one, or more copies. Or
"compare the contents of a certain
field with blank' to determine if any-
thing is written in that field,

4, Always indicate the record (s) and
fields (8) involved,

8. Y should always be the standard, if
there is one,

6, There are two varieties of outputs
from this symbol: (a) = and #, to indi-
cate "equal" and ''not equal" when this
expresses the situation adequately;

(b) >, <, and =, when each of these
three alternatives must be taken into
account, '>" means "greater than',
and "<'" means "less than',

7. If one of the outputs is impossible, so
mark it,

8, If the same action results from two
outputs, the two signs may be shown
together on one output line.

8. All outputs must always be accounted for,

COMPUTE (CT)

ke

Page 10

Compute refers to arithmetic opera-
tions; e.g. computing new shop lcad,
delivery schedule, etc. using addition,
subtraction, multiplication or division.

., If the formula is easily expressed, note

it down in the Remarks column of the
charting form, or on a supplementary
note sheet.

If the method of computation is at all
complicated, do not spend the time to
analyze it in detail, but simply group

the whole computation into one com-
pute operation., There is one exception
to this rule: where significant branch-
ing occurs between portions of the
computation, each of these portions
should be shown as a compute opera-
tion, and the branching indicated by
Compare and Branch operations, In
either case, a detailed analysis of the
computation will be made later.

Likewise, it is not necessary to indi-
cate how each field in a statistical re-
port is computed; just show one com-
putation for the whole report, followed
by an insert, for recording it.

If not too difficult, it would be de-
sirable to have a two or three sentence
write-up of the computation, indicating
what is being done, for the more com-
plex computations. This write-up can
be on a supplementary note sheet.

Indicate the records involved and the
fields being computed.

Page 11

DECISION-MAKING (DC)

1. Decision making generally involves
judgment; e.g estimating what will be
the volume of customer orders during
the next three months.

DC je———— 2. These operations are usually quite

it g difficult to analyze, (because of the
large number of factors involved), so
do not spend the time to analyze them.
They will be analyzed at a later date.

3. However, it is desirable to chart the
processing of information up to the point
where the decision is made, and also
after the decision is made, For instance,
information is usually pulled together
from a number of sources and often pre-
sented in report form before the decision-
making operation takes place.

4. After the decision is made, indicate
that the results are recorded, by an
Insert operation.

5. In some cases, alternative processing
steps will be taken, depending upon
alternative results of the decision. In
this case, several exits may be shown
from one decision symbol.

6. List the major factors involved in mak-
ing the decision, in the Remarks column
or on a supplemental note sheet if necessary.

7. If there are well-defined intermediate
steps or computations during portions of
the decision process, these should be
charted in the normal manner.

8. The decision symbol may also be used to
represent non-routine activities of pro-
fessional and semi-professional person-
nel which are difficult to chart. Examples
might include data gathering and analysis
prior to a decision, where methods of
data gathering and analysis vary with the
situation.

ENTRY (EN)

From:
Study —
P -

2

Inter Activity Entry

From
p -

-

Intra Activity Entry

Main Line
From

(B) A)

“And" Entry

By Main Line

P= (B J(A)

MNext
|Operation

e

“Or" Entry

1‘

(f

Page 12

An entry indicates the beginning of a series
of related operations (a routine). An entry
may have inputs from more than one exit.

There are four types of entries:

a. Inter activity entry, (inputs from out-
side the system, or from another ac-
tivity study within the system). Letter
such entries beginning with "A",

b. Intra-activity entry (entries from exits
from within this same study). Number
these entries, beginning with "'1',

¢, "And" entry. If records A and B must
go through a series of steps together,
and record A has been charted as the
main line, bring record B in with an
"and" entry. This condition is repre-
sented by connecting the entry to the
main line, as indicated.

d. *Or*" entry. If record A or record B
(but not both) can go through the same
series of steps, and A has been charted
as main entry. The entry symbol is
connected to the next operation symbol,
and not to the main line.

On lettered entries, indicate study, page,
and exit supplying the record, if possible.
On numbered entries, specify the page num-
ber of all exits which are inputs to the entry.

The analyst will have to decide whether the.
first entry is to be numbered or lettered,

If the activity originates at point where the
chart begins, use number '"'1", If the activ-
ity is supplied by forms or information from
some other activity, or from outside the
system, use letter "A",

Indicate all entering records (but not fizlds),

An entry may be initiated at any point on the
chart, but must be made to the main line
flow. A direct entry may not be made to a
secondary flow.

An entry does not necessarily have to have
an entering document or form. Also, an en-
tering record may be in the form of direct
measurements or observations.

Entry—
Inter Activity Exit

4 we

Intra Activity Exit

A

Dead End Exit

C

/X\

'""File, then stop' Exit

Page 13

There are four types of exits:

a. Going out to some other study; letter

sequentially, beginning with "A", in-
dicate study and page number, if pos-
sible. All exits going to the same out-
side entry should use the same letter.
It is desirable to name the exit on the
chart in terms of the activity--e.g.
copy to Accounts Payable

b. Going to an entry within this same

study (a ''normal" exit); number the
same as the entry to which it is going,
and indicate page number of that entry.

¢. A "dead end" exit, either destruction

of a record or ceasing to process a
record, indicate by an X in the exit
symbol.

d. A '"file, then stop" exit; use a "merge"

operation, then a dead end exit, both
in the exit column Name the file and
sequence "Key"

2. An exit should go to only one entry.

3. Do not use an exit at the end of a page

just so as to refer to the next page; just
stop the line at the bottom of the page
and pick it up at top of next page. Be
sure page numbers are correct to pre-
vent confusion.

. As discussed under the Separate opera-

tion, use exits for all the secondary out-
puts of Separate. Spread these exits
vertically, not horizontally (to provide
space for proper description) but take

up as little space on the page as possible.

Page 14

. Secondary Record or .
Entries Main Line Flow LExits Flow Records Field Fields Remarl
—— e e e ——— —
Name of N ¢
Record or B Key with i
File y File
1
Name of
Records By Key
Being
Sequenced
2
I Record
onio which Field(s) Record
dute ia being from which
+ on |/ inserted |f°™ |data is
| being 0
I inserted Obtﬂ‘nﬁd
3
| D
Record Field(s)
from which ¢ |being
- ‘ from | 4ata is I |deleted
| - deleted »
| 4 %
l Field(s) Field(s) Records
being from |supplying |[on |from which 'Formula,
CcT computed information field(s) if easily
were obtained
I 5 obtained
Brief List of
DC o e name of major
decision factors
| 6
Record
; com- ,
e using involvcd pare. Field with Flﬂld
=) . Record and | Record by | Field(s)
Name of Record Do not
file from which| search a
- being by Key from key record fo
searched was a field
8 ottained
Name
Records
or file by Key
: heing,
\ Separated
9
A (Description] of Exjt B)
(Doacriptiorn of Exfit 9)

Page 15

PROCESS CHARTING - DISCUSSION

There are a few points of special interest that should be dis-
cussed briefly, about the use of the above symbols,

First, the operation of "reading' is implied in all of the above
symbols, and is not called out as an independent step. It is assumed
that the person doing the processing must first read the information
from the documents,

Next, it should be re-emphasized that whenever Compute and De~
cision-Making operations are encountered, the analyst should not
spend much time in detailing these operations. The process charting
simply pin points the computations and decisions, and gives some
understanding of what is involved. After the data gathering phase,
many of these operations will be analyzed in detail,

Occasionally an analyst will come across a ''loop'" operation,
where a series of steps is performed on a number of items, before
going on with the processing. An example: computing the standard
cost for each operation in making a part, before the standard cost of
the finished part can be determined. Indicate such loops as simply
as possible; e.g. "steps through repeated for each item on the
record." R

Also, in some possible loop operations (where there may be
one or more items on the list), a totalling or summary is performed
afterward if there was more than one item on the list. Do not try to
chart this out, using conditional transfers. Simply indicate the
totalling operation right after the last operation of the loop, and in-
dicate in the Remarks column, that it is used if necessary.

Occasionally a matching operation will be encountered, such
as a group of time cards being matched against a payroll file. It is
desired to know if there are any time cards for which there are no
payroll records, and if there are any payroll records for which there
are no time cards, as well as matching payroll records and time
cards for computing gross pay. Such situations as this may be charted
by two Search operations in sequence. In the case above, search the
payroll file by the time cards employee numbers indicating Find and
No Find. Then search the time card '"file' by the payroll record em-
ployee numbers indicating Find and No Find.

The "and" and "or'" concept should be mentioned briefly. Some-
times two records must be brought together, so as to go through a
series of processing steps: record A and record B. If record A has
been charted as the main line, then record B can be brought in by
using an "and" entry, as shown on page 12, by connecting the entry to
the main line.

Page 16

Note that this "and'' entry is somewhat different from a
Merge or a Search operation. If record A is being charted on the
main line and B is located in a file, then B is obtained by a Search
operation.

Also, if two files are in a common sequence, they can be
combined into one file of the same sequence by a Merge operation.
Similarly, a record can be placed into its proper place (in sequence)
in a file by the Merge operation.

The "And" entry implies no searching or no sequencing. There
is no file; only records are involved. Two or more records are
brought together, so as to be able to form a larger record.

For the "or" situation,' record A or record B (but not both to-
gether) can go through the same sequence of steps. There are two
permissable ways to chart this. (1) Use an "or" entry for record B;
draw the line from the entry into the next operation box. Then, at
the end of the sequence of steps, use a Separate operation to split
the two types of documents apart. (A Compare and Branch operation
is more correct logically, but the Separate operation is easier to use
in the present case.) (2) Sometimes, however, it would be confusing
to use the method described above, since records A and B are so
dissimilar. When charting the processing of record B, then, the
analyst (when he comes to the same sequence as he used in charting
record A) can leave a blank line on his chart and insert the note
"Use steps___through__ from page___."

Page 17

II CHART FORM

Below ig a sample of the chart form used, ghowing the column
headings:

#
Rec- Record Re~
ords orfield| [|Fields | o ke

The meaning of the headings is reasonably self-explanatory.
All entries will be shown in the first column, properly numbered or
lettered and page numbers of pertinent exits shown. The next column
is where the bulk of the charting will be done~-the Main Line, or the
sequence of steps being described. The exit column is similar to
the entry column; in the case of a “file, then stop" exit, both the
merge symbol and the dead end exit may be shown in the exit column.

The secondary flow column has been provided to reduce the need
for exiting and re-entry to handle minor variations in procedures. The
use of this secondary flow column ehould be quite restricted. For one
thing, no separate entries should be made to the secondary flow col-
umn; rather, it is limited to branches out of the main line via Com-
pare and Branch, Search, Separate, or Decision operations. In addi-
tion, if the secondary flow involves over 6 operation symbols, an
exit should be made to another page of the chart, and a re~entry pro-
vided.

There should be only one operation symbol per line--either an
entry, main line, secondary flow, or exit symbol--so that the proper
notation can be made in the other columns of the chart.

The three narrow columns which have no headings are provided
for inserting prepositions, conjunctions or verbs. For example,
"Insert on Record A Field X from Record B."

Recommended procedures for filling out the remaining columns
are shown on page 10, The last column is for remarks; if the re-
marks exceed the space provided, refer to a supplementary note
sheet, as '"See Note 1."

Page 18

Following is a sample of the identification block at the bottom

of the chart form:

Subject Charted Procurement (Direct Mtls)
Chart Begins Initiation of Purch.Ord.
Chart Ends Preparation ot Purch. Ord.
Charted By A.Close

Page | of O

W

W

Last Exit # O
Last Entry # 4
File Code

Date 12/ 3756

It is very desirable to have these blocks filled out completely,
indicating the activity being studied, who is doing the charting, the
date, and so on. The blanks for '""Chart begins' and '"Chart ends"
are most helpful when searching through a group of charts to find
a particular sequence. In these blanks, indicate roughly what part
of the whole activity is being covered by this one chart.

In some cases, the entry '"Miscellaneous Exceptions" is as
close as the analyst will be able to come to describing the subject

covered by the particular chart.

Page 19

11l CHARTING TECHNIQUE

1. General Procedures

a. Draw all charts (even preliminary ones) on the
8 1/2 x 22 inch forms provided, using No. 2 (soft)
pencil. Do not use any pencil as hard as No. 4, as
this hardness will not reproduce well. When using
a soft pencil, it will be necessary to be careful not
to smudge the lines.

b. It is suggested that both the senior analyst and the
analyst draw charts of initial interviews. These
charts should then be checked against each other
for consistency of approach.

c. The senior analyst should review all new process
charts on a frequent basis.

d. It is anticipated that project review meetings will
be held weekly during the data gathering phase, to
discuss the progress of the studies, Discussion of
charting technique will be held at those meetings,

2. Beginning a chart

In beginning the charting of an activity, do not lump all
possible types of transactions together artificially. If all types of
transactions come in from a common source, such as the mall
room, then this fact should be shown, followed by a Separate opera-
tion to select out one type of transaction for analysis, But if the
transactions come from different sources, just select the most
common one and start charting it.

If the information originates at the beginning of the chart,
the first entry should be numbered ''1". If the activity is started by
the receipt of a document from another part of the system, or from
outside the system, then the first entry should be lettered with"A"%,
It is hard to define this point too precisely, and it is somewhat
arbitrary. For instance, the receipt of ‘mail from outside the busi-
ness can be considered as external to the system, so that the
first entry should be lettered, not numbered.

The objective of the lettering is to quickly point out those
entries (and exits) that tie in with other charts in the system. If
the analyst knows that an entry is fed from some other chart, he
should use a letter.

Page 20
J. Ending a Chart

When the analyst comes to the bottom of a chart, and is
simply going to continue charting on the next page, he should not
use an exit and a re-entry on the next page. Simply draw the line
to the bottom of the chart, and pick it up at the top of the next
chart.

4. List of Open Exits

After charting has been completed, the analyst should
prepare a list of the exits that refer to other studies. Each exit
should be described briefly, so that it can be understood from just
the list (without having to refer to the charts), and the other study
to which it refers should be indicated.

5. Working from Other Charting Forms

It is sometimes possible to do much of the charting from
flow charts and procedures charts prepared for other purposes.
The big difficulty here is that these other charts usually concen-
trate on the main line flow only, and do not specify the condiditions
under which alternative paths of processing are selected. This
branching will have to be uncovered by interviews.

Another example of charts that can be used is an IBM proce-
dures chart. These charts have usually been developed for instruct-
ing machine operators as to the sequence of machines to be used on
a job. As such, they very much reflect the particular limitations of
the machines. If a process chart were to be drawn from these
charts directly, there would be a considerable waste of effort. For
instance, a half of a page of charting would be needed to show the -
insertion of an invoice number in a deck of billing cards, due to the
way that this operation must be done on the machines. Actually, all
that would be desired would be the one operation - "insert'". There~
fore, the person making process charts from IBM flow charts will
have to do some abstracting before drawing the process charts.

6. Control Totals

The use of control totals is very common, both in manual
and punched card operations. The purpose and technique of these con-
trol totals are quite well understood, therefore, the analyst should
not go to any pains to chart out the method of preparing control totals,
of segregating different types of control totals, or of specifying what
is done when an error is detected. Simply indicate a Compute opera-
tion, an Insert operation and later a Compare and Branch operation.
For the ""Not Equal' output of this last, simply add the note,

"Correct Clerical Erroxr",

Page 21

1V DEFINITIONS

File A collection of data, generally applying to one aspect of a busi-
ness. A file consists of a group of ""records" (to be defined),
usually each of which contains the same type of information. The
records are arranged (in most cases) in a specific logical se-
quence. Example: personnel file, inventory file, model list file,
etc. (Note that the word "file" is used as a noun, not a verb.)

Record One member of a file; a record usually contains all pertinent
information on a single item. Examples: a personnel record for
one employee, an inventory record for a raw material type, or
an entry in a log book.

Field A sub-division of a record; one or more related characters of
data referring to a single aspect of an item. Examples: date of
birth of an employee, employee's name, etc.

Character A character of data may be a numerical digit (0 to 9), an
alphabetic character (a to z) or a special character ($, blank,
@, etc.)

Data Known facts; generally, recorded facts, as used herein. The
term "data' is often used synonymously with "information" al-
though data generally includes redundancy and errors as well as
information.

Information Communicated knowledge (more precise engineering
definitions are available but will not be presented here), It is
important to know that information can be measured in terms
of "binary digits" (bits), where each bit is equivalent to one
yes-no decision.

Form A printed form used in manual data processing; generally is
covered by the definition of '"records".

Transactions A record of an event, an action, Hxamples: a new
customer order, a shipment to a customer, an employee clock-
ing in at work, etc.

Key One or more fields of data within a record used for controlling
the handling of the record -~ sequencing, merging, searching,
and separating. Example: Employee name in sequencing per-
sonnel records in the personnel file.

Main Line The predominant flow of data in the specific area being
charted. A sequence of operations which is a secondary branch
and exit on one page of a chart will generally be the main line
on another page where it is charted.

INFORMATION PROCESS ANALYSIS

BY
BURTON GRAD anp RICHARD G. CANNING

Reprinted from
Tre JoUurRNAL oF INDUSTRIAL ENGINEERING
Val. X, No. 6, November-December, 1059

Information Process Analysis

by BURTON GRAD

General Electric Company, New York

and RICHARD G. CANNING

Consuitant, Vista, California

INFORMATION Process Analysis is a new charting
technique developed by the General Electric Company to
aid the introduction of electronic data processing systems

in the office. Actually, it has applications considerably

beyond this original purpose. However, the present discus-
gion will deal primarily with its application to electronic
data processing,

The introduction of electronic data processing equip-
ment is forcing a greater awareness of the systems aspect
of information processing than has, say the introduction
of punched eard techniques. Because of their speed, cost,
and eapabilities, these EDP systems are causing manage-
ment to cut across existing functional lines in the develop-
ment of new procedures, This is true not only of the differ-
ent areas within the office but it is becoming equally true
in the integration of office and factory.

How is this systems concept different from what has

been done in the past? In a relatively few cases, pro-
cedural work has had a true systems approach, However,
in the vast majority of cases, the emphasis has been on
cost improvement projects designed to do a certain part
“of the business in a more efficient manner: for example,
better methods for drilling a hole or for preparing factory
paperwork: substituting a less expensive part which will
perform the same function as the previous part, and so
on. Most of these projects do not consider (or consider
only briefly) the inter-relationships between the various
activities of the business. The “bricks” are analyzed in
greal detail but the composition of the “mortar” is too
often ignored.

There always seem to be numerous valid reasons for
not studying these interrelationships. First, they are more
difficult to analyze than are the activities themselves, and
require a broader knowledge of the total business. The
gystem interrelationships cut across existing functional
and sub-functional lines so that no cne is quite sure to
whom they belong. Finally, their study takes longer and
does not have the glory of an immediate reward,

Iiven in the face of these argnments, however, experi-
ence has shown that the “bits and pieces” approach by it-
self eannot produce the gains which can be realized from a
study of the business as a whole—a systems study. Also,
the advantages of electronic data processing lie, to a great

470 The Journal of Industrial Engineering

extent, in tying together logically related activities, Maxi-
mum system speed and accuracy result from integration
along lines of information flow, rather than within in-
dividual functions.

In a systems study, care must be taken to make the
analysis mueh more comprehensive than the usual “pro-
cedures” analysis, Improving a particular process or ac-
tivity is not the primary goal, but rather examining the
necessity for having the process at all. This approach is
not hardware-oriented; it is an effort to find out why
things are done at all and then, after constructing a logi-
cal pattern for operating the process, to determine the real
equipment needs.

" The Information Process Analysis technique to be de-
seribed was designed to meet the needs of such a systems
study.

THE SYSTEMS APPROACH

In beginning an EDP systems study, we are more inter-
ested in what is going on in the business rather than in
how it is being performed or who is performing it. For
example, there are certain types of information which,
though of interest in a conventional procedures study, are
not of interest in a systems study:

1. We are not interested in the manual procedures that are used
per se—e g, how many clerks and typists work on o form dur-
ing its preparation, or points along its route where the form
is stored temporarily.

2. We are not interested in the fact that several people are in-
volved in an operation, each doing part of the over-all job.

3. We are not interested in the layout of the clerical work area
or the Lypes of office equipment used.

4. We are not interested in the “exceptions” which arise due to
internal clerical errors; however, we are interested in the types
of information errors transmitted into the organization from
outside over which the organization has no control.

[nstead, since we are interested in learning what the
mechanized system must be able to handle, we are inter-
ested in the following types of information:

1. The logically necessary alternative procedﬁres which are
needed in the business for handling main line flows as well as
so-called “exception” cases.

2, The management control reports that are developed by the
organization, and the purposes they serve.

3. The reports and other pieces of information that must be

Volume X * No. 6

transmitted outside of the organization, for legal or other
reasons.

4. At first, a preliminary pin-pointing of all complex eomputation
operations and decision arveas. Later, we will need a more de-
tailed understanding of these operalions.

Conventional charting techniques usually involve sym-
bols representing such clerical activities as transport,
store, delay, inspect, and a general symbol representing
all operations, These conventional techniques have been
aimed at, and these symbols are useful for, one of two
main objectives: a. to find out where human clerical time
is being spent, go as to shorten the over-all process time,
or reduce the man-hours to do a job, or b. to lay out a pre-
seribed sequence of operations for a reasonably complex
job, for the guidance of the clerks and operators—e.g.,
flow charts of punehed card operations. Since our primary
interest in a systems study is not in either of these objec-
tives, it is not surprising that their associated charting
techniques prove relatively ineffective in a systems study.

Instead, we are interested in learning of the flow of in-
formation throughout the business, for directing manufac-
turing and other activities, and for feedback and control.
All uses of the information must be accounted for, so we
soon find the scope of the systems study spreading
throughout the entire organization, The Information
Process Analysis technique designed to meet this objective
is based on: a, reasonably precise definitions of basic data
processing operations, represented in the form of symbols,
and b. a charting procedure to make sure that the neces-
sary deseriptive information accompanies each symbol.

In other words, conventional charting techniques treat
information systems as though they were material han-
dling systems, where the material is paper. Since this new
technique deals with the information itself, not the paper,
we are able to concentrate on the different data processing
operations,

INFORMATION PROCESS CHARTING TECHNIQUE

Fundamentally, there are only seven symbols used, five
of them representing operations (where someone does
something), and two representing conjunctive, or connee-
tive devices, These basic symbols are shown below:

OPERATIONS

<> O [

D

Selection Arrangement Modiflcation Comparison, Computation,
(Writing , Branching Decision
Erasing)
CONNECTIONS
Entry Exit

In practice, there are varintions for some of these sym-

November—December, 1959

bols, so that & total of 11 different terms are used, Bach of
these 11 terms and symbols is described briefly.

T'he Charting Symbols

1. Select, Search Search means to extract a particular record

(SR) from a file of similar records which are se-

quenced by the field on which the search

is being conducted. Illustration: Search the

@ o Find Planning File for the Planning Card cover-
ind ing part number 374265-1.

2. Select, Separate Separate means ta select one or more rec-
(8P) ords from a group or file, according to a key

field. Sequencing by the key is not neces-
sary. Illustration: Separate the copies of
the Purchase Order by destination.
3. Arrange,
Sequence (AS) of records into ascending or descending
order according to a key field. Illustration:
Sequence time cards by employee pay num-
@ ber.
Merge means to combine two or more
groups of records which are already in se-
quence by one or more key fields into a
single sequence on the same keys, or to
place a record in n file, Illustrations:
Merge new Parts Lists with the Parts
Lists File by Parts List number; merge

the employee time ecards with the em-
ployee job cards by employee pay number.

