A Programming Language/1500
(APL/1500)

Authors: S. E. Krueger

T. D. McMurchie

Address inquiries to:

S. E. Krueger

Science Research Associates, Inc.
259 East Erie Street

Chicago, Illinois 60611

@ﬁgeg, Science Research Associates, Inc.
Printed in U.S.A. A1l rights reserved.

This program and its documentation have been contributed to
the Program Information Department by an [IBM customer and are
provided by the [IBM Corporation as part of 1its service to
customers. The program and its documentation are essentially in
the author's original form and have not been subjected to any
formal testing. I BM makes no warranty expressed or implied as to
the documentation, function, or performance of this program and the
user of the program is expected to make the final evaluation as to
the usefulness of the program in his own environment. There is no
committed maintenance for the program.

Questions concerning the use of the program should be directed
to the authors or other designated party. Any changes to the
program will be announced in the appropriate Catalog of Programs;
however, the changes will not be distributed automatically to
users. When such an announcement occurs, users should order only
the material (documentation, machine readable or both) as indicated
in the appropriate Catalog of Programs.

Table of Contents

Program Abstract 3
Introduction 4
Magnetic Tape Key 6
Volume I: APL/1500: User's Guide 7
Volume II: APL/1500: Operator's Guide 90

Volume III: APL/1500: System Generation
and Maintenance Manual 107

Detailed table of contents are at the beginning of each volume.

PROGRAM ABSTRACT

APL\1500 is a conversational time-sharing system supporting

Cathode Ray Tube (CRT) and typewriter input/output. It is based on
a concise mathematical programming language first defined by K. E.
Iverson. The language has a simple syntax and a large set of

primitive operations that work directly on arrays.

APL\1500 permits data to be structured as scalars, vectors,
and matrices with up to 255 elements in any dimension. Numerical
values are accurate to seven decimal digits. The implementation
provides a simple immediate~execution mode and a convenient program
definition facility. It provides the ability to save work between
sessions, to create program packages, and to exchange data between
users,

The APL\1500 system is a stand-alone assembly language program
that is built from cards. Minimum configuration:

32K 1130 (or 1800) CPU;
1502 Display Control Unit;
2310 Disk Drive;

1132 (or 1443) Printer;
1442 Card Read=-Punch;

1518 Typewriters and/or 1510 CRTs with keyboard; and
optionally 1512 Film Projectors.

A typical APL\1500 configuration supports 16 terminals.

INTRODUCTION

APL\1500 is a conversational multi-terminal system that was

developed at the CRIS Center of SRA. It was written as a
stand-alone program to replace the MAT package provided with the
IBM/1500 system. |Its purpose is to combine the simplicity, power,
and conciseness of the APL\360 system with the special hardware
features of the 1500 -- the CRT display unit and the film projector
unit.

APL\1500 is based wupon APL, the language first defined by K.
E. Iverson in A Programming Language (John Wiley, 1962). It is

further based on the [IBM/360 implementation of APL, APL\360.
APL\1500 is an interpretative time-sharing system that builds upon
the array operations and structural integrity of APL to provide a
running system with the following salient characteristics:

Simple, uniform rules of syntax

Use of common symbols for ordinary arithmetic operations

Free-form decimal input

A large set of primitive operators

Use of defined function (programs) with the same facility and
syntactic variety as primitive operators

An immediate-~execution mode completely free of irrelevant
keywords

A comprehensive, integrated set of system commands for
managing workspaces and other essential functions

Three 1levels of security; account numbers, workspaces, and
programs can be individually locked against use or display

A built-in plot routine

Ability to have CRT and typewriter devices as a single
instructional station

Visual fidelity between hard copy and transmitted entries,
which ensures reproducibility of results

Succinct diagnostic reports

Hardware and Performance

The APL\1500 system, comprising a time-sharing supervisor and
an APL interpreter, runs as - a stand-alone program for the 1BM/1500
System. '

APL\N1500 has run (or is now running) on 1BM/1130 and IBM/1800
" based 1500 Systems. Furthermore, the same APL\1500 System will run
on either the IBM/1800 or [IBM/1130 with no modifications. CPU
usage will be approximately 30 percent higher with an [IBM/1130
based system than on an [BM/1800 based system with equal core
storage cycle times due to hardware considerations. :

Average reaction time of an IBM/1800 based system (i.e. time
to respond to trivial requests from a terminal) with 12 stations in
immediate execution mode 1is generally less than one second. With
light function execution usage, most such responses are essentially
instantaneous; when heavily loaded, there are occasional delays of
as much as six seconds.

The time for serving non-trivial requests naturally varies
according to the extent to which the CPU must be shared during the
computation. Because the primitive operations of APL are defined
on arrays, relatively little interpretive overhead is needed for
many large computations, and the actual CPU time used for a typical
.immediate execution mode computation may run from 10 to 30 times
that for efficiently compiled code; but the overall efficiency is
likely to be comparable, if hnot superior, to batch processing in
many applications if the usual compiling and 1loading times -for
batch work are taken into account. I f debugging time is included,
the advantage of interpretive APL becomes even greater.

Documentation

The accompanying document consists of three volumes bound

9-track 800 bpi
bytes per

160

utility on

were:

MAGNETIC TAPE KEY

The APL\1500 system may be distributed either on

cards or on

magnetic tape. The magnetic tape is fixed format:

record (one card, column binary format) with one
record per block. The tape contents are:

Standard header label.

Tape mark

Separator deck

IPL bootstrap deck
Separator deck

IPL bootstrap deck
Separator deck

1130 Card to Disk program
Separator deck

1800 Card to Disk program
Separator deck

APL\1500 object decks:

1130
1800

Vg9
Vo1l
V28
V27
V06
Vo8
V1o
V1h
V21l
V25
Vo2
V03
V09
END

initial Directories 120 cards
IPL System Read 10 cards
General System Commands 66 cards
Privileged System Commands 29 cards
Scheduler and Disk 1/0 59 cards
Station .0.C.S. 90 cards
Supervisor and Edit 70 cards
Execution and Display 83 cards
Operator Execution 100 cards
System Command Monitor 4O cards
IPL System Initialize 8 cards
Initial Configuration 4 cards
System Dictionary 24 cards
End card ‘ 1 card

Separator deck

TOTAL

Tape Mark

The separator decks consist of two laced cards
partially laced card with a description of the following deck and a
card count.

The

magnetic tape was written wusing the Card
System/360. The control cards used to bu

// JOB BINARY
// UPSI
// EXEC CDTP

./ U TC,FF,A=(160,160),B=(160,160),12,0R,R1
./ END
APL\1500 DECKS

/*
/&

1010

cards
card

cards
cards
cards
cards
cards
cards
cards
cards

WA W UT W W N

~ -
o w o
=

3 cards
929 cards

followed by a

to Tape DOS
ild the tape

APL\1500: User's Guide

Authors: S. E. Krueger

T. D. McMurchie

© Science Research Associates, lInc., 1968

ACKNOWLEDGEMENTS

The MAT System for the IBM/1500 (developed by Service Bureau
Corporation) provided the basic floating point arithmetic and
trigonometric routines, and certain fundamental execution logic.
The development of the system was further aided by the disk file-
service routines and file-search commands written by H. A, Driscoll.

The body of the entire document was edited and composed
on APL/360 using T. D. McMurchie's implementation of a text
processing package developed by M. M, Zyrl and A. P. Mullery
(IBM Research).

The authors are grateful to a number of high school students
for their compulsion to point out systems failures, and in
particular to those students who assisted in debugging early
versions of the system and for their patience when their work-
spaces were destroyed by system failures.

Volume 1 is adapted from APL/360 USER'S MANUAL by
A. D. Falkoff and K. E. Iverson. °* International
Business Machines Corporation, 1968. Used by
permission.

TABLE OF CONTENTS

PART 1 -- GAINING ACCESS

Terminal Devices

The APL Character Set

Entries From The Keyboard
Mistakes
Alt Coded Keys
Attention

Starting a Work Session

PART 2 -- SYSTEM COMMANDS

Workspaces and Libraries
Names =- Local and Global Significance
Locks and Keys
Attention Signal
Use of System Commands
Terminal Control Commands
YJOFF

Workspace Control Commands
JCLEAR
YPURGE
YLOAD
JCOPY
YPCOPY
YERASE
JORIGIN
YWIDTH
JDIGITS

Library Control Commands
YSAVE
JDROP

Inquiry Commands
YENS
YVARS
ST

Communication Commands
YMSGN
YOPRN

System Start Up Commands
YTIME
YDATE

13
13

13
1k

15
17
17
18
19
19

19
23

24

30

32

33

33

TABLE OF CONTENTS (con't)

PART 3 -- THE LANGUAGE

Fundamentals
Statements
Scalar and Vector Constants
Names and Spaces
Overstriking and Erasure
Order of Execution
Error Reports
Names of Primitive Functions

Scalar Functions
Monadic and Dyadic Functions
Vectors
Index Generator

Defined Functions
Branching
Local and Global Variables
Explicit Arguments
Explicit Result
Forms of Defined Functions
Use of Defined Functions
Recursive Function Definition
Trace Control

Mechanics of Function Definition
Revision
Reopening Function Definition
Display
Line Editing on a Typewriter
Locked Functions
Deletion of Functions and Variables
System Commands Entered During Definition

Suspended Function Execution
State Indicator

Homonyms

Input and Output
Evaluated Input
Character Input
Normal OQutput
Heterogeneous Output

10

35

35
35
35
36
36
37
37
37

40
40
41
41

42
43
by
45
45
46
46
47
47

b7
L8
L8
L8
49

50
50

50
50

51

51
52
53
53
53

TABLE OF CONTENTS (con't)

Rectangular arrays

Vectors, Dimension, Catenation

Matrices, Dimension, Ravel

Reshape

Empty Arrays

Indexing
Indexing on the Left
Index Origin

Array Output

Functions on Arrays
Scalar Functions
Reduction
Scan
Inner Product
Outer Product

Mixed Functions
Transpose
Rotate
Reverse
Compress
Mesh
Prefix and Suffix
Decode
Encode
Index Of
Membership
Take and Drop
Grade Up and Down
Deal
Comments

Multiple Specification
System Dependent Functions
| -Beam
Domino
The Plot Function

APPENDIX A
SAMPLE TERMINAL SESSION

BIBLIOGRAPHY

11

78

89

PART 1

GAINING ACCESS

This part of the manual describes the characteristics of the
APL\1500 terminals, the establishment of a connection between the
terminal and the central computer, and the procedures for starting
a work session.

TERMINAL DEVICES

Each terminal may be comprised of an IBM 1518 Typewriter or an
IBM 1510 CRT with Keyboard, or both. In addition, the terminal
configuration may include an IBM 1512 Film Projector.

I1BM 1518 TYPEWRITER:

Each typewriter should be equipped with an |IBM Standard
Selectric APL printing element; part number 1167987. The standard

line width is 120 characters. When the system is waiting for
input, the 1light on the typewriter keyboard will be on and the
keyboard will unlock. The typewriter cursor is defined as the

position, marked by the location of the typeball, which indicates
where the next character typed will be printed.

The CRT screen is composed of 16 lines of 40 characters each.
The sixteenth line 1is reserved for messages transmitted between
terminals. During display, if the output 1is incomplete at the
bottom of the CRT screen, the output is halted and the system will
wait for any key press to continue the display starting at the top
of the screen. The CRT cursor is defined as the position, marked
by a dotted box, where the next character typed will be displayed.
When the system is waiting for input, the cursor position s
displaved.

IBM 1512 FILM PROJECTOR:
The film projector is an output device only, and allows for
the display of any one of 1022 frames of film. See the IBM 1500

Film Preparation Guide for a complete description.

THE APL\1500 KEYBOARD AND CHARACTER SET

The numerals, alphabetic characters, and punctuation marks

appear in their usual places on the kevboard. The letters are
displayed as upper-case italics, but are produced only when the
keyboard is in the lower case position (i.e., not shifted). The

special characters are generally produced with the keyboard
shifted. The APL\1500 keyboard is shown in figure 1.

13

- | = 1(
; I 8 l N l ;A][S | | 1hoEX]

] 1 on)
)
]

BHEBANAREN E -]

space bar]

ALt || <SPsy=E122 I
CODE i 2 3 4 5 6 7

v

E

Figure 1. APL\1500 KEYBOARD

ENTRIES FROM THE KEYBOARD

Normal communication between a terminal and the central
computer is carried on by means of entries from the keyboard, which

locks when each entry is made and unlocks when the computer
completes its work. The general procedure is to type an
instruction or command, and strike the RETURN key to indicate the
end of the message. In the remainder of this manual the need for

the RETURN key will not be explicitly mentioned, since it is
required for every entry.

Mistakes:

Errors in typing can be corrected before the RETURN key
completes an entry:

1. Backspace to the point of error and then depress the INDEX
key. This will have the effect of deleting everything to the

right of, and including, the position of the cursor. The
corrected text can be continued from that point, on the new
line.

2. The entire 1line may be deleted by simultaneously

depressing the ALT CODE key and the + (plus) key. A new line
can then be entered.

3. If the terminal input device is a CRT, characters may be
erased by holding down the ALT CODE key and striking the BACK
SPACE key until the error has been erased. Entry can then be
continued from that point.

REMEMBER: Each entry is interpreted exactly as it appears,

regardless of the time sequence in which the characters were typed.

Continuation

If entries are longer than a single 1line, they may be
continued on the next 1line by simultaneously depressing the ALT
CODE key and the RETURN key. The cursor will be positioned on the
next line at the left margin. Errors on the 1line ended with a

continuation can not be corrected.

The APL alphabet consists of the 1letters 4 thru Z and the
underscored-letters 4 thru 2. The wunderscored Jletters can be
formed in either of two ways:

1. Overstrike the letter with an underscore (up-shifted F).

2. Hold down the ALT CODE key and depress the desired letter.
This operation will automatically result in the underscored
letter. :

Attention

Attention is obtained by ho]ding down the ALT CODE key and
striking the INDEX key. This operation has two effects:

1. If the terminal is signed off, the attention signal will
initially establish communication between the terminal and the
central computer, The keyboard will unlock and the system
will be ready to accept input from the user.

2. If the terminal is already signed on, the attention signal
will stop function execution or output in progress. If the
system is waiting for input, the attention signal will have no
effect. See Part 2 for a further explanation of attention.

STARTING A WORK SESSION

Each user of the system is assigned an account number. This
number is used to effect the sign-on that initiates a work session
and is used to identify the work that the user may store in the

system between work sessions.

The following is a description of the sign-on command which is

START A WORK SESSION: ynnnnnn
Enter a right parenthesis followed by an account number, and,
if required, a key (i.e., a colon and a password). The use of

passwords as locks and keys is described in Part 2.

A workspace will be activated for the terminal and the
accumulation of time charges will begin. A workspace can
be thought of as both a notebook and a scratch pad. The
details are explained in Part 2.

15

1. The port number, user name associated with the
account number, date, and time of day will be displavyed.

2. The system identification '4 P L \ 15 0 0" will be
displaved.
3. A broadcast message from the APL operator may be
displaved.

NUMBER NOT FOUND

Either no such number has been assigned or the number has
a lock associated with it and the wrong key was used.
The APL operator should be consulted if help is required.

INCORRECT COMMAND
Either the form of the transmitted command was faulty or
the time and date have not yet been set.

If you are the first user to sign-on, then you must set the
me and date. See Part 2 for a description of the commands used
S

t
t et the time and date.

i
o

Once the sign-on is accomplished, a work session is started,
and the full APL system becomes available.

16

PART 2

SYSTEM COMMANDS

APL operations deal with transformations of abstract objects,
such as numbers and symbols, whose practical significance, as is
usual in mathematics, depends on the {(arbitrary) interpretation
placed upon them. System commands in the APL\1500 System, on the
other hand, have as their subject the structures which comprise the
system, and control functions and information relating to the state
of the system, and therefore have an immediate practical

significance independent of any interpretation by the user.

This section describes the structure of the APL\1500 system,
introduces the various notions essential to the wunderstanding of
system commands, and describes the complete set of system commands
in detail.

WORKSPACES AND LIBRARIES

Workspaces '
The common organizational wunit in the APL\1500 system is the
workspace. When in use, a workspace 1is said to be active and

occupies a block of working storage in the central computer. The
size of the block, which is preset at a fixed value, determines the
combined working area and storage capacity of each workspace in the -
system. Part of each workspace is set aside to serve the internal
workings of the system, and the remainder is used, as required, for
storing items of information and . for containing transient
information generated in the course of a computation.

An active workspace is always associated with a terminal
during a work session, and all transactions with the system are
mediated by it. In particular, the names of variables (data items)

and defined functions (programs) wused in calculations always refer
to objects known by those names in the active workspace;
information on the progress of program execution is maintained in
the state indicator of the active workspace; and control

information affecting the form of output is held within the active
workspace.

Libraries

Inactive workspaces are stored in libraries. They occupy
space in secondary storage (disks) and cannot be worked with
directly. When required, copies of stored workspaces can be made

active, or selected information may be copied from them 1into an
active workspace.

Libraries in APL\1500 are either private or public. Private
libraries are associated with individual users of the system, and
are identified by the user's account number. Access to them is

restricted in that one user may not store workspaces in another

17

person's library. However, one user may activate a copy of another
user's (unlocked) workspace if he knows the library number.

Public libraries are identified by numbers below 100. They
are not associated with individual users, although certain ones may
be reserved by general agreement for groups of people working
cooperatively. A workspace stored in the public 1library is under
control of the wuser who established the 1library. Each library
established with a number 1less than 100 is automatically locked
against inadvertent sign-on.

NAMES

Names of functions and variables may be any single alphabetic
character (4 to Z, and 4 to 2).

The environment in which APL operations take place is bounded
by the active workspace. Hence, the same name may be used to
designate different objects (i.e., functions or variables) in
different workspaces, without interference. However, the objects
within a workspace must have distinct names, except as explained
below. :

In the execution of defined functions it is often necessary to
work with intermediate results which have no significance either
before or after the function is used. To avoid cluttering the
workspace with a. multitude of variables introduced for such
“transient purposes, and to allow greater freedom in the choice of
names, the function definition process (see Part 3) provides a
facility for designating certain variables as local to the function

being defined. Variables not so designhated, and all functions, are

A local variable may have the same name as a global object,
and any number of variables local to different functions may have
the same name. :

During the execution of a defined function, a local variable
will supersede a function or global variable of the same name,
temporarily excluding it from use. I f the execution of a function
is interrupted (leaving it either suspended or pendent, see Part
3), the local variables retain their dominant position, during the
execution of subsequent APL operations, - until such time as the
halted function is completed. System commands, however, continue

to reference the global homonyms of 1local variables under these
circumstances.

18

LOCKS AND KEYS

Stored workspaces and the information they hold can be
protected against unauthorized wuse by associating a lock,
comprising a colon and a password of the user's choice, with the
workspace, when the workspace is stored. In order to activate a
locked workspace or copy any information it contains, a colon and

the password must again be used, as a key.

Account numbers can be similarly protected by locks and keys,
thus maintaining the security of a wuser's private library and
avoiding unauthorized charges against his account.

Passwords for locks and keys may be formed of any sequence of
characters up to six characters Jlong, without blanks or colons.
Characters beyond the sixth are ignored. In use as either a lock
or key, a password is set off by a preceding colon.

ATTENTION

Printed output at a terminal can be cut off,rok the execution
of an APL operation can be interrupted, and control returned to the
user, by means of an attention signal. Attention is obtained by

holding down the ALT CODE key and pressing the INDEX key.

Following an attention signal the keyboard will unlock, and
the cursor will return to the normal position for input (two spaces
from the left margin). In some cases a line will be printed before
the keyboard unlocks, telling where a function in progress was
interrupted.

The execution of system commands, once entered, cannot be
interrupted. However, the printed responses or trouble reports
following a system command can be suppressed by a properly timed
attention signal.

USE OF SYSTEM COMMANDS

System commands and APL operations are distinguished
functionally by the fact that system commands can be called for
only by individual entries from the keyboard, and cannot be
executed dynamically as part of a defined function. They are
distinguished in form by the requirement that system commands be
prefixed by a right parenthesis, which is a syntactically invalid

construction in APL.

It may be desirable to perform dynamically some system
control, and to use some items of system information during the
execution of a program. For these purposes APL\1500 provides
appropriate system-dependent functions, which can be used 1like

other APL operations. These functions are described in Part 3,

19

System commands are conveniently grouped into six classes with
regard to their effect upon the state of the system. The summary
table of commands and the descriptive text associated with them are
based upon this classification: :

1. Terminal control commands affect the relation of a

terminal to the system.

