
Report No. 364

A MACRO-ASSEMBIiER FOR ILLIAC IV

by

David Michael Grothe

December 1, 1969

DEPARTMENT OF COMPUTER SCIENCE
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN • URBANA, ILLINOIS

Report No. 364

A MACRO-ASSEMBLER FOR ILLIAC IV*

"by

David Michael Grothe

December 1, 1969

Department of Computer Science
University of Illinois at Urbana-Champaign

Urbana, Illinois 6l801

This work was supported in part by the Advanced Research Projects
Agency as administered by the Rome Air Development Center under
Contract No. USAF 30(602)-4l44 and submitted in partial fulfillment
of the requirements for the degree of Master of Science in Computer
Science, September 1969*

ii

ABSTRACT

This report describes the ILLIAC IV macro assembly language

(ASK) and the ILLIAC IV macro assembler. ASK is a free field assembly

language with conditional assembly features and in-line text-substitution

macros.

iii

ACKNOWLEDGMENT

The author wishes to express his gratitude to N. Saville without

"h0M <»d arguments) the ILLIAC IV macro assembler vould not

have achieved its present and proposed states.

The author also wishes to thank Professor R. S. Northcote for his

support and encouragement in this project.

Also, the author is indebted to the ILLIAC IV project for providing

the opportunity to create this assembler.

Finally, the author would like to thank Mrs. Kay Flessner and Mrs.

Patricia Douglas for the typing of this manuscript.

iv

TABLE OF CONTENTS

Page

1. ILLIAC TV ARCHITECTURE AMD ADDRESSING 1

1*1 ILLIAC IV Architecture 1

1.1.1 Processors 1

1.1.2 Memory 1

1.2 Assembly-Time Arithmetic 3

1.2.1 Three Modes of Arithmetic: Syllable, Word, Row 3

1.2.2 Arithmetic Expressions 6

1.2.3 Relocatable Arithmetic 7

1.2.1+ External References 12

1.3 Boundary Considerations 13

2. OPERATING SYSTEM ENVIRONMENT 16

3- THE ASK LANGUAGE 18

3.1 General Format of Input to ASK 18

3«2 Syntactic and Semantic Description of ASK 18

3*2.1 ASK Control Statements 18

3-2.2 Basic Elements of the Language 23

3*2.2.1 Characters and Identifiers 23

3.2.2.2 Symbols 23

3.2.2.3 Numbers 2l+

3*2.3 Structure of an ASK Program 26

3*2.1+ ASK Statements 27

3*2.5 Register Designators and Operand Fields for CU
Instructions 28

3-2.6 Register Designators and Operand Fields for PE
Instructions 33

Page

3*2.7 Operand Fields for Mode-Setting Instructions 38

3*2.8 ASK Pseudo Operations 40

3*2.8.1 EQU Pseudo 1+0

3*2.8.2 SYL Pseudo 4l

3*2.8.3 WDS Pseudo 42

3*2.8.4 BLK Pseudo 43

3*2.8*5 FILL Pseudo 44

3*2.8*6 SET Pseudo 44

3*2.8.7 DATA Pseudo 45

3*2.8.8 ORG Pseudo 46

3*2.8.9 CHWS Pseudo 47

3*2.8.10 LOCAL Pseudo 47

3*2.8.11 GLOBAL Pseudo 48

3*2.8.12 DEFINE Pseudo 48

4. EXTENSIONS TO ASK - THE MACRO ASSEMBLER 50

4.1 Definitions of the Tasks of Each Pass 50

4.1.1 Pass I 50

4.1.2 Pass II 51

4.1.2.1 Implementation of Pass II -- K-Machine 52

4 . 2 A s s e m b l y - T i m e A s s i g n m e n t S t a t e m e n t s 5 5

4 . 3 A l l o c a t i o n C o u n t e r s 56

4 . 4 L e x i c o g r a p h i c a l L e v e l a t A s s e m b l y - T i m e 59

4 - 5 D e f i n e s , P s e u d o - S t r a c h e y M a c r o s 60

4 . 6 C o n d i t i o n a l A s s e m b l y 6 l

4.6.1 Conditional Statements 64

4 . 6 . 2 I t e r a t i v e S t a t e m e n t s 67

4.6.2.1 WHILE - DO 67

vi

Page

4.6.2.2 DO - UNTIL 69

4.6.3 Conditional Expressions 71

4.6.4 Listing Control 72

4-7 Errors - Termination of the Assembly 76

5. SUMMARY 77

APPENDIX

A. EXPANSION OF THE META-LINGUISTIC TERM CELIAC IV INSTRUCTIONS . 78

B. COMPLETE DESCRIPTION OF THE K-MACHINE 87

LIST OF REFERENCES 104

vii

LIST OF FIGURES

Figure Page

1. Each Square Represents a Processor, 65 Total 2

2. PE Memory As Seen By (a) Instruction Counter, (b) CU
Address Registers, (c) PE Address Logic k

3. Relationship Between Pass I and Pass II 53

4. Relationship of Pass I and Pass II for Conditional Constructs 63

5. Skeletal K-Machine Code for Conditional Expressions 66

6. Skeletal K-Machine Code Generated for WHILE Statement 68

7. Skeletal K-Machine Code Generated for DO Statement 70

8 . Code Generated for Conditional Expressions 7 3

viii

PREFACE

This paper deals with the design and implementation of a macro

assembler for ILLIAC IV.

Chapter 1 discusses the features of the ILLIAC IV hardware which

pose assembler design problems, such as addressing and alignment of program

and data.

Chapter 2 discusses briefly the operating system environment of the

assembly program.

Chapter 3 defines the ASK language as it exists at the time of writ

ing.

Chapter k treats the macro, and conditional assembly features of ASK

and discusses their implementation.

1

1. ILLIAC IV ARCHITECTURE AND ADDRESSING

1.1 ILLIAC IV Architecture

1.1.1 Processors

ILLIAC IV separates the functions of controlling the hardware and process

ing of "data manipulating" instructions into two logically distinct, but interacting,

machines. A control unit (CU) exists which is itself programmable. It has its own

repertoire of instructions which enable it to control both itself and the re

mainder of the hardware. The hardware external to itself, which the CU controls,

is an array of sixty-four processing elements (PE's). The PE's execute instruc

tions, passed to them by the CU, in lockstep. Figure 1 illustrates this rela

tionship pictorially. ASK (Assembler System-K) must assemble,into a single

stream of instructions, instructions for both these machines.

1.1.2 Memory

Both the CU and the PE's have associated memory. The CU contains an as

s o r t m e nt of control registers (instruction Counter, Interrupt Register, etc.), data

registers (sixty-four 64-bit temporary storage registers and four 64-bit Index/

Utility Registers). Each of these registers is assigned a fixed location in CU-Mem-

ory. That these registers are addressed by the hardware as CU-Memory locations sug

gests that ASK provide for symbolic addressing of CU-Memory (ASK does in fact provide

this facility).

Each PE has associated with it a memory stack of its own (2048 64-bit words).

A PE may address only its own memory stack, but the entire array of PE-Memory may be ad-
17

dressed by the CU (64 times 2048 = 2 64-bit words). Program is stored in PE-

Memory and is fetched into the CU for execution.

*The ILLIAC IV computer is described by Barnes, et. al. in [5] and
defined in detail in [3].

2

Figure 1. Each Square Represents a Processor, 65 Total.

3

The addressability of EE-Memory presents a problem for symbolic

assembly: The instruction counter addresses EE-Memory as if it were a string

18
of 2 32-bit syllables; the CU index registers may address EE-Memory as if it

17
were 2 64-bit words; and since all EE's receive the same address from the CU,

except for PE indexing, the EE's address PE-Memory as if it were 2^~ 4096-bit

words (^096 (= 6b times 64) is regarded as the word size since sixty-four EE's

each fetch a 64-bit word from each EE memory simultaneously). (See Figure 2.)

The problem arises from the possibility of a single symbolic address being used

in all three contexts. Since it is desirable that the symbol denote a unique

location in PE-Memory, a definition of assembly-time arithmetic (address arith

metic) must be chosen which satisfies this requirement.

1.2 Assembly-Time Arithmetic

1.2.1 Three Modes of Arithmetic: Syllable, Word, Row

ASK evaluates arithmetic expressions using one of three modes of

arithmetic, depending upon context. Syllable arithmetic operates on a EE sym-

*
bol as if it symbolizes the PE memory address of a 32-bit instruction syllable;

word arithmetic operates on a PE symbol as if it symbolizes the EE memory address

of a 64-bit word; row arithmetic operates on a PE symbol as if it symbolizes the

PE memory stack address of an entire row of 64-bit words across a quadrant.

Since the same EE symbol may, at different times, appear in all three contexts,

it would not be meaningful to use the same value for the symbol in each of the

three modes of arithmetic.

For instance, a EE symbol PLACE which has the value 23 would repre

sent three entirely different memory locations if the number 23 were used as a

*Section 3.2.2 gives a syntactic description of <PE symbol>.

32 BITS

t" OJ 1
00
i—1

2l8-27+l
• • • OJ i

oo
1—1 OJ 2 -1

• •

• •

0 1 • • 126 127
(a)

• 6 k BITS

2^-64 2^-1

il
(b)

Figure 2. PE Memory As Seen By (a) Instruction Counter,
(b) CU Address Registers, (c) PE Address Logic.

syllable address, word address, and row address. In order to avoid this am

biguity, ASK considers the value of a PE symbol to be divided into three fields

for purposes of evaluating arithmetic expressions.

I" SYLLABLE FIELD-

—-WORD FIELD

•ROW FIELD-

17 BITS 6 BITS 1 BIT

t SYLLABLE BIT

WORD BITS

•ROW BITS

The above diagram represents the value of a PE symbol as it is in

terpreted by ASK. Syllable arithmetic operates on the syllable field; word

arithmetic operates on the word field; row arithmetic operates on the row

field.

The interpretation of a numeric value depends upon how that value

was specified in the source text:

1) The value of a PE symbol is interpreted as specified
in the preceding paragraph.

\ * 2) The value of a CU symbol or a numeric constant is
interpreted as designating the same field as the mode

*See Section 3-2.2 for a definition of the syntactic item
<CU symbol>

6

of arithmetic being performed on it. For
example, the numeric constant 23 designates
syllable, word and row 23 in syllable, word and
row arithmetic, respectively.

Examples:

Suppose the PE symbol A has the value 67 10

f 00000000000000000 100001

t
t

-Row field-

-Word field-

-Syllable field-

Syllable Arithmetic

Word Arithmetic

Row Arithmetic

A+2 = 69

A+2 = 33

A+2 = 2

1.2.2 Arithmetic Expressions

Assembly-time arithmetic expressions will now be defined

syntactically and semantically:

Syntax:

<arithmetic expression : := <temf>|<adding operator> <tern>|
<arithmetic expression <adding operator> <teri£>

<term> : := <factor>|<temi> <multiplying operator> <factor>

<adding operator> ::= + | -

<multiplying operator> ::= X | /

<factor> ::= <arithmetic primary>|<factor>
<exponentiation operator> <arithmetic primary>

<arithmetic pr3mary> : (<arithmetic expression) |<integer>|
<symbol>|<allocation counter designator>|
ABS (<arithmetic expression)!
RELOC (<aritbmetic expression)!
SLA (<arithmetic expression) |
WLA (<arithmetic expression) |
RWA (<arithmetic expression)

7

<allocation counter designator : <space> @@ <space>

<exponentiation operator : := *

<space> ::= {one or more consecutive blank characters)

Semantics:

An arithmetic expression denotes a sequence of arithmetic operations

to be performed (at assembly time) on certain specified quantities. The op

erations allowed are: addition, subtraction, multiplication, integer division

and exponentiation (raised to the power of). Evaluation is performed in 2k-

bit two's complement arithmetic.

ABS specifies that the result of the evaluation of the arithmetic

expression is to be made absolute (no matter what the relocatability of the

expression turns out to be).

RELOC acts the same as ABS only the value is made relocatable.

SLA indicates that the parenthesized expression is to be evaluated

using syllable arithmetic.

WDA indicates that the parenthesized expression is to be evaluated

using word arithmetic.

RWA indicates that the parenthesized expression is to be evaluated

using row arithmetic.

Examples

1

(3)

X + 3

PLACEIRMEMORY + Y/2*(X-l) +2X1

1 . 2 . 3 Relocatable Arithmetic

During the assembly of any particular code segment, it may not be

known where in PE memory the object code will actually be loaded. Therefore,

ASK must make provision as it emits "object" code, for the placement of that

8

code at an "arbitrary" place in PE memory. An "object" code file with that

property is known as a relocatable code file. The assembly proceeds as if the

code were to be loaded at PE memory location zero. At load time, however, the

code may be loaded at PE memory address R. Therefore, if a PE symbol symbolizes

location m at assembly time, it must symbolize location R+m at load time. Re

locatable arithmetic takes the term R into account during the evaluation of

arithmetic expressions.

In the following analyses:

Let R and R 1 stand for PE symbols which symbolize some PE memory
s s

address which may be relocated.

Let A and A 1 stand for either an integer or a symbol which sym-s s
bolizes a PE memory address which may not be relocated. Henceforth a quantity

of one of these two types shall be referred to as an absolute quantity.

Let m and n stand for the numbers associated with the symbols, and

R stand for the starting PE memory address of the code at load time.

ADDITION

Three cases:

(1) R + R 1 = (R+m) + (R+n) o o
= 2R + (m+n)

This result is valid only for intermediate results. An expression which

evaluates to a relocation amount greater than R is invalid and is flagged as

such at assembly time.

(2) R s + A g = (R + m) + (n)

= R + (m+n)

*Section 1.3 places some restrictions on how arbitrary "arbitrary"
Ccin "bs •

9

This result is valid under all circumstances which allow a relocatable expres

sion. The assembly time result is (m+n) as a relocatable quantity.

(3) A+A^sm+n s s

This result is the number (m+n) which is absolute (not relocatable) and as

such is valid under any circumstances which allow absolute quantities.

SUBTRACTION

Four cases:

(1) R, - Rs = (R+m) - (R+n)

= (R-R) + (m-n)

= m - n

The result of subtracting two relocatable quantities is an absolute quantity.

(2) R g - Ag = (R+m) -n

= R + (m-n)

The result of subtracting an absolute quantity from a relocatable one is a

relocatable quantity (m-n).

(3) As " Rs = n " (R=®0

= (n-m) - R

This result produces a negative relocation amount which is invalid.

W As - A, = m-n

The result of subtracting one absolute quantity from another one is their

difference (m-n), which is also absolute.

10

MULTIPLICATION

Three cases:

(1) E X R = (R+m) X (R+n)
K ' s s

= R2 + R X m + R X n + m X n

Multiplication of two relocatable quantities is invalid under all circumstances.

(2) R X A = (R+m) X n =(R X n) + (m X n)
K J s s

Multiplication of a relocatable quantity and an absolute quantity is invalid

under all circumstances.

(3) As X As = m X n

The only valid multiplication is that of two absolute quantities.