Sequence means to arrange (sort) a group

4, Arrange, Merge
(AM)

5. Modify, Insert Insert means to create a new record or to
() add one or more fields of information to an

existing record, Illustrations ; Prepare a new

Purchase Order; sign a Freight Bill.

6. Modify, Delete Delete means to remove one or more fields

(=) of information from an existing record. Il-
lustration: Delete a terminated employee's
pay number from the active employee
ledger.

Compute refers io an arithmetie formuln
incorpornting basie arithmetic operations:
Add, subtract, multiply, divide, exponenti-
ation, trigonometric functions, ete. It does
not contain any comparison or choice oper-
CT ations. If the result of s computation is
used in a comparison, this should be indi-
cated separately. Illustrations: ‘T'otal week-

7. Compule (CT)

The Journal of Industrial Engineering an

8. Compare und
Branch (CB)

ly pay equals hourly rate times number of
hours worked; stock on hand at end of
period equals initial stock plus receipts
minus disbursements,

Compare and Branch is the basic choice
operation which involves a defined or fully
presceribed decision. Illustrations: If the
produet model number is incomplete, then
pass the order to Engineering; if an em-
ployee'’s accumulated salary year-to-date is
greater than $4200, do not deduct social
security.

G

9. Decision-Making
(DC)

Decision-Making i3 a higher level than
Compare and Branch. It is used when a
choice is not based on a clear cut set of
rules; in other words, judgment is involved
in o decision-making process, 1t is possible
in u decigion-making operation to indicate
what factors are considered and often even
the relative importance of these factors.

Dci

alternate To the extent that exact “weights” can be
QO determined and all alternate paths noted
of nction

the operation reduces to a servies of Com-
pare und Branch operations, Illustrations:
Determine the quantity of Model XYZ that
will be sold within the next 12 month
period; decide whether a job applicant is
suitable for a particular task.

10. Connection,
Entry (IEN)

\57

An Entry serves to starl a routine or to
bring additional information into it. It
may come from unother part of the same
chart or from a different activity entirely.
INustrations: The customer order entering
the order service routine; a pay voucher
coming to Cost Accounting from Payroll.

An Fzit is the means by which an activity
is terminated. It may go to another part of
the same chart, it may go to another ac-
tivity, or it may be the end of the routine.
Illustrations: All requisitions requiring spe-
cinl engineering review go to Engineering;
a puy cheek is given to an employee for his
previous week's work.

11, Connection,
Exit (EX)

AN

The foregoing descriptions are necessarily brief; more
complete definitions for each operation symbol may be
obtained from (1). A summary of their use on the chart-
ing form is shown in Figure 1.

EXAMPLES OF PROCESS CHARTS

To give an idea of the technique in action, we have in-
cluded two examples, one trivial and zne from an astual
systems study. Figure 2 indicates some of the “data proc-
essing” operations which might be followed by a young
man in search of a date.

The steps on the chart are relatively self-explanatory.
Alphabetic entries and exits provide connections to and
from other charts while numeric entries and exits refer to

472 The Journal of Industrial Engineering

different parts of the same chart. Line 3 shows a routine
decision step, involving a Compare and Branch operation,
while Line 15 shows a difficult decision involving judg-
ment. Line 8 shows the procedure for entering a new rec-
ord into a file (merging). In general, it will be seen that
the technique brings out clearly the various alternative
circumstances that can arise, Also, space is provided for a
brief explanation of each step in the process. Thus, charts
drawn by one person may be easily read by others.
Figure 3 is a reproduction of one part of a chart on

tooling activities in a manufacturing organization, The
particular operation being charted is the receipt of raw
material at the tool erib, where the material is destined to
be made into a tool. Line 4 shows a searching for a copy
of the purchase order after the material is received; the
charter may or may not chart the “no find” situation de-
pending upon how significant it is, Line 6 indicates that
the tool crib attendant checks to see who the material is
for; the “not equal” branch indicates that it is for some-
one else, and Exit 3 connects to the charting of that con-
dition. Line 7 here refers to the fact that “someone else”
to whom the material is to go wishes it to be stored tem-
porarily in the tool erib; after it has been suitably marked
in the other operation, the information again enters the
main line being charted. The remaining operations

INFORMATION PROCESS CHART

" Main Lino| . woond= Rocard or
Entrien Plow Lxitn t o Records iald Flelda Romarks
Nams of Name of
M Record or By | Key with Flle
Flle
1
Name of
flecords [By [Key
Bolng
2l Bequonoed
Record Record
anto which Fleld(s) from which
on | data 18 helng ffram data s
being insarted obtatnad
3 Insaerted
Rogard 4]
ey from which [| Flelds)
= o data in 4 balng
d daletod o | deleted
Fleld{s) Field{s) Recorda '
or belng ro1] wupplylng |on | from which| Formula,
computed information | Held(a) 1f easily
wore obualned
5 obtained
Brief Lint of
Ec |- pisss name of major
decision factors
L
Racord ot v
col "~ Feld
GD—L sing Invalved pard l(| fleld
I J Record hnd| Rocord | by | Fiald(s)
Namo of lagord Do not
BR = file by | Rey rond from which | search a
baing key wan record for
W searched obtalned | a fleld
Nams
P Rocords
or (lle by | Key
belng
. | Separated
“ h Dascription of Exit|8)
Dascription of Bxit(9)
| |

Fia. 1

Volume X * No, &

shown here indicate the steps taken to determine where to
store the material in the tool erib. The original chart con-
tinues beyond line 10 for this one function, and in fact,
eleven of these 18-line charts were used in charting the
tooling activities.

EVALUATION AND SPECIAL PROBLEMS

The speed with which Information Process Charts can
be prepared seems to bear a close relation to the speed of
programming a problem for a large seale digital computer,
Interviewing, charting, rechecking and summarizing re-
sult in about 2 steps per hour, although this improves
with experience. Remember though that these steps are
more powerful than the normal computer operation codes
since each symbol may represent an entire subroutine like
“Sequence,” “Merge,” ete.

As in any new technique there is a significant learning
curve effect. As experience is developed, speed and acecu-
racy improve considerably. It is also apparent that differ-
ent types of problems require somewhat different view-
points and charting “tricks.”

In first applying the technique the procedure was de-
seribed with brief examples to a group of trainees and first
line supervisors and specialists, The initial charting ae-
curacy was substantially less than expected, probably be-
cause the training techniques were at fault. It is our con-
clusion that the best teaching method would be a practical
example (like receiving of purchased parts) performed in-
dividually by each member of the team and then dis-
cussed and analyzed as a group., '

In choosing the particular format and charting arrange-
ment much consideration was given to the location of the
symbols, In contrast to the usual computer charting which
uses a “large” sheet of paper and writes in each block a
description of the operation, we felt that the in-line page
type arrangement was more easily traced and understood
by the non-charter, yet this produces its own problems in
excessive numbers of sheets and a lack of “Gestalt” or
total grasp.

Sinee grasp and insight are among the main reasons for
choosing process charting in the first place, it would have
been most unfortunate if they had been lost because of
difficulties of paper representation. Two approaches were
used to help solve this problem, First, the original process
charting forms were modified to allow the parallel indica-
tion of a secondary flow heside the main line. This permits
a visual continuity and apparently saves many exits and
entries. The second solution was the introduction of sum-
mary charts which served to review the over-all pattern
of a particular business activity. These gave a sort of
index to the detail charts and helped significantly in
grasping and absorbing the major implications of the
activity.

It is also evident that this summary process is vital to
the desired insight into the ramification of the whole busi-
ness. In other words, there needs to be a hierarchy of sum-

November—Decomber, 1959

INFORMATION PROCESS OHART
Enirien [M6in Line| puits d: Records Record or Flelds Remarks
Flow jnry Flov Tleld
Desire
for
Dala
— 1
g pn Flowers ,
taxd, night
or Bl of [|cub, tx,
& Data ?
2 L]
g Cost Canh
Cb_ a m of To on
os I E Date Hond
-
a
Exit to
"Good
Book"
1 Reading
s [Gurrently | p Al other
s avallable | | names i
() Dead alria o | "Little
Avallable ond Dames m | Black
5 axit Book "
girls’ nfmas H Koy measure=
q Girls' ity | mente (oriteria)
g | mamas Shapa, Tempera=
H ture, Age, Looks
& 2
Namo of
VPN
<> ¢ ¥ | ranking
g girl
7
o ¢ |Mameot W |Non-avail-|
AM i girl i |able fila By |Name
it
8 h
— Repeat
g telephone
book
T line 7| search
]
- :, Tolephona || | felaphone
[l mbar n
+ : nu i
10 t i
i‘ Rugquest
[lor
E date
(E—, 11
g
CI—\ m
s HE P | Answar You
" ?
12 -
d F | *Little
]| |mame, |r | slack
7 | ote. o | Book®
13| B i
Try, try
agaln
1affe 1ina 7|
d Lacation, Diffioult
H :’h;;- :’ teputation, evaluation
Ec:l 1| fer | | appearance, problem
4 | date n | leng-range objectives |portormed
15 9 —|ropgdly |
Dealsion |1 h May require
s.‘ of date |n | Telophona i
¢ | vn t to line 7
o
14
 —
To date
routine
17]
Sub Charted
Chart Degins, Lant Exit .
Chart Ends, Last Entry &
Charted by Fila Code
Page___of Date,
F1a, 2

marization eventually leading to a “Master Diagram” of
the key processes in the business.

To elaborate on the charting, reference is made to the
column headings shown in Figures 1, 2 and 3, The mean-

The Journal of Indusirial Engineering 473

td
Main Line nd=| Recotd ar
Entries M Exita Records Flald Fiolds

Romarks
L
Tool crib ol 1
copy of purchasa order for
any tool crib routed itam
= i baing anderpd
#' | copy of Purchase | |Purchasa
AM z puichase |in | order by |order
arder book number
- |
Material with 1 copy of
racalving report arrives at
A toal erib
& |Puichase Purchase | [| Recelving
7 |order by | ordor T, |report
f boak number m
1 [Quantity
4 |receivad, [on| Purchase
rl date order
1 |received

Desunation Tool

on purcha ey arib
order ;. numbes

anoozn

From chart 2==material
|destined for a planner,
englneer or foreman

g w | Special
m | Morerial i | purpose wol,
P t | pauge or fixture
] M | which has sn assigned
a 100l numbe)
n | Tool Toal
8 | nunbar by | nuinber lfor | Location
Lle
f
H 3 coples 1 | Purchase And insert
a | of wal & | order, all felds
: cand m| dimension
» | AP-2B0FW card

Ira. 8

ings are reasonably self explanatory. The following defin-
itions of terms are quoted from (1):

File A collection of data, generally applying to one aspect of a
business. A file consists of a group of “records” (to be defined),
usually each of which contnins the same Lype of information.
The records nre arranged (in most enses) in a speeific logieal
sequence. Example: personnel file, inventory file, model list
file, ete. (Note that the word “file” is used ns a noun, not u
verb.)

Record One member of a file; a record usually contains all perti-
nent information on a single item, Examples: a personnel rec-
ord for one employee, an inventory recovd for a vaw materinl
type, or an entry in a log book.

Field A sub-division of a record; one or more related characters
of data referring to a single aspect of gn item. Iixamples: date
of birth of an employee, employee’s name, ete.

Character A character of data may be a numerical digit (0 to 9),
an alphabetic eharacter (a to 2) or a speeinl character (8, blank,
@, ete.)

Data Xnown facts; generally, vecorded facts, as used herein, The
term “data” is often used synonymously with “information”
although data generally include redundaney and errors as well
as information.

Information Communicated knowledge (more precise engineer-
ing definitions are available but will not be presented here).
It is important to know that information can be measured in
terms of “binary digits” (bits), where each bit is equivalent to
one yes-no decision, 2

Form A printed form used in manual data processing; generally
is covered by the definition of “records.”

474 The Journal of Industrial Engineering

T'ransactions A record of an event, an action, Examples: a new
customer order, a shipment to a customer, an employee clock-
ing in at work, ete,

Key One or more fields of data within a record used for control-
ling the handling of the record—sequencing, merging, search-
ing, and separating. Example: Employee name in sequencing
personnel records in the personnel file,

Main Line The predominant flow of data in the specific area
being charted. A sequence of operations which is a secondary
branch and exit on one page of a chart will generally be the
main line on another page where it is charted.

All entries will be shown in the first column, properly
numbered or lettered and page numbers for pertinent ref-
orence exits shown, The next column is where the bulk of
the charting will be done—the main line, or the sequence
of steps being described. The exit ¢olumn ig similar to the
entry column,

The secondary flow column has been provided to reduce
the need for exiting and re-entry to handle minor varia-
tions in procedure. We believe that the use of this sec-
ondary flow column should be quite restricted. For one
thing, no separate entries should be made to the secondary
flow column; rather, it is limited to branches out of the
main line via Compare and Branch, Search, Separate, or
Decision operations. In addition, if the secondary flow in-
volves over 6 operation symbols, an exit should be made
to another page of the chart, where it is charted as a
main line.

There should be only one operation symbol per line—
cither an entry, main line, secondary flow, or exit symbol
—s0 that the proper notation can be made in the other -
columns of the chart.

The three narrow columns which have no headings are
provided for inserting prepositions, conjunctions or verbs.
For example, “Insert on Record A Field X from Record
B'”

PROCESS CHARTING—DISCUSSION

There are a few points of special interest that should
be discussed briefly, about the use of the foregoing sym-
bols,

First, the operation of “reading” is implied in all of the
above symbols, and is not called out as an independent
step. It is assumed that the person or machine doing the .
processing must first read the information from the docu-
ments.

Next, it should be re-emphasized that whenever Com-
pute and Decision-Making operations are encountered,
the analyst should not initially spend much time in detail-
ing the routines. The process charting simply pin points
these computations and decisions, and gives some under-
standing of what is involved. After the initial data gather-
ing phase, many of these operations will need to be ana-
lyzed in greater detail. ;

Oceasionally an analyst will come across a “loop” op-
eration, where the same series of steps must be performed
on a number of items, before continuing with the proe-
essing. An example of a loop might be computing the

Volume X * No.‘]

standard cost for each operation in making a part,
before the standard cost of the finished part can be
determined., Indicate such loops as simply as possible;
e.g., “steps through repeated for each item
on the record.” ‘

Also, in some possible loop operations (where there
may be one or more items on the list), a totaling or sum-
mary is performed afterward if there were more than one
item on the list. Do not try to chart this out, using con-
ditional transfers. Simply indicate the totaling operation
right after the last operation of the loop, and indicate in
the Remarks column, that it is used if necessary,

Ocecasionally a matehing operation will be encountered,
such as a group of time cards being matched against a
payroll file, It may be of interest to know if there are any
time cards for which there are no payroll records, and if
there are any payroll records for which there are no time
cards, as well as matching the payroll records and time
cards for computing gross pay, Such sifuations as this
may be charted by two Search operations in sequence. In
the case above, search the payroll file by the time cards’
employee numbers indicating “Find” and “No Find.”
Then search the time card “file” by the payroll records’
employee numbers indicating “IFind” and “No Find.”

The “and” and “or” concepts should be mentioned
briefly, Sometimes two records must be brought together,
80 as to go through a series of processing steps; record A
and record B. If record A has been charted as the main
line, then record I. can be brought in by connecting an
“and” entry to the main line with a solid circle. See Fig-
ure 4.

Note that the “and” entry implies no merging, search-

Ta. b

ing or sequencing. There is no file; only individual records
are involved. Two or more records may be brought to-
gether, so as to form a larger record. If record A is being
chartered as the main line and B is located in a file, then
B should first be obtained by a Search operation.

For the “or” situation, record A or record B (but not
both together) can go through the same sequence of steps.
1f the two types of records are similar or are logically re-
lated, it is often desirable to show this by an “or” entry
and a second input line to an operation box, such as Fig-
ure 5. Then, at the end of the common sequencze of steps, a
Separate operation may be used to split the two types of
documents apart. (A Compare and Branch operation is

“more correct logically, but the Separate operation is often
easier to use.)

Sometimes, however, records A and B are so dissimilar

November—December, 1959

that it would be confusing to use this “or” method. When
charting the processing of record B, the analyst (when he
comes to the same sequence of steps as he used in chart~
ing record A) can leave a blank line on his chart and in-
sert the note, “Use steps through from page

FUTURE USAGE POSSIBILITIES

We have tried to look ahead and deduce the logical
implications of the process analysis technique and have
found that many ideas can be suggested.

One idea is concerned with the use of punched cards for
analysis of individual operations and the preparation of
summaries, For example, by defining the records and
fields carefully we could use one punched card for each
line on the process chart. This is similar to work reported
through the American Management Association by two
Lehigh professors (4). This might be a convenient pro-
cedure for reducing the clerical content required to draw
the flow charts, '

Another possibility would be the evolution and devel-
opment of higher level symbols to represent recurrent data
processing elements. Examples of this might include edit,
translate, and verify. These should be particularly mean-
ingful for summary charting and would also indicate com-
puter sub-routines which should prove useful.

While much of our present charting seems record ori-
ented, this is merely a space reduction convenience. The
record stands for or represents the fields it contains. Since
all operations are performed on the ficlds themselves, it
rnight be possible, with appropriate identification and cod-
ing techniques, to define all functions in terms of the fields
ingtead of the records, This would be advantageous in
leading toward nonredundant systems. Reference (3) is
an extremely thought provoking paper on one aspect of
this subjeet.

Sinee Information Process Analysis ean be used to de-
seribe any data processing operation, it might be inter-
esting to investigate the application of this language to
computer programming. Because these charts are at a
somewhat higher level than the charts now used, a signi-
ficant saving in time and effort could result.

Another unexpected area which was uncovered was the
strong similarity between physical processing and data
processing systems. This is deseribed in (2). As an anal-
ogy, we can consider that the part corresponds to record,
and each hole, groove or surface is a field inserted in the
record. Parts may be associnted together in a “file” (stock
room) which can be searched for a particular part. Com-
pare and Branch can be used to represent inspection op-
erations, and merge would imply parts aceumulation to
precede assembly. While this simile can be overdrawn,.
there nevertheless appears to be a sound foundation for
further study with the implication that physical process-
ing systems are directly unalagous to data processing sys-
tems.

The Journal of Industrial Engineering 475

Since the process charting technique is organized
around a generalized set of rigorously defined symbols, it
may help to solve another common problem: the present
inability to communicate solutions to various business
systems problems. The Department of Defense has initi-
ated a commendable program for the development of a
Common Business Language—a computer programming
system that uses English sentences which can be compiled
into running programs for most machine types. But this
Common Business Language will most likely be at a more
detailed level than the language described in this paper,
and may not be as satisfactory for communications at a
systems level. It seems to us that the progress of data
processing as a science requires establishing such common

476

problem-oriented languages so that we can more success-
fully communicate with our fellow systems designers,

REFERENCES

(1) Grap, Burron, CannNing, Ricaarp G, Anp DeRusro, Raven H.,
“Process Charting,” April, 1957, available through Mr. R. G.
Canning, 614 South Santa F'e Avenue, Vista, California,

(2) Grap, Burron, Anp O'Near, W, C,, “Making Operations,” April,
1957, available through Mr, Canning,

(3) LmmrrMAn, Irviva J,, “A Mathematical Model for Integrated
Business Systems,” Management Seience, July 1956, pp. 327-
336.

(4) Ricuarnson, WaLrace J., Anp Hemwanp, Roperr ., “Integrated
Procedures Control,” Engineering for Paperwork Control,
American Management Association, Office Management
Series No. 143.

Volume X * No, &

|.B. M. CONFIDENTIAL

March 31, 1960

Subject: The Integrated System Project at General Electric

The enclosed material represents a reporter-like description of
work that I was responsible for while employed at General Electric.

All the information contained has already been released, much of

it at a System Development Corporation meeting in July, 1959.

While it is realized that many details are lacking, this is necessarily
80 in order to avoid any implication of disclosing General Electric
confidential information.

However, it is my feeling that the general area covered and certain
of the techniques described are of value to designers of industrial
processing systems.

Burton Gr
Programming Systems
IBM Applied Programming

BG:gms

THE INTEGRATED SYSTEMS PROJECT

AT GENERAL ELECTRIC

A summary of non-confidential information about the
accomplishments and philosophy of a research activity
directed at thedesign of an automatically operated
business,

Burton Grad
Programming Systems
March 28, 1960

THE INTEGRATED SYSTEMS PROJECT
AT GENERAL ELECTRIC

General Electric's Services' organizations have attempted to design
an advanced automatic system, one that would be able to respond more
efficiently and more economically to incoming customers' orders,

Certain general objectives were established in order to accomplish this
task:

1 The new system was to be economically practical and tech-
nically feasible; it should be broadly applicable to many
departments of General Electric.

2. The system should be multi-functionally integrated and
provide a close linkage between the office and factory.

3. It was to be designed with bold innovation in order to break
the historically accepted business systems patterns.

They hoped through research to develop new concepts and tools for use
in designing such new systems. They hoped to develop new criteria for
technically and economically sound approaches to automation that would
help determine which particular new techniques should be used in speci-
fic businesses. They wanted to provide a foundation for future progress
through research and development.

To pick an initial area for this exploration, they analyzed some of the
current weaknesses of industrial systems,

£ Typically, delivery cycles are quite long when compared to
the product's cost. This is particularly true of manufacturing
cycles in relation to the actual processing time. Work-in-
process inventories are correspondingly excessive.

2, Indirect labor costs are increasing steadily. Many factories
even joke about the fact that they can't make a shipment until
the paper weighs as much as the product.

3 A third area is the high redundancy of information used in
factory paperwork. For example, on a line of shafts used by
a successful motor manufacturing department, it was found
that some three hundred different drawings had been prepared

over the course of two years to take care of each minor
variation. On each of these drawings, there was some
sixty to seventy fields of information. Of these fields,
better than 80% were completely fixed, For every shaft
only 20% were truly variable.

With these and other significant problems in mind, they sought the
areas of an industrial business system that would have the greatest
impact in these areas of opportunity. This heart of the business pro-
cess was called the Main Line System. This Main Line System included
requisition editing, product engineering and drafting, manufacturing and
quality planning, cost determination, production control and purchasing
plus the actual shop operations.

Substantial amounts of money are involved in the Main Line System,
Normally, 100% of the direct labor and 100% of the direct material is
tied up in the Main Line System. At least 40% of the indirect manufac-
turing expenses are also in this area. All of the productive raw and
in-process inventories are in this category as well as approximately
80% of the plant and equipment investment. In total, this area probably
accounts for 75 to 80% of product costs and a similar percentage of
investment.

To perform a research and development job on these multi-functional
problems, a multi-functional team was organized representing the
various business functions: Engineering, Accounting and Manufacturing.
In this particular study, Marketing and Employee Relations were not
included because the particular system defined did not require their ex-
tensive contribution.

In a decentralized company like General Electric, planning such a pro-
gram is not uncomplicated, There are two types of problems that arise:

The integration of staff planning people into a closely knit
team is complicated by the fact that there is no component
in the organization responsible for multi-functional systems
work. Therefore, effective work requires mutual participa-
tion of the functional services who have no common manager
short of the Chairman of the Board, who is the Chief Executive
Officer., Basic problems like leadership, budgets, relative
functional roles, decision making, reporting, etc. were
major problems which had to be overcome.

2, A second problem in a large decentralized company is
developing concepts in a framework that will be both
understandable and meaningful to the many operating
components. Because they have such a variety of pro-
ducts, processes and markets, that generality is elusive,

They felt that an ivory tower approach would not provide an effective
atmosphere for integrating systems design work nor would it parti-
cularly aid in selling any new concepts which were developed. What
was needed was a real business -- a ''living laboratory'". This selec-
ted operation had to be representative of the breadth of businesses in
which General Electric engages. Also in picking a business, they
wished to select one where the existing information was in sufficiently
clear form to be readily usable since they felt that '"you can't automate
a mess''. They sought a well run business where they could concentrate
on advanced development rather than having to devote time to cleaning
up existing problems,

They also felt that by carrying on their research in a particular busi-
ness, the systems team would have its attention focused on specific,
clearly defined problems rather than the more vague, imaginary diffi-
culties. In this way, the creative contributions were concentrated on
the areas most needing improvement,

A business system has five elements:

1, It has information resources including the various decision
criteria which are currently in the form of reference files,

2. It must have decision makers capable of taking the trans-
action inputs and matching them with the information
resources to determine a course of action.

