ELIZA SCRIPTWRITER'S MANUAL

A Manual for the Use of
the ELIZA Conversational Computer System

Paul R. Hayward

Education Research Center
Massachusetts Institute of Technology

Cambridege, Massachusetts

1968

Copyrixht<> 1968

by the Education Research Center at
the Massachusetts Institute of Technology

ACKNOWLEDGEMENTS

The writing of this manual was made possible through
the funds and facilities of the Education Research Center.
| thank Dr. Edwin Taylor for his ideas, guidance, and help
in editing the manual., Dr. Walter Daniels has been very
helpful with the programming aspects of the system,
especially while | was learning the system. Michael Knudsen
wrote Chapter 9 on The Slide-Dictionary System. Finally, |
thank my wife Bonnie, who helped with the typing and
editing, and who has contributed most of all with her
patience, understanding, and love for me.

Paul R. Hayward
February, 1968

PAGE 1

INTRODUCTION

The ELIZA program provides a method for carrying on
teletyped conversations in a natural language between
students and a computer. ELIZA is named for Eliza
Doolittle, the central character of Pygmalion and My EFair
Lady, who, we are sure, can be taught to speak better than
she does now. The program was developed by Professor Joseph
Welizenbaum of the Ak Department of Electrical
Engineering.(1,2) The M,I.T. Education Research Center,
together with collaborators around the country, is beginning
to apply the program to tutoring students and assisting them
in calculations and problem-solving. Some of the present
capabilities of the system are described in a paper by Dr.
Edwin Taylor of the M.I1.T. Department of Physics and the
Education Research Center.(3) The use of small discussion
units with the program, which is described in the manual,
was developed in my bachelor's thesis for the M.I.T.
Department of Physics.(4) The computer presently being used
with the ELIZA program is the large, general purpose, |[BM
7094 in time-sharing mode at the M.I.T. Project MAC and at
the M.I1.T, Computation Center.

This manual is intended for both Inexperienced users
learning how to write scripts and experienced users checking
on some details of the system. Thus, some sections may seem
especially incomprehensible to the beginner. | suggest that
the beginner read Chapters 1 and 2, and then try to write
and play some scripts. The rest of the chapters contain
information not directly related to this first step of
writing a script. For the experienced scriptwriter, the
flow chart of the system on page A30 may be wuseful in
gaining a better understanding of how the system works. |
must add a word of warning to all. The ELIZA system s
constantly being changed and improved, so that within a
short time there will probably be sections of the manual
that will be incomplete or Iincorrect. The Education
Research Center will be able to supply information regarding
any changes.

1. Joseph Weizenbaum, "ELIZA - A Computer Program for the
Study of Natural Language Communication Between Man and
Machine" in Communications of the ACM, Volume 9, Number 1,
page 36, January 1966.

2. Joseph Weizenbaum, "contextual Understanding by
Computers" in Communications of the ACM, Volume 10, Number
8, page 474, August 1967.

3. Fdwin F. Taylor, "The ELIZA Program: Conversational
Tutorial™ in 1967 IEEE lInternational Convention Record,
Part 10.

4., Paul R, Hayward, Flexible Discussion Under Student

.QQDLLQl in the ELIZA Computer Program, Bachelor's Thesis,
M.1.T. Department of Physics, June 13b7.

PAGE 2

Chapter 1 -- THE BASIC ELEMENTS

The basic problem in natural language conversatiop is
how to make the computer understand, as well as pos§ahle,
what the student is saying. In the ELIZA program, this Es
done by searching for certain "key" words and patterns in
the input--the student's part of the dialogue. An important
property of ELIZA is the fact that the rules for analyzing
and responding to the input sentences are not part of the
ELIZA program itself, but are treated as data. They form
what is called a script, and are written in a specific
format. This means that ELIZA is not restricted to a
certain set of recognition patterns and responses, or even
to one natural language, for these are specified by the
scripts and not by the program.

A. The Script

A script is divided into two sections. The keyword
section contains the keywords, along with decomposition
rules and reassembly rules (defined below), which are used
in the analysis of the input. The program section contalns
labels and commands or functions that instruct the computer
what to do when a student input is (or is not) "recognized".
These include printing, calculating, and storing
information. Scriptwriting is the means of instructing the
computer: "When he says this, you say that."

B. An Example Script

WOQD SCRIPT is a simple script that illustrates some of
the basic properties of a script.

WOOD SCRIPT

(CHAIR (10 CHR (

(0 NOT 1 CHAIR 0) CIT 1S AN) XX
(0 CHAIR 0) (IT IS A2 .Y %Y

) NOKEY))

(TABLE (TBL (
(0) (IT 1S NOT A TABLE.) xx
) NOKEY))

(PROG (Woop

GOTO(POPTOP(DAHIN)).

BSTABY ;. v FYBECA s AN THINK ING OF AN OBJECT MADE OF WOOD
1 FOUND IN A HOUSE. WHAT 1S 1T,Qq ')

XX TYPEC'YOU ARE WRONG. ', SemaLy) r

xYY TYPEC'YOU ARE RIGHT. ', SEmpLy)’

*NOKE'Y TYPE('NO. TRY AGAIN. '))

1. The Basic Elements PAGE 3

A conversation might go like this:

r eliza

W 1051.5

WHICH SCRIPT PLEASE
wood

| AM THINKING OF AN OBJECT MADE OF WOOD FOUND IN A HOUSE.
WHAT IS IT. QQ
the floor

NO. TRY AGAIN.
a table

YOU ARE WRONG. IT IS NOT A TABLE.
it is not a chair

YOU ARE WRONG, IT IS A CHAIR,
it is a chair

YOU ARE RIGHT. IT IS A CHAIR.

Here is how the computer uses WOOD SCRIPT to carry on
its part of this conversation.

The program is initiated by typing "r eliza" and
waiting for the response '"WHICH SCRIPT PLEASE". The
computer will usually type in CAPITAL letters, but it does
not matter whether the student uses CAPITAL or lower case
letters., After typing the name of the script, two carriage
returns must be made to signal the computer that the student
has finished, This is true for every Iinput the student

makes.

The script is always started at the label START, where
some computer statement is usually printed. The computer
will then wait for a student response, which when received
is stored in the list named INPUT,.

1. The Basic Elements

PAGE &4

C. Keywords, Decomposition, and Reassembly

As the first step in analyzing the 1list I?PUT, tt?e
omputer scans the sentence for the presence o certain
Eorgs specified in the script--these are the keywords.
CHAIR and TABLE are the keywords in WOOD SCRIPT. If no
keywords are found in the input, the system goes to the
label NOKEY. This is the case with the answer "the floor".
If one or more keywords are discovered in the scanning, the
computer takes the keyword with the highest rank according
to a priority established in the script (see page 11).

Associated with this selected keyword are a number of

i rules, which the computer now applies to the

input sentence. The decomposition rules essentially

determine whether or not the sentence fits a specific form

or pattern. A non-zero positive integer included in these

rules stands for that number of words. 0 (zero) stands for

"any number of words, including no words at al1". As an
example, consider the decomposition rule:

(0 NOT 1 CHAIR 0)

The rule is "any number of words followed by the word NOT
followed by one word followed by the word CHAIR followed by
any number of words", Thus, the answer "it is a chair"
would not fit the rule, while the answer "jit is not a chair"
would fit the rule. There may be a number of decomposition
rgles associated with each keyword. The computer takes the
first such rule associated with the selected keyword and
determines whether or not it fits the sentence. |If it does
not, it tries the next one, If no rule fits the sentence,
the system goes to the label specified at the end of the
keyword _ Structure. For the keyword CHAIR, this pno

I rule label is NOKEY. When it s determined
Fhat a rule fits the sentence, the sentence is decomposed
Into the parts specified by the rule, each part being
numbered according to its location in the sentence for
futurs reference. In the example, the sentence "it is not a
chair" is decomposed in the following manner:

1 2 3 4 5
C CIT 15) (NnOT) (A) (CHAIR) ())

The decomposed Structure is PUt in a list named DECOMP

Associated with each decomposition rule is a

ru ifi '
rule that specifies how the decomposed input Ssentence is to

b .
e put back together, L s composed of a series of words

ﬁfég;r:ul’ﬁgis;efezhf ?‘ﬁmbers Must be non-zero positive
(o] € numbered, decom os
input. In the eéxarmple, the reassemély rul:: e el

EEEEE—— L

1. The Basic Elements PAGE 5

CIT A4S Avh 4

would reassemble a list to read (IT IS A CHAIR.), since
CHAIR is the fourth part of the decomposed input. The name
of the reassembled list is SEMBLY.

After the reassembly is completed, the system goes to
the label that follows the reassembly rule. |In the program
part of the script where the labels are located, certain
programming functions and commands can be used in many
powerful and complex ways. These functions are part of the
OPL computer language (Online Programming Language)
developed by Professor Weizenbaum, and will be described at
length later (see the Appendix). One of their main and most
used purposes is to print out a response to the student,
which can be either the reassembly 1list or any other
sentence desired. For example, at the 1label XX in the
program section of WOOD SCRIPT, the command

TYPE('YOU ARE WRONG. ', SEMBLY),

causes the computer to type "YOU ARE WRONG." followed by the
contents of the list SEMBLY.

After the computer exectues the commands specified in
the program section, control is returned to the student and
the computer waits for another input sentence in response to
what has just been printed. Then the process of searching
for keywords and decomposition rules is repeated all over
again.

PAGE 6 1. The Basic £flements

D. The Program

The program of a script lies between (PROG (NAME and
END). In this section, opL functions or commands are used
to instruct the computer to perform many different
operations, from printing to arithmetic calculations,. Over
a hundred different functions are listed and described in
the Appendix, but the scriptwriter needs to be familiar with
only a few of these, especially at first. The most useful
functions are listed below with page references to the
descriptions.

TYPE A22
TXTPRT A23
GOTO A26
TOP AS
NEWTOP A3
POPTOP A6
IF A20

The.section "General Characteristics of Functions" on page
Al is also very important.

Certain rules of format must be followed when writing

ghe program section of a script. The first two lines must
e:

(PROG (NAME
GOTO(POPTOP(DAHIN)).

This is referred to as the PROG section. "NAME" is the name
ofdthe script, and must consist of no more than six letters
and/or numbers, the first character of which must be a

letter. In some cases i i i
’ t is desirable to use more
functions between these two lines, but these two must be

included for the proper worki
n i .
of the script must be: & of a script. The last ' iine

'his means "C]OSE all .ll n r
rema h the
i | ‘ g parent eseS", and C‘OSQS

The functions of
the pr
by the computer, a prOCeSSp ogram are performed sequentially

s ; called executing
Geaired fasi' oot 3re usually mesdel “to” Ceuse s "certain
completed £ i
separated " BCih- ¢
(252 o oren ()"t function by o comma ",)." a7 perios
. . ¥ - ’, ,
Eirctions \F ond iy e colon is used only for the

g The comm
" a m "
function". ThE /Do B8 e €ans "go on to the next

program" This i 'stop ex |
] & ustiat e 3 ecution of the
mean "stop and wait for az noLpreted by the computer to

input from the console" (see

IIIIIIIIIIIIIIlllllllllllIIIIllllllllllll----..:;______________:::-i‘

1. The Basic Elements PAGE 7

pages 18 and 28 for the exceptions). Each function is
usually written on a different line preceded by a tab, but
this is not necessary. Different sections of the program
may be indicated by labels. These are analogous to
bookmarks, and allow the system to be directed to the marked
location., Labels must consist of no more than six letters
and/or numbers, the first character of which must be a
letter. Labels must always be immediately preceded by an
asterisk (=), and are followed by a function. When the
system goes to a label, it means that the function following
the label is executed.

The following section of a program demonstrates some ofF
these points:

*XY32 TYPE("WHAT ELSE '),
NEWTOP('(FREE C), STORE).
*CONSTR POPTOP(STORE),
GOTO XY32 .

Assume that the analysis of the input caused the system to
go to the label CONSTR. The function POPTOP(STORE)--never
mind for now what this function does--is executed, and since
it is followed by a comma, the function GOTO XY32 s
executed. This causes the system to go to the label XY32.
It does not matter that GOTO XY32 is followed by a period,
since the system transfers to XY32 before encountering the

period. Now the function TYPE('WHAT ELSE ') is executed,
and since it is followed by a comma, the function
NEWTOP('(FREE C), STORE) is executed. The system now

encounters the period following this function so exectuion
of the program is stopped. Since the computer will usual!y
stop and wait for a student input when a period 1is
encountered, each small section like this should wusually
contain a printing function somewhere between the input
analysis label and the period so that the student will know
that the machine is now waiting for him.

The last command preceding a label does not need to be
followed by a period. |f followed by a comma, for example,
the computer will execute that command and thgn the command
following the label, ignoring the label. This allows the
computer to enter in the middle of a series of commands, and
is sometimes very useful.

Each script must contain the special labels START and
NOKEY, since the system assumes that these labels exist.
When a script is started from WHICH SCRIPT PLEASE, it begins
with the function following the label START. |If no keywords
are found in an input (and there is no keyword named NOKEYS,
see page 12), the system goes toO the l1abel NOKEY.

Tabs, spaces, and carriage returns do not affect the
program, except to act as separators between characters.

e

PAGE ¢ 1. The Basic Elements

For example, a tab is usually used to separate 2 label from
the function that follows it

Comments that are not a part of the program may he
included by putting them between sets of iouble slashes
(7)1 » They are not considered part of the script when it is
being played, hut will appear in a printout of the script.
For example:

//THIS IS THE NOKEY SECTION OF THE PROGRAM//

*NOKEY TYPE('PLEASE REPHRASE YOUR ANSWER. %)

This comment is intended for the human programmer reading a
printout of the script. When the computer encounters this
section in the course of executing the program, the
characters included between the double slashes will be
ignored.

1. The Basic Elements PAGE 9

E. The Use of Variables

Variables are used in a program, to provide an
identifier for information that is needed by the script.
For example, one variable might be used to keep track of a
student's score for the purpose of directing the
conversation to harder (or easier) material. Another

variable might be used to identify a fragment of text to be
printed.

Variable names must consist of no more than six
characters, which may be any combination of letters and
numbers that starts with a letter., The following are valid
variable names: X, COUNT, TXT1l, ABCXYZ, SCORE, H32J0Q9.

The value of a variable can be a number, a word, or a
list of words and/or numbers. A word or number is referred
to as a datum, and must consist of six characters or less.
A list provides a means for storing information that is
longer than six letters, and is usually indicated by
parentheses enclosing information. For example:

(THERE ARE 3 APPLES)

is a list, while any one of the words in the 1list is a
datum. A variable is usually given a value by wusing an
equal sign (=), Use of the equal sign in the program means
"replace the value of the left side by the value of the
right side". For example, X=X+l is a valid statement that
increases X by 1, even though it is, strictly speaking,
algebraically meaningless. This is called an

statement. When referring to words or lists in the progr?m
as literal elements rather than variables, an apostrophe (%)
is used immediately preceding the element. For example,
A='B sets the value of A to be the letter B, while A=B sets
the value of A to be the value of B.

TXT1='(THERE ARE 3 APPLES)

is an example of a list referred to as a literal element.

10 1. The Basic Elements
PAGE

F. Input Conventions

When typing .input on the con§ole, th? signal that th:
input is completed is two successive carflage retui:;nzE i
single carriage return does.no: end the input, SO p
continue for several lines if necessary.

If a mistake is made, it may be erased by using the
following symbols: # and " erase the ﬁlngle character
preceding their use. Multiple use of # ?r erase that many
preceding characters. For example, the input

nw¥fow is the tme'""ime for all gd mef####ood men to come
will be read by the computer as
now is the time for all good men to come

The symbols @ and ? erase the entire preceding part of a
current line. The user should continue typing without
carriage return. For example, the input

today istues@trommor?tomorrow is friday
will be read by the computer as

tomorrow is friday

If the input has gone on several lines and the user wants to
erase all of it, he should type $ as the last word of the
wrong input and make two carriage returns. The computer

will then forget the wrong input and type READY. The
correct input can then be typed. For example:

this is a dmemonstration of the way to
erase an input when a mistake $

READY

this is a.demonstration of the way to
eérase an Input when a mistake has been
made in a previous line

Do not use any of these s .
n ' "
other than erasing. ripols (€@ ?) for any purpose

= ggegnaizingle dollar sign ($) is typed as the first
Ll anpugé the system will execute the rest of the
L program. This may be used by the

scriptwriter to check th i
e, e contents of lists or th$ vaLue tgf
complieted, e

user should type the

le. : 5
computer will type b When execution s
appropriate input,

READY and the

PAGE 11

Chapter 2 == USING KEYWORDS

A. The Format

The format for writing keywords with associated
decomposition rules and reassembly rules in a script is
shown below:

KW = keyword

DR = decomposition rule
RR reassembly rule

s more of the same

(KWl (precedence no. keycode (
(DR1) (RR1) labell
(DR2) (RR2) label2

(DRp) (RRp) labeln
) no DR label))
(KW2 //same structure//

(KW //same structure//

(PROG (NAME
GOTO(POPTOP(DAHIN))
//the program section//
END)

B. Keycodes

Immediately preceding the third left parenthesis of
each keyword is the keycode. This is a word of six letters
or less that must be unique for every keyword in the script
since the system uses it to identify individual keywords.
The keycode is usually mnemonic, such as the keycode CHR for
the keyword CHAIR in WOOD SCRIPT (see page 2), but it can
actually be any unique combination of letters. The keycode
may be the same as the keyword if the keyword is less than
six letters.

C. Precedence Numbers

Keywords may be ordered according to their impor tance

in a script. This is done by including a chggdgggg knuggfg
following the second left parenthesis in the ey

structure. This number may be any ;ntegef ;gssz;?gn ggzl?t;
If the number is omitted, the system asslig ‘
precedence number. For example, in WOOD SCRIETothe keé:z:;
CHAIR is more important than the keyword.TABLF' e higher
is the right answer. Therefore, CRtR 1 o 2 g!vend)a .
precedence number (10) than TABLE (0 since omitted).

PAGE 12 2. Using Keywords

D. NOKEYS

Sometimes it is helpful to use decomposition rules on
an input that does not have any keywords. For examnple, when
anticipating numbers within a certain range in the input,
there are too many possibilities to have a keyword for each.
See page lu4 for a description of the detection of numbers
with decomposition rules. Decomposition rules may be used
on such an input by including the keyword NOKEYS 1in the

script as a regular keyword. If no keywords are found in
the input, the system will look for the keyword NOKEYS, I f
it is present, it will be treated as a regular keyword, I f

it is not present, the system will go to the label NOKEY,
The following keyword structure is an example of the use of
NOKEYS.

(NOKEYS (NOKEYS (
(0 DESK 0) (2) XX
(0 FLOOR 0) (2) XX
) NOKEY))

The no decomposition rule label should never be the label
AGAIN (see page 53), since this will result Iin an infinite
loop. This label should usually be NOKEY.

E. The Keystack

When the input is processed, the system scans it from
}gftdto right looking for keywords. The keywords that are
found are stgred in the order of their occurrence in the
égsztt;n a list called the . If a keyword 1is wused
b manyazi;nce in'an input, it will be put on the keystack
i €S as it is used. See the section "Keyword and

ence Analysis Functions" on page Al3 for a description

used to manipulate the

of the functions th
keystack. S e T U

2. Using Keywords PAGE 13

F. Keyword Phrases

Keywords may be single words, or they may be phrases.
Integers, written as (*N), may be used with the same meaning
as in decomposition rules, that 1is, they stand for that

number of words. "Any number of words" is written as (*0).
The only requirement for a keyword phrase is that it start
with a word and not a number. For example, the keyword
phrase:

(SALT (=1) PEPPER (=0) SUGAR (etc.,

is read as "the word SALT followed by one word followed by
the word PEPPER followed by any number of words followed by
the word SUGAR". The keyword phrase must start with a word.

G. Substitutions

Keywords that have the effect of making substitutions
in the input may be included in a script. For example, if a
number of different words have the same meaning, use of
substitutions will save duplication of effort in writing
keywords and decomposition rules. There are several forms
of the substitutions. The words TURF, GRASS, and FIELD are
used as examples.

(TURF = GRASS) simple substitution

When TURF is found in the input, it s replaced by
GRASS. GRASS is not treated as a keyword and is nog put on
the keystack. When decomposition rules are applied, the
substitution has already been made, so GRASS must be used in
place of TURF where needed. This form may be used to delete
words or symbols from the input by leaving GRASS blank. For
example, (, =) would remove all commas from the input.

(TURF = GRASS .) substitute and rescan

TURF is replaced by GRASS, and the system checks to see
if GRASS is a keyword. If it is, it is put on the teysézﬁga
This may be used to allow the computer to accep y comn
misspellings, such as (FEILD=FIELD.). | f both (TURF=GRASS.)
and (GRASS=FIELD.) are included !n th? keyword section,
FIELD will be put on the keystack if it is a keyword.

(TURF = BRASS(40 (FIELD))) substitute and treat as the
keyword FIELD

TURF is replaced by GRASS and FIELD 1s 'put on the

keystack with the precedence number LO. | f FIELDt is ;:i
highest ranking keyword, the actu§l keyword struc urelf
FIELD is found and the decomposition rules applied. 0

precedence number is not included, it is made 0 (zero).

_

Chapter 3 == USING DECOMPOSITION RULES

A. Different Forms

The following forms may be used as single elements in
decomposition rules for the described purpose.

(*GO GOES GOING)

Any of the three words GO, GOES, GOING wused in this
place in the input will fit this part of the decomposition
rule. Any number of words may be used following the
asterisk (=*).

(/MALE FAMILY)

This form is called a tag list. A word will fit this
part of the decomposition rule if it 1is a part of the
categories MALE and FAMILY. The categories are specified in
the keyword section by a description list of the keyword.
For example the keyword (BROTHER DLIST(/MALE FAMILY SIBLNG))
identifies BROTHER as belonging to the categories MALE,
FAMILY, and SIBLNG. These words are the tags, and must
consist of six letters or less. They do not need to be
mnemonic, although these are. In order to fit part of a
decomposition rule of this form, the tags on the DLIST of

the keyword must include all the tags on the tag list in the
decomposition rule.

