/JMOLR, 08730/68 1557255 JFR 3 .MCH=725 .MLN=525% .PLO=1;

I .HED="MOL - ABSTRACI"; .PGN=0; -ROM=135 L.RES;

MOL

- ABSITRACT

1A This report is a reference manual for a programming language
deve Lolped at Staniord Kesearch Institute for the Scientific Data
Systems 940 computer. The compiler is wew fully cperational; i1t 1s
written in dits own langrages compiles itself, and is in daily use for
deve lopment of our CRT-display service system.

IB The rame MOL94C (or simply MOL). is an acronym for
“"Machilne-Oriented Language.” MOL 1is an ALGOL-like 1language with
natural extensions for bDit manipulation. The added syntax strongly
reflects the internal design of the 5SDS 9404y in accorcance wilth the
name MOL.

IC They, introduction tc this report includes a brief summary of other
pro jects of the same rature which were known toithe aulhors. Ihere
is also a discussion cf the desiigr criteria that shaped the MOL. The
ma jor topics are the comprehensibility of prograns written in the
langua/ge. the ne €as of sy stem programmers working witrkinp Bl
time—s har ing systems and the effecis on coding thaét resullt from using
an on-line CRT.

ID A complete derinition of the language is given, using an extended
Backus! hormal fors; included are semantic explanations and examp .es.,
a samplile program, and scme examp les of code produced oy the MOL
compilier.

MOL - ABSITFACT

‘ 2 .hed="MOL - CONTENTS" ; .PGN=.PGN-=1; .RES;

——

—

MOL

ABSITRACT

Abs tract

For eword
Conltents
[ntroduct ion
Denfniiritions

iy bex
Ppesratrons
Sample programs and compilations
Compiier —Listing
Support Library

Bimsliography

MOL - ABSITRACT

. 3 .HED="KOL - FOREWORD"; .PGN=.PGN-!3; .RES;

[1

MOL

- FOREWORD

3A Development of the MOL (Machine-Oriented Languége) 1nitially began
in dotcoer 1966 uncer ARNAS-NASA sponsorcship. Although completion
took approximately one year:. only six man months have been invested

in 1Lhe project. The Augmentea Human Intellect (AHI) Program
(ENGEULBARTT7) is using the MOL as the base language for i1ts sofulwmare
ef fort . The language and compiier have been explicitly designed Lo

faci litete concurrent modification and development of AHI programming
techo iques.

3B This report has been prepared with the On-Line Text Manipulation
System ., and consequent ly it differs in a few respects from other
techmiczl reports. All paragraphs are hieranchkically numbered;
certain paragraphs bear “names,” and references appear as an author's
names !perhaps with a sequence number, enclosed in parentheses.

111

MOL - FOREWORD

. 4 .HED="MOL - INTRODUCT ION"; .PGN=0: -ROM=0; .RES;

MOL - INTIRCOUCTION

| . 4A Or inginal computer language devel opment was 9guiced Dby the already
| existing formalisms of the numerical analysts. The machine-
indepencent evolutionary di rect ion of the problem-oriented languages
has enhéenced their algorithmic and algepbraic nétures DUL destroyed

t heir usefulness as syslem program languages.

4Al. The concerns of system programmers such &s | ef Ficiencys tight
codes and . bDit manipulations require a cifferent orientation.
Macihine indeperndence and algebraic constructs are notl di scarded
but are enhanced; addi tional fealtures are inc luded to permi t
sucwx inct, explicit references to harduare functicns necessary in
sysitems prograsming on a display—-oriented t ime-sharing computer.

4B Ersin Book (See BOCKI) of Sysitem Development Corporation supplied
the owiginal impelt us for our new language with his @32
machine-oriented llanguage (MOL). Niklaus Wirth simultaneously
undert ock @ similar project while at Stanford University. His PL-360
(See WIKTH!) was designed as a4 pr ecedence grammar (See WIRTHZ} and
used to implement a version of ALGOL on the IBM 360.

4C Dur aim throughout the devel opment of MOL 940 wuwas to design a
coordinéete language-compiler pair that permits Gthe e xpression of
clear. conclse algorithams and the product ion of efficient, Light

code. With such a languages fewer bugs slip in during codi Ng»
programrers can say what they want in fewer WOrcses and (with a little
' luck) wore can pick up scme of his year— old code anc understand iL.

4Ch Algorithmic clarilty 1s mainly due to Lhe structure impl icat 1 n
the syntax of the language.

4CIA It is sigrificant in this regard that labels have aimost

disappeared in existing MOL code. Instead the CASE and HHILE
statements are Lthe primary means of controbling program flow
‘(See WIRTH3). The program is not inter leaved with many GOT o0

statements transferring into and out of sections of code so©
ithat only the original programmer can remember all the ways a

iIcertain statement may DbDe reached. Just Lhe way MOL code
appears on a page makes the algorithmic flow clear (See
.SCHORRE 1) .

(1B The succinctness of infix notation rather than asseably
language also acds clarity. It is often ocuite difficult Co
wick up a random page of machine code and recognize that & sel
.of Ffive 'lines doing veryYy strange things are actually testing
for a flag in 3@ WCray bul it is very easy Lo recognize 3 iline
of MOL and “see” a test be ing made.

4L 21 Cur concern for the production of tight coce led us to believe
that Progralner-ard:ccmpiler must work toge thers the compiler
alone cannot do the job.

MOL - INTRCDUCTION

4C2A While ¢the programmer can do the job alcocnes il is usual ly
itco Lime corsuming. The | idiosyncrasies of the SDS 940 are
reflected in Lthe special constructs incorpcrated in the MOL
mrich allow the programmer control ‘of :the code that is
Igenerated and the way in which registers are used.

4C3 He have also included rather general expressions and
ass icnment statements in the MOL. At times 'the programmer has no
need for tight code and should be able to use the MOL on 3 higher
leviel, leaving all the worrying about final censtructs to the
compiler.

4C4 A unique consideration within the MOL design criteria is the
accormodation of potential coordination between the structuie of
the language and @ display-oriented time- sharinc text editor.

%C4A With such & systems, Lhere may not exist hard copy and the
programmer would be able to see no more than some twenty Lines
of his program &t any one time.

%C4B Much can be done Lo eace the programmer®’s movements within
the code to facilitate manipulation of logical chunks of code
iand to allow at least everything that can be done with cards
iard a lisbirg.

‘4(4C We would like to give the progranmer even more for we feel
itrat our text structure conventions and the associated featwres
'of NLTS can be used for algorithm analysis; these techniques,

'7 coupled with the design of the language and of the compider.,
Provide 9greater power and facility for cealing with program
Idesign than more conventional methods such as flow charts. In
ESD! we presented some basic discussion in this direction {(See
ENGELBARTH) .

252

‘/' 4D iihe MOL 940 compiler uses @ FETA compiler panser and @ 9general

{ operator—operand stack: for the code producing algorithm. Additions

| to the syntax take only minutes to implement. As a result we do not
try & o plan for all future constructs. Insteads our @attitude of
restraint means Lthat syntax 1S added when the need arises and the
style of the construct is well t hought out.

| MOL - INTIRCDUCTION

' S .HED="MOL - DEFINITIONS"; .PGN=.PGN-1; .RES;

MOL - DEFIINITIONS

SA Terminology

Sail The syntax : for the MOL language is writtenm in ithe META 11
not.ation. This provides an easy means of expressing the syntax in
a form that is readable by both man and machines yet allows great
ease and f lexibility in modifying the constructls that describe the
lan guage.

SEIA The notat ion used for the META 11 syntaxs as well as for
wte MOL lancuages, is quilte similar to the notation used ' in the
ALGOL 60 report.

SAIB Terminal symbols are represented as strings of characters
bounded by quotes. Nonterminal symbols t(ake the form of an
ALGOL identifier (1.e.» a letter followed by @ sequence of
letters or digits).

SAIBl Any terminal symbol «consisting of & single character
may be preceded by a single quolte rather than enclosed 1n
gquotes to indicate that it is terminal.

SeIC Concatenation is designated : by writing idenms
consecutively. The items are separated by slashes to indicate
alternat ion. Each syntax equation ends with a semicolon.

SAID A special syntactic entity representec as ".empty™ has
been incorporated Lo indicate that a syntactic element 1S
optional, and is usually used in conjunction with alternation.

1SALE Alsos it . is possible to “factor”™ part of a symtax
equations; that is. parentheses can bDe used tc¢c group a8 sequence
of items so as to treat it as a single item.

SAIF A special wopgerator, pSn (uwhere m and n are optienal
integers), is also used to designate "any number beiween a and
n of occurrences of the following item.” The cefault values of
mand n are zero and infinity. This makes it possible to
reduce the number of equat ions needed to obtain recursion on
some item in the syntax. For example. Lhe stendard definition
wif identifier ncw becomess

SAIF| ident ifier = letter S$(digit / letter);.

S42 The design philosophy for the MOL compiler sas to follow the
META Il designs i.e.s» that of recursive recognizers. The reasons
fer. this choice center around the following considerations:

iIS5E2A Most : of the people using and designing the MOL larguage
jard compiler have had direct experience ' writing recursive

recognizer compilers.

MOL - DEFINITIONS
. S£2B To design #& frecedence grammar and compiler means that the
relationship belween each character and all other characlers
has to be considered at each point. and an arbiltrary consiruct

cannot be "acded at will wirthout possibly afif ecting 'the rest of
itte existing relabicons.

58 Bas ic Symbols and Syntactic Entities
S84 Ceneral Vocabulary

SEIA Terminal Vocabulary

A

o

58 A B F GHI K
3 & 1 PR & ¥

™ ™
x

C E J NOPQ RSTUVXYZIZ
8 0 S 5 ey e g S gl 13

]

o

1Al
4 5
SBIA2 AND BEGIN BUMP BY CALL CASE DECLARE TO DO-SINGLE ELSE
END ENDP. ENTRY EXECUTE EXTERNAL FINISH FOR FROZEN G0 &OTO
IF INC NOT NULL OF OR POP PREF IX PROCEDUFE PROC RETURN SET
STEP THEN TD UNTIL VIRTUAL MHILE -A .E .V .LT .LE .EQ - NE
.GE .GT .CB .NCB .AR .BR .XR _BRS .LSH .LCY .LRSH .RCY .RSH

SEIB Nonterminal Vocabular y

581Bl <abxreg> <actual> <actl> cact2> <act3> <actéd>
<address?> <3r pas> <ass ign?> <band> <pbexg?> <block> <por?>
<pound> <builtin> <bump> <call> <case> <constant> <cwar >
‘ <decl> <dec laration> <entry> <equ?> <cequl> <exp> <ext> <exu>
<factor> <for> <formal> <forml> <fors2> <form3> <formé>
<frozen> <frzl> <golLo?> <icon?> <if > <imme di at e> <index?>
<indirect> <inter sect ion> <item?> <jlterative> <labeled?>
<negatlor>.<rull> <parig> <prefix> <pripary?> <procedure>
<product?> <relation> <return> <simple> <statement> <sum >
<uynion> <value? <variable> <varfun> cvirtual> <while>

582 Frimitives

582A ldent ifierss An ident ifier is @ symbel used Lo name a
quantity (such @as a procedure, 4 variables c¢r an array)., @s a
label or formal paramelter.

582A1 Syntax: id = letter $5(letter / digit)s.

SB2A2 Semantics: An identifier (or more simply an id) dis a
string of letters and digits. with a maximum length of 6.
the first of which must be a letter.

SB2A2A All identifiers that are local to a procedure must
be decliared at the beginning of the grocedure. fhose
variables not declared or used as labels are assumed tO
be wirtualy i.e.s defined in some other procedure. No

MOL - DEHIAMITIONS

. distinctiicn is rade among arrays procedure, and label
uses of identifiers.

582A3 Examples :of Identifiers:
5B2A3A 1|
5B2A3B CHAR
5B2A3C X2
SB2A3D 12J4BYI
S5EZ2B Numbers
5B2Bl Syntax: number = 1$8 digit ("b" / .empty) ;.

5B2B2 Semantics: A number is a string of digits, with a
maximum length :0of eight characterss possibly terminated with

a letter b. If the terminating character is a by then the
nuaber is taken to be octal; otherwiise it is taken to the
base 10.

5B2B3 Examp les of Numbers:

. 5B2834 |

5B2B38 1024
5B2B3C 77770000b
SB2C Strings

582C!I 8-bit character strings ar e the only strings
recognized by the MOL compilers and these can only occur in
declarations.

5C Declarations: All declarations occur at the start of a procedure,
as dec lérations are not allowed within a block. All variasles
declarec in a . prolcedure become local to that file (not just the
procedure), and external to that files if so dec lared. Variables can
be preset, arrays declareds and wirtual symbols speci fied.

5£1) Procedures The procedure is the basic syntacltic entitys in
that one writes proceduress wWwhich are compileds, assembleds and
loalded.

5CIA Syntax: procedure = parid ("pop™ ™“(" MW " LU " "
terum ") J.empty) ("procedure” /“proc”) formal "3 Sdeclar
lebeld S("3" lateld) “"endp.":

MOL - DEFIANITIONS
SCEAL marid 2 6% 1d "¥° 3

SCIA2 formal = “(* (id / .empty) $2("," (id / .emply)) s8) 1o

S5CIB Semantic s: The procedure declaration begins wilh an
indent if ier which serves as bthe mname ‘:w0f ithe procedure.
Dpt ionally. one can declare a procedure to be a “POP" procedure
sc that it will be treated by the system as a user POP.

5CiIBl Following the word “procedure” one optionally
indicates the parameters to this procedure. A maximum of 3
is allouwed, to correspond to the A, Bs and X registers.,
which are the only arguments passed when a call toe a
procedure is made. These parameters @re Iindicated Dy
placing them after the word "procedure,” and enclosing Lhem
in parenthe ses.

5CIB2 After the procedure declaration comes a ceclarat ion of
all the variables that are to be wused in that procedure.,
their dimensions (if any) and their values if they are be ing
presel.

5CIB3 The sequence of statements that constitutes Lhe
executable code of the procedure follows these declarations.
In Lthis. note Lthat one cannot declare variaples within

blocks . and that vaeriables can only Ibe declared .at the
beginning of @& procedure.

5CiB4 Finally, all procedures must end with an "endp”.

.5CIC Example of Procedures

SCIC! (get) procedurel(xi:il; declare xsii return(x[i+11ir4)
endp.

5€Z2 Declaration

SC2A Syntax: declaration = (decl / ext / ecu / wirtue /. frazen
7 prefix ¥ “2C

5L3 Decl

SC3A Syntax: decl = “"declare " (“external ~ /.empty) item 5(","
item),;

SC3Al item = .id (bound /.empty) (value /.empty) 5

SC3A2 bound = "[" (.id Z.num) 1% 3

____——————————————————————————————1----------I-IIIIl-IIlIlllllllﬂ

MOL - DEFIIMI TIONS

5C3A3 value = "="("(" icon $("+" icon) ")* / icon);

5C3A4 icon = (.num /.id /.st8) 3.

5C38 Semanticss: The basic declaration statement permits
ldec laration of: those variables which are to be allocated in the
current procedure (and possibly made external to the current

fFiley, to indicate their dimensions (if arrays)le and to specify
the values to which they are to be preset (numbers, addresses

wof identifiers, or strings).

503C Examp les:
5C3C! declare xoysz[10];
5C3C2 declare external m=10,n=m,st="end of file’;
5C3C3 declare skl[101=(0,1,20,40);.

5C4 External

5C4A Syntax: ext = "external evar S("," evar);

5C4A) evar = .id ;.

5C4B Semantics: The external declaratiocn generates “ext"
Irecords for the assembler——that jis to says those variables
following the “external™ are defined to te external to 'the
current files, but they are not allocated any storage. In £his
last respect they differ from variables which are declared wvia
itte "gdeclare external” statement. "External™ is sometimes wsed
itec declare labels ite be external.

S5C4C Examp le
5C4C1 external msn,z;.

5C5 Equate

equl S(":" equl) ;

SC5A Syntax: equ = "set
5C5A1 equl = .id "=" (.id /.num) ;.

505B Semantics: The equate cdeclaration generates "equ” records
for the assembler--that . is to say. those vériables ithat are
indicated are equated to the value given at assembly tLime.
1iThis is wusef ul in generating conditional assemblies, amd in
Isetting the array bounds via a "set " identifier.

5C5C Examp le=

MOL - DEFINITIONS

. 5C5C1 set m940=1,skmax=100;.

506 Virtual

'SC6A Syntaxs wvirtue = "vir tual cvar S("s " cvar) ;5

SC6Al cvar = .id (bound /.emplLy)s.

5C6B Semantics: If a var iable is not declared in a file, £hen
it is knoun as virtual. Via the "virtual™ ceclaration, 1t is
possible to tell the compiler which variables are expeclted to
be virtual; appropriate checks can then be made. and when the
wcross-refeérence listing is generated, 'Lhese variables will be

marked "v™ fori virtual., instead of u™ for uncefined.
SC6C Examp les
SC6C1 virtual a+.bym(32b];.

S5C7 Frozen

'SC7A Syntax: frozen = "frozen fezl S("" frzilds

SCTA} frzl = .ids.

