5YSIEMS

ETA10 System Reference Manual

ETA10 Computer System

PUB-1005

(B11/2\SYSTEMS

ETA10 System Reference Manual

PUB-1005
Revision A
December 4, 1987

ETA10 System Reference Manual ETA Systems, Inc.

The items listed below are referenced in this document and are names, products, or trademarks
associated with the following companies:

Apollo is a trademark of Apollo Computer Corporation.
DOMAIN is a trademark of Apollo Computer Corporation.
CDC is a trademark of Control Data Corporation.

CYBER 180 is a product of Control Data Corporation.
CYBER 205 is a product of Control Data Corporation.
ETA is a trademark of ETA Systems, Incorporated.
ETHERNET is a trademark of Xerox Corporation.

Loosely Coupled Network (LCN) is a product of Control Data Corporation.
Multi-Host Network is a product of ETA Systems, Incorporated.

Network Access Device (NAD) is a product of Control Data Corporation.
Open Interconnection Network is a product of ETA Systems, Incorporated.
VAX is a trademark of Digital Equipment Corporation.

Disclaimer:

ETA™ Systems, Incorporated reserves the right to make changes in specifications and other
information contained in this publication without prior notice, and the reader should consult ETA
Systems to determine whether any such changes have been made. (At non-U.S. installations, the
reader should consult the local marketing representative). This manual may not be reproduced and is
intended for the exclusive use of ETA Systems’ customers.

The terms and conditions governing the sale of ETA Systems hardware products and the licensing and
use of ETA Systems software consist solely of those set forth in the written contracts between ETA
Systems and its customers. No statement contained in this publication, including statements regarding
capacity, suitability for use, or performance of products, shall be considered a warranty by ETA
Systems for any purpose or give rise to any liability of ETA Systems.

In no event will ETA Systems be liable for any incidental, indirect, special, or consequential damages
(including lost profits) arising out of or relating to this publication or the information contained in it,
even if ETA Systems has been advised, knew, or should have known of the possibility of such
damages.

The copyright laws prohibit the copying of this manual without the written consent of ETA Systems.
Copying, under the law, includes translating into another language or format.

Prepared by: ETA Systems, Incorporated
Technical Communication Dept.
1450 Energy Park Drive
St. Paul, MN 55108

© Copyright 1987 by ETA Systems, Inc.
All rights reserved.

PUB-1005 Rev. A ii

Revision

Record

Documents that have a numeric revision code, such as 01 or 03, are
still in the draft stage. They are not yet approved for release.
Documents carrying an alphabetic code, such as A or C, are
complete, finished documents. They are approved for release.

Document Software
Revision Version Date
Revision A Rel. 1, Vers. 1.0 December 4, 1987

Changes in This Revision

PUB-1005 Rev. A

Compared to draft versions previously distributed, this revision of the
ETAIO System Reference Manual includes new material on the operating
system kernel in chapter 4, revisions of chapters 7 and 8, a glossary,
and an index. It is meant to accompany Release 1, Version 1.0 of
EOS, the ETA10 operating system.

iii

Revision Record ETAIQ System Reference Manual

iv PUB-I1005 Rev. A

Table of Contents ETA10 System Reference Manual

Table of Contents

About This Documentc.coiitiiieiiierressnssseoseesssesssnens xi
System Architecture Chapter 1
Overview of the System Compomentsc.uuiuiiimiiineneneannn. Section 1
Guide to the Chapter Contents in This Manual 1-2
Super-cooled Systems i 1-3
Air-cooled Systemsc. i e 1-3
Operating Software ...ttt 1-4
SYStem AFCRITECIUTE o oo ettt e e e Section 2
Architectural Overview, 1-6
Hardware and Software Integration 1-7
Computational Architecture 1-7
Memory Architecture i i 1-8
Input/Output Architecturec.iieiieinn.n.. 1-9
Network Architecture it iiiiiiiiennnan.. 1-10
The ETAIO Model RANGEoo'eee e, Section 3
Cooling Optionsoiiiiniiiniin i, 1-11
Redundancy Optionscooviiiiinn.. e 1-12
The User Environment Chapter 2
The Environment Model, 2-2
Overview of the VSOS Environment 2-14
Functional Description of VSOS 2-30
The VSOS Command Shell 2-44
Resource Management Chapter 3
ETAI0Q Resource Managementc.c.ouuiuieununneunennenaenenns Section [
Management of the System Memories 3-5
Central Processor Memory Management 3-6
Shared Memory Managementc.cciuienenen.. 3-9
Communication Buffer Memory Management 3-11
Management of Processors R R R R E R R R R R 3-13

PUB-1005 Rev. A v

ETA10 System Reference Manual Table of Contents

Management of the Input/Output Subsystem 3-14
Management of the System Configuration 3-15
Resource Allocation and AcCOURLIngoiiieuniiiiineninneenenn. Section 2
ACCOUNting SYStEM ...\ttt ii it ininneearaeneanos 3-18
Tracking Resource Usage, 3-20
The User Registryttt it 3-22
The Account and Project Registry, 3-24
The Operating System Kernel Chapter 4
INtroduction it e e Section |
Distribution of Kernel Features 4-3
The Kernel Operating System Feature Groups 4-6
Underlying Operationsouiuiineeueeatnneneneneeeaneneneaens Section 2
103 oL O I (o7 4110 4-12
Process Queuesiiiiiiiiii i i e 4-14
Virtual Address Mechanism 4-16
Locked-Down Process Objectsocovinvntn vo.. 4-18
Mode Exchangesttt 4-21
Domain Change i, 4-24
Critical System Serversviiiiinencienenann.. 4-26
Processes on the ETAIO ittt ittt et it et cieeaianenns Section 3
Page Fault Processing i 4-37
The Logical-File System oottt ee e iinannonannns Section 4
File Directory/Catalog Managerccocvevnn... 4-43
File Support Module i 4-67
Record Manageriiiiiiiin it inieanenn 4-84
The Memory Managers iiiunei ittt i, Section 5
Central Processor Memory Manager 4-101
Shared Memory Manageroiiiiiiiiiiiiienn 4-117
Communication Buffer Management 4-123
The Process MAnaZerso uuiunnmeunenan e inanoeaenenanns Section 6
The Global Scheduler i ieenen. 4-143
Process Management iiiiiiiiiiianan. 4-153
Remote Procedure Calls i, 4-166

vi PUB-1005 Rev. A

Table of Contents ETAI10 System Reference Manual

Domain Managemento oot e s Section 7
Domain Managemento, 4-177
The System Managerscouuininin i iiineneninnenenenenennns Section 8
System Configuration Control oLt 4-205
System MORNItorooviin ittt 4-229
System Logging and Analysis oLt 4-238
SYStem ENIry . oot e e e e Section 9
User Managementottt iiinanennnnn. 4-243
Mainframe Components Chapter 5
Overview of the ETAIO Mainframec..uuiuiin et inniinnneennnss Section 1
Mainframe Componentsc.cooiiiinnuiininenn.n. 5-5
Overview of the ETA10 Hardware System 5-9
Central Processor ArchiteCtureo euiiinunenenennnnnnnnns Section 2
Central Processor Operationscooeuiennnn.. 5-14
Monitor Mode and JobMode il 5-15
Scalar Processor and Its Operations 5-19
Vector Unit Operationso, 5-26
The Register File 5-33
Data Flag Branch Register 5-37
Central Processor Interrupt Register 5-41
Interrupt Network i 5-43
Machine Addressing il 5-44
Using Floating Point Numbers and Arithmetic 5-45
Error Management in the Central Processor 5-48
Master Clock ..ottt e 5-52
Timers and Countersc.oiuiiiiiiiininnenenn. 5-53
Instrumentation Counterso, 5-55
SYStEM MemoOTies . ..ottt Section 3
Central Processor Memoryooiininiiinnininnnnn. 5-58
Virtual-to-Physical Addressing, 5-63
Central Processor Memory Protection 5-68
Central Processor Memory Interface 5-71
Shared Memory ..ot e e 5-73
Shared Memory Interfaceo, 5-80
Communication Buffero i 5-84
Communication Buffer Interface 5-89
The ETAIOQ Instruction Setouieumoniinne i, Section 4
Instruction Formats i i 5-93

PUB-1005 Rev. A vii

ETA10 System Reference Manual

Table of Contents

Addressingot i e e 5-95
Ilegal Instructions ...ttt ininnnennnnn 5-98
Scalar Instructions it e e 5-100
Vector Instructionsttt 5-101
Sparse Vector Instructionsc.covitiiiiiian 5-103
Functional Categories of Instructions 5-104
The 1/O Subsystem Chapter 6
Overview of the Input/Output Subsystemouiiuieiiienanenennnn. Section 1
IOU Architecturevoitr ittt i it e ieneenn 6-6
IO Softwareo e e e e Section 2
TIOU Supervisorouiiiiiinniite ittt 6-11
Operating System Kernel Features 6-15
I/O Channel Softwareoiiiiuiiiininiennnnen.. 6-19
Disk Channel Software iiiiiieinin.. 6-19
FIPS 60-2 Channel Software, 6-21
VME Channel Softwareo it 6-23
Disk Input/Output i 6-26
IO Hardware ittt e Section 3
I/O Processor Componentsc.oouvenennennanennen.. 6-34
The 10U Connection to the Data Pipe 6-36
The I/O Interface to Shared Memory 6-39
IOU Connections to the Service Unit 6-42
IOU Bus Architecturecviiiinn i iennnnnns. 6-45
The JIOU Chassiscviiin i it eie e 6-47
Networks Chapter 7
The Open Interconnection NetWOTKceuuuneueennennnnennnnn. Section 1
TCP/IP and CSMA/CD Communication Protocols 7-3
Typical ETA10 OIN Configuration 7-4
The OIN Hardware Componentscoveeeenenen... 7-6
How the VME Channel Processor Controls the OIN 7-7
TCP/IP Protocol Processor Components 7-9
Five Levels of OIN Communication Protocols 7-10
How Users Access the ETA10 through the OIN 7-12
Five Commands from an Apollo Workstation 7-14
ETA10 Software for the OIN 7-15
Transmission Manager and TCP/IP Protocol Software 7-16
The OIN-Related Software Residing inthe CPU 7-18
viii PUB-1005 Rev. A

Table of Contents

ETAI10 System Reference Manual

Management of OIN Equipment 7-19
Reliability of ETA10 Network Services 7-20
The Loosely Coupled Network c.eeiiiiiiiniiiennennnnnns Section 2
Computers and Software that Connect to the LCN 7-22
How the Remote Host Facility Is Used to Transfer Files 7-24
Using the MFLINK Commandoiiininn. 7-25
ETA10 Process Flow for the Loosely Coupled Network 7-26
Five Levels of LCN Communication Protocols 7-27
NADs Connect LCN Hosts to Network Trunk Cables 7-28
How the FIPS Channel Processor Controls the LCN 7-31
The Hardware Components of the LCN Trunk 7-31
ETA10 Software for the Loosely Coupled Network 7-33
ETA10 Software for the LCN that Resides on the CPU 7-35
Additional ETA10 Software forthe LCN 7-39
Management of LCN Equipment 7-41
Peripherals: Disk Drives Chapter 8
Disk Physical File Structure L. 8-2
Hardware Components and the Disk System 8-4
Interface to the Disk System, 8-9
Disk System Performance 8-15
Disk System Managementt 8-16
Service Unit Features and Functions Chapter 9
The SU Network — An Overviewcviuinn. 9-2
The Service Unit Operator Environment 9-6
SU Hardware Componentsc.covniiinnienen.. 9-9
Service Unit Applicationst i, 9-12
The SU Support Processesc.couviiinninnainen.. 9-41
Power and Cooling Systems Chapter 10
The Cryogenic System, 10-2
Refrigeration Systemt 10-12
Power Distribution Systemcoiiiiiiiiiiia., 10-14
The Power and Cooling Supervisor 10-18
€ LT § o P Glossary-1
Referenced Documents List 0ottt Ref.Doc.-1
Index ..ot i it i e ittt Index-1

PUB-1005 Rev. A ix

ETAI1Q System Reference Manual Table of Contents

X PUB-1005 Rev. A

About This Document. ..

Purpose

The ETAIO System Reference Manual is a detailed overview of the
ETA10’s architecture and major features. It is not meant to repeat
specific, operations-oriented information from other ETA Systems
reference documents. The level of complexity is appropriate for
system analysts who want comprehensive descriptions of hardware
components and operating system functions. It is suitable for training
courses providing general orientation on the ETA10 system. Readers
wanting support for hands-on use of the system should refer to
“Related Documents” later in this section.

This edition (Revision A) describes Release 1, Version 1.0 of EOS,
the ETA10 operating system, and its VSOS user environment.

Intended Audience

This manual is intended for system analysts and experienced users as
well as for administrators, trainers, students, and system evaluators.

How This Document Is Arranged

PUB-1005 Rev. A

This document contains ten chapters, a glossary, and an index. A
general table of contents at the beginning of the manual is augmented
by detailed tables of contents at the start of each chapter.

Chapter 1: Introduction to System Architecture provides a brief
overview of the ETA10 computer system: its architecture, hardware
and software components, and model range. The reader is directed to
more detailed discussions of each subject later in the manual.

Chapter 2: The User Environment describes VSOS, programming
environment of the ETA10 operating system EOS.

Chapter 3: Resource Management describes system configuration,
resource allocation, and management of users and user sessions.

Chapter 4: Operating System Kernel the monitor, and supervisors,
distributed collection of features that make up the kernel of EOS
Release 1, Version 1.0.

About This Document ... ETA10 System Reference Manual

Chapter 5: The Mainframe Components describes the ETA10’s CPU
architecture and instruction set, system memories, interfaces, and
transfer mechanisms.

Chapter 6: The Input/Qutput Subsystem describes I/O interface
architecture, /O unit (IOU) hardware and software, as well as the
disk storage system, channels, and interfaces.

Chapter 7: Networks describes two networks supported by the
ETA10: a local area network and a network supporting
communications with remote hosts.

Chapter 8: System Peripherals describes the ETA10’s disk storage
peripherals.

Chapter 9: Service Unit Features and Functions describes the
hardware components, support software, applications, file system,
network, and operator environment of the service unit (SU).

Chapter 10: Power and Cooling Systems describes the cryogenic,
refrigeration, and power systems.

The final component of the manual includes a glossary, a
bibliography, and an index.

How to Use This Document

The general table of contents covers major subjects. More detailed
tables of contents at the beginning of each chapter include lists of
figures and tables. A glossary and an index appear at the end of the
manual.

Conventions Used in This Document

An attempt has been made in this manual to expand the acronyms
used in developmental documentation; e.g., “CPM” becomes “CP
memory” or “central processor memory”, “IOU” becomes “I/O unit”,
and so on. However, developers’ acronyms are retained in diagrams
and descriptions where they are most suitable.

PUB-1005 Rev. A

ETAI0 System Reference Manual About This Document ...

Related Documents

The following ETA Systems publications are useful supplements to the
System Reference Manual. The System Overview is a good
introduction, and the manuals on VSOS and support tools give
information (especially command and parameter descriptions) in
greater detail than in this manual, which is meant as a conceptual
rather than a hands-on guide.

PUB-1006 ETA-I0 System Overview
PUB-1118 Support Tools: Utilities, Debugger, B.E.S.T.
PUB-1119 Support Tools: Diagnostics

PUB-1051 VSOS Environment Reference Manual: Concepts and
Commands

PUB-1084 VSOS Environment Referencé Manual: System Interface
Library Calis

PUB-1005 Rev. A xiii

About This Document ... ETAI1Q System Reference Manual

xiv PUB-i005 Rev. A

CHAPTER

1

System Architecture ETAI0Q System Reference Manual

Chapter

Introduction to the System Architecture

Chapter Contents

Overview of the System COmMpPORENtSciuiiuiunueninuenennnnn. Section 1
Guide to the Chapter Contents in this Manual 1-2
Super-cooled Systems il 1-3
Air-cooled Systems i e 1-3
Operating Softwareot 1-4
Processor-Specific Monitor and Supervisors 1-4
EOS Kernel it 1-4
Applications Software o i 1-5
System ATCRItECIUTEottt et ettt ettt Section 2
Architectural Overview i, 1-6
Hardware and Software Integration 1-7
Computational Architecture 1-7
Machine Arithmetic i, 1-8
The Instruction Sett 1-8
Memory Architecture i 1-8
Memory Hierarchy 1-9
Shared Memory, 1-9
Input/Output Architecture, 1-9
Network Architectureo iiiiieineennnn. 1-10
Low-Speed Network B 1-10
High-Speed Network o it 1-10
The ETAIO Model Rangeot Section 3
Cooling Optionsttt 1-11
Redundancy Options ..., 1-12
Multiple Components o .. 1-13
Redundant Componentscvuinuonn.. 1-13
Redundant Connectionsc.ciiuinnon... 1-13

PUB-1005 Rev. A

System Architecture ETAI10 System Reference Manual

PUB=-1005 Rev. A

Chapter

Introduction to the System Architecture

In This Chapter. ..

Chapter 1 serves as the introductory chapter in this reference manual
for the ETA10 supercomputer. As a system reference, the manual
provides a functional description of the system, describing the
hardware and software both as discrete components and as parts of
an integrated system.

Section 1 introduces the two basic models of the ETA10 system and
their major components. Section 2 is an architectural overview of the
components, and a guide to the chapters that describe them. Section
3 discusses the range of ETA10 models and their cooling and
redundancy options.

Section 1: Overview of the System Components
- Guide to chapter contents
- Introduction to super-cooled and air-cooled systems

Section 2: System Architecture

- Overview of computational, memory, I/O, and network
architectures

- References to chapter contents

Section 3: ETA10 Model Range
- Cooling options for model range
- Redundancy options for model range

PUB-1005 Rev. A 1-1

System Architecture ETAIQ System Reference Manual

Section 1: Overview of the System Components

An ETA10 system is comprised of the following components:

* one to eight central processing units

* 4-million word central processor memories, a large shared
memory, and a communication buffer

e one to eighteen input/output units

e service unit for system maintenance and control

e power and cooling support appropriate for model
o distributed set of operating software

 set of user environment and application software

Guide to the Chapter Contents in this Manual...

ARCHITECTUR

...introduction
...architectural overview

FR ENVIRONMENT

q ...VSOS environment

RESOURCE MANAGEMEN

...accounting
SQFTWARE
...operating system kernel
MAINFRAN
...central processor
...memory /0 SUBSYSTEM

...instruction set ...J/O units

...channel hardware and software

NETWORKS

...high-speed

...low-speed RIPHERALS

...high-speed disk device
...performance requirements

SERVICE UNIT
...human interfaces
...hardware
...test and maintenance POWER AND COOLING
software ...Cryogenic system

...System power supplies

1-2 PUB-1005 Rev. A

ETAI0 System Reference Manual System Architecture

Super-cooled Systems

Here is a computer-room view of a super-cooled ETA10 system:

Service Unit
printer
Shared Memory

{SCMI)
cabipet

Input/Output
cabinets

Service Unit
cabinet

Cryostat
support cabinet
vaive boxes)

P Central Processor
cabinets

i / {cryostats)

Figure 1-1. Computer-room view of super-cooled ETA10 system with four to eight processors.

Operator’s
dispia'
console

In the center are the super-cooled central processors in their cryogenic
housings, the cryostats. Since one or two processors may be contained in
each cryostat, this can be a four-to-eight processor system. The central
processing units directly access the shared memory housed in the tall
cabinet behind and connected to the cryostats.

Cryogenic support cabinets provide mechanical controls for the cryostats,
and are installed nearby. The I/O units and the service unit components
are individually housed in identical cabinets. Also shown is an operator
console with its display workstation; there may be several of these
workstations networked with the service unit.

Air-cooled Systems

Input/Output
cabinets

Service Unit .
In contrast, the computer room-view

of an air-cooled ETA10 is markedly
different. One or two air-cooled
central procesors, the memory, and
/ the system interfaces are all
packaged within a single cabinet.

Printer / ETA10 Cabinet .

I/O units, the service unit cabinet,
printer, and an operator’s console

with its display workstation are shown
here with the air-cooled ETA10 cabinet.

Figure 1-2. Computer-room view of a single processor air-cooled ETA10 system.

PUB-1005 Rev. A 1-3

System Architecture

ETA10 System Reference Manual

Although the models differ externally, internal views of both
air-cooled and super-cooled ETA10 systems are identical. The
architectures are the same: fast central processors, a large virtually
addressed local memory, large second-level shared memory, wide
bandwidth I/O transfers, and a distributed operating system. This
manual describes the super-cooled ETA10 models.

Operating Software

The ETA10 operating system, EOS, has three components:

» processor-specific core software
» system-wide kernel features
* applications software supported by the first two categories

Processor-Specific Monitor and Supervisors

Each type of system processor has its own software to provide its
basic, low-level functions: the mainframe central processor has
monitor software that runs in monitor mode. The 68020 processors in
both the service unit and the I/O processors have individualized
supervisor software that runs in supervisor mode.

Supervisor Supaervisor

EOS Kernel

The kernel level of EOS is distributed across the entire hardware
system. Portions of the kernel coordinate activities among system
processors, and manage the memory hierarchy to balance demands of
the computational engine with wide bandwidth I/O from peripheral
disk and network systems. Kernel features coordinate among
processors to manage memories, /O capabilities, and system
maintenance/communication functions.

MEMORY
HIERARCHY

Figure 1-3. The EOS kernel is distributed across system hardware.

PUB-1005 Rev. A

ETA10 System Reference Manual System Architecture

PUB-1005

Kernel features perform a wide range of functions. The logical file
system provides implicit and explicit /O. Process management
controls the mulititude of processes active on each central processor.
Domain management software provides efficient access to system
operating code and routines without resorting to process switching.
Interprocess communication uses the communication buffer to create
and control semaphores that coordinate activities among central
processors. Remote procedure calls enable the three types of system
processors to communicate with each other. Memory managers
coordinate the multi-level hierarchy of system memories. Another set
of features provide system scheduling, monitoring, accounting, and
control functions.

Applications Software

The applications software is supported by the first two categories. It
includes the VSOS user environment, system and special libraries,
compilers and debuggers, system utilities, and development and
vectorizing tools.

Rev. A 1-5

System Architecture ETAIQ System Reference Manual

Section 2: System Architecture

The ETA10 implements a balanced architecture characterized by
parallelism throughout its high-speed processing, addressing, and data
transfer operations. The multi-pipelined computational engine is
balanced by extremely fast /O, and by a nearly unlimited virtual
memory space to support the multitude of requests coming from
high-speed disks and multi-user local area networks.

The ETA10 is a fully distributed processing machine; work is spread
throughout the system in such a way that central processors execute,
I/O processors move data, the service unit monitors performance, all
done simultaneously. Central processors dedicated to execution are
balanced by independent I/O and service unit processors that perform
other necessary but non-computational system work. The addition of
the communication buffer enables the central processors to efficiently
share and multiprocess data as well as to manage complex system
resources.

Architectural Overview

At the heart of the ETA10 system is a high bandwidth shared memory
that satisfies the data demands of vector processors and high-speed /O
transfers to disks and networks.

Comanu;fﬁcaﬂon
uffer
.5 to 1 miillon words 88

B0
B0
B0

B0
B0

__uwn |BB
[Service Unit 88

Figure 1-4. System components of the ETA10.

4 million words

MEMORY
4 million words

Each central processor has both a scalar unit and a double-pipelined
vector unit that supply the computational power in the system. The
data needs of these very fast processors are met by four million
words of virtually addressed memory and ample system bandwidths.
Shared memory makes direct transfer to the local central processor
memory. The shared memory allows large blocks of data to be
moved efficiently to central processor memories. /O bandwidths
allow data transfers to/from peripherals at high rates.

1-6 PUB-1005 Rev. A

ETAI0 System Reference Manual System Architecture

Hardware and Software Integration

Within the ETA10, hardware and operating system components
execute programs concurrently, supported by large memory
bandwidths and parallel processing capabilities. Software maximizes
hardware resources by keeping several user programs in shared
memory at the same time, rapidly switching the processors between
programs as priority and data availability dictate. Hardware and
software combine to provide parallel protection schemes: protection
between programs, protection between processes, and protection within
processes.

The operating system plays a major role in managing memory and
controlling memory contention. The operating system must distribute
data over the large shared memory so as to make the data quickly
and readily accessible when requested.

Chapter 2 describes the VSOS user environment. Chapter 4 covers the
main part - the kernel — of EOS (the ETAIQ Operating System). System
resource management is discussed in Chapter 3.

Computational Architecture

Central processor operations overlap with shared memory data
transfers. Once the transfers from shared memory are started, data
moves to the processor at one 64-bit word per clock cycle. Transfers
can be made at this rate per cycle to five processors at once or, in
redundant systems, to all eight processors.

Central processor memory moves eight 64-bit words per clock into the
processor. The central processor has a scalar unit and twin vector
pipelines that operate totally in parallel, the scalar unit producing one
result per clock cycle, the vector unit producing two 64-bit results or
four 32-bit results per cycle.

CENTRAL
PROCESSING
UNITS:

to maintenance
interface on
alt CPU components

Re
)

Figure 1-5. Components in the ETA10 central processing unit.

PUB-1005 Rev. A 1-7

System Architecture ETA10Q System Reference Manual

Vector operations can be overlapped, allowing a vector operation to
be starting while another is completing. This overlap improves the
performance of short vector operations.

Machine Arithmetic

A twos complement binary number system is used in ETA10
arithmetic operations. Floating point operations use twos complement
arithmetic in formats for both full and half words. Full words have
64 bits, half words have 32. The benefit of using 32-bit words is that
two pieces of data can be put in the same space; also, a vector
processor processes twice as many 32-bit operands in the same
amount of time. In the 48-bit coefficient of a full 64-bit word,
numbers are precise to 14 decimal digits; in the 24-bit coefficient of a
32-bit half word, numbers are precise to about 7 decimal digits.

Machine arithmetic is described in Chapter 5, in the “Central Processor
Architecture” section.

The Instruction Set

The ETA10 architecture uses a large instruction set designed primarily
for vector operations. Both the ETA10 instruction set and processor
hardware are vector-based; they are not merely extended to provide
vector operations. The ETA10 instruction set derives historically from
Iverson’s A Programming Language (APL). The significance of APL is
that vectors are inherent to the language rather than additions to it.

The ETA10 instruction set is model independent, and is compatible with
Control Data Corporation’s CYBER 205 instruction set. It has 256
function codes, 40 of which are unused. The richness of this set is
extended by sub-functions that give an instruction additional refinement.
Special shared memory instructions manage the queues used in
memory-to-memory transfers between central processor memory and
shared memory. A group of communication buffer instructions enable
the central processors to communicate and share data.

The instruction set is described in Chapter 5, in the “ETAIQ Instruction
Set” section.

Memory Architecture

The ETA10 central processor supports a virtual memory system with
virtual address space of 2 trillion words. In this system, users request
memory rather than manage it; large jobs can be staged without loss
in throughput and without involving the user. The system includes
very large hierarchical memories. Fewer memory conflicts occur with
a hierarchical structure than with systems depending upon a central
memory. A hierarchical structure supports large numbers of small
jobs as well as very large jobs. Explicit file /O is also available.

1-8 , PUB-1005 Rev. A

ETAIQ System Reference Manual System Architecture

Memory management software is described in Chapter 4, “Operating
System Kernel”. Memory hardware is described in Chapter 5, in the
“System Memories” section.

Memory Hierarchy

At the top end of the hierarchy, speed and ease of memory access are
greatest while memory size is smallest. The central processor has a
10 nanosecond access time for the register file; a central processor
waits one second for data to be transferred in from an /O unit.
Although memory size increases at the other end of the hierarchy,
access time also increases.

Register
File >
(fggsﬁg;gl)t Central Processor
Memory :
(4 milion words) Shared Memory Disk
(32 to 256 million words) Storage
{may be
100s of
.................. billlons
Communication Buffer of bytes)

{1/2 or 1 miliion words}

Figure 1-6. The ETA10 memory hierarchy.

Shared Memory

All system processors have access to shared memory. Shared
memory serves as the repository for work as it comes into the system,
executes, and leaves the system. When programs are multiprocessed,
different pages of data are moved from shared memory and sent to
different processors. The central processors communicate between
themselves using shared memory and the communication buffer to
pass messages back and forth to coordinate program execution. The
I/O subsystem accesses shared memory to send or receive requests
that bring work into the system and that move data out to the disks or
networks.

Input/Output Architecture

PUB-1005

An T/O unit functions in the system as a set of independent,
multifunctional channels, able to access both shared memory and the
communication buffer. Within each /O unit, several types of
channels interleave high speed transmissions from disk drives and
network interfaces.

Rev. A 1-9

System Architecture ETA10 System Reference Manual

The software architecture distributes most of the I/O functionality
within I/O processor-based code. Memory management software
resident on the central processors makes and confirms I/O requests.
Software required to interface network user programs for processing
also resides on the central processors; other network protocol and
message packaging software resides on the I/O processors.

1/0 hardware and software are described in Chapter 6, “I/O Subsystem”.
Disk characteristics and requirements are described in Chapter 8,
“Peripherals”.

Network Architecture

Both a high-speed and a low-speed network are implemented in the
ETA10 system architecture.

Low-Speed Network

The first network is workstation-based, and reflects the growing trend
for supercomputing “on demand.” This is the Open Interconnection
Network, a local area network that serves to connect users into the
system via a standard mode of access. This network allows users to
take advantage of the ETA10’s ability to efficiently handle a great
many small, interactive sessions. The ETA10 interface to this network
provides system access for a large number of network users and
ensures reasonable performance and response time. The peak
transfer rate across the Ethernet exceeds 1 million bits per second.

High-Speed Network

The second network is mainframe-based, and reflects the typical use
of supercomputers for processing huge amounts of data stored on
large systems. This is the Multi-Host Network, a loosely coupled
network that connects mainframes rather than users to the ETA10.
High-performance mainframes and peripherals are connected to the
system over a trunk that achieves a peak transfer rate of
approximately 6 million bits per second. The higher performance is
required because the work processed via this type of network is
large-batch oriented.

Chapter 7, “Networks”, describes both types of networks and their
interfaces to the ETAIO system.

1-10 PUB-1005 Rev. A

ETA10 System Reference Manual System Architecture

Section 3: The ETA10 Model Range

The ETA10 series of supercomputers include two air-cooled models
and two super-cooled models. The P and Q series are air-cooled and
achieve peak 32-bit performance ranges of 375 to 950 MFLOPS. The
E and G series are super-cooled and achieve peak 32-bit performance
ranges of 850 to 10,200 MFLOPS. (Peak 64-bit performance is one
half the 32-bit performance.)

All ETA10 models are architecturally identical. All models use the
same central processor, instruction set, and primary hardware
components; all models run under the same operating software and
applications set. Performance increments are gained by adding
central processors and pluggable memory cards, and by super-cooling
central processors.

This chart compares characteristics of the ETA10 models:

ETA10 Number Cycle Million Words Cooling
Model: of CPUs: Time: of Shared Method:
o B84 AR
AR

S

Although ETA10 models are architecturally identical, cooling and
redundancy options provide ranges of system performance and
availability during failure and maintenance.

Cooling Options

PUB-1005

Cooling options provide significant performance enhancements for
the central processor boards. CMOS semiconductor technology is
used in the high density chips that populate the central processor
boards. Because CMOS chips use relatively little power and dissipate
very little heat, they need only be cooled with ambient air to function
normally. The ETA10 P and Q models are cooled in this manner.

However, by substantially lowering the environmental temperature,
logic gate delays are greatly reduced and double the processing
capability of the board. Central processor boards in ETA10 G and E
models are housed in cryostats where they are super-cooled in baths
of liquid nitrogen. Super-cooled systems offer very exceptional levels
of performance; air-cooled systems offer efficiency in installation and
lower costs of operation.

Rev. A 1-11

System Architecture ETAI10 System Reference Manual

Redundancy Options

1-12

System redundancy ensures the system is available during component
failure or maintenance. Availability is used as a measure of the
system’s ability to function and to perform during failure or
maintenance.

Redundancy means that the user sees no change in the system during
instances of failure or maintenance. Redundant design in the ETA10
is apparent in several ways:

e multiple components that can independently perform the same
function. Normally these components extend system capability;
but they can substitute for other components as needed. For
example, the multiple central processors.

* redundant components that are included as insurance; they may
or may not extend system capability. For example, the parallel
power supplies.

e redundant connections between components that are another
form of system insurance

The upper portion of this diagram shows the number of components
in each category included in a typical non-redundant model E system.
The numbers refer to how many of the components are in the system.

CPUs Memory Interface Boards IOUs Service Unit
Communication Shared Memory 110
BorTor 11 |interface 1 Unit Rorvr
Central {.S million words) Communication 1 1
Proc?ssor Buffer interface 1
Shared Input/Output Service
: ‘ Memory 1 Interface 1 'do| Console 4
memory Service Unit nit
interface 1 » Qperator
Central 1
Proc:ssor ° ° ° °
® ® ®)
g ° ™ ™ '

Shared Memory
lnterface

2
Communication
Buffer Interface

Communication
Buffer

(.5 million words) |

Central Input/O

Input/Qutput
Proc:ssor
Service Unit
d Interface

Figure 1-7. Redundancy options in the ETA10 super-cooled systems.

The components within the shaded area at the bottom are those added
in each category to provide redundancy in a model E system.

PUB-1005 Rev. A

ETAIlO System Reference Manual System Architecture

PUB-1005

Multiple Components

Both redundant and non-redundant models have multiple central
processors and I/O units: these units function independently and
readily substitute for a like unit removed from the system
configuration. Multiple processors are required to meet system
performance needs, but they also serve to ensure system availability.

Redundant Components

The diagram above shows the components required to make the
system redundant, absolutely ensuring system availability. Required
components are a shared memory, a communication buffer, a set of
the major system interface boards, and a second service unit server
node.

When there are two units of shared memory and communication
buffer, each fully functions as a component “half”. For example,
IOUs that port into one unit of the shared memory are also fully able
to access the second or redundant unit of shared memory. Redundant
interface boards may enhance system performance as well as provide
system insurance. A second /O interface board doubles the number
of /O ports into shared memory; a second shared memory interface
board doubles the number of central processor access slots to shared
memory. A redundant system includes a second server node in the
service unit to maintain parallel connections to the system
maintenance interface.

Redundant Connections

Some components are duaily connected. Each IOU is connected by a
pair of serial input/output lines to each service unit server node.
Peripheral devices and networks are usually dually connected to two
IOUs to maintain connections even in the event of failures.

Rev. A 1-13

System Architecture ETAIQ System Reference Manual

1-14 PUB-1005 Rev. A

CHAPTER 2

Chapter

The User Environment

Chapter Contents

PUB-1005 Rev.

The Environment Model 2-2
Introductory Descriptiono, 2-2
The VSOS User Environment 2-4
Calling a Kernel Function from an Environment 2-4
Elements in the Environment 2-5

Environment-independent components 2-5
Environment-dependent components 2-6
Management of users and user sessions 2-7
User access to the system 2-7
Environment Processesc.iitiiiiiiiiii. 2-8
USEr SESSIONS ..o vvtiiii ittt ittt et e e 2-10
Batch sessions and Interactive sessions 2-10
Session Start=Upottt e e 2-12
Session execution and completion 2-12
The Login Process ..ottt 2-13

Overview of the VSOS Environment 2-14
Flles . oot e e 2-14
Libraries ... i et e 2-18
Language Processorscoiiiiiiiiiiniiin., 2-18
Utilities . ..o e e e 2-18
System Interface Library (SIL) oot... 2-18
Command Shello i, 2-19
The Open Interconnection Network (OIN) 2-19
VSOS/Kernel Interfacesccoviiiinnnnnnnn.n. 2-20
How ETA VSOS differs from CDC VSOS 2-25

File Concept Differences 2-26
Device Characteristicscovviriiennenenn .. 2-26
Process Management, 2-27
User Interface Differences 2-27
Functional Description of VSOS o .. 2-30

User Environment ETA10 System Reference Manual

Contents (continued)

List of Figures

Figure
2-1
2-2
2-3

The VSOS File Systemooiiiiiiiiniiiininnnnnn, 2-30
The VSOS Tablescooiiiiiiiiiiniiniinenenn... 2-34
The File Information Table 2-34
The Command Shell i, 2-34
Communicating with the User 2-34
Managing Processes i, 2-35
Establishing the VSOS Environment 2-36
Security and Protection L., 2-42
The VSOS Command Shell iin... 2-44
Shell Initialization e 2-46
Command Processing i, 2-48
Internal Tasksot 2-50
Process Create, 2-52
Process Monitor / Process Terminate 2-54
Output Dispositiono inan.. 2-55
Shell Terminationcc0iiiiniinenenennnnn 2-56
Title Page
The environment model i i, 2-3
Calling a kernel function from an environment e 2-5
Spawning of processes in the VSOS environment 2-9
Comparison of interactive and batch sessions 2-11
System entry of batch and interactive sessions 2-12
Interactive login process involving the common login feature
and Global Scheduler 2-13
File Directory/Catalog manager file system 2-15
The VSOS environment directoriesccoiiinein... 2-17
The user interfaces to the operating system 2-21
Directories for newly created users, 2-31
VSOS File Management i iiiiiiiiiaaninnnnn 2-33
Pathways to the VSOS environment cu .. 2-35
VSOS environment working directory with links to the
user’'s home directoryc.coiiiii it it 2-37
The shell creates (exports) amailboxcvvniennn. 2-38
The shell creates a process, passing inheritance information 2-39
The newly created process exports (creates) its own mailbox 2-39
The shell is informed of the mailbox ID of the new process 2-40
A process sends a dayfile message tothe shell 2-41
Processing of a VSOS environment session 2-45
Shell initialization flow chart i, 2-47
Command processing flow chart iiviin... 2-49
Internal tasks flow chart i i i 2-51
Process create flow chart i il 2-53
Process monitor/terminate flow chart.................. 2-54

PUB-1005 Rev. A

ETAI10 System Reference Manual User Environment

2-25 Output dispositionottt 2-55
2-26 Shell Terminationiiiitiniiit ittt ittt eenennnnns 2-56

List of Tables

Table Title Page
2-1 VSOS command SUMMArycoeueuiiiennnneneenenennnnns 2-22
2-2 SIL non=I/O FOUtINESttt ittt et ettt eeeetiteenannnn 2-23
2-3 SIL I/O TOULINES « ot vttt ittt ittt ettt teetsenseannnannnseneennn. 2-24

PUB-1005 Rev. A

’

User Environment ETA10 System Reference Manual

PUB-1005 Rev. A

Chapter

The User Environment

In This Chapter

Chapter 2 introduces you to the Virtual Storage Operating System
(VSOS) environment available on the ETA system.

¢ The Environment Model

* Overview of the ETA VSOS Environment
* Functional Description of VSOS

e The VSOS Command Shell

PUB-1005 Rev. A

User Environment

ETAIQ System Reference Manual

The Environment Model

Introductory Description

2-2

EOS is a general purpose operating system that is designed to support
multiple views or presentations of its functions. EOS comprises a
kernel, a set of interface libraries, a programming environment, and
support tools. The kernel provides basic system functions to the user:
file management, I/O, memory management, and process control. It
manages system resources, and controls system hardware and
software.

User applications running on the ETA10 make use of kernel functions
by means of a programming environment that maps on to the
underlymg operatmg system transparently to the user. The
programming environment, a layer of software built on top of the
kernel, handles the necessary interaction between the user and the
kernel’s services. The environment enables you to take advantage of
the machine’s capabilities using a language and context that is
familiar.

Figure 2-1 shows the layers of software on the ETA10: the basic
kernel functions, an interface allowing access to these functions, and
the ETA10 user environment, which accesses the functions by way of
the interface.

All the necessary pieces for program development and execution -
libraries, editors, compilers, debuggers and other tools, are accessible
from the programming environment. Users have access to a common
set of languages and tools, such as FORTRAN 200, ETA Debug, and
the loader. These products are defined independently of the
environment, but use some of the environmental support for context.
For example, ETA Debug uses the file search algorithm of the active
environment to locate files.

PUB-1005 Rev. A

ETAI0 System Reference Manual User Environment

Figure 2-1. The environment model.

An environment provides basic features to its users. A command
language allows you to initiate utility programs, compilers, user
applications, and to specify parameters controlling their execution.
The command shell interprets the command language and causes the
appropriate commands to be executed in a session. Libraries provide
the interfaces between a user program and the operating system,
allowing programs to communicate with the kernel using subroutines
or system calls. ETA Systems provides application packages for many
subject areas, including biotechnology, computational fluid dynamics,
and structural analysis.

PUB-1005 Rev. A

2
t
w

User Environment

ETAI10 System Reference Manual

The VSOS User Environment

ETA Systems supports the Virtual Storage Operating System (VSOS)
command set, the user interface of the CYBER 205, as its first
programming environment. There are some differences in the ETA10
version. CYBER 205 features which have no analogue in ETA
computer systems have been deleted. Some utilities have been
replaced by new ones with equivalent or new functionality. New
features have been added. Richer interactive abilities are provided
and the user interface has been made more powerful. The main
differences between CYBER 205 VSOS and the ETA10 system are
discussed later in this chapter.

Calling a kernel function from an environment

2-4

Applications running in an environment call the kernel

through an interface which is a collection of routines. For example,
VSOS applications call System Interface Library (SIL) routines, which
communicate with the kernel to complete both /O and non-1/O
functions. The interface used by an environment is specific to that
environment.

Figure 2-2 shows a request to the operating system from an
application running in the VSOS Environment. The request is to
prepare a new process for execution. The application issues a SIL
subroutine call, QSINIT (initialize a controllee), to a process
management function in the kernel, requesting that it run a process,
and passing information about the process that is to run.

FUB-1005 Rev. A

ETA10 System Refe

rence Manual User Environment

Figure 2-2. Calling a kernel function from an environment.

Elements in t

PUB-1005 Rev. A

he Environment

Operating system components fall into two groups in relation to user
environments: those dependent on an environment, and those
independent of it. Environment-independent tools serve as common
resources.

Environment-independent components

Kernel functions. These are accessed by user environments, but their
structure is not dependent on an environment’s functional
requirements.

A common set of languages and tools. These include the FORTRAN
200 compiler, ETA Debug, and the loader.

The object text and executable file formats.

File representation and file limits. These include the maximum
number of records in a file, length of records, the maximum
number of file objects, the length of the data that can be
transmitted during I/O, the maximum number of outstanding /O
operations allowed, and the maximum number of files that can be
open at the same time.

[
I
w

User Environment

ETAIQ System Reference Manual

File access permissions. The ETA file system allows access to a file
based on a state ID, which contains the user name, the user’s group
ID, and the domain name. The state ID is checked against valid
permission types for that state to decide if the user can perform file
operations. The access types exposed depend on the environment.

User validation and privileges, including system security, access to the
system and user objects, and validation during the user login
procedure. These are controlled by the kernel features.

File attributes. Intrinsic attributes necessary to define a file include
the physical file identifier, the owner user name, and the file’s
device class identifier. Record management attributes define such
elements as record type, maximum record length, and padding
characters. Accounting and statistical attributes describe the file’s
creation date and time, the account ID, information about when the
file was last modified, and so on. Resource limitation attributes
include the file’s device class and the current file length.

Environment-dependent components

The interface to kernel functions. In the VSOS environment, these
consist of subroutine calls that request activity and return results.

Libraries containing routines tailored to a particular environment,
such as the System Interface Library for VSOS.

Utilities.
The command processor and command formats.

User validation. This is conducted at login time to determine a
user’s access rights to the selected environment. A default
environment is activated for the user who does not select an
environment at login time.

The process management model. Processes in a session run under the
control of the environment in which they are activated. Inheritance
information is passed on to new processes in the session. This
contains data about directories known to the user environment, as
well as other needed information.

File permissions, which allow users to reference files. An
environmentally determined access state allows users to access a
file. A state ID, containing the user name, the user’s group ID, and
the domain name, is checked against the type of file operation
requested by the user and access permission granted accordingly.
File attributes which are dependent on the user’s environment
include the type of file access - sequential or direct. Although the
system does not define a file type as having sequential or direct
access, a user environment does make that distinction.

File system model. The environment presents a view of the
underlying file system that is tailored to its user.

PUB-I1005 Rev. A

ETA10 System Reference Manual User Environment

Management of Users and User Sessions

Anyone privileged to log in to the system is a user, but users differ in
the extent to which they are privileged to access files, system
resources, and other users. At the top of the pyramid is the system
administrator, who has almost unlimited access to the system. The
system administrator grants system access to other users and oversees
their privileges. Depending on the site, there may be additional site
administrators under the authority of the system administrator. A
project administrator manages privileges for all the users on a project,
while an account administrator does the same for the users associated
with his/her accounts. System, project, and account administrators are
all users in the sense that they have user IDs and passwords; in
addition, however, they have special privileges that allow them to
fulfill their roles in site administration. An ordinary user may be
privileged only to log in and run a specific program, and may make
changes only under his own user ID.

User Access to the System

Site administration controls user access through the user registry, the
interface through which users are identified to the system. If the
system cannot identify the user ID or password of someone logging in,
the login is rejected.

The user registry is the record of all system users and privileges
granted to them. Examples of these privileges include the permission
to submit batch sessions and the permission to charge resource usage
to a particular project and account. The user registry is covered in
greater detail in chapter 3 in “The User Registry” section. The set of
privileges for a user is called the wser profile.

A user profile is a list of those system privileges and features
available to a certain user; it is a subset of the user registry. The
system administrator sets up user IDs, supplies them to the user
registry, and creates the individual profiles that define user access to
a subset of the available system features.

Each user profile contains a set of default session parameters which
include default accounting information and default working-directory
parameters that execute automatically when the user logs on or off.

PUB-1005 Rev. A 2-7

User Environment ETA10 System Reference Manual

Environment Processes

In an ETA10 environment, a process is the execution of the smallest
unit of work that can be executed. An executing program is a
process. Tasks in the VSOS environment map to the processes that
the kernel works with on the ETA10 system. A series of processes
constitutes a session. Processes run under both batch and interactive
sessions, and are monitored and controlled on a session basis. Once
a process is activated, it runs in its user’s environment for the
duration of the session. Users cannot switch environments in
mid-session. For a discussion of VSOS task execution, refer to the
VSOS Environment Reference Manual: Concepts and Commands,
PUB-1051.

