
3 1

P L A N N I N G A C O M P U T E R S Y S T E M

P R O J E C T S T R E T C H

P L A N N I N G

C O N T R I B U T O R S

Richard S. Ballance
Robert W. Bemer

Gerrit A. Blaauw
Erich Bloch

Frederick P. Brooks, Jr.
Werner Buchholz

Sullivan G. Campbell
John Cocke

Edgar F. Codd
Paul S. Herwitz

Ilarwood G. Kolsky
Edward S. Lowry
Elizabeth McDonough
James H. Pomerene
Casper A. Scalzi

3/60

COMPUTER SYSTEM
P R O J E C T S T R E T C H

Edited by

W E R N E R B U C H H O L Z

SYSTEMS CONSULTANT
CORPORATE STAFF, RESEARCH AND ENGINEERING

INTERNATIONAL BUSINESS MACHINES CORPORATION

New York

M c G R A W

Toronto London 1962

- H I L L B O O K C O M P A N Y , I N C

PLANNING A COMPUTER SYSTEM

Copyright © 1962 by the McGraw-Hill Book Company, Inc. Printed in
the United States of America. All rights reserved. This book, or
parts thereof, may not be reproduced in any form without permission
of the publishers. Library of Congress Catalog Card Number 61-10466

THE MAPLE PKESS COMPANY, YORK, PA. 08720

SEC. 5.11] CONCLUSION 59

the conversion time for input and output data intended for use in exten
sive mathematical computation. Decimal arithmetic is also included in
the instruction repertoire, in order to permit simple arithmetical oper
ations to be performed directly on data in binary-coded decimal form.

Such a combination of binary and decimal arithmetic in a single com
puter provides a high-performance tool for many diverse applications.
It may be noted that a different conclusion might be reached for a com
puter with a restricted range of functions or with performance goals
limited in the interest of economy; the difference between binary and
decimal operation might well be considered too small to justify incorpo
rating both. This conclusion does appear valid for high-performance
computers, regardless of whether they are aimed primarily at scientific
computing, business data processing, or real-time control. To recom
mend binary addressing for a computer intended for business data proc
essing is admittedly a departure from earlier practice, but the need for

£t:mdling and storing large quantities of nonnumerical data makes the
features of binary addressing particularly attractive. In the past, the
real obstacle to binary computers in business applications has been the
difficulty of handling inherently decimal data. Binary addressing and
decimal data arithmetic, therefore, make a powerful combination.

Chapter 6

C H A R A C T E R S E T

by R. W. Bemer and W. Buchholz

6.1 . In t roduc t ion

Among the input and output devices of a computer system, one cad
distinguish between those having built-in codes and those largely inscnsi*
tive to code. Thus typewriters and printers necessarily have a fixed code
that represents printable symbols to be read by the human eye; a code
must be chosen for such a device in some more or less arbitrary fashion,
and the device must make the transformation between code and symbol.
Data storage and transmission devices, on the other hand, such as mag
netic tape units and telephone transmission terminals, merely repeat the
coded data given to them without interpretation, except that some code
combinations may possibly be used to control the transmission process.
(Strictly speaking, storage and transmission devices do generally limit
the code structure in some respect, such as maximum byte size, so that
code sensitivity is a matter of degree.)

For the inherently code-sensitive devices to be attached to a new com
puter system, an obvious choice of character set and code would have
been one of the many sets already established. When the existing sets
were reviewed, however, none were found to have enough of the system
characteristics considered desirable. In fact, it became clear that about
the only virtue of choosing an already established set is that the set
exists. Accordingly, it was decided, instead, to devise a new character
set expressly for use throughout a modern computer system, from input
to output. The chief characteristic of this set is its extension to many
more different characters than have been available in earlier sets. The
extended set designed for the 7030 (Fig. 6.1) contains codes for 120
different characters, but there is room for later expansion to up to 256
characters including control characters. In addition, useful subsets hava
been defined, which contain some but not all of these 120 characters an®
which use the same codes for the selected characters without translation.

60

SEC. 6.1] INTRODUCTION 61

It should be noted that the 7030 computer is relatively insensitive to
the specific choice of code, and any number of codes could be successfully
used in the system. For any particular application a specialized charac
ter code might be found superior. In practice, however, a large computer

Bits
4-5-6-7

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

installation must deal with a mixture of widely different applications, and
the designers have to choose a single character set as a compromise among
conflicting requirements.

•

The purpose of this chapter is to list major requirements of a character
t and code, and to point out how these requirements may or may not

be met by the specific set to be described.

Bits 0-1-2-3

0000 0001 0010 0011 0100 0101 0110 0111

Blank 0

K

D
m u

M U

/ n v

si N V

w

0 W

H X

Y

a 7

FIG. 6.1. 120-character set.

62 CHARACTER SET [CHAP. 6

6.2. Size of Set

Present IBM 48-character sets consist of

1. 10 decimal digits
2. 26 capital letters
3. 11 special characters
4. 1 blank

Other manufacturers have employed character sets of similar or some
what larger size.

Because a single set of eleven special characters is not sufficient, there
exist several choices of special characters as "standard options."

Since this 48-character set is often represented by a 6-bit code, it is
natural to try to extend it to 63 characters and a blank, so as to exploit
the full capacity of a 6-bit code.1 Although the extra sixteen characters
would indeed be very useful, this step was thought not to be far-reachi^
enough to justify development of the new equipment that it wouH
require.

As a minimum, a new set should include also:

5. 26 lower-case letters
6. The more important punctuation symbols found on all office

typewriters
7. Enough mathematical and logical symbols to satisfy the needs of

such programming languages as ALGOL2 5

There is, of course, no definite upper limit on the number of characters.
One could go to the Greek alphabet, various type fonts and sizes, etc.,
and reach numbers well into the thousands. As set size increases, how
ever, cost and complexity of equipment go up and speed of printing goes
down. The actual choice of 120 characters was a matter of judgment;
it was decided that this increment over existing sets would be sufficiently
large to justify a departure from present codes and would not include
many characters of only marginal value.

6.3. Subsets

Two subsets of 89 and 49 characters were chosen for specific purposes.
The 89-character set (Fig. 6.2) is aimed at typewriters, which, with 44

1 H. S. Bright, Letter to the Editor, Communs. ACM, vol. 2, no. 5, pp. 6-9, May,
1959 (a 64-character alphabet proposal).
' A. J. Perlis and K. Samelson, Preliminary Report: International Algebraic Lan

guage, Communs. ACM, vol. 1, no. 12, December, 1958.
' Peter Naur (editor), Report on the Algorithmic Language ALGOL 60, Commi

ACM, vol. 3, no. 5, May, 1960.

SEC. 6.5] CODE 63

character keys, a case shift, and a space bar, can readily handle 89
characters. This subset was considered important because input-output
typewriters can already print 89 characters without modification, and
44-key keyboards are familiar to many people.

The 49-character subset (Fig. 6.3) is the conventional set of "com
mercial" characters in a code compatible with the full set.1 This subset
is aimed at the chain printer mechanism used with the 7030, which can
readily print character sets of different sizes but prints the larger sets at
a reduced speed. The 49-character subset permits high-volume printing
at high speed in a compatible code on jobs (such as bill printing) where
the extra characters of the full set may not be needed. It should be noted
that the 49-character set is not entirely a subset of the 89-character set.

Other subsets are easily derived and may prove useful. For example,
for purely numerical work, one may wish to construct a 13-character set

•

isisting of the ten digits and the symbols . (point) and - (minus),
|ether with a special blank.

6.4. Expansion of Set
Future expansion to a set larger than 120 can take place in two ways.
One is to assign additional characters to presently unassigned codes;

allowance should then be made for certain control codes which will be
needed for communication and other devices and which are intended to
occupy the high end of the code sequence.

The second way is to define a shift character for "escape" to another
character set.2 Thus, whenever the shift character is encountered, the
next character (or group of characters) identifies a new character set, and
subsequent codes are interpreted as belonging to that set. Another shift
character in that set can be used to shift to a third set, which may again
be the first set or a different set. Such additional sets would be defined
only if and when there arose applications requiring them.

6.5. Code
In choosing a code structure, many alternatives were considered.

These varied in the basic number of bits used (i.e., the byte size) and in
the number of such bytes that might be used to represent a single (print-

' Note that this is one character larger than the previously referred-to 48-character
set. The additional special character was introduced in 1959 on the printer of the
IBM 1401 system; but its use has not become firmly established, partly because it

no counterpart on the keypunch. Thus the 48- and 49-character sets are, in
^^•ct, the same set.

R. W. Bemer, A Proposal for Character Code Compatibility, Communs. ACM,
vol. 3, no. 2, February, 1960.

64 CHARACTER SET [CHAP. 6

Bits
4-5-6-7 0000 0001 0010

Bits!

0011

3-1-2-3

0100 0101 0110 0111

0000 Blank £ C k s 0 8

0001 + C K S 0 a
0010 $ d 1 t 1 9

0011 =
D L T 1 9

0100 e m u 2 •

0101 (E M U 2 •
•

0110 / f n V 3 -

0111) F N V 3
->
•

1000 3 9 o w 4

1001 • s G 0 W q

1010 t h P X 5

1011 I t H P X 5

1100 a i P y 6
1101 A I Q Y 6
1110 b 3 r 2 7

1111 B J R z 7

FIG. 6.2. 89-eharaeter set.

able) character. Among the alternatives were the following:

Single C-bit byte with shift codes interspersed
Double 6-bit byte = single 12-bit byte1

Single 8-bit byte
Single 12-bit byte for "standard" characters (punched-card code) and

two 12-bit bytes for other characters

Some of these codes represented attempts to retain partial compati
bility with earlier codes so as to take advantage of existing equipme^^^

1 R. W. Bemer, A Proposal for a Generalized Card Code for 256 Characters, CoHr
murus. ACM, vol. 2, no. 9, September, 1959.

o \ V5'(
SEC. 6.5] CODE 65

FIG. 6.3. 49-charaoter set.

These attempts were abandoned, in spite of some rather ingenious pro
posals, because the advantages of partial compatibility were not enough
to offset the disadvantages.

The 8-bit byte was chosen for the following reasons:

1. Its full capacity of 256 characters was considered to be sufficient
for the great majority of applications.

2. Within the limits of this capacity, a single character is represented
ka single byte, so that the length of any particular record is not depend-
• on the coincidence of characters in that record.

3. 8-bit bytes are reasonably economical of storage space.

66 CHARACTER SET [CHAP. 6

4. For purely numerical work, a decimal digit can be represented by
only 4 bits, and two such 4-bit bytes can be packed in an 8-bit byte.
Although such packing of numerical data is not essential, it is a common
practice in order to increase speed and storage efficiency. Strictly speak
ing, 4-bit bytes belong to a different code, but the simplicity of the 4-and-
8-bit scheme, as compared with a combination 4-and-6-bit scheme, for
example, leads to simpler machine design and cleaner addressing logic.

5. Byte sizes of 4 and 8 bits, being powers of 2, permit the computer
designer to take advantage of powerful features of binary addressing and
indexing to the bit level (see Chaps. 4 and 5).

The eight bits of the code are here numbered for identification from
left to right as 0 (high-order bit) to 7 (low-order bit). "Bit 0" may be
abbreviated to B0, "bit 1" to B\, etc.

6.6. Parity Bit
For transmitting data, a ninth bit is attached to each byte for parifl

checking, and it is chosen so as to provide an odd number of 1 bi^
Assuming a 1 bit to correspond to the presence of a signal and assuming
also an independent source of timing signals, odd parity permits all 256
combinations of 8 bits to be transmitted and to be positively distinguished
from the absence of information. The parity bit is identified here as
"bit P" or Bp.

The purpose of defining a parity bit in conjunction with a character set
is to establish a standard for communicating between devices and media
using this set. It is not intended to exclude the possibilities of error
correction or other checking techniques within a given device or on a
given medium when appropriate.

6.7. Sequence
High-equal-low comparisons are an important aspect of data process

ing. Thus, in addition to defining a standard code for each character,
one must also define a standard comparing (collating) sequence. Obvi
ously, the decimal digits must be sequenced from 0 to 9 in ascending
order, and the alphabet from A to Z. Rather more arbitrary is the
relationship between groups of characters, but the most prevalent con
vention for the 48 IBM "commercial" characters is, in order:

(Low) Blank
Special characters . £1 & S * — / , % # @
Alphabetic characters A to Z

(High) Decimal digits 0 to 9

Fundamentally, the comparing sequence of characters should conf JB
to the natural sequence of the binary integers formed by the bits of tn^

SEC. 6.8] BLANK 67

code. Thus 0000 0100 should follow 0000 0011. Few existing codes
have this property, and it is then necessary, in effect, to translate to a
special internal code during alphanumeric comparisons. This takes extra
equipment, extra time, or both. An important objective of the new char
acter set was to obtain directly from the code, without translation, a
usable comparing sequence.

A second objective was to preserve the existing convention for the
above 48 characters within the new code. This objective has not been
achieved because of conflicts with other objectives.

The 7080 set provides the following comparing sequence without any
translation:

Blank
Special characters (see chart)
Alphabetic characters aAbBcCtozZ
Numerical digits 0 u 1 , to 9 »
Special characters . : — ?
Unassigned character codes

Note that the lower- and upper-case letters occur in pairs in adjacent
positions, following the convention established for directories of names.
(There appeared to be no real precedent for the relative position within
the pair. The case shift is generally ignored in the sequence of names
in telephone directories, even when the same name is spelled with either
upper- or lower-case letters. This convention is not usable in general,
since each character code must be considered unique.)

The difference between this comparing sequence and the earlier con
vention lies only in the special characters. Two of the previously avail
able characters had to be placed at the high end, and the remaining special
characters do not fall in quite the same sequence with respect to one
another. It was felt that the new sequence would be quite usable and
that it would be necessary only rarely to re-sort a file in the transition
to the 7080 code. It is always possible to translate codes to obtain any
other sequence, as one must do with most existing codes.

6 .8 . 8 lan l<

The code 0000 0000 is a natural assignment for the blank (i.e., the
nonprint symbol that represents an empty character space). Not only
should the blank compare lower than any printable character, but also
absence of bits (other than the parity bit) corresponds to absence of
mechanical movement in a print mechanism.
^ Blank differs, however, from a null character, such as the all-ones code
Bund on paper tape. Blank exists as a definite character occupying a
definite position on a printed line, in a record, or in a field to be compared.

(Low)

(High)

68 CHARACTER SET [CHAP. 6

A null may be used to delete an erroneous character, and it would be
completely dropped from a record at the earliest opportunity. Null,
therefore, occupies no definite position in a comparing sequence. A null
has not been defined here, but it could be placed when needed among the
control characters.

Considering numerical work only, it would be aesthetically pleasing to
assign the all-zeros code to the digit zero, that is, to use 0000 as the
common zone bits of the numeric digits (see below). In alphanumeric
work, however, the comparing sequence for blank should take preference
in the assignment of codes.

6.9. Decimal Digits

The most compact coding for decimal digits is a 4-bit code, and the
natural choices for encoding 0 to 9 are the binary integers 0000 to 1001.
As mentioned before, two such digits can be packed into an 8-bit byte;
for example, the digits 28 in packed form could appear as

0010 1000 ™

If decimal digits are to be represented unambiguously in conjunction
with other characters, they must have a unique 8-bit representation.
The obvious choice is to spread pairs of 4-bit bytes into separate 8-bit
bytes and to insert a 4-bit prefix, or zone. For example, the digits 28
might be encoded as

zzzz 0010 zzzz 1000
where the actual value of each zone bit z is immaterial so long as the
prefix is the same for all digits.

This requirement conflicted with requirements for the comparing
sequence and for the case shift. As a result, the 4-bit byte is offset by
1 bit, and the actual code for 28 is

0110 0100 0111 0000
This compromise retains the binary integer codes 0000 to 1001 in

adjacent bit positions, but not in either of the two positions where they
appear in the packed format.

The upper-case counterparts of the normal decimal digits are assigned
to italicized decimal subscripts.

6.10. Typewriter Keyboard

I he most commonly found devices for key-recording input to a com
puter system are the IBM 24 and 26 keypunches, but their keyboards
are not designed for keying both upper- and lower-case alphabetic cha^^
acters. The shifted positions of some of the alphabetic characters
used to punch numerical digits. For key-recording character sets wit^^

SEC. 6.12] UNIQUENESS 69

much more than the basic 48 characters, it is necessary to adopt a key
board convention different from that of the keypunch. The 89-character
subset was established to bring the most important characters of the full
set within the scope of the common typewriter, thus taking advantage of
the widespread familiarity with the typewriter keyboard and capitalizing
on existing touch-typing skills as much as possible.

The common typewriter keyboard consists of up to 44 keys and a sepa
rate case-shift key. To preserve this relationship in the code, the 44 keys
are represented by 6 bits of the code (Bi to B») and the case shift by a
separate bit (B7). The case shift was assigned to the lowest-order bit,
so as to give the desired sequence between lower- and upper-case letters.

For ease of typing, the most commonly used characters should appear
in the lower shift (B7 = 0). This includes the decimal digits and, when
both upper- and lower-case letters are used in ordinary text, the lower
case letters. (This convention differs from the convention for single-case
Are writers presently used in many data-processing systems; when no

^wer-case letters are available, t he digits are naturally placed in the same
shift as the upper-case letters.) It is recognized that the typewriter key
board is not the most efficient alphanumeric keyboard possible, but it
would be unrealistic to expect a change in the foreseeable future. For
purely numerical data, it is always possible to use a 10-key keyboard
either instead of the typewriter keyboard or in addition to it.

It was not practical to retain the upper- and lower-case relationships
of punctuation and other special characters commonly found on type
writer keyboards. There is no single convention anyway, and typists
are already accustomed to finding differences in this area.

6.11 . Adjacency

The 52 characters of the upper- and lower-case alphabets occupy 52
consecutive code positions without gaps. For the reasons given above,
it was necessary to spread the ten decimal digits into every other one of
t wenty adjacent code positions, but the remaining ten positions are filled
with logically related decimal subscripts. The alphabet and digit blocks
are also contiguous. Empty positions for additional data and control
characters are all consolidated at the high end of the code chart.

This grouping of related characters into solid blocks of codes, without
empty slots that would sooner or later be filled with miscellaneous char
acters, assists greatly in the analysis and classification of data for editing
purposes. Orderly expansion is provided for in advance.

^J2. Uniqueness

BR. basic principle underlying the choice of this set is to have only one
code for each character and only one character for each code.

70 CHARACTER SET [CHAP. 6

Much of the lack of standardization in existing character sets arises
from the need for more characters than there are code positions available
in the keying and printing equipment. Thus, in the existing 6-bit IBM
character codes, the code 001100 may stand for any one of the three
characters @ (at), — (minus), and ' (apostrophe). The 7030 set was
required to contain all these characters with a unique code for each.

The opposite problem exists too. Thus, in one of the existing 6-bit
codes, — may be represented by either 100000 or 001100. Such an
embarrassment of riches presents a logical problem when the two codes
have in fact the same meaning and can be used interchangeably. No
amount of comparing and sorting will bring like items together until
one code is replaced by the other everywhere.

In going to a reasonably large set, it was necessary to resist a strong
temptation to duplicate some characters in different code positions so as
to provide equal facilities in various subsets. Instead, every character
has been chosen so as to be typographically distinguishable if it staiw
by itself without context. Thus, for programming purposes, it is pos^
ble to represent any code to which a character has been assigned by its
unique graphic symbol, even when the bit grouping does not have the
ordinary meaning of that character (e.g., in operation codes).

In many instances, however, it is possible to find a substitute character
close enough to a desired character to represent it in a more restricted
subset or for other purposes. For example, = (equals) may stand for *—
(is replaced by) in an 89-character subset. Or again, if a hyphen is
desired that compares lower than the alphabet, the symbol r* (a modi
fied tilde) is preferred to the more conventional — (minus).

A long-standing source of confusion has been the distinction between
upper-case "oh" (O) and zero (0). Some groups have solved this problem
by writing zero as 0. Unfortunately, other groups have chosen to write
"oh" as 0. Neither solution is typographically attractive. Instead, it is
proposed to modify the upper-case "oh" by a center dot (leaving the zero
without the dot) and to write and print "oh" as 0 whenever a distinction
is desired.

Various typographic devices are used to distinguish letters (I, l, V,
etc.) from other characters [| (stroke), 1 (one), V (or), etc.]. It is sug
gested that the italicized subscripts be underlined when handwritten by
themselves, for example,

6.13 . S igns

The principle of uniqueness implies a separate 8-bit byte to represent a
plus or a minus sign. Keying and printing equipment also require seoA
rate sign characters. This practice is, of course, rather expensive^
storage space, but it was considered superior to the ambiguity of present

SEC. G.15] CARD-PUNCHING CONVENTION 71

6-bit codes where otherwise "unused" zone bits in numerical fields are
used to encode signs. If the objective is to save space, one may as well
abandon the alphanumeric code quite frankly and switch to a 4-bit
decimal coding with a 4-bit sign digit, or go to the even more compact
binary radix.

6.14. Tape- record ing Convent ion

As has been remarked before, data-recording media such as magnetic
tape and punched cards are not inherently code-sensitive. It is obvi
ously necessary, though, to adopt a fixed convention for recording a code
on a given medium if that medium is to be used for communication
between different systems.

Magnetic tape with eight, or a multiple of eight, information tracks
permits a direct assignment of the 8 bits in the 7080 code to specific
^jacks. Magnetic tape with six information tracks requires some form
^byte conversion to adapt the 8-bit code to the 6-bit tape format. The
convention chosen is to distribute three successive 8-bit bytes over four
successive 6-bit bytes on tape. This convention uses the tape at full
efficiency, leaving no gaps except possibly in the last 6-bit byte, which
may contain 2 or 4 nonsignificant 0 bits, depending on the length of the
record.

Thus successive 8-bit bytes, each with bits B0 to B-n are recorded as
shown in Table 6.1.

TABLE 6.1. CONVENTION FOR RECORDING 8-BIT CODE ON G-TRACK TAPE

Track Bits

0 Bt Bt Bt Bt Bt
1 B i Br Bt Bt Bx
2 Bt Bt Bt B, Bt
3 B, Bx Br Bt B3 etc.
4 B< Bt Bt Bt Bt
5 B, Bt B, Br Bt

The parity bit is not shown. The parity bits for the 6-bit tape format
are, of course, different from those of the 8-bit code; so parity conversion
must be provided also.

6.15. Card-punching Convent ion

Since 80-column punched cards are a common input medium, a card-
punching convention for the 120 characters is likewise desirable. After

•
possibility of a separate card code for the 120 characters was con-
red—a code having the conventional IBM card code as a subset1—

1 Ibid.

72 CHARACTER SET [CHAP. 6

it was concluded that it would be better to punch the 8-bit code directly
on the card. This does not preclude also punching the conventional code
(limited to 48 characters) on part of the card for use with conventional
equipment. Code translation is then needed only whenever the conven
tional card code is used; otherwise translation would be required for
every column if advantage is to be taken of the new code in the rest of
the system.

The punching convention is given in Table 6.2.
In addition, both hole 12 and hole 11 are to be punched in column 1 of

every card containing the 7030 code, besides a regular 7030 character,
so as to distinguish a 7030 card from cards punched with the conven
tional code. Eight-bit punching always starts in column 1 and extends
as far as desired; a control code END (0 1111 1110) has been defined to
terminate the 8-bit code area. Conventional card-code punching should

TABLE 6.2. CONVENTION FOR PUNCHING 8-BIT CODE ON CARDS

be confined to the right end of those cards identified with 12-11 punching
in column 1.

Since the parity bit is also punched, the 7030 area of a card contains a
checkable code. Note that "blank" columns in this area still have a hole
in the BP row. If only part of the card is to be punched, however, it is
possible to leave the remaining columns on the right unpunched.

6.16. List of 7030 Character Set

A list of the 7030 character-set codes and graphic symbols is shown for
reference in Fig. 6.4, which includes the names of the characters.

Card row Bit

12
I 1
0
1
2
3
4
5
6
7
8
9

B p
Bo
B.
B ,
B ,
B,
Bo
B ,
Bo

SEC. 6.16] LIST OF 7030 CHARACTER SET 73

Code Code
P 0123 4567 Character Name P 0123 4567 Character Name

1 0000 0000 Blank (Space) 0 0010 0000 S Ampersand
0 0000 0001 + Plus or minus 1 0010 0001 + Plus sign
0 0000 0010 - Right arrow 1 0010 0010 $ Dollar sign

(Replaces) 0 0010 0011 = Equals
1 0000 0011 * Not equal 1 0010 0100 * Asterisk
0 0000 0100 A And (Multiply)
1 0000 0101 { Left brace 0 0010 0101 (Left parenthesis
1 0000 0110 t Up arrow 0 0010 0110 / Right slant

(Start super (Divide)
script) 1 0010 0111) Right paren

0 0000 0111 } Right brace thesis
0 0000 1000 V Or (inclusive) 1 0010 1000 » Comma
1 0000 1001 V Exclusive Or 0 0010 1001 » Semicolon
1 0000 1010 1 Down arrow 0 0010 1010 t Apostrophe

(End super (Single quote)
script) 1 0010 1011 n Ditto (Double

00000 1011 II Double lines quote)
^000 1100 > Greater than 0 0010 1100 a
0looo 1101 Greater than 1 0010 1101 A

or equal 1 0010 1110 b
0 0000 1110 < Less than 0 0010 1111 B
1 0000 1111 s Less than or 1 0011 0000 c'

equal 0 0011 0001 C
0 0001 0000 [Left bracket 0 0011 0010 d
1 0001 0001 D Implies 1 0011 0011 0
1 0001 0010] Right bracket 0 0011 0100 e
0 0001 0011 o Degree 1 0011 0101 E
1 0001 0100 - Left arrow (Is 1 0011 0110 f

replaced by) 0 0011 0111 F
0 0001 0101 a Identical 0 0011 1000 9
0 0001 0110 - Not 1 0011 1001 G
1 0001 0111 V Square root 1 0011 1010 h

(Check mark) 0 0011 1011 H
1 0001 1000 % Percent sign 1 0011 1100 I
0 0001 1001 \ Left slant (Re 0 0011 1101 I

verse divide) 0 0011 1110 5
0 0001 1010 0 Lozenge (Dia- 1 0011 1111 J

mond)(Note)
1 0001 1011 1 Absolute value Note: The character HI has also (Vertical line) been used.

HI has also

0 0001 1100 # Number sign
1 0001 1101 1 Exclamation

point (Fac
torial)

1 0001 1110 a At sign
0 0001 1111 - Tilde (Hyphen)

FIG. 6.4. List of 7030 codes and characters. (Continued on next page.)

74 CHARACTER SET [CHAP. 6

P 0123 4567 Character Name P 0123 4567 Character Name
0 0100 0000 k
1 0100 0001 K 1 0110 0000 0 Zero
1 0100 0010 a 0 0110 0001 0 Subscript zero
0 0100 0011 L 0 0110 0010 1 One
1 0100 0100 m 1 0110 0011 1 Subscript one
0 0100 0101 M 0 0110 0100 2 Two
0 0100 0110 n 1 0110 0101 1 Subscript two
1 0100 0111 N 1 0110 0110 3 Three
1 0100 1000 o 0 0110 0111 3 Subscript three
0 0100 1001 0 0 0110 1000 u Four
0 0100 1010 p 1 0110 1001 u Subscript four
1 0100 1011 p 1 0110 1010 5 Five
0 0100 1100 q 0 0110 1011 5 Subscript five
1 0100 1101 Q 1 0110 1100 6 Six
1 0100 1110 r 0 0110 1101 s Subscript six
0 0100 1111 R 0 0110 1110 7 Seven
1 0101 0000 s 1 Olio nil 7 Subscript seven
0 0101 0001 s 0 0111 0000 8 Eight
0 0101 0010 t 1 0111 0001 a Subscript
1 0101 0011 T 1 0111 0010 9 Nine
0 0101 0100 u 0 0111 0011 9 Subscript nine
1 0101 0101 u 1 oill 0100 . Period (point)
1 0101 0110 V 0 0111 0101 : Colon
0 0101 0111 V 0 0111 0110 - Minus sign
0 0101 1000 w 1 0111 0111 ? Question mark
1 0101 1001 w *

1 0101 1010 X

0 0101 1011 X
1 0101 1100 y
0 0101 1101 y
0 0101 1110 z
1 0101 1111 z

FIG. 6.4 (Continued)

THE
AMERICAN
STANDARD
CODE FOR
INFORMATION
INTERCHANGE
by R. W. BEMER, UNIVAC Division, Sperry Rand Corp.
New York, N.Y.

part one:
review and preview

It is very doubtful that Herman Hollerith ever
considered, in 1905, that he would have to
talk to Jean Baudot. After all, the man was

dead. But this is exactly what is happening today in the
inevitable marriage of computers and communications sys
tems. The punched cards that Hollerith created must
communicate with the punched paper tape of Baudot. The
problem is that there is absolutely no logical similarity or
relationship between the codes which represent the various
letters, digits and other characters.

Hollerith designed his code for a mechanical counting
reader. When cards became input to computers, as well
as mechanical devices, a code correspondence had to be
applied. In forming the IBM binary coded decimal (BCD)
code, the 0 to 9 rows on the card were equated to ()()()()
through 1001, and thus the binary value corresponds to
the decimal row value. 1 wo more bits precede these to
represent the four "zones" (12, 11, 0 and blank) by 00,
01, 10, and 11, although not respectively and indeed this
varies among IBM equipment. Other manufacturers made
different assignments in various attempts for internal econ
omies. Assignments even vary among individual custom
ers. rhus although most IBM users have the 12 punch as
a plus sign and the 11 punch as a minus sign there are
many others to whom the reverse is true.

There is a binary code inherent in the punched paper
tape of Baudot, but this depends upon which tracks are
made to correspond to which binary positions. Sorry to
say, this choice has been made in several ways. Even so,
Baudot did not make his assignment on a sequential basis
for the digits or letters of the alphabet. Due to the technol-
ogy of the time, it was done on the basis that the most
frequently used characters would be represented by the
fewest punched holes, to save wear and tear on the
punch dies! To illustrate:

Letter blank EIAOIN SHRDLU
No. of Punches 1 1 1 2 2 2 2 2 2 2 2 2 3

This should prove that there was never an actual person

by that name! Apparently not much was known about
digit frequency in those days, for they were assigned:

Digit 0 1 2 3 4 5 6 7 8 9
No. of Punches 3 4 3 1 2 1 3 3 2 2

Such technological conditions are largely removed now,
and logical considerations assume commanding importance.

topsy in the information processing field
About four or five years ago many people awoke in
dividually to the fact that we are in an almost impossible
jumble in the coding of information. Consider the way it
grew from the IBM standpoint, based upon the punched
card. First came the digits 0 to 9, with & (or +) and -.
So far there is only one problem, the duality of & and +
as represented by the 12-punch. Now add zones for the
letters. The digits 0 to 9 with a 12-punch mean A to I,
with an 11-punch they mean J to R, and with a O-punch

32

Mr. Bemer is an alternate
member of X3.2, the X3.5
Glossary committee, and AFIP
member of the IFIP TC-1 Ter
minology committee. Before
joining Univac, where he is
director of systems program
ming, he was with The RAND
Corp. and IBM, and started
the computing installation at
Lockheed Missiles.

D R T H M f l T I D N

AMERICAN STANDARD . . .

they mean / and S to Z. Simple. But now what? Without
using the other combinations of two punches (e.g. 3-6)
we move directly to combinations of three punches by
adding 8's. This gives such characters as . , ° $ @ &
and <^>. So far this can be lived with.

Now design the reader on the IBM 702 so that all
illegal punch combinations are rejected; that is, only 48
out of the 4096 (212) possible combinations are legal.
Now find out that more codes are needed for tape control
in a computer, and so far only 48 out of a possible 64
codes available in a 6-bit character have been used. We
try to see what happens for all 4096 combinations, and
are surprised to find that the engineer goofed a little —
nine supposedly illegal combinations slip by! So 0-2-8 is
a record mark and 12-5-8 is a group mark.

On the other side of a high fence (between scientific
and commercial computing at that time) the 704 people
come up with FORTRAN, which needs the characters
() + and =, and certainly does not need % <$> &
and #. Since there are only 48 positions on the type wheels
of the 407, a dual assignment is made. This makes it
difficult for the installation with both scientific and com
mercial problems, but they learn to live with it. Along

Figure 1. A m e r i c a n S t a n d a r d C o d e f o r I n f o r m a t i o n I n t e r c h a n g e

E x a m p l e :

0001

000 ; 001 010 O i l 100 101 110 J 111

0000 NULL C£C° 0 0 P

0001 SOM
I D C '

I 1 A Q

0010 EOA I DC2 • • 2 B R

0011 EOM DC3 n 3 C S

0100 EOT 0C4 (STOP) $ 4 D T

0101 W R U E R R %
1

5 E U

0110 RU
1
SYNC & 1 6 F v

0111 BELL L E M i
7 G w

1000 o

LLi
LL So (8 H X

UN ASSIGNED

1001 H!/
/SK _ S T 9 1 Y

1010 LF s2 ' * |

'

J z
1011 V

TAB
S3 + 1 K [

1100 FF S4 (comma)
f < L \ ACK

1101 CR V -
= M 1 ®

1110 SO S6 •
> N t ESC

1111 SI S7 / •> 0 - D E L

comes the 1401 with its chain printer that has 240
character positions around it, normally in five sets of 48.
But it could be in four sets of 60. Because it is to be a
satellite machine for many large scale installations, the
FORTRAN characters are given their own separate codes
for programming convenience. Now we have both dual
and individual assignments in the same installation. What
confusion!"

Another trouble is that the internal bit assignment for
the group mark is 11 1111, and when the code is filled
out to the full 64 characters possible it is found that the
counting mechanical reader demands that the punch com
bination for the group mark be 12-7-8, particularly for the
'070 and not 12-5-8 as for the 705. However, the
same tape must be capable of being read by both
machines.

And so it goes, each mistake by expediency being piled
on top of the last one. And so many customers already
use these incompatible devices that it just doesn't seem
economical to change it now. Or could it be that things
will get worse and we will wish we had straightened
things out last year before it gets even more expensive?

It should not be thought that IBM is the only man
ufacturer with such problems. UNIVAC had a similar set
of problems, particularly with both 80- and 90-column
cards. The RCA 501 was designed with an internal code
in which the letters and digits were assigned to consecutive
binary numbers, a very sensible arrangement that makes
data processing much easier. This is because there is
something known as a "collating" or "ordering" sequence.
If there were not, it would be very difficult to find a
word in the dictionary or a number in the phone book.
The 501 orders by simple binary comparison, with no
extra hardware or wasted time. If this seems only reason
able, remember that IBM does not make any equipment
with an internal code corresponding to its collating se
quence, contrary to some beliefs. Ordering is done either
by special hardware ($75 a month for early 1401's) or by
programming, as on the 7090. Figure 2 shows two IBM
cards, punched and interpreted. Columns 1 to 64 cor
respond to the binary sequence 00 0000 to 11 1111, or
octal 00 to 77.

Let's see what happened to that 501. The 301 was
designed to aim at the extensive punched card business.
What could be more natural than to forget the 501 code
and adopt the internal code of the IBM 704? Later a
translator was built to convert codes in both directions
between the 301 and 501. Just one problem, though —
any file put in order on the 301 was out of order for the
501, and vice versa. At least without programming or
additional hardware. This is hardly a trivial problem. IBM
calculated in 1961 (in connection with ASA work) that
it might take from $5,000,000 to $30,000,000 of machine
time on the fastest computers just to reorder all existing
files (as necessary - most would not require it, having
only numeric keys) to a new collating sequence. This is
the problem IBM faced in participating in code standardi
zation work. If a standard code were to specify the collat
ing sequence to be identical with the binary sequence, it
would not match the IBM collating sequence. Makes even
a big company stop and think; it might be hard to get
the customer to take the broad view of future advantages
and foot the bill.

However, occasions do arise when the situation is so
muddled that desperate measures must be taken. As an
example, Australia will change over to its new unit of
currency, the "Royal", in February of 1966. This will
replace the old pound and will be divisible into 100 cents,

= 4 B i t S u b s e t

("Author's note—I'll take my share of the blame for some of this.)

August 1963 33

/

i£345678904*3: >y*/'STUVHXYZ*j^•-JKLMNOPGR! f *]; A&ABCDEFGH i ? . n.C< $.
Illlllllllllllll

llllllllllllllll

OOOGOOOOOO|COOOOQ|||||||||||||||OOOCGOCOOO|OOOOOOOOOOOOOCO|OOOOOOQOOAOOOOOQOOOOO
I 2 J 4 5 6 7 t 9 10 It 12 13 14 15 IB 1! II 19 20 21 22 23 24 25 26 21 21 29 30 31 22 31 34 35 26 37 38 3S 43 41 42 < 3 44 45 « 4! 41 «S 53 SI 52 SJ 54 55 55 57 S! 13 65 61 62 61 64 (5 65 67 to 63 78 71 72 !3 74 73 It 77 78 75 10

1|1 1 11 1 11 1 1 11 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 11 11 1 | 1 11 1 11 11 1 1 1 11 1 1 |1 1 1 1 1 11 1 11 1 I 1 1 1 1 1 1 111 1 1 11 11 1 11
CO

S 2 2 | 2 2 2 2 2 2 2 2 2 2 2 2 2 | 2 | 2 2 2 2 2 2 2 | 2 2 2 2 2 2 2 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | ' 2 2

| 333|3333333|3333J33|3333333|J333333|3333333|333J333|333333J|33333333333333333333
CC

| 4444|4444444|4444444|4444444|4444444|4444444|4444444|4444444|4444444444444444444

§55555|5555555|5555555|5555555|5555555|5555555|5555555(5555555(555555555555555555
CC

G 6 G 6 6 6 |66G66G6(6S666G6(GG6666C|666C6G6(6G66E6G(6GGG6BE(E666£GG(SG66B666G65G66G66

^ 7777777|7777777l7777777|7777777|7777777|7777777|7777777|7777777l7777777777777777

^ S8888883|3&||||||E38888S|B||||||S886S86C|S8|||||S83S8888|38|||||SC8B888888388S88

| 998999990(SS9999899399999[99999999999999S(9S999S8999S9599(D999999999999999999939
I 2 J 4 S (J 0 S 10 It 12 13 14 15 IC :) it 18 73 21 22 23 24 25 26 27 20 29 30 31 32 S3 34 33 36 27 Si 39 40 41 C 43 44 45 46 42 43 43 50 61 52 43 54 45 56 51 59 59 68 61 62 63 64 €4 66 63 66 64 18 71 72 73 74 74 76 77 78 78 IS

• i gu re 2
IBM STANDAR D BCD IN T E RCH A N G E CODE (1962)

just as the dollar is. In value it will be equivalent to 12
shillings of the pound system and about $1.12 US. Such a
serious step will affect almost every area of the economy,
from cash registers to coin changers, from education to
counting procedures. The Aussies must think it worth it
in the long run, however, and even England is now
considering a change, perhaps to the decimal florin.

the american standard code
It was in a similar atmosphere of dissatisfaction with any
existing system that the new American Standard Code for
Information Interchange (ASCII) was developed, be
coming an official ASA Standard No. X3.4 on 17 June
1963. The development and standardizing process was
lengthy and sometimes turbulent. The important thing was
that, as POGO says, "All was given equal chance to dis
cuss and re-cuss." There was plenty of both. The problems
of effective standardization are not new to readers of
DATAMATION, but the successful adoption of a standard
of this magnitude certainly is. Perhaps this success will
help to reaffirm some faith in and support of these efforts.

The code was derived by the subcommittee method,

one of the three ways by which an American Standard
can be achieved, and certainly the most difficult. Whereas
most standards are adoptions or reworks of existing prac
tice, this code is a considerable departure from any pre
vious code, although generic similarities to certain pred
ecessors are certainly to be seen. Subcommittee X3.2
was chaired successively by representatives from IBM,
Burroughs, and presently the Department of Defense,
Navy Management Office. Several independent efforts
were started in the 1958-59 period to deal afresh with
the code problem. By universal agreement it was impos
sible to make enough sense out of existing codes; they
just did not meet requirements evident at that time, nor
did they provide for obvious future requirements. Among
the major efforts were those of:

1. The Electronic Industries Association, a body which
had produced many previous standards, working originally
from a paper tape viewpoint, but later becoming general.

2. IBM, with the 8-bit code for STRETCH, which
among other features provided for both upper and lower
case alphabets.

3. The Department of Defense (Army Signal Corps)

Figu r e 2A I B M S T A N D A R D COLLATING SEQUENCE

/ . K[<*&$*] ;A — f t 7 i v \ « S XZi:>v? At -CDEFG H I ! JK LH huF 'Q Rt STUVW XYZGl £3456789
/ IIIIII minim

mm immm
OOOOOOOOOOOOG||||||OGCOOO|OOOOOOOOO|OOOOOOOOO||||||||||OOOOOOOOOOOOOOOOOOOOOOOOO
I 2 3 4 4 6 7 4 9 10 It 12 13 14 IS 15 17 IS 19 2021 22 23 24 25 28 27 28 29 30 21 3? 33 34 35 36 37 38 39 40 41 42 43 44 45 45 47 48 49 50 51 S2 53 54 55 56 57 58 59 60 61 62 63 64 65 86 67 68 69 78 71 72 73 74 75 76 77 78 79 80

00

n 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 2 2 2 2 2 2 2 | 2 2 2 2 2 2 2 2 2 | 2 2 2 2 2 2 2 l | 2 2 2 2 2 2 2 2 2 | 2

^ 3 1 3 3 3 3 31 3 3 3 3 3 3 1 3 3 3 3 3 1 3 3 3 3 3 2 3 1.1 3 3 3 3 3 3 3 S | 0 3 3 3 3 3 3 3 1 3 3 3 3 3 3 3 3 3 | 3
CC

% 44(44444(444444(44444(4444444(444444444(44444444(444444444(444444444444444444444
9
| 555|55555|555555|55555|5555555|555555555|55555555|555555555|55555555555555555555

CC

_ 6 6 GG(EG6GG|S6666G(GG6G6[666$G£6(G66G66666(5GE6666E[S866GGG66(B6G666G66G6GG6566G6

^ 77777|77777|777777|77777|7777777|777777777|77777777|777777777|777777777777777777

^ 8 | | | | | E | | | | | ? 3 | | | | | | | | | | | 8 8 8 8 « 8 8 8 | 8 S S 8 8 e 6 8 C | P | S 8 8 8 8 3 | 3 S 8 S 8 S 8 8 3 | 8 8 3 8 3 8 8 8 8 8 8 3 8 8 8 8 9
a

1 88E9S929993999939999S999SS9589S33S|999998999|3S9S5S35|9 398S9S9919 999999999999999 I 2 3 ' 5 I 7 3 I IS ;: 12 U K 73 12 mj 2J 21 22 23 24 23 76 77 72 23 27 31 22 33 36 34 >2 27 36 3S <• <1 42 43 « 45 46 47 44 45 51 42 43 54 53 45 5i 4! 59 60 El 62 63 54 65 66 61 68 69 73 71 72 73 74 75 36 77 71 79 60

34 DPTBMBTIDN

AMERICAN STANDARD . . .

which developed and sponsored the Fieldata code. Despite
a few drawbacks, this was a great improvement upon
existing codes and many of its features are to be seen in
ASCII.

4. The British Standards Institution, which also started
with the intention of standardizing paper tape codes and

The abbreviations used in Figure 1 mean:
NULL Null/Idle CR Carriage return
SOM Start of message SO Shift out
EOA End of address SI Shift in
EOM End of message DCo Device control (!)

Reserved for Data
Link Escape

EOT End of transmission DC'-DCs Device control
WRU "Who are you?" ERR Error
RU "Are you . . . ?" SYNC Synchronous idle
BELL Audible signal LEM Logical end of media
FEo Format effector So-Sr Separator (information)

HT Horizontal tabulation I Word separator (blank,
normally non-printing)

SK Skip (punched card) ACK Acknowledge

LF Line feed ® Unassigned control

V/TAB Vertical tabulation ESC Escape

FF Form Feed DEL Delete/Idle

was drawn gradually into the whole data processing field.
5. The SHARE organization, which sought to coordi

nate their existing IBM equipment.

major features of the code
Let us examine the several salient and sometimes new
features of the code and their significance:

1. As yet it is only a reference code. The particular
representations in media such as punched cards, punched
tape and magnetic tape are not yet defined, although they
are perhaps implied in some respects.

2. It is (so far) a 7-bit code, with provision to expand
to 8 bits as required. In the 7-bit form, a 6-bit subset of
64 codes is assigned completely to information characters,
the other 64 so far are essentially control characters. This
separation can be of convenience to equipment designers
in the combined data processing and communications field;
it also should produce many economies.

3. Although not yet stated in the standard, there is an
implied collating sequence that may be used in the straight
binary comparison mode. For IBM, which presently col
lates digits higher than the alphabet, an Exclusive OR
device in passive logic can put the digit vector higher
than the alphabet. This is no more than the existing
device which allows the 709 family to write and read
BCD tape.

4. The set can be collapsed in a regularized and pre
scribed manner, if required, into a 6-bit set for existing
6-bit machines and other equipments, to a 5-bit set for
modification of existing Teletype and Telex sets (particu
larly in Europe), and even to a 4-bit set. This latter is of
very special interest, in that it can be used for cash
registers and other basically numeric-only devices, but at
the same time may be used in the double numeric mode
for computers internally (like the 650, 7070 and
STRETCH). It is indicated by the offset shaded vector
in the diagram of the code. The reason for the offset is
that certain nondigit characters of the 4-bit set must
collate lower than both digits and alphabet when ap
pearing in ordering keys. The reverse expansion upward is
a simple matter of passive logic.

5. Certain replacements (carefully checked out inter
nationally) allow for non-American usage. For examples,
the single digits 10 and II (sic) for English pence can
replace the colon and semicolon in the digit vector, at
least until they follow the lead of the Australians; the
characters following the alphabet are of relatively low
usage so that they may be replaced with the additional
letters of expanded Roman alphabets, particularly as used
by the Scandinavian countries.

6. The ESCape code (111 1110) provides for 127
alternate sets in the 7-bit set, 255 in the 8-bit set. Some of
these sets may have official standing and some may be
arbitrarily reserved to certain equipments. An example
might be an alternate set with the Roman alphabet re
placed by the Cyrillic alphabet, the unreplaced characters
remaining unchanged. The ESCape character is usually
followed by another code which is devoid of its usual
meaning, by virtue of following the ESCape, and indicates
which one of the alternate character sets is in force until
the next ESCape character is encountered.

7. The two righthand vectors were purposely reserved
as the logical places to put a lower case alphabet, if
desired for this to be available in a single character mode.
For lesser equipments, the upper case alphabet may be
used in conjunction with the Shift In (000 1110) and
Shift Out (000 1111) characters to produce a lower case
facility.

8. Special consideration has been given for the char
acters required in programming and other special lan
guages. All of the characters of the COBOL set are
included. The ESCape characters may be used to shift to
one or more special sets containing all of the characters of
ALGOL (including the unique lower case alphabet).
Other sets may be reserved for special languages of type
setting, information retrieval, graphic design, medical re
ports, etc. For example, a special set for numerical
machine tool control could be an alternate 4-bit subset
which is identical with the standard subset in the thirteen
characters 0 - 9, decimal point, plus and minus; the other
three characters would be replaced by X, Y and Z for axis
symbols.

9. Note that many new characters have been introduced
in the control area, particularly designed for self-delimiting
of streams of characters. These may be hierarchic in
nature, used to describe records, fields, subfields and so
forth, or they may be syntactic in nature, indicating
phrases, sentences, paragraphs, etc.

why a 7-level code?
Actually ASCII is an 8-level code with the eighth bit
unassigned as yet. The new A. T. & T. system, supplied
with terminal equipment by its subsidiary Teletype Corp.,
is based completely on eight bits between start - stop
pulses. This is not only for future expansion but also for
practical operations today. The eighth bit may be used for
parity (preferably odd) if desired, and perhaps other uses
may evolve. Basically, however, the 8-bit transmission unit
was selected because eight is a magic number, being a
power of two. In the information theory business there is
nothing more economical than a power of two, and
A. T. & T. knows it. Economy is important when you are
creating a whole new system of this magnitude, and indeed
that magnitude may be well up into the billions. There is
even provision for an eleventh digit in the direct dialing
system so Teletype can tell whether an 8-bit unit (Model
33) is talking to another 8-bit unit or to a 5-bit unit, or
vice versa.

Several new computers are now being designed with
8-bit capabilities. At least one model, STRETCH, is in
operation. Another is reported to use ASCII internally in

August 1963 35

AMERICAN STANDARD . . .

the double numeric mode. In certain 6-bit machines the
word is designed to 48 bits to handle either six 8-bit
characters or eight 6-bit characters. This code certainly
facilitates transmission of pure binary data.

Subcommittee X3.2 appears to have no objection to the
eventual assignment of meaning to all of the 256 codes in
the 8-bit set. They sensibly avoided trying to be omniscient
now and rather made adequate provision for expansion as
further developments are made. Besides, they had to
consider the Europeans and international standardization
work in this area by ISO TC 97 on Computers and
Information Processing. This work might not catch up to
A. T. & T. for a while. Meanwhile the code will probably
have to be adapted to 6-bit systems and even to five bits
to work on existing Telex circuits, for the Europeans may
not be able to install an entire new system in several
countries in less than several years. The ASCII code is
certainly set up to reduce the code size as required.

There are many advantages to having more unique
codes in the set. There are some still unassigned in the
7-bit set, and of course nothing except a possible parity
usage is assigned to the 8-bit set. There are several pos
sible assignments for these spare codes, although none of
these have been discussed extensively yet by X3.2:

1. A code which turns parity off and on, or possibly two
individual codes, one for each of these two functions. This
would facilitate compatibility between equipment using the
7-bit code with parity and other equipment desiring to
utilize the full 8-bit set.

2. A code which says "repeat the transmission (it was
bad) back to the last S, code." Presumably this code
would be followed by the particular S, code required.
This S(would be sent back to the transmitting equipment,
which would hold it in memory and search backwards
along the transmitted stream until a match was found. The
transmission would be restarted at that point, both sending
and receiving equipment knowing exactly where to pick
up again.

Figure 3

O O 1 1 O 1 1 1

3 7

O O 1 1 O 1 1 1

7 or 8-BIT MODE

DOUBLE NUMERIC MODE

3. Codes to ignore normal communications control so
that pure binary data may be transmitted without any
character meaning. These will have to be handled care
fully so that return to the normal transmission mode may
be effected. This might have to be done by either timing
the binary transmission, sending a predetermined number
of 8-bit units with automatic return, or having the re
ceiving device actuate the return through an extra channel.

4. Codes to switch to double numeric (two 4-bit digits
within a single character) and back for reasons of economy
of transmission in numeric onlv mode. •

(Part two of Mr. Bemer's article will be published next month.)

BOARDMASTER VISUAL CONTROL
Gives Graphic Picture of Your • Easy to Use. Type or Write
Operations in Color. on Cards, Snap on Board.
Facts at a Glance—Saves Time * Ideal for Production, Sched-
and Prevents Errors. uling, Sales, Inventory, Etc.
A Simple, Flexible Tool—Easily • Compact, Attractive. Made of
Adapted to Your Needs. Metal. 750,000 in Use.

Complete Price $4950 Including Cards

24-Page ILLUSTRATED BOOKLET CG-20
Without Obligation

GRAPHIC SYSTEMS, Yanteyville, North Carol™

THE
CAT COMPUTER

Already enjoying wide acceptance without for
mal announcement is a multi-purpose on-line
CAT Computer of Average Transients. One at

Mayo Clinic has participated in a transatlantic experiment,
averaging out brain wave signals transmitted from England
via the Relay satellite. The results, interpreted and diag
nosed, were then sent back by the same route. Present
applications are in medical and clinical research.

The CAT 400B is a product of the Mnemotron Div. of
Technical Measurement Corp., White Plains, N.Y. The
count capacity of the memory is 100K per ordinate, with
up to 400 ordinates. The CAT can sum and average re
sponses from four varying inputs on-line, simultaneously
calculating and displaying data on a built-in scope. The
ability to store averages in successive quarters of memory
makes it possible to compare successive runs of averages
without interrupting experiments (there is no theoretical
limit to the number of responses which mav be summed).
Averages may be displayed on the 3" CRT and on an
X-Y Plotter Readout. The computer measures about one
cubic foot, weighs 38 pounds, and consumes 30 watts.
Price is $12K. •

You Get Things Done Better
By Seeing What's Happening

36
CIRCLE 25 ON READER CARD

DnTRMnTION

THE
AMERICAN
STANDARD
CODE FOR
INFORMATION
INTERCHANGE
by R. W. BEMER, UNIVAC Division, Sperry Rand Corp
New York, N.Y.

•

Synopsis—In the first of this two-part article, Mr.
Bemer covered the inglorious history of informa
tion coding which led to the ASCII, becoming an

official ASA Standard No. X3.4 on June 17, 1963. He also
covered its salient features, and explained the seven-bit
code with provisions to expand to eight bits.

the conversion problem
The major argument against the new code seems to be the
cost of converting the vast amounts of equipments and
customers, with resulting obsolescence (at least of the
equipment). The intent is apparent in the title of the
standard - "for INFORMATION INTERCHANGE." This
does not say that computers of external devices must be
built to use this code internally, now or ever. All it demands
is that whenever the computer talks with strange equip-

part two

Figure 4

UNIVAC RCA 501

ATLAS IBM 7090

L E O I I I M - H 8 0 0

N (N - 1)

ment, not of its own kind, that it do so through the
medium of this code.

Certainly this results in fewer translation mechanisms
than the present chaotic situation requires. Given N
computers or other devices with various and different
internal codes, each might need to talk with all the others
(N-l). Thus N times (N-l) translations would be re
quired for full intercommunication. With ASCII, however,
each device needs to talk only to the standard code and
back again, a total of only 2N translations required! The
value of N is presently about 60 (internal codes).
Although one would hardly expect that all possible 60
times 59 combinations would be used, it is certainly
enough larger than 60 times 2 to say that even if every
present day machine retained its own code forever, it
would still be more economical to use ASCII just for
interchange! Thus each machine would have to talk only
to ASCII instead of 59 other codes. (See Figure 4.)

Furthermore, the possibility should not be overlooked

UNIVAC III RCA 501

1
ATLAS ASC II ASC II IBM 7090

i
LEO III M - H 8 0 0

2N

Septem ber 1963
39

A M E R I C A N S T A N D A R D . . .

that some other internal code plus the translation mecha
nisms required might be more economical for some equip
ment than would ASCII internally. Of course, the economic
pressure for future equipments to use the code internally
as well as externally would be more likely. Thus the 2N
combinations might even be reduced to one some time in
the future. The new code has so many inherent economies
that it might pay for the redesign itself. IBM has perhaps
the least problem of any manufacturer; with 9 different
codes already in their various computers, ASCII presents
only an 11 per cent additional problem.

During the conversion period, the ESCape character
allows most existing codes to exist simultaneously with
ASCII. Assume a communications link as in Figure 5.
When a message comes along that is not in ASCII, the
first character is ESCape, the next is that which selects
the alternative code. The message in alternative code then
follows until the next ESCape character signals either
another alternative code or return to ASCII. Physically
the receiving terminal R will be alerted for switching by

Figure 5

\
COMPUTER B

KLEINSCHMIDT

/ (S E N D I N G)

R
(RECEIVING)

•—L

£

FLEXOWRITER

COMPUTER A

ASC II DEVICE

ESCape; the following character actually performs the
switching to different receiving equipment for the alterna
tive code. This concept is much simplified, of course, and
in practice might be applied only to long distance links.

It would seem a practical thing for X3.2 to assign a
block of codes (to follow ESCape) to indicate the codes
of existing equipments. As these become obsolete, the
particular selector code may be reassigned for other pur
poses.

advantages for programming
If ASCII were to be built in as an internal computer code,
the programmer might expect to see some of the following
benefits;

1. Manipulation of graphics by classes. Since all char
acters of a certain class (such as letters, digits, etc.) are
grouped contiguously, they may be classified with very
few instructions. In working with strings it may lie useful
to create a corresponding class string in parallel for syntax
analysis. This could open some interesting doors in library
work and information retrieval in general.

2. Fewer instructions in scans, due to regularity and
unique codes. A count once made of 709 FORTRAN
showed that something like 53 instructions were required
to decipher the syntactical meaning of a left partnthesis.
As no other brackets were available, parentheses were
used for subscripting, normal mathematical nesting and
other purposes. With unique codes, the combination can
form the address of the starting instruction of the routine
for processing that character. Consider that the IBM
FORTRAN market amounts to about $150,000,000 a year
in just machine time used. The figure commonly accepted
for translation from FORTRAN to machine language is
35 per cent of total time. Thus about $50,000,000 a year
is spent on nothing but FORTRAN translation. Certainly

OCTAL

CODE

ASCII IBM K \
UNIVAC RCA

501

OCTAL

CODE

ASCII
GRAPH

IBM
r
V UNIVAC RCA

501
OCTAL

CODE
GRAPH SIC

A
SIC

H
COLL.
SEQ.

7090
CORE

K \ 1050
A

1050
H

490 1107

RCA

501

OCTAL

CODE

ASCII
GRAPH SIC

A
SIC

H
COLL.
SEQ.

7090
CORE

D
TA

1050
A

10SO
H

490 1107

RCA

501

00 00 00 00 60 00 05 05 00 40 14 25 mm 56 15 mm
1 52 52 43 52 55 43 43 1 A 61 61 32 21 06 24 24 06 06 40

2 - mm i£x?:$S 52 05 2 B 62 62 33 22 07 25 25 07 07 41

3 « 13 WM 24 35 37 04 36 3 C 63 63 34 23 10 26 26 10 10 42

4 S 53 53 07 53 47 42 42 47 47 07 4 D 64 64 35 24 11 27 27 11 11 43

5 * 34 17 mm 61 17 52 10 s E 65 65 36 25 12 30 30 12 12 44

6 & 60 mm 06 20 63 46 46 12 6 F 66 66 37 26 13 31 31 13 13 45

7 . 14 25 14 72 15 56 72 72 13 7 G 67 67 40 27 14 32 32 14 14 46

10 { 34 17 74 51 17 61 51 51 W8& 50 H 70 70 41 30 15 33 33 15 15 47

1 I 74 02 34 40 01 75 40 40 04 1 1 71 71 42 31 16 34 34 16 16 50

2 • 54 54 10 54 50 41 41 50 50 IS 2 J 41 41 44 41 17 44 44 17 17 51

3 • 60 06 20 42 63 20 42 42 3 K 42 42 45 42 20 45 45 20 20 52

4 33 33 16 73 56 62 62 56 56 35 4 L 43 43 46 43 21 46 46 21 21 53

5 40 40 14 40 41 02 02 41 41 14 5 M 22 47 47 22 22 54

6 73 73 01 33 75 22 22 75 75 16 6 N 45 45 50 45 23 50 50 23 23 55

7 21 21 15 61 74 64 64 74 74 22 7 0 46 46 51 46 24 51 SI 24 24 56

20 0 12 12 66 00 60 03 03 60 60 23 60 P 47 47 52 47 25 52 52 25 25 57

1 01 01 67 01 61 04 04 61 61 24 1 Q 50 50 53 50 26 53 53 26 26 60

2 2 02 02 70 02 62 OS 05 62 62 25 2 R 51 51 54 51 27 54 54 27 27 61

3 3 03 03 71 03 63 06 06 63 63 26 3 S 22 22 56 62 30 65 65 30 30 62

4 4 04 04 72 04 64 07 07 64 64 27 4 T 23 23 57 63 31 66 66 31 31 63

5 5 05 05 73 05 65 10 10 65 65 30 5 U 24 24 60 64 32 67 67 32 32 64

6 6 06 06 74 06 66 11 11 66 66 31 6 V 25 25 64 6S 33 70 70 33 33 65

7 7 07 07 75 07 67 12 12 67 67 32 7 w 26 26 62 66 34 71 71 34 34 66

30 B 10 10 76 10 70 13 13 70 70 33 70 X 27 27 63 67 35 72 72 35 35 •67

1 9 11 11 77 11 71 14 14 71 71 34 1 Y 30 30 64 70 36 73 73 36 36 70

2 15 15 26 WiM 53 21 21 53 53 06 2 z 31 31 65 71 37 74 74 37 37 71

3 56 56 12 yX'l'X-X 73 16 16 73 wivx* 11 3 [75 75 03 55 55 ;XvX;Xv

4 76 76 04 :x#:«x 43 36 36 43 76 4 36 36 21 mm 40 40

5 li
 1

13 24 13 44 37 35 44 5] 55 55 11 .v/.y.v. Wm. 77 77

6 16 16 27 ws 45 76 76 45 75 6 T $>:*:$>: SSSli fSSSi*
7 ? 72 72 31 32 54 23 23 :#• 7 - mm mm. .V.V.V.*. simf
SIC = STANDARD INTERCHANGE CODE

40 DHTBMBTION

all of this is not due to the left parenthesis problem, but it
ought to run to at least a million.