INTEGER DIVISION (All address arithmetic is integer arithmetic)

Four cases:

(1) R / R = (R+m) / (R+n) = R / (R+n) + m / (R+n)
s s

Division of one relocatable quantity by another is invalid under all circum

stances.

(2) R / A = (R+m) / n = R/n + m/n
s s

Division of a relocatable quantity by an absolute quantity is invalid under

all circumstances.

(3) A / R = n / (R+m)
b

Division of an absolute quantity by a relocatable quantity is invalid under

all circumstances.

11

(*0 As / AS = m/n

The only valid division is that of two absolute quantities.

EXPONENTIATION

Exponentiation is multiplicative in nature and obeys the same rules

as multiplication. The only valid construct is:

« . 1 n A * A = m
s s

Summary:

The valid constructs in relocatable arithmetic are:

R + R Valid only as an intermediate result, s s

R + A Relocatable,
s s

A + A Absolute,
s s

R - R Absolute,
s s

R - A Relocatable,
s s

A X A Absolute,
s s

A /A Absolute,
s ' s

A * A Absolute,
s s

An arithmetic expression is correct, with respect to relocatability,

if the final result contains either the term 1 X R (as in R) or 0 X R (as in s

A). A further contextual restriction may be applied where only an absolute
s

or only a relocatable result is valid.

Examples of Relocatable Arithmetic:

Let a symbol which begins with the letter "R" be understood to be

relocatable, and one which begins with the letter "A" be understood to be

absolute.

12

RX + RY - RA Relocatable.

RX - (AY + RA) Absolute.

(RY - RX)/2 Absolute.

RX + RY Invalid.

2 X RX Invalid.

RX/2 Invalid.

1-2.k External References

An address expression may make use of a symbol whose definition is

external to the assembly in which it appears. This facility allows the pos

sibility of total separation of code and data in PE memory, since a data area

can be "declared" via a single (or collection of) ASK program(s) consisting

entirely of data-loading and/or storage reservation pseudo instructions.

These data areas may then be addressed by another ASK program consisting en

tirely of executable code. The fact that the value of an external symbol is

not known at assembly-time leads to the necessity that certain restrictions

must be placed on the use of such symbols:

(1) An external symbol may not appear in any expression whose
result determines, in any way, the size of the program,
i.e., storage reservation pseudo operations.

(2) An external symbol may not appear as a factor in an expres
sion in conjunction with a multiplicative operator.

(3) An external symbol may appear as a term in an expression
in conjunction with an additive operator only if the other
terms of the expression (considering the external symbol
as having value 0, Absolute) comprise an absolute expres
sion. e

(b) (From (3)) At most one external symbol may appear in a
single expression.

Thus, an external symbol or expression represents a base in PE-Memory

(unknown at assembly-time) + a value known absolutely at assembly-time.

13

A symbol is declared as external to ASK via the following pseudo-

declarations :

<External Declaratiori> : := EXTERNAL <External Symbol List>

<External Symbol List> : := <External SymboI> | <External Symbol List> ,

<External Symbol>

<External Symbol> : := <PE Symbol>

The user may indicate to ASK that a symbol which is defined within

this assembly is to be made visible externally. A symbol so defined may cor

respond to the same symbol declared EXTERNAL in another assembly and, if it

does correspond, give the EXTERNAL symbol a definition at load time. Such

symbols are termed Entry Symbols in ASK and are defined as such by way of the

following syntax (an extension of the syntax for instruction Label> given

i n S e c t i o n 3 * 2 . U) :

instruction Label> : <PE Symbol> | <PE Symbol> [ENTRY]

1.3 Boundary Considerations

A good portion of the art of programming the ILLIAC IV lies in

the structuring of the data to be operated on. In particular, in order to

take advantage of certain functional characteristics of the hardware, it is

sometimes convenient -- and sometimes necessary -- that code or data be placed

at some specific address with respect to some address whose value is a multiple

of some particular power of two.

For example:

a) There exists an instruction which fetches eight words
of data from PE-Memory to CU-Memory. This instruction
demands that the data be on an eight-word bounday.

b) The JUMP instruction requires that the syllable to be
jumped to lie on a single-word boundary.

I k

c) PE instructions, unless modified by the PE index
registers, fetch data from the same PE-Memory
address, implying that the data should be placed
beginning on a sixty-four-word boundary (or 128 or
256, depending upon the configuration).

The above suggests the need for a facility which allows a PE Symbol

to be assigned a value, v, such that v = w modulo t, where t is a power of

two. If t is determined implicitly from w, i.e., the smallest power of two

greater than or equal to w, then w determines the congruence class

V = {v | v = w modulo t) . Accordingly, ASK provides a facility through which

the Allocation Counter (the assembly-time image of the Instruction Counter)

may be advanced to the nearest v such that v e V, given w. This allows code

or data to be placed at any of these convenient boundaries.

This, however, is not in itself sufficient for, although the address

v may appear at assembly time to satisfy the constraints, it is not neces

sarily known whether the actual run-time address will or not. The solution

to this problem is that the ILLIAC IV loader is informed of the existence of

such constraints. The manner in which the loader is informed of these matters

is crucial. Suppose, for instance, that ASK simply provided the loader with

the constant w at each occurrence of such an address adjustment. Were this

the case, the loading address of a code segment possibly varying from run to

run, the loaded code segment could be considerably larger (or smaller) than

it was thought to be at assembly time, invalidating many relocatable addresses.

A second, acceptable, approach is this:

For every code segment (assembly) there exists a number T which

represents the largest bfor that segment. If the loading address (L) is

such that L = 0 modulo T, then for all v. such that v. = w. modulo t
1 i i i'

it follows that L + v. S w. modulo t.. That is to say, the actual memory

15

satisfies the constraints imposed upon it at assembly time, and no adjustment

must be performed except prior to determining L. Hence, the code segment re

mains the same size as it was thought to be at assembly time, and all relocat

able addresses are valid.

The latter approach to the "Boundary Problem" was the one selected

for implementation. (See Section 3*2.8.5 - FILL Pseudo).

2. OPERATING SYSTEM ENVIRONMENT

16

"Die Welt ist alles, was der Fall ist." -- Ludwig Wittgenstein, 1.

ASK must interface to (at least) three separate, but connected,

operating systems.

The first of these is OS^, the ILL1AC IV resident operating system.

ASK does not itself run under the auspices of OS^, but the code which it emits,

when loaded into ILLIAC TV and executed, does. At the time of this writing,

OSU is in its first, infantile state. The conventions established by this

operating system are minimal and, to some extent, arbitrary. It is envisioned

that, in the future, 0S4 will expand as more user facilities are necessitated

by the needs of an increasingly large and (hopefully) diverse world of users.

ASK must provide for the interface to this operating system, taking into

account the fact that the system itself is likely to change. The only assump

tion that ASK can make is that the language for communicating with 0S^+ is de

fined, namely ILLIAC TV machine language. ASK will provide this interface not

via special constructs in its own language but, rather, by way of macros

written by the operating system group, known to ASK as macros and thus avail

able to the user. This approach (the "System Macro" approach) obviates the

necessity of changing ASK itself as OS^ changes; the only necessary change is

to the definitions of the "System Macros" which are input to ASK.

The second operating system that ASK must interface to is the

B6500 Resident ILLIAC IV Operating System (this operating system has no offi

cial name at this time, but will herein be called BRI06). The design of this

operating system makes this interface simple almost to the point of non

existence. To BRIOS, ASK is Just a B6500 program which it runs at appropriate

times. The interface to BRIOS consists mainly of not interfering with it,

specifically by not initiating any other B6500 Jobs whose supervision belongs

17

to BRIOS. The only other possible interface to BRIOS is the returning of a

condition code to indicate the degree of success of the assembly.

The third operating system which ASK interacts with is the B65OO MCP.

The consciousness of the MCP affects little other than the manner in which ASK

itself is coded. Although these considerations are important, they will not

be discussed here.

There is a fourth system to which ASK must interface very closely,

although it is not an operating systemj that is, the ILLIAC TV Collector/

Loader system. The closeness of this interface very nearly binds the two

systems into a single unit. Any change to one system which affects this inter

face could conceivably imply extensive modifications to the other. The reader

is referred to [l] which defines this interface in detail.

3- THE ASK LANGUAGE

18

This section defines the ASK language in detail. The description is

taken, in part, from [2], a reference manual for ASK. A familiarity with

ILLIAC IV and its instruction set [3] is assumed for total comprehension of

this section.

3-1 General Format of Input to ASK

ASK accepts as input punched cards or card images from any source

available to the B5500 (B6500) system. The information in card (image) columns

1-72, inclusive, is considered by ASK to be statements or portions thereof in

the ASK language. Columns 73-80 are available to the user for sequencing or

identification purposes except when ASK is perfonning a merge assembly from

two sources, in which case the information in columns 73-80 are used by the

selection criterion to determine the next card to be scanned (see Section 3.2.1

ASK Control Statements). An arbitrary number of blank spaces may separate any

two syntactic quantities and, with the following exceptions, card (image)

boundaries are ignored:

a) Neither an identifier nor a number may be split
across a card boundary or contain embedded blanks.

b) A "$"-sign in column one followed by one or more
spaces will cause the card to be interpreted as the
beginning of an ASK control statement.

3*2 Syntactic and Semantic Description of ASK

3*2.1 ASK Control Statements

Control statements direct the assembler to take some action, usually

with respect to file handling, A control statement may appear anywhere in an

19

ASK program, allowing assembly-tine options to be manipulated in accordance

with the desires of the user.

The following is a syntactic and semantic description of ASK control
statements:

Syntax

<ASK control statement> : := $ <verb list>

<verb list> : := <vert> | <verb list> <verb>

<verb> : := Cinput specifier> |
<output specifier> |
<patch specifier> |
Coption specifier>

Cinput specifier> :Cinput file designator Clabel equatior

Cinput file designator : := CARD | TAPE1 | TAPE2 | TAPE3 | TAPE4 |

TAPE5 | TAPE6 | TAPE7 | TAPE8 |
TAPE9 | TAPE10 | TAPE11 | TAPE12 |
TAPE13 | TAPElU | TAPE15

Clabel equatior : := Cempty> |
= Cmulti-file id>/Cfile id> Cdisk or tape file>

Cdisk or tape fiir : := SERIAL | Cempty>

Cmulti-file id> : := Cidentifier>

Cfile identifier : := Cidentifier>

Coutput specifier : := Coutput file designator Clabel equatior

Coutput file designator : := KEWDISK | NEWTAPE

Cpatch specifier : := MERGE Clabel equatior |
VOID Cbase ten number>

Coption specifier : := LIST | SYMAX |
XREF | BLOWUP | PUNCH |
SEQ j SEQ + Cbase ten number>

Semantics

A Ccontrol statement> causes the assembler to change its mode of

operation with respect to file handling or listing options.

20

xx urn a. x ixc An <input specifier> directs ASK to accept symbolic input

of the user's choice. The file CAE® is the main input file for ASK, i.e., ASK

must find its first input in file CAE®. If ASK is directed to another input

file, it assembles from that file until either it encounters a control card

with an input specifier or reads the end of file marker. In the former case,

ASK begins assembling from the new file and "remembers" which file it was

assembling from. In the latter case, ASK closes the file from which the EOF

was read and continues assembling from the file which contained the control

statement which directed it to the file it has just closed. Assembly proceeds

from the card image Mediately following the control statement in this case.

If the <label equation> part is non-empty, ASK attaches itself to the specified

tape or disk file.

If more than one <lnput specified is given in an <ASK control state

ments, ASK will assemble from the file which is listed last until an EOF is

reached. Then it will assemble from the file listed next to last until an EOF

is reached. ASK will continue in this fashion until all input files listed in

the control statement are exhausted. It will then go back to assembling the

file m which the <ASK control statement> appeared.

An <output specifiers directs the assembler to create a new symbolic

tape or disk file. This file will contain the totality of card images which

ASK has processed from whatever files their origin may have been. Once an out

put specifier has been used, it is not necessary to speciiy it on subseguent

control cards, since the option remains on for the rest of the assembly. It

is possible, however, to direct ASK to create different output files for differ

ent sections of code by placing several control statements with an output speci-

fier and label equation in the source file.

If the <patch specifier> is used aqir • •, s used, ASK considers the totality of card
images from the files available as innut -Piio ^

aS input flle designators as an update deck for

21

file MERGE. The functions of replacement, deletion and insertion are available.

The selection criterion for which card image ASK will next process is the se

quence number comparison between the next available card image from file MERGE

and the designated input file. The selection algorithm is as follows:

Relation between Sequence File from 'Which Input
Numbers is Taken

1) "PATCH" sequence < MERGE sequence "patch"

2) "PATCH" sequence = MERGE sequence "patch"

3) "PATCH" sequence > MERGE sequence MERGE

In case l), the card from the MERGE file is retained for subsequent

comparisons. In case 2), the card from the MERGE file is discarded so that the

next card from that file can be used for the next comparison. In case 3), the

card from the "patch" file is retained for subsequent comparisons.

If the VOID option is used, ASK discards card images from file MERGE

as long as the sequence number from card images in file MERGE remains less than

or equal to the value of the <base ten number>. The VOID is performed when its

sequence number is less than or equal to the sequence number of the next card

from file MERGE. Once ASK begins merging it continues to do so until the

assembly is terminated or an EOF is read from file MERGE, at which point the

user may choose to complete the assembly from the "patch" file or attach ASK to

another file MERGE. The user may at any time attach ASK to another file MERGE

through the use of the label equation construct.

At the time that a control statement is encountered, each of the op

tions which may be an <option specifier>, except SEQ, is set to FALSE. The pre

sence of the option specifisr verb enables that particular option. The options

and their effects are as follows:

22

LIST

SYNTAX

XKEF

BLOWUP

PUNCH

SEQ

The source program and instructions being generated are listed

on the printer file.

The generated object code is inhibited from being written into

the object code file.

ASK is to cross-reference all identifiers, register designators,

and control verbs as they are encountered and print out the cross-

reference table at the end of the assembly.

When printing the generated instructions, ASK will print all

ILLIAC IV instructions in an "exploded view" with each field of

the instruction displayed individually, in octal, separated from

neighboring fields by a single space.

Causes ASK to punch each card image as it is processed. "Dollar

cards", <ASK control statements>, are not punched.

Causes ASK to resequence whatever source code output it is creat

ing. The sequence increment is set equal to the value of the

arithmetic term (evaluated using word arithmetic). If no term

is given, a default value of 100 is used.