Each process is spawned serially. A spawned process can start other
processes - one at a time. The starting process is the controller, the
process it starts is its controllee. A series of two or more controllers
and controllees forms a controllee chain. The command shell is the
first process born in a session and is always a controller, at level 1.
It may start a new process, or controllee, at level 2, which, acting as
a controller, can spawn a controllee at level 3, and so on. After a
process is spawned, the shell continually checks process management
for the status of the spawned process, until the spawned process
terminates. When the process has completed, the shell spawns the
next process to execute.

The VSOS environment always spawns processes in hierarchical
fashion. It never has multiple child processes running at the same
time. However, use of a library of multitasking routines available in
future releases makes a difference in the way child processes are
spawned, as shown in figure 2-3. Multitasking allows a user’s
program, not the command shell, to spawn processes horizontally,
producing multiple child processes running at the same level.

2-8 PUB~1005 Rev. A

ETA10 System Reference Manual

User Environment

Command Shell

Command Shell

\ controller

\ controller / o

f controllee

Child Process

controliler

controilee controllee

controllee Y

Child Process|

controller

controllee

Child Process

Child Process

Child Process

A. Serial spawning of processes. B. Spawning of processes with multitasking

Figure 2-3. Spawning of processes in the VSOS environment.

PUB-1005 Rev. A

2-9

User Environment ETAI10 System Reference Manual

User Sessions

On the ETA10, jobs and sessions are the same work unit, and the system
manages batch jobs and interactive sessions in exactly the same way.
ETA Systems uses the term session to refer to this work unit on the
system.

Every session is the execution of a set of processes, whether the
process name arrives at the command shell from a batch input file or
directly from a user’s keyboard.

* Every session runs under the control of the user environment. A
user logged into a VSOS session remains in that environment till
logging out; the user session runs under control of the VSOS shell
that enables the user to enter commands and do work.

e Every session has a unique name, so that a user or operator can
refer to all of the work being performed in it as a single unit.

* The operating system uses the session as an accounting and control
envelope for a set of process executions.

Batch Sessions and Interactive Sessions

Although the ETA10 treats batch sessions and interactive sessions in
the same way, there are some differences between these types of user
sessions, as shown in figure 2-4. An interactive session usually
involves a two-way exchange of prompts and responses. As an
example, a user logs in, issues a command or commands, receives a
response, and the user logs out. In a batch session, a file of
commands is entered into the input queue and executed later. In the
VSOS environment, a batch session can be submitted to the input
queue from an interactive session.

2-10 PUB-1005 Rev. A

ETAI0 System Reference Manual

User Environment

The input and output from batch sessions are associated with files; the
input and output from interactive sessions are associated with
terminals. Local batch sessions terminate after the output file is
transferred to the user’s home directory, and interactive sessions
terminate when the user logs off.

INTERACTIVE
SESSIONS

START-UP:

® USER logs in,
connection is
established by
Common Login
Processor...

® User session is
queued as an_
interactive login...

® User environment
and command
shell established...

EXECUTION:

® User processes execute
and compilete...

COMPLETION:

® User logs out...

® Session terminates...

START-UP:

BATCH
SESSIONS - 2 START OPTIONS

1. ENQUEUE command (local batch)
via an interactive session...

2. ENQUEUE command (local batch)
via a batch session...

e Session is created and queued to input queue...

e When session is selected to execute, the
user environment is established...

EXECUTION:

® User commands are executed from file...

COMPLETION:

e Output is returned to specified file ...

® Session terminates...

Figure 2-4.

PUB-1005 Rev. A

Comparison of interactive and batch sessions.

2-11

User Environment

2-12

ETA!1Q System Reference Manual

Session Start-Up

Although batch and interactive sessions arrive on the system in
different ways, the two kinds of sessions are validated in the same
way (figure 2-5). The user management feature continually runs on
the system, managing system use and access. It prompts for the
username and password on the login line, then user management
turns the session over to global scheduler.

}gtgenggctive - user validation Central
’ - session creation > Processor
- session routing 0
-— - scheduling
r=P .
L] INPUT o
Batch entry... — P QuUEUE o
{vSOS: ENQUEUE) Central
— = = Pl Processor
- 7
- -= = Batch session
Interactive session

Figure 2-5. System entry of batch and interactive sessions.

Session Execution and Completion

Global scheduler stores the information about the session and the
processes included in it, and creates the session shell - a process that
starts and runs the session. Then Global scheduler moves the session
into the session input queue. When it finds a central processor with
enough memory available to start a new process, Global scheduler
sends the processor one of the session’s processes for execution.
Associated with each process is a process table that includes the
names of the executable files, the name of the shell, for example, as
well as other information needed by processes making up the session.

When the last process has completed, the environment command shell
sends a report to the system dayfile. If it is a batch session, the
processes have written to the indicated output file or files.

PUB-1005 Rev. A

ETAI0 System Reference Manual User Environment

The Login Process

The common login feature validates user logins; it is initialized during
system start-up and runs continuously on the system. It has two
functions: the first is to respond to users logging in and to
interactively prompt for user ID and password, and the second is to
validate the user ID, password, and privilege to log in and, when
those items are valid, to create the appropriate session.

When the user has been validated, the common login feature calls
global scheduler, which initiates the session by setting up the user
environment. When the session is initialized, the first process may be
started. Information from the user data block is used to manage the
session, to send data to the accounting system, for example. Figure
2-6 illustrates the interactive login procedure.

A local batch session may be started during an interactive or batch
session using the ENQUEUE command.

@b COMMON User
s LOGIN Validation
FEATURE Process
- user initiates — generates a - prompts for user ID
login... gggggg emto user and password
: - validates user
' actn'wty... data...
When the user is validated... . .
oMo . creates user information block
MMON ion |
LOGIN Scheduler . queues user session ID
FEATURE . creates user command sheli
the user environment...
7
4. the session is initialized...
5. the user ID is set for access,
accounting activity begins...
Figure 2-6. Interactive login process involving the common login feature and global scheduler.

PUB-1005 Rev. A

2-13

User Environment ETA10 System Reference Manual

Overview of the VSOS Environment

The VSOS Environment consists of a number of components:
* Files

e Libraries

» Language processors

e Utilities

e The System Interface Library

e The command shell

Files

In the VSOS Environment, a file is a data structure accessible to
users and the system by name. The VSOS file system has a flat
structure, meaning that you have only one directory containing all
your permanent disk files. In the underlying system kernel, files are
arranged in a hierarchical tree structure, where files are linked to the
leaf nodes of a naming tree. The tree is defined and maintained
using directories. Files are grouped by being linked to directories.
Information about files, such as their attributes, is stored in the file
catalog.

Figure 2-7 describes the ETA10 file directory system. Access is via a
pathname, consisting of an ordered list of directory names, down to
the file name. The kernel’s file system structure (called the logical
file system) is generalized enough to support the environment’s file
and I/O models. The VSOS environment automatically performs the
necessary mapping of your files into the logical file system’s tree
structure.

Three data structures are supported by the ETA system:
¢ Records

¢ Groups

e Files

Within this logical file structure, a byte is the smallest unit of data
managed by the system. A collection of bytes forms a record. A
group, which is a collection of records, is the next higher structure,
and a file is the highest level. These logical groups of data are also
referred to as partitions. Data can be accessed by referencing
partitions, using the partition number.

2~14 PUB-1005 Rev. A

ETAIQ System Reference Manual

User Environment

1 DIRECTORY ENTRY

O FILE ENTRY

FULL PATH NAME

FILE CATALOG
ENTRIES

Figure 2-7. File directory/catalog manager file system.

PUB-1005 Rev. A

2-15

User Environment

2~-16

ETAI10 System Reference Manual

File formats define the logical record structure of a file to the ETA
kernel. The logical file system defines the logical structure of files
according to four user-selectable record formats:

e ANSI fixed length (F) - records with a fixed, specifiable number of
bytes that is set as a file attribute.

e Record mark delimited (R) - records of variable length delimited by
a byte at the end of each.

* Undefined (U) - no records; the file is considered one continuous
string of bytes.

e Control word delimited (V) - variable length records delimited by
control words which mark record, group and file partitions. VSOS
type (W) records are mapped to the file system’s type (V) records.

File Attributes describe the characteristics of a file, such as its name,
access permissions, and its device class. Attributes are set by the
VSOS Environment when the file is created. You can assign the file
attributes, or the system can assign default values. The attributes
remain in effect for the life of the file, or until the user changes them
explicitly.

File Types determine the way the system uses the files. A controllee
file, also referred to as a virtual or virtual code file, is an executable
file generated by LOAD. A process is the execution of a controllee
file. Data files are any non-controllee files. Output files, which
contain data to be processed by an output device, and object, or
binary files, which provide the input to LOAD to generate executable
controllee files are data files.

File Duration, the length of a file’s existence on the system, depends
on the file type. Temporary files exist only as long as the session
continues. Permanent files are stored until explicitly deleted. Local
files, which can be temporary or permanent, are immediately available
to a task.

Figure 2-8 shows a portion of the logical file system tree pertinent to
a single session. Because the kernel operating system supports only
permanent files, the command shell creates the directory needed to
simulate the behavior of local files (local_sess). Sess is the unique
session ID. The local_sess directory is unique to a session. It
contains files or links to files which behave as local files to the
session, and becomes the working directory for all processes in the
environment. Files in this directory can be attached, defined and
returned. The shell also creates a directory (vsos_shell_dir_sess) to
store its own files such as the dayfile, which are unique to the session
and inaccessible to the user. Both directories are destroyed at the end
of the session.

PUB-1005 Rev. A

ETAI0 System Reference Manual

1 permanent directories (remain even when no sessions are active)
temporary directories and files, available to the user

O temporary directories and files, restricted to the command shell

Figure 2-8. The VSOS environment directories.

PUB-1005 Rev. A

User Environment

File Ownership may be by the VSOS environment (public), or by a
user name (private). Utilities, commands, compilers, and general
purpose routines are public files.

For more detailed information about VSOS environment file concepts,
refer to the VSOS Environment Reference Manual: Concepts and

Commands, PUB-1051.

2-17

User Environment ETA10 System Reference Manual

Libraries

System libraries are available to you as an environment user. Some
libraries contain routines that are specific to an environment, such as
the VSOS SIL routines.

Other libraries are available to users in any environment. A library
of multitasking routines available in future releases provides you with
tools to perform multitasking operations such as task initialization,
synchronization, and data sharing.

Standard libraries for language compilers are also available. In
addition, you can create your own libraries within your environment.
However, unlike system libraries, which are stored in system file
space, user-created libraries are stored in the user’s file space.

Language Processors

FORTRAN 200 is compatible with the FORTRAN CYBER 205
compiler, making it convenient to transport existing FORTRAN
programs from the CYBER to the ETA10. ETA VAST is a
vectorizing pre-compiler for the ETA10, intended for use in
conjunction with the FORTRAN compiler.

Utilities

Several system utilities are available to the environment user. OLE,
the object library editor, performs maintenance of object files.

The LOAD utility links object files and libraries, and generates an
executable file, also known as a controllee file. You can debug your
programs interactively using ETA Debug, the symbolic debugger,
which allows you to troubleshoot programs written in ETA product
languages.

System Interface Library (SIL)

SIL consists of a number of subroutines that provide access to basic
operating system features:

e File management

* Record I/O

¢ Message transmission
e Task initiation

* Task monitoring

¢ Task termination

2-18 PUB~1005 Rev. A

ETAIQ System Reference Manual User Environment

Transparent routines translate a variable format SIL call into a fixed
format acceptable to the CYBER Implementation Language (CYBIL),
the language used for the development of the operating system
software. Each library routine then:

¢ Parses the actual parameters
¢ Verifies parameter legality
¢ Makes the kernel calls necessary to accomplish the requested action.

Results from the kernel are translated into terms that a VSOS user is
accustomed to and passed back to the calling application.

The SIL subroutine calls are detailed in the VSOS Environment
Reference Manual: Concepts and Commands (PUB-1084).

Command Shell

The VSOS environment command shell serves three purposes:

1. It communicates with you, accepting your VSOS environment
commands as input and returning responses as output. This
communication may be interactive, or the command shell may be
reading and writing disk files without your direct involvement.

2. It manages the processes of a batch or interactive session. It
controls the initiation and sequencing of processes within a
session.

3. It establishes those characteristics which cause a session to
resemble a VSOS job, including the:

Establishment of a VSOS-like file system
Management of a session dayfile

Disposition of specially named files

The Open Interconnection Network (OIN)

The Open Interconnection Network (OIN) is a local area network
based on the Ethernet protocol. Users on the OIN can interface to
the VSOS environment through the communications control system
(CCS) to log in, enter commands, and transfer files.

PUB-1005 Rev. A 2~-19

User Environment

2-20

ETAIQ System Reference Manual

VSOS/Kernel Interfaces

VSOS Environment users interact with operating system functions
using commands and System Interface Library (SIL) routines to perform
such activities as:

* Session and process management

¢ Memory management

e Handling of file system and I/O

* Program development and code file management
e Inter-process communication

¢ Retrieval of information about the system

Figure 2-9 illustrates the VSOS user interface to the kernel functions.

PUB-1005 Rev. A

ETAIQ System Reference Manual

User

User Application

Programs

ETA
Compilers
and

Utilities

OPERATING SYSTEM

Figure 2-9. The user interfaces to the operating system.

PUB-1005 Rev. A

User Environment

2-21

User Environment

ETA10 System Reference Manual

The user issues commands through the command shell, either batch
or interactively. Refer to the VSOS Environment Reference Manual:
Concepts and Commands, PUB-1051, for detailed information about
VSOS commands.

Table 2~-1. VSOS Command Summary.

Table 2-1 lists the VSOS environment commands.

Command type

Command Name

Description

Send a comment to the dayfile

BEGIN Begin procedure
COMMENT Send a comment to the dayfile
CONTINUE Resume execution
DAYFILE Copy the dayfile
Job ENQUEUE Submit a job to a user environment
Management EXIT Set abnormal termination path
PROC Define procedure
PROCEND End procedure
SET Change job characteristics
SETTERM Set terminal attributes
SUBMIT Submit a file to a queue
TV Set threshold value
BYE End user environment interactive session
System PASSWORD Change user password
access USER Provide user validation information
ATTACH Attach permanent files
COMPARE Compare file contents
COPY Copy a file
COPYL Copy logical partitions
DEFINE Define a permanent file
FILES List file information
GIVE Transfer file ownership
File LISTAC List access permission set
Management MFGIVE Transfer a file to a remote host
MFLINK Permanent file transfer using LCN/RHF
MFQUEUE Explicit file routing
MFTAKE Accept a file transfer from a remote host
PERMIT Change access permission set
PURGE Destroy permanent files
REQUEST Create a temporary file
RETURN Evict local files or detach permanent files
REWIND Rewind a file
SKIP Reposition a file
SWITCH Change file attributes
Code File LOAD Create a controllee file
Management OLE Object library editor
Compiler FTN200 FORTRAN 200 compiler
Debugger EDB ETA System debugger

2-22

PUB~1005

Rev. A

ETAIO System Reference Manual

User Environment

Application programs executing in the VSOS Environment issue SIL

calls to subroutines that communicate with kernel functions. Refer to
the VSOS Environment Reference Manual: System Interface Library Calls,
PUB-1084, for detailed information about SIL calls.

Table 2-2 lists the SIL non-L/O calls, which allow a process to
exchange information with the operating system.

Table 2-2. SIL non-I/O routines.

Call type SIL call Call description
Process QSMEMORY Allocate a static stack
Requirements QSRECALL Suspend process execution
QSGETCTS Get controllee’s termination status
QSGETMCE Get message from a controllee
QSGETMCR Get message from a controller
QSINIT Initialize, or initialize and start a controllee chain
QSSNDMCE Send message to a controllee
Controllee QSSNDMCR Send message to a controller
Chains QSSNDMDF Send message to a dayfile
QSSNDMIC Send message to a job controller
QSSNDMIJS Send message to the system
QSTERM Terminate a process and its controllee chain
QSTERMCE Disconnect a controllee
QS5CPUTIM Get the CPU time the process has used
Q5DCDMSC Get and decode miscellaneous system information
QS5DCDPFI Decode permanent file information
System QSGETACT Get the system resources the process has used
and QSGETTL Get the process’ time limit
Process QSGETTIN Get the process’ characteristics
Information QSGETUID Get the user name under which the process runs
QS5STIME Get the system date and time
Permanent File QSLFIHIR List attached permanent or local file index entries
Indices QSLFIPRI List private file index entries
Information QSLFIPUB List public file index entries

PUB-1005 Rev. A

2-23

User Environment ETAIQ System Reference Manual

Table 2-3 lists the SIL I/O calls, which allow a process to perform
file I/O functions.

Table 2-3. SIL I/O routines.
Call type SIL call Call description
QSATTACH Attach a permanent file
Permanent Q5CHANGE Change file attributes
QSDEFINE Define a permanent file
File QSGIVE Give file ownership to another user
QSPURGE Purge a permanent file
Access QSRETURN Return a permanent file
Local File Q5CHANGE Change file attributes
QSRETURN Return a local file
Access QS5RQUEST Create or access a local file
Public files Q5GIVE Give file ownership
QSGENFIT Generate a File Information Table
FIT QSGETFIT Retrieve contents of FIT
QSRETFIT Return a FIT
Manipulation QSSETFIT Set File Information Table fields
QSCLOSE Close a file for I/O
QSFLUSH Flush file buffers
I/0 QSGETFIL Open, or create and open a file
Q5MAPIN Map virtual space
Preparation QSMAPOUT Map out virtual space
QS0OPEN Open a file for [/O
QSCHECK Check I/O request status
QSENDPAR Write partition delimiter
Explicit QSGETN Read complete partition
1/0 QSGETP Read partial partition
QSPUTN Write complete partition
QSPUTP Write partial partition
QSREAD Read block of data
QSWRITE Write block of data
File QSREWIND Rewind file
Positioning QSSKIP Skip file partition
Miscellaneous QSPERMIT Change access permission set
QSREDUCE Reduce file space

2-24

PUB-1005

Rev. A

ETAIO System Reference Manual User Environment

How ETA VSOS differs from CDC VSOS

Differences between the ETA10 computer system and the CYBER 205
have resulted in some changes in ETA VSOS. CYBER 205 features
with no analogue in ETA systems have been deleted. Features
performing similar functions, but which execute differently on the
ETA10 are renamed. New features have been added to the ETA
system. The major differences are described below.

Pool files are no longer supported in the VSOS environment. The
CDC CYBER 205 had numeric user identifiers and pool files were
identified by an alphanumeric name. On the ETA system, user IDs
are all alphanumeric. In order to achieve the same effect as pool
files, users can ATTACH all files belonging to another username if
they have access rights. The site may specify a file directory as the
system pool replacement. This directory will be included in the
command search path.

Tape files are not currently supported in the VSOS environment.
File security levels are not supported in the VSOS environment.

The current file position is preserved across tasks executing in the
VSOS environment, with the result that when a file is opened, it may
not always be at the beginning-of-file. However, the user can issue a
command requesting the file system to rewind the file between tasks.

The interactive interface to the VSOS environment ‘has a session
dayfile. The command shell creates the dayfile as a temporary shell
file to hold messages from executing processes, copies of commands
entered by the user, and status information. Output is directed to the
user’s terminal. At the end of the session, the command shell
destroys the dayfile, unless the user has saved it as a permanent file.

Device classes in the VSOS environment replace the CYBER 205 pack
name designations. Device classes are logical partitions of the ETA
system’s physical disks.

The VSOS environment does not support connected files.

The EDB ETA system debugger is available to the VSOS environment
user.

Many VSOS version 2.2 system tables no longer exist in the ETA10
system. Some of these are the Miscellaneous Table, the Minus Page,
the Pack File Index, and Device Statistics Table. Some have
analogues in the ETA10 system, others do not. Therefore, SIL calls
requesting table information are supported to a limited extent; if the
information requested by a SIL call is available from the operating
system, it is supplied to the caller. No calls which returned a

complete copy of a CYBER 205 system table are supported on the
ETA10.

PUB-1005 Rev. A 2-25

User Environment

2-26

ETAI10 System Reference Manual

Other differences between the ETA VSOS environment and VSOS
Version 2.2 can be divided into File Concept, Device Characteristics,
Process Management, and User Interface categories.

File Concept Differences

In the VSOS environment, users can specify a letter or number for
the first character of a file name. VSOS version 2.2 required that file
names begin with a letter.

A VSOS environment file name may begin with the characters 'QS’
through 'Q9’. These characters were reserved for operating system
files in version 2.2.

The ETA10 paging file replaces CYBER 205 drop files.

Cutput is written sequentiaily to the file OUTPUT in the VSOS
environment, unless directed elsewhere.

Output files are treated as a special case of data files.

The CYBER 205 restrictions on print files and their families do not
apply on the ETA10 system.

The ETA VSOS environment does not create and use scratch files.

The limit of 256 permanent file per user ID in version 2.2 no longer
exists.

The termination character of the record mark delimited (R) record
format cannot be specified as an installation parameter.

Device Characteristics

A device set defines a physical set of disk drives, and is only
applicable to disk drives.)

A device class, which is a logical class of device, has been added to
the VSOS environment. It has a 24-character field length, instead of
the two hexadecimal digits used for the VSOS version 2.2 device set.

Tape operations are not currently supported on the ETA10.

PUB-1005 Rev. A

ETAIQ System Reference Manual User Environment

Process Management

A controllee chain in the VSOS environment may have more than
nine levels, which was a version 2.2 restriction.

In the VSOS environment, a controllee chain is serially created by one
task initiating the next in the chain. Initializing a multiple task chain
at one time is not supported. Dynamic linking of controllee chains is
not supported. The ETA system does not permit processes to be
restarted.

The minus page and bound import and export maps are replaced by
various process and register packages.

The LOGIN command is not needed in an interactive login. Instead,
the system prompts for a user ID at login time.

The ETA VSOS environment user ID may be up to 31 characters in
length, and the password may also have up to 31 characters. In
VSOS version 2.2, the limits were 6 digits for the user ID and 8
characters for the password.

Batch processes are handled by the same command shell handling
interactive processes, instead of by a batch processor. There are
fewer distinctions between batch and interactive processing.

Interactive access to the ETA10 system is through the Open
Interconnection Network.

There is no support for file archiving on remote hosts.

User Interface Differences

Although most commands and SIL calls used in VSOS version 2.2 are
supported in the ETA VSOS environment, some are not, and there are
some new ones. Some parameters on commands and SIL calls which
were implemented on the CYBER 205 are no longer available because
of the different ETA10 implementation. For example, a pack name
cannot be specified on a DEFINE command.

Refer to PUB-1084, VSOS Environment Reference Manual: Concepts and
Commands, and PUB-1051, VSOS Environment Reference Manual:
System Interface Library Calls for detailed information about commands
and SIL calls on the ETA10. A list of commands and SIL calls that
are no longer supported is supplied below.

The following CYBER 205 commands are not supported:

AUDIT List permanent file information

BLANK Blank label a tape volume

CHARGE Assign account and project numbers

DEBUG Debug a program

DMAP Provide information on location of permanent file segments

. PUB-1005 Rev. A 2-27

User Environment

2-28

DUMP
DUMPF
EDITPUB
LABEL
LOADPF
LOOK
NORERUN
PACCESS
PATTACH
PCREATE
PDELETE
PDESTROY
PDETACH
PFILES

Q

RERUN
RESOURCE
SLGEN
SUMMARY
TASKATT

ETAI0 System Reference Manual

Dump a drop file

Copy permanent files to archive storage
Add or destroy a public file

Supply label information for a tape file
Reload files from permanent storage
Dump virtual space

Set norerun status

Grant pool access

Attach a pool

Create a pool

Remove a pool

Destroy a pool

Detach an attached pool

List pool information

List job status

Set rerun status

Set job limits

Generate a shared library

Provide resource usage information
Alter a controllee attribute

The following SIL routines are not supported:

QSADVISE
QSCHECKB
Q5CLIOER
Q5DCDDST
QSDCDPLB
QSDESBIF
QSDISAMI
QSDISATI
Q5DMPACT
QSENAMI
QSENATI
QSGETB
QS5GETIIP
Q5GETIRF
QSGETMOP
QSGETMPG
Q5GETPFI
QSINITCH
QSLABEL
QSLFIPOL
QSLSTBUT
QSLSTSTB
QSLSTTCB
QSPATACH
QSPCREAT
QSPDESTR
QSPDTACH

Inform system of task’s virtual space requirements
Check if buffer I/0 is complete

Clear tape 1/O error

Get information for the disk status table

Decode the pack label

Destroy the batch input file

Disable message interrupt processing

Disable abnormal termination control

Dump the cumulative accounting file

Enable message interrupt processing

Enable abnormal termination control

Read buffer record

Copy an interrupted task’s invisible package

Copy a task’s register file

Get message sent by the system operator

Copy an interrupted task’s minus page information
Copy the label and permanent file indices from a pack
Initialize a controllee chain

Create or access a local file in multiple set

Copy the pool file index entries

Copy the Bank Update table

Copy the statistics buffer

Copy the time card buffer

Attach a pool

Create a pool

Remove a pool

Return a pool

PUB-1005 Rev. A

ETAIQ System Reference Manual

PUB-1005 Rev. A

QSPGRACC
QSPOOLS
QSPREACC
QS5PUSERL
QSPUTB
QSREELSW
QSREPREV
QSRFI
QSROUTE
QSRUNBIF
Q5SNDMOP
QSSNDSTR
Q5SVRACC

Grant access to a pool

List pools

Remove an account

List users with access to a pool

Write buffer record

Continue processing with next tape volume
Enable or disable user reprieve processing
Return control from an interrupt routine
Route a file

Rerun a task if the system fails

Send a message to the system operator
Start a controllee execution

Change a task’s accounting rate

User Environment

2-29

User Environment ETA10 System Reference Manual

Functional Description of VSOS

The VSOS File System

The file directory/catalog manager (FDCM) feature of the underlying
operating system defines a tree-structured file system. In this file
system, files are linked to leaf nodes of the naming tree. Calls are
provided to manipulate the tree structure and file descriptions. Trees
are defined and maintained by use of file directories. Files are
grouped by being linked to directories. Directories and files are
identified and located by means of pathnames, which are ordered lists
of directory names, with each succeeding directory linked to its
predecessor.

VSOS presents a flat file system in which each user has only one
directory containing all of his or her permanent disk files. A user’s
own files are inaccessible until explicitly activated through a VSOS
ATTACH command, which names the files to be used in the session
and makes them ’local’.

VSOS resolves references to files by searching:

1. All local files, including attached permanent files and temporary
files to which you have access.

2. All files in the system pool selected by the site.

(Pools and pool files are not supported in the VSOS
environment. Many sites, however, depend on VSOS environment
pools for integration of modified controllees. Those sites may
select a directory name to use as a pool through a system
configuration option).

3. Permanent files in the public file directory (the public file
directory is selected by the site).

In the VSOS environment, these searches are accomplished by
mapping the VSOS file system onto the kernel’s logical file system.

2-30 PUB-1005 Rev. A

ETAI10 System Reference Manual User Environment

When a new user account is created by system administration, a home
directory with the name /USR_root/USR/user_name is created as shown

in Figure 2-10. The directory will contain what VSOS will consider
to be private permanent files.

IUSR_root/

/USR_root/USR/

/USR_root/USR/JAN/ /USR_root/USR/TOM/

Figure 2-10. Directories for newly-created users.

The identifier /USR_root/USR/user_name is used for the home
directory for two reasons:

e It allows a VSOS environment user to locate the home
directories of other users knowing only the user name

e It provides a convenient way to share files.

PUB-1005 Rev. A 2-31

User Environment

2-32

ETAlQ System Reference Manual

Links to files in the /USR_root/USR/user_name directory are
established in working directory /[LOCAL_sess/ as files are DEFINEd
and ATTACHed.

The links are destroyed as the files are RETURNed.The directory
/LOCAL_sess/ also contains temporary files as they are REQUESTed.

The command shell creates and manages the directory /LOCAL_sess/,
keeping it in existence only while a session is active. The sess field is
a unique session identification number, used to separate the local files
of one session from those of another.

Figure 2-11 shows the contents of the /USR/ and /LOCAL _sess/
directories before a file is created, after a file is created, after a file
is DEFINEd, and after the job or session terminates.

PUB-1005 Rev. A

ETAIO System Reference Manual

User Environment

/USR_root/

{USR/ME/

/USR/ME/ MYFILE)

MYFILE

/USR_root/

IUSR/ME/ |-

(myFLE)

MYFILE

/LOCAL_9/} |

' C. The new file is DEFINEd: -

/USR_root/ e

JUSRIME/ |

_'D. The job or session terminates.

MYFILE

Figure 2-11. VSOS File management.

PUB-1005 Rev. A

2-33

User Environment

ETAIO System Reference Manual

The VSOS Tables

Because most of the CYBER 205 VSOS Tables do not exist in the
ETA10 operating system, the SIL routines which access certain tables
are no longer required. When the system table does exist on the
ETA10, the relevant SIL routine is supported in the VSOS
environment. When the table does not exist, but the requested
information can be retrieved from elsewhere in the system, SIL calls
to the kernel obtain the data and return it to the calling program.

The File Information Table

The File Information Table (FIT) is a VSOS table used to describe the
characteristics of a file. CYBER VSOS allows a FIT to be created
and its contents specified before the file is actually created. This
pre-specification of file attributes is not a feature of the operating
system file management routines, and so must be simulated in the
VSOS environment. To use a file in the VSOS Environment, the
application program calls a SIL routine to create an entry in the FIT
describing the file, specifying its attributes, and establishing an
association between the logical filename and a number.

The actual implementation of the FIT is not visible to the caller, and
no assumptions can be made about the structure of a FIT entry. The
FIT is the only CYBER VSOS data structure simulated in the VSOS
environment, and it exists only while the file is active or open for I/O.
References to other tables are either translated into calls to the kernel
or not supported.

The Command Shell

2-34

Communicating With the User

You specify actions in the VSOS environment by issuing commands
which the command shell receives and interprets. There are a
number of different ways for you to communicate with the ETA10,
which requires that the command shell be able to read commands
from several different sources. Several of these sources, and their
paths to the VSOS environment, are specified in figure 2-12.

If the session is of local batch origin, the commands are read from a
disk file using the record manager (RM). When it starts the session,
global scheduler instructs the command shell where to find the input
file. Output is returned to a disk file.

If the session is of interactive origin (i.e. you are logged into the
ETA10 through the OIN), the commands are read from the terminal
through the communication control subsystem (CCS). global
scheduler tells the command shell how to identify the OIN when it
starts the session. Output is returned to the terminal.

PUB-1005 Rev. A

ETAIQ System Reference Manual User Environment

Local Batch
Input
\
Record
Manager
OIN 1)
OIN CcCS
7/

Figure 2-12. Pathways to the VSOS environment.

Managing Processes

VSOS environment commands consist of a keyword and a list of
optional parameters. The command shell parses each command to
discover its keyword and takes one of two courses:

1. Some command keywords are recognized by the command shell as
specifying things the shell itself should do. The command shell
completes parsing the command, takes the required action, and
resumes reading the command stream.

2. Most commands are the names of executable object files. The
command shell searches for the file in three directories: private
files (both local and attached permanent), the site-selected system
pool, and public files.

PUB-1005 Rev. A 2-35

User Environment

2-36

ETA1Q System Reference Manual

When the file is found, the command shell calls the Process
Create function within process management to run the program.

The command shell is a serial processor and never initiates a new
process until the preceding one has completed, waiting while its child
process (the controllee) executes. Process management notifies the
shell when the child has completed.

Establishing the VSOS Environment

The VSOS command shell is instrumental in giving a session
VSOS-like characteristics. The command shell:

* Creates the directory needed to simulate the behavior of local files
(the ETA10 kernel supports only permanent files)

+ Establishes an interprocess communication path using the remote
procedure calls feature to simulate the controller/controllee message
passing of CYBER VSOS

e Creates files characteristic of a VSOS session:
The dayfile
The INPUT file
The batch routing files

The command shell creates a working directory, unique to the session,
that contains files or links to files which are to behave as local files.
This directory becomes the directory for child processes. A file is
attached by creating a link from this working directory to the home
directory, returned by deleting this path, and defined by creating a
link from the home directory to the working directory.

The two directories, and files attached from the home directory to the
working directory, are illustrated in figure 2-13.

PUB-1005 Rev. A

ETAIO System Reference Manual

User Environment

Permanent Files

ATTACH

Local Files

Attached
Permanent
Files

>» A

» B

User Home Directory

>» D

VSOS Environment
Working Directory

Figure 2—-13. VSOS environment working directory with links to the user’s home directory.

PUB-1005 Rev. A

2-37

User Environment

2-38

ETA10 System Reference Manual

Interprocess communication (passing messages between the command
shell and its child processes) is done through the IPC remote
procedure call feature, which enables processes to pass messages to
each other using mailboxes.

At initialization, as shown in Figure 2-14, the command shell creates
a mailbox that it will use to receive messages from other processes in
the session. The mailbox name is created using the shell’s process
ID. A message passing protocol allows various message dispositions
to be identified along with message text.

Shell Process
Process_ID=123

The shell will read messages
enqueued in the mailbox

Figure 2—-14. The shell creates (exports) a mailbox.

During command processing, when the shell determines that it must
create a process to execute a command, it calls process management
and passes along inheritance information which the process will need,
including the mailbox IDs of the parent’s mailbox and the shell’s
mailbox (figure 2-15).

In figure 2-15, the mailbox ID of the shell and the mailbox ID of the
parent of Process 456 are the same, because in this case, the shell

happens to be the parent of this process.

PUB-1005 Rev. A

ETA10 System Reference Manual User Environment

Shell Process Child Process
Process_iD=123 Process_|D=456
Create Child
) Shell=mbx_123
::Poerrrlrt:aa?i%ﬁ Parent=mbx_123

Figure 2-15. The shell creates a process, passing inheritance information.

As part of the initialization of the VSOS user environment in the
newly created process, the mailbox (mailbox_456) from which the
new process will receive messages is created, as shown in Figure

2-16.
Shell Process Child Process
Process_{D=123 Process_ID=456
Shell=mbx_123
Parent=mbx_123

A

‘mallbox_456:

Figure 2-16. The newly created process exports (creates) its own mailbox.

PUB-1005 Rev. A ‘ 2-39

User Environment ETAI10 System Reference Manual

The new process connects to (imports) the shell’s mailbox so it can
send messages to the shell, and sends its own mailbox ID to the shell,
so the shell can send messages to it. (figure 2-17). It knows the
shell’s mailbox ID from the inheritance information which was passed
to it.

Shell Process Child Process

Process_ID=123 Process_|D=456

Shell=mbx_123
Parent=mbx_123

A A

child’s
mailbox_456

Figure 2-17. The shell is informed of the mailbox ID of the new process.

2-40 PUB-1005 Rev. A

ETAIQ System Refe

PUB-1005 Rev. A

rence Manual

When the shell receives the message from the new process, it can

User Environment

connect to the child’s mailbox and send messages to it. If a process
needs to send a message to the shell, it simply writes the message to

the shell’s mailbox, with the appropriate disposition identified, as
detailed in Figure 2-18. In this diagram, Child Process 2 sends a

dayfile message to the shell’s mailbox.

Shell Process

Child Process 1

Child Process 2

Process_|D=789

Shell=mbx_123
Parent=mbx_456

1 dayfile="No
errors in MAIN",

Process_[D=123 Process_[D=456
child1's child2's
mailbox_456 mailbox_789

Shell=mbx_123
Parent=mbx_123

A

Figure 2—-18. A process sends a dayfile message to the shell’s mailbox.

2-41

User Environment

ETAI10 System Reference Manual

The command shell creates the files that are characteristic of VSOS
(INPUT and the dayfile), and ensures that these files and the
user-created OUTPUT file get the required special processing.

For example, file INPUT, in a local batch session, is the file of
commands of input data that make up the session.

The command shell is also responsible for creating, reading, writing,
and disposing of the session’s private dayfile. This is a transcript of
the session, containing images of all your commands and a record of
the results of each. You have no direct access to the dayfile, but may
send messages to it, or read it using the DAYFILE command.

The OUTPUT file is treated differently for different session origins.
In local batch, output may be sent to a file. In an interactive process,
output is sent to the terminal.

Security and Protection

2-42

A process’ address space is divided into two domains. The system
domain, which supports the operating system, protects its routines and
data structures from unauthorized access or modification. The
application domain supports VSOS and its libraries and tools, as well
as user processes, but it cannot access the address space of another
domain unless it is explicitly shared. For a detailed discussion of
domain protection, refer to chapter 4.

The primary protection for user files is through the establishment and
verification of user file-access permissions. Users may nct access a
file without specific permission.

Files are grouped by being linked to a directory. Users are permitted
to create directories which are accorded the same permissions given to
the current directory, and they can link files to directories on the basis
of the access permissions granted. Each directory and file pathname
is owned by a single username. This username (the file owner) and
the account associated with it may use the resources reserved for that
file.

Users restrict or share access to their file pathnames and directories
by using access permissions. Access is granted by username, account
identifier, and project identifier. A user may give a file special access
permissions that are valid when the file is executed. When a file
pathname is created without an access permission list, a default
access permission is automatically fixed to the pathname. Site
administration defines the default access permission.

When a user begins to create a file in a directory, the file system first
verifies that the user has permission to create a file there. During the
creation process, the user (now a file owner) assigns it a set of access
permissions complying with the conventions of the user environment
and the site. As the file system receives requests to open, read or

PUB-1005 Rev. A

ETAIO System Refe

PUB-1005 Rev. A

rence Manual User Environment

write to files, it verifies each type of access request against the
requester’s access permissions before granting access. Although users
control access to their files, the file system itself always reserves a
user management permission able to override the owner’s access
permission.

Files defined by the VSOS command shell are protected by the logical
file system. Files private to the session are protected by being in a
directory that exists for that session alone. Only processes belonging
to the session process cluster can access these files.

The system does not currently limit file size. Allocation of space to
files is dynamic, and the system automatically extends a file while it
is being written as long as there is space for it to grow on its logical
device.

The file system uses shared memory as a disk cache, protecting the
files it moves into and out of it. As needed, the files are mapped for
read/write or read-only into a central processor memory. Within a
central processor memory, two user processes cannot access the same
section of memory at the same time.

2-43

User Environment ETAI1Q System Reference Manual

The VSOS Command Shell

Global Scheduler calls the command shell when a user logs into the
VSOS Environment. The processes belonging to the user’s session,
including the command shell, are logically grouped into a process
cluster by Global Scheduler, with the characteristic specified of
INHERITANCE=TRUE, so that child processes of members
automatically belong to the cluster.

The command shell is activated and passed the session origin type
(interactive or batch), and the local file ID of the interactive
connection, or the pathname of the batch input file for a batch
session.

The processing of a VSOS environment session is illustrated in figure
2-19.

After the shell is and initialized, it accepts a command entered by
the user. Depending on the command, the shell either calls process
management to create a process to execute the command, or performs
some internal task. When Command Processing completes and there
are no more commands waiting, any resulting output is handled and
the shell terminates.

2-44 PUB-1005 Rev. A

ETA10 System Reference Manual

User Environment

Command Shell

Pro
- Monitor:

: }O‘utput
" Disposition:

Figure 2-19. Processing of a VSOS environment session.

PUB-1005 Rev. A

2-45

User Environment

2-46

ETAI1Q System Reference Manual

Shell Initialization

When called to execute a command, the command shell performs an
initialization procedure:

1.

10.

Get the shell’s process ID from process management.

2. Create and open the session dayfile.
3.
4

Determine whether the session origin is batch or interactive.

. Create a mailbox for use in communicating with child processes in

the session.

Create an input path to read commands. For an interactive
session, the input path is a CCS terminal connection. For a batch
session, the input path is a path to the batch input file.

Find the names and global file IDs of the system pool and public
file directories.

Identify the user who owns this session, and the user’s home
directory.

Create the local file directory for the session.

If the session is batch, create a local file INPUT which is an alias,
or indirect identifier, for the batch input file.

Exit to Command Processing.

The shell initialization procedure is illustrated in figure 2-20.

PUB-1005 Rev. A

ETAI10 System Reference Manual User Environment

Interactive

Figure 2—-20. Shell Initialization flow chart.

PUB-1005 Rev. A 2-47

User Environment ETAIQ System Reference Manual

Command Processing

Once the path to standard input is open,- Command Processing can
begin. In an interactive session, the command shell prompts for your
command. The procedure is:

1. Read one line from the input path (batch input file path or
interactive CCS terminal connection).

2. Copy the command line to the dayfile.

3. Parse the command to extract the keyword. If the command can
not be successfully parsed, report the error to the system dayfile
and the terminal, and exit to Command Shell Termination (batch)
or go to step 7 (interactive).

:l:;

Using the keyword as a filename, search the local, pool, and
public directories. If the search is unsuccessful, look for the
keyword in the command shell table of internal task names.

5. If the command keyword names a file, exit to Process Create.

6. If the command keyword names a command shell task, exit to
Internal Tasks.

7. If the batch input file is at end-of-file, or if the interactive user
has disconnected from VSOS, exit to Output Disposition. Else go
to step 1.

The Command Processing procedure is illustrated in figure 2-21.

2-48 PUB-1005 Rev. A

ETAIO System Reference Manual User Environment

........

Tel 3

Interactive

L Process:
Create:

no

Figure 2-21. Command Processing flow chart.

PUB-1005 Rev. A 2~-49

User Environment

2-50

ETAI10 System Reference Manual

Internal Tasks

When Command Processing has identified an operation for the
command shell itself to handle, the Internal Tasks procedure is called.
The commands that the VSOS command shell interprets as internal
tasks are:

¢ * or COMMENT
* DAYFILE

* EXIT

¢ PASSWORD

e SET

e SUMMARY

e TV

The Internal Tasks procedure is illustrated in figure 2-22.When the
requested operation completes, Internal Tasks exits to Command
Processing.

PUB-1005 Rev. A

ETAI0 System Reference Manual User Environment

Figure 2-22. Internal Tasks flow chart.

PUB-1005 Rev. A 2-51

User Environment

2-52

ETAI10 System Reference Manual

Process Create

When Command Processing identifies a command that calls for a file
to be executed, it calls process management to create a new process.
The name of the executable file is passed to process management.
The parameters of the command are available as a character string.

Process management creates the process from the named file and
assigns it a unique ID. Inheritance information for the process is
retrieved from the command shell and other system features. The
new process and its associated tables are initialized.

If the process was successfully created and initialized, it is scheduled
to run on a selected CPU, and begins execution. If an error occurred
during this stage, process management reports it to the command
shell, which logs it to the dayfile and the terminal of an interactive
user, then exits to Shell Termination (batch) or Command Processing
(interactive).

Process Create exits to Process Monitor, which waits until the child
process has terminated. Because the command shell is a serial
processor, it cannot accept another command until the currently
executing process finishes.

The Process Create procedure is illustrated in figure 2-23.

PUB-1005 Rev. A

ETAIO System Reference Manual

- Command
Processing!

[Callprocess’
“management
Cotgi e
‘create process

E

"Report Error to
 Session:Dayflle::
and: Terminal:

L Exit o ‘
Process:Monitor/ assion
' r
Terminate Batch or Interactive

Wnteractive?

Exit to:
Shell
Termination

Return ta
Command
Processing

Figure 2-23.

Process Create flow chart.

PUB-1005 Rev. A

User Environment

User Environment ETAIO System Reference Manual

Process Monitor / Process Terminate

When Process Create has created a child process which starts
executing, Process Monitor/Terminate waits for it to complete. When
the appropriate software notification is received by the shell from
process management, the termination status of the child process is
known and is passed to Command Processing.

The Process Monitor/Terminate procedure is illustrated in figure 2-24.

/" 'Begin Process
Manitor/Terminate:

Wait for notification
i of . process::
i termination

no

_Notified?

Pass: Termination::

Status.to. Mailbox.

for Display: to:
Dayflle:or Terminal

Return to;::
Command
Processing

Figure 2-24. Process Monitor/Terminate flow chart.

2-54 PUB-1005 Rev. A

ETA10 System Reference Manual User Environment

Output Disposition

When there are no more commands to be processed in the session,
either because an interactive user has disconnected from his or her
terminal, or because all the commands from an input file have been
read, Output Disposition is entered by the command shell, illustrated
in figure 2-25. It is also entered when any error fatal to the session
is encountered. The shell writes session ‘statistics to the session
dayfile and exiis to Shell Termination.

‘Begin:: Qutput:
Dispaosition:::

: ’Writé.'Seséioh
. Statistics to:the::
- Session:Dayfile:

interactive session

Batch session

i ,Appbe‘nd. Session
Dayfile to. OUTPUT

Link QUTPUT to
- an output queue

Exit'to:
Shell: Termination

Figure 2-25. OQutput Disposition flow chart.

PUB~1005 Rev. A 2-5§

User Environment ETAIQ System Reference Manual

Shell Termination

When Output Disposition has completed, Shell Termination is called.
The procedure is:

1. Destroy local files and the local file directory.

2. Delete command shell files and shell directory.

3. Terminate all shell children.

4. Call process management to terminate the command shell.

The Shell Termination procedure is illustrated in figure 2-26.

' destroyilocal files: |
"and:the. local flle
.:-5_.:5dlr_ectory;- o

 Delete command: |
ighell files:and . E
- drectory.

- EX rocess:

‘‘Management sheii

i tarmination:
i dequence

Figure 2-26. Shell Termination flow chart.

