New Versatility, Faster Performance, Greater Accuracy

WARRANTY

The Librascope X-Y Plotter is warranted to be free from defects in material and workmanship impairing the normal use and service for which it is intended.

The liability of Librascope under this warranty is limited to repairing or replacing any X-Y plotter or plotter component returned, with all transportation charges prepaid, to Librascope within ninety (90) days after delivery to the original purchaser and found to be defective. In no event shall Librascope be liable for collateral or consequential damages.

This warranty is in lieu of any other warranty, expressed, implied or statutory (except as to title) and no agreement extending it will be binding upon Librascope unless in writing and signed by an officer of the Company.

$X-Y \quad P L O T T E R \quad M O D E L \quad 2 O D C B$

table of contents

Page Page
GENERAL DATA vi
INTRODUCTION 1
Characteristics 1
Input Requirements 2
INSTALLATION 3
Mounting 3
Connections 3
Pen Installation 3
Chart Insertion 4
CHART CALIBRATION 5
Preparation 5
Single-Quadrant Plotting 5
Four-Quadrant Plotting 5

GENERAL DATA

Power Switch
Controls power to plotter circuits. Switch settings: OFF STBY ON

Oper ational Switch
Controls operation for chart insertion (LOAD), calibration (CALIB), point plotting (PLOT), and continuous curve tracing (TRACE)

Scale Knobs
Provide choice of these 11 voltage scale settings: $10.0,5.0,2.5,1.0, .50, .25$, $.10, .050, .025, .010, .005$.

Zero Knobs
Provide for continuous shifting of origin to any point on plotting area.

Static Accuracy
Within 0.1% of full scale

Dynamic Accuracy
Within 0.5% of full scale at maximum tracking rate of $5 \mathrm{in} / \mathrm{sec}$

Response
Approximately 1 sec full sc ale in either axis

Power Required
115 -volt, 150 -watt, 60-cycle. Plotter accepts low level DC input from external source.

Plotter Dimensions
$15-7 / 8^{\prime \prime}$ wide $\times 19^{\prime \prime}$ high $\times 16-3 / 4^{\prime \prime}$ deep
Plotter Weight
70 pounds
Input Impedance
Greater than 10 megohms from . 005 volt
to .50 volt; 2 megohms from 1 to 10 volts

Figure 1. Librascope X-Y Plotter, Model 200B

INTRODUCTION

The $\mathrm{X}-\mathrm{Y}$ plotter is a precision data recording instrument which automatically plots a two-coordinate graph of analog input data. The plotter is available in two models, the 200 A , or type A, and the 200 B , or type B. The basic difference between the plotters lies in their preamplifier circuitry.

The type B plotter accepts a low level DC input from an external source. The type A supplies power to its input transducers and operates with any device possessing the properties of a resistance potentiometer.

Both models have split chassis. This arrangement permits easy conversion and minimizes the need to modify circuits for special applications.

Librascope Decimal Keyboard, Model 226, shown on page 30, may be used to manually enter inputs into the type B plotter. After converting Model 200B to Model 200A, other Librascope accessories, shown on page 31, can be used with the X-Y plotter.

This manual applies specifically to Model 200B, shown in figure 1. Instructions for converting the type B plotter to type A are given under PLOTTER CONVERSION, page 13.

characteristics

Independent gear trains drive the pen in the X and Y axes and assure positive indexing of all plotted points.

Precision manufacture results in a static accuracy of 0.1 percent of full scale. Dynamic accuracy exceeds 0.5 percent of full scale when the plotter is tracking a velocity input scaled to five inches per second.

The chartscale can be expanded independently in each axis by changing the sensitivity of the associated preamplifier circuit with a ganged attenuator switch. The origin can be shifted to any part of the chart for single- or four-quadrant plotting.

The plotter is energized from a 115 -volt, 60 -cycle source. No other external power is needed.

input requirements

The plotter uses inputs in the form of lowlevel, single-ended DC voltages. X and Y Scale knob settings make available eleven input ranges between zero volt and these maximum values: . 005, . 010, . 025, . 050, . 10, $.25,0.5,1.0,2.5,5.0$ and 10.0 volts.

Use of a standard cell reference assures drift-free operation and permits exceedingly accurate scaling of inputs.