3. Faster and cheaper sorting, when the collating se
quence is identical to the binary sequence of the codes for
the graphics. Sorting is also big business, with commercial
users quoting an average of 40 per cent of total machine
time used for this one function. The elimination of special
hardware for comparisons would save more than a million
dollars a year.

4. Reduction in the number of routines required to be
programmed, particularly for satellite equipment. The
chart of Figure 6 indicates the complexity of routines that
must be provided for a multiplicity of codes. The ASCII
code is taken as the base code in binary sequence. The
corresponding octal codes for the same graphics are given
for the various other internal codes. Obviously the same
procedure could be followed using any particular code as
the base code. The totality of such charts provides the
basic information for generalized code conversion among
various equipments.

5. Fewer tables for mixed codes in communications,
particularly those controlled by store-and-forward message
switching systems. An IBM spokesman stated that the
7750 communications unit rents for $8,000 a month with
a single code, up to $13,000 a month to handle all codes,
since additional core storage is required for programs and
tables to handle these other codes.

6. Clarity of printed output, particularly the reproduc
tion of the source program in the printed record of
processing. Unavailability of the exact graphic desired
makes for costly mistakes in the diagnostic process. It
takes quite a hit of practice to get used to reading
FORTRAN with the per cent sign and lozenge used
instead of parentheses.

7. A tendency for keyboards to he identical with typing
communications equipment. Thus hard copy can he avail
able immediately as a record of the program being key
punched. It is conceivable that this might extend to
halfline spacing for subscripts and superscripts, a feature
which might have a considerable effect in relaxing re
strictions in the rules of programming languages.

the future for the ASCII code
X3.2 is presently going full steam ahead in implementing
the code in the various media. This will not be a simple
problem, particularly in punched cards. Presumably the
binary code could be duplicated directly, a punched posi
tion standing for a 1, an unpunched position standing for
0. But there are 12 positions on the card, not 8, and that
is a little wasteful. Besides, certain punching equipment
will not perform up to specification when punching more
than three or four holes in a column. It is possible to
represent 256 codes by combinations of 0, 1, 2, and 3
punches (and no more), but this is not easy if it is required
to make the combinations consistent with present punched
card practice. A difficult problem, surely, but a look at the
references following this paper will indicate that much
work has already been done.

What will happen now to other contenders? It seems
clear that Fieldata, even though implemented already in
many computers, will gradually he replaced by ASCII.
Indeed, Fieldata representation on X3.2 was very strong
and valuable. Fortunately the Department of Defense is
committed to national and commercial standards wherever
they exist, even in preference to some military standards,
and so Thomas Morris, Assistant Secretary of Defense, has
been instrumental in the completion and adoption of the
ASCII code.

It is not likely that the code will be adopted interna
tionally in the exact form that it is in now. However, the

September 1963

William Orchard-Hays

and David M. Smith
Announce

the Organization of

ORCHARD-HAYS

Si COMPANY,

I

Two of America's most widely recognized experts
in engineering large-scale systems of programs—
William Orohard-Hays and David M. Smith—have
brought together a select group of other software
specialists to establish Orchard-Hays & Company,
Inc.

Orchard-Hays & Company has a particularly
broad capability in linear programming, having
engineered highly-advanced LI' systems for the
IBM 7090 and 7094 computers. For other computers,
O-H&C will implement its advanced design tech
niques in LI' systems ranging in scope from the
most basic to the most advanced. Systems can be
adapted to virtually any hardware configuration and
can be easily and economically upgraded to provide
greater problem-solving |>ower and flexibility as your
needs broaden.

Orchard-Hays & Company also creates specialized
information handling systems, statistical systems,
specific-function computer languages, program proc
essors, and other application systems, as well as
undertaking program conversion when computer
hardware is replaced with more advanced machines.

O-H&C software is engineered for total efficiency
and utility. Program systems engineering is the
first order of business at 0-II&C, not a sideline to
computer time sales or other activities. No matter
how complex your program system requirements
may be, we are confident that O-H&C know-how
will provide the
answer. Call us mm LJ
collect.

O R C H A R D - H A Y S & C O M P A N Y

I N C O R P O R A T E D

3150 Wilson Boulevard, Arlington 1, Virginia, 22201
Area Code 703—Phone 525-5206

C I R C L E 4 1 O N R E A D E R C A R D

41

General Electric's new family of computers lets you

programs... peripherals...

1
1

increase your computing power without changing...
i

or people
• * . . •

You can move up from a minimum cost
system to bigger, faster systems by simply
changing the central processor. The pro
grams are the same—but they run faster.
The peripheral equipment is the same—
only you can apply it more efficiently. The
people are the same ones you trained in the
first place.

So, before you buy or replace your sys
tem, investigate The Compatibles. Write
General Electric Computer Department,
Section J-9, Phoenix, Arizona.

GE-215 GE-225 GE-235

Tops in its Medium-sized, Most powerful in

price range: versatile system: the family to date:

36 microsecond 18 microsecond 6 microsecond

word time word time word time

Progress Is Our Most Important Product

G E N E R A L # E L E C T R I C

CIRCLE 23 ON READER CARD

AMERICAN STANDARD . .

162
PERFORATIONS

PER MINUTE
Only the very finest tape is good
enough for today's newer, super-
speed, tape perforators!

1$
•n 'V

When you specify PERFECTION®, you know
y o u ' r e g e t t i n g t h e f i n e s t . . .

holes are clean and sharp, down to the last perforation . ..
tapes don't tear or break, even at the highest speeds . . .
slitting is sharp and true, and virtually lint-free . . . base
stocks are chosen-for-the-job, and quality assured.
PERFECTION® Tapes, either rolls or folded, are available
for every computer or communication application. Write
today for a sample brochure and the name of your nearest
PERFECTION® Distributor.

P A P E R
M A N U F A C T U R E R S

C O M P A N Y
PHILADELPHIA 15, PENNSYLVANIA

• BRANCH FACTORIES:
Indianapolis, Ind. • Newark, Calif .

SALES OFFICES:
Atlanta • Chicago « _ » Cleveland • Dallas

Kansas City • Los Angeles • New England
New York • San Francisco • Syracuse

U.S. has taken considerable pains to meet international
requirements and plan ahead. It is likely that a closely
related code will become an international standard, in
which case the ASA must simply make some modifications.
Don't forget, standards are not cast permanently in
bronze; they must adapt to the time and circumstances.
Actually the degree of cooperation with international
standards bodies and consideration of their requirements
has been rather a milestone in the case of this code and
other computer standards. Formerly the U.S. has either
ignored or minimized international requirements. In the
case of ASCII the international implications are such
(satellite transmission, etc.) that full cooperation was
mandatory, if only for the mundane reason that if another
war were ever fought in Europe it would be a considerable
advantage to be able to use existing communications
equipment.

It is also a fact that the computer and information
processing market outside of the U.S. is expanding greatly,
and U.S. manufacturers must consider the expense of
rebuilding such costly things as computers to match non-
U.S. standards. It may be that the Russians will ignore
this code, even though their requirements have been
considered. My guess is that economic motivations of a
less controlled society will win again in the American
Standard Code for Information Interchange. •

REFERENCES
1. British Standards Institution, Alpha-Numeric Punching Codes

for Data Processing Cards, British Standard 3174:1959.
2. British Standards Institution, Committee DPE 149, Draft British

Standard for Punched Tape Coding, Part 1, 7 Track Code,
AA (DPE) 3543, September, 1960.

3. Electronic Industries Association, EIA Tentative Standards Pro
posal for Eleven-sixteenths Inch Wide Five-Track Perforated
Paper Tape.

4. Electronic Industries Association, EIA Standards Proposal for
One Inch Perforated Paper Tape.

5. Electronic Industries Association, Committee TR24.4, language
and Format For Punched and Magnetic Tapes, Document 7233,
May, 1960.

6. U.S. Army Signal Corps, Fieldata Equipment Intercommunica
tion Characteristics, memorandum for: Director, Data Proc
essing, Facilities Division, Communications Department, USA-
SRDL of April, 1959 (Revised August, 1959).

7. U.S. Department of Defense, Military Standard 188A (Fieldata)
8. Bemer, R. W., A Proposal for Character Code Compatibility,

Communications of the ACM, February, 1960.
9. , Buchholz, W., An Extended Character Set Stand

ard, IBM Technical Report TR 00.721, June, 1960.
10. , A Survey of Coded Character Set Representation,

Communications of the ACM, December, 1960.
11. , Smith, H. J., Jr., and Williams, F. J., Jr., Design

of an Improved Transmission/Data Processing Code, Com
munications of the ACM, May, 1961.

12. Luebbert, W. F„ Information Handling and Processing in Large
Communication Systems, Tech. Report 099-1, Stanford Elec
tronics Laboratories, Stanford University, 11 July 1960.

13. Ross, H. McG., Considerations in Choosing a Character Code
for Computers and Punched Tapes, The Computer Journal,
January, 1961.

14. , Further Survey of Punched Card Codes, Communi
cations of the ACM, April, 1961.

15. Smith, H. J., Jr., A Short Study of Notation Efficiency, Com
munications of the ACM, August, 1960.

16. , and Williams, F. A., Jr., Survey of Punched Card
Codes, Communications of the ACM, December, 1960.

17. Business Week Magazine, 15 June 1963, pp 128-131, Versatile
Passkey to Communication.

44
CIRCLE 49 ON READER CARD

DHTBMBTION

E2U

PROCEEDINGS OF THE JUNE, 1964

TECHNICAL
MEETING

C H I C A G O , I L L I N O I S

toa I I T R E S E A R C H I N S T I T U T E

Additional copies of these proceedings may be obtained at a cost
of $5.00 from:

IIT Research Institute
10 West 35th Street
Chicago, Illinois 60616

Attn: Main Files

©
Copyright, 1964

IIT Research Institute
Chicago, Illinois

NUMERICAL CONTROL AND PUBLIC COMPUTING POWER

R. W. Bemer
UNIVAC Division

Sperry Rand Corporation

Abstract

The greater expansion in numerical control usage will come from
the smaller customer with access to large scale computing facilities.
In most cases this smaller customer will be unable to justify a large
computer initially; he has the alternatives of traveling to a central
service bureau or sharing time on a large computer via communica
tions devices operable from his own place of business. It is the conten
tion of this paper that all the requisite hardware and software tech
niques are available now for creation of public computing power facil
ities. This complex can service many other industries in addition to
numerical control users. APT will be but one language spoken by the
user of public computing power; FORTRAN, COBOL and other special
ized languages will be utilized to share such facilities. The purpose of
this paper is to present some initial logistical methods for economical
exploitation of such a facility, with the hope of creating practices of
such broad application that they can become the basis for standards in
this new field.

1- Origins of Various Elements Involved

The computer is often said to amplify man's brainpower in much
the same manner as machines amplified his muscle power. Many pow
er sources are public utilities. Is there any reason why computing pow
er should not be similarly available to the general public? Except in
remote places it is uneconomical for one to own a complete power plant
This also applies to computers. All elements of hardware and software
are now available for the establishment of Public Computing Power. The
systems concepts have existed for some time. To illustrate, an excerpt
is included here from an article of mine which appeared in the March
1957 issue of Automatic Control Magazine, reprinted with the permis-

61

sion of the editors. Perhaps my emphasis on microwave has not been
matched by present developments, but the essentials are there.

Future Computer Systems

Future computer operation, which strongly influences the design
of the programming languages, has some vitally interesting possibili
ties. In this glimpse, the picture presented here is dependent upon
three axioms:

• Faster computers always lower the dollar cost per problem
solved, but not all companies will be able to afford the high prices of
the next generation of super-computers. They cimply may not have
enough problems to load one.

• Producing a spectrum of machines is a tremendous waste of ef
fort and money on the part of both the manufacturers and the users.

• Availability of a huge central computer can eliminate the discrete
acquisition of multiple smaller computers, homogenize the entire struc
ture of usage, and allow a smaller and more numerous class of user in
to the act, thus tapping a market many times the size of presently pro
jected with current practice in computer access.

Assuming the availability of practical microwave communication
systems, it is conceivable that one or several computers, much larger
than anything presently contemplated, could service a multitude of us
ers. They would no longer rent a computer as such; instead they would
rent input- output equipment, although as far as the operation will be
concerned they would not be able to tell the difference. This peripheral
equipment would perhaps be rented at a base price plus a variable us
age charge on a non-linear basis. The topmost level of supervisory rou
tine would compute these charges on an actual usage basis and bill the
customer in an integrated operation. These program features are, of
course, recognizable to operations research people as the Scheduling
and Queuing Problems.

Using commutative methods, just as motion pictures produce an
image every so often for apparent continuity, entire plant operations
might be controlled by such super-speed computers.

These future hardware capabilities (and few competent computer
manufacturers will deny the feasibility, even today, of super-speed and

62

interleaved programs) demonstrate a pressing need for an advanced
common language system so all users concerned can integrate their
particular operations into the complex of control demanded by an auto
mated future.

The elements of communication necessary for PCP were:

a. A spectrum of inexpensive terminal devices connectable to ex
isting switching networks.

b. Expansion from the limiting Baudot five-track code to an eight-
bit code for public communication facilities, as evidenced by
the changeover of the Bell and AT&T systems to the ASCII (Am
erican Standard Code for Information Interchange).

The elements of language necessary to use PCP were:

a. Specialized languages which had to be comprehensive, power
ful and machine- independent to a considerable extent. APT is
one of these; FORTRAN and COBOL are examples of others.

b. Specialized languages for lexical processing and composition,
such as the work of M. P. Barnett at MIT. These are required
for remote manipulation of source documents for change, cor
rection, deletion, insertion and copying in various ways.

2. The Market for Public Computing; Power

These several factors contribute to building a demand for public
computing power:

a. The often rediscovered fact that the larger and more expensive
the machine, the cheaper it is to do a given problem.

b. The discrete nature of a physical computer. You may have none,
one, two or more—never a part of a computer, unless you share
it with someone.

c. The high rate of obsolescence of commercially available com
puters (5 additions per second in 1949 to 500,000 in 1962). It is
less expensive to upgrade fewer larger machines.

d. The widening sector of people who know how to process prob
lems for computers via the special languages. In particular,

63

FORTRAN is taught now in almost all major universities. APT
III may also expect to receive this treatment.

e. The desire to have work done on demand, and without the both
er of maintaining a computer installation.

Numerical Control will be the fastest-growing market for PCP. We
are told that there are fewer than 5,000 N/C tools in existence today,
and that a major portion of our machine population is due for replace
ment. Taxes on inventory provide a strong impetus. However, this group
meeting today would not exist without the symbiosis between the comput
er and the machine tool, and that symbiosis is in imbalance in that one
computer can serve more than a thousand tools. Therefore N/C will not
achieve maximum growth and profit without PCP.

On the other hand, N/C alone cannot be expected to foster and pay
development costs for such a complex network. Fortunately there are
many other potential users—universities, small businesses, the armed
services and even the corner drugstore. PCP will be useful for a vari
ety of applications, which could include composition for technical publi
cations, newspapers and books, language translation, traffic control, lin
ear programming, transportation models, shipping and inventory, ac
counting, project control thru PERT/COST, scientific and engineering
problems, and many others. Perhaps there will one day be a unit of Pub
lic Computing Power corresponding to the kilowatt, and the more you
use the cheaper it will be.

3. PCP Hardware

The heart of the system must be a general purpose computer with
at least the following features:

a. Realtime capability and Externally Specified Interrupts (Le.,
the unit demanding service must leave identification and a
means to continue contact).

b. Concurrent operation, the ability to run several programs at
least interleaved and perhaps simultaneously.

c. Lockout for protection of the segments of store in use by a
customer, and scrambling features for security.

d. Sufficient clocking and indicator mechanism to be able to ac-

64

count for the usage of each element of the computer on a sin
gle job.

e. High reliability and virtually no downtime. This might be ac
complished either by multiplexing or by utilizing idle time on
various components to exercise reliability tests and verify
ability to respond to demand.

f. Plenty of input-output channels to both peripheral equipment
at the center and to communications lines terminals.

The terminal equipment must be modular and matched as to inter
face. It must be capable of offline operation to do useful work independ
ent of the central computer. Hard copy must be produced when originat
ing data, and when receiving output from the computer. Paper or mag
netic tape are suitable storage media. The punched card will lose ground
consistently. US usage has been mainly with cards for editing flexibility,
the European usage has been mainly with paper tape for economy and
they have forced themselves to prepare perfect copy. With a computer
online, corrections do not have to be made in place; they can be de
scribed further down the tape and the computer can do the correction
and editing during the necessary scanning process. Terminal equipment
which meets these requirements is now in productioa

With a Teletype Model 35 terminal and a UNIVAC 1004 one can run
a remote computer with such facility as to fool the casual observer into
thinking the whole computer was miniaturized in those units.

The last element of hardware is the communication system itself.
Both public and private lines should be available. The most necessary
condition is that the system can be operated in a code-insensitive mode
as required.

4. PCP Software

Fortunately software can be modified more flexibly than hardware,
for there will be much to leara There appear now to be four main ele
ments in a comprehensive executive system which controls all proces
sors identically, regardless of source or demand:

a. Priority routines which react thusly:

1. Immediate- calls processor as soon as feasible among de
mands of equal priority for other processors. Processes

65

and returns results as soon as lines are available.

2. Normal—notes request and starts clock for that process
or. Calls processor either after predetermined maximum
elapsed time or after minimum number of requests for
use (whichever is earliest).

3. Two hour or overnight— schedules usage of various proc
essors under its control to best utilize available facilities
and still rotate testing of components to maintain oncall
capability.

b. Accounting and billing routines which compute charges accord
ing to priority of service and usage of components. They verify
authority for charging a service, to protect against bootlegging
or mischarging. They prepare monthly bills and either send un
solicited monthly TWX messages to each customer or a mailed
bill, or both.

c. Routines for utilizing mass storage for stocking of course pro
grams and translations. They will retrieve previous programs
for change or cannibalizirig, perhaps by more than one user if
copyright is waived. They log usage and periodically rearrange
the storage pattern in levels based upon frequency, for mini
mum turnaround time.

d. Editing routines to make perfect copy from copy submitted by
customer which uses downstream corrections. They accept
patches upon option, rework and submit for reprocessing.

5. Logistics for PCP

The Model 35 TWX seems ideal for N/C usage at this time. It may
be used offline as a typewriter or for preparation of programs and data.
Online, as a member of a standard network, it may be used as an inquiry
station, for reservations, for ordering and billing, and for Information
Retrieval. For Numerical Control applications let us first consider the
semi-online method via corresponding terminal equipment at the com
puter center. Direct communication of the remote terminal will become
more practical later.

Imagine the parts programmer in the factory writing his program
on the TWX in the local mode. When he believes he is ready he dials a

66

Data Processing Center and requests service. Table 1 shows the pro
jected formats for the various tapes which will be created. Note that
in every case there are three main information sections prior to the
working program data. The first section on dial-up is used for any re
mote service. The second section identifies the usage of TWXOL (TWX
Oriented Language) and makes further branches to identify more spe
cifically what is to happen. The third section gives details of actions to
be taken and options selected.

Very probably the program will contain mistakes the first time it
is processed. For this reason it is not advisable to request either a
CL Tape or an object tape. After the user dials the center his tape is
sent and duplicated on the center TWX. The operator then puts this on
the paper tape reader of the computer, which immediately reads it to
secondary store on a concurrent basis, noting the request, its priority
and class of service. After processing the computer produces output
tape, probably with several outputs adjoined for various customers.
The center operator then dials the customer and sends his diagnostics,
plus the results of any other option requested. This then becomes a
re-cycling process with the successive reduction of syntactic, seman
tic and pragmatic mistakes. When it is believed that all mistakes are
corrected, the parts programmer may request a CL or object (part)
tape, presumably to try to fabricate a part. This is where we find the
mistakes which are not possible for the computer to detect.

When the source program is lengthy the user will likely elect to
pay something to have it kept in the secondary store of the computer.
In this case he uses the editing facilities of TWXOL to update his
source program. If the return tapes are lengthy he may elect the patch
ing optioa

Returning a patch tape(s) to either a source program, a CL Tape,
or object tape may be dictated by economy of transmission time, and
is at the option of the requestor. The format of a patch tape and the
schematic of the patch process are shown in Figure 1. The dimensions
A and B are given by the initial message "patch starts A inches, ex
tends B inches." A and B are given to a precision of .1 inches, although
this is probably not necessary in actual practice. B is never less than
2" for physical manipulation and splicing, regardless if some of this
area is still correct. Multiple patches may be sent in the same tape.

67

ae
UJ

X
UJ
u
X
o
oc
u.

BI
LL

IN
G

J

- X

>
-J
X

X X X -

ae
UJ

X
UJ
u
X
o
oc
u.

yd
< M a.

X X X - X o X X

a
<

S
:

5 o X I - s -
U

ae
UJ

X
UJ
u
X
o
oc
u.

So

iv a. u
3

X X X X o X X
1

d
e 5 O

X - 1 "

ae
UJ

X
UJ
u
X
o
oc
u.

U
£
o z o «
o

5
a

!

5
8

i
X » X - K X X -

.
X X

FR
O

M

C
U

ST
O

M
ER

UJ -j a. u < « - X X X « | X X - - X X
'

X X

FR
O

M

C
U

ST
O

M
ER

o
UJ Z »- u < »-3 < a. a. 3

- K X X X - X « - - X X X « X

FR
O

M

C
U

ST
O

M
ER

< -
O 3
5 2 O

- X X " i X
w - 1 X - - * X X X X «

M
ill

I
s
1
13
£ UJ X

i
s o

s o

a
9
2 o
P
8

!
|

K
£
u i
13
£

i u u

J <
o

1

!
I 1 e - .

i
i

0 I
1 e

11

S i <

|

k !

' 1

1 -
i

_ s
5 *
2 S
if ^
! 2
2 1

1
:

X
£
Ik \
W
O z <

£
|
0
1 i=
%

2 =

i M a <

I
P
3
i
0 »-
1
i
o

E

i
0

1
0

X

1
0 z £
£
K
2
2
3
1

UJ

8
£
S
C
8
£
1
2
A

e
e
5
I

8
D
i
$ /
z
i z
o
s \
K

P
8
8 o id

s 5
£
a z
l

\ f
s 1 5 S

i I
i s

LI
N

E
1 2 2 2 T •? M* " *». 5 *! «' 2 3

FU
N

C
TI

O
N

a.
3

<
5

ID
EN

TI
FI

C
A

TI
O

N

&
R

ET
R

IE
VA

L
IN

FO
R

M
A

TI
O

N

o
DC I-Z O u

!
* a

C

O
? < x »-
QC < O O
*

Table 1

68

The patch is determined in the computer either by matching the
new version to the old (which may be expensive in machine time) or by
indications of logical breakpoints which are either furnished by the us
er in the language or computed as part of the translation process. This
indicates that there must be an exclusive one-to-many correspondence
of source statements to object code. Obviously in order to use a patch
option the user must have previously identified an original program or
CL Tape and specified a save option for mass store. If further mes
sages are required, the general form (not necessarily limited to patch
ing) is:

1. Delete string
2. "So and so follows delete string"
3. Delete string
4. So and so

The patch will usually have been printed during transmission. The us
er marks the previous tape approximately, using dimensions A and B.
The 3" overlap section is moved back and forth around this point to ob
tain an exact and full match. The mark is corrected to the very charac
ter and the tape cut and spliced with the delete string following as the
splice part. The same process is applied to the other end of the patch.

As justification for making such an option available, our estimate
for each test part for this system is 5000 characters of input vs. 26,000
characters of punched tape and printed output. For one cycle, line costs
are estimated at $12.25. This is for a correct program. For many pass
es thru the computer (for corrections and diagnostics) this would be
more expensive than the human time required to patch. This method
may be unnecessary if Data Speed units are utilized.

Table 2 is a composite of the logical options which the parts pro
grammer may request. The computer program will check the validity
of the specified options with respect to minimums and logic combina
tions. The asterisk indicates that if the tape is also returned by TWX
the mail copy should be computer verified by either duplexing or check
sum. This applies primarily to CL and object tapes. Many other checks
are performed in the cyclical correction process by matching to the
last copy contained in the secondary store.

6. Requirements for Startup

There are several features which must be added or amended to

69

O R I G I N A L T A P E

DIMENSION

A

DIMENSION

"•N"

[O V E R L A Y P A R T T O B E R E P L A C E D

G O O D - >

O V E R L A Y I

C U T '

P A T C H T A P E

C U T

»••••••
> • • • • • • »
»•••••••
»•••••••

*••••••«
» • • • • • • •
• • • • • • •

••••••• •••<
> • • • • • • • • • • • <

• •••
• ••«
• •••

• •••

I « •••••••
> • • » • • • •
>•• •) • • • •

• • > • • • • •
• • • « • • • •

• • • • •

• • • • • « • •
« • • • • « • •
• • • • » • • • • • • • • •!• • • • • •
•••»• • • •

• • • • •

• • • • • «
• • • • • • J
• • • • • • «

••••••
• • • • • «

• • • • • • •
•••••••

D I M E N S I O N S
A = 1 5 6 , B = 2 . 2

O V E R L A Y I

~J" I R E P L A C E M E N T
O V E R L A Y

'>-3

F igur • 1

Figure 1

H A R D C O P Y O P T I O N T O K E E P
I N M A S S S T O R E

AUTOMATIC 1 OH OH

AUTOMATIC OH UPOATED

NOT CLEAR j | NOT USEFUL OH

1 NOT USEFUL OK SLOR -

OK*
AUTOMATIC t

OK OK

\ \ AUTOMATIC t

_ -

OK V OK- / NOT \]
- OK

^ CLEAR j
_ -

OK- / NOT \ - OH

1 CLEAR J

Table 2

70

make PCP practical and economical. Among these are:

a. Strict adherence to ASCII code in all possible equipment and
media. I strongly urge that manufacturers of numerically con
trolled equipment using the EIA standard code provide plug
boards during the conversion period, so that ASCII tape is ac
tually used to control the tool.

b. Other standards are required with respect to format of mes
sages and requests for service, as well as handling of torn
tape. Two possible standards proposals are given in the ap
pendix, one for handling both upper and lower case graphics
on present equipment which has now only upper case, the oth
er a convention for visible graphics which facilitate handling
and identification of torn tape.

c. Some additional features should be provided in the Teletype
terminals. These have been requested and are in process. One
important element is provision for turning on the remote re
ceiver for full eight-track operation. The Model 35 has man
ual buttons for TTR and TTS (Tape to Tape Receive and Send).
However, manual operation is unacceptable since the highest
volume of return from the center will likely be at off hours,
around the clock, when most machine shops will depend on un
attended operation. Another possible problem is punching of
Mylar tape rather than paper tape for durability. Teletype Cor
poration says that the Model 35 will handle .003 Mylar quite
weU, but may not do very well on .001 except with brand new
punch pins.

d. If APT in is to become a service language for PCP, some mod
ifications may be required in the existing entrance fee struc
ture and regulations. The role of data centers must be re-ex
amined.

e. An extensive training program in APT HI must be planned.
Perhaps the universities wW suffice, for they have done an
excellent job in the companion language of FORTRAN, but it
does not seem that this will cover the present users adequate
ly to forestall job loss and the resultant furor over automa
tion. I suggest that special institutes may have to be formed

71

for the training of current users of machine tools. This is in
direct analogy to the situation in typographical unions with the
advent of typesetting by computer. Whose responsibility should
this be?
Finally, we need some standard terminology in this field. The
APT Task Group of ASA X3.2 should make this one of its first
tasks for completion. Here are a few definitions in the general
area of PCP provided by Miss Mandalay Grems.

Definitions:

Communication.
The process of conveying information from one point,
person or equipment to another.

Communication Link.
The physical means of connecting one location to an
other for the purpose of transmitting data.

Composition.
In printing, the setting up of type.

Data Transmission.
The process of moving data from one location to an
other.

Documentation.
The process of collecting, organizing, storing, citing
and dispensing of documents or the information re
corded in documents.

Timeshare.
To interleave the use of a device for two or more
purposes.

Appendix

A. Upper/Lower Case Representation via TWX

In the ASCH code, as represented on current Models 33 and 35, the
alphabet is represented by 1 1 1 0 x x x x for upper case. The lower
case is scheduled to be 1 1 1 1 s s s s. Obviously the lower case can
be fabricated on tape by overpunching the upper case with 10 0 10 0
0 0, which happens to be the space or blank. To indicate a capitalized
word to the computer, punch the letter on the keyboard, backspace the

72

tape one position (which does not backspace the printing head position)
and space. This overpunches the letter representation on tape. The
hard copy looks like this:

T HESE W ORDS A RE C APITALIZED

The computer will now invert the representations for the two cases,
since what is indicated on the TWX in capitals is really meant to be'
lower case for text purposes. If by chance the operator should forget
to backspace for overpunching it will usually be detectable by the com
puter program, as the only ambiguous cases occur with initial letter
either A or L

B- Visible Graphics for Identifying Paper Tape

Most commercial Model 33 and 35 Teletype units do not have a fa-
^pcility for imprinting the paper tape with legible text for identification.

Thus such identification must be made online by printing the tape.

There is a rather simple way to provide visual identification off
line by punching the graphics of the characters in a 5X7 hole pattern
at the leading end of the tape, preferably followed by a string of de
letes to separate this identification from the rest of the tape. Inasmuch
as Track 8 is always punched (at the present time) there is a difficulty
in getting horizontal text to be recognized easily. Furthermore, the
available single-key hole patterns do not lend themselves to forming
horizontal graphics. On the other hand, vertical text happens to fall out
easily. The alphabet and digits are formable by the patterns shown in
Table 3.

The character @ (Tracks 7 and 8) is used as the space between
graphics, as shown, to provide visual continuity without disruption. The
letter O is distinguished from the digit 0 by a dot in the center of the
letter.

Aesthetic improvement in the patterns is certainly possible, but it
should be noted that the presence of the feed track may throw standard
5X7 patterns out of balance. The other characters of the teletype (ASCII)
set are formable in the same manner, but they do not seem necessary
to the stated purpose of identification.

This technique may have some advantage in quickly determining
the leading end of the tape when not rolled. It may be particularly use-

73

ful in returning information in tape form from a central computer used
as a source of public computing power. It is a trivial matter for the
computer to set up this type of output.

A D J Q Q Q Q M Q I U Q Q Q Q Y Q J D D D D D

B • Q Q • Q Q • N Q Y Q U S Q Q Z • B D @ § H

C N Q P P P Q N O N Q Q U Q Q N 0 N Q Q Q Q Q N

D • Q Q Q Q Q t P • Q Q • P P P 1 D L D D D D D

E P P \ P P - Q N Q Q Q U R M 2 N Q A B D H

F - P P N P P P R t Q Q • T R Q 3 N Q A F A Q N

G N Q P W Q Q N S N Q P N A Q N 4 B F B J • B B

H Q Q Q - Q Q Q T D D D D D D 5 P t A A Q N

I N D D D D D N U Q Q Q Q Q Q N 6 N Q P • Q Q 1
J A A A A A Q N V Q Q Q Q Q J D 7 A B D @ H P

K Q R T X T R Q w Q Q Q Q u I Q 8 N Q Q N Q Q N

L P P P P P P •*- X Q Q J D J Q Q 9 N Q Q O A Q N

Table 3

74

35<> i'ROCli'ilMNGS OF THE IFIP CONGRESS 65

A priority authorization allows a job to be
processed as soon as possible rather than in
turn on a nrst-in, first-out basis. Certain
[unctions may not be performed without a
modification authorization. Both authoriza-
.ions require management approval.

How is ATP used? Debugging a program be
comes quite a bit more complex when a program
is par. of a system that is also being debugged.
Many things have to happen at just the right time
for jus. one test run to be executed. The more com
plex the system, the less chance the individual pro
grammer has of successfully executing a test, let
alone getting the right answer.

There are four major steps in the cycle. Once the
coding is done, the programmer has to change his
module by reassembling it, rebuilding the system
with the new module in it, executing the test run,
and then checking his results.

A management report is run at the conclusion of
every SAVE system function. This report provides
information relative to every module in the system.
What is in the system? Who is responsible for this
module? How much usage and updating has the
module received? When was the last time it was
used, updated, and stored? How big is the module?
What was the initial record and byte count, and
what is the current record and byte count? With
intelligent use of this report, management can con
trol the frequency of updating and the amount of
utilization and growth any module in the system is
experiencing. Today, we are studying a project
classihed as advanced technology. It couid result
in combining the major features and advantages of
the Advanced Terminal System, our Text Writing
System and our Automated Test Plan System. This
then may well be the possible future system for
automating the control of development, distribu
tion, and maintenance of programming systems
within the IBM Corporation.

SOFTWARE SYSTEMS CUSTOMIZED
BY COMPUTER

R. W. BEMER

Compagnie Bull General Electric
Paris, France

Automated production of computer hardware is an
accepted practice. Complex tooling, numerically
controlled tools, wire-wrap machines, and design
automation are employed. Yet until now few manu
facturers have given equal effort or consideration
to automating software manufacture.

Thi automobile industry is always fruitful of
analogy to computers, so we may say that software
is now in the "Black Ford" stage and fabrxated
by even cruder methods. One would not wish to
buy a $12,000 Ford made by hand to less quality.
We must therefore consider software a product
and build it by automated methods, because:

1. Customizing has been shown to expand the
market.

2. Otherwise software management is going to be
very embarrassed to quote 24 to 30 month
production cycles, when hardware people can
produce a new computer in two months with
out even a prototype!

The only visible solution is for the manufacturer
to utilize the most powerful computer in his (or
another, if more advantageous) line as a tool to
assis programmers in controlled production and
maintenance of software systems for all machines.
All (unctions of software production, documenta
tion, distribution, training, and improvement for all
computers should be performed with the aid of an
Automated Software Production (ASP) system.

The benefits of such a system should be:

1. Control of production to predicted schedules
for predicted costs.

2. At least an order of magnitude increase in
reliability and freedom from malfunction.

3. A manyfold reduction in the costs of pro
ducing such standard products as FORTRAN
and COBOL.

4. Documentation which always matches the cur
rent system.

5. Standards of usage across product lines.
6. Systems customized for each user (who prefers

to pay for and get only what he needs), with
ability to incorporate his own software units
and special requirements without interferences
or malfunction.

7. Diversion of former wasted effort to further
enhancement of software offerings, particu
larly to generalized applications and corre
sponding reduction in customer programming
required.

To summarize the need, there is almost complete
duality between hardware and software in the cycle
of research, planning, design, production, delivery,
maintenance, support, documentation, obsoles
cence, and even specially engineered products.

The ASP system provides these functions:

1. Operations upon the ASP system.
2. Operations with the ASP system.
3. Operations upon the user's system.

OPERATIONS

The ASP system provides these functions:

Si.inr. j 1. Operations upon the ASP system.

a. Updating the roster.

b. Updating the test library.

c. Changes to the ASP system itself, including

modifications of its units and logical organ

ization .

2. Operations with the ASP system.

51 jnj- xi a* Producing provisional systems for temporary

programming usage and testing.

SI IDE TTI D* Producing modifiers to update customer's

systems and documentation for distribution.

c. Producing original manuals and updatings,

d. Producing the field report summary and statist

ics (such as customer batting average) .

e. Producing records of these processes for the

manufacturer.

SLIDE IV.... 3. Operations upon the user's system.

\

THE ROSTER

In two sections for each machine type:

General Data

1. Permissible software units supplied without charge.

2. Table of software units keyed to documentation units

For Each Customer

1. User's name, address and representative.

2. Branch office name, address and representative,

3. Contact pattern between user, branch and programming

4. Machine type, serial, installation date, on-rent dat<

5. Hardware configuration, operational dates of units.

6. Channel assignments, other determinations of logical

opt ions.

7. Field change orders affecting software and whether

installed or not.

8. Software options for:

a. Required units.

b. Characteristics of their storage.

c. Characteristics of their usage.

d. Maximum store allotted for processing and usage.

e. Hardware restrictions affecting software operation

such as reserved elements or lockouts.

f. Delivery form of software unit (symbolic, relocat

able, absolute, FORTRAN, etc.).

g. Special software supplementing or replacing

standard units, by whom supplied, data descript

ions and linkages.

9. Number of last system delivered. Updating pattern

and requested frequency (6 month maximum interval

for archivage limitation).

a. Every system.

b. Every nth system.

c. Upon specific request.

d. First new system after elapsed time interval,

e. Only on change to specified software units.

f. Combinations of these.

10. Requirements for backup system on another machine.

11. Special commitments by sales or programming personnel.

12. List of customer's field reports by number.

Note: As one user may have multiple machines, this file

may be structured with either trailer records or complete

duplicates. If the latter, a complete cross-correlation

will be necessary.

THE TEST LIBRARY

In four sections:

Roster Consistency

Checks consistency of entries, particularly that hardware

or software configurations requested are permissible. If

not, that they are either rejected or assessed a special

charge.

Program Acceptance Filter

Checks acceptability of any proposed change to a program

ming system with respect to:

1. Documentation and adequate annotation.

2. Data description.

3. Position of entry or replacement (since a trail

must be formed to be able to reconstruct any

previous system from the present one).

4. Topological consistency (is anything left useless

or destroyed erroneously when needed later?).

5. Adherence to standards (calling sequences, legit

imacy of identifiers, operation names and operat

ion pairs).

Quality Tests

These are semi-machine-independent, of types:

1. Logical, such as will the system always return to

executive control from any branching? Is the system

prevented from doing all that it should not do?

2. Mechanical, such as does FORTRAN handle the ex

pression B + B + B + B when there are 512

occurrences of B? Included here are generators

to create a great variety of source statements

to test that processor tables and other elements

will handle them correctly. Also included are

International (ISO) and country standard test

programs. Other programs should be compiled and

run, verifying predetermined test answers. These

are printed only if they differ, with identification.

3. Operational, such as do all error conditions nave

an operator message? Simulate the totality and

find out.

Field Report Tests

A separate group for each machine, being the total accum

ulation of reports to date. Each provisional system is

required to run all successfully. Thus a mistake corrected

on System 6 cannot be reintroduced without warning on

System 9, for few things make the customer angrier. Each

test is identified by user number for possible deletion if

the user is no longer.

THE SIMULATORS

Normally used only to produce original software for a

new machine without access to prototype or production

model. May also be used for any period of scarcity,

such as early testing by customers.

THE GENERALIZED ASSEMBLER

Of the type first developed by CSC and Programmatics,

capable of assembling for any object machine provideJ

with an assembly language of this family. Input includes

the formats of the source statements and object instruct

ions, together with the transformation rules. It will

be necessary to test to prove the identity to the actual

assembler as run on the specific machine.

; • ' *r-
'

• •

\4 •

|p s K £
.v. •

; v •• . ;• •

•- • v •
-V &r: .

- ' ' : • •' . j ; -0.
A' •'

, • ' •- • • • ' • ' • H." * -v - r̂yt *L:' • : •. •

C - ; : / • ,

• * • . '

• yV./-. - .'

-• f •

• - . .

•

• - "•

' 'i

- • • '

Sy

i -L-.'

203382-4773
DialComm: 8'2234773

,/e/ *9

/*

(2 '

&ly

cryo

Corporate
General Electric
1285

~

CT08801-2385

m
' . 'r?.

-
• •• ' ' •

•. •••••

' V. :-t-'Ji- '

" .1' .

• :.#>

~n:

5

t- • ' vi-...

• •/ •

' •*:

. . vma
•v • *.

:\fy~...

. V-V

. • • • • v

.

• • ' ,* ' •*

Z-M
"•'Si

-

V;S.

" •: f-
\&-}S

L
F A R

• • v- -•

: E A S T

i i

.. i
The Software Factory:

A Historical
Interpretation

MichjhsI A. Cueumano. Massachusetts Institute of Technology

Many people
associate software

factories with Japan.
However, one survey
shows that Japanese

and US software
facilities are more

similar than not.

A Ml Oi

March 1989

major characteristic of software de
velopment in Japan has been the
iuse of the term "software factors"

to label development facilities or formal
approaches to programming. Factories in
other industries have generally mass-pro
duced products including large-scale cen
tralized operations, standardized and de-
skilled job tasks, standardized controls,
specialized but low-skill workers, divisions
of labor, mechanization and automation,
and interchangeable parts.

Seeking to benefit from an industrial
revolution of its own. engineers and com
panies in the software industry began
using the term "factory" in the 1960s when
considering more efficient software-devel
opment approaches. This label became
especially popular in Japan during the
mid-1970s and 1980s.

Software differs from conventional,
"hard" products made from interchange
able components and constructed
through a sequentialassembly process; it is

O74(V7459/*Wiay0O2.VS)!.0OC I9K9IKKK

primarily an iterau've'process of design,
coding, testing, and redesign. There are
onlv a few industry-wide'standards for
product features, tools, or project-man
agement techniques. So is there sufficient
base to applv factorv concepts to software?

Organizational specialists have also
warned that unstandardized. complex
technologies like software in sull-evolving
markets are not suitable for highlv struc
tured. factory-like processes. Instead, thev
require ad hoc responses from highly
skilled workers — as vou would find in a
craft-oriented job shop. So is it even appro
priate to apply factory concepts to soft
ware?

Furthermore, one firm's adoption of
the term "lactory" does not mean that its
practices are necessarily different from
firms that do not use the label. For ex
ample, a 1983 survey1 found about 200 en
terprises in the US alone that had more
than 1,000 software personnel in central
ized locations, with many using stan-

23

v.

dardized designs and reusable code com
ponents, centralized tool development,
formal testing and quality-assurance de
partments. productivity-measurement
and productivitv-improvement efforts,
and research on the development process.
Although there was no mention in this
study of how systematic US firms were in
their management practices, centraliza
tion, standardization, reusability, and con
trol are factory-like concepts, even though
no US firm used the term "factory" to de
scribe its facility. So what is a software
factory?

What degree of integration or stan
dardization among tools, methods, con
trols, and skills might distinguish a factory
mode of operation from simply a large
group of people working more or less in-
dependendy in the same facility?

Furthermore, what can we learn about
software engineering from Japanese soft
ware factories? Or were the Japanese
merelv labeling their facilities differently?

This article tries to provide some an
swers.

Definitions
The first public proposals for the adop

tion of factory-type methods and organiza
tions for software appeared in the late
1960s as outgrowths of comparisons of
programming with engineering and man
ufacturing practices. Perhaps the earliest
proponent, R_W. Bemer of General Elec
tric. made many proposals that culmi
nated in a 1968 paper2 suggesting that
General Electric develop a software
factory to reduce variability in program
mer productivity through standardized
tools, a computer-based interface, and a
historical database useful for financial and
management controls. (General Electric s
exit from the computer business in 1970
ended the company's commitment to
commercial hardware and software pro
duction.)

Bemer's paper gave the first working
definition of what might constitute a soft
ware factory. "A software factory should be
a programming environment residing
upon and controlled by a computer. Pro
gram construction, checkout, and usage
should be done entirely within this en
vironment and by using the tools con
tained in the environment... A factory...

has measures and controls for productivitv
and quality. Financial records are kept for
costing and scheduling. Thus, manage
ment is able to estimate from previous
data.... Among the toois to be available in
the environment should be compilers for
machine-independent languages; simula
tors, instrumentation devices, and test
cases as accumulated; documentation
tools — automatic flow-charters, text edi
tors, [and] indexers; accounting function
devices; linkage and interface verifiers;
[and] code filters (and many others)."

While Bemer focused on standardized
tools and controls, M.D. Mcllroy of AT&T
emphasized another factory-like concept:
systematic reusability of code when con
structing new programs. In an address at a
1968 NATO science conference on soft
ware engineering,' Mcllroy argued that
the division of programs into modules

ft seemed too difficult to
create modules that

would be efficient and
reliable for all types of

systems and that did not
constrain the user.

offered opportunities for mass-produc
tion methods. He then used the term
"factory" in the context of facilities dedi
cated to producing parameterized fami-
liesof software parts or routines that would
serve as building blocks for tailored pro
grams reusable across different comput
ers.

Reaction to Mcllroy's ideas was mixed; It
seemed too difficult to create modules
that would be efficient and reliable for all
types of systems and that did not constrain
the user. Software was also heavily depen
dent on the specific characteristics of
hardware. Nor did anyone know how to
catalog program modules so they could be
easily found and reused. Nonetheless, by
the late 1960s, the term "factory" had ar
rived in software engineering and was
being associated with computer-aided
tools, management-control systems, mod
ularization, and reusability.

The comments of Bemer and Nlcllrov
show that US firms had been grappling
with large-scale programming efforts
since the late 1950s. Like General Electric
and AT&T. IBM made manv discoveries
about how and how not to manage soft
ware when it deploved a thousand or more
programmers during the mid-1960s to de
velop the operating systems for the Svstem
360 family of mainframes. IBM's facilities
for basic software tried to standardize
methods for all phases of development
during the late 1960s and 1970s and intro
duced a variety of tools and management
controls. In this sense. IBM and other
large-scale software producers in the US
and Europe were at least contemplating
factory-like procedures and organiza
tional structures by the late 1960s.

The establishment of IBM's Santa
Teresa Laboratory in California in the
mid-1970s also brought together 2,000
programmers in one site and reflected
IBM's continuing attempts to structure its
basic software-development operations.
Thus, you might argue that the term
"factory" implicitly referred to good soft
ware-engineering practices applied sys
tematically, at least within a facility, al
though US companies did not place much
emphasis on Mcllroy's factory concept of
reusability.

First software factory
The first company in the world to adopt

the term "factory" (actually, its Japanese
equivalent, ~kojo,~ which translates as
either "factory" or "works") to label a soft
ware facilitv was Hitachi, which founded
the Hitachi Software Works in 1969. A his
tory of independent factories for each
major product area prompted executives
in Hitachi's computer division to create a
separate facilitv for software when this be
came a major activity.

Hitachi managers set two goals for their
factory; (1) productivity and reliability im
provement through process standardiza
tion and control and (2) the transforma
tion of software from an unstructured ser
vice to a product with a guaranteed level of
quality. This was necessary to offset both a
severe shortage of skilled programmers in
Japan and the many complaints from cus
tomers about bugs in Hitachi's software
(most of which, along with the hardware.

24
IEEE Software

Hitachi was importing from RCA until
1970).

The fact that all Hitachi factories had to
adopt corporate accounting and adminis
trative standards forced software
managers to analvze the development
process in great detail and experiment
with a series of work standards and con
trols. The independence of Hitachi facto
ries within the corporation also gave
factory managers considerable authority
over technology development. Managers
concentrated initially on determining
factory standards for productivity and
costs in all phases of development, based
on standardized databases for project
management and quality control.

Hitachi then standardized design
around structured-programming tech
niques in the early 1970s and reinforced
these standards with training programs for
new employees and managers. This re
flected an attempt to standardize and im
prove average skills rather than specify
every procedure to be performed in each
project and in each development phase.

After some success in process control,
Hitachi invested extensively in automated
tools for project management, design sup
port, testing, program generation, and
reuse support

At the same time, however, Hitachi
managers underestimated how difficult
implementing factory concepts such as re-
usability and process standardization
would be. For example, their attempt in
the early 1970s to introduce a component-
control system for reusability failed, as did
efforts to introduce one standardized
process for both basic software and custom
applications software. The need to sepa
rate methods and tools for different soft
ware types led to a separate division for
basic software and applications at Hitachi
Software Works and then to the 1985 estab
lishment of a second software factory dedi
cated to applications.

Second software factory
While Hitachi managers struggled with

the meaning and limitations of factory
practices, one US leader in the custom
software field, System Development Corp.
(formerly a part of the Rand Corp. and
now a Unisys division), established the
world's second software factory in 1975-

1976. SDC.had been separated from Rand
in the 1950s to develop Sage, the Semi
automatic Ground Environment missile-
control system, for the US Defense Dept. It
later took on other real-time program
ming tasks as a special government-spon
sored corporation, but it finally went pub
lic in 1970. Top management then had to
control software costs and so launched a
factory-oriented R&D effort in 1972 to
tackle problems4- its programmers con
tinually faced:

• Lack of disciplined and standardized
approaches to the development process.

• Lack of an effective way to visualize and
control the production process, including
ways to measure before a project was com
pleted how well code implemented a de
sign.

• Difficultv in accurately specifying per
formance requirements before detailed

Project managers did not
like giving up control to a
centralized facility, and,

surprisingly, top
management did not

require that they use the
software factory.

design and coding, including recurring
disagreements on the meaning of certain
requirements and changes demanded by
the customer.

• Lack of standardized design, manage
ment, and verification tools, making it
necessary to reinvent them from project to
project

• Little capability to reuse components,
even though many application areas used
similar logic and managers believed that
extensive use of off-the-shelf software
modules would significantly shorten soft-
ware-development time.

More so than at Hitachi, SDC engineers
constructed a detailed plan for a factory
process and organization with three ele
ments:

• an integrated set of tools (program li
brary, project databases, on-line interfaces
between tools and databases, and auto
mated support systems forverification and

documentation),
• standardized procedures and manage

ment policies for program design and im
plementation, and
• a matrix organization separating high-

level system design (at customer sites) for
program development (at the software
factory).

The first site to use the factory svstem was
a facility of about 200 programmers in
Santa Monica, Calif. SDC even copy
righted the name "The Software Factory -

Scheduling and budget accuracy im
proved dramatically for 10 projects that
went through the factory, but manage
ment ended the effort in 1978 for two rea
sons.

First, programmers found it was ex
tremely difficult without portable com
puter languages to reuse code and tools
from one project for different applica
tions and for different computers.

Second, and more important, the tradi
tion in SDC had been for project
managers to create programming groups
that would work at individual customer
sites, in a mobile, job-shop production
mode. They did not like giving up control
of development efforts to a centralized
facility, and, surprisingly, top manage
ment did not require that they use the soft-
ware factory. This led to a decline in the
flow of work into the facility as project
managers built their own teams on cus
tomer sites. Ultimately, by removing pro
grammers from the factory, it faded out of
existence when the last project in the
factory ended.

In retrospect, SDC managers tried to im
pose a factory infrastructure of stan
dardized tools and methods and reus
ability goals on a range of projects that
were too different and bettersuited tojob-
shop production. The state of software
technology at the time made it difficult to
transport tools and code across different
machines. Furthermore, architects of the
factory failed to solve the organizational
problems that resulted from separating
design from product construction. These
problems, which were mainly resistance
from project managers, prevented a
steady work flow into the facility.

Nonetheless, while SDC abandoned its
factory effort, the company continued to
use many of the factory procedures and

March 1989 25

Year
established Company

1969

1976

1977

1979

1983

1985

1985

1987

Hitachi

NEC

Toshiba

Fujitsu

Fujitsu

Hitachi

NTT

Mitsubishi

Table J.
Japanese software-factory organizations.

Facility/project

Hitachi Software Works

Software Strategy Project
Fuchu
Mita
Mita
Abiko
Tamagawa

Fuchu Software Factory

Kamata Software Factory

Numazu Software Division

Omori Software Works

Software Development Division

Computer Factory

1988 products*

Basic sv stems

•BasK: systems Include operating systems, dauhase-managei

Basic systems
Industrial real-time control
General business applications
Telecommunications
Telecommunications

Industrial real-time control

Genera] business applications

Basic systems

General business applications

Telecommunications

Basic systems, general business

1987-88
employees

1.500

2.500
2.500
1.250
1.500
1300

2J00

1300

3.000

1300

400

700
mem systems, and langvugc utilities.

some of the tools. The SDC model also in
fluenced the software standards later de
veloped both by the US Defense Dept. and
by factory efforts already under way in

Japan.

Software-factory boom
Following SDC s announcement of its

software factory in 1975, Japan s leading
hardware and software manufacturers in
addition to Hitachi — NEC. Toshiba, and
Fujitsu — launched their own factory ef
forts during 1976-1977 (seeTable 1).

Toshiba created what is perhaps the
most structured factory—although it also
had the most focused product lines
using a centralized software facility to de
velop real-time processcontrol software
for industrial applications. Similarities in
this type of software from project to proj
ect let Toshiba build sernicustomized pro
grams by combining reusable designs and
code with newly written modules rather
than write ail software from scratch.

The Toshiba system,6-7 built around its
Software-Engineering Workbench, uses a
version of the Unix environment, a full
complement of tools for design support,
reusable-module identification, code gen
eration, documentation and mainte

nance, testing, and project management.
An important feature of the Toshiba ap
proach was the design of new program
modules (generally limited to 50 lines) for
reusability, the requirement that program
mers deposit a certain number of reusable
modules in a library each month, and the
factoring of reuse objectives into project
schedules.

While Toshiba was building its factory,
NEC began its efforts to rationalize soft-

Japan's leading
hardware and software

manufacturers in addition
to Hitachi launched their

own factory efforts
during1976-1977.

ware production in its computer division's
main factory, which developed operating
systems and other basic software. Manage
ment then set up a research laboratory in
1980 to direct the development of tools,
procedures, and design methods for

26

various types of software, and it organizec
a quality-assurance effort to standardize
management practices throughout the
corporation. Because product divisions
did not always accept technology from the
laboratory, NEC has let divisions modify
tools or add their own design or produc
tion-control systems. The result was a mix
ture of standardized processes and tools
with variations that correspond to product
areas.8

Fujitsu established a basic software divi
sion in its hardware factory in the mid-
1970s and then launched a separate soft
ware factory for applications program
ming in the late 1970s. Its initial goal was to
convert Hitachi and IBM programs to run
on Fujitsu machines. Fujitsu then placed
considerable emphasis on developing au
tomated design-support tools for the pro
duction of business-applications pro
grams.'

Fujitsu, Hitachi, and NEC have avidly
promoted the diffusion of factory-type
practices by transferring their tools and
processes to other in-house facilities, as
well as to subsidiaries, subcontractors, and
hardware customers.

More recently, Mitsubishi and Nippoi.
Telephone and Telegraph have begun

IEEE Software

Survey of management emphases
Descriptions and objectives for System Development Corp.'s software factory provided a

basis for my drawing up eight criteria cutting across inputs standardization (emphasis on
reuse of software code), tool standardization and integration, and process standardization
and control. I identified major software producers in Japan and the US (and one in Canada)
through literature surveys and lists of software producers .further investigation led to the iden
tification of senior managers either responsible for overall software-engineering manage
ment or with responsibilities over several projects and with sufficient experience to present
an overview of practices for an entire facility or division. I then surveyed those managers

Managers who agreed to participate in the survey were asked to rank their emphasis and
impression of general policy at their facilities on a scale of 0 to 4 and to comment on each an
swer. Optional questions also requested performance measures such as actual rates of re
used code in a recent sample year. The sample was limited to facilities or departments making
operating systems for mainframes or minicomputers (systems software) and a variety of ap
plications programs. All the Japanese firms contacted filled out the survey: about three quar
ters of the US firms contacted completed the survey.

Factor analysis indicated that the eight questions dealt with two distinct factors: The inputs
and tools questions combined as one factor while process questions remained a separate
factor. The two factors explained 79.6 percent of the variance in the survey answers: the in
puts factor alone accounted for 58.8 percent of the variance. I then tested differences in the
average Japanese and North American scores and whether product type or country of origin
of the facility were significantly correlated with the factor scores.

Table A summarizes the average Japanese and North Amencan responses to the inputs
and tools questions and to the process questions. The results, although exploratory, support
the hypothesis that there is a spectrum among managers of how they view software devel
opment. Despite potential views of software development as largely a craft, art. or job-shop
type of operation, some managers at facilities making similar types of products clearly placed
more emphasis on control and standardization of inputs (reusable modules of code) and
basic tools and processes. Analysis of vanance tests confirmed that product types had no sig
nificant effect on where managers scored on the dimensions surveyed.

A second hypothesis you might derive from the differences between the Japanese and US
software markets is that there are national differences, with the Japanese significantly em
phasizing reusability more than US firms. Confidentially reported Japanese reuse rates were
also significantly higherthan North Amencan rates (34.8 percent versus 15 4 percent) across
all product types, although this and other performance data are tentative because of possible
differences in counting at different firms.

Table A.
Comparison of average

Japanese and North American survey scores.

Japanese North American Average
Dimension score a" score o' score o'

Inputs" 8.7 2.1 6.0 2.7 7.3 2.4

Tools/process 14.4 2.9 15.0 3.7 14.7 3.3

'standard deviation: "significance level is 0 01

factorv-like efforts. Like other Japanese
firms. Mitsubishi is emphasizing reuse
through modifying (reengineering) code
or designs to make them applicable to
more than one project. NTT also estab
lished a centralized software division that
serves largely as a design factorv. handing
off many specifications to suppliers for im
plementation.

Perhaps the most significant new
factorv-like effort is the national Sigma
project started in 1985 bvjapan's Ministry
of International Trade and Industry. The
project has more than 130 corporate
members, including several nonjapanese
firms. The five-year, S200-million project is
a bold attempt to create a national com
munications network connecting 10,000
sites, standardized workstations using a
Unix-based environment, educational
programs for members, and a library of re
usable program parts and software-devel
opment tools. If it succeeds, the project
will signiftcandv raise the level of support
tools and knowledge available to smaller
Japanese software manufacturers.

Comparing approaches
To a large degree, establishing factory

programs signals a commitment to long-
term, integrated efforts — above the level
of indiv idual projects — to structure, stan
dardize. and support development along
the lines suggested by software-engi
neering literature since the late 1960s.

Some firms have needed to do this more
than others — for example, if they were
short of experienced personnel and com
peted in markets w here other firms might
offer comparable or better software more
quickly and cheaply. In Japan during the
1970s, there was a special urgency to im
prove levels of productivity, quality, and
process control to offset shortages of
skilled programmers and good software
packages and to accommodate rapid rises
in demand, especially for complex cus
tomized applications programs and
lengthy basic software for their new hard
ware systems introduced to compete with
the IBM System 370.