S5C7B Semantics: The frozen declaration is wused Lo tell the

‘ wcompi ler that the following variables are lecal to bhis file,
but that no storage should be allocated for Lthe variaodes.
yThis distinct ion is needed because the codes for local and
wirtual variables are different. Since : the loader links
wndef ined symbols itcgether through the address field, it is not
possible to have a complex address field (such as " l1da a+1")
for a virtual symbol. Thus for the compiler to generate tLhe
\appropriate index register loads and the correct adoress field,
it needs to know whether a variable is local or virtual. The
frozen dec laration is a way of making the compiler Lhink that a
var iable is local when :it is wvirtual. . This is wused in
connect ion with. the ARPAS “continue assembling”™, and "frozen
symbol table"” features.

SC7C Example:s
SC7CI frozen a@a«sbsx;s.

5L8 Prefix

SC8A Syntax: prefix = "prefix “for

.st8 /“temporaries:” .st8) ;.

("géne¢rated " " labels:”

S5C88B Semantics: By wusing a higher-level languages ' it is

MOL - DEFINITIONS

possible to have the compiler generate labels and temporaries
imhichy at the machine- language level, would otheruwise have to
Ibe done by the user. However, the compiler is now generating

lébels and tempcoraries, using identifiers that are the same for

each compilat ion. For debuggings and for generating reentrant
iwccdes it is useful to be :able to specify Wdif ferent names. The
“prefix” declaration permits the user to specify the names used

for the generated labels and temporaries.
S5C8C Examples:
S5C8C| prefix for generated labels: "fmt’;
SCB8C2 prefix for temporariess "libet" ;.
5D Expressions: An expression . is an entity which represents a
numerical value (contained in one 24-bit word). This value is
obtaimec by using the values of ithe identifiers and funmctions within
the expressions and combining these values by means of the operators
within the expression. Note that the symbols .are .brs and .xr are

assoc ji;ated with /the /internal registers of the machine, and Ltheir
values ére the contents .of the respective registers.

SDL Exp
SD0IA Syntax: exp = "if" bexp “"then” bexp "else” exp / bexp #.
S50IB Semantics?: A general expression: can be wither a
conditional expression, using the "if then else” type of
constructs or it may be an expression resulting from Lthe
combinat ion of arithmetice booleans or relational operators.
SCIC Examples:
SDIC) if x .le ¥y then | else 2
SDIC2 x+y¥z /(x+1)
SB2 Bexp
S502A Syntax: bexp = unioni.
5D3 Union
503A Syntax: union = intersection $("or" union);.
S5D38 Semanticss The wunion makes it possible ito combine
expressions with the logical operator "or.” The result of the

1"er™ operator is true (i.e. not equal to zero) iff at least one
:of the expressions is true.

MOL - DEFMIMITIONS
. SD3C Examp le:
5D3CI x or vy
S5h4 Intersection
SD4A Syntax: intemsection = negation $("anc” intersectionls.
SD4B Semantics: ‘The intersection makes il .pcssible to comb ine
expressions with the logical operator "and. " If both
lexpress ions are true, then the result will be true.
5D4C Examp lez
5D4C] x and vy
585 Negation

SDSA Syntax: negation = "not”™ negation / relation;.

50SB Semantics: This construct makes it possible to take Lthe
‘(logical) inegait ion of the value of any expression.

SD5C Examp lez

‘ 505C! not x

SH6 Re lation

‘SD6A Syntax= relation = sum (".gt™ sum /7".ge" sum /".ne” sun
/°.eq” sum /“.le” sum /".1L" sum J".cb” sum /".ncb” sum /.empty
)3

‘SC6B Semantics: The relational operators make il possible to
,construct 'logical - statements which are true if the given
jarguments stand in the specified relation to one another. The
operators are “greater than," “greater than or equal." “not
equal.” “less than or equal.,” "less than." “common bits.” or
'"no common bits.” The “common bits™ operator yields a value of
true iff both of its arguments have ones in any corresponding
it positions. The "no common bits” operator yie lds a value of
true iff its arguments do mnot have ones in any corresponding
bit positions.

S06C Examples:
SD6CI m .9t n

5Dp6C2 z .ne Yy

10

,_________—————————::1----IIIIIIlIIlllIII...........l........l.llll.l.lll

MOL - DEFINITIONS

. 5D6C3 x .cb y
SPT Sum
S5D7TA Syntax: sum = product S(“+" product /7 “-" product);.
SC7B Semantics: The sun Permits one to combine expressions with
ithe arithmetic operators + and - . Note that all values are
taken to be 24-bit int eger s.
SC7C Examples:
SD7C! x

5D7C2 x + y

SD7C3 x -~ y + 2z
5D8 Product

SC8A Syntax: product = factor S${"+* Ffactor 7/ “4* faotor 4 =+*
faector);.

SD8Al Syntax: factor = bor / "-* factor ;

S08B Semanticsz The Product permits one to combine expressions
. wWith the arithmetic operators ¢ (times), / (division): and *

(rod). The result of these operators is a 24-bit integer, and
1iin the case of the division, the remainden jis discarded. Mod
Ooperates similarly to division except that the quotient is
discarded and the remainder is the result -of the operation.
508C Examples:

SD8C! x

SDBC2 x » y

5DBC3 x 7 y

5D8C4 x * y

SP9 Bor

S5D9A Syntax: bor = band $(".v" band / "« X" band);.

SC9B Semantics: The "bor™ (standing for "bit or*) makes it
Possible to obtain the bitiwise *“or" of two expressions. MBoth
tinclusive and exclusive "or® are allowed and are designated by
l«¥V @8nd .x respectively.

MOL - DEFIIAITIONS
’ SD9C Examples:
SD9CI x
509C2 x .v ¥y

SDIC3 x %X, Y

5D10 Band

SDIOA Syntax:s band = primary S(".a" primary);.

‘SCI0B Semantics: The “band” (standing for “bit and”™) makes it
possible to obtain the "bit and” of two expressions.

SD10C Examples=
SDIOCT x
SDIOC2 x .a vy

5Di 1 Primary

SDI1A Syntax: primary = bltin / abxreg / varfumn / const /"("

texp ")" / immed / indir
‘ SDI1AYl » bltiin = (¢".lrsh® “(~ actual “)" .num - /" 1lsh”™ °“(°
sctual”2)® .oum 1l Yonshs ' YT sactual udy Ll T R R B LY el

actual Sy o T T s ey o ot Sl G actual *)" .num) Chee
/.empty)) /".brs”™ .num “(" actual ")" 3

5D11A2 abxreg AN 2Bt T Xr R

SDIIA3 varfun .id ("™ index "1" /"(" actual ")" /.emplLy);

S5DI11A4 const -NUMm 3

SDIIAS immed “$* (var [/ const ("[" index "1" J.empty)ls

SD11A6 /indir “"[* (immed /var /const) "1° ;

SDIIAT var = .id ("[" index " 17 /.emply);

SD11A8 index = “(" exp ")" /7 .num Z(.id /".xe®")("+" _nund"-"
.num/.empty);

SD11A9 actual = (.id /7 .empty) $2("," (.id / .emptyld

501 1B Semantics: The primary consists of the basic entities
jthat can be used to construct an expression. It provides for

MOL - DEF INITIONS

. direct reference to the A, Bs and X registers. use of ithe shift
iand cycle instruotions with optional taggings use of ithe BRS
instructions indexed var iables, functions of up Lto three
argumentss and pbolth indirect and immediate addressing. Note
ikrat by means of the parenthesis, recursion is introduceds and
ithus complex expressions may be constructed from simpler ones.

SCIIC Examples:
SDIICI x
5D11C2 x[i+ 1]
5D11C3 23
5D11C4 pacix.y)
5DI1ICS (x + y)
5DI1C6 [x]
SDIICT $x
SDIICB .Ish(me0+6)3 + .rshlasbex)5.,2
‘ 5E Staltements: A statement is the basic execgtd)le unit of an ﬂOL
program. It denotes some action that is to be performed, which

action nmay be the evaluation of expressions or the execution of other
statemerts.

SEl: Syntax: labeld = (parid ":=" /.empty) stat ;
SEIA stat = if / simple

SEIB simple = block /7 goto / return / call / rcalld / bump /

jarpas / iterat / entry / case / null / exu / assign ;.
SE2! If

SEZ2A Synt ax: if = "if " bexp {(“"then " sisple ("else " stat
-J.empty) J"co—single " stat);.

SE2B Semantics: The "if" construct is the standard if statement
with the optional "else” part. The added construct "do-single”
iindicates that the true part will consist of just one
iinstruction and thus the code at the end of the test for the
"bexp® cam be compiled to minimize the branch and skip
instructions.

SE2C Examples:

MOL - DEFIINITIONS

SE2C] if x ‘then goto 12 else x+13

SE2C2 if x r.ne z do-single bump i3

SE3 Block

'SE3A Syntax: block = "begin » labeld S$("3" bateld) “end”;.
“block” construct allous Lthe user Lo

consecut ive statements by "begin”™ and
a sing le

SE3B Semantic s: The

delimit a sequence of
1"end”™ to indicate that it is to be treated as
statement. No'te that dec larations are nol permitted within a

block.
ISE3C Exampless

SE3C! begin x=l; y*x¥y+zZ; (here): returnl(y) ends;

SE3C2 begin call inchar(char); char*char .2 T7ib end;.

5£4 Coto

SE4A Syntax: goto = ("goto ” /"go " “to ") addr &

SE4Al addr = var / indir / immed / const 5.

generates an unconditional bramach.

'SE4B Semantics: The “"goto”™
direct, or immediate.

This branch can be indirect, indexed,
ISE4C Examp les:

SE4C! 90 to heres

SE4C2 goto [Strali+l]]s

SE4C3 goto 1$I5bs.

SE5S Return

SESA Syntax: “return™ ("(actual ") /.empty) .
SESB Semantics: It is possible. via the "actual” constructe to
indicate what the contents of the A, B and X registers sheould

ibe shen returming : from a procedure. This is optional, and if
nothing is specified L he r egisters remain as af fected by the

Pprocedure.
1ISESC Exampless

SESC| return;

14

MOL - DEFIINITIONS
SE5C2 return(result);
SESC3 return(mli-21-y,em+l);.
SE6 Call

SE6A Syntaxs “"cadl " var ('(actual *) / i.empty) ;.
SE6B Semantic s: The optional arguments following the “"cadl *
indicate the contents of the A, B and X registers of the 940.
iThus it is possible to pass up to 3 arguments at call time to a
procedure. Alsoe it is possible to subscript the name of the
procedure being calleds ithus indicating an alternate to the
Ideclared entry point.
SE6C Examples:

SE6CI| call sub;

SE6C2 call output(char .a 77beesfilen);
S5E6C3 call tablelil(argl,l0*arg2);.
SE7 Bump
SE7A Syntax: bump = “bump " addr S$("," addr);.
SE7TB Semantics: There is @an instruction on the SDS 940 which
‘acds I to memory. and leaves the contents of the centiral
iregist ers unchanged. The “bump * construct indicates that
this operation is to be performed on the sequence of jitems that
ifol low the “bump.”
S5E7C Examp les:
SETC) bump is
SE7C2 pump ml[i-31,S1.iSstackpls.
SE8 Arpas

SEBA Syntax: arpas = "<
nexkt> "

" <copy across everything wup to the
>* ' Fa

SEBB Semantics: This construct ailows the wuser to insert
machine code into an MOL program, if some special sequence of
ccde that is needed cannot be generated or evem expressed by
the language.

SEBC Examples:

15

MOL - DEFIIAITIONS
. SEBC! < sta temp>3;

SEBC2 < cio fmumo; tco cri tco 1f; brs 10>;.

SE9 Iterat

SE9A Syntax: iterat = for / whiles.

SE10 For

SEIOA Syntax:s for = “"for = .id "from " exp ("inc * /"dec ") exp

“to exp “do " stat ;5.

SEIOB Semantics=. The "Ffor” st at ement provides a means of
repeating a statement f(or a block of statements) a specif ied
number of times. By requiring Gthe user to specify “inc™ and
"gec™ it is possible to generate the appropriate code wilbhout
wccmplicated runtime or compile Lime computations. The laimits
on the for loop are not recomputed each time through the loop.
but are compubted once at the start. Notes thowevers that 4f an
-icent if ier is wused ‘as a limit, then the wvalue of #&his
jdentifier is used as the check each t imes so that changing the
value of this identifier will affect the “"for™ loop-.

ISEIOC Examples=
. SEIOC! for i from | inc | until n do 1Lil=0;

SEI0C2 . forr } from x+1 inc | to x*x do pegin mnl jlemij*l];
ml j1«0 ends .

SE1l HWhile

'SEIIA Syntax: 'while = "while " exp “do stat 3.

SEI IB Semantic's: The “while” statement provides a meams of
irepeating @ statement (which can be a blecck) as long as an
iexpression is Lrue. This expression is reevaluated after £ach
repetition of the "while” statement.

SE1IC Examples:

SE11C] 'mwhile char .ne cr do char+~inchar();

SE11C2 i*l; while i .le n do begin miil*=0; bump i end;.

SEi1 2 Entry

SE12A Syntax: enktry = “entry " .id formal 5.

16

MOL - DEFINITIONS

SEI2B Semanticsz The “"entry" statement provides a means of
indicating secondary entry points in a procedure. Any calling
iarguments that are indicated are storeds anc a branch areund
ithe code generated by the "entry™ statement is provided by 't he
cempilers so that an “"entry" statement can be inserted at any
point without causing an interruption in the existing code.

SEI12B1 The return address is moved from the entry point to
the name of (he procedure, so that all returns can returs to
the procedure name. However, this is not dome in the case

of @ reentrant procedurey, as the return address is placed
elsewhere.

SEI2C Examples:
SE12C1] 'entry subset;

SEI2C2 entry inset(argl.,inchl);.

SE43 Case

SEI3A Syntax: case = “"case " exp “"of " "begin " stat S('; stat
) "end”;.

SEI3B Semanticss The “case” statement provides a means of
iexecut ing one statement out of many. depending on the value of
ithe expression controlling the case statement. The same thing
‘hés usually been done ' by a4 series of nestec “if" statements.
‘If the value of the expression specifies a stat ement that does
not lie within the range of the case statements (i.e.s froem |
ito n=number of .statements in the “case”) then ithe last
statement of the case is executed.

SEI3C Examples :

SEI3CI case n of begin .crl; call subltn); .crl;i retwrn;
.crli call rerror end;.

SEI4 Null
SEI4A Syntax: null = “null” ;.

SEI4B Semantics:z The “"null” statement is included in the

lenguage so that 'there may be statements within the «case
statement which 'do nothing.

SEIS Execute

SEISA Syntax: exu = "execute " addr -

- DEFINITIONS

‘SEISB Semant ics: This construct reflects the SDS 940
instruction which can execute another ins truc ti on. It prowvides
a means -of locating and executing this instruction with any
.appropriate address (i.e.s with indirect addr essing, imdeXx

modi fication. etc.).
SEISC Examples=
SEI5C] execute mlil;
SE15C2 execute [S01;

SEI15C3 execule 00220002bs.

S5c£d46 Assion

SEI6A Syntax:s assign = (var Jabxreg /indir / immed) S("," dvar
J abxreg /7 indir / immed)) '« ("+" /.emply) exp -

SEI6B Semantics: The "assign” statement provides a mearns of
assigning values to var iabless registerses and actual mamory
locations. Provision is made for multiple storess in which
cise the stores are done in sequence from right to left. Also.
if the item next to the - is a registerys the wvalue will Dbe
placed in that registers and the remaining assignments done
from that registers; otherwise the assignments are taken from
the register that the value happens to be left in by Lthe
expression anmalysis. Note too that the construct =+ is used LO
indicate ithat an "add to memory”™ is to be cone rather tham a
store. This i a special meanings and thus precludes the use
of a unary plus.

SEI6C Examples:
SEI6C] x+15
SE16C2 mlilele(xeb-c/d)+L;
SE16C3 .arsme.brei+l;

SE16C4 mlil=+.ars.

MOL - DEFINITIONS

6

HED="MDL -

SYNTAX™;

*« PGN=.PGN-13

-RES;

18

MOL - SYNTAX

6A The following is : the syntax for the MOL. Note that backuwp is
requir ed to compiles but the backup is only past an ident if ier aflter
the mext character has been recognized. This gets over @ lot of
probll ems concerning assignment statements and labels.

