
A Programming Language/1500

(APL/1500)

Authors: S. E. Krueger

T. D. McMurchie

Address inquiries to:

S. E. Krueger
Science Research Associates, Inc.
259 East Erie Street
Chicago, Illinois 60611

~968, Science Research Associates, Inc.
Printed in U.S.A. All rights reserved.

This program and its documentation have been contributed to
the Program Information Department by an IBM customer and are
provided by the IBM Corporation as part of its service to
customers. The program and its documentation are essentially in
the author's original form and have not been subjected to any
formal testing. IBM makes no warranty expressed or implied as to
the documentation, function, or performance of this program and the
user of the program is expected to make the final evaluation as to
the usefulness of the program in his own environment. There is no
committed maintenance for the program.

Questions concerning the use of the program should be directed
to the authors or other designated party. Any changes to the
program will be announced in the appropriate Catalog of Programs;
however, the changes will not be distributed automatically to
users. When such an announcement occurs, users should order only
the material <documentation, machine readable or both) as indicated
in the appropriate Catalog of Programs.

1

Program Abstract

Introduction

Magnetic Tape Key

Table of Contents

3

4

6

Volume I: APL/ISOO: User's Guide 7

Volume II: APL/ISOO: Operator's Guide 90

Volume III: APL/ISOO: System Generation
and Maintenance Manual 107

Detailed table of contents are at the beginning of each volume.

2

PROGRAM ABSTRACT

APL\1500 is a conversational time-sharing system supporting
Cathode Ray Tube (CRT) and typewriter input/output. It is based on
a concise mathematical programming language first defined by K. E.
Iverson. The language has a simple syntax and a large set of
primitive operations that work directly on arrays.

APL\1500 permits data to be structured as scalars, vectors,
and matrices with up to 255 elements in any dimension. Numerical
values are accurate to seven decimal digits. The implementation
provides a simple immediate-execution mode and a convenient program
definition facil ity. It provides the abil ity to save work between
sessions, to create program packages, and to exchange data between
users.

The APL\1500 system is a stand-alone assembly language program
that is built from cards. Minimum configuration:

32K 1130 (or 1800) CPU;

1502 Display Control Unit;

2310 Disk Drive;

1132 (or 1443) Pri~ter;

1442 Card Read-Punch;

1518 Typewriters and/or 1510
optionally 1512 Film Projectors.

CRTs with keyboard; and

A typical APL\1500 configuration supports 16 terminals.

3

INTRODUCTION

APL\1500 is a conversational multi-terminal system that was
developed at the CRIS Center of SRA. It was written as a
stand-alone program to replace the MAT package provided with the
IBM/1500 system. Its purpose is to combine the simpl icity, power,
and conciseness of the APL\360 system with the special hardware
features of the 1500 -- the CRT display unit and the film projector
unit.

~~§..!~m f~9.!~r~?
APL\1500 is based upon APL, the language first defined by K.

E. Iverson in fj Erggr£mmlng 1£!Jg!d9gg (John ~viley, 1962). It is
further based on the IBM/360 implementation of APL, APL\360.
APL\1500 is an interpretative time-sharing system that builds upon
the array operations and structural integrity of APL to provide a
running system with the following sal lent characteristics:

Simple, uniform rules of syntax

Use of common symbols for ordinary arithmetic operations

Free-form decimal input

A large set of primitive operators

Use of defined function (programs) with the same facility and
syntactic variety as primitive operators

An immediate-execution mode completely free of irrelevant
keywords

A comprehensive, integrated set of system commands fot
managing workspaces and other essential functions

Three levels of security; account numbers, workspaces, and
programs can be individually locked against use or display

A built-in plot routine

Abil ity to have CRT and typewriter devices as a single
instructional station

Visual fidel ity between hard copy and transmitted entries,
which ensures reproducibil ity of results

Succinct diagnostic reports

4

The APL\1500 system, comprising a time-sharing supervisor and
an APL interpreter, runs as a stand-alone program for the IBM/ISDO
System.

APL\1500 has run (or is now running) on IBM/1130 and IBM/18DO
based 1500 Systems. Furthermore, the same APL\1500 System will run
on either the IBM/lSDD or IBM/1130 with no modifications. CPU
usage will be approximately 3D percent higher with an IBM/1130
based system than on an IBM/laOD based system with equal core
storage cycle times due to hardware considerations.

Average reaction time of an IBM/laDQ based system (i.e. time
to respond to trivial requests from a terminal) with 12 stations in
immediate execution mode is generally less than one second. With
light function execution usage, most such responses are essentially
instantaneous; when heavily loaded, there are occasional delays of
as much as six seconds.

The time for serving non-trivial requests naturally varies
according to the extent to which the CPU must be shared during the
computation. Because the primitive operations of APL are defined
on arrays, relatively 1 ittle interpretive overhead is needed for
many large computations, and the actual CPU time used for a typical
immediate execution ~ode computation may run from ID to 3D times
that for efficiently compiled code; but the overall efficiency is
likely to be comparable, if not superior, to batch processing in
many appl icatioris if the usual compil ing and loading times -for
batch work are taken into account. If debugging time is included,
the advantage of interpretive APL becomes even greater.

QQ£~mgn!g!lQn
The accompanying document consists of three volumes bound

together: ~~gr~~ G~lgg, QQ§r£!Qr~~ G~lgg, and ~Y~!~m ggn~r~11QD £09
M21D!gngn~g Mgo~gl.

5

MAGNETIC TAPE KEY

The APL\1500 system may be distributed either on cards or on
9-track 800 bpi magnetic tape. The magnetic tape is fixed format:
160 bytes per record (one card, column binary format) with one
record per block. The tape contents are:

Standard hea r label.

Tape mark

Separator deck 3 cards
1130 IPL bootstrap deck 1 card
Separator deck 3 cards
1800 IPL bootstrap deck 4 cards
Separator deck 3 cards
1130 Card to Dis k program 105 cards
Separator deck 3 cards
1800 Card to Dis k program 97 cards
Separator deck 3 cards
APL\1500 object decks: 704 cards

V99 Initial Directories 120 cards
VOl IPL System Read 10 cards
V28 General System Commands 66 cards
V27 Privi leged System Commands 29 cards
V06 Scheduler and Disk lID 59 cards
V08 Station I.O.C.S. 90 cards
V10 Supervisor and Edit 70 cards
V14 Execution and Display 83 cards
V21 Operator Execution 100 cards
V25 System Command Monitor 40 cards
V02 IPL System Initial ize 8 cards
V03 Initial Configuration 4 cards
VOg System Dictionary 24 cards
END End card 1 card

Separator deck 3 cards
TOTAL 929 cards

Tape ~1ark

The separator decks consist of two laced cards followed by a
partially laced card with a description of the following deck and a
card count.

The magnetic tape
ut i 1 i ty on System/360.
were:

II JOB BINARY
II UPSI 1010
II EXEC CDTP

was written
The control

using the Card to Tape DOS
cards used to build the tape

.1 U TC,FF,A=(160,160),B=(160,160), 12,OR,R1

.1 END
APL\1500 DECKS
1*
1&

6

APL\1500: User's Guide

Authors: S. E. Krueger

T. D. McMurchie

© Science Research Associates, Inc., 1968

7

ACKNOWLEDGEMENTS

The MAT System for the IBM/ISOO (developed by Service Bureau
Corporation) provided the basic floating point arithmetic and
trigonometric routines, and certain fundamental execution logic.
The development of the system was further aided by the disk file
service routines and file-search commands written by H. A, Driscoll.

The body of the entire document was edited and composed
on APL/360 using T. D. McMurchie's implementation of a text
processing package developed by M. M. Zyrl and A. P. Mullery
(IBM Research).

The authors are grateful to a number of high school students
for their compulsion to point out systems failures, and in
particular to those students who assisted in debugging early
versions of the system and for their patience when their work
spaces were destroyed by system failures.

Volume 1 is adapted from APL/360 USER'S MANUAL by
A. D. Falkoff and K. E. Iverson. c International
Business Machines Corporation, 1968. Used by
permission.

8

TABLE OF CONTENTS

PART 1 -- GAINING ACCESS

Terminal Devices
The APL Character Set
Entries From The Keyboard

Mistakes
Alt Coded Keys
Attention

Starting a Work Session

PART 2 -- SYSTEM COMMANDS

Workspaces and Libraries
Names - Local and Global Significance
Locks and Keys
Attention Signal
Use of System Commands

Terminal Control Commands
)OFF

Workspace Control Commands
)CLEAR
)PURGE
)LOAD
)COpy
)PCOPY
)ERASE
)ORIGIN
) WIDTH
)DIGITS

Library Control Commands
)SAVE
)DROP

Inquiry Commands
)FNS
)VARS
)SI

Communication Commands
)MSGN
)OPRN

System Start Up Commands
) TIME
)DATE

9

13

13
13
14

15

17

17
18
19
19
19
23

24

30

32

33

33

TABLE OF CONTENTS (con't)

PART 3 -- THE LANGUAGE

Fundamentals
Statements
Scalar and Vector Constants
Names and Spaces
Overstriking and Erasure
Order of Execution
Error Reports
Names of Primitive Functions

Scalar Functions
Monadic and Dyadic Functions
Vectors
Index Generator

Defined Functions
Branching
Local and Global Variables
Expl icit Arguments
Explicit Result
Forms of Defined Functions
Use of Defined Functions
Recursive Function Definition
Trace Control

Mechanics of Function Definition
Revision
Reopening Function Definition
Display
Line Editing on a Typewriter
Locked Functions
Deletion of Functions and Variables
System Commands Entered During Definition

Suspended Function Execution
State Indicator

Homonyms

Input and Output
Evaluated Input
Cha rac te r I npu t
Normal Output
Heterogeneous Output

10

35

35
35
35
36
36
37
37
37

40
40
41
41

42
43
44
45
45
46
46
47
47

47
48
48
48
49
49
50
50

50
50

51

51
52
53
53
53

TABLE OF CONTENTS (con't)

Rectangular arrays
Vectors, Dimension, Catenation
Matrices, Dimension, Ravel
Reshape
Empty Arrays
Indexing

Indexing on the Left
Index Origin

Array Output

Functions on Arrays
Scalar Functions
Reduction
Scan
Inner Product
Outer Product

Mixed Functions
Transpose
Rotate
Reverse
Compress
Mesh
Prefix and Suffix
Decode
Encode
Index Of
Membership
Take and Drop
Grade Up and Down
Deal
Comments

Multiple Specification

System Dependent Functions
I-Beam
Dom i no

The Plot Function

APPENDIX A
SAMPLE TERMINAL SESSION

BIBLIOGRAPHY

11

54
54
54
55
56
56
58
58
58

59
59
59
61
61
61

63
63
63
64
64
64
66
66
67
67
67
68
68
69
69

69

72
72
73

76

78

89

PART 1

GAINING ACCESS

This part of the manual describes the characteristics of the
APL\1500 terminals, the establ ishment of a connection between the
terminal and the central computer, and the procedures for starting
a work session.

TERMINAL DEVICES

Each terminal may be comprised of an IBM 1518 Typewriter or an
IBM 1510 CRT with Keyboard, or both. In addition, the terminal
configuration may include an IBM 1512 Film Projector.

l~M l~l~ I~e~W~lI~~:
Each typewriter should be equipped with an IBM Standard

Selectric APL printing element; part number 1167987. The standard
line width is 120 characters. When the system is waiting for
input, the 1 i ght on the typewr iter keyboard wi 11 be on and the
keyboard will unlock. The typewriter £~r~Qr is defined as the
position, marked by the location of the typeball, which indicates
where the next character typed will be printed.

l~M 121Q ~~I ~lItl K~~~Q8BQ:
The CRT screen is composed of 16 1 ines of 40 characters each.

The sixteenth 1 i ne is reserved for messages transmi tted between
terminals. During display, if the output is incomplete at the
bottom of the CRT screen, the output is halted and the system will
wait for any key press to continue the display starting at the top
of the screen. The CRT cursor is defined as the position, marked
by a dotted box, where the--next character typed will be displayed.
When the system is waiting for input, the cursor position is
displayed.

l~M 1~12 E11M £BQ~~~IQB:
The film projector is an output device only, and allows for

the display 01 anyone of 1022 frames of film. See the IBM 1500
Film Preparation Guide for a complete description.

THE APL\1500 KEYBOARD AND CHARACTER SET

The numerals, alphabetic characters, and punctuation marks
appear in their usual places on the keyboard. The letters are
di splayed as upper-case i tal ics, but are produced only when the
keyboard is in the lower case position (i.e.; not shifted). The
special characters are generally produced with the keyboard
shifted. The APL\1500 keyboard is shown in figure 1.

13

rALTl
~

[
[

LOCK)
SHIFT

w
Q W

a r
A S

] C
z

(

L -
D F

:) n
x c

Figure 1 .

ENTRIES

RETURN

'l 6. <> I 0 ()
1 G H J K L [J

u ..L T I \ B V B N M / OFF

space bar 1
APL\1500 KEYBOARD

F RO;v1 TH E KEYBOARD

Normal communication between a terminal and the central
computer is carried on by means of entries from the keyboard, which
locks when each entry is made and unlocks when the computer
completes its work. The general procedure is to type an
instruction or command, and strike the BEIUB~ key to indicate the
end of the message. In the remainder of this manual the need for
the RETURN key will not be explicitly mentioned, since it is
required for ~Y~LY entry.

t=11~1.Qls~~:
Errors in typing can be corrected Q~fQL~ the RETURN key

completes an entry:

1. Backspace to the point of error and then depress the INDEX
key. This will have the effect of deleting everything to the
right of, and including, the position of the cursor. The
corrected text can be continued from that point, on the new
1 i ne.

2. The entire 1 ine may be deleted by simultaneously
depressing the ALT CODE key and the + (plus) key. A new 1 ine
can then be entered.

3. If the terminal input device is a CRT, characters may be
erased by holding down the ALT CODE key and striking the BACK
SPACE key until the error has been erased. Entry can then be
continued from that point.

BEMEM~£B: Each entry is interpreted exactly as it appears,
regardless of the time sequence in which the characters were typed.

14

~.Q!J.tl!J!:J~.tlQIJ
If entries are

continued on the next
CODE key and the RETURN
next 1 ine at the left
continuation can not be

~!J9~r~~Qr~9 21Qb2Q~1

longer than a single line, they may be
1 ine by simultaneously depressing the ALT
key. The cursor will be positioned on the
margin. Errors on the 1 ine ended with a
corrected.

The APL alphabet consists
underscored-letters A thru ~.
formed in either of two ways:

of the letters A
The underscored

thru Z and the
letters can be

1. Overstrike the letter with an underscore (up-shifted F).

2. Hold down the ALTCODE key and depress the desired letter.
This operation will automatically result in the underscored
letter .

.811~!J.tlQD
Attention is obtained by holding down the ALT CODE key and

striking the INDEX key. This operation has two effects:

1. If the terminal is signed off, the attention signal will
initially establ ish communication between the terminal and the
central computer. The keyboard will unlock and the system
will be ready to accept input from the user.

2. If the terminal is already signed on, the attention signal
will stop function execution or output in progress. If the
system is waiting for input, the attention signal will have no
effect. See Part 2 for a further explanation of attention.

STARTING A WORK SESSION

Each user of the system is assigned an ~~~QYDt DymbfI. This
number is used to effect the sign-on that initiates a work session
and is used to identify the work that the user may store in the
system between work sessions.

The following is a description of the sign-on command which is
entered after 2.t1~IJ11QD has been signaled.

~I.8BI .8 ~QB~ ~~~~lQ~:)nnnnnn
Enter a right parenthesis followed by an account number, and,
if required, a key (i .e., a colon and a password). The use of
passwords as locks and keys is described in Part 2.

fffg£.t:
A workspace will be activated for the terminal and the
accumulation of time charges will begin. A workspace can
be thought of as both a notebook and a scratch pad. The
details are explained in Part 2.

15

Bg~QQD~g:
1. The port number, user name associated with the
account number, date, and time of day will be displayed.

2. The system identification 'A P L \ 1 500' will be
displayed.

3. A broadcast message from the APL operator may be
displayed.

IrQ~Qlg rgQQrl~:
NUMBER NOT FOUND
Either no such number has been assigned or the number has
a lock associated with it and the wrong key was used.
The APL operator should be consulted if help is required.

INCORRECT COMMAND
Either the form of the transmitted command was faulty or
the time and date have not yet been set.

If you are the first user to sign-on, then you must set the
11m§ and d~l§. See Part 2 for a description of the commands used
to set the time and date.

Once the sign-on is accompl ished, a work session is started,
and the full APL system becomes available.

16

PART 2

SYSTEtv1 COMMANDS

APL operations deal with transformations of abstract objects,
such as numbers and symbols, whose practical significance, as is
usual in mathematics, depends on the (~rbitrary) interpretation
placed upon them. St~l~m £Qmm~n~~ in the APL\1500 System, on the
other hand, have as their subject the structures which comprise the
system, and control functions and information relating to the state
of the system, and therefore have an immediate practical
significance independent of any interpretation by the user.

This section describes the structure of the APL\1500 system,
introduces the various notions essential to the understanding of
system commands, and describes the complete set of system commands
in detai 1.

WORKSPACES AND LIBRARIES

~Qr.k~Qqfg~
The common organizational unit in the APL\1500 system is the

~Qr.k~Q§fg. When in use, a workspace is said to be ~fl1~g and
occupies a block of working storage in the central computer. The
size of the block, which is preset at a fixed value, determines the
combined working area and storage capacity of each workspace in the··
system. Part of each workspace is set aside to serve the internal
workings of the system, and the remainder is used, as required, for.
storing items of information and for containing transient
information generated in the course of a computation.

An active workspace is always associated with a terminal
during a work session, and all transactions with the system are
mediated by it. I"n particular, the names of y~rl~Qlg~ (data items)
and Q~flOgQ f~o£!lQO~ (programs) used in calculations always refer
to objects known by those names in the active workspace;
information on the progress of program execution is maintained in
the state indicator of the active workspace; and control
information affecting-the form of output is held within the active
workspace. .

11Qr~rlg~
Inactive workspaces are stored in llQr~rlg~. They occupy

space in secondary storage (disks) and cannot be worked with
directly. When required, copies of stored workspaces can be made
active, or selected information may be copied from them into an
active workspace.

Libraries in APL\1500 are ei ther QrlY9!g or Qh!Qllf. Private
1 ibraries are associated with individual users of the system, and
are identified by the user's account number. Access to them is
restricted in that one user may not store workspaces in another

17

person's 1 ibrary. However, one user may activate a copy of another
user's (unlocked) workspace if he knows the 1 ibrary number.

Publ ic 1 ibraries are identified by numbers below 100. They
are not associated with individual users, although certain ones may
be reserved by general agreement for groups of people working
cooperatively. A workspace stored in the publ ic 1 ibrary is under
control of the user who establ ished the 1 ibrary. Each 1 ibrary
establ ished with a number less than 100 is automatically locked
against inadvertent sign-on.

NAMES

Names of functions and variables may be any ~lnglg alphabetic
character (A to z, and d to ~).

The environment in which APL operations take place is bounded
by the active workspace. Hence, the same name may be used to
designate different objects (i.e., functions or variables) in
different workspaces, without interference. However, the objects
within a workspace must have distinct names, except as explained
belo\v.

1Q~~1 §ti~ glQb§l §lgnlfl~§n~g
In the execution of defined functions it is often necessary to

work with intermediate results which have no significance either
before or after the function is used. To avoid cluttering the
workspace with a· mult·itude of variables introduced for such
·transient purposes, and to allow greater freedom in the choice of
names, the function definition process (§gg Part 3) provides a
facil ity for designating certain variables as lQf§l to the function

'being defined. Variables not so designated, and all functions, are
sa i d 'to be glQQ~l.

A local variable may have the same name as a global object,
and any number of variables local to different functions may have
the same name.

During the execution of a defined functi'on, a local variab.le
will supersede a function or global variable of the same name,
temporarily excluding it from use. If the execution of a function
is interrupted (leaving it either ~~~QgOggg or QgO~gO!, ~gg Part
3), the local variables retain their dominant position, during the
execution of subsequent APL operations, until such time as the
bal!gd function is completed~ System commands, however, continue
to reference the global homonyms of local variables under these
circumstances.

18

LOCKS AND KEYS

Stored workspaces and t~e information they hold can be
protected against unauthorized use by associating a lQ~k,
comprising a colon and a 2g~~~QL9 of the user's choice, with the
workspace, when the workspace is stored. In order to activate a
locked workspace or copy any information it contains, a colon and
the password must again be used~ as a kgy.

Account numbers can be similarly protected by locks and keys,
thus maintaining the security of a user's private 1 ibrary and
avoiding unauthorized charges against his account.

Passwords for locks and keys may be formed of any sequence of
characters up to six characters long, without blanks or colons.
Characters beyond the sixth are ignored. In use as either a lock
or key, a password is set off by a preceding colon.

ATTENTION

Printed output at a terminal can be cut off, ·or the execution
of an APL operation can be interrupted, and control returned to the
user, by means of an gllgnl1QQ ~lgQgl. Attention is obtained by
holding down the ALT CODE key and pressing the INDEX key.

Following an attention signal the keyboard will unlock, and
the cursor will return to the normal position for input (two spaces
from the left margin). In some cases aline will be printed before
the keyboard unlocks, tell ing where a function in progress was
Interrupted.

The execution of system commands, once entered, cannot be
interrupted. However, the printed responses or trouble reports
following a system command can be suppressed by a properly timed
attention signal.

USE OF SYSTEM COMMANDS

System commands and APL operations are distinguished
fYn~11Qn~11~ by the fact that system commands can be called for
only by individual entries from the keyboard, and cannot be
executed dynamically as part of a defined function. They are
distinguished in fQrm by the requirement that system commands be
prefixed by a right parenthesis, which is a syntactically inval id
construction in APL.

It may be desirable to perform dynamically some system
control, and to use some items of system information during the
execution of a program. For these purposes APL\1500 provides
appropriate ~~~lQm=ggQ§nQ~nl fYn~11Qn~, which can be used 1 ike
other APL operations. These functions are described in Part 3.

19

System commands are conveniently grouped into six classes with
regard to their effect upon the state of the system. The summary
table of commands and the descriptive text associated with them are
based upon this classification:

1. I~rmlQ~l ~QQ!rQl commands affect the relation of a
terminal to the system.

2. ~Qrk~Q~~~ £QQ!rQl commands affect the state of the active
workspace.

3. 11Qr~r~ fQQ!rQl commands affect the state of the user's
stored 1 ibrary.