2-56 PUB-1005 Rev. A

CHAPTER 3

Chapter

Resource Management

Chapter Contents

Introduction to Resource Management 3-2
Resource Usage Limits . :....... 3-2
Dynamic and Static Resource Managemen 3-2

Resource Management N Y Lo 112 D |
Shared System Data 3-3
Shared System Code, 3-4

Management of the System Memories 3-5

Central Processor Memory Management 3-6
Allocation of Central Processor Memory 3-6
Resident Set i e 3-7
Page Sizes i 3-7
Managing Central Processor Memory for Processes 3-7
Page Faults i 3-7

The Paging Process and Page Faults 3-7
Excessive Paging Rate — Thrashing 3-8

Shared Memory Management 3-9
Managing Shared Memory for Users 3-9
Managing Shared Memory for System Use 3-10

Communication Buffer Memory Management 3-11
System Data Storage ...t 3-12

Management of Processors i 3-13

Management of the Input/Output Subsystem 3-14
Logical Devices and Device Classes 3-14
File Sizet 3-14

Management of the System Configuration 3-15
The System Configuration Table 3-15
Contents of the System Configuration Table 3-15
Internal Configuration Software 3-16

PUB-1005 Rev. A

Resource Management ETA-10 System Reference Manual

Resource Allocation and Accounting e Section 2
Resource Tracking and Accounting 3-17
Accounting SYStemM iiiiiiiii i 3-18
Accounting System Functions 3-18
Accounting File o il 3-18
Access to Accounting System Data 3-18
Tracking Resource Usageciviiiiniinn.n.. 3-19
Tracking Levels i 3-19
Accounting at the Session Level 3-20
Accounting at the Process Level 3-20
System Accounting Units oo, 3-21
The User Registryo 3-22
Access to the Registry L. 3-22
User Management Utility iat. 3-22
User Informationo i, 3-23
User Validation by the Common Login Processor 3-23
The Account and Project Registry 3-24
Account Registry Utility SR 3-24

List of Figures

Figure Title Page
3-1 Sharing of system data and code among features 3-3
3- The system MemOriesuiniiutiiienieiiinieenane, 3-5
3-3 Sequence of events involved in resolving a page fault 3-8
3-4 Central processor and I/O access to shared memory 3-9
3-5 Processors/components with access to the communication buffer 3-11
3-6 Independently functioning central processors 3-13
3-7 I/O file request and address translation process 3-14
3-8 The relationship between resources, the accounting system,

and site administrative staff i oL 3-17
3-9 Account and project registry file data that tracks and

accrues charges for users, projects, and accounts 3-19
3-10 How the accounting system collects, stores, and uses SAUs 3-21

PUB-1005 Rev. A

Chapter

Resource Management

In This Chapter. ..

Chapter 3 discusses how the central processors, the memory
hierarchy, and the I/O subsystem are managed to fully utilize the
capabilities of the ETA10 and its resources.

¢ Introduction to Resource Management
- a discussion of dynamic and static management

e Section 1: Resource Management

- how system resources, user sessions, and the system
configuration are managed

e Section 2: Resource Allocation and Accounting
- how the accounting system tracks resource usage
- how the accounting data is accessed

PUB-1005 Rev. A

3-1

Resource Management ETAI0 System Reference Manual

Introduction

ETA10 resources are internally managed by software managers that
coordinate resources such as memories, multiple processors, and the
input/output subsystem. Externally, the ETA10 is managed by a
variety of people - analysts, administrators, operators - who direct
and monitor resources, optimizing performance for each site.

Dynamic and Static Resource Management

The concepts of dynamic and static resource management enter into
the management of resources. Static resource management involves
the reservation of resources prior to use. For example, the imposition
of a central processor time limit allowed a user session is an example
of statically managing the cenirai processor resource. In the ETA10
system, certain resources for a user’s session are reserved prior to
actual use and some may be reserved for the duration of a session.
Users are often required to declare their needs for statically managed
resources. “

Dynamic management of resources involves the allocation (and
deallocation) of resources as they are needed; as a result, dynamic
management may obtain more efficient use of the system. As an
example, unneeded memory can be reallocated to another process. In
the ETA10, the accounting and control of resource usage occurs on a
dynamic basis.

Resource Limits for Users

3-2

Limits are put upon users’ access to system resources. Site
administration defines a user’s permission to access rescurces and
limits the amount of permitted resources available to each user.
Configuration limits such as number of processors and amount of
memory may also impose certain restrictions on user access to the
system. Users may also encounter external limits such as the
availability of disk space in the user’s assigned logical device.

PUB-1005 Rev. A

ETAIQ System Reference Manual Resource Management

Section 1: ETA10 Resource Management

This section describes how the following system resources are
internally managed and coordinated with other system resources:

e central processor memory

¢ shared memory

¢ communication buffer memory
¢ central processors

I/O subsystem

Each hardware resource is managed by one or more independent
software features called resource managers. In addition, other software
coordinates among the resource managers. System administrators and
analysts are a second set of managers who optimize system performance
and resource utilization in response to the needs of sites and users.

Shared System Data

Parallel operation of system functions and some hardware support for
shared information enable the system to use several types of data
sharing. For some operations, several system features may need to read
the same data. As shown in figure 3-1, the system allows features
executing in different processors to share data. They may also share
code in the same central processor.

CENTRAL PROCESSOR 1
process 1

SHARED
MEMORY

process 2 (blocked)

Data shared
between a feature
executing in two
processors...

CENTRAL PROCESSOR 2
process 1

A
IR R SR
BRSNS

System feature
code shared

within one

central processor...

process 2

{PM Is Process Management code)
Figure 3-1. Sharing of system data and code among features.

Ease of access and amount of data to be shared determine where the
data resides. Larger amounts of data, say 100 words or more, are

PUB-1005 Rev. A 3-3

Resource Management ETA10 System Reference Manual

stored in shared memory. Smaller increments of shared data that
require rapid access are stored in the communication buffer.

Reliability also influences where shared data is stored. When system
operation requires redundant sets of memory-resident shared data,
the two data sets are located either in different units of the same
memory or in different types of memory. The system configuration
table is accessed in shared memory by the operating system, but
copies of the table are also kept on the service unit network for
maintenance and operations access.

Shared System Code

3-4

System code is shared to a great extent among processes on the
same processor. Code protection mechanisms known as domains
allow multiple users and system tasks to shared code as shown in
figure 3-1.

PUB-1005 Rev. A

ETA10 System Reference Manual Resource Management

Management of the System Memories

The ETA10 has three system memories: central processor memory,
shared memory, and communication buffer. Each has different
characteristics and functions. Each memory is managed by software,
using a scheme that optimizes the memory’s primary function.

Central Processor Shared Memory Communication Buffer

1/2 or 1 million words

4 million words

32 to 256 million words

(32 miilion bytes) {may be up to 2 billlon bytes) (4 to 8 million bytes)

Figure 3-2. The system memories.

A central processor has unique access to its local 4 million word
memory. The function of central processor memory is to provide a
fast access, good-sized memory very close to each central processor.
As the system’s largest memory resource, shared memory ranges from
32 to 256 million words; it serves the entire system. Shared memory
is available to all system processors and functions as a staging
memory for the central processors. The communication buffer is used
to store small amounts of data shared among the central processors.
Communication buffer enables communication of information between
processes running on any of the system processors.

Each system memory has an independent manager that controls
access, shares resources, and performs data transfers. Although
memories are managed individually, competition for memory space is
coordinated. The various memory managers interact with one another
to locate and transfer data within the memory hierarchy. For
example, to resolve a page fault, the central processor memory
manager initiates a call to the shared memory manager to locate and
transfer the required pages.

Refer to chapter 4 for descriptions of memory software managers and
to chapter 5 for descriptions of memory hardware.

PUB-1005 Rev. A 3-5

Resource Management ETA10 System Reference Manual

Central Processor Memory Management

A central processor memory serves one central processor and has a
direct port to shared memory via its interface. The memory is
independently managed by central processor memory manager
software. This manager allocates and deallocates pages of central
processor memory, translates virtual addresses to physical addresses,
and processes page faults. Central processor memory pages are 2K
words, or 2048 bytes.

Allocation of Central Processor Memory

The four million 64-bit word space in each central processor memory
is allocated in pages and is divided as shown in the diagram below.

Centrai Processor Memory :

o A locked-down area is reserved
for parts of the operating system
kernel.

* A locked-down area is reserved
for each active process’s process
SRR structure: its process package,
Resident set - process X register and page tables, and the
process descriptor block.

e All processes initiate and execute
within their resident set. This

Resident set - process Y is the total amount of memory

allocated to a process at any time.

any free pages

» Typically there are no free pages.

One locked-down area of central processor memory is reserved for
parts of the operating system kernel. A copy of the operating system
is kept in each central processor; as a process needs a certain feature
such as a library or a compiler, a copy of the feature moves to the
process’s resident set. When the process finishes with the code, that
space can be reallocated to this or another process.

There is usually little free space in central processor memory. When
process X needs additional space for a compilation, that amount of
space is deallocated from process Y’s least recently used space and is
reallocated to process X. In this way, central processor memory is
kept fully allocated.

3-6 PUB-1005 Rev. A

ETAI0 System Reference Manual Resource Management

Resident Set

A resident set is the total amount of memory allocated to a process at
any one time. Pages of central processor memory are allocated on
demand, using a variation of a least recently used page scheme.

KERNEL FEATURES, TOOLS [0 ioraciaaer::

SYSTEM DOMAIN - some space locked down
- some space allocatable

APPLICATION DOMAIN _ yser files

The size of a resident set fluctuates as the process executes. As
shown above, several components comprise the resident set:

e specific features of the kernel required by the process, these are pieces
like a FORTRAN run-time library.

e system domain data base; this is a list of the subsections of operating
system code that are not locked and that may be allocated to meet the
space requirements of the process.

Page Sizes
Central processor pages are 2K words (2048 words).

Managing Central Processor Memory for Processes

Additional pages of central processor memory may be allocated to a
process when they are needed. When the page faults for a process
increase, then central processor memory manager allocates additional
resident working space to the process to minimize page faulting.

Page Faults

A page fault occurs when a process requires a page of data not found
in central processor memory. A page fault causes an interrupt to the
paging feature, requesting it to locate the page and move it into
central processor memory from shared memory or from the disk.
Central processor memory manager blocks the process while the page
containing the data is located and moved into central processor
memory. The central processor can execute other processes while the
page fault is being satisfied.

The Paging Process and Page Faults

The paging feature performs basic page retrieval functions. When a
process references a virtual address, hardware searches the central

PUB-1005 Rev. A) 3-7

Resource Management ETAI0 System Reference Manual

processor memory’s space table. If the address is not found, the
hardware generates an interrupt that the pager processes. As shown
in figure 3-3, a page fault occurs when a referenced virtual address is
not in central processor memory.

PAGE FAULTS

Paging featu
for data nee

Data

from disk
moves into
and then into

memory...

an executing =———=|| When datais process is biocked...
ProCess:ccvvcenenns L e veineans eeeebf...nOt fo;m?, a

Central page fauit

Processor | OCcurs: :

memory 2. The paging feature calls

Shared Memory

Central Processor

re looks " 1. The virtual memory hardware
ded by Space Table causes an interrupt, and the

) ' Shared Memory manager to
. transfer a logical address...

Shared Shared

Memory and, if necessary,
— Shared Memory manager 4.---

transfers the address &

from the disk file system..."

Figure 3-3.

3-8

Sequence of events involved in resolving a page faulit.

To resolve the page fault, the pager translates the virtual address to a
logical file address so that shared memory manager can transfer the
file. Then the pager calls shared memory manager to make the
transfer. When the data is not in shared memory, the data is moved
from the disk into shared memory. To satisfy the page fault, the
required page is moved into central processor memory, and the
blocked process is then rescheduled to execute.

Excessive Paging Rate — Thrashing

Page faults increase when the available central processor memory
becomes over-committed due to the demands of processes. At this
point, there is a possibility in the central processor of thrashing.
Thrashing occurs when the system spends more time handling page
faults than doing productive work.

PUB-1005 Rev. A

ETAIQ System Reference Manual

Resource Management

Shared Memory Management

Shared memory is used as a staging memory for the central
processors. All allocation of shared memory is managed by the
shared memory manager. Shared memory is allocated in blocks of
2K words (2048 bytes). Features of shared memory manager software
reside on central processors, /O processors, and service unit
processors. When an executing process needs to store or retrieve data
from a file in shared memory, the file system opens the file and
notifies the shared memory manager. The shared memory manager
determines the location of the data and performs the requested read
or write operations. If the file is not in shared memory, the shared
memory manager requests the disk file system to move the data in
from the disk to shared memory.

As shown in figure 3-4, shared memory is accessed through its
interface by the central processors through the central processor ports,
and by the service unit and /O units through the /O interface (IOI)
ports.

Central Processor 1

Central Processor 8

SHARED SHARED
MEMORY MEMORY
1 2
Shared Shared
Memory Memory
e | INtErface 1 Interface 2 |g——-
CPU PORTS CPU PORTS

1 IOl PORTS t

INpUt/OUPUL | @uemgn| [NPUt/Output
Interface 4 Interface2
TTTETETTd T
9110 91/0
SERVICE UNIT "ORTS PORTS sepvice uNIT
PORT PORT

Figure 3-4.

Central processor, service unit, and I/O access to shared memory

in a redundant ETA10 with two units of shared memory.

Managing Shared Memory for Users

Users do not request space in shared memory. User files are cached

in shared memory by the system and transferred as needed. The
shared memory manager keeps only one copy of a file in shared

memory.

PUB-1005 Rev. A

3-9

Resource Management ETAI0 System Reference Manual

Managing Shared Memory for System Use

Some system features maintain system data and system tables in
shared memory using files and shared memory objects. Shared
memory objects reside in shared memory, but are not managed by
shared memory’s manager.

As an example, the system configuration table is a file residing in
shared memory that is referenced by many operating system features.
It is managed by the system configuration control feature through
which other system features indirectly access the system configuration
table.

Although the communication buffer stores small amounts of data for
system use, shared memory is used to hold larger amounts of data to
be shared among the system processors. When the remote procedure
call feature is used to send messages among system processors, the
message is stored in shared memory since it is accessible by all the
processors. The remote procedure call software uses communication
buffer to provide the control functions associated with message
passing and mailboxes used to send and receive messages.

PUB-1005 Rev. A

ETAIQ System Reference Manual Resource Management

Communication Buffer Memory Management

All central processors and system processors communicate using
communication buffer, as shown below.

COMMUNICATION BUFFER Service
Appilcations - > Communication Buffer - > Unit
Interface

Input/Qutput
nue Sﬁbsyster%

Figure 3-5. Processors/components with access to the communication buffer.

Operating system features store and share small amounts of system data
in the communication buffer since it is more readily accessed than
shared memory. When the amount of shared data is large, it is stored
in shared memory. The communication buffer allows processes
executing on different processors to share data; because there are
multiple processors, more than one process may need to access the
tables in the communication buffer at the same time. The service unit
uses the communication buffer interface to access the maintenance
interface for monitoring and diagnostic purposes.

Communication buffer has three fixed-size regions:

Permanent region - this is a locked-down area | Communication Buffen

used for system and Permanent region
communication buffer objects.

Queue region - stores data that constructs and

Q i
controls semaphores. ueue region

200,000

Transient region - relocatable area used by Transient region
applications and to store data shared
by user processes.

Base/limit access pairs protect this
memory by defining the area and v

types of access granted to BASE-T LIMIT
each user process accessing | address | address
communication buffer. 350,000 | 425,000 500,000

The communication buffer manager allocates memory in variably
sized blocks to system callers. Users may indirectly access the
communication buffer when using some applications.

PUB-1005 Rev. A 3-11

Resource Management ETAI0 System Reference Manual

System Data Storage

The communication buffer stores and maintains system data required
by all central processors:

* shared memory block table (describes shared memory contents)
e additional configuration information not stored in shared memory

e global file information for system tables residing in communication
buffer and shared memory

e remote procedure call tables (a feature that allows messages to be
passed between processes on different processors; using remote
procedure calls, all system processors communicate with each other)

* semaphore assignment data (simple semaphores provide access
control over a single resource, usually a table in central processor
memory; exiended semaphores provide access controi over muitipie
resources)

PUB-1005 Rev. A

ETA10Q System Reference Manual Resource Management

Management of Processors

The current software release supports the management of central
processors as separate entities. User sessions are started at nodes
directed to one processor. As shown in figure 3-6, all processors
function independently, accessing the ranks of shared memory and
communication buffer reserved for each. Each IO unit is dedicated
to a single processor. Disks connected to an I/O unit constitute the
logical disk devices for that central processor.

C P Memory
local SCT

Communication
Buffer

Shared
Memory

Central
Processor 1

Global
SCT

local SCT

Central
Processor 3

Figure 3-6. Independently functioning central processors.

Each central processor keeps a copy of the operating system in its
own memory. The global scheduling feature is resident on each
processor and manages only the sessions sent to that processor.

Note that there is a global system configuration table residing in
shared memory, it is required in order to initialize and start up the
system. A local copy reflecting a single central processor and its I/O
units, disks, and other components is stored and referenced in each
processor’s memory. A copy of the local system configuration table
for each processor is also kept in the server node of each service unit
for maintenance and modifications.

PUB-1005 Rev. A 3-13

Resource Management ETAI0 System Reference Manual

Management of the Input/Output Subsystem

The VO units use shared memory as a cache for user files. Each I/O
unit has its own port to shared memory where all the O ports can
transfer concurrently into special I/O buffers.

In addition to providing a rapid transfer of data to and from the
mainframe, the I/O subsystem is the major manager of disk space.
The I/O subsystem off-loads /O processing activity from the central
processors and allocates sectors on the disk storage units. As shown
in figure 3-7, disk physical-file system software translates physical file
addresses used by the operating system to sectors on the disk drives.

User file

oD
(logical
file
, address)

User requests
file.

~

j —= A hvsical translates physical
A logical Rigsica file addresses to
a dfg?ess . address sectors on the disk

\ is /
associate

with

Figure 3-7. 1/0 file request and address translation process.

Logical Devices and Device Classes

File Size

3-14

Administrators define logical devices and device classes for the disk
storage system. Portions of up to four disk drives are grouped to form
a logical device. Logical devices belong to a device class or classes.
Device classes represent a logical device(s) reserved for specific uses:
large files, operating system files, a specific person or project, or some
other class of user. The disk physical-file system assigns files to a
logical device based upon the user’s assigned device class as well as
available space in the logical device(s) belonging to the device class.

The allocation of space to files is dynamic. Currently, the system does
not limit file size. The system automatically extends a file while it is
being written as long as there is space for it to grow on its logical
device. If a file from a large batch session overflows its allocated
logical device, the logical file system can re-start the write if there is a
second logical device in the same device class.

PUB-1005 Rev. A

ETAI0 System Reference Manual Resource Management

Management of the System Configuration

The system configuration table contains a record of all the
configurable hardware and software units in a particular ETA10
system and maintains the system configuration information. This
includes the state and owner of all configurable units, software
versions to be loaded into processors, and initialization and tuning
parameters. A set of service unit hardware and software
configuration displays are used to monitor the system configuration
and to dynamically modify the table.

The System Configuration Table

A special program builds the initial system configuration table (SCT)
during hardware checkout. This initial table is loaded as a file in the
service unit, and during system initialization, a copy called the global
SCT is loaded into shared memory. All information necessary to
initialize or autoload the system must be contained in the global SCT.
A copy of this table is kept in each central processor memory and is
referenced by operating system features to obtain information such as
the status of memory ranks.

Service unit server nodes also keep a copy of the system configuration
table which is dynamically updated. System configuration control
software in the service unit maintains changes to the table and
enables it to be externalized via the hardware and software
configuration displays. When a component is configured in or out of
the system, this service unit version of the system configuration table
is updated to reflect the new configuration, a new copy is sent to the
shared memory to replace the prior configuration record, and the
ETA10 is then autoloaded.

Contents of the System Configuration Table

This table contains all pertinent configuration information for the
ETA10 system. This includes all system hardware and software
components and all site configurable and tuning parameters. System
configuration control software has sole access to read and write to the
table. The system configuration table is composed of a variable
number of blocks that are tailored to the type of unit each block
describes. For example, blocks that describe hardware components
have a different structure than blocks that describe software.

The primary purpose of this table is to record the current status of
the configurable units in the system, including:

¢ hardware unit definitions and interrelationships
* hardware unit status and attributes

PUB-1005 Rev. A 3-15

Resource Management ETA1Q System Reference Manual

 software server/driver status and communication path identifications
 software unit versions and attributes

* central processor parameters

* logical disk configuration and allocation information

» network configuration parameters and statistics

e site modifiable system parameters such as defaults, limits,
thresholds, and tuning parameters

Internal Configuration Software

The software feature that maintains the system configuration table is
called system configuration control. This feature records changes in
the table and returns requested data to other system features. A
second feature, systern configuration management, performs several
configuration functions:

e receives status changes from monitoring software

¢ coordinates changes in the configuration status of all hardware and
software units, forwards changes to system configuration control
software

e communicates status changes to other system resource managers
* enables operators to manually change status of configurable units

3-16 PUB-1005 Rev. A

ETAIQ System Reference Manual Resource Management

Section 2:

Resource Allocation and Accounting

The allocation and accounting of resources is through the system
accounting structure. System resources are directly allocated to site
accounts. Each account has one or more projects; user names are
assigned at the project level. Using the accounting structure, site
administrative staff define the system accounting units allocated to
each account and project.

The accounting system collects data on the usage of central processor
time by executing processes.

Resource Tracking and Accounting

This diagram shows a set of hardware resources (top, left) that are
assigned to various software resource managers. As processes
execute and use resources, the resource managers track the usage and
send resource usage reports to the accounting system interface.

ES Hardware

resourcss
arg assigned
software
managers...

Resource managers
track resource
usage and

send reports of
resource usage to
Accounting System
interfaces...

Figure 3-8. The relationship between resources, the accounting system, and site administrative staff.

PUB-1005 Rev. A 3-17

Resource Management ETAIQ System Reference Manual

Accounting System

The primary purpose of the accounting system is to collect statistics
that reflect the resources used by each session and process in order to
track resource usage.

The manager of each hardware resource reports the usage of that
resource to a collection point accessed by the accounting system.
Whether a session or process is stopped or fully executes, the
accounting system totals the resource usage statistics for the session
or process. The usage totals are translated into charge units that site
administrative staff can convert into amounts billed to the account,
project, and user.

Accounting Sysiem Funciions
The accounting system has several functions:
¢ it collects and accumulates resource usage data
* it builds and maintains a global accounting file
* it calculates charge units to be used by site accounting
e it applies charge units to accounts

Accounting File

The accounting file contains records of:

¢ user code execution time in number of central processor cycles
¢ user code execution time in microseconds
¢ number of vector processor cycles used in session

¢ system execution time in microseconds (use of operating system for file
creation and retrieval, process initialization, and so forth)

The accounting system records the resource usage at the process level
and accumulates/translates the usage to the session level. These
records are kept in the accounting file. The accounting file is a
printable ASCIH record, a maximum of 1024 bytes in length.

Access to Accounting System Data

Site administrative staff access the information in the accounting
system by logging onto the ETA10 in an interactive session, calling up
the accounting file, and printing it out. This is the ASCII version of
the accounting file, and it is formatted as a text file. But it may be
copied and edited like any file, and may be printed out.

3-18 : PUB-1005 Rev. A

ETA10 System Reference Manual Resource Management

Tracking Resource Usage

As resource managers coordinate and manage the hardware, they also
record resource usage to the accounting system interfaces. This
enables the accounting system to track usage information at session
and process levels.

Tracking Levels

The accounting system uses a file maintained in the account/project
registry to validate users, projects, and accounts.

FILE DATA FOR EACH ACCOUNT:

account identifier

account SAU limit

account administrator

list of valid projects x,y,z

LI I |

FILE DATA FOR project x

- project identifier

- project SAU limit

~ project administrator
- list of valid users:

FILE DATA FOR USER hsmith

-~ username
- user SAU limit

Figure 3-9 . Account and project registry file data that tracks and accrues
charges for users, projects, and accounts.

Projects are defined and managed within accounts. Resources are
assigned to projects and are recorded as system accounting unit
(SAU) limits. Users are registered under each project to which they
are allowed to charge. A project’s resource usage and accounting
information is reported per individual user session.

The accounting system maintains a running total of system accounting
units (SAUs) for each active process. System accounting units are
increments of processor time or system time.

Each session has a data block that includes a project and user name
to enable the accounting system to charge system accounting units to
users as well as to projects. The charges accruing to a set of users
can be combined to determine charges per project.

PUB~1005 Rev. A 3-19

Resource Management ETAI10 System Reference Manual

Accounting at the Session Level

As the global scheduler feature moves a session from the input queue
to the execution queue, it starts the accounting report mechanism.
The report mechanism writes a record in the session accounting
catalog for the new session. The catalog resides in shared memory.
As the session executes, global scheduler reports resource usage data
for the session to its record in the session accounting catalog. The
accounting system uses the data in the accounting catalog to maintain
a running total of system accounting units (SAUs) for each active
session. System accounting units are so many increments of
processor time or system time.

After the session fully executes or is stopped, its accounting record is
sent from the session accounting catalog out to the global accounting
file that resides on disk. Process statistics are added up to determine
the session’s accumulated usage for each type of system resource. In
this way, the accounting system determines the system accounting
units to be charged to this session. The site is free to use these
charge units in their particular billing scheme.

Accounting at the Process Level

3-20

When the process manager feature initiates a process, it starts the
accounting report mechanism. The report mechanism writes a record
for the new process in the process accounting catalog. As the process
executes, the process manager reports resource usage data for the
process to its record in the process accounting catalog. The
accounting catalog resides in central processor memory and is a
record of resource usage for processes that run in that central
processor. When a process is initialized to run, the process manager
calls the accounting system to start. The process manager suspends
accounting activity if the process is blocked, and terminates
accounting activity when the process completes.

The accounting system uses the data in the accounting catalog to
maintain a running total of system accounting units (SAUs) for each
active process. System accounting units are so many increments of
processor time or system time.

After the process fully executes or is stopped, its accounting record is
sent out from the process accounting catalog to the global accounting
file that resides on disk. The same accounting record is added to the
record of the session to which the process belongs. Using the
process’s accumulated system accounting units now in the accounting
file, the accounting system determines the system accounting units
(SAUs) to be charged to this process. The accounting system
combines the data from a session’s processes into the session’s final
record in the accounting file.

PUB~-1005 Rev. A

ETAIQ System Reference Manual Resource Management

System Accounting Units (SAUs)

A system accounting unit is the charging unit. All users charges and
billing are based upon the system accounting unit as shown in this

diagram:
System Accounting Units:
Resource managers
cogect usag: statistics :'e"‘ceorsd/\elésaanf:
and report them as orde !
System Accounting Units. .. maintained in the
(SAUS) Accounting File...
! / Accounting
account process File
SAUs SAUs
SESSION PROCESS SAUs s Charges
accountin accountin . EHIVHTEI
inforr%at'io% informatio% A B caiculated
biock block o for users
| s N s | | | ma B e mesne o
| v § wosn | me § o § e} NERROEESS

Figure 3-10. How the accounting system collects, stores, and uses SAUs.

To obtain a billing unit, the site combines a charge unit or a system
accounting unit with a premium that may reflect session priority, time
of day, or special software.

PUB-1005 Rev. A 3-21

Resource Management ETA1Q System Reference Manual

The User Registry

This section describes the structure of the user registry, the types of
information it contains, and how it is used.

The user registry resides as files on the system disk and is accessed
through an administrator utility. The registry is a system database of
user identification and privileges.

End user information consists of descriptions of user privileges and
the specific user identification required for each user to log on. The
registry maintains an entry for each user that enables the resource
managers to verify specific resource limits as well as to validate users
for a project.

Access to the Registry

Internally, the user registry is accessed by resource managers as they
manage processes and sessions. This access is to verify resource and
user privileges. The common login processor feature accesses the
registry to validate usernames, passwords, and access permissions.

Externally, the user registry is accessed by site administrative staff to
enter and delete users, or to modify user information. Users may
view their own information, but they usually do not have the privilege
to change it except for their password. They may not view other
user’s information.

Both administrative utilities are designed to be used from network
terminals via interactive sessions with the ETA10. Most of the
maintenance data associated with these utilities are stored and
maintained on disk files.

User Management Utility

3-22

This utility is used to build and modify the user registry. It provides
the system interface for users and their resource usage and limits.
System administrators use this routine to specify and maintain user
validation parameters and limits. This utility allows the administrator
to create templates for a variety of user types and to apply the
template to a user to build a specific user profile. A user may use
this utility to look at the information about himself or herself only;
special privileges are required to look at other users. When the
system is started up, this utility creates a minimal user registry that
the site can build from unless some version of a registry is part of the
software loaded during installation.

PUB-1005 Rev. A

ETA10 System Reference Manual Resource Management

User Information

The user information includes a considerable list of user attributes
including permissions and records of user activity. A template for a
typical user can be used to build individual user profiles. Partial
listings of user privileges and user records follow:

Privileges to:
 log on batch and interactive

* create accounts
¢ change passwords

look at other user’s information

change other user’s information

Records of:

* password

e password start and end dates

* user name

e default account, project identifiers
* modify, look, change privileges

» password expiration date

e directory pathnames

¢ time of last interactive log-on

User Validation by the Common Login Processor

The common login processor runs continually on the system. Two of
its functions are, first, to respond to users logging on and interactively
prompt for user name and password, and, second, to validate the
username, password, and privilege to log on. It uses the information in
the user registry to validate users. When the user is validated, the
common login processor creates the interactive connection for the user.

PUB-1005 Rev. A 3-23

Resource Management ETAIQ System Reference Manual

The Account and Project Registry

This section describes the structure of the account and project
registry, the type of information it contains, and how it is used.

The account and project registry is accessed through an administrator
utility and resides as a set of files in the system disk. The registry is
a database of three types of accounting information: accounts,
projects, and users.

In this registry, administrators identify all permitted accounts, define
an account’s maximum resource usage, and list the projects that
belong in each account. The projects in each account are also
identified and assigned maximum resource usages, and a list of users
may be assigned to each project.

The account and project registry provides the description of the
relationships between users, projects, and accounts. Administrative
staff use the Account Registry utility to enter and delete accounts and
projects, and to modify resources allocated to accounts and projects.

Account Registry Utility

The Account Registry utility is used to create and maintain a site’s
account and project registry. This utility is called from network
terminals via interactive sessions with the ETA10. Most of the
accounting data associated with the utility is stored and maintained on
disk files.

PUB-1005 Rev. A

CHAPTER 4

Chapter

Operating System Kernel

Chapter Contents

INtrodUuctionttt ettt e e e Section 1
Distribution of Kernel Features 4-3
Central Processor Kernel Features 4-4
Service Unit Kernel Features 4-5
/O Unit Kernel Features 4-6
The Kernel Operating System Feature Groups 4-6
The Logical File System 4-6
The Memory Managers, 4-7
The Process Managers 4-8
The Domain Manager 4-8
The System Managers i, 4-8
System Entry i 4-9
Underlying Operations et Section 2
CPU MoONitOr . ..ot et e e 4-12
Monitor’s Functions i, 4-12
Process QUEUEScciiiii it i e e e 4-14
Virtual Address Mechanism 4-16
Locked-Down Process Objectsc.ccoviienennenn.. 4-18
Process Register Table 4-18
Register Usagecoiiiiiiiiiiiiinnn.. 4-19
Process Page Table 4-19
Process Package 4-19

PUB~1005 Rev. A

EOS Kernel:

Table of Contents ETA1Q System Reference Manual

Contents (continued)

Invisible Package i, 4-19
Domain Packages i, 4-20
Domain Stackccitiiiiiiiiinnrinennn. 4-20
Process Address Mapc.cociiiiiiiiii, 4-20
Process Descriptor Blockcoiiiiiiin... 4-20
Mode Exchangesccitiiiinnntnennneannns 4-21
Interrupt Exchange: Job to Monitor 4-22
Return from Interrupt: Meniter to Job oL =23
Domain Change ciiiiiiiiiiiineninnen., 4-24
Critical System Serverscciiiiiiieiinnn.. 4-26
Processes on the ETAIOttt nnoeenineennnennenenennean Section 3
Definition of a Processccccvveirveniiinnniennan. 4-27
Process Objectscovviiiiniinirenneeeeannnn 4-27
Tracing a Process Through the System 4-28
User Login ... iiiinnieinneeneaneeneenns 4-28
Command Entry 0 it iniiiianannnnnn. 4-29
Command Acceptancecoveiiinnnnnn.. 4-29
Process Creationccvtveeiiiennnanennnnn 4-30
Global Scheduler Activitycccivieiniivin... 4-31
Process Initialization 4-31
External Initialization 4-31
Internal Process Initialization 4-32
An Executing Process ..o, 4-33
Process Termination v, 4-34
Process Recovery 4-34
Internal Termination 4-35
External Termination 4-35
Page Fault Processing oo, .. 4-37
Process’s Page Table 4-37
Address Map and Process Block 4-38
Virtual-to-Physical Addressing 4-38
Page Faulting 0. . i, 4-39
The Pagerc i i i i 4-39
Processing Memory Requests 4-39
Processing Page Faults 4-40
Processing IO Completions 4-40
More on Shared Memory Manager 4-41
/O Transfers to Shared Memory 4-41
The Completion Servercciiiiiiinin... 4-41

PI'R-]1NNS Rev. A

ETA10 System Reference Manual EQOS Kernel: Table of Contents

Contents (continued)

Writes Before Reads o L 4-42
The Logical-File System uiiun ittt Section 4
File Directory/Catalog Manager 4-43
File System Structure, 4-43
Pathnames 4-43
Alias Pathnameso it 4-44
Global File IDSoiuiniiiiiii i 4-44
Relative Root and Working Root 4-44
Directory and File Ownership 4-45
Controlling Access to Directories and Files 4-45
Permanency of Files 4-45
Device Classesooitiiiiniiinineneenn., 4-45
The File Catalog, 4-45
Logical Disk Files it 4-46
The Directory Seto, 4-47
DIrectoriesciut it e 4-48
File Nodes i, 4-48
Directory and File Node Linkage 4-49
Access Permissionsy 4-49
Relative Root and Working Root Directories 4-52
Shared Information 4-54
File Directory/Catalog Manager Physical Structure 4-5§
File System Initialization File 4-56
Directory Set File 4-56
Catalog File i, 4-57
Access Permission File 4-57
Physical File ID File 4-57
Physical File IDMap, 4-58
Flush Logical File System File Table 4-59
The Directory Treeccviiiniiiiii i, 4-59
Internal Representation of the Directory Tree 4-59
Alias Path Name Implementation 4-60
Global File ID Field Descriptions 4-61
Configuration of File System Files 4-62
Synchronization on Logical File System Files 4-63
Synchronization on File Directory/Catalog Manager
Tableso 4-63
File Directory/Catalog Manager Routines 4-64
File Support Module 4-67
File System Installation and Initialization 4-67

PUB-1005 Rev. A

EOS Kernel: Table of Contents ETA10 System Reference Manual

Contents (continued)

Cold Starting the File System 4-67
File System Installation 4-68
File System Initialization 4-68
CPU Initialization for File System.................... 4-68
Process Initialization for File System 4-68
Process Termination 4-69
User File Termination, 4-69
Disabling the File System 4-69
Terminaie rile System for Client 4-70
File Activation and Deactivation 4-70
File Sharing ittt 4-70
Simultaneous Opens 4-71
Read/Write Lockouto i, 4-71
Performance Versus Security Considerations 4-72
Object Definitions and Usage 4-74
Local File IDc. i i e 4-74
Global File IDttt 4-74
Shared Information it 4-74
VO Connectionoiiiiii i 4-74
Global File Usage Attributes Table 4-75
Local File Usage Attributes Table 4-75
File I/O Control Block e e e 4-75
Open File Tableo, 4-76
Physical-File IDMapo, 4-76
Open File Audit Table 4-76
Functional Interfaces 4-77
Record Managerot 4-84
Logical Groupings of File Data 4-84
Records i 4-84
GrOUDS ..ttt i e e e 4-85
Files ... o e e 4-85
Partition Hierarchies 4-85
Working Storage Area, 4-85
Accessing Modes il .., 4-85
Sequential ACCESSititiii i e 4-86
Direct AcCessov it e 4-86
Shared Filest 4-86
Simultaneous ACCESS oo vvi vt 4-86
Shared ACCESSottt e 4-87
CP Memory Block VO Buffers 4-87
Concurrent, In-place VO 4-88
Partitioning of Record Manager Operations 4-89
File Data Versus Control Information 4-89

PUB-10NS Rev. A

ETAI10 System Reference Manual

Contents (continued)

The Memory Managers

PUB-1005

Record Constructs or Typesc.covvinon.. 4-89
Record Mark Delimited (R) Records 4-90
Control Word Delimited (V) Records 4-90
Fixed Length (F) Records 4-91
Unstructured (U) Recordsvun... 4-91
File Positioning, 4-91
Partition Numbers and Byte Numbers 4-91
File Beginning and End Positions 4-92
Current Partition and Current Byte 4-92
Current Partition Address and Current Partition Offset .. 4-92
Current File Position it 4-93
End-of-Information 4-94
Management of Record Manager Related Attributes 4-94
Record Manager Shared Information 4-94
IO Connection Table 4-94
Global File Usage Attributes Table 4-94
Local File Usage Attributes Table 4-95
OpenFileTable 4-95
File /O Control Block 4-95
Record Manager Routines 4-95
.. Section §
Central Processor Memory Manager 4-101
Central Processor Memory Objects 4-102
Central Processor Memory Manager Feature Interaction 4-102
Implicit File Accesscovvtvriniiiniiiinnnna 4-102
Address Space Definition 4-103
Page Fault Processing, 4-104
Process Initialization 4-104
Process Termination 4-104
CPU Initialization, 4-104
Central Processor Memory Transfers 4-10S
Central Processor Memory Resource Management 4-105
Central Processor Memoryccoiiiininnnnn... 4-105
Central Processor Memory Objects 4-105
Central Processor Memory Object Supporting Functions . 4-106
Memory Addressable Files 4-107
Memory Addressable File Segments 4-107
Memory Addressable File Access Permissions 4-107
Memory Addressable File Allocation Units 4-107
Memory Addressable File Supporting Functions 4-108
Memory Addressable Paging File 4-108

Rev. A

EOS Kernel: Table of Contents

EOS Kernel: Table of Contents ETAIQ System Reference Manual

Contents (continued)

Memory Addressable File Supporting Functions 4-108
Memory Addressable File Scratch Space 4-108
Central Processor Memory Resource Objects 4-109
Resident Setcoiitiiitiiiniiinnnnieaeonnnnn 4-109
Working Seto e 4-109
Central Processor Memory Management Policies 4-110
Page Replacement Policy 4-110
Central Processor Memory Commitment Level 4-110
Process Activationccoiuiiitiinininnen., 4-111
Central Processor Memory Manager Shared Information 4-111
Page Tableo, 4-111
Working Set Evaluation Queue 4-111
Page Fault Queueciiiiiiiien.. 4-111
Pager Message Table ot 4-111
Process Packagecccviiiiniiiiiiin. 4-112

System Configuration Table Coldstart Attribute Block ... 4-112
System Configuration Table Process Image Attribute

BloCK ..ot e e 4-112
System Configuration Table Attribute Block 4-112
Executable File Header 4-112

Central Processor Memory Manager Functions 4-113
Shared Memory Managercc.titiineneecnennnnn 4-117
Externalized File Objects, 4-117
Shared Memory Objectsc.coiiiiiernineennn.s 4-118
Memory Management Requirements 4-118
Shared Memory Object Procedural Interfaces 4-119
File Object Procedural Interfaces 4-120
Miscellaneous Procedural Interfaces 4-121
Shared Memory Objects versus File Objects 4-121

Shared Memory Objectsccoivininen... 4-121

File Objectsooitiiiii it 4-122

Communication Buffer Management 4-123

Communication Buffer Objects 4-126

Communication Buffer Management in the CPU 4-127

An Example of CB Managementina CPU 4-127
Communication Buffer Management in the I/O and Service

L0] 11 4-128

CB Management Between the CPU and /O Unit 4-130

Communication Buffer Restrictions and Limitations 4-130

Communication Buffer Management Externalized Objects .. 4-132

Communication Buffer Object Access Rights 4-132
Permanent Communication Buffer Objects 4-135

PUB-1005 Rev. A

ETAIO System Reference Manual EOS Kernel: Table of Contents

Contents (continued)

Transient Communication Buffer Objects 4-136
Communication Buffer Queue Objects 4-137
Communication Buffer Management Functions 4-139
The Process Managersot inntiretnaenteneennnnennn, Section 6
The Global Scheduler, 4-143
The Queue Management Subsystem 4-143
Queue Management Subsystem Procedural Interfaces ... 4-146
Session Scheduler i 4-147
Session Scheduler Procedural Interfaces 4-148
Process Scheduler Procedural Interfaces 4-149
Quele Setsit it e e e 4-149
QUEBUES ...ttt i i e e e 4-150
Queue Itemt i e e 4-150
Input Queue Set il 4-151
Session Attributeso e 4-151
Process Managementc..iiiniiiiiiiiniaan.y 4-153
Process Objectscc.iitiiiitin it 4-154
Executable File i, 4-154
Process Descriptor Block 4-154
Register Blockot 4-155
Process Package, 4-155
Alternate Process Package 4-155
Process Statesciitiiiiiii it 4-155
Process Createcciiiiiiineiininnnnnn.. 4-157
Initiating State i, 4-157
Ready State i, 4-158
Running State 4-158
Termination State 4-159
Recovery Stateo, 4-159
Blocked State i, 4-159
Process CluStersviuiiiininineninennnenann. 4-160
Process Management Objects 4-160
CBDataBlockc.ciiiininiii it i, 4-160
Cluster Catalogcvtiiriiiienenenennnnn. 4-161
CPUProcess Catalogoienenininan... 4-161
SM Process Catalogcoiuiiiinnen.... 4-161
Shared Information 4-162
Blocked State List, 4-162
Process Descriptor Block 4-162
Recovery State List, 4-162

PUB-1005 Rev. A

EOS Kernel: Table of Contents ETA10 System Reference Manual

Contents (continued)

Termination State List 4-162
Process Management Functions 4-163
Remote Procedure Callscoiiiiiiiiiiiiienes 4-166
How Messages are passedo, 4-166
Complex Receivecoiiiiiiiiiiiiiiinnnnn 4-167
Waiting for Messages and Replies 4-169
RPC ObjectS . ..o cvetitieineie e iin it 4-169
RPC Maiibox Objectscvvviiinvneeneneneannn 4-169
RPC Message Objectscoovviinininiannarnnnn 4-171
RPC Reply Objectscoviiiiiiiniinnen.n 4-172
RPCFunctionscoiuiiiiiiiiiiniiiinnaennns 4-172
Server FUNCLIONScitiiienraniieneneen. 4-173
Client Functionsciiiniiiiiiieavnnnn 4-173
Server and Client Functions 4-174
System Functionso tiiiiiiiiinnen.. 4-174
Domain Management ittt Section 7
Domain Managementcccutitiiienneneeanenns 4-177
Domain Hardware i iiiiiaon.. 4-177
Domain Softwarec. ittt 4-179
Domain Generationc.ccuuieriiirinonnennas 4-180
Domain Linkage Support 4-183
Domain Executionciiiiiieiiinena.. 4-183
Domains it i e e e e 4-18S
Domain Identification 4-186
Caller Domainsc.iiiiiiiriiiiiiinenenn. 4-186
Domain Distributor and Collector 4-187
Domain Entry Points 4-187
Dynamic Stack Adjustment 4-188
Data Flag Branch manager Adjustment 4-189
Prologue and Epilogue 4-189
KeyS i e e e e 4-189
Parameter Keys0 ... 4-190
Private Keysttt iiiiii i 4-192
Shared Code Keysccocviiiiiniinnnnnn... 4-192
Unused Keyscoiiiiiiiiiiiiiiinn... 4-192
Memory Access Rights 4-193
Process Package 4-193
Invisible Package -4-195
Domain Package 4-195
Stacked Domain Packages 4-196

PI'R-1NNS Rev. A

ETAI0 System Reference Manual EQOS Kernel: Table of Contents

Contents (continued)

Process Shadow Package 4-196
Process Images i, 4-197
Application Domain i i, 4-197
Domain Management Shared Information 4-198
Process Package and Shadow Process Package 4-198
Dynamic Stackcii... e 4-198
Domain Management Functions 4-198
Domain Inquiry Functions 4-199
Domain Update Functions 4-195
Process Package Adjustment Functions 4-200
Domain Linkage Support Function 4-201
Software Reconfiguration Functions 4-201
Domain Distributor/Collector Function 4-202
Domain Editor i 4-203
The System Managersttt Section 8
System Configuration Control ioinen... 4-205
System Configuration Table 4-206
Hardware Configurable Units 4-207
Software Configurable Units 4-208
Logical Disk Devices 4-208
System Configuration Elements 4-209
Hardware Classifications 4-209
Software Classifications 4-209
Configurable Unitso, 4-210
Unit Ownership 4-210
Unit Sponsorship 4-211
Physical Status 4-211
Logical State i 4-211
Logical Devices i, 4-212
Device Classesttt 4-212
Service Unit oo 4-213
Multi-Host Network, 4-214
System Clocko, 4-214
Configurable Unit Attributes 4-214
System Configuration Table 4-215
System Configuration Table Structure 4-216
System Configuration Table System Information 4-216

System Configuration Table Hardware Unit Information . 4-217
System Configuration Table Software Unit Information .. 4-218
System Table Operationsc.coiuinn.... 4-219
Hardware Unit Operations 4-220

PUB-1005 Rev. A

EOS Kernel: Table of Contents ETA10 System Reference Manual

Contents (continued)

Software Unit Operationsccovviunrnen... 4-222
Logical Device Operationscoiiierinnenenns 4-224
System Time Operations ciiiiinen... 4-226
Error Handling and System Configuration Table Access
Operationscoiuiininiiiiii i 4-226
System Table Registry Operations 4-228
System MoONItOr vttt ittt ie e et e 4-229
Hardware Fault Detaction 4-230
Hardware Fault Processingcviiin.... 4-231
System Monitor Functional Interfaces 4-231
Report System Error 4-232
Human Interfaces 4-233
Fault Detectionc. 00ttt innnnanann. 4-233
Shared Memory Transfer Errors Indicated by Transfer
Request Block Status 4-234
Faults Detected by System Monitor 4-235
System Logging and Analysisc.coviienn.., 4-238
System Logging and Analysis Architecture 4-238
Event Report Interface 4-238
Event Report First-In-First-Out Queue 4-238
Logging Processorc.coiuvieenenenennennn 4-238
System Logging and Analysis Database 4-239
Aged Databaseccciiiiiiiiiiiiiin. 4-239
QUETY ProCeSSOr .o vvvvitet ettt 4-240
Display Processorcoiiiiiiiiiiiiiin.. 4-240
Report Writer i, 4-240
System Logging and Analysis Design Philosophy 4-241
Event Report i 4-242
SYStem ENtryot e e e e Section 9
User Managementivieierenvnennnncecneaanennns 4-243
The Common Login Processor 4-243
Interactive Validation 4-245
Logging In as an Interactive Session.................. 4-245
Logging Out of an Interactive Environment 4-246
Batch Validation oo, 4-246
Logging In as a Local Batch Session 4-246
Completing a Batch Session 4-246
User Registryt i e 4-247
Account and Project File 4-247
System Administrator Functions 4-247

PUB-1005 Rev. A

ETA10 System Reference Manual EQS Kernel: Table of Contents

Contents (continued)

Project Administrator Functions 4-247

User Access Functionso, 4-248

Site Administration Utilities for User Management 4-248
List of Figures
Figure Title Page
4-1 Kernel features and feature locations 4-4
4-2 Virtual address mechanism i, 4-16
4-3 Process Object Groupovnimiininiiiiniiiiininnnnnn 4-18
4-4 Job to Monitor Mode Exchange, 4-22
4-5 Monitor to Job Mode Exchange 4-23
4-6 A forward domain change, with exchange of execution address,

keys, access violation codes (AVCs), BLAPs and other information
between process package and process status registers. Register file

and page tablesremaininplace o i 4-24
4-7 Critical System Servers e e 4-26
4-8 Stages of a process in the ETA10 system [T E PR 4-28
4-9 Creating a space table for process A 4-38
4-10 Global file IDs and system objectsoviiiininn.. 4-47
4-11 The file directory/catalog manager files and tables 4-56
4-12 A directory structure segment where the d0i represent directories

and the fljrepresent files i, 4-59
4-13 Internal structure of a directory set showing the node pointers 4-60
4-14 An alias chain showing the node pointers 4-61
4-15 Logical relationship between the Communications Buffer sides and

the computer SyStem ProCeSSOScvvtvntninrnnennennnenn 4-123
4-16 Base/limit/access pairs in the domain package specify address

ranges in memory that the process has access to................. 4-125
4-17 A Communication buffer side is typically divided into regions for

the three object tyPes oot ittt i et 4-127
4-18 Granting of domain privileges using domain feature identifier 4-134
4-19 Granting of domain privileges using cluster ID and domain feature

115 4-134
4-20 Hierarchical relationships of objects managed by the queue

management subsystem i i 4-145
4-21 Relationship of calling features to Queue Management procedures ... 4-146
4-22 A mapping of the possible states and transitions within process

MaNAZEMENTttt ittt i ar e eaaeneens 4-157
4-23 Typical client and server relationships 4-166

PUB-1005 Rev. A

EOS Kernel: Table of Contents ETA10 System Reference Manual

Contents (continued)

4-24 A process which is both a client and server to different mailboxes .. 4-167
4-25 A server receiving the next message posted to one of its mailboxes . 4-168
4-26 A client receiving the next reply sentto it 4-168
4-27 A process receiving the next message or reply destined forit....... 4-169
4-28 Process switch protection mechanism 4-178
4-29 Domain protection using a domain distributor/collector 4-179
4-30 Building adomain i 4-181
4-31 Building a process imageottt 4-182
4-32 The process of process initialization and execution 4-184
4-33 A domain distributor with multiple entry points and two hidden

Internal FoULINESttt ittt 4-188
4-34 Shifting incoming parameter keys to outgoing parameter keys in a

forward domain change i i i 4-191
4-35 Process package StruCtUrecoutiirennenninneneennens 4-194
4-36 Relationship between system,_ configuration control and other system

features i e i e 4-206
4-37 Components and interfaces of the System Monitor 4-230
4-38 SLA Architecture00ttt 4-239

PUB-1005 Rev. A

ETA10 System Reference Manual

Chapter

Operating System Kernel

EOS Kernel:

Introduction

In This Chapter ...