Although each had different products
or emphases, in pursuing more engi
neering-like and manufacturing-like prac
tices, Hitachi, Toshiba, NEC, and Fujitsu
largely followed IBM and other US leaders

and thus pursued remarkably similar
paths toward a more structured approach
to software development. Their efforts
began with decisions to create centralized
organizations and management-control
systems for specific product families, stan-
dardize around methods and tools
tailored to these products, and then pro
vide partially automated support for devel
opment and project management. After
establishing this foundation, they began
making refinements as well as more auto
mated and flexible tools capable of hand
ling different languages or tasks (see
Figure 1).

So what, if anything, distinguishes Ja

panese software factories from other
large-scale facilities? The box above shows
an initial attempt to explore this question
through a survey I conducted. The survev
indicated that more than half the partici-
paung 51 facilities or divisions making soft
ware for mainframes or minicomputers
(25 Japanese, 25 from the US, and one
from Canada) could be characterized as
flexible factories in the sense that
managersstronglvemphasized code reuse
as well as standardization and control over
tools and processes — at least as reflected
in a few questions — and made unique
basic software or customized applications
software. Other facilities appeared more

March 1989 27

Phase 1: Basic organization and management structure (mid-1960s to early 1970s)
• Factory objectives established
• Product focus determined
• Process data collection and analysis begun

Phase 2: Technology tailoring and standardization (early 1970s to early 1980s)
• Control systems and objectives established
• Standard methods adopted for design, coding, testing, documentation, and maintenance
• On-line development through terminals
• Employee training program to standardize skills
• Program libraries introduced
• Integrated methodology and tool development begun

Phase 3: Process mechanization and support (late 1970s to present)
• Introduction of tools supporting project control
• Introduction of tools to generate code, test cases, and documentation
• Integration of tools with on-line databases and engmeenng workbenches begun

Phase 4: Process refinement and extension
• Revision of standards
• Introduction of new methods and tools
• Establishment of quality-control and quality-circle programs
• Transfer of methods and tools to subsidiaries, subcontractors, and hardware customers

Phase 5: Flexible automation
• Increase in capabilities of existing tools
• Introduction of reuse-support tools
• Introduction of design-automation tools
• Introduction of requirements-analysis tools
• Further integration of tools through engineenng workbenches

Figure 1. Software-factory process evolution.

110

Reuse

66

44

22

Jot) shop
•

i
•

!
j

• :

•

! •
• • • 1

i
i

• •
•

• O • 5
•

i
•

-
• « •

•

. .
o o o

o
o

•

•
• •

o Flexible factory

20 42.5 65 87.5
Process and tool standardization and control

110

* Japanese facilities • North Amencan facilities

Figure 2. Emphasis on reuse versus emphasis on tool and process standardization for
Japanese and North American firms.

like job shops, since managers placed little
or no emphasis on standardization, con
trol. or reusability (see Figure 2).

While the survey was exploratory and
not a comprehensive analysis of tools,
quality practices, or other aspects of soft
ware development, it suggested three
points:

• Software producers in Japan and
North America both stress some factory -
like practices and fall into a spectrum of
implementations, with some managers
placing more emphasis on aspects of stan
dardization. control, and reusability than
others.

• This spectrum cuts across different
product rvpes. defined as basic software,
general business applications, real-time
control svstems. industrial operating sys
tems. and telecommunications software.
• Although there are not significant

differences in how managers in large Ja
panese and US firms responded to the
questions on standardization and "control
over tools and process elements, the Ja
panese placed significantly higherempha-
sis on a basic factory-like concept: reus
ability.

The Japanese concern with reuse re
flects the strategies of software factories
like those at Toshiba. Fujitsu, and Hitachi,
which try to build customized applications
programs by combining existing code (or
designs) with new code. Reuse seems
highly appropriate as a response to ashort-
age of programmers, high demand for
customized applications, and low sales (or
low availability) of mass-market packages
— characteristics that describe the Ja
panese software market.

According to data from the US Com
merce Dept. andjapan's Information Ser
vice Industry Association, in 1986 as much
as 94 percent of the software sold in Japan
(excluding systems software, which was
generally included with hardware) was
fully or partially customized or designed
for integrated hardware and software sys
tems (see Table 2). By contrast, nearly 60
percent of US domestic software sold in
1986 were mass-market packages. More
rapid growth in package sales from 1987 to
1988 brought the percentage of cus
tomized software in Japan down to about
85 percent as the sales of both small com
puters and packages have increased, but

28 IEEE Software

manyjapanese buyers continued to prefer
customized software for their larger com
puters.

This emphasis on customized software
placed tremendous demands on Japanese
software producers faced with a shortage
of skilled programmers and a backlog of
orders, especially in earlier years when
ihev were still refining their production
systems. In other product areas,Japanese
firms were trving to leverage their design
skills across different projects, such as re
using compiler designs across different
operating systems.

Making case studies ofjapanese software
factories and comparing them to other
facilities confirmed the survey's findings
that tools and methods are essentiallv sim
ilar in Japan and the US. although the
large Japanese firms appeared especially
concerned with process improvement and
left product innovation largely to their US
counterparts.Japanese managers seemed
intensely dedicated to standardizing good
practices, gradually improving tools and
techniques, and strategically integrating
their efforts with rigorous employee train
ing'

Thev also developed product and
marketing strategies to segment users and
tailor process technology to particular
products and customers. For example. Ja
panese software factories generally made
products similar to systems they had made
in the past. For totally new projects,
managers channeled work to less-struc
tured subsidiaries, software manufac
turers, or special projects outside the fac
tories.

What constituted a software factory was
difficult to measure precisely, although
structured facilities clearly seemed differ- •
ent from jobshop approaches in their de
gree of focus on relatively routine designs,
standardized methods and tools, stan
dardized training, and controls and inte
gration of these elements above the level
of the individual project.

Table 2.
Software market data (1985-86).

Japan US

Total market revenues

Total package software
Total custom software

Microcomputer software's share of total market

Annual increase in demand for software
.Annual growth in supply of programmers
Typical wait for customized program

Computer manufacturers as suppliers of
sy stems software
applications software

S5 billion

6percent
94 percent

10 percent

25 percent
13 percent
26 months

70 percent
15 percent

S19 billion

65 percent
35 percent

40 percent

25 percent
4 percent

40 months

45 percent
5 percent

such performance comparisons are diffi
cult to make.

Hitachi doubled productivity between
just 1969 and 1970 after introducing
factory standards. Productivity stagnated
during the 1970s as Hitachi worked on re
fining its tools and methods, but it began
rising rapidly again in the late 1970s and
1980s, especially after the introduction of
reuse-support and automated program-

Howeveryou label the
approaches ofjapanese

firms, they appeared
effective In Improving

productivity, quality, and
process control over what

they had done earlier.

Process improvement
However you label the approaches ofja

panese firms, they appeared effective in
improving productivity, quality, and
process control over what they had done
earlier. They also appear to compare
favorably to current US levels, although

March 1989

ming tools for business-applications devel
opment. Hitachi also reduced the amount
of late projects from 72 percent in 1970 to
7 percent in 1974 and has since averaged
about 12-percent late projects a year. Bugs
per machine in the field dropped from an
index of 100 in 1978 to 13 in 1984.

Toshiba improved productivity from an
equivalent of 1,390 assembly lines of
source code per month (about 460 in For
tran) in 1976 to 3,100 per month (about
1,033 in Fortran) in 1985 — including re
used code totaling 48 percent of delivered

lines. At the same time, quality improved
from seven to 20 faults per thousand lines
of source code at the end of final test to
about twoor three faults perthousand. Re
sidual faults left after testing averaged be
tween 0.05 and 0.2 per thousand lines.

NEC saw productivity improvements of
26 percent to 91 percent by using a set of
standardized procedures, tools, and reus
able patterns for applications software —
while at the same time reducing bugs
about one third. Fujitsu cut bugs for all
outstanding operaiing-svstems code
(newly delivered code plus maintained
systems) from 0.19 per thousand lines in
1977 to 0.01 per thousand in 1985. Produc
tivity in lines of code per month also im
proved by two thirds between 1975 and
1983.

The management skills and tool sup
port perfected at software factories also
seemed to help develop enormously com
plex software with high productivity and
reliability. Toshiba, for example, has been
a world leader in real-time automated
procesfrcontrol software for electric and
nuclear power plants since the late 1970s.

Data collected in 1988 by myself and
Kent Wallgreen, a graduate student, also
indicates that the Japanese consistently
showed higher output in lines of code over
time compared to more experienced US
programmers. The difference seemed to
be that Japanese firms reused larger
amounts of code. They also seemed to fin
ish their products quickly rather than op
timize designs by reducing lines of code.

29

These practices tended to make modules
longer, thus making productivity appear
higher when sou use linesof-code mea
sures.

In the quality area, however, the Ja
panese appeared to be outstanding: Their
projects generally averaged as much as 50-
percent fewer bugs per thousand lines of
delivered code and required less mainte
nance time as a percentage of total devel
opment time compared to US projects.
This is especially impressive because main
tenance in Japan is usually performed bv
separate departments whose members
were not the original developers of the
software, so they must maintain code thev
are unfamiliar with.

As the demand for and complexitv
of software continue to increase,
the ability to compensate for short

ages of skilled programmers through stan
dardization of skills, introduction of good

procedures and tools, refinement of proj
ect-management techniques, and ad
vanced technology for reuse support and
automated programming will become
even more important to the software in-
dustrv. These are factorv-like concepts
and technologies, w hether firms adopt the
factory label or not, andjapanese factories
appear to be among the world leaders in
developing them.

Japanese firms have had a weakness:
their focus on process improvement
rather than product innovation or pack
age development. Both for this reason and
because the demand for software in Japan
still exceeds the ability of domestic firms to
supplv it.Japanese companies have not ex
ported many programs or bid very fre
quently overseas for contract software.
Manv people have thus concluded that Ja
panese firms, because they have little ex
port presence, are weak in software. How
ever. this does not seem to be true — at

least among the large firms, k
Furthermore. Japanese.tj^utugeis ap

pear to be confident thai thev have
mastered manv of the basic problems in
software development, such osqualitv con
trol and project management, and are
now readv to tackle the systematic im
provement of product functionality and
ease of use. In fact, recent surveydata com
paring the responses oi Japanese custom
ers to Japanese-and US-made software in
dicates that the large Japanese firms have
achieved parity or superiority in custom
applications, although thev still trail in
basic svstems software.Ilu 1

If Japanese achiev ements in other in
dustries or in computer hardware are anv
indication, these new emphases in Ja
panese software factories are likelv to lead
to even more functional, low-cost, and re
liable software in the future that mav com
pete more direcdv with US products, espe
cially customized applications software. •>

References
1. G. Jones. Programming Productivity.

McGraw-Hill. New York. 1986. p. 243.

2. R.W. Bemer. "Position Papers f or Panel Dis
cussion: The Economics of Program Pro
duction." in Information Processing 6#.
North-Holland. Amsterdam. 1969. pp.
1626-1627.

3. M.D. Mcllroy, "Mass-Produced Software
Gomponents." in Softumr Engineering Re
ports on a Conference Sponsored lis the XA10
Srimre Committee. P. Naur and B. Randell.
eds., Scientific Affairs Di\.. NATO. Brussels.
1969. pp. 151-155.

4. H. Braunan and T. Gourt. The Software
Factory," (Computer, Mav 1975. pp. 28-37.

5. "Elements of the Software Factory: Stan
dards. Procedures, and Tools." in Sofhoare-
Engineering Techniques, Infotech Int'l.
Berkshire. England. 1977. pp. i 17-143.

6. Y. Matsumoto. "S\VB System: A Software
Factors." in Softioare-Engnrmng Environ

ments. H. Hunke. ed.. North-Holland.
•Amsterdam. 1981.

7. Y. Matsumoto. "A Software Factors: An
Overall Approach to Software Production."
in Software Reusability, P. Freeman, ed.. GS
Press. I-osAlainitos. Galif. 1987.

8. K. Fujino. "Software Development for
Computers and Gominunicalions at N'EG,"
Compiler, Nov. 1984, pp. 57-62.

9. N. Murakami et al„ "SDEM and SDSS: An
Overall Approach to the Improvement of
the Software-Dev elopment Process." in Soft
ware-Engineering Environments, H. Hunke.
ed.. North-Holland. .Amsterdam. 1981.

10. "Dai-2 Kai SE Sabisu Kanren Ghosa" [Sec
ond Survey on Systems-Engineering Ser
vice], Xikhei (Computer. March 14. 1988, pp.
58-86 (inJapanese).

11. "Dai-5 Kai Oyo-Konpvuta-Yu/a Sensasu"
[Fifth Gensus on General-Purpose-Gom-
puter Users], Xikkei Computer. Sept. 26.
1988. pp. 66-99 (inJapanese).

Michael A. Cusumano is an assistant professor
at the Massachusetts Institute of Technology 's
Sloan School of Management, where he
teaches courses on corporate strategy and
technology management. He is also interested
in hardware technology transfer and product
development in the computer industry, prod
uct development and manufacturing in con
sumer electronics.and the transferofjapanese
production techniques to other countries. He
is the author of a book forthcoming from Ox
ford University Press called TheSoftwareEarton.

Gusumano received a PhD from Harvard
University in Japanese studies. He is fluent in
Japanese and has lived and worked in Japan for
more than five vears. including three vears as a
Fulbright fellow and researcher on economics
and social science at the University of Tokvo.

Address questions to the author at Sloar
School of Management, Massachusetts Insti
tute ofTechnologv. (Cambridge. MA 02139.

30 IEEE Software

FIELD REPORT
NETWORKING MAIN STREET

ONLINE AUCTION. Boston's public TV station conducted a special kind of auc
tion last month, using only an online service, not TV and telephones, to sell
computer-related products to the highest bidders. WGBH's history of auctions,
and its proximity to high-tech companies, had brought the station many dona
tions of specialized or high-priced items that would be difficult to explain or mer
chandise "traditionally." So the online auction was conceived, recalled auction
manager Edye Baker, seen reviewing the system with David Solomont, presi-

. dent of Business and Professional Software and a WGBH online auction advisor.
Donated products included software packages, training seminars, books,

modems and other peripherals, plus supplies and accessories.

TRENDS

"Factories" For Software?
Japanese methods boost
quality, productivity

How does .01 defects per program
package per installation per year
sound for your in-house systems?
Could you tolerate a productivity
level of 800-1,000 lines of code per
staff month, if your in-house
systems were nearly defect-free?

That's the promise brought by the
"software factory" approach which
a handful of Japanese companies
are now using successfully, accor
ding to Donald M. McNamara, pro
gram manager in General Electric's
Corporate Information Technology
group in Bridgeport, Conn.

McNamara told an audience in
the distinguished lecturer series at
the Wang Institute of Graduate
Studies (Tyngsboro, Mass.) that
bringing a factory mentality to soft
ware development has worked in
Japan; but his audience pointed out
that cultural differences could
hinder its adoption in the U.S.

The factory concept means using

development tools such as 4GLs and
other automated development
tools, re-using code, and implemen
ting quality assurance at every step.

"Design code for re-use, and
register it. Re-use is a secret to pro
ductivity," McNamara said.

Other issues to be faced include
a willingness by users to: commit to
a requirements definition; accept
the risk that standard method
ologies impede innovation; work
long hours during implementation;
and overcome the "not invented
here" syndrome.

But the payoffs can be significant,
he said.

In two examples, Japanese com
panies spent the equivalent of
millions of dollars to establish their
software factories, and because of
this they had top-management at
tention. They were able to replicate
their systems and avoid controver
sy and duplication. The developers
were able to remain focused
throughout the process, he
reported.

Mac LANs:
Birth Trauma
User training is
required: Scully

Apple Chairman John Scully
comes right to the point: "This is no
longer a box industry," he said. "It's
system-software driven.

"Apple had to learn this the hard
way. We never shipped the file
server we announced two years
ago; it was harder than we thought
to connect computers and third-
party products."

As a result, he candidly admitted
users will need specialized training.

The company's newly-announced
file server, Appleshare, was "dif
ficult to give birth to, but will be
rewarding in the future," Scully
said. "It's built on the Mac's
foundation—a consistent set of
development rules and a rich en
vironment for applications.

"The Mac was controversial in
1984," he continued. "Functionali
ty was limited but it was built on
next-generation technology. Now
we have a firm foundation, while
the DOS world faces issues of
change as they move into their next
generation, i.e. the 80386 CPU."

Scully said that networking
Macintoshes requires dedicating
one Mac as a server because the
software connections are com
plicated enough to demand
specialized training.

"Not all of our dealers and
resellers are authorized to handle
communications products," he said.
"They need to have a systems
engineer who takes our training
courses and exams. The user needs
to designate a network ad
ministrator who will receive our
training—though the course of
study for that can be sold through
a reseller."

lb potential Appleshare users, he
cautioned, "Don't think about get
ting into our communications pro
ducts without taking the course: it's
complicated. But you don't have to
be a technical person to become a
network administrator."

—Hal Glatzer

38 MARCH 1987 SOFTWARE NEWS

f o r y o u r i n f o r m a t i o n

'.HOLLAND NORTH

Economics of programming production

by: Robert W. Bemer

1. INTRODUCTION

A software consultant recently advised a large computer manufacturer
thafeach programmer should write 8 instructions per hour. I behave **
he also stipulated that the sequence should be valid. The astute p
grammer will immediately write a generator for the C0^ter toP^
valid sequences of 10 000 instructions per hour and depart for the R
T should nrefer getting a product of maximum utility.
S™1PH what Ls might have mean, the ̂

(such as 1956), I recall doing the PRINT I system for the IBM 705 at
completed cost of $17 per instruction. Since it was a compact semi-in er
pretive system of some 1 200 instructions in all, the cost did not seem a
all out of line. Yet you may be assured that the programmers were, not paid
at the rate of (8 x 17) $136 per hour less machine time! The SAGE system
of 1957 cost $50 per average instruction, so we must assume that they did
not write 8 per hour. ,

Taking this to a more modern absurdity, consider a typical For ran
processor of perhaps 35 000 instructions. According to the rule this would
require 4 375 hours. At U.S.A. rates of $10 per hour per programmer, i
would be delightful to get such a system for a mere $43 750. More like yi
will be $437 500 until we are better able to mechanize such Prod^hon. Ac-
tually it is almost possible in the particular case of Fortran [1], but me
to specify the everyday situation.

All this leads to the point that various applications of computers have
various complexities, and cannot be accomplished to rigorous and invariant
standards. Not that I do not believe in standards, but in the case of pro
gramming I must say that I simply do not know what a programmer should
produce. That is the business of his manager. What I do say is that whe
the methods outlined in this paper are followed, any type of Programming
can be produced at a very great saving over the usual methods of today.

ECONOMICS OF PROGRAMMING PRODUCTION 157

2. DOCUMENTATION

2.1. Functional specifications
Programmers are prone to build without plan. This is the most expen

sive method for any type of architecture. Even starting with a complete
flowchart is nevertheless building without a plan, for they are not equiva
lent! One may have a perfect flowchart for the wrong process.

The members of each level in the programming hierarchy, from product
planner to detail coder, should be obliged to write down in a formal manner
the following information according to their responsibility:

What is the purpose of the program unit?
What are the inputs and their forms?
What are the outputs and their forms ?
What processes are applied to the inputs to yield outputs?
What is the inventory of tools (usable store, utility routines, other pro
gram units, executive controls) available?
What are the constraints of time and interaction with other program
units?
What are the operational design goals and characteristics?
What are the characteristics of interface with other program units?

These functional specifications should be completely settled before any
flowcharting, programming or coding is attempted. They should be matched

•
against similar specifications for other units to detect either conflict, du
plication, or imbalance in the system. Duplication in particular is a major
cost item. Proper functional specifications allow programmer A to find out
that he has a similar need to programmer B, such that they can share a
subroutine.

2.2. Operating characteristics
Some of the greatest losses in computer efficiency occur when unbuf

fered decisions must be taken by human operators. Therefore the prelimi
nary design should always state the operating characteristics of the pro
gram units as embedded in the entire system. Among the items to be
specified are:

Error conditions and messages.
Restart conditions and necessary actions.
Complete alternatives to all possible decisions.

2.3. Descriptions and manuals
Every program unit must have some descriptive material associated to

provide a permanent record of the characteristics which affect the user of
the program. Functional specifications do not necessarily have to be made
available to the user, as they may belong properly to "technical documen
tation" which does not have this requirement. This material may consist of

158 R. W. BEMER

but a single sheet of paper, or it may be a complete manual in the case of
large and complicated programs. In either case it is advisable to insist that
a rough draft be made before any flowcharting or coding is attemp.ed. O
viously certain characteristics cannot be known until the program runs but
it is preferable to indicate this in the original version by a note such as

, . i J Q*. or ... As the decisions axe "method unknown - could be ..., or ...,
made, the draft should be updated. This acts as a constant reminder and
prevents overlooking of design needs.

When possible, it is preferable for the documentation of minor programs
to be integral with the program in the form of annotation. This should lead
to prevention of program changes without corresponding changes to docu
mentation. However, formal methods of control should be exercised to en
sure that the narrative is still consistent as changed.

2.4. Listings ,
Listings are the backbone of documentation. However, in early produ -

tion it is difficult to properly balance use of handwritten correction an
notes, on the one hand, with amendment by complete reprocessing on he
other. Patches are to be avoided unless they may be accomplished by the
most foolproof and mechanical methods.

One must keep good records at any stage of development. In 1963 a
large software house did a major system by keeping changes solely as
superimposition of various tape systems, without benefit of updated i
ings. In the instability of early development there were a few times whe
the current version was destroyed, necessitating a reconstruction period of
up to 2 weeks to recover the current system. At their rates, each occur
rence lost up to $80000! Doing it all by punched cards and overnight off
line listings would have been cheaper. It is always better to spend extra ef
fort to keep the cleanest possible record, so that each iteration may e
taken as a complete restarting point.

There is a simple compromise. Allow a little extra space on each list
ing page by not filling it completely. Give the top line of each page an arti
ficial identifier if it does not already have one, all of which are kept in a
list associated with page number. Since most modern programming sys
tems produce coding relocatable by hardware or software, actual store a
signments are somewhat irrelevant. Thus it will often be necessary to
make a new listing page selectively only where programming changes

occur.

3. STANDARDS

3.1. Terminology . .
A major way of lowering programming costs, often ignored, is to im

160 R. W. BEMER

Obviously the last item could often be in multiple, and could therefore be
compacted in a tabular form.

4.2. Flowcharting and logic equations
Programs should be carefully designed, by whatever means. Flowcharts

enjoy a certain popularity for clarity. However, they are usually not so
necessary when programming in a language like Cobol. Logic equations
have the capability of being formally manipulated for minimization or see
ing that all negations are accounted for.

4.3. Modularity
Always build a program of any size in discrete modules, with known in

puts and outputs, together with the interior process. These should be so
independent that they may be linked together in almost any order, just like
railroad cars. This might require 3% more instructions overall, but it is
worth it in costs of maintenance and diagnosis.

Every program unit should be created in three forms for testing:
(a) As a self-contained unit, complete with synthetic input and output,

created perhaps by a generator.
(b) In a form suitable for usage within its own major program.
(c) In a form suitable for use within the overall system.

Often the extra instructions required for (a) and (b) may be removed me
chanically for the final stage.

5. PRODUCTION CONTROL

Due to the invisibility of programs, normal control methods are inef
fective. Mechanized control and feedback is even more important than the
precise organization of supervision. The steps are:

5.1. Estimation and budget
Software units of the minimum size feasible for individual control are

defined, named and given identifying numbers. Planning provides a work
ing description of function. Supervisors estimate the total elapsed time and
cost for man- and machine-hours. This is the primary input to the budget.
In the case of large concerns with many programmers at different loca
tions, precise definition of a programming unit to be fabricated allows for
competitive bidding among these groups, with corresponding expectancy of
cost reduction.

5.2. Labour distribution
Supervisors distribute the total elapsed time by benchmarks (functional

ECONOMICS OF PROGRAMMING PRODUCTION 159

prove the communication between contributing programmers. Since many
programs now have international utility, it is advisable to adopt terminolo
gy from the only internationally agreed effort, the IFIP/ICC Vocabulary of
Information Processing [2], This work is structured by concept, and is
worthy of careful study prior to usage for looking up individual terms for
reinforcement. Missing or newly developed concepts should be brought to
the attention of the IFIP/ICC committee.

3.2. Other standards
When costs are a consideration, it is foolish to program without a mini

mum of standards. There should be an active standards unit in every pro
duction programming group, policing compliance with national and interna
tional standards as available [3, 4, 5]. In addition there must be internal,
local standards on such items as:

Consistency of appearance and documentation.
Calling sequences.
Description of programming units with respect to algorithm of solution,
restrictions, degenerate cases, range, valid classes of data, test cases,
etc. It is advisable to adopt a widely tested method to be able to inter
change and use the programs of others for economy [6],

4. DESIGN

4.1. Checklists
Because of the nature of the work, a programmer usually desires to in

vent something. However, given a variety of previous wheel designs it is
likely that he will spend this effort on something not so often re-invented.
This is the purpose of the checklist [7]. It recognizes that most program
ming problems are of a highly recurrent nature. It also recognizes that to
tal recall of all contingencies or ways of doing things is unlikely for most
programmers, just as the doctor does not always remember the totality of
symptoms without aid. For example, it is trivial for the programmer to
check off or complete such items as:

The source code for this assembly system may come from (punched
cards, paper tape, magnetic tape, OCR *,...)
If the computer Stops with (give here a combination of conditions), the
operator should (...).
Data named (...) are (always/often/never) (numeric/alphabetic/(other))
and require (...) positions on a (punched card/paper tape) in the format
(...) and position defined by (...).

* Optical character reading.

ECONOMICS OF PROGRAMMING PRODUCTION 161

specifications, flowcharts, implicit quality test, coding, checkout in vacuo,
checkout in processor, checkout in system, documentation, explicit quality
test, release). Labour distribution reports are developed by means of time
cards. These are correlated to the estimates. The individual programmer
periodically estimates the percentage of completion of each unit. If the sys
tem is run on a computer, it is possible to flag estimated overruns in
hours and delivery times, inconsistencies in reporting precedence dangers
on PERT schedules, etc.

5.3. Correction and adjustment
Supervisors add revised benchmark estimates to project charts, which

show initial estimates, last revised estimates and actual completions. In
danger areas, management may rebalance the staff, redesign, etc. The
eventual users of the programs are notified of revised dates so they may
modify plans, check contractual commitments. As these are official com
pany records, detected falsifiers may be discharged, as merited discipline
is usually effective in reducing costs. The supervisors may be recalibrated
as optimists or pessimists, but more often they will automatically adjust
their estimating as a byproduct of the system. Data present themselves for
practical standards of production, in those areas where it is feasible to
have such standards.

6. DIAGNOSTIC METHODS

6.1. General
Computer operation has become more complex with each year of usage.

Not only are translators for the Fortran, Algol and Cobol languages used
widely, but even the assembly languages have become more complex. All
of these now run under executive systems likely to become more intricate
than they are. Under such conditions, the programmer is likely to be at a
loss to find out whether a malfunction is due to:

a hardware malfunction;
a malfunction in the programming system he is using;
an operating mistake;
data errors, such as unexpected type, outside of expected range, physi
cal errors in preparation or reading, etc.;
his mistake, such as a misunderstanding or disregard for the rules of
syntax, grammar, construction, file layout, system configuration, flow
process for solution, etc.

The hardware field engineer is subject to the same confusion. However,
there are certain ways of discovering the class of the malfunction and di
recting the evidence to the proper authority for correction. The program-

162 R.W. BEMER

mer should not be too surprised if, after following the methods outlined
here, this turns out to be himself in most cases.

When using a programming system, remember that there is pro a y
no single person that understands the entire system and its individual com
ponents well enough to diagnose 100% of the troubles. This means that most
diagnosis must be done by cause and effect, rather than tracing through the
operation. The "black box" simile must be appreciated and used. One mus
put certain inputs into the box, observing the form of the outputs. One then
varies the inputs and observes the corresponding changes (if any) to the
form of the outputs. By careful design of the inputs and their variation it is
possible to deduce which internal element of the black box must be at fault.

This means that the programmer must adopt the scientific method of
"design of experiment". The object is to get as much information as pos
sible during each run (or experiment) and to make as few runs as possible.
Thus many items of information should be obtained from each run, but the
variations must not interfere with each other to the extent of obscuring in
formation, and each bit of information should lead to the next set of modifi
cations by reducing the possibilities.

Before the user can call upon outside help, it is his responsibili y o
clearly demonstrate the malfunction. Further, he should provide the m mi -
mum segment of the program which exhibits the malfunction. Thus isola
tion is the first process to undertake.

It is much cheaper to be prepared for a malfunction than not. A good
rule to adopt is that "the program is wrong when first ready for testing".
The unusual ("degenerate" to the mathematician) case occurs when the pro
gram is correct just prior to production runs. Cases are known where the
average number of times to compile or assemble a program for test was in
excess of fifty before it operated satisfactorily. This is too expensive and
delays production to an intolerable point [8].

6.2. Practical methods
6.2.1. Multiple service per run

There are few things as shameful as seeing a programmer run a pro
gram to blowup point, take a full dump of the store and get off the machine.
This is expensive in machine time and slows his productivity. Observe the
following program structure:

Read initial values of parameters;
* List values as read;
Compute A, B and C;
* Read correct values for A, B and C according to the initial values
given. Call them a, b and c.
* Compute A - a, B - b and C - c. If all zero, print "A, B and C OK1 and
jump to "Next step". If not, print:

ECONOMICS OF PROGRAMMING PRODUCTION I63

A = . . . a = . . .
B = . . . b = . . .
C = •; • c = . . . , and

* Compute A = a, B = b and C = c.
Next step.

The steps marked with an asterisk should normally be removed only when
testing is complete and correct. This can often be done automatically dur
ing final compilation by a switch mechanism. Do not remove in stages, as
correct sections may be again incorrect upon changes.

It takes little effort to adopt this plan, particularly if called by a For
tran procedure or PROC (super-macro) [9]. It ensures that the next pro
gram segment can be checked independently in the same run. Good practice
dictates that the programmer divide into at least ten such parts per run!

6.2.2. Controll ed data
Allowing complete freedom of data characteristics during original test

ing can introduce too many complexities to see clearly what is going wrong.
Select certain values for inputs and run them through the algorithm to de
termine the expected results for selected combinations. Make the selection
according to these criteria:

(a) For numeric parameters, take values at the end points of expected
allowable range.

| (b) For non-numeric parameters, take typical or singular cases that
display all expected characteristics.

(c) In either case, vary for minimum and maximum field length.
(d) Select "bad" data with specific characteristics such that they should

not work in the program.
(e) To check moves, do the inverse and compare to itself, like a matrix

reinversion. Build this in and remove when correct.
Test to determine that all valid data yield correct answers and that the

bad data always yield error conditions and messages. Subtract check an
swers from actual and blank zeros before printing.

6.2.3. Live data
Live data should be used only after obtaining correct results with con

trolled data. In case of malfunction, check that the live data:
conform to data characteristics which the documentation shows to affect
program action, and match format rules;
come from the proper physical input unit;
do not contain invalid characters, singly or in combination.

Check the answer range. Overflow and underflow truncated can give un
recognizable answers.

164 R.W.BEMER

f°U(aT Check conformity to rules, such as those for justification.

g 10gic as ^
(d) E^iSnl'uvf i0npu?Ufor0pecuUar characteristics which could cause

erroneous branching, such as bad data, blank records' h .
(el Inspect the list of identifiers produced and assigned by the proces
(} sor Iking for conflicts, insufficient definition, completeness and

(fl Check" permissible spellings of reserved words, allowable usage of
W spacing! hyphens and" commas, and juxtaposition of illegal word or

ObSy mucfof-this should be detected by a well-desired processor
with complete error message facility, but this is not always so.

6'2men™e*decision structure of a program is at all complex, a!ways plan

selected. Print this during execution of the branch sequence, not when

deCmennlmpdir branch is no. tahen for some reason, invert both the
tes^nd the branch destinations. For example, the following program seg-
ments are identical in function.

If A * B, go to G
If A = B, go to P go to P

If they work differently, it is obvious that the mistake lies in obtaining

the form of A and B.

"ThetoaT'oT operating the program in the test environment

ECONOMICS OF PROGRAMMING PRODUCTION 165

responsibility of hardware, the software system or the user. To this end
take the following steps.

(a) Reduce the program in size and complexity.
(b) Isolate suspected sections of coding and equip them to run individual

ly, but in groups one after the other. Test to see if the malfunction
has disappeared. If not, add original elements until it reappears.

(c) Simplify the section of coding. Replace arithmetic statements by
simple statements like A = B. Simplify variable names. Put complex
flow in line.

(d) Check all diagnostic messages for clues.
(e) Check to see if dual or complement types of instructions also cause

the malfunction, or simply an expected wrong answer.
(f) Make several physical copies of the malfunctioning section. Vary in

several ways, adjoin copies and run together for efficiency.
(g) Reprogram for alternate methods of achieving the same result. This

is often the simplest way to overcome blindness to the cause of mal
function.

(h) In difficult cases, change values of only one variable at a time for
controlled experiment.

(i) Make full use of manufacturer-supplied tools such as de-flowchart
ing, dynamic testing routines, utilities, etc.

Additional treatment may be found in [10].

6.2.7. Quality control
The best way to avoid malfunctions is to build software with quality con

trols applied during manufacture. All original programming, changes and
additions to programs are done preferably in a computer-controlled en
vironment [11,12]. Such environments should be in general use by computer
manufacturers by 1967, and should be available to users then for similar
usage.

REFERENCES

1. Digitek Fortran (Advertisement), Datamation 1964 Aug, 35-38.
2. A.R.Wilde et al., IFIP/ICC Vocabulary of information processing (North-Holland

Publishing Co., Amsterdam, 1965).
3. International Standards Organization, Technical Committee 97, Computers and

information processing (Scope, Geneva, 1961).
4. ISO/TC97/WG-G (Secr-29)62, Second draft proposal, Flowchart symbols for in

formation processing (ASA, New York, 1964).
5. ISO/TC97/SC2 (Secr-37)130 F/E, Fourth draft proposal, 6 and 7 bit coded char

acter sets for information processing interchange (AFNOR, Paris 2e, 1965).
6. M. Grems, Proposal for an ACM-JUG computer applications digest (Minutes

ACM Council, 1965).

I I
166 R.W. BEMER

7. R. W. Bemer, A checklist of intelligence for programming systems, Communi
cations ACM 2 (1959) 8-13.

8. M. E. Senko, A control system for logical block diagnosis with data loading, Com
munications ACM 3 (1960) 236-240".

9. UNIVAC, General Manual, Sleuth n for 1107, UP-3670, 1963.
10. UNIVAC, P.I. E. Bulletin UP-3910.5, 1964.
11. R.W. Bemer, Software systems customized by computer, Proceedings IFIP Con

gress 65, Vol. n.
12. W. R. Crowley, A possible future system for automating control of the develop

ment, distribution and maintenance of programming systems, Proceedings IFIP
Congress 65, Vol. II.

PROGRESS IN HARDWARE AND SOFTWARE

R.W.Bemer, Bull General Electric, Paris

Presented to the MC/E International Data Processing Conference
Milano, 1966 March 9-11

ABSTRACT

Increasing complexity in computer systems, especially in the real

time area, heightens the interaction between software and hardware.

Thus the previously separate functions of field engineering maint

enance and software support tend to depend more on each other and

even merge, particularly in the diagnosis of malfunction. It is

advisable to use a computer network for fabrication, distribution

and maintenance of software, particularly when (as in the case of

Bull General Electric) there are multi-country sources for hardware

and software system components, and a subsidiary structure for sales

and service.

In the production system now being considered, one or more central

computers are connected by communications links to systems program

mers, sales offices and customer installations. Motivations for such

a system arc:

Optimization of European programming talent

Rapid and efficient reporting and correction of malfunctions

Common Access files for sales control, queries and contracts

Direct distribution of programs and documentation

Controlled automated production of software

Upgrading support personnel for better customer service

Optimization of European Programming Talent

Europeans are less flexible for physical movement than are Amer

icans, due to language differences, working papers, equivalents

of social security, taxes, etc. It is therefore expensive and

difficult to set up a central programming site and staff it multi

national^. Some examples exist of both failure and less than

complete success".
$

Software by its basic nature requires centralized control for

fabrication, largely because of its relative invisibility. How

ever, it is not especially critical where this control is located

with respect to the other functions of the computer manufacturer,

subject to sufficient liaison. How then to make best use of the

considerable programming talent in Europe?

One characteristic of time-sharing unexpected by most people is

the effectiveness of human-to-human communication between term

inals. A classic example is that of the programmer demonstrating

the JOVIAL language to another. Each time he wrote a statement,

a passive observer at another terminal corrected it. Finally he

was forced to type a message to the person interfering, asking if

he could please make his own mistakes, as he wanted to demonstrate

the detection features in the system,.

Such systems are certainly interactive to the extent required for

intercommunication in joint remote production of software systems.

Furthermore, software tools may be constructed for the central

computer which monitor and control this production process, filter

ing out unacceptable, incompatible and non-standard inputs in a more

effective way than possible for the human programming supervisor.

C o n s i d e r t h e r u l e t h a t s t a t e m e n t s i n a s s e m b l e r l a n g u a g e c a n n o t b e

i n t r o d u c e d i n t o t h e s o f t w a r e u n l e s s a t l e a s t t e n c h a r a c t e r s o f c o m

m e n t a r e a s s o c i a t e d , T h e p r o g r a m m e r w h o d o e s n o t c o m p l y w i t h t h i s

d e s i r a b l e p r a c t i c e w i l l n o t h a v e a h i g h p r o d u c t i o n c o u n t o n h i s

m o n t h l y r a n k i n g , w h i c h w i l l g i v e h i s h u m a n s u p e r v i s o r a m u c l i b e t t e r

i n d i c a t i o n o f h i s w o r t h . T h u s , g i v e n a s m a l l f a c i l i t y i n L n g l i s h ,

a n d a d e q u a t e c o m m u n i c a t i o n l i n k a g e s t h r o u g h o u t E u r o p e , t h e r e c o u l d

b e a n a l t e r n a t e m e t h o d o f m u l t i n a t i o n a l s o f t w a r e c o n s t r u c t i o n .

P r e p a r a t i o n f o r t h i s t y p e o f w o r k i s p r e s e n t l y u n d e r w a y i n

L o n d o n , w h e r e w e h a v e a s s e m b l e d a m u l t i n a t i o n a l g r o u p t o b u i l d a

m a j o r s o f t w a r e s y s t e m . I n m a n y w a y s t h e m e t h o d s r e m a i n t h e s a m e a s

b e f o r e . H o w e v e r , t h e g r o u p i s h e a d e d b y a n A m e r i c a n t e a m o f a b s o l

u t e l y t o p r a n k i n g w h i c h i s e n j o i n e d t o :

1) T e a c h a l l t e c h n i q u e s o f g o o d s o f t w a r e p r o d u c t i o n w h i l e t h e

p r o j e c t i s i n o p e r a t i o n .

2) D e m o n s t r a t e a l l t h e t e c h n i q u e s o f g o o d s o f t w a r e p r o j e c t m a n

a g e m e n t u s e d , w i t h p a r t i c u l a r a t t e n t i o n t o c o s t s a n d m e e t i n g o f

s c h e d u 1 e s .

3) M a k e a v a i l a b l e t o e v e r y p a r t i c i p a n t t h e s c h e d u l e s a n d p r o

p o s e d c o s t s , s o t h a t t h e y m a y s i m u l a t e p r o j e c t m a n a g e m e n t a s i n a

c a s e s t u d y .

4) I n d o c t r i n a t e i n t h e u s a g e o f t h e n e w G e n e r a l E l e c t r i c d o c u m

e n t a t i o n m o d e l s , t h a t m a x i m u m i n f o r m a t i o n w i l l b e m a d e a v a i l a b l e

t o p r o s p e c t i v e u s e r s a t t h e e a r l i e r m o m e n t , i n a n e c e s s a r i l y c o m

p l e t e a n d s t a n d a r d i z e d f o r m a t .

I t i s o f i n t e r e s t t o k n o w t h a t i n t h e p l a n n i n g s t a g e o f t h i s

p r o j e c t , w h i c h w a s c a r r i e d o u t b y t h r e e o f t h e A m e r i c a n t e a m a n d

f o u r f r o m F r a n c e , o v e r 7 0 0 p a g e s o f s p e c i f i c a t i o n s w e r e p r o d u c e d

i n s i x w e e k s . T h e P h o e n i x o r g a n i z a t i o n c a l l e d t h i s t h e m o s t r e

m a r k a b l e e f f o r t o f t h i s t y p e t h a t h a d b e e n s e e n , t h u s f u r t h e r

r e i n f o r c i n g m y v i e w s t h a t E u r o p e a n p r o g r a m m e r s a r e e v e r y b i t a s

c a p a b l e a s A m e r i c a n , g i v e n e q u i v a l e n t f a c i l i t i e s a n d s u p e r v i s i o n ,

T h u s w e h o p e t o m a k e a g r a c e f u l t r a n s i t i o n i n o u r s u b s i d i a r i e s ,

u p g r a d i n g o u r p e r s o n n e l t o f u l l s o f t w a r e c o n s t r u c t i o n c a p a b i l i t y ,

w h i l e s t i l l p r o c e e d i n g c a u t i o u s l y e n o u g h f o r a d j u s t m e n t w h e n g o a l s

a r e m i s s e d . T h e t i m e s c a l e i s n o t f e l t t o b e c r i t i c a l , a s t h e r e

a r e n o e x p e c t a t i o n s t h a t E u r o p e a n c o m m u n i c a t i o n s n e t w o r k s w i l l a l l

b e o f s u f f i c i e n t l y h i g h a n d u n i f o r m q u a l i t y f o r t h i s t y p e o f o p e r

a t i o n f o r a t l e a s t t h r e e m o r e y e a r s .

Rapid and lifficient Reporting and Correction o f

remote terminal is assumed to be a necessary adjunct to every

computer installation, existing either on site or at the sales

office. It is also assumed that qualified systems programmers are

engaged in remote production of new software while servicing cur-

rent software and assisting customers in its proper usage.

When a field engineer is confronted with a malfunction not

immediately correctable on site, he uses the remote unit to trans

mit details to the software maintenance and control computer. As

a part of the automated software production system, it is easy to

determine that the originator of the software unit (e.g., SIGMA -

a structural engineering program) is still online to the system,

last calling i„ £rm portoflno (hc u ̂ gt

Electric in Milano), Details are therefore relayed to his terminal.

If the system on which the malfunction occurred is of the same

type as the central production computer, direct action may be taken.

If not, the programmer must arrange for testing on a comparable

system, which may sometimes be the reporting system itself. The

cause may be hardware, software or user malfunction. If a software

change must be made, the necessary instructions are entered into the

central system, together with any documentation changes caused by

the repair. They are distributed to the originating system and to

all Other systems allowing open access to that software unit at any

time. Other users will wait until scheduled periodic reissue of the

system with accumulated changes.

Common Access Files for Sales Control, Queries and Contracts

A system for automated software production requires complete

files on equipment installed and on order; information must be

complete on configurations (both hardware and software), soft

ware production and delivery schedules, authorized software units,

associated manuals, etc. A sales office connected by terminal

unit to this central system may therefore verify accuracy and

availability of the items included in his sales proposal. Nor

mally such basic information will also be distributed to the field

sales force in the form of a price list or sales data book. Such

information is subject to change, however, and errors or loss are

possible. This easy access to the single official information set

is a desirable precaution.

Of particular importance is the requirement not to contract

for unrealistic delivery schedules, failure of which could lead

to contract abridgement. Neither customer nor manufacturer wants

to be deluded in this respect. The central system provides the

actual expected schedules, together with a margin for contract

ual acceptability. If schedules in a proposed contract fall be

yond this limit, then the salesman is authorized to conclude the -

order without further approval in this area, Thus the system can

serve as an order acceptance filter and update the on-order file,

It should not be too difficult to transmit this file or changes

to the factory to use as the official basis for factory order and

production schedules.

Direct connection to sales offices should facilitate usage of

compu te r p r og r ams t o eva lua t e com pu t e r pe r fo rmance . Bu l l Gene ra l

E l ec t r i c u s e s BULLRAC (SCE RT) t o a g r ea t ex t en t . Whi l e s u ch p rog -

may no t g ive p e r f e c t s imu la t i on i n eve ry r e spec t , t hey do

y i e ld i nequa l i t i e s wh ich a r e more u se fu l f o r eva lua t i on t han cyc l e

t imes , t ape dens i t y and o the r f oo l i shnes s . He re t he c us tome r i s

s e rved aga in , f o r he w i l l be p ro t ec t ed f rom un wi se i nves tmen t s i n

compu te r sy s t em s wh ich w i l l no t pe r f o r m a s e xpe c t e d .

l a s t bene f i t t o be men t ioned i s t ha t o f op t im iza t i on . Th e

c en t r a l sy s t em ma in t a in s a l l s chedu l e s ; t he c on t r a c tua l r e qu i r emen t s

a r e g rouped and a s soc i a t ed w i th t he va r i ous h a r d wa r e and so f twa re

un i t s . Th i s i n f o r m a t i on may be u s ed t o man ipu l a t e p ro d u c t i o n p r i o r -

i t i e s t o g iv e op t imum cus tomer s a t i s f ac t i on .

Direct Distribution of Programs and Documentation

While it is true that large volumes of programming systems

and related documentation would be distributed by mail, as for

the original issuance of a system, minor changes and additions

would be distributed via the remote terminals. This could take

the form of a change program on paper tape for presentation to

the modification filter of the software system, and would contain

the necessary keys to unlock the system so that it could modify

itself while still running under its own control. This applies

even to the executive control unit itself, although it may seem

a little like sitting in one's own lap.

Distribution of basic and applications software can be made

selectively according to a predetermined interest profile, or

the customer could request programs of interest based upon ab

stracts sent to the terminals. In some instances the customer

might be allowed to request design specifications in order to

comment prior to construction of the program. Timely advice and

news can also be made available as soon as confirmed.

For highly customized software, the documentation required by

the customer is not only a subset of the total, but may vary in

ternally for each installation. For this reason, it is preferable

for documentation to be keyed to the software units and closely

associated with them in the distribution process.

Upgrad ing Suppo r t P e r son ne l f o r Be t t e r Cus tomer S e r v i c e

T h e r e a l c o s t s o f p r o g r a m m i n g a n d a n a l y s i s a r e u s u a l l y m u c h

* G S S W h C n P e r f ° ™ e d e x p e r i e n c e d a n d q u a l i f i e d p e r s o n s . T h e i r

s a l a r i e s w i l l b o h i g h e r , t o h e s u r e , h u t n o t i n t h e p r o p o r t i o n

o f t h e g r e a t e r e f f i c i e n c y e f f e c t e d h y t h e s u p e r i o r m a c h i n e p r o -

c e s s i n g w h t c h t h e y e n a b l e . I t i s t h e r e f o r e d e s i r a b l e t o h a v e h i g h l y

q u a l i f i e d p e r s o n n e l e n g a g i n g i n c u s t o m e r a s s i s t a n c e , i f o n l y o n a
p a r t - t i m e a d v i s o r y b a s i s .

" o w e v e r , i t i s d i f f i c u l t t o a s h s u c h p e o p l e t o d o t h i s t y p e o f

w o r k i f n o o t h e r c h a l l e n g i n g a s s i g n m e n t s a r e a t h a n d . O n e o f t h e

a d v a n t a g e o u s f e a t u r e s o f t h e r e m o t e p r o d u c t i o n m e t h o d i s t h a t

f i e l d r e p o r t i n g a n d m a i n t e n a n c e m a y h e d o n e h y e x p e r t s w h o r e s i d e

P h y s i c a l l y n e a r t o c u s t o m e r i n s t a l l a t i o n s . S i n c e t h i s i s o n l y a

p a r t - t i m e a s s i g n m e n t , t h e b a l a n c e o f t h e i r t i m e m a y b e s p e n t i n

c r e a t i v e s o f t w a r e p r o d u c t i o n a n d o v e n r e s e a r c h , f u r t h e r m o r e ,

w o r k i n g d i r e c t l y w i t h c u s t o m e r s y i e l d s a c l o s e r a s s o c i a t i o n w i t h

t h e m i x o f a c t u a l p r o b l e m s t o b e s o l v e d . T h i s e x p e r i e n c e i s v e r y

v a l u a b l e i n t h e d e s i g n a n d p r o d u c t i o n o f n e w s y s t e m s , f o r t h e

n e e d s a n d i n t e r e s t s o f c u s t o m e r s c a n b e r e p r e s e n t e d i n b o t h t h e

d e s i g n a n d q u a l i t y a s s u r a n c e t e s t i n g p h a s e s .

Mis c No te s

Sa l e sman may que ry f o r o the r s im i l a r app l i c a t i ons o n o the r cus tomer

co mpu te r s . Ca n s e a r c h x f o r s a l e s po in t s .

Che ck i f con f igu r a t i on i s h igh ly r ecommended o r no t . Ra nk ing f o r

va r i ous so f twa re un i t s .

F i l e s a r e O PE N, CLOSED,o r ADD ITIVE t o MGMT, P rog rammers , Cu s tomer s ,

F i e ld Eng r s , s a l e s r ep r s , cu s t omer suppo r t t e chn i c i ans

P os s ib l e t e r m s Cus tod i an
D i spa t c he r
D i r ec to r
D u en n a
Gove rno r

Gua rd i an
Pa r en t
Mot he r
O v e r s e e r
Tende r (a a l a subm a- ine)
Se rv i ce

Reprinted from

DBTHMHTION Magazine,
SEPTEMBER 1966

ECONOMICS
OF
PROGRAMMING
PRODUCTION

more time and less money

by ROBERT W. BEMER

A presentation at the Symposium on the Economics of ADP
held last October in Rome, Italy, this article appears in the
proceedings of the symposium, which is available from the
North-Holland Publishing Co., Amsterdam, The Netherlands.

A software consultant recently advised a large
computer manufacturer that each programmer
should write eight instructions per hour. I be-

, ,, , lieXe, that he also stipulated that the sequence
should be valid. The astute programmer will immediately
write a generator for the computer to produce valid se
quences of 10,000 instructions per hour and depart for
the Riviera. I should prefer getting a product of maxi
mum utility.

Thinking of what this might have meant in the remote
computer past (such as 1956), I recall doing the PRINT I
system for the IBM 705 at a completed cost of $17 per
instruction. Since it was a compact semi-interpretive sys
tem of some 1200 instructions in all, the cost did not seem
at all out of line. Yet you may be assured that the pro
grammers were not paid at the rate of (8 x 17) $136
P6\ c°~H 'eSS machlne hme! The SAGE system of 1957
cost $50 per average instruction, so we must assume that
they did not write eight per hour.

Taking this to a more modern absurdity, consider a
typica FORTRAN processor of perhaps 35,000 instructions
According to the rule this would require 4,375 hours. At
, ' 'f',.rt.rSi per hour per programmer, it would
be delightful to get such a system for a mere $43 750
More likely ,t will be $437,500 until we are better able
to mechanize such production. Actually it is almost possi
ble in the particular case of FORTRAN\ but I mean to
specify the everyday situation.

All this leads to the point that various applications of
computers have various complexities, and cannot be ac
complished under rigorous and invariant standards. Not
that I do not believe in standards, but in the case of pro
gramming I must say that I simply do not know what
a programmer should produce. That is the business of
his manager What I do say is that when the methods
outlined in this paper are followed, any type of program
ming can be produced at a very great saving over the
usual methods of today.

1 Digitek Fortran (Advertisement), Datamation Aug., 1964, pp. 35-38

documentation
functional Specifications. Programmers are prone to

build without plan. This is the most expensive method for
any type of architecture. Even starting with a complete
flowchart is nevertheless building without a plan, for they
are not equivalent-one may have a perfect flowchart for
the wrong process.

The members of each level in the programming hier
archy from product planner to detail coder, should be
obliged to write down in a formal manner the following
information according to their responsibility:

1. What is the purpose of the program unit?
2. What are the inputs and their forms?
3. What are the outputs and their forms?
4. What processes are applied to the inputs to yield

outputs?
5. What is the inventory of tools (usable store, utility

routines, other program units, executive controls)
available?

6. What are the constraints of time and interaction
with other program units?

'• What are the operational design goals and char
acteristics?

8 What are the characteristics of interface with other
program units?

Mr. fiemer, who has been
working with computers for 17
years, is a software consultant
to the General Electric Co. He
has also been associated with
Univac as director of system
programming, and with IBM
as director of programming
standards. He was a member
of the ACM Council for six
years, represented AFIPS on
the IFIP/ICC vocabulary com
mittee, and was a major par
ticipant in the development of
the ISO/ASCII code.

These functional specifications should be completely settled
before any flowcharting, programming or coding is at
tempted. They should be matched against similar speci
fications for other units to detect either conflict, duplica
tion, or imbalance in the system. Duplication in particular
is a major cost item. Proper functional specifications allow
Programmer A to find out that he has a similar need to
Programmer B, such that they can share a subroutine.

Operating Characteristics. Some of the greatest losses
in computer efficiency occur when unbuffered decisions
must be taken by human operators. Therefore the pre
liminary design should always state the operating char
acteristics of the program units as embedded in the en
tire system. Among the items to be specified are:

1. Error conditions and messages.
2. Restart conditions and necessary actions.
3. Complete alternatives to all possible decisions.
Descriptions and Manuals Every program unit must

have some descriptive material associated to provide a
permanent record of the characteristics which affect the
user of the program. Functional specifications do not neces
sarily have to be made available to the user, as they
may belong properly to "technical documentation" which
does not have this requirement. This material may con
sist of but a single sheet of paper, or it may be a com
plete manual in the case of large and complicated pro
grams. In either case it is advisable to insist that a rough
draft be made before any flowcharting or coding is at
tempted. Obviously certain characteristics cannot be
known until the program runs, but it is preferable to
indicate this in the original version by a note such as
method unknown—could be or

o r • • • • • " A s t h e d e c i s i o n s a r e m a d e , t h e d r a f t
should be updated. This acts as a constant reminder
and prevents overlooking of design needs.

When possible, it is preferable for the documentation
of minor programs to be integral with the program in
the form of annotation. This should lead to prevention
of program changes without corresponding changes to
documentation. However, formal methods of control should
be exercised to ensure that the narrative is still con
sistent as changed.

standards
Terminology. A major way of lowering programming

costs, often ignored, is to better the communication be
tween contributing programmers. Since many programs
now have international utility, it is advisable to adopt
terminology from the only internationally agreed effort,

e IFIP/ICC Vocabulary of Information Processing 2 This
work is structured by concept, and is worthv of careful
study prior to usage for looking up individual terms for
reinforcement. Missing or newly developed concepts should
be brought to the attention of the IFIP/ICC committee.

f Standards- WLhen °°sts are a consideration, it is
? Program without a minimum of standards There

should be an active standards unit in every production
programming group, policing compliance with national
and international standards as available.3-4-3 In addition
there must be internal, local standards on such items as-

1. Consistency of appearance and documentation
Catling sequences.

3' ieSClPti°nr0f Pro8rammmg units with respect to
algorithm of solution, restrictions, degenerate cases
range, valid classes of data, test cases, etc. TS
advisable to adopt a widely tested method to be SMT;?"-"a n d"« , h e »'

Listings Listings are the backbone of documentation
However, in early production it is difficult to properly

balance use of handwritten correction and notes, on the
one hand, with amendment by complete reprocessing on
the other. Patches are to be avoided unless they may be
accomplished by the most foolproof and mechanical
methods.

One must keep good records at any stage of develop
ment. In 1963 a large software house did a major system
by keeping changes solely as a superimposition of various
tape systems, without benefit of updated listing. In the
instability of early development there were a few times
when the current version was destroyed, necessitating a
reconstruction period of up to two weeks to recover the
current system. At their rates, each occurrence lost up to
$80,000! Doing it all by punch cards and overnight off
line listings would have been cheaper. It is always better
to spend extra effort to keep the cleanest possible record,
so that each iteration may be taken as a complete re
starting point.

There is a simple compromise. Allow a little extra space
on each listing page by not filling it completely. Give the
top fine of each page an artificial identifier if it does not
already have one, all of which are kept in a list associated
with page number. Since most modern programming sys
tems produce coding relocatable by hardware or software,
actual store assignments are somewhat irrelevant. Thus it
will often be necessary to make a new listing page selectively
only where programming changes occur.

design
Checklists. Because of the nature of the work, a pro

grammer usually desires to invent something. However,
given a variety of previous wheel designs it is likely that
he will spend this effort on something not so often re-in
vented. This is the purpose of the checklist.7 It recognizes
that most programming problems are of a highly recur
rent nature. It also recognizes that total recall of all con
tingencies or ways of doing things is unlikely for most
programmers, just as the doctor does not always remem
ber the totality of symptoms without aid. For example, it
is trivial for the programmer to check off or complete
such items as:

1. The source code for this assembly system may come
from (punch cards, paper tape, magnetic tape,
OCR)

2. If the computer stops with (give here a combination
of conditions), the operator should ()

3. Data named (...) are (always/often/never (nu
meric/alphabetic/ (other)) and require (...) posi
tions on a (punch card/paper tape) in the format
() and position defined by ().

Obviously the last item could often be in multiple, and
could therefore be compacted in a tabular form.

Flowcharting and Logic Equations. Programs should
be carefully designed, by whatever means. Flowcharts
enjoy a certain popularity for clarity. However, they are
usually not so necessary when programming in a lan
guage like COBOL. Logic equations have the capability of

r ^il^®' 'C ®t IFIP/ICC Vocabulary of Information Processing,
North-Holland Publishing Co., Amsterdam, 1965.

3 International Standards Organization, Technical Committee 97, Com
puters and Information Processing, Scope, Geneva, 1961.

4 ISO/TC97/WG-G (Seer-29)62, Second Draft Proposal, Flowchart Sym
bols for Information Processing, ASA, New York, Aug., 1964.

r , '3®/JC97/SC2 (Secr-37)130/FE, Fourth Draft.PrProposal, 6 and 7 bit
p° .e „ oracter Seta for Information Processing Interchange, AFNOR,
Paris 2 , March, 1965.

6 Grems, M„ Proposal for an ACM-JUG Computer Applications Digest,
Minutes ACM Council, May, 1965.

Bemer, R. W., A Checklist of Intelligence for Programming Systems,
Communications ACM 2, March, 1959, pp. 8-13.

PROGRAMMING PRODUCTION . . .

being formally manipulated for minimization or seeing
that all negations are accounted for.

Modularity. Always build a program of any size in
discrete modules, with known inputs and outputs, together
with the interior process. These should be so independent
that they may be linked together in almost any order, just
like railroad cars. This might require 3% more instruc
tions overall, but it is worth it in costs of maintenance
and diagnosis.

Every program unit should be created in three forms
for testing:

1. As a self-contained unit, complete with synthetic in
put output, created perhaps by a generator.

2. In a form suitable for usage within its own major
program.

3. In a form suitable for use within the overall system.
Often the extra instructions required for (1) and (2)
may be removed mechanically for the final stage.

production control
Due to the invisibility of programs, normal control

methods are ineffective. Mechanized control and feedback
is even more important than the precise organization of
supervision. The steps are:

Estimation and Budget. Software units of the minimum
size feasible for individual control are defined, named and
given identifying numbers. Planning provides a working
description of function. Supervisors estimate the total
elapsed time and cost for man- and machine-hours. This
is the primary input to the budget. In the case of large
concerns with many programmers at different locations,
precise definition of a programming unit to be fabricated
allows for competitive bidding among these groups, with
corresponding expectancy of cost reduction.