4. lQgylr~ commands provide information without affecting the
state of the system.

5. ~QmmYQl£~!lQn commands effect the transmission of messages
among terminals.

6. ~~~!~m ~!~r! YQ commands must be executed by the first
signed-on user in order to fully activate APL\1500. These
become privileged (inactive to all but the system operator)
after they have been executed.

Any entry starting with a right parenthesis will be
interpreted by the system as a system command. When the command is
successfully executed, the QQrm21 r§~QQn~g, if any, will be
printed.

If, for any reason, a command cannot be executed, an
appropriate !rQYQ1~ rgQQr! (error report) will be printed. The
most common report is INCORRECT COMMAND. This means that the
command was incomplete, misspelled, modified incorrectly, or
otherwise malformed. It may also mean that the !lmg and ~§!g have
not yet been entered.

Where the first word of a command is more than four characters
long, only the first four are significant. The others are
included only for mnemonic reasons, and may be dropped or replaced,
as desired. For example,)CLEAR,)CLEA,)CLEANSE, etc., are all
equivalent. In general, the elements of a command must be
separated by one (or more) spaces. Spaces are not required
immediately following the right parenthesis, or on either side of
the colon used with passwords, but can be used without harm.

20

f!JBfQ~~ ~QMM8tH2 !:1QBM81 B~~fQ!:1~g gBBQB Bg.EQBI~

SIGN-ON USER AND START)wsid [key] Terminal,Name,Date,Time; 1 2
SESSION APL\1500;[OPR: text]

TERMINATE SESSION)OFF [lock] Terminal,Date,Time; 1
Connect;Latency;CPU

ACTIVATE CLEAR WS)CLEAR 1

CLEAR STATE INDICATOR)PURGE 1

ACTIVATE A STORED WS)LOAD [wsid] [key] SA VED, Da te, Time 123 9

COpy A GLOBAL OBJECT)COpy wsid [key] A [B] SAVED,Date, Time 1234569

N COpy ALL GLOBAL OBJECTS)COPY wsid [key] SAVED,Date, Time 123 469
~

COPY A GLOBAL OBJECT,)PCOPY wsid -[key] A [B] SAVED,Date, Time 1 2 3 4 5 6 9
PROTECT ACTIVE WS

COpy ALL GLOBAL OBJECTS,)PCOPY wsid [key] SAVED, Date, Time 123 4 6 9
PROTECT ACTIVE WS

ERASE GLOBAL OBJECT[S])ERASE name[s] 1 7

SET INDEX ORIGIN)ORIGIN integer,o-1 WAS,former origin 1

SET MAX OUTPUT LINE LENGTH)WIDTH integer,20-120 WAS, former width 1

SET MAX FOR SIGNIFICANT)DIGITS integer,1-6 WAS, former maximum 1
DIGITS IN OUTPUT

STORE A COPY OF ACTIVE WS)SAVE [lock] SAVED,Date,Time 189

ERASE THE STORED WS)DROP DROPPED,Date,Time 1 9

N
N

£:~B£:Q~£

LIST NAMES OF DEFINED
FUNCTIONS

LIST NAMES OF GLOBAL
VARIABLES

LIST STATE INDICATOR

SEND TEXT TO A TERMINAL

SEND TEXT TO OPERATOR'S
TERMINAL IF OPERATIONAL

~QM~8J:1Q

)FNS

)VARS

lSI

)MSGN port [text]

)OPRN [text]

~QBM81 B£~£:Q~~£

List of function names
and header syntax.

List of names of vari
ables and rank.

List sequence of
halted functions.

SENT

SENT

~BBQB Bt'!:QBI~

1

1

1

1 10

1

The System Commands)TIME and)DATE must be executed by the first user to si~n on the system
(usually the operator). Once these commands have been executed, they become privileged. Until
these commands are executed, all other System Commands will yield the report:
INCORRECT COMMAND.

SET THE TH1E

SET THE DATE

NOTES: 1.
2.

3 •
4.

)TIME hours minutes seconds

)DATE month day year

items in brackets are optional.
key or lock: a password (1-6 characters)
set off by a preceding colon. A colon
alone following a command removes a lock.
wsid: workspace number (1-6 characters).
'[BJ' of Copy commands will copy object
'A' and change its name to 'B'.

1

1

ERROR REPORTS

1 INCORRECT COMMAND
2 NUMBER NOT FOUND
3 WS NOT FOUND
4 NOT COPIED: list of objects
5 OBJECT NOT FOUND
6 WS FULL ERROR
"7 NOT ERASED: 1 i s t of ob j ec t s
8 NOT SA VED
9 PACK ERROR
10 STATION SIGNED OFF

TERMINAL CONTROL COMMANDS

There is one command for starting a work session and one
command for ending it. The starting command has been described in
Part 1.

A work session can be stopped remotely, from a privileged
user' s terminal, in an act ion knovl/nas a QQ!do.~~. The bounce may be
used when a terminal is requi red for a special purpose, or to clear
the system of all users before stopping the APL\1500 operation
completely. The bounce performs as)OFF.

If a work session is ended because of a failure of the central
complJter, the act'ive workspace is not stored.

Elapsed time, latency, and time of day, given as a system
response, are ulways in hours, minutes, and secondsi two digits for
each, separated by colons. A date response is given as month, day,
and yeari two digits for each, separated by slashes. Clock hours
are counted continuously from midnight of the indicated day, and if
the system runs past midnight it is possible to have time readings
above 24 hours. For example, 34:22:00 10/01/68 would be 22 minutes
past 10 AM on October 2, 1968.

~I~BI ~ ~QB~ ~~~~lQ~:
This is the ~lgo.=Qo. described in Part 1.

~~Q 8 ~QB~ ~£~~lQ~:)OFF
Enter)OFF optionally followed by a colon and a password.
Passwords longer than 6 characters are accepted but only the
first 6 are meaningful. Spaces around the colon are neutral.

£ff~f!:
1. The currently active workspace will vanish. There is
no effect on any stored workspace.

2. The duration of the work session, the user input
latency, and the amount of computer time used will be
noted internally for later accounting.

3. The password, if used, wi 11 become a new lock on the
account number. Once appl ied, a lock stays in effect
until expl icitly changed by an")OFF command that contains
a colon. An existing lock is removed if no password
follows the colon.

B~~QQn~~:
1. The port number, date, and time of day will be
printed on one 1 ine.

23

2. Accounting information will be printed on three 1 ines
giving terminal
central computer
total time the
input. The time
since the last
format.

connect time, user input latency, and
time. Input latency is defined as the
keyboard was unlocked and waiting for
used in this session and cumulative time
accounting are given in the standard

WORKSPACE CONTROL COMMANDS

The commands in this class can replace the active workspace
with a clear one, or with a copy of a stored workspace; bring
together, in the active workspace, information from many stored
workspaces; remove unwanted objects from the active workspace;
remove all levels of suspension; and set controls ·governing certain
operations. The commands in this class affect QOly the active
workspace.

The usefulness of a terminal system is enhanced by the
availabil ity of many different collections of functions and
variables, each of which is organized to satisfy the computational
needs of some area of work such as standard statistical
calculations, exercises for teaching a subject, complex arithmetic,
business accounting, simulations, etc. The workspace-centered
organization of APL\1500 lends itself to such packaging, because
each collection moves as a unit when the workspace containing it is
stored or activated.

The ~QQY commands provide a convenient way to assemble
packages from. components in different workspaces. Information
entered or developed withln one workspace can be made available
within another by means of the ~QQY and QLQ1~~11ng=~QQY commands,
which reproduce, within the active workspace, objects from a stored
workspace. These are two sets of parallel commands which differ
only in their treatment of an object in the active workspace which
has the same name as an object being reproduced: the copy commands
will replace the existing object, whereas the protecting-copy
commands will not make the replacement.

A copy command of either type can be appl fed to an entire
workspace or to a single object (i.e., a function or variable).
When an entire workspace is copied, all the functions and global
variables within it are subject to the operation, but its index
origin and output control settings, state indicator, and local
variables are left behind. Either copy command may copy a single
object and change its name in the active workspace.

24

NOTES: 1. The term ~~lQ (~Qr~~~~~~ lQ~Ql1fl~~11QQ) is used here
tome a n ali bra r y n u m b e r (ace 0 u n t n u m be r) . ~;J hen the w sid
is omitted, the reference is to the user's private
1 ibrary.

2. A kgy is a colon followed by a password.

3. The system response, INCORRECT COMMAND, may occur for
any system command. This means either that the command
was malformed or that the time and date have not been set.

8~I1Y8I~ 8 ~b~8B ~QB~~E8Q£:)CLEAR
En te r) CLEAR
This command is used to make a fresh start, discarding
whatever is in the active workspace.

E.ff§~l:
A clear workspace will be activated, replacing the
presently active workspace. A clear workspace has no
variables or defined functions. Its control settings
are: index origin, Ii significant digits, 6i line width,
120 on typewriter or 40 on CRT. Its workspace
identification does not match that of any stored
workspace.

Bg~QQn~~:
None.

Q1E.8B ItlE. ~I8I~ 1~Q1Q8IQB:)PURGE
Enter)PURGE

£ff§s;l:
The state indicator is cleared (~§g)SI command).

B§~QQn~§:
None.

8QI1Y8IE. 8 QQEY QE 8 ~IQB~Q ~QB~~E8QE.:)LOAD
Enter)LOAD optionally followed by a space and a wsid (with
the key, if requ ired) . Th i s command may be used to obta in the
use of any workspace whose identification (and password) is
known. If the wsid is omitted, the user's workspace is
indicated.

E.ffgs;!:
A copy of the designated workspace will be activated,
replacing the presently active workspace.

B§~QQ!J~§:
SAVED, followed by the date and time of day that the
source workspace was,last stored.

25

IrQ!J121§ rg2Qr1~:
NUMBER NO'T FOUND
There is no 1 ibrary for the entered number.

WS NOT FOUND
There is no stored workspace with the given
identification, the key was omitted when one was
required, or the wrong key was used.

PACK ERROR
The disk pack containing the referenced 1 ibrary was not
mounted and ready.

~QfY 8 G1Q~81 Q~~f~I EBQM 8 ~IQBIQ ~QB~~E8~I:)COpy
Enter)COPY followed by a space, a wsid (with the key, if
required), a space, and the name of the object to be copied;
then, optionally, a space and the new name the object is to
have in the active workspace. A global object may be a
function or global variable.

Iffg~.t:
1. The global homonym in the active workspace will be
erased.

·2. A copy of the designated object will appear in the
active workspace with global significance.

Bg§'QQo§.g:
SAVED, followed by the date and the time of day the
source workspace was last stored.

IrQk!Qlg rgQQrl§.:
NUMBER NOT FOUND
§.gg)LOAD

WS NOT FOUND
§.§§)LOAD

PACK ERROR
§.§g)LOAD

OBJECT NOT FOUND
The designated workspace does not contain a global object
with the given name.

NOT COPIED:
The 1 isted object was not copied because the active
workspace was full or the state indicator was not clear.

WS FULL ERROR
The active workspace could not contain all the material
requested. I f copied at all, a variable or function -wi 11
be copied completely.

26

QQfr ALL GLOBAL OBJECTS FROM A STORED WORKSPACE:)COPY
Enter-)COFY--followed-by-a-space, -and-a-wsid (with the key, if
required).

(ff~~t:
1. All global homonyms in the active workspace will be
erased.

2. A copy of all functions and global variables in the
source workspace will appear in the active workspace with
global significance. Local variables, the state
indicator, and settings for origin, significant digits,
and width will not be copied.

B~~QQn~~:
SAVED, followed by the date and the time of day the
source workspace was last stored.

IrQ~Ql~ r~QQrt~:
NUMBER NOT FOUND
~~~ )LOAD 

WS NOT FOUND 
~~~ )LOAD 

PACK ERROR
~~~ )LOAD 

NOT COPIED: 
The 1 isted objects were not copied because the state 
indicator was not clear, or the active workspace function 
file or data storage area was full. 

WS FULL ERROR 
The active workspace could not contain all the material 
requested. If copied at all, a variable or function will 
be copied completely. 

~QEY 8 glQ~8h Q~4~~I EBQM 8 ~IQB~Q ~QB~~E8~~, EBQI~~Il~g Itl~ 
8~I1Y~ ~QB~~E8~~: )PCOPY 

Enter )PCOPY followed by a space, a wsid (with the key, if 
required), a space, and the name of the object to be copied; 
then, optionally, a space and the new name the object is to 
have in the active workspace. 

Iffg~l: 
A copy of the designated object will appear in the active 
workspace unless there is an existing global homonym. 

Bg~QQQ~g: 
SAVED, followed by the date and the time of day the 
source workspace was last stdred. 

27 



IrQ1!t21.§ r'§.I2QJ:l~: 
NUMBER NOT FOUND 
~.§.§ )£OAD 

WS NOT FOUND 
~.§.§ )LOAD 

PACK ERROR 
~.§g )LOAD 

OBJECT NOT FOUND 
The designated workspace does not contain a global object 
with the given name. 

NOT COPIED: 
The 1 isted object was not copied because the active 
workspace was full, the state indicator was not clear, or 
there was a global homonym in the- active workspace. 

WS FULL ERROR 
~gg )COpy 

CQfY Al1 glQ~81 Q~4fCIS EBQ~ 8 SIQBfQ ~QBKSf8Cf, fBQlfCI1~g I~f 
8~IIY1 ~QBK~f8~1: )PCOpy 

Enter )PCOPY followed by a space and a ws i d (wi th a key, if 
required). 

fffgS;l: 
A copy of all global objects in the source workspace 
which do not have global homonyms in the active workspace 
will appear in the active workspace. 

Bg~.I2Qo~g: 
SAVED, followed by the date and the time of day the 
source workspace was last stored. 

IrQ!:!t21g r~QQI1~: 
NUMBER NOT FOUND 
~gg )LOAD 

WS NOT FOUND 
~gg )LOAD 

PACK ERROR 
~gg )LOAD 

NOT COPIED: 
The 1 is ted obj ects we re not cop i ed because the sta te 
indicator was not clear, the active workspace function 
file or data storage area was full, or there were global 
homonyms in the active workspace. 

WS FULL ERROR 
~~~ }COPY 

28

~B~~~ ~1Q~~1 Q~~~~I~:)ERASE
Enter)ERASE followed by a space and the names of global
objects to be deleted, separated by spaces. This is the only
way to remove global variables and the most convenient way to
remove functions.

Effect:
-----Named objects having global

do not
sign i fica n c e wi 1 1 be

expunged. Names which refer to global objects
will be ignored.

B~?'QQ!J.?'~:
None.

IrQ~Ql~ r~2Qr!:
NOT ERASED:
The 1 isted functions were not erased because the state
indicator was not clear.

~~I l~Q~X QB1~1~ EQB ~BB~Y QE~B~IIQ~~:)ORIGIN
Enter)ORIGIN followed by a space and a 0 or 1.
11]2 and I12 in Part 3.

~ff~~!:

See also

The first element of arrays in the workspace will be
numbered zero or one, as indicated,' and subsequent use of
index-dependent APL operations will be appropriately
affected. Index origin is more fully explained in Part-
3 •

B§?I2Q!J.?g:
WAS, followed by the former origin.

~~I ~~XIM~M ~lQIU EQB 8~ Q~IE~I 11~~:) WIDTH
Enter)WIDTH followed by a space and an integer between 20
and 120 inclusive. If the input device is a CRT, the line
width will be set to 40 if the entered value is greater than
40. See also ffi6 and I16 in· Part 3.

~ff§~!:
Subsequent output of all kinds wi 11 be 1 imi ted to ali ne
width no greater than the number of spaces indicated.
This command will not affect the length of input lines.

Bg?I2QD~g:
WAS, followed by the former maximum width.

~~I M8XIM~M EQB ~lg~lEl~8~I Ql~lI~ l~ Q~IE~I:)DIGITS
Enter)DIGITS followed by a space and an integer between 1
and 6 inclusive. See also ffi9 and I29 in Part 3.

29

Effect:
-----~ubsequent output of numbers will show no greater number

of significant digits than indicated. This command has
no effect on either input or the precision of internal
calculations, which is approximately 7 decimal digits.

B~~QQ!]~g:
WAS, followed by the former maximum.

LIBRARY CONTROL COMMANDS

There are two basic operations performed by the commands in
this class. The save command causes a copy of an active workspace
to be stored in the- user's 1 ibrary, and the QIQQ command causes
such a stored copy to be destroyed.

The save command and the load command are symmetric, in the
sense that a load command destroys an active workspace by replacing
it with a copy of a stored workspace, while a save command destroys
a stored workspace by replacing it with a copy of the active
workspace.

When a workspace is stored, an exact copy of the active
workspace is made, including the state indicator and intermediate
results from partial execution of halted functions. These
functions can be restarted without loss of continuity (see Part 3),
which permits considerable flexibil ity in planning use of the
system. For example, lengthy calculations do not have to be
completed at one terminal session; student work can be conducted
over a series of short work periods; and mathematical
experimentation or the exploration of system models can be done
over long periods of time, at the investigator's convenience.

A 1 ibrary number uniquely identifies each stored workspace in
the system. An active workspace is also identified by a 1 ibrary
number, and as copies of stored workspaces are activated, or copies
of the active workspace are stored, the identification of the
active workspace may change according to the following rules:

1. A workspace activated
identification of its source.

from a 1 ibrary assumes the

2. When a copy of the active workspace is stored, the active
workspace assumes the identification of the subject 1 ibrary.

3. A clear workspace activated by a)CLEAR command, a
sign-on, or a system failure will not match the identification
of any stored workspace.

The identification of active workspaces is used in two ways.
First, as a safeguard against inadvertent replacement of a stored
workspace by an unrelated one. Second, the)SAVE command
imp 1 i cit 1 y use s the ide n t i f i cat ion 0 f the act i ve \\10 r k spa c e .

30

~~mm~r~
Each stored workspace has impl icitly associated with it the

account number signed on at the terminal from which the save
command was entered, and may not be either replaced or erased,
except from a terminal signed on with the same account number.
Thus, one user is prevented from affecting _the state of another
user's private 1 ibrary. The user may, of course, activate a copy
of any workspace stored in the system, if he knows the 1 ibrary
number (and password, if required).

A user of APL\1500 is assigned 1 ibrary space for, at most, one
workspace in his private 1 ibrary. A user's ~££Q~Q! n~mQgr is also
the number of his private 1 ibrary.

B~=~IQB~ 8 QQEt QE IB~ 8QIlYE ~QB~~E8QE:)SAVE
Enter)SAVE optionally followed by a colon and a password.

~ffg£!:
1. A copy of the active workspace will replace the
user's stored workspace.

2. The password, if used, will become a new lock on the
workspace. Once appl ied, a lock stays in effect until
expl icitly changed by a)SAVE command that contains a
colon. An existing lock is removed if no password
follows the colon.

Bg~QQn~g:
SAVED, followed by the date and the time of day.

IrQ~Qlg rgQQr!~:
PACK ERROR
~g~)LOAD

NOT SAVED
The active workspace can be stored only if the wsid of
the active workspace agrees with the wsid of the stored
workspace, or the stored workspace has been dropped.

~B8~~ 8 ~IQB~Q ~QB~~E8Q~:)DROP
Enter)DROP

~ffg£!:
The stored workspace will be expunged. Since a key is
not used, a locked workspace whose key has been lost can
always be removed from the system. This command has no
effect on the active workspace.

Bg~QQn~g:
DROPPED, followed by the date and the time of day.

31

ILQ.!d!21.§ r'§QQr!~:
PACK ERROR
,2.gg)LOAD

I NQU I RY COrv1MANDS

All of the commands in this class are concerned only with the
active workspace.

11~I ~8M~~ QE Q~El~~Q E~~~IIQ~~:)FNS
Enter)FNS

None.

B~~.QQ!J~'§:
All defined function names will be listed with their
header syntax.

NILADIC
MONADIC
DYADIC

+ f
+ fo
+ofo

11~I ~8M1~ QE QbQ~81 Y8B18~11~:
Enter)VARS

None.

B~~12Q!J~g:

f
fo

ofo

) VARS

All 'global variable names will be listed with their rank.

SCALAR n
VECTOR nl
MATRIX nO

11~I tl8111Q EU~~IIQ~~:)SI
Enter)SI

None.

B~~QQn~~:
The names of halted functions will be 1 isted, most recent
ones first. With each name, the 1 ine number on which the
function stopped will be given. Suspended functions will
be distinguished from pendent functions by an asterisk.
This display of the ~lgl~ InQlfg!Q[and its significance
is explained in Part 3, along with the system-dependent
functions I26 and I27.

32

COMMUNICATION COMMANDS

There are two commands in this class. One command addresses
any connected terminal, and one cOlnmand addresses only the system
recording terminal (operator's terminal).

Messages can be received by a terminal only when its keyboard
is locked. Incoming messages from the system recording terminal
are prefixed by OPR:. The length of a message is restricted to a
maximum of 114 characters in length. However, messages are not
subject to width settings of either the sending or receiving
terminal. Messages sent to a CRT will appear at the bottom of the
screen and are physically 1 imited to a display of 34 characters.

8DDB£~~ I£XI IQ D£~lG~8I£D I£BM1~81:)MSGN
Enter)MSGN followed by a space, a port number, a space, and
the desired text.

£ffg~l:
The text will be displayed at the receiving terminal,
prefixed by the port number of the sending terminal.

Bg~QQD~g:
SENT

IrQ~Qlg rgQQL1~:
STATION SIGNED OFF
The message was lost because the designated terminal was
signed off.

8QQB£~~ I£XI IQ ~Y~I£M B£~QBQ1~G B£~QBQ1~G I£BM1~81:)OPRN
Enter)OPRN followed by a space and the desired text.

£ffg~l:
The text will be displayed at the system recording
terminal, prefixed by the port number of the sending
terminal. If the recording terminal does not exist or is
not operational, the message will be lost.

B~~QQD2~:
SENT

SYSTEM START UP COMMANDS

There are two commands in this class. These commands mY~l be
executed by the first 21gD§Q=QD user in order to activate the
entire APL\1500 System. Until the 11m~ and d~lg commands have
been entered, all other system commands, including attempted
sign-ons by other users, will yield an INCORRECT COMMAND report.

33

After the time and date commands have been entered, they will
become unavailable for normal execution (privileged). These
commands are usually entered by the system operator when the system
is initially started for the day.

SEI ItlE lIME QE QAY:) TIME
Enter)TIME followed by a space, the. number of hours past
midnight, a space, the number of minutes past the hour, a
space, and the number of seconds past the minute.

