Il
Il

il
i

.1|I|

EG.-?&M b

Application Program

General Purpose Simulation System/360

Usar's Manual

This publication is an extension and amplification of the
GPSS/360 Introductory User's Manual (H20-0304-0), It
provides a detailed description and explanation of the
component parts and operation of the GPSS/360 program.,
Examples illustrating the uses of GPSS/360 are given in
appropriate sections of the manual, This manual should
enable the reader to construct and simulate models using
the full capabilities of GPSS/360,

HOYEH|

H20-0326-0

First Edition

Significant changes or additions to the specifications contained in this publication
will be reported in subsequent revisions or Technical Newsletters.

Copies of this and other IBM publications can be obtained through IBM branch
offices. Address comments concerning the contents of this publication to
IBM, Technical Publications Department, 112 East Post Road, White Plains, N.Y. 10601

© International Business Machines Corporation 1967

CONTENTS
CHAPTER 1: INTRODUCTION
Qutlineof Contents - = « + « « « « + + =

CHAPTER 2: PRINCIPLES OF THE GPS5/360
PROGRAM

Block Diagrams . . « « + « « « &« .
Clock Time — Relative and Absolute . . .
Adva.nce B].Ock Times- s = = s = s ® = ®

GPSS/360 Entities and Their Attributes.
Formal Concepts . . « «+ « « &« « &
GPSS/360 Entities .

Block Entities . .

Transaction Entities . .

Standard Numerical and Standard
Logical Attributes

System-Wide Numerical Attributes.

Uses of Standard Numerical
Attributes.

Various Ways to Specify Constant
Values ----- « & & & ® ® % @ =

Indirect Addressing of Entity
Indices o o« o« « + o a ¢ 5 & & s s .

Three Ways to Specify Transaction
Parameter Values i i

Chain and Set Memberships of
Transactions . . « ¢« + ¢« + s = o« « &

Basic GPSS/aﬁO Chams- s = = 8 s »
ASBemblysetS. s = @ = = s % 8 % @
Events and Status Changes
CHAPTER 3: S/360 CORE STORAGE
ALLOCATION AND BASIC
CARD FORMAT + = = =« = ==
Format of S/360 WordS. « « « « « + & &

Basic Words for GPSS/360 Entities . . .

14

15

15

16

16

16

16

18
18

18

Basic GPSS/360 Card Format

Remarks Cards « « « « « &« « & =
CHAPTER 4: VARIABLE ENTITIES
General Nature of Variable Entities . .
Arithmetic Variables.

Input Format for Arithmetic Variable
Definition Card

Examples of Arithmetic Variables Used
in Simulation Models e .

Core Allocation for GPSS5/360 Arithmetic
Variables . « ¢« ¢ &« ¢« ¢ & o s & & & &

Redefinition of Arithmetic Variables . .
Floating-point Arithmetic Variables . .

Input Format for Floating-point
Arithmetic Variables « « « .

Boolean Variables
Operators. « « « + « &

Core Allocation for GPSS/360 Boolean
Variable Entities. . . . wie s W e

CHAPTER 5: FUNCTION ENTITIES - -
General Nature of Function Entities
Types of Functions. «

Free-Format Function Follower
CQare v v e s e FE R N s N s YEoe

Continuous Numerical Valued
Functions (Cn). . . . « &« « &« « « .+ .

Discrete Numerical Valued
Functions Dn). . . . « « &« & & & « &

List Numerical Valued
Funcﬁons(Ln). * 8 8 % & & 8 ® & 8 =

Discrete (En) and List (Mn) Attribute
Valued Funetions « « . .

Uses of Function Values

18
18

20

20

21

21

22

22

23

23

23

23

24

26

26

26

28

28

29

29

30

31

Function Selection Factor (Fn) in Block Redefinition . . ¢
TRANSFERBlocks. . + « « . + 31 CHANGE and EXECUTE Blocks .
Symbolic Block Values in Assembly CHAPTER 7: TRANSACTION ENTITIES . .

Program Functions. 31 ‘
B S/360 Core Allocation for Transaction

Examples of Functions Used in Data HPMIOR, v wiw v =0 & 2

Processing Simulation Models. 31
Standard Numerical Attributes of

Probability Distributions - . . . 31 Transaction Entities
Function Packing. 33 Transaction Parameter — Pn,
PFREN o v oo v o8y w8 @ F @i
Seek Time Distribution of 1301 Disk
Storage Unit. « « « « 34 Tranaction Transit Time — M1 . .
Mapping Functions ? 34 Parameter Transit Time —
MPn, MP¥n. . . v o v « & 4 &
Uniform Distribution of a Random '
Varlable ¢ o ¢ « s o0 ¢ & & 34 Transaction Priority — PR. . .
Error Conditions with Functions. . . 35 Standard Logical Attributes of
Transaction Entities . .,
Input Errors in FUNCTION
Definition Card and Function Transaction Printout
FollowerCards . . + + « . . . 35
Current Events Chain, .
Execution Errors . . + « + + . 35
Future Events Chain
Core Allocation for Functions . 36
User Chains
Redefinition of Functions 36
Interrupt Chain
Increased Speed of List Functions . . 36
Matching Chain
Random Number Generation. . . . 36
ADVANCE Block, in Which Transactions
CHAPTER 6: BLOCK ENTITIES 38 are Delayed for Positive Time. . . .
General Nature of Block Entities. . 38 Mean Time (Field 4) . .,
Execution of Block-type Spread Time or Function Modifier
Subroutines VoW 38 (FieldB) + o ¢« & 4 2 = 2 « »
GPS3/360 Assembly Program Block Transactions That are
Definition Cards 38 PREEMPTed While in an ADVANCE
Blook s v s v & % s I
Contents of Block Fields 39
Transactions That Enter
GPSS/360 Core Allocation for Block ADVANCE Blocks
Entities. . . + v v ¢ 4 & 4 4 o . . 40
ADVANCE Block CountStatistics, .
Standard Numerical Attributes for
Block Entities+ 40 Internal Operation of the ADVANCE
Block . .+ +v v v v v v v ..
Normal Block Statistical Qutput . . , . 41

53

53

53

53

55

55

55

55

55

60

60

60

60

60

61

61

61

62

62

TRANSFER Block from Which
Generalized Transfers to Other Blocks
CanbeMade . + ¢ o o« » ¢ o o & & &

Uneonditional (blank) Selection
Mode . « o # & &« s & & & s s »

Fractional Selection Mode, . . . &
BOTH Selection Mode., . « « .« . &

ALL Selection Mode . + « « « + &

PICK Selection Mode « « « « o « + =

Function Selection Mode (FN) . . .

Parameter Selection Mode (P). . . .

Subroutine Selection Mode (SBR). . .

Simultaneous Selection Mode
(sIM) . . .

GENERATE Block to Create
Transactions . « « s s s & o s s s &

Sequence of GENERATE Block
Operations . + « &« « « « « « .

Initialization Interval and Creation

Limit---.ouq-on-----

Redefinition of a GENERATE
Blocks o o & 5 o & W % & & %

Error Conditions « « « &

Internal Operation of GENERATE

Blﬂck---otou ----- & s

Recreating GENERATE Block
Transactions after a CLEAR Card .

Reactivation of GENERATE
Blocks ® = =2 = & = = . - - - - L]

Redefinition or Changing to a
GENERATE Block . . .

TERMINATE Block to Destroy
Transactions . « + « &« « &« s s & « =

Control of Simulation Run Length

Block Types That Manipulate User
Chains

----- = & 8 = & & s ®

62

62

63

63

64

64

64

64

65

65

66

66

67

68

68

68

68

68

69

69

69

69

LINKBlock + « &« « « « & « & & &«

UNLINK B lock - - - - - - - - - -

LINK/UNLINK Examples

User Chain Statistics., « + « « « « &

Block Types That Modify
Transaction Attributes

ASSIGN Block . « « « &« « « .
INDEX Bloek + & & = & & & &

MARK Block . . .

COUNT Block «

SELECT Block

Blocks That Modify the Sequential

Block Flow of Transactions

LOOP Block.

TEST Block -

GATEBlock. . = 4 « « + « « &

Blocks That Create and Process
Members of Transaction Assembly

Satﬁ ------- = s o = 8 = = @

ASSEMBLE Block + . . .

GATHER Block « + . .

MATCH Block . « « « « « « « «

GATE M and GATE NM Blocks

PRIORITY Block to Change Priority

Level of Transactions

BUFFER Option « « « « « « + &

Internal Operation of PRIORITY
Block. ¢« « «+ « « « & « & & i

BUFFER Block

Overall GPSS/360 Sean

. =

Update Clock (Figure 24)

70

72

T4

78

78

78

80

81

81

83

83

83

84

85

86

87

88

91

93

94

96

96

96

97

a7

98

Start Overall GPSS/360 Scan (Figure 25) 93

Try to Move Transaction (Figure 26).

Examples of Buffer and Priority Buffer
Blocks

Different Priority Levels for

Transactions . « ¢« & s « « s s =

JOBTAPES -

WRITE Block & « o » v = a = 4 4

HELR Block: « s v v & & & &

GROUPENtity « o« o« s » ¢ o & 4 .
JOINBlock « « v ¢ « & « =« &« &«

REMOVE Block

EXAMINE Block . « + & & « « o &

SCANBlock. . . . « « &« &« &« &

ALTER Bleok . + + + & & + & .«

CHAPTER 8: SAVEVALUE ENTITIES .

General Properties of Savevalue
Entities

Standard Numerical Attributes

Standard Logical Attributes

SAVEVALUE Block oo

Replacement, Addition, and

Subtraction in Savevalue Location .

Matrix Savevalues . . + + . .« .

MSAVEVALUE Block. . « « « « &

99

104

106

109

109

110

114

. 116

117

- 118

119

. 120

Redefinition of Matrices . + « « « =«

INITIALCard s W R

Assembly Program Coding of
INITIALCard . « « + « & & -

Effect of RESET, CLEAR, and JOB
Cards.............-

120

120

120

120

121

121

122

123

123

124

125

Standard Savevalue Statistical Output. .

PRINT Block Output

Examples of Savevalue Entities and

SAVEVALUE Blocks B E

CHAPTER 9: LOGIC SWITCH ENTITIES , .

General Nature of Logic Switch

Entities..--ooq--.-u-----

Standard Numerical Attributes. . . .

Standard Logical Attributes

LOGIC Block

GATE LR and GATE LS Blocks . . .

Effect of RESET , CLEAR, and JOB
Cards

Statistical Output

Examples of LOGIC, GATE LR, and
GATE LS Blocks .« « + « « « & & &

Pushdown Delay Chains Formed by
Conditional Entry GATE LR and
GATE LSBlocks. . + « + « + « .« .

Effect of LOGIC S Block on

GATE LS Delay Chain

GATE LR Delay Chain and LOGIC
RBlocks + « & ¢ & « « & &

Overall Pushdown Delay Chain
Considerations

CHAPTER 10: FACILITY ENTITIES. -

General Nature of Facility Entities .

Standard Numerical Attributes

Standard Logical Attributes

Internal Nonaddressable Attributes

SEIZE Block « « « « + + &

Procedure When Facility Is Not
m Use- - - . - - - - - - - - -

125

125

125

130

130

130

131

131

131

131

131

131

136

136

137

137

138

138

138

138

140

140

140

Procedure When Facility Is in Use. .

Interactions With Other Facilities

and Transactions . « « « « « + « &

Status Change Flag and Reactivation

of GATE U Delay Chain.

RELEASE Block « . .

How a Wrong Transaction With the

Correct Number Can RELEASE

or RETURN a Facility «

Status Change Flag and Reactivation

of SEIZE-GATE NU Dzlay Chain

Cumulative Time Integral of Facility

. -

Utilization R SR -

PREEMPT Block « & s & = & s =
ADVANCE Block

MATCH, ASSEMBLE, or GATHER
Block o « & & % 5 4 w s W ¥ W

RELEASing of a PREEMPTed
Facility by a Current Events

Chain Transaction . . . « « « « « « « .

Status Change Flag and Reactivation
of GATE I and GATE U Delay
Cha-in . - - . L] - . - -

Extension of the GPSS/360 PREEMPT

Block « « « ¢« & « & e

RETURN Block . . « . « . . . e e .

Cumulative Time Integral of Facility

Utilization. . « « « « + « =« :

A SEIZEing or PREEMPTing Transaction

Attempts to SEIZE or PREEMPT the
Same Facility . .

= = s s =

GATE U, GATE NU, GATE I, and GATE

NIBlocks . « « « « - & « & s = = @

Statistical Printout. . « « + « « « - -

Average Utilization . . .

Effect of RESET and CLEAR Cards

140

140

140

140

141

141

142

142

144

144

144

144

149

150

150

151

151

152

Examples of Facility Block Types .
CHAPTER 11: STORAGE ENTITIES

General Nature

Standard Numerical Attributes

STORAGE Definition Card

Standard Logical Attributes

Internal Nonaddressable Attributes

ENTER Block

s & & & & & @ & & & = =

Transaction Cannot Move into

ENTER Block

Transaction Succeeds in Moving

into ENTER Block . . + « « « .« .

Status Change Flag and Reactivation

of GATE SF and/or GATE SNE

Delay Chains

LEAVE Block

Status Change Flag and Reactivation

of GATE SNF, GATE SE, and

ENTER Delay Chains

+ = = = =

GATE SNE, GATE SF, GATE SNF, and

GATE SE Blocks

Statistical Printout

Average Contents of Storage

= = =

.

Average Utilization of Storage

Capacity

RESETing and CLEARiIng of

- & = =

.

Cumulative Time Integral.

Average Time per Transaction

Effect of RESET and CLEAR Cards
on Storage Statistics . .

Redefinition of Storage Capacity with

Storage Card

Examples of ENTER and LEAVE

s & & 8

Blocks + « &« « « & &

= = = = =

152

156

156

156

156

156

157

157

157

157

158

158

159

159

160

160

160

160

161

161

162

162

CHAPTER 12: QUEUE ENTITIES

GeneralNature . + « ¢« « &« & = &

Standard Numerical Attributes . .
Standard Logical Attributes
Internal Attributes
QUEUE Block . . « « « « + «

Operations When a Transaction
Enters a QUEUE Block . . .

DEPART Block . . « . « « + & &
QTABLECard « .« « .

Multiple Queues . . « +

Execution Warning Messages .

Inclusion of ADVANCE Blocks between

QUEUE and DEPART Blocks . . .

Statistical Printout « « « « « « «
Average Contents of Queue . .

RESETing and CLEARiIng of
Cumulative Time Integral . .

Average Time Per Transaction

Effect of RESET and CLEAR Cards

on Queue Statistics. . . . « + « + .« . .

Examples of QUEUE and DEPART

Blocka: 5 % o 5 o 3§ % & & » o @

CHAPTER 13: DISTRIBUTION TABLE

ENTITIES « « ¢« « « « « &

General Nature «

Table Statistics . . « « « « + &« &

Standard Numerical Attribute

Standard Logical Attribute

TABUIATE Block « « . &
TABLE Definition Card.
Table Arguments . « « « ¢ & &« & &

168

168

168

168

168

168

170

170

171

171
172

172

172
172

174
174

174

174

177

177

177

177

177

177

179

180

Internal Operation of Tables and

TABULATE BlocksS . +« + + « s = =«

Transaction Operators for RT Arrival

RateTables . . ¢« ¢« ¢« ¢ « « o o &

Subsequent Processing of the
Arrival Rate Transaction .

Table Statistical Printout

Mean Value .
Standard Deviation of Sample . .

Percentage of Total Argument
Values Which Lie Within
Each jth Frequency Interval. . .

Cumulative Percentage of
Arguments Less than or Equal
to the Upper Limit of Each
Frequency Interval. . . .

Cumulative Remainder of Argument

Values Greater than the Upper
Limit of Each Frequency
mtewal L] L] - L L] L] - L L] L] L]

Upper Limit of Each Frequency
Interval as a Multiple of Mean
Argument Value

Upper Limit of Each Frequency
Interval as a Deviation from Mean
Argument Value

Average Value of Overflow . . .

Effect of RESET and CLEAR Cards on
Table Statistics . . .

Redefinition of Tables

CHAPTER 14: STATISTICAL PRINTOUT
BLOCKS « o s ¢« s s o »

Ll

PRmTB]-Dck-o-uoiolon-|

TRACE and UNTRACE Blocks

CHAPTER 15: CONTROL CARDS
BTART Card « « w » w & o o

Print Suppression (Field B) . . .

181

182

182

183

183

183

183

183

183

183

184

184

184

184

187

187

187
189

189

189

Snap Interval (FieldC)

Transaction Printout Option

(FieldD)

Control of Running Time of a

Simulation Model

RESETCard &

CLEARCard . . « « « « .

Recreating Transactions at

GENERATE Blocks .

Recreating the Arrival Rate (RT)

Table Operators . .
JOBCard
ENDCaxrd
JOBTAPE Card

REWINDCard.

@ & & & & = =

Operation of the Rewind Card

LIST/UNLIST Cards . . .

Operation of the List/Unlist Cards. .

GPSS/360 Read/Save Feature o W

CHAPTER 16: DIFFERENCE BETWEEN
GPSS Il AND GPSS/360 . . .

Modification of GPSS III Block Types. . .

GENERATE Block . .

PREEMPT Block . .

PRINT Block ., . . .

SAVEVALUE Block. .

UNLINK Block. . . .

+ = =2 = = » =

#® = = & = B ®

Modification of GPSS III Control Cards . .

STORAGE Definition Card.

Selective RESET Card . .

Selective CLEAR Card

& 8 & =

190

190

190

191

191

192

192

192

192

193

193

193

193

193

195

195

195

196

196

196

196

196

196

196

GPSS/360 Features

« & @

GPSS/360 Assembly Program

Extensions

New Entities, Block Types,
Extended Features of GPSS/360 , ,

GPSS/360 Output Editor.

CHAPTER 17: PRACTICAL SUGGESTIONS
ON THE USE OF GPSS/360 ,

Hand Coding i

Initial Debugging Runs « « . .
Classic Errors in GPSS/360 Models . .
Analysis of GPSS/360 Statistics
Statistical Problems in Simulation. . .

APPENDIX A: GPSS/360 Program Errors .

Assembly Program Errors . .
Imput Errors

Execution Errors

Execution Warning Messages . . .

and

& & @

APPENDIX B: GPS3/360 ASSEMBLY

PROGRAM
Block and Entity Symbols
Location Field Arguments
Operand Field Arguments . .

Relative Addressing of Block
Iocations.

Function Follower Cards . . .
Symbolic Entity Reference . .
Assembly Phase Output . . .
Macros. « + « ale s o « o

Update Feature

GPSS/360 Assembly Control Cards. . .

« & = w

196

196

197

199

200

200

200

201

201

208

204

204

207

210

214

215

215

215

215

216

216

216

218

222

224

225

SIMULATE Card . « « « « + .
MHLATE ar 225 INCLUDE Card . » . . . e e ... 229

BORCAED. ¢ w6 wom wiig e we 2w %2R0 FORMAT Card s Wiy e DO

ENDCard.....--.---.---
425 CERT Ghrd s s o 6 8 5 6 €6 o w wa w S08

Pseudo-operations . . . « + &« + « o+« - . 226

COMMENT Card . « + + &« « s = = = = = 234
ORG (Origin) « + « o « wi e e v e« v+ +226 EJECT Card . « + « « + C e wEae s 988
ICT (Increment) . « « « « + « « & « « = 228 SPACE Caxd 58

SYN(Synonymous)...........226 GUTPUT Card « s » « = o s o o o o o s _—

BS and ENDABS + + o « v 0 o o o« «
A = 226 Graphic Output + + « « - « i Bk R 9

Error Statements . . + « « ¢+ « ¢ s o+ = = = 225 SRR GRS ¢ 5 EE S E 6 e i
Multiple Definition of
Block Symbols 4 « « o « ¢ o« o o o o o o+« +227 ORIGIN Card » « « « o + =+ = =« + « 238

APPENDIX C: OUTPUT EDITOR . + + + + + + 228 XCard .« o ¢ o v o v s o ws v oos oo 287

Selection of Statisties, Titling, Comments, YCard . « v v v o ¢ o v & R 239
i L . - L] - - * - - L] - - - L] - 228
i STATEMENT Card . . . « « = =« & « « =« 240

REPORT Card . « o o+ o o v v v v+ - 228 ENDGRADH Card « « + « o o o o o o . 240

TITLECQIC]--.-.. 299 INDEX. «a & » = s s & = & 242

CHAPTER 1: INTRODUCTION

This manual gives a detailed explanation of the op-
eration of simulation models written with the Gen-
eral Purpose Simulation System/360. The various
statistics provided by GPSS/360 models are de-
scribed and interpreted. Numerous examples are
given of important features and block combinations
that occur in simulation models of representative
systems. Appendix B describes the GPSS/360 As-
sembly Program. GPSS5/360 models will always be
coded in assembly program language.

It is assumed that the reader is thoroughly
familiar with General Purpose Simulation System/
360 Introductory User's Manual (H20-0304).

The introduction enables the user of GPSS/360 to
develop a broad range of models. Inevitably,
however, the GPSS/360 user will encounter complex
models that require a more detailed understanding
of the GPSS/360 program. This manual should
resolve the numerous and, oftentimes, facinating
subtleties that arise in GPSS/360 simulation
models.

Table 1 summarizes the twelve types of GPSS/
360 control cards (START, RESET, CLEAR, JOB,
READ, SAVE, END, SIMULATE, JOBTAPE, RE-
WIND, and LIST, UNLIST) and the six types of def-
inition eards (VARIABLE, FUNCTION, INITIAL,
STORAGE, QTABLE, and TABLE).

OUTLINE OF CONTENTS

The contents of Chapters 1 through 17, and Appen-
dixes A through C, are outlined below:

Chapter 1: Introduction. The relationship be-
tween this manual and the introduction manual is
defined.

Chapter 2: Principles of the GPSS/360 Pro-
gram. Various basic concepts are introduced, such
as:

1. Nature of the GPSS/360 block diagram lan-
guage.

2. The GPSS/360 simulator clock and the asso-
ciated absolute and relative clock times.

3. The 14 entities in the GPSS/360, and their
associated Standard Numerical and Logical Attri-
butes.

4, The chain and set membership of trans-
actions.

Chapter 3: S/360 Core Storage Allocation and
basic Card Format. Describes the three-way par-
tition of 5/360 core among:

1. The GPSS/360 program.

2. The basic words required for each of the 14
types of entities.

3. Additional common words required for each
entity type.

Chapter 4: Variable Entities. Arithmetic var-
iable entities are defined by VARIABLE cards as
arithmetic combinations of the various Standard
Numerieal Attributes (SNA). The available arith-
metic operations are addition (+), subtraction (-},
multiplication (*), division (/) and modulo division
(@). The Boolean operators are "and'" (*) and "or"
(+).

Chapter 5: Function Entities. TFunction entities,
which are defined by FUNCTION and function follow-
er cards, involve a relationship between an inde-
pendent variable, or argument, and the dependent
variable Functionvalue. Function arguments can be
any one of the Standard Numerical Attributes, while
the dependent Function value (FNj) is itself one of
the Standard Numerical Attributes. There are five
types of GPSS/360 Functions: numerical valued
(Continuous, Cn; Discrete, Dn; and List, Ln) and
attribute valued (Discrete, En; and List, Mn).

Chapter 6: Bloeck Entities. The general prop-
erties of block entities are described, such as their
core allocation; their two Standard Numerical At-
tributes, Wj and Nj; and the two block types asso-
ciated with the block entities CHANGE and EXE-
CUTE.

Chapter 7: Transaction Entities. This is the
most extensive and important chapter. The follow-
ing basic concepts are described:

1. The three Standard Numerical Attributes (Pn,
M1, and MPn), and the two Standard Logical Attri-
butes (Mj and NMj) which are associated with trans-
actions.

2. The current events chain, future events chain,
user chain, interrupt chain, and matching chain.

3. The creation of transactions in GENERATE
and SPLIT blocks, their temporary exit and en-
trance in LINK and UNLINK blocks, and their sub-
sequent destruction in TERMINATE and ASSEMB LE
blocks.

4. The nature of transaction assembly sets and
the associated block types SPLIT, ASSEMBLE,
GATHER, MATCH, GATE M, and GATE NM.

5. The overall GPSS/360 scan and the influence
of BUFFER and PRIORITY blocks.

Chapter 8: Savevalue Entities. Each savevalue
entity has one Standard Numerical Attribute (Xj) or
(XHj) whose value is changed hy SAVEVALUE blocks
and by INITIAL definition cards. Each Matrix Save-
value also has one Standard Numerical Attribute
MXj (a,b) or MHj (a,b) whose value is changed by
MSAVEVALUE blocks and by MATRIX definition
cards.

Chapter 9: Logic Switch Entities. Logic switch
entities have two Standard Logical Attributes (LRj
and LSj) whose true-false values are changed hy

LOGIC blocks. GATE LS and GATE LR blocks
control the flow of transactions as a function of the
true or false values of the above attributes.

Chapter 10: Facility Entities. Facility entities
can be SEIZEd and RELEASEd by only one Trans-
action at a time. In turn, facilities can be
PREEMPTed and RETURNed by only one transaction
at a time. Standard statistics are provided on the
percentage of utilization of each facility, and the
average time that each transaction uses the facility.
Four Standard Numerical Attributes (Fj, FR, FC,
and FT) and four Standard Logical Attributes (Uj,
NUj, Ij, and NIj) are associated with each facility
entity. GATE U, GATE NU, GATE I, and GATE NI
blocks control the flow of transactions as a function
of the true or false values of the Facility Logical
Attributes.

Chapter 11: Storage Entities. Storage entities
can be simultaneously ENTERed by one or more
transactions. These same transactions, or possibly
different ones, will subsequently LEAVE the
storage. The capacities of storage entities are
defined by STORAGE definition cards. Standard
statistics are provided on the average contents of
each storage, the percent utilization of the
storage capacity, and the average storage
capacity. Seven Standard Numerical Attributes (5],
Rj, SRj, SAj, SMj, SCj, and STj) and four Standard

Logical Attributes (SEj, SNEj, SFj, and SNFj) are
associated with each storage entity. GATE SE,
GATE SNE, GATE SF, and GATE SNT blocks
control the flow of transactions as a function of the
true or false values of the Storage Logical
Attributes.

Chapter 12: Queue Entities., Queue entities
provide statistics on fransactions that are delayed
by one or more causes. Transactions add to queue
contents via QUEUE blocks and remove units from
the queue contents via DEPART blocks., Seven
Standard Numerical Attributes (Qj, QAj, QMj, QCj,
QZj, QTj, and QXj) are associated with each queue
entity. Standard statistics are provided on the
maximum observed queue contents, the average
queue contents, and the average time that each unit
entry was delayed in the queue. The complete
distribution of queue delay times can be obtained
with QTABLE cards.

Chapter 13: Distribution Table Entities.
Distribution table entities, which are defined by
TABLE cards, provide statistics on the frequency
distribution of the Standard Numerical Attribute
arguments which are specified by the TABLE cards.
TABULATE blocks activate a tabulation of the table
argument, Standard table statistics include the
average value and standard deviation of the
observed values of the table argument. The

TABLE 1: SUMMARY OF GPSS/360 BLOCK SYMBOLS AND CARD TYPES

Table 8 in Chapter 6 describes the format of the various block types and their corresponding block symbols.
A reference is given to the page on which each block type is discussed.
Listed below are the various definition and control cards used in GPSS/360 along with the chapter where

each is discussed.

Definition Cards

FUNCTION card (Ch. 5)
Function follower card (Ch. 5)
VARIABLE card (Ch. 4)
BVARIABLE card (Ch. 4)
FVARIABLE card (Ch. 4)
TABLE card (Ch. 13)
STORAGE card (Ch. 11)
INITIAL card (Ch. 8)
MATRIX card (Ch. 8)

*All except SIMULATE are discussed in Chapter 15,

Control Cards*

START
RESET
CLEAR
JOB
END

JOBTAPE

REWIND

LIST/UNLIST
READ/SAVE

SIMULATE (Appendix B)

table mean (TBj), the entry count (TCj) and the
standard deviation (TD) are available as Standard
Numerical Attributes.

Chapter 14: - Statistical Printout Blocks.
PRINT blocks can initiate the printout of a part of
the standard GPSS/360 statistics. TRACE and
UNTRACE blocks provide a means of printing out

data on each block move which a transaction makes.

Chapter 15: Control Cards., Twelve control
cards govern the overall operation of GPSS/360
simulation models: SIMULATE, START, RESET,
CLEAR, JOB, END, JOBTAPE, REWIND, LIST,
UNLIST, READ, and SAVE,

Chapter 16: Difference between GPSS III and
GPSS/360. This chapter explains the transition
from GPSS III to GPSS/360. Included are the

extensions of existing features; new entities and
block types; and the extended features of GPSS/360.,

Chapter 17; Practical Suggestions on the Use of
GPSS/360. Practical suggestions are provided on
the basis of extensive experience with GPSS IIT
simulation models.

Appendix A: Error Conditions. The various
GPSS/360 errors are summarized.

Appendix B: GPSS/360 Assembly Program.
Complete operating instructions for the assembly
program are provided (including a description of
assembly program errors). A sample of assembly
program input is given.

Appendix C: Output Editor. An explanation of
the various card types necessary for user specified
output with titles and/or deletions.

CHAPTER 2: PRINCIPLES OF THE GPSS/360
PROGRAM

BLOCK DIAGRAMS

Block diagrams or flow diagrams are widely used
to describe the structure of systems. They consist
of a series of blocks, each of which describes some
step in the action of the system. Lines which join
the blocks indicate the flow of traffic through the
system, or describe the sequence of events to be
carried out. Alternative courses of action that
arise in the system are represented by having more
than one line leaving a block. Conversely, one
block may have several lines entering it to repre-
sent the fact that this block is a common step in
two or more sequences of events. The choice of
paths, where an alternative is offered, may be a
probabilistic event or a logical choice, depending
upon the state of the system at the time of the
choice. Both of these possible methods of selection
can be used in the GPSS/360 program.

The units of traffic that move through the system
depend upon the system being simulated. Units
might be messages in a communication system,
electrical pulses in a digital circuit, work items in
a production line, or any number of other units.
These units upon which the system operates in the
GPSS/360 program will be called "'transactions. "
The GPSS/360 program also has various other en-
tities (facilities, storages, queues, tables, etec.)
whose attributes are changed by the movement of
transactions through the various block types.

Although a block diagram is a commonly used
means of describing a system, the notation used in
normal block diagrams depends upon the system and
the person who is describing the system. For the
purpose of the GPSS/360 program, certain conven-
tions and systems concepts have been defined, each
corresponding to some basic action or condition
that generally occurs in systems. Statistical
variations may be introduced in the block diagram,
and many statistical sampling procedures are pro-
vided. Levels of priority may be assigned to
transactions and complex logical decisions may be
made during the simulation., It is also possible to
simulate interdependence of variables in the system,
such as queue lengths and input rates, or dollar
value and processing time. In order to simulate a
system, it must first be represented in terms of
these concepts and block types. The program then
creates transactions, moves them through the
specified blocks, and executes the actions asso-
ciated with each block. Table 9 in Chapter 6
summarizes the block symbols and coding formats
which identify the various block types.

CLOCK TIME—RELATIVE AND ABSOLUTE

The GPSS/360 program operates by moving trans-
actions from block to block of the simulation model
in a manner similar to the way in which the units of
traffic they represent progress in the real system.
Each such movement is an event that is due to
occur at some point in time. The GPSS/360 pro-
gram maintains a record of the times at which these
events are due to occur, then proceeds by executing
the events in their correct time sequence. When
transactions are blocked and cannot move at the time
they should, the program moves them as soon as
the blocking condition or conditions change.

In order to maintain the events in the correct time
sequence, the GPSS/360 program simulates a clock
that is recording the instant of time that has been
reached in the model of the real system. The num-
ber shown by this clock at any instant is referred
to as the "absolute clock time'. Another clock time,
the "relative clock time'" is one of the Standard
Numerical Attributes which can be externally
addressed by the analyst. It is identified by the
mnemonic symbol C1. All times in the simulation
model are given as integral numbers. The unit of
system time which is represented by a unit change
of clock time is implied by the user, who enters all
data relating to times in terms of the time unit he
has selected. Whatever unit of time is chosen, such
as millisecond or tenth of an hour, it must be used
consistently throughout a simulation model. Frac-
tional units of time are not permitted.

The GPSS/360 program does not simulate the
system at each successive interval of time. In-
stead, it updates the absolute clock to the time at
which the next most imminent event is to occur.
The controlling factor in the amount of computing
time that is used by the program is, therefore, the
number of events to be simulated, not the length
of real-system time over which the simulation is
being made. For example, in a reliability model,
30 years of system operation may be simulated in
15 minutes, while in a programming model, one
minute of system operation may require 30 minutes
to simulate,

As described in Chapter 15, the relative clock
time (C1) is set back to zero when a RESET card is
encountered, and both the relative and absolute
clock times are set back to zero when a CLEAR
card is read.

ADVANCE BLOCK TIMES

Only one block type, the ADVANCE block (see
Chapter 7) is able to delay transactions for a finite
amount of clock time. Transactions which enter all
other block types attemptto move to some next block
in zero time, after completing the actions associated
with the particular block type. These transactions
may, however, be delayed in these blocks because of
a blocking condition in the next block(s) to which they
are trying to move. Eventually these transactions
should leave the block in which they are delayed
when the blocking condition is removed.

The ADVANCE block is able to assign a positive
time delay to each transaction which enters the
ADVANCE block. The delay time that is computed
for each transaction as it enters an ADVANCE block
is added to the absolute clock time at the instant of
entering to produce a "block departure time." This
represents the time at which the transaction will
attempt to leave the ADVANCE block. It may not be
the actual time of departure since the system may
prevent the transaction from entering the next
sequential block following the ADVANCE block. In that
event, the transaction leaves the ADVANCE block as
soon as the obstructing condition is removed.

Because the ADVANCE block time is computed
separately for each transaction, transactions which
enter the same ADVANCE block may notalways leave
inthe order inwhich they arrived at the block. Alater
arrival may have shorter delay time, whichwill cause
it todepart earlier thanapredecessor.

When atransactionmoves intoablock atwhichthe
block time is zero (either because the block is notan
ADVANCE block, or because a zerodelay time is
computed for an ADVANCE block), the program
attempts to move the transaction immediately through
this block and into the following block. This processis
repeated as many times as possible, until either the
Transaction reaches an ADVANCE block with a nonzero
delay time, or the transaection is blocked and unable to
move further. When the program begins movinga
transaction, therefore, it moves the transactionas far
as itcan go during the current instant of clock time
before proceeding to any other transaction that may
also be due to move at that instant (the BUFFER block
and the PRIORITY block with the buffer optionare
special exceptions to this rule, as described in
Chapter 7).

It is possible that the movement of other
transactions at the current instant of clock time may
remove the blocking condition described for the
above transaction. This original transaction may,
therefore, begin moving at the same instant of
clock time at which it was previously blocked.
Indeed, it is quite possible that this may happen
several times to a single transaction during a given

clock time. Eventually, the condition is reached in
a simulation model where no further transactions
can move into some next block. It is at this point
that the GPS5/360 program updates the absolute
clock to the time at which the next most imminent
event is to occur. This event will almost always
involve the departure of one or more transactions
from one or more ADVANCE blocks in which they
have been delayed for some finite time.

GPSS/360 ENTITIES AND THEIR ATTRIBUTES

Formal Concepts

A GPSS/360 block diagram model can formally be
considered as a set of interrelated logical and
mathematical symbols which represent those aspects
of a system which are of interest. Each model con-
sists of various elemental abstractions, called
entities, by which the system is represented.
GPSS/360 has 14 types of entities which are
described below. Each of these entities has
associated with it a set of properties or attributes
that describes its status at any given time. These
attributes have either numerical or logical values.

It is the values of these numerical and logical
attributes that the systems analyst is interested in,
because they describe the performance of the sys-
tem being modeled. Many of the entity attributes
are externally addressable by the analyst with
mnemonics such as @j; Sj, Wj, ete. These Standard
Numerical and Logical Attributes can be used in a
variety of ways, as described later in this chapter.
For example, queue number 10 is an entity and one
of its attributes is its current contents, which may
have a value, say of 5, at some given time. The
current contents of queue 10 may be addressed as
the Standard Numerical Attribute Q10. As the
simulation progresses, these entities will interact
with one another, thus producing transformations on
the numerical or logical values of their various
attributes. These transformations are called events.
Entities may also be dynamically grouped into chains
or sets of entities whose memberships will also
change during the course of a simulation. Trans-
actions, for example, can belong to the current
events chain or to the future events chain. They are
also members of a unique assembly set.

GPS5/360 Entities

GPSS/360 has 14 entities with which models can be
constructed. These entities may be divided into
the following six categories:

1. Basic entities 1. Blocks
2. Transactions

(7]

2. Equipment entities 3. Facilities
4, Storages
5. Logic Switches

3. Computational entities 6. Arithmetic
Variables
7. Boolean
Variables
8. Functions

4. BStatistical entities 9. Queues

10. Frequency
Tables

5. Reference entities 11. Savevalues
12. Matrix
Savevalues
6. Chain entities 13. User Chains
14. Groups

The block entities (Chapter 6) and transaction
entities (Chapter 7) are truly basic, for practically
all of the status changes and statistics which are
gathered in a GPSS/360 model result from the
movement of transactions into blocks, followed by
the execution of the subroutine associated with each
particular block type.

Block Entities

Block entities (described in Chapter 6) consist of
43 distinet block types, which are outlined in Table
8 in Chapter 6. Each block type is associated with
only one of the 14 types of entities. This also
includes block entities themselves because the
EXECUTE and CHANGE blocks only refer to other
blocks.

In the GPSS/360 assembly program each block is

defined by an input card with the following basic
format:

|1 |z LOCATION |7|a OPERATION lm A, B, C D EF,G,HI

Symbolic Block Type Arg A, Arg B, Arg C, Arg D
Block Name

Location

Examples:

NEXT ASSIGN 3, FN10

LOOP SEIZE 4

INNER SAVEVALUE | 39, @*3

The GPSS/360 program automatically keeps
statistics (for each block in a model) on the total
number of transactions entering the block, and on
the number of transactions currently in the block.
The normal GPSS/360 program for a 128k machine
has core allocated for 500 blocks.

Transaction Entities

The units of traffic that are created and moved
through blocks by the GPSS/360 program are
called "transactions' (described in Chapter 7). In
simulations transactions can represent:

Real physical entities

1. Messages in computing equipment and/or
communication lines.

2. Segments of messages, which may be proc-
essed as separate entities.

3. Input/output operations on auxiliary storage
equipment, that is, disk units, magnetic tape units.

4, Units and components in a reliability
simulation model.

5. Parts moving through a manufacturing
facility.

6. Automobiles being processed at a service
station.

7. Cargo ships using a harbor facility.

8. People queueing for service at a bank,
supermarket, or theater.

Nonphysical programming entities

1, Cenfral control program in a real-time
computer, ;

2. Channel control programs (one transaction
for each data channel in a computer).

3. Message exchange control program.

4. Polling discipline in a communication line
(one transaction for each line attached to a message
exchange).

Each transaction possesses parameters (0-100)
as its key attributes. Parameters may contain in-
tegers with one of two possible ranges; -(2°) to
(291_7) or ~(215) to (215-1). The choice of size is
determined by the user. These parameters have a
variety of interpretations which again are deter-
mined by the user. Parameters do not have built-
in significance. For example, the user may reserve
one parameter for the character length of a mes-
sage in a communication system; use another param-
eter to represent the terminal from which the mes-
sage was sent, and a third to indicate the destina-
tion of the message. Another user may wish a
parameter to contain the dollar value of an order
and a second parameter to carry the due date for
the order. It is not necessary for the GPSS/360
program to know what significance the user assigns
to each parameter. A block type, the ASSIGN
block, is provided to transform the values of the
transaction parameters.

The Standard Numerical Attribute Pn refers to
the value of parameter n of the transaction currently
being processed by the GPSS/360 program.

Another important attribute of each transaction
is its priority level. The priority level is an inte-
ger between zero and 127 inclusive. When two
transactions are in competition for equipment
(facilities, storages, and logic switches) the one
with the higher priority will be the first to he proc-
essed. If both transactions have the same priority
the transaction that has been delayed the longest
will be selected first. A block type, the PRIORITY
block, is provided to set the priority level of a
transaction. A transaction retains its priority level
until it enters another PRIORITY block. The initial
priority level of transactions may he specified in
field E of the GENERATE block at which they are
created. If no field E priority level is specified in
the GENERATE block the transactions have zero
priority.

The following very important fact should always
be remembered:

THE GPSS/360 PROGRAM AT ANY TIME IS AT-
TEMPTING TO MOVE ONLY ONE TRANSACTION.
The following block types transform the attri-
butes (see Chapter 7) of transactions: ADVANCE,
TRANSFER, GENERATE, TERMINATE, SPLIT,

ASSEMBLE, GATHER, MATCH, PRIORITY,
BUFFER, ASSIGN, INDEX, MARK, TRACE, UN-
TRACE, GATE, TEST, LOOP, LINK, UNLINK,
COUNT, SELECT, JOIN, REMOVE, ALTER.

The standard GPSS/360 program for a 128k
machine has core allocated for 600 transactions.

Facility Entities

The facility entities (described in Chapter 10) are
provided to simulate equipment entities which can
be used by only one transaction at a time. Central
processing units, data channels, disk storage
arms, and communication lines are typically simu-
lated by facilities because they can only process
one message at a time. The GPSS/360 program
automatically provides a variety of statistics on the
performance of facilities, including the percentage
of time in use, the average time that transactions
used each facility, and the number of uses of each
facility. Four block types (SEIZE, RELEASE,
PREEMPT, and RETURN) are associated with
facilities. GATE blocks can also control the flow of
transactions by testing whether or not facilities are
in use or are being PREEMPTed. The normal
GPSS/360 program for a 128k machine has core
allocated for 150 facilities.

Storage Entities
The storage entities (described in Chapter 11) simu-

late equipment entities which have multiple capaci-
ties; that is, they can simultaneously process more

than one transaction at a time. The core storage

in central processors and message exchanges is
typically simulated with storages; generally, more
than one message will occupy parts of their capac-
ity, The GPSS/360 program automatically provides
the same types of statistics as for facilities. Two
block types, ENTER and LEAVE, and the STORAGE
definition card, are associated with storages.
GATE blocks can control the flow of transactions by
testing whether or not storages are empty or are
full. The normal GPSS/360 program for a 128k
machine has core allocated for 150 storages.

Logic Switch Entities

Logic switch entities (described in Chapter 9) are
used to simulate simpler physical and logical
situations than facilities and storages. Logic
switches can be in one of two binary states: reset
or set. Logic switches are often used in place of
of facilities, since each logic switch requires only
three bytes of S/360 core while each facility re-
quires 28 bytes. No statistics are gathered,
however, on the usage and states of logic switches.
The LOGIC block puts logic switches into either a
set or a reset condition. GATE blocks can control
the flow of transactions by testing whether logic
switches are in a set or a reset condition. The
normal GPSS5/360 program for a 128k machine has
core allocated for 400 logic switches.

Variable Entities

Variable entities (described in Chapter 4) permit
the computation of arithmetic combinations of the
Standard Numerical Attributes described later in
this chapter. Thevalueofavariableis one of the
standard numerical attributes, and is identified by
the mnemonic Vj. These variable expressions are
FORTRAN - like and employ the operators:
+=addition, -=subtraction, *=multiplication,

/ =division, and @ = modulo division. Variable
cards define the above expressions. The normal
GPSS/360 program for a 128k machine has core
allocated for 50 arithmetic variables.

Boolean Variable Entities

Boolean variable entities (described in Chapter 4)
permit the user to make decisions at a single
GPSS/360 block based on the status and/or value of
many GPSS entities. The elements which make up
the Boolean variable are interpreted as 1 if nonzero
and 0 if zero, Conditional statements (i.e., 'G',
'"LE', 'NE', etc.), the Boolean operators"and'" (¥)and
or't (+), parentheses and indirect addressing are
allowed in Boolean variable statements. The value

of a Boolean variable is itself one of the Standard
Numerical Attributes, and is identified by the
mnemonic BVj. The standard GPSS/360 program
for a 128k machine has core allocated for 10
Boolean variables.

Function Entities

Function entities (described in Chapter 5) permit
the computation of continuous or discrete functional
relations hetween an independent variable, which is
one of the Standard Numerical Attributes, and the
dependent values of the function. This function
value is also one of the Standard Numerical Attri-
butes and is identified by the mnemonic FNj.
Consequently, one function can use the value of
another function as its argument. The normal
GPS5/360 program for a 128k machine has core
allocated for 50 functions.

Queue Entities

Queue entities (described in Chapter 12) can be
referenced for the purpose of gathering statistics

at any point in a model where blocking delays can
occur. Transactions will increase the contents of

a queue entity when they enter a QUEUE block.
They reduce the queue contents by subsequently
moving into a DEPART block. It should be assumed
that somewhere between these QUEUE and DEPART
blocks there are other blocks which might cause
blocking delays, that is, SEIZE, PREEMPT,
ENTER, GATE, and TEST blocks. The GPSS/360
program will automatically provide statistics on
each referenced queue entity, such as average
gueue contents, maximum queue contents, average
time per transaction in the queue, and the percent-
age of the transactions which went through the
queue in zero time. The normal GPSS/360 program
for a 128k machine has core allocated for 150
queues.

Table Entities

Frequency distribution Tahles (described in Chapter
13) are the key statistical entities in GPSS/360.
The frequency distributions of the following typical
random variables can be obtained through
TABULATE blocks and TABLE cards:

1. Transit time through the entire system or
through any intermediate parts.

2. Distribution of queue contents and delay
times.

3. Distribution of storage occupancy.

4. Distribution of the time intervals between
entries into a table, e.g., an interarrival time
distribution at a TABULATE block.

5. Distribution of the number of entries into
a table during a specified unit time period, e.g.,
an arrival rate distribution at a TABULATE block.

Each table has as an argument one of the
Standard Numerical Attributes. Each table has a
specified number of intervals into which the values
of the argument can fall. Each time a transaction
moves into a TABULATE block and references a
table, the value of the argument is determined as
well as the table interval in which it falls. A count
is maintained of the number of times that argument
values fall into the various table intervals. At the
end of each simulation run, the absolute and
relative frequencies of argument values in each
interval are printed out, as well as the overall
mean value and standard deviation of the table
argument. The normal GPSS/360 program for a
128k machine has core allocated for 30 tables.

Savevalue Entities

Savevalue entities (described in Chapter 8) are of
two types; fullword and halfword. They are
represented by either 2 or 4 byte areas into which
the value of any of the Standard Numerical
Attributes can be saved (via a SAVEVALUE block)
for future references. This saved value is also
one of the Standard Numerical Attributes whose
value is given by the mnemonic Xj or XHj. The
normal GPSS/360 program for 128k machine has
core allocated for 400 fullword savevalues and 200
halfword savevalues.

STANDARD NUMERICAL AND STANDARD
LOGICAL ATTRIBUTES

Each of the 14 types of GPSS/360 entities requires
a fixed amount of core storage, in which its
attributes are stored and transformed during a
simulation run. Most of these attributes are only
internally addressable by the GPSS/360 program.
A significant subset, however, is also externally
addressable by the analyst. These entity attributes
are referred to as "Standard Numerical Attributes',
Tables 2 and 3 summarize their properties.
Chapters 4 through 13 give detailed explanations of
the standard attributes associated with each type of
entity.

The abbreviations "SNAj'" and "SNA*n'" are used
extensively throughout this manual. For example:

INDEX NUMBER | |[NUMBER OF UNITS TO
OF STORAGE ENTER STORAGE

18 A
SNAjJ, SNA*n
k, *n

|1 | 2 Loc |'f‘ 8 OPERATION

SNAJ, SNA*n

LEAVE
k, *n

SNAj means that any one of the Standard Numerical
Attributes (Sj, Rj, Fj, Qj, FNj, ete.) outlined in

Table 2 can be used as a field A or B argument of the

LEAVE block. SNA*n means that the entity index of
any one of the Standard Numerical Attributes can be
supplied indirectly by the value of one of the trans-
action parameters, e.g., Q*1, FN*11, V*3 (see
"Indirect Addressing of Entity Indices' later in this
chapter).

In this chapter the allowable values of numerical
constant ""k'" are described under "Various Ways to
Specify Constant Values', and the ways to specify
the values of Transaction Parameters *n, Pn, and
K*n are described under "Three Ways to Specify
Transaction Parameter Values'.

The Standard Numerical Attribute Wj, the
number of transactions currenﬂg at Block j, can
have any value from zero to (21 -1). The Standard
Logical Attributes, on the other hand, have only
two possible values: true and false. The Standard
Numerical Attributes are restricted to integer
values, with the following two important exceptions:

1. A function time modifier, FNj, in field B of
ADVANCE or GENERATE blocks can have
noniteger values (see Chapter 7).

2. A function modifier, FNj, in field C of an
ASSIGN block can have noninteger values (see
Chapter 7).

System-Wide Numerical Attributes

The following three Standard Numerical Attributes
are system-wide; i.e., they are not associated
with any specific entity: C1 = relative clock time
since last RESET or CLEAR card, or since the
start of a run if there have been no RESET or
CLEAR cards.

Kn or n = Positive constant whose value is the
number n, which cannot exceed
2147483647 or 231-1.

= One of eight random numbers (1< x<8)
whose values are uniformly distributed:
0< RN(x) £999; each of the numbers has
an equal probability, 1/1000, of occur-
ring. As a function argument RN(x) is a
decimal fraction whose values are
uniformly distributed between
0< RN(x) <1.0.

"RESET Card' and "CLEAR Card" in Chapter 15
give detailed explanations of how the RESET and

RN(x)

CLEAR cards change the value of the relative clock,

Cl. The following simple example illustrates the
difference between the relative clock time, C1, and
the absolute clock time, which is not available as a
Standard Numerical Attribute.

RESET RESET RESET RESET
CARD CARD CARD CARD
ABSOLUTE | +] s |

.]
CLOCK TIME 0 500 1000 1500 2000 2500 3000 3500 4000 b

0 o
RELATIVE 1 1 1 ? | 1 1 |
CLOCK TIME 0 500 1000 500 1000 500 1000 G500 1000

At absolute clock times 1000, 2000, 3000, and
4000, RESET cards are read. Just before these
cards are read, the relative clock time, C1, is
1000, and immediately thereafter C1 is set back to
ZEero.

The "RESET Card" and "CLEAR Card" sections
in Chapter 15 describe how the RESET and CLEAR
cards affect the random number generator. A
RESET card or CLEAR card leaves the current
random number seed undisturbed, so that a different
sequence of random numbers will be generated in
the next simulation run.

The JOB card resets the random number seed
back to its original input value. Consequently, the
initial sequence of random numbers will be gen-
erated again.

Uses of Standard Numerical Attributes

The Standard Numerical Attributes (Table 2) are
used in GPS5/360 models in the following five ways:

1. AsfieldsA, B, C, D, E, or F arguments of
the 43 block types.

|l|2 LGCI‘1'|B 0PERAT10N|1:} J\l B| Cl D \

*3
ALL
L
FN30

TRANSFER
ASSIGN
ADVANCE

90
FN1O
FN15

160 |10

) SEIZE

2. As an argument (independent variable) of a
function (see Chapter 5). The function argument is
coded in field A of FUNCTION defipition cards.

1] 2 LCIC|'I|B 0PER.AT!0N|1!J Al B|

10
12

RN1
Pa
——

FUNCTION
FUNCTION

D1O
Cé

Funetion Argument

3. As the Yi values (dependent variable) of an
attribute valued function (see Chapter 5). These
function values (FNj) are coded in colums 7-12,
19-25, ... 67-72 of FUNCTION follower cards.

1l 2 |7]8 l13] |18 |25 |31
FUNCTION P, E3
N80 6 Q10 10 V10

e Db

DEPENDENT FUNCTION VALUES

F

4. As a table argument (random variable) whose
values are tabulated in a distribution table (see
Chapter 13). The table argument is coded in field A
of TABLE definition cards.

1l2 mc|1'|a opERATlem A| B| c| D|

Vaao
Ml

1
0

1

TABLE 100 a0

‘ | TABLE

10 ‘

Table Argument

5. As an operand in an arithmetic variable
expression (see Chapter 4).

|1|z Loc|7|s OPEMTION|19 |

33
16

VARIABLE
VARIABLE

QO*FN10
P13/K100 + V10

The most important use of Standard Numerical
Attributes is as block arguments, where they can
be used in four ways:

1. Block argument as the index j of some entity.

| 1' 2 Loc|v'a opzmnoulm Al

31 SEIZE FN10 | SEIZE Faecility FN10
3 LEAVE *3 LEAVE Storage *6
54 TABULATE |V7 TABULATE in Table V7
40 LOGIC 8 5 Put Logic Switch 5 In a Set condition

2. Block argument as the entity index j of a
Standard Logical Attribute. This use occurs only
with GATE blocks.

Is Logie Switch

PERATIO
U T
’ | V10 Sat?

‘ | 0 | foaTe | Vl.n ‘ [

10

TABLE 2: STANDARD NUMERICAL ATTRIBUTES

The following itemizes all of the available attributes.
The mnemonic letter(s) is indicated, and the pres-
ence of the j which follows indicates the required
integer.

Transactions

Pj a parameter of the transaction
currently being processed by the
the program. Example: P5 for
parameter 5. Parameters may be
meodified by the ASSIGN, INDEX,
LOOP, and MARK blocks.

Ml the transit time of the transaction
currently being processed by the
program, The guantity may be
modified by the MARK block.
When referenced the transit time
is calculated as: Ml =current
clock-mark time.

MPj an intermediate transit time of the
transaction currently being
processed by the program.
Accumulation of an intermediate
transit time in a parameter of a
transaction may be initiated by
passing the transaction through a
MARK block which has the desired
parameter specified in field A.
Example: MPS for the inter—
mediate transit time contained in
parameter 8. When referenced
the parameter transit time is
calculated as: MPL=current
clock-Pj.

PR The priority of the transaction
currently being processed by

the program. (0-127). This
quantity may be changed by the
PRIORITY block.

Chains

CHj The current count, which is the
number of the transactions on
a specified user chain, This
count is automatically maintained
by the program.

TABLE 2: (Continued)

CAj

CMj

cCj

CTj

Blocks

Nj

Wi

System Attributes

Quantities (not directly altered by the block diagram).

Kj

RN(x)
(1<x<8)

The average numper of trans-

actions on user chain j (truncated
to an integer, i.e., 1.23 =1).

The maximum number of
transactions on user chain j.

Total number of entries on user
chain j.

Average time per transaction on
user chain j (truncated).

The entry count of the total
number of transactions which
have entered a specified block in
the block diagram. This count
is automatically maintained by
the program. Example: N$SAM
for the entry count at block SAM.
This count does not include the
transaction currently in process
at its current block.

The wait count, which is the
number of transactions currently
waiting at a specified block of the
block diagram. This count is
also maintained automatically by
the program. Example:
WS$HOLD for the current wait
count at block HOLD. This
count is also exclusive of the
transactions currently in
process at its current block.

An indication that the integer is
a constant. Example K3276 for
the integer 3276 or KO0 for the
integer zero.

A computed random number.
The value of the number is an
integer between 0 and 999,
inclusive, unless the quantity is
to be used as the independent
variable of a function. In that
case, the number is a fraction
greater than or equal to zero,

Cl

TABLE 2: (Continued)

but less than one. In either case,
all values within the specified
range may be considered equally
probable.

The current value of the simulator
clock. This quantity is
automatically maintained by the
program.

Equipment Attributes

Storages

5j

Rj

SRj

SAj

SMj

SCj

STj

Facilities

Fj

The contents of a specified
storage in the block diagram.
The quantity may be modified by
ENTER and LEAVE blocks.
Example: S2 for the contents of
storage (number) 2.

The number of available units of
space in the specified storage.
This quantity may be modified by
ENTER and LEAVE blocks.
Example: R195 for the space
remaining in storage 195,

Utilization of storage j in parts
per thousand, i.e., if the
utilization was .65 the computed
value would be 650,

Average contents of storage j
(truncated).

Maximum contents of storage j.
This quantity is automatically
maintained by the program.

Number of entries for storage j.
This quantity is automatically
maintained by the program.

Average time each transaction
used storage j (truncated).

The status of the specified facility
in the block diagram. This value
is zero if the facility is available;
otherwise, it is one. This quantity
may be modified by SEIZE,
RELEASE, PREEMPT, and
RETURN blocks. Example: F20
for the status of facility 20.

11

FRj

FCj

FTj

Groups

Gj

TABLE 2: (Continued)

Utilization of facility j in parts Tables
per thousand, i.e., if the

utilization was .88 the vaue of FRj TBj
would be 880,

Number of entries for facility j.

Average time each transaction
used facility j (truncated).

The current number of members
of group j.

Statistical Attributes TCj

Queues

12

Qj

QAJ

QMj

QCj

QZj

QTj

QXj

TDj

The length of a specified queue Savevalues
in the block diagram. This Xj
quantity may be modified by

the QUEUE and DEPART

blocks. Example: Q50 for the XHj
contents of queue 50,

Average contents of queue j MXj(a,b)
(truncated).

Maximum contents of queue j.
This quantity is automatically MHj(a,b)
maintained by the program.

TABLE 2: (Continued)

The computed mean value of a
specified histogram-type tahle
which is defined by the user.

The TABULATE block is used

to enter values in one of these
tables. Although the computed
average can possess a fractional
part, it is not retained unless the
computed average is to be used as
the independent variable of a
function. Example: TB42 for the
computed mean value of table 42.

Number of entries in table j.

Computed standard deviation of
table j.

The contents of fullword
savevalue j.

The contents of halfword save-
value j.

The contents of fullword matrix
savevalue j, row a, column b.
(2 and b can be any other SNA)

The contents of halfword matrix
savevalue j, row a, column b.

Number of entries in queue j. Computational Attributes

Automatically maintained.

FNj
Number of zero entries in queue
j. Automatically maintained.

Average time each transaction

was on queue j (including zero

entries). When referenced the Vj
value will be truncated to an

integer.

Average time each transaction
was on queue j (excluding zero
entries). Truncated.

BVj

A computed function value. Only
the integer portion is retained
except when used as a function
modifier in GENERATE, AD-
VANCE or ASSIGN blocks.

An arithmetic combination of
Standard Numerical Attributes
which is called a variable state-
ment and is defined by the user.
Only the integer portion is
retained. (See Chapter 4.)

The computed value (1 or 0) of
Boolean variable j.

Entity
Transactions

Blocks

Facilities

Storages

Queues

Tables

Savevaules

Matrix savevalues

Groups
User's chains

Functions

TABLE 3: RANGE OF THE STANDARD NUMERICAL ATTRIBUTES

Symbol
P

PR
M1
MP

=

FR
FC
FT

23]

SM
sC
ST

QA
QM
QC
QZ
QT
QX

TB
TC
TD

M(a,b)
MH(a, b)

CA
CH
CM
ccC
CT
FN

Range

t(zal_l)

fere-s)
p

-127

g®l g

e

528,y

203

Boolean 1 or §
-999

s

]

231-1
2311
(231-1)
#(21%-1)
1(231~1)
x(215-1)

+(21°-1)
281
215_9
215-1

2311

2813

1(23 1—1)

Meaning

Parameter, fullwordlf_ualfword]

Priority

Transit time

Parameter transit time

Total entry count

Current count

Status of facility

Utilization (parts/thousand)

Entry count

Average time/transaction*

Current contents of storage

Remaining contents

Utilization (parts/thousand)

Average contents*

Maximum contents

Entry count

Average time/transaction*®

Current length of queue

Average contents®

Maximum contents

Total entry count

Number of zero entries

Average time/transaction*®

Average time/transaction
excluding zero

Table mean*

Entry count

Standard deviation*

Fullword savevalue

Halfword savevalue

Fullword matrix

Halfword matrix

a =row b =column

Number of items in group

Average number on chain*

Current number on chain

Maximum number on chain

Total entries

Average time entry*

Function

13

TABLE 3: (Continued)

Variables v

v

BV
Random numbers RN1-RN8
Clock C1

*Truncated to an integer.

+(231-1) Arithmetic variable

10"78 to 1075 Floating-point variable®
lor0 Boolean variable

0 to .99999 As function argument

0to .599 Otherwise

0 to 231-1 Clock time relative to last

RESET or CLEAR card

1Must have been defined as floating-point variable on VARIABLE definition card.

3. Block argument as the number n=1, 2, . . .
j, of a parameter of the transaction currently in the
block. This occurs in field A of ASSIGN, INDEX,
LOOP, MARK, COUNT, and SELECT blocks.

|l.|2 L.Ol::"r[a opam—rmnlu a| a|

ASSIGN 6 Q9% |Parameter 6

INDEX Vio |K8 |Parameter V10
Loop *11 |203 |Parameter *11
MARK FN2 Parameter FN2

4. Block argument as the value of an attribute.

1|2 LOC|7|8 OPERATION|19 A B c
301 ASSIGN i3 FN10 ASSIGN value of FN10 to
Parameter 6.
499 SAVEVALUE | 30 Q9 SAVE the value of Q9 in
Savevalue 30.
a7 ENTER 51 v3 ENTER Storage 51 with
value of V3,
263 ADVANCE FN10 Spend a lime Interval equal
ta the value of Function 10.
[it:] TRANSFER FN3 TRANSFER te a next block
whose number i the value
of Funection 3.

Various Ways to Specify Constant Values

Constant values can be specified directly in two
ways in the various GPSS/360 block and definition
cards; Kn or n. The values of these constants are
restricted to the range from zero to (231-1),

Negative constants cannot be used directly as
Standard Numerical Attributes. Negative constants
as low as —(231—1) can, however, be introduced
indirectly into a model by INITIAL cards or
VARIABLE definition cards as described below.
Negative constants as low as -99999 can be specified
as the Yi values of numerical valued functions.

14

The Xi and Yi values of fixed—field function
followers (see Chapter 5) are specified in six-column
fields so that these constants have values in the
range from -99999 through 999999, Constants of
attribute valued functions are limited to the range
from 0 through 999999.

However, by an indirect method which uses
INITIAL or VARIABLE cards, values in the range
+ (231-1) can be used. The INITIAL card (see
"INITIAL Card" in Chapter 8 for details) permits
any number in the range + (2 1-1) to be loaded into
a fullword savevalue location at the start of a
simulation run.

A
xXio

B

INITIAL N764398

Here, the constant 93, 764, 398 is loaded into
savevalue location 10. Its value can be referenced
as a Standard Numerical Attribute, X10, in any
block field. Example:

2
30

8
ADVANCE

A
X10

B
FN1

Here, a mean time of 93,764, 398 can be
specified for ADVANCE block 30, which is greater
than the limit imposed by the values of constants
as Standard Numerical Attribute block arguments.

An arithmetic variable (see Chapter 4) can
similarly be defined to have any constant value in
the range from -(2 1—1) to +(2 1-1).

| 1|2 Loc|1|a OPERATION 18 |
3
13

The Standard Numerical Attributes V3 and V13
can now be addressed in a simulation model and they
will have the constant values 36000000 and -500000.

VARIABLE |[-500000

| VARIABLE 36000000 = 1 hour in decimilliscconds

Indirect Addressing of Entity Indices

The index numbers of entities are required for two
reasons:
1. As the entity number j of a block argument.

11|a mc['fls DPERATION'LE A|

SEIZE 10 | SEIZE Faeility 10
LEAVE V3 | LEAVE Storage V3
TABULATE 14 | TABULATE in Table 14

2. As the entity index j of an attribute (SNAj)
which is referenced in any of the definition cards:
block card, VARIABLE, TABLE, and FUNCTION.

a. @l0=Current contents of queue 10
b. 89 =Current contents of storage 9
c. FN2=Value of function 22

To give greater flexibility and power to GPSS/
360 models, the concept of indirect addressing of
entity index numbers has been developed. By coding
an asterisk followed by the number n (*n instead of
j), the entity index number is now determined by the
value of transaction parameter n. Each transaction
in the GPSS/360 program has 0 to 100 parameters,
so that *¥1, *2 . . . *100 are allowable indirect
references. Repeating the above examples:

1. Indirect addressing of the entity number n.

|'r|s ’19 AI

BEIZE G SEIZE the Facility, whose Index number is the
value of the Transaction Parameter 6.

LEAVE the Storage whose index number is the
value of Transaction Parameter 8,

TABULATE| *1 | TABULATE in Table whose Index number is the

value of Transaction 1.

LEAVE *B

2. Indirect addressing of the entity index n of
an attribute.

a. Q*3 =Current contents of queue whose
index number is the value of trans-
action parameter 3.

b. §*12 = Current contents of storage whose
index number is the value of trans-
action parameter 12.

¢. FN*4=Value of function whose index
number is the value of transaction
parameter 4.

Indirect addressing is used most often and power-
fully to reduce the size of GPSS/360 models. As a
simple example, assume that there are 4 facilities
(numbers 1, 2, 3, 4) in a GPS5/360 model. Ata
certain point in the model each may be SEIZEd by
one of 50 transaction types, each of which is
associated with a specific facility. Without indirect
addressing it might be necessary to code four
separate SEIZE blocks as follows:

SEIZE SEIZE SEIZE SEIZE

A A

These four SEIZE blocks can be reduced to
one by indirect addressing. First, assume that at
one or more points in the model an ASSIGN block
assigns one of the numbers 1, 2, 3, 4 to trans-
action parameter 8, thereby associating the trans-
action with one of the four facilities. All of
these transactions can now move through the single
SEIZE block.

SEIZE

This single SEIZE block behaves like the four
SEIZE blocks shown above. Each transaction now
attempts to enter the single SEIZE block and obtain
the facility whose index number is given by the value
of transaction parameter 8.

In general, neither the block nor the entering
transaction is in any way altered by execution of the
indirect addressing feature. The values of the
transaction parameter are subject to the same re-
strictions as a direct specification of an entity
index, For instance, if the GPSS/360 program has
200 facilities (numbered 1, 2, . 200), and a
transaction entered the above SEIZE *8 block with
a parameter 8 value of 300, execution error number
498, "illegal facility number', would occur. Table
8, in Chapter 6 shows which card fields can be
indirectly addressed.

Three Ways to Specify Transaction Parameter
Values

The values of transaction parameters can generally
be specified in three ways in a GPSS5/360 model:

1. *n
2. Pn
3. P*n

The GPSS/360 analyst should recognize that *n
and P#*n are completely different. The specification
*n means "'the value of transaction parameter n'.
On the other hand, P*n means '"the value of the
transaction parameter m, whose index number m is
given by the value of transaction parameter n'".

For example, assume that the current transaction

Donald G. HcBrien

15

being processed by the GPSS/360 program has the
value 8 in parameter 5 and the value 37 in param-
eter 8. The attribute P*5 then has the value 37.

The indirect addressing of the entity index num-
ber in a block field can be achieved in all three

ways:
SEIZE *§
SEIZE P8
SEIZE P*8

However, the indirect addressing of the entity
index number of an attribute can be achieved in only

one way:
1. Q*3
2. S5*12
3. FN*6

GPSS/360 does not provide any mnemonic
mechanisms such as Q(SNAj) which might be inter-
preted as "the current length of the queue whose
index is given by the value of Standard Numerical
Attribute j". The analyst must achieve this by using
a spare transaction parameter, e.g., parameter 12,
as follows:

13 SNA|
ASSIGN

CHAIN AND SET MEMBERSHIPS OT
TRANSACTIONS

Basic GPSS/360 Chains

GPSS/360 transactions may, at any time, be in one
of the following transaction chains:

1. Current Events Chain. The overall GPSS/
360 scan will always try to move these transactions
into some next block(s).

Transactions in the current events chain will

always be in one of two states:

a. Active scan status; that is, the overall
GPSS/360 scan will always try to move
these transactions into some next block(s).
The scan status indicator is zero.

h. Delay status; that is, the transaction has
been blocked from moving into some next
block and has therefore been temporarily
deactivated from the overall GPSS/360
scan. This is accomplished by linking the
transaction into one of the eleven delay
chains (described in Chapter 7) on the
overall GPSS scan. The scan status indi-
cator of these transactions is one.

2. Future Events Chain. The Future Events
Chain consists of transactions which represent
events that are to occur at some future time.

16

(Incipient successor transactions will be at block 0
in the future events chain, before entering the
GPSS/360 model at a GENERATE block.)

3. User Chain. Transactions on this type of
chain are in a temporarily inactive state. Trans-
actions are placed on or removed from user chains
by means of the LINK and UNLINK blocks.

4. Interrupt Chain. Transactions may also be
in an interrupt status; i.e., they belong to neither
the current nor the future events chain. These
transactions have been PREEMPTed at facilities
which they have SEIZEd (see "PREEMPT EBlock"
in Chapter 10).

5. Matching Chain. Transactions may also be
in a matching status. These transactions:

a, are in ASSEMBLE or GATHER blocks
waiting for a specified number of trans-
actions to be ASSEMBLEd or GATHERed
(see Chapter 7).

b. are in MATCH blocks waiting for a mate
transaction to appear in a conjugate
MATCH block (see Chapter 7).

Assembly Sets

Each GPS3S/360 transaction will also belong to one
assembly set, which consists, minimally, of just
itself. Whenever transactions enter a SPLIT block,
one or more additional transactions are created.
Each of these additional transactions may, in turn,
SPLIT off further transactions, All of these off-
spring transactions and the original parent trans-
action will be chained together in a closed assemhly
set. As these transactions are destroyed, in
TERMINATE or ASSEMBLE blocks, their assembly
set linkages are also destroyed, thus leaving the
surviving assembly set members still chained
together.

EVENTS AND STATUS CHANGES

A GPSS/360 model goes through a sequence of
events involving the following three major types of
status changes:

1. Status change which creates or destroys a
transaction entity (transactions are the only temp-
orary entities among the 14 entity types).

Creating blocks: GENERATE, SPLIT

Destroying blocks: TERMINATE, ASSEMBLE

A CLEAR card will also destroy all transactions

when it is encountered (see Chapter 15).

2. Status change of the values of one or more
attributes, numerical or logical, of one or more
entities. Most GPSS/360 status changes are of this
Iind.

3. Status change in the chain or set memberships
of one or more transactions.

Two basic types of events are:

1. Internal events - these status changes occur
within the GPSS/360 program primarily as the
result of transactions entering blocks, which result
in the execution of one of the block-type sub-
routines.

2. External events - these status changes result
from reading input cards from the various input
devices.

Block definition cards - change the attributes of

blocks

Other definition cards - FUNCTION, VARIABLE,

FVARIABLE, BVARIABLE, STORAGE, TABLE,

QTABLE, INITIAL, MATRIX

Control cards - START, CLEAR, RESET, JOB,

END, JOBTAPE, REWIND, LIST/UNLIST,

READ/SAVE

17

CHAPTER 3: S/360 CORE STORAGE ALLOCATION
AND BASIC CARD FORMAT

The GPSS/360 program is divided into eleven
separate ''load modules', namely:
1. DAGOL - Control

2. DAGO1A - Reallocate

3. DAGOLB - Update

4, DAGOZ2 - Assembly PASS1

5. DAG03 - Assembly PASS2

6. DAGO4 - Input

7. DAGO4B - Input

8. DAGO04C - Input

9. DAGO5 - Execution

10. DAGO6 - Normal and Special Output

11. DAGO7 - Graphic Output

Of the above, CONTROL is the only load module
which remains in core for the duration of the GPSS/
360 job, All other load modules are called, as
needed, by the module currently being executed.
There are two additional areas which will remain
in core for the entire run. These include the entity
area where the information for the 14 GPSS/360
entities is maintained and the area of GPSS/360
COMMON where additional storage is obtained as
needed for the various entities.

FORMAT OF S/360 WORDS

The basic addressable unit in /360 is called a
"byte". Each byte contains eight bits numbered
zero to seven from left to right. S$/360 provides
instructions which operate on fullwords (4 bytes),
halfwords (2 bytes), or single bytes. Other instruc-
tions are provided which manipulate individual bits.
For this reason, all GPSS/360 attributes are stored
in either fullwords, halfwords, or bytes depending
on the range of values expected for the attribute.
Most indicators, such as a transaction's preempt
flag, use only one bit. Therefore, some bytes are
broken down into individual bits.

BASIC WORDS FOR GPSS/360 ENTITIES

Each of the 14 types of GPSS/360 entities requires
a certain number of basic bytes; e.g., each

18

facility requires 28 bytes, each storage requires
40 bytes, ete. These basic core requirements are
outlined in Table 6, and are discussed in detail

in each appropriate chapter.

In addition to the basic core requirements, each
entity may require variable amounts of additional
core, i.e., bytes for transaction parameters. For
this reason, a large area of core is set aside as
GPSS/360 COMMON. Words or bytes of this
COMMON area are assigned to the various entities
as required and is returned when no longer needed.

BASIC GPSS/360 CARD FORMAT

With a few exceptions, the basic format for the cards
defining a GPSS/360 model is as follows:

1. Name field - columns 2-6

2. Operation field - columns 8-18

3. Operand field - eolumns 19-72

The contents of each field and the possible
exceptions are explained in detail in the following
chapters which describe each block definition, entity
definition, and control card.

Remarks Cards

All input cards will be printed as part of the printed
output in the order in which they appear. An
asterisk (¥) in column 1 of any card indicates a
remarks card. Columns 1-72 of this card are
printed and the card is not examined further by the
GPS5/360 program. The analyst may also add
comments to any type of GPSS/360 card by leaving
at least one blank column to the right of the
required operand fields.

Appendix B describes the input format of the
GPSS/360 assembly program.

TABLE 4: NORMAL QUANTITY OF GPSS/360 ENTITIES

Basic Core

Entity Alloeation Normal Quantity

Type Per Item (bytes) 64K 128K 256K and up
Transactions 16% 200 600 1200
Blocks 12 120 500 1000
Tacilities 28 35 150 300
Storages 40 35 150 300
Queues 32 T0 150 300
Logic Switches 6 200 400 1000
Tables 48 15 30 100
Functions 32 20 50 200
Variables 48 20 50 200
Savevalues (fullword) 4 100 400 1000
Savevalues (halfword) 2 50 200 500
User Chains 24 20 40 100
Groups 4 5 10 25
Boolean Variable 32 5 10 25
Matrix Savevalue (full) 24 5 10 25
Matrix Savevalue (half) 24 5 10 25

*Add 20 hytes of common for every active transaction plus additional words for parameters.

CHAPTER 4: VARIABLE ENTITIES
GENERAL NATURE OF VARIABLE ENTITIES

Variables and functions (Chapter 5) are the two
computational entities in GPSS/360. Because of
their extensive use, particularly as block argu-
ments, these are the first entities to be described
in this manual.

In constructing the model of a system, the user
may wish to express complex logical or mathe-
matical interrelationship between system attributes.
The program provides variable statements for this
purpose.

The three types of variable statements provided
by GPSS/360 are:

Arithmetic Variables

Floating-point Arithmetic Variables

Boolean Variables

ARITHMETIC VARIABLES

Arithmetic variables are FORTRAN=like arithmetic
combinations of the values of the various Standard
Numerical Attributes, including other arithmetic
variables. The definition of an arithmetic variable
is accomplished by entering a single card, called a
VARIABLE definition card, with the desire state-
ment on it.

For example, the following VARIABLE definition
card defines Arithmetic Variable 10:

10 VARIABLE Q9+3-P7T*FN3

Whenever the value of Arithmetic Variable 10 is
referenced, by V10, its value would be computed as
the current length of Queue 9 (Q9) plus the constant
3, minus the product of Transaction Parameter 7
(P7) of the transaction currently being processed,
multiplied by the value of Function 3 (FN3).

The values of Arithmetic Variables, Vj, are used
in GPSS/360 models for the following five basic
purposes:

1. Argument of a block field

2. Argument of a function

3. Dependent value of an attribute function

4, Argument of a table

5. Operand in another arithmetic variable,

As block arguments (item 1), the arithmetic
variable values can represent:

1. An entity index j

2. The entity index j of a logical attribute
(GATE block)

3. The indexn=1, 2. 12 of a transaction
parameter (ASSIGN, INDEX, LOOP, MARK, and
SPLIT blocks)

20

4. The value of an attribute.

Arithmetic variables may be indirectly addressed,
e.g., V¥12 is the value of the arithmetic variable
whose index number is given by the value of trans-
action parameter 12,

Five arithmetic operator symhols are recognized
in arithmetic variables:

+ denotes algebraic addition

- denotes algebraic subtraction

* denotes algebraic multiplication

/ denotes algebraic division in which the

remainder, if any, is discarded immediately
before any further operations (only the quotient
is retained)

@ denotes modulo division in which the quotient

is discarded and the remainder, considered
positive, is retained.

NOTE: The symbol for modulo division used in
GPSS M1 (a left parenthesis) is accepted if no
other parentheses are used in the variable
statement.

Any number of combinations of the above
operations may be specified. The resultant sign
of the computed value is determined by normal
algebraic conventions. Negative values of vari-
able statements are permitted. Variable state-
ments are evaluated from left to right. Multi-
plication, division, and modulo division take
precedence over addition and subtraction. Each
element of the variable statement is evaluated
and truncated before any arithmetic operations
take place,

All operations are algebraic, and unsigned
quantities are considered positive. Division by
zero is not considered an error, and the result of
the division is always zero.

Any of the Standard Numerical Atiributes may
appear in any arithmetic variable statement, includ-
ing another arithmetic variable (V), with the
obvious restriction that no arithmetic variable may
refer to itself during its computation; otherwise,
Execution Error 516 will occur. Constant values
can be coded as either Kn or n. All Standard
Numerical Attributes are considered integers,
including function values (FNj) and distribution
table means (TBj) which are truncated to form
integers.

GPSS/360 allows the use of parenthetical expres=
sions within arithmetic variable statements. Paren-
theses may be used to group terms or to denote
multiplication. There can be no more than five sets
of parentheses within a given variable statement
(not including those used to define matrix save-
values). The quantity defined within the set of
parentheses denoted by the rightmost left paren-
thesis is evaluated first. There must be an equal
number of leit and right parentheses. An error will
be given during input if an improper number of
parentheses is used.

5*FN3+5*V6+5*¥P11
may now be written
5*(FN2+VG+P11)

If the variable is written 5(FN3+V6+P11), the
parentheses denote multiplication.

INPUT FORMAT FOR ARITHMETIC VARIABLE
DEFINITION CARD

The ARITHMETIC VARIABLE definition card
consists of the following three fields:

1. The location field, beginning in column 2
contains the VARIABLE index number or symbol
which will be used to reference the VARIABLE,

2. The operation field, beginning in column 8
contains 'VARIABLE'.

3. The operand field, beginning in column 19
contains the VARIABLE definition statement.

No blanks are permitted between characters,
and the statement is terminated by the first blank
encountered. There is no limit to the number of
items in any given arithmetic variable statement,
except that each statement must end by column 71.

A longer statement can be accommodated by

defining a second arithmetic variable statement on

a second VARIABLE definition card with a different
variable index number (k), and including the value of
the second arithmetic variable statement (Vk) as one
of the operands in the first arithmetic variable state-
ment (j). The two system-wide variables, relative
clock time and random number, must be codes as

C1 and RN1-RN8 respectively. For example,
consider the following three VARIABLE definition
cards:

11 VARIABLE Q9+K3...+V2...-V29,..FNI10
2 VARIABLE K9+TB13-FN19*Q10
29 VARIABLE FN9+3S3*R7-Q9

Arithmetic Variable 11 requires a full 71
columns to be defined. However, V11 includes
Arithmetie Variables 2 and 29 as elements,i. e. ,
V2 and V29.

The input phase of the GPSS/360 program will
reject a VARIABLE definition card which violates
the above rules.

An input error message will be printed below
the listing of the incorrect VARIABLE statement
card. Any VARIABLE statement definition error
will cause subsequent deletion of the simulation
run. A complete list of VARIABLE statement
errors can be found in Appendix A.

EXAMPLES OF ARITHMETIC VARIAELES USED
IN SIMULATION MODELS

1. 13 VARIABLE P10+K25

Whenever the value of Arithmetic Variable 13

is referenced by V13, its value is computed as the
value contained in Transaction Parameter 10 of the
transaction currently being processed, plus the
constant 25. This offsetting variable is often used
to relate two entity indices.

2. 7 VARIABLE X*4/100@10

Whenever the value of Arithmetic Variable 7 is
referenced by V7, its value is computed as the
value of the savevalue location X*4, whose number
is given by Transaction Parameter 4 of the trans-
action currently being processed, divided by the
constant 100 and then divided modulo by the constant
10, This serves to "unpack'' a middle digit from
the value of the savevalue location. For example,
suppose Transaction Parameter 4 of the transaction
currently being processed contains the value 125,
Also, suppose savevalue location 125 contains the
value aaabce. When V7 is referenced, the following
Qccurs:

a. Transaction Parameter 4 is evaluated and
yields the value 125.

b. SAVEX location 125 (X*4) is evaluated
giving aaabce.

¢. This value is divided by 100, giving aaab as
the result.

d. The value aaab is divided modulo by the
constant 10, giving a result of b.

Thus, V7 yields the value b, the desired middle
digit.

21

3. 15 VARIABLE FN22+FN*11+V23

Whenever the value of Arithmetic Variable 15 is
referenced by V15, its value is computed as the
value of Function 22, plus the value of the function
whose number is contained in Transaction Param-
eter 11 of the transaction currently being proc-
essed, plus the value of Arithmetic Variable 23.

4, 21 VARIABLE P12+V27/V27#K50

Whenever the value of Arithmetic Variable 21 is
referenced by V21, its value is computed as:

a. The value of Transaction Parameter 12 of
the transaction currently being processed plus the
constant 50 if Arithmetic Variable 27 is greater
than or equal to one (i.e., V27/V27 = 1).
or,

b. The value of Transaction Parameter 12 of
the transaction currently being processed plus the
constant zero if Arithmetic Variable 27 is zero
(i.e., V27/V27 = 0).

Thus, Arithmetic Variable 27 has been used as
a Boolean variable within Arithmetic Variable 21.
Observe that V27/V27 will equal 0 even if V27 is
nonzero but less than one. In this case, V27 is
truncated to zero before the division operation is
performed.

CORE ALLOCATION FOR GPSS/360
ARITHMETIC VARIABLES

The input phase of the GPSS/360 program contains
a FORTRAN-like compiler which scans each
VARIABLE definition card and compiles a program
within GPSS/360 itself to compute the value of the
arithmetic variable. Each such program requires
the following number of 360 COMMON storage words:

1. Three words (twelve bytes) for each
Standard Numerical Attribute element. Five words
if it is a matrix savevalue.

2. Five words for each set of parentheses.

3. Two words for most operations (+, @, -, /,
*), This may vary between one and three depending
on the order of the operations statement.

(FN3+5)5 requires 14 words
5*(FN3+5) requires 12 words
(5+FN3)*5 requires 13 words

Each available arithmetic variable requires
twelve basic internal words whether or not it is
actually defined by a VARIABLE card.

These twelve basic internal words (V1-V12) will
be used as shown below:

22

V1 and V2 are set up during input.

V1: The first byte of V1 is used as both a
floating-point indicator and a cyelic indicator.

The second byte is used to count the total number

of instructions in the compiled program. The
third and fourth bytes are used to store the total
length of the compiled program.

VZ: This word is used to save the address of the

first instruction of the compiled program.
V3-V1Z are used during execution.
V3 and V4: These words are used as accumu-
mors dmng computation of the arithmetic
variable statement.
V5-V9: These five words are used to save the
computed values of the quantities within the
parentheses. If five sets of parentheses are
used, the first set that is evaluated will have its
result placed in V9. The last set to be com-
puted has its value placed in V6.

In the example of Variable 17 below there are
are four sets of parentheses used. The first set
to be computed is the set following the rightmost
left parenthesis. This would be (5%4) since its
left parenthesis is in column 37. The result
(20) would be stored in V8 since it is the first of

four sets to be computed. The next set(P1-(5%4))
is then computed and its value placed in V7. The

value of (FN3-4) is placed in V6 and the value of
(19(FN3-4)) is put in V5.

V10: This word is used to store the return
address.

V11 and V12: These words are used to store
base registers 10 and 15.

17 VARIABLE (19(FN3-4) 17(P1-(5%4)))

REDEFINITION OF ARITHMETIC VARIABLES

If an arithmetic variable is redefined by another
VARIABLE definition card during a simulation job,
the compiler will first compile the necessary pro-
gram. It will then compare the additional words
required for this new program with the additional
words used for the first definition of the arithmetic
variable. This word count is contained in the third
and fourth bytes of word V1. If the new word re-
quirement is less than or equal to the original word
count, the new program is stored in the block of
common words allocated for the first VARIABLE
card which defines the arithmetic variable. How-
ever, if more words are required for the second
VARIABLE definition, the required words are
obtained from the words still remaining in common
and the core used for the original VARIABLE

definition is returned to the GPSS/360 common
pool.