Input impedance between the .005 volt and . 50 volt scale settings exceeds 10 megohms and is 2 megohms between 1 and 10 volts.

installation

mounting

The desk model plotter is shown in figure 1. The plotter can be adapted for oper ation in a standard RCA or RMA rack by removing the plotter from its case and attaching an adapter plate and a filler plate to the rear of the plotter assembly base plate, as shown in figure 2. These parts plus necessary hardware and installation drawings for rack mounting may be ordered from Librascope, Inc.

connections

Plotter receptacle J201 is provided to accommodate the inputs from external equipment. DC inputs are received at J403 and J405. A line cord is provided to connect an external source of 115 -volt, 60 -cycle power to plotter receptacle J203.

pen installation

Slip the stroke adjustment wire through the notch in the pivoted lever in the pen carriage,

Figure 2. Plotter Installations
figure 3. Insert the pen point through the guide bushing at the lower end of the pen carriage. To seat the pen properly, the spring must be compressed until the retainer is held by the spring catch in the carriage.

chart insertion

Move the pen to the upper left corner of the plotting area, either by guiding it manually, or, if the plotter is energized, by setting the Operational switch at LOAD.

To move the pen manually in the X -axis, move the pen carriage along the guide rail. To move the pen manually, in the Y-axis, use the support arms at either end of the guide rail, figure 1. To avoid misalignment, do not push on pen carriage or guide rail.

Raise the hinged chart-holding bar at the bottom of the chart platen, advance the chart onto the platen until its upper edge is aligned under the guide strip at the top of the platen, and lower the holding bar to clamp the chart in place.

Figure 3. Pen Carriage and Pen

chart calibration

The type B plotter plots in any one of four quadrants or in all four, depending on the Zero and Scale knob settings.

With maximum input each of the X and Y Scale knob settings produces full scale pen deflection. Be sure to select scale settings which include the full input range to keep the pen carriage from driving into the limit stops.

When calibrating the chart follow the procedures detailed below.

preparation

1. Set Power switch at STBY for a few minutes to warm plotter.
2. Turn Power switch to ON.
3. Set Operational switch at CALIB.

At this switch setting pen remains retracted in carriage.

single-quadrant plotting

1. Set X and Y Scale knobs at desired voltage ranges.
2. Adjust X and Y Zero knobs to position pen at point corresponding to zero in the quadrant selected for plotting.
four-quadrant plotting
3. Set X and Y Scale knobs at the desired voltage ranges.
4. Adjust X and $Y Z$ ero knobs to position pen at center of chart.

Follow this four-step procedure to operate the $\mathrm{X}-\mathrm{Y}$ plotter:

1. Set Power switch at STBY for a few minutes to warm plotter.
2. Set Power switch at ON.
3. Calibrate chart if necessary. Follow instructions detailed on page 5 .
4. Set Operational switch at PLOT for discrete point plotting as commanded by the external input equipment or at TRACE for continuous curve tracing.

After the above settings have been made, the plotter operates automatically.

In the usual PLOT cycle, the pen carriage, with the pen retracted, moves to a signaled point and stops while the pen lowers and marks
the chart. After each point is plotted, the pen retracts and a new signal is received.

In typical installations providing the intermittent input required for PLOT operation, a thyratron controls the pen solenoid and the reference phases of the X and Y servomotors. The control phases of the servomotors supply the thyratron grid signal. When the grid signal approaches a value indicating servo null, the thyratronfires, opening the circuits to the pen solenoid and the servomotor reference phases. The pen carriage thus remains stationary while the pen drops to the chart. In dropping to the chart, the pen closes a set of contacts in the plotter. This action restores these circuits and clears the input source in readiness for the next plotting cycle.

In TRACE operation, the pen remains in contact with the chart at all times, and the carriage moves in response to changes in the input signal to produce a continuous curve.

X-Y PLOTTER MODEL 20 O B

MAINTENANCE

Precision manufacture and use of top quality components in the $\mathrm{X}-\mathrm{Y}$ plotter help to insure trouble-free service. With proper maintenance, major adjustments or repairs should rarely be required.

To protect internal parts from dust, keep the plastic cover closed when the plotter is not in use. Wipe the guide rail occassionally to prevent dust and lint from accumulating.