This chapter describes the features of the computer’s operating
system, and how they interact to perform computing tasks. It is
divided into ten parts:

PUB-1005

1.

Rev. A

Introduction

2. Underlying Operations
3.
4. The Logical File System:

Processes on the ETA10

¢ File Directory/Catalog Manager
* File Support Module
* Record Manager

. The Memory Managers:

e Central Processor Memory Manager
¢ Shared Memory Manager
¢ Communication Buffer Management

. The Process Managers:

¢ Global Scheduler
* Process Management
e Remote Procedure Calls

. The Domain Manager:

¢ Domain Management

. The System Managers:

¢ System Configuration Control
¢ System Monitor
* System Logging and Analysis

4-1

EOS Kernel: Introduction ETA10 System Reference Manual

9. System Entry:
* User Management

4-2 PUB-i005 Rev. A

ETA10 System Reference Manual EOS Kernel: Introduction

Section 1: Introduction

The operating system of the ETA10 series of computer systems, is a
multiple CPU, multitasking system distributed across the hardware as
a series of features. Features are either duplicated in different parts
of hardware, or are distributed across the hardware in a series of
pieces.

The operating system consists of three distinct layers of software
hierarchy: kernel, environment, and process layer.

The kernel layer contains the lowest level of operating system
software. They perform the functions of memory management,
process management and communication, and implement system
services such as the logical file system, user management, and
accounting. :

Above this layer, and depending heavily on it, is the environment
layer. This layer is what you as a user will perceive as the operating
system. You can not directly interact with the kernel. The familiar
commands of the CYBER 205 VSOS version 2.2 operating system are
implemented in this layer.

For a system administrator or other special user, there is a second
environment layer containing the service unit operating system. The
service unit operating system may only be accessed from a service
unit node. It is used to monitor and control conditions in the
computer system.

The uppermost layer of the operating system is the process layer.
This layer consists of the programs and applications that are run from
the environment layer, such as a utility or a FORTRAN 200 program.

For the service unit operating system, the process layer includes the
applications and diagnostics used to monitor and diagnose the
computer system hardware and software.

Distribution of the Kernel Features

PUB-1005

The kernel features are distributed across the computer system
hardware, residing on all three classes of processing units as shown in
figure 4-1.

Rev. A 4-3

EOS Kernel: Introduction ETAIQ System Reference Manual

Kernel features:

CP Monitor prmve c:l“‘ primitive level
col code

primitive level
SU Supervisor control code

control code 10U supervisor

CPU-specific features: SU-specific features: 10U-specific features:

- global scheduling - SO server - digk channel controller
- gPU rocess management - print server -
- CP m%mory managgment - BEST server FIPS channel controiler

- logical file system

- semaphore support

-~ domain management

- accounting utility

~ uger managsment utilitiss
- common login processor

- remote system support server
- system monitor server

- maintenance interface server
- display process server

- eperator alarm server

- power & cooling supervisor
- error logging

po—

System-wide kernel features:

- remote procedure cails

- disk physical-flle system - shared memary managamant
~ capabillties management (protection software) - communication buffer management
- Initialization software - system monitoring

Service Unit and
- gerial 1/0O server/driver
- service unit interface (SUIF)

features running on the CPUs and the service unit:
- systemn configuration control
- system configuration managemen

CPU-I
CPU-based network software:
~ access methods (MHN)
- muiti host applications (MHN)
icatl trol (OIN

IOU-based network software:
- network access driver {MHN)
- transmission manager (OIN)

Figure 4~1 . Kernel features and feature locations.

Features such as global scheduler and CP memory manager are
confined to each central processor. Their functions are specific to
CPU activity. Other features such as the disk file system are used by
all three processor types, and thus have their pieces distributed across
the entire system.

Central Processor Kernel Features

The central processor holds those kernel features needed to execute
tasks, including the initialization, execution, input/output, and
termination phases. It also holds the features which allow it to
communicate with the other processors in the system.

The primary central processor feature is the CP memory manager
(CPMM). It organizes and accounts for the central processor
memory, and is responsible for its allocation to processes and
features. The features reside in a reserved area allocated by CP
memory manager at initialization.

4~4 PUB-1005 Rev. A

ETA10 System Reference Manual EOS Kernel: Introduction

Below CP memory manager are global scheduler and process
management. They schedule and control tasks within the CPU. As a
result of their activity, logical file support, accounting, or semaphore
support may be called.

If a scheduled task is a user login, the common login processor may
be called, followed by user management. If the login is from a
remote connection, one of the network software features may be
called.

It should be noted that the CPU may operate in either of two modes:
monitor and job mode. In monitor mode the CPU is running its
primitive level control code. The CPU is unaware of anything beyond
its limited monitor instruction set and the task it has been called to
perform. Monitor mode is entered by an interrupt to the CPU in job
mode. Job mode, however, is the normal user mode of the system.
In job mode, the feature processes may be active and the CPU is set
up to execute user tasks.

Service Unit Kernel Features

PUB-1005

The service unit holds those features needed to query the ETA10
hardware and diagnose any problems that may be encountered. It
also holds the service unit operating system (SU_OS). The service
unit operating system is an interface between the native operating
system of the service unit host, the user, and the ETA10 operating
system kernel.

Residing on the service unit operating system are the many service
unit features. Most of these are concerned with the diagnosis and
maintenance of the ETA10, as well as the monitoring and displaying
of normal operating status.

Additionally, to allow the service unit access to the information it

needs, the shared memory and CB manager features are present in
the service unit. The disk physical-file system (DPFS) feature is
provided so that the service unit may monitor and retrieve disk
information from the /O unit.

Another part of the service unit’s function involves configuration. The
service unit works closely with the CPU to perform system
configuration. The two processor types share the system configuration
control (SCC) feature. System configuration control has as its
responsibility the system configuration table (SCT), which holds the
actual configuration information. A master copy of the system
configuration table resides in the service unit. At system initialization
the table is copied to and used by the individual CPUs.

The service unit and the /O unit (IOU) processor share the serial /O
server/driver and service unit interface (SUIF) features. These

Rev. A 45

EOS Kernel: Introduction ETAI0 System Reference Manual

features allow the service unit and IO unit to communicate with each
other over the serial line that connects them.

I/0O Unit Kernel Features

The I/O unit is responsible for all data movement into and out of the
computer system, including the disk physical file system and the
networks.

The service unit supervisor consists of primitive level control code that
directs the MC68020 IO unit processors. Each of these processors is
also executing in its native supervisor mode. Running above the
supervisor and making calls to it are the I/O unit features.

GIrccus

One responsibility of the /O unit is the disk file system. The disk
physical file system and disk channel controllers are features of the
/O unit.

Another responsibility is network communication. The I/O unit shares
network communication features with the CPU processors.

On the system side, the I/O unit shares the communication buffer and
central processor memory manager features with the rest of the
system. The IO unit shares the system monitoring feature with the
rest of the system. It also shares a serial I/O line and its supporting
software with the service unit.

The Kernel Operating System Feature Groups

The operating system kernel level may be considered as a number of
features arranged in groups, each group representing features that
have a common or interrelated purpose. Several of these groups are
introduced here. The groups and their features are described in detail
beginning with section 4 of this chapter.

The Logical File System

The file directory/catalog manager (FDCM), file support module
(FSM) and record manager (RM) are the three elements of the
logical-file system (LFS).

File directory/catalog manager oversees the tables where the file
catalog for the system is kept. Each directory, subdirectory, and file
is represented as a node. A file’s position in the directory tree is
represented by its position with respect to the nodes surrounding it.
A chain of nodes forms a path name. Functions are provided that

4-6 PUB-1005 Rev. A

ETA10 System Reference Manual EOS Kernel: Introduction

allow callers to create and delete nodes, thus creating and destroying
the directories and files they represent.

File directory/catalog manager supplies directory information to all
tasks that request it, including any user FILES commands coming
from the VSOS environment.

The file support module opens and closes files. It also manages the
tables that maintain file states for tasks. These tables indicate
whether the file is open or closed, file positioning, whether the file is
shared or not. Other file support module tables hold attributes
associated with files in the VSOS environment.

The file support module also provides the interface between the
logical file system and requests coming from other kernel features and
the I/O unit processors.

The record manager is the single feature through which explicit VO
with the file system is performed. The concepts normally associated
with files - record format and blocking type - are implemented in the
record manager.

The record manager is not used for any type of implicit I/O.

The Memory Managers

The CP memory manager (CPMM), SM manager (SMM), and CB
manager (CBM) are the three memory managers.

CP memory manager controls the allocation of the memory that
immediately surrounds each CPU. It allocates and deallocates
memory pages for processes. It reserves the area used by other
kernel features. It is also the communication link between the CPU
and the outside world, interacting with the SM manager and logical
file system for saving and retrieving data.

SM manager controls the large independent memory used by all the
CPUs and features for general-purpose, in-system storage. SM
manager allocates memory pages for processes until all memory has
been allocated. If further memory is needed, it begins to page out
least-recently used pages of memory in coordination with the
logical-file system until all requests are satisfied.

CB management controls the fast memory of the communication
buffer. This buffer is used almost exclusively for the passing of
messages and control information (including semaphores) between
processes and/or processors. It is not used for general storage.

PUB-1005 Rev. A 4-7

EOS Kernel: Introduction ETAIQ System Reference Manual

The Process Managers

Global scheduler and process management are the two process
managers.

Tasks are received by global scheduler and assigned to execute on a
CPU. No non-monitor activity executes in the CPU without first
passing through global scheduler.

Process management oversees a process throughout its lifetime.
When a request for process creation is received, process management
creates the tabie entries and information necessary for the process to
execute. It creates and initializes the process and notifies global
scheduler.

When the process begins executing, process management works with
the CP memory manager to ensure the proper resources are present.
When execution is complete, process manager is responsible for
removing the process and all its entries in system tables from the
system.

The Domain Manager

Domain management (DM) is the domain manager. It sets up the
system and user domains, and maintains the security of the system
kernel from unauthorized access.

The System Managers

System configuration control (SCC), system monitor (SMTR), and the
system logging and analysis feature(SLA) are the system managers.

System configuration control is responsible for the system
configuration table (SCT). This table holds the detailed configuration
information for both system hardware and software.

The master copy of the system configuration table always exists in the
service unit. At system initialization, individual copies of the table
are made in each CPU. The CPUs then execute based on the
information contained in their local system configuration table.

System monitor is the feature that receives error and status
information from all the other system features. It provides periodic
verification of hardware and software operation.

The system logging and analysis feature receives error information
from system monitor and places it in a database accessible from the
service unit.

4-8 _ PUB-10G5 Rev. A

ETA1Q System Reference Manual EOS Kernel: Introduction

System Entry

User management (UM) is the system entry feature responsible for
validating user access to the system.

The common login processor (CLP) is a part of user management.
The common login processor presents the prompt you see each time
you log in. User management also maintains the files which hold
your default login parameters and the user registry, which contains
your privileges and limits within the computer system.

PUB-1005 Rev. A 4-9

EOS Kernel: Introduction ETAI10 System Reference Manual

4-10 PUB-1005 Rev. A

ETAI0 System Reference Manual EOS Kernel: Underlying Operations

Section 2: Underlying Operations

Certain essential functions of the operating system involve a low level
interaction between system software and the hardware. These include
the most important functions of the monitor - interrupt handling and
process switching - as well as the operations of the virtual address
mechanism.

Process switches involve the saving and restoring of different types of
registers by hardware. The vital restart information for an inactive
process is kept in sets of locked-down process objects, process objects
kept at a fixed address in CP memory rather than in virtual memory.
The same locked-down process objects exist in CP memory for every
process from the time it is initialized on the CPU to the time it is
terminated.

This section describes:
- Monitor operations.

- The virtual address mechanism’s use of the associative registers
and the space table in CP memory.

- The nature of the locked down process objects themselves, the
process queues set up by process management and maintained by
monitor, and the critical servers that reside on each CPU.

- The exchanges of process information between registers and
process objects that accompany process switches and domain
changes.

- The domain change, which allows a process to use system code
without going through a process switch.

PUB-1005 Rev. A 4-11

EOS Kernel:

Underlying Operations ETAIQ System Reference Manual

CPU Monitor

A monitor runs on each CPU in a special, non-interruptable mode -
monitor mode. It accesses central processor memory directly by
physical address.

All other processes, both applications and system servers, run in job
mode, which is interruptable. Their access to CP physical memory is
indirect, by way of the virtnal address mechanism.

A single instruction, Exit Force, toggles between monitor and job
modes. It is the only exit from monitor mode to job mode, so that
monitor operations conclude with an explicit Exit Force instruction.
In job mode, either an explicit Exit Force or an interrupt causes an
exchange from job to monitor mode - from execution of a process to
execution of the monitor.

Monitor’s Functions

4-12

The monitor performs some basic functions:

Interrupt handling - When an interrupt occurs, hardware
automatically exits from job to monitor mode, and monitor scans the
interrupt register to see the source of the interrupt, then reschedules
processes accordingly. Interrupts include:

~ Access interrupt

- Transfer request block (TRB) completion interrupt
- Illegal instruction interrupt

- Exit Force interrupt (executed in Job mode).

For a more complete description of interrupts, see chapter 5,
“Interrupt Register”.

History — Monitor can keep a time-stamped log of all interrupts,
messages, and executions of processes in the CPU.

Idle loop - If monitor has no processes to run, it loops in monitor
mode, watching the interrupt register and checking server mailboxes
in the communication buffer.

The monitor communicates with the kernel and with other CPUs
through mailboxes in the communication buffer and shared data
structures (including process objects) in CP memory. These data
structures must be locked down for the benefit of the monitor, which
addresses contiguous physical memory (contiguous virtual pages are
not necessarily contiguous in physical memory). The kernel locks
them at the time of process initialization (carried out for each process
by process management’s Process Initialize function) and then passes
their physical addresses to the monitor.

PUB=-1005 Rev. A

ETAI0 System Reference Manual EOS Kernel: Underlying Operations

Process switching - The monitor handles the specific sequence in
which processes will run by moving processes around on the process
queues. In carrying out this task, monitor responds both to specific
indications in the interrupt register and to messages from process
management (received through a shared table).

Interlock regions - Monitor guarantees completion of interlock-region
code that operates on SM management objects in CP memory.

PUB-1005 Rev. A 4-13

EOS Kernel:

Underlying Operations ETAI10 System Reference Manual

Process Queues

4-14

There are four process queues: the ready, blocked, recovery, and
termination queues. Monitor puts processes scheduled to run onto the
ready queue, where they get their turn on a first~-in, first-out basis.
After the monitor completes its business, executes an Exit Force, and
toggles the system to job mode, the process at the head of the ready
queue is put in the Running state - that is, begins using the central
processor.

Process management coordinates the features which build a
locked~-down process object for each process, then notifies monitor to
link the process’s descriptor block to the Ready queue. Processes on a
queue are linked through their process descriptor blocks by a
double-linked list.

Processes are put on the Blocked queue to:

¢ Wait for I/O completion. When the transfer is complete, they are
woken up by the completion server, which continuously polls the
status of transfer request block queues and the disk physical-file
system.

¢ Wait for message in a mailbox.
e Wait for a semaphore.
e Wait on a page fault.

° Wait for a time limit. With the exception of a process waiting on a
page fault, processes on the blocked queue are subject to a time
limit.

Monitor watches constantly for expiration of the time limit or a
request from process management to change the status of blocked
processes.

Monitor moves active processes to the Recovery queue in case of:
¢ An illegal instruction.

e A CB access violation. Use of a CB address that exceeds the
bounds of the base and limit addresses contained in the four access
pairs of the current domain.

* A memory access violation. Use of a virtual address out of a
process’s address space. This violation is first processed as a page
fault, and the process is moved to the Blocked queue. When pager
finds the address to be out of bounds, pager calls monitor to move
the process to the Recovery queue.

PUB-1005 Rev. A

ETAI1Q System Reference Manual EQOS Kernel: Underlying Operations

In Release 1.0, the next step for processes on the Recovery queue is
the Termination queue. After a process enters the Recovery queue,
the process management server changes the execution address in its
process package to a special termination routine, and puts it on the
Ready queue. The process runs a last time, closing all its files and
putting itself on the Termination queue. PM server finds it on the
Termination queue, unlocks its process objects, and asks monitor to
take it off the Process queues altogether.

PUB-1005 Rev. A 4-15

EQOS Kernel:

Underlying Operations ETA10 System Reference Manual

Virtual Address Mechanism

4-16

Virtual addressing is carried out by coordinated hardware and
software operations. On the hardware side, a set of 16 associative
registers holds 16 associative words. Each word serves as an index
between a virtual page identifier and the physical address of a page
located somewhere in the four million words of CP memory. In
effect, the associative registers mirror the top 16 words of a longer
table — the space table — a system table locked down and maintained
in CP memory by the kernel. The space table contains a set of
associative words representing all of a process’s pages that are stored
in CP memory. It consists of at least 16 words (the number held by
the associative registers) and an end-of-table marker.

Hardware searches for a virtual page address by checking first the
associative registers, then the space table. When the requested page
is found, its associative word is moved into the associative registers
and the words below it are rippled down toward the slot it came from.
If the page is not found, an access violation interrupt is generated
denoting a page fault, and the search is turned over to the system
page fault handler, the pager.

Hardware
Registers CP Memory
PHYSICAL ADDRESS
) #4000
Associative Space
Registers < > able };ggc:‘c?at!ve
Words
1§
Processor
Status
Registers
nd-of-tabl

Figure 4-2: Virtual address mechanism.

Besides serving as an index between virtual and physical addresses,
an associative word contains a usage-code field that is updated when
the page is read or written. The usage code enables the virtual
address mechanism to identify unused pages for replacement and to
“clean” pages that have been modified by copying them back to
shared memory before before replacing their page frame in physical
memory with another page.

PUB-1005 Rev. A

ETA10 System Reference Manual EOS Kernel: Underlying Operations

The associative word also contains a lock which protects it from
unauthorized access. When the virtual address mechanism attempts
to access a page through its associative word, it checks the lock
against 12 keys held in the processor status registers, a diverse set of
registers that hold information about the state of the CPU as well as
the currently running process. If no match is found, access to the
page is denied and an access violation interrupt generated. If a match
is found, the addressing mechanism checks the proposed access type
against a three-bit access violation code (read, read/execute,
read/write) associated with each key.

The associative word contains four significant fields:

e Usage. Indicates the size of the page (small or large) and, if it has
been accessed, whether it was read, or read and written to.

e Lock. Must be matched by one of the 12 keys in a domain key set
for access to the page.

e Virtual page address. Address of the page in virtual memory.

 Physical address. Address of page in physical CP memory. The
low-order bits of this address are an offset into the physical page.

Usage, lock, and virtual page address are set up by pager at the time
of a page fault. Page size (a bit in the usage field), lock, and virtual
memory address come from process memory maps and the invisibie
package, two of the locked-down process objects. The physical page
address is supplied by pager at the time a page joins the resident set
in the CPU. Virtual and physical addresses are linked in the page’s
associative word.

A more detailed description of virtual memory operations appears
later in this chapter in “Page Fault Processing.”

PUB-1005 Rev. A 4-17

EOS Kernel:

Underlying Operations ETAI10 System Reference Manual

Locked-Down Process Objects

PROCESS
REGISTER
TABLE

PROCESS PACKAGE
INVISIBLE PACKAGE
DOMAIN PACKAGES
DOMAIN STACK

PROCESS
PAGE
TABLE

PROCESS
ADDRESS
MAPS

PROCESS
DESCRIPTOR
BLOCK

Figure 4-3: Process Object Group

The monitor sees only individual processes (not process clusters), and
it sees each process as the data incorporated in its locked-down
process objects. One element of the process structure the register
table, which is loaded into the CPU register file when the process is
activated and updated when the process is deactivated. Other
elements are a page table, a process package, a memory map, and a
process descriptor block (PDB).

Process management coordinates the creation of a process’s locked
down process objects during process initiation. Once they are locked
down in CP memory, process management passes their physical
addresses to monitor.

Process Register Table

4-18

The process register table contains a saved set of the process’s
general register. They are loaded into the central processor’s register
file when the process is activated.

PUB-1005 Rev. A

ETA10 System Reference Manual EOS Kernel: Underlying Operations

Register Usage
EQOS defines the CPU’s 256 general-purpose registers as follows:

3 Machine registers. Contain machine zero and two addresses used
by the data flag branch manager.

17 Temporary registers. For the execution of short subroutine
modules.

6 Global registers. Contain the constants #20, #1A, #1, the
parameter descriptor for calls, and two registers for simple or
complex values returned by called functions.

8 Environment registers. Contain various pointers and links, and the
return address from calls.

222 Temporary and Working registers.

Process Page Table

The process page table contains a copy of the space table at the time
the process was blocked. (Except that pages of the system library
have been excluded). It retains the order and usage information for
the process’s associative words.

Process Package

The process package contains critical restart information. It is made
up of three components: an “invisible” package, a set of domain
packages (two in EOS release 1, version 1.0), and a domain stack.

Invisible Package

The invisible package contains a saved set of the processor status
registers containing vital restart information for the process:

* Program execution address.

* Keys and access rights (AVCs) for current domain.

» Four CB base/limit access pairs (BLAPs) for current domain.
* Access interrupt address. |

» Vector pipe status and intermediate results.

* Instrumentation counters and select codes.

» Other process restart information for hardware.

When a process enters the Running state, hardware loads its invisible
package into the processor status registers at the same time the
general registers are loaded from the process register table.

PUB-1005 Rev. A - 4-19

EOS Kernel: Underlying Operations ETAIQ System Reference Manual

Domain Packages

Each process on EOS 1.0 has two domain packages: one for the
system domain and one for the application domain. There is space in
the process package for 128 domain packages. A domain package is
an abbreviated invisible package. It includes the program execution
address, keys and BLAPs of the domain, instrumentation counters,
and a breakpoint address.

Domain Stack

The domain stack is made up of an ordered stack of stacked domain
packages. A stacked domain package contains an even more
abbreviated version of an invisible package than a domain package.
A forward domain change increases the stack by one package, a
backward domain change decreases it by one. A stacked domain
package includes program execution address, current instruction, a
partial set of keys, and a stack index.

Process Address Map

The process address map links virtual page addresses with the
position of the pages in the executable file and the paging file. The
paging file is a scratch file holding pages that have been altered
during the current run of the process. When a page fault occurs,
pager looks in the memory map, fetches the appropriate page out of
one of these files, and puts it into a CP memory frame. It then
creates an associative word by associating the page’s virtual address to
the CP memory frame’s physical address.

Process Descriptor Block
¢ Process’s inheritance information.
¢ Process attributes.

* Scheduling parameters (monitor attributes).

¢ Message buffers used for communication between process
management and the monitor.

4-20 PUB-1005 Rev. A

ETA10 System Reference Manual EOS Kernel: Underlying Operations

Mode Exchanges

In exchanges between monitor and job modes, current registers are
saved, and new ones are loaded. Information held in hardware
registers that handle virtual address, process execution address, and
the security of the system domain is saved and replaced. Then, mode
and interrupt-enable are toggled, and control branches to the next
instruction.

Hardware executes four kinds of mode exchanges:

A Half Exchange, performed after a Master Clear, loads the initial
monitor registers into the register file.

An Initial Exchange to job mode initializes a process’s locked-down
process objects.

An Interfupt Exchange to monitor mode is performed when any bit is
set in the interrupt register.

A Return from Interrupt Exchange to job mode restarts the execution of
interrupted process code.

The interrupt exchange and return are the most typical examples of
mode exchanges. They involve transferring critical process
information between the register file and other hardware registers and
the locked-down process objects. An interrupt exchange and return
constitute a process switch.

A process switch involves two exchanges: an exchange from process
A to monitor, then from monitor to Process B. Each exchange
involves saving and restoring the hardware registers.

JOB MODE JOB MODE

Process A

> Process B

The initial interrupt (say an access violation interrupt when a virtual
page can’t be found in CP memory) stops the process and switches to
monitor. Process registers and other information must be saved and
monitor’s registers loaded. Then monitor deals with the page fault by
putting pager on the ready queue, where it lines up like any other
process to be run on a round-robin basis. Monitor next issues an
Exit Force. Its registers are saved and the registers and other
information information of the process at the head of the Ready
queue are loaded into hardware.

PUB~1005 Rev. A 4-21

EOS Kernel:

Underlying Operations ETA1Q System Reference Manual

Interrupt Exchange: Job to Monitor

4-22

An interrupt causes a full exchange of register information and a
switch from job to monitor mode. Figure 4-4 shows five elements of
the exchange between hardware and memory:

1. Hardware saves the process’s register file to the process register
table.

2. Hardware saves the process status registers to the process’s
invisible package.

3. Hardware loads the monitor’s registers from the monitor register
package at CP memory addresses # 0 - 4000.

4. Monitor copies the process’s associative regisiers to the top of the
space table at memory address #4000.

5. Monitor then sorts the space table, saves part to the process page
table and part to the system library page table (library page table
not shown).

Hardware
reasten _CGiStErs CP Memory
0 Hegister PHYSICAL AD%ESS WORD
File #onitor 0
ol egister
©) Package
255
0 #4000 255
Associative Space Top 16
Registers able Words
15 ©
Processor
R%tgaigt’:rs end-of-table word
[
L]
Locked
Down
Process
Objects

Figure 4-4: Job to Monitor Mode Exchange.

PUB=-1005 Rev. A

ETA10 System Reference Manual

Return from Interrupt: Monitor to Job

EOS Kernel:

Underlying Operations

The exchange from monitor to job modes is almost the reverse of the
previous, as you can see in figure 4-5:

1. Monitor loads a process page table into the space table.

2. Monitor copies the top 16 entries of the new space table into the
associative registers, then issues an Exit Force.

3. Hardware saves monitor’s current registers to the monitor register
package.

4. Hardware loads the incoming process’s register table into the
register file.

5. Hardware loads the process’s invisible package into the processor
status registers.

REGISTER

255

15

Hardware
Registers

Register
File

Associative
Registers

PHYSICAL ADDRESS
#0
©)] -
#4000
0]

Processor
Status
Registers

Figure 4-5: Monitor to Job Mode Exchange.

PUB-1005 Rev. A

CP Memory

Monitor
Register
Package

Space
able §

end-of-tabie word

Locked
Down
Process
Objects

WORD

255

Top 16
Words

4-23

EOS Kernel: Underlying Operations ETA10 System Reference Manual

Domain Change

A domain change allows a process to access system facilities by
branching to protected routines in a shared library while remaining in
job mode. It uses the key-and-lock matching of the virtual address
mechanism as a protective device. Hardware cannot access virtual
pages for which it does not hold a key. A process can move from one
domain to another without incurring the overhead of a process switch
-- meaning that process switches are reserved for starting user
applications or system servers.

Process Package

Procsssor
Status Invisible package

Registers 4_//——//" t:lo‘:"rc!:ri‘nal ga;k; es

Figure 4-6: A forward domain change, with exchange of execution address, keys,
access violation codes (AVCs), BLAPs and other information between process
package and process status registers. Register file and page tables remain in place.

In job mode, hardware accepts virtual addresses from software and
converts them into physical addresses. As part of the conversion,
hardware matches one of 12 keys owned by the current domain and
kept in special registers with the lock field in the associative word
containing a target address. The current domain is the set of virtual
memory pages unlocked by hardware’s current set of keys. Hardware
cannot access virtual pages for which it does not hold a key.

A hardware forward domain change instruction results in the loading of
new execution address, keys, AVCs, CB base/limit pairs (BLAPs), and
other information about the new domain from the process package,
changing the set of virtual pages which the hardware can address.
Similar information about the old domain is put on the domain stack
as an abbreviated domain package (which is itself an abbreviated
invisible package).

4-24 PUB-1005 Rev. A

ETA10 System Reference Manual EQOS Kernel: Underlying Operations

A backward domair change restores the stacked domain information,
returning to the prior domain. No process switch has taken place.

Hardware and operating system architecture can support up to 128
domains. EOS release 1, version 1.0 supports two: a system domain
and an application domair. The system domain is a set of shared
subroutines available to processes. It includes all of the CPU job
mode kernel.

PUB~-1005 Rev. A 4=25

EOS Kernel: Underlying Operations ETAIQ System Reference Manual

Critical System Servers

CPU MONITOR
SHARED SHARED
PAGER MEMORY MEMORY
COMPILETION EXTEND
SERVER SERVER
(LOCKED {LOCKED (LOCKED
DOWN) DOWN) DOWN)
COMM GLOBAL PROCESS
LgGINON SCHEDULER MANAGEMENT
PROCESS SERVER SERVER

Figure 4-7: Critical System Servers.

Five system server processes are of critical importance and exist on
every CPU:

¢ Pager, the page fault server.

¢ The completion server, which manages the interface logic that
moves blocks of data between shared memory and the CPU.

¢ The shared memory extend server.
* The process management server.

e The global scheduler server.

* The common login process.

Pager, the completion server and the SM extend server are locked
down in central processor memory. Monitor schedules pager as a
direct response to interrupts. In EOS release 1, version 1.0,
completion server does its own polling and is scheduled by process
management. The activities of pager and the completion server are
described in the next section of this chapter.

4-26 PUB-I1005 Rev. A

ETA10 System Reference Manual EOS Kernel: Processes on the ETAIO

Section 3: Processes on the ETA10

This discussion follows the path of a command that is entered into the
system by a logged-in user, accepted by the system, and from which a
process is created that will execute in one of the system’s central
processing units. The following sections detail the interaction between
different features of the operating system (including process
management, domain management, global scheduler, and central
processor memory manager) to create the process, execute it, and
handle its termination.

Definition of a Process

A process in the ETA10 system can be thought of as an association
between an executable file, a process ID, and process management
objects which hold the information the system needs to manage the
process. The executable file contains the process’ loaded code as well
as a header holding process information such as the domains it can
access. The process ID is a system-wide unique ID assigned by the
operating system to the process during its life. The process
management objects include the process descriptor block (PDB),
register table, and process package.

Process Objects

There is one PDB for every process in the system. The PDB is a
block of process-specific data which includes inheritance information,
the process attributes, monitor’s process attributes, and buffers.

The register table holds the registers of a process when it is not
executing. It is created and initialized by process management, and
the process’ original register values read into it from the executable
file header.

The process package consists of the invisible package, domain
package, and the domain stack, all of which hold information about
the domains accessible to the process. The invisible package has data
about the executing domain, for example, the current program
address. The domain package has hardware information about all the
domains known to the process, and the domain stack is a stack for
domain packages that were executing, and will be returned to later.

PUB-1005 Rev. A 4-27

EQOS Kernel: Processes on the ETAIO ETAIQ System Reference Manual

Tracing a Process Through the System

Figure 4-8 shows the different stages in the life of a process.

User logs in

User enters command

Command received, parsed;

Process is created

Process is put into CPU queue

Process is initialized - externally and internally

Process executes

Process terminates - normally, or with errors

Figure 4-8. Stages of a process in the ETA10 system.

The eight stages described in figure 4-8 are detailed in succeeding
sections.

User Login

A user logs into the system and enters a command which is received
by the user environment command shell. One user shell is created by
the common login processor for every login. After the command shell
parses the command and verifies that it is valid, the Process Create
function of process management is called to create a process for the
command (executable file) to be executed.

After the newly created process is initialized by process management,
it begins executing. When the process terminates, process
management performs the necessary termination functions, depending
on whether the process terminated normally or with errors.

4-28 PUB-1005 Rev. A

ETA10 System Reference Manual EOQOS Kernel: Processes on the ETAIO

Command Entry

User logs in

A logged-in user working in the VSOS environment can enter a
command interactively or through a batch command file. The
command is the name of an executable file which, when invoked,
requests the operating system to perform some function. An example
might be a user requesting to COPY one file to another.

Command Acceptance

User logs in

User enters command

The entered command is received by the user environment command
shell, which is responsible for managing the processes making up a
session when a command is issued. (The command shell is itself a
process that was created when the user logged on to the system). The
command shell parses the command and searches the user’s working
directory, the site-identified pool directory, and the public file
directory for the executable file corresponding to the command.

When it finds the executable file, the command shell calls the Process
Create function of process management, passing the name of the file
to execute as a process.

Because the command shell initiates processes serially, it waits for
termination of the process it is currently initiating before it accepts
another command.

PUB-1005 Rev. A 4-29

EOS Kernel: Processes on the ETAIO ETA10 System Reference Manual

Process Creation

User logs in

User enters command

Command received, parsed

When Process Create is called by the command shell and given the ID
of the file to execute, it first assigns a unique process ID to identify
that process throughout the system. Inheritance information for the
process is retrieved from the command shell, global scheduler, and
user management features.

Each process has a paging file, a memory-addressable file where the
process’ modified pages not in CP memory will be stored during
execution. Process Create calls the CP memory manager to create the
paging file, and then temporarily stores the retrieved inheritance
information there.

The process is added to the shared memory process catalog, which
contains a list of all processes in the ETA10 system with their status,
their executable file IDs, their paging file IDs, and a list of process
clusters to which each process belongs. If the new process is a
member of any cluster (a group of processes defined to the system as
being related in some way), Process Create adds it to the cluster
cataiog.

When the process is successfully created, Process Create places it in
the Initializing state, and calls global scheduler; global scheduler sends
it to the processor’s Ready queue. If an error occurred and the
process was not created, the paging file is destroyed and the error is
reported back to the shell.

4-30 PUB-1005 Rev. A

ETAI0 System Reference Manual EOS Kernel: Processes on the ETAIOQ

Global Scheduler Activity

User logs in

User enters command

Command received, parsed

Process is created

Having been called by Process Create, global scheduler calls the
process management server for the central processor on which the
process will execute. The process management server begins external
initialization of the process.

Process Initialization

User logs in

User enters command

Command received, parsed

Process is created

Process is put into CPU queus

One process management server (PM server) runs on each central
processor in an ETA10 system and handles all processes on that
processor. When global scheduler calls the PM server to initialize a
new process, external and internal initialization take place.

External Initialization

PM server first does some verification. It checks in the SM process
catalog to confirm that the process exists and is in the Initializing
state. The executable file header is checked for a transfer address,
map table, register information, and initialization information. If any

PUB-1005 Rev. A 4-31

EOS Kernel:

4-32

Processes on the ETAIQ ETAI0 System Reference Manual

of this information is missing, initialization is exited with an error;
otherwise, pointers to the various tables are set. The paging file is
opened and the saved inheritance information is read.

A series of operations set up the process objects. First, the process
image name, version, and transfer address are read from the
initialization information in the executable file header. Process
management calls system configuration control to get the process
attribute block for this process image name from the system
configuration table. An entry is made in the CP process catalog for
the new process.

Next, PM server calls CP memory manager to initialize the CP
memory manager tables necessary during the execution of the
process. CP memory manager locks down memory for the register
table, process descriptor block (PDB), and process package, and
activates them, along with other required CP memory objects.

PM server then calls domain management to initialize the process
package, specifying the process image. Domain management selects a
process package template corresponding to the process image and
copies it to a location specified by process management. The page
size is inserted into the package.

CP memory manager is called again to initialize the paging file, the
page table, and the process address maps from the executable file
map information.

After the process objects are set up, PM server sets up the process
descriptor block (PDB), register table, and process package. PM
server moves the following information into the PDB: inheritance
information from the paging file, process attributes, the original
register information, monitor’s attributes, some physical addresses and
the linked transfer address. The transfer address for the process
management startup routine is moved into the process package and
the registers moved into the register table.

After the SM process catalog is updated, PM server issues an exit
force instruction that moves the process to the Ready state and places
it in the Ready queue. Process management begins executing in its
startup routine and internal initialization begins.

Internal Process Initialization

The internal process initialization cycles through the process
initialization routines of the system features needed during process
execution. These include shared memory, the logical file system,
semaphore and mailbox handlers, communication buffer management,
command shell, global scheduler, and user management. The process
state is changed to Ready in the CP process catalog. All the

PUB-1005 Rev. A

ETAI0 System Reference Manual EOQOS Kernel: Processes on the ETAIO

necessary process structures and operating system features are now in
place, and the process can start executing.

Process management calls domain management to set the true transfer
address in the application domain registers for the forward domain
call to the application. The application domain contains the transfer
address of the process that is to execute. The original registers are
loaded from the process descriptor block.

A forward domain change instruction is issued to transfer control to
the application and the process starts executing at the linked transfer
address.

An Executing Process

User logs in

User enters command

Command received, parsed

Process is created

Process is sent to CPU queue

Process is initialized ~ externally and internally

While executing, the process may perform any number of operations,
depending on the application. During its execution, the process might
retrieve inheritance information from the process descriptor block.
The operating system does resource accounting, such as tracking the
time spent by the process in the application domain. The process can
communicate with other processes on the central processor using IPC
mailboxes.

An executing process may be temporarily placed in the Blocked state
if a process management wait is requested, if the process is waiting
on I/O completion, or while page faulting takes place (described in
the following section). At some point, the process completes its
operations and terminates.

PUB-1005 Rev. A 4-33

EOS Kernel: Processes on the ETAIO ETAI0 System Reference Manual

Process Termination

User logs in

User enters command

Command received, parsed

E

Process is created

Process is sent to CPU queue

Process is initialized - externally and internaily

Process executes on CPU

An executing process terminates normally or abnormally. Normal
termination occurs when the process completes its work and issues a
process_terminate call to process management. Process management
performs internal and external termination, as described in following
paragraphs.

A program can also terminate normally by issuing the SIL call
QSTERM, specifying that a non-fatal or fatal error status be returned.
(Refer to PUB_1084, VSOS Environment Reference Manual: System
Interface Library Calls for details about QSTERM). Process
management performs normal termination as described in following
sections.

Abnormal termination occurs when a runtime error happens that
cannot be handled in the process. This type of error can occur in
three ways: when a process has an access violation after faulting for
a page for which it does not have access, when an illegal instructicn
is referenced, and when a communication buffer access violation
occurs. When an access violation happens, pager calls process
management to move the process to the Recovery queue to await
disposition. Monitor does the same for an illegal instruction and CB
access violation.

Process Recovery

The process was placed on the Recovery queue. PM server regularly
checks the Termination and Recovery queues. When it finds a

4-34 PUB-1005 Rev. A

ETAI1O System Reference Manual EOS Kernel: Processes on the ETAIO

PUR-~1005

Rev.

process on the Recovery queue, it will attempt to cleanly terminate
that process.

PM server copies critical invisible package and register table
information into the process’ process descriptor block, and temporarily
saves in local memory invisible package information about
communication buffer base/limit access pair (BLAP) settings and
instrumentation counters. It then calls domain management to copy
the executing process’ process package information to a new process
package, and move the saved counters and BLAPs into it.

A flag is set in the process descriptor block to indicate the process is
in Recovery state.

The transfer address is set to start the process executing in a process
management routine, and monitor is requested via an exit force
instruction to move the process to the Ready queue to begin executing
with the new package and register table.

The reactivated process gets its recovery information from the PDB.
It notifies the command shell with information about its termination
that the shell will dump to the dayfile or to the terminal of an
interactive user. A flag is set for PM server indicating the process
has gone through recovery.

PM server is called to perform normal internal and external process
termination.

Internal Termination

Process management sets the process state to ‘terminating’ in both the
SM process catalog and the CP process catalog.

The operating system features that were called to execute their
process initialization routines during initialization are now called to
perform their process termination routines.

The termination reason is saved in the process descriptor block, and
monitor is called via an exit force to move the process to the
Termination queue, ready for final (external) termination.

As soon as internal termination is complete, the shell can accept a
new command.

External Termination

The process can now be deleted from the system. Monitor is called
to remove the process from the Termination queue. PM server
removes the process from the process catalogs. If the process was a
member of any cluster, it is removed from the cluster.

A 4-35

EQS Kernel; Processes on the ETAI(Q ETAI0 System Reference Manual

CP memory manager is called to terminate the process by freeing up
the memory used by the process, returning any blocks, destroying the
paging file, and deactivating the process from the CP memory objects.

Shared memory manager is called to remove references to the
terminated process from its tables.

The process is deleted from the CP process catalog.

4-36 PUB~1005 Rev. A

ETA10 System Reference Manual EOQOS Kernel: Processes on the ETAIQ

Page Fault Processing

As a process executes, it requires access to read, write, and/or
execute pages of system code and program data. This section
describes how processes use virtual page addresses to access code and
data in the ETA10’s virtually addressed system.

Requests for data and code that resides in central processor memory
are handled through the virtual-to-physical addressing mechanism.
Hardware searches the process’s virtual addresses listed in the space
table and, when the matching virtual page is found, translate it to an
absolute address in central processor memory. When a hardware
search of the virtual addresses determines that the requested page is
not in central processor memory, software features become involved
in processing those page requests. After monitor receives a hardware
interrupt signifying the requested page is not in the processor’s page
table, monitor begins the resolution of the page fault by calling pager.
Pager is a feature of central processor memory manager that has the
major role in satisfying page faults. Pager requests I/O transfers. to
sat... Shared memory manager and its completion server coordinate to
complete /O transfer.

At any one time, /O transfers for several page faults may be in
progress.

Process’s Page Table

PUB-1005

When a process is created, pager builds a page table for the process
that lists all the pages the process may access. The page table is a
list of associative words that have this format:

Usage Lock : . . .
code code Virtual page identifier Physical page address

0 1 3 4 15 16 47 48 63

The usage code indicates the page state - if it has been read or
modified, for example. One bit in the usage code indicates page size.
The lock code indicates to which domain or domains a page belongs.
To access a page, a process must hold the key matching a page’s lock
code. (An attempt to access a page without a matching key results in
the hardware issuing an access interrupt, which sends the process to
the Recovery queue and termination.) The physical and virtual
addresses comprise the rest of the associative word.

The process page tables for all processes active in the processor are
stored in processor memory. When a process begins execution,
monitor moves a copy of its page table into the processor memory
space table. The space table is the link to the associative registers.

Rev. A 4-37

EOS Kernel: Processes on the ETAIO ETA10 System Reference Manual

Hardware searches and reads the associative words as memory moves
from the space table into the registers.

Address Map and Process Block

During process initialization, pager builds an address map and a
process block. For a list of virtual addresses, the address map
contains a mapping of a virtual address to a file address, and the
name and the size of the file each address represents. The address
map also has the key for each virtual address that is required to build
an associative word for the address. The process block containe data
about the process; the times it faults for a page, how many pages are
allocated to it, accounting data, and so forth. Pager refers to these
tables when a process faults for a page (to determine which page to
replace) and when it terminates (to write out modified pages).

Virtual-to-Physical Addressing

Figure 4-9 shows a portion of central processor memory. Page tables
for several processes occupy various locations, but the space table
always occupies memory starting at address 4000. The page table for
process A is shown being moved into the space table. At this time,
the first 16 entries of the space table (also the first 16 entries of
process A’s page table) are moved into the registers.

