
The
Computer
Museum
300 Congress Street
Boston, MA 02210

(617) 426-2800

X

March 5, 1984

Stephen Swerling
Vice President-Engineering
Mentor Graphics Corporation
8500 SW Creekside Place
Beaverton, OR 97005-7191

Dear Steve,

^ f'

E

(ft f t- n *434776

Delighted to have met you at the

nice for me that you were enthusiastic about The Computer Museum. A copy of the
most recent issue of our quarterly, The Computer Museum Report, is enclosed.

i
You are personally invited to become one of our Founders — a unique opportunity
that lasts until June — to help an international institution get off the
ground. 7

I hope that you will urge Mentor Graphics Corporation to become a Corporate
Founder ($2500).

Software is one of the most difficult things to exhibit at the Museum — and the
issue that everyone talks about. If you have any ideas about how your products
might be used to explain CAD, I'd be delighted. We are planning a major gallery
on "The Computer and the Image" developed by Dr. Oliver Strimpel. His proposal
for this gallery is enclosed and if you see any way for Menotor to be involved,
we'd love to have you. We do have an excellent relation with all the folks at'
Apollo and will have a work station or two, as needed.

To give you some background, the Museum was started by Digital in 1979 based on
Ken Olsen's and Gordon's collection. Then, in 1982, it was established as a
separate entity with its own Board of Directors. This year a home was found for
it on Boston's Museum Wharf, where it will open on October 1. It is a non­
profit, public, charitable foundation dedicated to preserving and exhibiting an
industry-wide, broad-based collection of the history of information processing.
Computer history is interpreted through exhibits, publications, videotapes, lec­
tures, educational programs and other activities. The Museum archives both ar­
tifacts and documentation and makes the materials available for scholarly use.

When you are in Boston let us know and we will give you a behind-the-scenes look
at the Museum.

10 <fi

A

encl.

cc: Oliver Strimpel

I/)

to r

$
t
3

Mentor
IDEA 1000
A computer-integrated engineering system

The first fully integrated and computerized
design path from concept to prototype test.

Rising gate counts. Tighter real es­
tate requirements. Increased function­
ality. Compressed product develop­
ment cycles.

They're all facts of life for today's
hardware design engineer. And they
won't go away any time soon.

The only real solution is to take full
advantage of state-of-the-art VLSI com­
puting power and make it an integral
part of your hardware design team.
From initial concept all the way to ver­
ification of the prototype.

Moreover, this computer power
must be applied in such a way that each
individual computerized engineering
tool is fully integrated into the design
system as a whole. And that the system
itself gives you maximum flexibility,
performance and growth potential.

Only one computer-aided engineer­
ing (CAE) system satisfies all these re­
quirements.

The Mentor Graphics IDEA 1000.
Why? Because Mentor Graphics is

both a pioneer and leader in the field of
computer-aided engineering. We're
working from a solid knowledge base
to bring you CAE solutions that com­
bine unmatched performance depth
with a level of system-wide integration
found only in the IDEA 1000.

With Mentor Graphics, you're as­
sured of a single CAE design path from
concept to prototype test. A path that
gives you more room for increased
productivity and innovation than ever
before possible.

Network architecture
yields optimum
performance.

At the heart of the IDEA 1000 system
is a networked computer architecture
that brings you all the benefits of a
timeshared host computer, but none of
the disadvantages.

The IDEA system uses any number of
engineering workstations connected
together in a high-speed (12 Mbits/
sec) network. Each workstation has its
own Apollo DOMAIN 32-bit computer
with resident hard disk storage and

high-resolution graphics hardware.
Every workstation has complete, trans­
parent access to data stored anywhere
within the system. You get the central­
ized file organization of a host system,
but without performance degradation
of timesharing on a central CPU.

Further, the Mentor network can in­
clude gateways to mainframes for ac­
cess to existing CAD tools through pro­
tocols such as Ethernet, X.25, HASP or
3270 emulation. Also, peripheral and
computational servers within the net­
work can provide all workstations with
common resources such as printers,
plotters and array processors.

DBMS system forms
a solid yet flexible
foundation.

The core of any engineering design
system is the data used to describe and
test the design. Because the database
plays such a critical role, Mentor has
designed its own Full Relational
Database Management System targeted
specifically at the needs of electronic
engineering organizations.

You get a complete set of data man­
agement tools which control and
safeguard your data movement as it
evolves during the engineering pro­
cess. Files are automatically monitored
for conditions such as version updates,
data interdependencies and access
rights.

Mentor's DBMS also allows a great
deal of flexibility without any risk to
the integrity of stored data. Different
programs can access the same data file
in any format a particular application
calls for. New data formats can evolve
without modifying applications pro­
grams. Equally important, new design
engineering tools can be introduced
without modifying existing ones or the
data thev use.

Wm • I

4k

Ifr-•T li-Arl .
r~ 'pgr

S3 a KBSBS

Uniform interface molds
to individual styles.

One of the central challenges in
computer-aided engineering is to pre­
sent the user with an interface that re­
mains consistent as different design
tools are used. This way, the engineer's
learning curve is kept to a minimum
and applies across the entire system.

Mentor's IDEA 1000 interface solves
the problem through a high resolution,
graphics interface that remains the
same across the entire Mentor tool set.
This interactive interface includes a
rich set of features such as on-line help,
tutorials, command macros, soft keys
and programmable display windows.
The result is an interface that is rapidly
learned and grows in sophistication
along with the user, who can "cus­
tomize" it to individual working styles.

Select from a high-
performance hardware
lineup.

A Mentor engineering workstation
can be configured from any Apollo
DOMAIN computer, giving you broad
latitude in selecting the optimum
hardware mix for your particular en­
gineering environment. All worksta­
tions feature powerful 32-bit process­
ing, local hard disk storage and high
resolution graphics hardware.

The IDEA 1001 and 1002 represent
the ultimate workstation processing
performance. Each has a CPU with
32-bit external and internal data paths,
providing throughput comparable with
even the largest of supermini com­
puters. At a single workstation, you can
run up to 24 concurrent processes,
with 256 Mbytes ofvirtual memory per
process.

The IDEA 1200/1300 puts main­
frame processing power at the desktop
level and becomes a cost-effective ad­
dition to any Mentor network.

The IDEA 1000 Series brings
powerful 32-bit processing and
high-resolution color graphics to
the entire range of Mentor design tools.

;a
r-ksi£

i.' timuM wtttti

• H ~ £

Capture your front-end creativity as well as
your schematics.

Hierarchical design
entry promotes
innovation.

Mentor goes a step beyond graphic
entry of "flat" schematic sheets and also
lets you approach your design in a
hierarchical fashion. You express your
design in its broadest functional terms
at the "top" of the hierarchy as a series
of interconnected function blocks.

As your project progresses, lower
layers in the design hierarchy express
these functional elements in ever finer
detail. At the bottom you have a fully
expanded design expressed in its most
primitive elements, such as intercon­
nected gates or transistors. When
building your hierarchy, you can start at
any level you choose and then work
either up or down.

The advantage of this approach is
that you can view and perceive your
design from many different perspec­
tives, depending on your position in
the hierarchy. This gives you vastly ex­
panded opportunities to make innova­
tive modifications. And to make them
quickly and easily.

Use standard symbol
parts or create your own.

While some schematics require only
"standard" electrical parts symbols,
such as TTL, many others will require
custom parts. In either case, Mentor
gives you a solid solution.

For standard parts. Mentor furnishes
a series of parts libraries that meet
many different types of applications
requirements, including gate array
design.

For custom parts, The IDEA 1000
Symbol Editor gives you a powerful
graphic tool set to create symbols for
even the most complex parts.

Graphic tools speed
schematic entry.

The graphic placement and inter­
connection of parts symbols often con­
sumes a very large portion of a de­
signer's time. Accordingly, Mentor
gives you a high-performance Network
Editor that puts a powerful array of
graphics-oriented tools at your dis­
posal. Schematic entry is faster, easier,
and more accurate.

You can invoke powerful graphics
commands that simultaneously move,
pivot or rotate whole groups of sym­
bols. Or use a single line to define an
entire data bus. Or call upon "frames" to
express large volumes of repetitive cir­
cuitry in just a few symbolic entries.

Netlisters allow remote
simulation/layout.

To protect your current engineering
software investment, Mentor provides
a broad range of netlisters that trans­
form IDEA 1000 schematic data into
formats acceptable by simulator and
layout programs resident on a host
mainframe.

This includes simulators such as
Tegas and Logcap, and layout programs
such as SCI-CARDS and Computervi-
sion. Further, you can use Mentor's
complete programming environment
for creating your own netlisters to
interface proprietary engineering tools.

ack
Ml WW
/fl(0>
: t«!

flm / Scale Division:

xxxxxxxx xxxxxxxx
03871A31 13573AB0
03071A31 13573ftBO
03071ft31 13573AB1
03071ft31 13573ftBl
03071A31 13573AB0
03071A31 13573AB0
03071031 13573AB3
03071A31 13573AB3
03071031 13573AB2
03071A31 13573AB2

03071A31 135730B5
03071O31 13573AB5
03071031 13573AM
03071031 135730M
03071031 13573AB7
03071031 135730B7
03071031 135730B6
03071031 13573AB6
03071031 13573AB0
03071031 13573AB9
03071031 13573AB9
03071031 13573AB8
03071031 13573AB8
03071031 13573ABA
03071031 13573ABA
03071031 13573ABA
03071031 13573AB8
03071031 13573ABC
03071031 13573ABC

lAAAj

Simulate your way around costly
prototype revisions.

0.00 X Xr Xr XXXXXXXX
0.00 9 1 1 10502080
5.00 9 1 1 10502081
8.65 9 1 1 10502081

10.00 9 1 1 10502082
13.50 9 1 1 10502082
15.00 9 1 1 10502883
18.6S 9 1 1 10502083
20.00 9 1 1 10502084

28.50 9 1 1 10502085
28.65 9 1 1 10502085
30.00 9 1 1 10502086
33.50 9 1 1 10502086
35.00 9 1 1 10502087
38.65 9 1 1 10502087
40.00 9 1 1 10502088
43.50 9 1 I 10502088
45.00 9 1 1 18502089
48.50 9 1 1 10502089
48.65 9 1 1 10502089
50.00 9 1 1 1050208A
53.50 9 1 1 1050208ft
55.00 9 1 1 1056208B
58.65 9 1 1 1050208B
60.00 9 1 1 1050208C
65.80 9 1 1 10562080
68.50 9 1 1 10502080
68.65 9 1 1 10502080
70.00 9 1 1 1O502O8E

Logic analysis in
software.

One of the principle advantages of
the Mentor IDEA 1000 system is that
your entire design is captured and pre­
served in the system's database. This
means that many of the debug opera­
tions that once required a hardware
prototype can now be performed en­
tirely in software.

As a result, you can save yourself
many costly prototype iterations by
performing the vast majority of your
debug operations before the design
ever reaches the physical prototype
stage.

Start debugging even
before your design's
complete.

One powerful advantage of simula­
tion using the IDEA 1000 system is that
you don't have to wait for the com­
pleted design data to begin debugging.
You save time, cut costs and consid­
erably reduce the complexity of debug
operations.

It's done through a technique called
Functional Modeling, which emulates
the logical behavior of components
that have not yet been designed down
to the gate level. Each component is
described through a Pascal-based be­
havior language which describes the
circuit's logical outputs in response to
input stimulus.

During simulation, these functional
models can be freely intermixed with
fully designed circuitry to give you a
highly accurate preview of how your
completed design will perform.

Interactive logic and
timing simulation reveal
potential errors.

Mentor's interactive interface puts
logic flow displays and circuit diagrams
on the same screen at the same time
when you're performing simulation
tasks. You get a direct visual relation­

ship between the circuitry under test
and its logical behavior. You can even
graphically "probe" individual circuit
nodes to monitor or force their states.

You're not limited by technology,
either. Mentor's simulators can ac­
commodate components from gates to
PLA's. It also covers MOS as well as TTL
and ECL, and supports nine distinct
logic states.

MSPICE models the
analog side of your
design.

If you are designing down to the
analog circuit level, you can model
your design's analog behavior through
MSPICE, Mentor's version of the popu­
lar circuit simulator program.

MSPICE represents a significant ad­

vance in analog simulation because it
automates the cumbersome input and
output operations associated with con­
ventional SPICE programs.

MSPICE works directly with the
Mentor design database to extract the
information required to perform DC,
AC, DC operating point or transient
analysis. During a simulation session,
you can call up the schematic to be
simulated and graphically modify cir­
cuit parameters. You can even specify'
points of interest in the schematic and
watch their parameters change during
the actual simulation run.

Simulation results are displayed
graphically on the high resolution user
interface. You can also call in powerful
post-simulation processing programs
to calculate and graphically display any
specific information that your applica­
tion requires.

The IDEA 1002 provides the
32-bit processing performance
that many digital and analog
simulations require.

M t§ •

Automate a wide range of
physical layout tasks.

Fully automatic gate
array layout.

Mentor's CADISYS gate array physi­
cal design package represents a drama­
tic leap in the automation of gate array
layout. Designs that once took months
to move from the schematic stage to
the physical layout stage can now be
done in a matter of hours.

Besides enormous time savings, you
benefit from a state-of-the-art perform­
ance level. When converting your
schematics from symbols to completed
silicon placement, the automated
CADISYS typically offers over 90% gate
utilization, and connection rates that
are typically 98% to 100%.

These outstanding performance
levels mean your design will often fit
on a smaller, less costly gate array. Also,
vou can implement more functions in
;in array of any given size. You save real
estate, you save time, you save money.

A streamlined path
from block placement
to final layout.

Mentor's CADISYS gets you through
the gate array physical layout process
in three easy steps that not only get
your design done faster, but also more
efficiently.

First, Mentor CADIPLACE takes your
design and puts it onto the gate array
image so that performance and routa-
bility are optimized.

Second, Mentor CADI ROUTE works
with the placed functional blocks and
automatically performs the inter­
connections.

Third, Mentor CADIGRAPH pro­
vides an interactive tool for use either
before or after automatic routing. You
can quickly predefine critical routes or
rapidly finish up any overflow
connections.

Design data feedback
permits a faster finished
product.

When a logic schematic version of a
design is transformed into a physical
layout for a gate array, delay times can
be introduced which may be incon­
sistent with the original schematic
specifications.

At this point, Mentor's system-wide
integration of automated design tools
becomes invaluable. First, CADISYS au­
tomatically produces a file containing
net capacitance delay data for every
interconnection in the layout. This data
is then used by a tool called the Design
File Interface to automatically insert
this new timing information into the
original schematic data.

The updated logic schematic design
is then rerun through the simulator
tools to verify its adherence to specifi­
cations. If the simulation indicates per­
formance problems, the design is mod­
ified accordingly and then sent back for
another physical layout.

This entire data feedback cycle takes
place entirely within the Mentor sys­
tem. With an extremely high degree of
automation and a significant reduction
in labor cost.

The IDEA 1002 provides powerful
color graphics hardware to present
a friendly interface for physical
layout tasks.