Follow the routine maintenance procedures described below to insure peak performance by the plotter at all times. Return the plotter (shipped postpaid) to Librascope, Incorporated, Customer Service Division, Glendale, California, for any other adjustments required.

refilling ink reservoir

The reservoir contains enough ink for extended periods of plotting. To refill, remove the plastic cap, figure 3, and use an eye dropper to transfer ink to the reservoir. Esterline Angus red ink for graphic instruments is recommended.

cleaning pen point

To clean the pen point, insert the cleaning wire into the tube projecting through a hole in the plastic reservoir cap, figure 3, until the wire extends beyond the pen point. Remove cleaning wire when plotter is in operation.

correcting pen actuation

The pen should drop to the chart when the pen-actuating solenoid is de-energized and should retract when the solenoid is energized. If the penfails to lower or to retract properly, check the manual lock and the pen, figure 3. Release the manual lock if it is engaged. Straighten or replace the pen if bent.

adjusting pen stroke

Pen stroke adjustment is not ordinarily required except when installing a new pen. To adjust the pen stroke, modify the stroke adjustment wire curvature. This wire engages

Figure 4. Rear View, Mesh Screen Removed
$]$ at ON. Adjust the slider of potentiometer R 503 to produce a 150 -volt output at J407.

Place an oscilloscope across metering point J408 to ground. With the Power switch at ON, adjust R 507 to produce zero difference voltage at chopper K402. The trace on the scope will approximate a straight line.

Gain. Two adjustment potentiometers, the X Gain and Y Gain controls at the rear of the preamplifier chassis, are used to adjust the gain. The potentiometerscan be reached with a screwdriver through the mesh screen at the rear of the case. The adjustment consists of setting these controls so that statically the X amplifier generates 75 to 85 volts across the X servomotor and the Y amplifier generates 65 to 75 volts across the Y servomotor when the pen is $3 / 10$-inch from the null point in each of the X and Y axes.

Make these adjustments with both the X and Y Scale knobs set at 0.50 volt:

1. Place jumper across terminals J402
and J403 to simulate X input, and across terminals J 404 and J 405 to simulate Y input. A piece of solid wire fitted into terminals will serve. Value of inputhas no bearing on adjustment.
2. Connect AC voltmeter across control phase of X servomotor (terminal N of J201 to ground) and another AC voltmeter across control phase of Y servomotor (terminal S of J201 to ground). Setrange of both meters to indicate 100 volts without going off scale.
3. Energize plotter and setOperational switch to CALIB. Turn up gain in each axis until servo nulls with small static error about null point. Then set Operational switch at PLOT.
4. Move pen $3 / 10$-inch to right by manually turning large spur gear under lamp housing.
5. Adjust X Gain potentiometer so voltmeter across X servomotor indicates between 75 and 85 volts.
6. Set Oper ational switch at CALIB.
7. Set Operational switch at PLOT.
8. Move pen $3 / 10$-inch up in Y-axis, using support arms at either end of guide rail.
9. Adjust Y Gain potentiometer so voltmeter across Y servomotor indicates between 65 and 75 volts.
10. Turn Operational switch to CALIB.

Noise. Potentiometers R446 and R447, labelled X NOISE BAL and Y NOISE BAL, mounted at the rear of the preamplifier chassis, can be adjusted to minimize the null voltage across the control phases of the X and Y servomotors. This adjustment is mostreadily performed with the X and Y Scale knobs set at 0.005 volt.

Damping. Repeat gain adjustments, if necessary, and adjust the X and Y damping controls (X Damp and Y Damp, figure 4) at rear of the preamplifier chassis for critical damping. Critical damping is the fastest response obtainable with a minimum of overshoot.

Internal Scale Factor Adjustments. Ganged potentiometers R 523-524 and R526-527 permit adjustment of the internal scale factor so a maximum input at any scale setting will produce exactly 15 inches of pen deflection in the X axis, and 10 inches in the Y axis. These potentiometers, X Calibrate and Y Calibrate in figure 5, can be reached for servicing through the mesh screen on the bottom of the plotter case.

To adjust, set the X and Y Scale knobs at 0.5 volt. Supply X and Y inputs of 0.5 volt. Adjust X Calibrate to produce 15 inches of pen travel from the origin. Adjust Y Calibrate to produce 10 inches of pentravel from the origin.