CENTRAL PROCESSOR MEMORY:
4000 XXXX XXXX

SPACE TABLE [Process a:] [Processc: |

4-38

T ——
first 16 entries Page Table Page Table
AS?&%'@QQE I are aiso listed In —virtual address —virtual address

the associative
registers. ..

-virtuai address

-virtual address

—virtua‘l address

XXXX
XXXX .
A PROCESS B:
2l Shared Library I —I
Page Tabie Page Table
-virtual address
-shared system -virtual address
code in syste
domain
~virtual address
Figure 4-9. Creating a space table for process A.

A copy of the shared library page table is also moved into the space
table. This table includes the operating system code, also known as
the system domain. In this way, system domain code is shared
among processes at the same time it is protected from illegal access
or modification by a process. A process has legal access to all the

PUB-1005 Rev. A

ETAIQ System Reference Manual EOS Kernel: Processes on the ETAIO

pages in its page table and to all the pages in the shared library for
which it holds domain keys. (Keys are explained earlier in the
“Underlying Operations” section.)

As the hardware executes instructions, it picks up the virtual page
references and reads the associative words in the associative registers,
looking for a virtual match. As the matches are found, entries for the
16 most recent matches are maintained in the registers, and the least
recently used or unused page entries accumulate at the end of the
space table. If the match is not found in the registers, the next
entries from the space table are moved, two at a time, into the
registers to be read. When the match is found, the translation to a
real address in memory is made and the access is granted.

Page Faulting

The Pager

PUB-1005

Rev,

The hardware ripples through and searches first the associative
registers, then the space table entries until it encounters an
end-of-table usage code (see figure 4-9). When hardware encounters
an end-of-table before it finds a match, it issues an access interrupt.
The access interrupt causes an exchange from job mode to monitor
mode. When an access interrupt occurs, monitor puts the process
index from the process descriptor block into the Page Fault queue and
moves the process to the Blocked queue. Monitor stores process A’s
space table entries back into its page table; maintaining the order of
recently used pages, the entries are sorted back into page and shared
library tables. Then monitor schedules pager into the Ready queue
and begins to execute the next process on the Ready queue.

Pager is one of the critical system servers that works with the monitor
to manage work in the system; it is called by monitor to process page
faults. When page faults require I/O transfers to shared memory,
pager calls shared memory manager to manage these transfers. Pager
is a central processor-resident process that executes in job mode.

When active, the pager process follows a loop of these activities:

* processing central processor memory requests for process objects
e processing page faults
* processing page fault /O transfer completion

Processing Memory Requests

Starting its loop, pager checks the Page Fault queue. It removes the
process from the queue and processes the page fault.

A 4-39

EOS Kernel: Processes on the ETAIO ETAIO System Reference Manual

Processing Page Faults

First, pager takes the faulted-for virtual page address from the
process’s invisible package. Using this virtual address, pager
searches the address map to obtain the logical file address of the file,
and the length of the file. If an address map does not hold the
faulted-for address, then pager declares a fault for an undefined
address and the process is moved to the Recovery queue.

Pager locks down sufficient pages in memory to hold the page it is
fetching so that they cannot be allocated to another process. Then
pager builds a new page table entry for these locked-down pages using
virtual page addresses from the invisible package as well as the key
and page size from the address map. Pager calls shared memory
manager and requests that pages from the file be read into processor
memory. This request marks the end of pager’s activity in actually

processing page faults.

Processing I/O Completions

Pager moves into the third activity of its processing loop, and calls
shared memory manager to see if the requested memory transfer has
completed. If the shared memory transfer has completed, pager
unlocks the newly-written page in processor memory and calls process
manager to request that monitor move the process to the Ready
queue.

No Completion: If the transfer has not completed, there are two
reasons. One is that the transfer from shared memory is too lengthy
to be completed in the time pager allots; this time is usually sufficient
for an average transfer from shared memory. The second reason may
be that the file resides on a disk, and is being moved into the system
via an /O transfer. At any rate, when pager receives a “no
completion”, it ceases activity (blocks itself) and relinquishes the
central processor.

When pager receives a “no completion” and gives up the central
processor, process A remains blocked. Monitor takes over and looks
in the Ready queue for another process to start or a process to return
to execution. Monitor executes for an exchange to job mode, and
switches the next process in the Ready queue into execution.

Completion After the shared memory transfer completes, pager
begins its loop again and moves to unblock process A. There may be
more than one page fault in the queue when pager is started by the
monitor. There may be /O completions returned from shared
memory manager for page faults processed earlier. If there are,
pager processes the completions one at a time, unlocking the
newly-written pages in memory and making calls that result in monitor
moving blocked processes to the Ready queue.

4-40 PUB-1005 Rev. A

ETAI0 System Reference Manual EOS Kernel: Processes on the ETAIO

More on Shared Memory Manager

When pager requests a file transfer from shared memory, it provides
shared memory manager with the length of the file and the logical file
addresses associated with the requested page. Shared memory
manager searches its file object table, a list of the current file
addresses residing in shared memory for each file. When a requested
file address is found in this table, shared memory manager builds the
transfer request blocks (TRB) needed for the transfer, links them into
the TRB queue, and starts the memory-to-memory transfer to central
processor memory. Once the transfer is started, shared memory
manager returns an operation identifier to pager that describes the
specific transfer. Pager refers to the transfer’s operation identifier
when inquiring about the status of any transfer.

When shared memory manager does not find the requested logical file
address in the file object table, the file resides on disk and must be
moved into shared memory by an /O transfer.

I/0 Transfers to Shared Memory

When a requested file address is not in the file object table, shared
memory manager calls the logical file system to translate the logical
file address to a physical file address. An appropriate number of
blocks in shared memory are allocated by the memory manager to
hold the transfer. The logical file system searches its physical file ID
map table to obtain the physical file identifiers (PFIDs). The physical
file ID map table holds the PFID for each logical file, the length of
the file, and the disk device in which the file resides. Shared memory
manager sends the physical address to the specific disk physical file
system managing the indicated disk, and requests a read of the file
into the allocated shared memory blocks.

After setting up the transfer request, shared memory manager returns
the operation identifier for the transfer to pager; this return indicates
to pager that it should check for completion of the transfer. During

its next loop, pager checks the status of any /O completions. When
the disk transfer to shared memory is finished, the completion server
is activated by a remote procedure call from the /O unit.

The Completion Server

PUB-1005

The completion server is another critical system server that runs in
job mode. Its purpose is to “complete” the /O transfer from shared
memory to central processor memory.

On the indicated disk channel processor, the disk physical file system
sets up and manages the disk transfer to shared memory, and then
sends a message to the completion server via a remote procedure call.
The completion server builds the transfer request blocks required for

Rev. A 4-41

EOS Kernel:

4-42

Processes on the ETAIQ ETAI10 System Reference Manual

central processor-shared memory transfers, and begins the transfer to
central processor memory. When the transfer is complete, the
completion server passes a message to monitor to unblock the pager
process, and gives up the central processor. The server will be
restarted when a disk requires transfer request blocks to complete
another I/O transfer.

Writes Before Reads

Shared memory is deallocated and reallocated upon demand,
according to a least-recently-used algorithm. As a result, shared
memory is usually kept fully utilized. Flies written out from central
processor memory remain in shared memory until their allocated
space is needed for another operation. Then the files are written out
to disk or to wherever the user has specified.

Even if the least recently used block of memory has been written to
or otherwise modified by a write from central processor memory, it is
still allocated to the new I/O transfer. When modified areas of
memory must be reallocated, shared memory manager immediately
write the modified blocks out to disk before before the requested read
may take place. Hence the occurrence of writes before reads.

PUB-1005 Rev. A

ETA10 System Reference Manual EOS Kernel: Logical File System

Section 4: The Logical-File System

This part examines the components and implementation of the disk
file system. It consists of three sections:

e File directory/catalog manager
e File support module

* Record manager

File Directory/Catalog Manager

The file directory/catalog manager (FDCM) is part of the logical-file
system (LFS) that provides for the controlled creation and destruction
of logical files and directories. Additionally, FDCM maintains the
attributes of files and directories and makes them available on request
to other parts of the LFS, other system features, and users.

File System Structure

PUB-1005

Directories are used to group other directories and logical files.
Logical Files are used to store data.

The attributes of a directory are maintained in directory nodes and file
nodes. A directory and its directory node are actually the same thing.
Conversely, a file node is an identifier for a logical file.

There is a third type of node called an alias. An alias node is an
indirect identifier of either a directory or file node. Alias, directory,
and file nodes are identified by pathnames.

Each node is a member of the directory set. The directory set
elements are organized as a true oriented tree structure. The system
root is the one directory which gives the tree an orientation. It is
required to exist at all times. All nodes are linked either directly or
indirectly to the system root directory.

Pathnames

Each node has a nodename which is regarded as an attribute of the
node. Moreover, each node is uniquely identified by an ordered
concatenation of nodenames into a pathname. The only way in which
a node may be identified is by its pathname or by a replacement

Rev. A 4-43

EOS Kernel: Logical File System . ETAI0 System Reference Manual

identifier provided by the file directory/catalog manager after the
initial provision of the pathname.

A pathname directly identifies a node. It only indirectly identifies a
file system object (directory or logical file). Users and the system
both create and destroy these objects through their identifiers rather
than directly.

For each process there is a relative root and a working root. A path
name is actually an ordered pair (A,B) where B is a list of nodenames
and A is an identifier of the point of origin of the path name, one of
the following:

e System root
¢ Relative root

e Working root

Alias Pathnames

If the owner of a directory or file has granted the necessary access
permission, then a directory or file may be aliased by more than one
pathname. That is, it is possible for two different pathnames to
identify the same object. All the pathnames of an object are
equivalent and have the same attributes.

Global File IDs

A global file ID is a unique identifier of either a directory or logical
file.

These two types of objects are included in the scope of global file IDs
to support the concept that each of them may be identified as a file
object. In addition, there is a performance advantage in the use of a
global file ID in that it not only uniquely determines the object, but it
also points directly at the object’s attributes (i.e. a global file ID is a
pointer to the node which describes the object).

Relative Root and Working Root

Pathnames may be specified to originate from various points within
the tree’s hierarchy. Two of these points are called relative root and
working root. The file system maintains these points on a process
basis and provides operations by which users may cause them to be
set and listed. Though the names suggest their intended usage, it is
entirely the responsibility of the file system user to manage them as
appropriate to their own environment.

4-44 PUB-1005 Rev. A

ETAI0 System Reference Manual EOS Kernel: Logical File System

PUB-1005

Rev.

Directory and File Ownership

Each directory and file has an associated username which is its
owner. Other than being an accounting system charging identifier,
ownership has an explicit definition. That is, the owner of a directory
or file has the implicit right to grant him or herself access permission
to the object even if he or she has previously been explicitly denied
such access permission.

The initial owner of a directory or file is its creator. The owner of an
alias pathname is the owner of the object which it aliases. If an
object is given to a new user, the recipient username becomes the
OWner.

Controlling Access to Directories and Files

Each file system object has an associated list of access permissions.
All references to a file system object for any purpose is controlled by
the associated access permissions.

Permanency of Files

Each pathname is permanent; it can be destroyed only by explicit

request. It is the responsibility of the user environment to support
other types of path name durations, such as temporary or scratch

files.

It is not possible to destroy the last path to a non-empty directory.
To delete a directory, all the objects within the directory must first be
deleted.

Device Classes

Disk devices are grouped into logical device classes. There are two
classes:

¢ Pre-defined
» Site administrator-defined

Assignment of devices to classes, and maintenance of the device
configuration are the responsibility of the disk physical-file system and
system configuration control. Each disk file is a member of one and
only one device class.

The File Catalog

The file catalog is not externalized to users of the file system, but is
externalized to the file support module.

A 4-45

EOS Kernel: Logical File System ETA10 System Reference Manual

The file catalog is a collection of file attribute descriptors. Each
attribute descriptor is referred to as a catalog entry. There is a single
catalog.

Figure 4-10 illustrates how the global file IDs identify system file
objects. It depicts the relationship between the:

» File directory set

» File directories

¢ File nodes

» File catalog

* File catalog entries
» Logical files

As shown GFIDI points to directory DIRa which has two
sub-directories, DIRb and DIRc. GFID2 points to DIRb which has no
file nodes. DIRc contains three file nodes, each of which has a
corresponding catalog entry. GFID3 points to file node 1. Global file
IDs are not shown for DIRc, and file nodes 2 and 3.

Logical Disk Files

The logical file system provides logical files. A logical file is an
object by which the ETA10 system and its users store and transmit
data. Logical files reside on disk files, which save logically grouped
data on non-removable rotating mass storage device(s). A disk file
may be a:

¢ User data file
» Executable file
¢ Batch input file
¢ Qutput file

A disk file is a high-speed, direct or sequential access, mass storage
file. A disk file may be shared between currently executing
processes.

PUB-1005 Rev. A

ETAI0Q System Reference Manual EOQOS Kernel: Logical File System

GFID1 _—){ DiRa

GFID2 —» DIRb DIRc)
Directory
Set
File File File
GFID3 Node 1 Node 2 Node 3
Catalog Entry Catalog Entry Catalog Entry | File
for Node 1 for Node 2 for Node 3 | Cataiog
Logical Logical Logical Logical
Fite 1 File 2 File 3 Files

Figure 4-10. Global file IDs and system objects.

The Directory Set

The directory set directly describes hierarchical relationships between
files and indirectly describes them through the file catalog. For each
file there is at least one file node linked to a directory. Each directory
(except for the system root) is linked to one and only one other
directory.

The complete set of file nodes and directories compose the directory
set. There are fixed and user defined directories and file nodes in the

PUB-1005 Rev. A ' 4-47

EOS Kernel: Logical File System ETA10 System Reference Manual

directory set. The fixed directories and file nodes always exist. The
user defined directories and file nodes may be defined or destroyed
by users (subject to proper access permission) during normal
processing.

Directories

A directory is the “branch” element of the directory set. It is the
basic mechanism by which files are logically grouped, and as such
may be thought of as a holding place for file nodes. Each directory
has the aiiribuies:

¢ Directory name

e Set of file nodes linked to it

e Parent directory (except for the root directory)

¢ Set of subdirectories

e Set of access permissions defining directory access
¢ User name defining the directory owner

¢ An account ID

¢ A group ID

File Nodes

A file node is the “leaf” element of the directory set. It acts as an
indirect file descriptor within the file hierarchy, and has the attributes:

¢ File name
¢ Parent directory

* Set of access permissions defining access to the file node

Associated catalog entry

Device type

Username defining file owner

Account ID
e Group ID
¢ Project ID

448 PUB-1005 Rev. A

ETA10 System Reference Manual EQOS Kernel: Logical File System

PUB-1005

Directory and File Node Linkage

A directory link is the basic mechanism by which the tree structure of
the file system is realized. It is a hierarchical association between
directories and file nodes. The linking rules are:

1.The system root directory is not linked to any directory.
2.No directory is linked to itself either directly or indirectly.

3.Each directory and file node (other than the system root directory)
is linked to one and only one other directory. A directory or file
has only one parent.

4.Any number of directories and file nodes may be linked to a
particular directory. A directory may have many subdirectories or
files.

5.Nothing may be linked to a file node.

6.The names of all directories and file nodes linked to any particular
directory are unique.

The consequences of the linking rules are:

* The linking of directories is unidirectional. If B is linked to A, then
A is not linked to B, either directly or indirectly.

» Links establish a hierarchical relationship between all directories. If
B is linked to A, then B is an offspring of A and A is the parent of
B.

» A path to directory or file X may be defined as an n-tuple of nodes
{N(1), ... ,N(n),X} where:

- N(1) is the system root

- N(1) through N(n) are directories where N(i+1) is linked
to N(i)

- X is linked to N(n)

Access Permissions

The file system is essentially a closed environment. No access to a
file object is permitted without explicitly granted access permission,
except that the owner of the object has the implicit right to grant his
or herself explicit control access permission.

Each directory and file has an associated set (possibly null) of access
permissions which may be altered. An access permission is an
ordered 3-tuple of parameters which can be divided into two parts:

Rev. A) 4-49

EQS Kernel: Logical File System ETA10 System Reference Manual

o The first two parameters together compose the state ID

- Username
- Group ID

e The last parameter is the permission types valid for that state

Each of the parameters of an access permission state ID may take
values that contain “wild cards” in order to minimize the number of
access permissions required to grant the permission desired.

When a caller attempts to reference a pathname, it does so with an
environmentally determined access request state. The access request
state is also a 3-tuple:

e The first two parameters together compose the caller’s state ID:

- Caller’s username
- Caller’s active group ID

¢ The last parameter contains the requested access types

In order for the requested access to be granted, the access request
state must be obtainable from at least one access permission state ID,
and the access requested must be among the access types granted.

Access permissions are order independent. That is, the file
directory/catalog manager attempts to derive the access request state
from each of the access permissions until it is either successful or the
set of access permissions is exhausted.

If the request state is derivable, it becomes the effective access
permission. The effective access permission has effect beyond the
particular access request only in the file open operation.

The access permission types that may be granted to directories
include:

* Alias permission to create a new pathname (alias) to the directory.

* Control permission to change the access permission list and
permission to see all existing access permissions.

Create permission to link pathnames to this directory.

Delete permission to destroy the pathname.

Give permission to give the pathname to another user and/or group.

Read permission to query all the attributes of the directory except
the access permissions. Only the access permissions granted to the
caller with Read permission may be read.

4-50 PUB-1005 Rev. A

ETAI0 System Reference Manual EOS Kernel: Logical File System

PUB-1005

e Search permission to search below a directory for a file node.

When a directory is created without the provision of an access
permission, a default access permission is automatically given to it. It
grants the owner all access permission types under all requested
states.

The access permission types that may be granted to files include:
e Alias permission to create a new pathname (alias) to the file.
e Append permission to append data to the current end-of-file.

e Control permission to change the access permission list and
permission to see all access permissions.

e Delete permission to destroy a file.

e Execute permission to execute the file as a process.

e Give permission to give the file to another user and/or group.
e Modify permission to modify the current contents of the file.
¢ Read permission to read the file.

e Write permission to write to the file and permission to alter the
file attributes.

A user with any access permission to a file may list all of that file’s
attributes except the access permission list. A user with any access

permission except Control permission may see all access permissions
that have been granted on the file.

When a file is created without provision of an access permission, a
first access permission is automatically given to the file. It grants the
owner all access permissions under all request states.

There are three special characters which may be part of an access
permission state ID:

?

The rules regarding these special characters are:

* The * matches any sequence of characters including the null
character.

e The ? matches any single (one and only one) character.

* The * and ? may be used as a substring within a state ID
parameter.

Rev. A 4-51

EQS Kernel: Logical File System ETAI0 System Reference Manual

4-52

* The * and ? may also be used as the entire entry for a state ID
parameter, in which case all strings will match the * and any
single valid character will match the ?.

e The - is used in the user name field to match all valid
usernames except the directory or file owner’s name.

e If - is used in the group ID field, it will match any group ID
except the directory or file’s group ID.

e If - is used in conjunction with any other character in a field,
it is not inierpreted as a speciai character. In this case it will
match the username or group ID which has a - in the proper
place.

e The - is legal only within the username and group ID fields.

Relative Root and Working Root Directories

Each pathname is relative to some point of origin within the directory
set. For each process, the file directory/catalog manager maintains
two directories which are alterable points of origin for pathnames:

e The relative root
e The working root

These names are mnemonic only. Users may manipulate them at will
within the constraints imposed by the access permissions.

Each directory and file node in a system has an associated name
which is referred to as its nodename. A nodename may contain 1 to
31 characters. The characters of a nodename may resolve to any
integer value from 0 to 255 (decimal). The nodename consists of a
31 byte string and a length which specifies the number of significant
characters in the nodename.

A pathname is completely specified by a pathname origin and by a
list of nodenames. The pathname origin can take on one of the
values:

e System root
¢ Relative root
* Working root

The nodename list is considered to be exhausted when one of the
nodenames in the list has a length of zero or the upper bound of the
list is reached.

PUB-1005 Rev. A

ETA10 System Reference Manual EOS Kernel: Logical File System

Files have many attributes. Not all files have the same kind of
attributes:

e Some files have attributes that are "dormant;” they exist but
have no meaning in light of other "active” attributes.

e Some attributes are "intrinsic;” they are necessary in the
definition of the file system or are intrinsic to the maintenance
of the file system. Intrinsic attributes include:

- Physical-File IDs: An ordered list of physical-file IDs
along with the lengths of each physical file. This
attribute is applicable only to disk files.

- Owner Username: The user who has the implicit right
to grant him or herself Control permission. Otherwise
the user who is denied a grant when the username field
in an access permission is -.

- Device Class Identifier: All physical files in the file are
allocated on logical devices that are a member of the
specified device class. This attribute is applicable only
to disk files.

Other file attributes are extrinsic in that they exist to support users of
the file system. While the file directory/catalog manager is
responsible for the maintenance of both intrinsic and extrinsic
attributes of inactive files, it should be realized that as regards to
extrinsic attributes, the file directory/catalog manager is merely a
service feature in that it maintains and provides these attributes on
demand, but does not itself use or interpret them.

It is the responsibility of features which use the file directory/catalog
manager to specify file attributes which are needed by them. Among
the extrinsic attributes are:

e Attributes which enable a file to conform to a specific user
environment, where the use of a general file system precludes
it. These attributes are contained in the user environment
dependency block.

* Record manager attributes that define and control record
structures on a file. They are as follows:

- Maximum record length
- Record type

- Padding character

- File pattern

- End-of-information

- Highest byte written

PUB-1005 Rev. A 4-53

EOS Kernel: Logical File System ETAI0 System Reference Manual

4-54

e Accounting/archiving management attributes that include such
attributes as:

- Creation date and time
- Reference count

- Account ID

- Project ID

- Last open data and time
- Retention period

- System file flag

¢ Resource limitation attributes include such attributes as:

- Maximum file length
- Device class
- Current file length

As previously stated, disk devices are grouped into logical device
classes which are predefined, or system defined, as well as site
administrator defined. Each username has a list of device classes that
it is permitted to use. These are granted to users by the site
administrator. User validation provides this facility and makes the
appropriate device classes available to the file directory/catalog
manager when necessary.

When creating a disk file, the caller may specify a device class on
which the file is to reside. The username under which the caller is
executing must be permitted access to the specified device class. The
system defined device classes are:

¢ (lass which permits primary system files on the device
* Class which permits backup system files on the device

It is the responsibility of System Configuration Control (SCC) to see
that there are at all times sufficient logical devices in these device
classes to enable the system to run. Moreover, it is the responsibility
of system configuration control to see that there is no logical device
which is a member of both these device classes.

Shared Information

The physical-file ID map is provided by the file directory/catalog

manager and initialized by the file support module during the initialize
file system operation. It contains the physical-file IDs of open disk
files.

Entries are made in the map by the file directory/catalog manager
when a file is opened and deleted when a file is closed. The map is
altered by the extension operation. The information is used to resolve

PUB-1005 Rev. A

ETA10 System Reference Manual EOS Kernel: Logical File System

logical-file addressing and is made available to the SM manager
through the necessary interfaces.

File Directory/Catalog Manager Physical Structure

The physical structure of file directory/catalog manager consists of ten
files, two tables, and the routines which control them. The ten files
are:

¢ File system initialization primary and backup files
¢ Directory set primary and backup files
e Disk catalog primary and backup files
* Access permission primary and backup files
e Physical file ID primary and backup files
The two tables are:
e Physical file ID map
* Flush logical file system table

The file directory/catalog manager files and tables are illustrated in
figure 4-11.

PUB-1005 Rev. A 4-55

EOS Kernel: Logical File System ETAIO System Reference Manual

file directory/catalog manager

file directory/catalog manager files file directory/catalog manager tables
file system initialization file flush logical file system
file table

directory set file

disk cataiog file

acess permission file

(communication buffer)

physical file ID file = - physical file ID map

Figure 4-11. The file directory/catalog manager files and tables.

File System Initialization File

The file system initialization file is created and initialized by the
install file system procedure. Installation is the only time this file is
modified. It contains a file system version ID and physical file IDs
for the primary and backup disk file catalogs. Initialization of the file
system requires that this file exist.

Directory Set File

The directory set file is created and initialized at file system
installation and opened by file system initialization. It contains nodes
for all defined files and directories in the system. The rest of the file

system is dependent on this file for the representation of the directory
tree.

The directory set file is composed of F format records. Each of these
records represents describes a node in the directory tree.

4-56 PUB-1005 Rev. A

ETAI0 System Reference Manual EOS Kernel: Logical File System

PUB-1005

Catalog File

The catalog file is created and initialized at file system initialization
and opened by file system initialization. It contains the file attributes
of all the files defined in the system. The rest of the file system
depends on this file for the storage of file attributes for all files
defined in the system.

The catalog file is composed of F format records. Each of these
records is a catalog image. There exists one catalog image (one
record) for each file defined.

Access Permission File

The access permission file is created and initialized at file system
installation and opened by file system initialization. It contains all the
access permissions that overflow from the directory and file nodes in
the system. The rest of the file system depends on this file to verify
access to files and directories.

Each directory and file node contains at most three access
permissions. Subsequent access permissions are linked from the node
into a linked list of access permissions in the access permission file.
If one of the access permissions in the node is deleted, the next
access permission in its linked list is put onto the node, and its
position in the access permission file is returned to the free list.

The access permission file is composed of F format records, each of
which is an access entry. Each access entry contains:

* An access permission

» The record number of the next access permission in the access
permissions file

e The record number of the current record

Physical File ID File

The physical file ID file is created and initialized at file system
installation and opened by file system initialization. It contains entries
for all physical files that are associated with logical files in the
system.

Each disk file catalog contains at most one physical file ID entry.
Subsequent physical file IDs are linked from the catalog into a linked
list of entries in the physical file ID file.

Rev. A 4-57

EOS Kernel: Logical File System ETAI10Q System Reference Manual

4-58

New physical file IDs for a file are linked at the end of the file ID
list. If a physical file ID is deleted from a files list, its record is
placed in the free list in the physical file ID file.

The physical file ID file is composed of F format records, each of
which is one physical file ID entry. Each entry contains:

* A physical file ID
e The record number of the current record

e The record number of the catalog image this physical file ID
entry is allocated for

* The length of the disk physical file identified by the physical
file ID

¢ The record number of the next physical file ID entry

¢ The record number of the previous physical file ID entry

Physical File ID Map

The physical file ID map contains lists of physical file IDs for all
logical files open in the system. The shared memory manager uses
this table to determine the physical files associated with a logical file
during I/O.

The physical file ID map is a communication buffer table in which the
physical file IDs of all open files are stored. The file support module
requests that file directory/catalog manager put the physical file ID for
a file into the physical file ID map when a disk file is opened. The
file directory/catalog manager sets up a linked list of entries
containing the EOS file’s physical file IDs and returns the index of
the first entry to the file support module.

The shared memory manager requests the file directory/catalog
manager to use the information in the physical file ID map to
translate a logical file address range into a physical address and
range.

The fields included in a physical file ID map entry are:
e The physical file ID for a disk physical file
* A link to the next physical file ID map entry for an open file

e A link to the previous physical file ID map entry for an open
file

e The length of the disk physical file identified by the physical
file ID in this entry

PUB-1005 Rev. A

ETA10 System Reference Manual EOS Kernel: Logical File System

Flush Logical File System File Table

The flush logical file system file table is a boolean array that indicates
whether or not the file system files need to be flushed at the
conclusion of external procedures.

The flush logical file system file table is subscripted by the file
system local IDs. The boolean corresponding to the proper file is set
to TRUE whenever a write to a file system file occurs. At the end of
the external procedures a call is made to a procedure which uses this
array to flush all logical file system files that have the value set to
TRUE.

The Directory Tree

PUB-1005

The entire structure of the directory tree is composed of nodes and
links between nodes. There are three types of nodes:

e Directory
¢ File
e Alias

A link is a pointer from one node to another, or from a node to a
catalog entry. All links consist of a record number relative to a
particular file.

Internal Representation of the Directory Tree

A directory structure segment, as users logically see it, is illustrated in
figure 4-12.

Parent Directory

do1 dz| ... | dop f11 f12 fe f1q

Figure 4-12. A directory structure segment where the d0; represent directories
and the f1j represent files.

To the file directory/catalog manager, the nodes corresponding to f11
... f1q and directories d01 . . . dOp are all members of a sibling set.

Rev. A 4-59

EQS Kernel: Logical File System ETAIQ System Reference Manual

4-60

A sibling set is implemented as a binary tree where comparison on
the node name is used as a binary sort algorithm.

A sibling set is illustrated in figure 4-13.

directory 1

lsubnode pointer

back sibling pointer ‘back sibling pointer

> node A
\ right sibling

\po:uer

node B node C

left sibling
pointer

Figure 4-13. Internal structure of a directory set showing the node pointers.

The parent directory (directory 1) of a sibling set has a subnode
which points to one member of the sibling set, (node A). The sibling
set consists of nodes A, B, and C, and each member is a subnode of
directory 1.

All the members of the sibling set have left sibling and right sibling
pointers to the roots of their left and right sibling trees. Node A has
a left sibling pointer that points to node B; and a right sibling pointer
that points to node C. In turn, nodes B and C may have left and
right sibling pointers that are null.

Note that node A has a back sibling pointer whose value is null since
it is the root of a sibling set. If any one of the nodes A, B, or C was
a directory node, it too would have a subnode pointer to its subnode
tree.

Alias Path Name Implemenfation

An alias path name is implemented as an alias node type in the
directory. Each alias node points to another node, an object node,
which is either a directory or file node.

All attributes associated with an alias path name, besides the node
name, are derived from the object node. The way in which alias
nodes are linked together is illustrated in figure 4-14.

PUB-1005 Rev. A

ETAIO System Reference Manual EOS Kernel: Logical File System

PUB-1005

Rev,

—»] object node |t

l alias chain
pointer
alias node 1 |—»

alias chain | supnode
pointer pointer

alias chain
* pointer

alias node i }—»

Figure 4-14. An alias chain showing the node pointers.

The subnode field in each alias node is used to point to the object
node. Each node in figure 4-14 has an alias chain pointer used to
form a circular list of nodes known as the alias chain. The alias
chain field is used to point to the next alias in the chain of nodes, all
of which are associated with the file system object.

The alias chain makes it possible for another directory to adopt the
object node in place of an alias node in the event that the original
path name is destroyed.

Global File ID Field Descriptions

The file system constructs global file IDs by concatenating three fields
which together uniquely identify a file or directory node:

e The first field is a device type which specifies what type of
object the global file ID refers to. It can take the value
directory or disk,.

¢ The second field is the record number. It contains the record
number of the node in the directory set file. This record
number guarantees the uniqueness of the global file ID within
the directory set.

* The last field is the use ID. It gets initialized when a record in
the directory set is used for a file or directory node. It gets
incremented when the node is reused, after the destruction of
the previous object has occurred. It is a pseudo-random
number that is incremented by a large prime number after the

A 4-61

EOS Kernel: Logical File System

4-62

destruction of the node. The use ID guarantees the uniqueness

of the global file ID over a long period of time.

Configuration of File System Files

For all file system files, the first record is a free list header record.
It contains a pointer to the file’s free record list.

The free record list initially points to the file’s last record. But, as
records are deleted from the files (i.e. directories and files are
destroyed), entries are inserted onto the free list. The free records
are linked such that they are maintained in a sequentially ordered
linked list by record number.

The initial configuration of the directory set file is:

Record 01 - Free list header node
Record 02 - System root directory node
Record 03 - Logical file system directory node

Record 04 - Primary directory node for primary logical file system

files
Record 05 - Primary initialization file node
Record 06 - Primary directory set node
Record 07 - Primary physical file ID file node
Record 08 - Primary access permission file node
Record 09 - Primary disk file node
Record 10 - Backup directory node for backup logical file system
files
Record 11 - Backup initialization file node
Record 12 - Backup directory set node
Record 13 - Backup physical file ID file node
Record 14 - Backup access permission file node
Record 15 - Backup disk catalog file node
Record 16 - Free list tail

The initial configuration of the disk catalog file is:

Record 01 - Free list header

Record 02 - Primary directory set file catalog
Record 03 - Primary access permission file catalog
Record 04 - Primary VSOS catalog file catalog
Record 05 - Primary physical file ID file catalog
Record 06 -~ Backup directory set file catalog
Record 07 - Backup access permission file catalog
Record 08 - Backup VSOS catalog file catalog
Record 09 - Backup physical file ID file catalog
Record 10 - Primary initialization file catalog
Record 11 - Backup initialization file catalog
Record 12 - Free list tail

PUB-1005 Rev. A

ETA10 System Reference Manual

ETAI0 System Reference Manual EOS Kernel: Logical File System

PUB-1005

Synchronization on Logical File System Files

Synchronization of file system files is done through interprocess
communication defined semaphores. An extended semaphore of the
reader’s or writer’s style must be created at file system initialization
(one for each pair of files: primary and backup), and activated by the
file system process initialization.

Using the style semaphore permits multiple readers and no writers, or
only one writer and no readers for each primary and backup file pair.
To avoid the deadlock caused by the locking sequence of file
directory/catalog manager routines, locking of file system files must
be done in the same sequential order by all processes:

1. Directory set

2. Access permission file
3. Disk Catalog file

4. Physical file ID file

Note that this only avoids deadlock situations where the semaphores
involved are file directory/catalog manager created. The file
directory/catalog manager keeps global (to itself) a table which
records the current locked state for each semaphore, for each process.

This table is used to enforce the sequence of locking on file system
files.

Synchronization on File Directory/Catalog Manager
Tables

The file directory/catalog manager must synchronize the physical file
ID map table. Synchronization of this table has two parts:

» First the physical file ID map’s free list is synchronized by an
interprocess communication defined simple semaphore. Since
the free list will only be accessed when it is to be altered, there
is no need for a style semaphore.

e Secondly, the entries in the physical file ID map associated
with a single file will be synchronized by a bit branch table.
This table has an entry for each possible open file table (OFT)
entry.

When the physical file ID map is accessed, it is always through
the open file table which contains a pointer to, or an index of,
the first physical file ID map entry in the file’s physical file ID
chain. Because of this, the physical file ID chain for a file can
be locked by doing a communication buffer bit branch and
swap operation on the entry in the bit branch table that is
associated with the file’s open file table index.

Rev. A 4-63

EOS Kernel: Logical File System

ETA10 System Reference Manual

Splitting the synchronization in this way allows multiple processes to
access the physical file ID map simultaneously, as long as they are
not accessing the physical file ID chain of the same file.

File Directory/Catalog Manager Routines

4-64

The file directory/catalog manager routines are as follows:

Add Access Permission to File Object adds an access
permission to either a directory or file’s access permissions list.

Alter Directory or File Attributes alters the attributes for a
directory or file. The specific attributes which may be altered
include all attributes necessary to allow user control over files
and directories.

Create Alias Pathname creates a new pathname for an existing
pathname.

Create Directory creates a new directory and links it into the
directory set. Access permissions to the new directory are
initialized. The owner username and group ID of the new
directory are set.

Create Disk File creates a pathname to a previously
nonexistent disk file:

- A catalog entry and a file node are created and
initialized.

- The file node is linked to a directory.

The user may request an initial file length in bytes.
Additionally:

- Access permissions to the new file are initialized.

- The owner’s username and the group ID of the new file
are set.

-~ The requested file space is allocated.

Create Logical File creates a pathname to a previously
non-existent logical file:

- A catalog entry and a file node are created and
initialized.

- Access permissions to the new file are initialized.

- The owner’s username and the group ID of the new file
are set.

PUB-1005 Rev. A

ETA10Q System Reference Manual EOS Kernel: Logical File System

PUB-1005

Rev. A

Delete Access Permission from File Object deletes a specified
access permission from a directory or file’s access permission
list. The deletion of an access permission for a file is not
effective for users that currently have the file open, until they
close it.

Destroy Pathname des'troys a pathname:

- If the object identified by the pathname has at least one
other path to it, only the specified pathname is
destroyed. The object remains intact.

- If the object is a file which is currently open to some
process, it is marked to be destroyed and becomes an
unnamed scratch file. It is destroyed when the file is
last closed.

Extend File adds a specified number of bytes to a disk file by
requesting the disk physical-file system to extend the file’'s last
existing physical file and/or create new physical files which are
associated with the logical file.

Give File Object to New Owner changes the owner username
and/or owner group ID as requested in a directory or file.

List File Object Access Permissions returns a list of access
permissions to a directory or file. A ”snapshot” of access
permissions to the specified object is taken on the first call for
that object. The operation may then be called repetitively to
return all access permissions.

List File Object Attributes returns the attributes of a directory
or file. A "snapshot” of global file IDs and nodenames of all
nodes linked to the specified object is taken on the first call if
the object is a directory.

List Root Global File ID lists the global file ID for the system
root, relative root, or the working root as specified by an input
ordinal.

Rename Pathname changes the name of a directory, file, or
alias, and properly relinks it in the directory set.

Reduce File reduces the length of a file to or by a specified
amount,

Set Root Directory sets the relative or working root for a
process as specified by an input ordinal and an input global
file ID.

Translate Path Name to Global File ID returns the global file
ID of a pathname.

EOS Kernel: Logical File System ETAIQ System Reference Manual

¢ Translate Global File ID to Pathname returns the pathname
for a global file ID.

4~-66 PI'B-1005 Rev. 4

ETA10 System Reference Manual EOQOS Kernel: Logical File System

File Support Module

The file support module (FSM) is a set of operations which together
with the record manager and the file directory/catalog manager,
comprise the complete Logical File Subsystem (LFS). The file
support module performs those functions which make the file system
and files available to applications programmers, libraries, and other
system features such as the record manager and the file
directory/catalog manager.

File System Installation and Initialization

PUB-1005

All information needed for the initialization of the file system is
contained in a single primary file system initialization file. A
duplicate of this file is kept in a backup file system initialization file.

Each of these files has exactly one disk physical file, a pfile,
associated with it. The physical file IDs of these two files are
maintained by system configuration control.

Cold Starting the File System

The cold start system initialization process (CSIP) calls a file support
module provided operation called the LFS Cold Start Operation. There
are no input parameters to this operation, and only a status output. It
must be called before any reference or use of the file system, but
after the:

¢ Disk physical-file system
¢ Interprocess communication
* SM manager
* CB manager
are all initialized and running.

Only the cold start system initialization process may call this
operation which will either install or initialize the logical file system.
Interfaces are required between this operation and system
configuration control (by which the physical file IDs of the
initialization files are retrieved from and stored in the system
configuration table). This operation also creates all SM, CB and other
objects required by the logical file system.

Rev. A 4-67

EOS Kernel: Logical File System ETAIQ System Reference Manual

4-68

File System Installation

When neither of the physical file IDs of the initialization files are
available from system configuration control, the file system, by
definition, does not exist and must be installed. This operation
installs the file system on the ETA10. It may only be called by the
LFS cold start operation. The physical file IDs of the initialization
files are generated and returned to the LFS cold start operation.

File System Initialization

When the physical file [Ds are available from system configuration
control, the file system exists, but must be initialized. This operation
initializes the file system on the computer system. It may only be
called by the LFS cold start operation. The input parameters are the
physical file IDs of the file system initialization files.

CPU Initialization for File System

This operation must be called to warm start a CPU. It must be called
after:

¢ Disk physical-file system

. Interprocess communication
e SM manager

¢ (B manager

have all been initialized on a CPU, but before any other reference or
use of the file system by any other process executing on the CPU.
This operation creates and initializes shared CP memory areas
required by the logical file system and connects the CPU to the SM,
CB, semaphores, and other objects required by the logical file system.

Process Initialization for File System

At the beginning of each process, except for those which must call
any one of the aforementioned initialization operations, there are two
operations which must be called to initialize the file system for the
process.

Start Up File System for Client, is called from Process Create from
within a process management process. This operation creates an open
file audit table for the process and causes all the files required by the
process to be opened to the SM manager.

PUB-1005 Rev. A

ETAIQ System Reference Manual EOS Kernel: Logical File System

Start Up Process, must be called within the newly created process,
after the:

¢ Interprocess communication
e SM manager
e CB manager

have all been initialized, but before any other file system operation is
called. The operation activates and opens the file system files to the
process and connects the process to all SM, CB, shared CP memory,

semaphore, and other objects required by the logical file system.

Process Termination

PUB-1005

The file support module provides three levels of file system
termination to a process. The first two are called from within the
process being terminated. The third is a clean-up operation which
executes within a process management process.

User File Termination

This operation is the first level of file system termination for a
process. It must execute within the unnamed (user) domain. It:

* Flushes all /O buffers for all files open to the user
¢ Closes and deactivates all files open to the unprotected system

¢ Closes and deactivates all files open only to the protected
system

The operation may be called under abnormal (though not
catastrophic) termination conditions.

Disabling the File System

This operation is the second level of file system termination to a
process. It closes all files which have I/O connections (including file
system files) and disconnects the process from all SM, CB, shared CP
memory, semaphores, and other objects needed by the logical file
system.

After this operation completes, the file system is unusable to the
process. This operation may be called under abnormal (though not
catastrophic) termination conditions.

Rev. A 4-69

EQS Kernel: Logical File System ETAIQ System Reference Manual

Terminate File System for Client

This operation is the third level of file system termination to a
process. It causes all files whose identifiers remain in the open file
audit table to be closed and deactivated. It also destroys the open file
audit table. ‘

This operation is only called by Process Terminate from within
process management. This operation may be called under abnormal,
including catastrophic, termination conditions.

File Activation and Deactivation

File Sharing

4-70

When the caller of the file system initially references a file in a
process, the reference is done through a file path name or a global
file ID, The file system must make a connection between the:

¢ Pathname
¢ Global file ID
e Attributes (including physical peripheral storage)

of the file associated with the name. This connection must remain
intact until the user requests the file system to break the connection
or until the connecting process terminates.

This implies that there may be points in time when a connection
exists to a non-existent file. Creating, activating, and destroying a
file results in this condition.

Establishing the connection is called file activation. Its inverse is file
deactivation.

When a file becomes active, it inherits a set of saved attributes which
become an instantiation of those attributes referred to as usage
attributes. The user may list and alter the usage attributes of a file
without affecting either the file’s saved attributes or other
instantiations (activations) on the file.

A file activation is externalized to the user by means of a logical file
ID. This logical file ID remains intact until the file is deactivated. A
file must be activated before its usage attributes may be listed or
altered, and before it can be opened. When a file is closed, it
remains active. Multiple activations of a file are allowed.

More than one /O path to a file may exist at one time. There are two
senses in which this may happen:

PUB-1005 Rev. A

ETAI0 System Reference Manual EOS Kernel: Logical File System

PUB-1005

e Shared opens
e Simultaneous opens
Sharing an open file means that many file open attributes such as:
e Current file position
e Active record type

are shared in common among several of the file openers. A shared
open is accomplished through the use of a "share mode” or "share
token” which is provided through a specific open shared operation.

One user, referred to as the master opener, is to open the file in
master share mode. Other users may share this open of the file by
retrieving the share token from the master opener and providing it to
the open shared operation with a subordinate share mode. Outside
the open shared operation, the file system does not distinguish
between a master or subordinate opener of a file.

Simultaneous Opens

Simultaneous opens are non-shared opens of the same file. Each
open has independent usage attributes and resources associated with it
that are not shared with any other opener of the file.

Read/Write Lockout

When opening a file, the caller may wish to lock out further access to
it for the duration of the open. This lockout feature is used for both
shared and simultaneous opens. Lockout works on both read access
and write type (e.g. write, append, or modify) accesses independently
and without regard to the access requested by the caller.

Multiple read and write lockouts are permitted.

If the lockout cannot be granted, the open request is denied. A
lockout cannot be granted if the file is already open for the access
type which is to be locked out.

If a lockout is successful, no further non-shared or shared master
open requests for the locked out access types are granted until the
open creating the lockout terminates. A process which is to update
the contents of a file, dependent on the file’s current contents, and
requires that no other process be writing the file during the update,
should request both read and write access and request that write type
accesses be locked out.

Rev. A 4-71

EOS Kernel: Logical File System ETA1Q System Reference Manual

Similarly, a process which is to read a file, and requires that no other
process modify the contents of the file while it is being read, should
request read access only and request lockout for write accesses.

The subordinate shared open operation does not check existing
lockouts. This is because all such opens are considered to be one
single open of the file which occurred during the master shared open
operation. Lockouts requested by the master opener persist until all
sharers of the open close the file.

Performance Versus Security Considerations

4-72

The file support module and record manager together are responsible
for conducting all explicit I/O. Protecting and securing the file system
from unauthorized access is an absolute requirement, but /O
performance is also critical. If all the file support module and record
manager operations were to execute within the nucleus, each call for
I/O would require at least one domain change.

In order for the record manager to be successfully partitioned between
unprotected and protected operations, the file support module must
also be partitioned between unprotected and protected operations.

This splitting of operations essentially gives definition to two distinct
I/O systems for all operations requested between (and including) file
activation and deactivation. The relationship of these two systems is
that the unprotected system is built upon and uses the protected
system. The protected system, however, is unaware of, and has no
interface to the unprotected system.

Entry to protected operations is checked by the domain manager to
ensure that entry is permitted. If permitted, entry is granted,
otherwise entry is denied.

e TUnprotected system handles the blocking/buffered operations of
the record manager. This is the system which provides double
buffering in CP memory of file data, and provides
interpretation and construction of logical data partitions
(records).

The tables and buffers used by this system are not protected
from user tampering. This availability is necessary to prevent
domain changes in the normal conduct of buffered I/O.

This system manages record type and related attributes such as
a file’s current file position.

* Protected system handles the in-place operations of the record
manager. This is a more physically-oriented system which
provides /O of byte stream data and overlap to computation

PUB-1005 Rev. A

ETA10 System Reference Manual EQS Kernel: Logical File System

PUB-1005

facility.

There are no buffers used by this system where data is taken
from or put into locations specified by the caller. Tables used
by this system are protected from user reference and
tampering.

This system is not aware of record type and manages more
phystcally oriented attributes such as the file’s
end-of-Information (EOI).