2. Workspace control commands affect the state of the active

3. Library control commands affect the state of the user's

stored library.

4. lnguiry commands provide information without affecting the

state of the system.

5. Communication commands effect the transmission of messages

among terminals.

6. System start up commands must be executed by the first
signed—-on user in order to fully activate APL\1500. These
become privileged (inactive to all but the system operator)
after they have been executed.

Any entry starting with a right parenthesis will be
interpreted by the system as a system command. When the command is

successfully executed, the normal response, if any, will be
printed.

If, for any reason, a command cannot be executed, an
appropriate trouble report (error report) will be printed. The
most common report is INCORRECT COMMAND. This means that the
command was incomplete, misspelled, modified incorrectly, or
otherwise malformed. It may also mean that the time and date have

not yet been entered.

Where the first word of a command is more than four characters
long, only the first four are significant. The others are
included only for mnemonic reasons, and may be dropped or replaced,
as desired. For example,)YCLEAR,)CLEA,)CLEANSE, etc., are all
equivalent. In general, the elements of a command must be
separated by one (or more) spaces. Spaces are not required
immediately following the right parenthesis, or on either side of
the colon used with passwords, but can be used without harm.

20

12

PURPOSE

SIGN-ON USER AND START
SESSION

TERMINATE SESSION

COMMAND

ywsid [key]

JOFF [lock]

NORMAL RESPONSE

Terminal,Name,Date,Time;
APL\N1500;[0OPR: text]

Terminal,Date,Time;
Connect;lLatency;CPU

ERROR REPORTS

ACTIVATE CLEAR WS

CLEAR STATE INDICATOR
ACTIVATE A STORED WS
COPY A GLOBAL OBJECT
COPY ALL GLOBAL OBJECTS

COPY A GLOBAL OBJECT,
PROTECT ACTIVE WS

JCLEAR

JPURGE

JLOAD [wsid] [key]
JCOPY wsid [key] A [B]
YCOPY wsid [key]

YJPCOPY wsid [key] A [B]

SAVED ,Date, Time
SAVED,Date, Time
SAVED,Date, Time

SAVED,Date, Time

12345639
1230469
1234569

COPY ALL GLOBAL OBJECTS, JPCOPY wsid [key] SAVED,Date, Time 123469
PROTECT ACTIVE WS

ERASE GLOBAL OBJECTLS] JERASE name[s] 17

SET INDEX ORIG!IN JORIGIN integer,0-1 WAS,former origin 1

SET MAX OUTPUT LINE LENGTH)WIDTH integer,20-120 WAS,former width 1

SET MAX FOR SIGNIFICANT JDIGITS integer,1-6 WAS, former maximum 1

DIGITS IN OUTPUT

STORE A COPY OF ACTIVE WS)SAVE [lock] SAVED ,Date,Time 189

ERASE THE STORED WS YDROP DROPPED,Date, Time 19

A

PURPOSE COMMAND

NORMAL RESPONSE

ERROR REPORTS

LIST NAMES OF DEFINED YENS List of function names 1

FUNCTIONS and header syntax.

LIST NAMES OF GLOBAL YVARS List . of names of vari- 1

VARITABLES ables and rank.

LIST STATE INDICATOR YST List sequence of 1
halted functions.

SEND TEXT TO A TERMINAL YMSGN port [text] SENT 1 190

SEND TEXT TO OPERATOR'S YOPRN [text] SENT 1

TERMINAL TF OPERATIONAL

The System Commands)TIME and)DATE must be executed by the first user to sign on the system
(usually the operator). Once these commands have been executed, they become privileged. Until

these commands are executed, all other System Commands
INCORRECT COMMAND.

will yield the report:

SET THE TIME YTIME hours minutes seconds 1
SET THE DATE YDATE month day vear 1
NOTES: 1. |tems in brackets are optional, ERROR REPORTS

2. key or lock: a password (1-6 characters)
set off by a preceding colon. A colon
alone following a command removes a lock,
wsid: workspace number (1-6 characters).
'[B1' of Copy commands will copy object
'A' and change its name to 'B'.

= W

WS NOT FOUND
NOT COPIED:

NOT ERASED:
NOT SAVED
PACK ERROR

W00~ YU W N

INCORRECT COMMAND
NUMBER NOT FOUND

list of objects

OBJECT NOT FOUND
WS FULL ERROR

list of objects

0 STATION SIGNED OFF

TERMINAL CONTROL COMMANDS

There 1is one command for starting a work session and one
command for ending it. The starting command has been described in
Part 1.

A work session can be stopped remotely, from a privileged
user's terminal, in an action known as a bounce. The bounce may be
used when a terminal is required for a special purpose, or to clear
the system of all users before stopping the APL\1500 operation

completely. The bounce performs as)OFF,.

If a work session is ended because of a failure of the central
computer, the active workspace is not stored.

Elapsed time, latency, and time of day, given as a system
response, are always in hours, minutes, and seconds; two digits for
each, separated by colons. A date response is given as month, day,
and year; two digits for each, separated by slashes. Clock hours
are counted continuously from midnight of the indicated day, and if
the system runs past midnight it is possible to have time readings
above 24 hours. For example, 34:22:00 10/01/68 would be 22 minutes
past 10 AM on October 2, 1968.

START A WORK SESSION:

This is the sign-on described in Part 1.

END A WORK SESSION:)OFF
Enter)OFF optionally followed by a colon and a password.
Passwords longer than 6 characters are accepted but only the

first 6 are meaningful. Spaces around the colon are neutral.

Effect:

1. The currently active workspace will vanish. There is
no effect on any stored workspace.

2. The duration of the work session, the wuser input
latency, and the amount of computer time used will be
noted internally for later accounting.

3. The password, if used, will become a new lock on the

account number. Once applied, a lock stays in effect
until explicitly changed by an)0FF command that contains
a colon. An existing lock is removed iIf noc password

follows the colon.

1. The port number, date, ahd time of day will be
printed on one line.

23

2. Accounting information will be printed on three lines
giving terminal connect time, user input latency, and
central computer time. Input latency is defined as the
total time the keyboard was unlocked and waiting for
input. The time used in this session and cumultative time
since the last accounting are given in the standard
format.

WORKSPACE CONTROL COMMANDS

The commands in this class can replace the active workspace
with a clear one, or with a copy of a stored workspace; bring
together, in the active workspace, information from many stored
workspaces; remove unwanted objects from the active workspace;
remove all levels of suspension; and set controls .governing certain
operations. The commands in this class affect only the active
workspace.

The usefulness of a terminal system 1is enhanced by the
availability of many different collections of functions and
variables, each of which is organized to satisfy the computational
needs of some area of work such as standard statistical
calculations, exercises for teaching a subject, complex arithmetic,
business accounting, simulations, etc. The workspace-centered
organization of APL\1500 lends itself to such packaging, because
each collection moves as a unit when the workspace containing it is
stored or activated.

The copy commands provide a convenient way to assemble
packages from components in different workspaces. Information
entered or developed within one workspace can be made available
within another by means of the copy and protecting-copy commands,
which reproduce, within the active workspace, objects from a stored
workspace. These are two sets of parallel commands which differ
only in their treatment of an object in the active workspace which
has the same name as an object being reproduced: the copy commands
will replace the existing object, whereas the protecting-copy
commands will not make the replacement.

A copy command of either type <can be applied to an entire
workspace or to a single object (i.e., a function or variable).
When an entire workspace is copied, all the functions and global
variables within it are subject to the operation, but its index
origin and output control settings, state indicator, and local
variables are left behind. Either copy command may copy a single
object and change its name in the active workspace.

24

NOTES: 1. The term wsid (workspace identification) is used here
to mean a library number (account number). When the wsid
is omitted, the reference 1is to the wuser's private

library.
2. A key is a colon followed by a password.

3. The system response, INCORRECT COMMAND, may occur for
any system command. This means either that the command
was malformed or that the time and date have not been set.

ACTIVATE A CLEAR WORKSPACE: JCLEAR
Enter)CLEAR
This command is wused to make a fresh start, discarding

whatever is in the active workspace.

Effect: , ,
A clear workspace will be activated, vreplacing the
presently active workspace. A clear workspace has no
variables or defined functions. lts control settings
are: index origin, 1; significant digits, 6; line width,
120 on typewriter or 40 on CRT. lts workspace
identification does not match that of any stored
workspace. ‘

Response:
None.

CLEAR THE STATE INDICATOR: JPURGE

Effect
The state indicator is cleared (see)SI command).
Response:
None
ACTIVATE A COPY OF A STORED WORKSPACE: YLOAD

Enter)LOAD optionally followed by a space and a wsid (with
the key, if required). This command may be used to obtain the
use of any workspace whose identification (and password) is
known. If the wsid 1is omitted, the wuser's workspace is
indicated.

Effect:

A copy of the designated workspace will be activated,
replacing the presently active workspace.

SAVED, followed by the date. and time of day that the
source workspace was last stored.

25

NUMBER NOT FOUND
There is no library for the entered number.

WS NOT FOUND

There is no stored workspace with the given
identification, the key was omitted when one was
required, or the wrong key was used.

PACK FRROR .
The disk pack containing the referenced 1library was not
mounted and ready.

QQEX A GLOBAL OBJECT EFROM A STORED WORKSPACE:)JCOPY
Enter)COPY followed by a space, a wsid (with the key, if
required), a space, and the name of the object to be copied;
then, optionally, a space and the new name the object 1is to
have in the active workspace. A global object may be a

function or global variable.

Effect
1. The global homonym in the active workspace will be
erased.

2. A copy of the designated object will appear in the
active workspace with global significance.

SAVED, followed by the date and the time of day the
source workspace was last stored.

—— ot e 2 e B

NUMBER NOT FOUND
see)LOAD

WS NOT FOUND
see)LOAD

PACK ERROR
see)LOAD

OBJECT NOT FOUND
The designated workspace does not contain a global object
with the given name.

NOT COPIED:
The 1listed object was not copied because the active
workspace was full or the state indicator was not clear.

WS FULL FRROR

The active workspace could not contain all the material
requested. I|f copied at all, a variable or function will
be copied completely.

26

COPY ALL GLOBAL OBJECTS FROM A STORED WORKSPACE:)CoPY

Enter)Ycory followed by a space, and a wsid (with the key, if
required).

Effect
1. A1l global homonyms in the active workspace will be
erased.

2. A copy of all functions and global variables in the
source workspace will appear in the active workspace with
global significance. Local wvariables, the state
indicator, and settings for origin, significant digits,
and width will not be copied.

SAVED, followed by the date and the time of day the
source workspace was last stored.

 NUMBER NOT FOUND
see)LOAD

WS NOT FOUND
see)LOAD

PACK ERROR
see)LOAD

NOT COPIED: o
The 1listed objects were not copied because the state
indicator was not clear, or the active workspace function
file or data storage area was full.

WS FULL FRROR

The active workspace could not contain all the material
requested. I1f copied at all, a variable or function will
be copied completely.

ACTIVE WORKSPACE:)PCOPY
Enter)PCOPY followed by a space, a wsid (with the key, if
required), a space, and the name of the object to be copied;
then, optionally, a space and the new name the object is to

have in the active workspace.

Effect:

A copy of the designated object will appear in the active
workspace unless there is an existing global homonym.

SAVED, followed by the date and the time of day the
source workspace was last stored.

27

NUMBER NOT FOUND
see)LOAD

WS NOT FOUND
see)LOAD

PACK ERROR
see)LOAD

OBJECT NOT FOUND .-
The designated workspace does not contain a global object
with the given name.

NOT COPIED:

The 1listed object was not <copied because the active
workspace was full, the state indicator was not clear, or
there was a global homonym in the active workspace.

WS FULL ERROR
see)COPY

ACTIVE WORKSPACE:)PCOPY

Enter)YPCOPY followed by a space and a wsid (with a key, if
required).

Effect:
A copy of all global objects in the source workspace
which do not have global homonyms in the active workspace

will appear in the active workspace.

Response: -

SAVED, followed by the date and the time of day the
source workspace was last stored.

NUMBER NOT FOUND
see)LOAD

WS NOT FOUND
see)LOAD

PACK ERROR
see)LOAD

NOT COPIED:

The listed objects were not copied because the state
indicator was not clear, the active workspace function
file or data storage area was full, or there were global
homonyms in the active workspace.

WS FULL ERROR
see)COPY

28

ERASE GLOBAL OBJECTS: JERASE
Enter)ERASE followed by a space and the names of global
objects to be deleted, separated by spaces. This is the only
way to remove global variables and the most convenient way to

remove functions.

Effect
Named objects having global significance will be
expunged. Names which do not refer to global objects

will be ignored.

NOT ERASED:
The listed functions were not erased because the state
indicator was not clear.

SET INDEX ORIGIN FOR ARRAY OPERATIONS: JORIGIN

Enter)ORIGIN followed by a space and a 0 or 1. See also
B2 and 112 in Part 3.

Effect: - -

The first element of arrays in the workspace will be
numbered zero or one, as indicated, and subsequent use of
index-dependent APL operations will be appropriately
affected. Index origin is more fully explained in Part’

3.

wAs, followed by the former origin.

SET MAXIMUM WIDTH FOR AN QUTPUT LINE: JWIDTH
Enter)WIDTH followed by a space and an integer between 20
and 120 inclusive. If the input device 1is a CRT, the line
width will be set to 40 if the entered value is greater than

40. See also B6 and 116 in Part 3.

Effect:
Subsequent output of all kinds will be lTimited to a line
width no greater than the number of spaces indicated.

This command will not affect the length of input lines,.

WAS, followed by the former maximum width.

SET MAXIMUM FOR SIGNIFICANT DIGITS [N QUTPUT:)DIGITS

Enter)DIGITS followed by a space and an integer between 1
and 6 inclusive. See also B9 and 129 in Part 3.

29

Effect:
Subsequent output of numbers will show no greater number
of significant digits than indicated. This command has
no effect on either input or the precision of internal

calculations, which is approximately 7 decimal digits.

WAS, followed by the former maximum.

LIBRARY CONTROL COMMANDS

There are two basic operations performed by the commands in
this class. The save command causes a copy of an active workspace
to be stored in the wuser's library, and the drop command causes
such a stored copy to be destroyed.

The save command and the 1load command are symmetric, in the
sense that a load command destroys an active workspace by replacing
it with a copy of a stored workspace, while a save command destroys
a stored workspace by replacing it with a copy of the active
workspace.

When a workspace is stored, an exact copy of the active
workspace is made, including the state indicator and intermediate
results from partial execution of halted functions. These
functions can be restarted without loss of continuity (see Part 3),
which permits considerable flexibility in planning use of the
system. For example, lengthy calculations do not have to be
completed at one terminal session; student work can be conducted
over a series of short work periods; and mathematical
experimentation or the exploration of system models can be done
over long periods of time, at the investigator's convenience.

A library number uniquely identifies each stored workspace in
the system. An active workspace is also identified by a library
number, and as copies of stored workspaces are activated, or copies
of the active workspace are stored, the identification of the
active workspace may change according to the following rules:

1. A workspace activated from a 1library assumes the
identification of its source.

2. When a copy of the active workspace is stored, the active
workspace assumes the identification of the subject library.

3. A clear workspace activated by a)CLEAR command, a
sign-on, or a system failure will not match the identification
of any stored workspace.

The identification of active workspaces is used in two ways.
First, as a safeguard against inadvertent replacement of a stored
workspace by an unrelated one. Second, the)SAVE command
implicitly uses the identification of the active workspace.

30

Each stored workspace has implicitly associated with it the
account number signed on at the terminal from which the save
command was entered, and may not be either replaced or erased,
except from a terminal signed on with the same account number.
Thus, one user is prevented from affecting the state of another
user's private library. The user may, of course, activate a copy
of any workspace stored in the system, if he knows the library
number (and password, if required).

A user of APL\1500 is assigned library space for, at most, one
workspace in his private library. A user's account number is also
the number of his private library.

RE-STORE A COPY OF THE ACTIVE WORKSPACE:)SAVE
Enter)SAVE optionally followed by a colon and a password.
Effect
1. A copy of the active workspace will replace the

user's stored workspace.

2. The password, if used, will become a new lock on the
workspace. Once applied, a 1lock stays in effect until
explicitly changed by a)SAVE command that contains a
colon. An existing lock 1is removed if no password

follows the colon.

SAVED, followed by the date and the time of day.

PACK ERROR
see)LOAD

NOT SAVED

The active workspace can be stored only if the wsid of
the active workspace agrees with the wsid of the stored
workspace, or the stored workspace has been dropped.

ERASE A STORED WORKSPACE:)JDROP

Enter)DROP

Effect:
The stored workspace will be expunged. Since a key is
not used, a locked workspace whose key has been lost can
always be removed from the system. This command has no

effect on the active workspace.

DROPPED, followed by the date and the time of day.

31

PACK ERROR
see JLOAD

INQUIRY COMMANDS

A1l of the commands in this class are concerned only with the

active workspace.

LIST NAMES OF DEFINED FUNCTIONS: JENS

Enter)FNS

Effect: None.

A1l defined function names will be 1listed with

header syntax.

| RESULT | NO RESULT

NILADIC <~ f f

MONADIC < fo fo

DYADIC <ofo ofo
LIST NAMES OF GLOBAL VARIABLES: JVARS

Enter)VARS

Effect: None.

their

A11 global variable names will be listed with their rank.

| INDICATOR
SCALAR n
VECTOR nl
MATRIX n{d

LIST HALTED FUNCTIONS:)ST

Enter)SI

Effect: None.

The names of halted functions will be listed,

most recent

ones first. With each name, the line number on which the
function stopped will be given. Suspended functions will
be distinguished from pendent functions by an asterisk.

This display of the state indicator and its significance

is explained in Part 3, along with the system-dependent

functions 126 and 127.

32

COMMUNICATION COMMANDS
There are two commands in this class. One command addresses
any connected terminal, and one command addresses only the system
recording terminal (operator's terminal).

Messages can be received by a terminal only when its keyboard

is locked. Incoming messages from the system recording terminal
are prefixed by OPR:. The length of a message is restricted to a
maximum of 114 characters in length. However, messages are not

subject to width settings of either the sending or receiving
terminal. Messages sent to a CRT will appear at the bottom of the
screen and are physically limited to a display of 34 characters.

L YMSGN
pace, a port number, a space, and

Enter YMSGN follo
the desired text.

ADDRESS TEXT TO DESIGNATE
we

(o1 w)

The text will be displayed at the receiving terminal,
prefixed by the port number of the sending terminal.

STATION SIGNED OFF
The message was lost because the designated terminal was
signed off.

ADDRESS TEXT TO SYSTEM RECORDING RECORDING TERMINAL: YJOPRN

Enter)OPRN followed by a space and the desired text.

Effect:

The text will be displayed at the system recording
terminal, prefixed by the port number of the sending
terminal. I|f the recording terminal does not exist or is
not operational, the message will be lost.

SENT

SYSTEM START UP COMMANDS

There are two commands in this «class. These commands must be
executed by the first signed-on wuser in order to activate the
entire APL\1500 System. Until the time and date commands have
been entered, all other system commands, including attempted

sign-ons by other users, will yield an INCORRECT COMMAND report.

33

After the time and date commands have been entered, they will
become wunavailable for normal execution (privileged). These
commands are usually entered by the system operator when the system
is initially started for the day.

SET THE TIME OF DAY: YTIME
Enter)TIME followed by a space, the number of hours past
midnight, a space, the number of minutes past the hour, a

space, and the number of seconds past the minute.

Effect:
The time of day will be set and the wuser's sign on time
will be reset. After execution, this command will become

privileged.

Response: None.

SET THE DATE: YJDATE
Enter)DATE followed by a space, the number of the month, a
space, the day of the month, a space, and the last two digits
of the year.

Effect:
The date will be set. After execution, this command will
become privileged.

Response: None.

3k

PART 3
THE LANGUAGE

The APL\1500 System executes system commands and mathematical
statements entered at a terminal. The system commands were treated
in Part 2; the mathematical statements will be treated here.

Acceptable statements may employ either primitive functions

(e.g., + - x %) which are provided by the system, or defined

functions, which the user provides by entering definitions at the

terminal.

|f system commands are not used, the worst that can possibly
result from erroneous use of the keyboard 1is the printing of an

error report. It is, therefore, advantageous to experiment freely
and to wuse the system itself for settling any doubts about its
behavior. For example, to find what happens in an attempted

division by zero, simply enter the expression 4:0.

The Sample Terminal Session in Appendix A shows actual
intercourse with the system and may be used as a model in gaining
facility with the terminal. The examples generally follow the
text and may well be studied concurrently.