Labor Distribution. Supervisors distribute the total
elapsed time by benchmarks (functional specifications, flow
charts, implicit quality test, coding, checkout in vacuo,
checkout in processor, checkout in system, documentation,
explicit quality test, release). Labor distribution reports are
developed by means of time cards. These are correlated
to the estimates. The individual programmer periodically
estimates the percentage of completion of each unit. If
the system is run on a computer, it is possible to flag
estimated overruns in hours and delivery times, inconsis
tencies in reporting precedence dangers on PERT sched
ules, etc.

Correction and Adjustment. Supervisors add revised
benchmark estimates to project charts, which show initial
estimates, last revised estimates and actual completions.
In danger areas, management may rebalance the staff,
redesign, etc. The eventual users of the programs are
notified of revised dates so they may modify plans, check
contractual commitments. As these are official company
records, detected falsifiers may be discharged, as merited
discipline is usually effective in reducing costs. The super
visors may be recalibrated as optimists or pessimists, but
more often they will automatically adjust their estimating
as a byproduct of the system. Data presents itself for
practical standards of production, in those areas where
it is feasible to have such standards.

diagnostic methods
General. Computer operation has become more complex

with each year of usage. Part of this is attributable to the
wider use of FORTRAN, ALGOL and COBOL languages. But
even assembly languages have become more complex,
and all of these now run under executive systems likely

to be more intricate than the languages. Under such
conditions, the programmer is likely to be at a loss to
find out whether a malfunction is due to:

1. A hardware malfunction.
2. A malfunction in the programming system he is

using.
3. An operating mistake.
4. Data errors, such as unexpected type, outside of

expected range, physical errors in preparation or
reading, etc.

5. His mistake, such as a misunderstanding or dis
regard for the rules of syntax, grammar, construction,
file layout, system configuration, flow process for
solution, etc.

The hardware field engineer is subject to the same con
fusion. However, there are certain ways of discovering
the class of the malfunction and directing the evidence
to the proper authority for correction. The programmer
should not be too surprised if, after following the methods
outlined here, this turns out to be himself in most cases.

When using a programming system, remember that
there is probably no single person that understands the
entire system and its individual components well enough
to diagnose 100% of the troubles. This means that most
diagnosis must be done by cause and effect, rather than
tracing through the operation. The "black box" simile
must be appreciated and used. One must put certain
inputs into the box, observing the form of the outputs.
One then varies the inputs and observes the correspond
ing changes (if any) to the form of the outputs. By
careful design of the inputs and their variation it is
possible to deduce which internal element of the black
box must be at fault.

This means that the programmer must adopt the
scientific method of "design of experiment." The object
is to get as much information as possible during each run
(or experiment) and to make as few runs as possible.
Thus many items of information should be obtained from
each run, but the variations must not interfere with each
other to the extent of obscuring information, and each bit
of information should lead to the next set of modifications
by reducing the possibilities.

Before the user can call upon outside help, it is his
responsibility to clearly demonstrate the malfunction.
Further, he should provide the minimum segment of the
program which exhibits the malfunction. Thus isolation is
the first process to undertake.

It is much cheaper to be prepared for a malfunction
than not. A good rule to adopt is that "The program is
wrong when first ready for testing." The unusual ("de
generate" to the mathematician) case occurs when the
program is correct just prior to production runs. Cases
are known where the average number of times to com
pile or assemble a program for test was in excess of fifty
before it operated satisfactorily. This is too expensive and
delays production to an intolerable point.8

Practical Methods. 1. Multiple Service per Run. There
are few things as shameful as seeing a programmer
run a program to blowup point, take a full dump of the
store and get off the machine. This is expensive in ma
chine time and slows his productivity. Observe the follow
ing program structure:

Read initial values of parameters
° List values as read
Compute A, B and C

° Read correct values for A, B and C according to the
initial values given. Call them a, b and c.
° Compute A = a, B = b and C = c.
If all zero, print "A, B and C OK" and jump to "Next

8 Senko, M. E., A Control System for Logical Block Diagnosis with Data
Loading, Communications ACM 3 (1960), pp. 236-240.

PROGRAMMING PRODUCTION

step"
If not, print

A = a =

c = : . : : c = ' . a n d

• Compute A = a, B = b and C = c.

The stepVTnarked with an asterisk should normally be
removed only when testing is complete and correct This
can often be done automatically during final compilation
by a switch mechanism. Do not remove in stages, as
correct sections may be again incorrect upon changes

It takes little effort to adopt this plan, particularly it
called by a FORTRAN subpositive.9 It ensures that the next
program segment can be checked independently in the
same run. Good practice dictates that the programmer
divide into at least ten such parts per run!

2. Controlled Data. Allowing complete freedom ot data
characteristics during original testing can introduce too
many complexities to see clearly what is going w1"OI1S-
Select certain values for inputs and run them through the
algorithm to determine the expected results for selected
combinations. Make the selection according to:

a. For numeric parameters, take values at the end
points of expected or allowable range.

b. For non-numeric parameters, take typical or singular
cases that display all expected characteristics.

c. In either case, vary for minimum and maximum held
length. . .. ,

d. Select "bad" data with specific characteristics such
that they should not work in the program.

e. To check moves, do the inverse and compare to it
self, like a matrix reinversion. Build this in and re
move when correct.

Test to determine that all valid data yields correct answers
and that the bad data always yields error conditions and
messages. Subtract check answers from actual and blank
zeros before printing. , . ,

3. Live Data. Live data should be used only alter ob
taining correct results with controlled data. In case of
malfunction, check that the live data:

a. Conforms to data characteristics which the documen
tation shows to affect program action, and matches
format rules.

b. Comes from the proper physical input unit.
c. Does not contain invalid characters, singly or in

combination.
Check the answer range. Overflow and underflow truncate
can give unrecognizable answers.

4. Desk Checking. Machine time is still expensive enough
to warrant considerable desk checking. I say this de
spite any claims in this area for on-line man-machine in
teraction with time-sharing. The programmer should:

a. Check conformity to rules, such as those for justifica-
tion. .

b. See that enough restart points exist tor long pro
grams.

c. Compare actual program logic for match with in
tended logic for match with intended logic as given
by a flow chart or equation.

d. Examine live input for peculiar characteristics which
could cause erroneous branching, such as bad data,
blank records, etc.

e. Inspect the list of identifiers produced and assigned by
the processor, looking for conflicts, insufficient defini
tion, completeness and spelling.

f. Check permissible spellings of reserved words, allow

able usage of spacing, hyphens and commas, and
juxtaposition of illegal word or operation pairs.

Obviously much of this should be detected by a well-
designed processor with complete error message facility,
but this is not always so.

5 Branching. When the decision structure of a pro
gram is at all complex, always plan a path flow in the
testing. This may be as simple as printing the value and
name of the element tested, printing a suitable indicator
for branch or no branch. It is good to print in the ex
treme righthand columns if convenient a code or label
of the first instruction in the branch to identify the branch
selected. Print this during execution of the branch se
quence, not when the decision is made!
When the proper branch is not taken for some reason,
invert both the test and the branch destinations. For ex
ample, the following program segments are identical in
function: _ r,

IF A = B GO TO P IF A * B, GO TO G
G ' GO TO P

G

If they work differently, it is obvious that the mistake
lies in obtaining the form of A and B.

6 Operating. The goal of operating the program in the
test environment should be to develop the simplest and
smallest program segment which exhibits the malfunction,
regardless of whether the eventual cause is shown to be
the responsibility of hardware, the software system or the
user. To this end:

a. Reduce the program in size and complexity.
b. Isolate suspected sections of coding and equip them

to run individually, but in groups one after the
other. Test to see if the malfunction has disappeared.
If not, add original elements until it reappears.

c. Simplify the section of coding. Replace arithmetic
statements by simple statements like A=B. Simplify
variable names. Put complex flow in line.

d. Check all diagnostic messages for clues.
e. Check to see if dual or complement types of instruc

tions also cause the malfunction, or simply an ex
pected wrong answer.

f. Make several physical copies of the malfunctioning
section. Vary in several ways, adjoin copies and run
together for efficiency. ... v.

g Reprogram for alternate methods of achieving the
same result. This is often the simplest way to over
come blindness to the cause of malfunction.

h. In difficult cases, change values of only one variable
at a time for controlled experiment.

i. Make full use of manufacturer-supplied tools such as
de-flowcharting, dynamic testing routines, utilities,
etc.

Additional treatment10 is available.
7. Quality Control. The best way to avoid ma func

tions is to build software with quality controls applied dur
ing manufacture. All original programming, changes and
additions to programs are done preferably in a computer-
controlled environment.1112. Such environments should
be in general use by computer manufacturers by ,
and should be available to users.

9 Univac, General Manual, Sleuth II for 1107, UP-3670, 1963.

1° Univac, P.I.E. Bulletin UP-3910.5, May, 1964.
11 Bemer, R. W., Software Systems Customized by Computer, Proceed

ings IFIP Congress 65, Vol. II.
12 Crowley, W. R., A Possible Future System tor Automating Control ot

the Development, Distribution and Maintenance of Programming Systems,

Proceedings IFIP Congress 65, Vol. II.

~ ^recursivead.AN? LESLEA. LARKY. Algorithm 182: Non-
rsive adaptive integration. Comm. ACM 6 (June 1963), 315.

LAWRENCE G. TESLER
Information Processing Corporation
Palo Alto, California

-1 IT. Roberts and Mr. Flores Reply
EDITOR:

speGSc ohtZ ,makes vi(;le!U c'larges without pin-pointing the
pec fic object he is attacking. For example, in his first paragraph

statesTnl tT paPerli.C0"tain8 "several series errors ''He nevS
j " lere ln s 'et,er what these serious errors are What
correctfSerhenm i?1 ^ mean ^ Pr°gmm PhiI««°Phy is in-
,1 ' s ^ mean the program will not. work? Does he mean
he program can not handle the problem it purports to dealwkh?
t the hrst paragraph he objects to our flowchart and program he

cause it ''erroneously claimed novel discover^ of a standard

for ESr —• """ »

'SimDle?»T*in',,in,i''la'm •B"™* lh" h« "•> >
,""f , , ^ Oils h«»orer t0 ,h,
foot tUt he ho, borrowed heavily 0„r logic and our idea.

Jy ldea' a so our DO 100 loop. Prodded bv our
previous correspondence he modestlv allows in his P-T T,
that his flowchart is based on outs. AdmittedW our codfaSnv
code, is susceptible to improvement \Tr t i i i ' '

. " £ X I , , : 7 7 " f " k " " » » - L u p o °
eh.ta g°"d ,d" Wl"d' "•|" "'"I'for Hie haadling of

In our earlier correspondence and even urm, mi c

STifn: ,h» ~ - jsxsbssz

fieri, our claim of .7,2,7,712 SST *" TT"' *
ALOOL Logo,,, hs> B„„,J elbdit, S Z7 "
theless that ,he concept o, ,heItESTa„t?„

Auol Ol"Bode"™ C°'nl"""on » '»>'«>• That Toaler c.o Sad J
' oolcan array to implement the ITEST idea (not <h ,t

*e have stated it) does not tarnish the novelty of the idea ift r all
the idea came first, the implementation second. By WrVeS er '

£JP~pss;,™ 222 i" X
• PART - 0 and recalculation of ITEST array when ISTART -

' S o l 7 *" "
rfoun »d.

nttXSSXSSZZSXiZ

S. M. ROBERTS
International Business Machines Corp.
Houston, Texas
AND
RE.\ITO FLORES
f niver&ity of Houston
Houston, Texas

ESC Facility in USASCII
EDITOR:

The Morenoff and McLean paper (Jan. 67) is interesting
lemonatrates the Escape (ESC) Facility in the US ISCH T "

facility has not been exercised previously as it perhaps s|
Certainly some code for non-numeric information processing
be permanently associated with one of the 255 indicators fob " '
the Escape character. It was proposed in 1962 in Stockholm'? ""5

block of these indicator codes should be reserved tor ass ' "4| '
with alternate codes for programming languages. Subun? ' '"!

alternate codes might be identical to USASCII, but th;- ??

f„n,l°thtnWOrd3- .Ule 8tand^i^tion process might „
future, yield some alternate standard codes for special p " "
which are m a sense subordinate to and linked through vK?

USASCTT r"0? Pr°P0Sal i8 '» 110 "ay in conflict UbAsC J, and is indeed consonant with it.

scruttevV'eo,lhe C°nStru,,tion P^ciples of his code are sub,,.,., „
scrutiny. One major premise is that functionally like •
graph.es (i.e., the alphabet) can be identified by bracketi. ?"

US Scn° A 7 Tmber8' F°r maj°r S6tS this is 1 rue hi
7 A seoond Premise is that within each such set n

Dlkhen ^ S?U?Cing °f character3 words can be ,ccum
p shed by simple binary comparisons of codes."

Here the author has fallen into a few traps, which might h™
been avoided by studying the bibliography of 73 2 The fir ,
i n t e r t0 me?Cau3e 1 did the same inthe IBM 7030—th:u j"

repersiug t le upper and lower case representations of era
the n£!™ T'? ?Ch fU" graph'C si8nificance. Tain't so „

phone books show. With Mr. Morenoff's code, we would have
De Carlo
De La Rue
De Long
DeLair
DeLancey
DeLaRue
Delancey
de Carlo
de la Rue
deLancey, and anguished subscribers.

I he only proper method is to strip the case bit (b6 in U>.ASCII,
. here) and make a minor comparison upon equality. This mav get

a little more complicated in the case of italics, which obviously *
cannot be interspersed with the other graphemes in the proposed j

Since the blank is high to digits and low to lettera, we get
A266
A2B
A 66
AB66

and
08
b8

The proposed code is perhaps more awkward than USASCII
n comparmg i wo numerals, since it requires radix point alignment

code gaUVe 3ignS mUSt bG ha'itJk'd aeParate'y in - ' i her

There could be difficulties here with editing instructions.

Workers in the code microcosm will be sure to welcome Mr-
Morenoff's interest.

Communication A of the ACM

H. W. BE.MER
General Electric Co.
ISI,S0 N. Black Canyon
Phoenix, Arizona 860S9

Volume 10 / Number 1 / April, I ' l l i

A iv J
U'chn]
the r.
foreigl
condi t|
such
)>eing
the
ofter
Comj
this
exam

If
cotr.p'
less
some
inde
no f
and
igr.o
con.^ij
plica
Are
Ev
dra
are.
tees
emt
Fre.
Pen
also
ing

disre
't in
are
to

of

are

of
II

voIUr|

SOFTWARE AND
REAL TIME SYSTEMS

Bemei

of a computer system^IUsTpoor w°?T ** the "Nation
mean the opposite of the physicS nieces f * JS intended to
W lch are a computer's "hardware." S and eJectronics

m^1 complex1'0 I„°abQ^^^ C^P°^nts j- becoming increas-
fanguage and processors, it became in^ J'"1 °f the Fortr°»
machine doesn't run," or, conversely thatch l° My that "the

Today, a real time system' 1 . 6 program doesn't
several remote terminals it has her' B controlled by
tell what is at fault when somethwT T™"7 imP°^ible to
complexity m computer systems, especially S J0*"' Increasmg

ightens the interaction between soft y reaJ dme area,
the previously separate functions of ficlT a"d hardware- Thus,
el S° Ware suPPort tend to depend ®nglneennS maintenance

ven merge, particularly in the diLn f °n each other and
is necessary to avoid this mm i 8 S1S of malfunction. What
«***? into ^,»»» . higher Cee
able service in the field when som!S ^ Pr°Vlde a more mli-
advisable to use a computer network fo§f ?S 8° Wr°ng' 11 is
and maintenance of software nZr . T fabncation> distribution
country sources for hardware and soft ^ ̂ are mu,ti"
and a subsidiary structure for sales aTser^T^ C°mp°nents'

Communication Problems

has « multiple sourc^of harZrTaJT™*' General

arising from this situation mav L ^ The diT«cultie
thetical, but realistic, problem of R'! nV" f°,Iowing hypo-
as several subsidiaries throughout Europ^™1 E,ectric> whicI]

30

company, and its management. Computer, teleprocessing and
mass memories are tools which have made an integrated manage
ment system possible, but they are not and can never be the
system itself.

A long, detailed study of the information system itself is not
necessary. In fact, when a decision system is established and the
staff is well trained to make decisions, the procedures within the
system automatically lead the computer to utilize all information
necessary to suggest a decision. On the other hand, the possi
bility of asking the computer questions about any subject, and
the existence of a data bank allow for a wide, flexible and econom
ical use of available information, and greatly reduce paper
handling, without the need for pre-established schemes.

To organize for an integrated management system means to
plan all the steps necessary to bring the whole company to the
right maturity to be able to use such a system. This is the longest
and most difficult process and also the one which requires a
steady guidance and definite plans and goals.

The establishment of a new, total management system is the
major goal in developing an integrated system. The support of
top management is a primary need in this process. Top manage
ment itself must work at this plan, because to transform a firm
means, first of all, to transform its top management.

If an engineer in Dusseldorf working on a structural analysis
problem has difficulties with his system, he cannot be sure if it
is hardware or software that is failing. In Dusseldorf, he very
likely has a General Electric computer for which the central
processor was fabricated in Phoenix or perhaps Oklahoma City;
the card equipment and punches, and perhaps some of the tapes,
could have been fabricated in France; and the printer most likely
would have been fabricated in Milan by Olivetti General Electric.
In addition, the system he is using is probably composed of the
work of programmers in Phoenix, Milan and Paris. The Dussel
dorf engineer would report his problem to Cologne where, in
turn, they report to Paris; there the problem is telexed on to
Phoenix. In other words, with this sort of system, there is no
way of diagnosing system breakdowns in a rapid-service form.

Communication Solutions

To remedy this situation, General Electric has devised both a
short-range and a long-range plan to provide a fabrication and
maintenance service to its customers by use of one or more central
computers. In the production system now being considered, one
or more central computers are connected by communications
links to systems programmers, sales offices and customer installa
tions. Motivations for such a system are

—optimization of European programming talent;

—rapid and efficient reporting and correction of malfunctions;

—common access files for sales control, queries and contracts;

—direct distribution of programs and documentation;

—controlled automated production of software;

—upgrading support personnel for better customer service.

In Europe, there are plenty of good software people, but they
live in different countries. This is the crux of the problem. To
fabricate a moderate-sized software system under present meth
ods, between 50 and 100 people are needed in one place. In
Europe this is fairly difficult because of language problems, social
security, working papers, passports, homes, moving and the like.
Europeans are less flexible for physical movement than are Amer-

31

icans. It is therefore expensive and difficult to set up a central
programming site and staff it multinationally.

To solve these complexities, the General Electric plan is to
set up a central computer in Europe connected directly to another
central computer in the United States, each of which having
direct communication to several programmers who are fabricat
ing the software, to the salesmen and customer representatives
who service customers, and to the field maintenance engineers.
In short, the totality of people who have to do with the computers
will do so through the central computer.

It is possible for a number of people working thousands of
miles away from each other to produce software jointly, since
software is a largely intellectual product. By its very nature, it
requires centralized control for fabrication, largely because of its
relative invisibility. But it is not especially critical where the
actual programmers are located with respect to the other functions
of the computer manufacturer, subject to sufficient liaisons with
designers. One characteristic of time-sharing systems which was
not expected by too many people is the now-proven, intense
human interaction possible between people connected to a com
puter—and now this interaction will actually fabricate the soft
ware that drives the computer itself.

International Software Development

Preparation for this type of work is presently under way in
London, where we have assembled a multinational group to build
a major software system. In many ways the methods remain
the same as before. However, the group is headed by an Amer
ican team of absolutely top rank which is enjoined to:

—teach all techniques of good software production while the
project is in operation;

—demonstrate all the techniques of good software project
management used, with particular attention to costs and
meeting of schedules:

—make available to every participant the schedules and pro
posed costs, so that they may simulate project management
as in a case study;

—indoctrinate in the usage of the new General Electric docu-

32

mentation models, that maximum information will be made
available to prospective users at the earliest moment, in a
necessarily complete and standardized format.

These Europeans are learning here, so thatjwhen they go back
to their various countries, they will form a nucleus of these even-

4aaf~ people who will fabricate software remotely. Essentially,
then, this is a seeding project to develop talent in the various
European countries. This group is doing a complete software
system for a 400 computer which operates on a disc only—it
doesn't require magnetic tape and the software system itself pri
marily uses the disc as its home base or residence.

It is of interest to know that in the planning stage of this pro
ject, which was carried out by three of the American team and
four from France, over 700 pages of specifications were produced
in six weeks; the Phoenix organization called this the most remark
able effort of this type that it had ever seen. Thus, we hope to
make a graceful transition in our subsidiaries, upgrading our
personnel to full software construction capability, while still pro
ceeding cautiously enough for adjustment when goals are missed.
The time scale is not felt to be critical, as there are no expectations
that European communications networks will all be of sufficiently
high and uniform quality for this type of operation for at least
three more years.

The second thing General Electric is doing in the way of prepa
ration are certain experiments in remote communications here in
Europe. For example, there is a GE 600 in Sweden, which is
soon to be operated remote from the 115, which is fabricated in
Milan. Another experience successfully tested at the London
Data Fair in early 1966 was to operate a New York computer
from Lf ndon.

The third element of preparation is something recently developed
in Phoenix, called the 6.45 System. The common method of
correcting programming mistakes is to punch cards and collate
these against the magnetic tape, producing a new tape which is
the corrected program. But now programmers for this system use
teletypes, often in their own homes, having developed a general
string manipulation system. This system takes strings of charac
ters, and can add to it to form the original string, copy it, delete
elements of the string, find elements in the string and replace them.
This is done under a program called ACE—Automatic Context

33

Editor. There is also a projection program called ACCESS.
The machine asks the user number, then the file name, then the
password. Persons without the proper password are denied access
to the file, thus guarding its information.

An example of an application of this technique is for organiza
tion charts. When somebody's salary or status is changed, the
manager marks the file from a telex, and gives access to this
file, with its changed condition, to the payroll man. It can also
be used for intraoffice communications. Each file also has
"mailbox" as a sub-file. Whenever access is made to a file, the
first thing that comes out is the latest mailbox information. In
this way, people who use a particular file can communicate
directly about and through it.

Future Implications of the System

It is certainly possible to make a superstructure of this system,
where the meaning, the relevance of what one wishes to put in, is
filtered and controlled before it is accepted. For example, before
a programmer can actually enter his instruction into the machine
for testing, it must pass a certain acceptance filter within the
computer. At the end of the month, it is easy for a supervisor
to check the records to see how many instructions each pro
grammer got by the filter, thus discovering his productivity. In
short, the computer program itself can thus be made to be a more
effective supervisor of programmers than humans.

Such systems are certainly interactive to the extent required
for intercommunication in joint remote production of software
systems. Furthermore, software tools may be constructed for
the central computer which monitor and control this production
process, filtering out unacceptable, incompatible and non-standard
inputs in a more effective way than possible for the human pro
gramming supervisor. Human supervisors cannot tell what pro
grammers are doing by looking at the programs; work is shown
only in running them. Therefore, control systems for software
production are being installed so that programmers must meet
certain benchmarks. Then a situation can be envisioned where
there are several programmers linked to each other in the produc
tion of the original software. After it is made, it must be dis
tributed, improved upon, and maintained free from malfunction;

34

the documentation must be complete and accurate, and the
customer must be taught how best to utilize his system.

A remote terminal is assumed to be a necessary adjunct to
every computer installation, existing either on site or at the sales
office. It is also assumed that qualified systems programmers
are engaged in remote production of new software, while ser
vicing current software and assisting customers in its proper usage.

When a field engineer on site is confronted with a malfunction
which he cannot immediately correct, he reports at his terminal
that a particular software element has malfunctioned while using
a particular user program. This report goes to the central
computer, which looks up the responsible programmer, locates
him, and asks him to correct it. He then studies the program,
and has the ability to access other computers of that class. The
net effect of this is to have the original programmer theoretically
on the site where the problem is.

When the programmer makes a change, he also has to go back
to the system. Before the change can be distributed, it must go
through a documentation check, so that at any time the program
and the documentation explaining how to use it are accurate and
matching. After this check, changes on both program and docu
mentation are distributed to all users of that class of equipment.
This means that the computing installation of the future will
always have a remote terminal which accesses this central support
computer.

A system for automated software production requires complete
files on equipment installed and on order; information must be
complete on both hardware and software configurations, software
production and delivery schedules, authorized software units, and
associated manuals. A sales office connected by terminal unit to
this central system may therefore verify accuracy and availability
of the items included in its sales proposal. Normally such basic
information will also be distributed to the field sales force in the
form of a price list or sales data book. This easy access to the
single, current, official information avoids errors and loss.

This system has some other advantages besides the production
of software. Incorporated in the system are schedules of produc
tion, which, for example, may include hardware production, deliv
eries to the customer, and legal and non-legal configurations.
Thus, the sales office gets the most accurate information possi
ble on what it is selling. Direct connection to sales offices should

35

facilitate usage of computer programs to evaluate computer per
formance. Through the SCERT program, it is also possible to
evaluate not only the computer a salesman is offering, but also
competitive computers on the same customer's problem.

A particularly important application of this system is the abili
ty to set realistic delivery schedules. The central system provides
the actual expected schedules, together with a margin for contrac
tual acceptability. If schedules in a proposed contract fall beyond
this limit, then the salesman is authorized to conclude the order
without further approval in this area. Thus the system can serve
as an order acceptance filter and update the on-order file. It
should not be too difficult to transmit this file or changes to the
factory to use as the official basis for factory order and production
schedules.

One of the best features of this system is the mobility of pro
grammers using the remote terminals. By having talent decentral
ized in various strategic areas around Europe, programmers are
physically available to assist customers. There are three classes
of work that can be done: original creation of the basic soft
ware, maintenance of the software, and assistance with customer
problems. One of the advantageous features of the remote pro
duction method is that field reporting and maintenance may be
done by experts who reside physically near to customer installa
tions. Since this is only a part-time assignment, the balance of
their time may be spent in creative software production and even
research. Furthermore, working directly with customers yields a
closer association with the mix of actual problems to be solved.
This experience is very valuable in the design and production of
new systems, for the latest needs and interests of customers can
be represented in both the design and quality assurance testing
phases.

The last benefit to be mentioned is that of optimization. The
central system maintains all schedules; the contractual require
ments are grouped and associated with the various hardware
and software units. This information may be used to manipu
late production priorities to give optimum customer satisfaction.

Summary

To summarize, the computer, by serving as a buffer and a filter
between programmers building software remotely, can serve better

36

than a human supervisor. Programmers will be placed under
strict production control, and the customer will get rapid correction
by having competent personnel near his site. It will be as though,
when an automobile breaks down, the chief engineer of Simca
were there to repair it. This is an ultimate goal of customer ser
vice.

37

Toward Standards for
Handwritten Zero and Oh
Much Ado About Nothing (and a Letter), or
A Martial Dossier on Distinguishing Between
Handwritten Zero and Oh

R. W. BEMER*
Member, ACM Standards Committee

The Chairman of the ACM Standards Committee,
Juhen Green has charged me with making "more effective
use of CACM for communication ... to get grass-roots
opinions from the ACM membership." This paper is the
first attempt.

A partial dossier on distinguishing between handwritten
zero and the letter oh is assembled here. This presentation
was triggered by a request for guidance in this matter pre-
anoe<^y United Kingdom Delegation to ISO/TC97/
^ SetS and CodinS> at the meeting in Paris
°n v ~16' The matter is just now in the Pr
ince of USASI X3.6, to which comments might be directed.

Comments will be expected within sixty days fby aD-
proximately October 1st].

TT O B , 58SEP11

(MayG1959)° IT RS °F SHARE [also in CACM

"Letter "0" is larger than "0" (zero) and includes a flour
ish at the top as when written as an English script capital
letter. Ihese distinctions are, clearly, a matter of personal
aste Better ones may well be proposed; in any event I

feel that some obvious distinction should be made, and
,at presently common use of "0" to represent the
letter 0 is confusing to the uninitiated and is harder to
write than "0"."

T? xat t* ~n 59MAR11
BEMER, PROPOSAL FOR A GENERALIZED 256 CHARAC

19-23]ARD C°DE SET [alS° ^ °ACM' 2 (Sept" 1959)'

"OH" is shown with an interior dot.

,*Mr,R' W; Bem®r is the member of the ACM Standards Commit
tee charged wUh responsibility for interfacing with the ACM
membership on current standardization activities. His address
ISS El6CtnC C°" 13430 N' KaCk - Phoenix, Arh

Volume 10 / Number 8 / August, 1967

E. LOHSE, Editor

P d m 59AUG26
G. R. TAIT, RPQ TO IBM [in SHARE Secretary Distribu

tion 58]

This will confirm my recent phone call for a 720A RPQ.
Specifically, the RPQ desired is one that will permit dis
tinguishing the alphabetic character "0" from the numeric
digit "zero". I would like to know the cost of adding two
more control rods to the alphabetic "0", namely, rod 5 in
row one and rod 4 in row two. This RPQ would yield an
alphabetic "0" that would have four rods in the upper
right-hand corner printing as a group. As such it would be
similar to an inverted "Q".

a TTi „ 60JUN1
AN EXTENDED CHARACTER SET STANDARD [IBM Report
t: 00.721, by R. W. Bemer and W. Buchholz]

A long-standing source of confusion has been the distinc
tion between upper-case Oh (0) and zero (0). Some groups
have solved this by writing zero as 0. Unfortunately, other
groups have chosen to write 0h as 0. Neither solution is
typographically attractive. Instead, it is proposed to
modify the upper-case 0h by a center dot and to write and
print it as O whenever a distinction is desired."
•p _ 60NOV4

ASAXST*' TO BRIAN POLLARD' CHAIRMAN

"Although not the most immediate problem of your sub
committee, standardization of an effective means of dif
ferentiating between the alphabetic "oh" and the numeric
zero is receiving much attention. Strictly speaking, only a
part of this problem is in your province. Nevertheless, it
would be beneficial if you could effect an early solution.

I shall outline here some of the background information
as know it. Undoubtedly more complete information is
available through certain competent individuals, whom
ever they may be. A wide distribution of this letter should
serve as an impetus to elicit this information.

1. Differentiation by Context. Most standard typewriters
make no distinction between the "oh" and the zero In
fact some do not have a key for the zero, relying upon the
capital oh instead. This is a convention rooted in time.
We speak, for example, of the Boeing sevens-seven, not
the Boeing seven-zero-seven. We distinguish the two usages
by the context. If inbedded in a set of alphabetic charac
ters it is assumed to be an "oh". If inbedded in a set of
digits, it is assumed to be a zero. It is precisely this need
for contextual differentiation that causes trouble in data
processing equipment. Many fields are mixed alphabetic
and numeric, such as part numbers, storage print-outs, etc.

Communications of the ACM 513

1
Differentiation by context is not suitable to any form of
character recognition.

2. Differentiation by Shape. A great deal of handset type
and some typewriters (for example, the IBM Executive)
differentiate by making the "oh" fatter and rounder while
the zero remains a narrow oval. Some fonts have dis
tinguished even more by making the "oh" squarish. Such
a difference in character width affords partial distinction;
it requires a size discrimination from the reader which
requires more concentration than graphic discrimination.
As a solution, it is inadequate in two respects: (a) for
typewriters with contant spacing, and (b) for parallel (or
line at a time) printers. Differentiation by shape is hardly
suitable for character recognition.

3. Differentiation by Additional Marks. It is common
practice (for both letters and figures) to aid identification
by adding dots, small circles, underlines, overlines, slashes,
umlauts, etc. If properly used, this seems the best method
for character recognition.

3a. The Slash. The slash has been used to distinguish
between the "oh" and the zero. The only problem is that
users have been inconsistent in deciding which of the two
should be slashed. To mention an example from either side,
the Signal Corps has used a slash through the zero for
many years and this is found on many teletypewriters; the
SHARE organization (a group of users of IBM 704, 709/
7090 equipment) uses the convention of a slash through
the "oh" for at least the handwritten symbol (while not a
SHARE standard, many installations have their high speed
printers thus equipped).

A case may be made for either convention on the basis of
usage. Technically, however, it would seem that the slashed
"oh" is preferable. The Waverly Press Type Manual shows
slashed zeros in their font on page 66, but only when the
decimal digits are similarly slashed. To the contrary, pages
50 through 56 (accented letters) show the "oh" slashed in
most fonts as well as C, D, S, etc. Historically and mathe
matically the practice has been to slash the alphabetic
character because of its lesser frequency compared with
numerics, (the mathematician's handwritten Z, for
example, which is distinguishable from the digit 2). A
possible conflict exists with the Danish and Norwegian
languages, which utilize both the slashed and nonslashed
"oh". However, reasoning from the German typewriters
which have special keys for each of the letters A, O, and U,
in the umlaut form, one may assume this is merely a con
venience in contradistinction to having a special umlaut
key that would require backspace and overprint. The slash
here seems to serve a function similar to the umlaut, and
thus the slashed "oh" can really be regarded as similar to
an umlauted character.

3b. The Tail. Some output printers use a degenerate
slash in the upper right-hand corner of the "oh", as in an
inverted Q. A specific example is that at the Western Data
Processing Center at UCLA. Furthermore, the hand
written capital "oh" has a similar tail (©).

514 Communications of the ACM

3c. Interior Dots. According to Mr. Julius Agin of RCA,
their numeric scanning t3"peface was derived from a report
of the US Army Ordinance Corps, TR-39, 15 January
1954, entitled "Standardization of the 5X7 Font". The
zero originally had a short vertical stroke in the center
which was "modified to the two dot center to help dif
ferentiate it from the numerical 8 and thus further increase
the distance between the ten digits for improved reliability
in a numeric-only machine". I understand that both the
Stromberg-Carlson printer and typewriters of the Armour
Research Foundation utilize a single dot interior to the
zero. This would appear to be contradictory to character
recognition requirements, since this would make the narrow
zero with the dot even less distinguishable from the 8. The
printer for the IBM 7030 uses a dot interior to a fat "oh".
This was chosen because it seemed impossible to reconcile
the argument between slashing the "oh" or the zero and
because it seemed reasonable to make the less frequently
printed character have the special marking. In addition,
this convention does not conflict with any existing usage
of accented letters. This convention has also been used
miscellaneously in ornate lettering, although in no way
connected. An everyday sample is that of the advertise
ment for Original Pabst Blue Ribbon Beer.

"I would appreciate your giving this letter (or some
augmented version of it) wide distribution for feedback
purposes."

61MAR23
MINUTES OF SHARE XVI
Page D.20.3 shows a proposed SHARE Character Set
(King) where the "Oh" has an interior dot.

61MAR29
G. F. RYCKMAN TO SHARE COMMITTEE CHAIRMAN, A

PROPOSED STANDARD FOR SHARE CHARACTER SET [In
SHARE Secretary Distribution 82]

". .. the General Standards Committee first agreed that
the present 48-character set must remain intact. One ex
ception to this is the alphabetic O, which is often confused
with the digit zero. The recommendation is that the letter
O (as printed) be changed to distinguish it from zero, e.g.
0."

61AUG21-25
MINUTES OF SHARE XVII

George Ryckman (GM), General Standards chairman,
called the attention of the members to the new proposed
61-character set which appears in Appendix E.3.1
In answer to a question by Frank Wagner (XA), Tom Steel
(RL) explained that the zero would differ from the O in
being noticeably thinner; no extra stroke would be added
to either character."

62MAR28
H. McG. Ross, FERRANTI, LTD., TO R. W. BEMER, IBM

e are now experiencing a significant amount of difficulty
resulting from confusion between the letter O and number
zero, and we have got to do something about it. My first
reaction was to write to you to enquire whether you have

Volume 10 / Number 8 / August, 1967

settled in your own mind a preferred solution to this prob
lem, or whether there is some arrangement which is be
coming fairly widely accepted.

"I might explain the way our own thinking has been
going. We feel that, as far as any printing machine is con
cerned, it would be adequate to use for letter 0 a rectangu
lar shape with rounded corners, and to use the ordinary
elliptical shape for zero. In reading printed documents,
we have found it rather irksome to have a dot in the middle
of a letter, and we feel that a full-length solidus through
every zero looks ghastly.

"The distinction will not, however, be sufficient for
handwriting. For this we would suggest the convention
that the letter and number should each have its own dis
tinctive mark, but that these should only be written when
there is any possibility of confusion. The distinctive marks
for this handwritten form which we at present favor are a
dot in the letter and a little mark coming down from the
top right corner of the figure zero.

"Thus, the conventions would be:

Printed:-

Handwritten

Letter

0

Zero

0
(only when a possibility of confusion):

0 0

think you will find it so in the attached copy of output
from the printer of the 7030 system.

"I would agree to any conventions for printing where
there is more area enclosed in the letter Oh than in the
digit 0. Your squarish solution conforms to this principle
and so does the typewriter convention of having a fatter
oval for the letter."

64MAY26
G. CARLSON, BRIGHAM YOUNG UNIVERSITY, TO J. E.

FEELY, THE MARTIN COMPANY [In SHARE Secretary
Distribution 122]

"I would appreciate the assistance of the SHARE mem
bers to clarifying some conventions in program writing. I
would appreciate it if you could publish the attached ques
tionnaire:

In an attempt to clarify hand-lettering standards, I
would appreciate your marking the following question
naire.

CHARACTER

Zero

Letter "0"

Number one

Letter "I"

Letter "Z"

Number two

HAND CODING CHARACTERS
AT YOUR INSTALLATION
(Please circle the one used)

H o

other

"In connection with zero, we understand that the full
solidus mark has recently been adopted by some British
Government groups and also by ICT, but this does con
flict with its use as phi and with the Norwegian letter.
We feel our suggestion looks better and would convey to
the user the same meaning as the full solidus mark. We
feel that the dot and the little dash would be very easily
written by hand."

62APR6
R. W. BEMER, IBM, TO H. MCG. ROSS, FERRANTI LTD.
"I enclose a copy of a previous letter (to Pollard, 60 Nov.
14) on this subject. As far as I know it has not done any
good although I have been insisting that it is a proper sub
ject for standardization bodies. You are, of course, at
liberty to use this letter in any way that you wish.

"You can see that I concur with your view that the
solidus is out of the question. However, I cannot agree
fully with your solution. The usual mathematical conven
tion is to place an additional mark or serif on any letter
that might be confused with digits, although this is some
times done within the digit group as in the German ?.
For this reason, and the additional reason that the script
Oh customarily has a tail, I would prefer that the letter O
carry the distinguishing mark in the handwritten form
and that the 0 carry no mark. In this case either of your con
ventions would be suitable for the letter. I do prefer the
center dot and have not found it irksome to read. I do not

64JUN14
SHARE PL/I PROJECT TO BEN FADEN [In SHARE Secre

tary Distribution 153]
"At the PL/I Project meeting in New York on June 7th,
the problem of character sets and how the various con
figurations should be handwrritten was discussed. We de
cided on the following:

minus sign —

letter

letter ^

letter (J)
AND ^

underscore t

number

number 2

number Q

OR _[

The slashing of the letter Oh is in conflict with the IBM
standard. I am enclosing a copy of a letter from Elliot
Nohr (IBM). Before we can recommend further action to
IBM on this, we would like input from the rest of
SHARE."

64DEC
IBM CORPORATE SYSTEMS PRACTICE 2-8015 [In SHARE

Secretary Distribution 153]

INTRODUCTION
"1.1 Objectives. The purpose of this practice is to pro-

Volume 10 / Number 8 / August, 1967 Communications of the ACM 515

mote a consistency in the representation of zero and a con
sistency in the representation of oh to avoid misinterpreta
tion.

1.2 Scope. This practice establishes the methods of
making distinguishable the graphic number, zero, and the
graphic letter, oh.

1.3 Applicability. This practice is to be followed where
it is necessary to differentiate between zero and oh and
where misinterpretation may arise, as, for example, in
hand drawings, documents for keypunching, and printing
and visual display devices. Where any other practice is
employed, transition to this practice is to be completed
prior to December 1,1965.

The character shapes for the stylized fonts for OCR
and MICR, including zero and oh, are defined in
separate standards documents. The OCR graphics
shown in this practice are for reference only.

RECOMMENDED PRACTICES
2.1 It is the existing and preferred practice that, on de

vices such as printers and typewriters, the character shapes
for zero and oh be sufficiently different and distinguishable.
Except for the stylized fonts used with OCR and MICR
it is the preferred practice to provide a narrow zero and a
wide oh. Examples are:

Zero Oh

Typewriter (engraved-type font) o 0

Keypunch (matrix-type font) • • j •

OCR Q ^

2.2 If the method described in Paragraph 2.1 is not
feasible for either handwriting or printing and a slash is
used to make zero and oh distinguishable, the practice to
be followed is:

The number, zero, will be slashed, i.e. 0.
The letter, oh, will not be slashed, i.e. 0

2.3 If neither of the methods in 2.1 or 2.2 is feasible
and some line or mark is needed (as opposed to character
shape stylization) to make the zero and oh distinguishable,
the line or mark is added to the zero."

650CT25
HARVEY S. MILLMAN, TO THE SECRETARY OF ASA X3
"With all the work being done on character sets for mag
netic encoding, optical scanning, etc., we wonder if there
is a convention to aid the lowly keypunch operator.

"The problem a keypunch operator faces in trying to
distinguish letter 0 and numeral zero, letter I and numeral
1, numeral 2 and letter Z is well known. Existing conven
tions are in conflict.

"Does an ASA Standard exist for "Handwritten Char
acters for Keypuncher Recognition"? If not, does ASA
plan to propose one?"

ffl
65NOV30

MINUTES OF BUSINESS EQUIPMENT MANUFACTURERS
ASSOCIATION, DPG STANDARDS MEETING

XS.2 Proposal for Standard Methods for Representation of
Similar Graphics in ASCII

X3.2 reports that there is a problem in the graphic shape
representation of 1 and I, 0 and 0, and 2 and Z. They have
asked the Chairman of X3 to determine whether or not
this problem is within their scope. It was suggested that
the Chairman of X3 form an ad hoc group of all of the
subcommittee chairmen and determine what should be
the method of distinguishing between similar graphics in
ASCII.

Mr. Vidro commented that originally precautions were
taken not to specify the graphic representation of the
symbols in ASCII and leaving the stylizing of symbols
to the manufacturers.

It was noted that since the problem is more connected
with the handwriting of the symbols than with their
printing, the work might more properly be done in X3.6.

65DEC14
MINUTES OF USASI X3, 21ST MEETING
7.5 Standard Representation of Similar Graphics in the

ASCII
. . . A m o t i o n w a s u n a n i m o u s l y a p p r o v e d t h a t :

X3 refer the problem to X3.6, making them prin
cipally responsible, with liaison and participation
by X3.4.

66JAN
L. RICHARD TURNER, NASA LEWIS RESEARCH CENTER,

LETTER TO EDITOR OF CACM, "ON THE CONFUSION
BETWEEN "0" AND "O" "

"I should like to describe briefly a technique which has
been in use at the Lewis Research Center of NASA for
approximately ten years for resolving the confusion be
tween the mark 0 intended to mean zero and the mark 0
intended to mean the character between N and P in the
Latin alphabet.

"As applied to the management of identifiers and
numerical values in assembler or compiler languages, it
has worked without failure and does not require that hu
man programmers differentiate between the similarly
shaped symbols for zero and the letter "0".

"The technique consists of translating the code for the
letter 0" to the code for the numeral 0 whenever it it
encountered in the input character string. If the string
consists only of items such as numbers and names and
it is necessary to sort alphabetically on names, the occur
rence of an alphabetic character within a name field is
used to cause the code for zero to be retranslated to the
code for the letter "0" by a rescan of the characters in
the name field.

"If no sorting is required, the retranslation can be
avoided, provided that delimiters such as FORMAT or
GO TO are spelled with zero within the recognizer seg
ment of a translator. It is also necessary to redefine

516 Communications of the ACM Volume 10 / Number 8 / August, 1967

identifier as
(identifier) ::= (letter) | (identifier)(letter) | (identi

fier) (digit) | (0) (identifier)
where it is understood that the letter "0" is removed from
the standard definition of letter as in ALGOL 60. The
redefinition permits the inclusion of identifiers such as
ODD or OOPS but prevents the use of an identifier con
sisting only of the repeated mark 0.

"This technique requires consistency of use and might
result in chaos in a warehousing operation in which the
letter "0" is used in parts labels with check digits."

66MAR4
PURPOSE, SCOPE AND WORKING PLAN OF X3.6.5
A fourth group on zero, 0, etc. has not yet been formed.

66MAR14
MINUTES OF 26TH MEETING OF USASI X3.6
X3.6.5.4—TG to study common practices for distinguish
ing between zero and 0, 2 and Z, etc. W. Morgan agreed to
act as temporary chairman.

66APR26
MINUTES OF 27th MEETING OF USASI X3.6
2. The Purpose, Scope and Working Plan of X3.6.5.4 is
suggested as:
a. Purpose: To promote consistency in the presentation

of 36 alphameric characters in the definition and man-
to-man communication of information processing
problems.

b. Scope: To establish a method for unmistakably pre
senting the alphameric characters A to Z and Zero to 9
in man-to-man communication.

c. Working Plan: (1) Collect data on common practices
for distinguishing between zero and letter 0, one and
letter I, letters u and v, etc. (2) Evaluate the data col
lected. (3) Prepare resolution for X3.6.5 on feasibility
of establishing an American Standard in this area.

3. A suggested title for X3.6.5.4 is "Alphameric Presen
tation".

66MAY26
MINUTES OF 28TH MEETING OF USASI X3.6
Alphameric Presentation. Members of X3.6 are urged to
send existing standards and other information to Mr. W.
D. Morgan. Task group members are needed.

66MAY
MICHAEL L. PERSHING, UNIVERSITY OF ILLINOIS, LETTER

TO EDITOR OF CACM "ON 0 AND 0"
"In reading the letter by Mr. Turner [On the Confusion
Between "0" and "0", Comm. ACM 9, 1 (Jan. 1966), 35],
I notice that his redefinition of the ALGOL (identifier) fails
to allow those such as "012ABC", which contain a digit
immediately after the zero. It seems that such a combina
tion of characters will pose no major recognition problems,
and should be allowed, providing only that it contains a
letter somewhere, other than the initial "0", which may
logically be taken as a letter or a digit.

"I therefore offer an addition to Mr. Turner's redefini
tion:
(identifier) :: = (letter) | (identifier) (letter) | (identifier)

(digit) | 0 (identifier) | 0 (unsigned integer) (letter) |
"I personally have avoided most of the confusion be

tween the two characters by attempting never to use either
character in mnemonic symbols unless it has some mne
monic significance and it is difficult to take it to be the
other. There are, however, some situations which are
beyond the control of the programmer, but with which we
are made to live; two of these are the FORTRAN internal
functions, MAXOF and MINOF. For situations such as
these, Mr. Turner's solution seems somewhat appro
priate."

66JUN20
H. W. NELSON, CHAIRMAN OF SHARE CHARACTER SET

COMMITTEE, TO BEN FADEN, NORTH AMERICAN AVIA
TION [In SHARE Secretary Distribution 154]

"I strongly support the recommendation of the PL/I
Project that one should slash the letter "0" and leave the
number zero unchanged when they are handwritten.
Numbers are handwritten much more frequently than
letters on sheets to be keypunched and therefore letters,
rather than numbers, should have extra lines added to
make them distinguishable. In our company we have
been applying this rule of adding extra lines to letters
with complete success for the past 15 years in preparing
sheets for keypunching. After all, this is simply an exten
sion of the rule for slashing Z's that we all learned in
mathematics. Also, if one is not especially careful, a
slashed zero may look like a six or a nine to keypunch
and verifier operators.

"IBM's procedure of slashing zeros is a "recommended
practice," and not a standard. Furthermore, as far as I am
concerned, it is applicable only internally to IBM. It, as
such, should not become by default a de facto standard
outside of that organization!

"I find it especially disconcerting to see slashed zeros in
all the written examples in "IBM System/360 Operating
System FORTRAN IV(E) Programmer's Guide," C28-
6603-0. (It would have looked even more ridiculous if they
had properly filled in columns 73-80 with sequencing
information instead of leaving them blank.) This, I fear,
will lead to a lot of unnecessary confusion in setting up
job control cards. I also question ending the name of the
FORTRAN compiler with a zero. Since the rest of the name
is letters, I'm sure many people who are not especially
sharp eyed will use the letter "0" instead. Frankly, using
OS/360 will be tough enough without adding all these
stumbling blocks besides. When is someone at IBM going
to start obeying those "THINK" signs they have hanging
up all over?"

66JUL22
GEO. WIEDERHOLD, STANFORD UNIVERSITY, TO H. W.

NELSON, CHAIRMAN OF SHARE CHARACTER SET
COMMITTEE [In SHARE Secretary Distribution 155]

Volume 1(1 / Number 8 / August, 1967 Communications of the ACM 517

"An escapist solution that we have used for a long time is
overlining the letter 0 thus: 0.

"I agree with your reasoning, but I hate to see opposite
conventions used by groups that have to work together."

66SEP27
MINUTES OF 29TH MEETING OF USASI X3.6
X3.6.5.4—Alphameric Presentation—a letter was sent to
all Army Departments asking for information on their
practices. Some information has been collected from other
sources and members of X3.6. A letter survey to be sent
out by BEMA will be prepared. This task group will meet
with the next meeting of X3.6.5 working group. Members
of X3.6 are urged to join this task group.

660CT14
R. W. BEMER TO J. W. PONTIUS, X3.8
"I am attaching some previous correspondence for your
information. In addition, Mr. Kivett has indicated that
he does not favor using the slash in publications (G.E.)
for external distribution. Instead, the ratio of width to
height should be the distinguishing characteristic, as
specified in item 2 of my 1960 November letter. While
Director of Systems Programming at Univac I invoked
this same policy in publications to avoid confusion with
conflicting practices.

"I think we may conclude from this material (in par
ticular the OCR work) that it is not likely that there will
be a national or international standard concerning the
slash and other distinguishing marks. A convention may
be maintained for hand-written material in the case of
keypunching. This may vary locally, but since the in
formation should not be exchanged in the hand-written
form this does not seem serious. We are obviously pro
gressing to a proliferation of keyboard devices where the

originator produces his own hard copy; thus the middle
man is eliminated and conventions become less neces
sary."

(In reply to a query on the following, of unknown
source): "Europeans, U. S. Military, and most U. S.
industrial concerns use the slant mark on the 0 (zero) when
needed to distinguish it from the 0 (oh). One way to
avoid ambiguity is to adopt the rule that a horizontal
mark signifies a letter, hence Z, and 0; and the slant mark
to indicate a numeral, hence 0. (This may conflict with the
European 7 (seven) but not many of us cross the seven.)
This rule is primarily for use on hand-written and draft
typed material. Wherever possible our published material
should be prepared with typewriters with distinct circles
to represent the letter 0 (oh) and distinct ovals to repre
sent 0 (zero). Every effort should be made to keep from
using any marks to distinguish the 0 from the 0 in illus
trations or text material of our external publications."

660CT26
MINUTES OF 30TH MEETING OF USASI X3.6
A letter requesting information from the EDP industry
is to be written by W. D. Morgan within the next week.
The letter will be sent out by BEMA to X3 members,
and other EDP users in the industry. A response time of
90 days will be requested.

66DEC7
MINUTES OF 31ST MEETING OF USASI X3.6
TG4—Alphameric Presentation—a letter requesting prac
tices in this area was sent to BEMA and distributed by
them to X3 members. Some concern was expressed as to
whether this represented the entire information processing
community.

518 Communications of the ACM Volume 10 / Number 8 / August, 1967

INFORMATION PROCESSING 68 - NORTH-HOLLAND PUBLISHING COMPANY - AMSTERDAM (1969)

SOFTWARE INSTRUMENTATION SYSTEMS
FOR OPTIMUM PERFORMANCE

R. W. BEMER and A. L. ELLISON
Information Systems Group, General Electric Company, Phoenix, Arizona, USA

Since the inception of electronic computers we have been accustomed to instrumentation of the actual
hardware by the common devices of the electronics field - counters, oscilloscopes , voltmeters^ aS
and now perhaps laser devices. However, there is an amazing phenomenon in the almost complete lack of

software. Yet we are aware that there are two levels of software imposed upon the
ha dware. First the basic system of the supplier and then the user-constructed application Performance
IOTTUS 5or in Ipr FFNW, uncontrolled and unmeasured imposition, with efficiencies running to as

How can ^.per cent of the theoretical potential of the system, as the hardware is capable of driving it
How can this state of affairs have existed so long without insurrection by the users ? Simply because

all systems available have such problems to a greater or lesser degree, and the inefficient gross
though they may be, occur in very small time intervals for each function. The programmers for both suo-
on^miHiseconrl8 7")!' that+son}ething required ten milliseconds to do that should have taken only

, u TanS C?T relate t0 anting that small in real time. Similarly they cannot detect
thrnnah ^ malfunction, which ends by doing the apparently right thing although it may have gone
Iv«tc thousand improper paths. Instrumentation must be used to detect what is really going on in the
system with system-oriented advice and tools to enable one to correct faults or choose new options

uch instrumentation should be used by the supplier to optimize the system software for the most
likely usage by a spectrum of users. Then it should be used by the application instanaMon to meTsure
whether inefficiencies are introduced by the specific way it uses the system (usually quite far from what
rith™ or^Jhad envisioned). Options to modify the system must be provided, such as choices of algo-
SlS? Pri°ri'ies- Fmally, instrumentation should be used periodically to monitor the effect of current
vJ™ (Par lCU y ,°r multlprogramming and multiprocessing environments), to indicate how to
vary these parameters on-line to accommodate the mix better. Yes, software proces^ control
just hrrdwLPeTPgive0some%hePr,er t0feXp°8f the problem' Justify instrumentation in the software form (not j st hardware), give some theory of complex processing environments, and give examples of actual ineffi-
ware'anH^ ft^Can de.tected °nly with suitable instrumentation. Implications for future design of hard-

re and software are discussed, together with lessons we believe we have learned in the development

1. INTRODUCTION

Instrumentation should be applied to software
with the same frequency and unconscious habit
with which oscilloscopes are used by the hardware
engineer.

Software attempts to keep the hardware running
as close as possible to maximum potential by
minimizing idle time and bridging the interfer
ences between successive (and perhaps simul
taneous) programs of different character and
facility requirements. Software overhead must
not degrade the system so much that only a
slight amount of the total time and resources are
expended in the production of answers. When a
system operates at 25% efficiency, as many do of
this third generation, there is a 4 to 1 leverage
on system productivity. The choice is clear be
tween instrumentation and improvement or buy
ing three more systems. Efficientjsoftware is
a tacit requirement in computer systems design.

In its absence, the balance of the system may
be distorted seriously.

Program testing consists of measuring a
program's performance against planned goals.
Does it really work as designed? We are accus
tomed to expect a new program to fail in various
ways until several iterations of a test and correc
tion process have been carried out. When the
program is "debugged", a certain measurement
of quality has been made. However, the actual
efficiency is rarely measured against the design.
Thus a very important measurement of quality
is not made.

Efficiency can be defined only in terms of
measurement and statistics. The programmer's
intuition (which we hope fervently will lose re
spectability and justification) does not suffice
in a complex environment. Gross measurements,
analogous to the "idiot lights" of automobiles,
are not sufficient to show why proper efficiency
is not attained. A gauge is required, as well as

520

System Implementation SOFTWARE INSTRUMENTATION SYSTEMS 521

special instrumentation systems at the service
center. The various modules must be timed in
dividually, and their interactions measured in
dividually.

If the actual performance of the system is less
than planned goals, the manufacturer should know
whether the system is capable of being improved
to the proper condition, and the user should know
if the inefficiencies stem from his job mix, his
methods of using the equipment, or inherent
system inability.

Without instrumentation, the user is swim
ming against the tide of history. It is commonly
thought that a good programmer naturally achieves
at least 80% of the maximum potential efficiency
for a program. But while systems have increased
greatly in size and complexity, the average ex
pertise of programmers has decreased. In fact,
it is axiomatic that virtually any program can
be speeded up 25 to 50% without significant re
design ! [1] Unless monitored and measured, a
program's efficiency may easily be as low as 25%.
What is worse, multiprogramming, multiproces
sing, real time, and other present-day methods
have created such a jumble of interactions and
interferences that without instrumentation it
would be impossible to know where effort applied
for change would yield the best return. One tries
to mine the highgrade ore first, while it still
exists.

2. THEORY
The potential causes of inefficiency are closely

analogous to those in human procedural systems:

waste inadequate resources
indecision poor resource deployment
interferences high overhead

Inefficiencies of all types can occur at various
levels within the computer system.

Until the software has been instrumented and
measured, there is no justification for any belief
that severe inefficiencies are absent. Further
more, it will be evident in the following section
on Practice that the specific sources of ineffi
ciency can rarely be identified without instru
mentation. A detailed description of the analysis
process is given in ref. [2],

The various kinds of instrumentation applied
in efficiency analysis can be categorized as:

- gross distribution of device times
within a program

- fine distribution of processor time
within a program

- workload statistics from installations
- traces
- instantaneous distribution of system resources
- overall time distribution of system resources

Improvements based on instrumentation and anal
ysis take two forms: elimination of efficiency
errors and optimization of system parameters.
Lack of optimization in an uninstrumented system
must be regarded as one type of efficiency error.

Optimization can aim for the general user,
a class of users, or for a specific user installa
tion - or even for temporary conditions (perhaps
cyclic) within an installation. Optimization by
the supplier will almost undoubtedly aim for the
hypothetical general user, perhaps with assist
ance provided for furt^r on-site optimization.
Unless the system is optimized for the individual
installation, its full potential cannot be realized.
Instrumentation is of course necessary to identi
fy the parameters to adjust and in what degree.

As software instrumentation gains acceptance,
it should be designed into the programs from the
outset. Efficiency measurements are then avail
able from the early stages of checkout, and tun
ing proceeds as an integral part of the diagnostic
process. We hope to see more instrumentation
for the design process itself in the future -
high-level system modeling, with simulation used
to measure key design choices.

3. PRACTICE

The proving ground for many of the instrument
ation ideas described here has been the
GE-625/635 computer system family, a large-
scale machine line oriented to multiprogramming
and multiprocessing.

It must be emphasized that instrumentation
and analysis are entirely symbiotic. Accordingly,
instrumentation techniques were developed in the
course of a broad-spectrum efficiency analysis
of the software. The analysis has progressed
from the operating system through the language
processors to the user's application programs,
with efforts well rewarded at all stages.

We give here a catalog of specific contributors
to inefficiency, derived from the authors' experi
ence and in some cases from the GE-625/635
analysis. Each is marked to give an indication
of the probable impact as we have found it (*** for
the most severe effect, * for the least).

3.1. Waste
Poor Code (*). Although very obvious, it is

522 R. W. BEMER and S. L. ELLISON Software

often unimportant and may be negligible in the
presence of other efficiency factors. Furthermore,
poor code is the hardest kind of inefficiency to
eliminate from a working program. Look else
where first.

Unnecessary Actions (**). Here are included
unnecessary typeouts, printouts, etc. Corrective
actions like rereading a tape block do not have
to be signalled to the operator. A better method
is to set a threshold value, informing the operator
of a probable service need when a unit has oper
ated in excess of that threshold. Similarly, a
store dump should not be printed automatically
on every program failure; the dump process
may represent more work to the computer than
the actual running of the program, and the dump
is often useless and distracting to the program
mer.