PLOTTER CONVERSION

Converting the $\mathrm{X}-\mathrm{Y}$ plotter from type B to type A requires changing the preamplifier chassis and the plug-in follow-up potentiometers, and resetting the mechanical stops which limit the pen carriage travel.

Procedures for these two conversion steps are detailed below.

chassis interchange

Changing the chassis and plug-in follow-up potentiometers is accomplished as follows:

1. De-energize plotter.
2. Remove plastic dust cover.
3. Gently turn plotter face down on padded, level surface with base plate
extending over surface edge to permit access to case-mounting screws, figure 6.
4. Remove two 10-30 oval-head casemounting screws (A in figure 6) on base plate. Slip case free of positioning dowels and remove from plotter assembly.
5. Remove four 8-32 screws (B in figure 6) that secure corners of preamplifier chassis control knob panel to main frame.
6. Remove two 8-32 screws (C in figure 6) that hold flange of preamplifier chassis to main frame of plotter assembly. Screws are accessible through access holes in chassis.

1
LIBRASCOPE, INCORPORATED

7. Disconnect plug P20l from receptacle on preamplifier. P2Ol connects cable from power supply chassis to preamplifier chassis.
8. Gently slip out preamplifier chassis.
9. Install replacement chassis. Replace two screws at flange and four screws at control knob panel.
10. Reconnect P201 to preamplifier receptacle.
11. Set plotter assembly upright.
12. Replace X and Y follow-up potentiometers in mechanical section with potentiometers designed to operate with newly installed preamplifier. For a type A preamplifier use $10,000-$ ohm, three-turn, X and Y potentiometer assemblies. For a
type B preamplifier use 500 -ohm, three-turn, X and Y potentiometer assemblies.
13. Reset mechanical stops which limit pen travel in X and Y axes. For procedure, see Resetting Stops, page 16.

NOTE: If newly installed preamplifier is type B, allow a few minutes for fluid in standard cell to settle before resetting stops.
14. Set plotter assembly face down on padded surface with base plate extending over surface edge. Slip case in place so as to engage the positioning dowels, and replace two mounting screws that hold case to base plate.
15. Set plotter upright and replace plastic dust cover.

resetting stops

The follow-up potentiometer change is accomplished with the plotter out of the case at step 12, Chassis Interchange. At this point, to set the X -axis stops proceed as follows:

1. Unclamp X follow-up potentiometer and loosen stop clamp.
2. Move pen carriage to left end of rack until it rests against support arm, then move it $1 / 16$-inch away from support arm.
3. Clamp stop with pen carriage in this position.
4. Allow approximately 0.01 inch end play in stop washers to prevent binding.
5. Move pen carriage to right end of
rack, making sure it stops about $1 / 16$-inch from right support arm.
6. Move pen carriage back to left side of rack until it rests against stop.
7. Rotate follow-up potentiometer slider to its zero limit and reconnect potentiometer shaft to gear train shaft.
8. Move pen back and forth in X-axis, checking for oscillation of potentiometer due to misalignment of gear train shaft with potentiometer shaft. Align potentiometer coupling shaft if necessary.

To adjust stops in the Y -axis, follow a similar procedure. Set the Y-axis stops to limit pentravel at a point approximately $1 / 32$ inch beyond the margins of the chart paper.

PARTS LIST

PREAMPLIFIER SECTION

Symbol	Description	Symbol	Description	
	S401A Attenuator	R424	20K ohms, $1 / 2$ watt,	5% tol. Cinema
Capacitor		R425	10 K ohms, $1 / 2$ watt,	5\% tol.
C436	. $02 \mathrm{mfd}, 200$ volts			Cinema
Resistors	+	R426	6. 2 K ohms, $1 / 2$ watt,	5% tol. Cinema
R429	$1 \mathrm{meg}, \mathrm{l} / 4$ watt, . 1% tol. Cinema	R427	2. 2 K ohms, $1 / 2$ watt,	5\% tol.
R430	600 K ohms, $1 / 4$ watt, $.1 \%$ tol. Cinema	R428	2. 2 K ohms, $1 / 2$ watt,	Cinema 5\% tol.
R431	200 K ohms, $1 / 4$ watt, $.1 \%$ tol. Cinema			Cinema
R432	100 K ohms, $1 / 4$ watt, $.1 \%$ tol. Cinema		S401C Attenuator	
	S401B Attenuator	$\frac{\text { Resistors }}{\text { R433 }}$	1030 ohms, 1/4 watt,	. 1% tol.
$\frac{\text { Resistors }}{\text { R422 }}$	100 K ohms, $1 / 2$ watt, 5% tol.	R434	3222 ohms, 1/4 watt,	Cinema $.1 \%$ tol.
R423	Cinema 62 K ohms, $1 / 2$ watt, 5% tol. Cinema	R435	5848 ohms, 1/4 watt,	Cinema . 1% tol. Cinema