6B prog = (.id Z.empty) Slarpas "3 7/ proc) "finish™
6C proc = parid ("pop” .sp "(cnum "+" .num """ .num *) J .emply .rp
.rr) (“procedure” [/ "proc”) formal '3 (.tp Sdecl2 /Sdeclar) labeld
S(*3 labeld) “endp.” 3

6L parid = *"(.id *)

6C2 formal = "(C.id (4" forml /7 form&) J"," forml /fForm&) ") /
formé& 3 6C2A forml = ..id (""" form2 / form3) /"™ form2 /form3 ;

6C2A form2 «<i0d /form3;
6(2B form3d = _eapty

HC2C formé ~.empty i

6D dec lar = (decl / ‘decl2) "5 3
6D4 decl?2 = ext /) equ / virtue / frozen / prefix ;3

62 decl = “declare” (“"external® .rl /.empty .sl) iditem 35L","
item);

6D2A item = .id (bound /.empty) (value /.empity) 3

6028 bound "L G.id:/.ouam)' "1"" 3

6D2C value == ¢ % vifcom S0 2con}): *) 7 jcom') 3

602D icon = (.num /.id /.st8) ;

6P3 ext = "external evar S$("," evar) ;
H6L3A evar = .id ;

6D4%4 equ = “set " equl S$("," equl) ;

6D4A equl = .id "=" (.id /.num) 3

605 virtue = "virtual " cvar $("," cvar) ;
605A cvar = .id (bound /.empty)

6D6: frozen = “frozen " frzl $("," frzl) ;

19

______—————————————1---IIIIIlIIllI....l..l.........l...llllll.l..IllIIIIlIIIIIIIIIIIIIIII.

MOL - SYNTAX

. 6D6A frzi

607 prefix = “"prefix
/“temporariesz" SE8') 3

-id 3

. -

for ("gener at ed T Ylabel sz istB

6E labeld = (parid ":" /.empty) stat ;

1f / simple ;

n

6F stat

66 irf =Nt LE " bexp ("then " simple (Telse ™ stat 7/ ~empty)
/“"do-siingle * stat);

6H simple = block 7/ goto / return / call / rcall / bump / arpas /
iterat / entry / case / null /7 exu / assign ;

61 bloick = “"begin " labelc $(’; labeld) "end”;

6J 9@t o = ("goto " /"g0 " “"to ") addr B

6K retiurn = "return” (*(actual ') /.empty) ;
6L call = “"cali " var (*(actual ") / .empty) ;
6M bump = “bump * addr S("," addr);
. 6N arpas = “<* “copy: across everything up to the next> *>" ;
60 iterat = for / while;
6P For = %“fFor * -id ‘“from " exp ("inc * «Si /"dec " .ri) exp “te o

exp "do " stat ;

6Q whille = “yhile "= exp “do stat ;

6R emlwry = “"entry " - id formal ;

6S case = “case " exp "of " “begin " stat s s stat) "end” ;

6T null = “null" 3

6U exmu = "execute " addr H

6V assion = (var /abxreg /indir 7/ immed) S$("," (var 7 d4Dxreg / imdir

/ immed)) "¢ (=4~ «Sa J.empty .ra) exp 3

6W exp = “jf * Dexp “Lhen bexp "else exp /' bexps
6X bexp = unions;

6Y umiion = inter $("or * union);

20

MOL

- SUNTAX

62 imter = neg S("and dinter)3

6Ad meg = "not

relat /7 relat;

6AA = elat = sum (".1lt " sum .re .rb /".le SuUm .re .sb /".eq T ‘sum
Se b Itne T sum .re .sb /".ge ® sum .re .sb /.9t " sum .re .rb

/".ch " sum .re .sb /“.ncb " sum .re .rb /.emptly)s

6AB sum = prod $("+" prod /"-" prod) 3
6AC prod = factor S("*" factor /%/" factor /"= factor);
6AD factor = bor /""" factor

6AE bor = band $(".v " band / “.x " band);

1]

6AF banc prim S(". a prim);

6AC prin = bltin / abxreg / varfun .se ! wonst s 4 20 exp ")
inmed /7 indir;

6AH abxreg = “".ar” /7 ".br® /. "

6A1 bBltin =((".lrsh” *(actual ") .num J7°Ash” °(actual ")~ oUW
/".rsh™ "(actual *) .num)("42° /.empty)) /".brs” .num *(actual ");

6AJ warfun = .id ("[" ‘index "1" /"(actual ") /.emply)3
6AK war = .id ("[" index "1" / .empty)s

6AL dmidex °(wexp + *) te Z.num Z(.id /".xr™) ("+% _num /"-" .num

/.empby)

6AM addr = var / indir / immed / const 3

6AN immed = "$" (var / const ("[" index "17 / .empty)) 5
6A0 dindir = “[" (immed /var /const) "1° &
6AP tonst = .num .se

6AQ actuval = .empty (exp ("," actl / act4) /"e™ actl /.emply act4) ;
6AR] act]l = exp ("+" act2 /7 act3) /™" act2 Jact3 ;

exp Jact3 ;

6AQ 1 act2

6AQ 2 act3 = .emply »

6A03 act 4 .empty &

21

MOL - SWNTaX

. 6AR sy nerr = S{%endp." /); .end

22

MOL - SWNTAX

‘ 7 .HED="MOL - OPERATIDN"; .PGN=.PGN-1; .RES;

22

MOL - OPERATIDN

7A User Interface

TAl The MOL Executive is Lhe interface between the user and the
MBL compiler. It wses the command-recognition structure of it he
SPS 940 time sharing systen itself, especially that -of ithe QED
Subsystem.

TAILA A special meaning jis attached . to certain control
characterss; when one of thea is typed by the users the
remainder of the control word or Phrase is echoed by the EXEC.
Some characters represent commands Lo be performed, others
represent flags requiring a yes/no type of answer. and otihers
require file names, such as Inputz/prog/s.

17AlIB Each command requires a period for conf irmation. If any
other character is typeds then a space and a4 qQuestion mark are
echoed and the command is abor ted.

7A2 The various characters reco9nized and their meanings are as
follous:

TA2A (i) Input= *I" js typed Lo specify the input fFile for the
MCL compi ler. After the I has been typeds a file name shauld
be given, fol lowed by a per jod.

7A2A1) An input file must be specified with each new
compilation. This file will be closed when the compi lation
is finished.

7A2B (o) Dutput=z -p* is typed to specify the output file for
ithe MOL compiler. After the "0" has been typeds a file name is
expected and should be acknowledged by a period.

7A2B1 Each time the compilation process: is initiateds 't he
old output Ffile is -closed and Lhe new one opened. If,
however., the new output file name is the same as the fast
one used for output. or if none has been specif ied, then the
last file is not closed and the next sel of output is
4ppended Lo the current output file.

7A2B2 1t is possible to specify different files for output,
should the wrong one be given. Homever, when execution of
the compiler begins, the last file specified for output wil 1
be used.

TA2C (b) Begimn Compilation: "B" ijs typed tc indicate that all
file names and flags have been specified for the cumrent
empi lations so that compilat ion may now actually be initiated.

TA2C1 IFf there is insufficient information (such as lack of

23

MOL

OPERATION

file names) toinitiate the compilation process, 'the comma nd
will be aborted.

7A2C2 Mhen & successful comp ilat ion has been performeda t he
message “"*¥¥end of compi lation¥¥e” is . typed. If control
returns to the user without Lthis message, then the
compilation has not been completed : because of an esrror
condition ‘(such as running out of mocm ion the RAD, or an
illegal instruction trap from the compilers etc.).

7A2D (z) Zap: ~2" 1 is typed to terminate the MDL Execulive and
wreturn control; to 'the TSS Execultive. Mhen “zap.” is typeds any
remaining files Lthat are open are closed.

7A2E (1) Listing linterlinear): “L* ‘is typed to set the flag
centrolling the interlinear listimng. The expected response is
either a "y" ‘or "n" for “yes” and “no”"s respectively, although
a period alone will be taken as a “yes"” response.

7A2E! Mhen the inter linear listing is sent to any file other
than the controlling Teletypes all semicolons are converted
into $ so that ARPAS will not terminate @ comment: in ithe
middle of the line.

7A2F (t) Type Procedure Names: “T™ is typed to set the Flag
which determines whether or not procedure rames are t yped on
ithe controlling teletype as they are compilec. 1If ithe flag is
sete then as each procedure is encountered by the compilers the
name of the procedure is typed. The response Lo this command

is in the usual "y~ (yes) or “"n”® (no) manner.

TA26 (c) Cross Reference: “C" is typed to request a
cross-ref erence listing ‘-of the identifiers used in the imput
file. The response to this command is a file name that is to
be used for the cross—reference listings such as “Teletype -

7A261 This 1listing gives tLhe names of the identifiers in
alphabetical order., along with their status {undefined, not
used, etc.) and an ordered list of the line numbers on which
they are used.

7A2H (r) Reentrant: "R” is typed to set the flag that 9gowverns
ahether or not ithe compilation produces reenitrant cede.
A "y" or "n" response for “yes" or "no”
acknowledged with a period.

is expected and musdé be

TAZ2HI I1f the response 'if yes. then the flag - for “generale

temporaries” (see below) is automatically set to "no .

24

MOL - OPERATION

. 7821 (9) Generate Temporaries: “G" is used to set the Flag
which specifies wmhether or not the temporaries used in the dast
input file are to be allocated at the end of the output file.

7A211 If this flag is ons the the temporaries are allocated
(this is the wsual case). If the flag is off (set by giwing
a "no" response), then the temporaries are not allocated.
The latiter is generally used when reentrant code is being
produceds and then in connection with the “prefix for
temporaries " declaration.

TA2J (k) Keep compiling: "K" is the same as “begin compilimg.,”
except that some parts of the MOL compiler are not
reinitialized:

7A2J] These are the symbol table and . the temporary- and
generated-label counts. The purpose of this coamand is to
provide @ means of compiling one input Ffiles and &hen
another, as if ithey were all the same input file.

7A2K (9) Quick: “Q" causes Lhe supression of the string shich
is normally echoed for each command char ac ter.

742L (v) Verbose: “V" causes the printing :of the string which
gives the mean ing for each character typed as a command.

. TE2M Any other characters typed are illegali the MOL Executive
will respond with a space followed by a question mark.

7B Erwor Recovery and Error Messages

7B1. The only errors which should normally be expectled are sSyatax
ersors in the user's input file.

TBIA When such an error oCcCurs, an appropriate error message is
typed, along with the .line number and line which caused the
jlerror. Also 1an uvparrow is typed wunder . the last character
iinterpreted by Lhe compiler.

7BIB To atitempt an error recoverys a scan is made for the mext
"endp."+ Stacks are resets and an atltempl is made to restart

ithe compiler to look for a procedure. This type of procedure
has proven fairly usefuls., and is fanr betiter iLhan just giwving
Up.

782 Another user error which may arise is the occurrence of
identifiers or numbers longer than the saxisum length allowed (6
and 9 respectively). In this case a warning message is typeds the
remainder of the string is sk ippeds and compilation continues.

25

——

MOL - OPERATION

. B3 Next omn the list of errors are stack and symbol-table
over/underflow.

7B3A All the s tacks and symbol tables have been set to adequate
1Sizes for most programs, and the normal wuser will never
encounter the bounds. When and if Lhey are exceede de an arror
message Lo this effect is typed and the compilation process is
'terminated.

7184 Yet another, even more obscure, emror is ome caused by an
illegal string passed to FNT (a routime intermal to Lthe MOL
compiler).

784A Such a string originates in the synmtax equations
'themse lvess and this error can only be the result of changes
méde in tLhe syntax file of the cowmpiler; when this is
cross-checked by FMI,) the error is detect ed. This is treated
as a fatal errors and compilation cedases. But this error
istould never occurn in the normal Course of events.

785 Finally there are tuwo Lypes of errors from which there is no
recwvery al present.

7B5A Internal conditions in the compilers swuch as illegal
imemory references or ‘illegal instruct ions. or program loops
. Htopefully none of these will ever occur).

7685B Conditions external to the compiler., such as running out
of room on the RAD, or @ rubout by the user, or a systenm
crash.

.

MOL - OPERATION

‘ 8 .HED="MDL - SAMPLE PROGRAM";

-PGN=_.PGN-1; -RES;

MOL - SAMPLE PROGRAM

8A (inchar) The "inchar"” procedure is am intermediate interface
betueen the input medium and the compiler.

841 This routine buffers one line of text at a timee outputs it to
the output file (if the list option is set) and returns ithe mext
character in the A register.
8A2 "imchar™ also has an entry point to print error comments to
the controlling Teletype should any symtax error Dpe detected.
dsn=1; .lsp=0; .min=28; .ins=2;
8B (dinchar) procedure; .scr=l;
8B1 ceclare nchar=80, mchar=80, maxch=80, lirel80]. i =
8B2 declare external list=1, nline=0, 1f=153b, or=155bs space=0b;
883 ceclare star=" #',arrow=" *', peeked=0;
8B4 if peeked then
BE4A begin
8B4A1 peceked+D;
8B4A2 return(linelnchar 1) end;
885 if nchar .ge mchar
8B5A then
8B5A1 begin
8BSAIA for i from 0 inc | to maxch do
8B5AI1Al begin
8BSA IAIA linelil +« gench();
8BSAIAIB if .ar .eq :1f then goto ml ends;
8B5AIB mchar + maxch;
8B5AIC goto m2;
8BSAID (ml): mchar + i;

8BSAIE (m2):2 if list then

8BSA IEl Dbewgin

27

,_———

MOL - SAMPLE PROGRAN

8BS5AIEIA call Pu tch(star);

8BSAIEIB . for i from 0 inc | to mchar - do c<all
Putch(limnelil) end;

8B5AIF nchar « o;
8B5AIG bump nline end
BESB else bump nchar;
886 return(linelncharl);
887 entry (perr);
8B7A call putchistar);
.8B7B for i from 0 inc | to mschar do putch(lirefil);
8B7C for i from O inc | to nchar-1 do putch(space);
8B7D call putch(arrow) ;
B8B7E call putchlcr);
‘ BEVF call putch(lf);
BETG return

888 endp.

MOL - SAMPLE PROGRAM

‘ 9 .HED="NMOL — COMPILER WLISTING" ; .PGN=.PGN—-1; .RES;

28

MOL - CBMIPILER LISTING ¢
9A Zmol % .meta prog (k=100+m=100+sn=100,55=200)
98 Zparse rulesi

981 %Zfile and proedure headingsX need add reentrant coand generate
temp options

9BIA prog = (.id /.empty) S(arpas "5 / proc) “finish™ &;
9BIB proc =
9B1BI parid ("pop” *"(sinum ', sinum ", sinum ") /.empty

{“procedure “/“proc”) formal ';

3 9B1B2 S$(declar ';)
9BIB3 labeleo S(’; labeled)

9BIB4 “endp."” &3

9BIC parid = ('(ZJ.empty) 1.id (") ZJ.emply);

9BID labeled = (=parid (s / "::%) /.empty) :stalt &;

982 2declarctionsi

9B2A declar = decl / ext / equ / wirtue / frozen / prefix;

\9B2B decl = "declare " ("external™ zext / .empty =mt)L(O0] jtem
$("s item =dol;2]) :dcdecli21;

98281 item = .id (bound /.empty :mt{O01) (value /.emply
smt(01) zitmi3);

98282 bound = L (.num / .id) "] :bndll];

r= ("2 e Moo ST jcon =dol2l1d ') [/ idcon)

9B2B3 value
zvallll;

9B2B4 icon = sinum / .id / .sr 3

"extermmal " .id ("¢ .id =2dol2]1) zcextills

i

9B2C ext

1]

982D equ “set " equl (s equl =dol2]) :cequllls

982D1 equl = .id "= (.id / sinum) Zequsi2]s
\9B2E virtue = “virtual " cvar S5("y cvar :dol21) z=cvirtullls
9B2El cvar = .id (bound / .empty z2mti0]) =ccvaril]l;

29

MOL - COOMPILER LISTING

9B2F frozen = “"frozen " .id $('y .id)&; %Zthis is going to go!Z

9826 prefix = “prefix " "for” 2Zwill go also, but need abily to
iset tempts to @ unknown symbolX

9B2G] (“"generated” "labels”™ .sr !“set it now™ /
9B2G2 “temporaries”™ .sr !"and this too");
983 stat = (if / siople) ¥ &5
9B3A if = "if " bexp
983A1 “"then” ®1zifll2)+* simple (
9B3AIA "else” #182:ifl[2]% stat ®B2:brulll= 7 ¢
9B3A18 . empty) /
983A2 “do-single” stat) ®ideflil;
9B3B simple = block /branch /suber /iterat /case /other /exp &;
9B3B) block: = "begin " labeled $(*; labeled) “end™ ;
98382 branch = bruto / brxtos;

9B3B2A brxto = "brx " topart Scbrxtol2l3

983B28B bruto
9838281 ((“bru " / "go0 ") topart /
9B3B2B2 “"goto " adrarg) icbrutolll;
9B3B2C topart = “"to" adrarg;

98B3B2D adrarg = (exp actual S(’, exp abual :dol21) /
~.empty)s

9B3B3 suber = call /return / enlrys; //(ﬁ;,;DAA A
9B3B3A return = :
9838341 “return " actual :crtnlll/
9B3B34A2 ("brr " toparl =cbrr/

983B 3A3 "sbrr " topart :csbrr)i2i;

30

MOL - C@MPILER LISTING
9B38B3B call =

983B3B! ("call " adrarg :ccall/

9B3B3B2 “brm " topart :cbraf

98383B3 “sbrm " topart icsbrm)2];

9B3B3C entry = "entry * .id formal Zcentryil21;
9B3B4 iterat = for / while / over ;

9B3B4A for = “for ™ .id “from " exp ("imc * Zjinc /"dec "
‘dec)0) exp “to " exp “"do " scforif4) = stat scfor2i®©l;

983B4B while = “while * exp "do” ®] zuhill(2) * stat)
swhil2t(i 1;

9B3B4C over = “over ~ «id *(.id (.oum J.empty) "3 do
stat;

9B3B5 case = ithcse / tests

9B3BSA i these = "case " exp “of" “begin™ stat S('; skat)
"end"” ;

. 9B 3B SB test = "test " exp "of" begin casest S('; casest)
("otherwise” stat /.empty zmtl }) ;

9B3BSBl casest = (binrel / exp) "2 stats
9B3B6 other = bump /null /exu Jar pas /copy 3

9B3B6A bump = "bump * (

9B3B6Al "doun" adrlst bmpduni 1] /

9B3B6A2 (“up” /.empty) adrlst sbmpupl 11);

9B3B6A3 aorlst = exp S(*, exp :dol2l);

983B6B null "null™ :zmt[01;

9B3B6C exu = “"execut e " exp sexulll;

9B3B6D copy = "copy H

9B3B6E cpybit = '3 7 *p I °x 1 ®e' J "o # ~ap™ 4 “ax® 7/
"ba® / “bx" 7 "xa" / “"xb";

31

MOL - COMPILER LISTING !