I :

Verify prototype functions with fully
integrated logic analysis.

MIDAS 7000 brings you
high-performance logic
analysis.

The hardware design cycle doesn't
end with physical realization, so
neither does Mentor. The MIDAS 7000
is a fully integrated logic analysis sys­
tem that lets you perform all your pro­
totype test and verification functions
from any IDEA 1000 workstation.

MIDAS 7000 gives you a full array of
logic state and timing instrumentation
and is controlled through the same
powerful graphics interface as all other
Mentor design tools. You can even use
it in conjunction with other design
tools to create powerful synergies only
possible with Mentor.

MIDAS 7000 has a modular architec­
ture that accepts a wide range of in­
strumentation cards. You get maximum
latitude in selecting the right perform­
ance combination plus the capability to
easily update your instrumentation
lineup. !

Interactive state analysis
with up to 15 trigger
states.

MIDAS 7000 lets you tackle even the
most convoluted software acquisition
problems through sophisticated clock­
ing and triggering, and data widths up
to 80 channels.

Sample clocks can be synthesized
from up to 7 clock lines, giving you the
power to decode the buses of advanced
16-bit and 32-bit microcomputer
systems.

Triggering uses a RAM-based state
machine and can include up to 15 dis­
tinct states that allow for both data ac­
quisition and qualification.

Timing analysis
up to 100 MHz with
unprecedented data
depth.

MIDAS 7000's timing analyzer not
only lets you sample 16 channels up to
100 MHz, it also gives you wider acqui­
sition windows than ever before possi­
ble. It's done through a data compres­
sion technique called transition trig­
gering that lets you acquire data win­
dows up to 130,000 samples wide.

What's more, you can cross-link the
MIDAS 7000 timing and state analyzers
for time-synchronized acquisition of
both hardware and software data.

Powerful post-
acquisition analysis.

Once again, the system-wide inte­
gration of IDEA 1000 tools makes the
difference. All data acquired by the
MIDAS 7000 can be automatically
transferred to a workstation's main
memory or disc storage for unlimited
post-acquisition processing.

This includes automated compari­
sons with data accumulated by other
Mentor tools, such as the Interactive
Logic Simulator. Compare physical data
from a prototype with the simulator
model to measure accuracy. It also in­
cludes programs such as performance
analysis histograms and mnemonic dis­
assembly packages.

The MIDAS 7000 system gives all the
power of a CAE workstation coupled with
a high-performance logic analyzer.

„4r

.

Manage and document the
entire design process.

DOC: the premier
technical
documentation tool.

Research shows that over half the
typical engineer's day is spent on non-
design tasks, such as documentation
and conference time. Accordingly,
Mentor has integrated these functions
into its system in a way that keeps the
time and cost of your design "over­
head" to an absolute minimum.

DOC is a professional documenta­
tion system several generations beyond
conventional word processing. It in­
cludes the usual "cut and paste" editing
features, but then expands to give you a
series of features that completely cover
the needs of the professional engineer­
ing environment.

For instance, you can reach into the
Mentor database and pull diagrams into
your text from sources such as schema­
tics, symbol libraries, simulator and
logic analysis displays.

Certain numbering tasks, such as
figure and section numbers are elimi­
nated altogether through automatic in­
crementing, even when nested. Foot­
notes are automatically placed and
numbered. "Bookmarks" allow rapid
travel to anywhere in the text. You can
even annotate a document without af­
fecting its existing format. And use
multiple fonts within the same text,
such as Bold, Greek, Math and many
others.

Also, you can divide a single docu­
ment into "sub-documents" to allow
several writers to work on a single
oroiect.

at top Travel
MOVE selected
COPY selected
OELETE selected

INCLUDE PICTURE
INCLUDE OOC FILE
Include ASCII File

•Current aircraft conditions are used as Inputs to the weapon trajectory
integration. This Input data Is then adjusted to compensate for (1) data
age and (2) tine delay beutueen release command and actual release of the
weapon. Then the data is predicted ahead 1.5 times and the time between
trajectory solutions to minimize bias of the reference solution Arlng the
tine period it will be used.

Forget
Command Card
Hardware Config

make area FOOTNOTE
make area KEEP
make area LIST
make area NEW FONT
make area SECTION
make area UNDERLINE

v \ n / r n i i m n n ^
r 1 5 8 2 D
m • nonupct

r A oJPQQ

Figure 1-1. GREAT CIRCLE STEERING CXIQ

coordinate transformation is required before doing the trajectory

Title Footer Center <"II-"Mpage>
GOto PAGe 4 -Bottom
GOto PAGe 5 -Bottom
GOto PAGe 3 -Bottom
FOOTnote
00 /idea/sys/HI/NACRO/DOC/DOC. F3S_T0GGLE_B0LD

o INClude Picture

Electronic mail keeps
you in constant touch.

Another obstacle to design produc­
tivity is the amount of conference time
needed to keep a project moving for­
ward. Here you're faced with countless
schedule conflicts and meeting space
arrangements.

Mentor solves this problem through
electronic mail, which conquers both
space and time when it comes to en­
gineering team communications. Each
user has an electronic memo writer to

send messages and an electronic mail­
box to receive them.

With electronic mail, your team
communicates better, works faster, and
achieves superior end results.

Mentor
Mentor Graphics Corporation

8500 S.W. Creekside Place
Beaverton, Oregon 97005-7191

503-626-7000
Telex 4742102 MENTOR

Mentor Graphics Corporation
2620 Augustine Drive

Suite 280
Santa Clara, OA 95051

(408) 727-9667

Lexington, MA Orlando, FL
617-863-5776 305-422-1841

Fort Lee, NJ
201-585-9395

U.S. Sales Offices
Dallas, TX Albuquerque, NM
214-392-2992 505-296-3767

Minneapolis, MN
612-835-7007

San Jose, CA Beaverton, OR
408-294-9933 503-626-7000

Irvine, CA
714-752-0200

International Sales Offices
Mentor Graphics Japan
Akasaka Twin Tower Bldg.
17-22 Akasaka 7-Chome
Minato-K, Tokyo, Japan

Mentor Graphics (U.K.) Ltd.
Reading, Berks., England, RG71SS
0734-884888
Telex: 849975 MENTOR G

Mentor Graphics (Deutschland) Gmbh
Eching, West Germany
089/319-1003
Telex: 5214474 MENT D

Mentor Graphics (France) SARL
Centre Commercial et Industriel Silic
59-61 Rue des Solets
552 Rungis
France

(£) 1984 Mentor Graphics Corporation
Printed in USA 1008A 02/84

Orion Technologies Ltd.
1 Korazin Street
Givatayim, 53583 Israel
03-772031
Telex: 32188 CLLSY

MSPICE Menlor

MSPICE Overview
Mentor Graphics offers MSPICE (Mentor Spice), a

program for interactive analog circuit analysis. MSPICE is
offered for use in conjunction with Mentor IDEA 1000
computer-aided engineering (CAE) systems, which are
designed with the depth and flexibility to support all
aspects of complex electronic circuit design and analysis.

Mentor SPICE consists of an interactive graphics pre-
and post-processor, coupled with the analytical strength of
the most up to date version of Berkeley SPICE. When
used in conjunction with the IDEA 1000 workstation, you
have an integrated, comprehensive computerized circuit
design system versus a stand alone design tool, such as
SPICE. Rather than entering circuit descriptions in a time-
consuming and error-prone textual manner, MSPICE runs
directly off of the design database you create with the
IDEA 1000 Design Creation Tools. This same database is
also used by the other IDEA 1000 design verification and
physical design tools.

During simulation, MSPICE provides you with highly-
interactive analysis control including the ability to monitor
and stop analysis, perform user-specifiable custom
analysis, and parameter modification on-line. After the

simulation is complete, MSPICE's general purpose
graphing capability is used to present output in either
MSPICE format or any other customized format you
specify. Modifications to your existing versions of SPICE
are not lost since the MSPICE pre- and post-processor
can interface with almost any analog circuit simulator.
Regardless of whether that simulator runs on your IDEA
1000 CAE system, another IDEA 1000 in the network, an
IDEA high-performance computational system, a
mainframe, or special purpose array-processor, MSPICE
supports your analysis requirements.

Creating the design
for use with MSPICE

The design to be simulated with MSPICE is created
with the Structured Logic/Circuit Design module of the
IDEA 1000 system. This integrated set of software tools
permits the creation of circuit designs through the user
interface in a graphics-oriented format. Circuit
components are represented by a set of analog symbols
available from the Mentor-supplied parts library, or
through symbols that you create with the IDEA 1000

• THIS IS A MACRO THAT SWEEPS THE RESISTANCE OF EACH OF THE RESISTORS IN THE
« CIRCUIT FROM 807. TO 120* OF NOMINAL

DIMENSION LO_DCOPS 5 tt ARRAY TO CONTAIN THE Vol'S FOR THE CIRCUIT
DIMENSION HI_DCOPS 5 tt ARRAY TO CONTAIN THE Voh'S FOR THE CIRCUIT
DIMENSION SHTRS 5 • ARRAY TO CONTAIN THE SHEET RESISTANCES USED
LOOP I 8 12

ASSIGN SHTR "(Itt. 1 >
ASSIGN SHTRSCI-7J 'SHTR

tt FIRST RESET ALL THE SPICEPARS IN THE CIRCUIT TO THEIR ORIGINAL VALUE
«
CHANGE SIMULATION PROPERTY SPICEPAR -ALL
tt
tt NOW LOOP THROUGH ALL THE RESISTANCES AND MODIFY THEM BY 'SHTR'
«
ASSIGN INST "»FIRST_INSTANCE('R'» ttGET THE 'FIRST' INSTANCE OF A RESISTOR
LOOP

IF ' < INST = "> THEN . EXIT LOOP ; END IF ; N END LOOP WHEN NO MORE RESISTORS
« CHANGE THE VALUE OF THE RESISTOR TO ITS CURRENT VALUE TIMES THE SHEET R PERCENTAGE
CHANGE SIMULATION PROPERTY SPICEPAR "INST "(SHTR » SINSTANCE_PRQPERTY('SPICEPAR'. INST))
ASSIGN INST "»NEXT_INSTANCE('R'»

END LOOP
•
• RUN THE ANALYSIS AND SAVE THE DATA
tt
RUN
ASSIGN LO_DCOPSC1-73 -«DCOP_V<'OUT'>
ASSIGN HI_DCOPSC1-73 -»DCOP_V<'OUTB ')
•

END LOOP

• AND THE .HIGH OUTPUT VOLTAGE AS A FUNCTION OF SHEET RESISTANCE
•
CHART
DEFINE AXIS X
DEFINE AXIS Y
DEFINE CURVE V<HI> "HI DCOPS "(SHTRS * 100)
AXIS TITLE Y 'OUTPUT VOLTAGE'
AXIS TITLE X 'RESISTANCE DELTA <*>'
TIC SPACING X 10 5
AXls RAngc y -. 72 -. 7
TIC SPacing y 005
CHArt Title 'VOH AS A FUNCTION OF SHEET RESISTANCE'

MSPICE
Symbol Editor. Using the Network Editor, you connect the
symbols through nets; lines which represent various
electrical paths, to create the circuit schematic. Values for
resistors, capacitors, and other passive components are
assigned via properties associated with the symbol, and
are visible on the schematic. If the symbol represents a
diode, transistor, or other active device, its values or
"model" are contained in a separate file. A property
associated with the symbol identifies the model within this
file. If you have more than one active device with the
same model, you simply assign them the same property.

You may also design hierarchically with MSPICE. The
IDEA 1000 Design Creation Tools allow the schematic to
contain higher-level components than the basic passive
and active components. For example, a symbol represent­
ing an op amp could be created with the Symbol Editor
and used in a schematic which contained various passive
and active components. The op amp symbol would be fully
described by a lower-level schematic containing a set of
interconnected transistors. Furthermore, using the
hierarchical design capabilities of the IDEA 1000 Design
Creation Tools, you may create circuit schematics which
represent basic logic functions such as and/or gates, flip-
flops, etc., and use the symbols which represent these
logic functions in higher-level schematics. Having done
this, you now have the design verification capabilities of
the IDEA 1000 Interactive Logic Simulator, Interactive
Timing Verifier, Design File Analyzer, and MSPICE
available.

Once you have entered the circuit schematic on the
IDEA 1000, the only step required before entering
MSPICE is to expand the design down to the inter­
connection of primitive components acceptable for analog
simulation. This is accomplished through the use of the
IDEA 1000 Design Expander. While using the Design
Expander, you may wish to utilize the Design File
Analyzer which provides the capability to query the entire
design at once, perform design rule checks, and perform
specialized computations utilizing any IDEA 1000 or user-
defined properties associated with symbols. Once a
design is expanded, you may perform an unlimited
number of MSPICE simulations without re-expanding.
Changes made to component values are handled within
MSPICE, and therefore, do not require re-expansion.
Certain topological changes such as deleting components
also do not require re-expansion. For other types of
topological changes, only those schematics which have
changed need to be re-expanded, rather than the whole
design. This greatly increases the efficiency of the
expansion process.

Performing the simulation
To start the circuit simulation, you simply invoke the

MSPICE command specifying the appropriate design
name. The pre-expanded design file is transparently
translated into syntax required by the analysis routines
within MSPICE. Also, the "models" for active devices are

appended to the input data being prepared for simulation.
You then interactively enter any set-up commands
required to control the simulation to be performed. Set-up
commands include setting the temperature parameter or
any other parameter used to define component values,
setting any simulation control values, specifying the type
of analysis to be performed (DC operating point, AC, DC,
transient, etc.), simulation monitor commands, and setting
force parameters for circuit power supplies and inputs.
Since power supplies are handled as set-up commands
and currents are handled directly by MSPICE output, you
no longer need to put voltage sources in your circuit. As
you interactively enter set-up commands, they are
translated into SPICE analysis commands and appended
to the previous input data. Only when you type "RUN" is
the input data set to the analysis portion of MSPICE.
Therefore, changes to set-up commands can be made
prior to the actual execution of the simulation.

Unlike batch versions of SPICE, you retain complete
control of the simulation with MSPICE. Instead of the
graphics display going blank during the execution of the
simulation, you are presented with constantly updated
status information on your simulation in an easy to
understand graphics format. Also during simulation, a
copy of the schematic is displayed on the screen
complete with status windows next to the nodes specified
in the monitor commands. As the simulation is
progressing, signal values are displayed in these
windows. Another portion of the screen contains
waveforms for selected points in the circuit that you have
specified. During simulation, these waveforms are
incrementally generated and displayed on the screen.
Status information is also given in textual form and
provides you with information on whether the simulation is
still active, plus the current value of dependent variables
in the circuit. With all this information available, you can

Menlor
r f lNCE

REAO MOOels models »Specify semiconductor models
• Restore results from an earlier analysis

REStore State states/setup. Iran. 2.20
VIEu Sheet
PROBe DRIVE -0.25 1.5 View

• Establish input signals
FORCe DC Voltage inb -1.3
FORCe PULse Voltage in -1.6 -.8 1 1 1 9 20

•monitor circuit voltages on schematic
HONitor Voltage -811
TRAce Voltage out
TRAce I q4/b
TRANslent .2 20

Hspice
at top Tn
Imaging Global
Command Card Expressions
Charting Setup
Run Control

easily determine whether the simulation is progressing
satisfactorily, or whether modifications to the circuit or
parameters need to be made. If the latter is the case, you
can simply stop the analysis at any time with results
computed to that point available for study. No longer will
you have to wait with crossed fingers for the results of
your simulation. Instead, you will make optimum use of
your IDEA 1000's computing resources, and more
importantly, your own valuable time.