PREAMPLIFIER SECTION (Cont.)

Symbol	Description	Symbol	Description
R479	2. 2 K ohms, $1 / 4$ watt, $.1 \%$ tol. Cinema		200 K ohms, $1 / 4$ watt, $.1 \%$ tol. Cinema
	S402C Attenuator	R491	100 K ohms, $1 / 4$ watt, $.1 \%$ tol. Cinema
Resistors		Turret Socket Assembly XV401 Librascope Drawing 307542	
R484	1030 ohms, $1 / 4$ watt, $.1 \%$ tol. ${ }_{\text {Cinema }}$		
R485	3222 ohms, 1/4 watt, . 1% tol.	Capacitors	
R486	5848 ohms, 1/4 watt, . 1% tol.	C401	$.05 \mathrm{mfd}, 200$ volts DC, Westcap \#26K2503 Type 26
R487	13890 ohms, $1 / 4 \mathrm{watt}, .1 \%$ tol. ${ }_{\text {Cinema }}$	C403	$.05 \mathrm{mfd}, 200$ volts DC, Aerovox Type P-85
R488	75 K ohms, $1 / 4$ watt, $.1 \%$ tol. ${ }_{\text {Cinema }}$	C404	$.1 \mathrm{mfd}, 200$ volts DC, Aerovox Type P-85
R489	600 K ohms, $1 / 4$ watt, $.1 \%$ tol. ${ }_{\text {Cinema }}$	C405	$.01 \mathrm{mfd}, 200$ volts DC, Aerovox Type P-85

PREAMPLIFIER SECTION (Cont.)

Symbol
Description

Ohmite R403 130 K ohms, $1 / 2$ watt, 5% tol. Ohmite R404 1 meg, $1 / 2$ watt, 5% tol. Ohmite R405 100 K ohms, $1 / 2$ watt, 5% tol. Ohmite
R406
R407 330 ohms, $1 / 2$ watt, 5% tol.
Ohmite
Turret Socket Assembly XV402
Librascope Drawing 307543
Capacitors
C406 . $002 \mathrm{mfd}, 200$ volts DC, Aerovox
Type P-85

Symbol	Description
C407	$.05 \mathrm{mfd}, 400$ volts DC, Aerovox Type P-85
C408	$.1 \mathrm{mfd}, 400$ volts DC, Aerovox Type P-85
Resistors	
R408	$1 \mathrm{meg}, 1 / 2$ watt, 5% tol. Ohmite
R409	680 ohms, $1 / 2$ watt, 5% tol. Ohmite
R410	130 K ohms, $1 / 2$ watt, 5% tol. Ohmite
R412	130K ohms, $1 / 2$ watt, 5% tol. Ohmite
R413	680 ohms, $1 / 2$ watt, 5% tol. Ohmite
R414	68 K ohms, $1 / 2$ watt, 5% tol.

X-Y PLOTTERMODEL 200

Symbol	Description	Symbol	Description
Turret Socket Assembly XV403 Librascope Drawing 307544		R420	68 K ohms, $1 / 2$ watt, 5% tol. Ohmite
		R465	68 K ohms, $1 / 2$ watt, 5% tol.
Capacitors 05 den			Ohmite
C409	$.05 \mathrm{mfd}, 200$ volts DC, Aerovox Type P-85	R468	820 ohms, $1 / 2$ watt, 5% tol.
C410	$.05 \mathrm{mfd}, 200$ volts DC, Aerovox Type P-85	R469	120K ohms, $1 / 2$ watt, 5% tol.
C419	$.05 \mathrm{mfd}, 200$ volts DC, Aerovox Type P-85	R471	68 K ohms, $1 / 2$ watt, 5% tol.
C420	$.05 \mathrm{mfd}, 200$ volts DC, Aerovox Type P-85	Turret Socket Assembly XV404 Librascope Drawing 307545	
Resistors			
R416	68 K ohms, $1 / 2$ watt, 5% tol.	$\frac{\text { Resistor }}{\text { R419 }}$	15 K ohms, l watt, 5% tol. Ohmite
R417	820 ohms, $1 / 2$ watt, 5% tol. Ohmite	R448	47 K ohms, $1 / 2$ watt, 5% tol. Ohmite
R418	120K ohms, $1 / 2$ watt, 5% tol.	R449	47K ohms, 1/2 watt, 5\% tol. ${ }_{\text {Ohmite }}$