‘ 9B4l exp

9B4A

= bexp

“<->" bexp =xchangl21/

9B4B S5('. bexp =dol2])

9B4BI1 ('~

9B4C
exp)

984D
9B4E
9B4LF
9B4G

9B4H

9B4BIA ('+ exp taddmemi2] /

9B4BIB .empty exp =storel2]);

bexp = “if " union “then " :iftestilil * union
/ unions

union = inter ("or * wunion zor(2]1 /.emply)s
inter = neg ("and " inter zandl2] /.emply)s

neg = "not " negneg / relat 5

negneg = "not " neg / relat Znotlil 3

relat =

9B4H! ".pos” addr :posl 11/

SB4H2 ".neg" addr :neglll] /

9B4H3 *“.skip"” prim :=skiplll /

9B4H4 " .decpos” prim sdecposii]}/

9B4HS “.decneg"” prim =decnegll]/

9B4H6 sum (binrel /7 .empty)s

9B4 1

binrel =

98411 ~.1t" sum :1t(2] /

9B412 “".le” sum zlel2] /

98413 “.eq™ sum ("& sum =mski[3] / .emply) zeqi2] /

9B414 "8 sum :msk(2] (

9B4I4A “.eq” sum :eql2] /

9B4I14B ".ne" sum :nel2l) /

32

(“"else

MOL - CEBMPILER LISTING

‘ 9B4IS “.ne™ sum ('& sum =msk(3] / -empty) Znel2l /

9B416 “.ge" sum :gel2] /
9B4IT7 ".gt™ sumw z=29t[2] 7/
98418 ".cb " sum :cbf2] /

9B419 “".ncb " sum :ncbl 2] 7/

9B4I 10 “.(™ sum ', sum '] 2inti3] H
9B4J sum = prod (('+ sum zadd / '~ sum Isub)l2] /.empty)s

9B4K prod = factor ((’+ prod zmult 7/ */ prod 2divid / ** prod
srem)l2) /i.empity);

98B4L factor = bor / '"- factor tminusil];
9B4M bor = band ((".v " bor tmrg/ ".x " bor Zeordl21] /.empty;
984N band = prim (".a " band zetrl 2] /l.empty)s

9B40 prim blitin / abxreg / varfun / const 7 immed 7/ indir /
'(exp *) /7 arpas ;

9B40 |l abxreg = (".ar" areg / ".xr" Ixreg J ".br" sbrecdiO]l;
9B402/ bltin = shift / brs ;

9B4D2A shift = shiftd actual e :tagoedi0] /.empty
mtI0)) :cshiftli3];

9B402B shiftl = (".1rsh” :lIrsh /"< 1sh™ z0lsh /“.rsh” =rsh
/".rcy” 3rcy/ “.lcy™ zlcy)i0);

9B402C brs = “.brs” sinum actual scbrs{21;
98403 varfun = .id ("{ index) /.empty) actual ;
985 addr = var / ‘indir / immed / const 3
9B5A sinum ("~ const :sconl!] 7 const) ;
\9E5B index 'l sum ') zindx{1] ;

9B5C immed S5 (var / sinum (index /7 .empty) / .sr)
cimmed[11 ;

9E5D indir '[(immed / var / const) "] scirdirlll]l ;

MOL - COMPILER LISTING !

9BS5E const = .num sconlll 5
9BSF var = .id (index /.empty mtiO0]) scvarl2ls

986 actual = *(actl act2 act2 ") tact[3) / .empity =mil] ;
9B6A actl = exp / .empty =mt{O] ;
9B6B act2 = ', / .empty mtLO0];

9C Zunparse rules2

9C3 X declarationms X

9CIA cextldoli-»-11 => cextivlz*i] cextivslz*2]

9C 1Al [-) => ¥ = ext™\ (.tal*lesalcted]) Zerronr
.sal¥leextnrll);

9CIB cequidol-+-1] => cequl¥iz*l] cequelz*2]

9CIB1 [-1] => #lz¥¢] " eu "*2\;
9C2 2 basic executable statementsX

'9C2A ZwhileX
9C2A1 whil hi-.®1,82] => defl*2) whilxl=1.,%2];
9C2A2 whilx[-.%2] => lopri*|1,%81,%2) brfix1,%2] de FL*215
9C2A3 whil2:(#1,%82) => brul®#1] defl*2];

9C2B ZifZ
9C2B1 ifI1[- %21 => lopri®l.#1,v2) brfi=l,%2] defl®11;
9C2B2 if20%1,.,22) => brul®#2] defl®1];

9C2C Xbranchi
9C2C) brui®1]) => “bru ™ Bl\;
9C2C2 cbrutol—=,-1 => cgotol "bru”,*le.*21;
9C2C3 cbrxtol—+—1 => cgotol“brx".*1.%215
9C2C4 obrrtol-+—1 => cgotol “brr~s*la*21;

9C2C5 csbrrtol-.-1 => cgotol "sbrr”,»1,%#215

34

MOL - COMPILER LISTING !
. 9C2C6 cbrmtol=.-1 => cgotol "bra",.*1,%21;
9C2C7 csbrml—,-]1 => cgotol“sbra“.¥1,%2];

9C2C8 ccalll-,-1 =>

9C2C8A . tf rentrt cgotol”"sbrm,vl,¥21 7
9C2C 8B cgotol"brm“,¥],%21;

9C2C9 crtnl~-] =>
9C2C9A .Lf popprc “brr 0*\ 7
9C2C9B . tf rentrt cgotol"sorm”,2,%1]
9C2C9C cgotol"brr”,2?,%21;

9C2CI10 cgotiol=y=4-] =>
9C2CI0A 1*3 token[¥1) operlel,*1] /
9C2C10B work[*2] “bru* " .u\;

'9C2D cexul-1 => oper[“exu” ,+11;

. 9C2E centryl-,~-1 => brul%1] *s *| " Zro ™ ?procname %2 (._tf
irentrt / .empty ?2?) defl®*!];

9C3 2 instructions with an addess field X
9C3A operl-4cindirl-1] => operli»l,%2,"%]
9C3A1 [—=2-1 => operil[*],%2," 1;:
9C3B operl
9C3BI [~scvarl-,mtl1,~] => '] 3 ¥23% |\

9C3B2 [—ecviari-,-1,-] => prendx{¥22%2] 2 *i s3 e 2|
Yol \

9C3B3 [—ycimmed[. idntl 1),~] => * sl '»3: " "= w2z

9C3B4 [~ecimmedl.ids—1,~1 => prendx[¥2:%2] * FiTa3 e =
$23% §-*2%X

9C3B5 [-scimmedicon[l,mtL 1] => * ¥l #3 *2z#]z2%]\

9C3B6 [—ecimmedlsconl~1,mt [11] => * *] ¥3 "~ @2z2%]1z2%1\

35

MOL - COMPILER LISTING |

9C3B7 [-ycimmedlconl] .—11] => prendx[=22%2]

s2:% 2wl ",2°\

9C3B8 [-,cimmedisconi—1,-1]1 => prendxl*2z%21
#2:%lz%] “.2"\

9C3C prendximt:{ 1] => .emply
9C3C! f[addl comi-1,-1] => loadxi*iz%#2] " eax ~
9C 3C2 faddl-.conl-111 => loadxIv#lz®l] ™ eax *

9C3C3 I[sublconl-l.-1) => loadx[¥lz2¥2] " eax —

9C3C4 [subl-sconl-11] => loadxI*iz®l]l " eax -

9C3C5 [-1 => loadx[+*1];
9C3D loadxIxregll] => .emptly

9C3D! Laregll) => " cax "\

9C3D2 [~) => token [+*1] operl "ldax",*11 /(trybl*11 ~©

loadal=1] = cax"\);

9C3E tokenlcvani-.,mt[11] => .emplLy
9C3E]l [cvarl-.-1) => xtoken(*iz%2]
9C3E2 Lconl~-11 => .emply
9C3E3 [cindirl-1) => tokeni*liz+*l]
9C3E4 fcimmed(=1) => tokenlxlz=l]
9C3ES5 I[sconil]] => .emply
9C3E6 [.id] => .emply
9C3E7 (.numl] => .emply

9C3F xtokenlcvarl-,-1) => xtokenl®lize¢2]
9C3F1 Ladd[-.conl(l1] => xtokenlsliz¥l]
9C3F2 [addl conll.,-1] => xtokenl¥lz+¢2]
9C3F3 [subl—s-1) => xtokenfaddl¥l:zvl,»1:%2]]

9C3F4 [xregll] => .emptly

36

chal N =7

MOL - COMPILER LISTING
. 9C3FS [aregl(1] => .empty
9C3F6 I[bregll] => .empty;
9C4 2 logical operation and branchesX

9C4A lopriorl-,-1.%],-1 => Joprislzx], %] ,®2]
idef[®2] loprivlix2,8],%3]

9C4A1 | [andl—s=)y—+#1] => lorlelz=l,%2,%]]
defl[#2]1 loprl=lzs2,¥2,%81]

9C4A2 [notl—1.%],%82] => loprisizs], ®2,8]]
9C4A3 [~9=s -1 => .emplys;
9C4B brtlorl-+~1e%1] => Drtlielze2,8]1]

9C4B 1 [andl-,~1+%1] => brti«ize2,8]]

9C4B2 Inoti~1.%1]1 => brfivice]l,*]]

9C4B3 [lel-s-1s%1] => Dlelvlzvl,vilze2,8])]

9C4B4 TItI—=,-1,%1]1 => bDltlvlzvrlyvlze2,n]]
. 9C4B5 Teal-»-1s#1] Spbeqlrlzvl eizv2, ¥l]

9C4B6 [gel—-«—-1s%1) => bgel*¥lixl,*¥]lz2¥2,%]]

9C4B7 [otl-+—1+%1]1 => blelv]lze2,%lz%],%]]

9C4B8 Inel—+—1+%1] => bnel¥lz*l,¥lze2,8]]

9C4B9 [posi—1.%]] => bposli*iz=l,%]]

9C4B 10 Inegl-+1+#1 => bnegl*lz*i,#]]

9C4BI] [cbl—4—1,%11 => bDcblxlzwl,vizw2,n])

9C4B12 Incbi-+—1+%1] => bncbl*lz*l,*]1:v2,8])]

brtivslceigt]]

brfl=lz=sig%])

9C4BI13 [intl-a=s=1+#1) => bintIx izl vic*2,¢vlzv3,8]]

9C4Bl4&4 [-,%1] => loadal¥l] " ske =03;" bruis2]1;
9C4C brflori—e—1+%1]1 => bDrfislze2,8]]

9C4CI [andl-+—-1,%1] => brfl*lz*2,8])

37

MOL - COMPILER LISTING !
9C4C2 Inotl~1,%1] => breislzxl.®1]
9C4C3 [lel—s-1s%1] => blel*lzsl,*l3¢],®]]
9C4C6 [ltl-,-1s%1] => bgel*lzvl,vize2,8]]
9C4C5 [eql-e—1s%1] => bnel#iz*l,*izx2,8]]
9C4C6 [gel-,—1s%1] => bltlvlisl,*izs2,8]]
9C4CT L[gtl—,-14%1]1 => blelvlzel,*vlzx2,%]]
9C4C8 [nel—+—1s®l] => Deqlelivl,vizv2,8]]
9C4CY9 Cpos(-1.%1] => bnegl*#lzx1,%8]]
9C4CI0 I[negl-1s%1]1 => bposl¥iz*i,®1]
9C4C 11 [cbl—e—1,%1]1 => bncblvizvl,vize2,81]
9C4C12 Incbli-e—1s%11 => benlv#lzel,viz=2,81]
9C4C13 [int[-s=s=1,%1) => bintflrizel,vizv2,viz+3,%]]

9C4CI4 [—.%1]:=> (trybiv#l] " skb =—1l; bru #+23" / loadal+l]
" ske =03 bru #+25") prul®l];

9C4D DItE—s—o21] => (
9C4D! tokeni¥1] loadal#2] operi "ske“.*¥11] operi®“skg",.+11] &

9C4D2 worki¥*|]1 loadal=2] urkl[“ske”]l 'wurk2i®skg™] ® ; by
*42:;" b brul=sll;

9C4E blel—-y-o®1] => (
9C4E! token[¥2] loadal+¥1] oper["skg”",*2]1 /
9C4E2 tokenI*1] loadal+*2] operl"skg",*11 " bru *+27\ /
9C4E3 work[+#2) loadal¥l] wrk2[™skg™1) brul®lis
9C4F Dbeql-s-o#1]1 => (
9C4F | token[*2] loadal+l] operi”ske",+#2] /
9C4F2 token[*11] loadal*2] operi”"ske"s*11 /

9C4F3 work[¥2) loadal¥*]l]) wrk2("ske"1) " bru ¥+25" brul®id;

38

B T e o e e

MOL - COMPILER LISTING |
904G bogel-4—,#1] => (
9C4G1 tokenl¥1] loadal*2] operi"ske“y*1] operl”skg",¥1) #
9C4G2 work[*11] loadal#*2] wrkil“ske™) wrk2{“skg™1) brul®il;

9C4H Dbnel-4-4#1] => (

9C4H] tokenl[*2] loadal¥i] operf*2] /
9C4H2 tokenl*11 loadal*2] operl“ske“y¥1] 7
9C4H3 work(*21 loadal+*!l]) wrk2["ske”"1) brul=11;
9C4I bposi-,%]] =>
9C4I) tokenl(*1] operi"skn".+¥]] brul#j]l 7/
9C412 (trybl*1]1 " skb =40000000b; bru $$25 04V
9C413 loadal*1] " ska =40000000b; bru ¥*+25%) brul®=]];
9C4J bnegli-,%]1] =>
9C4J] tokenl*1) oper("skn".¥]11 " bru *+2;" brul®]] /
9C4J2 (trybl¥1] "skb =40000000b;" /
9C4J3 loadal*1] " ska =40000000b; ") brul#i];
9C4K Dcbl—e=o®# 11 => (
9C4K | tokenml¥1] (
9C4KIA tryble2] oper ["skb".*11 /
9C4KIB loadal*2] operli”"ska“,+*11) J
9C4K2 tokenl¥2] (
9C4K2A trybl*l) operl"skb",v2] /
9C4K2B loadl*!] oper[“ska".¥2]1 7
9C4K3 work(+*11] loadal*2] wrk2["ska"]) brul®=i]]
‘9C4L bncbi~e~.#1] => (

9C4LI) tokenI*11 ¢

39

MOL - COGMPILER LISTING
9C4L 1A trybi¥2) oper(“skb",%1] 7
9C4L 1B loadal+*2] operi®ska“.*11) /
9C4L 2 tokeml®*2] (
9C4L 2A trybl#1] oper ["skb".*2] /
9C4L 2B loadl*l]) operl“ska”.*21 /
9C4L3 work-iIv¥1] loadal#2] wrk2["ska"]) ~ bru =+23° brul®d]1;
9C4M bintI—e—s—+®1]1 => skg skg bDru ¥+2 bru Lrue
9C4N bintfl-+—e-e®11 => skg skg bru false
9C5 2Xexpression evaluationi
9C5A comopl-s—s-1 =>
9CSAl tokenl[*2] loadal#1] operl*3,¥il /
9CSA2 tokenl+*1] loadal#2] oper[*3,+*11 /
9CSA3 wmorki¥l] loadal*2] urk2i*3l;
9CSB addiminus{-1.-] => subl*2.,¢12+1]
9CSBl [-+—1 => comoplvl,*2,"add™]
9CS5C mrgl—e—1 => comopl*l,*2,"mr g~ 15
9CSD etri—+—1 => comopl*l,*2,"etrl;
9CSE eorl—e—1 => comopl*ls*¥2:"e0or”1s
9CS5F subl-.-1 =>
9CS5F| token[*2] loadal¥1] operfi~“sub™«*21 /
9CSF2 tokenl*1]1 (

9CSF2A trybi+2] " cbai cna;™ /

9CS5F2B loadal*2] “ cnai™) oper [“add”.+11 /

9CSF3 work[*2] loadal+*1] wrk2("sub™1s;

9¢C5G minusiconi-11 => (

MOL - COMPILER LISTING

9C5G |

tokenl=11]

9C5G2 trybl*11]

9C5G3 lLoadal=11) ~

'9CS5H

9C5HI

9C5H2 mork{*2] loadal*1]1 *

9C51

=>

divid[—=e—-]

tryblaulti-.-1]

9CSI 1 «

9C512 (remi—-.—-1]

9C51 1A tokenl*1:+2]

9CS511B tokenl*lz¥x])

9C511C workl

9C513 [(bregl])

9C5J

905K

9C5L

9C5H

9C5N

9C50

9C5P

9C5Q

‘9C5R

9C5S

9C5T

9C5U

nult 7 => err
rem / => ‘erra,
and / => err;
or / => errs;
not/ =» erras
pos / => ‘err;
neg / => ‘err;
skip /7 => ers
It 7 => errs
le /7 => err;
eq / => err;
ne / => errs;

tokenl[*2] loadal#*1]1 *

oper(“lda“.*11 7
* ¢cbas®™ ¥
cna®\;
rsh 23;" operi=21 /
urk2l"civ® ¥s

rsh 23;"

=>

loadal*12+%1] operl“aul ", *iz*¥2] /
loadal*iz#2] oper(“aul™,+*lz%11 /
¥12¢]] loadal*l2#2) wrk2l"nul~3) * rsh I"¥%
=> dividislzvl,*l2#2]

=>

~.emptys

41

,_______________—————————————————1-----------IIIIIIIIIIIIIq

MOL - COMPILER LISTING
‘ 9(5V ge / => err;
9C5W g9t 7 => err;
9C5X cb / => err
9C5Y ncb/ => err;

906 I @ an b register loadingZX

9C6A loadalaregl] => _empty
9C6A1 Ixregll] => "cxa"
9C6A2 [-]1 => (
9C6A2A tokeni*l) oper(“lda".*1] 7/
9C6A2B trybi*l]l "cba”"\ 7 =1;
9C68 loadbfaregll) => “"cba"
9C6B1 Ixregll) => "cxb"
9C6B2 L[ibregil] => _empty
‘ 9C68B3 (-1 => (
9C6B3A tokenl¥l) oper(”1db®.+*1] /
9C6B3B tryblxl]) /

9C6B 3C loadal*l] "chba“"\);

42

I

MOL - COMP ILER LISTING

‘ 10 .HED="MOL - SUPPORT LIBRARY" ; -PCGN=_PGN-1; _RES;

42

MOL — SWPIPCRT LIBRARY

® |1 .HED="MOL - BIBLIDGRAPHY"; .PGN=.PGN-1; .RESS
p
|
|
I
42

R

MOL - BABLIDGRAPHY

1A dBook1) E. Book and D. V. Schorre, "A Higher-Level

Machin e-0Orient ed Language as an Alternative to Assemb ly Langauge, “
Tech Meno 30867001700, Systenm Development Corporation.