Effe~t:
The time of day will be set and the user's sign on time
will be reset. After execution, this command will become
privileged.

None.

~EI ltlE QAIE:)DATE
Enter)DATE followed by a space, the number of the month, a
space, the day of the month, a space, and the last two digits
of the year.

Effe~t:
The date will be set. After execution, this command will
become privileged.

None.

34

PART 3

THE LANGUAGE

The APL\1500 System executes system commc~nds and mathematical
statements entered at a tenninal. The system commands were treated
in Part 2; the mathematical statements will be treated here.

Acceptable statements may employ either Qrlml!ly~ f~nf!lQn~
(e.g., + - x f) which are provided by the system, or ~gfln~~
f~nf!lQn~, which the user provides by entering definitions at the
terminal.

If system commands are not used, the worst that can possibly
result from erroneous use of the keyboard is the printing of an
grrQr rgQQr!. It is, therefore, advantageous to experiment freely
and to use the system itself for settl ing any doubts about its
behavior. For example, to find what happens in an attempted
division by zero, simply enter the expression 4fO.

The Sample Terminal Session in Appendix A shows actual
intercourse with the system and may be used as a model in gaining
faci 1 ity with the terminal. The examples generally follow the
text and may well be studied concurrently.

FUNDAMENTALS

~121glJJgnl~
Statements are of two main types, the Qr§nfb (denoted by ~ and

treated in the section on Defined Functions), and the
§Qgflflf§11Qo. A typical specification statement is of the form:

X+3x4

This statement assigns the
expression to the right
variable name and arrow
displayed. For example:

3x4
12

Y~rl~Qlg X the value resulting from the
of the ~Qgflflg911QQ 9rIQ~. If the

are omitted, the resulting value is

Results displayed by the system begin at the left margin,
whereas entries from the keyboard are automatically indented 2
spaces. The keyboard arrangement is shown is Part 1.

~f212r 9n~ ygg!QI fQQ~19n!~
All n~nbers entered via the keyboard or displayed by the

system are in decimal, either in conventional form (including a
decimal point if appropriate) or in exponential form. The
exponential form consists of an integer or decimal fraction
followed immediately by the symbol E followed immediately by an
integer. The integer following the E specifies the power of ten by
which the part preceding the E is to be multipl led. Thus 1.44E2 is
equivalent to 144.

35

Negative numbers are represented by a negative sign
immediately preceding the number, e.g., 1.44 and -144E-2 are
equivalent negative numbers. The negative sign can be used only as
part of a constant and is distinguished from the Dgg~11QD function
which is denoted, as usual, by the subtraction symbol -.

A constant vector is entered by typing the constant components
in order, separated by one or more spaces. A character constant is
entered by typing the character between quotation marks. A
sequence of characters, entered in quotes, represents a vector
whose successive components are the characters themselves. Such a
vector is displayed by the system as the sequence of characters,
with no enclosing quotes and with no separation of the successive
elements. The quote character itself must be typed in as a pair of
quotes. Thus, the contraction of CANNOT is entered as 'CAN' 'T' and
is displayed as CAN'T.

~~mg~ ~ng ~Q~~§~
As noted in Part 2, the name of a variable or defined function

may be any letter. A letter may be any of the characters A to Z,
or anyone of the characters underscored, e.g., 4 or~. The
underscored letters may be formed by overstriking or by using the
ALT CODE and letter keys simultaneously.

Spaces are not required between primitive functions and
constants or variables, or between a succession of primitive
functions, but they may be used if desired. Spaces are needed to
separate names of adjacent defined functions, constants, and
variables. For example, the expression 2+3 may be entered with no
spaces, but if F is a defined function, then the expression 2 F 3
must be entered with the indicated spaces. The exact number of
spaces used in succession is of no importance and extra spaces may
be used freely.

QY~r~lrlklQg ~nQ ~rQ~~r~
Backspacing alone serves only to position the cursor and does

not cause erasure or deletion of characters. It can be used:

1. to insert missing characters (such as parentheses) if
space has previously been left for them,

2 •
and

to form
!),

compound characters by overstriking (e.g., <P

3. to position the cursor for erasure which is effected by
striking the INDEX key (erases the character at the position
of the cursor and all characters to the right), and

4. in conjunction with the ALT CODE key to erase characters
on the CRT Qnl:i.

Eng Qf ~l~i~m~Dl
The end of a statement is indicated by striking the RETURt

key. The typed entry is interpreted ~2Sg~11:i as it appears,
regardless of the time sequence in which characters were typed.

36

Order of execution
-----'n-a--compound expression such as 3 x 4t6+2, the functions are
executed (evaluated) from rightmost to leftmost, regardless of the
particular functions appearing in the expression. (The foregoing
expression evalutes to 21.) \vhen parentheses are used, as in the
expression W+(3fQ)+XxY-Z, the same rule appl ies, but, as usual, an
enclosed expression must be completely evaluated before its results.
can be used. Thus, the foregoing expression is equivalent t~
W+«3fQ)+(Xx(Y-Z»).

In general, the rule can be expressed as follows: every
function takes as its righthand argument the entire expression to
its right, up to the right parenthesis of the pair that encloses
it.

srIQI rgQQ.r!~
The attempt to execute an inval id statement will cause one of

the error reports given in Table 1 to be displayed. The error
report will be followed by the offending statement with a caret
displayed under the point in the statement where the error was
detected.

If an inval id statement is encountered during execution of a
defined function, the error report includes the function name and
the 1 ine number of the inval id statement. The recommended
procedure at this point is to enter)PURGE, amend the statement,
and then try again. This matter is treated more fully in the
section on Suspe d Function Execution.

~2m~~ Qf 2rlml!ly~ f~n~!lQQ~
The primitive functions of the language are summarized in

Tables 2 and 8, and will discussed individually in subsequent
sections. The tables show one suggested name for each function.
This is intended to discourage the common mathematical practice of
vocal izing a function in a variety of ways (for example, X+Y being
expressed as "x divided by ylI, or "X over yll). Thus, the
expression pM yields the glmgQ~lQQ of the array M, but the terms
~l~g or ~h~~~ may be preferred both for their brevity and for the
fact they avoid potential confusion with the glmgn~lQngll!~ or
r~nk of the array.

The importance of such names and synonyms diminishes with
famil iarity. The usual tendency is toward the use of the name of
the symbol itself (e.g., "rho" (p) for "size", and "iota" (1) for
"index generator"), probably to avoid unwanted connotations of any
of the chosen names.

~QIs:
The s 01 ++ is used throughout the remainder of this
rna n u a 1 to i n d i cat e t hat the ex pre s s ion to its 1 eft i s
gg~1~21~n! to the expression to its right. This symbol
is not an APL operator, it is only used to clarify
definitions of APL operations.

37

lYEE
CHARACTER

DEPTH

DOMAIN

DEFN

INDEX

LENGTH

RANK

SYNTAX

VALUE

SUSPENSION

WS FULL

SYSTEM

ERROR REPORTS

Illegitimate overstrike.

Excessive depth of function execution. PURGE THE
STATE INDICATOR.

Arguments not in the domain of the function.

Misuse of V or 0 symbols:
1. Use of other than the function name
alone in reopening a definition.
2. Improper request for aline edit or
display.
3. The function is locked.

Index value. out of range.

Shapes not conformable.

Ranks not conformable
greater than 2.

or resultant rank is

Inval id syntaxi e.g., two variables juxtaposedi
function used without appropriate arguments as
dicated by its headeri unmatched parentheses or
brackets.

Use of name which has not been defined. ASSIGN A
VALUE TO THE VARIABLE, OR DEFINE THE FUNCTION.

Function editing attempted while in suspension.
PURGE THE STATE INDICATOR.

Workspace is filled (perhaps by temporary values
produced in evaluating a compound expression).
PURGE STATE INDICATOR, ERASE NEEDLESS VARIABLES,
OR REVISE CALCULATIONS TO USE LESS SPACE.

Fault in internal operation of APL\1500, or
possible hardware failure. RELOAD OR CLEAR AND
COPY. SEND TYPED RECORD, I NCLUD I NG ALL ~'JORK
LEADING TO THE ERROR, TO THE SYSTEM MANAGER.

TABLE 1

38

Monadic form fB

Definition
or example

+B +-)- O+B

-B +-)- O-B

xB +-)- (B>O)-(B<O)

B rB LB
3.14 4 3 - --3.14 3 4

Name

Identity

Negative

Signum

Reciprocal

Cei 1 ing

Floor

f Dyadic form AfB

Name Definition
or example

+ Plus 2+3.2 ++ 5.2

Minus 2-3.2 ++ 1.2

x Times 2x3.2 +-)- 6.4

Divide 2+3.2 ++ 0.625

r Maximum 3r7 ++ 7

L Minimum 3L7 ++ 3

*B +-)- e*B Exponential * Power
e +-)- 2.71828 ...

eN +-)- eeN
e +-)- 2.71828 ...

1-3.14 +-)- 3.14

!B +-)- Bx!B-1
!O +-)- 1

Natural
1 oga r i t hm

Magnitude

Factorial

?B +-)- Random choice Roll
from IB

oB +-)- Bxpi Pit i mes
pi ++ 3. 14159 ...

"'0 +-)- 1 Not

(-A)OB A
(1:".8*2)*.5 0

Arcsin B 1
Arccos B 2
Arctan B 3

(-1+B*2)*.5 4
Arcsinh B 5
Arccosh B 6
Arctanh B 7

AoB
(1-B*2)*.5
Sine B
Cosine B
Tangent B
(1+B*2)*.5
Sinh B
Cosh B
Tanh B

Table of Dyadic 0 Functions

e Loga r i thm

I Residue

A@B ++ Log E base A
AeB ++ (eE)+eA

Case AlB
A;1!O B-(IA)xLB+IA
(A=O)"B?O E
(A=O)"B<O Domain erro~

'Binomial A!B ++ (!B)+(!A)x!B-A
coefficient 2!5 ++ 10 315 ++ 10

? Deal

o Circular

" And
v Or
t< Nand
¥ Nor

< Less
::; Not greater
= Equal
?) Not less
> Greater
;l! Not equal

A mixed function (~~~
Table 8)

~gg Table at lower left

A B A"B AvE A~E A¥E
00001 1
01011 0
10011 0
11110 0

Relations
Result is 1 if the
relation holds, 0
if it does not:

3::;7 ++ 1
7::;3 +-)- 0

Table 2: PRIMITIVE SCALAR FUNCTIONS

39

SCALAR FUNCTIONS

Each of the primitive functions is classified as either
or ml~~g. Scalar functions are defined on scalar
individual) arguments and are extended to arrays in five
element-by-element, reduction, scan, inner product, and
product, as described in the section on Functions on Arrays.
functions are discussed in a later section.

~s;;.§l.§.r
(i.eo,
ways:
outer
Mixed

Each scalar function is defined on real numbers or, as in the
case of the logical functions .§D9 and QL, on some subset of them.
No functional distinction is made between "fixed point" and
"floating point" numbers and the user of the terminal system need
have no concern with such questions unless his work strains the
capacity of the machine with respect to either space or accuracy.
All numbers are carried to a precision of about 7 decimal digits.

For operations such as floor and ceil ing, and in comparisons,
a "fuzz" of about 7.63E-6 is appl led in order to avoid anomalous
results that might otherwise be brought about by doing decimal
arithmetic in a binary machine.

Two of the functions of Table 2, the relationals ~ and -, are
defined on characters as well as on numbers.

MQO~91~ 209 gi~glf f~0~11Qn~
Each of the functions defined in Table 2 may be used in the

same manner as the famil iar arithmetic functions + - x and f. Most
of the symbols employed may denote either a !JJQ.D.9g1~ function (which
takes one argument) or a 9i.§91f function (which takes two
arguments). For example, ry denotes the monadic function fglling
appl ied to the single argument Y, whereas xry denotes the dyadic
function !JJ2~1!JJ~m appl ied to the two arguments X and Y. Any such
symbol always denotes a dyadic function if possible, i.e., it will
take a left argument if one is present.

At this point it may be helpful to scrutinize each of the
functions in Table 2 and to work out some examples of each, either
by hand or on a terminal. However, it is not essential to grasp
dll of the more advanced mathematical functions (such as the
hyperbol ic functions sinh, cosh, and tanh) in order to proceed.
Treatments of these functions are readilY available in standard
texts .

. Certain of the scalar functions deserve brief comment. The
rg~lg~~ function AlB has the usual definition of residue used in
number theory. For positive integer arguments this Is equivalent
to the remainder obtained by dividing B by A, and may be stated
more generally as the smallest non-negative member of the set
B-NxA, where N is any integer.

40

This formulation covers the case of a zero left argument as shown
in Table 2. The conventional definition is extended in two further
respects:

1. The left argument A need not be positive; the value of the
result depends only on the magnitude of A.

2. The argument need not be integral. For example, 112.6 is
0.6 and 1.51s is 0.5.

The function A!B (pronounced A out of B) is defined as
(!B)f(!A)x!B-A. This is the number of combinations of B things
taken A at a time.

The symbols < ~ = ~ > and 7 denote the relations l~~~ !h~Q,
l~~~ !h9.Q Q'!: ~9.!:!9.1, etc., in the usual manner. However, an
expression of the form A<B is treated not as an assertion, but as a
function which yields a 1 if the proposition is true, and 0 if it
is false. For example:

3~7

1
7~3

o

When appl ied to lQgl~§l arguments (i.e., arguments whose
values are 1 imited to 0 and 1), the six relations are equivalent to
six of the logical functions of two arguments. For example, ~ is
equivalent to ~~!~rl~l 1~211~~!lQQ, and 7 is equivalent to
exclusive-or. These six functions together with the and, or, nand,
and-QQ[-shown in Table 2 exhaust the nontrivial logical functions
of two logical arguments.

Vectors
-----~ach of the monadic functions of Table 2 appl ies to a vector~
element by element. Each of the dyadic functions appl ies element
by element to a pair of vectors of equal dimension or to a scalar
and a vector of any dimension, the scalar being used with each
component of the vector. For example:

1 2 3 4x4 3 2 1
4 6 6 4

2+1 2 3 4
3 4 5 6

1 2 3 4r2
2 2 3 4

1!}9g~ ggQg'!:~!Q'!:
If N is a non-negative integer, then 1N denotes a vector of

the first N integers. The dimension of the vector IN is therefore
N; in particular, 11 is a vector of length one which has the value
1, and 10 is a vector of dimension zero, also called an gmQ!t
vector. The empty vector prints as a blank. For example:

41

14
1 2 3 4

1 5
1 2 3 4 5

10
Empty vector prints as a blank

6-16
5 4 3 2 1 0

2X1.0 Scalar appl ies to all (i.e., 0) elements
of 1. 0, resulting in an empty vecto r

2 X16
2 4 6 8 10 12

The index generator is one of the class of mixed functions to
be treated in detail later; it is included here because it is
useful in examples.

DEFINED FUNCTIONS

ID.trQgld~.tlQD.
It would impracticable and confusing to attempt to include

as primitives in a language all of the functions which might prove
useful in diverse areas of appl ication. On the other hand, in any
particular appl ication there are many functions of general util ity
whose use should be made as convenient as possible. This need is
met by the abil ity to define and name new functions, which can then
be used with the convenience of primitives.

This section introduces the basic notions of function
definition and illustrates the use of defined functions. Most of
the detailed mechanics of function definition, revision, and
display, are deferred to the succeeding section.

The sequence

'iJ§..
[lJ
[2J
[3J

S+-4x3.14159xRxR
V+-SxR + 3
'iJ

is called a f!Jn~!lQn ggflnl.tlQo; the first 'iJ (pronounced ggl) marks
the beginning of the definition and the second 'iJ marks the
conclusion: the name following the first 'iJ (in this case £) is the
name of the function defined, the numbers in brackets are §!§!gmgo!
Dldmbgr§, and the accompanying statements form the bQQY of the
function definition.

The act of defining a function neither executes nor checks for
validity the statements in the body; what it does is make the
function name thereafter equivalent to the body. For example:

42

V{2
[lJ
[2 J
[3 J

2

R+2
R

S

S+4x3.14159xRxR
V+SxR+3
V

VALUE ERROR
S

" {i
S

50.2654
V

33.5103

~rgnfblng

Definition of the
function {2

Specification and display
of the argument R

S has not yet been
assigned a value

Execution of {i
S and V now have
values assigned by the
execution of §..

Statements in a function are normally executed in the order
indicated by the statement numbers, and execution terminates at the
end of the last statement in the sequence. This normal order can
be modified by QI§nfbg~. Branches make possible the construction
of iterative procedures.

The expression ~4 denotes a QI§Dfb to statement 4 and and
causes statement 4 of the function to be executed next. In
general, the arrow may be followed by any expression which, to be
effective, must evaluate to an integer. This value is the nUMber
of the statement to be executed next. If the integer lies ouside
the range of statement numbers of the body of the function, the
branch ends the execution of the function.

If the value of the expression to the right of a branch arrow
is a non-empty vector, the branch is determined by its first
component. If the vector is empty (i.e., of zero dimension) the
branch dOes not take place and the normal sequence is followed.

The following examples illustrate various methods of branching
used in three equivalent functions (A, ~, and Q) for determining S
as the sum of the first N integers:

VA
[1] S+O
[2] I+1
[3J ~4xI~N Branch to 4x1 or to 4xO (out)
[4J S+S+I
[5 J I+.I+1
[6J ~3 Unconditional branch to 3
[7 J V

N+1
A
S

1

43

N+-2
d.
3

3
N+-5
d.
3

15
Vll

[1 J
[2J
[3J
[4J
[5 J
[6J
[7 J

N+-5
II
3

15
VQ

[lJ
[2J
[3J
[4J
[5 J
[6 J

3+-0
I+-l
-+OxlI>N
3+-3+I
I+I+l
-+3
V

3+0
I+-O
3+-3+I
I+-I+l
-+3X1I5:N
'iJ

Equivalent to d

Branch to 0 (out) or continue to next
line since OX10 is an empty vector

Unconditional branch to 3

Equivalent to d.

Branch to 3 or fall through (and out)

From the last two functions in the foregoing example, it
should be clear that the expression Xl occurring in a branch may
often be read as lIif". For example, -+3X1I<5::N may be read as "Branch
to 3 if I is less than or equal to N".

1Q~~1 ~DQ glQQgl Y~rlgQl~~
A variable is normally glQQgl in the sense that its name has

the same significance regardless of what function or functions It
may be use din. H O\lJ eve r , the i t era t ion co un t e rIo c cur r I n gin the
foregoing function d. is of interest only during execution of the
function; it is frequently convenient to make such a variable
lQ~Ql lQ Q fYn~11QQ in the sense that it has meaning only during
the execution of the function and bears no relation to any object
referred to by the same name at other times. Any number of
variables can be made local to a function by appending each
(preceded by a semicolon) to the function header. Compare the
behavior of the function Q, which has a local variable I, with the
behavior of the previously defined function Q in which I is global:

VQ;I
[lJ 3+-0
[2J I+-O
[3J S+-3+I
[4J I~-I+l

[5J -+3X1I-s,N
[6J 'iJ

44

Execution of 12 Execution of Q

I+20 I-<-20
N+5 N+5
12 Q
s S

15 15
I I

20 6

Since I is local to the function 12, execution of Q has no
effect on the global variable I referred to before and after the
use of 12.

~~Qll~l! Qrg~mgo!
A function of the form

v§. X
[1J S+4x3.14159xXxX
[2J V

defines §. as a function with
function is used it must
example:

§. 2
S

50.2654
§. 1
S

12.5664

an explicit argument; whenever such a
be provided with an argument. For

Any explicit argument of a function is automatically made
local to the function; if E is any expression, then the effect of
§. E is to assign to the local variable X the value of the
expression E and then to execute the body of the function §..
Except for having a value assigned initially, the argument variable
is treated as any other local variable and, in particular, may be
respecified within the function.

~~Qll~l! rg~~l!
Each of the primitive functions produces a result and may

therefore appear within compound expressions. For example, the
expression fZ produces an expl icit result and may appear in a
compound expression such as X++Z. A function definition of the
form

VZ+§. X
[1J Z+4x3.14159xXxX
[2J V

defines §. as a function with an explicit result; the variable Z is
local, and the value it assumes at the completion of execution of
the body of the function is the explicit result of the function.

45

For example:

Q+-3 xQ. 1
Q

37.6991
R+-2
(Q. R)xR+3

33.5103

EQrm~ Qf ggflQgg f~Qf!lQQ~
Functions may be defined with 2,1, or 0 expl icit arguments and

either with or without an explicit result. The form of the header
used to define each of these six types is shown in Table 3. Each
of the six forms permits the appending of semicolons and names to
introduce local variables. The names appearing in anyone header
must all be distinct; e.g ... the header Z+-F Z is inval ide

Number of Number of Results
Arguments 0 1

0 \IF \lZ+-F
1 \IF Y \lZ+-F Y
2 \IX F Y \lZ+-X F

Table 3: FORMS OF DEFINED
FUNCTIONS

Y

tt is not necessary that the arguments or local variables be
used within the body of a defined function. A function definition
which does not assign a value to the result variable will cause a
ygl~g g[[Q[report upon completion of execution.

~~g Qf Q§flO§Q f~o~!lQO~
A defined function may be used in the same way as a primitive

function. In particular .. it may be used within the definition of
another function. For example .. the function li determines the
hypotenuse of a right triangle of sides A and B by using the square
root function H:

\lZ+-H X
[1J Z+-X*.5\1

\lL+-A 11. B
[1J L+-H (A*2)+B*2\1

5 11. 12
13

A defined function must be used with the same number of
arguments as appear in its header.

46

B§~~r~l~§ f~n~tlQn Q~flnltlQn
A function may be used in the body of its own definition, in

which case the function is said to be r~~~r~l~gl~ defined. The
n a me s 0 f all de fin e d fun c t ion s are g lob a 1. The f 0 1 1 0\1" i n g pro g r a In E.
shows a recursive definition of the factorial function. The heart
of the definition is statement 2, which determines factorial N as
the product of Nand E. N-1, except for the case N=O when the result
is determined (by statement 4) as 1:

'VR+E N
[lJ -+4XIN=0
[2J R+NxJl.. N-1
[3J -+0
[4 J R+1 V

IrQ~~ ~Qn.trQl
A trQ~~ is an automatic display of information generated by

the execution of a function as it progresses. In a complete trace
of a function P, the number of each statement executed is displayed
in brackets, preceded by the function name P and followed by the
final value produced by the statement. The trace is useful in
analyzing the behavior of a defined function, particularly during
its design.