Symbol	Description
R 450	5 K ohms, 2 watts, 5% tol. Ohmite
R451	5 K ohms, 2 watts, 5% tol. Ohmite
R470	15 K ohms, 1 watt, 5% tol. Ohmite
Turret Socket Assembly XV405	
Librascope Drawing 307546	
Capacitors	
C411	$.05 \mathrm{mfd}, 200$ volts DC, Westcap Type 26 \#26K2503
C413	$.05 \mathrm{mfd}, 200$ volts DC, Aerovox Type P-85
C414	$.01 \mathrm{mfd}, 200$ volts DC, Aerovox Type P-85
C415	$.1 \mathrm{mfd}, 200$ volts DC, Aerovox Type P-85
Resistors	
R452	4.7 meg, l/2 watt, 5\% tol.

Symbol	Description
R453	130K ohms, $1 / 2$ watt, 5% tol. Ohmite
R455	$1 \mathrm{meg}, \mathrm{l} / 2 \mathrm{watt}, 5 \%$ tol. Ohmite
R 456	l00K ohms, $1 / 2$ watt, 5% tol. Ohmite
R457	330 ohms, $1 / 2$ watt, 5% tol. Ohmite
R458	68 K ohms, $1 / 2$ watt, 5% tol. Ohmite
Turret Socket Assembly XV406 Librascope Drawing 307547	
Capacitors	
C416	$.002 \mathrm{mfd}, 200$ volts DC, Aerovox Type P-85
C417	$.05 \mathrm{mfd}, 400$ volts DC, Aerovox Type P-85
C418	. $1 \mathrm{mfd}, 400$ volts DC, Aerovox Type P-85

X-Y PLOT TER MODEL 20 O B
1

PREAMPLIFIER SECTION (Cont.)

Symbol	Description
C434	$100 \mathrm{mfd}, 3$ volts DC, Aerovox S RE
C435	$100 \mathrm{mfd}, 3$ volts DC, Aerovox S RE
Resistor	
R504	27K ohms, 1 watt, 5% tol. Ohmite
	Turret Socket Assembly XV411
	Librascope Drawing 307550
Capacitors	
C428	$.002 \mathrm{mfd}, 200$ volts DC, Aerovox Type P-85
C429	$.1 \mathrm{mfd}, 200$ volts DC, Aerovox Type P-85
Resistors	
R509	47 K ohms, $1 / 2$ watt, 5% tol. Ohmite
R 510	10K ohms, $1 / 2$ watt, 5% tol.

Symbol	Description
R511	510 K ohms, $1 / 2$ watt, 5% tol.
	Ohmite
R 512	820 ohms, $1 / 2$ watt, 5% tol.
	Ohmite
R513	68 K ohms, $1 / 2$ watt, 5% tol.

Turret Socket Assembly XV412 Librascope Drawing 307551

Capacitors
C430. $03 \mathrm{mfd}, 200$ volts DC, Aerovox
Type P-85
C431 . $006 \mathrm{mfd}, 200$ volts DC, Aerovox
Type P-85
C432 $.03 \mathrm{mfd}, 200$ volts DC, Aerovox
Type P-85
C433
$.1 \mathrm{mfd}, 200$ volts DC, Aerovox
Type P-85

X-Y PLOTTER MODEL 200 B

PREAMPLIFIER SECTION (Cont.)

Symbol Description

Turret Socket Assembly XV413
Librascope Drawing 307552
$\frac{\text { Resistors }}{\text { R497 }} 2.5 \mathrm{~K}$ ohms, 5 watts, 5% dol. Ohmite

PREAMPLIFIER SECTION (Cont.)