3. It must have communications channels enabling it to
transmit its decisions and in turn to receive feedback
information concerning operating performance.

4. It must have a physical processor which actually trans-
forms material through the use of men, machines, and
energy in accordance with the instructions given it.

5. The physical processor must have access to the physical
resources of men, machines, materials and energy.

After the multi-functional organization was completed, a clear and
specific design program was followed. The first stage was that of

data gathering. This involved getting all the facts concerning present
inputs and outputs, volume of devices, design variations, manufactur-
ing facilities, historical performances, etc. This phase began in
November 1958 and took approximately six months; it led directly into
the second phase: problem analysis. During problem analysis, all the
information gathered during the first phase was digested, reviewed and
an effort made to determine clear cause and effect relationship between
changing external conditions and changing internal performance.

The third phase of the program was that of preliminary systems design,
This achieved a first specification of what might be called the basic
system, This lasted approximately one month and brought into play

the design efforts of not just the general systems designers but all the
specialists in the various areas.

The fourth stage was that of detailed systems design. This refined the
specifications in great detail. It clearly indicated those phases which

needed to have their technological feasibility proven and those that had
already been clearly demonstrated in previous work,

The fifth phase was that of construction of a prototype to demonstrate
application of the new ideas. It was a bread board model, and not yet
an actual operating model.

The sixth and final phase of the program was that of testing, training
and evaluating. The bread board model has been tested against a
variety of circumstances and found to be very satisfactory. The train-
ing objective was carried out during 1959 along with initial evaluations
of potential savings.

While these are quite conventional steps, the important new concept

was the application of the systems approach to business systems prob-
lems. With this systems approach, they treated the entire Main Line
System as though it were a big black box with only one transaction input,
the customer's order, and only a single basic output, the finished product.
All that went on in between was subject to analysis and redesign. The
systems approach was intended to design a new Main Line System and
provide an opportunity to ignore present techniques and ignore all of the
conventional organizational or functional divisions of work and to really
concentrate, without inhibitions, on reconceiving the solution.

A review of the steps included in this Main Line System will give a
clearer understanding of the particular scope of this project.

The present Main Line System starts with a customer's order. This
specifies what the customer wants in functional terms, such as size,
color, rating and other product requirements. A typical order then
goes through certain conventional steps.

: It is edited to eliminate ambiguities and to put the order
into the proper, most usable, internal form.

2. Then this order is engineered and drafting prepares
documents needed, namely blueprints, bills of material,
etc.

3. Based upon this design information, the manufacturing

engineers then perform the operational planning on how
to make the product and what the time allowance should
be for the various labor and machine operations.

4, In a similar manner, the quality control planning pro-
cedures are determined, establishing standards, methods
and frequency of quality analysis,

5 And then, using the existing records and files, cost in-
formation is accumulated, compiled and analyzed.

6. Production control then takes over to determine when the
parts are needed as well as how many are to be purchased
and made, Typically, this includes the functions of cus-
tomer promising, scheduling and inventory control.

7. Finally, instructions in the form of vouchers, purchase
requests, etc., along with blueprints and other necessary
papers are transmitted to the factory to direct the manu-
facture of internally made components or to purchasing
for outside material procurement,

In each of these steps, information is taken from the previous function,
typically in the form of written documents, and used to produce the
next document or output with the aid of information reference files:
material lists, blueprints, planning cards, quality records, cost cards,
etc. In short, the Main Line System converts the customer's order into

a finished product. Present systems are usually based on human-to-
human communication with extensive file reference. The use of mech-
anical aids is generally still limited. The shop area is often character-
ized by job-shop type facilities, high buffer stocks between operations
and long manufacturing cycle times,

The results of the work have indicated that a customer's order can now
be automatically converted into parts of a specially designed product,
performing all of the Main Line System's steps inside the computer.
This automatically provides all of the factory's action documents:
purchase orders, operator instructions, quality instructions, punched
paper tapes to run numerically controlled machines, customer promises,
bills of material, stock order recommendations, withdrawal notices,
shipping papers, etc.

As a result of this Project, many new techniques were developed to help
the various General Electric departments design integrated, automatic
systems. For example, new techniques have been developed for decis-
ion analysis. New techniques have been conceived for part and product
representation and identification. New ideas have been formulated for
computer programming. All of these concepts taken together have
changed the economic feasibility of installing int egrated, automated
business systems,

They feel that there are many benefits from these concepts. In order to
clarify them, the nature of each function in the computer and some of
the resultant benefits will be covered.

The determination of '"What to Build'' is the key role of engineering;

the requisition engineering activities can now be computerized. The
computer can translate a customer's wants into the specific details of
the materials, parts and assemblies needed to satisfy those wants,

In addition, this computerized process can avoid the necessity of having
to create many of the documents and records with which we have become
too familiar., Outstanding savings can be realized in the preparation of
model lists, bills of material, blueprints, etc.

Included in the benefits from this engineering advance should be sub-
stantially reduced engineering time and cost through the elimination of
many of the routine steps which humans now take. There should be
less drafting expense through eliminating many of the tasks which draft-
ing has historically performed. A clear, logical statement of the
engineering scope of a product line should make it easier to obtain an
optimal level of standardization. A properly designed computerized
engineering system should be easier to change and be more flexible.

With knowledge of the product design details, manufacturing engineer -
ing is then in a position to determine the best routing, work methods
and time standards. Much of this work on ""How to Build" the product
can also be completely taken over by the computer. The possibility
of automatically preparing accurate operational descriptions coupled
with correct time standards for every job certainly has considerable
appeal.

Another intriguing area is in the communication of the computer with
numerically controlled machine tools., Three new features should have
wide application:

' A single program tape controls an automatic machine
for the entire day.

2. Machined parts are automatically identified as an
integral part of the program.

3. Computers are used to automatically generate machine
tool programs,

""Tape -for-a-Day'' Machine Tool Control. Typically, users of numeric-
ally programmed machines have achieved repetitiveness in operations

by cycling a loop of punched paper tape. Thus, if ten pieces are required,
the operator glues the back-end of the tape to the front and allows the
looped tape to run around ten times. In this system, the same objective
is accomplished by providing ten machine tool control programs in a
single length of tape. Further, the same length of tape also includes a
program for all other pieces to be manufactured by the machine that day.
Thus, one length of paper tape provides an integrated, sequenced control
program for a numerically controlled machine tool for the entire day.

Machined Parts Automatically Identified, Parts processed on numerically
controlled equipment are sometimes identified in a secondary manual op-
eration, This can be avoided by introducing an identification step in the
machine tool program. For example, parts can be identified with shop
identification numbers by spotting a shallow blind hold in a code matrix
stamped on the part itself:

identification .

hole ﬁ

A more suitable, generalized version of this code matrix idea would be:

(hundreds)

(tens)

(units)

Computer Generated Machine Tool Programs. The generation of numer-
ical machine tool programs was done on an electronic computer. This,
of course, facilitates developing the 'tape-for-a-day'. While electronic
computers are not essential, mechanizing the production of punched paper
tapes (or cards) to run automatic machines improves accuracy and re-
duces cost,

Among the other benefits is reduced planning time since the computer
takes over a former manual job. There would also be reduced planning
costs since computers can do this job for less money than humans and
probably, most important, the best method, more accurate planning
and consistent time standards should result because of the computer's
ability to follow the exact instructions that it has been given.

Quality Control: at what point to inspect or test, the quality evaluation
method, appropriate time standards, frequency of evaluation, and
criteria for acceptance or rejection. Here again it was found that a
computer program can be prepared which will perform all of these tasks
automatically. This would, in effect, determine how to evaluate the
product and its components. Included in the benefits are fewer quality
corrections through having the proper balance between quality failure
and quality appraisal costs. There should be fewer complaints through
a careful analysis of customers' needs and product characteristics.
There should also be lower quality costs through the integrated planning
of quality control along with engineering design and manufacturing opera-
tion planning.

Cost accounting offers another opportunity. The objective was to deter-
mine planned product costs for quotation work or for cost standards to

be used for comparison with actual costs, They find again that cost standards
can be automatically developed and that a computer properly programmed
can also be used for establishing work-in-process inventory value.

Through this cost work, it should be possible to obtain better cost
analyses by having all the facts at our finger tips when they are needed.
It would be far easier to maintain up-to-date costs because of the poten-
tial simplicity in storing the cost information. There should be reduced
cost determination expense through the use of a computer to replace
human effort,

The next area of production control is particularly intriguing. Each of
the previous steps in the computer portion of the integrated Main Line
System have all dealt with tangible product characteristics: what to
build from engineering, how to build from operation planning, etc.

In contrast, production control, the final element of the computer
portion of the Main Line System, develops a fourth dimension by deter-
mining the time and sequence in which main line activities take place.

Production control is interested in when things happen. It has the
responsibility of actually carrying out at the right time the data proces-
sing and decision-making calculations necessary to support each function,
Production control is concerned with the time inter-relationships of all
customer orders., It is responsible for economically satisfying these
customers' requirements considering the actual status of the shop.

Production control provides the scheduled release of the factory's
action documents:

—_ purchase requests

-_ punched tape for automatic machine programs

— operator instructions to make and assemble
products

- quality instructions for inspecting and testing

— shipping papers to deliver the customer's product

In this integrated system, the computer should daily schedule shop
operations, specify operation release dates and due dates, specify speci-
fic order quantities, review inventory stock levels and issue customer
promises. These orders should not be released prematurely. One key
element in computerized manufacturing control is frequent feedback
coupled with frequent scheduling for close shop control; using today's
performance to guide tomorrow's shop decisions. In the past, a major
obstacle to such tight shop control has been the mass of detailed data
which had to be gathered and interpreted before any meaningful results
could be obtained. Manual and even punched card techniques often sagged
under this burden; but electronic computers offer the high speed, low
cost calculating ability necessary to cope with this problem,

& 10 =

The Integrated Main Line System has daily feedback of completions
for shop control., This information will be digested by the computer
each night and recognized in the releases to be prepared for the
following day. The parts to be started the next day will depend upon
the exact status of each of the areas of the shop; whether they be
behind schedule or ahead of schedule, what their status is on rush
jobs and related information.

The result is a flexible system prepared to respond quickly and ac-
curately to changes. Time delays in handling information are avoided
and corrective actions can be initiated immediately throughout the
Integrated Main Line System.

Developing production control rules presents some special difficulties,
For example, product performance can be proven in the laboratory,
operation time standards can be checked by a stopwatch, but how can
you pretest a rule for customer promising? General Electric has

been instrumental in applying simulation techniques to similar business
problems involving many interdependent activities that change with
time. The heart of shop simulation is a computer model which realis -
tically duplicates the behavior of the shop as it processes customer
orders, making allowances for set-up and processing times, absenteeism,
machine breakdowns, and the like. The specific computer model de-
veloped for the Integrated Systems Project compressed four months of
shop experience into a fifteen minute computer run. As a result, it was
possible totest how well various proposed sets of production control
rules would meet due dates and planned cycle times without actually
trying them in the shop. In addition, inventory levels, employment
stability and man-machine utilization could also be evaluated and com-
pared.

Integrated production control offers several benefits. For example, it
now seems quite practical to obtain a shorter main line information
cycle -- actually less than one day. Similarly, electronic computers
can be expected to lower paperwork costs. Shorter cycles in the office
and factory, as well as improved scheduling techniques, will permit
substantially lower inventories. These improvements should lead to
shorter customer promises, improved service and potentially higher
sales. Somewhat unexpectedly, indications are that these gains can be
achieved while improving employment stability -- and without a sacri-
fice in promises kept and equipment utilization.

S

Of course, the only reason for all of this information is to procure

the parts that are needed, on schedule, at optimum cost; and to direct
the machines and operators in the factory to transform the raw mater -
ials into the right finished parts at the right time. This leads directly
to the concept of flexible factory automation,

In the physical processing system, rather than visualizing automation
as a long line of highly specialized machines and transfer devices,

it may well be the important aspect of automation will be the ability of
machines to switch from one task to another at little or no extra cost.
The inherent flexibility of the individual machine or group of machines
will be a determining factor in the effectiveness and usefulness of these
automatic systems concepts. With numerically controlled machines,
such as are now available, the set-up cost is generally reduced to
practically zero. Hence, flexible factory automation permits direct
response to the external, customer oriented requirements and not such
heavy consideration to the internal shop.

This flexible factory automation will lower direct labor costs per unit
through replacing human activities, where desirable, by machine opera-
tions. Machine accuracy and set-up flexibility will reduce both scrap
and rework, Integrated planning and control with the right tempo will
result in shorter manufacturing cycles,

The fundamental concept in carrying out this project was the idea of
vertical integration. Integration is currently a by-word, but most new
work has been concerned with automating common activities like payroll,
inventory control or requisition processing across many product lines or
the whole business. This might be called horizontal integration. How-
ever, true integration should probably follow lines of information flow;

it should cut vertically through all functions in a product line. By having
all the information processes linked together inside a computer, it is
unnecessary for each function to duplicate the other's files, For example,
cost will no longer have to maintain independent files of material lists,
blueprints and planning records for every part and assembly,” This
elimination of file redundancy will be felt in many indirect labor activities.

Further, vertical integration of effort also has a major effect on reducing
the information and physical processing time cycle. Since all of the
decision-making logic needed to completely process an order is in the
computer, it is reasonable to expect overnight data processing and, by
having dynamic control of the whole physical process from purchasing
through parts making and assembly, it is possible to reduce significantly
the actual "make' cycle. This type of control should result in lower in-
ventories, higher promises kept and better indirect labor efficiency,

s 12 =

A secoad principle is the need for discovering a logical structure or
pattern which formally displays and relates the various decisions

such as those in product design, facilities operation and factory
scheduling. In manufacturing planning, for example, by focusing
attention on each variation in method or elemental time standard,
cause and effect relations can be spotlighted to aid in making improve-
ments. By organizing the multitude of detail into a clear, easy-to-
understand framework, it shows what design characteristics control
the various manufacturing process elements making clear the simplifi-
cation and standardization opportunities. The use of logical decision
patterns in a business should reduce direct labor and direct material
through the powerful analytical insights they make possible,

Another basic concept was to design the system with the computer in
mind, Although computers and humans perform many of the same tasks,
their relative efficiencies and economic advantages are quite different.
To arbitrarily make the computer follow the same routines, the same
steps, the same processes as humans is illogical. Rather, the basic
system should be reconceived and redirected to obtain maximum per -
formance from the electronic computing equipment.

It was also quite an insight to think about the system as being directed
solely toward the ultimate user, ignoring all the intermediate functional
outputs that have so commonly become identified with our data process-
ing system. The only purpose of having any operating outputs from a
system is to cause someone to take action, to cause a buyer to purchase
materials, an operator to make parts, etc., The intermediate transfor-
mations and hence the intermediate outputs are not essential systems
elements but are only a reflection of the particular data processing
techniques currently in use.

BG:gms
3/30/60

April 15, 1960

TO: Messrs. John Backus, IBM Dave Nelson, Lockheed
Carl Byham, Southern Railway Sol Pollack, RAND
Les Calkins, U.S. Steel Pete Sheridan, IBM
Ken Foster, Sylvania John Smith, Aeronutronics

Mal Smith, Sperry-Rand
Jack Strong, North American Aviation
Dick Utman, Ramo-Wooldridge

In developing a systems engineering language it is desirable to introduce
a wide variety of techniques for problem description while restricting the form
in which the description can be stated so as to have simplicity of learning and
ease of communication. It Is with this underlying concept in mind that a proposed
formulation of Data Element and Data Set has been prepared. |should also like
to make it clear that the Ideas contalned resulted from various suggestions and
recommendations at the CODASYL Systems Meeting of April 4 - 6, 1960, and
that | am essentially serving only as a reporter and summarizer.

Because of time problems | have only enclosed the write~up on Data
Elements (Section A). A proposal on Data Sets (Section B) will follow In
about 1 - 2 weeks. | have also enclesed (Exhibit 1) a copy of a table prepared
by Perry Crawford of IBM In ©ctober, 1957. | believe that this table shows
more general concepts of tabular systems description than does the Orren Evans'
work. | do not claim to know which formulation is more wseful, but | do believe
it would be worthwhile to establish a basie structure for tabular presentation so
that each particular approach could be seen in terms of a more general picture.
To this end | plan to send some tentative notes concerning tabular format which
may suggest various techniques to be explored in the description of data fransfor-

mation. This will be Section C.

Burton Grad
Programming Systems, IBM

cc: Orren Evans
Perry Crawford

April 25, 1960

TO: Messrs. John Backus, IBM Ken Foster, Sylvania
Carl Byham, Southern Railway Dave Nelson, Lockhead
Les Calkins, U. S. Steel Sol Pollack, RAND
Orren Evans, Hunt Foods Pete Sheridan, IBM

John Smith, Aeronutronics

Mal Smith, Sperry-Rand

Jack Strong, North American Aviation
Dick Utman, Ramo-Wooldridge

This attached material is a follow-up to my notes of April
15, 1960, Included are a few additional notes for Section A - Data Element.
This is followed by an initial attempt to specify Data Set construction in
Section B with a few examples and one possible form. After this comes a
few preliminary comments on Data Transformation (Section C) which I will
add to within the next two weeks. I am also planning to forward some
considerations in regards to particular forms descriptive techniques.
These may be required when the systems engineer has to specify a
particular report or record format or a certain representation scheme
or medium,

I shall be looking forward to further comments and improvements
when you've had a chance to critically review these very rough notes.

- e

/
P /
f 4 “:\-‘.,,-\‘\‘
,“_,'i. vl e e

" Burton Grad”
Programming Systems, IBM

11 July 1960

Tas CODASYL Systems Group

In accordance with the assignments made at the San Francisco meeting,
I should like to submit a proposal for a Data Transformation concept
which would incorporate the Evans Table Technique. This is, of course,
far from complete or even thoroughly thought-through, but it may pro-
vide a basis for further discussion and recommendations. This has
been numbered so as to be attached to the previous material which I
forwarded prior to the San Francisco meeting.

I have also attached a personal critique and recommendation on the

Data Element - Data Set area. These notes are directed specifically

to Sol Pollack, Dick Utman, and Kendall Wright who are working on

this area. The comments noted have specifically resulted from cer-
tain criticisms and suggestions made by Gertrude McKay and Tom Glans,
both from IBM, and recognizes the comments and thoughts expressed

by Ken Foster and Sol Pollack.

I'm looking forward to our next meeting.

M &

Burton Gra
IBM, Logical
Systems Standards

BG/ js

Attachment

Proposals for a Systems Engineering Language

Section A. Data Element

A Data Element entry defines the structure and or content of a related series of
symbols. A Data Element name may refer to any series of symbols which has a unified
meaning to the systems engineer In the context of the application system.

A Data Element may be described by any combination of the methods noted below:

(1) Pictorlal: direct indication of the possible range of symbols on a

position by position basis. This might include certain editing
considerations.

(2) Literal: direct indication of the actual symbol for each position.

(3) Elemental: indirect indication through specifying positions of other
Data Elements,

(4) Conditional: indirect indication through specifying the value of
positions of other Data Elements.

A Data Element then is defined at the convenience of the systems engineer in the
most useful way to him. There is an unlimited hierarchy of Data Elements and there may
be any degree of overlap and nesting. However it should be remembered that a change
in one Data Element may have repercussions on other Data Elements and therefore careful
cross referencing (in the sense of where used information) is a necessity for accurate
systems design.

It Is suggested that a form like the one shown as figure 1 (next page) might prove
quite wseful, There are a series of examples shown on this form for which a brief

explanation follows:

(1) This illustrates a straight pictorial representation (P under Type) of the data
element called ACCOUNT-NUMBER. It Is seven positions long (Initial Pesition = Final
Position designation or by actual symbol count) and each pesition can have a symbol
from the range of symbols 0 through 9 (which is what is meant by N).

(2) Example 2 shows a literal description of a data element named Pl. It is seven
positions long and the specific symbol for each position is shown.

(#igwre /)

DATA ELEAMENT DEFNITr0N
ELermeNT DESCRIPT 1o ComamenTS
Im‘rTFrH InIT FINy —
NAM & Pos | pos ||[TTPE REFE RENCE Pos | Pos |IALVE
() | Account-Numpen | 7|\ NNNNN NN 1
(2) | PT , [7L |3 .1 %1 59 .
(3 |FTcA-LiMmiT /f éllz 4 & © O v 0 O !
4) |z cec — wompzr| 11 7llp | N I " .
gir0lit |—-4 ¢ |
(SIC HECKk ~AMounlT I, 70P £ b6 b4 . NN ' i
erece-DossAals | |, 3|rg yEck = AlodNT 2l
(G| Pr T~ Ariod T : £ CHEC - Ao T | ;
QDAY /1 2lp |NN |
4O N TH j, 2P NN :
Y £ AR ' 2llp (NN !
LETE U2l (par !
j 2. YhE [MoNTH ‘
{ 5! E | YEAr y 2
___(5')%/4/@’(‘.’-!?“_;‘4- CTRATYS /i lip W~ ‘ i
\MARRIE D | C | MapiTAL- STATUS / /|
SIHNGLE) & N
D) Vo CED i ¢ 3
(G)i MILEPes | SP NN NN vAN i |
iesTY /{2o0}iP A .
¢ HIchHe0-CnE L€ jer 7Y N - 1] _3leHr -

(3) Another example of a literal is given by the definition of FICA = LIMIT which is
only 6 positions long. It has the specific symbol values shown except that v is used
to represent an implied point which does not actually occupy space in the data
element.

(4) The fourth example defines the data element ICC-NUMBER. It actually has a
split definition. The first seven positions are each occupied by a symbol within

the range of N (0 = 9). This Is a short hand scheme which avoids the necessity of
repeating the N seven times. In addition, however, positions 8 = 10 consist of the
literal symbols " - 46." This might indicate a particular code used by the ICC for
this company. Without repeating ICC-NUMBER on the second line we have implied
that the name is the same as the one in the line directly above.

(5) CHECK-AMQOUNT is defined pictorially to show that there are 4 different symbol
ranges possible in different positions. For example, we might mean “$" to indicate
just that symbol ($) and no other; "b" might mean blank and 0 = 9; "." might indicate
only a point; and "N" could mean 0 - 9. CHECK-DOLLARS is described in terms

of CHECK-AM®UNT; this is an elemental description (E under Type). It is defined
to be a three position data element which Is the same as the second through fourth
position of the data element CHECK-AMOUNT,

(6) This shows a short hand way of indicating a synonym. PAY-AMOUNT Is identifled
as being the same as CHECK-AMOUNT. Since the data element positions are not
listed it is assumed that they are equal and the descriptive data element (in this case
CHECK-AMOUNT) will govern. The systems engineer may, for precision or as a
cross-check, specify either or both of the lengths.

(7) This example first indicates a straightforward Pictorial designation of three data
elements. Then another data element DATE is shown to be composed of these first three
elements. The inclusion of DAY and MONTH is quite in following with the previous
examples (position has been omitted since the entire data element Is being used), but
the use of YEAR is a little different, If the final position is the same as the Initial
position, we are defining a one position data element.