FLOATING-POINT ARITHMETIC VARIABLES

Floating-point arithmetic variables are similar to
the arithmetic variables previously described,
except that the elements are not truncated before
arithmetic operations are performed. Likewise,
the results of intermediate arithmetic operations
are not truncated. Truncation occurs only when the
final result has been determined.

INPUT FORMAT FOR FLOATING-POINT
ARITHMETIC VARIABLES

The input format of the floating-point arithmetic
variable definition card is identieal to the format
described previously for the arithmetic variable
definition card except that '"FVARIABLE' is
specified in the operation field. The input format
rules for floating-point arithmetic variables are
identical to those previously described for
arithmetic variables. A floating-point variable can
not have the same Variable index number as an
arithmetic variable. If this is done, the latter of
the two definitions is the one which is used in
evaluation.

The use of the Floating=point Variables can be
seen in the first example below. Variable 1 will
be equal to 36 since the result of the division will
not be truncated. Ten will be multiplied by 3.67
and the result, 36.7 will then be truncated.
Variable 2 will be equal to 30 since the result
of the division will be truncated to 3.

1 FVARIABLE
2 VARIAELE

10(11/3)
10(11/3)

NOTE: Modulo division is not permitted in
floating-point variables.

The Standard Numerical Attribute V is used to
reference both arithmetic variables and floating-
point arithmetic variables. Evaluation of the
Variable Vn is determined by the variable definition
card which deseribes Vn.

Core allocation for GPSS/360 floating-point
arithmetic variables is identical to that shown
previously for arithmetic variables. Likewise, the
operations performed when a floating-point
arithmetic variable is redefined are identical to
those described for redefinition of an arithmetic
variable.

BOOLEAN VARIABLES

To increase the logical power and capabilites of
GPSS/360, Boolean variable statements are
provided. This makes it possible to make decisions
at a single GPSS block based on the status and value
of many GPSS entities.

Boolean variables are Boolean combinations of
the values of the various Standard Numerical
Attributes, including other variables.

Boolean variables are used and defined in the
same manner as arithmetic variables. Instead of
computing a value as in the arithmetic variable,
the Boolean variable tests one or more logical
conditions. It gives a result of one if the conditions
specified are met and a result of zero if they are
not met as specified.

Operators

Three types of operators are allowed in Boolean
variables, namely; logical, conditional, and
Boolean.

The logical operators are associated with the
equipment entities of GPSS and are used to
determine the status of these entities. The logical
operators are:

FUn or Fn 1 if facility SEIZEd or PREEMPTed,

otherwise 0

FNUn 1 if neither SEIZEd nor
PREEMPTed, otherwise 0

FIn 1 if PREEMPTed, otherwise 0

FNIn 1 if not PREEMPTed, otherwise 0

SFn 1 if storage full, otherwise 0

SNFn 1 if storage not full, otherwise 0

SEn 1 if storage empty, otherwise 0

SNEn 1 if storage not empty, otherwise 0

LEn 1 if logic switch RESET, otherwise 0

LSn 1 if logic switch SET, otherwise 0

*EXAMPLE OF LOGICAL OPERATORS

3 BVARIABLE FNI2
4 BVARIABLE SF3

Boolean Variable 3 tests to determine whether
Facility 2 meets the condition of ""not being
PREEMPTed". If this is the case then BV3 equals
one, If Facility 2 is PREEMPTed, then BV3
equals zero. Boolean Variable 4 tests whether
storage 3 is full. If it is full the condition is met
and the result is 1. If it is not full, the result is
Zero.

23

Conditional operators make algebraic
comparisons between operands. The operands
may be either constants or System Numerical
Attributes. All conditional operators are stated
within quotes.

The conditional operators are:

'G' greater than
B less than
e equal to

'NE' not equal to

'"LE' less than or equal to

'GE' greater than or equal to

In the example below, Boolean Variable 1 equals

one if V2 is greater than 5. Otherwise, it equals
zero., Boolean Variable 2 tests whether or not N3
is less than or equal to P4. If the condition is met,
BV2 equals one; otherwise, zero.

*EXAMPLES OF CONDITIONAL OPERATORS

1 BVARIABLE
2 BVARIABLE

V2'G's
FN3'LE'P4

The Boolean operators are + representing "or"
and * representing "and." An "or' operation
tests whether either or both of the conditions are
met. "And" requires both conditions to be met.

*EXAMPLES OF BOOLEAN OPERATORS

5 BVARIABLE FNIZ+5F3

B BVARIABLE FNIZ*SF3

7 BVARIABLE (V2'G'5)*(FNI2 +LR7)

8 BVARIABLE (FNU3+FNUS+BV5'NE'0)
9 BVARIABLE FNU3*FNU4*FNU5

10 BVARIABLE FI2 +(SNE4*SNE5)

BV5 equals one if either or both of the conditions
are met. BV6 equals one only if both conditions are
met. BV7 equals one if Variable 2 is greater than
5 and either Facility 2 is not PREEMPTed or Logic
Switch 7 is RESET. BVS equals one if any of the
three conditions are met. A Boolean variable can
refer to any SNA including another Boolean variable.
BV equals one only if all three conditions are met.
BV10 equals one if gither Facility 2 is PREEMPTed,
or both Storage 4 and Storage 5 are not empty.

Notice that parentheses are essential in ex-
pressing certain Boolean operations.

For example:

FI3*(FI2+F14) requires Facility 3 to be PRE-
EMPTed and either Facility 2 or Facility 4 to also
be PREEMPTed. This statement: FI*FI2+FI4

24

would equal one if either Facility 4 was
PREEMPTed, or both Facilities 1 and 3 were
PREEMPTed.

Parentheses should be used only where neces-
sary. Use of unnecessary parentheses wastes both
time and core storage.

Any quantity within parentheses will be
interpreted as zero if equal to zero or as one if
not equal to zero. If a Boolean variable is defined
by just one SNA as in:

2 BVARIABLE V4

it will be computed as one if nonzero or as zero if
equal to zero.

Boolean variables can be very useful in testing
logical conditions of the system. For example, in
a teleprocessing system a message cannot be
transmitted to the CPU until three conditions are
met simultaneously; namely: the channel must be
free to transmit the message, the CPU must be
free to issue the command, and there must be core
storage available for the message. These conditions
could be tested by the following blocks:

WAIT TEST GE Rl, P1
GATE NU CHAN1
GATE NU CPU
TRANSFER SIM, WAIT

However, the three conditions tested above could
all be tested by the following TEST block:

TEST E BVl 1
Where BV1 is defined as:
1 BVARIABLE R1'GE'P1*FNUSCHAN1*FNU$SCPU

CORE ALLOCATION FOR GPSS/360 BOOLEAN
VARIABLE ENTITIES

During the imput phase a program is compiled to
evaluate the Boolean variable. The number of
words required for this compiled program is
computed by the following rules.

1. Three words for each logical operator such
as FNI3.

2. Tive or six words for each set of parentheses
depending on the particular operations performed
within the operations.

3. Two words for the first Boolean operator and
one for every Boolean operator after that.

For example:

FI3 + SNE2 * (FV3+ FV4)

Two words are allowed for the first 'or' operator,
one word for the "and'" and one word for the next'or."

4, 8ix words for a conditional operation between
two constants such as 17'GE'15. Two additional
words are required for each of the operands that is
not a constant.

TFor example:

V2'GE'FN3

Ten words of core would be required to bring in
the result.

5. One additional word is always required.

For each Boolean variable, eight words of core
are reserved whether or not the Boolean variable
is defined or referred to.

These eight words are used as shown below.

BV1 (four bytes) is used to store the total length
of the compiled program.

BV2 (four bytes) is used to store the address of
the first instruction of the compiled program.

BV3 (four bytes) is used to store the return
address from execution. This word is also used to
test for cyclic definition. If BV3 is zero, the
Boolean variable is not being evaluated. If there is
an address in BV3, it is being evaluated.

BV4 is a one-byte accumulator.

BV5 (1 byte) contains the total number of
instructions in the compiled program.

The two bytes of BV6 and the four of BV7 are
used to store the values of the quantity within a set
of parentheses. Every quantity defined by a set of
parentheses will result in a value of one or zero.

If it is evaluated as nonzero, it is given a value of
one.

BVS is a four-byte accumulator.

BVY and BV10 (four bytes each) store base
registers 10 and 15.

25

CHAPTER 5: FUNCTION ENTITIES

GENERAL NATURE OF FUNCTION ENTITIES

Functions and arithmetic variables (Chapter 4) are
two computational entities of GPSS/360. There are
no block types associated with functions. The
values of functions (FNj) are the second most
widely used Standard Numerical Attributes in
GPSS8/360 simulation models, Transaction
parameter values are the most widely used (the
indirect addressing, *n, of entity indices accounts
for the greater use of parameter values). The
widespread use of function values is not too
surprising since many interrelationships in systems
can be described in terms of functional relations
between two variables. Each GPSS/360 function
relates the values of a function argument, which is
some independent variable in the simulation model,
to dependent variable values of a function (FNj).
The function arguments can be any of the Standard
Numerical Attributes, including the values of other
functions (FNk). The only exception to this rule is
the GPSS/360 matrix savevalue.

Another important use of functions is the
generation of random variable values. For such
probability distribution functions, the argument is
the random number, O < RN < 1, while the
dependent function values (FNj) are some random
variable elements in the GPSS/360 simulation
model.

TYPES OF FUNCTIONS

The five types of functions in GPSS/360 are listed
below. Figure 1 illustrates the form of the three
basic types.

Field B of
FUNCTION
Card
Contains

1. Continuous numerical valued Cn

2. Discrete numerical valued Dn

3. List numerical valued Ln

4. Discrete attribute valued En

5. List attribute valued Mn

Table 5 illustrates how these five types of
functions are defined by FUNCTION definition cards
and function follower cards. Field A of the
FUNCTION card defines the argument (independent
variable) of the function., The agrument may be any
of the Standard Numerical Attributes. If the randor
number, RN, is used as a function argument, it has
fractional values which are uniformly distributed
between O <RN< 1. Observe that RN will never
equal 1.0. (In all other uses, the value of RN is
O < RN < 999.) Field B of the FUNCTION card
defines the type of function and the number of
points, n: Cn, Dn, Ln, En, Mn. Each function
must have at least two points defined, even if the
two Y; values are equal.

FHNj FNj
Ky Y -y K Y
X, ¥,) /———-— Xy ¥y Py
f\ /'.\ ARGUMENT = ARGUMENT
SNAk SMNAK
—8
— Yy BT 7L | —
(TR TR ®g Yl
Continuous Numerieal’ Discrete Numerical
Valued Function (Cn) Valued Functlen (Dn)
X
ENj &
Y
2
Y Y'n
1
Y3
T ? . ¢ i ARGUMENT
1 2 3 4 6 e @ o SNAk

5

5

5

4

List Numerical Valued Function (Ln)
Figure 1. Types of GPSS Functions

26

TABLE 5: FUNCTION

DEFINITION CARDS

FOR
VARIOUS TYPES OF FUNCTIONS

1. Continuous Numerical Valued Function (C8:8 points)
LOC | OPERATION | A | B | I | | | | |
j FUNCTION Arg C8
X1 Y1 X2 Y2 X3 Y3 X4 Y4 X5 Y5 X6 Y6
X7 Y7 X8 Y8
2. Diserete Numerical Valued Function (D11:11 points)
Loc | oPERATION | A | B | | | | | | |
i FUNCTION Arg D11
X1 Y1 X2 Y2 X3 Y3 X4 Y4 X5 Y5 X6 Y6
X7 Y7 X8 Y8 X9 Y9 X10 Y10 X11 Y11
3. List Numerical Valued Function (L9:9 points)
Loc | oPERATION | A | B | | | | | | |
j FUNCTION Arg L9
Y1 Y2 Y3 Y4 Y5 Y6
Y7 Y8 Y9
4. Discrete Attribute Valued Function (E7:7 points)
| LOC | OPERATION A B
j FUNCTION Arg E7
X1 SNAl X2 SNA2 X3 SNA3J X4 SNA4 X5 SNAS X6 SNA6
X7 SNAT7
5. List Attribute Valued Function (M10:10 points)
LOC | OPERATION | A | B | | | | | | |
] FUNCTION Arg M0
SNAL SNAZ SNA SNA4 SNAS SNAG
SNAT SNAS SNA SNA10
Each FUNCTION definition card must be Both the X; and Y; values in the function follower
immediately followed by a sufficient number of cards can be specified as noninteger values, for
function follower cards to define the individual example, as follows:
points (pairs of X;, Y; values) of the function. Each

function follower card can define six pairs of Xi,
Y; values in twelve six-column fields: Xp, in
columns 1-6; Yy, in columns 7-12: X, in columns
13-18; Y9, in columns 19-24; XE' in columns 61-66
and Yg, in columns 67-72. Observe that function
points must be coded in columns 1 and 7. No
comment cards may appear between the function
follower cards for a particular function.

.70

|LOC IDPERIATIDN | A | B l

I
FUNCTION |RNI | C5
0| .33 A5 | 40

X *3

5
]

2.75 | 1.00 | 3.90

%5

1,60 One
Faollower
Card

Required

X | %N Yy | X5 | Yy Yy

Each successive X, value must be greater than
the preceding value, i.e., xi <Xj +q1. Otherwise

27

the function will not be defined by the input phase of
the GPSS/360 program and Input Error 223 will
oceur,

Because of the six-column width of the fields in
the fixed-field function follower card, the maximum
range of Xj or Yy values in functions is: -99999
<Xj or Y; £999999, However, a free-format
function follower card is accepted in GPSS/360.

FREE-FORMAT FUNCTION FOLLOWER CARD

In GPSS/360 the user may specify the X and Y
coordinates of functions in a free format., This
enables the user to specify more than six
characters for any point thereby increasing the
maximum input coordinate values to—_.‘-231— 1. The
input routines of GPSS/360 will determine the type
of function input specified by the user and will
indicate any format errors. It will not be necessary
for the user to give any special indication if the free
format is used. However, certain rules must be
followed with the free format:

1. The first entry must start in column 1.

2. The last entry must oceur in or before
column 71,

3. The Xj and Y; coordinates of a point are
separated by a comma,

4, The sets of coordinates are separated by a
slash (/).

5, The X;j and Yj coordinates for a particular
point must oceur on the same function follower
card.

Examples of Free=Format:

1 2 8 19

5 FUNCTION RN1, E3
0,-913/.542,15739688/1.0, V10

72

10 FUNCTION *3,D6
0,5/1,10/2,15/3,20/4,25

15 FUNCTION RN8,C4
0,0/5,12/,68,15/1.0,20

Yir1
Function FN agd4— ——
Value]

1

X I

| Argument

Argument
Value SNAk

20 FUNCTION Q7,C16
0,0/5,1/10,2/20,330,4/40,5/50,6/.../100,11
110,12/120,13/130,14/140,15

CONTINUOUS NUMERICAL VALUED FUNCTIONS
(Cn)

Figure 1 illusirates that the successive (Xj, Yi)
points of continuous numerical valued functions (Cn)
are connected by straight lines. Whenever an
argument value lies between two successive Xj
points (X; < argument <X 4 1) the GPS5/360
program interpolates linearly to obtain a dependent
function value (FNj) between the two associated Y3
points: Yi{> FNj >Yj4qor Yi{FNj <Yi4+1

(see Figure 2),

The Y; values are stored in core words as
floating-point values and all internal interpolations
are done with noninteger, floating-point arithmetic.
However, the internal value is finally truncated, so
that the function value FNj is always an integer,
with the following two important exceptions:

1. A function time modifier (FNj) in field B of
ADVANCE and GENERATE blocks may have
noninteger values (see Chapter 7).

2, A function modifier (FNj) in field C of an
ASSIGN block may have noninteger values (see
Chapter 7).

A continuous numerical valued function (except
for the above two cases which invelve nonintegers)
actually has the graphic form shown in Figure 3.

Figure 3 shows two successive points, (Xj, Yj)
and Xj + 1, Yi + 1) of a continuous numerical valued
function. All four values may be nonintegers,

The function values FN;, however, are restricted
to successive integer values: Yo' Yy, er Y
Yp-1» Yn. The truncation performed by GPSS/360
program is such that, for X; < argument value
<Xj+ 1 function value = Yj. Either or both of the
points Xj and Xj + 1 can be nonintegers.

Figure 3 shows that for all argument values less
than the second point (Xg) the function has a
constant value equal to the first Y value, i.e.,

Yi
Function FN. . ——
Value]
Y£+1 }
I Argument
X f X SNAk
i i+l
Argument
Value SNAk

Figure 2. Linear Interpolation Between Adjacent Function Points

28

FN=Y7. Similarly, for all argument values greater
than the last point (X)) the function has a constant
value equal to the last Y value (FN=Y,).

DISCRETE NUMERICAL VALUED FUNCTIONS (Dn)

Figure 4 shows that discrete numerical valued
functions have the same function value, FN;=Y;, for
all argument values in the interval between X;_;
and Xj:i.e., Xj_ 1 ¢ argument value < X;.

No interpolation is performed, and the value at
the right-hand end of the interval is used. As in
the case of continuous functions, for argument
values less than the first X; peint and greater than
the last Xn point, the following occurs:

L. FNj=Y; for all argument values < Xy

2. FNj=Y, for all argument values =Xy

(Assume in Figure 4 that the Y; values coded in
the function follower card are integer values.
Otherwise, noninterger Yj points would be truncated
to integer Y; values.)

LIST NUMERICAL VALUED FUNCTIONS (Ln)

In many cases the X; argument values of functions
will be the successive integers 1, 2, 3, ... n.

As described in "Examples of Functions Used in
Data Processing Simulation Models' later in this
chapter, the execution time to compute the value
(FNj) of such functions can be greatly reduced by
coding these functions as list numerical valued
functions. The X; argument values in the funetion
follower cards will not be examined by the
GPSS/360 input program. Instead, they will be
assumed to be the successive integers: X; = 1,
Xo=2, X=n (see figure 5).

The corresponding Y; values must, however, be
coded in the appropriate fields of the function
follower cards. To make the function follower
cards more understandable, the analyst can code
the values X;=i, although they will never be
examined. If the argument value lies outside the
range 1 to n, Execution Error 509 will result.

=1, .

v FNj 2nd Point
g Lgiq—— = —
Yiu 5 ¥l 271 %, T
= i,n 7 i
’ =3 -
= EF‘E'D i_, n=1 "] []
- s E e?
£ &
§2 3 -
& 3 s 8 Y3 A 2
= e D -
+ S 5 Y., -
g2 Yh 2 1st Point I
- N
L B 5,1, = {xi,Yi)
1
Yi,O o
Argument
X X X X ShU
xi,l) xi i1 i,2 xi,B i,4 i+l
Funetion point Function peint
possibly noninteger possibly noninteger
Figure 3. Form of Continuous Numerical Valued Funections
X EN —_—— -
n Constant
Y. o Value Yn
1
Yi+1 I
Yi-l -
P g P L) _‘:’1 —
Constant |
Value Y1 ! ! } ! A-l'sgNumAEnt
X g% an X, 1 xi X, - X

1=

Figure 4. Diserete Numerical Valued Functions

i1 "

29

Argument

1 2 3 4 n=1 n SNAk

Figure 5. List Numerical Valued Functions

DISCRETE (En) AND LIST (Mn) ATTRIBUTE
VALUED FUNCTIONS

The preceding sections have described the three
types of numerical valued functions whose Y;
points are defined as pure numbers. There are
two more types of functions whose Y point may be
any one of the Standard Numerical Attributes:

1. Discrete attribute valued functions (En),
which are analogous to discrete numerical valued
functions (Dn).

2, List attribute valued functions (Mn), which
are analogous to list numerical valued functions
(Ln).

It is no longer possible to illustrate attribute
valued functions in a two-dimensional plane.
Instead, they must be portrayed by the pictorial
device which is shown in Figure 6.

Attribute valued functions can also be illustrated
by the following tabular arrays:

DISCRETE LIST
— —
Xi = Argument (SNAk) Yi= FNJ X| = Argument (SNAk) Y = FNy
X SNAY n SNA]
X SNAp 2 SNAg
*3 Ay ® SNAg
x‘,. SNA, {i) SN'Ai
(rl\} SN]\n

For the discrete attribute valued functions, the
function value FNj has the value of the i~ Standard

30

iy

I Constant
SNA1 SNJ\a SNA] SN!’\4 SNAn-, SN)\“ Value SHA"
Comstant ' _T TR
Value SNA, | Argumient
xl xz | xi x4 xn—l Xn SNAK

Figure 6. Attribute Valued Functions

Numerical Attribute (SNA;) for all argument values
in the interval, X;_, < argument value < Xj. For
the list attribute valued functions, the argument Xj
points are implicitly assumed to be the successive

integers 1, 2, . . . n.

Consequently, for an Argument value=i, the
function value is FNj=SNAi. The notations Pn and
*n are both acceptable as argument values in a funec-
tion. Constants may have values in the range from
-99999 to 999999,

The following example illustrates one of the
many possible uses of attribute valued functions:

In a system there are twelve message types
with the following message lengths:

Types 1-3 80-126 characters represented in FN1
4-9 97-320 characters represented in FN2
10-12 50-150 characters represented in FN3,
and are serviced by the following routines:
Types 1-5 TYPE A
6-8 TYPE B
9-11 TYPE C
12 TYPE D

Assuming that the message type is in Parameter

4, the following block sequence would assign the

1
m Place message length in
— Parameter 5 by double

level indirect addreasing

@ Transfer to service routine

Type A TypeB TypeC Type D

Funetion 4 «

IF P4 = | then P3 will be ASSIGNED

=3 camputed value of PN1
40 computed value of FNZ
10-13 | computsd value of FN3

Functlon & =

1 P& = | then Transsctlon will THAKSFER is
-8 routine named TYPE &
-0 Feullne ramed TYPE B
=11 routine named TYPE C

1z reuting namad TYPE D

message length and direct the message to its serv-
ice routine.

In the example above Function 4 provides a double
level of indirect addressing. In Function 5 the
function points are block addresses. These sym-
bolic addresses are converted to actual numerical
values by the assembly program before control is
tranferred to GPSS/360.

USES OF FUNCTION VALUES

The values of functions (FNj) are used in GPSS/360
models for the five basic purposes described in
Chapter 2.

1. A, B, C, D, E, or F argument of a block

2. Argument of another function

3. Dependent Y; point of an attribute valued
function

4, Argument of a table

5. Operand in an arithmetic variable.

As block arguments (item 1) the function values can
represent:

1. Anentity index (j)

2. The entity index (j) of a logical attribute
(GATE block)

3. The indexn=l, 2, . . . 100 of a transaction
parameter (ASSIGN, INDEX, LOOP, MARK, and
SPLIT blocks)

4. The value of a Standard Numerical Attribute,
FN..

]

FUNCTION SELECTION FACTOR (FN) IN
TRANSFER BLOCKS

The function selection factor (FN) of TRANSFER

blocks is discussed in detail in Chapter 7.
TRANSFER FN, SNAk, SNA1

The GPSS/360 program will attempt to move the

transaction into a next block whose number is the

sum of:
The value of the function FN (SNAk) whose index
number (j) is given by the value of the Standard
Numerical Attribute SNAk specified in field B.
Plus, the value of the field C Standard Numerical
Attribute SNA1

Therefore, next block=FN (SNAk) + SNAL.

Examples:

lm: | OPERATION | A l B | c |Nax: Block Equals Value Of]

TRANSFER FN | 10 FN10
FN | 10 | 30 FN10 + 30
FN [*2 FNe2

FN [*3 |FN3 FN*3 + FN3

SYMBOLIC BLOCK VALUES IN ASSEMBLY
PROGRAM FUNCTIONS

The GPSS/360 assembly program permits the coding
of symbolic block locations as Y; values in function
follower cards. This is necessary because function
values (FNj or FN#*n) may be used in the following
block types to indicate a nonsequential block number
to which the transactions are to move:

2 mclvla OPERATION |19 A B c

TRANSFER FN i SNAk
TRANSFER (Mode) FNj
LOOP SNAK FNj
SPLIT SNAk FNj

GATE Auxiliary | SNAK FNj
TEST Oprtor SNAk SNA1 |FNj

Since it is difficult to know what block numbers
the assembly program will assign to the various
blocks in a model, the use of symbolic locations as
Yj values becomes a virtual necessity.

EXAMPLES OF FUNCTIONS USED IN DATA
PROCESSING SIMULATION MODELS

Probability Distributions

One of the most common types of functions in all
simulation models is a probability districution. A
probability distribution is concerned with some sort
of random variable (RV) which can be represented by
real numbers.

f(x)=P(X=x)

1

I 1 I 1 | I |
L 2 3 4 5 6 7

Possible values of random variable RV

Figure 7. Probability Density Function

In Figure 7, the probability density function of
RV is shown. For X=5, f(x)=0.25.

Probability distributions can be represented
graphically in several ways. One of the most com -
mon is to graph the Density Function of RV (see
Figure 7).

31

F, ()=P(X = x)

T

—
]

Possible values of random variable RV

Figure 8, Cumulative Distribution Funection
F(x)
1l

|

Possible values of random variable RV

Figure 9. Approximation of the Cumulative
Distribution Function

Another way of representing the Probability
Distribution graphically is to graph the cumulative
distribution function (see Figure 8). In this case,
for any real number x, F(x)}=P(RV < x); i.e., the
probability that the random variable RV is less than
or equal to x is I'(x).

The cumulative distribution function can be
approximated in Figure 9 by straight line segments.
Possible
Values of

Random
Variable RV

x
_] GPSS III Probability Distribution
7 form

6 =
5
4 =
3=
2=

1 F(x)=P(RVEX)

Cumulative probability

Figure 10. Alternative Form of Cumulative
Distribution Funetion

32

By plotting additional points, the accuracy of the
fitted straight-line approximation will be increased.

The values of F(x) in Figure 9 are numbersfrom
zero to one inclusive. Thecurve can be flip-flopped
(see Figure 10) so that the F(x) values are now the
independent variables and the random variable values
(x) are the dependent variables.

Figure 10 is the type of function which is used
in GPSS/360 models to represent a probability
distribution.
Example: Probability Distribution

As an example of a discrete probability distribu-
tion consider the following case. One of three 1/0
units is to be chosen. The probability of choosing
unit number 12 is .30, the probability of choosing
unit number 13 is .37, and the probability of choos-
ing unit number 14 is .33. The probability density
function is of the following form:

fx)=P (RV=x)
Probability

.83 -

.30 “ T

12 13 14

RV = unit number

The cumulative distribution function has the
following form:

F(x) =P (RV = x)

1 R
671 —
Cumulative
probability
304 r_
12 13 14

RV = unit number

By changing the cumulative probability to the
independent variable, the probability distribution

takes the following GPSS/360 form of a probability
distribution:

FN.

J
: 14 L
Unit
Number 131
12]

.30 .67 1
RN1 = cumulative probability

By using the GPSS/360 Function Argument RN1,
the following results are obtained:

Unit number 12 if 0 < RNI1<.29

Unit number 13 if ,29 < RN1<.66

Unit number 14 if .66 < RN1< 1

Thus, unit number 12 will be chosen with prob-
ability .30, unit number 13 will be chosen with
probability . 37, and unit number 14 will be chosen
with probability . 33, which are just the desired
probabilities.

The function would be coded in the following
manner:

j FUNCTION
.29, 12/.66, 13/1, 14
Example: Exponential Distribution

In many applications the number of transactions
which arrive in a system per unit time have a
Poisson distribution. The interarrival times have
anegative exponential distribution of theform %.1 e-t/m,
where m is the mean interarrival time.

This distribution may be used in a GENERATE
block with the field A mean (m) and the field B
modifier (FN1). The same function modifier may be
used to produce an exponential service time distribu-
tion in an ADVANCE block. The exponential distribu-
tion is represented in the graph shown below.

The function gives results which are accurate to
within . 1 percent for m <250, and 1 percent for m
< 45.

RN1, D3

Function Packing

Data processing simulation models require many
functions. Often, several operandsmust be assigned
from functions which have the same function argu-
ment. Some of these operands can be packed into
the same function, thus reducing the number of
functions required.

|2 la |19
1 |FuncTion |mxi, cz4

ki 13 18 25 31 a7 43 48 55 61 67
] 0 =1 S104 |.2 .222 (.3 « 355 .4 .509 (.5 .69
[015 (.7 |1.2 .76 |1.38 |.B 1.8 .B4 |1.83 |.B8 2,12
9 |2.3 .92 12,62 |,94 (2,81 |.95 |2.88 |.96 |3.2 «97 3.5
.98 |3.9 .99 | 4.6 .985 |5.3 L9098 |6.2 =099 T + 9998 8
8
74
6
5 J
FH1
4.
34
2 J
1
0 ¥ L T T LI T Li
.1 2 3 4 5 o0 o7 .8 9 1.0

Table argument RN1

Each Y; ordinate value can have a maximum of
six digits in the fixed format function follower card
and ten digits in the free format function follower
card. Each six- or ten-digit ordinate can contain
one or more operands. If a Yj ordinate contains
more than one operand, the function is said to be
"packed. "

Example 1

5 FUNCTION RN1, D4
(1,11) (.4,21) (-8,31) (1,42)

V1=P1/K10 Division quotient = message type

V2=P1(K10 Medule division remalnder = Priority

Each Function value has the packed form a b,
where

a = message type = 1,2,3,4
b = Priority = 1,2

The use of a packed function requires some
method of shifting out the packed values (or, "un-
packing" the function). This is done by use of arith-
metic variables. Division by 10" causes a right-
shift truncation by n positions. Division moduol 10
causes a left-shift truncation by n positions.

33

The above sequence assigns a message-type num-
ber to Parameter 8 and a priority-level number to
Parameter 1 of each transaction from a probability
distribution given in FN5. A typical ordinate value,
say 21, is interpreted to mean message-type 2 with

priority 1. The cumulative distribution function is
shown below:

FN5

- —_—0
42
31 7 .
21 e
11

Al

| ! ! | BM
.1 .4 .8 1

Example 2:

3 Function P3, D3

(1,200007) (2,222100) (3, 005001)
V3=FN3/K1000 Divislon quotient

V4=FN3(K1000 Modulo division remainder

In the above example , Parameters 1 and 12 of
the entering transaction are assigned on the basis
of Transaction Parameter 3 which is the argument
of Function 3. For instance, if Parameter 3 con-
tains a 2, Parameters 1 and 12 will be assigned 222
and 100 respectively.

Seek Time Distibution of 1301 Disk Storage Unit

A very useful function is one that deseribes the move
time foran access arm of the 1301 Disk Storage
Unit. For random access using the 1301, this
distribution is the following discrete GPSS/360 func-
tion:
2 FUNCTION RN1, D4

.004, 0/.036, 50/.2, 120/1, 180

(This function is shown graphically in Figure 11.)

The 1301 has arm movement times of 0, 50, 120,
or 180 milliseconds.

34

Time
(Milliseconds)
180 4 o
120 — —
-1 —0
RN1
oo T T T
.004 .036 R 1

Figure 11. 1301 Seek Time Distribution

MAPPING FUNCTIONS

Another useful function is one that maps a sequence
of integers (a, a+l, . . . b) into a second sequence
of integers (¢, ¢+, . . . d), and conversely, maps
the sequence (¢, c+l, . . . d) into (a, a+l, . . .b).
This is easily done, provided that no integer belongs
to both sequences. The function shown in Figure 12
may be used.

In this function, an argument of 'a' would produce
a FNj value of 'e'. An argument of 'a+1' would
produce a Y value of 'c+1', etc. Also, an argument

of '¢' would produce a Y value of 'a', etc.
FN
J

| | Argument
T I SNAk
c d

!

a b
Figure 12. Mapping Function

Uniform Distribution of a Random Variable

Another very useful function in GPSS/360 simulation
models is a probability distribution which is uniform

over a number of sequential integers a, a+l, . . . h.
Each value Y in the sequence has the probability
f(x)= R

(x)—m , which is plotted below

f(x)
S
(b-a)+1
X

This could be represented in GPSS/360 by a An error condition which is detected by the GPSS/

discrete cumulative probability function with RN1 as 360 program results in a printout with the following
its argument. However, since, only successive format:
integral values are desired, the following continuous ERROR NO
function can be used to reduce 360 running time (see TRAN_FROM__TO__CLOCK
Figure 13). The function values are truncated to TERMINATIONS TO GO
give the desired integral values. The second line gives thenumber of the transaction
An RN1 argument value from 0 to 1/(b-a)+1 would being processed, the numbers of the blocks FROM
produce the value a after truncation. An argument and TO which it is attempting to move, the clocktime
value from 1/(b-a)t1 to 2/(b-a) 1 would produce the and the termination count remaining in the run. The
value a+l. The crucial thing to observe here is meaning of the numbers which appear in the first
that since RN1 cannot equal 1.0, the function will line is given below.
never have the value b+1, ERROR
(1,b+1) NUMBER SIGNIFICANCE
506 Cyclic Function Definition
507 Illegal Function index j

Example: In the standard GPSS/
360 program for a 128K
machine j must not be
greater than 50.

RN1 508 Function Not Defined
0 1.0 Error 508 can occur when the
Figure 13. Uniform Distribution Function analyst forgets to define the
function.
ERROR CONDITIONS WITH FUNCTIONS Observe that cyclic Error 506 can occur in four
ways:
Input Errors in FUNCTION Definition Card and 1. FN; is referenced directly as the argument
Function Follower Cards in the field A of the FUNCTION definition card.
Example: A
The FUNCTION definition card will be rejected and 10 FUNCTION FN10
the function will be left undefined (with no COMMON 2. FN; is referenced as an operand in an
storage allocated) if: arithmetic variable which is the argument of the
1. The index j in the location field is greater function.
than the maximum allowable function entity number. Example:

2. An illegal alphameric symbol is used for the
function argument in field A.

3. Field B contains characters other thanCn, Dn,
En, Ln, or Mn.

The proper number of function follower cards
must directly follow the FUNCTION card to define

A
10 FUNCTION V5
5 VARIABLE sao FNLO. S
3. FNj is one of the Y;j points in an attribute
valued function.

the n points. The fixed-format card is limited to HHAEBpIN: A B
six points (pairs of Xj, Y; values) per follower card. 10 FUNCTION Argument En or Mn
The free-format card may specify a variable number ... FNI10
of points. The X; values must be monotonically 4. FN. is an operand in an arithmetic variable
increasing; i. e., each successive Xj value must be which is one of the Yj points in an attribute valued
greater than the preceding Xj-1 value. function.
Example:
Execution Errors A B
10 FUNCTION Argument En or Mn
Three errors which involve functions can occur wwi VB
during the actual running of a GPSS/360 model (see 5 VARIABLE ...FNIO...

Appendix A for listing of all error conditions).

35

Disacrete List

Numerical Valued (Dn) Numerical Vauled (Ln)

o] e] [a] [e] [o]

"Y' valuen "X’ valuas ¥ valuas
Y1 X1 Y1 (1)
T2 X2 Y2 {2)
¥i Xi ¥i (i)
¥n ¥n Yo |n)
{4 bytes) (4 bytes) (4 bytes)

Figure 14. Core Allocation for Function Points
CORE ALLOCATION FOR FUNCTIONS

Each function entity requires eight basic words (32
bytes), whether or not it is actually defined by a
function definition card and function follower card.
In the Standard GPSS/360 program for a 128K
machine, functions are numbered FN1, FN2, and
so on, the eight basic words are set up for each
function as follows:

G1 (4 bytes)
G2 (4 bytes)
G3 (4 bytes)
G4 (2 bytes)
GT7 (4 bytes)
G8 (4 bytes)
G9 (4 bytes)
G10 (4 bytes)
G5 & G6 are one byte each.

Table 6 shows how the eight basic words are used
for each function entity.

The words G1, G2, and G3 serve as addressesto
blocks of COMMON storage (Figure 14) in which the
following values are stored:

G1. Y1 values for continuous, discrete and list
functions.

G2, X, values for continuous and discrete
functions.

G3. Computed slopes (between adjacent points)
of continuous functions.

I
1
G5 | G6
I
i
T
1
|
I

1
I
L
1
i
T
|
|
1
1
h

Redefinition of Functions

If a function is redefined by another function defini-
tion card during a simulation job, the GPSS/360 in-
put program will free the core used by previously
defined function points first. Then the words that
are necessary to store the redefined function points
are obtained from the COMMON core blocks.

36

Increased Speed of List Functions

Figure 14 shows why the values of list functions can
be computed more rapidly than discrete function
values. For discrete functions the GPSS/360 pro-
gram must compare the argument value (SNAk)
through the sequence of successive X; words until it
finds Xj < Argument < Xj+;. The function value

is then Yj41.

For list functions, the GPSS/360 program uses
the argument value i as a direct index to the it? word
in the block of COMMON storage in which the ¥j
values of the list function are stored. This method
is much faster when compared to a comparable
discrete function if many points are to be evaluated.

Random Number Generation

Allrandom numbers used in GPSS/360 are calculated
from asetof eight base nuimbers called seeds. The
user can specify any one of these seeds (RN1-RN8).

Whenever a random number is requested, the
following procedure is followed:

1. The specified seed is multiplied by a multi-
plier which is initially one.

2. The low-order 31 bits of this result are then
stored for future use as a multiplier.

3. The seed index is computed from the high-
order 16 bits and saved for future use.

4, The result of modulo division by 1000 is the
normal random number 0 to 999. The fractional
number used in FNj is obtained by dividing this
random number by 1000. Additional details appear
in the IBM manual Random Number Generation and
Testing.

NOTE: The random number seeds arenot reset

to their original value by either the CLEAR or

RESET card. The JOB card, however, will

reset all eight random number seeds.

TABLE 6;: CORE ALLOCATION FOR FUNCTION ENTITIES

Symbol Bytes Quantity Stored Source of the Quantity

Gl 4 Address of 'Y' values This field is set up at input time
when the dependent variable Y,
values are read in. The block of
storage is obtained from the
chain of COMMON storage words.

G2 4 Address of 'X' values This field is set up at input time
when the independent variable
values are read in if the function
is continuous or discrete. The
block of storage is obtained from
the chain of COMMON storage
words. If the function is list,
this field will contain zeroes.

a3 4 Address of slope values This field is set up at input time
when the slopes are computed if
the function is continuous. For
other functions, this field will
contain zeroes.

G4 2 Number of points in This field is set up at input time.

function

G5 1 bit 0 cyclic indicator This field is set up at execution

bit 1 floating value time.
indicator

G6 1 Field B argument This field is set up at input time
and contains 'C', 'D', 'E', 'L', or
IMI.

G7 4 Field A SNA to be This field is set up at input time.

used as the independent
variable

G8 4 Base for function This field is set up at execution

entity words time to save base address for
function entity words.

G9o 4 Return address This field is set up at execution
time to save return address to
calling routine.

G10 4 Base register for

variable, and matrix
savevalue routines

This field is set up at execution
time to save base register for
variable, or matrix savevalue when
the function routine is called from
either.

37

CHAPTER 6: BLOCK ENTITIES

GENERAL NATURE OF BLOCK ENTITIES

Blocks and transactions are the two basic entities
which form the basis for GPSS/360. Table 8 shows
the card formats and coding symbols for the 43
distinct block types in the GPSS/360 program.
Practically all of the status changes in a GPSS/360
simulation model result from the entry of trans-
actions into blocks and the consequent execution of
the GPSS/360 subroutine which is associated with
each block type.

Three major status changes occur as the result
of transactions entering blocks:

1. Transaction entities are created or destroyed
by the block subroutine (transactions are the only
temporary entities in the GPSS/360 program).

a. Creating blocks - GENERATE, SPLIT

b. Destroying blocks - TERMINATE,
ASSEMBLE

NOTE: The CLEAR control card will also
destroy all transactions (see Chapter 15).

2, The attributes, numerical or logical, of one
or more entities are changed by the subroutine,
This is the most common status change. The
following types of attributes may be changed:

a. The attributes of the transaction entering
the block. All of the block types on trans-
action entities, discussed in Chapter 7,
belong to this category.

b. The attributes of other transactions are
changed. These block types include
SPLIT, ASSEMBLE, MATCH, GATHER,
and TERMINATE. Also included are
SEIZE, RELEASE, PREEMPT, RETURN,
and LOGIC blocks which can affect the
delay chain status of other transactions.

¢. The attributes of other entities are
changed. Chapters 8-13 describe the
block types which affect savevalue, logic
switch, facility, storage, queue, and
table entities.

The current transaction count (Wj) and total
transaction count (Nj) of each block are also
changed as transactions enter and move through
a block (see "Standard Numerical Attributes for
Block Entities" in this chapter).

38

Execution of Block-type Subroutines

All block-type subroutines (except for the GEN-
ERATE block) are executed when the transaction
initially succeeds in entering the block. The block-
type subroutine is never executed at any succeeding
time. After this initial execution, the transaction
either succeeds in moving directly into some next
block or else it is delayed because it cannot enter
a next block. This includes offspring transactions
in a SPLIT block which are unconditionally created
when the parent transaction enters the SPLIT block.
(In the case of MATCH, ASSEMBLE, or GATHER
blocks, transactions may be delayed until other
SPLIT members of the assembly set allow it to
attempt to move to a next sequential block).

All block types (except TEST, GATE, SEIZE,
PREEMPT, and ENTER) will unconditionally allow
an unlimited number of transactions to enter them.
Under various conditions, TEST, GATE, SEIZE,
PREEMPT, and ENTER blocks will refuse entry to
transactions which are attempting to enter them
from preceding blocks. This refusal will involve
executing a major portion of the bloek subroutine,
even though the transaction fails to enter the block,

GPSS/360 ASSEMBLY PROGRAM BLOCK
DEFINITION CARDS

In the GPSS/360 assembly program, eachblock is
defined by a block definition card with the following
general format:

|I.| 2 LOCATION IT | 4 OPERATION l19 A B CDEFG,

There are three basic fields on the input card:
location field (columns 2-6), operation field
(columns 8-18), and the operand field (columns
19-71). An asterisk (*) in column 1 indicates a
remarks card, while a minus sign (-) indicates that
the printout of the block count statisties is to be
suppressed.

Symbols may be used for block locations in the
location field. A symbol must consist of three to
five alphameric, nonblank characters, the first
three of which must be letters. The restriction is
needed to avoid confusing assembly program block
symbols with the mnemonic codes for Standard
Numerical Attributes.

The field A, B, C, D, E, F and G-arguments
which make up the Operand field are entered left-
justified, starting in column 19, and are separated

by commas. If any leading or intermediate fields
are to be left blank, this may be indicated by show-
ing only the separating comma. For example:
PRINT ,, MOV has only a field C entry.

In this case, the first comma would be in
column 19.

TRANSFER BOTH,,QUEI hasno field B entry.

The entire (operand) field, which starts in column
19 and must end by column 71, is terminated by
the first blank encountered.

needs no commas in the
(operand) field because the
only entry is in field A.

RELEASE 25

Five block types require the specification of
auxiliary operators or mnemonics in the operation
field which may begin in column 13 for TEST,
LOGIC and GATE, and in column 14 for the COUNT
and SELECT blocks.

TEST Block

COUNT or SELECT Blocks

Auxiliary Relational Operator

. Less than

LE Less than or equal

G Greater than

GE Greater than or equal

E Equal

NE Not equal

MAX Maximum (SELECT block only)
MIN Minimum (SELECT block only)

Logical Attribute Mnemonic

Auxiliary Relational Operator

j = Less than
LE- Less than or equal

G- Greater than
GE- Greater than or equal
E- Equal

NE- Not equal

LOGIC Block

Auxiliary Logic State

R- Reset

S- Set

I- Invert
GATE Block

Logical Attribute Mnemonic

M,NM- Match, No Match

U,NU- Facility In Use, Not In Use

I,NI- Facility Preempted, Not Preempted
SF,SNF- Storage Full, Not Full

SE,SNE- Storage Empty, Not Empty

LR,LS- Logic Switch Reset, Set

U, NU, I, NI, SF
SNF, SE, SNE, LR, IS

CONTENTS OF BLOCK FIELDS

Each GPSS/360 block may have from zero to seven
arguments, which are coded left to right in fields
A, B, C,D, E, F, and G. Table 8 shows the
allowable arguments in each field and the following
basic conventions apply to all the block types
described in that Table.

1. If a block field in Table 8 is blank, it is not
interpreted by the simulator program

2. If a block field contains an argument which
is not in brackets, the described information must
be entered.

The items in fields A, B, C, D, E, F, and G
of blocks can be:

4. Any Standard Numerical Attribute
(SNAj or SNA*n), or simply the constant
k

b. Only the constant k

¢. Special BCD characters, e.g., TRANS-
FER block selection modes (PICK, ALL,
BOTH, etec.); BUFFER in PRIORITY
block field B, etec.

d. Certain Standard Numerical Attributes,
e.g., only k, Xj, XHj, Vj, FNj are
allowed in the GENERATE block field B.

3. If a block field in Table 8 contains a
description in brackets, the described information
is optional, and a blank field will be interpreted
according to conventions for that block type des-
cribed in Chapters 7-13.

4, If a block field in Table 8 contains an
asterisk(*), an asterisk may be entered for indirect
addressing. In this case, a transaction parameter
number n must follow the asterisk to indicate which
parameter will supply the argument value.

39

5. SNA means any of the Standard Numerieal
Attributes, with the convention that if no alphabetic
characters precede the numerical part (other than
*), a k will be assumed. Indirect addressing of
constants is permitted. Thus, P6 and K*6 are
equivalent. Note that P*6, however, implies a
second level of indirect reference to Transaction
Parameter n, whose index (n) is given by the value
of Parameter 6.

GPSS/360 CORE ALLOCATION FOR BLOCK
ENTITIES

Each GPSS/360 block has three words (twelve bytes)
allocated to it (see Table 7). The standard GPSS/360
program for a 128k machine allows 500 blocks.

If a block has only one variable field this field will
be stored in the second of the three basic words
(B2), otherwise additional words are obtained from
the COMMON area of storage and the address of
this area of contiguous bytes is placed in B2. The
number of hytes obtained depends upon the number
of fields specified and whether or not any of the
fields is a matrix savevalue. If no matrix save-
value is specified in the variable field, the GPSS/
360 program obtains four bytes per argument.
Otherwise, twelve bytes are obtained for each
argument of that block. TFigure 15 outlines how the
various block attributes are stored.

STANDARD NUMERICAL ATTRIBUTES FOR
BLOCK ENTITIES

Each block has two externally addressable
Standard Numerical Attributes which are shown
in Figure 15.

1. Wj=Current number of Transactions at
block j

2. Nj= Total number of transactions entering
block j since last RESET or CLEAR card (or since
start of simulation run if no RESET or CLEAR
cards have been read in)

Each of these counts, Wj and Nj, is automati-
cally accumulated by the GPSS/360 program. These
counts have maximum values of 2151 (32,767)
for the current count (Wj) and 224-1 (16,777,215),
for the total count (Nj).

Whenever the transaction succeeds in moving
through a non-ADVANCE block into some next
block without any blocking, only the total block
count (Nj) of the non-ADVANCE block is incre-
mented. The Wj and Nj counts, at the block where
the transaction currently being processed by the
GPSS program is located, do not include the current
transaction. This is because the Wj and Nj counts
are not incremented until:

1. The current transaction is blocked for the
first time in entering some next block, or until:

TABLE 7: EFFECT OF RESET AND CLEAR CARDS ON BLOCK ATTRIBUTES
RESET Card
Word Length Attribute Value Result of RESET
Before RESET Card Card on Attribute Value

Bl 4 bytes Current Count Unchanged
(last two bytes)

B2 4 bytes Address of COMMON Unchanged
where block arguments
are stored

B3 4 bytes Total Count Set to zero
(last three bytes)

CLEAR Card

Both the current count (last two bytes of word B1) and the total count (last
three bytes of word B3) are set to zero. All other bytes remain unchanged.

40

SYMBOLIC

LOCATION
Exceution Variea with W] = Current number of
Bl Routine Mask each block type Transactions at block j
B2 | Address of COMMON area where additional block words are stored®
012345467
Bl soe bolow Nj = Total number of Transaction to enter block

bit O - Unused

B3 = bit1- A 'l' indicates one or more block arguments are specified as
matrix savevalues.

bit 2 = A '1* indicates block count statistics for thia bleck
are to be suppressed.

bita 3 & 4 - Unused

bits 5, 6, & 7 = Speeify the number of arguments associated
with this black (0-7).

* If a block specifies only a fleld A which s not In the matrix
format this argument will be stored in B2 and no additional bytes
are obtained.

Tigure 15. Core Allocation for Block Entities

2. A positive time is computed in the case of an
ADVANCE block and the transaction is merged into
the future events chain.

NORMAL BLOCK STATISTICAL OUTPUT

The normal statistical output at the end of a
simulation run will contain block counts for all
blocks, except those at which printing is specifi-
cally suppressed. A minus sign (-) in column 1
will suppress printing of the block counts. The
GPSS/360 input program stores a 1 in bit 2 of the
first byte of B3 to indicate suppression of the
block counts printout to the output phase of the
GPSS/360 program.

Shown below is a portion of a block count
statistical output.

RELATIVE CLOCK 5028055 ABSOLUTE CLOCK 6028055

BLOCK COUNTS
BLOCK CURRENT

TOTAL BLOCK CURRENT TOTAL BLOCK CURRENT

To facilitate the analysis of the block count
statistical output, the blocks are divided into groups
of up to 50 blocks each until all defined blocks are
exhausted. These groups of 50 are further divided
into five columns of ten sequential blocks each (i.e.,
blocks 1-10, 11-20, 21-30, . . . 51-60, 61-70,
etc.). The CURRENT column is the current
number (Wj) of transactions in the block, while the
TOTAL column is the total number (Nj). In the
example below there is currently one transaction
at block 3 and one transaction at block 14.

In an error printout, the two block counts at the
current block of the error-causing transaction will
generally not include the error transaction, since

this transaction has neither left the block nor been
delayed.

TOTAL

10002
10002
10002
10001
10001
10001
10001
10001
10001
10001

B oomamoeene
- - -R -

11
12
13
14
15
16
17
18
19
20

EE-R- ARl

10001
10001
10001
10001
10000
10000
10000
10000
10000
10000

21
22
23
24
25

0
0
0
[
0

10000
10000
10000
10000
10000

41

Block Redefinition

Any GPSS/360 block except a GENERATE, MATCH,
ASSEMBLE, or GATHER, may be redefined to any
other block type with a block definition card for

the second type. MATCH, ASSEMBLE, and
GATHER blocks may be redefined in the same
manner only if the current count (Wj) at the block is
zero when the second block definition card is
encountered, If the eurrent count is not zero Input
Error 282 will be given. A GENERATE block may
be redefined only by another GENERATE block
definition card. If the user attempts to redefine a
GENERATE block to any other block type, Input
Error 282 will be given. If there is a transaction
currently at the GENERATE block waiting to enter
the system, it is returned to the chain of inactive
transactions and a new transaction is activated by
the GENERATE block input routine

using the block arguments of the new GENERATE
block.

CHANGE and EXECUTE Blocks

There are two blocks which are associated solely
with block entities: CHANGE and EXECUTE,

CHANGE Block

lo Loc|7]s ame |10 4 | B | =
l l CHANGE | From block no, | To block no,

k., SNAjJ, SNA*n, |k, SNAj, SNA*n,
*n Symbolic Bloek|*n Symbolic Block

The CHANGE block provides a means of changing
the blocks in a model during the course of a simu-
lation run. The value of the field A argument is
interpreted as a block number j. This block j is
CHANGEd to an identical copy of the block whose
number (i) is given by the value of the field B
argument. If the block indicated by field B is
undefined, then the changed field A block will also
become undefined. The field B block remains
unchanged.

The current count, Wi, of the field A block is
not changed. Only the total count, Ni, is set to
ZETO.

Example:
5 ASSIGN 9 vé
30 CHANGE 5 60
60 SAVEVALUE 20 V7

42

In the above example, block 5 (ASSIGN) will be
changed to a SAVEVALUE (block 60) with a field A
argument of 20 and a field B argument of V7. The
current count of block 5 will remain the same, and
the total count will be set to zero.

In the case of a CHANGE block error, the
GPSS/360 program will give the error statistical
printout aleng with Execution Error 698, 'Tllegal
Change in Change Block",

EXECUTE Block

2 LOC| 7|8 KAME

EXECUTE

1t A
Block no. |
k,SNAJ,SNA*R,*n
Symbaolic Block

EXJXUTE

The EXECUTE block allows the entering transaction
to perform the operation of any other specifie block
without diverting the transaction from its normal
sequential flow (see exceptions below). The value
of the EXECUTE block field A is interpreted as a
block number j and the operation of that block is
performed as though the transaction had actually
entered it. The transaction then proceeds sequenti-
ally from the EXECUTE block,

It is important to note that the transaction will be
delayed in the EXECUTE block, not in the block
executed, whenever:

1. The executed field A block is an ADVANCE
block with a nonzero time delay.

2, The executed field A block is a SEIZE block,
and during the same clock time that the SEIZE is
executed, another transaction PREEMPTs the same
facility.

3. The executed block is a MATCH block and a
matching transaction is not found at its conjugate
MATCH block.

4. The executed block is an ASSEMBLE or
GATHER block and the specified number of
transactions has not yet been assembled or gathered.

Thus, for example, a transaction which executes
a MATCH block and is delayed because no match
exists initially, will proceed only when another
member of its assembly set attempts to MATCH a
transaction at the EXECUTE block (not the executed
MATCH block).

Exceptions:

1. Execution of a block which does not direct
transactions to the next sequential block
(TRANSFER, or LOOP withthe looping parameter

not decremented to zero) will cause the transaction permitted and will cause a simulator error if

to transfer or loop, and it will not proceed attempted.
sequentially from the EXECUTE block. Internally, the EXECUTE block operates as if its
2. Execution of a GENERATE block is not core words are the same as core words of the block

whose number j is specified in the field A.

TABLE 8: GPSS/360 BLOCK FORMATS AND SYMBOLS

The following pages describe the format of the block types used in GPSS/360 and their corresponding block
symbols. Reference is given to the page on which the operation of each block type is discussed.

If the user wishes a more convenient and less time - consuming method of developing block diagrams, use
of the five basic blocks shown below is suggested. Below each block symbol appears a list of the block types
found on the following pages which each symbol represents.

1 9.9.9.9 4 KXXXXX
A, B,C,D

ADVANCE ALTER PRINT
ASSEMBLE ASSIGN TRACE
BUFFER INDEX UNTRACE
CHANGE LOOP WRITE
COUNT MARK

DEPART PRIORITY

ENTER SAVEVALUE

EXECUTE

GATHER

JOIN

LEAVE EXAMINE
LINK GENERATE GATE
LOGIC TERMINATE SCAN
MATCH TEST
MSAVEVALUE TRANSFER
QUEUE

PREEMPT

RELEASE

REMOVE

RETURN

SEIZE

SELECT

SPLIT

TABULATE

UNLINK

43

(x) VNS

Z¥ a8ed () VNS ‘ou oo1q dDNVHD
¥ "ou 3201q ,03, oy,
L6 @3ed gaJgand
m U _”E ﬂZmM_ () VNS () VNS -ou
aegt g1 23ed Jaiyipojijaa8ajur 92anos | asjswelred NOISSV
R uornoung
(x) VNS
gg o8ed aquissse A THNIASSY
0} *ou
Vv
A\ A _”xuoﬁ jxou Teuonido ue saiyoads O Em_m_
(x) VNS ud ‘ud (x)VNS dd ‘ud| TIV “(x)¥NS () WNS
juanSae anqraye JuawNSIE 2InqrIye Moo *ou dnoig)
61T o9ed HALTIV
[Ivns]
qa'y peoads _ur“. ﬂZmH_
09 @3ed 1o HONVAQY
JaTjIpoun ugaw
TOdMAS M00Td AONHHAA 39 A q a 0 qa ¥ NOLLVHAJO

(pomunjuop) 8§ ITAVL

44

v
(x) VNS
zp o8ed ‘ou }2o1d ALOOTXT
il (+) VNS ﬁ () E,HL () VNS
LTT @4® 11X9 fnuenb -ou dnoan ANIINVX A
ajeuIa}[E DLIaWNU
5
_” (x) .HEL (+) ¥NS
LeT 28ed sjun | -ou 2881038 YIINZ
2
011 oBed TL .%L (x) VNS
sjIun *ou anang JUVdHd
A'a'o'9’'v
©,
pajunod aq o} TL mz& (+) ¥NS (x) VNS | (+) VNS ‘ou
18 28ed JpuowALW YNS juawnsaie Juar] xaddn] Jamof | Jajawered o, LNOOD
yajew
TOdINAS MD00TH AONTH 4 T C i a 2 a ¥ NOLLVIAdO

45

() VNS

aayyed
v 16 23ed 0} -ou YAHLVD
H () ﬂzwu
ased
ST U0}Ipuod (x) VNS | N
5 28ed J1 3o01q XN aLvo
v ‘ou yooid N
(yoyeuwr) (x)
(x) VNS
as[ed JANS
S1 UOL}Ipuod (¥) VNS |@NS
ge1 aded 71 300[q jxaN | “ou afeiols aS ALYD
as
x)
[vas |
ased n
oeT a8ed S1 UOHIPUCD (+) VNS | ON
0 11 yoo]q XeN |ou AY[LoBd 1 dLvD
IN
x)
H () ﬂZmH
asteJa
ST uonipuod |(x) NS ‘ou [UT
v 1871 @8ed JUNooIq IXeN | M8 91801 | ST ALVD
x)
TOTNAS A0 Td | JdONAHTL AT Ei e v NOILVIZd0

46

q
4 ld
SINI'T TL VNS H_ Od1d ‘0dIT (+) VNS
oL o8ed e oold ureyo | ‘ou ureyd SINI'T
v aJEUII}B jo Surispio
ﬁ () ﬂz& (x) VNS
gcT @8ed sjium jo ou (ou a8eI0Ig AAVAT
AL
q
T*___ VNS u (#) VNS
e1T a8ed £3ryuenb ‘ou dnoag NIOPr
® Jtrauwmnu
g TNS ¥NS ‘ou
Y 0g oded JuawaIoul | Jajewered WAAQNT
adf] aojaweaed £noads o3 \H, 10 Jd, ‘HUElq 2q
%m.,w £uo Kewr o protd (I Xo [x ‘fA ‘[NJ 30 juejsuod ® aq Lew J-¥ SPIaLd | T 210N
-m.pm_p.mEmHmm“_
gg 28ed L ‘ou Tﬁ.uoﬁau_ _” U_EEUH_ _“ ummhn.”_ _”um_ﬁﬁoﬁg meﬁu_ AILVIANTD
TOHdNAS MD0Td HONTHHA TH oI | a 2 g v NOLLVYIIdO

47

‘ou () VNS

ou
Evl m et w EQEWQL _”.2 xoc_mu_ _“mmu ‘ou L3118 LdWNATYd
T'ao‘a’v
- (x) VNS (x) VNS () ¥NS| [3]6) VNS ANTVA
ANTVATAVSIN Tm anyea ‘OU ULIN]OD ‘ou MOJ| "Oou XLIIEBIN - TAVSIN
Vv ou () VNS
€6 yo01q HOLVIN
ayednfuoo
ol (4) VNS
18 ou
aajawered SUVIN
d
ou (x) VNS
£8 0u () VNS “ou
g 3}oo[q xau| Jaojeweaed doO01
(«) ¥NS 1
181 ou "mg 01807 H 01901
8
x)
TOANAS SID0 T4 TONTH A A0 o1 a 0 q v NOILVHAdO

45

1
a‘a‘o’ g
4 TL E& TL qz& Tm .a& ?.._ ﬁmmm _”,Hﬁ_, .Eﬂi () VNS
91T @8ed X9 anyeA ngqraye f13uen munod *ou dnoig) STAOW T
2)BULIIE Suryoyewr | UOT}OBSUEBLL oLIaWNu
(x) VNS
07T 29ed ou £11oed ASVATIH
m.n -
@ Tt ﬂZmH_ "6u () VNS
89T @8ed sjuf | ‘ou anand ANAND
96 o3ed (x) VNS
Tmmmb@ fpaowd | ALMOMEd
A
D WE«E@E TL Ezmg _HFL ﬂZmu
LT 28ed BurSed DTUOUID U Jruary aaddn |jrwar] a8mo] INTI A
a- v fuug
TOHINAS 3D0Td IONTYTLHH a q a o ag V NOILVHIdO

49

T'a0dv

[E,i (+) VNS
X3 oluouIouw | juauwmire (+) NS (%) ¥NS (+) VNS
¢g o8ed aleuIaE VNS yojewx] xaddn jruar] Temof |ou asjeweaed | ¥, LOATHAS
(x) VNS
0%T 2Sed ‘ou M1[roeg HZI1US
4d ‘ud
Tt ﬂz& (+) WNS ud ‘ud (x) VNS amqrijje () NS
1T a8ed JiXa *ou angiaye juawmBIe | UOIIOBSUBL], ‘ou dnoan NV DS
d1'a‘o‘'ga'v ajeuIAE Jajowinl ed paxisap Jojeua
(7]
gy ou (4) ¥NS
() VNS Jaquinu
0ZT 98ed _Hi aInqriye an[easAss | ANTVATAVS
(x) VNS
\ 87T @8ed ou A0 NYNILIg
J2\
TOEW XS SI00Td | dONAOdI a9] i a 0 q v NOILVHAJAO

50

‘pasn ag 1snuwl uolesijioads JoslIp apouwl uo1delas TIV PIM

1
F .HEUEH_ T _HE_ ﬂz& 1 &) VNS apour
29 a8ed urxepurl | g 3oolq Xau | ¥ oo[q Jxau uoryoafes HAISNVEL
_“E ﬂz&
g9 29ed sjmumn | FLVNINUIL
v
T
3]
> ﬁ () <2L (x) VNS (x) ¥NS | TT
20 2U
= TR d 3oo1q X % Duv I98v | @9 LSHEL
AN
Fg oded q
x)
F
| g (x) VNS ['ou (s) VNS
LLT 98ed sjun ‘ou SqEL TLVINGV.L
dq
m?u &.z&
Vv UlIaquinu
ﬁ) ﬂz& [e11es (x) VNS () VNS
Lg a8ed siosjowrered |aojisjouwrexed | ¢ yoolq au | sarded ‘ou 111dS
Jo Jaquunu
TOdINAS ID0Td AONTITATH a 0 da v NOILVHIdO

51

60T @8ed adejqop ALTIM
181 @9ed AOVHLNA
Jq g q
a _H.MD&_.M; #H,,Hq.eﬂ.u_
9 juawndae (x) VNS "ou — unod “ou
SINTTINN v z) a8ed TH yoo1q ”.xmﬂu_ gojew asrewreaed VN JquIun | ¥ ¥o0[q jxXau | ureyd Ias[] SINTTNN
18T o8ed HOVHL
TOdINAS MD0Td HONIHITA 70 oaJ qT a o a v NOILVIAdO

(penunuo)) g ATIVL

52

CHAPTER 7: TRANSACTION ENTITIES

Some of the basic attributes of transaction entities
such as the transaction parameters and priority
level have been described in Chapter 2. As was
previously mentioned practically all of the status
changes in GPSS/360 models occur as the result of
transactions entering blocks, and the consequent
execution of the GPSS/360 subroutines associated
with these blocks. This chapter describes the
attributes transformed by the following block types:
ADVANCE, TRANSFER, GENERATE,
TERMINATE, SPLIT, ASSEMELE, GATHER,
MATCH, PRIORITY, BUFFER, ASSIGN,
INDEX, MARK, GATE, TEST, LOOP, LINK,
UNLINK

S/360 CORE ALLOCATION FOR TRANSACTION
ENTITIES

Experience has shown that the systems analyst can
use all the power and flexibility of GPSS/360 only
when he understands all the basic attributes of
transactions and how they are changed in the course
of a simulation run.

Each transaction in the GPSS/360 program con-
sists of four contiguous basic control words (T1 -
T4). These four words are allocated regardless of
the status of the transaction, i.e., inactive, future
event chain, current event chain, etc. When a
transaction becomes activated additional contiguous
bytes are required to carry transaction information.
This includes 20 bytes for transactions words T5-

T14 plus additional bytes for transaction parameters.

The number of bytes obtained for parameters is
dependent upon the number and type of parameters
(two bytes/halfword parameter and four bytes/full-
word parameter). The address of this contiguous
area is stored in T3 of the basic transaction words.

Table 9 describes in detail the contents of both
the basic and additional transaction words.

STANDARD NUMERICAL ATTRIBUTES OF
TRANSACTION ENTITIES

Of the many transaction attributes contained in
each set of transaction words, four attributes are
externally addressable as Standard Numerical
Attributes.

Transaction Parameter — Pn, P*n, *n

Each transaction in the standard GPSS /360 program
has 0 to 100 fullword or halfword parameters whose
values are stored as signed integers. The Standard
Numerical Attribute Pn references the value of
Parameter n of the transaction currently being

processed by the GPS5/360 program. P#*n is the
value of the parameter whose number m is given by
the value of Parameter n. The parameter values of
transactions other than the transaction currently
being processed cannot be addressed directly in a
GPSS/360 model. It is often necessary in GPSS/360
models for one transaction to store its parameter
values in savevalue locations so that a second
transaction can directly reference the savevalues
(¥j) and thereby indirectly reference the parameter
values (Pn) of the first transaction.

Parameter values can be modified by ALTER,
ASSIGN, COUNT, INDEX, LOOP, MARK, SCAN,
SELECT, and SPLIT Blocks.

Transaction Transit Time—M1

Transaction word T6 stores a positive 31 bit mark
time. The Standard Numerical Attribute M1 is the
transaction transit time of the transaction currently
being processed by the GPSS/360 program. This
transit time is computed in the following manner:

M1=Transaction = Current —Mark Time (T6) of the
Transit Time Absolute transaction currently
Clock being processed
Time

When a transaction is created in a GENERATE
block the value of the absolute clock is placed in the
T6 mark time word. Whenever the transaction
enfers a MARK block with a blank field A (see
"MARK block' later in this chapter) the current
absolute clock time is placed in the mark time word.

The Standard Numerical Attribute (M1) therefore,
measures the transit time of the transaction cur-
rently being processed as either:

1. the time interval from its creation in a
GENERATE block until the current absolute clock
time, or

2. the time interval from the last time it moved
through a MARK block with a blank field A until the
current absolute clock time.

The transaction transit time, M1, is the most
common distribution table argument, since one of
the key nerformance characteristics in many sys-
tems is the transit time of transactions through the
system.

The transit time of transactions other than the
one being currently processed cannot be addressed
directly. Once again, it may be necessary to store
these M1 values in intermediate savevalue locations
so that they can be referenced by other transactions.

Parameter Transit Time — MPn, MP*n

The MARK block field A can specify a Transaction
Parameter number n, Transactions which pass

53

Basic Transaction Words (T1-T4):

1
T 4 bytes)

Tz(sl bytes)

T3(4 bytes)

[
¥ (4 bytes)

TABLE 9: S/360 CORE ALLOCATION FOR TRANSACTION ENTITIES

Future Events Chain

Previous Transaction (number) in

Next Transaction (number) in
Future Events Chain

Current Event Chain

Previous Transaction (number) in

Next Transaction (number) in
Current Event Chain

Address of Common Area where T5 begins

Time Transaction is scheduled to leave Future Event Chain

Additional Words Obtained from COMMON Area (T5-T15):

5
T (4 bytes)

T4 bytes)

T7
(1 byte)

T10
(1 byte)

T13
(2 bytes)

T14
(4 bytes)

T15

54

Next Block for Transaction

Next member of Assembly Set

[MARK TIME
T8 Preempt T9
Priority (1 byte) Count (1 Byte)

T9 = bit 0 = A '1" indicates fullword Parameters

01234567
(see below)

bit 1 - A '1" indicates Transaction is in Multiple Queues

bit 2 = Tracing Indicator
bit 3 - Unused

bit 4 - A'l' indicates Transaction is a member of a Group
bit 5 = A "1' indicates Transaction in Future Event Chain
bit 6 - A "1' indicates Transaction in Current Event Chain

bit 7 - A "1' indicates Transaction in Interrupt Status

01234567 T11
(see below) (1 byte)

Number of
Parameters

T10 = bit 0 - Scan Status Indicator
bit 1 - TRANSFER SIM Mode Delay

Indicator
bits 2 & 3 - Selection Factor
(Z=BOTH=3

ALL)

bit 4 - A '1' indicates last block for

TRANSFER ALL

bit 5 - Matching Indicator
bit 6 - Preempt Status Indicator

bit 7 - Preempt Flag

Queue Number (if in a Queue)

Time Transaction Last Entered Queue

Begin Parameters 2

T12
(1 byte)

(see below)

T12 Number of
bytes obtained
for xact words
T5-T14 and
Parameters.

through such a MARK block will have the absolute
clock time stored in Parameter n. Subsequently,
the Standard Numerical Attribute, MPn, is com-
puted as the parameter transit time of the trans-
action currently being processed by the GPSS/360
program in the following manner:
MPn=Parameter=Current—Value of Parameter

Transit Absolute n of the Transaction

Time Clock currently being

Time processed

It is advisable to use a fullword parameter for
this use since the value of the absolute clock might
easily exceed the maximum value allowed in a
halfword parameter (32, 767).

Transaction Priority — PR

Each GPSS/360 transaction carries in byte T7 its
assigned priority level. This value (0-127) is
assigned in a GENERATE block and may be modi-
fied by a PRIORITY block., When the Standard
Numerical Attribute PR is referenced the program
obtains the priority of the currently active trans-
action.

STANDARD LOGICAL ATTRIBUTES OF TRANS-
ACTION ENTITIES

There are two Standard Logical Attributes associ-
ated with transactions whose true and false values
are used in GATE M and NM blocks to control the
flow of transactions.

1. Mj is true if another member of the assembly
set of the transaction currently being processed in
a GATE M block is in a "matching" condition at
block number j. Block j should be a MATCH,
ASSEMBLE, or GATHER block.

2, NMj is true if no other members of the
assembly set of the transaction currently being
processed at a GATE NM block are in a ""mateching"
condition at block number j. Block j should be a
MATCH, ASSEMBLE, or GATHER block.

A detailed explanation of these Logical Attributes
is given in "GATE M and GATE NM Blocks" later
in this chapter.

TRANSACTION PRINTOUT

Each transaction currently active in the system will
appear in one of the following five sections of the
transaction printout:

CURRENT EVENTS CHAIN
FUTURE EVENTS CHAIN
USER CHAINS

INTERRUPT TRANSACTIONS
TRANSACTIONS IN A MATCHED STATUS

Table 10 shows a sample transaction printout
from a GPSS/360 simulation model. Table 10
describes the contents of the various columns which
are printed out., Knowledge of the transaction
printout is essential for efficient use of GPSs/360,
particularly in debugging the inevitable errors which
occur in building a simulation model.

Current Events Chain

Each of the transactions in the current events chain
is printed out in order of descending priority. This
is also the same order in which they are linked in
the chain, as outlined in Figure 16. TT of each
transaction contains the Priority Level (0, 1, . .
127). Word T2 is used to create the actual linkages
in the chain. The first two bytes of word T2 con-
tain the number of the transaction which precedes
this one on the chain, while the second two bytes of
T2 contain the number of the transaction which
follows this one on the chain. The overall GPSS/
360 scan, described later in this chapter, processes
transactions in the order in which they appear
through these current events chain linkages.

A priority class table of 128 words is associated
with the current events chain (see Figure 16).
Each word represents a specific priority class (0,
1, « « « « . 127) of transactions and contains the
following information. The first two bytes contain
a count of the number of transactions on the chain
in that priority class. The last two bytes of each
word contain the number of the last transaction in
the particular priority class. Whenever a trans-
action is added to the current events chain (see
Table 11) it becomes the last transaction in its
priority class. Each transaction on the current
events chain has a 1 in bit 6 of byte T9. This is
printed as a 2 in the "CI" column of the transaction
printout.

Future Events Chain

The transactions in the future events chain are
printed out in order of ascending block departure
times from the various ADVANCE and GENERATE
blocks in which they are delayed. These times,
which are printed in the "BDT'" column, are all
greater than the current absolute clock time which
is printed preceding the transaction printout. The
transactions are printed out in the same order as
their linkages in the future events chain, as outlined
in Figure 17. Word T4 contains the ADVANCE or
GENERATE block departure times.

Word T1 is used to create the actual linkages in
the future events chain, in the same manner as the
current events chain. Each future event chain
transaction has a '1l' in bit 5 of Byte T9. This is
indicated by a ""4" in the ""CI" column of the trans-
action printout.

55

TABLE 10: DESCRIPTION OF TRANSACTION PRINTOUT

CURRENT EVENTS CHAIN

TRANS

PC PF

s

=

0 o~ o o o o (3] [y] o o4 o o~ o4 o o~ o~ o o~
o

—— — - — - — - — — - - —_ — — — — — —
[

—

-

—— — — — — — — — — - — - — — - — — -
wy

-

-

OQDUDDOOOGODDDDOOOOOOOOOODO0000000000000000OUDUDOQODDDDQUODO

PL

ODOOOU.UGOOOOGQDUDOOODDDDUOD0_0UUDDODUODOODDGG_U_U_UOOOG.UU_U.OOO.UD.U

Ll
o

30060090020050OEQO\.DD“OG?DOUDDBOO.ODUD.OO.ZOOEUOBOG..IDD_“OO?DUUDO
— — - o™ o L2} ~ = un o

™~ L] L] L} = = uwy -

o
[«

0000000000000ODGUDDGOGGODDG000000000000000000000000000000000

1
a
w - ™ L] = w ~0 i~ +1] o (=] — o™ L] = uy O P~ @
= - — — —_ - — — — —
=
=
1
K
o
<
=
= Ll = u 0 I~ w o =] - o™ " = un 0 M~ 1] o
w - — — - — -— — - - =
w
Mh—_ = 3 = 3 = =t = =t = e = = = = = = =
=
w
w
o
a
M1d M L) L]] L] m L] Lg} L] L] L] L] m 2] " s L]
o
r
o
mqr ™ Lt = uny ~0 o @ o o - o~ Lzl =+ u ~0 b= o
2 - —_ - — — - - - —
- L] = "3 ~0 ~ m o~ (=} = o~ m =+ wn ~0 [t @ o~
— —_ —_ - - - —_ - — -

19

20

19

20

20

21

20

21

56

TRANS

BDT

BLOCK

PR

SF

NBA

SET

MARK TIME

Pl, ... P4

P5, ... P8

S

TI

DI

CI

TABLE 10: (Continued)
Transaction number j.

Block Departure Time. This represents either the absolute clock time at which the
transaction is scheduled to leave an ADVANCE block (Future Event Chain) or the time at
which it last left an ADVANCE block (any other chain). BDT is zero for transactions
created at a SPLIT block until they enter an ADVANCE block.

The number of the block at which the transaction is currently located. If the transaction is
on the Future Events Chain or a User Chain the T1 word is used for transaction linkages
and the current block is kept in the last two bytes of word T2 (T2+2). If the transaction is
on the Current Events Chain or in an Interrupt or Matching status, the T2 word is used for
transaction linkages or the Assembly or Gather Count, thus, the current block for the
transaction is kept in the T1 word (T1+1).

Priority Level of Transaction (0, 1, . . . 127). This is stored in byte T7.

Selection Factor. Indicates the type of next block trial to be made. This is stored in bits
2 and 3 of T10. (blank) = indicates only one next block to be tried. B = indicates that the
current block (given in the BLOCK column) is a TRANSFER block with a BOTH selection
mode. The second block is available only internally in T1. A= indicates that the current
block is a TRANSFER block with an ALL selection mode. The NBA column lists the lowest
of the n next blocks to be tried, The highest block number is available internally in T1.

The next block to be entered by the transaction. This is stored in the first 2 bytes of word
T5.

Assembly Set Linkage. When the transaction is created, the set number is equal to the
transaction number itself. A linkage is formed whenever the transaction enters a SPLIT
block. This linkage is updated when any member of an assembly set enters a SPLIT or
TERMINATE block. This is stored in the second 2 bytes of T5.

When the transaction is created the value of the absolute clock is placed in word T6. When

the transaction enters a MARK block with a blank field A the current value of the absolute
clock is entered in word T6.

The first line of printout for each Transaction lists the current value of Parameters 1
through 4. The second line lists the values of Parameters 5 through 8 where P5 is in the
P1 column, P6 is in the P2 column, etc.

Scan Status Indicator. This is stored in Bit 0 of T10. A one indicates that a next block
trial is to be suppressed until the condition causing the delay changes. The bit is reset
to zero for all transactions in the Delay Chain when the blocking condition changes.

Tracing Indicator. This is stored in Bit 2 and 3 of T9. A one indicates that the transaction
has entered a TRACE block. The bit is reset to zero by an UNTRACE block.

Delay Indicator. This is stored in Bit 1 of T10. A "one' indicates that the transaction has
failed to move directly into some next block. It is used with the TRANSFER block in the
SIM selection mode which resets the delay indicator. The indicator is also reset when the
transaction leaves an ADVANCE block.

Chain Indicator. This is stored in T9. "Zero" indicates transaction is in Matching Status

oron a User's Chain.
11" indicates the transaction is in an Interrupt Status.

57

TABLE 10: (Continued)

CI (Cont) ""2" indicates the transaction is in Current Events Chain,
"4" indicates the transaction is in Future Events Chain.

MC Matching Condition. This is stored in Bit 5 of T10. A "four' indicates that the transaction
is available for MATCHing, or is at an ASSEMBLE or GATHER block in the process of
being assembled or gathered; otherwise the column is blank,

PC Preempt Count. This is stored in byte T8, This field is incremented by one whenever the
transaction is PREEMPTed at one of the facilities which it has SEIZEd or PREEMPTed.
It is decremented by one whenever the preempt condition is removed.

PF Preempt Flag. This is stored in Bit 7 of T10. A "one" indicates that the transaction is to
be PREEMPTed when it enters the next ADVANCE block that specifies a nonzero time.
The transaction will also be PREEMPTed if it is delayed at a MATCH, GATHER, or
ASSEMBLE block. The indicator is reset to zero when the transaction is PREEMPTed.

Current Events Chain Control Word

Lagt Transacton (mumber[Firat Trananction (number)
in Current Eventa Chain in Current Events Chain

Transaction Word T2

Next Tranaaction (number
in Current Events Chain
| [I Pyt

Overall GPSS/360 Scan
L]

Previous Tranasction (No.)
In Current Events Ch
END
PRn 2 PRm 2 ...2 PRo

* soe Table 11 for description
of priority class table

Figure 16. Organization of Current Events Chain

Future Events Chain Contrel Word

Firat Transaction
on Futurg Events

Last Transaction (number) (numbar)
an Svenl hain L]

Transaction Word T1 Transaction Word T4

NoxtuTurnnmctl.oh (number) BDT Each j th transaction Whiﬂh enterﬂ a pDBith&—
I; # %‘m Fulice Events Chaly [: _I time ADVANCE block or is created in a

GENERATE block is merged into the Future
L i l I 1 20Ty Il Events Chain from the remote end so that
— BDT; = BDT; < BDTj43, Consequently, if
[‘ 1 [s | two transactions have the same BDT, the first

one merged will precede the other on the Future
Event Chain, When the clock is updated to their

[o Tranacton (6, | B BDT they will be moved to the Current Events

Chain in the same order,

I 1

—

BOT, SBDT, <BOT,< ... BDT,
Figure 17. Organization of Future Events Chain

58

TABLE 11: INFORMATION IN PRIORITY CLASS TABLE ASSOCIATED WITH CURRENT EVENTS CHAIN

Each of the 128 entries (0-127) in the Priority Class Table is made up of two two-byte fields. The first two
bytes in each word represent the total number of transactions in the Particular Priority Class. This count is
incremented by one when a transaction of that particular priority:

1. is added to the Current Events Chain,
9. has its Priority Level changed in a PRIORITY block to the particular priority,
3. is created at a GENERATE or SPLIT block and put on the Current Events Chain.

This count is decremented by one when a transaction of that particular Priority Level:

1. is switched from the Current Events Chain to the Future Events Chain in a positive-time
ADVANCE block,

9. is switched from the Current Events Chain to an Interrupt or Matching status in a MATCH,
GATHER, or ASSEMBLE block,

3. has its Priority level changed to another level in a PRIORITY block,

4, is Terminated in a TERMINATE block,

5. is switched from the Current Events Chain to a User's Chain.

The second two bytes in each class are reserved for the number of the last transaction in that particular
priority class. This number is changed each time a new transaction is added to a particular priority
class or the last transaction is removed from the Current Events Chain. This can occur under the same
three conditions described above for incrementing the count.

PRIORITY CLASS TABLE

Priority
Level
127 Total number of Transactions currently Number of last transaction in
in Priority Class 127 Priority Class 127
126 Total number of Transactions currently Number of last transaction in
in Priority Class 126 Priority Class 126
1 Total number of transactions currently Number of last transaction in
in Priority Class 1 Priority Class 1
0 Total number of transactions currently Number of last transaction in
in Priority Class 0 Priority Class 0

59

User Chains

The third part of the transaction printout consists of
transactions placed on user chains by the analyst.
The chains are printed in numerical order. The
transactions in each chain are printed in the order
the analyst merged them on the chain. With the
exceptions that the NBA is blank and the "CI" column
is blank, the transaction has the same information
as the current, future, and interrupt Chains.

Interrupt Chain

The fourth part of the transaction printout consists
of those transactions which have been PREEMPTed
on one or more facilities which they have SEIZEd
or PREEMPTed. These transactions are printed
out in order of their transaction numbers. These
transactions also contain the same information as
the previous chains except that the "CI" column
contains a 1.

Matching Chain

The final transaction printout consists of those
transactions which are in a "matching' con-
dition at MATCH, ASSEMBLE, or GATHER
blocks. These transactions are identified

by their matching indicator (bit 5 of T10)
being on. This is indicated in the printout by
a 4 in the MC column. This chain is also
ordered on transaction number.,

60

ADVANCE BLOCK, IN WHICH TRANSACTIONS
ARE DELAYED FOR POSITIVE TIME

| = |

Mean Time Spread

] 2z Loc | TlB OPERATION |19 A
ADVANCE

k, SNAJ, SNA®n | k, *n, SNA ADKA:;“
SNA*n ¥
Funetion
modifier
FNi, FN*n

ADVANCE blocks never refuse entry to transactions.
Transactions move to the next sequential block.
The ADVANCE block is the means by which trans-
actions may be delayed in the course of their
progress through a GPSS/360 block diagram. The
ADVANCE block will compute the interval for
which the entering transaction is to remain at the
block. This time may have any integral value,
including zero. If the time computed is zero, the
GPS8/360 simulator will continue processing the
entering transaction, and will immediately attempt
to move it to the next sequential block. The delay
times in the ADVANCE block are specified as
described helow.

Mean Time (Field A)

The value of the field A argument (k, *n, SNAj,
SNA*n) is taken as the mean (or basic) block time.
Constant values cannot exceed 999999, The values
of Standard Numerical Attributes (SNAj, SNA*n),
however, are restricted only by their own ranges.
"Various Ways to Specify Constant Values" in
Chapter 2, for example, shows how an INITIAL
card can be used to load a large constant into a

savevalue location, whose value Xj can then be
referenced as an ADVANCE block mean time.

spread Time or Function Modifier (Field B)

The basic blocktime can be modified in one of two
ways by a field B argument:

1. A spread constant (k, *n, SNAj, SNA*n)
which must not be greater than the computed mean
time, will define a uniform or equiprobable
distribution of integer delay times (see below).
Each of the (2B+1) integer times between A-B and
A+B will be chosen with equal probability: 1/2B+1).
For example, a spread of 5 used with a mean of 10
will produce block times in the range 10 plus or
minus 5 (i.e., from 5 to 15). Only one of the
possible integer values would be chosen for each
transaction which enters the ADVANCE block.
Each integer in the range (5-15) will be computed
with equal probability (1/11), including the
endpoints, 5 and 15. Fractional action times are
excluded since the simulator clock only assumes
integral values. The spread must not be greater
than the mean; otherwise, negative ADVANCE
block times may result and Execution Error 530 will
ocecur (spread exceeds mean in time computation).

fitime)
A S I
2 x Spread +1 ADVANCE
Block Time
D' Mean - Spread Mean Time Mean + Spread
(A-field)
A = field A mean time
[{time) B =[ield B spread
APy ADVAKCE
Block Time
0 A=DB A A+ D
}4—5 —I+—* B —"I'l

2. TField B function modifier (FNj, FN*n) will
cause the computed value of the SNA specified in
field A to be multiplied by the value of the function
specified in field B. The function value is not
truncated to an integer before the multiplication.
Consequently, ADVANCE block mean times can be
modified by fractional valued functions such as the
exponential function described in Chapter 5.