In many cases, after you have decided upon the
changes that your circuit requires, you need only enter
new set-up commands and run the simulation again.
Changes such as defining new power supply values,
changing component values, and updating simulation
control commands can be made without leaving MSPICE.
In some cases, adding and deleting components can be
performed without changes to the circuit schematic.
Through the use of the IDEA 1000 macro command
language, complete with conditionals and looping, you
can quickly develop and execute with one command a
sequence of multiple set-up and RUN commands. This
provides you with the capability to perform analyses which
require multiple simulations; a capability not available with
batch circuit simulators.

Post simulation processing
After you have completed the simulation, the MSPICE

post-processing capability is available to view and analyze
the results. Unlike batch versions of SPICE, you need not
specify which points in the circuit you want to view prior
to simulation. Upon inspection of the signal values of
waveforms presented while monitoring the simulation run,
you may request information on any other points in the
circuit without re-running the simulation. Unlike many

versions of SPICE, zero-valued voltage sources are not
required to display currents within MSPICE. As a result,
both voltage and current are directly available to you as
output. Output is presented as waveforms in true
graphical format as opposed to printer plots available in
other simulators. Graphs are easily obtained via a single

Menior Mentor Graphics Corporation
8500 S.W. Creekside Place
Beaverton, OR 97005-7191 (503) 626-7000

command with the detail of axis labeling and scaling
handled by MSPICE. Also, you have the option of
specifying your own labeling and scaling dependent upon
your application. On color IDEA 1000 systems, each
waveform in a graph is represented in its own color, while
on monochrome IDEA 1000 systems, each waveform is
differentiated by using narrow, bold, dotted, or dashed
lines. In either case, waveforms are easily discernable,
and there is no limit to the number of waveforms on a
single graph.

Through the use of expressions allowed in the MSPICE
post-processor, waveforms may be generated utilizing any
parameter in the circuit and any voltage or current
computed by the simulation. Therefore, you are not
limited to waveforms representing voltage and current.
This allows you to generate waveforms representing such
values as instantaneous power. Through the use of arrays
within the macro command language, results computed
from each simulation run may be stored away for
processing at a later time. Coupling arrays with looping
and conditionals in macros along with component value
modification gives you the ability to perform specialized
analysis which require multiple simulation runs. These
waveforms from different simulation runs may be
combined on the same graph, and through expressions a
waveform can be constructed which contains the output
from multiple simulations.

MSPICE Architecture
As delivered with the IDEA 1000 CAE system, MSPICE

provides a completely integrated turnkey circuit analysis
system. However, the architecture of the MSPICE product
has been designed in such a manner that you are not
required to choose between MSPICE and your own
proprietary version of SPICE which may have been
tailored to your specific design and environment.

MSPICE consists of two main software components; a
graphics-oriented pre- and post-processor and the
simulation server. The pre-processor is used to convert
design data created by the IDEA 1000 Design Creation
Tools into a format acceptable by the simulation server,
while the post-processor creates graphs from results
computed by the simulation server. These MSPICE

processors always reside on an IDEA 1000 CAE system.
The simulation server consists of three components; the

analysis program which computes simulation results, a
communications link used to pass data between the pre-
and post-processor and the simulation server, and
subroutines used to extract analysis data at each analysis

USER INPUT

MSPICE

PRE AND POST
PROCESSOR

0 0
MODEL FILE(S) DESIGN FILE

point. As required, you can use the Berkeley SPICE
analysis program provided within the MSPICE server or
substitute your own. Circuit analysis programs containing
your own modifications may be included in the MSPICE
server by incorporating the data extract subroutines into
your analysis program. The simulation server may run on
any IDEA 1000 CAE system, an IDEA high performance
computational system, mainframe, or special purpose
array processor. Transporting your simulation server,
running on a mainframe or other system, to an IDEA 1000
CAE system is easily done since the IDEA 1000 system
supports programs written in ANSI standard FORTRAN 77.

When the simulation server is run on an IDEA 1000
CAE system or IDEA high-performance computational
system, the communication link consists of the Apollo
DOMAIN interprocess communication facility, and if
necessary, the DOMAIN local area network. If your
simulation server is not running on an IDEA 1000 CAE
system, the communications link also includes one of the
many Apollo DOMAIN communication gateways.

INTER
PROCESS

COMMUNICATION
LINK

COM

COMMUNICATION

ANALYSIS
PROGRAM

DATA
EXTRACTION

COM

U.S. Sales Offices
Fort Lee, NJ
201-585-9395

Dallas, TX
214-392-2992

San Jose, CA
408-294-9933

Beaverton, OR
503-626-7000

Lexington, MA
617-863-5776

Albuquerque, NM
505-296-3767

International Sales Offices

Orlando, FL Irvine, CA
305-422-1841 714-752-0200

Minneapolis, MN CALIFORNIA AUTOMATED DESIGN, INC.
612-835-7007 Santa Clara, CA 408-727-9667

Mentor Graphics Japan Co., Ltd.
Toshima-ku, Tokyo 170, Japan
(03) 989-7950

Mentor Graphics (U.K.) Ltd.
Reading, Berks., England, RG7 1SS
0734-884888
Telex: 849975 MENTOR G

Mentor Graphics (Deutschland) Gmbh
Eching, West Germany
089/319-1003
Telex: 5214474 MENT D

© 1983 Mentor Graphics Corporation Printed in USA

I02£5^f5~|

Menior

TEST AN D
MEASUREMENT

TOOLS
1 0 0 1 e i e o i 1 1
1 0 0 1 o i o o i i e
10 10 81010 1 1
10 10 01010 1 0
1 0 1 1 01011 1 1
1 0 1 1 0 1 0 1 1 1 e
1 1 0 0 01100 1 1
1 1 0 0 01100 1 o
1 1 0 1 01101 1 1
1 1 0 1 0 1 1 0 1 1 o
1 1 1 0 91110 1 1
1 1 1 0 O H I O 1 e
1 1 1 1 01111 1 1
1111 01111 1 e
e e o o ioooo i i
0 0 0 0 10000 1 e
0 0 0 1 10801 1 1
0 0 0 1 1 0 0 0 1 1 e
0 0 1 0 10818 1 1
0 0 1 0 1 0 0 1 0 1 8
0 0 1 1 10011 1 1
0 0 1 1 10011 1 o
0 1 0 0 18180 1 1
0 1 0 0 1 0 1 0 0 1 o
0 1 0 1 10101 1 1
0 10 1 10101 1 o

*q2 ^q0 ~c 1 ear
I ~q3 "ql "qs "clock

MIDAS

Time / Scale Division:

JRATI0N Setup
ition Timing

Data Format
RUN

Travel

NTERACTIVE STATE ANALYSIS
INTERACTIVE TIMING ANALYSIS

TEST AND
MEASUREMENT TOOLS
An Overview

The IDEA 1000 is a self-contained, computer-aided
engineering (CAE) workstation dedicated to the
design and analysis of complex electronic circuitry.
The system is integrated with Apollo DOMAIN
computer systems linked together in a distributed
network architecture. This way, each operator
receives the benefit of independent 32-bit local
processing and high resolution graphics, and still has
full access to a common full relational data base
shared by the Mentor system as a whole. In this
networked environment, the user does not
experience the performance degradation typical
of a multi-user central host architecture.

Within the IDEA 1000 system are a number of
software modules used to implement the various
phases of the logic or circuit design process. These
include Structured Logic/Circuit Design, Interactive
Logic Simulation, Timing Verification, Physical Layout,
Circuit Simulation, Project Management, Document
Preparation, Formattable Netlist/Plot and CAE/CAD
Programming. Each of these modules is tied into the
high-performance full relational data base manage­
ment system for fast, efficient access to any required
information across the network (Figure 1).

In addition to these software modules, there is a
hardware/software Test and Measurement module
which is fully integrated with both the IDEA 1000
system software and the Apollo DOMAIN computer
system. This module is called the MIDAS 7000, and
extends Mentor's CAE tool set to cover the final
phase of the hardware design cycle, verification
and test. With MIDAS 7000 installed, the IDEA 1000
CAE system covers every phase of circuit design,
from product definition to real-time verification of the
completed hardware.

MIDAS 7000. The Mentor
Interactive Design Analysis System.

MIDAS 7000 is a powerful logic analysis system that
provides full trace capabilities for both state and
timing analysis, with state acquisitions up to 80
channels and timing measurements up to 100 MHz.
Since it is fully integrated into the IDEA 1000 system,
the user benefits from many capabilities not found in
a conventional, stand-alone logic analyzer:

Standardized User Interface. All aspects of the
MIDAS 7000's operation are controlled from the
standard IDEA 1000 user interface, which takes
advantage of the workstation's high-resolution color
graphics and programmable keyboard. During logic

STRUCTURED
LOGIC/CIRCUIT

DESIGN

TEST
AND

MEASUREMENT

DOCUMENT
PRE­

PARATION

INTERACTIVE
TIMING

VERIFIER

INTERACTIVE
LOGIC

SIMULATION

DBMS

FORMATTABLE
NETLIST/PLOT

PHYSICAL
LAYOUT

PROJECT
COM­

MUNICATIONS

MENTOR
SPICE

CIRCUIT
SIMULATION

Figure 1

analysis, the user is presented with the same graphic
interface format and procedures used with all other
IDEA 1000 design tools. This unified interface
promotes faster, more accurate work, with no loss of
continuity when moving from one tool to another.

Automatic Comparison of Real-Time and
Simulated Data. Any real-time data acquired by
MIDAS 7000 can be retained for powerful post-
acquisition processing by the IDEA 1000 workstation's
32-bit CPU. One such application is the comparison
of data generated by Mentor's Interactive Logic
Simulator and real-time data later acquired by
MIDAS 7000 from the actual hardware. This capa­
bility gives you a fast, accurate means of checking
and verifying hardware performance against the
schematic model without ever leaving the IDEA 1000
design environment.

Performance Analysis. During hardware/software
integration, it is often important to monitor your
code's real-time execution and analyze its
performance in terms of design specifications. With
MIDAS 7000, you can acquire real-time software
data, and run it through post-acquisition processing
that presents its performance in a graphic format,
such as a frequency histogram.

Mnemonic Disassembly. The design and debug of
microprocessor-based systems often calls for the
acquisition and display of software flow as executed
on the bus of the target hardware. After a MIDAS
7000 has acquired the software data, the IDEA 1000
can call upon stored mnemonic disassembly tables
to convert your code into readable form. This
includes both standard microprocessor or special
user-defined instruction sets.

Mentor
IDEA 1000

MENTOR NETWORK

IDEA
1000

IDEA
1000

IDEA
1000

IDEA
1000

IDEA
1000

IDEA
1000

MIDAS
7000

MIDAS
7000

MIDAS
7000

id h d L-l rd di
HARDWARE

PROTOTYPE
HARDWARE
PROTOTYPE

HARDWARE
PROTOTYPE

Figure 2

An Expandable Test and
Measurement Architecture

The MIDAS 7000's data acquisition hardware has
an expandable modular architecture which accepts
individual test and measurement instrumentation
cards. For logic analysis, you can install exactly the
configuration of state and timing that your applica­
tion requires. In addition, you will be able to install
other types of instrumentation cards as they become
available. This way, you have a test and measurement
tool with the same room for growth, depth and
flexibility found throughout the IDEA 1000 tool set.

A fully integrated logic analysis tool.
MIDAS 7000 makes logic analysis an integral part

of the IDEA 1000 system through its tightly coupled
position in the system architecture (Figure 2), Data
acquisition probes from MIDAS attach to the
hardware under test, and acquired data is stored
first in a local data acquisition memory and then
uploaded to the local workstation memory, where it
can be either stored on disk, processed, displayed
or output to peripheral devices.

Because the IDEA 1000 interface allows fully
transparent access to both hardware and software

DESIGN
CREATION

TOOLS
-*

SCHEMATIC
DATA

DESIGN
ANALYSIS

TOOLS
-+ SIMULATION

DATA

PHYSICAL
LAYOUT
TOOLS

HARDWARE
DATA

TEST &
MEASUREMENT

TOOLS

REAL-TIME
ACQUISITION

DATA

HARDWARE
DESIGN
UPDATE

POST-
ACQUISITION
PROCESSING

SOFTWARE
DESIGN
UPDATE

TEST &
MEASUREMENT

SETUP DATA

T
MANUFACTURE

AND
TEST

ENVIRONMENT

Figure 3

tools anywhere on the network, the MIDAS 7000
analysis functions can be controlled from any
workstation on the network. Also, acquired data,
reference data, and post-acquisition processing
programs can be copied or viewed from any
network node.

Figure 3 shows how the MIDAS 7000 test and
measurement tools are an integral part of Mentor's
support for the design cycle through computer-aided
engineering. At the beginning of the cycle, Design
Creation Tools allow schematic information to be
graphically edited for entry into the design's
database. Next, Design Analysis Tools allow the
software version of the design to be simulated in
terms of logic and timing. Physical Layout Tools then
allow the design to be expressed as a physical
entity, such as a gate array. To complete the cycle,
MIDAS 7000's Test and Measurement Tools allow the

TEST AND
MEASUREMENT TOOLS

85.00 1 0 e i eieei i i
86.0 0 1 0 0 1 01001 l e
87.0 0 1 0 1 8 01018 1 1
88.0 0 1 0 1 0 01010 1 0
89.0 0 1 0 1 1 81011 1 1
90.0 0 1 0 1 1 01011 1 0
91.0 0 1 1 0 0 01100 1 1
92.0 0 1 1 0 0 01100 1 0
93.0 0 1 1 0 1 01181 1 1
94.00 1 1 0 1 01101 1 0
85.0 0 1 1 1 0 81110 1 1
96.0 0 1 1 l 0 01110 i 0
97.0 0 1 1 1 1 0UH l i
98.0 0 1 1 1 1 01111 i 0
99.0 1 0 0 0 0 10000 l 1

100.0 1 0 0 0 0 10000 1 0
101.0 1 0 0 0 1 10001 1 1
102.0 1 0 0 0 1 10001 1 0
103.0 1 0 0 1 0 10010 1 1
104.0 1 0 0 1 0 10010 1 0
105.0 1 0 0 1 1 10011 1 1
106.0 1 0 0 1 1 10011 1 0
107.0 1 0 1 0 0 10100 1 1
108.0 1 0 1 0 0 10100 1 0
109.0 10 10 1 10101 1 1
ue.e i o i o i 10101 i o

e Division:

'clock
CLOCI

MDBS
at top

STATUS CONFIGURATION Setup
I Trigger Definition Tining

Reference Menory Data Fomat
fctput RUN

Travel

DEFlne Bus clock pod3(6) -Conbine
DEFine Bus qs q4 q3 q2 ql qO -Combine
tdI! "Tj 95 q2 ql qO qs clear clock
TRAca q4 q3 q2 ql qO qs clear clock

physical version of the design to be tested and
verified in terms of the original functional specifica­
tions. At each and every step in the design cycle,
you work through the same Mentor graphics user
interface.