The tracing of P is controlled by the trQ~§ ~§~tQr for P,
denoted by T~P. If one types T~P+2 3 5 then statements 2, 3, and
5 will be traced in any subsequent execution of P. More generally,
the value assigned to the trace vector may be any vector of
integers. Typing T~P+O will discontinue tracing of P. A complete
trace of P is set up by entering T~P+1N, where N is the number of
statements in P. Editing a function cancels the trace vector, if
one exists.

MECHANICS OF FUNCTION DEFINITION

There are two modes of operation in the APL system: g~g~y!lQQ
mode and function Q§flnl!lQQ mode. In execution mode, every APL
expression is executed immediately after entry. In definition
mode, statements are collected to form the body of a defined
function for later execution.

Function definition is opened by typing a 'V followed by a
header. The system automatically displays successive statement
numbers enclosed in brackets, and accepts successive entries as the
statements forming the body of the definition.

Definition m6de is closed when another V is entered as the
last character of a statement. At that time the system returns to
execution mode. After function definition has been closed, there
are convenient ways to re-open the definition so that the function
may be revised ,or displayed.

47

B~~l~lQQ
A function may be edited only during definition mode.

Statements may be added, inserted, deleted, and replaced. Any
statement number (including the one displayed by the system) can be
overridden by typing [NJ, where N is any positive number less than
100, with or without a decimal point and with at most two digits to
the right of the decimal point.

If any statement number is repeated, the statement following
it supersedes the earl ier specification of the statement. If any
statement is empty -- that is, the bracketed statement number was
followed by a RETURN -- the statement is deleted.

When function definition mode is ended, the statements are
reordered according to their statement numbers and the statement
numbers are replaced by the integers I, 2, 3, and so on.

The particular statement on which the closing V appears is not
significant, since it marks only the end of the definition mode,
not necessarily the last 1 ine of the function. Moreover, the
closing v may be entered either alone or at the end of a statement.

B~QQ~QIQg f~Qf!lQQ Q~flQl!lQQ
If a function R is already defined, the definition mode for

that function can be re-establ ished (edit mode) by entering VR
alone; the rest of the function header must not be entered. The
system responds by displaying [N+IJ, where N is the number of
statements in R. Function definition then proceeds in the normal
manner.

Function definition may also be established with editing or
display requested on the same line. For example, VR[3JX+X+l
initiates editing by entering a new line 3 immediately. The system
responds by displaying [4J and awaiting continuation. The entire
process may be accompl ished on a single line. Thus, VR[3JX+X+1V
opens the definition of R, enters a new line 3, and terminates the
definition mode.

Ql~QlQ~
During function editing, statements which had previously

defined the function are available for edit and display.
Statements entered during the function definition or edit mode are
not merged with the function until definition or editing is closed.
This means that only the definition of the function at the last
closing is available for display.

As in simple revision, any statement number can be overridden
by a request for display or display and edit. This can be
accompl ished by one of the four methods of display or display and
edit:

1. [OJ Results in a full display of the defined function
(including the header and the opening and closing v) which
existed at the last closing. The system then awaits entry of
additional statements.

48

2. [ON] Displays all statements from N onward and awaits
entry of additional statements.

3. [NO] Displays statement N and awaits replacement of
statement N.

4. [NOM] Initiates Iln~ ggl11ng if the input device is a
typewriter. If the input device is a CRT, then a replace
statement edit (~gg 3 above) will be effected.

The closing bracket may be followed by a v, in which case the
display or display and edit operation returns to the executio~ mode
after it is complete.

hlng ggl110g QO g lY2g~r1t§r
During function definition mode, statement N can be partially

modified by the following mechanism:

1. Type [NOM] where M is an integer.

2. Statement N is displayed and the carriage stops under
position M.

3. A decimal digit or the symbol/may be typed under any of
the positions in the displayed statement. Any other
cha racters typed in th i s 'mode are ignored. The ord i nary ru 1 es
for typewriter erasure apply.

4. When RETURN is pressed, statement N is redisplayed. Each
character understruck with a / is deleted and each character
understruck with a digit K is preceded by K added spaces.
Finally, the carriage moves to two spaces beyond the end of
the 1 ine and awaits the typing of modifications to the
statement 1n Ibg ~~~Ql ffigOngr. The final effect is to define
the statement exactly as if the entry had been made entirely
from the keyboard.

If the statement number itself is changed during the editing
procedure, the statement affected is determined by the new
statement number, hence statement N remains unchanged. This
permits statements to be moved, with or without modification.

hQ~1s~g f~O~11QO~
If the symbol ¥ (formed ,by a V overstruck with a ~ and called

del-tilde) is used instead of v, to close a function definition, the
function becomes lQ~kQg. A locked function cannot be revised or
displayed in any way. Moreover, an error stop within the function
will print only the function name and statement number, not the
statement.

Locked functions are used to keep a function proprietary. For
example, in an exercise in which a student is required to determine
the behavior of a function with a variety of arguments, locking the
function prevents him from displaying its definition.

49

D~1~11QD Qf f~n~11QD~ gD~ YQrlgbl~~
A function F (whether locked or not) is deleted by the command

)ERASE F (~~~ Part 2). It may also be deleted by deleting every
one of its statements. A variable may be deleted only by the
)ERASE command.

~~~!~m ~QmmgD~~ ~Dt~r~~ Q~rlDg f~D~11QD Q~flDl!lQn 
A system command entered during function definition will oot 

be executed, but will be accepted as a statement in the definition. 
However, system commands may not be called for execution from a 
function and an error report will result from an attempted 
execution. 

SUSPENDED FUNCTION EXECUTION 

~~~Q~D~lQD 
The execution of a function may be stopped before completion

in two ways: by an error report or by an attention signal. In any
case, the function is still active and its execution can later be
resumed. In this state the function is said to be susQeoded.
Typing +K will cause execution of the suspended function to be
resumed, beginning with statement K. A branch out (+0) will
terminate execution of the function.

The function I26 (described in the section on System Dependent
Functions) yields the number of the next statement to be executed.
Hence, the expression +I26 provides a safe way to cause normal
resumption of execution.

In the suspended state almost all normal activities are
possible. In particular, the system is in the following condition:

1. Expressions and most system commands can be executed.
Names of local variables in the latest suspended function take
precedence. Suspended or pendent functions cannot be deleted
or modified in any manner.

2. No functions may be defined or edited (functions may be
displayed) during any suspended state.

3. Execution may be resumed for the last suspended function
at an arbitrary point N (by entering +N).

~lgl§ lOgl~g1Qr
Typing lSI causes a display of the ~1Q1e IDdl~QtQr; a typical

display has the 110wing form:

lSI
H[7] *
G[2]
F[3]

50

The foregoing display indicates that execution was halted
during execution of statement 7 of function H, that the current use
of function H was invoked in statement 2 of function G, and that
the use of function G was in turn invoked in statement 3 of F. The
* appearing to the right of H[7J indicates that the function H is

~Y~QgDQ§gi The function G and F are said to be Q§DQ~D!.

Further functions can be invoked when in the suspended state.
Thus if G were now invoked and a further suspension occurred in
statement 5 of Q, itself invoked in statement 8 of G, a subsequent
display of the state indicator would appear as follows:

)SI
Q[5J *
G[8J
H[7J *
G[2J
F[3J

The entire sequence can be cleared by typing)PURGE. If this
command were entered under the conditions of the foregoing example,
the state indicator would be cleared:

)PURGE
)SI

~QrlQQlg DQmg~

HOMONYMS

The use of local variables introduces the possibil ity of
having more than one object in a workspace with the same name.
Confusion is avoided by the following rule: the local variables of
the latest function being executed supersede other objects of the
same name.

EYD~!lQn nQmg~
All function names are global. If a function P has a local

variable R, then P could not invoke a function R since the name R
would have local significance during execution of P.

System commands concern global objects only (~gg Part 2),
regardless of the current environment.

INPUT AND OUTPUT

The following function determines the value of an amount A
invested at interest B[lJ for a period of B[2J years:

VZ+A Q B
[lJ Z+Ax(1+.01xB[lJ)*B[2JV

51

For example:

1000 Q. 5 4
1215.51

The casual user of such a function might, however, find it
onerous to remember the positions of the various arguments and
whether the interest rate is to be entered as the actual rate
(e • g ., . 05) 0 r i n per c e n t (e . g . , 5) . An ex c han g e 0 f the f 0 1 1 ow i n g
form might be more palatable:

12
ENTER CAPITAL AMOUNT IN DOLLARS
0:

1000
ENTER INTEREST IN PERCENT
0:

5
ENTER PERIOD IN YEARS
0:

4
RESULT IS 1215.51

It is necessary that each of the keyboard entries (1000, 5,
and 4) occuring in such an exchange be accepted not as an ordinary
entry (which would only result in the response 1000, etc.), but as
data to be used within the function 12. Facil ities for this are
provided in two ways, termed ~YQIYQ1~Q IDQY1, and ~bQLQ~l~r IDQY1.

The definition of the function 12 is shown later in this
section •

.EYQ1YQ1~Q IDQ1Lt
The quad symbol 0 appearing anywhere other than immediately to

the left of a specification arrow accepts keyboard input as
follows: the two symbols 0: are displayed, and the system awaits
input on the next 1 ine. Any val id expression entered at this point
is evaluated and the result is substituted for the quad. For
example:

VZ+F
[1] Z+4xO*2
[2] V

F
0:

3
36

F
0:

3-i-2
9

1

52

An inval id entry in response to a request for quad input
results in an appropriate error report and a re-request for input.
An attempt to execute system commands or to open function
definition will yield an error report since neither entry is an
expression which may be evaluated. An empty input (i.e., RETURN
alone or spaces and a RETURN) is rejected and the system again
displays 0: and awaits input.

The symbols 0: are displayed to alert the user to the type of
input expected.

~b.9r.9~l§r IDl?!dl
The quote-quad symbol ~ (i.e., a quad overstruck with a quote)

accepts character input: the system awaits input on the next 1 ine,
at the left margin, and all data entered is accepted as characters.
For example:

X+[!)
CAN'T

X
CAN I T

(Quote-quad input, not indented)

UQrm.91 Q!dlQ!dl
The quad symbol appearing immediately to the left of a

specification arrow indicates that the value of the expression to
the right of the arrow is to be displayed. Hence, D+X is
equivalent to the statement X. The longer form D+X is useful when
employing mUltiple specification. For example, D+Q+X*2 assigns to
Q the value X*2 and then displays the value of X*2.

The page width (measured in characters) may be set to any
value N in the range 20-120 by entering the command)WIDTH N. If
the input device is a CRT, then the maximum width is 40. Line
width may also be dynamically set by using the System Dependent
Function QQOJlnQ.

U§l§rQg~n§QY~ QYll?Yl
A sequence of expressions separated by semi-colons will cause

the values of the expressions to be displayed, with no intervening
1 ine advances or spaces except those impl icit in the display of the
values. The expressions need not be enclosed in parentheses.

The primary use of this form is for output in which some of
the expressions yield numbers and some yield characters. For
example, if X+-14 and Y+10 , then:

'THE PRODUCT OF X AND
THE PRODUCT OF X AND Y:

Y: ';XxY;'=';X;'x';Y
1 1+O=-14x10

A further example of ml~gg QY1QYl i~ furnished by the
definition of the function Q which introduced the present section:

53

V12;A;I;Y
[i1 'ENTER CAPITAL AMOUNT IN DOLLARS'
[2 J A+-O
[3J 'ENTER INTEREST IN PERCENT'
[4J I+-O
[5J 'ENTER PERIOD IN YEARS'
[6 J Y+-O
[7J 'RESULT IS ';Ax(1+.01xI)*YV

RECTANGULAR ARRAYS

In!rQQ~f!lQQ
A single element of a rectangular array can be selected by

specifying its lQdlfg~; the number of indices required is called
the dimensional ity or r~Qk of the array. Thus, a ~gf!Qr is of rank
I, a m~!rl~ (in which the first index selects a row and the second
a column) is of rank 2, and a ~f~l~r (since it permits no selection
by indices) is an array of rank o.

This section treats the reshaping and indexing of arrays, and
the form of array output. The following section treats the five
ways in which the basic scalar functions are extended to arrays,
and the next section thereafter treats the definition of certain
mixed functions on arrays.

~gf!Qr~, QlmgQ~lQQ, f~!~Q~!lQQ
If X is a vector, then pX denotes its dimension. For example,

if X+-2 3 5 7 11, then pX is 5, and if Y~-'ABC' , then pY is 3. A
single character entered in quotes or in response to a ~ input is a
scalar, not a vector of dimension 1; this parallels the case of a
single number, which is also a scalar.

Q~!gQQ!lQQ chains two vectors (or scalars) together to form a
vector; it is denoted by a comma. For example:

X+-2 3 5 7 11
X,X

2 3 5 7 11 2 3 5 7 11

In general, the dimension of X,Y is equal to the total number of
elements in X and Y. A numeric vector cannot be catenated with a
character vector. (However, ~~~ Heterogeneous Output.)

M~!rlf~~, QlmgQ~lQQ, r~Y~l
The monadic function p appl ied to an array A yields the ~l~g

of A, that is, a vector whose components are the dimensions of A.
For example, if A is the matrix

1 2 3 4
5 6 7 8
9 10 11 12

of three rov<Js and four columns, then pA i s the vector 3 4.

54

Since pA contains one component for each coordinate of A, The
expression ppA is the rank of A. Table 4 illustrates the values of

pA and ppA for arrays of rank 0 (scalars) thru rank 2. In
particular, the function p appl ied to a scalar yields an empty
vector.

Type of Array pA ppA pppA

Scalar 0 1
Vector N 1 1
Matrix M N 2 1

Table 4: DIMENSION AND
RANK VECTORS

The monadic function rg~gl is denoted by a commai when applied
to any array A, it produces a vector whose elements are the
elements of A in rov.; order. For example, if A is the matrix

246 8
10 12 14 16
18 20 22 24

and if V+,A then
the integers 2 4
is equivalent to
dimension 1.

Bg~bQJ2g

V is a- vector of dimension 12 whose elements are
6 8 10 12 ... 24. If A is a vector, then ~A
Ai if A is a scalar, then ,A is a vector of

The dyadic function p rg~bQQg§ its right argument to the
dimension specifi~d by its left argument. If M+DpV, then M is an
array of dimension D whose elements are the elements of V. For
example, 2 3p1 2 3 4 5 6 is the matrix

123
456

If N, the total number of elements required in the array DpV,
is equal to the dimension of the vector V, then the ravel of DpV is
equal to V. If N is less than pV, then only the first N elements
of V are used; if N is greater than pV, then the elements of V are
repeated cycl ical1y. For example, 2 3p1 2 is the matrix

121
212

and 3 3p1 0 0 0 is the identity matrix

100
010
001

55

More generally, i f A i s any array, then DpA i s equivalent to
Dp,A. For example, if A i s the matrix

1 2 3
4 5 6

then 3 5pA is the ma t r i x

1 2 3 4 5
6 1 2 3 4
5 6 1 2 3

The expressions OpX and 0 3pX and 3 OpX and 0 OpX are all
val id; anyone or more of the dimensions of an array may be zero.
The result is an empty array.

~~g~ Qf gmQ1y ~rr~~~
A vector of dimension zero contains no components and is

Three expressions which yield empty
p appl ied to any scalar. An empty vector

called an gm21y yg~1Qr.
vectors are 10 and" and
prints as a blank line.

One important use of the empty vector has already been
of a branch, the illustrated: when one occurs as the argument

effect is to continue the normal sequence.

The following function for determining the representation of
any positive integer N in a base B number system shows a typical
use of the empty vector in initial izing a vector Z which is to be
built up by successive catenations:

VZ+B B. N
[1J Z+10
[2 J Z+ (B IN) , Z
[3J N+LN+B
[4J -+2xN>OV

10 B. 1776
1 776

8 B. 1776
336 0

Empty arrays of higher rank can be useful in analogous ways in
conjunction with the mesh function described in the section on
Hixed Functions.

l!J.Q~!ilog
If X is a vector and I

element of X. For example,
is a scalar, then X[IJ denotes the Ith

if X+2 3 5 7 11 then X[2J is 3.

If the index I is
by selecting from X the
of I. For example,
11 7 5 3 2 and X[13J is
to the set of indices
l!J.Q~!i ~r[Qr report.

a vector, then X[IJ is the vector obtained
elements indicated by successive components

X[1 3 5J is 2 5 11 and X[5 4 3 2 1J is
2 3 5. If the elements of I do not belong
of x, then the expression XCI] yields an

56

In general, pX[I] is equal to pI. In particular, if I is a
scalar, then XCI] is a scalar, and if I is a matrix, then XCI] is a
matrix. For example:

A+'ABCDEFG'
M+4 3p3 1 4 2 1 4 4 1 2 4 1 4
M

314
214
412
414

A[M]

CAD
BAD
DAB
DAD

If M is a matrix, then M is indexed by a two-part list of the
form I;J where I selects the row (or rows) and J selects the column
(or columns). For example, if M is the matrix used in the example
above, then M[3;3J is the element 2 and M[l 3 4;1 3J is the matrix

3 4
4 2
4 4

In general, pM[I;J] is equal to (pI),pJ. Hence, if I and J
are both vectors, then M[I;JJ is a matrix; if both I and J are
scalars, M[I;JJ is a scalar; if I is a vector and J is a scalar (or
vice versa), M[I;JJ is a vector. The indices are not limited to
vectors, but may be of higher rank. For example, if I is a 3 by 4
matrix, and J is a scalar, then M[I;JJ is of dimension 3 4, and
M[J;IJ is of dimension 3 4.

The form M[I;] indicates that all columns are
the form M[;JJ indicates that all rows are selected.
M[2;J is 214 and M[;2 1J is

1 3
1 2
1 4
1 4

selected, and
For example,

Permutations are an interesting use of indexing. A vector P
whose elements are some permutation of its own indices is called a
QgrillYl~11Qn Qf Qrctgr pP. For example, 3 1 4 2 is a permutation of
order 4. If X is any vector of the same dimension as P, then X[P]
produces a permutation of X. Moreover, if pP is equal to (p_Il1'1[l],
then M[P;] permutes the column vectors of M (i.e., interchanges the
rows of M) and is ca 1 1 ed a ~Ql!dlJJn QgrIJJY1211Q!J.. S i mil a r 1 y, if pP
equals (pM)[2J, then M[;P] is a rQ~ QgrIJJY1~!lQ!J. of M.

57

In9~~lng Qn !bg 19f!
An array appearing to the left of a specification arrow may be

indexed, in which case only the selected portions are affected by
the specification. For example:

X+2 3 5 7 11
X[1 3J+6 8
X

6 3 8 7 11

The normal restrictions on indexing apply; in particular, a
variable which has not already been assigned a value cannot be
indexed, and an out-of-range index value cannot be used.

In9g~ Qrlgin
In l=Qrlgln indexing, X[1J is the leading element of the

vector X and X[pxJ is the last element. In Q=Qrlgln indexing, X[O]
is the leading element and X[-1+pX] is the last. O-origin indexing
is instituted by the command)ORIGIN O. The command)ORIGIN 1
restores 1-origin indexing. The index origin in effect appl ies to
all coordinates of rectangular arrays. Index origin may be changed
dynamically by the System Dependent Function 9Q~lnQ.

In certain expressions such as +/[J]M, +\[J]M, and K¢[J]M (to
be treated more fully in the two following sections), the value of
J determines the coordinate of the array M along which the function
is to be appl ied. Since the numbering of coordinates follows the
index origin, a change of index origin also affects the behavior of
such,expressions.

The index origin also affects six other functions, 'the monadic
and dyad i c' forms of ? and 1, and ~ and ~. The express ion 1N y i e 1 ds
a vector of the first N integers beginning with the index origin.
Hence X[1N] selects the first N components of X in either origin.
Moreover, 11 is a one-element vector having the value 0 in O-origin
and 1 in 1-origin; 10 is an empty vector in either origin.

The index origin remains associated with a workspace; in
particular, the index origin of an active workspace is not affected
by a copy command. A clean workspace provided at sign-on or by the
command)CLEAR is in 1-origin. All definitions and examples in
this text are expressed in 1-origin.

8rr~l Q~!Q~!
Character arrays print with no spaces betwe~n components in

each row; other arrays print with at least one space between
components. If a vector or a row of a matrix requires more than
one 1 i ne, succeed i ng 1 i nes are i nden ted.

A mat r i x p r i n t s vJ i t hal 1 col u m n sal i g ned and wit h a b 1 an k 1 i n e
before the first row. A matrix of dimension N,1 prints as a single
column.

58

FUNCTIONS ON ARRAYS

There are five ways in which the scalar functions of Table 2
extend to arrays: element-by-element, reduction, scan, inner
product, and outer product. Reduction, scan, and outer product are
defined on any arrays, but the other two extensions are defined
only on arrays whose sizes satisfy a certain relationship called
~QofQrm~bllll~. For the element-by-element extension,
conformabil ity requires that the shapes of the arrays agree, unless
one is a scalar or one-element array. The requirements for inner
product are shown in Table 6.

§~QIQr f~O~11QQ~
All of the scalar functions of Table 2 are extended to arays

element by element. Thus if M and N are matrices of the same size,
f is a scalar function, and P+MfN, then P[I;J] equals
M[I;J]fN[I;J], and if Q+fN, then Q[I;J] is equal to fN[I;J].

If M and N are not of the same size, then MfN is undefined
(and yields a 19O9lb or rQot grrQ[report) unless one or the other
of M and N is a scalar or one-element array, in which case the
single element is appl ied to each element of the other argument.
In particular, a scalar versus an empty array produces an empty
array.

An expression or function definition which employs only scalar
function and scalar constants extends to arrays like a scalar
function.

Bgg~£11QQ
The §~m=rggY~11QQ of a vector X is denoted by +IX and defined

as the sum of all components of X. More generally, for any scalar
dyadic function f, the expression fiX is equivalent to
X[1]fX[2]f ... fX[pX], where evaluation is from rightmost to leftmost
as usual. A user defined function cannot be used in reduction.

If X is a vector of dimension zero, then fiX yields the
identity element of the function f (listed in Table 5) if it
exists; if X is a scalar or vector of dimension 1, then fiX yields
the value of the single element of X.

The result of reducing any vector or scalar is a scalar.