(8) Example 8 shows the use of a conditional definition of a data element. MARITAL-
STATUS is a one position data element which can take on a value from 0~ 9. MARRIED
is a data element which has a value of either true or false depending on the value of
MARITAL-STATUS. If MARITAL-STATUS has the value | then MARRIED is true,
otherwise it is false. Similarly for SINGLE and DIVORCED. Repetition is implied

for MARITAL-STATUS and for Initial and Final pesition. We will have to establish

a maximum number of literal positions for value. | would suggest that it be relatively
small (around two or three positions).

(9) There are two more data elements defined that we may want to wse in later examples
of data sets. MILEPGST is a five position data element with an implied point between
the fourth and fifth positions. CITY is a 20 position data element consisting of symbols
chosen from the range: blank and A through Z. CHICAGE-CODE is a data element
which is true when the first three positions of CITY are "CHI".

4
There are certain observations we can now make about data elements.

(@) No data element that is not defined properly may be used in a Data Transformation.
This, of course, does not preclude defining various general data elements like
TEMPORARY, CONSTANT or INDEX,

(b) Every data element must eventually (through the appropriate hierarchy) be defined
in terms of a pictorial or literal for each position.

() A data element may have a name or a value of any length up to the maximum
number of positions definable. Continuation may be indicated through indenting by
one space in the name and/or the reference column,

(d) Since lengthy literals can be introduced it would be possible to consider the contents
of an element as a list or table of values. It is also possible to introduce a list of values
through giving each value a definite name.,

(e) By itself, a data element cannot be subscripted or indexed. It Is only through
membership in a data set that multiple data elements can be directly considered.

(f) The individual positions of a data element can be referenced in a Data Transformation
through mentioning the data element name and the initial and final position. While
the exact form of this reference has not been determined it might be something like this:

ACCOUNT-NUMBER (3-5)

(@) A data element is defined independently of data set membership. Hence DATE
might simply designate a 5 digit data element regardless of where it is used or how
many different sets it is used in. [If we wanted to deal with a 6 digit data element
(including two positions of YEAR) we would have to give it a different name like
DATEF.

(h) This proposal does not directly handle the difference between a floating=point and
fixed point number. ©ne operational solution would be to have special floating=polnt
operators to work with floating-point data elements and leave responsibility for proper
operator selection to the systems engineer. Another solution would be define a floating-
point number as really two separate data elements (the mantissa and the exponent). A
third solution would be to introduce a symbol (f) to mean an implied floating=point
separator; on that basis NNNNfNN would be a 6 position data element with an implied
floating=point separator between the fourth and fifth position. The mantissa would be
four positions long and the exponent 2 positions long. This problem obviously requires
further study.

(i) A question was raised concerning handling signs. If there is an implied sign assoclated
with a data element it can be introduced by permitting the use of a symbol (like S) in

the first pictorial position to represent that this data element may have either a plus or
minus value. For explicit signs a symbol code will be needed to represent the various
possibilities and it should be placed in the proper actual position.

5

(i) Various kinds of special editing can be indicated through symbol range representation.
For instance, if * was used to mean (blank, *, 0 = 9) and appropriate rules were defined
then $***, NN could indicate zero suppression with asterisk replacement. If D meant
(§, blank, 0~ 9) with proper rules DDDD. NN could be used to indicate a floating
dollar sign. There would seem to be a basic question as to whether editing should

be handled through data element definition or through special editing operators.,

(k) The handling of value ranges and value lists was also mentioned. | believe that
this is most pertinent in conjunction with conditionally defined data elements. For
instance, MARRIED might mean that MARITAL - STATUS equaled 1 or 50or 7. We
could show this simply by repetitive definition of MARRIED for each assigned value of
MARITAL - STATUS. A more difficult question is suppose DIVORCED was to be used

if MARITAL = STATUS was greater than or equal to 3 but less than 8. If we are to avoid
stating each possible value In the range then we will have to introduce a notation along
with value to show greater than, equal or less than. | am not at all sure this is desirable
since from the systems engineer's standpoint | don't believe that we are generally
concerned about the range of values once we have assigned an adequate number of
positions. | feel that any restriction on value range or value set should be introduced
through the Data Transformation.

B. Grad
4/14/60

Cont'd Section A

(1) A literally specified element has its precise value defined in the data
element description. Because of this, a rule should probably be established
that such an element cannot have its value modified by the Data Transformation.
This will have to be explored further since it may be desirable to be able to
set initial values for a variable in this way. If we adopt the suggested rule
then we are limiting a literal element name to the representation of a constant
only. Another question on literals is in regard to how we will indicate that the
value represented is really to a base different from 10. For instance, if a
data element named SWITCH-PATTERN was defined as 101100, we might

not be able to operate with it properly unless the systems engineer identified
it as being to the base 2. I believe that we should avoid indicating base 10 and
only indicate base for numbers which are to other than 10. In other words, if
a systems engineer is sophisticated enough to use non-10 base literals, we
should permit him to do so.

(m) A pictorial description defines an externally useful form for a variable;

it does not specify the manner in which the value will be represented internally.
The actual value will be assigned through the Data Transformation or by
association through a Data Set with a particular input form. One problem which
has been raised is whether it is necessary to explicitly state the class of

value for a variable or whether it can be implied by the symbol classes chosen
for each position and its usage in the Data Transformation. I would be inter-
ested in any thoughts you may have as to the need for differentiating in the

Data Element description among integers, fixed-point numbers, floating-
point numbers, symbol strings, etc. This analysis might also consider the
question raised by Ken Foster concerning the usage of the element ~ whether

as classifying, quantitative, pictorial, etc.

Another problem to be considered is that of data elements which may have
variable length and symbol makeup. Suppose we have three different types of
part identification numbers: NNNANNN, NNNNNNN-NNN, or NNNNNAA-ANN.
It may be desirable to have only one element called IDENT-NUMBER. To
show its construction we have to indicate a maximum or worst case like
NNNBNBB-BNN where B indicates (0-9, A-Z). However, in any particular
case the value of the element may not require this extended definition.
Therefore, we might see if there is any simple way to show and use multiple
formats for the same data element. In line with this we might consider
the item description on a purchase order; except for specific forms re-
strictions there is no inherent limit on the length of this data element. How
then would we go about describing its construction? If we carefully think
through the various kinds of data elements and how they might be used,
we may find that we want to allow a somewhat simpler data element description
with some way of indicating to the programmer that this is really a variable
length element and should be stored and processed accordingly.

| g
v

s

(n) An elemental definition is a means of conveying synonyms not construction.
Any name defined through other elements refers to the same values as the de-
scriptive element. There is no shorthand for defining same construction

except through subscripting a variable by Data Set membership. It's necessary
that any element name used in a Data Set be defined in a Data Element de-
scription. This cannot be done through the Data Set itself. This point is

quite important in that certain Data Transformation operators will only work

on data elements and cannot be used on Data Sets. Actually an elemental
definition is simply the name of a particular extractive and/or combinatorial
function.

//”””ﬂ/

(o) A conditionally defined data element is the name of a simple Boolean

(or logical) function. We should be careful not to depend on too much scope

in these elements since this type of information should probably be picked

up in the Data Transformation. What we might permit is a simple definition

of an element which allows it to take on only the values True and False. Then
through the Data Transformation we can assign to this variable an appropriate code
based on the value of some conditional expression.

Burton Grad/bm
4/27/60

SHIPPING SCHEDULE DETERMINATION

CONDITIONS:
Stockage| Delivery | Availability | Further Conditions Action Shipping Schedule Date
S DI or DN QA Ship at once Today
QN Back order DRO
DD Not applicabley OH-QRPZ QO Defer order without DD
reserving
Not applicablel OH-QRP<LQO Defer order wit hout DD
and DD% DRO reserving
Not applicablel OH-QRP<QO Defer order without DRO
and DD €DRO reserving
NS DI or DN QA QA 21/4 QO Ship at once Today
QA<1/4 QO Defer order and
reserve Today + SLT
QN Suspend order and Today + SLT
order replenishment
DD QA QA : QO Defer order and DD
5 reserve
DD = Today + SLT Defer order and reserve DD
and QA<LQO .
DD<Today + SLT Defer order and reserve Today + SLT
and QA<LQO
QN DD 2 Today + SLT Defer order DD
DD £Today + SLT Defer order Today + SLT

LGBT ‘I9q03120
NGl ‘paoimea) Lxxsg £q

uorjeuasaIg Jenge], odureg

T HqQrxE

"

Section B - Data Set

A Data Set is defined by a series of entries each of which consists
of the name of a Data Element or a Data Set and the number of times this
Element or Set is repeated within the Set. The Data Set will itself be
) given a name which can be used to make up other entries. There is an
e St wordering of the entries through an entry reference number though the
¢ ; g < et
particular ordering is arbitrary. - °

Every Data Set must eventually (through the steps in the hierarchy)
be defined in terms of Data Elements. There are two degrees of freedom
in every Data Set in that it may contain a number of different Elements as
well as multiple repetitions of any Data Element. Each of these repetitions
represents a potentially different value.

To adequately convey the use of a Data Set Definition a few examples
are shown in figure 2 (next page). They are explained below:

(1) The Data Set INVENTORY-RECORD is defined by five different
entries. The first entry (1 in Reference Position) is the
Data Element IDENTIFICATION. There is but one IDENTIFICATION
element per INVENTORY-RECORD. The same reasoning holds
for the next three entries (2-4). Entry 5 however refers to a
Data Element called MONTHLY-USAGE which will appear 12
times. It is through repetition that subscripting can be introduced.
If we refer to INVENTORY-RECORD MONTHLY-USAGE we
need to indicate a subscript or index to denote which one. MONTHLY -
USAGE (5) means the fifth appearance of this Data Element.

We can think of this representation as being a shorthand for
designating a list of names. We could have defined MONTHLY~
USAGE (1) etc. by a Data Element Definition and then indicated
each of these as separate entries. However, it is obviously
convenient to use an abbreviated method.

(2) INVENTORY-FILE is a Data Set consisting of 500 repetitions
of the Data Set INVENTORY-RECORD. We can then refer to
INVENTORY-FILE INVENTORY-RECORD (20) to indicate the
20th such set. This implies that all element of the set INVENTORY~-
RECORD are also members of the set INVENTORY-FILE.

INVENTORY-FILE INVENTORY-RECORD MONTHLY-USAGE

D’?T’f s DE:F’UI_;’PIGA/

DES cfi1P T roes

TEesL! 2ATIon - PERCENT

L
!
i

ToThl= L= PERCENT

(4)] S41ES—ReponT

SALES— FELORT - HEADIN &

(s 1 OSL

) SET
! Eutey I
: i ERSNCE
1) | InvenToRY -Kecepo . 1 ZDENTIF/<AT 104/
.2 RET — MArTE
I | _on-Hap-RuanTiTY .
1 il Keowos e- Forrs7
- Mo TuLy— Usice
(2)| INVENTORY- F)LE / TH VENTOR Y~ OE ¢ 0 RD
(3)| SALES- RKereoT /_ _DYSTRCT - U fPE N
2 UMIT~ SALES
3 Y7~ S ALES
4 BUYLGET -SALES
| ¥
i H —
; ! ¢ /e THAL= S
| ToT AL - SALES !
| L e T0TAL NTO- SALES_
2
Z
/

PSP A

i N A ¥ |

ALES
ToThL = UrmiT SALE S

B - W ML SR S

(3)

(4)

(5)

(20, 5) would mean the fifth month of the twentieth inventory item. You
will notice that this does not provide any explicit means for indicating
precise order or format between elements. Order will have to be
determined through the Data Transformation and format details
through a special set of forms descriptive techniques. One possible
forms descriptive technique is discussed in Section D.

SALES-REPORT is a Data Set described by six entries. The first
five entries refer to Data Elements each of which may recur up to
225 times but this is not a fixed value (the V stands for variable).
Omission of the V implies that the repetition is fixed for some
reasonable period. The exact use of the V will be at the discretion
of the systems engineer and permits him to convey information to
the "programmer' which may help in the preparation of a more
efficient program. The sixth entry refers to another Data Set
TOTAL-SALES which then happens to be designated next.

By proper sequencing of Data Set entries it is possible to achieve

any relative reference layout for set hierarchy. For example
SALES-REPORT entry 7 could be incorporated after the description

of TOTAL-SALES. This could have been continued to any number

of levels as long as care was exercised in using the proper set name
with the entry. This also indicates that if an omission occurs it can

be readily corrected simply by using the next entry number for the
Data Set and then filling out the entry. This entry also shows reference
to a Data Element which could be literally defined as a Data Element.

This example shows how a synonym can be established for any Data

Set name. OSR may now be used interchangeably with SALES-REPORT
as indicated by I (for Identity) under Type. This can be a major
convenience in abbreviating Data Transformation references. The
only requirement is that a synonym have one and only one meaning

just as any Data Set name.

With these examples as a foundation we can make some general
observations about Data Sets:

(a) The specific values to be assigned to Data Elements will be
determined through input form association or through the Data Transformation.
This implies that every Data Element must be referred to in terms of set
membership except where it is an absolutely unique element which will
not ever have a different value as a function of Data Set membership. This
indicates clearly the need for careful exploration of abbreviation schemes
for set indication. It will be necessary to determine whether every step
in the set hierarchy will have to be indicated or whether it will only be
required to designate up to a unique set. Intuitively it seems that it would
be adequate to specify only the top level set and the element name except
where the same name appears more than once within the Data Set. However,
I haven't really explored this at all.

(b) At the present stage of development, a fixed format is needed for each
Data Element as a member of a Data Set. There is no basic constraint from a
set standpoint of permitting a Data Set to contain a variable length Data
Element. Element to element order is not really defined by the Data Set
description. It must be supplied by the Forms Description or the Data
Transformation. Element to element order can be introduced through
various Data Set operators used in the Data Transformation. Rearrangement
of a Data Element requires either a special Data Element definition or the
use of string manipulative operators in the Data Transformation.

(c) A Data Element may belong to many Data Sets. We may want
to use the same value for a particular Data Element in many Data Sets
like CURRENT-DATE. In other cases we do not want to use the same
value. It is probably desirable to identify set membership not simply as
E but rather to denote a special type as F to indicate that this refers to the
fixed value of the element named. Operationally this would mean that if
we assigned a new value to CURRENT-DATE, every set to which it belonged
by an F type relation would automatically be assigned that same value while
those to which it belonged by an E type relation could not have the value
changed except through a name qualified reference; e. g. TRANSACTION
CURRENT-DATE. Your thoughts on this problem would be most helpful.
A Data Element can be modified or used independently of any sets of which
it is a member; however, its value as a set member will not be changed
by such a change unless it has used an F type relationship.

(d) A Data Set cannot be defined as incorporating part of another
set except through directly using the subsets or elements wanted. The
reference position (entry number) on the Data Set definition form does
not imply an actual ordering of the elements or subsets; it is meaningful
only in terms of orderliness, and addition and deletion of entries.

(e) If we wish to assign the same value to two elements which have
the same name but belong to different sets (by an E relation), then the
Data Transformation will have to provide for the assignment, e. g.
TRANSACTION QUANTITY = ERROR QUANTITY.

(f) We can now generalize on the concept of subscripting. Any
element may be subscripted as a function of its membership in a particular
set. SALES DISTRICT (25) and CREDIT DISTRICT (25) refer to different
Data Elements. DISTRICT (25) has no defined meaning unless that Data
Element appears in a Data Element definition. The mention of a particular
Data Set name in conjunction with a particular Data Element implies all
intermediate sets. INVENTORY-FILE MONTHLY-USAGE (20, 5) states
that this reference is to the 5th repetition of the element USAGE in the
implied subset INVENTORY-RECORD for the 20th repetition of that subset
in the set INVENTORY-FILE. There are no fixed number of levels’in the
Data Set hierarchy nor does each level require or permit subscripts. The
subscript notation is such as to line up with an adjective--type hierarchy:
highest-level, next-highest-level , element. The first subscript
refers to the particular next-highest-level member in the highest-level
set. The last subscript refers to the particular element in the lowest-level
set.

(g) Tables can be introduced through Data Set membership, however,
it would probably be done somewhat differently from the usual row-column
method. Suppose we have a Data Element called RATE. It is the only
element of a Data Set called JOB-CLASS. As such it is repeated 10
times, once for each experience class. JOB-CLASS is a member of
JOB-RATE-TABLE and is itself repeated 15 times, once for each different
value of JOB-CLASS. The JOB-RATE-TABLE is a two-dimensional matrix
15 x 10. JOB-RATE-TABLE RATE (12, 8) would refer to the 8th RATE
within the 12th JOB-CLASS. If we also wish to define EXPERIENCE-CLASS
we may do so by indicating that RATE is a member of this set and is repeated
15 times, once for each job-class.

(h) Specialized lists of value names can be identified through Data Set
and Data Element definition. For instance a Data Set called TEMPORARY
might consist of 100 repetitions of the element TEMP which was a 20 position
numeric element. We could therefore use TEMP (1), TEMP (10), etc. directly
without further element definition. This also indicates the ability to use the
element name by itself without denoting set membership if we are certain that
the element will not be a member of any other set. This problem needs to
be explored further since such specialized gimmicks could make a systems
program difficult to modify.

(i) It will be necessary to develop a means for assigning set-element
names to input values and correspondingly to assign the values of set-element
names to designated output forms positions. This whole area of specific
association of names and input and output values and forms is covered in

some detail in Section D. I believe that it may well be the critical bridge

.6

between the practicalities of real business operation and the concepts of
logical systems design. In this regard it would be meaningless to associate
an input value with a Data Set Element which had been defined as a literal.
In effect, this would be permitting the input data to change a constant.
However, the assignment of a literal element to an output Data Set may
often be desirable particularly in terms of headings or various fixed
information. With a literal element of course it is never necessary to
indicate Data Set membership in referring to that element in the Data
Transformation.

(j) There is an interesting analogy to be drawn between Data
Element and Data Set definition and the use of blueprint and bills of
material for product descriptions. I would like to discuss this separately,
at a later time, since I feel it might be advantageous to clearly understand
the similarities and differences between product description and information
system description.

BGrad/bm
4/29/60

Additonal Material for Sections A and B

After having tried to use the Data Element and Data Set forms on a few sample problems

it Is my belief that we need to make certain changes and that we should recognize

certain caseswhich ' were unfortunately overlooked on the first pass. Suggestions for correct-
Ing these deficiencies are described below:

(1) The purpose of both forms is to name certain classes of "Informational objects"

and to associate form and/or value with these names. The major reason for differ~
entiating sets from elements was to indicate that different functional operators might
be used on sets (like Merge, Sort) than would be used on elements (+,-, <),

Since the dividing line defintionally is so vague | should like to recommend that
an effort be made to combine the two forms and that the _lFE of definition be ex-
panded to indicate whether the item being defined is an element or a set. Among
the models which might be examined for good ideas are FACT and the new Com-
mercial Translator Data Description (a copy Is enclosed).

(2) Another major problem which will be alleviated by this combination of forms

Is the desire in many situations to define a Data Element only,terms of a parti=
cular Data Set. This comes into play when we have a number of specialized ele-
ments where it's a nuisance to have separate sheets to fill out or where it's con-
venient to apply the same name to an element which has a variety of forms depend-
ing on the particular set. For instance, Employee-name might be pictured as 2
initials and a 15 character last name in one place, last name only in a second
place, and full name in a third. Whereas before we would have to give different
names to each of these occurrences, now we can use the same name and just
provide a means of indicating (as was discussed for Data Elements at the last meet-
ing) whether this is a form definition or a value definition. In other words a

value definition says that this name represents a specific value (and the same value)
for all Data Sets to which it belongs. The name can therefore be used at any
time without set qualification. This does not mean that the value must be stated

in the Data Description, but only that it is defined as a unique name. Examples
might be employee~number, shop-order, account-number,

In contrast, a form definition states that this name represents a unique pictorial
though the values will vary with different sets, Some examples are date, signature,
form=number. For both of these cases we should have a code means of indicating
that this element name is supposed to represent a unique form or unique valuve and
we should also have a short cut approach to avoid needless repetition.

(3) It has also been suggested that we give a pictorial definition to each fixed-
value (constant) element to avoid ambiguity and confusion.

(4 Each element or set name must be identified as representing a particular value
class: Quantity, True-False, String.

B.G./lsd
7/19/60

Ly

Section C - Data Transformation

From the system engineering viewpoint, we wish to describe the
logic required to transform the input Data Elements into the output
Data Elements and to present these values in appropriate reports,
signals, or records. We are not concerned with the specific procedure
adopted to carry out this transformation logic.

Regardless of the form of expressing the Data Transformation
logic, it is necessary to conceive of the fundamental purpose that this
part of the systems description performs. Basically we have certain
elements in which we are interested whose value can be obtained from
the outside world. For example an employee's name can be obtained
as an input. If all elements were of this nature then all that would
be necessary would be to have a means of mapping inputs onto outputs.
However, most information that we wish to examine on output requires
definition in terms of special operators acting on various input and
intermediate values.

This leads to the conclusion that we have three ways of defining
the value of an element in which we are interested:

(1) As a literal value in the Data Element definition.

(2) As an input value through the Data Set definition and Forms
Description assignment.

(3) As a "computed" value through the Data Transformation
logic.

Therefore we do not need to think about the operation of adding or
subtracting or moving information but rather only of being able to use
certain functions or operators which may be useful to us in defining
element values. '

It's my feeling that there are a relatively limited number of generally
useful element and set operators but a much larger number of specialized
macro-operators which will be useful to a particular class of business or
application. For instance, we'll surely need the general arithmetic operators
of Sum, Difference, Product, Quotient as well as logical operators like
Intersection, Smaller, Larger, Identity. In addition, generalized set
operators like Order, Extract, Match, Merge will be needed. To illustrate
specialized operators, certain applications will need mathematical functions
like Sine, Power, Minimum; Specialized logical operators like Inclusion,
Dual Implication may also be required. There will also be many specialized
set operators like Deduction, Post, Explode.

Each operator will need to be precisely defined in terms of positional
line-up, truncation, rounding, etc. It will also be necessary to indicate
the classes of elements or sets to which the operator is pertinent. Similarly
we will probably have to provide a straight forward way to allow a systems
engineer to define any specialized macro-operators which he finds useful.

There are certain other properties which we may be looking for in
the language regardless of the particular form that is chosen such as the
ability to use literals directly, the opportunity to use readable terms for
element names, the capability of handling a variable level of user sophisti-
cation, etc; nevertheless with these general comments out of the way we
find ourselves right back against the format problem.

It is apparently the feeling of the CODASYL Systems Committee that
some sort of tabular presentation of the systems logic would be highly
advantageous. Therefore it would seem to be reasonable to examine the
structure of the Orren Evans tabular form and the Perry Crawford example
to see if there are certain underlying principles which can help us obtain
a better understanding of the concepts underlying tabular format.

A portion of one of Orren Bvans' sample tables is shown as Figure
3 on the next page.

If we represent a question (is, does) by "'q" and an action by "a' then we
can structure the first rule in this table as follows:

Rule No.
001 [i] oy [¥ fnd] ap [] ¥ [roed] ¥ ffor] a, [end] ¥
[for] a,

The words and symbols in square brackets,[_j , are implied by
the tabular form. In addition there are, of course, various rules con-
cerning the placement of symbols and expressions within the table. For
instance, we can think of the table as having five segments as shown below.

15

Al
!