FUNDAMENTALS

Statements

Statements are of two main types, the branch (denoted by -+ and
treated in the section on Defined Functions), and the
specification. A typical specification statement is of the form:

X<«3x4

This statement assigns the variable X the value resulting from the

expression to the right of the specification arrow. If the

variable name and arrow are omitted, the resulting value |is
displayed. For example:

3xy
12

Results displayed by the system begin at the left margin,
whereas entries from the keyboard are automatically indented 2
spaces. The keyboard arrangement is shown is Part 1.

Scalar and vector constants

A1l nuymbers entered via the keyboard or displayed by the
system are in decimal, either in conventional form (including a
decimal point if appropriate) or in exponential form. The
exponential form consists of an integer or decimal fraction
followed immediately by the symbol E followed immediately by an
integer. The integer following the F specifies the power of ten by
which the part preceding the F is to be multiplied. Thus 1.4u4fF2 is

equivalent to 1uu.

35

Negative numbers are represented by a negative sign
immediately preceding the number, e.g., ~1.44 and T144F 2 are
equivalent negative numbers. The negative sign can be used only as
part of a constant and is distinguished from the negation function

which is denoted, as usual, by the subtraction symbol -.

A constant vector is entered by typing the constant components
in order, separated by one or more spaces. A character constant is
entered by typing the character between quotation marks. A
sequence of characters, entered in quotes, represents a vector
whose successive components are the characters themselves. Such a
vector is displayed by the system as the sequence of characters,
with no enclosing quotes and with no separation of the successive
elements. The quote character itself must be typed in as a pair of
quotes. Thus, the contraction of CANNOT is entered as 'CAN''T' and
is displayed as CAN'T,

As noted in Part 2, the name of a variable or defined function
may be any letter. A letter may be any of the characters 4 to Z,
or any one of the characters underscored, e.g., A or B. The
underscored letters may be formed by overstriking or by using the
ALT CODE and letter keys simultaneously.

Spaces are not required between primitive functions and
constants or variables, or between a succession of primitive
functions, but they may be used if desired. Spaces are needed to
separate names of adjacent defined functions, constants, and
variables. For example, the expression 2+3 may be entered with no
spaces, but if F is a defined function, then the expression 2 F 3
must be entered with the indicated spaces. The exact number of
spaces used in succession is of no importance and extra spaces may
be used freely.

Backspacing alone serves only to position the cursor and does
not cause erasure or deletion of characters. |t can be used:

1. to insert missing characters (such as parentheses) if
space has previously been left for them,

2. to form compound characters by overstriking (e.g., ¢
and !),

3, to position the cursor for erasure which is effected by
striking the INDEX key (erases the character at the position
of the cursor and all characters to the right), and

L, in conjunction with the ALT CODE key to erase characters
on the CRT only.

End of Statement

" "The end of a statement is indicated by striking the RETURL
key. The typed entry is interpreted exactly as it appears,

regardless of the time sequence in which characters were typed.

36

Order of execution

In a compound expression such as 3x4+63+2, the functions are
executed (evaluated) from rightmost to leftmost, regardless of the
particular functions appearing in the expression. (The foregoing
expression evalutes to 21.) When parentheses are used, as in the
expression W<(3[@)+xxY-Z2, the same rule applies, but, as usual, an
enclosed expression must be completely evaluated before its results
can be used. Thus, the foregoing expression 1is equivalent to

W< ((3Q)+(Xx(Y-2))).

In general, the rule can be expressed as follows: every
function takes as its righthand argument the entire expression to
its right, wup to the right parenthesis of the pair that encloses
it.

The attempt to execute an invalid statement will cause one of
the error reports given in Table 1 to be displayed. The error
report will be followed by the offending statement with a caret
displayed under the point in the statement where the error was
detected.

If an invalid statement is encountered during execution of a
defined function, the error report includes the function name and

the 1line number of the invalid statement. The recommended
procedure at this point is to enter)PURGE, amend the statement,
and then try again. This matter is treated more fully in the

section on Suspended Function Execution.

The primitive functions of the language are summarized in
Tables 2 and 8, and will be discussed individually in subsequent
sections. The tables show one suggested name for each function.
This is intended to discourage the common mathematical practice of
vocalizing a function in a variety of ways (for example, X:Y being
expressed as "“x divided by YY", or "x over Yy, Thus, the
expression pM yields the dimension of the array M, but the terms
size or shape may be preferred both for their brevity and for the
fact they avoid potential confusion with the dimensionality or

rank of the array. T TTmTETEEEE

The importance of such names and synonyms diminishes with
familiarity. The wusual tendency is toward the use of the name of
the symbol itself (e.g., "rho'" (p) for "size', and "iota" (1) for
"index generator"), probably to avoid unwanted connotations of any
of the chosen names.

NOTE:
The symbol <= is used throughout the remainder of this
manual to indicate that the expression to its left is
equivalent to the expression to its right. This symbol

is not an APL operator, it is only wused to <clarify
definitions of APL operations.,

37

DOMAIN

DEFN

INDEX
LENGTH

RANK

SYNTAX

VALUE

SUSPENSION

WS FULL

SYSTEM

ERROR REPORTS

I1legitimate overstrike,

Excessive depth of function exécution. PURGE THE
STATE INDICATOR.

Arguments not in the domain of the function.

Misuse of Vv or [0 symbols:
1. Use of other than the function name
alone in reopening a definition.
2. Improper request for a line edit or
display.
3. The function is locked.

Index value out of range.
Shapes not conformable.

Ranks not conformable or resultant rank s
greater than 2.

Invalid syntax; e.g., two variables juxtaposed;
function wused without appropriate arguments as
dicated by its header; unmatched parentheses or
brackets.

Use of name which has not been defined. ASSIGN A
VALUE TO THE VARIABLE, OR DEFINE THE FUNCTION.

Function editing attempted while in suspension.
PURGE THE STATE INDICATOR.

Workspace is filled (perhaps by temporary values
produced in evaluating a compound expression).
PURGE STATE INDICATOR, ERASE NEEDLESS VARIABLES,
OR REVISE CALCULATIONS TO USE LESS SPACE.

Fault in internal operation of APL\1500, or
possible hardware failure. RELOAD OR CLEAR AND

COPY. SEND TYPED RECORD, INCLUDING ALL WORK
LEADING TO THE ERROR, TO THE SYSTEM MANAGER.

TABLE 1

38

Monadic form fB f Dyadic form AfB
Definition Name Name Definition
or example or example
+B <> 0+B ldentity + 1 Plus 2+3.2 «> 5.2
-B <> 0-B Negative - | Minus 2-3.2 <> 1.
xB <« (B>0)-(B<0) Signum x | Times 2x3.2 <> B.U
+B <> 13B Reciprocal +| Divide 2+3.2 <> 0.625
B | 18] LB Ceiling I | Maximum 3[7 <> 7
3.14 4 3
T3.14)73 | T4 Floor L | Minimum 3L7 «» 3
*B +> exB Exponential| | Power 2%3 <> 8
e «=» 2,71828...
eN <« eeol Natural ®| Logarithm AeB <~ Log B base 4
e «+ 2.71828... logarithm A®B <> (®B):ie®d
| 73.14 <> 3.1Y4 Magnitude | | Residue Case ' AlB
A#0 B-(|A)xLB:]4
(A=0)AB=0| B
(A=0)AB<0| Domain erro~-
!B <> Bx!B-1 Factorial '} Binomial A'B <> (IB)+(1A)x!1B-A
10 <> 1 coefficient|2!5 «» 10 3!'5 «» 190
?B +-» Random choice [Roll ? | Deal A mixed function (See
from 1B Table 8)
OB <= Bxpi Pi times o| Circular See Table at lower left
pi <> 3.14159...
~1 <> 0 ~0 <« Not ~
_ Al And A|BlAAB| AvB| AxB|ANB
(-A)0B A AOB v| Or ofol o 0 1 1
(1-B*2)*.5}| 0| (1-B%x2)*.5 » | Nand o1} o 1 1 0
Arcsin B} 1| Sine B ¥ | Nor 1101 0 1 1 0
Arccos B} 2| Cosine B 1111 1 1 0 0
Arctan B| 3| Tangent B
(T14B*2)% .5 | 4| (14B*2)*.5 <| Less Relations
Arcsinh B} 5| Sinh B < | Not greater Result is 1 if the
Arccosh B| 6} Cosh B = | Equal relation hoids, ©
Arctanh B| 7| Tanh B > | Not less if it does not:
> | Greater 37 +> 1
Table of Dyadic o Functions | Not equal 7<3 <> 0

Table 2:

39

PRIMITIVE SCALAR FUNCTIONS

SCALAR FUNCTIONS

Each of the primitive functions is classified as either scalar

or mixed. Scalar functions are defined on scalar (i.e.,
individual) arguments and are extended to arrays in five ways:
element-by-element, reduction, scan, inner product, and outer

product, as described in the section on Functions on Arrays. Mixed
functions are discussed in a later section.

Each scalar function is defined on real numbers or, as in the
case of the logical functions and and or, on some subset of them.
No functional distinction is made between "fixed point" and
"floating point" numbers and the user of the terminal system need
have no concern with such questions unless his work strains the
capacity of the machine with respect to either space or accuracy.
A1l numbers are carried to a precision of about 7 decimal digits.

For operations such as floor and ceiling, and in comparisons,
a "fuzz" of about 7.63FE76 is applied in order to avoid anomalous
results that might otherwise be brought about by doing decimal
arithmetic in a binary machine. :

Two of the functions of Table 2, the relationals # and =, are
defined on characters as well as on numbers.

Monadic and dyadic functions

Each of the functions defined in Table 2 may be wused in the
same manner as the familiar arithmetic functions + - x and +. Most
of the symbols employed may denote either a monadic function (which
takes one argument) or a dyadic function (which takes two
arguments). For example, [Y denotes the monadic function ceiling
applied to the single argument Y, whereas X[Y denotes the dyadic
function maximum applied to the two arguments X and Y. Any such

symbol always denotes a dyadic function if possible, i.e., it will
take a left argument if one is present.

At this point it may be helpful to scrutinize each of the
functions in Table 2 and to work out some examples of each, either
by hand or on a terminal. However, it is not essential to grasp
all of the more advanced mathematical functions (such as the
hyperbolic functions sinh, cosh, and tanh) in order to proceed.
Treatments of these functions are readily available in standard
texts.

. Certain of the scalar functions deserve brief comment. The
residue function A|B has the usual definition of residue wused in
number theory. For positive integer arguments this is equivalent

to the remainder obtained by dividing B by A4, and may be stated
more generally as the smallest non-negative member of the set
B-NxA, where N is any integer.

Lo

This formulation covers the case of a zero left argument as shown
in Table 2. The conventional definition is extended in two further
respects:

1. The left argument 4 need not be positive; the value of the
result depends only on the magnitude of 4.

2. The argument need not be integral. For example, 1]|2.6 is
0.6 and 1.5|8 is 0.5.

The function A4!B (pronounced 4 out of B) is defined as
(!'B):('4)x!B-4. This is the number of combinations of B things
taken 4 at a time.

The symbols < < = 2 > and # denote the relations less than,

less than or equal, etc., in the wusual manner. However, an

expression of the form A4<B is treated not as an assertion, but as a
function which yields a 1 if the proposition is true, and o if it
is false. For example:

When applied to logical arguments (i.e., arguments whose

values are limited to 0 and 1), the six relations are equivalent to
six of the logical functions of two arguments. For example, < is
equivalent to material implication, and =# is equivalent to

exclusive-or. These six functions together with the and, or, nand,

and nor shown in Table 2 exhaust the nontrivial logical functions
of two logical arguments. \

Vectors
Each of the monadic functions of Table 2 applies to a vector,
element by element. Each of the dyadic functions applies element

by element to a pair of vectors of equal dimension or to a scalar
and a vector of any dimension, the scalar being used with each
component of the vector. For example:

1 2 3 4x4 3 2 1
L 6 6 4

2+1 2 3 &4
3 4 5 6

1 2 3 42
2 2 3 4

If ¥ is a non-negative integer, then ¥ denotes a vector of
the first ¥ integers. The dimension of the vector ¥ is therefore
N; in particular, 11 is a vector of length one which has the value
1, and 10 is a vector of dimension zero, also called an empty
vector. The empty vector prints as a blank. For example:

41

14
1 2 3 L
15
1 2 3 L 5
10
Empty vector prints as a blank
6-16
5 b 3 2 1 0
2x10 ~ Scalar applies to all (i.e., 0) elements
of 10, resulting in an empty vector
2X16
2 4 6 8 10 12

The index generator is one of the class of mixed functions to
be treated in detail later; it is included here because it 1is
useful in examples.

DEFINED FUNCTIONS

It would be impracticable and confusing to attempt to include
as primitives in a language all of the functions which might prove

useful in diverse areas of application. On the other hand, in any
particular application there are many functions of general utility
whose use should be made as convenient as possible. This need is

met by the ability to define and name new functions, which can then
be used with the convenience of primitives.

This section introduces the basic notions of function
definition and illustrates the use of defined functions. Most of
the detailed mechanics of function definition, revision, and
display, are deferred to the succeeding section.

The sequence

vs
[1] S<4x3.14159xRxR
[2] V<«SxR+3
[3] V¥

is called a function definition; the first v (pronounced del) marks
the beginning of the definition and the second V marks the
conclusion: the name following the first Vv (in this case S) is the
name of the function defined, the numbers in brackets are statement

numbers, and the accompanying statements form the body of the

function definition.

The act of defining a function neither executes nor checks for
validity the statements in the body; what it does is make the
function name thereafter equivalent to the body. For example:

L2

vs Definition of the

[1] S<«u4x3,.14159xKxR function S
[2] V<+SxR+3
(3] vV
R<?2 Specification and display
R of the argument R
2
S S has not vet been
VALUE ERROR assigned a value
S
A
S Execution of S
S S and ¥V now have
50,2654 values assigned by the
v execution of S
33.5103
Branching

Statements in a function are normally executed in the order
indicated by the statement numbers, and execution terminates at the
end of the last statement in the sequence. This normal order can
be modified by branches. Branches make possible the construction

of iterative procedures.

The expression >4 denotes a branch to statement 4 and and
causes statement 4 of the function to be executed next. In
general, the arrow may be followed by any expression which, to be
effective, must evaluate to an integer. This value 1is the number
of the statement to be executed next. If the integer lies ouside
the range of statement numbers of the body of the function, the

branch ends the execution of the function.

If the value of the expression to the right of a branch arrow
is a non-empty vector, the branch is determined by its first
component. If the vector is empty (i.e., of zero dimension) the
branch dées not take place and the normal sequence is followed.

The following examples illustrate various methods of branching
used in three equivalent functions (4, B, and ¢) for determining S
as the sum of the first N integers:

VA
[1] &<0
[2] I<«1
[3] -»4xIsN Branch to ux1 or to u4x0 (out)
(4] S8<«S+I
[5] I<«I+1
[61 -3 Unconditional branch to 3
[731 v
N<1
A
S

L3

A
S
3
N<5
A
S
15
VB Equivalent to 4
[1] S=<0
[2] I<«1
[3] =~0x1I>N Branch to 0 (out) or continue to next
[l S<S+7 line since 0x10 is an empty vector
[6] I<I+1
[6] =3 Unconditional branch to 3
(71 v
N<5S
B
S
15
ve Equivalent to 4
[1] S=<0
[2] I<0
[3] &8<«S5+I
[u] I<«I+1
[5] =»3x1I<HW Branch to 3 or fall through (and out)
[6] V¥
From the last two functions in the foregoing example, it
should be clear that the expression xi1 occurring in a branch may
often be read as "if". For example, +3x1I<N may be read as '"Branch

to 3 if I is less than or equal to N'".

A variable is normally global in the sense that 1its name has
the same significance regardless of what function or functions it
may be used in. However, the iteration counter I occurring in the
foregoing function 4 is of interest only during execution of the
function; it is frequently convenient to make such a variable
local to a function in the sense that it has meaning only during

the execution of the function and bears no relation to any object

referred to by the same name at other times. Any number of
variables <can be made local to a function by appending each
(preceded by a semicolon) to the function header. Compare the

behavior of the function D, which has a local variable I, with the
behavior of the previously defined function ¢ in which I is global:

VDI
[1] 8«0
[2] 1I<oO
[3] S<«S+I
[u] I<«I+1
[56] =+3x1IgHh
(6] v

Ly

Execution of D Execution of (

I+20 I+20
N<s V<5
D ¢
s S

15 15
I I

20 6

Since 7 is local to the function D, execution of D has no
effect on the global variable I referred to before and after the
use of D.

A function of the form

VS X ;
[1] S«eux3,14159xXxX
[2] V

defines § as a function with an explicit argument; whenever such a
function is used it must be provided with an argument, For
example:

S 2

95!

50,2654
1

0 it

12.5664

Any explicit argument of a function is automatically made
local to the function; iIf E is any expression, then the effect of
S E 1is to assign to the 1local variable X the value of the
expression FE and then to execute the body of the function S.
Except for having a value assigned initially, the argument variable
is treated as any other local variable and, in particular, may be
respecified within the function.

Each of the primitive functions produces a result and may
therefore appear within compound expressions. For example, the
expression +2 produces an explicit result and may appear in a
compound expression such as X+:Z. A function definition of the
form

VZ<S X
[1] Z<«u4x3.14159xXxX
{21 v

defines S as a function with an explicit result; the variable Z is
local, and the value it assumes at the completion of execution of
the body of the function is the explicit result of the function.

L5

For example:

@+3x3 1

Q
37.6991

R<2

(S R)xR+3
33.5103

Forms of defined functions

Functions may be defined with 2,1, or 0 explicit arguments and
either with or without an explicit result. The form of the header
used to define each of these six types is shown in Table 3. Each
of the six forms permits the appending of semicolons and names to
introduce local variables. The names appearing in any one header

must all be distinct; e.g., the header 2«F 2z is invalid.

Number of | Number of Results
Arguments 0 1

0 VF VZ<F

1 VEF Y VIZ<F Y

2 VX F Y V<X F Y

Table 3: FORMS OF DEFINED
FUNCT IONS

It is not necessary that the arguments or Jlocal variables be
used within the body of a defined function. A function definition
which does not assign a value to the result variable will cause a

A defined function may be used in the same way as a primitive
function. In particular, it may be used within the definition of
another function. For example, the function g determines the
hypotenuse of a right triangle of sides 4 and B by using the square
root function R:

VZ<«R X
[1] Z<X%.5V

VL<A H B
[1] IL<«B (A*2)+B%x2V

5
13

i

12

A defined function must be used with the same number of
arguments as appear in its header.

L6

A function may be used in the body of its own definition, in
which case the function is said to be recursively defined. The
names of all defined functions are global. The following program F
shows a recursive definition of the factorial function. The heart
of the definition is statement 2, which determines factorial ¥ as
the product of N and F N-1, except for the case N=0 when the result

is determined (by statement L) as 1: \

VE<F N
[1] -4x1lN=0
[2] R<NxF N-1

[3]1 =0

[u] R<1vV
Trace control A

A trace is an automatic display of information generated by
the execution of a function as it progresses. In a complete trace

of a function P, the number of each statement executed is displayed
in brackets, preceded by the function name P and followed by the
final value produced by the statement. The trace is wuseful in
analyzing the behavior of a defined function, particularly during
its design.

The tracing of P is controlled by the trace vector for P,
denoted by TAP. If one types TAP«+2 3 5 then statements 2, 3, and
5 will be traced in any subsequent execution of P. More generally,
the value assigned to the trace vector may be any vector of
integers. Typing 7T4P<0 will discontinue tracing of P. A complete
trace of P is set up by entering TAP<1l, where ¥ 1is the number of
statements in P. Editing a function cancels the trace vector, if

one exists.

MECHANICS OF FUNCTION DEFINITION

There are two modes of operation in the APL system: execution

mode and function definition mode. In execution mode, every APL
expression is executed Iimmediately after entry. In definition
mode, statements are <collected to form the body of a defined

function for later execution.

Function definition is opened by typing a Vv followed by a
header. The system automatically displays successive statement
numbers enclosed in brackets, and accepts successive entries as the
statements forming the body of the definition.

Definition mode is closed when another Vv is entered as the
last character of a statement. At that time the system returns to
execution mode. After function definition has been closed, there
are convenient ways to re-open the definition so that the function
may be revised or displayed.

L7

Revision

A function may be edited only during definition mode.
Statements may be added, inserted, deleted, and replaced. Any
statement number (including the one displayed by the system) can be
overridden by typing [NJ, where N is any positive number less than
100, with or without a decimal point and with at most two digits to

the right of the decimal point.