Transactions That are PREEMPTed While in an
ADVANCE Block

When a transaction has been merged into the future
events chain, after entering an ADVANCE block,
another transaction may enter a PREEMPT block

which references a facility that the transaction in
the ADVANCE block has SEIZEd. The SEIZEing
transaction in the ADVANCE block can be in either
of the following two states:

1, It is being PREEMPTed on the first facility
which it has SEIZEd.

2. It has already been PREEMPTed on another
facility which it has SEIZ Ed.

If the ADVANCE block transaction has not been
PREEMPTed the following steps occur (see Case
3B in "PREEMPT Block" in Chapter 10 for further
details):

1. The remaining time which the transaction is
to spend in the ADVANCE block is stored in the
block departure time word T4, where:

Remaining Block Current
ADVANCE = Departure - - Absolute
Block Time Time (word T4) Clock Time

2. The transaction is unlinked from the future
events chain.

3. The seventh bit of byte T10 (Preempt Status
Indicator) is set to indicate that the transaction is
now in an interrupted status.

4, The eighth bit of byte T9 is set to indicate that
the transaction is now on the interrupt chain.

5. The preempt count, T8, is set to one.

The section on the "RETURN Block" in Chapter
10 describes how these transactions are removed
from a PREEMPTed interrupt status and are merged
back into the future events chain, It is also
possible for a transaction to be PREEMPTed on
facilities which it has previously PREEMPTed. A
detailed description of this feature is given in
Chapter 10.

An ADVANCE block transaction which has already
been PREEMPTed on one facility and placed in an
interrupt status, can be PREEMPTed on as many
as 255 more facilities which it has also SEIZEd.

The preempt count (in transaction location T8) is
incremented by one each time that a further
PREEMPT occurs (Case 3A in "PREEMPT Block"
in Chapter 10 gives further details).

Transactions That Enter ADVANCE Blocks

A transaction may be in the current events chain
when another transaction enters a PREEMPT block
which references a facility that the first transaction
has SEIZEd. The seizing transaction will not be
immediately removed from the current events chain
and placed into an interrupt status. Instead, a
preemption flag (eighth bit of byte T10) is set to one.
The SEIZEing transaction will be put into an interrupt
status only when it enters a nonzero-time ADVANCE
block, or when it enters a MATCH, ASSEMBLE, or
GATHER block in which it is placed into a ""matching"
condition.

61

When sucha SEIZEing and PREEMPTed
transaction enters an ADVANCE block the following
steps occur (see Case 3D in "PREEMPT Block" in
Chapter 10 for further details):

1. The nonzero ADVANCE block time is stored
in the T4 block departure time word. The
transaction will spend this time in the ADVANCE
block only after the preempt count of the transaction
has been decremented to zero. At this time the
transaction is merged into the future events chain,
as described in "RETURN Block" in Chapter 10.

2. The preempt flag (bit 7 of byte T10) is reset
to zero.

3. The preempt status bit (bit 6 of byte T10) is
set to one.

4. Bit 7 of byte T9 is set to one to indicate that
the transaction is on the interrupt chain.

5. The transaction is unlinked from the current
events chain,

ADVANCE Block Count Statistics

When a nonzero ADVANCE block time is computed,
both the current block count (Wj) and total block
count (Nj) are incremented by one. If the block
time is zero, only the total block count (Nj) is
incremented, unless the transaction cannot enter
the next sequential block. The current count (Wj)
is then also incremented.

Internal Operation of the ADVANCE Block

Whenever a transaction enters an ADVANCE hlock
and a positive delay is computed, the transaction is
unlinked from the current eventschain. Bit 5 of T9
is set to one to indicate that the transaction is in
the future events chain. The transaction is then
merged and linked into the future events chain

(see Figure 17) according to the value of its bloclk
departure time, which has been stored in
transaction word T4. The scan of the future
events chain starts at the remote end and continues
until a transaction is found whose BDT is less than
or equal to the computed departure time of the
current transaction.

BDT,<BDT, < BDT.
i i+

k i

Whenever the overall GPSS/360 scan can no
longer move any more transactions in the current
events chain into some next block, the absolute
clock time is increased to the block departure time
of the first (most imminent) transaction in the future
events chain. This transaction and any succeeding
transactions with the same block departure time
are then linked back into the current events chain.

62

Each transaction, as it is returned to the current
events chain, successively becomes the last
transaction in the priority class to which it belongs.
One practical result of the merging criterion
(BDTiEBDTké BDTi+1) is that when two or more

transactions have the same block departure time,
the first one merged into the future events chain is
the first one transferred back into the current event:
chain. Assuming equal priority, it also becomes th
the first one processed by the overall GPSS/360
scan after being returned to the current events
chain.

TRANSFER BLOCK FROM WHICH GENERALIZED
TRANSFERS TO OTHER BLOCKS CAN BE MADE

The TRANSFER block provides the principal means
of diverting transactions to a nonsequential next
block in a GPSS/360 block diagram.

The TRANSFER Block provides the following
nine selection modes by which transactions ean
move to a nonsequential block:

1. Unconditional (blank)

2. TFractional (.)

3. BOTH

4, ALL

5. PICK

6. Function (FN)

7. Parameter (P)

8. Subroutine (SBR)

9. Simultaneous (SIM)

The mnemonic code specified in field A of the
TRANSFER block identifies the selection mode.
Fields B and C give various possible next block
values. The TRANSFER block in the GPSS/360
assembly program can specify symbolic block
locations in fields B and C. When field B of a
TRANSFER block is left blank, the assembly
program will assign the next sequential value of the
block counter to field B of the converted TRANSFER
bloclk.

Unconditional (blank) Selection Mode

The entering transaction will proceed unconditionally
to the field B next block, and no other block will be
tried.

For Example

TRANSFER , NEXT
TRANSFER , V10

Fractional Selection Mode

The selection mode is interpreted as a three-digit
number which indicates the proportion (in parts per
thousand) of the entering transactions that is to be
diverted to the field C nextblock. Whichever exit is
chosen for a particular transaction, B or C, it will
be the only one tried by that transaction. Indirect
addressing can be used in field A. *n indicates
that the three-digit number is contained in Param-
eter n of the transaction, The proportion could,
therefore, be ASSIGNed to Parameter n before
entering a TRANSFER block.

In GPSS/360 the proportion may also be assigned
to any Standard Numerical Attribute. Because
the selection mode is interpreted as a three-digit
number, a computed value of zero or less will
result in an unconditional TRANSFER to the field B
block and a value of 1,000 or more will result in
an unconditional TRANSFER to the field C block.

Example 1: GPSS/360 Card Formats

2 oc|qs operamon|is 4 | B | c |
10 | | tRansrER | 700 [1| 26
aor | | TrRAwsFER |.%1 |we | 19
410 TRANSFER . XH1 | 25 40

Of the transactions which enter TRANSFER
block 10, .709 of these will, on the average, attempt
to enter Block 25. Another .291 of the Transactions
will attempt to enter Block 11.

The three-digit number which is stored in
Parameter 1 of transactions entering TRANSFER
Block 301 will represent the probability, in parts
per thousand, that the transaction will attempt to
enter Block 19. Otherwise the transaction will
attempt to enter Block 179, If Halfword Savevalue
1 contained 30 when the transactions enter Block
410, 3% of these will, on the average, attempt to
enter Block 40 and 97% will attempt to enter
Block 25.

Example 2: Assembly Program Card Formats

| 1]z voc|7|s opERATION |0 A,B,C |
TRANSFER .709,, NEXT 1
TRANSFER .*1, NEXT 2, NEXT 3

TRANSFER .368, NEXT 4, NEXT 5

The first two TRANSFER blocks represent possible
equivalents of the GPSS/360 TRANSFER blocks
described in Example 1 above. Observe that no
absolute block numbers are used. Since 29.1% of
the transactions go to the next sequential block after
the first TRANSFER block, field B is left blank
(indicated by two successive commas, ",, "), The
GPSS/360 assembly program will assign the next
sequential block number to field B of the TRANSFER
block. Blocks 25, 179, and 19 are now assigned

the symbolic block locations NEXT1, NEXT2, and
NEXT3, respectively as shown in Example 1 above,
The third TRANSFER block represents a case where
the field B next block is not necessarily the next
sequentially numbered block following the TRANS-
FER hlock,

BOTH Selection Mode

Each entering transaction will first attempt to exit
via the field B next block. If conditions are not

met for its entry into this block, the transaction

will try the field C next block. If it cannot advance
to that block either, it will remain in the TRANSFER
block, and will repeat the sequence of trials at each
overall GPSS/360 scan until it finds an exit.

31

SEIZE SEIZE

In the above example, the transaction will first
attempt to enter Block 31. If it is unable to enter
that block, it will attempt to enter Block 50. If it
fails to enter again, it remains on the current
events chain and repeats the same operation ateach
overall GPSS8/360 scan until it finds an exit.

63

ALL Selection Mode

Each entering transaction will first attempt to exit
via the field B next block. If conditions are not met
for its advance, the transaction will attempt to exit
via blocks B+D, B+2D, B+3D, . . . C where:

D = the value of the field D indexing factor.
C = the field C next block which must exceed B by
an exact multiple of the field D indexing factor.

This is checked during input.

If the transaction fails to find an exit, it remains
in the TRANSFER block, and repeats the above
sequence of trials at each overall GPSS/360 scan
until it finds an exit.

Since the field B and C next blocks will normally
be entered in symbolic form the analyst must
foresee the numbering of subsequent blocks by the
GPS8/360 assembly program and insure that the
field C next block number will exceed the field B
next block by an exact multiple of the field D
indexing constant.

Examples:

The first ALL selection mode is legal with the
transaction attempting to enter blocks 60, 70, 80,
. 120 in suceession:
The second ALL selection mode is legal only if
the number of blocks between block NEXT1 and block
NEXT?2 is an exact multiple of 5.

TRANSFER ALL, 60, 120, 10
TRANSFER ALL, NEXT1, NEXT2, 5

The following ALL selection mode is illegal and
the card will be rejected during input, because the
difference hetween the field B and C next block is
not an even multiple of the field D indexing factor:

TRANSFER ALL, 60, 120, 25

Only the BOTH and ALL selection modes are
conditional. In the other seven modes, an uncon-
ditional next block choice is made when the
transaction first enters the TRANSFER block. With
BOTH and ALL, the next block choice depends on
which blocking condition is first removed. Observe
that whenever the overall GPSS/360 scan encounters
a transaction delayed in a TRANSFER block with a
BOTH or ALL selection mode, the GPSS/360 scan
will always start with field B next block. Conse-
quently, the BOTH selection mode favors the field B
next block in those cases where both the field B and
C next blocks can be entered. Similarly, the ALL
selection mode favors the lower-numbered next
blocks when two or more next blocks can be entered

64

at the same time. No SNA's or indirect addressing
are allowed in fields B, C, and/or D of a TRANSFER
block with the ALL selection mode.

PICK Selection Mode

A single next block in the interval from B, B+1,
B¥2, . . . C, will be unconditionally selected on a
random basis for each entering transaction. All
values, including the endpoints of the interval, are
equally likely with probability 1/(C-B)+1. No other
block will be tried by the transaction. If it fails to
exit immediately via the selected exit, it will wait
in the TRANSFER block until the blocking condition
is removed, and then advance. The field C next
block must be greater than or equal to B+1,

TRANSFER PICK, 30, 39

Transactions entering the above TRANSFER
block will attempt to move to one of the 10 blocks
(30, 31, . . . 39) with an equal probability of 1/10.

Function Selection Mode (FN)

The value of field B will be computed for that
function, and will be truncated if the result is
nonintegral. This integer is then added to the field
C argument to obtain the next block for the entering:
Transaction (field C may be zero if desired), No
other block will be tried by the transaction and it
will remain in the TRANSFER block until conditions
are met for its exit via the selected block.

For example:
TRANSFER FN, 3, *3

Next Block = Value of Function 3+ Value of
Transaction Parameter 3.

Observe that the following TRANSFER block
with a blank selection mode does not allow the field
C argument to be added to the value of FN3:

A B
TRANSFER FN3

Parameter Selection Mode (P)

The value of the field B argument will be interpreted
as parameter number n of the entering transaction.
The value of this parameter will be added to the

field C argument to obtain the next block selection
(field C may be zero if desired). No other block will
be tried by the transaction, it will remain in the

TRANSFER block until conditions are met for its
advance via the selected block.

For example:
TRANSFER P, 12, N7

Value of
Parameter 12

of Transaction
in Block

Next Block= + Value of Function 7

Again, observe that a TRANSFER block with
a blank selection mode does not allow the value of
the field C argument to be added to the value of the
field B.

Subroutine Selection Mode (SBR)

The entering transaction will proceed to the field B
next block and no other block will be tried. The
value of the field C argument is interpreted as a
parameter number and the number j of the current
TRANSFER block is assigned to that parameter.
The field B next block would generally be the start
of a block subroutine.

TRANSFER SBR, NEXT, 10

The transaction can now easily return to the
block following the original TRANSFER SBR block
by making the following TRANSFER block the last
block of the subroutine:

A | B | ¢

lTRANSFER ' P l SNA]j | |

Next Block = P (SNAj) +1

The value of SNAj is the same parameter

number n specified in field C of the TRANSFER SBR
block.

Simultaneous Selection Mode (SIM)

The simultaneous mode of next block selection

has been provided so that simultaneous satisfaction
of a number of conditions can be represented in

a block diagram. There is a SIM delay indicator
(bit 1 of byte T10) in each transaction; this
indicator records the result of any attempted
advance by the transaction. The SIM delay indi-
cator is set to one whenever the transaction finds
entry conditions which are not met at its next block
selection. If a number of conditions must be

simultaneously satisfied, they may be tested
simultaneously (see example below), and if all are
gatisfactory, the SIM delay indicator of the trans=-
action will remain zero. If any condition causes a
delay, the SIM delay indicator will be set to one
(where a TRANSFER block selection mode is BOTH
and ALL, all attempted exits must [ail before the
SIM delay indicator is set to one). When the trans-
netion enters 2 TRANSFER block with a SIM selec-
tion mode, the SIM delay indicator is tested. If it
is zero, the field B next block is selected for the
enlering transaction. If the SIM delay indicator is
one, the field C next block is selected for the
entering transaction, and the SIM delay indicator

is reset to zero. In either case, no other block will
be tried by the transaction, and it will remain in the
TRANSFER block until conditions are met for its
advance to the chosen next block. The SIM delay
indicator is not retested whenthe transaction
succeeds in leaving the TRANSFER block.

TRANSFER SIM, 40,10
The status of the SIM delay indicator (bit 1 of
T10) is printed out in the DI column of the trans-
action printout. If the SIM delay indicator has been
set, i.e., a delay has occurred, a 1 is printed.

A blank is printed if the indicator is reset.

Example:

"
11 @ ®
By
13
TRANSFER
SIM

This example will not allow transactions Lo
proceed to Block 40 unless Facilities 5, 10 and 15
are simultaneously available (not in use). When a
transaction enters TRANSFER block 13, its SIM
delay indicator is tested. If the transaction was
forced to wait because any one of the facilities (5,
10, or 15) was not available the SIM delay indicator
will be one. The transaction would then be sent to
the field C block 10 to repeat its tests, with the
SIM delay indicator reset to zero.

65

The SIM delay indicator is not set when
transactions are delayed in ASSEMBLE, GATHER
and MATCH blocks.

Resetting of SIM delay indicator in ADVANCE block

The SIM delay indicator is reset to zero each time
the transaction leaves an ADVANCE block in which
it spent a nonzero time, i.e., each time the trans-
action is returned to the current events chain from
the future events chain. It is often possible that
additional delays may have occurred between an
ADVANCE block and a set of simultaneous conditions
which the analyst actually desires to test. The

SIM delay indicator may, therefore, have been set
to one before it ever got into the blocks where
simultaneous nondelay conditions are tested. The
solution is to precede these blocks with a TRANSFER
SIM block whose field B and C next blocks are both
the first block in the simultaneous sequence. The
TRANSFER SIM block will reset the SIM delay
indicator to zero. In the preceding example, the
following TRANSFER block could be used:

TRANSFER SIM, 10, 10

This TRANSFER block assures that the SIM delay
indicators of all transactions entering block 10 are
reset to zero.

Internal Operation of TRANSFER Block

Whenever a transaction succeeds in entering any
next block, the number of this block is stored in the
T1+ 2 halfword. When a transaction enters any
TRANSFER block, except one in the BOTH or ALL
selection mode, the next block to enter is computed,
and the transaction will attempt to enter this next
block. If a transaction is unable to enter this block,
the block number is stored in the first 2 bytes of T5.
The next block value will not be recomputed and the
GPS5/360 program will continue to try to move the
transaction into this next block.

If the selection mode is BOTH or ALL, the field
C last block value is stored in the first half of the T1
word. This value will likewise not be recomputed.
If the transaction fails to enter any one of the
possible next blocks in the BOTH or ALL block
range, the GPSS/360 program will continue to try to
move the transaction into one of these blocks at each
scan of the current events chain.

Byte T10 of all current event transactions in-
dicates the type of next block trial to be made. The
following values of byte T10 are printed out in the
SF column of the transaction printout, next to the
NBA column:

66

blank -- Indicates that only one next block is to be
tried. The transaction could be any block

type.

B -- Indicates that a BOTH selection mode is
being used. The transaction is in the
TRANSFER block whose number is printed
in the BLOCK column. The first next
block to be tried is printed in the NBA
column. The second next block is not
printed.

A -- Indicates that an ALL selection mode is
being used. Again, the transaction is in
the TRANSFER block whose number is
printed in the BLOCK column. The lowest
number next block to be tried is printed in
the NBA column. The field C last block
number is not printed.

GENERATE BLOCK TO CREATE TRANSACTIONS

li]s woe|s|s opemamon | s | s | el o| x| |
|| | | GENENATE witil- | Crestion | Priariiy | Farameer
At bon Limi Laval Assl gument

al L) L &, ANA oF

Maun time
k, 834}

Parsmater
T

Epresd
::. e W eF
bk
—

OENERATE

T A

The GENERATE block creates transactions.
GENERATE blocks are used to represent the
sources of traffic in a system, such as input ter-
minals in a communication network. The creation
rate is specified in terms of an intercreation time
between successive transactions. The block to
which the transactions move is the next sequential
block following the GENERATE block. Observe
that indirect addressing (*n, SNA*n) is illegal in all
fields.

Sequence of GENERATE Block Operations

1. When the GPSS/360 input program encounters
a GENERATE block one transaction is immediately
created. The set of four basic words for the new
transaction is obtained from the internal chain of
inactive transactions. The priority class of the
new transaction is specified in field E of the
GENERATE block. A blank field E implies a 0
Priority Level. The Priority; (0, 1, . . . 127) is
then stored in byte T7. The transaction is scheduled
to leave the GENERATE block after a time interval
that is computed from the field A mean time and the
field B modifier in the same manner as an ADVANCE
block delay time. However, because the transaction

is ereated at input time, any function or variable
used as a mean or modifier must have been pre-
viously defined. Likewise any savevalue must have
been previously initialized (see MINITIAL Card",
Chapter 8). The value of a function, used as a
modifier, will not be truncated; truncation takes
place only after multiplication by the mean. At the
end of the computed time interval the transaction
will leave the GENERATE block. The parameter
assignment for the new transaction is specified in
field F of the GENERATE block. Since GPSS/360
allows the use of full or halfword parameter values,
it is necessary for the user to make such indication
in field G. If field G contains an 'F', fullword
parameters are assigned. If field G is blank or
contains an 'H', halfword parameters are assigned.
If field T isblank, field G is not examined and
twelve halfword parameters will be assigned. For
example:

For ten fullword parameters:
GENERATE 5, FN3, , , , 10,F

For 50 halfword parameters:
GENERATE 10, V3, , , , 50,H

TFor twelve halfword parameters:
GENERATE X10, FN2

9. Consider the following GENERATE block:

2 LOC 7 8 OPERATION 19
GENERATE 100

The first transaction from the GENERATE block
would be scheduled to leave the GENERATE block
at clock time 100. Prior to that time, the
"incipient' transaction is located in the future events
chain, When its scheduled entry time arrives the
"incipient" transaction is first moved from the
future events chain to the current events chain,

The GPSS/360 scan will eventually cause the trans-
action to enter the system via the GENERATE
block. The new transaction becomes the last
transaction in the priority class specified infield
E. The current value of the absolute clock is
stored in the mark time word (T6) as the creation
time.

3. The transaction next attempts to move into
the next sequential block following the GENERATE
block. If the transaction succeeds in moving into
this block, a new transaction is ereated and a set of
words is obtained from the internal chain of inactive
transactions. The time interval until the arrival of
the new transaction is computed again from the
field A mean time and the field B modifier. This

intercreation time interval is added to the current
absolute clock time to obtain the time at which the
{ransaction is to enter the system, The new
nincipient" transaction is then merged into the
future events chain scheduled to enter the GENER-
ATE block. In the above example, this step would
first be performed at clock time 100. Since the
action time of the GENERATE block is the constant
100, the entry time of the new transaction would be
500. At that time the new transaction would also
receive the same processing as described in steps
9-4, The flow of transactions from each GENER~-
ATE block is thus propagated by each preceding
member of the stream.

4, Assume now that the transaction entering the
system via the GENERATE block has been moved
from the future events chain to the current events
chain but fails to enter the next sequential block,
e.g., a GATE, TEST, SEIZE, PREEMPT, or
ENTER block. In this case the successor "incipi-
ent" transaction will not be created. The successor
transaction will be created only when the first
transaction finally succeeds in entering the next
sequential block., The intercreation time will be
computed then and added to the absolute clock time
to determine the entry time of the successor trans-
action, This will, of course, lead to interarrival
times greater than those specified by fields A and

B.

5. If the first intercreation interval is computed
to be zero (that is, when the GENERATE block
definition card is first encountered), it will always
be taken to be one. Observe that a zero inter-
ereation time is permissible (both fields A and B
are blank). However, a block type which will
eventually cause a blocking condition must follow
the GENERATE block (GATE, TEST, SEIZE,
PREEMPT, ENTER). Otherwise, the GENERATE
block will eontinue to create transactions at an
infinite rate until all available transactions in the
GPSS/360 program are used, Execution Error
468 will then occur.

6. The total block count (Nj) is incremented by
one when each transaction leaves a GENERATE
block. Since the current count is incremented only
when a transaction fails to enter the next block, the
current count (Wj) will never exceed one.

7. Indirect addressing is not possible in the
GENERATE block because all the parameters of
GENERATE block transactions have zero values.

Initialization Interval and Creation Limit

Field C of the GENERATE block definition card can
define an initialization interval, which is taken as
the time at which the first transaction is scheduled

67

to leave the GENERATE block. This interval may
be less than, equal to, or greater than field A mean
time.

Field D of the GENERATE block can define a
creation limit, which is the maximum number of
transactions that will be created by the GENERATE
block. When the specified number of transactions
has been created, an "incipient" successor trans-
action is no longer created and merged into the
future events chain, If field D is blank the
GENERATE block will continue to create trans-
actions indefinitely.

Redefinition of a GENERATE Rlock

Whenever a GENERATE block is redefined by a new
GENERATE block definition card, the GPSS/360
program will examine all the transactions which are
currently in the simulation model to find the unique
transaction associated with the GENERATE block
(there may be no transaction if a field D ereation
limit has been decremented to zero so that the
GENERATE block has been deactivated). The old
transaction, if one exists, is immediately destroyed.
In either case, a new transaction is then created
just as if the GENERATE block was being defined
for the first time.

Error Conditions

A GENERATE block may never be entered by a
transaction moving in the simulation model.
Execution Error 413 will result if this is attempted.
Just as with ADVANCE blocks, the field B spread
time of a GENERATE block must not exceed the
field A mean time; otherwise, Execution Error 530
will result, If the mean or modifier is specified by
a variable, the variable statement must have been
previously defined or Input Error 260 will occur.

If a function modifier has not been defined by the
time the GENERATE definition card is encountered,
Input Error 264 results (undefined function). In
general, FUNCTION and VARIABLE definition cards
should be placed first in the input deck to avoid this
GENERATE block error,

Internal Operation of GENERATE Block

The field A mean, the field B modifier, the field C
offset, the field D creation limit, the field E
priority level and the field F number of parameters
are stored, in this order, in the six words (24 bytes)
obtained from the GPSS/360 COMMON area. The
field C initialization interval is recognized only at
input time when the creation time interval of the
first transaction is computed. The field E priority
is also stored in byte T7 of the first transaction.

68

The field SNA denoting priority is evaluated each
time a transaction is created at the GENERATE
block.

If a creation limit is specified in field D its
value is also placed in the mark time word (T6) of
the first transaction. When this transaction leaves
the GENERATE block, the T6 value is decremented
by one. If it has been decreased to zero, a new
"ineipient" successor is not ereated, and the
GENERATE block is thereby deactivated. If word
T6 is still nonzero, a successor transaction is
created and merged into the future events chain,

This decrementing operation on mark time word
(T6) is performed on all GENERATE block trans-
actions. Consequently, if the GENERATE block
does not specify a field D creation limit, asequence
of negative values (-1, -2, =3, . . .) will appear in
the mark time word (T6) and will be printed in the
transaction printout. At any time, -n in the MARK
column indicates that n transactions have been
created at the particular GENERATE block at which
the Transaction is loecated.

Recreating GENERATE Block Transactions after a
CLEAR Card

The CLEAR card removes all transactions from a
GPSS/360 model, including the transactions which
are associated with GENERATE blocks (see "Clear
Card" in Chapter 15). After completing all the
various CLEARing operations, the GPSS/360 pro-
gram recreates a transaction at each GENERATE
block in the model, just as if the GENERATE block
definition card had just been read. If a field C
offset was specified in the original GENERATE
block definition card, the SNA is evaluated to
obtain the arrival time of the first transaction.
Otherwise, the arrival time of the first transaction
atthe GENERATE block is computed from the field

A meantime and field B modifier values. Ifthere
was originally a field D creation limit, the SNA

is reevaluated and stored in the mark time word
(T6). If a priority level was specified in field E,
the SNA is evaluated and the result is moved to
byte T7 of transaction words. Each new GENERATE
block transaction is then merged into the future
events chain on the basis of its computed arrival
time.

The GPSS/360 program searches the blocks in
ascending order (e.g., 1, 2, . . .) so that the
recreated transactions are added to the current
events chain in the order of increasing GENERATE
block number,

Reactivation of GENERATE Blocks

If a creation limit has been specified in field D,
and has been decremented to zero (i.e., there is

no longer a successor transaction at the GENERATE
block), the GENERATE block will be reactivated in
the simulation only if one of the following two events
ocour:

1. A CLEAR card is read in and a new trans-
action is created as described above.

2. The GENERATE block is redefined with a
new GENERATE block definition card, as described
earlier in this chapter.

Redefinition or Changing to a GENERATE Block

"CHANGE Block'" in Chapter 6 warns that a
currently defined bloclk, which is not a GENERATE
block and which contains one or more transactions,
cannot be redefined or CHANGEd to a GENERATE
block. Otherwise Error 698 occurs.

TERMINATE BLOCK TO DESTROY
TRANSACTIONS

2 LOC lvls OFERATIDN‘ 19 A
l l | | TERMINATE ‘u. *n, SNAJ, SNA®R

Termination Count

The TERMINATE block removes individual trans-
actions from the block diagram. It is used to
represent the completion of a path of flow in a
system, such as the arrival of a message at a
receiving terminal in a communication networlk.
Tield A of the TERMINATE block specifies the
number of units which this block contributes to the
total TERMINATE count. If field A is blank, the
block does not contribute to the count. Since the
transactions are removed immediately upon entering
a TERMINATE block, no further functions are
performed by the block, The transaction is unlinked
from the current events chain and the set of four
basic transaction words are returned to the internal
chain of inactive transactions. The additional
transaction words in COMMON are freedfor other
use, The contents of all words, including parameter
words, are set to zero.

A TERMINATE block will never refuse eniry to a
transaction. Each time a transaction enters the
block the count of the total number of transactions
that have entered the TERMINATE block (Nj) is
incremented by one. The number of transactions
currently at the TERMINATE block is always zero,
i.e., Wi=0.

Control of Simulation Run Length

When the user prepares a GPSS/360 simulation run
he specifies the length of the run in a START card
in terms of a number of terminations to be performed.

Since all paths of the block diagram do not have
equal significance, the TERMINATE blocks are
permitted to specify whether or not they contribute
to the run termination count, The value of the
TERMINATE block field A argument will be counted
toward the run termination count. Field A of the
START card, in turn, will specify the run termi-
nation count ("START Card" in Chapter 15). If
desired, several TERMINATE blocks may
contribute to the run.

Example of Simulation Run Timer

12 soc | 78 arenation [al
WUNTIMER
a9

GEHEIATE 1000

TERMINATE 1

STANT 5 | nUN FOR K000 CLOCK UNITE
START 20 | NOwW RUN FOR 20000 CLOCK UNITH

409
000

The pair of blocks in this example may be used to
control the simulation run. Each transaction which
enters the TERMINATE block will decrement the
current run termination count by one. Assume that
all other TERMINATE blocks in the block diagram
have blank fields A. The program will run until
clock time 5000 is reached, since the first START
card specifies that the termination count for the
first run is 5. Since the GENERATE block creates
one transaction every 1000 time units, the fifth
transaction will enter the TERMINATE block at
clock time 5 x 1000 or 5000. The second START
card specifies 20 terminations, so the second run
will last 20,000 clock units. The GPSS/360 program
begins executing the simulation run when it
encounters a START card, It automatically prints
the statistics produced by the run after the termi-
nation count has been reduced to zero or less. The
GPSS/360 program then reads input cards until
another START card is encountered.

860

BLOCK TYPES THAT MANIPULATE USER CHAINS

An additional type of transaction chain is available
which, in conjunction with LINK and UNLINK blocks,
enables the analyst to remove transactions from the
eurrent events chain, put them in a temporarily
inactive state on the transaction chain (user chain)
and then, at some later time, place them bhack on the
current events chain, This enables the analyst to
structure his own chains and completely bypass the
predetermined operation of the current events chain.
These user chains can be utilized to model any

69

queuing system and also to reduce computer
running time,

In the standard GPSS/360 program, there are
20 to 100 user chains. Standard Numerical
Attributes associated with user chains are as

follows:
CAj= Average number of transactions on User

Chain j

= Cumulative Time Integral (U7 Doubleword)
Relative clock time since last RESET
or CLEAR card

CHj = Current number of transactions on User
Chain j (U3 Halfword)

CMj = Maximum number of transactions on
User Chain j (U4 Halfword)

CCj =Total number of entries on User Chain j
(U5 Fullword)

LINK BLOCK
The LINK block is used to remove a transaction

from the current events chain and place it on a
user chain. The symbol for the LINK block is:

A

LINK
B
112 LOC|8& OPERATION |18 A B C
USER CHAIN | ORDERING |ALTERNATE
NUMBER OF CHAIN EXIT
LINK *N,SNAJ, K, LIFO,FIFO |K ,*N,SNAj
SNA*N Pj SNA,*N

Field A specifies the user chain to which the
entering transaction will be "linked", and may
be any SNA. For example, the constant 1 would
indicate User Chain 1, X19 would indicate the user
chain specified by the contents of Savevalue 19, *1
or P1 would indicate the user chain specified by
the contents of Parameter 1 associated with the
transaction entering the LINK block, etc.

NOTE 1: If the Standard Numerical Attribute
CHj were used for the A argument, the number
of transactions on the User Chain j would be
used to determine the user chain to which the
entering transaction would be linked.

NOTE 2: If the value of any specified SNA is
Zero, an error results.

Field B specifies the ordering to be followed on
the user chain.

FIFO The transaction is placed on the end of the
user chain.

LIFO The transaction is placed at the
beginning of the user chain.

P() The transaction is merged into the user
chain according to the value of P (j). The
sequence is ascending when ordering by a
parameter value. That is, the transaction
with the smallest value of P(j) would be at
the beginning of the user chain, and the
transaction with the largest value of P(j) is
at the end. If an entering transaction has
a P(j) value equal to the P(j) value of a
transaction(s) already on the user chain,
the entering transaction will be merged
in back of all transactions on the user
chain whose P(j) value equals the P(j) of the
entering transaction.

TABLE 12: CORE ALLOCATION FOR USER CHAINS

Ul |[First Transaction On User Chain |
(2 bytes)

U3 |Number of Transactions On User Chain]
(2 bytes)

us]Total Entry Count]
(4 bytes)

U6 LClock Time of Last Status Change —l
(4 bytes)

[8}] Last Transaction On User in
(2 bytes)

U4

(2 bytes) Bit 0 = Link Indicator

Bits 1 - 15 = Maximum number
on User Chain

}é‘?bytlg;mulative Time_(SEtecrral

70

TABLE 13: EFFECT OF RESET AND CLEAR CARDS ON USER CHAIN ATTRIBUTES

RESET Card Attribute

Result of RESET Card

Word Length Value Before RESET Card On Attribute Value

Ul 2 Bytes First Transaction On User Chain Unchanged

U2 2 Bytes Last Transaction On User Chain Unchanged

U3 2 Bytes Number of Transactions On User Unchanged
Chain

U4 2 Bytes Maximum Number of Transactions Set equal to current number on User Chain
On User Chain

us 4 Bytes Total Number of Transactions Set equal to current number on User Chain
On User Chain

uUe 4 Bytes Clock Time of Last Status Change Set to current value of the absolute clock

u7 8 Bytes Cumulative Time Interval Set to zero
CLEAR Card

All 24 bytes (Ul-UT) are set to zero.

The field C alternate exitis used when representing
various queuing situations. The use of field C and
the link indicator associated with it can be under-
stood more easily when explained in conjunction
with the type of problem it will be used to solve.

t
QUEUE @/
[]
SEIZE
[
DEPART [4

[]

ADVANCE
10

]

RELEASE
i

In the above block sequence, if a transaction
attempts to seize Facility 1 and finds the facility
busy, the transaction will be removed from the
current events chain and placed on a delay chain
associated with the facility. When the facility is
finally released, all those transactions which were

placed on the delay chain waiting for the facility
to be released are removed from this delay chain
and put back on the current events chain. The
transactions then attempt to seize the faecility, but
only the first transaction is able to; the following

transactions are then placed back on the delay chain
when they attempt to seize the facility. This

procedure can be quite time-consuming when the
number of transactions waiting to seize the facility
becomes relatively large, Instead of the standard
delay chain which normally contains those
transactions waiting to seize the facility, in the
following example the transaction is placed on a
user chain if it cannot seize the facility and only
one transaction is removed from this user chain
when the facility is released.

The incoming transaection is to be placed on the
user chain if the facility is in use, so there is a
link indicator associated with each user chain to
display this fact. The indicator is originally in an
off position, It is to be in an on position whenever
the facility is in use or when a transaction is
already waiting to seize the facility, and off when
the facility is free so that it can be determined
whether the transaction should try to seize the
facility immediately or be placed on the user chain,

7L

RELEASE IRE?

UNLINK

Continue
Processing

The above sequence of blocks accomplishes the
purpose of allowing only one transaction to attempt
to seize the facility at any one time. The first
transaction to enter the LINK block finds the link
indicator off and is not placed on the user chain
but takes the field C alternate exit, AAA, and turns
the link indicator on. The transaction then seizes
Facility 1, leaves the queue, and proceeds to the
ADVANCE block.

Assume that before this transaction releases
the facility, another transaction enters the LINK
block; this latter transaction finds the link
indicator on and therefore is placed on User Chain
5. When the former transaction enters the UNLINK
block, it finds that there is a transaction on User
Chain 5; this transaction is removed from Chain 5
and sent to block AAA to seize the facility. The
link indicator remains on, and the transaction
which enters the UNLINK block continues to the
next sequential block. If a transaction enters the
UNLINK block and finds no transaction on the chain,
it will turn the link indicator off so that any
following transaction will be able to seize Facility 1
immediately.

The sequence of operations associated with the
LINK block are as follows:

1. The "A" argument is evaluated to determine
the user chain,

2, If the "C" argument is blank the link indicator
associated with the specified user chain will be set
to on and the entering transaction will be linked

72

unconditionally to the user chain on the basis of
the ordering specified by the "B argument.

3. If the "C" argument is not blank, the
sequence is as follows:

The user chain link indicator is tested. If the
link indicator is on, the entering transaction will be
linked on the user chain on the basis of the ordering
specified by the "B'" argument. If the link indicator
is off, it will be set to on and the entering trans-
action will proceed to the block specified by the "C"
argument.

UNLINK BLOCK
The UNLINK block is used to remove transactions

from a user chain, The symbol for the UNLINK
block is:

UNLINK
B r
b

Figure 18 illustrates the format of the UNLINK
block.

H-OO>

Block Arguments:

Field A User Chain number from which transaction
will be UNLINKed.

Field B Number of the next block for the UNLINKed
transaction(s).

Field C Transaction UNLINK count.
ALL-- all transactions will be UNLINKed

or

the value of the argument specified will be
the number of transactions UNLINKed.

Field D Can contain one of the following:
1. Parameter number

a. If field E is blank, the value of the
specified parameter of the entering
transaction will be matched with the
value of the associated parameter of the
transactions onthe user chain.

b. If field E is not blank, the value of the
specified parameter of the transactions
on the user chain will be matched with
the value of the field E argument.

In both cases, those transactions which satisfy the
matching condition will be UNLINKed and sent to the
field B block.

2. BACK
The transactions will be removed from the user
chain starting at the back of the chain according to
the count specified inField C. TField E must be
blank.

3. Boolean Variable
The transactions will be removed from the user chain
according to the count specified in field C if and only
if the value of BVj is 1. If BVj=0, the entering
transaction will attempt to enter the block specified
in field F. If field F is blank, the transaction will
attempt to enter the next sequential block. Whenever a
Boolean variable is specified in field D, field E must
be blank.

Tield E The argument whose value will be matched
with the value of the parameter specified
in field D of the transaction on the user
chain,

TField F Block number of the next block for the
entering transaction when the transaction
count of the specified user chain is zero,
the match option is used and the condition
is not met, or the value of a specified
Boolean variable is zero.

The sequence of operations associated with the
UNLINK block is as follows:

Case 1: A, B, C arguments have entries; D, E,
F arguments are blank.

1. The "A" argument is evaluated to determine
the user chain,

2. The user chain is tested to determine
whether there are any transactions on it. If the
user chain is empty (no transactions), the asso-
ciated user chain link indicator is set to off and
the entering transaction proceeds to the next
sequential block.

If the user chain is not empty, the "C" argument
is evaluated to determine the number of transactions
which should be removed from the user chain.

3. Transactions are removed from the user
chain starting at the beginning of the chain and con-
tinuing until the count has been decremented to zero
or until no transactions remain on the chain. The
transactions which are removed from the user chain
will be placed on the current events chain scheduled
to enter the block specified by the "B" argument of
the UNLINK block.

4, The transaction which entered the UNLINK
block will proceed to the next sequential block,

Case 2: A, B, C, F arguments have entries; D,
E arguments are blank.

This is similar to Case 1 except when the speci-
fied user chain is empty.

In this situation the link indicator associated with
the user chain is turned off and the transaction which
entered the UNLINK block proceeds to the block
specified by the "F'" argument of the UNLINK block
and not to the next sequential block,

Case 3: A, B, C, D arguments have entries; E
and F arguments are blank.

This is similar to Case 1. However, only trans-
actions on the user chain whose value of Parameter
(i) (which is specified in field D) equals the value of
Parameter (j) of the transaction which entered the
UNLINK block will be removed from the User Chain,
Transactions are removed from the chain until the
count specified in field C has been reduced to zero
or until all the transactions on the chain have been
examined. All unlinked transactions are sent to
the block specified by the "B" argument of the
UNLINK block. The transaction which entered the
UNLINK block proceeds to the next sequential bloek,

A, B, C, D arguments have entries; E and T
arguments are blank; D argument specifies Back.

This is similar to Case 1, except that trans-
actions will be removed from the back (or end) of
the specified user chain.

A, B, C, D arguments have entries; E and F
arguments are blank; D argument specifies BV].

Figure 18. General Format of the UNLINK Block

112 1Loc |B Operation | 19 A B c D E F
User Transaction Paramstar Match
Chain NBA Unlink o Argu- NBB
Number Count ment
K, *N, SNAj Ty All or K, *N K, *N, K, *N
UNLINK 51:1 A*I:l 2 SNAj, K, *N, SNAj, SNAj, 5NA*N SNAj, SNAj,
SNA®N SNAXN BACK SNA¥N SNA*N

73

This is similar to Case 3 except that BVj is
computed for each transaction on the user chain
and only transactions for which BVj =1 are removed
from the user chain.

Case 4: A, B, C, D, F have entries; E argument
is blank.

This is similar to Case 3 except when the
specified user chain is empty (CHj=0) or there is
no matching parameter value or BVj=0 for all
transactions on the user chain, In this situation
the transaction which entered the UNLINK block
proceeds to the block specified by the "F"
argument of the UNLINK block and not the next
sequential block. The link indicator is turned off
only if the chain is empty.

NOTE: Field E must be blank when the D"
argument of the UNLINK block specifies BACK, or
BVj, or else an appropriate error message will
be printed out.

Case 5: A, B, C, D, E arguments have entries;
F argument is blank.

1. The user chain is determined by the "A"
argument.

2. The number of transactions to be removed
is determined by the '""C" argument.

3. The block to which the unlinked transactions
will be sent is determined by the "B" argument,

4. The transaction(s) on the user chain whose
Pj(specified in field D) value equals the SNA
(specified in field E) is removed from the user
chain.

5. Transactions are examined and removed
(if possible) starting at the beginning of the user
chain and continuing until the count has been
decremented to zero or all transactions on the
user chain have been examined.

6. The transaction which entered the UNLINK
block continues to the next sequential block.

Case 6: A, B, C, D, E, F arguments have
entries.

This is similar to Case 5 except when the
specified user chain is empty (i. e., CH(j)=0) or
no mateh is found. The transaction which entered
the UNLINK block proceeds to the block specified
by the "F'" argument of the UNLINK block and not
to the next sequential block. The link indicator is
set to off only if the chain is empty.

LINK/UNLINK EXAMPLES
The block diagrams of the models shown in

Figures 19, 20, and 21 illustrate how various
situations may be represented making use of the

T4

LINK, UNLINK blocks and the user chain entity of
the GPSS/360 program.

GENERATE
1000, FN1

¢ Fn 1 is the exponential

Function
QUEUE Gj

LINK
CAN FIFO

CAN
SEIZE

DEPART Q

/

ADVANCE
700, FN1

RELEASE

1 UNLINK
CAN

Figure 19, A FIFO Queue Situation
Example 1

Figure 19 illustrates a FIFO queue situation.
This is the same model used to indicate the use of
the link indicator and is explained in more detail

here. The reason for using the LINK/UNLINK
combination here is to save computer time, as
explained previously. Transactions leaving the
GENERATE block enter the QUEUE block. After
updating the associated queue statistics, the
transaction enters the LINK block. Since this
LINK block has an alternate exit, the associated
user chain ''link indicator" is tested. If the
indicator is off, the transaction immediately sets
the user chain link indicator to "on' and proceeds
to the alternate block, which in this model is the
SEIZE block. If the user chain indicator is on,
the transaction entering the LINK block is
unconditionally linked to the user chain specified
by the A argument of the LINK block. Since the B
argument specifies FIFO, the transaction is placed
at the end of the user chain,

Note that transactions which are linked to user
chains do not proceed for further processing until
they are subsequently removed from the user chain
by a transaction entering an UNLINK block. When
removed from the user chain the unlinked
transaction(s) proceeds to the block specified by
the B argument of the UNLINK block.

When the transaction enters the SEIZE block it
updates statistics associated with the specified
facility. It then proceeds to the DEPART block,
where the queue statistics are updated. The
transaction then proceeds to the ADVANCE block,
where it remains the amount of time specified by
the mean and modifier of the ADVANCE block.

Upon leaving the ADVANCE block, the
transaction enters the RELEASE block. The
specified facility is released and the associated
facility statistics are updated. The transaction
then proceeds to the UNLINK block,

When the transaction enters the UNLINK block,
the user chain specified by the A argument is
examined. If the specified user chain is empty,
i.e., CHj=0, the associated user chain link
indicator is set to "off"" and the transaction
proceeds to the next sequential block. In this
model this is a TERMINATE block where the
transaction would be removed from the system.

If the user chain was not empty, i.e., CHj#0,
the first transaction on the user chain would be
removed and placed on the current events chain
scheduled to enter the block specified by the B
argument of the UNLINK block. In this model this
would be the SEIZE block whose symbolic name is
CAN. The entering transaction would then proceed
to the next sequential block. Although this is a
relatively straightforward model it illustrates
several important points:

1. The only transactions which are active in
the system- that is, on the current, future,

interrupt, or delayed chains—are the transactions
coming from the GENERATE block and the one
transaction which has currently seized the facility.
All other transactions, if any, would be on User
Chain 1.

2. Since all delayed transactions—that is,
transactions queued up for facility 1—would be on
User Chain 1, the simulation program will not
waste computer time resetting and setting delay
indicators for these transactions every time the
status of the facility changes. The amount of time
saved is dependent on the length of the queue. The
longer the queue the more time will be saved by
using the LINK/UNLINK combination to control the
queue for various entities.

3. The user has the ability to dynamically form
his own chains, and is no longer restricted to the
future, current, interrupt, and delayed chains
associated with the internal operation of the GPSS/
360 program.

Example 2

The purpose of this example is to show that any
queuing situation or any queue service technique
can be represented by LINK/UNLINK. Figure 20
illustrates a situation where the transaction to be
serviced is randomly selected from a user chain.,
The operation of this model is similar to the model
illustrated in Figure 19, up to and including the
point where the transaction leaves the RELEASE
block.

When the transaction leaves the RELEASE block
it enters the ASSIGN block. At the ASSIGN block
the value of V1 is computed and assigned to
transaction Parameter 1, where V1=RN1@ CH3.

Values of CH3 Possible values of V1

0 0

1 0

2 0 through 1

3 0 through 2

E 0 through 3

N 0 through (N-1}

After leaving the ASSIGN block, the transaction
will enter the TEST block.

P1=0
The transaction proceeds to UNLINK block B. When
the transaction enters UNLINK block B, it examines

User Chain 3. If there are no transactions on User
Chain 3, it sets the associated user chain link

75

FN 1 is the
exponential Function

GENERATE
1000, FN 1

QUEUE

CDEF

LINK
ABCD

[0 - e B L]

ABCD

SEIZE

(2

v

DEPART @

v

ADVANCE
700, FN 1

Figure 20,

RELEASE

UNLINK
1 |CDEF

1 LOOP

A

v

To UNLINK Bloek "B"

Random Selection of Transaction from a User Chain

indicator to "off'" and proceeds to the next
sequential block. In this model this is a
TERMINATE block where the transaction would
be removed from the system.

If the user chain was not empty, that is CH3#0,
the first transaction on User Chain 3 would be

76

removed and placed on the current events chain
scheduled to enter the block specified by the B
argument of the UNLINK block. In this model
this would be the SEIZE block whose symbolic
name is ABCD. The entering transaction would

UNLINK
ABCD

then proceed to the next sequential block.

P1#£0

The transaction would proceed to UNLINK block A.
The transaction entering the UNLINK block A
would cause the first transaction on User Chain 3
to be removed and placed on the current events
chain scheduled to enter the block specified by the
B argument of the UNLINK block. In this model
this would be LINK block CDEF. At LINK block
CDET the unlinked transaction(s) would again be
linked to User Chain 3.

The transaction would leave the UNLINK block
and enter the LOOP block. In the LOOP block, P1
would be decremented by one and tested. If P1
were now zero, the transaction would go to UNLINK
block B, whose operation would be as previously
described. If P1:£0, the transaction would go to
UNLINK block A. This action would "cycle" the
transactions on User Chain 3 until the randomly
selected transaction calculated by V1 was at the
beginning of the user chain, At this point it would
be removed and serviced by UNLINK block B.

Example 3

Figure 21 illustrates how the analyst can bypass
the predetermined operation of the current events
chain and completely strueture his own order of
oceurrences. This model depicts a vehicle rental
agency where the transactions representing
vehicles have their P1 equal to 1, 2, 3, depending
on vehicle type, and P3 equal to their year. As
the vehicles are brought back to the agency they
are linked onto one of three chains depending on
the type of vehicle. There is one control trans-
action which represents an agent renting the
vehicles.

The control transaction enters the SAVEVALUE
block where the year of the vehicle the customer
desires is placed in SAVEVALUE 10, the type of
vehicle desired is then placed in Parameter 6, and
then the transaction enters the UNLINK block. An
attempt is then made to remove one transaction
from the proper chain of vehicles (this chain
number is given by P6). A search is made of the
proper chain, and the first transaction (vehicle)
whose year (P3) matches the year of the vehicle
desired (X10) is removed from the chain and sent
to its proper service routine as directed by FN2.
If a vehicle is found, the confrol transaction drops
through to spend the proper amount of time to fiil
out rental forms. If a vehicle is not found which
matches the specified condition the control
transaction goes through a string of blocks to see
whether there is an alternate vehicle to satisfy the
customer.

1 Car
P1 = 2 Pickup Truck
3 Closed Truck
P3 = year

Vehicles Come In

V

LINK

6, Type

(ASSIGN

Om =m %

*6
1 UNLINK
3
%10 | FN 2 SORRY

Vehicle

i Alternate
L

\
Fill Out
Rental
Form

Figure 21. User Chain Structured Based on
Parameter Value

Example 4

Figure 22 shows the use of a Boolean variable
in an UNLINK block., In this mode, five different
attributes are assigned to describe each vehicle:

0 Red
Pl=1 Green

2 Yellow

3 Blue
P2 =Weight

P3=10 Automatic
20 Standard

i

Vehicles Come In

ASSIGN

5 Price

(1

LINK

Q==

Customer Requests

1
1 [URCiRg

BV3| FN2 SORRY

Alternate
Vehicle

1

Fill out
Rental
Form

BVARIABLE 3 = P1I'E'3*P2'LE'K1000*P3'E'10#(P4'E'1+P4'E'3)*P5'LE 'K250
Figure 22, UNLINKing User Chain Transactions that Satisfy Boolean Variable.

0 Ford

P4=1 Cadillac
2 Plymouth
3 Chevy

P5 =Leasing Price
USER CHAIN STATISTICS

In GPSS/360, the following output statistics will be
provided for each user chain:

1. Maximum number of transactions on the
user chain (U4 Halfword)

2. Average number of transactions on the user
chain
U7 Doubleword = Cumulative Time Integral

C1 Relative Clock Time

3. Total number of transactions which were
placed on the user chain (U5 Fullword)

4, Average time a transaction was on the user
chain
U7 Doubleword = Cumulative Time Integral
U5 Fullword Total entry count

The interpretation and meaning of these
statistics are dependent on the.model and the
manner in which the user chain entity is being used.

For example, if the user chains were being
used to represent an inventory situation, the above
statistics would represent:
maximum number of items in inventory,
average number of items in inventory,
total number of items in inventory over a period
of time,
average time an item was in inventory.

BLOCK TYPES THAT MODIFY TRANSACTION
ATTRIBUTES

ASSIGN Block
[1
I

2 toc|7|s opEraTion | 1 4 B c |

I | | ASSIGN Parameter SNA to bo
Number n ASS1GNed Medifier

K, *n, SNAJ() | K, *n, SNAL | K, *n, SNAJ,
*n

BNA*n SNA SNA*n
ABSIGN

No. of Funeticn

78

The ASSIGN block is the principal means of
entering numerical values into transaction para-
meters. The ASSIGN block will never refuse entry
to a transaction. Transactions will move to the
next sequential block following the ASSIGN block.
The value of the field A argument is the number n
of the parameter to which a value is to be ASSIGNed,
In GPSS/360, each transaction has twelve para-
meters unless otherwise specified by the analyst.
Therefore, the legal field A values are 1, 2, . ..,
12. The parameter values are stored as signed
numbers in the words associated with the trans-
action, beginning at T15. The program enables the
user to designate that zero to 100 parameters be
associated with each transaction. He also has the
ability to specify fullword or halfword parameters,
both of which are signed integers. The SNA for all
parameters remains P; the interpreting of halfword
or fullword parameters is an internal operation.
For example, if the user desires to have 20 fullword
parameters associated with each transaction, the
following GENERATE block could be specified:
GENERATE, , , , , 20, F

If fields F and G of the GENERATE block are
blank, twelve halfword parameters are provided.
With the use of fullword parameters, GPSS/360
parameters have a maximum range of 231 to 4231
~-1. Halfword parameters are restricted to -215 to
+215 1,

Replacement, Subtraction and Addition Modes

The character (blank, + or =) which immediately

follows the field A parameter number indicates how

the computed ASSIGN value is to be used:

(blank) the value is to replace the current value of

the specified parameter

(+) the value is to be added to the current value of
the specified parameter

(=) the value is to be subtracted from the current
value of the specified parameter

For example:

ASSIGN 3, X10 Replace entering value of Param-
eter 3
ASSIGN *nt+, X10 Add to entering value of Param-
eter *n
ASSIGN FN3-, X10 Subtract from entering value of
Parameter FN3
ASSIGNed Value

Field B of the ASSIGN block specifies a
Standard Numerical Attribute whose value is to be
assigned to the field A parameter. The index
number (j) of a function modifier may be specified
in field C. In this case, the value assigned is the
product of the field B Standard Numerical Attribute
and the untruncated value of the field C function
modifier (FNj). The function modifier values (FNj)
can, therefore, be noninteger values, similar to
the field B function modifier values in ADVANCE
and GENERATE blocks. These are the only three
cases in the GPSS/360 program where noninteger
values occur.

If any overflow occurs during the computation
of the integer to be assigned, only the low-order
15 bits are retained for halfword parameters and
the following warning message is also printed:

WARNING EXECUTION ERROR 850. BLOCK

NUMBER XXXX. CLOCK YYYY. SIMULATION

CONTINUES,

Where: XXXX = ASSIGN block at which the

error occurred,
YYYY =Clock time at which the error
ocecurred,

This message is only printed the first time an
overflow occurs as a result of an ASSIGN operation
and the simulation continues.

Example 1:

The following example illustrates how ASSIGN
blocks may be used to introduce system data into
a block diagram. Let us suppose that a commu-
nication system receives messages of three types,
each of which follows a different character length
distribution, In each transaction, Parameter 8
will contain the message type and Parameter 2 will
contain the message length.

Example 2;

ASSIGN blocks may also be used to control the
logic of the block diagram. Let us suppose that
the system processes messages character by
character. The block diagram will thus represent
the processing steps that are required in the
examination of one character. Each fransaction
represents one message and must thus repeat the
processing loop a number of times that is equal to

1 /'_‘-\
GENERATE

P8 =1,23
= Message type

1
Loc OPERATION A B [+]
8 |13 19

b
-3

1 GENE!I'(A'I‘E 200 | 12

¥
|
|
|
| 2 ASSIGN 8 FN10
! a ABSIGN 2 FN*8
. ! CHARACTER L![NETH DISTRIBUTIONS MESSAGE TYPE
i 10 FUNC+IDH RN1 | D3
! 075 1 .05 2 1.0 3
1 1 FUNCTION |RN1 | C5 TYPE || CHARACTER LENGTH
} 0 az .38 55 182 | G8 705 |90 1.0 |122
} 2 FUNCTION RN1 | C3 TYPE |2 CHARACTER LENGTH
} o 20 [83 (31 |.e9 |87
| a FUNC:'II"IG‘S RN1 | D2 TYPE [3 CIIA_IRACT R LEI:IGTH
;.DBZE 42 |:l.ﬁ 52 | I I

its character length, Transaction Parameter 2
contains the message character length. The
following pair of blocks can be used to control the
loop for each transaction. The ASSIGN block adds
one to the count of the number of processing loops
the transaction has executed (Parameter 1), The
TEST block admits all transactions. It diverts

100

P14P2

Pl=p2 102

them back to the start of the processing loop so long
as the relational condition (P1 equal to P2) is false.
When P1 finally equals P2, all the characters have
been processed and the transaction proceeds to the
next sequential block after the TEST block.

79

Example 3:

The importance of not truncating the value of
the ASSIGN block field C modifier can be
illustrated by the following example. Assume that
there are numerous message types in a simulation
model and each of these has a different mean
character length. The message type numbers and
character lengths are ASSIGNed to Transaction
Parameters 4 and 7, respectively. Assume that
the character lengths of each message type are
exponentially distributed. Assume that the
discrete numerical valued (Dn) Function 2, which
uses P4 (message type) as an argument, gives the
mean character length of each message type as the
function value, FN2. Assume, finally, that Function
1 is the same exponential function as that described
in the "Exponential Distribution' example in
Chapter 5.

The appropriate randomly distributed character
lengths can be assigned to each transaction by
passing all transactions through the following
ASSIGN block:

ASSIGN 7, FN2, 1

Each FN 2 mean character length value would
be multiplied by the exponentially distributed
untruncated fractional values of Function 1.
Consider what would happen if the value of the
field C function modifier (FN1) was truncated
before multiplying the value of FN2, the mean
character length. The only possible values of FN1
would be the integer values 0, 1, 2, . . . 8. The
most reasonable solution fo this problem would be
to modify Function 1 by dividing each ¥j function
value by 1000, The following ASSIGN block could
then be used to assign exponentially distributed
character lengths to each fransaction.

ASSIGN 7, V10
10 VARIABLE FN2 # FN1/K1000

The combination of FN1/K1000 generates the
same exponentially distributed values as the
original fractional valued FN1. The simulation
model would run more slowly, however, when
computing the value of Arithmetic Variable 10.

Symbolic Assembly Program Block
Locations as Field B Arguments.,

A very common use of ASSIGN blocks is to assign
different block numbers to some Transaction
Parameter n, depending on the type of transaction.
These different transaction types can all move
through a common group of blocks, which end in
one of the following two types of TRANSFER blocks:

80

c | ABSIGN

SNA) |

COMMON
Blocks

{S—

Each different transaction type will now
TRANSFER to the block numbers originally spec-
ified as the field B arguments of the entering
ASSIGN blocks.

The symbolic assembly program is based on
the use of symbolic block locations. Consequently,
symbolic block locations will very often be coded
as the field B arguments of ASSIGN blocks, so that
the above TRANSFER block operations can be
performed.

1 NEXT1 e
ABSIGN

|2 L.OCl Tl & OPERATION l 1 A | Bl

TRANSFER
TRANSFER P

*n
n

Ta Bleck 10 To Block 20

1 NEXT 2 Aniign

symballe block

ASSIGH loention

Comman
BHlocks

TRANSFER
*1

V

To block NE‘XTtl] To hlack NEXT2

INDEX Block

| 2 |.nc| 1'| & OQPERATION [19 A | B | Y
INDEX Parameter no, n | Increment INDEX B
k, ®n, SNAj, ks "n, SHAj,
SNA®R

SNA*n

The INDEX block is used to change the values of
parameters of transactions which enter the INDEX
block. The value of the SNA specified in field B

is added to the current value of the parameter whose
number n is specified by the field A SNA. This

sum is then placed in Transaction Parameter 1.

The original field A parameter is unchanged, un-
less, of course, Parameter 1 is specified in

field A. Therefore:

P1 = Value of parameter (SNA A) - SNAB

The INDEX block will never refuse entry to a
transaction. Transactions proceed to the next
sequential block following the INDEX block.

Examples:

(4) INDEX o A Increment P1 by 1
(B) INDEX 3, 10 Replace P1 with P3 +10

The above INDEX block operations could be

performed more slowly by the following block
combinations.

(A (B) (B)

1+ Kl 1 B3 1 Vi

ASSIGN ABSIGN ASSIGN

V1= P3 + K10

1+ K10
ASSIGN
MARK Block
1]z voc| 7| & OPERATION

MARK

19 A
Parameter no. n MARK A
k, *n,8NAJ,SNA*n ig?

Each transaction can have two kinds of transit
time Standard Numerical Attributes. These were
described earlier in this chapter.

Transuction _ Current Absslute Mark Time word (TU). of the
Ml = = Transaction currently
Transit time Clock Time
belng processed

Current Abselute Value of Parameter n of the
MPn = PRrames = Clock Time = Transaction currently
Transit Time
being processed

The absolute clock time when each transaction
enters a simulation model via GENERATE blocks
is stored in the Mark Time word (T6) of each
transaction.

This original ereation time can be updated and
replaced by the current absolute clock time by
passing the transaction through a MARK block.
The MARK block never refuses entry to a trans-
action. Transactions proceed to the next sequen-
tial block. The absolute clock time when the
transaction enters the MARK block is placed in the
Mark Time word (T6). Field A can contain the
number n of a transaction parameter, Trans-
actions which enter such a MARK block will have
the low-order 15 bits (modulo 32, 768) of the
absolute clock time stored in the specified half-
word parameter. If a fullword parameter is being
used, the absolute clock time is stored as a 31-
bit integeir. This permits use of the Parameter

Transit Time Attribute (MPn or MP*n) to measure
intermediate transit times through a model. If the
value of the field A argument is zero, it will be
interpreted as if it were blank; i. e., the absolute
clock time will be placed in the Mark Time word
(T6).

COUNT Block

ZJLOC 718 OPERATION|14 X |j94 I c n E O
COUNT Conditional| Parameter | Lower Upper [Compariaon [Entily ADC.E
operator |In which o | limit of Timit of jvalue if nttribute L
or place count|entity class |entity |conditional [to bw
logical 1o bo ex= elans loloporalor counted
aperator amined bo ox= [specificd in
amined |column 14
K, ", Ky *n, k; *n, [k, *n, any SNA
SNA], 8NAJ, SNAj, [8NAj, excopl
SNA®R SNA®n BNA*n |SNA'n MATRIX

SAVEVALUES

The COUNT block enables the user to determine
the number of items which meet a specific con-
dition by passing a transaction through a single
block -- namely, the COUNT block. For example,
the user might be interested in determining the
number of facilities within a given range which
are not in use, or the number of storages with an
average utilization less than 500 (in parts per
thousand), ete.

Field A of the COUNT block specifies a
parameter number of the entering transaction in
which the COUNT will be placed. Field A may be
any System Numerical Attribute (SNA) and may be
indirectly specified (*n). However, if the user
specifies *n, the parameter in which the COUNT
will be placed is not parameter n but parameter j,
where j is the value of parameter n.

Fields B and C of the COUNT block specify the
lower and upper limits, respecitvely, of the range
of the specified entity to be tested.

Field D of the COUNT block is used in conjunec-
tion with the conditional operators (E, NE, G, GE,
L, LE) specified in column 14, The SNA specified
in field D is evaluated and compared against the
entity attribute specified hy field E. If is not
necessary to specify field D if other than condi-
tional operators are specified in column 14 of the
COUNT block,

Field E of the COUNT block is also used in
conjunction with the field D entry and with the
conditional operators (E, NE, G, GE, L, LE)
specified in column 14, TField E specifies the
entity attribute to be counted and may be any
GPSS/360 SNA mnemonic except MATRIX SAVE-
VALUES. [t is necessary only to specify the SNA
mnemonic in the E fields, since the range of a

81

given entity class to be included in the test is
specified in fields B and C,

The operator entry beginning in column 14 may
be a logical or a conditional operator. The logical
operators specify explicit conditions which are to
be examined -~ count of facilities not in use, count
of logic switches reset, etc. The logical operators
are:

Facilities

NU Facility not in use (available)

U Facility in use (any regular or preempt
usage)

NI Facility not interrupted (no PREEMPT
usage, but either available, or in
regular usage)

I Facility interrupted (any PREEMPT
usage)

Storages

SE Storage empty (zero contents)

SNE Storage not empty (nonzero contents)

SF Storage full (zero space)

SNF Storage not full (nonzero space)

Logic Switches

LR Tests for logic switch reset
IS Tests for logic switch set

When logical operators are used, fields D and E
of the COUNT block should be blanlk,

As previously mentioned, six conditional
operators may also be used for entity attributes
which may have a wide range of values. The con-
ditional operators are:

L Less than, If the value of the SNA
specified in field E is less than the
value of the SNA specified in field D,
the relation is satisfied.

LE Less than or equal to. If the value of
the SNA specified in field E is less than
or equal to the value of the SNA
specified in field D, the relation is
satisfied.

E Equal to, If the value of the SNA
specified in field E is equal to the value
of the SNA specified in field D, the
relation is satisfied.

NE Not equal. If the value of the SNA
specified in field E is not equal to the

82

SNA specified in field D, the relation is
satisfied,

G Greater than, If the value of the SNA
specified in field E is greater than the
value of the SNA specified in field D,
the relation is satisfied,

GE Greater than or equal to. If the value
of the SNA specified in field E is greater
than or equal to the value of the SNA
specified in field D, the relation is
satisfied,

When conditional operators are used, the COUNT
block must have entries in fields D and E.

The operation of the COUNT block can best be
explained by examples,

1) | Jad [18

COUNT ‘LE |1, 1, 5, X10, FC

This example would count the number of facilities
between 1 and 5, inclusive, which have an entry
count (FC) less than or equal to the current value in
fullword savevalue 10, The result of the count (0-5)
will be placed in parameter 1 of the entering
transaction.

2 1& 14 g
COUNT SF Iﬁ. 10, 20

This example would count the number of storages
between 10 and 20, inclusive, which are full (SF).
The resultant count would be placed in parameter 5
of the entering transaction.

NOTE: No D or E fields are required.

B)] I8 114 |18

ICDUNT KU X1, X2, X3

This example would count the number of facilities
between i (the value of X2) and j (the value of X3),
inclusive, which are not in use. The resultant
count would be placed in parameter n (value of X1)
of the entering transaction,

SELECT Block

:III.DC 7|8 OPERATION|14 X m_A bl |t: o |E
HELECT

or place entity |entity |entlty |[value if ta bo no entity
logleal # that meeta|class tojelass tofcondl= jexamined|mects
pperator be ex= [be cx- |Ulonal op« specified
or amined famined |erator conditlon
(MAX, MIN) pting
in colum:
K. *n ke *n. (k. *n. |k, *n, |any SNA [k, *n,
SHA), SNAjJ, [BNAJ, [SNA), xcopt |SNAJ,
EHA®H SNA*n [SNASR [3NASR [MATIUX [%A%h
AVE=
VALUES

The operation of the SELECT block is similar to
that of the COUNT block except that, instead of
COUNTing the number of entities that meet a
specified condition, the SELECT block ""selects" the
first entity of the specified range which meets the
prescribed condition. The number of this entity is
then placed in a parameter of the entering trans-
action which is specified by field A of the

SELECT block.

The contents of fields A through E of the SELECT
block are identical to those of the COUNT block.
In addition, Field F is used to specify an
alternate block for the entering transaction if no
entity in the given range meets the specified con-
dition. If no field F is specified, the entering
transaction always proceeds to the next sequential
block.

Column 14 of the SELECT block may contain any
of the 16 mnemonics mentioned previously for the
COUNT block. In addition, two others are provided
for the SELECT block only: MAX and MIN. If
MAX or MIN is specified in column 14 of the
SELECT block, no Field D constant is necessary.

The operation of the SELECT block is illustrated
in the following examples.

1]a] 14 | 19

EELEC‘T IMA}: |1. 5,10,, FR

This example selects the facility with maximum
utilization (FR) between facilities 5 and 10 inclusive.
The facility number is placed in parameter 1 of the
entering transaction. NOTE: The field D is blank
when MAX or MIN isused for the conditional operator
beginning in column 14.

2) Is Ju |20
kseLecr |oe |10, 10, 20, x5, @

¥
Condilianal| Paramoler | Lower Upper |Com= Entity Alterante L >
oparatar |in which to |limit of |limis of [parison 'mitrilmte |exit, f

This example selects the first queue, between
queues 10 and 20 inclusive, with a current contents
(Q) greater than or equal to the value in fullword
savevalue b (¥5). The queue number is placed in
parameter 10 of the entering transaction.

BLOCKS THAT MODIFY THE SEQUENTIAL BLOCK
FLOW OF TRANSACTIONS

The GPSS/360 program generally attempts to move
transactions only to the next sequentially numbered
block. The TRANSFER block, discussed earlier in
this chapter, permits a wide variety of transfers to
nonsequential next blocks. Three other block types
can also conditionally transfer transactions to non-
sequential blocks:

1. LOOP block

2. TEST block

3. GATE block

LOOP Block

| 2 woc|1]s operamion] 1o A | | B

\ LooP LooP y

The LOOP block serves to control the number of
times that a transaction will pass through a section
of the block diagram. Any one of the transaction
parameters of a transaction may be used to count
the number of loops which have been executed.

A transaction is never refused entry to a LOOP
block. The GPSS/360 program obtains the contents
of the transaction parameter which is specified in
field A of the LOOP block. This integer is reduced
by one, and the result is placed back in the para-
meter.

A next block is then selected for the transaction
in the following manner. If the parameter that was
decremented is not yet zero, the transaction will be
sent to the block specified in field B of the LOOP
block. If the parameter has been reduced to zero,
the transaction will be sent to the next sequential
block following the LLOOP block. The field B next
block will customarily specify the first block
number in the block diagram loop. Any number of
transactions may simultaneously execute the same
loop. If a transaction enters the LOOP block with
a parameter value of n, and the parameter is not
altered elsewhere in the loop, it enters the LOOP
block n times and leaves, nonsequentially, n-1
times. If the specified parameter field is zero or
negative at the time of entering a LOOP block,
running Execution Error 429 occurs (LOOP counter
parameter initially zero or negative).

Noxt Block
U Pngo
k. *n,BNAJ,
SNA*n

Parameter no. n
k,*n,SNAJ,
BNA®n

83

Example:

Logic Switches 1 through 10 are to be put in a set
condition. The following figures illustrate two
procedures for creating the required block diagram
loop. In each case transactions will execute the
loop ten times. The LOOP block in Model A will
be entered ten times by each transaction. The
first nine entries will move back to Block 11. The
tenth entry will cause Parameter 4 to be reduced to
zero, and Block 14 will be chosen as the next block.
In order to execute a loop n times using the LOOP
block, the number n should be in a parameter field
at the start of the loop. Model A runs much faster
since the LOOP block compactly performs the work
of the ASSIGN and TEST blocks in Model B,

110

10 4, K10

ASSIGN
ABSIGN 11

1 LOGIC § |*4
*
LOGIC § 'II 112

12 l-

LOOP | 4

113
14

114
MODEL B

MODEL A

TEST Block

l Locl | OPERATION A‘ B l c \
2 7|8 | 13 10
'TEST | E First Second | Next block
1EST | NE SNA | SNA | if relation
TEST | GE ia Ialse
TEST G k,*n k,*n k. *n,
TEST | LE SNAJ, 8NAJ, SNAJ,
TEST | L SNA*n | BNA*n | BNA*n
next field C
sequential next
bloek block

The TEST block, unlike the LOOP block, does not
alter any transaction attributes other than the next
block to which the transaction proceeds. The TEST
block controls the flow of transactions through the
medium of an algebraic relation between the inte-
gral values of two Standard Numerical Attributes
specified in fields A and B of the TEST block. The
following six mnemonics specify algebraic

84

relations which may appear in the auxiliary opera-
tion field of the TEST block:

less than ==~ If the field A Standard
Numerical Attribute is less than the field
B Attribute, the relation is true.

L -

less than or equal to -- The relation is
true if the field A Standard Numerical
Attribute is less than or equal to the
field B Attribute.

equal to -- The relation is true only if the
two Standard Numerical Attributes are
equal.

not equal -~ The relation is true unless
the two Standard Numerical Attributes
are equal.

greater than —- If the field A Standard
Numerical Attribute is greater than the
field B Attribute, the relation is true.
GE - greater than or equal to —— The relation
is true unless the field A Standard
Numerical Attribute is less than the
field B Attribute.

Unconditional and Conditional Entry into TEST
Blocks

TEST blocks can operate in two possible ways:

1. Unconditional Entry Mode. If a next block
is specified as a field C argument (k, *n, SNAj,
SNA*n), transactions will never be refused entry
to the TEST block. If the relational statement
defined by the auxiliary relational operator and
the field A and B arguments is true, the trans-
action will attempt to move to the next sequential
block. If the relational statement is false, the
transaction will attempt to move to the next block
specified by the value of the field C argument. The
next block choice is made only once; this occurs
when the transaction first enters the TEST block
and is not changed subsequently. When the symbolic
assembly program is used, the field C argument of
the TEST block can be a symbolic block location,

2. Conditional Entry Mode. If field C of the
TEST Block is blank (i.e., there is no alternate
next block specified), transactions are denied
entry into the TEST block until the relational
statement defined by the auxiliary relational
operator and the field A and B arguments are true,
The TEST block algebraic relation is tested each
time the overall GPSS/360 scan processes a
transaction which has been blocked by a TEST

block operating in the conditional entry mode.
Delayed transactions are usually chained in push-
down delay chains; this deactivates their processing
by the overall GPSS/360 scan until the blocking
condition is removed. This speeding up of the
GPSS/360 program does not occur, however, with
transactions which are delayed by conditional entry
TEST blocks. The indiseriminate use of such TEST
blocks can, therefore, materially increase the
running time of the GPSS/360 model.

Examples:
Je twlals |c |
| TEST | L lm | KEOOl sml

Until the simulator clock reaches 500, transactions
will proceed from the TEST block to the next
sequential block. At or after clock time 500,
transactions will proceed to the block specified by
the value of the field C argument.

5. |8 | 18 A B
| Test| cE| ni2l Nso

Whenever the total block count at block number 12
(N12) is greater than or equal to the total block
count at block number 50 (N50), transactions will
succeed in entering the TEST block and moving to
the next sequential block. Whenever the count at
block 12 is less than that at block 50, Transactions
will not succeed in entering the TEST block.

ls | Jals|c|

3.
ltest| ® lvel xo | swal

Whenever the computed value of Arithinetic Variable
Statement 6 is equal to zero, transactions will
proceed sequentially. Whenever the value is not
equal to zero, transactions will proceed to the block
specified by the value of the field C argument.

4.|a | 13 IAl BI
lTest | o [»7| Reof

The transaction will succeed in entering the TEST
block only if the value of Transaction Parameter 7
is greater than the remaining capacity (R20) in
Storage 20. Otherwise, the transaction will not
succeed in entering the TEST block.

5. The following sequence of blocks may be used
to divert every twentieth transaction to a special
path starting at block SPEC. After entering the
ADVANCE block, each transaction succeeds in

unconditionally entering the TEST block. The
program computes the value of Arithmetic Variable
Statement 10, which is equal to the remainder from
the division of the total block count at block ABC
(N$SABC) by the constant 20. This will be zero
whenever the block count is an exact multiple of 20.
The first 19 transactions which enter the TEST block
will find that the relational statement V10 NE 0 is
true, and will proceed to the next sequential block.
The twentieth transaction will enter the TEST block
and proceed to block SPEC for special processing.
The cycle will then repeat, with the fortieth
transaction moving to block SPEC, etc.

ABC ADVANCE
TEST NE V10,0,SPEC
10 VARIABLE NJABC@20
GATE Block
| 2 woc|7|s operamion |13 [18 & | B |
GATE | Attribute | Entity Next block o,
| Mnemonie Index | if Logical Attri-
| snA k, *n, SNA, | bute is false,
SNA Kk, *n, SNAJ,

l
%

e
[

The GATE block, similar to the TEST block, does
not alter any transaction attributes other than the
next block to which the transaction proceeds. The
GATE block controls the flow of transactions as a
function of the true or false condition of twelve
Standard Logical Attributes. The mnemonic code
for these attributes is placed in the auxiliary field
(columns 13-18) of the GATE block. The entity
index (j) is specified by the value of the field A
argument.

Facility Logical Attributes

1. NU TField A Facility j is not in use (not
SEIZEd or PREEMPTed)

2. U TField A Facility j is in use (either
SEIZEd or PREEMPTed)
3. NI Field A Facility j is not being

PREEMPTed
4. 1 Field A Facility j is currently being
PREEMPTed by some transaction
Storage Logical Attributes
5. SE Field A Storage j is empty, i.e.,
5j=0

85

6. SNE Field A Storage j is not empty, i.e.,

5 >0

7. SF Field A Storage j is full, i.e.,
Rj=0

8. SNF Field A Storage j is not full, i.e.,
Rj>0

Logic Switch Logical Attributes

9. LS Field A Logic Switch j is in a Set

condition
10. LR Field A Logic Switch j is in a Reset

condition

Transaction Logical Attributes
11. M A transaction (which belongs to the
same assembly set as the transaction

currently trying to enter, or within,
the GATE block) is in a matching
condition at the field A block j.

12. NM No transaction (which belongs to the
same assembly set as the transaction
currently trying to enter, or is with-
in, the GATE block) is in a matching
condition at the field A block j.

Unconditional and Conditional Entry into GATE
Blocks

GATE blocks, just like TEST blocks, can operate
in two possible ways:

1. Unconditional Entry Mode, If a next block is
specified as a field B argument (k, *n, SNAj,
SNA*n), transactions will never be refused entry to
the GATE block. If the specified logical attribute
is true, the transaction will attempt to move to the
next sequential block. If the logical attribute is
false, the transaction will attempt to move to the
neéxt block specified by the value of the field B
argument, The next block choice is made only once,
when the transaction first enters the GATE block
and is not subsequently changed.

2. Conditional Entry Mode. If field B of the
GATE block is blank (i.e., there is no alternate
next block specified), transactions are denied entry
into the GATE block until the specified Standard
Logical Attribute is true. The true or false value
of the Standard Logical Attribute is not tested
(except for the M and NM attributes) each time that
the overall GPSS/360 scan processes a transaction
which has been blocked by a GATE block which is
operating in the conditional entry mode. Delayed
transaction are instead chained in pushdown delay
chains, which thereby deactivates their processing
by the overall GPSS/360 scan until the value of the
Standard Logical Attribute becomes true. These

86

delay chains are described in Chapters 9, 10, and
11, which discuss the logic switch, facility, and
storage entities.

Example:
In the following block diagram, transactions will
contribute to the contents of Queue 25 until either

Facility 1 is available (not in use), or Storage 60
is not full, See Diagram.

QUEUE

20

91

DEPART

DEPART @

Transactions which attempt to enter one or more
conditional entry GATE blocks from a TRANSFER
block with a BOTH or ALL selection mode will not
be placed in a pushdown delay chain. The overall
GPSS/360 scan will therefore always attempt to
move them into the set of next sequential blocks
when the scan encounters them in the current events
chain. Therefore the use of such blocks should be
made with care to avoid running time inefficiency.

BLOCKS THAT CREATE AND PROCESS MEMBERS
OF TRANSACTION ASSEMBLY SETS

GENERATE blocks are the primary means by which
transactions are created and enter a simulation
model, Transactions can never enter a GENERATE
block, The SPLIT block, on the other hand,
permits transactions to enter it, and specifies in
field A how many offspring of the entering parent
transaction are to be created. These copies, along
with the parent from which they were created,
become members of a unique transaction assembly
set.

The TERMINATE block is the primary means by
which transactions are destroyed and removed from

a simulation model. The ASSEMBLE block will
also destroy transactions of an assembly set and
allow only the first of n transactions to proceed to
a next sequential block after n-1 others have been
destroyed.

The MATCH and GATHER blocks are provided
to control the flow of members of transaction
assembly sets through the system. Further control
is provided by the GATE M and GATE NM blocks.

SPLIT Block

|2 e 7|8 orenariou| Al u | e | u
SPLIT wr, of coptes | New black Parameter || K. of paramelery
Ko *n, ANAL | for coplen for serial K, *n, SNAJ, &
n

A b, *n, BHAY| |mumbering |[] 5MA®n
SHA™

The SPLIT block never refuses entry to a trans-
action. The SPLIT block serves the function of
creating offspring of the original, or parent,
transaction which enters it. The number of copies
to be created is specified by the field A argument.
If this argument has a computed value of zero, then
the SPLIT block performs no operation and the
entering transaction simply proceeds to the next
sequential block. All copies are created as soon
as the original fransaction enters the SPLIT block.
The original fransaction will attempt to move to the
next sequential block after creating the copies. All
copy transactions move to the block specified by the
value of the field B argument, which is computed
separately for each copy transaction.

Field C can optionally designate a transaction
parameter (n) so that a serial number may be
associated with the new transaction. If, for
example, Parameter number k is specified, the
following values will be assigned to the Kkth
parameter of the parent transaction and the N copies
which are created:

X = entering value of Parameter k

Transaction Value of Parameter k
Original Pk=X+1

1st Copy Pk=X+2

2nd Copy Pk =X +3

Nth Copy Pk =X+ (N+1)

Field D of the SPLIT block specifies the number
of parameters to be assigned to each copy trans-
action. If field D is blank, the number of para-
meters assigned will be the same as that of the
original transaction and all values of the originalls
parameters will be placed in the corresponding
parameters of each copy transaction. If a value is
specified in field D each parameter (n) of the
original which has a corresponding parameter (n)
in the copy will be copied. If the copy transaction
has more parameters than the original all additional
parameters in the copy are set to zero. The length
attribute of the parameters of the original trans-
action is transferred to all copies, i.e., if the
parent transaction has halfword parameters, all
copies will have halfword parameters; if the parent
has fullword parameters, all copies will have full-
word parameters.

All the parameter values specified above, the
priority level, and the mark time (but not the
block departure time) of the original transaction
are duplicated in each SPLIT offspring. Each new
transaction successively becomes the last trans-
action in the same priority class in the current
events chain. The block departure time of the
SPLIT transactions remains zero until they enter
an ADVANCE block.

The Total Block Count (Nj) and Current Block
Count (Wj) of the SPLIT block are incremented hy
one for each original and copy transaction. The
current count is reduced by one as each transaction
succeeds in leaving the SPLIT block.

Each new SPLIT transaction becomes a member
of a unique transaction assembly set which evaolves
from the original transaction that was created in a
GENERATE block. The assembly set linkages
between transactions of the same assembly set is
carried in the second two bytes of transaction word
TS5, (T5+2). When a transaction is created in a
GENERATE block, T5+2 will contain the number of
the transaction itself. Hence, each transaction will
always belong to an assembly set which consists
minimally of itself.

Assume that such a transaction, e.g., number
10, enters a SPLIT block with the Constant 1
specified in field A. The program will obtain the
next available set of Transactions words (T1-T4)
from the internal chain of inactive transactions.
Assume these four words (T1-T4) are associated
with Transaction number 30. At this point, the
program would chain these two transactions together
in a closed one-way cyclic chain by placing the
number 10 in T5+2 of Transaction 30 and the number
30 in T5+2 of Transaction 10.

87

The contents of T5+2 is printed in the SET column
of the transaction printout (see Table 10). Consider
the following as a portion of such a printout contain-
ing Transactions 10-30-70-101, all members of the
same assembly set.

CURRENT EVENTS CHAIN

TRANS SET
30 70
70 101

TRANS SET
10 30
101 10

The assembly set linkages cannot reveal directly
which transaction was originally created in a
GENERATE block. If a copy transaction is itself
SPLIT the second copy becomes a member of the
same assembly set as the first copy. A transaction
is thus a member of one and only one assembly set.
Any number of transactions may be contained in a
single assembly set. When a transaction is termi-
nated, the program automatically removes it from
its assembly set. An assembly set thus continues
to exist until the last transaction in the set is
terminated. The assembly set linkages are revised
after each termination to maintain the closed cyclic
chain,

Any number of assembly sets may simultaneously
exist in the block diagram without conflict. Each
transaction that is created at a GENERATE block
is considered an independent assembly set, so the
number of sets in the block diagram will be a
fluctuating number.

ASSEMBLE Block

lz wclvla LDCATION|19 Al
| l ASSEMBLE

A
ASSEMBLE

Nr. to be assembled
ky *n, SNAj, SNA*n

88

An ASSEMBLE block joins a specified number of
transactions from an assembly set into a single
transaction. The ASSEMBLE bhlock will never refuse
entry to a transaction. Transactions move to the
next sequential block following the ASSEMBLE block.
When a transaction enters an ASSEMBLE block, the
program searches through that transaction's
assembly set linkages to find if another transaction
of the same set is at the ASSEMBLE block. There
are two possibilities:

1. No other transaction is at the ASSEMBLE
block in the process of being assembled (see below).
2. A transaction is already at the ASSEMBLE

block being assembled (see below).

Initial Transaction in Assembly Set to Arrive at an
ASSEMBLE Block.