15

——p—
)
]

Is Credit - Limit > Is Customer - Past|Does the Approve |[Send tSend
In - Process - Balance (+)| - Due - Balance = |Customer have Credit Order i Order
Accounts - Receivable (+) | Zero? Prompt - Paymention Order | to " to {
Order - Amount? Experience? } Stock- : Sales §
{ Control |
! N
Rule No.
{
001 Y . § Y Y y
002 Y N | Y Y Y :
i
003 Y N N Y 3
' i
004 i N X X ¥
i : i
005 | N N 2
' i
- | .
Figure 3

g'e

In seqment A only "q" type expressions (conditions) can be shown. In

segment B only "a" type statements (action) can be made. Segment C
includes rule number, frequency and prior rule requirements. Segment
D allows the entry of a’ Y, N or blank. Y serves to indicate that if the
conditional expression in that column is true then this part of the rule is
satisfied. An N shows that if the conditional expression is false then this
part of the rule is satisfied. A blank denotes that the truth value of this
conditional expression is not pertinent to the data rule. In segment E
either a Y or a blank may be entered. Y indicates that the action in that
column should be executed; a blank indicates that the action is not exe=
cuted for that data rule.

A properly formed test requires consideration of both the conditional
expression and the appropriate table entry (Y, N or blank). Similarly,to
determine the inclusion of an action we need to see if there is a "Y"
in the proper box. This means that a complete data rule requires knowledge
of (and relationship between) the column heading and the intersection contents.

With but minor changes, the Evans questions would be perfectly acceptable
COBOL conditional expressions; however the actions as stated do not
as readily fall within the COBOL framework.

In the Evans work the order of testing columns and the order of
testing rules is not significant in determining the result that will be
achieved. However in executing actions there may well be an implicit
or explicit order involved. This is not to say that efficiency will not
be affected by the order of testing, but rather that the logic will not be
affected.

In the Perry Crawford table (Exhibit sent previously) there are some
interesting differences. Instead of simply noting a ¥, N, or blank in the
intersection he has inserted certain of the information which would normally
appear in the column heading in an Evans table. He has also used an "or"
between possible values within a single intersection. He has, in the
fourth column, made another major change; the whole question appears
in the intersection and the column heading has no operational significance.
Similarly in column five each action is defined in the intersection and
the heading is meaningless. In column six the action is described in two
segments! the heading and the intersection, with,in four cases, a
mathematical expression (Today + SLT) appearing in the intersection.

Between the two examples we find a variety of cases which permit any-
thing from & meaningless column heading to a fully stated question (but
not the answer) and a fully stated action (but not whether it is to be carried
out). In an intersection we find everything from a simple y, n, or blank
up to a complete question (with implied inclusion) or a complete action

(with implied execution). It is clear that full clarity requires the dual
consideration of the appropriate column heading and the proper row
intersection. Generally speaking we could describe a tabular technique
that permitted any type of expression in either a column heading or a
row intersection but the usefulness of this degree of freedom may well
be questionable. Correspondingly we can define various simple structures
which are well suited to various classes of problems.

Among areas which require further exploration in regard to
tabular format are things such as:

(1) table to table transfers

(2) row independence

(3) heading format

(4) intersection format

(5) operator and relationship indicators

(6) Two-state (Y and blank) versus three-state (¥, N and blank)
logic for "truth tables'.

I will try some real examples so as to gain a better understanding
of the scope of the Evans table format and an indication of areas which
can be improved. Any illustrations which have been worked out might
prove helpful to our experimentation.

BGrad/bm
4/29/60

Cont'd Section C = Data Transformation

| would like to propose a generalized concept for tabular representation. | believe

that this form of description incorporates the Evans and Crawford work as special
cases.

(1) A Table is defined as a two dimensional form structured as follows:

CSn CS
CSii
[Csm] e i
AS 11 i AS1n 3
i | i s ,._._..,.....__.___._.,,._.....-........Ii_.___.. 3 PP — -J ‘
Asﬂ } H Asm .

Above the double line there appears various Conditions (CS); below the -double line
there are certain Actions (AS). A CS may only take on a True or False value though

it may be composed of any number of expressions. Formation of a CS will be described
later. An AS represents an action ‘and as such it has no inherent value; it may be
used for procedural control (like go to or do) or for value assignment. Formation of

an AS will also be discussed later in this Section,

(2) A Table should be interpreted as noted below:

if CSyy is true and CSyis true andCS, is true
then execute AS 7and AS 5 and....AS
if CS§,is true and...CS ,is true
then execute AS12 and ...AS2 ;
if CSy, is true and...CS,, is true

then execute ASj, and ...A§,
Mathematically this can be stated:

it {CSy; is trueffor i = 1tom

then execute?ASki - k =1t r

It should be noted that this formulation Is not directly equivalent to the McCarthy
LISP work where the first "true" set of conditions determines the actions and precludes
the execution of the other actions. As of this point there is no solution implication
other than that success within a column depends on "true" answers for all Conditions
in that column, -
(3) It is desirable to define various items which will be used in describing Conditions
and Actions. Many of these definitions have been "borrowed" from the ALGOL - 58
and ALGOL - 60 write=ups.
The notation is quite straightforward:

:: = means "is defined as".

| (vertical line) means "or".

(a) There are three value classes which describe the values that a Data Element can
assume:

(1) Quantity

(2) True-False

(3) String
(a.1) Quantity :: = NNN-—-NN.NNN-—N

] A

N :: = of 1]2]alalslel 7islo

Examples: 357; 1010; 35.17; .826
Quantity is the classification used for all values which represent measurable phenomena
or those which have numeric (e.g. quantitative) significance. For instance an identi-
fication number, though composed entirely of numbers, would not normally be a quantity.
Codes, in general, though often numeric in nature, are not quantities in the strictest
sense in that they are not usually interpretable in arithmetic terms or in conjunction

with the usual arithmetic functional operators (+, =, *,/).

A quantity will consist of the figures (0-9) together with point location (explicit or
implicit), base notation and/or floating point designation.

(@.2) True-False :: = B
B : = T‘F

Examples: T; F

We are using T and F to represent "true" and "false" in a two-valued logic system.
Gbviously any other symbols would be as satisfactory (like 1,0, or Y,N), but for
consistency the T,F notation will be maintained.

(@.3) Siring :: = S§§ =——S$

S Olll_kIA[Bl—!'ZI*l'g*%/i‘
Examples: ARIZ; ABC + (259)

As of now the set of symbols permitted in a string should be open-ended. ®bviously,
for any given data processing machine there will be a limited number of different
character codes which may be used in a single character position, however the symbol
concept does not necessarily limit itself to single character representations. A symbol
could consist of multiple characters. This emphasizes the inherent extendability and
generality of strings and symbol manipulation.

(b) There are three ways to represent a particular value:
Literal
Name
Expression

(b.1) A literal is a quantity value, true-false value or string value which represents

itself. We may speak of quantity value literals, true-false value literals and string

value literals, Literals will be shown inside square brackets so that they will not be
confused with values represented by names or expressions. Square bracketfs should be
read as "the literal valve...".

Examples: [357] ; [1010] ; [35.17] ;. (.826]

[1) [Fl
Ari2]) ; (Asc + (259)]

(b.2) A name is itself a string which may be used to represent a valve. When a
string is used as a name it will never be shown inside square bracketfs; e.g., ARI2

means the value represented by the name ARI2, The value class represented by a
name cannot be deduced from the string value of the name itself, [t can only be

determined from an appropriate data element definition.

Examples: JONES ; 1357 ; TTTFF

We may speak of quantity value names, true-false value names and string value
names depending not upon the nature of the symbol string used to construct the name
but rather on the value class represented by that name.

(b.3) An expression is a properly formed siring consisting of literals, name represented
values, expression represented values and functional operators. The precise construction
depends on the formation rules associated with the particularfunctional operators used.
The functional operators will determine the possible number of operands and their associ=
ated value classes; they will also establish the valuve class represented by the expression.
The three kinds of expression are identified by the value class of the defined result:
quantity value expression, true~false value expression and string value expression. An
expression cannot use a name or another expression except as they may be consisdered
to be literal strings; otherwise it must explicitly deal with their values. For consistency
we will designate the value of an expression by not enclosing the expression in square
brackets; a + b + ¢ means the quantity value of the quantity value expression a+ b + c.
Since an expression may itself include the value of an expression we have a recursive
definition.

Examples: a<b ; avb;
|32] + PAYAMT; (a +b)/c »|27);
a>[s)= 1]

Each functional operator must be well defined over its class of permissible values so
that it may produce a consistent result value given consistent input values. For the
time = being all functions (a functional operator with its associated operands) will re=
sult in a single result value though it may have multiple arguments (operands).

() A numeric string value literal and an integer quantity value literal cannot be
differentiated by examination, therefore we will adopt the convention that the function=
al operator with which they are used will determine their value class, Hence the ex-
pression a + \.13'] would be interpreted as a quantity value expression and 13 as a
quantity value literal because of the use of the arithmentic functional operator +,
Similarly the expression Concatenate (a, [13]) would be considered a string value
expression and +| 3 a string value literal because of the use of the string functional
operator, concatenate,

A similar possible confusion exists between a string value literal T or F and a true-false
value literal T or F. Again, however, functional operator use should adequately diginguish
these; e.g.

FIRST SYMBOL (EMP-NAME)= | T |

is obviously referring to the siring value literal, T, while
alb=iT

is using the true-false value literal, T.

Therefore it is not necessary to explicity denote the value class of a literal since it can
be determined through expression content,

10

(4 A Condition (CS) is the true-false value of a name, the true~false value of an
expression or a true-false literal.

CS :: = [True-False LITERAL] I NAME |EXPRESSIG)N
Any condition may be restated in any of the ways shown below:

CS u = CS=[T]

Cs :: = [T]zcs

CS:: = CA, R, CB where R represents any functional operator that defines
a true-false valve, CA and CB represent any legitimate operands that may be associated

with R.

In header-trailer Tabular form this might be used in four ways:

header trailer
- cs = || (1]
_[1] =] cs

CA, R |I CB

CA 3R, CB

b

The precise manner in which the transformation logic should be shown depends only on
the system engineer's convenience.

The following sample table (Conditional portion only) shows many of the possible forms:

Married = [T] [F} [T]
[T] & SENIGR JUNIGR SOPHOMGORE OR
e d o FRESHMAN
OLD AGE [4800.00] [3600.00) HEALTH AGE
TAX. DEDUCT [f< | 7] Y | 5] = DEPENDENTS *
T | SHSSPIAS NSRS WNCCHDT SOOI WO - I—
A + [35] £ B+C *.\ MIN (A,B) | SQRT (B)
' {

(a) Some of the functional operators which use quantity value operands and develop a
quantity value result are +, =, *, /, **, SIN, MIN, MAX, ABS. (b) Some of the true-
false value functional operators are: A (and), V (inclusive or), -1 (not). (c) Some of
the string value functional operators may be: concatenate, extract, code, etc.

11

(d) There are relational functional operators which deal with quantity value operands:
£,5 =, 2, 5, #,Other relational functional operators deal with true-false value operands:
= ¥ o(implies), etc. There may also be a well developed group of relational operators
for string value operands, but this will require the development of a symbol hierarchy.
=,# do not depend on this hierarchy but<,> do depend on it. All relational functional
operators result in a true-false value result.

(e) Because of the header-trailer type construction it is necessary to define a third logical
state (beside True and False). For instance suppose a particular CS is used for the header
and in the third trailer column it doesn't matter whether this CS is True or False. We
could show this by writing 'T! ®R [F] , but this seems somewhat lengthy. Another
alternative would be to leave the box blank, but this might lead to errors of omission,

It therefore seems desirable to predefine a special function name to represent a generalized
operand which will always result in the value [T] regardless of the functional operator

or other operands. For symmetry we could also define a function name. to represent a
generalized operand which will always result in the value [F] regardless of the functional
operator or other operands.

This concept of a universal truth function and a universal false function should be ex-
plored much further to determine if a universal value set and a null value set can be

be consistently defined so as to permit the proper use, of all of the various functional
operators (R) which might be used between a CA and CB.

(5) An Action (AS) does not have a value since it simply designates carrying out the
instruction of a procedural operation. There appear to be four major types of procedural
operators:

Assignment

Procedure Control

Communication

Definition

(a) The Assignment operator associates a particular value with a name. Using assign....
as to mean "is assigned the value of" we can show:

assign N as [literql] I name] expression

The assignment establishes a value as of that point in the procedure. Further procedural
operators may modify or change this value assignment,

The following examples show a few possible forms of Assign actions:
assign NUMBER~®F-DEPENDENTS as | 7
assign SALARY as GROSS-PAY

assign DEDUCTIONS as | 600 [* EXEMPTIONS

12

assign SENIOR as YEARS > (3]
assign ANSWER as SQUARE-ROOT ([2] * u/l)

The value class of the name must match the valve class of the literal, name or ex-
pression generating the value. Assignment has the Implication of execution,

(b) A Procedure Conirol operator Involves the next instruction (or Table) to be carried
out, The basic operator is GO TO which designates next following (succeeding). There
Is some question concerning the use of DO where It could be stated that we are merely
using a complex assign operator. However, for now, we can certainly think of DO in
the sense of GO TO and COME BACK, Other Procedure Confrol operators are START
and STOP. The basic form Is:

go to PROCEDURE-NAME,

(c) A Communication operator involves fixing information in a particular form or at
a particular value for later use. Examples include READ, WRITE, PUNCH, etc.

read TRANSACTION - RECORD
write ERROR = MESSAGE
punch INSTRUCTION

(d) The Define operator is closely akin to Assign. The form Is: define NAME as VALUE.
Value may be represented by a literal, a name or an expression, but It Is inherently
non-executable, This is a substitutive operator; the name may be replaced by the value
term wherever its value is being used. Examples are:

define EXEMPTION as [600]
define CODE as EMPLOYEE-NUMBER
define AGE-GROUP as (AGE- [20]) / [5]

Define is one major aspect of the open-endedness of the systems language that we are
developing. In spite of the many compiling difficulties that may be encountered in
using a Define operator it permits the introduction of short-cuts and changes at the Data
Transformation level without having to modify the Data Description. It would seem
logical therefore to extend the use of Define to include the possibility of making a
formal element or set definition including value,class, form, etc., This should certainly
be investigated further to determine its reasonableness and usefulness.

13

() As in the Conditional portion of the Table It Is also desirable in the Action portion
to provide for a header-trailer type of construction. The following statements are
almed at accomplishing this: '

AS::= AS, € where £ represents “Execute"

<null) ::= N whereNrepresents "Not Execute®
for Assign and Define Actions, AS::= AN,R,AV

where AN represents the name, R the Assign or Define operator and AV
the value term.

for Procedure Confrol Actions, AS::= AP,P

where AP represents the procedure-name and P the Procedure Control operator.
for Communication Actions, AS::= AT, C

where AT represents the set name and C the Communication operator.

On this basis the following forms are possible in header-trailer construction.

header trailer
AS E
£ AS

AS YU

AN, R AV

AN R, AV

AV,R AN

AV R, AN

AP P

P AP
T C

& AT

() | believe that with these formats it is possible to show that any Action in an Evans
table can be represented adequately, as can any Action from a Crawford Table, Therefore,
further study and evaluation should probably be in terms of what Is most effective from

a systems engineering viewpoint rather than with a "It can't be handled" attitude.

Burton Grad/lIsd
7/12/60

THE "EXPLESION" QPERATGR
AS USED IN PRODUCTION CONTRCL

By Burton Grad
Systems Standards, |BM
5/15/60

The structure of one basic production control activity can be developed fairly
readily. This is the function commonly known as "Explosion". The Explosion
operator converts a time - demand for a particular commodity into a time - demand
for a set of resources. Commonly this operator is associated with determining the
parts and materials needed to support an end product. However, it wc;uld be just
as valid to include the determination of machine and labor loads since this is
simply the same operator applied to a different set of resources.

This paper will try to define a general formulation of the deterministic case of
explosion. It will be done in the context of a specific parts determination example,
but would be directly analogous for labor or machine requirements. The particular
formulation may very well not be optimal for any one machine, however, it is a
convenient way of describing the over-all logic.

It is necessary to define certain terms:

1. A commodity is any object desired by a customer. Each commodity
has associated with it an identifier, = Commodities include products, reports, service,
efc.

2. A resource is any object used to satisfy a demand for a commodity.

This may be a tool, jig, fixture, material, assembly, machine tool, labor, money, etc.

1. The ideas expressed here were developed with the aid of Mr. A, Bernstein of Math &

Application, IBM.

3. The unit of measure by which we describe the amount of a commodity

or resource required may be pieces, pounds, gallons, minutes, dollars, etfc.
4. The quantity associated with a particular commodity will always be
in terms of a unit of measure. This unit of measure may be implied if it is obvious
from context or consistent throughout a class of problems (e.g. $in Accounting reports).
5. Demand for a quantity of a commodity will only be meaningful if it
has a "due" date (or required date) associated with it. This in no way constrains or
describes the profit or loss which will result from not meeting the date. This-simply
establishes a point of reference without which a production control problem has little
meaning. This does not preclude the possibility of implicitly defining the due date
through the context of the problem.

6. The usage quantity of a resource means the amount of that resource

(in the appropriate unit of measure for the resource) required per unit of the demand
commodity (in its appropriate unit of measure). For instance, the usage quantity of
a particular kind of paint for a particular model of automobile may be expressed as
5 (gqllons)/(one car), where the two units of measure may well be implied by the
problem context.

7. Finally, the setback time for a resource can be defined graphically

as shown below:

23
/
T
4 i
/5 '
e

-
T

Time & - 2B -5 =) @

Commodity A has a due date of 0. Resource 15 must be available 1 time
period before this due date, hence the setback time for Resource 15 in Commodity
A is 1 time period. Resource | must be available 2 time periods prior to the com-
pletion 'of commodity A, hence its sefbuc-:k time is 2 time periods. Similarly the
setback time for Resource 23 in Commodity A is also 2 time periods.

With these definitions it is now possible to describe the operands associated with
the Explosion operator:

1. There is a Commodity Demand List (D) which has the following

structure:

C ommodity Demand Due
Identifier Quantity Date

A 5 [

A 7 12

A 2 15

A 1 16

B 4 13

The order of the elements of this list should not be implied by the particular order
used in this example.

2. There is a Resource Usage List (U) which looks as follows:

Commodity Resource Usage Setback
Identifier 1 Identifier Quantity Time
A 1 2 2
A 15 6 1
A 23 3 2
B 1 4 1
B 12 1 4

Again, the order of this list should not be implied by the way the example is
written.

3. The result of using the Explosion operator on the Commodity Demand
List and the Resource Usage List is to produce a Resource Demand List (R) with the
individual entries having specialized meaning. Each row in the U List is examined
and its commodity identifier compared for each row in the D List. Whenever the
Commodity identifiers match, a new row is created in the R List, with the elements
structured as follows :

R Resource Identifier = U Resource Identifier

R Demand Quantity =(D Demand ny))((U Usage Quunﬂfy)

R Due Date =(D Due Date - U Setback Time

This is an example of the Resource Demand List:

Resource Demand Due
Identifier Quantity _ Date
1 10 9
15 30 11
23 15 9
1 ; 14 10 g
15 42 11
23 21 10
| 4 13
15 12 14
23 6 13
] 2 14
15 6 15
23 3 14
1 16 12
12 4 9

The particular sequence of solution or examination is of no importance to the nature

of the operator as long as every possible resource demand is determined.

It is possible therefore to state that

D(X) U —>R or (X) b,U) — R
Where D, U, and R represent the respective Lists and (X) represents the Explosion
operator.

This description of the Explode operator permits a fully recursive definition for
a multiple level process. We only need to make the following statement:

Any resource may be considered es a commodity at a subsequent
explosion level.

©On this basis the R List is completely equivalent to the D List and can be
treated a@s a D List for a subsequent use of the Explosion operator.

As can be seen, this approach does not explicitly recognize any of the common
efficiency problems associated with performing an explosion procedure. We are
being quite careful to distinguish between the operator which defines the transfor-
mation of certain objects. Particular ways of achieving this transformation, given
different parameters for the Lists and given a specific machineycan be described

separately,

TRANSFORMATION LOGIC

The following report proposes a structure for detailed analysis
and formulation of the Transformation Logic used in applying Tabular
Form to a precise systems language. It suggests major study topics
and then divides the Table construction area into a series of specific
subjects. Each of these subjects then has possible solutions described,
certain problems stated and indicates the related portions of previous
reports. It is our hope that this framework will provide a basis for
intensive future work and for relating our work with that of the L.anguage
Structures Committee,

We feel that there are three major study topics for work in
Tabular techniques:

I Table Construction and Data Description
II Applications
III Language Implementation

At the present we are not particularly concerned with Language
Implementation (III), but have been concentrating on Table Construction (I)
so that appropriate Applications Studies (II) may be carried out,

In subdividing the Table Construction part of the first topic we
believe there are three key subjects:

A. Inside - Box Considerations
B. Within - Column Logic

C. General Table Considerations

We will discuss each of these subjects in turn indicating specific
areas of work, appropriate solutions, etc,

Subject (A) Inside - Box Considerations:

(1) Operators:
We have identified certain general element operators:

(a) quantitative (+, -, *, /, power, absolute, sine, square
root, etc.). These operators may require 1, 2 or more
quantitative factors as input and resuit in a quantitative
value.

(b)

le)

(d)

(e)

(8

(g)

(i)

G)

(k)

true-false (Andalso (A), Andor (V), Or (5), Not (=)).
These operators may require 1 or 2 true-false factors
as input and result in a true-false value.

string (Concatenate, Insert, Replace, Substring, etc.).
These operators may require 1, 2 or more string factors
a8 input and result in a string value.

mixed (Transform, Convert, Count, etc.)

These operators typically require either 1 string factor
or else 1 quantitative factor as inpat and then result

in one quantitative factor or else one string factor...
the opposite of what was available to start.

multiple (not yet explored)
These operators would use single or multiple input
factors to establish multiple result values.

There are also a number of Relational Element Operators:

special (Exist, Defined, Non-existent, Undefined).
These operators establish whether a particular element
has an established value or whether the value assigned
has defined meaning in terms of the Data Element
Description. The input is typically a single factor

and the result is a true-false value.

quantitative relational (Less than, Greater than, Equal,
and their negatives). These operators require 2
quantitative factors as input and result in a true-false
value.

string relational (Identical, Not Identical, Lower, Higher).
These operators require 2 string factors as input and
result in a true-false value.

There are Set manipulative operators:

general (arrange, extract, join, etc.).
These operators require l, 2 or more sets as input and
result in a new set.

complex (explode, update, post, etc.).

These operators change values of elements as well as
change set membership. 1 or more sets and/or elements
are required as input as either a set or an element may
result,

-

(1) Set relational (Equivalent, ldentical, Subset and their
negatives). These operators require 2 sets as inputs
and result in a true-false value. Specifically they will
examine these two sets for identical values, identical
ordey, element name similarity, etc. It may be
necessary to differentiate the operators for unordered geots
from those for ordered sets. This point requires further study.

There are other operators which may be of particular
significance:

(m) Change value or set membership (Assign, Copy,
Communicate, Recelve, Transmit, etc).
These provide for the specific association of a parti-
cular value with an element name, It may be possible
to change the value or else it may be regarded as a
"permanent'' value assignment.

(n) Definition (Define)
This operator provides for a substitution of some other
factor for an element or set name whenever it is
referred to.

(o) Sequence control (Goto, Interrupt, Stop, Perform, Come
from, Prior rule, Start, etc).
These are inherently "procedural' operators which do
not themselves change data element values, set member-
ships or establish conditional logic; however, their
importance lies in their ability to break up a highly
complex description into an understandable group of
simpler descriptions. They provide a convenient way to
subdivide system logic and a shorthand for indicating
conditional repetition or order of action execution.

The operators in each category will be suitably extended and
arrangements will be made so that new or specialized operators may be
defined in terms of the basic operators predefined by the Language
Specification. It is expected that each operator definition in the language
specification will explicitly denote the representation of the operator
(words, symbols, abbreviations), the type and number of input factors
required and/or permitted. The type of result will be indicated and also
any parameterization allowed. In other words each operator will have a
full definition sheet with suitable examples of its use.