(COND expression)

This form can be used to detect numbers. "Expression"
may be a Boolean expression. The Boolean operators E, LE,
GE, L,"and G may be used. For example, (COND L 7 AND GE 5)
means "a number less than 7 and greater than or equal to 5".

Lists may be detected if "expression" is the word LIST.

A list is indicated in an i
nput b
treated as a single element. y parentheses, and Is

Numbers that are within i
a cert
number may also be detected. Sin TEAES OF &L SUNETE SR

In this case, " ion"
:ggugg‘be EPS F1 F2, where F1 and F2 aree numg:g;?ss 22
thig paﬁi ggetg:rﬁe"tage range around F1l. A number will fit
plus or minus) F2 ecomposition rule if it is within (either

(COND EPS 4 times F1 of the number F1. For example,

.1) mea :
e - gidaz?hnumber within .1+4=_4 of 4, or any

3. Using Decomposition Rules PAGE 15

$

The dollar sign is used to indicate "any number of letters,
but at least one letter" and may be used as a prefix, as a
suffix, or in the middle of a word. For example:

MEANS any word which begins with the letters MEAN (e.g.,
meant, meanwhile)

$BALL any word which ends with the letters BALL (e.g..,
baseball, football)

$RINGS any vord which contains the letters RING (e.g..,
earrings, fringe)

DOSING any word beginning with the letters DO and ending
with the letters ING (e.g., donothing, doubting)

The following decomposition rule demonstrates the wuse
of these forms:

(0 (COND E 3) (/MALE FAMILY) 0 (*GO GOES GOING) TO$ 0)

It means "any number of words followed by a number equal to
3 followed by a word which belongs to the categories MALE
and FAMILY followed by one of the three words GO, GOES, or
GOING, followed by a word beginning with the letters T0
followed by any number of words'".

B. Ordering

When the highest ranking keyword in an inpgt is found,
its decomposition rules are applied beginning with the first
continuing to the last or until one is found to fit. 'Thus,
an ordering of decomposition rules will help in analyzing ag
input. Generally, the most important rules should be place

i i i i the
first, since these will be the first applied. Alsg,
most general rules (the ones that will fit the most En?ut§)
should be placed last. In particular, if the rule 0 is

used, it should always be placed last, since it will fit any
input,

———

PAGE 16

Chapter 4 =-- USING REASSEMBLY RULES

A. General Uses

There are two general uses of reassembly rules.
first use is to form a sentence from the input to be printed

back by the computer. This use is shown in the
decomposition rule and reassembly rule pair:

(0 1 0 LOVE 0) (WHY DO YOU & 5)

following

To cause the reassembly list to be printed requires a

command in the program section.

The second general use of reassembly rules

extract information from the input, but not necessarily
print back to the student. The following decomposition rule

and reassembly rule pair shows how the value of X
extracted from the input:

(0 X 0 EQUALS 1 0) (5)

The .reassembly list will contain the one word
immediately follows the word EQUALS in the input,
presumably the value of X,

IR o e

4., Using Reassembly Rules PAGE 17

B. Decomposed Words ($)

When the dollar sign is used as part of a decomposition
rule (see page 15), the reassembly rule may be used to
extract all or parts of the word. The word that is
decomposed is split into parts by the dollar sign. For
example, the decomposition rule (DOSING) would separate the
word DOUBTING into three parts: DO UBT ING . These parts
may be referred to in the reassembly rule by a list of the
form (N1,N2). N1 is the integer that stands for the place
of the word in the decomposed input. N2 is the integer that
stands for the part of the decomposed word. For example, if
the decomposition rule

(0 DOSING 0O SRINGS 0)
were applied to the following input

HE IS DOUBTING THE EFFECTIVENESS OF THEIR STRINGENT
MEASURES

the different parts of the decomposed words could be
referred to by the following pairs of numbers:

(2,1) DO
(2,2) UBT
(2,3) ING
(4,1) ST
(4,2) RING
(4,3) ENT

If it is desired to put parts of the separated word back
together, a dollar sign should be used in the reassembly
rule between the pairs of numbers that refer to the parta.
For example, to put back together the first two pafts of g ?
decomposed word ST RING ENT , the reassembly rule should be:

((4,1)8(4,2))

The reassembly 1list would be (STRING). if 1t 18 desargd %Z
refer to the whole word that has been leconposed, Ja 2.g§ed
integer referring to the place of the word in the 'eCO-Dmb]9
input (i.e. N1) should be used alone. Thus, the re?ise
rule (4) would result in a reassembly 1list (STRINGENT).

PAGE 18

Chapter 5 == USING THE PROGRAM

A. Execution of the Program

The result of the analysis of an input is. usually the
specification of a label referring to a place in the program
section of the script. This label is put on the top of a
list called DAHIN (German for "rhere') by the system, The
system transfers control to the program section by executing
the program. This means that the functions in the program
are executed sequentially beginning with the first one.
Since the first function in the program section is usually

GOTO(POPTOP(DAHIN)).

execution of the program will cause the label on top of
DAHIN to be taken off and the system to go toO that label.

When a period is encountered in the program section,
execution of the program is stopped. This is usually
interpreted by the system to mean that it should wait for '
another input. However, there are certain exceptions. When ?
execution is stopped, the system checks the list DAHIN. | f
it is empty, and the variable KEY is zero (see page 28), the
system waits for an input. If there is a label on top of ‘
DAHIN, the program is executed again, which has the effect
of sending the system to that label. For example:

NEWTOP("START,DAHIN) .

would cause the system to go to the label START, the same

effect as the function: GOTO START. If the system finds 2

llSt Qn.top of DAHIN, it assumes that this indicates 3

Sz:?v;s!onal transfen", which is useful when more than one

221 g S|tsmused (see "Changing Scripts" on the next page.)

i Yf em assumes that the list contains a label and the
e of a script. This could be done, for example, by:

NEWTOP('(START WOOD),DAHIN)

In this case the system checks to see

e.g. WO i
e.g. START, and the program 13 Tepiaced by the tap L elMNEE

the same, t is executed again. If it is not
empty. %hu?? 3%Z£ez %?eat§ the situation ;s if DAHIN were
that the system wil] ST is put on DAHIN, it has the effect
only when the script 520;0 the léhel on the top of the 1list
is being played, € name is on the bottom of the list

if the bottom element,

This checki
. Ng procedur i .
with other aspects of the ose;:t?gzwgfdligra”WAt;cal‘y S
e

Oon page A30,

"Flow

Chart of the System" system in the

5. Using the Program PAGE 19

B. Group Areas

The ELIZA system provides a number of group areas where
scripts may be located in a plavyable condition, even though
only one script may be played at a time. The name of each
group area is SA(N) where the groups are distinguished by
the integer N. The control script (see Chapter ©, which
begins on page 35) is always located in group area SA(C0).
The script specified in response to WHICH SCRIPT PLEASE s
read or brought into group area SA(l1). Other scripts may be
brought into other areas, either by using the function
SCRIPT or by using the control script. The value of the
variable SCRPN(N) is the name of the script in group area N.
If there is no script in a particular area, the value |is 0
(zero). The name of the keystack of each group area is
KA(N). The variable GROUP is always equal to the number of
the presently active group area where the script that is
being played is located. Thus if the scriptwriter wants to
refer to the presently active keystack, he should write
KA(GROUP). The number of group areas is indefinite, but if
more than three or four are used (depending on the size of
the scripts), the available space in the computer core
memory will be exhausted.

C. Changing Scripts

To change a script means to make a different scr!pt
active by switching control of the conversation to It.
Scripts may be changed for a number of reasons. The
scriptwriter may wish to change the subject of discussion e
something covered in another script. With the new script
will come a new set of keywords and decomposition rules, It
is also easier to program and correct a number of small
scripts rather than one large one.

In order to change scripts, four things must be ?one if
the scriptwriter is going to program the ?hange hlmsglf.
(An alternative method using the control script IS qescrlbﬁd
on page U48.) (1) The script must be read Ih%O (t e
appropriate group area by using the function SCRIP hsee
page A24), DO NOT read a script into the group area W e;$
the presently active script is located! (2) Set GROUP c:quis
to the number of the group area where the new Scrip s
located. (3) Put the label where the system S?OU‘d £0 ;? thz
new script on top of DAHIN, (&) Include a period to te
system to stop executing the progran. For example:

SCRIPT(2, '"ELEVTR),
GROUP=2,
NEWTOP('START,DAHIN) .

computer to read the
to transfer
to

This series of commands causes the A(2)
script named ELEVTR into group area = 4 dqd) and
control to area 2 (when the period is encountered),

———

AGE 20 5. Using the Program
P

i Y tion of ELEVIR
label START in the program SecC y
gngthheThe order of the three commands is not important,

D. Variables and Scripts

When the scriptwriter is using'a numhea of Sﬁrlnts, it
is important to distinguish the varnablp§ known only to
one script from those "rnown" to all scripts. For example,
the variable X might be used to keep track of the number of

wrong answers the student gives in each scrlpt. g X 1S
used for this purpose in different scripts, the systen
should know that there are in effect Adifferent Xs. The

variable Y might be used to keep track of the total number
of wrong answers in all scripts, and the system should know
that when Y is referred to in different scripts, It 1is the
same Y. The functions that enable the scriptwriter to
distinguish these cases are COMMON and OWN or OWNLIST,
COMMON should contain the names of all the variables that
should be known to all scripts. For example: b

COMMON(Y, STOUT, STOUTN, PLACE, SCRNAM) ,

tells the computer that the variables Y, STOUT, STOUTN,
PLACE, and SCRNAM are to be known to all scripts in common.
The common variables are usually, but not always, listed in
the first script to be played.

OWN and OWNLIST provide different ways to specify
variables to be "bound" or known only to the script that :
lnc]udes the statement. OWN is used when specifying the
variables without giving them values. For example:

OWN(X,OLDLAB,OLDNAM,)

tells the computer that the variables X, OLDLAB, and OLDNAH
are to be known only to the script in which the OUN
sta?ement occurs. The last variable rnust he followed by @
period (e.g, "OLDNAM."). OWNLIST is used to give values 0

some of the variables, as w :
ell as the
script. For example:. making them local to

OWNLIST(X,OLDLAB, OLDNAM.) AND (J=1) (MTA="'(A LIST)),

€
asél;Tkhgrgo?puger that the variables X, OLDLAB, OLDNAM, J.
O be known only to the script in which the

OWNLIST statement
the value of J equgicurS. It also tells the computer to sel

to the list (A LIST) to 1 an1 to set the value of MTA equal

7R BHNLIST . - All the variables not assigned values
should be included in the first set oOf

Again, the last variable in

Y @ period. Each list following

assignment statement for 2

Parentheses following OWNLIST,

variable, include an

e . o o ot o T ——

5. Using the Program

PAGE 21

COMMON, OWN, and OWNLIST differ from other OPL
functions in that they are executed before the program
section Is executed. This means that it does not matter

where they are located in the program section, for they are
executed when the script is read in and before control is

transferred to it. Their values may then be changed in the
script as necessary.

E. Subscripted Variables

Subscripted variables provide a simple notation for
vectors and matrices. I1f the variable is to be a
one-dimensional array or vector, the form is:

B='(ARRAY)

For multi-dimensional arrays, the maximum values must be
given in the form:

C='(ARRAY 10 9 15)

This creates C as a 10 by 9 by 15 array. There is no 1limit
to the number of dimensions or the max i mum value§, but
neither can be infinite. The subscripted variable 1Is now
referred to by statements of the following type:

B(7) = C(4,5,1) + 10

This command says "set the value of the seventh component of
the vector B equal to the value of the element Jlocated at
position 4,5,1 of the array C plus the number 10. The
subscripted variable may appear in any place that a
non-subscripted variable may appear, including as an
argument of a function. The subscripts may be any OPL
program that results in a numerical result. For example:

X = C(SQRT(X), X/Y+1, 3)

is a valid statement.

——

5. Using the Program

PAGE 22
F. Context Awareness--The TABLE Mechanism
Qg§g[igtion

It is often useful when writing scrlpts.to be aware of
which question or statement the person who 1is playing the
script is responding to. It is also useful to use the same
keyword and decomposition rules in analyzing responses to
more than one question, where the computer response is
determined by which question was asked as well as by which
decomposition rule fits. A simple example (i1lustrated
below) is a script that asks a series of questions expecting
yes Or no answers, and selects the next question on the
basis of the preceding answer.

The ELIZA mechanism that makes this "context awareness"”
possible involves additions at two points in the script.
The first is in the program section, at the point where the
question is asked. The other is in the decomposition rules
that will fit possible answers to the question.

In the program section, use is made of a list whose
name is TABLE, which is known by the ELIZA system. A list
containing pairs of words is put on the top of TABLE. The
first word of each pair is called a tag, which can be any
combination of six letters or less. The tag will be used
for detection in the decomposition rules. The second word
of the pair must be a label in the program section of the
script. This label is the location in the program to which
the system will go if the tag is detected. For example, In

TEST1 SCRIPT (page 25) the tags and labels are th
E put on e
list TABLE following the label START:

NEWTOP('(YYY B NNN C O'E D), TABLE)

YYY is a tag and B is the label
associated with it; NNN is 2
tag and C is the label associated with it; O'E is a special

tag which means gtherwise (its u : : , 4D l
T T e il it it |
!
:

In the decom i
position rul le
statements of the person who will 85 Kbat “aithi SeRt

play the script, tags are
Sﬂ%ein ?:?grlgiign Lists associated with the zecomogsltion
by the contents gf o?ﬁebydinc‘9d'"8 the word DLIST followed
anywhere within the rule. Sfceintion 1ist. (Ini paceniherss

under th For example, in TEST1 SCRIPT,
e keyword YES, the decomposition rule is written:

(0 YES 0 DLIST(YYY))

This associates

a descr i : y
the decomposition rule 28t¢§2 A;St that has ¥VY a1t i

o sThadra e e e e

5. Using the Program PAGE 23

The basic operation of the TABLE mechanism is to
compare the list on the top of the 1list TABLE (which s
given the name ELBAT) with the description 1list (if any)
associated with a decomposition rule to see if there are any
identical tags, and if not, to see if there is any 0'E tag
on that list. This is done following an input analysis. An

input analysis will always yield one of the following three
results:

1. A keyword is found, and a decomposition rule fits
the input. When a decomposition rule fits an input, the
reassembly rule is performed. Then ELIZA checks to see if
the decomposition rule has a description 1list, and if it
does, ELIZA checks to see i€ any of the tags on the
description list are also on ELBAT. If it finds a tag that
is on both, the system goes to the label that is associated
with the tag in the word pair on ELBAT. If there are no
matching tags, ELIZA checks to see if there is an 0'E tag on
ELBAT. If there is an O0'E tag, the system goes to the label
associated with the 0'E tag in the word pair on ELBAT. I f
there is no 0'E on ELBAT, the system goes to the label
following the reassembly rule, as if the TABLE mechanism had
not been used at all. There is an important exception to
this checking for the 0'E tag. |f the precedence number of
the keyword is greater than or equal to 10000, the situation
is treated as if there were no O'E tag on ELBAT. This
permits the scriptwriter to override the TABLE mechanism
when desired.

2. A keyword is found, but no decomposition'rule fits
the input. ELIZA checks to see if there is an 0'e tag on
ELBAT, and if there is, the system goes tO its associated
label. If there is no O'E tag on ELBAT, the system goes as
usual to the label specified at the very end of the‘ keyword
structure--the '"no decomposition rule'" label. Again there
is an important exception. |f the precedence nurpber ?f tr'\e
keyword is greater than or equal to 10000, the situation is
treated as if there were no O0'E tag on ELBAT.

3. No keyword is found. ELIZA checks to see if there
is an 0'E tag ;n ELBAT and, if there is, the system g(;es %z
its associated label. |f not, the system goO€s . 2 the
keyword NOKEYS (see page 12), if it anfsLss (SLUEENESE
system goes as usual to the program label NOKEY.

In all cases, after TABLE is checked, ELBAT is taken

r
off, so that the tags and labels put on TAELE are there fo
only one input. This usually empties TABLE.

ver it is
In the case of labels such as NOKEY, howeve L

: Since
usually desired to keep the list on TABLE. S =
the name of the last list taken oFf TABLE, & ican be P

back on again by:

——

PAGE 24

NEHTOP(ELBAT,TABLE)

5. Using the Program

|f the scriptwriter wants to process an input without wusing

TABLE, he should write:
LISTC(ELBAT),

so that the system will not get confused with 2
list.

The tags used are completely arbitrary.
requirement is that the tag used in a 1ist on TABLE
the same as the tag in the description 1list
decomposition rules the scriptwriter wants to detec

If a list of labels is used in place of a la
system will go to the first label on the list the f
its tag matches, the second label the second time
matches, and so on. When the last label on the
reached, it will be used for all succeeding times

tag matches. For example, the following command
written:

NEWTOP('(YYY B NNN C O'E (D E F)),TABLE)

When the 0'§ tag is invoked, the system will go to
the first time, label E the second time, label F ¢
time, label F the fourth time, and so on. This

previous

The only
must be

of the
L.

be‘, the
irst time
its tag
l1ist Is
that the
could be

label O
he third
technique

can be used to avoid trapping the student when the script

:ezeatedly fails to recognize his answer. When a
aken off such a list, the system also takes &

label 15
he first

occurrence of that label off any other lists on ELBAT, For

example, if the list

(YYY B NNN (C D E F) 0'E (D E F))

is put on TABLE and the 0O'E

input, the syst
the list wil¥ bZT will go to the label D the first

(YYY B NNN (C E F) 0'E (E F))

tag 1is invoked following 2"

time and

5. Using the Program PAGE 25

E xgmp l e
TEST1 SCRIPT

(YES (YES (
(0 YES O DLISTC(YYY)) (THAT'S GOOD.) A
) NOKEY))
(NO (NO (
(0 NO 0 DLIST(NNN)) (THAT'S TOO BAD.) A
) NOKEY))
(PROG (TEST1

GOTO(POPTOP(DAHIN)).
*START NEWTOP('(YYY B NNN C O'E D), TABLE),
TYPE("HAVE YOU STUDIED QUANTUM MECHANICS.QQ ').

*A TYPE(SEMBLY),
QUIT(O).

*B TYPE('DID YOU ENJOY QUANTUM MECHANICS.QQ '),
LIST(ELBAT).

*C TYPE('WILL YOU STUDY QUANTUM MECHANICS.QQ '),
LIST(ELBAT).

*D TYPE('PLEASE ANSWER EITHER YES OR NO. o

NEWTOP(ELBAT,TABLE).