11B (Bock2) E. Book and D. V. Schorre, "A User's Manual for MOL-360",
Tech # eno 30867003700, Systen Development Corporation.

HIC AMirthl) N Wirth, "PL360, a Programming Language for the 360
Computiers, * Journal :ACN (January 1968).

1ID M irth2) N. HNirth and H. Weber, "EULER: A Cemeralization of
ALGOLY and its Formal Definitions” Comm. ACM (January—February
19663..

11E dMirth3) N. Wirth and C. Al R. Ho ar e, "A Contribution to the
Developrent of ALGDL'+" Comm. ACH (June 1966).

I1F «Schorrel) D. V. Schorre, "I mproved Organization for Procedura
Langwages, " Tech Memo 3086/002/00, Systenm Development Corporationg

11G (Engelbarti) D. C. Engelbart, “Study for the Development of Human
Inteld ect Augmentat ion Techniques,” Final Repert. Contract NAS
1-5904, SRI Project 5890, Stanford Research Institutes Menlo Park,
California.

43

/REWRI . 09/26/68 0851:18 JFR 3

Introduction

1A Iine Tree IMeta MOL, and SPL compilers are in need of many
changes. This remo ciscusses the problems xith the compilers in
their current stite and cffers a@a unified solution.

IB We Ifell that a total planned reurite of all three compilers oifers
the moist economiczl long term solution. Eventially al! the things
listec oOelow must Dbe done. If they can be accompolshed with sSome
simultianenty, all changes can be accomodaled on Cthe first passy less
time will be wasted, and the benifits of the rewrite will Dbe
available sooner.

2 Curreat) Froblems 1ard Prioposed Solutions

ZA MDL tugs

241, The most straiight forward problems are Une bugs in the MOL.
None of these ére boc serious for the current FMOL wuse. We all
just avoid using: the syntatic phrases that cause Lhe probliems.
This does mean, however, that the code Wwe Write idces not aiways
refllect the joriginmals notural conception. The rarilty . of this
cer téint ly doces not warrent a complete rewrite :of the MOL, Moslt of
the tugs could be fixed by a couple of weeks wcrk cn the current
verision.

24A2) f more searious problem with the MOL is the 80 character iine
oreintitat ion :of t he input routines. These prcocgrams rely on the
format of QED lines, thus code that exists: in NLS format musl De
mace to look - like 'QED format before compilaticn. fhis limits the
length of NLS statements containing MOL cocdes and just make
everything kliuedgy

2B Symbgcl problem

284! NLS has 9row itc such porpotions that it nearly overflows the
symbel tables of the TSS subsystems wused . to assembl!e, load. and
debuc it. Allready .it is too large to use NARP &nd ULDT, we must
use ERPAS and (CDDT.

282 If an ‘acditilve assembler were added to TM, and MOL were
resritten wsing ithe builtin assemuler, ithis problem would
comp letely disécppear. The additive assembler would avoid the
symbolic defiinition of the many thousand generated symbols that
MOL currently groduces. The only symbols Idefined at locad time
wouwlc be those specifically defined in the MOL code. This would
recuce the total number from about 3000 to a few hundred.

2B3 WE would - cesign the additive assembler so that Lhe files it
pro dices would be NARP-DDT compatiable. Tithis would mean that we
cowrlc use the rew DDI and its improved debugging features.

2C S¥sitem load

[

2L The loac that assembling NLS currently puts on the TS5 is
detlremental in two WEys. it " kills the respcnse of the sysdem,
. eats wup a lot of RAD Space and makes NLS close to unusable while
it "i= beign idene. This, in turns makes the System programmers a

liztle afraid to do dssemblies and thus slows system design and
debucging. hhis last problem is felt is a ‘slow Creeping way every
Lime we pul off doing an assembly for a few cays because they put
Such a load on the system.

2C2 The present way of assembling the system is to: first compile
alli the files, then assemble them, an fFinal:ly losd them. It takes
loniger to assemble a file than it does to compile ity [hus getting
rid of Lhe éssembly phase would cut the process in half.
Meriecver, tLhe compi lers currently spend morre than half their time
in itte symbo bic owt fut phases, cutting the time again in half.
and finally the symbol table routine waste coniderable time in
lon g compilatiicns. We partially implemented a hash table in the
MOL &nd compilation time droped by 174 for lérge compilaticns.
All: this means that total assembly Lime WoulcC arop by a factor of
5 anc maybe elven 10 .

203 The ma jijor efifcrt for the conversion to acditive assemb lers

woulc Dbe done once, in TM. The synlLax fer additive assembly
oul put would: close ly resemble the current syntax for symbolic
oulpLt.

2D Cotverent packace wiitk NLS

. 2D 1 A minor but anoying feature of itre compilers as they
Curirently stiard is itheir kluedgy Interface with NLS. This is
espiical ly true when it comes to error recovery. While everyting
else is being rewir tten be could devise a generédl scheme for file
Prolcessing and feedback to the user about the results of the
pProilcess.

202 If the MOL and the SPLs were both written in TM: the «code
files for the <ystem could be better orgenized. Each overlay
coulc be a sincle file, the binary would pe the result of a single
cCompilation.

2C2A This would simplify system assembly as well as speed it
uf. Less RAD spéce would be Nneeded bec ause fewer intermediate
1files would be cenerated. Fewer symbelic and binary files
would have to be saved on thm disc.

202B Alsos by haiving the files more closely related to program
fenction Ibett er usage could bpe made of the NLS linkage
commands .

2E Powmerful syntiax in IMCL

2k | A number of new features will be adcec to the MOL syntax.

Thels¢ are discussed in more deatil below tncer MOL. The main
‘ bemifit of itte fFeatures is that they will sake Lhe syntax of the
lan guage closer to the intentions of the codder. This does not

Ch& nce anythincg in drastic ways, it Jjust makes life a little

R

betiter when * <omeone is trying to figure out what a piece of «ode
is “<upposed” to do.

Mor ¢ Dense SPL code

26h bty rewritiirg the SPLs and using the features of TH, we feel
that about a 202 reduction could be made in the amount of
ims tructions iccmpiled. This does not affect NLS is & big way. but
it weuld gives us & little more room for expansion in some of the
overlay pages that iare currently over 90X full.

2G Pratice what lue preach

261 Convertinc the code files to NLS, and retaining the current
compiler systess is coing only half a job. The listings would nol

dis appears and the "larger NLS experiment” will rol be done. To
repléce thelistings the code files must be coherently organized
andl easily accessiatle. For files writthten in MOL this may mean

expiermienting with syntat ic changes» and thhis is only pratical if
they are writiten in TH.

262 Eventually we would like to work out a method of compilation
that substituted the tree structure on NLS files for the phrase
tructure of itre MOL jand SPL. This is virtually impossible uniess
the FOL is in TM andithe changes can obe done in one central place,
namely the TM library. for all the expreimental compilies.

263 There is the vague illusive notion of staying on top of the
. des icn problem. The code files are becomming cumbersome Lo work
with in theim current form. Just moving itrem to NLS woulda not
help much. | If houevers the syntax of tihe languages uwere @more

suilted to NLS linkage conventions, and the files themselves were
betiter structiured we may again reach a point of feeling that the
strmucture is well wurderstood, and the effect of changes in «ode
cam te proper:ly pendicted.

264 MWe finally have figured out a way of writing the parse and
unpiarse rules for Lihe MOL compiler in IM .and not overf lowing the
push doun staicks dur ing compilation. Now 'that we have a solution
it 'would be satisfying to get every thing

3 Propose d changes
3A Tree Meta
3A1 Rdditive Assembler

1321A This is cone of Lhe major projects in terms of radical

ychanges to the existing TM system. TM would be enlarged to

ipermil eiitrer symbolic or binary output from & compilation.

jTte binarm cutput would De formed by making up words for @ sort

wof backhalf processcr that puls the words in the percise form

inecessary fer DDT. Linkage for undefined labels and packing of

. undef ined wpclishl expressions would be autcomatically hanceled by
itke backhalf.

3A2: Symbol Table

. 1I382A The | rew symbol table will use hash entry instead of the
current search technigue. In conjunction ' with the addil ive
assemb ler, it will Dbe expanded to inc lude declaration f lags,
array size farameters, and definition bits.

1342B The newx table would also reserve Dbits for compile time
attr ibute : flags. This would permit a TM compiler to check

Ildeclarations and give appropiate diagnostics.

3A3 Easic recocnizers

133A The basic recognizers will be changec to delete blanks
raft er recocnit iior instead of pefore. This will reduce the
initial recognizer testy, and thus the Lime FfFor a failuree Lo
lless than S f.rem the current 25. These failures represent
1atout 20% :of Lhe nuntime for a compilation.

1383B The “TST" (literal string test) recocnizer will be further
ioproved so that & failure will average orly silghtly more tham
3 instructiiens. . lhis recognizer represents about 802 of the
itotal recocnizers executed. Moreover its failure to success
rétio is abeocut 20 to |.

344 Lse of Skig return

138404 A new comnvention will be established for all the

. iIrecognizers and recursive rules. The return will skip if the
Stbroutine was successful and not skip 'if it failed. fhis
mcans that the current branch false instruction can be done
‘away wit h, It is:the shortest and yet most frequently executed
PP in the ™ system. It accounts for about 35% of the pops
1e¥ecuted.

3AS: interface to NLS

1I35A Once TM hés been interfaced to NLS, all the other
icompilers 1stould inter face automatically. It is hard to guess
leng it wi'll take to do the job Ffor uwe dc not yet know what we
went to do.

'3A5B One sucgessition is to add to NLS the 3sbility to store a
1list of t-pointersy which are the result of a compilation.
1”Tris list could be kept be NLS with the: file wuntil another
IProcess is prefiormed on the file. The ctatements on the list
wculd be displayec under a new view—spec parameler.

3B MOL
381) Fewr ite in Tree PFeta

\3EIA The entire MOL will be written in the new TM language
. ‘using the ‘acditilve assembler. This project is mostly done. MNWe
have a wersion of the MOL written in an extended TM language
using symbolic output. The code is almcst complete and we do

mnot ant icipate 1ary new problems. Of corse ithe compiler camnot
tbe checkedi cut wiithout a new IM because it neecgs features in
itte metalancuage not currently in M.

3821 heuw featuires

3B2A The Inew Mol will have many additional fealures. None of
ithem are exgensive in terms of effort or compile Lime. Ihey
ccme mostly for free with the use 0i TM for compiling.

3E2B The 1 rew wcompiler will allow an i expression to be a
.statement . This will help by clearing up tre meaning of many
,lines of current code, when an expression 1is forced into an
assign staltement even though that is nott the intentLion of the
juriter.

362C The store opeator, currently available only through the
‘assign staltement, will be put in as the lowest level bingding
,ofperator in an exgression. This will mean that stores can be
done dur ing expr ession evaluation. This also helips concisemess
iand clarity.

362D Possiitle addresses will De expanded from the curreatly
irest irced Iset to &any expression. fhis was aluways wanted, even
iir the original MOL specifications bult was tooc ¢ifricult to add
tc the oriiginal lversion. The pouwer of TM to do its top—doun
tree searick means that the more versitle syntax can be added
and tight code cian still be produced for the simple cases., just
as it is nows.

382E The double branch currently compiled at the end of logical
expressions will disappear. This can be simply with the
wrparse rules 1ir TM, it would have lbeen cifif icult with the
current MOL.

\3E2F He p lsn to introduce a new Ccase sttement. It will do a
isingle case based on a logical expression at the start of the
cése rather than a predetermined number.

.3B26 Syntax will be added to simplify the use of the brx, skr.
xgas and itte register exchange instructicns. This will w®=make
-all the 94(C instruction available directly in the MOL except
ittose concierned with floating point exponents.

383 Use of Addiive Assembler

3E3A When ithe MOL is written wusing the additive assembler all
\the many |generated labels will just not apear in the binary
file. IThic will mean that the number -of sysbols for NLS will
reduce to @ mangeable size. Moreovers. our current kludegy way
of using tihe frozen feature of ARPAS can civen up completely.

384 complete iirtegriation into MOLR

3E4A The already existing version of MOL in TM is in the MOL
ireport filees whiich is in NLS format on the disc. iThis file

Irepresents the fiirst attempt to integrate the actual code for a
cempil er into ithe formal and informal description. Ihis
integration is ¢nly possible because 'the TV code for MOL is

breif enowgt to fit in @a file with the report. It may well be
itkat this file (MCLR) could be the first realistic attempt

385 Transfer of curirent code to NLS

.3B5A MWe already have a program, PASS0, which reads an MOL
program frocm a QED file and produces another QED file in
istructured statement form. The structure is determined by a
Iset of rules for indenting close Lo the set used by Mckeeman 1in
vhis uncrunick program (cacm 65). We have used this program in
conjunction with the insert QED branch NLS command with
wcomplete successy tand feel that the initial transfer i;sfould be
a straight: forduard taks of only a few days.

3C SPiL
31 Lse of Addiive A<sembler

i3CIA When itte SPL compiler and the MOL compiler are in TM. then
cén be rigiged tov cutput to @ continuous file. This will mean
itta @ sincle NLS file can contain coder in both languages and
still be cowpiled in one simple ocperation.

3C2 Clarity of code in SPLs

'3C2A If tihe SPL compiler is in TM the parse rules will contain
only parse information and node buildirg cirections. IThis
istould make them much more readable, @ feéture aluays wanted by
iwtose that ¢try ito Ffigure out commands of KLS by reading the
ccde in the SPLs.

3C3 A reportbh ¢cn the SPL is about 3/4 done (currently about 50
pages). MWhen the SPL compiler is rewritten the new version would
be 1integrated into itke report. This would be another large scale
att espt to do away with listing by organizing the documenation and
code into an eisily &ccessiable monolithic structured NLS fil.

4 Manpomer estimates

4A To reap the full benifits from these chargess 2ll the projects
must be done as a whol-e. MOL and SPL cannot be rewritted without
rewrdtiin TH. \And it coes little good to only rewrite THM. Tlus,
althowgt the esitmeates are Droken dosn, the entire project must be
complelted to be wwerth ithe effort.

4B Thel estimate tec rewrite TMy and bring the report up to publishable
standercs is Z mar-montks. The reporte much as it appeard in the
ROme report on tlhe disc as a single NLS file. The new TM library and
compdlier will be & part of the , and the report will be kept in sync
Wwith tihe new compiler. Most of the 2 months will be devoted Lo the
new dibrary and itte aditive assembler.

4C afiter the Inew TM is done the MOL sculd only take about 1.5 more

man—-mo.nths . This is again for finishing the neuw TM version of the
compilier and brining the report file up to date and in publishible

". form.

4D Rewriting the SPL js ithe simplist of the tasks. We estimate one
man-month to both redo the compiler, and finish the SPL repart.
Aboud 1/3 of the time will be spent on the compiler and about 2/3 on
the sreport .

4E Thelse estimates are made in terms of time spent doing the work.
Normad ly within the center, the programmers spend a good deal of
theisr time debugging NLS, working on specifications and ideas for new
featwres, and agererally doing small detailed tasks not realted to a
Specafnic project. MWithithis in minds, it becomes very difficult to
estimaite the real time these Pro jects will require.

5 PdS‘)‘

00OBREAKO0

T e

META II
A SYNTAX-ORIENTED COMPILER WRITING LANGUAGE

DG v. BChOm
UCLA Computing Facility

META IT is a compiler writing language which
consists of syntax equations resembling Backus
porsal form and into which instructions to output
assembly language commands are inserted. Com-
pilers have been written in this language for
VALGOL I and VALGOL II. The former is a simple
aslgebraic language designed for the purpose of
{llustrating META II. The latter contains a
fairly large subset of ALGOL 60.