The field Aassembly count is reduced by one. If
the result is zero, i.e., only one transaction is to
be ASSEMBLEd, the transaction proceeds
immediately to the next sequential block. If the
result is negative, i.e., the computed count was
zero or negative, Execution Error 607 occurs
(assembly count zero or negative at ASSEMBLE
block). Therefore, the field A value must always
be one or more.

Usually, the field A assembly count is greater
than one, so that the decrementing operation for the
initial transaction leaves a positive balance. The
assembly count balance is placed in word T2 of the
initial transaction (see Table 9) and the transaction
itself is unlinked fromthe current events chain and
placed in an interrupt status (not to be confused with
the interrupt chain associated with facilities). Tt
will not be returned to the current events chain
until a sufficient number of other transactions have
entered the ASSEMBLE block to decrement the
assembly count to zero. The Total Block Count (Nj)
and Current Block Count (Wj) are both incremented
by one. The overall GP3S/360 scan then proceeds
to the next sequential transaction in the current
events chain.

Internally, the chain indicators in T9 are set to
zero to indicate an interrupt status. This zero will
be printed in the CI column of the transaction
printout as a blank indicating no chain linkages. The
Matching Indicator (Bit 5 of byte T10) is set to one
to indicate the transaction is in the process of
assembly. This indicator is printed in the MC
column as a 4,

Succeeding Transactions to Arrive at an
ASSEMBLE Block

These transactions will discover that another
transaction of their assembly set is currently in

the process of being assembled at the ASSEMBLE
block. This transaction has been processed as
described in the previous section. Its current
block number (which is stored in T1) is the
ASSEMEBLE block number. In addition, its matching
indicator has been set to one which indicates it is

in the process of being assembled.

The assembly count balance (in T2 of the intial
transaction) is now reduced by one. The newly
arrived transaction is immediately destroyed. If
the assembly count still exceeds zero the overall
GPSS/360 scan proceeds to the next transaction on
the current events chain.

However, if the count has been reduced to zero,
the initial transaction is returned to the current
events chain as the last transaction in its priority
class. Consequently, it may not be the next
transaction to be processed by the overall GPSS/360
scan.

Internally, the chain indicator (T9) is set to
indicate the transaction is on the current events chain
and the matching indicator is reset to zero.

The completion of the assembly is a GPSS/360
scan status change; i.e., the status change flag is
set. After the initial transaction has been replaced
on the current events chain, the overall GPSS/360
scan returns to the start of the current events chain
(see ""Overall GPSS/360 Scan" later in this chapter).
This assures that the overall GPSS/360 scan will
process the initial transaction at the same clock
time that it completes the assembly.

Even if the initial transaction cannot subsequently
move to the next sequential block after it has been
restored to the current events chain, it will not be
considered as being in the process of assembly.
This is because its matching indicator has been set
to zero. Consequently, if another transaction in the
same assembly set should now arrive at the
ASSEMBLE block it would become the initial
transaction of the next assembly, even though the
previously assembled transaction is still at the
block. The Current Block Count (Wj) is reduced by
one as each assembled transaction succeeds in
leaving the ASSEMBLE block.

Summary of ASSEMBLE Block Operations

The effect of the ASSEMBLE block is to permit one
transaction from an assembly set to advance after

N-1 other transactions of that set have arrived at
the same ASSEMBLE block. Therefore, only the
attributes of the initial transaction are retained.

It should be obvious that only one subset of any
assembly set may be in the assembly process at
one ASSEMBLE block at any moment in time. It is
permissible, however, for several subsets of the
same set to be simultaneously in the process of
assembly at several different ASSEMBLE blocks.
It is also permissible for several subsets of the
same set to be assembled at the same ASSEMBLE
block during successive intervals in time. Lastly,
it is possible for several different assembly sets
to be simultaneously in the process of assembly at
the same ASSEMBLE block. Obviously, the
specified number of transactions must enter the
ASSEMBLE block. Otherwise, the initial
transaction will remain permanently in the
ASSEMELE block in an interrupt status. Also, if
the initial transaction is the sole member of its
assembly set in the system, Execution Error 609
occurs.

Transactions That are PREEMPTed While in an
ASSEMBLE Block

After the initial transaction which is to enter an
ASSEMBLE block has been placed in an interrupt
"matching" condition, another transaction may
enter a PREEMPT block which references a
facility that the ASSEMBLE block transaction has
SEIZEd. The SEIZEing transaction in the
ASSEMBLE block has either already been
PREEMPTed on another facility which it has
SEIZEd, or this is the first facility on which it is
heing PREEMP Ted.

If the ASSEMBLE block transaction has not been
previously PREEMPTed, the following steps occur:

1. The Preempt Status Indicator (Bit 6 of T10)
is set to one to indicate that the transaction is being
PREEMPTed on a facility.

2. The Preempt Count (T8) is incremented by
one.

3. The chain indicator is set to one (Bit 7 of T9)
to indicate the transaction is on the interrupt chain
for some facility.

Transactions in an ASSEMBLE block, which are
both being PREEMPTed and are in a matching
condition, will be returned to the current events
chain only after both conditions are met.

An ASSEMBLE block transaction, which has
already been PREEMPTed on one facility and has
heen placed in a preempt status, can be PREEMPTed
on as many as 126 more facilities which it has

89

SEIZEd. The preempt count is incremented by one
each time that a further PREEMPT occurs. Error
474 will occur if this count exceeds 127.

PREEMPTed Transactions That Enter ASSEMBLE
Blocks

A transaction may be in the current events chain
when another transaction enters a PREEMPT block
which references a facility that the first transaction
has SEIZEd. The SEIZEing transaction will not be
immediately removed from the current events
chain and placed into an interrupt status. Instead,
its preempt flag (bit 6 of T10) is set to one. The
SEIZEing transaction will be placed in an interrupt
status only when it enters a nonzero-time
ADVANCE block, or when it enters a MATCH,
ASSEMBLE, or GATHER block in which it is
placed into a matching condition.

When such a PREEMPTed transaction enters
an ASSEMBLE block as the intial transaction, the
following steps occur:

1. The matching condition bit is set to one
according to the procedures described earlier in
this chapter for the initial transaction.

2. The preempt flag is reset to zero.

3. The preempt status bit is set to one.

4. The interrupt status bit is set to one to

indicate that the transaction is in an interrupt status.

5. The transaction is unlinked from the current
events chain.

It should be noted that a transaction may be
PREEMPTed on a facility which the transaction
itself is PREEMPTing if the PREEMPT block is
operating in the priority mode (see "PREEMPT
Block, " Chapter 10). In such case the same steps

__PCAZ

cPU Arm
SEIZE A sEIZE | /2

L
ADVANCE]|
SPLIT T2

r e e

ADVANCE| Read or
T3 Write Time

ADVANCE
T1

T Ch:mnnl

PAEL TRANSFER , PAEl
2
ABSEMBLE

RELEASE 1/ CPU

Proceed

96

occur as noted above for SEIZEing transactions
which are preempted.

Examples of SPLIT and ASSEMBLE Blocks

1. Parallel I/O operations. A transaction
SEIZEs Facility 1, which represents the CPU, and
SPLITs off a copy transaction to simulate an I/0
operation. The original transaction (left-hand flow)
then simulates processing by spending time in an
ADVANCE block, RELEASEs the CPU, and goes
into an ASSEMBLE block to wait for the completion
of the 1/0 operation. Meanwhile, the copy
transaction (right-hand flow) simulates the I/0
operation by SEIZEing an access arm (Facility 2),
spending seek time in an ADVANCE block,
SEIZEing the channel (Facility 3), spending time in
an ADVANCE block to simulate the actual read or
write operation, RELEASEing the channel,
RELEASEing the access arm, and entering the
ASSEMBLE block to allow the original transaction
to proceed. The coding and the block diagram for
this model is shown below.

Assembly Program coding is used below:

Arm Seek Time

1{2 Loc [7| 8 OPERATION [19 A, B, C
SEIZE 1
SPLIT 1,PCAZ
ADVANCE T1
RELEASE 1
PAEL ASSEMBLE 2
PAC2 SEIZE 2
ADVANCE T2
SEIZE 3
ADVANCE T3
RELEASE 3
RELEASE H
TRANSFER JPAEL

2. Transmission of message segments.
A transaction which is simulating a message
SEIZEs a line (Facility 51). The number of
message segments (n) in this message is assigned
to Transaction Parameter 1 by Function 21. The
transaction spends time in an ADVANCE block to
simulate transmission of one message segment.
The transaction then TRANSFERs to the LOOP
block. If the message is composed of more than
one segment, the transaction LOOPs to the SPLIT
block where a copy Transaction is SPLIT off and is
sent ahead to simulate processing in the message
exchange. The original transaction goes into an
ADVANCE block to simulate transmission of the
next message segment. After the nth segment
has been transmitted Transaction Parameter 1
will be reduced to zero by the LOOP block; this
allows the transaction to proceed to the next
sequential block. The transaction will then
RELEASE the line (Facility 51) and proceed to
simulate processing in the message exchange.

Assembly Program coding is used below:

1 |2 LOC|T|8 OPERATION |19
SEIZE 61
ASSIGN 1, FN21
ADVANCE T
TRANSFER + PBE2
PRCZ SPLIT 1, PBG2
ADVANCE T
PBEZ2 LOOP 1, PBC2
RELEASE 51
PRG2 i
Transmission
Line
Pl=NR. of
Segments
PHCZ g
ADVANCE
T SPLIT
004 A
ADVANCE
T
TRANSFER 08
PBE2
PBE

N 1

nth 1at n=1

GATHER Block

2 LOC| 7|8 OPERATION | 19 A [

A

GATHER Nr. to be gathered
GATHER

k, *n, SNAj, ENA*n

The GATHER block is similar to the ASSEMBLE
block in that it gathers together a specified number
of transactions from an assembly set. However, it
does not terminate any of the gathered transactions.
Instead, when the specified number have been
gathered, all of them proceed to the next sequential
block which follows the GATHER block. The
GATHER block will never refuse entry to a
transaction.

When a transaction enters a GATHER block,
the program searches through that transaction's
assembly set linkages to find if another transaction
of the same set is at the GATHER block and is in
the process of being gathered. There are two
possibilities:

1. No other transaction is at the GATHER block
in the process of being gathered (see below).

2. One or more transactions are already at the
GATHER block being gathered (see below).

Initial Transaction to Arrive at GATHER Block

The processing is identical to that described
earlier for the ASSEMBLE block, The field A
gather count is reduced by one and again stored in
word T2. The transaction is removed from the
current events chain and placed in an interrupt
status.

91

The Total (Nj) and Current (Wj) block counts are
both incremented by one. The chain indicators

in T9 are set to zero and the matching indicator is
set to one. The overall GPSS/360 scan then
proceeds to the next sequential transaction in the
current events chain., If the computed gather
count is zero or negative, Execution Error 607
occurs. The field A gather count must, there-
fore, be one or more.

Succeeding Transactions to Arrive at a GATHER
Block

These transactions will discover that one or
more transactions of their assembly set are
currently in the process of being gathered at the
GATHER block. The gather count balance stored
in T2 of the initial transaction is reduced by one.
If the balance is still greater than zero, the newly
arrived transaction is removed from the current
events chain, It is chained internally to the initial
transaction in a one-way FIFO chain (the T1 word
of each transaction is used for this purpose). The
interrupt status of these transactions is not set to
one. The total and current block counts are both
incremented by one.

If the gather count balance of the initial
transaction is reduced to zero, all of the gathered
transactions are returned to the current events
chain as the last transactions in their respective
priority classes in the following order:

1. The initial transaction is rechained first
(bit 6 of T9 is set, and its matching indicator is
reset to zero).

2. The remaining gathered transactions are
successively put back into the current events chain,
as the last transaction in their respective priority
classes, in the same order in which they arrived
at the GATHER block. This includes the very last
transaction to enter the GATHER block.

The successful completion of the gather
operation is a scan status change; i. e., the scan
status change flag is set. After all gathered
transactions which are not preempted have been
successfully returned to the current events chain,
the overall GPSS/360 scan returns to the start of
the current events chain. This assures that the
scan will process all transactions which have been
returned to the current events chain at the same
clock time that they were gathered.

92

Summary of GATHER Block Operations

The effect of the GATHER block is to permit N
transactions from an assembly set to advance from
a GATHER block after all N transactions of that
set have arrived at the same GATHER block. The
attributes of all the transactions are the same as
when they first arrived at the GATHER block.
Only one subset of any assembly set may be in the
gathering process at one GATHER block at any
moment in time. It is permissible, however, for
several subsets of the same set to be simultaneously
in the process of being gathered at several different
GATHER blocks. It is also permissible for several
subsets of the same set to be gathered at the same
GATHER block during successive intervals in time.
Lastly, it is possible for several different
assembly sets to be simultaneously in the process
of being gathered at the same GATHER block.
Obviously, the specified number of transactions
must enter the GATHER block. Otherwise, the
initial, and possibly some succeeding, transaction(s)
will remain interrupted permanently in the GATHER
block. If, when the gathering operation is complete,
the gathered transactions cannot subsequently move
to the next sequential block, none will be considered
as being in the process of being gathered because
their matching indicators will be reset to zero.
The current block count is reduced by one as each
gathered transaction succeeds in leaving the
GATHER block. As was the case with the
ASSEMBLE block, if a transaction of a one-
membered assembly set arrives at a GATHER
block Execution Error 609 occurs.

Transactions That are PREEMPTed While in a
GATHER Block

After transactions have been placed in an interrupt
matching condition in a GATHER block, another
transaction may enter a PREEMPT block which
references a facility that the GATHER block
transaction has SEIZEd. The operations that are
performed on such transactions are exactly the
same as described earlier for PREEMPTed
transactions in ASSEMBLE blocks.

PREEMPTed Transactions That Enter GATHER
Blocks

A transaction may be in the current events chain
when another transaction enters a PREEMPT block

which references a facility that the first transaction
has SEIZEd. The operations that are performed

on such transactions when they enter GATHER
blocks are exactly the same as described earlier
for PREEMP Ted transactions which enter
ASSEMBLE blocks.

MATCH Block

|2 LDCl 7[8 QOPERATION | 19 A | i i

2
block number ',1’]
k, *n, SNAJ, SNA*n e =i =

l\
| MATCH
‘ 1 \ ’ MATCH Conjugate MaTCH | [MATCY Ll !

The MATCH block serves to synchronize the
progress of two transactions of an assembly set
without removing them from the system. Instead
of joining the pair of transactions, the MATCH
block permits them to continue to advance through
the block diagram. The synchronization is
accomplished by matching pairs of transactions from
an assembly set and allowing both members of the
pair to proceed after the match has been achieved.
The MATCH block will never refuse entry to a
transaction. Successfully matched transactions
proceed to the next sequential block. Field A of the
MATCH block specifies the number of another

MATCH block, termed ""the conjugate MATCH block'.

A MATCH block may, if desired, take itself as the
conjugate block. It then operates like a GATHER
block with a gather count of two. The program
obtains the field A block number, and then searches
the entire assembly set of which the transaction is
a member. If another member of the set is waiting
in a matching condition at the conjugate MATCH
block, '""Matching Transaction at Conjugate MATCH
Block" is executed; otherwise, ""No Matching
Transaction at Conjugate MATCH Block" is
executed.

No Matching Transaction at Conjugate MATCH Block

It has been determined that the transaction which is

entering the MATCH block does not have an assembly

set partner at the conjugate MATCH block. The
transaction is removed from the current events
chain and placed in an interrupt status on the
matching chain. It will not be returned to the
current events chain until a member of its assembly
set has entered another MATCH block which
references its current MATCH block as a conjugate

block. The Total Block Count (Nj) and the Current
Block Count (Wj) are both incremented by one.

The matching indicator is set to one, as in the
ASSEMBLE and GATHER blocks. The overall
GPSS/360 scan then proceeds to the next sequential
transaction in the current events chain.

Matching Transaction at Conjugate MATCH Block

This is executed when an assembly set partner

is found in a matching condition at the conjugate
MATCH block. The matching indicator of the
partner is reset to zero. The first member of the
pair, which was placed in an interrupt status, is
returned to the current events chain as the last
transaction in its priority class (internally, bit

6 of T9 is set to indicate that the transaction is
back in the current events chain, while the
matching indicator is reset to zero). Meanwhile,
the overall GPSS/360 scan continues processing the
second member of the pair as if the MATCH block
were a zero-time ADVANCE block,

The successful matching is a scan status change;
i.e., the status change flag is set. After the first
transaction has been put back in the current events
chain, the second transaction attempts to move
through as many zero-time blocks as possible. As
soon as it encounters a blocking condition, or it
spends a positive time in an ADVANCE block, the
overall GPSS/360 scan will find the status change
flag set and return to the start of the current events
chain. This assures that the overall scan will process
the first transaction at the same clock time that it
was matched.

Even if a successfully matched transaction cannot
subsequently move to the next sequential block, it
will not be considered as available for matching if
another transaction in the assembly set enters
another MATCH block which addresses the first
MATCH block as a conjugate block. This is
because the matching indicator of successfully
matched transactions has been reset to zero. The
Current Block Count (Wj) is reduced by one as each
matched transaction succeeds in leaving the MATCH
block.

Summary of MATCH Block Operations

The effect of the MATCH block is to permit the
progress of pairs of transactions from an assembly
set to be synchronized. Pairs of transactions from
several different assembly sets may be synchronized
simultaneously at the same pair of MATCH blocks.

It is also possible for several pairs of transactions

93

from the same assembly set to be synchronized
simultaneously at different pairs of MATCH blocks.
Lastly, a MATCH block may be its own conjugate,
if desired; i. e., it operates like a GATHER block
with a gather count of two. Obviously, an assembly
set partner must eventually enter a MATCH block
which references the initial transaction MATCH
block as a conjugate MATCH block. Otherwise, the
initial transaction will remain permanently in the
MATCH block in an interrupt status.

Transactions That Are PREEMPTed While in a
MATCH Block

After a transaction has been placed in an interrupt
matching condition in a MATCH block, another
transaction may enter a PREEMPT block which
references a facility that the MATCH block
transaction has SEIZEd. The operations that are
performed on such transactions are exactly the
same as described earlier for PREEMPTed
transactions in ASSEMBLE blocks.

PREEMPTed Transactions That Enter MATCH
Blocks

A transaction may be in the current events chain
when another transaction enters a PREEMPT
block which references a facility that the first
transaction has SEIZEd. The operations that arc
performed on such transactions when they enter
MATCH blocks are similar to those described
earlier for PREEMPTed transactions which enter
ASSEMBLE blocks.

Example 1:

MATCH blocks generally operate in pairs. Each
block specifies the other as its conjugate MATCH
block. Thus, duplicates of a transaction which
are in separate paths in the block diagram may be
synchronized by placing a MATCH block in each
path. The following example illustrates this
procedure.

In the block diagram which follows, transactions
are SPLIT and enter queues for Facilities 1 and 2.
After a transaction obtains control of one of the
facilities, it waits until its duplicate obtains
control of the other facility. Both transactions then
proceed independently. The TABULATE block in
the example measures the interval of time required
for each pair of transactions to obtain control of the
two facilities.

94

1

0
GENERATE

1320, 50
11
SPLIT
//IN\"\
12 2
3§ 23 ¢
SEIZE A BEIZE A
THE 20 ¥
DEPART @\ DEPART @
57 25§
MATCH?25 .‘___________.__,.MAT(:\I‘{:j
R
TABULATH
20
] T 4
ADVANCE ADVANCE
1000, 500 1200, 600
1y 28y
RELEASE ;; RELEASE
1
TERMINATE TERMINATE

1

GATE M and GATE NM Blocks

>

11 | 18
Block no. |

|2 Loc \ 7 | 8 OPERATION

GATE
GATE

2z

i
1
I
I k, *n, 8NAJ, | If GATE)

| SNA*n condition In

: false E

\ k, *n, BNA],

| SNA*n

1 (B

Two Standard Logical Attributes are associated
with transactions. Their true or false values can
be used as the arguments of GATE blocks to
control the flow of the transactions within an
assembly set,

1. M - is true if another member of the assembly
set of the transaction that is now currently being
processed at or within a GATE block is in a
matehing condition at the field A block.

2, NM - is true if no other members of the
assembly set of the transaction currently being
processed at or within a GATE block are in a
matching condition at the field-A block.

A transaction is in a matching condition
whenever the matching indicator has been set to

]
Y

one (which is the MC column value in the transaction
printout). A matching condition occurs for
members of an assembly set in three ways; at
ASSEMBLE, GATHER, and MATCH blocks:

1. Another transaction of the assembly set is
the initial transaction still being assembled in an
ASSEMELE block, whose number j is the value of
the GATE block field A argument.

2. One or more transactions of the assembly
set are still being gathered at a GATHER block,
whose block number j is the value of the GATE
block field A argument.

3. Another transaction of the assembly set
which is awaiting a reference by a conjugate
MATCHing transaction is in a MATCH block whose
block number j is the value of the GATE block
field A argument.

Observe that since the matching indicator must
be set to one, a matching condition will not exist for
successfully assembled, gathered, or matched
transactions which have been unable to enter the
next sequential block following their ASSEMBLE,
GATHER, or MATCH blocks. The matching
indicators of these transactions have been reset to
Zero.

Unconditional and Conditional Entry into GATE
Blocks

As described earlier in this chapter, the presence
of a next block argument in field B of a GATE
bloek indicates that transactions will always enter
the GATE block. If the Standard Logical Attribute
(M or NM) is true, the transactions proceed to the
next sequential block; if it is false, they proceed to
the block specified by the value of the field B
argument. If no field B next block is specified,
the GATE block will conditionally deny entry to
transactions until the specified Standard Logical
Attribute is true. The transactions then proceed to
the next sequential block.

Transactions that are blocked from conditional
entry GATE M or GATE NM blocks are not
deactivated from the overall GPSS/360 scan by
being placed in delay chains. The overall GPSS/360
scan attempts to move these transactions into the
GATE M or GATE NM block every time that the
scan encounters them in the current events chain,
This may lengthen the execution time of a GPSS/360
simulation model.

Example:

A GATE block, which tests for one of the matching

conditions, may also be used to test whether a
transaction is the first member of its assembly set
to arrive at an ASSEMBLE block. In the block
diagram below, a transaction will enter block 250
if no other member of its assembly set is being
assembled in block 252.

TEST FOR FIRST ARRIVAL AT AN ASSEMELE
BLOCK

245 TRANSFER BOTH, 250, 252

250 GATE NM 252
251 TABULATE 9
9 TABLE IA,500,100,30

252 ASSEMBLE 60

245

TMNEFEj
BOTH

T.ABULATE-’N

252
GO,

ABSEMBLE

Otherwise, it will simply enter ASSEMBLE block
252. Further examples of MATCH and GATE M
blocks are given below.

It should be noted that the status of the partner
assembly set transactions is not altered when a
transaction enters a GATE M or GATE NM block
which tests one of the matching conditions.

Examples of MATCH and GATE M Blocks

Example 1:

It is necessary to MATCH transaction copy number

1 of an assembly set with copy 2 which might

arrive at either of the two blocks 50 or 100. Suppose
copy number 1 always arrives at bloek 30 before
copy number 2 arrives at block 50 or block 100.
Then the MATCH can be made in the following way:

Copy # 1 Caopy #2 takes one of twe paths
30 ¥ 50 - 100

MATCH X MATCH 30 MATCH 30

95

Copy number 1 arrives at bloek 30 which
references some block X which need not even be a
MATCH, ASSEMBLE, or GATHER block. Upon
finding that no member of its assembly set is
waiting to be MATCHed there, the transaction
waits in block 30 in an interrupt status. Copy
number 2 arrives at block 50 or block 100 and
MATCHes block 30. A successful match is made
with copy number 1 and both transactions are able
to move to their next sequential blocks.

Example 2;

The preceding example will succeed only il copy
number 1 arrives at its MATCH block belore copy
number 2 arrives at its MATCH block. If copy
number 2 arrives first, it will find no MATCH at
block 30 and will be delayed. Then when copy
number 1 arrives at block 30, it will find no
MATCH at block X and will also be delayed. Even
if X = 50, perhaps copy number 2 is in MATCH
block 100. Both transactions would then be delayed
indefinitely. This can be prevented by use of
GATE M blocks:

Copy #2 takes one ol two possible paths
49

/ 9 g
ﬂ GATE M
Copy #1

30 l 50 100

-~
MATCH X MATCH 10 MATCH 30

Copy number 2 is not allowed to enter block 49 or
bleck 99 until a matching condition exists in block
30, Thus, copy number 1 will always arrive at
block 30 before copy number 2 arrives at block 50
or block 100.

PRIORITY BLOCK TO CHANGE PRIORITY LEVEL
OF TRANSACTIONS

|2 woc|7|& operaTiON | 19 A | B | m
Priority no. |[BUFFER] PRIORITY
k,*n, 8NA), | 0 | k=e———e i

SNA®n

PRIORITY
BUFFER

The PRIORITY block is used to set the priority of
a transaction to a specified value. The priority of
a transaction is significant in determining when the
transaction will be processed by the overall
GPSS/360 scan and, thus, when it will obtain any
equipment for which it has been delayed.

Remember that field E of GENERATE blocks
can specify the priority level with which

96

transactions will enter a simulation model. If no
field E priority level is specified in a GENERATE
block, the transactions have a zero priority level.
The priority level of a transaction remains constant
until it enters a PRIORITY block.

The PRIORITY block will never refuse entry to
a transaction. Transactions proceed to the next
sequential block. The value of the field A
argument specifies the priority level to be
assigned, which may be any value between 0 and
127 inclusive. In GPSS/360, if the user specifies
a priority level greater than 127, Execution Error
614 will be given.

BUFFER Option

The overall GPSS/360 scan will generally attempt
to move the current transaction into some next
block. However, if the word BUFFER is coded in
field B, the PRIORITY block becomes the
equivalent of a BUFFER block after setting the new
priority level. Therefore, the overall GPSS/360
scan transfers back to process the first transaction
in the current events chain. Since the BUFFER
block has no time delay, the transaction that enters
it will be processed again by the program later on
in the same clock instant. The BUFFER option is
explained further under the discussion of
"BUFFER Block' later in this chapter.

Internal Operation of PRIORITY Block

The PRIORITY block assigns the new priority
level to byte T7, then places the transaction last
in the new priority class in the current events
chain (See Flgure 16). This operation occurs even
if the new priority level is the same as the entering
priority level. There may be cases where the
analyst finds it desirable to shift the location of a
transaction within its current priority class. TFor
instance, this might be done just before entering a
SPLIT block. Since the transaction is now the last
one in its priority class, the newly created SPLIT
transactions will immediately follow the parent
transaction in the current events chain, as each is
added at the end of the priority class of the parent
transaction.

The status change flag is automatically set
whenever a transaction enters a PRIORITY block.
Consequently, the overall GPSS/360 scan will
automatically transfer back to the start of the
current events chain when it finishes moving the
transaction which entered the PRIORITY block.
This is necessary because the priority level

may have been reduced, thereby shifting both the
transaction and the overall GPSS/360 scan to a lower
priority level in the current events chain. The
GPSS/360 scan thereby bypasses all the transactions
between the former and new positions of the
PRIORITY block transaction in the current events
chain. Setting the status change flag to "on,"
however, ensures that the overall GPSS/360 scan
will process such bypassed transactions.

With the BUFFER option, the overall GPSS/360
scan transfers immediately back to the start of the
current events chain. The status change flag is
also immediately reset to zero.

BUFFER Block

|2 roc |2 | operaTION |19 |
| | | murrer | |

BUFFER

The BUFFER block provides a direct means of
stopping the processing of the current transaction
and, instead, transfers the overall GPSS/360 scan
back to the start of the current events chain, The
normal mode of the overall GPSS/360 scan is to
advance each transaction through as many blocks as
possible, until one of the following conditions occur:

1. A positive time ADVANCE block is
encountered, in which case the transaction is
merged into the future events chain.

2. All specified next blocks cannot be entered.

3. The transaction enters a MATCH,
ASSEMBLE, or GATHER block, which either:

a. Destroys the transaction (last n-1
transactions into ASSEMBLE block), or

b. Places transaction in matching condition
(MATCH and GATHER blocks; first
transaction into ASSEMBLE block).

4, The transaction is destroyed in a
TERMINATE block.

Normally, one of the above events must occur
before the overall GPSS/360 scan will proceed to
some other transaction. The BUFFER block is an
exception fo this rule. After a transaction enters
a BUFFER block, the overall GPSS/360 scan will
return to the first (highest priority) transaction in
the current events chain. Since the BUFFER block
has no time delay, the transaction that enters it
will always be processed by the scan later on in
the same clock instant. The BUFFER block will
never refuse entry to a transaction. Transactions
move to the next sequential block following the
BUFFER block.

Observe that if the transaction which is entering
the BUFFER block is the first one in the current
events chain the BUFFER block is redundant and
performs no useful function. Also, observe that
none of the transactions which follow the BUFFER
block transaction in the current events chain will
be processed before the overall GPSS/360 scan
returns to the BUFFER block transaction.

A PRIORITY block, with BUFFER coded in
field B, also behaves like a BUFFER block after
it has placed the transaction at the end of the
priority class specified by the field A argument.
This BUFFER option immediately transfers the
overall GPSS/360 scan back to the start of the
current events chain. Since the PRIORITY block
likewise has no time delay, the transaction whose
priority level was just changed will always be
processed by the scan later on in the same clock
instant.

The following pair of PRIORITY blocks is a
simple means by which every transaction in the
current events chain will be processed hefore a
given transaction:

ASSIGN 1, PR
k PRIORITY 0, BUFFER
k+1 PRIORITY Pl

PRIORITY block k places the transaction which
has a priority level of p= 0, 1, . 127, at the
very end of the current events chain with a
priority level of zero. The current priority level
of the transaction has been saved in Parameter 1
so that it may be restored when the transaction
enters block k +1. The BUFFER option transfers
the overall GPSS/360 scan back to the start of the
current events chain. The overall GPSS/360 scan
finally works its way through the current events
chain and once again encounters the transaction in
PRIORITY block k. This transaction enters
PRIORITY block k +1, which restores the
transaction to its initial priority level which is
still in Parameter 1.

The overall GPSS/360 scan is deseribed in
further detail below, Several examples of
BUFFER blocks and PRIORITY blocks with
BUFFER options are given later in this chapter.

OVERALL GPSS/360 SCAN
The overall GPSS/360 scan is outlined in Figure

23. The scan can be divided into three major
phases:

97

1. Update clock to next most imminent block
departure time in future events chain. Move all
Transactions with this block departure time (BDT)
into current events chain (Figure 24) from future
events chain,

2. Secan each transaction sequentially in the
current events chain (Figure 25).

3. If scan indicator of a transaction is off,
attempt to move the transaction into some next
block (Figure 26).

Update Clock (Figure 24)

At each clock time the overall GPSS/360 scan will
eventually move all the way through the current
events chain and complete processing the last
transaction in the lowest priority class, The
GPSS/360 simulation model is now, generally, in a
state where no further transactions can move into
some next block (exceptions to this rule will be
discussed later).

The overall GPSS/360 scan now transfers to
UPDATE CLOCK (see Figure 24). The absolute
clock is advanced to the block departure time of the
first (most imminent) transaction in the future events
chain. This first transaction is unlinked from the
future events chain and added to the current events
chain as the last transaction in its priority class.
The priority level of the transaction (0, 1, . . . 127)
is stored in byte T7.

The scan then examines the second transaction
in the future events chain to see if it has the same
block departure time (word T4) as the new absolute
clock time, If it is the same, the second transaction
is likewise added to the current events chain as the
last transaction in its priority class. This process
continues until either a transaction with a block
departure time greater than the new absolute clock
time is encountered, or the future events chain is
exhausted. The overall GPSS/360 scan now
transfers to "Start Overall GPSS/360 Scan" in
Figure 25.

The future events chain transactions which are
transferred to the current events chain are of two
types:

1. Transactions which have been delayed in
positive time ADVANCE blocks.

2. Incipient successor transactions, which have
been waiting to enter the simulation model at some
GENERATE block.

A third highly specialized type of transaction will
also be encountered in the future events chain.
These are "dummy transactions' which trigger the
tabulation of the arrival rate argument of tables

28

operating in the RT mode or the entry of
transactions into the system when jobtapes are
used. These transactions are immediately merged
back into the future events chain when they are
encountered.

Start Overall GPSS/360 Sean (Figure 25)

The overall GPSS/360 scan will start with the first
(highest priority) transaction on the current events
chain under four conditions:

1. The absolute clock has just been updated
and all new transactions have been added to the
current events chain from the future events chain.
(This was described in Figure 24.)

2. A transaction has entered a BUFFER block
(see Figure 26).

3. A transaction has entered a PRIORITY block
with a BUFFER option (see Figure 26).

4. The status change flag has been set by a
transaction and is subsequently found to be on by
the overall GPSS/360 scan (see Figure 26).

The GPSS/360 scan tests the scan indicator
(bit 0 of byte T10) of each successive transaction
until it finds a transaction whose scan indicator is
off; such a transaction is available for processing.
The GPSS/360 scan then transfers to ""Try to Move
Transaction' in Figure 26. Several things may
then happen to this transaction in Figure 26:

1. The transaction may fail to advance into its
scheduled next block.

2. The transaction may advance through one or
more zero time blocks until:

a. it is destroyed (in a TERMINATE or
ASSEMBLE block).

b. it enters a positive time ADVANCE block
and is merged into the future events
chain.

c. it is blocked trying to enter some next
block.

d. it is placed in an interrupt matching
condition in a MATCH, ASSEMBLE, or
GATHER block.

e. it enters a BUFFER block or a
PRIORITY block with BUFFER option.

The end result of each of the above five conditions
is that the overall GPSS/360 scan voluntarily
ceases or is unable to move the current transaction
any further in Figure 26. The next transaction
which the GPS5/360 scan processes will then be
either:

1. the first current events chain transaction
("Start Overall GPSS/360 Scan' in Figure 25.)

Update
Clock

Figure 24.

Update clock to next
most imminent Block
Departure Time:
Move all Transactions
with this BDT from
Future Events Chain to
Current Events Chain

2.

Figure 26.

Try to move Transaction into
some next block

2. If unsuccessful, test status
change flag
3. I successful, execute the block

type subroutine

4. If BUFFER Block or PRIORITY
Block with BUFFER option,
start Overall GPSS /360 Scan

Tra.ns;t-ctij\

Figure 25.

5. Continue moving same Trans-
action through all possible
zero-time blocks

6. When a positive time ADVANCE

Block is entered, place Trans-
action inte Future Events Chain

7. When Transaction cannot be

\ moved any further, test status
change flag.
Active
Is scan Transaction
= status indicator
On? No (Reset to
Off)

Current Events
Chain?

Ne

Process next Next Is
Ne Yes
sequential Sequential Status Change
Transaction W Flag On?
Any more
Yes Transactions in

Figure 23. Overall GPSS/360 Scan

2. the "Next Sequential Transaction' in Figure
25.
Eventually, the GPSS/360 scan comes to the
previously described point (discussed earlier in
this chapter) where it finishes processing the last
(lowest priority) transaction in the current events
chain. (The GPSS/360 scan then transfers to
"Update Clock' in Figure 24.

Try To Move Transaction (Figure 26)

Whenever the overall GPSS/360 scan finds a
transaction whose scan indicator (bit 0 of byte T10)
is off, the GPSS/360 scan will attempt to move the
transaction to some next block. Byte T10 also
indicates the type of next block trial. The next
choice will be made in one of three ways:

1. Only one next block is to be tried (block

99

number stored in T5 halfword).

2. The transaction is in a TRANSFER block
with a BOTH selection mode (The first next block
number is stored in T5, while the second next
block number is stored in T1).

3. The transaction is in a TRANSFER block
with an ALL selection mode (The first next block
number is stored in T5, while the last next block
number is stored in T1).

In the SF column of the transaction printout, blank,
B, or A is printed out for only-one-next-block
selection mode, BOTH selection mode, or ALL
selection mode, respectively.

Unique Blocking Conditions

Assume that the transaction cannot move into some

next block, as shown in the upper right-hand
corner of Figure 26. In most cases, there will be
a unique blocking condition. The transaction will
then be linked, as the first transaction, in one of
eleven different types of pushdown delay chains
(see Chapters 9, 10, and 11 on the delay chains
associated with logic switches, facilities, and
storages).

The scan indicator (bit 0 of hyte T10) of the
transaction will be set "on'. The overall GPSS/360
scan will, therefore, not attempt to move this
fransaction (see Figure 25). This transaction
and any other members of its delay chain will not
be reactivated (i.e., bit 0 of byte T10 will not be
reset to "off') until the unique blocking condition
is removed. This reactivation feature contributes
materially to the speed of the overall GPSS/360
scan.

Future Events Chain

Increase simulator clock to Block Departure Time
of first Transaction (next most imminent event) in

Class,

Move Transaction from Future Events Chain to
Current Events Chain (change word T1 chain link-
ages). Transaction becomes last one in its Priority

Examine Block Departure Time of next sequential
Transaction in Future Events Chain

clock time?

Note: These Future Event
Chain Transactions are:
1., In positive time ADVANCE

Does BDT equal

Yes

newly updated

2, Transactions waiting to leave
GENERATE Blocks,
3. Operators for Tables oper=

Blocks

ating in the arrival rate mode

Figure 25.

All possible Transactions have
been transferred from Future
Events Chain to Current Events
Chain

Figure 24, Overall GP8/360 Scan: Update Clock to Next Most Imminent Event

100

Start

Overall The Overall GPSS/360 Scan transfers to the start of

Reset Status Change Flag
to Off

Examine first Transaction
in Current Events Chain

Is
scan status
indicator

(T1 Sign
Bit) On?

Transaction is
inactive in a

the Current Events Chain:

1. From BUFFER Block

2. From PRIORITY Block with BUFFER option

3. When Status Change Flag is tested and found set to on
4. After clock updating (Figure 24.)

Transaction is in an active scan status.
Try to move it to some next block

Delay Chain

Any More
Transaction in

Current Events
Chain?

Advance to next sequential
Transaction in Current
Events Chain

To Figure 26.
Next
Sequential | Status Change Flag is Off
Transactio
From Figure 26.
Update
Clock
To Figure 24.

Overall GPSS/360 Scan has gone all

the way through the Current

Events Chain, No Further Transactions
can be moved at this clock time,
Therefore, update clock to next most
imminent BDT.

Figure 25, Overall GPSS/360 Scan: Scan of Current Events Chain (Start of Scan)

Unique blocking and subsequent scan deactivation in

a delay chain will occur when a transaction tries to
enter the following block types:

1. SEIZE block

2. PREEMPT block

3. ENTER block

4. Any GATE block except M and NM

Nonunique Blocking Conditions
A nonunique blocking condition may oceur in trying

to enter the following block types:
1. A TEST block, which involves a relation (E,

NE, L, LE, G, GE) between two Standard
Numerical Attributes.

2. GATE M and NM blocks, which reference
matching conditions of assembly set members at
a specified block.

The most common nonunique blocking condition
occurs, however, within TRANSFER blocks with a
BOTH or ALL selection mode. Here, either both
of the next blocks deny entry to the transaction, or
all of them do. The blocks which deny entry can
be any combination of SEIZE, PREEMPT, ENTER,
GATE, and TEST blocks.

The crucial result of a nonunique blocking

101

condition is that the scan indicator (bit 0 of byte T10)
of the transaction is not set, and the transaction is
not linked to a delay chain. The overall GPSS/360
scan will always try to advance these blocked
transactions each time that it encounters them in

its scan of the current events chain, even though
there has been no change in the nonunique blocking
conditions. Such blocked transactions can,
therefore, materially slow down a GPSS/360 model.
TEST, GATE M, GATE NM and TRANSFER blocks
with BOTH or ALL selection modes must, therefore,
be used with discretion.

Some Next Block Can Be Entered

Assume now that some next block ean be entered;
this is a condition which is represented by the
lefthand side of Figure 26. The block type
subroutine is executed as soon as the transaction
enters the block. The GENERATE block is the
only block type where anything happens when a
transaction leaves a block (e.g., an incipient
successor transaction is created).

If the transaction has entered a BUFFER block,
or a PRIORITY block with a BUFFER option, the
overall GPSS/360 scan immediately transfers to
start overall GPSS/360 scan (Figure 25).

If the transaction enters a TERMINATE, MATCH,
ASSEMBLE, or GATHER block, the overall
GPSS/360 scan may release control of thé
transaction. This will oceur when:

1. the transaction is placed in a matching
condition because:

a. it is the initial transaction into an
ASSEMELE block,

b. it is one of the n transactions in a
GATHER block,

c. it enters a MATCH block and fails to find
a matching transaction in the specified
conjugate MATCH block;

2. the transaction is destroyed in a TERMINATE
block, or in an ASSEMBLE block (the last n-1
transactions in the assembly set).

The overall GPSS/360 scan transfers to a test of
the status change flag, as described later in this
chapter. See Diagram: Figure 26).

Setting of the Status Change Flag
Various block types will cause the status change
flag to be set. With the exception of the BUFFER

and PRIORITY BUFFER blocks, the overall
GPS5/360 scan will eventually test the status change

102

flag after it has ceased moving the current
transaction. If the flag is set, the GPSS/360 scan
transfers back to "Start Overall GPSS/360 Scan"
(Figure 25). If the flag is off, the GPSS/360 scan
simply proceeds to '""Next Sequential Transaction"
(Figure 25).

Table 14 describes the various conditions under
which the status change flag is set., There are
essentially four basic types of conditions:

1. The flag is unconditionally set in a SEIZE,
RELEASE, PREEMPT, RETURN, ENTER, or
LEAVE block, which changes the status of a logic
switch, facility, or storage. This unconditional
setting will ensure that all transactions which are
being delayed by SEIZE, PREEMPT, ENTER, and
GATE blocks will be moved if the entity status
change removes the blocking condition.

2. The flag is set by the completion of matching,
assembling, or gathering operations in MATCH,
ASSEMBLE, or GATHER blocks,

3. The flag is set by a PRIORITY block.
Observe that if the PRIORITY block has a BUFFER
option, the overall GPSS/360 scan will immediately
transfer back to the start of the current events
chain, thereby resetting the status change flag to
" 1

Ofg.' A transaction(s) is unlinked from a
user chain by an UNLINK block.

Positive Time ADVANCE Block

Another major possibility is that the transaction
has entered a positive time ADVANCE block. In
this case, the overall GPSS/360 scan merges the
transaction in the future events chain according to
its new block departure time (see ''Internal
Operation of ADVANCE Block" earlier in this
chapter). The GPSS/360 scan then transfers to a
test of the status change flag as described below.

Zero Time Block

If the overall GPSS/360 scan still has control of the
transaction (i.e., there has been no buffering,
termination, or matching interruption) and the
block is a zero time non-ADVANCE block type, the
overall GPSS/360 scan will attempt to move the
transaction into still another next block. The
majority of block moves in GPSS/360 models are
of this nature. The overall GPSS/360 scan
generally moves transactions through a number of
zero-time block types until it finally surrenders
control of the transaction under the various con-
ditions which are described in the preceding pages.,

(From Figure 25.)

Off

Can

Scan Status Indicator of
Transaction is Reset to

Transaction blocked by:
1. GATE M Block

2. GATE NM Bleck

3. TEST Block

Or in 2 TRANSFER Block:

1. Both Selection Mode
2. All Selection Mode
Ne

Transaction move
into some next block?

~

Yes

Execute block type subroutine I

Is this a
BUFFER Block or

Start

there a Delay Chain
for a Unique blocking
condition?

Overall
GPSS III
Scan

PRIORITY Block w1‘r.,h
BUFFER Option?

To Figure 25. No

1. Place Transaction in a pushdown
Delay Chain.

Set Scan Status Indicator (T1
sign bit 1) of Transaction On.

Is this }TERM]NATE, ASSEMBLE,

GQTHER or MATCH Block which
either terminates or places Transaction
in an Interrupt matching Eondition

there a status
change?

Stop Processing Trans=
action immediately
(ASSEMELE Block can
also terminate Trins=
action)

FEt Status Change Flag ON |

| w !

Return MATCHed Transaction
to Current Events Chain from
an interrupt status

Reset Scan Status Indicator to OFF for all
Transactions in any Delay Chain(s) associated with
the particular Facility, Storage or Logic Switch

Return initial ASSEMBLEd Transaction
or n GATHERed Transactions to
Current Events Chain

o

Is this a
positive time AD-
VANCE Block

No

Continue moving
into another block

{

(To Figure 25.)

MNext
Sequential

Trans-
action

Status Change Flag
ON, as result of current
block or some preceding block
T

({Te Figure 25.)

Start
Overall

GPSS /360
Scan

Figure 26. Overall GPSS/360 Scan: Try to Move Individual Transaction into Some Next Block

103

Testing of the Status Change Flag

Table 14 shows the various block moves under
which the status change flag is set. It is important
to recognize that, even though the transaction which
is currently being processed has set the status
change flag on because of the above block moves,
the overall GPSS/360 scan will not necessarily test
the status change flag after each block move. The
lower left-hand corner of Figure 26 shows that, if
the current block is a zero - time block type, the
overall GPSS/360 scan will first continue to move
the transaction into the next block. This is the
usual case.

Figure 26 shows that the overall GPSS’360 scan
will stop moving the current transaction and
transfer to a test of the status change flag under the
following conditions:

1. The current transaction is blocked from
entering all possible next blocks.

2. Processing of the current transaction is
suspended hecause:

a. it is destroyed in a TERMINATE or
ASSEMBLE block.

b. it is placed in a matching condition in
MATCH, ASSEMBLE, or GATHER block.

3. The current transaction enters a positive
time ADVANCE block and is merged into the future
events chain.

4, The current transaction completes an
assembly or gathering operation in an ASSEMBLE
or GATHER block.

Results of Status Change Flag Test. The overall
GPSS8/360 scan will transfer to two possible
locations:

1. If the status change flag has been set on, the
GPSS/360 scan transfers to processing of the first
transaction in the current events chain at "Start
Overall GPSS/360 Scan" (Figure 25). The flag is
immediately reset to off.

2. If the flag is off, the GPSS/360 scan simply
proceeds to the "Next Sequential Transaction"
(Figure 25).

104

Table 14 summarizes the block operations which
set the status change flag to on.

EXAMPLES OF BUFFER AND PRIORITY BUFFER
BLOCKS

The following examples show some of the subtle
problems which can be caused by the particular
nature of the overall GPSS/360 scan:

Example 1:

Since the GPSS/360 scan attempts to move the
current transaction through as many blocks as
possible, certain logical situations are difficult to
represent, In model A shown below, Queue 2 will
always be empty. Assume that all transactions
have the same priority level. Assume also that a
transaction, which has SEIZEd Facility 1 in block
11, leaves the positive-delay ADVANCE block 13.
This transaction becomes the last one in its
priority class in the current events chain.

The overall GPSS/360 scan moves the trans-
action through block 14, which RELEASEs Facility
1 for use by another transaction. Transactions
may have been blocked in QUEUE block 10 and put,
into a delay chain because Facility 1 was in use.
Their scan indicators (first bit of byte T10) will be
reset to off, i.e., to an active scan status. The
status change flag is set "on'". However, the
transaction continues to move in zero-time, enters
QUEUE block 15 and immediately succeeds in
reSEIZEing Facility 1. It them proceeds to spend a
positive time in ADVANCE block 18.

The overall GPSS/360 scan finally tests the
status change flag, finds it on, and transfers to the
start of the current events chain. The flag is
reset to off. The scan eventually encounters each
one of the previously delayed transactions in
QUEUE block 10, which are now in an active
scan status in the current events chain. The
GPSS/360 scan attempts to move each transaction
into SEIZE block 11, fails to do so, and thus puts
these transactions back into the same pushdown
delay chain. A great deal of processing has thus
accomplished nothing,

10.

11.

12.

00 =3 Oy O o L3 BO =
o wm w o m ww .

TABLE 14: BLOCK OPERATIONS WHICH SET THE STATUS FLAG TO ON

SEIZE

RELEASE

PREEMPT The status change flag is unconditionally set as a result
RETURN of a status change in a Logic Switch, Facility, or Storage.
ENTER

LEAVE

LOGIC

MATCH Block Status Change

The current transaction which is entering the MATCH block finds an assembly set mate in a matching
interrupt condition at the conjugate MATCH block which is specified in the field A of the MATCH block.
The assembly set mate is returned to the current events chain at the end of its priority class. The
status change flag is set and the current transaction attempts to move on to some next block.

ASSEMBLE Block Status Change

The current transaction completes the agsembly operation, i.e., the T2 word of the initial transaction
to enter the ASSEMBLE block has been reduced to zero. The current transaction is destroyed and the
initial transaction is removed from a matching interrupt condition and is returned to the current events
chain at the end of its priority class. The status change flag is set. The overall GPSS/360 scan

immediately transfers to a test of the flag, finds it on, and transfers to "Start Overall GPSS/360 Scan"
(Figure 25.)

GATHER Block Status Change

The current transaction completes the gathering operation, i.e., the T2 word of the initial transaction
to enter the GATHER block has been reduced to zero. All the preceding n-1 transactions are removed
from a matching interrupt condition and are returned to the current events chain at the end of their
respective priority classes. This occurs in the same order as the transactions arrived in the GATHER
block. The current transaction is first removed from the current events chain and becomes the last
transaction which is added back to the current events chain. The status change flag is set. The overall
GPSS5/360 scan immediately transfers to a test of the flag, finds it on, and transfers to "Start Overall
GPSS/360 Scan'" (Figure 25),

PRIORITY Block Status Change

The status change flag is unconditionally set. The overall GPSS/360 scan will either transfer back to
the start of the current events chain when it finishes processing the transaction,or it will transfer
immediately if the PRIORITY block has a BUFFER option.

UNLINK Block Status Change

The status change flag is unconditionally set when one or more transactions are UNLINKed from a user

chain. This ensures that these transactions will be processed at the same clock time at which they are
returned to the current events chain.

105

Now, consider what BUFFER block 115 accom-
plishes in model B. Assume again that a SEIZEing
transaction leaves ADVANCE block 113, and is
placed at the end of its priority class in the current
events chain. The transaction releases Facility 1
in block 114, at which time any blocked delay chain
transactions in QUEUE block 110 are reactivated.
The transaction then moves into BUFFER block
115.

The overall GPSS/360 scan immediately stops
processing the transaction and transfers back to
the start of the current events chain. The GPSS/
360 scan now succeeds in moving that transaction
which has been delayed for the longest time into
SEIZE block 111. This transaction then moves
into positive time ADVANCE block 113.

MODEL B
(With BUFFER Block)
MODEL A 110
(No BUFFER Block) i
10 QUEUE
1
111
QUEUE O R
11y SEIZE &
TEK) DEPART 1
1
DEPART Q ITER
ADVANCE
13 ¥ 19, 17
ADVANCE T
19, 17
14§ RELEASE v
1
RELEASE 123 §
15 BUFFER
2
QUEUE O 116§
TR} QUEUE
SEIZE A 7y
173 SEIZE &
DEPART 2 118 ¢
— DEPART @
DVANCE
9
120, FN3 110
ADVANCE
19§ 120, FN3
RELEASE v
RELEASE v

The GPSS/360 scan may then encounter other
previously delayed transactions. It fails again to
move them into SEIZE block 111, and puts them
back into the SEIZEing delay chain on Facility 1.
The last transaction which is processed by the
GPSS/360 scan is the original transaction which is
still in BUFFER block 115. Thistransaction moves

106

into QUEUE block 116 and now fails to enter SEIZE
block 117. The original transaction will not be able
to SEIZE Facility 1 in block 117 until all of the
previously delayed transactions, which preceded

it in the current events chain, have SEIZEd Facil-
ity 1 by entering block 111.

Note, however, that each of these transactions
also goes through BUFFER block 115 and repeats
the operations which were previously undergone by
the original transaction. As these transactions
leave ADVANCE block 113, they are placed into
the current events chain as the last transaction in
the particular priority class. Consequently, these
transactions will not be able to enter SEIZE block
117 until the preceding transactions have done so0.

Queue 2 in model B obviously has nonzero
contents as opposed to model A. It is quite
possible that, during all of the above block moves,
additional transactions enter QUEUE block 110.
Depending on their relative locations in the current
events chain, these transactions may SEIZE Facil-
ity 1 in block 111 before the previous transactions
SEIZE Facility 1 in block 117. These transactions
will, therefore, prolong the delays in Queue 2 at
block 116.

Different Priority Levels for Transactions

Example 1 has assumed thus far that all the
transactions have the same priority level. Assume
now that there are different priority levels. The
BUFFER block may now have a different effect on
the sequence in which transactions SEIZE Facility 1.
As transactions are returned to the current events
chain in ADVANCE block 113, they are placed at
the end of their particular priority class. Assume
that such a transaction is the only one witha priority
level of 7. Assume that the other transactions which
are being delayed in QUEUE block 110 have
priorities of six or less. Even though the overall
GPSS /360 scan transfers back to the start of the
current events chain when the priority 7 transaction
enters the BUFFER block, the GPSS/360 scan
immediately picks up this transaction before en-
countering any of the lower priority transactions.
This transaction, therefore, succeeds in reSEIZEing
Facility 1 in zero time at block 117, just as if the
BUFFER block was not in the model, The situation
is, of course, completely different if some of the
transactions which have been delayed in QUEUE
block 110 have a higher priority than the

SEIZEing transaction which leaves ADVANCE

block 113 and enters the BUFFER block. When

the overall GPSS/360 scan transfers back to the

start of the current events chain, it encounters a
higher priority transaction and moves it into SEIZE
block 111. When the GPSS/360 scan comes back

to the transaction in the BUFFER block, it is only
able to move it as far as QUEUE block 116 before
the transaction fails to enter SEIZE block 117.

Example 2:

The meodel below illustrates a method by which a
transaction may be placed "second in line" in the
set of transactions which are attempting to SEIZE
a facility. It is assumed that the transactions in
QUEUE block 30 have Priority 2. The BUFFER
block (35) forces the transaction which has just
left the RELEASE block (34) to pause while the
overall GPSS/360 scan returns fo the start of the
current events chain, If there are any transactions
in QUEUE block 30 at that moment, the Priority
2 transaction which has been delayed the longest
time will SEIZE Facility 10 in block 31.

a0

SEIZE

HL

DEPART

a3

ADVANCE
18, 17 . : LOCATIOR
112

T
OPERATION
8 HE

A
19

o c

7

* | TRAMSACTIONS LEAVING BLOCK 3 ARE SECOND

s : IN LINE TO USE FACILITY 10 (AT BLOCK 38)

| 30 QUEUE, 1
1

35 T |

HEN SEZE | 10

The GPSS/360 scan then fails to advance the
other delayed transactions and puts them back
into the deactivated SEIZEing delay chain of
Facility 10.

The scan finally returns to the transaction in the
BUFFER block. This transaction will then enter
PRIORITY hlock 36, receive a priority level of 3,
and thus be ahead of all the Priority 2 transactions
in QUEUE block 30. This transaction is then
blocked from SEIZEing the Facility in block 38.

Each transaction that exits from RELEASE
block 34 will thus regain control of Facility 10 in
SEIZE block 38 after one other transaction has
SEIZEd the facility at Block 31. If, however,
there were no delayed transactions in block 30, the
transaction RELEASing Facility 10 in block 34 will
reSEIZE the facility in zero time in block 38.

Example 3:

Consider model A below. Type 1 transactions
have their priority level set to three in PRIORITY
block 100. They must then find Facilities 1 and

2 not in use simultaneously before they can succeed
in SEIZEing them in blocks 104 and 105. The

30

DEPART

40

ADVANCE
120, FHI

RELEASE

i
i
L

az

DEPA l'.‘:l'

ADVANFB

Kltl.sn:st

I
BUFFEIR

T
PRIORTTY
L

QUEUE]

BEIZE |

¥
DEPART

ADVANC

m

]

RELEASE

Type 1 Type 2 Type 1 Typo 2
Transactions Transactions Transactlions Transactlons
10 3 1 4 1
PRIORITY
1 200 | 3
101 PRIORITY
6 201§
SEIZE A Same as
102 202§ Model A Same na
Model B
GATE NU ADVANCE excapt
20, 10 PRIORITY
Rz Block 204
RELEASE
RANSFER
SIM |
204 | 2
PRIORITY
204 | 2
104 -I'
PRIORITY
) Sk Esphatidirflal
SEIZE BUFFER
105§ SEIZE
SEIZE A
v v]
MODEL A MODEL B
Regular PRRIORITY PRIORITY Block 204
Block 204 with "BUFFER" option

107

TRANSFER SIM block 103 ensures that these
simultaneous conditions are met.

Type 2 transactions also have their priority level
set to three in PRIORITY block 200, after which they
SEIZE Facility 2. After leaving ADVANCE block
202 and RELEASing Facility 2, their priority level
is reduced to two with respect to SEIZEing Facility
1 in block 205. However, once again the overall
GPSS/360 scan will continue to move these Priority
2 transactions in zero time into SEIZE block 205,
even though Type 1 transactions with a priority of
three are waiting in blocks 101-103 to SEIZE
Facility 1.

The solution is quite simple as shown in model
B. The BUFFER option is coded in field B of
PRIORITY block 204. The overall GPSS/360 scan
returns to the start of the current events chain
after placing the Type 2 transaction at the end of
Priority Class 2. The GPSS/360 scan thereby
succeeds in moving one of the Type 1 transactions
into SEIZE blocks 104 and 105.

Example 4:

It is quite possible that the overall GPSS/360 scan
will fail to move all possible transactions that could
move at a particular clock time. The GPSS/360
scan may get to the last transaction in the current
events chain, process it, and then transfer to the
update clock routine (Figure 24) while other trans-
actions are still able to move in the current events
chain.

As an example, consider model A. Assume that
the last transaction in the current events chain
has just left ADVANCE block 15, It enters QUEUE
block 16, but fails to enter SEIZE block 17 because
another transaction is already using Facility 1.
Assume further that this transaction has become the
only one that is contributing to the contents of
Queue 3; i, e., the Standard Numerical Attribute
Q3 equals 1.

The overall GPSS/360 scan tests the status
change flag, finds that it has not been set to ""on,"
and tries to process the next sequential transaction.
There is none, so the GPSS/360 scan transfers to
update clock in Figure 24. Assume now that some
other transaction has been delayed in QUEUE block
99 because the relational statement in TEST block
100 (@3 is greater than zero) has been false. When
the first transaction entered QUEUE block 16, Q3
became equal to cne. Consequently, the relational
statement in TEST block 100 is now true, and the
second transaction should move into the TEST block.

108

15
ADVANCE
20,10
QUEUE
[]
LOGIC R
1§
QUEUE
ITHIE]
DEPART @
SEIZE

MODEL B

DEPART

MATCH S

DEPART

L5557

e]

LOGIC n

[]

MODEL D
a0

QUEUE

101

i

102

DEPART

()

MATC]

i
- ‘_ql‘ﬁgﬂmi

|

* | LOCATION
2

-

OPERATION
718 113

A
19

B

c

MODEL A - POSSIBLE FAILURE TO MOVE ALL POSSIBLE TRANSACTIONS

15

ADVANCE

20

10

16

QUEUE

a

17

SEIZE !

1

99

QUEUE

11

100

TEST G

Q3

Ko

101

DEPART

11

* | MODEL B - GUARANTEE OF MOVING ALL TRANSACTIONS

15

ADVANCE

20

10

LOGIC IR

17

1
QUEVE,

3

18

SEIZE :

99

QUEUE

11

100

TEST G

Q3

K

101

DEPART

11

*| MODELC

- POSSIBLE FAILURE TO MOVE ALL POSSIBLE TRANSACTIONS

30

MATCH

40

40

MATCH

30

100

QUEUE

1

101

GATE M

30

102

DEPART

1

* | MODEL D - GUARANTEIE OF MOVING ALL TRANSACTIONS

29

| Locic R

| 1

* | BALANCE Is SAME AS MODEL C

However, the overall GPSS/360 scannever returns
to the start of the current events chain during the
current clock time. The second transaction may

only be able to enter the TEST block at the next
time to which the clock is updated.

Consider a similar problem in model C. Assume
that a transaction has been delayed in entering
GATE M block 101 because a member of its
assembly set is not in a matching condition at
MATCH block 30. Assume now that the last trans-
action in the current events chain, which belongs
to this same assembly set, enters MATCH block
30. It finds that no other members of the partic-
ular assembly set is in the conjugate MATCH
block 40. This transaction is then put in a match-
ing interrupt state.

The transaction in QUEUE block 100 should now
succeed in moving into GATE M block 101 because
a member of its assembly set is now in a matching
cendition in MATCH block 30. However, this
never happens because the overall GPSS/360 scan,
after placing the block 30 transaction into a
matching interrupt condition, immediately trans-
fers to a test of the status change flag. It has not
been set to "on" and the GPSS/360 scan tries to
process the next sequential transaction. There is
none, so the GPSS/360 scan transfers to the up-
date clock routine (Figure 24) and the transaction
in block 100 fails to move at the current clock time.

Models B and D show one simple solution to the
above problem. LOGIC blocks 16 and 29 are
inserted into the models just in front of SEIZE
block 17 and MATCH block 30. Some logic switch
(e.g., #1) which is not used elsewhere in the model,
is reset by this LOGIC block and the status change
flag is thus set to "on.' Consequently, when the
overall GPSS/360 scan stops processing the
current transaction, it finds the flag on and hence
transfers back to the start of the current events
chain. This assures that the transactions which
have been delayed in QUEUE blocks 99 and 100
will succeed in moving at the same clock time.

These LOGIC blocks, which do not simulate any
real physical or logical action in the GPSS/360
model, behave as if they were a special SETFLAG
block. There is a major difference, however,
between these LOGIC blocks and the BUFFER
block. While the overall GPSS/360 scan transfers
immediately to the start of the current events
chain in a BUFFER block, with the LOGIC block
it will only transfer when it ceases to move the
current transactions and tests the status change
flag.

Although it is possible to change model A in
other ways to avoid the use of the LOGIC block, it
is almost imperative to use the LOGIC block in
model D.

JOBTAPES

In parametric simulation studies, it is often
desirable to have a given '"constant’ source of trans-
actions which can be used as input to the various
models under study. This would guarantee that
transactions enter a given point at the same instant
of time in all models under consideration. GPSS/360
provides the means of creating and using such a
transaction tape.

WRITE Block

The function of the WRITE block is to set up certain
information associated with the entering transaction,
and write this information on magnetic tape. This
information is written as a 416 byte record on the
tape specified by the A-argument of the WRITE
block. The A-argument must specify one of three
tapes: JOBTA1l, JOBTAZ, or JOBTAS.

The symbol for the WRITE block is

8 OPERATION | 19A

WRITE JOBTA1
JOBTAZ2
JOBTA3

The WRITE block will never refuse entry to a
transaction.

Operation of the WRITE Block

1. When a transaction enters a WRITE block,
the difference between the current clock time and
the time when the previous transaction entered the
WRITE block is calculated. The difference is the
interarrival time.

NOTE: The first transaction entering a
WRITE block ignores step 1 and uses 0 as
the interarrival time.

2. The current clock time is set in B2 of the
WRITE block as the time when a transaction last
entered the WRITE block.

3. The difference between the current clock time
and the mark time associated with the entering
transaction is calculated. This is the transit time.

4, The interarrival time, transit time, priority,
number of parameters, and parameter values of
the entering transaction are written on the tape
specified by the A-argument of the WRITE block.

109

5. The transaction proceeds to the next sequen-
tial block. It is possible for several WRITE blocks
to write on the same tape, and that up to three tapes
may be used in a single simulation. It is not
absolutely necessary to create a transaction tape
by means of WRITE blocks. Other programs could
be used to write information in the format pre-
viously described.

GPSS/360 control cards affecting tapes which
are being used by WRITE blocks are the JOB, END,
and CLEAR control cards. If a tape(s) is being
used by a WRITE block, the JOB or END control
card will cause an EOF to be written on the associ-
ated tape(s). The tape(s) will then be rewound and
unloaded.

The CLEAR control card will cause an EOF to
be written on all tapes referenced as the A-argument
of WRITE blocks.

NOTE: The CLEAR control card does notcause
the tape(s) to be rewound and/or unloaded.

The control card necessary to make use of the
transactions written on the transaction tape is the
JOBTAPE control card described in Chapter 15.

Written Information Format:

Word No Length

1 4 bytes Interarrival Time (always
zero for first transaction)

2 4 bytes Transit Time (current
clock-mark time of
entering transaction)

3 1st byte Unused

3 2nd byte Priority of entering
transaction

3 3rdbyte Leftmost bit=l if transaction
has fullword parameters

3 4thbyte Number of parameters
associated with the
transaction

4 Varies The next 400 bytes are
used to store the Param-
eter values associated
with the entering trans-

6 action. This requires
two bytes/halfword
parameter and four bytes

. fullword parameter.

104

110

HELP Block (

The HELP block is provided to enable the user to
write independent routines which will run in
conjunction with the GPSS/360 program. The HELP
block is intended only for users who are thoroughly
familiar with the internal operation of the GPSS/360
program. The user must also have some 5/360
programming knowledge to effectively use the HELP
block.

Fields B, C, D, E, F and G of the HELP block
may be any Standard Numerical Attribute (SNA),
directly or indirectly addressed.

Field A of the HELP block gives the symbolic
name of the first executable instruction in the
user's HELP routine. This name consists of 2-6
alphameric characters the first of which must be
alphabetic.

The sequence of operations associated with the
HELP block is as follows:

1. The S8NA's specified by fields B-G are
evaluated and placed in the first six words of a
25 word area set up at input time.

2. The remaining 19 words are used to store
the addresses of GPSS/360 execution routines which
the user may wish to use in his HELP routine.

3. The GPSS/360 program then LINK's (OS/360)
or FETCH's (DOS/360) to the user's HELP routine
by means of the symbolic name coded in Field A of
the HELP block.

Format of the HELP Routine

As was previously mentioned, it is assumed that

the HELP block user is familiar with S/360 coding.

Some basic rules on the coding of the HELP routine

are given below followed by appropriate examples.
1. The first executable instruction of the

HELP routine must be SAVE (14,12). For example:

GPSS/360 HELP block:

First instruction of HE LP routine:

HELP TEST, X10,V3

TEST SAVE (14, 12)
2. The next two instructions (shown below) are

used to set up a base register for the HELP routine.
Although general register 12 is suggested for this
use, any of the 16 general registers except 5, 10,

and 15 may be used for this purpose. Example:
BALR 12,0
USING *,12

3. The user now begins his HELP routine
using the various control words and subroutines
passed to him via an address in GR 10.
(Explained later in detail.)

4. The last instruction in the HELP routine
must be:
RETURN (14, 12)
This will automatically transfer control back to the
GPSS/360 execution phase and send the transaction
which entered the HELP block to the next sequential
block.

Use of GPSS/360 Control Words and Subroutines

The HELP block subroutine sets up a 25-word table
congisting of the decoded HELP block arguments,
the address of the GP55/360 control words and the
addresses of various GPSS/360 execution phase
subroutines. The address of this table is passed
to the user in General Register 10. This enables
the user to reference many of the control words,
entity words, and subroutines within the GPSS/360
program.

These words may be referenced in a variety of
ways, the simplest of which is the absolute (base-
displacement) method. The following lists each
available value and its displacement from the
address in GR 10.

ITEM DISPLACEMENT
B Field Value 0
C Field Value 4
D Field Value 8
E Field Value 12
F Field Value 16
G Field Value 20
Address of Control Words 24
Address of ADDCUR routine 28
Address of SUBCUR routine 32
Address of ADDFUT routine 36
Address of SUBFUTroutine 40
Address of ADDINT routine 44
Address of SUBINT routine 48
Address of STPVAL routine 52
Address of STPVLA routine 56
Address of PRVAL routine 60
Address of PRVALA routine 64
Address of CREAT routine 68
Address of GETCOR routine 72
Address of FLOAT routine 76
Address of UNFLOT routine 80
Address of ERASE routine 84
Address of FRECOR routine 88
Address of DRAND routine g2
Address of DCOD routine 96

If the user wishes to obtain the decoded value
of fields B and C of the HELP block in Registers 6
and 7 respectively he would use the following

instructions:
L 6,0(10) OBTAIN B-FIELD
1, 7,4(10) OBTAIN C-FIELD

Further, if he wishes to branch to the -STPVAL-
routine with these values he would add the
following instructions:

L 15,52(10) OBTAIN ADDR. OF
-STPVAL-
BALR b5, 15 BRANCH TO -STPVAL-

The GPSS/360 subroutine-STPVAL-would return to
the HELP routine via Register 5.

The available subroutines, their purpose, entry
conditions, and exit conditions are listed below:

ROUTINE:
PURPOSE:

ENTRY

CONDITIONS:

EXIT

CONDITIONS:

ROUTINE:
PURPOSE:

ENTRY

CONDITIONS:

EXIT

CONDITIONS:

ROUTINE:
PURPOSE:

ENTRY

CONDITIONS:

EXIT

CONDITIONS:

ROUTINE:
PURPOSE:

ADDCUR

To add a transaction in current
event chain at end of its priority
class.

No. of the transaction to be inserted
in Register 9.

None

SUBCUR
To remove a transaction from the
current event chain

No. of the transaction to be
removed in Register 9. NEWN
must have current block of
transaction which is being removed.

None
ADDFUT
To insert a transaction into the

future event chain.

No. of the transaction to be
inserted in Register 9,

None
SUBFUT

To remove a transaction from the
future event chain.

111

ENTRY
CONDITIONS:

EXIT
CONDITIONS:

ROUTINE:
PURPOSE:

ENTRY
CONDITIONS:

EXIT
CONDITIONS:

ROUTINE:
PURPOSE:

ENTRY
CONDITIONS:

EXIT
CONDITIONS:

ROUTINE:
PURPOSE:

ENTRY
CONDITIONS:

EXIT

CONDITIONS:

112

No. of the transaction to be
removed in Register 9,

None

ADDINT
To place a transaction in an
interrupt status.

No. of the transaction to be
inserted in Register 9.
NOWM - Number of currently
active transaction

NOWMAD - Address (T1) of
currently active transaction

None

SUBINT
To remove a transaction from an
interrupt status.

No. of the transaction to be removed
in Register 9.

None

STPVAL, STPVLA
To store a quantity in a fullword or
halfword parameter

Entry at STPVAL assumes:
Parameter number in Register 6.
Value to be stored in Register 7.
NOWM - Number of currently active
transaction.

NOWMAD - Address (T1) of
currently active transaction.

NOTE: In storing halfword
parameters, quantity will be checked
for greater than 32767,

Entry at STPVLA assumes:
Parameter number in Register 6.
Value to be stored in Register 7.
Transaction number in Register 8.

None

ROUTINE:
PURPOSE:

ENTRY
CONDITIONS:

EXIT
CONDITIONS:

ROUTINE:

PURPOSE:

ENTRY
CONDITIONS:

EXIT
CONDITIONS:

ROUTINE:
PURPOSE:

ENTRY
CONDITIONS:

EXIT
CONDITIONS:

ROUTINE:
PURPOSE:

ENTRY
CONDITIONS:

PRVAL, PRVALA
To obtain the value of a fullword or
halfword parameter.

Entry at PRVAL assumes:
Parameter number in Register 6.
NOWM - No. of currently active
transaction.

NOWMAD - Address (T1) of
currently active transaction.
Entry at PRVALA assumes:
Parameter number in Register 6.
Transaction number in Register 7.

Both PRVAL and PRVALA exit with
the specified parameter value in
Register 6.

CREAT

To activate the next available
transaction from the common pool
of inactive transactions.

Number of bytes for transaction
words (20) and parameters (2/
Halfword or 4/Fullword) to be
obtained from COMMON in
Register 6.

Area obtained from COMMON is
zeroed,

GETCOR
To obtain a block of COMMON
storage.

Number of bytes requested in
Register 6.

Starting address of block in
Register 7. Actual number of
bytes obtained in Register 6 (All
core obtained is adjusted to
fullword).

FLOAT
Convert a fixed-point number to

floating-point.

Number to be converted in Register 8.

EXIT
CONDITIONS:

ROUTINE:
PURPOSE:

ENTRY
CONDITIONS:

EXIT
CONDITIONS:

ROUTINE:
PURPOSE:

ENTRY
CONDITIONS:
EXIT
CONDITIONS:

ROUTINE:
PURPOSE:

ENTRY
CONDITIONS:

EXIT
CONDITIONS:

ROUTINE:
PURPOSE:
ENTRY
CONDITIONS:

EXIT
CONDITIONS:

ROUTINE:
PURPOSE:

ENTRY
CONDITIONS:
EXIT
CONDITIONS:

Converted number returns in
Floating-point Register 2,

UNFLOT
Convert a floating point number to
fixed-point

Number to be converted in Floating-
point Register 2.

Integer portion returns in Register 8.
Fraction portion returns in Register
9. 8ign is carried by sign of
Register 8.

ERASE

To destroy active transaction, return
it to inactive pool and restore all
COMMON storage associated with
the transaction.

Transaction number in Register 9.
None

FRECOR

To return a block of COMMON
storage to the available state.
Address of block in Register 8.
Number of bytes in block in
Register 9.

Core returned is zeroed at exit.

DRAND
To generate a random number

Random number index (1-8) in
Register (6)

Random number between 0 and 999
in Register 7.

DCOD

To evaluate a GPSS/360 Standard
Numberical Attribute.

SNA to be decoded in Register 7.

Value of SNA in Register 7.

The contents of the various GPSS/360 control
words are obtainable in much the same way as the
addresses previously mentioned. First the user
must load the address of the first control word -

L 9,24(10) GET BASE FOR CONTROL

WORDS

This address (in GR 9) may now be used as a
base to obtain the desired control word. For
instance, if the desired word had a displacement
of four fullwords from the first control word,
that value could be obtained with the following
sequence of instructions.

L 9,24(10) Obtain base for control words

L 7,16(9) Obtain contents of fifth word
The desired value would now be in Register 7.

The following is a partial list of the available
control words and their displacement (in bytes)
from the base address for control words (seventh
word of passed table).

Symbolic

Name Displacement Source

XACLOC 640 Address (T1) of trans-
action created by
CREAT Routine

NUMXAC 644 Number of transaction
created by CREAT
routine

CLOCK 656 Current value of
absolute clock

MANY 660 Number of terminations
remaining

NOWMAD G688 Address (T1) of
current transaction

NOWMCOM 692 Address of COMMON
words for current
transaction

NOwM* 730 Number of currently

active transaction

The following words provide the starting address
for core allocated to:

XAC 1000 Transactions

BLO 1004 Blocks

CHA 1008 User Chains

FAC 1012 Facilities

STO 1016 Storages

LOG 1020 Logic Switches

SAV 1024 Fullword Savevalues
*Halfword

113

VAR 1028 Variables

FUN 1032 Functions

QUE 1036 Queues

TAB 1040 Tables

MSF 1044 Fullword Matrix Saves
MSH 1048 Halfword Matrix Saves
HSAV 1052 Halfword Savevalues
GRP 1056 Groups

BVAR 1060 Boolean Variables

The following words indicate the available
quantity of each entity.

XACNUM 1064 Transactions

BLOKNUM 1068 Blocks

CHANUM 1072 User Chains

FACNUM 1076 Facilities

STONUM 1080 Storages

LOGNUM 1084 Logic Switches

FSVNUM 1088 Fullword Savevalues

VARNUM 1092 Variables

FCNNUM 1096 Functions

QUENUM 1100 Queues

TBLNUM 1104 Tables

MSFULL 1108 Fullword Matrix
Savevalues

MSHALF 1112 Halfword Matrix
Savevalues

HSVNUM 1116 Halfword Savevalues

GRPNUM 1120 Groups

BVARNUM 1124 Boolean Variables

The method of computing the address of a
particular entity (i.e., Transaction 6, Storage 12,
Queue 7, etc.) is quite simple and can be done in
the following three steps:

1. Load the entity number into a register.

2. Multiply by the number of bytes/entity.

3. Add the base address for that entity to
the product.

For example: A user wishes to obtain the
contents of a particular savevalue location whose
index number was specified by field B of the
HELP block.

L 7,0(10) Obtain field B value

SLA T2 Multiply by 4 (4 bytes/
savex)

L 9,24(10) Obtain address of control
words

L 8, 1024(9) Obtain base addr. for
savevalues

AR 7,8 ADD base to product
above

L 6,0(7 Register 6 contains con-

tents of specified savevalue

114

The following is a list of the GPSS/360 entities
along with the number of bytes required for each.

Entity Basic Core Allocation
Transactions 16
Blocks 12
Facilities- 28
Storages 40
Queues 32
Logic Switches 6
Tables 48
Functions 32
Variables 48
Savevalues (fullword) 4

(halfword) 2

User Chains 24

Groups 4

Boolean Variables 32
Matrix Savevalues

(fullword) 24

(halfword) 24

The user is referred to the chapter of the User's
Manual which discusses each entity type for a
detailed description of the contents of the various
fields.

GROUP ENTITY

In many GPSS models, transactions represent items
which could be and sometimes are categorized by
common attributes. For instance if transactions
represented parts in an inventory meodel, the parts
could be categorized by their weight, color, price,
time to manufacture, length of time in stock, ete.

A second example might be a manufacturing model
in which items to be processed could be categorized
by their priority, machines required for processing,
time, etc. In these examples, the attributes (color,
weight, price, etc.) are usually carried by the
parameters of the transactions and can be changed
by passing the transactions through as ASSIGN block.
However, this provides only limited and controlled
access to attributes of these items. In some
situations it might be necessary to change or modify
certain attributes of all transactions within a given
category. For example: change the price of all
partA items regardless of their current status in the
model -- current, future, interrupt, user chains,
ete.. Without some means of categorizing trans-
actions, and subsequent communications between
transactions within a given category, modeling
changes of this type become extremely awkward

and sometimes impossible.

In other models, the user may wish to develop
lists of numeric quantities without reserving a
series of SAVEVALUES for this purpose. These
numeric quantities within a category could repre-
sent the facilities which exceed a given utilization,
equipment whose failure rate exceeds a given
value, the queue numbers whose contents exceed
a certain limit, ete.

The GROUP entity and associated blocks provide
the user with a means of categorizing transactions
and/or other entities. The GROUP entity also
provides a means of communicating and refer-
encing attributes of transactions which are
members of a given GROUP. A GROUP is
basically a list of numbers. The interpretation
and meaning of a GROUP is dependent on what
elements constitue a GROUP, and how the user
creates, manipulates, and removes members of
a GROUP within the model.

A GROUP and reference to members of a
GROUP is completely independent of the status
of the members which make up the group. If
transactions made up a group, they could all be
referenced regardless if they were on the future,
current, interrupt, or user chain. For example,
certain parts may be categorized by weight and
color. _ The combinations of weight and color could
be represented as GROUPS. Within the GPSS
model, subsequent transaction flow could be
determined by the GROUP in which the transaction
is a member. The blocks associated with the
GROUP entity enable the user to change certain
attribute values such as priority or parameter
values of all transactions which make up a GROUP.
This type of operation will take place regardless
of where the transactions are in the system --
future, current, interrupt, or user chains. This
provides a means for transactions within a given
GROUP to communicate with other members of
the GROUP.

As with other entities provided by GPSS/360,
there are a given number of GROUPS associated
with each of the three standard sets of GPSS/360
entities. If additional GROUPS are required, they
can be obtained by means of REALLOCATION.

The GROUPS operate in either one of two
possible modes -- transaction or numerie. The
mode of operation for a particular GROUP is
determined by the first reference to the GROUP,
for example, passing a transaction through a JOIN
block. Once the mode of operation has been
established, any subsequent reference to the
GROUP must be in the established mode. When

operating in the transaction mode, entries of the
GROUP represent actual transaction numbers
which are members of the GROUP. When operating
in the numeric mode, the entries of the GROUP
represent a list of numeric values. Again, the
interpretation and meaning of the entries of a
GROUP operating in either the transaction mode or
numeric mode is dependent on the user and on how
members of the GROUP are created, manipulated,
and removed,
The SNA associated with the GROUP is Gj where

Gj is the number of current members of GROUP j.
The standard output of GPSS/360 includes GROUP
information., The GROUP output information
provides the GROUP number, the GROUP mode of
operation (transaction or numeric), and the
members of the GROUP. If the GROUP is operating
in the transaction mode, the members listed will
be numbers of the transactions which are currently
members of the GROUP. The five blocks associated
with the GROUP entity are:

JOIN

REMOVE

EXAMINE

SCAN

ALTER

The first three blocks (namely, JOIN, REMOVE,

and EXAMINE) operate in either the transaction or
the numeric mode. The SCAN and ALTER blocks
operate only in the transaction mode.

JOIN Block

|8 s & |8 @
JOIN | GROUP No. Numerie Value
Transaction SBauree. Numerie
and Numerle Mode Only.
K, *n k, *n
SNAJ, SNA®j SNAj, SNA®)

The JOIN block is the means by which a trans-
action or numeric value is made a member of the
GROUP., The JOIN block never refuses entry to a
transaction.

Transaction Mode of Operation
If only the field A of the JOIN block is specified, the

JOIN block references the GROUP in the transaction
mode. That is, the entering transaction is made a

115

member of the GROUP specified by the field A of the
JOIN block. If the GROUP specified by the field A
is already operating in the numeric mode, anerror
will occur and the simulation will be terminated. A
given transaction may be a member of any number
of GROUPSs, the only restriction being that the
transaction must enter a JOIN block operating in
the transaction mode for each GROUP in which the
transaction is to become a member. For example:

8 19
[som {10

The number of the entering transaction becomes
a member of GROUP 10. If this is the first
reference to GROUP 10 by any transaction, the
GROUP will be identified as operating in the
transaction mode.

|8 as
|som [x19

The number of the entering transaction becomes
a member of the GROUP whose number is given
by the contents of SAVEVALUE 19.

Numeric Mode of Operation

If the A and B fields of the JOIN block are specified,
the JOIN block references the GROUP in the
numeric mode. That is, the value of the SNA
specified by the B field is evaluated and this value
made a member of the GROUP specified by the
A field, If this is the first refererence to the
GROUP, the GROUP is identified as operating in
the numeric mode. If the SNA value specified by
the B field is already a member of the GROUP
specified by the A field, the value is not entered
again as a member of the GROUP. That is, when
a GROUP is operating in the numeric mode, any
given numeric value will only appear once in the
listing of the members of a given GROUP. For
example:

G |19

|laom l2, s0

The numeric value 50 (B field) is made a member
of GROUP 2.

[xs

|8
JOIN |pa, va

116

Variable 4 is evaluated and the numeric value
made a member of the GROUP whose number is
specified by the contents of parameter 3 of the
entering transaction.

REMOVE Block

s 1 A n a D E F
MEMOVE | GROUP | COUNT Numeric | Transac- |Comparison |Allernate|
He. Mo, of Value to | Hon Attri= SNA Exit
Membara be tutes for ”
o be romoved | Comparl= | Xaot Mode &,
romoved san pur=
from Humeric | poses
GROUP "Ki'cﬁ"e" Xaot Mode
YartMods | —— | =—=—
k.*n |k *n, K, *n, RR k, *a k, *n
BHAJ, | SMAJ, SNAJ, (Priority) | ENAj, SHAJ.
BHA®) | BNA%) SNA®] Parameter | BNA®) SHA®)
ALL ro,
k, *n
BHAJ,
SHAT)

The REMOVE block enables the user to remove
transactions or numeric values from a GROUP.
It provides the ability to remove more than a single
transaction from a GROUP, and also provides a
means of removing transactions from the GROUP
based on the value of transaction attributes
(priority or parameters).

Transaction Mode of Operation

The A field of the REMOVE block specifies the
GROUP. This GROUP is searched to determine
if the transaction which entered the REMOVE block
is a member. The F field of the REMOVE block
specifies an alternate block to which the entering
transaction is sent if it is not 2 member of the
GROUP specified by the A field. If the F field is
blank, the entering transaction continues uncon-
ditionally to the next sequential block. If the
entering transaction is a member of the GROUP
specified by the A field, it is removed from this
GROUP. For example:

REMOVE 1

If the entering transaction is a member of
GROUP 1, it is removed from GROUP 1 and
proceeds to the next sequential block. If it is

not a member of GROUP 1, it also proceeds to the
next sequential block.

8 19

REMOVE 5,,. s NEXXT

If the entering transaction is a member of
GROUP 5, it is removed from GROUP 5 and
proceeds to the next sequential block. If it is
not a member of GROUP 5, it proceeds to block
NEXXT.