Symbol	Description		Symbol	Description
C412A	$125 \mathrm{mfd}, 25$ volts,	Sprague	C423	$2 \mathrm{mfd}, 450$ volts, Sprague TVA 1701
		TVL 3743	C424	$10 \mathrm{mfd}, 450$ volts, Sprague TVA 1705
C412B	$30 \mathrm{mfd}, 450$ volts,	Sprague		
		TVL 3743	Resistors	
C412C	$30 \mathrm{mfd}, 450$ volts,	Sprague	R402	1 K ohm, $1 / 2$ watt, 5% tol. Ohmite
		TVL 3743	R411	1 meg , Type AB, Ohmite CLU 1052
			R415	27 K ohms, $1 / 2$ watt, 5% tol.
C421A	$10 \mathrm{mfd}, 450$ volts,	Sprague		Ohmite
		TVL 2776	R421	50 K ohms, Type AB, Ohmite
C421B	$80 \mathrm{mfd}, 450$ volts,	Sprague		CLU5031
		TVL 2776	R441	1010 ohms, $1 / 4$ watt, 1% tol.
				Cinema
C422A	$40 \mathrm{mfd}, 450$ volts,	Sprague TVL 3786	R442	100 K ohms, $1 / 4 \mathrm{watt}, .1 \%$ tol.
C422B	40 mfd , 450 volts,	Sprague	R443	200 K ohms, $1 / 4$ watt, . 1% tol.
		TVL 3786		Cinema
C422C	$20 \mathrm{mfd}, 450$ volts,	Sprague	R444	200K ohms, $1 / 4$ watt, . 1% tol.
		TVL 3786		Cinema

$X-Y P L O T T E R \quad M O D E L \quad 200 B$

$!$

PREAMPLIFIER SECTION (Cont.)

Symbol	Description	Symbol	Description
R445	500 ohms, 10 turns, 5% lin. Helipot 500 AZ center tapped	R495	1010 ohms, $1 / 4$ watt, . 1% tol. Cinema
R446	250 ohms, Type $A B$, Ohmite CLU2511	R 496	500 ohms, 10 turns, 5% lin. Helipot 500 AZ center tapped
R447	250 ohms, Type AB, Ohmite CLU2511	R 503	1 meg, Type AB, Ohmite CLU1052
R454	1 K ohm, $1 / 2$ watt, 5% tol. Ohmite	R 506	4. $7 \mathrm{~K}, 1 / 2$ watt, 5% tol.
R462	1 meg, Type AB, Ohmite CLU 1052		Ohmite
R467	27 K ohms, $1 / 2$ watt, 5% tol. Ohmite	R 523	50 ohms (ganged) AllenBradley
R472	50K ohms, Type AB, Ohmite CLU5031	R 524	50 ohms (ganged) JJLU-5001-
R492	100 K ohms, $1 / 4$ watt, . 1% tol.	R 525	50 ohms (ganged) AllenBradley
R493	200K ohms, $1 / 4$ watt, $.1 \%$ tol. Cinema	R 526	50 ohms (ganged) JJLU-5001- SD4040L
R494	200K ohms, $1 / 4$ watt, $.1 \%$ tol. ${ }_{\text {Cinema }}$		