The method of writing compilers which is
given in detail in the paper may be explained
briefly as follows. Each syntax equation is trans-
lated into & recursive subroutine which tests the
input string for a particular Phrase structure,
wd deletes it if found. Backup is avoided by the
extensive use of factoring in the Byntax equations.
For each source language, an interpreter is writ-
ten and programs are compiled into that interpret-
ive language.

META II 18 not intended as a standard lan-
guage vhich everyone will use to write compilers.
Pather, it is an example of a simple working lan-
guage which can give one a good start in design-
ing a campiler-writing campiler suited to his own
peeds. Indeed, the META IT compiler is written
in its own language, thus lending itself to modi-
fication.

Hiatog

The basic ideas behind META IT were described
iz & series of three papers by Schmidt,l Met-
calf,? and Schorre.3 These Papers were present-
ed at the 1963 National A.C.M. Convention in
Denver, and represented the activity of the Work-
ing Group on Syntax-Directed Compilers of the lLos
logeles SIGPLAN. The methods used by that group
tre similar to those of Glennie and Conway, but
differ in one important respect. Both of these
researchers expressed syntax in the form of dia-
grans, which they subsequently coded for use on a
camputer. In the case of META II, the syntax is
input to the camputer in a notation resembling
Backus normal form. The method of syntax analy-
8is discussed in this papeg is entirely different
frm the one used by Irons® and Bastian.7 All or
these methods can be traced back to the mathemat-
ical st of natural languages, as dsscribed by
meb".lgy

Syntax Notation

The notation used here is ginilur to the
neta language of the ALGOL 60 report. Probably
the main difference is that this notation can be
keypunched. Symbols in the target language are
fepresented as strings of characters, surrounded
b quotes. Meta stic variables have the

S22e form as identifiers in ALGOL, viz., a letter
folloved by a sequence of letters o dipitn.

Items are written consecutively to indicate con-
catenation and separated by a slash to indicate
alternation. Each equation ends with a semicolon
vhich, due to keypunch limitations, 1s represented
by & period followed by a coonma. An example of a
syntax equation is:

LOGICALVALUE = '.TRUE' / *.FALSE' .,

In the versions of ALGOL described in this paper
the symbols which are usually printed in bold-
face type will begin with Periods, for example:

«PROCEDURE .TRUE .IF

To indicate that a syntactic element is optional,
it may be put in alternation with the word .EMPTY.
For example:

SUBSECONDARY = '*' PRIMARY / .EMPTY oy
SECONDARY = PRIMARY SUBSECONDARY A

By factoring, these two equations can be written
28 a single equation.

SECONDARY = PRIMARY('*' PRIMARY / EMPTY) .,

Built into the META IT language 1s the abili-
ty to recognize three basic symbols which are:

1. Identifiers -- Tepresented by .ID,
2. Strings -- represented by .STRING,
3. KFumbers -- represented by .NUMBER.

The definition of identifier is the same in
META II as in ALGOL, viz., a letter followed by a
sequence of letters or digite. The definition of
& string is changed because of the limited char-
acter set available on the usual keypunch. In
AIGOL, strings are swrrounded by opening and clos-
ing quotation marks, making it possible to have
quotes within a string. The single quotation mark
on the keypunch is unique, imposing the restric-
tion that a string in quotes can contain no other
quotation marks.

The definition of mmber has been radically
changed. The reason for this 18 to cut down on
the space required by the machine subroutine which
recognizes numbers. A number is considered to be
& string of digits which may include imbedded
periods, but may not begin or end with a Period;
moreover, periods may not be adjacent. The use of
the subscript 10 has been eliminated.

Now we have enough of the syntax defining
features of the META II language so that we can
consider a simple example in some detail.

The example given here is a set of four syn-
tax equations for defining a very limited class of
algebraic expressions. The two operators, addi-
tion and multiplication » ¥ill be represented by +
and * respectively. Multiplication takes Preced-
ence over addition; otherwise Precedence is indi-
cated by parentheses. Some examples are:

A
A+3B
A+B*(C
(A+3B)*cC
The syntax equations which define this class of
expressions are as follows:
m..m/v(nmn)v.'
EX2 = RX3 ('*' EX2 / . nmg
Bl = B2 ('+' BEX1 / .BMPTY

EX is an abbreviation for expression. The
last equation, which defines an expression of or-
der 1, is considered the main equation. The equa-
tions are read in this manner. An expression of
order 3 is defined as an identifier or an open
parenthesis followed by an expression of order 1
followed by a closed parenthesis. An expression
of order 2 is defined as an expression of order 3,
vhich may be followed by a star which is followed
by an expression of order 2. An expression of
order 1 is defined as an expression of order 2,
which may be followed by & plus which is followed
by an expression of order 1.

Although sequences can be defined recursive-
ly, it is more convenient and efficient to have a
special operator for this purpose. For example,
we can define a sequence of the letter A as fol-
lows:

SEQA = $ 'A' .,

The equations given previously are rewritten using
the sequence operator as follows:

EX3=.ID/ '('"EX2"') .,

EX2 = EX3 '#' EX3) .,
m-mggw' E2) .,

Output

Up to this point we have considered the
notation in META II which describes object lan-
guage syntax. To produce & coampiler, ocutput com-
mands are inserted into the syntax equations.
Output from a coampiler written in META II is al-
ways in an assembly language, but not in the as-
sembly language for the 140l1. It is for an in-
terpreter, such as the interpreter I call the
META II -machine, which is used for all compilers,
or the interpreters I call the VALGOL I and VAL~
GOL II machines, which obviously are used with
their respective source languages. Each machine
requires its own assembler, but the main differ-
ence between the assemblers is the operation code
table. Constant codes and declarations may also
be different. These assemblers all have the same
format, which is shown below.

LABEL CODE ADDRESS
1= 608 a0 18- -0

An assembly language record contains either
& label or an op code of up to 3 characters, bdut
never both. A label begins in column 1 and may
extend as far as column 70. If a record contains
an op code, then column 1 must be blank, Thus
labels may be any length and are not attached to
instructions, but occur between instructioms.

To produce output beginning in the op code

field, we write .OUT and then surround the infor
mation to be reproduced with parentheses.)
string is used for literal output and an asteriy
output the special symbol Just found in th
input. This is illustrated as follows:

KX3 = .ID .OUT('ID ' %) / (' EX1 ')* .
!2 xx3 ' BX3 .
:él,’l lm!;;
!bmsemxtpntinthhbolﬁeldmmu
.LABEL followed by the item to be output. For

example, 1if we want to test for an identifier
and output it in the label field we write:

g

.ID .LABEL *
The META II compiler can generate labels of
the form AOl, AC2, AO3, ... A99, BOl, «.., %

cause such a label to be generated, one uses #)
or *¥2. The first time *1 is referred to in any
syntax equation, a label will be generated and
assigned to it. This same label is output when.
ever *1 is referred to within that execution of
the equation. The symbol *2 works in the same wy
Thus a maximm of two different labels may be ge
erated for each execution of any equation. Re-
peated executions, whether recursive or externally
initiated, result in a continued sequence of gen-
erated labels. Thus all syntax equations con- -
tribute to the one sequence. A typical example
in wvhich labels are generated for branch commands
is now given.
IFSTATEMENT = '.IF' EXP '.THER' .OUT('BFP’' #1)
STATEMENT '.ELSE' .OUT('B ' *2) .LABEL %
STATEMENT .LABEL *2 .,

The op codes BEFP and B are ordersof the
VALGOL I machine, and stand for "branch false an
pop" and "branch" respectively. The equation als
contains references to two other equations wvhich
are not explicitly given, viz., EXP and STATEMEN!.

VALGOL I - A Simple Compiler Written in META II

Now we are ready for an example of a compil
er written in META II. VALGOL I is an extremely
simple language, based on ALGOL 60, which has bees
designed to illustrate the META II compiler.

The basic information about VALGOL I is gir
en in figure 1 (the VALGOL I campiler written in
META II) and figure 2 (order list of the VALGOLI
machine). A sample progrem is given in figure 3.
After each line of the program, the VALGOL I com-
mands vhich the campiler produces from that line
are shown, as well as the absolute interpretive
language produced by the assembler. Figure 4 is
output from the sample program. Let us study the
compiler written in META IT (figure 1) in more
detail.

The identifier PROGRAM on the first line ir
dicates that this is the main equation, and that
control goes there first. The equation for PRI-
MARY is similar to that of EX3 in our previous
example, but here mmbers are recognized and re-
produced with a "load literal" cammand. TERM is
vhat was previously EX2; and EXPl what was pre-
viously EX1 except for recognizing mimus for subd
traction. The equation EXP defines the relatics-
al operator "equal”, which produces a value of 0

Dl.3-2

r 1 by making a comparison. Notice that this is
godled just like the arithmetic operators but
dth & lower precedence. The conditional branch
xmands, "branch true and pop" and "branch false
ol pop", which are produced by the equations de-
fining UNTILST and CONDITIONALST respectively,
rll test the top item in the stack and branch
weordingly.

The "assignment statement™ defined by the
yution for ASSIGNST is reversed from the con-
rotion in AIGOL 60, 4i.e., .the location into
pich the computed wvalue is to be stored is on
e right. Notice also that the equal sign is
sed for the assigmment statement and that period
qual (.=) is used for the relation discussed
toove. This is because assignment statements are
wre numerous in typical programs than equal com-
pres, and so the simpler representation is cho-
wn for the more frequently occurring.

The amission of statement labels from the
TALGOL I and VAIGOL II seems strange to most pro-
gpemers. This was not done because of any dif-
ficulty in their implementation, but because of a
iislike for statement labels on the part of the
wthor. I have programmed for several years with-
ot using & single label, so I know that they are
sperfluous from a practical, &s well as from a
theoretical, standpoint. Nevertheless, it would
te too much of a digression to try to justify
this point here. The "until statement" has been
uded to facilitate writing loope without labels.

The "conditional" statement is similar to
the one in ALGOL 60, but here the "else" clause
is required.

The equation for "input/output", IOST, in-
nlves two commands, "edit" and "print". The
mrdaRDITnndPRINTdonatbeainvithperioda 80
tat they will look like subroutines written in
tode. "EDIT" copies the given string into the
rint area, with the first character in the print
psition which is computed fram the given expres-
sion. "PRINT" will print the current contents of
te print area and then clear it to blanks. Giv-
ing @ print cammand without Previous edit com-
mads results in writing a blank line.

: IDSEQ1 and IDSEQ are given to simplify the
imtax equation for DEC (declaration). Notice in
the definition of DEC that a branch is given
tround the data.

From the definition of BLOCK it can be seen
tat vhat is considered a compound statement in
MGOL 60 18, in VALGOL I, a special case of a block
vhich has no declaration.

In the definition of statement, the test
for an IOST precedes that for an ASSIGNST. This
is necessary, because 1f this were not done the
wris PRINT and EDIT would be mistaken as identi-
flers and the campiler would try to translate
"input /output” statements as 1f they were "assign-
wnt"” statements.

FNotice that a PROGRAM is a block and that a
Mndard-etofcmndsinoutmt&ftereachpo-
fam. The "balt" command causes the machine to
itop on reaching the end of the outermost block,
vhich is the progrem. The operation code SP is
generated after the "halt" command. This is &
cmpletely 140l-oriented code, which serves to
fet & word mark at the end of the progrem. It

would not be used if VALGOL I were implemented on
& fixed word-length machine.

How the META IY Campiler Was Written

Now we come to the most interesting part of
this project, and consider how the META II com-
piler vas written in its own language. The in-
terpreter called the META II machine is not a
much longer 1401 progrem than the VALGOL I ma-
chine. The syntax equations for META II (figure
5) are fewer in mmber than those for the VALGOL
I machine (figure 1).

The META II campiler, which is an interpret-
ive program for the META II machine, takes the
syntax equations given in figure 5 and produces an
assembly language version of this same interpret-
ive program. Of course, to get this started, I
had to write the first compiler-writing compiler
by hand. After the program was running, it could
produce the same program as written by hand. Some-
one always asks if the compiler really produced
exactly the program I had written by hand and I
have to say that it wvas "almost" the same pro-
gram. I followed the syntax equations and tried
to write just what the campiler was going to pro-
duce. Unfortunately I forgot one of the redun-
dant instructions, so the results were not quite
the same. Of course, when the first machine-
produced campiler campiled itself the second time,
it reproduced itself exactly.

The compiler originally written by hand was
for a language called META I. This was used to
implement the improved compiler for META II.
Scmetimes, when I wvanted to change the metalan-
guage, I could not describe the new metalanguage
directly in the current metalanguage. Then an
intermediate language was created --one which
could be described in the current language and in
vhich the new language could be described. I
thought that it might sometimes be necessary to
modify the assembly language output, but it seems
that it is always possible to avoid this with the
intermediate language.

The order list of the META II machine is
given in figure 6.

All subroutines in META II programs are re-
cursive. When the program enters a subroutine a
stack is pushed down by three cells. One cell
is for the exit address and the other two are for
labels which may be generated during the execu-
tion of the subroutine. There is a switch which
may be set or reset by the instructions which re-
fer to the input string, and this is the switch
referred to by the conditional branch commands.

The first thing in any META II machine pro-
gram is the address of the first dinstruction.
During the initialization for the interpreter,
this address is placed into the dinstruction
counter.

VAIGOL II Written in META II

VALGOL II is an expansion of VALGOL I, and
serves as an illustration of a fairly elaborate
Programming language implemented in the META II
system. There are several features in the VAL-
GOL II machine which were not present in the

Dl o 3-3

VAIGOL I machine, and which require some explana-
tion. In the VALGOL II machine, addresses as well
as numbers are put in the stack. They are marked
appropriately so that they can be distinguished at
execution time.

The main reason that addresses are allowed
in the stack is that, in the case of a subscripted
variable, an address is the result of a camputa-
tion. In an assigmment statement each left member
is compiled into & sequence of code which leaves
an address on top of the stack. This is done for
simple variables as well as subscripted variables,
because the philosophy of this compiler writing
system has been to compile everything in the most
general way. A variable, simple or subscripted,
is always compiled into & sequence of instructions
which leaves an address on top of the stack. The
address is not replaced by its contents umtil the
actual value of the variable is needed, as in an
aritmetic expression.

A formal parameter of & procedure is stored
either as an address or as a value vhich is com-
puted when the procedure is called. It is up to
the load command to go through any number of in-
direct address in order to place the address of a
mmber onto the stack. An argument of a procedure
is alwvays an algebraic expression. In case this
expression is a variable, the value of the formal
parameter will be an address computed upon enter-
ing the procedure; otherwise, the value of the
formal parameter will be & mumber computed upon
entering the procedure.

The operation of the load command is now
described. It causes the given address to be put
on top of the stack. If the content of this top
item bappens to be another address, then it is
replaced by that other address. This continues
until the top item on the stack is the address of
something which is not an address. This allows
for formal parameters to refer to other formal
parameters to any depth.

No distinction is made between integer and
real numbers. An integer is just a real number
wvhose digits right of the decimal point are zero.
Variables initially have a value called "un-
defined", and any attempt to use this value will
be indicated as an error.

An assigmment statement consists of any
number of left parts followed by a right part.
For each left part there is compiled a sequence of
commands which puts an address on top of the stack.
The right part is compiled into a sequence of in-
structions which leaves on top of the stack either
& number or the address of a number. Following
the instruction for the right part there is a se-
quence of store commands, one for each left part.
The first command of this sequence is "save and
store”, and the rest are "plain" store commands.
The "save and store" puts the mumber which is on
top of the stack (or which is referred to by the
address on top of the stack) into a register
called SAVE. It then stores the contents of SAVE
in the address which is held in the next to top
position of the stack. Finally it pops the top
two items, which it has used, out of the stack.
The number, however, remains in SAVE for use by
the following store cammends. Most assigmment
statements have only one left part, so "plain”

store commands are seldam produced, with the re-
sult that the number put in SAVE is seldam used
again. .
The method for calling a procedure can be

explained by reference to illustrations 1 and 2.
The arguments which are in the stack are moved to
their place at the top of the procedure. If the

Function
Arguments

b Word of one blank char-
acter to mark the end
of the arguments.

seseseses Body. Branch commands

cause control to go
around data stored in
this area. Ends with

R a "return” command.