(2) Factors:

We have identified four value classes which factors value can assume.

|

A\l

\

i

(a) quantitative -~ arithmetically manipulatable values
regardless of number base, radix point or graphics.
(See B. Grad, July 11, Section C, pg. 7).

(b) true-false -~ boolean values.
(See B. Grad, July ll, Bection C, pg. 7 and 8).

(¢) string ~- any ordered symbols other than true-false
or quantitative. If a quantitative symbol (e.g. 1, 7)
is used in a string it has a different meaning from that
same symbol used in a quantity. (See B. Grad, July 11,
Section C, pg. 8). :

(d) set ~= a collection of values each of which may be of
any of the three types. A set does not of itself have a
value in the sense that it cannot be directly manipulated
by quantitative, true-false or string operators. The values
of the set elements may be associated with element names
but do not have to be. There is a reference order for
a set though this has nothing to do with actual physical
sequence,

There are three basic ways of referring to a particular value: by a
Literal, Name or Expression. The meaning and use of these terms is
described in B. Grad, July ll, sect. C, pages 8 and 9. The definitions
given may be extended to incorporate Set Literals, Set Namee and also
Set Expressions. Literals must be easily differentiated from Names or
Expressions. This needs further exploration.

Rules for the formation of Expressions using varioue operators
should be stated under the appropriate value type category. In addition
each of the value type definitions and rules for using Literals and forming
Names should be more clearly spelled out. Furthermore the Set-Element
Description should provide a convenient means for establishing value
type and also specific value to be associated with a particular Name. The
development of this Description Sheet should supply effective definitions
for many of the terms used under Factors.

There are other types of Factors which need to be considered. For
instance we may find it convenient to name or otherwise identify tables,
rows, columns, particular conditions or particular actions. The ability
to name subroutines or functions, equipments, or various associated
physical objects (e.g. machine tools, personnel, locations) may have a
strong impact on the communicability of any systems language. The
comments in ALGOL-60 in reference to Labels and the COBOL, Com-
mercial Translator, FACT and Flowmatic discussions of names may
prove of value to us. Certainly we must explore set names, name quali-
fication of elements and even the possibility of using jargon names.

-5

For example is it possible that we can communicate at the jargon
level with data processing machines -~ can a machine - (intuitively)
understand the difference between a ''report' and a''graph''?

(3) Conditions:

Certain Boxes will only be able to accept Conditions as their content.
These will be called Condition Boxes. A Condition is defined as a proper-
ly constructed group of operators and factors which can be determined
to be either satisfied or unsatisfied, i.e., whose condition value can be
determined. The comments in COBOL, April 1960 page V-2 (except for
the last paragraph) are appropriate. Evaluating a Condition does not
change the value of any factor involved in such an evaluation,

A Condition Box consists of three things: Condition Operators,
Factors, and Condition syntax or structure.

There are only certain Condition Operators. We identify parti-
cularly the various relational operators, (f, g, h, i, 1).

‘One Factor is worthy of special mention; this is the Condition Name
which"repreaentl a Conditional Expression. This Name is used as though
the Expression were substituted for the Name. The Name representation
itself cannot be described in a Condition Box; it must be done with a Define
Operator either in a Define Box or in the Data Description.

The internal structure of a Condition Box permits a great deal of
experimentation. It may, however, be desirable initially to limit the
variations in the interest of simplicity and clarity. It will certainly be
possible later on to add further sophistications to the Condition Box
Structure. The following comments and examples are intended to pro-
vide only a fundamental structure.

An evaluated Condition will be either satisfied or unsatisfied. If
a particula.r Condition Box statement is met or is '"Not Pertinent.' to a
Decilion Rule then the Condition Box is said to be satisfied. If the state-
ment is not met or if undefined values are related to defined values then
the Condition Box is said to be unsatisfied.

A Condition Box statement must always be totally satisfied or else
it is unsatisfied. A simple Condition is one which consists of a single
Condition Operator and the appropriate number of factors. Simple Con-
ditions can only be compounded within a Box by the proper use of connect=
ives between legitimate simple Conditions. Implied repetition of any
factor or operator is not permitted within a Box. True-false factors do
not receive special treatment within a Condition Box.

ibim

The entire issue of Connectives is quite up in the air. They are
not the same as true-false operators, nor do they exhibit the same pro-
perties. However the English language equivalents for the true-false
operators happen to be essentially the same as the primary Connectives
which we would like to use. One solution would be to restrict the true-false
operators to symbolic representation (e.g.A,V, etc.) and reserve the English
words for Connectives; an alternative would be to use special punctuation
symbols like comma, semi-colon, etc. to represent the Connectives and
keep the English words for true-false operators. This will obviously require
further work before any firm proposal can be made.

The various artifices suggested in B, Grad, July ll, Section C,
page 10 should be ignored in terms of Inside-Box Condition construction.
These problems will be discussed under General Table Considerations.
Reference is made in this context to D. Nelson, August 17.

Examples of valid Simple Conditions are:

X =Y

2 4+:2 = 4

PAY. CODE = 6

MARRIED (e.g. MARITAL. STATUS « 3) -

X$(Aad 4)

372

(Aandor X) = Y

((A/X) 4 3) = PAY. CODE

DATE - 123160

NAME not = ' GEORGE

(MONTH concatenate DAY) higher than 0228

"WHITE"is subset of SNOW

FILE. A is equivalent to FILE. C

(4) Actions:

Action Boxas serve to change values. There are apparently two
major types of special Action Operators: Assign and Communicate. Assign
is described in B, Grad, July 11, Section C, page 11. It is executable and
provides that a Nama will retain the assigned value until it is changed by
a new Assign. The sequence of Assign Boxes may be pertinent to the use
of the values. Assign also permits Actions of the form:

Assign J as J /1, where a Name is given a value as a function of
a previousely assigned value for that same Name. Assign provides for
quantitative, true-falee or string value manipulation as well as the establish-
ment of appropriate set values.

The question is raised as to whether there should be a special
Assign operator for modifying factors inside a Box. There are many pros
and cons to this igssue which should be explored in depth before making
even a tentative decision.

The second type of special Action Operator is Communicate. One
solution to this is described by Mal Smith, July 1960 where he suggests
the use of Receive and Transmit as the particular Operators in this class.

Action Names would be used to represent functions or tables. It
is probably desirable that we permit parameterization of Action Names.
This could also be interpreted so as to permit a function which generates
multiple values rather than just one value. However, opening this loophole
would automatically indicate resolution of the question as to whether a
single Action Box can be used to establish the value of more than one factor
Name.

The construction of Actions seems quite straightforward. The rules
for using Action Operators are such that we consider that a value will be
established for a Name by evaluating an expression, named function or
other factor. Basic questions have to do with whether to allow multiple
value assignment within an Action Box. This also leads to consideration of
what connectives to use to indicate independent versus non-independent
value assignments. For instance, we might specify that a series of Actions
separated by a semi-colon must be executed in the order specified while
those separated by periods may bz in any sequence. This entire issue of
independence and dependence will be discussed in the Between-Box portion
of this paper. However, under the category of Action Boxes we need to resolve
the question of permitting compound Actions.

Examples of valid Simple Actions are:

assign PAY. CODE as 336611

assign WEEK. PAY as HOURS * RATE

assign MARRIED as MARITAL. STATUS identical 1
assign LINE, A as SET. B

receive PAY, DATA from TIME. CARD

transmit CHECK. INFO to PAY, CHECK

(5) Definitions:

Definition Boxes serve to associate a Name with a value generating
factor. The basic Operator is DEFINE which is not executable per se. Rather
it imputes a substitution. Whenever a Defined Name is used in an Action
it will have the Definition substituted for it. This can also be viewed from
the standpoint that a Defined Name will be evaluated in terms of the under-
lying or ''root' values each time it is used. Suppose we have the following
Boxas:

define K as P £[77]
assign Ras K * R

The Define Statement would indicate that K is not to be evaluated except
when it is used; and when it is evaluated it is in terms of the then current
value of P, In a Define statement the same Name cannot appear in both the
"subject' and '"predicate', A definition is persistent throughout a system
description, but the value is not. In contrast, an Assignment results in a
particular value for a Name which can only be modified by another Assign-
ment. Definitions can be nested so that P might in turn be defined in terms
of Q, and so on. The point at which a definition appears is of no importance.
It is always treated as though it occurred at the very beginning. Definitions
should occur only in Unconditional Tables since otherwise there would be
the possibility of their being overlooked in a particular solution path. The
problem of compound define statements does not seem to arise except in
conjunction with multiple synonyms.

(6) Sequence Control:

The final area of Ingide - Box discussion is concerned with express~
ing sequence control, This may be concerned with column selection, Table
selection, etc. Reference is made to M.K. Hawes letter August 16, 1960
in which she speaks of Goto, Perform, Halt and Stop. In this class should
also be considered Prior Rule. A Sequence Control statement does not
change any values, but it is of critical significance to the effective description
of the logic of a system.

To support Sequence Control it is necessary to be able to name
certain control points in the transformation logic description. In Tabular
form this requires identifying a Table Name (numeric, mnemonic or descrip-
tive) or even a particular entry point in a Table, it also may require explicit
designation of individual Boxes (probably through a column~row numeric
code),

The simplest Sequence Control Operator is Goto, which states
unequivocally that logic control should next proceed to the designated named
location. It can be used as a short-hand way of indicating the repetition of
certain Conditions. This same effect can be produced by the use of a Prior
Rule designation. Implicitly, this subsumes (or repeats) all previous conditions
preceding that particular branch. This is a highly important convenience
because without it we would have to go to very large, highly qualified Tables;
with this sequence control ability we can break a complex logic into a
series of smaller problems. It is of course essential to the systems planner
that he keep careful track of all logical conditipns indicated by the chain of
Goto's or Prior Rules. This in itself can be a complex problem and may also
require the use of Tabular form to maintain logical understanding and control.

Two other Sequence Control Operators are quite simple; these are
Halt and Stop. In the first case we provide for a planned interruption for
manual intervention--maybe to add a new factor or make a non-formalized
decision. This would provide for operational control as in a Man-Machine
Simulation of a system. Stop concludes the process and indicates that the
transformation logic has been fully defined.

The fourth Sequence Control Operator is Perform. It is used to
represent the idea of '"Goto and Return'. There is 2 serious question as to
the need for this device in a systems planner's Traasformation Logic.
Basically it is a device for cascading levels of Tables. In other words, in
a Box we can indicate by a Periorm statement that a whole set of Conditions
and Actions are to be carried out. This then is a convenience device designed

-10-

to avoid complex elaboration of a particular path within a certain Table or
else a means for '"repeating'' a standard subroutine in many Tables.
These are the two major concepts -~ (1) an in - line part of the Transfor-
mation Logic which could have been connected by a Golo the indicated
sub-area and then a Goto back to the main - line and (2) a sub-routine
(parameterized or not) which could only be handled by the main ~ line Table
having preset a return instruction before using the Goto. There is, how~
ever, an alternative made available by the combined use of the Define

and Assign Operators. The Subroutine can be Named and appropriately
Defined. Then through a multiple Assign (with or without parameteriza-
tion) the subroutine can be executed with provision built-in for automatic
continuation of the main-line table, With this alternative there is a
reasonable likelihood that the Perform Operator will not be needed at all,

(7) Summary

Inside-Box Criteria require an understanding of the various types
of boxes which the following have been identified: Condition, Action,
Definition and Sequence Control. Each of these boxes may contain a suit-
able statement consisting of appropriate Operators and Factors as re-
quired for that type of box. Operators are a means of transforming Factors:
Sets and Elements. A Factor may consist of Literal, Name or Expression.
Careful consideration will have to be given to each of these identified
topics and adequate definitions of each specific item will be needed,

Subject (B) Within-Column Considerations:

Certainly one of the most potent reasons for using a tabular form
for recording transformation logic is the ability to relate one box to
another visually; it permits almost automatic implication of certain
"noise'' words that are required in normal sentence construction. Fur-
ther, the basic value of the table form comes from the ability to readily
associate conditions with actions and to compare alternative sets of
conditions or alternative courses of action. So while there are some
advances in the Inside-Box concepts mentioned under Section A, we begin
to see the basic advantages of table form as we examine Within-Column
possibilities.

Esgsentially, the table form permits ready visual aggregation of
conditions or actions and visual relationship between groups of conditions
and groups of actions. In every example seen to date the evaluation of a
group of conditions (in a single row or column) directly indicates whether
or not to carry out a group of actions (in that same row or column).

).

For convenience, we will talk about a decision rule being expressed in

a column rather than a row, though of course the two forms are equiva~-
lent. To organixe the further discuesion on this topic we will sub-divide
the subject as follows: (1) Among Condition Boxas; (2) Among Action
Boxes; (3) Between Conditions and Actions; (4) Among Conditions, Actions,
Definitions and Sequence Control.

(1) Among Condition Boxes

Each Condition Box can be individually evaluated and each will
be satisfied or not satisfied ae a result of this evaluation. We can
therefore relate each box to the whole and indicate whether the whole
group of conditions is satisfied. In the simplest case we speak of inde-
pendent, required Condition Boxes. Independent means that no condi-
tion is a2 function of another; more simply, evaluating one condition
has no effect on any other condition, Required refers to the fact that
satisfaction of all Conditions is necessary; this can be thought of as
"if C. and also C_ ani also C_", where all three Conditions must be
latic}ied to n.tiliy the whole.

We can make this more complex by permitting other logical
connectives between Conditions like "Andor", or "Or'. We could also
develop ""best 2 out of 3" or '"at least 3 satisfied' rules. In the simplest
case (if, ..and also...) the conditions can be examined in any order
without influencing whether the group of conditions will be satisfied. In
more complex cases this is no longer true and the exact sequence of
testing could affect the decision. Although it is logically and technically
possible to handle these more complex cases it is recommended that
initial consideration be given solely to independent, required Conditions
and that only after this is clarified should we be concerned with more
advanced approaches. There is a sound reason for this recommendatioa:
The basic power of table form rests on visual relationships; Complex
patterns are not visually easy to follow or conceive and hence may
well destroy the original reason for going to tabular form. Because of
the common need to handle "exclusive or'' it should be noted that its
incorporation in the Inside-Box concept would provide for the necessary
flexibility; e.g., (Inside a Condition Box) MARITAL STATUS is MARRIED
or MARITAL STATUS is HEAD.OF. FAMILY. It may even be desirable
to offer a short-hand notation for this one special case if it occurs
frequently enough; e.g., MARITAL. STATUS is MARRIED or is HEAD OR
FAMILY,

)

(2) Among Action Boxes

Implicit in handling a group of actions is the cennective "and
then'. There muet often be a stated sequence of action performance since
it is likely that a particular action may affect the value of a factor which
is used in a subsequent action. The simplest case is achieved when
written sequence (top td bottom) is maintained. Given any series
of actions it is clear that they can be written in proper sequence from
top to bottom. Questions about explicit sequence indication arise
because of attempts at redundancy elimination or for row association.
These will be discussed under Genaeral Table Considerations.

The problems which arise among actions are concerned not with
indication of implicit sequence, but rather with those actions which need
not be done in order, but are automatically sequenced in a column
approach. This same objection is valid for flow charts, narrative
languages and machine-oriented languages. The question can be stated:
how can we use sequential language and still indicate that two or more
items need not follow each other. No soiution is suggested here though
certain possibilities are explored briefly. We could have a rule that
between action boxes there was no sequential relation except as indicated
by common use of a certain factor, in which case written sequence would
hold. We would have to explore whether action to action (necessary) sequence
can always be logically determined; i.e., the need for sequence, no what
the proper sequence is. We should also investigate the usefulness of
explicit sequence indication. Another approach is to provide a precedence
matrix or precedence chart as shown by Barankin's work on Precedence
Matrices and Salveson's paper on Assembly Line Balancing. A third
approach might be to use some special line weight or symbol to indicate
that the preceding actions must be performed prior to carrying out tho
following action(s).

It is recommended at this time that we only deal with tables with
the following property: all actions in a column are to be performed if
any actions in that column are to be performed.

One other interesting idea is the possibility of compacting actions
by allowing within an action box a complete loop statement like assign
Xas X /IforIfroml tol0 byl. This would allow a summarization to be
explicitly indicated within a single box and would avoid certain types of
Goto and condition testing.

-13-

(3) Between Conditions and Actions

In virtually all illustrative tables the connection between condi-
tions and actions has been simply, "if...then.,..'", If the stated condi-
tions are satisfled, then execute then actions specified. This may well
be the standard and most significant need for tables, but at least one
other logical poseibility should be explored: "if,..then do not do...".
This would provide for editing and error correction since as long as
various conditions are satiafied, no special action need be taken.

One recommendation is that present studies concentrate on tables
where satisfying the various conditions in column will always result
in that column's actions being carried out. We should also try to work
with "cause and effect' relationships or with functional relationships.
Reliance upon incidental or happenstance relations is highly suspect
in that it may make table acceptance and maintenance unnecessarily
difficult.

Ams far as deciding whether to execute a group of actions, the
Among-Conditions control determines if the Condition-column is

satisfied. The knowledge of whether a Condition-column is satisfied
determines whether the corresponding action~column is to be executed.

An interesting development of Condition-Action relations can
be observed through the following formula.

let N = Total number of conditions in a particular column

and S - number of satisfied conditions in that column after
evaluation,

then there seems to be 5 possible situations
(1) ifS - N then...

(2) if S2 1 then...

(3) f N - S> 1 then...

(4) if N - S - r then...

(5) if pL(N - S)I< r then...forpf,ér

Y

These can be raformulated as follows:
General Caase:
f pLIN - 8)Cr for pg r2 0

() p

0SSN - §g0

r = 0

(2)p 0 ; r 2 N -1
OSSN - SE€N -1

3))p =1; r =N
1€N - SEN

(4)p = r> i
r<N - SKr

(5) patr ; OKPEN ; lgr KN

PLN - S

What this reformulation means ie that for each table (or even for each
column in a table) we could specify a '"p'" and an "r'" and this would
fully describe the logic for carrying out the actions in that column,

(4) Among Conditions, Actions, Definitions and Sequence Control.

The first point we might recognize is the usefulness of an ''un-
conditional'" column. This says that the actions, definitions, etc. in that
column are to be carried out always. This can be done in a one column
Table (the ''degenerate'' form) or by its use as the '"last" column in
a table (an "all others'' column) or in a table with multiple sets of
actions permitted it could be any column (a "must'" column).

=15

In general Goto should occur after all other actions have been
specified, hence it may be desirable to require Goto operations in the
last row of a Table, Prior Rule operations should occur as the first row
in a Table. The gquestion of sequence control will be discussed more
fully under Subject (C) General Ta ble Considerations. We only want to
note that a column will need to be able to distinguish at least these
basic relationships: must come directly from; must come from one of
these; must previously have been considered (and of course the go to

complements).

Burton Grad
December 29, 1960

A MODEL OF AN
ELEMENTARY INDUSTRIAL

PROCESSING SYSTEM

Burton .Grad
Programming Systems

International Business Machines
March 1, 1960

Prepared for presentation at the AIIE 1960 National Conference,

Dallas, Texas, May 12, 1960.

A Model of an Elementary Industrial Processing System

by BURTON GRAD
Programming Systems, IBM
March 1, 1960

The design of an industrial information processing system involves
an ability to understand the structure of the physical system being
controlled. This type of understanding is essential if reasonable and
effective control rules are to be determined and applied. To this end
it seems pertinent to be able to model or simulate the behavior of a
particular proposed information processing system to see if it will
perform in the way that you wish. However, to simulate the performance
of an information processing system implies a terminology and format
for expressing the control rules and describing the physical system being
controlled.

This paper will present a proposed terminology and format for
such a representation and will illustrate the use of these ideas in the
context of a simple example. As a clear corollary it would seem logical
that a generalized simulation language structured in this way might prove
highly beneficial to those charged with the information systems design.

Suppose we try to describe a simple manufacturing business which
has but one operation, one product model, a single source of supply
and just one customer. A flow chart of the physical flow in such a business
might appear as follows in Fig. 1.

Fig. 1
I |
|SUPP- A OPER- r SHIP HCUSTH

'LIER ATION OMERI
L |

The flow of material is from left to right. There are six Stations in the
system with each of the different types of stations being represented by
a different symbol:

e

: — represents a material source
| external to the controlled system.

represents an inventory of a
product model or a material.

represents a processing station
— i which in some way transforms
material.

represents a customer who is
essentially a product "sink'
and is external to the controlled
system.

|
S——

The status of the system, from a purely physical standpoint, can be described
at any point in time by defining the number of product or material units at
each station within the controlled system. To aid in expressing this we

have numbered the stations as shown on the next page in Fig. 2, and
identified the "'product' which, of course, changes identity after the

"make' operation.

Fig. 2

| B 3

.SUPP~| _{(NVENT ‘ MAKE | /(NVEN‘- | spl __[cusT-l

|LIER | TORY / TORY / OMER |
ol \ '

f A e A— 3]

We can speak of the Raw Inventory at the Inventory Stations and the
Ilé progess Inventory at the Processing Stations. Hence, the values I%.
IAI' IA]) 131 are required to define the current status of the physical

system.

I’;‘n means the Inventory at Station s of product model m. To introduce
the time concept I3, is always defined at a particular point in time, repre-
sented by t. Hence I8,,twould be the general format for describing the

physical status of the business at the beginning of time interval t.

The first step beyond this static representation is to introduce the
factors which will transform the system from its state at t= 1 to its
state at t = 2, Essentially, we need a record of all movement between
stations during time interval 1.

t =1

2 3
time interval = ,‘ 4 | ’L g >,<“'"-*3

This can be done by defining a set of shipments to represent this movement.
Using H to stand for shipments (S is used later for another factor). Hi 1
means the shipment from Station 2 of product A during time interval 1.

Hence H}«_\' 1 H%“ 1 Hil, 1 H%\l, 1 Hgl, y are needed to completely

itermize all physical events which take place during time interval 1. The

general form is Hrn £

On this basis we can define

2) 2 i 2
1A 9 Ta,r F Hy, 1 Ha 1

To generalize this relationship we need to introduce the succeed-precede
concept.

Station 1 is said to precede Station 2 if its output passes to that station
either directly or indirectly. In our simple business, Station 1 precedes
Station 2 and Station 3. Succeed is the opposite of precede. In other words
Station 3 succeeds Station 2 and Station 1. These relationships are summar-
ized in Fig. 3.

Fig. 3 F—— . S -
Station no. 1 2 3 4 5 6
1 |l 0 -1 -2 -3 -4 -5
Precede (-) 2 +1 0 -1 -2 -3 -4
Succeed (+) 3 +2 +1 0 -1 -2 -3
Relationships 4 +3 +2 +1 0o -1 -2
5 1 +4 +3 +2 +1 0 -1
; 6 : +5 +4 +3 +2 +1 0

The number in the intersection indicates the relationship between the two
stations. For example the first row indicates that Station 1 precedes
Station 2 by 1 stage.

Hs:"1 would be interpreted to mean the shipments of model m during
time interval t from a station 1 stage before (preceding) Station s.

The Inventory equation would then have the following form:

8 8 8:=1 _ 8
Tt ™ Tt ¥ Bt ™ Byt

This is satisfactory except for the case of transforming a material into
a product model which still needs to be explained. This can be shown by a
"Gozinto''Table like Fig. 4.