Examples:

Control statement:

$ LIST SYNTAX XREF

NEWDISK = SOURCE/CODE SERIAL

SEQ + 1000

$ TAPE1 = SINE/ROUTINE SERIAL

LIST XREF

$ LIST PUNCH SEQ + 10000

$ NEWTAPE

$ LIST VOID 19300 SYNTAX

23

$ TAPE1 = LAST/DONE TAPE5 = THIRD/DOME

TAPE3 = SECOND/DONE TAPE12 = FIRST/DONE

3-2.2 Basic Elements of the Language

3-2.2.1 Characters and Identifiers

Syntax:

<character> : : = A | B | C | D| E | F | G | H | I | J | K | L | M | N | O| P | Q | R | S | T | U | V | W | X | Y | Z |

o | i | 2 | 3 | M 5 | 6 | 7 | 8 | 9 | . | [| (| <H$|*|)|J / | < | - | / | , | £ | : = |

] | # | |@| : |> |> |+ |x | / | ? | "

<Letter> ::= A | B | C | D | E | F | G | H | I | J | K | L | M | R | O| P | Q | R | S | T | U | V | W | X | Y | Z

<numeric character> 01112131 151617" 1819

Alphanumeric character> : := <letter>|<numeric character>

Semantics:

The character set for the assembly language for ILLIAC IV is the 6-bit

character set which exists on the Burroughs B5500. An identifier may symbolize

things such as a machine instruction, an address in PE memory, or a number. An

identifier is restricted to be no more than 63 characters in length.

3 - 2 . 2 . 2 Symbols

Symbols in ASK provide a mnemonic means of designating such entities

as PE-Memory locations, CU-Memory locations, and ILLIAC IV registers.

Syntax:

<PE symbol> ::= <identifier>

<CU symbol> ::= .<identifier>

<register symbol> ::= $<identifier>

2b

<symbol> ::= <PE symbol>|<CU symbol>

<identifier> ::= <letter>|<identifier> Alphanumeric character>

Semantics:

Although a PE symbol may symbolize an address in PE memory, its seman

tic interpretation is not restricted to that alone. A PE symbol is best inter

preted as symbolizing a number, with the understanding that this number itself

takes on quite different meanings depending upon the context in which it is used.

ASK attaches no meaning (other than its numeric value) to a symbol at the time

it is defined.

A PE symbol may have a numeric value of up to 2b bits of precision.

A CU symbol may symbolize an address in CU memory. All the remarks

about semantic interpretation of PE symbols apply to CU symbols as well. A CU

symbol is restricted to 62 alphanumeric characters in length (+ 1 for the . =

63) and it may assume a value of no greater than 8 bits of precision. If a CU

symbol is defined by a quantity of greater precision than 8 bits, the quantity

is truncated to 8 bits of precision.

A register symbol denotes an ILLIAC IV hardware register. Certain

register symbols are predefined by ASK (see sections 3-2.5 and 3-2.6), but the

user is at liberty to define other register symbols from existing ones. A regis

ter symbol may be used only in a context which calls for or allows reference to

an ILLIAC IV hardware register.

3.2.2.3 Numbers

Syntax:

<integer> ::= <integer part> <base specifier>

<integer part> :: = <base ten digit> | <integer part> <digit>

<base specifier> ::= :<base ten number> | <empty>

25

<base ten number> ::= <base ten digit> | <base ten number>

<base ten digit>

<base ten digit> ::= 01112 13 |ij-| 5 |617 |819

<digit> ::=O| I | 2 |3|1+|5|6| 7 |8| 9 |A |B |C |D |E |F |G |H | I | J |K |L |M |N |O |P |Q |R |

s | T|U| v |W|x |Y | z

<real number> ::= <signed real number> | <unsigned real number>

<signed real number> ::= +<unsigned real number> |

-<unsigned real number>

<unsigned real number> ::= <mantissa part> | <exponent part> |

<mantissa part> <exponent part> |

<base ten number> <exponent part>

<inantissa part> :: = <base ten number>. |

<base ten number>.<base ten number> |

.<base ten number>

<exponent part> ::= @<signed base ten number> | @<base ten number>

<signed base ten number> ::= +<base ten number> | -<base ten number>

<paired number> ::= PAIR (<real number or integer>,

<real number of integer>)

<real number or integer> <real number> | <integer>

<number> ::= <integer> | <real number> | <paired number>

Semantics:

A number denotes its value. Integers are represented in fixed point

binary with the binary point at the right. Real numbers are represented in

ILLIAC IV floating point form (see page 3-3 on data formats [3] for details).

A digit must be such that its assigned weight is less than the speci

fied base (or ten if the base is unspecified). The weights assigned to the

possible digits are as follows:

26

.C KJ digit: 0123^56789 ABODE

Q R S T U V W X Y Z

weight: 0123^56789 10 1112 13 14 15 16 17 18 19 20 21 22 23 24 25

26 27 28 29 30 31 32 33 34 35

The base specifier directs the assembler to convert the preceding in

teger from the specified base to binary. If no base is specified, base ten is

assumed.

A real number directs the assembler to perform conversion to 64-bit

ILLIAC IV floating point representation. Ihis conversion is performed if an

explicit decimal point is present or if there is an explicit exponent part. In

all other cases, integer conversion is performed.

The pair construct allows for the formation of two 32-bit words in

inner-outer form. The first number is converted into the outer position, the

second into the inner.

Examples:

OA: 17

31

77332:8

@ - 8

• ^@+37

PAIR (1.30-1, 7765:8)

3 - 2 . 3 Structure of an ASK Program

Syntax:

<program> ::= BEGIN <compound statement>

<end statements

27

<end statements :: = <labeled end statement> |

<unlabeled end statements

<labeled end statements ::= <label list> <unlabeled end statements

<unlabeled end statements END |

END <arithmetic expressions

Ccompound statements :: = <statementS |

<compound statements ; <statementS

Semantics:

The <end statements indicates the end of the assembly language pro

gram. The appearance of this mnemonic END causes a halt instruction to be gener

ated. A jump instruction is generated after the halt. If no arithmetic expres

sion is present, the jump is to relocatable location 0. If there is an arith

metic expression present, the jump is to the location indicated by the value of

the arithmetic expression (evaluated using word arithmetic) with the same re-

locatability as the value of the expression. The arithmetic expression or the

relocatable location 0 as the case may be, should be the location of the first

instruction to be executed.

3.2.U ASK Statements

Syntax:

<statement> : : = <ASK pseudo-oj£> |

<ASK control statement |

Clabel lis-t> CILLIAC IV instruction |

<ILLIAC IV instruction | <empty>

<label lisi> :: = <instruction labeJ> : |

<label list> <instruction label> :

<instruction label> ::=<EE symbo]>

28

Note: the production for <ELLIAC IV instruction> is expanded in Appendix A.

It includes all ILLIAC IV operation mnemonics and their allowable operands.

Semantics:

A statement in ASK denotes an operation to be performed, by either

ILLIAC IV or the assembler, together with its necessary operands. A <Label

list> is limited to sixty-four or fewer consecutive instruction labels, and

each is assigned the value of the Allocation Counter at the time of their en

counter, i.e., the syllable address of the instruction being labeled.

3-2.5 Register Designators and Operand Fields for CU Instructions

CU OPERAND FIELDS

Syntax:

<compare and skip operand> :: = <CU memory address specifier> <ACARX>

<skip field> global-local specifier

<CU memory operand> ::= <CU memory address specifier> <ACARX>

<global-local specifier>

<skip operand> ::= <skip field> <global-local specifier>

<blank CU operand> ::= <global-local specifier>

<short literal operandi ::= Arithmetic expression> |

= <arithmetie expression>

<long literal operand> ::= <number> | <symbol> | <index specifier>

<PE register specified ::= <FE register designator

Aiode bit specifier ::= <mode bit>

<jnode bit> ::= E|E1|F|F1|G|H|I| J

<ACAR selector ::= (<arithmetic expressiori>)

<CU memory address specifier ::= Arithmetic expressior |

<CU register designator

29

<skip field> ::= ,<arithmetic expression>

<global-local specifier> ,G|,L|<empty>

<ACARX> ::= (<arithmetic expressiori>) | <empty>

<index specifier> <arithmetic expression>, <arithmetic expression^

<arithmetic expression>

Semantics:

Operand fields for CU instructions provide a symbolic method of deter

mining the value of each field of the instruction syllable except the op-code

fields.

A <blank CU operand> sets no fields except the global/local field.

A <short literal operand> sets the low order 2k bits of the instruc

tion to the value of the arithmetic expression.

A <long literal operand> sets the next 6k bits (two instruction syl

lables) after the LIT instruction to the value of the number, symbol or index

specifier.

A <PE register specifier> encodes a EE register in the address field

of the instruction.

A <mode bit specifier> encodes a mode bit in the address of the in

struction.

The <ACAR selector> sets the ACAR field of the instruction to the

value of the arithmetic expression.

A <CU memory address specifier> sets the address field to the value

of the arithmetic expression or to the CU memory address of the indicated

register.

The <skip field> sets the skip field of the instruction to a value

which is determined as follows:

30

The egression is evaluated using syllable arithmetic. If the result

is relocatable, ASK sets the skip field to a displacement such that the destina

tion of the skip is the instruction whose address is the value of the expression.

That is, if the expression were simply L and L were relocatable, a skip to L

would be generated by ASK. If the result is absolute, ASK uses that value as

the skip distance itself.

The <global-local specifier> indicates that the instruction being gen

erated is to be flagged as global (G), local (L), or in the same global-local

mode as the "rest" of the program (see explanation of pseudos GLOBAL and LOCAL,

sections 3*2.8.10 and 3*2.8.11).

The <ACARX>, if nonempty, sets the ACARX enable bit and bits 1:2 of

the ACARX field to the value of the arithmetic expression modulo U; otherwise,

the ACARX field 0:3 is set to zero.

The <index specifier> indicates that 6k- bits are to be set as three

fields: bits 1:15, bits 16:2^, and bits kO:2k. These fields are set by the

three arithmetic expressions respectively. Bit 0 of the 6k bits is not able to

be set by this construct. In field one (bits 1:15), ASK forms a 15-bit sign-

magnitude representation of the arithmetic expression. In fields two and three

the 2U-bit two's complement value is inserted as is.

With the exception of the <skip field>, all arithmetic expressions are

evaluated using word arithmetic. With the exception of the <skip field>,

<short literal operand>, and fields two and three of the Cindex specifier>,

arithmetic expressions must have an absolute result. The above-mentioned ex

ceptions may have either a relocatable or an absolute value.

Examples:

Compare and skip operand:

•DELTA, I00P

$C3 , L+l

.DELTA -1 (3) , LABEL, G

CU memory operand:

$D3i+(2), L

N x .STUFF (PRESENTACARX)

$TRI , L

Skip operand:

,L00P

,L + 2

,-

,DESTINATION - (@@ + 1),G

Blank operand:

Short literal operand:

= SUBROUTINE

= 77777777=8

2*(N-1)

Long literal operand:

= INCREMENT, LIMIT, INITIALVAL

= -1, 0, 64

= SCALEFACTOR

= 1.7325®18

= 1000000000000000000000:8

= -(2*14-1), -1, -1

ACAR selector:

(REGISTER -1)

(3)

(2)

32

CU memory address specifier:

•LOCAL + 3 X (.Q-2*(N-l)+l)

$D2

$3D̂ 0

$C1

$ICR

$ACR

ACARX:

(XREGISTER -l)

(3)

(2)

REGISTER DESIGNATORS IN CU

Syntax:

<CU register designator> ::= $<quadrant specifier> <register mnemonic>|

$<register mnemonic>

<quadrant specifier> ::= 0|1|2|3

<register mnemonic> ::= DO|D1|D2|D3|d4|D5|d6|D7 |D8|D91DIO|Dll|D12|D131

Dlk | D15|D161D17|D18|D191D201D211D22|D231 H2k|

D25|D26|D27|D28|D29|D30|D31|D32|D33ID3̂ |D35I

D361D371D381D391 DUo | Dkl | Di+21 D43 | DUU | Dl+51 DU6 |

D̂ 71DWIDI191D501D511D521D531D541D551D561D571

D58ID591D601D6lID621D631CO I CIIC2IC31 ICR| ACH |

ALR | AMR | AIN |MCO | MCI |MC2 | TRI | TRO

Semantics:

A <CU register designator> denotes an addressable register in the CU.

Each CU register designator symbolizes the 8-bit encoding of the address of a

33

register in CU memory. If the quadrant specifier is present, the leading two

bits of the 8-bit field are assigned the specified number.

DO, Dl, . . ., D63 Denote the 64 ADB locations.

CO, CI, C2, C3 Denote the 4 ACAR registers.

The remaining register mnemonics denote the register which they abbre

viate. No spaces may appear within a CU register designator.

Examples:

$C0

$D32

$2D32 •

$ICR

3*2.6 Register Designators and Operand Fields for EE Instructions

PE OPERAND FIELDS

Syntax:

<blank PE operand> ::= <empty>

<PE address operand> ::= <ADR use indicator>

<address field> <ACARX> |

<address field> <ACARX> <ADR use> |

<register designator> <ACARX>

<literal PE operand> ::= <ADR use indicator>

<address field> <ACARX> |

<address field> <ACARX> <ADR use>

<routing operand> ::= <routing specifications> <ACARX>

<address field> ::= Arithmetic expression>

<ADR use indicator> *|#|=|#*|*#

<ADR use> ::= ,Arithmetic expression> | <empty>

3 ̂

<routing specifications> ::= <arithmetic expression> |

Arithmetic expression> Aouting distance>|

<EE register designator> |

<PE register designatorXrouting distance>

Aouting distance> ::= , Arithmetic expression>

Semantics:

The Address operandi specifies the ACARX, ADR use and address field

for those PE instructions which specify an operand address.

The Aiteral operand> specifies the ACARX, ADR use and address field

for those PE instructions which do not require an operand hut, rather, a shift

count or hit number encoded in the address field of the instruction.

The Aouting operand^ is used in conjunction with only two instruc

tions, RTG and RTL.

The Address field> sets the l6-bit address field of the instruction

to the value of the arithmetic expression. The expression is evaluated using

row arithmetic and may be either relocatable or absolute.

The ADR use indicator> sets the ADR use field of the instruction. The

convention used is as follows:

ADR USE FIELD

Symbol Bits 13 14 15 Meaning

* 0 1 1 RGX indexing

1 0 1 RGS indexing

#]# 1 1 1 Combined indexing
= 0 0 0 Literal

The ADR use> sets the ADR use field of the instruction to the value

of the arithmetic expression. Word arithmetic is used in evaluating the

35

expression and the expression must be absolute. If the <ADR use> is <empty>,

the ADR use field of the instruction is set to 1 (memory fetch—no indexing).

Thus the ADR use field of the instruction may be set by either the <ADR use indi

cator or <ADR use>.

A <register designator causes one of two things to happen. If the

specified register is a PE register, the ADR use field is set to ^ (register

code) and the address field is encoded so as to specify the indicated register.

If the specified register is an ACAR, the ADR use field is set to 0 (literal),

the address field is set to 0, the ACARX field is set to the indicated ACAR and

the enable bit set.

The <routing specifications> indicates the register connectivity and

routing distance for the route instructions;

a) If a single <arithmetic expression> is used, ASK assembles a route

of that distance, setting the register connectivity to the R register.

b) If the construct <arithmetic expression> <routing distance> is

used, the first expression sets the register connectivity portion of the address

field and the second sets the routing distance portion of the address field.

c) If only a <PE register designator> is used ASK sets the register

connectivity portion of the address field to the indicated register and sets

the routing distance portion of the address field to zero.

d) The construct <EE register designator> <routing distance> is self-

explanatory.