3.2. Indecision

Manner of Waiting (***). This concerns the
manner in which one process waits for the comp
letion of another. Two examples from a multi
programming system are:
- When a program requires I/O and the channel

it needs is busy, it should be removed from
processing and put into an I/O queue; it should
not repeatedly receive and then surrender con
trol (because it cannot do anything about it)
until the channel is free.

- When a non-resident module of the supervisor
is required, and not enough main store is free
to bring it in, the store manager should "sleep"
until more free store develops, not repeatedly
receive and surrender control.
Scheduling Errors (**). Certain efficiency

errors derive from redundant scheduling of soft
ware processes. Generally, redundant scheduling
occurs "just in case" the process may be needed.
For example, the resource allocation function
of the supervisor may be executed for every
change in free resource availability, however
trivial. If the resource allocator is non-resident,
the efficiency degradation from secondary effects
may be overwhelming.

3.3. Interferences
Interferences occur when two or more proces

ses require the same resource.
Unnecessary Device Competition (*). Prob

lems of this type arise primarily from design
mistakes. Examples include inadequate I/O
queuing provisions and lack of a centralized
console output program equipped with adequate

message buffers.
Workload Imbalance (**). A multiprogramming

supervisor should avoid creating obvious inter
ferences such as scheduling several processor-
bound programs for concurrent execution in a uni-^
processing environment, or scheduling two sorts
on one magnetic tape channel. The user can help
to balance the workload through his own operating
procedures.

Unnecessary Serialization (***). A common
intuition is that each program should minimize
its resource requirements in a multiprogram
ming system, so that the number of concurrent
programs in execution will be maximized. This
idea is reversed by careful analysis. When a
programmer elects non-overlapped I/O and proc
essing, he guarantees that all of his program's
resources will be tied up for the maximum pos
sible time - in some cases 3 times as long as
with full overlap. The amount of extra store
required for overlapped I/O is nearly always
small in comparison to the overall store re
quirement of the program. Basically, a program
should never delay initiating anything it can
usefully do. To achieve peak hardware efficiency,
the supervisor requires a queue of at least one
1/O request for each channel and at least one
processing request for each processor. An indi
vidual program with overlapped I/O can often
keep requests in two or three such queues througl^^
out its execution.

3.4. Inadequate Resources
Given inadequate hardware resources, soft

ware cannot drive the hardware to peak perfor
mance. On the other hand, excessive resources
mean excessive expense. Optimization is required.

Temporary Store for Supervisor (**). When
a nonresident module of the supervisor is re
quired and inadequate free store is available,
either its execution must be delayed or else '
some other program must be swapped out. In
either case performance is degraded. To mi
nimize the consequences, the fraction of fast
store reserved for non-resident modules should
be tuned for each user installation, and perhaps
varied to reflect cyclic changes in workload.

Secondary Store (*). For a multiprogram
ming system, maximum throughput assumes
concurrent execution of multiple software ele
ments. The amount of secondary store reserved
for this purpose must also be tuned for optimal
performance in each user installation. Similarly
the total number of magnetic tape handlers and
channels, the total capacity of the primary and

System Implementation SOFTWARE INSTRUMENTATION SYSTEMS 523

secondary store, and other related parameters
require tuning to the actual workload.

3.5 . Poor Resource Deployment

Poor Blocking (***). Use of small blocks on
bulk storage devices invokes extra delays for
device latency, in practice by 2 to 1 or more.
In a multiprogramming system, with facilities
timeshared between programs, one program's
poor blocking generally delays that program and
others as well.

Poor Data Organization (**). Two cases of
data organization on rotating storage are parti
cularly significant. First, serial searching of
serially ordered files is unnecessary and quite
wasteful. Second, the space allocation strategy
on any movable arm device should carefully min
imize arm movement.

Alternate Device Tradeoffs (*). If given mag
netic tapes, disc and high speed drum storage in
a multiprogramming environment, which medium
shall be used for each of the system software files
and each application program file? A serially-ac
cessed file could reside on any of the media
mentioned, but limited drum space, relatively
slow disc speed, and tape mounting time must be
considered. Again, tuning to the user's actual
workload.

I
3.6. High Overhead

We come at last to the universal scapegoat.
By "overhead" we understand the fraction of
total hardware capability required for the neces
sary work of the supervisor. Intuition attributes
most observed inefficiency to this contributor.
However, the actual degradation of system pro
ductivity resulting from overhead is likely to
prove to be a low order effect after other inef
ficiency causes are removed. Nevertheless,
sources of high overhead merit attention.

Unit Record Handling (**). if print lines are
issued one at a time by the software, with a pro
cessor interrupt and dispatching of a media con
version program as required for each line, the
system efficiency must be much lower than with
multiple line bursts. Most of the capability of
the resident supervisor is involved in the former
cases, while in the latter a small extension to
the interrupt handler (or better yet, the I/O hard
ware) suffices for most print lines.

Worst Case Orientation (**). For the decision
logic in any program there is usually a statisti
cally dominant combination of properties which
occurs in anywhere from 50 to 90% of the trans-

i actions. A program should be organized to re

cognize the dominant pattern in a minimum num
ber of tests (the first to be made !) and thus
avoid all other testing or special action required
for the minority cases. A 2:1 efficiency ratio is
often at stake.

Expensive Elegance (***). Special features
and degrees of freedom calculated to whet the
fancy of the sophisticated programmer, yet
rarely used, can degrade overwhelmingly the
system productivity. The reader is invited to
think of his own examples.

4. SOME HARDWARE DESIGN IMPLICATIONS

Basic facilities for software instrumentation
are a rundown timer (which generates program
interrupts) and an accurate time-of-day clock.

Even after software is free of major flaws,
system performance still varies with workload.
As presented to the system at different times,
the same program may require various treat
ments of control conditions to run optimally. If
the job mix is presented by human operators,
some variables of the system may be controlled
at human interaction time. Choices may be
made for:
- facility assignment and usage (presuming

interfaces such that facilities are inter
changeable in usage)

- one of a multiplicity of algorithms for each
main control function
program introduction time and mix (operator
may choose to delay or reorder programs)
Theoretically most of these adjustments

could be made automatically by the software. In
practice some must be relegated to operator
control. Information can be supplied to the ope
rator in simple form, such as a visual display
indicating per cent loading (continuous) of the
facilities - store, drum, disc, tape, etc.

A console facility should be provided for the
operator to bias these assignments. The software
can interrogate the dial settings periodically and
update the control parameters. The operator could
even try various settings experimentally, reset
ting previous conditions automatically in case he
overshoots.

5. SOME SOFTWARE DESIGN IMPLICATIONS

Some lessons learned from this work are:
- Design software units to be as self-contained

as possible, to allow easier and freer choice
of alternatives and modifications

524
R. W. BEMER and A. L. ELLISON Software

It is mandatory not to fix the variables of a
system by imbedding them implicitly in the
programs
However, it is preferable to fix the variables
explicitly unless the user is supplied with
advice on how to set them, and instrumen
tation to measure the effect of the setting.

REFERENCES ^ ,
[1] H. Sackman, W . J . Erikson and E. E. Grant, Explo

ratory Experimental Studies Comparing On-Line
and Off-Line Programming Performance, Comm.
ACM 11 (1968).

[21 H.N. Cantrell and A. L. Ellison, Multiprogramming
System Performance Measurement and Analysis,
Proc. AFIPS Conference 1968, Vol. 32, pp. 213-221.

D I S C U S S I O N

Remark by P. Samet
I entirely agree with you. There is a great

need for proper accounting with all jobs. At our
installation at University College, London, we
have recorded the steps into which people's jobs
fall. At the end of the week we automatically
know how much time was spent compiling pro

grams, executing, link editing. From these sta
tistics we can determine which steps are worth
investigating.

Answer
This method is the beginning of attacking the

inefficiency. When the main source of inefficiency
has been determined, it is then possible to attack
the finer causes.

Reprinted from
Annual Review in

AUTOMATIC
PROGRAMMING
Volume 5

A Politico-Social History
of Algol

R. W. Bemer

Edited by

Mark Halpern and Christopher Shaw

PERGAMON PRESS I V L O A O X F O R D - N E W y 0 R K - j g g g

c3
cd

CO

<D <3 o "O o

•- o
O H) I / J J J
" 3 £ - y
2 C3 C3 5 7: .C — i_ Dh O
- o cp'G ^
<« .12 P c £
C3 (/) J •-•

§ a ^ o
o 5J O
« O J3 *i

.£ s .2 •=

W-l •-» I fl)
o « o >

•= 2 «
C ~ D< J~
0 C <U H-.

•5 o .c 2
!2 "5 H 3
-3 GO Q

a a bh S

G 3

Jr r-> > 2 - =

' <D _ w

' rt ^ *-

i - S S £

: II -C G u.
-o 3 w CO c/)

^ U ?3 ~
0 « 3
-a •— c

3 'z:

<2 3 3 o .=

o = 3

O O

<D
O 2 > u
j 3 > J
< >.T3 u

3 C >
C3 C3 C3 c3 cs o

— o

C ^ O 'C V 3
v- e +-» <D

<J GO 6J) _-.
+-1 r r r «
C "3 G .S O C>
— j_ <D — rJZ

« S ^ E S

T J ' O O ^ O X)

n <3-> .5 «£ &

•4—t V 1 ^ CO

co m a . 2 S

z H 2 o

6 z o
CO < c
2 « <0
?. H «
G 2 '>

5 5 3 6 . T 3

— _i U

a. 5

-a c o

.3 c

—I, co

— C

<L>

o J

C 00
03 >—1

O .
<D
•° O

O, <L)

O Q. > &Q

2 = 25
tr GO — 03
:£ C4— 5-1

't? -M -M
<D O - GO

£>•* ^
S3 o <L) *3

1 a-s o y

c ^ o
(3 O +j D

o c X* n O n

~ o «

CJ c U
"3 O £
G . —•

*C ^3 5 dj CX,

1 -^-1 T3 u- O .£

>- .

• G G

C-O

<D O-t
Cj G

>,
u

- • £ 3

cS ts «
•a «= ^

00 o

2 ~ J
co^ o, 2 o

•— <<i o f~ o •
" O 3 h j
^ >—' fTl -<

u

T3

O JZ

- U

o\

H ^ ,~

•*-* 0 0
3 DUG

X5 c H
C3

O JC
a. CJ
0 IN •~l
u* O j
G

UJ
G c

C CJ u

* •"* E -3
0 CJ
0
G

"O
cd

1/
G/
<L

C3 CJ u

H, 3 c)
(

<D
O
CJ

<D
G:
N-N

w
C «

3 u. 3
0 c

O <N-H >
•O cc
• —• G:

E

T3
C

15
0
>

2
3

3 O
O 3 g:

<4-1 GO GO

GO
3

oS
GO G

.c a* 0 a 0
-J g: G
0
0
_}

u.
0
a.

<

< •-<
a. 00

CJ D/

« S °

3 - H
D.T3 -a
2 2 =

H J

G ^ c
G ^ G/5

w § < 2

•° 8

3 £ o! J
O 03 hlo
t! co «Io

A Politico-Social History of Algol!
(With a Chronology in the Form of a Log Book)

R. W. BEMER

Introduction

This is an admittedly fragmentary chronicle of events in the develop
ment of the algorithmic language ALGOL. Nevertheless, it seems perti
nent, while we await the advent of a technical and conceptual history, to
outline the matrix of forces which shaped that history in a political and
social sense. Perhaps the author's role is only that of recorder of visible
events, rather than the complex interplay of ideas which have made
ALGOL the force it is in the computational world. It is true, as Professor
Ershov stated in his review of a draft of the present work, that "the
reading of this history, rich in curious details, nevertheless does not
enable the beginner to understand why ALGOL, with a history that
would seem more disappointing than triumphant, changed the face of
current programming". I can only state that the time scale and my own
lesser competence do not allow the tracing of conceptual development
in requisite detail. Books are sure to follow in this area, particularly
one by Knuth.

A further defect in the present work is the relatively lesser availability
of European input to the log, although I could claim better access
than many in the U.S.A. This is regrettable in view of the relatively
stronger support given to ALGOL in Europe. Perhaps this calmer
acceptance had the effect of reducing the number of significant entries
for a log such as this.

Following a brief view of the pattern of events come the entries of the
chronology, or log, numbered for reference in the text. These log
entries are taken primarily from published articles, news and minutes.
However, they are necessarily much abridged, as people seldom write
compactly for history. The responsibility for their choice and abridge
ment is mine, and considerable care has been taken not to quote out of
context and either misrepresent or misportray any of the actors (mostly

t The introductory text is adapted from the introduction to C. P. Lecht, The
Programmer's ALGOL, McGraw-Hill, 1967.

152 R. IV. Bemer

living) in the ALGOL drama. Also included is a reasonably compre
hensive bibliography of papers, books and meetings which show
primary emphasis on ALGOL.

The Pattern

ALGOL was started with high hopes for both universalism and effi
cacy. The first occurred slowly because of business practicality the
slowness of communication in such a large field, and the lack 'of a
controlling body. The second lagged because such a language matures
slowly, being dependent upon actual usage and experience for feed-
A^nr ^"lPrrement- S°me °f the US" Participants in def.nine
„G,0L 60 ,had Just, returned from the Paris meeting when a so-
approved™15 8r°UP demonstrated the ambiguities they had unwittingly

One can give several reasons for this slow maturation. They are:

1. INEFFECTIVE DESCRIPTION AND PUBLIC RELATIONS

FORTRANWJS a"d POWer of ALGOL (perhaps as compared to
imnrove^ f °bvi°us to a11 ^cause the desirable nature of its
[751 The firft1CaanHg0r h Sferality were not publicized effectively

Si of .he language

tion is given correspondingly kSltaSIf,htC descri"-
far more forbidding than ALGOL £ S™' As SUch'11 looks

many more exceptions and structural faulS *** St * demonstrates

Supporters of the language were in or.
needed [77], and some arguments were LH thT"1 aCt'°n W3S

that difficult [107], More than this correct A^Cof ̂ "0t

easier to achieve [1151. Other attPmnf ALGOL usage seemed
representation [75], but the flexihilit made t0 P°PuIanze the
the average practitioner. ^ an Power obviously frightened

2. D™CE ,N ORIENTATION BETWEEN THE U.S. AND EUROPE

was only a fraction™ iiiteu S" f°rmula la"8uage in Europe
in numbers of computers in use Th, r°UghIy parallel'ng the disparity

P in use. Thus a reasonably fresh start was

A Politico-Social History of Algol 153
possible [2], The U.S. community felt itself to be more practical and
suspected the Europeans of idealism. Indeed, it was not possible to
assume that professional adoption of ALGOL in Europe implied full
international acceptance [87]. By number of countries, yes; by number
of users, no. An ISO standard for the language is possible only at the
end of 1967, because requirements for such a standard transcend what
was envisioned in 1958, or even 1961.

ALGOL should have progressed more rapidly in the U.S., for the
^-*T>owertul SHARE organization certainly gaV6 II initial support [14],

JiHARE had planned to stop further modification to FOOTRXN and
^ adopt ALGOL [19, 26], Yet later it withdrew acceptance [93] and pro-

ceeded with FORTRAN IV, even though that language was also
incompatible with its predecessor [74]. Primarily this was due to a vested^.\
interest in FORTRAN programs [112, 128, 138], despite published^-''
reasons oi ianure ro acnieve a successful processor [92, 93], Europeans
who puzzled over this, in light of their own successes [36, 50], will
now find this easier to understand with the recent failure of the
Decimal ASCII card code (adopted for a while as an ECMA standard)
to hold under the onslaught of the vested interest in Hollerith-based
codes.

Whereas the U.S. Government gave strong support to the COBOL
language, for business data processing, they did not to ALGOL. In
contrast, the German Research Council desired that all computers at
German universities be equipped with ALGOL processors as a condi
tion of placing an order. Since it reportedly provides 95 % of the funding
for this purpose, the support is assumed to be strong [179].

3. ACCENT ON PRODUCTION

ALGOL came on the scene just when U.S. users were engaged in a
struggle to achieve production to justify all that expensive computer
equipment they had ordered for purposes of advertising and keeping
up with the Joneses. Thus most ALGOL processors were experimental
at a time when FORTRAN was well into production. This pushed
FORTRAN from version I to II, where programs already converted into
machine language could be called for execution by a FORTRAN
program. In many cases these pre-compiled subprograms may have been
written in another procedure language, such as COBOL. Some installa
tions made a practice of using FORTRAN as a linkage skeleton, with
the main part of the working program written in other languages.
Such usage was not applied in volume to ALGOL, and some claimed
[136] that it could not be done [141, 171], Spuriously, of course (see
ALGOL for the UNIVAC 1107, calling FORTRAN and machine
language subprograms).

154 R. W. Benier

4. INEFFECTIVE MAINTENANCE

ALGOL was the first language attempted originally on an inter
national scale. FORTRAN was for some time under the control of a
s ingle manufacturer and C OBOL was under f irm indnury

—^ ALGOL, however, was opened to all who had an interest [55], This
led to heterogenous membership in maintenance groups [84], many of
whose members had no conception of what the term "maintenance"
meant to the others [60], This led to the abortive Oak Ridge proposal
[64, 73]. Universities and research centers did not have the same
requirements as a manufacturer, who could be forced to pay heavy
contractual penalties if software did not perform properly. In this
case it became "properly according to whom?" [100].

This was the problem facing IBM, whose recognized leadership in
the computer field might have put ALGOL over sooner, had they been
so inclined. IBM ALGOL was available [103], consisting of ALGOL
where ALGOL and FORTRAN did the same function, and FORTRAN
where ALGOL was lacking, such as in input-output statements at that
time. But formal control was lacking, and IBM seemed to avoid wisely
the political situation. While they could have, they did not wish to
usurp control. Better to be prudent and not risk the vagaries of some
one actively engaged in writing programs in the ALGOL 60 language"
[55] who has a committee vote equivalent to that of IBM!

This was finally expressed with sufficient strength [90, 91, 108]
and control was vested [118] in IFIPS (now 1FIP), a responsible

o y which has mounted an excellent effort leading to resurgence in

5. RESTRICTIONS ON CHARACTER SET AVAILABLE

The expanded character set of ALGOL (116 symbols requiring some
• 1C rePrepentation, such as ? for if) appeared far in advance of
nnNiWa[e COuld handle it properly. The obvious device of a
AT r"rvD°n and re^erence language did not suffice in actuality. The
ipnnrpliI r«?!J?,5K this Problem strongly [36. 186], Predictions were
difficult" TS ^°"p" and tbcn tbe uscrs f°unc' out

was mLin' 1Vfeanwhlle the development of the ISO (ASCII) code
tvne hQH < aCC ub'e 0356 alphabets are still rare, although Tele-
Model t7 f" exP^r'.mental terminal in 1965 and showed a special
reserve a « *'!!<• •ln Spring °f 1967. A proposal was made [125] to
for Dmurnn! switching characters, following the ESCape character,
followed up min® 'anSuage usage, but this was never understood or

A Politico-Social History of Algol 155

6. LACK OF INPUT-OUTPUT PROVISIONS

This has been a very real deterrent to the acceptance of ALGOL for
production computation [103, 132, 133, 144, 148, 161, 163], Fortunately
some excellent work appeared at a critical time [156], which has
alleviated the problem significantly [187].

The Benefits of ALGOL
1. INTEREST

ALGOL provided the first big vehicle for international discussions
on a commonly developed language for the computing field, and put a
lot of people to thinking, which is continuing. It was acclaimed, damned,
and then treated respectfully with the growth of fuller understanding.
Until the end of 1960, Datamation (presumably the leading U.S.
periodical in the field) took very little public notice. Around the end of
1961 the interest started to run high and was maintained through 1964,
gradually decreasing from that time.

2. NOTATION

Inadequacies in the ALGOL 58 Report led John Backus to propose
the essentials of a new method in 1959 [24], Woodger states that prior
to this no European ALGOL specification of comparable formality
either existed or was considered necessary. Dubbed BNF, or Backus
Normal Form, it was one of several independent developments. Knuth
suggested (CACM 7, No. 12) that the initials stand for Backus Naur
Form, but then Ingerman discovered (CACM 10, No. 3) virtually the
same scheme prior to 200 B.C.! Regardless of this, it was the metal
inguistic tool which provided impetus to further developments in lang
uages, construction languages and processors. Many consider it the
most important characteristic of ALGOL 60.

Knuth also points out how the Report has given implicitly standard
terms and definitions for programming terminology, e.g., statement,
declaration, type, label, primary, block, etc.

3. UNDERSTANDABLE ALGORITHMS FOR HUMAN
MACHINE INTERCHANGE

The interest of most numerical analysts has been captured by the
possibility of describing their processes in a way that is at the same
time very readable for understanding and also suitable for machine
translation on a variety of equipment to produce working programs

156 R. W. Bemer
which perform those processes. A relatively large number of algorithms
have been published in:

Communications of the ACM (U.S.A.)
The Computer Journal/Bulletin (U.K.)
B.I.T. (Scandinavia)
Algorytmy (Poland)
Numerische Mathematik (Germany)

Also in Selected Numerical Methods (Gram, Regnecentralen,
Copenhagen, 1962, 308 pp.)

Computer Programs for Physical Chemistry
(Maine and Seawright)

Ageev has edited a Russian translation of the CACM Algorithms,
Nos. 1-50 in 66 May, Nos. 51-100 in 66 June. Indexes of algorithms
have been published in the Communications of the ACM, in the issues
for 62 Jan, 64 Mar, 64 Dec and 65 Dec. Apparently missing is the
Taschenbuch [35, 59], which was to be a handbook in five or more
volumes published by Springer-Verlag. Designed to be a compendium
of numerical knowledge encapsulated in the ALGOL language, this
is not yet available, although typescript for a part of Vol. 1 was reported
to be in draft form in 66 Oct. Possibly a sufficient body of algorithms
has not yet been accumulated in a comprehensive manner.

4. As A CONSTRUCTION LANGUAGE AND FOR SUPERSTRUCTURES

at Armour Research Foundation, that "languages
° e uture, whether or not they be outgrowths, modifications or
adaptations of our present languages, will survive only on the basis
o eing both introspective and reproductive. They must have the
aci ity to talk about themselves and specify their processor in their

own anguage. ALGOL has been more successful than most in this
ATR-RVJ11 ^°e' °^erec* at the Rome meeting to supply a version of
th^Rsooo^u11 essential,y in ALGOL. Burroughs did* ALGOL for
M t, "V. 1S.manr>er, and so did Bull General Electric for the 600.
processors* 1S' keen use<* as a construction language for other

structnric^^^^^ anc* ALGOL have been used as bases for super-
An pvrpnt° °i 1Cr pro8rams> both applications and other languages.
Comnutina°ra examP|e this is SIMULA, done by the Norwegian
It is mv re' 1£h both connective to and written in ALGOL.
this Durnnsp't'i?n 1 3t ALGOL has so far lent itself more suitably for
this purpose than any competitor of standing.

A Politico-Social History of Algol 157

5. EFFECT UPON COMPUTER DESIGN

It has been tempting to ascribe to ALGOL influence the pushdown
stores of the English Electric KDF9 and the Burroughs B5000, which
were introduced during the early ALGOL period, especially since the
design and advertising goals of the latter machine were oriented to
direct usage of ALGOL (and COBOL). This was because of translation
methods variously labelled stacks, cellar, L1FO (last in, first out), and
the like, which were utilized in ALGOL processors. Although these
techniques are related, the basic hardware ideas were of a much earlier
vintage. It is said that they appear in the B5000 because it was easier
to translate to Polish notation than to one-address machine language.
Direct ALGOL effects upon the B5000 are illustrated by the "operand
call", specifically tailored to the "call by name" of ALGOL. Like
languages also had a considerable effect upon design of computers for
operating directly from source language without translation, such as
the ADAM computer by Rice and Mullery of IBM.

6. A LANGUAGE FOR NEW GENERATIONS OF COMPUTERS

ALGOL X and Y are being developed as successors [166, 169, 173]
to ALGOL 60. There was formerly an inexpressible and intuitive feeling
by ALGOL proponents that the elegant and simple structure was of
great value [122], but this could not be shown to enough advantage to
convince FORTRAN users. Multiprocessing, multiprogramming, reac
tive operation, time-sharing and realtime environments provided the
crucial evaluation. The basic power of ALGOL is more evident now
that facilities must be provided in a language to handle these new
complications. This was evident in IBM's switch [161, 169, 172] to a
new language with many of the features of ALGOL. However, IFIP
has not been relaxing in its role of custodian for ALGOL. ALGOL X
shows many differences from ALGOL 60. For example, Naur has
proposed [171] an environment and data division. The lesson of 1959
COMTRAN has been learned.

7. DISPELLING A MYTH

At the beginning of the ALGOL effort, SHARE was promoting
UNCOL, or Universal Computer Oriented Language [4], but its
proponents do not seem much in evidence these days. The first APIC
Annual Review in Automatic Programming had an article indicating that
no UNCOL processors were running yet, due to the fact that language
specifications were incomplete. One wonders where it is after these
eight years; apparently the last published paper was that in the 62 Jan

158 R. W. Bemer
Computer Bulletin. We should hesitate to compare it to the philosopher's
stone, however, because successful processors have been constructed
with special purpose languages just one step up from the UNCOI
concept.

Summation
A few quantitative measurements are perhaps useful to round out this

special history:

1. Interest in ALGOL has been international since its inception.
However, the circle of interested countries has expanded recently The
mailing list for ALGOL Bulletin No. 19 included recipients in-

Australia
Austria
Belgium
Canada
China

Czechoslovakia
Denmark
France
Germany W.
Germany E.

Italy
Japan
Netherlands
Norway
Poland

Sweden
Switzerland
United Kingdom
United Slates
U.S.S.R.

y the time of ALGOL Bulletin No. 25, this group was augmented by:
Argentina
Brazil
Finland

Hungary
India
Irish Republic

Israel
Mexico
Rumania

South Africa
Spain

ALGOrxtLTcof'"" IS i'hC bCSf Way to note the Pr°gress of

pies may be obtained from three sources:

^ the^ther^ CCntre' 26 B«^haavestraat 49, Amsterdam-O,
fbl p C7NeTtherIands (attention M. F. Calisch).

08101 if S™3"' Bldg. 204-2, Camden, New Jersey
(c) SIGPLAN Notices P I QL _ , .

Corporation 2500 cflo ?W' ' System DeveloPraent
90406 ii c A ~/"r-u a Avenue, Santa Monica, California
upon issuance.) °°L is rcPrin,cd in lh£se "otices

variants have fathered ajamhfrnf,
fi29r5ALGOL CPL I|6'l. NEUAC
often considered TO K/ t I _ etc-' whereas FORTRAN is
the authors of the A l rnf' b°"^he only difference 1 can see is that
the authors of the FORTD A^anants gave them different names, while
name, regardless of d w variants for the most part retained the
effect of common f •' erence ® available features and operational
(Prior to standarriivaf rCv °"' SUrVey of the <***•» FORTRAN!
of which eight exist H°n- u- now USASI) showed over a dozen,

eight existed wtthtn IBM itself. Then too, FORTRAN II is

A Politico-Social History of Algol 159
quite different from FORTRAN I, and FORTRAN IV goes so far as
to be intentionally incompatible with FORTRAN II [74], This is
reflected in the USASI Vocabulary, which defines FORTRAN as .
Any of several specific procedure oriented languages."

3. In comparing ALGOL to FORTRAN we note the following:

(a) From a publication and paper viewpoint, the KWIC index to the
AF1PS Conferences, 1951-1964, shows two papers on ALGOL and
one on FORTRAN (the original), and is inconclusive. The KWIC
index to Computing Reviews (ACM), 1960-1963, shows 49 papers on
ALGOL to 11 on FORTRAN, but this is certainly equalized by the
fact that FORTRAN is by far the earlier language. It arrived at a time
when most of the present journals in information processing, such as
the Communications of the ACM, were non-existent, and naturally the
most papers would arise during the earliest life of a programming
language.

(b) From the standpoint of the number of published algorithms,
ALGOL holds a commanding lead.

(c) The number of books and texts could be considered roughly
equal.

(d) When last surveyed, the number of processors for various com
puters was about equal (CACM, 63 Mar). Despite a formal request
through the ALGOL Bulletin, the ISO survey [125] has not been updated
in this area. W. McClelland, director of the ISO/TC97/SC5 survey at
the time of its publication, reports that lack of information forced the
disbandment of that subgroup. However, the number of ALGOL pro
cessors has certainly increased considerably since that time, possibly
more in proportion than FORTRAN. The 64 July ALGOL Bulletin
reports eight compilers in use in Japan, with four more under construc
tion, where the original survey showed none.

(e) The comparative numbers of users can only be estimated, based
upon such information as [185], which showed FORTRAN programs
at about ten times the number of ALGOL programs (for the U.S. only),
but one could guess that perhaps only four times as many FORTRAN
programmers exist, which seems quite remarkable in view of the previ
ous quantitative comparisons. Even this comparison can be faulty, for
it does not consider the increasing proportion of programmers who
know and utilize both languages.

Concluding, I commend ALGOL and its future to the independent
thinkers like Professor Galler [178]. If something proves practical and
of substance, use it, but not for the sake of nationalism, entrenchment
or prejudice. ALGOL, in its many manifestations and effects, has won
a secure place in information processing history.

160 R. W. Bemer

The Algol Log

[1] 57 Resolution signed by twelve representatives of various
May user groups such as SHARE, USE and DUO, at a meeting
10 in Los Angeles:

"We, as users of diverse machines, recognizing that developments in
the use of automatic computers are leading to techniques of program
ming which transcend the characteristics of particular machines,
that communication between users of different machines is highly
desirable, and further, that completed programs which are machine
independent appear to be possible, recommend that the ACM take
the following action:

a. Appoint a committee to study and recommend action toward
a universal programming language.

b. Set up means for the rapid exchange of practical information
on computer programs and programming among all computer
users.

c. Appoint a committee to study and recommend areas of stan
dardization. ..

(Reported in DATA-LINK, 57 Oct)

[2] 57 Letter from GAMM members to Prof. John Carr, III,
Oct President of ACM :

We, that is, Messrs. Bauer, Bottenbruch, Lauchli, Penzlin, Rutis-
hauser and Samelson—have gathered here at Lugano for one of our
regularly scheduled working sessions under the auspices of our
formula-translation project. As Bauer and Bottenbruch have already
told you in Ann Arbor, we are working on the logical structure of a
ormula translator that will form the basis for the formula trans-
ation program of the computational groups in Darmstadt, Munich

and Zurich, and in the future at several other European installations.
e program committee of the Gesellschaft fur angewandle Mathe-

»ia/«(GAM M—Society for Applied Mathematics) under the chair
manship of Prof. Heinhold is functioning as the coordinating agency,

onsidenng its circumference and the direction in which the project
as moved, it appeared to us from the beginning that only a joint

e ort was possible despite the underlying difference of the machine
types involved.

Our work is largely finished. In particular we have, after overall dis
cussions, agreed on one language that in our opinion fulfils the
following basic conditions:

(1) It depends directly on ordinary mathematical formula lan
guage.

(2) It is "self-explanatory".
(3) It brings directly into the expression the dynamical nature of

the calculational event.
(4) It is independent of the technical characteristics of the com

puter.

A Politico-Social History of Algol 161
In order to stay in the area of what we believe we can cover, we have
confined ourselves to the description of "scientific computations".
We have endeavored from the beginning to avoid the possibility of
deviations from existing earlier proposals (Rutishauser 1951,
FORTRAN, partly also PACT).
Guided by the news and reports that Bauer and Bottenbruch have
brought back from America, we have decided that our hitherto
existing proposals also largely agree structurally with Perlis' IT
language and the Remington-Rand Math-Matic. This agreement is
most striking with Math-Matic, the most recent of the listed propo
sals.
We consider it a misfortune that at this time several different langu
ages exist, but none of these languages appears to overshadow the
other enough so that this would offer a reason for selecting it. We
would like to avoid increasing this bad situation by setting up in
Middle Europe one more such language.
Bauer and Bottenbruch have talked with several mathematicians, in
particular also with you, about these questions. From this the idea
here has gradually crystallized from a joint conference to make the
attempt to work out a basis for a uniform formula language. How
ever, this must be set about at once, since in the present state of
development in a few months it will already be definitely too late
when the different languages will not only be installed in the different
user circles but in use.
We would therefore make the following proposal to you as the
President of the ACM: The President of the ACM and the President
of the Programming Committee of the GAMM issue a joint call for
a closed conference of those people active in the area of formula
translation. The task of this conference shall be:

(1) To clarify how much the logical structure of those formula
languages which are already in existence permit an adjust
ment,

(2) To fix upon a common formula language in the form of a
recommendation.

. . . B o t t e n b r u c h a n d B a u e r h a v e i n f o r m a l l y a l r e a d y t a l k e d w i t h
persons at IBM and Remington-Rand who have stated their interest.
We think, however, that also the Universities should be represented
in order to be able to contribute the experience of users. We hope to
expand the circle through representatives from England, Holland
and Sweden. ...
For dates we would propose January-February 1958, length 2-4
days. ...
We are presently preparing a comparative summary of the existing
completely constructed formula languages, which could be placed at
the disposal of the participants as the basis of the discussion. ..."

[3] 57 John Carr, President of ACM, to the ACM Council:
Oct "j am enclosing a letter recently received from Drs. Bauer and
26 Samelson of the University of Munich, Dr. Bottenbruch of Tech-

nische Hochschule, Darmstadt, and Prof. Rutishauser and Drs.
A.R.A.P. 5—12

162 R. W. Bemer
Lauchli and Penzlin of Zurich, Eidgenossische Technische Hoch-
schule.
The letter is generally self-explanatory. In light of the resolution of
the National Council of the ACM in June at Houston, I am tenta
tively accepting the invitation of the European group to hold a
meeting on a universal computer language during the period from
about January 20 to February 7, 1958,
Composition of Delegation. I am also proposing that there be an
American delegation of six persons to this conference, three from
industrial organizations and three from Universities ... one indivi
dual each from Professor Morse's laboratory at M.I.T. and from
Professor Perlis' laboratory at Carnegie Tech, and myself, represen
ting the University of Michigan and the A.C.M. ..."

[4] 57 Francis V. Wagner, Chairman of SHARE, to SHARE
Nov Executive Board:
22 " " . . . I b e l i e v e v e r y , v e r y f i r m l y t h a t t h e e s t a b l i s h m e n t o f a u n i v e r s a l

algebraic language for programmers to code in is a relatively trivial
project. I do not feel that the existence of several such 'higher order'
languages would particularly hurt the computing profession. (In
fact, I think it necessary that there be many, each adapted to its own
field.) On the other hand, I am absolutely convinced that the most
important thing that is needed is a universal, intermediate, 'com
puter' language as described by Charlie Swift. ...
I propose that we urge this august, academic body convened in
Switzerland to not waste their time with universal algebraic 'pro
gramming languages, but to devote their efforts exclusively to the
important matter of an intermediate universal 'computer' language
for a universal pseudo-computer. ..."

[5] 57 H. S. Bright to Professor John W. Carr, III:
- , • • • Although this might be difficult on a world-wide scale, I believe

that early profit could be achieved by some standardization on langu
age elements at the first level above the bit, viz., at that of alphabet
or, more generally, of characters commonly written as the least unit
of language. "

[6] 57 Francis V. Wagner, Chairman of SHARE, to Dr. John
Dec W. Carr, III;
9

. . . We are pleased that, as President of A.C.M., you are coordin-
fk'n?r j^'r anc* estahlishing the ground rules for the selection on

e nited States Delegation. We think, however, you are making a
mista e in loading it so heavily with compiler designers and univer
sity people "

[7] 57 John W. Carr, III, to ACM Council:
L/CC ((T L I

13 t' 'i* , ave a ta'ked briefly with Professor Perlis of Carnegie
ec , w o indicated plans for a possible meeting among interested

kjnericans at the Eastern J.C.C. meeting in Washington in Decern-

A Politico-Social History of Algol 163
My personal feeling is that a great deal can come out of such a con
ference—not necessarily a common language, which I doubt can be
achieved at one fell swoop, but rather an overall plan for arranging
to translate languages one into another, standards for such langu
ages, and at least a meeting of the minds on the goals and ways of
reaching them. On this basis I feel that this, along with the contacts
with the European group, could be of great benefit. ..

[8] 57 Francis V. Wagner to Dr. John W. Carr, III:
Dec .. It seems to me a shame to waste all this time and effort on just
20 another algebraic higher order language even though it purports to

be 'universal'. It seems to me that such an assumption is almost a
contradiction in terms ... the most useful manner of exploiting the
computers of the future will be to encourage every discipline to
develop a higher order programmer language which most ideally
suits its subject matter. Thus there should be programmer languages
for aerodynamicists, petroleum engineers, nuclear physicists, medical
diagnosticians, clothing manufacturers, etc. Even if this were not
technically sound. ... I maintain that human nature will make it
inevitable. Thus an algebraic programmer language can never be
universal, for lack of universal acceptance. ..."

[9] 58 ACM Ad Hoc Committee on a Common Algebraic Lan-
Jan guage, first meeting.
24

[10] 58 XTRAN Announcement to SHARE, being an experimen-
Feb tal language intended to have the capability to express its
26 own processor.

[11] 58 ACM Ad Hoc Committee on a Common Algebraic Lan-
Apr guage, third meeting.

Professor Bauer was present and described the GAMM proposal.
The ACM "Proposal for a Programming language", 19 pp. in ditto,
was prepared.

18

[12] 58 ALGOL Meeting in Zurich, attended by:
May GAMM—Bauer, F. L. ACM—Backus, J. W.

Bottenbruch, H. Katz, C.
^un Rutishauser, H. Perlis, A. J.
L Samelson, K. Wegstein, J. H.

The result was a report prepared by Perlis and Samelson, published
naming the language both IAL (International Algebraic Language)
and ALGOL (in later publications). Often called ALGOL 58 as a
means of distinguishing it from ALGOL 60, although purists frown
upon this.

164 R. W. Bemer
[13] 58 John Backus, SHARE Representative to Zurich Meeting,

Aug to SHARE:
14 "... It seems to me that this report represents a considerable step

forward for that part of the scientific community interested in numer
ical computation.... It already appears that the language proposed
will be used widely throughout the Continent (work on translators
for a number of European machines has been started) and very
likely in this country.

In conclusion, as your SHARE representative on the ACM Ad Hoc
Committee on Languages, I want to urge SHARE to consider giving
official recognition to the language proposed here. I do so because I
am convinced that it is fundamentally sound, that no better language
is likely to be approved in the near future by an international group
representing the outstanding computing societies of the United
States and the Continent, that the goals of SHARE would be greatly
advanced by recognizing and using it, and finally that SHARE, by
its adoption, would be making a major contribution toward trans
forming the field of numerical computation from a somewhat
parochial and divided enterprise into a truly international scientific
discipline."

[14] 58 Resolution adopted by SHARE XI:
SHARE by this resolution commends and endorses the work of the

ACM-GAMM International Conference on Algebraic Language,
and in particular of SHARE'S representative, J. Backus, and his
American colleagues, C. Katz, A. Perlis and J. Wegstein.

Furthermore, SHARE intends to use this language as soon as it
can be implemented. To this end, SHARE will take positive action
to study the proposed International Algebraic Language and to
implement its adoption as a SHARE standard.

The immediate work should be carried forward by an Ad Hoc Com
mittee on Algebraic Languages, which the President of SHARE is
directed to appoint on September 12."

(Frank Engel was appointed chairman.)

[15] 58 Report by A. E. Glennie at SHARE XI:
12 ' Although British representatives did not attend the ACM-GAMM

meeting on IAL, this does not mean lack of interest in the subject,
n fact there have been at least six automatic coding systems used in

England, the first in late 1951.

The growth of automatic coding has come recently only with the
a vent in England of machines with large core storage systems.

arlier machines had storage mainly on drums, which makes auto
matic storage allocation extremely difficult.

The British Computer Society is now awaiting the IAL proposals
wit a view to recommend them as standards for future British work
m this area."

A Politico-Social History of Algol 165
[16] 58 J. H. Wegstein letter to the ACM Council:

Oct " _ Now that SHARE is supporting it, the IAL now appears to
20 have an excellent chance for success. ..."

[17] 58 Informal Meeting of the European ALGOL group at the
Nov University at Mainz.

[18] 58 Minutes of the ACM Council:
Dec "The following resolution was adopted:
3 'The Council commends Professor Perlis on the activities of his

Committee and urges him to do everything possible at the Inter
national Conference in Information Processing in order to secure
the international adoption of a universal computer language. The
Committee is further urged to work closely with the various User
Groups to secure domestic adoption also.' "

[19] 59 IAL Committee Resolutions at SHARE XII:
Feb "Resolution No. 1
18-20 Whereas SHARE recognizes the importance of maintaining, at any

moment, a precise definition of the IAL (International Algebraic
Language) which constitutes in every detail an official ACM and/
or International Standard; and whereas SHARE also recognizes that
corrections, additions and improvements in IAL will occasionally
be desirable, be it hereby resolved that:
SHARE directs the executive board to take whatever steps it deems
appropriate strongly to encourage the ACM to establish formal
machinery for considering and giving official status to alterations in
IAL as a computing standard.

Resolution No. 2
The SHARE IAL Committee after extended discussion has agreed
that an extended character set will eventually be required, and that
for the effective implementation of the IAL language an extended set
of at least 100 characters is needed now. We propose the following
resolution for consideration by the SHARE body:
Whereas we deplore the inadequacy of the presently available
limited character set and feel that more than 128 characters would be
desirable,
be it resolved that SHARE recognizes a growing need for a more
extensive character set, and recommends that IBM consider pro
viding across-the-board input/output equipment to meet this need.

Resolution No. 3
Whereas SHARE considers that the IAL language should become a
working language for communication with the 704, 709 and other
SHARE machines, therefore be it resolved that:
In order to implement the creation of a working language, SHARE
recommends that IBM begin development of an IAL translator; and

166 R. W. Bemer

that the FORTRAN and IAL Committees be directed jointly to set
a date for terminating modifications and extensions to the FOR
TRAN language."

[20] 59 European ALGOL Implementation Conference at Copen-
Feb hagen.
28 Two major results were the procedure for publication of the ALGOL

Bulletin and the formation of the ALCOR Group, primarily Euro
pean users and particularly dedicated to hardware representation in
existing equipment and processor identicality.

[21] 59 Publication of the first ALGOL Bulletin, edited by Peter
Mar Naur of the Regnecentralen, Copenhagen, primarily for
16 the European group.

The language now appears to be called ALGOL; the first U.S.
mention of ALGOL is apparently 59 Aug 14. A majority vote
provision was described for policy in developing processors.

[22] 59 Working Conference on Automatic Programming, Brigh-
Apr ton, England.
1—3

Sponsored by the Automatic Programming Information Centre,
Brighton College (Organizer—Richard Goodman).

M SHARE IAL Committee, Second meeting. New York.
The IAL Translator in process for the IBM 709 was described, to
gether with proposals for expansion of available character sets via
both hardware and software.

Jun ^nternat'onal Conference in Information Processing, Paris.
i c or. M2der. UNESCO sponsorship. As a result of both official and semi

official meetings of interested parties, the ALGOL Bulletin was
accepted as the general medium for discussion of all proposals for
improvement and other questions for workers in the Eastern hemi-
th C\\r' V'3 ^e8necentra-len, Copenhagen, where it is published. For

e estern hemisphere the Communications of the ACM was to
serve the corresponding purpose. ALGOL Bulletin No. 4 reported:
J^ur'n® [be conference in Paris important progress both towards
e establishment of ALGOL as an accepted international algorith

mic anguage and towards the completion of the first, definite
version of ALGOL was made. Indeed, an Ad Hoc Subcommittee was
iormed for the discussion of (a) input-output, and (b) extensions of

e anguage. The members of the Subcommittee were:
E. W. Dijkstra (Holland) A. J. Perlis (U.S.A.)

eise (Denmark)—(Chairman) K. Samelson (Germany) •••
Of great importance to the ALGOL work was the paper presented
thJ p conference by John Backus, "The Syntax and Semantics of
ATM International Algebraic Language of the Zurich
ACM-GAMM Conference".

A Politico-Social History of Algol 167
[25] 59 Letter from R. W. Hamming (President, ACM) to M. A.

Aug Danjon (President, Association Frangaise de Calcul) and
5 M. V. Wilkes (President, British Computer Society), in

viting participation in the international ALGOL work.
An enclosure, signed by Hamming and Sauer (President, GAMM)
in Paris during the June ICIP. Without dateline, address or other
heading, it states:

.. The existing ACM-GAMM committee considers itself now
a steering committee, whose responsibilities are:
(1) to complete the Zurich report with respect to inconsistencies

and obvious extensions (e.g., the Heise committee report);
(2) to determine the procedure by which the membership will be

modified from the pool of representatives specified by the
various national (and supranational) organizations.

The selection procedure for membership in an international ALGOL
committee will always be determined by competence and no fixed
apportionment of members by nationality or organization will be
considered."
AFCal did not accept the invitation, B.C.S. did (59 Dec).

[26] 59 SHARE ALGOL Committee Meeting, Seattle:
Aug "The following motion was passed unanimously:
17-18 'Whereas an orderly curtailment of modifications in FORTRAN is

in process, looking toward replacement by ALGOL, motion No. 3
of SHARE XI is redundant and will not be resubmitted by the
ALGOL committee.'
Motion No. 3 had to do with fixing a date for ending FORTRAN
modifications."

[27] 59 Minutes of SHARE XIII, Seattle, reporting on a compari-
Aug son between ALGOL and FORTRAN, by Bill Heising of
19 IBM:

"1. ALGOL provides a media for universally describing problem
procedures since it is not tied to a particular machine.

2. It is expected that ALGOL will be translated for a large variety
of machines. Thus problems will not have to be recoded for
various machines as in the past.

3. ALGOL is a better and richer language than any existing to
date "

[28] 59 Extracts from the Minutes of SHARE XIII, Reports on
Aug the ICIP Conference in Paris:
19-21 Frank Verzuh—"later, Tom Steel will inform you about ALGOL—

a language I consider important, very important to you people. ...
Again, rather hurriedly, in Denmark, I enjoyed seeing what was
being done by the Danish Institute of Computing Machinery, the

R. W. Bemer
DASK Computer, and their application of it. I was very amazed,
wherever I went in Europe, people would talk to me in ALGOL
language, write it and describe their work on converters, translators,
etc., which are being used."

Tom Steel—"The ALGOL performanceat ICIP was quite interesting
in several ways. There was a section in the plenary section devoted
almost entirely to ALGOL. It was billed as an automatic program
ming discussion, and it tended to be about very little other than
ALGOL

Through this whole series of discussions there was a sort of running
tacit assumption that ALGOL was a good thing. It seems there were
some folks there that didn't believe this, and a gentleman named
Strachey from the United Kingdom got up and challenged this
assumption publicly, and he challenged all comers to a debate. This
debate actually took place. It was a special rump session of the con
ference and one entire morning was devoted to this. There were
probably eighty or so people that participated in this discussion and
it got rather heated a couple of times; in particular, there was one
case when one individual made a comment, and somebody down the
room made a snide comment about the competence of certain
people, and unfortunately, his mike was live. Well, the net result of
these discussions was really two-fold; one, I believe a recognition on
the part of some of the proponents of ALGOL, particularly the
Europeans who were relatively unfamiliar with data processing
problems, that ALGOL is not (in its present form at least) a com
pletely general programming language, that it is not satisfactory for
certain types of data processing work. I believe nearly everybody
recognizes this, but the way the discussion was going, it appeared
that this whole problem was being glossed over, and this debate was
well worth it, if this situation was cleared up, and I believe it is fair
to say it was.

As an outgrowth of it, a group of people, including Samuelson and
Bauer, people from the United States, got together and decided on a
way of proceeding to recommend extensions to ALGOL that will
handle the data processing area. There will be a meeting of this
group in conjunction with the ACM-ALGOL committee at the
next ACM meeting, next month, and I suggest that any of you who
feel strongly about this subject and are interested, get in touch with
the proper people, Bob Bemer of IBM, Bob Bosak of the System
Development Corporation, and make your ideas known and partici
pate in this meeting.

Actually, the debate as such ended with no conclusions drawn, each
Ma^WaS^USt ^ sure was r'Sht as before, as one might expect. But
it did clear the air a bit and explain to many people the differences in
point of view. In particular, the British seemed to feel that now is
too early to adopt such a language and it doesn't look like their
mind is going to be changed by talk.

In one of the symposia, there was a certain amount of discussion
regarding the implementation of ALGOL, particularly in Europe,

ere are about five different efforts going on, largely in Scandinavia

A Politico-Social History of Algol 169
and in Germany, where the processors or translators from ALGOL
to proper machines are being conducted.

However, these processors are really not very ambitious. A rather
difficult problem of procedures is just being glossed over at the
moment. The translators are designed to do little more than scan
single statements and construct arithmetic sequences. A great deal of
effort is being devoted to such things as minimizing the number of
temporary storages required for arithmetic sequence and this type
of thing.

When we first heard about this, it was a little surprising. It seemed
like a pretty low-level start. However, most of this work is being
done on small machines with the main memory being a drum
memory, and this clearly complicates enormously the problem of
writing a general translator.

The Europeans were quite interested in the activity that is going on
in this country toward implementing ALGOL, and a number of
ideas were exchanged that, I think, will ultimately prove quite
fruitful."

[29] 59 Resolution adopted at SHARE XIII, Seattle, for general
Aug distribution:
21 "SHARE has already commended the ACM for its sponsorship of

the American effort in the design of the prototype version of ALGOL.
However, it deplores that current work on its development and
implementation is receiving no leadership from ACM, so that user
groups and independent organizations must provide their own, and
coordinate only on a haphazard basis. ..

[30] 59 ACM Programming Language Committee meeting in
Nov Washington:

_ _ The purpose of this meeting (at the National Bureau of Stan
dards) is to discuss:

(i) The resolution of ambiguities in (the first draft version of)
ALGOL.

(ii) The drafting of a set of improvements and extensions to
ALGOL is recommended by some of the ACM member
ship through proposals published in the Communications
during 1959. ...

(iii) The selection of a subcommittee to represent the ACM at the
second international conference on ALGOL to be held some
where in Europe early in January, 1960. . .."

A. J. Perlis, Chairman

Membership: Backus, Green, Katz, McCarthy, Perlis, Turanski and
Wegstein (for Paris), Bemer, Evans, Gorn, Rich, Dobbs, Desilets,
Goodman and Levine.

170 R. W. Bemer
[31] 59 European ALGOL Conference at Compagnie des Mach-

Nov ines Bull, Paris:
12-14 "Subject—Discussion of the proposed modifications of ALGOL, and

preparation of the International ALGOL Conference (to be held in
the U.S., possibly Philadelphia, around New-Year...(49 atten
dees.)

[32] 59 ACM Programming Language committee meeting in
Nov Boston, in preparation for ALGOL 60.
30

[33] 59 A. W. Holt to A. J. Perlis and the ACM Programming
Dec Language Committee:
' At your invitation. I came to Washington D.C. on November 6,

1959, in order to present to that committee a descripton of "Can
onical Form" for programming languages—one of the results of
the work of W. J. Turanski and myself. ...
With reference to ALGOL (in its present state) there are several
features of that language which concern themselves with canonical
form functions (such as DO statements). In fact some of these
features lie at the base of current controversy within the Language
Committee precisely, I believe, because there has not yet been
recognized a clear-cut distinction between signals which serve copy-
edit functions vs. signals which ultimately refer to the flow of
control."

^ ^ From the Minutes of the December 2 Meeting of the
ec String and/or Symbol Manipulating Subcommittee of

ACM Programming Languages Committee:
• • • 7^e ma'n subject of the meeting was the string manipulation
facilities to be added to ALGOL. The only recorded agreement was
that the strings in question are strings of ALGOL characters....

[35] 59 Minutes of the ACM Editorial Board Meeting:

2 The Communications, under the editorship of Joe Wegstein. will
start a new department for algorithms in ALGOL language. This is
a venture analogous to that proposed by Springer-Verlag (for which

• S. Householder is an editor). Our algorithms may be published
eventually in the Springer Handbook; in any event, we look for a
reciprocal relationship with that firm "

f J £9 ALCOR Hardware Group Meeting in Mainz, Germany,
17^2 at Institut fiir Angewandte Mathematik.

A Politico-Social History of Algol 171
[37] 59 Professor F. L. Bauer to the Conference members:

Dec "in accordance with existing agreements, you are cordially invited
19 to take part in the International ALGOL Conference 1960, to be

held in Paris, beginning January 11, 1960, at 9:30 a.m. Participants
will meet at IBM World Trade Europe. ... The purpose of this
meeting is to produce the ALGOL 1960 report based on the material
screened by the American and European groups."

[38] 60 Meeting of the "Paris 13" to produce the ALGOL 60
Jan Report.
11—16 Originally 14 members existed, but William Turanski of the ACM

delegation was killed in an accident just prior to the meeting. The
report is dedicated to his memory.

[39] 60 Ascher Opler, in Datamation:
Jan "The transition from acceptance of FORTRAN to acceptance of

ALGOL must take place in the next couple of years. ..

[40] 60 Julien Green of IBM lectures at Johannes Gutenberg
Jan University, Mainz, on: "Processing of the formula lan-
19 guage ALGOL."

[41] 60 M. Woodger to P. Naur and K. Samelson:
Jan "J enclose a syntax of ALGOL 60 which is complete in as far as I
25 understand the agreements reached on Saturday, 16th January in

Paris ..."
It appears that at least partial credit for editorial work on the ALGOL
60 Report must be extended to Mr. Woodger as well.

[42] 60 Peter Naur to the members of the ALGOL 60 Committee:
Lbb "Enclosed I send you the first draft of our report. ..."
4

[43] 60 ALGOL Committee Report, SHARE XIV:
F eb "The SHARE ALGOL Committee... heard a discussion of the UM
17-19 MAD Compiler for the 704; the relation of its language to ALGOL,

and some of the features of the processor itself.
Inasmuch as UM MAD is about to be offered for distribution
through SDA the Committee, after due consideration, decided to
take no action relative to accepting UM MAD as the SHARE 704
ALGOL Compiler because of the variance of MAD from ALGOL
as adopted by SHARE. ...
The SHARE ALGOL Committee has seen a draft of the ALGOL 60
and believes it to be a substantial improvement over the previous
version. When it is published by the ACM the Committee recom
mends that the SHARE membership use the language for public
ation of procedures in order to further the development of the
language.

172 R. W. Bemer
IBM reported that final checkout of the second 709 ALGOL pro
cessor is under way. It is expected that this processor will be ready
for distribution in May, 1960. This version of the processor produces
SCAT instructions as output and it is intended as an interim pro
cessor to provide a further developmental experience with ALGOL."

[44] 60 Remarks by A. L. Harmon to SHARE XIV:
Feb "... Since the development of the ALGOL language has not reached
17-19 the point where it seems advisable to expend the manpower required

for a full processor that SHARE seems to deserve, based upon the
recommendations of the SHARE ALGOL Committee, IBM will
not produce an official ALGOL processor at this time. However,
IBM will continue to support the ALGOL efforts in the areas of
language development, translation techniques and, of course, pro
cessor development.

Questions and Answers
MR. FRANK ENGEL (WH): I believe as I entered the room I heard the
statement to the effect that IBM is not intending to produce an
ALGOL processor at this time. Is that correct ?
MR. HARMON: A full ALGOL processor. That is correct.
MR. ENGEL: Oh; we're going to qualify it.
I understand that IBM is committed to the SHARE ALGOL Com
mittee and to the SHARE body to produce an ALGOL processor
operating in May of this year.
MR. JULIEN GREEN (IB): We did promise to have an experimental
version ready by May. We can have this version ready. But this will
not be a full-blown processor in the sense that, well, we didn't
promise to have it to do sufficient coding. We are supposed to have
the output in a form so that it will have to go into the SOS system
before you can get your object programs, and this is as far as we
have the processor at this point, and this is what we could have
available, but this is merely for testing the language and for getting
used to the language, rather than producing production programs,
let's say.

MR. M. A. EFROYMSON (ER): I believe that some sentiment was
®'ve" ln P35* meetings that there would be an attempt at continuity
of effort so that there would be a logical transition from FORTRAN
to ALGOL, through some kind of processor between the two sys
tems. I am not clear from your remarks whether this consideration
of the evolution or revolution from FORTRAN to ALGOL is still
the philosophy or not.

MR HARMON: Yes, this is still our philosophy, and for further
amplification of this I would like to again ask Julien Green to make
some comments.

MR. GREEN: I think at one point we do want to use an ALGOL
_gUaf'don't think we are prepared at this time to
cease all FORTRAN effort and say "Let's transfer immediately to

A Politico-Social History of Algol 173
an ALGOL language," because I don't think the ALGOL language
has been developed to the extent where it is worth doing this.

[45] 60 Professor M. R. Shura-Bura (Chair of Computing Mathe-
Mar matics, Moscow State University) to Professor John W.
21 Carr, III:

"The specialists working in the Soviet Union in the region of
computational mathematics and programming are developing a large
interest in the project for the algorithmic language 'ALGOL'.

I would be extremely grateful to you for information about the
development of the project and accounts of practical application of
the ideas of the project. ..."

[46] 60 B. Vauquois to the Authors of the ALGOL 60 Report:
Apr "The AFCAL Committee (Association Frangaise de Calcul) has
7 asked me to organize the diffusion in France of ALGOL 60. In

order to do so, it seems that the best mean would be a translation
of ALGOL BULLETIN SUPPLEMENT No. 2 into French with
more examples. The next issue of the periodic paper "Chiffres"
could present this translation.

Before printing, Mr. GENUYS, Mme POYEN and I could go to
Mainz in order to check the validity of translation and examples
with Prof. Bauer and Samelson. ..."

[47] 60 R. S. Barton to Millard H. Perstein, Secretary of SHARE,
Apr in SHARE Secretary Distribution No. 69:

"In view of your interest in programming systems and problem-
oriented languages, I am enclosing for your perusal a description!
of the Burroughs version of ALGOL 58. This description follows
closely that published in the December 1958 Communications of the
ACM.

A translator for this language for use with the Burroughs 220 is in
field test at Stanford Research Institute this week. Translation rate
averages 500 machine instructions per minute. The system is de
signed for "load and go" operation and has facilities for debugging
programming at the POL level and provision for segmentation of
programs. Certain general input-output and output editing pro
cedures are provided. The character set used is one available on
standard keypunches.

Many new techniques have been utilized in this compiler and parti
cular design emphasis has been put on the elimination of special
rules and restrictions, as well as translation speed and ease of use
operationally. ..."

t The transliteration of ALGOL to the Burroughs Algebraic
Compiler Language, A guide for the mathematically trained pro
grammer.

174 R. W. Bemer
[48] 60 J. H. Wegstein to Julien Green:

May "After studying CLIP, OMEGA, and XTRAN, I think that we fell
12 down at Paris in not declaring strings in Algol. The enclosed pro

posal is one which I would like to discuss at the Symbol Manip
ulation Meeting, May 20-21.
It seems to me that it would be very desirable to extend Algol so
that some of this string work could be standardized. We find this
proposed notation useful for some of our data processing problems,
and it would be very nice if we could code now for our hoped-for
STRETCH Computer (in 1961) in this language."

t By Wegstein, W. W. Youden and G. M. Galler.