Hardware test and verification procedures are
ideal candidates for the powerful post-acqusition
processing capabilities of the IDEA 1000 System. As
mentioned, this includes automatic comparison of
simulation and data acquisition files. The information
obtained from post-acquisition processing can then
be used to update the original hardware design files
or to modify the product's software.

An additional benefit of MIDAS 7000 is that test
and measurement procedures developed during the
design stage of product development can be trans­

ported to the Production Engineering test depart­
ment. Selected instrument setups, reference data
and post-acquisition processing can all be retained
on disk and then transferred to similar instruments
and their controllers located in the manufacturing
environment.

Interactive State Analysis
The MIDAS 7000 Logic State Analyzer allows up to

80 parallel channels of synchronous state acquisition
at sample rates up to 10 MHz. The acquisition
memory for each channel is 4096 bits deep, which
provides data acquisition windows wide enough to
trace complex software transactions.

State data is sampled into memory through probes

Mentor
IDEA 1000

i
!

attached to hardware under test. The sample clock
| can be synthesized trom up to five ORed clock inputs
i to define the master sample clock. Either the rising or
J falling edge of each clock signal may be defined as

the sampling edge. For acquisition of multiplexed
buses, there are also two HOLD clocks which
eliminate the need for cumbersome double probing.
(A HOLD clock latches the first phase of data
sampled off the bus and holds it until the second
phase data is present. Both phases are then
simultaneously sampled into acquisition memory).
Together, these clocking features provide enough

flexibility to trace the bus transactions of popular
but complex 16-bit and 32-bit microcomputer
systems.

MIDAS 7000 data acquisition triggering for state
information is implemented through a RAM-based
state machine which allows up to 15 distinct states to
be defined. During data acquisition, a given state
can result in a number of actions, including jumping
to another state, triggering and data storage
qualification (Figure 4). This arrangement allows you
to accurately acquire data even when convoluted
software execution paths are followed.

Each state can have its own user-defined
mnemonic label to simplify trigger definitions. Within
each state, you can call upon up to four word
recognizers which define the event or events
comprising the state. When an event comes true, its
assigned word recognizer initiates a preprogrammed
action such as qualifying data for memory storage,
halting data acquisition (triggering), starting a
counter or transferring data acquisition control to
another state.

To simplify the trigger definition process, a symbol
definition table lets you specify various trigger events
in convenient mnemonic form, which means you can
name events using the same labels found in the
source code, or any other meaningful terminology.

Interactive Timing Analysis
The MIDAS 7000 Logic Timing Analyzer acquires

parallel channels of data at sample rates up to 100
MHz. The nominal memory depth per channel is 510
bits, however the timing analyzer's architecture
includes several features that significantly extend this
memory depth during data acquisition.

One such feature is transitional timing, which only
samples data into memory when a logic transition
actually occurs on one of the data acquisition
channels. When a logic transition is detected and
sampled, a counter is activated which counts the
number of samples until the next transition occurs.
When data acquisition is complete, the timing
analyzer uses the stored transitions and the counter
delta time information to reconstruct a timing
diagram representation of the logic activity as it
occurred in real-time (Figure 5). This technique
enables a relatively small amount of acquisition
memory to capture data over an extremely wide
time window. In effect, you can acquire real-time
data windows up to 130,000 samples wide.

Another data compression feature is the "multi-
triggers" mode, which allows you to make 16 "mini-

c State One

STORE
DATA '

IF Event 1 IF
occurs 10 times

ELSE IF Event 2

IF Event 3

State Two

NEVER
STORE•
DATA

IF Event 4

IF Event 5

State Three

IF Event 6

ELSE IF Event 4

STORE .
DATA * Event 6 OR Event 7

1
State Four

STORE
DATA

IF Event 8

ALWAYS

TRIGGER
•> DATA

STORAGE

Figure 4 - The Interactive State Analyzer provides up to 15 distinct
states for use in trigger definition and data storage qualification. This
diagram shows how four such states could use jumps and branches
to track complex software flow as it occurred in the system under test.

TEST AND
MEASUREMENT TOOLS

LU —I
CL

<
CO

LU _l 0.
<
CO

LU _l Q.
<
CO

UJ _l Q-

<
CO

LU _l
CL

<
CO

LU

CL

<
CO

Data 1

Data 2

Data 3

Data 1

Data 2
Data 3
Counter
value

0
0
0
2

L

0
1
0
0

nr?
DATA

ACQUISITION

0
0
0
3

1
0
1
0

1
1
0
3
1

0
DATA

1 STORAGE
1

4 1
DATA

DISPLAY

Figure 5 - The Interactive Timing Analyzer uses a data compression technique called transitional timing to expand the data acquisition
window. Data sampling only occurs when a transition occurs on one of the channels, thereby minimizing storage requirements. A counter
tracks the sample count between transitions, and this information is used to reconstruct a real-time representation of timing activity.

acquisitions" of at least 32 samples each in the
course of a single data acquisition. Each of the 16
subgroups has the same trigger event located at its
center. During data acquisition, the timing analyzer
will acquire at least 32 samples when the trigger
event occurs, and then stop storing data until the
trigger event occurs again. This cycle is repeated 16
times until the acquisition memory is full. You now
have 16 records of events surrounding successive
occurrences of the trigger event, with all other data
filtered out.

The MIDAS Logic Timing Analyzer can also be
programmed into a cross-triggering relationship with
the Logic State Analyzer. When a trigger event
occurs on the timing analyzer it can be used to
either arm or trigger the state analyzer. Conversely, a
state trigger can either arm or trigger the timing
analyzer. In either case, the data is time-synchronized
to let you see the true relationship between software
and hardware events as they occurred in the system
under test.

Post-acquisition processing
Any data acquired by either the MIDAS state or

timing analyzers is automatically transferred to the
main memory of the IDEA 1000 workstation, where it

can be either processed or stored on disk for later
processing. Since every IDEA 1000 workstation
participates fully in a Mentor network and full
relational database, the MIDAS 7000 Test and
Measurement Tools and the data they produce are
tightly linked to all other Mentor CAE tools and data.

One powerful form of post-acquisition processing is
comparison of logic data produced by the Mentor
Interactive Simulator with data acquired later in the
design cycle by the MIDAS 7000 Logic State Analyzer.
This comparison is carried out by a Mentor file
compare command, and allows all discrepancies
between the two data files to input to a third file as
well as output to the display or a printer. This
comparison technique gives you a powerful means
of verifying that the physical hardware's performance
conforms to the original design model specifications.

Mentor also will support microcomputer software/
hardware integration by offering a series of
disassemblers for popular 8-bit, 16-bit and 32-bit
processors with bus cycle rates up to 10 MHz. Real­
time software flow acquired by MIDAS 7000 off the
bus of the hardware under test is post-processed by
the disassembler software to provide data similar to
an assembly source code listing.

Another Mentor post-acquisition is performance
analysis, which statistically measures various aspects

Mentor
IDEA 1000

of your code's execution as acquired off the bus of
the system under test.

I/O Functions
Since it is fully integrated into the IDEA 1000 system,

MIDAS 7000 can take full advantage of all the
system's input/output capabilities. All instrument
setups and acquired data can be filed on disk and
then accessed by any workstation located anywhere
in the system. At an even higher level, these disk-
based files can become part of powerful macro
command files that automate entire test and
measurement procedures, from setup and
processing of acquired data to reporting and
formatting the final results.

In addition, any MIDAS display of setups or
acquired data can be output to a plotter to obtain
hardcopy of test procedures and results. Also, logic
state lists can be output to a printer. For fast, efficient
communication across the network, any MIDAS data
can be sent via Mentor's electronic mail system to
selected individuals or groups of individuals for
review or comments.

Specifications
MIDAS 7000 Interactive State Analyzer
HARDWARE SPECIFICATIONS
INPUTS
CLOCK
CLOCK CHANNELS: 5 OR'ed Sample clocks and 2 Hold clocks
INPUT LOADING OF CLOCK PROBE: 1 TTL FAST load (lin-low = 0.6 ma.)
MAXIMUM INPUT VOLTAGE: 0.5 V to 7.0 V.
DYNAMIC RANGE: 0 V to 5.0 V.
THRESHOLD: 1.6V, TTL
MAXIMUM SYCHRONOUS SAMPLE RATE: 10 MHz
MINIMUM CLOCK PULSE WIDTH: 25 ns.
CLOCK MODES: Normal; Demultiplex

DATA:
DATA CHANNELS: 16 to 80 input channels. 16 channels per P-2902 Data Probe
INPUT LOADING OF DATA PROBE: 1 TTL ALS load (lin-low = 0.1 ma.)
MAXIMUM INPUT VOLTAGE: 0.5 V to 7.0 V.
DYNAMIC RANGE: 0 V to 5.0 V.
THRESHOLD: 1.6 V. TTL
DATA SETUP TIME: 25 ns.
DATA HOLD TIME: 0 ns.
EXTERNAL BNC INPUT: 1 TTL load (lin-low = 1.6 ma.)

OUTPUTS
CLOCK PROBE:
REAL-TIME PROGRAMMABLE OUTPUT (FROM STATE MACHINE): 2 lines: open collector; internally
pulled up by 4.7 Kohm
RUN/STOP LINE: open collector; internally pulled up by 4.7 Kohm

CROSS-LINK BNC:
CROSS-LINK LINE: programmoble output; 50 ohm line driver

ANALYSIS
ACQUISITION MEMORY:
Configurable from 16 to 80 channels with 4096 memory depth per channel.

REFERENCE MEMORY:
80 channels x 4096

STATE MACHINE:
NUMBER OF INDEPENDENT STATES: 15
WORD RECOGNIZERS PER STATE: 4 total; 2 used for branching, triggering and output control;
2 used for storage qualification (AND'ed or OR'ed); all words—value, NOT, Don't Care.
OUTPUTS PER STATE: 2 real time output lines and 1 cross link line.
EVENT COUNTERS PER STATE: 1, programmable from 1 to 4096
EVENT COUNTER MODES: after N times, before N times or N times (N = 1 to 4096)
EVENT COUNTER INPUTS: sample clocks, store clocks or word recognizer occurrences

SOFTWARE SPECIFICATIONS
FORMAT: channel group assignment; display order; group labels; radix and polarity selection;
sample and hold clock and mux/non-mux setup; Run/Stop polarity
TRIGGER: state machine programming; trigger position (begin, center, end and delay
to 4096); storage qualification programming; symbolic state definition; Multiple Preview
Acquisition selection; programmable start state; store state transitions
SYMBOL: word recognizer symbol name and value definition; find word and mask
words
DISPLAY: HEX, OCTAL, BINARY and ASCII display formats; acquisition or reference; single line,
page or block scrolling; reference edit; find word (scroll by value);
INPUT/OUTPUT: save and load setup and data to and from disk; or display; print
data, symbols or trigger information
GO MODES:
Go once; Go forever; Go until acquisition = reference; Go until acquisition > < reference; Halt

MICROPROCESSOR SUPPORT
The MIDAS 7000 can be effectively used with all of the following microprocessors, plus more,
using the unique universal clocking scheme:

Z80
Z8001
Z8002

6800/6802
6801/6803
6809
68000
6805

8080
8085
8086
8088
80186/286

16032
9900
1802

MIDAS 7000 Interactive Timing Analyzer
HARDWARE SPECIFICATIONS
CLOCK
MAXIMUM SAMPLE RATE:
ASYNCHRONOUS: 100 MHz. (10 ns. resolution) - internal clock
SYNCHRONOUS: 100 MHz. using external clock

CLOCK SPECIFICATIONS:
RANGES: 10 ns. to 10 ms. in 1,2,3.. .9 sequence
ACCURACY: Crystal controlled

DATA:
INPUT MODES:
16 CHANNEL MODE: Sample and store input data value with every clock transition; 508 bits
memory per channel
10 CHANNEL TRANSITION MODE: Sample and store only on data level changes; 8-bit counter
for delta time between transitions; up to 128K effective memory in special case

GLITCH CAPTURE:
5 ns. minimum pulse detection; glitch latch
PROBES:
INPUT IMPEDANCE: 1 megohm, 5 picoFarads
THRESHOLD RANGE (VARIABLE): +/- 5.5 volts
MAXIMUM NON-DESTRUCTIVE INPUT VOLTAGE: +/- 25 volts

SPECIAL HARDWARE CHARACTERISTICS:
MULTI-TRIGGERS MODE: capture up to 15 regions of 32 samples; all center triggered

ANALYSIS:
TRIGGER MODES:
1) Pattern occurrence with OR'ed edges (AND'ed levels AND'ed with OR'ed edges)
2) Pattern duration greater than a specified time
3) Pattern duration less than a specified time
4) Start of pattern (transition into pattern)
5) End of pattern (transition out of pattern)
6) Set-up time violation
7) Hold-time violation
8) All modes can be combined with Interactive State Analyzer cross-triggering and arming

SOFTWARE SPECIFICATIONS
USER MENUS:
FORMAT: 16 channel or transition mode selection; single or multi-triggers mode selection,
sample or glitch mode; channel group assignment; threshold adjustment; trigger setup,
trigger position; group labels; channel activity indicator
DISPLAY: timing waveform display; channel label assignment, vertical trigger setup, find word;
delta time readout; window and cursor scrolling; magnification selection
LIST: state display of acquired data; absolute or relative time readout between acquisitions,
data scrolling
INPUT/OUTPUT: save and load setup and data to and from disk; or display; print
data or menu information

State/Timing Cross Linkage

TRIGGERING:
State triggers timing; timing triggers state

ARMING:
State arms timing to begin looking for an independent trigger event, timing arms state
to begin looking for an independent trigger event

r Mentor Graphics Corporation
10200 S.W. Nimbus Avenue, G-7
Portland, OR 97223 (503) 620-9817
Telex: 4742102 MENTOR

Mentor Graphics Corporation is dedicated to providing the
finest computer-aided engineering tools possible, and to
ensuring that these tools follow an optimized long-term
growth path that produces continuous gains in both
productivity and design innovation.

U.S. Sales Offices

Fort Lee, NJ San Jose, CA Lexington, MA Edina, MN
201-585-9395 408-294-9933 617-863-5776 612-835-7007

Orlando, FL Irvine, CA Dallas, IX
305-422-1841 714-752-0200 214-392-2992

Albuquerque, NM
505-821-2775

Portland, OR
503-620-9817

International
Sales Offices

Mentor Graphics (U.K.) Ltd.
Reading, Berks., England RG7 1SS
0734-884888
Telex: 849975 MENTOR G

Mentor Graphics Japan Co., Ltd.
Toshima-ku, Tokyo 170, Japan
989-7950

Mentor Graphics (Deutschland) GmbH
Eching, West Germany
089/319-1003

©1983 Mentor Graphics Corp. Printed in USA 1007A 11/83

PROJECT
MANAGEMENT

Figure 1: PLA

1.1 Document Preparation
The docunent preparation software (DOC) helps you throughout the design cycle.
DOC is a page-oriented text editor tailored to the preparation of long
documents (such at eanuals).