The <ACARX> sets the ACARX field enable bit of the instruction to one

and enc o d e s t h e A C A R i n d i c a t e d b y t h e v a l u e o f t h e e x p r e s s i o n (t a k e n m o d u l o k) .

Word arithmetic is used to evaluate the expression and the expression must be

absolute.

Example s:

Address operand:

* X-l (2)

* P2 (ACAR)

* MATRIX + (Q - R)

STUFF (2),3

MEMORY,1

MEMORY

= X + 14:8

= 0 (3)

$C3

$B

$R (2)

Literal, operand:

SHIFTCOUNT

BITNUMBER (2),5

#BITNUMBER (2)

*(SHIFTCOUNT) (2)

Routing operand:

DISTANCE

2*WHICHREGIS TER, DIS TANCE

$S,DISTANCE

DIST (2)

CHUZREG,DIST (l)

$A,0 (2)

$A (2)

Address field:

PQ

PDQ + 2*N

3

-1

ADR use:

>3

,WHICH0NE/2

,LITERAL + MAYBENOT

Routing specifications:

HERE TO THERE

REGISTER,24

$B,1

$A

Routing distance:

,DIST

,-1

,0

,NUMBEROFPES -1

REGISTER DESIGNATORS IN PE

Syntax:

<register designator> ::= $<register mnemonic>

<register mnemonic> ::= A|B|D|R|S|X|CO|CI|C2|C3

<PE register designator> ::= $<PE register mnemonic>

< P E r e g i s t e r m n e m o n i c > : : = A | B | R | S | D | X

38

Semantics:

A <PE register designator> denotes a register in the PE.

In addition, a <register designator> can denote the common data bus

as defined by the contents of a specified ACAR. A <PE register designator>

causes the encoding for that register to be placed in the address of the instruc

tion. If a <register designator> specifies an ACAR, the address field of the

instruction is set to zero, the ADR use field is set to zero (literal) and the

ACARX field is set to the specified ACAR and the ACARX field enable bit is set.

Example s:

$A

$X

$C1

3-2.7 Operand Fields for Mode-Setting Instructions

Each PE has as one of its functional registers a so-called "Mode

Register". Each Mode Register is a configuration of eight flip-flops designated

mnemonically: E, El, F, Fl, G, H, I, J. The E and El bits are the enable bits

for the PE (seen here as two separable 32-bit arithmetic units, one enabled by

E, the other by El). They serve effectively as on-off switches for the PEs.

The F and Fl bits associate with the PE arithmetic unit in similar

fashion to the E and El bits and serve as the arithmetic fault bits (exponent

o v e r f l o w , e t c .) .

The G, H, I, J bits serve (in the pairs I-G, J-H) as utility bits

and are set as a consequence of certain compare operators, or from a designated

bit from the "A" Register, etc.

The syntax and semantics for the operand fields of instructions which

manipulate these bits follows:

39

Syntax:

<iiiode pattern operand> :: = <arithmetic expression> <ACARX> |

<ACAR designator>

<mode setting operand> :: = <left mode specifier> <inode operator>

<right mode specifier> <ACARX>

<ACAR designator> ::= $C0|$C1|$C2|$C3

<left mode specifier> ::= <mode bit> | -<mode bit>

<inode bit> E|El|F|F11G|H111J

<iiiode operator> ::= AND | OR |. AND. |.0R.

<right mode specifier> ::= E|El|-E[-El

Semantics:

The <mode pattern operand> is used in conjunction with the mode-bit

loading mnemonics (LD-). In these instructions, the ILLIAC IV hardware ignores

the ADR use field, i.e., the address field is treated as a literal and is ACAR

indexable.

The <mode setting operand> is used in conjunction with the mode set

ting mnemonics (SET-). The address field of the instruction is encoded for the

same operation as is indicated by the operand field. The convention -^riode bit>

means the logical negation of the specified mode bit.

If the mode operators AND or OR are used a space must immediately pre

cede and succeed them.

Example s:

Mode pattern operand:

1

0

0 (2)

$C2

l+o

Mode setting operand:

E OR El

I AND -E (2)

H .OR. -El

3.2.8 ASK Pseudo Operations

A pseudo operation constitutes an instruction to ASK which may or may

not generate ILLIAC IV code. The general syntax for <ASK pseudo-op> is given

below:

<ASK pseudo-op> ::= <EQU pseudo> |

<SYL pseudo> |

<WDS pseudo> |

<BLK pseudo> |

<FILL pseudo> |

<SET EE pseudo> |

<DATA pseudo> |

<0RG pseudo> |

<CHWS pseudo> |

GLOBAL |

LOCAL |

<DEFINE pseudo>

3.2.8.1 EQU Pseudo

Syntax:

<EQU pseudo> ::= <Label list> EQU Arithmetic expression> |

<register label list> EQU <register> |

<CU label list> EQU <CU register designator>

*
See also section 1+.5

ill

<register label list> ::= <register symbol>:

<register label list> <register symbol> :

<register> ::= <CU register designator?' | <HE register designator>

<CU label list> ::= <register symbol>: | <CU symbol> : |

<CU label list> <register symbol>:

<CU label list> <CU symbol>:

Semantics:

The function of EQU is to assign a value to the symbol(s) which label

it. If an arithmetic expression is used, the value of the expression (evaluated

using word arithmetic) is put into the word field portion of the symbol's value.

The syllable bit is set to zero. If a <register> is used, the register symbol(s)

are made to denote the same register as the one specified by <register>; addi

tionally, if the <register> is a <CU register> then CU symbols may be assigned

its address in CU-Memory.

Restrictions:

All symbols in the label list must not have been previously defined.

All symbols in the operand field must have been previously defined.

3.2.8.2 SYL Pseudo

Syntax:

<SYL pseudo> ::= <optional label list> SYL <SYL operand>

<optional label list> = <Iabel list> | <empty>

<SYL operand> ::= Arithmetic expression> | <empty>

Semantics:

The SYL pseudo operation serves to reserve a block of 32-bit syllables.

A label list is optional. If any labels are present, they receive the value of

42

the allocation counter at the time the STL pseudo is encountered. ASK then

emits the number of no-ops indicated by the value of the arithmetic expression

(evaluated using word arithmetic), i.e., the requested block of 32-bit syllables

is filled with no-ops. The value of the arithmetic expression must be absolute.

If the <SYL operand> is <empty>, an expression value of zero is assumed.

Example s:

X: SYL 31

CUEKENTACVALUE: SYL

3.2.8.3 WPS Pseudo

Syntax:

<WDS pseudo> ::= <optional label list> WDS <WDS operand>

<WDS operand> : := <arithmetic expression> | <empty>

Semantics:

The WDS pseudo operation serves to reserve a block of 64-bit words,

of length equal to the value of the arithmetic expression (evaluated using word

arithmetic). The allocation counter is first adjusted to a 64-bit word bound-

ary (even syllable), if necessary. If an adjustment is made, a no-op is placed

in the syllable which is skipped over. At this point, all labels receive the

value of the allocation counter (the label list is optional). The block of 64-

bit words is then created by filling the appropriate number of words with zeros.

The allocation counter then points to the next available 32-bit syllable at the

end of the block of 64-bit words. The value of the arithmetic expression must

be absolute. If the <WDS operand> is <empty>, the expression value of zero is

assumed.

4-3

Examples:

P: WDS

Q: WDS 64

WDS

BLK Pseudo

<BLK Pseudc£> ::= <optional label list> BLK <BLK operand>

<BLK operand> : := <arithmetic expression> | <empty>

Semantics:

The BLK pseudo operation serves to reserve a block of 4096-bit

"words", i.e., rows of 64-bit words across PE memory. The number of rows is

determined by the value of the arithmetic expression (evaluated using word

arithmetic). If necessary, ASK adjusts the allocation counter to a quadrant

boundary, filling in no-ops if the adjustment has to take place. All labels

then receive the value of the allocation counter. The requested number of

"words" is then spaced over (inserting zeros) and the allocation counter is set

to the next available syllable beyond the requested block of storage. The

allocation counter will point to a quadrant boundary after "execution" of this

pseudo.

If the <BLK operand> is <empty>, the expression value of zero is

assumed.

Examples:

X: BLK 64

BLK

3-2.8.4

Syntax:

kk

3-2.8.5 FILL Pseudo

Syntax:

<FILL pseudc> ::= <optional label list> FILL <FILL operand>

<FILL operand> ::= <arithmetic expression> | <empty>

Semantics:

Let V be the value of the arithmetic expression. V determines a

nonzero power of two, M, which is the smallest power of two not less than V.

The directive to the assembler is to adjust the allocation counter to a posi

tion- -syllable address—such that the allocation counter is congruent to V

modulo M. Word arithmetic is used in evaluating the arithmetic expression.

If the value of the expression is zero or if the operand field is empty, M is

defined as being equal to 2. If the allocation counter has to move, no-ops

are filled into the syllables skipped over. Labels are optional and, if any

are present, receive as their value the value of the allocation counter after

adjustment.

Examples:

FILL 2 Even syllable

FILL 7 Seventh syllable in a block of 8

Head of a block of 16 syllables X: FILL 16

3-2.8.6 SET Pseudo

Syntax:

<SET pseudc> : := <label list> SET <arithmetic expressiori> |

Clabel list> SET |

<register label list> SET <register> |

<CU label list> SET <CU register designator>

*+5

*
Semantics:

The SET pseudo performs analagously to the EQU pseudo, with the

following differences:

a) No multidefinedness check is made on the symbol(s) being defined,

i.e., one or more symbol(s) in the "label field" may have pre

viously been defined.

b) The label(s) is redefined at the same point in the program in

Pass II.

c) If the operand field is empty, the symbol(s) is defined with

the current value of the allocation counter.

3.2 .8-7 DATA Pseudo

Syntax:

<DATA pseudo> : := Coptional label list> DATA <data operand>

<data operand> : := <data list>

<data list> : := <data list element>

<data list>, <data list element>

<data list element> : := <number> | <symbol> | <string> |

(<data list>) <repeat pari>

<repeat part> ::= <arithmetic expression>

Semantics:

The DATA pseudo operation provides for the loading of data into PE

memory. A label list is optional. If necessary, the allocation counter is

first adjusted to a word boundary and a no-op is inserted in the skipped syl

lable. The specified data is then placed in PE memory as 64-bit words.

^Semantics are given for only the first two forms, as the last two
have not been implemented yet.

U6

If a number is used, it's converted value (6^-bit) is placed in memory.

If a symbol is used, the value of its syllable field is placed in

memory, right justified, in a field of zeros.

A repetitive list is placed in memory element by element, repeated as

many times as is indicated by the value of the repeat part (word arithmetic).

Examples:

DATA -1

STUEF: DATA 2, 3, 1.2, 01-3 @-8, (l, -l) N-l, X, 77^ = 8

3.2.8.8 ORG Pseudo

Syntax:

<0RG pseudd> ::= <optional label list> ORG <arithmetic expression>

Semantics:

The ORG pseudo operation sets the allocation counter to the value of

the arithmetic expression. Any labels are also given this value (in the syl

lable field). The expression is evaluated using syllable arithmetic. The allo

cation counter will have the same relocatability as the value of the expression,

i.e., symbols defined by labeling an ILLIAC IV instruction will henceforth be

absolute or relocatable, depending upon whether the value of this expression

is absolute or relocatable.

Examples:

ORG @@ + 3

ORG X

1+7

3-2.8.9 CHWS Pseudo

Syntax

CHWS pseudc> .<optional label list> CHWS <arithmetic expression>

Semantics:

The CHWS pseudo operation emits one ILLIAC IV instruction which sets

the word size bit in the ACR register for 32 or 6k bit arithmetic in the PE's.

rhe set ting of this bit is according to the value of the arithmetic expression

(word arithmetic).

\ ulue ol Expression Word Size Setting Generated

61+ bit

1 32 bit

32 32 bit

61+ 61+ bit

Anything Else Undefined

Examples:

CHWS 61+

CHWS 1

3-2.8.10 LOCAL Pseudo

Semantics:

This pseudo-operation causes ASK to assemble CU instructions in the

local mode unless

1) A GLOBAL pseudo-operation appears later, or

2) A CU instruction has a non-empty <global-local specifier>,

in which case that instruction only is assembled with the

indicated global-localness.

U8

3.2.8.11 GLOBAL Pseudo

Semantics:

This pseudo-operation causes ASK to assemble CU instructions in the

Global mode unless

1) A LOCAL pseudo-operation appears later, or

2) A CU instruction has a non-empty <Global-local specified,

in which case that instruction only is assembled with the

indicated Global-localness.

3-2.8.12 DEFINE Pseudo

Syntax:

<define pseudc£> : := DEFINE <define part>

<define part> ::= <define element> |

<define part>, <define element>

<define element> ::= <define identifier> =

<define text> ##

<define identifier> ::= <identifier>

<define text> ::= {any sequence of characters not including the

character ## unless enclosed in string quotes}

Semantics:

The define pseudo causes the <define identified to serve as an

abbreviation for the text bracketed by the = and the #. From that point on

in the program, whenever the <define identified is written, ASK will sub

stitute for it the <define text> with which it is associated.

U9

Restrictions:

1) The <define text> must not contain any unmatched " symbols.

2) A define identifier may not appear as a PE or CU register

mnemonic.

3) A define identifier may be used alone as a <mode operand>

but may not be used alone as a Cleft mode specifier>

Cmode operator> or Cright mode specifier>.

Example:

DEFINE

LASTWORD = FILL 126; WDS #,

Y = 3 #;

X: LASTWORD Y;

is the same as:

X: FILL 126; WDS 3;

50

4. EXTENSIONS TO ASK - THE MACROASSEMBLER

Chapters 1-3 have described ASK as it exists at the time of this

writing. This chapter describes the features of ASK, soon to be implemented,

which will transform ASK into a powerful Macro Assembly System.

4.1 Definitions of the Tasks of Each Pass

4.1.1 Pass I

The task of Pass I of ASK is most concisely defined as: to determine

the size of the ASK program and to define all symbols given by the user. Any

pass of the assembler which performs those two functions will be designated

as a Pass I (a non-trivial point since there may be several partial Passes I).

Implications of the above definition of Pass I enable us to give a

more detailed accounting of the events of Pass I than was heretofore possible.

One implication of this definition is that ASK performs all pseudo

operations which affect either of the two stated functions. This actually

includes every pseudo operation mentioned in Chapter 3 (save GLOBAL and LOCAL),

since each of them either defines some symbol or changes the value of the

allocation counter in a way which must be known to Pass I, or both. ILLIAC IV

instructions need not be processed in Pass I, except for defining their labels,

since they affect the allocation counter in a known way, i.e., it is known

from the mnemonic how many 32-bit instruction syllables a particular instruc

tion will occupy. The performing of a pseudo operation, however, entails

evaluating its operand field, which, therefore, must be evaluable in Pass I.