*NOKEY TYPE('PLEASE REPHRASE YOUR ANSWER. '),
NEWTOP(ELBAT, TABLE).
END)

conversation gne:

r eliza

W 1518.7

WHICH SCRIPT PLEASE
testl

HAVE YOU STUDIED QUANTUM MECHANICS. QQ
maybe

PLEASE ANSWER EITHER YES OR NO.
yes

DID YOU ENJOY QUANTUM MECHANICS. QQ
yes

THAT'S GOOD.
R 3.,127+1.,983

5. Using the Progran

PAGE 26

conversation two:

r eliza

W 1519.6

WHICH SCRIPT PLEASE
testl

HAVE YOU STUDIED QUANTUM MECHANICS. QQ
no

WILL YOU STUDY QUANTUM MECHANICS. QQ
no

THAT'S TOO BAD.
R 2.187+1.624

TEST1 SCRIPT and the conversations that follow It
demonstrate simply some of the uses of the context awareness
ability of the TABLE mechanism. Conversation gne will be
discussed, and conversation two will serve as an additional
example. In conversation gpne, the script Is called, and the
system begins at the label START. A list containing the
tags and labels in pairs is put on the top of TABLE, as
described above. The question "HAVE YOU STUDIED QUANTUM
MECHANICS. QQ" is asked, and ELIZA waits for a response.
The answer "maybe" does not have a keyword of the script In
It. ELIZA checks and finds an O'E tag on ELBAT, the top
Iils taon TA?LE° The system goes to the label D, associated
it Siates tre, HHE (T0'eld ortomte” iy Telees
i X 8 B . 1lowin
Instructions at label D, the cogg:tefmgf{nts ":tElgE :Ngﬁﬂ
EITHER YES OR NO.", puts the list of tags and labels (which
L? ELBAT) back on TABLE, and waits for a response. This
dé2§m§3§s§?§2°"sf if "yes", which has the keyword YES. The
Since this hasru § 0 YES 0 DLIST(YYY)) is found to fit.
that the tag yyy | oC . Ption list, ELIZA checks and finds
the t : IS on both the description 1ist and ELBAT,

op list on TABLE. The system label B,
associated with YYY on ELBAT 4 goes to the Ia :

. In the process, ELBAT Is

taken off TABLE
instructions at'l:ge{AgLE is now empty, Following the

"DID YOU ENJOY + the computer prints the question
response. QUANTUM MECHANICS. QQ" and waits for 2

The res " " :
rule, but since thzggse yes” fits the same decomposition

then performs ¢t is no list on TABLE this time, ELIZA
where SEMBL he reassembly rujle and goes to the label A,

Y is Printed, "“THAT's Goop."
ngbnigug

The tags in
the descri i i
;E;eiare checked every timeptgon g H
e gput.. The tags on TABLE e
aln points in the program’

a decomposition
le is the one that fits
however, are put on only when
Section of the script are

5. Using the Program

PAGE 27

reached by the system, and they stay on for only one input.
The technique fot using this mechanism effectively in
scripts more complicated than TEST1 SCRIPT is to have only
one specific tag 1In the description 1list for any one
particular decomposition rule. Then, for each decomposition
rule that would fit a possible answer to a question, the tag
that is in its description list and an appropriate label for
the system to go to 1¢ the 1Input 1Is flitted by the
decomposition rule, are put as a pair on TABLE. This point
is the essence of the context awareness, since the
scriptwriter knows what questions or statements will be
printed out, and what responses he expects. TEST1 SCRIPT
shows this technique in elementary form. In answer to the
initial question "HAVE YOU STUDIED QUANTUM MECHANICS. QQ",
(0 YES 0) and (0O NO 0) are the important decomposition
rules. Their associated tags are YYY and NNN respectively.
If (0 YES 0) fits the input, the system should go to the
label B. Thus, label B is associated with the tag YYY: In @a
word pair put on TABLE. Likewise, the system should go to
the label C If (0 NO 0) fits the input, so Jlabel C is
associated with the tag NNN in a word pair put on TABLE. 1 f
any other form of input is typed, the system should go to
label D, so label D is associated with the tag 0'E in a word
pair put on TABLE. A1l of this is accomplished by the one
NEWTOP statement, which puts all of these word pairs in one
list on the top of TABLE. |If there are more decompo§lt30n
rules that the scriptwriter wishes to detect if they fit the
input, this process of putting tags and labels on TAQLE is
simply extended by putting tags in description lists In the
decomposition rules and corresponding pairs on TABLE.
Another important example is the case where. one
decomposition rule is ambiguous in different contexts, 1.€.,
where the scriptwriter may expect the same input 0 ha:e
entirely different meanings. BY putting different labehs
with the tag that 1is in the description l1ist of ht .
decomposition rule on TABLE in the different Foptexts, these
contexts can be distinguished in the decomposition rule.

ing.
One further use of the O'E tag is worth mentioning

. 1
The system will go to the label associated v.vntr.\ an]9 E ;?‘g
if there are no matching tags on the description fitsmd o
TABLE, regardless of whether or not a keyword s ?hus Vi
the input or a decomposition rule is found to fit. dles; o
0'E tag can be used to go to 3 specific label, regartion e
the content of the input. Examine the following sec

the program part of a script:

NEWTOP('(D'E FF), TABLE).
*FF TXTPRT(' (THAT'S INTERESTING),0).,
for
then g0 through the
ion rule anal¥S|S
important), pbut since

: wait
The period following the NEWTOP function means O
an input from the console. ELIZA will i
normal procedure of keywor l and decompos i
(including substitutions, which may be

5. Using the Progran

PAGE 28

E, the system will go to the
there is only an 0'5,22 lggtlon regardless o; Y:Gtt;:e;:gﬁ
label FF in the progdence Aot e keng['ZA the. Imu
o t:e pgfc equal to 10000)5 the program,
l?Hﬁg?gt?;TERgngNG" and continue wit

G. Sentence Analysis

d to analyze the
i functions can be use Sy
et ofigte ?:L the same manner t?at f;:e m;cul
T i These are usually needed only Yte Beel des
b inpgt. the keyword structure usu: B et
ool ity sunce] sis Readers unacqualnted L s
Al gt a?z ;mlt.the following summary an e aThed In
el i snou ters" below. The functlon§ ar: e L
zett:?nignthgogzesword and Sentence Analysis un
eta
page Al3,

ions KEY,
e SSPRGEVIN AT SR s S8 208 L AR d::?ﬁzd keyword
WASKEY, and HIRANK can be used to locate ted to apply this
structure. The system may then be instruc mposition rules,
keyword structure, consisting of dfzol?gt. This moy
reassembly rules, and labels, to a certa Gttt »
be done in the following way. When the S:lon In addition
period in the program, it stops the exegu th; system. I8
to checking the l1ist DAHIN (see page 18 ; S B thelﬁuﬂ
checks the variable KEY. |If KEY is equa However, if KEY Is
case, the system will wait for an input. 2EY R T
not equal to zero, the system assumes that i3 riable
that contains the keyword structure, and tha]d e, applied.
EXP is the list to which the structure shou

d way that
The system then processes the list EXP in the same
it processes input,

= |f the
Input may be reprocessed in this manne;- yields o
keyword structure first applied by the syste

to apply
useful information, the system can be lnstructe?ack. The
the next highest ranking keyword on the keys

. re.
following program section demonstrates this procedu

Z=0,
HIRANK(KA(GROUP),O,-I),
Z=H|RANK(KA(GROUP),0,1),
IFZ 0

. THEN NENTOP('NOKEY,DAHIN).
ELSE KEY=Z, EXP=INPUT. -

When using the TABLE |
be used to do this
section. This is a
unit discussion

: K may
nechanism, the defined function Ktoﬂ*”
(see page A29), instead of this P

the
1so the purpose of the label AGAIN in
Scripts (see page 53),.

5. Using the Program

PAGE 29

The functions MATCH and ASSMBL may be wused to apply
decomposition rules to lists and to reassemble lists from a
decomposed list. For example:

IT=MATCH('(0 NOT 1 CHAIR 0),INPUT,LIST(PMOCED)),
//DECOMPOSED LIST IS PMOCED//
IfF IT .E. 0 THEN GOTO NEXTDR :
ASSMBL('CIT IS A & .),PMOCED,LIST(YLBMES)),
//REASSEMBLY LIST 1S YLBMES//
GOTO XX
XX TYPE('YOU ARE WRONG. ',YLBMES).

This program section decomposes and reassembles in the same
way that the first decomposition and reassembly of the
keyword CHAIR In WOOD SCRIPT is performed (see page 2).

H. Loops

When a scriptwriter wishes to program a certain
operation a number of times, it is usually bad to write the
program section for each separate use. This can take up a
lot of space in the script and is laborious work if the
number is large. A programming technique called a loop may
be used to avoid these problems. The loop uses the same
program section over and over again the required number of
times. The last statement in the section sends Fhe sysyem
to the top of the loop tO perform the operation 'agaln.
Within the section there should be a test that provides 3
way out of the loop. That is, the loop will continue until
the test is met; then the system will go somewhere else.
The following program section demonstrates the use of the
loop to print every other item in the list named TAB. The
sequence reader functions are described on page All.

S=SE \(TAB), //INITIALIZATION//
*PQ xx=282?2§5??) //TOP OF LOOP//
I XX Bt NIL J/TEST//
THEN GOTO PR
XX=SEQLR(S),

TYPE(XX),
GOTO(PQ). //BOTTOM OF LOOP, GO TO TOP//
*PR TYPE('END OF EXAMPLE ').

erations a number of times
e above example. The
will be met at
l1oop". The

the FOR statement (see

The loop can be used to perform OP
where the nurber is not known, a5 in th
scriptwriter should be sure thatl theugebg)
some time, or the result will be an infinite
loop may also be programmed by using
page A20).

LB

PAGE 30 5. Using the Prograr

|. Counters

Counters may be used to keep track of the number of
times a certain operation is performed, such as right
answers, wrong answers, or the number of times through 2a
loop. The counter is a variable that is Increased by a
certain number (usually one) each time the operation s
performed. Counters must be set to initial values before
they are used.

The following program section demonstrates the use of
the variables R and W to keep track of right and wrong
answers. The total score is computed as a percentage score

where one-quarter credit is subtracted for each wrong
answer.

*START R=0, W=0, J/INITIALIZATION//

*RTA R=R+1 ., //A RIGHT ANSWER//

*WRA W=W+1 ., //A WRONG ANSWER//

*SCORE S=((R=W/4)/(R+W))+=100

’,

TYPE('YOUR SCORE IS ' S),.

5. Using the Program

PAGE 31

J. Lists
ELIZA is based on a list processing computer language
called SLIP ("Symmetric List Information Processor")
developed by Professor Weizenbaum. All inputs, keyword

structures, and outputs, for example, are treated as l1lists,
A list consists of a series of cells that are linked
together, Each cell contains six characters, some of which
may be blanks. If a word that is stored in a list is longer
than six letters, the word is stored in two or more cells.
For example, the list:

T="(THE WEATHER 1S BEAUTIFUL.)

is stored in the computer as a series of cells, where -
indicates a blank:

THE ==~
WEATHE

BEAUTI
FUL===

Each cell is marked as to whether or not It is a wor.'d or
part of a word (see page Al5), so that when tt.we printing
functions are used, the list will be printed in Its original
form. The extra blanks, if any, are not printed. Each cell
on the list is stored in a certain location in the_ computgr
memory called the g i address of the cell. This masé PTE
obtained for a cell by using the functions MADOBJ or SEQ
(see pages A6 and Al2, respectively).

4 : st
When a 1ist is placed on another list, the first 1i

the
becomes a sublist of the other list. In the_mer;lc_)rz a(:fa b
computer, only the name and location of the sybtliemains 5
in 2 single cell in the other 1ist. . The sublis

i $ ublist
its previous location. The name and location of the s

serve as a pointer to it., For example, when

NEWTOP('(1 THINK THAT),T)

: . - S:
is written, the lists are stored iIn the computer 2

SUubljsteszszzszsss|ecce=-
THES~~ THINK=
WEATHE THAT ==
A —
BEAUTI

FUL===-

———

5. Using the Progran
PAGE 32

i ﬂd th‘s may
S b].StS thEmselveS may COlltalll Subllsts, a ¥
u |
continue to any desired depth.

mportant
The preceding considerations aho?;dfs:;za?rzel:smnn :
i ions that operate on H
Ybeg u:LZﬁ ;:ngﬁe sequence reader functions (see page
ist,

K. Special List Problems

i that
There are a couple of special aspects ofco;;?;:r <X
have caused problems to unwary scriptwriters.
following program section:

*M13Q ='(THIS LIST),
TYPE(X),
Y=X,
MTLIST(Y),
GOTO M13Q .

tored
The list X is created by an assignment statemfgtLigg :o =
in the computer. The TYPE function causes TH SISl same
printed. The command Y=X gives Y the value o YRE e the
list, but does not copy it. That is, X and Y DOb SR gad 1
same list. Thus, after MTLIST(Y) is performed, bo g
point to the same empty 1list, even though ther; SN0,
MTLIST(X). Also, when the system goes back to la eN oy
it looks as if X will be reset to (THIS LIST). XO Sl
this list is the one that has been emptied, so that S T8
points to the empty list. Thus, when the TYPE funch mi ght
executed this time, an empty line is printed, whic
not have been the desire of the scriptwriter.

Another problem is concerned with list erasures. t;:
order to provide more available space for the program, 58
system periodically does some automatic clearing up of e
that is not needed. Lists are erased when they are not

t
value of a variable, not a sublist of another list, and O
pointed to by a funct

m
ion. Consider the following progra
section:

*JKL X="(FIRST LIST),
='(SECOND LIST),
GOTO JKL .

When the value of X is

» the FIRST LIST

is no longer ointed to bY
anything. By the time that the system rgiu,ng to the 1abel
JKL, the FIRST L|sT may have been erased, and the storage
filled with something else.
using different variables 10
if the lists are to be used more

area to which X would point
This problem may be
refer to dj

than once.

5. Using the Program PAGE 33

These problems do not apply to variables who
se valu
are data, rather than lists. €2

L. Description Lists

A description list is a list that is "associated" with
another list. This means that the description list can be
referred to by referring to the other list. When the other
list is printed, however, the description 1list 1is not
printed. Thus, description lists can be used to store
information in a sort of “invisible" way since it will not
be part of any output,

There are two ways to make a description 1list. The
first is to use the function MAKEDL (see page A9). The
second is to use the word DLIST followed by the description
list in the other list. For example:

G='(THE OTHER LIST),
MAKEDL('(THE DESCRIPTION LIST),G),

has the same effect as:
G="(THE OTHER LIST DLIST(THE DESCRIPTION LIST)),

The DLIST may be used at any position in the other 1list.
The functions that are concerned with description list are
described on page AY.

M. Paired Information

In mst of the description list functions, it 1?
assumed that the description list is made up of pairs O
data. In the function VAL (see page A9), this ?559mpt'?? ;S
made, even though it does not refer to a description. '5.;
The ability to refer to information stored 1IN palrs.d;r
sometimes helpful in scriptwriting. tor example; cons: !
the situation where the scriptwriter wants the system to £

i the
to one of a certain number of labels. depending zgonbe &

value of a variable. Assume that the i ;; following
number (spelled out) between One and Euve. Lnto gne o the
progra i i has been 5¢ i

gram section, the variable AA elsewhere N the

values one, two, three, four, ©OF five
course of the conversation. The list M4 con

labels as pairs of data.

tains values and

VE START)
Mi="'(ONE XX TWO YY THREE XX FOUR mM13Q FIVE ’

GOTO(VAL(AA, ML)).

i ries
r than using @ S€
i the variable AA.

This technique is much better and fa
of IF statements to determine the value O

PAGE 34 5. Using the Program

N. Long Printouts

When there is a large amount of material to be printed,

the function PRTLC ("print 1lower case") should be used
instead of TYPE or TXTPRT. PRTLC causes a file that is
stored on the disk to be printed. This means that the

material to be printed can be stored on the disk rather than
in a script in memory where there is less available space.
PRTLC also has the advantage that more characters can be
used: all the characters on the teletypewriter IiIncluding
upper and lower case letters. The function PRTUC (“print
upper case') can be used to print a file of only upper case
characters. The formats of PRTLC and PRTUC are described on
page A23,

PAGE 35
Chapter 6 == USING THE CONTROL SCRIPT
A. The Control Script
The control script is a very powerful device for

increasing the computer's versatility as a tutor. When the
control script is used, it is called into group area SA(0)
and ordinarily remains there throughout a discussion. The
control script does the following:

1. Automatically adds often-used keywords (e.g. many
variants of "ves" and "no'") to every script played
during the discussion (Section B).

2. Allows the student to control the conversation by
means of various interruptions (Sections C, D).

3. Provides machinery for manipulating many small,
easily-written "unit" scripts that carry on the
discussion (Sections E, F, G, H).

These services of the control script are described in detail
in this chapter.

B. Control Script Keywords

The keywords of the control script are automatically
added to each script while it s being p}ayed.) The
scriptwriter must use the proper method for br!nging in a
new script. This method is described In section F (1) on
page 48, Certain equivalences oOr substitutions for t?e
words yes, no, and pot are included in the control §crip§i52
save programming for the scriptwriter. The following
shows the equivalences contained in the control script.

(DONT = DO NOT .)
(WON'T = wWILL NOT .)
(ISN'T = IS NOT .)
(AREN'T = ARE NOT .)
(RIGHT = RIGHT ((YES)))
(TRUE = YES.)

(FALSE = NO.)
(INCORRECT = NO.)
(CORRECT = YES.)
(WRONG = NO.)

(0 K = YES .)

(SURE = YES.)

(0K = YES.)

(0.K. = YES.)

(OKAY = YES.)

(OF COURSE NOT NO.)
(CERTAINLY NOT NO.)
(OF COURSE = YES.)
(CERTAINLY = YES.)

_

e

6. Using the Control Script

PAGE 36
(YEAH = YES.)
(NOPE = NO.)

(DON'T = DO NOT.)
(DOESN'T = DO NOT.)
(NOT DLIST(/NOT.))
(CAN'T = CAN NOT.)
(CANNOT = CAN NOT.)
(DIDN'T = DO NOT.)

The substitutions ending in periods mean, for example,
"substitute yes for yeah in the input and resume checking to
see if yeah is a keyword". The DLIST(/NOT) (indicates that
the word belongs to the category indicated by NOT, and any
word in the category will fit a part of a decomposition rule
that is (/NOT). (See the sections on "substitutions", page
13, and "Different Forms", page 1L.)

The fgllowing keyword sections for yes and npgo are
contained in the control script, and thus included in all
scripts while being used.

(YES (YES (

(0(/NOT) 0 (*RIGHT YES) 0 DLIST (CONTRL NO NOQ))

(0 (*YES RIGHT) O DLIST(CONTRL Y Y
) AGAIN)) S
(NO DLIST(/NOT) (NO (

(0 (/NOT) 0 NO O DLIST(CONTRL YES YESQ))

(0 (/NOT) O DLIST(CONT
SCAGRATH 5 S NTRL NO NOQ))

Y

Tﬁ% igdsneEghould be detected by using the TABLE mechanism.

eventugll g and NO should be wused. YESQ and NOQ will

St y be deleted. If yes or po 1is present In the ‘
put, and the appropriate tag YES or NO 1is not on the ﬁ

TABLE, the 1
keywo;ds; abel AGAIN will cause a search for other

The s i
control scsglgtgr|tef may cause keywords to be added to the
I this 1s dope ¥ using the function ADDKEY (see page Al3).
G cation & n the script called to start a glven
the ™initialization script™), the keywords

will effectivel
being played. y be a part of all scripts while they are

It } i
for Wesniently miSls especially helpful to add substitutions

spelled w
topic under -discussion. Fo?rgiamg?:Ton to s _esrticulart

ADDKEY(SA(O),'(SCALER=SCALAR.)),

The keyword
- S added to o .
only during the coursetge control script in this way remalin

and are not nade a perma

: conversation with a single student
ent part of the control script.

B o~

p. Using the Control Script PAGE 37

C. Student Control by Interruption

The control script contains not only commonly used
keywords, but also some control keywords that allow the
student to Iinterrupt the conversation. These control
keywords are added to every unit discussion script;
therefore the student may use these control words at any
time during the discussion. Depending on the type of
control word used, the conversation may or may not return
later to the point of interruption.

A1l the control keywords used have a rank greater than
or equal to 10000, so that they will override an 0'E on the
TABLE (see the section on the TABLE machanism, page 23).
The decomposition rule label for each keyword is AGAIN (see

page 53). In brief, the present control words are the
following:

"{ understand" tells the computer to skip ahead to the
following unit of discussion.

"I do not understand" causes a search for remedial
material provided by the scriptwriter.

"z0 back" causes the computer tO start the present unit of
discussion again.

"quit" causes the discussion to be terminated immediately.

"when i say blt i mean bacon lettuce and tomato" cause?
the computer to record and remember for.the. rest ©O
the conversation whatever substitution or
abbreviation the student uses for his own conve):nlence
(for example, blt for bacon lettuce and tomato/.

ibed more

These control keywords and their synonyms are descr
fully below.

e

PAGE 38

Substitutions and Abbreviationi

10000 IMEAN (
baHERY Eo SAY 0 | MEAN O DLIST(CONTRL IMEAN))

The student is able to make substltutlons
abbreviations of the form "when i say X i mean Y

6. Using the Control Script

substitution of the form (= ¥ o). 18 added to the list

keywords of all scripts including the control script

they are being used in the discussion. The computer
response to a <tatement of this type is ™1 UNDERSTAND.

PLEASE CONTINUE."
Understanding
(AHA = | UNDERSTAND .)

(UNDERSTAND (10000 UNSTAN

(
(0 | 0 UNDERSTAND 0 DLIST(CONTRL UNSTAN))
(KNOW (10000 KNOW (

(0 1 0 KNOW 0 DLIST(CONTRL UNSTAN))

This section enables recognition of a student's
indication of understanding. |t assumes he means that
understands the present unit of discussion. Since
present level of discussion is therefore finished,

system is sent to the label FINISH (see section F).

Lack of Understanding

(UNDERSTAND (10000 UNSTAN (

(01 0 (/NOT) UNDERSTAND 0 DLIST(CONTRL NUNST))

(KNOW (10000 KNOW (
(01 0 (/NOT) KNOW O DLIST(CONTRL NOTKN))

(REPHRASE=1 NOT DLIST(/NOT) UNDERSTAND (10000(UNDERSTAND)H

These keywords should usu

. all

w;th ;he TABLE (see page 22). e
place as tags

i g lagel on TABLE, the computer goes

used in connection
When NUNST and/or NOTKN

understanding. | f when the student indicates lack of

TABLE is not used and the

indicates 1la
ANSWER ANYNAsﬁuof understanding, the computer types "TRY 10

Go Back

(GOBACK = GO BACK
s
(GO BACK (10000 GOBACK (

(0 DLIST(CONTRL GOBACK))
When the stud

en *
discussion again, t wants to begin the present wunit

th = the present scri ' : :
e system is sent to the labelcg;:;Tls read in again

e e

6. Using the Control Script

PAGE 39
Quit
(QUIT (10000 QuUIT (
(0 DLIST(CONTRL QUIT))
The student is able to quit the discussion and return
to the CTSS command level .
D. Overriding the Control Script
It may be desired Iin some situations to ignore oOr

override the whole keyword section of the control script
that has been added to each script. Since the DLIST in the
decomposition rule of every keyword contains the tag CONTRL
(except those for yes and po), use of the tag CONTRL and a
label as a pair in a list put on TABLE will send the system
to the label If a control script decomposition rule fits the
input. This effectively ignores the control script since
the contro]l mechanisms are overridden and not used. AGAIN
would be a good label to use for this purpose. Individual
keywords may be overridden by using the other tag in the
DLIST (e.g., QUIT for the keyword guit) with a 1label as a
pair in a list put on TABLE.

—-_'_—7

PAGE 40 6. Using the Control Script

E. Unit Discussion Scripts

The method of input analysis used by ELIZA makes it
relatively easy to program conversations that are linear In
the sense that they follow 2 prescribed and predetermined
line of argument. For long scripts this 1s undesirable,
since one wants to adapt each conversation to the needs,
desires, and depth of understanding of the individual
student. The basic approach developed for use with the
control script is to break the subject material into small
units of discussion. The units are small and
self-contained, soO they may be ordered in any one of several
ways. Other units may either follow or be used in the
middle of a single unit. Many different branchings may be
anticipated in a unit according to expected student
responses to questions. Wwith a number of units, each with
multiple branchings, the number of paths the discussion may
take becomes very large without the scriptwriter having to
program each separate path in its entirety.