DOC coeeandt allow you to "leaf through" a document in a natural earner,
graprilco*"*n<ls inserting, rearranging, eodlfylng and deleting text or

DOC, which it tied to the data eanager, can include scheaatict created in ti»e
logic design procett (SLD).

DOCUMENT PREPARATION
PROJECT COMMUNICATIONS

PROJECT
MANAGEMENT TOOLS
An Overview

IDEA lOOO is a self-contained, computer-aided engineer-
ing (CAE) system dedicated to the design and analysis of
complex electronic circuitry. The system is integrated with
Apollo DOMAIN computer workstations, linked together in a
distributed network architecture. This way, each operator
receives the benefit of independent 32-bit local processing
and high resolution graphics, but still has full access to a
common data base shared by the system as a whole,
without the performance degradation of a central host
architecture.

Within the IDEA lOOO system are a number of software
modules used to implement the various phases of the logic
or circuit design process. These include Structured Logic/
Circuit Design, Interactive Logic Simulation, Timing Verification,
Project Communications, Document Preparation, Formattable
Netlist/Plot and CAE/CAD Programming. Each of these
components is tied into a high-performance full relational
data base management system for fast, efficient access to
any required information (Figure 1).

Two of these basic modules. Project Communications and
Document Preparation, provide a complete tool set to
handle the management of electronic engineering projects.
Almost any project requires extensive intercommunication
between team members and documentation of the design
effort. For this reasoq Mentor has made communication and
documentation tools an integral part of the IDEA lOOO
computer-aided engineering system. Both of these tools
have complete access to the systems's design files, allowing
project management to proceed with a high degree of
speed and accuracy.

The Document Preparation module takes advantage of
the Apollo workstation's high resolution graphic display to
provide fast and comprehensive text processing. A user can
rapidly enter edit, format and file documentation which
includes both text and pictures. The Project Communications
module provides a fast, orderly flow of "electronic mail"
between team members, allowing intersystem communica­
tions that overcome both time and location problems.

Document Preparation
Documentation is an essential part of the logic/circuit

design process, and the IDEA lOOO Document Preparation
Module lets the user generate high quality documentation
which can immediately draw upon design information
maintained by the system's data base management system.
When generating new text, the user can bring in previous
documentation or ASCII files, plus graphics produced by the
Symbol Editor, Network Editor, Logic Simulator or Timing
Verifier (Figure 2). In this manner, users have all the resources
to create timely and accurate documentation at their
immediate disposal.

Document Preparation gives the user a powerful set of
commands to handle text generation while maintaining the
comfort level that a conventional "pencil and paper"
approach provides. For instance, a command is provided to
"turn" through pages of a filed report. Most important,

Figure 1

Figure 2

Document Preparation displays generated text on a "what
you see is what you get" basis, so the user immediately sees
the effect of any command upon the substance of the
document, rather than having to wait for later processing to
see the final results.

The Document Preparation command set is generally
divided into two subsets. One is the editing commands
associated with the entry and modification of the text itself.
The other is formatting commands which form the text into
whatever visual arrangement is desired by the user. In
addition there are commands which let the user travel
quickly to any location within the document for viewing,
editing or formatting purposes. These commands are
possible because the editor is context-sensitive and
understands concepts such as a "section", "page" or "list".

Figure 3 illustrates a previously completed document that
has been called up for editing. Notice that a graphic

Mentor
IDEA 1000

1962/11/22.23:07:03 utc; HB4E555.A0OOO1F8

Figure 5

Project Communications
Effective project management calls for intensive communi­

cation among team members creating the logic/circuit
design. Communications must be channeled into an orderly
flow that minimizes confusion and provides each team
member with prompt, easy access to all other team
members. The IDEA lOOO system meets these requirements
through its Project Communications module, which provides
fast efficient "electronic mail" service between users. Project
Communications boosts productivity by substantially
reducing the need to schedule and conduct time-
consuming conferences.

With Project Communications, each system user can
conveniently send, receive and file messages from or to any
other system user. A single command sets up the display to
enter a message and prompts the user to identify those who
will receive the message directly and those who will receive

"carbon copies". There is also a "subj:" prompt to identify the
nature of the message. When the user completes text entry
and sends the message, an additional field is automatically
added that logs the date and time the message was sent.

Figure 5 shows how the display might appear when the
user checks accumulated messages. The window on the left
acts as the "mailbox" and draws upon the user's message
directory to list all messages that have not yet been viewed.
Each message is identified by a unique number and
described in terms of the sender, the date sent, the subject
and the first few characters of the text. The user can now
view any of these messages in the window on the right.

When the messages are viewed, they can be "marked"
for special attention, such as an immediate response. They
can also be sent on to other users, filed, or responded to.
The user's message directory will automatically be updated
to show which of these actions was taken when the
message was viewed, This way, users always have a current
record of the status of their mail.

PAR.graph

lack
ANNOTATE
INCLUDE DOCUNENT
INSERT DOCUNENT

REPLACE
TAB
UNINCLUDE

Editing

DELETE
INCLUDE PICTURE
INSERT TEXT
COPY
SEARCH
TYPE
•ELP

Figure 1: PLA

1.1 Document Preparation
he docukent preparation software (DOC) nelps you throughout the design cycle.
>0C is a page-oriented text editor tailored to the preparation of long

>C coeeands alio* you to "leaf through" a docunent in a natural
iher coeeands sieplify inserting, rearranging, eodifying and deleting text or
•apnici.

)C, ehicn is tied to the data eanager, can include scheeatics created in the
.m'r it*, i nn nrnntt (<5LD).

1. The IDEA 1000
The IDEA 1000 Conputer Aided Engineering Workstation provides a set of tools
for a aide range of engineering activities, including:

- logic design

- logic slnulatlon

- docunent preparation

Qou kill vie. all of the tools through a coeeon, global user interface. All
tools are supported by a central data-base eanageaent systee.

Figure 3

element has been included as an integral part of the text.
This feature is unique to IDEA TOOO and illustrates how the
user may easily draw upon the system data base. The PLA
picture was included in the text through a single command
which simply identified the picture according to its file name.
Additional parameters can title the picture, scale it and
indicate the font to be used for the picture title. Because the
picture is on-line to the data base, it is automatically
updated if someone edits it after its initial entry into the text.

Document Preparation also contains a full set of cut and
paste" commands which operate under cursor control for
fast interaction By selecting specific text areas with the
cursor, the user can move te>rt to any location within the
document. It is also possible to include (in a procedure call)
other documents residing in the data base. There are also
sophisticated search and replace functions to seek out
specified text and replace it with the new text if desired.

The Document Preparation formatting commands permit
the text to be arranged into a visual configuration which suits

the needs of the user. To streamline formatting, special
"templates" can be used which control the effects of certain
format codes on the text. One of the most basic templates
is that which formats the document's page layout in terms of
width, height, margins, page numbering information, and
several other parameters. Another template sets the format
for paragraphs by specifying the degree of indentation, the
number of lines to skip at paragraph's end and the minimal
number of paragraph lines that must appear at the bottom.
This last parameter prevents unsightly "page breaks" where
only the first line or two of a paragraph is printed on one
page, with the rest carried over to the next page.

Other templates can specify parameters such as the font
of picture titles, section titles, newly typed characters; and
also the spacing between tab stops and the positioning of
page titles.

Since the editor is context-sensitive, certain mundane tasks
are completely eliminated. One example is section
numbering. Every time the user indicates the beginning of a

Menlor
IDEA1000

Figure 4
new section of text, the section number will be automatically a particular font for these items.
determined and all other section numbers in the document Another useful formaffing command allows easy inclusion
will be adjusted accordingly. Figure 3 illustrates this feature. of footnotes. The footnote enumeration is placed in the text
The user defined the text above the picture as "1", and the by simply positioning the cursor where the
second section below the picture was automatically should occur. When the document is paginated, all footnotes
designated as "1.1". The next section would be 1.2, and so on. will be grouped on the same page as their corresponding

Another example involves listing and is illustrated in Figure enumerations.
4 The first item in the list is automatically labeled with the Document Preparation includes a set of commands that
roman numeral "IV.". The second item is labeled number "A." allow rapid and convenient travel through a document,
and the subitems under it are automatically labeled "1", "2.", Movement can be made between specified pages, s®c^ons-
etc Automatically nested within these subitems are the list lists or pictures. In addition, specific text can be defined by a
_ipmpnt. "a» »b» and "C." "bookmark" for rapid access at any time.

Formatting of page numbers and headings is another For fast interaction with the command set, the user can
useful feature. For example, a page would be automatically call upon a set of "soft" keys which reduce a command or
numbered "6-28" if it was the 28th page of text under series of commands to a single keystroke. Once editing and
section 6 of the document. Another format code allows the formatting are completed the display shows the document
inclusion of page headers and subheaders, and can center in exactly the same way it will appear on the pnnted page,
them align them with the left margin or place them at the Output to line printers or printer/plotters is at the touch
bottom of the page. A template is also available to specify of a button.

. „ Mentor Graphics Corporation VMDT 10200 S.W. Nimbus Avenue, G-7
Portland, OR 97223 (503) 620-9817

Officers

Directors

Principal
Investors

Auditors

Bank

Legal Counsel

U.S. Sales Offices

Thomas H. Bruggere David C. Moffenbeier Thomas J. Fretz
President, Vice President, Finance Vice President, Sales
Chief Executive Officer

Gerard Fl, Langeler Stephen Swelling
Vice President, Marketing Vice President, Engineering

Thomas H. Bruggere
President.
Chief Executive Officer

David R. Hathaway
General Partner
Venrock Associates
New York, NY

Robert E. Schroeder
Former President,
Qume Corporation
Palo Alto, CA

Greylock Management
Corporation
Boston MA

Hambrecht & Quist
San Francisco, CA

Lamoreaux. Glynn & Associates
San Francisco, CA

L.F. Rothschild, Unterberg,
.Towbin
New York, NY

Sutter Hill Ventures
Palo Alto. CA

Venrock Associates
New York, NY

Peat, Marwick. Mitchell & Co.
Portland, OR

first Interstate Bank of Oregon
Portland, OR

Stoel, Rives, Boley. Fraser & Wyse
Portland, OR

2001 Gateway Race
Suite 195
San Jose, CA 95110
(408) 294-9933

420 Bedford Street
Suite 160
Lexington, MA 02173
(617) 863-5776

4825 LB.J. Freeway
Dallas, TX 75234

4000 MacArthur Blvd.
Suite 3000
Newport Beach, CA 92660
(714) 752-0200

International
Sales Offices

©Mentor Graphics Corp.
loa-d.'JST'? I

Mentor Graphics Japan Co., Ltd.
Sunshine 60 • 25F
1-1 Higashi-lkebukuro 3-Chome
Toshima-Ku, Tokyo 170, Japan

Printed in USA 1003A SWW 12/82

DESIGN
ANA

10 .0 T ine : 130.0

1 0 0 0 1 0 1 10000000000 1 0Z 400
e 0 0 0 1 0 1 10000000000 1 0Z 400
6 0 0 0 1 0 1 10010000000 1 0 480
e 0 0 0 1 0 1 10010000000 1 0Z 480
1 0 0 0 1 0 1 10010000000 1 0Z 480
i 0 1 0 i 0 i 10010000000 1 0Z 480
6 0 1 0 1 0 1 10010000000 1 0Z 480
0 0 1 0 1 0 1 10000000000 1 1 400
0 0 1 0 1 0 1 10001000000 8 1 440 •

INTERACTIVE LOGIC SIMULATOR
-Function! nl Models

TIMING VERIFIER PRjCGRAMMABLE NETLISTER

DESIGN
ANALYSIS TOOLS
An Overview

IDEA lOOO is a self-contained computer-aided engineer­
ing (CAE) system dedicated to the design and analysis of
complex electronic circuitry. The system is integrated with
Apollo DOMAIN computer workstations, linked together in a
distributed network architecture. This way, each operator
receives the benefit of independent 32-bit-local processing
and high resolution graphics, but still has full access to a
common data base shared by the system as a whole,
without the performance degradation of a central host
architecture.

Within the IDEA lOOO system are a number of software
modules used to implement the various phases of the logic
or circuit design process. These include Structured Logic/
Circuit Design, Interactive Logic Simulation, Timing Verification,
Project Communications, Document Preparation, Formattable
Netiist/Plot and CAD/CAE Programming. Each of these
components is tied into a high-performance full relational
data base management system for fast, efficient access to
any required information (Figure 1).

Two of these basic modules, Interactive Logic Simulation
and Timing Verification, function as design analysis tools. Both
use the design data generated by the Structured Logic/
Circuit Design module, which produces all components and
the nets (logical signal paths) that comprise the completed
circuit design Since the design analysis tools allow full
simulation of logic and timing flow within a circuit design
they reduce the need to repeatedly produce breadboarded
prototypes, which is both costly and time-consuming. In
effect, these tools provide the equivalent of a logic analyzer
and pattern generator, with complete test capability for both
state and timing functions.

Figure 2 presents a block diagram of the IDEA lOOO's
design analysis environment. The Design Expander output file
represents the finalized output of the Structured Logic/
Circuit Design module, and serves as the input for both logic
simulation and timing verification. For logic simulation, this
data is first processed by the Simulation Compiler, which
formats it. The Simulation Compiler will also accept input from
Functional Models, allowing the inclusion of components that
have not been described down to their most primitive logic
devices. In this manner, a user can analyze circuitry
representing components from any number of levels within a
structured design hierarchy (see DESIGN CREATION TOOLS
sheet).

To drive the inputs of the design under test, the user
creates a stimulus file, which is a set of test patterns
optimized to test the logic of the circuit being simulated. The
user can call upon several powerful commands that control
and modify the simulation process. For instance, breakpoints
can be defined and selected circuit nodes forced to
particular logic states.

Signal behavior information may be extracted from the
circuit design's logic outputs or any internal circuit node the
user wishes to examine on a cycle-by-cycle basis. The user
interacts with a powerful graphic display which presents
signal data in both list and waveform formats, and which
also includes a complete graphic representation of the
circuit being simulated.

Figure 1

FROM STRUCTURED
LOGIC/CIRCUIT

DESIGN MODULE

I

CONTROL

Figure 2

The Timing Verifier also works on the data supplied by the
Design Expander output file. It allows the circuit under test to
be run under user-specified clock and min/max circuit delay
conditions to check for timing errors, which are subsequently
identified and displayed.

Design Expander
and Functional Models

Output from the Design Expander, along with Functional
Models, produce the input required by the Simulation
Compiler. The Design Expander works its way through a
hierarchical design until the design's structure is elaborated at
its most primitive level as a collection of basic logic
components and the signal paths connecting them. The
resulting design data is then passed to the Simulation
Compiler.