Hence the statement. All operand fields of all pseudo operations must be

Pass I evaluable.

51

A second implication of the above definition is that all input de

termining control statements must be performed in Pass I.

A third implication is that all defines must be expanded in Pass I,

the text being a part of the input to ASK.

If there are one or more partial Passes I, they will not cause the

input string to be scanned again. Additionally, the input string is not

scanned in Pass II.

U.1.2 Pass II

The task of Pass II of ASK is to produce an ILLIAC IV relocatable

code file. This implies that all operand fields of all ILLIAC IV instructions

must be evaluated and placed in the proper field of the instruction syllable

itself.

A secondary function of Pass II is to produce a listing for the user.

The listing includes the source card image, an ASK-supplied sequence number,

and the value of the allocation counter paired with the instruction which

occupies that position. The presence of the instruction requires that the

listing be produced in Pass II; were the instruction to be removed from the

listing, the listing could be produced in Pass I. Since assemblers have by

tradition produced listings in Pass II, including the instruction generated,

it might be useful to examine that position more closely rather than to simply

accede to the demands of tradition:

(1) jq j_g of flo concern to the user what instructions are

generated by the assembler.

If the system under which the object program is running can provide

an instruction counter setting, a memory dump, and a map of the contents of

memory at the time of program termination, having the instruction allows one

only to verify that the instruction was really there. For assembly level

52

programs, this is actually a useful alternative to have, a frequent cause of

termination of assembly language programs being that of overwriting program

with data and then executing it.

(2) It is useful and sometimes necessary when analyzing dumps to

know what appearance code segments should have. This statement

appeals to the reasons for rejecting statement (l)«

At this point, consideration of the ILLIAC IV system is in order. A

complete memory dump in octal of ILLIAC XV would require approximately 4L0

pages of computer paper and take approximately 20 minutes of printer time to

print (assuming a 1200 LFM printer), for a single quadrant of ILLIAC IV. The

impracticality of such a resource-consuming entity as a memory dump will

probably preclude its existence except as a memory-image which resides in

secondary storage for analysis. If there exists an interactive dump analyzer

which can display to the user any memory location in a variety of formats, then

a sufficient instruction printout would be the instruction mnemonic and its

location -- which could be furnished in Pass I .

(3) An actual instruction printout is necessary in order to

verify that the instructions are assembled correctly.

This is actually the reason for Pass II to produce the listing, which

includes the assembled instructions. ASK will probably be in various stages

of debugging for some time, as any modification to it reinitiates a short

debugging period. Thus, the instruction listing being helpful in ensuring

confidence in the performance of the assembler, the listing must be generated

in Pass II.

4.1.2.1 Implementation of Pass II -- K-Machine

Pass II of ASK will be implemented by means of a simulated machine

(the K-Machine), a program for which is constructed in Pass I. Figure 3

53

Figure 3. Relationship Between Pass I and Pass II.

5^

depicts the relationship of the two passes. A complete description of the

K-Machine is given in Appendix B; a less detailed description is given here.

The K-Machine maintains an automatic stack mechanism for the storage

of operands. The stack mechanism facilitates the evaluation of arithmetic

expressions, their K-Machine code equivalents being isomorphic to their polish

postfix form. The arithmetic operators make use of the available bits in a

B5500 word in excess of the 2b bits required for an ILLIAC IV address to carry

the relocatability, externalness and arithmetic mode of the operands in the

stack.

Several auxilliary registers exist, two of which are the Loader

Information Register and the Instruction Register. Special K-Machine operators

store the top of stack into all or portions of these registers. During the

execution of a store into a field of the Instruction Register, the bits of the

word in the top of stack which describe its value are examined and checked for

validity. Certain fields of the instruction must be fixed at assembly time,

that is, be Absolute; others, such as address fields, may contain instances

of the most general values provided for within the assembler/loader system,

i.e., Relocatable or External.

An instruction in the K-Machine causes one syllable of code to be

emitted to the object code file from the Instruction Register. The instruction

syllable and the loader information for that instruction are joined together

before being placed in the code buffer.

The K-Machine fetches its instructions directly from a disk file

and fetches its operands from the assembler's symbol table. Operands may be

stored into the symbol table as well, allowing symbols to change in value

during the second pass of the assembly, via the SET pseudo operation (section

3-2.8.6) or the assembly-time assignment statements (section k.2).

55

The K-Machine is sufficiently powerful that it can perform many Pass I

operations as well as Pass II, given a properly constructed symbol table and the

knowledge that it is performing a Pass I rather than Pass II. The implementation

of Conditional Assembly uses that property and is discussed in section k.6.

b.2 Assembly-Time Assignment Statements

The SET pseudo resembles an assignment statement closely enough that

the user may as well have that facility directly. Additionally, the arithmetic

assignment statement may then be embedded in the construct <primary>. The

following changes to the present syntax and semantics will be implemented in

ASK:

Syntax:

<statement> ::= . . . | <register assignment statement> |

<arithmetic assignment statement>

<register assignment statement> ::= <register symbol> := Cregister

a.ssignment> [

<CU symbol> := <CU register assignment>

<register assignment ::= <register> | <register symbol> :=

Cregister assignment

<CU register assignment ::= <CU register designatot [

Cregister symbol> := CCU register assignment [

CCU symbol> := CCU register assignment

Carithmetic assignment statement ::= CPE symbol> ::= Carithmetic

assignment > |

CCU symbol> := Carithmetic

assignment

Carithmetic assignment ::= Carithmetic expression> |

Carithmetic assignment statement

56

<primary> ::=... | <arithmetic assignment statement>

Semantics:

The semantics of the assignment statements are the same as those of

the SET pseudo operation. The arithmetic assignment statement is performed in

hoth passes if it is a <statement> and in the same pass as the expression which

contains it if it is a <primary>.

h. 3 Allocation Counters

ASK will maintain sixty-four allocation counters for use during an

assembly. The allocation counters are numbered 0-63 and code assembled under

separate allocation counters appears in that order in the object code file, i.e.,

code assembled under allocation counter 0 followed by code assembled under al

location counter 1 etc. Each allocation counter is initially set to Relocatable

zero and is advanced during the normal course of assembling instructions, etc.

under the control of that particular allocation counter (abbreviated AC).

The syntax for assembling a section of code under a particular AC is given here-

It is an enlargement of the syntax for <statement> given in section 3«2.U:

<statement> ::=... | Ccompound statement> | <blocK>

<block> ::= BEGIN BLOCK <allocation counter part> <compound tail>

<allocation counter part> ::= <empty> | USE <allocation counter>

<allocation counter> ::= <arithmetic expression> | *

<compound tail> ::= <statement> END [<statement> ; <compound tail>

<compound statement> ::= BEGIN <allocation counter part> Ccompound tail>

Semantics:

For the moment we will ignore the distinction between <block> and

Ccompound statement>. The allocation counter that the user desires to use is

denoted by Callocation counter>. If Callocation counter> is an arithmetic

57

expression then the value of the expression determines the allocation counter to

use, otherwise the AC numerically next will be used (*). The following three

features of these constructs should be noted:

(1) Allocation counters may be switched in nested fashion.

Example: BEGIN USE 3

% CODE ASSEMBLED UNDER AC 3

BEGIN USE 2

<jo CODE ASSEMBLED UNDER AC 2

END

% CODE ASSEMBLED UNDER AC 3

END

(2) Allocation counters may be reentered. Example:

BEGIN USE 15

END ;

BEGIN USE 15

END

(3) Except as noted in (l) and (2), the scope of an AC is the <block> or

Ccompound statement> whose <allocation counter part> designates its

use, i.e., from BEGIN to matching END.

Multiple allocation counters can cause difficulties both for the

assembler and for the user. The assembler's difficulties lie in the necessary

overhead involved in keeping track of the ACs, such as sweeping the symbol

table adjusting addresses. The user's difficulties lie in the rules he must

adhere to in order to make use of multiple allocation counters. These

58

difficulties arise as a result of the following fact: In Pass I, except for

allocation counter 0, ASK has no way of knowing the actual relocatable addresses

assigned to a symbol defined under some allocation counter- This arises as a

result of the fact that the actual origin of ACk is known only in terms of the

largest values of AC., 0 < j < i, and the largest value of AC^ is not known
J

until the end of Pass I- The user must, then, observe the following restriction

For any expression which must be evaluated in Pass I, if it contains relocatable

symbols, they must be uniform as to the allocation counter under which they are

defined. However, in expressions which are evaluated only in Pass II, relocat

able symbols defined under different ACs may be included.

A sample program illustrates this restriction:

BEGIN io USE 0 IS IMPLICIT

S: JUMP T ;

BEGIN USE 2

A: BLK 2 ;

B: BLK 21 ;

C: BLK B-A j $ LEGAL

E: EQU A ; % LEGAL

R: EQU S ; % LEGAL

P: EQU A-S ; $ ILLEGAL, BUT...

T: SLIT(O) = A-- S ; $ LEGAL SINCE PASS II EVALUATION

JUMP V }

END ;

V:

END S.

59

Lexicographical Level at Assembly-Time

ASK will provide a facility whereby the user has at his disposal

levels of nomenclature at assembly time- This facility, among other possibili

ties, allows macros, if the user so desires, to be completely self-contained

with no problems of conflicting with symbols already defined elsewhere by the

user. Upon the occurrence of the "BEGIN BLOCK" construct, ASK reduces the

level of nomenclature by one and upon encountering the matching END, increases

it by one. At any level of nomenclature, i.e., block, reference may be made to

either symbols at a higher level or symbols local to that block.

ASK has at all times a set of symbols visible to it. A symbol is

said to be defined with respect to a reference to it as an operand if it is

both visible and possesses a value. Circumstances may arise in which the set

of symbols visible to ASK and the set of symbols the user desires to be visible

do not agree. One such circumstance involves forward references to symbols

defined local to a block. If the symbol is already defined at the time of the

reference, ASK considers the reference as one to a symbol at a (possibly)

higher level than the present one. Hence, its actions may not correspond to the

desires of the user who would like ASK to "see" the local symbol. In order to

resolve this difficulty, ASK provides a pseudo declaration which enables the

user to make local symbols (i.e., which must be forward referenced) visible to

ASK without actually defining them. The syntax for this pseudo declaration is:

LOCAL identifier list>

identifier list> :: = <identifier> | identifier list> , <identifier>

The following example may serve to illustrate this point:

BEGIN BLOCK

X: EQU 15 ;

BEGIN BLOCK

60

SLIT(O) = X ;

LOCAL X ;

SLIT(l) = X ;

X::BLK 1

END

END

In the example, the two SLIT instructions refer to two different X's.

4.5 Defines, Pseudo-Strachey Macros

The macro facility of ASK deviates from the traditional usage of the

term in which one spoke of "macro instructions". In this sense, one was limited

to defining "macros" which in their usage appeared as machine "instructions"

with some sort of operand field. In ASK the notion of Strachey's [U] that

macros can be seen as parameterized abbreviations for text is implemented.

Thus, for a "macro" in ASK, the definition is some text which is substituted

for the "macro" identifier upon its occurrence, and the term "define" is

used instead of "macro".

A DEFINE definition in ASK has the following appearance:

DEFINE <DEFINE identifier> <optional parameter list> = <DEFINE text> ##

The parameter list is a list of identifiers enclosed in parentheses. The define

text is an arbitrary string of symbols, with one exception: If the word DEFINE

occurs in the define text, it must have a corresponding "##" also in the define

text; and likewise within the inner DEFINE - $$ pair. This rule is not really a

restriction since it allows the possibility of a define, upon its expansion, to

generate another define -- and then expand it if the user so desires. Defines

may be called in nested fashion to a depth of 32.

At the point of invocation of a define, a number of dummy defines

are constructed -- one corresponding to each parameter of the define being

6i

expanded. ASK then scans the definition text as input, linking into parameters

as if they were defines, until the text is terminated. It then resumes the

assembly from the point in the original input after the appearance of the define

identifier and its actual parameters. The actual parameters of a define may be

any text with observation of the following rule: If a comma (,) appears in the

text it will be construed as a parameter delimiter unless it is enclosed in

parentheses or square brackets. (Note: in the B65OO implementation in which

the EDCDIC character set will be available, any text enclosed between pairs of

vertical bars will be considered as part of the text of a parameter, but the

vertical bars will not themselves be passed as parameter text, thus allowing

"free" commas to be passed to a define.)

ASK uses secondary storage (disk) as backup for define text, so that

the limit to the length of a define is determined only by the availability of

disk storage. ASK also provides for the contingency that the text of a define

may originate on the disk. Hence two possibilities arise:

(1) System defines. ASK's symbol table can be initialized with

various previously declared defines. These defines can interface

the user to OSU and can be modified without recompiling ASK.

(2) User define libraries. The user could keep a file on disk of

definitions, define identifiers and formal parameters, with a

suitable directory, that he could refer ASK to at any point in

an assembly. If a system program is written to properly

maintain these libraries, inter user communication and dissemnation

of useful routines could be facilitated.

k.6 Conditional Assembly

ASK will provide for the possibility of assembling sections of

program conditionally dependent upon relationships which exist between symbols

62

whose values are known at assembly time. The general implementation plan for

conditional assembly is to use the K-Machine, which was designed to perform

Pass II of ASK, during Pass I whenever the input to Pass II is conditioned by

the user. The constructs which constitute the conditional are compiled into

K-Machine language, and the K-Machine is called in to execute the compiled code

during Pass I. The code is so constructed that the effect of the K-Machine is

to add additional K-Machine instructions to the Pass II input file (See

Figure 4).

Our attention should center on two control flip/flops in the K-Machine

which are important in the controlling of its functions. One is the EFF, the

Execute Flip/Flop, which partially controls the execution of instructions in

the K-Machine; the other is the OFF, the Copy Flip/Flop, which partially controls

the execution of instructions and governs completely the copying of instructions

over to the Pass II input file. These two flip/flops and the designated Pass

(I or II) form two Boolean expressions, one enabling the execution of instruc

tions, the other the copying of instructions to the Pass II input file. The

two Boolean expressions are:

(1) PASSII OR (CFF IMP EFF)

(2) PASSI AND CFF

Note that in Pass II, (l) is always TRUE and (2) is always FALSE.

In Pass I the expressions reduce to:

(1) CFF IMP EFF

(2) C F F

Due to the nature of implication, instructions will be executed if EFF=TRUE.

If EFF=FALSE, then the following statement holds: Instructions copied to the

Pass II input file (CFF=TRUE) are not executed and instructions not copied to

the Pass II input file (CFF=FALSE) are executed.

63

I

PASSES I j PASS II

(

I
I

Figure U. Relationship of Pass I and Pass II
for Conditional Constructs

61+

From the above, it can be seen that K-Machine instructions fall into

three classes:

(1) Instructions executed in Pass I only

(2) Instructions executed in Pass II only

(3) Instructions executed in both passes

Which class a particular instruction is in depends totally upon context. More

interesting than the contexts which determine the classes for K-Machine instruc

tions are the constructs which generate instructions of one or more of these

classes. We will concern ourselves with the instructions generated for various

conditional constructs.