Illustration 1
Storage Map for VALGOL II Procedures

000X Arguments in reverse order
000000
2000000
XXX Flag
XXX Address of
procedure

Stack before executing
the call instruction

Exit xXx

Stack after executing
the call mtruct:lﬂ

IMlustration 2

Map of the Stack Relating to Procedure Calls

number of arguments in the stack does not corre-
spond to the number of arguments in the procedure,
an error is indicated. The "flag" in the stack
works like this. In the VALGOL II machine there
is a flag register. To set a flag in the stack,
the contents of this register is put on top of
the stack, then the address of the word above the
top of the stack is put into the flag register.
Initially, and whenever there are no flags in the
stack, the flag register contains blanks. . At
other times it contains the address of the word
in the stack which is just above the uppermost
flag. Just before & call instruction is executed,
the flag register contains the address of the word
in the stack which is two above the word contain-
ing the address of the procedure to be executed.
The call instruction picks up the arguments from
the stack, beginning with the one stored just

Dl 03-4

pove the flag, and continuing to the top of the
sack. Arguments are moved into the appropriate
paces at the top of the Procedure being called.
k error message is given if the number of argu- ;
xots in the stack does not correspond to the)
paber of places in the Procedure. Finally the
old flag address, which is Just below the pro-
cedure address in the stack, is put in the Tlag
register. The exit address replaces the address
of the procedure in the stack » and all the argu-
pents, 88 well as the flag, are popped out.
fhere are just two op codes which affect the flag
rgister. The code "load flag" puts a flag into
the stack, and the code "call" takes ome out. o +
The library function "WHOLE" truncates a ':m
real number. It does not convert a real nmmber T+l 7T
to an integer, because no distinction is made be-
tveen them. It is substituted for the reccomend-
ed function "ENTIER" primarily because truncation
takes fewer machine instructions to implement .
Also, truncation seems to be used more frequently.
The procedure ENTIER can be defined in VALGOL IT
as follows:

-PROCEDURE ENTIER(X) .,
«IF O .L= X .THEN WHOLE (X) .ELSE
«IF WHOLE(X) = X .THEN X .ELSE
WHOLE(X) -1

The "for statement" in VAILGOL II is not the
saxe as it is in AIGOL. Exactly one list element
is required. The "step .. until" portion of the
element is mandatory, but the "while" portion may
be added to terminate the loop immediately upon Reset switch
sme condition. The iteration continues to indicate
& the value of the variable 18 less than or not first
equal to the maximm, irrespective of the sign time through
of the increment. Illustration 3 is an example J
of & typical "for statement”. A Tlow chart of
this statement is given in illustration 4.

INlustration &

FOR I = O .STEP 1 .UNTIL N .DO
(statement) Flow chart of the "for statement"

Set switch to indicate first given in figure 12
SET

time through.
ASL

Test for first time through. Figure 7 is a listing of the VALGOL II com-~
Piler written in META II. Figure 8 gives the or-
order 1ist of the VALGOL IT machine. A sample pro-

Initialize variable. gram to take a determinant is given in figure 9.
Backup vs. No Backup

Suppose that, wupon entry to & recursive
subroutine, which represents some syntax equation,
Compare variable to maximm. the position of the input and output are saved.
N When some non-fir.t term of a component is not
found, +he roerpd) 0t have to stop with an
A4 indlcation of a sya & error. It can back-up the
(.um» input and output and return false. The advantages
Reset switch to indicate not of backup ere as ™1)ovs:
RST first time through. 1. 4cds pc i to describe languages,
using backup, waich cannot be described

B A9l
without backup.
2. Even for a language which can be de-
Illustration 3 Scribed without backup, the syntax equations
Compilation of a typical "for statement" can often be simplified when backup is al-
in VAILGOL II lowed.

1] Increment variable.

A9k

The advantages claimed for non-backup are as
follows:

1. Syntax analysis is fa=ie; .

2. It is possible to tel: {h.. L. .r synt:x
equations will work just by exam: ning them,
without following through nume:cis examples.

The fuct that rather sophisticated languages
such as ALCOL and COBOL can be implemented without
backup is pointed out by various people, including
Conway,” and they are avare of the speed advant-
ages of so doing. I have seen no mention of the
second advantage of no-backup, so I will explain
this in more detail.

Basically one writes altermaticar in which
each term begins with a different symbol. Then it
is not possible for the compiler to go down the
vrong path. This is made more compli - "d because
of the use of ".EMPTY". An optional item can
never be followed by something that begins with
the same symbol it begins with.

The method described above is not the only
way in which backup can be handled. Variations
are vorth considering, as a wvay may be found to
have the advantages of both backup and no-backup.

Further Develomment of META Languages

As mentioned earlier, META II is not present~
ed as a standard language, but as a point of de-
parture from which a user may develop his own META
language. The term "META Language,"” with "META"
in capital letters, is used to denote any compiler-
writing language so developed.

The language which Schmidtl implemented on
the PDP-1 was based an META I. BHe has now imple-
mented an improved version of this language for a
Beckman machine.

Rutman? has implemented LOGIK, & compiler
for bit-time simulation, on the 7090. He uses a
META language to compile Boolean expressions into
efficient machine code. Schneider and JohnsonlO
have implemented META 3 on the IBM 7094, with the
goal of producing an ALGOL compiler which gener-
ates efficient machine code. They are planning a
META language which will be suitable for any block
structured language. To this compiler-writing
language they give the name META 4 (pronounced
metaphor).

References

"Implementation of a Sym-

1. Scmidt, L.,
1963

bol Manipulator for Beuristic Translation,”
ACM Ratl. Conf., Denver, Colo.

2. Metcalfe, Howard, "A Parameterized Com-
piler Based on Mechanical Linguistics,” 1963 ACM
Fatl. Conf., Denver, Colo.

3. Schorre, Val, "A Syntax - Directed
SMAIGOL for the 1401," 1963 ACM Ratl. Conf., Den-
ver, Colo.

k. Glennie, A., "On the Syntax Machine and
the Construction of a Universal Compiler,” Tech.
Report No. 2, Contract NR O49-141, Carnegie Inst.
of Tech., July, 1960.

5. Conway, Melvin E., "Design of a Separahls
Transition-Diagram Compiler,"” Comm. ACM, July 1963.

6. Irons, B. T., The Structure and Use of
the Syntax -Directed Campiler," Annual Review in
Automatic Programming, The Macmillan Co., RNew
York.

7. Bastian, lLewis, "A Phrase-Structure Ian-
guage Translator," AFCRL-Rept-62-549, Aug. 1962,
"Syntax Structures,"
The Hague, / Nether-

8. Chamsky, Noam,
Mouton and Co., Publishers,
lands.

9. Rutman, Roger, "LOGIK, A Syntax Directed
Campiler for Computer Bit-Time Simulation," Master
Thesis, UCLA, August 1964.

10. Schneider, F. W., and G. D. Johnson, "A
Syntax-Directed Compiler-Writing Compiler to Gen-
erate Efficient Code," 1964 ACM Natl. Conf.,
Philadelphia.

Dl 03-6

THE VALGOL I COMPILER WRITTENM IN META 11 LANGUAGE A PROGRAM AS COMPILED FOR THE VALGOL | MACMINE
FIGURE 1 FIGURE 3

«SYNTAX PROGRANM «BEGIN
SREAL X 49 0 = X 4
PRIMARY = +ID +OUTI'LD * @) / B A0} 0000 & 0012
«HUMBER JOUT('LDLY ®) / x 0004
Y EXP) o K 001 0004
A0} 0012
TERM = PRIMARY S('8' PRIMARY OUTI'MLT')) o, oL o 0012 A
T x 0021 & 0004
EXPL = TERM S(*+*' TERM JOUT('ADD') / SUNTIL X o= 3 DO BEGIN
=t TERN JOUTI'SUB')) o A02 0023
Lo x 0025 0 0004
EXP = EXP1 ("ot EXPLl oOUTI'EQU') / JENPTY) o» oL 3 0029 A
v 0038 F
ASSIGAST = EXP *=' LID JOUTI'ST * #) ,, BYP ADY 0039 K 0097
EDITE XOX ® 10 « 1y %@0) oy PRINT o0 X ¢ Ol = X
UNTILST = *QUNTIL' oLABEL ®1 EXP *.00' JOUT('BYP' 02) L x 0043 0 0004
ST «OUT('8 * 1) JLABEL #2 o, L x 0047 0 0004
mr 0051 E
CONDITIONALST = *o1F¢ EXP ¢ THEN' JOUT('BFP* #1) LoL 10 0052 A
ST 'ELSE' OUT('E * #2) LLABEL #1 T 0061 £
ST SLABEL #2 ., L 1 0062 A
ADD 0071 €
10ST = TEDIT' *(¢ EXP %,% JSTRING EDT O1ves 0072 1
«OUT('EDT* ®)) PNY 0074 ¢
TPRINT' JOUTI'PNT*) o8 L x 0075 0 0004
LOL 0.1 0079 A
IDSEQL = oID LABEL & LOUTI'BLK 1%) o, ADO 0088 ¢
ST x 0089 B 0004
IDSEQ = IDSEQ]L S(*s" IDSEQL) o0 <END
3 AD2 0093 G 0023
DEC » *oREAL' LOUTI'B * 1) IDSEQ JLABEL #1 ., A0S 0097
l«Enp ¢
BLOCK = *.BEGIN' IDEC *us' 7 +ENPTY) MUY 0097 J
ST s o' ST) Y.END' .0 s 0098
4 Eno 0099
ST = 10ST / ASSIGNST / UNTILST /
CONDITIONALST 7 BLOCK o
PROGRAM = BLOCK «OUT('MLT')
SOUTI*SP 1%) JOUTI'END') o4
«EN0
ORDER LIST OF THE VALGOL | MACHINE
FIGURE 2
MACHINE CODES
LD AAA LOAD PUT THE CONTENTS OF THE ADORESS AAA
ON TOP OF THE STACK.
LOL NUMBER LOAD LITERAL PUT THE GIVEN NUMBER ON TOP OF
THE STACK.
ST A STORE STORE THE NUMBER WMICH 15 ON TOP
OF THE STACK INTO THE ADDRESS AAA
AND POP UP THE STACK.
ADD ADO REPLACE THE TWO NUMBERS WHICH ARE OUTPUT FROM THE VALGOL | PROGRAM GIVEN IN FIGURE 3
ON TOP OF THE STACK WITH THEIR FIGURE &
UM,
sus SUBTRACT SUBTRACT THE MUMBER WHICM IS ON B
TOP OF THE STACK FROM THE MNUMBER B
WHICH IS NEXT TO THE TOP, THEN .
REPLACE THEM BY THIS DIFFERENCE. B
-
wr WULTIPLY REPLACE THE TWO NUMBERS wHICH ARE .
O TOP OF THE STACK WITH THEIR .
PRODUCT . -
-
Eou EQUAL COMPARE THE TWO NUMBERS OM TOP OF .
THE STACK. REPLACE THMEM BY THE .
INTEGER 14 IF THEY ARE EQUALs OR BY .
THE INTEGER O« IF THEY ARE UMEQUAL « .
.
8 A BRANCH BRANCH TO THE ADDRESS AAA. .
-
BFP AAA BRANCH FALSE BRANCH TO THE ADDRESS AAA IF THE .
AND POP TOP TERM IN THE STACK IS THE -
INTEGER Os OTHERWISE. COMTINUE .
IN SEQUENCE. IN EITHER CASE, .
POP UP THE STACK. o
-
BYP AAA BRANCH TRUE BRANCH TO THE ADDRESS AAA IF THE B
AND POP TOP TERM IN THE STACK IS MOT THE .
INTEGER O« OTHERWISEs COMTINUE .
IN SEQUENCE. IN EITHER CASE, N .
POP UP THE STACK. - ®
Ay Ty
EDY STRING EDIT ROBND THE MUMBER WHICH IS ON TOP OF
THE STACK TO THE MEAREST INTEGER Mo
MOVE THE GIVEN STRING INTO THE
PRINT AREA SO THAT 1TSS FIRST CHAR-
ACTER FALLS OR PRINT POSITION Ne
IN CASE THIS WOULD CAUSE CHMARACTERS
TO FALL OUTSIDE THE PRINT AREA: MO
MOVEMENT TAKES PLACE.
AT PRINT PRINT A LINEs THEN SPACE AND CLEAR
THE PRINT AREA.
L8 MALT HALT.
COMSTANT AND CONTROL CODES
LI] SPACE N = 1==9., CONSTANT COOE PRODUCING
N BLANK SPACES.
BLE Wen BLocCk PRODUCES A BLOCK OF ma ETGHT
CHARACTER WORDS.
€50 oo DENOTES THE END OF THE PROGRAN. '

D1.3-7

1T ADDRESSs POPPING
THE META 11 COMPILER WRITTER IR 178 OWR LANGUAGE ONE OR THREE CELLS
FIGURE 3 IF THE
THEN CLEAR tToP Two CELLS TO
+SYNTAX PROGRAM BUANKS s BECAUSE THEY WERE BLANK
WHEN THE SUBROUT INE WAS ENTERED.
ouTl = ‘el LOUT(IGNLY) 7 tedt JouTLreNa) /
e LOUTLICIYY / LSTRING »OUTE'CL * Sher SEY

BRANCH BRANCH URCONMD 1 TIONALLY TO LOCATION
AL

SET BRANCH SWITCH ONe

QUTPUT = (4.0UT* "e
s ouUTY "IV / " oLABEL" JOUTLILEY) OUTL) SOUTLIOUT!) o»

EX3 = +1D JOUT (CLLY ®) 7 +STRING BRANCH IF TRUE BRANCH TO LOCATION AAA IF SWITCH IS
JOUTLPTST: &) / 1.10% JOUTETIDY) / OM. OTHERWISE. CONTINUE 1IN SEQ-
TLNUNBER® JOUT(TNUN' Y / VENCE.

YL STRING' JOUTL'SRYI 7 ' EX) M0/

VLEMPTY? JOUTL'SET') / BRANCH IF FALSE BRANCH TO LOCATION AMA IF SWITCH
V80 _JLABEL *1 EX3 15 OFF. OTHERWISEs CONTINVE IN

LOUT ('BT * *1) WOUTLISET T an SEQUENCE.

£x2 = (EX3 JOUTIBE * 01) / ouTMT) BRANCH TO ERROR MALT IF SWITCH IS OFFs OTHERWISEs
SLEXS JOUT(IBE') / ouTPuUT) 1F FALSE CONTINUE IN SEQUENCE.

SLABEL *1 o»

BTRING COPY LITERAL OUTPUT THE VARIABLE LENGTH STRING
£x1 = EX2 St4/° JOUTL'BT ¢ *1) £x2) GIVEN AS THE ARGUMENT« A BLANK
«LABEL *1 »» CHARACTER WILL BE INSERTED IN THE
OUTPUT FOLLOWING THE STRING
ST = +1D JLABEL * ter EX)

Vas® SOUTL'R*Ia» copy 1weUT OUTPUT THE LAST SEQUENCE OF CHAR-

ACTERS DELETED FROM THE 1WPUT
PROGRAN = ¥ SYNTAX' «10 <OUT('ADR' &) THIS COMMAND MAY NOT FURC~
S ST *.END* SOUT('END b ur TION PROPERLY IF THE LAST COMMAND
WHICH COULD CAUSE DELETION FAILED
«ENO 70 DO SO«

GERNERATE 1 THIS COMCERNS THE CURRENT LABEL 1
CELLs 1Ess THE NEXT 10 TOP CELL IN
THE STACKs WHICH IS EITHER CLEAR OR
CONTALINS A GEMERATED LABEL. IF
CLEAR, GENERATE A LABEL AND PUT IT
INTO THAT CELL. WHETHER THE LABEL
MAS JUST BEEN PUT INTO THE CELL OR
WAS ALREADY THEREs OUTPUT 1T«
FINALLYy INSERT A BLARK CHARACTER
1IN THE OUTPUT FOLLOWING THE LABEL.

GENERATE 2 SAME AS GNle EXCEPT THAT 1T CON-
CERNS THE CURRENT LABEL 2 CELLe
1€.s THE TOP CELL IN THE STACK.

SET THE OUTPUT COUNTER TO CARD
COLUMN 1o

PUNCH CARD AND RESET OUTPUT COUNTE!
10 CARD COLUMM 8.

rigure 6.2

ORDER LIST OF THE WETA I} MACHI NE COMSTANT ANO CORTROL COOES
FIGURE

ADR IDENT ADORESS PRODUCES THE ADORESS wHiCH 1S
ASSIGNED TO THE GIVEN IDENTIFIER 4

MACHIRE CODES A CONSTANT .

15T STRING TEST AFTER DELETING INITIAL BLANKS 1N o o DENOTES THE ENO OF THE PROGRAX.
The IWPUT STRINGs COWPARE IT TO THE
STRING GIVEN AS ARGUMENT. IF THE
COMPARISON 15 METs DELETE THE
SATCHED PORTION FROM THE [MPUT AND
SET SwiTOHe IF MOT WET, RESET
SWITCHe

IDENTIFIER AFTER DELETING INITIAL BLARKES 1IN
THE IWPUT STRINGs TEST IF 17 BEGINS
MITH AN IDENTIFIER. 1€es A LETTER
FOLLOWED BY A SEQUENCE OF LETTERS
ANO/OR DIGITSe IF SO» DELETE ThE
JOENTIFIER AND SET SWITCHe IF WOTe
RESET SwiTCH.