If any statement number is repeated, the statement following

it supersedes the earlier specification of the statement. If any
statement is empty =-- that is, the bracketed statement number was
followed by a RETURN == the statement is deleted.

When function definition mode is ended, the statements are
reordered according to their statement numbers and the statement
numbers are replaced by the integers 1, 2, 3, and so on.

The particular statement on which the closing V appears is not
significant, since it marks only the end of the definition mode,
not necessarily the 1last line of the function. Moreover, the
closing v may be entered either alone or at the end of a statement.

If a function R is already defined, the definition mode for
that function can be re-established (edit mode) by entering VR
alone; the rest of the function header must not be entered. The
system responds by displaying [N+1], where N is the number of
statements in R. Function definition then proceeds in the normal
manner.

Function definition may also be established with editing or

display requested on the same line. For example, VR[3]X<«X+1
initiates editing by entering a new line 3 immediately. The system
responds by displaying [4] and awaiting continuation. The entire
process may be accomplished on a single line. Thus, VR[3]1X<X+1V

opens the definition of R, enters a new line 3, and terminates the
definition mode.

During function editing, statements which had previously
defined the function are available for edit and display.
Statements entered during the function definition or edit mode are
not merged with the function until definition or editing is closed.
This means that only the definition of the function at the last
closing is available for display.

As in simple revision, any statement number can be overridden
by a request for display or display and edit. This can be
accomplished by one of the four methods of display or display and
edit:

1. [0] Results in a full display of the defined function
(including the header and the opening and closing V) which
existed at the last closing, The system then awaits entry of
additional statements.

L8

2. [ON] Displays all statements from N onward and awaits
entry of additional statements.

3. [NOl Displays statement N and awaits replacement of
statement N. :

L., [NOM] Initiates line editing if the input device 1is a
typewriter. If the input device 1is a CRT, then a replace
statement edit (see 3 above) will be effected.

The closing bracket may be followed by a v, in which case the
display or display and edit operation returns to the execution mode

after it is complete.

During function definition mode, statement N can be partially
modified by the following mechanism: -

1. Type [NOM] where M is an integer.

2. Statement N is displayed and the carriage stops under
position M.

3. A decimal digit or the symbol / may be typed under any of
the positions in the displayed statement. Any other
characters typed in this mode are ignored. The ordinary rules
for typewriter erasure apply. '

L. When RETURN is pressed, statement N is redisplaved. Each
character understruck with a / is deleted and each character
understruck with a digit K 1is preceded by K added spaces.
Finally, the carriage moves to two spaces bevond the end of
the 1line and awaits the typing of modifications to the
statement in the usual manner. The final effect is to define

the statement exactly as if the entry had been made entirely
from the keyboard.

If the statement number itself is changed during the editing
procedure, the statement affected is determined by the new
statement number, " hence statement N remains unchanged. This
permits statements to be moved, with or without modification.

Locked functions ‘

If the symbol # (formed by a V overstruck with a ~ and called
del-tilde) is used instead of V to close a function definition, the
function becomes locked. A locked function cannot be revised or
displaved in any way. Moreover, an error stop within the function
will print only the function name and statement number, not the

statement.

Locked functions are used to keep a function proprietary. For
example, in an exercise in which a student is required to determine
the behavior of a function with a variety of arguments, locking the
function prevents him from displaying its definition.

L9

A function F (whether locked or not) is deleted by the command

YJERASE F (see Part 2). 1t may also be deleted by deleting every

one of its statements. A variable may be deleted only by the
YERASE command.

System commands entered during function definition

A system command entered during function definition will not
be executed, but will be accepted as a statement in the definition.
However, system commands may not be called for execution from a
function and an error report will result from an attempted
execution,

SUSPENDED FUNCTION EXECUTION

The execution of a function may be stopped before completion

in two ways: by an error report or by an attention signal. In any
case, the function is still active and its execution can later be
resumed. In this state the function is said to be suspended.
Typing K will cause execution of the suspended function to be
resumed, beginning with statement K. A branch out (»0) will

terminate execution of the function.

The function 126 (described in the section on System Dependent
Functions) vields the number of the next statement to be executed.
Hence, the expression -126 provides a safe way to cause normal
resumption of execution.

In the ‘suspended state almost all normal activities are
possible. In particular, the system is in the following condition:

1. Expressions and most system commands can be executed.
Names of local variables in the latest suspended function take
precedence. Suspended or pendent functions cannot be deleted
or modified in any manner.

2. No functions may be defined or edited (functions may be
displayed) during any suspended state.

3. Execution may be resumed for the last suspended function
at an arbitrary point ¥ (by entering =N).

State Indicator

Typing)SI causes a display of the state indicator: a typical
display has the following form:

)SI
HL71 =
GL2]
FL3]

50

The foregoing display indicates that execution was halted
during execution of statement 7 of function H, that the current use
of function X was invoked in statement 2 of function G, and that
the use of function G was in turn invoked in statement 3 of F. The

%« appearing to the right of H[7] indicates that the function H is

Further functions can be invoked when in the suspended state.
Thus if G were now invoked and a further suspension occurred in
statement 5 of @, itself invoked in statement 8 of G, a subsequent
display of the state indicator would appear as follows:

)ST
QL5] =
GL8]
H[7] =
GL2]
FL3]

The entire sequence can be cleared by typing)PURGE. If this
command were entered under the conditions of the foregoing example,
the state indicator would be cleared:

YPURGE
VST

HOMONYMS

Variable names

The wuse of local variables introduces the possibility of
having more than one object in a workspace with the same name.
Confusion is avoided by the following rule: the local variables of
the latest function being executed supersede other objects of the

same hame.

Function names
All function names are global. If a function P has a local
variable F, then P could not invoke a function R since the name R

would have local significance during execution of P.
System commands concern global objects only (see Part 2),
regardless of the current environment.
INPUT AND OUTPUT

The following function determines the value of an amount 4
invested at interest B[1] for a period of B[2] years:

Vi<A C B
[1] Z<«Ax(1+.01xB[1])*B[2]V

51

For example:

1000 ¢ 5 &
1215.51

The casual wuser of such a function might, however, find it
onerous to remember the positions of the various arguments and
whether the interest rate is to be entered as the actual rate
(e.g., .05) or in percent (e.g., 5). An exchange of the following
form might be more palatable:

D
ENTER CAPITAL AMOUNT IN DOLLARS
0:
1000
ENTER INTEREST IN PERCENT
0: '

5
ENTER PERIOD IN YFEARS
0:

m
RESULT IS 1215.51

It is necessary that each of the keyboard entries (1000, 5,
and L) occuring in such an exchange be accepted not as an ordinary
entry (which would only result in the response 1000, etc.), but as
data to be used within the function D. Facilities for this are
provided in two ways, termed evaluated input, and character input.

The definition of the function D is shown later in this
section. '

The quad symbol [l appearing anywhere other than immediately to
the 1left of a specification arrow accepts keyboard input - as
follows: the two symbols [: are displaved, and the system awaits
input on the next line. Any valid expression entered at this point

is evaluated and the result is substituted for the quad. For
example:
VZ<F
[1] Z<=ux[Jx2
[2] V¥
F
O:
3
36
F
.
3+2
9
F
0:
(4+4)%.5
1

52

An invalid entry in response to a request for quad input
results in an appropriate error report and a re-request for input.
An attempt to execute system commands or to open function
definition will vield an error report since neither entry 1is an
expression which may be evaluated,. An empty input (i.e., RETURN
alone or spaces and a RETURN) is rejected and the system again
displays [J: and awaits input.

The symbols [J: are displayed to alert the user to the type of
input expected.

The quote-quad symbol [0 (i.e., a quad overstruck with a quote)
accepts character input: the system awaits input on the next line,
at the left margin, and all data entered is accepted as characters.
For example:

X7

CAN'T (Quote-quad input, not indented)
X

CAN'T

The quad symbol appearing immediately to the left of a
specification arrow indicates that the value of the expression to

the right of the arrow 1is to be displaved. Hence, [O<«X s
equivalent to the statement X. The longer form O«X is useful when
employing multiple specification. For example, [<«@Q«X%2 assigns to

Q the value Xx2 and then displays the value of Xx2.

The page width (measured in characters) may be set to any
value NV in the range 20-120 by entering the command)WIDTH N. |If
the input device is a CRT, then the maximum width is 40, Line
width may also be dynamically set by using the System Dependent
Function domino.

A sequence of expressions separated by semi-colons will cause
the values of the expressions to be displayed, with no intervening
line advances or spaces except those implicit in the display of the
values. The expressions need not be enclosed in parentheses.

The primary use of this form is for output in which some of
the expressions yield numbers and some vyield characters. For
example, if X< 14 and Y«10 , then:

VPHE PRODUCT OF X AND Y: ‘'3XxY3'=';X;'x';Y
THE PRODUCT OF X AND Y: ~140="14x10

A further example of mixed output 1is furnished by the

definition of the function D which introduced the present section:

53

VDA 1Y
(1] VENTER CAPITAL AMOUNT IN DOLLARS'

[2] A<

[3] YENTER INTEREST IN PERCENT!
[(ul 1<0

5] VENTER PERIOD IN YFARS'!

[6] Y«

£71 'YRESULT IS '"3Ax(1+.01xI)*YV

RECTANGULAR ARRAYS

Introduction
A single element of a rectangular array can be selected by
specifying its lindices; the number of indices required is called

the dimensionality or rank of the array. Thus, a vector is of rank

1, a matrix (in which the first index selects a row and the second

a column) is of rank 2, and a scalar (since it permits no selection

by indices) is an array of rank 0.

This section treats the reshaping and indexing of arrays, and
the form of array output. The following section treats the five
ways in which the basic scalar functions are extended to arrays,
and the next section thereafter treats the definition of certain
mixed functions on arrays.

If X is a vector, then pX denotes its dimension. For example,
if X<2 3 5 7 11, then pX is 5, and if Y<«'4BC' , then pY is 3. A
single character entered in quotes or in response to a [0 input is a
scalar, not a vector of dimension 1; this parallels the case of a
single number, which is also a scalar.

Catenation chains two vectors (or scalars) together to form a

vector; it is denoted by a comma. For example:

X«2 3 5 7 11
X, X
2 3 5 7 112 2 3 5 7 11

In general, the dimension of X,Y 1is equal to the total number of
elements in X and Y. A numeric vector cannot be catenated with a
character vector. (However, see Heterogeneocus QOutput.)

The monadic function p applied to an array A4 vyields the s
of 4, that s, a vector whose components are the dimensions of
For example, if 4 is the matrix

.
L

A
A.

of three rows and four columns, then p4 is the vector 3 u,.

Sk

Since p4 contains one component for each coordinate of 4, The
expression ppd is the rank of 4. Table L4 illustrates the values of
pd and ppAd for arrays of rank 0 (scalars) thru rank 2. In
particular, the function p applied to a scalar vields an empty
vector.

Type of Array| pd | ppdlpppd

Scalar 0 1
Vector N 1 1
Matrix M N 2 1

Table 4L: DIMENSION AND
RANK VECTORS

The monadic function ravel is denoted by a comma; when applied

to any array 4, it produces a vector whose elements are the
elements of 4 in row order. For example, if 4 is the matrix

2 4 6 8
10 12 14 16
18 20 22 24

and if V<«,4 then V is a vector of dimension 12 whose elements are
the integers 2 4 6 8 10 12 ... 24, If A4 is a vector, then ,4
is equivalent to 4; if 4 is a scalar, then ,4 is a vector of
dimension 1. :

Reshape

The dyadic function p reshapes its right argument to the
dimension specified by its left argument. |f M«DpV, then ¥ is an
array of dimension D whose elements are the elements of V., For

example, 2 3p1 2 3 4 5 6 is the matrix

If v, the total number of elements required in the array DpV,
is equal to the dimension of the vector V, then the ravel of DpV is
equal to V. If v is less than pV, then only the first ¥ elements
of V are used; if ¥ is greater than pV, then the elements of V are
repeated cyclically. For example, 2 3p1 2 is the matrix

1 2 1
2 1 2

and 3 3p1 0 0 0 is the identity matrix

1 0 0
0 1 ©
0 0 1

55

More generally, if A is any array, then Dpd is equivalent to
Dp,A. For example, if A is the matrix

1 2 3
4 5 6

then 3 5p4 is the matrix

1 2 3 & 5
6 1 2 3 4
5 6 1 2 3

The expressions 0pX and 0 3pX and 3 0pX and 0 0pX are all
valid; any one or more of the dimensions of an array may be zero,.
The result is an empty array.

Uses of empty arrays

A vector of dimension =zero contains no components and s
called an empty vector. Three expressions which vield empty
vectors are 10 and '' and p applied to any scalar. An empty vector

prints as a blank tline.

One important use of the empty vector has already been
illustrated: when one occurs as the argument of a branch, the
effect is to continue the normal sequence.

The following function for determining the representation of
any positive integer N in a base B number system shows a typical
use of the empty vector in initializing a vector 2 which is to be
built up by successive catenations: '

VZ«B R N
[1] Z<0
[2] 2Z<(BIN),Z
[3] N<LN:B
fu] =2xN>0V

10 R 1776
1 7 7 6
8 R 1776

3 3 6 O

Empty arrays of higher rank can be useful in analogous ways in
conjunction with the mesh function described in the section on
Mixed Functions.

If X is a vector and I is a scalar, then X[I] denotes the Ith
“"element of X. For example, if X«2 3 5 7 11 then X[2] is 3.

If the index I is a vector, then X[I] is the vector obtained
by selecting from X the elements indicated by successive components
of TI. For example, X[1 3 5] is 2 5 11 and X[5 4 3 2 1] is
11 7 5 3 2 and X[13] is 2 3 5. If the elements of I do not belong
to the set of indices of X, then the expression X[I]1 vyields an

56

In general, pX[I]l 1Is equal to pIl. In particular, iIf I is a
scalar, then X[I] is a scalar, and if I is a matrix, then X[I] is a
matrix. For example:

A<YABCDEFG'
Mel 3p3 1 4 2 1 4 4 1 2 4 1 4
Y :

= FE NN W
=N FF

1
1
1
1
Al

M]

CAD
BAD
DAB
DAD

If M is a matrix, then ¥ is indexed by a two-part list of the
form I;J where I selects the row (or rows) and J selects the column
(or columns). For example, if M is the matrix used in the example
above, then M[3;3] is the element 2 and M[1 3 4;1 3] is the matrix

3 4
b2
T

In general, pM[I;J] is equal to (pI),pd. Hence, if I and J
are both vectors, then M[I;J] is a matrix; if both I and J are
scalars, M[I;J] is a scalar; if I is a vector and J is a scalar (or
vice versa), M[I;J] is a vector. The indices are not limited to
vectors, but may be of higher rank. For example, if I is a 3 by 4
matrix, and J is a scalar, then M[I;J] is of dimension 3 4, and
M[J;I]1 is of dimension 3 L.

The form M[I;] indicates that all columns are selected, and
the form M[;J] indicates that all rows are selected. For example,
M[2:) is 2 1 4 and M[;2 1] is

IR TN
= ENN W

Permutations are an interesting use of indexing. A vector P
whose elements are some permutation of its own indices is called a
permutation of order pP. For example, 3 1 4 2 is a permutation of
order 4. If X is any vector of the same dimension as P, then X[P]
produces a permutation of X. Moreover, if pP is equal to (pM)[11],
then M[P;] permutes the column vectors of M (i.e., interchanges the
rows of M) and is called a column permutation. Similarly, if pP

equals (pM)[2], then M[;P] is a row permutation of M.

57

An array appearing to the left of a specification arrow may be
indexed, in which case only the selected portions are affected by
the specification. For example:

X<2 3 5 7 11
X[1 3]«6 8
X

6 3 8 7 11

The normal restrictions on indexing apply; in particular, a
variable which has not already been assigned a value cannot be
indexed, and an out-of-range index value cannot be used.

In l-origin indexing, Xx[1] 1is the 1leading element of the

vector X and X[pX] is the last element. In 0O-origin indexing, X[0]
is the leading element and X[1+pX] is the last. 0O-origin indexing
is instituted by the command)ORIGIN O. The command)YORIGIN 1
restores l-origin indexing. The index origin in effect applies to

all coordinates of rectangular arrays. Index origin may be changed

In certain expressions such as +/[J1M, +\[JIM, and X¢[JIM (to
be treated more fully in the two following sections), the value of
J determines the coordinate of the array M along which the function
is to be applied. Since the numbering of coordinates follows the
index origin, a change of index origin also affects the behavior of
such expressions.

The index origin also affects six other functions, the monadic
and dyadic’ forms of ? and 1, and 4 and ¥. The expression 1N yields
a vector of the first ¥ integers beginning with the index origin.
Hence X[1N] selects the first ¥ components of X in either origin.
Moreover, 11 is a one-element vector having the value 0 in O-origin
and 1 in l-origin; 10 is an empty vector in either origin.

The index origin remains associated with a workspace; in
particular, the index origin of an active workspace is not affected
by a copy command. A clean workspace provided at sign-on or by the
command)YCLEAR is in 1l=-origin. All definitions and examples in
this text are expressed in l-origin.

Character arrays print with no spaces between components in
each row; other arrays print with at least one space between
components. If a vector or a row of a matrix requires more than
one line, succeeding lines are indented.

A matrix prints with all columns aligned and with a blank line

before the first row. A matrix of dimension N,1 prints as a single
column.

58

FUNCTIONS ON ARRAYS

There are five ways in which the scalar functions of Table 2
extend to arrays: element-by-element, reduction, scan, inner
product, and outer product. Reduction, scan, and outer product are
defined on any arrays, but the other two extensions are defined
only on arrays whose sizes satisfy a certain vrelationship called
conformability. For the element-by-element extension,
conformability requires that the shapes of the arrays agree, unless
one is a scalar or one-element array. The requirements for inner

product are shown in Table 6.

Scalar functions

A1l of the scalar functions of Table 2 are extended to arays
element by element. Thus if ¥ and ¥ are matrices of the same size,
f is a scalar function, and p<MfN, then P[I;J] equals

MILT;J1fN[I;J], and if @<«fN, then Q[I;J] is equal to fN[I;J].

If ¥ and ¥V are not of the same size, then MfN is undefined
of M and N is a scalar or one-element array, in which «case the
single element is applied to each element of the other argument.
In particular, a scalar versus an empty array produces an empty
array.

An expression or function definition which employs only scalar
function and scalar constants extends to arrays 1like a scalar
function.

Reduction

The sum-reduction of a vector X is denoted by +/X and defined
as the sum of all components of X. More generally, for any scalar
dyadic function f, the expression f/x is equivalent -to
XC13fx[2]1f...fX[pX], where evaluation is from rightmost to leftmost

as usual. A user defined function cannot be used in reduction.

If X is a vector of dimension zero, then f/X yields the
identity element of the function f (listed in Table 5) if it
exists; if X is a scalar or vector of dimension 1, then f/X vields
the value of the single element of X.

The result of reducing any vector or scalar is a scalar.

59

Dyadic ldentity lLeft-
Function Element Right
Times 1 L R
Plus 0 L R
Divide 11 R
Minus -10 R
Power x| 1 R
Logarithm @1 None
Max imum f{71.701u4...E38|L R
Minimum Ly 12.7014.,.E38L R
Residue 1o L

Circle ol 0 None
Out of 1 L

Or vio L R
And Al L R
Nor #10 None
Nand w0 None
Equal =1} Apply L R
Not equal 210} for L R
Greater >0l logical R
Not less 211 { arguments R
Less <l0}| only L

Not greater <4 L

Table 5: IDENTITY ELEMENTS OF
PRIMITIVE SCALAR
DYADIC FUNCTIONS

For a matrix M, reduction <can proceed along the first
coordinate (denoted by f/[1]JM) or along the second coordinate
(f/L21M). The result in either case 1is a vector; in general,
reduction applied to any non-scaltar array 4 produces a result of
rank one less than the rank of 4 (hence the term reduction). The

numbering of coordinates follows the index origin, and an attempt
to reduce along a non-existent coordinate will result in an index

Since +/[11M scans over the row index of M, it sums each
column vector of ¥, and +/[231M sums each row vector of M. For

example, if M is the matrix

1 2 3
4 5 6

then +/0114 is 5 7 9 and +/[21¥ is 6 15.
In reducing along the last coordinate of an array, the
coordinate indicator may be elided ~-- thus, +/M denotes summing

over each of the rows of ¥ and +/V denotes summing over the last
(and only) coordinate of the vector V.

60

1"

can
Generally, for any scalar dyvadic function f, the expression
f\x vields a result @ where pQ is equal to pX.