Each 9nit of discussion is contained in a single
scrip?. Wl?hln each unit, the context 1S limited to 23
certain topic, and a linear predetermlned discussion of only

three or four interchanges may be used. Thus, each unit
scri?t.|§ relatively easy to program, without losing overall
flexibility. Also, since each unit 1is independent, more

units can easily be added to supplement existing units.
E. Connections Between Units, Sub=scripting

There are three ways that a given wunit of discussion
TzzcgedStafted- First, the end of the one unit may be
approgriat;nunithi Eermine of conversation and the [CL
e e grmlned. Then the new unit 1S called
needed in the gidan hegin. _SStoRe,, (B LI unit may 0
SN tg' le of another unit. Then the computer is
e eadied. and th remember where the original discussion
Rl LTS Einieh e new unit is called. Third, when the new

ished, the original disucssion unit |is resumed.

Since th .
Sithor s: giscgssion units are independent, they may be used
quentially or as sub=-units of one another.

It is hel

pful to i
E ’ ntroduce , level and
sub-level to characterize the e

units. Uni method of using discussion
Sequentiallg‘gz tired-on t@e same level Iif gthey follow
above. Units e discussion in the first manner described

are on a sub-level and are called -scripis

if they ar s s ey
- = - wo - .,
single discussion, and sub-T:::?:sofmay be goptiitms. L :

any depth desired. conversation used to

The technique developed for

intro 2 1 he
duction of each unit of discussion ¢ O e i
: an

handle 2 wide

6. Using the Control Script PAGE L1

variety of structures of conversation. Particularly
important is the fact that a discussion may continue on a
sub=level through any number of units. When the

conversation finally returns to the unit interrupted by

going to the sub-level, it may return from a unit different
from the first unit on the sub-level.

The following conversation illustrates the use of
seripts as units of discussion. It is designed to show the
structure of a conversation programmed in this manner. The

{jagrammatic representation of the conversation shows the
order in which the scripts are called and the function of
each. MNote especially that FOUR SCRIPT is not itself
concerned with the guessing of the word COUPLE, and might
just as easily be used to quiz a student on the alphabet.
This is the essence of independent unit scripts.

42 6. Using the Control
PAGE

Example Conversation

r eliza
W 2021.4
WHICH SCRIPT PLEASE

one

I AM THINKING OF A WORD THAT MEANS TWO. WHAT DO YOU
THINK IT 1S, QQ
pair

NO, THAT'S NOT IT. ‘
THE WORD | AM THIMNKING OF HAS SIX LETTERS. TRY AGAIN,
double

WRONG AGAIN. HERE IS A HINT.

WHAT IS THE THIRD LETTER OF THE ALPHABET. QQ
c

R1IGHT YOU ARE.

MY WORD BEGINS WITH THAT LETTER. TRY AGAIN.
couple

YOU ARE RIGHT. COUPLE IS THE WORD.

I AM THINKING OF A WORD THAT MEANS NEW. WHAT DO YOU
THINK IT IS. QQ

recent

RIGHT. RECENT IS THE WORD.

THIS IS THE END OF THIS CONVERSATION.
R 8.650+6.066

Diagram of the Conversation

(numbers stand for unit scripts)

top level 1

sub-level \ / \ /

sub sub=-leve] \ /

Script

6. Using the Control Script PAGE 43

ONE SCRIPT

(PROG

«START

« LEAD

*FINISH
*CHANGE
*SUBSCR
«QUIT
*AGAIN

*NOKEY

(ONE
LABEL=POPTOP(DAHIN),
GOTO(LABEL).
STOUT="'(CONCAT NWORD 9),
STOUTN="(NOTYPE),
OWN(PATH.),

PATH="(TWO FIVE),

IF LEMPTY(PATH) THEN

TYPEC('THIS IS THE END OF THIS CONVERSATION.

GOTO QUIT
TYPEC'LINE(L) '),
NEWTOP(' (LEAD ONE),STORE),
PLACE="'START,
SCRANAM=POPTOP(PATH),
GOTO SUBSCR .
GROUP=0, NEWTOP('FINISH,DAHIN).
GROUP=0, NEWTOP('CHANGE,DAHIN).
GROUP=0, NEWTOP('SUBSCR,DAHIN).
GROUP=0, NEWTOP('QUIT,DAHIN).
KKK(KA(GROUP)).
GROUP=0, NEWTOP("NOKEY, DAHIN).

END)

I

6. Using the Control Script
PAGE ULb
TWO SCRIPT
(COUPLE (COUPLE (
(0 DLIST(COUPLE)) () AGAIN
) AGAIN))
(PROG (TWO
LABEL=POPTOP(DAHIN),
GOTO(LABEL).
*START TYPE('! AM THINKING OF A WORD THAT MEANS TWO.
WHAT DO YOU THINK 1T 15.Q0 %) s
NEWTOP('(COUPLE TWOA 0'E TWOB),TABLE),
*TWOA TYPE('RIGHT. COUPLE 1S THE WORD. b I
GOTO FINISH .
*TWOB TYPE('NO, THAT'S NOT IT. "%

PLACE="'START,

SCRNAM="'THREE,

GOTO CHANGE .
*FINISH GROUP=0, NEWTOP('FINISH,DAHIN).
* CHANGE GROUP=0, NEWTOP('CHANGE,DAHIN).
*SUBSCR GROUP=0, NEWTOP('SUBSCR,DAHIN).

*QUIT GROUP=0, NEWTOP('QUIT,DAHIN).
*AGAIN KKK(KA(GROUP)).
*NOKEY GROUP=0, NEWTOP('NOKEY,DAHIN).

END)

5. Using the Control Serint

PAGE

THREE SCRIPT

(COUPLE

(PROG

+START

+THREEA

+*THREESB

*THREEC

+THREED

*FINISH
*CHANGE
*SUBSCR
*QUIT
*AGAIN
*NOKEY

(COUPLE (

(0 DLIST(COUPLE)) () AGAIN

) AGAIN))

(THREE

LABEL=POPTOP(DAHIN),

GOTO(LABEL).

TYPE('THE WORD | AM THINKING OF HAS SIX
LETTERS. TRY AGAIN. '),

NEWTOP(' (COUPLE THREEA 0'E THREEB), TABLE).
TYPE('YOU ARE RIGHT. COUPLE IS THE WORD. '),
GOTO FINISH

TYPE("WRONG AGAIM. HERE IS A HINTS o),
PLACE="START,

SCRNAM="'FOUR,

NEWTOP(' (THREEC THREE), STORE),

GOTO SUBSCR .

TYPE('MY WORD BEGINS WITH THAT LETTER.

TRY AGAIN. '),

NEWTOP(' (COUPLE THREEA O'E THREED), TABLE).
TYPE('YOU HAVE HAD ENOUGH GUESSES.

COUPLE 1S THE WORD. %3

GOTO FINISH .

GROUP=0, NEWTOP('FINISH, DAHIN).

GROUP=0, HEJTOP('CHANG[,DAHIH).

GROUP=0, HELTOP('SURSCR,DAH!N).

GROUP=0, HFHTOP('OUlT,DAHIN).
KKK(KA(GROUP)).

GROUP=0, u[JIOP('HOK[Y,DAHIN).

EMND)

L5

PAGE 46

FOUR
(C

(PROG

*START
*FOURA
*FOURB

*FINISH
*CHANGE
*SUBSCR
*QUIT
*AGAIN
*NOKEY

6. Using the ControlScﬁm

SCRIPT
(C (
(0 DLIST(C)) () AGAIN
) AGAIN))
(FOUR

LABEL=POPTOP(DAHIN),
GOTO(LABEL).
TYPE('"WHAT 1S THE THIRD LETTER OF THE ALPHABET.Q "),
NEWTOP('(C FOURA 0'E FOURB), TABLE).

TYPE('RIGHT YOU ARE. '),

GOTO FINISH :
TYPE('NO. TRY AGAIN, THIS SHOULD BE EASY. '),
GOTO START .

GROUP=0, NEWTOP('FINISH, DAHIN).

GROUP=0, NEWTOP('CHANGE, DAHIN).

GROUP=0, NEWTOP("SUBSCR, DAHIN).

GROUP=0, NEWTOP('QUIT,DAHIN).
KKK(KA(GROUP)).

GROUP=0, NEWTOP("NOKEY, DAHIN).

END)

7———

6. Using the Control Script

FIVE SCRIPT

(RECENT (RECENT (
(0 DLISTCRECENT)) () AGAIN
) AGAIN))

(PROG (FIVE
LABEL=POPTOP(DAHIN),
GOTO(LABEL).

*START TYPEC('] AM THINKING OF A WORD THAT MEANS NEW.
WHAT DO YOU THINK IT 1S5.QQ '),
NEWTOP('(RECENT FIVEA O'E FIVEB), TABLE).

*FIVEA TYPE('RIGHT. RECENT IS THE WORD. '),
GOTO FINISH

*FIVEB TYPE('NO, THAT'S NOT IT. '),
PLACE="'START,
SCRNAM='S1X,
GOTO CHANGE .

*FINISH GROUP=0, NEWTOP('FINISH,DAHIN).

*CHANGE GROUP=0, NEWTOP('CHANGE,DAHIN).

*SUBSCR GROUP=0, NEWTOP('SUBSCR,DAHIN).

QUIT GROUP=0, NEWTOP('QUIT,DAHIN).

*AGAIN KKK(KA(GROUP)).

*NOKEY GROUP=0, NEWTOP('NOKEY,DAHIN).
END)

6. Using the Control Script

PAGE 438

In the programming of a unit script, there are three
ways to call the next unit script.

(1) It may be called as the next script on the same
level as the present script. To program this case, the
scriptwriter must set values for two variables. SCRNAM must
be set equal to the name of the next script, and PLACE must
be set equal to the label in that script to which control
will be transferred. Then, control must be transferred to
the label CHANGE. For example, in TWO SCRIPT:

PLACE="'START,
SCRNAM="THREE,
GOTO CHANGE .

This will cause THREE SCRIPT to be read in and control
transferred to the label START.

(2) The next script may be called as a sub-script as an
interruption to the present script. In order to remember
the point of interruption, a list containing the 1label to
which control should be transferred when the present script
is returned to and the name of the present script must be
put on the top of the list STORE. SCRNAM and PLACE must be
set to appropriate values for the sub-script, and control
must be transferred to the label SUBSCR. For example, in
THREE SCRIPT:

NEWTOP('(THREED THREE), STORE),
PLACE="START,
SCRNAM="FOUR,
GOTO SUBSCR .

This will cause FOUR SCRIPT to be read in as a sub-script of
THREE SCRIPT and control transferred to the label START.
When that level of conversation is finished, control will be
transferred to the label THREED in THREE SCRIPT.

(3) From a sub-level, the interrupted script of the
next higher level is called back in. The only statement
required in this case is to transfer control to the Ilabel
FINISH, since the information regarding the point of return
was stored in the 1ist STORE when the sub-script Jlevel was
started. For example, in FOUR SCRIPT:

GOTO FINISH

¥:Leruv’£]; cause the control script to read in the
Specif’iepde i and transfer control to the label
as the location for return. In this example, that

would be the label THREED in THREE SCRIPT.

6. Using the Control Script
PAGE 49

In summary:

(1) Next script on same level--set SCRNAM
hext. S \AM and PLACE, go to

(2) Call a sub=script--put list containi

aini .
name for return on top of STORE, setngm]z?ugre'] afd. Sscrint
go to SUBSCR. ‘ ‘RNAM and PLACE,

(3) Reached end of discussion in a script--go to FINISH
: SH.

PAGE 50 6. Using the Control Scrip

G. Techniques of Using Unit Scripts

Format

In order for the control script to function properly,
the unit scripts must all have certain common labels and
programming. To facilitate the writing of unit scripts, the
necessary common program is provided in a script named UNIT
SCRIPT. To write, for example, a unit script named ABLE
SCRIPT, one begins with the commands indicated by the dashes

(=) below:

- ed] unit script
W 1507.8
Edit

- file able
*

R 2.833+,900

The other lines are computer responses. This produces a
copy of UNIT SCRIPT filed under the new name ABLE, which can
then be modified by editing (by EDL) to become a unit
discussion script. To use the new copy, the scriptwriter
must retype the first line to read:

(PROG (ABLE

The keywords can be added above the PROG section, andTA;¥e
program for the script added beginning with the label $.
UNIT SCRIPT is shown below.

UNIT SCRIPT

(PROG (UNIT TYPE('RETYPE PROG LINE '").
LABEL=POPTOP(DAHIN),
GOTO(LABEL).
*START
*FINISH GROUP=0, NEWTOP('FINISH,DAHIN).
*CHANGE GROUP=0, NEWTOP("CHANGE, DAHIN).
*SUBSCR GROUP=0, NEWTOP('SUBSCR, DAHIN),
*QUIT GROUP=0, NEWTOP('QUIT, DAHIN).
*AGAIN KKK(KA(GROUP)).

*NOKEY GROUP=0, NEWTOP("NOKEY, DAHIN).
END)

?—f—

6. Using the Control Script PAGE 51

Initialization

The first script (specified in response to WHICH SCRIPT
pLEASE) should be used for initialization. Values should be
set for STOUT and STOUTN (see page 58) in this script, and
other variables, especially counters, should be set to
initial values. The list of common variables should be
specified by a COMMON statement (see page 20). Initial
statements and questions could also be included. The value
of doing all of this in the first script is that everything
will be done for all the scripts that follow.

Led Discussions

Discussions may he led by the computer by specifying a
list of scripts in the order to be used. A script must be
used to control the conversation by calling each script in
turn as a sub-script, and specifying an appropriate point of
return, In the example discussion, ONE SCRIPT controls the
conversation with the following program section.

PATH="(TWO FIVE),
*LEAD IF LEMPTY(PATH) THEN

TYPE('THIS IS THE END OF THIS CONVERSATION. '),
GOTO QUIT :

TYPE('LINE(L) '),

NEWUTOP('(LEAD ONE),STORE),

PLACE='START,

SCRNAN=POPTOP(PATH),

GOTO SUBSCR .

The Tist of scripts is usually named PATH since the computer

determines the path of the conversation. Each script 1is
called in turn by POPTOPing a script name off PATH. The
point of return from the sub-script level is specified as
the label LEAD, which will cause the whole process to be
repeated, When PATH is empty, the end of the led

conversation has been reached.

. It is easy to have two or three possibilities for led
duscussionS, and to give the student a choice among tbem by
propriate keywords and decomposition rules in the
i"'t!a”Zation script. The scriptwriter could also create a
SPecial script, whose name would be the last one on PATH,
which would ask the student if he wanted to go on _"”th
another choice. If he does, PATH could be redeflned;
:etting up another led discussion. This is one example O

he use of the jast script on PATH to set up another PATH.

fenenbering the List on TABLE

Is When a label is used in the keyword section: and th::i
of L TABLE, the list on TABLE is taken off as :232)
the normal procedure (see the TABLE mechanism, page *

¥ : F e aoem S R

PAGE 52 6. Using the Contro] Script

In the case of labels such as HOKEY, however, it is usually
desired to put the list back on TABLE. After an input is
processed, the name of the last 1list taken off TABLE |
remembered as ELBAT and can be put back on again. In the
unit scripts, the list is automatically put back on TABLE
when the system goes to the labels NOKEY and AGAIN. If the
scriptwriter wants to process an input without putting ;
list on TABLE, he should include the command LISTCELBAT) for
that input. Do not write MTLIST(ELBAT), since that woulq

get rid of the labels.

long Units

Long discussion units having more than three or four
interchanges may be programmed by linking a number of small
unit scripts together on the same level of discussion. This
is done by setting PLACE and SCRNAM to appropriate values,
and then GOTO CHANGE.

6, Using the Control Script PAGE 53

H. Other Mechanisms of Unit Scripts

gy using UNIT SCRIPT (page 50) as a model for writing
it scripts, the scriptwriter has available certain useful
nechanisms. The purposes of the labels CHANGE, FINISH, and
sUBSCR have already been explained. TN ‘otherid mechanlsis
are described below.

+AGAIN

This section causes the system to reprocess the input,
looking for the next highest ranking keyword. bt wss
especially useful to use this label in the keyword section
as a no decomposition rule label since this will cause the
program to look at another keyword when no decomposition
rules fit the input (see TWO SCRIPT on page Lb).

+NOKEY

This uses the NOKEY mechanism in the control script,
which randomly selects one of twelve phrasings of "PLEASE
REWORD YOUR STATEMENT" each time the system goes to the
label NOKEY. If any list is taken off TABLE in the
processing of the input, it is put back on TABLE.

tQUIT

This section causes the script playing to terminate
from the control script and returns control to the CTSS

gﬁr;l?and level. This should be used instead of the function

STOUTN

STOUTN is a 1ist that controls the recording of the
student part of the conversation (see page 58). STOUTN
should be set equal to a list that includes the appropriate
printing code words including NOTYPE (see page 55). STOUTN
is intially set equal to (NOTYPE) by the control script.

TEM
There is a 1ist named TEM (for temporary) that .is
Created by the control script. |t may be used as a list

that is need i it is used
J ed for temporary storage. Each time i
for a different purpose it should be recreated by LIST(TEM).

LABEL

The variable LABEL is always equal to the last label

POPTOPeg ; i useful
off th o It is sometimes
e the list DAHIN twriter wants to

W :
:gs something has gone wrong and the scrip
Where the system is.

ki, b

PAGE 54

Chapter 7 =-- READING, WRITING, AND PRINTING

A. Definition of Terms

There are two areas where scripts or other files may be
located. When a script is written (by using edl), it is
stored as a file in the disk storage of the computer. \|hen
a script is being played, a copy is taken from the disk and
put in the memory of the computer. The ELIZA system has
control when a script is being wused in memory. Reading
refers to a transfer of a file copy from the disk to memory,
Writing refers to a transfer from memory to a disk file,
Printing refers to a transfer from memory to the console
typewriter. Qutput refers to the characters transferred in
either writing or printing.

B. Reading and Writing

In order to either read or write a file, the file must
be opened. Only one file may be open at any one time for
either reading or writing. Therefore, to read or write
another file, the open file must be glosed. The OPL
functions that deal with reading, writing, and printing are
described in the Appendix on page A22, The following
section describes printing and writing in detail.

C. Printing and Writing

The two functions that control printing by the computer
are TYPE and TXTPRT. Either one can also control writing
onto disk files, for example recording all or part of 3
dialogue between student and computer. TYPE can also cause
Spaces, tabs, and carriage returns to be included in the
output. For a complete description of its capabilities, see
page A22,

Both TYPE and TXTPRT require instructions as to uher¢
lz;:nd how to carry out the printing and writing. Printing can
e done on the student console (with or without the
??rentt\eses that surround lists) and/or on a storage dis

N which case a name must he given for the file in which
the recording is to be stored).

7. Reading, Writing, and Printing PAGE 55

D. Output Format--The Code Words

The instructions to the computer are provided by an

list, which contains certain code words. The

order of the code words on the list is not important, except

for NWORD and DISK where the code consists of more than one

word. The code words provide different options for printing

and writing, and all of them do not have to be included on
the instruction list. The code words are described below.

NHORD number

This code controls the maximum number of characters
printed per line. NWORD must be followed immediately by an
integer that is the number of words of 6 characters to be
printed per line. For example, NWORD 8 sets the maximum
line length at 48 characters per line. |f this code word is
not included, the system sets the number of words to be 14,
or a maximum line length of 84 characters.

NOCR

When this code word is included, there will be no
carriage return at the end of a line. It should only be
used with printing that will not exceed one line.

NOTYPE

Printing will not occur on the console typewriter, but
writing will still occur on the disk if specified.

CONCAT

The parentheses surrounding the 1ist and the first
level of sublist parentheses on a list are omitted in the
output, For example, concatenated sentences are usually
constructed by NEWBOTing the pieces onto a list, and use of
this code word will cause printing and writing wi thout extra
‘(’?fenthes,es appearing in the output. The list
Exm;':fé“s”"" EXAMPLE)) will be printed as THIS 1S AN

LPRINT

Description 1ists are included in the output if they

&ist. Also, a set of parentheses is put around the output.

TAGS

(/FEMALE

FAr-1|L¥hen this code word is used, tag lists (e.r.
are also included in the output.

—fﬂ

PAGE 56 7. Reading, Writing, and Printing

DISK namel name?2

This code word causes the output to be written onto ,
disk file as well as printed on the console. The two words
immediately following DISK specify the name of the file,
indicated by "namel name2". For example, the words DSk
SPACE TIME will result in the writing of a file named "Spact
TIME". |If name2 is the word OUT, it will be changed to the
user's programmer number. For example, DISK X OUT wil
result in the writing of a file named "X 9740" if the user's
programmer number is 9740. This allows many users of the
same script to operate at the same time. If the file
already exists on the disk, the new output will be
automatically appended to the file. DISK does not close the
file.

CLOSE

Use of this code word closes the output file after the
present output (see also the OPL function DSKCLS, page AZ4),

PROGPR

Use of this code word causes the output to be put into
program format. This means that a carriage return and a tab
will be inserted after each period, comma, and colon
Asterisks are interpreted as indicating labels, and will be
preceded by a carriage return and followed by a tab.

7. Reading, Writing, and Printing PAGE 57

E. Using TYPE and TXTPRT

in the TYPE function, the instruction 1list is not
entered explicitly as part of the function. When the TYPE
conmand is used, the system looks for the instruction 1list
named STOUT (a contraction of "student output'"). |If no list
named STOUT exists, the computer assumes that the command is

ng" (zero), which means '"on the typewriter". The TYPE
function will print the outer pair of parentheses of a 1list
unless the code word CONCAT is included on STOUT. (The

TXTPRT function does not, see below.) Therefore it is wise
to define STOUT to include the code word CONCAT as a
ninimum. The control script makes this definition. STOUT
can, of course, be redefined in any script before or during
the conversation.