An alternate transaction mode of operation is
provided by the REMOVE block whereby ALL or a
specified number of transactions whose attributes
satisfy certain conditions may be removed from the
GROUP. This mode of operation is specified hy
entries in the B, D, and E fields of the REMOVE
block. The B field specifies the SNA which
determines the number of transactions to be
removed from the GROUP. If the D and E fields
are blank, the number of transactions specified by
the B field are removed unconditionally from the
GROUP. The D argument specifies the transaction
attribute used for comparison purposes in determin-
ing if a transaction should be removed from the
GROUP. This entry may be PR (priority) or a
parameter number. Any SNA may be used to
specify the parameter number. The E field
specifies the SNA against which the transaction
attribute will be compared. For example:

ALL transactions which are members of
GROUP 1 are removed unconditionally from
GROUP 1.

8 19
REMOVE 3, 10, , PR,6

The first 10 transactions that are members of
GROUP 3 and whose priority is equal to 6 are removed
from GROUP 3.

a8 19
REMOVE 3, ALL, , 5, 100, NEXT

Remove all transactions from GROUP 3 which
have a value of 100 in parameter 5. If the GROUP
has no members which meet this condition, send
the entering transaction to block NEXT.

Numeriec Mode - of Operation

When using the REMOVE block in the numeric
mode, only the A and C fields are reguired, and
the F field is optional. The B, D, and E fields
are not used, The GROUP specified by field A

is examined for the value specified by the C field
SNA. If the value is found, it is removed and the
transaction proceeds to the next sequential block.
If the value is not found, the F field is examined
for an alternate exit. If an alternate exit is
specified, the entering transaction proceeds to it.
If an alternate exit is not specified, the entering
transaction proceeds unconditionally to the next
sequential block. For example:

i
REMOVE 6,, V3,,,NEXT

Remove the quantity j, the value of Variable 3
from GROUP 5. If this value is not found in

GROUP 5, the entering transaction proceeds to
block NEXT.

EXAMINE Block

8 19 A B [+]
EXAMINE GROUP Now Numerie Alternate
Value Exit
Numerie
Mode
c
k,*n k,*n k,*n
SNAJ,BNA®| SNAJ, SNA*) SNAJ, SNA%|

The EXAMINE block enables the user to select

the path a transaction will take based on GROUP
membership,

Transaction Mode of Operation

The A and C fields of the EXAMINE block must be
specified when operating in the transaction mode.
If the entering transaction is a member of the
GROUP specified by the A field, it proceeds to the

117

next sequential block, If it is not a member of the 2, Obtain attribute values of a member of the

GROUP, it proceeds to the block specified by the GROUP which meets certain specific conditions,
C field, For example: 3. Modify subsequent transaction flow if a
" o member which satisfies specific conditions is not
EXAMINE 1, NEXT found,
If the entering transaction is a member of Operation if A, B, C, and F Fields Are Specified
GROUP 1, it proceeds to the next sequential
block. If it is not a member of GROUP 1, it The A field specifies the GROUP whose members
proceeds to block NEXT. are to be examined, The B field specifies the
transaction attribute which is to be examined. This
Numeric Mode of Operation may be PR (priority) or a parameter. (NOTE:
if Pn or *n, ete., is coded in the B field, the value
The A, B, and C fields of the EXAMINE block must of parameter n is interpreted as the desired param-
be specified when operating in the numeric mode. eter number.)
If the numeric quantity specified in the B field is The C field specifies the SNA against which the
a member of the GROUP specified by the A field, value of the transaction attribute will be compared.
the entering transaction proceeds to the next The F field specifies an alternate exit for the
sequential block. If it is not a member of the entering transaction if no member is found which
GROUP, the entering transaction proceeds to the satisfies the specified conditions.
block specified by the C field. For example: If the F field is blank, the entering transaction
unconditionally proceeds to the next sequential
Y N XX block., For example:
If the numeric value given by the contents of g 19
SAVEVALUE 15 is a member of GROUP 5, the e N (i
entering transaction proceeds to the next GROUP number 1 (A field) is examined to deter-
sequential block. If the value is not a member of mine if a transaction with a priority (B field) of 6
GROUP 5, the entering transaction proceeds to (C field) is amember. Thefirsttransaction found which
block ABCD. has a priority of 6 causes the entering transaction
The ability to obtain and modify attributes of to proceed immediately to the next sequential block.
transactions within a given GROUP is provided by If all members of the GROUP are examined and the
the SCAN and ALTER blocks. The operations condition is not satisfied, the entering transaction
specified by these blocks takes place regardless proceeds to block BCDF.

of the status of members of the GROUP included on

ifA,B,C,D
current, future, interrupt, user chains, etc. Operation i By B €, B, By ad ¥ Tialds Aza

The SCAN and ALTER blocks operate only in Bpeoified
the transaction mode. The B field specifies the atiribute of the members
of the A field GROUP which are compared against
SCAN Block the value of the C field SNA, I PR is coded in the
B field, the priority of each member of the
The SCAN block provides the following capabilities: GROUP is compared against the C field value. If
1. Determine whether a transaction with cer- any SNA is coded in the B field, it is evaluated and
tain attribute values is a member of a given interpreted as a parameter number of the members.
GROUP, (NOTE: If Pn or *n is coded in the B field, the
value of parameter n is interpreted as the desired
8 19 A B c D E F parameter number.)
SCAN G;SUP Tr:.:\;::;!;l:ﬁm Cun‘:ils::sun Ar:l:xw P;:ﬁ“b::-" Au;;?:m
for for B Obtained n whic .
Comparlscn Ar:\.\mtul if Match :.n P!:l!ﬂ: F
is made DArgument
Value
Kk, *n PR k, *n PR k, *n k. *n
SNAJ, (Priority) SNA} (Priority) 5NA| SNAJ
SNA*j Paramcter SNA%| k, *n SNAY) SNA*j
k, *n SNAJ,
SNAJ SNA®)
SNA®|

118

If a match is found between the B field attribute
and the C field SNA, the D field attribute of the
matching transaction is obtained and placed in the
parameter of the entering transaction, specified by
the E field. The D field is interpreted exactly as
was the B field, i.e., PR = priority, any SNA =
parameter no. The entering transaction then pro-
ceeds to the next sequential block

If no match is found, the entering transaction
proceeds to the alternate block specified in the F
field, If no alternate block is specified, the enter-
ing transaction proceeds to the next sequential
block. Tor example:

a 19

SCAN 1, PR, 25,5, 1

Scan GROUP 1 for the first transaction with a
priority of 25. If one is found, obtain the value of
parameter 5 and place it in parameter 1 of the
entering transaction., If no match is found, proceed
to next block.

8 19

SCAN

Scan GROUP 4 for the first transaction with
parameter 10 equal to the'value of X3, If one is
found, obtain its priority and place it in parameter
6 of the entering transaction. If none is found,
send entering transaction to block NEXT,

4, 10, X3, PR, 6, NEXT

ALTER Block

The ALTER block enables the user to modify
attributes of transactions which are members of a
given GROUP. The operation of the ALTER block
provides.

1. Unconditionally modify a given attribute of
ALL members of a GROUP.

2. Moadify a given attribute of a number of mem-
bers of a GROUP.

3. Modify a given attribute if some other atiri-
bute meets a specified condition,

The A field specifies the GROUP number, The B
field specifies ALL or a COUNT which can be any
SNA,. The C field is the attribute of transactions in
the GROUP which will be altered, PR in the B
field means the priority and any SNA is interpreted
as a parameter number, The D field SNA is the
value to replace the transaction atiribute specified
by the Cfield. TheE, F, and G fields are all optional.
TheE field specifies a transaction attribute (PR or
parameter no.) to be matched with the F field SNA
before the altering will take place. The G field indi-
cates an alternate exit for the entering transaction
if the A field GROUP has no members or if a matching
condition is specifiedinfields E and ' and no trans-
action is found which satisfies the condition. For

example:

] 19

ALTER 1,ALL, PR, 100
Alter the priority of all transactions whichare
members of GROUP 1. Alltransactions willbe

assigned a priority value of 1¢4.

a 19

ALTER
Alter the value of parameter 35 to the value of
savevalue 10 for the first 10 transactions in GROUP
2. If there are less than 10 members in GROUP 2,
alter all, If there are no members in GROUP 2
send the entering transaction to block NEXT,

B 19

2,10,35,%10, , ,NEXT

ALTER 3,ALL,PR,0,1,10 ,NEXT

Alter the priority to 0 of all transactions in GROUP
3 which have a 10 in parameter 1. If no transactions
which are members of GROUP 3 have a 1¢ in param-

eter 1, send the entering transactions to block NEXT.
To account for possible switching of priorities,

the current event chain scan should be reinitiated
after an ALTER block which alters priorities.

If priorities are altered and the transaction is in
the current event chain, it is removed from its
former priority class and placed at the end of the
new priority class.

& 19 A B C D E F
ALTER | GROUP | COUNT |Momber Value Matehing Matehing
No. Attribute to roplage | Transactlon SNHA
to be Attributa | Attribute
Altered
k, *n ALL PR k, *n PR K, *n
SNAJ, k, *n, {Priority) SNAJ, (Prlority) SNAj,
SNA®] SNAJ, Parameler SNAY| Parametler SHA*)
SNA*| k, *n k, *n
SNAJ, SNAJ,
SNA*S SNA®|

Alternate

Exit

k, *n
SNAJ,
SNA*)

G

119

CHAPTER 8: SAVEVALUE ENTITIES

GENERAL PROPERTIES OF SAVEVALUE
ENTITIES

Savevalue entities are used in simulation models
to retain the values of other Standard Numerical
Attributes for future reference. Each fullword
savevalue may contain a signed 31-bit value of a
Standard Numerical Attributes and each halfword
savevalue may contain a signed 15-bit value of a
Standard Numerical Attribute. The standard
GPSS8/360 program for a 128K machine has core
allocated for 400 fullword savevalues and 200
halfword savevalues.

STANDARD NUMERICAL ATTRIBUTES

There are four Standard Numerical Attributes
associated with savevalues:

Xj = current value saved in Fullword
Savevalue j

XHj = current value saved in Halfword
Savevalue j

MXj (m, n) = current value saved in mth
row and nth column of Fullword
Matrix Savevalue j

MHj (m, n) = current value saved in mth
row and nth column of Halfword
Matrix Savevalue j.

These Standard Numerical Attributes may be
indirectly addressed as follows:

X*n = current value saved in savevalue whose
location is given by value of Parameter n

and similarly for XH*n, MX*n (m, n), and
MH*n (m,n).

STANDARD LOGICAL ATTRIBUTES

There are no Standard Logical Attributes
associated with savevalue entities. Consequently,
the status of a savevalue cannot be referenced in
a GATE block to control the flow of transactions.
However, it is quite simple to use the value of the
Standard Numerical Attribute Xj as one of the
arguments in a TEST block. For example;

120

|n LOC |1 | 8 OPERATION | 19 A | B | c |
TEST E X KO Alternate block may or
TEST NE X Ko may not be coded in
TEST L Xj KD C-fleld
TEST G X Ko

The above four TEST blocks control the flow of
transactions, depending on whether the following
conditions regarding the savevalue are true or
false.

1. Xj is zero

2. Xj is nonzero

3. Xj is negative, i.e., less than zero

4. Xj is positive, i.e., greater than zero

The TEST block can operate in an unconditional
or conditional entry mode depending on whether an
alternate block number is coded in field C.

If Xj, XHj, MXj (m, n), or MHj (m, n) is used
as single elements within a Boolean variable
statement, it is interpreted as one if nonzero and
zero if zero.

SAVEVALUE BLOCK

SPECIFIED IF
STANDARD HALFWORD
NUMERICAL |SAVEVALUE

SAVEVALUE ATTRIBUTE BEING
LOCATION TO BE SAVED | REFERENCED
LOC 7|8 OPERATION |19 A B : [+

SAVEVALUE [SNAJ,SNA*n[blank)| SNAj,SNA*n, (SAVEVALUE)
k, *n = fli, [A,B,C,]

The SAVEVALUE block serves the function of
storing the value of any of the Standard Numerical
Attributes for further reference. A SAVEVALUE
block never refuses entry to a transaction.
Transactions proceed to the next sequential block
following the SAVEVALUE block. The parameters
of the entering transaction may be saved, if
desired. References to the stored gquantity can
subsequently be made by the Standard Numerical
Attributes Xj, XHj, MX, (k, 1), or MHj (k, 1).
The values of all the savevalue quantities are
initially zero. The field B argument is used to
specify the Standard Numerical Attribute to be
stored. The value of the field A argument specifies
the savevalue location (j) in which field B is to be
saved.

Field C is used to denote halfword savevalue or

fullword savevalue. If a halfword savevalue is
desired, the character 'H' is placed in field C, I

there is no entry in field C, fullword savevalue
is assumed. Halfword savevalues are provided in
GPSS/360 to optimize the use of core when the
user is dealing with numbers of magnitude less
than 215-1,

NOTE: If any overflow occurs during compu-

tation of the integer to be saved, only the low

order 15 bits are retained for halfword

savevalues and the following warning message

will be printed:

WARNING EXECUTION ERROR NUMBER 851.

BLOCK NUMBER XXX¥X. CLOCK YYYY.

SIMULATION CONTINUES.

where XXX¥ = SAVEVALUE block at which
the error occurred.

YYYY = Clock time at which error

occurred,

This message is only printed the first time

an overflow occurs as a result of a halfword

SAVEVALUE operation and the simulation

continues.

Replacement, Addition, and Subtraction in
Savevalue Location

The field A Standard Numerical Attribute
argument can be followed by three possible
characters (blank, +, or -) which define modes
of operation.

Replacement Mode

Replacement mode is indicated by "blank.” The
value of field B Standard Numerical Attribute
replaces the current value in the field A savevalue
location.

Example:

SAVEVALUE 10, V10

The value of Arithmetic Variable 10 replaces
the current value in Savevalue location 10.

Addition Mode

Addition mode is indicated by "+'"'. The value of
the field B Standard Numerical Attribute is added
to the current value in the field A savevalue
location.

Example:

SAVEVALUE *2+, X*5

The value currently stored in the savevalue
location, whose index number is given by the value
of Parameter 5 of the transaction currently being
processed, is added to the current value in the
savevalue location whose index number is given by
the value of Parameter 2. The value of X*5
remains unchanged.

Subtraction Mode

Subtraction mode is indicated by '"-." The value

of the field B Standard Numerical Attribute is

subtracted from the current value in the field A

savevalue location.

Example:
SAVEVALUE 1-, K4, H

The constant K4 is subtracted from the current
value in Halfword Savevalue location 1.

Matrix Savevalues

Matrix Savevalues provide the user with the
ability to associate additional attributes with
GPSS/360 entities such as facilities, storages,
logic switches, user chains, ete. For example,
if a facility represented a machine, certain
characteristics (such as number of failures,
number of different job types processed, time
machine was last used, job type machine is
currently processing, time machine is scheduled
for maintenance, etc.) might be of interest to
the user.

The user may retain such information in
savevalues arranged in an MxN Matrix, where M
is the number of rows and N is the number of
columns. The user may specify the number of
rows and columns for the matrix savevalue as
well as the capacity (i. e., fullword or halfword)
by means of a MATRIX definition card.

MATRIX Definition Card

The MATRIX definition card defines the
dimensions of a Matrix Savevalue in the following
manner:

1. Matrix Savevalue number in columns 2-6.

2. Xor H in field A specify fullword or
halfword respectively.

3. TField B defines the number of rows.

4. Field C defines the number of columns.

121

Examples:
1 MATRIX X,5,5 A 5x5, fullword matrix
2 MATRIX H,3,4 A 3x4, halfword matrix

MSAVEVALUE Block

The MSAVEVALTUE block is used to enter values
into a Matrix Savevalue in much the same way a
SAVEVALUE block is used to enter values into a
savevalue. The MSAVEVALUE block never re-
fuses entry to a transaction and all transactions
proceed to the next sequential block.

Field A specifies the Matrix Savevalue location
(j) in which the field D quantity is to be saved.
Fields B and C specify the row number (m) and the
column number (n) respectively. The field D
argument specifies the quantity to be stored in the
particular row and column of the specified Matrix
Savevalue. Any of the four fields may be specified
as Standard Numerical Attributes. If a Halfword
Matrix Savevalue is desired, the character 'H' is
placed in field E. If there is no entry in field E,
a Fullword Matrix Savevalue is assumed. Half-
word Matrix Savevalues in GPSS/360 are used to
optimize core when the user is dealing with
numbers of magnitude less than 215-1.

If any overflow occurs during computation of
the integer to be saved, only the low-order 15
bits are retained for Halfword Matrix Savevalues
and the following warning message will be printed:
WARNING EXECUTION ERROR NUMBER 852,
BLOCK NUMBER XXXX. CLOCK YYYY.
SIMULATION CONTINUES.

where XXXX = MSAVEVALUE Block at which
the error occurred.
YYYY = Clock time at which the error

occurred.
This message is printed only the first time an
overflow occurs as a result of a Halfword Matrix
Savevalue operation and the simulation continues.

TABLE 15: CORE ALLOCATION FOR
FULLWORD (HALFWORD)
MATRIX SAVEVALUE ENTITIES

SYMBOL LENGTH SOURCE

MS1 (MSH1) 4 bytes Address of COMMON area
where Matrix Points are
stored.

First halfword = Number of
TOws

Second halfword = Number

of columns.

MS2 (MSH2) 4 bytes

MS3(MSH3) 4 bytes Used during evaluation of
Matrix to store column
number while decoding row

number SNA.

MS4 (MSH4) 4 bytes Used during evaluation to
save the return address to
the DCOD routine. Also
serves as a cyclic

indicator.

MS5 (MSH5) 4 bytes TUsed during evaluation to
save the base for Variable
or Function words when

the Matrix evaluation
routine is called from those

evaluation routines.

MS6 (MSH6) 4 bytes TUsed during evaluation to
save the base for the

calling routine.

TABLE 16: FORMAT for MATRIX
SAVEVALUE POINTS
IN COMMON

Each defined Matrix Savevalue has associated with
it (MxN) fullwords (halfwords) where M = Number
of rows and N = Number of columns. These words
are cbtained from the COMMON area and the
address stored in Matrix Savevalue reference
word MS1 or MSH1 (see Table 15),

Each of these words (halfwords) contain the
value of a particular row and column of the Matrix
as outlined below for a Matrix Savevalue with 4
rows and 4 columns.

122

SPECIFIED IF
STANDART HALFWORD
NUMERICAL | NATRIX
MATRIX ATTRIBUTE | SAVEVALUE
SAVEVALUE | ROW COLUMN TO BE BEING
LOCATION | NUMBER NUMBER SAVED REFERENCED
2Loc [7|s opERATION |18 A B ¢ D E MSAVEVAL
SNAJ SNAJ, SNA*n, | SNAJ, SNA®n, | SNAj, SANS H
MSAVEVALUE SNA'n.Glnnk K, *n K, *n K, *n or Blank
+
K' -n -

TABLE 16: (Cont.)

IRI-CI. | | RI-C2| I RI.AC!I—l] Rl-C%]

|H2-GII [re-c2| [me-ca| |me-csl

[ra-c1| [ma-cz| [ma-ca| [ma-c4]

[re-c1 | [ma-c2| [me-ca| [mi-c4]

The formula for finding the displacement (from
address in MS1) for a particular row (r) and
column (c) of an MxN Matrix is as follows:

(e (r-1]] + (c-1)
this valve is then multiplied by either 2 (halfword)
or 4 (fullword) to obtain the displacement.

Examples:

MSAVEVALUE 3; 1; T, V10

The value of Variable 10 will be saved in row
1, column 1 of Matrix Savevalue number 3.

MSAVEVALUE X1, X2, X3, FN4, H

The values in Savevalues 1, 2, and 3 will
determine the Halfword Matrix number, row, and
column, respectively, where the computed value
of Function 4 will be saved.

The MSAVEVALUE block may also operate in
the addition or subtraction modes just as the
SAVEVALUE block. This is done by coding a +
or - following the field A Matrix number.

MSAVEVALUE 2+, 4,5, Q3
The current contents of Queue 3 will be added

to the current value of row 4, column 5 of Matrix
Savevalue number 2.

Matrix Savevalues as Standard Numerical
Attributes. Matrix Savevalues may be used in
any block field where SNA]j is specified. The
mnemonic for Matrix Savevalues is MX for full-
word and MH for halfword followed by the entity
number. This must be followed by the row and
column numbers in parentheses,

Examples:
ASSIGN 2, MXL (3, 4)

The value in row 3, column 4 of fullword
Matrix Savevalue number 1 will be ASSIGNed to

Parameter 2 of the entering transaction.
SEIZE MH2 (4, 4)
The entering transaction will SEIZE the facility
whose number is in row 4, column 4 of halfword
Matrix Savevalue number 2,

Redefinition of Matrices

If a matrix is redefined during a simulation job, the
number of elements in the new matrix is compared
with that of old matrix. When there are more
elements in the new matrix, core for the old matrix
elements is freed and core for new matrix elements
is obtained from available COMMON storage. When
there are less elements in the new Matrix. the core
which was used to define the old matrix is reused
and any unneeded core is returned to the COMMON
pool.

INITIAL CARD
SAVEVALUES
SAVEVALUE | VALUE TO BE STORED IN
LOCATION SAVEVALUE LOCATION
|2 woc|7|s oPERaTION | 19 A B | c
INITIAL Xj aaaann ! an
XHj ~bbbbb 1 bb
MATRIX
SAVEVALUE |VALUE TO
LOCATION | BE STORED
zLoC (7|8 OPERATION |19
MXj (k, 1), aaanaaan

INITIAL
MH] (k, 1), -bbbbb

Where: j = Matrix Savevalue number
k= Row number
1 = Column number

The INITIAL input card permits the initialization
of the value in a Savevalue location. The INITIAL
card avoids the wasteful use of SAVEVALUE blocks
to load constants into a model. INITIAL cards can
also be read in during a simulation run. The B, C
field value will replace the current value in field A
Savevalue location,

For nonMatrix Savevalues the character X or
XH must appear with the SAVEVALUE number in

123

field A. For Matrix Savevalues, MX or MH must
be gpecified. Blanks are not allowed between any
of the identification characters; e.g., Xb88 or X8b8
are not allowed.

The value to be entered in fullword Savevalue
locations may be up to ten characters in length. No
blanks are allowed between characters of the value
to be entered. Negative values may be specified by
preceding the number with a minus (-) sign. If any
of the above conditions are violated, a comment,
ERROR IN ABOVE CARD, will follow the listing of
the card in the printout. When an error occurs,
the initialization of the Savevalue specified by the
card will be deleted.

|2 woc|7|s oPemation |18 a| B | ¢
[| | morae | xss [120000 [0 |

The value 1200000 will be stored in Fullword
Savevalue location 88.

|21.oc " aopnmnou| 19
| || INITIAL

| MHI (2, 4), -33

The value -33 will be stored in row 2, column 4
of Halfword Matrix Savevalue location 3.

Since the initialized values may be up to ten
digits long, actually in the range 4 (231—1), the
INITIAL card may be used to eircumvent the six-
digit limit of the usual GPSS/360 card field. For
instance, the following ADVANCE block might be
used in conjunction with the Savevalue initialized
above:

|2 roc|7|s operaTioN [19 A | B |
| w0 | |abvance | xes | [

ADVANCE block 100 would have a constant delay
time of 1200000 clock units.

Assembly Program Coding of INITIAL Card

Since fields B and C are combined, a comma is not
required to separate columns 24 and 25. The

124

following coding is incorrect:

| 2z Loc [7 | 8 OPERATION |15 aABcC |
| | | ovrrian | xes. 12000000 |

The following assembly program coding should be
used:

2 LOC|7|8 OPERATION | 19 A,B,C
| mrriaL | xns,1200000

Initial Card - Extended Format

In addition to the format just described, GPSS/360
allows the user to use the following extended format
in the initial card:

8 19
INITIAL X1, 40/X3, 50/XH1-XHS8, 100
INITIAL MX3(4, 5), -7/MH1-MH2(2-3, 1-2) -20

If the elements of Savevalues to be initialized
are located in a contiguous area, these may he
initialized all at once. The first initial card assigns
40 and 50 to Fullword Savevalues 1 and 3
respectively and 100 to Halfword Savevalues 1, 2,
3,4, 5, 6,7, and 8. The second initial card
assigns -7 to the fourth row and fifth column
element of the Fullword Matrix Savevalue 3. It also
sets up the following Halfword Matrix Savevalues.

MH1 MH2
col col
row 1 2 3 M1 2 3
1 1
2 -20 -20 2 -20 -20
3 -20 -20 3 =20 =20

In GPSS/360 the user also has the ability to
preset logic switches with the use of initial card.

8 19
INITIAL LS1/LS4-1.5

Here Logic Switches 1, 4, and 5 are set.

The user may initialize logic switches, Matrix
Savevalues, and regular Savevalues with one initial
card. Whenever multiple initialization is used by

the use of a dash between the lower index number
and the upper index number, the upper index
number should never be equal to or less than the
lower index number. The following initial cards
are illegal and appropriate error messages are
described below.

8 19
INITIAL MH1-MX2(1, 2), 3
INITIAL ~ MX2(1-1, 2), 4
INITIAL X7-X3, 5

The first card has a mixed SNA, MH and MX.
The second card has an illegal row number
specification. The third card has the lower index
number and the upper index number reversed.

Since GPSS/360 words are four bytes long, the
maximum number of characters which can be
assigned to Fulword Savevalues and Fullword
Savevalues and Fullword Matrix Savevalues is ten
digits and a sign; specifically, 231_1 is the
maximum.

For Halfword Savevalues and Halfword Matrix
Savevalues the maximum is 215-1, If anything
greater than this is to be stored, only the low-
order 15 bits will be retained and warning message
852 will be printed. Also, the user must have
defined the matrix before it can be referenced in
INITIAL Card.

EFFECT OF RESET, CLEAR AND JOB CARDS

All Savevalue and Matrix Savevalue locations are
initially zero. Neither Savevalues nor Matrix
Savevalues are changed by a RESET card. All
Matrix Savevalues are set to zero by a CLEAR
card and all Savevalues will be zeroed unless the
user specifies otherwise by means of the selective
clear feature explained in-Chapter 15.

STANDARD SAVEVALUE STATISTICAL OUTPUT

The contents of all nonzero Savevalue locations are
printed out in the following format as part of the
standard statistical output at the end of each runm,
or after an execution error:

CONTENTS OF FULLWORD SAVEVALUES
(NONZERO)

SAVE, LOC VALUE LOC VALUE LOC VALUE
g al 26 10 35 60401
101 73 539 6

CONTENTS OF HALFWORD SAVEVALUES
(NONZERO)

SAVEX, LOC VALUE LOC VALUE LOC VALUE
1 20 2 35 10 41

CONTENTS OF FULLWORD MATRIX 1
COLUMN 1

ROW 10
20

OO e W N
[)]

(=18 == B~ R - - .
S o W N =
[T = T = T = T = R e T -8
L= T - R T - o |

CONTENTS OF HALFWORD MATRIX 7

COLUMN 1 2 3
ROW 1 4 4 5
2 5 4 5
3 86 4 5
4 T 6]

PRINT BLOCK OUTPUT

The contents of Savevalue locations can bhe

printed out dynamically during a simulation run by
passing transactions through a PRINT block of the
following type:

[2 woc|7| s oeemamion |19 4| w | c |
PRINT 15 Ky X or blank {Fullwerd Savevnlue)
PRINT k1 Ky XH (Halfword Savevalue)
PRINT ky Ky MX (Fullword Matrix Savevaluc)
PRINT 1;1 'k“ MH {Haliword Matrix Savevalue)

The contents of all nonzero Savevalue locations
are printed out from the field A lower limit k1,
up through the field B upper limit ky. Field C of
the PRINT block can be X, XH, MX or MH. If
field C is blank, X is assumed.

EXAMPLES OF SAVEVALUE ENTITIES AND
SAVEVALUE BLOCKS

Example 1:
The following block diagram illustrates how a

chronological graph of a queue length may be
obtained. The length of Queue 10 is sampled

125

QUEUE

1 |
sz
ASSIGN

181

12 [

DEPART

w__ [

ADVANCE
10,8

¢ >Pp

10

14

RELEASE

<

every 100 clock units, and placed in Savevalue
location *4. Five hundred samples will be taken,
and by using indirect addressing, a separate
Savevalue location is used for each sample.
Locations 1 through 500 are used, with the first
sample taken at clock time 2000. The contents of
the Savevalue locations are printed at the end of
the simulation run, with the exception of those
locations which contain zero.

Example 2:

The following block diagram shows how the
maximum value of a Standard Numerical Attribute
may be measured. SAVEVALUE block 81 will be
entered whenever a new maximum is attained.
Savevalue location 20 is used to record the
maximum value, which will be printed at the end
of the simulation run.

SAVEVALUE

To Block B2

Example 3:

Savevalues are frequently useful in performing
block diagram logic. In the following example,
the transaction which exits from TRANSFER block
360 modifies the path to be followed by the

126

transactions that enter block 35. TRANSFER
block 35 obtains the value in Savevalue

location 100, and uses that value as the next block
selection for transactions entering the block.

ETTTAN
TRANS:
5/\ FER \
d 125
TRANS:
FER
100, B L
365 370
(_s.wava:.uz) Lsmamwz)
Block or Block
40 80 | 100, mu-l | 100, xec]_
Example 4:

A program in a data processing system, such
as an airlines system, can be in one of five
resident states. These programs can be shared
by several transactions. The current state of
the program can be stored in a Savevalue location
which is associated with each program. A change
in the state of a program can be simulated by
simply changing the number in the Savevalue
location with a SAVEVALUE block. The numbers
1-5 could be used to indicate the following states.

SAVEVALUE PROGRAM STATE

1 Program is permanently in
core

2 Program is temporarily in
core, and is being used by
one or more transactions

3 Program is temporarily in
core and is on a blast list
because it is not being used
by any transaction

4 Program is out of core, but
a read into core has been
initiated

5 Program is out of core, and
no read into core has been
initiated as yet

As transactions transfer from one program to
another, the resulting operations will depend on
the state of the program being transferred into.
Assuming that the new program number is
carried in Transaction Parameter 2, the

following List Function (Ln) can be used to route

transactions to the appropriate part of a simulation

model:
FN4
E NOSEK- ~ ~ s
3 SEKON- 7~ A
] DLAST- T~ T
- R [Ny
8 AcTv- 7| - -9 'T
- - X*2 Program
% PERM ,:\ zZ 3 4 &5 SE
RANS-
& FER
N4
Example 5:

Savevalue locations can be used to transfer
parameter values from one transaction to another.
As an extreme example, consider the following
group of blocks which allows one transaction to
creat another transaction which has the same
parameter values but is not a member of the same
assembly set (as would happen in a SPLIT block).

13

SAVEVALUE
SHZ P2
L)

]

14

(562 _ s

LOGICS | 2

28 ¥

BUFFER

The original transaction saves Parameters
1-12 in Savevalue locations 581-592. It puts
Logic Switch 2 in a set condition, whereupon the
Priority 127 transaction (which has been blocked
in GENERATE block 101 in an inactive delayed

status) is activated. The original transaction then
enters BUFFER block 26 which transfers the
overall GPSS/360 scan back to the start of the
current events chain.

The GPSS/360 scan immediately encounters
the active Priority 127 GENERATE block
transaction. This transaction succeeds in
entering GATE LS block 102. Before it leaves the
GENERATE block, it creates an incipient successor
transaction at the GENERATE block. The new
transaction, which belongs to its own independent
assembly set, then proceeds to ASSIGN to its
Parameters 1-12 the value in Savevalue locations
581-592. The new transaction then puts Logic
Switch 2 in a reset condition. Its normal priority
is then assigned in PRIORITY block 116.

The overall GPSS/360 scan next encounters the
incipient successor transaction as the last one in
the Priority 127 class of the current events chain.
This transaction attempts to enter GATE LS block

102, finds that Logic Switch 2 is in a reset condition.

and hence is deactivated. The overall GPSS/360
scan finally comes back to the original transaction
in BUFFER block 26 and attempts to move it into
the next sequential block.

Example 6: Matrix Savevalue

An automobile dealer has set up the list of
available cars together with their descriptions and
prices. They are listed in the order of their
arrival to the dealer.

The above data can be saved in the Halfword
Matrix 1 defined as follows:

T MATRIX H, 100, 8

127

Data Content of Inventory Matrix

COLUMN

1 2] 4 5 [7 g

ROwW Automatic Power | Radlo &

Year | Cylinder | Type Door | Transmissi Brake | Heator Price

Carl 1967 ¢ 1=Ford 2 1=Yes 0 1l1=Yes 450
2 1961 8 2=Chevy 4 0=No 1 11 800
3 1841 4 1=Ford 2 0 0 O0l=Heater 500

4 1983 4 3=Ply- only
& mouth 4 1 1 10=Radlo 1100

only

100 {mnx)

Specification for a required car are transferred

from SAVEVALUE locations to Matrix Savevalue 2
by the Block sequence 8-11 shown in Figure 27. To
determine whether a car with the required specifi-

cations is available, Block sequence 20-26 is
executed. When a match is found, the price

(column 8) of the car which meets the required
specifications will be stored in Halfword Savevalue

2.

128

DIAGRAM

B
44,1
ABSIGN
9
Specifiention
p;l;quc:;l SAVEVALUE
1+, 1,8
10
MBAVEVALUE
2,P2,
XH1,X*4
Searching for n
Matching Car
11
- -
Ho Yes
No
Match
Found
MX1(P1,XH1), MX2(P2, XH1)
24 Yes
SAVEVALUE
I+, 1.0
25
TEST G Hd
XH1,7
26 Yoa
SAVEVALUE
Mateh Found 2,MH1
XHZ = Price (P1,8),H
118
Figure 27,

129

CHAPTER 9: LOGIC SWITCH ENTITIES

GENERAL NATURE OF LOGIC SWITCH ENTITIES

Logic Switch entities are used in simulation models
to represent binary states which may be either of a
logical or a real physical nature. GATE LR and
GATE LS blocks control the flow of a transaction as
a function of the states of Logic Switches. The
Standard GPSS/360 program for a 128k machine
has core allocated for 400 Logic Switches numbered
1, 2, 3, ... 400, Execution Error 501 will occur
if a Logic Switch number greater than the quantity
allocated is referenced. Table 17 describes the
attributes which are stored in three halfwords (L1,
1.2, and 13) required for each Logic Switch.

Each Logic Switch can be in one of two states,
indicated by the L1 halfword:

1. Reset condition - L1 halfword is zero; i.e.,
the switch is off.

2, Set condition - L1 halfword is not zero; i.e.,
the switch is on,

The set condition is comparable to the on
position of a switch, and the reset condition is
comparable to the off position. All Logic Switches
are initially in the reset or off condition.

STANDARD NUMERICAL ATTRIBUTES

There are no Standard Numerical Attributes
associated with Logic Switch entities.

TABLE 17: S/360 CORE ALLOCATION FOR LOGIC SWITCH ENTITIES

Symbolic

Core

Location Size Quantity

Ll Halfword Status of Logic
Switch

L2 Halfword Delay Chain
origin for the
Logic Switch
to be set

L3 Halfword Delay Chain

origin for the
transactions
waiting for the
Logic Switch to
be reset

130

Source

Zero if switch is reset; nonzero if switch is set.
Status is altered by the Logic block

Each time a transaction at a GATE LS block fails
to advance because the Logic Switch is reset, the
number of that transaction is put in this field
(unless the transaction is in a TRANSFER block
with a BOTH or ALL selection mode). The
previous entry in the field is placed in the first
halfword of T1 of the current transaction, thus
forming a pushdown delay chain of transactions
waiting for the Logic Switch to be set by a LOGIC
S block.

This pushdown delay chain is formed in the above
manner, and is activated whenever the Logic Switch
is reset by a LOGIC R block.

STANDARD LOGICAL ATTRIBUTES

Each Logic Switch entity has two Standard Logical
Attributes which, in turn, have the two values:
true and false.

1. LRj is true if Logic Switch j is in a reset
condition; it is false if in a set condition.

2. LSj is true if Logic Switch j is in a set
condition; it is false if in a reset condition.

These Standard Logical Attributes are used in
GATE LR and GATE LS blocks, as described below,
to control the flow of transactions. Generally,
these GATE LR and GATE LS blocks operate in a
conditional entry mode; i.e., no field B alternate
block is specified so the transactions cannot enter
the GATE block unless the specified attribute LRj
or LSj is true. Logic Switches can thereby simulate
unit capacity physical equipment with conditional
entry GATE blocks.

LOGIC BLOCK

INDEX NUMBER OF
OPERATION| LOGIC SWITCH
2 Loc (7|8 P14 19 A
SNAj, SNA*n, k, *n

LOGIC | R
8
1

R
LOGIC S A
1

The LOGIC R, LOGIC 8, and LOGICI blocks es-
tablish logical conditions (reset, set), which may
be tested elsewhere in a model. A LOGIC block
thus differs from the facility blocks (SEIZE,
PREEMPT), which can deny entry to transactions.
Transactions proceed to the next sequential block
following the LOGIC block.

When a transaction enters a LOGIC block the
condition of the Logic Switch j, whose number is
specified by the value of the field A argument, may
be altered in one of the following three ways, de-
pending on the auxiliary field mnemonic:

S The specified Logic Switch will be placed

in a set condition.

R The specified Logic Switch will be placed
in a reset condition.

I The specified Logic Switch will be inverted;
that is, if it was set just before the trans-
action entered the LOGIC block, it will be
placed in the reset state. If the Logic Switch
was reset, it will be placed in the set state
by the transaction.

The mnemonics 5, R, or I must be coded in the
auxiliary field (column 14). Observe that a Logic
Switch may already be in the state specified by the
auxiliary field mnemonic. In this case, nothing will
be changed by LOGIC block.

GATE LR AND GATE LS BLOCKS

Index number of Alternate Block if .
Logia Switch LRj or LSj ia False

OPERATION
z Locf7le 113 |18 A B
GATE! LR | SNAj, SMA®n, k, *n |ENAJ, SNA*n, k, *n
GATE| LS
L]

If a field B alternate block is specified, the GATE
LR or GATE LS block operates in an unconditional
entfry mode; i.e., transactions can always enter the
GATE block. If the Standard Logical Attribute LRj
or LSj is true, the transaction moves to the next
sequential block following the GATE block. If LRj
or LSj is false, the transaction moves to the alter-
nate block specified in field B.

If a field B alternate block is not specified, the
GATE LR or GATE LS block operates in a con-
ditional entry mode; i.e., transactions can enter the
GATE block only if the Standard Logical Attribute
LRj or LSj is true. If LRj or LSj is false, the
transaction is placed in a pushdown delay chain (as
described later in this chapter) and deactivated
from the overall GPSS/360 scan. The only ex-
ceptions are transactions in TRANSFER BOTH or
ALL blocks. When another transaction subsequently
passes through a LOGIC block which makes the
specified attribute true, all transactions in the
delay chains are activated. The overall GPSS/360
scan may then be able to advance one or more of
these transactions (as well as those in TRANSFER
BOTH or ALL blocks) into the conditional entry
GATE LR or GATE LS block.

EFFECT OF RESET, CLEAR, AND JOB
CARDS

All Logic Switches are initially in a reset or off
condition. Logic Switch conditions are not changed
by a reset card. All Logic Switches are reset to an
off condition by clear and job cards.

STATISTICAL OUTPUT

There is no statistical output for the status of Logic
Switches at the end of a run. However a printout of
Logic Switches in a set status (on) will appear after
a running error.

EXAMPLES OF LOGIC, GATE LR, AND
GATE LS BLOCKS

Example 1:
The following block diagram may be used to send
transactions to alternate paths. The first

131

i)

transaction that enters block 40 will set Logic
Switch 200, and thus will enter the GATE block and
proceed to the next sequential QUEUE block 42.

The second transaction that enters the LOGIC block,
however, will reset Logic Switch 200. The Standard
Logical Attribute 15200 is now false and the trans-
action will thus be diverted to the alternate path,
QUEUE block 52. The third transaction will follow
the first, and the fourth will follow the second, etc.

* ALTERNATOR

40 LOGIC 1 200
41 GATE LS 200, 52
42 QUEUE 1
52 QUEUE 2

40 t

LOGIC 1 200

QUEUE @ QUEUE ®

Example 2:

Logic Switches can be used to simulate unit capacity
equipment, similar to facility entities. The follow-
ing block diagram compares these uses of Logic
Switches and facilities.

Loglc Switch 1 as a
Unit Capacity Equipment

1
QUEUE @
110
11 QUEUE 1
L] G
1

Faellity 1 as a Unit
Capneity Equipment

12 SEIZE
DEPART @ nz vy

) * g Q
rocic s |1 ;

Blocks simulating
use of equipment
Blacks ulmuhtiw

use of equipmaen 6

160 i RELEASE

LOGICRI' v

132

Since Logic Switches are initially in a reset
condition;, the first transaction succeeds in entering
GATE LR block 11. It immediately closes entry to
this GATE block by placing Logic Switch 1 in a set
condition in LOGIC block 13.

A succeeding transaction will be able to enter
GATE LR block 11 only when the preceding trans-
action places Logic Switch 1 back into a reset
condition in LOGIC R block 100. Logic Switch 1 is
therefore similar to Facility 1, with the important
exceptions (deseribed in Chapter 10) that no usage
statistics are gathered and PREEMPTing is not
allowed. If these last two factors are unimportant,
then it is often desirable to use Logic Switches to
simulate unit capacity equipment instead of facilities.
Each Logic Switch entity requires only three half-
words, while each Facility requires seven fullwords.

Example 3:

The polling of messages at communication line
terminals is generally simulated with Logic Switches
and artificial polling transactions. The block dia-
gram of Figure 28 shows some of the blocks in a
typical polling model. The actual messages enter
QUEUE block 11 and attempt to enter GATE LS
block 12. Parameter 6 of each transaction contains
its input terminal number. Parameter 5 contains
the line number with which the terminal is
associated.

Since each entity, (QUEUE, Logic Switch,
Facility) is referenced indirectly (¥6 and *5,)
transactions representing each type of message pass
through the same block stream.

Each terminal, therefore, has a Logic Switch
whose index number is the same as the terminal
number (*6). The terminal Logic Switch *6 will be
placed in a set condition only in LOGIC block 51 by
an artificial polling transaction which is associated
with the particular communication line to which
the terminal is connected.

There will be one artificial polling transaction
for each communication line. Each polling trans-
action carries the line number (*5) in Parameter 5.
However, the terminal number (*6) in Parameter 6
can be varied, depending on the polling discipline
being used; this, thereby controls which terminal is
allowed to transmit input messages. This is
accomplished in LOGIC block 51, where the Logic
Switch representing the currently active terminal,
(*6) is put into a set condition. Observe that the
artificial polling transaction will first TEST, in
block 50, whether or not there are any messages
to be transmitted at terminal *6, i.e., whether

Messages arrive at
input terminal

11 ¢

QUEUE

P6 = terminal
number

One artifical polling Transaction
for each line
P5 = Line number with which Polling
Transaction is associated
PG = Current terminal number
being polled

Permit transmission
n =] of one message from
| terminal *6
|
13 b s e e e — LOGIC §
DEPART Q
w No message at termi-
nal*6. Advance to
10GIC R | #6 | o ELa next terminal on line.
Artificial polling
Transaction
5 suspended until
I—— - A, input transmission
| SERZE ! *5\ is completed.
L —_—
Go through blocks
which simulate trans-

mission of

31

essage

- Input transmission completed.
| Reactivate artificial polling

Transaction.

L.... —d
T v |

*5 I____I

Further processing in
simulation model

LOGIC §

Figure 28. Simulation of Communication Line Polling.

Q%6 is greater than zero. If there are no trans-
actions in Q*6 the polling transaction bypasses
LOGIC S block 51.

Whenever an input message succeeds in entering
GATE LS block 12 it immediately puts the terminal
Logic Switch *6 back into a reset condition. The
message may SEIZE line Facility *5, primarily for
the statistical purpose of obtaining the average line
utilization. This facility may, however, also be
PREEMPTed by the artificial polling transaction
when it sends high-priority polling messages to the

. _ .
[r--—---u--u—

1OGIC R

v

Determine whether to poll
same %6 terminal or whether
to change P6 and poll another terminal.

terminals.
line was half duplex; i.e., it could only transmit
messages in one direction at any time.

This would happen, for instance, if the

After putting Logic Switch *6 in a set condition,
the artificial polling transaction hangs up on GATE
LS block 52, and references a Logic Switch (*5)
which is associated with the line (not the terminal).
Itwill only be able to proceed to further polling when
the actual message, which is being transmitted over
the input line, moves through LOGIC S block 32 and
puts the line Logic Switch *5 into a set condition.

133

As soon as this happens, the artificial polling
transaction typically puts the line Logic Switch *5
back into a reset condition so that it can subsequently

hang up on GATE LS block 52.

Example 4:

A typical way to simulate the use of the central
processing unit (CPU) in a data processing system
is to simply attempt to SEIZE the CPU facility.

Transaction A which

has been currently
SEIZing the CPU

RELEASE v

22V

LOGIC s 1 I

¢

Various possible

conditions for

Transaction:

1. Wait for I/O operations
to be completed

2. Wait for core storage to
become available

3. Terminate Transaction

21

Transactions B, C, D, ...

waiting to SEIZE CPU in
various CPU Lists

sV

QUEUE

Various types of
processing

PACEON-NO

Eight priority classes of messages can be created to
control the sequence in which transactions are per-
mitted to seize the CPU. For more detailed and
sophisticated simulation of a control programming
system, Logic Switches and an artificial central
control program transaction can be used. The block
diagram of Figure 29 shows some typical blocks in a
control programming simulation model,

Artificial Central Control
Program Transactions

101 ¢
RELEASE V
EX

102 w

LOGIC R

103

104
AN

Decide from which CPU
List the next SEIZing
Transaction will be chosen

121

123

TRANSFER

Yes
122 V

101

Figure 29. Control Programming Simulation

134

Test other CPU Lists

Assume that Transaction A, which is currently
SEIZEing the CPU (Facility 1), finally RELEASEs
the CPU in block 21. Tt next places Logic Switch 1
in a set condition in LOGIC S block 22 and thereby
activates the artificial central control program
transaction which has been hung up on GATE LS
block 103. There are a variety of conditions under
which Transaction A will surrender control of the
CPU. These include:

1. One or more I/O operations have been
initiated, and Transaction A must wait until these
are completed.

2. Core storage is not available to be allocated,
and Transaction A must wait until it becomes
available.

3. Transaction A may have completed all its
processing, and will be destroyed in a TERMINATE
block.

Assume that, meanwhile, other transactions (B,
C, D,...) which want to SEIZE the CPU have been
placed in various CPU lists. These lists are
represented by blocks such as 51 to 54 and an
associated ith Queue. Observe that one of these
blocked transactions will succeed in SEIZEing
Facility 1 only when the central control program
transaction decides to put a particular ith Logic
Switch into a set condition, e.g., in LOGIC S block
122,

When the central control program transaction
finally decides from which CPU list the next trans-
action will SEIZE the CPU, it TRANSFERs back to
block 101 where it RELEASEs the CPU, puts Logic
Switch 1 in a reset condition, and then hangs up on
GATE LS block 103, which is waiting for the chosen
transaction to reactivate it by putting Logic Switeh
1 in a reset condition.

Observe that use of the artificial central control
program transaction can virtually supersede the
overall GPSS/360 scan and its 128 priority classes
in determining which transaction next SEIZEs the
CPU.

Example 5: A SubtleDelay Chain Problem. Assume
that a GATE LR or GATE LS block is operating in

a conditional entry mode; i.e., there is no alternate
field B block. Transactions which are delayed at
such a block will be put in a unique pushdown delay
chain which is associated with a particular Logic
Switch (the only exception is if the transaction is in
a TRANSFER block with a BOTH or ALL selection
mode where there are nonunique blocking conditions).
Suppose a transaction is attempting to enter the
following type of GATE Block:

GATE LR SNAj, SNA*n

The field A Standard Numerical Attribute gives
the index number of a particular Logic Switch.
Suppose it was V1 = Q10 + K1; i. e., the Logic Switch
number is given by the current contents of Queue 10
(=0, 1, 2...) plus the constant 1. Therefore, the
following GATE block would reference Logie Switches
1, 2,... ete.

Assume now that the transaction attempts to enter
the GATE LR block when @10 = 7. The referenced
Logic Switch 8 (i.e., V1=7+ 1= 8) is in a set
condition. The transaction is therefore put in the
GATE LR delay chain which is associated with Logic
Switch 8. More importantly, the scan status indi-
cator, (bit 0 of byte T10), of the delayed transaction
is set to one, thereby deactivating the transaction
from being processed by the overall CPSS/360 scan.
This transaction will remain inactive until Logic
Switch 8 is reset and the delay chain is reactivated.

Assume that, at some later point in time, the
contents of Queue 10 are reduced to six. Assume
also that Logic Switch 8 is still in a set condition,
but Logic Switch 7 is in a reset condition. The
delayed transaction will never be processed by the
overall GPS5/360 scan, even though it could enter
the GATE LR block which would now be referencing
Logic Switch 7, instead of 8 as formerly. This may
or may not be the condition which the analyst wishes
to simulate.

The following three blocks could be used where it
is desired to keep the transaction continually active,
so that the overall GPSS/360 scan will always attempt
to move the transaction into GATE LR block 100.
The Logic Switch number which is referenced will
then be the current value of Arithmetic Variable V1.

The following assembly program coding would be
used:

TRANSFER BOTH, 100,200

GATE LR V1

GATE LS 500

This approach requires that Logic Switch 500 will
always be in its initial reset condition, so that
transactions will never succeed in entering GATE
LS block 200. Because they are in a TRANSFER
block with a BOTH selection mode, the delayed trans-
actions are never placed in a delay chain and are

135

never deactivated from being processed by the
overall GPSS/360 scan.

PUSHDOWN DELAY CHAINS FORMED BY
CONDITIONAL ENTRY GATE LR AND
GATE LS BLOCKS

Table 16 describes three halfwords (L1, L2, and

L3) which represent each Logic Switch entity. L1
halfword is zero when the Logic Switch.is reset, and
nonzero when the Logic Switch is set.

Consider what happens when transactions attempt
to enter a conditional entry GATE LS block when the
Logic Switch referenced by the field A argument is
in a reset condition. Assume that the block from
which the transaction is attempting to enter the
GATE LS block is any block type except a TRANSFER
block with a BOTH or ALL selection mode. Trans-
actions in these last two block types will never be
put in pushdown delay chains.

Assume that Transactions 600 and 35 successively
fail to enter the following GATE LS block:

103 GATE LS 300

Figure 30 shows the pertinent attributes of
Logie Switch 300 and of the two transactions, after
each of the failures to enter the above GATE LS
block.

When Transactions 600 becomes the first trans-
action to fail to enter GATE LS block 103, the
following occurs:

1. The number (600) of the transaction is placed
in L2 halfword for Logic Switch 300.

2. The scan status indicator (bit 0 of byte T10)
of Transaction 600 is set to one, therehy deactiva-
ting Transaction 600 from heing processed by the
overall GPSS/360 scan.

3. The first halfword of T1 transaction word of
Transaction 600 is set to zero; this indicates that
the transaction is the first one put onto the LS delay
chain for Logic Switch 300,

Assume now that Transaction 35 also attempts
to enter GATE LS block 103 while Logic Switch 300
is still in a reset condition. The following steps
occur;

1. The number of the transaction (35) is placed
in L2 halfword for Logic Switch 300.

2. The scan status indicator of Transaction 35
is set to one, thereby deactivating Transaction 35
from being processed by the overall GPSS/360 scan.

3. The first half of T1 word of Transaction 35
is set to 600, thereby creating a pushdown delay
chain which links Transaction 35 to 600,

If any further transactions attempt to enter GATE
LS blocks which reference Logic Switch 300, steps
1, 2, and 3 above for Transaction 35 repeated. The
number of the most recently delayed transaction is

136

put in L2 halfword. Concurrently, the number of the
previous delayed transaction is transferred from L2
halfword to the first of T1 word of the most recent-
ly delayed transaction. (The contents of T1 halfword
are not printed out in the transaction printout.)

Effect of LOGIC S Block on GATE LS Delay Chain

Assume now that another transaction enters a
LOGIC 8 block which references Logic Switch 300,
and puts this switch into a set condition, The LOGIC
block subroutine checks if there is a GATE 1.8
delay chain hung up on Logic Switch 300, This is
indicated by the presence of a nonzero transaction
number L2 halfword. In our example, there is such
a delay chain.

The LOGIC block subroutine then zeroes out L2
halfword. It also zeroes out the first half of T1
word linkage of each transaction in the delay chain.
Most importantly the scan status indicator (first bit
of T10 byte) is reset to zero so that the overall
GPSS/360 scan will once again attempt to move
each one of the delayed transactions into GATE LS
Block 103, or other GATE LS blocks which reference
Logic Switch 300. The end of the pushdown delay
chain is indicated by the zero which is stored in the
first half of T1 word of Transaction 600; i.e., there
is no next transaction in the delay chain after Trans-
action 600.

The status change flag is set "on'" when the state
of a Logic Switch is changed in a LOGIC block.
Consequently, the overall GPSS/360 scan will
automatically transfer back to the start of the current
events chain when it finishes moving the transaction
which entered the LOGIC block, The GPSS/360 scan
may, of course, transfer earlier if the transaction
enters a BUFFER block or a PRIORITY block with
a BUFFER option. Observe that the relative posi-
tions of the delayed transactions in the pushdown
delay chain have no relationship to the relative posi-
tions of these transactions in the current events
chain. The current events chain linkages (which are
defined by Transaction word T2) govern the order in
which the overall GPSS/360 scan will attempt to
move the transactions into the previously blocked
GATE LS blocks.

By the time that the overall GPSS/360 scan gets
around to processing the reactivated transactions
that were once in a pushdown delay chain, it is
possible that:

1. None of the reactivated transactions will be
able to enter the GATE LS block, because some
other transaction has entered a LOGIC R block and
has thereby restored the blocking condition.

2. All of the reactivated transactions will be
able to enter the GATE LS block.

L1 L2 13

Sean Status
Delay Indicator

Tranasaction word T1

600

300] a5 600

1000

Figure 30. Pushdown Delay Chain Formed by GATE LS Block

3. Only some, possibly just one, of the
reactivated transactions will be able to enter the
GATE LS block. Example 2, '"Unit Capacity
Equipment'' earlier in this chapter, shows a typical
unit capacity situation where only one transaction
succeeds in entering GATE LR block 11 because
this transaction itself puts Logic Switch 1 into a
blocking set condition.

GATE LR Delay Chain and LOGIC R Blocks

The same procedures are followed when a

Logic Switch is in a set condition and transactions
attempt to enter conditional entry GATE LR blocks
which reference the particular Logic Switch, The
only differences are that the pushdown delay chain
starts from L3 halfword rather than L2 halfword.
Whenever a transaction enters a LOGIC R block,
the LOGIC block subroutine checks whether L3
halfword contains a transaction number; i. e.,
whether there is a pushdown delay chain of trans-
actions hung upon one or more GATE LR blocks
which reference the particular Logic Switch.

Overall Pushdown Delay Chain Considerations

Facilities (Chapter 10) and Storages (Chapter 11)
also have various pushdown delay chains associated

with them. These are created when transactions
fail to enter the following block types:

FACILITIES STORAGES
SEIZE ENTER
PREEMPT GATE SE
GATE U GATE SNE
GATE NU GATE SF
GATE I GATE SNF
GATE NI

These delay chains also begin in various
S/360 core words which are associated with each
facility or storage. The first half of Transaction
word T1 is again used to create the one-way, push-
down chain linkages. Transactions which are trying
to enter from a TRANSFER block with a BOTH or
ALL selection mode are, again, exceptions.
Because the blocking condition in nonunique, they
cannot be put in a unique delay chain. Therefore,
they always remain active with respect to the
overall GPSS/360 scan. The "Subtle Delay Chain
Problem'" (Example 5), discussed earlier in this
chapter, applies to all these delay chains.

137

CHAPTER 10: FACILITY ENTITIES

GENERAL NATURE OF FACILITY ENTITIES

Facility entities are used in system simulations
to represent unit capacity equipment, e.g.,
central processors, data channels, 1/0 devices,
communication lines, etc. Such equipment can
handle only one transaction at a time. The
standard GPSS/360 program for a 128k machine
has core allocated for 150 facilities, numbered

1, 2, . . . 150. Running Error Stop 498 will occur
if a facility number greater than the maximum
available is referenced. Table 18 describes the
attributes which are stored in the seven words
required for each facility. This table outlines the
contents of these core words: F1, F2, . . . F7.
F3, F4, and F9 accumulate various statistics on
the usage of facilities which are printed as part of
the standard GPSS/360 output, as shown in Table
19. Key facility statistics include:

1. The average utilization of the Facility, i.e.,
the proportion of the total run time that the Facility
was either being SEIZEd and/or PREEMPTed.

2. The total number of transactions entering the
Facility, i.e., into SEIZE and PREEMPT blocks.

3. The average time that each transaction either
SEIZEd or PREEMPTed the Facility.

Four block types (SEIZE, RELEASE, PREEMPT,
and RETURN) are associated with Facility entities.
Four types of GATE blocks are also associated with
Facilities: GATE U, GATE NU, GATE I, and
GATE NI.

STANDARD NUMERICAL ATTRIBUTES

Each Facility entity has four standard Numerical
Attributes:

Fj = 1 when Facility j is in use (SEIZEd and/or
PREEMPTed). 0 when the Facility is not

FRj = the average utilization of Facility jin
parts/thousand, i.e., if the utilization
was . 88, the value of FRj would be 880,

FCj = the total number of entries for Facility
1.

FTj = The average time each transaction used

Facility j. When referenced the
computed value will be truncated to an
integer, i.e., if FTn was 1,75, the
computed value would be 1.

STANDARD LOGICAL ATTRIBUTES

Each Facility entity has four Standard Logical
Attributes with two possible values (true and false).

1. Uj is true if Facility j is in use, i.e.,
SEIZEd “and/or PREEMPTed.

z, N‘[.Tj is true if Facility j is not in use, i.e.,
neither SEIZEd nor PREE MP Ted.

8. 1]- is true if Facility j is PREEMPTed.

4. NI; is true if Facility j is not PREEMPTed.

These Standard Logical Attributes are used in

GATE U, GATE NU, GATE I, and GATE NI blocks
to control the flow of transactions (see ""A SEIZEing
or PREEMPTing Transaction Attempts to SEIZE or
PREEMPT the Same Facility" later in this chapter).
In addition to the four logical attributes stated
above for use in the GATE blocks, four others have
been defined for use in GPSS/360 Boolean variable
statements. These four correspond exactly to the
four above with the exception of the mnemonic used:

FU = U FNU = NU
FI =1 FNI = NI

These four logical attributes are also limited to
two values, i.e., true (1) or false (0).

TABLE 18: S/360 CORE ALLOCATION FOR FACILITY ENTITIES

in use.
SYMBOL LENGTH QUANTITY
Fl1 2 Bytes Number of the transaction
that is currently SEIZEing
the Facility.
F2 2 Bytes Number of transaction that

is PREEMPTing the Facility

138

SOURCE

This field is set up when a transaction enters a
SEIZE block, and is set to zero when that transaction
enters a RELEASE block.

This field is used when a transaction enters a
PREEMPT block, and is set to zero when that
transaction enters a RETURN block.

TABLE 18: S/360 CORE ALLOCATION FOR FACILITY ENTITIES

SYMBOL LENGTH
F3 4 Bytes
F4 4 Bytes
F5 2 Bytes
F6 2 Bytes
F17 2 Bytes
F8 2 Bytes
F9 4 Bytes
F10 4 Bytes

QUANTITY

Cumulative time integral
of Facility usage.

Clock time of last status
change.

Delay chain origin, for all
transactions waiting for the
Facility to be in use, ie.,

SEIZEd and/or PREEMPTed.

Delay chain origin, for all
transactions waiting for the
Facilitynot to be in use.

Delay chain origin, for all
transactions waiting for the
Facility to be PREEMPTed.

Delay chain origin, for

all transaections waiting for
the Faeility not to be
PREEMPTed.

Entry Count. This is Standard
Numeriecal Attirbute FGj.

Address of multiple
PREEMPT list.

(continued)

SOURCE

This word is a fixed-point sum of the total number of
clock units for which the Facility has been either
SEIZEd or PREEMPTed, or both. The sum is up-
dated whenever the Facility changes status.

This word contains the clock time at which the time
integral was last updated. The absolute clock time
is placed in this word each time the Facility changes
status, and also when a RESET or CLEAR card is
read.

Each time that a transaction at a GATE U block fails
to advance because the Facility is not in use, the
number of that transaction is put in this field (unless
the transaction is in a TRANSFER block with BOTH
or ALL selection mode). The previous transaction
number in the field is placed in the first two bytes of
Transaction word T1, thus forming a pushdown delay
chain of transactions waiting for a type of service on
the Facility. When a transaction enters a SEIZE or
PREEMPT block, the delay chain is reactivated; that
is, the secan indicators of all transactions on the
delay chain are set on and the delay chain origin is
set to zero.

This pushdown delay chain is formed in the same
manner as described above when a transaction fails

to advance because the Facility is in use (SEIZEd and/
or PREEMPTed). The chain is reactivated whenever
a transaction enters a RE LEASE or RETURN block.
These transactions are either trying to SEIZE the
Facility or are blocked by a GATE NU block.

This pushdown delay chain is formed in the same
manner as described above, and is cleared whenever
a transaction enters a PREEMPT block. These
transactions are blocked by a Gate 1 block.

This pushdown delay chain is formed in the same
manner as described above, and is cleared whenever
a transaction enters a RETURN block. These trans-
actions are either trying to PREEMPT the Facility or
are blocked by a GATE NI block.

This word is incremented by one whenever a
transaction enters a SEIZE or PREEMPT block.

This is the address of the COMMON area containing

a list of transactions which have been PREEMPTed by
other transactions of higher priority in a PREEMPT
block operating in the priority mode.

139

INTERNAL NONADDRESSABLE ATTRIBUTES

Table 18 describe the various internal attributes
which are stored in the seven Facility words but are
not directly addressable by the user. These include:

1. The number of the transaction currently
SEIZEing the Facility (F1).

2. The number of the transaction currently
PREEMPTing the Facility (F2).

3. The absolute clock time of the last status
change, either from in use to not in use, or from
not in use to in use F4 word).

4. Cumulative time integral, i.e., the total
number of clock units during which the Facility was
in use, being SEIZEd and/or PREEMPTed (F3 word).
This is the total since the last RESET or CLEAR
card (or during the first simulation run of a joh).

5. The number of the first transaction in each
of four pushdown delay chains which are associated
with each Facility (F5, F6, F7, F8).

SEIZE BLOCK
INDEX NUMBER OF
FACILITY
2 LoC 'rla OPERATION | 19 A SEIZE &

l | Ismzn l SNAJ, SNA*n, k, *n |

A transaction is not permitted to SEIZE a
Facility which is already in use, i.e., being
SEIZEd and/or PREEMPTed by other transaction(s).
When a transaction attempts, to enter a SEIZE block,
the SEIZE block subroutine tests whether the Facility
is in use or not by testing whether the word consist-
ing of F1 and F2 of the Facility referenced by the
field A argument is zero or nonzero.

Procedure When Facility Is Not in Use

Word F1-F2 is zero when the Facility is not in use,
and can therefore be SEIZEd. The SEIZE block
subroutine places the number of the new SEIZEing
transaction in F1. The current absolute clock time
is placed in word F4 to record the time of the latest
status change, i.e., from not in use to in use. The
total entry count (word F9) is incremented by

one. The SEIZEing transaction then attempts to
enter the next sequential block which follows the
SEIZE block. The Facility will remain SEIZEd until
the transaction enters a corresponding RELEASE
block, at which time the transaction number is
removed from F1. The SEIZEing transaction can
move through an unlimited number of bloecks after
SEIZEing a Facility, and before RELEASEing it.

140

Procedure When Facility Is in Use

Word F'1-F2 is nonzero when the Facility is in use,
i.e., being SEIZEd and/or PREEMPTed. This is
because transaction numbers are in F1 and/or F2,
The transaction, therefore, is not permitted to enter
the SEIZE block. Instead, it is linked into a push-
down delay chain of transactions which also may
include transactions blocked by SEIZE or GATE NU
blocks which reference the particular Facility. (As
usual, the transaction is not chained if it is in a
TRANSFER BOTH or ALL block.) The number of
this latest delayed transaction is placed in F6, in
exactly the same manner as described for GATE LR
and GATE LS delay chains in Chapter 9. The scan
status indicator of the transaction is set to one,
thereby deactivating the transaction from processing
by the overall GPSS/360 scan.

Interactions with Other Facilities and
Transactions

A transaction may SEIZE any number of Facilities,
and may PREEMPT any number of transactions on
other Facilities. A Transaction which has SEIZEd
a Facility is subject to being PREEMPTed on that
Facility. A tranaction mdy be PREEMPTed on as
many as 127 Facilities which it has SEIZEd. These
PREEMPTing operations are described under the
PREEMPT block later in this Chapter.

Status Change Flag and Reactivation of GATE U
Delay Chain

When a transaction enters a SEIZE block there may
be a GATE U delay chain waiting for the Facility to
be in use (this is indicated by a transaction number
in F5). Each transaction in the GATE U delay chain
is reactivated, i.e., their scan status indicators
are reset to zero. The status change flag is also
automatically set to "'on'' whenever a transaction
enters a SEIZE block. Consequently, the overall
GPSS/360 scan will automatically transfer back to
the start of the current events chain when it
finishes moving the transaction which entered the
SEIZE block. This insures that all of the reactivated
transactions in the former GATE U delay chain will
be processed by the overall GPSS/360 scan.

RELEASE BLOCK

FACILITY NUMBER
19 A

|z Loc|'r| § OPERATION

RELEASE V

| | | RELEASE | SNAj, BNA®, k, *n

The RELEASE block serves the function of removing
from a Faecility the transaction which has SEIZEd it.
The RELEASEing operation is performed immedi-
ately upon entering the RELEASE block. There is
no further effect on the Facility if the transaction is
subsequently prevented from entering the next
sequential block following the RELEASE block. A
transaction is never refused entry to a RELEASE
block. The Facility referenced by the field A
argument of the RELEASE block must have been
SEIZEd by the entering transaction. Otherwise,
Running Error Stop 415 will occur: "Facility
RELEASE by a Transaction not SEIZEing it". No
other transaction except the one that originally
SEIZEd a Facility is entitled to RELEASE it. As an
example, the analyst must avoid the classic error
shown in model A below:

BEIZE A | SEIZE &
|
|

Parent Transaction Parent Transaction

SPLIT SPLIT
C g
A~ B | A~JB
rd = \?r
Parent Transaction Offspring IFurcnt Transaction Offspring
T:‘m;v.eunn I 'hnnn;rllon
RELEASE v | %
Ertor Stop | |npLEASE
415 ocours
MODEL A | MODEL B

In model A, the offspring transaction, which
has a different number than the parent transaction,
attempts to RELEASE Facility 1 which has been
SEIZEd by the parent transaction. Execution Error
#415 occurs immediately. Model B shows the
correct procedure. The parent transaction will be
the only transaction proceeding to the next sequential
block after the SPLIT block (the one or more
offspring move to field B next block). It is there-
fore possible to keep track of the parent transaction
in the block diagram and thereby ensure that it will
RELEASE the same Facility that it SEIZEd.

How a Wrong Transaction with the Correct Number
Can RELEASE or RETURN a Facility

The following unusual situations might oceur in a
GPSS/360 model. A transaction, say number 100,
SEIZEs or PREEMPTs a Facility, say number 10.
Subsequently, Transaction 100 is destroyed in a
TERMINATE or ASSEMBLE block without ever
having RELEASEd or RETURNed Facility 10. The
four 360 words (T1, T2, T3, T4) of Transaction 100
are returned to the internal chain of unused
transactions. F1 of Facility 10 still contains the

number 100, indicating that it is being SEIZEd or
PREEMPTed by Transaction 100.

The GPSS/360 user should be aware of three
unusual things which can now happen. First, a
statistical printout can occur while Transaction 100
is still in the internal chain of unused transactions.
Consequently, the statistics for Facility 10 show
that it is being SEIZEd or PREEMPTed by Trans-
action 100, but no Transaction 100 will be found in
the transaction printout.

As a second possibility, Transaction 100 may be
brought back into the model as a new transaction,
either in a GENERATE block or in a SPLIT block.
A statistical printout will now show that Facility 10
is being SEIZEd or PREEMPTed by Transaction 100,
and that there is also a transaction with the number
100 in the Transaction printout. However, this
transaction is not really the one which originally
SEIZEd or PREEMPTed Facility 10. It is merely
using the same set of four 360 words, which store
the transaction attributes.

The third and most remote possibility is that the
second Transaction 100 will actually enter a
RELEASE or RETURN block which references
Tacility 10. The GPSS/360 program obviously
cannot distinguish the second Transaction 100 from
the first one. Consequently, the wrong transaction
with the right number will successfully RELEASE or
RETURN Facility 10. This will undoubtedly have
an adverse effect on the logic of the model and on
the statistics relating to the Facility involved.

Status Change Flag and Reactivation of SEIZE-GATE

NU Delay Chain

When a transaction enters a RELEASE block there
may be a delay chain of transactions blocked at
SEIZE or GATE NU blocks for the Facility to be not
in use. This is indicated by a transaction number
in F6. Each delayed transaction is reactivated;
i.e., their scan status indicators are reset to zero.
The status change flag is automatically set to "on"
whenever a transaction enters a RELEASE block.
Consequently, the overall GPSS/360 scan will
automatically transfer back to the start of the
current events chain when it finishes moving the
transaction which entered the RELEASE block.

This ensures that all of the reactivated transactions
in the former SEIZE-GATE NU delay chain will be
processed by the overall GPSS/360 scan., All, none,
or just some of the delayed transactions (including
those in TRANSFER BOTH or ALL blocks) may
actually be able to enter the SEIZE or GATE NU
block(s).

141

Cumulative Time Integral of Facility Utilization

When a transaction RELEASEs a Facility there

is generally a status change; i. e., the Facility
changes from being in use to not in use (see
"PREEMPT Block'' below, which explains how, when
a Facility has been PREEMPTed, the SEIZEing
transaction is still able to move into a RELEASE
block). When such a status change occurs, the
following quantity is added to the cumulative time
integral stored in word F3:

Additional Current Absolute Time of
Clock Units = Clock Time - Last Change
in Use (Word F4)

Word F3, therefore, accumulates the total number
of clock units during which the Facility was in use,
i.e., SEIZEd and/or PREEMPTed. The current
absolute time is then stored in word F4 as the time
of the last status change.

PREEMPT BLOCK
OPTIONAL BLOCK

FOR PREEMPTED
TRANSACTION

PARAMETER HO,
OF PREEMPTED
THANSACTION

REMOVE
OPTION

FACILITY | PRUORITY
LOC |‘? |8 OPBI\.\TION[10 RUMBER | OPTION

FREEMPT 8NAJ, SNA*n | PR SNAJ; BNA®n 5NAJ, SNA®n RE
nk *n,k

The PREEMPT block bears the same relation to the
preempting of a Facility that the SEIZE block bears
to the normal seizing of a Facility. The important
exception is that while a transaction may preempt a
Facility which is currently being seized by another
transaction, a transaction may not seize a Facility
which is currently being seized or preempted hy
another transaction. The PREEMPTing of a Facility
is not terminated until the same transaction which
PREEMPTed the Facility enters a RETURN block
which references the same Facility.

A transaction entering a PREEMPT block may
have SEIZEd any number of other Facilities, and
may have PREEMPTed any number of other
transactions on Facilities which they have SEIZ Ed.
It is also subject to being PREEMPTed on any of the
Facilities which it has SEIZEd.

The simplest and most common usage of the
PREEMPT block is to specify the Facility number
in field A. In previous versions of the GPSS
Program this was the only usage possible.
However, the operation of the PREEMPT block has
been expanded in GPSS/360 to provide multilevels

142

of preempting as well as other options. These
optional features will be discussed later in this
section. The current discussion assumes only a
field A is specified in the PREEMPT block.

Under this condition a transaction is not
permitted to PREEMPT a Facility which has already
been PREEMPTed by another transaction. It does,
in this sense, operate in the same manner as the
SEIZE block.

When a transaction attempts to enter a PREEMPT
block, the PREEMPT block subroutine tests the
word containing F1 and F2 of the Facility which is
referenced by the field A argument of the
PREEMPT block. There are three possible
conditions: Case 1. The Facility is not in use; i.e.
it is neither being SEIZEd nor PREEMPTed. (F1
and F2 are both zero.) Case 2. The Facility is
already being PREEMPTed. (F2 contains the
number of the PREEMPTing transaction.) There is
no difference whether the Facility is being SEIZEd
or not. Case 3. The Facility is being SEIZEd but
is not PREEMPTed. (F2 is zero, while F1
contains the number of the SEIZEing transaction,)

Case 1. The facility is being neither SEIZEd nor
PREEMPTed

The PREEMPT block behaves much like the
SEIZE block. The PREEMPT block subroutine
places the number of the new PREEMPTing
transaction in F2. Subsequent transactions can
neither PREEMPT nor SEIZE the Facility until the
PREEMPTing transaction enters a RETURN block.
The current absolute clock time is placed in word
F4 to record the time of the last status change,
i.e., from not in use to in use. The total entry
count (word F'9) is incremented by one. The
PREEMPTing transaction then attempts to enter
the next, sequential block following the
PREEMPT block.

Case 2. The Facility 1s aiready being PREEMPTed

The PREEMPT block again behaves much like a
SEIZE block. The transaction is not permitted to
enter the PREEMPT block. Instead, it is linked
into a pushdown delay chain of transactions which
are blocked by PREEMPT or GATE NI blocks that
reference the particular Facility (as usual, the
transaction is not chained if it is in a TRANSFER
BOTH or ALL block). The number of this latest
delayed transaction is placed in F8. The scan
status indicator of the transaction - is set to one,
thereby deactivating the transaction from being
processed by the overall GPSS/360 scan.

Case 3. The Facility is being SEIZEd but is not
PREEMPTed

This is the most complicated and important case.
The number of the SEIZEing transaction is contained
in F1. The transaction entering the PREEMPT
block is first processed in the same manner as in
Case 1. The operations performed on the SEIZEing
transaction, however, involve four alternatives,
namely 3A, 3B, 3C, or 3D, which are described
below.
Case 3A. The SEIZEing transaction has already
been PREEMPTed on another Facility
which it has SEIZEd, and is in an
interrupt status)

Bit 6 of T10 (see Table 9 in Chapter 7) is set to one

whenever a transaction is PREEMPTed on a Facility

which it has SEIZEd. These PREEMPTed trans-
actions are in an individual interrupt status and
belong to neither the current events nor the future
events chain. They can only be in ADVANCE,

MATCH, ASSEMBLE, or GATHER blocks. T8

maintains a count of the number of Facilities on

which the transaction has been PREEMPTed.

Consequently, for CASE 3A the preempt count of the

SEIZEing transaction will subsequently be

decremented by one when the PREEMPTing

transaction enters a RETURN block. When the
preempt count is finally decremented to zero, the
interrupted transaction is linked back into the
current events chain. Execution error 474 will
occur if the preempt count for SEIZEing transaction
exceeds 127, This means that a transaction can be

PREEMPTed on no more than 127 Facilities which

it has SEIZEd.

Case 3B. The SEIZEing transaction has not been
PREEMPTed on any other Facility, and
is in the future events chain, i.e., in an
ADVANCE block

If the SEIZEing transaction has not been PREEMPTed

on any other Facility, Bit 6 of T10 is zero. The

PREEMPT block subroutine then tests T9 to

determine whether the transaction is in the current

events or the future events chain.

If bit 5 of word T9 is one, the SEIZEing
transaction is in the future events chain, i.e., in an
ADVANCE block. Word T4, therefore, contains the
block departure time from the ADVANCE block,
which must be greater than the current absolute
clock time. The following operations are now
performed on the SEIZEing transaction:

1. The remaining time in the ADVANCE block is
stored in word T4, where

Remaining Block Departure Current
ADVANCE = Time -Absolute
Block Time (Word T4) Clock Time

2. Bit 6 of T10 is set to one, indicating that the
transaction is being PREEMPTed on a Facility.

3. The preempt count (T8) is set to one.

4. Bit 7 of T9 is set to one to indicate that the
transaction is in an interrupt status.

5. The SEIZEing transaction is unlinked from
the future events chain.
"RETURN Block'" later in this chapter, describes
how these transactions are removed from a
PREEMPTed interrupt status and are merged back
into the future events chain.

BDT column printout for PREEMPTed Transactions

The BDT column in the transaction printout (see
Table 10 in Chapter 7) generally lists the most
recent block departure time for all transactions.
However, in the case of PREEMPTed transactions
in ADVANCE blocks, the BDT values are the
remaining block times. Therefore, these values
may be extremely low in comparison to the

absolute BDT times of other transactions.

Case 3C. The SEIZEing transaction has not been
PREEMPTed on any other Facility, and
is in a matching condition in a MATCH,
ASSEMBLE or GATHER block

For these transactions, the preempt status indicator

(Bit 6 of T10) is zero. However, the matching

status indicator (Bit 5 of T10) is one indiecating that

the transaction is in a matching condition at a

MATCH, GATHER or ASSEMBLE block. Such

transactions are, in a sense, already in an

interrupt status; i.e., they belong to neither the
current or the future events chain. The following
operations are performed on the SEIZEing
transaction.

1. The preempt flag (Bit 7 of T10) is set to one
to indicate to the MATCH, GATHER or ASSEMBLE
block subroutine that this transaction is to be put in
a preempt status when the matching condition is met.

2. The preempt count (T8) is incremented by
one. Error 474 will again occur if this count
exceeds 127.

Transactions in a MATCH, ASSEMBLE, or GATHER

bloek, which are both being PREEMPTed and are in

a matching condition, will be removed from an

interrupt status and returned to the current events

chain only when both the preempt count is
decremented to zero, and the necessary matching,
assembly, or gathering operation is successfully
completed.

Case 3D. The SEIZEing Transaction is in the
Current Events Chain

For these transactions, bit 6 of T9 is one indicating

that they are in the current events chain. Also, the

preempt status indicator (Bit 6 of T10) is zero.

143

These transactions are in two general states:

1. They have been blocked in entering a next
block. (They may be linked in a pushdown delay
chain, with their scan status indicator set to on.)

2. They have just been transferred to the current
events chain, but have not as yet been processed by
the overall GPSS/360 scan at the current clock time.
The GPSS/360 program applies the following very
important rule with regard to transactions in the
current events chain which are to be PREEMPTed
on a Facility which they have SEIZEd:

Rule: Current events chain transactions, which
have been PREEMPTed on one or more Facilities,
will not be placed immediately in an interruptstatus,
They will be removed from the current events chain
only when they enter:

1. A positive time ADVANCE block (Case 3B
ahove)

2. A MATCH, ASSEMBLE, or GATHER block in
which they are put into a matching condition (Case
3C above)

Consequently, these transactions can move through
an unlimited number of other block types, and can be
delayed an unlimited number of times before they are
finally put into an interrupt status in one of the above
four block types. It is possible that the SEIZEing
transaction will enter a RE LEASE block and therehy
completely avoid being put into an interrupt status.

Alternately, these transactions may never be
placed in an interrupt status if the PREEMPTing
transaction(s) enter RETURN block(s) before the
SEIZEing transaction enters an ADVANCE, MATCH,
ASSEMBLE, or GATHER block.

The following operations are performed on Case
3D transactions:

1. The preempt count is incremented by one.

2, The preempt flag is set to one to indicate that
the transaction is to be put onto a PREEMPTed
interrupt status when it next enters an ADVANCE,
MATCH, ASSEMBLE, or GATHER block. The value
of the preempt flag (0 or 1) is printed in the PF
column of the transaction printout.

The preempt flag is tested whenever a transaction
enters one of the above four block types. If it is set
to one, the following steps occur:

ADVANCE BLOCK

a. The nonzero ADVANCE block time is stored
in the T4 block departure time word. The trans-
action will spend this time in the ADVANCE block
only after the preempt count of the transaction has
been decremented to zero. The transaction is then
finally merged into the future events chain, as
described in "RETURN Block' later in this chapter.

b. The preempt flag is reset to zero.

144

¢. The preempt status bit is set to one.

d. Bit 7 of word T9 is set to one to indicate that
the transaction is in interrupt status.

e. The transaction is unlinked from the current
events chain.

MATCH, ASSEMBLE, OR GATHER BLOCK

a. The matching condition bit (Bit 5 of T10) is
set to one according to the procedures described
for these three block types in Chapter 7.

Steps b, ¢, d, and e are the same as those for
the ADVANCE block above.

RELEASEII;JG OF A PREEMPTED FACILITY BY
A CURRENT EVENTS CHAIN TRANSACTION

Because of the rules which apply to current events
chain transactions (Case 3D), it is possible for a
transaction to move into a RELEASE block which
refers to a Facility that has also been PREEMPTed
by another transaction. The transaction entering
the RELEASE block, therefore, succeeds in
RELEASEing the facility. The RELEASE block
subroutine decrements the preempt count by one.

If the preempt count is decremented to zero
(i.e., the eurrent Facility is the only one which the
transaction has SEIZEd that has been PREEMPTed),
the preempt flag is reset to zero., If the preempt
count is still one or more, the preemption flag
remains set to one. This means that the
transaction is still subject to being put into a
PREEMPTed interrupt status if it enters an
ADVANCE, MATCH, ASSEMBLE, or GATHER
block.

STATUS CHANGE FLAG AND REACTIVATION OF
GATE I AND GATE U DELAY CHAINS

When a transaction succeeds in entering a
PREEMPT:-block, there may be GATE I and/or
GATE U delay chains waiting for the Facility to be
interrupted and/or to be in use, respectively (this
is indicated by transaction numbers in F5 and/or
F7). Each transaction in the GATE I and GATE U
delay chains is reactivated; i.e., its scan status
indicator is reset to zero. The status change flag
is also automatically set "on'" whenever a
transaction enters a PREEMPT block.
Consequently, the overall GPSS/360 scan will
automatically transfer back to the start of the
current events chain when it finishes moving the
transaction which entered the PREEMPT block.
This ensures that all of the reactivated transactions
in the former GATE I and GATE U delay chains will
be processed by the overall GPSS/360 scan.

{

Extension of the GPSS/360 PREEMPT Block

As was previously mentioned, the operation of the
PREEMPT block has been expanded in GPSS/360 to
provide multilevels of preempting as well as other
options. The most significant of these options is the
ability to preempt solely on the priority of the
transactions. This, of course, allows 128 levels of
preempting. This option is specified by placing the
mnemonic PR in field B of the PREEMPT block.
This means that if a Facility is currently being
PREEMPTed by a transaction with a priority of n,
then any other transaction of priority n+ 1 or
greater will be allowed to PREEMPT the preempting
transaction in much the same way that it would if the
preempting transaction had only been SEIZEing the
Facility. The second transaction could then be
preempted by any transaction of priority n+ 2 or
greater, and so on.

Field C of the PREEMPT block may optionally
specify a block number to which the preempted
transaction will be sent. The preempted transaction
will remain in contention for the Facility.

Field D may specify a parameter number
associated with the preempted transaction. When
preempted, the remaining time the transaction is
scheduled to remain in the future events chain is
calculated and placed in the parameter specified by
the D argument.

The mnemonic RE in field E indicates that the
preempted transaction should be completely removed
from the chain waiting for the Faecility not to be
preempted, i.e., when the preempting transaction
returns the Facility, the preempted transaction will
not be in contention for the Facility. The preempted
transaction will not have its preempt count
incremented.

The only restriction on the use of field C, D, and
E options is that if D and/or E are specified field
C must also be specified.

Another fact which should be noted is that if
field B (PR) is omitted, then C, D and/or E are
ignored.

Also, if the preempted transaction is not on the
future events chain when the preempt takes place,
the field C, D and E options are ignored.

The remainder of this section lists several
possible combinations of arguments for the
PREEMPT block and explains the internal operation
associated with each combination.

Case I Facility is neither being SEIZEd or
PREEMPTed

a.) SNA*n
1. Preempting transaction # is placed in
FACILITY location F2

2. The current CLOCK time is placed in
FACILITY location F4. (Time of last
status change.) i
3. FACILITY location F9 (entry count) is
incremented by 1.
b.) SNA*n,, SNA*n
Same as Ia; C argument is ignored.
c.) SNA*n,, SNA*n,,RE
Same as Ia; C and E arguments are ignored.
d.) SNA*n,, SNA*n, SNA*n
Same as Ia; C and D arguments are ignored.
e.) SNA*n,, SNA*n, SNA*n, RE
Same as Ia; C, D, and E arguments are
ignored.
f.) SNA*n,PR
Same as Ia.
g.) SNA*n, PR, SNA#n
Same as Ia; C argument is ignored.
h.) SNA*n,PR,SNA*n, ,RE
Same as Ia; C and E arguments are ignored.
i.) SNA*n,PR, SNA*n,SNA*n
Same as Ia; C and D arguments are ignored.
j-) SNA*n,PR, SNA*n,SNA*n,RE
Same as Ia; C, D, and E arguments are
ignored.