If g«f\X is an expression where X is a vector, then Q[I] is
equivalent to f/x[.1I] where 7 is in the set 1pX. For example, if Vv
is the vector 1 3 5 7, ‘then +\v will yield the result 1 4 9 16.
A scalar argument is treated as a one-component vector.

For a matrix M, scan can proceed along the first coordinate
(denoted by f\[11M) or along the second coordinate (f\[21¥ or f\M).
For example, if ¥ is the matrix

then s\[11M is the matrix

and :\M (or :\[2]M) is the matrix

6L L 16
8 2 4

The familiar matrix product is denoted by ¢<«4+.xB. |If 4 and B
are matrices, then (¢ is a matrix such that (¢[I;J] is equal to
+/ALI;1xB[;J]1. A similar definition applies to Af.gB where f and g
are any of the standard scalar dvadic functions.

If 4 is a vector and B is a matrix, then ¢ is a vector such
that ¢c[J] 1is equal to +/AxB[;:;J]. If B is a vector and 4 is a
matrix, then ¢ is a vector such that ¢[r] is equal to +/A[I;]xB.
If both 4 and B are vectors, then 4+.xB is the scalar +/4xB.

The last dimension of the pre-multiplier 4 must equal the
first dimension of the post-multiplier B, except that if either

argument is a scalar, it is extended 1in the usual way. For
non-scalar arguments, the dimension of the result is equal to
(T1+pA),14pB. (see the function drop in the section on Mixed
Functions.) In other words, the dimension of the result is equal

to (pd),pB except for the two inner dimensions (T14p4 and 14pB),
which must agree and which are eliminated by the reduction over
them. Definitions for the various cases are shown in Table 6.

The outer product of two arrays X and Y with respect to a
standard scalar dyadic function g is denoted by Xo.gy and yields an
array of dimension (pX),pY, formed by applying g to every pair of
~ components of x and vy, providing the rank of the result s not

greater than 2. See Table 7 for definitions of various cases.

61

Conformability Definition

pA |pB |pAf.gB|requirements z<Af.gB
) 2«f/AgB
|14 Z«f/AgB
U Z«f/AgB
ulv U=V Z2<f/AgB

V Wi W Z[11+f/4gB[;I]

T U T ZLI11«ft/ALT;]gB

ulv w{ w u=v Z[Il«f/AgBL ;1]

T uUlv T U=V Z[I]«f/A[I;]1gB

T U\V Wy T W U=V Z[I;J1«f/A(T;18B[;J]

Table 6: INNER PRODUCTS FOR PRIMITIVE SCALAR
DYADIC FUNCTIONS f AND g

If ¥ and Y are vectors and zZ<«Xo.gy, then 2[I;J] is equal to
- X[IlgYlJl. For example:

X<13
Y i
Xo xY

N
=N
(o]

-
=
o
(]

Definition
pA | pB |pheo.gB Z<A°.gB
<A gB
14 4 ZLIJ<«AgB[I]
U U Z[I1«AlI]gB
ulv uv ZLT;J1«<ALI1gBLJ]
V Wy V W ZLI;J]<AgBlI;J]
T U T U 2T ;J1<ALT ;J])gB

Table 7: OUTER PRODUCTS FOR PRIMITIVE
SCALAR DYADIC FUNCTION g

62

MIXED FUNCTIONS

The scalar functions listed in Table 2 each take a scalar
argument (or arguments) and vyield a scalar result; each is also
extended element by element to arravs. The mixed functions of
Table 8, on the other hand, may be defined on vector arguments to
yield a scalar result or a vector result, or may be defined on
scalar arguments to vyield a vector result. In extending these
definitions to arrays of higher rank, it may therefore be necessary
to specify over which coordinate of an array the mixed function is
to be applied. The expression [J] following a function symbol
indicates that the function is applied to the Jth coordinate. |If
the expression is elided, the function applies to the last
coordinate of the argument array. These conventions agree with
those used earlier in reduction. The numbering of coordinates
~follows the index origin.

The expression &4 yields the array A4 with the last two
coordinates interchanged. For a scalar S, vector V¥V, and matrix M,
the following relations hold:

®S is equivalent to S
®V is equivalent to V
&M is equivalent to ordinary matrix transpose.

Rotate

|f XK is a scalar or ohe-element array and X is a vector, then
KbX is a cyclic rotation of X defined as follows: K¢X is equal to
X[1+(pX)| 1+K+1pX]. For example, if X«2 3 5 7 11, then 2¢X is
equal to 5 7 11 2 3, and 2¢X is equal to 7 11 2 3 5. In O0-origin
indexing, the definition for K¢X becomes X[(pX)|K+1pX]. :

If the rank of X is 2, then the <coordinate J along which
rotation is to be performed may be specified by the form Z<K$[JIX.
Moreover, the dimension of X must equal the remaining dimension of
X, and each vector along the Jth coordinate of X is rotated as
specified by the corresponding element of XK. For example, If pX is

3 4 and J is 2, then X must be of dimension 3 and Z[I;] is equal

to K[Ilox[(Ir;1. If J is 1, then pXK must be 4, and Z[;I] is equal to
K[T1oXx[;1]. A scalar K is extended in the wusual manner. The
following are examples of rotate:

M 0 1 2 3¢[11M 1 2 3¢[2]M
1 2 3 Ly 1 6 11 4 2 3 4 1
5 6 7 8 5 10 3 8 7 8 5 6
9 10 11 12 9 2 7 12 12 9 10 11

63

Reverse

If X is a vector and R<9X, then R is equal to X except that
the elements appear in reverse order. Formally, PR is equal to
X[1+(pX)-1pX]. In O0-origin indexing, the appropriate expression is

X[L71+(pX)-1pX].

If 4 is any array, J is a scalar or one-element array, and
R<¢[JJA, then R is an array 1like 4 except that the order of the
elements is reversed along the Jth coordinate. For example:

A ’ ¢L1]4 ‘ L2114
1 2 3 4 5 6 3 2 1
4 5 6 1 2 3 6 5 4

The expression ¢4 denotes reversal along the last coordinate
of 4.

The expression U/X denotes compression of X by U. if U is a
logical vector (comprising elements having only the values 0 or 1)
and X is a vector of the same dimension, then U/X produces a vector
result of +/U elements chosen from those elements of X
corresponding to non-zero elements of Uu. For example, if

X«<2 3 5 7 11 and U«1 0 1 1 0 then U/X is 2 5 7 and (~U)/X is 3 11.

To be conformable, the dimensions of the arguments must agree,
except that a scalar (or one-component array) left argument s
extended to apply to all elements of the right argument. Hence 1/X
is equal to X and 0/X is an empty vector. A scalar right argument
is extended. The result in every case is a vector.

If ¥ 1is a matrix, then U/[11M denotes compression along the
first coordinate, that is , the compression operates on each column

vector and therefore deletes certain rows. It is called column
compression. Similarlty, U/[21M (or simply U/M) denote row
compression. The result in every <case is a matrix. As in

reduction, U/M denotes compression along the last coordinate. For
example:

M 10 1/01]1M 11 0 1/021M
1 2 3 4 1 2 3 4 1 2 4
5 & 7 8 9 10 11 12 5 6 8
g 10 11 12 g 10 12

Mesh

Mesh is denoted by U\X where U is a logical (in the set 0 1)
scalar or vector, and where X is an arbitrary array. A scalar left
argument is not extended, but is treated as a one-component vector.
If X is not a matrix, then pU\X is equal to pU. If X is a matrix,
U\[J1X denotes mesh along the Jth coordinate (U\X denotes mesh
along the last coordinate), and the Jth dimension of the result is
pU; the other result dimension is the dimension of the non-meshed
coordinate of X.

bk

Let P be the number of ones in U (P«+/U) and let
number of zeros in U (@«+/~U). Also, let XK be the mesh
element such that if the right argument X of U\X is
array, then X is a 0 (X«0), and if X is a literal array,

a blank (K<«' '). In particular,

in the expression U\V 1

vector partitioned into two subvectors Y and Z by the
rules. 1 f:
1. O0O=pV Y <> PpkK 7 <« QpkK
2. PzpV Y <> PpV 7 <> Qpk
3. P<pV Y «» PpV 7 <> QpPIV
Then, each 1 in U selects from Y (the first substring), a
in U selects from Z (the second substring). For example:
1 01 1 0\r0 Case 1: Y <> 0 0 O 7 <=
0 0 0 0 0
1 01 1 0\2 3 Case 2: Y <+ 2 3 2 7 <~
2 0 3 2 0
1 01 1 0\1 2 3 456 7 Case 3: Y <> 1 2 3 7 <
1 4 2 3 5
1 01 1 0\1 2 3 4 Case 3: Y <= 1 2 3 7 <>
1 L 2 3 L
If the right argument ¥ is a matrix, then the

equivalences hold:
(UN\M)Y[I;] <> (UN[2IM)[T;] <> U\MLI;]
(UNL2IM)YL;I) <> UN[AIMLsT] <> UNMLI]

For example:

M 01 1 1 0\M
CAD() (CAD)
BAT () (BAT)
END () (END)

All argument
When P=pV, mesh

101 1 0\1 011 0/15
i1 0 3 4 0

65

lengths are conformable for mesh.

is the converse of compression:

@ be the

a numeric
then X is
et V be a
following

nd each 0

following

Prefix

Prefix produces a logical array (elements are only 0 and 1)
from the expression SoX where S must be a scalar and X may be a
scalar or a vector. A one-component vector is treated as a scalar.

‘Prefix is defined as SoX <«» Xo.215. For example:

5a3
1 1 1 0 0
5a415
1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0
1 i 1 1 1
Suffix ‘ '
Suffix is formally defined as the reversal of prefix. The

expression SwX is equivalent to ¢SaX.

The expression RiX denotes the value of the array X evaluated
in a number system with vradices R[1],R[2],...,R[pR]. For example,
if R«24 60 60 and X<1 2 3 is a vector of elapsed time in hours,
minutes, and seconds, then RiX has the wvalue 3723, and is the

corresponding elapsed time 1Is seconds. In the same manner,
10 10 10 1011 7 7 6 is equal to 1776, and 2 2 211 0 1 is equal to
5. Formally, RiX <+ +/Xx0x\¢1+R,1. |f X is a scalar, the result

is a scalar; otherwise, pRLX <> “14pX.

The arguments R and X are conformable if pR is equal to “14pX;

scalar arguments are extended in the usual way. |If X is a scalar,
then X1C is the value of the polynomial in X with coefficients C,
arranged in order of decending powers of X. For example, the

polynomial (X*3)+(3xX%x2)-7 may be evaluated for a scalar X by the
expression X11 3 0 ~7. The arguments are not restricted to integer
values.

For a matrix right argument, (Ri1M)[I] <+ RiM[I;]; decode is
not subscriptable. The following is an example of decode:

M<«2 3p16

10.LM
123 456

The decode function is commonly applied in work with
fixed-base number systems and is often called the base value
function.

66

The encode function ET7X denotes the representation of X in the

base~R number system; encode is the converse of decode. For
example, 2 2 2 275 is 01 01 and 2 2 271t5 is 1 0 1 and 2 275 is
0 1. |If X is a negative number, then RTX is the base-R complement

representation of |X; for example, (8p2)T 5 is 1 1 1 1 1 0 1 1.

The dimension of ERTX is (pX),pRE, except that a one-conponent
right argument is treated as a scalar. For a vector right argument
the result is a matrix and (RTV)[I;] <> RTVL[I]; encode is not
subscriptable. The following is an example of encode:

10 10 107123 u456 1

1 2 3
L 5 6
9 9 9

If ¥V is a vector and § is a scalar, then J<«ViS vyields the
position of the earliest occurrence of S in V. If S does not equal
any element of V, then J has the value (11)+pV. Clearly, this
value depends, as does any result of this function, on the index
origin, and is one greater than the largest permissable index of V.

If 5 1Is a vector, then J is a vector such that J[I] 1is the
index in V of S[I]J. For example:

'ABCDEFGH'1'GAFFE"
7 1 6 6 5

If X is a numerical vector, then the expression Xi1[/X yields
the index of the (first) maximum element in X. For example, if X
is the vector 8 3 5 13 2 7 9, the [/X is 13 and X1l /X is u. '

The result in every case has the same dimensions as the
righthand argument of 1. For example, if Z«V1S, and § is a matrix,
then Z[I;J]1 is equal to ViS[I;J].

Membership | ,

The function Xe¢Y yields a 1logical array of the same dimension
as X. Any particular element of XeY has the value 1 if the
corresponding element of X belongs to Y, that is, if it occurs as
some element of Y. For example, (17)e3 5 is equal to 0 0 1 0 1 0 O

and 'ABCDEFGH'e'COFFEE' equals 0 0 1 0 1 14 0 0.

If the vector U represents the universal set in some finite
universe of discourse, then Ued4d is the characteristic of the set 4,
and the membership function is therefore also called the
characteristic function.

67

The size of the result of the function ¢ is determined by the
size of the left argument, whereas the size of the result of the
dyadic function 1 is determined by the size of the right argument.
However, the left arguments of both frequently play the role of
specifying the universe of discourse.

If V is a vector and S is a scalar between 0 and pV, then StV
takes the first S components of V. For example, if V<17, then 3tV

is 1 2 3 and 04V is 10, and 84V yields a domain error.

If S is chosen from the set -1pV, then S4V takes the last |§
elements of V. For example, ~ 34V is 5 6 7,

IfT ¥ 1is a scalar, then S+F¥ is valid only 1if S is an empty
vector (10). The result of (10)4N is N.

If 4 is an array, then Wt+4 is valid only if W has one element
for each dimension of 4, and W[I] determines what is to be taken
along the TIth coordinate of 4. For example, if A4<3 upi112, then
2 "344 is the matrix

2 3 by

6 7 8

The function drop (+) is defined analogously, except that the
indicated_number of elements arzs dropped rather than taken, For
example, 1 1+4 is the same matrix as the one displayed in the

preceding paragraph.

The rank of the result of the take and drop functions is the
same as the rank of the right argument.

The function AV produces the permutation which would order 7V,
that is V[AV] is in ascending order. For example, if V is the
vector 7 1 16 5 3 9, then AV is the vector 2 5 4 1 6 3, since 2 is
the index of the first in rank, 5 is the index of the second in
rank, and so on. The symbol A is formed by overstriking | and a.

if P is a permutation vector, then AP 1is the permutation

inverse to P. If a vector D contains duplicate elements, then the
ranking among any set of equal elements 1Iis determined by their
positions in D, For example, 45 3 7 3 9 2 is the vector

6 2 4 1 3 5,

The right argument of grade up or grade down is only valid if
it is a vector.

that the grading is determined in descending crdar. Because of the
treatment of duplicate - items, the expression aA/(4V)=¢VV has the
value 1 if and only if the elements of the vector V are all
distinct.

68

Deal :
The function M?N produces, for a scalar N, a vector of
dimension M obtained by making M randem selections, without
replacement, from the population 1N; therefore, M must be in the
set 0,1/, In particular, N?NV vields a random permutation of order
. The left argument 1is limited to a scalar or one-component
array; the right argument may be a scalar or vector.

If V is a vector, then (S?2V)[I;] <«» S?V[I]. For example:

575 6 7

The lamp symbol a, formed by overstriking n and o, signifies
that what follows it is a comment, for illumination only and not to
be executed. The lamp symbol may occur only as the first character
in a statement, but may be used in defined functions. Comments may
not be entered during evaluated () input,

MULTIPLE SPECIFICATION

Specification (<) may (like any other function) occur
repeatedly in a single statement. For example, the execution of
the statement Z<XxA<«3 will assign to 4 the value 3, then multiply
this assigned value of 4 by X and assign the resulting value to 2.

Multiple specification is useful for initializing variables.
For example, X<Y<+1+Z+0 assigns 0 to Z and 1 to both X and Y.

A branch may occur in a statement together with one or more
specifications, provided that the branch is the last operation to
be executed (i.e., the Tleftmost). For example, the statement
+>8x1N>T«I+1 first augments I, and then branches to statement § if W
exceeds the new value of I.

69

0L

Monadic form fB f Dyadic form AfB

Definition Syntax | Name Name Syntax | Definition
or example or example
pd <= 10 oM Size o | Reshape VoM 5pC <= 'ABCDE'
pB <> 4 2 3pB <> 2 3 1
pC <> 3 4 b 2 3
M <> (x/pM)pM WM Ravel , | Catenate v,V b 1,4 <> 4 1 3
,C += 12pC 0,12 <> 0 1 2
pL,A <> 1 pA,10 <= 1
14 <> 1 2 3 4 15 Index 1 | Index of V1M B13 7 <> 2 5
10 <> an empty vector generator B1B <> 1 2 3 4
6-15 <> 5 4 3 2 1 L[<> 1 2 2 1
OV <= VI(p¥V)+1-10V] oM Reverse ¢ | Rotate VoM SOV «» VI1+(p¥)|S-1-1pV]
¢B <> 4 1 3 2 \ 3¢B «> 4 2 3 1 <> ~1¢B
¢C <> DCBA ¢[1]1C <« IJKL 1 0 1¢C <«~»> DABC

HGFE EFFGH FFGH

LKJT ABCD JKLT
Scalar function M Roll ? | Deal S22V S?V <> Random deal of g
See Table 2 elements from V. lf v is

a vector:
(S?2V)LI;] <> S?2V[I]
84 <> 4 8B <> B R Transpose | § DEFINITIONS USED IN EXAMPLES
&C <« AEI
BFdJ A<3
CGK B+2 3 1 4
(QMILI;d] <=+ M[JT] DHL C«+3 Up'ABCDEFGHIJKL'
- L<1 0 0 1
BLAB] <> 1 2 3 4 AV Grade up A S <> a scalar.
A'"CDAEACY <+ 3 5 1 6 2 4 V <+ a scalar or vector.
V <=+ a vector only.

VIVV] <= ¢VLAV] YV Grade down | ¥ M «» a scalar, vector, or matrix.
BLYB] <> u4 3 2 1 M <> a matrix only.
Y'CDAEAC' <+ 4 2 1 6 3 5 I <+ a scalar integer.

Table 8:

PRIMITIVE MIXED FUNCTIONS

1L

Monadic form fB f Dyadic form 4fp
Definition Syntax | Name Name Syntax {Definition
or example or .example
, I ndex viM] B[2] <+ 3 B[] «» B
NOTES MIMM] | CL25] <= CL23;14] <> 'EFGH!
CL2:;2 3pB] <> FGE
1. The functions 15, viM, VIMI, M[M;M], HFG
?M, S?V, AV, VYV, and operator '
subscripting are index origin dependent. + | Take VAM 34B <> 2 3 1 2 24C <« AB
: . T34B +> 3 1 4 EF
2. Elision of any index in subscripting
selects all along that coordinate. ¢+ | Drop VM 2¢B <> 1 4 1 T14C < FFQ
T24B <+ 2 3 IJK
3. The functions oM, VoM, V/M, V\M,
s5?v, SaV, SwV, VTV, and viy apply /| Compress V/M L/B <- 2 4 L/4 <+ 3 3
along the last coordinate of the 1 0 1/011C <> ABCD
indicated matrix. The functions ¢[I]1M, 0/B <= 10 IJKL
velrlM, v/LI1lM, and V\[I1lM indicate that :
the function is to be applied along the \ | Mesh V\M L\14 <> 1 3 4 2
Ith coordinate. The functions $?2v, SaV., L\'AB-'" <> '4--pB!
SwV, VTV, and V.M can not be L\L/B <+ 2 0 0 4
subscripted. .
e { Membership |yMeym "QUICK'eC <> 0 0 1 1 1
L. The functions 4V and Yy sort : Ce'QUICK' <> 0 0 1 0
‘literal arguments according to an EBCDIC 00 00
collating sequence. Thus, if ¥ is a 1010
matrix of names, the expression
X[AXx[3;7];] will sort x by the yth letter. | 71| Encode VTV 2 2 2T1 6 2 => 0 0 1
2 3 <> 10 10717123 11 0
5. The left argument of vpyM is restricted g 9 «> 10 10T 1 01 0
to two or less elements; arrays of rank
three or higher are not permitted. 1 | Decode ViM B <+ 212 2 2TB 9 «+ 21F
(4pB0)T762167 <«> 3 31 26 7
6. The right argument of ,¥ must not
have more than 255 elements; vectors a | Prefix SoV Sol <> Iz1S8 SaV <+ Veo.z18
of lengths longer than 255 are not a2 <> 1 1 0 0 0 0
permitted.
w | Suffix SwV SwV <> ¢dSaV 3wl <> 0 0 1

Table 8: PRIMITIVE MIXED FUNCTIONS (continued)

SYSTEM DEPENDENT FUNCTIONS

There are three main types of information about the state of
the system which are of value to the user:

1. General information common to all users, such as the date,
time of day, and the port numbers of all signed-on terminals.