In the TXTPRT function, the instruction 1list is
indicated explicitly. The command

TXTPRT(LL,L2)

will result in the printing of the list L1 according to the
code words contained in the list L2. Both 1lists may be
written out in the function. The command

TXTPRTC'(HELLO, MY FRIEND),O)
will result in the printout
HELLO, MY FRIEND

on the student typewriter, The instruction "o" (zero) in
place of the list L2 is the simplest explicit instruction
and means "on the typewriter". The TXTPRT function does not

E;int the outer pair of parentheses that surround the 1list

If this conversation were being recorded on the disk as

t:]:{ as being printed on the typewriter, the command might
a

TXTPRT(' (HELLO, MY FRIEND), STOUT)

Where earlier in the program the list STOUT is defined, for
Instance, as

STOUT="(CONCAT CLOSE DISK XX YY)

MY FRIEND)
1 sub=list
disk . fkle

<|): brief the command says "print the list (HELLO,
the typewriter without the outer and first leve

Parentheses (CONCAT) and also append it to the

(D1sK) ond name is YY'".

whose first name is XX and whose sec

EEl

PAGE 58 7. Reading, Writing, and Printing

By using a single list such as STOUT in all TXTPRT
commands, the entire conversation will be printed according
to the code words on the list STOUT. If the scriptwriter
wants to start or stop recording the conversation, only the
code words on the list STOUT have o be changed. This would
also affect all the TYPE commands.

F. Recording Conversations

In order to record conversations on disk files, both
sides of the dialogue must be recorded. Both STOUT and
another list STOUTN must be set to include the appropriate
code words. For example:

STOUT="(CONCAT CLOSE DISK TRAIN 0OUT),
STOUTN='(NOTYPE CONCAT CLOSE DISK TRAIN ouT),

The computer side of the dialogue can then be recorded by
using TYPE(L) or TXTPRT(L,STOUT), where L 1|s the list
containing the output. The student side of the dialogue s
recorded automatically according to the code words on the
list STOUTN. Thus, both sides of the dialogue will be
recorded on a disk file named TRAIN progn, where “"orogn"
will be the user's programmer number.

PAGE 59

Chapter 8 =-- WHEN THINGS GO WRONG

The scriptwriter must usually do two things when a
script is not working properly. First, the source of the
error must be located, not always an easy task. Second, the
error must be corrected, which is sometimes easy, like a
nissing parenthesis, and sometimes difficult and may involve
a lot of reprogramming. This section is concerned with ways
of locating and correcting errors, and avoiding some of the
more common ones.

A. Frequent Errors

0f all the possible errors that can be made in writing
a script, the following are the most frequent. When looking
for a mistake, it will be helpful to check for these first.

1. Omitting a parenthesis where it is needed. Keyword
structures and certain functions such as TXTPRT are
the most susceptible.

2, Omitting the END) at the end of the program.

3. Making incomplete or incorrect erasures during the
editing of a script.

B. Tracing

The OPL function TRACE 1is helpful in locating the
source of an error. TRACE has two modes. The normal mode
Is OFF, When the TRACE is turned ON by including TRACE(ON)
a3 a command, the system will print the functions §nd
arguments it executes. Much of the output may seem like
gibberish, especially at first, but it should provide good
clues as to what is going wrong. Understanding will come
only through use. The TRACE may be turned GFF by including
TACE(OFF) as a command. The TRACE may also be turned ON
and OFF by using $ as the first word of an input followed by
the TRACE command (see page 10).

N

8. When Things Go Wrong

C. Testing

It is sometimes helpful to test small sections of an
OPL program to see how they are functioning. In order to
avoid writing a whole script, there is a script that wil
test these sections called EVAL SCRIPT (stored in mS347

cmf101 on Comp Center).
EVAL SCRIPT

(PROG (EVAL

GOTO(POPTOP(DAHIN)).
*START TXTPRT('(PLEASE BEGIN),0).
*NOKEY EVAL(INPUT), TXTPRT('(R),0).

END)

EVAL SCRIPT executes the input as an OPL program and types R
when it is finished. The small sections of program to be
tested can be typed in as input for EVAL SCRIPT. They may
also be tested by using $ as the first word of an input
consisting of a small section of program (see page 10).

g, When Things Go Wrong PAGE 61

D. List of Rules

Trouble will result if the following rules are

disobeyed.

1. Always close all opened parentheses.

2. Do not use more than six characters in labels,
keycodes, script names, and variables. These also
must start with a letter.

3. Make sure that the 1labels START and NOKEY are
included in every script.

4. Do not put a period (.) immediately following a
number--separate by a space (write 2 . rather than
2205

5. Do not use the following symbols in a program or in
an input--they will not be understood:

S e > 1N € D . backspace

6. Include labels in all appropriate places in a
keyword structure, even if they will never be wused.
For example, at the end of a keyword structure:

(0) () LABEL
) NOKEY))
The NOKEY will never be used but must be included.

7. Do not use anything outside of the keyword or
program sections of a script; even a blank space at
the end of a script causes problems.

8. Do not use the characters END) anywhere except to
close off all parentheses. The command POPTOP(END),
will cause problems.

9, Follow all commands (except IF and FOR) with a comma
or a period. .

10. Do not forget to close IF and FOR statements with a
colon (:), and do not use the colon anywhere else In
the program.

11. Do not use // for anything except comments--remember
to close each comment.

12. Do not use more than five blank spaces together. If
spaces are to be printed, use the TYPE funcglon.

13. Do not read a script into the presently active group
area.

14, Do not have two labels in the same script that are
the same.

15. Do not use a precedence number higher than 262145,

16, Do not use more than one equals. sign (#) AR a2
command: X=Y=Z will not work. .

17. Do not use .E. for ‘eadaliste NG asﬁlgqment
statement, and do not use = for equals in a
Boolean expression. .

18. Make su(:ep all variables to be used are first
specified in either OWNLIST or COMMON. . OWN

19, Make sure a period follows the last variable in .
and OWNLIST statements. This is not true for COMM
statements.

PAGE 62

E. Special Names

The following names are reserved for use by th
or the control script, and should be used by the
scriptwriter only in the ways described in this manual,
Their proper usage is described on the indicated;mgea

INPUT 3
DECOMP b
SEMBLY 5
TABLE 22
ELBAT 23
0'E 23
KEY 28
EXP 28
DAHIN 18
SA 19
KA 19
GROUP 19
SCRPN 19
PROG 6
START 7
NOKEY 7
STOUT 57
STOUTN 58
STORE 48
LABEL 53
PLACE 48
TEM 53
SCRNAM 48
END) 6

The following words should not be used by the
as variable names.

E'R
ABORT
RETURN
REPEAT
WHILE
WHERE
SAV

= th!n addition, jt is dangerous to use function
Nything (such as labels or variables) other than

8. When Things 6o Wrong

scriptwriter

€ Systen

names 3s
functions.

—

Chapter 9 == THE SLIDE-DICTIONARY SYSTEM

by Michael J. Knudsen

November, 1967

The SLIDES system was developed as a Special Problem in
Electrical Engineering by Michael J. Knudsen at the M.I.T.
fducation Research Center, in conjunction with Professor

Joseph Weizenbaum, Dr. Merton J. Kahne, Dr. Judah Schwartz,

and Dr. Walter D, Daniels.

PAGE 64

subject

A.

B.

Introduction

Editing
Coordinate Grid

VTE W=
o e e

(
(

Entries
Deletions
Filing

9. The Slide-chtlonary Systen

Table of Contents

Other Commands:

a) CLEAR
b) FETCH

(c) LIST (both forms)

(

6.

C.

(

d) QUIT

Error Messages:

a) Parity

(b) Duplicate Entries
(c) Deleting Nonexistent Entries

Re

1.
4
3.
b4,
S

trieval

Internal Dictionary Lists

Loading the

Reading-In Dictionaries

Functions

Function Cross-Dependencies
The Retrieval Functions

(a) Conventions
(b) Function Descriptions

s NAM
ii. NAMPTS
iii. SLD
iv. NAMSLD
V. ATPT

vi. MAXNAM
vii. MAXPTS
viii.MAXSLD
ix. MSLPTS
X CENTER
Xi. OUTLIN
xii. ISITIN

(c) Utility Functions

(d)

(e

P VALIST
ii. FLOAT
ifi. FIxIT

Future Functions

) Experimental Functions

fe VERT
ii. HOR

D. Appendix

3 I Dictionar
2

y=List Structure
pt for Retrieval Functions

Page
65

67
67
b8
68

10
10
10
10

71
11
1

1
12
13
13

74
T4
15
15
15
15
75
76
76
76
76
76
17
17
78
78
78
78
18
19
19
19

80
80
81

3, The slide=Dictionary Systen PAGE 65

A. Introduction

The SLIDES system is intended to enable ELIZA users to
urite scripts which use in the instruction not only their
own printed words hut also pictorial, diagrammatic, or
graphical information presented on photographic slides. A
slide projector is commanded by the script to show the
student any of a large number of slides stored in the
projector's “"carousel'-type magazine. Through an "X-Y"
coordinate system similar to that used on road maps, the
script can “point out" given objects or features of
discussion on the slide by referring to that object's
coordinates. Likewise the student may answer OF ask
questions of the script by typing coordinates of the point
in question, Considering that most commercial teaching
machines have some sort of built=in slide projection system,
it is only natural that one of the most powerful teaching
"machines," ELIZA, should also be able to utilize pictorial
information.

To simplify matters for the scriptwriter, the scripts
may be made independent of any particular set of slides, to
the extent that a script may be written without knowing the
actual coordinates of the significant features on the slides
to be used with that script. Iin fact, the script may be
written before the actual slides have been prepared. When
writing the script, the author need only have in mind a
fairly specific plan as to what objects, in what relations,
the script will need to have available on slides. For
example, in developing a tutorial on cell division, the
writer might say "1 assume | can obtain slides showing a
cell in the successive phases of mitosis, of sufficient
quality to show clearly the parts of the cell referred to in
my scripts..." After writing the script, he may then g0
about securing the needed microphotos.

Once a particular set of s1ides has been made up for a
script, some kind of "dictionary" must be supplied with this
set, for translating names of objects referred to in the
script into their exact location-coordinates on slides, and
vice-versa, The script may need to refer the student to
some object by giving a slide and the object's coordinates
on it, hut since the script was prepared separately from the
slides, no coordinate information is built into the script;
hence the need for the "dictionary' or auxiliary memory in
which the script can "look up" the slide and coordinates of
the object, and then type these out for the student Or
otherwise use them. Conversely, the script may ask the
student to identify something by pointing it out (typing mn
its coordinates); then the dictionary must be cc?nsulted to
see whether the student's coordinates Ao point to the
correct answer,

S —

PAGE 66 9. The Slide-Dictionary Systen

This chapter explains the use of the SLIDES system,
which supplies the needed dictionary. There are two phases
in working with a .slide dictionary--first, given the
particular set of slides for use with the script, a djisk
file containing the dictionary list is created, this process
being called "editing." Editing is handled by a special
script provided. The other phase, called "retrieval,"
involves the use of this dictionary 1ist by the teaching
script (or set of scripts). Retrievals, or "lookups," are
performed by function calls in the teaching script calling
the retrieval functions which have been defined for this
purpose in the OPL 1language. These functions are all
contained in a library file called "SLIDES LIBE," which is
used exactly like "DEFINE LIBE"; see page A29. You may
print out the SLIDES LIBE to study the operation of the
functions.

(At present, a script must type out the number of the
next slide to be used, and the student must select this
slide by manual control. Also, the script must type the
coordinates of a point in order to "point out" something to
the student, who in turn must type in coordinates when
referring to some point on the slide. The selection of
slides will someday be automated by direct control of the
projector carousel from the data phone, and we expect to
develop a mechanical pointer attachment for the viewing
screen, which, controlled in a similar manner, will point
out objects directly and can be manipulated by the student
to transmit coordinates back to the computer system. Thus
the student will be freed from thinking about coordinate
numbers. Automatic slide projection would also make it
feasible to present large blocks of textual material on
slides instead of typing them out.)

While everything described in this chapter works as
dgscribed, the SLIDES system should not be regarded as a
final, finished product. Like FELIZA, SLIDES is an
eVO‘ﬂﬂonarY system, whose continued improvement depends on
the "feedback" from the users. New functions are constantly
being developed. We are anxious to hear any comments
regarding bugs, possible new functions, changes to existing
functfonS, questions on the use of the system, and comments
on this chapter. A1l questions and comments should be

addressed to Michael Knudsen Ed
5 ucation Research Center,
Room 20-c-120, MIT, Extension 5383,

—

3, The 5lide-Dictionary Sys tem PAGE 67

B. Editing

The coordinates of a point on the slide are determined
v reference to the grid below, superimposed on the slide
(this grid is presently engraved on the ground-glass screen
'\~ front of the student on which the slides are projected;
it is also possible to have the grid physically printed on
each slide.)

To edit a slide, use the terminal equipped with the
projection system, i.e., the terminal to be used by students
playing your script with the slides. Load the set of slides
to be edited into the projector in any desired order; from
now on, the number of each slide is its numbered position on
the remote selector dial of the projector. Start the ELIZA
system (if possible use "SYS", without the control script)
and play the slide-editing script, EDITOR. Use '\am.lal
control to select the slide to be edited. With tbe slide
Shmﬁ”£‘”‘the screen, for each object that you wish your
Script to recognize as being on that slide, note which
squares (points) of the grid that object covers and make a
list of these. Usually an object will cover .severél
squares, |f a square lies on the houndary of an ghject SO
O”? the object only partly fills the square, it is hettc;

include that square in the list because of the natu(e ?
some of the retrieval functions, such as CEMTER and OUTLIN.
Nis is your decision, however.

that slide

&” each object, type in its point=list for
' this format:

9. The Slide-Dictionary System

PAGE 638

name-of-object SLIDE number POINTS x1 yl x2 y2 x3 y3,.,

where “name-of—ob‘ject” can be a phrase of any 1er:1gth and
number of words, "number'" is the number of this .shde, and
the X-Y pairs are integer numbers from the coordinate grid,
all these being the list of squares covered by the object.
The words SLIDE and POINTS must be inserted as shown, though
not in capitals; these serve as delimiters for the
decomposition rule in the editing script. At least one
entry operation must be made for each object used by the
script on that slide, but remember that a list of X=Y pairs
may be several lines long if it 1is single-spaced, since
ELIZA does not read its input until a double carriage return
is given. A sample entry might be:

inferior vena cava slide 4 points 3 7 3 8 & 8
9859869797 108 11
(double carriage return)

Additional entries may be made for the same name-of-object
on the same slide; new point-pairs will be appended to those
already entered. This enables adding points, even to a
dictionary which had been previously FILEd and now FETCHed

back for further editing (see Other Commands). If any of

the new points being added are already there, these Doi'jts
Will not be added a second time and you will be notified

(see Error Messages).
Deleting

For various reasons, you may wish to remove some
Squares from the lists for some objects. To do this, type:

DELETE name-of-object SLIDE number POINTS x1 yl ...

»:Eere everything is the same as for an entry, except that
e list of X-Y pairs contains only those points to be
deleted from that name on that slide.

To remove an obj : i
. Ject entirely from a slide without
typing all ijts points on that slide, use: :

DELETE name-of-object SLIDE number

type-To eliminate a name from the entire set of slides,

DELETE nName-of-object

Eiling

) When finished
dlctlonary, to fileegliw

ting the entire set of slides for that
e list permanently in your disk tracks

lages,

N case

or
A,.r

of

e el nNa
r file direct
e, the &\
rainary res -
rocess cCart

ctionaries or
articular dictl
read "loop"=~see
ictionaries Int
"‘tf‘" yOuU W
existing file ’
the old version
., ! (_‘,"pl [.'"
FFILE name
nd the old file
'n"’i(“"" ':d"if‘.;‘ !
After eac!
sCript i1l renl
‘l*': ’l’”. 4 '
35 |f you had ty
CLEARED." 1f y
5 " " .'..|1] R

list, This is

ILEin
a system

”(_rd'; h.

e2" Is 1t
P ‘I
: ry
' | |] 4
P L
3 ingle
nary 2\
POE
ne 12
ant the
"_' q‘ ~
in 1§)
1 na
"namel
L lace
1se O o
T e B Y
w type
ped "CLI
u Aansvier
given
seful In
g every

vame2" will be

under the same name.

ither FILI or
f i
L)

AR." and the script will say

" red name f the new file in

here | yiready) file by that

1) be \ppended onto L3 for

NOL red ended. (This appending

t s tore several independent

n file, thus saving tracks; a

s found and read Iin by a special

v A~ Do not try to combine two
ger single iilctionary this way!!)

ietlonary just edited to replace an

FETCHed
corrections. In

yme name, as when you have
iitions ynd/or

deleted, the new

REFILE, the Editor
ARFE YOI FINISHED WITH THIS
ves" the 1ist will be cleared just
WEEST
‘no"! the reply "L 1ST READY T0
you may continue to add to Lbe
‘\li] iing up a new dictionary in
. often to protect your work so far

4

9. The Slide-Dictionary System

PAGE 70

()tt]g[g;Ofﬂf’]Q“"§

To aid in manipulating the dictionary lists, these
other commands are recognized by the script:

CLEAR

Erases the dictionary list that was being edited, in
preparation for working on another. Typing CLEAR has the
same effect as quitting and playing the Editor script over
again. Several files can be created without the need for
quitting. Don't forget to FILE the 1list just finished

before CLEARIng!
FETCH namel name?2

This command reads the dictionary 1list "namel name2"
into the editing bay. (The "editing bay” s "the “list,
called NAMES, in the editing script where the dictionary s
built up.) Normally you would first give a CLEAR command

un]e§s you have just started the editor script. If the
editing bay is not empty, the FETCHed list will be appended
onto the one already in the bay. This gcan be used to

combine two dictionaries, provided they have no names of
objects in common (otherwise the retrieval functions cannot
find anything under the second occurrence of any duplicated
names). If the requested file is not found, the familiar
GOOF ON READING FILE" will be printed. If all goes well,
Editor will type "LIST READY TO EDIT."

LIST

By itself, this will print (using TXTPRT) the entire
Tl e the editing bay, i.e., the present form of the
dictionary, in Straight 1linear form, Good for overall
SQSCkS g seeing the structure of a dictionary 1list,
waniverc')nli: thiodlCtgoniw is already rather long and you
name-of-object, usaf e entries under a particular

LIST nName-of-object

This 11sts the entries under the given name, one slide

3 :

yguamflme. &5 nothing has been entered under the name (or
Sspelled it), 3 message is printed.

QuUIT

This request returns you from the ELIZA system to CTSS

command level, t i : o
Your work b erm'?§tl?g the editing. Remember to FILE

9. The Slide=Dictionary System PAGE 71

rr Mes

The Editor script is provided with checks to protect

itself and the user against errors. Error responses may
result from mistakes either in entries and deletions, or 1In
using the additional commands just described. Messages

involving entry and delete operations are:
"PLEASE TRY AGAIN."

Your request did not fit any recognizable format.
"POINTS NOT IN PAIRS. NO ACTION TAKEN."

Your list of X-Y points to be entered or deleted had an
odd number of numbers. You probably omitted an X, Y, or
space between two numbers. Because this error '"scrambles"
the points, the script checks for this before acting on .thP
points--hence you must repeat the entire entry or deletion.
An even number of such errors in one command cannot be
detected,

"ALL POINTS ENTERED, EXCEPT THESE DUPLICATES=-~-
eee(list of points)... "

This indicates that the points listed aftef the.mess;');;_e
Were already in the dictionary or appeared twice in 'tm rs‘
entry., All other points in your entry will have 753'_
entered as usual, so no harm is done. How?vc:;ory ur
apparent duplication may be due to a typographical e ’
check your work.

"ALL POINTS DELETED, EXCEPT THESE NOT FOUND=--
++.(list of points)... "

Your list of points to be deleted contair:eg.s‘c)?eo::m?;:
Not in the dictionary under the given nage ot odJehave been
given slide. A1l other points in your cof‘f(\man
deleted as usual, but again, check your work.

"NO name ON SLIDE number "

i slide on
Yo Eiind Toldelete Aube e?t'rEIéheé{coy‘ou‘: spelling.
Which it was not listed as appearing.

"NAME NOT FOUND--name " e

i 4) wasn
Y tried to delete a name completely whict {
ou rie

there--spelli ng?

_

PAGE 72 9. The Slide-Dictionary Systen

C. Retrieval by Scripts

The functions to be described permit a script to make
use of the name-coordinates information stored in dictionary
lists. Before discussing the functions themselves, some
preliminaries must be explained.

Internal Dictionary Lists

For use by a script, a dictionary 1list must be read
from the disk file into a list in the ELIZA system. The
list which receives the dictionary may be any list which has

been created in the usual way. The retrieval functions will
then operate on this list.

Reading-In Dictionaries

The desired dictionary is read into the desired list bZ
using the OPL "DSKLST" function (see page A23).
recommended format, in two lines, is:

DSKLST(Namel, Name2,Dict 8
DSKCLS(0,0,0),

(rest of program)

\'r:he‘:re""t)lamel Name2" is the name of the dictionary file, a?d
Dict™ is the name of the list into which the dictionary I
read. The zeros in DSKCLS are required dummy arguments.