59

Dyadic Identity Left-
Function Element Right

Times x 1 L R
Plus + 0 L R
Divide .. 1 R
Minus - 0 R
Power * 1 R
Logarithm Ell? 1 None
Maximum r - 1.7014 ... E38 L R
f,1 i n imum L 1.7014 ... E38 L R
Residue I 0 L
Circle 0 0 None
Out of ,

1 L .
Or v 0 L R
And " 1 L R
Nor It/' 0 None
Nand '1'< 0 None
Equal = 1- Apply L R
Not equal ;t; 0 for L R
Greater > 0 logical R
Not less ~ 1 arguments R
Less < 0 only L
Not greater :::; 1_ L

Tab 1 e 5: I DENT I TY ELEMENTS OF
PR I t,11 T I VE SCALAR
DYADIC FUNCTIONS

For a matrix M, reduction can proceed along the first
coordinate (denoted by f/[1]M) or along the second coordinate
(f/[2]M). The result in either case is a vector; in general,
reduction appl ied to any non-scalar array A produces a result of
rank one less than the rank of A (hence the term rg~Y£11Qo). The
numbering of coordinates follows the index origin, and an attempt
to reduce along a non-existent coordinate will result in an IDQ~6

grrQr·

Since +/[1]M scans over the row index of M, it sums each
£QIYmo vector of M, and +/[2]M sums each rQ~ vector of M. For
example, if M is the matrix

123
456

then +/[1]M is 5 7 9 and +/[2]M is 6 15.

In reducing along the last coordinate of an array, the
coordinate indicator may be el ided -- thus-, +/M denotes summing
over each of the rows of M and +/V denotes summing over the last
(and only) coordinate of the vector V.

60

Scan
Generally, for any scalar dyadic function f, the expression

f\x yields a result Q where pQ is equal to pX.

If Q+f\X is an expression where X is a vector, then Q[I] is
equivalent to f/X[lI] where I is in the set lPX, For example, if V
is the vector 1357, -then +\V will yield the result 1 4 9 16.
A scalar argument is treated as a one-component vector.

For a matrix M, scan can proceed along the first coordinate
(denoted by f\[1]M) or along the second coordinate (f\[2]M or f\M).
For example, if M is the matrix

64 16 4
8 4 2

then f\[1]M is the ma t r i x

64 16 4
8 4 2

and f\M (or f\[2]M) i s the ma t r i x

64 4 16
824

1!J!J~'!: .e'!:QQ~f!
The fami 1 iar matrix product is denoted by C+A+.xB. If A and B

are matrices, then C is a matrix such that C[I;J] is equal to
+ / A [I ;] x B [; J] • A s. i .m i 1 a r de fi nit j on a p p 1 i e s· t 0 A f . gB w her e fan d g
are any of the standard scalar dyadic functions.

I f A i s a v e.c tor and B i sam a t r i x·, the n Cis a vee tor 5 u c h
that C[J] is equal to +/AxB[;J]. If B is a vector and A is a
ma t r ix, the n cis a vee tor 5 u c h t hat C [I] i seq u a 1 to + I A [I ;] x B •
If both A and B are vectors, then A+.xB is the scalar +/AxB.

The last d~mension of the pre-multi.pl ier A must equal the
first dimension ·of the post-multipl ier B, except that if either
argument is a scalar, it is extended in the usual way, For
non-scalar arguments, the dimension of the result is equal to
(-1+~A),1+pB. (~~~ the function ~rQ2 in the section on Mixed
Functions.) In other words, the dimension of the result is equal
to (pA),pB except for the two inner dimensions (-ltdA and ltpB),
which must agree and which are el iminated by the reduction over
them. Definitions for the various cases are shown in Table 6 .

.Q~!~.r 2.rQg~f!
The outer product of two arrays X and y

standard scalar dyadic function g is denoted by
array of dimension (pX),pY, formed by applying
components of X and Y, providing the rank of
greater than 2. ~~~ Table 7 for definitions of

61

with respect to a
Xo.gy and yields an
g to every pair of

the result is not
various cases.

If X
X[I]gY[J].

1
2
3

X+13
Y+14
XO • xY

2
4
6

X 0 • ?y

Conformabil ity Definition
pA pB pA f . gB requ i rements Z+A f. gB

Z+f/AgB
V Z+f/AgB

U Z+f / AgB
U V u=v Z+f/AgB

V W W Z [I] + f / A gB [; I]
T U T Z[I]+f /A[I;]gB

U V W W U=V Z [I] + f / A gB [; I]
T U V T U=V Z[I]+f/A[I;]gB
T U V W T W U=V Z[I;J]+f/A[I;]gB[;J]

Tab 1 e 6: I NNER PRODUCTS FOR PR I MIT I VE SCALAR
DYADIC FUNCTIONS f AND g

and Yare vectors
For example:

3 4
6 8
9 12

and Z+Xo.gY, then Z[I;J] i s equa 1 to

1 0 0 0
1 1 0 0
1 1 1 0

Definition
pA pB pA 0 • gB Z+A 0 • gB

Z+AgB
V V Z [I] +A gB [I]

U U Z[I]+A[I]gB
U V U V Z[I;J]+A[I]gB[J]

V fl V W Z[I;J]+AgB[I;J]
T U T U Z[I;J]+A[I;J]gB

Table 7: OUTER PRODUCTS FOR PRIMITIVE
SCALAR DYADIC FUNCTION g

62

MIXED FUNCTIONS

ID.trQQ1!~11Q!J
The ~~QIQr functions 1 isted in Table 2 each take a scalar

argument (or arguments) and yield a scalar result; each is also
extended element by element to arrays. The ml~gQ functions of
Table 8, on the other hand, may be defined on vector arguments to
yield a scalar result or a vector result, br may be defined on
scalar arguments to yield a vector result. In extending these
definitions to arrays of higher rank, it may therefore be necessary
to specify over which coordinate of an array the mixed function is
to be appl led. The expression [J] following a function symbol
indicates that the function is appl led to the Jth coordinate. If
the expression is el ided, the function appl ies to the last
coordinate of the argument array. These conventions agree with
those used earlier in reduction. The numbering of coordinates
follows the index origin.

I.rQ!J~QQ~§
The expression ~A yields the array A with the last two

coordinates interchanged. For a scalar 8, vector V, and matrix M,
the following relations hold:

~8 is equivalent to 8
~V is equivalent to V
~M is equivalent to ordinary matrix transpose.

Bg.tf!i§
If K is a scalar or one-element array and X is a vector, then

K~X is a cyclic rotation of X defined as follows: K¢X is equal to
X[1+(pX)I-l+K+1PXJ. For example, if X+2 3 5 7 11, then 2¢X is
equal to 5 7 11 2 3, and -2¢X is equal to 7 11 2 3 5. In O-origin
indexing, the definition for K¢X becomes X[(pX)IK+lpX].

If the rank of X is 2, then the coordinate J along which
rotation is to be performed may be specified by the form Z+K¢[JJX.
Moreover, the dimension of K must equal the remaining dimension of
X, and each vector along the Jth coordinate of X Is rotated as
specified by the corresponding element of K. For example, if pX is

3 4 and J is 2, then K must be of dimension 3 and Z[I;J is equal
to K [I] ~ X [I ;] . I f J i s 1, t hen p]{ m u s t be 4 , an d Z [; I] i seq u a 1 to
K[IJ$X[;I]. A scalar K is extended in the usual manner. The

following are examples of rotate:

M o 1 2 3¢[1]M

1 2 3 4 1 6 11 4
5 6 7 8 5 10 3 8
9 10 11 12 9 2 7 J. 2

63

2
7

12

1 2 3¢[2]M

341
856
9 10 11

Bgygr~g
If x is a vector and R+~X, then R is equal to X except that

the elements appear in reverse order. Formally, R is equal to
X[l+(pX)-lpX]. In O-origin indexing, the appropriate expression is
X[-l+(pX)-lpX].

If A is any array, J is a scalar or one-element array, and
R+~[JJA, then R is an array 1 ike A except that the order of the
elements is reversed along the Jth coordinate. For example:

A

123
456

¢[l]A

456
123

¢[2]A

321
654

The expression ¢A denotes reversal along the last coordinate
of A.

CQmQr:g~~
The expression V/X denotes ~QmQrg~~lQn of X by V. If V is a

logical vector (comprising elements having only the values 0 or 1)
and X is a vector of the same dimension, then V/X produces a vector
result of +/V elements chosen from those elements of X
corresponding to non-zero elements of V. For example, if
X+2 3 5 7 11 and V+l 0 1 1 0 then V/X is 2 5 7 and (~V)/X is 3 11.

To be conformable, the dimensions of the arguments must agree,
except that a scalar (or one-component array) left argument is
extended to apply to all elements of the right argument. Hence l/X
is equal to X and o/X is an empty vector. A scalar right argument
is extended. The result in every case is a" vector.

If M is a matrix, then V/[l]M denotes compression ~lQDg the
first coordinate, that is , the compression operates on each column
vector and therefore deletes certain rows. It is called ~Ql~mn
compression. Similarly, V/[2]M (or simply VIM) denote rQ~
compression. The result in every case is a matrix. As in
reduction, V/M denotes compression along the last coordinate. For
example:

1
5

2
6

M

3
7

4
8

9 10 11 12

1 0 l/[l]M

1 234
9 10 11 12

1 1 0 1/[2]M

1
5

2
6

4
8

9 10 12

Mesh is denoted by V\X where V is a logical (in the set 0 1)
scalar or vector, and where X is an arbitrary array. A scalar left
argument is not extended, but is treated as a one-component vector.
If X is not a matrix, then pV\X is equal to pU. If X is a matrix,
V\[J]X denotes mesh along the Jth coordinate (V\X denotes mesh
along the last coordinate), and the Jth dimension of the result is
pV; the other result dimension is the dimension of the non-meshed
coordinate of X.

64

Let P be the number of ones in U (P++/U) and let Q be the
number of ~grQ~ in U (Q++/~U). Also, let K be the mg~h lQ~Q!l!~
glgmgn! such that if the right argument X of U\X is a numeric
array, then K is a 0 (K+O), and if X is a literal array, then K is
a blank (K+' f). In particular, in the expression U\V let V be a
vector partitioned into two subvectors Yand Z by the following
rules. If:

1. o=pV Y +-+- PpK Z +-+- QpK

2. P:2:pV Y +-+- PpV Z +-+- QpK

3. P<pV Y +-+- PpV Z +-+ QpPi-V

Then, each 1 in U selects from Y (the first substring), and each 0
in U selects from z (the second substring). For example:

1 0 1 1 0\10
0 0 0 0 0

1 0 1 1 0\2
2 0 3 2 0

1 0 1 1 0\1
1 4 2 3 5

1 0 1 1 0\1
1 4 2 3 4

If the right
equivalences hold:

For

(U \M) [I ;] +-+-

(U\[1]M)[;IJ

example:

M

CAD ()
BAT()
END ()

Case 1 : Y +-+- 0

3 Case 2 : Y +-+- 2

2 3 4 5 6 7 Case 3 : Y +-+- 1

2 3 4 Case 3 : Y +-+ 1

argument M i s a matrix,

(U\ [2]M) [I ; J +-+- U\M[I;]

+-+- U\[1]M[;I] +-+ U\M[;IJ

o 1 1 1 O\M

(CAD)
(BAT)
(END)

All argument lengths are conformable for mesh.

0 0

3 2

2 3

2 3

then

When P=pV, mesh is the converse of compression:

1 0 1 1 0\1 0 1 1 0/15
1 0 340

65

Z +-+ 0 0

Z +-+ o 0

Z +-+ 4 5

Z +-+ 4 4

the f 0 1 1 0 v-J i n g

Er~fl~
Prefix produces a logical array <elements are only 0 and 1)

from the expression SaX where S must be a scalar and X may be a
scalar or a vector. A one-component vector is treated as a scalar.
Prefix is defined as SaX ++ XO.~lS. For example:

5a3
1 1 1 0 0

5a15

1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0
1 1 1 1 1

~!:!ffl~
Suffix i s fo rma 11 y defined as the reversal of prefix. The

expression SwX i s equivalent to ¢SaX.

Qg~QQg
The expression R~X denotes the value of the array X evaluated

in a number system witH radices R[1],R[2], ... ,R[pR]. For example,
if R+2460 60 and X+l 2 3 is a vector of elapsed time in hours,
minutes, and seconds, then R~X has the value 3723, and is the
corresponding elaps time is seconds. In the same manner,
10 10 10 10~1 7 7 6 is equal to 1776, and 2 2 2~1 0 1 is equal to
5. Formally, R~X ++ +/Xx¢x\¢1~R,1. If X is a scalar, the result
is a scalar; otherwise, pR~X ++ -1~pX.

The arguments R and X are conformable if pR is equal to -1tpX;
scalar arguments are extended in the usual way. If X is a scalar,
then X~C is the value of the polynomial in X with coefficients C,
arranged in order decending powers of X. For example, the
polynomial (X*3)+(3 xX*2)-7 may be evaluated for a scalar X by the
expression X~1 3 0 -7. The arguments are not restricted to integer
values.

For a matrix right argument, (R~M)[I] ++ R~M[I;]; decode is
not subscriptable. The following is an example of decode:

M+2 3P16
M

123
456

10~M

123 456

The decode
fixed-base number
function.

func t ion is
systems and

66

commonly
is often

appl ied in
called the

work with
QQ~~ y.Ql!J~

.En~Qg~
The ~OfQg~ function RTX denotes the representation of X in the

base-R number system; encode is the converse of decode. For
example, 2 2 2 2TS is 0 1 Oland 2 2 2TS is 1 Oland 2 2TS is
o 1. If X is a negative number, then RTX is the base-R complement
representation of IX; for example, (8p2)T-S is 1 1 1 1 1 0 11.

The dimension of RTX is (pX),pR, except that a one-colilponent
right argument is treat~d as a scalar. For a vector right argument
the result is a matrix and (RTV)[I;] +-+ RTV[I]; encode is not
subscriptable. The following is an example of encode:

10 10 10T123 456 1

123
456
999

The encode function may also be called r~Qr~1?~o..:tSJ.:tlQn.

Ing~~ Qf
If V is a vector and S is a

position of the earl iest occurrence
any element of V, then J has the
value depends, as does any result
origin, and is one greater than the

~calar, then J+V1S yields the
of Sin V. I f S doe s 1'0 t e qua 1
value (ll)+pV. Clearly, this
of this function, on the index
largest permissable index of V.

If S is a vector, then J is a vector such that J[I] is the
index in V of SCI]. For example:

'ABCDEFGH'l'GAFFE'
7 166 5

If X is a numerical vector, then the expression xlrlx yields
the index of the (first) maximum element in X. For example, if X
is the vector 83513279, the rlx is 13 and XlrlX is 4.

The result in every case has the same dimensions as the
righthand argument of 1. For example, if Z+V1S, and S is a matrix,
then Z[I;J] is equal to V1S[I;J].

~1simQ~r~hlQ
The function XEY yields a logical array of the same dimension

as X. Any particular element of XEY has the value 1 if the
corresponding element of X belongs to Y, that is, if it occurs as
some element of Y. For example, (17)E3 5 is equal to 0 010100
and 'ABCDEFGH'E'COFFEE' equals 0 0 1 0 1 1 0 O.

If the vector V represents the universal set in some finite
universe of discourse, then VEA is the characteristic of the set A,
and the membership function is therefore also called the
~b.grQ~.:t~rl~.:tl~ function.

67

The size of the result of the function E is determined by the
size of the left argument, whereas the size of the result of the
dyadic function 1 is determined by the size of the right argument.
However, the left arguments of both frequently play the role of
specifying the universe of discourse.

If!k~ f!OQ QrQQ
If V is a vector and S is a scalar between a and pV, then StY

.t.f!k~~ the fi rst S components of V. For example, if V+17, then 3tV
is 1 2 3 and OtV is 10, and 8tV yields a domain error.

I f Sis c h 0 sen from the set - 1 P V, the n S t V t a k est he 1 as tiS
elements of V. For example, -3tV is 5 6 7.

If N is a scalar, then StN
vector (10). The result of (10)tN

i s val i d on 1 y
is N.

if S is an empty

If A is an array, then WtA is val id only if W has one element
for each dimension of A, and WeI] determines what is to be taken
along the Ith coordinate of A. For example, if A+3 4P112, then
2 -3tA is the matrix

234
678

The function Q[QQ (+) is defined analogously, except that the
indicated number of elements ar2 dropped rather than taken. For
example, 1 l+A is the same matrix as the one displayed in the
preceding paragraph.

The rank of the result of the take and drop functions is the
same as the rank of the right argument.

Yrf!g~ YQ gOQ QQ~O
The function

that is V[!V] is
vector 7 1 16 5 3
the index of the
rank, and so on.

!V produces the permutation which would order V,
in ascending order. For example, if V is the

9, then !V is the vector 2 5 4 1 6 3, since 2 is
fi rst in rank, 5 is the index of the second in
The symbol! is formed by overstriking I and ~.

If P is a permutation vector, then!P is the permutation
inverse to P. If a vector D contains dupl icate elements, then the
ranking among any set of equal elements is determined by their
positions in D. For example, !5 3 7 3 9 2 is the vector
6 2 4 1 3 5.

The right argument of grade up or grade down is only val id if
it is a vector.

The g[f!Q§. QQkYO function 'f is the same as' the function ~ except
that the grading is determined in descending crder. Because of the
treatment of dupl icate items, the expression A/(~V)=¢tv has the
value 1 if and only if the elements of the vEctor Vare all
distinct.

68

The function M?N produces, for a scalar N, a vector of
dimension M obtained by making M random selections, without
replacement, from the population IN; therefore, M must be in the
set O,lN. In particular, N?N yields a random permutation of order
N. The left argument is limited to a scalar or one-component
array; the right argument may be a scalar or vector.

If V i s a vector, then (S?V)[I;] +~ S?V[I]. For example:

5?5 6 7

5 1 2 4 3
6 2 5 1 4
4 2 5 7 6

~Qmmgn1~
The lamp symbol A, formed by overstriking nand 0, signifies

that what follows it is a comment, for illumination only and not to
be executed. The lamp symbol may occur only as the first character
in a statement, but may be used in defined functions. Comments may
not be entered during evaluated (D) input.

MULTIPLE SPECIFICATION

Specification (+) may (like any other function) occur
repeatedly in a single statement. For example, the execution of
the statement Z+XxA+3 will assien to A the value 3, then multiply
this assigned value of A by X and assign the resulting value to Z.

Multiple specification is useful for initial izing variables.
For example, X+Y+l+Z+0 assigns ° to Z and 1 to both X and Y.

A branch may occur in a statement together with one or more
specifications, provided that the branch is the last operation to
be executed (i.e., the leftmost). For example, the statement
~SxlN>I+I+l first augments I, and then branches to statement S if N
exceeds the new value of I.

69

........
o

Monadic form fB f Dyadic form AfB

Definition
or example

Syn tax " Name Name Syntax I Definition
or example

pA +-+ 10
pB +-+ 4
pC +-+ 3 4

, M +-+ (x / pM) p M
,C +-+ 12pC
p ,A +-+ 1

14 +-+ 1 2 3 4
10 +-+ an empty vector
6-15 +-+ 5 4 3 2 1

¢f +-+

¢B +-+

¢C +-+

f[(pf)+1-1 pf]
4 1 3 2
DCBA ¢[1]C +-+

HGFE
LKJI

Scalar function
See Table 2

~A +-+ A QB +-+ B

IJKL
EFGH
ABCD

~C +-+ AEI
BFJ
CGK

(~M)[I;JJ +-+ M[J;I] DHL

pM

,M

18

<PM

?M

~M

B[~B] +-+ 1 2 3 4 I~E
~tCDAEAC' +-+ 3 5 1 6 2 4

fCWfJ +-+ ¢f[~f] \WE
B[1B] +-+ 4 3 2 1
W'CDAEAC' +-+ 4 2 1 6 3 5

Size p Reshape

Ravel Catenate

I ndex I 1 I I ndex of
generator

Reverse ¢ Rotate

Ro 11 ? IDea 1

Transpose Q

Grade up I ~

Grade down I 1

VpM

V,V

ElM

V</>M

8?V

A+3

5pC +-+ 'ABCDE'
2 3pB +-+ 2 3 1

423

4 1,A +-+ 4 1 3
0,12 +-+ 0 1 2
pA , 1 0 +-+ 1

B 13 7 +-+ 2 5
B1B +-+ 1 2 3 4
L1L +-+ 1 2 2 1

8¢f +-+ E[1+(pE)18-1-1PE]
3</>B +-+ 4 2 3 1 +-+ -1¢B
-1 0 1</>C +-+ DABC

EFGH
JKLI

8?V +-+ Random deal of 8
elements from 1V. If V is
a vector:
(8?V)[I;] +-+ 8?V[I]

DEFINITIONS USED IN EXAMPLES ----------- --------

B+2 3 1 4
C+3 4p'ABCDEFGHIJKL'
L+1 0 0 1
8 +-+ a scalar.
V +-+ a scalar or vector.
v +-+ a vector only.
M +-+ a scalar,-vector, or matrix.
M +-+ a matrix only.
I +-+ a scalar integer.

Table 8: PRIMITIVE MIXED FUNCTIONS

'" 1-1

Definition
or example

Monadic form

NOTES -----

fB

Syntax I Name

1. The functions lS, ElM, E[M],' M[M;M],
?M, S?V, .$I, 'tI, and operator
subscripting are index origin dependent.

2. El ision of any index in subscripting
selects all along that coordinate.

3. The functions ¢M, V¢M, VIM, V\M,
S?V, SaV, SwV, VTV, and V~M apply
along the last coordinate of the
indicated matrix. The functions ¢[1]M,
V¢[1]M, VI[1]M, and V\[1]M indicate that
the function is to be appl ied along the
Ith coordinate. The functions S?V, SaV,
SwV, VTV, and V~M can not be
subscripted.