2. Information specific to the particular work session, such
as the time of sign-on, the central computer time used, the
total input wait time, and the input device type.

3, Information specific to the active workspace, such as the
amount of storage available, the condition of the state
indicator, and the number of significant digits to be
displaved during output.

The functions l-beam and Domino provide the user with the

facility to examine system information and modify workspace or work
session parameters.

The function 1S5 fetches system information; the result is
selected by the right argument, which must be a one-component
array. The 1 is formed by overstriking T and L. Table 9 is a
summary of the l!=-beam function. 19 and 127 yield vectors; all
other results are scalar. Times are all in units of one-sixtieth
of a second, the date is given as a six digit integer in which the
successive digit pairs specify the month, day, and year, and the
available storage is given in bytes.

The byte is a unit of storage equal to eight binary digits. A
variable requires four bytes of overhead, plus four bytes per
element. A defined function requires seven bytes of overhead, one
byte for each local variable, one byte for each 1ine in the
function, plus one byte for each character in the body of the
function; the total is then raised to the next highest multiple of
ten.

In designing an algorithm for a particular purpeose, It
frequently happens that one may trade time for space; that is, an
algorithm which requires 1little computer time may require more
storage space for intermediate results, and an algorithm which
requires little storage may be less efficient in terms of time.
Hence, the information provided by the functions 121 (central
computer time used) and 122 (available storage for arrays and
function execution) may be helpful in designing algorithms.
lMoreover, since the functions 121 and 122 can, like all of the
|~beam functions, be used within a defined function, they can be
used to make the execution depend upon the space available or the
computer time used.

Input wait time is defined as the total accumulated time since
signh-on during which the kevyboard has been unlocked, The
associated function (x19) may be used in conjunction with [J or [J to
determine the amount of time taken by a student in responding to a
guestion. The following is an example of the use of 119:

72

VD3;N3A,B;T
(1] ~N<O
[2] A<« 1+710
[3] B« 1+710
(0] T<«119
[57 A;' x V;B;' = 2!
[6] ~(0=4AxB)/9
[71 'YWRONG, TRY AGAIN.'
(8] ~u
[9]1 'CORRECT! TIME= '3L.5+((119)-T)+60;"' SECONDS.'
[10] ~+(5>N<«N+1)/2
[11] ‘YEXERCISE COMPLETED.'V
D
L x 2 = 7
0:
8
CORRECT! TIME= 2 SECONDS.
2 x 3 =7
O:
7
WRONG, TRY AGAIN.
2 x 3 = 7
0:
6
CORRECT! TIME= 1 SECONDS,
8 x 9 = 7
O:
72
CORRECT! TIME= 3 SECONDS.
b x 5 .= 7
0:
20
CORRECT! TIME= 3 SECONDS.
0 x 7 =7
0:
0
CORRECT! TIME= 1 SECONDS,
EXERCISE COMPLETED.

Domino

The function BV allows dynamic modification of workspace and
work session parameters such as output line width., Domino does not
return a result, and must be the last executed (i.e. leftmost)
operator in an APL expression. The arguments and actions of Domino

are summarized in Table 10.

Generally, the related I-beam and Domino functions differ by
10; for example, 111 gives the input device type, and H1 changes
devices. Expressions which combine related I|~beam and Domino
functions are often used in defined functions to assign a new value
to a workspace parameter while saving the old value. For example,
the expression [6,20+0xQ«116 saves the current output line width
value in @ and resets it to 20. Since B10 is ignhored (i.e. no
action results), the actions of Domino mayvy be made conditional: the
expression Eirzl11 switches the input/output device to the CRT at
that station if one exists.

73

| -BEAM

Ih

I5

I6
7

I8
I8
110

I11

112
113
Il4
115

I16
117
118
119
120
121
122

I23
I24
125
I26
127

128
I29

RESULT

Returns which devices are operational at this terminal,
1 CRT
2 Typewriter
3 CRT and typewriter
5 Film projector and CRT
6 Film projector and typewriter
7 Film projector, typewriter, and CRT

Current sense switch setting on the [IBM 1800 console
(always 0 on the IBM 1130).

The current console data entry switch setting.

The number of bytes available for function storage. The
maximum is 5120.

Port number: 0 thru 31.

The vector of port numbers of active terminals.

The user's sign on number (account number) returned as an
integer.

The user's terminal input device type:

0 CRT
1 Typewriter

The current index origin: 0 or 1

The current random number seed.

The next CRT row upon which output will occur: 0 thru 1k

The current film frame number. If the film projector is
not operational, then the result of 115 is meaningless.
Displavable frames are in the range 1 thru 1022,

0000 Film is at reverse overrun indicator.

. 1023 Film is at overrun indicator {(end).

Current maximum output line-width setting.

DOMAIN ERROR

DOMAIN ERROR

Cumulative input wait time (latency) in 60ths of a second.

Current time of day in 60ths of a second from midnight.

Elapsed CPU time from sign-on in 60ths of a second.

The number of bytes - currently available in the data
workspace. The maximum is 6390. Each array (temporary
or defined) wuses 4Yxi1+(number of elements) bytes.

The number of users currently signed on the system.

User's sign on time in 60ths of a second.

Today's date as an integer in the form MMDDYY.

The current line number of the function being executed.

The vector of the line numbetrs of pendent or suspended
functions from inner to outer.

The number of pendent or suspended functions.

The current significant digit setting for numeric output.

Table 9: THE [I~-BEAK FUNCTION

7h

DOMINO

Eo

1

E2,N

B3,

Bu, N

Bs, N

Be ., N

B7,N

s

EHo,nN

RESULT

Erases the CRT screen and positions the cursor at the top
of the screen. B0 is ignored if the current input/output
device is a typewriter.

Switches input/output control to the other terminal device
if it has been configured and is operational; otherwise,
B1 is igncred.

Sets the index origin (see)ORIGIN command) to N where
NeO 1.

Sets the random number seed to N where Ne0,132767,

Sets the CRT row to N if the CRT is the current
input/output device; otherwise, B4 is ignored, [NeO,114,

Positions the film at frame ¥ if the Film Projector has
been configured and 1is operational; otherwise, B#E5 is
ignored.

Position film and open shutter.
Rewind the film to the reverse overrun indicator and leave
the shutter closed,

Sets the current maximum output line-width (see)WIDTH
command) to N where Nel19+1101. If the CRT is the current
input/output device then the width will be set to 40LWN,.

Stops execution for N seconds where Ne0,1300,

Stops execution until a key is pressed. If the current
input device is a typewriter, then HEH8 1Is ignored. The
pause time associated with EH8 1is not counted in the 119

accumulation.
Sets the maximum significant digits (see)DIGITS command)
for numerical output to N where Nei16.
NOTES: 1. In each of the above, N must be a scalar or one
element array.
2. DOMINO must be the last executed operation

(i.e., the leftmost) of an APL expression.

Table 10: THE MONADIC DOMINGC FUNCTION

75

THE PLOT FUNCTION

The expression AfB results in a plot of the data contained in
the vector right argument B. B is composed of the vector of Y-axis
data catentated to the vector of X-axis data.

B <> X,Y and (pX) <= pY

The plotted points are bounded by the vector left argument A4.
A must be a h-component vector defined as:

A[1] <«» The minimum X-~data to be plotted.
A[2] <= The maximum X-data to be plotted.
AL3] <> The minimum Y-data to be plotted.
Al4] <> The maximum Y-data to be plotted.

Points falling outside of the specified 4 values will not be
plotted. The data is plotted on a 25 by 31 grid using -° to mark

the points plotted. Axis markings are output to 3 significant
digits and the X and Y scale factors are displaved at the bottom of
the plot. Plots on a CRT or typewriter are identical. After a

plot on a CRT, no further execution occurs until a key has been
pressed. This protects the plot from being inadvertently destroyed
by subsequent output. The following is an example of a plot:

X<+100 200 300 400 500 600 700 800
Y«2806 1403 935 702 561 468 401 351
100 800 350 2810[HX,Y

2.814 o
I
I
2.194
I
|
1.584+
| °
!
0.9614 °
: o
0.354 © o 0
fomm e fom-- b fomm-- o t-
1.00 2.40 3.80 5.20 6.60 8.00
X+«Xx10%x 02 Y<Yx10x 03

The scale factors multiplied by the values on each axis give
the X-data and Y-data. In this example the X~-data ranged from
100 to 800 and Y-data ranged from 350 to 2810 approximately.

76

V is a useful function for plotting data., V tests X and Y for
pltot argument legality, extends scalar arguments, computes the
maxima and minima for the plot left argument, and plots Y vs X. 4

is defined as follows. Note line 6.

VY V X;X:Y

[1] »((2=(ppX),ppY),(0=2(0\N0pX),0\0pY),(1=(p,.X),p,Y),(p,X)2p,Y)/

10 10 11 11 8 9 12
2] »(=/X<(L/X),[/X)/n
[3] X<X+ .4 .6xX+X=0
Cal (=/X<«(L/Y),[/Y)/6
[5] Y<«Y+ .5 .5xY+Y=0
[6] (X,Y)Bx,Y
(7] =0
[8] -»2,X«(pY)pX
(9] -»2,Y<«(pX)pY
[10] ~0,p0«"MATRIX ARGUMENTS ILLEGAL'
(11] -0,p0<«'LITERAL ARGUMENTS ILLEGAL'
[12] 'UNEQUAL LENGTH VECTORS ILLEGAL'
v

The plot example from the previous page can
executing:

X<100%18
Y<2806 1403 935 702 561 468 401 351
YV X

77

be obtained by

X<3xh

X
12

Ix L
12

NRINTY)
1.44

P<1 2 3 Y4
PxP
1 L 9 16

Pxy

5 10 15

Q<«'CATS!

Q
CATS

X<3

Y<h

(XxY)+u
16

XxY+4
24

X"y
SYNTAX ERROR
X7y
A

112.6
0.6

720

SAMPLE TERMINAL SESSION ==~ APPENDIX A

Assigns value of expression to X

Value of X typed out

Entry automatically indented
Response not indented

Negative sign for constants

Exponential form of constant

Four-element vector
Function applied element by element

Scalar applies to all elements

Character constant (hk-element vector)

Execution from right to left

Entry of invalid expression
Shows type of error committed
Retypes invalid expression with
caret where execution stopped

Residue function

Less than or equal function

Greater than or equal function

78

1 2 3 4x4 3 2 1
b 6 6 4

10

6-16

2x10

2%x16

vg
[1] S<«ux3,14159xRExR
[2] V<«SxR=z3
(3] v

R<2
S

S
50.2654

|4
33.51083

Multiplication function

Addition function

Maximum function

Index generator

Empty vector prints as a blank line

Scalar applies to all (i.e. 0)
elements of 10, resulting in an
empty vector

Function header
Function body

Close of definition

Execution of function

Display of values calculated in
function

79

VD; I
11 S<0
[2] 1I<«0
[3] 8+«S+T
(u] I<+I+1
[5] -»3x1Igh
(el v

N<5

D

S
15

I
VALUE ERROR

A

YERASE §

Vzi<sS X

[1] Z<«4x3,148159%xXxX
[2]1 ¥

S 3
113.0897

g«3x5 1

Q
37.6891

R<2

(8§ R)xR+3
33.5103

VZ<F N;I
(1] 2Z<1
(2] I<0
[3] I<I+1
(4] =>0x1I>N
[5] AR
[6] +3
71 v

=y
w

=
&)

120

Local variables established in header

Branch to line 3 (as long as condition

I<N is met)

Execution of function

Local variable has no value after
function is executed

"Erases definition

Function header--explicit result,
ohe argument

Use of defined function in expression

F is the factoria] function

80

TAF<3 5

X<F

rFf3]
Fl5]
FL3]
F[5]
FL3]
F[5]
FI[3]

w

W NN

TAF<0

VG«M G N

11
2]
(sl
[4]
(2]
(5]
L1l
(1]

val

G<N
M<M|N
>U4xM=z0
C1]1G<«M
[u]lN<G
(101
G<N

gl

VG<M G N

(1]
[2]
L3l
Cul

(5]
(6]

< ¥+ <

S
6

G<M
M<M|N
>UxMzQ
N<G

1

36 G ub

n

V@
[6]
[4.2]

(4.1]M,N

v

36 G uh

8 36
4 8
n

Sets trace on lines 3 and 5
Execution of function
Trace of function

Terminates trace

Explicit functicn with two arguments

Change line 1

Override line 2 with line &
Display line 1

01d 1line 1 retained until close
of definition

‘Display function definition and

stay in definition mode

Add line 5
Close definition

Execution of function

Add line between lines 4 and 5

81

(1]
(21
[3]
Lu]
(5]
6]

(1]
(21

%
v

v

B

¢rOJv
G<M G N
G+M
M<M|N
>U4xMz0
V<G
M,N

1

72<B N
72<(2,0)+0,2
+1xNz2pzZV

3

VALUE ERROR

Bl1

1

B

]

Z

2<(Z2,0)+0,

<1

+1

3

L

3 1

VALUE ERROR

Bl1

]

2<(2,0)+0,

VBL.11Z<«1V
SUSPENSION

VST

Bl1

]

*

YPURGE

)SI

VBL.11Z«1vV
vBLO1vV
VZ<B N

(1]
(2]
L3l

%

Z2<1
2<(2,0)+0,
>1xNzp7Z

Z
A

Z
A

Z

Display of function

Deletes line 5
Close definition

An (erroneous) function for

binomial coefficients

Suspended function

Assign value to 2
Resume execution
Binomial coefficients of order 3

Same error (local variable 2
does not retain its value)

Cannot edit function in definition
mode
Display state indicator

Clear state indicator

Insert line
Display revised text

Branching error because of
insertion

82

VB[31+2xN2p2V Change line' 3

vBLOalv

VZ<B N
[11 Z<1
(2] 7<(2,0)+0,72
[3] >2xN2p Z

VD A T:Y A function D is already defined
DEFN ERROR
VI;A3IY A conversational function
[13] VENTER CAPITAL AMOUNT IN DOLLARS' to compute value of an
[21 4<[amount 4 invested at interest
[3]1 ‘'ENTER INTEREST IN PERCENT' B for a period of Y years.
(ul I1<0
[5] "ENTER PERIOD IN YEARS'
[6] Y<[Request for input
[71] VRESULT IS '";Ax(1+.01xT)*YV Heterogeneous output
"Z *
ENTER CAPITAL AMOUNT IN DOLLARS
0: Waits for input from
1000 keyboard
ENTER INTEREST IN PERCENT
O:
4,75
ENTER PERIOD IN YEARS
O
10

RESULT IS 1590.52

X<2 3 5 7 11
X, X Catenation

2 383 &5 7 11 2 3 5 7 11

A<3 Lp2x112 Reshape
A

2 b4 6 8
10 12 14 16
18 20 22 24

83

6 2pA Reshape of matrix A4

2)
6 8
10 12
14 16
18 20
22 24
LA Ravel of 4

2 4 6 8 10 12 14 16 18 20 22 24

3 3p1 0 0 O Identity matrix

1 00

01 0

0 01

A<"ABCDEFG!

Ml 3p3 1 4 2 1 4 4 1 2 4 1 4

M

3 1 4

2 1)

L 1 2

L 1 L

AlLM] Indexing
CAD
BAD
DAB
DAD

M[1 3 431 3]

3 4
by 2
4oy

X<2 3 5 7 11 .
X[1 3]«6 8 Indexed variable on left of

X specification arrow
6 3 8 7 11

M<2 3p16
M
1 2 3

4 5 6 84

+/01]1M Row reduction
5 7 9

+/02]M Column reduction
6 15

+/M
6 15

+\[1]1M Row scan

+\[21M Column scan

A<«2 3p1 5 7 3 4 2
A

1 5 7
3 4 2

A+.x100 10 1 Inner Product (+.x is ordinary
157 342 matrix product)
X<«13

Y14

Xo.xY Outer Product

)
=
o
@

“M<3 Lp112

o
lo3}
~3
@

0 1 2 3¢L1]M Cotunn rotaticn

85

1 2 36(21M Row rotation

¢r11M Column reversal

w
(o]
~J
o

ol21M Row reversal

o]
~1
(o)}
w

10 1/[011M Row compression

11 0 1/[21M Column compression
1 2 4

5 6 8

9 10 12
1 0 1 1 0\0 Mesh

0o 0 o 0 0

1 01 1 0\2 3
2 0 3 2 0

101 1 0\1 2 3 4 5 6 7
1 4 2 3 5

M«3 Sp'CAD(C)BAT()END()'
M

CAD()
BAT()
END()

01 1 1 0\M

(CAD)
(BAT)
(END)
86

1 01 1 0 1\u4
1 0 2 3 0 &

5015 Prefix

1 0 0 0 ©

1 1 0 0 o0

1 1 1 0 0

1 1 1 1 o0

1 1 1 1 1

M«2 3p16

M

1 2 3

4 5 6

101M , Decode
123 456

10 10 107123 456 1 Encode

1 2 3

4 5 6

9 9 9

"ABCDEFGJ '\ ' GAFFE" ' Index of

7 1 6 6 5

A<3 L4 p112

2 244 Take

3 y

7 8

2 T2%4 Drop
g 10

87

Aus 23 78 “u45 71 55 Upgrade
4 2 1 6 5 3

Y45 23 78 45 71 55 Downgrade
3 5 6 1 2 4

5?25 6 17 ‘ Deal

o
N
13
S
£

RTHIS ENDS THE EXAMPLES IN THE TERMINAL SESSION Comment

838

BIBLIOGRAPHY

Berry, P.C., APL\360 Primer, IBM Corporation, 19628.

Berry, P.C., APL\1130 Primer, IBM Corporation, 1968.

Breed, L.M., and R.H. Lathwell, "The Implementation
of APL\360", ACM Symposium on Experimental
Systems for Applied Mathematics, Academic Press,
1968,

Falkoff, A.D., and K.E. Iverson,"The APL\360 Terminal
System”, ACM Symposium on Experimental Systems
for Applied Mathematics, Academic Press, 1968.

Falkoff, A.D., K.E. Iverson, and E.H. Sussenguth, "A
Formal Description of System/360", IBM Systems
Journai, Volume 3, Number 3, 1964.

Iverson, K.E., A Programming Language, Wiley, 1962.

Iverson, K.E., Elementary Functions: an algorithmic
treatment, Science Resgsearch Associates, 1966.

Iverson, K.E., "The Role of Computers in Teaching",
Queen's Papers in Pure and Applied Mathematics,
Volume 13, Queen's University, Kingston, Canada,
19¢a.

Lathwell, R.H., APL\360: Operator's Manual, IBM
Corporation, 1968.

Lathwell, R.H., APL\360: System Generation and
Library Maintenance, IBM Corporation, 1968.

Pakin, S., APL\360 Reference Manual, Science Research
Associates, 1968.

Rose, A.J., Videotaped APL Course, IBM Corporation,

1968.

Smillie, X.W., Statpack 1l: An APL Statistical
Package, Publication No. 9, Department of
Computing Science, University of Alberta,

Edmenton, Canada, 1968.

89

APL\1500: Operator's Guide

Authors: S. E. Krueger

T. D. McMurchie

© Science Research Associates, Inc., 1968

90

OPERATOR'S GUIDE
TABLE OF CONTENTS

PART 1 -- INITIAL PROGRAM LOADING

PART 2 -- PRIVILEGED USER OPERATIONS
Privileged System Commands

Communication Commands
YJHI
YPA
YHI PA
JNOTICE

Account Control Commands
YADD
JADDP
YDELETE

Inquiry Commands
YWHO
YPEOPLE
YPORTS

Terminal Disconnect Command
YBOUNCE

System Status Definition Commands
YOPERATOR
YCONFIGURATION
YTIME
YDATE
Dyvadic 1-BEAM
Privileged Functions for the System Operator
Halt
Continue
Privilege
Unprotect
PART 3 -- THE RECORDING TERMINAL

PART 4 =-- SYSTEM ERRORS

LIST OF ILLUSTRATIONS

PRIVILEGED SYSTEM COMMANDS

91

92

93
93

95

96

97

98

98

102
103

105

106

9L

PART 1

INITIAL PROGRAM LOADING

This section describes the procedure for starting the
APL\1500 System. The APL\1500 System is a stand=-alone program which
is built from cards according to the procedure specified in the
SYSTEM GENERATION AND MAINTENANCE manual. Initial Progzram Loading
(I1PL) is accomplished by using the APL/IPL card deck which s
suppltied with the APL\1500 System. The first system start-up

procedure differs slightly from subsequent |PL procedures, and
these differences are noted where appropriate.