The dictionary 1ist should be declared COMMON so that
all the SCripts in your set can refer to

If several dictionar files have been concatenated
gach Successive call to D)S,KLST without «calling DSKCLS I
t::m]een wi]l read the next list after the last one. Aftg;
wT TS ?SE list has been read from the file, however, DSK o
construce o" the function value 'DONE. Therefore you]?St
in €t a program "1oop" to read in, say, the third 13

Such a combined fije. Since each successive list °

t ipt
You must do ;he contents of the "Dict" 1ist in your SscriPw

DOt DSKCLS, yhi .
is read in. Which must be done after the final desired

2 Note that if ' ' Pt 3
file | : IT the "DONE condition occurs,
s automatucally closed, To read in the third list:

LIST(Dict) between repetions of DSKLST :?:E

3, The Slide-Dictionary System PAGE 73

FOR C=1 STEP 1 UNTIL C .G. 3 .OR, X .E. '"DONE DO
LIST(Dict), X=DSKLST(Namel, Name2,Dict) :
psSkcLS(o0,0,0),
(rest of program)

There is no restriction on the number of separate
dictionary lists that can be present at one time (each
dictionary in a separate list, of course), so one script may
refer to several dictionaries, since the retrieval functions
are "told" which list to refer to. Unfortunately, the
present memory space limitations do not encourage multiple
dictionaries.

loading the Functions

The retrieval functions must be defined, or loaded into
the system so as to be known to the ELIZA evaluator. The
functions are loaded from the SLIDES LIBE disk file bhy:

EVAL(LOAD('SLIDES, '(fnl fn2 fn3.....))).

where "fnl fn2 fn3 ..." need contain only those functions
used in your script set, or required by those you use. Many

of the SLIDES functions depend on others, as shown below:

Function Requires these functions
NAM VALIST

SLD FIXIT

NAMPTS VALIST

NAMSLD VALIST, FIXIT

ATPT FIXIT

gE“TER VALIST, FIXIT

OUTLIN VALIST, FIXIT

HAXNAM VALIST

MAXPTS NAMSLD, VALIST, FIXIT
HAXSLD FIXIT

MSLPTS NAMSLD, VALIST, FI1XIT
ISITIN none

VAL|ST none

IiLOAT none

IXIT

VERT none

OUTLIN, VALIST, FIXIT
OuTLIM, VALIST, FI 1T

HOR

|
|

PAGE 74 9. The Sllde-chtlonary System

The Retrieval Functions

Conventions

The functions are listed below with their call-argument
formats. These functions all have certain call arguments in
common. DICT is the pame of the 1ist Into which the
dictionary in which you want to "look up" the data has been
read. OUT is the pame of whatever list you want the output
of the function to be loaded into. The output, if any, Is
NEWBOTed onto the present contents, if any, of 0UT, DICT
and OUT, in that order, are always the last two call
arguments of the functions, except for the “MAXNAM"
function, which does not use OUT, and ISITIN, a Boolean

(true or false) function that takes any two lists as
arguments. Of course, the names DICT and OUT are merely

mnemonic~-use any names you like. Other dummy variables
shown as call arguments are:

Variable lode lMeaning

NAME List name Name of an object on a slide

(must be a list containing
the name and nothing else.)

SLIDE Numeric=- Number of a slide
(Floating=point
or integer)
X Numeric Horizontal coordinate of a point

Y Numeric Vertical coordinate of a point

Eunction Descriptions

In the following descriptions, a typical question that
each function "asks" of the dictionary is given. Also IS
shown the format of the functions output in the OUT list.
Note that whenever NAME, SLIDE, X, or Y appear In an
argument list, they are always input (given) data; output
Feésults appear in the QUT list and/or as the functions

vValue. The normail return value of most of the functions is
Just the name of the list ourT,

dictionen. 3N retrieval function can find satkitii -
onary to satisfy jits input conditions and must retur

+ It returns the 1} ! "MONE instead ©
t y iteral word
he hame of the 1ist OUT, to which nothing has been added.

W

i:ggiver s ca”.to @ retrieval function involves StUde:t
nulj ;:azgur SC€ript should always check the results for GSTE
NULL v, ;tis by *IF SLD(SLIDE,DICT,OUT) .E. 'MONE THEN

r——i ———

g, The Slide-Dictionary System
PAGE 75

The Functions

NAM(NAME, DICT, OUT) frv: OUT 'NO
: or 'MONE
"List all the slides that show a NAME.,"

oUT=(SLIDE1l SLIDE2 SLIDE3 ...)

NAMPTS(NAME,DICT,OUT) frv: OUT or 'NONE

"List all the slides to i
| fes, gether int
-l el o PR with the points on that

DUT=(SLIDE1l (X11 Y11 X12 Y12..) SLIDE2 (X21 Y21 X22 Y22..)..)

Mo H ' -
VE:‘PHM OUT becomes a list of pairs, with slide numbers as
ittributes and as values those points on that slide that

show a NAME.

SLD(SLIDE,DICT,OUT) frv: OUT or 'NONE
"What names appear on this SLIDE?"
QUT=(NAME]1 NAME2 NAME3 ...)

;?waﬂvcrso" function of NAM. Note that each NAME in OUT
is itself a 1ist, so OUT is a list of lists.

NAMSLD(NAME, SLIDE,DICT,OUT) frv: OUT or 'NONE

hat points on this SLIDE show this NAME?"

OUT=(X1 Y1 X2 Y2 X3 Y3 ...)

ated as such

ich should be tre
NAM

A’YT ;‘, '(2 {J- :‘ ”
b i “ "Jt of ddt" - 1 r .wh . " * " f
Y your script, This function 15 the intersection” O

and SLD,

X,Y,DICT,OUT) frv: OUT or "NONE
"What object NAMEs are at the point X Y on this SLIDE2"

=(NAME1 NAME2 NAME3 ...)
one NAME appears in

SLD. | f more than X
Ly given point.

sverlap at the

oame ¢ ’
utput format as
i, then al]l these /y‘,)il'Ctﬁ

SEAAR Y

PAGE 76 9. The Slide=-Dictionary Systen

MAXNAM(NAME,DICT) frv: SLIDE or 'NONE

"Which slide has the largest (or most) MNAME?"

OUT is not used.

The first of four "maximum'" functions, MAXNAM returns the
slide having the largest number of points listed under NAME,
Note that the function itself takes on the return value,

MAXPTS (NAME,DICT,OUT) frv: SLIDE or "NONE

"Which slide has the largest or most NAME, and on what
points?"

OUT=(X1 Y1 X2 Y2 X3 ¥3 cewnd

This one does MAXNAM, plus it returns the "winning" set of
points. Note the slide number is the function value, as
with MAXNAM, but OUT is also used, with same format as for
NAMSLD. |If the NAME appears on no slides, MAXPTS takes on
the value "NONE and OUT is empty.

MAXSLD(SLIDE,DICT,OUT) frv: OUT or 'NONE
"What object covers the most points on this SLIDE2"

OUT=NAME

The inverse of MAXNAM, but unlike it, MAXSLD must use out
because the single name is a list.

MSLPTS(SLIDE,DICT,OUT) frv: OUT or "NONE

"Do MAXSLD and 1ist the "winning" NAMEs points.”
OUT=(NAME X1 Y1 X2 Y2 X3 Y3 ...)

'{P)e inverse of MAXPTS. Note the mixed contents of OUT;;‘:
nISt.on top of a list of data pairs. You can pPOPTOP
ame-list off to get at the point pairs.

CENTER(NAME, SLIDE, DICT, OUT) frv: OUT or "NONE

LI . &
What point is the center of the NAME on this SLIDEZ"

I OUT=(x Y)

LIDE
the arithmetic mean of all points on this STMS

NAME to find the centroid of this object.

CENTER takes
under this

[

g9, The Slide-Dictionary System

PAGE 77

nay be useful when it is necessary to use a single point to
point out a large object to the student. Scriptwriters
should heware of crescent-shaped and other odd objects whdse
centrold may be outside the object--see the next function.
QUTLINCNAME, SLIDE,DICT,OUT) frv: OUT or 'NONE

"outline the NAME on this SLIRE."

OUT=(XT YT XR YR XB YB XL YL)

T, R, B, and L stand for top, right, bottom, and left.
OUTLIN finds the farthest-out points in all four directions,

and 1ists them in clockwise order, starting from 2:00.
tven on a slide filled with irregular, overlapping large
objects, CENTER and OUTLIN together can nail down one item

fairly reliably. These two functions are expected to be
useful with automatic pointer mechanisns also.

If CENTER or OUTLIN is used on a name that refers to more
than one separate object on the given slide, the results

require special Interpretation. OUTLIN would return the
topmost point of the highest such object on the slxde,l but
the lowest point of the lowest such object, etc. e

cluster of several small objects of the same name, OUTL!N
will find the extreme members of the group and thus f‘lgllmlé
the cluster: CENTER will point to the density-welghtec
center of the cluster, which might not be any badivECHS

object.

ISITINCLL, L2) frv: B

x -~ 2?”
“"Does the list L1 match contents with any list on -
; rue) or U
This is a Boolean function, e ttgevaz?ﬁii})n;:y bit S
(false). It does not refer tO (such as SLD or

ames L2
ol e in L1, However it

provided for checking a list tf£ic nam
ATPT would return) for the specific ;

is used, every elenent O

§ L2 must be 3 list.

PAGE 78 9. The Slide-Dictionary System
Utility Functions: These are used by most of the retrieval

functions, but are included here for your use if needed.

VALIST(L1,L2) frv: D or "NONE

"Find the value of the attribute-list L1 on the pairs=list
25"

This function is identical to the OPL "VAL" function, except
that the attribute whose value is sought is a 1list, not a
datum. Normally the attributes are the object-names in the
dictionary.

FLOAT(N) frv: F

A utility function that converts an integer to its
floating-point equivalent.

EIXIT(N or F) frv: N

A utility function which accepts a number of either integer
or floating-point mode, and returns an integer (the OPL
"INTGER" function accepts only floating-point numbers). The
retrieval functions use this to be able to accept SLDNO, X,
and Y in either "numeric" mode.

Future Functions

!n the near future we expect to develop high=-level
fuqctlons which test for certain spatial relations between
objects on a slide, i.e., whether A is above, below, left
of, inside, or outside B. The student might ask to talk
about the cel) on slide 16, but there are two cells on this

slide, so the script asks him vvhich one. The student could
then answer "The one on the left."

1 The Edft?r script and the retrieval functions might
also be moduf!ed to allow object-names to be "tagged" with
gg[lgﬁ? descrlptions, modifiers, or subscripts, wusing the
g thST feature. These tags could keep several objectf
converszlsamehname On the same slide logically separate;
as aljl e{' t.e Same tag on different names could mark these
tag a part?ng;ng to the same class., The scriptwriter could
all-ar Cular cell on Some slide as heing the best

ound example of a cell, so if the student said "Show
that one would be selected.

9. The Slide-Dictionary System PAGE 79

Experimental Functions

Two spatial=-relation functions of the type mentioned
under "Future Functions" are available in tentative form:

VERT(NAMEL, NAME2, SLDNO,DICT) frv: F or 'NONE
"lhat is the vertical relation of MAME1l to NAME22"

If either name cannot be found, VERT returns 'NONE.
Otherwise, ignoring the horizontal relation of NAMEl1l and
NAME2, VERT returns the floating=-point integer F with
values: 2.0 if all points of NAMEl are above all points of
NAME2 (“"completely above'"); 1.0 if some points of NAME1l are
above all points of NAME2 and no points of NAME1l are below
any of NAME2 ("above but overlapping"); =-2.0 if NAMEl Iis
completely below NAME2; =-1.0 if NAMEl1l is below but overlaps
NAME2; 0 if none of the above. Note that exchanging NAME1
and NAME2 for a given pair of objects just reverses the sign
of the result.

HOR(NAME1, NAME2, SLDNO,DICT) frv: F or 'NONE
"What is the horizontal relation of NAMEl to NAME2?"

HOR is identical to VERT except that X;coordinates arﬁ
checked. Substitute "to the right of" and "to the left of
for "above" and "below" in the description of VERT.

If either NAME1l or NAME2 in the above functions ref:ersh to
more than one separate object on the slide, the frv's 7%ye
special meanings--see the notes under OUTLIN, page .
(Both HOR and VERT work through OUTLIN.)

While the author welcomes comments on any a?DECEi g: ;?2
SLIDES system, comments on the exper!mental uncd o“et 3
especially important in developing a. gog VEET Ao
spatial-relations functions. Is the resolut!oq ot7 o
HOR (number of cases recognized, now 5) SUff'C;?ze;7 Bleace
you want to compare objects on tw? different sli éducation
address all suggestions to ilichael Knudsen,

Research Center, Room 20-C-120, MIT.

PAGE 80 9. The Slide-Dictionary System

D. Appendix

Dictionary-List Structure

A dictionary list is a 1list structure three levels
deep~--the main list, its sublists, and sublists of those
sublists. The top list, the pame list, consists entirely of
sublists, arranged in attribute-value pairs. Each attribute
is the name of some object, and its value is a second-level
slide list. A slide list is also an attribute-value set.
Here the attributes are slide numbers (each a datum), whose
values are the third-level point lists. Point lists contain
pairs of X and Y coordinate numbers (all data, no more
sublists).

To find a picture of some object, we would first find
its name in the name list. In its value, the slide 1list
immediately following it, we would have a set of slides to
choose from. After each slide number, the point 1list for
that number would tell which points on that slide were
covered by the object. Note that, in the entire structure,
each object name will appear only once, but a slide number
will appear once on the slide 1list of every object-name
listed as appearing on that slide.

As list structures go, this one is relatively simple.
An understanding of it should enable anyone familiar with
the basic OPL functions to understand the workings of the
editor script and the retrieval functions.

A diagram of the dictionary list structure is given on
the next page.

Demonstration Script for Retrieval Functions

You may try out the retrieval functions by playing the
test .scr!pt, SLIDES (uses SLIDES LIBE), which accepts
questions for each function (similar to the 'questions"
given in the function descriptions) and prints out the
;ﬁ?ults for whatever dictionary file you have "FETCHed."
dic:ion:cri?F may also be gf value in checking large
o ry ;le§. The.approprnate question formats can be ‘
U b Y printing this script and looking at the key
Cture. HNote that there are several printout routines in

this script for the varj
arious formats |) i t
functions deliver their ot th Iin which differen

J

r——-

9, The Slide-Dictionary System PAGE 81

Diagram of Dictionary List

The name list is marked with a 1, slide 1lists by 2, and
point lists by 3. These numerals are not stored in the
structure at all, but are just labels for this diagram.

1((1st object name) __ (2nd object name ya_isss)
| / /
/ /
| Pt -9, / /
/ /
/ /
/ /
/ /
/ /
/ /
/ 2 (SLIDE21 __ SLIDE22 __ ...)
/ /
/ / /
/ / /
/ / % (X221 V22T e nd
/ /
| /
| 3 (X211 Y211 X212 Y212 ...)
|
|
|
|
2 (SLIDE11 SLIDE12 SLIDE13 S 3

—_—

3 (x111 Y111 X112 Y112 X113 Y113 ...)

= 3
|
!
3 (X131 Y131 ...)

3 (X121 Y121 X122 Y122 ...)

Appendi x aial

THE OPL FUNCTIONS

General Characteristics of Functions

A function is an instruction or command that tells the
computer to do something. Before listing and describing the
OPL functions and some of the operations that can be
constructed from them, it will be wuseful to describe the
general characteristics of a function when used in a script.
A function in a script has two general properties: [B A
causes some type of operation on or some change 1in certain
objects to occur-~-these objects are called the yariables and
are Included within a set of parentheses following the
function; (2) it associates an object with the operation or
change and the variables of the function--this object s
called the yalye of the function or the function creturn
Yalue, and it may be one of the variables. For example, the
function TOP(L) (page AS5) has one variable, the name of a
list (indicated by L). |Its function return value is the
datum stored in the top cell of that 1list. Since the
variables and the function return values fall into certain
classes, these will be indicated by the following letter
notation:

the name of a list.

~= a datum; this can be a word, an integer, or a
floating point number.

-=- a machine address, indicating the location of a
cell.

a sequence reader.

-- a floating point number.

== an integer.

-= a Boolean number;
-= an identifier, whose value
classes.

1 (true) or 0 (false).
o fits one of the above

~<~o=ZTM > o
'
]

b
In the descriptions of the functions, these legtigz ?L;ltio:
used to indicate the class of the variablesh§n Wi
return value. The scriptwriter should uset ':ames o i
these objects when writing scripts, and no

Lll and L2. A
u
The second property of a function isdeiﬁgﬁiaé;Zom?zg E
for using the function to do something an e ame of. the
variable of another function. Im this :Se'second function.
first function replaces a variable of %he S iion LiSTU
An example should make this clear. f Its properties
(page A3) is a function of one var:ableit. s bt Parealin)
are: (1) it creates a new list L; (2) tﬁrn e The
the list, which is L, as its funCtiog) ?: a function of two
function NEWTOP(D or L1, L2) (page A 11, the other Qs L2s
variables, one of which is either D or >

$ L1 whichever
This function puts the datum D or the list ¢

L

Appendi x

PAGE A2

category the variable fits, on the top of the list L2. To
show how a function return value can be used as a variable,

examine the statement:

NEWTOP("WORD, LIST(STACK))

Since all operations are performed from the inside of the
parentheses working out, the function LIST is performed
first, creating the list named STACK, disposing of any old
list named STACK, and putting the function return value,
which is STACK, in place of LIST(STACK) in the expression.
STACK is now empty and the statement looks to the computer
like:

NEWTOP("WORD, STACK)

The function NEWTOP is performed next, which places the
datum WORD on top of the list named STACK. NEWTOP itself
ha§ a function return value, but it is not important for
this example. STACK finally looks like: (WORD) .

Ip identifying the functions in this appendix, the
following format will be used:

FUNCTION(Vl,VZ,...,Vn) frv: VALUE

ﬁ?ere the "Vs" are the variables and "frv" stands for
7nct|0n return value". In a script, the function return
value may be identified by using an assignment statement:

X=FUNCTION(V1,V2,...,Vn)

The value of the identifi
ter X function
return vajlue of FUNCTION, did o

’ gl

Appendi x PAGE A3

LIST FUNCTIONS

This section contains those functions that are
primarily concerned with operations on and information
retrieval from lists.

LIST(L) Erye o L

This function initializes a list by creating an empty
list whose name is L, which is also the function return
value. If L already exists, it becomes an empty list.

This function empties the list L, ls@u, tlitsisicellis: v are
returned to available space. The value of the function is

the name of the now empty list. This function does not
empty or remove any description lists which are attached to
the list L.

LEMPTY(L) frv: B

This function returns the Boolean value 1 if the 1is: L
is empty; otherwise, this function returns the Boolean value
0. The list L is not changed.

COUNT(L) frv: N

This function returns the number N of elements or cells
in the 1list L. The list L is not changed.

LISTOF(Y1,Y2,...,Yn) frve L

This function takes the data YI'YZ'.R.;:nn::g EU§: t?ﬁg
in that order as the elements of a list who e

$ or
function return value. Each Y can be either a datum
name of a list,

NEWTOP(D or L1, L2) frv: A

the, . Jistis Ll Fin

D or !
This function "places" the datum et

top is lue of the
the cell of the list L2. The va
| A, the machine address of the added datum.

NEWBOT(D or L1, L2) frvy A

the. . list, LT iIn

: or :
This function "places" the datum D e or

i The value of the
the bottom cell of the list LZ. g
is A, the machine address of the added datu

e TR ESEESSERSRRSRRRSSEaE

PAGE AL Appendi x
INLSTR(L1, A or L2) frv: . L1

This function "inserts" the list L1 on the top of the
list L2 or to the right of the machine address A. The 1list

L1 is emptied by this function, and the name L1 is returned
as the function value.

INLSTL(L1, A or L2) frvs., L1

This function "inserts" the list L1 on the bottom of
the list L2 or to the left of the machine address Ka The
list L1 is emptied by this function, and the name L1 is

returned as the function value.

Note: There is a difference between "placing" a list L1 in
some location in a list L2 and "inserting" a list L1 in some
location in a list L2, as can be seen by comparing the
functions NEWTOP and INLSTR. When a list is "placed" in a
l?cation, only the name of the list is placed there, and the
'l'lst becomes a sublist (see page 31). When a 1list is
inserted" in a location, the contents of the list are
actually placed in that location, so that the result is a
single list,

Note: The pair of functions LINLST and STRLST involve the
difference between 3 linearized 1list and a sublisted
Structured list, A 1ist may contain references to other
ses (i'e: sublists) when such sublists are "placed" on the
grfl:glnal list, as the NEWTOP function does. As mentioned
sﬁ ore, only the name of the sublist (with an indicator to
A ?v; that it is the name of a sublist) is put on the list.
fillnga;ized list has had the contents of all sublists
liste Tl}: between parentheses (as literal characters) on the
cannc;t b e difference between these two states of a list
a SUblis: gete‘:ted by the TXTPRT function, since this causes
Contents ef Structured list to be printed by filling in the
output. Howe e, Sublists between parentheses 'In the Brifited

PUt. However, the difference can be detected by the

MATCH function (
Page Aly), list
are different in Structure,SInce the two states of a

LINLST(LI,LZ) frv: L2

This function takes the list L1, makes a linearized

Thov Oof Tt, and “insertsh it on the bottom of the list L2

elist kY ¥e not changed by this function.

STRLST(L1,L2) frv: L2

Copy Z:'?tfugssiﬁ? takes"tbe list L1, makes a structured
The 1ist] nserts”™ it on the bottom of the LISt iz

IS not changed by this function.

Appendi x SRR

LSLCPY(L1,L2) frv: L2

This function makes a copy of the list L1 and "inserts"
it on the bottom of the list L2, If L1 has sublists, only
the nane of the sublist is copied, The 1list L1 is not
changed by this function.

LSSCPY(L1,L2) frvist L2

This function makes a copy of the list L1 and "inserts"
it on the bottom of the list L2. If L1 has sublists, all of
its sublists and their sublists are copied with their new
names replacing the old names in the copy. the Tistl EX1. s
not changed by this function. Since this function copies
both lists and sublists, which is very time and space
consuming, LSLCPY should be used to copy lists instead of
LSSCPY except in very special cases.

NULSTR(L1,A,L2) frvs L2

This function causes the list L1 to be split into two
Separate lists at A, the machine address of a cell on the
list L1. A new list L2 is created that contains all the
cells to the right of and including the cell located at A.
The name of the new list L2 is the function return value.
The 1ist L1 now contains all the cells to the left of and

excluding the cell located at A.