4. The functions ~v and 'tv sort
1 iteral arguments according to an EBCDIC
collating sequence. Thus, if X is a
matrix of names, the expression

f

Name

Index

t I Take

+ I Drop

I I Compress

\ I Mesh

Dyadic form AfB

Syntax I Definition
or example

r[M]
M[M;M]

VtM

V+M

VIM

V\M

B[2J ++ 3 B[] ++ B
C[2;] ++ C[2;14] ++ 'EFGH'
C[2;2 3pBJ ++ FGE

HFG

3tB ++ 2 3 1 2 2tC ++ AB
3tB ++ 3 1 4 EF

2+B ++ 1 4 1 l+C ++ EFG
2+B ++ 2 3 1JK

LIB ++ 2 4 LIA ++ 3 3
1 0 1/[1]C ++ ABCD

OIB ++ 10 1JKL

L\14 ++ 1 3 4 2
L\'AB-f ++ 'A--B'
L\LIB ++ 2 0 0 4

E I Membership IMEM 'QU1CK'EC ++ 0 0 1 1 1
CE'QU1CK' ++ 0 0 1 0

o 0 0 0
1 0 1 0

X[~X[;1J;] wi 11 sort X by the Nth letter. I T I Encode I VTV 2 2 2T1 6 2 ++ 0 0 1

5. The left argument of VpM is restricted
to two or less elements; arrays of rank
three or higher are not permitted. I ~ I Decode !V.LM

6. The right argument-of ,M must not
have more than 255 elements; vectors
of lengths longer than 255 are not
permitted.

a

w

Prefix SaV

Suffix SwV

2 3 ++ 10 10T123
9 9 ++ 10 10T-1

110
010

B ++ 2.L2 2 2TB 9 ++ 2.LL
(4p60)T761167 ++ 3 31 26 7

SaI ++ I~lS SaE ++ EO.~lS

6a2 ++ 1 1 0 0 0 0

SwV ++ cpSaV 3wl ++ 0 0 1

Table 8: PRIMITIVE MIXED FUNCTIONS (continued)

SYSTEM DEPENDENT FUNCTIONS

There are three main types of information about the state of
the system which are of value to the user:

1. General informat ion common to all users, such as the date,
time of day, and the port numbers of all signed-on terminals.

2. Information specific to the particular work session, such
as the time of sign-on, the central computer time used, the
total input wait time, and the input device type.

3. Information specific to the active workspace, such as the
amount of storage available, the condition of the state
indicator, and the number of significant digits to be
displayed during output.

The functions l=Q§gm and QQmlQQ provide the user with the
facil ity to examine system information and modify workspace or work
session parameters.

l=J}§gm
The function IS fetches system information; the result is

selected by the right argument, which must be a one-component
array. The I is formed by overstriking T and~. Table 9 is a
summary of the I-beam function. I9 and I27 yield vectors; all
other results are scalar. Times are all in units of one-sixtieth
of a second, the date is given as a six dieit integer in which the
successive digit pairs specify the month, day, and year, and the
available storage is given in QY1§~.

The
variable
element.
byte for
function,
function;
ten.

byte is a unit of storage equal to eight binary digits. A
requires four bytes of overhead, plus four bytes per
A defined function requires seven bytes of overhead, one
each local variable, one byte for each line in the

plus one byte for each character in the body of the
the total is then raised to the next highest multiple of

In designing an algorithm for a particular purpose, it
frequently happens that one may trade time for space; that is, an
algorithm which requires 1 ittle computer time may require more
storage space for intermediate results, and an algorithm which
requires 1 ittle storage may be less efficient in terms of time.
Hence, the information provided by the functions I21 (central
computer time used) and I22 (available storage for arrays and
function execution) may be helpful in designing algorithms.
1,10 reo v e r, sin c e the fun c t ion s I 2 1 and I 2 2 can, 1 ike all 0 f the
I-beam functions, be used within a defined function, they can be
used to make the execution depend upon the space available or the
computer time used.

Input wait time is defined as the total accumulated time
sign-on during which the keyboard has been unlocked.
associated function (I19) may be used in conjunction with ~ or
determine the amount of time taken by a student in responding
question. The fol lowing is an example of the use of I19:

72

since
The

o to
to a

[1 J
[2J
[3J

V12;N;A;B;T
N+O
A+-l+?10
B+-l+?10

[4J
[5 J
[6 J
[7J
[8J

T+I19
A;' x ';B;' = ?'
+(D=AxB)/9
'WRONG, TRY AGAIN. '
+4

[9J 'CORRECT! TIME=' ;L.5+«I19)-T)+60;' SECONDS.'
[10 J +(5)N+N+l)/2
[llJ 'EXERCISE COMPLETED. 'V

12
4 x 2 = ?
0:

8
CORRECT!
2 x 3 = ?
0:

7

TIME= 2 SECONDS.

WRONG, TRY AGAIN.
2 x 3 = ?
0:

6
CORRECT!
8 x 9 = ?
0:

72
CORRECT!
4 x 5 = ?
0:

20
CORRECT!
o x 7 = ?
0:

o

TIME= 1 SECONDS.

TIME= 3 SECONDS.

TIME= 3 SECONDS.

CORRECT! TIME= 1 SECONDS.
EXERCISE COMPLETED.

QQl]lnQ
The function ffiV allows dynamic modification of workspace and

work session parameters such as output 1 ine width. Domino does not
return a resul t, and must be the last executed (i .e. leftmost)
operator in an APL expression. The arguments and actions of Domino
are-su~narized in Table 10.

Generally, the related I-beam and Domino functions differ by
10; for example, III gives the input device type, and ffil changes
devices. Expressions which combine related I-beam and Domino
functions are often used in defined functions to assign a new value
to a workspace parameter while saving the old, value. For example,
the expression ffi6,20+0 x Q+I16 saves the current output line width
value in Q and resets it to 20. Since ~lO is ignored (i.e. no
act ion res u 1 t s), the act ion s 0 f D om i nom a y be III ad e con d i t ion a 1: the
expression ffilIll switches the input/output device to the CRT at
that station if one exists.

73

I-BEAM RESULT

I4 Returns which devices are operational at this terminal.
1 CRT
2 Typewriter
3 CRT and typewriter
5 Film projector and CRT
6 Film projector and typewriter
7 Film projector, typevvriter, and CRT

I5 Current sense switch setting on the IBM 1800 console
(always 0 on the IBM 1130).

I6 The current console data entry switch setting.
I7 The number of bytes available for function storage. The

maximum is 5120.
I8 Port number: 0 thru 31.
I9 The vector of port numbers of active terminals.
Il0 The user's sign on number (account number) returned as an

integer.
III The user's terminal input device type:

o CRT
1 Typewriter

I12 The current index origin: 0 or 1
I13 The current random number seed.
I14 The next CRT row upon which output will occur: 0 thru 14
I15 The current film frame number. If the film projector is

not operational, then the result of I15 is meaningless.
Displayable frames are in the range 1 thru 1022.
0000 Film is at reverse overrun indicator.
1023 Film is at overrun indicator (end).

I16 Current maximum output 1 ine-width setting.
I17 DOMAIN ERROR
I18 DOMAIN ERROR
I19 Cumulative input wait time (latency) in 60ths of a second.
I20 Current time of day in 60ths of a second from midnight.
I2l Elapsed CPU time from sign-on in 60ths of a second.
I22 The number of bytes currently available in the data

workspace. The maximum is 6390. Each array (temporary
or defined) uses 4 x l+(number of elements) bytes.

I23 The number of users currently signed on the system.
I24 User's sign on time in 60ths of a second.
I25 Today's date as an integer in the form MMDDYY.
I26 The current 1 ine number of the function being executed.
I27 The vector of the 1 ine numbers of pendent or suspended

functions from inner to outer.
I28 The number of pendent or suspended functions.
I29 The current significant digit setting for numeric output.

Tab 1 e 9: THE I - BE A 1,1 FUN C T ION

74

DOMINO RESULT

~O Erases the CRT screen and positions the cursor at the top
of the screen. mo is ignored if the current input/output
device Is a typewriter.

~1 Switches input/output control to the other terminal device
if it has been configured and is operational; otherwise,
~1 is ignored.

~2 ,N

m3,N

~4 ,N

m6,N

m7,N

~8

~9 ,N

Sets the index origin (~~e)ORIGIN command) to N where
NEO 1.

Sets the random number seed to N where NEO,132767.

Sets the CRT row to N if the
input/output device; otherwise, ~4

CRT is
is ignored.

the current
NEO,114.

Positions the film at
been configured and
ignored.

frame N if the Film Projector has
is operational; otherwise, ms is

Position film and open shutter.
Rewind the film to the reverse overrun indicator and leave

the shutter closed.

Sets the current maximum output line-width (see) WIDTH
command) to N where NE19+1101. If the CRT is the current
input/output device then the width will be set to 4oLN.

Stops execution for N seconds where NEO,1300.

Stops execution until a key is pressed. If the current
input device is a typewriter, then ~8 is ignored. The
pause time associated with ~8 is not counted in the I19
accumulation.

Sets the maximum significant digits (~§~)DIGITS command)
for numerical output to N where NE16.

NOTES: 1. In each of the above, N must be a scalar or one
element array.

2. DOMINO must be the last executed operation
(i.e., the leftmost) of an APL expression.

Tab 1 e 1 0: THE MaN A D I C DO tvil N 0 FUN C T I 0 f'J

75

THE P LOT FUN C T I 0 !\l

T~e expression A~B results in a plot of the data contained in
the vector right argument B. B is composed of the vector of Y-axis
data catentated to the vector of X-axis data.

B ++ X,Y and (pX) ++ pY

The plotted points are bounded by the vector left argument A.
A 1JJ!:!1?.t be a 4-component vector defined as:

A[l] ++ The minimum X-data to be plotted.
A[2] ++ The maximum X-data to be plotted.
A[3] ++ The minimum V-data to be plotted.
A[4] ++ The maximum V-data to be plotted.

Points falling outside of the specified A values will not be
plotted. The data is plotted on a 25 by 31 grid using 0 to mark
the points plotted. Axis markings are output to 3 significant
digits and the X and Y scale factors are displayed at the bottom of
the plot. Plots on a CRT or typewriter are identical. After a
plot on a CRT, no further execution occurs until a key has been
pressed. This protects the plot from being inadvertently destroyed
by subsequent output. The following is an example of a plot:

X+l00 200 300 400 500 600 700 800
Y+2806 1403 935 702 561 468 401 351
100 800 350 2810~X,Y

2.81+ 0

I
I

2.19+
I
I

1.58+
I
I

0.96+
I
I

0.35+

o

o

o
o

o
o o

+-----+-----+-----+-----+-----+-
1.00 2.40 3.80 5.20 6.60 8.00

X+Xxl0* 02 Y+Yxl0* 03

The scale factors multipl ied by the values on each axis give
the X-data and V-data. In this example the X-data ranged from
100 to 800 and V-data ranged from 350 to 2810 apnroxlmately.

76

f is a useful function for plotting data~ f tests X and Y for
plot argument legal ity; extends scalar arguments , computes the
maxima and minima for the plot left argument , and plots Y y~ X. f
is defined as follows. Note line 6.

VY f X;K;I
[1 J -+ ((2 = (p p X) , p p Y) , (O;7! (0 \ 0 p X) , 0 \ 0 p Y) , (:1 = (p , X) , p ,Y) , (p ,X);7!p , Y) /

10 10 :1:1 11 8 9 12
[2J -+(;7!/K+(L/X),r/X)/4
[3J K+K+-.4 .6 x K+K=0
[4J -+(;7!/I+(L/Y),r/Y)/6
[5J I+I+-.5 .5 x I+I=0
[6 J (K , I)[~X , Y
[7J -+0
[8J -+2,X+(pY)pX
[9J -+2,Y+(pX)pY
[10] -+0, pO+' MATRIX ARGUMENTS ILLEGAL'
[l:1J -+O,pO+'LITERAL ARGUMENTS ILLEGAL'
[:12J 'UNEQUAL LENGTH VECTORS ILLEGAL'

V

The plot example from the previous page can be obtained by
executing:

X+100Xl8
1+2806 1403 S35 7D2 561 468 40:1 351
1 f X

77

X+3x4

x
12

3 x L+

12

Y-<- - 5

Y-X
17

144E
1.44

P+1
pxp

1 4

pxY

2

9

,.
;) 10

2

3 4

16

15

Q+'CATS'

Q
CATS

X+3
Y+4
(XxY)+4

16
XxY+4

24

X-Y
SYNTAX ERROR

X-Y
1\

1 I 2 . 6
0.6

3~7

1

7~3

o

20

S I\H P LET E RIA I N A L S E S S ION - - A P PEN 0 I X A

Assigns value of expression to X

Value of X typed out

Entry automatically indented
Response not indented

Negative sign for constants

Exponent i a 1 form of constant

Four-element vector
Funct ion appl led element by element

Scalar appl ies to all elements

Character constant (4-element vector)

Execution from right to left

Entry of inval id expression
Shows type of error committed
Ret y pes i n val ide x pre s s ion vv i t h
caret where execution stopped

Residue function

Less than or equal funct i on

Greater than or equal function

78

1 2 3 4x4 3 2 1
4 6 6 4

2+1 2 3 4
3 4 5 6

1 2 3 4r2
2 2 3 4

14
1 2 3 4

1 5
1 2 3 4 5

1 0

6-16
5 4 3 2 1 0

2 X 10

2 X 16
2 4 6 8 10 12

'l§..
[lJ S+4x3.14159xRxR
[2J V+SxR+3
[3J 'l

R+2
§..

S
50.2654

V
33.5103

Mul t i pl icat ion function

Addition function

Maximum function

Index generator

Empty vector prints as a blank

Scalar appl ies to all (i . e . 0)
elements of 10 ,
empty vector

Function header
function body

resulting

Close of definition

Execution of function

in an

Display of values calculated in
function

79

1 i ne

'l12;I
[1J S+O
[2 J T.,- 0
[3J S+S+I
[4J I+I+1
[5J +3 X lI:;,N
[6J 'l

N+5
12
S

15
I

VALUE ERROR

"
)RRA8F §.

'lZ+[1 X
[1J Z+4x3.14159xXxX
[2J 'l

[1 3
113.097

Q+3 x[1 1
Q

37.6991
R+2
([1 R)xR+3

33.5103

VZ+E N;I
[lJ Z+l
[2J I+O
[3J I+I+1
[4J -+OxlI>N
[5J Z+ZxI
[6J -+3
[7J 'l

E 3
6

E 5
120

Local variables establ ished in header

Branch to 1 ine 3 (as long as condition
I:;,N is met)

Execution of function

Local variable has no value after
function is executed

Erases definition
Funct ion heade r--exp 1 i cit resu 1 t,
one argument

Use of defined function in expression

E is the factor i a 1 funct i on

80

Tf..E+-3 5
X+-E 3

E[3J 1
£[5J 1
£[3J 2
E[5J 2
£[3J 3
£[5J 6
£[3J 4

VG+-M Q N
[1 J G+-N
[2J M+-MIN
[3J -+4xM;tO
[4J [1JG+-M
[2J [4JN+-G
[5J [10J
[1J G+-N
[1J V

VQ[OJ
VG+-M Q N

[1J G+-M
[2J M+-MIN
[3J -+4xM;tO
[4J N+-G

[5J -+1
[6J V

36 Q 44
4

VQ
[6J [4.1JM,N
[4.2J V

36 Q 44
8 36
4 8
4

Sets t race on 1 i nes 3 and 5
Execution of function
Trace of function

Terminates trace

Expl iclt functicn with two arguments

Change 1 i ne 1
Override 1 ine 2 with 1 ine 4
Display 1 ine 1
Old 1 ine 1 retained until close
of definition

Display function definition and
stay in definition mode

Add 1 i ne 5
Close definition

Execution of function

Add 1 ine between 1 ines 4 and 5

81

vQ[OJv
vG-<.-M Q N

[1 J G:""M
[2] M+MIN
[3 J -+4xM7-0
[4J N+G
[5 J M,N
[6J -+1

v

v.Q
[7 J [5 J
[6J v

vZ+12 N
[1J Z+(Z,O)+o,Z
[2J -+1 x N'2pZv

12 3
VALUE ERROR
~[1J Z+(Z,O)+O,Z

1\

Z+1
-+1

1 331

~ 4
VALUE ERROR
~[1J Z+(Z,O)+O,Z

1\

V12[.1JZ+1V
SUSPENSION

)SI
~[1J *

)PURGE

)SI

V12[.1JZ+1V
v~[OJv

v Z-<,-~ N
[1J Z+1
[2J Z+(Z,O)+o,Z
[3J -+1 x N'2pZ

V

Display of function

Deletes 1 ine 5
Close definition

An (erroneous) function for
binomial coefficients

Suspended function

Assign value to Z
Resume execution
Binomial coefficients of order 3

Same error (local variable Z
does not retain its value)'

Cannot edit function in definition
mode
Display state indicator

Clear state indicator

Insert 1 ine
Display revised text

Branching error because of
insertion

82

\7~[DJ\7
\7 2-4.-~ N

[lJ 2-<-1
[2J 2+(2,0)+0,2
[3J -+2xN~p2

\7

I1 4
14641

\712;A;I;Y
DEFN ERROR

\7I;A;I;Y

Change 1 i ne; 3

A function 12 is already defined

[lJ 'ENTER CAPITAL AMOUNT IN DOLLARS'
A conversational function
to compute value of an

[2 J A+D
[3] 'ENTER INTEREST IN PERCENT'
[4 J I+D
[5J 'ENTER PERIOD IN YEARS'
[6 J Y+D
[7J 'RESULT IS I ;Ax(1+.01 xI)*Y\7

I
ENTER CAPITAL AMOUNT IN DOLLARS
0:

1000
ENTER INTEREST IN PERCENT
0:

4.75
ENTER PERIOD IN YEARS
0:

10
RESULT IS 1590.52

X+2 3 5 7 11
X,X

2 3 5 7 11 2 3

A+3 4p2xl12
A

2 4 6 8
10 12 14 16
18 20 22 24

5 7 11

83

amount A invested at interest ..
B for a period of Y years.

Request for input
Heterogeneous output

Waits for input from
keyboard

Catenation

Reshape

2

6 2pA

2 4·
6 8

10 12
14 16
18 20
22 24

,A
4 6 8 10

3 3pl 0 0 0

100
010
001

A+'ABCDEFG'

12 14 16 18

M+4 3p3 1 4 2 1 4 4 1 2 4 1 4
M

3 1 4
2 1 4
4 1 2
4 1 4

A[MJ

CAD
BAD
DAB
DAD

M[l 3 4;1 3J

6

3 4
4 2
4 4

X+2
X[1
X

3

M+2
M

1 2
4 5

3 5 7 11
3J+6 8

8 7 11

3 p l 6

3
6

20

84

Reshape of matrix A

Ravel of A
22 24

Identity matrix

Indexing

Indexed variable on left of
specification arrow

+/[1JM
~-

~ 7 9

+/[2JM
6 15

+/M
6 15

+\[1JM

1 2 3
5 7 9

+\[2JM

1 3 6
4 9 15

A+2 3p1 5 7
A

1 5 7
3 4 2

A+.x100 10 1
157 342

X+13
Y+14

Xo . xy

1 2 3
2 4 6
3 6 9

'M+3 4Pl12
M

1 2 3
5 6 7
9 10 11

0 1 2 3¢[1JM

1 6 11
5 10 3
9 2 7

3 4 2

4
8

12

4
8

12

4
8

12

Ro\tv reduction

Column reduction

Row scan

Column scan

Inner Product (+.x is ordinary
matrix product)

Outer Product

t; 0 'I u I fl n r 0 "(a"(len

85

1 2 3¢[2]M Rov" rotation

2 3 4 1
7 8 5 6

12 9 10 11

¢[1]M Column reversal

9 10 11 12
5 6 7 8
1 2 3 4

¢[2]M Row reversal

4 3 2 1
8 7 6 5

12 11 10 9

1 0 1/[1]M Row compression

1 2 3 4
9 10 11 12

1 1 o 1/[2]M Column compression

1 2 4
5 6 8
9 10 12

1 0 1 1 0\10 Mesh
0 0 0 0 0

1 0 1 1 0\2 3
2 0 3 2 0

1 0 1 1 0\1 2 3 4 5 6 7
1 4 2 3 5

M+3 5p'CAD()BAT()END()'
M

CAD ()
BAT()
END()

0 1 1 1 O\M

(CAD)
(BAT)
(END)

86

1 0 1 1 0 1\14
1 0 2 3 0 4

50:15 Prefix

1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0
1 1 1 1 1

M+2 3P16
M

1 2 3
4 5 6

10.lM Decode
123 456

10 10 10T123 456 1 Encode

1 2 3
4 5 6
9 9 9

'ABCDEFGJ'l'GAFFE' Index of
7 1 6 6 5

A+3 4 p112
A

1 2 3 4
5 6 7 8
9 10 11 12

2 2tA Take

3 4
7 8

2 2+A Drop

9 10

87

¢45 23 78 45 71 55
4 2 165 3

W45 23 78 45 71 55
3 591 2 4

5?5 6 7

5 1 243
62514
42576

Upgrade

Dovvng rade

Deal

ATHIS ENDS THE EXAMPLES IN THE TERMINAL SESSION

88

Comment

BIBLIOGRAPHY

Berry, P .. C .. , __ ~-.-;._--.......;;;.....;.,;..;;;.....;.' IBM Corporation, 1968.

Berry, P .. C .. I __ ,.:.-...._~_.;;.....;. ____ ..;..., IBM Corporation, 1968 ..

R.H. Lathwel1, "The Implementation

Falkoff, A.D .. , and K.E .. Iverson, "The APL\360 Terminal
Sy s tercl l

; ,

Falkoff, A.D., K .. Ee Iverson, and E"H. Sussenguth, "A
Description of System/360",

Journal, Volume 3, Number 3, 1964.

Iverson I K. E. ,
--------------~----~--~

, Wiley, 1962.

Iverson, K.E .. ,
treatment, S

Iverson, K. E. , tiThe Role of Computers in Teaching",

Lathwell, R .. H .. f

Corporation,
IBM

Pakin, S.,
Associates, ----------.~----------------

, Science Research

Rose, A.J., Videotaped APL Course, IBM Corporation,
1968.

Smillie, K .. W. ,
Package, on I

Computing Science, University
Edmonton, Canada, 1968.

89

of
o

Alberta,

APL\1500: Operator's Guide

Authors: S. E. Krueger

T. D. McMurchie

© Science Research Associates, Inc., 1968

90

OPERATOR'S GUIDE

TABLE OF CONTENTS

PART 1 -- INITIAL PROGRAM LOADING

PART 2 -- PRIVILEGED USER OPERATIONS
Privileged System Commands

Communication Commands
)HI
)PA
)HIPA
)NOTICE

Account Control Commands
)ADD
)ADDP
)DELETE

Inquiry Commands
)WHO
)PEOPLE
)PORTS

Terminal Disconnect Command
)BOUNCE

System Status Definition Commands
)OPERATOR
)CONFIGURATION
) TIME
)DATE

92

93
93

95

96

97

98

98

Dyadic I-BEAM 102

Privileged Functions for the System Operator 103
Halt
Continue
Privilege
Unprotect

PART 3 THE RECORDING TERMINAL 105

PART 4 SYSTEM ERRORS 106

LIST OF ILLUSTRATIONS

PRIVILEGED SYSTEM COMMANDS 94

91

PART 1

I NIT I A L PROGRt\;A LOAD lUG

This section describes the procedure for starting the
APL\1500 System. The APL\1500 System is a stand-alone program which
is built from cards according to the procedure specified in the
SY~IEM GE~EB8I1Q~ 8~Q M81~If~8~~E manual. Initial Program Loading
(IPL) is accomplished by using the APL/IPL card deck which is
suppl ied with the APL\1500 System. The flr~l system start-up
procedure differs s 1 i ght 1 y from subsequent I PL procedures, and
these differences are noted where appropriate.