Operations provided by both file systems include:

Activate file

List file usage attributes
Alter file usage attributes
Close file

Deactivate file

Operations provided only for the unprotected system include:

Open file for explicit, direct I/O
Open file for explicit, sequential /O
Open file for implicit /O

Write bytes

Write partition

Write partial partition

Write partition delimiter

Flush buffers

Skip bytes

Skip partitions

Read bytes

Read partition

Read partial partition

Read with WAIT

Write with WAIT

Flush file with WAIT

Seek

Operations provided only for the protected system include:

Open file
In-place write
Flush file object
In-place read

Great care must be taken in changing between these three I/O
interfaces:

¢ User environment interface

Rev. A ' 4-73

EOS Kernel: Logical File System ETAI0 System Reference Manual

¢ Unprotected system interface
* Protected system interface

If interface usage is inappropriately mixed, uncontrolled and
indeterminate results will most likely result, such as data being placed
into, or read from, the wrong location, or portions of the file being
inadvertently overwritten.

Object Definitions and Usage

Certain objects and attributes of the file support module are defined.

Local File ID

The local file ID is a file identifier used in place of the file path
name or global file ID once a file has been activated. It is
constructed by the FSM and returned to the caller when a file is
activated. It is an identifier to the file system of a connection to an
active file.

Each local file ID is unique with respect to the inheriting process and
its concurrently active files: No active file has a local file ID which
equals that of any other file active to the same process.

There may be two different local file IDs for a file if it is being
shared. When a file is deactivated by a process, its local file ID is
free for re-use within the process.

Global File ID

The global file ID uniquely identifies a file or directory without regard
to its path name(s) or locality of activation. It is algorithmically
encoded and decoded by the file system. It is returned by various
operations and may be used as an input parameter to several file
system operations.

Shared Information
Tables shared by the file support module with other functions in the
ETA10 are described.
1/0 Connection

The /O connection (IOC) is provided by the file support module and
resides in process prlvate space to which only a named device has
access. An entry in the /O connection table is constructed when a
file is activated, and is deleted when the file is deactivated.

4-74 PUB-1005 Rev. A

ETAIQ System Reference Manual EOS Kernel: Logical File System

PUB-1005

The protected operations of the file support module have read/write
access to the table, while the protected operations of the record
manager and the file directory/catalog manager have only read access
to the table. '

An entry in the I/O connection table is essentially a set of pointers to
other tables, but does hold file state and accessibility information.
The other tables referred to are tables needed by other parts of the
file system to perform their specific functions.

Global File Usage Attributes Table

The global file usage attributes table (GFAUT) is provided by the file
support module, but resides in shared memory. An entry in this table
is constructed from attributes in the local file usage attributes table
(LFUAT), and the file /O control block when the file is opened for
shared access in master mode. The global file usage attributes table
entry is deleted when the last shared opener of the file closes it.

The protected operations of the file support module and record
manager have read/write access to this table. Protected file support
module operations are provided for accessing the table.

Entries in the table contain file system management information and
the attributes of shared open files.

Local File Usage Attributes Table

The local file usage attributes table (LFUAT) is provided by the file
support module and resides in process private space to which only the
named domain has access. An entry in this table contains attributes
necessary for the conduct of in-place /O. The entry is deleted when
the file is deactivated.

The protected operations of the file support module and record
manager have read and write access to this table.

File I/0O Control Block

The file YO control block is provided by the unprotected Activate File
operations of the file support module. It is modified by the
unprotected open and close operations of the file support module, and
by the unprotected record manager operations.

It resides in process private space in the user domain. It contains:
* Current file positioning information

¢ Current EOI

Rev. A 475

EOS Kernel: Logical File System ETAI0 System Reference Manual

4-76

e Padding character
e Record type
e Buffer management data

and other information for non-shared file openings. For shared
openings, this information is either not relevant, or it is contained in
the global file usage attributes table.

This table is parallel to the /O connection table. The unprotected
operations of the record manager and the unprotected operations of

the file support module have read and write access to this table.

An entry is deleted when a file is deactivated via the unprotected
deactivate file operation.

Open File Table

The open file table is provided by the file support module and resides
in the communication buffer. An entry in this table is constructed
whenever a file is first opened. The entry is deleted when all the
processes accessing the file have closed it.

The protected operations of the record manager and the SM manager
have read access to the table. The protected operations of the file
support module and file directory/catalog manager have read and
write access. Protected file support module operations are provided
for accessing this table.

An entry in this table contains open file attributes which are grlobal
without respect to whether the file is opened for shared, simultaneous,
or singular access.

Physical-File ID Map

The physical-file ID map is provided by the file directory/catalog
manager and initialized by the file support module during the
Initialize File System operation. It is used for disk physical files.

Entries are made in the map by the file directory/catalog manager
when a file is opened. Entries are deleted when the file is closed.

Physical-file IDs are used by the SM manager to perform L/O.

Open File Audit Table

The open file audit table is provided by the file support manager and
resides in SM or CB. This table is created during the Start Up
Process for Client operation. '

PUB-1005 Rev. A

ETAI0 System Reference Manual EOS Kernel: Logical File System

It contains entries for:

e All files required by the SM manager

e The process’s object and paging files

e All user files which are open to the process
Each entry contains the:

e Index of the open file table entry

e Mode in which the file was opened

¢ Indexes into SM manager tables.

This table exists until process termination occurs, when it is destroyed
by the Terminate File System for Client operation. The protected
operations of the file support module have read and write access to
the table.

Functional Interfaces
The file support module contains the following functional interfaces:

e Cold Start File System installs or initializes the logical file
system depending on whether it already exists or not. It also
creates all SM, CB, and other objects required by the logical
file system.

¢ Install File System creates all files required by the file system
(including the initialization files) and returns the physical file
IDs of the initialization files to the Cold Start File System
operation for permanent storage in the system configuration
table. Additionally, it:

- Creates

- Initializes
- Grants

- Activates

all SM, CB, shared CP memory, semaphore, and other objects
required by the logical file system.

¢ Initialize File System activates the file system and, if
necessary, recovers file system files. Additionally, it:

- Creates

- Initializes
- Grants

— Activates

PUB-1005 Rev. A 4-77

EOS Kernel: Logical File System ETAI0 System Reference Manual

4-78

all SM, CB, shared CP memory, semaphore, and other objects
required by the logical file system.

Initialize CPU for File System creates and initializes shared CP
memory areas. Additionally, it:

- Creates
- Grants
- Activates

all semaphores as necessary to shared CP memory areas, SM
and CB objects, and to file system files required by the logical
file system.

Start Up Fiie System for Client creates an open file audit table
for the process being initialized, and causes all the files
required by the process to be opened to the SM manager
before the process begins executing.

Enable File System to Process activates and opens the file
system files to the process, and connects the process to the
process’s open file audit table and all SM, CB, shared CP
memory, semaphore, and other objects required by the logical
file system.

Terminate User Files flushes CP memory block I/O buffers and
closes and deactivates all files open to the unprotected system

of a process. This operation is the first of three which together
terminate the file system to a process. The remaining two are:

2. Disable File System to Process
3. Terminate File System for Client

Disable File System to Process closes and deactivates all files
for which there are /O connections. It does not flush any CP
memory block /O buffers as it is the responsibility of all
systen features to close their files using normal closing
operations if they are using buifered record manager
operations.

This operation must not issue any accounting, dayfile, or user
management operations which in turn use the file system. This
operation also deactivates all logical file system semaphores,
and CB and SM objects to the process.

This operation is the second of three which together terminate
the file system to a process. The remaining two are:

PUB-1005 Rev. A

ETAIQ System Reference Manual EOS Kernel: Logical File System

PUB-1005

Rev. A

2. Terminate User Files
3. Terminate File System for Client

Terminate File System for Client causes all files whose
identifiers remain in the open file audit table to be closed and
deactivated. It also destroys the open file audit table.

This operation is the third of three operations which together
terminate the file system to a process. The remaining two are:

1. Terminate User Files
2. Disable File System to Process

Activate File From Pathname translates a pathname into a
global file ID, and calls Activate File From Global File ID. It
executes in the domain of the caller as part of a shared library.

Activate File From Global File ID calls Activate File
(Protected). If that call is unsuccessful, it then calls List Path
Name Attributes from the file directory/catalog manager to
initialize the file /O control block for the caller.

This operation executes in the domain of the caller as part of a
shared library, and enables the use of all unprotected file
support module operations.

Activate File (Protected) provides the protected connection
between a process and a specified file. A logical file ID is -
generated and returned to the caller. Entries for the file are
initialized in the appropriate tables.

This operation enables the use of the operations:

- Open File (Protected)

- List and Alter File Usage Attributes (Protected)
- Close File (Protected)

- Deactivate File (Protected)

Deactivate File (Unprotected) deletes the file /O control block
entry and calls the Deactivate File (Protected) operation to
break the connection between a process and a file. It makes
the logical file ID available for re-use. This function executes
in the domain of the caller as part of a shared library.

Deactivate File (Protected) makes a logical file ID available
for re-use. It deactivates a connection between a process and
a specified file.

List File Usage Attributes (Unprotected) returns the attributes
from the file /O control block for a specified file. This

EOS Kernel: Logical File System

4-80

ETAI0 System Reference Manual

operation executes in the domain of the caller as part of a
shared library.

List File Usage Attributes (Protected) returns the attributes
from the protected I/O tables for a specified file.

Alter File Usage Attributes (Unprotected) modifies the
attributes in the file I/O control block for a specified file. It
does not alter any of the file’s saved attributes. This
operation executes in the domain of the caller as part of a
shared library.

Alter File Usage Attributes (Protected) modifies attributes in
the protected I/O tables for a specified file. It does not alter
any of the file’s saved attributes.

Open File for Explicit, Sequential I/O (Unprotected) opens a
specified file to allow explicit sequential /O to be performed.
It executes in the domain of the caller. The caller may specify
the following attributes:

. = Type of access required while the file is open
- Position at which to open the file

- The amount of file data to be buffered in CP memory.
Two CP memory buffers, each an integral number of
small pages, are established for the file. The record
manager double buffers the data in the file, overlapping
computation and I/O, using the access strategy for
directionality into/from the CP memory buffers. If the
amount of data buffered is zero, or the access strategy
is Demand, then no or only minimal CP memory
buffering is done.

- A strategy for file access. May be one of the following:

- Forward Look~ahead
— Demand

The record manager buffers using either Forward
Look-ahead or Demand,.

- Lock out request flags. There is one flag for each type
of read and write access lockout.

Open File for Explicit, Direct I/0 (Unprotected) opens a file
to allow for explicit, direct /O to be performed. It executes in
the domain of the caller. The caller may specify the following
attributes:

-~ Type of access required while the file is open

PUB~1005 Rev. A

ETAIQ System Reference Manual EOQOS Kernel: Logical File System

- Position at which to open the file

- The amount of file data to be buffered in CP memory.
Two CP memory buffers, each an integral number of
small pages, are established for the file. The record
manager double buffers the data in the file, overlapping
computation and /O, using the access strategy for
directionality into/from the CP memory buffers. If the
amount of data buffered is zero, or the access strategy
is Demand, then no or only minimal CP memory
buffering is done.

- A strategy for file access. May be one of the following:

-~ Forward Look-ahead
-~ Demand

The record manager buffers using either Forward
Look-ahead or Demand.

- Lock out request flags. There is one flag for each type
of read and write access lockout.

* Open File for Implicit I/O (Unprotected) opens a file for
implicit /O to be performed on it. This operation executes in
the domain of the caller.

* Open File for Shared Access (Unprotected) opens a file to -
allow /O to be shared between callers. The current file
position is shared by all callers that open the file with the same
share token. This operation executes in the domain of the
caller. The caller may specify the following attributes:

- A shared mode which may be Master or Subordinate.

- A share token which identifies the open the caller wishes
to share. This attribute is returned to the caller if the
share mode is Master.

- The access mode of the file opening. It may be:

- Sequential
- Direct

This attribute is ignored if the share mode is
Subordinate.

- The type of access required during the open This
attribute is ignored if the share mode is Subordinate.

PUB-1005 Rev. A 4-81

EQS Kernel: Logical File System ETA1Q System Reference Manual

- The position at which to open the file. This attribute is
ignored if the share mode is Subordinate.

~ A strategy for file access. May be one of the following:

- Forward Look-ahead
- Demand

- Lock out request flags. There is one flag for each type
of read and write access lockout. This attribute is
ignored if the share mode is Subordinate.

* Open File (Protected) opens a specified file to permit shared
or non-shared explicit or implicit /O. If called for shared
explicit I/O, the current file position is shared by all callers that
open the file with the same share token. The caller may
specify the following attributes:

- The IO mode. It may be Explicit or Implicit. The
Implicit mode is used only with disk files..

- The share mode. It may be:

- Master
-~ Subordinate
- Non-shared

The Master and Subordinate attributes are used only
with disk files..

- The share token. This attribute is ignored if the share
mode is Non-shared, and is ignored as an input
parameter if the share mode is Master.

- Type of access required. It may be any combination of:

- Read

~ Write

- Execute
- Append
- Modify

If the access mode is Explicit, the access mode may not
include Execute. If the access mode is Implicit, the
access mode may not include Modify or Append.

- A flag that indicates, when set, that the file is a system
file. These files are not closed except by explicit
request, or during the Terminate System Files operation.
This attribute is ignored if called from the user domain.

4-82 PUB-I1005 Rev. A

ETALQ System Reference Manual EOQOS Kernel: Logical File System

PUB-1005

Rev. A

- A strategy for file access.

- Lock out request flags. There is one flag for each type
of read and write access lockout. This attribute is
ignored if the share mode is Subordinate.

Close File (Unprotected) closes a specified file. The record
manager is called to flush all buffered CP memory data for the
file to peripheral storage. This operation executes in the
domain of the caller. The caller may specify the position at
which to close the file.

Close File (Unprotected) routine eventually calls the Close File
(Protected) routine to complete the close.

Close File (Protected) closes a specified file. SM manager is
requested to close the file object in shared memory. The caller
may specify the position at which to close the file.

4-83

EOQOS Kernel: Logical File System ETAI10 System Reference Manual

Record Manager

The record manager provides the mechanisms by which users may
read and write data from and to files. The record manager interacts
with the following to accomplish its functions:

» File directory/catalog manager (FDCM)
» File support module (FSM)
e SM manager (SMM)

Additionally, it interacts indirectly with the CP memory manager

(CPMM).

The record manager is accessible by direct calls from all domains.
As such, it is the single conduit through which explicit /O on files is
accomplished.

Logical Groupings of File Data

The smallest quantum of data usable by the record manager is the
byte. Users may access data from, and write data to files by means
of logical groupings of data bytes. All logical groupings of data are
called logical data partitions, or just partitions.

Partitions are either algorithmically constructed logical groupings of
file data, or they are constructed by the insertion of control
information into the file. If constructed of control information, the
control information is useful only to the record manager and in
normal usage is never seen by the user.

Records

A record contains logically associated, contiguous data bytes excluding
any control information. It should not be regarded as a minimal unit
of addressable data. The record is distinct from:

* A sector on disk
* A half-word in shared memory
* A byte or bit

All of these are considered to be minimal units of addressable data in
one context or another.

4-84 PUB-I005 Rev. A

ETAI10 System Reference Manual EOS Kernel: Logical File System

Groups

A group is a set of logically associated, contiguous records, including
imbedded record delimiters, but excluding group delimiters.

Files

The definition of a file level partition is dependent on the context. A
file level partition is defined to be all the bytes of a file except file
level control information. It may also be a collection of records,
including any record delimiters, or a collection of groups, including
any group delimiters. Multi-file files are not supported or permitted
by the record manager.

Partition Hierarchies

All files may contain either no data, or one and only one file level
partition:

¢ Some files contain only the file level partition
* Some files contain only record and file level partitions
* Some files contain record, group, and file level partitions

Record level partitions are contained in either group or file level
partitions, group level partitions are contained within file level
partitions.

Working Storage Area

When all or part of a partition is "given to” or “retrieved from” the
record manager it exists as data contained in the working storage area
(WSA). The working storage area is a set of virtually contiguous
bytes in virtual CP memory aligned on a byte boundary. It is
provided by the caller to the record manager as appropriate and is
accessible to the caller.

Associated with each working storage area is a length in bytes
referred to as the working storage length (WSL). While a partition
exists in the working storage area it has no type.

Accessing Modes

PUB-1005

When a file is opened for explicit /O, it is opened in either sequential
or direct access mode. The caller must specify which access mode is
desired by choosing the correct open operation. Access mode is a file
usage attribute and has meaning only when the file is open for

Rev. A 4-85

EOS Kernel: Logical File System ETA10 System Reference Manual

Shared Files

4-86

explicit /O. To change from mode to the other, the caller must close
and reopen the file.

All files may be opened in sequential access mode. Only type F or U
record format disk files may be opened in direct access mode.

Sequential Access

Sequential access has a restricted and explicit definition. Sequential
access is defined as a mode of access in which:

e Every write operation to the file defines a new end of file
position which is the last data byte written.

* Modify access is not permitted.

Direct Access

Direct access also has a restricted and explicit definition. Direct
access is defined as a mode of access in which:

* A write operation to the file defines a new end of file position
if and only if the byte address of the last byte written is greater
than the byte address of the EOF that existed before the write
operation.

» Append access is not permitted.

The LFS supports simultaneous and shared access to a file. The
record manager is involved in supporting this type of access. The
record manager does not synchronize I/O operations on shared files,
this is the responsibility of the file users.

While files may be shared, CP memory buffer space on files may not
be shared. The single aspect of shared files for which the record
manager is responsible is that of current file position.

Simultaneous Access

When a file is open for simultaneous access, calling the record
manager to read, write, or skip on the file causes a change in the
current file position for the caller’s process and logical file ID pair. It
does not in any way alter the current file position on the file for any
other process which is simultaneously accessing the file.

PUB-1005 Rev. A

ETAI0 System Reference Manual EOS Kernel: Logical File System

It should be noted that while file positions are not altered, they may
be invalidated as a file’s end of information may be set to a value
lower than a process’s current file position on that file.

Shared Access

When a file is open for shared access, calling the record manager to
read, write, or skip on the file causes a change in the current file
position on that file for all process and logical file ID pairs sharing
the access.

CP Memory Block I/0O Buffers

The record manager provides, on request, block data buffering of file
data in CP memory through the provision of CP memory block /O
buffers. These buffers are maintained by the record manager and are
intermediate data buffers between the working storage area and
shared memory. There are two strategies employed by the record
manager, and selectable by the caller, that support data buffering:

e The first is "look-ahead” buffering. The caller provides the
length of the desired buffer. The record manager allocates two
CP memory buffers, each with half that length, although
neither being less than one CP memory small page per buffer
unless the requested length is zero.

In conducting /O on the file, the record manager will "double”
buffer using the computation overlap facility. Management of
the buffers are optimized by the record manager to minimize
/O within the constraints of the buffer length supplied by the
user.

¢ The second strategy is "demand” strategy. In this strategy the
record manager determines if an intermediate buffer is needed
on each /O call. If one is necessary, the record manager:

- Allocates it

- Transfers the data into it

- Properly disposes of the data
~ Deallocates the buffer

-~ Returns to the caller

If an intermediate buffer is not needed for an /O request, then
none is allocated and the data is moved directly.

PUB-]005 Rev. A 4-87

EOS Kernel: Logical File System ETAIO System Reference Manual

Type R and V files always require intermediate buffers in order to
insert or strip record delimiters.

Concurrent, In-place 1I/O

The record manager provides facilities to conduct in-place /O. By
this it is meant that through these facilities, data is transferred directly
to or from the caller’s working storage area buffer from or to shared
memory without being routed through intermediate CP memory
buffers.

The in-place /O operations have the ability to begin the transfer and
return to the user without waiting for transfer completion. This
provides for an /O-to-computation overlap facility. The wait or
no-wait option is user selectable. A check /O call with wait option is
also provided so that callers may be assured that the /O necessary
for computation is complete before entering computational logic which
depends on the data.

The following restrictions are placed on usage of these facilities:

e The transferred data is treated strictly as byte stream data
regardless of the file's record type.

* Intermixing partition level /O operations with in-place 'O
operations has undefined (and for the user most likely
disastrous) results.

e The amount of data moved through the in-place operations
must be a multiple of half-words to or from a file address that
is on a half-word boundary, from or to a working storage area
address that is on a half-word boundary. Otherwise an
exception case status is returned and no data is moved.

There is a request serial number (RSN) returned from each in-place
/O operation which identifies the operation, and the data and memory
associated with it. A request serial number is a positive integer which
can be interpreted to be the number of in-place /O operations
requested for a particular logical file ID, since the file associated with
the logical file ID has been opened.

Opening a file causes a request serial number associated with the
opening to be set to the integer 0. Requesting in-place /O on the file
causes the request serial number to be incremented by one, and that
value is then returned to the caller.

It should be noted that request serial numbers associated with /'O
operations for one open file are not guaranteed to be unique among
request serial numbers associated with I/O operations for another file,
even in the case of two different opens for the same file.

4-88 PUB-I1005 Rev. A

ETAIQ System Reference Manual EOS Kernel: Logical File System

The request serial number is an input parameter to check the /O
function which should be called when the status or the completion of
the I/O is desired.

Partitioning of Record Manager Operations

There are essentially two types of record manager operations. One of
these has been referred to as in-place concurrent I/O. An in-place
operation functions without regard to the file’s logical partition
structure, and will not transfer data to or from intermediate CP
memory buffers.

The operations of the other type do buffer data in CP memory buffers
and also provide and support logical structures. These operations are
collectively referred to as buffered/blocking operations.

The caller is permitted access to both types of operations without
restriction. Because the buffered/blocking operations themselves use
the in-place operations, you are strongly cautioned against intermixing
the types of operations requested of the record manager. If
intermixing does occur, the results are not defined.

File Data Versus Control Information

Throughout the discussion of the record manager there are references
to control information in a file which is used to organize file data.
The relationship between control information and data should be
described.

Note that control information that delimits a particular level of
partition is always treated as data within higher level partitions. Thus,
group and partial group, and record and partial record delimiters are
treated as data within a file level partition.

Record Constructs or Types

PUB-1005

There are four mechanisms by whtich records (and thus groups) may
be constructed and recognized. Additionally, there is a fifth (null)
record construct needed by the record manager to signify that files
with this record construct have no internal record structure.

For simplicity, a record construct is referred to as a record type.
Record types cause records to behave differently with regard to /'O
performance, cause some of them to be unsuitable for certain types of
data storage, and result in various partition hierarchies.

All of the data in a file must be of one and only one record type.

Rev. A 4-89

EOS Kernel: Logical File System ETAI0 System Reference Manual

Record Mark Delimited (R) Records

A type R record is defined to be a variable amount of data between
bytes with the integral value 0A1g or 1F15. The record manager
writes 0A1g as the record delimiter. The delimiter is appended to the
end of each record to signify record end.

Type R files provide high efficiency in the use of data storage while
providing a rich hierarchy in data organization. On the other hand,
the performance in accessing type R files is poor relative to other
record types. Type R records are not recommended for storing
non~ASCII data since the data might be interpreted as a delimiter.

Type R records are provided in order to support ASCII text files. The
record manager recognizes hierarchical partitions within type R files
- as follows:

e 1F1sg Record delimiter
e 0A1s Record delimiter
* 1Dyg Group delimiter
e 1C4¢ File delimiter

All other characters are interpreted as data.

Control Word Delimited (V) Records

The V type record has control words placed at the beginning of each
partition to signify the location of the end of the partition as well as
the location of the next control word. Each control word is one word
(64 bits) of data storage aligned on a word boundary.

Type V records are slightly less efficient in the use of data storage
than type R records, but provide significantly better performance.
Type V records are safe for the storage of binary structured data.

Type V records have been provided to support FORTRAN
requirements.

The record manager recognizes a hierarchy of partitions in type V
files. The hierarchy, in ascending order, is:

1. Records
2. Groups
3. Files

4-90 PUB-1005 Rev. A

ETA10 System Reference Manual EQOS Kernel: Logical File System

Fixed Length (F) Records

The type F record is defined to be a fixed but specifiable number of
bytes. The record length is a file attribute.

The efficiency of data storage using type F records varies, as does the
performance in accessing data. Used correctly, it is both highly
efficient and provides much greater access performance than either
type V or R formats

Type F formats have been provided in order to support FORTRAN
requirements.

Type F formats are safe for the storage of binary structured data.
They contain only record and file level partitions.

Unstructured (U) Records

The type U file does not contain records. There is no logical grouping
of data in the file recognized by the record manager. The file is
considered to be one continuous byte string of a specified length.

The caller specifies the number of bytes to be read or written during
each I/O operation to a type U file. The type U file may be both
highly efficient in data storage and access performance, but it
provides no facility for the logical organization of data.

File Positioning

PUB-1005

Several concepts and attributes associated with open files are
described.

Partition Numbers and Byte Numbers

The partitions in a structured file are sequentially ordered. Thus,
partitions can be given a partition number which may be used for
subsequent addressing.

The partition number of any partition is the number of partitions of
the same level which precede it, plus one. A record numbered 100 is
always the one hundredth record in a file regardless of any group
structure the file may contain.

Each group and record in a file is uniquely and consecutively
numbered. Because multi-file files are not permitted, each file is
always numbered 1.

There is an analogous concept to unstructured files. The bytes of an
unstructured file are consecutively numbered. The byte number of any

Rev. A 4-91

EOS Kernel: Logical File System ETA10 System Reference Manual

byte in the file is the number of bytes which precede it plus one. The
first byte in the file is byte 1.

File Beginning and End Positions

Each non-null partition within a file has a well-defined beginning and
end position (except during partial partition write operations). These
positions are known as beginning-of-partition (BOP) and end-of-partition
(EOP). A level partition may be null (empty), in which case its
beginning-of-partition and end-of-partition are nonexistent.

The beginning-of-file (BOF) is the first file level partition data byte of a
file. The end-of-file (EOF) is the last file level partition data byte of a
file. An unstructured file has only a beginning-of-file and end-of-file
for beginning and end positions. A structured file may have, in
addition:

e Beginning-of-group (BOG)
e End-of-group (EOQG)
e Beginning-of-record (BOR)
¢ End-of-record (EOR)

Current Partition and Current Byte

When a structured file is open for explicit access, it always has,
depending on its record type, a defined current group and current
record. At any point in time, these two quantities can assume any
number of values. The record manager is responsible for managing
these conditions.

There is an analogous concept for unstructured files. When an
unstructured file is opened for explicit access, there is always a
current byte defined.

Current Partition Address and Current Partition Offset

Within the current partition there is always a current partition address
and current partition offset. The current partition address is the file
address of the beginning-of-partition. The current partition offset is
the number of bytes read from or written to the current partition. It
is also the point at which a read or write partial partition operation is
to begin.

Any time a compiete partition has been transferred to or from the
working storage area, the partition offset is set to zero. If a partial
read or write operation is performed, and only part of some partition

4-92 PUB-1005 Rev. A

ETAIQ System Reference Manual EOQOS Kernel: Logical File System

PUB-1005

is transferred, the partition offset is set to the partition offset plus the
number of bytes transferred.

Note that where the respective partition levels exist, the following
values are always equivalent:

e Current file address plus the current file offset
e Current group address plus the current group offset

e Current record address plus the current record offset.

Current File Position

The current file position is defined as being the byte address of the
first byte of the current partition plus the:

e Current partition offset if the file is structured
e Byte address of the current byte if the file is unstructured

When a file is opened at beginning-of-file, the current partition is set
to the first partition, even if the partition is nonexistent. When a file
is opened at end-of-file, the current position is set to the last
partition byte plus one.

If a structured file is opened, the current record offset is set to zero
(i.e. structured files are always opened at some beginning-of-record,
because a file cannot be closed without a record having been
completely transferred). When a file is opened without repositioning,
the current partition is not changed from what is was after the last
close.

For structured files, each write operation to the current record
completes that record, by zither:

e Write partition at the record level

e Write partial partition at the record level with the terminate
partition flag set

e Write partition delimiter at the record level

The current record is redefined as the last full record written plus
one. The current record offset is set to 0. Each read operation to
the current record which completes it causes the:

e Record count to be set to the last full record read plus one
e Current record offset to be set to 0.

For unstructured files, each write operation causes the current byte to
be redefined as the previous current byte plus the number of bytes

Rev. A 4-93

EOS Kernel: Logical File System ETA1Q System Reference Manual

written. Each read operation causes the current byte to be reset to
the previous current byte plus the number of bytes read.

End-of-Information

For all files there is a point that marks the end of all data and record
manager control delimiters. This point is the end-of-information (EOI),
which for disk files is the highest byte number written to the file.

Management of Record Manager Related Attributes

There are several file attributes needed by the record manager in
order for it to accomplish both saved file attributes and file usage
attributes. The file attributes include:

e Record type
e Padding character
* Maximum record length or fixed record length

e Buffer length

Record Manager Shared Information

The record manager contains a number of tables which are shared
with other processes in the system. These tables are described.

I/O Connection Table

This table contains:
¢ Connection information to other file system tables and files
e File usage state information
e Effective access permissions

An entry is created in this table by the file support module when a
file is activated It is deleted when the file is deactivated. This table
resides in process private memory and is not accessible to the
blocking/buffered operations.

Global File Usage Attributes Table

This table contains file system management information and the
attributes of files as they are being used and are open for shared
access. An entry in this table is created by the file support module

4-94 PUB-1005 Rev, A

ETAI10 System Reference Manual EOQOS Kernel: Logical File System

when the file is first opened for shared access. It is deleted when the
file is no longer opened for shared access.

The usage attributes are inherited from the local file usage attributes
table of the master opener. This table resides in the communication
buffer and shared memory and is not accessible to the
blocking/buffered operations.

Local File Usage Attributes Table

This table contains file system management information and the
attributes of files that are needed by the in-place operations. An
entry in this table is created by the file support module when a file is
opened. It is deleted when the file is closed. The table resides in
process private memory and is not accessible to the blocking/buffered
operations.

Open File Table

This table contains open file attributes which are global without
respect to how the file was opened. An entry in the table is created
by the file support module when a file is first opened. It is deleted
when the file is no longer open to any process. This table resides in
the communication buffer and shared memory and is not accessible
by the blocking/buffered operations.

File I/0 Control Block

This table contains the set of file CP memory buffering attributes that
are needed and managed by the record manager while the file is
open. An entry in this table is created when the file is opened. This
table resides in process private memory and is not accessible by the
in-place operations.

Record Manager Routines

PUB-1005

The record manager internal functions are as follows:

* Write Bytes transfers a specified number of bytes of data from
the working storage area into an /O buffer associated with the
specified file. The bytes are moved starting at the current file
position or at a specified byte address.

* Write Partition transfers a full partition (delineated by the
WSL parameter) whose level is transferred from the working
storage area to an /O buffer associated with the file.

If the operation immediately preceding was a Write Partial

Rev. A 4-95

EOS Kernel:

4-96

Logical File System ETA10 System Reference Manual

Partition without the terminal partition flag being set, this
operation calls the write partition delimiter operation. Then, if
both: '

~ The current partition offset of the implied or specified
partition level is not 0

- The partition number to be written is not specified

the operation skips forward one partition of the same type and
positions at the beginning of the partition skipped to.

If the partition number to be written is specified, the file is
positioned at the beginning of that partition before writing
begins.

The data transferred is a complete partition starting from the
beginning of the current or specified partition. Partition
delimiters are added to the partition as appropriate (type R or
V files).

Write Partial Partition transfers a partial partition (delineated
by the working storage length parameter) from the working
storage area into an I/O buffer associated with the specified
file. The partition level to be written is specified by the caller:

- A partition delimiter is written to the current partition

- The current record is padded if the preceding operation
was a write partial partition and the terminal partition
flag was not set

If the implied or specified partition to be written is the same as
the current partition, the data is written starting at the current
file position. No partition delimiter is appended to the data
unless a terminal partition flag is set.

If the file is type F record format and the terminal partition
flag is set, the current record is padded out, if needed, after
working storage length bytes are written to the file.

Write Partition Delimiter writes a partition delimiter to the
current position for types R and V record format files, or pads
out the remainder of a type F format record in the specified
file. The partition level is specified by the caller.

4

In-place Write writes a specified amount of data from a
specified CP memory virtual address to the specified file’s SM
buffered space without going through the record manager’s
buffering/blocking operations with optional 'O to computation
overlap.

PUB-1005 Rev. A

ETAI0 System Reference Manual

PUB-1005

Rev. A

EOS Kernel: Logical File System

The record type of the file is ignored and the data is written
without interpretation. The data is written to the specified or
implied file address.

This function returns a record sequence number to be used by
the caller to determine the status of the /O at a later time.
Positive identification of the file’s /O status is returned to the
caller when the function completes.

Flush I/O Buffers writes the contents of CP memory block I/O
buffers associated with a specified file to shared memory and
optionally requests the SM manager to write the data to
peripheral memory.

If the user is doing minimal or no CP memory buffering, this
operation does nothing unless the destination is peripheral
storage. This operation does not invalidate the contents of any
buffer.

Read Bytes transfers a specified number of bytes of data into
the working storage area from an I/O buffer associated with a
specified file. The bytes are moved starting from the current
file position or the specified byte address. The number of
bytes actually transferred is returned to the caller.

Read Partition transfers a full partition with the specified
number and level from an /O buffer associated with the
specified file into the working storage area. The length of the
working storage area is specified by the caller.

If the immediately preceding operation was a Write Partial
Partition without the write_partial_partition flag set, this
operation calls the Write Partition Delimiter operation. This
results in an attempt to write past the EOF if the partition
number is defaulted.

If the partition number is defaulted and the current partition
offset of the implied or specified partition level is not 0 (i.e.
the previous operation was a read partial partition), this
operation skips forward one partition of the same type and
positions at the beginning of the partition skipped to.

If the partition number to be read is specified, the file is
positioned at the beginning of that partition before reading.
The data transferred is a complete partition starting from the
beginning of the implied or specified partition.

Partition delimiters are stripped from the partition as
appropriate for type R and V format records. The number of

4-97

EOS Kernel: Logical File System ETA10 System Reference Manual

bytes actually transferred to the working storage area is
returned to the caller. If a partition level equal to or higher
than the specified level is found, that level is also returned to
the caller.

¢ Read Partial Partition transfers a full or partial partition with
the specified number and level from an IO buffer associated
with the specified file into the working storage area.

If the immediately preceding operation was a Write Partial
Partition without the terminal partition flag set, this operation
calis the Write Partition Delimiter operation. This results in an
attempt to read beyond the end of information if the file is
opened in sequential access mode and the partition number to
be read is defaulted.

Partition delimiters are stripped from the partition as
appropriate for type R and V record format files. The number
of bytes actually transferred is returned to the caller as is an
indicator of whether the end of the partition was found.

¢ In-place Read transfers a specified amount of data directly
from a specified file’s SM buffered space to a specified CP
memory virtual address without going through the record
manager’s buffering/blocking operations with optional I/O to
computation overlap.

The record type of the file is ignored and the data is read
without interpretation. The data is read from a specified or
implied file address.

This function returns a record sequence number to be used by
the caller to determine subsequent I/O status. Positive
identification of the file’s I/O status is returned to the caller
when the function completes.

e Skip Bytes positions a specified file to:
- A specified offset from the current file position
-~ The beginning or end of a file
-~ A special offset from the beginning or end of a file

¢ Skip Partitions repositions a file a specified number of
partitions from its current position. If the preceding operation
was a Write Partial Partition without the write_partition_flag
set, this operation calls the write partition delimiter operaticn.

The file is positioned at the beginning or end of the specified

4-98 PUB-i005 Rev. A

ETAI0 System Reference Manual EQOS Kernel: Logical File System

PUB-1005

Rev. A

partition depending on a position within partition parameter.
The caller is informed of the partition level encountered in the
skip.

Seek positions a specified file to a specified logical file offset.
This routine is to be used with the in-place /O system.

File Object Flush causes a file’s data to be written from
shared memory to an /O unit with optional /O computational
overlap. This operation does not invalidate the contents of any
buffered data. This function returns a record sequence number
to be used by the caller to determine the status of the /O at a
later time. Positive identification of the file’s /O status is
returned to the caller when the process completes.

Check I/0 Request Status returns the status of a specified /O
operation on a file. A wait for /O completion option is
provided which waits for /O completion and checks the
requested I/O operation’s status. Positive identification of the
file’s /O status is returned to the caller when the function
completes.

4-99

EOS Kernel: Logical File System ETA10 System Reference Manual

4-100 PUB-i005 Rev. A

ETA1Q System Reference Manual EOS Kernel: Memory Managers

Section 5: The Memory Managers

This part examines the three computer system memory managers and
their properties. It consists of three sections:

* CP memory manager
* SM manager
e CB memory manager

Central Processor Memory Manager

The CP memory manager allocates and deallocates CP memory for
CPU processes. There are four types of CP memory manager

(CPMM) functions:

¢ Page Fault Processing is a single function that:

- Reads logical disk file data into CP memory
-~ Detects and reports faults for undefined addresses
- Detects and reports faults for inaccessible addresses

¢ TImplicit File Access is a series of functions that provide the
ability to read and write a logical disk file by referencing or
updating CP memory. These functions also allow a process to
obtain accessible virtual address space.

¢ Physical CP Memory is a series of functions that support
operating system use of CP memory. Included are the CP
memory object functions which permit sharing and use of
physical CP memory without references to a logical disk file,
and the Transfer Address/Buffer functions which permit the SM
manager to obtain the physical address of the CP memory
pages to be transferred.

¢ Process Management is a series of functions provided to
support the process management functions that create and
destroy processes.

* Resource Management is a series of functions provided to
manage CP memory resource limits, and to determine a
process’ current CP memory usage.

PUB-1005 Rev. A 4-101

EOS Kernel:

Memory Managers ETA10 System Reference Manual

An independent CP memory manager resides on each CPU, managing
the processor’s CP memory. The CP memory manager does not
coordinate the use of CP memory in muiltiple CPUs.

Central Processor Memory Objects

CP memory manager is the feature that allows processes to use CP
memory. Site and user resource limits are provided to support the
use of CP memory.

Physical CP memory, in the form of CP memory obijects, is used and
shared between processes by the operating system. A memory
transfer buffer is provided for the SM manager (SMM) to both:

¢« Obtain a CP memory physical address
¢ Make a CP memory page unreplaceable or locked down

Memory addressable files are provided to allow implicit read and
write access to a logical file. They provide the mechanism for
defining a virtual address space a process may reference. Processes
may share CP memory by sharing a memory addressable file.

The paging file is a default memory addressable file provided by the
CP memory manager to support scratch space. Scratch space is
virtual memory that is accessible without having a logical disk file
explicitly created and opened for implicit access.

A system code map template initializes system code as a series of
memory addressable files in a new CPU process.

Central Processor Memory Manager Feature Interaction

4-102

The following paragraphs describe the usage of CP memory manager
functions. The function names are illustrated in italics.

Implicit File Access

CP memory manager works with the logical file system (LFS) to
provide implicit access to a logical disk file. The process is:

1. The file support module (FSM) Open Implicit function is
performed.

2. The QSMAPIN System Interface Library subroutine associates
the file to a virtual address range, creating a memory
addressable file.

3. Within the virtual address range the file is accessed through
page faults processed by the Page Fault Processing function.

PUB-1005 Rev. A

ETA10 System Reference Manual EQS Kernel: Memory Managers

PUB-1005

4. When access to the file is no longer desired in the particular
address range, the Mapout File or Mapout Address functions
are used to remove access to the file and to the virtual address
range.

The file support module Close File function may also be called to
remove access to a memory addressable file. The file support module
Close File function uses the Mapout File function for files opened for
implicit access.

The Mapin Scratch Space function associates a specified virtual
address range with the paging file, which is created and opened at
process initialization. This permits a process to reference virtual
address space without creating and opening a logical disk file.

Address Space Definition

A process’ addressable virtual memory is potentially an address space
of from 0 to 248-1 bits. The domains of a process define its virtual
address space. The keys of a domain define a domain’s accessible
virtual address space.

The domains of a process share CP memory data by sharing a key to
the virtual address space. The address space of the domain of a
given process is unique to that domain, except for the address ranges
of data shared between domains.

The virtual address space of a process is made accessible by its
association to a memory addressable file. A majority of a process’
data is associated to memory addressable files by the pre-linker at the
time linking occurs. CP memory manager uses the linker’s static
definitions of the accessible address space at process initialization.

A process may dynamically expand its address space by either
mapping a virtual range to a file or defining a virtual range as scratch
space mapped to the paging file. Alternately, to avoid a collision with
other memory addressable files, the Allocate Virtual Memory function
can be used to obtain an unused virtual address range from the
system heap.

Addresses mapped to the paging file are a special case. If the paging
file data has not been referenced, a file or CP memory object may be
allocated in the virtual address space.

Failure to define a virtual address before referencing it is detected by
the Page Fault Processing function.

Rev. A 4-103

EOS Kernel: Memory Managers ETA10 System Reference Manual

Page Fault Processing

Mapin File obtains an SM manager open file ID from the file support
module (FSM) and associates it to the specified virtual address range.
Mapin Scratch Space associates the virtual address range to the SM
manager open file ID of the paging file. When a process page faults
for a virtual address, the page fault processing function looks up the
SM manager open file ID and uses it to read and write the file as
requested.

The Mapin File and Mapin Scratch Space functions obtain the key
they need from domain management. This specifies the lock Page
Fault Processing uses in the associative word in the page table.

Upon detection of page faults that cannot be processed, Page Fault
Processing sends the process either an Undefined Address signal, or
an Access Violation signal via the process management software
signal functions.

Process Initialization

Before a new process begins execution, the CP memory manager calls
process management to:

Invoke Create Paging File
e Invoke Initialize Process
¢ Invoke Initialize Process Address Map

Initialize Process allocates and activates a list of CP memory objects
for the new process and the process management server.

Process Termination

Within a terminating process, the logical file system closes and maps
out any remaining files opened for implicit access. The same process
that performed Initialize Process must invoke Terminate Process,
which deallocates all remaining pages and either destroys the paging
file or writes out its modified pages.

CPU Initialization

CPU Initialization is used by the system initialization boot program to
initialize the page tables of the processes read into CP memory from
the service unit (SU). Once 'this function has completed, other CP
memory functions may be performed. Special exceptions exist for the
CP memory objects of several features to permit bootstrapping of the
system from the system initialization process.

4-104) PUB-1005 Rev. A

ETAIQ System Reference Manual EOS Kernel: Memory Managers

Central Processor Memory Transfers

Functions are provided to obtain the physical address of CP memory
that will be involved in a shared memory transfer. Functions are also
provided to the SM manager to translate the virtual pages of a CP
memory transfer to physical memory and to lock the pages into
memory until the transfer has completed.

To make the translation of an address used in multiple transfers more
efficient, CP memory transfer buffers are provided.

SM manager is provided with functions to lock and obtain the physical
address of a transfer buffer. Resource management (RM) is provided
functions to define a virtual address range as a transfer buffer. SM
manager provides resource manager with functions to read and write a
file to a buffer address.

Central Processor Memory Resource Management

CPU Initialization and Initialize Process use global scheduler, system
configuration control (SCC), and site administration interfaces to -
obtain the resource usage attributes required to manage CP memory.

Page Fault Processing and Working Set Evaluation will use site and
session category attributes as well as current CP memory usage to
allocate and deallocate a process’ CP memory.

Current resource usage attributes are recorded with accounting by
Terminate Process, and may be retrieved through the accounting
system by any user.

Central Processor Memory

One small page size is supported on a CPU. The small page size is
2K words.

The different page sizes possible on a CPU require a common
measurement unit be adopted for specifying CP memory amounts.
The CP memory block (1K words) is the unit of measurement
supported by CP memory manager. All CP memory and memory
addressable files are specified in terms of CP memory blocks. The
smallest unit of CP memory that can be allocated, however, is a small
page (2K words).

Central Processor Memory Objects

The CP memory object procedures permit low level operating system
functions to use shared, locked CP memory not associated to a logical
disk file. CP memory objects are provided for the operating system

PUB-1005 Rev. A 4-105

EQS Kernel: Memory Managers ETAI10 System Reference Manual

features that must share CP memory between processes, but which
can not perform the map in and page fault operations for data on
logical disk files.

For virtual address space definition, CP memory objects are
considered similar to memory addressable files. They may not
overlap other objects or memory addressable files except for
unreferenced paging file space.

Shared CP memory objects do not have to reside at the same virtual
address within the different processes. Only the activated object

offeet must be the samea,

LR Le P14

Features that use CP memory objects for process information must
provide a Process Terminate function. This function must:

= Back up the object for error recovery purposes

* Destroy and/or deactivate the object at process termination

Central Processor Memory Object Supporting Functions
CP memory objects are:

* Created by Create Object

» Destroyed by Destroy Object

e May be referenced after an Activate Object

* May no longer be referenced following a Deactivate Object.

» Physical memory allocated by Allocate Object

e Physical memory deallocated by Deallocate Object

Create Object defines the maximum size of the object, but allocates
no memory to it. Since no provision is made to extend a CP memory
object, they should be created with the maximum required length.

CP memory is allocated to the object with the Allocate Object
function. This function permits the user of the CP memory object to
extend the object as required, up to the maximum length specified in
the Create Object function. Deallocate Object reduces a CP memory
object as requested.

A special function is provided to Process Management at system
initialization. It allows Process Management to create a CP memory
object from a preallocated physical address by providing as input the:

e Virtual address

PUB-1005 Rev. A

4
]
[aey
[
an

ETAI0 System Reference Manual EQS Kernel: Memory Managers

e Object offset
e Object length

Memory Addressable Files

PUB-1005

A memory addressable file is the mechanism for defining to CP
memory manager the virtual memory of a process, and for providing
implicit access to a logical disk file. For a process to access virtual
memory, it must allocate a memory addressable file, associating a
logical disk file to the virtual address space of the process.

Memory Addressable File Segments

Either one or more segments of an addressable file, or the entire
logical disk file, may be associated to virtual address space.
Separately allocated segments of a logical disk file may reside in the
same memory addressable file. A memory addressable file may be
segmented into discontinuous address ranges.

The virtual address of a process is assigned to only one memory
addressable file. The logical file address in a modifiable memory
addressable file may be assigned to only one virtual address. The
logical file address of a memory addressable file with read only, or
read and execute access, may reside at more than one virtual address
of a process.