[49] 60 SHARE ALGOL Committee Meeting, in Pittsburgh.
May Agreed were :
23 25 (a) a SHARE ALGOL 60 hardware representation,

(b) input-output procedure specifications,
(c) a general outline of the desirable 'debugging' features that the

SHARE ALGOL 60 processor should have. ..."

[50] 60 Lirst ALGOL 60 processor tested on the XI computer in
Jun Amsterdam.

Constructed by Dijkstra and Zonneveld, it even handled recursive
procedures. In fact, all the features of ALGOL 60 except dynamic
own arrays were implemented. Operational in August 60.

[51] 60 Input Language for a System of Automatic Programming
Jul published in Moscow by Ershov, Kozhukhin and Volo-

shin. Published in final copy in 1961 by the Siberian
Section of the Academy of Sciences of the U.S.S.R.
This work was machine-translated by the IBM Research Center,

ape No. 1785, 132 pp. This translation is of humorous interest
ecause input language" was translated by the program as "en
trance tongue . The authors said they were surprised that the

c anges to ALGOL 58 to make ALGOL 60 corresponded to their
point of view, and that this was striking because they had not given
out any information (preliminary) on their working ALGOL 58
processor. Actually this system and language goes quite a way
eyon LGOL 60, in particular, vector and matrix notation and

operations are provided for.

^ ^ Jul Wegstein to Members of the ALGOL Working Group:
28 ;:i:,anOUS people undertake to write ALGOL 60 compilers ...

Ohvir, ^rr°/SATa!^.foUnd.: and necessary changes are indicated.
"S Y «• 60 is to be made to work as a common lan-
' mechanism for maintaining it must be established.

AT rnr • C a"S con^erees are not following up the report with
hand PPIT T14'10" °r even further interest. On the other

> er aur has recently proposed some changes (see enclosed

A Politico-Social History of Algol 175
letter) and asks the Paris 13 to endorse them. I have asked Naur to
delay publication until the U.S. ALGOL Working Group can
consider them on August 22.
. . . P r o f e s s o r P e r l i s w i s h e s t o a p p o i n t t h e W o r k i n g G r o u p a s a n
official working subcommittee of his standing Committee on Com
puter Languages. This subcommittee ... participate in the effort to
secure international agreement on interpretations and changes to
ALGOL 60 "

[53] 60 M. I. Bernstein (Chairman, SHARE ALGOL Committee)
Aug to Millard Perstein, in SHARE Secretary Distribution
10 No. 74:

"If the SHARE membership (or the Executive Board) decides that
they do want ALGOL 60 as a SHARE Standard Programming
language, it will be up to the SHARE ALGOL Committee to pro
duce a processor—IBM has so far refused to do the job.
The SHARE ALGOL Committee is in need of volunteers—very
special volunteers—ones who are willing to work and contribute a
non-trivial portion of their time to producing an ALGOL 60
processor...

[54] 60 Meeting of the ACM ALGOL Maintenance Subcom-
Aug mittee, in Milwaukee.
22

[55] 60 From the Minutes of SHARE XV:
Sep "on juiy 27, 1960, Professor A. J. Perlis, Chairman of the ACM
11-16 Committee on Computer Languages, asked the ALGOL working

group to organize itself as an ALGOL maintenance group to be
regarded as a subcommittee of his Committee on Computer Langu
ages. He asked that a report be prepared for the parent committee
when the next meeting is held. On August 22nd the ALGOL work
ing group met in Milwaukee. Those attending came from manu
facturers, universities, and computer using laboratories The
attendees representing 22 organizations agreed to form a sub
committee of the ACM Computer Languages Committee for the
purpose of maintaining and interpreting the ALGOL 60 language.
This group is expandable and it is hoped that a European counter
part of this group may be formed so that actions agreed upon by
both groups may be regarded as official interpretations and changes
to ALGOL 60.
There was a strong feeling among the group that there should not be
many changes.
The criteria for new members, by organization, were voted to be the
same as were set for the charter members, namely, that members
(a) have written, are writing, or plan to write ALGOL-like compilers
or are actively engaged in writing programs in the ALGOL 60
language, and of which there are quite a few people writing in

176 R. W. Bemer
ALGOL 60, and (b) that they are willing to maintain ALGOL 60 as
a reference language.

The group then proceeded to get itself a chairman and then took up
the proposed changes by Peter Naur, the editor of the ALGOL 60
Report.

The group approved of three of his proposed revisions which are
quite minor from the user's point of view but also quite subtle. They
rejected one of his proposals and plan to make a substitute for this.
There were also some papers presented at this session: Forsythe on
the 'Burroughs Algebraic Compiler and its use for ALGOL pro
grams;' Ingerman on 'Dynamic Own Array Declarations;' Sattley
on the 'Allocation of Storage for Arrays in ALGOL 60;' Irons,
'Comments on the Implementation of Recursive Procedures and
Blocks;' Ingerman on 'A Way of Compiling Procedure State
ments with Some Comments on Procedure Declarations.'"

[56] 60 U.S. ALGOL 60 Maintenance Group Report:
"Notes on Organizational Rules: The ALGOL Maintenance Sub
committee is in an unusual position because it has a well defined
language, ALGOL 60, with which to work. It is important not to do
mischief by making major changes, but at the same time interpre
tations and some changes are necessary. A simple majority vote on a
change seems too reckless and a unanimous vote might prevent
any action from being taken.

.. . Eighty percent of the member organizations must repond to
constitute a 'proper vote'. If at least 10 percent vote no, the proposal
is rejected. If the proposal is not rejected and 70 percent vote yes,
the proposal is accepted. ..."

[57] 60 SHARE ALGOL Committee Meeting, M. Bernstein,
Sep Chairman.
13—15

After a call for working volunteers the meeting was declared closed
and all others asked to leave. It was agreed to produce an experi
mental translator based on work that IBM Applied Programming
had already done. Mr. Bernstein reported to SHARE that:
"In line with its original stated purpose, the SHARE ALGOL Com
mittee met last May. Although several positive steps were achieved
Q U TD C me!tmg'il aPPeared that implementation of ALGOL as a
bHARE standard programming language was not feasible. As a
result the Chairman requested that members who are unable to

U^e tlme and effort toward ALGOL implementation resign
so that a committee of implementors could be formed. A call for
Tmru r! producfd enough manpower to attempt a short-range
iTr V experimental ALGOL translator for the
It i« "r-h °n wfalready done by IB Applied Programming,
with' th airman s hope that such a processor can be complete
wkhT„ ^ made available to those SHARE members who
wish to experiment with ALGOL as a programming language."

A Politico-Social History of Algol 111
[58] 60 J. H. Wegstein to the Editor of the ALGOL Bulletin:

Sep "AS the enclosed notes will explain, a U.S. ALGOL Maintenance
26 Group has been formed. We hope there will be an European counter

part so that changes to ALGOL 60 that are approved by both groups
may be published as official interpretations and changes to ALGOL
60. . . . Please advise me of the European status of a mechanism for
maintaining ALGOL 60."

[59] 60 F. L. Bauer and K. Samelson to J. H. Wegstein:
Oct .. We are strongly against forming a similar European group in
20 parallel to an American one since this might either finally lead to

two different ALGOLs or be the first step to establishing committees
on a purely national basis with each country having its own repre
sentation irrespective of active membership.... As a first step in the
direction proposed we hereby apply for membership in the ALGOL
maintenance group.... We are somewhat concerned over the
'change' part of the official aims ... we would like to be sure that
all members of the group are fully aware of the fact that in Paris
all committee members were agreed that for some time to come the
report should not be touched except in the case that ambiguities
should arise which somehow must be removed. Therefore we feel
that all definite changes not necessitated by ambiguities although
they might and even should be discussed very thoroughly, should be
shelved for a period of two years at least as far as definite action (or
rather official approval) is concerned. ...

In this connection the project of the 'Taschenbuch' of algorithms to
be published by Springer deserves serious considerations. Prepara
tions have now reached a state where the editors are forced to freeze
the language to be used, which will be described in detail in an intro
ductory volume. It is obvious that the ALGOL version thus described
will have to be used throughout the entire Taschenbuch, and at least
for the near future any changes in ALGOL would simply have to be
disregarded. If such changes were made, the people for whose
benefit both ALGOL and the Taschenbuch were intended in the
first place, namely the large class of engineers and scientists who have
to do extensive numerical calculations without knowing much about
computers and logics, will be the ones to be most seriously incon
venienced by the confusion arising out of different versions of
ALGOL. Obviously all this holds for the algorithms reproduced in
your Comm ACM department as well. ..

[60] 60 H. Rutishauser to the Editor of the ALGOL Bulletin:
Nov "After reading all proposals and counterproposals to remove the
15 imperfections of the ALGOL-report I am now convinced that in

order to avoid utter confusion, we have to maintain the ALGOL
word by word as it stands now. In order to avoid ambiguity we
simply should not use the elements which are not properly de
fined. ..

A.R.A.P. 5—13

178 R. W. Bemer
[61] 60 Working Conference on ALGOL, in Moscow:

Nov "The conference was attended by representatives from the following
16 organizations:

1. The Steklov Mathematical Institute of the Academy of Sciences
of the USSR.

2. The Mathematical Institute of the Siberian Branch of the
Academy of Sciences of the USSR.

3. The Computing Centre of the Academy of Sciences of the USSR.
4. The Computing Centre of the Moscow State University.
5. The Faculty of Mathematical Mechanics of the Moscow State

University.

The recommendations presented ... represent the common point
of view of all participants:

1. The participants of the conference feel that a continuation of the
common work on the perfection and sharpening of ALGOL is
necessary.

2. As to the alternatives raised by Dr. Wegstein we prefer the crea
tion of a European group rather than a fusion with the American
group. ...

3. We are in favor of the voting procedure proposed by the American
group.

4. The organizations taking part in the working conference on
ALGOL express their preliminary agreement to enter into the
European ALGOL group. ..

[62] 60 ACM Compiler Symposium, in Washington.
Nov
17-18

[63] 60 Advertisement in Datamation:
Nov/ ALGOL* now at work for Burroughs Computer Users."

[64] 61
Jan
1

Proposal to the ACM ALGOL Maintenance Subcom
mittee for a Policy on Changes to ALGOL 60:
"1. For the present, changes to ALGOL 60 which would have the

effect of invalidating programs acceptable under the syntax and
semantics of the 1960 report shall not be approved unless they
are necessary to eliminate logical inconsistency or ambiguity.

emova of ambiguities shall be accomplished in such a way
that actual changes in the report are minimized.

a.nges to ALGOL 60 which will have the effect of invalidating
exis mg programs shall, however, be considered to determine
v«i;h-, r' e'r lmplementab'lity, and their effects upon the
„lwn ty ° existing programs. If found acceptable, they may be
f n r a n e,\a IVe approva'>to be confirmed when the time comes
for an extensive revision of ALGOL

A Politico-Social History of Algol 179

[65] 61
Jan

[66] 61
Mar

[67] 61
Mar

3. Changes to ALGOL 60 which would not have the effect of in
validating programs acceptable under the syntax and semantics
of the 1960 report may be approved whenever it can be deter
mined that they meet the following criteria:

a. They are logically consistent with the present language.
b. They either extend the scope of algorithms which can be

described by ALGOL, or increase the convenience of
ALGOL as a programming language, or permit improve
ments in the object code which would be produced by a
compiler.

c. No superior method of achieving the same end is apparent.

This statement of policy (proposed) is intended to serve as a
compromise between two opposing arguments ... the first ...
that a language in a constant state of flux cannot be expected
to gain acceptance. ... The second position is that a language
which cannot describe common computing and data processing
procedures is unlikely to gain full acceptance. ... There will be
strong pressure toward development of extended languages
which can cope with various tasks of this type, and unless the
ALGOL Maintenance Group is sympathetic towards the needs
of such workers, there is likelihood of a second Babel..

Advertisement in Datamation:
"The Bendix G-20's simplified programming enables your present
personnel.... Such a programming system is ALCOM—An
algebraic problem-solver based on the international mathematical
language of ALGOL. Compatible with the ALGO| programming
system for the Bendix G-15. ..."

f Introduced in 60 Oct.

Open letter to Bob Bemer, from Rene De La Briandais,
in Communications of the ACM:
"As far back as Fall of 1958 I recall your mentioning that if ALGOL
were not developed as rapidly as possible, FORTRAN would be
come an industry standard by default.... ALGOL has been with us
in spirit for some time now, but that's about all.... If it is the feeling
of IBM that they do not wish to be accused of dominating the
industry in the selection of a new 'standard' and therefore they will
wait for the ACM or someone else to make this election, then in my
opinion it is the wrong attitude for them to take. ... Let's have
some action."

Reply to the De La Briandais letter:
" . . . A l t h o u g h A L G O L i s a d m i t t e d l y a s u p e r i o r l a n g u a g e (i t s h o u l d
be, for IBM's own FORTRAN and experimental languages made
heavy contributions), FORTRAN is the present workhorse and is
operative in a large number of installations and understood by
thousands of people. It would be unwise to give the user elegance

180 R. W. Bemer
and take away productivity and efficiency. ... Rene asks us to give
him ALGOL now in place of FORTRAN. Does he wish to do with
out the input-output facilities and operating system of FORTRAN?
... When there exists a language fairly safe from arbitrary change
and when both the language and the processors offer enough further
advantages to customers to offset the costs of re-education, program
ming modification, and general dislocation—then we will issue a new
system with which the user may choose to supplant FORTRAN
Despite the escape clause of the 'reference language', ALGOL will
not really be usable until new input-output equipment exists which
will handle the character set directly. This area is under experimental
investigation, and the production of acceptable new hardware takes
considerable time ... standards are voluntary and have force only
when embodied in specific law. ..."

[68] 61 Minutes of SHARE XVI—Report by A. L. Harmon:
A /f

a r . . . I n c o n n e c t i o n w i t h t h i s , t h e A L G O L l a n g u a g e h a s a s i g n i f i c a n t
21 influence on the direction of the FORTRAN growth. In particular,

the present 7090 FORTRAN proposal includes several Algolic
features. We feel that this is a proper interpretation of the desire of
the SHARE body. In order to continue the joint investigation of
ALGOL, this past January we delivered our contribution to the
ALGOL Committee in the form of an experimental processor...."

[69] 61 Minutes of SHARE XVI—Introduction to the UNCOL
Mar Committee Report:

The precise origin of the UNCOL concept is lost in the mists of
time. Indeed, it has been reliably reported by Wagner that 'it was
well known to Babbage'. ... Meanwhile, bigger things were on the
horizon amidst the soundings of loud trumpets and great waving of
arms an International Algebraic Language.

While the general pattern of events leading to the 1958 meeting in
Geneva is well known, it is not so widely realized that these same
events acted as a catalytic agent in the development of UNCOL.
The early history of the effort toward design of this International
Algebraic Language-or ALGOL, as it is now called-is worth
-™'011 inc°yder to.gain ins'ght into d>e driving forces behind

.... Selected items of the relevant correspondence are
reproduced in an Appendix to this report.

Perusal of these letters shows that while ALGOL was in fact de-
signed m response to the desires of the initiators of the effort, some
individuals held objections, ab initio, on fundamental grounds to the
nhwrT Cn by the ALGOL group- At three y^s distance these

,if '°"S appfa,r \° have lost none of their basic soundness, the
proliferation of dialects of ALGOL being the best evidence.

°f the recaIcilrants was (a"d still is) simply that problem
there SonMUilge u,niv®rsa,ity >s neither possible nor desirable; that

e individually tailored POLs for engineers, nuclear

A Politico-Social History of Algol 181
physicists, cost accountants, global strategists or what have you; and
that the real problem is the drastic reduction of the manpower and
elapsed time required to provide a capability of using a given POL
with a given machine. Nevertheless, the Pollyannas had their way
and ALGOL was born.

It must be emphasized that those who disagree with the proceedings
at Geneva on the above grounds have no quarrel with ALGOL per se.
ALGOL is one of several algebraic, formula translation, problem
oriented languages and should be judged on its own merit in this
company. The objection is entirely against the highly advertised and
quite invalid claim of universality in application."

[70] 61 Minutes of SHARE XVI—General Session:
Mar "Mort Bernstein (RS) moved the adoption of the following resolu-
22—24 tion:

Be it resolved that the following letter represents the current
opinion of the SHARE membership. The President of SHARE is
directed to send it to the President of the ACM and to the editor
of the Communications of the ACM for publication.

On request of President Cantrell, Bernstein read the letter referred
to, which expressed SHARE'S dissatisfaction with ALGOL and
rescinded SHARE'S endorsement and support of the language.
(Secretary's Note: The complete text of this letter will be found in
Appendix F.7.) After the motion was seconded by Frank Engel
(WH), President Cantrell called for discussion, which ensued as
follows:

GEORGE TAIT (PP): I feel there are many present who have not given
ALGOL a fair shake. I suggest that we do not vote on this letter
until the August meeting, as its strong wording has some very
serious ramifications.

F. J. CORBATO (Ml): I think the letter has many controversial state
ments, and while I agree with many of its points, I would not like
to see SHARE, as a body endorse it.

DON MOORE (WD): Tait and Corbato have expressed my feeling
perfectly. I feel that this proposal may be the subject of a mail ballot,
without necessarily waiting until August to decide it. I move that
the motion be laid on the table. (The motion to table was carried,
67-35.)

FRANK WAGNER (NA) asked whether the request of the SHARE body
to IBM to implement the ALGOL processor of SHARE machines
was still in effect. President Cantrell replied that it apparently was.
Wagner then moved that SHARE rescind any request made to IBM
to implement any ALGOL processors. There was no discussion, and
the motion was carried unanimously."

(Note: The language of the original proposal was strongly intem
perate and will not be reproduced here.)

R. W. Bemer
R. W. Bemer, IBM, to J. Wegstein:
"The IBM Corporation hereby makes application for membership
in the U.S. ALGOL 60 Maintenance Group. Criterion a of the 22
August 1960 report is met by the XTRAN-ALGOL processor for
the 709/7090. The work of several IBM programmers, as evidenced
by various publications in the Communications of the ACM, indi
cates the required willingness (Criterion b) to maintain ALGOL 60
as a reference language.
The individuals that will participate are:
Mr. Rainer Kogon Mr. Rex Franciotti."

Twelve lectures on ALGOL 60 at Brighton College of
Technology, U.K. Attendance—82. Lecturers—M. Wood-
ger, P. Naur, E. W. Dijkstra and F. G. Duncan.

Oak Ridge National Laboratory to Members of the ACM
ALGOL Maintenance Group:
The existence of the ALGOL Maintenance Group has caused

some concern among translator constructors and prospective users
of the language. See for example the letter of R. Bemer on page A12,
Comm. ACM, Vol 4, No. 3.
It must be admitted that there are some doubts concerning the inter
pretation of certain minor points of the ALGOL report. For some
time it was considered a matter of great importance to have these
ambiguities resolved. In practice this has turned out to be unim
portant. ...
We therefore propose that this committee adopt the following
general attitude towards ALGOL maintenance:
The members of this group will adhere to the ALGOL language as
defined m the ALGOL 60 report. Translators should be constructed
in such a way that ALGOL programs which are unambiguously
defined by the report will be correctly translated. ALGOL programs
which are ambiguous are not defined. For several years to come this
committee will not propose any changes or additions to the ALGOL
language. Now is the time to implement ALGOL 60 and gain
experience with it as a programming tool. ..

Signed by Bauer —Germany
Bottenbruch—Germany
Grau —U.S.
Samelson —Germany
Wegstein —U.S.

SHARE FORTRAN appoints a Conversion Committee
SwS A^f Tt/,ansitlon problem from FORTRAN II to

OR ' RAN IV, inasmuch as it was agreed in March that
the new FORTRAN would not contain all of FORTRAN
11 as a subset and would therefore not be directly com-

A Politico-Social History of Algol 183
[75] 61 The Rand Symposium, as reported in the 61 Sep issue of

May Datamation :
"BEMER: . . . N o r e a s o n a b l e m e c h a n i s m f o r m a i n t e n a n c e s e e m s t o
exist. No one seems to be able to answer the basic question, 'What
is ALGOL?'

WAGNER : It is my opinion that ALGOL will never be a widely
used language by programmers in large computing installations
outside the universities. It has made its run at the leader and failed.
I think it can never muster enough strength for a second run, in the
terms in which it now exists. I think, however, ... that it will per
petuate itself as a language for expressing algorithms. It will exert
an influence within the universities and 10 years from now, when
people whom it has influenced in the universities are in a position of
command within industry, we may then see a successor to or deriv
ative of ALGOL in wide day-to-day use. ..

WAGNER: . . . H e r b ' s (B r i g h t) c o m m e n t t h a t t h e c r e a t o r s o f A L G O L
were not stubborn enough in trying to keep it truly universal ... is
unfair. When they came up against something that wasn't there,
like input-output, or the ability to make tables, or some of the more
subtle ambiguities, they had no one to turn to and they had to get
their implementation moving along so they had to make a decision.
Mr. A made the decision one way, Mr. B made it another; hence we
have dialects. ...

GALLER : As one of the co-authors of one of these dialects, I'd like
to explain why we did as we did. We started to write ALGOL 58 for
the 704, and we quickly found such things as having to make paren
theses do the job of other things. So we found along the way various
places where we had to depart from ALGOL 58. We found things
like DO and the blank subscript position to be simply unfeasible to
put in through a workable translator. Then too, we found several
things that we thought were better than the existing ALGOL, and
we put them in... . When we got all done, what we had simply wasn't
ALGOL...
WAGNER : At least you had the decency to call it MAD.

BEMER : I want to defend the ease of using ALGOL. You could take
a subset of ALGOL and restrict it in such a way that it would be just
as easy to use as FORTRAN. It might be a different form, but these
are the choices you make. Roy Goldfinger says that you could, if
you wish, start from Alice in Wonderland and just by making
enough changes write a programming language. ... You could, if
you wish, go the other way. Start with FORTRAN, make a few
changes here and there and incorporate the best features of ALGOL.
It doesn't matter. Maybe we won't get it through the ACM Sub
committee on ALGOL; maybe then the FORTRAN standard will
absorb all this. ..
CARLSON : . . . O n e o f o u r e n g i n e e r s d e c i d e d t h a t p e o p l e c o u l d i n d e e d
be trained to use ALGOL and he sat down and wrote an ALGOL
primer. Why the people who wrote ALGOL didn't think of writing
a primer to explain all this balderdash, I don't know. It didn't take

184 R. W. Bemer
him very long.... We call this the DuPont Publication Language for
ALGOL. ... The fellow who did this work now writes routines in
ALGOL, and because he can't put them on a machine with ALGOL,
he rewrites them in FORTRAN. He makes the statement over and
over that he winds up doing the job in from one-third to two-thirds
the total expended time it would have taken him if he did it in
FORTRAN in the first place He is an experienced FORTRAN
man to start with. He finds that the ALGOL language takes care of
many of the things that he had always complained about the
FORTRAN

BRIGHT: ... I think people are ignoring the fact that FORTRAN
represented a giant step and ALGOL represents a refinement, a
generalization, and a maturing. Without the push that FORTRAN
got, it could hardly be expected to have such an effect on the
industry.

BEMER: FORTRAN wasn't really such a giant step as far as the
language was concerned. This had been done by both Rutishauser
and Laning and Zierler at MIT many years before FORTRAN
was basically designed as an experiment in object code optimization.
.. It was a laboratory tool for this and 1 suppose because it was
produced by IBM it suddenly got large acceptance.

WAGNER: Remember another thing, though. It was backed up by a
very large maintenance group. You could count on the fact that in
eight years or so all the errors would have been removed. Maury has
a wonderful set of languages in his various NELIAC Processors,
but I wouldn't use them even if he rewrote them for the 7090, be
cause I have no assurance that they will be maintained."

[76] 61 Joint Users Group, Report of Committee on Communi-
May cations:
8 «

' iAWaS agreed by al1 Present that it would be useful if a study
could be undertaken to summarize the efforts that are presently
b e i n g m a d e t o i m p l e m e n t A L G O L 6 0

Ed ^and®r^ld •' • suggested that an effort be made to define a
subset of ALGOL 60 suitable for implementation on 'small' com
puters. ..."

[77] 61 ACM Editorial Staff Meeting:

T languagef°r.^LGOL PrimCr 3"d °ther ma,erial to exPlain ,he

LAn^0tth'0RnK,n T CU°PY' signed by one of the "Paris 13"-"ALGOL
is like the Bible, to be interpreted and not understood".)

[78] 61 Minutes of the ACM Council:

11 Y processors wa?^ ̂ 0^ the imP'ementation of ALGOL
original ALCof i"8 ^ slower than had been hoped when the
original ALGOL language was developed. The Council passed a

A Politico-Social History of Algol 185
motion requesting the President to appoint an Ad Hoc Committee to
draft a statement clarifying the current position of the ACM with
respect to ALGOL. This draft will be circulated to the Council for
approval and if approved will be published."

[79] 61 The President of ACM appointed Wagner, Forsythe,
May Wegstein and Bemer to an Ad Hoc Committee "to make a
15 recommendation to the ACM Council relative to the situa

tion on ALGOL."

[80] 61 First Meeting of ISO/TC97/WG E on Programming Lan-
May guages, in Geneva.
18 Following plenary sessions of the International Standardization

Organization's Technical Committee 97 on Computers and Infor
mation Processing (also the first meeting), the newly authorized
Working Group E on Programming Languages met under the
chairmanship of R. F. Clippinger, as the U.S. holds the Secretariat.
Following national activity reports, the Working Group decided to
take the first actions on that portion of its scope which read:

"Collect documentation for, classify and catalog existing langu
ages and their applications."

[81] 61 P. Z. Ingerman to the ACM ALGOL Maintenance
May Group, Proposed Alternative to the Oak Ridge Proposal:
^ 1 "The members of this group will adhere to the ALGOL language as

defined in the ALGOL-60 report. Translators should be constructed
in such a way that ALGOL programs that are unambiguously de
fined by the report will be clearly translated. The committee will
prepare immediately a list of ambiguities at present in the ALGOL
language so that these ambiguities may be avoided by algorithm
writers who prefer quiet to contention. ..."

[82] 61 F. V. Wagner to "Those Concerned With Implementing
Jul ALGOL For Computer Manufacturers":
20 "... The National Council of ACM believes that it is important for

it to review and clearly define its present policy in connection with
ALGOL. I have been appointed chairman of a committee whose
function is to draw up a proposed statement of policy for the con
sideration of the National Council. It is important that this com
mittee be aware of the present plans of all computer manufacturers
for providing ALGOL processors for their various machines.
The Committee would appreciate it very much, therefore, if you
would assist them in their task by sending to each member of the
committee, listed on Enclosure (1), the following:

(a) A formal statement as to your company's plans for providing
ALGOL processors. ...

(b) Any written material which defines as thoroughly as possible
the exact form of input language that would be acceptable to
those processors, and its meaning to those processors.

186 R. W. Bemer
(c) Your opinions as to the strong points and deficiencies of

ALGOL, both from the point of view of the user of the
language as well as the system programmer who is designing
processors to accept it. In addition, if you have any opinions
as to the policy that the ACM should follow, or action that it
should take, we would be interested in knowing about them.

[83] 61 H. R. J. Grosch, in Datamation:
Jul "... But the various ALGOL groups ought to agree on just one

thing, just once, and head for the Elephant's Burial Ground "

[84] 61 RCA to Members of the ACM ALGOL Maintenance
Jul Group:
19 "We support the sentiment expressed in the Oak Ridge proposal...

we request the chairman to call for a vote on the above mentioned
proposal."

Membership:
Armour Research Foundation Princeton University
Bendix Computer Division Remington Rand Univac
Burroughs—Electrodata System Development Corporation
University of Calif., Berkeley Stanford University
Case Institute Sylvania Electric
University of Chicago Computer Associates
Georgia Tech RCA
Lockheed Aircraft Carnegie Tech
National Bureau of Standards University of Mainz, Germany
J.S. Naval Electronics Lab. Argonne National Laboratory

University of North Carolina Royal McBee Corp.
Northwestern University DuPont
Oak Ridge National Laboratory IBM
University of Pennsylvania Dartmouth College

t85] Jul poasalSammet °f Sy,Vania votin8 NO on Oak Ridge Pro-
28

cons,\W°tb£mS d»° u0t disaPPear just because they are ignored. I
to he the T objectionable sentence in the Oak Ridge proposal
^n o' rr1^1 F°rSeveral *ears 10 come this comnfit.ee will

P pose any changes or additions to the ALGOL language'
nfitteeeemSIhherTtH w ̂ PUrP°Se °f having a Main'enance Corn-
case it should hi problem exists or it doesn't, and in the former
difference befweerld u ' U mUSt ** emPhasized that there is a
them at all. The ALGOL" Ma sl?W'y and carefu"y and not doing
heading in thp latt A- Maintenance Committee seems to be
the steps which ^re ectlon> whereas it could so easily be taking
of ALGOL as a univeTsaTkngua^^ ^ accep,ance

A Politico-Social History of Algol 187
[86] 61 Computer Associates voting NO on the Oak Ridge Pro-

Aug posal:
.. We agree with Ingerman that 'anything which is ambiguous is

undefined' is an unsuitable answer to the ambiguities of ALGOL
60 "

[87] 61 H. Rutishauser, in the Automatic Programming Informa-
Aug tion Bulletin:

" . . . I m u s t r e c a l l t h a t A L G O L i s n o t j u s t a p r o g r a m m i n g l a n g u a g e ,
but an internationally accepted standard notation, for which any
change has rather severe consequences. ..."

[88] 61 J. H. Wegstein's "ALGOL 60—A Status Report", pub-
Aug lished later in the 61 Sep issue of Datamation:

" . . . T h i s r e p o r t w a s w r i t t e n i n r e s p o n s e t o r e c e n t i n t i m a t i o n s t h a t
ALGOL is or should be on the wane. One is reminded of Mark
Twain's response to rumors that he had died. 'The reports of my
death have been greatly exaggerated.'
Physicists define momentum as equal to mass times velocity, and it
is impossible to estimate the momentum of an object by observing
only its velocity. A very massive object may have a large momentum
even though it is moving very slowly. Similarly with ALGOL, the
momentum of the movement cannot be judged by the speed with
which the language is being put into use without also observing the
number of people who are working with it.
At this time, the future widespread use of ALGOL for publication
and teaching purposes seems certain. It is rather easy to translate
by hand from ALGOL into various computer languages or into
other artificial languages similar to ALGOL for which compilers
now exist. The permissibility of many hardware languages that are
only similar to the ALGOL publication language may be essential
to giving the publication language a foothold. Yet, as time goes on,
the urge to 'stand closer to the trough' will surely lead to compilers
which bring the computer very close to the ALGOL publication
language."

[89] 61 IBM Reply to the Wagner Questionnaire:
Aug "A IBM expects to supply, at some future time, processors that
14 accept languages of the ALGOL class for such of its machines

that it may be practical. We do not wish to make premature dis
closures, but we may say that we are pursuing several compatible
approaches—including the following, about which you are
familiar:
1. Improvements and modifications in the FORTRAN language

to incorporate the new and desirable features of ALGOL.
These are reflected in the specifications for a 7090 processor.

2. Experimental investigation and study of the properties of
such languages and their translators.

188 R. W. Bemer
3. Cooperative participation in the SHARE/ALGOL committee.

Our main contribution so far has been the experimental pro
cessor for the 709/7090 of about 18,000 instructions.

4. Participation in the ALGOL 60 maintenance group chaired
by Mr. Joseph Wegstein.

B. No written materials are available other than the documentation
furnished to the SHARE/ALGOL Committee.

C. We feel that the strong points of ALGOL are self-evident and
that the deficiencies have been adequately noted in :
1. The ALGOL Bulletin, Copenhagen.
2. The Communications of the ACM.
3. The notes of the ALGOL 60 Maintenance Committee."

[90] 61 Letter from R. W. Bemer to I. L. Auerbach, President of
Aug IFIPS:
1 5 ". . . IBM's fee l ing that the maintenance o f ALGOL should be

undertaken at an international level reflects the curious impasse
facing the ALGOL 60 maintenance committee. The rules of this
committee are such that a negative vote of 10% or more is sufficient
to defeat a resolution. Accordingly, the present resolution is de
feated. However, if a proposal to make a specific change in ALGOL
were submitted to the committee, the members now voting against
changes in ALGOL (a majority, although not enough to pass the
resolution) would constitute a body of more than 10% required to
defeat a proposal of this type. Thus the committee finds itself, as a
result of this vote, in a curious position. IT CANT CHANGE
ALGOL and IT CAN'T NOT CHANGE ALGOL. This conclusion
was confirmed by Mr. J. Wegstein in a phone conversation with me.

Since this committee, by all laws of logic, can produce only zero
ou put, it would seem that an appropriate international committee
with authority is necessary to maintain the language. In Mr. Utman's
t^07 u yT' °? ̂ ehalf of the secretariat of Working Group E of
TFTPQ ? state ^at both Tootill and I did not mention specific
thinWh ln programming languages at the Geneva meeting. I
InH h'S pos,tlon was correct as we were not instructed to do so,
oriainTi yOUr repIy t0 Utman supports this. However, the
anltherl oMFfPS0 3re "°W comPonents (in one form or
time tn re i a"d you might find it necessary at some future
time to re-evaluate the IFIPS position "

[91] 61 IBM voting NO on the Oak Ridge Proposal:

16 wT'would1wish'^|'pOL.Ianguage should be maintained. However,
international enm », maintenance to be carried on by a unified
body such as IFIPS oflSO.1150"*1 ** a" au,hori,a,ive international

with °.n thefact that no such international body exists tfle authority to maintain ALGOL. ..."

A Politico-Social History of Algol 189
Minutes of SHARE XVII—Motion to Withdraw Support
ALGOL:
"The question of ALGOL 60 was re-introduced by Mort Bernstein
(RS), who moved to call from the table and amend slightly his
ALGOL resolution made at SHARE XVI. The effect of this resolu
tion would be to withdraw the support of SHARE, as a body, from
the ALGOL effort and to notify the ACM of this. ...

Bernie Rudin (ML) pointed out that as a result of recent work,
ALGOL was more nearly complete than the resolution would
indicate; nevertheless, he said, the ALGOL Committee would have
no real objections to the proposed letter. Frank Wagner (NA) stated
that, as chairman of an ACM Committee to study policy on ALGOL,
he was no longer permitted a personal opinion; however, he sug
gested that a paragraph be added which would take account of the
recent developments in ALGOL. J. A. Buckland (SO) felt that the
letter was incomplete and inaccurate, and F. J. Corbato (MI)
objected that it was gratuitous and could place SHARE in a false
light in the eyes of non-members. Aaron Finerman (RF) reminded
the body that it had endorsed ALGOL three years earlier and that
the intent of the letter was to inform the ACM that SHARE no
longer approves ALGOL wholeheartedly.

The motion was put to a vote and carried, with 65 installations in
favor, 43 against, and 15 abstaining."

[93] 61 Letter from the SHARE President to the President of the
Aug ACM:

"In September 1958, at the 11th meeting of SHARE, a resolution
commending the efforts of the ACM-GAMM IAL Committee was
unanimously approved and SHARE adopted ALGOL as a langu
age for SHARE machines. SHARE prevailed upon the vendor of
its machines to produce an ALGOL processor under the direction
of the SHARE ALGOL Committee. In the next year the SHARE
ALGOL Committee proposed a number of extensions to ALGOL,
and recommended to ACM that a mechanism be established for the
recognition of the continued development and extension of ALGOL
for the purpose of establishing standardization among all computer
users.

By I960 enthusiasm for ALGOL within SHARE had begun to
wane, and the work of the ALGOL Committee was frustrated by
apathy. The Committee was reorganized at the 15th meeting of
SHARE, with only those members pledged to work on ALGOL
implementation remaining. The goal was set to produce an ALGOL
processor for the 709/7090 by September 1961. In six months, this
effort also failed to make any significant progress.

With this background, at the 16th meeting of SHARE, a resolution
was passed which withdrew SHARE'S previous request that IBM
produce an ALGOL translator for SHARE machines. Among the
reasons for this action were the following:

[92] 61
Aug
23

190 R. W. Be/tier
1. It has been impossible to generate sufficient enthusiasm for

ALGOL within SHARE to ensure its implementation on SHARE
machines.

2. The SHARE ALGOL Committee has reported that ALGOL 60
seems to be incomplete, ambiguous, and difficult to implement in
its entirety, and that there does not exist an effective way of
resolving the troublesome issues.

3. The ALGOL dialects which have resulted from various attempts
at implementation on several different non-SHARE machines,
while being ALGOL-like, still do not retain the compatibility of
source language which it was hoped ALGOL would achieve.

4. FORTRAN has become a generally accepted and well known
algebraic system for which processors exist on SHARE machines,
as well as many other computers.

While hereby acknowledging the inability of SHARE to obtain a
working ALGOL 60 processor as a successor to FORTRAN, this
is done without prejudice to the efforts of those members of SHARE
who wish to continue to experiment with, develop and implement
ALGOL 60."

[94] 61 J. H. Wegstein, Chairman, to the Members of the ALGOL
Aug 60 Maintenance Group: Vote on the Oak Ridge Resolu-
28 tion:

. . . S i n c e m o r e t h a n 1 0 % v o t e d no, and less than 70% voted yes,
the motion does not carry. However, one might observe that by the
same rules, as long as those who voted yes do not change their
minds, no changes to ALGOL are likely to be accepted."
Actual vote 16 for no change, 10 for OK to change, 2 missing.

[95] 61 ALGOL Maintenance Group Meeting, in Los Angeles.
Sep
5

[96] 61 Minutes of the ACM Council:

8 ^ "Af^ Wagner presented the report of the Ad Hoc Committe
"at rn, l" After reviewin8 the history of ACM's participation i

L, he reported that the committee had sent letters to th
arger manufacturers and users' organizations. The replies to thes
e ers s owed that the manufacturers varied between those wh

were extremely enthusiastic to those who were taking no announce
action at the present time. After considerable discussion, the follow
ing resolution was passed:

IT RESj°LVED that the Council of the ACM adopt th
°Ecy vv't'1 re§ard to ALGOL and direct that it be pub

istied in the Communications of the ACM:
1. The ACM supports ALGOL 60 as the preferred publicatioi

2 TaHgUAafJ°r apPr°Priate algorithms.
J , continues to encourage research into developmen

eva uation of languages for publication and programming

A Politico-Social History of Algol 191
3. The ACM believes that ALGOL 60 is a language worthy of

consideration by national and international standardizing
bodies.'"

[97]

[98]

recent ACM conference in Los Angeles was a listing of all compilers
presently completed, their completion dates, and the machines for
which they were prepared. The tabulation was presented and posted
by IBM's Bob Bemer and included the attention-getting fact that an
ALGOL processor for the 7090 was completed by IBM as of
December, I960.

Although this was assumed by many registrants as an announce
ment of availability (although indeed, a curious one), this is not the
case. The processor which was prepared and listed as completed was
written on an internal, experimental basis for educational research
only. It is likely that if an ALGOL processor was developed for
IBM users, it would not be this one.

However, field testing of this ALGOL processor will take place by a
number of SHARE ALGOL committee members early next year.
And while testing is hardly to be considered an IBM endorsement of
ALGOL or the outdating of FORTRAN, progress in this direction
is interesting to note in view of the following excerpt:

In the March 1961 [issue of the Computer Bulletin, publication of the
British Computer Society, an article on 'Survey of Modern Program
ming Techniques,' by R. W. Bemer was published and we quote in
context from p. 130: 'I have enough faith in the eventual future of
ALGOL to have caused a program to be constructed which converts
from FORTRAN source language into a rather stupid ALGOL. I
have been asked many times why we did not make it translate from
ALGOL to FORTRAN so that the existing processors could be
utilized. The answer has always been that we wish to obsolete
FORTRAN and scrap it, not perpetuate it. Its purpose has been
s e r v e d . . . "

(One could of course note that this talk to the BCS was given in 60
September, at which time SHARE had not convinced IBM to
change its ALGOL policy—or that the survey was done for the
ISO/TC97, ... or that we were speaking of poor processors which
should be improved—in any case, it's an easy start on the road to
the Research Division.)

61 Working Conference on Automatic Programming Meth-
Sep ods, in Warsaw.
5 " ' ^ A t t e n d e d b y a b o u t 6 0 r e p r e s e n t a t i v e s f r o m t h e S o v i e t U n i o n ,

Czechoslovakia, German Democratic Republic, Hungary and
Rumania.

61 News item in Datamation:
Oct "IBM's ALGOL is not available: Posted on the bulletin board at the

192 R. W. Bemer
[99] 61 C. J. Shaw, in Datamation:

Oct "JOVIAL is a procedure-oriented programming language derived
from ALGOL 58 and designed by the System Development Corpor
ation for programming large computer-based command/control
systems. JOVIAL is largely computer-independent; compilers for
the IBM 709/7090, the CDC 1604, the Philco 2000, the AN/
FSQ-7 and the AN/FSQ-31 are currently in operation or in check
out This flexibility is due to the fact that JOVIAL compilers are
written in JOVIAL, in a computer-dependent and, to a lesser extent,
system-independent form. ..
(JOVIAL is an acronym for Jules (Schwartz) Own Fersion of the
International /4lgebraic Language. A very complete historical paper
is the entire content of APIB 22, 64 Aug, again by C. J. Shaw.)

[100] 61 Meeting of the LF1P Council, outside of Copenhagen;
An unanimous vote authorized a Programming Languages Com-

23-25 mittee, TC 2. The Council was to suggest candidates for the Chair.
(Dr. H. Zemanek of IBM Vienna was named.)
(From my notes: Bauer said that ALGOL was a product of a com
bined effort of representatives of technical societies and the language
has status for this reason only, van Wijngaarden said that such a
language has status only by general acceptance. I then submitted
the hypothetical case of someone publishing, under the auspices of
one or more technical societies, a revision of ALGOL as a new
language specification. I asked if this would be proper and would
such a language replace ALGOL if it got equivalent or greater
acceptance (I just happened to have the specs for 'IBM ALGOL'
with me) ? There seemed to be a general feeling that this was not
quite a cricket thing to do. ... Bauer and van Wijngaarden were in
agreement in their insistence that only the thirteen original authors
could re-issue or legally modify ALGOL. ... Bauer,"on the basis
that my English was better than his, asked me to write a draft letter
to the original authors of ALGOL ... this was tested, in the writing,
with van der Poel. ... An informal group met on Tuesday ... to
consider the next steps. By this time there was considerably more
understanding of IBM's position and what could be done. ... It
was at this time that van Wijngaarden had a flash of perception
a out software penalties and lack of rental being a major problem to
any computer manufacturer. There seemed to be a general feeling
that the clean-up effort should be made in order that IBM could
become an active aid in the ALGOL movement "

[101] 61 R. E. Utman, in Datamation:
Nov " c_ -c ..

Pecihcations have been found ambiguous or impractical of
i hntT/f'11611!- l l^'s condition they permit such varied interpretations
nampf Ti resuItant Processors can hardly qualify to carry the
such Tl °r ^et they are being labelled and sold as
1960 hv nCed 'n 'nformat'on processing was recognized in
estahlkhfri -',,and ,the responsibility for programming languages
established within the scope of Sectional Committee X3 and its

A Politico-Social History of Algol 193
Subcommittee X3.4. Under the Chairmanship of Dr. J. Chuan Chu,
a year of education and experience has since accrued and significant
progress can be reported today.

The first thing the programming experts in X3.4 believe they have
learned is that the problem of standardizing a language seems
several orders of magnitude more complex than that of a unit of
measure, a railroad gauge, film size, etc. ... As in every field of
technology, a standard must be dynamic and maintained in order to
be realistic, useful, and accepted.... Once the standard language is
achieved, it will then be necessary to specify tests to be used in
qualifying the variety of interpretations that will be labelled and
sold in its name. There must be an organized discipline of some sort
to enforce evaluations by these tests, and to administer a continuing
program of certification. ..

[102] 61 F. L. Bauer and K. Samelson to the Authors of the
Nov ALGOL 60 Report:

"Nearly two years have elapsed since the issuance of the ALGOL 60
Report. Processors (translators) have been written for many machines
during this period, resulting in many advances in translation
methods and considerable experience in the actual writing of such
processors. In addition, there now exists some experience in using
ALGOL for the machine solution of problems and even more
experience in the communication of algorithms in the publication
language. Thus the overall acceptance of ALGOL, as a language for
scientific problems, has been good, and especially favorable in
Europe.

However, some people claim that there are some obstacles to the
general acceptance of ALGOL. Indeed the ALGOL Bulletin and
various working groups have served as a forum for discussion and
suggestions of interpretation, revision and extension. None of these
methods have proved sufficiently effective against minor variance in
both language usage and processor interpretation, possibly caused
by the report and not due to deliberate intention.

It has been suggested that some minimum amount of resolution is
necessary and that the most effective (and at present the most
authoritative) means of doing this is the reconvening of the original
committee, as discussed at the end of the Paris meeting. Therefore
we request you to consider your participation in such a meeting and
to secure the acceptance of your attendance from your sponsor.

It has been suggested that an original member may not be deeply
concerned with ALGOL now and therefore may not wish to partici
pate. Although participation is not mandatory, it would be helpful
to have a letter of resignation so that the authority of this body is
not diminished.

Furthermore, it might be desirable to invite a few additional mem
bers who are acknowledged, practicing experts. It has been indicated
that it may be highly desirable that a conference member may be
accompanied by a technical advisor to him. In this way, some

A.R.A.P. 5—14

194 R. W. Bemer
processor implementors can be brought into useful contact with the
conference.
The meeting should occupy three days, starting Monday 2nd April
1962, immediately after the ICC Symposium on Symbolic Langu
ages in Rome ..."

[103] 61 Date of internal report "IBM ALGOL—a revision and
Dec modification of the ALGOL 60 Report due to an ad hoc
5 IBM committee...."

[104] 61 P. Naur to the authors of the ALGOL 60 Report:
?CC 'n reply... I can say that I agree that the time is ripe for a removal
o of ambiguities and omissions in the ALGOL 60 Report. However, 1

regret that I cannot at present support the suggestion of settling
these questions through a meeting of, essentially, the original com
mittee. ...

The formation of the U.S. Maintenance Committee and the result of
the enquiry of the ALGOL Bulletin, particularly the unchallenged
conclusions AB 11.1.6, make this approach impossible as far as I
am concerned, at least at the present.
I would like to add that I have already for some time been working
on a different approach to this problem ... the first step ... is the
distribution of a detailed questionnaire in the ALGOL Bulletin.

[105] 61 K. Samelson and F. L. Bauer to the authors of the
Dec ALGOL 60 Report:

I •t'lere^ore cons'der Peter Naur's material as a very useful
con n ution to the list of suggested topics, but stand to our request
from Nov. 30 of a meeting of the original committee."

[106] 61 News item in Datamation:

tn m^TD^ n o w I e d ge d by many IBMers as a far superior processor
nrarfi^u ALGOL development is nevertheless far from
monpv hi*) i C C^eS °Imanagement. The problem is not one of
Dresent r 3!8 y the ,ack of experienced programmers to meet
mmerlmT Tf °F °Ver35 FORTRAN processors as well as
scrannina th ects Promised to IBM customers. In addition,
enoS S Present "^vestment in FORTRAN would involve an
providing thp 0IH with no national or international body
ALGOI ti66 authority for a definitive explanation of
scratching"' 1C current status at IBM: considerable head-

C107] Dec D' McCracken' in Datamation:
doing 'wdml™'!"16 somebody spoke up for the power of ALGOL in
definition 'oW the kind of work in whlch recursive aennition, own variables, and call-by-name seldom arise. ...

A Politico-Social History of Algol 195
It is interesting to speculate on the origin of the myth of ALGOL'S

abstruseness, for which I suggest three reasons. First, the report...
is excellent for its intended purpose of defining the language, but
somewhat lacking when viewed as a beginner's primer. ... Second,
most of the published discussion of ALGOL has centered around
the advanced features, which is entirely reasonable, but misleading
... this leaves those of us on the fringes with the entirely mistaken
impression that ALGOL consists only of the difficult things. Third,
the algorithms published in the Communications are slow going for
some of us because the problems they solve are slow going for some of
us ... in the process of exhibiting how ALGOL can be used for
difficult problems, some of us got the impression that that was the
whole story.

In summary, it appears to me that ALGOL offers clear-cut advan
tages to anyone doing scientific computing, whether or not the
application requires use of the more advanced features of the
language. These features may well turn out to be major advances in
the computing art; in the meantime, there is no need to wait for the
dust to settle before making use of the 'simple' advantages. ... It's
time for some of us to take a fresh look."

[108] 61 Minutes of the ACM Council:
Dec "Resolved: That the ACM request AFIPS to request IFIPS to

reconstitute the ALGOL Maintenance Committee under the
auspices of IFIPS."

[109] 62 K. Samelson to P. Naur and members of the ALGOL 60
Jan Committee:

" . . . F o r t h e r e a l c r u x o f o u r p r o b l e m i s t o c o n v i n c e t h e l e a d i n g
computer manufacturer(s) to incorporate ALGOL processors in the
programming systems they provide for their products. This requires
a clearcut unambiguous language presented with clear authority.
If this is not available some manufacturers will continue to give
their own interpretation to ALGOL. Others will continue to be
disinclined to incorporate ALGOL in their programming systems,
and the story of SHARE ALGOL indicates that no exercise in
group dynamics will change that. ..."

[110] 62 Issuance of ALGOL Bulletin No. 14, containing the Naur
Jan Questionnaire.
12

[111] 62 D. D. McCracken, in Datamation:
•^arl "... Despite its demonstrable advantages as a computer language,

ALGOL will gain acceptance slowly (but steadily). Acceptance
would be much more rapid if users were willing to believe that (a)
ALGOL has not already been engraved in granite, never to be
changed, and (b) it will not change so drastically every two years
that processors will be continually obsolete. It would also help,

196 R. W. Bemer
of course, to hear a little more enthusiasm from the direction of
White Plains. Maybe we will have to wait for FORTRAN to evolve
into ALGOL, as it already appears to be doing. ..."

[112] 62 F. V. Wagner, in Datamation:
Jan ".. . For general purpose work, FORTRAN will continue to main

tain its supremacy. It will have little competition, except in univer
sities, from any of the ALGOL variants. ... Thus we can look for
an increased pressure for the incorporation into FORTRAN of
features permitting the easy development of special-purpose POL's
within the FORTRAN system. If FORTRAN does not rise to meet
this challenge, it is possible that the pendulum may swing to one of
the dialects of ALGOL. JOVIAL is the most likely candidate...."

[113] 62 A. J. Perlis, Chmn., ACM Programming Languages Com-
Feb mittee, to the Authors of the ALGOL 60 Report (Ameri-
15 can Delegation):

" . . . T h e r e v i s i o n o f t h e r e p o r t i s q u i t e i m p o r t a n t f o r p o l i t i c a l , a s
distinct from practical, reasons. It is important that the American
delegation do their part in aiding the adoption of ALGOL as a com
puter language by at least removing any impediments due to
ambiguities within the ALGOL 60 report.
Thus, will you please inform me at the earliest possible time of your
intent to attend the meeting ... or send me a letter of resignation
from the Report Committee. ..."

[1 Feb J H WegStdn t0 the Authors of the ALGOL 60 Report:
I a '" ' Although a declared international standard may be years

away, nevertheless questions are being asked of ALGOL and its
ambiguities. From a practical point of view, I think that ALGOL 60
could be used as it is for two or three more years. From a political
P°fA0Tf"7 there needs to be a 'flawless' ALGOL and an organ
ized ALGOL supporting group Let us see if errors can be cor
rected, results can be accepted, and set the course for establishing a
permanent ALGOL maintenance group."

[115] 62^ B. A. Galler to the Editor of Datamation'.
co"caSues has pointed out to me that the best argument

rat rof glVl SWltch,ng from FORTRAN to MAD, ALGOL or
Dictured in'^n efCOve.r of the December issue. The simple iteration
RAirm\! four languages is correct in MAD, ALGOL and

Feb

BAirn i I, I • & i5 curreci; in mau, ALGOL and

"161 Feb Processing D^v'-'6' W' C Hume' PreS" 1BM Da'a

21 «
PrASIBM *°°k ^ a?tive part in the birth °f ALGOL Applied

gramming is having trouble making FORTRAN work on some

A Politico-Social History of Algol 197
computers (such as the 7070) and hence is hesitant to tackle ALGOL.
Duke University has written and is happily using an ALGOL com
piler for the IBM 7070. We much prefer this language to FORTRAN
and our translator is many times faster than Applied Programming's
basic FORTRAN compiler which, in turn, is many times faster
than their full FORTRAN compiler. On the other hand, our object
programs are probably half as fast as those produced by FORTRAN
and therefore of no use to many FORTRAN users. However, we
would like to make ALGOL available to the many 7070 customers
... who have told us they want it.
The problem is that IBM can't decide what card punches should be
assigned to a few additional characters.... More precisely, we want
one 026 printing keypunch with a few extra characters which have
IBM's blessing, so that other IBM customers will eventually rent
similar keypunches and possibly use our ALGOL translator. ..."

[117] 62 W. C. Hume to Professor T. A. Gallie, Jr.:
Mar "I should like to take this opportunity to congratulate you on your
9 ALGOL compiler for the 7070 and to assure you that we consider it

to be in IBM's interest for the ALGOL language to be implemented
as quickly as possible. ..."

[118] 62 First Meeting of IFIP TC 2, Programming Languages, in
Mar Feldafing (Munich):
20-21 "j jhe scope of the committee shall be to promote the develop

ment, specification, and refinement of common programming
languages with provision for revision, expansion and improve
ment.

2. The specific program of work shall include:
(a) General questions on formal languages, such as concepts,

description and classification.
(b) Study of specific programming languages.
(c) Study and if appropriate coordinate the coalescing of a new

programming language for which there appears to be a need.
3. The Technical Committee may request the establishment of

working groups if and when appropriate.
4. The Technical Committee shall establish and maintain liaison

with other appropriate international organizations.

1. A working group may be established by the Council of IFIP
upon the request of a Technical Committee. It is a group
of technical experts selected without consideration of nationality
and assigned to work in a specified technical area.

2. The membership of a working group is appointed by the chair
man of the corresponding Technical Committee with the
approval of this Technical Committee. Membership is not
restricted to persons who belong to IFIP member societies or
groups of societies.

3. The chairman of the working group is appointed by the Presi
dent of the Council with recommendation from the Technical
Committee.

198 R. W. Bemer
4. Publication of results in the name of the working group can be

made after having been reviewed by the Technical Committee
under the provision that explicit mention will be made of the
fact that it will be submitted for approval at the next Council
meeting. After this approval it becomes an official IFIP publi
cation."

Working Group 2.1 on ALGOL was established under the
chairmanship of W. L. van der Poel:
"The working group will assume the responsibility for the develop
ment, specification and refinement of ALGOL."

D. D. McCracken, writing in the 62 May issue of Datama
tion :
"ALGOL has a home. ... This is indeed important news to anyone
interested in the acceptance of ALGOL, since one of the main
obstacles to its adoption has been its homelessness. Until now, no
one could really speak for ALGOL with complete authority except
the 13 authors of the original report and they were not in the
language-maintenance business. Now there will be an official body
to which questions, suggestions, and complaints can be directed,
with assurance that a response will be forthcoming and that it will
be official policy. ..

[119] 62 Symposium on Symbolic Languages in Data Processing,
Mar in Rome, sponsored by the International Computation
26-31 Centre (UNESCO) with published proceedings:

D. D. McCracken, reporting in 62 May issue of Datama
tion :

. . Condensed to essentials, the argument ran: 'We've got a lot of
customers who need answers, not speculation. We would be happy
to use ALGOL, since it seems to have many good features, but we
can t do much with a compiler that is loaded down with these
miserable recursive procedures and which produces horribly ineffic
ient object programs. We want to work with ALGOL, not play with
it. There was loud, sustained applause.

Four viewpoints could be identified in the ensuing discussion. Some
one said: 'But I've got a compiler that isn't slowed down by recurs
iveness, and the object programs are pretty good. You've just got to
learn how to write compilers.' Somebody else said: 'Maybe re
cursiveness does cost time in some cases, but it costs not to use it
when it is the best solution. You've just got to learn how to use this
new tool we ve provided.' Another said: 'Even if recursiveness is
difficult and often not useful, the idea of ALGOL for standardi
zation is so important that some compilers should be constructed
without recursiveness, if necessary. You've got to provide us with
more than one version of ALGOL.' Finally, someone said: 'ALGOL

such a large advance in the computing art that we never should

A Politico-Social History of Algol 199
have expected immediate acceptance. We've got a lot of things to
learn before ALGOL is widely accepted, as it surely will be in time,
and one of these is patience.' ..."
(The proceedings of this symposium contain verbatim records of the
panel discussions, all of which will be very interesting to the new
worker in this field. I doubt if there will be many advances by 1975
for which the germ of the idea cannot be found herein. This quan
dary must be resolved by referencing, not actually duplicating in
this log, although many of the comments noted are more important
intrinsically than many of the elements of this log.)

[120] 62 Continuation of the first meeting of IFIP TC 2. ALGOL
Mar Working Group 2.1 authorized, in Rome.
27

[121] 62 Meeting of the ALGOL 60 Report Committee, in Rome,
Apr resulting in the Revised Report.

Approximately 30 minor changes were agreed. Basic input were the
results of the questionnaire in ALGOL Bulletin 14 and proposals and
ambiguities described in that publication and the Communications
of the ACM. Incorporated in the report was their acceptance of
transfer of responsibility for the language to IFIP WG 2.1.
As it turned out, 8 of the original authors participated, 1 direct
representative of an original, 6 advisers and 1 observer; the last
being van der Poel, who had to take over the responsibility for
IFIP.
Two major disagreements were noted. Naur, van Wijngaarden and
van der Poel were in favor of no distinction between procedures and
functions, together with the concept of body replacement in the
procedure definition. Opposed were Bauer, Samelson, Green and
Kogon.

[122] 62 Conference on Advanced Programming Languages for
Apr Business and Science, at Northampton College, London.
17-18 Proceedings published in the Computer Journal. Some

excerpts from the discussions:
"A. GEARY: . .. My first pleasure is to introduce Dr. Dijkstra. ...
We have warned him that there has been a certain amount of bias
against ALGOL in England, in some quarters
G. M. DAVIS: . . . W e m i g h t a l s o a g r e e o n t h e s t a n d a r d i z a t i o n o f
means of specifying and describing languages. Until this is done one
cannot start the standardization of languages themselves. ...
M. V. WILKES: ... It will in the future be useful to know exactly
what is meant by a given programming language. ... But to sug
gest that standardization should mean the selection of one particular
language to be used on all occasions, in preference to all others,
appears to me to betray a very superficial knowledge of the sub
ject. ...

200 R. W. Bemer

E. W. DIJKSTRA :... The main virtue of recursive procedures is that
they make the tool more lovable for computers. A few weeks ago
somebody used the phrase 'ALGOL playboys' in a nasty fashion,
and I was very angry. A Dutch philosopher wrote a big book called
Homo Lucidas\—the plain man—showing clearly that everything
which, ages later, was regarded as of some significance, had started
off as being 100% plain. ..

f(Note: M. Halpern suggests that the transcript was not verified
by the participants, and that the book was in fact Homo Ludens
—The Playing Man. The last word would thus be "playing".)

[123] 62 Invitations for Membership in IFIP Working Group 2.1,
Apr ALGOL, tendered by Prof. H. Zemanek, Chairman of
24 IFIP Technical Committee 2, Programming Languages.