To start the APL\1500 System:

1 . Pre sst h e I mm e d i ate S top key 0 nth e con sol e .

2. Mount and ready the APL\1500 disk packs. If this is the
fl[~l IPL for this system, the APL\1500 System Pack m~~! be
mounted on drive O. To configure the system for the desired
number of drives, see)CONFIGURATION, Part 2 of this manual.

3. NPRO the 1442 card reader, put the APL/IPL card deck in
the hopper, and ready the reader.

4. Press the PROGRAM LOAD key on the console. The system
should come to a tvAIT at memory location 0256 (hexadecimal).

5. Sign-on (~gg GAINING ACCESS, Part 1 of the APL\1500 User's
Guide). If this is the fl[~l IPL for this system, the only
user registered is 314159; this is the SYSTEM OPERATOR number,
and it is privileged. To register additional APL\1500 users,
see)ADD and)ADDP, Part 2 of this manual.

6. Set the time and date (~gg)TIME and)DATE, Part 2 of this
manual). APL\1500 is now running.

If this is the flr~l IPL for this system, a reconfl~uration
should be done to optimize disk storage and core utilization. For
the details of reconfiguring the APL\1500 system, see
)CONFIGURATION, Part 2 of this manual.

92

PART 2

PRIVILEGED USER OPERATIONS

A QrlYllggg~ ~~gr has access to all of the APL operations
described in this section, in addition to those available to the
normal user (~~~ the APL\1500 User's Guide).

This part describes the privileged ~Y~1~ill ~Qmm~Dg~,
g~£gl~ 1=fi18M, and some useful functions for the APL Operator.

PRIVILEGED SYSTEM COMMANDS

This section discusses the system commands that are necessary
for the administration of the APL\1500 System. Since these
commands are of a supervisory nature, they are considered
confidential and are meant for privileged users only.

Privileged system commands may be grouped into five classes
with regard to their effect on the state of the system:

1. ~Qmm~ol~211QD commands effect transmission of messages to
groups of terminals.

2. 8~~Q~Dl ~QDlrQl
libraries.

commands affect the state of user

3. log~lr~ commands provide information about users without
affecting the state of the system.

4. I~rmlo21 dl~~QOO~~! command
sien-off of terminals.

effects, remotely, the

5. QgflO~ ~121~~
parameters.

commands affect the state of system

The rules pertaining to the entry of privileged system
commands are the same as those for the system commands described in
Part 2 of the APL\1500 User's Guide.

If a command
lrQ~Ql~ r~QQrl will
INCORRECT COMMAND.
reasons:

cannot be
be displayed.

This report will

executed,
The most

be given

1. The user is not a privileged user.

an appropriate
common report is
for one of three

2. The command was incomplete, misspelled, modified
incorrectly, or otherwise malformed.

3. The time and date have not been set.

93

1..0
+="

.cQMM8I::lQ

)HI [text]

)PA [text]

)HIPA [text]

)NOTICE [text]

)ADD wsid name pack

)ADDP wsid name pack

)DELETE 1 ist of wsid's

)WHO 1 ist of wsid's

)PEOPLE

)PORTS

)BOUNCE 1 ist of terminals

)OPERATOR terminal

)CONFIGURATION

)TIME hours minutes seconds

)DATE month day year

£Bl~11£G£Q ~Y~IE~ ~QMM~~QS

£UB.EQ~£

Send text to user at sign on.

Send text to all signed on users.

Send text as both)HI and)PA.

Send text to all operational terminals.

Add user 'name' with workspace 10 'wsid'
to logical pack 'pack'.

Add privileged user 'name' as)ADD.

Delete users specified by 1 ist of wsid's.

List information about users specified in
1 ist of wsid's.

List information about all APL\1500 users.

List information about all active users.

Sign off users on terminals in 1 ist.

Temporarily re-assign recording terminal.

Reconfigure the APL\1500 system.

Reset the system clock.

Reset the date.

COf,1t"lU N I CAT ION COH~·1/\ NOS

Messages can be received by a terminal only when its keyboard
is locked. All messages sent by the commands in this class will be
prefixed with OPR:. Text length is limited to 114 characters.
Messages sent to a CRT will appear at the bottom of the screen and
are 1 imited to a display of 34 characters.

When communication commands reference ~ll terminals, the
source terminal is included as a target terminal. This message
reflection constitutes the normal system response.

The only trouble report for this class of commands is
INCORRECT COMMAND.

~EI:lQ 1EXI IQ 1.EBMlt18l- 81 ~lgI:l=Qt1:) HI
Enter)HI followed by a space and the desired text.

Eff~~.t:
The entered text will be displayed to users as they sign
on. The text will not be displayed to any users who are
already signed on when the)HI command is given. If no
text is entered, any previous HI message is deleted.

~E~Q 1EXI IQ 811 ~lgt1EQ=Q~ 1EB~1~81~:)PA
Enter)PA followed a space and the desired text .

.Eff~~.t:
The entered text will be sent to all terminals that are
signed on.

~E~Q 1EX1 81 ~lG~=Q~ 8~Q 1Q 811 ~lQ~EQ QU IEB~1~81~:)HIPA
Enter)HIPA followed by a space and the desired text.

Eff~~.t:
This command simultaneously acts as both)HI and)PA.

~E~Q 1EX1 1Q 811 1EB~1~81~:)NOTICE
Enter)NOTICE followed by a space and the desired text.

Eff~~.t:
The entered text will be sent to ~ll configured and
operational terminals. If the port configur~tion
includes both a typewriter and CRT, the CRT will receive
the message.

95

ACCOUNT CONTROL COMMANDS

Th~ commands in this class effect the addition and deletion of
APL\1500 users.

~QQ 8 ~~~B IQ I~~ ~Y~I£U:)ADD
Enter)ADD followed by a space, a 1 to 6 digit account number,
a space, a 1 to 20 character user name, a space, and the
logical pack number of the disk pack where the user's 1 ibrary
will reside.

J;ffg~!:
The user name, account number, and pack number will be
entered into the user's directory and one workspace (3
cylinders) will be reserved on the designated pack. If
the entered account number was less than 100, the lock
':a*D' will be associated with the account number.

IrQ!dQl~ r.~QQrl~:
PACK ERROR
Either the designated disk pack is not mounted and ready,
or the System Pack Users' Directory is full (960
entries), or the designated disk pack is full.

NUMBER ALREADY ASSIGNED
The designated account number is already registered.

8QQ 8 EB1Y11Eg.EQ ~~£B IQ 18.E ~Y~1£U:)ADDP
Enter)ADDP followed by a space, a 1 to 6 digit account
number, a space, a 1 to 20 character user name, a space, and
the logical pack number of the disk pack where the user's
library will reside .

.Eff~~!:
The effect of the)ADDP command is the same as the)ADD
command except that the account number is privileged.

IrQ~Qlg r§QQr.!~:
PACK ERROR
~gg)ADD

NUMBER ALREADY ASSIGNED
~~g)ADD

Q.E1EIE ~~EB~ EBQt1 18E ~i~IEt1:)DELETE
Enter)DELETE followed by a space and one or more account
numbers, each separated by a space.

Effg~!:
Each designated account will be expunged from the system.

96

Ir.Q~Ql~ r~RQr.t~:
PACK ERROR
The disk pack on which the user's library resides is not
mounted and ready.

NUMBER 'nnnnnn' NOT FOUND
The number enclosed in quotes is not an account number.
The 1 is tis processed from 1 eft to right and execut i on of
the command is not halted upon the occurrence of this
error.

I NQU I RY COt,1MANDS

The commands in this class are concerned with
information about users of the APL\1500 System.
have no affect on the state of the system.

L1SI 1~EQBM~I1Q~ 8BQUI S££klEl£Q U~£E~:)WHO

the display of
These commands

Enter)WHO followed by a space and one or more account
numbers, each separated by a space.

Effect: None.

B~.s.QQD.s.e:
The following information about the specified users will
be listed:

1. User account number.

2. Privileged user indicator (* if privileged).

3. 1 to 20 character user name.

4. Logical pack number of user 1 ibrary.

5. Sector address of user library.

6. Cumulative connect time as of the last sign-off.

7. Cumulative latency as of the last sign-off.

8. Cumulative CPU time as of the last sign-off.

9. Date of last sign-off.

If the 1 isting is obtained on a CRT, only items 1 thru 5
will be displayed.

I.rQ1dQle .r.e12Qrl:
NUMBER 'nnnnnn' NOT FOUND
.s.~~)DELETE

97

11~I l~EQBM~IIQ~ 8QQVI 811 B£gl~I~n~Q ~E1 V~tB~:)PEOPLE
Enter)PEOPLE

None.

Bg~QQD~g:
All registered users \:\Iil1 be listed with the same
information as given in the)WHO 1 isting. The execution
of this command can be interrupted \:\lith an attention
signal.

11~I 1~EQBM8IIQ~ 8~QVI 811 ~lG~~Q=Q~ V~tB~:)PORTS
Enter)POR'PS

None .

.8g~QQD~g:
All signed-on users \:\Ii 1 1 be listed \tIith port numbers and
the same information as given in the)WHO 1 isting.

TERMINAL DISCONNECT COMMAND

There is only one command in this class. The bQYQ~g command
should be used with caution, since it performs as a remotely issu~d
)OPP and all \:\Iork done in the user's active \:\Iorkspace will be lost.

Bf:MQIf:lY ~lGb! QEE V~tB~:)BOUNCE
Enter)BOUNCE followed by a space and one or more port
numbers, each separated by a space.

f:ffg~!:
The specified terminals \:\Ii 1 1 be signed off. This command
will QQ! sign off the originating terminal.

SYSTEM STATUS DEFINITION COMMANDS

The commands in this class generally affect the setting of
certain system parameters.

I~MEQ~~BllY 8~=8~~lGb! I~t BtkQEQ1~G IEEMIU81:)OPERATOR
Enter)OPERATOR followed by a space and the port number that
will designate the recording terminal.

~ff~~l:
All messages sent to the recording terminal vIi11 be
directed to the designated port (~gg Part 3, The
Recording Terminal). This definition remains in effect
unt i 1 the next I PL or ur)t i 1 th is command is entered
again.

98

BECQ~EIGUR£ 18£ dE~\12QQ SYSIE~:)CONFIGURATION
Enter)CONFIGURATION

Eff~~l:
The completed configuration will take effect at the next
I PL.

Be.s.QQQ.s.e:
The latest configuration is displayed (e.g., the initial
APL\1500 configuration):

CONFIGURATION 10/01/68 09:10:22
PACKS: 1 SWAP:01500 TERMS: 32 OPR:OO

(T=TYPEWRITER C=C.R.T. F=FILM)

00: TCF 01: TCF 02: TCF 03 : TCF
04: TCF 05: TCF 06 : TCF 07: TCF
08: TCF 09: TCF 10: TCF 11: TCF
12: TCF 13 : TCF 14 : TCF 15: TCF
16 : TCF 17: TCF 18: TCF 19 : TCF
20: TCF 21: TCF 22: TCF 23: TCF
24: TCE: 25: TCF 26: TCF 27: TCF
28: TCF 29: TCF 30: TCF 31: TCF

DO YOU WANT TO RECONFIGURE?

At this point the system response is ended, and a
dialogue with the CONFIGURATION routine vJill begin. If
NO is entered, the command will be terminated and the
result is nothing more than a display of the current
configuration.

If YES is entered, the CONFIGURATION routine
continues by asking the following questions:

HOW MANY DISK DRIVES?
Enter the number of disk drives (1-6) attached to the
system. Before the next IPL, each disk pack essential to
the operation of APL may be mounted on any disk drive
whose physical drive number is 19~~ lb~o the entered
value. If a blank entry or an illegal entry is given,
the prior definition remains in effect.

LOGICAL NUMBER FOR SWAP PACK?
Enter the number of the logical identification of a nevI!
s\t/ap pack (1-32766). If an illegal or blank entry is
given, the prior definition remains in effect. The new
swap pack mY~l be mounted and ready; otherwise, the prior
Sv-Jap pack definition remains in effect. After the number
has been accepted, 96 contiguous cyl inders will be
reserved on the new swap pack. If the 96 contiguous
cyl i nde rs of free space cannot be found, the prev i ous
definition remains in effect.

99

HIGHEST CONFIGURED TERMINAL NUMBER?
Enter the value of the highest numbered terminal (0-31).
If the entry is illegal or blank, the previous definition
remains in effect. There will be no devices configured
at ports numbered higher than the entered value.

TERMINAL nn CONFIGURATION?
This question is repeated until nn has been incremented
from 00 thru the value of the highest numbered terminal.
Each entry defines those devices which are at the
indicated port. The possible entries are:

C Configure for CRT.
T Configure for typewriter.
CT Configure for CRT and typewriter.
CF Configure for CRT and film projector.
TF Configure for typewriter and film projector.
TCF Configure for typewriter, CRT, and film

projector.
X There is no device at this port.

blank Leave the previous configuration for this port
in effect.

OPERATOR'S TERMINAL NUMBER?
Enter the port number (0 - thru the highest terminal
number) of the recording terminal. If the entry is too
large, the question will be repeated. If the entry is
blank, the prior definition remains in effect. A
recording terminal may be assigned to a port, within the
configuration, which has no devices. Sgg The Recording
Terminal, Part 3 of this manual.

CONFIGURATION COMPLETED AT NEXT IPL.
Indicates the conclusion of the)CONFIGURATION routine.
Below is an example of a dialogue:

HOW MANY DISK DRIVES? 5
LOGICAL NUMBER FOR SWAP PACK? 1498
HIGHEST CONFIGURED TERMINAL NUMBER? 7
TERMINAL 00 CONFIGURATION? TC

. TERMINAL 01 CONFIGURATION? X
TERMINAL 02 CONFIGURATION? X
TERMINAL 03 CONFIGURATION? C
TERMINAL 04 CONFIGURATION? CF
TERMINAL 05 CONFIGURATION? X
TERMINAL 06 CONFIGURATION?
TERMINAL 07 CONFIGURATION? T
OPERATOR'S TERMINAL NUMBER?

CONFIGURATION COMPLETED AT NEXT IPL.

100

The configuration command should be executed again to get a
new list.ing of the current configuration. The date and time of the
last configuration is output on the fi rst 1 ine of the display.

)CONFIGURATION
CONFIGURATION 11/25/68 09:15:08

PACKS: 5 SWAP:01498 TERMS: 08 OPR:OO
(T=TYPEWRITER C=C.R.T. F=FILM)

00 : TC 01: 02 : 03: C
04: CF 05: 06 : TCF 07: T
08: 09 : 10: 11:
12: 13 : 14: 15 :
16: 17: 18: 19:
20: 21: 22 : 23:
24: 25: 26 : 27:
28: 29: 30: 31 :

DO YOU WANT TO RECONFIGURE? NO

~EI l~t liME QE Q8Y:)TIME
Enter)TIME followed by a space, the number of hours past
midnight, a space, the number of minutes past the hour, a
space, and the number of seconds past the minute.

Eff~~.t.:
The time of day will be set and the user's sign on time
will be reset. This command is not privileged until
after it has been entered. The time command should never
be executed while other users are signed on. The
cumulative times collected for users will be meaningless
if the time command is executed while they are signed on.

Bg~QQD~~:
None.

~.El ItLE Q8I.E:) DATE
Enter)DATE followed by a space, the number of the month, a
space, the day of the month, a spate, and the last two digits
of the year.

Effg~1:
The date will be set. This command is not privileged
until after it has been executed.

Bg~QQD~§:
None.

101

1-1
a
N

.QY8I21~ 1=.6.E8M

The dyadic I-BEAM function is a special ~Y~1~m=g~Q§nQ~n1 function that permits dyramic
fetching and patching of main memory or disk storage. I-BEA~ is a dyadic mixed function.
The I-BEAM is formed by IT' overstruck with '~'. The dyadic I-BEAM is a privileged
function and can only be executed by privileged users; attempted execution of dyadic I-BEAM
by non-privileged users will yield a SYNTAX ERROR report. Since misuse of this function
may result in irreparable damage to the APL\1500 system, only the system operator or other
qualified persons should be privileged users.

1=1tE8M

OIV

1IV

2IV

3IV

8B~!:l~.LEt!I~

V[1] +~ Starting core address.
V[2] +~ Last core address.

V[1] +~ Starting core address.
1+V +~ Patch data.

V[1] +~ Logical pack number.
V[2] +~ Sector address.
V[3] +~ Starting word address.
V[4] +~ Last word address.

V[1] +~ Logical pack number.
V[2] +~ Sector address.
V[3] +~ Starting word address.
3+V +~ Patch data.

QQt:J81tl

V[1]EO,132767
V[2]EO,132767
V[1]$V[2]

V[1]EO,132767
(1+V)E 32769+165536
2$p V

V[1]EO,132767
V[2] EO, 1 1599
V[3]EO,1319
V[4] EO, 1 31 9
V[4];:::V[3]

V[1]EO,132767
V[2]EO,l1599
V[3]EO,1319
(3+V)E - 32769+165536
319;:::V[3]-4-pV

Q.E~~Bl.EIlQ~

Dump main memory locations
from V[1] to V[2]
inclusive. If V has only
one element, then only
location V[1] is dumped.

Patch main memory locations
V[1] to 32768IV[1]-2-pV
with the data 1+V

Dump disk storage: pack
V[1], sector V[2], words
V[3] to V[4]. If V[4] is
elided, only word V[3] is
dumped.

Patch disk storage: pack
V[1], sector V[2], words
V[3] to V[3]-4-pV with the
data 3+V.

1I and 3I must be the last executed operation in an APL expression.

The functions li Q E ~ listed below can be executed only by
privileged users. Only the system operator or other equally
qual ified persons should be permitted access to them since misuse
of the concepts employed by these functions might permanently
damage the APL\1500 system. These functions should be entered very
carefully, locked, and stored in a locked workspace.

H halts execution at the terminals specified in the vector
right argument. Activity at the user's own terminal will not be
halted.

VH
[1 J
[2J
[3J
[4J
[5 J
[6J

V;I;J;O
[B2,I+OxO+I12
+(O=pV+«V~I8)E1VE1+0I75)/V+,V)/5

1IJ,2~(4=116)v(16p2)TOIJ+26+(OI90)+32xV[IJ

+((p V) > I + J + 1) /3
[B 2,0
'OKAY'ltf

Q continues (restarts) activity at a terminal which has been
halted by H. The right argument of Q is a vector of the terminals
at which activity is to be continued.

VQ
[lJ
[2J
[3J
[4J
[5 J
[6J

V;I;J;O
[B2,I+OxO+I12
+(O=pV+(VE11+0I75)/V+,V)/5
1IJ,2~(4~116)A(16p2)TOIJ+26+(OI90)+32xV[IJ

+((p V) > I + I + 1) /3
[B2 ,0
'OKAY'ltf

E temporarily privileges the users at the terminals specified
privileged in this way remain in the right argument. Users

privileged until they sign off.

VE
[1J
[2J
[3J
[L~ J
[5 J
[6J
[7 J
[8 J

S;I;O
+(O=pS+,S)/I+OXO+I12
[B2 1
[B7 0
+(~S[I+I+1JEI9)/6

3I(OI84),(OIS[IJ+OI88),132
-+(I<pS)/3
[B2,O
f 0 KA Y , ltf

103

1

Q unprotects the functions specified in the character right
argument.

VQ V;S;P;I;E;J;K;O
[1J ~2,I+OxO+I12

[2J ~(52=V+'dABCDEFGHI~QQ~EQliJKLMNOPQRI~KLMNQESTUVWXYZ

QH~lQKEKXZ'l,V)/O
[3 J P+OI 8 4 .
[4J S+OI(OI88)+I8
[5J ~(3~L(E+OI12276+V[IJ)+4096)/7
[6J 3IP,K,J,2~(7~116)A(16p2)T2IP,(K+16+S+LE+64),

J+5 x 64IE+512IE
[7J ~«pV»I+I+1)/5
[8J ~2,O
[9J 'OKAY''¥

104

PART 3

THE APL\1500 RECORDING TERi,lINAL

APL\1500 provides for a rg£Qr~lDg 19rmlD~1 which serves as a
System Log and as a common point of communication for APL\1500
users. The recording terminal operates like any other APL terminal
with the following exceptions:

1. A report of all sign-ons and sign-offs is logged on the
recording terminal.

2. Messages transmitted via the)OPRN command (~gg Part 2 of
the APL\1500 User's Guide) will be received at the recording
terminal.

3. All messages originating at the recording terminal are
prefixed by OPR:, instead of the port number of that terminal.

Messages directed to the recording terminal will be output on
the typewriter if it is operational and configured; othervvise,
these messages \tvi 11 be' d i spl ayed on the CRT screen if it is
operational and configured. If neither of these conditions is
satisfied, the messages are lost. No warning report is issued.

Since messages ·to the recording terminal can be received QDly
when the keyboard is locked, it is important that the keyboard of
the recording terminal be kept locked unless a response to an input
wait is immediately forthcoming. If sign-on and sign-off messages
or messages to the System Operator are delayed for an extended
period of time, the performance of the APL\1500 system may be
seriously degraded, possibly to the point of stopping completely.
This situation, should it arise, can be corrected by completing the
pending input request. The function Q listed below can help avoid
this problem by allowing output to occur while a user is signed on.
Q can be interrupted when desired with an attention signal.

VQ
[lJ [iJ7 10
[2J -+1

V

Before the first reconfiguration of the APL\1500 System, the
recording terminal is assigned to port number O. The standard port
assignment of the recording terminal may be changed for a
particular installation during reconfiguration (~gg)CONFIGURATION,
Part 2 of this manual). The assignment of the recording terminal
may be ternporari 1 y changed by the command)OPERArpOR (~~~ Part 2 of
this manual). This reassignment remains in effect until overridden
by another)OPERATOR command or IPL. Installations with a limited
number of terminals may vvish to use APL\1500 v-lithout the recording
terminal feature. This may be accomplished by assigning the
recording terminal to a configured, but nonexistent port.