Case I The Facility is already being PREEMPTed

a.) SNA#*n

1. Transaction is not allowed to enter
PREEMPT block. It is placed on a
pushdown chain for the FACILITY 'not
preempted".

2. The number of the transaction
(attempting to PREEMPT) is placed in
FACILITY location F8.

3. The scan status delay indicator bit 0 T10
is set (Discontinue processing).

4. The delay indicator (SIM mode) bit 1 T10
is set.

b.) SNA¥*n,,SNA*n
Same as Ha; C argument is ignored.
e.) SNA*n,,SNA*n,, RE
Same as IIa; C and E arguments are ignored.
d.) SNA*n, SNA*n,SNA*n
Same as IIa; C and D arguments are ignored.
e.) SNA*n, K SNA*n,SNA*n,RE
Same as Ia; C, D, and E arguments are
ignored.
f.) SNA*n,PR

A. PREEMPTING TRANSACTION HAS A
LOWER PRIORITY THAN TRANSACTION
BEING PREEMPTED,

Same as Ia.

B. PREEMPTING TRANSACTION HAS A
HIGHER PRIORITY THAN TRANSACTION
BEING PREEMPTED.

145

146

1. Preempted transaction is placed in
multiple preempt pushdown list
(FACILITY location ¥10).

2. If preempted transaction is in current

event chain (not at a GATHER,

MATCH or ASSEMBLE block), the

preempt flag is set (Bit 7-T10). If at

a GATHER, MATCH or ASSEMBLE

block preempt status indicator (Bit 6-

T1l0isset. In both cases, the preempt

count is incremented by one.

If preempted transaction is on the

future event chain, the time remaining

is ecaleulated and placed in T4 (BDT) of
transaction. The preempt status
indicator (Bit6-T10) is set. Preempt-
ed transaction preempt count is
ineremented by one.

4. In all instances (1-4) the number of the
preempting transaction is set in
FACILITY location F2.

L]
.

g.) SNA*n,PR,SNA*n

A,

PREEMPTING TRANSACTION HAS A
LOWER PRIORITY THAN TRANSACTION
BEING PREEMPTED.
Same as IIa; C argument is ignored.
PREEMPTING TRANSACTION HAS A
HIGHER PRIORITY THAN TRANSACTION
BEING PREEMPTED.
If preempted transaction is on the current
event chain, same as IIf. 1, 2 and 4 above
C argument is ignored.
If preempted transaction is on the future
event chain it will be removed and placed
on the current event chain scheduled to
enter the block specified by the C argu-
ment. The preempt flag is set (Bit 7-T10).
The preempted transaction will be placed
in a multiple preempt pushdown list
FACILITY location F10). The preempt
count of the preempted transaction will be
incremented by 1. If the preempted
transaction goes to the field C block.
provision should be made for it to subse-
quently RETURN the FACILITY.
Example: A system where a complete

recycle is necessary when an

interruption ocecurs and a

count of recycles is desired.

In the above example, assume transaction
#2 with a priority of two has PREEMPTED
Facility #1 and is in the ADVANCE block.
Now transaction #5 with a priority of four
enters the PREEMPT block. The following
will eccur:

1) Transaction #2 will be removed from

Reeycle
Countor

(S8AM

PREEMPT
PR,8AM |f/1
—a
ADVANCE
50
RETURN \lf

the future events chain and placed on the
current events chain scheduled to enter
block SAM.

2) The preempt flag, Bit 7-T10, of trans-
action #2 will be set.

3) The preempt count, T8, of transaction
#2 will be incremented by one.

4) Transaction #2 will be placed in a push-
down list for Facility #1 (F10).

5) Transaction #5 will be placed in Facility
#1 location F2.

6) Transaction #5 will then proceed to the
ADVANCE block.

7) During the same scan of the current
events chain, transaction #2 will enter
the block SAM and increment Savevalue
#10 by 1.

8) It would then enter the TRANSFER block
and proceed to the ADVANCE block.
When transaction #2 enters the
ADVANCE block, the following will
occur.

9) Since the preempt flag, Bit 7-T10, is
set, the preempt status, Bit 6-T10, will
will be set.

10) The preempt flag, Bit 7-T10, will be
reset.

11) Transaction #2 will then be removed
from the current event chain and placed
on the interrupt chain.

12) When transaction #5 subsequently leaves
the ADVANCE block and enters the
RETURN block the following will occur.

13) The first transaction on the pushdown
chain will be obtained; in this case
transaction #2.

14) Transaction #2 will be removed from

the interrupt chain and placed on the

current events chain scheduled to enter
the ADVANCE block. The preempt status
bit of transaction #2, Bit 6-T10, will be
reset. The preempt count of transaction
#2 will be decremented by one.

Note: If the preempt count is not reduced to
zero, the transaction will remain in the interrupt
state.

h.) SNA*n,PR,SNA*n,,RE

A, PREEMPTING TRANSACTION HAS A
LOWER PRIORITY THAN TRANSACTION
BEING PREEMPTED.

Same as IIa; C and E arguments are

ignored.

B. PREEMPTING TRANSACTION HAS A
HIGHER PRIORITY THAN TRANSACTION
BEING PREEMPTED,

If preempted transaction is on the current

event chain; same as If, 1, 2& 4. C

and E arguments will be ignored.

Preempted transaction is on the future

event chain.

1) Preempted transaction will be
removed from the future event chain
and placed on the current event chain
scheduled to enter the block specified
by the C argument.

2) All indications of the preempted
transaction using the Facility will be
removed. i.e., STEPS IIg, 2-4 will
not be done.

3) The preempting transaction number
will be placed in Facility location F2.

4) The preempting transaction will then
proceed to the next sequential block.

Example: A system where an I/O error

causes the complete termina-
tion of the job which issued the
I/0 command.

EAM)
PREEMPT
1+ 1]
PR, SAM, RE /]\
@ l Tra
ADVANCE | Simulating
Processing

Assume in this example that transaction #10 with a
priority of 10 is currently preempting Facility 1. At
this time Transaction #127 enters the PREEMPT
block with a priority of 127 to simulate an I/0 error.
Assuming further that Transaction 10 is in an
ADVANCE block somewhere in the system, the
following will occur:

1. Transaction 10 will be removed from the
future events chain and placed in the current events
chain scheduled to enter the SAVEVALUE block (SAM).

2. Transaction 10 will not be placed in any
pushdown chain associated with Facility 1. The
preempt count will not be incremented and neither
the preempt status indicator nor the preempt flag
will be set.

3. Transaction #127 will be placed in Facility
location F2 (transaction preempting facility).

4, Transaction #127 will then proceed to a
RETURN block to simulate the I/O recovery.

5. During the same scan of the current events
chain, transaction #10 will enter the SAVEVALUE
block and increment the count of I/0 failures and
then be removed from the system.

Note: When Transaction #127 RETURNS Facility
1 there will be no record of Transaction #10 heing
in contention for the Facility.

i.) SNA*n,PR,SNA*n,SNA*n

Similar to IIg as previously described with

the following exception.

When the preempted transaction is removed

from the future events chain, the time "left

in the future event chain" is calculated and

placed in the preempted transaction

parameter specified by field D.

Example: In this system when a job is
PREEMPTed the amount of time
remaining before completion is of

interest,
(sAM)
PREEMPT
TABULATE
D A
— 14
@ ADVANCE
1 TABLE P3, 0, 1, 51
RETURN

147

This example is very similar to IIg. above
with the exception that the time the pre-
empted transaction has remaining in the

ADVANCE block is computed and placed in
Parameter 3 before the transaction is sent
to the tabulate block (SAM). This way a
frequency distribution of the "remaining-
time' will be obtained.

j.) SNA*n,PR,SNA*n,SNA*n,RE

Similar to ITh as previously described with
the following exception:

When the preempted transaction is removed

from the future event chain, the time "left
in the future event chain' is calculated and

placed in the preempted transaction para-

meter specified by field D.

Example: The example below might represent
a portion of a job shop in which
Facility 1 represents a high-speed
machine. Facility 2 represents a
similar machine which performs
the same funection as the first but

is slower.
sam) | |
PREEMPT
SBIER PR, SAM.
& 5, RE /1\
lm-ps-z 1
ADVANCE ADVANCE
vi FN3
2 1
RELEASE RELEASE

In this shop, if a job is using (PREEMPTing)

Facility 1 when a higher priority job arrives,

the first job is removed from the machine
and finished on the slower machine. In
this example, the remaining time on the
high=speed machine is computed and placed

in Parameter 5 of the PREEMPTed trans-

action. This value is then used to compute
the ADVANCE time on the slower machine.
As was the case in IIh. above, the
PREEMPTed transaction is no longer in
contention for Facility 1 and need not enter
the RETURN block for Facility 1.

148

RETURN BLOCK

Facility ;
Number
| 2 L.OC.I 7 \a OPERATION | 19 A RETURN \V/
b
RETURN SNAJ, BNA*n

The RETURN Block bears the same relation to the
returning of a Facility that the RELEASE block bears
to the normal releasing of a Facility. The RETURN
block serves the function of removing from a Facility
the transaction which has PREEMPTed it. The
RETURNing operation is performed immediately
upon entering the RETURN block. There is no
further effect on the Facility if the transaction is
subsequently prevented from entering the next
sequential block following the RETURN block.

A transaction is never refused entry to a RETURN
block. However, the Facility which is referred to
by the field A argument of the RETURN block must
have been PREEMPTed by the entering transaction.
Otherwise, execution error 421 will occur: ''Facility
RETURNed by a Transaction not PREEMPTing it".
No other transaction except the one that currently
PREEMPTing a Facility is entitled to RETURN it.

If the Facility has also been SEIZEd by another
transaction, a variety of operations can be performed
on the SEIZEing transaction, depending on its current
status.

k, *n

Case 1. The SEIZEing transaction has been
PREEMPTed on more than one Facility

The preempt count of the SEIZEing transaction is
decremented by one to indicate that a Facility on
which it has been PREEMPTed has been RETURNed.
Since the preempt count is still greater than one, the
SEIZEing transaction remains in its current status
until all preempts have been removed (preempt count
equals zero).

Case 2. The SEIZEing transaction is currently being
PREEMPTed on only this one Facility, and
is currently in an interrupt status in an
ADVANCE block

Bit 7 of T9 is one, which indicates an interrupt
status. The preempt count is first decremented to
zero. The preempt status bit is, therefore, reset
to zero to indicate that the transaction is no longer
in a preempt status. The remaining time in the
ADVANCE block has been stored in T4 block

departure time word of the SEIZEing transaction.
The SEIZEing transaction is now merged into the
future events chain according to the following de-
parture time from the ADVANCE block (which is
stored in word T4). The departure time is com~-
puted as follows:

Remalning Block Time
New ADVANCE Block _ Current Absoluts + {previously atored in
Departure Time — Clock Time word T4)

Case 3. The SEIZEing transaction is currently
being PREEMPTed on only this one
Facility, and is in a matching condition
in a MATCH, ASSEMELE, or GATHER
block

Bit 7 of T9 is one, which indicates an interrupt
status. The preempt count is decremented to zero,
The preempt status bit is reset to zero, which
indicates that the transaction is no longer in a
preempt status. However, the matching condition
bit is still set to one. Consequently, the SEIZEing
transaction remains in a matching status in its
MATCH, ASSEMBLE, or GATHER block.

Case 4. The SEIZEing transaction is currently
being PREEMPTED on only this one
Facility and is still in the current events
chain

Bit 6 of T9 is one, which indicates that the trans-
action is in the current events chain. The preempt
count is decremented to zero. The preemption flag
bit is reset to zero, so that the SEIZEing transaction
can now enter ADVANCE, MATCH, ASSEMBLE, or
GATHER blocks without being put into an interfupt
status.

In case the Facility has also been PREEMPTed
by another transaction the following would ocecur:
Case 5. The Facility is currently being

PREEMPTed by other transactions
of lower priority

Facility location F10 contains the address in
COMMON of the list of transactions which were
PREEMPTed by other transactions of a higher
priority. The RETURN block subroutine obtains the
last entry in this list (the number of the transaction
with the next highest priority which was preempted
by the RETURNing transaction) and sets this number
in Facility location F2 as the PREEMPTing trans-
action. The preempt count of this transaction is

decremented by one and if the result is zero (only
one preempt) the transaction is allowed to continue
processing. If the preempt count is greater than
zero, the transaction remains in a preempt status
until all preempts are removed.

Cumulative Time Integral of Facility Utilization

When a transaction RETURNs a Facility, there may
be a status change, i.e., the Facility changes from
being in use to not in use. In many cases, however,
the Facility may also be SEIZEd, so that there is
no status change. When a status change does occur,
the following quantity is added to the cumulative
time integral stored in word F3:

Additional Clock _ Current Absolute _
Unita in use Clock Time

Time of last statua
change (word F'4)

Word F3, therefore, accumulates the total
number of clock units during which the Facility was
in use, i.e., SEIZEd and/or PREEMPTed. The
current absolute clock time is then stored in word
F4 as the time of the last status change.

Status Change Flag and Reactivation of PREEMPT=-
GATE NI Delay Chain

When a transaction enters a RETURN block, there
may be a PREEMPT-GATE NI delay chain waiting
for the Facility not to be PREEMPTed (this is indi-
cated by a transaction number in F8). If there are
multiple preempts on this Facility at this time, this
is the only delay chain which is reactivated. A
SEIZE-GATE NU delay chain (indicated by a trans-
action number in F6) may also have been formed
waiting for the Facility not to be in use. If this is
the only preempt, each transaction on both of these
delay chains is reactivated, i.e., their scan status
indicators are reset to zero. The status change
flag is automatically set to '"on'' whenever a trans-
action enters a RETURN block.

Consequently, the overall GPSS/360 scan will
automatically transfer back to the start of the
current events chain when it finishes moving the
transaction which entered the RETURN block., This
ensures that all of the reactivated transactions in
former PREEMPT-GATE NI and/or SEIZE-GATE
NU delay chains will be processed by the overall
GPSS/360 scan. All, none, or just some of the
delayed transactions (including those in TRANSFER
BOTH or ALL blocks) may actually be able to enter
the SEIZE, PREEMPT, GATE NU, or GATE NI blocks.

149

Observe that the relative position of the delayed
transactions in the current events chain is critical
in determining which transactions actually succeed
in moving into their next blocks. For example,
assume that a transaction RETURNs a Facility
which is currently not being SEIZEd. Assume
further that there are transactions waiting to SEIZE
and to PREEMPT the Facility. Depending on their
relative position in the current events chain, it is
possible for higher priority transactions to SEIZE
the Facility. A lower priority transaction will
then PREEMPT the Facility in the same instant of
time, and probably put the SEIZing transaction into
an interrupt status.

A SEIZEING OR PREEMPTING TRANSACTION
ATTEMPTS TO SEIZE OR PREEMPT THE
SAME FACILITY

What happens if a transaction which has SEIZEd or
PREEMPTed a Facility subsequently attempts to
enter a SEIZE or PREEMPT block which references
the same Facility? There are four possible
situations:

Case 1. A SEIZEing transaction attempts fo
SEIZE the same Facility

The SEIZE block subroutine simply determines
that the Facility is already in use(F1 is nonzero)
and, therefore, denies entry to the SEIZing trans-
action. The transaction can, therefore, be hung
up indefinitely, unless it is in a TRANSFER block
with a BOTH or ALL selection mode that might
allow exit by another block.

Case 2. A PREEMPTing transaction attempts to
PREEMPT the same Facility
This is similar to Case 1, i.e., the PREEMPT
block subroutine simply determines that the Facility
is already being PREEMPTed (F2 contains a
tfransaction number) and, therefore, denies entry
to the PREEMPTing transaction.

Case 3. A PREEMPTing transaction attempts to
SEIZE the same Facility
This is also similar to Case 1, i.e., the SEIZE
block simply determines that the Facility is
already in use (F2 is nonzero) and, therefore,
denies entry to the PREEMPTing transaction.

Case 4. A SEIZing transaction attempts to
PREEMPT the same Facility
This is the most interesting case, since the
PREEMPT block subroutine determines that the
SEIZing transaction is in the current events chain.
This is obvious since the SEIZing transaction is

150

the same transaction which is attempting to move
into the PREEMPT block. The operations that are
performed are the same as if the SEIZEing and
PREEMPTing transactions were different (see Case
3D in "PREEMPT Block' earlier in this chapter).

1. The preempt count (T8) is incremented by one.

2. The preempt flag is set to one to indicate that
the transaction is to be put into an interrupt status
when it next enters an ADVANCE, MATCH,
ASSEMBLE or GATHER block.

A race against time now begins. If the transaction
succeeds in entering a RELEASE or RETURN block,
the preempt count is decremented by one, and the
preempt flag is reset to zerc. On the other hand,
the transaction goes into a permanent limbo if it
enters an ADVANCE, MATCH, ASSEMBLE, or
GATHER block before it can get to a RELEASE or
RETURN block. Any one of the first four blocks
mentioned above detects that the preempt flag has
been set to one and, therefore, removes the trans-
action from the current events chain and puts it into
an interruptstatus. The transaction is dead now since
it can never enter a RETURN block which will remove
if from an interrupt status and return it to the current
events chain.

GATE U, GATE NU, GATE 1 AND GATE NI
BLOCKS

Index Number
af Fasllity

[Amrnma Block if
2 Loc|7|s OPERATION 13[19 A

uj, ote. in False
B

ATE

= - 2o

GATE U | SNAJ, SNA®n |[SNAJ, SNA®n

GATE HU k, *n k. *n (B)
GATE 1 Symbolie Block

GATE NI

If a field B alternate block is specified, the above
GATE blocks operate in an unconditional entry mode,
i. e., transactions can always enter the GATE block.
If the Standard Logical Attribute is true, the trans-
action moves to the next sequential block following
the GATE block. If Uj, NUj, Ij, or NIj is false, the
the transaction moves to the alternate block which

is specified in field B of the GATE block.

If a field B alternate block is not specified, the
GATE block operates in a conditional entry mode,
i.e., transactions can enter the GATE block only if
the Standard Logical Attribute is true, If Uj, NUj, Ij,
or NIj is false, the transaction is placed in a pushdown
delay chain and deactivated from the overall GPSS/
360 scan (the usual execptions are transactions in
TRANSFER BOTH or ALL blocks).

Other transactions which pass through the
following blocks can make the indicated Standard
Logical Attributes true:

Standard Logical Block(s) Which Can Change the Value of the

Attribute Standard Logical Attribute
Make True Make False
uj SEIZE, PREEMPT RELEASE, RETURN
NUj RELEASE, RETURN SEIZE, PREEMPT
] PREEMPT RETURN
NIj RETURN PREEMPT

All transactions in the delay chains that are as-
sociated with the above Standard Logical Attributes
will be reactivated by the appropriate block-type
subroutine. The overall GPSS/360 scan may then
be able to advance one or more of these transactions
(as well as those in TRANSFER BOTH or ALL
blocks) into the conditional entry GATE U, GATE
NU, GATE I, and GATE NI blocks.

STATISTICAL PRINTOUT

The standard Facility statistical printout shown in
Table 19 is written on the output device, under the
following three conditions:

1. A simulation run is terminated normally
after the termination count (which is specified in
field A of the latest START card) is decremented to
zero or less.

2. A simulation run is terminated by one of the
running error stops described in Appendix A.

3. A transaction enters the following type of
PRINT block:

|2 woc |7]|s opemamon|is a| 8| cf

|“L|"Ul"|

| | ‘ PRINT

As described in "PRINT Block" in Chapter 14,
the standard statistics for the Facilities numbered
from the field A lower limit (ky) up through the
field B upper limit (kg;) are printed out. In all
three cases statistics are printed out for only those
Facilities which have had one or more entries (as
recorded in word F9).

Average Utilization

The average utilization of each Facility printed at
the end of each simulation run is equal to:
Average _ Cumulative time integral
Utilization Relative clock time (Cl) since last
RESET or CLEAR card

The cumulative time integral can be portrayed
graphically as the shaded area under the following
usage profile:

Number Run

¥y
B —

T

L] [T ty 1t (LT g t7 tp ¥
Siart of End of Run
Run Ahsolule Time
MESET or CLEAR Card)

f— LENGTII OF RUN

1(ln une)

1L. Average .-
Utilzation
fifnol In usc)

7
%
%

The odd = number status change block times
(t1» t3, « « .) represent times when the TFacility
changed from being not in use to in use, i.e.,
SEIZEd and/or PREEMPTed. The even-number
status change clock times (i3, t4, . . .) represent
times when the Facility changed from being in use
to not in use, i.e., by being RELEASEd and/or
RETURNed.

The quantities (tg = t;), (t4 = t3), . . . which
are added to word F3, represent the total number
of clock units during which the Facility was in use.
The average utilization is therefore the average
height of the above usage profile (shown by the
dotted line), which is simply the number of clock
units in use (word F3) divided by the relative clock
time which has elapsed since the last RESET or
CLEAR card.

If RESET or CLEAR cards are not read between
multiple STARTs, the cumulative time integral
builds up the total number of clock units in use
since the last RESET or CLEAR card. Consider
the following series of three simulation runs, each
of which is 1000 clock units long.

Clock Units

Run In Use During Average Utilization Cumulative Average Utllization
{(With RESET/CLEAR) Clock Units (Without RESET/CLEAR)

1 536 . 536 536 . 536
2 600 . 600 1136 . 568
=] 340 .340 1476 492

If RESET or CLEAR cards are read between
STARTs the three average utilization values (. 536,
.600, and .340) are the utilizations only during
each run. If no RESET or CLEAR cards are read
the average utilization values are the cumulative
utilizations for the first run (. 536), for the duration
of the first two runs (. 568), and for the duration of
the first three runs (.492).

There is a statistical advantage in using RESET
cards, since the three individual average utilizations
{. 536, .600, and .340) give a measure of the
sampling variability around the grand average
value of . 492.

The usage profile more typically appears as
shown bhelow:

151

Fy

f— — LENGTH OF RUN

\@@

—ii]

\
\

N
6 t tr
End of Run

1 {in use)

0 (not In use

W
7

!
Lo

Facllity j

a 3] 2
Start of
Run

At time t;, Transaction 1 SEIZEs Facility j. At
tz, Transaction 2 PREEMPTs the Facility, and at tg,
it RETURNSs the Facility to Transaction 1, which
then RELEASEs the Facility at time t4. At time ts5,
Transaction 3 SEIZEs Facility j and RELEASEs it
at time tg. Transaction 4 immediately SEIZEs the
Facility at the same time tg and RELEASEs it at
time ty.

Word F9 now contains an entry count of four at
the end of the simulation run. The average time per
transaction is then the number of clock units in use
(word F3) divided by the number of entries (word F9).
The average time per transaction could be considered
as the average horizontal time distance spent by a
transaction in the above usage profile.

Observe that no distinction is made between
SEIZEing or PREEMPTing transactions in computing
the average time per transactions.

EFFECT OF RESET AND CLEAR CARDS

Table 20 summarizes the effects of RESET and
CLEAR cards on the attributes of Facility entities.
A RESET card zeros the cumulative time integral
(word F3) and sets the clock time of the last status
(word F4) equal to the current absolute clock time.
The entry count (word F9) is then set equal to:

1. Zero, if the Facility is neither being SEIZEd
nor PREEMPTed.

2. One, if the Facility is either being SEIZEd or
PREEMPTed at the start of the new run.

3. The number of transactions currently
PREEMPTing the Facility, if there are multiple
PREEMPTSs,

4. The number of transactions currently
PREEMPTing the Facility plus 1, if the Facility
is being SEIZEd and there are multiple PREEMPTS.

The above entry count adjistments can have a
significant effect on the computed average time per
transaction. Consider the following two cases:

In Case I, the Facility is not in use at times t
and ty when RESET cards are read. The true
average time per transaction is therefore computed
and printed out. However, in Case II, the Facility
is being both SEIZEd and PREEMPTed at time tj .
Consequently, the F6 entry count for run 2 is
initially set equal to 2, even though the two trans-

152

CABE 1

F‘.‘... Langth of run # 1 _-J'.-_. Langth of run # 2 ._pJ'
1
- J | o~ g |
SN NONNE
0 &\%S ;\\}\% fli %\\ &k\ \\ ‘JlTlmB
First RESET Card Second RESRET Card
CASE I

ba— Length of run #1 -—-.-i-‘-'l.nngl.ho(rnnlz -'i
1 g0 1

W7 Nl N
INY 77 AN N N

U 51

t2
First RESET Card Second RESET Card

actions were already counted in the entry count for
run 1. At time tg in Case II, the Facility is being
SEIZEd when the second RESET card is processed.
Consequently, the entry count for run 3 is initially
set equal to 1, even though the SEIZEing transaction
was already counted in the entry count for run 2.

The net result is that the computed average time
per transaction for both runs 1 and 2 in Case II is
less than the true long-run average time per trans-
action. The following general rule can be stated for
all Facilities:

The computed average time per transaction

on each Facility is ﬁways Tess than or equal

to the true long-run average time per transaction.
This depends on whether the true number of

entries has been overstated because of RESET
card operations.

EXAMPLES OF FACILITY BLOCK TYPES
Example 1:

The analyst must be careful to avoid the following
classic interlock when two transactions each SEIZE
Facilities and then attempt to SEIZE the Facility
that the other Transaction has SEIZEd.

Transaction A Transaction B
SEIZE 1 SEIZE A
L 4
Additional Procesaing Additional Processing

Transactions A and B
hang up trying to enter
these two SEIZE Blocka.

RELEASE
RELEASE

RELEASE

Neither Transaction A nor B can enter the second
two SEIZE blocks and, therefore, neither can manage
to RELEASE the Facility which it originally SEIZEd.

Example 2:

In model B below, transactions will SEIZE Facilities
1 and 2, Facilities 3 and 4, or Facilities 5 and 6
whenever one pair of Facilities is not in use and can
be SEIZEd concurrently. The three variable state-
ments 1, 2, and 3 are zero whenever the particular
pair of Facilities is not is use, i.e., whenever
Standard Numerical Attributes Fj and F(j + 1) are
both zero.

MODEL B

10 /5

THANSFER

(AL.L.)

20 24 28
VI=F14F2 v:-r:\u'vn»:-—h

21 5

SEIZE & SEIZE

2 & 24 ‘
I SEIZE & SEIZE

23

mq?n

Example 3:

TRANSFER

Model C shows how a SEIZEing transaction can
avoid being PREEMPTed on a Facility which it has
SEIZEd. The SEIZEing transaction will spend a fixed
amount of time (T) before RELEASEing the Facility,
whether or not the Facility might be PREEMPTed
by another transaction.

The SEIZEing transaction subverts its preemption
by the following methods:

1. Logic Switch 1 is put onto a set condition.

2. An offspring transaction is SPLIT off to spend
the fixed time (T) in an ADVANCE block.

3. The SEIZEing transaction hangs up on a GATE
LR block until the offspring transaction puts Logic
Switeh 1 back into a reset condition.

4, The SEIZEing transaction the RELEASES
Facility 1 after the fixed time, T.

The time between the SEIZEing and RELEASEing
of the Facility is always the fixed time T. Consider
what happens when another transaction PREEMPTs
Facility 1. Because the SEIZEing transaction is still

in the current events chain and is h.ocked from
entering the GATE LR block, it will not be

PREEMPTed. Instead, the preemption flag (bit 6 of
byte T9) is set to one to indicate that the transaction
is to be put into an interrupt status when it next
enters an ADVANCE, MATCH, ASSEMELE, or
GATHER block.

The SEIZEing transaction, of course, never
reaches such a block. Instead, when its offspring
transaction puts Logic Switch 1 back into a reset
condition, the SEIZEing transaction succeeds in enter-
ing the GATE LR block and then RELEASEs Facility
1 after the fixed time, T.

MODEL C

/N
LOGICS | 1 l

SPLIT

SEIZE

PRE-EMPT A

Additional inter=
vening blocka

RETURN i;

3

ADVANCE

GATE LR 1

RELEASE

153

TABLE 19: STATISTICAL PRINTOUT FOR FACILITY ENTITIES

Facility Average Number Average SEIZEing PREEMPTing
Utilization Entries Time/Trans. Trans. No. Trans. No.
2 .131 9 5833.113 81 7
10 . 309 8 15449.635 5 53
15 273 18245. 333
4 3
Facility (Word F9) Number of SEIZEing
Name or Transaction (F1)
Number
Cumulative Time Integral (Word F3) Number of
Relative Clock Time Since Last PREEMPTing
RESET or CLEAR Card Transaction
(F2)
Cumulative Time Integral (Word F'3)

Number of Entries (Word F9)

154

TABLE 20: EFFECT OF RESET AND CLEAR CARDS ON FACILITY ATTRIBUTES

RESET Card

Attribute Value

Result of RESET Card

Word Length Before RESET Card on Attribute Value
F1 2 Bytes Index number j of the SEIZEing Unchanged
Transaction (if any)
F2 2 Bytes Index number j of the PREEMPT- Unchanged
ing Transaction (if any)
F3 4 Bytes Cumulative time integral of Set to zero
Facility usage
F4 4 Bytes Clock time of last status Set to current value of absolute
change clock
F5, F6, 2 Bytes Origins of four different Unchanged
F7, F8 for each pushdown delay chains
9 4 Bytes Entry count 1. Bet to zero if Facility is
neither being SEIZEd nor
PREEMPTed
2. BSet to one if Facility is
either being SEIZEd or
PREEMPTed
3. Set to the number of
transactions currently
preempting if there are
multiple preempts.
4. Set to the number of
transactions currently
PREEMPTing plus one, if
Faeility is being SEIZEd and
there are multiple PREEMPTs.
F10 4 Bytes Address of multiple- Unchanged

preempt list

CLEAR Card

F1, F2, F3, F4, F5, F6, F7, F8, and F9 are all set equal to zero.
If there has been a multiple preempt, the core for the pushdown list is returned to COMMON and the
address in F10 is zeroed.

155

CHAPTER 11: STORAGE ENTITIES

GENERAL NATURE

Storage entities are used in system simulations to
represent multiple-capacity equipment, e.g., the
core storage in computers and message exchanges.
Such equipment is generally capable of simulta-
neously handling one or more transactions up to
some finite capacity limit. The standard GPSS/
360 program for a 128k machine has core allocated
for 150 storages, numbered 1, 2, . . . 150.
Execution Error 499 will occur if a storage number
greater than the gquantity allocated is referenced.
Table 21 describes the attributes that are stored in
the ten 360 words required for each storage. These
words accumulate various statistics on the usage of
storages, which are printed as part of the standard
GPSS/360 output, as shown in Table 22. Key
storage statistics include:

1. the average contents of the storage;

2. the average utilization of the storage
capacity, which is equal to the average storage
contents divided by the storage capacity;

3. the total number of entries into the storage,
i.e., into ENTER blocks;

4. the average time that each entry spends in
the storage, i.e., between ENTERing and LEAVE-
ing the storage;

5. the current storage contents, at the end of
the simulation run;

6. The maximum contents chserved since the
last RESET or CLEAR card.

Two block types, ENTER and LEAVE, are
associated with storage entities. Four types of
GATE blocks are also associated with storages:
GATE SE, GATE SNE, GATE SF, and GATE SNT.

STANDARD NUMERICAL ATTRIBUTES

Each storage entity has seven Standard Numerical
Attributes:

1. Sj = current contents of Storage j

2. Rj = remaining available capacity of
Storage j
At any time Sj + Rj = capacity of Storage j.

3. SRj = utilization of Storage j in parts per
thousand, i.e., if the utilization was .65 the
computed value would be 650.

4. SAj = average contents of Storage]
(truncated to an integer, i.e., 1.73 = 1).

5. SMj = maximum contents of Storage j

6. SCj =number of entries for Storage j

7. 8Tj = average time each transaction used
Storage j (truncated)

156

STORAGE DEFINITION CARD

The capacity of each Storage may be defined by the
user before the start of a simulation run. The
Storage definition card is provided for this purpose.
There are two formats for this card the use of
which depends on the number of Storages which the
user wishes to define.

The first format is that used in GPSS III. The
location field contains the Storage number, the
operation field contains STORAGE, and the operand
field specifies the capacity (which must be less
than or equal to 2¥°-1 or 2, 147, 483, 647).
Examples:

1 STORAGE 100
6 STORAGE 237485

The second format provides the user with the
ability to define multiple Storages with one Storage
definition card. The location field is blank, the
operation field contains STORAGE, and the
operand field specifies the Storages and/or range
of Storages and their capacities using the follow-
ing rules:

1. The Storage number must be preceded by
the letter S, i.e., S1, 56, 510, etc.

2. The Storage number or range of Storages
must be separated from the capacity value by a
comma, i.e., S1, 100 or 56, 237485.

3. A range of Storages, which will be assigned
the same capacity, must be separated by a dash
(-), i.e., S1-S10, 100.

4, Bubsequent entries on the card must be
separated by a slash (/), i.e., S1, 10/82, 20.
Examples:

STORAGE 81,100
STORAGE S1,100/52,200
STORAGE S1-810,100/511-520,200

Each Storage definition card replaces the
previous one, and the contents of the storage are
unchanged by the definition. Any Storage of
undefined capacity which is referenced in a model
is assumed to have a maximum capacity, i.e.,
each storage is initialized to have Rj = 231—1 or
2, 147, 483, 647 and §j = 0. (For further details
see "Re-definition of Storage Capacity with Storage
Card" later in this chapter.)

STANDARD LOGICAL ATTRIBUTES

Each storage entity has four Standard Logical

Attributes with two possible values (true and false).

1. SEjis true if Storage j is empty, i.e., Sj
=0 and R; = capacity

2. SNEj is true if Storage j is not empty, i.e.,
Sj >0 and R-_| < capacity

3. SFj is true if storage j is full, i.e., Sj
= capacity and Rj = 0

4. BSNFj is true if Storage j is not full, i.e.,
Sj < capacity and Rj > 0

These Standard Logical Attributes are used in
GATE SE, GATE SNE, GATE SF, and GATE SNF
blocks, as described earlier, to control the flow of
transactions.

When a Storage is defined to have a unit capacity,
the following Standard Logical Attributes of the
storage are equivalent:

Equipment Storage
Standard Logical

Analogous Facility
Standard Logical

Attributes Attributes
SNEj = SFj u
SNFj = SEj NU

When the unit capacity Storage is not empty it
is also full. When it is not full, it is also empty.
A unit capacity storage is analogous in many ways
to a facility, so that the Facility Standard Logical
Attributes Uj and NUj are analogous to the storage
logical attributes shown above.

INTERNAL NONADDRESSABLE ATTRIBUTES

Table 20 describes the various internal attributes
stored in the twelve storage locations (51, 52,
, §12).

Those which are nonaddressable by the user
include:

1. The clock time of the last status change
(word S5), i.e., when the storage contents
increased (ENTER block) or decreased (LEAVE
block).

2. A 64-bit cumulative time integral of the
Storage contents (words 53 and 54).

3., The number of the first transaction in each
of the five pushdown delay chains associated with
each Storage (58, 89, 510, S11, 512).

ENTER BLOCK

Index Number | Number of Units
of Storage To Enter Storage
ENTER [A, B
lz Loc l 7 I & OPERATION [10 A B A
ENTER SNAj, SNA*n l’sm\j. SN!\"‘n:I
k, *n . k. "n

Examples:
ENTER 5
ENTER *8,P6
ENTER FN3,100
ENTER 1,R1 Fills up Storage
ENTER FN*11

A transaction is not permitted to enter a Storage
that is already full, or which does not have enough
available space to accommodate the transaction.
The ENTER block specifies a Storage number in
field A, and the number of storage units which are
to be occupied in field B. If field B is blank the
number of Storage units to be occupied is assumed
to be one. When a transaction attempts to enter an
ENTER block the GPSS/360 Program compares the
field B requested number of units with Rj, the space
remaining in the Storage. If the field B number of
units is less than or equal to the available space Rj,
the steps in "Transaction Succeeds in Moving into
ENTER Block' below, will be executed immediately.
If the value of the field B argument is zero, the
transaction will always succeed in entering the
ENTER block but will not contribute to the Storage
contents. The same transaction can ENTER an
unlimited number of Storages and can, subsequently,
LEAVE all or some of these Storages.

Transaction Cannot Move Into ENTER Block

The transaction will be delayed in the block
preceding the ENTER block and will be placed in a
pushdown delay chain as described in "LEAVE
Block' later in this chapter. The blocked
transaction may, however, be diverted if the
preceding block was a TRANSFER block with a
BOTH or ALL selection mode.

Transactions which move into an ENTER block
attempt to move to the next sequential block.

When successive transactions attempt to ENTER
the same storage with different field B quantities,
it is possible for a later transaction to pass an
earlier transaction. This would occur if an earlier
transaction attempts to ENTER with a field B
guantity which is greater than the remaining
capacity, Rj, while a later transaction succeeds in
ENTERing the Storage with a field B quantity which
is less than the remaining capacity, Rj. Observe
that if the field B argument of an ENTER block is
one, then transactions will be refused entry to the
ENTRY block only if the referenced Storage is full
(a blank field B in an ENTER block is interpreted
as one).

Transaction Succeeds in Moving Into ENTER Block

The current Storage contents, Sj (which are stored

157

in 81) is incremented by the number of field B units.
The remaining Storage capacity, Rj (32) is
concurrently decremented by the same quantity.

The new contents, 5j, are compared against the
maximum contents (stored in word S7). If the new
Storage contents are greater, this value is entered
in word 87 as the new maximum contents. The entry
count into the Storage (word 86) is incremented by
the field B-number of units, which can be one or
more. Therefore, the number of transactions
entering the Storage will always be less than or
equal to the S6 entry count.

Observe that no record is kept on which
transactions ENTER a Storage, as opposed to
facilities which record the numbers of the
transactions that are SEIZEing and PREEMPTing the
facility. Therefore, a transaction may LEAVE a
Storage which it had not previously ENTERed. A
transaction need not remove the same number of
units (in a LEAVE block) that it added to the Storage
(in an ENTER block). Ultimately, the additions and
removals of all transactions must balance out.
Otherwise, the Storage will fill up if the additions
(ENTERS) exceed the removals (LEAVEs); or
Execution Error 425, "Transaction LEAVEing by
More Than Storage Contents', will occur if the
removals exceed the additions. In cases where the
analyst cannot be sure that the same transaction
that SEIZEd a facility will eventually RELEASE it,
he can instead use a unit capacity Storage.

Different transactions can now ENTER (seize) and
LEAVE (release) the storage.

The ENTER block subroutine also computes the
length of time that the Storage was at its previous
contents:

Length _
of time

Current absolute _ Time of last
clock time status change
(word S5)

The product of this time interval, and the
previous contents, is added to the 64-bit cumulative
time integral (which is maintained in double word
S83-54). The current absolute clock time is then
stored in word S5 as the time of the last status
change.

The cumulative time integral of the Storage
contents can be portrayed as follows:

Storage
Contents

5§

MR

Ny

Enters an ENTER or
LEAVE Block

Time of Last
Status Change

158

At the end of each simulation run the cumulative
time integral is divided by the value of the relative
clock (C1) since the last RESET or CLEAR Card, to
obtain the average contents of the storage. The time
integral is also divided by the entry count (word S6)
to obtain the average time per entry into the storage.

Status Change Flag and Reactivation of GATE SF
and/or GATE SNE Delay Chains

When a transaction succeeds in moving into an
ENTER block there may be:

1. A GATE SNE delay chain of transactions
waiting for the Storage to be not empty, in order to
enter a GATE SNE block.

2. A GATE ST delay chain of transactions
waiting for the Storage to be full, in order to enter
a GATE SF block.

(The existence of the above delay chains is indicated
by the presence of transaction numbers in S11 and
58 respectively.) If a transaction ENTERs an
empty Storage, each transaction in a possible GATE
SNE delay chain is reactivated; i.e., their scan
status indicators are reset to zero. The status
change flag is also automatically set on. If the
transaction ENTERs and fills the Storage, then each
transaction in a possible GATE SF delay is likewise
reactivated. The status change flag is also auto-
matically set on.

Because the status change flag is set on, the
overall GPSS/360 scan will automatically transfer
back to the start of the current events chain when
it finishes moving the transaction that ENTERed the
particular Storage. This ensures that all of the
reactivated transactions in the former GATE SNE
and GATE SF delay chains will be processed by the
overall GPSS/360 scan. All, none, or just some of
the delayed transactions (including those in
TRANSFER BOTH or ALL blocks) may actually be
able to enter the GATE SNE and GATE SF blocks.

LEAVE BLOCK

Index Number | Number of Units

of St (i To Leave Stor:
|2 LDC| 'I|] OPERATION | 19 U;‘E > B e LEAVE @
| \ ‘ | LEAVE SNAj, SNA*n [SN.M. SNA"n]
k, *n k. *n
Examples:
LEAVE 5
LEAVE 1, 81 Empty Out Storage
LEAVE 6, FN*11
LEAVE V3, V4

The LEAVE block is used to make available
some previously occupied contents in a Storage
entity. A transaction is always permitted to enter
a LEAVE block, but a restriction is made on the
number of Storage units which may be made
available. The LEAVE block specifies the storage
number in field A, and the number of units made
available in field B, If field B is blank, one unit
is removed from the Storage contents. Transactions
proceed to the next sequential block following the
LEAVE block. Execution Error 425, "Transaction
LEAVEing by more than storage contents', will occur
if the number of units to be removed from the
Storage (the value of the field B argument, or 1 if
the field B is blank) is greater than the current
contents of the Storage (Sj).

The current Storage contents, Sj (81), is
decremented by the number of field B units. The
remaining Storage capacity, Rj (52), is concurrently
incremented by the same quantity. The entry count
(word 56) is not affected by the LEAVE block.

The LEAVE block subroutine (just like the
ENTER block) computes the length of time that the
Storage was at its previous contents:

Time of last
status change
(word 85)

The product of this time interval, and the
previous contents, is added to the 64-bit cumulative
time integral. The current absolute clock time is
then stored in word S5 as the time of the last status
change.

Length
of time

Current absolute _
clock time

Status Change Flag and Reactivation of GATE SNF,
GATE SE, and ENTER Delay Chains

When a transaction enters a LEAVE block the
following three pushdown delay chains of transactions
may be associated with the referenced Storage:

1. GATE SNF delay chain of transactions
waiting for the Storage to be not full, in order to
enter a GATE SNT block

2. GATE SE delay chain of transactions
waiting for the Storage to be empty, in order to
enter a GATE SE block

3. ENTER delay chain of transactions waiting
to ENTER the Storage whenever the current Storage
contents are decremented by transactions entering
LEAVE blocks

The existence of the above delay chains is
indicated by the presence of transaction numbers in
the halfword Storage locations 59, 510 and 512
respectively. If a transaction LEAVEs a full
Storage, each transaction in a possible GATE SNF
delay chain is reactivated; i.e., their scan status

indicators are reset to zero. Similarly, each
transaction in a possible ENTER delay chain is also
reactivated. If the transaction at the LEAVE block
reduces the Storage contents fo zero, each
transaction in a possible GATE SE delay chain is
also reactivated.

In all three cases, the status change flag is set
to on, so that the overall GPSS/360 scan will
automatically transfer back to the start of the
current events chain when it finishes moving the
transaction that left the particular Storage. This
ensures that all of the reactivated transactions in
the former GATE SNF, GATE SE, and ENTER
delay chains will be processed by the overall
GPSS/360 scan. All, none, or just some of the
delayed transactions (including those in TRANSFER
BOTH or ALL blocks) may actually be able to
enter the GATE SNF, GATE SE, and ENTER blocks.

GATE SNE, GATE SF, GATE SNF, AND
GATE SE BLOCKS

rllomu Blo

I.dex Number || if SNF, otc., |

of Storage SNE

z LOC | 7|8 OPERATION | B 19 A GATE)@

|

SNE
5F
SNF

GATE
GATE

GATE .
1
1
GATE :

BNAj, BNA® j, SNA*n
k, *n k, *n
mbolle Block]

If a field B alternate block is specified, the above
GATE blocks operate in an unconditional entry
mode; i.e., transactions can always enter the
GATE blocks. If the Standard Logical Attribute
is true, the transaction moves to the next
sequential block following the GATE block. If it
is false, the transaction moves to the field B
alternate block.

If a field B alternate block is not specified, the
GATE block operates in a conditional entry mode;

e., transactions can enter the GATE block only
if the Standard Logical Attribute is true. If SNEj,
SFj, SNFj, or SEj is false, the transaction is
placed in a pushdown delay chain and deactivated
from the overall GPSS/360 scan. The usual
exceptions are transactions in TRANSFER BOTH
or ALL blocks which are not deactivated in
pushdown delay chains.

Other transactions, which pass through the
following blocks, can make the indicated Standard
Logical Attributes true:

Block(s) Which Can Change
the value of the Standard

Standard Logical

Attribute Logical Attribute

Make True Make False
SNEj ENTER LEAVE
SFj ENTER LEAVE

159

Block(s) Which Can Change

Standard Logical the value of the Standard

Attribute Logical Attribute

Make True Make False
SNFj LEAVE ENTER
SEj LEAVE ENTER

All transactions in the delay chains associated
with the above Standard Logical Attributes will be
reactivated by the appropriate block-type
subroutines. The overall GPSS/360 scan may then
be able to advance one or more of these transactions
(as well as those in TRANSFER BOTH or ALL
blocks) into the conditional entry GATE SNE, GATE
SF, GATE SNF, and GATE SE blocks.

STATISTICAL PRINTOUT

The standard storage statistical printout shown in
Table 22 is written on the output device under the
following three conditions:

1. A simulation run is terminated normally
after the termination count (specified in field A of
the latest START card) is decremented to zero or
less.

2. A simulation run is terminated by one of the
execution errors described in Appendix A.

3. A transaction enters the following type of
PRINT block:

PRINT k,k ,S
i u

As described in "PRINT Block" in Chapter 14,
the standard statistics for the storages numbered
from the field A lower limit (k.) up through the
field B upper limit (k) are printed. In all three
cases, statistics are printed only for those storages
which have had one or more entries (as recorded
in word S6).

Average Contents of Storage

The average contents of each Storage, which is
printed at the end of each simulation run, is equal
to:

Average Cumulative time integral of contents

Contents Relative Clock Time (C1) since last
RESET or CLEAR Card

The 64-bit cumulative integral is simply the
area under the following storage content profile:

160

Length of Length of Length of

S nRuntl —2& Runwr DK Rmsz

i

Storage Contents, Sj

A A Time

The average contents are simply the average
height of the above profile.

Average Utilization of Storage Capacity

The average utilization of the capacity of each
Storage, printed at the end of each simulation run,
is equal to:

Average _Average Contents
Utilization Storage Capacity

—Cumulative Time Integral
Relative Clock Time (Cl1) x Capacity

The Storage capacity is computed at any time as
the sum of the current contents (S1) and the
remaining capacity (S2).

RESETing and CLEARiIng of Cumulative Time
Integral

If RESET or CLEAR cards are not read between
multiple STARTs, the 64-bit cumulative time
integral continues to build up the area under the
Storage contents profile.

Consider the following series of three
simulation runs, each 1000 clock units long, where
the Storage has a capacity of 200 units:

Run Time Integial | With RESET/CLEAR Cards | Without RESET/CLEAR Cards
No. During Run Avg. Centents Avg. Utiliz. | Avg. Contents Avg. Utiliz.

1 7840 78.40, - 304 78.40 -394

2 @030 69,30 347 72.39 . 369

3 5482 54,82 274 67.51 . 338

If RESET or CLEAR cards are read between
multiple STARTs, the three average contents
values (78.40, 69,30, and 54. 82) are the statistics
only during each run. If no RESET or CLEAR
cards are read, the average contents values are
the cumulative contents for the first run (78.40),
for the duration of the first two runs (72.39), and
for the duration of the first three runs (67.51).

The same reasoning applies to the three individual

run average utilizations (. 394, .347, .274) versus
the three cumulative average utilizations (. 394,
.369, .338). There is a statistical advantage in
using the RESET cards since the three individual
average contents (78.40, 69.30, 54.82) give a
measure of the sampling variability arouna the
grand average value of 67.51.

Average Time per Transaction

The average time per transaction in the Storage is
computed as follows:

Average Time _Cumulative Time Integral
per Transaction Number of Entries (Word S6)

This statistic is really the average time per unit
entered into the storage, since the field B argument
of the ENTER block determines the number of units
entered into the storage by each transaction. Word
56 accumulates the number of units, and not
necessarily the number of transactions that entered
ENTER blocks which reference the storage. The
total number of units and the number of transactions
are equal only when each transaction contributes a
unit entry, e.g., when field B of every ENTER
block is blank or specifies one.

EFFECT OF RESET AND CLEAR CARDS ON
STORAGE STATISTICS

Table 23 summarizes the effects of RESET and
CLEAR cards on the attributes of storage entities.
A RESET card zeroes the 64-bit cumulative time
integral and sets the clock time of the last status
change equal to the current absolute clock time.
The entry count is then set equal to the Storage
contents (Sj) whose value will be in the range
between zero and the Storage capacity.

The above entry count adjustments can have a
significant effect on the computed average time per
transaction. Consider the following two cases:

CABE I

| [
& Length from Run # 1 — Sl Length of Run 6 2 %{
|

. 5. .

2nd RESET Card

8

1st RESET Card

CASE II

8 [
Length from Run # 1 Length of Run # 2 ,_‘;;1

3
14

2
2nid RESET Card

N

1st RF‘SET Card

In Case I, the Storage is empty at times t and
to when RESET cards are read. The true avera.ge
time per transaction is, therefore, computed and
printed out. However, in Case II, the storage is
not empty at time t,, i.e., 8j > 0. Consequently,
the S6 entry count for run 2 is initially set equal to
the storage contents at time t;, even though these
units were already counted in the entry count for
run 1. At time t, in Case II, the Storage contents
are again greater than zero when the second RESET
card is read. Consequently, the entry count for run
3 is initially set equal to the Storage contents at
time t_, even though these units were already
counted in the entry count for run 2.

The net result is that the computed average time
per transaction for both runs 1 and 2 in Case IT is
less than the true long-run average time per
transaction. The following general rule can be
stated for all storages: The computed average time
per transaction in each Storage is always less than
or equal to the true long-run average time per
transaction. This depends on whether the true
number of entries has been overstated because of
RESET card operations.

The only way in which the true long-run average
time per Storage entity can be definitely obtained
is with a model of the following type:

ENTER Q

MARK ! n ‘)
LEAVE 1
l Arg t of Table 1= MPn
TABULATE

The transit time of each transaction is
TABULATEA in table 1, whose argument is MPn
(the transaction transit time in Parameter n). The
transaction transit time is obtained by first
MARKing the absolute clock time in Parameter n,
when the transaction ENTERs Storage 1. The
above model is effective, however, only if the
maximum value of the clock does not exceed the
maximum value which can be stored in the specified
parameter. For this reason, it is suggested that
fullword parameters be used when MARKing
transaction parameters since the maximum range
of a halfword parameter is 32,767 and the absolute
clock might easily exceed this value.

161

REDEFINITION OF STORAGE CAPACITY WITH
STORAGE CARD

"Storage Definition Card", earlier in this chapter,
stated that each of the 150 storages in the standard
GPSS/360 program is initialized to have a capacity
of 2, 147, 483, 647=(231-1). This is accomplished
by simply setting Rj=(231-1), while Sj remains
zero. When a STORAGE definition card is read
during the initial input phase, Rj (the remaining
storage capacity) is set equal to the storage
capacity specified in field A of the STORAGE card.

The initial reading is simply a special case of
reading a STORAGE definition card during a
sequence of runs. There are two possible cases:

1. The new Storage capacity is greater than
the current Storage contents (Sj).

8j remains the same, while the remaining
storage capacity (Rj) is set equal to the difference
between the new Storage capacity and the current
Storage contents (5j).

2. The new Storage capacity is less than the
current Storage contents (8j).

An appropriate error message is given and the
run will be terminated when the next START card
is read.

EXAMPLES OF ENTER AND LEAVE BLOCKS

Example 1:

In model A, transactions wait in Queue 50

until they can ENTER Storage 3. Each transaction
that ENTERs block 61 occupies two storage units.
After a transaction ENTERs Storage 3, it
immediately attempts to SEIZE Facility *7. The
facility number is specified indirectly by Parameter
7 of the transaction. When its action time (100 +
50 clock units) at ADVANCE block 64 has been
completed, a transaction makes available one of
its two storage units at LEAVE block 66. Five
clock units later, the second Storage unit is made
available at LEAVE block 68.

Example 2:

Transactions ENTER BStorage 1 in model B with
varying numbers of units specified by Parameter 3,
which is the field B argument of ENTER block 30.
The average time per transaction in the Storage
statistics is, therefore, the average time per
Storage unit. However, it is also desired to obtain
the average time that each transaction spends in
the Storage, regardless of how many units the
transaction might have added or removed from the
Storage.

162

QUELE
61 *
3 MODEL A
ENTER [Fz
62 * |
Loc | OPERATION
DEPART —
1z J7fs a3 fisoa B c
K | .
| 60 QUEUE 50
SEIZE I H
‘ 61| |EnTER 3 ke
* | |
4 y62] |DEPART 50
ADVANCE l 63| |se1zei 7
) i
m*“ loa | |aovance hoo 50
f T
L {65 | {RELEASE 7
1
RELEASE W | 66| |LEAVE 3
T
| ADVANCE 5
86 * | !
68 LEAVE 3
I]
LEAVE (=) L 3| |sTorage 10
67 *
ADVANCE
5
68 *
LEAVE @

v

69

The average time per transaction may be
obtained by concurrently ENTERing a companion
statistical Storage 2 with a unit transaction count.
Field B of ENTER block 31 is blank, indicating a
unit entry count.

3

ENTER

ENTER
MODEL B

LEAVE

LEAVE

dd Db

Storage 2 now provides the desired statistics on
the average time per transaction, while Storage 1
provides the average time per Storage entry.

Example 3:

Storages can be used as important statisties-
gathering devices. In Model C, a communication
network has n lines numbered 1, 2, .. . , n. Each
transaction carries one of the transmission line
numbers (1, 2, . . . , n) in Parameter 5.

el T
e
Capaclty of Morage L = a

e\
s [

The standard GPSS/360 output provides the
average utilization and average time per transaction
on each of the line Facilities 1, 2, . . . , n.
Storage 1, however, also provides the grand average
utilization of all n line facilities, and the grand
average time of all transactions.

Example 4:

When the field B argument of an ENTER block
specifies a variable number of units to be entered
into a storage, it is possible for a later transaction
to ENTER the storage ahead of an earlier trans-
action. This can happen when a later transaction
specifies a field B entry count which is less than the
remaining Storage capacity (Rj), while an earlier
transaction has specified a field B entry count which
is greater than the remaining Storage capacity (Rj).
The following block diagrams show two ways to
ensure that later transactions cannot enter ahead of
earlier transactions:

MODEL D MODEL E

Either Facility 1 in model D, or Logic Switch 1
in model E, permits only one transaction at a time
to try to ENTER Storage 1.

Example 5:

In model F, transactions attempt to SEIZE one of

the 10 Facilities 1, 2, . . . 10. Facility 1 is
always tried first, Facility 2 is tried next if

Facility 1 is already being used, and finally
Facility 10, only if all of the other nine Facilities
are being used.
Model F can run quite slowly, however, since
the transactions, which are blocked in the
TRANSFER ALL block, because all ten facilities
are busy, are not deactivated from the overall
GPSS/360 scan by being put into pushdown delay
chains. Consequently, each time that the overall
GPSS/360 scan encounters these transactions, it
attempts to move them into each one of the 10 SEIZE
blocks, even if all 10 Facilities are currently being

used.

MODEL F

]

TTV\NSFER

AN
DEPART Q

ALL

SEIZE &

SEIZE

DEPART

()

Model G, which follows, can be considerably
faster. Transactions will be able to ENTER
Storage 1 (which has a capacity of ten), only when
one or more of the ten facilities are free to be
BEIZEd. Whenever all ten facilities are in use,

MODEL G

=10

>

QUEUE @
R |
ENTER @ Capacity of Slorage
|
DEPART @
1
TRANSFER
{ALL)
10 1 20 100
SEIZE & SRIZE A -------- SEIZE
Jf P
RELEASE V HELEASE V ------- RELEASE
LEAVE LEAVE @ LEAVE

d <

163

Storage 1 is also full. The delayed transactions
in QUEUE block 1 are now linked in a unique delay
chain of transactions which are waiting to ENTER
Storage 1.

These transactions are thereby deactivated
from being processed by the overall GPSS/360 scan.

Whenever a transaction RELEASEs one of the
facilities, it also LEAVEs Storage 1. If all ten
facilities were being used, i.e., Storage 1 was full,
the delay chain would be reactivated so that a
blocked transaction could now ENTER Storage 1 and
be sure of SEIZEing a free facility.

TABLE 21: §/360 CORE ALLOCATION FOR STORAGE ENTITIES

SYMBOL LENGTH

QUANTITY
Current contents of the
Storage. This is the
Standard Numerical
Attribute Sj.

S1 4 bytes

82 4 bytes Number of available
units in the Storage.
This is the Standard

Numerical Attribute Rj.

S53-84 8 bytes Cumulative time

integral

S5 4 hytes Last clock time the

Storage changed status.

56 4 hytes Entry count. This is
the Standard Numerical
Attribute SCj.

57 4 bytes Maximum Storage
contents. This is the
Standard Numerical

Attribute SMj.

S8 2 bytes Delay chain origin, for
transactions waiting for

the Storage to be "full."

164

STORAGE

This field is inecremented whenever a transaction
enters an ENTER block that refers to the Storage.
The magnitude of the increment is specified by
the ENTER block field B argument.

This field is decremented when a transaction

enters an ENTER block which refers to the Storage.
The magnitude of the decrease is specified by the
ENTER block field B. Note that the sum on this
field and Sl equals the capacity of the storage.
When a transaction enters a LEAVE block, the
number of units specified by the LEAVE block field
B is added to this field, and subtracted from Sl'

The cumulative time integral is a 64=bit, floating-
point sum of the number of clock units that the
Storage was occupied, weighted by the number of
units in the Storage during each interval that the
occupancy was constant. The infegral is updated
each time the Storage content changes status.

This word contains the clock time at which the time
integral was last updated. The clock time is placed
in this word each time the Storage changes status,
and when a RESET or CLEAR card is read.

This word is incremented every time a transaction
enters an ENTER block. The magnitude of the
inecrement is specified at the ENTER block.

Each time a transaction enters an ENTER block
which refers to the Storage, the new total contents
of the Storage is compared against this field. If
the new contents is greater than the previous
maximum, it is entered in this word.

Each time a transaction at a GATE SF block fails to
advance because the Storage is not full, the number
of that transaction is put in this field (unless the
transaction is in a TRANSFER block with a BOTH or
ALL selection mode). The previous transaction
number in the field is placed in the first two bytes of
transaction word T1, thus forming a pushdown delay

SYMBOL LENGTH
S8 (Cont)
s9 2 bytes
S10 2 bytes
511 2 bytes
S12 2 bytes
813 2 bytes

TABLE 21 (CONTINUED)

QUANTITY

Delay chain origin, for
transactions waiting for
the storage to be "not
full."

Delay chain origin, for
transactions waiting for
the storage to be
"empty. "

Delay chain origin, for
transactions waiting for
the storage to be "not

empwl "

Delay chain origin,
waiting for a reduction
in the contents of the
Storage in order to
enter the Storage.

Unused

STORAGE

chain of transactions waiting for the Storage to be
full. The delay chain is reactivated whenever Rj
(52) becomes zero as a result of a transaction
entering an ENTER block.

The pushdown delay chain is formed in the usual
manner, and is cleared whenever S2 becomes
nonzero (after previously being zero) as a result of
a transaction entering a LEAVE block. These
transactions are blocked by a GATE SNF block.

This pushdown delay chain is formed in the usual
manner and is cleared whenever S1 becomes zero
as a result of a transaction entering a LEAVE
block. These transactions are blocked by a GATE
SE block.

This pushdown delay chain is formed in the usual
manner and is cleared whenever S1 becomes
nonzero (after previously being zero) as a result
of a transaction entering an ENTER block. These
transactions are blocked by a GATE SNE block.

This pushdown delay chain is formed in the usual
manner, and is reactivated whenever a transaction

enters a LEAVE block. These transactions are
blocked by an ENTER block.

165

TABLE 22: STATISTICAL PRINTOUT FOR STORAGE ENTITIES

Average Average Average Current Maximum
Storage Capacity Contents Utilization Entries Time/Trans. Contents Contents
1 1000 555.21 . 5552 4640 47862.90 634 1000
CPU 1 .60 . 5987 212 1129.55 0 1
10 32767 9.42 . 0003 308 12233. 24 41 41
I A A A
Storage Cumulative Time Entry Count Word 87
name or Integral (83, S4) (Word 6)
number Relative clock time
since last RESET or Cumulative Time
CLEAR card Integral (S3,54)
Number of entries
(Word S6)
Originally field A of Cumulative Time Integral Word S1
STORAGE definition card, (S3, 54)
subsequently the sum of Relative clock Capacity
Si+Rj (S1+82) time since last x (S1+82)
RESET or
CLEAR card

166

TABLE 23: EFFECT OF RESET AND CLEAR CARDS ON STORAGE ATTRIBUTES

RESET Card

Attribute Value
Before RESET Card

Result of RESET
Card on Attribute Value

Word Length
S1 4 bytes
52 4 bytes
53-54 8 bytes
55 4 bytes
S6 4 bytes
S7 4 bytes
58, 89 2 bytes
510, S11 each
512

Current contents of Storage
Number of available units
Cumulative Time Integral

Clock time of last status
change

Entry count

Maximum contents

Origin of five different
pushdown delay chains

CLEAR Card

Unchanged
Unchanged
Set to zero

Set to current valve
of absolute clock.

Set equal to current
contents (S1 word)

Set equal to current
contents (S1 word)

Unchanged

All words are set to zero except word S2 (number of available units) which is set equal to the total Storage

capacity (51+82) or (Rj+8j).

167

CHAPTER 12: QUEUE ENTITIES

GENERAL NATURE

Queue entities are incorporated into simulation
models for the purpose of gathering statistics on
transactions which are delayed by a common cause
or set of causes. The standard GPSS/360 program
for a 128k machine has core allocated for 150
RQueues, numbered 1, 2, . . . 150. Execution
Error 500 will oceur if a Queue number greater
than the quantity allocated is referenced. Table 24
describes the attributes stored in the eight words
required for each Queue.

These words accumulate various statistics on
the contents of Queues, which are printed as part
of the standard GPSS/360 output. Key Queue
statistics include:

1. the average contents of the Queue;

2. the total number of entries into the Queue,
l.e., into QUEUE blocks;

3. The number of entries which spent zero
time in the Queue, i.e., which entered a DEPART
block at the same clock time as they entered a
QUEUE block;

4. The percentage of transactions which spend
zero time in the Queue;

5. The average time that all entries spend in
the Queue, between entering QUEUE and DEPART
blocks;

6. The average time that delayed entries spend
in the QUEUE, between entering QUEUE and
DEPART blocks;

7. The current Queue contents, and the maxi-
mum contents observed since the last RESET or
CLEAR card.

Two block types, QUEUE and DEPART, are
associated with Queue entities.

STANDARD NUMERICAL ATTRIBUTES

Each Queue entity has seven Standard Numerical
Attributes:

Qi = current contents of Queue j

QMj = maximum contents of Queue j

QAj = average contents of Queue j

QCj =total entries into Queue j

QRZj = zero entries into Queue j

QTj =average time/transaction in Queue j

QXj =average time/transaction in Queue j
excluding zero entries

The range of values is zero through 231-1.

168

STANDARD LOGICAL ATTRIBUTES

There are no Standard Logical Attributes associ-
ated with Queues. TEST blocks may, however, be
used to define various relations between Queue
SNA's and constants. These TEST blocks can then
control the flow of transactions as a function of
these Queue SNA's.

INTERNAL ATTRIBUTES

Table 24 describes the various internal attributes
which are stored in the eight Queue words (Q1,
Q2, . . . @8). These include:

1. the current contents of the Queue (Q6 word).
This is the Standard Numerical Attribute Qj.

2. the maximumQueue contents, QMj, observed
since the last RESET or CLEAR card (Q7 word).

3. the total number of entries into the Queue,
QCj, i.e., into QUEUE blocks (Q2 word).

4. the number of zero-delay entries into the
Queue, QZj, (Q3 word).

5. the clock time of the last status change
(@1 word), i.e., when the Queue contents either
increased (QUEUE block) or decreased (DEPART
block).

6. a long-precision floating-point cumulative
time integral of the Queue contents (@4 and Q5
words).

QUEUE BLOCK

1 Index Number [‘N‘umhnr of Uni:ﬂ
of Queue o Enter Quoue
2 LOC |7 | 8 OPERATION |19 A B
l ‘ | QUEUE | SNAJ, SNA*n [SNkM' sm\—n] @
k, *n s 0
Examples:
QUEUE 3
QUEUE *10, P1
QUEUE FN3, 10
QUEUE FN*11

QUEUE blocks never refuse entry to a transaction.
Transactions attempt to enter the next sequential
block following the QUEUE block. This is gener-
ally a block which can refuse entry to a transaction,
i.e., SEIZE, PREEMPT, and ENTER blocks, or
GATE and TEST blocks which are operating in a
conditional entry mode. The field A argument of
the QUEUE block specifies the index number of a
Queue. The field B argument specifies the number

Symbolic
Core

Location

Q1

Q2

Q3

Q4-Q5

Q6

Q7

Q8

TABLE 24: S/360 CORE ALLOCATION FOR QUEUE ENTITIES

Quanti.ty

Last clock time the Queue
changed status
(4 bytes)

Total entry count into Queue.
(4 bytes)

Number of zero-delay entries.
(4 bytes)

Cumulative time integral.
(8 bytes)

Current contents of the Queue.

(4 bytes)

Maximum contents of the Queue.

(4 bytes)

QTABLE number,
(4 bytes)

Source

This word contains the last clock time
at which the cumulative time integral
was computed. The clock time is
placed in the word each time the Queue
changes status and when a RESET or
CLEAR card is encountered.

This word is incremented each time

a transaction enters a QUEUE block
which refers to the Queue. The magni-
tude of the increment is specified by the
field B argument of the QUEUE block.

This field is incremented whenever a
transaction enters and leaves the Queue
with no time delay. The magnitude of
the increment is given by the field B
argument of the QUEUE block.

The cumulative time integral is a long-
precision, floating-point number which
represents the sum of clock units the
Queue was occupied, weighted by the
Queue content during each interval

in which the content was constant.

This field is incremented whenever a
transaction enters a QUEUE block
which refers to the Queue, and is
decremented whenever a transaction
enters a corresponding DEPART block.
The magnitude of the change is specified
by field B of the QUEUE and DEPART
blocks.

Each time a transaction enters a
QUEUE block which refers to the Queue,
the new contents, @6, are compared
against this field. If the new contents
are greater, they replace this field.

This field is set up at input time when a
QTABLE card is read which refers to
the Queue. The field contains a table
number in which Queue delay times are
entered.

169

of units which are to be added to the current
QUEUE contents, If field=-B is blank, it is assumed
to be one.

The QUEUE block, therefore, behaves much
like an ENTER block, with the important excep-
tion that a Queue does not have a capacity limit,
i.e., transactions can always enter a QUEUE
block and add to its contents.

The same transaction can add to the contents
of an unlimited number of Queues, and can sub-
sequently, in DEPART blocks, remove the same
or different number of units from all, or just some,
of these Queues.

Operations When a Transaction Enters a QUEUE
Block

The current QUEUE contents, Qj, are incremented
by the value of the field B argument. In GPSS III
the current Queue contents were maintained modulo
215, However, in GPSS/360, the current Queue
contents may range from zeroto 231-1,

The new Queue contents, (Qj), are compared
against the maximum contents, (QMj). If the new
Queue contents are greater, this value becomes
the new maximum contents.

The entry count into the Queue, (Q2 word), is
incremented by the field B number of units, which
can be one or more. Therefore, the number of
transactions which enter the Queue will always be
less than or equal to the Q2 entry count (QCj).

Observe that no record is maintained of which
transactions enter a Queue, as opposed to facilities
which record the numbers of the transactions that
are SEIZEing and PREEMPTing the facility
Therefore, completely different transactions may
DEPART from a QUEUE than those that entered it
in QUEUE blocks. A transaction does not have to
remove the same number of units from the Queue
(in a DEPART block) that is added (in a QUEUE
block). Ultimately, the additions and removals of
all transactions must balance out. Otherwise,
execution error 428 may occur (transaction
DEPARTIing Queue by more than Queue contents).

The QUEUE block subroutine also computes the
length of time that the Queue was at its previous
contents:

Length _ Current absolute _
of time clock time

Time of last
status change
(word Q1)

The product of this time interval and the
previous contents is added to the cumulative time
integral (which is maintained in words Q4 and Q5).
The current absolute clock time is then stored in
word QL as the time of the last status change.

170

The cumulative time integral of the Queue
contents can be portrayed as shown in Figure 31.

—

Qi

AREA EQUALS

\ AMOUNT ADDED \
TO CUMULATIVE
TIME INTEGRAL

NI

CURRENT
CLOCK TIME

QUEUE CONTENTS

N

TIME OF LAST
STATUS CHANGE

Figure 31. Cumulative Time Integral of Queue Contents

At the end of the simulation run, the cumulative
time integral is divided by the value of the rela-
tive clock (C1) since the last RESET or CLEAR
card to obtain the average contents of the Queue
(QA]).

The time integral is also divided by the entry
count to obtain the average time per entry into the
Queue (QTj), and by the number of nonzero delay
entries to obtain the average time per delayed
entry into the Queue (QXj).

The QUEUE block subroutine performs one
additional operation which is not performed by the
ENTER block subroutine. The current absolute
clock time is placed in transaction word T14, so
that the time in the Queue may be subsequently
tabulated in a QTABLE (see "QTABLE Card",
later in this chapter, for further details).

DEPART BLOCK

Index Number umber of Unlt
of Queue Ed from Queue j
| 2 l..GC| 7 ’s OPERATION | 10 A B
’ | | DEPART | SNAJ, SNA®H | SNAJ, sm-il BEEART
k, *n Kk, *n
Examples:
DEPART 5
DEPART 1, Q1 Empty the Queue
DEPART 6, FN*11
DEPART V3, V4

The DEPART block is used to reduce the contents
in a Queue entity. A transaction is always per-
mitted to enter a DEPART block, but a restriction
is made on the amount of Queue contents which
may be removed. The DEPART block specifies
the Queue number in field A and the number of

units to be removed in field B in exactly the same
way as the QUEUE block. If field B is blank, one
unit is removed from the Queue contents. Trans-
actions proceed to the next sequential block follow-
ing the DEPART block.

Execution Error 428 (transaction DEPARTIng
Queue by more than Queue contents) will oceur if
the number of units to be removed from the Queue
(the value of the field B argument, or one if field
B is blank) is greater than the current contents of
the Queue (Qj). Execution Error 428 will obviously
occur if a transaction enters a DEPART block when
the referenced Queue is empty.

Each time a transaction enters a DEPART block,
the current contents (Qj) of the referenced Queue
is decremented by the number of field B units.

The entry count is not affected by the DEPART
block.

The DEPART block subroutine (just like the
Q UEUE block) computes the length of time that the
Queue was at its previous contents:

Current absolute _ Time of last
clock time status change
(word Q1)

Length

of time ~

The product of this time interval and the previous
contents is added to the double-word cumulative
time integral. The current absolute clock time is
then stored in word Q1 as the time of the last
status change.

The DEPART block subroutine checks whether
the transaction has spent zero time in the Queue,
If the current absolute clock time is the same as
the time stored in transaction word T14, it is
assumed that the transaction has spent zero time in
the Queue. This is because the QUEUE block sub-
routine places the entry clock time in word T14.

If there was a zero delay time (word T14 = current
clock time), the number of zero delay time entries
in word Q3 is ineremented by the number of units
specified by the field B argument of the DEPART
block.

The DEPART block subroutine finally checks if
a QTABLE number has been stored in word Q8. If
a QTABLE is referenced, the time spent in the
Queue is tabulated in the table. The Queue delay
time is computed as follows:

Time spent Current absolute _ Time in trans-
in queue clock time action word T14

QTABLE CARD
Queue entities provide, as part of their standard

statistical output, the average time per transaction
(see Table 25). This is equal to the cumulative

time integral of the Queue contents divided by the
number of entries into the Queue. As discussed in
"Examples of QUEUE and DEPART Blocks" later
in this chapter, this statistic may be less than the
true long-run average Queue delay time.

Model A shows one way to obtain the complete
distribution of true Queue delay times. Table 5,
which is referenced by TABULATE block 44, pro-
vides the Queue delay times measured on Para-
meter 2 (argument MP2).

Queue entities, however, provide a simpler and
more powerful means of tabulating the complete
distribution of true Queue delay times. As shown
in model B, a QTABLE definition card has the
following arguments:

1. Field A specifies a Queue number which may
be a constant or a symbol.

2. The location field specifies a table number,
which is stored in Q8 word of the Queue specified
by field A.

3. TFields B, C, and D are the same as for a
normal TABLE definition card.

These fields set up a table entity as described in

Chapter 13:
Field B: Upper limit of lowest table frequency
interval
Field C: Width of table frequency interval
TField D: Number of frequency intervals

Whenever a transaction enters a DEPART
block, the @8 word is tested for a table number.
If a table number has been entered via a QTABLE
definition card, the following Queue delay time for
the transaction is tabulated in the specified table:

Queue _ Current absolute _ Time stored in
delay time clock time transaction
word T14

Zero delay times are included in the tabulated
values.

The time in word T14 should be the absolute
clock time when the transaction entered a QUEUE
block which references the same Queue as the
DEPART block. (The QUEUE block subroutine
automatically places the entry clock time in word
T14.) This simple mechanism subsequently per-
mits the true Queue delay times fo be tabulated
in QTABLES.

MULTIPLE QUEUES

In GPSS/360, a {ransaction may be a member of up
to five Queues at any one time. This enables the
analyst to obtain meaningful Queue statistics for
transactions which enter multiple Queues at
different points of time. Thus, intermediate delay
times may be measured along with overall delay

171

DEPART B DEPART

¥

MODEL 18 (WITH QTABLE)

DD a

4

[FABULATI
MODEL A
__'l Loc OPERATION
il 8 113 19 A B C D
*, WITHOUT QTABLE - DELAY TIME|TABULATED A% Mp2
T MARK 2
T QUEUE 8
L 42 SEIZE 3
EE DEPART 8
. A4 TABULATE | §
] TABLE MP2 | 0 5[40 DELAY TIME
*, DELAY[TIME BY QTABLE CARD
2l QUEDE B
T4z SEIZE 3
I aa DEPART 8
| 5 QTABLE 8 0 5 |10 Same resulls us dbove

times. Transaction word T14 contains an address
in COMMON of multi-Queue table which contains the
Queue numbers and QUEUE block entry times.

Execution Warning Messages

An attempt by a transaction enter more than five
Queues at any one time will result in the following
warning message being printed:
WARNING EXECUTION ERROR NUMBER 853.
BLOCK NUMBER XXXX. CLOCK YYYY. SIMU-
LATION CONTINUES.
where XXXX = QUEUE block at which the
error occurred,
YYYY = Clock time at which the error
occurred.

The contents of the Queue specified by field A
will be incremented by the amount specified in
field B. Testing for maximum contents will be
made and updating will be done accordingly.
Cumulative time integral information will not be
calculated. Therefore, statistics on average time
per transaction in Queue, number of zero entries,
percent zeros, and average time per transaction
excluding zero entries will be in error. An attempt
by a transaction to depart from a Queue of which it
is not a member will result in the following warning
message being printed:

WARNING EXECUTION ERROR NUMBER 854.
BLOCK NUMBER XXXX. CLOCK YYYY. SIMULA-
TION CONTINUES.

172

where XXXX = DEPART block at which the

error occurred.
YYYY = Clock time at which error

occurred,

The transaction will proceed to the next
sequential block, and because it may be the in-
tention of the analyst to allow one transaction to
remove units from a Queue which were added by
another transaction, the number of units specified
in field B of the DEPART block will be removed
from the Queue.

Each warning message will be printed only the
first time the specified error oceurs.

INCLUSION OF ADVANCE BLOCKS BETWEEN
QUEUE AND DEPART BLOCKS

In GPSS III, transaction word T4 was used to store
the QUEUE block entry time as well as the time the
transaction was scheduled to leave the future events
chain. Consequently, inclusion of ADVANCE
blocks between QUEUE and DEPART blocks often
resulted in meaningless output statistics.

In GPSS/360, since each QUEUE block entry
time (for up to five Queues) is stored separately
in a table associated with each transaction, the
user may now insert ADVANCE blocks between
QUEUE and DEPART blocks without destroying
Queue statistics.

STATISTICAL PRINTOQUT

The standard Queue statistical printout shown in
Table 25 is printed under the following three con-
ditions:

1. A simulation run is terminated normally
after the termination count (specified in field A
of the latest START card) is decremented to zero
or less.

2. A simulation run is terminated by one of the
running errors described in Appendix A.

3. A transaction enters the following type of
PRINT block:

PRINT ko ku, Q

As described in "PRINT Block” in Chapter.14, the
standard statisties are printed for the Queues from
the field A lower limit {k]) up through the field B
upper limit (k). In all three cases, statistics are
printed only for those Queues which have had one
or more entries (as recorded in word Q2).

Average Contents of Queue

The average contents of each Queue, which is
printed at the end of each simulation run, is
equal to:

(e®-zd) serxue ferep
0JOZUOU JO J3QUINN

(c® pue 70) Texdel]
auwIL], 2AIJEMIUNYD

(gb) serxjug 18101

(ot pue $0) [BISeiUl

(1D) 001D 2AIRETO ™

(et pue $®) Texsdau]

ouIL], SATJETIUIND QuIl], @ATjETNUND
Jaquinu
JI0 9WIBU
00T X &b
(v} (] ed v} v} v} anan®
germuy | odey SUIpnoxd | sUBLT feTILL e8exeAy |SuBLL/OUILT afeJeAy 4
v v v

g £ 8G°LTL6F T6"1EC6T L°09 688 9Ly FE 68] 8
aL 0 £L°9693808 T9°€520028 a1 T £8 GG TF el ndao

T 0T GL"0GZ2 08°006 0°09 9 0T eo"’ 4 T
SJUSUOD Jequuny ~ SUBLL/OUILY SUBLL/AWLT, goJday7 sorIuyg gorIus S1UeIu00) S0 anand

JusIIND a1eId afexeAy § o8vIoAY TuaoIad 0187, 18101 ofexoAy WINULTXBTT
([®) (fxd) ([L®) (V4 (fo®) (tv®) (fn®)

SALLIINT AnANd 04 LOOINIHd TVOILSILVLS 52 A'TdVL

173

Cumulative time integral of
contents (Q4 and Q5 word)
Relative clock time (C1) since
last RESET or CLEAR card

The 64-bit cumulative time integral is the area
under the Queue contents profile shown in Figure
32. The average Queue contents is simply the
average height of the profile.

Average &
Contents

Queue Contents (Qf)

Time

Figure 32, Queue Contents Profile

RESETing and CLEARing of Cumulative Time
Integral

If RESET or CLEAR cards are not used between
multiple STARTSs, the cumulative time integral
continues to build up the area under the Queue
contents profile. "Effect of RESET and CLEAR
Cards on Storage Statistics", in Chapter 11,
described how RESET cards provide individual
run statistics on storage entities. The same
considerations apply to Queue entities. Once
again, there is a statistical advantage in using
RESET cards since the individual run statistics
provide a measure of the sampling variability
around the grand average values. Without the
RESET cards, only the grand average values would
be obtained.

Average Time per Transaction

Two average time per transaction statistics are
printed for each Queue:

Average Time/
Trans

Cumulative Time Integral
Total entries (word Q2)

$Average Time/
Trans

Cumulative Time Integral
Number of delayed entries
(word Q2-Q3)

The first average time is based on all transac-
tions, including zero time delay transactions. The
second average time excludes zero-time delay

174

transactions, i.e., it is the average time spent in
the Queue by only those transactions which were
actually delayed.

EFFECT OF RESET AND CLEAR CARDS ON
QUEUE STATISTICS

Table 26 summarizes the effects of RESET and
CLEAR cards on the attributes of Queue entities.
A RESET card zeros the cumulative time integral
(Q4 and Q5 words), and sets the clock time of the
last status change (Q1 word) equal to the current
absolute clock time. The entry count (Q2 word) is
then set equal to the current Queue contents (Qj)
which may be in the range between 0 and 231-1,
""Selective Reset'" in Chapter 15 describes the
method by which the user may specify certain
Queues which the RESET operations will not affect.

A CLEAR card zeros out all the Queue statistics,
including the current Queue contents.

The above entry count adjustments can have the
same significant effect on the computed average
time per transaction that was discussed in '"Average
Time per Transaction" in Chapter 11,

The following general rule can be stated for all
Queues:

The computed average time per transaction on
each Queue is always less than or equal to the
true long-run average time per transaction.
This depends on whether the true number of
entries has been overstated because of RESET
card operations.

The above also applies to the percentage of zero—
delay entries.

QTABLEs provide a solution to this problem as
discussed in "QTABLE Card" earlier in this
chapter. Such tables will provide the complete
distribution of true Queue delay times.

The two average time per transaction statistics
are really the average time per unit entered into
the Queue, since the field B argument of the
QUEUE block determines the number of units
entered into the Queue by each transaction. Words
Q2 and Q3 accumulate the number of units, which
is not necessarily the number of transactions which
entered QUEUE and DEPART blocks which reference
the Queue. The entry counts and the number of
transactions are equal only when each transaction
contributes a unit entry, e.g., when fields B of all
QUEUE and DEPART blocks are blank,

EXAMPLES OF QUEUE AND DEPART BLOCKS

Example 1: Grand Average Statistics for a Set of
Queues

TABLE 26: EFFECT OF RESET AND CLEAR CARDS ON QUEUE ATTRIBUTES

RESET Card
Attribute Value Result of RESET Card
Word before RESET Card on Attribute Value
Ql Last clock time the Queue changed Set equal to current value of absolute
status clock
Q2 Total entry count Set equal to the current contents of the
Queue
Q3 Number of zero delay entries Set to zero
Q4-Q5 Cumulative time integral Set to zero
Q6 Current contents of the Queue Unchanged
Q7 Maximum contents of the Queue Set equal to the current contents of the
Queue
Q8 Qtable number Unchanged
CLEAR Card

All eight words and their fields are set to zero except:
Q8 Q table number Unchanged

In the following model, Transaction Parameter 1 Example 2:
contains the numbers 2, 3, . . . n:
In each of the following models, transactions will be
QUEUE @ delayed in Queue 1 only when both Facility 1 is in
[use and Logic Switch 1 is in a reset condition:

aweor) El¢
Tranaler

DEPART @
Depart a Depart Cl).
DEPART Q

Consequently, transactions which attempt to
SEIZE Facility *1 (=2, 3, . . .n) first enter one
of the Queues *1 (=2, 3, . . .,n). Each transac-
tion, however, also enters Queue 1, which provides
the grand average for all the Queues 2, 3, . . . n.

Queue 1

BV1 =FNUI+151

175

Example 3:

In each of the following models, transactions will

be delayed in Queue 1 until Faeility 3 is "not-in-
use', Logic Switch 4 is "set,'" and Storage 10

is "not full".

Queue @

Depart @

Cueue 1)

510

BV1= FNU3*LS4*5NF 10

176

CHAPTER 13: DISTRIBUTION TABLE ENTITIES

GENERAL NATURE

Distribution Table entities are used in simulation
models to obtain the frequency distribution of a
specified argument, which can be any one of the
Standard Numerical Attributes. The standard
GPSS/360 program for a 128k machine has core
allocated for 30 Tables. Execution Error 435 will
occur if an illegal table number is referenced
during a run, either in a TABULATE block or as
the index j of the Standard Numerical Attribute
TBj, TDj, or TCj. Table 27 describes the attributes
stored in the twelve words required for each Table.

TABLE STATISTICS

Table 28 illustrates the standard set of statistics
which are printed out for each Table at the end of
a simulation run, or after an Execution Error.
These statistics, which are described in detail in
"Table Statistical Printout" later in this chapter,
include:

1. The sum of the Table arguments which have
been TABULATEd since the last RESET or CLEAR
card (or during the first simulation run). The sum
of the arguments is accumulated in word D1.