To start the APL\1500 System:
1. Press the Immediate Stop key on the console.

2. Mount and ready the APL\1500 disk packs. If this is the
first IPL for this system, the APL\1500 System Pack must be

mounted on drive 0. To configure the system for the desired
‘number of drives, see)JCONFIGURATION, Part 2 of this manual.

3. NPRO the 1442 card reader, put the APL/IPL card deck in
the hopper, and ready the reader.

4, Press the PROGRAM LOAD key on the console. The system
should come to a WAIT at memory location 0256 (hexadecimal).

5. Sign-on (see GAINING ACCESS, Part 1 of the APL\1500 User's

Guide). If this is the first IPL for this system, the only
user registered is 314159; this is the SYSTEM OPERATOR number,
and it is privileged. To register additional APL\1500 users,

see)ADD and)YADDP, Part 2 of this manual.

6. Set the time and date (see)TIME and)DATE, Part 2 of this
manual). APL\1500 is now running.

If this is the first |PL for this system, a reconfizuration
should be done to optimize disk storage and core utilization. For
the details of reconfiguring the APL\1500 system, see

YCONFIGURATION, Part 2 of this manual.

92

PART 2
PRIVILEGED USER OPERATIONS

A privileged user has access to all of the APL operations

described in this section, in addition to those available to the
normal user (see the APL\1500 User's Guide).

This part describes the privileged system commands,

dyadic 1-BEAM, and some useful functions for the APL Operator.

PRIVILEGED SYSTEM COMMANDS

This section discusses the system commands that are necessary
for the administration of the APL\1500 System. Since these
commands are of a supervisory nature, they are considered
confidential and are meant for privileged users only.

Privileged system commands may be grouped into five classes
with regard to their effect on the state of the system:

1. Communication commands effect transmission of messages to

groups of terminals.

2. Account control commands affect the state of wuser

libraries.

3, lgguirx commands provide information about wusers without

affecting the state of the system.

L., Terminal disconnect command effects, remotely, the

sign-off of terminals.

5. Define status commands affect the state = of systeﬁ

parameters.

The rules: pertaining to the entry of privileged system
commands are the same as those for the system commands described in
Part 2 of the APL\1500 User's Guide.

| f a command cannot be executed, an appropriate
trouble report will be displaved. The most common report is

INCORRECT COMMAND. This report will be given for one of three
reasons:

1. The user is not a privileged user.

2. The command was incomplete, misspelled, modified
incorrectly, or otherwise malformed.

3, The time and date have not been set.

93

h6

COMMAND

YJHI [text]

YP4 [text]

YHIPA [text] o

JNOTICE [text]

Send text to user at sign on.
Send text to all signed on users.
Send text as both)HI and)PA4.

Send text to all operational terminals.

YJADD wsid name pack

YADDP wsid name pack

YDELETE list of wsid's

Add user 'name' with workspace ID 'wsid'
to logical pack 'pack'.

Add privileged user 'name' as)ADD.

Delete users specified by 1list of wsid's.

YWHO 1list of wsid's

JPEOPLE

YPORTS

List information about users specified in
list of wsid's.

List information about all APL\1500 users.

List information about all active users.

YBOUNCE 1ist of terminals

Sign off users on terminals in list.

YOPERATOR terminal
YCONFIGURATION
JTIME hours minutes seconds

JDATE month day vyear

Temporarily re~assign recording terminal.
Reconfigure the APL\1500 system.
Reset the system clock.

Reset the date.

COMMUNICATION COMMANDS
a terminal only when its kevboard
in this class will be

Messages can be received by
characters.

ATl messages sent by the commands
limited to 114

is locked.
Text 1length is
at the bottom of the screen and

prefixed with OPR:.
Messages sent to a CRT will appear
are limited to a display of 3L characters.
When communication commands reference all terminals, the
is included as a target terminal. This message
system response.

source terminal
is

reflection constitutes the normal
The only trouble report for this class of commands
INCORRECT COMMAND.
SEND TEXT TO TERMINAL AT SIGN-ON: YHI
Enter)JHI followed by a space and the desired text.
Effect:
The entered text will be displayed to users as they sign
on. The text will not be displayed to any users who are
already signed on when the)HI command is given. If no
text is entered, any previous HI message is deleted.
SEND TEXT TO0 ALL SIGNED-ON TERMINALS: YPA
Enter)PA followed a space and the desired text.
Effect
will be sent to all terminals that are

"7 The entered text

signed on.
YHIPA

SEND TEXT AT §L@N:QN AND TO ALL SIGNED ON TERMINALS:
Enter YHIPA followed by a space and the desired text.

Effect:

SEND TEXT TO ALL TERMINALS: YNOTICE
followed by a space and the desired text.

Enter)NOTICE
and

all configured

Effect:
The entered text will be sent to
operational terminals. If the port configuration
CRT, the CRT will receive

includes both a typewriter and
the message.

95

ACCOUNT CONTROL COMMANDS

The commands in this class effect the addition and deletion of
APL\N1500 users.

ADD A USER TO THE SYSTEM: YADD
Enter YADD followed by a space, a 1 to 6 digit account number,
a space, a 1 to 2G character user name, a space, and the

logical pack number of the disk pack where the user's library
will reside.

Effect:
The user name, account number, and pack number will be
entered into the user's directory and one workspace (3
cylinders) will be reserved on the designated pack. | f
the entered account number was 1less than 100, the lock

Ysax[J' will be associated with the account number.

PACK ERROR

Either the designated disk pack is not mounted and ready,
or the System Pack Users' Directory is full (960
entries), or the designated disk pack is full.

NUMBER ALREADY ASSIGNED
The designated account number is already registered.

ADD A PRIVILEGED USER T0 THE SYSTEM: YADDP
Enter)ADDP followed by a space, a l to 6 digit account
number, a space, a 1 to 20 character user name, a space, and
the logical pack number of the disk pack where the user's

library will reside.

Effect:

The effect of the)ADDP command is the same as the)ADD
command except that the account number is privileged.

PACK ERROR

see)ADD
NUMBER ALREADY ASSIGNED
see)ADD
DELETE USERS FROM THE SYSTEM: JDELETE

Enter)DELETE followed by a space and one or more account
numbers, each separated by a space.

Effect:

Each designated account will be expunged from the system.

96

PACK ERROR
The disk pack on which the user's library resides is not
mounted and ready.

NUMBER ‘'‘nnnnnn' NOT FOUND

The number enclosed in quotes 1Is not an account number.
The list is processed from left to right and execution of
the command is not halted upon the occurrence of this
error.

INQUIRY COMMANDS

The commands in this class are concerned with the display of
information about wusers of the APL\1500 System. These commands
have no affect on the state of the system.

L1ST INEORMATION ABOUT SPECIEIED USERS: VWHO

Enter)WHO followed by a space and one or more account
numbers, each separated by a space.

Effect: None.

Response:
The following information about the specified users will
be listed:

1. User account number.

2. Privileged user indicator (* if privileged).

3. 1 to 20 character user name.
L., Logical pack number of user iibrary.
5. Sector address of user library.

6. Cumulative connect time as of the last sign-off.
7. Cumulative latency as of the last sign-off.

8. Cumulative CPU time as of the last sign-off.

9., Date of last sign=-off.

If the listing is obtained on a CRT, only items 1 thru 5
will be displayed.

NUMBER ‘'‘nnnnnn' NOT FOUND
see)DELETE

97

LIST INFORMATION ABOUT ALL REGISTERED APL USERS: YPEOPLE

Enter)PEOPLE

Effect: None.

All registered wusers will be listed with the same
information as given in the)WHO listing. The execution
of this command can be interrupted with an attention
signatl.

LIST INFORMATION ABOUT ALL SIGNED-ON USERS: YPORTS

Enter)PORTS

Effect: None.

A1l signed-on users will be 1listed with port numbers and
the same information as given in the)WHO listing.

TERMINAL DISCONNECT COMMAND

There is only one command in this class. The bounce command

should be used with caution, since it performs as a remotely issued
YOFF and all work done in the user's active workspace will be lost.

REMOTELY SIGN QFF USERS: JBOUNCE

Enter)YBOUNCE followed by a space and one or more port
numbers, each separated by a space.

Effect:

The specified terminals will be signed off. This command
will not sign off the originating terminal.

SYSTEM STATUS DEFINITION COMMANDS

The commands in this «c¢lass generally affect the setting of
certain system parameters.

TEMPORARILY RE-ASSIGN THE RECORDING TERMINAL:)OPERATOR

Enter)YOPERATOR followed by a space and the port number that
will designate the recording terminal.

A1l messages sent to the recording terminal will be
directed to the designated port (see Part 3, The

Recording Terminal). This definition remains in effect
until the next [PL or until this command is entered
again.

Response: None.
98

RECONEIGURE THE APLN1500 SYSTEM: JCONFIGURATION

Enter)CONFIGURATION

Effect:
The completed configuration will take effect at the next
|PL.

Response:
The latest configuration is displayed (e.g., the initial
APL\1500 configuration):

CONFIGURATION 10/01/68 09:10:22
PACKS : 1 SWAP:01500 TERMS:32 OPR:00
(T=TYPEWRITER C=C.R.T. F=FILM)

00: TCF 01: TCF 02: TCF 03: TCF
o4: TCF 05: TCF 06: TCF 07: TCF
08: TCF 08: TCF 10: TCF 11: TCF
12: TCF 13: TCF 14: TCF 15: TCF
16: TCF 17: TCF 18: TCF 19: TCF
20: TCF 21: TCF 22: TCF 23: TCF
24: TCF 25: TCF 26: TCF 27: TCF
28: TCF 29: TCF 30: TCF 31: TCF
DO YOU WANT TO RECONFIGURE?

At this point the system response is ended, and a
dialogue with the CONFIGURATION routine will begin. | f
NO is entered, the command will be terminated and the
result is nothing more than a display of the current
configuration.

If YES is entered, the CONFIGURATION routine.
continues by asking the following questions:

HOW MANY DISK DRIVES?
Enter the number of disk drives (1-6) attached to the
system. Before the next IPL, each disk pack essential to
the operation of APL may be mounted on any disk drive
whose physical drive number is less than the entered
value. If a blank entry or an illegal entry 1is given,
the prior definition remains in effect.

LOGICAL NUMBER FOR SWAP PACK?

Enter the number of the logical identification of a new
swap pack (1-32766). If an illegal or blank entry is
given, the prior definition remains in effect. The new
swap pack must be mounted and ready; otherwise, the prior
swap pack definition remains in effect. After the number
has been accepted, 96 contiguous cylinders will be
reserved on the new swap pack. If the 96 contiguous
cylinders of free space cannot be found, the previous
definition remains in effect.

99

HIGHEST CONFIGURED TERMINAL NUMBER?
Enter the value of the highest numbered terminal (0-31).
If the entry is illegal or blank, the previous definition
remains in effect. There will be no devices configured
at ports numbered higher than the entered value.

TERMINAL nn CONFIGURATION?
This question is repeated until nn has been incremented
from 00 thru the value of the highest numbered terminal.
Each entry defines those devices which are at the
indicated port. The possible entries are:

C Configure for CRT.

T Configure for typewriter.

CcT Configure for CRT and typewriter.

CF Configure for CRT and film projector.

TF Configure for typewriter and film projector.

T7CF Configure for typewriter, CRT, and film
projector. :

X There is no device at this port.

btank Leave the previous configuration for this port

in effect.

OPERATOR'S TERMINAL NUMBER?

Enter the port number (0 - thru the highest terminal
number) of the recording terminal. If the entry is too
large, the question will be repeated. |If the entry is
blank, the prior definition remains in effect. A
recording terminal may be assigned to a port, within the
configuration, which has no devices. See The Recording
Terminal, Part 3 of this manual.

CONFIGURATION COMPLETED AT NEXT IPL.
Indicates the conclusion of the)CONFIGURATION routine.
Below is an example of a dialogue:

HOW MANY DISK DRIVES? 5

LOGICAL NUMBER FOR SWAP PACK? 1498
HIGHEST CONFIGURED TERMINAL NUMBER? 7
TERMINAL 00 CONFIGURATION? rc
- TERMINAL 01 CONFIGURATION? X
TERMINAL 02 CONFIGURATION? X
TERMINAL 03 CONFIGURATION? c
TERMINAL O4 CONFIGURATION? CF
TERMINAL 05 CONFIGURATION? X
TERMINAL 06 CONFIGURATION?

TERMINAL 07 CONFIGURATION? T
OPERATOR'S TERMINAL NUMBER?Y

CONFIGURATION COMPLETED AT NEXT IPL.

100

The configuration command should be executed again to get a
new listing of the current configuration. The date and time of the
last configuration is output on the first line of the display.

YCONFIGURATION
CONFIGURATION 11/25/68 09:15:08
PACKS:5 SWAP:01498 TERMS:08 OPR:00

(T=TYPEWRITER C=C.R.T. FP=FILM)
00: TC 01: 02: 03: C
o4: CF 05: 06: TCF 07: T
08: 09: 10: 11
12: 13: 14 15
16: 17: 18: 19:

20: 21: 22: 23:
24 25: 26 27 :
28: 29: 30: 31:

DO YOU WANT TO RECONFIGURE? NO

SET THE TIME OE DAY: JTIME
Enter)TIME followed by a space, the number of hours past
midnight, a space, the number of minutes past the hour, a
space, and the number of seconds past the minute.

Effect:
The time of day will be set and the wuser's sign on time
will be reset. This command is not privileged until
after it has been entered., The time command should never
be executed while other users are signed on. The
cumulative times collected for wusers will be meaningless

if the time command is executed while they are signed on.

None.

SET THE DATE:)JDATE
Enter)DATE followed by a space, the number of the month, a
space, the day of the month, a space, and the last two digits

of the vyear.

Effect:

The date will be set. This command is not privileged
until after it has been executed.

None.

101

¢0T

The dvadic

The

| -BEAM

is

I-BEAM function
fetching and patching of main memory or disk
formed by 'T!

DYADIC

is a special

overstruck

1-BEAM

storage.

with "o'. The

torage. |-BEAM
dyadic

is a dyadic mixed function.
|-BEAM is a privileged

function and can only be executed by privileged users; attempted execution of dyadic [|-BEAM

by non-privileged users

may result in
qualified persons should be privileged users.

|-BEAM

11V

21V

31V

1r and 31 must be the

irreparable damage to the

will

ARGUMENTS

Vi1l
viz2]

vi1]
14V

4
vE2]
Vi3]
vig]

vi1]
vi2]
VL3l
34V

<>

Starting core address.
Last core address.

Starting core address.
Patch data.

Logical pack number.
Sector address.
Starting word address.
Last word address.

Logical pack number.
Sector address.
Starting word address.
Patch data.

yvield a SYNTAX ERROR
APL\1500 system,

last executed operation

report.

DOMALN
V[1]e0,132767
V[21e0,132767
vL11<VL2]

V[11e0,132767
(14V)e 32769+165536
2<pV

V[1Je0,132767
7[2]e0,11599
V[3Je0,1319
VLuJe0,1319
viul=2VL3]

V[1J]e0,132767
V[2]e0,11599
V[33e0,1319

(34V)e 32769+165536
3192V[3]-4-pV

Since misuse
only the system operator or other

of this function

DESCRIPTION

Dump main memory locations
from V[1] to V[2]
inclusive. If V has only
one element, then only
location V[11 is dumped.

Patch main memory locations
Vi1] to 32768 |V[1]-2-pV
with the data 14V

Dump disk storage: pack
V{1], sector V[2], words
V3] to V[Iu&]. £ viul is

elided,
dumped.

only word V[3] is

Patch disk storage: pack
V[1], sector V[2], words
Vi3] to V[31-4-pV with the
data 347V.

in an APL expression.

The functions H ¢ P U listed below can be executed only by
privileged users. Only the system operator or other equally
qualified persons should be permitted access to them since misuse
of the <concepts employed by these functions might permanently
damage the APL\1500 system. These functions should be entered very
carefully, locked, and stored in a locked workspace.

H halts execution at the terminals specified in the vector
right argument. Activity at the wuser's own terminal will not bhe
halted.

VH ViI:d;0
(1] H2,I<0x0«112
(2] ~»(0=pV<+((V2I8)e1Vel+0175)/V«,V)/5
[3] 1x1J,214(4=116)Vv(16p2)TOIJ«26+(0T190)+32xV[T]
L4l =>((pV)>I«I+1)/3
[5] H2,0
(6] YOKAY'®

C continues (restarts) activity at a terminal which has been
halted by H. The right argument of ¢ is a vector of the terminals
at which activity is to be continued.

VC ViIids0
[1] H2,I<0x0<112
(2] =(0=pV<«(Ve11+40175)/V<,V)/5
[3] 11J,21(42116)A(16p2)TO0TJ«26+(0T90)+32xVLTI]
[4] >((pV)>I«I+1)/3
(51 E2,0
[6] VOKAY'®

P temporarily privileges the users at the terminals specified
in the right argument. Users privileged 1in this way remain
privileged until they sign off.

VP 5310
[1] ->(0=p8S<«,5)/I+0x0<+112
21 #E2 1
(31 HB7 0

(4] —»(~S[I<T+1]ex9)/6

[5] 3x(oxsu),(0xsS[rJ+0x88),132 1
6] =(I<pS)/3

(71 H©2,0

[8]1 ‘'OKAY'®

103

U unprotects the functions specified in the character right
argument.

VU Vi S3P3y I Eyd 3 K30
(1] HE2,I<«0x0+«112
[2]1 +(52=V<«'"AABCDEFGHIBCDEFGHJKLMNOPQRIJKLMNOPSTUVNXYZ

[3] P<«0I8Y

{4l S<«0x(0x88)+18

[5] (32 (E<0x12276+V[I1)+4096)/7

[6] BIP,K,J,21(7#116)A(16p2)T21P, (K«16+S+[E+64),
J«5x64 |E<«512|FE

(7] ~»((pV)>I«I+1)/5

(81 H2,0

[9] YOKAY'®

104

PART 3

THE APL\1500 RECORDING TERMINAL

APL\1500 provides for a recording terminal which serves as a
System Log and as a common point of communication for APL\1500
users. The recording terminal operates like any other APL terminal

with the following exceptions:

1. A report of all sign-ons and sign-offs is logged on the
recording terminal.

2. Messages transmitted via the)OPRN command (see Part 2 of
the APL\1500 User's Guide) will be received at the recording
terminal.

3, A1l messages originating at the recording terminal are
prefixed by 0PR:, instead of the port number of that terminal.

Messages directed to the recording terminal will be output on

the typewriter if it is operational and configured; otherwise,
these messages will be "displaved on the CRT screen if it is
operational and configured. If neither of these conditions s
satisfied, the messages are lost. No warning report is issued.

Since messages -to the recording terminal can be received only
when the keyboard is locked, it is important that the keyboard of
the recording terminal be kept locked unless a response to an input
wait is immediately forthcoming. If sign-on and sign-off messages
or messages to the System Operator are delayed for an extended
period of time, the performance of the APL\1500 system may be
seriously degraded, possibly to the point of stopping completely.
This situation, should it arise, can be corrected by completing the
pending input request. The function D listed below can help avoid
this problem by allowing output to occur while a user is signed on.
D can be interrupted when desired with an attention signatl.

VD
1] ®&7 10
[2] =1

v

Before the first reconfiguration of the APL\1500 System, the
recording terminal is assigned to port number 0. The standard port
assignment of the recording terminal may be changed for a
particular installation during reconfiguration (see)CONFIGURATION,
Part 2 of this manual). The assignment of the recording terminal
may be temporarily changed by the command)OPERATOR (see Part 2 of

this manual). This reassignment remains in effect until overridden
by another)YOPERATOR command or |PL. Installations with a 1imited
number of terminals may wish to use APL\1500 without the recording
terminal feature. This may be accomplished by assigning the

recording terminal to a configured, but nonexistent port.

105

PART &

SYSTEM ERRORS

A System Error is an internal failure of the APL\1500 system
which is detected by the APL\1500 interpreter during execution.
When a system failure is detected, a register dump and
SYSTEM ERROR report are output, and a clear workspace is activated.
A copy of all work preceding the System Error should be given, with
the register dump, to the system manager.

Disk errors also result in System Error reports; they have the
following format: :

500R DSSS XXXX XXXX XXXX XXXX 6962
SYSTEM ERROR

where R and DSSS represent error code indicators.