[124] 62 G. E. Forsythe to the ACM Editorial Staff:
^a^ • • • pwas agreed that the ALGOL movement has progressed to

the point where it is no longer desirable to publish unrefereed
algorithms. Perlis stated that beginning with 1963 the algorithms will
be refereed ... Perlis formulated the following policy:

a. The Communications will publish codes in any language as
part of a refereed article.

b. In the Algorithms section the codes must be in ALGOL for
COBOL?)" v

in FORTRAN^0™ PreSSUre fr0m SHARE ,0 Publish algorithms

[1 2 5] 62 ISO/TC97/WG E meeting, in Stockholm, courtesy of the
May Swedish Standards Commission, Olle Sturen, Director.

^rvey of Programming Language Processors presented as (USA-
10)55, 7 pp. Later published in CACM, 63 Mar.

[126] 62 One week Symposium at the London School of Economics.

SSpfLPUbIiShedA
aS7Wegner' R (Ed) A

" Production w systems Programming, Academic Press, 316 pp.

[12?] Jul City1'"8 °f U'S' Participants in IFIP WG 1, in New York

10 aU.S. thCre ̂ "° ̂ f°r indePendent formulation of

0281 Jul TmM:°n interVi£WS W" C HUmC 3nd A" L" Harmon

A Politico-Social History of Algol 201
HUME: May I ask a question? What's the stand of GUIDE and
SHARE who are the major machine users?
Q: In support of FORTRAN.
HUME : And logically, because they have a tremendous investment. I
think one of the successes of IBM has been based on the fact that we
try and service the investment of our customers. That's number one.
These are the major users of the machines. Secondly, I somehow
feel that there is a wrong impression as to our support of ALGOL.
We are not ignoring ALGOL. We're really taking a look at it and,
over and above a look, we're putting a tremendous investment in
ALGOL. Some people have the feeling that just because we're
continuing FORTRAN with the investment that our customers
have in it and since GUIDE and SHARE have come out for FOR
TRAN, that we're against ALGOL. We're not against it. We're
simply saying that we have to support FORTRAN.
Q: By investing in ALGOL, do you mean research into the develop
ment of an ALGOL processor?
HUME: Yes.
Q: Will it be announced soon?
HARMON : As you know, ALGOL and its specifications are still under
development and we have submitted an experimental ALGOL
processor to the SHARE ALGOL committee for further develop
ment and work. We like to make sure that things are reasonably
cleaned up before significant assets are poured into any program.
Q: Regardless of an announcement date of an ALGOL processor,
would this signify the end of FORTRAN maintenance and develop
ment?
HUME: It would not.
Q: With this fact in mind, would you be able to provide a prediction
as to when an ALGOL processor might be forthcoming from IBM ?
HARMON: You're in an area where you're almost asking when some
thing will be invented. In a development program, it's extremely
difficult to forecast even close to when something will be specified to
the level where it can be properly implemented. My guess would be
that the next five years will show significant changes, not only in the
ALGOL effort, but also in the FORTRAN language itself. It's
conceivable that these two will marry. ..."

[129] 62 News item in Datamation:
Aug "The winner in a hotly contested language wrestling match is ...

JOVIAL, at least as far as the U.S. Navy is concerned
The JOVIAL adoption is opposed by NELIAC advocates who
contend that their language was originally designed for the Navy
and could be used more easily by personnel of less experience than
would be required for JOVIAL. In addition, a recent study ...
indicated much faster compiling and executing speeds for NELIAC
over JOVIAL."
(Comment: ALGOL variant A vs. ALGOL variant B.)

202 R. W. Bemer

[130] 62 Meeting of 1FIP TC 2 (second meeting), in Munich.
Aug
25

[131] 62 IFIP Congress 62, in Munich. Reported in 62 Oct Datama-
Aug tion:
27- "... In virtually all respects, IFIP was a programming-oriented

P conference. Papers on hardware, circuit design, advanced com-
1 ponents, etc., drew the smallest attendance while sessions on

ALGOL, artificial intelligence, information retrieval were presented
to capacity audiences. ... The interest of Europe in ALGOL was
exemplified by numerous signs accompanying equipment exhibits
and, of course, in frequent conversations throughout the Congress.
In Europe, FORTRAN is generally viewed as 'that other langu
age' "

[132] 62 First meeting of IFIP Working Group 2.1 on ALGOL, in
Aug Munich. R. F. Clippinger reporting in Datamation their
28-30 plans to:

"a. to propose ALGOL 60 as an international standard,
b. to define 1/0 conventions for ALGOL 60,
c. to define an ALGOL 60 subset."

P" W. Hooper, President of the British Computer Society,
in his annual report, published in the 62 Dec issue of the
Computer Bulletin:

.. . ALGOL 60 in its final international official version, including
certain minor amendments, will be published in any country that
wishes in this next few months. At one of the sessions the United
States delegate stood up and publicly apologised for the lack of
interest taken by America in ALGOL. ... The United States are, of
couise, now full members of the IFIP Subcommittee which is now
talcing over ALGOL I expect the next full meeting will probably
be about November to start on the revised edition of ALGOL
which is ALGOL (60 + X) because we do not know the year. We

American participation and support and this will pull
ALGOL more into line with American thinking.

Outside official IFIP circles, it is my impression, and I would not
or the moment put it any stronger than that, that in about 1969 or
lii'f r, the thlrd edition of a standard language which

; y 0 ? ! C ' ° V C r t a k e ALGOL, FORTRAN and a l l the l o t
inere is at the moment strong international feeling that there must
confinLTgUage' that ALGOL has served a PurPose; it can still
standard la ^ 3 purpose' and 1 think it is certain that any future
ancestor g"agC Ca" always look back to ALGOL as its honourable

A Politico-Social History of Algol 203
[133] 62 Third meeting of ISO/TC97/WG E on Programming

Oct Languages, in Paris.
^ ^ jfip invited to present a specification of ALGOL 60 (Rome version)

and a proper subset for consideration as international standard
programming languages. IFIP then submitted the official IFIP
ALGOL and agreed that a subset specification would also be sub
mitted, if and when completed.
The U.S. submitted a position paper, ISO/TC97/WG E (USA-19)
80:
"The recommendations below are submitted in anticipation of the
possible proposal ... that consideration be given to adoption of
ALGOL 60 (Rome), recently approved as an IFIP official language,
as an international standard language or ISO Recommendation. ...
A. ISO/TC97/WG E should be concerned with ALGOL 60 (IFIP)

as a potential programming language standard, and not merely
as a publication language.

B. ALGOL 60 (IFIP) should not be considered acceptable as a
Proposed Standard Programming Language without provision
for or resolution of the following:
1. Input-output facility. ...
2. A standard subset. ...
3. ... the five problem areas of ALGOL 60 (Rome) should be

resolved by IFIP/WG 2.1. ...
C. A means should be provided to determine whether or not an

implementation satisfies the standard.
1. ... a set of test programs, with a description of their behavior,

to be included as part of any standard ALGOL. ...
2. It is further recommended that WG E limit its language-

measuring activity to the provision of test programs. ...
D. The relationship between WG E and IFIP/WG 2.1 should be

such that WG E as a standards processing authority will nor
mally refer all technical or developmental problems and pro
posed solutions re ALGOL to IFIP/WG 2.1. ...
. . . i t i s t h e h o p e o f t h e U S A t h a t t h e g e n e r a l s e n s e o f t h e
recommendations above will in any case be accepted and con
sidered by the WG E group defining the language standardi
zation procedure and program of work as essential elements
thereof."

Working Group E accepted the IFIP ALGOL specification for
consideration as a possible ISO Recommendation, and assigned it
for study for the next meeting.

[134] 62 J. H. Wegstein to X3.4 and IFIP WG 2.1:
l-*cc "On December 13, 1962, the BEMA Committee, X3.4 resolved that
28 it is the USA position that ALGOL 60 (Rome) should not be

considered as a standard without first dealing with input-output
facilities and possibly even the settlement of the questions left by the
Rome conference on ALGOL as well.

204 R. W. Bemer
I believe that this does not represent the view of many people in the
United States and other countries who are using ALGOL 60. ..

[135] 63 U.S. position on IFIP ALGOL, Document 1SO/TC97/
Jan SC5(USA-1)5:

This paper, emanating from ASA X3.4, informs ISO/TC97/SC5
that the U.S. is willing to consider as a standards proposal a version
of ALGOL based on ALGOL 60 (Rome) with input-output
facilities added, and/or the same for a subset of ALGOL 60 as
developed by IFIP.

[136] 63 N. Sanders and C. Fitzpatrick, in Datamation:
Jan "... The primary shortcoming of ALGOL as a computer language

is its lack of a subroutine facility—a facility not required, of course,
by a publication language. ...

The incorporation of the CALL statement changed the nature of a
FORTRAN listing. No longer was it possible to read a FORTRAN
program per se and understand it fully. The concept of remote
compilation and, more seriously, remote description made it neces
sary for the reader of a FORTRAN program to have knowledge not
contained in the listing itself. Consequently FORTRAN could have
no claim to being a communication language and made no such
claim. ... As ALGOL is presently defined the language tail will
wag the computing dog. Because of ALGOL'S desire to communi
cate man to man it does not have, rightly, any subroutine facility.
Consequently the whole philosophy of computer operations would
have to change. No longer the library tape!...

It would be worthwhile to consider breeding a FORTRAN hybrid
which would be capable of string manipulation and which would
use a stack for at least parameter transmission to subroutines, thus
making it ALGOL-like internally and allowing it to compile
itself. ..

[137] 63 SHARE XX Session on the 7090 ALGOL Compiler:
ffb "About 150 people attended this session." A 21-page report was

distributed ''An Introduction to the SHARE ALGOL 60 Trans-
lator," by R. G. Franciotti of IBM.

[138] 63 F. Jones, in Datamation:

pAd A fl? ?" other hand> faced the de facto standar
FOR I RAN, and the pragmatics of the situation were and are su<
that popularity is not in the cards for ALGOL—no computer us
who has a large library of FORTRAN programs, or who has acce
to the huge collective FORTRAN library, can justify the cost .
conversion to a system which most are not even sure is superior...

[139] 63
Apr
1

[140] 63
Apr
1

[141] 63
Apr

A Politico-Social History of Algol 205

Marjorie Lietzke (Manager, SHARE ALGOL Project) to
the SHARE Membership:
"The SHARE Algol Project has reached a very important milestone.
The first version of the SHARE Algol 60 Translator has been sent
... for SDA distribution....

We wish to emphasize that this is an experimental, not yet com
pletely debugged, and in some respects not too efficient translator.
However, it does implement most of ALGOL 60, and produces
object code capable of giving correct answers on fairly complicated
algorithms. ...

For your convenience, as well as our own, we have integrated this
first version of ALGOL with the FORTRAN II version 2 monitor
so that the system tape is capable of running FORTRAN, FAP, and
ALGOL. The libraries and operation are completely compatible.
Later we plan to have ALGOL operating under IBSYS."

Marjorie Lietzke (Manager, SHARE ALGOL Project) to
Roy S. Dickson (Chairman, SHARE FORTRAN):
"I read, with considerable interest, your proposals for extensions to
the FORTRAN IV language (SSD102, C-3179). A number of the
items you mention have been implemented in the SHARE ALGOL
60 Translator. To mention a few:

1. Labels may be either numeric or alphabetic.
2. A statement label may be used as a parameter, thus permitting

non-standard return from a subroutine.
3. The number of dimensions for a subscripted variable is not

limited.
4. Array storage allocation may be completely dynamic, that is,

all of it may be done at object time. There is no need for any
dimensions to be fixed at compile time.

5. Subscript range checking is done at execution time, and sub
scripts may be positive or negative.

6. The loop control statement of Algol (for statement) may have
positive or negative increments, either integer or floating
point."

Letter to the Editor of Datamation, from A. L. Cook:
" . . . I t i s t r u e t h a t m a n y o f t h e s e c o m p i l e r s (E u r o p e a n A L G O L) d o
not include a subroutine facility as defined by Messrs. Sanders and
Fitzpatrick; this is, however, a limitation of the compiler rather than
the ALGOL language. There is no difficulty in providing a library
tape of pre-compiled ALGOL procedures. These need be subject to
no restriction on generality and may make free use of global vari
ables. The procedures would be automatically found and inserted
into the correct block-level (not necessarily the outer block) of the
object program as a single procedure call directed at the compiler."

206 R. W. Bemer
[142] 63 J. W. Granholm, in Datamation:

APr .. Feb. 27th, in San Diego, Calif., the ALGOL Committee of the
SHARE organization reported in open tutorial session. Gist of their
report: ALGOL 60 is running on four 7090 installations—Rocket-
dyne ... General Atomic ... Oak Ridge National Laboratory ...
and Marshall Space Flight Center. . . . The master tapes ... are
now available to any SHARE member. . ..
ALGOL, named by the Arabs, is a fixed star in the constellation
Perseus. It was among the first of stars noted for its periodic vari
ation in brightness, due to eclipse by its dark satellite. Its name in
Arabic, signifies 'The Demon'. On last Ash Wednesday in San Diego,
ALGOL might have proven not only to be a demon, but to be a
genie rising with astounding' magic from the bottle where it had
been securely corked by its critics."

[143] 63 ASA Subcommittee X3.4, Programming Languages.
Pr This reaffirmed the U.S. position of standardizing ALGOL on an

international level rather than national, even should a national level
need arise, which so far has not.

[144] 63
Jun
5-7

Fourth Meeting of ISO/TC97/WG E, in Berlin, as reported
y H. Bromberg in 63 Aug issue of Datamation:

".. . The French ALGOL translation is currently in circulation in
France for approval ... a straight translation which is to be used
™^/r^a:ning/UrP°SeS' and for Promoting the implement-
however th 'r rrCnCh Ianguage countries. They recommend,
The French H W° ** USed for Programming purposes.

he French standardization group has also prepared a draft pro
posal for standard hardware representation of ALGOL symbols....

ofafira7d?flft0[iedPnreSentatir0n l° the German standardization body
the Ai rt ̂ canono n ALG°L 6° SUbsCt' This supersedes
addition Cerm" SC • W 'lad '3ecn Previously considered. In
TC97/STS nn 15 n°W considering a draft proposal to ISO/
S 0f ALGOL symbols in five-channel
tape and 80-column cards. Finally, they have prepared an English-
German glossary of ALGOL Technical Terms^or pub£,S

process ornrenaatIOnal ACtivhy Rep°rt stated that they are in the
pilers Theitaf'R STey°n Programming languages and com-
ALGOL ' Jhrn, ^^* 231'0" group is contributing to
5 bSng-prepa'S"8" ECMA "' M ALGOL 60

ALGOlSSISS .o8™!/? thC poin,s of lhe u s- posi'ion on
theVe^ed ALGOI ^ thfl changes should not be made to
Lo/rStALG^fJ/iSS:bu'ra,hcr sl,ould ™sited gsssasB-ss

A Politico-Social History of Algol 207
The United Kingdom reported the establishment of a Programming
Languages Technical Committee, DPE-13, under the British
Standards Institution. . . . The United Kingdom section of the
programming languages survey was updated and received by the
U.S. Secretariat. ...

The European Computer Manufacturers Association (ECMA)
TC5 on ALGOL has been working on the preparation of an ALGOL
subset which includes as many of the characteristics of the proposed
IFIP subset as were known. ...

. . . d i s c u s s i o n o f S u b c o m m i t t e e 5 r e s u l t e d i n u n a n i m o u s a p p r o v a l
of the following motion:

'SC5 received with great interest the IFIP ALGOL 60 revised report
and deems it a significant contribution to ISO/TC97/SC5 standardi
zation work. However, the committee feels that this document in
its present form is incomplete in that standard input-output pro
cedures and specification of a proper subset should be included.
Therefore, SC5 invites IFIP to submit at its earliest convenience a
more complete document.'

. . . t h e f o l l o w i n g r e s o l u t i o n w a s u n a n i m o u s l y a p p r o v e d :

'It is premature to decide today which choice we should make
between ALGOL and FORTRAN due to the relative incomplete
ness of both documents presented to Subcommittee 5 and the fact
that no criteria for evaluating a standard exist. It is therefore moved
that the two condidate languages in the field of scientific program
ming be treated in parallel.'

The ALGOL Ad Hoc Working Group, under the chairmanship of
William Heising of the USA reported consideration of the private
Ingerman-Merner paper on ALGOL, which was presented as an
example of current thinking in the United States. ...

The Ad Hoc Working Group on FORTRAN, chaired by W. van
der Poel of the Netherlands, presented the final report. ..."

(It is of interest to note that Heising, who finally got together an
IBM standard FORTRAN document to present to ASA, and van
der Poel, who chairs the IFIP ALGOL Working Group, had ISO
assignments which swapped the languages for which they were
responsible. One can conclude correctly that this was deliberate and
should pay off well.)

[145] 63 J. C. Boussard to the SHARE Secretary:
"I am pleased to let you know that the computation department in

26 Grenoble has constructed a compiler for the Algol Language on
IBM 7090-7044 computers.
The program, brought up for the first time at the Grenoble meeting
(February 1963) translates Algol 60 instructions into FAP instruc
tions directly performed by 7090/7094 and 7044 machines.

Since February 1963, this program was improved by being trans
ferred upon an IBSYS-System-Tape, version 6, which allows us

208 R. W. Bemer
from now to assemble and perform any number of ALGOL, FAP
and FORTRAN programs, only parted at the input by "job" cards
and a certain amount of control cards (see Fortran monitor).

During the following months, the same program will be added to
the IBJOB system, both upon 7090 and 7044 machines which will
make it possible to use efficiently the IBMAP assembler.

Our compiler is designed to accept any ALGOL program, with these
few restrictions only:

—the input program must neither include a numerical label nor
nested strings.

—all formal parameters must be specified and the type of every
actual parameter must be identical to that of the formal corre
sponding parameter.

—all identifiers and labels written out in a switch declaration must
be declared (defined for the labels) in the block where the declar
ation is located, or in a block outside.

—formal parameters specified as "label" cannot be called in by
"value".

Other restrictions laid on input programs for the time being (recur
sive procedures, "arrays" called in by VALUE) are to be cancelled
in the following next months.

A range of input-output procedures was defined for that compiler,
they go from immediate input procedures to input-output pro
cedures with specifications of FORTRAN formats. At last, all
standard procedures advised by ALGOL committee on one hand,
and all those which may be used in FORTRAN on the other hand,
may be used in the input programs of the compiler.

The compiling method for this program: sequence of two passes of
the input program (edition and generating), and wide-spread use of
stacks make it possible to translate an ALGOL program into FAP
instructions forming a program whose bulk and efficiency may be
directly compared to those of FORTRAN II, version 3."

[146] 63 Working Conference on Mechanical Language Structures,
Aug in Princeton. Sponsored by the ACM, published in
14-16 CACM, 64 Feb.

[147] 63 Writing in APIB 18, E. W. Dijkstra reviews the G1ER
Aug ALGOL manual.

Arguing against the need of subsetting ALGOL, he also notes
that this is full ALGOL 60 except own arrays and arrays called
by value, yet it was implemented for a machine with 1024 (40-bit)
words of core store and 12800 of drum store, hardly extensive by
today s measurements.

A Politico-Social History of Algol 209

A. S. Douglas, in Datamation, re the U.K. situation:
"... Then, of course, one must these days have ALGOL (unless one
is IBM). But ALGOL does not specify an input and output system
much, and is not thought to be good for data processing. ..."

63 F. L. Alt succeeds R. F. Clippinger as Chairman of
Aug ASA X3.4.

Third meeting of IF1P TC2, in Oslo.

[151] 63 Second meeting of 1FIP WG 2.1, in Delft. ECMA fur-
Sep nished a proposal for a subset of ALGOL.
10-13

[152] 63 M. Lietzke to Manfred Paul, Mathematics Institute of
Sep Munich:
23 "Julien Green has informed me that your ALGOL Translator is now

in the final check-out stage and that you are interested in having our
SHARE ALGOL Project consider it as an alternative to the translator
we have at present. Since our objective is to make the best possible
Algol system available to SHARE members we would be most
happy to consider your translator. ..."

[153] 63 M. Lietzke to Jean Claude Boussard, University of
Sep Grenoble:
10 "... I notice that you use French word delimiters; how difficult

would it be to change the dictionary for your compiler to accept the
standard English word delimiters? Do you have any provision for
communicating with FAP or MAP assembled subroutines other
than the built-in functions? ..."

[154] 63 J. C. Boussard to M. Lietzke:
"... All the Standard Functions specified in Paragraph 3.2.4. of the

29 ALGOL 60 Report can be treated by the compiler. Input and output
procedures are available and, in particular, FORTRAN-like Format
Statements can be utilized by the programmer. The word delimiters
or their abbreviations can be used arbitrarily in ENGLISH or in
French. Notice that it is also valid to have a mixture of words in the
two languages, as shown in the enclosed example. Some present
restrictions of our compiler are as follows (1) ALGOL source programs
should have less than 12,000 syntactical units, (2) the number of
procedures is limited to 256, and, (3) the number of numerical con
stants should not exceed 2,000. As far as speed of compilation, we
might add that it is comparable to that of FORTRAN II.

210 R. W. Bemer
Among the restrictions to be observed in preparing source programs,
the following are cited: (1) numerical labels are allotted, (2)own
arrays with dynamic bounds are not permitted, and (3) all formal
parameters must be specified and must be of the same type as actual
corresponding parameters.
Turning to your last question, we do not have, at the present time,
any means that permit the separate assembly of Algol and other
languages. We are currently working on the problem of separate
compilation with IBJOB and IBMAP."

[155] 63 A. P. Ershov to W. van dcr Poel, Chairman of 1F1P
Nov WG 2, ALGOL:
^ To my regret I shall not be able to attend at the second meeting of

the WG 2. The main reason is that 1 have been received the official
announcement too late (July 23, 1963) so I have no time to change
my plans and to make necessary arrangements....
3. Some news from the USSR:

a. Two ALGOL translators for the M-20 computer are in an
operation at present in the USSR. These are authorized by the
Joint M-20 Users Commission attached to the Mathematical
Institute, USSR AS. The first smaller trartslatorfor an ALGOL
subset (no strings, no numerical labels, no recursive calls, no
own, and some restrictions for procedure declarations and
statements), consists of about 7000 instructions, multipass
running, the speed of translation 1000-2000 operations per
one source program symbol, a little optimization. The second
translator which has been developed under guidance of Prof.
Shura-Bura of Moscow University for full ALGOL minus
dynamic arrays and numerical labels, consists of about
13,000 instructions, multipass running, the speed of trans
lation 10-15 minutes per 1000 object instructions, some
optimization. The ALPHA translator (Input Language
without recursive calls and with some other minor restrictions)
is now under experimental operation. It consists of 32,000
instructions, multipass running, the speed of translation about

minutes per 1000 instructions, careful optimization,
b. Bottenbruch's and Dijkstra's books on ALGOL 60 have been

translated into Russian and are now in print. In addition, two
or three original primers on ALGOL have been written and
aTr^,'5r'nt to°' A" English translation of an extension of

GOL 60 (Input Language) has been published in England
an in the USA by the Academic Press.

C Iher,C are 5 or b groups in the country wishing or beginning to
evelop translators for middle-size computers which are to be
ase on some ALGOL subsets. There are various opinions

about the subsets but SMALGOL is in favor....
Hic^°U'd 'ilce to ma'ce only one comment concerning possible
sarvUfSI°n °n ^1-GOL 60 at future meetings. I think it is neces
n • ° separate Problems of symbol manipulations from sue

s as complex arithmetics, matrix computations and so on.

A Politico-Social History of Algol 211
I am sure that there should be an ALGOL-like, but separate
language for string manipulations. I suppose September 1964
should be an appropriate date for the first discussion of the
language."

[156] 64 Resolutions of the 33rd Meeting of ASA X3.4:
Feb "2. That a Working Groupf be established ... to undertake
20 standardization responsibility for ALGOL in the United

States. ...
3. That the United States position on ALGOL at the ISO meetings

include the position that an input-output system based on that
of the Knuth report! (ISO/TC97/SC5(USA-90)40) be sup
ported and endorsed as a part of standard ALGOL. ...

4. At this time X3.4 wished to place on record its recognition of the
excellent results produced by Don Knuth and the members of
his ACM group. They have produced a good I/O set of facili
ties for ALGOL promptly at a critical time in the progress of
standardization of ALGOL. ..
f X3.4.8, Chairman—J. Merner.
t In CACM, 64 May.

[157] 64 Third meeting of IFIP WG 2.1., in Tutzing.
^ai The ALGOL Bulletin planned to be revived (No. 16 in May).
16-20

[158] 64 R. F. Brockish to H. Bromberg, Chairman, Joint Users
Mar Group:
^ "At SHARE XXII in San Francisco, March 2-6, The SHARE

Executive Board endorsed the following recommendation to ASA
X3.4 from SHARE.

Recognizing (1) that ALGOL and FORTRAN are useful in
closely related application areas and (2) that FORTRAN is still
the more widely used of these two languages in the United States:
X3.4 hereby instructs its delegation to the forthcoming ISO/
TC97/SC5 meeting to support no action that would result in the
consideration of an international standard ALGOL prior to
equivalent consideration of an international standard FORTRAN.

Mr. Lynn Yarbrough of North American Aviation who is SHARE'S
representative on X3.4 will present this recommendation to that
group for acceptance.
SHARE'S position in this matter is that FORTRAN is a widely used
language that deserves equal attention when the question of an inter
national standard computer language is considered by ISO. We feel
that if ALGOL is considered without concern for FORTRAN and
is declared a single standard, the chance of FORTRAN becoming a
co-standard is remote. We feel that in the area of computer-inde
pendent languages for scientific applications, there is justification for
both a standard ALGOL and a standard FORTRAN."

212
[159] 64

Mar
18

[160] 64
Apr
21

[161] 64
May
11

[162] 64
May
21

R. W. Bemer
R. F. Brockish to M. Lietzke, in SSD 119:
"I am writing on behalf of the SHARE Executive Board tc convey to
you our response to your recommendation that SHARE request
IBM to assign one man to the maintenance of the ALGOL com
piler. The SHARE Executive Board discussed your recommendation
at length and does not consider that such a request would be in the
best interest of SHARE. As you know by a vote of the general body
at SHARE XVI in San Francisco, SHARE endorsed FORTRAN as
the primary algebraic language and rescinded its request to IBM for
an ALGOL compiler for SHARE machines. In keeping with the
spirit of this resolution, although it in itself did not mention main
tenance, the SHARE Executive Board feels that it should not
request IBM to obligate itself to the maintenance of the SHARE
developed ALGOL compiler.
The Executive Board recognizes and thanks you for your enthusiastic
efforts in developing the SHARE ALGOL compiler."

Resolution of X3.4, in Washington:
"In view of the extensive development and preparatory work
resultant from the initiative and request of TC97/SC5 and the USA
as Secretariat, the USA urges SC5 to take action at its May 1964
meeting to enable a First Draft ISO Proposal Specification of
ALGOL to be prepared for immediate circulation to SC5 under
ISO Rules, and the USA will support such action."

Fourth meeting of IFIP TC 2, in Liblice, Czechoslovakia
(near Prague):
Proposals for IFIP SUBSET ALGOL 60 and input-output proce
dures were submitted by WG 2.1 and approved, both by TC 2 and
the IFIP Council. This was in response to the ISO request. These
proposals, labelled 'final issue—22 Apr 64", appear in ALGOL
Bulletin 16, 64 May. It should be noted that the subset proposal
derived mainly from the ECMALGOL, and ECMA standard
(having previous input from ALCOR and SMALGOL).

News item in 64 Jun issue of Datamation".
Moderation (and ALGOL) win out in Europe—A strongly worded

attack on FORTRAN and IBM's new programming language-
made at a recent IFIP meeting in Prague—has been toned down, we

novv. constitutes a suggestion for cooperation between
,, Working Groups and NPL development representatives.

Announcement to SHARE ALGOL Mailing List:
Jche SHiARE ALGOL 60 Translator, MOD4, has been sent to SDA

vvee . his version of the translator shows a considerable
increase in speed over previous releases.

stanH a r H t procedures separately, and will accept the
a s wnit UCOR hardware representation with escape symbols,

as our original reserved word hardware representation."

A Politico-Social History of Algol 213

[163] 64 Fifth meeting of ISO/TC97/SC5, in New York:
May Major concentration led to the preparation of the ISO Draft Pro-
25-28 posal on the Algorithmic Language ALGOL, prepared by an Ad Hoc

Working Group on May 26-27. It included:
(1) A full ALGOL based upon the IFIP specification.
(2) A unique subset based upon the IFIP specification.
(3) An elementary level of 1/0 procedures based upon the IFIP

specification.
(4) A level of I/O procedures based upon the Knuth report.
(5) An appendix containing the transliteration table between the

ALGOL symbols and the ISO 6- and 7-bit code proposals.
This Proposal was accepted for processing as an ISO proposal. A
paper was prepared on "Criteria for Standardization of a Program
ming Language" (published in the Computer Bulletin, 65 Mar).

[164] 64 Noted in the ALGOL Bulletin No. 17, ALGOL compilers
Jul for Atlas and the CDC 3600, and a note from J. H.

Wegstein:
"There has been an overwhelming response to the algorithm re
print offer in the April 64 issue of the ACM Communications. ...
The speed with which requests have come in from several countries
has been very encouraging as far as ALGOL interest is concerned.
My supply of reprints was wiped out."

From the Minutes of SHARE XXIII:
"Mr. L. Bolliet ... described the ALGOL compiler which was
developed under his supervision at the University of Grenoble. This
compiler was written in the intersection of the 7090/94 and 7040/44
instruction sets. On the 7090 it operates under IBSYS and uses the
FORTRAN II Version 3 System to assemble and load the object
code. On the 7040/44 the compiler operates under IBJOB and trans
lates to MAP.
The compiler has been submitted ... for distribution."
"The ALGOL project presented a report for the compiler on
7040/44 and will continue to support the 7090/94 compiler under its
new manager" (John Whitney).

E. L. Manderfield to the Editor of the ALGOL Bulletin:
"If you have any contact with any of the official European ALGOL-
ers who have some influence, I would like to suggest that they
proceed with ALGOL 6X because among the ranks of the American
SMALGOLers there has been a mass desertion to 'NPL'. This is
for two reasons, one is that ALGOL has never been a very popular
language in America (partly because of the influence of the pre
ponderance of IBMers, and partly because the ALGOL Mainten
ance Committee didn't make very many friends the way they
operated); and the other is that NPL has adopted apparently the
best features of the current programming languages. . .."

[165] 64
Aug
17-21

[166] 64
Aug
30

214 B. W. Bemer
[167] 64 News item in the Computer Bulletin:

Sep "CPL is a programming language which has been developed jointly
by members of the University Mathematical Laboratory, Cambridge,
and the University of London Institute of Computer Science....
It is based on, and contains the concepts of ALGOL 60; in addition
there are extended data descriptions. ... However, CPL is not just
another proposal for the extension of ALGOL 60. but has been
designed from first principles, and has a logically coherent struc
ture. ..

[168] 64 One week course on Computational Linear Algebra and
Sep Computer Programming in ALGOL, at the University of
14—18 Manchester.

[169] 64 Fourth meeting of IFIP WG 2.1, in Baden.
7^.. McIIroy, of the SHARE Advanced lDevelopment

" Committee, gave a presentation on NPL (New Programming
Language). The meeting was devoted mainly to discussions of
ALGOLs X and Y, X being a considerably extended and revised
version, whereas Y is to be a completely new language with a rigor
ous definition in a metalanguage.

[170] 64 Working Conference on Formal Language Description
7sPt e J;anfuages' under auspices of IFIP TC 2. Dr. H. Zemanek,

Conference Chairman. Proceedings published by North-
Holland, 1966.

[1?1] Oct T Naur\in the ALGOL Bulletin No. 18:
proiwanf wr ^AL^OL 60 the assumption was implicitly made that a
take advantn C" r" 8 langua8e common to manv machines cannot

machine. Particular Prescribes one particular abstract
machine as best thev '™pIcmc",a,,ons must then simuUte this
same kinds of n m ' ' ' Passing it may be noted that the
darare basicanv ^n ^ PrCSCm ln <***» '« 00801 *>
COBOL in a machi^^ '"jlCrms of character strings. Simulating
fore excessively wastcfu?"'11^ W"h fasl binary •r»,hn*tic is there-

data divisions°)'OWS f°F 3 vcrsion of ALGOL with environment and

11721 Oct ,Nn7 Hem in Datamation:

Dr. Brooks said ttntOOBOLaProgrammingUngual
System/360 were beine nr« A J FORTRAN compilers for tl
Programs'. . . . Furthef an 'Principally for use with cxistii

C O B °L . . . and two o f pSf juM* 3 r C f ° r J*** v e r s i o

AN . . . but four o f NPL. . .

A Politico-Social History of Algol 215

n m 64 Meeting of the ALCOR Group, in Bad Soden/Taunus, to
Oct consider the effects of ALGOL X on processor construc-
19-20 tion. Attendance by about 80 persons.

H741 64 Publication, in Datamation, by C. J. Shaw of an algorithm
Dec (in something like ALGOL) for singing the old Christmas

favorite, "A Partridge in a Pear Tree (APIAPT) . Good
fun.

[175] 65 SHARE XXIV Session Report, by J. R. Whitney, Chair-
Mar man:
3 "The last rites of SHARE ALGOL were held in the Garden Room

East In attendance were approximately 15-20 mourners, mostto
flfem there out of curiosity, I suppose. Not a single tear was shed
when it was announced that SHARE ALGOL had become part of
history."

[176] 65 Note in the Computer Bulletin:
Mar "Great interest has been shown in the proposed card-index scheme

for ahtorithms. No details of this scheme have yet been finalized but
the editor would be glad to hear from any concern or indmdua
interested, particularly if they have suggestions as to how it might
best be implemented...

[177] 65 1F1P 65 Congress, New York City.
May
24-29

[178] 65 B. A. Galler to the Editor of Datamation:

May -your editorial of March, 1965 st.TlS^VilhouUhe
facturers be handed the to
confusing influence of users wh reduce compiler
include their pet esoteric optionsfacts:
speed and efficiency.' I must remind you of some historic
(1) If a group consisting largely of users JadnH come up wi ^ ^
in the face of a practically standard FORlKAiN,
very little that is new in NPL. ,„„fart,irers
(2) Some of us users were involved
that it is possible to have both a decent language (not pe
and compiler speed. T

(3) If users hadn't objected violently to ear yJ®™on t back some
would have found procedure-onen ed 1 NPL with
years. (You have only to compare the final version
versions 1 and 2 to see what I mean.) . • •
I note that ASA is now following the pr now when
world could anyone seriously consitto NPL s a stan ... NPL
not a single program has gone through a compute

216 R. W. Bemer
wasn't even announced until it had gone through six versions. It
must surely be expected to go through another six before it settles
down. ...

What harm is there in watching it as a potential standard, I will be
asked ? Has anyone ever tried to make changes in something which
is almost a standard' ? And there will be those who are pleased if no
changes can be made. But let us be forever grateful that FORTRAN
I is not a standard now."

[179] 65 A. d'Agapeyeff, in Datamation:
May *<The absence in Europe of a large vested interest in FORTRAN has

led to a ready acceptance of the advantages of ALGOL as a langu
age. It is the main vehicle for university teaching and is in wide
spread use particularly in Holland, Germany and Scandinavia. In
Germany ALGOL or ALGOL-like compilers have been available
tor some six years, allowing an extensive body of experience to be
built up.

In Britain the progress of ALGOL has been more hesitant....
Furthermore, with one striking exception, it is only recently that
really useful ALGOL compilers have been released. However, it is
now t e P°hcy °f two of the three main British manufacturers to
support ALGOL and it is backed by the majority of the universities.

would seem, therefore that, subject to the future impact of NPL,
Britain will go along with the rest of Europe in favouring ALGOL."

[180] May Fifth meeting of IF,P WG 2-l. in Princeton.
17-21

[181] May Fifth mCeting °f IFIP TC 2' in New York'

tl82] Jul in Datamation, "U.S.S.R.'s Evshov Speaks in

ment'of'Aim amrning e'f°rt 'n recent years has been in the develop-
20 passes^ fivp ' En ?xte"dec*-ALGOL compiler (45K instructions,
(a 4K core m~S ln 'u6 mak'nS- Designed for use on the M-20
second) the m ° 'i"6 w averages some 20,000 instructions/
h ee-aLress ?n"!, f Pr°dUCeS °bjeCt ProSrams a< rate of 150

sa.Ubut ALPHA hfr m'nUte' WaS ver> difficult,' Evshov
programs have h S ln operatiori one year, and some 2000

- —
ann°im<SemeTof"tosrkf0™A'|^^'c' Evshov noled lk

bin. ALGOL and

A Politico-Social History of A Igol 217
[183] 65 ACM Programming Languages and Pragmatics Confer-

Aug ence, in San Dimas.
Proceedings in CACM, 66 Mar.

[184] 65 Sixth meeting of ISO/TC97/SC5, in Copenhagen.
Sep
6-10

[185] 65 SHARE-JUG Conference on Programming Language
Oct Objectives of the Late 1960's, in Philadelphia, as reported
7-9 in Datamation:

"IBM, said William McClelland, does not see 'any need for any
other major new procedure-oriented language development which is
not a direct and essentially compatible extension of the existing
languages.' .. . The ideal, he proffered, one IBM is working on,
would be that 'manufacturers provide not compilers for languages
themselves as a principal product, but a metalanguage compiler and
expressions of standard forms of the appropriate language in that
metalanguage. Users would then be able to tailor the language to
their individual needs. ...
What about existing languages ? Standards on two, FORTRAN and
ALGOL, are (at time of writing) being voted upon at the ISO
meeting in Japan. Will manufacturers support these standards?
Attitudes, although positive, varied slightly. IBM gave an unequi
vocal yes for FORTRAN and COBOL, while UNIVAC noted that
it would be 'guided by the needs' of its users. ...
A GSA spokesman on PL/I was quoted by a panelist as saying the
'government would have to protect its investment in COBOL and
FORTRAN'." (Elsewhere it was referenced that the 1964 inventory
of government EDP equipment lists 5885 applications, 19% using
FORTRAN as primary language, 3 %—COBOL, and 1.8%—
ALGOL.)

ISO/TC97 Plenary meeting in Tokyo.
The delegates of all national members approved the draft proposals,
with the exception of the Netherlands, and the USSR, which
abstained. The form was then changed to an ISO Recommendation,
which will be prepared by an Editing Committee for circulation to
ISO members for final approval. At the same time the levels of the
language were increased from two to four—ALGOL 60, ECM-
ALGOL plus recursion, ECMALGOL and the IFIP SUBSET.
The transliteration tables will not be included, since no agreement
could be found.

News item in ALGOL Bulletin No. 21:
"Telefunken have incorporated the I/O procedures proposed by the
ACM Committee ... into the ALGOL-System for the TR4 com
puter. ... User's comments are very favourable. ..."

218 R . W . B e m e r

[188] 65 Sixth meeting of IFIP WG 2.1, in St. Pierre de Chartreuse,
Gct The main topic of work continued to be ALGOL X
25-29

[189] 65 Sixth meeting of IFIP TC 2, in Nice.
Nov
2

[190] 66 46th meeting of X3.4, Common Programming Languages,
Mar in New York.
' 1 Add up the plane fare and expenses for standardization work!

[191] 66 Seventh meeting of IFIP TC 2, in London.
APr It was reported that the ISO Recommendation (ISO/TC97/SC

(Secretariat-26)102) had been edited and sent to AFNOR foi
translation into French. FORTRAN has already been through this
process, but final action is delayed until completion of translation.

[192] 66 Publication of "System 360 Operating System-ALGO
May Language"—IBM Form C28-6615-0. "

[193] 66 News brief in Datamation'.
£ IBM, whose giant software efforts for the 360 line are swallowing

an estimated $60 million in 1966, has taken on the development^
another language compiler-ALGOL. Particularly aiming to meet
the needs of the large ALGOL user group in Europe, the firm will
deliver an F level, or 44K, compiler during third quarter 1967.1
wi meet the standard adopted by the European Computer Manii
tacturers Assn. and the International Federation of Informal®

rocessing. Said C. B. Rogers, director of systems marketing,'®
beheve System/360'8 PL/I and FORTRAN offer greater flexibilit

,an . to scientific users, and we are encouraging conversiof
wherever it is practical'."

11941 Aug -Airnr by C.E.I.R., Arlington, Va.,
15_^7 ALGOL for FORTRAN Programmers".

Aigoi Keferences

Machinery)1™1^ °F ™E ACM (Association for Computing

Year Vol. No. Page
1958] g

3 Yershov, A. P., On Programming of Arithmetic Opt
1958 1 8 o atIons-

Strong, J. et at., The Problem of Programming Con
munication with Changing Machines, Part I.

A Politico-Social History of Algol 219
Year Vol. No. Page Paper
1958 1 9 9 Strong, J. et at., The Problem of Programming Com

munication with Changing Machines, Part 2.
1958 1 10 5 Conway, M. E., Proposal for an UNCOL.
1958 1 12 8 Perlis, A. J. and Samelson, K., Preliminary Report,

International Algebraic Language.
1959 2 2 6 Green, J., Possible Modifications to the International

Algebraic Language.
1959 2 3 6 Wegstein, J., From Formulas to Computer-oriented

Language.
1959 2 6 21 Williams, Jr., F. A., Handling Identifiers as Internal

Symbols in Language Processors.
1959 2 9 19 Bemer, R. W., A Proposal for a Generalized Card

Code for 256 Characters.
1959 2 9 24 ALGOL Subcommittee Report—Extensions.
1959 2 9 25 Green, J., Remarks on ALGOL and Symbol Mani

pulation.
1959 2 10 19 Kanner, H., An Algebraic Translator.
1959 2 10 25 Recommendations of the SHARE ALGOL Com

mittee.
1959 2 12 14 Irons, E. T. and Acton, F. S., A Proposed Interpreta

tion in ALGOL.
1960 3 2 76 Samelson, K. and Bauer, F. L., Sequential Formula

Translation.
1960 3 3 170 Floyd, R. W., An Algorithm defining ALGOL

1960
Assignment Statements.

1960 3 4 211 Smith, J. W., Syntactic and Semantic Augments to

1960
ALGOL.

1960 3 4 213 Green, J., Symbol Manipulation in XTRAN.
1960 3 5 299 Naur, P. (Ed.), Report on the Algorithmic Language

1960
ALGOL 60.

1960 3 7 418 Mclsaac, P., Combining ALGOL Statement Analysis

1960
with Validity Checking.

1960 3 8 463 Huskey, H. D., Halstead, M. H., McArthur, R.,

1961
NELIAC, a Dialect of ALGOL.

1961 4 1 3 Huskey, H. D. and Wattenburg, W. H., A Basic

1961
Compiler for Arithmetic Expressions.

1961 4 1 10 Grau, A. A., Recursive Processes and ALGOL

1961
Translation.

1961 4 1 15 Bottenbruch, H., Use of Magnetic Tape for Data

1961
Storage in the ORACLE-ALGOL Translator.

1961 4 1 28 Arden, B. W., Galler, B. A., Graham, R. M., The

1961
Internal Organization of the MAD Translator.

1961 4 1 36 Evans, Jr., A., Perlis, A. J., Van Zoeren, H., The Use
of Threaded Lists in Constructing a Combined

1961 ALGOL and Machine-like Assembly Processor. 1961 4 1 42 Floyd, R. W., An Algorithm for Coding Efficient

1961 Arithmetic Operations. 1961 4 1 51 Irons, E. T., A Syntax Directed Compiler for ALGOL

1961
1961

4 1 55
60
Ingerman, P. Z., Thunks. 1961

1961 4 1 59 Ingerman, P. Z., Dynamic Declarations.

220 R. W. Benier
Paper

Sattley, K., Allocation of Storage for Arrays
ALGOL 60.
Irons, E. T. and Feurzeig, W„ Comments on the
Implementation of Recursive Procedures and Blocks
in ALGOL 60.
Huskey, H. D. and Wattenburg, W. H„ Compiling
Techniques for Boolean Expressions and Conditional
Statements in ALGOL 60.
Knuth, D. E. and Merner, J. N., ALGOL 60 Confi
dential.
Taylor, W„ Turner, L., WaychofT, R., A Syntactical
Chart of ALGOL 60.
Rom, A. R. M., Manipulation of Algebraic Expres
sions.
Jensen, J., Mondrup. P., Naur, P., A Storage Alloca
tion Scheme for ALGOL 60.
Strachey, C., and Wilkes, M. V., Some Proposals for
Improving the Efficiency of ALGOL 60.
SMALGOL 61.
Algorithm Index, 1960-1961.
Wegstein, J. H. and Youden, W. W., A String Langu
age for Symbol Manipulation based on ALGOL 60.
Schwarz, H. R., An Introduction to ALGOL.
Forsythe, G. E., Von der Grocben, J., Toole, J. G.,
Vector-cardiographic Diagnosis with the Aid of
ALGOL.
Ledley, R. S. and Wilson, J. B., Automatic Program
ming Language Translation Through Syntactical
Analysis.
Rabinowitz, I. N., Report on the Algorithmic
Language FORTRAN II.
Thacher, Jr., H. C„ A Redundancy Check for
ALGOL Programs.
Wegner, P., Communication Between Independently
Translated Blocks.
Floyd, R. W., On the Nonexistence of a Phrase
Structure Grammar for ALGOL 60.
Baecker, H. D., Implementing a Stack.
Reiteration of ACM Policy Toward Standardization.
Revised Report on the Algorithmic Language
ALGOL 60.
Supplement to the ALGOL 60 Report.
Suggestions on ALGOL 60 (Rome) Issues.
USA National Activity Report to ISO/TC97 Working
Group E, Computers and Information Processing-
Naur, P., Documentation Problems, ALGOL 60.
Survey of Programming Languages and Processors
Brown, P. J., Note on the Proof of the Nonexistence
of a Phrase Structure Grammar for ALGOL 60.
Official Actions and Responses to ALGOL 60 as a
Programming Language.

Year Vol. No. Page
1961 4 1 60

1961 4 1 65

1961 4 1 70

1961 4 6 268

1961 4 9 393

1961 4 9 396

1961 4 10 441

1961 4 11 488

1961
1962
1962

4
5
5

11
11

1

499
51
54

1962
1962

5
5

2
2

82
118

1962 5 3 145

1962 5 6 327

1962 5 6 337

1962 5 7 376

1962 5 9 483

1962
1962
1963

5
5
6

10
11
1

505
547

1

1963
1963
1963

6
6
6

1
1
2

18
20
51

1963
1963
1963

6
6
6

3
3
3

77
93

105

1963 6 4 159

A Politico-Social History of Algol 221
Year Vol.

1963 6

1963 6

No. Page

4 169

6 294

1963 6 7 375
1963 6 8 451

1963 6 8 460

1963 6 9 502

1963 6 9 544
1963 6 9 547
1963 6 10 595
1963 6 10 597
1963 6 12 721
1964 7 1 15
1964 7 1 16

1964 7 2 52
1964 7 2 62
1964 7 2 67

1964 7 2 80

1964 7 2 89
1964 7 2 119

1964 7 2 127

1964 7 2 131
1964 7 3 146
1964 7 3 189

1964 7 5 273

1964 7 5 283
1964 7 5 288

1964 7 5 297
1964 7 7 422

1964 7 8 475

1964 7 10 587

Paper
Shoffner, M. G. and Brown, P. J., A Suggested
Method of Making Fuller Use of Strings in ALGOL
60.
Structures of Standards-Processing Organizations in
the Computer Area.
X3.4 forms ALGOL Task Group.
Eickel, J., Paul, M., Bauer, F. L., Samelson, K., A
Syntax Controlled Generator of Formal Language
Processors.
Kaupe, Jr., A. F., A Note on the Dangling else in
ALGOL 60.
USA National Activity Report to ISO/TC97, Sub
committee 5, Computers and Information Processing,
15 May 1963.
An Open Letter to X3.4.2.
Wirth, N., A Generalization of ALGOL.
ECMA Subset of ALGOL 60.
ALCOR Group Representation of ALGOL Symbols.
Shaw, C. J., A Specification of JOVIAL.
Forsythe, G. E., Revised Algorithms Policy.
Garwick, J. V., GARGOYLE, a Language for Com
piler Writing.
Rose, G. F., An Extension of ALGOL-like Languages.
Floyd, R. W., Bounded Context Syntactic Analysis.
Irons, E. T., "Structural Connections" in Formal
Languages.
Iverson, K. E., Formalism in Programming Langu
ages.
Perlis, A. J., A Format Language.
Brooker, R. A., A Programming Package for Some
General Modes of Arithmetic.
Perlis, A. J. and Iturriaga, R., An Extension to
ALGOL for Manipulating Formulae.
Ross, D. T., On Context and Ambiguity in Parsing.
Algorithms Subject Index 1960-1963.
Corrigenda: "ALCOR Group Representations of
ALGOL Symbols".

, A Proposal for Input-Output Conventions in
ALGOL 60—A Report of the Subcommittee on
ALGOL of the ACM Programming Languages
Committee.
ASA X3.4 Meeting No. 33.
Shaw, C. J., On Declaring Arbitrarily Coded Alpha
bets.
Revised Algorithms Policy, May 1964.
Garwick, J. V., Remark on Further Generalization of
ALGOL.
Lietzke, M. P., A Method of Syntax-Checking
ALGOL 60.
Wilkes, M. V., Constraint-Type Statements in Pro
gramming Languages.

R. W. Benter
Paper

Iverson, K. E., A Method of Syntax Specification.
Report on SUBSET ALGOL 60 (IFIP).
Index by Subject to Algorithms, 1964.
Petrone, L. and Vandoni, C. E., Integer and Signed
Constants in ALGOL.
Knuth, D. E., Backus Normal Form vs. Backus
Naur Form.
Landin, P. J., A Correspondence Between ALGOL 60
and Church's Lambda-Notation, Part L
Johnston, J. B., A Class of Unambiguous Computer
Languages.
Landin, P. J., A Correspondence Between ALGOL60
and Church's Lambda Notation, Part II.
Zaremba, W. A., On ALGOL I/O Conventions.
Petrick, S. R., More on Backus Normal Form.
Forsythe, G. E. and Wirth, N., Automatic Grading
Programs.
Burkhardt, W. H., Metalanguage and Syntax Speci
fication.
Caller, B. A. and Fischer, M. J., The Iteration
Element.
Weil, Jr., R. L., Testing the Understanding of the
Difference Between Call by Name and Call by Value
in ALGOL 60.

8 7 427 Kanner, H„ Kosinski, P., Robinson, C. L., The
lqfi, „ „ Structure of Yet Another ALGOL Compiler.

8 8 496 Gries-D., Paul, M„ Wiehle, H. R„ Some Techniques
,o65 s ,, Used in the ALCOR ILLINOIS 7090.

8 1 1 6 7 1 N a u r > P - . T h e P e r f o r m a n c e o f a S y s t e m f o r A u t o
matic Segmentation of Programs within an ALGOL

,965 o Compiler (GIER ALGOL).
786 Anderson, J. p., Program Structures for Parallel

Processing.
1966 9 7?1 Jf.de?by Subject to Algorithms, 1965.

13 Wirth, N. and Weber, H., EULER: A Generaliza-
1966 9 o 70 n°n of ALG°L, and its Formal Definition, Part I.

arnas, D. L., A Language for Describing the
1966 9 9 so f "ncltlo'ls of Synchronous Systems.

Wirth N. and Weber, H„ EULER: A Generaliza-
1966 9 o 177 'on uud its Formal Definition, Part II.

orsythe, G. E., Welcoming Remarks to the ACM
rogramming Languages and Pragmatics Con-

222
Year Vol. No. Page
1964 7 10 588
1964 7 10 626
1964 7 12 703
1964 7 12 734

1964 7 12 735

1965 8 2 89

1965 8 3 147

1965 8 3 158

1965 8 3 167
1965 8 3 200
1965 8 5 275

1965 8 5 304

1965 8 6 349

1965 8 6 378

1966

1966

1966

139
ag™311^' H'' Semiotics and Programming Langu-

143 Dennis, J. B. and Van Horn, E. C., Programming
1966 9 3 i c7 T j11 ICS -Vlultiprogrammed Computations.

ages m' ^ ^ ' '^le ^ext 700 Programming Langu-

rvo^'r^'' Prol=rani Translation Viewed as a General
T'ata Processing Problem.

176

A Politico-Social History of Algol 223

Year Vol. No. Page

1966 9 3 179

1966 9 4 255

1966 9 4 267

1966 9 5 320

1966 9 5 321

1966 9 6 413

1966 9 8 549

1966 9 9 671

1966 9 9 679

1967 10 3 137
1967 10 3 172
1967 10 4 204

Paper
Boussard, J. C., An ALGOL Compiler: Construc
tion and Use in Relation to an Elaborate Operating
System.
A Forum on Algorithms (Perlis, Forsythe, Herriot,
Engel, Ondis).
Carr 111, J. W„ Wciland, J., A Nonrccursive Method
of Syntax Specification.
Wirth, Niklaus, A Note on "Program Structures for
Parallel Processing".
Knuth, D. E., Additional Comments on a Problem
in Concurrent Programming Control.
Wirth, N., and Hoare, C. A. R., A Contribution to
the Development of ALGOL.
Perlis, A., lturriaga, R. and Standish, T. A., A De
finition of Formula ALGOL.
Dahl, O.-J. and Nygaard, K., SIMULA—An
ALGOL-Bascd Simulation Language.
Abrahams, P. W., A Final Solution to the Dangling
else of ALGOL 60 and Related Languages.
Ingerman, P. Z., "Panini-Backus Form" Suggested.
Von Sydow, L., Computer Typesetting of ALGOL.
Galler, B. A. and Perlis, A. J., A Proposal for De
finitions in ALGOL.

JOURNAL OF THE ACM (Association for Computing Machinery)
fear Vol. No. Page Paper
1962 9 2 1 61 Bottenbruch, H„ Structure and Use of ALGOL 60.
1962 9 3 3 50 Ginsburg, S. and Rice, H. G., Two Families of

Languages Related to ALGOL.
1962 9 4 480 Grau, A. A., A Translator-oriented Symbolic Pro

gramming Language. .
962 10 1 29 Ginsburg, S. and Rose, G. F„ Some Recursively

Unsolvable Problems in ALGOL-like Languages.
964 11 2 1 59 Randell.B. and Russell, L.J., Single-Scan Techniques

for the Translation of Arithmetic Expressions in
ALGOL 60. . „

966 13 i 17 Evshov, A. P., ALPHA—an Automatic Program-
ming System of High Efficiency.

967 14 1 i pedis, Alan J., The Synthesis of Algorithmic Systems.

ATAMATION

Issue Page Paper
Sep/O 46 Flores, I., An Explanation of ALGOL 60, Part 1.
Nov/D 65 Flores, I., An Explanation of ALGOL 60, Part .

Sep 24 Wegstein, J. H„ ALGOL 60,-A » Report
Oct 41 , ALGOL: a critical profile (RAiNiJ ay v

Part 2).

224
Year Issue Page
1961 Nov 27
1961 Nov 46
1961 Dec 24
1961 Dec 29
1962 Feb 32
1962 Apr 88
1962 May 34
1962 May 44
1962 Jun 33
1962 Aug 25
1962 Oct 25
1962 Nov 23
1963 Jan 30

1963 Apr 23
1963 Apr 26
1963 Apr 28
1963 Aug 41

1964 Jul 31
1964 Dec 28

1965 May 31
1965 Jul 99
1965 Nov 141

R. IV. Bemer
Paper

Utman, R. E., Language Standards... A Slatus Report.
Shaw, C. J., A Programmer's Look at JOVIAL.
Forest, R., BALGOL at Stanford.
McCracken, D. D„ Basic ALGOL.
A Game to Counter Compileritis (Burroughs Corp.).
McMahon, J. T., ALGOL vs. FORTRAN.
Shaw, C. J., The Language Proliferation.
McCracken, D. D., A New Home for ALGOL.
Balch, B. and Gallic, T., ALGOL at Duke.
Cantrell, H. N., Where are Compiler Languages Going?

, The RAND Symposium: 1962, Part I.
, The RAND Symposium: 1962, Part 2.

Sanders, N. and Fitzpatrick, C., ALGOL and FOR
TRAN Revisited.
Editorial: Angels, Pins and Language Standards.
Clippinger, R. F., Progress in Language Standards.
Granholm, J. W„ ALGOL on the 7090.
Bromberg, H., Standardization of Programming Lan
guages.
McCracken, D. D., The New Programming Language.
Shaw, C. J., that old favorite, Apiapt, A Christmastime
Algorithm.
d Agapeyeff, A., Software in Europe.

, USSR's Evshov Speaks in L.A.
, Language in the Sixties.

THE COMPUTER JOURNAL
(of the British Computer Society)
Year Vol. No. Page
1959

1960
1960
1961

1962

1962

1962

1962

1962

1963

2
3
4

4

5

5

5

5

5

4
2
1

4

2

2

2

3

4

110

151
67
10

292

125

127

130

210

332

Paper
Gill, S., Current Theory and Practice of Automatic
Programming.
Gill, S., ALGOL Conference in Paris.
Woodger, M., An Introduction to ALGOL 60.
Huskey, H. D., Compiling Techniques for Alge
braic Expressions.
Hockney, R. W., ABSI2 ALGOL, an Extension to
ALGOL 60 for Industrial Use.
Dijkstra, E. W., Operating Experience with ALGOL
60.
Hoare, C. A. R., Report on the Elliott ALGOL
Translator.
Duncan, F. G., Implementation of ALGOL 60 for
the English Electric K.DF9.
Hamblin, C. L., Translation to and from P°'IS

Notation.
Watt, J. M., The Realization of ALGOL Procedures
and Designational Expressions.

A Politico-Social History of Algol 225
Year Vol. No. Page Paper
1963 5 4 338 Gerard, J. M. and Sambles, A., A Hardware Repre

sentation for ALGOL 60 Using Creed Teleprinter
Equipment.

1963 5 4 341 Duncan, F. G., Input and Output for ALGOL 60 on
KDF9.

1963 5 4 345 Hoare, C. A. R., The Elliott ALGOL Input-Output
System.

1963 5 4 349 Naur, P. (Editor), Revised Report on the Algorithmic
Language ALGOL 60.

1963 6 1 50 Higman, B., What Everybody Should Know About
ALGOL.

1964 6 4 336 Ryder, K. L., Note on an ALGOL 60 Compiler for

1964
Pegasus I.

1964 7 1 24 Pullin, D„ A FORTRAN to ALGOL Translator.
1964 7 1 28 Parker-Rhodes, A. F., The Communication of

1965
Algorithms.

1965 8 1 21 Samet, P. A., The Efficient Administration of Blocks

1965
in ALGOL.

1965 8 2 113 Barnes, J. G. P., A KDF9 ALGOL List-processing

1966
Scheme.

1966 8 3 167 LITHP—An ALGOL Processor.

THE COMPUTER BULLETIN (of the British Computer Society)
Year
1958
1959
1959
1959

Vol. No. Page
2 2 24
2 6 81
3 1 9
3 3 53

3 3 64

3 5 87

4 1 18

4 4 127

6 2 47

7 4 107

8 2 66
8 3 108
8 4 146
9 1 18
9 2 56
9 3 104
9 4 115

A.R.A.p.5_I6

Paper
, Automatic Coding by FORTRAN.
, Zurich Conference on Algorithmic Language.
, Towards a Common Programming Language.