POWER SECTION

Symbol	Description	Symbol	Description
$\frac{\text { Potentiometers }}{\text { R101 }}$		R209	$1 \mathrm{meg}, 1 / 2 \mathrm{w}, 5 \%$ tol. Ohmite
	10K, Helipot	R210	$130 \mathrm{~K}, 1 / 2 \mathrm{w}, 5 \%$ tol. Ohmite
R 102	10K, Helipot	R211	130K, $1 / 2 \mathrm{w}, 5 \%$ tol. Ohmite
		R212	130K, 1/2w, 5\% tol. Ohmite
		R213	130K, $1 / 2 \mathrm{w}, 5 \%$ tol. Ohmite
Resistors		R214	27K, 1/2w, 5\% tol. Ohmite
R201	200 ohm, 5w, Ohmite	R215	$470 \mathrm{~K}, 1 / 2 \mathrm{w}, 5 \%$ tol. Ohmite
R202	$1 \mathrm{meg}, 1 / 2 \mathrm{w}, 5 \%$ tol. Ohmite	R216	250 ohm, 5w, Ohmite
R203	100K, $1 / 2 \mathrm{w}, 5 \%$ tol. Ohmite	R217	$470 \mathrm{~K}, 1 / 2 \mathrm{w}, 5 \%$ tol. Ohmite
R204	$1 \mathrm{meg}, 1 / 2 \mathrm{w}, 5 \%$ tol. Ohmite	R218	$470 \mathrm{~K}, 1 / 2 \mathrm{w}, 5 \%$ tol. Ohmite
R205	$5.1 \mathrm{meg}, 1 / 2 \mathrm{w}, 5 \%$ tol.	R219	250 ohm, 5w, Ohmite
	Ohmite	R220	$470 \mathrm{~K}, 1 / 2 \mathrm{w}, 5 \%$ tol. Ohmite
R206	$510 \mathrm{~K}, 1 / 2 \mathrm{w}, 5 \%$ tol. Ohmite	R221	7500 ohm, 5w, Ohmite
R207	100K, $1 / 2 \mathrm{w}, 5 \%$ tol. Ohmite	R222	$1 \mathrm{~K}, 1 / 2 \mathrm{w}, 5 \%$ tol. Ohmite
R208	$5.1 \mathrm{meg}, 1 / 2 \mathrm{w}, 5 \%$ tol. Ohmite	R223	1K, 1/2w, 5\% tol. Ohmite

POWER SECTION (cont.)

Symbol	Description	
Capacitors		Miscellaneous
C201	$2 \mathrm{mfd}, 200 \mathrm{v}$ Aerovox P-82	
C202	. $03 \mathrm{mfd}, 400 \mathrm{v}$ Aerovox P-82	Ink Esterline-Angus or Equal
C203	. $02 \mathrm{mfd}, 400 \mathrm{v}$ Aerovox P-82	
C204	$.03 \mathrm{mfd}, 400 \mathrm{v}$ Aerovox P-82	Graph Paper Librascope Drawing 306957
C205	. 02 mfd , 400 v Aerovox P-82	
C206	$\begin{gathered} 30-30-20 \mathrm{mfd}, 450 \text { v Sprague } \\ \text { TVL } 3840 \end{gathered}$	Pen Assembly $\begin{gathered}\text { Librascope Drawing } \\ 309004\end{gathered}$
C207	. 05 mfd , 400 v Aerovox P-82	
C208	. 05 mfd , 400 v Aerovox P-82	Pen Cleaning Wire Librascope Drawing
C209	. 05 mfd , 400 v Aerovox P-82	309109
C210	$.05 \mathrm{mfd}, 400 \mathrm{v}$ Aerovox P-82	
C211	$.25 \mathrm{mfd}, 600$ v Aerovox P-82	
C212	$.25 \mathrm{mfd}, 600 \mathrm{v}$ Aerovox P-82	

Accessories for Librascope X-Y Plotter, Model 200A

PUNCHED TAPE CONVERTER
Relay-operated converter. Accepts then converts digital data from a punched paper tape to corresponding analog resistance for use in controlling plotter. Accepts three-decimal digits and sign for each axis. Can be programmed to reject any additional data. Operates by manual advance or automatic feeding of tape. Maximum speed: Up to 80 points per minute with accuracy of 0.1%.

BINARY CONVERTER

Relay-operated converter. Accepts 9 -bit and sign binary signal for eachaxis and converts to corresponding analog resistance for plotter. Total resistance: 10,000 ohms per bank. Normally, external thyratrons energize the relays and order the plot cycle, which is controlled by relays in the converter. External power requirement: 120 volts DC at 550 milliamps.

PUNCHED CARD CONVERTER

Relay-operated converter. Accepts then converts three-decimal digit, and sign, two channel, IBM punched card data to an analog form for input to plotter. Cards can be fedmanually through IBM reading brushes singly or readautomatically at rates up to 50 cards per minute with an accuracy of 0.1%. Operates with IBM Reproducing Punch Type 519 and IBM Gang Summary Punch Type 523.

NOTE: Librascope Decimal Keyboard Model 225
is used with Librascope X-Y Plotter Model 200A.

Librascope drawing 307331. preamplifier section schematic wiring diagram, librascope x-y plotier, model 200b