Memory Addressable File Access Permissions

Access permissions may be specified when allocating a memory
addressable file. The access permissions may be any combination of
read, write, or execute permissions, but must be a subset of both the
access permissions allowed to the open file and the access
permissions allowed to the virtual memory.

Allocation or deallocation of a memory addressable file at a virtual
address requires access to the virtual address. A write temporary
memory addressable file permits modification of the virtual memory,
but not the logical disk file. For write temporary access, only read
permission to the virtual memory is required. Write temporary is
mutually exclusive with write access.

Memory Addressable File Allocation Units

Memory addressable files cannot be allocated in units less than a full
CP memory page.

All the starting virtual addresses of a memory addressable file
segment must begin on a CPU page boundary.

Rev. A 4-107

EOS Kernel: Memory Managers ETAIQ System Reference Manual

4-108

If the file being mapped is smaller than the page size of the data
object, the file will be extended to the page size if write access is
requested. If write access is not requested, the memory past the end
of the file is patterned and the file length is not altered.

Memory Addressable File Supporting Functions

Mapin File is used to allocate a memory addressable file. Once
allocated, a memory addressable file may be accessed by memory
reference until the file is deallocated.

To ensure modified virtual memory pages are written out of CP
memory, the program must perform either the map out or close file
functions. A memory addressable file is deallocated from a process
by the Mapout Address or Mapout File procedures.

The linker allocates all uninitialized data areas as scratch space. If
the scratch space has not been previously referenced (causing a
paging file modification), Mapin File will deallocate the scratch space
at the virtual address prior to allocating the memory addressable file.

Memory Addressable Paging File

The paging file is a default memory addressable file provided by CP
memory manager. It contains the scratch space pages. It also
contains modified pages of write temporary memory addressable files.

The pager allocates space in the paging file on demand when a page
fault occurs for scratch space. Paging file space is also allocated
when a logical file is mapped in for write temporary access.

Memory Addressable File Supporting Functions

The paging file is created by Create Paging File and opened by
Initialize Process. The paging file is optionally destroyed or saved for
later analysis by Terminate Process.

Memory Addressable File Scratch Space

Scratch space allows a process to reference virtual memory without
requiring that a logical disk file be used as a memory addressable
file. Scratch space is assigned to a default memory addressable file,
the paging file.

A small scratch space allocation request will cause explicit paging file
allocation prior to a page fault. An installation parameter is provided

PUB-1005 Rev. A

ETAIQ System Reference Manual EQS Kernel: Memory Managers

to determine how large of a scratch file space w1ll be explicitly
allocated in the paging file.

Scratch space is allocated with Get Virtual Memory or Mapin Paging
File, and deallocated with Mapout Address.

Central Processor Memory Resource Objects

PUB-1005

Rev,

There are several concepts CP memory manager uses in allocating CP
memory to a process:

¢ Resident set
¢« Working set

These concepts are each examined.

Resident Set

The resident set is the number of CP memory blocks currently
allocated to a process. The resident set size can never be smaller
than the working set size.

Working Set

The working set is the number of pages reserved for a process (the
maximum resident size). A working set evaluation period is the amount
of CPU time a process uses before its working set is evaluated.

The page fault rate is used to evaluate a working set. For the
purpose of a working set, a page fault is considered to be any
reference to a page outside the working set (including pages still in
the resident set). If the number of page faults during an evaluation
period is less than a threshold, the working set is reduced. If it is
greater than the threshold, it is increased.

An initial working set is estimated from a percentage of the initial
paging file size:

e The working set is considered to be the minimum number of
pages a process requires

e The resident set is not reduced beyond the working set
measured during the previous evaluation period

e The working set never exceeds the working set maximum

* Reaching the working set maximum causes more frequent page
faults to occur when memory is fully committed.

A 4-109

EOS Kernel: Memory Managers ETA10 System Reference Manual

The working set is only used for accounting and scheduling purposes.
A process is only charged for the CP memory it uses in its working
set.

Central Processor Memory Management Policies

There are several policies CP memory manager follows in deciding
how to allocate CP memory to a process:

e Page replacement policy
¢ CPM commitment level
e Process activation

e Process deactivation

These concepts are each examined.

Page Replacement Policy

Page replacement policy determines which physical page of CP
memory is replaced when a process requests access to a nonresident
CP memory page. In general, the page replacement policy chooses
the least recently used page that resides outside the process’ working
set.

An easily accessible list of free pages is kept to reduce the overhead
in finding an available page to replace. The pages of suspended and
terminated processes are added to the free page list.

There is a priority in determining page replacement candidates. The
order of priority is:

1. A free page.
2. A page outside the faulting process’ working set.

3. A page belonging to a process that is blocked due to memory
over commitment.

4. A page outside the working set of any process.

5. A page within the faulting process’s working set.

Central Processor Memory Commitment Level
A CPU’s commitment level is the sum of:

¢ The working sets of all the processes in the ready and blocked
queues of the CPU

4-1190 PUB-[005 Rev. A

ETAI0 System Reference Manual EOS Kernel: Memory Managers

* The shared working set.

Note that shared system code and shared pages are not included in a
process’ working set.

Process Activation

When CP memory is not fully committed, processes outside the CPU
are examined for possible assignment. These processes possess an
initial working set.

Central Processor Memory Manager Shared Information

PUB-1005

There are a number of tables, blocks, and queues which CP memory
manager shares with other parts of the operating system. These
sources of shared information are described.

Page Table

CP memory manager maintains a page table for each process. The
page tables are shared between CP memory manager and the
operating system. The operating system swaps page tables into and
out of the space table during a process switch. At process initiation,
process management informs the operating system of the location of
the process’ page table.

A single page table is maintained for system shared code pages. This
page table is loaded into the space table with a process’ page table.
The space table is sorted into a shared code page table and the
process’ page table during a process switch.

Working Set Evaluation Queue

The operating system maintains a queue of processes that need to
have their working sets evaluated. Pager references this queue to find

.those processes that require working set evaluation.

Page Fault Queue

The operating system maintains a queue of processes that have
faulted for a page. Pager references this queue to locate the
processes that require page fault processing.

Pager Message Table

The operating system monitors this table and uses its information to
determine when to schedule the pager to process a pager message.

Rev. A 4-111

EQOS Kernel: Memory Managers ETA1Q System Reference Manual

Process Package

Page fault processing requires read access to the following invisible
package information in the process package of every process:

Keys
e Access interrupt address
e Access interrupt cause bits

The CP memory manager Process Initialization function grants the
pager access o the process package.
System Configuration Table Coldstart Attribute Block

At system initialization, CP memory manager uses the coldstart
attribute block of the system configuration table to build page tables
for processes loaded into CP memory by the service unit. This
attribute block must specify the:

e Names of the domains that are in each server process
» Physical address of domain and server executable files

» Physical address and length of the system configuration table

System Configuration Table Process Image Attribute
Block

The names of domains that are in the process image are used at
system initialization and reconfiguration time to build a system
domain address map template.

System Configuration Table Attribute Block

The global file ID of the domain’s executable file is used at system
initialization and reconfiguration time to build a system domain
address map template.

Executable File Header

The following information is read by process initialization:
o Target page size

* Address map
» Initial paging file length

4-112 FUB=-I005 Rev. A

ETAIQ System Reference Manual EQOS Kernel: Memory Managers

Central Processor Memory Manager Functions

The CP memory manager functions perform the tasks requested by
CP memory manager. The specific CP memory manager functions
are:

e Page Fault Processing satisfies a process’ request for CP
memory. Page fault processing is performed by a separate
server process known as the pager. The processing of page
faults consists of the following:

- Validation of the virtual address to permit only page
faults within accessible memory addressable files.

Pager generates an access violation signal when a
process accesses a virtual address which has no assigned
key.

Pager generates an access violation signal when a
process accesses a virtual address which is assigned to a
memory addressable file the faulting domain has no
access to.

An undefined address signal is generated when a process
faults for a virtual address that has an assigned key but
is not associated to a memory addressable file.

- Allocation of paging file space for the faulted page.

A page fault for an address within a large scratch space
region will cause file space to be allocated in the paging
file, and causes the virtual address to be associated to
the paging file address.

- Location of a replacement page, cleaning modified
pages.

- Generation of I/O requests to bring data into CP
memory.

Note that the /O requests cause the page faulted process
to wait for /O completion, but not the pager.

Because file extensions may be done during a write
operation, and because pager can not be blocked for the
duration of the extend file operation, file extensions are
performed by another process. The extend server
extends in serial. Thus, if two write operations cause
extends, the second must wait for the first to complete
before starting.

PUB-1005 Rev. A 4-113

EQOS Kernel: Memory Managers

4-114

ETAI0Q System Reference Manual

Pager writes modified pages of write temporary memory
addressable files to the paging file instead of the logical
disk file. If the page has not previously been written to
the paging file, pager associates the page’s virtual
address to the paging file. Any subsequent faults for
that page cause it to be read from the paging file.

- Generation of page table entries for the page requested
by the page fault.

- Rescheduling of the process to the appropriate queue.

Evaluate Working Set periodically measures a process working
sets and the system working set and produces working set
seconds for accounting.

Lock Transfer Address permits the SM manager to obtain the
physical addresses of CP memory pages that will be transferred
to shared memory. If necessary, the pages are made resident
in CP memory.

Unlock Transfer Address notifies pager that the spécified
physical address may now be removed from CP memory.

Create Object creates a shared CP memory object. This
function does not allocate CP memory to the object, but it does
define the total length of the object.

Destroy Object destroys a shared CP memory object.

Allocate CP Memory to Object allocates physical CP memory
for a CP memory object. A request for multiple pages will
optionally be allocated as contiguous physical pages. The
smallest unit that can be allocated is one small page.

This function also performs an Activate CP Memory Object.

Deallocate CP Memory From Object deallocates pages from a
CP memory object. If the page is activated in this process, a
deactivate is performed.

Activate Object Page associates the virtual memory of a
process to a CP memory object logical address.

Deactivate Object Page removes the ability to access the
shared CP memory object associated to the specified virtual
address range.

Assign Page to Predefined CPM Object is used at system
initialization to permit the locked-down server processes to
record SU allocated CP memory as a CP memory object.

There are predefined CP memory objects to which the CP

PUB-1005 Rev. A

ETAIO System Reference Manual EOS Kernel: Memory Managers

PUB-1005

Rev.

A

memory pages may be assigned. The smallest unit which may
be assigned is one page.

CPU Initialization initializes CP memory manager tables so
that CP memory manager functions can be performed. This
function is distributed between the system initialization process
and the pager.

Mapin Paging File allocates virtual memory to a process as
scratch space. The paging file is used as the memory
addressable file for scratch space.

Mapin File allocates a memory addressable file, associating a

logical disk file region to a virtual address range. An option is
available to map in the file, thus permitting multiple processes
to share the disk file in the same CP memory.

Mapout Address disassociates a virtual address range from a
disk file. Subsequent access to the address range causes an
access violation.

Mapout waits for any outstanding I/O to the specified address
range to complete before processing the request. Mapout
writes any CP memory resident modified pages out of CP
memory and deallocates the physical pages.

An option permits process management to perform the map out
function for a virtual address without access permission to the
address.

Mapout File performs the map out function for all virtual
address ranges of a specified logical disk file.

Allocate Virtual Memory allocates virtual address space in the
system heap. The space is guaranteed to not overlap other
memory addressable files.

An option is available to request address space that is not
mapped to the paging file. Otherwise, the request maps the
address range to the paging file.

Update CP memory writes the modified CP memory pages
within the specified virtual address range to the associated
memory addressable files.

Initialize Process initializes the CP memory manager tables
necessary prior to execution of a new process.

An option is provided to reinitialize a suspended process from
a paging file.

4-115

EOQOS Kernel: Memory Managers ETAIQ System Reference Manual

This function accepts a list of requests to:

~ Allocate CP memory objects to the calling process

- Allocate a process package page to a CP memory object
in the calling process

- Activate CPM objects in the new process

CP memory manager gives the pager process access to the
process package pages.

e Initialize Process Address Map initializes a process’ address
map from its executabie file and process image sysiem address
map template.

e Terminate Process deallocates paging file and CP memory
manager tables for a terminating process.

All CP memory object pages are deactivated. This function
performs the map out operation for any remaining system code
and data for the terminating process. The paging file is closed.

An option is available to specify whether or not to destroy the
paging file.

¢ Create Paging File creates a paging file. The initial paging file
length is obtained from the executable file header.

4-116 | PUB-100S Rev. A

ETAI10 System Reference Manual EOS Kernel: Memory Managers

Shared Memory Manager

The shared memory (SM) provides for storage of the problem
variables for applications. Additionally, shared memory provides
temporary storage for code and data that is being transferred between
the disk subsystem and CP memory.

Shared memory consists of two equal halves, each half ranging in size
from 32 million words to 128 million words (256 million words total).
There are eight high speed ports for CPU connections to SM (four for
each half), and 20 low speed ports (10 each half) for /O Unit (IOU)
and Service Unit (SU) connections.

All access to the shared memory from CPUs, the service unit, and the
I/O units is through the SM manager. The SM manager supports
operations on shared memory objects and file objects.

Shared memory objects define regions in shared memory that can be
used for data storage. The caller may:

e Create a shared memory object
° Read and write information in the shared memory object
¢ Destroy the shared memory object

Data in a shared memory object resides in shared memory for the life
of the object.

File objects permit the caller to store or retrieve data from a device.
File objects are built and maintained by the file directory/catalog
manager. The file support module is called to open a file object, and
calls SM manager.

Once the file object is open, the caller utilizes SM manager’s
read/write operations to access data in the file. During a read/write
operation, SM manager calls the disk physical-file system to move the
data from the physical location on the disk.

Only the file support module, pager, and the record manager may call
SM manager file object operations. SM manager provides no security
for file objects.

Externalized File Objects

PUB-1005

File objects are built and maintained by the file directory/catalog
manager. SM manager supports operations on file objects that permit

Rev. A 4-117

EOS Kernel: Memory Managers ETA10 System Reference Manual

awasaisa

the caller to access data from a device. All data moves through SM,
there is no direct path from a device to CP memory.

Data from a file object can reside in either shared memory or on the
specific device. The caller specifies a logical file address, it is the
responsibility of SM manager to find where the data resides and move
the information into CP memory.

Shared Memory Manager does not provide mutual exclusion across
processors or across file opens.

SM manager allocates shared memory to files in fixed length blocks.
To receive the greatest benefit of shared memory, the necessary data
must be in shared memory when the caller needs it.

SM objects define regions in shared memory that can be used for data
storage. Information in SM objects always resides in shared memory.

The intent of SM objects is to provide data storage that permanently
resides in shared memory for system domains and special processes.
The application programmer is not permitted to use SM objects.

Although these objects reside in shared memory, they are not
necessarily shared between processes. It is possible for a system
domain to:

e Create an SM object for each process

¢ Use of the object for data storage while the process is
executing

¢ Destroy the object when the process terminates

SM manager does not provide mutual exclusion for SM objects.
Mutual exclusion is provided by the interprocess communication
feature.

Because data in SM objects permanently resides in shared memory,
there are restrictions on the number of SM objects that may be
created. In many cases, file objects may be used instead of SM
objects.

Memory Management Requirements

SM manager will migrate data into and out of shared memory based
on expected future usefulness and application advisory actions. SM
manager allocates shared memory in fixed length blocks. Shared
memory is not directly accessible by the caller.

PUB-I005 Rev. A

ETAI1Q System Reference Manual EOS Kernel: Memory Managers

SM manager uses the following rules when allocating space in shared
memory:

1. All operations in shared memory compete globally for blocks in
shared memory.

2. SM manager will attempt to replace the least recently allocated
block in shared memory.

SM manager allocates memory in fixed length blocks. Because
memory is allocated in blocks, most data movement between shared
memory and the I/O unit is performed in multiples of the block
length.

Shared Memory Object Procedural Interfaces

PUB-1005

There are six SM object procedural interfaces:

¢ Create Shared Memory Object creates an SM object. An SM
object is a region of space in shared memory that can be used
for data storage. An SM object resides in shared memory for
the life of the object. The caller creates an SM object by
specifying an object name and length.

SM manager returns a capability to the SM object. The
capability is used when accessing or destroying the object. The
creator of the object must pass the capability to any other
process or domain that is going to share access to the object.

¢ Read Shared Memory Object provides the interface that
permits the caller to read data in an SM object. SM manager
returns the data to a CP memory buffer specified by the caller.
SM manager does not provide mutual exclusions for operations
on SM objects. Any number of processes may be reading and
writing an object at the same time.

* SU/IOU Read Shared Memory Object permits the service unit
or I/O unit to read an SM object. SM manager returns the
data to a buffer specified by the caller.

¢ Write Shared Memory Object provides the interface that
permits a caller to write data into an SM object. SM manager
writes the data from the CP memory buffer specified by the
caller. SM manager does not provide mutual exclusion for
operations on SM objects. Any number of processes may be
' reading and writing an object at the same time.

¢ SU/IOU Write Shared Memory Object permits the service unit
or I/O unit to write an SM object. SM manager writes the data
from the buffer specified by the caller.

Rev. A 4-119

EOS Kernel: Memory Managers

ETA10 System Reference Manual

Destroy Shared Memory Object destroys an SM object. All
data residing in the object is destroyed.

File Object Procedural Interfaces

4-120

There are eight file object procedural interfaces:

Open File Object opens a file object for access. The file
directory/catalog manager information is passed to SM manager
during the open. Only the file support module is permitted to
make this call. All callers attempting to open a file object
must call the file support module. The file support module will
call SM manager. Multiple opens are permitted on each file
object, and each open is permitted to have different attributes.

Read File Operation moves data into CP memory. The caller
specifies a logical file address and a virtual CP memory range.
It is SM manager’s responsibility to find where the data resides
(SM or disk) and deliver the data to CP memory.

An operation identifier is returned with every disk read
operation. The caller uses this identifier to check for
completion of the operation. A read file operation is
considered complete when the data is moved into a CP memory
buffer.

Write File Operation moves data from CP memory to disk.
The call, however, does not guarantee that the data is
immediately written to disk. To force the data to disk, the
caller must either use the Flush File operation or close the file
object.

SM manager returns an operation identifier to be used to check
for completion of the write file operation. The operation is
considered complete when the data is moved out of the CP
memory buffer into shared memory.

Pager Transfer File Operation is intended for use only by
pager. It permits pager to transfer data to and from a physical
range in CP memory.

An operation identifier is returned. Pager uses this operation
identifier to check for completion of the operation. A pager
transfer of file operation is considered complete when the data
is moved into or from the CPU.

Flush File writes a copy of all modified data in shared memory
for an open file out to the disk file. An operation identifier is
returned which may be used to check for completion of the

PUB-]005 Rev. A

ETAIQ System Reference Manual EOS Kernel: Memory Managers

operation. A flush file operation is considered complete when
a copy of all modified data is written to the device. The data
also still resides in shared memory after the operation is
completed.

¢ Check for Operation Completion returns the status of a file
operation. If the wait option is used, the routine waits for the
completion of the operation.

* Pager Check for Operation Completion permits pager to check
for file operation completion or completions. A list of
completed identifiers is returned.

e Close File Object informs SM manager that the file will no
longer be accessed through the specified open identifier. All
modified data in shared memory is written to disk.

Miscellaneous Procedural Interfaces

There are four miscellaneous procedural interfaces:

e System Initialization is called by system initialization to permit
SM manager to initialize shared memory.

e Completion Server is used to complete object operations. The
routine checks for completed disk and memory transfer
requests. Any process waiting for a completed operation will
be restarted.

* Process Initialization is called by each process to allow SM
manager to initialize its process local tables.

¢ Process Termination is called at process termination to allow
SM manager to clean up any remaining operations initialized
by the terminating process.
Shared Memory Objects versus File Objects
There are some trade-offs to be considered when using shared
memory and file objects.

Shared Memory Objects

SM objects are used only by the system, never by users. The
properties of SM objects are:

1. SM objects permanently reside in shared memory, no disk
space is allocated to SM objects.

PUB-1005 Rev. A 4-121

EQOS Kernel: Memory Managers ETAI0 System Reference Manual

2. The I/O unit or service unit may directly read or write SM
objects. A file object cannot be accessed directly from either
the I/O unit or service unit (It is possible to read the file object
in a CPU and send the data to an /O unit or service unit using
interprocess communications).

3. If the information is needed by SM manager to access the file
object, an SM object must be used. This restriction applies
mostly to the interprocess communication and logical file
system features.

PV SN

da
@
R
=
Y
i}
)
o
o]
~t
(4N
C
y
o
|
|
C
L o
&
€
ot
o
]
&,
)
1)
B
<
o
2
o
o]
[« N
%
h
Q
cr
Sl o
a
a
fﬂ
:--;‘
@’

up to the caller to decide how much and when the object is to
be extended.

File Objects
The properties of file objects are:

1. Disk space is allocated to a file object. The amount of disk
space allotted depends on the amount of data written, and the
device class where the file resides.

2. Information in a file object does not have to reside in shared
memory. SM manager will page the information into and out
of shared memory based on how the information is being used.

3. More information may be kept in a file object than in an SM
object. Since data in an SM object resides in shared memory,
there is a limit to the amount of memory that may be allocated
to SM objects.

4-122 PUB-I1005 Rev. A

ETAI0 System Reference Manual EOS Kernel: Memory Managers

Communication Buffer Management

CB Manager (CBM) manages the use of the communication buffer.
The communication buffer is a high-speed memory used to
communicate information between processes that may be running in
any of the processors of the computer system.

The Communication Buffer is divided into two discrete halves, side 0
and side 1. The size of the memory (both halves) is one million
words, which may be expanded to four million words.

Each side of the Communication Buffer has its own Communication
Buffer Interface (CBI) that connects the communication buffer with
the other components of the computer system. Each side has 10
ports, one for each of the eight possible CPUs, and two I/O interfaces
(IOIs). The CPUs, IO units, and the service unit access the
communication buffer through these ports. The logical connections
between the sides of the communication buffer and the computer
system processors is illustrated in figure 4-15.

CB side O

IOUs

CPU 0

CPU 2| |CPU3 E:-F:@ @;a CPU 6| |ICPU 7| (IOI O 101 1

SUs

CB side 1

Figure 4-15. Logical relationship between the Communications Buffer sides and
the computer system processors.

The operations performed by the communication buffer hardware are:

PUB-I1005 Rev. A 4-123

EOS Kernel:

4-124

Memory Managers ETAI0 System Reference Manual

¢ Transfers between the communication buffer and I/O units,
service unit memory, or CPU registers

e Semaphore post and wait operations

¢ Conditional swaps between the communication buffer and an
I/O unit or service unit memory word, or a CPU register (these
operations are commonly referred to as bit test and swap)

e Conditional stores of a CPU register, or /O unit or service unit
memory word, into the communication buffer and loads of the
following communication buffer word (these operations are

commonly referred to as bit test and load/store

The CPUs have special hardware to protect areas of the
communication buffer that belong to a domain. Each domain has its
own specific range of centrai processor memory addresses which it
can access, and each has its own set of operating registers known as a
domain package.

The domain package contains registers that denote the lowest
communication buffer address the domain can access, the base
address, and the highest communication buffer address the domain
can access, the limit address. The domain package also contains the
access rights that determine the operations the domain is allowed to-
perform on that range of communication buffer memory. This
information fits into two registers, referred to as a Base/Limit/Access
Pair (BLAP). Figure 4-16 illustrates how the base/limit/access pairs
in a domain package specify address ranges.

PUB-1005 Rev. A

ETAIQ System Reference Manual EQOS Kernel: Memory Managers

PUB-1005

omam 1 s BLAPs

CB

side 0

Process Package

Domain 1

Package |\OLAPS
Domain 2
Package

side 1

Domain 3
Package

Figure 4-16. Base/limit/access pairs in the domain package specify address ranges
in memory that the process has access to.

For efficiency, each domain has four base/limit/access pairs,
permitting a domain to use up to four different ranges of
communication buffer memory at once.

The CPU hardware protects the communication buffer in a manner
analogous to CP memory protection. If a domain attempts an
operation in an area of the communication buffer that is not specified
in the domain’s base/limit/access pairs, an access violation results and
the operation is not performed.

The use of communication buffer hardware is controlled by the CB
manager. This software enables an operating system kernel feature to
reserve a portion of the communication buffer for its own use, with
the assurance that its portion is protected from unauthorized or
inadvertent manipulation.

The CB manager features differ depending on the processor type:
¢ On a CPU, CB manager performs management functions

¢ On the VO units and the service units, CB manager uses
management information generated by the CPU functions to
operate on the communication buffer.

Rev. A 4-125

EQS Kernel: Memory Managers ETAI0Q System Reference Manual

Communication Buffer Objects

The portions of the communication buffer that an operating system
kernel feature reserves are called CB objects. Each object has a
unique name assigned to it, and access rights that determine the type
of operations that may be performed on it, and who may perform
those operations.

CB manager controls the physical placement of CB objects. The
operating system kernel accesses CB objects by name via the CB
interfaces. CB Manager relates each name to its physical location by
manipuiating a base/iimit/access pair. Thus, a CB object is logicaily
accessed by its name, and physically accessed by its base/limit/access
pair.

There are three types of CB objects:

¢ Permanent objects remain in the system until the system is
initialized

¢ Transient objects lasts as long as there is any process still
using them

* Queue objects have a permanent lifetime

A queue object may have communication buffer semaphore
instructions performed on it; these instructions can not be performed
on the other object types.

Queue objects are also available to a restricted set of operating system
kernel features. Other kernel features may use permanent and
transient objects; application features are limited to transient objects.

CB manager defines the logical structure of the communication buffer.
The CB manager views the communications buffer as a series of
groupings of similar type objects. These groupings are called regions.

Regions are analogous to a subdirectory. Regions minimize
fragmentation. The initial size of each region is determined by a
system configuration parameter, and cannot be changed until the next
system initialization. An entire side of the communication butfer is
known as a primary region.

All other regions are contained within a primary region; no region
straddles a communication buffer side.

Communication buffer sides may have different region configurations.
Each region has a header that contains information about the region.
The logical structure of a typical communication buffer region is
illustrated in figure 4-17.

4-126 PUB-1005 Rev. A

ETAIQ System Reference Manual EQS Kernel: Memory Managers

CB side

(ca"%%?.’,,sl Primary region header

- Queue Region

Transient reglon header

Primary region
ry reg * - Transient Region

ighast { <& Permanent Region
LCE ddres: 3

Figure 4-17. A Communication buffer side is typically divided into regions for the
three object types.

Communication Buffer Management in the CPU

CB manager in the CPU manages access rights and the physical
placement of CB objects within the communication buffer. The actual
communication buffer instructions (e.g. load, store), however, are
issued directly by the object’s user.

CB manager in the CPU provides these functions to manage CB
objects:

* Create a CB object

e Destroy a transient CB object

e Grant access to a CB object

* Get information about a CB object

* Activate (set a base/limit/access pair for) a CB object in a
domain

e Deactivate (clear a base/limit/access pair for) a CB object in a
domain

* Preactivate (set a pseudo base/limit/access pair for) an /O unit
or service unit CB object

An Example of CB Management in a CPU

The capabilities feature communicates information between several
CPU processes. Within each process, the domain management
feature must also read the information. The communication is
accomplished via CB manager on the CPU:

1. The capabilities feature creates a CB object for its information,
which reserves a portion of the communication buffer.

PUB-1005 Rev. A 4~127

EOS Kernel: Memory Managers ETAIQ System Reference Manual

2. To retrieve the communication buffer attributes of the object,
the capabilities feature gets information about the object.

3. The capabilities feature grants read access to the object, so that
either feature can activate the object.

. Activation sets a base/limit/access pair within the domain
package to the object’s communication buffer address range.
The activating domain may now legally issue communication
buffer instructions for the object:

o If domain manager activates the obiect, the access rights
in the base/limit/access pair limit domain manager’s
domain to read (i.e. communication buffer load
instruction).

o If the capabilities feature activates the object, the access
rights are read and write (i.e. communication buffer load
and store instructions).

4. When either domain manager or the capabilities feature is done
accessing the object, it is deactivated, which clears the
base/limit/access pair associated with the object.

5. If the object is transient, the capabilities feature can destroy it
to prevent subsequent processes from activating the object, and
to have the object removed from the communication buffer
when the last process using it terminates.

The CB Manager in the CPU also provides functions that perform
general services for the operating system:

¢ [Initialize CB manager for the CPUs

¢ Get system information

e Initialize CB management for a process
¢ Terminate CB management for a process

e Terminate CB management for a process cluster

Communication Buffer Management in the I/0O and Service Units

CB management for the I/O units and service units uses management
information generated by CB management on the CPU to operate on
preallocated portions of the communication buffer. They do not
manage storage objects themselves.

A CB object to be used by an I/O or service unit feature must be
allocated during system initialization via the communication buffer on
the CPU. During initialization, CB manager in the CPU records

4-128 PUB-1005 Rev. A

ETAI0Q System Reference Manual EOS Kernel: Memory Managers

PUB-1005

Rev.

pertinent information about the object as a pseudo base/limit/access
pair. A pseudo base/limit/access pair contains the same information
as a normal base/limit access pair, but is enforced by software instead
of hardware.

Later, when an I/O or service unit feature accesses a CB object, CB
manager in the CPU refers to the object’s pseudo base/limit/access
pair for the physical location of the object, and its access rights.

It is important to note that unlike CB management in the CPU, the
communication buffer instructions are issued via CB management in
the I/O units or service units; the /O and service unit features do nct
directly issue communication buffer instructions. Thus, for the I/O
unit to execute a load from the communication buffer, the I/O unit
feature calls a procedure in the CPU rather than issue the load
instruction directly.

CB management functions in the I/O unit are asynchronous; the caller
does not need to wait until its CB management operation is complete
before continuing with the next operation. CB management
operations in the service unit, however, are synchronous; the caller
must wait for each CB management operation to complete before
continuing.

CB management in the I/O units provides functions that perform
communication buffer operations on preallocated objects (via CB
management in the CPU):

* Asynchronous semaphore post

e Asynchronous semaphore wait

* Asynchronous, bit test and swap

¢ Asynchronous, bit test and load/store

* Asynchronous load from communication buffer
* Asynchronous store into communication buffer

CB management for the /O units also provides general services for
the operating system:

* Initialize CB management for an /O unit

CB management in the service unit provides functions that perform
communication buffer operations on preallocated objects (via CB
management in the CPU):

e Synchronous semaphore post

* Synchronous semaphore wait

A 4-129

EOS Kernel: Memory Managers ETAI0Q System Reference Manual

¢ Synchronous, bit test and swap

J Synchronous, bit test and load/store

¢ Synchronous load from communication buffer
¢ Synchronous store into communication buffer

CB management in the service unit also provides general services for
the operating system:

¢ Initialize CB management for a service unit

CB Management Between the CPU and I/O Unit

Information often needs to be communicated between processes
running on the CPUs and the /O units. This communication is
accomplished via CB management in the CPU and I/O Unit:

1. During system initialization on the CPU, a permanent or queue
CB object is created via CB management in the CPU.

2. The object is preactivated as an I/O unit object via CB
management in the CPU.

3. After initialization, authorized CPU features may operate on
the object. On the IO unit, features simply invoke the
appropriate CB management function in the I/O unit, specifying
the name of the object to be operated upon.

4. CB management in the /O unit retrieves the pseudo
base/limit/access pair information for the object, and issues the
communication buffer instruction. Thus, to write to a
preallocated CB object, an /O unit feature calls CB
management in the 'O unit for the Asynchronous Store into
Communication Buffer function.

Communication Buffer Restrictions and Limitations

There are several restrictions and limitations associated with the
communication buffer that should be noted:

¢ The communication buffer is not a paged memory. A CB
object, therefore, must be a contiguous piece of the
communication buffer.

Each object’s range is denoted by a base/limit/access pair, so
that a domain can use a maximum of four CB objects at once.

4-130

ETAIQ System Reference Manual EOS Kernel: Memory Managers

PUB-1005

Rev. A

A transient CB object is deleted only after the last process
accessing the object terminates. Thus, a transient CB object
will not be immediately destroyed if at least one process that
activated the object is still executing. Permanent and queue
objects cannot be destroyed.

No relocation or swapping of CB objects may be performed.
Once an object is allocated in the communication buffer, it
does not move.

All transient objects are restricted to a fixed size. The size is
set at system initialization, and cannot be changed during the
life of the system. This eliminates communication buffer over
committment and fragmentation problems in the transient
object region.

Queue objects may be used by a restricted set of operating
system kernel features. Communication buffer semaphore
instructions manipulate physical communication buffer address
information within a communication buffer process word, and,
if improperly used, can have detrimental effects on CB
management, and undermine the hardware protection of the
base/limit/access pairs. The operating system,features that have
demonstrated a critical need for queue objects are the only
features that CB management will permit to execute these
instructions. Those features that are permitted are:

- Semaphores

- Remote process communication
- Network management features
- Global scheduler

The sizes and locations of all regions are fixed at system
initialization. There is no dynamic communication buffer
reconfiguration.

There is no recovery from a lost communication buffer side.
Controlled deconfiguration of a communication buffer side is
not available. Recovery from a catastrophic communication
buffer hardware failure is not possible.

There are no maintenance objects. The requirements for
reserving portions of the communication buffer for maintenance
and diagnostic purposes have not been defined.

There is no flaw support for the communication buffer. The
requirements for marking portions of the communication buffer
as flawed have not been defined.

4-131

EQS Kernel: Memory Managers ETA10 System Reference Manual

Communication Buffer Management Externalized Objects

CB management provides CB objects for operating system kernel
features. CB objects are contiguous, non-overlapping areas of CB
memory. They are the basic logical units of the communication
buffer. They are managed and manipulated via the CB management
functions.

CB management protects CB objects according to the specified
criteria, the access rights.

)
D
=N

the communication buffer

L9ES0.0LR0 0 LM N LD G

A CB obiect is a contiguous block
created via CB Management in the CPU. The size of an object is
fixed at creation; it cannot be changed. Its maximum size is the size
of the communication buffer region in which it resides. An object
may reside in either communication buffer side, as long as a region
appropriate to the object exists there. A specific side may be

requested.

There are the three CB object types: permanent, transient, and queue.
The major differences between the types are:

¢ The communication buffer semaphore instruction access rights
are allowed for a queue object, but they are forbidden for a
permanent or transient object.

e Permanent and queue objects remain in the communication
buffer until the next system initialization, while a transient
object remains in the communication buffer only until the
termination of the last process within the owning process
cluster, and the termination of every other process that
activated it.

Communication Buffer Object Access Rights

It is the responsibility of CB management to protect each object from
inadvertent or malicious corruption. CB management in the CPU
accomplishes this by the manipulation of a domain’s base/limit/access
pairs.

CB management in the CPU ensures that each domain’s
base/limit/access pairs correspond exactly to the domain’s CB objects;
this enables hardware access validation. An operating system kernel
feature executing in one CPU can directly issue communication buffer
instructions; the CPU hardware guarantees the domain cannot access
areas of the communication buffer outside its base/limit/access pairs.

It is the responsibility of CB management in the /O units and service
units to provide the same protection, even though there is no

4-132 FUB-1003 Rev. A

ETAI0 System Reference Manual EQOS Kernel: Memory Managers

hardware support for the base/limit/access pairs on these processors.
The task is accomplished by allowing only communication buffer on
either of these processors to issue communication buffer instructions,
so that validation may be performed by software.

CB management in the CPU also provides operations so that each
feature can protect its CB objects from other features in the same
domain. For this intra-domain protection, a feature:

1. Activates the object immediately before its use.

2. Does not call other features (except CB management) while the
object is activated.

3. Deactivates the object immediately after its use.

CB management protects a CB object according to its access rights.
The access rights are the operations a caller is allowed to perform
upon a CB object: '

» The right to execute a communication buffer load instruction
* The right to execute a communication buffer store instruction

* The right to execute a communication buffer bit test and swap,
or a bit test and load/store instruction

e The right to execute a communication buffer semaphore
instruction

e The right to grant access rights to the object to other callers
» The right to destroy a transient object

Note that the communication buffer instruction access rights are the
same as the access bits in the domain base/limit/access pair; these are
enforced by the hardware. The other rights are enforced only by CB
management in the CPU. For CB management in the I/O units and
service units, all rights are enforced by software.

The creator of an object specifies the maximum set of access rights
during allocation. The creator may grant all or a subset of these
access rights to others, called grantees, and may allow the grantees, in
turn, to grant access rights to still others.

A grantee may be specified in two ways, depending on the intended
scope of the access rights:

1. Domain Feature ID. In any process, any domain that contains
the specified feature is granted rights. This is illustrated in
figure 4-18.

PUB-1005 Rev. A 4-133

EOS Kernel: Memory Managers ETA10 System Reference Manual

Grantee Scope using Domain Feature Identifier

Domain Feature ID = SMM

W

S “-*"“\\c"‘\‘\a“‘._“,@ "“,&; F“‘,SM'M‘*‘
».:;Qg‘m“_ il “‘i-;’#‘,s\‘ ot o)
Process cluster: X [l dw £ vy
Process: ONE Dom DM
an, ceM
\\‘s‘-.\“&‘-.\““t:‘“‘\.;9""“:@ . WM"‘
Process cluster: X [
Process: TWO Damain. OM
2 CBM
Domain
Process: THREE &+~
“Logmiaing
NS

Figure 4-18. Granting of domain privileges using domain feature identifier.

2. Process Cluster ID and Domain Feature ID. In processes
within the process cluster, any domain that contains the

specified feature is granted rights. This is illustrated in figure
4-19.

Grantee Scope using Process Cluster ID and Domain Feature ID

Process Cluster ID = X
Domain Feature ID = SMM

>

Process cluster: X
Process: ONE oM
2 CBM

Process cluster: X

Process: TWO Domain, DM

Dema!n1 cBM

Process: THREE

Domaln2 SMM

Figure 4-19. Granting of domain privileges using cluster ID and domain feature
ID.

4-134

ETA10 System Reference Manual EQS Kernel: Memory Managers

PUB-1005

Permanent Communication Buffer Objects

A permanent object is to be used by system features that need to
communicate information between all processes throughout the life of
the system.

The minimum size of a permanent CB object is one communication
buffer word. The maximum size is the size of the region in the
Communication Buffer that holds permanent objects. Individual
features, however, may be limited to a smaller size to prevent
resource exhaustion.

CB management assigns a name to each permanent object. The name
is subsequently used as an input parameter to CB management object
operations. The name must be unique. If a unique name cannot be
generated, the object will not be allocated. A permanent object name
consists of:

e Domain Feature ID. Identification of the feature that created
the object.

e Symbolic ID. A character string specified by the creator of the
object. It is the responsibility of each operating system feature
to ensure that the symbolic ID is unique within the feature.

The access rights that can be granted for a permanent object are:

Read (load)
Write (store)
Bit branch (conditional swap or load/store)
Grant rights

The grantee’s scope can be either domain feature ID, or process
cluster ID and domain feature ID.

The operations of a permanent communication buffer object may be
summarized as follows:

1. To create a permanent object, the creator specifies its domain
feature ID and a symbolic ID. This is verified by CB
management via domain management interfaces. A permanent
object with a unique name is created. The object remains in
the communication buffer until the next system initialization.

2. To grant access, activate, or get information, the caller specifies
the object’s name, and its own domain feature ID (and process
cluster ID if access was granted in that manner). The caller’s
identification is verified, and checked with the object’s list of
authorized users. If authorized, the requested operation is
performed.

Rev. A 4-135

EOS Kernel: Memory Managers ETAI0 System Reference Manual

3. To deactivate a permanent object, the caller specifies the
object’s name. If the object was activated (i.e. a
base/limit/access pair is set for the object), the appropriate
base/limit/access pair is cleared.

Transient Communication Buffer Objects

A transient CB object is to be used by any caller, application or
system, that needs to communicate information between a specific set
of processes (i.e. a process cluster). The object is automatically
deleted when the last process in the set terminates.

All transient objects are the same size. This size is fixed at system
initialization time by a system configuration parameter.

CB management assigns a name to each transient object. This name
is subsequently used a

sa
s an input parameter to CB management object
operations.

The name must be unique. If a unique name cannot be generated,
the object will not be allocated. A transient object name consists of:

¢ Process Cluster ID. The identification of one of the creator’s
process clusters. The termination of this cluster causes
automatic destruction of the object. The creator must be a
member of this process cluster, at least while the object is
being created.

¢ Symbolic ID. A character string specified by the creator of the
object. It is the responsibility of each operating system kernel
feature to ensure that the symbolic ID is unique within the
feature.

The access rights that can be granted for a transient object are:

Read (load)

Write (store)

Bit branch (conditional swap or load/store)
Grant rights

Destroy rights

The grantee’s scope can be either domain feature ID, or process
cluster ID and domain feature ID.

The operations of a transient CB object may be summarized as
follows:

1. To create a transient object, the creator specifies its domain
feature ID, the appropriate cluster ID, and a symbolic ID. The
creator’s domain feature ID is verified by CB management via
domain management interfaces, and its process cluster ID is

4-136 PUB-1005 Rev. A

ETAI0Q System Reference Manual EOQOS Kernel: Memory Managers

PUB-1005

verified by CB management via process management interfaces.
A transient object with a unique name is created. The object
remains in the communication buffer until either it is destroyed
or the last process in the process cluster terminates. Access is
granted to the creator on a process cluster ID and domain
feature ID scope when the object is created.

2. To grant access, activate, get information, or destroy a transient
object, the caller specifies the object’s name, and its own
domain feature ID (and process cluster ID if access was
granted in that manner). The caller’s identification is verified,
and checked with the object’s list of authorized users. If
authorized, the requested operation is performed.

For a destroy operation, the object is not immediately destroyed
if it was activated by one or more processes that are still
executing. When these processes terminate, the object is
destroyed.

3. To deactivate a permanent object, the caller specifies the
object’s name. If the object was activated (i.e. a
base/limit/access pair is set for the object), the appropriate
base/limit/access pair is cleared.

Communication Buffer Queue Objects

A queue object is a specialized type of a permanent object. It is
intended for use by a restricted set of operating system Kernel
features. Queue objects allow the operating system kernel features to
make more effective use of communication buffer hardware via
communication buffer semaphore instructions, without impacting CB
management’s operation.

A queue object can only be allocated by certain operating system
kernel features. Communication buffer semaphore instructions can be
directly performed on a queue object by these features.

Since a semaphore operation requires communication buffer physical
addresses, CB management puts the beginning physical address of a

queue object in the first word of the object when it is allocated. This
ensures that a queue object’s users can calculate the physical address
of any location within the object.

The minimum size of a communication buffer queue object is two
communication buffer words: one for the starting physical address of
the queue object, and one for data. The maximum size of a queue
object is the size of the region in the communication buffer that holds
queue objects.

Rev. A 4-137

EQOS Kernel: Memory Managers ETA10 System Reference Manual

CB manager assigns a name to each permanent object. The name is
subsequently used as an input parameter to CB management object
operations. The name must be unique. If a unique name cannot be
generated, the object will not be allocated. A permanent object name
consists of:

e Domain Feature ID. Identification of the feature that created
the object.

e Symbolic ID. A character string specified by the creator of the
object. It is the responsibility of each operating system feature
to ensure that the symbolic ID is unique within the feature.

The access rights that can be granted for a permanent object are:

Read (load)

Write (store)

Bit branch (conditional swap or load/store)
Semaphore (post, wait)

Grant rights

The grantee’s scope can be either domain feature ID, or process
cluster ID and domain feature ID. The semaphore rights can only be
granted to interprocess communication features.

The operations of a permanent CB object may be summarized as
follows:

1. To create a permanent object, the creator (one of a limited set
of operating system kernel features) specifies its domain
feature ID and a symbolic ID. This is verified by CB
management via domain management interfaces. A permanent
object with a unique name is created. The object remains in
the communication buffer until the next system initialization.

2. To grant access, activate, or get information, the caller specifies
the object’s name, and its own domain feature ID (and process
cluster ID if access was granted in that manner). The caller’s
identification is verified, and checked with the object’s list of
authorized users. If authorized, the requested operation is
performed.

3. To deactivate a permanent object, the caller specifies the
object’s name. If the object was activated (i.e. a
base/limit/access pair is set for the object), the appropriate
base/limit/access pair is cleared.

4-138 PUB-1005 Rev. A

ETAIO System Reference Manual EQOS Kernel: Memory Managers

PUB-1005

Communication Buffer Management Functions

There are a number of CB management functions that perform the
tasks of the communication buffer:

Rey, A

Activate BLAP for Object is a CPU function that sets up a
domain’s base/limit/access pair (BLAP) registers so that the
named object can be accessed by an authorized feature.

Create CB Object is a CPU function that allocates a unique
portion in CB memory for the specified object. A unique name
is also assigned to the object.

Deactivate BLAP for Object is a CPU function that clears a
domain’s base/limit/access pair (BLAP) registers associated with
a specific object. The object, therefore, cannot be accessed by
the domain until it is reactivated.

Destroy Transient CB Object is a CPU function that deletes a
transient CB object when all processes that used the object
have terminated.

It shouid be noted that a transient object is automatically
destroyed when the last process in its process cluster
terminates. This interface, therefore, should not be called
unless there is a special need to delete the transient object
before the process cluster terminates.

Get CB Object Information is a CPU function that retrieves
CB management directory information about a particular object
to authorized callers.

Get System Information is a CPU function that retrieves
system level information about communication buffer usage.

Grant Access to CB Object is a CPU function that adds access
rights to a specific CB object for the specified grantee.

Initialize CB Management for the CPUs is a CPU function
that initializes the CB management feature during system
initialization of CPUs. This includes buiiding CB
management’s directory structures to reflect the system’s
physical and logical communication buffer configuration.

Initialize CB Management for a Process is a CPU function
that initializes CB management within a new process. This
function also sets up the CB management domain data
structures.

Preactivate a CB object for IOU or SU is a CPU function that
preactivates a CB object that will be used by an /O unit or
service unit feature. A pseudo base/limit/access pair is created

4-139

EOS Kernel: Memory Managers ETAIQ System Reference Manual

for later use by an /O unit or service unit feature so that base
and limit addresses and access rights can be associated to an
existing CB object.

¢ Terminate CB Management for a Process is a CPU function
that terminates CB management within an executing process.

¢ Terminate CB Management for a Process Cluster is a CPU
function that terminates CB management within a process for
the specified process cluster.