Fig. 4
Gozinto Table
. Station 1 2 3 4 5 6
"Gozinto" Material - (g) Al A A Al| Al | Al
IR S NC CP N REpER | ﬂf_..,.-A.,._ib AT geee e e B -
Output Product - (m) A ! Al | Al1| Al | Al
s N Sp—— i

In the Gozinto Table, m is identified as the "output" model at the station
under consideration. The Gozinto material (g) may be the same model
or it may be a different input material. For example, at station 3 the
model identity is Al but the "Gozinto" material identity is A. Therefore
the general equation should be:

s 8 s:1 - 8

Liteg " ot * Bog, t B, t
Where m:g means the ""Gozinto'" material g for model m at succeeding station
s. To illustrate

3) 3 2) 3
Ta1,2 = T Hat1

This fully defines a manner for computing the physical state of a system
given the initial state (Ifn ,) and the shipments between stations during the
time interval (Hg1 ¢). ’

These values, however, have certain built-in constraints. For example
the amount shipped from a station can obviously not exceed the inventory at
that station at the beginning of the time interval, assuming that any receipts
during the period would not be in time to be operated on. We might express
the first part of this constraint by stating that:

£ o

s
Hm, t ~ m, t

This establishes the limitation of initial inventory available but it does not
give recognition to the possibility of immediate access to more input
material. This can be done by defining the cycle time required to provide
a shipment from a station.

C® = Cycle time at Station s for model m.
m

If s is an inventory station then C?n can be O, so that the next Station
(s:+1) may receive additional input material in time to be of direct use
during that period. This implies a negligible information cycle time
which is the time it takes to communicate a material requirement to
the preceding station (s:-1). So we might repeat the constraint in this
way:

s < 8 8:-1
Hrn,t b Im,t ¥ Im:g,t

So far we have just described the operation of a physical system with
no thought of product demands, decision rules or even an explicit
recognition of the role of information processing. Let's modify the
original flow chart to bring into play certain of these features as in Fig.
S5:

Fig. 5

Physical flow

Information flow

1 2 3 4 5 6
[SCHEDULE k{ ORDER _f-| SCHEDULE -{ORDER _ |--{SCHEDULEK—-ORDER |

e — I et B

This "phantom'" information system has certain obvious properties. The in-
formation flow is essentially the reverse of the physical product flow. There
is a one to one mapping of stations on decision elements. There are only two
types of decision elements; Order and Schedule. A Processing Station and a
Source become Schedule decision elements; the other two become Order
elements. For the sake of clarity, we will use the same station code numbers
to identify the decision elements as were used for the physical stations them-
selves. The meaning will be obvious from the context.

The first decision element is that of Order. This function is concerned
with determining the quantity desired from the preceding station. Without
getting involved in the structure of a particular rule, we can see that R?n: g t
(the order quantity from station s for the gozinto material g for model m
ordered during time interval t) will depend on present inventory status,
current orders and unfilled requests from the succeeding stations, forecast
of future requirements, preceding station cycle time, etc. Each station has
the opportunity of placing an order on any directly preceding station (s:~1)
during the preparatory phase of a time interval.

To examine the meaning of the second decision element, Schedule, it
will be helpful to review the sequence of events in the system.

At the very beginning of a time interval (t) we know the inventory status
of each station is (I®). Then an order is received by Station 5 from
Station 6 (RS, .). Station 5 reviews its own inventory and that of Station
4 to determine’the maximum quantity of the requested model which it can
process, For simplicity, let's assume that the cycle for shipping is just
one time interval so C9. = 1. We can also assume that there is a trivially
simple scheduling rule:

5 { 6 4 . }
ORI C S T IR TR T L
where 82 represents the scheduled quantity at Station 5 for period t and

min starﬂﬂ&f }or minimum of.

This rule implies no consideration of unfilled orders about which more
later. For now we can imagine the customer reordering any unfilled re-
quirements at the beginning of the next time interval (t+1). We can also
simplify the equations by precluding a Processing Station from having inven-

tory not assigned to specific orders. On this basis 12 1.t.™ O; there is no
available inventory. For instance, under this restricﬁoh there would not

even be any actual inventory remaining at the beginning of the next period unless

c® o» 1
m

With this approach the general scheduling equation could be reduced to:

S8 = min RB:+1 IS:"].
m, t m,t) m:g,t

We can also assume that:

a = g° for Czs'n =],

Hm,t m,t

This simply means that shipments at the end of a period will always
equal the quantity scheduled at the beginning of a period if the cycle time
is one time interval. We have a deterministic, perfectly performing
facility.

So Station 5 decides to make 85 ¢ based on orders received and the
prior station's inventory status. %tl,' of course, needs immediate delivery
of the gozinto material if it is to make shipment by the end of the time
interval. The quantity needed at Station 5 (R?Al t) is ordered from the

preceding inventory Station 4.

Station 4 supplies the material right away (H% 1 t) and then makes its
own ordering decision. Here again let's envisiol}l a trivially simple

ordering rule:
8:+1

R rsn, ‘ = Hrsn,t where for the case of C?n = (0 and Cm =1

s w wBitl
I-Im: gt m, t

In later papers we will try to eliminate these highly restrictive assumptions,
but for the sake of explanation and understanding, I believe these simple
rules are most desirable.

4
Station 4 will transmit itg order (R Al t) to Station 3 which will schedule

the required quantity. If Cpy = 2 thjg would mean that Station 4 would

not receive delivery until the end of the t + 1st period. In other words, we'll
have to make sure that Station 4 has a properly determined safety stock to
be able to cover its expected needs at the beginning of period t + 1.

But Station 3 may not even be able to supply the entire order for Station 4
since it is itself restricted by the inventory at Station 2. Conversely it may
have some material half-way through the process that it started during
period t-1. We have made the statement that no quantities are scheduled
on order speculation so we can assume that any Sil’ t-1 Would have been

in response to an Ril t-1

If we define S° to mean the quantity to be started at the beginning

o
of interval t then we can say (assuming perfect performance):

8

Hm, t+ec-1

= SE;n, " where ¢ = Cfn

The quantity shipped at the end of the time interval t + ¢ - 1 will equal the
quantity started at the beginning of t. If ¢ = 1 then this degenerates into:

8 = g° as for Station 5

Hm,t m, t

3 3 3

We can then say that:

3 53 " 4 2
= m 1
Bact T Cage T TR {RAl,t, A,t}

This order request (R_i ¢) is immediately transmitted to the preceding
inventory Station 2 which responds by delivering the required material:

2 3
Hp ¢ = Ry

This brings out a key aspect of the definition. An inventory station does no
processing and therefore requires no time. Where there is a function to be
performed it is necessary to distinguish between the inventory station and

a processing station.

9 Next,Station 2 goes through its ordering procedure: we could think of
RA, i = HA. + Wwith appropriate provision having been made for safety stock
to cushion the demand variance over the lead time interval.

Let's now introduce the idea of an information lag. Suppose the order
from Station 2 takes 1 time interval to arrive at Station 1 and suppose
Station 1 will take 2 time periods to process the material and 1 time period
to transport it to Station 2. If we simply add these factors together (1+2+1)
we obtain a lead time of 4 time periods.

We need to represent separately the ideas of information cycle, proces-
sing cycle, transportation cycle and lead time since each is used in a some-
what special way in describing an operating system. This can be done by

10

adding a second subscript to the C%, term making it:

Crn,i = Information Cycle

Cr?:, p = Processing Cycle

CS

m, r ® Transportation Cycle

Cop q = Lead Time

In the example described,

1
1
Ca,i ”

. 1 ; 2 1
This enables us to think of S, ,,, being in response to R , and HA, t4+2

resulting from Sk t+1

Because of the transportation cycle, we should now differentiate between
a shipment and a receipt so it is useful to define a receipt as an Arrival
A?n:g, t- In this case Aﬂ' t+3 Sshould reflect HA} t+2- The generalized for-

mulas would now appear for the deterministic case as:

S?’n:g, t+e(i) = fm%té,t)

where c(i) = C?n:g, i
H?n, t+e(p)-1 ~ Sx%, t
where c(p) = C?-n, p
s:+1
Am:g, the(r) = H?n:g, t

where c(r) = CR.g »

AS = f (R

8
m: g, t+c(d)-1 m:g, t ;

= (8
where c(d) Cm:g, d

c(d) =c(i) + c(p) + c(r)

Station 1 may have its own problems in terms of raw materials inven-
tory, scheduling capacity, and so on, but we will treat the supplier, for now,
as though it were an infinite, deterministic source so that:

1 2

S = R i ;
A, t+1 At (to take into account the information lag)

and

2 . g3
AA. t+3 At

Diagrammatically the preparation period would appear as shown in
Fig. 6.

Fig. 6 Station |
6 Rs |
5 ! g5 R5 29 !
4 ' a? R% !
3 : 's3 g3 A%,
2 S g2)
o it]
1 sl
e TIME INTERVAL 1

11

Where S! refers to scheduling the order placed by Station 2 during the prev-
ious time interval.

At the other end of the time interval, the termination period, there is no
meaningful sequence of shipments and arrivals, but there is an order of
calculation. Each non-inventory station ships the quantity it had scheduled
to complete by the end of that time interval. Each station next computes its
arrivals based on shipments and transportation cycle. Then each inventory
station calculates the inventory status which it will have at the beginning of
the next time interval. The three portions of a time interval are shown in
Fig. 7.

12

preparation execution . termination

S — T 1 T

Time interval t

During the execution period each station carries out its assigned task,

One information concept still needed is the unfilled order logic., Let
U?n} ¢ stand for the unfilled orders at station s for model m at the beginning

of time interval t. So,

Uo - U?d - HS + RE6
Al, 2 Al, 1l Al, 1l Al, 1l

In effect, the unfilled orders are an "inventory' of open orders to which the
"receipts' are the orders from the succeeding station and the "withdrawals"
are the shipments to that station. We can consider the unfilled orders being
calculated during the termination period of a time interval after the ship-
ments have been made and arrivals computed.

To illustrate further, since we have considered that each processing

station transmits an order R?n-g ™ Sr?’: ” and each inventory station makes

immediate shipment, an inventory station could calculate its unfilled orders
during the preparation period of the time interval. This can be quite signi-
cant in that an inventory station's ordering rules can, in this way, be made
a direct function of unfilled orders.

The concept of unfilled orders brings in another factor: the ordering
station's acceptance of a delivery delay. For this discussion we will simpli-
fy by assuming full willingness to accept any delivery delay for the order
placed, though such delays may have their influence upon future orders.

Unfilled orders are calculated as viewed by the supplying station. The
converse would be for the ordering station to keep track of its unfilled requests.

AS

8 8
Y, * & m:g,t

¥ m:g, t m:g,t

s
m:g, t+1

which is directly analogous to the unfilled orders approach. Unfilled requests
must be calculated after determining shipments and arrivals. As a rule,
inventory will be used to satisfy unfilled requests first,at the beginning of

the next time interval; any remaining inventory will then be applied to new
orders received.

13

The unfilled order equation can be generalized further if we withdraw
the implied assumption that the information cycle time is zero. This re-
quires defining another factor, orders received.

' : are the orders received at station s for product m during the
m,
preparation period of time interval t.

S it sitl
m, t+e (i) m, t

where c (i) again means C; ;+ We can now restate the unfilled order formula:

P 8
Unt#1 ® UR,t * Oft Hm t

We can also consider the unfilled orders which have not yet been scheduled.
This would be:
a=st-c(p)+1
e .o Bge
m,t <-"m,a
a=t

Summary

To review the development in this paper, a set of terms has been
established which describes the changes that occur during a time interval
from both a physical and an information viewpoint. These systems change
factors include:

H,f,, " = Shipments from Station s

AI‘;’ t = Arrivals at Station s

le]’ t = Orders placed by Station s

S %, t = Amount Scheduled at Station s
Of’n’ t = Orders Received by Station s

H:%,t- A,Sn’ t and (')'rsn, { result from the operation of the system and, though
influenced hy the various decisions, are not themselves decision elements.
The other two are decision elements except st'n, t for s:+1 non-existent

(e. . a customer station).

14

Secondly, there are certain systems 'constants'’:
Gh, i = Information Cycle Time
CI%l p B Processing Cycle Time
C&%, r = Transportation Cycle Time
Third, there are terms which enable us to express both the physical

and information status of a system at the beginning of a time interval. These
systems status variables are:

- = Inventory at Station s
UR, t = Unfilled Orders (received by Station s)
Vf%, 1 = Open Requests (placed by Station 8)

There are also 3 key relationship concepts which have been expressed:
(1) Precedence
(2) Gozinto

(3) Time interval breakdown into preparation, execution,
termination

A variety of techniques are being developed to overcome the simplifi-
cations in this model. They will be discussed in later papers. Included will
be consideration of:

(1) Assembly structure including multiple supply and
multiple destination stations.

(2) Alternate routing
(3) Non-stock inventory stations
(4) Quality variance including spoilage

(5) Non-infinite sources, multiple suppliers for the same
product.

(6)
(7)
(8)
(9)

(10)
(11)
(12)
(13)
(14)

(15)

Variable cycle and lead time
Order aggregration
Multiple period scheduling intervals

Various scheduling rules including consideration
of capacity limitations, employment stability

Various ordering rules

Safety stock considerations

Variable processing times including setups
Transportation stations

Effect of various dispatching rules

Stochastic production and supply rates

This paper just illustrates the initial work in an area which
requires extensive further research and development.

15

Tables Signal Better Communication Side 1 of 4
Talk Given by Burton Grad, Manager |IBM Systems Engineering Development

The pilot is preparing to land his single engine plane at the airport; it is late at night and his fuel supply is low. He calls to the radio tower and asks
for landing instructions. All he hears in return is a babble in a foreign language which he can't understand.,

The executive has spent the last hour of his day dictating an important speech; the next morning he comes in and wants to review the material, His
secretary is out ill. The other girls in the office all read Gregg, not Pitman.

A design engineer has carefully prepared a number of complex Boolean equations to explain the operation of a new computer circuit. He shows these
to the manufacturing engineer to give an indication of what needs to be constructed, The manufacturing engineer says, "I don't understand Boolean
algebra "
We could go on and on ciling examples like these of events and occurences where lack of a common language for communication causes difficulties
ranging all the way from the most trivial to the deadly, Systems Engineering faces communication barriers as serious as those of any profession. The
systems engineer today does not have a language to communicate with management; he does not have a language to communicate with computer pro=
ammers; he does not have a language to communicate with functional specialists; he does not even have a language to communicate with other sys~
tems engineers,
Programmers who have leamed one computer at the machine language level can't understand the programming of another machine at the machine lan-
guage level without spending the time necessary to learn the second machine's special codes and instructions, For this reason (among others) there
has been intensive effort to develop common languages like FORTRAN, Commercial Translator and COBOL which will be applicable to a number of
machines, But the communication between programmer and machine is merely a small part of the total problem,
For Systems Engineering it is vital to develop tools and techniques to permit a manager to state his decision criteria and decision rules. We must
find a common language so systems engineers can communicate with praduct engineers, accountants, and manufacturing planners, to find out their
decision rules and decision logic; that is critical to determine the characteristics of the system that is going Lo be modelled or controlled, A method
must be found for two-way communication with computer programmers to be sure that the intended decision rules are in fact being executed., A tech-
nigue is needed to aid the systems engineer in establishing complete decision rules and in predetermining that these rules will accomplish the in=
tended goals, g
In the past, this problem has not been as severe, Because of the limited size of business systems problems, we could depend on the programmer to
understand the particular problems well enough to be sure the logic was correct and to check the problem out thoroughly, However, as the systems
we are trying to solve become larger and more complex, this expedient is no longer satisfactory, Systems engineers must take on the responsibility
for designing the decision logic and for insuring that it is being executed properly. To do this systems engineers must have a professional language
which will serve for effective intercommunication,

What has caused the communication void? What has caused this communication moal surrounding the systems engineer? There are at least three
major factors involved:

1~ The inability to clearly and concisely express decision logic and decision rules for describing business systems.,
2= The inability to show cause-effect relationship between conditions and actions.
3~ The inability Lo guarantee or even aid in achieving logical completeness in establishing decision rules.

Taday, we have available a number of techniques which have been applied to solving the communication problem: we've tried to use narrative, flow
charts and even logical equations. Bul none of these has filled the bill, Each has major drawbacks; the failure of these known techniques has led
to consideration of another alternative: decision tables.

Decision Tables

Decision tables are a formal method for describing decision logic in a two-dimensional display. The layout.clearly shows the cause and effect rela-
tionship between conditions and actions; il explicjtly relates decision alternatives .,

Decision tables use a format which is familiar to us from analytical, financial, and statistical tables. Since the days of the Babylonians, people have
used tables as a means of organizing information where the relationships were complex or the amount of data great. These data tables appear to be
superior to many other forms of information organization because:

1« They provide clarity and conciseness through data classification.
2- They clearly show relationship of dependent to independent variables.
3= They explicitly indicate omissions.

Decision tables use tabular format lo represent dynamic situations. Where we have used flow charts, narrative, or logical equations to describe
decision logic, or an operating procedure, we now find it possible to use decision tables for these same jobs. The argument in favor of tables is
their relative convenience and effectiveness, not that they can describe systems that cannot also be described in other ways,

Tabular form has been used by programmers since the earliest days of computers. The most common use of tables has been to relate some function to
an argument. Given the value of one factor, the table provides the value of another dependent factor, For example, a table might relate capitals to
states (Figure 1). Given the state name, determine the name of the capital

Alasts l Q wyoming| |0 this example State appears above the double line and Capital below; each different state name
= is in a column and physically below it, the name of the corresponding capital. |f the State is Ala-
\H "™ bama, then the Capital is Montgomery; if the State is Alaska, then the Capital is Juneau,

OTATE I Aatams

CAPITAL I Montgomery

Junean I

An extension of this concept is seen in Figure 2 in the use of a matrix to display the value of a particular factor as a function of multiple variables ,

LT

JEXCELLENT aoap FAIU POOR
:g: L3 152 1.00 013
‘ Insurance premium rates are shown as a function of health and age. In the example, if health is
In L8 w2 | ne 348 excellent and age is belween 25 and 35, then the rate is $1.27, However, if health is poor and
2 7 o | fa e age between 55 and 65, then the rate is $8.73. Unfortunately, the visual effectiveness of a

matrix is reduced when the number of independent variables exceeds two or the number of dependent

i | aw s | am | am variables is greater than one,
£l 521 L1 .41 10,97

Because of the natural benefits from using tables, it seems that there should be some way to generalize tabular form so that any number of independent
and dependent variables might be shown with clear visual correspondence. Figure 3 (on the next page) shows a table with four independent and three

(Tables Signal Better Communication) Side 20l 4

dependent factors where clarity, interrelationship and comprehensiveness have been maintained.

Iealin Excollvil Excwlluni ‘I Poor
Age &, MW o, 3 ié (]

S of £t Kl west In this example, the decision table indicates insurance premium rate, policy limit, and type of

— —- policy as a function of health, age, section of country, and sex. If the applicant is in excellent

¥ Bax Male i "';IMIH Fumals

health, between 25 and 35 years of age, from the East, and is a male, his rate is $1,27, the
vt Wats | 151 (O 0.02 insurance limit is $200,000, and he may be issued policy type A, B, or C. All of the alterna-
M_’“_‘“"” o I L tives are clearly set forth, one by one, across the table.
Type of Pollcy (| A, D, 06 C | A B, orC 13

To obtain a better understanding of a decision table, let's look at its fundamental elements as shown in Figure 4.

Dectaton fels The double lines serve as demarcation: CONDITIONS are shown above the horizontal double lines,
mﬁ'—j'—'mmﬁ' ACTIONS below., The STUB is to the left of the vertical double line, ENTRIES to the right, A
o condition states a relationship. An action states a command.
Condition of
i -1 If all the conditions in a column are satisfied then the actions in that column are executed, Each
such vertical combination of conditions and actions is called a RULE, In the same column with
Actiun Acilon

St ey the entries for each rule, there may be specialized data relating to that rule; this is called the RULE
HEADER. Similarly, each table may have certain specialized information which is called the
TABLE HEADER,

Consider another sample table which contains all the same elements, but has some different properties. This table is Figure 5.

TABLECREOIT | feist | Mie2 | Rusd | Raled The first rule would be read: If credit limit is OK, then approve order. The second rule would be
read: If credit limit is not OK and pay experience is favorable, then approve order, In this LIM-

T ¥ [" " ITED ENTRY table, the entire condition or action must be written in the stub, The condition entry
Pay exparience is limited to indicating whether the corresponding condition should be asserted, negated or ignored;

18 lavorable & § H N = L ¥

=i the action entry indicates if the action stub should be executed or ignored.

o 5 E = This is in contrast, as you may note, to the table shown in Figure 3, which is called an EXTENDED
Approve ovdnr % % % ENTRY table. In this case the individual condition or action information extends from the stub into
o erdr X the corresponding entries. In any given table, we can, of course, mix extended and limited entry

form, whichever is more convenient for a particular condition or action,

The Use af Decision Tables

To this point sample decision tables and their elements have been discussed to describe concept and structure. Now the application and use of deci-
sion tables will be presented, A number of experiments conducted over the past four years have used decision tables on a variety of problems; these
will be reviewed briefly.

While | was project leader for General Electric's Integrated Systems Project, the potential application of tables lo a wide variety of problems was
explored including its use for product design, operation planning, cost determination, factory scheduling, etc. The results certainly revealed the
opportunity of using decision tables as a major new tool to clarify communication among different technical specialists as well as between Lhese 5pc-
cialists and computer programmers, It was stimulating to watch a manufacturing engineer suddenly grasp product design decision logic and theo point
out where restraints had been introduced by the product engineer that were of little value to anybody, Through this kind of examination, sigi ! cant
improvements might be made in the total product.

At Sutherland Company, a consulting firm in Peoria, lllinois, management decision rules have been studied with various customers and expressed in
tabular form. These decision tables have been applied to Air Force logistics and various commercial situations such as accounts receivable, accounts
payable, etc. From all reports, this work has permitted a more effective and comprehensive statement of the current decision logic and provided more
meaningful and understandable communication between systems men and programmers ,

An area of experimentation already familiar to many of you is the work done at Hunt Foods and Industries by Mr, 0, Y. Evans, who is now with [BM.,
Mr. Evan's work was directed toward communication among different systems men, and from systems men to programmers , concerning the complex
decision rules involved in stock control, sales analysis, etc. The results demonstrate that this approach was aneffective formal way Lo state very
complex logic without requiring knowledge of Boolean algebra or any other precise mathematical technique.,

IBM has been working with several of its customers investigating potential applications of decision tables to a wide variety of problems. From these
experiments, it seems clear that decision tables are frequently easier to prepare than comparable programming methods, and that they are an effective
ald to systems analysis, In these experiments, communication betwesn systems engineer and programmer has been substantially improved; commun -
cation between systems engineer and management has also benefitted from Lhe common descriplion of decision rules,

To convey how tables can be developed, let's follow the process through the significant problem of file maintenance . The block diagram in Figure
6 indicates the essential elements of the problem solution,

Naw

leted records have been eliminated,

Dall e A delail file and a master file are the two inpuls. The updated master file and an error file are the
— principal outpuls. Within the computer, three basic areas are assigned: masler, detail, and new
master, The purpose of the update logic is to modify the incoming master file by the detail infor-

: p mation to produce an updated master file containing any additions and changes and from which de-
Figure 7 (on the following page) is one of two tables prepared to perform this job.

Rule 1 states the starting condition, AL the start, one master record and one detail record are read into the corresponding memory areas, At this
point, sequence control returns to the beginning of the table,

Rule 2 and all the following ones are now pertinent. Rule 2 specifically handles the end of job conditions, i.e., end of detail and end of master.
In this case, control is transferred to End, a closing routine Lo provide for sentinels, tape marks, etc.