The syntax for conditional constructs is given here. The individual

syntax, semantics, and implementational aspects of these constructs are treated

in the sections which immediately follow.

Syntax:

<conditional construct^- ::= Conditional expression^ [Conditional

statement constructs

Conditional expressions .:= ^conditional arithmetic expression^ |

Conditional Boolean expressiorS

Conditional statement construct> ::= Conditional statements [

<WHTLE statements [

<D0 statements

*+•6.1. Conditional Statements

Syntax:

<statement> ::=...[Conditional statement>

Conditional statements ::= <if clauses <statement> [

<if clause> <statement> ELSE <statement>

<if clause> ::= IF <Boolean expression*> THEN

65

Semantics:

A conditional statement indicates that the instructions to be

assembled are to be dependent upon the logical result of evaluating a Boolean

expiession. If the Boolean expression is TRUE, the statement following the THEE

is assembled, otherwise either the statement following the ELSE is assembled

or, if the ELSE is not present, no instructions are assembled as a result of the

conditional statement. When conditional statements are nested, the pairing

of THENs and ELSEs can be determined by the following rule:

For any THEN, the "matching" ELSE is the leftmost

"unmatched" ELSE not separated from the THEE by any other

"unmatched" THEE. If any "unmatched" THEE separates a THEN

and an ELSE, the former THEE is also "unmatched".

Example:

IF THEN IF THEN ELSE IF THEE ELSE
(() ()

Any Boolean expression which occurs in an <if clause> must be Pass I evaluable.

The K-Machine code for a conditional statement is generated into the

input file for the Pass I K-Machine. The K-Machine is called into execution

after the outermost conditional construct has been successfully compiled.

The general skeleton of the K-Machine code generated for a conditional

statement is given in Figure 5 • The assumption is made that the code for the

statement will be copied into Pass II. Should this assumption prove to be false,

i.e., if the statement is or contains any conditional constructs or pseudos,

then the copying of instructions will be enabled and disabled in accordance with

the individual statement(s)•

*<Boolean expression> is not defined in this document. The implementa
tion is certain to include relations, logical operations and special constructs
which will enable the user to interrogate the state of the assembly, i.e., is a

symbol Absolute, is it word aligned, etc.

66

SOURCE LANGUAGE SKELETAL K-MACHINE CODE REMARKS

IF

<Boolean Expression>

THEN

<statement>

ELSE

<statement>

CPYD

(Code for Boolean
Expression)
LITC (Branch Distance
to *)

BFC *

CPYE

(Code for the statement)
CPYD

LITC (Branch Distance
to #)

BF

* CPYE

(Code for the statement)

CPYE

Disable CFF so the
next Code is not
copied into the
Pass II input file

Branch forward to
ELSE if B.E. is
false

Let the Code for the
statement be copied
into Pass II.

Disable copying for
the branch

Branch around the
ELSE

Figure 5- Skeletal K-Machine Code for Conditional Expressions.

67

^•6.2 Iterative Statements

ASK will provide a means whereby statements may be assembled itera-

tively. Two constructs are planned to be implemented, the WHILE statement and

the DO statement.

U.6.2.1 WHILE - DO

Syntax:

<WHILE statement> : := WHILE <Boolean expression> DO <statement>

Semantics:

The WHILE statement indicates that the statement following the DO

is to be assembled if, and as long as, the Boolean expression remains TRUE.

The semantics of the WHILE statement are easily made precise by way of a pseudo-

Algol definition:

begin L: if <Boolean expressiori> then

begin <statement>; go toL end

end

The WHILE statement causes K-Machine code to be generated into the

Pass I K-Machine input file for execution at the proper time. A skeletal

diagram of the code generated is given by Figure 6.

68

SOURCE LANGUAGE SKELETAL K-MACHINE CODE REMARKS

WHILE CPYD The code for the
Boolean expression
is not input
to Pass II

<Boolean Expression> #
(Code for Boolean Expression)
LITC (Branch Distance to *)
BFC *

D<J) CPYE

<statement> (Code for the statement)
CPYD
LITC (Branch distance to #)
BB #
* CPYE

The branch is not
copied into
Pass II

Figure 6. Skeletal K-Machine Code Generated for WHILE Statement.

69

4.6 .2.2 DO - UNTIL

Syntax:

<DO statement> : := DO <statement> UNTIL <Boolean expressiori>

Semantics:

The DO statement indicates that the statement following the DO is to

be assembled once and then repeatedly until the Boolean expression becomes TRUE.

A pseudo-Algol definition of these semantics is

begin L: <statement>; if not (<Boolean expression>) then go to L end

The DO statement is implemented through the use of the K-Machine, the

skeletal code for which is given in Figure 7 •

70

SOURCE LANGUAGE SKELETAL K-MACHINE CODE REMARKS

DO * CPYE The code for the
statement is copied
into Pass II • • •

<statement> (Code for the statement)

UNTIL CPYL The code for the
Boolean expression
is not copied into
Pass II

<Boolean Expression> (Code for the Boolean
expression)
LITC (Branch distance
to *)

BBC *
CPYE

Figure 7. Skeletal K-Machine Code Generated for DO Statement.

.71

4.6.3 Conditional Expressions

Syntax:

<conditional expression> ::= <conditional arithmetic expressiori> |

<conditional Boolean expression>

<conditional arithmetic expressiorO ::= <if clause> <arithmetic expressiori>

ELSE <arithmetic expression>

<conditional Boolean expressiori> ::= <if clauseO <Boolean expressiori>

ELSE <Boolean expressiorO

<primary> : := . . . | <conditional arithmetic expressiorO

<Boolean primaryO :. . . | <conditional Boolean expressiorO

Semantics:

The conditional expression indicates that the evaluation of an ex

pression depends upon the logical value of a Boolean expression. The rules for

determining which expression is evaluated and the proper pairing of THENs and

ELSEs are similar enough to those given in Section 4.6.1, Conditional Statements,

to be omitted here.

The evaluation of conditional expressions presents a unique problem

for ASK. Consider the following three examples:

(1) Z: EQU 2+IE A LSS B THEN X ELSE Y ;

(2) Z: LDA 2+IF A LSS B THEE X ELSE Y ;

(3) Z: = 2+IF A LSS B THEN X ELSE Y ;

Example (l) must be evaluated in Pass I only^ example (2) in Pass II onlyj

and example (3) in both Pass I and Pass II. Further, the action of ASK in

case (l) and (3) differs depending upon whether it occurs within a conditional

construct, or is isolated as a single conditional construct itself. In the

72

former case, K-Machine code for the entire pseudo operation must be generated;

in the latter case, K-Machine code must be generated for the expression only,

the K-Machine invoked and the result returned. Case (l) is interesting in

another aspect. The conditional expression occurs as the second term of the

arithmetic expression. Since the expression is to be evaluated in Pass I only,

ASK will attempt to evaluate it interpretively, saving an invocation of the

K-Machine; hence the constant "2" will already be in the Pass I operand stack,

the stack used for the interpretive evaluation of arithmetic expressions. The

arithmetic expression parser uses the method of recursive descent, which allows

for the following action to take place: The procedure which compiles the

construct, <primary>, detects that a) there is a conditional expression, and

b) it is in the interpretive mode. It then emits code to the K-Machine to

duplicate the operand stack in the K-Machine stack, switches the mode of eval

uation to generative, and compiles the conditional expression. The "+" is

subsequently emitted as an operator, rather than actually being performed, the

mode of evaluation having been changed.

Figure 8 shows the K-Machine code generated for conditional

expressions. The code generated for case (3) above is the same as for case (2)

except that it is preceded by an EXE (Execute Enable) operator and followed by

an EXD (Execute Disable) operator. In this case, the only code copied into

Pass II is the code to compute an unconditional arithmetic expression. The

Boolean expression is not evaluated in Pass II.

k.6.k listing Control

The task of producing a listing for the benefit of the user is ccsn-

plicated in the presence of the conditional assembly. It is desirable to

*In fact no Boolean expression is ever evaluated in Pass II.

SOURCE LANGUAGE SKELETAL K-MACHINE CODE

73

REMARKS

IF

<Boolean Expression

THEN

<Expression>

ELSE

<Expression>

CPYD

(Code for Boolean Expression)

LITC (Branch Distance to *)
BFC

(Code for the Expression)
LITC (Branch Distance to #)
BF #

*(Code for the Expression)

CPYE

None of this code
is copied to Pass II

(a) Code Generated for Type l) Contexts.

IF CPYD

<Boolean Expression

THEN

<Expression>

(Code for Boolean Expression)
LITC (Branch Distance to *)
BFC *

CPYE

(Code for the Expression)
CPYD
LITC (Branch to #)
BF *

Allow code to be
copied to Pass II

Disallow copying
for the branch

ELSE

<Expressiori>

* CPYE

(Code for the Expression)
#CPYE

(b) Code Generated for Type 2) Contexts.
The code for type 3) is the same as in (b) but preceded
by EXE and followed by EXD.

Figure 8. Code Generated for Conditional Expressions.

7U

indicate to the user which sections of code have been assembled and which have

not. At the same time, it is necessary that there be no confusion of the list

ing of the original source text and the listing which indicates that a certain

branch has been taken. The listing control features of ASK will take into

account the above factors together with indicating from which of several input

files the source language originated, the possibility of inhibiting the listing

altogether, and, in the case of a merge assembly, whether the card image was an

update (patch) card of a card from the merge file.

ASK will build (in Pass I) a file containing the totality of the in

put to it. A record in this file will be formatted as follows:

—10 words

Card. Image
Sequence Source List
Record no. P, ,M Toggle

Source File

0 -̂ x

Reserved
for

Expansion

15 words

The Card Image will be an exact copy of the image input to ASK. The Sequence

number will be the ASK supplied sequential number of this card image; it cor

responds to the record number of its record in the card image file. The source

key will be used, in merge compiles, to indicate whether the card image

originated in the merge file (M) or in the patch file (p). The source file

index will correspond to the card input file and the 15 possible tape input

files; this will enable the user to ascertain more precisely the origin of

this card image. The List Toggle, if false,'will inhibit the listing of this

line altogether (unless an error occurred as a result of this card image, in

which case it is listed unconditionally).

The K-Machine maintains a register (c) which gives the record number

of the card image to be printed next. Pass I emits an instruction to Pass II

75

to read, a specific record (n) from the card image file and prepare it for list

ing. The K-Machine taJs.es one of the following actions depending upon the re

lationship that holds between n and the content of register C:

n less than C

This is the case when assembly language is being processed

iteratively. The action is to read record n and if the

Listing Toggle is true, print n as a sequence number,

indicating that the card image is now being assembled.

The content of register C is not changed.

n = C

Prepare for printing (conditionally upon the Listing

Toggle) the card image currently in the "buffer",

n = C+l

Read record n; increment C and prepare the card image

for printing (conditionally as above).

n greater than C+l

This is the case when card images have been "skipped over"

due to a conditional construct which inhibited certain

code from being assembled. The action taken is to read

and print (conditionally) card images, incrementing C

each time, until record n has been prepared for printing.

The above action will provide the user with enough information to

determine which branches are being taken in his conditional assembly. Con

sider, as an example, that the user has coded a WHILE "loop". If the Boolean

expression is true the first time it is executed, the listing will indicate

the card images being assembled (by printing them) together with the ILLIA.C IV

instruction(s) generated by each card image. Thereafter, the card image

sequence numbers only will appear in conjunction with the ILLIAC IV instruc-

76

tions generated, indicating that the loop is being repeated. Should the Boolean

expression result in a value of FALSE the first time it is executed, however,

the next instruction to print a line will be for a record which occurs later in

the file (probably). This will result in a listing of the card images in be

tween (the card images containing the WHILE loop) with no instructions generated,

indicating that those card images were not processed by ASK.

L.7 Errors - Termination of the Assembly

An error in any pass of ASK will cause the assembly to be terminated

at the end of that pass. If the error occurs in Pass I, the listing will be

generated up to the card image which contained the error if it is the first

error encountered. The text of the error message will be printed immediately

beneath the line on which the error occurred, together with the current content

of the scan buffer, giving an indication of the location of the error on the

card image. Wo K-Machine execution may subsequently be made since the K-Machine

code will not in general produce well-defined results after the occurrence of a

syntax error.

If an error is discovered by the K-Machine, the error message will be

printed in a manner similar to those described above. However, any additional

information will be dependent upon the K-Machine operator which detected the

error. For example, if the operator is OPDC then the symbol table could be

consulted for the text of the identifier whose appearance caused the OPDC to

be generated.

An ASK program must be free from any errors for an ILLIAC IV code

file to be generated.

77

5- SUMMARY

ASK represents the solution to the problem of assembling code for

the ILLIAC IV. The problem is made more interesting by the fact that the

assembler runs on a different machine (the Burroughs B6500) than the one for

which code is being assembled, which allows the assembler to be written in a

high level language (ALGOL) rather than bootstrapping itself onto the object

computer.

The remote job entry facilities of the B5500/B6500 were primary con

siderations in making the ASK language a "free field" assembly language, as it

is bothersome for users at remote terminals to build fixed field card image

files.

The "free field"-ness of the language led to the decision that macros

should be inline text substitutions in nature rather than simple macro instruc

tions. Experience with Strachey's macro generator [1+] and other Strachey-like

macro generators reinforced this design decision.

An ever increasing facility and familiarity with ALGOL greatly influ

enced the specification of the conditional constructs in ASK and were respon

sible for the block structure features of the language.

In short, ASK is a natural and reasonable product of its environment,

the Burroughs B65OO and the ILLIAC IV.

"Die welt ist alles, was der fall ist.