« CB Bit Test and Load/Store is an /O unit and service unit

function that issues a bit test and load/store communication
buffer instruction for a preactivated CB object.

« CB Bit Test and Swap is an /O unit and service unit function
that issues a bit test and swap CB instruction for a preactivated
CB object.

* CB Load is an /O unit and service unit function that issues a
load communication buffer instruction for a preactivated CB
object.

¢ CB Semaphore Post is an /O unit and service unit function
that issues a semaphore post CB instruction for a preactivated
CB object.

* CB Semaphore Wait is an /O unit and service unit function
that issues a semaphore wait communication buffer instruction
for a preactivated CB object.

e CB Store is an /O unit and service unit function that issues a
store communication buffer instruction for a preactivated CB
object.

¢ Initialize CB Management for an IOU is an I/O unit function
that initializes the CB management feature during initialization
of the computer system I/O units. Interprocess communication
mailboxes are established between CB management in the /O
unit and the data pipe controller.

A CB management server process is started on the I/O unit so
that asynchronous communication buffer operations can be
performed. The CB management CPU data for preactivated
CB objects is also retrieved.

Note that CB management in the /O unit determines which
communication buffer instructions must be issued; the data
pipe controller issues the communication buffer instructions and
returns completion status to CB management in the /O unit.

4-140 PUB-1005 Rev. A

ETAI1Q System Reference Manual EOQOS Kernel: Memory Managers

e Initialize CB Management for a service unit is a service unit
function that initializes the CB management feature during
initialization of the computer system service units. Interprocess
communication mailboxes are established between CB
management in the service unit and the maintenance interface
driver. The CB management CPU data for preactivated CB
objects is also retrieved.

Note that CB management in the service unit determines which
communication buffer instructions must be issued; the
maintenance interface driver issues the instructions and returns
completion status to CB management in the service unit.

PUB-1005 Rev. A 4-141

EOS Kernel: Memory Managers ETAI10 System Reference Manual

4-~142 PUB-1005 Rev. A

ETA10 System Reference Manual EOS Kernel: Process Managers

Section 6: The Process Managers

This part examines the three features that schedule, manage, and
communicate between processes in the computer system. It consists
of three sections:

¢ Global scheduler
* Process management
e Remote procedure calls

The Global Scheduler

The global scheduler (GS) is the part of the operating system
responsible for scheduling sessions and processes within the multiple
CPUs of the computer system. Additionally, global scheduler provides
functions for the management and control of system input and output
queues.

Global scheduler is a system supervisor responsible for coordinating
activities at a global level to optimize the computer system’s activity.
It is heavily dependent upon the accuracy of the advice and
information supplied by other system resource managers.

Global scheduler is distributed across all of the computer system’s
CPUs. It interfaces with many operating system features, providing
functional interfaces at more than one level.

There are three functional levels to the global scheduler:
¢ Queue management subsystem
¢ Session scheduler

* Process scheduler

The Queue Management Subsystem

PUB-1005

The queue management subsystem (QMS) provides a generalized
queueing facility for use by global scheduler.

An input queue is an ordered list of session input queue items waiting
to be processed by the system. An output queue is an ordered list of
queue items waiting to be transferred out of the system. A queue
item contains queueing information about a particular file.

Rev. A 4-143

EQS Kernel: Process Managers ETAI0 System Reference Manual

4-144

The queue management subsystem maintains a higher level object
known as a queue set. The queue set is used to represent a collection
of queues used by one or more system features.

In order for a system feature to use a queue managed by the queue
management subsystem, it must have access permission to the queue
set. Any system feature can call the queue management subsystem to
have a queue set created for it. There is no limit to the number of
queue sets a system feature can use.

The queue management subsystem supports several features:
e Ability to add queue items to the tail of any queue.
e Direct access to any queue item within a queue set.
» The ability to place queue items in a hold state.
e Support for the listing of items in a queue.
e Access control for queue sets.
e Support functions for the recovery of queues.

The queue management subsystem database is kept in one file, which
contains only queue-item information. A tree of directories and files
is used to represent the structure of a queue set, queue, and queue

items. Using a directory tree for storage of queues allows the logical
file system to manage access control, and it facilitates queue recovery.

The hierarchical relationship of objects managed by the queue
management subsystem is illustrated in figure 4-20.

FPUB-1005 Rev. A

ETA1Q System Reference Manual _ EQS Kernel: Process Managers

Global Scheduler
Queue Set Directory
Queue Set
Queue A Queus B
?_{u:a‘ae Item 1
ltem 2
Q*-:ﬁ' e tem n

Figure 4-20. Hierarchical relationships of objects managed by the queue
management subsystem.

PUB-1005 Rev. A 4-145

EOS Kernel:

Process Managers

ETAIQ System Reference Manual

The relationship of the queue management subsystem procedure to the
user environments is illustrated in figure 4-21.

Operations
Management

User Environments

System
Control

Caller’s Queue Access Procedures

Atomic QMS Procedures

System Domains:

Logical File System
Global Scheduler
Interprocess Communication

(etc.)

A 4

Queue Set
File

Figure 4-21. Relationship of calling features to Queue Management procedures.

4-146

Queue Management Subsystem Procedural Interfaces

The queue management subsystem procedural interfaces manipulate
system queue sets, queues, and queue iterms. Access to queue sets is
restricted by access rights provided by the logical file system. Any
feature with read/write access permission to the queue set is permitted
to use any of the queue management subsystem procedural interfaces.

The queue management subsystem procedural interfaces are atomic:

they preserve the current setting of the queue set read and write

locks. If the appropriate lock is not already set, the procedure will
implicitly perform the proper locking and unlocking of the queue set.

PUB-1005

Rev. A

ETAI10 System Reference Manual EOS Kernel: Process Managers

The queue set procedural interfaces of the queue management
subsystem are:

e Create Queue Set creates and initializes a queue set.

e List Queue Set Attributes returns the current attributes of a
queue set.

The queue procedural interfaces of the queue management subsystem
are:

e Create Queue creates a new queue for the user of the queue
set.

* List Queue Attributes returns queue attributes for all the
queues within a queue set.

The queue item procedural interfaces of the queue management
subsystem are:

* Enqueue Queue Item creates and enqueues a new item into the
specified queue. The enqueued item is added to the tail of the
queue.

¢ Requeue Queue Item moves a queue item from one queue to
another within the same queue set.

* List Queue Item Attributes returns the attributes of all queue
items in the specified queue set.

¢ Alter Queue Item Attribute changes the following queue item
attributes:

Reserve flag

Search key

Item information block
Ready flag

* Get Next Queue Item retrieves the next ready queue item with
a specific search key. The queue item returned is the one
nearest the head with a search key equal to that specified.
Reserved queue items are not eligible.

¢ Dequeue Queue Item deletes an item from a queue. This
procedure is used after the queue item has been processed by
the queue user.

Session Scheduler
The session scheduler (SS) software is responsible for:

e Managing input queue(s)

PUB~1005 Rev. A 4-147

EOS Kernel: Process Managers ETA10 System Reference Manual

e Scheduling and dispatching batch sessions

¢ ILogon of interactive sessions

e Keeping track of all sessions

e Providing a set of operations for controlling sessions

The first release of the session scheduler will operate using a first-in-
first-out algorithm. That is, the first task received by the session
scheduler is the first one acted upon. The session scheduler is limited
to one input and onE execution Gueue.

Session Scheduler Procedural Interfaces

Session scheduler procedurai interfaces describe operations which can
be performed on sessions. These interfaces are provided primarily for
use by:

¢ User management
¢ User environments
¢ Operations management
The session scheduler procedural interfaces are:

» Logon Session creates and initiates an interactive session on
the computer system. A queue item is created in the input
queue set and initialized with the attributes of the session.
System accounting is called to initialize an accounting table for
the session. Process management is called to create the
command shell process of the session.

¢ Queue Session queues a batch session for processing. The
attributes of the session are stored in a queue item which is
enqueued in the input queue of the session category.

* Run Session causes the specified batch session to be placed
into execution immediately, if possible (resources must be
avaiiable to do so)..

o List Session Attributes returns the attributes of a session.
e Alter Session Attribute modifies an attribute of a session.

¢ List Sessions returns the attributes of all sessions currently
recorded in the input queue set.

¢ Drop Session initiates removal of an executing session from
the system. The user environment is signaled to drop the
session. The VSOS environment interprets this to mean

4-~148 PUB-1005 Rev. A

ETAIQ System Reference Manual EOS Kernel: Process Managers

terminate the current task and go to the next EXIT or
CONTINUE command.

¢ Kill Session results in one of the following actions:

- If the session is in an input queue, the session status
attribute is set to kill and the session is initiated. The
session is permitted to execute just long enough to
generate a dayfile.

- If the session is already executing, the session status is
set to kill and a kill signal is sent to the command shell
process. The user environment is responsible for
ensuring proper termination of all processes stemming
from the shell process and the deletion of the batch
input file when necessary. A dayfile is generated.

When all processes associated with the session have terminated,
the session entry is removed from the input queue set.

Process Scheduler Procedural Interfaces

The process scheduler procedural interfaces manipulate processes and
are provided for use by process management.

The procedural interfaces are:

* Return Process Inheritance Information gets global scheduler
specific inheritance data which is passed to a child process.

» Schedule Process initiates the scheduling of a process for the
first time.

¢ Terminate Process is called by process management to perform
global scheduler process termination.

* Initialize Process is called by process management to perform
global scheduler process initialization.

Queue Sets

The queue set is an object used to maintain a set of queues for a
system feature. Operations are provided to create and list a queue
set. The name of a queue set is specified by the system feature
which requested creation of a queue set. The queue set name must
be unique among all queue sets. By convention, the queue set name
is prefixed with a feature identifier (a character acronym).

Before any system feature can request operations on a queue set, the
queue set must exist and the requesting feature must have access
permission to it.

PUB~I1005 Rev. A 4-149

EOS Kernel: Process Managers ETA10 System Reference Manual

Queues

Queue Item

4-150

A queue set is created with a Create Queue Set procedure. Once a
queue set exists for a given feature, the feature can request operations
on objects within the queue set.

A queue object is used to organize items in a first-come, first serve
order. The queuename is specified by the calling feature. The
queuename is unique within the queue set.

A queue item stores the information needed by the user of a queue
set. A list of queue item attributes includes:

Queue Item ID - A unique system wide ID generated by the
queue management subsystem when the queue item is created.
The queue item ID is used by the caller to reference a specific
queue item.

Item Information Block - Attribute used to store queue item
information specified by the calling feature. The size of the
block is fixed by a global scheduler configuration constant.

The content and format of this block are left to the queue user.

Search Key - An attribute set and used by the calling feature
to get the next queue item of a specified type. For example,
the input queue manager (IQM) or session scheduler can use
this attribute to store the current state of a session as Waiting
for Memory. When memory is available, input queue manager
can request Global Scheduler Get Next Queue Item with a
search key of Waiting for Memory.

Reserve Flag - A Boolean attribute that indicates the item is
reserved for exclusive access by a single process. When the
flag is set, other processes are prohibited from making any
changes to the queue item. The process which reserved the
item is permitted to perform any operation on the item, and is
responsible for releasing reservation of the item when it is done
using it. Normally, a queue item is placed in this state while
being processed by the user of a queue.

Last Reserved Process ID - The process ID of the last process
which reserved the queue item

Ready Flag - A Boolean attribute that, when set, indicates the
item is ready for processing and can be selected by the
procedure to Global Scheduler Get Next Queue Item.

PUB-1005 Rev. A

ETAI0 System Reference Manual EOS Kernel: Process Managers

Input Queue Set

The input queue set is used by session scheduler to maintain a
structure of input and execution queues. Every session known to the
system is represented by a queue item in the input queue set.

Queue items are used for storage of session attributes.

Session Attributes

PUB~1005

Session attributes describe the characteristics of a session. Some

attribute values are generated internally by the session scheduler,

while the bulk are derived from parameters passed through a user
management request to log on or queue a session.

Only attributes unique to the session are maintained by the session
scheduler. These attributes should not be confused with attributes
defined by other system features unique to a user which are stored in
the user registry.

The session attributes are:

* Session ID - A unique, system wide ID generated when a
session is created or queued. The session ID is a queue item
ID used by the caller to reference a specific session.

e Session Queued Time - The time and date when the session
was queued for processing. This time is available to user -
environments for use in generating session dayfiles.

o Session Initiate Time —~ Date and time when the session was
initiated. This time is available to user environments for use in
generating session dayfiles.

o Session State - State of a session waiting in an input or
execution queue.

¢ Session Control Code - Communicates to the user environment
shell process what action to take at the start of a session:

- It can be started in normal fashion

- It can be terminated because the session was either
killed or dropped while in the input queue.

¢ Session Inheritance Block - A block of information provided
by the originator of the queued session to pass information to
be inherited by the new session. The size of the information
block is limited by a global scheduler constant. The content
and format of this block are left up to the session originator.

Rev. A 4-151

EOS Kernel: Process Managers) ETAIO System Reference Manual

¢ Terminal Connection ID -~ The interactive terminal ID for the
session. The user environment reads session commands from
this terminal connection. This attribute is only valid for
interactive sessions.

* Queued Input File ID - The queued input file ID is the global
file ID of the input file. The user environment reads the
session commands from this file. This attribute is valid only
for queued sessions.

¢ Image Name ID - the software unit name of the command
sheil as configured in the system configuration table.

¢ Session Process Cluster ID - Identifier of the process cluster
created for the session. Process clusters are discussed in the
section titled Process Management.

¢ User ID - Identifier of the username the session belongs to.
This attribute is needed by other system features so they may
retrieve user attributes stored in the user registry which they
define. This attribute is further discussed in the section titled
User Management.

¢ Project ID - Unique project ID needed by the system
accounting feature. This attribute is further discussed in the
section titled User Management.

¢ Account ID - Unique account number needed by the system
accounting feature. This attribute is further discussed in the
section titled User Management.

¢ Environment ID - Identifies the user environment the session
is working under. This attribute is needed by certain utility
programs to determine processing based on environment.

4-152 PUB-1005 Rev. A

ETAIO System Reference Manual EOS Kernel: Process Managers

Process Management

PUB-1005

Process management includes the activities of:
e Process creation
e Process initialization
e Process switching
e Process termination
e Process recovery

Process management (PM) is responsible for the recording and
modifying of process related variables. Process management is also
involved in CPU initialization, building the process queues for the
monitor, and setting up the process packages and register tables for
all locked-down servers.

From the viewpoint of process management, a process is simply a
logical association between a process ID, an executable file, and the
PM objects initialized to allow the process to execute. The process ID
is unique across CPUs.

After a process has been created, but before it has been initialized on
a CPU, it consists only of an executable file and process ID. After it
has been initialized, it also has a:

e Process package

e Alternate process package
¢ Process descriptor block

* Register block

* Process attributes list

Every process is also associated with an inheritance information block.
The inheritance information is gathered in creating the process and is
available, at any time, to the new process.

Process management code exists in the system domain of every
process, and a process management server runs on each CPU. Each
server has a mailbox for communications between CPUs, and between

I/O units and CPUs. The process management server is responsible
for:

¢ Initialization

e Recovery

Rev. A 4-153

EOQOS Kernel: Process Managers ETA10 System Reference Manual

¢ Termination

of all processes on its CPU. If a process wants to create a process on
another CPU, the Create Process procedure (via global scheduler)
notifies the process management server on the appropriate CPU.

In all these cases, residence of the target process is hidden from the
caller. The caller must invoke a local procedure, which then
determines on which CPU the target process resides. To all features
other than the global scheduler, process management appears to
function as a single unit.

Due to the amount of locked CP memory required for each active
process, the number of processes allowed on a CPU at one time is
limited to 128. Each process on a CPU has a CPU process index that
ranges from 0 to 127. The index is used by the following to
reference their local tables:

e Process management

¢ CP memory manager

Process Objects

In order for a process to run on a CPU, certain process objects must
have been created and initialized. They are:

Executable File

An executable file is created when an object file is successfully
linked. It is opened by a process management server at process
initialization. An executable file contains the:

e Process image name and version
e Register and map information

e Transfer address for the new process

Process Descriptor Block

The process descriptor block holds process specific data, including:
* Process inheritance information
e Process attributes
¢ Monitor scheduling parameters

e Monitor process attributes

4-154 PUB-I1005 Rev. A

ETAIQ System Reference Manual EQS Kernel: Process Managers

* Buffer for messages from the process management server

e Buffer for passing messages passing between process
management and monitor

The process descriptor block is created by process management and
maintained by both process management and the monitor.

Register Block

The register block contains the process’s registers at the time of a
process give-up. It is initialized by process management from the
executable file and maintained by the hardware.

Process Package

The process package contains the process’s:
* Invisible package
 Domain packages
* Domain stack

Memory for the process package is allocated by process management.
It is initialized by domain management and maintained by both
domain management and the hardware.

Alternate Process Package

The alternate process package is used for error recovery. It is a copy
of the original process package, but has a different transfer address.

Process States

PUB-1005

When a process decides to create another process, it places a call to
the Process Create function of process management. Process
management creates an entry for the new process in the process
catalog. Inheritance information is gathered and temporarily stored in
the new process’ uninitialized paging file. The global scheduler (GS)
is notified that a new process exists and needs to be scheduled.

Some time later, global scheduler calls a process management server
on the appropriate CPU to initialize the new process. The new
process’s

¢ Process package

* Process descriptor block

Rev. A 4-155

EOS Kernel:

4-156

Process Managers ETAIQ System Reference Manual

e Register block
e Paging file
e Map file

are set up. The process’s inheritance information is copied into the
process descriptor block. When this external initialization of the
process is complete, the monitor is asked to place the new process in
the ready queue.

.

The new process begins running an internal process initialization
procedure in the process management domain. The initialization
procedure calls those features which must be initialized before
transferring control to the application domain.

As different procedures are initialized, they may call process
management to retrieve their inheritance information. When internal
process initialization is complete, domain management is called to set
the true transfer address into the registers, and the Forward Domain
Change instruction is executed to give control to the application.

When a process terminates normally, a call is made to Process
Terminate. Process Terminate:

e Sets the process status in the process catalog to terminating
e Calls each feature’s process termination routines

e Stores the reason for termination in the process descriptor
block

¢ Asks the monitor to move the process to the termination queue

If the process terminates abnormally because of an access violation or
an illegal instruction, it is moved to the recovery queue. The process
is restarted so it can perform termination cleanup functions such as
unlocking files that were locked when the process terminated.
Information about the process’ termination is sent to the dayfile in
batch sessions, or sent to the screen in interactive sessions.

As soon as the monitor moves a process to the termination queue, it
notifies the process management server. The server removes the
process from any clusters it belongs to. The server also deletes the
process entry in the process catalog and completes external
termination of the process.

The states a process can go through are shown in figure 4-22. While
process management requests many of the changes, the actual process
switching is done by the monitor in monitor mode.

PUB-1005 Rev. A

ETAI0 System Reference Manual EQS Kernel: Process Managers

Process Create

Process Create generates a new process, which is placed in the
initiating state. The new process type and its inheritance information
are determined at this time.

Process Creation

Initiating

Recovery
State

State

. L
‘ Blocked
Runni
State

. State

Process Deletion

Figure 4-22. A mapping of the possible states and transitions within process management.

PUB-1005

Initiating State

Processes in the Initiating state are not yet eligible for execution upon
a particular CPU. Processes in this state do not yet have any system
resources assigned to them; they have only enough information to
begin initialization.

Initiating State to Ready State. Initialize requests are required to
move from the Initiating state to the Ready state on a CPU. The
initialize request may only be made by the global scheduler, which

Rev. A 4-157

EOS Kernel: Process Managers ETAIQ System Reference Manual

provides the scheduling parameters for the new process. In moving
from the Initiating state to the Ready state the process is committed to
a CPU, and the following resources are assigned to it:

* Paging file
e Process package
e Register file

Initiating State to Process Deletion. If an error occurs prior to the
assignment of resources, ne termination is required. The process is

simply deleted from the system.

Initiating State to Termination State. If an error occurs after the
assignment of resources, the process is moved to the Termination
state to receive the processing necessary to release the resources.

Ready State

A process in the Ready state can execute as soon as the monitor
performs an exit force to the process. All processes in the Ready
queue are in the Ready state.

Ready State to Running State. The monitor chooses the next process
from the top of the Ready queue to process switch into the Running
state. If the pager is modifying this process’s page tables or process
management is switching its process package, flags are set telling the
monitor that the process should not be scheduled. If this is so, the
next qualified process is scheduled.

Ready State to Blocked State. Normal completion of the process
management Block procedure will move the process from the Ready
to the Blocked state.

Running State

A process in the running state is executing in the hardware.
Running State to Ready State. For a time-slice expiration or a
hardware interrupt, monitor may move the process from the Running
state to the Ready state.

Running State to Termination State. When the Terminate Process
procedure is called, it will call other feature’s termination procedures.
It then asks the monitor to move the process to the Termination state.

Running State to Blocked State. A process may move from the
Running state to the Blocked state for several reasons, including:

* Page faults

4-158 PUB-1005 Rev. A

ETAIO System Reference Manual EQS Kernel: Process Managers

e Process management wait calls
e Wait for /O completion

Running State to Recovery State. If a run time error occurs that can
not be handled within the process, the process may be moved to the
Recovery state. For example, if an access violation occurs, the
process must be moved to the Recovery state.

Termination State

A process in this state has completed its internal termination
processing or has been through recovery. Once in Termination state,
processes remain there until they are deleted from the system.

Termination State to Process Deletion. Process management deletes
a process in the Termination state by:

e Returning the process’s paging file and other files explicitly
mapped in the system

* Removing the process from the list of active processes

* Deleting the process objects (register block and process
descriptor block)

Recovery State

Processes in the Recovery state await disposition after an abnormal
condition. Process management scans processes in the Recovery state
and decides whether they should be:

e Put back into the Ready state with a new process package to
allow for error termination

e Moved to the Termination state after recovery processing

Recovery State to Ready State. After the process management server
has switched the process’s process package, the process is moved
from the Recovery state to the Ready state where its termination code
will execute.

Blocked State

Processes in the Blocked state are temporarily ineligible for execution.
They retain all resources and need only be moved back into the
Ready state in order to execute.

When process management asks the monitor to move a process to the
Blocked queue, a time limit is given the monitor. Processes wait in

PUB-1005 Rev. A 4-159

EOS Kernel: Process Managers

ETAI0 System Reference Manual

the Blocked state for unblocks from other processes, or until the time
limit is reached.

Blocked State to Ready State. When the monitor is requested to
wake a process, or when a timeout occurs, execution of the monitor’s
scheduling code moves the process back to the Ready state.

Process Clusters

A process cluster is an arbitrary collection of processes with the
relationship between processes in a cluster specified by and known to
the part of the system which invokes this software. Information is
stored with each cluster which can be retrieved by the caller at a later
time. This information is stored in the cluster packet.

The cluster packet contains some process management information
and a buffer which can hold user defined information. Cluster
information is intended to be global in the sense that it can be easily
retrieved or modified from any CPU.

The process that creates a cluster is the cluster owner. The cluster
owner always has rights to:

¢ Add or delete processes from the cluster
¢ Destroy the cluster
¢ Change the cluster packet and attributes

The rights of the other cluster members depend on how the owner
sets up the cluster.

The owner is returned a capability for the cluster. The owner can
specify whether other members of the cluster can update the cluster
packet and whether all descendant processes will be members of the
cluster.

Members of -a cluster can always get a list of other cluster members,
find out who owns the cluster, and get a list of the clusters to which
the caller belongs.

Process Management Objects

(423
[+=]

The process management objects contain specific process management
information about process management initialization, clusters, and
processes in the system.

CB Data Block

The CB data block contains:

ETAI0 System Reference Manual EOS Kernel: Process Managers

PUB-1005

e Process management initialization information
e Mailbox handles
e Handles for SM objects

The data block is created at system initialization and is shared by all
processes.

Cluster Catalog

The cluster catalog contains information about all clusters in the
system. It is organized by cluster ID and contains cluster names,
cluster packets, and cluster members. This catalog is created at
system initialization and is shared by all processes.

CPU Process Catalog

There is a CPU process catalog on each CPU. It is a table in CP
memory that contains information about the processes that are on the
particular CPU. '

A fixed number of processes can be resident on a CPU at one time.
This catalog contains an entry for each possible process on the CPU.
The index for an entry into this table is called the cpu_process_index.
The CPU process catalog includes:

» The process ID.
e The state of each process.

* Physical addresses of the process packages and process
descriptor blocks.

* A CPU process index indicating which CPU slots processes
inhabit.

The CPU process index is shared with CP memory management and
accounting. The CPU process catalog is initialized at the time of
CPU initialization and is shared by all processes on the CPU.

SM Process Catalog

The SM process catalog maintains a list of all processes on the
system. It contains the following specific information about each
process:

e Current state

e CPU used

Rev. A 4-161

EOS Kernel: Process Managers ETAIO System Reference Manual

e The process’s global file ID
e A list of clusters of which the process is a member.

The SM process catalog is created at process initialization and is
shared by all processes.

Shared Information

A number of lists, blocks, and queues exist within process
management for sharing of information.

Blocked State List

A blocked state list contains all of the processes on a CPU in the
Blocked state. This list is initialized by process management at CPU
initialization, but is owned by the monitor.

Process Descriptor Block

A process descriptor block is a locked-down table associated with each
process on a CPU. It is shared with the monitor and the PM server
on the CPU. It contains:

¢ The kernel’s process attributes
e monitor process attributes (including scheduling information)
¢ Feature-specified inheritance information

The process descriptor block also contains buffers for passing
information between the process and monitor, and between the
process and the process management server.

Recovery State List

The recovery state list contains all of the processes on a CPU that are
awaiting disposition after an abnormal condition such as an access
violation or illegal instruction. This list is created by process
management at CPU initialization. It is managed by the monitor and
read by process management.

Termination State List

The termination state list contains all of the processes on a CPU
awaiting final termination. This list is created by process
management at CPU initialization. It is managed by the monitor and
read by process management.

PUB-1005 Rev. A

ETAIO System Reference Manual EQOS Kernel: Process Managers

Process Management Functions

PUB-1005

The functions within process management are briefly described. They
consist of Initialization functions, and process and cluster operations.

Process Management System Initialization:

Entered during system initialization to create the process management
tables.

Process Management CPU Initialization:

Used during system initialization to bring process management into
existence on a CPU.

Process Create:

Places a preliminary process object in the Initializing state. The
process is not able to execute on a CPU until initializing actions are
performed as a result of the global scheduler calling process
management to initialize the process.

Process Initialize:

Makes a process eligible for execution by moving it from the Initiating
state to the Ready state for a CPU.

Wait:

Provides the CPU give-up mechanism. This routine can be called to
make a simple time delay, or to wait for one of a set of defined wait
reasons with a specified timeout.

Process Block:
Permits one process to request that another process be blocked.
Process Unblock:

Requests that a process be moved from the Blocked state to the Ready
State.

Process Terminate:

Begins the termination of the process. This function calls each
feature’s termination routine and moves the process to the
Termination state.

Get CPU Process Index:

Returns the index into the CPU process catalog for the specified
process.

Rev. A 4-163

EOS Kernel: Process Managers ETAIQ System Reference Manual

4-164

Get Process Status:
Returns the status of the specified process.
Set Inheritance Block:

Allows a feature that is not automatically called at process creation to
specify inheritance information.

Retrieve Inheritance Information:

Returns a feature’s inheritance information.
Process Attribute Inquiry:

Returns the specified process attribute to the caller.
Change Process Attribute:

Allows callers to change some of the attributes associated with a
process.

Create Cluster:

Provides a logical grouping of processes. The operation does not
create any new processes, it merely groups a list of existing ones.

Add Process(es) to Cluster:

Adds a list of one or more process IDs to a cluster. While the list of
clusters to which the processes belong is updated, the processes are
not notified of the change.

Delete Process(es) From Cluster:

Deletes one or more process IDs from the process cluster with the
specified cluster ID. If all process IDs are deleted as a result of the
operation, and the 'can-be-empty’ characteristic is not set (the cluster
can only exist with members), the cluster ID is deleted from the
cluster list. While the list of clusters to which the processes belong is
being updated, the processes are not notified of the change.

Set Cluster Packet:

Provides the mechanism to record cluster specific information by
updating the user defined part of the cluster information packet.

Return Information From Cluster Packet:
Provides the mechanism to return the cluster packet to the caller.
Return Processes in Cluster:

Gives a list of processes which are members of a specific cluster.

PUB-1005 Rev. A

ETAIQ System Reference Manual EOS Kernel: Process Managers

Return Clusters of Which Process is a Member:
Gives a list of the clusters in which a process is a member.
Change Cluster Characteristics:

Provides the mechanism to change the characteristics of a cluster
from those specified when the cluster was created.

Destroy Cluster:

Deletes a cluster. While the list to which the processes in this cluster
belong is being updated, the processes are not notified of the change.

PUB-1005 Rev. A 4-165

EOS Kernel: Process Managers ETA1O System Reference Manual

Remote Procedure Calls

How A

4-166

The remote procedure call (RPC) feature is one of the system features
that coordinate interprocess activities. The remote procedure call
feature provides the ability to transfer messages between processes
running on the three types of processors - central processing unit
(CPU), /O unit (IOU), and service unit (SU).

Aessages are passed

The remote procedure call feature permits processes to send and
receive messages using mailboxes.

The foiiowing conventions are observed. Any process expecting to
receive messages can connect to, or export, a mailbox. The process is
referred to as a server. Any process can connect to, or import, a
mailbox to which it can send messages. The sender is called a client.

Only processes that have exported or imported mailboxes can use
them to pass messages. A client always sends messages to a
mailbox, and a server always receives messages from a mailbox. A
server can also send a reply to a client after receiving a message.

A server waiting for a message from a mailbox that is currently
empty, or a client waiting for a reply to a message, can suspend
execution (block) until the expected event occurs. Or, they can
continue with other tasks and periodically check whether the message
or reply has been sent.

The simplest scenario for mailbox use is one server receiving
messages from one client. There are other options available. As
shown in figure 4-23, one server (S) might receive messages from
multiple clients (C), multiple servers receive messages from one
client, or multiple servers receive from multiple clients.

Figure 4-23. Typical client and server relationships.

PUB-1005 Rev. A

ETAIQ System Reference Manual EOQOS Kernel: Process Managers

The same process can act as a server taking messages from some
mailboxes, and as a client sending messages to other mailboxes
(figure 4-24).

Process

Figure 4-24. A process which is both a client and server to different mailboxes.

A process can even act as a server and a client to the same mailbox,
though this .is an inefficient means of communicating, and procedure
calls should be made instead.

Complex Receive

A single server may have several active mailboxes from which it takes
messages, and a client may send multiple messages to various
mailboxes, and expect replies to those messages. By issuing a
Complex Receive, servers and clients can avoid constantly polling for
data they are expecting. The server can request to read the next
message from a specified list of mailboxes, and the client can request
to read the next reply to a specified list of messages.

Figure 4-25 shows a server with two mailboxes, A and B. During a
Complex Receive, the next message posted to either mailbox is
received by the server. In this case, mailbox B contains the next
message.

PUB-1005 Rev. A 4-167

EOS Kernel: Process Managers ETAI0 System Reference Manual

4-168

?\‘i =)
”,

Malibox A Mailbox B

Figure 4-25. A server receiving the next message posted to one of its mailboxes.

In figure 4-26 below, a client has sent two messages to which replies
are expected. During a Complex Receive, the next reply to be sent is
received by the client. In this case, message A’s reply was next.

Nfessage ' B

Figure 4-26. A client receiving the next reply sent to it.

A process can act as a server and a client. During a Complex
Receive, the process can wait for either the next message or the next
reply. In the case illustrated in figure 4-27, a message was posted
next. The process is notified of the message, so that the process can
act as a server of the mailbox.

PUB-1005 Rev. A

ETA10 System Reference Manual EOS Kernel: Process Managers

RPC Objects

Process

Figure 4-27. A process receiving the next message or reply destined for it.

Waiting for Messages and Replies

Both clients and servers can block while waiting for messages and
replies. If a mailbox contains the maximum number of messages that
can be enqueued at one time, it is full, and no additional messages
can be sent to it until a server has received at least one message from
that mailbox. A client sending a message to a full mailbox can block
and wait until the mailbox is no longer full, at which point the
message can be sent to the mailbox. If several clients are blocked on
the same mailbox, for each message received from the mailbox by a
server, one client is unblocked and allowed to send its message.

The same scheme applies to servers waiting for a message to be sent
to an empty mailbox. Servers can block until messages arrive in the
mailbox. For each message placed in the mailbox by a client, one
server is unblocked and can retrieve the message.

There are three types of RPC objects: mailboxes, messages, and
replies. The software supports various operations performed by server
and client processes on these objects.

RPC Mailbox Objects

The RPC mailbox object holds messages sent by clients and received
by servers. It has a system-wide unique name and access rights
determining which processes are authorized to use it.

The mailbox is actually a queue of message control blocks (MCBs)
which reside in the communication buffer. There is one message
control block for each message. The message control block is
enqueued when the message is sent, and dequeued when the message
is received. Synchronization of queuing is internally handled by
communication buffer semaphore instructions.

PUB-1005 Rev. A 4-169

EQOS Kernel: Process Managers ETA1Q System Reference Manual

The message control block holds information about the message
status, its size, its location in global memory, the sender’s
identification, whether a reply is needed, and where the reply is to be
stored.

Three types of mailboxes can be defined ~ permanent, transient, and
system.

Permanent mailboxes can be created at any time and are explicitly
activated by a process. Once created, they remain in the system until
the next system initialization. System features that need to transfer
messages between all processes use permanent mailboxes. Any
feature executing in the system domain or on an I/O unit or service
unit can access a permanent mailbox. Processes in the application
domain cannot access a permanent mailbox.

Each permanent mailbox is defined with a unique name that is used
by processes performing import and export operations. The name
consists of the domain feature ID of the feature that created the
mailbox, and a symbolic ID, which is a character string specified by
the creator, unique to that feature.

The first export request referencing a permanent mailbox creates the
mailbox. The creator specifies the mailbox name. After the mailbox
is created, a handle is returned to the caller, to be used in message
transfer requests for this mailbox.

Transient mailboxes can be created and destroyed at any time, and
are explicitly activated by processes. They are destroyed when the
last process in the creating process’ cluster terminates.

The transient mailbox is created on the first export request
referencing it. It is assigned a unique name consisting of the ID of a
cluster to which the creating process belongs, the ID of the feature
creating it, and a symbolic ID specified by the creator.

Any caller belonging to a transient mailbox’s creating process’ cluster,
or any process running on an I/O unit or service unit has access to
system mailboxes. An authorized user may export, import, and
destroy a transient mailbox.

A transient mailbox can be destroyed when there are no processes
using it.

System mailboxes are created only at system initialization. They are
used by a restricted set of features that need to transfer messages
between all processes and must not block during remote procedure
call operations. System mailboxes are preactivated in every process
throughout the system’s lifetime. Naming conventions for system
mailboxes are the same as for permanent mailboxes, except that the
handle returned from import and export operations is always the same

4~170 PUB~1005 Rev. A

ETAI0 System Reference Manual EQS Kernel: Process Managers

PUB-1005

value, no matter what process invokes it. Any feature executing in
the system domain or on an I/O unit or service unit can access system
mailboxes. An authorized user can perform export and import system
mailbox functions.

To preactivate a system mailbox the caller specifies its domain feature
and symbolic ID during system initialization. Preactivation operations
allocate the mailbox and ensure that all subsequently executing
processes can perform mailbox operations.

Internally, the remote procedure call feature uses three types of
semaphores to control mailbox operations - Full, Empty, and Message
semaphores. Post and wait functions manipulate the semaphores.

Full semaphore is used to determine when a mailbox is full. When a
mailbox is created, its Full semaphore is set to the maximum number
of messages that can be enqueued to the mailbox. The semaphore
value decreases by one for each message sent to the mailbox, and
increases by one for each message taken from it. A zero semaphore
indicates that the mailbox is full. Clients cannot send more messages
to the mailbox until some messages have been retrieved. If the client
blocks and waits until it can send a message, the semaphore is
decreased by one. A negative semaphore indicates the number of
waiting clients.

Empty semaphore is used to determine when a mailbox is empty.
When the mailbox is created, the semaphore is set to zero. Each
message sent to the mailbox increases its value by one, and each -
message received decreases it by one. When the semaphore value is
less than or equal to zero, the mailbox is empty. The server can
block until a message is sent. The semaphore value decreases by one
for every blocked server. A negative semaphore value indicates the
number of blocked servers.

Message semaphore synchronizes the addition (sending) and deletion
(receiving) of a mailbox’s messages. The Message semaphore value
is set to zero when a mailbox is created. Sending a message
enqueues an message control block to the mailbox, and decreases the
Message semaphore by one. Receiving a message dequeues a
message control block from the mailbox and increases the semaphore
by one. The absolute value of the semaphore value indicates the
number of message control blocks queued to the mailbox.

RPC Message Objects

A message is information that is transferred from a client to a server
via a mailbox. The message can range in length from zero to the
maximum message length configured in the system.

Rev. A 4-171

EOS Kernel: Process Managers ETAIlQ System Reference Manual

The remote procedure call feature views each message object as a
message buffer and an associated message control block. If there is
data associated with the message, the remote procedure call feature
copies it into a message buffer in system global memory whose length
equals the maximum system message length. If there is no buffer
space available when a message is to be sent, the remote procedure
call feature blocks the requesting client until space frees up.

After the message is copied to the global buffer, a message control
block is allocated. Message control blocks contain information about
a message buffer, including: the message status, (the request was sent
or received, a reply was sent, or a request canceled), a flag indicating
whether a reply is expected, the sender’s identification, and the
message buffer size and location.

A remote procedure call enqueues the message control block to the
tail of the mailbox queue. To receive a message, a server issues a
request to the remote procedure call feature. The remote procedure
call feature dequeues the message control block at the head of the
queue and copies the corresponding message buffer, if any, into the
server’s local memory.

RPC Reply Objects

A server sends a reply to a message if the sending client so
requested. The server forms the reply and issues a remote procedure
call to deliver it. The remote procedure call feature copies any reply
data from the server’s local memory into the global buffer and
updates the message control block to indicate a reply has been sent.

When the client issues a request to the remote procedure call feature
to receive the reply, the remote procedure call feature copies the
message buffer into the client’s local memory, and releases the global
message buffer and its message control block for use for subsequent
messages.

The server that received the message must provide the reply, except
on /O units, where a process different from the receiving server can
reply. The client that sent the message is the only process that can
receive the reply.

RPC Functions

Callers manipulate mailbox objects by issuing remote procedure call
feature requests. The types of requests can be divided into server,
client, server and client, and system. Most functions can be invoked on
any of the three processor types, but some are restricted to CPUs
only. The following function descriptions will indicate when a
function is restricted.

4-172 PUB~1005 Rev. A

ETAI0 System Reference Manual EOQOS Kernel: Process Managers

PUB-1005

Server Functions

Export Mailbox connects a process to a mailbox. The caller becomes
a server which can receive messages from that mailbox. The mailbox
name, the maximum number of servers allowed to access the
mailbox, the maximum number of messages that can be queued to
the mailbox at one time, and the creator’s access rights are specified
on the call, but are ignored if the mailbox already exists. If the
mailbox does not exist, it is automatically created and the creator
given the specified access rights. A mailbox handle is returned, to be
used in subsequent calls referencing the mailbox. Once the mailbox
is exported, clients can connect to it (import) and send messages.

Receive a Message requests the remote procedure call feature to take
a message from the mailbox and pass it to the caller. If the mailbox
is not empty, the remote procedure call feature copies the message at
the head of the mailbox queue into the server’s local memory, along
with the sender’s ID, a flag indicating whether the client expects a
reply, and the request ID. If the mailbox is empty, the calling server
can choose to block until a message is placed in the mailbox.

Send a Reply sends a server’s response to a message, if the sending
client so requested. After validating that the server is allowed to
issue the specified reply, the remote procedure call feature copies it
into global memory from the server’s local memory.

Cancel Export Mailbox disconnects a server from a mailbox. The
server cannot receive any more messages from the specified mailbox.

Destroy a Transient Mailbox prohibits any new processes from using
the mailbox, and destroys it when all its permitted user processes
have terminated. A transient mailbox is automatically destroyed when
the last process belonging to the process cluster of its creator
terminates.

This function is restricted to CPU processors only.

Client Functions

Import Mailbox connects the caller to an existing mailbox The caller
becomes a client able to send messages to that mailbox. The
mailbox’s handle is returned.

Send a Message to a Mailbox sends a message to any mailbox to
which the caller has access rights and which it has imported. The
client may request a reply from the server that received the message.
If the mailbox is full, the client may also request that the remote
procedure call feature temporarily block it until there is room for
another message. The remote procedure call feature queues the
message to the mailbox.

Rev. A 4-173

EOS Kernel:

4-174

Process Managers ETAIO System Reference Manual

Cancel a Message requests that a message sent to a mailbox be
deleted. The message can only be deleted if a server has not yet
received it. Only messages that require a reply can be canceled.

Receive a Reply retrieves a server’s response to a message. If the
server has not yet replied, the client can block until the reply is sent,
or until a time limit expires. The remote procedure call feature
returns the reply to the caller’s local memory.

Cancel Import disconnects a client from a specified mailbox. The
client cannot send any more messages to that mailbox.

Server arid Client Functions

Complex Receive allows a client or server waiting for several
specified messages and/or replies to be notified when one is sent. The
caller is blocked until one of the expected messages or replies is
issued. The message or reply is returned to the caller. If no message
or reply is sent before a specified time limit, an error is returned.

System Functions

Initialize Remote Procedure Call Feature for System initializes the
remote procedure call feature for the CPUs and one I/O unit. This
function is called when the first CPU and every /O unit is initialized.
If running on the CPU, this function must be called from the CPU
cold start system initialization process. If running on an I/O unit, it
must be called after the remote procedure call feature CPU
initialization completes and all system mailboxes have been created.
The service unit software does not call this function. Upon
completion, a processor can communicate with other processors using
remote procedure call facilities.

Create System Mailbox is a CPU-only function, called from the CPU
cold start initialization process. It must be called after Initialize
Remote Procedure Calls for System, and before any processes which
use system mailboxes execute. The caller specifies the maximum
number of servers allowed for the mailbox, the maximum number of
messages that can be queued, the creator’s access rights, and whether
the mailbox can access privileged resources.

Initialize Remote Procedure Calls for Process sets up remote
procedure call data structures within each new process. It is
automatically invoked by the first remote procedure call in a new
process if remote procedure calls are not yet initialized for the
process. It can also be explicitly coded. After initialization, the
process can perform the remote procedure call client and server
operations. ‘

PUB-1005 Rev. A

ETAIQ System Reference Manual EOS Kernel: Process Managers

PUB-1005

Terminate Remote Procedure Calls for Process discontinues use of
the remote procedure call functions within an executing process.
Process management calls this function when it terminates a process.
All the process’ messages that were not yet received are canceled.
Any replies not yet received are discarded. All the process’
connections to mailboxes are canceled.

Record Destruction of a Process Cluster is called by process
management when a process cluster is terminated. Any transient
mailboxes created by a process belonging to the destroyed cluster are
immediately destroyed if not in use. Transient mailboxes that are still
in use will be destroyed when the last using process terminates.

Rev. A 4-175

EOS Kernel: Process Managers ETAIQ System Reference Manual

4-176 PUB-1005 Rev. A

ETAIQ System Reference Manual EOS Kernel: Domain Management

Section 7: Domain Management

This part examines the feature that creates and manages domains
within the system. It consists of one section:

¢ Domain management

Domain Management

Domain features support protected routines and data structures from
unauthorized access or modification. Domain features are part of the
operating system.

Domain Hardware

The computer system hardware provides interprocess virtual address
space protection via the process switch mechanism. The operating
system depends on the process switch to ensure that one process does
not violate the address space of another.

While the process switch offers some protection, it also has its
deficiencies:

e It is relatively slow because of the required intermediary
switching routine

¢ The smallest unit of protection is a process

The process switch mechanism is illustrated in figure 4-28.

PUB-1005 Rev. A 4-177

EOS Kernel:

4-178

Domain Management ETAIO Systém Reference Manual
User System
Process " Process
| i
! !
L -
Operating
ystem

Figure 4-28. Process switch protection mechanism.

New features of the computer system hardware make intraprocess
protection possible within the CP memory (CPM). A process’s
address space may be partitioned into distinct areas known as
domains.

Each domain has a set of keys that unlock the pages of CP memory
the domain has access to. All operations in the domain are limited to
this CP memory space.

Hardware mechanisms, known as the forward and backward domain
change instructions, enable movement between domains while
preserving the integrity of each domain.

The strict enforcement of intraprocess address space protection
eliminates the need for a costly process switch to service most of the
operating system requests. With domains, a call imbedded in a
process is made to an appropriate operating system routine that is
isolated in another domain of the same process. After hardware
validation of the call, the domain containing the operating system
routine is entered.

Domain protection is illustrated in figure 4-29.

PUB-I005 Rev. A

ETAI0 System Reference Manual EOS Kernel: Domain Management

User
Process

Distributor/
Collector

b e e ——— ——

System
Domain

Figure 4-29. Domain protection using a domain distributor/collector.

Entering a domain means that access is permitted to the addresses
that are unlocked by the domain’s specific set of keys. Until the
domain is entered, these addresses are inaccessible to the process,
and upon exit from the domain, they are again inaccessible. Thus,
the domain is part of a process, though its address space is hidden
from the rest of the process. Similarly, the rest of the process cannot
be seen by the domain.

Domain Software

PUB-1005

The operating system software, especially the domain management
feature, provides a means for the operating system to use the
computer system domain hardware. The primary intent is to protect
the operating system software from unauthorized access.

Partitioning software into domains is protective, because the address
space of a domain cannot be accessed by another domain unless it is
explicitly shared. Each domain is structured so that there is a single
point of entry and a single point of exit. At these two points,
processing specific to the domain can be performed. ’

Domains also define the packaging of the operating system’s software.
The smallest replaceable unit of software is a domain. A process
image is a linked set of one or more domains. A process image
consists of the domains that are accessible to a process; a domain
cannot be used by a process unless it is part of the process image.
Thus, a process image is the smallest package of a software release.

There are three t