NULSTL(L1,A,L2) frv: L2

This function causes the list L1 to be split into two

Separate lists at A, the machine address of a cell ?? Egﬁ
list L. A new list L2 is created that contains a A‘

‘ t
cells to the left of and including the cell located s s

i i turn
The name of the new list L2 is the function re
The 1ist L1 now contains all the cells to the right of and

excluding the cell located at A.

TOP(L) frv: D

its value the datum D stored in

This function has as The Tiet L. @5 hot

the top (leftmost) cell of the list L.
changed.
BOT(L) fevse =D

its value the datum D stored in

This function has as e S ek e
the bottom (rightrost) cell of the list L

not changed.

PAGE A6 Appendi x

NTHTOP(L,N) frv: D

This function has as its value the datum D stored in
the Nth cell of the list L counted from the top of the 1list
down. The list L is not changed.

NTHBOT(L, N) frve D

This function has as its value the datum D stored In
the Nth cell of the list L counted from the bottom of the
list up. The list L is not changed.

POPTOP(L) frv: D

This function returns as its value the datum D stored
in the top cell of the list L and removes this cell from the

list, i.e., the top cell is returned to available space and
the second cell becomes the top cell.

POPBOT(L) frv: D

] This function returns as its value the datum D stored
'n the bottom cell of the list L and removes this cell from
the list, i.e., the bottonm cell is returned to available
space and the next-to-the-last cell becomes the bottom cell.

MADOBJ (D, L) frv: A or 0

; This function searches the list L for the datum D. The
unction return value is the machine address A of the first

3:?3;r?ncg ?f D.) If Dis not on L, the function return
s Zero). Th . this
function, e list L is not changed by th

SUBST(L or D1, A) frv: D2

This function replaces th 1

e datum D2 stored in the cel

lﬁgagggu;tDTaChine address A by either the list name L or
value. If the The datum D2 s returned as the function

first argume : "olaced"
in the cell located at ﬁ, nt s L, the 1ist L ISHE

SUBSTP(L1 or D1, 12) frv: D2

e l?lizfgnctfon replaces the datum D2 stored in the top

Aot o Y either the 1ist name L1 or the datum DI1. The

argument ;S the function return value. If the first
S L1, L1 is "placeq" in the top cell of L2.

|
|

Appendi x PAGE A7

SUBSBT(L1 or D1, L2) frv: D2

This function replaces the datum D2 stored in the
bottom cell of L2 by either the list name L1 or the datum
Pl. The datum D2 is returned as the function value, If the
first argument is L1, the list L1 is "placed" in the bottom
cell of the list L2.

REMOVE(A) frv: D

This function removes the cell located at the machine
address A, The function return value is the datum D that
was stored in the cell.

REPLAC(L1,L2,L3) frv: L1

The lists L2 and L3 contain strings of characters.
This function replaces every occurrence of the string in L2
that occurs in the list L1 hy the string in L3. The value
of the function is the name of the rEst LY.

EXISTS(Y) frv: B

This function returns the Boolean value 1 if the
identifier Y has been designated as a variable of Ehe
Program (usually done by an assignment statement (e.g. a=1)
or an OWN statement, see page 20). Otherwise, the function
returns the Boolean value 0.

ATOM(Y) frv: B

0= sfif e “the

This function returns the Boolean value function

identifier Y is the name of a list; otherwise, the
returns the Boolean value 1.

FSTATE(D1,D2) FEveshe

This function returns the Boolean S ldlfbthegi l:ng
file on this disk whose first name is indlc?te o :uch file
whose second name is indicated by .02. :]nan value 0.
exists, the function return value is the Boole

The file is not changed.

e

Appendi x

PAGE A8

Note: The following four functions provide for different
types of comparisons between lists. In the first three,
ALL, ANY, and NONE, the list L2 is linearized (see page AL)
before comparing. This means that words within parentheses
are included for the comparisons. The list L1 should not
contain any parentheses.

ALL(L1,L2) frv: D or '"TRUE

This function searches the list L2 to determine if all
the words on the list L1 are included. If this is the case,
the function return value is the word TRUE. If all are not
included, the function return value is the first word D on
L1 not found on L2. The lists are not changed.

ANY(L1,L2) frv: D or 'FALSE

This function searches the list L2 to determine if any
of the words on the list L1 are included. |If this is the
case, the function return value is the first word D on L1
found on L2. If no L1 words are found on L2, the function
return value is the word FALSE. The lists are not changed.

NONE(L1,L2) frv: D or 'TRUE

This function searches the list L2 to determine if pone
of the words on the list L1 are included. If this is the
case, the function return value is the word TRUE, If any
words are found, the function return value is the first word
D on L1 found on L2. The lists are not changed.

LSTD|F(L1' L2) frv: 0 or -1

This function Ccompares the two lists L1 and L2 to see
ngrt\'t\?c':’ (l)r not they are identical. If the 1lists are
etc tﬁ 'f'ncludung all sublists and sublists of sublists,

isE; ar: dtiuf?:tion return value is 0 (zero). Otherwise, the
Cagids erent, and the function return value is -1
one). The lists L1 and L2 are not changed.

REpeTNR PAGE A9

DESCRIPTION LIST FUNCTIONS

A description list is a list that is associated (by a
link in the header) with another 1ist. In most of the
functions that deal wirth description lists, it is assumed
that the description list is made up of pairs of data, the
first datum of the pair being called the attribute and the
second being called the value.

MAKEDL(L1,L2) vy L2

This function makes the list L1 a description 1list of
the list L2--i.e., it associates L1 with L2 through a link.
The function return value is the name of the list L2. The
contents of the lists L1 and L2 are not changed.

NODLST(L1) frv: L2 or O

This function removes the description list of the 1list
Ll-~i.e., the links between the 1lists are repoved. .The
contents of the lists are not affected by this functugn.
The function return value is the name of the description
list L2. If L has no description list, the function return

value is 0 (zero).

LSTNAM(LL) frv: L2 or O

i L1 has a
This function determines if the list
description list. |If it does, the name of tge desirag:;og
list L2 is the value of the function. [If L1 does 30 el
description list, the value of the‘ function is .
Neither L1 nor L2 is changed by this function.
ITSVAL(D1, L) frv: D2 or 0

: » value D2 of the
This function returns as its value tne with the

attribute D1 in the description list assgc;i:?gtion s
list L if that attribute is on the de

Nei ther
Otherwise, the function return value is 0 (zero).
list is changed.

| VAL(D1,L) frv: D2 or 'NORE

of the

This function returns as its Valuottt?b:i;ueDgz is not
geceibute 01 In the 1ist L lflu;h?s 2he word MOINE. The
present, the function return va this function does not

is i anred., 'lote that oo ELI
:é;;rLtésangésztiption list (as |ITSVAL does),

assumes that L is a list of pairs of data.

Appendi x

PAGE A1l0

NEWVAL(D1,D2,L) frvet DS orid

This function returns as its value the value D3 of the
attribute D1 in the description 1list associated with the
list L. The datum D2 replaces the datum D3 as the value of
the attribute Dl1. |If D1 is not on the description Hist it
is put there with D2, and if there is no description list,
one is created. In these cases, the function return value
is 0 (zero). The list L is not changed.

NOATVL(D1,L) frv: D2 or 0

This function deletes the attribute D1 and its value D2
from the description list of the 1ist "{€s The function
return value is D2. If D1 is not found, or if there 1is no

description list, the function return value is 0 (zero).
The list L is not changed.

Appendix PAGE All

SEQUENCE READER FUMNCTIONS

The following functions are concerned with the sequence
reader. They enable the scriptwriter to examine single
cells on a list, The sequence reader 1is essentially a
pointer that points to a specific cell. It can be moved
right (down) or left (up) on the list one cell at a time.
Every list has a special cell called the header, which
contains the machine address of the top and bottom cells of
the list., When a sequence reader is moved up past the top
cell or down past the bottom cell, it points at the header.
Thus, a list can be considered to be circular, with the
header cell linking the top and hottom cells.

SEQRDR(L) frv: R

This function initializes a sequence reader of the list
L. The function return value is the name of the sequence
reader R, which initially points at the header of the list
L. The list L is not changed.

SEQLR(R) frv: D or 'NIL

This function moves the sequence reader R one cell to
the right (down) in the list of which it is a reader. The
function return value is the datum D in the cell to which R
now points, |If R was initially pointing at the headgr, it
now points to the top cell. |If R was initially pointing at
the bottom cell of the list, it now points to the header,
and the function return value is the word NIL. The 1list L

is not changed.

Example: One of the most important uses of thg sequence
reader mechanism is in locating a specific datum in a 1ist.,
This can be done by the following OPL program. This prog:zm
checks the list LST for the word KITTEN. |If i? !s Int is
list, the system goes to the label FOUND. It it |: nourse
the list, the system goes to the label NOTFND. 0 co ’

all the identifiers are mnemonic.

RDR = SEARDR(LST),

*T TUM = SEQLR(RDR) .
?2 gATUH R 'KlTTEn THEN GOTO FOUND : i 2
IF DATUM .E. 'HIL THEN GOTO NOTFND ELSE GOTO :

. HIL
SEQLL(R) frv: D or

i i e reader R one cell to
This function moves the seguenc s £

e . ’ H h i t A
the left) in the list of whic 1 St
function ﬁzgurn value is the datum D in the Cﬁ]] :gahgr Te
now points If R was pointing at the 'If R' i
now points at the bottom it now
initially pointing at the top

itially s
7 cell of: the 185t
cell on the 1list,

points at the header, and the function return value is the
word NIL. The list L is not changed.

SEQPTR(R) FeviE il

This function returns as its value the machine address
A of the cell to which the sequence reader R points, The
reader R is not moved. The list L is not changed.

Example: In a few functions, such as REMOVE and SUBST, a

machine address A is a variable of the function. The
function SEQPTR is very useful in connection with these
functions since its value is a machine address A. The

sequence reader mechanism and its associated functions can
be used to locate a certain datum in a list and the function
SEQPTR used to obtain the machine address of the cell that
contains the datum. Then the functions mentioned above may
be used with the obtained machine address, If, in the
example above, it was desired to substitute the word CAT for
the word KITTEN, this could be done by the following OPL
Program under the label FOUND.

*FOUND ADR = SEQPTR(RDR),
SUBST('CAT,ADR),

This program section was written only as a demonstration of
the use of the sequence reader. The commands

ADR = MADOBJ('KITTEN,LST),
IF ADR .E., 0

THEN GOTO NOTEND

ELSE SUBST('CAT,ADR) :

makes the Same substitution in a simpler and faster way.

R

Append| x PAGE A13

KEYWORD AND SEMTENCE ANALYSIS FUMCTIONS

The following functions allow the programmer to work
directly with keyword structures, decomposition and
reassembly rules, and other operations that are part of the
ELIZA and CTSS system.

A keyword structure contains the precedence number, the
keycode, the deconmposition rules, the reassembly rules, and
the labels that are associated with a keyword.

In the process of analyzing an input, the keyword
structures of the keywords in the input are "placed" in a
list in the order of their occurrence in the input, This
list is called a keystack. When ELIZA has generated a
keystack in the normal input analysis, its name is KA(HN),
where N is the group numbher.,

ADDKEY(SA(N), L) i K/ e

This function adds a keyword to the script located in
group area SA(N), where N is the group number. The 1list L
Tust contain a keyword or a substitution in the o oak
format (see pages 11 and 13). The added keyword does not
become a permanent part of the script, but is temporary each
time the script is called and the function executed. The
list L is not changed.

KEY(L1, SA(N), L2) frve L3 or'D

This function finds the keywords in an input sgr'zﬁé
The computer scans the list L1 for the keywords o ik
script located in group area SA(N), where N is tte Lg e
number. The keys found are stacked in the keystac]i Sl
the order of their occurrence. The name °f the| ziohesz
which contains the keyword structure with t)g TR
Precedence number of the keys found in the Scan:dl 0 (zero)
as the value of the function. If no key is found,

is the function return value.

. 0
WASKEY(D,L1) Frve L2 or

D

This function checks the keystack Ll]F?;gth:etS:ggdethe

(the code word of six letters _0':]’TS? -—:ee ,page 1.9 I f

keyword and the first decomposition rule e fs removed from
the keycode is found, the keyword structure

L A\ =

keyvord structure of the removed key, ./ 0 Czerodonloatitha
function, |If the keycocde is not found,
function return value.

PAGE Alh Appendi x

HIRANK(L1,N1,N2) frvs: L2.0or'0

This function searches the keystack L1 according to
precedence number (see page 11). There are three different
types of search available depending upon the value of N2.

a) N2 = -1

The first keyword with a precedence number greater
than or equal to N1 is removed, and the name of the
list L2, which contains the corresponding keyword
Structure, is the value of the function.

b) N2 =0

The first keyword with a precedence number greater
than or equal to N1 is located. The stack is split
at this point with all following keys remaining on
the stack. The one found and all previous keys are
removed. The name of the list L2, which contains the
keyword structure of the keyword found, is the value
of the function.

c) N2 =1

The first keyword with a precedence number greater
than or equal to N1 is located. The name of the list
L2, which contains the keyword structure of the
keyword found, is the value of the function. Nothing
is removed.
In all cases, 0 (zero) is the function return value if no
keyword meeting the specifications is found. Also, N1 = 0
IS a special case. This is interpreted as the largest
EOSS'ble precedence number and causes a search of the entire
Sf:jg?ﬁré o;h:zé ﬁ?:hggTerofk:he list containing the keyword
function fn vl ol anking keyword is the value of the

MATCH(L1,L2,L3) frv: L3 or 0

7 This function applies the decomposition rule contained

;?Sgh?s]ﬂ?t L1 to the list L2. The resulting decomposition

Fi sl nserted" on the bottom of the 1list L3. The

o Sl ;gturn value is the name of the 1ist L3, unless

value of the sochs In which case 0 (zerg). Is.returncd ss the
e function, Neither L1 nor L2 is changed.

ASSMBL(Ll,LZ,L3) frv: L3

the IIQLSL;UQCtIOn applies the reassembly rule contained in

reassemhb]].o the g?COmposition IS ¥ 3% The resulting

€ name gf Lﬁt s Inserted" on the bottom of the list L3.

function e 1ist L3 is returned as the value of the
« Neither L1 nor L2 is changed.

Appendi x PAGE ALS h

INDICATOR FUNCTIONS

When words or data are stored in the cells of a list,
there are a few indicators in the cell structure that
describe the contents of the cell. One indicator, called
the alpha-numeric indicator, indicates whether the datum in
the cell is alphabetic or numeric, This indicator is 0
(zero) if the datum is numeric, 1 (one) if the datum is
alphabetic, and 3 if the datum is alpkabetic and part of a
longer word (see next paragraph).

MRKIND(O or 1 or 3, A)

; This function sets the value of the alpha-numeric
indicator of the cell located at the machine address A to
either 0 or 1 or - Joe

INDCTR(R) frv:s 0 or 1l .or 3

This function returns the value, which is either 0 or 1
or 3, of the alpha-numeric indicator of the cell to which
the sequence reader R is pointing. If the value is 0 or 1,
they are Boolean values, The indicator is not changed.

Another separate indicator, called the word-length

indicator, indicates whether or not the datum is part of the

: datum in the cell following it in a list. Words, 1in the
| gramnatical sense, are stored in the computer in six lgtter
‘ chunks, Each chunk is a datum, and is stored in a single
cell (see page 31). |If a cell has a negative sign in the

! indicator, its datum has been marked as part of the datum in
| the cell that follows it. |If a cell has a positive sign,
} its datum has been marked as separate from the datum in the
j cell that follows it, which means that it is the end of a
l

grammatical word. For example, when the word '"weekday" s
Stored in the computer, it is stored as: =-weekda +y . When
as: +week

the words "week day" are stored, they are stored

*day . (The + and - signs indicate the status gf tre
word-length indicator, and are not actually stored in the
is less than six letters long, as

cell as data.) If a word
indicated in the list by a blank space, a comma,

Or any other character not alphabetic or numeric, tge. wl Eh
word is stored and the rest of the six spaces filled in

blanks (which are not printed out).

a period,
whole

MRKPOS(A) Erve A

indicator of the

. . % 7] -
This function marks the word-length 155

2 Vi ositive
cell located at the machine address A with a p is to be

This is the same as i
considered as the end of a grammatica

from the datum in the cell

ing that its datum
ExBCIn wor<, and separate

that follows it.

MRKNEG(A) frv: A

This function marks the word-length indicator of the
cell located at the machine address A with a negative sign.
This is the same as stating that its datum is to be
considered as part of the datum in the cell that follows 4

Note: The sign of the word length indicator of a cell is
the same as the sign of a sequence reader that points at
that cell. The following program section uses this fact:

SR=SEQRDR(L23),

NUM=0, //VIORD COUNTER//
*LA DA=SEQLR(SR),
LE. DA, s Enl L //END OF LIST//
THEN TYPE('THERE ARE ' NUM, 'WORDS. ').:
IF: SR +6..0 //SIGN OF SEQUENCE READER//
THEN NUM=NUM+1 : //END OF ANOTHER WORD//
GOTO LA .

This program section counts the number of grammatical words
(which includes periods and commas) in the list L23.

A third separate indicator, called the list-mark
indicator, is used only when the content of the cell is the
name of a list. The indicator is either 0 (zero) or 1
(one). It indicates nothing about the 1list, but can be used
by the programmer as an indicator of whatever he chooses.
That is, the list-mark indicator reflects no information
about the internal Structure of the 1list, except as the
Programmer sets and interprets the value of the indicator,

MRKLST(0 or 1, L)

Thi? function sets the value of the list-mark indicator
of the list L to either 0 or 1.

LSTMRK(L) frv: 0 or 1

- This functioq returns the value of the list-mark
indicator of the list L. The indicator is not changed.

Appendi x

PAGE Al7

MATHEMATICAL FUNCTIONS

The function return values of the following OPL functions
are the identifiers to the left of the equals sign.

F2 = SIN(F1) F2 equals the sine of F1

F2 = COS(F1) F2 equals the cosine of F1

F2 = TAN(F1) F2 equals the tangent of F1

F2 = COT(F1) F2 equals the cotangent of F1

F2 = ARCSIN(F1) F2 equals the inverse sine of F1

F2 = ARCCOS(F1) F2 equals the inverse cosine of Fl1l

F2 = ARCTAN(F1) F2 equals the inverse tangent of Fl

F2 = TANH(F1) F2 equals the hyperbolic tangent of Fl

F2 = SQRT(F1) F2 equals the square root of F1l

F2 = SQUARE(F1) F2 equals the square of F1l

F2 = CUBE(F1) F2 equals the cube of Fl

F2 = LOG(F1) F2 equals the natural logarithm of Fl

F2 = EXP(F1) F2 equals the number g raised to the
power of F1l

F2 = ABS(F1) F2 equals the absolute value of 'EF1

F2 = MODULO(F1,N) F2 equals the modulus of F1 to the
hase N

F = MAX(F1,F2) F equals the larger of the pair F1 F2

F = MINCF1,F2) F equals the smaller of the pair Fl F2

N = INTGER(F) N equals the integer part of F,
returned as an integer

F2 = INTPRT(F1) f:tr::ika;*: ;?(‘):’;T;ppigfnzfnﬁiber

Femoontoy T RRetion T G0

F - RANSETCP) This function sete £ R enarator,

poin

PAGE AlS8 Appendi x

and is used in order that different
sequences of random numbers can be
generated with the function RANDOM

The following operators may also be used.

+ add

- subtract
* multiply
/ divide

* % raise to the power of

R N,

Appendix PAGE A19

BOOLEAN FUNCTIONS

Certain functions make use of Boolean variables and
Boolean algebra. A Boolean variable has one of two values:
1 (true) or 0 (false). The following Boolean operators may
be used in Boolean expressions.

oEe equal to

» U less than or equal to
.GE., greater than or equal to
+.NE. not equal to

oo less than

.G, greater than

LAND, and

.OR, or

A space should precede and follow the completed expression
in order to avoid confusing the periods with numbgrs
preceding or following the expression. For example, write
(X .E. 1), not (X.E.1).

The following three OPL functions perform Boolean
operations.

B3 = AND(B1,B2)

This function returns the value B3 of the logical

operation and on the Boolean values B} and: B2:' BXxww 3ot
and only if Bl = 1 and B2 = 1; otherwise, B3 = 0.
83 = OR(B1,B2)

This function returns the value B3 of the logical

operation gr on the Boolean values Bl and 82. B3 =0 if and

only if Bl = 0 and B2 = 0; otherwise, B3 = 1.
B2 = NOT(B1)

of the logical
IF> 81 =0, B2:° o,

This function returns the value B2
operation not on the Boolean value Bl.
If Bl = 1, B2 = 0.

PAGE A20 Appendix

IF
The IF statement has the following format-
IF Boolean THEN program ELSE program :

The expression immediately following the IF must be eijther
true or false (Boolean 1 or 0). |If it is true, the program
immediately following the THEN is executed; if it is false,
the program immediately following the ELSE is executed. The
IF statement must be terminated by a colon (:). After the
appropriate program is executed, the system goes to the line
following the IF statement, unless the program executed
caused the system to go to another part of the script. The

following IF statement is an example of an algebraic sign
determination.

IF X .L. 0 THEN X= -1*X ELSE GOTO A

If X is less than zero, the sign of X is changed, and the
system goes to the next statement after the colon. If X s
not less than zero, the system goes to the label A. &l ;-

is desired only to transfer control to the next 1line when

the IF statement is false, the "ELSE program" may be
omi tted, as:

IF X .L. 0 THEN X= =1#X

IF statements may be used within the program of an |IF
statement, providing they are properly terminated by colons.

FOR

The FOR statement has the following format-
FOR program STEP program UNTIL Boolean DO program :

The FOR statement is basically designed to exectue a certain
Program a ceftain number of times, depending upon a test and
upon a certain variable that is incremented after each
eéxecution. The program following FOR usually initializes a
variable, such as | = 1, and is executed only once. The
2;ogram following STEP usually contains an integer that s
Th: :Tount that the variable is to be incremented each time.
testedpreszlop followtng.UHTlL must he a Boolean, which s
s trueeaih time the variable is increased. If the Boolean
IE%he B € System goes to the statement after the colon.