105

PAr~T 4

SY ST Ef·l ER RO RS

A ~t~lgm ~r[Q[is an internal ~ailure of the APL\1500 syste~
which is detected by the APL\1500 interpreter during execution.
When a system failure is detected, a register dump and
SYSTEM ERROR report are output, and a clear workspace is activated.
A copy of all work preceding the System Error should be given, with
the register dump, to the system manager.

Disk errors also result in System Error reports; they have the
following format:

500R DSSS XXXX XXXX XXXX XXX X 6962
SYSTEM ERROR

where Rand DSSS represent error code indicators.

o Logical Pack

2 Drive/Sector

3 Drive/Sector

5 Drive/Sector

6 Drive/Sector

The logical pack numbered DSSS
(hexadecimal) is not mounted. This
is usually the System Pack
(OSSS=05DC). Mount the specified
pack and continue.

The drive specified by D is not
ready. Ready the specified drive
and continue.

A disk "error has occurred while
attempting to seek to the sector
specified by SSS (hexadecimal) on
the drive specified by D.

A disk read error has occurred at
the sector specified by SSS
(hexadecimal) on the drive
specified by D.

A disk write error has occurred at
the sector specified by SSS
(hexadecimal) on the drive
specified by D.

Disk errors 5003, 5005, and 5006 indicate hardware errors, and
the fail ing drive should be examined by an ISH Customer Engineer.

106

APL\1500:System Generation and Maintenance Manual

Authors: S. E. Krueger

T. D. McMurchie

© Science Research Associates, Inc., 1968

107

SYSTEM GENERATION AND MAINTENANCE MANUAL

TABLE OF CONTENTS

DISK PACK INITIALIZATION 109
Input Preparation 109
Running the Disk Pack Initial ization Program 110
Program Messages 110

BUILDING THE SYSTEM DISK PACK 112
Input Preparation 112

Program Control Cards 112
Patch Cards 113
CRT Dictionary Cards 114

Input Assembly 116

RUNNING THE CARD TO DISK PROGRAM 117
Program Messages 117
Program Notes 120

CONFIGURING THE APL\1500 SYSTEM 121

APPENDIX A 122
APL\1500 SYSTEM DISK PACK MAP

LIST OF ILLUSTRATIONS

Figure 1 DPIR Input Assembly 110

Figure 2 Initial Card to Disk Input Assembly 116

108

Ql~~ E8~~ 1~lI1811~8IIQ~

Before any disk pack is used with APL\1500 it must be
initial ized. A special util ity program called the Disk Pack
Initial ization Routine (DPIR) prepares disks for use by:

1. Determining which, if any, sectors are defective and
record i ng the add resses of the cy 1 I nde rs con ta in i ng the
defective sectors on sector 0000. The DPIR program will
accept a pack with as many as 3 defective sectors;

2. Clearing the disk surfaces of all data and writing disk
sector addresses on all cyl inders;

3. Writing the user specified logical pack number and a six
character ID in sector 0000; and

4. Establ ish ing the pack di rectory on sector 0000.

The pack directory contains the
and special information required for
has this format:

logical pack number, pack 10,
file -processing routines. It

~QBQi~2

0-2
3
4
5-7
8

9
10-12
13
14

Defective cyl inder table
0658 (hexadecimal)
Logical pack number
Pack ID in EBCDIC
File count. Maximum (bits 0-7) and current
(bits 8-F) number of file entries
0000
EBCDIC blanks
Starting sector address of free storage
Number of contiguous sectors of free storage

The DPIR program is an off-l ine job. The program is loaded
from cards followed by control card(s) which suppl ies information
particular to the disk pack(s) being initialized. The control card
is punched:

~Q.b!lMt1~

1-5

7
14-19
20

Logical pack number. This number m~~1 be 01500
for the APL System Pack.
This column m~~! be blank.
Six alphanumeric characters for pack 10.
The physical drive number (0-5) of the drive
containing the pack to be initial ized.

109

Figure 1 shows input assembled for a OPIR run& Several disks
may be specified. Note that an END card punched Erin in columns 1-3
must follow the DPIR control card(s).

END card

I ,,""" Control card(s) ~
/ .1\

DPIR
program deck

'I

II

-

Figure 1. DPIR input assembly.

To initial ize a disk pack:

1 • Mount the pack to be initial ized on the
specified in column 20 of the control card
drive;

2. Press IMM STOP and RESET on the console.

physical drive
and ready the

3. Put the input deck in the 1442, and ready the reader~

4. Ready the printer.

5. Press PROGRAM LOAD on the console.

All control
System Printer.

cards and all DPIR messages are printed on the
The followin~ is a summary of all DPIR messa~es:

1. EBQGB8t:1 t:!8t.1E
This message is given at the end of the run.
ForMat: **250-00 1500 DPIR

2. Et:!Q QE ~Q.Q
This messa~e is given at the completion of each
initialization joh step.
Format: **250-99 DPIR COMPLETE

3. ~E~IQB Q l~ QEEE~Il~E
If sector 0, which must contain the pack
defective, the pack cannot be used. The
terminated, and the next card is read.
Format: **250-02 SECTOR 0 BAD

110

directory, is
job step is

4 . E8.GK tlQI !JS8fil~
The DPIR program has found four defective cyl in
job step is terminated and the next control c~rrl
Format: **250-03 4 BAO CYLINOERS

rs • The
is read.

5. QBIY~ ~QI BE8QY

6.

This message indicates that the specifierl disk rlrivp is
not ready. The job step is terminated and the next
control card is read.
Format: **250-04 DRIVE NOT READY

~.Yl1t!QJ;B Q l.s QEEE.~IIYJ;
A defective sector other than sector 0 has been found in
cylinder zero. The job step i s terminateci and the next
control card i s read.
Format: **250-05 CYLINDER 0 BAD

7. 1~Y811Q ~Q~IBQl ~8BQ
The format of the last control card is inval ide The job
step is terminated and the next control card is rAad.
Format,: **250-06 I NVAL 10 CONTROL CARD

8. QJ;EJ;~IIYI ~Y11~QEB I8~1t
This is a list of defective cyl inc\ers found.
Format: **250-07 Onnn Oppp Oqqq
Where nnn, ppp, and qqq are the addresses of the defective
cylinders. If 0658 appears in all three positions, then
no defective cyl inder was found.

9. !21.s1$ tBBQ.8
An error occurred while writing on the disk pack. The joh
step is terminated and the next control card is rearl.
Format: **250-01 DISK ERROR

111

All programs used with the APL\1500 System are distributed to
the user in the form of punched card decks. From these cClrns the
user builds a System Pack which contains the directories, pro~rams,
and C.R.T. Dictionary for APL\1500.

The Card to Disk program is a system util ity which is designerl
to read three specific kinds of cards:

1. 1130/1800 compressed format binary cards in absolute form.

2. The APL\1500 System Dictionary deck.

3. Hexadecimal patch (correction) cards.

The information contained in the cards is written on the System
Pack in the locations specified on the control cards.

Each of the cards in a binary deck contains a control number
called a check-sum. The Card to Disk program checks this number to
insure that the deck is complete and that all cards are in the
proper order within the deck. The Card to Disk pro~ram also checks
the identification field in all cards except control cards.

This program is used for two major operations-- buildin~ anrl
updating the System Pack.

The user builds a system pack by usin~ the Card to Disk
program, the APL\1500 card dACks, and a disk pack, (initializecl by
DPIR to logical pack 01500). The Card to Disk pror:rar'll simr>ly
copies the cards onto the System Pack.

The input to the Card to Disk program is a deck containin~ a
control card with associated data cards and an ENO card. Each set
of data cards must have a control card; there may be multiple sets
of these decks in the input assembly.

Control cards indicate the kind of data cards to be processed
and give job step specifications to the Card to nisk pro~ram. All
control cards are punched according to the followin~
specifications:

112

1. The first field on a control card must begin in column 1.

2 • The fie 1 d s \"/ i t h ina con t r ole a r d m u s t bed eli In i ted
(separated) by exactly one blank column; two or more
consecutive blanks terminate the reading of the control
card.

3. Comments may be punched in control cards and hexadecimal
patch cards. These comments may be punched following the
last data field on the card if the comments are preceded
by an asterisk (*) punch.

Compressed absolute binary decks must be preceded by a control
card punched:

El£hQ

1

2

QQtiI.EtlI~

ABC

Five character identification field of absolute
binary deck.

Hexadecimal core stora~e address of the first data
item to be written on the disk.

The decimal address of the first sector of disk
storage where the data is to be written.

The number (decimal) of sectors to be written.

*NOTE: These fields may be repeated on the same control card
as many as three times if a program is assembled as one deck,
but is to be written on the disk as a set of separate
programs.

Example:

ABC V1000 4000 1412 9 *** APL SUPERVISOR 10/1/68 V1000000

This control card specifies that a compressed absolute deck
with an identification field punched V1000 is to be written on
sectors 1412-1420 of the System Pack starting from memory
location 4000 hexadecimal.

Hexadecimal patch cards may be inserted precedin~ the last
binary card of the deck.

113

Hexadecimal patch cards are punched:

1

2-5

7-10 -I
12-15 1

17-20 1

22-25 1

27-30 1

32-35 1

37-40 \
42- L~ 5 /
47-50 1

52-55 1

57-60 I
62-65 1

67-70 _I

73-77

78-80

Example:

~Ql:1IfJ~IS

C

Hexadecimal starting patch address.

Up to 13 hexadecimal data words.

Identification field.

Sequence field.

C40AE 7401 2FE7 80AD 4CA8 56BB V1000345

This patch card will replace the contents of core locations
40AE to 4082 (hexadecimal) with the hexadecimal values 7401,
2FE7,80AD, 4CA8, and 56BB. Hexadecimal patch cards should
always be placed immediately before the last card of the decK
beins patched.

The system dictionary contains the characters used by the
APL\1500 station I.O.C.S. program to display information on the
1510 Instructional Display Screen. The control card is punched:

EII;1!2

1

2

3

~Q~I£.blI~

ole

Five character dictionary identification field.

The decimal addesss of the first sector where the
dictionary is to be written on disk stora~e.

3

114

Example:

D rev 0 9 0 0 1 4 5 3 3 * * * A P L / 1 5 0 0 S Y S T E r1 [) leT I 0 1''.1 A R Y V0900000

This control card specifies that the system dictionary is to
be written on sectors 1453 through 1455 of the APL\1500 System
Pack.

Each dictionary card can contain as many as six entries, each
character with a number from 000-127. A dictionary card is
punched:

~8BQ ~Q.LJ1Mti~ ~Q~IJ;tlI~

1- 2 02

3-10 First dictionary character

11-13 Character number

14-21 Second dictionary character

22-24 Character number

25-32 Third dictionary character

33-35 Character number

36-43 Forth dictionary character

44-46 Character number

47-54 Fifth dictionary character

55-57 Character number

58-65 Sixth dictionary character

66-68 Character number

73-77 Dictionary identification field

78-80 Sequence field

Note: If the same character number is assi~ned to two or mor~
characters, the last character processed will be placed in the
dictionary.

The system dictionary deck requires its own END card:

115

1- 3 END

73-77 Dictionary identification field

78-80 Sequence field

IHElJI .8.s.s.EtJB1.Y
The input may consist of any number of data decks (with

appropriate control cards and patch cards). The last deck must be
followed by an END card punched:

.Q.8BJ2 .Q.Ql11.tJtJ~

1- 3

.Q.Q~IIllI~

END

Figure 2 shows an exampl~ of input assembled for the initial
card to disk run.

END card

SYSTEM DICTIONARY

, INITIAL CONFIGURATION

APL\1500

INTERPRETER

PROGRAMS

SYSTEM TRANSIENTS

APL\1500 V9900
INITIAL DIRECTORIES

APL\1500

CARD TO DISK PROGRAM

Figure 2. Initial Card to Disk Input AssemblY

116

1 . r,1 0 U n tan d rea d y the S y s t e [11 Pac k t hat has be P. n i nit i ali zed b y
DPtR and vJhose lo~ical pack number is 01500. It is su~gested
that the System Pack be mounted on drive 0 (zero) since the
initial IPL (Initial Pro~rar71 Load) requires the System Pack to
be on drive O.

2. Enter the drive number (0-5) into the system by using the data
entry switches on the console.

3. Ready the Printer.

4. Place the Card to Disk program followed by the deck(s) to be
processed followed by an END card in the 1442 hopper.

5. Press IMM STOP and then RESET on the console.

6. Press the START key on the 1442 Reader.

7. Press PROGRAM LOAD (IPL key) on the console.

All control cards and hexadecimal patch cards will be 'printed on
the printer.

1. EBQGllAM lQ8Q ME~~Ag~
This indicates that the Card to Disk program has been loaded.
Format: **251-00 APL/1500 CARD TO DISK PROGRAM

2. 111EG81 Ctl8B8CIEB
An i 11ep;al character \!vas found on the last control card
printed. The recovery procedures for this error and also
messaQ;es 251-02, 03, 04, OS, 06, 07, 09, 10, II, 12, 13, 14,
and 15 are:

1. Nonprocess run out (NPRO) the cards in the reader.
2. Correct the mispunched card.
3. Reprocess the deck with its associated control card by

pressing START on the Reader and then pressing START on the
console.

Format: **251-01 ILLEGAL CHARACTER

3. ~l~~l~G CQUIBQl C8BQ
A control card was expected, but not found.
Format: **251-02 CONTROL CARD EXPECTED

4. 11LED8L QQ~IDQL ~8BQ
There \Jas an item in error on the last control card read.
Format: **251-03 ILLEGAL CONTROL CARD

117

5., UtlEXE~kIED- CliA~~kIE~2
The pro~ram encountered an unexpected punch
read. This can be caused, for exa~ple,
preceded by an asterisk or by a field that
properly.
Format: **251-04 UNEXPECTED CHARACTERS

in the last card
by comments not

was not delimited

6. UE8QC~ CABQ tlQI EQUtlQ
The header card that should precede a compressed deck w~s not
found.
Format: **251-05 HEADER CARD EXPECTED

7. lLLEG8L QIUABi k8BQ
The last card read was not a legal compressed format binary
card.
Format: **251-06 ILLEGAL BINARY CARD

8. EBQGB8~ IQQ LARGE
The deck that was loaded exceeds the disk area specified on
the control card.
Format: **251-07 PROGRAM EXCEEDS SPECIFICATIONS

9. CUEC~~UU EBRQB
The checksum punched in the last card read was not valid.
Format: **251-09 CHECKSUM ERROR

10. C8BQ BE8QEB EBBQB
An error has occurred in the 1442 while reading a card.
Format: **251-10 CARD READER ERROR

11. lQEUIlE1~8IlQU EIE1Q EBBQB
The identification field of the last card read did not a~ree
with the identification field specified in the control card.
Format: **251-11 IDENTS DISAGREE

12. ILLIGAl UEX8QE~lM81 EIE1Q
An ille~al character was found in a hexadecimal field on a hex
patch card.
Format: **251-12 ILLEGAL HEX FIELD

13. lLL~G81 UEX8QE~IU~b 8QQB~~~
The last printed hexadecimal patch card in a patch deck \!Jas
outside the core-storage 1 imits of the pro~ram to be patched.
Format: **251-13 I LLEGAL HEX ADDRESS

14. ILLEGAL UEX8QE~lM8L r8I~U ~8BQ
The last hexadecimal patch card printed vvas punched
incorrectly.
Format: **251-14 ILLEGAL HEX PATCH

118

15~ lLLEG8L QIQIIQU~BY Q8BQ
The last dictionary card read was not punched accordin~ to
system dictionary card specifications.
Format: **251-15 ILLEGAL DICTIONARY CARD

16. ~Y~I£M E8~K ~BBQB
The drive indicateri by the settin~ of the riata entry switches
does not contain lor;ical pack number 01500. Haunt a Syste1n
Pack, be sure the data entry switches are set correctly, and
press START on the console.
Format: **251-16 DISK PACK NOT SYSTEM

17. QB1~~ ~~M~fB fBBQB
The drive number specified by the data entry switches is
inval ide Set the correct drive in the data entry switches and
push START on the console.
Format: **251-17 INVALID DRIVE NUMBER

18. ~A111UG ~sQ~~~Q~ sBBQE
An internal request to the disk I/O routine was incorrect.
Rerun the job.
Format: **251-18 CALLING SEQUENCE ERROR

19. QB1~s ~QI EE8QY
The selected drive is not in the ready status. Ready the
selected drive and make sure that the data entry switches are
set correctly. If no cards have been processed, push START on
the console when the drive is ready. If cards have been read,
tJPRO the cards in the reaner .. Put the remainder of the deck,
preceded by the last control card printed, in the reader.
Press START on the reaner, an~ then press START on the
console.
Format: **251-19 DRIVE NOT READY

20. Ql~~ ~EE~ EBBQB
The program was unahle
(decimal) as specified
the reader, mount a
switches, and redo the
Format: **251-20 SEEK

21. Ql~~ QYIBE1QV

to seek the disk stora~e sector 'nnnn'
in the control card. NPRO the cards in
Dg~ System Pack, set the data entry
entire job.
ERROR SECTOR nnnn

A disk overflow error occurred. The recovery procedures are
the same as for error 251-20.
Format: **251-21 DISK OVERFLOW

22. DISK READ ERROR
~~;-p~~~~a~-~~~ld not read sector 'nnnn' (decimal). ~§§ error
251-20 for recovery procedures.
Format: **251-22 READ ERROR SECTOR nnnn

119

23_ Ql~~ ~BII~ EBBQB
The pro ~ ram co u 1 d not VJ r i teo n sec tor 'n n n n ' (dec i III a 1) . See
error 251-20 for recovery procedures.
Format: **251-23 \'JPITE ERROR SECTOR nnnn

24. J;tlQ QE JQJ2
This indicates the job has been completed.
Format: **251-99 CARD TO DISK COMPLETED

1. Programs in absolute form must be assembled in the ran~es
0040-22FF (hexadecimal) or 4000-7COO (hexadecimal).

2. If the Card to Disk program attempts to use the printer and it
i s not i nth ere a d y s tat us, t h.e pro g ram w ill 1 00 pun til the
printer is ready.

3. If the Card to Disk
1442 read hopper is
002E (hexadecimal).
in the hopp~r; press
on the console.

program attempts to read a card and the
empty, the program will wait at location

If more cards are to be read, place them
START on the reader, and then press START

4. It is ~lrQngly recommended that after a System Pack has been
built from cards, the SYSTEM DIRECTORIES DECK (V9900) and the
INITIAL COtJFIGURATION DECK (Y0300) be removed from the
APL\1500 SYSTEt'1 DECKS and stored elsewhere. If the SYSTEI·':
DIRECTORIES DECK is reloaded, the user directories will be
reset to their initial state. This means that all registered
users will be deleted and user 314159 will be rere~istered. If
the INITIAL CONFIGURATiOn DECK is reloaded, then the initial
configuration takes precedence (1. disk drive, System Pack will
be the Swap Pack, etc.).

120

ways:
APL\1500 allocates disk storage in three logically distinct

1. As storage for the resident APL\1500 systel'l, which
includes the interpreter and user directories.

2. As permanent storage for users' saved workspaces (each
workspace occupies three cyl inders of disk storage).

3 • As a temporary swap area for the
users (96 contiguous cyl inders
required).

workspaces of active
of disk storage are

The system pack built by the procedure described in the
previous section has been allocated for all three of these purposes
(~gg Appendix A for the initial System Pack allocation).

APL\1500 is designed to take advantage of a possible
reconfiguration of the system to a multi-disk environment (~Qg
)CONFIGURATION, Part 2 of the APL\1500 Operator's Guide). The
optimal physical assignment of disk storage is attained by using
separate disk packs for each of the three logical units mentioned
above. The following points are important to the generation of an
optimal system for each installation:

1. The area reserved for swapping of users' active workspaces
should be reassigned to a disk pack other than the System
Pack (logical 1500).

2. Users should not be registered on either the System Pack
or the Swap Pack.

3. Users should be assigned to as many different disk packs
as the number of disk drives for the particular
installation permits, except as noted in section 2 above.

NOTE: A pack to be used as a Swap Pack or User Pack must be
initialized by the Disk Pack Initialization Routine (DPIR)
discussed earl ier. It is imperative that all disk packs
initialized for use with the APL\1500 System have logical
number assignments distinct from each other and also from the
A P L \ 1 5 00 S Y stem Pac k (log i cal 1500).

APL\1500 also provides a facil ity for each installation to
make maximum use of main memory allocation by configuring for the
exact number and type of terminals available for use by APL\1500.
Since the size of a users output buffer ration varies from 10784
characters for a 1 terminal configuration to 274 characters for a
32 terminal configuration, significant improvement in performance
may be evident for users displaying great quantities of output if
the System has been configured for the appropriate number of
terminals.

121

0
1
2
3
4

I"'~

rr-'"
95
96
97
98
99

100
101
102
103
104
105_1..1

r.."

134
135
136
137
138
139
140 v

0
VToe i

1 2 3 4 5 6 7
RS H V D I I P::-!"L·--'I-~-------"""::""":R~E~_ S~E:-::R~, V~E-::::-D---"""";""--'

RESERVED

SWAP AREA (96 CYLINDERS)

USERS
DIRECTORY

SY STE~1
TRANSIENTS

USER RECORDS (32 CYLINDERS)

(80 WORDS/RECORD)

USER 314159 WORKSPACE

FREE SPACE (33 CYLINDERS)

122

IBM/1500 HARDWARE NOTE

If the 1500 system does not have the CRT Control Unit,
the CRT Device Service Routine (in SIOCS) will come to a hard
wait at the first attempted sign-on. This hard wait is the
result of the following sequence:

~Q1~I1Q~

1. APL sign-on bl indly issues a CRT erase command
because:

a. All stations are pre-configured for CRT,
typewrlter, and film projector.

b. It is ImQQ§~ltlg to determine if the CRT Control
Unit exists.

2. The CRT Device Service Routine senses an empty Device
Status Word after four 1502 interrupts. This is assumed
to be a serious hardware failure.

The fol1owi,ng patch card should be placed in the Initial
Configuration Deck (V03) immediately behind card V0300002.

Punch the following in cols. 1 thru 55:

C7200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

with the identification V0300 punched in cols. 73 thru 77.

This patch card will pre-configure the system for 10
typewriters at ports 0 thru 9. Initial sign-on should be done
at one of the terminals numbered 0 thru 9. After sign-on has
been accompl ished, the time and date should be set, and the
re-configuration procedure should be done immediately.