CTIVE

MerMor
IDEA 1000

SYS/Sheet 1

/«-Design Expansion
/COM/Sheet 1

Functional
model of

ADD

Simulation
Compiler

Interactive Logic Simulation Figure 3

Functional models, on the other hand, allow components
at higher levels in a hierarchical design to be described as
Pascal procedural descriptions of functional inputs and
outputs instead of as a collection of primitive components
(e.g., gates) and nets. Once developed, these procedures
are accepted by the Simulation Compiler and will interact
with primitive-level components or other functional models
during actual simulation. Functional models can contain
boolean expressions, tabular data or any valid Pascal
statement.

Figure 3 illustrates the relationship between primitive-level
components produced by the Design Expander and
functional models. The top sheet, Sys/sheetl, is located near
the top of a typical design hierarchy and contains two
interconnected components, COM and ADD. The internal
components and nets making up COM have already been
drawn on a worksheet called COM/Sheetl, including its
output to the component ADD, which has yet to be defined
at the "bottom" level of the hierarchy. To compensate for
the lack of a fully defined internal logic structure for ADD, a
Pascal functional model is substituted to supply the logic
function which will later be supplied by ADD's internal
components.

When the Design Expander works through the design's
hierarchy of worksheets, it will produce a fully "flattened"
version of COM, which is passed to the Simulation Compiler.
In addition, the functional model for ADD is also passed to
the Simulation Compiler. During simulation runs, ADD will now
act as a fully functional component which accepts inputs

from COM and logically processes them into the correct
outputs.

Simulation Compiler
and Stimulus File

Using input from the Design Expander and Functional
Models, the Simulation Compiler builds a software module
acceptable by the IDEA lOOO Interactive Logic Simulator.
The compiler describes each component and net in the
design in terms of logic and timing properties that will be
used by the simulator. These properties are drawn from
information entered earlier by the user during symbol and
net editing (see 'DESIGN CREATION TOOLS' sheet).

The simulator can use test patterns defined interactively
while simulating, or it can draw upon a user-programmed
stimulus file which supplies a series of test patterns to the
inputs of the circuit being simulated. Figure 4 presents a
simple stimulus file which lists sequentially the binary input to
a device with input ports d, c, b and a. Each line contains a
forced binary input state for each port. The "run 31" indicates
that the forced input states on that line will remain active for
the next 31 nanoseconds of simulation time.

The simulator models the functions of all standard logic
gates plus RAMS, ROMS and PLAs. It will also accept rise and
fall delay times for each component, which are specified as
arbitrary time units, typically nanoseconds. Also, decay and

DESIGN
ANALYSIS TOOLS

PERIOD List 31
LIST Binary dcbaO 1 2 3 4 5 6 7 8 9

force d Ojforce c Ojforce b Ojforce a Ojrun 31
force d O;force c Ojforce b Ojforce a ljrun 31
force d Ojforce c Ojforce b ljforce a Ojrun 31
force d Ojforce c Ojforce b ljforce a ljrun 31
force d Ojforce c 1 jforce b Ojforce a Ojrun 31
force d Ojforce c 1 jforce b Ojforce a ljrun 31
force d Ojforce c 1 jforce b ljforce a Ojrun 31
force d Ojforce c 1 jforce b ljforce a ljrun 31
force d ljforce c Ojforce b Ojforce a Ojrun 31
force d ljforce c Ojforce b Ojforce a ljrun 31
force d ljforce c Ojforce b ljforce a Ojrun 31
force d ljforce c Ojforce b ljforce a ljrun 31
force d 1 jforce c ljforce b Ojforce a Ojrun 31
force d ljforce c 1 jforce b Ojforce a ljrun 31
force d ljforce c 1 jforce b ljforce a Ojrun 31
force d ljforce c 1 jforce b ljforce a ljrun 31

WRite List truths/Is.42 .out
bye

Figure 4

delay times can be specified for nets. In addition, each
component can have initialized information attached which
describes its logic state at the outset of simulation. For
instance a counter could be set to all zeros, or an AND gate
set to its true output.

Each component's output can be described as one of
nine separate logic states recognized by the IDEA lOOO
simulator. (Figure 5) This feature is extremely useful in
modeling the various logic state conditions produced by
MOS technology, such as wired-or, pull-ups, tri-states and
transfer gates. Each state includes both a logic "level" and a
"strength" property. Levels are low (zero), high (one) and
unknown (X). Strengths are driving (charge transition at an
unlimited rate), resistive (charge transition at a limited rate)
and hi-Z (no charge transition).

Also, two special conditions can be indicated for each
level. One is a spike, where a gate's input toggles faster than
its output can respond. The other is a decay, where a
charge trapped at a circuit node leaks away, changing the
logic level.

The IDEA lOOO simulator differs from unit delay simulators
through its ability to process events in terms of real time units.
Rather than process events only once for each complete
clock cycle, IDEA lOOO models the actual signal
propagation from gate to gate in whatever time units the
user has specified. This feature aids greatly in modeling
asynchronous events, such as interrupts, and MOS conditions
such as charge decay times. It also gives the user a better
feel for the true operating speed of the circuit under design.

Since all component and net properties are specified
during the design phase, no special formatting is required to
load the Simulation Compiler, which works directly with the
data base created by the Structured Logic/Circuit Design
module.

LEVEL PROPERTY

LOW
(ZERO)

HIGH
(ONE)

UNKNOWN
(X)

DRIVING
£
cc

LOW /

/ DRIVING

HIGH /

/ DRIVING

UNKNOWN/

/ DRIVING
ID
CL
O

RESISTIVE
ID
>

LOW /

/RESISTIVE

HIGH /

/RESISTIVE

UNKNOWN /

/RESISTIVE

0C
o

HI-Z

LOW /

/ HI-Z

HIGH /

/ HI-Z

UNKNOWN/

/ HI-Z

Figure 5

Simulator Characteristics
and Operation

The IDEA lOOO Interactive Logic Simulator is designed
specifically for MOS as well as TTL and ECL logic. It is event-
driveq meaning that no processing is performed during
periods when no logic events are occurring within the circuit.
For this reason, there is no processing penalty for increasing
the time resolution used in specifying delays. The simulator is
also selective trace, meaning that it only examines
components when their input states are changing. This
feature cuts processing time. Performance has also been
maximized by making exhaustive worst case timing
verification a separate operation. This way the user can
rapidly debug a circuit from a logic and nominal timing
perspective and then proceed to worst case timing when
ready; or start with timing and then go to logic, if desired.

The simulator has many powerful features under user
control. Breakpoints can be set to halt execution on any
specified event or set of events. Any logic node within the
circuit can be forced to a specified value at a specified
time, and then held there, either permanently or temporarily.
Any unnamed logic node can also be named and "probed",
by pointing to it on the logic diagram, which provides a
complete trace history of the node in question.

Simulator Interactive
Graphic Display

The user interacts with the simulator through a powerful
graphics display (Figure 6). At the top is a window indicating

Mentor
IDEA 1000

1 10000008030
1 10000080000
1 10010000000
1 10010000000
1 10010000000
1 10010000000
1 10010000800
1 10000000000
1 10001000000
1 10001000000

Zooa Out 0
Zooe In 8 -.91,-3.86
DEFlne Kay r2 ~lc
PROBe probel -1.87,-3.35
PROBe probe2 -1.02.-5.55
List Binary probel probe2
List Hex •interns
REGenerate List
TRAce probel probe2
REGenerate Trace
RUN 40
e Nentor Graphics Interactive Logic Sleulatoi

RUN
NONITOR
LIST
VIEU TINE
FORGET VIEU
FORCE
CHECK

Sinulatlon
Travel

DEFINE BUS
TRACE

VIEW SHEET
BREAK
REGENERATE
CHECK STABILITY

Scale: 10.8 Tine:

*elnter»s
"»ost_slg

"reset

"elnteres
*probe2

"probel

the current clock time and a monitor window indicating the
current values of selected circuit nodes. These nodes are
usually the outputs of the circuit, and can be given
abbreviated names for use during simulation. Below these
windows is an optional trace window which shows signal
traces in convenient waveform format. Below the trace
window is the list window, which shows a simulator trace
history at a user-selected clock interval (the "z" subscript
attached to some of the logic states indicates a tri-state
condition). Below the list window is a view window which
shows the circuit under simulation. The user has full graphic
control over this window, including panning and zooming.
Using a cursor, the user can work within this window to
graphically select circuit nodes for probing, which may then
be added to the monitor list or trace windows. To the left of
the list window is a list of cursor-selectable menu items. To
further optimize the interface, the user can call upon a series
of "soft" keys for single-button command invocation, and
also upon macro files to execute entire command
sequences.

Figure 6
Functional Models

As already described, functional modeling can be a
valuable tool when simulating and debugging a circuit with
components originating from several levels of a hierarchical
design. This feature allows the designer to work from either
the "bottom up" or the "top down" since simulation is not
confined to hierarchical levels with fully defined circuitry.

In many cases, it is substantially easier to algorithmically
model the functions of a particular component than to
define all its internal logic in terms of gates and nets. For
example, if the design involved interrupt support circuitry for
a uP-based system, it would require thousands of gates to
describe the processor's internal logic, but only a small
program to describe its response to an interrupt input.

Functional modeling is based on the fact that most
components remain stable until they receive an input which
has the potential to cause some type of state change. A
common example is a component which changes state only
upon receiving an active clock edge at a specified input.

DESIGN
ANALYSIS TOOLS

MASTER CLOCK PERIOD

RISING
>4

CLOCK

FALLING

DATA-IN

CHANGING STABLE

Figure 7
•SET-UPTIME

-VIOLATION

When the clock pulse is received the component will
produce an output based on the current state of its data
inputs and/or its internal logic state. Usually the number of
inputs capable of causing a component state change is
small often only a single clock line. For this reason, it is
convenient to write an event handler for this input in the
form of a Pascal procedure. It is written so that upon
receiving a state change input, the procedure will create a
new output for the modeled component based on a
functional algorithm which processes its current internal state
and data inputs.

Procedures supplied for functional modeling include an
"allocate" procedure, which initializes the model and allows it
to acquire working storage, if needed. There is also an
initialization procedure, which allows the modeled
component to set its outputs into a logic configuration that
would realistically occur during a powerup state.

Functional modeling provides wide flexibility of operation.
For instance, a model can open and close a file, write
messages to the display or have internal data storage. Any
legal Pascal program operation can be included.

Timing Verification
Once a logic circuit design has been completed, it must

be tested in both the data and time domains. Rather than
compromise performance by checking both domains with a
single simulator, IDEA lOOO has made the Timing Verifier a
separate entity from the Interactive Logic Simulator. The
Timing Verifier has a powerful set of features that can
exhaustively analyze all the circuifs signal paths. This
approach eliminates the error potential present in other
systems which limit testing only to user-selected signal paths
a to paths which are activated by a particular set of
stimulator test patterns.

The Timing Verifier allows fhe designer to ascertain if a
circuit will function correctly when run at specified clock
speeds. The timing verifier provides a complete list of errors
which identify both the pin where the error occurred and the

actual nature of the error. Also, waveforms of interest can be
displayed graphically to enhance comprehension of their
timing relationships. In addition, a schematic of the circuit
under test can be called up, with pins containing errors
automatically highlighted for easy identification.

The Timing Verifier takes all the circuifs signal paths through
one complete machine cycle. This simulation of the time
domain breaks the full cycle down into very small increments
which allow as high a resolution as needed. During execution,
the Timing Verifier works with timing characteristics for each
signal. These characteristics are expressed in one of two
basic formats. The most common is a format which describes
the signal as "changing" (in transition from one logic state to
another) or "stable" (Logic state transition completed). The
other is a format that describes the signal in terms of actual
logic value (1 or O), and also in terms of rising and falling
edges. Figure 7 shows the relationship between these two
formats and the master clock period.

The timing characteristics for each signal originate from
one of two sources. The most common one is a set of
properties entered by the user during symbol editing or
network editing. The other source is a set of "assertions"
supplied by the user, which are usually used to describe the
timing behavior of the signal relative to the master clock or
other signals within the circuit under test.

The description of the clock signal itself is a special case. It
is derived from the master clock period and described in
terms of logic values as well as phases and rising and falling
edges. The inclusion of logic values is necessary to maintain
the correct logic value in cases where the clock passes
through gated circuitry, or where events occur only on the
rising or falling edge. Also, the clock may be defined as
having skew, which describes the area of uncertainty around
the occurrences of the clock edge. Skew compensates for
the propagation delay that may accumulate as the clock
signal passes through the circuitry.

During execution, the Timing Verifier completes two basic
tasks. First it produces a timing "profile" for each signal which
records its timing characteristics over the master clock
period, as shown in Figure 7. Second, it evaluates all timing

Menlor
IDEA1000

B

(a)

WORST CASE
Error Flag on:
S/A Violation
S/B Violation

B

CASE S = 0
Error Flag on:
S/A Violation

CASE S = 1
Error Flag on:
S/B Violation

Figure 8

relationships between signals, as defined by their respective
properties. If any defined relationship between a signal and
the clock (or another signal) is violated, then a timing error is
reported.

The Timing Verifier can be run on a "worst case" basis,
where all timing relationships are examined on the basis of
the changing/stable characteristic alone. Although quite
thorough, this approach may call out many timing errors that
are not possible given the circuit's intended function. For
example, Figure 8a shows a simple multiplex component with
data inputs A and B, a selector input S and an output Z. Lefs
assume that the A and B inputs have a specified setup time
in relation to the S input. In a worst case test, the timing
verifier would look at only changing/stable characteristics for
the A B and S signals and report any instance where either
the A or B signal became stable too late in relation to the S
signal. In reality, the only valid relationship is between S and
the currently selected input, either A or B. To test within this
limited case, a boolean value must be specified for S. The
state of this value determines which input has been selected
and therefore should be tested for the requisite hold time.
Figure 8b illustrates the two possibilities. By introducing
individual cases of this type, the user can narrow the range
of reported errors to within desired limits.

Programmable Netlister
The Mentor Netlister is a universal tool for conveying design

files to an external simulator, CAD system or data base. It
formats the output of the Design Expander according to
definitions in a brief Pascal program entered by the user.

The Netlister is provided with a set of Pascal procedures
which greatly simplify the task of searching the Design
Expander output. This allows the Netlister to function as a
data base query tool as well as a netlister to external
systems. Calls are available for sequencing through nets,
components, pins and properties. Additional procedures
allow any of these to be formatted into ASCII strings for
storage or printing.

Through Pascal coding, the user has great flexibility in
determining the output of the Netlister. For instance, arbitrary
text can be included along with connectivity information,
component names updated, and specific properties located
and processed. In this manner, the IDEA lOOO Netlister
avoids the problems associated with fixed format Netlisters.
Mentor provides many of the more common program
interfaces. For additional formats, only a brief Pascal program
is necessary to adapt the Netlister to your current output
requirements.