CODE (R) PARAMETER (DSSS) ERROR

0 Logical Pack The logical pack numbered DSSS
(hexadecimal) is not mounted. This
is usually the System Pack

(DSSS=05DC). Mount the specified
pack and continue.

2 Drive/Sector " The drive specified by D is not
ready. Ready the specified drive
and continue.

3 Drive/Sector A disk -error has occurred while
attempting to seek to the sector
specified by S§SS (hexadecimal) on
the drive specified by D.

5 Drive/Sector A disk read error has occurred at
the sector specified hy SSS
(hexadecimal) on the drive

specified by D.

6 Drive/Sector A disk write error has occurred at
the sector specified by SSS
(hexadecimal) on the drive

specified by D.

Disk errors 5003, 5005, and 5006 indicate hardware errors, and
the failing drive should be examined by an IBM Customer Engineer.

106

APL\1500:System Generation and Maintenance Manual

Authors: S. E. Krueger

T. D. McMurchie

© Science Research Associates, Inc., 1968

107

SYSTEM GENERATION AND MAINTENANCE MANUAL

TABLE OF CONTENTS

DISK PACK INITIALIZATION
Input Preparation

Running the Disk Pack Initialization Program

Program Messages

BUILDING THE SYSTEM DISK PACK
Input Preparation
Program Control Cards
Patch Cards
CRT Dictionary Cards
Input Assembly

RUNNING THE CARD TO DISK PROGRAM
Program Messages
Program Notes
CONFIGURING THE APL\1500 SYSTEM
APPENDIX A
APL\1500 SYSTEM DISK PACK MAP
LIST OF TLLUSTRATIONS

Figure 1 DPIR Input Assembly

Figure 2 Initial Card to Disk Input Assembly

108

109
109
110
110

112
112
112
113
114
116

117
117
120

121

122

110

116

DISK PACK INITIALIZATION

Before any disk pack is wused with APL\1500 it must be
initialized. A special utility program called the Disk Pack
Initialization Routine (DPIR) prepares disks for use by:

1. Determining which, if any, sectors are defective and
recording the addresses of the cylinders containing the
defective sectors on sector 0000, The DPIR program will
accept a pack with as many as 3 defective sectors;

2. Clearing the disk surfaces of all data and writing disk
sector addresses on all cylinders;

3. Writing the wuser-specified logical pack number and a six
character ID in sector 0000; and

4. Establishing the pack directory on sector 0000.

THE PACK DIRECTORY (Sector 0000):

The pack directory contains the logical pack number, pack 1D,
and special information required for file processing routines. It
has this format:

WORD(S) CONTENTS

0-2 Defective cylinder table

3 0658 (hexadecimal)

4 Logical pack number

5-7 Pack ID in EBCDIC

8 File count. Maximum (bits 0-7) and current
(bits 8-F) number of file entries

9 0000

10-12 EBCDIC blanks

13 Starting sector address of free storage

14 Number of contiguous sectors of free storage

INPUT PREPARATION

The DPIR program is an off-line job. The program is loaded
from cards followed by control card(s) which supplies information
particular to the disk pack(s) being initialized. The control card
is punched:

COLUMNS CONTENTS

1-5 Logical pack number. This number must be 01500
for the APL System Pack.

7 This column must be blank.

14-19 Six alphanumeric characters for pack 1ID.

20 The physical drive number (0-5) of the drive

containing the pack to be initialized.

109

Figure 1 shows input assembled for a DPIR run. Several disks
may be specified. Note that an END card punched END in columns 1~3
must follow the DPIR control card(s).

END card

|

Control card(s)

DPIR
program deck

Figure 1. DPIR input assembly.

THE DISK INITIALIZATION PROGRAM

To

initialize a disk pack:

Mount the pack to be initialized on the physical drive
specitied in column 20 of the control card and ready the
drive;

Press MM STOP and RESET on the console.

Put the input deck in the 1442, and ready the reader.
Ready the printer.

Press PROGRAM LOAD on the console.

MESSAGES

A1l control <cards and all DPIR messages are printed on the
System Printer. The following is a summary of all DPIR messages:

1.

PROGRAM NAME

This message is given at the end of the run.
Format: *%*250-00 1500 DPIR

END OF JO!
This message is given at the completion of each
initialization jobh step.

Format: *%250-99 DPIR COMPLETE

j{os]

SECTOR 0 15 DEEECTIVE

If sector 0, which must contain the pack directory, is
defective, the pack cannot be used. The job step s
terminated, and the next card is read,.

Format: *%*250~-02 SECTOR 0 BAD

110

. PACK NOT USABLE

The DPIR program has found four defective cylinders. The
job step is terminated and the next control card is read,
Format: *%250-03 L BAD CYLINDFERS

DRIVE NOT READY

This message indicates that the specified disk drive is
not ready. The job step is terminated and the next
control card is read.

Format: *%250-04 DRIVE NOT READY

CYLINDER 0 1S DEEECTIVE

A defective sector other than sector 0 has been found in
cylinder zero. The job step is terminated and the next
control card is read.

Format: *%250-05 CYLINDER 0 BAD

INVALID CONTROL CARD ,
The format of the last control card is invalid. The job
step is terminated and the next control card is read.

Format: =*%250-06 INVALID CONTROL CARD

DEFECTIVE CYLINDER TABLE

This is a list of defective cylinders found.

Format: *%x250-07 Onnn Oppp 0ggg

Where nnn, ppp, and qgg are the addresses of the defective
cylinders. If 0658 appears in all three positions, then

no defective cylinder was found.

DISK ERROR
An error occurred while writing on the disk pack. The job
step is terminated and the next control card is read.

Format: **250-01 DISK ERROR

111

BUILDING THE SYSTEM DISK PACK (SYSGEM)

A1l programs used with the APL\1500 System are distributed to
the user in the form of punched card decks. From these cards the
user builds a System Pack which contains the directories, prosrams,
and C.R.T. Dictionary for APL\1500.

CARD TO DISK PROGRAM

The Card to Disk program is a system utility which is designed
to read three specific kinds of cards:

1. 1130/1800 compressed format binary cards in absolute form.

2. The APr\1500 System Dictionary deck.
3. Hexadecimal patch (correction) cards.

The information contained in the cards is written on the System
Pack in the locations specified on the control cards.

Each of the <cards in a binary deck contains a control number
called a check-sum, The Card to Disk program checks this number to
insure that the deck is complete and that all cards are in the
proper order within the deck. The Card to Disk program also checks
the identification field in all cards except control cards,

This program is wused for two major operations-- buildine and
updating the System Pack.

BUILDING THE SYSTEM PACK

The wuser builds a system pack by using the Card to Disk
program, the APL\1500 card decks, and a disk pack, (initialized by
DPIR to logical pack 01500). The Card to Disk prosram simnly
copies the cards onto the System Pack.

INPUT PREPARATION

The input to the Card to Disk program is a deck containing a
control card with associated data cards and an END card. Each set
of data cards must have a control card; there may be multiple sets
of these decks in the input assembly.

CONTROL CARDS

Control cards indicate the kind of data cards to be processed
and give job step specifications to the Card to Disk program. All
control cards are punched according to the following
specifications:

112

1. The first field on a control card must begin in column 1.

2. The fields within a control card must be delimited
(separated) by exactly one blank column; two or more
consecutive blanks terminate the reading of the control
card.

3, Comments may be punched in control cards and hexadecimal
patch cards. These comments may be punched following the
last data field on the card if the comments are preceded
by an asterisk (*) punch.

Compressed absolute binary decks must be preceded by a control
card punched:

F1ELD CONTENTS

2 Five character identification field of absolute
binary deck.

*3 Hexadecimal core storage address of the first data
item to be written on the disk.

*L The decimal address of the first sector of disk
storage where the data is to be written.

*5 The number (decimal) of sectors to be written.

*NOTE: These fields may be repeated on the same control card
as many as three times if a program is assembled as one deck,
but is to be written on the disk as a set of separate
programs.

Example:
ABC V1000 LOOO 1412 9 =*%% APL SUPERVISOR 10/1/68 V1000000

This control <card specifies that a compressed absolute deck
with an identification field punched V1000 is to he written on
sectors 1412-1L20 of the System Pack starting from memory
location 4000 hexadecimal,

PATCH CARDS

Hexadecimal patch cards may be inserted preceding the last
binary card of the deck.

113

Hexadecimal patch cards are punched:

CARD COLUHMN CONTENTS

2-5 Hexadecimal starting patch address.

!

7-10
12-15
17-20
22-25
27-30
32-35
37-4L0
42-45
L7-50
52-55
57-60
62-65
67-70

Up to 13 hexadecimal data words.

——— e L N T e e e e i e

73-77 ldentification field.

78-80 Sequence field,

Example:
C4LOAE 7401 2FE7 80AD LCA8 56BB V1000345

This patch card will replace the contents of <core locatlions
LOAE to 40B2 (hexadecimal) with the hexadecimal values 7401,
2FE7, 80AD, L4CA8, and 56BB. Hexadecimal patch cards should
always be placed immediately before the last card of the deck
being patched,

SYSTEM DICTIONARY DECK

The system dictionary contains the characters wused by the
APL\1500 station 1.0.C.S. program to display information on the
1510 Instructional Display Screen. The control card is punched:

FIELD CONTENTS

1 DIC
2 Five character dictionary identification field.
3 The decimal addesss of the first sector where the

dictionary is to be written on disk storase,

L 3

114

Example:
DIC V0900 1453 3 #+%% APL/1500 SYSTEM DICTIOMARY V0900000

This control card specifies that the system dictionary is to
be written on sectors 1453 through 1455 of the APL\1500 System
Pack.

DICTIONARY CARD EORMAT

Fach dictionary card can contain as many as six entries, each

character with a number from 000-127,. A dictionary card is
punched:
CARD COLUMNS CONTENTS
1-2 D2
3-10 First dictionary character
11-13 Character number
14-21 Second dictionary character
22-24 Character number
25-32 Third dictionary character
33-35 Character number
36-43 Forth dictionary character
LL-L46 Character number
L7-54 Fifth dictionary character
55-57 Character number
58-65 Sixth dictionary character
66-68 Character number
73-77 Dictionary identification field
78-80 Sequence field
Note: If the same character number is assigned to two or more

characters, the last character processed will be placed in the
dictionary.

The system dictionary deck requires its own END card:

115

CARD COLUMNS CONTENTS

1-3 END
73-77 Dictionary identification field
78-80 Sequence field

The input may consist of any number of data decks (with
appropriate control cards and patch cards). The last deck must be
followed by an END card punched:

Figure 2 shows an example of input assembled for the initial
card to disk run.

| END card
/

SYSTEM DICTIONARY V0s00 Y
* INITIAL CONFIGURATION '

e
Svaeon i

e APL\1500
INTERPRETER

PROGRAMS

SYSTEM TRANSITENTS

APL\1500 V3300
INITIAL DIRECTORIES

APL\1500
CARD TO DISK PROGRAM

Figure 2. Initial Card to Disk Input Assembly
116

~!
.

PROGRAN

All

RUNNING THE CARD TO DISK PROGRAM

R Lot e FL Y . AL .5 0 § < W A . U b M A . S

Mount and ready the System Pack that has been initialized by
DPIR and whose logical pack number is 01500, It is susgested
that the System Pack be mounted on drive 0 (zero) since -the
initial IPL (Initial Program Load) requires the System Pack to
be on drive 0.

Enter the drive number (0-5) into the system by using the data
entry switches on the console.

Ready the Printer.

Place the Card to Disk prosgram followed by the deck(s) to be
processed followed by an END card in the 1442 hopper.

Press [MM STOP and then RESET on the console.
Press the START key on the 1442 Reader.

Press PROGRAM LOAD (IPL kev) on the console.

IESSAGES

control cards and hexadecimal patch cards will be ’printéd on

the printer.

1.

PROGRAM LOAD MESSAGE

This indicates that the Card to Disk program has been loaded.
Format: #%251-00 APL/1500 CARD TO DISK PROGRAM

weemomamantll MIZDA NI L2l

An illegal 'character was found on the last control <card
printed. The recovery procedures for this error and also
messaces 251-02, 03, 04, 05, 06, 07, 09, 10, 11, 12, 13, 1.,
and 15 are: '

1. Nonprocess run out (NPRO) the cards in the reader.

2. Correct the mispunched card. ‘ 4

3 Reprocess the deck with 1its associated control card by
pressing START on the Reader and then pressing START on the
console,

Format: **251-01 [LLEGAL CHARACTER

Ll S Ll Ml MO0

A control card was expected, but not found.
Format: #*%251-02 CONTROL CARD EXPECTED

There was an item in error on the last control card read.
Format: *%*251-03 [LLEGAL CONTROL CARD

117

10.

11.

12.

13,

14,

The program encountered an unexpected punch in the last card

read. This can be caused, tor example, by comments not
preceded by an asterisk or by a field that was not delimited
properiy.

Format: *%251-04 UNEXPECTED CHARACTERS

HEADER CARD NOT EOUND
The header card that should precede a compressed deck was not

found,
Format: #%*251-05 HEADER CARD EXPECTED

The last card read was not a legal compressed format binary
card.
Format: *%x251-06 JLLEGAL BINARY CARD

The deck that was loaded exceeds the disk area specified on
the control card.
Format: *%251-07 PROGRAM EXCEEDS SPECIFICATIONS

The checksum punched in the last card read was not valid,.
Format: *%*251-09 CHECKSUM ERROR

An error has occurred in the 1442 while reading a card.
Format: *%251~10 CARD READER ERROR

The identification field of the last card read did not agree
with the identification field specified in the control card.
Format: *%#251-11 IDENTS DISAGREE

TLLEGAL HEXADECIMAL EILELD
An illegal character was found in a hexadecimal field on a hex
patch card.

Format: ##251-12 ILLEGAL HEX FIELD

The last printed hexadecimal patch card in a patch deCk was
outside the core-storage limits of the program to be patched.
Format: *+*251-13 ILLEGAL HEX ADDRESS

ILLEGAL HEXADECIMAL PATCH CARD
The last hexadecimal patch card nrinted was punched
incorrectly.

Format: *%251-14 [LLEGAL HEX PATCH

118

15.

16.

17.

18.

19.

20.

TLLEGAL DICTIONARY CARD
The last dictionary card read was not punched according to
system dictionary card snecifications.

Format: *%251-15 [LLEGAL DICTIONARY CARD

SYSTEM PACK ERROR

The drive indicated by the setting of the data entry switches
does not contain logical pack number 01500. Mount a Systen
Pack, be sure the data entry switches are set correctly, and
press START on the console. ’

Format: #%251-16 DISK PACK NOT SYSTEM

DRIVE NUMBER ERROR

The drive number specified by the data entry switches s
invalid. Set the correct drive in the data entry switches and
push START on the console.

Format: #*%251-17 INVALID DRIVE NUMBER

An internal request to the disk 1/0 routine was incorrect.
Rerun the job.
Format: *%x251-18 CALLING SEQUENCE ERROR

DRIVE NOT READY v
The selected drive is not in - the ready status. Ready the
selected drive and make sure that the data entry switches are
set correctly. If no cards have been processed, push START on
the console when the drive is ready. I|f cards have been read,
NPRO the cards in the reader. Put the remainder of the deck,
preceded by the last control card printed, in the recader.
Press START on the reader, and1 then press START on the
console.

Format: #%251-19 DRIVE NOT READY

DISK SEEK ERROR

The program was unahle to seek the disk storage sector 'nnnn'
(decimal) as specified in the control card. NPRO the cards in
the reader, mount a new System Pack, set the data entry
switches, and redo the entire job.

Format: *#*%251-20 SEEK ERROR SECTOR nnnn

D1SK OVERFLOW
A disk overflow error occurred. The recovery procedures are
the same as for error 251-20,

Format: *%251-21 DISK OVERFLOW

DISK READ ERROR
The program could not read sector 'nnnn' (decimal). See error
251-20 for recovery procedures.

Format: *%251-22 READ ERROR SECTOR nnnn

119

23.

24,

DISK WRITE ERROR
The program could not write on sector 'nnnn' (decimal). See
error 251-20 for recovery procedures.

Format: *%251-23 WRITE ERROR SECTOR nnnn

ates the job has been completed.
Format: *%251-99 CARD TO DISK COMPLETED

Programs in absolute form must be assembled in the ranges
0040-22FF (hexadecimal) or 4000-7C00 (hexadecimal).

If the Card to Disk program attempts to use the printer and it
is not 1in the ready status, the program will loop until the
printer is ready.

If the Card to Disk program attempts to read a card and the
1442 read hopper is empty, the program will wait at location
002E (hexadecimal). If more cards are to be read, place thenm
in the hopper, press START on the reader, and then press START
on the console. ' :

built from cards, the SYSTEM DIRECTORIES DECK (V39900) and the
INITIAL CONF!IGURATION DECK (V0300) be removed from the
APL\1500 SYSTEM DECKS and stored elsewhere. If the SYSTEM
DIRECTORIES DECK is reloaded, the user directories will be
reset to their initial state. This means that all registered
users will be deleted and user 314159 will he reregistered. I f
the INITIAL CONFIGURATIOM DECK is reloaded, then the initial
configuration takes precedence (1. disk drive, System Pack will
be the Swap Pack, etc.). ‘

120

APL\N1500 allocates disk storage in three logically distinct
ways:

1. As storage for the resident APL\1500 system, which
includes the interpreter and user directories.

2. As permanent storage for users' saved workspaces (each
workspace occupies three cylinders of disk storage).

3. As a temporary swap area for the workspaces of active
users (96 contiguous cylinders of disk storage are
required).

The system pack built by the procedure described in the
previous section has been allocated for all three of these purposes
(see Appendix A for the initial System Pack allocation).

APL\1500 is designed to take advantage of a possible
reconfiguration of the system to a multi-disk environment (see
YCONFIGURATION, Part 2 of the APL\1500 Operator's Guide). The
optimal physical assignment of disk storage is attained by using
separate disk packs for each of the three logical units mentioned
above. The following points are Important to the generation of an
optimal system for each instalilation:

1. The area reserved for swapping of users' active workspaces
should be reassigned to a disk pack other than the System
Pack (logical 1500).

2. Users should not be registered on either the System Pack
or the Swap Pack.

3, Users should be assigned to as many different disk packs
as the number of disk drives for the particular
installation permits, except as noted in section 2 above.

NOTE: A pack to be used as a Swap Pack or User Pack must be
initialized by the Disk Pack Initialization Routine (DPIR)
discussed earlier. It is imperative that all disk packs
initialized for use with the APL\1500 System have logical
number assignments distinct from each other and also from the
APL\N1500 System Pack (logical 1500).

APL\1500 also provides a facility for each installation to
make maximum use of main memory allocation by configuring for the
exact number and type of terminals available for use by APL\1500.
Since the size of a users output buffer ration varies from 10784
characters for a 1 terminal configuration to 274 characters for a
32 terminal configuration, significant improvement in performance
may be evident for users displaying great quantities of output if
the System has been configured for the appropriate number of
terminals.

121

2 3 4 5 6

VTOC]

RSRVD

IPL] RESERVED

RESERVED

FWwN RO

95

97

LS 4

SWAP AREA (96 CYLINDERS)

))
|G

98
99

USERS
DIRECTORY

100
101
102
103

: SYSTEM
TRANSTENTS

104
105

S

134"]
135

USER RECORDS (32 CYLINDERS)

(80 WORDS/RECORD)

136
137
138

USER 314159 WORKSPACE

139
140
g

170"]
171

LAY

FREE SPACE (33 CYLINDERS)

172
173
pu

198"]
199

{ ¢

APL\1500 INTERPRETER (28 CYLINDERS)

122

IBM/1500 HARDWARE NOTE

PROBLEM
If the 1500 system does not have the CRT Control Unit,
the CRT Device Service Routine (in SI0CS) will come to a hard
wait at the first attempted sign-on. This hard wait 1is the
result of the following sequence:

1. APL sign-on blindly kissues a CRT erase command
because:

a. All stations are pre-configured for CRT,
typewriter, and film projector.

b. It is impossible to determine if the CRT Control

Unit exists.

2. The CRT Device Service Routine senses an empty Device
Status Word after four 1502 interrupts. This is assumed
to be a serious hardware failure.

SOLUTION

The following patch card should be placed in the Initial
Configuration Deck (V03) immediately behind card V0300002,

Punch the following in cols. 1 thru 55:

C7200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

with the identification V0300 punched in cols. 73 thru 77.
This patch card will pre-configure the system for 10

typewriters at ports 0 thru 9. Initial signh-on should be done

at one of the terminals numbered 0 thru 9. After sign-on has

been accomplished, the time and date should be set, and the
re-configuration procedure should be done immediately.