2. The number of entries into the Table, i.e.,
the number of times that a transaction entered a
TABULATE block which referenced the particular
Table and thereby resulted in tabulation of the value
of the Table argument. The number of entries is
accumulated in word D6.

3. The mean value of the Table arguments -
which is simply,

Mean

Value

of Sum of Table arguments (word D1)
Argu- = Number of entries into Table
ments (word D6)

4, The standard deviation of the Table arguments
whose computation is described later in ""Table
Statistical Printout."

5. The average value of overflow argument
values in the upper (last) frequency interval, This
will be printed at the bottom of the Table printout
if any overflow values were observed.

6. One output line of statistics for each
frequency interval of the Table, including the
following:

a. Number of times the value of the Table
argument was within each frequency
interval.

b. The percentage of the total observations
in each frequency interval.

¢. The cumulative percentage of the total
observations which are equal to or less
than the upper limit of each frequency
interval.

d. The cumulative remaining percentage of the
total observations which are greater than
the upper limit of each frequency interval.

e. The upper limit of the frequency interval
expressed as a multiple of the mean value
of the Table argument values.

f. The upper limit of the frequency interval
expressed as a multiple of the standard
deviation from the mean value of the Table
argument values.

STANDARD NUMERICAL ATTRIBUTES

Each Table entity has three Standard Numerical
Attributes associated with it; these can be addressed
at any time by the mnemonic TBj, TDj, or TCj:

TBj = mean of the argument values accumulated
in the Table since the last RESET or
CLEAR card (or since the start of the
simulation job if no RESET or CLEAR
cards have as yet been encountered).

Sum of arguments (D1)
= Number of entries (D6)

TDj = Table Standard Deviation, square root of

the variance

/D2 - (m)E/DG
= D6-1

TCj = number of entries in Table

STANDARD LOGICAL ATTRIBUTES

There are no Standard Logical Attributes associated
with Table entities.

TABULATE BLOCK

Weighting
B Factor
/

TABULATEH A

177

Word

Field

Quantity

TABLE 27: S/360 CORE ALLOCATION FOR TABLE ENTITIES

Source

D1

D2

D3

D4

D5

D6

D7

178

Full Word

Full Word

Full Word

Full Word

Full Word

Full Word

1 Byte

3 Bytes

Sum of the arguments
entered in the Table,

Sum of the squared values
of the arguments entered
in the Table.

Sum of the weighted values
of the arguments entered
in the Table

Sum of the weighted,
squared values of the
arguments entered in the
Table.

Temporary storage for the
Table.

Number of entries in Table.

Mode of tabulating Table
arguments.

Width of the Table frequency
classes.

This value (signed, floating-point) is incremented
by each argument value that is entered in the Table,
The sum is used in the computation of the mean
argument,

This floating-point value is incremented by the
square of each argument value that is entered

in the Table. The sum is used in the computation
of the standard deviation of the Table argument.

This floating-point value is incremented by the
product of the argument and the number of units
specified by the field B weighting-factor of the
TABULATE block which is initiating the tabulation.
The sum is used in the computation of a weighted
mean.

This floating-point value is incremented by the
product of the square of the argument and the
number of units specified by the field B weighting
factor of the TABULATE block which is initiating
the tabulation. The sum is used in the computation
of a standard deviation of the weighted argument.

This fixed-point value contains either:

1. The last value of the argument for a Table
which is operating in the difference mode or
IA mode.

2, The sum of the number of units that have
arrived for a Table which is operating in the
RT mode. In the latter case, the number of
units contributing to the sum is specified by
field B of the TABULATE block.

This value is incremented each time a transaction
enters a TABULATE block referring to the Table
(except for RT mode). The magnitude of the
increment is specified by the field B argument of
the TABULATE block.

Set up at input time from field A of the TABLE
card which specifies the argument and field D
which specifies weighted or nonweighted mode.
Bit 5 - Weighted mode

Bit 4 - 1A mode

Bit 3 - RT mode

Bit 2 - Difference mode

Bit 1 - Normal mode

Bits 0,6,7 - Not used

This constant is set up at input time from field C
of the TABLE definition card.

TABLE 27: (Continued)

Word Field Quantity Source

D8 Full Word Address of COMMON This field is set up at input time when the number
where frequency of classes is requested by the TABLE card field D,
classes are located. The block of storage is obtained from the chain of

COMMON storage.

D9 Full Word Table argument or arrival This field is set up at input time from field A or
rate time interval for RT field E of the TABLE definition card.
mode.

D10 Full Word Sum of overflow argument This value (signed, floating-point) is incremented
values in last frequency by each argument value which lies in the last
interval of Table. frequency interval of Table. This sum is divided

by the number of entities in the last interval to
obtain "TAVERAGE VALUE OF OVERFLOW."

D11 Half Word Number of frequency This constant is set up at input time from field D
classes in Table. of the TABLE definition card.

D12 Half Word Temporary storage for Nonweighted sum of the number of units that have
RT mode Table. arrived for Table operating in the RT mode.

D13 Full Word Upper limit of the lowest This constant is set up at input time from field B

interval of the Table.

of the TABLE definition card.

The current argument value of a Table is
TABULATEd whenever a transaction enters a
TABULATE block. An appropriate entry will be
made in the Table, whose number is specified by
field A of the TABULATE block. It should be
noted that the type of argument tabulation requested
depends on the mode of operation of the Table. For
example, the Table may take for its argument M1,
the transit time of the current transaction (the one
entering the TABULATE block). In contrast, the
Table may use the contents of a queue (Qj) as its
argument. In this case, @j does not depend on any
property of the transaction entering the TABULATE
block. The TABULATE block should thus be
regarded as a general request for an appropriate
Table operation, with the specific request
determined by the TABLE definition card (see
below).

A TABULATE block may also specify the
number of units to be added to the class of the
distribution in which the argument is placed.

Field B is used to specify this quantity. If the
field is blank, the number is assumed fo be equal
to one. If a weighting factor is used (field B),
field D of the associated TABLE definition card
must begin with any alphabetic character.

TABLE DEFINITION CARD

Upper
limit of Number Arrival
Table Table lowest Internal of rate time
numbar argument intarval width intervals | Interval
2z LOC 7| 8 OPERATION 19 A B c
j TABLE SNA)J kg ko kp kg
SNA*n
SNAJ-,
SNA*p-,
RT
1A
Examples:
2b00|'!|aOFERATION]m A | B| G| I:l| 51
10 TABLE M1 500 100 25
20 TABLE RT 0 1 60 1500
a3 TABLE IA 100 100 20
3 TABLE N20 0 1 12

The TABLE definition card provides the user with
a means of specifying the independent argument as
well as the range and width of frequency classes.
When a minus sign (=) follows the Standard
Numerical Attribute used as the Table argument,
the Table operates in a difference mode. The
difference between the current argument value and
its previously TABULATEd value is recorded in the

179

appropriate Table frequency interval (the most
recently TABULATEd value is stored in word D5 of
Tables operating in the difference mode). The
special Table argument RT indicates that the Table
operates in an arrival rate mode (see Example 3 in
"Table Arguments" below). The special Table
argument IA indicates that the Table operates in an
interarrival time mode (see Example 3 in ""Table
Arguments' below.)

If the field A argument of a TABULATE block
references an undefined Table , Execution Error
436 occurs.

When a TABLE definition card is encountered the
field D argument (k) specifies the number of
frequency intervals in the Table. The GPSS/360
program obtains kp words from COMMON storage
and associates them with the Table entity, whose
index number j is specified in the location field of
the TABLE card. The field C argument of the
TABLE definition card (kg) specifies the width of
each of the kp frequency intervals of the Table.

The Table entity can be portrayed as follows in
terms of the field B,C, and D arguments:

Last
Firat Secand Third (kp=1)th (kpth)
froquency | frequency | frequency frequency | frequency
interval interval interval interval interval
ke —pa— ko ke —
kp kptkg kpt+Zke f Valuea of argument
ki, = Upper limit of Hest kg+kp-3ka
{lowest) {requency
interval kp+lkp-2lkg

The first (lowest) frequency interval extends from
-231 yp through and including kg, the upper limit of
the first interval which is specified in field B of the
TABLE definition card. The first of the kp
COMMON storage words accumulates the number of
times that the value of the Table argument falls
within the lowest (first) frequency interval. Next,
there are (kp - 2) inner frequency intervals, each
with a width kg. There are (kp - 2) corresponding
COMMON storage words, each of which accumulates
the number of times that the value of the Table
argument falls within the particular frequency
interval. The last (kpth) frequency interval extends
from kg+(kp-2)kg (which is the upper limit of the
next to last frequency interval) up through + (231-1),
The last (kpth) COMMON storage word accumulates
the number of times that the value of the Table
argument falls within the last frequency interval.
This last frequency class is identified as the over-
flow in the Table printout.

TABLE ARGUMENTS

Field A of the TABLE definition card specifies the
Table argument, The value of the argument is

180

TABULATEd each time that a transaction enters a
TABULATE block which references the particular

Table (the Table argument is stored in word Dg of

the Table entity). The Table argument can be any

Standard Numerical Attribute, except a constant or
a matrix savevalue (MX or MH).

In GPSS III, *n was not permitted as a Table
argument, but in GPSS/360 *n as well as Pn can be
used as a Table argument to reference the value of
Parameter n of the transaction in the TABULATE
block.

Example 1:

Model A, which is shown and described below,
shows how transaction transit times may be
TABULATEd.

Table 1 will TABULATE M1, the transaction
transit time from block 1 through block 6. Table 2
TABULATESs the time between block 1 and 11, while
Table 3 TABULATEs an intermediate transit time,
MPS8, between blocks 8 and 11. The MARK block 8
stores the low-order 15 bits of the current absolute
clock time in Transaction Parameter 8 (assuming
that parameter 8 is a halfword parameter. If
parameter 8 is a fullword parameter, the absolute
clock time is stored in parameter 8.) The inter-
mediate transit time MP 8 can then be TABULATEd
in Table 3.

1 o
@ N
%

ADVANCE
10, FN9

4

RELEASE

2

TABUMTE}]
i 2 ¥
ADVANCE ‘I‘ABULATI\“\I

34,17

7

1

(o
/\
—)
N/

RELEASE

TERMINATE 1

1 TABLE M1,0,5,20
2 TABLE M1,0,5,20
3 TABLE MP8,0,5,50

MODEL A

Example 2: Difference Mode of Table Arguments
Model B, which follows, may be used in conjunction
with the above example to TABULATE the number
of Transactions that arrive at block 2 during
intervals of 1000 clock units. Note that the minus
sign (-) following the N2 indicates that not N2, but
the difference between N2 Standard Numerical
Attribute argument and its previously tabulated
value, is to be recorded in the appropriate
frequency interval of the Table. This mode of
operation is termed the "difference mode". When
operating in the difference mode, the first
tabulation is automatically omitted by the GPSS/360
program.

20,
GENERATE

/1000]

201 MODEL B

TABULATE

TERMINATE 4 TABLE N2-,0, 1, 12

Example 3: Arrival Rate (RT) and Interarrival
Time (IA) Table Modes
The same results as those in Example 2 may be
achieved more simply by the following Model C.
The mnemonic RT is not a Standard Numerical
Attribute but, instead, designates that Table 4 will
operate in the arrival rate mode. When a
transaction enters a TABULATE block that refers
to a Table operating in the arrival rate mode, an
entry is not made in the frequency distribution.
Instead, the temporary storage word D12 of the
Table is incremented by one and the word D5 is
incremented by the number of units specified at
the TABULATE block (weighting factor). The
TABLE definition card which specifies RT in
field A must also specify an arrival rate time
interval in field E. If this time interval is 1000,
as in Table 4, for example, the arrival count
accumulated in word D5 will be recorded in the
appropriate frequency interval of the Table every
1000 clock units (TABLE cards with RT in field A
are the only ones which require a field E
argument). Words D12 and D5 will then be set to
zero to begin accumulating the number of arrivals
into the Table during the next time interval (the
use of arrival rate Transaction operators is de-
scribed in "Transaction Operators for RT Arrival
Rate Tables' later in this chapter).

Table 5 in the following diagram also specifies a
special mode, which is termed the "interarrival
time mode'" (IA). When a transaction enters a
TABULATE block that refers to a Table operating
in the interarrival time mode, the GPSS/360

program computes the time arrival since the
previous reference to the Table. This value is
recorded in the appropriate frequency interval of the
Table. As in the difference mode, the first
tabulation is omitted. The absolute clock time when
the previous tabulation occurred is stored in Table
word D5. Whenever a Transaction enters a
TABULATE block, which is referencing an 1A
Table, the time interval is very simply computed
as:

Interarrival _ Current absolute B Clock time
time interval -~ clock time of previous
tabulation
(word D5)
R Y
GENERATE
150,FN6,
TABULATE ‘}I MODEL C

t

TABULATE -\1
5

QUEUE

£ Asn in Example 1
4 TABLE RT, 0, 1, 60, 1000
5 TABLE 1A, 10, 10, 25

Example 4: Weighted Table

In Example 3, if the arrival rate mode table is
weighted by XH1, the D5 word would be incremented
by the current value of Halfword Savevalue 1 when

a transaction enters TABULATE block 2. Note that
whenever a weighting factor is used, field D of a
TABLE card must begin with an alphabetic
character, followed by the number of intervals.

2 TABULATE
4 TABLE

4,XH1
RT,0,1,A12,1000

The other cards are the same as in Example 3.

INTERNAL OPERATION OF TABLES AND
TABULATE BLOCKS

Whenever a transaction enters a TABULATE block,
the following steps occur (for nonweighted normal
mode):

1. The first byte of D7 word is tested to
determine in which mode the Table is operating
(see Table 27):

181

Bit 5 = weighted mode
Bit 4 = TIA mode

Bit 3 = RT mode

Bit 2 = Difference mode
Bit 1 = Normal mode

2. The value of the Table argument is computed
according to the Table mode, as described in
""Table Arguments' earlier.

3. The argument value is added to the running
sum of arguments, which is maintained in word
D1.

4. The argument value is squared and added to
the running sum of squared arguments, which is
maintained in word D2.

5. The number of entries into the Table, which
is maintained in word D6, is incremented by one.

6. The frequency interval in which the
argument value lies is determined. The
observation count for this interval is then
incremented by one.

7. If the argument value lies in the last (upper)
frequency interval of the Table, the argument
value is added to the cumulative sum of overflow
values, which is maintained in word D10.

TRANSACTION OPERATORS FOR RT ARRIVAL
RATE TABLES

Each Table which operates in the RT arrival rate
mode has a unique transaction operator associated
with it. When a TABLE definition card is
encountered with RT in field A, the GPSS/360
input program performs the following steps:

1. The field B and C arguments are stored in
words D13 and D7 (as with all other TABLE
definition cards).

2. kp COMMON storage words are associated
with the Table (as with all other TABLE cards).

3. The RT arrival rate mode is indicated by
setting bit 3 of D7 word on.

4. The rate-time interval, which is specified
in field E, is stored in word D9,

5. The most unusual step now occurs. An
unused transaction is obtained from the internal
chain of inactive transactions. The table number
is stored in the lower half of Transaction word T6.
This transaction operator can be distinguished from
the normal transaction by the fact that its word
TH6 is zero; i.e., it is not associated with any
assembly set (lower half of T5 word is zero). The
rate-time interval is added to the current
absolute clock time and stored in Transaction word
T4 just as if the transaction operator were in an
ADVANCE block. The arrival rate (dummy)
transaction is then merged, according to the T4
time, into the future events chain (again, just as

182

if it were in an ADVANCE block). The transaction
will be removed from the future events chain at the
time stored in word T4 (just as if it were in an
ADVANCE block).

Subsequent Processing of the Arrival Rate

Transaction

Other transactions now begin to enter TABULATE
blocks which reference a Table that is operating in
the RT arrival rate mode. Each time that a
transaction references such a Table, the arrival
count in word D12 is incremented by one and the
arrival count in word D5 is incremented by weighting
factor. For nonweighted case, contents of D12 and
D5 should be equal.

Eventually, the absolute clock time is updated
to the time stored in word T4 of the arrival rate
transaction. Normal transactions with the same
time in word T4 will be transferred to the current
events chain (these normal transactions have been
in ADVANCE blocks, or they have been incipient
transactions waiting to enter the system at a
GENERATE block).

The GPSS/360 program checks each of these
transactions to determine if it is an arrival rate
operator, i.e., if its word T5 is zero. When such
a transaction is encountered, the GPSS/360
program performs the following steps:

1. The table with which the arrival rate
transaction is associated is determined from the
lower half of Transaction word T6. The number of
units which have been accumulated in Table word
D5 during the most recent time interval is
tabulated in the appropriate frequency interval of the
Table.

2. Words D5 and D12 are zeroed so that it can
begin again to accumulate the number of transactions,
which arrive in TABULATE blocks, referencing
the RT Table, during the next time interval,

3. The next tabulation time is computed and
stored in word T4 of the transaction operator as
follows:

Next Current Arrival rate time
tabulation = absolute + interval (stored in
time clock time Table word D9)

The arrival rate transaction is then merged into
the future events chain according to its T4 time
(just as if it were in an ADVANCE block).

The net result of the above steps is that the
arrival rate transaction goes through a repetitive
cycle. It spends the arrival-rate time interval
(the TABLE card field E argument)in the future

events chain. It emerges briefly to activate the
tabulation of the number of arrivals into the Table
during the most recent interval. The transaction
is then merged back into the future events chain.
Whenever a CLEAR card is encountered, the

dummy transaction for each RT Table is destroyed.

Before beginning the next simulation run, the
GPSS/360 program will, however, recreate a new
transaction for each RT Table in the model.

TABLE STATISTICAL PRINTOUT

The standard Table statistical printout is shown in
Table 28. The computations that are required for
the various statistics are outlined below. The
following basic notation is used:

%i = The value of an ith Table argument, where
i=1, 2, ...N. N is the total number of
entries into the Table, which is stored in
word D6.

nj = The number of argument values which fall
into the jth frequency interval, where
j=1, 2, ... kp- Kp is the number of
Table intervals as specified by field D of
the TABLE definition card. We have

kp
3 nij.
i=d

kg = Upper limit of the lowest frequency i
interval (specified in field B of the TABLE
definition card).

k¢ = Width of each frequency interval (specified

in field C of the TABLE definition card).

Mean Value*

N
- 3 ox
X = i=i - Word D1
N Word D6
N
B b (xi x W.F.i)
Xy = i=1 - Word D3
kp Word (D6)w
s (njxW.F.j)
j=1

Standard Deviation of Sample*

(Dﬁ)w =1

*Subseript W denotes weighted mode. W.F. is an
abbreviation for weighting factor.

Percentage of Total Argument Values Which Lie
within Each Jth Frequency Interval
nj
Pj % =5 X 100%

Cumulative Percentage of Arguments Less than or
Equal to the Upper Limit of Each Frequency
Interval

For each jth frequency interval

i

2 W
Cumulative _ _ i=1
percentage i% - X 100%

Cumulative Remainder of Argument Values
Greater than the Upper Limit of Each Frequency
Interval

For each jm'1 frequency interval

N

T M
Cumulative _ _ o _ i=j+1
remainder 1:'J% N_x 100%

Upper Limit of Each Frequency Interval as a
Multiple of Mean Argument Value

For the upper limit of each jtP frequency interval

Multiple _ _ _ Upper limit of jth frequency interval

of mean 1 Mean value of Table arguments

kg + (-Dkg

N
P xi/N

i=1

The above normalization of the argument values as
multiples of the mean value permits the analyst to
determine whether the probability distribution
belongs to the exponential-Erlang family of
distributions. These analytic distributions are
themselves generally normalized as multiples of a
mean value of 1.0.

183

Upper Limit of Each Frequency Interval as a
Deviation from Mean Argument Value

For the upper limit of each i frequency interval

Upper limit of

jth frequency - Mean value of

Deviation interval Table arguments
Tom = Standard deviation of
mean

argument values
(kg + (-1kg] - X
s

The above normalization of the argument values as
multiples of the standard deviation from the mean
value permits the analyst to determine whether the
probability distribution is like a normal distribution.
The analyst can compare a normal distribution,
which has a mean X and a standard deviation s, with
the standard deviation of 1. This is due to the fact
that, if x; ~N (X, s), then

- %)

—= ~ N(0, D,

where the general form RV~N (a,b) means
""a random variable RV is distributed normally with

mean a and standard deviation b, "

Average Value of Overflow

Whenever an argument value falls in the last {k%)
frequency interval of a Table two steps occur:

1. The entry count in the last additional storage
word is incremented hy one.

2. The argument value is added to the sum of
overflow values which is maintained in Table word
D10.

184

Whenever one or more argument values do fall
into this last frequency interval, the following line
is printed at the bottom of the Table statistics:
AVERAGE VALUE OF OVERFLOW, where:

Average Value _ Sum of overflow argument values
of Overflow Number of overflow entries

EFFECT OF RESET AND CLEAR CARD ON
TABLE STATISTICS

Table 29 summarizes the effects of RESET and
CLEAR cards on the statistics which are gathered
for each Table entity. A RESET card zeros out

the sum of argument values (word D1), the sum of
squared argument values (word D2), and the number
of entries (word D6). The temporary storage words
D5 and D12, which are used by Tables operating in
the RT, IA, and difference modes, are left
unchanged.

A CLEAR card also zeros out words D1, D2, and
D6, and in addition it zeros out words D5 and D12.
It should be observed that RESET and CLEAR cards
do not affect the true long-run average values of a
any of the TABLE statistics. Tables differ in
this respect from facilities, storages, and queues
whose printed "Average Time per Transaction"
statistics may be less than the true long-run
average times because of RESET Card operations.

REDEFINITION OF TABLES

If a Table is redefined by another TABLE definition
card during a simulation run, the GPSS/360
COMMON core blocks that were originally
allocated to the Table are freed and the neces-
sary words to store the Table frequency classes
will be obtained from the words in COMMON
storage.

TABLE 28: STATISTICAL PRINTOUT FOR TABLE ENTITIES

TABLE XTIME

ENTRLES IN TaBLE MEAN ARGUMENT STANUDARU DEVIATION SUM OF ARGUMENTS
2000 B42.645 553.000 168529L.000 NON-WEIGHTED
UBPER OBSERVED PER CENT CUMULATIVE CUMULATIVE MULTIPLE DEVIATION
LIMLT FREQUENCY OF TOIAL PERCENTAGE REMAINDER OF MEAN FROM MEAN
0 0 .00 20 100.0 -.000 -1.523
100 (4] 00 «0 100.0 «118 =1:342
200 0 +00 «0 100.0 « 237 =l.162
300 1 .04 .0 99.9 +356 -.981
400 218 10.89 10.9 89.0 A4Th -.800
500 268 13.39 24.3 75.6 593 =-.519
600 391 19.94 43.8 56.1 «T12 -« 438
700 202 10.09 53.9 46+0 830 =257
800 le2 8.09 62,0 37.9 949 -.077
900 157 T.84 89.9 30.0 1.06d .103
L000 104 5.19 75.1 24.8 l.186 « 284
1100 9z 4.59 79.7 20.2 1.305 465
1200 75 3.74 83.4 l6.5 le424 « 646
L300 42 2.09 85.5 l4.4 l.542 .B27
1400 47 2.34 47.9 12.0 L.661 1.007
1500 27 1.34 89.2 10.7 L.780 l.188
1600 39 1.94 9l.2 8.7 1.898 L.369
1700 33 l.64% 9Z.8 Ta1 2.017 1550
1800 25 1.24 94.1 5.8 2.138 1.731
1900 20 99 95,1 4.8 2.254 1.912
2000 15 « T4 95.8 4ol 2,373 2.092
2100 12 «59 954 3.5 24492 2273
2200 10 £ 49 96.9 3.0 2.610 2.454
2300 8 .39 97.3 2.6 2.729 2-635
2400 4 «19 97.5 2:4 2.848 2.816
2500 5 24 97.8 2sl 2.966 2.997
2600 3 -l4 97.9 2.0 3.085 3.177
2700 5 + 2% 98.2 La7 3,204 3.358
2800 1 « 0% 8.2 la7 3.322 3.539
2900 4 =19 Y84 L5 3.441 3.720
3000 & +29 9H8.7 L2 3.560 3.901
3100 2 09 98.8 L.1 3.678 4.082
3200 3 « 14 99.0 «9 3.797 4.262
3300 3 «l4 99.1 .B i.916 42643
3400 1 04 99,2 -7 4.034 4e624
3500 2 .09 99.3 b 4,153 4.B805
3600 3 - 14 99. 4 5 4.272 4.986
3700 Z =09 99.5 4 4.390 5.167
3800 3 =14 99.7 o2 4,509 5.347
3900 0 =00 99.7 22 4.628 5.528
4000 1 «04 99.7 a2 4. T4b 5. 709
4100 (4] .00 99.7 &2 4.865 5.890
4200 2 09 99.8 -l 4.984 6.071
4300 (4] .00 99.4 al 5.102 6.251
4400 1 « 04 99.9 -0 5.221 b.432
4500 0 .00 99.9] 5.340 6.613
4600 0 .00 99.9 -0 5.458 6.794
4700 0 =00 99.9 .0 5.577 6.975
4800 0 .00 99,9 -0 5.696 T-156
4900 0 -00 99.9 -0 5.815 T.336
5000 4] 00 99.9 -0 5.933 T-517
5100 0 .00 99.9 -0 b.0b2 7.6948
5200 0 -00 99.9 -0 6.171 7.879
5300 0 -00 99.9 -0 6.289 8.060
5400 0 =00 99.9 =0 6.408 B.241
5500 1 =04 100.0 -0 65.527 B.421

185

Word

TABLE 29: EFFECT OF RESET AND CLEAR CARDS ON TABLE ATTRIBUTES

Field

RESET Card

Attribute Value
Before RESET Card

Result of RESET CARD
on Attribute Value

Each frequency
interval word in
COMMON storage.

D1

D2

D3

D4

D5

D6
D7

D8
D9
D10
D11

D12
D13

Fullword

Fullword

Fullword

Fullword

Fullword

Fullword
Fullword

Fullword
Fullword
Fullword
Halfword

Halfword
Fullword

Number of argument values which
fall in the frequency interval

Sum of argument values

Sum of squared values of argument.

Sum of weighted values of argument,

Sum of squared weighted values of argument.

Temporary storage for RT, IA and
difference mode Tables.

Number of entries.

Mode indicators and width of Table frequency
classes.

Address of COMMON where frequency classes
are located.

Table argument or arrival rate time in RT
mode.

Sum of overflow in last frequency class.
Number of frequency classes,

Nonweighted sum of units arrived for RT mode.

Upper limit of lowest frequency class.

CLEAR Card

Set to zero

Set to zero
Set to zero
Set to zero
Set to zero

Following values are

unchanged;:

1. Last value of argument for
Table operating in difference
or IA mode.

2. Sum of the number of units
that have arrived for Table
operating in the RT mode.

Set to zero
Unchanged

Unchanged
Unchanged
Unchanged
Unchanged

Set to zero
Unchanged

The CLEAR card is the same as the RESET card (D1, D2, D3, D4, and D6 are set to zero; D7, D8, D9, D10,
D11, and D13 are unchanged) except for:

Attribute Value Result of RESET CARD
Word Field before RESET Card on attribute Value
D5 Fullword Temporary storage for RT, IA, and difference Set to zero

mode Tables.
D12 Halfword Nonweighted sum of units arrived for RT mode. Set to zero

186

CHAPTER 14: STATISTICAL PRINTOUT BLOCKS

GPSS/360 has three block types whose functions are
to provide additional statistical output on the normal
output device. The first is the PRINT block, which
can initiate a partial output of the standard
GPSS/360 statistics. The other two are the TRACE
and UNTRACE blocks, which flag and unflag
transactions so that data on each individual block
move is printed out.

PRINT BLOCK

2 LOC | 7|8 OPERATION |19 A 25 n a1 c |37 B A=B
PRINT Lawer index | Upper index | Entity Poging

PRINT
number | number § Mnemaonle | indieator] /_E_)

K by

The PRINT block serves to initiate a partial
output of the standard GPSS/360 simulation statistics.

Field C contains a mnemonic code which specifies
the output desired:

Field C Mnemonic Output

MOV* Current events chain

FUT* Future events chain

I* Interrupt chain

MAT* Matching status chain

C* Relative and absolute
clock time

B or N or W# Block counts

5 Storage statistics
Q Queue statistics
r Facility statistics

U User chain statistics

T Table statistics

¥ or blank Contents of fullword
savevalue

XH Contents of halfword
savevalue

MX Contents of fullword
matrix savevalue

MH Contents of halfword

matrix savevalue
LG Status of logic switches
CHA User chain listing

The options not marked by '*' should have fields
A and B specified. If not, the entire range of the
particular entity involved will be printed. A single
set of statistics may be printed by placing the same
number in both fields, e.g., PRINT 106, 106, S.

Any Standard Numerical Attributes or indirect
addressing is permitted at the PRINT block in
fields A and B.

Field D contains a paging indicator. If this field
contains any alphameric character, a page will
not be skipped preceding each PRINT operation.
If the field is left blank, a page will be skipped
before each PRINT operation.

TRACE AND UNTRACE BLOCKS

2 LOC |7 |8 OPERATION | 19 A

TRACE
UNTRACE

In order to debug and test the validity of a block
diagram, it is necessary to verify that the desired
paths are being followed by transactions. The
TRACE block has been provided so that the progress
of selected transactions may be recorded. The
UNTRACE block serves to stop the tracing of a
transaction.

When a transaction enters a TRACE block, a
tracing indicator is set in the transaction.
(Internally, bit 2 of Transaction byte T9 is set to
one.) The UNTRACE block unconditionally removes
the tracing indicator (the hit is reset to zero).
Whenever a flagged transaction succeeds in entering
a new block, two lines of output are produced. The
first line indicates:

1, The transaction number

2. The previous block number

3. The new block number

4, The clock time

5. The remaining run termination count
The following is a sample of the first line of the
TRACE output:

THANS 1 FROM 1 TO 2 CLOCK 2 TERMINATIONSTOGO &

The second line of output is the normal transaction
printout for the TRACEd transaction as described
in Table 10 in Chapter 7.

It is permissible to enter several TRACE blocks
before an UNTRACE, and also to enter an

187

UNTRACE when the tracing flag is not set. Entries
into a TRACE block are traced, while entries into
an UNTRACE block are not. The TERMINATE
block is the only other block that cannot cause a
tracing line to be printed. All output will appear on
the output device in chronological order, so that a
complete trace for a single transaction may be
printed in several disconnected sections. It is even
possible for several traces which are taken for one
transaction at one clock instant to be separated by
other output.

TRACE and UNTRACE blocks should be used with
great caution as each block move involves writing
on the output device., The write operation may,
however, be overlapped with the execution times
for untraced transactions.

Example:

The following procedure will permit a single
transaction to be traced through a path of the block
diagram that contains many transactions. The
UNTRACE block in the main stream will have no
effect on the transactions which have not been
flagged for tracing.

188

2
2

((mark V3)
o

o
ENE
ATE

1

e

—_—
73

TRACE

]

A= =

=
116

T
7| 8 13 |19 25 5 37

OPEI'(ATI(:)N A B c D

T
FORM SINGLE TRACING TRANSACTION

10 GENERATE | 250 50 1
11 TRACE |

12 TRANSFER 21

MAIN DIAGRAM !

20 GENERATE | 250 50

21 MARK : 3

AND S0 ON == ALL BI_.GCKB IN SEQUENCE W[LL BE TRACED

7 | |UNTnAGE, | | |

TRAC[NG OF ANY FL{\GGED TR.ANSACT[ONS WILL Bl.. ENDED

1z
s
il s
ab
]
|
T
t
I
"1
T
|
-l
|
Il
.|
T
|

115 | ’TERMINATE [1 | | |

CHAPTER 15: CONTROL CARDS

GPSS/360 simulation models are controlled by the
nine control cards listed below:

1. START Card -- indicates to the GPSS/360
program that the current set of input cards has been
received and that the next simulation run should
start. The START Card also specifies the length
of the next simulation run.

2. RESET Card -- causes various accumulated
statistics to be set to zero.

3. CLEAR Card -- causes various accumulated
statistics to be set to zero and removes all
transactions from the model.

4, JOB Card -- performs all the functions of a
CLEAR Card; it also removes all block, function,
arithmetic variable, table, and storage definitions.

5. END Card -- should be the last card of an
input deck, which may contain one or more jobs.

6. JOBTAPE Card -- allows the user to read in
transactions from a previously prepared transaction
tape.

7. REWIND Card -- allows the user to rewind
the transaction tape. It is used in conjunction with
the WRITE block and JOBTAPE Card.

8., LIST/UNLIST Cards -- are used to delete
strings of blocks from the output listing.

9, READ/SAVE Cards -- enable the user to
save the current state of a model and then continue
processing at this point at some later time.

START CARD

'2 Loc 7|8 OPERATION | 19 A I B | [+ | o]

count has been reduced to zero or less, the
simulation run ends and the GPSS/360 program
proceeds into two phases:

a. Statistical Output Phase
Fields B and D of the START Card control the type
of statistical output.

b. Input Phase
Further definition, control, and remarks cards are
read in until either another START Card or an END
Card is encountered.

The run termination count may bhe decremented
to zero in the middle of the overall scan. The
GPSS/360 program immediately transfers into the
output and input phases. If another START Card
but no CLEAR Card is read in, the GPSS/860
transactions continue processing, just as if the
output and input phases had never occurred.

Print Suppression (field B)

Run Termination
count

NP = Suppress
printout,

Snap
interval

Ke

‘ START 1 = Standard

Tronsaction
printout alao
The START Card has two primary functions:

1. It signals the GPSS/360 program that the
current set of input cards has been received, and
that the running phase should begin. The overall
GPSS/360 scan will return to the start of the
current events chain and once again begin to move
transactions through blocks.

2. The total run termination count for the next
simulation run is supplied by the field A constant.
During the next simulation run, transactions should
enter one or more TERMINATE blocks whose field
A arguments specify a run termination count.

If this does not happen, the simulation model will
run indefinitely until removed from the computer by
the operators. These values are subtracted from
the total count. When the remaining termination

NP in field B suppresses the printout of statisties
at the end of the run. This is often desirable at the
end of an initialization run when the model is being
broughtinto a "steady state.'" Any entry other than
NP will have no effect.

Snap Interval (field C)

Field C sets up a snap interval count, which is also
decremented by the field A values of TERMINATE
blocks. Whenever the snap interval count has been
reduced to zero or less, a normal statistical
printout occurs. The snap interval count will be
reinitialized to its original value and the
decrementing process will begin again. This
process is repeated until the field A terminate count
is decremented to zero. With the snap feature,
statistics can be obtained during a simulation run
as well as at the end.

Examples:

START 500,,100
Output statistics will be given every 100
terminations. There will be five such sets of
statistics labeled SNAP 1 OF 5, SNAP 2 OF 5, ete.
START 500, ,150
Output statistics will be given after 150, 300, 450
and 500 terminations.
START 10,,1
Output statistics will be given after every termina-
tion. There will be ten such sets of statistics.

189

Transaction Printout Option (field D)

A 1in field D of the START Card indicates that
each statistical printout (either at a snap interval or
at the end of a run) will also include a transaction
printout of the current events chain, future events
chain, interrupt transactions, user chain, and
transactions in matching status.

Control of Running Time of a Simulation Model

In many cases it is desirable to control the time
duration of simulation runs. A simple two-block
timer, shown below, will permit this. The
TERMINATE Block has 1 coded in field A. All
other TERMINATE blocks in the model have blank
fields A. The run termination count (ka) in field A
of the START Card defines the length of the simula-
tion as: RUN TIME =k, . .. (GENERATE block
mean time),

When such a run timer is used, the number of
actual transactions TERMINATEd in the main model
can be a random variable, while the run time is a
constant. The alternative run control method is to
have the actual transactions TERMINATE in blocks
that contribute toward the run termination count,
which is specified by field A of the START Card.

In this case the number of transactions which are
terminated during the simulation can be a constant,
while the running time becomes a random variable.

Example:
GENERATE 100
TERMINATE 1
START 1

If all other TERMINATE blocks in the associated
model had blank fields A, the run timer shown
above would cause simulation to end at clock time
100. If the START Card had a 10 in field A,
simulation would end at clock time 1000.

190

RESET CARD

The RESET card, first of all, sets the relative clock
time to zero. Therefore, the Standard Numerical
Attribute (C1) is equal to zero. The value of the
absolute clock time remains unchanged. The seeds
of the eight random number generators are not reset.

The RESET Card affects the attributes of six
GPSS/360 entities, as outlined in the following
Tables:

1. Block Attributes Table 17 Chapter 6

2. User Chain Attributes Table 13 Chapter 7

3. Facility Attributes Table 20 Chapter 10

4, Storage Attributes Table 23 Chapter 11

5. Queue Attributes Table 26 Chapter 12

6. Distribution Table Table 29 Chapter 13

Attributes

The values in savevalue locations are not altered,
nor are the reset or set conditions of the logic
switches.

Total block counts (Nj) are set to zero, but the
current block counts (Wj) are unchanged. Facility
cumulative time integrals are set to zero. The
entry count is altered as described in Table 20,
Chapter 10.

Storage cumulative time integrals are set to zero.
The storage entry count and maximum contents are
both set equal to the current storage contents,
Queue cumulative time integrals are set to zero.
The Queue total entry count and maximum contents
are both set equal to the current Queue contents.
The following accumulated table statistics are all
set to zero: number of values in each frequency
interval, total number of entries, sum of argument
values, sum of squared values, sum of weighted
values, sum of squared weighted values. User
chain cumulative time integrals are set to zero.
The chain entry count and maximum contents are
both set equal to the current contents. The User
Chain link ‘indicators are reset to "off".

The RESET Card also allows the user to specify,
beginning in column 19, certain entities or ranges
of certain entities which the RESET operations will
not affect. The following mnemonics must be used
with the number of the entity indicated at the right:

Fj = Facilities
Qj - Queues

8] - Storages
CHj - User Chains
TBj - Tables

The selective reset option does not apply to
block attributes.

The use of the selective reset feature can best be
explained hy a number of examples.

The card: RESET F1, F7, F10 would RESET all
facilities except Facilities 1, 7, and 10,

The card: RESET TF1-F10,F15 would RESET all
facilities except Facilities 1 thru 10 (includes 1 and
10) and Facility 15.

The card: RESET TF1,Q1,51 would RESET all
facilities, queues, and storages except Faecility 1,
Queue 1, and Storage 1. All tables and user chains
would be RESET.

The card; RESET F1-F10, F15, Q1-Q10, Q15
would RESET all facilities and queues except
Facilities and Queues numbered 1 through 10, and
15.

The following is a summary of the rules which
govern the format of the Selective RESET Card.

1. All entries must be separated by commas.

2. If a range of an entity is specified, the upper
and lower limits which are included in the range
must be separated by a dash (-).

3. Entity types, i.e., facilities, storages,

queues, etc., may not be intermixed. For example:

RESET F1, Q1-Q5, F7, Q8

4, The entries for each entity must be in
ascending order,

5. The last entry on the RESET Card must end
by column 71, However, multiple RESET Cards
may be used. If so, rules 1-4 apply just as if the
second RESET Card were an extension of the first.

6. Most important: All the statistics mentioned
at the beginning of this section will be RESET,
except those for the entities specified in the operand
field of the RESET Card(s).

Because the cumulative time integrals for
facilities, storages, and queues are set to zero, the
average time per transaction figure for queues,
storages, and facilities is an approximation, since
statistics may be RESET in the middle of a
transaction's interval. This problem is discussed
in further detail in the Chapters 10, 11, and 12 on
facilities, storages, and queues. The printed
average time result may be less than the "true"
mean value. Average times which are obtained
from a frequency distribution table or Qtable are,
however, always exact, since incomplete intervals
are not tabulated.

The RESET Card is effective immediately, and
input cards which are encountered after the RESET
Card are not subject to its effect.

CLEAR CARD

The CLEAR Card, first of all, sets both the relative
clock time (Standard Numerical Attribute C1) and
the absolute clock time to zero. The seeds of the
eight random number generators are not reset. All
transactions in the model are destroyed, including:

1. Incipient transactions which are scheduled to
enter GENERATE blocks

2. The special RT table operators

The CLEAR Card affects the attributes of six
GPS5/360 entities, as outlined in Tables 7, 13, 20,
23, 26, and 29 (see "RESET Card' above).

In addition, all of the savevalue locations are set
to zero, and all the logic switches are put back into
their original reset condition. The CLEAR Card
is immediately effective, and input cards which are
encountered after the CLEAR Card are not subject
to its effect. A CLEAR Card is not required before
the first START Card of a model.

The facility, storage, queue, and user chain
cumulative time integrals are set to zero, just as
with the RESET Card. The current counts or
contents of blocks (Wj), storages (Sj), and queues
(Qj) are all set to zero. The entry counts (words F9,
U5, 86, and Q2) and maximum contents (words 87,
Q7, and U4) are set to zero. The same table
statistics are set to zero as for the RESET Card,
as well as the temporary storage word which is
used by RT, IA, and difference mode tables.

The CLEAR Card also allows the user to specify
certain savevalues or ranges of savevalues which
the CLEAR Card will not set to zero. The format
for the Selective CLEAR is very similar to that of
the Selective RESET described above. The only
two mnemonics which are accepted on the CLEAR
Card, beginning in column 19, are Xj (fullword
savevalues) and XHj (halfword savevalues). The
entries again must be in ascending order and
fullword (Xj) and haliword (XHj) may not be
intermixed.

Examples:
CLEAR X1,X3,X5-X10

All fullword savevalues will be set to zero
except 1, 3, and 5 through 10. All halfword
savevalues will be zeroed.

CLEAR X1-X10,XH1-XH10

All fullword and halfword Savevalues will be set
to zero except fullword and halfword savevalues 1
through 10,

Recreating Transactions at GENERATE Blocks

After performing all of the above CLEARing
operations, the GPSS/360 program examines the

191

model for GENERATE blocks. It creates a new
transaction at each GENERATE block in the model,
just as if the GENERATE block definition card had
just been read in. The field C offset time is
recomputed. The field D creation limit and the
field E priority level of the GENERATE block
card, are stored in the fourth and third words

of COMMON for the GENERATE block, respec-
tively. The creation limit is placed in the mark
time word (T5) of the newly created transaction,
while the priority level is stored in byte T7.

Recreating the Arrival Rate (RT) Table Operators

Each table which operates in the arrival rate (RT)
mode has a special transaction operator associated
with it, The CLEAR Card eliminates these opera-
tors. After all the CLEARing operations have been
completed, the GPSS/360 program examines the
model for RT mode tables. It recreates the trans-
action operators in the same manner that it re-
creates the GENERATE block transactions. The
first byte of word D7 of each table is examined for
the bit which indicates that the table is operating in
the RT mode. A new fransaction operator is re-
created for each such RT table. The first arrival
time of the operator is cobtained from word D10,
which contains the intertabulation time which was
originally specified in field E of the TABLE Def-
inition card.

JOB CARD

A JOB Card should be inserted between successive
simulation models which are submitted as parts of
the same run. It performs all the functions of the
CLEAR Card, and it also removes all block, func-
tion, variable, table, and storage definitions.
Different analysts can, therefore, run different
models by simply including JOB Cards between
their models. No JOB Card is necessary before the
first job of a run. The format for the JOB Card is
as follows:

1 2 8 19

$ JOB

The JOB Card is the only GPSS/360 input card
which may contain a $ in column 1. However, the
$ is optional and may be omitted.

END CARD
This card should be the last card of an input deck,
which may of course contain many jobs. The END

Card results in return of control to the system
monitor after the execution of GPSS/360.

192

JOBTAPE CARD

The function of the JOBTAPE Card is to set up a
transaction tape, previously prepared by WRITE
blocks and/or other means, as input to a specified
block in a subsequent simulation run. The JOB-
TAPE Card may also be used to skip files on trans-
action tapes. The format for the JOBTAPE card is
as follows:

8 19
JOBTAPE A,B,C,D
where:

A = Tape name (JOBTAL, JOBTA2, JOBTA3)
B = Next Block for Transactions

C = Offset before entry of first Transaction
D = Multiplier

Note: Fields C and D may contain constants
of 1-999999,

Operation of the JOBTAPE Card

Fields B, C, and D are blank:

The tape specified by field A of the JOBTAPE
Card will skip over a file until an EOF indicator
is encountered.

Entries in fields B, C, and D:

1. The program obtains the tape name from field
A of the JOBTAPE Card.

2, Transactions from the selected tape will be
entered into a block in the model whose block sym-
bol or number is given in field B of the JOBTAPE
Card. Field B may refer to any legal block sym-
bol or number which does not denote a GENERATE
block., The interval of time separating the entry
of each transaction from that of its predecessor
will be the interarrival time recorded with the
entering transaction.

3. Field C of the JOBTAPE Card specifies an
offset time which will separate the start of simu-
lation and the entry of the first transaction from the
tape, If field C is left blank or coded zero, the first
transaction will enter at time 1.

4, Field D of the JOBTAPE Card contains a
scaling factor by which the interarrival time and
transit time may be multiplied. Permissible factors
are 1 to 999999, with zero and blanks being treated
as 1.

5. Each transaction entered from a tape is
treated as an independent assembly set, just as
though it had come from a GENERATE block. This
will be true even if some of the taped transactions
constitute sets created by SPLIT blocks.

6. When an end-of-file indicator is encountered
on a transaction tape, the program ceases to read
the tape until a new JOBTAPE Card referring to the
same tape drive is encountered.

GPSS/360 control cards which affect tapes that
are being used as JOBTAPEs are the END, JOB,
and CLEAR Cards. The END and JOB Cards will
cause all tapes which are being used as JOBTAPEs
to be rewound and unloaded. The CLEAR control
card will cause all tapes being used as JOBTAPESs
which have not encountered an end-of-file indica-
tor, to skip records until an end-of-file indicator
is encountered. If an EOF was previously recog-
nized, no skipping will take place.

REWIND CARD

The function of the REWIND Card is to rewind the
tape specified in field A of the REWIND Card. This
control card is used in conjunction with the WRITE
block and the JOBTAPE Card. The format for the
REWIND Caxrd is as follows:

8 19

REWIND JOBTAL
JOBTA2
JOBTA3

Operation of the REWIND Card

The tape specified by the field A of the REWIND
Card will be unconditionally rewound to its load
point regardless of its current status.

Example 1:

Write 10000 transactions on JOBTA1 and JOBTAZ.
The transactions on JOBTAL will have a constant
interarrival time of 20 time units. The transaction
on JOBTA 2 will have interarrival times exponential-

ly distributed.
C:ggllﬂﬂ

20, },,10000
; FN1 is an exponential function
JOBTAL JOBTAZ
Example 2:

The following sequence would skip two files on
JOBTAL. The transaction of the third file would

be sent to block ABC starting at time equal 1.

JOBTAPE JOBTA1
JOBTAPE JOBTA1
JOBTAPE JOBTA1, ABC

LIST/UNLIST CARDS
The format for LIST/UNLIST Cards is as follows:

s

LIST
UNLIST

Operation of the LIST/UNLIST Cards

The UNLIST Card is used to delete from the output
listing all cards following the UNLIST Card. The
LIST Card will resume the output listing of
subsequent cards. The LIST/UNLIST Cards are
applicable to the output of the GPSS/360 assembly
program and the card listing of the GPSS/360
program. The LIST/UNLIST Cards do not affect the
normal statistical output of the GPSS/360 program.

Example:
Block Name A
No. 8 19
GENERATE 1, FN1
UNLIST
ABC GATE NU 1
SEIZE
ADVANCE 10
DEF RELEASE
LIST
TERMINATE

In the above model, blocks ABC through DEF
inclusive will not be listed in the output of the

GPSS/360 assembly or in the card listing of the
GPSS/360 program.

GPSS /360 READ/SAVE FEATURE

The READ/SAVE feature of GPS5/360 allows the
user to save the existing model and current
statistics of a simulation run at a predetermined
point, and then restart the simulation from that
point at some subsequent time. To use the SAVE
feature, the SAVE Control Card will be necessary-
The SAVE Card has the following format:

8
I SAVE

193

When the SAVE Card is read by the GPSS/360
program, the model in its current state, along
with all accumulated statistics, will be written on
the device specified by the user (see GPSS/360
Operator's Guide) and the standard statistieal out-
put will be written on the normal output device.

When the SAVE Card is read in by the GPSS/360
program, two alternatives are possible:

1. Field A of the SAVE Card is blank

The READ/SAVE tape will be rewound, The
model in its current state, along with all accumula-
ted statistics, will be written as a single (1) file
on the READ/SAVE tape. The GPSS/360 program
will then read the card which follows the SAVE
Card.

2. Field A contains an alphameric character

The model in its current state, along with all
accumulated statistics, will be written on the READ/
SAVE tape. The GPSS/360 program will then read
the card which follows the SAVE Card. In this
alternative the READ/SAVE tape is not rewound bhe-
fore writing.

Example 1:

Save a model in its current state with the ac-
cumulated statistics at the termination of every 100th
transaction for a total of 500 transactions. This
could be accomplished by use of the following cards:

8 19
START 100
SAVE

START 100
SAVE 2R
START 100
SAVE 3R
START 100
SAVE 4R
START 100

Note: In this example, the READ/SAVE tape
would contain five files.

Example 2:

If in the above example it was desired to have the
latest SAVE always the first file on tape, the same
sequence of control cards could be used except that
field A of the SAVE Cards would remain blank:

|8 19
START 100
SAVE
START 100
SAVE

194

START 100
SAVE
START 100
SAVE
START ~ 100
SAVE

To continue the simulation run at some
later time, it is necessary to use the READ
Control Card. The format for the READ Card is:

|8 19
|READ blank or some numeric
character

The entry in column 19 of the READ Card de-
pends upon the contents of the READ/SAVE device
that is being used as input. If the user wishes to
READ the first (or only) file on the READ/SAVE
tape the field should be left blank, If, however, a
subsequent file is desired the user must specify
the number of files to be skipped until the appro-
priate file is reached.

Example 3:

The user wishes to READ the fifth file on the
READ/SAVE tape created in Example 1. The
following card sequence could be used:

8 19
SIMULATE

READ 4
START 100
END

Note: The READ Card must always be followed
by a START Card with the desired transaction
termination count in column 19 since the ter-
mination count was reduced to zero when the
tape was created.

If the GPSS/360 reallocation feature was used in
the original run (when the model was SAVED), the
same reallocation must be specified before the
SIMULATE Card in the input stream.

When using the READ Card to read in an input
tape which was previously created using the SAVE
feature, it is possible to redefine blocks, functions,
variables, etc., before execution of the model be-
gins. These input cards must follow the READ
Card and precede the START Card and be coded in
the absolute GPSS/360 format., An ABS mode - type
run should be specified with ABS and ENDABS
Cards rather than a normal GPSS/360 assembly
run.

CHAPTER 16: DIFFERENCE BETWEEN
GPSS III AND GPSS/360

The first section of this chapter lists and describes
the modifications required to run a GPSS III model
using GPSS/360 operating under 0S/360. The
second section summarizes and describes in general
terms the additional features provided by GPSS/360.
The reader is referred to the specific chapter(s)
in this manual for a complete description of the
entity and/or addition of interest.

In general an existing model written in the GPSS
III language can be run under GPSS/360 by exchang-
ing the GPSS III 7040 or 7090 IBSYS control cards
for the appropriate 0OS/360 control cards. The
0S/360 control cards required for the operation of
GPSS/360 under 08/360 are listed and described in
the GPSS/360 Operator's Guides (OS and DOS),

The only GPSS I block and associated GPSS III
control cards which will require modification are
the WRITE block, JOBTAPE and REWIND control
cards., Each of these requires one of the following
for the "A'" argument; JOBTAL, JOBTAZ2, or
JOBTAS.

If random numbers are referenced, the user
should not expect exact equivalent results for a
model run with GPSS II and the same model run
with GPSS/360. For a satisfactory sample size,
results should compare plus or minus a few per-
centage points. The discrepancy between the results
is due to different random number seeds which are
used in GPSS IIT and GPSS/360.

MODIFICATION OF GPSS III BLOCK TYPES

GENERATE Block

Field: A

Legal Arguments: X, XH, FN, V, and K
Interpretation: Mean interarrival time for trans-
actions created at the GENERATE block.

Field: B

Legal Arguments: X, XH, FN, V, and K
Interpretation: Modifier of the mean time for
transactions created at the GENERATE block, If
FN is specified, the floating-point value of the mean
will be multiplied by the floating-point value of the
modifier and then truncated. This value will be the
interarrival time for the transaction created at the
GENERATE block. Any other legal SNA will be
evaluated and interpreted as a spread, that is, *
the mean value.

Field: C

Legal Arguments: X, XH, FN, V, and K
Interpretation: OFFSET -- This argument may be
used to determine when the first created transaction
will leave the GENERATE block. When a CLEAR
card is encountered the SNA specifying the offset
will be reevaluated to determine the new OFFSET
(if any) to be associated with the first transaction
created at the GENERATE block for the subsequent
run.

Field: D

Legal Arguments: X, XH, FN, V, and K
Interpretation: COUNT -- This argument specifies
the number of transactions which are to be created
at the GENERATE block. As transactions leave
the GENERATE block this count is decremented.
When the count reaches zero no further transactions
will be created at the GENERATE block. When a
CLEAR ecard is encountered the SNA specifying the
count will be reevaluated to determine the count for
the subsequent run. If the D argument is blank,
transactions will be created indefinitely at the
GENERATE block.

Field: E

Legal Arguments: X, XH, FN, V, and K
Interpretation: PRIORITY -- This argument speci-
fies the priority to be assigned to transactions
created at the GENERATE blocks. The priority
may be from 0 to 127. The SNA specifying the
priority is evaluated each time a transaction is
created, thereby enabling the user to dynamically
assign priorities at a GENERATE block by modify-
ing the SNA which determines the priority.

Field: F

Legal Arguments: X, XH, FN, V, and K
Interpretation: Number of parameters to be asso-
ciated with transactions created at the GENERATE
block. The SNA specifying the number of param-
eters is evaluated each time a transaction is
created. This enables the user to change dynam-
ically the number of parameters to be associated
with a transaction by modifying the SNA which
determines the number of parameters. If the F
argument ig blank, 12 halfword (16 bits) parameters
will be associated with the transaction created at
the GENERATE block,

Field: G

Legal Arguments: F, H, or Blank
Interpretation: The G argument specifies the type
of parameters to be associated with transactions

195

created at the GENERATE block. H or blank will
associate halfword (16 bits) parameters to the
transaction. I will associate fullword (32 bits)
parameters to the transaction.

Note: In the above description for the A, B, C,
D, E, and F arguments, constants may be
specified without using the character K. That
is, 100 is equivalent to K100.

PREEMPT Block

The operation of the PREEMPT block has been
extended so that it is now possible to interrupt a
facility based on the priority of the transaction
currently SEIZEing or PREEMPTing the facility and
the priority of the transaction entering the
PREEMPT block.

Preemption based on the priority of a transaction
is specified by placing PR in the B argument of the
PREEMPT block.

To account for the many processing alternatives
the preempted transaction could take, the following
options are available to the preempted transaction:

1. Field C may specify some other block to
which the preempted transaction will be sent. The
preempted transaction will continue to be in conten-
tion for use of the facility.

2. If the preempted transaction is at an
ADVANCE block, the remaining time the preempted
transaction has at the ADVANCE block is calculated
and placed in the parameter specified in field
D of the PREEMPT block. The preempted trans-
action will be sent to some other block specified
in field C. The preempted transaction will continue
to be in contention for the faecility.

3. If RE is coded in field E of the PREEMPT
block, the operation will be the same as (1) above,
except that the preempted transaction will no longer
be in contention for the facility.

PRINT Block

The external format of the PRINT block will now
allow the upper and lower limits of the desired
entity statistics to be specified by SNA's. These
are the A and B arguments of the PRINT hlock.

SAVEVALUE Block

When referencing halfword SAVEVALUE's at a
SAVEVALUE block the user must specify an H in
field C.

196

UNLINK Block

The operation of the UNLINK block has been extend-
ed so it is now possible to remove transactions from
USER CHAINS based on the user chain transaction's
ability to satisfy a Boolean variable. This mode of
operation is specified by placing BVj in the '""D"
argument of the UNLINK block where j is the
Boolean variable number.

MODIFICATION OF GPSS III CONTROL CARDS

STORAGE Definition Card

The operation of the STORAGE definition card has
been expanded so that it is now possible to define
the capacity of several STORAGES and/or range of
STORAGES on a single STORAGE definition card.

Selective RESET Card

The operation of the RESET card has been expanded
sothat it is now possible to specify those entities
which should not have their statistical words and
areas RESET.

Selective CLEAR Card

The operation of the CLEAR card has been expanded
so that the user may specify the SAVEVALUES
which should not be set to zero.

GPSS/360 FEATURES

This section lists and describes in general terms
the additional features provided by GPSS/360. The
additional features are categorized into three areas:

1. GPSS/360 Assembly Program
2. New Entities and Block types
3. GPSS/360 Output Editor

GPSS/360 Assembly Program Extensions
(See Appendix B for detailed descriptions)

a) The GPSS/360 assembly program provides
symbolic addressing of entities. In general,
wherever a specific entity type is implied by a
block field, a symbol may now be used to reference
the entity. In fields where the entity type is not
implied, it will be necessary to precede the symbol
with a character(s) which identify the entity type
and a §. The assembly program will assign

numbers to the entities, transmit the converted
information to the simulation program, and main-
tain a cross-reference dictionary for each entity.

b) The GPSS/360 assembly program block sym-
bol table includes a eross-reference dictionary.
Following each symbol will be a list of the blocks in
which the symbol was referenced. The output will
also include a table of entities which were defined
symbolieally within 2 model. The symbols will be
grouped according to entity type and the numerical
value which was assigned to the symbol by the
assembly program will appear following the symbol
itself.

¢) A GPSS/360 Assembly Macro Operation is
provided which will permit parallel or nearly
identical parts of programs to be coded only once
and then used at any point in the model by inserting
a card calling the desired macro definition. Each
macro instruction may have up to 10 arguments
associated with it. This will enable the user to vary
the function of the macros each time the macro is
called.

d) An UPDATE feature is provided which will
enable the user to place symbolic models on tape and
subsequently make modifications to the model by up-
dating the master tape.

Ce

d-.

New Entities, Block Types, and Extended
Features of GPS5/360

This section is subdivided into two parts. The first
part deals with extensions of existing features of
GPSS III. The second part lists and explains new
entities and block types which are available in
GPSs/360.
1. Extension of Existing Features:
a. Arithmetic Entity and SNA Limitations.
Since the System/360 core consists of 32
bit words, the upward limit of entity attri- f.
butes and System Numerical Attributes
(SNA) is 231-1,
b. Parameters.
In GPSS III, parameters are unsigned
quantities with a maximum value of 215.1,
In GPSS/360 the user has the ability
to specify the type of parameters which g
will be associated with transactions

created at a GENERATE block. The
parameters are signed and of two types,
which are 2 bytes (£215-1) (H) or 4 bytes
(£231-1) (F).
Only one type of parameter can be
associated with a given transaction. The
number and type of parameter to be
associated with a transaction is specified
by the F and G fields of the GENERATE
block.
Random Number Generators.
Eight random number generators com-
pletely independent of each other are
provided. The SNA's associated with
the generators are RN1, RN2,. . .
RN8. This will allow the user to refer-
ence independent sources or random
numbers from various sections of the
model, thereby eliminating the depen-
dence on a single source of numbers.
Function Input Format.
GPSS8/360 provides the user with the
ability to specify the X and Y coordinates
of functions in a free form format. This
enables the user to specify more than
six characters for any point, thereby
increasing the maximum input coordinate
values to 931.1,

The fixed format specified by GPSS
III will still be accepted.
The following output statistics are pro-
vided for each user chain.

Maximum number of transactions to
appear on the user chain,

Average number of transactions to
appear on the user chain.

Total number of transactions which
were placed on the user chain.

Average time a transaction was on the
user chain.
Variable Statements.
Variable statements allow the use of
parentheses. Elements within the
parentheses are evaluated before other
arithmetic operations outside the
parentheses take place (similar to
FORTRAN).
A transaction is allowed to enter multiple
QUEUE blocks. A single transaction

197

is able to gather multiple QUEUE
statistics by passing the transaction
through a sequence of up to five

QUEUE blocks and subsequent DE-

PART blocks. ADVANCE blocks are also
allowed between QUEUE and DEPART

blocks without destroying queue statistics.

This provides a means of obtaining mul-
tiple queue statistics, i.e., queueing up
for several items of equipment simul-
taneously.

h. To provide further convenience and ver-

satility, additional statistical System
Numerical Attributes (SNA) are provided.

TRANSACTIONS

PR

Priority of the transaction currently active,

FACILITIES

FRn

Utilization of Facility n in parts per thou-
sand. For example, if the utilization were
. 88, the value of FRn would be 880.

FCn Number of entries for Facility n.

FTn Average time each transaction used
facility n. When referenced, the computed
value will be truncated. For example, if FTn
were 1.23, the computed value would be 1.

STORAGES

SRn Utilization of Storage n in parts per thou-
sand. For example, if the utilization were
.65, the value of SRn would be 650.

SAn Average contents of Storage n (truncated).

SMn Maximum contents of Storage n.

SCn Number of entries for Storage n.

STn Average time each transaction used Storage
n. When referenced, the computed value
will be truncated.

GROUPS

Gn Number of items in Group n.

USER'S CHAINS

CAn

CHn

CMn

198

Average number of transactions on User
Chain n (truncated).

Current number of transactions on User
Chain n.

Maximum number of transactions on User
Chain n at any one time.

CCn Total number of transactions which were
on User Chain n.

CTn Average time each transaction was on
User Chain n. When referenced, the
computed time will be truncated.

QUEUES

QAn Average contents of Queue n (truncated).

QMn Maximum contents of Queue n.

QCn Number of entries in Queue n.

@Zn Number of zero entries in Queue n.

QTn Average time each Transaction was on
Queue n (including zero entries). When
referenced, the computed time will be
truncated.

TABLES

TCn Number of entries in Table n.

TDn Standard deviation of Table n.

2. New Entities:

a. To increase the logical power and capa-

bilities of GPSS, Boolean variable state-
ments are provided. This makes it
possible to make decisions at a single
GPSS block based on the status and value
of many GPSS entities.

The elements which make up the
Boolean variable will be interpreted as a
one if nonzero and zero if zero. Condi-
tional statements will be allowed as
elements of the Boolean variable. For
example, (X10'G'500) would be interpreted
as a one if the contents of SAVEVALUE 10
was greater than 500 and a zero if less than
or equal to 500.

Parentheses, indirect addressing, and
and the Boolean operations AND (¥) and OR
(+) will be allowed in Boolean variable
statements.

b. MATRIX SAVEVALUES provide the ability

for the user to associate additional attri-
butes to GPSS entities such as facilities,
storages, logic switches, user chains,
etc.

Matrix Savevalues may be fullwords
(32 bits) or halfwords (16 bits). The Matrix
Savevalue will be expanded, as specified
by the user, to a M x N matrix where M
is the number of rows and N is the number
of columns.

c.

To establish a means of grouping
transactions and/or other entities, a
new entity type, GROUP, is provided.
A GROUP is basically a list of
numbers. The interpretation and
meaning of a Group is dependent on
what elements constitute a Group and
how the analyst creates, manipulates
and removes members of a Group
within the model.

A Group and reference to members
of a Group is completely independent of
the status of the members which make
up the Group. If transactions made up
a Group, they could all be referenced
whether they were on the future,
current, interrupt, or user chain.
Two new block types provide a means
for COUNTing and SELECTing based
on the status of GPSS entities. This
eliminates the necessity for many
complicated block sequences formerly
required to perform a similar function.
The COUNT block has the ability to
count the quantity of a given entity type
which meets a specified condition, for
instance the number of facilities not in
use. The SELECT block will test the
same entities and status as those
specified for the COUNT block. The
operation of the SELECT block is such
that it will select the first entity which
meets the specified condition.

GPSS/360 Output Editor

The GPSS/360 output editor provides a means of
editing and specifying a simulation output format
which will be most meaningful to the user. The

output editor will provide three different options:

Standard Output

User-Specified Output

Graphical Output
With all three options, all entities defined by
symbolics, except blocks, will have the symbolic
name listed in the GPSS/360 output rather than the
numeric value assigned by the GPSS/360 assembly
program.

The standard output is similar to that provided
by GPSS III. The second option allows the user to
include titles in various portions of the output, to
select the entity statistics which should be listed,
or to completely determine the format and contents
of the output by specifying the alphameric informa-
tion and entity statistics which are desired.

The third option enables the user to obtain
graphical output which provides a pictorial repre-
sentation of GPSS/360 entity statistics on the
system printer. Each graph may be considered as
consisting of a 60 row by 132 column matrix. By
use of the appropriate control cards the user will
have the ability to:

a. specify the origin for the X and Y axis.

b. specify the entity SNA to be plotted.

c. specify the range of the entity type, for
example, Facility 1 through Facility 10.

d. specify the values to be assigned to the X
and Y ordinate points.

e. list alphameric information on the graph.

199

CHAPTER 17: PRACTICAL SUGGESTIONS ON THE
USE OF GPSS/360

This chapter includes a series of practical sugges-
tions on how to use GP8S/360. These hints are
presented in the typical time order of developing a
model: hand coding, initial debugging runs, classic
running errors, analysis of GPSS statistics, and
statistical problems in simulation.

HAND CODING

1. The following characters should be carefully
hand coded to avoid confusing them with each other:

a. Number # (not 4) vs Number 9

b. Number @ vs Letter O

c. Number 1 vs Letter I

2. The most common assembly program error
is number 11 (this card contains an undefined
symbol). The following two common causes should
be avoided:

a. The analyst forgets to code a block with
a symbolic location that he uses else-
where in a block variable field; as a Yi
value of a function follower card; or as
the symbolic block index of the two
Standard Numerical Attributes N$xooo
and WHxaoexx.

b. The analyst codes a block symbolic
location (columns 2-6) differently from
the symbolic location that he uses
elsewhere. The second symbol results
in assembly program error number 11.
The first symbol is printed out in the
assembly program symbol table which
follows the assembly program input
listing. However, the cross-reference
dictionary will contain no references to
the symbol. The analyst should, there-
fore, be as alert in discovering such
unreferenced symbols as he is in
disecovering undefined symbols.

3. Each important part of a simulation model
should be identified and headed by a remarks card:
an asterisk* in column 1. Individual cards should
also be liberally commented. The input card
listing will be much neater if these comments
always begin in the same card column, e.g.,
column 49.

4. Left-justify all card names in the operation
field to column 8.

5. The successive Xi values of function follower
cards must be monotonically increasing, i.e.,
Xi<X; ;. A very common coding error, when

200

using the random number RN1 as a function
argument, is to incorrectly calculate or hand code
the fractional values between 0 and 1. A later Xi
value may then be less than an earlier one.

6. The number of GPSS/360 COMMON storage
words used in a model should not exceed the available
words. The following GPSS/360 COMMON storage
requirements should be remembered.

a. One word per table frequency interval.

b. List-type functions — one word per
funetion point. Discrete-type Functions
— two words per Function point. Con-
tinuous-type functions — three words per
Function point.

7. An END card should be placed at the end of
the assembly program input deck.

INITIAL DEBUGGING RUNS

1. It is extremely desirable to provide ahout
six RESET and START cards during initial

debugging.

A, B, C, D,
START nl, » nE’ 1
RESET
START N, s D, 1
RESET
START n, . Ny, 1
RESET
START nsoa D, 1
RESET
START nl, ’ n2. 1
END

The termination count n; in field A of the START
card should be relatively low, so that each simula-
tion run covers a short period of time. The
development of error conditions can therefore be
traced through a series of statistical printouts
covering short time periods. Remember that each
simulation run ends as soon as an error stop occurs.
The RESET cards which precede each START card
(except the first) wipe out the statistics from the
preceding run. By thus avoiding a cumulative
build-up of statistics it may be possible to spot
unusual trends in the series of individual run
statisties. Perhaps a facility suddenly has zero
utilization or 100 percent.

utilization in a series of runs. This may mean
that transactions are somehow failing to enter
SEIZE or PREEMPT blocks referencing the facility ;
or, conversely, a transaction which has SEIZEd
or PREEMP Ted the facility is blocked from moving
into a RELEASE or RETURN block.

2, The START card snap option should be
liberally employed during debugging runs. The
C field of the START card specifies the snap
interval in termination count units. During
debugging the number of units, ng, should be less
than the field A run termination count, ny. The
standard GPSS statistics can, therefore, be
obtained several times within each START card
simulation run.

3. TField D of each START card should contain
a 1. This means that a complete transaction print-
out will be obtained with each set of statistics. It
is imperative for the analyst to justify that each
and every transaction is in the proper block with the
proper set of attribute values. Efficient debugging
of GPSS/360 models depends most importantly ona
complete understanding of the transaction printout.

4. An incomplete model can be inputted to the
assembly program simply to catch coding and format
errors, and possibly undefined or unreferenced
symbols.

5, It may be possible to decompose a model
into independent parts which can be debugged
separately.

CLASSIC ERRORS IN GPSS/360 III MODELS

Appendix A lists all possible running errors which
can occur in GPSS models. The following is a
summary of the most common errors:

1. Although indirect addressing *n of entity
indices is one of the most powerful features in
GPSS/360 models, several types of errors may
occur. First, transaction parameter n may have
a zero value, or its value may exceed the maximum
index value for the particular type of entity being
addressed. Secondly, if arithmetic variable or
function values (V*n or FN*n) are referenced, then
each possible entity must have been defined by a
VARIABLE or FUNCTION card.

2, A transaction entering a LEAVE block may
remove more storage units than the current storage
contents (Execution error 425). A transaction
entering a DEPART block may similarly remove
more queue units than the current queue contents
(Execution error 428).

3. A transaction which did not SEIZE or
PREEMPT a facility attempts to RELEASE or

RETURN the facility (Execution Errors #415 and
#421).

4. A transaction can get trapped in a zero-time
loop of blocks. The transaction will continue to
move around endlessly until an operator terminates
the simulation.

ANALYSIS OF GPSS/360 STATISTICS

The most ominous moment in the debugging of a
GPSS/360 model occurs when no further input
errors or running error stops occur. At this
point, each simulation run yields the standard set
of GPSS/360 statistics. The big question now is
whether the model is correctly simulating the real
world or whether there are some logical flaws in
the model. The following are some clues for which
the analyst should look in the GPSS statistics as
signs of possible logical errors in the model.
Assume that RESET cards are used before each
START card, so that an individual set of statistics
is obtained for each simulation run, rather than
building up cumulative statistics.

1. When the current queue contents or current
storage contents at the end of a simulation run are
equal to the maximum contents observed during the
run, be suspicious of a monotonic build-up caused
by some undesired blocking condition. If this
condition occurs in a series of runs, with the
current contents increasing at a relatively constant
rate, then definitely look for a logical error which
is causing undesired blocking. Possible errors
are:

a. Transactions are failing to RELEASE or
RETURN facilities which they have
SEIZEd or PREEMP Ted.

b. Transactions are failing to LEAVE
storage which they have ENTERED.

¢. Transactions are failing to set or reset
logic switches in LOGIC S or LOGIC R
blocks.

Each of the logical errors may cause infinite
queues to build up at SEIZE, PREEMPT, ENTER,
and conditional entry GATE blocks.

2. Another sign of wrong blocking delays are
transactions in the current events chain which have
very low block departure times in the BDT column
in relation to the current value of the absolute
clock. These transactions will occur as the first
transactions printed out in each of the eight
priority classes. The priority level is identified by
the PR column of the transaction printout. Why
have these transactions been delayed so long at
their eurrent block, which is printed out in the

201

BLOCK column? Why have they not been able to
enter their next block, which is printed out in the
NBA column? The S column shows the type of next
block selection:

0 - only the one next block will be tried

1 - a BOTH selection mode is being used in a
TRANSFER block

2 - an ALL selection mode is being used in a
TRANSFER block

For the BOTH and ALL modes, the NBA column
lists the first next block to be tried, i.e., the
field B argument of the TRANSFER block.

3. Furthermajor signals of wrong blocking
delays are:

a. Zero average facility utilization

b. 1.000 average facility utilization

¢. Zero average storage utilization

d. 1.000 average storage utilization

e. Zero average queue contents
The zero values may indicate that transactions are
being blocked at earlier points in a model and are
failing to reach SEIZE, PREEMPT, ENTER, and
QUEUE blocks.

The 1.000 values may indieate that transactions
have entered the above block types but are now
failing to enter RELEASE, RETURN, and LEAVE
blocks.

4. Transactions may be wrongly delayed in
ASSEMBLE, GATHER, and MATCH blocks because
the required number of mate transactions in their
assembly sets are failing to enter the above blocks.
These delayed transactions can be identified in the
interrupt selection of the transaction printout by:

a. a1l in the MC column, indicating that
the transaction is in a matching condition
b. A low block departure time in the BDT
field relative to the current absolute
clock time

A search should be made of their assembly sets
to determine where their mate transactions are,
and why they have not succeeeded in entering the
particular ASSEMBLE, GATHER, and MATCH
blocks. The assembly set linkages are defined by
the transaction numbers in the TRANS and SET
columns, If the interrupted matching condition
transaction is the only member of its assembly
set, the transaction will never be able to leave the
ASSEMBLE, GATHER, or MATCH block.

5. Whenever SPLIT transactions are created
in a model it is important to identify the members
of each assembly set by the assembly set

202

linkages and to justify that each member is in the
proper block with the proper attributes.

6. One of the obvious consequences of incorrect
blocking is that all available transactions may end
up being used in the model. A GENERATE or
SPLIT block will then attempt to obtain a transaction,
and the classic Execution Error #468 (transaction
space exceeded) will occur. It is possible, however,
that Execution Error #468 does not really represent
an error condition. The system being simulated may
have more transactions in it as a normal state. The
analyst must then revise his model so that the
transaction limit is not exceeded or use reallocation.

7. The initial choice of the lower limit (field B)
and the interval width (field C) of a TABLE card
may not properly bracket the observed values of
the table argument. If delay times or transit times
(M1, MP,) are being TABULATEd, the following
rule of thumb should be helpful: Determine the sum
of the average service times, i.e., the average
ADVANCE block times between the original MARKing
and the TABULATE block. Values as high as ten
times the average service time may be observed.
Also determine the minimum possible sum of
service times (which may be zero). This value,
rounded to the nearest 100 or 1000, can be the
field B upper limit of the lowest interval. Twenty
intervals (field D) can be used at the start. The
width of the frequency interval (field C) can then be
set equal to the following value:

Interval 10 x Average service time - Minimum time
width 20

The interval width can be rounded to the nearest
convenient figure, e.g., 50, 100, 250, 1000, etc.
8. A GENERATE block with a.mean time of

zero, and no field D creation limit, must be
followed by, a block which can eventually cause
blocking: SEIZE, PREEMPT, ENTER, GATE, or
TEST. Otherwise, the GENERATE block will
continue creating transactions at clock time 1 until
all allocated transactions are used up and an error
468 (transaction space exceeded) occurs.

9. When the analyst has trouble finding the
cause of an error, he should always consider the
possibility of a subtlety of the overall GPSS/360
scan. Many logical errors are caused by a false
assumption of the order of transaction movement.
All block sequences which involve SPLIT, MATCH,
BUFFER, and ASSEMBLE blocks should be
examined for possible errors in timing.

10. One of the major problems in the use of
GPSS/360 is optimization of running time. This is

an individual problem, depending upon the system
being modeled and the method of attack used by the
analyst. However, one point to keep in mind is to
have no more transactions "active" in the system
than are absolutely necessary. The use of TRANS-
FER blocks with BOTH and ALL selection modes,
and of the TEST blocks with no exit, i.e., ina
conditional entry mode, must be restricted as much
as possible. Often, when a BOTH or ALL selection
mode is necessary in a TRANSFER block, the
running time can be decreased by not allowing a
transaction to get into the block until it is known
that one or more exits are open. This can usually
be done by the use of a GATE block or an ENTER
block whose store capacity is equal to the number
of exits from the TRANSFER block. The use of the
TEST block can sometimes be eliminated by the use
of a GATE hlock, butthis is more difficult to model.

Another point to be remembered in optimization
of running time is the fact that a little loss of
reality in the model can sometimes produce a
dramatic change in running time without affecting
results significantly.

STATISTICAL PROBLEMS IN SIMULATION

The determination of the validity of computer sim-
ulation results is a very difficult problem. Two
important questions to answer are:

1. How much simulator operation is needed with
each system modeled to ensure that the system
attains a steady state, assuming one is attainable?

2, BSince simulator data is sequentially produced,
the results are often sequentially dependent. How
may one allow for the effects of this dependence?

Not all systems need to be evaluated in a steady
state characterized by an average behavior which
remains relatively constant, and which includes
the effects of numerous small fluctuations as
opposed to long-range trends. In applications
which are cyclic or intermittent, the increase
and decrease of system loading may be more
important, Examples of this type of system are
banks and stores, which only operate during part
of a day, and may be simulated over a period of
several days, and for which the effects of growth
and decline of loading are important.

Examples of systems which do need to be
evaluated at steady-state conditions are power
plants, computer installations, and those whose
operations are more or less continuous over the
period simulated. Where steady-state evaluation

is important, it is desirable to accumulate
simulation statistics which exclude transient
effects. This may be effected in one of two basic
ways: (1) the simulator may be operated long
enough so that the error resulting from including
the transient-period data is small, or (2) when the
steady state is attained, the statistical data from
the transient period may be wiped out with a
RESET card, leaving the transactions in the system,
after which the simulator may be run further to
collect steady-state data only. The difficulty in
either method is to know when the transient state
has been passed. As yet, this problem has no
definite solution.

It is known that different statistical elements
within a single simulation problem have varying
lengths of transient state and different rates of
convergence toward average values in the steady
state. Hence, the length of run required to pass
through the transient state will be that length due
to the maximum of all the transients in a given
problem. At the present time, the amount of
steady-state data to be collected for convergence is
not known. Note that the term "steady-state' does
not usually imply constant state, as a certain
amount of erratic fluctuation is often seen, especially
in queuing data.

Some of the statistical results whose trends
should be observed in estimating transiency and
convergence are the mean, the standard deviation
or variance, the distribution, the cumulative
distribution, and the extreme values.

The sequential nature of the Monte Carlo
simulation process frequently results in a loss of
randomness in the data compiled, especially in
queuing data. In a simple queue, where the first
unit in line is the next unit served, the amount of
time spent in the queue by a transaction is a func-
tion of the time spent by preceding transactions.
Similarly, if changes in queue lengths are
restricted to unit arrival and unit departure, the
number in queue after each change of queue length
is clearly dependent on the previous queue length,
rather than being random. Since nonrandomness
invalidates certain standard statistical techniques,
special methods must be used to offset the
dependence of transactions on each other. One
such method is the batching of data; another way
is to derive the output statistics from separated
values of the quantity to be tabulated, say every
third or every sixth item.

203

APPENDIX A: GPSS/360 PROGRAM ERRORS

ASSEMBLY PROGRAM ERRORS

ERROR NO. SIGNIFICANCE

1 Illegal selection mode specified in a field of TRANSFER block.

2 Mlegal operation field.

3 Entity number to be reserved by EQU card has been reserved by
previous EQU card.

4 This block symbol has been used in an EQU card.

5 Tllegal TABLE argument.

6 Fractional selection mode is more than a 3-digit number.

7 Syntax error in EQU or MATRIX card.

8 Illegal entity indicator.

9 Field A of ASSIGN block is greater than 100,

10 First operand in a MATRIX card is not X or H.

11 Undefined block symbol.

12 Illegal JOBTAPE specified.

13 The number of rows or/and columns specified in 2 MATRIX card
is/are not constants.

14 Field E of MSAVEVALUE block is illegal.

15 TRANSFER block with ALL or PICK selection mode contains field C
whose value is less than field B.

16 TRANSFER block with ALL selection mode contains field B and field C
range which is not evenly divisible by the field D.

17 Card which must have entry in location field has a blank location field.

18 Nllegal Halfword Matrix Savevalue.

19 Illegal mnemonic specified in operation field of GATE, LOGIC, TEST,
COUNT or SELECT block.

20 Tllegal field B in PRIORITY block.

21 A symbol in the above entity function follower card has been used in an

204

EQU card or has been used as a block symbol or has been used in a
previous entity function.

ERROR NO. SIGNIFICANCE

22 Illegal Boolean Variable number.

23 Illegal report type specified in REPORT card.

24 Above card type is not permitted within the report type specified.

25 Storage defined with capacity greater than the maximum permissible
value.

26 The Table must be specified numerically.

27 Illegal symbol.

28 Tllegal FUNCTION type.

29 Modifier of GENERATE or ADVANCE block exceeds mean.

30 Field A omitted where it must be specified.

31 Field B omitted where it must be specified.

32 Illegal Facility number.

33 Illegal Storage number,

34 Tllegal Queue number,

35 Tllegal Logic Switch number.

36 Illegal Chain number.

ar Illegal Table number.

38 Illegal Variable number.

39 Illegal Savevalue number.

40 Tllegal Function number.

41 Illegal symbol in location field or no symbol where one is required.

42 Illegal Group number.

43 Nlegal symbol (too long).

4 Syntax error in above card.

45 Illegal SNA,

46 Field C omitted where it must be specified.

47 Illegal Matrix Savevalue number.

205

ERROR NO. SIGNIFICANCE

48 Field D omitted where it must be specified.

49 Maximum number of MACROS already defined.

50 Undefined MACRO.

51 Illegal MACRO argument - argument must be alphabetic A-J.

52 MACRO card expanded past column 72.

53 More than 2 MACRO's nested within a MACRO.

54 More than 10 arguments specified in above MACRO card.

55 Field C of SAVEVALUE block is illegal.

56 Illegal Halfword Savevalue,

57 There is no legal entity number left to be assigned to the entity symbol.

58 Operand field extends into column 72.

59 There are more right parenthesis than left parenthesis in a
VARIABLE card.

60 There are more left parenthesis than right parenthesis in a
VARIABLE card.

61 An impossible module division has been specified in a VARIABLE card.

62 E Field omitted or illegal where it must be specified.

63 EQU card or Entity function specifies that illegal entity number be
reserved.

64 Graph Cards out of order

65 Tllegal field A of Statement Card

66 Illegal row request in Statement Card

67 Illegal field B of Statement Card

68 Too many columns requested in Statement Card

69 Decreasing row numbers requested in Statement Card

70 Illegal starting column for Statement

71 Illegal SNA requested in Graph Card

206

ERROR NO. SIGNIFICANCE

72 Illegal entity range in Graph Card

73 Mllegal request in Origin Card

74 Tllegal entity requested in TITLE Card
75 Tllegal Field in X Card

76 Illegal numeric field in X or Y Card
77 Illegal request in Y Card

INPUT ERRORS

ERROR NO. SIGNIFICANCE
201 Number of transactions exceeded.
202 Referenced transaction not inactive .
203 Priority exceeds 127.
204 Limit count must be a constant.
205 Number of parameters exceeds 100.
206 GENERATE Block: Field F must be F, H, or blank
207 Preempt Block: Field B must be 'PR'
208 Field E must be 'RE!
209 Field C not specified with D and/or C Fields
210 Tllegal mnemonic in operation field.
211 Illegal storage number.
212 Field D not necessary if MAX or MIN mode specified.
213 Illegal mnemonic in Field C of PRINT block.
214 Nlegal format in Logic Switch Initial Card.
215 Amount of available GPSS/360 COMMON core exceeded.
216 Modifier cannot exceed mean,
217 Action time not 20.
218 Tllegal Fullword Matrix number,

207

ERROR NO. SIGNIFICANCE

219 Nlegal Halfword Matrix number.

220 Nlegal format for TRANSFER-ALL.

221 Olegal Table number.

222 Illegal Function number.

223 Function x-values not in ascending order.

224 Unlink Block: Field E must be blank if BACK specified.

225 Illegal Fullword Savevalue number,

226 Nlegal Halfword Savevalue number.

227 Illegal format in Savevalue Initial Card.

228 Mnemonic other than X or XH used in Savevalue Initial Card.

229 First index higher than second index in multi-initialization.

230 Illegal Logic Switch number,

231 VARIABLE DEFINITION CARD: Column 18 not blank.

232 Tllegal variable number.

233 Number stated incorrectly.

234 Improper number of parentheses.

235 Too many sets of parentheses.

236 Impossible Modulo Division,

237 Illegal Boolean Variable number.

238 Modulo division in Floating-Point
Variable.

239 No comma in MATRIX statement.

240 Illegal Boolean operator,

241 Illegal statement of operation in variable.

242 Mllegal SNA in variable statement.

243 Ilegal MATRIX row number.

244 Mlegal MATRIX column number.

208

ERROR NO.