(Tables Signal Better Communications) Side 3 of 4

Rﬁle 3 describes the situation when the end of detail has been reached, but not the end
of master, Since there can be no further changes, additions, or deletions to the original
master, the actions are to write the updated master from the master area, read another

At Vo hane | ot @ | o Fol oa | ag 1 ot @ master, and then return to the beginning of the Lable,

In Rule 4, the end of master has been found, but not the end of detail; the remaining de~-
ar B E LW EN PN] B tails should only be additions. Therefore, the information in the detail area is moved to
o or gasall LI (S) L I 1, U the new master area, the addition switch is sel on, a new detail record is read, and con-
ek dlemud L2 L0 [R B R trol transferred to the Change Table.

:ﬁ_w_. I 3] M:"M . Rules 5, 6, and 7 are concerned with cases where neither the detail nor the master file
| || has ended. The identification number in the detail area is compared to the identification
! number in the master area. Rule 5 considers the evenl when the detail is less than the
Do Error Rowting | | x master; in this case the detail should be an addition in order to follow the same logic of
Move Mastar o New Masla | P i) Rule 4. In Rule 6 the detail is greater than the master; consequently the same logic as
Move Detall 1o New Mastar [¥ =] 1 Rule 3 applies. Rule 7 covers the case where master and detail are equal, The Infor-
(B Addition Bwitch i oo | o i mation in the master area is moved to the new master area, and control is transferred to
Write Master T O N,) the Change Table.
:3 - e ~ The final rule, Rule 8, is the ELSE Situation, When this occurs something has gone
e v :"-." ,.,__i.,‘_ = wrong, since all legitimate possibilities have already been examined. An error routine

is carried out; then another detail record is read, Rule 8 will take care of cases in-
volving sequence errors in the master file and certain types of sequence errors in the
detail file (if the out=of=sequence detail is not an addition). It will also take care of any
non-matching detail which is not an addition,

The table can be rearranged to aid programming efficiency: columns with higher frequency of success should be moved to the left and those with lower
frequency Lo the right, Rules 1 and 2 would be way over to the right since they occur only once in each program. Depending upon the particular data,
Rule & (the column where the detail is greater than the master) will probably be the most frequent case and should be the first ane considered, One
recommended order is: 6,7,5,3,4,1, 2,8,

Another concept for improving program efficiency Is Lo rearrange the conditions to present the most discriminating condition al the top and the least
discriminating at the bottom. For example, the start condition, which is shown first, probably should be last since this only distinguishes one case
out of all the thousands that will occur. A similar statement can be made about end of detail and end of master, It seems evident that the comparison
of detail to master would be the most discriminating criteria and Lherefore placed first in the table.

The Case for Tabular Form

Look once more at Figure 7 and compare its statement of the update decision logic with that in the following narrative. Which is clearer and more
concise, which shows cause-effect relationships better, which aids more in determining logical compleleness.

Mr. T. F, Kavanagh speaking at Lhe 1960 Eastern Joint Computer Conference had this to say: "the decision, .. table is a fundamental language
concept. .. broadly applicable to many classes of information processing and decision making problems. .. tables force a step-by-step analysis of
the decision. .. are easily understood by humans regardless of their functional background (they are) simple and straightforward (enough) that. , .
specialists can write tables. .. with very little training. .. tables are easy to maintain (and) errors are reported at the source language level "

Mr, 0, Y. Evans stales of his work on tabular Lechniques: "The tabular approach. ., aids... in visualizing the numerous relationships and alterna-
tives. ., (and) permits data rulas to be readily reviewed for omissions and inconsistencies... (in addition it) provides flexibility in changing any por=
tion of the analysis."

The CODASYL Systems Group, part of The Development Committee of the Conference on Data System Languages, has been looking into the use of
decision tables. In a recent release the following statement was made: “lnvestigation. .. indicates that the systems analysis method discussed
above (decision tables) will provide a precise and orderly method of documenting the analysis independent of the processing method. It will offer the
analyst an aid in visualizing the relationships and alternatives of the problem, will provide flexibility in changing any portion of the analysis, and
will establish a framework for the complete definition of the systems problem. The CODASYL Systems Group will continue to develop and experi-
ment with these concepts."

To further indicate the potential results from use of tabular form, the following statements paraphrase various user opinions: Clarity and conciseness
-~ Decision tables are easy to prepare, read, and teach to others; experience shows Lhat non-programmers can learn to prepare satislactory tables in
less than a day, The amount of writing, or number of words, lines and symbols used in describing complex decisions, is reduced by 25-50% as
compared to flow charting. For certain specific cases, problem statement and programming Lime combined have been reduced significantly,

Meaningful Relationships -~ Tahle structure serves to improve systems logic by aligning allernatives side by side. It also sharpens cause and effect
understanding, so relationships which are accidental or incidental become clearar, Furthermore, actions based on similar or related conditions are
apt to be drawn into the same table, making it easier to appreciate and consider interdependent factors

Completeness == Tabular form allows effective visual or deck debugging both by the analyst and the reviewer. There are fewer errors to start with
since the analyst tends to calch his own mistakes; moreoever, the reviewer will typically detect a high percentage of the remaining etrors by visual
examination, Finally, experience shows that with this foundation and suitable test problem construction, it is easy to rapidly detect the balance of
the errors during machine debugging.

The evidence guoted on the advantages of decision tables for systems analysis and computer programming is based on actual study projects. Some of
these studies even tested decision tables on various data processing machines. There are many current studies which are experimenting with a
variety of tabular forms.

A Plan for Action

With all its potential advantages, it is apparent that tabular form has not yet achieved full growth and stature; there are major technical and applica-
tion areas still unprobed, awaiting only the touch of creativity to make practical breakthroughs. While current table methodology does not yet pro-
vide a drawbridge to cross the communications moat surrounding systems engineers, it appears to offer the greatest chance for a significant advance.

To bring these possibilities to fruition requires experimental duvelopment. Tabular form will have to be tried and used on a wide variety of applica-
tions to provide practical evaluation and determine desirable characleristics. Along with this lield pre-testing, there will be a need for effective
technical developments to explore new table concepts and structures .

(Tables Signal Better Communication) Side 4 of 4

There are many areas which need experimental and technical development:

1. Table structure
-- multiple successes per table
-- interspersing conditions and actions
-- explicit control of sequence of actions

2. Relations among tables
-=- prior tule concepts
-= use of library functions
-~ use of open and closed subroutines

3. Language considerations
-= statement construction
== macro or jargon operators
~= machine independence

4, Associated data description
-- defining factors and expressions for man-to-man and man-to-machine use
-~ conditioned definitions
== input/output format
-- preassigned values and constants

5. Implementation considerations
== compiling vs. interpreting
-= sequential vs, random access to tables
== possibility of made-to-order processors
-= ability to introduce specialized operators and table structures

The explosive innovations in computer hardware have not been matched by corresponding developments in systems communication. But we are on the
threshold of a major breakthrough, we are on the verge of a significant advance. It's up to you and it's up to us to show equal creativily in software
to that shown in hardware: To use tabular form to develop a clear, concise, meaningful, comprehensive Systems Engineering language,

TABULAR

FORM

IN

DECISION LOGIC

by BURTON GRAD, IBM Corporation,
Thomas J. Watson Research Center,
Yorktown Heights, N.Y.

Reprinted from DATAMATION Magazine, July 1961

An F. D. Thompson Publication

Tabular form has shown promise of being an effective
way to organize and present decision logic for systems
analysis and computer programming. Experience to date
clearly indicates the need for further exploration and de-
velopment of tabular form to determine its range of appli-
cation and assess its future potential. This report has the
dual purpose of sketching the historical background on
the development of tabular form, and indicating its pos-
sible advantages.

TABULAR
FORM
IN

DECISION LOGIC

by BURTON GRAD, IBM Corporation,

Thomas J. Watson Research Center,

Yorktown Heights, N.Y.

. Glancing around the office, I can see three young

women busily engaged in the various duties of a

typical work day. Let me tell you about them,
Blond Marilyn is a chatterbox. Penelope and Theresa en-
joy going to the movies. Marilyn is married, but the other
two are single. Penelope has an attractive figure, while
Marilyn is somewhat on the plump side. Theresa's quiet
moods contrast to Penelope’s happy ones, but they both
seem to enjoy life in native Manhattan, Marilyn has dimples;
Theresa may be recognized by her amber eyes and red
hair. Unlike the others, Marilyn prefers Shakespeare and
country living in Chappaqua.

Without looking back, can you recall all of Penelope’s
characteristics? Do you have a clear image of each girl
and know what data is missing or where there are inconsis-
tencies? To help answer these questions, let's rearrange the
information. Displayed in tabular form, it would appear as
in Figure 1:

Name Marilyn Penelope |Theresa

Marital Status Married Single Single
Hair Color Blond Red
Figure Plump Attractive
Enjoys Movies Yes Yes
Prefers

Shakespeare || Yes No No
Residence Chappaqua | Manhattan |Manhattan
Features Dimples Amber Eyes
Characteristics | Chatterbox | Happy Quiet

Figure 1

From this illustration, some of the advantages of tables over
narrative style for comparative data display can be readily
appreciated: Conciseness and clarity is achieved by classify-
ing data; Completeness is insured by revealing areas where
information is missing; Meaningful relationships are recog-
nized quickly and easily with the two dimensional structure.

While recognizing these advantages many will point out
that tables are merely a systematic way to present static
data, Do they have a worthwhile function in a more dy-
namic situation—that of decision making? Would tables be
valuable in systems analysis and computer programming?
Before we explore some preliminary answers to these ques-
tions, let’s look at a brief history of tables.

universality of tables
Tables, whether statistical, financial, or analytical, have
gained widespread recognition; they seem to be a natural
form for expressing relationships among variable factors
where there are many possible patterns for arranging the
significant information, This fact is substantiated by the pro-
fusion of examples in everyday life:
The ubiquitous government reports with ponderous
breakdowns of the GNP or a simple recap on
whooping crane birth rates and population.
The multiplicity of financial reports showing the
status and growth of businesses.
The economic forecasts of things to come ranging
from hula-hoop production to manned satellites in
the burgeoning 60's and beyond.
The daily scratch sheet, the box scores of runs, hits
and errors for the latest baseball games, and the
highs, lows, and closing prices for stocks — all in the
local newspaper,
And the list grows.

application to computers

Since the early days of computer development, program-
mers have used analytical tables to convert arguments into
precise functional values; they have also employed matrix
structure and notation to handle common information with
relatively complex structure. In the past few vears, how-
ever, there has been substantial interest in probing the po-
tential applications of tabular form for recording the deci-
sion logic itself. This exploratory work in developing deci-
sion tables has involved consideration of man-to-machine as
well as man-to-man communication.

In systems analysis and computer programming, decision
tables, like conventional data tables, retain a two-dimen-
sional structure to portray significant relationships. The
form, however, is considerably more elaborate to show
multiple conditions and actions interlocked through posi-
tion. Within a decision table any language from a business
jargen to the most machine-oriented may be utilized to ex-
press the decision logic.

There are other well-known methods to describe a busi-
ness system: narrative, flow charts, and logical equations.
Narrative form, unfortunately, is often wordy, requiring
prepositions, conjunctions, and other superfluous elements
for readability; there is a certain lack of form and physical
relation which may lead to inaccuracy and inconsistency if
the user is not extremely careful. Flow charts require lines
and connectors to show relationships; when these become
too numerous, the logic may be difficult to follow and the
layout may demand excessive space. Logical equations are
symbolic and abstract as, for example, Boolean algebra ap-
plied to computer programming. The main limitations are
the need for special skills and background to algebraically
describe decision rules and the attendant difficulty in com-
municating equations in a business environment, Shortcom-
ings in these well-known methods have encouraged systems
analysts to take a harder look at other alternatives.

Tabular form for decision logic seems likely to satisfy this
search since it compensates for many of the limitations of
the other forms by providing compact expression of decision
rules, visually effective display of meaningful relationships,
and straightforward indication of logical correspondence.
The significant difference between tabular form and other

STUB

Age

CONDITIONS
Health

Section of Country

Rate/ 1000

ACTIONS
Policy Limit

STUB

Figure 3

methods is not in the notational scheme used, but rather
in the physical layout for recording the systems description
or programs.

Let’s now examine the use of decision tables. It is not
intended to suggest that this form is superior to existing
languages where they are appropriate for a specialized class
of problems, e.g., FORTRAN for algebraic calculations, re-
port generators for preparing output documents. Rather,
the feeling is that no method today is well-designed for
systems men to use for describing complex logical decisions;
therefore, decision tables may well fll a current void in a
total systems analysis and programming package.

extended entry tables
One type of decision table is called EXTENDED ENTRY.
Figure 2 illustrates a simple application:

Figure 2

The first decision rule (columns 1 and 2) can be para-
phrased: If age is greater than or equal to 25 and less than
35, and health is excellent, and section of country is East,
then rate per thousand is 1.57 and policy limit is 200,000.
The underlined words are implied by the table layout. The
other rules are alternatives to this one, so that logically, it
does not matter which rule is examined first; only one rule
can be satisfied in a single pass through this decision table.

As in most disciplines, a vocabulary is needed to describe

> the special properties and characteristics of decision tables.

Fortunately, a glossary of terms for tabular form is already

ENTRY
Rule 1 Rule 2 Rule 30
>25 >25
<35 <35 265
T——
Excellent | Excellent Poor
==
East West | West
RULE
1.57 1.72 592
200,000 | 200,000 20,000
ENTRY

in existence from the statistical and financial fields; these
supply an appropriate starting point.

Using the information from the insurance example {Fig-
ure 3), the decision table is shown in an exploded view,
Figure 3 to show recommended titles: {see preceding page).

The double lines serve as demarcation: CONDITIONS
are shown above the horizontal double line, ACTIONS be-
low; the STUB is to the left of the vertical double line, EN-
TRIES are to the right. Each vertical combination of con-
ditions and actions is called a RULE. By adding to the
elements shown a title section at the top of the table which
is called a TABLE HEADER, and a RULE HEADER
over the entries, the essential nomenclature is complete.

limited entry tables

LIMITED ENTRY tables offer a different approach to
stating the decision logic. This type of table is shown in
Figure 4:

|| Rule 1 Rule 2 | Rule 30
| >25 225 | m—
Age ‘ <35 <35 e 65
Health || Excellent | Excellent i= Poor
Section of I;' EE——
Country | East West l= West
Rate/1000 | 1.57 172 | 5.92 |
Policy Limit | 200,000 | 200,000 s 20,000

Credit| Pay Special Return
Limit |Experience is| Clearance F.Approve Order
is OK| Favorable |is Obtained| Order [to Sales

Rule 1| Y | Y

Rule 2| N Y Y

[Rule 3| N N Y Y

Rule 4| N N N Y

Figure 4

The first rule (rows 1 and 2) is read: If credit limit is
OK then approve order. Again, the underlined words are
implied by the form. In limited entry tables the entire con-
dition or action must be written in the stub; the entry is
“limited” to reversing a condition or ignoring a condition
or action. In contrast, extended entry tables have a part of
the condition or action “extended” directly into the entry.
While this decision table (Figure 4) is arranged quite differ-
ently, the same table elements are present. Structurally, the
table appears as in Figure 5:

Condition Stub Action Stub

Condition Entries Action Entries

Figure 5
Limited entry permits only a few values in an entry:
Y = yes
N=no

Blank = not pertinent (e.g., condition or action need
not be considered in the current rule)

business applications

Examples of successful applications of decision tables in
business are as yet few in number, but some of the pioneer-
ing work can be reviewed briefly.

Initial work on the use of tabular form for recording de-
cision logic was performed by General Electric’s Integrated
Systems Project from the fall of 1957 through 1959; during
that period, I was the project leader. Many individuals were
involved in this development work which concentrated on
the use of tabular form to express the logic of product de-
sign, operation planning, cost determination, quality as-
surance planning, etc. This project developed extended
entry decision tables for man-to-machine communication.

Mr. T. F. Kavanagh, in commenting on this work at the
1960 Eastern Joint Computer Conference,!) noted, “the de-
cision . . . table is a fundamental language concept . . .
broadly applicable to many classes of information processing
and decision making problems; . . . tables force a step-by-
step analysis of the decision, . . . are easily understood by
humans regardless of their functional background . . . {they
are) simple and straightforward (enough) that . . . special-
ists can write tables . . . with very little training; . . . tables
are easy to maintain (and) errors are reported at the source
language level.”

From late 1958 to the present time, Sutherland Com-
pany, a consulting firm in Peoria, Illinois, has been using
tabular form for expressing what they call management de-
cision rules. They have applied these techniques to a num-
ber of their clients’ problems (e.g., a logistics study for
Norton Air Force Base) with quite satisfactory results. In
particular, they have used decision tables to record the logic
for payroll, order processing, sales analysis, general ledger
accounts, accounts pavable, accounts receivable, and cost
accounting. There has been no published material to date
on the Sutherland work but available information indicates
that limited entry decision tables are being used.

In 1959, Hunt Foods and Industries began experimenting
with tabular form for man-to-man communication in com-
puter systems planning. Material on this approach was the
first to be released, in late 1959, describing how limited
entry tables were used for systems analysis. Explorations
were also carried out on complex relationships among in-
dividual decision using prior rule and sub-routine tech-
niques. Many business systems were documented with
decision tables: stock-control, credit analysis, sales analysis,
and traffic.

In his report on the work at Hunt Foods, Mr. O. Y.
Evans states, “The tabular approach . . . aids . . . in visual-
izing the numerous relationships and alternatives . . . {and)
permits data rules to be readily reviewed for omissions and
inconsistencies; . . . (in addition it) provides flexibility in
changing any portion of the analysis.”

Since early 1960, IBM has been actively engaged in ex-
ploring the value of tabular form both for systems analysis
and for computer programming. The company has initiated
joint projects with several customers to evaluate the effec-
tiveness of various tabular forms, to explore altemative
methods of implementation, and to investigate opportuni-
ties for incorporating these developments as an adjunct to
existing languages. Since there are many different aspects
of tabular form which still need to be examined, language
implementing programs have not been prepared. These
studies have developed and formalized mixed limited and
extended entry tables, stubless tables, and unconditional
decision tables.

The CODASYL Systems Group, which is part of the De-
velopment Committee of the Conference on Data Systems
Languages, has been looking into the application and use
of decision tables since late 1959. Their particular goal has
been the creation of a systems-oriented language which
would enable systems analysts to communicate their basic

decision logic either to computer programmers or to auto-
matic program compilers. This organization contends that
tabular form is one currently known technique which would
aid in achieving effective mutual understanding of business
decisions while maintaining machine independence. Their
efforts have included research on generalizing tabular form
to combine limited and extended entry format in a given
table, as well as studies on more complex methods of
sequence control, rule structure, and rule execution logic.

an example

To illustrate some of the possible advantages of decision
tables, a composite tabular form is shown in Figure 6;
these tables describe the logic of a file maintenance pro-
cedure. There are two input files (Detail and Master), each
sequenced by identification number. The principal output
is a similarly sequenced Master file incorporating additions
and changes and omitting deleted records. The logic is
based on having three internal areas: (1) Detail, (2) Master,
and {3) New Master. “Read” as used here means “obtain
the next record in the referenced file.” “Write” means “pro-
duce an output Master record from the indicated source
area.” These are not detailed, precise tables for machine
compilation, but rather the equivalent of a block diagram.

value of decision tables
So far, decision tables have been discussed in the light of
known applications and attributed values and advantages.

TABLE 001 — Update

Though many current developments are still in the realm
of “company confidential,” several projects have indicated
results that enable us to discuss the value of tables in con-
crete terms.

Recalling the three benefits mentioned previously, some
studies claim that decision tables appear to be superior to
other methods for representing complex decision logic in
that they provide or encourage:

clarity and conciseness
completeness
meaningful relationships

To indicate the potential results from use of tabular form,
the following statements paraphrase various user opinions:
Clarity and conciseness — Decision tables are easy to pre-
pare, read, and teach to others; experience shows that non-
programmers can learn to prepare satisfactory tables in
less than a day. The amount of writing, or number of
words, lines, and symbols used in describing complex de-
cisions, is reduced by 25-50% as compared to flow chart-
ing. For certain specific cases, problem statement and pro-
gramming time combined have been reduced significantly.
Completeness — Tabular form allows effective visual or
desk debugging both by the analyst and the reviewer.
There are fewer errors to start with since the analyst tends
to catch his own mistakes; moreover, the reviewer will
typically detect a high percentage of the remaining errors

| Rule No. 01 02 03 04 05 06 07 08
Start Y N N N N N N ELSE
End of Detail N N N i 4 Y N
End of Master N N Y N Y N
Detail <Master | =Master >Master
Detail an “*Addition™

Do Error Routine

Move Master to New Master

Move Detail to New Master

Set Addition Switch OFF
Write Master
Read Master
Read Detail X
GO TO TABLE 001
TABLE 002 — Change

Rule No. 01 02 03 04 05 06 07
Detail <New Master| >New Master| >New Master/=New Master| =New Master|—New Master| ELSE
Addition Switch ON Y N Y N
Detail a “"Change™ Y
Detail a "Delete" Y Y

Write New Master X X

Do Error Routine X X
Do Change Routine X

Do Delete Routine X X

Read Master X X

Read Detail X X X X X
GO TO TABLE 002 001 001 002 001 001 002

Figure 6

by visual examination. Finally, experience shows that with
this foundation and suitable test problem construction, it is
easy to rapidly detect the balance of the errors during
machine debugging.

Meaningful relationships — Table structure serves to im-
prove systems logic by aligning alternatives side by side.
It also sharpens cause and effect understanding, so relation-
ships which are accidental or incidental become clearer.
Furthermore, actions based on similar or related conditions
are apt to be drawn into the same table, making it easier
to appreciate and consider dependent factors.

The evidence quoted on the advantages of decision
tables for systems analysis and computer programming is
based on actual study projects. Some of these studies even
tested decision tables on various data processing machines.
There are many current studies which are experimenting
with a variety of tabular forms.

future direction
With all its potential advantages, it is apparent that tabular
form has not yet achieved full growth and stature; there
are major technical and application areas still unprobed,
awaiting only the touch of creativity to make practical
breakthroughs. Current table methodology, for example,
does not yet provide an effective systems-oriented lan-
guage. Unable, then, to describe the decision logic in a
systems-oriented language and untrained to an adequate
degree in knowledge of equipment capabilities, the systems
analyst often severely constrains the computer programmer.
What then of the future? Would it be desirable to di-
rectly incorporate tabular form into existing language proc-
essors such as Autocoder, FORTRAN, Commercial Trans-
lator, or COBOL, to describe complex decision procedures
with decision tables? Would this approach significantly im-
prove logical analysis? Would it simplify programming, de-
bugging, and maintenance?

Would it be advantageous to try to create a systems-
oriented language using tabluar form as a primary method
for describing decision logic? Should we carefully consider
the relative advantages of using interpretive rather than
compiler techniques for applving tabular svstems-oriented
languages to computers?

We are witnessing a literal explosion in scientific tech-
nology, not the least of which is the rate of innovation in
computer hardware. Laboratory shop-talk treats subjects
like thin magnetic films, microminiaturization, and masers,
as if they were accomplished facts; and before we realize
it, they often are. Progress in language concepts, though,
lags seriously behind hardware advances. Failure to keep
pace can be attributed to several factors: inadequate effort,
requirements for compatability with existing systems, and
lack of problem recognition. Facing opportunities like
automated product engineering and real-time contral, we
are handicapped by the limitations of current ways to de-
scribe business systems. Tabular form, one significant new
tool for methods and systems people, may help to ac-
celerate business language development and to advance
systems technology.

BIBLIOGRAPHY

(1) Kavanagh, Thomas F., “TABSOL—A Fundamental Con-
cept for Systems Oriented Languages,’ Proceed-
ings of the 1960 Eastern Joint Computer Con-
ference.

(2} Evans, Orren Y., “Advanced Analysis Method for
Integrated Electronic Data Processing,”’ [BA
General Information Manual, #F20-8047.