Mentor Graphics Corporation
10200 S.W. Nimbus Avenue, G-7
Portland, OR 97223 (503) 620-9817

Officers

Directors

Principal
Investors

Auditors

Bank

Legal Counsel

Sales Offices

Thomas H. Bruggere
President,
Chief Executive Officer

Gerard H. Langeler
Vice President, Marketing

Thomas H. Bruggere
President,
Chief Executive Officer

David R. Hathaway
General Partner
Venrock Associates
New York, NY

Greylock Management
Corporation
Boston, MA

Hambrecht & Quist
San Francisco, CA

Peat, Marwick, Mitchell & Co.
Portland, OR

First Interstate Bank of Oregon
Portland, OR

Stoel, Rives, Boley, Fraser & Wyse
Portland, OR

2001 Gateway Place
Suite 195
San Jose, CA 95110
(408) 294-9933

4000 MacArthur Blvd.
Suite 3000
Newport Beach, CA 92660
(714) 851-6431

David C. Moffenbeier
Vice President, Finance

Stephen Swerling
Vice President, Engineering

Robert E. Schroeder
Former President,
Qume Corporation
Palo Alto, CA

Thomas J. Fretz
Vice President, Sales

Lamoreaux, Glynn & Associates
San Francisco, CA

L.F. Rothschild, Unterberg,
Towbin
New York, NY

Sutter Hill Ventures
Palo Alto, CA

Venrock Associates
New York, NY

420 Bedford Street
Suite 160
Lexington, MA 02173
(617) 863-5776

4825 LB.J. Freeway
Dallas, TX 75234

©Mentor Graphics Corp.
|£>2-&5 5 |Ct

Printed in USA 1002A SWW 11/82

TOOLS

I

DESIGN EXPANDER PROGRAMMABLE

- Symbol Editor
- Network Editcjr
- Designer Travel

/CIRCUIT DESIG

and Checker
and Checker

rser

NETLISTER

DESIGN
CREATION TOOLS
An Overview

IDEA lOOO is a self-contained, computer-aided
engineering (CAE) system dedicated to the design and
analysis of complex electronic circuitry. The system is
integrated with Apollo DOMAIN computer workstations
linked together in a distributed network architecture.
This way, each operator receives the benefit of
independent 32-bit local processing and high resolution
graphics, but still has full access to a common data
base shared by the system as a whole, without the
performance degradation of a central host
architecture.

Within the IDEA lOOO system are a number of
software modules used to implement the various
phases of the logic or circuit design process. These
include Structured Logic/Circuit Design, Interactive
Logic Simulation, Timing Verification, Project
Communications, Document Preparation, Formattable
Netlist/Plot and CAD/CAE Programming. Each of these
components is tied into a high-performance full
relational data base management system for fast,
efficient access to any required information (Figure 1).

The Structured Logic/Circuit Design (SLD) module of
IDEA lOOO is an integrated set of software tools
permitting the creation of logic and/or circuit designs
through a graphics-oriented user interface (Figure 2).
These tools let the engineer construct a design using
computer graphic techniques which eliminate the
drudgery of conventional drafting. First, a set of logic
symbols can be created using the Symbol editor. These
symbols, along with those from the Mentor-supplied
Parts Library, are called upon through the Network
Editor to produce the schematic design "worksheef'-a
graphic representation of the circuit generated on the
IDEA lOOO workstation's CRT. The user interacts with
the Network Editor to logically connect the symbols
through "nets", lines which represent various signal
paths. All user-created symbols and worksheets are
subject to checking before use in network editing. This
is done to ensure their compatibility with other IDEA
lOOO software components. If an inconsistency is
found, error messages point to the source.

In the course of a single design, any number of
Network Editor worksheets may be produced and
connected to describe the completed logic circuitry.
These sheets can be symbolically connected in a
horizontal manner to represent a "flat" design, and also
organized vertically to represent a hierarchical design
format. Figure 3 depicts a simple "flat" design
comprised of three worksheets. The sheets are
automatically linked through the connection points
they have in common.

STRUCTURED
LOGIC/CIRCUIT

DESIGN

TIMING
VERIFIER

INTERACTIVE
LOGIC

SIMULATION

PROJECT
COM­

MUNICATION

DBMS

Figure 1

DOCUMENT FORMATTABLE CAE/CAD
PREPARATION NETLIST/PLOT PROGRAMMING

SYMBOL
EDITOR
SYMBOL
EDITOR SYMBOL
SYMBOL
EDITOR

CHECKER

USER -<
INTERFACE

NETWORK
EDITOR

USER
SYMBOLS

PARTS
LIBRARY

NETWORK
CHECKER

USER
WORK

SHEETS

EXPANDER

:—c

Figure 2

CALC/Sheet 1

TO
NETLISTER

TO
INTERACTIVE LOGIC SIMULATOR

AND TIMING VERIFIER

CALC/Sheet 2

Mentor
IDEA 1000

Hierarchical organization of worksheets provides a
powerful and sophisticated means of breaking a
complex design project down into manageable parts.
Figure 4 shows a hypothetical design project organized
into three hierarchical levels. At the bottom level, a
series of three worksheets is produced using user-
created symbols and the Mentor parts library. These
sheets are inter-connected in the "flat" manner to
make a component called SUBCOM. Using the symbol
editor, this component is condensed from three
worksheets into a single symbol which will represent all
of SUBCOM at the next level up in the hierarchy.

Moving one step up the hierarchy, a device called
COMM is represented by a single worksheet. Notice
that the SUBCOM symbol from the preceding level is
now incorporated in this higher-level worksheet. The
other component symbol, ADD2, would have evolved
in a similar manner. The AND gate, C3, would have
come directly from the parts library. Once again, the
Symbol Editor is used to condense the entire COMM
worksheet into a single symbol with the same name.

At the top of the hierarchy is the master worksheet,
SYSTEM. The symbol COMM now becomes one of the
four major function blocks making up the system as a
whole. The symbols for the other function blocks would
have undergone similar hierarchical processing before
being included in this final worksheet, which embodies
all the information accumulated from lower-level
worksheets.

An important aspect of the hierarchical approach is
that the design can be initiated at any level and then
proceed either up or down the hierarchical tree. In the
example just given, the middle-level component,
COMM, could have been created and defined first,
using just the symbols for SUBCOM and ADD2. Their
related worksheets could have been produced later.
There are no practical limits to the number of levels in
the hierarchy.

When a worksheet or series of worksheets is
complete, it is ready for processing by the Design
Expander, which creates a "flattened" design file
describing the circuit in its most primitive terms. This file
can be processed for simulation, timing verification, or
fed to the Netlister. Also, the output of the Design
Expander can be merged with files that describe the
actual physical properties of the design; for example,
propagation delays.

SYSTEM/Sheet 1

o

TEMP

K S
COMM

L • Y I
1

J o o

PLOT

"I

DIV

COMM/Sheet 1

K K S

L
0- COMM Y

—O

MENTOR
PARTS LIBRARY

Figure 4

DESIGN
CREATION TOOLS

PIN spacing: 8.25 Inch
GRID: NO Snap 8.1 6.1

Display every 1
SELECT COUNT: 6

Editing
Back Travel
INITIAL TERHINAL
ARC RECTANGLE
ADD PIN COPY
IELETE HOVE
RENIIE SHHSI
SCALE Fraaes
Properties IELP

X

7 A L S Q 0

0—
10

/ \

/^OUT
/ 15

\ /

. I .1T N.AND 15
sss
15
sss

C A S E T Y P E T T L
HARK 6,1.1
VIEw ARea 6.1,3.5
HARK 6.1,1.4
SELect ARea 5.6,3.2
6ASEpolnt 3,2.4
HOVe 6 6
TEHplate Page 11 8.5 6.25 Inches
TEHplate Page 5.5 4.25 6.25 Inches
VIEw ALL
UNSelect ALL
HARK -2.5,-1.2
SELect ARea -2.5,-1.2
HARK -2.4,-.9
VIEw ARea 6,6.7
ORIGln -2,-.5
• HENTOR GRAPHICS IDEA 1668 SYH80L EBITOR

Su*Ed>L

Symbol Editor and Checker
Figure 5

The Symbol Editor (SYMED) is an interactive graphics
program which allows symbols to be created and
specific properties attached to them. These symbols
are then filed for subsequent use in the network editor.
Symbols may be created for "primitives", such as gates;
or for arbitrarily complex subsystems.

The typical Symbol Editor display includes two
graphics windows and a number of text windows
(Figure 5). The top graphics window acts as the
worksheet where the user graphically constructs the
symbol. The lower graphics window acts as a context
view with the shaded area locating the current
position of the main window in relatbn to the overall

worksheet space. This gives the user a complete
overview of larger drawings and allows easy
movement of the main window to any location within
the drawing.

The images in both windows can be expanded, con­
tracted, and moved. Also, the graphic environment
within the worksheet can be programmed to meet
specific user requirements, such as grid spacing and
visibility. The other windows provide a cursor-activated
menu, a command transcript list and the current
command entered for execution.

The user constructs the actual symbol by using a
touchpad- or tablet-controlled cursor in combination

Mentor
IDEA 1000

with various commands. There are several ways to
enter these commands, including a menu and "soft"
keys that permit rapid typing and interaction with the
command set. Once drawn, all graphic elements can
be quickly moved to any desired location. In building
an image for the symbol, the user can call upon
certain standardized graphic elements such as lines,
arcs and pins, which define logical connection points. In
addition, the user can derive symbols from worksheets
produced by the Network editor.

The Symbol Editor also allows "properties" to be
attached to each symbol. Some of these properties
have reserved names and their data is used by
other software modules in the IDEA lOOO system.
Representative properties reserved by IDEA lOOO
include the following types:

PIN-labels pins for logical connections with pins
attached to other symbols.

MODEL-contains generic logic name (e.g. NAND).
RISE-indicates rise time in numeric units.
FALL-indicates fall time in numeric units.
DRIVE-indicates a drive strength for each logic level.

Other properties include any user-defined attributes
such as reference designations, pin numbers, etc. There
is no limit to the number of user-supplied properties
that may be attached to a symbol.

The size and visibility orientation of text representing
property data is adjustable to fit constraints presented
by other graphic elements. When a symbol is rotated,
any associated text is automatically rotated to
maintain its readability, eliminating the need for
multiple symbols representing all possible symbol/text
orientations. Property data can be fixed permanently,
or made alterable during network editing.

Another powerful tool within the Symbol Editor is the
use of case frames, which can convert generic logic
functions into specific logic symbols. The use of case
frames is illustrated in Figure 6, where Figure 6a depicts
an AND gate as entered into the Symbol Editor's
worksheet frame. This gate has two inputs. Obviously,
many designs will require variations on this standard
version, and this is accomplished by drawing each
basic variation and enclosing it in a rectangular frame.
Each frame is then labeled by a case statement
placed beneath frame. Figure 6b shows how a single
Symbol Editor Worksheet and case/frames would be
applied to create two versions of an AND gate, one
with two inputs, another with three.

Going one step further, case/frames can be nested

(B)
3
_>

CASE INP = 2 CASE INP

(C) :t> 03- £L>
CASE LOC = CMOS CASE LOC = TTL

Figure 6

to create an even wider variety of specific symbols
from a generic one. In Figure 6C, the frames
representing two and three inputs have been nested
inside an additional set of frames to handle both
CMOS and TTL logic. When using such symbol
variations with the Network Editor, each is separately
callable simply by indicating the proper frame via the
frame parameter.

When a symbol has been completely described
using the Symbol Editor, the results are passed through
the Symbol Checker (SYMCHECK). This program
inspects the symbol to insure that it conforms to the
format accepted by the IDEA lOOO system. This
includes checking case frames and their nesting,
confirming proper use of property text types, and
verifying the placement of pins and other graphic
elements. In the case of an inconsistency, the Symbol
Checker will produce an error message describing the
details of the problem.

Once the Symbol Checker has verified a symbol, it
can be permanently filed for use during network
editing.

DESIGN
CREATION TOOLS

Figure 7

Network Editor
The Network Editor (NETED) is an interactive graphic

system which connects symbols into a circuit design.
The symbols used may be user-defined through the
Symbol Editor or originate from the Mentor Parts Library.
Also, each symbol may represent any level of
complexity, from primitive circuit functions to complex
components previously defined by the user. The output
of the Network Editor is a "worksheet" describing an
entire design or a portion of a design that continues
onto other worksheets. As presented in the overview,
the connections between worksheets may be
organized into a "flat" design and also connected
vertically in a hierarchy.

Like the Symbol Editor, the Network Editor presents
the user with two main graphics windows, one
for entering components and making netroute
connections, the other acting as a reference map of
the overall worksheet (Figure 7). The text windows
provide a cursor-directed command menu, a
command transcript list, a current command entry and
status information on the current worksheet. User
interaction with the Network Editor takes place through
an optimized set of cursor and command operations.

The Network Editor permits easy entry of symbols
into the worksheet space presented by either graphic
window. If the symbol files include case frames, the

Menior
IDEA1000

Q Q Q Q Q
NET

BASE
MOVE

*
\

* I

\ r \
\i i \i i

\ r ^ w i \ r ^
V

GROUP MOVE

—D-D--D-
GROUP ROTATE

Q1 ^ Q2 Q3|^^ Q4| |

 ̂̂ ̂ LJ>)
o,0 -D -0 o<D

GROUP PIVOT

Figure 8

particular case desired is specified at the time the
symbol is called. In addition, a "preview" window can
be invoked to permit visual inspection of the symbol
before it goes to the worksheet. Both the size of the
sheet and the size of symbols can be user-defined.

By moving the cursor, copies of the called symbols
can be easily entered in either a single or successive
locations. Symbols can also be rapidly moved, deleted,
rotated and flipped, with text automatically adjusted
for a proper fit. Also, the user can zoom, pan and scroll
through the worksheet area for rapid access to any
given area.

IDEA lOOO also offers a powerful set of commands
for manipulating groups of symbols, as shown in Figure
8. A group move command allows a group of cursor-

GLOBAL(G)

Figure 9

selected symbols to be moved relative to a single
"base point". A group rotate command allows an in­
line group of symbols to be rotated in 90° increments
about a common axis. A group pivot command allows
a number of preselected symbols to be rotated
around their individual pivot points.

Logical connections between symbols on the
worksheet are called "nets", and may represent either
a single bit path or bus, which can be entered as a
bold line to graphically separate it from individual lines.
Nets are entered graphically as line segments that join
with symbols or other nets. Each net can have property
text (e.g. a signal name) attached to it with the
associated property data supplying information used
by other programs in the IDEA lOOO system. Whenever
symbols are moved, any net connections between
them are automatically stretched or "rubberbanded"
to maintain logical connections previously entered
by the user.

Figure 9 describes the function of several properties
associated with the description of nets. Figure 9a shows
how the NET property includes text to label a bus DATA
and define its width as eight bits. Figure 9b shows how
the GLOBAL property is used to define a symbol that
represents a universal point, such as ground. Fig. 9c
shows how the BUS RIPPER property permits specific
lines to be tapped off a main bus at a connector point.