AFTER DELETING INITIAL BLANES IR
THE IWPUT STRING, TEST IF 1T BEGINS
WITH A NUMBER. A NUNBER 1S A
STRING OF DIGITS wiiCH MAY COMTAIN
INBEDED PERIODSs BUT MAY nOT BEGIN
Of END wiTH A PERIOO. MOREOVERs WO
TWO PERIODS MAY BE WEXT 70 OnE
ANOTHER. IF A NUMBER IS FOURD .
DELETE IT AND SET SuiTCHe

RESET SWITCHe

AFTER DELETING INITIAL BLARKS 1N
THE LWPUT STRING, TEST IF 1T BEGINS
WiTH A STRINGs 1Ees A SINGLE QUOTE
FOLLOWED BY A SEQUENCE OF ARY
CHARACTERS OTHER THAN SINGLE QUOTE
FOLLOWED BY ANOTHER SINGLE QUOTE.
IF A STRING IS FOUND DELETE IT AWD
SET SwiTCHe IF WOT» RESET SwITCHe

ENTER THE SUBROUT INE BEGIMRING IN
LOCATION AAA. IF THE TOP TwO TERMS
OF THE STACK ARE BLARK, PUSH THE
ACK DOwW BY ONE CELLe OTHERW1SE
PusH 1T DOwn BY THREE CELLS. SET A
FLAG IN THE STACK TO INOICATE
WHETHER 17 WAS BEEN PUSHED BY ONE
OR THREE CELLS. THIS FLAG AND THE
EXIT ADORESS GO INTO THE THIRD
CELLe CLEAR THE TOP Two CELLS TO
BLANKS TO INDICATE TMAT THEY CAN
ACCEPT ADORESSES wHiCH MAY BE
GENERATED WITHIN ThHE SUBROUT INE«

pigare 6.1

VALGOL Il COMPILER WRITTEN IN META 11
FIGURE 7

«SYNTAX PROGRAN
ARRAYPART = #(o% EXP %5)% JOUT('ALIA') o

CALLPART = *(* LOUT('LDF*) (EXP S(*,* EXP) /
SENPTY) %)% JOUTI'CLLY) o»

VARIABLE = oID +OUTI'LD * &) (ARRAYPART / JENPTY) o

PRIMARY = 'WHOLE® *(* EXP *)¢ OUTI'WMLY) /
«ID +OUTL'LD * &) (ARRAYPART 7 CALLPARY 7 +ENPTY) /7
foTRUE' +OUTI'SET') / *oFALSE' +OUT('RST') /
10 ' JOUT('RST') / %1 * LOUT('SETY) /
oNUMBER +OUT('LDL* @) /
Y EXP Y)Y .

TERM = PRIMARY $ ('#¢ PRIMARY OUTI'MLT') /
/% PRIKARY «OUT('DIVY) /
Yo/e' PRINARY «OUTI'DIV') «OUTE'WHLY]) o0

EXP2 » '~ TERM JOUT('NEG') /
4 TERN / TERM o

EXPl = EXP2 S('+' TERM JOUTI'ADD') /
f=' TERM JOUTI'SUB')) o

RELATION = ExP1 (

felot EXP]l JOUT('LEQY) /
L' EXP1 JOUT('LES') /
EXP1l JOUTI'EQU') /
ot EXP1l +OUT('EQU') JOUTI'NOT'} 7
YaGe' EXP1 +OUT('LES?) LOUTI'NOTY) /
Y4G' EXPLl JOUT('LEQ') +OUTI'NOT*) /
»ENPTY) o»

BPRIMARY = *out RELATION +OUT('NOT') /
RELATION o4

BTERM » BPRIMARY § (tont JOUTI'OF + #))
«OUT('POP ') BPRIMARY)
«LABEL *1 .,

SEXP1 = BYERM S('4V' LOUT('BT * o]}
«OUT('POP') BTERM)
«LABEL *1 .,

INPLICATION]I = *,IMP' LOUT('NOT!)
«OUTI'BT * #1] 0UT('POPY)
BEXP1 JLABEL *1 .,

INPLICATION = BEXPL 8 IMPLICATION] o4

Pigure 7.1

EQUIV = IMPLICATION S(*.EQ' JOUTI'EQU')) 44

EXP & Vo1F' EXP '.THEN' LOUT('OFP' #1)
EXP JOUT('S * #2) LLABEL *)
VSELSE' EXP LLABEL #2 /

EQUIV o

ASSIGNPART = twt EXP (ASSIGNPART JOUT('STY) /
SENPTY JOUT('SSTY)) o,

ASSIGNCALLST = +1D «OUT('LD * ®) (ARRAYPART ASSIGMPARY /

ASSIGMPART / (CALLPARY / JEWPTY
SOUTI'LDF ') JOUTC('CLLY))
SOUTLIPOPY)) oy

UNTILST = fLUNTIL® +LABEL ®) Exp
‘eDO' JOUTI'BTP' #2) 8T
SOUTE!D ¢ 1) LLABEL #2 ..

WHILECLAUSE = *owHILE' JOUT('BF + #1)
OUTI'POP ') EXP JLABEL *1 7/ ENPTY .,

FORCLAUSE = VARIABLE *=*' OUT('FLP*)
sOUTI'BFP' #1) EXP *,.STEP!
»OUTLISSTY) JOUTI'S 1+ #2)
oLABEL ®1 ExP *LUNTIL' JOUTI('ADS')
«LABEL 2 JOUTI('RSR') Exp
»OUTI'LEQY) WMILECLAUSE *4DO' o

') SLABEL =)
*2) 87
«OUTIIRST) +OUTI'S * o))
«LABEL *2 .,

TOCALL = SREAD' *(' VARIABLE *4' EXP #)* LOUT('RED') /
‘WRITE' *(*' VARIABLE Y EXP Y)Y LOUT('MRTY)
VEDITY *(* ExP ¢ «STRING
+OUTLIEDT! ®) #)s
PRINT' JOUTI'PNTY)
YEJECT® JOUTI'EJTY) oy

IDSEQL = +ID «LABEL® JOUTI'BLE 1%) .,
IDSEQ = IDSEQ] S('s* IDSEQL) o4
TYPEDEC = *,REAL' IDSEQ 4

ARRAYL » 41D «LABEL & v(,% 90 1 ¢ «NUNBE R
SOUTEYBLE 17) «OUTI'BLK® ®) 2430 o,

ARRAYDEC = ToARRAY' ARRAYL S(*4% ARRAYL) .4

PROCEDURE = ' PROCEDURE' oID +LABEL ¢
LABEL ®) JOUTI'BLK 1v) #(+
(IDSEQ 7 «E. PTY) 400 LOUTI'SP 10) #4yt
f . 1) e

Pigure 7.2

DEC = TYPEDEC / ARRAYDEC / PROCEDURE o4

BLOCK = *4BEGIN' OUTI'S + ®1) S(DEC *apt)
oLABEL 1 ST S(*.s" ST) *.END*
(oID /7 JENPTY) o0

UNCONDITIONALST = IOCALL 7/ ASSIGNCALLST /
BLOCK o0

COMDST w LIF' EXP *oTHEN' JOUT('BFP+ ®1)
(UNCONDITIONALST ("4ELSE' LOUT('B * #2)
#LABEL ®1 ST JLABEL 2 / JEMPTY
«LABEL #1) / (FORST 7 UNTILST)

«LABEL 1) .,

ST = CONDST / UNCONDITIONALST 7 FORST /
UNTILST 7 +DWPTY 4y

PROGRAN = BLOCK
SOUTIYHLT ') oOUTI'SP 1%) LOUTI'END') o4

Pigure 7.3

ORDER LIST OF THE VALGOL Il MACHINE
Fi

GURE &

MACHINE CODES

LOAD

LOAD LITERAL

SET

RESTORE

PUT THE ADORESS AAA ON TOP OF THE
STACK.

PUT THE GIVER NUMBER ON TOP OF
THE STACK,

PUT THE INTEGER 1 ON TOP OF THE
STACK.

PUT THME INTEGER 0 ON TOP OF THE
STACK.

STORE THE CONTENTS OF THE REGISTER.
STACKLs IN THE ADORESS wHICH IS ON
TOP OF THE STACK: THEN POP UP THE
STACK.

ADD THE WUMBER ON TOP OF THE STACK
TO THE WUMBER wHOSE ADORESS 1S MEXT
TO THE TOP, AND PLACE THE SUM IN
THE REGISTER, STACKL. TnEN STORE
THE COMTENTS OF THAT REGISTER IN
THAT ADORESSs AND POP THE TOP TwO
ITEMS OUT OF THE STACK.

PUT THE NUMBER OR TOP OF THE STACK
INTO THE REGISTERs STACK1. THEN
STORE TME COMTENTS OF THAT REGISTER
IN THE ADORESS wwiCW IS THE NEXT
TO TOP TERM OF THE STACK. THE TOP
TWO ITEMS ARE POPPED OUT OF THE
STACK.

PUT THE CONTENTS OF THE REGISTER.
STACKls ON TOP OF THE STACK.

REPLACE THE TWO WUMBERS wWICH ARE
ON TOP OF THE STACK wiTH THEIR
S,

SUBTRACT THE NUMBER wwiCM IS Ow
TOP OF THME STACK FROM THE NUMBER
WHICH 15 NEXT TO THME TOPs THEN

REPLACE THEM BY THIS DIFFERENCE.

REPLACE THE TWO WUMBERS wHICH ARE
OM TOP OF THE STACK wiTw THEIR
Te

DIVIDE THME NUMBER wHICH 1S NEXT TO
THE TOP OF THME STACK BY THE NUMBER

WHICH 1S OM TOP OF THE STACKs THEN
REPLACE THEM BY THIS QUOTIENT.

Pigure 8.1

THE SIGN OF THE NUMBER ON
TOP OF THE STACK.
TAUNCATE THE NUMBER wHICH IS Om
TOP OF THE STACK.

IF THE TOP TERW IN THE STACK 1S THE
INTEGER O¢ THEN REPLACE 1T wiTH THE
INTEGER 1+ OTHERWISE. REPLACE 1T
WITH THE INTEGER O«

IF THE WUMBER wHICH IS NEXT TO
THE TOP OF THE STACK IS LESS THAN
OR EQUAL TO THE NUMBER ONM TOP OF
THE STACK, THEN REPLACE THEM wiTH
THE INTEGER 1. OTHERWISE, REPLACE
THEX wiTw THE INTEGER 0.

IF THE NUMBER wHICH 1S REXT 10

THE TOP OF THME STACK IS LESS THAN
THE WUMBER ON TOP OF THE STACK.
THEN REPLACE THEM wiTh THE

INTEGER 1. OTHERWISEs REPLACE THEM
WITH THE INTEGER V.

COMPARE THE TWO WUMBERS OM TOP OF
THE STACK. REPLACE THEM BY THE
INTEGER 1o IF THEY ARE EQUALs OR BY
THE INTEGER O« IF THEY ARE UNEQUAL

BRANCH TO THME ADORESS AAA.

RETURN
ARRAY INCRENENT
ADORE

ENTER A PROCEDURE AT THE ADORESS
WHICH 1S BELOW THE FLAG.

PUY THE ADDRESS WHICH IS IN THE

FLAG REGISTER Off TOP OF THE STACKs
AND PUT THE ADDRESS OF THE TOP OF
THE STACK INTO THE FLAG REGISTER.

RETURN FROM PROCEDURE.

INCREMENT THE ADDRESS WHICH IS NExY
TO THE TOP OF THE STACK BY THE
INTEGER wHICH IS ON TOP OF THE
STACKs AND REPLACE THESE BY THE
RESULTING ADDRESS«

INTERCHANGE THE TOP TWO TERNS OF
THE STACK.

POP UP THE STACK.

ROUND THE NUMBER WHICH IS Om TOP OF
THE STACK TO THE NEAREST INTEGER N.
MOVE THE GIVEN STRING INTO THE
PRINT AREA SO THAT ITS FIRST CHAR-
ACTER FALLS OM PRINT POSITION N
IN CASE THIS wOULD CAUSE CHARACTERS
TO FALL OUTSIDE THE PRINT AREA:, WO
MOVEMENT TAKES PLACE.

PRINT A LINEs THEN SPACE AND CLEAR
THE PRINT AREA.

POSITION THE PAPER IN THE PRINTER
TO THE TOP LINE OF THE MEXT PAGE.

READ THE FIRST N NUMBERS FROM A
CARD AND STORE THEM BEGINNING IN
THE ADORESS wHICH 1S NEXT TO

THE TOP OF THE STACK. THE INTEGER
N 1S THE TOP TERM OF THE STACK.
POP OUT BOTH THE ADDRESS AND THE
INTEGER. CARDS ARE PUNCHED WITH U@
TO 10 EIGMT DIGIT WUMBERS. DECIMAL
POINT IS ASSUMED TO BE IN THE
MIDOLE. AN 11-PUNCH OVER THE
RIGHTMOST DIGIT INOICATES A NEG-
ATIVE NUMBER.

Pigare 8.3

PRINT A LINE OF K WUMBERS BEGIMNING
IN THE ADORESS wniCh 1S MEXT TO
THE TOP OF THE STACK. THE INTEGER
N IS THE TOP TERM OF THE STACK.
POP OUT BOTH THE ADDRESS AND THE
INTEGER. TWELVE CHARACTER POSI-
TIONS ARE ALLOWED FOR EACH NUMBER.
THERE ARE FOUR DIGITS BEFORE AND
FOUR DIGITS AFTER THE DECIMAL.
LEADING ZEROES IN FROMT OF THE
DECIMAL ARE CHANGED TO BLANKS.

IF THE WUMBER 1S NEGATIVE, A MINUS
SIGN 1S PRINTED IN THE POSITION
BEFORE THE FIRST MON=BLANK CHARACT-
ERs

MALT

CONSTANT ANO COMTROL CODES

SPACE

sLOCK

-re

N » 1==9. CONSTANT CODE PRODUCING
N BLANK SPACES.

PROOUCES A BLOCK OF MM EIGHT
CHARACTER WORDSe

DEMOTES THE END OF THE PROGRAN.

BRANCM TO THME ADDRESS AAA IF THE WOTE 1o IF THE TOP ITEM IN THE STACK IS AN ADDRESS, 1T IS
TOP TERM IN THE STACK IS WOT THE REPLACED BY ITS CONTENTS BEFORE BEGINNING THIS
INTEGER Os OTHERWISEs CONTINUE OPERATION.

IN SEQUENCE DO NOT POP UP THE
STACK. < WOTE 2. ARE AS 1 1s BUT APPLIES TO THE TOP TWO ITEMS.

BRANCH TO THE ADODRESS AAA IF THE
TOP TERW [N THE STACK IS THE
INTEGER Os OTHERWISE, CONMTINUE
In SEQUENCE. DO WOT POP UP THE
STACK.

BRANCH TO THE ADORESS AAA IF THE
TOP TERM IN THE STACK IS WOT THE
INTEGER 0. OTHERWISE. CONTINUE
IN SEQUENCE. IR EITHER CASE. POP
UP THE STACK.

BRANCH TO THE ADDRESS AAA IF THE
TOP TERM IN THE STACK 1S THE
INTEGER O. OTHERWISE, CONTINUE
IN SEQUEWCE. 1IN EITHER CASE.
POP UP THE STACK.

Pigure 8.2
p1.3-10

- EXAMPLE PROGRAM IN VALGOL 11
FIGURE ¢

+BEGIN

«PROCEDURE DETERMINANT(As M) o
«BEGIN

«PROCEDURE DUMP () o4

+BEGIN

REAL D o0

oFOR D » O oSTEP 1 «UNTIL m=1 4DO
WRITE(MATRIX(s MO0 o)y M) o
T

«END DUMP o,
+PROCEDURE ABS(X) o
ABS = oIF O oL® X «THEN X oELSE =X o4
+REAL PRODUCTs FACTOR: TEMP: Ry Iy J oy
PRODUCT = 1 o0
oFOR R = O JSTEP 1 «UNTIL N=2
*WHILE PRODUCT o=+ 0 .DO +BEGIN
I =R o
oFOR J = R4l oSTEP 1 JUNTIL W=1 .00
oIF ABSE Ale Wo1 o R o)) oL
ABS(Ale NOJ ¢ R o)) JTHEN
1 #J e
oIF At MOL & R o) o= O JTHEN
PRODUCT = O

«ELSE
oIF 1 o= R JTHEN BEGIN
PROOUCT = ~PRODUCT o4
«FOR U = R JSTEP 1 SUNTIL W=1 DO
«BEGIN
TENP = Als WOR + J o) us
Ale MOR ¢ J o) = Ale W0 1 * J o) us
Ale WOL & J o) = TENP LEND +END o4
TENP = Als ROR + R o) o,
oFOR | = Rel +STEP 1 JUNTIL W=1 DO
«BEGIN
FACTOR = Als N®] + R &) 7 TEW® ..
oFOR J = R STEP 1| +UNTIL N=1 .DO
Ale W®1 ¢ J o) = Ale o] & J o)
~FACTOR & Als NOR ¢ J o) oy

«END JEND .4
«FOR | = 0 JSTEP 1 JUNTIL N=1 DO
PRODUCT = PRODUCT ® Al N8I + | o) o,
DETERMINANT = PRODUCT
+END DETERMINANT o4
SREAL My Wo T wy «ARRAY MATRIX (o O s 24 o} -
SUNTIL «FALSE .00 «BEGIN
EDIT(1s 'FIND DETERMINANT OF') oy PRINTSy PRINT.»
READIM: 1) o0
#FOR W = 0 JSTEP 1 UNTIL W1 DO «BEGIN
READ(MATRIX (o MOW o)y M) oy
WRITE(MATRIX (o MOu 404 M) LEND o4
PRINT wo T = DETERMINANT (MATRIXs M) o4
WRITE(Ts 1) os PRINT.s PRINT +END
«END PROGRAM

Dl.3-11

»
T ——— et . I —
.

——

Rt

e ———aT

> ——

ssocialion for
(omputing Nachinery

Proceedinos

OF THE 19TH NATIONAL CONFERENCE
PHILADELPHIA, PENNSYLVANIA
AUGUST 25-27, 1964

ACM PUBLICATION P-64

AVAILABLE FROM
ASSOCIATION FOR COMPUTING MACHINERY
211 EAST 43RD STREET
NEW YORK, N.Y. 10017

PRICE $5.00