SIGNIFICANCE

245

246

247

248

249

250

261

252

263

264

255

256

257

2568

259

260

261

262

263

264

265

266

270

271

272

273

274

Mlegal Matrix Savevalue mnemonic.

Tlegal format in MATRIX Initial Card.

Mllegal mnemonic in SAVEVALUE Initial Card.
Tllegal Halfword Savevalue.

Too many numeric digits in constant.

Nlegal SNA mnemonic.

Missing operator in Variable.

Field E not blank when BV specified in UNLINK Block.

Tllegal MNEMONIC in TRANSFER Block field A.

Fraction in TRANSFER Block field A not 3 digits.

Matrix Initial Card: Illegal index for rows.
Illegal index for columns.

Illegal Queue number.

Illegal JOBTAPE number.

Cyclic Definition of Variable.

Variable not defined.

Illegal Variable number.

Cyclic definition of Function.

Illegal Function number.

Undefined Function.

Nlegal Function type.

Function must have more than one point.

No field C in EXAMINE Block.

Illegal Entity Number on RESET Card.

Illegal Entity Type requested on RESET Card.

Sequence Error on RESET Card.

Illegal request on Selective CLEAR Card.

209

ERROR NO. SIGNIFICANCE

275 Tllegal Savevalue number on CLEAR Card.

276 Illegal Range of Savevalues on CLEAR Card,

277 Illegal Halfword Savevalue on CLEAR Card.

278 Tllegal Range of Halfword Savevalues on CLEAR Card.

279 READ/SAVE Identifier not found on specified READ Device.

280 Dllegal Allocation of Entities on READ Device.

282 Error in block redefinition.

283 Illegal block number.

284 Illegal transaction referenced in chaining routine (not a user's error).

290 Hlegal reference to GPSS/360 COMMON (not a user's error).
291, 293 Nlegal SNA referenced (not a user's error).

EXECUTION ERRORS

ERROR NO. SIGNIFICANCE
401 No new event in the system
402, 3, 4 Illegal Transaction in Future Events Chain (normally not a user's
error)
405 Number of parameters exceeded
413 Tllegal entry to GENERATE block
415, 16 Facility released by Transaction not SEIZing it
417 Interrupt count is minus (not a user's error)
421 Facility returned by a Transaction not PREEMP Ting it
425 Transaction leaving by more than storage contents
428 Transaction which is leaving Queue by more than Queue contents
429 LOOP Block field A parameter zero before entering block
431 Value being stored in Halfword Savevalue is too large
432 Illegal Halfword Savevalue number

210

ERROR NOQ. SIGNIFICANCE

433 Illegal Fullword Savevalue number

435 Illegal Table number

436 Table not defined by TABLE Card

437 Tllegal transaction number referred to under blocked condition
(not a user's error)

438 Attempting to place a Transaction on a delay chain when the
Transaction is on the delay chain (not a user's error)

442 No preempt count in Transaction returned from preempt
condition (normally not a user's error)

443

453, 63,66, 67

468,69
470,71,72,75
474

476,77

492
497
498
499
500
501
505
506
507
508
509
512

514

Attempting to create an active Transaction (not a user's error)

Attempting to remove transactions from illegal chains (not
a user's error)

Number of Transactions exceeded
Hlegal Transaction number being acted on (not a user's error)
Preempt interrupt count exceeds 127

Attempting to remove an interrupt on a Transaction which has
not been interrupted (not a user's error)

Tllegal Transaction Parameter number

Tlegal Link Chain referenced

Dlegal Facility number

Illegal Storage number

Mlegal Queue number

Illegal Logic Switch number

Minus time-delay computation (ADVANCE or GENERATE)
Cyclic Function definition

Tlegal Function number

Function not defined by FUNCTION Card

Illegal index evaluated for list-type function
Entering undefined block

Tllegal Variable number

211

ERROR NO.

SIGNIFICANCE

515

516

518

530

560

561

562

599

601

602

603

604

607

609

610

611

612

613

614

615

616

617

618

619

620

212

Arithmetic Variable not defined by VARIABLE Card
Cyeclic Definition of Arithmetic Variable
Too many levels of interrupt

Spread exceeds mean in time-delay computation (ADVANCE or
GENERATE Block)

Tllegal Matrix Savevalue

Dlegal Row in MSAVEVALUE Card

Tlegal Column in MSAVEVALUE Card
Limits of GPSS/360 COMMON core exceeded
Next sequential block number is illegal
Illegal Facility sequence in output

Illegal Block number

Illegal Table argument

Field A assembly or gather count is zero at ASSEMBLE or
GATHER Blocks

Transaction of a one-member set is at MATCH, GATHER, GATE-M-
or GATE-NM- Blocks

Upper limit less than lower limit in COUNT or SELECT Block
Tllegal Transaction Parameter number

Tllegal Block number referenced in TRANSFER BOTH or ALL
Illegal User's Chain

Priority exceeds maximum allowed (127)

Error in core assignment (not a user's error)

Transaction parameter zero referenced

Hlegal MATRIX number

Cyclic definition of MATRIX

Matrix not defined by MATRIX Card

Ilegal Matrix column number

ERROR NO,

SIGNIFICANCE

621

622

623

624

626

627

669, 670

698

699

702

704

708

712

713

714

715

716

17

718

722

723

724

726

727

728

729

Ilegal Matrix row numbex

Illegal Boolean Variable number

Boolean Variable not defined by BVARIABLE Card
Cyclic definition of Boolean Variable
Tlegal Group number

Field C less than field B, TRANSFER PICK
Improper Queue assignment (not user's error)
Nllegal change in CHANGE Block

Ilegal argument in EXECUTE Block

Illegal Facility numhber

Illegal User Chain number

Tllegal Logic Switch number

Illegal Fullword Savevalue number

Ilegal Halfword Savevalue number

Illegal Facility number

Tllegal Storage number

Illegal Queue number

Illegal Group number

Tlegal User Chain number

Illegal Storage number

Illegal Queue number

Illegal Table number

Error in Square Root Routine

Tlegal Halfword Matrix Savevalue number

Illegal Fullword Matrix Savevalue number

Tlegal Entry to Output (other than END, SNAP, PRINT, TRACE, or

ERROR IN EXECUTION)

213

Execution Warning Messages

A warning message will be written following the listing of the simulator input deck if a possible user error is
detected during the execution phase of the simulation run. The format of the warning message will be as

follows:

WARNING - EXECUTION ERROR NUMBER xxx. BLOCK NUMBER yyyy. CLOCK zzzzzzzzz, SIMULATION

CONTINUES.

where:

xxx = Number indicating source of error according to following list:

o0 = 850;
xxx = 851:
Xxx =852:
xxx = 8563:
Xxx = 854:
xxx = 861:
Xxx = 862:
xxx = 863:
yyyy:

ZZZZZEZLZ:

Attempt to store integer of magnitude greater than 215-1 (32, 767) in a halfword

parameter. Content of halfword parameter is maintained modulo 2151,

Attempt to store integer of magnitude greater than 218_3 (32, 767) in a halfword
Savevalue, Content of halfword Savevalue is maintained modulo 215-1,

Attempt to store integer of magnitude greater than 21°-1 (32, 767) in a halfword Matrix
Savevalue. Content of halfword Matrix Savevalue is maintained modulo 215-1,

Transaction attempting to enter a QUEUE block is already a member of 5 Queues. The
contents of the Queue specified by field A will be incremented by the amount specified in
field B. Testing for maximum contents will be made and updating will be done accordingly,
Cumulative time integral information will not be calculated. Therefore, statistics on
average time per transaction in Queue, number of zero entries, percent zeros, and
average time per transaction excluding zero entries, will be in error.

Transaction at a DEPART block is not a member of the Queue specified by field A of the
DEPART block. The Queue contents are decremented by the amount specified by the B
argument of the DEPART block and the transaction proceeds to the next sequential block,

This indicates that an End-of-File has been reached on JOBTAPE 1. Transactions on the
current file have entered the simulation model.

Same as above for JOBTAPE 2.
Same as above for JOBTAPE 3.
Number of block at which the possible error is detected.

Absolute clock time when possible error first occurs at the indicated block.

Each possible error message is written only the first time that the error is detected at a given block.
Because the condition may not actually be a serious error or significantly affect the simulation statistics,
the simulation run is allowed to proceed.

214

APPENDIX B: GPSS/360 ASSEMBLY PROGRAM

GPSS/360 coding is done in a symbolic, free-form
language. This is converted by the assembly phase
into a numerie, fixed-field format acceptable to the
actual simulator program, The reason for having
a symbolic, free-form language is to reduce
modeling effort and error and to provide more
meaningful output.

All GPSS entities as well as block locations may
be symbolically named. There are three fields in
the GPSS/360 input card:

1. Location field (columns 2-6)

2. Operation field (columns 8-18)

3, Operand field (columns 19-72)

The GPSS program executes blocks in a
sequential manner and therefore the assembly
phase assigns sequential numbers to each block
beginnning with 1. There is no need to specify
anything in the location field of a block unless this
block will be directly referred to at another point
in the model.

An entry in the location field should begin in
column 2 and must end by column 6. The operation
field entry must begin in column 8, Arguments
which make up the operand field must begin in
column 19 and be separated by commas, If a
preceding field in the operand field is to be left
blank this is indicated by showing only the separating
comma. For example:

PRINT ,, MOV has only a field C entry., In
this case the first comma would appear in column19,

The operand field is terminated by the first blank
encountered. The assembly will assign the next
block location to the field B of a TRANSFER block
if the field B is left blank except for FN or P
selection mode,

TRANSFER BOTH,, EXIT has no field B entry
and therefore the next block number is automatically
assigned as the field B value.

BLOCK AND ENTITY SYMBOLS

Each symbol must consist of three to five
alphameric characters, the first three of which
must be letters from A-7Z and the last two, if used,
must be letters from A-Z or numbers from 0-9.
No special characters are permitted,

The restriction on the first three characters
being alphabetic is necessary to avoid confusing a
standard numerical attribute with a block symbol.

LOCATION FIELD ARGUMENTS

Whenever the analyst wishes to define a block for
reference elsewhere in a model he may do so by
placing a symbol in the location field. Since most
blocks are not referred to directly in a GPSS model,
symbols are not required in the location field of
each block and may be left blank,

As mentioned previously block numhers are
sequentially assigned and whenever a block
symbol is encountered the numeric block value that
has been assigned by the assembly phase and the
symbol are placed in a symbol table,

If the same symbol occurs in the location field
of more than one block it is not assigned the next
sequential block number but the originally assigned
block number is assigned to the location field, A
message indicating this has occurred appears below
the card in the assembly listing printout:
"MULTIPLE DEFINITION OF SYMBOL IN ABOVE
CARD'", Frequently, however, this is the
analyst's intention and this condition will not cause
termination of a run,

Entity definition cards such as STORAGE,
FUNCTION, VARIABLE, and TABLE require
entries in the location field, The user has the
option of specifying numeric or symbolic values,

If a symbol is placed in the location field the
assembly phase will assign a free entity number to
that symbol.

OPERAND FIELD ARGUMENTS

In a GPSS model symbols may also be encountered
in the operand fields. A symbol which is
encountered in field A of entity blocks such as
SEIZE, QUEUE, LOGIC, etc. will be assigned a
free number associated with the entity implied by
the block type (symbolic entity reference will be
discussed in more detail later). When a symbol is
encountered in a field which does not imply an entity
relationship such as does the A field of a SEIZE
block, ete. it is assumed to be a block symbol and
will be replaced by the corresponding block number.
If this symbol has not been defined then an
undefined block symbol error will be noted in the
assembly listing printout.

When a symbolic standard numerical attribute is
used in an operand field a dollar sign (§) must be
used to prefix the symbol, For example:

W$ARM - the current block count at block ARM,
the $ is necessary to distinguish this from the

215

block symbol WARM. The analyst also has the
option of placing a $ before a block symbol in the
operand field, If a dollar sign is used in the
operand field a symbol must follow it. Dollar signs
may never appear in the location field.

RELATIVE ADDRESSING OF BLOCK LOCATIONS

If an analyst wishes to refer to a specific block
card without assigning a symbol to it he may do so
if there is another block in the vieinity which
contains a symbol in its location field. He could
refer to the specific card using the following type
of expression: ALPHA + n, where ALPHA refers
to a reference block and n refers to the number

of blocks the desired block is located from the
reference block. For example:

TRANSFER BOTH, ARM + 1, ARM + 6

The use of this technique will possibly lead
to errors since the analyst may for instance
add a block between ARM + 1, ARM + 6 and forget
that he should also change the reference in the
preceding TRANSFER block to ARM + 7,

FUNCTION FOLLOWER CARDS

There are two formats that may be used for
FUNCTION follower cards:

1. a fixed format which assumes a maximum
of six points per card

2. afree format which allows n points per card.

These formats may not be intermixed in any one
FUNCTION.

If the fixed format is used, the X, and Yi points
must appear in successive six-column
fields: 1-6, 7-12, 13-18, . . . 67-72 and not
separated by commas.

If the free format is used the points must appear
in the following format beginning in column 1 and
ending before column 72:
X Yl/xz, Yzl}:a, Ya/ + o+ X, Y . Inthis
format constants may occupy up to 10 columns
including the decimal point for fractional constants,

With both formats the Y, values may be coded
symbolically or nume rica]lly depending on the
analysts needs and the X values must, of course,
be numeric.

216

SYMBOLIC ENTITY REFERENCE

GPSS/360 entities may be referred to either
numerically or symbolically. It will be possible to
refer, for instance, to a communication line by
the symbol LINE.

SEIZE LINE
ADVANCE FN2
RELEASE LINE

Notice in the above example that just the symbol
LINE was placed in field A of the SEIZE block since
field A of this block always contains a facility name
or number. The assembly phase will assign a
facility number to the symbol LINE in this case.

In some instances where an analyst would want
to use a symbol, the field does not imply what
entity this symbol should represent. For example:

ASSIGN

3, CPU

SEIZE *3

The user wishes the symbol CPU to represent
a facility but this is not apparent from its use in
the ASSIGN block, This necessitates the
introduction of a new control card.

2 8 19
NAME EQU KLJ « «

The EQU card will assign the number k to the
symbol (3 to 5 characters, first 3 alphabetic) which
begins in column 2 and it will associate this symbol
with the entities numbered k, given by I, J, etc.

CPU EQU 5 F

The above card associates the symbol CPU with
facility 5 so that

ASSIGN 3, CPU
would be assembled as
ASSIGN 3 5

Another use of the EQU card is to assure that a
symbol representing more than one entity has the
same number associated with it for each entity so
that block sequences such as the following may be
conveniently represented.

ASSIGN 6, LINE 1
QUEUE *6
SEIZE *6
The card
LINE 1 EQU 2,F,Q

would handle the above situation.

The following is a list of the mnemonics which
may be used in the operand field of the EQU control
card, The user may specify as many as he wishes
as long as each entry is separated by a comma,
and the entries end by column 71.

F - Facilities T - Tables
S - Storages V - Variables
@ - Queues L - Logic Switches

X - Savevalues C - User Chains

H - Halfword Savevalues ¥Z - Functions

M - Matrix Savevalues B - Boolean Variable
Y - Halfword Matrix G - Groups

Whenever a symbol is used in an EQU card it
should not be used as a symbol to represent a block
because when the assembly program encounters a
symbol positioned as in the above ASSIGN block, it
has no way of knowing that it isn't a block symbol.
Therefore, whenever a symbol which has been used
in an EQU card is used as a block symbol, an error
will result.

The numbers the assembly program assigns
various entity symbols will be sequential beginning
with 1 unless directed otherwise by an EQU card or
an entity function (to be discussed later),

LINE EQU 5, F,Q
SEIZE 1
ADVANCE 10
QUEUE LINE
SEIZE LINE
SEIZE TERM

The above blocks would be assembled as:
SEIZE 1
ADVANCE 10
QUEUE 5
SEIZE 5
SEIZE 2

Since Facility 1 is used directly it is not assigned
to the symbol TERM when a facility number must be
obtained for this symbol.

Symbolics may also be used with SNAs merely
by separating the SNA mnemonic and the symbol
with a $.

TEST VARIABLE 10*P5
ASSIGN 3,V$TEST
SEIZE TRAY
ADVANCE FNSONE

The cards above would be assembled as:

1 VARIABLE 10%P5
ASSIGN 3 V1
SEIZE 1
ADVANCE FN1

It is also possible to symbolically identify and
reserve a sequential set of GPSS/360 entities,
This is done by use of the EQU card.

TAPE EQU 10(5), F

The above card will reserve Facility numbers
10-14 with the symbol TAPE associated with
Facility number 10.

The card SEIZE
would then be assembled as

SEIZE 12

The entity function will assign entity numbers
to the symbolic points within the function. The
format for the function follower cards is the same
as it is for ordinary functions, The format for the
entity function definition card is:

2 8 19
NAME or FUNCTION XXX, 8n,L,Jd,
NUMBER

The first operand field beginning in column 19
is the independent argument. The second argument
specifies an entity function with n points and I, J,

. . specify the entity type(s) represented by the
function points.

See the description of the EQU card for charac-
ters which represent the various entities.
FUNCTION P5,54,F,Q
LINE1 3 LINE 2 8 LINE 3 9 LINE 4 10

The above function would cause the following
facility numbers and gqueue numbers to be associated
with the following symbols assuming Facility num-
ber 2 has already been associated with some other
sumbol by an EQU card.

TAPE + 2

LINE1 b
LINEZ 3
LINE3 4
LINE4 5

The function would be assembled as;
FUNCTION PS5 D4
1 3 3 8 4 9 5 10

If a symbol has been used in an EQU card or as
a block symbol or in a previous entity function it
may not be used in an entity function.

217

ASSEMBLY PHASE OUTPUT

OQutput from the assembly phase will include an
alphabetic list of block symbols which were defined
within the model, the block number assigned to
each symbol and a cross-reference of the card
numbers in which the symbol was referenced.

HLOCK
NUMBER

Ll R R

-
R =]

-
w

14
15
l&
17

19

218

0

*

0

&

*
®
=

#*

The output will also include a table of entities
which were defined symbolically within the model.

entities.
COMMENTS
.3 <355 .4 509 .5
.8 l.6 .84 1.83 .88

-95 2.99 .96 3.2 97

«69
2-12
3.5

«998 6.2 999 7.0 9997 8.0

GENERATE CARS PASSING — EXP DIST

DOES NOT NEED GAS

TEST IF CAR CAN ENTER STATION

TIME TO ENTER STATION
CAR ENTERS STATION
ENTER QUEUE FOR ISLAND AREA
ASSIGN GAS TYPE TO PS5
TRY TO ENTER ISLAND SPACE
SELZE ISLAND 1
ASSIGN ISLAND 1 TO Pl2
LEAVE QUEUE FDR ISLAND AREA
POSITION CAR TO ISLAND

TEST FOR ATTENDANT CHOICE
ASSIGN ATTENDENT 1

SET LOGIC SWITCH 3

OBTAIN ATTENDANT

INSTRUCTIONS TO ATTENDANT

LOC OPERATION AsBsCsD+EsFiG
SIMULATE
ILAN1 EQU LyF
ILANZ EQU 2+F
MANL EQU 3,S5,L
MANZ EQU 495l
REGO1l EQU 104F
REGODZ EQU 11+F
PREMI EQU 12,F
GASTA STORAGE 7
MANL STORAGE L
MANZ2 STORAGE 1
EXPON FUNCTION RN1yC24
0 a1 =104 .2 222
& «915 .7 l.2 « 75 1.38
9 2.3 .92 2.52 .94 2.81
98 3.9 -99 4atd «995 5.3
FUNCTION TU DETERMINE GAS TYPE
TYPE FUNCTION RN1,D2
.60 REG 1.0 PREM
RATE VARIABLE N$DOG/B
GENERATE 33 FNSEXPON
TRANSFER «980, INPUT, PASS
PASS TERMINATE
INPUT TRANSFER BOTH, INPUL,PASS1
ADVANCE 3
INPUL ENTER GASTAsL
QUEUE ISLAN,L
ASSIGN 53 FNSTYPE
TRANSFER BOTH, ISALL,L[5AL2
ISALL SEILIZE [LANL
ASSIGN 124 ILANL
POS1T DEPART ISLANs L
ADVANCE 4
ATTENDANT ASSIGNMENT
GATE LR MANL, ATTDZ2
ASSIGN 10+ MANL
LOGIC S %10
ATTEN ENTER *10,1
ADVANCE 5
TRANSFER 1 *5

SELECT REGULAR OR PREMIUM GAS

The symbols will be listed alphabetically within
entity type, along with the numerical value which
was assigned to the symbol by the assembly phase.
The following listing illustrates this expanded
output printout as well as the symbelic naming of

CARD
NUMBER

BLOCK
NUMBER

20
21
22

23
24

48
49
50

#L0C OPERATION

L K

&

x
*®

*
*
E

* % =

=
&
*

SIMULATE

ISALZ2 SEIZE
ASSIGN
TRANSFER

ATTDZ ASSIGN
TRANSFER

AyBsCeDIEeF oG COMMENTS

ILANZ SEIZE ISLAND 2

12, 1LANZ ASSIGN ISLAND 2 TO P12
POSIT

10y MANZ ASSIGN ATTENDENT TwWwO TO PLlO
yATTEN

CAR CANNOT ENTER STATION ADD TO TOTAL

PAS51 SAVEVALUE
TERMINATE

COUNTE.L ADD TO NOT ABLE TO ENTER COUNTER

REGULAR GAS PUMPS

REG TRANSFER
REGL SEIZE
ASSIGN
CONT ADVANCE
SPLIT
CONT1 ADVANCE
RELEASE
ENTER
ADVANCE
TRANSFER
THEN ADVANCE
CONTZ2 LEAVE
LOGIC R
ADVANCE
RELEASE
ADVANCE
LEAVE
bae TERMINATE

REGZ SEILZE
ASSIGN
TRANSFER

REGULAR PATH
ATTl ADVANCE

ATT2 ADVANCE
LEAVE

BOTH,REGLsREGZ SELECT REGULAR PUMP

REGO1

6yREGOL ASSIGN REGULAR PUMP TD P&
10 ATTENDANT WITH NOZZILE
1:ATT1

180,60 PUMP GAS

b RELEASE PUMP

*10,1 RECALL ATTENDANT

L COLLECT CASH OR CARDS

<750, THENs SEVEN

15,5 CASH CUSTOMERS

*10,1 RELEASE ATTENDANT

%10 ALLOW FOR ATTENDANT RELEASE
7 PUT CHANGE AWAY - START CAR
%12 RELEASE ISLAND

10 LEAVE GAS STATION

GASTA,L LEAVE GAS STATION

REGOZ

&6¢REGO2 ASSIGN REGULAR PUMP 2 TO P&
¢ CONT

TO ACCOUNT FOR ATTENDANT UTILIZATION

1 ATTENDANT DECIDES WHAT TO DO
60430 WASH WINDOWS AND CHECK OIL
#1041 RELEASE ATTENDANT

219

BLOCK
NUMBER *L0OC OPERATION AsBCyD4EsFeG
51 TERMINATE
=
&
&
52 SEVEN ADVANCE 2545
53 TRANSFER sCONT2

*
® PREMIUM GAS PUMP
*®

COMHENTS

CREDIT CUSTOMERS
TRANSFER TO HMAIN PATH

54 PREM ASSIGN 6y PREMI ASSIGN PREMIUM PUMP TO P&
55 GATE NU *6, ALTER TEST IF PREMIUM PUMP AVAILABLE
56 SEIZE *6 SEIZE PREMIUM PUMP
57 TRANSFER sCONT TRANSFER TO MAIN PATH
E 3
®
k3
58 ALTER SPLIT 1¢PREML SPLIT TD ACCOUNT FOR ATTENDANT
59 QUEUE PREMI,1 QUEUE FOR PREMIUM PUNMP
&0 SEIZE 6 SEIZE PREMIUM PUMP
61 DEPART PREMI L LEAVE QUEUE FOR PREMIUM PUMP
62 TRANSFER ,CONT1
-
=
*
63 PREML ADVANCE 11 ACCOUNT FOR DECISION AND
64 - TRANSFER ,ATT2 FeaE
* TIMING GENERATOR FOR AN 8 HOUR DAY
65 GENERATE 28800
66 SAVEVALUE RATE,VS$RATE
67 TERMINATE 1
START 1
END
BLOCK NUMBER SYMBOL REFERENCES BY CARD NUMBER
58 ALTER 103
23 ATTD2 38
17 ATTEN 54
48 ATTL 67
49 ATT2 118
30 CONT 86 105
32 CONT1 113
38 CONT2 98
44 D0G 21
4 INPUT 23
& INPUL 25
10 I[5ALL 30
20 I15AL2 30
3 PASS 23
25 PASS1 25
12 POSIT 49
54 PREM 20
63 PREML 109
27 REG 20
28 REGL 63
45 REG2 &3
52 SEVEN 72
37 THEN 72

220

CARD
NUMBER

93
94
95
96
T
98
99
100
101
102
103
104
105
L06
107
108
109
110
111
112

113
114
L15
Ll&
117
118
119
120
121
122
123
124
125
126

FACILITY SYMBOLS AND CORRESPONDING NUMBERS

1 ILAN]
2 ILANZ
12 PREMI
10 REGO1
11 REGO2

STORAGE SYMBOULS AND CORRESPONDING NUMBERS

1 GASTA
3 MAN1
4 MANZ

QUEUE SYMBOLS AND CORRESPONDING NUMBERS

1 ISLAN
2 PREMI

SAVEVALUE SYMEOLS AND CORRESPONDING NUMBERS

1 COUNT
2 RATE

VARIABLE SYMBOLS AND CORRESPUNDING NUMBERS

1 RATE

LOGIC SWITCH SYMBOLS AND CORRESPONDING NUMBERS

3 MANL
4 MANZ

FUNCTION SYMBOLS AND CORKHESPUNDING NUMBERS

1 EXPUN
2 TYPE

221

MACROS

Macros are strings of frequently used blocks de-
fined by the user, which he may later call with only
one card. The only advantage obtained by using
macros is the elimination of the need to code and
keypunch repetitive strings of blocks.

A GPSS/360 user will be able to incorporate
macros into his model deck. The number of macros
in the standard GPSS/360 program will be 50 but
may be reallocated by the user, as any GPSS entity
may. A maximum of ten arguments per macro is
allowed,

The definition of maeros requires two new con-
trol cards STARTMACRO and ENDMACRO, and
the calling of a macro requires one new control
card, MACRO.

All macros to be used in a model must be de-
fined at the beginning of the GPSS/360 input deck.
The user informs GPSS that a macro definition is
to begin by means of the STARTMACRO card.

2 8 19

NAME STARTMACRO

The name of the macro to be defined starts in
column 2 and must be 3 to 5 characters with the
first 3 characters alphabetic, The macro definition
is terminated by the ENDMACRO card.

2 8 19

ENDMACRO

The actual macro definition cards follow the
normal GPSS format except that some fields may
be replaced by macro arguments., Maero arguments
are represented by following a special character #
with a letter (A-J) which represent arguments 1-10
respectively.

Macros are called within a GPSS/360 program
by means of the MACRO card.

2 8 19

NAME MACRO A,B,C,D,E,.,.T

The name of the macro being called starts in
column 2 and the arguments to be substituted in
the macro definition cards start in column 19,

As a simple example consider the following
block sequence:

SEIZE 1
ADVANCE 14
RELEASE 1

The same sequence of SEIZE, ADVANCE,
RELEASE will be used many times in a program
but with different facilities and a different
ADVANCE time. The block sequence could be
defined as a macro as shown.

222

EASY
SEIZE
ADVANCE
RELEASE
ENDMACRO

STARTMACRO

A
#B

#A

and then called later in the program,

GENERATE

MACRO

EASY

EASY MACRO

40,10

4,20

2, FN10

The above card sequence would produce the

following block sequence.
GENERATE

SEIZE
ADVANCE
RELEASE

SEIZE
ADVANCE
RELEASE

40,10

20

2
FN10
2

Maeros may also be called within other macros.

EXAM
ADVANCE
TRANSFER
ENDMACRO

TWO

A

ADVANCE

TRANSFER

MACRO

ENDMACRO

EXAM

STARTMACRO

A, #B
,#C

STARTMACRO

#B, #C
#D

#E, #C
#D,#F,#C

The above card sequence defines the macros

EXAM and TWO.

Whenever TWO is called within

the model the macro EXAM will also be expanded.

The card:
2 8
TWO MACRO

will be expanded to
TRANSFER
ADVANCE
TRANSFER
ADVANCE
TRANSFER

19
TRANSFER,, 704,
AGAIN, 45, PICK, FN5

.704,, AGAIN
45

PICK, , AGAIN
45, FN5

, AGAIN

Notice that before the macro EXAM was expanded
in the above example, the arguments from the macro
TWO were substituted for the D, F, C given in the
card which calls the macro EXAM so that when
EXAM was expanded, the A argument was 45 which
was the D argument of the macro TWO, the B
argument was FN5 which was the F argument of the
macro TWO, and the C argument was AGAIN, which
was the C argument of the macro TWO.

Macros may be nested up to two levels, i.e,, a
macro which is called within a macro may also
call still another macro so long as this third macro
does not call another macro, Consider the follow-
ing sequence.

TWO STARTMACRO
ADVANCE ¥A,#B
ENDMACRO

THREE STARTMACRO

TWO MACRO #B,#C
ADVANCE #A
ENDMACRO

FOUR STARTMACRO

THREE MACRO #A,#B,#C
ADVANCE #C
ENDMACRO

If the following MACRO calling card were en-
countered

FOUR MACRO 20,30,40
the above MACRO definition would cause the follow-
ing blocks to be assembled.

The user should not confuse calling many
macros within a macro, on which there is no
limitation if these called macros do not refer to
other macros, with nesting of macros. The follow-
ing trivial example should demonstrate this,

FIVE STARTMACRO
ADVANCE #A
ENDMACRO

SIX STARTMACRO
ADVANCE H#A
ENDMACRO

SEVEN STARTMACRO
ADVANCE A
ENDMACRO

EIGHT STARTMACRO
ADVANCE #A
ENDMACRO

NINE STARTMACRO

FIVE MACRO #A

SIX MACRO #B

SEVEN MACRO #C

EIGHT MACRO #D
ENDMACRO

The card
NINE MACRO 1,2,3,4

would cause the following sequence to be assembled
ADVANCE 1
ADVANCE 2
ADVANCE 3
ADVANCE)
The card sequence below and on the next page
illustrates definition and calling of macros and their
expansion as it will be produced in GPSS/360.

COMMENTS

TEST LE,10, BIG, DMJ, GATE LR, 2 +,5,0

ADVANCE 30,40
ADVANCE 20
ADVANCE 40
BLOCK
NUMBER *LOC OPERATION A,B,C,D,E,F,G
SIMULATE
TER STARTMACRO
#D #A X1,#B,#C
ADVANCE 2
#E 1
SAVEVALUE #F,#G
TERMINATE #H
ENDMACRO
1 GENERATE 1
2 ADVANCE 1
3 SAVEVALUE 1+,1
TER MACRO
4 DMJ TEST LE X1,10, BIG
5 ADVANCE 2
6 GATE LR 1
7 SAVEVALUE 2+,5

223

BLOCK

NUMBER *LOC OPERATION
8 TERMINATE 0
TER MACRO

9 BIG TEST GE

10 ADVANCE 2

11 LOGICS 1

12 SAVEVALUE 3+,4

13 TERMINATE 1

14 TERM TERMINATE 1
START 5
END

UPDATE FEATURE

This eliminates the need to transport, store,
maintain, and submit large symbolic decks.
The update feature will provide the user with
the following services:

1. the ability to create a master tape.

2. the ability to update the master tape (delete
or insert cards) to create a new master and then
assemble and execute the model. This would not
modify the old master.

3, the ability to punch the master tape.

A master file is originally created by means of
the CREATE control card:

2 8 19

CREATE

This card is placed at the beginning of the sym-
bolic deck and will cause the deck to be written on
a master tape,

In order to perform an update, three or four
card types are required,

2 8 19

UPDATE PUNCH, NOASSEMBLE
DELETE A-B

ADD A

REPLACE A

ENDUPDATE

The UPDATE card informs the program an
update is to take place. This eard has two
options: PUNCH will cause the new master tape to
be punched, NOASSEMBLE will delete the normal
transfer of control to the assembly program and
will cause the new master tape to be printed. If
PUNCH is omitted, no deck will be punched from
the new master tape. If NOASSEMBLE is omitted,
the update program will automatically transfer
control to the GPSS/360 assembly program.

The DELETE card will cause the cards given by
A to B inclusive to be eliminated from the new
master tape.

224

AB,C,D,E,F,G

COMMENTS

TEST GE, 5, TERM, BIG, LOGICS, 3 +,4,1
X1,5, TERM

DELETE 10-25

The above card will cause the tenth to twenty-
fifth card inclusive on the old master not be placed
on the new master file.

DELETE 15

The above card will cause the fifteenth card on
the old master not to be placed on the new master
file.

The ADD card will cause the cards following to
be placed on the new master file after the card
specified in the operand field.

ADD 10

The above card will cause the cards following the
ADD card to be placed on the new master after the
tenth card on the old master. This operation will
continue until a DELETE, ADD, REPLACE or
ENDUPDATE card is encountered.

The REPLACE card will cause the cards follow-
ing to replace the card specified in the operand
field on the new master file,

REPLACE 20

The above card will cause the cards following
it to replace the twentieth card on the new master
file. This operation will continue until a DELETE,
ADD, REPLACE, or ENDUPDATE card is
encountered,

The ENDUPDATE card signals the end of the
update. The new master file will be punched if the
PUNCH option has been specified and then either
control will be transferred to the assembly program
or the new master file will be printed depending on
whether or not the NOASSEMBLE option was
included.

If a master file contained the following records

b SIMULATE

GENERATE 10,5
SPLIT 1,AAA
SEIZE 1
ADVANCE 5

RELEASE 1
TERMINATE
AAA SEIZE

ADVANCE
RELEASE
SEIZE
ADVANCE
RELEASE
TERMINATE
START 20
END

and an update was performed with the

following cards

L - I = T < 1 B

UPDATE NOASSEMELE
REPLACE 2

GENERATE 15,6

ADD 6

SEIZE 3

ADVANCE 1

RELEASE 3

DELETE 11-13
ENDUPDATE

the new master file would contain the
following records
¥ SIMULATE
GENERATE 15,5
SPLIT 1,AAA
SEIZE 1
ADVANCE
RELEASE
SEIZE
ADVANCE
RELEASE
TERMINATE
AAA SEIZE

ADVANCE
RELEASE
TERMINATE
START
END

More than one operation cannot be performed

on any card. For example, consider the

following master file:

Lo = O

| o T e v

ADVANCE 5 35
SEIZE 4 36
ADVANCE 10 37
RELE ASE 1 38

cards 36-38 are to be replaced by:

SEIZE 5
ADVANCE 2
RELEASE 5

The operation could not be performed by

DELETE 36-38
ADD 38
SEIZE 5

ADVANCE 2

RELEASE 5
because card 38 is being referenced in both
the DELETE and ADD card. The following
procedure should be used to perform such an
operation:

DELETE 36-37
REPLACE 38
SEIZE b
ADVANCE 2
RELEASE 5

-
.

GPSS/360 ASSEMBLY CONTROL CARDS

SIMULATE Card

If a GPSS simulation run is desired, a
SIMULATE card must be present, Two forms
of the SIMULATE card are acceptable: a*
in column 1 and the word SIMULATE
beginning in column 8; if this form is used,
this card must be the first or second card in
the model. The other form is a card with the
word SIMULATE beginning in column 8; if
this form is used, the card may appear any-
where in the data deck,

If no SIMULATE card is present, the job
will terminate after the assembly phase.

JOB Card

Frequently an analyst wishes to assemble
(and often simulate) more than one model.
This may be accomplished by inserting a
JOB card between each model, When a JOB
card is recognized by the assembly phase it
completes processing the preceding cards
and then transfers control to the simulator

225

phase which will transfer control back to the
assembly phase after execution of that model. This
process will be repeated until all jobs have been
processed.

The format for this card is the word JOB
beginning in column 8.

END Card

An END card is the last card of an input deck. It
performs the function of informing GPSS that all
cards have been presented.

The format for the END card is the word END
beginning in column 8.

PSEUDO-OPERATIONS

The assembly phase also recognizes five pseudo-
operations: ORG, ICT, SYN, ABS, and ENDABS.
The pseudo-operations are included to give the user
some control over the allocation of block addresses.

ORG (Origin)

This card is used to set the next block number to be
assigned by the assembler to a desired value., The
work ORG appears beginning in column 8, A number
or symbol appears beginning in column 19.

The value of the entry beginning in column 19 is
the next block number to be assigned. If this entry
is a symbol, the symbol must have been previously
defined. In this case, the block number assigned
to the symbol will be the next block number assigned.

ICT (Increment)

The ICT pseudo-operation is used to increment the
next block number to be assigned by the assembler
by a desired value. The word ICT appears beginning
in column 8 and a numeric value appears beginning
in eolumn 19. The current block count is
incremented by the value specified beginning in
column 19 and the sum is used by the assembler as
the next block number to be assigned.

The ORG and ICT pseudo-operation should be
used very carefully.

SYN (Synonymous)

This card is used to equate one block symbol with
another. The word SYN appears beginning in col-
umn 8, a symbol appears beginning in column 2 and
a symbol appears beginning in column 19. The
symbol in the location field is assigned the same
block number that was assigned to the symbol in the
operand field. This assumes the symbol in the

226

operand field is already defined. The symbol in
the location field must be a legal and undefined
symbol.

ABS and ENDABS

The ABS pseudo-operation (the word ABS beginning
in column 8) is used to specify where absolute
GPSS coding is to be used. The ENDABS pseudo-
operation (the word ENDABS beginning in column 8)
is used to discontinue the absolute GPSS mode.

When the assembly phase is operating in absolute
mode it simply reads each card to determine if it
is an ENDABS card and if not, writes this in the
simulator input device without further examination.
The assembler assumes that every card between
ABS and ENDABS card has no symbolic coding in
any of its fields and is in a fixed-field format.

This precludes the use of a card containing a
matrix savevalue or free-form function follower
cards between ABS and ENDABS words because
these cards must be processed by the assembly
phase.

Care must be taken when absolute and symbolic
coding are used in the same program. A JOB card
used during absolute mode, will not be recognized,
and the job that follows will be considered an
extension of the preceding one. In order to have
the JOB card recognized, the pseudo-operation
ENDABS must appear before the JOB card. An
ABS card could immediately follow the JOB card
and thus indicate that the next job is to begin in the
absolute mode.

The assembler block counter is not changed by
the absolute coding mode; when this mode is ended,
the block counter will start assigning block numbers
at the point where it stopped previously.

Because of this, the analyst must ensure that

the absolute block numbers will not be the same

as the assembler-assigned block numbers. To
eliminate this problem, ORG or ICT pseudo-
operations may be used to change the block counter,

ERROR STATEMENTS
Errors are indicated by the statement:
ERROR NUMBER(S) W, X,Y,Z

below the card which contains the error or errors,
where W, X, Y, and Z are error numbers. If a
card contains more than four errors, the fourth,

+«+ N-1 errors found will not be printed out, only
the first, second, third, and Nth error will appear.

MULTIPLE DEFINITION OF BLOCK SYMBOLS

The assembly phase does not consider multiple

definition of a block symbol as an error. This is
because the analyst may wish to redefine a block
which has a symbolic location one or more times
in a simulation job, However, it is possible that

the analyst might mistakenly assign the same
symbolic location to two separate blocks in a
model, Therefore, when such a situation is
encountered, the message "MULTIPLE DEFINI-
TION OF SYMBOL IN ABOVE CARD" is printed
below the card containing the multiple symbol
definition,

227

APPENDIX C: OUTPUT EDITOR

The GPSS/360 Output Editor allows the user to
select statistics from and modify the standard out-
put provided by GPSS/360 into a format more
appropriate to a given application, The various
request cards associated with the output editor
allow the user to:

1. Select the output statistics of interest,

2, Title and/or comment at appropriate sections
of the output.

3. Control spacing, page skipping, and order of
output.

4, Display GPSS/360 SNA values in graphic
format.

GPS5/360 Output Editor request cards can be
categorized into two areas:

1. Seclection of statistics, titling, comments,
and spacing

2. Graphical representation of SNA values
The request cards associated with selection of
statistics, titling, spacing, etc.,are:

REPORT
TITLE
INCLUDE
FORMAT
TEXT
COMMENT
EJECT
SPACE
OUTPUT

The request cards associated with graphic output
are:

GRAPH
ORIGIN
X

Y
STATEMENT
ENDGRAPH

The format and a complete description of the
GPSS/360 Output Editor request cards follows.

SELECTION OF STATISTICS, TITLING,
COMMENTS, AND SPACING

REPORT Card

To obtain the services of GPSS/360 Output Editor,
the user must submit the appropriate GPSS/360

228

Output Editor request cards immediately after the
last GPSS/360 START card and before the GPSS/
360 END or JOB card associated with a given
simulation model, The first of these cards must
be the REPORT card, which has the following
format:

8
REPORT

The REPORT card is then followed by the Output
Editor request cards, which may appear in any
order. The general deck format when using the
GPSS/360 Output Editor is:

GPSS Model

l

START 1000

REPORT

T

Output Editor

Request Cards

END

The output format specified by the Output Editor
request cards will be applicable for all GPSS/360
START cards associated with a given model, This
also includes SNAPS if specified in the START
cards. It is not possible to redefine Qutput Editor
request cards when using multiple START cards
ete.

GPSS/360 execution errors will unconditionally
result in the standard GPSS/360 error output re-
gardless of any request for Output Editor services.

Each Output Editor request card is processed in-
dependently and is not completely checkedfor errors
until output time. If anerror inan Output Editor
request card is encountered, anerror message is
listed and the card is not processed. Remaining
Output Editorrequest cards are then processed
independently. If anyerrors are encountered while
processing GPSS/3600utput Editor request cards, the

standard GPSS/360 output is unconditionally listed
after the last Output Editor request card is
processed.

TITLE Card

The TITLE card enables the user to title the various
statistic sections, such as facilities, queues,
specific tables, ete. The format for this card is:

2 8 19 AB 72
entity type TITLE X, ag8-—-c-—c—eaeeu c

The group of statistics to be titled is named be-
ginning in column 2, The title to be printed begins
in field B, and continues up to column 71, and,
if necessary, may be continued on the next card
beginning in column 1 and ending by column 71, If
a second card is needed, a nonblank character must
be punched in column 72 of the TITLE card, The
title may not exceed 124 characters. Listed below
are the mnemonics used, beginning in column 2, to
indicate the entity type to be titled:

*BLO-- block counts
SAV-- fullword savevalue contents
HSAV--halfword savevalue contents
MSAV--matrix savevalue contents
MHSA--halfword matrix savevalue contents
CHA--user chains statistics
FAC--Tfacility statistics
STO--storage statistics
QUE-- queue statistics
TAB--table statistics
GRO--group members
*CLO--clock statistics

The statistics for just one particular member of
any member of an entity class (for example,
FACILITY 13, STORAGE 2, or MATRIX
SAVEVALUE 4), may be obtained by placing the
number (13, 2, or 4) in field A of the TITLE
card. For example:

2 8 19
MSAYV TITLE 4, THE PROFIT MATRIX

The above TITLE request card causes the

following output:

THE PROFIT MATRIX

MATRIX FULLWORD SAVEVALUE 4
COLUMN 1 2 3 1
ROW 1 0 0 73 75
2 71 0 0 0

If no entryis placedinfield A, all statistics assoc—
iated with the entity type are printed outfollowing the

title. Thefield A option of the TITLE cardapplies to
all above entities except those marked by asterisks
(CLOand BLO). Whenever these are requested in
TITLE cards, the entire output associated with them
is printed out regardless of any entry infield A, Sym-
holics may alsobe used infield A to specify any entity,
for example, FCPU, MXCHAN etc. IfnofieldA
entryis required, a comma mustappear incolumn 19
before the TITLE information to indicate the omission
of field A.

INCLUDE Card

The user may select only the entity statistics of

interest by means of the INCLUDE card, which has
the following format:

2 8 19
entity INCLUDE

The location field contains the mnemonic for the
entity that is to be printed--for example, SAV, FAC,
STO, etc. The entries to the left of the slash in the
operand field indicate the range of entity that is
printed. The entries to the right of the slash
indicate the columns of normal output statistics to
be printed. For example, the first column of
normal facility statistics is the facility name or
number, the second column is average utilization
etc. For example:

FAC INCLUDE F1-F10/1,2

As a result of the above card, the only facility
statisties printed will be the facility name or number
and the average utilization for facilities 1 through 10.
If the user specifies zero in column 19 of an
INCLUDE card, no statistical output will oceur.

The INCLUDE card can be used in conjunction
with the TITLE card to specify the range of entity
to be included with the TITLE, If an INCLUDE card
immediately follows a TITLE card of the same entity
type (column 2), the restrictions of the INCLUDE
card request are placed on the statistics associated
with the TITLE card. For example:

2 8 19
FAC TITLE

range/spec, col,of output

FAC INCLUDE F$TERMI1-F$TERM5/1, 2

The above cards would cause the following
statistics to be listed:

UTILIZATION FOR TEERMINALS 1-5

FACILITY AVERAGE
UTILIZATION
TERM1 . 257
TERM2 .270
TERM3 . 258
TERM4 . 258
TERMS5 . 257

229

, UTILIZATION FOR TERMINALS 1-5

If the field A option is specified in the TITLE

card, the INCLUDE card is treated independently of

the TITLE card.

For example:

2 8

FAC TITLE
FAC INCLUDE F1-F8/1,2,3

14 19
3 TITLE FACILITY 3

The above cards would cause the following

printout:
TITLE FACILITY 3
AVERAGE NUMBER AVERAGE SEIZING PREEMPTING
FACILITY UTILIZATION ENTRIES TIME/TRANS. TRANS.NO. TRANS. NO.
3 =959 28 4,214
AVERAGE
FACILITY UTILIZATION ENTRIES
1 « 941 26
2 .948 27
3 . 959 28
4 . 065 2
5 .089 2
6 .032 1
i . 186 5
8 .073 2
The following five entity types may be specified Queues (Q) 1 Queue name or number
in INCLUDE card, with the previously defined 2 Maximum contents
format (F1-F10/1,2). The letter or letters within 3 Average contents
parentheses are to be used for the entity type in the g E::,il :Iit;i:;
entries to the left of the slash. The numbers des- 6 Percent zero entries
ignate the columns of output statistics which may be 7 Average time per transaction
requested (to the right of the slash) for each entity 8 Average time per transaction,
type. Note that if the first number to the right of excluding zero entries .
the slash is not a 1, the specific number of the lg gﬁzleelﬁuaﬁzn%:ngcci;t:fewﬂh e
entity is not printed out. The column request Tier
numbers must be in ascending order. The range ; "
request (F1-F10) must also be from low to high, and Chatia (o0 é ngarl il:l::.:;‘r;er;ame oF AumRex
both numbers must be legal for the particular entity 3 Average time per transaction
type. The entity mnemonics (FAC, etc.) are the 4 Current contents
same as those given for TITLE cards. 5 Average contents
6 Maximum contents
Tables (T) 1 Table name or number
Facilities (F) 1 Facility name or number g ﬁif&f&;?:ﬁ:?fﬂ;f&fg
g ‘;Xif]:‘ff ;tlelizt::;%n 4 Standard deviation--nonweighted
4 Average time per transaction g %urn of arguments--nonweighted
5 Seizing transaction number ntries in table--weighted
6 Preempting transaction number ; g:igﬁ?ﬁﬁ:ﬁ[gﬁ%ﬁ:ﬁw 3
Storages (S) 1 Storage name or number 9 Sum of arguments--weighted
2 Capacity 10 Upper limit
3 Average contents 11 Observed frequency
4 Average utilization 12 Percent of total
5 Number of entries 13 Cumulative percentage
6 Average time per transaction 14 Cumulative remainder
7 Current contents 15 Multiple of mean
8 Maximum contents 16 Deviation from mean

230

The following five entity types may be specified
in INCLUDE cards with just the range of members
of the particular entity type that are requested in
field B:

2 8 19

SAV INCLUDE , X2-X4
HSAV INCLUDE , KH2-XH4
MSAV INCLUDE » MX2-MX4
MHSAV INCLUDE » MH2-MH4
GRO INCLUDE » G2-G4

In each case the standard output for the entity
type would be printed out only for the requested
members of the type. For example:

2 8 19
GRO INCLUDE » G3-G4

The above card would cause the following
printout:

CURRENT MEMBERS OF GROUP 3
TRANSACTION MODE

CURRENT MEMBERS O GROUP 4
TRANSACTION MODE

For all INCLUDE cards, the range may be stated
either munerically (F1-F5) or symbolically
(F$TERM1-F$TERMS).

Each INCLUDE card may refer to only one entity
type. With each column of statistics requested, the
heading for that column of statistics is also listed.
For entity statistics not requested by columns (SAV,
HSAV, GRO, MSAV, MHSAV) only the entity type
headings are printed, as shown in the example of
the GROUP output.

FORMAT Card

A card type similar to the INCLUDE type card is the
FORMAT card:

2 8 19
n FORMAT range/output statistics

The entries to the left of the slash indicate the
range of the entities to be used, The entries to the

right of the slash indicate the output statistics to
be printed.

This card type can best be explained by use
of an example: Assume that 20 transmission lines
are represented by facilities 1-20, and that the
amount of time a message spends waiting to be
serviced by the line at a terminal queue is contained
in queues 1-20, Presentation of this line utilization
and waiting time in tabular form could be accom-
plished with the following card:

8 19
FORMAT 1-20/F1, F2, Q2

This card would produce the following printout:

1 . 382 .61
2 471 1.02
20 . 144 .15

In the above example the first entry to the right
of the slash is F1, which indicates the first column
of normal faeility statistics (this is the facility name
or number); the second entry indicates the second
column of normal facility statistics, ete.

The entries to the left of the slash indicate the
entity attributes to be associated with the output
statistics, i.e., a kind of looping constant. The
first output line produced by the above FORMAT
card is the facility name or number (in this case
the number 1), the utilization for facility 1, the
maximum queue length for queue 1; the second line
is the same information for facility 2 and queue 2,
ete,

The following table lists the entries that may be
specified to the right of the slash on a FORMAT
card:

F1 Facility name or number

F2 Average utilization of facility

F3 Number of entries for facility

F4 Average time per transaction for facility

S1 Storage name or number

83 Average contents of storage

54 Average utilization of storage

85 Number of entries in storage

86 Average time per transaction in storage
87 Current contents of storage

88 Maximum contents of storage

231

Q1 Queue name or number

Q2 Maximum contents of queue

Q3 Average contents of queue

Q4 Total entries in queue

Q5 Zero entries in queue

Q6 Percent zero entries in queue

Q7 Average time per transaction in queue

Q8 Average time per transaction in queue, excluding
zero entries

Q10 Current contents of queue

T1 Table name or number

T2 Entries in table--nonweighted

T3 Mean argument for table --nonweighted
T4 Standard deviation for table--nonweighted
T6 Entries in table--weighted

T7 Mean argument for table--weighted

T8 Standard deviation for table--weighted

X1 Savevalue name or number
X2 Contents of savevalue

XH1 Halfword savevalue name or number
XH2 Contents of halfword savevalue

CH1 User chain name or number

CH2 Total entries in user chain

CH3 Average time per transaction in user chain
CH4 Current contents of user chain

CH5 Average contents of user chain

CH6 Maximum contents of user chain

One advantage of the FORMAT card over the
INCLUDE card is that the user can mix entity types
with the FORMAT card. As seen in the previous
example, the first two columns of statistics were
associated with facilities and third column with
queues.

Also with the FORMAT card, the user can
specify the print column in which to start the first
column of statistics. The user cannot control spac-
ing between subsequent columns of statistics, The
starting print column is specified in column 2 of the
FORMAT card. If this column is blank, the statis-
ties will start in print column 1. No statistics can
be printed past the 132nd print position. Eighteen
columns are used for each statistic type specified
by the FORMAT card. The user should consider
this figure as a guide when setting up titles, ete.
for statistics that are listed by means of the
FORMAT card.

When using the FORMAT card, no automatic
titling of column statistics is given. Appropriate
titles can be inserted by use of either a TEXT card

232

or a COMMENT card immediately before the
FORMAT card.

Any FORMAT card in error results in a printout
of the card followed by an error message,

TEXT Card

This card allows the user to intermix numerical
output data with alphanumeric data in sentence form.

2 8 19 72
n TEXT alphamerics & data c¢

The number n beginning in column 2 indicates the
starting print position, If this is blank, the starting
print position is assumed to be 1, The text to be
printed begins in column 19 and continues up to
column 71 and, if necessary, may be continued on
the next card beginning in column 1 and ending by
column 71, If a second card is needed, an nonblank
character must be punched in column 72 of the TEXT
card.

Data obtained and the way it is printed is dis-
tinguished from ordinary alphameries by preceding
and following the information by the character #,
This data and the desired output format for the data
are presented as follows:

#data/formati

The operations associated with this card type can
best be explained by use of an example:

2 |s |a
5 [TEXT |CPU UTILIZATION IS #F1, 2/ 2RXX#%

The entry after the first # (F1,2) indicates that
the data obtained is the average utilization (the
second column of facility output) for Faeility 1.
The entry to the right of the / (2RXX) indicates the
manipulation performed on the data obtained. This
entry indicates that the decimal point of the data
(average utilization of Facility 1) is to be moved
two places to the right (2R). The final part of the
entry (XX) indicates that only the two characters to
the left of the decimal point, in its new position, are
to be printed.

The above card would cause the statement

CPU UTILIZATION IS 38%
to be printed out beginning in column 5, assuming

that the utilization of Facility 1 is .3826,
In general, the format presentation consists of

X's (representing digits), a decimal point, and
possibly an instruction to move the decimal point
to the left or right.

The first operation is to move the decimal point,
if this is indicated, by a number followed by either
Ror L: 1L -- move the decimal point 1 place to
the left; 4R - - move the decimal point 4 places to
right, This is performed on the actual data.

The next step consists of printing the number of
digits to the left and right of the decimal point as
indicated in the format presentation. For example:

Source Format in

Data TEXT Card Printed Result

14238 SLXX. X 14,2

. 12856 R X 12.8

1581 XK, ERROR SIGNIFICANT
DIGITHASBEEN IGNORED,
SOURCE DATA IS 1581

32,456 1L, XX 3.24

The following table illustrates the entries which
may be specified to the left of the slash on a TEXT
card:

Fn,2 Average utilization of facility n
Fn,3 Number of entries for facility n
Fn,4 Average time per transaction for facility n

Sn,3 Average contents of storage n

Sn,4 Average utilization of storage n

Sn,5 Number of entries for storage n

Sn,6 Average time per transaction for storage n
Sn,7 Current contents of storage n

Sn, 8 Maximum contents of storage n

Qn, 2 Maximum contents of queue n

Qn,3 Average contents of queue n

Qn,4 total entries of queue n

Qn,5 Zero entries for queue n

@n,6 Percent zeros for queue n

Qn,7 Average time per transaction in queue n

Qn, 8 Average time per transaction in queue n
excluding zero entries

@n, 10 Current contents of queue n

Entries in table n--nonweighted

Mean argument for table n--nonweighted
Standard deviation for table n--nonweighted
Entries in table n--weighted

Mean argument for table n--weighted
Standard deviation for table n--weighted

-

-

EEEEY

Xn,2 Contents of savevalue n
XHn, 2 Contents of halfword savevalue n

CHn,2 Total entries for user chain n

CHn,3 Average time per transaction for user chainn
CHn,4 Current contents of user chain n

CHn,5 Average contents of user chainn

CHn, 6 Maximum contents of user chain n

The following Cutput Editor cards:

TEXT AV TIME/XACT #CH3, 3/3X35 UNITS
SPACE 2

TEXT SAVEX 3=#X3,2/X304 IN BIG

TEXT SAVEX 3=#X3,2/2LXX, X3+ IN DECIMAL
TEXT LITTLE SAVE 2 #XH3, 2/X3# ANSWER
TEXT MAXIMUM Q CONTENTS =#Q1, 4/30X#

PROBABLY
would result in the following printout:
AV TIME/XACT 55 UNITS

SAVEX 3 =11 IN BIG

SAVEX 3= .11 IN DECIMAL

LITTLE SAVE 2= 7 ANSWER

MAXIMUM @Q CONTENTS =360 PROBABLY

The user should have a good idea of what his
output will look like before using TEXT cards.
Since an exact count on digits is required, an
incorrect count will result in no processing of the
TEXT card, Instead the card will be printed out
with an error message and the source data that
should have been inserted.

For example:
8 19
TEXT #T1, 2/2 R, XX

will result in the printout: TEXT #F1, 2/2RX. XXi#
SIGNIFICANT DIGIT WILL BE IGNORED IF
SPECIFICATION IN ABOVE STATEMENT IS
FOLLOWED. SOURCE DATA IS .625.

By shifting the decimal point two places to the
right, the result is 62.5, Since the request was for
X, XX (only one place to the left of the decimal
point) a significant digit would be ignored, therefore
the error.

The decimal point may be shifted to the right only
n +1 places where n is the number of decimal digits
normally considered for this statistic, If the
requested right shift is for more than n+ 1 places,
blanks will be filled in.

If facility utilization (column 2) is . 315 and
number of entries (column 3) is 36 then the following
cards:

233

(1) #F1, 2/4 R3O0

(2) #F1,2/IRXXXX. X#

(3) #T1.2/5RNEXH

(4) #F1,3/XX#

(5) #F1,3/ 1R

(6) #TF1,3/2RICXKH
would result in

(1) 3150
2) 3.1
() 3150
(4) 36
(5) 360
(6) 360

COMMENT Card

The COMMENT card is similar in format to the
standard GPSS/360 COMMENT card in the sense
that an asterisk appears in column 1, The contents
of the COMMENT card will be printed out with
column 2 of the card being listed in the first print
position,

For example:

1
* TO COMMENT THE MODEL would result in the
printout:

TO CCMMENT THE MODEL

The user can continue his comment on a second card
(not to exceed 132 print positions) by placing a
nonblank character in column 72 and starting the
continuation card in column 1.

EJECT Card

The EJECT card enables the user to skip to a new
page before further output requests are serviced,
The format of the EJECT card is:

8

EJECT

SPACE Card

The SPACE card enables the user to skip a specified
number of lines. The format of the SPACE card is:
g8 19
SPACE # of lines to skip
The SPACE card will skip the number of lines
specified in column 19 which may be 1, 2, or 3,
When using the services of the GPSS/360 Cutput
Editor, no page skipping or line spacing is done
unless it is specifically requested by use of the
EJECT and SPACE cards.

234

OUTPUT Card

The OUTPUT card enables the user to obtain the
standard GPSS/360 output in addition to the Output
Editor printout. The format of the OUTPUT ecard
is:

8

OUTPUT
The standard output will start on a new page. After
it is complete, the Output Editor will skip a page
and continue to process any additional Output Editor
request cards. As a general rule, the OUTPUT
card should always be used the first time a
simulation run is made using Output Editor request
cards so that if the Output Editor cards are not what
the user intended, the complete output statistics are
available, If any errors in Output Editor cards are
encountered, standard output will follow the
complete processing of all Output Editor request
cards unless standard output had been specifically
requested previously by an OUTPUT card.

GRAPHIC OUTPUT

The user may obtain graphic representation of
GPSS/360 SNA values by use of the graphic request
cards associated with the GPSS/360 Output Editor.
Each graph may be considered as consisting of a
60 row by 132 column matrix, Within this matrix
a histogram can be structured and displayed. The
histogram can be visualized as a series of
rectangles where each rectangle represents a
specific member of an entity type (Faecility 1,
Storage 5, User Chain 20, ete.) and the height of
the rectangle would represent the value of the SNA
associated with a specific member of an entity type.
By use of the graphic request cards, the user has
the ability to:
1. BSpecify the entity SNA to be plotted.
2. Specify the character to be used in plotting
the graph.
3. Specify the origin for the X and Y axes.
4. Specify the range of the entity type (Facility
1 - Facility 15).
5. Specify the values to be assigned to the X and
Y ordinate points and to their corresponding axes.
6. List alphameric information and/or
comments on the graph.
Requests for graphic output may appear anywhere in
the sequence of Output Editor request cards. The
only restriction is that the request cards used to
specify a graph must be ordered as follows:
GRAPH
ORIGIN
X

X,
STATEMENT

if any
STATEMENT
ENDGRAPH

GRAPH Card

19

If the request cards are not in the correect order or
in error, the graph will not be processed and the
Output Editor will proceed to the ENDGRAPH card
or to the next legal Output Editor request card.

The GRAPH card is used to specify the entity SNA
to be plotted, the range of the entity to be plotted,
and the character to be used in plotting the graph.
The general format of the GRAPH card is:

D

A B C
GRAPH | SNA to be | Lower limit of Upper limit of
plotted entlty range to be entity range to
plotted. be plotted,

Table no. If field A
apecifies an SNA
marked with an
asterisk.

The A field specifies the entity SNA to be plotted
which must be one from the following lists.

Character to be
used in plotting
graph if blank,
an asterisk s
assumed.

Facilities
FR Facility utilization
FC Facility entry count
FT Facility average time per
transaction
Storages
SR Storage utilization
SA Storage average contents
S Storage current contents
SM Storage maximum contents
sC Storage entry count
ST Storage average time per
transaction
Groups
G Current contents of group
User Chains
CA User chain average contents
CH User chain current contents

CM User chain maximum contents

CcC User chain entry count

CcT User chain average time per
transaction
Queues

QA Queue average contents

Q Queue current contents

QM Queue maximum contents

QC Queue entry count

QZ Queue zero entries

QT Queue average time per
transaction

QX Queue average time per
transaction (excluding zero
entries)

Fullword Savevalues

X Fullword savevalue contents

Halfword Savevalues

XH Halfword savevalue contents
Tables
TC Table entry count
TB Table mean
TS Table standard deviation
*TF Observed frequencies
*TP Per cent of total
*TD Cumulative percentage
*TR Cumulative remainder
Blocks
N Block counts

When using any of the above SNA's, except those
marked with an asterisk, the user must specify the
lower and upper limit of the entity class to be
plotted, for example, FR for Facility 5 through
Facility 15, ete. The field B of the GRAPH card is
used to specify the lower limit and the C field is
used to specify the upper limit of the entity class to
be plotted. These entries may be specified
symbolically or numerically with the restriction
that the field B represents a smaller integer value
than the field C. For example:

8 19

GRAPH FR, LINE, CPU
GRAPH X,10,15
GRAPH QM, 3,10

235

The first GRAPH card in the above example requests
that the utilization for FACILITIES LINE through
CPU inclusive be plotted. The second GRAPH card
requests that the contents of fullword SAVEVALUES
10 through 15 inclusive be plotted. The third
GRAPH card requests that the maximum contents
observed for QUEUE's 3 through 10 inclusive be
plotted.

The SNA's in the previous list marked with an
asterisk represent requests for a graph which will
plot the values of the frequency classes associated
with a given TABLE. When using the SNA's marked
with an asterisk, the TABLE number is specified
in the field B of the GRAPH card and the field C is
left blank.

For example:

8 19

GRAPH TR, TAB1
GRAPH TR, TAB2
GRAPH TP, TAB3
GRAPH TD, TAB4

The first GRAPH card in the above example plots
the observed frequency value of the frequency
classes associated with TABLE TAB1. The second
GRAPH card plots the cumulative remainder of the
frequency classes associated with TABLE TAB2,
The third GRAPH card plots the percentage of total
of the frequency classes associated with TABLE
TAB3. The fourth GRAPH card plots the cumulative
percentage of the frequency classes associated with
TABLE TAB4., For these examples, the upper
limit of the various frequency classes are labeled
on the X axis of the graph, and range of the specific
SNA value, on the Y axis of the graph.

The character normally used in the actual
plotting of the graph axes and the rectangles is an
asterisk. If a character other than an asterisk is
used in plotting the graph, the character must be
specified in the field D of the GRAPH card. For
example:

8 19
GRAPH FR,2,5,+
GRAPH PH. 8.

The first GRAPH card causes the axes and
rectangles of the resultant graph to be plotted with
the + character. The second GRAPH card causes
the axes and rectangles of the resultant graph to be
plotted with the . character.

236

ORIGIN Card

As previously mentioned, the graph is plotted in
what can be considered a 60 row by 132 column
matrix. This is illustrated in the following diagram.

ROW 1 —of

R EE RN

-
T T
(50, 10)

ROW 60

COLUMN 1 COLUMN 132

Row 1 is at the top of the page, and row 60 is at
the hottom of the page. Column 1 is the leftmost
column, and ecolumn 132 is the rightmost column on
the page. The ORIGIN card enables the user to
specify where within the 60 row by 132 column
matrix the X and Y axes are to intersect. The
general format of the ORIGIN card is:

B 19

A B

ORIGIN Row specliying where
X axis should be

plotted.

Column specilying
where Y axis should
be plotted.

The A field of the ORIGIN card spacifies the row
where the X axis is plotted, and the field B specifies
the column where the Y axis is plotted. Entries in
both fields A and B must be numeric quantities
and the ORIGIN card must follow the GRAPH card
and precede the X eard. For example:

8 19
ORIGIN 50, 10

The ORIGIN card specifies the x axis to be
plotted on the 50th row and the Y axis to be plotted
on the 10th column. The axes plotted would be as
shown by the asterisks in the previous diagram.
Note that the origin indication (50, 10) shown in the
diagram would not appear in the actual graph, It is
shown only to illustrate the relative positions set up
by the ORIGIN card.

X Card

The X ecard enables the user to specify the following:

1. If labeling for the X axis should be listed.

2. If symbols or numerics should appear in the
labeling of the X axis for the members of the entity
class being plotted.

3. The width of the rectangles associated with
the SNA of the member of the entity class being
plotted.

4, The spacing between the rectangles.

5. Combination of frequency classes when
plotting TABLE SNA's

There are two general formats for the X card.
The first (format 1) is associated with all SNA's
previously mentioned except those marked with
asterisks. The second format (format 2) is
associated with the SNA's marked with asterisks,
namely: TF,TP,TD, and TR. The X card must
follow the ORIGIN card and precede the Y card.
The general format 1 of the X card is:

B 18

A B C D |E|F g

X SYM If Width Spacing = | = 1= [Xlabel
symbolics (columns) hotween indicator.
ahould be including rectangles, No, {fno
listed on X end points If blank, 1 symbolic
axis, I for the is assumed. or numeric
blank, num- | rectangles. values are
erie values If blank, 1 to he listed
will appear is assumed. in labeling
on X axis the axis.
labeling.

The field A is used to indicate whether symbolics

or numerics appear in the X axis label. If symbolics

are desired, SYM should appear as the field A entry.
If numerics are desired, the field A should be left
blank. If SYM appears in the field A, the symbols

for the entity class members appear under the

rectangle associated with each member as shown
in the following diagram.

TLINE CllANL CHANZ cry

If symbols are not used in the model, and if they
are not to be printed as the X axis labels, the field
A should be left blank, If the field A is blank, the
X axis label for the graph appears as:

e

Fields B and C specify the width (including end
points) of the rectangles and spacing between
rectangles, respectively. Both field B and C
entries must be specified numerically. If field
B is left blank, it assumed to be a 1. The sum
of field B and C entries must not be less than
four or an error message will be given and the
graph will not be processed, For example

8 19
X SYM, 3,10

would result in:

L]

-

-

PP

) | 1

* PR

- L] . *

. * ¥ *

- * - L] L]

- L L.

. - * - ¥

T DAL L Ll
TOM JACK

237

L] 6

would result in

——

4y

-
L]
-

=

L T Y

PRERTREES S

©Boas s

If the user wants no labels listed for the X axis, NO
should be specified as the G field entry of the X
card.

The general format 2 of the X card is:

For TABLE SNA's TP, TF,TD and TR

8 19

Since no symbolics are associated with the
frequency classes of TABLES, the field A of the X
card must be blank when plotting the TABLE SNA's
TP, TF,TD, and TR.

The field B specifies the width of the rectangle
for the frequency classes when plotting the TABLE
SNA's TF, or TP. The field B entry must be a
numeric quantity. Since the TABLE SNA's TD, and
TR can be visualized as cumulative distributions,
only a single point (rather than a rectangle) is
plotted per frequency class. Therefore when
plotting the TABLE SNA's TR, or TD, the field B of
the X card should be blank,

The field C specifies the spacing between the
rectangles or points depending on the SNA requested.
The field C entry must be a numeric quantity.

Fields D, E, and F of the X card using format
2 allow the user to condense and/or select the
TABLE frequency classes of interest.

B c D E F G
X Mustbe [For TF and | Spacing Upper Mo, of Fre- |No. of X label In=
blank for |TP, Width Batween Limit of quency Inerements dicator NO
Format 2 |(including Rectangles | Lowest Classes to to be Plotted. | if no Numeric
End Points) | (TF and Frequency | be Included Values are to
for the TF). Clasas to per X Axis be Listed on
Rectangle. Spacing be Plotted, | Increment. the X Axis
For TD and | Between If Blank, 1 Label.
TR, blank., | Points is Assumed.
(TD and
(TH).

The field D specifies the upper limit of the lowest
TABLE frequency class to be plotted. This must be
a numeric quantity and should not specify a limit
less than that associated with a particular TABLE
specification.

The field E is the number of frequency classes
per X axis inerement. If this field is left blank, it
will be interpreted as 1. The field F has the number
of increments to be plotted on the X axis. Both
fields E and F must be specified numerically. The
product of fields E and F must not exceed the number
of frequency classes associated with the referenced
TABLE.

The field G is the X axis label indicator. If NO
is the field G entry, the X axis label will not be
automatically computed and listed.

For example:

A TABLE has 20 frequency classes. The upper
limit of the lowest frequency class is 20. The
interval between frequency classes is 10.

Assuming the TABLE SNA TP is specified, and
all frequency classes are plotted individually on the
graph, the X card entries would be:

8 19
X ,2,5,20,1,20

238

If the frequency classes were condensed into five
different categories (each including four frequency
classes) for plotting purposes, the X card entries
would be:

8 19
X »1,5,20,4,5

The above X card would result in

]
-
.
o-l 1 |- . - -
L - .
- . * . .
- * * * *
20 60 100 140 140 220
e
four frequency
classen of
width 10 each

If only the upper frequency classes are of interest,
they are plotted in more detail by specifying an X
card as follows:

8 19
X +2,6,120,2,56

The above X card would result in

e
Ll

b
- -
e £
% L *»
-— = = £ -

- L1 - e (1]
L1 L1 s L L

120 140 160 180 200 220

two froquency classos
of width 10 each

Y Card

The Y card enables the user to:

1. Specify the lower limit of values for the ¥
axis.

2. Specify the number of inerements, and
number of rows/increment to be allocated for the
Y axis.

This information is used for automatically labeling
the Y axis.

The Y card must follow the X card and precede
STATEMENT cards, The general format for the
Y card is:

] 19

A B e D

Y Lower limit | Increment | Number of HNumber of
for ¥ axis size for Y |increments to | rows to be
label. label. be included on | alloeated for

the Y axia. each Incre=

ment.

All fields of the Y card must have numeric quantities
as entries. The field A specifies the lower limit of
the Y axis, and the field B specifies the size of each
increment to be made on the axis. The field C
specifies the number of increments to be included

on the Y axis, and the field D specifies the number

of rows to be allocated for each increment. For
example:

Plot SAVEVALUE contents whose values range be-
tween 10 and 20.

Five increments should be included with an
inerement size of 2.

8 19
Y 10,2,5,2

The above Y card would result in the following ¥
axis labels and organization.

16 Five increments

{C fleld)
14
Two rows per

Two unlts 12 increment
per incroment (D field)
(B field) 10

lowest value on Y axis
(A field)

The product of the field C (number of increments)
and field D (rows per increment) must be less than
the number of rows available (field A of ORIGIN
card).

Fields A and B of the Y card control not only
the actual labels to be listed, but also the height of
rectangles plotted. Therefore when these fields are
specified, the user should know the range to be
plotted and the general range which the SNA values
will cover. If the above card were used and the
SAVEVALUE contents were in the range of 0 to 10,
no rectangles would be plotted since all values are
below the lowest limit specified for the Y axis card.
Also, if all values being considered were between
140 and 150, the user would want a graph which
emphasized the distinction between these values.
For example:

8 19
X 138,1,15,1

The above Y card would result in

239

The above Y could result in

153
152
151
150
149
148
147
148 (1)
145 L]
144 ok -
143 LR .
142 *w -n
141 LA L]
140 " R

138 L LB

138

With such a graph the user could differentiate
between, for example, 145 and 147; but if a more
general scheme were used, these two values would
appear the same.

When setting up the Y axis card for a particular
SNA, the analyst should note the format of the
output for that SNA. SNA's regarding percentage
are taken from 0 to 100. These include the TABLE
SNA's TP, TD, and TR. Decimal values may only
be used for FR (facility utilization) and SR (storage
utilization). The user can specify the ¥ card as:

8 19
Y +25,.05,10,2

The above card would plot the utilizations ranging
from . 25 through .75 (ten increments of . 05 each).
These decimal values may be from one (.1) to three
digits (. 103) each.

The first character of both fields A and B must
be a decimal point for these two SNA's., For all
other SNA's, only integer values are considered
and no decimal points should be used in field A and
B entries of the Y card.

STATEMENT Card

The STATEMENT card enables the user to place
alphameric information anywhere within the 60 row
by 132 column matrix in which the graph appears.

240

The general format of the STATEMENT card is:

2 2] 18 72

A B
Starting FRow on Number tatement 14f
column STATEMENT which the |of charae- [information atatement
for the statement |ters in the |to be Usted, continuing
statement, should be |statemont. on next oard,
lsied.

The entry beginning in column 2 specifies the
column in which the statement should start. If no
entry is made in column 2, the statement begins in
column 1. The field A entry specifies the row in
which the statement information is to be listed.
This must be one of the 60 rows allowed for the
graph. Again, the top row is row 1 and the bottom
row is row 60.

The field B is the number of characters which
make up the statement. Blanks are counted as
characters. The actual statement follows the
field B entry. If the entire statment cannot be
specified on a single card, a 1 should be punched in
column 7 and the statement continued beginning in
column 1 of the next card. Any number of
STATEMENT cards may be used for a given graph.
The only restriction is that the STATEMENT cards
must be ordered ascendingly by the row in which
the statements are listed. For example:

2 8 19

100 STATEMENT 3,12,FIGURE NO. 1

100 STATEMENT 4,14, FACILITY

USAGE

Both above statements are listed starting in column
100: the first statement, in row 3 beginning in
column 100; the second statement, in row 4
beginning in column 100,

ENDGRAPH Card

The ENDGRAPH card is the last card associated
with graph specification. The ENDGRAPH follows
the last STATEMENT card associated with a given
graph. The format for the ENDGRAPH card is:

E
|[ENDGRAPH

The user may request any number of graphs to be

listed. The graph specification cards (for a given

graph) may be intermixed with other Output Editor

request cards if desired. The only restriction is

that the group of GRAPH cards for a given graph =
must appear in a fixed uninterrupted sequence. For

example:

For example:

1

2
FAC
FAC

20

TAB

TABLE

8

TITLE
INCLUDE
GRAPH
ORIGIN

X

Y
STATEMENT
ENDGRAPH
EJECT

1 WILL FOLLOW
TITLE 1
GRAPH
ORIGIN

X

Y
ENDGRAFPH
END

19

UTILIZATION OF CHANNELS
F1-F4/1,2

FR, CHANI1, CHAN4

50, 10

8YM, 3,5

. 100, .100,6,4

58,20, FACILITY UTILIZATION

TABLE OF TRANSIT TIMES
1

50, 10

,4,2,30,2,6

10,5, 20,2

241

INDEX

ABS card: 226
Absolute clock time: 4
ADD card: 224
ADVANCE block: 5, 60-62
Allocation: (see '"core allocation'')
ALTER block: 119
Arithmetic variable: 1, 9, 12, 20-25
Examples: 21, 22
ASSEMBLE block: 88-91
Example: 91
Assembly program: 196, 215-227
Sample output: 218-222
Assembly sets: 16, 86, 87
ASSIGN block: 78
Examples: 79,80
ASTERISK card: 18
Attributes: (see "logical attributes", "'standard
numerical attributes", '"system numerical
attributes'')

Block diagrams: 4

Block definition cards: 38, 215

Blocks: 1, 6, 38-52

Boolean variables: 9, 23=25
Examples: 24, 25

BUFFER block: 96, 97
Examples: 104, 106, 107

BUFFER option: 96, 97
Examples: 104, 106

Card format: 18

Block: 38, 215

Function definition: 27

Initial: 123, 124

Matrix definition: 121

Remarks card: 18

Storage definition: 156

Table definition: 179
Variable definition: 20-22
Chains: (see "current events chain", "delay chains'’,

"future events chain", "interrupt chain'',
"matching chain'', "user chains'')

CHANGE block: 42
Changes: (see "event changes', "status changes'’)
CLEAR card: 191, 192

Effect on blocks: 40

Facilities: 152, 155

GENERATE blocks: 68

Queues: 174, 175

Storages: 160, 161, 167

Tables: 184, 186

Clock time
Relative: 4, 14
Absolute: 4

242

Constant: 11
Continuous numerical valued function: 26-29
Control cards: 3, 189-194
Control programming example: 126, 127
Core allocation: 1, 18
Blocks: 40, 41
Boolean variables: 24
Facilities: 138, 139
Functions: 36, 37
Logic Switches: 130
Matrix Savevalues:
Queues: 169
Storage: 164, 165
Tables: 178, 179
Transactions: 53, 54
User chains: 70
Variables: 22
COUNT block: 39, 81
CREATE card: 224
Cumulative distributions: 32
Cumulative time integral
Facilities: 149, 150
Queues: 170, 174
Storages: 158, 165, 166
Current events chain: 16, 55, 58

122, 123

Definition cards: (see '"card format'")
Delay chains: 100, 134, 136, 137, 140, 141, 144, 158, 159
Delay indicator: 57, 65
DEPART block: 170, 171
Examples: 174-176
Diagrams, block: 4, 44
Differences between GPSS III and GPSS/360: 195-199
Discrete attribute valued function: 20
Diserete numerical valued function: 29
Distributions: 31
Distribution tables: 2, 8, 177-186
Examples: 180, 181

EJECT card: 234

ENDABS card: 226

END card: 187, 192, 226

ENDGRAPH card: 235, 240

ENDMACRO card: 222

ENTER block: 157, 158
Examples: 162-164

Entities: 5, 18
Symbolic EQU 215 reference: 215-217
(See also "blocks', "facilities', "functions',
"groups', "logic switches", "matrix savevalues",
"queues', "savevalues', "storages', "tables",
"transactions", and "variables''.)

Errors
Assembly: 204-207

Input: 207-210

Execution: 210-213
Event changes: 16
EXAMINE block: 117
EXECUTE block: 42
Exponential distribution: 33

Facilities: 2, 7, 138-154

Floating-point variable: 23

FORMAT card: 231

Free format function follower cards: 28, 197
Funetions: 1, 9, 26-37

Future events chain: 16, 55

GATE block: 39, 85
LR, LS: 86, 131
M, NM: 86, 94, 95, 96
SE, SF, SNE, SNF: 85, 86, 159, 160
I, NI, NU, U: 85, 150, 151
GATHER block: 91-93
GENERATE block: 66-69
GRAPH card: 234, 235
Graphic output: 234-241
Groups: 114, 115

HELP block: 110-114

ICT (increment) card: 226
INCLUDE card: 229
INDEX block: 80

Indirect addressing: 15, 16
INITIAL card: 123-125
Interrupt chain: 16, 60
Introduction: 1

JOB card: 192, 225
JOBTAPE card: 192, 193
JOIN block: 115

LEAVE block: 158, 159
Examples: 162-164
LINK block: 70
Examples: 74-78
LIST card: 193
List attribute valued function: 30
List numerical valued function: 29
LOGIC block: 131
Logical attributes: 8
Facilities: 138
Logic switches: 131
Storages: 156, 157
Transactions: 55
Logic switches: 1, 7, 130-137
LOOP block: 83

MACRO card: 220
Examples: 220, 221
Mapping functions: 34
MARK block: 81
Mark time: 53, 81
MATCH block: 93, 94
Examples: 94, 95, 96
Matching chain: 16, 60
MATRIX definition card: 121
Matrix savevalues: 2, 121
MSAVEVALUE block: 122
Multiple queues: 171, 172

Numerical attributes
Blocks: 40
Facilities: 138, 198
Groups: 115, 198
Matrix savevalues: 120
Queues: 168
Savevalues: 120
Storages: 156
Tables: 177
Transactions: 53-55, 198
User chains: 70, 198

ORG (origin) card: 226

ORIGIN card: 234, 235
OUTPUT card: 234

Output editor: 228

Output: (see "statistical output)

Packing, function: 33
Parameters: 15, 53 (see also "assign', "index",
loop", "mark", and "split")
Parameter transit time: 53
Polling example: 133
Practical usage of GPSS/360: 199-203
PREEMPT block: 142-148
Examples: 153
PRINT block: 187, 196
PRIORITY block: 96, 97
Examples: 104-108
Priority class table: 59, 60
Probability distributions: 31, 33
Pseudo operations: 226

QTABLE card: 171

Queues: 2, 8, 168-176

QUEUE block: 168, 170
Examples: 174-176

READ/SAVE feature: 193
Reallocation of entities: 18, 19
Redefinition of blocks: 41, 69

2438

Functions: 36
Variables: 22
Matrix savevalues: 123
Storage capacity: 162
Tables: 184
Relative addressing: 216
Relative clock time: 4, 9
RELEASE block: 140-142
Remarks cards: 18
REMOVE block: 116
REPLACE card: 224
REPORT card: 228
RESET card: 190, 191
Effect on blocks: 40
Facilities: 151, 152, 155
Storages: 161, 167
Queues: 174, 175
Tables: 186
User chains: 71
RETURN block: 148-150
REWIND card: 193
Run control: 69, 190

SAVE card: (see "READ/SAVE feature")
SAVEVALUE block: 120
Examples: 125-129
Savevalues: 1, 120-129
SCAN block: 118
Scan, overall GPSS/360: 97-104
Current events chain: 98-103
SEIZE block: 140
Examples: 152, 153
SELECT bloeck: 39, 83
Selection modes: 62-66
SIMULATE card: 225
Simulation run length: 69, 190
SPACE card: 234
SPLIT block: 87, 88
Examples: 90, 91

Standard numerical attributes: 8-14 (see also

"numerical attributes')
START card: 189, 190
STARTMACRO card: 222
Statistical output

Blocks: 41

Facilities: 151, 154
Groups: 115

Logic switches: 131
Matrix savevalues: 125
Queues: 172, 173, 174
Savevalues: 125
Storages: 160, 166
Tables: 177, 183-185
Transactions (chains): 56, 57
User chains: 78

244

Statistical problems in simulation: 203
Status changes: 16, 102, 104, 105 (see also
"delay chains'")

Status flag: (see "status changes')
STORAGE definition card: 156
Storages: 2, 7, 156-167
Symbols

Elock: 43-52

Entity: 216, 217
SYN (synonymous) card: 226
System numerical attributes: 10-13

TABLE definition card: 179, 180
Tables: (see "distribution tables")
TABULATE block: 177, 179
TERMINATE block: 69
TEST block: 39, 84
Examples: 85
TEXT: 232
TITLE card: 229
TRACE block: 187, 188
Transactions: 1, 6, 53-60 (see also "assembly sets',
"chains', "parameters', '"priority', "mark-
time', "transit-time')
Transaction printout: 55-58
TRANSFER block: 62-66
Examples: 63-66
Transit time: (see also "MARK'")
Parameters: 53
Transaction: 53

Uniform distribution function: 34
UNLINK block: 72

Examples: 74=78
UNLIST card: 189, 193
UNTRACE block: 187, 188
UPDATE card: 224
Update feature: 224, 225
User chains: 16, 60
Utilization

Facility: 151

Storage: 160

Variables: (see "arithmetic variable', "boolean
variables'", "'floating-point variable'')

Warning messages: 213, 214
WRITE block: 109, 110

X card: 237

Y card: 239

H20-0326-0

JEN

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
(USA Only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

"SI UL pajulg

0~92E0-02H

" —

g