¢ PBoolean 1Is false, the program following DO is

eéxecuted. The order of executi
% t h FOR
Statement is as follows: ton of the parts of the

Appendi x sl

FOR program

UNTIL Boolean (true or false?)
DO progrram

STEP program

UNTIL Boolean (true or false?)
DO prosrram

STEP program

UNTIL Boolean (true or false?)
DO program

STEP program

etc., until the Boolean is true.

The following FOR statement is an example that computes the
factorial of a positive integer N, and returns the result as
the value of F,

FOR I=1, F=1 STEP 1 UNTIL | .G. N DO F=I|=*F :

If N was equal Lot TS, the statement would work in the

following manner, First, | and F are set equal to 1. [1s5fis
identified as the variable to be incremented since Iits
assignment statement cories first. HNext, | .G. N is checked
and since 1 .G. J is false, F is set equal to 1*1 which is
1. Next, | is increased by 1, which makes its value 2. T@e
whole process is now repeated. Since 2 .G. 3 is false, F is
set equal to 2+*1 which is 2. l is increased by 1 to _3.
Again, since 3 .G. 3 is false, F is set equal to 3*2 which
is 6. | is increased by 1 to 4. This time 4 .G. 3 is true,

and the system goes to the next statement. The value of F

is 6, which is 3 factorial.

If it is desired to have a program following STEP gnd
still increment the variable, this may be done by puttln%
the increment as a single number as thp.flrst statement o
the program, For example, the factorial statement could

have been written as:
FOR I=1, F=1 STEP 1, F=I*F UNTIL I QE. N DORE

within the program of a part of a
terminated by

FOR statements may be used
FOR statement,
colons.

providing they are properly

PAGE A22

READI NG,

WRITING,

Appendi x

AND PRINTING FUNCTIONS

The following functions deal with reading, writing, and

printing.
of these functions,

For a more detailed description of
see Chapter 7,

Printing'", which begins on page 54.

TYRPECY1, Y2, .0 Y02)

The TYPE function can be used for many
can be used for both printing and writing,
is controlled by the code words on the list STOUT (see pages

"Reading,

since the

some aspects
Writing, and

It
output

purposes.

55 and 57). It can also be used to modify the format of the
output by including spaces, tabs, and carriage returns. The
number of arguments Y1,Y2,...,Yn is indefinite but not
infinite. Each Y can be one of the following identifiers,
which will cause the indicated output,
Argument Qutput

L the contents of the list L

'SPACE(N) ' N spaces

"TAB(N) ° N tabs

"LINEC(N) ' N carriage returns

'comment ' the characters between the apostrophes ('),

in this case: comment

? D the value of the datum D

comment ' D comment the value of the datum D
(function) the value of the function (if a list)

function the value of the function

The space before the last apostrophe

(if a datum)

is

arguments that have apostrophes.

necessary

in the

The following section of an OPL program with its output

demonstrate the use of the various arguments of the TYPE
function.
The program section:

STO?T='(CONCAT),

L1="(THE FUNCTION TYPE PRINTS LISTS,)

L2="(ALSO SPACES), 4

L3='(TABS),

Lh=:(AND CARRIAGE RETURNS),

L5= ((FUNCTIONS.)),

D=1,

Rgg&%, :AND COMMENTS '),

+ 'SPACE(4) ', L3, "TAB(2) ', L&, 'LINE(2) "),
TYPEC'AND DATA ' p, "LINE(1) 4 D),’ R : :

TYPE('AND THE VALUE

OF

', (TOP(LS))),

—‘—

Appendi x PAGE A23

The output:

THE FUNCTION TYPE PRINTS LISTS, AND COMMENTS

ALSO SPACES TABS AND CARRIAGE RETURNS
AND DATA 1.0
D 1.0

AND THE VALUE OF FUNCTIONS.
TXTPRT(L1, L2 or 0) frv:. 11

This function causes the computer to print the contents
of the list L1 as a linear text string according to the code
words on the list L2 (see page 55), If the second argument
is 0 (zero), the list L1 is simply printed on the teletype.

PRTLC(D1,D2,D3)

This function prints the disk file whose name s
specified by the data D3 D2 from the archive file whose name
is specified by the data D1 D2 (sce section AH.L4.01 of the

CISS Programmer's Guide). The files must be created and
edited using TYPSET instead of EDL (see section AH.9.01 of
the CTSS Programmer's Guide). This function is useful for
printing large amounts of material, with both upper and

lower case characters (see page 34).

PRTUC(D1,D2,D3)

This function prints the disk fi]e whose name is
specified by the data D3 D2 from the archive file whose name
is specified by the data D1 D2 (see section AH.4.,01 of the

i he created and
CISS Programmer's Guide). The files must
edited by using EDL, which means that all letters will be

capitals, and that certain characters cannot be used.

DSKLST(D1,D2,L) frv: L or 'DONE or 'GOOF

This function reads lists from thg disk file who§etnag?
is specified by the data D1 D2. The file mustd conilge .
one or more lists (indicated by parentheses) an m$§n :
EDL format. Each main list must start on a newaChl Eéyword
script is a good example of such a file, where each

. ‘The ' first "useliiof
and the program section are main lists fove that st

3 i list
DSKLST opens the file and reads the first The next use of

- - t sturn value.
TE NEECY (8 Wigg the TancLian r?:uthe €ile, and so on. When

DSKLST returns the second list | 4 he word
DSKLST Is used after the last 1ist has been read, —the SoUC
DONE is returned as the value of the ur;cb e casdtHEM ST
is closed The disk file is not changed by error message is
its‘li>i$: 1f the file cannot be found, an e

: rd GOOF.
printed, and the function return value is the wo

PAGE A2 Appendix

DSKCLS(0,0,0) frv: 'DONE or 'GOOF

This function closes a file that is open for either
reading or writing. It has the same effect as the code word
CLOSE (see page 56). The function return value is the word
DONE. |If there is no open file, an error message is
printed, and the function return value 1is the word GOOF.
The arguments of the function are zeroes and must appear.

Example: The following program section checks the disk file
named ALPHA BETA for a list whose top element 1is the word
CHILD. When it is found, the list is put in the list C, and
the file is closed with DSKCLS. If it is not found, the
system goes to the label F.

*E D=DSKLST('ALPHA, 'BETA,LIST(C)),
IF D .E. "DONE THEN GOTO F :
IF TOP(C) .NE. 'CHILD THEN GOTO E
DSKCLS(0,0,0),

ARCHRD(D1,D2,L) frv: L or '"DONE or 'GOOF
This function reads from an archive file on the disk
(§ee section AH.4.,01 of the CTSS Programmer's Guide). The
first name of the archive file is specified by D1 and the
second name must be ARCHIV. It looks for the component file

vhose first name is specified by D2. If it finds the file,
it re§ds it in the same manner as DSKLST. That is, it opens
the file and reads the first list into the 1list L on its
first use, it reads the second list on its second use, and
SO on. The function return value is the name of the list L.
When ARCHRD is used after the last list has been read, the
word pONE is returned as the value of the function and the
file is glosed. The disk file is not changed by the reading
of its lists. |If either the archive file or the component
file cannot be found, an error message is printed, and the
function return value is the word GOOF.

SCRIPT(N, D1 or L) frv: D1 or L or 'GOOF

This function reads the script whose name is specified
by D1 from the disk into group area SA(N), where N pis the
%BOUD number. .If the second argument is a list of the form
: 2 D3), the disk file named D2 D3 is read in., If the file

S not found, an error message is printed and the function

return value is the word GOOF See a

: _] e 19 for a full
description of changing scripts. =1

DELSCR(N)

SA(N)Thiz funct!on deletes the script stored in group area
Sa (M), Mhere N is the group number. DO NOT delete a script
€ group area that is presently active.

R —

Appendi x PAGE A25

LOAD(D,L1,L2) frv: L2 or 'GOOF

This function reads a number of 1lists from the disk
file whose first name is indicated by the datum D and whose
second name is LIBE (for library). The 1list Ll should
contain the first word of all the lists that should be read
in. The lists are "placed" on the list L2, the function
return value. This function can bhe used, for example, to
read a number of defined functions from the disk file DEFINE
LIBE (see page A29). To be made defined functions of the
script, the list L2 must be evaluated. After the functions
are evaluated, the contents of the list L2 are not needed,
so L2 should be recreated. For example, to load RANGE and
KKK, write:

EVAL(LOAD('DEFINE, ' (RANGE KKK),LIST(TEM))),
LIST(TEM),

If any of the words on the list L1 cannot be found as the
first word of the lists in the LIBE, a message to that
effect is printed, and the function return value is the word

GOOF.

READ(Y) fieveg X

H b= n
This function causes the computer to print "Y = on

the typewriter without a carriage return, agd waits for an
input until a double carriage retufn is ty?ed. The
identifier Y is given the value of the input. This function

can be used to read numbers or an OPL program.

RDLONL(L) fryzr. L

This function causes the computer to regd ingut f;?T
the teletype into the list L. The computer w!ll.walg't:nt;e
a double carriage return is typed before continuing wi

program.,

PAGE A26 Appendi x

OTHER FUNCTIONS

GOTO Y

This function causes the system to go to the label Y,
which must be marked by *Y in the script. PRI ks sansilst;
indicated by parentheses, the list is executed as an OPL
program section and the system will go to the label that is
the result., For example: GOTO(POPTOP(DAHIN)).

QUIT(0)

This function causes the computer to leave the ELIZA
system and return to the CTSS command level.

XECOM(L) frv: L

This function causes the computer to execute the CTSS
commands contained in the list L. The name of the list L is
the function return value. The list L is not changed.

EVAL(Y1) frv:s Y2

This function evaluates the identifier Y1 in the same
manner that the program is evaluated (or exectued). The
function return value is the last result Y2.

TIME(O) frv: F

This fgnction returns the time of day in seconds as a
floating point number F. The time is computed to tenths of
seconds, and is based on a 24 hour clock. For example, at 6

minutes and 18.2 seconds past 5 o'clock in th fternoon F
would be 61578.2 . T Be Y

TODAY(L) s A

This function "inserts" the date and the time of day on
the bottom of the list L. The date contains the month and
the day, and the time is computed to tenths of minutes on a
24 hour slock. For example, at 45 minutes and 24 seconds
past 8 o'clock on the evening of November 4, the function
would cause the list L to be (11/4, 2045.4).

| 4—______________t:"""""llllllllllllllll|||||||||||||||||||'
Appendi x bl e

DEFINE

In using the OPL functions in a script, it is sometimes
necessary to use the same set of OPL functions for a
particular purpose a number of times in the program. Rather
than having to write out this set of functions each time it
is desired to use them, the ELIZA system has the feature of
allowing the programmer to define or construct a function
that will perform the set of functions when called. This is
similar to a subroutine in some other computer languages.

This defined function is similar in structure to the
OPL functions previously discussed (see the section of this
manual on the "General Characteristics of Functions'", page
Al)., A defined function has a specified set of variables,
performs prescribed operations on them, and has a function
return value. However, a defined function is different from
the OPL functions in the following respects: the operations
it performs are determined by a set of OPL functions; the
function is defined only after the DEFINE statement 1is
executed, but then is defined until the user quits the ELIZA
system; and, most importantly, the function is defined by
the writer of the script.

The format for defining a function is as follows
(notation: V =-- variable ; FRV == function return value):
DEFINE(NAME(V]1,V2,....,Vn)=
OPL function,
OPL function,

(this is the OPL
program that the
function performs)

OPL function,
FRV)

gives the function,
less. There can be any
indefinite (or

NAME is the name which the programmer

which must consist of six letters or
number of variables, but there cannot be an

infinite) number--all the variables must be specified in épf
DEFINE statement. All
functions in the DEFINE statement.
known only to the defined func
by OWNLIST (sce page 20) or LE
FRV is omitted, the value of the
is the function return value.

1s are local to the set of
hate | f variables are to be

tion, this should be specified
T (see next function). [If the
last OPL function executed

PAGE A28 Appendi x

The DEFINE statement is usually included in the section
under the label START in the script. When the function is
used in the script, it is used in the very same manner that
an OPL function is used, as the following wusage format

indicates:
NAME(V1,V2,...Vn)

Whenever this is specified in the script, the sequence or
set of OPL functions under the DEFINE statement will be
performed.

A simple defined function can illustrate this process.
In conversation with a student, it may be desirable to
rotate among a certain number of essentially identical
responses whenever the student makes a certain statement.
The following function will do this:

DEFINE(ANSDIF(LST)=
OWN(X),
X = POPTOP(LST),
TYPE(X),
NEWBOT(X, LST),
LST),

The function ANSDIF takes the top element off the list
specified, prints this element, puts it on the bottom of the
list, and returns the name of the list as the value of the
function. Thus, the next time ANSDIF is used on this 1list,
a new top element (originally the second element) will be
printed, and so on. When ANSDIF is used, it may be used on
any list that has been set up in the script. In the above
function, LST is only a mnemonic identifier, and when the
function is used on a list, the name of that list is used in
the place of LST.

. A number of useful defined functions are stored on the
disk in the file DEFINE LIBE. For a description of their
use see page A29,.

LET

The LET statement operates in exactly the same manner
as ghe DEFINE statement, except that the function defined is
defined only for the particular script that contains the LET
statement. In addition, a LET statement can be used to give
values to certain variables, which will be known only to the
particular script. For example:

LET (X=1) (Y=2),

If a LET statemen? is used within a DEFINE or a LET
statement, the variables or the function that are LET will
be known only within that statement.

Appeni x BAGE i
SOME DEFIMED FUMCTICHS--THE DEFINE L|BE

. Since a nurher of defined functions are useful to many
scriptwriters, there is a library of these functions stored
on the disk in a file named DEFINE LIBE (on M5347 emfl101 at
Comp Center). Defined functions are described on page A27,
and the loading of defined functions from the LIBE s
described on page A25,

The fornat of the functions in DEFINE LIBE is:
(NAME(V]1,v2,..., Vn)=

program of the function

DLIST(description of what the function does))

Each function is a list, indicated by the outer parentheses,
with a description list that contains information about the

function,

If the scriptwriter has a defined function that he
thinks might be useful to others, he should check the DEFINE
LIBE to make sure that there is no function that already
does what his does, and that there is no function that has
the same name as his function. Then his function, in the
proper format, may bSe added hy EDLing the DEFINE L1BE.

The DEFINE LIBE included the following functions at the
time this manual was published.

(PANGE(L,U)= INTPRT(L+(U+1-L)=RANDOI*(C)) .
DLIST(THIS FUNCTION RETURMNS A FLOATING POINT

INTEGER RANDOMLY DISTRIBUTED OVER THE RANGE
FROM L TO U))

(KKK(ABC) =
HIRANK(ABC,G,~-1),
LET(Z=0),
Z=HIRANK(ABC,0,-1),
NEWTOP(ELBAT, TABLE),
iE Z JNE. 0O
HEN KEY=Z, EXP=INPUT. gy 2 4
ngr KEY="(X (0 X () NOKEY)), EAP—FLB.V ek
CLI”TZTHIS FUNCTION SEARCHES THE KEI:;HC\ B
FE; THE NEXT 4I17HEST RANKINRC KEYWORC)

PAGE A30 Appendi x

FLOW CHART OF THE SYSTEM

The following flow chart shows the inner workings of
the ELIZA system as of January, 1963. An understanding of
the details of operation should help in detecting and
avoiding mistakes in programming, but it 1is not necessary
for writing scripts.

Key to Symbols

im direction of operation

operations performed by the computer

decision point for the computer

(input from the console by the operator

printout by the computer

operations continued at label ot

Appendi x

PAGE A31
r eliza find
keyword
PROG
set up
control remove and
script in Sstore code
area SA(0) name of
SCript
put START
on top of
DAHIN
load functions

TTT KKK RANGE
from DEFINE LIBE

4

set:

GROUP=] execute the
STOUT="(CONCAT) program of
STOUTN="(NOTYPE) the presently

active script

print:
WHICH

SCRIPT
PLEASE

is
KEY equal
zZero?

to

nane of
script

set: ‘
INPUT=EXP

i
read script
into area }——p

SA(1)

tnn nf
DAHIN a
list
?

is
~ottom of
list name of
present

script
?

'es renplace list
on DAHIN by
top of list

PAGE A32

ype
input

put input
into INPUT

y

TXTPRT(INPUT, STOUTN) |

bottom

of INPUT)-XE3

a$

is
top
of INPUT
a$

p

look at
first word
of INPUT

3

execute

input

loff top

Appendi x

e EE———

Appendi x

look at

PAGE A33

next word

put key
Sstructure
in keystack
KA(GROUP)

make
substitution

look
next
of |

at
word
NPUT

is

t of
form
(A=B,

yes

are
there more
words to
look at

is
there a
precedence

number
?

set precedence
number to zero

look at B—-@

PAGE A3L

were
any
keywords

found
?

no

take top list
off TABLE-~-
look at key call it ELBAT
structure with
highest precedence
number--put in KEY

Appendi x

put NOKEY on
top of DAHIN

s 1t.a

substitution

of the form

(A=B((C)))
?

look at C

N~ —‘—

Appendi x

PAGE A35

is

there

a]ist take top
following the label off

tag on the list

ELBAT

?

substitute
this label
for the list

|

is
there
another list
on ELBAT that
contains this

label
?

remove this
label from
the list

put label of

this tag on
top of DAHIN

PAGE A36

look at key
structure
in KEY

:

look at first
decomposition
rule (DR)

Appendi x

INPUT
?

put decomposed
structure
in DECOMP

!

perform
reassembly
rule-=-put
in SEMBLY,

look at‘
next DR

put no-DR
label on
top of
DAHIN

take top list
off TABLE--
call it ELBAT

on ELBAT and

precedence number

less than

10000
?

R —

Appendi x PAGE A37

is
there

a DLIST take top list look at
and TABLE of f TABLE=~ }———ulfirst tag
not call it ELBAT on DLIST
empty
?
no
look at
next tag
on DLIST

this the

last tag on

the DLIST
?

no

is
0'E tag
on ELBAT and
precedence number
less than

10000
?

take top list
off TABLE=-~-
call it ELBAT

is
the label
a list or list

name
?

put label on
top of DAHIN

execute look at
yes list b————ifirst word o
of INPUT

PAGE A38

EU[]QtI on

ABS
ADDKEY
ALL
AND
ANY
ARCCOS
ARCHRD
ARCSIN
ARCTAN
ASSMBL
ATOM
BOT
COS
coT
COUNT
CUBE
DEFINE
DELSCR
DSKCLS
DSKLST
EVAL
EXISTS
EXP
FOR
FSTATE
GOTO
HI RANK
IF
INDCTR
INLSTL
INLSTR
INTGER
INTPRT
ITSVAL
KEY
LEMPTY
LET
LINLST
LIST
LISTOF
LOAD
LOG
LSLCPY
LSSCPY
LSTDIF
LSTMRK
LSTNAM
MADOBJ
MAKEDL

INDEX OF FUNCTIONS
Operation

absolute value

add keyword

list comparison for all words
Boolean and

list comparison for any words
arccosine

read list from archive file
arcsine

arctangent

assemble

is it a datum?

bottom of list

cosine

cotangent

count

cube

define function

delete script

close disk file

read list from disk file
evaluate

does identifier exist?
exponent

for statement

does disk file exist?

g0 to label

hirank of keyword

if statement
alpha-numeric indicator
insert list left

insert list right

integer

integer part

the value of an attribute
keyword search

is list empty?

let

linearize list

create list

make a list of data

load from disk file
natural log

list linear copy

list structure copy

are lists different?
list-mark indicator
description list name
machine address of object
make description list

Appendi x

Al7
Al3
A8
Al9
A8
Al7
A24
Al7
Al7
Aly
A7
A5
Al7
Al7
A3
Al7
A27
A24
A24
A23
A26
A7
Al7
A20
A7
A26
Alb
A20
Al5
AL
AL
Al7
Al7
A9
Al3
A3
A28
Al
A3
A3
A25
Al7
A5
A5
A8
Al6
AS
Ab
AS

Appendi x PAGE A39
MATCH match Aly
MAX maximum value Al7
MIN minimum value Al7
MODULO modulus Al7
MRKIND set alpha-numeric indicator Al5
MRKLST set list-mark indicator AlG
MRKNEG set word-length indicator negative Al6
MRKPOS set word=-length indicator positive Al5
MTLIST empty list A3
NEWBOT new bottom of list A3
NEWTOP new top of list A3
NEWVAL new value of an attribute AlO
NOATVL remove attribute and value AlQO
NODLST remove description list A9
NONE list comparison for no words A8
NOT Boolean not Al9
NTHBOT Nth from bottom of list A6
NTHTOP Nth from top of list A6
NULSTL new list left A5
NULSTR new list right A5
OR Boolean or Al9
POPBOT pop off bottom of list A6
POPTOP pop off top of list A6
PRTLC print lower case A23
PRTUC print upper case A23
QUIT quit A26
RANDOM random number generator Al7
RANSET set random number generator Al7
RDLONL read list online A25
READ read from console A25
REMOVE remove 2;
REPLAC replace . in
SCRIPT read in script b
SEQLL sequence reader left ALl
SEQLR sequence reader right A3
SEQPTR sequence pointer address A1l
SEQRDR initialize sequence reader A17
SIN sine Al7
SQRT square root A17
SQUARE square 1 Al
STRLST structure list] A7
SUBSBT substitute bottom of list A6
SUBST substitute . AG
SUBSTP substitute top of list A17
TAN tangent Al7
TAMH hyperbolic tangent A26
TIME time A26
TODAY date) AS
TOP top of list A23
TXTPRT text orint A22

type - A9
zsz value of an attr:huge A13
WASKEY was l;ey'.-.’or’{ present? A26

XECOM execute CTSS cormand

]