EXPANSION OF THE META-LINGUISTIC TERM <ILLIAC TV INSTRUCTION

APPENDIX A

'ANSION OF THE META-LINGUISTIC TERM <ILLIAC TV INSTRUCTION

< ILLIAC IV instruction > ::=

AD < PE address operand > |

ADA < PE address operand > |

ADB < PE address operand > |

ADD < PE address operand > |

ADEX < PE address operand > |

ADM < PE address operand > |

ADMA. < PE address operand > |

ADN < PE address operand > |

ADNA. < PE address operand > |

ADR < PE address operand > |

ADRA < PE address operand > |

ADRM < PE address operand > |

ADRMA < PE address operand > |

ADRN < PE address operand > |

ADRNA < PE address operand > |

ALIT < ACAR selector: > <short literal operand > |

AND < PE address operand > |

ADDN < PE address operand > |

ASB < blank PE operand > |

BBI^ < ACAR selector > < CU memory operand > |

ACAR selector > < CU memory operand > |

CAB < literal PE operand > |

CACRB < CU memory operand > j

CADD < ACAR selector > <CU memory operand > |

79

CAND < ACAR selector > < CU memory operand > |

CCB < ACAR selector > < CU memory operand > |

CEXOR < ACAR selector > < CU memory operand > |

CHSA < blank. PE operand > |

CLC < ACAR selector > < blank CU operand > |

CLRA < blank PE operand > |

COMPA < blank PE operand > |

COMPC < ACAR selector > < blank CU operand > |

COPY < ACAR selector > < CU memory operand > |

COR < ACAR selector > < CU memory operand > |

CRR < ACAR selector > < CU memory operand > |

CROTL < ACAR selector > < CU memory operand > |

CROTR < ACAR selector > < CU memory operand >]

CSB < ACAR selector > < CU memory operand > |

CSHL < ACAR selector > < CU memory operand > |

CSHR < ACAR selector > < CU memory operand > |

CSUB < ACAR selector > < CU memory operand > |

CTSBF < ACAR selector > < compare and skip operand > |

CTSBT < ACAR selector > < compare and skip operand > |

DUPI < ACAR selector > < CU memory operand > |

DUK) < ACAR selector > < CU memory operand >]

DV < PE address operand > |

DVA < 151 address operand > |

PVM < PE address operand > |

PVMA < address operand >]

DVTJ < EE address operand > |

PYjjA < PE address operand > |
< PE address operand > |

DVRA < EE address operand > |
' DVBM < PE address operand > 1 4

DVRMA < ^ address operand > |

DVRR < EE address operand > |

DVRNA < EE address operand > |

8o

EAD < EE address operand >]

EOR < EE address operand > |

EQLXF < ACAR selector > < compare and skip operand >

EQLXFA < ACAR selector > < compare and skip operand >

EQLXT < ACAR selector > < compare and skip operand >

EQLXTA < ACAR selector > < compare and skip operand >

EQV < EE address operand > |

ESB < EE address operand > |

EXCHL < ACAR selector > < CU memory operand > |

EXEC < ACAR selector > < blank CU operand > |

FINQ < blank CU operand > |

GB < EE address operand > |

GRTRF < ACAR selector > < compare and skip operand >

GRTRFA < ACAR selector > < compare and skip operand >

GRTRT < ACAR selector > < compare and skip operand >

GRTRTA < ACAR selector > < compare and skip operand >
HALT < blank CU operand > |

LAG < EE address operand > |

IAL < EE address operand > |

IB < literal EE operand > |

TT.E < EE address operand > |

LLG < EE address operand > |

ILL < EE address operand > |

ILO < blank EE operand > |

LLZ < blank EE operand > |

IKE < EE address operand > |

IMG < EE address operand >]

IML < EE address operand > |

IMO < blank EE operand >]

IMZ < blank EE operand > |

INCRXC < ACAR selector > < blank CU operand > 1

1MB < "blank CU operand > |

ISE < EE address operand >

ISG < EE address operand. >

ISL < EE address operand >

ISN < "blank EE operand > |

IXE < EE address operand >

DCG < EE address operand >

IXGI < EE address operand >

IXL < EE address operand >

IXLD < EE address operand >

JAG < EE address operand >

JAL < EE address"operand >

JB < literal EE operand >

JLE < EE address operand >

JLG < EE address operand >

JLL < EE address operand >

JLO < "blank EE operand > |

JLZ < "blank EE operand > |

JME < EE address operand >

JMG < EE address operand >

JML < EE address operand >

JMD < "blank EE operand > |

JMZ < "blank EE operand > |

JSE < PE address operand >

JSG < EE address operand >

JSL < EE address operand >

JSN < "blank EE operand > |

JUMP < short literal operand

JXE < EE address operand >

JXG < EE address operand >

JXGI < EE address operand >

82

JXL < EE address operand > |

JXLD < EE address operand > |

LB < EE address operand > |

LDA < EE address operand > |

LDB < EE address operand >]

LDC < ACAR selector > < EE register specifier >

LDD < register designator > |

LDE < mode pattern operand > |

LDE1 < mode pattern operand > |

LDEE1 < mode pattern operand > |

LDG < EE address operand > |

LDH < EE address operand > |

LD1 < EE address operand > |

LDJ < EE address operand > |
LDL < ACAR selector > < CU memory operand > |

LDR < EE address operand > |
LDS < EE address operand > |
LDX < EE address operand > |
LEADO < ACAR selector > < blank CU operand > |
LEADZ < ACAR selector > < blank CU operand > |
LESSF < ACAR selector > < compare and skip operand
LESSFA < ACAR selector > < compare and skip operand
LESST < ACAR selector > < compare and skip operand
LESSTA < ACAR selector > < compare and skip operand
LEX < EE address operand > |
LIT < ACAR selector > < long literal operand > |
LIT < ACAR selector > = < long literal operand > |
LOAD < ACAR selector > < CU memory operand > |
LOADX < ACAR selector > < CU memory operand > |
ML < EE address operand > |
MLA < EE address operand > [
MLM < EE address operand > 1

83

MLMA < EE address operand >]

MLN < EE address operand >]

MLNA < EE address operand > |

MLR < PE address operand > |

MLRA < EE address operand >]

MLRM < EE address operand > |

MLRMA < EE address operand > |

MLRN < EE address operand >]

MLRMA < EE address operand > |

MULT < EE address operand >)

NAND < EE address operand > |

NANDN < EE address operand > |

NEB < EE address operand > |

NOR < PE address operand > |

NORM < "blank EE operand > |

NORN < EE address operand > |

OFB < "blank EE operand > |

ONESF < ACAR selector > < skip operand > |

ONESFA < ACAR selector > < skip operand > |

ONEST < ACAR selector > < skip operand > |

ONESTA < ACAR selector > < skip operand > |

ONEXF < ACAR selector > < skip operand > |

ONEXFA < ACAR selector > < skip operand > |

ONEXT < ACAR selector > < skip operand > |

ONEXTA < ACAR selector > < skip operand > |

OR < EE address operand > |

qrac < ACAR selector > < "blank CU operand > |

QRN < EE address operand > |

RAB < literal PE operand > |

RIAL < literal EE operand > |

RIAR < literal EE operand > |

84

RTG < routing operand > |

RTL < routing operand > |

SAB < literal EE operand > |

SM < blank EE operand > |

SAE < blank EE operand > |
SB < EE address operand > |

SBA < EE address operand > |

SBB < EE address operand > |

SBEX < EE address operand > |

SH4 < EE address operand > |

SB4A < EE address operand > |

SBN < EE address operand > |

SBNA < EE address operand > |

SBR < EE address operand > |

SBRA < EE address operand > j

SEEM < EE address operand > |

SBKMA < EE address operand > |

SBKN < EE address operand > |

SBKNA < EE address operand > |

SETC < ACAR selector > < mode bit specifier > |

SETE < mode setting operand > |

SETE1 < mode setting operand > |

SETF < mode setting operand > |

SETF1 < mode setting operand > |

SETG < mode setting operand > |

SETH < mode setting operand > |

SETI < mode setting operand > |

SETJ < mode setting operand > |

SHABL < literal EE operand t> |

SHAIML < literal EE operand > j

SHABMR < literal EE operand > |

85

SHABR < literal PE operand > |

SHAL < literal PE operand > |

SHAML < literal PE operand > j

SHAME < literal PE operand > |

SHAR < literal PE operand > |

SKIP < skip operand > |

SKIPF < skip operand > |

SKIFFA < skip operand > |

SKIPT < skip operand > |

SKIPTA < skip operand > |
SLIT < ACAR selector > < short literal operand > |

STA < literal PE operand > |

STB < literal PE operand > |

STL < ACAR selector > < CU memory operand > |

STORE < ACAR selector > < CU memory operand > |

STOREX < ACAR selector > < CU memory operand >]

STR < literal PE operand > |

STS < literal PE operand > j

STX < literal PE operand > |

SUB < EE address operand > |

SWAP < Hank PE operand > |

SWAPA < "blank PE operand > |

SWAEX < "blank PE operand > |
TCCW < ACAR selector > < "blank CU operand > |

TCW < ACAR selector > < "blank CU operand > |

rpxgp < ACAR selector > < compare and skip operand > |

TXEFA < ACAR selector > < compare and skip operand > |

TXEFAM < ACAR selector > < skip operand > |

TXEFM < ACAR selector > < skip bperand > |

TXET C ACAR selector > . < compare and skip operand > |

TXETA < ACAR selector > < compare and skip operand > |

86

TXETAM < ACAR selector > < skip operand > |

TXETM < ACAR selector > < skip operand > |

TXGF < ACAR selector > < compare and skip operand >

TXGFA < ACAR selector > < compare and skip operand >

TXGFAM < ACAR selector > < skip operand > |

TXGFM < ACAR selector > < skip operand > |

TXGT < ACAR selector > < compare and skip operand >
TXGRA < ACAR selector > < compare and skip operand >
TXGTAM < ACAR selector > < skip operand > |

TXGTM < ACAR selector > < skip operand > |

TXLF < ACAR selector > < compare and skip operand >
TXLFA < ACAR selector > < compare and skip operand >
TXLFAM < ACAR selector > < skip operand > [

TXLFM < ACAR selector > < skip operand > |

TXLT < ACAR selector > < compare and skip operand >
TXLTA < ACAR selector > < compare and skip operand >
TXLTAM < ACAR selector > < skip operand > |

TXLTM < ACAR selector > < skip operand > |

WAIT < blank CU operand > |

XD < PE address operand > |

XI < RE address operand > |

ZERF < ACAR selector > < skip operand > |

ZERFA < ACAR selector > < skip operand > |

ZERT < ACAR selector > < skip operand > |
ZERTA < ACAR selector > < skip operand > |
ZERXF < ACAR selector > < skip operand > |
ZERXFA < ACAR selector > < skip operand > |
ZERXT < ACAR selector > < skip operand > |
ZERXTA < ACAR selector > < skip operand > I

87

APPENDIX B

COMPLETE DESCRIPTION OF THE K-MACHINE

K-Machine Registers:

S Register. The S-Register indicates which location in the K-Machine stack

is the top level. All binary operators use the top two operands in the stack,

the top level for the right operand and the second level for the left operand.

I Register. The I Register holds one 32-bit ILLIAC IV instruction syllable.

The instruction is built by calculating in the stack the values which define

the fields of the instruction and storing them into their respective fields in

the I Register.

LI Register. The LI Register holds the loader information for the instruction

in the I Register. The LI may be stored into from the top of stack; and it is

set automatically when a store into an address field of Register I is-executed.

When an instruction is emitted to the code file, the contents of Registers I

and LI are joined together to form one U8-bit word in the code file.

ALLOCATIONCOUNTERS. These are the 6k allocation counters used by ASK.

ACN Register. ACN designates which one of the allocation counters

(ALLOCATIONCOUNTERS) is in use.

AC Register. The AC Register holds the current value of the current alloca

tion counter (ALLOCATIONCOUNTERS [ACN]).

L Register. The L Register indicates which K-Machine code syllable is

currently being executed.

88

K Register. The K Register holds the K-Machine instruction currently being

executed.

C Register. The C Register holds the record number of the last record in the

card image file -which was prepared for printing.

LN Register. The LN Register is the line image buffer for printing. It

contains the next line to be printed.

PASS Register. The PASS Register holds the Pass number which the K-Machine

is performing. PASS=0 implies Pass I, PASS=1 implies Pass II.

(Register. The 0 Register indicates the location of the next K-Machine

instruction syllable to be written into the Pass II K-Machine input file, in

the event that the K-Machine is copying instructions.

ABIT Register. The ABIT Register indicates a bit number in the top of stack.

The bit is the first bit of a field whose width is given by the NBITS register.

BBIT Register. The BBIT Register indicates a bit number in the second level

of the stack. The bit is the first bit of a field whose width is given by the

KBITS Register.

KBITS Register. The KBITS Register gives the width of fields of bits in the

top two locations in the stack.

GL Register. The GL Register gives the default Global/Local setting for

ILLIAC IV CU instructions. Global means that all CUs synchronize their

Instruction Counters before executing the instruction; local means that all

CUs execute the instruction independently.

89

K-Machine Flip/Flops:

EFF. The execute flip/flop. If EFF=TRUE then K-Machine instructions will be

executed, in Pass I.

CFF. The copy flip/flop. If CFF=TRUE then the Pass I K-Machine will copy

instruction syllables into the input file to the Pass II K-Machine.

LFF. The line buffer flip/flop. LFF=TRUE if Register LN holds a line image

for printing.

FFF. The Fatal Error flip/flop. FFF=TRUE if the K-Machine has detected any

errors during the executing of the K-Machine program.

SFF. The syntax flip/flop. SFF=TRUE if the SYNTAX option was ever used.

K-Machine Files:

File CARDS. File CARDS is the file addressed by Register C. It contains the

saved card image input to ASK from Pass I. The format of a record of file

CARDS is given in Section k.6.b.

File KINPUT. This is the file addressed by Register L. It is the file

containing the instruction syllables to be executed by the K-Machine.

File KOUTPUT. This is the file addressed by Register p during Pass I. It
will be the same file that is used as KINPUT in Pass II.

qode. File CODE contains the completely assembled ILLIAC IV instruction

syllables.

file LINE- This is the line printer output file to which the listing is

produced.

90

K-Machine Instruction Formats:

K-Machine instructions are either 12 or 2k bits in length. They are

formatted as follows:

12 bit:

1 11

0 Op-Code

2k bit:

19

Op-Code Operand

For 2^-bit instructions, the operand field is interpreted according to the

instruction itself. In the section which defines K-Machine operators, the

operand fields of 2^-bit instructions will be broken down individually for

each operator.

K-Machine Operand Formats:

An operand in the K-Machine stack has the following format:

8 1+ 1 1 2 32

1 E 1 R |t |f | 1 A 1 VALUE

E. If field T is one then E is the external table address for this operand,

otherwise E=0.

R. R gives the relocatability of this operand. R=0 means that it is Absolute.

T. T indicates whether the operand is external or not. T=1 means that it is

external and that E contains the external table address. T=0 means that it is

either absolute or relocatable depending upon the value of R.

F. F indicates whether the stack location is an operand or a control word.

F=0 means operand. No control words have as yet been found to be necessary

in the K-Machine.

9.1

A. A indicates the type of arithmetic used to compute this operand, c.f.

Section 1.2.1.

A=0 Row Arithmetic

A=1 Word Arithmetic

A=2 Syllable Arithmetic

VALUE. For arithmetic operations, only the low order 2k bits of VALUE are

used. The remaining 8 bits are used for bringing instruction skeletons

and data to the top of the stack. If T=1 then the VALUE field will hold

the absolute displacement from the base determined by the external symbol.

K-Machine Operators:

The following set of K-Machine operators (12 and 2^-bit) are

executed by the K-Machine conditionally upon the logical value of the following

Boolean expression (c.f. Section h.6):

(PASSU means PASS=l)

PASSU OR (OFF IMP EFF)

All K-Machine operators are subject to being copied into the Pass II

input file depending upon the value of the following Boolean expression (c.f.

Section U.6):

(PASSI means PASS=0)

PASSI AMD OFF

2U-bit Operators:

OPDC Operand Call.

Fetch an operand from the symbol table. Adjust its value so that its

arithmetic mode corresponds to that given in A (0 Row, 1 Word, 2 Syllable).

Push the operand into the stack.