DESIGN
CREATION TOOLS

SYS/Sheet 1 SYS/Sheet 2

O- A5

DBUS (0:7)
O M5

DBUS (0:7)

bO
b1
b2

M4 b4
b5
b6
b7

0
1
2

M5 I
5
6

bO
b1
b2

M4 b4
b5
b6
b7

0
1
2

M5 I
5
6

bO
b1
b2

M4 b4
b5
b6
b7

0
1
2

M5 I
5
6

bO
b1
b2

M4 b4
b5
b6
b7

0
1
2

M5 I
5
6

bO
b1
b2

M4 b4
b5
b6
b7

0
1
2

M5 I
5
6

bO
b1
b2

M4 b4
b5
b6
b7

0
1
2

M5 I
5
6

bO
b1
b2

M4 b4
b5
b6
b7

0
1
2

M5 I
5
6

bO
b1
b2

M4 b4
b5
b6
b7

0
1
2

M5 I
5
6

bO
b1
b2

M4 b4
b5
b6
b7

>
IF LOGIC = T

D>
IF LOGIC = F

Figure 10

Figure lO shows the function of a property called
CONNECTOR, which graphically defines the connection
point between the circuitry on one worksheet and the
circuitry on an accompanying sheet. On the sheet
marked "SYS/sheet 1", a user-defined connector symbol
has been attached to the A5 output pin of the AND
gate, and also to the bus labeled DBUS (0:7). Similar
connector symbols have been attached to the
corresponding nets on "SYS/sheet 2". The bottom
illustration shows how the two sheets will later be
merged during logic implementation by other parts of
the IDEA lOOO system.

Another powerful and important tool for network
editing is the use of case frames. Cases are defined by
drawing a rectangular frame around the symbol in
question and then inserting a case statement
underneath the frame. Case frames have two uses in
network editing. One is to define alternative conditions,
as illustrated in Figure 11, where either an inverted or
non-inverted output will be specified depending on the
logic polarity chosen in the final design. Case frames of
this type are later processed by the Design Expander,
which accesses user-supplied data to resolve each set
of conditional cases.

Figure 11

Figure 12 gives a detailed look at how case frames
can be used for symbol replication. In this instance, the
case frames are nested to create a two-dimensional
array. The symbolic device has an address input A, and
a data output D. When the array is formed, this input
and output must be systematically connected to an
8-bit data bus and 4-bit address bus, shown outside the
case frames. To accomplish this, two case frames are
nested, one to handle the eight data bus hookups, the
other to accomplish the address connections. The
inside frame creates the array's "rows" and the outside
frame creates the "columns". Thus, only a small amount
of graphic space and user time have been required to
create a fairly complex array. In this example, the case
frame parameters were specified as absolutes (e.g., a
= O to 7) however, they also could have been
specified as variables (e.g., i = O to N) subject to later
resolution by the user.

Once a worksheet is completed, it is sent to the Net
Checker to insure that the worksheet file corresponds
to the conventions of the IDEA lOOO system. Any
inconsistencies will result in error messages that detail
the particulars of the problem.

Menlor
IDEA1000

ABUS (0:3) DBUS (0:7) ABUS (0:3) DBUS (0:7) ABUS (0:3) ABUS (b)
A D

DBUS (a) DBUS (0:7)
A D

FOR a = 0 to 7
FOR b = 0 to 3

CO •
3 •
CO -
Q-

co-
3 -
C O -
<•

A, A, A,

D

•o
• 1
• 2
• 3
• 4
• 5
- 6
• 7

Figure 12

DESIGN
CREATION TOOLS

=Br

:3x

&
0
Br

:^-=3r

X A A
— (N CO

» * S I G N

» * S H I F T _ B Y _ 1

» * S H I F T _ B Y _ 2

» * S H I F T _ B Y _ 4 _ 0 U T

— » X _ B Y _ 0 _ D E T E C T O R

-t> >. » B (N • 3)

B C N * 2)

Br -*> B (N • 1)

Q
Z
CD

VIEW: 'sh2' of /user/geraldp/test/testcasel
CONTEXT: '(synbol)' for /user/geraldp/test/testcasel
SELECT COUNT: 8
Cannot select subtrees in context eindou

POP
DROP
TRAVEL
TRAVERSE

Display the level of hierarchy above the c
Display the level of hierarchy beloe the s
Display the full hierarchy of the selected
Respecifies the root component for the des

Expand 1
UNSELect ALL
I NENTOR GRAPHICS IDEA 1888 DESIGN TRAVERSER
NARK
SELect ARea
Expand l
UNSELect ALL

••h 1 f t._ i n
• CLR+-

A L U

TESTCASEl
<TESTCASE1 »hl>

J7474
<87474 sheetl>

SNAND3
SPORTIN
SPORTOUT

874LS11
S74LS86
BRIP
CXfER
GND.ADD
INVERTER
NET.CONNECT.TO
NET.CONNECT.TO
PORTI
REG
TITLE BLOCK D
VCC.ADD

<TESTCASE1 Sh2>
$7474

<87474 sheetl>
SNAND3
SPORTIN
SPORTOUT

S74LS11
874LS86
BRIP
CXFER
GND.ADD
INVERTER
NET.CONNECT.FRON
NET.CONNECT.FRON
NET.CONNECT.TO
NET.CONNECT.TO
PORTI
TITLE BLOCK D
VCC.ADD

cTESTCASEl sh3>
AND2.ADD
GND.ADD
JNCT.FRON
NET.CONNECT.FRON
NET.CONNECT.FRON
NET.CONNECT.TO
NET.CONNECT.TO
N0R2.ADD
PORTI
PORTO
TITLE BLOCK
TITLE BLOCK D
VCC.ADD

Design Traverser
To complete a design, the user creates as many

worksheets as necessary to describe the circuitry. This
may include many hierarchical levels where the design
is described in progressively greater detail. At any given
level, it may include worksheets connected in a "flat"
manner to describe a single functional block used in
higher levels of the hierarchy.

To give the user maximum control and mobility when
working within a hierarchical design, a Design Traverser
package has been included, with a typical design
shown in Figure 13. The right-hand column uses a
vertical listing scheme to organize the design's various
worksheets, and horizontal identation to indicate each

Figure 13

sheet's relative level in the hierarchy. Within this list,
a cursor can be positioned to graphically select any
desired sheet, which is then displayed in the main
graphic window at the top center.

In addition there is a context window which perform
the same function as its counterparts in the Symbol
and Network Editors. The cursor can be positioned on
a functional block and the system requested to display
how that block is expanded at the next level down in
the design hierarchy. Next to the context window is a
status window which shows worksheet selection in
terms of the IDEA lOOO's filing notation. The Design
Traverser's combination of indented list, graphics

Mentor
IDEA 1000

windows and file status gives an optimum interface for
interacting with complex hierarchical designs.

Design Expander
The task of the Design Expander is to process the

completed worksheets and produce a finalized
description of the design in absolute detail. The output
of the Design Expander is a file usable by other
software tools, both internal and external to
IDEA lOOO.

When processing a design's worksheets, the Design
Expander works down through the hierarchy, adding
more detail at each level. For each sheet, it performs
all operations necessary to expand case frames into
absolute design elements. Where replication of
components has been called for, multiple copies are
produced and each is given an identical number.
Where conditional cases have been indicated, the
correct choice is selected based on user-supplied
parameters.

When the Design Expander has reached the lowest
level of the hierarchy specified by the user, the design
has been translated into a list of its most primitive
components and the nets connecting those
components. The Design Expander's processing can be
"halted" by the user at any particular hierarchical level.
This feature allows the substitution of functional models
(see DESIGN ANALYSIS TOOLS sheet) to represent
components not yet designed down to their most
primitive elements. It also allows functional models to
replace completed components in a form that
simplifies their processing by other IDEA lOOO tools,
such as the Interactive Logic Simulator.

If the design was non-hierarchical and simply
involved the "horizontal" connection of series of
worksheets, then it can be merged with a file of
property values which describe the design's
physicalization, including details such as board position
and gate packaging, etc. In this case, the result would
be an actual hardware description of the design.

In any case, the Design Expander can pass its output
to the Netlister, which creates design data file usable
by external physical CAD systems or analysis tools. The
Design Expander output can also be used by the IDEA
lOOO's Interactive Logic Simulator or Timing Verifier,
powerful debug tools which provide the software
equivalent of a state/timing logic analyzer and a
pattern generator.

Programmable Netlister
The Mentor Netlister is a universal tool for conveying

design files to an external simulator, CAD system or
data base. It formats the output of the Design
Expander according to definitions in a brief Pascal
program entered by the user.

The Netlister is provided with a set of Pascal
procedures which greatly simplify the task of searching
the Design Expander output. This allows the Netlister to
function as a data base query tool as well as a netlister
to external systems. Calls are available for sequencing
through nets, components, pins and properties.
Additional procedures allow any of these to be
formatted into ASCII strings for storage or printing.

Through Pascal coding, the user has great flexibility in
determining the output of the Netlister. For instance,
arbitrary text can be included along with connectivity
information, component names updated, and specific
properties located and processed. In this manner, the
IDEA lOOO Netlister avoids the problems associated
with fixed format Netlisters. Mentor provides many of
the more common program interfaces. For additional
formats, only a brief Pascal program is necessary to
adapt the Netlister to your current output requirements.

Mentor Graphics Corporation
10200 S.W. Nimbus Avenue, G-7
Portland, OR 97223 (503) 620-9817

Officers

Directors

Principal
Investors

Auditors

Bank

Legal Counsel

Sales Offices

Thomas H. Bruggere
President,
Chief Executive Officer

Gerard H. Langeler
Vice President, Marketing

Thomas H. Bruggere
President,
Chief Executive Officer

David R. Elathaway
General Partner
Venrock Associates
New York, NY

Greylock Management
Corporation
Boston MA

Hambrecht & Quist
San Francisco, CA

Peat, Marwick, Mitchell & Co.
Portland, OR

Rrst Interstate Bank of Oregon
Portland, OR

Stoel, Rives, Boley, Fraser & Wyse
Portland, OR

2001 Gateway Race
Suite 195
San Jose, CA 95110
(408) 294-9933

4000 MacArthur Blvd.
Suite 3000
Newport Beach, CA 92660
(714) 851-6431

David C. Moffenbeier
Vice President, Finance

Stephen Swerling
Vice President, Engineering

Robert E. Schroeder
Former President,
Qume Corporation
Palo Mo, CA

Thomas J. Fretz
Vice President, Sales

Lamoreaux. Glynn & Associates
San Francisco, CA

L.F. Rothschild, Unterberg.
Towbin
New York, NY

Sutter Flil Ventures
Palo Mo, CA

Venrock Associates
New York, NY

420 Bedford Street
Suite 160
Lexington, MA 02173
(617) 863-5776

4825 LBJ. Freeway
Dallas, TX 75234

©Mentor Graphics Corp. Printed in USA OOIA SWW11/82

^ v No Uf >

PC-tAM. 6tt cAua < (A^LA)
S old

(^»W [} (\loo

Pvw> QsdU fcu, o^w err* .ffl, \

Tk >po

Xov\ *> L, furJJ ĵ

» < \ 4 " ^ ^ ^ (^

T-C 4£lXl_--6U*v

^Kaa ^>fAA^ Gt< Cu^fev\ "£, ty, (

Lê <rM 6^ t <^.4^.

<yY\A^

pWQtvo^v y0y^6^»

P^wVv {/^ ^W£u (rwl/fov) <rv\ ^ 'VwoK*. M "fe

s£* . 7k "fc/" ^a, (Ywac

p0^ <M*ou^ ^uvw

[* ft*

T^ {̂ 3̂ C\~C~ -~- ̂0</*6 (fa•^t&^-~-^o*v\ ,

r , fto^

-6—W><AA?®\; fjt (AH I^Vtwj

W^, ^s3 '"
ACVA^-VS (u>^v<AVA

Cc*U ̂ ;
£jju6) Pt\t4v0\ cfcv>^

IH. PA. 1^ ;

P*"W<) "£o

PtWj ClnJ&v (ft^tovj 6o C^W^V\M^

*V>

(L (ZoJrSĵ , /vtw ov (/» Cu
^(m v̂ J cU ot̂ ! ĉ , 4

f'(ym" p "••y —&U-^

UjcS^XL^e

(0 p ^ Q r < \ w ^ f < ^ C/AXT \̂ t ̂ ĵ rvt

/YviinA. t4~t ^^Avr*j ^-(aw

^ T N T U j u . ̂ M r ^ w i f t t v f c f

V» fc**v tit <Ar>VK<i ^ fV/YVW- (X^

(rtXo-O (M^ ^ <rvv^ COvAvC (rLv/^H^ »

/ v x j (V f 0

(/«Ytr^<j "~ ^-Vv^j-< 0^-

r
L\ ((<KA (f^KA C\ WN- ,

fCv^(—((VCtrv^C-, /VtyU.̂

u 0 VCV-"1 0\ <l tAAJfa (Jri {fxJ&o ̂ ,

Do C/wt -

TU ̂a Cvw cmf^jfb ̂ ̂ ̂

OAX^V o—K\ (Tta <A ̂ (, ,/, , (X t̂ fclA ,

J)to+A) (M yv\x>A/\̂ (ajvtM

V^vaĴ ^>7WVUe<y4 s

\. / L i,., yV '̂ aJV \

To"—\

(4-xfixA (o c*y*Ĵ AT*A\j \

L<Lov*A- to Cer̂) * ^J vr^s/i t^A^\ Cu

wseu

(\[CA^ ^5* tA^V (K 0\

<%jtXA*-

y-t^/C /XufasOV^C Ŝ AMT r̂̂ V ^ >"'-*» *

£v^(/NcXu^- OjerwV/ ^ •

P ̂ -0-A< KVW^VTnX^ ^ t^x. r *1 f
V ^ U (r w O (A A . ^ c r v ^ o ^ ^ r v W U < f

Jswssd c\

f-3 C ((<**> p/yivd4 $
, AA A(/K—<y*A—&t la, /jrqAM v*^tJ=\yJ 1

<(' ^» . j
foyo*/^ Ct\ NoK^yYv/jr^'L

ClvJC âj •

p<^cX\ <A^) CA, fl*~j yyJlv^ (^ (jT&(^-Yl^ j

(^ VWnrv^ (/^ ptKvJb^ 6 <£ <Xwf pHA

Gfo. (TUXC^-v* • ^ K ĉ̂ o (tx 0vv>^G>i/,

^J<AA <Mx £ (Xaô P '

^ wv|vf.
u.

pejQ (jeW . f M j C l ^ f < * « < \ M / \

CvjJTTM (A/xAW A*J fV\^T/<^)
/VC ĵVv«j IsSiid (7~*X. .

Cv

\ v\

60a

CoYV^fc*. Ovi((</V\AX)

(lA ^

A <i fc*^ * M ^f0{

{^Omt^ C^WC

<Xmwvv~-j (jtAv-̂ \̂ \̂ (\î .

V

CW UM-6 0

Acfj^wW^K^ wW (/W44ac^(. wfc
• Tlv*L&£ ̂