17
Table Address

92

STD Store Destructive.

17

Table Address

Store the top of stack into the indicated address in the symbol table.

Destroy the top of stack by reducing the S Register by one.

STN Store Non-Destructive.

iZ

Table Address

Store the top of stack as in STD but do not adjust Register S.

17

FTCH Fetch from Symbol Table. EI Table Address
Bring the content of the indicated location to the top of stack.

No adjustment is made for arithmetic mode as with OPDC.

12-bit Operators:

LIT1 One Syllable Literal.

Push the next syllable in the instruction stream into the stack as

a 12-bit literal (high-order positions filled with zeroes).

LIT2 Two Syllable Literal.

Push the next two syllables into the stack as a 2̂ -bit literal.

LIT3 Three Syllable Literal.

Push the next three syllables into the stack as a 36-bit literal.

LITU Four Syllable Literal.

Push the next four syllables into the stack as a l*8-bit literal.

TAG Set Top 16 bits.

Set the high order 16 bits of the top of stack to the value given by

the next two syllables in the instruction stream.

93

TAGD Tag Dynamic.

Set the high order 16 bits of the second level of the stack to the

value given by the 16 low order bits of the top of stack. Reduce the S Register

by one.

DIA Dial Top of Stack.

Set the ABIT Register to the value given by the next instruction

syllable.

DIAD Dial Top of Stack Dynamic.

Set the ABIT Register to the value given in the top of stack. Reduce

S by one.

DIB Dial Second Level of Stack.

Set the BBIT Register to the value given by the next instruction

syllable.

DIBD Dial Second Level Dynamic.

Set the BBIT Register to the value found in the top of stack. Reduce

S by one.

TRBITS Transfer Bits as Indicated by Registers.

Transfer the bits of the top of stack from the field defined by

ABIT and KBITS to the field of the second level defined by BBIT and KBITS.

Reduce S by one.

TKB Transfer Bits.

Set the KBITS Register to the value found in the next instruction

syllable. Enter the TRBITS operator.

9b

TRBD Transfer Bits Dynamic.

Set the KBITS Register to the value given in the top of stack.

Enter the TRBITS operator.

DUP Duplicate the Top of Stack.

XCH Exchange.

Interchange the top two levels of the stack.

LC Loader Clear.

Clear the loader information register (Li).

Arithmetic Operators:

ADD Add Top Two Levels of Stack.

The top level of the stack is added to the second level of the stack.

The result replaces the second level and the S Register is reduced

by one.

Before the addition takes place, the T bits of the top two operands

are examined. If both are 1, an error is flagged indicating that an attempt

to add two External quantities has been detected.

The R fields of the operands are added together as well as the value

field, the sum replacing the R field in the result.

The T fields are ORed together with the result replacing the T fields

in the resulting operands.

The A field of the result is set to the larger of the two A fields

of the operands.

.95

MINUS Negate Top of Stack.

The value field and R field of the top of the stack are (Boolean)

complemented and 1 added to the results (two's complement negation of the

R field and VALUE field).

SUB Subtract the Top Two Levels of Stack.

Enter the MINUS operator. Enter the ADD operator.

Ii the second level of stack is Absolute or External and the top of

stack is Relocatable, or if the top of stack is External, then an error is

flagged indicating that the subtraction is invalid.

MUL Multiply Top Two Levels of Stack.

If both operands are not Absolute (R=0 and T=0) an error is flagged

indicating that two non-absolute quantities were attempted to be multiplied

together.

The second level of the stack is multiplied by the top of the stack.

The result replaces the second level and S is reduced by one.

DIV Integer Divide.

If both operands are not Absolute (R=0 and T=0) an error is flagged

indicating that a division involving two non-absolute quantities was attempted.

The second level of the stack is divided by the top of the stack.

The division is performed using integer arithmetic. The result replaces the

second level of the stack and S is reduced by one.

POWER Raise to the Power of.

If the two top levels are not both absolute then an error is flagged

indicating an attempt to use non-absolute quantities in exponentiation.

9 6

The second level of the stack is raised to the power of the top of

stack. The result replaces the second level and S is reduced by one.

Compare Operators:

GTR Greater Compare.

If the second level of the stack is greater than the top of the

stack, the second level is replaced by an Absolute 1, otherwise 0. S is

reduced by one.

GEQ, Greater than or Equal to Compare.

If the second level of stack is greater than or equal to the top of

stack, the second level is replaced by an Absolute 1, otherwise 0. S is

reduced by one.

EQ1 Equal Compare.

If the second level of the stack is equal to the top of the stack,

the second level is replaced by an Absolute 1, otherwise 0. S is reduced

by one.

NEQ, Not Equal Compare.

If the top two levels of the stack are not equal, then the second

level is replaced by an Absolute 1, otherwise 0. S is reduced by one.

LEQ Less than or Equal Compare.

If the second level of the stack is less than or equal to the top

of the stack, the second level is replaced by an Absolute 1, otherwise 0. S

is reduced by one.

97

LSS Less Compare.

If the second level of the stack is less than the top of stack, the

second level is replaced by an Absolute 1, otherwise 0. S is reduced by one.

Attribute Assignment Operators:

ABS Make Absolute.

Set the R field and T field of the top of the stack to zero.

EEL Make Relocatable.

Set the R field of the top of the stack to 1; set the T field to zero.

RWA Row Arithmetic.

Set the A field of the top of the stack to zero.

WDA Word Arithmetic.

Set the A field of the top of stack to one.

SLA Syllable Arithmetic.

Set the A field of the top of the stack to two.

Logical Operators:

AND Logical And.

The top two levels of the stack are AEDed together. The result

replaces the second level and S is reduced by one.

At least one of the operands must be absolute, if not an error is

flagged.

The R field of the result is set to the larger R field value of

the two operands. The T field of the result is set to the logical OR of the T

98

fields of the two operands. The A field of the result is set to the larger A

field value of the two operands.

OR Logical Or.

The top two levels of the stack are ORed together. The result

replaces the second level and S is reduced by one.

The setting of the R* T* and A fields of the result are determined

as in the AND operator; likewise* at least one of the operands must be absolute*

an error being flagged if this is not the case.

EXOR Exclusive Or.

The top two levels of the stack are EXCLUSIVE-ORed together. The

result replaces the second level and the S Register is reduced by one.

The setting of the R* T* and A fields of the result are determined

as in the AND operator; likewise* at least one of the operands must be

absolute* an error being flagged if this is not the case.

NOT Logical Negation.

The top of the stack is logically negated.

The top of stack operand must not be external else an error is

fagged* The R* T* and A fields of the operand are not atlered.

Allocation Counter Operators:

SAC Store AC.

The AC Register is stored into ALLOCATIONCOUNTERS [ACN].

SACN Set ACN.

The ACN Register is set to the content of the top of stack operand.

S is reduced by one. The AC Register is set from the content of ALLOCATION-

COUNTERS [ACN].

BAC Bump AC.

The VALUE field of the AC Register is increased by one.

OAC Orgin AC.

lhe top of stack operand replaces the AC Register; S is reduced by one.

AAC Add to AC.

The AC Register is placed in the top of stack. The ADD operator is

entered. The result replaces the AC Register; S is reduced by one.

LAC Load AC.

The AC Register is placed in the top of stack.

Branch Operators:

BB Branch Backward.

The L Register is decreased by the content of the top of stack. The

S Register is reduced by one.

BF Branch Forward.

The L Register is increased by the content of the top of stack.

The S Register is reduced by one.

BBC Branch Backward Conditional.

If the low order bit of the second level of the stack is a 0 then

the L Register is decreased by the content of the top of stack. The S Register

is reduced by two.

BFC Branch Forward Conditional.

If the low order bit of the second level of the stack is a 0 then the

1 Register is increased by the content of the top of stack. The S Register is

reduced by two.

100.

ICX Instruction Store ACARX Field.

The three low order bits of the top of stack replace the entire

ACARX field of the I Register. The S Register is reduced by one.

If the top of stack operand is not Absolute, an error is flagged.

IACV Instruction Store ACAR Field.

The low order two bits of the top of stack are stored into the ACAR

field of the I Register.

If the top of stack operand is not Absolute, an error is flagged.

SKIP Instruction Store Skip Field.

If the top of stack operand is relocatable then the top of stack

is made Absolute, the "VALUE field of the AC Register is placed on top of the

stack, and the following operators entered: XCH, SUB.

The top of stack operand is now examined to see if it is negative.

If it is negative then a 1 is stored in the sign bit of the Skip field of the

I Register and the top of stack in negated (two's complement), otherwise a 0

is stored into the sign bit of the Skip field of the I Register.

If the top of stack operand is greater than 127, an error is flagged.

The low order seven bits of the top of stack are stored into the low

order seven bits of the Skip field of the I Register. The S Register is re

duced by one.

IPU Instruction Store ADR Use Field.

The top of the stack is stored into the ADR Use field of the I Reg

ister. The S Register is reduced by one.

If the top of stack operand is not Absolute, an error is flagged.

101

IPA Instruction Store PE Address Field.

If the R field and the T field of the stack operand are both non

zero, an error is flagged.

The low order 16 bits of the top of stack are stored into the PE

address field of the I Register. The LI register is set according to the

relocatability, externalness and type of arithmetic value of the top of stack

operand. S is reduced by one.

IPN Instruction Store N Field.

If the top of stack operand is not Absolute, an error is flagged.

The low order eight bits of the top of stack are stored into the

low order eight hits of the I Register. S is reduced by one.

IPR Instruction Store R Field.

If the top of stack operand is not Absolute, an error is flagged.

The low order bits of the top of stack are stored into the Routing

Register field of the I Register. S is reduced by one.

ICA Instruction Store CU Address Field.

If the top of stack operand is not Absolute, an .error is flagged.

The low order eight bits of the top of stack are stored into the

CU address field of the I Register. The S Register is reduced by one-

ICAC Instruction Store CU Address Field and Check.

If the second level of stack operand is not Absolute, an error is

flagged.

The low order eight bits of the second level of the stack are tested

according to a bit mask found in the top of stack. The mask has one bit

corresponding to each register (or set of registers) in the ILLIA

102

If the bit is on, then that register is legally addressable; if it is off,

then it is not legally addressable. If the address in the second level of the

stack corresponds to an off-bit in the top of stack, an error is flagged.

The second level of the stack is stored into the CU Address field of

the I Register. The S Register is reduced by two.

ISA J Instruction Store Slit/Alit/Jump.

If the R field and the T field of the top of stack operand are both

non-zero, an error is flagged.

The low order 2b bits of the top of stack operand are stored into

the low order 2b bits of the I Register. The LI register is set according to

the relocatability, externalness and type of arithmetic value of the top of

stack operand. The S Register is reduced by one.

IGL Instruction Store Global/Local.

The GL register is stored into the Global/Local field of the I

Register.

IGLB Instruction Store Global.

The Global/Local field of the I Register is set to 0 (Global).

ILCL Instruction Store Local.

The Global/Local field of the I Register is set to 1 (Local).

GLBL Global.

The GL Register is set to 0 (Global).

LCL Local.

The GL Register is set to 1 (Local).

103

Miscellaneous Operators:

PENT Print.

The PENT operator is explained in some detail in Section b . S . b . The

value n (c.f. section b.6.b) is obtained from the next two K-Machine instruc

tion syllables in the input stream.

EMT Emit.

Emit one 32-bit syllable ILLIAC ,IV instruction into the object code

file. The syllable is formed by concatenating the low order 16 bits of the LI

Register with the low order 32 bits of the I Register. No instructions are

written into the object code file if either FFF (Fatal error Flip/Flop) or SFF

(Syntax Flip/Flop) is one.

SSFF Set Syntax Flip/Flop.

The SFF is set to TRUE.

Instructions not Affected by CFF or EFF:

EXE Execute Enable.

Set EFF to TRUE.

EXD Execute Disable.

Set EFF to FALSE.

CPYE Copy Enable.

Set CFF to TRUE. N

CPYD Copy Disable.

Set CFF to FALSE.

EXIT Exit the K-Machine.

The K-Machine ceases to execute instructions.

10U

LIST OF REFERENCES

Alsberg, P. A., Gaffney, J. L., Grossman, C. R., Mason, T. W., and
Westlund, G. A., "A Description of the ILLIAC IV Operating System",
ILLIAC IV Document No. 212, Department of Computer Science, Univer
sity of Illinois, Urbana, Illinois, (March 1969).

Grothe, D. M., Luskin, C., "Reference Manual for ILLIAC IV Assembler (ASK)
Burroughs Corporation Document No. 66072, (March, 1969).

"ILLIAC IV Systems Characteristics and Programming Manual", Burroughs
Corporation Document No. 66000A, (June, 1969).

Strachey, C., "A General Purpose Macrogenerator", The Computer Journal,
Vol. 8, No. 3 (October I965), p. 225.

Barnes, G., et. al., "The ILLIAC IV Computer", TREE Trans, on Computers,
Vol. C-17 (August 1968), p. 7^6.

UNCLASSIFIED
Security Classification

fSecurit, C . o , ^ o , w lnd.Mhtg mol.,lon mu.(„ ... f„f i T r..lim. „

Department of Computer Science
University of Illinois at Urbana-Champaign
Urbana, Illinois 6l801

2 a . R E P O R T S E C U R I T Y C l . A 4 s i F 1 C A T I O K I

UNCLASSIFIED Department of Computer Science
University of Illinois at Urbana-Champaign
Urbana, Illinois 6l801

A MACRO-ASSEMBLER FOR ILLIAC IV

4 . D E S C R I P T I V E N O T E S (Type of report and Inclusive datee)

Research Report

David Michael Grothe
a . R E P O R T D A T E

December 1, 1969
7«. TOTAL NO. OF PAGES 76. NO. OF REFS

114 5
8 a . C O N T R A C T O R G R A N T N O .

US AF 30(602)4l44
6 . P R O J E C T N O .

46-26-15-305
c .

d.

OA. ORIGINATOR'S REPORT NUMBER(S)

DCS Report No. 364
8 a . C O N T R A C T O R G R A N T N O .

US AF 30(602)4l44
6 . P R O J E C T N O .

46-26-15-305
c .

d.

»6. OTHER REPORT NO(S) (Any other numbers that may be aaaiOned
this report)

1 0 . D I S T R I B U T I O N S T A T E M E N T

Qualified requesters may obtain copies from DCS.

1 1 . S U P P L E M E N T A R Y N O T E S

None

1 2 . S P O N S O R I N G M I L I T A R Y A C T I V I T Y

Rome Air Development Center
Griffiss Air Force Base
Rome, New York 13440

1 3 . A B S T R A C T

This report describes the ILLIAC TV macro assembly language

(ASK) and the ILLIAC IV macro assembler. ASK is a free field assembly

language with conditional assembly features and in-line text-substitution

macros.

DD UNCLASSIFIED
Security Classification

VflCLAgSIFraP
Security Classification

k e y w o R D S

ILLIAC IV

assembler

macro assembler

conditional assembly

R O L E W T

UNCLASSIFIED
Security Classification