Wilkes, M. V., International Conference on Infor
mation Processing.

, Towards a Common Programming Language
(2).

, Towards a Common Programming Language
(3).

, Towards a Common Programming Language
(4).
Bemer, R. W., Survey of Modern Programming
Techniques.
Kilner, D., Automatic Programming Languages for
Business and Science.
Pearcey, T., Aspects of the Philosophy of Computer
Programming.

, Algorithm Supplement.
, Algorithm Supplement.
, Algorithm Supplement.
, Algorithm Supplement.
, Algorithm Supplement.
, Algorithm Supplement.

Programming in ALGOL (a review).

226 R. W. Bemer

THE ALGOL BULLETIN

Paper
Dijkstra, E. W., A Simple Mechanism Modelling Some
Features of ALGOL 60.
Duncan F. G. and van Wijngaarden, A., Cleaning UP
ALGOL 60.
Naur, P., Proposals for a New Language.
Woodger, M., ALGOL X, Note on the Proposed Suc
cessor to ALGOL 60.

{Note: Only these few papers are listed here. The balance are mainly in the form
oi correspondence or have been published subsequently elsewhere.)

Issue Date Page
16 64 May 14

16 64 May 24

18 64 Oct 26
22 66 Feb 28

ELEKTRONISCHE RECHENANLAGEN
Year Vol. No. Page Paper

72 Zemenek, H., Die algorithmische Formelsprache
ALGOL.

1959 1 176 Samelson, K. and Bauer, F. L., Sequentielle Formel-
1q6l - . ubersetzung (see also CACM 3, 1960).

J 206 Baumann, R., ALGOL—Manual der ALC0R-
1961 i GRUPPE, Parti.

J 259 Baumann, R., ALGOL—Manual der ALC0R-
GRUPPE, Part II.

4 2 71 Baumann, R., ALGOL—Manual der ALC0R-
1961 < •> GRUPPE, Part III.
,0^^ 2 77 ALGOL Dictionary.
1966 s , 229 Zemanek, H., Alphabets and Codes, 1965.

Busse, H. G., A Possible Extension of ALGOL.

ELEKTRONISCHE DATENVERARBEITUNG
Year Vol. No. Page PaDer

1964 6 6 !<- . z j j Kruseman Aretz, F. E. J., ALGOL 60 Translati
1964 6 6 o f°r Everybody.
1966 8 ? 2^o x»huff' H' K'' Bemerkungen zu ALGOL 60.

Muller-Merbach, H., Die Losung des Transpo
problems auf Rechenautomaten—ein ALGOL-Pi
gramm.
Wieland, FI., Speicherzuweisung fiir Variable
ALGOL Objektprogrammen.
Knussmann, R., ALGOL-Rechenprogramme stat

. tlS r Star|dardverfahren.
Schrader, K.-FI., Eine Sprache und ein ALG0
rrogrammsystem fiir Probleme der Mechanik d
Systeme (MESY).

1967

1967

1967

89

A Politico-Social History of Algol 227

COMPUTER APPLICATIONS SYMPOSIUM (Armour Research
Foundation, Chicago, now Illinois Institute of
Technology Research Inst.)

Year Page Paper
1957 107 Bemer, R. W., The Status of Automatic Programming for Scientific

Problems.
1959 112 Katz, C., The International Algebraic Language and the Future of

Programming.
1960 154 Herriot, J. G., Some Observations on ALGOL in Use (Burroughs

220).
1961 115 Naur, P., The Progress of ALGOL in Europe.
1962 176 Clippinger, R. F., Data Processing Standards.
1962 204 Bemer, R. W., An International Movement in Programming

Languages.

JOURNAL OF DATA MANAGEMENT

Year Vol. No. Page Paper
1966 8 56 New Program Supports ALGOL 360 Converts.

COMPUTERS AND AUTOMATION

Year Vol. No. Page
1962 11 11 17
1962 11 12 8
1964 13 11 32

1965 14 2 12

1965 14 2 15

Paper
Clippinger, R. F., ALGOL—A Simple Explanation.
Knuth, D. E., A History of Writing Compilers.
Alt, F. L., The Standardization of Programming
Languages.
Chapin, N., What Choice of Programming Langu
ages?
Schwartz, J. I., Comparing Programming Languages.

TORDISK TIDSKRIFT FOR INFORMATIONS-BEHANDLING (BIT)—
Danish Publication)

ear Vol. No. Page Paper
1961 1 1 38

1961 1 2 89

1962 2 1 7

1962 2 3 137

1962 2 4 232

1963 3 2 124

J - - 7

ALGOL 60 Procedures.
Jensen, J., Mondrup, P., Naur, P., A Storage Alloca
tion Scheme for ALGOL 60.
Dahl., O-J, Remarks on the Use of Symbols in
ALGOL. .
Dahlstrand, I., A Half Year's Experience with the
Facit-ALGOL I Compiler.
Wynn, P., An Arsenal of ALGOL Procedures for
Complex Arithmetic. . ~
Naur, P., The Design of the GIER ALGOL Com
piler, Part I.

228 R. W. Bemer
Year Vol. No. Page Paper
1963 3 3 145 Naur, P., The Design of the GIER ALGOL Com

piler, Part II.
1964 4 2 115 Naur, P., Using Machine Code Within an ALGOL

System.
1964 4 4 162 Langefors, B., ALGOL-GENIUS, a Programming

1964
Language for General Data Processing.

1964 4 3 177 Naur, P., Automatic Grading of Students' ALGOL

1965
Programming.

1965 5 2 85 Duncan, F. G., Possibilities for Refining an Object

1965
Program Compiled with an ALGOL Translator.

1965 5 3 151 Naur, P., Checking of Operand Types in ALGOL

1965
Compilers.

1965 5 4 235 Jensen, J., Generation of Machine Code in ALGOL

1966
Compilers.

1966 6 4 332 Tienari, M. and Suokonautio, V., A Set of Procedures
Making Real Arithmetic of Unlimited Accuracy
Possible Within ALGOL 60.

ANNUAL REVIEW IN AUTOMATIC PROGRAMMING
(Pergamon Press, Oxford, New York, 4 volumes)
Year Vol. Page Papcr

1959 1 268 Preliminary Report of ACM-GAMM Committee on an
International Algebraic Language.

lOfiT \ 67 Rutishauser- H„ Interference with an ALGOL Procedure.
1 Woodger, M., The Description of Computing Processes

Some Observations on Automatic Programming and
ALGOL 60

17 van Wijngaarden, A., Generalized ALGOL.
27 Dijkstra, E. W., On the Design of Machine Independent

Programming Languages.
43 Rutishauser, H., The Use of Recursive Procedures in

ALGOL 60.
53 Shaw, C. J., JOVIAL, A Programming Language for Real

time Command Systems.
1 M i g m a n , B . , T o w a r d s a n A L G O L T r a n s l a t o r .
163 Hawkins, E. N. and Huxtable, D. H. R., A Multi-pass

Translation Scheme for ALGOL 60.
207 Irons, E. T., The Structureand Use of the Syntax-directed

Compiler.
^7 ^!-i}cstra' E" W> An ALGOL 60 Translator for the Xl.

Dijkstra, E. W„ Making a Translator for ALGOL 60.

1964 4 i
Wilkes, M. V., An Experiment with a Self-compiling Com-
pi er for a Simple List-Processing Language.
Naur, P The Design of the GIER ALGOL Compiler.

167 A" An ALGOL 60 Compiler.
167 Marsh, D. G„ JOVIAL in CLASS.

Revised Report on the Algorithmic Language ALGOL 60.

49
87

A Politico-Social History of Algol 229

1959 PROCEEDINGS, INTERNATIONAL CONFERENCE ON INFORMATION
PROCESSING (Paris, 1959 June 15-20, UNESCO, Verlag
Oldenbourg, Munich, 1960)

Page Paper
120 Bauer, F. L. and Samelson, K., The Problem of a Common Language,

Especially for Scientific Numerical Work.
125 Backus, J. W., The Syntax and Semantics of the Proposed International

Algebraic Language of the Zurich ACM-GAMM Conference.
132 Poyen, J. and Vauquois, B., Suggestions for a Universal Language (in French).
152 Symposium on Automatic Programming:

(3) Huskey, H. D., A Variation of ALGOL.
(5) Bauer, F. L. and Samelson, K., The Cellar Principle for Formula

Translation.

1963 PROCEEDINGS, INTERNATIONAL FEDERATION FOR INFORMATION
PROCESSING (Munich, 1962 Aug 27-Sep 1,
North Holland Publishing Co., Amsterdam)

Page Paper
487 Samelson, K., Programming Languages and their Processing.
493 Paul, M., ALGOL 60 Processors and a Processor Generator.
498 Keese, Jr., W. M. and Huskey, H. D., An Algorithm for the Translation of

ALGOL Statements.
503 Denison, S. J. M., A Proposed ALGOL 60 Matrix Scheme.
509 Lombardi, L. A., On Table Operating Algorithms.
513 Symposium of Languages for Processor Construction.
518 Symposium on Programming Languages.
524 Panel on Techniques for Processor Construction.
535 Dijkstra, E. W., Some Meditations on Advanced Programming.
556 Lucas, P., Requirements on a Language for Logical Data Processing.

1965 PROCEEDINGS OF IFIP CONGRESS 65
(Spartan Books, Washington, D.C., 648 pp.)

Vol. l
Page Paper
195 Naur, P., The Place of Programming in a World of Problems, Tools and

People.
201 Gill, S., The Changing Basis of Programming.
213 Dijkstra, E. W., Programming Considered as a Human Activity.
223 Caracciolo di Forino, A., Linguistic Problems in Programming Theory.

R. W. Bemer
Vol. 2
Page
314

Paper

ALGOL P°eI' W' L" ReCCnt DeVelopments in ,he Construction of a new

315 SameSp^' " ' EULER: A G—

438 £Sek' H' SSI" Af'g0ri'hm Capable of Growing,
Languages °rk'ng Conference on Formal Language Description

H ^^^'FOTOUI^ALWDLGompu''n®^an8ua8K'
S-.taicLSf of Algebraic Expressions tsith alt

z < » • —

SSS^LXJS^O J • S,MULA-A l"«"- f» »-*«
620 NrnTp nr!ymaC,iC of Context-Free Languages
622 Svp"A°Tn^ ur 1

Efficiency. ' Automatic Programming System of High

LaXa^DhscSpx1171? WORKING Conference ON FORlt^
North2SN Languages (T. B. Steel, Jr. (Ed.),

Holland Publishing Co., Amsterdam, 1966)

M Paper

van W^jngaardA1FArnReC^cCr,Pn0fi ofa Subset of ALGOL.
Steel, Jr., T. B. A FormaItVat'^ ®bnitlon of Syntax and Semantics.
Description. ' 10n 0 Semantics for Programming Languaj

Ginsburg,' S^^Su^t^ofALGOL Hk" andALGOL-Iike Languages.
Garwick, J. v., The Definition of p a° Context-free Language Theor;
pilers. °f Programming Languages by their Con-

Semantics. "d N°,ln' N"' Contribution to the Definition of ALG01

249 Gorn^S.^'l^'nguage'Nam^^T12311011 °f ^ TransIation Process.

*. G„ Our Ultimate Metalanguage.

Page
1

13
25

76
86

139

148

A Politico-Social History of Algol 231

1962 SYMBOLIC LANGUAGES IN DATA PROCESSING
(Gordon and Breach, New York, London, 849 pp.)

Page Paper
23 Ingerman, P. Z., A Translation Technique for Languages Whose Syntax is

Expressible in Backus Normal Form.
65 Paul, M., A General Processor for Certain Formal Languages.
75 Culik, K., Formal Structure of ALGOL and Simplification of its Descrip

tion.
207 Samelson, K. and Bauer, F. L., The ALCOR Project.
219 Huskey, H. D., Machine Independence in Compiling.
229 van der Poel, W. L., The Construction of an ALGOL Translator for a

Small Computer.
237 Dijkstra, E. W., An Attempt to Unify the Constituent Concepts of Serial

Program Execution.
253 Kiyono, T. and Nagao, M., Comments on the ALGOL System for the

Small and Medium Size Computers.
263 Palermo, G. and Pacelli, M., Sequential Translation of a Problem-Oriented

Programming Language.
317 Picciafuoco, U. and Pacelli, M., Non-Dynamic Aspects of Recursive Pro

gramming.
325 Wohlfahrt, K., On Static and Dynamic Treatment of Types in ALGOL

Translators.
331 Hill, U., Langmaack, H„ Schwarz, H. R., Seegmuller, G., Efficient

Handling of Subscripted Variables in ALGOL 60 Compilers.
341 Dolotta, T. A., A Method of Editing a Program in Symbolic Lan

guage.
385 Naur, P., The Basic Philosophy Concepts, and Features of ALGOL.
391 Woodger, M., The Description of Computing Processes. Some Observations

on Automatic Programming and ALGOL 60.
409 van Wijngaarden, A., Generalized ALGOL.
421 Moriguti, S., A Family of Symbolic Input Languages and an ALGOL

Compiler.
439 Pacelli, M., Gavioli, D., Palermo, G., Picciafuoco, U., PALGO, an Algo

rithmic Language and its Translator for Olivetti ELEA 6001.
449 Savastano, G. and Fadini, B., The Algebraic Compilers for Bendix G-20

Computing System.
473 Bosset, L., MAGE, A Language Derived from ALGOL Adapted to Small

Machines.
481 Schwartz, J. I., JOVIAL, A General Algorithmic Language.
495 Katz, C., GECOM, the General Compiler.
501 Balke, K. G. and Carter, G. L., The COLASL Automatic Coding Langu

age.
539 Mazurkiewicz, A., Compiler-Interpreter for Using in Numerical Oriented

Languages Translation.

232 R. W. Betner

ALGOL (OR CLOSELY RELATED VARIANTS) BOOKS

1962 Dijkstra, E. W., A Primer of ALGOL 60 Programming, Academic Press,
London, 114 pp.

1962 McCracken, D. D„ A Guide to ALGOL Programming, Wiley, New York,
106 pp.

1962 Halstead, M. H., Machine Independent Computer Programming, Spartan
Books, Washington, D.C., 267 pp. (NELIAC).

1962 Galler, B. A., The Language of Computers, McGraw-Hill, 244 pp. (MAD).
1963 Wooldridge, R. and RatclifTe, J. F., An Introduction to ALGOL Programming,

The English Universities Press, London, 131 pp.
1963 Evshov, A. P., Kozhukhin, G. L, Voloshin, U. M., Input Language for

Automatic Programming Systems, Academic Press, London, 70 pp.
1963 Giintsch, F. R., Einfiihrung in die Programmierung Digitaler Rechenautomaten,

Verlag Walther de Gruyter, Berlin, 388 pp.
1964 Bolliet, L., Gastinel, N., Laurent, P. J., Un Noureau Language Scientifiqiie:

ALGOL: Manuel Pratique, Hermann, Paris, 196 pp.
1964 Randell, B. and Russell, L. J., ALGOL 60 Implementation, The Translation

and Use of ALGOL 60 Programs on a Computer, Academic Press,
418 pp.

1964 Baumann, R„ Feliciano, M., Bauer, F. L. and Samelson, K„ Introduction
„ TO ALCOL, Prentice-Hall International, London, 142 pp.
Reeves, C. M. and Wells, M., A Course on Programming in ALGOL 60,

Chapman and Hall, London, 82 pp.
!** ^nd!rST0n' C' A" Intr°duction to ALGOL 60, Addison-Wesley, 57 pp.

MathpLaboratory, Royal Radar Establishment, Programming in ALGOL 60,

64 Nickel, K., ALGOL-Praktikum: Eiite Einfiihrung in das Programmieren,
Karlsruhe, Braun, 220 pp.

1965 TWr' p" f,e™Mafy Pr°9ramming and ALGOL, McGraw-Hill, 147 pp.
1965 Bauer, F. L„ Hetnhold, J., Samelson. K„ Sauer, R„ Moderni Rechenan-
1 q/rr „ agen: f'"e E"'f"hrung, Stuttgart, Teu bner, 357 pp.

65 Hawgood, J., Numerical Methods in ALGOL, McGraw-Hill, 178 pp.

CN.'.th> Lr"' AD' NlV3t' M-' Nolin> L> ALGOL: Theorie et Pratique, R Gauthier"Vll,ars> Pans, 204 pp.
'oZlSr Le..La"gageALGOLi Applications a des Prohlemes de Recherche
Operationelle, Dunod, Paris, 99 pp.
Uind' ^°rerf' C'"E'' Introduction to ALGOL Programming,

Srh n ' V? and °xford University Press, 123 pp.
192 pp' ' A Course algOL Programming, MacMillan, London

1965

1966

1966
1966 Marrceovi!zanA S?""* * ALG°L> Teubner> 283 PP"

Methods Usina the A^<nVrCPPe' J'' An Introduction to Algorithmic
1966 Ingerman P 7 A % , Language, MacMillan, New York, 433 pp.

131 pp ' ' yntax-oriented Translator, Academic Press, New York,

1966 OM ALGOL. R. <*»•

25l'pp ^Programmer s ALGOL, McGraw-Hill, New York,

London, 164 (^°"lparat've s'"dy of Programming Languages, Macdonald,

A Politico-Social History of Algol 233

VARIOUS OTHER PAPERS ON ALGOL

Boitcnbruch, H., Obcrsctzung von algorithmischcn FormcUprachcn in die Pro-
grammsprachcn von Rcchcnmaschmcn, Zeitschrift math. Logik Grundlugrn 4.
1958,180-221.

Heise, W., ALGOL—ci Inicmationall Sprog for Elckiron Regncmaskincr, Ing-
tniortn, 68, 4rg, 17, 505 (1959).

Boitcnbruch, H., Ertauicrung dcr algorithmUchcn Sprachc ALGOL anhand cinigcr
elemcntartr Programmicrbcispictc, Bl. Dlsch. Ges. Versicherungsnutth. 4, 1959,
199-208.

Stephan, D„ Die Algorithmischc Sprache ALGOL 60, an Bcoptclcn erlautcrt, til.
Dtsch. Ges. Versicherungsnutth. 5. I960, 61 86.

Boitcnbruch. H., A Critical Study of ALGOL, Univ. Illinois, Digital Computer
Laboratory Report 105, 60 Dec 8.

Bauer, F. L„ The Formula-controlled Logical Computer "Stanislaus", Mathe
matics of Computation (MTAC). 14. I960. 64-67.

Dijkstra, E. W., Recursive Programming, S'umerische Mathemutik 2, 60 Oct,
312-318.

Gibb. A., ALGOL 60 Procedures for Range Arithmetic, Standford Univ., Applied
Math, and Slat. Laboratories, Tech. Report 10, 61 Apr 12.

Kudiclka, V. et al. Extension of the Algorithmic Language ALGOL, 1961 July,
Mailufterl, Vienna, 34 pp. (U.S. Govt. Report DA-9I-59I-EUC 1430).

Lucas, P., Die Strukturanalyse von Formeliibersetzern, 1961, Mailufterl, Vienna.
Evshov, A. P., The Basic Principles of the Development of the Programming

Program of the Institute of Mathematics of the U.S.S.R. A. S., Siberian Mathe
matical Magazine 2, No. 6, 1961.

Bauer, F. L. and Samclson, K., Maschinellc Vcrarbeitung von Programmsprachcn
(Processing of Programming Languages by Computer), in Digitate Informations-
handler, Vieweg & Sohn, Braunschweig, 1962, 227-268.

Nederkoorn, J., A PERT Program in ALGOL 60, Technical Report 56, Mathematical
Centre, Amsterdam, 63 Feb, 22 pp.

The Descriptor, Burroughs B5000, Form 20002P.
Extended ALGOL Reference Manual for the Burroughs B5000, No. 5000-21012,

Burroughs Corp., Detroit, 1963.
SHARE ALGOL 60 Translator Manual, No. 1426, 1577, SHARE Distribution

Agency, IBM.
ALGOL 60, An Introduction for FORTRAN Programmers, Elliott Bros., London,

1963.
Boothroyd, A Guide to Machine-Independent Compiler Programming and ALGOL,

English Electric LEO, Kidsgrove, 1963.
van der Mey, G., Process for an ALGOL Translator, Dr. Neher Laboratory, Leid-

schendam, Netherlands, Report 164 MA.
Naur, P., (Ed.), A Manual of GIER ALGOL, Regnecentralen, Copenhagen, 1963.
Ageev, M. I., The Principles of the Algorithmic Language ALGOL 60, Computing

Centre AN U.S.S.R., Moscow, 1964, 116 pp. (revised edition, July 1965).
Koster, C. H. A., Efficient Rekenen in ALGOL, Report of the Mathematical Centre,

Amsterdam.
Randell, B., Whetstone ALGOL Revisited, or Confession of a Compiler Writer,

Automatic Programming Information Bulletin 21, 64 Jun, 1-10.
Popov, V. N., Stepanov, A. G., Stisheva, A. G., Travnikova, N. A., A Programming

Program, Journal of Computational Math, and Mathematical Physics, 4, 1,
1964.

234 R. W. Bemer

Shura-Bura, M. R. and Lubimskiy, E. Z., Translator: ALGOL 60, Journal of
Computational Math, and Mathematical Physics 4, 1, 1964.

Petrone, L., Operators and Procedures in ALGOL-type Languages, EURATOM,
Ispra, Italy, EUR 2417.E, 65 May, 9 pp.

Evshov, A. P. (Ed.), ALPHA Automatic Programming System, USSR Academy of
Sciences, Siberian Division, Novosibirsk, 1965, 264 pp.

Cohen, J. and Nguyen-Huu-Dung, Definition de Procedures LISP en ALGOL;
Exemple d'Utilisation, Revue Frangaise de traitement de TInformation 8, 4
1965, 271-293.

Perlis, A. J., Formula Manipulation in Extended ALGOL, Mededelingern v.h.
Nederlands Rekenmachine Genootschaap 7, 6, 65 Dec.

Thiessen, E., Automatic Conversion of BELL-programs to ALGOL-programs, in
Computing 1, 4 (1966), 354-357.

Iturriaga, R., Standish, T. A., Krutar, R. A., Earley, J. C., Formal Compiler Writing
System FSL to Implement a Formula ALGOL Compiler, Proceedings AFIPSpring
Joint Computer Conference, 1966, 241-252.

Wirth, N., An Introduction to FORTRAN and ALGOL Programming, in Mathe
matical Methods for Digital Computers, Vol. 2, John Wiley & Sons, New York,
1967, 5-33.

Bolliet, L., Auroux, A., Bellino, J., DIAMAG: A Multi-access System for Online
ALGOL Programming, Proceedings AFIP Spring Joint Computer Conference,
1967, 547-552.

Leroy, H., A Macro-generator for ALGOL, Proceedings AFIP Spring Joint Computer
Conference, 1967, 663-669.

SUMMARY OF PUBLICATION OF FORMAL SPECIFICATIONS FOR
THE ALGOL LANGUAGE

Preliminary Report—International Algebraic Language:
in Communications ACM 1, 58 Dec, 8 (Note 1);

Annual Review in Automatic Programming 1, 'i960, 268-289 (Note 1).
Report on the Algorithmic Language ALGOL:

in Numerische Mathematik Bd. 1, 1959, 41-60 (Note 2).
Report on the Algorithmic Language ALGOL 60:

m Communications ACM 3, 60 May, 299-314 (Note 3);
Numerische Mathematik 2, 1960, 106-136;
Annual Review in Automatic Programming 2, 1961, 351-390;

cta P°lytecn'ca Scand., Math, and Computing Machinery Series 5, AP 284;
Chiffres 3, 1960, 1-44 (French);
Regnecentralen, Copenhagen, 1960, 40 pp.

Revised Report on the Algorithmic Language ALGOL 60:
in Communications ACM 6, 63 Jan, 1-17;

The Computer Journal 5, 63 Apr, 349-367;
Annual Review in Automatic Programming 4, 1964, 217-258;
Numerische Mathematik 4, 1963, 420-453

otes. (1) Equivalent to the CACM publication, not identical to the original ditto
copy entitled Zurich Conference on Algorithmic Language, Preliminary

eP°rt , 37 pp., due to further editing by Bemer.
(2) Equivalent to the ditto report.

a ma^e ava''able with typographical corrections as of 60 Jun 28
and 62 Apr 1.

A Politico-Social History of Algol 235

SUMMARY OF ALGOL BULLETINS

Issue
1
2
3
4
5
6
7
8
9

10
11
12
13

Issue date Pages Issue Issue date Pages
59 Mar 16 — 6 14 62 Jan 16 18
59 May 5 8 15 62 Jun

34 59 Jun 8 6 16 64 May 34
59 Aug 13 7 17 64 Jul 29
59 Sep 28 8 18 64 Oct 53
59 Oct 17 1 19 65 Jan 63
59 Nov 3 21 20 65 May 50
59 Dec 12 11 21 65 Nov 83
60 Mar 16 4 22 66 Feb 38
60 Oct 17 17 23 66 May 15
60 Dec 23 10 24 66 Sep 37
61 Apr 24 17 25 f 67 Mar 30
61 Aug 18 13

(Note: Starting with ALGOL Bulletin 16, produced under the sponsorship of IFIP
WG 2.1, ALGOL, F. G. Duncan, Editor. Issues prior to this were produced by the
Rcgnecentralen, Copenhagen, P. Naur, Editor.)

SUMMARY OF ALGOL BULLETIN SUPPLEMENTS

(Those published in regular journals and books will be indicated only
by that reference)
Number

1
2
3

4
5

6
7
8
9

10
11
12
13
14
15
16
17
18

Mailed Paper
59 Jun Woodger, M., A Description of Basic ALGOL.
60 Mar 2 (The ALGOL 60 Report.)
60 Oct 20 Kerner, I., Bericht uber die algorithmische Sprache

ALGOL 60.
60 Nov 30 (The Computer Journal 3, No. 2, 67.)
60 Nov 15 Jensen, J., Jensen, T., Mondrup, P., Naur, P., A Manual

of the DASK ALGOL Language, Regnecentralen,
Copenhagen.

61 Mar 17 (CACM 4, No. 1, 55.)
61 Mar 17 (CACM 4, No. 1, 59.)
61 Feb 3 (Computer Applications Symposium, 1960, 154.)
61 Apr 24 Naur, P., A Course of ALGOL 60 Programming,

Regnecentralen, 38 pp.
61 Nov Dijkstra, E. W„ ALGOL 60 Translation.
61 Apr 24 (BIT 1, No. 1,38.)
61 Jun 29 (The Computer Journal 4, No. 4, 292.)
61 Jun 26 (CACM 4, No. 1, 60, 65.)
61 Aug 29 (Input Language, see Book List.)
61 Aug 24 (S/Tl.No. 2, 89.)
61 Nov 6 Lucas, P., The Structure of Formula-Translators.
61 Oct 10 Youden, W. W., An Analysis of ALGOL 60 Syntax.
61 Oct 26 (Computer Applications Symposium, 1961, 115.)

t Also in SICPLAN Notices 2, No. 5, May 1967.

236 R. W. Bemer

SUMMARY OF AUTOMATIC PROGRAMMING INFORMATION BULLETINS
(Automatic Programming Information Centre, Brighton, England)

Issue Issue date Pages
1 60 Mar 2
2 60 May 8
3 60 Jun 8
4 60 Sep 17
5 60 Nov 11
6 61 Feb 17
7 61 May 36
8 61 Jun 23
9 61 Aug 12

10 61 Oct 13
11 61 Nov 30
12 62 Jan 25
13 62 Mar 15
14 62 May 17
153 62 Oct 16/ 62 Oct 31

J
17 63 Apr 43
18 63 Aug 24
19 63 Dec 22
20 64 Mar 4
21 64 Jun 10
22 64 Aug 15
23 64 Oct 39
24 65 Feb 14
25 65 Mar 14

(Special ALGOL 60 issue)

(Survey of Programming Languages)

(Disconnnued 66 Feb, having achieved its aims. Richard Goodman, the Ed
died in August 1966 after a long illness.)

RRW^ECHNICAL COMM'TTCE 2—PROGRAMMING LANGUAGES
(Chairman—H. Zemanek)

Meeting
1
1
2
3
4
5
6
7
8

Date
62 Mar 20
62 Mar 27
62 Aug 25
63 Sep 9
64 May 11
65 May 20
65 Nov 2
66 Apr 26
67 May 20

Locale
Munich
Rome
Munich
Oslo
Liblice
New York City
Nice
London
(Amsterdam)

A Politico-Social History of Algol 237

IFIP WORKING GROUP 2.1—ALGOL
(Chairman—W. van der Poel)

Meeting
1
2
3
4
5
6
7
8

Date
62 Aug 28-30
63 Sep
64 Mar
64 Sep
65 May
65 Oct
66 Oct
67 May

10-13
16-20
14, 19
17-21
25-29
3-8

16-20

Locale
Munich
Delft
Tutzing
Baden
Princeton
St. Pierre de Chartreuse
Warsaw
Zandvoort

ISO/TC97/SUBCOMMITTEE 5—PROGRAMMING LANGUAGES
(Chairman—R. W. Bemcr)

Meeting
1
2
3
4
5
6

61 May
62 May
62 Oct
63 Jun
64 May
65 Sep

Date
18
9
9

10
13

5-7
25-28
6-10

67 Nov 6-10

Locale
Geneva
Stockholm
Paris
Berlin
New York
Copenhagen
Paris

(as Working Group E)

(as Subcommittee 5)

606 Spring Joint Computer Conference, 1969

I am convinced that such transferability of programs,
data, and programmers is within the present state-of-
the-art. This panel from government and industry has
peen assembled to tell what has been done and what is
planned'.'

Let us all cooperate to hasten the day when most pro
grams written in any higher order language can be com
piled and executed on most existing computers. The
time, money and manpower saved by eliminating re-
programming can then be used to solve other more
interesting and useful problems.

Program transferability

by ROBERT W. BEMER

General Electric Company
Phoenix, Arizona

General

The problem of program transfer is such that most
people think they understand the process better than
they do. Optimism is rampant; success is elusive. I
have some tenets which I believe to be sine qua non:

. Program transfer is complicated by each element
which is different—user, CPU, configuration,
operating system, etc.

.Programs must be planned for transfer. "After-
the-fact" is virtually useless, like post-classification
for information retrieval. The information loss is
too high in the transfer from programmer to code.
If everyone wrote and documented his program as
a connectable black box, only the connecting
process would need to be under the control of the
user.

• In twelve years of hearing proponents discuss it,
I have not yet seen successful mechanical trans
lation of machine language programs. There are the
processes which a translator:

a. Thinks it can do and can.
b. Thinks it can't do and says so, for human

rework.
c. Thinks it can do and can't, and therefore

doesn't say so!

• Transfer should always be made on a source
program basis. Recompilation is a trivial expense.

. To the highest possible degree, the documentation

of the program should be self-contained in the
source program itself (rather than in the auxiliary
documentation), and in a standard format and
placement so that mechanized program tools know
where to find the machine-readable information
for extraction and use.
. Production of identical answers is (particularly for

scientific problems) an additional requirement
which must be specified and paid for. Differences
may be due in part to differing internal arithmetic
modes, but more often they are due to the over
looking of imprecision in method. On balance,
obtaining different answers must be considered a
healthy phenomenon.

.The criterion which a software module/component
must meet in order to be self-documented ade
quately is:

'.'Can it be dropped into a program/data
base for problem brokerage, whereupon a
completely anonymous user may make a
mechanical search to his requirements, find
and use the module in his problem, and pay
automatically a brokerage fee upon success
ful usage?"

This would be one standard that nobody would argue
about—if he got found money at the end of the month,
for conforming. Perhaps this might be a better solution
than patenting software. Only thus can the non-spe
cialist take advantage of computer utilities.

Some information required to transfer (run) a program1

. Program name (number)
Program function
Descriptors, classification (computing reviews)

. Original computer system
Original configuration, subset of required con
figuration, options used/available
Other systems/configurations verified to run on

• Operating system, requirement, linkages, inter
faces
Running instructions
Store requirements (resident program, ndnresident
program, data, tables, segmentation, overlay
sequences)

• Source language (standard, dialect)
. Input/output data

Data structures
Data types
Data elements, collating sequence

(1) To complete while producing the program.

Software Transferability 607

. Interfaces (other units called, libraries)
Connections (via jumps, switches, natural flow)
Languages/processors equipped to call this pro
gram

..Method, average runtime (for interactive simu
lators)
Restrictions, constraints, degenerate cases, idio
syncrasies
Range, "accuracy, precision
Changes occurring in conditions, status, original
input
Optional
Information specific to program transfer
Default options—referring to international/na-
tional standards
Responsible organization
Grade of program (thoroughness of testing)
Test cases and answers (possible autoverification
and answer match)
Bibliography, references
Copyright, price, etc.
Source/object program listing, number of in
structions/statements

Mechanical tools for conversion2

.Combinatorial path exercisers through a program

. Programs which page the source code for the pro
grammer and mechanically force him to be up-to-
date

. Programs which mechanically check the linkage of
units of a software system to provide a directed
graph for flow verification, ensuring that any soft
ware unit will not interface with other software
units to which it should not be connected.

.Mechanical determination of valid paths in the
reverse direction of flow, as a diagnostic tool for
finding "How did we get here from there?"

• Mechanical verification of successful meeting of
interface requirements when passing from one
software unit to another in a forward direction.

• Mechanical re-verification of linkage and inter
face requirements for any revisions.

• Code acceptance filters.
.A patch defense (correct/change in source code
only)

. (De-) flowcharters

Mechanical capture of facilitating information'

The source-to-object program translation process

(2) Used during the completion stage of the program, to prepare
against transfer problems and to ensure a well-conditioned state.
(3)To obtain in each use of the program.

D
yields information. Much of this is lost, but needn't be.
Some of this information concerns elements which are
not themselves standardized, but can be part of a stand-
dard list of measurements useful to program transfer.

Therefore a language processor should be constructed:

.To be self-descriptive of its characteristics (i.e.,
features contained, added or missing; dialects or
differences).

.To affix to the original source program, as a certifi
cation of a kind, either an identification of, or its
actual characteristics. It may also strike character
istics or features which were unnecessary for that
source program.

. To inspect transferred programs for a match to its
own characteristics.

If the transferred program is processed successfully:

'.The identification of the new processor is also
affixed to the source program.

. .In any area where the new processor has lesser
requirements (i.e., a smaller table worked success
fully; a missing feature was not required), the af
fixed information is modified to show the lesser re
quirement.

Thus a source program, once processed, contains
information on:

• The minimum known characteristics required for
successfuLprocessing.

• All processors (with operating systems) which treat
the source program successfully.

Software compatibility

by JOHN A. GOSDEN

The Mitre Corporation
McLean, Virginia

Data Exchange

There is a growing need for data exchange, particu
larly the passing of files of data between programs that
were produced independently. This will be needed in the
development of computer networks and data bases; for
example, a head office installation collecting files from
various divisions of a corporation to build a data base.
Both the development of formal and informal computer
networks as well as the economic feasibility of large

STRAIGHTENING OUT PROGRAMMING LANGUAGES

A PRESENTATION TO THE 10TH ANNIVERSARY MEETING OF CODASYL

1969 May 27 - 28

by

R. W. Bemer

Genera l Elec t r ic Company, Informat ion Systems Group,

Phoenix , Ar izona

THE REASONS

lu m b - T t ' S a "-"-"en lock. There ' s a
to open the lock and you can hear h im" ' iT c o m p l l c a " d Procedure necessary
I ta l ian and you cannot Unde^a 'd l£[i a ^ f °«™"ly. he speaks only

B A N G ! ! !

not ""unders tand^ ̂ Tha t^s JheTobU ™% k "~lo^_o£ A i s los t i f B can-
that i s why CODASYL was s tar ted lO^years ^ ramming languages and rea l ly

man" 6 then^w^mus t 'be 1 iev^also^ha^"i t9 e c l u a * "sources i s benef ic ia l to
more e f f ic ient ly . The wr i t ine of a * S " e r C 0 u t l l ize those resources
example of the

apparent whe" § we coSide/our Jotar i S Le««y ' 'of h progr^s ' h 6 i s

TOTAL P .P . INVESTMENT - PLANET EARTH

Hardware - 1 .0

S o f t w a r e - 1 . 5

Transla t ing to money,

U.S. Ins ta l led Value - Hardware - $16 b i l l ion

Non-U.S. Ins ta l led Value - Hardware - $_8 b i l l ion

$24 b i l l ion
This impl ies $36 b i l l ion in sof tware!

2

I am not sure if the major reasons for developing programming languages were
ever ranked. We know that we use COBOL because it is easier to write the
program. We know that we use COBOL because it is easier for others to
understand that program. We claim that we use COBOL because it helps us to
transfer that intellectual resource to different equipment to perform the
same function. If one would compare the inventory of COBOL programs (and
I must confess I do not know what it is) with the entire 36 billion, he
would see that we have in a measure failed.

We are approaching a new environment with these forcing functions:

• Separate software pricing permits mix and match of both hardware and
software.

• Data bases enable information brokerage and load distribution.

• Transfer of software (representing large investments) to other equip
ment demands consistency of representation.

• Auxiliary use of computers at resource centers and networking, cer
tainly for overload, and possibly to reduce local configurations to
that required to run ob ject programs only.

• Insulation of the user from hardware and operating systems.

John Haanstra has said that compatibility is not a goal, but rather a pro
perty which enables the result of data and program transferability. I
have my own lemma that "if the data is not transferable, the program cannot
be transferable".

It is quite evident now that the separate divisions of COBOL facilitate
program transferability (or portability). However, we can and must do more
for COBOL along this line and (more importantly) carry it to the other
programming languages, both procedure and problem-oriented. The occasion
of this 10th Anniversary of CODASYL, with its avowed intention of planning
for the next decade, provides an appropriate forum for a proposal which
could lessen the wastage for the next $36 billion worth of software, which
obviously will be produced over a shorter time scale than the first 36.

THE BACKGROUND ——————————————

Presently there are two common types of programming languages—procedure-
oriented (IFIP Definition J22) and problem-oriented (IFIP Definition J23).
These definitions recognize an overlapping of terminology usage, which
has been more complicated with the addition of languages for job control,
data storage and retrieval, data communications, etc.

°£ languages of the same class is also variable FORTRAN

Th':: t nsai?pl"r ^~c «> ^io„; c<w doe™
matter is definitely overdue to be straightened out.

The key „ay be in the IFIP definitions for data and infomation:

A representation of facts or ideas in a formalised
manner capable of being communicated or manipulated
by some process.

A1 DATA

Note: The representation may be more suitable
either for human interpretation (e.g., printed text)
or for interpretation by equipment (e.g., punched
cards or electrical signals).

DATA CARRIER A general term for a medium used to carry recorded
£ata and intended to be easily transportable
independently of the mechanism used in its inter
pretation.

Examples: A punched card, a magnetic tape, pre
printed stationery.

A3 INFORMATION In automatic data processing the meaning that a

human assigns to data by means of the known conven
tions used in its representation.

Note: The term has a sense wider than that of
ordinary information theory and nearer to that of
common usage.

(thrcoinagerofUwhicrwnCe °f ev^tS"actually a cycle. The name CODASYL
itne coinage of which was my small contribution) incorporates "data"

and data bases, the plain facts are thit we will processes a^Hn-"'

frorpUce'toTtace ComPut«-b"e'J can"^e data around
to Place, put it away, find it again on the basis of its

(3a l" the case of cr)(fography, for example) perform trans-
mation content? ^ata-aH of these absolutely independent of the infnr.

examp1e: ̂ ̂ anal°8y Proble®a if we use the postal system as our

Office^ystenu^ reSld6S ln an °Perating system environment--the Post

2. The carrier goes through a procedure oarr nf u- . •
velopes according to addressing on the outside " m°Vin8 ""

3' he Û vinf̂ ŝ câ fT """ tha -«>«.- that
the information content He c^ 6 ̂ r°Ce^ural decisions based upon
postcards, as he shoajdj. "" """ the (ignore

class for more daL'haLling^By^naW"T'1"8 lan8ua8es of the COBOL
transparent envelopes and control!inn 316 glvlne the carrier some
"ouid have a terrible af^ct o" posSeS lYta"0" thr°U8h the "
instructions in one manner when the rontP t- \ Were recluired to decipher
(read COBOL), and in another Inner when T, °f ̂ letter are in
FORTRAN), etc. " the COntents are in French (read

manipulationrianguageeand a^ta^o^i °f.Separate Proposals for a data

movement is absolutely the primary enaM^ r" la"guag<!! ^ely data
Why then are two separate languages re ln8u unccion in data processing.
1 have tried to give a "caoUulfr,„ TY " C°Ver Che sa™ taction?

raent, trying i„ each dimension of description ""dT"ta's of data move-
possibilities. It mav not hp fnni rption to give the universe of
tested: 7 n°C be foolPr°°f, but so far it has fit every case

'• iit̂ emê t is accomplished by putting it in the fo™ of a Message.

may"recedeSor ̂ YYboth."' " "ithout Packaging. The packaging

lSd™LnYYu*Yl f0r° £< « b3"»a 1' »'a a «"Own and

F
T"1

Some Examples:

• Digital-analog conversion (as for facsimilp-v
being pulse or waveform to bit, and vice versa transformation

• Addition of parity

• Table lookup

Scramble positions, or any encrypting

• Editing. The message XXXX may be formed fmm -u
from the original $XX.XX.

4. A message may be interpreted or s ta ted to be:

• Data processed by the system, or

• Ins t ruc t ions for sys tem opera t ion

5. A message may be moved:

Pr ivately, in which case the packaging i s not mandatory

• Publ ic ly , in which case packaging i s mandatory

6 * T h e in format ion conten t may be known:

• Privately, or

• Publ ic ly , v ia descr ip t ion in the packaging

v i a s t andards of representat ion such as ISO R646
(.USASCII) , or regis tered a l ternates .

^ i n f o r m a t i o n f o r m a t may be known:

• Privately, or

• Publ ic ly , v ia descr ip t ion in the packaging , o r

• Publ ic ly , v ia s tandards ex is t ing and in der iva t ion (e . g . , mag
ne t ic tape labe l ing) .

8. The message may be moved:

• Phys ica l ly , in space

• Non-phys ica l ly , in t ime (e . g . , opera t ive cont ro l t ransfer red f rom
one program to another)

The source may send e i ther the or iginal or a copy.

The ^ ink (dest inat ion) may accumulate the message or e lse destroy
previous data to make space.

10. Any s ingle data movement may have mult iple s inks, but only one source.

re t r ieval^ 1 1? a l t h°U g h l a nguages for job control , data s torage and
" * ' d a t a communicat ion, and segmentat ion are a l l procedural , they
car r ied in^he dVT^ d ° n 0 t m o d i f V lose the in format ion
Procedure Languages"! 1 W ° u l d C a l 1 s u c h ^gueges "Data

9

6

Remaining in the other class of procedure languages are COBOL, FORTRAN,
ALGOL, IPL, and the like. These have sometimes been termed algorithmic
languages. But, to highlight the present distinction, I would call
them "Information Procedure Languages". I would go further and say that
these should be limited to components which in fact operate upon data
only with respect to the information content. As an example, the compari
son statement:

IF CHARACTER EXCEEDS 'S * THEN NEXT STATEMENT OTHERWISE STOP.

Quite obviously (from the fact that NCR and IBM equipment operate differently
for this statement) the information content is the relative position of 'S'
in the alphabet, and not its data representation.

THE PROPOSAL

this separation of "Data Procedure Languages" from "Information Procedure
Languages" is the motive power of my proposal. Data is our raw material.
Software and hardware are only tools for manipulation. In some way the
higher level languages (in the vacuum of not knowing enough about data
structure) have achieved a disproportionate importance and a warped direc
tion (one direction per language, in fact). Indeed, if I have a process to
perform upon data, I may choose one of several information procedure
languages. Conversely, more than one user of the same data should be
allowed to operate upon that data by various information procedure languages.

Note that I say that this separation is the motive power. I didn't say
it was a new idea. One of my old notes said "Check my old memos to
support Grace Hopper on common data definition for all programming languages".
Peter Landin's paper "The Next 700 Programming Languages" (66 March Communi
cations of the ACM) concerned "A family of unimplemented computing lan-
guages... intended to span differences of application area by a unified
framework". Professor Maurice Wilkes hit the problem again in his paper
"The Outer and Inner Syntax of a Programming Language" (68 November issue
of the Computer Journal) saying "There are two sides to a programming
language; one is concerned with organizing the pattern of calculation, and
the other with performing the actual operations needed". Unfortunately
this did not get recognized by the reviewer as being very profound, for he
said "The author seems to feel that this observation is justification for
an article, and so continues for three pages with a quotation from Bertrand
Russell, a fragment of the ALGOL 60 Report, and a humorous example
intended to further belabor the point."

Well, today I have a wonderful chance to belabor the point again. I make
the following 5-point proposal (not all of which depend upon the data/
information separation):

1. Every program should depend, for its operation, upon having
separate divisions for: 8

a. Identification

b. Environment

c. Data structure

d. Data procedure (not particular to the application)

e. Information procedure (specialized to the application)

2' 111 ZTlhl °ffPr0grain transferability, economics, education, etc.,
informal! lnfon"atl°" procedure division should be common to all

formation procedure languages. (See VUEGRAPH) This whole frame-

the n81VeSf 1 CaU 3 "ComP°site Programming Language". This is
If PL/Til a recently created committee to which PL/I was assigned

PL/I is a composite language, it should fit this pattern That
committee i, welcome to take my paper here as a basic docket

3' Ifterni;v°cZ,t,D;VlSi0°tShr1<i have for automatic affixing
w Vn? ̂°mpllatl°n' of the imprimatur of that compiler, together
f<^ rhP r V1f °n °f the miniraum actual requirements needed
for the compilation of the program.

4' shouldbe Permitted to contain more than one way of
comDiled"8 same/un^ion or action, only one of which will be
compiled or executed conditionally. (See VUEGRAPH)

5. The five divisions should be transparent to (or inclusive of) mode
of program operation such that:

• A single switch setting will enable either reactive or batch
processing.

• A single switch setting will enable either checkout or run.

The purpose of the proposal is to have Programming Languages which can:

• Survive and exist in a larger world

• Permit program transferability

• ITlLlaZ COmm°n Structure and environment, to prevent ballooning
of operating systems

• Adapt and assimilate new capabilities without impact or transplant
shock (requires a sound structure for universality) transPiant

' tUalfdu1I"„cLCO™°n MUh °th"' deSPUe Permi"ed dlal«"

The proposal is not aimed primarily at compiler efficiency, but this may be
a byproduct. Layering is usually a simple key which unlocks bigger pro
blems. It reduces redundancy and permits arbitrary differences to atrophy.
This is obvious from the work of Dijkstra, Gill and particularly Conway,
who says the complexity of the system increases with the number of communi
cation paths in the designing organization, which is combinatorial.

I do not mean to demand instant single standards. I favor coexistence to
protect investment, but coexistence demands recognition! Recognition is
not possible with implicit characteristics. They must be explicit. If

something cannot be one way only, then the way must be identified. Some
examples s

• Five different floating point precisions for System 360

• Duality required for phaseout of archaic or superseded features, such
as the sign overpunch convention.

A switch can be set (or the environment division may signal the choice) for
selective compilation. After sufficient atrophy the new version can be the
default option.

CODASYL can do a maximum service if it takes as some of its gpals for the
next decade:

1. Further development of the data procedure languages now in process.

2. Addition to (and/or modification of) the environment division as may
be required to accommodate the other information procedure languages.

3. Addition to (and/or modification of) the data division to accomplish
this same purpose.

4. Partitioning and reduction of COBOL so that only information processing
features exist in the information procedure language, all others being
reassigned to other divisions.

5. Ensuring that the bodies responsible for other major languages, and
for new applications languages, make the modifications necessary to
fit this framework.

This will yield a state where the elements of data procedure can be
exercised by the information procedure only by a call and return, just like
a subroutine. This leads to simplification possibilities in the operating
system, which can take advantage of grouping of like calls. In other words

(1)No^e: This usually includes implicitly the physical structure of the
data in hardware, but possibly this could be taken out into its own
division.

nolZT 1 °i f i C e !° r f ^ m 3 i l 3 n d d i s t r ibutes i t by route to the var io
postmen. When the data gets in your mailbox you may cont inue with your
; ; nV —^ environment this i s more

t t h a" Special Del ivery, exemplif ied by the READ verb in COBOL.

ous

SPECIFICS

develooe^r^ e X a m p l e ' l e t ' f l o o k a t segmentat ion and COBOL. COBOL was
developed in a computing world which was essent ia l ly uniprogramming and
the specif icat ions ref lect this . At the NBS meet ing of DecembTr it con-

the npr!sent eC0MI S t a n d a r d ' G E t G o k a f l™ Posi t ion against having
the present COBOL segmentat ion feature as e i ther the pr imary or only seg
mentat ion feature al lowed. Having had considerable success ' in mult ipro
gramming and mult iprocessing systems (as contrasted to near ly everyone
featured P °?f S 6^ e n t a t i o n a< the operat ing system le 'vel as a
systems uTTa p r° § r a r a m i nS l angu ages and usage. For mult iprogramming
* 1 C U 1 S a g e n e r a l axiom that no specif ic feature of a programming

> eguagc should overr ide, usurp or endanger general features of the
operat ing system to the degradat ion or fa i lure of system performance.

The or iginal concept of segmentat ion in COBOL was for overlaying in small
s tores . However , general segmentat ion is a lso used to:

• Spl i t up compilat ion for eff ic iency (as the 600 does)

• Link subprograms compiled separately as wri t ten in the same or
^r 0 8 r a m m i n 8 l a ng u ag e» having common access to common f i les

(the CALL verb in FORTRAN, the LINKAGE-MODE in COBOL). This must be
one a t the level of the operat ing system (read Data Procedure) , not

the programming language i t se l f . (read Information Procedure)

' a n d i n t e r^ e a v e d running, i„ a mult iprogranming/mult i -
processing system, of completely independent programs compiled via
different language processors . Here the segmentat ion i s to al low the
operat ing system to make decis ions affect ing the overal l system
eff ic iency and program mix.

svstems ^ b e . f a m \ ! i a r w i t h t h e "™n big" opt ion of t ime-sharing
systems. Keep in mind that he who binds segmentat ion a t compile t ime
avaHahi r u n big unless he recompiles for the configurat ion and resources clVci 1 13D 1 6 •

W i U . f a y ! A n y s m a r t compiler wri ter would hold this out from
the COBOL compilat ion and ass ign i t to the control of the operat ing system
But have they. I f data procedures and information procedures are separated
as I propose, they wil l have to .

10

Another d i f f icul ty wi th segmenta t ion i s tha t i t i s a fea ture of Levels 3
and 4 only . Levels 1 and 2 were crea ted speci f ica l ly so tha t smal l
computers could process COBOL source programs in to object programs, ye t
when i t comes to running these object programs i t i s these same smal l
computers tha t need segmenta t ion as much as , i f not more than, the large
computers process ing Levels 3 and 4 .

However , we th ink the rea l solut ion i s not adding segmenta t ion to Levels
1 and 2 , but ra ther doing away wi th these levels a l together . Because
most smal l computers a re sui table terminals for large computers , there i s
no need to penal ize the smal l computer by forc ing i t to compi le for i t se l f .
I t i s suggested to wri te a l l source programs a t Levels 3 and 4 and do
remote compi la t ion a t what GE ca l l s resource centers . Jus t because the
COBOL source program i s too b ig or too fancy for a smal l computer to com
pi le does not mean tha t the object program i s too b ig!

CONCLUSION

The concepts in th is proposal may be s imple , but I hold tha t they are pro
found. In one form or another they are cer ta in ly not or ig inal , but the i r
t ime has come and my company has had much of the exper ience tha t proves
them correc t . For tunate ly , the exis t ing work of CODASYL would not be
negated by accept ing these concepts . Only a re la t ive ly smal l reorganiza
t ion of speci f ica t ions i s necessary . However , a rea l ly b ig ef for t i s
necessary and unavoidable in order to br ing a l l informat ion procedure
language in to th is common f ramework. I have in tended to out l ine here a
mechanism and p lan for such a gradual , non-catac lysmic merging in a prac
t ica l t ime f rame, meanwhi le inhibi t ing normal d ivers ion.

I know of no group o ther than CODASYL tha t holds an of f ic ia l char ter so
unique to doing th is work and I hope you wi l l accept the chal lenge.

r
OPERATING SYSTEM

A

iDENT.

:NVIR.

DATA

COBOL
PROCEDURE

DATA
COMM
TYPE
I

FORTRAN

<

DATA
COMM
TYPE
n

PL/ I

r

<
DATA
COMM
TYPE'
HI

LIBRARY

DATA
BASE

COMM
LINES

HOW TO PUT AN INTOLERABLE BURDEN

UPON AN OPERATING SYSTEM AND

DEGRADE PERFORMANCE !

(USER PAYS, MOSTLY)

f7r

OPERATING SYSTEM
JOB
CONTROL PROGRAM (S)

TERMINAL I/O
R E A L I / O

ARITHMETIC
LOGIC/CONTROL

A

ENVIR.

SPECIAL TO FORTRAN

DATA

SPECIAL TO FORTRAN

DATA
PROCEDURE DATA COMM

FACILITY

INFO.
PROC.
LANG.

COBOL

y
y

I PL

FORTRAN

y

DATA BASE
FACILITY

/ /
/ /

l <
I PL

PL/1

y

y

>V
'/
/

I PL

GRAPHICS

7
FUNCTIONS

A

TYPICAL OF FURTHER

SPECIALIZATION TO APPLICATIONS

PRACTICAL COEXISTENCE

F/C

F/C

FORTRAN/COBOL PRECOMPILED

FOR MACHINE LANGUAGE X,

FOR WHATEVER REASON.

-0

CONDITIONAL
/COMPILATION! BUT THE OPERATION COULD

F/C BE STATED IN FORTRAN/

COBOL, EVEN TO RUN SLOWLY

X
€

C
3 1

X

BUT THIS DIFFERENCE IS LIKE

THE DIFFERENCE BETWEEN

NON-STANDARD AND STANDARD

F/C, OR DIFFERENT LEVELS

IF Cy RUNS SLOWLY, Y MAY

BE CONSTRUCTED AT LEISURE.

MACHINES X B Y NOW ARE

FULLY REVERSIBLE, FOR:

1) CONVERSION IS SELDOM ONCE AND FOR ALL

2) THE PROGRAM MAY HAVE TO RUN ON EITHER

OR BOTH

r
L

c x C y

\ r

^ T.S-PS^U
^ JttWM (

' A^OT
• 6ts^^
/ ^cro^>

• |M)vis. STOS sc (y^pv/taNOy Sisco (?A<?aJ

^ 0*J(jg3

<fe> u^p.T. VAJo/^wfr UST^S,&.\AsWS^

•&<t3- Kisxtfi&KS f.T« [pM^/ OLwjty/ *M**0Zj U??U>\J\TS)

* L-erirVT w&bcJ&j
* (•+ 5-nsFi

^ W£)U

Cu*io^5

• ffWBtev, w-

• HvCL€UUM^^-

• flAfwtm

• LP,

^ 8o€> fi&esr
^ ̂Y. f^UrSf

^P.C. (e-UCK-

^ (• CL*U3S&->
v A. oe<w

^ Q,

/ Lf(2^^

• S^OQ^CH

u SO.G&Uoevt/
kwtf)

ESCAPE
TO REALITY
Along with nearly everyone I approve
the advantages to be realized from the
further integration of computers and
communications. Some speak of it as
a marriage; if so, it will take more plan
ning than we have done so far to keep
this marriage from floundering! Ob
serve the following:

• •

Know what it is? It's a cross section of a
twisted pair of wires, a very basic ele
ment of communication systems. Seen
from this aspect, the data communica
tion system does not know who or what
is on the receiving or sending end unless
the establishment of the hookup, or link
age, defines these explicitly. This is why
such extensive work has been under
taken in the standardization of data
communication control procedures,
facilitating movement of data from one
place to another. However, we may still
be blind to the format and meaning of
the data. This is why much work is
overdue on data descriptive languages.
Let us consider the time when we have
full standards for both communication
procedures and data description. Are
we then in full control? Absolutely not!

The reason is that we have an in
ventory of almost $40 billion in mechan
ically recorded data and software, and
well over 99% of it is not accompanied
by any explicit description of what it is
-either in encoding or format. Data
communication, as we speak of it now,
occurs via public utilities. Therefore'
using computers adjointly requires thai
data and programs have public (ex
plicit) identification (this does not ex
clude reverting to a private mode later,
just as personal defenses may be
dropped once we establish that we are

communicating with a friendly party).
Obviously we won't wish to keep the
full inventory of software, but what
should be done to salvage some1 of the
rest?

Anyone who thinks that we can move
overnight to these new standards (when
they arrive) is out of touch with reality.

August 1969

There is information loss from problem
analysis to programming, from source
to object program, from a complete
form of the data to the keypunching
form on the card (e.g., $23.57 to 2357),
and from the logical file structure to the
physical file structure determined im
plicitly by the equipment and the pro
gram. Miracles are still difficult to find,
but there is a workable mechanism that

offers graceful coexistence and even
tual conversion to a unified system It is
called "ESCape."

ESCape (abbreviated ESC) is a char
acter which should be universal (al
though it may be difficult to add to
certain 6-bit codes). In the 7-bit codes
of ISO Recommendation 646, and
ASCII, it is represented by: 001 1011.
When ESC is encountered, the normal
(implicit) meaning of the following data
stream is disabled. However, the follow
ing characters have R646 meaning until
an "ESCape sequence" is completed.
This sequence consists of ESC, a number
of intermediate characters (I) and a
final character (F). The characters (I)
and (F) are selected from the ISO code
and are mutually exclusive sets. The
best description of this mechanism is
found in ECMA (European Computer

Ta/69/14erS AsS°da,ion) Document

Most present usage for ESCape
sequences is for changing the meaning
of the coded character set following.
Thus: ESC & (F) indicates that the mes
sage which follows is not in ISO (ASCII)
code but rather in EIA code RS 244 for
numerical control of machine tools.
EBCDIC, packed numeric, floating point
for binary, etc., should all have their
particular ESCape sequence.

Perhaps a more important usage is
the indication of data formats (eight
intermediate characters remain unas-
signed now for 3-character sequences).

As an example, I have proposed that
every magnetic tape label begin with:
ESC/I. This says to read the label
according to the first USA Standard for
Magnetic Tape Labels. If some day we
should wish to amend the standard for
such labels, how would the software
accept data from tapes labeled in the
original way and also tapes labeled
the new way? Simple, for the new label
form begins with: ESC/2.

Suppose that Social Security permits
updating of filings via communications
systems. Disc packs have formats differ
ent from magnetic tapes, yet looking at
that twisted pair

• •

how would the Social Security computer
know how to accept the data, unless
perhaps disc packs had the ESCape
sequence ESC / 5?

Here ESC/ triggers a programmed

'Obviously if program and data are inextricable

FORTRAN rm°t,ed uread/write commands of
FORTRAN, this may be very difficult. In many
cases special conversion runs may be necessary.

239

You solve our problems,
well solve yours.
It you're the kind of data processing professional who can apply
imagination and ingenuity to challenging problems, consider some
of the advantages of a career with McDonnell Douglas.

We have McDonnell Automation Company DATADROMES'" in
St. Louis, Denver, Houston, Los Angeles, New York, and Washington,
D.C. They offer opportunities in commercial data service, engineering,
scientific and business computing and data processing.

And we have similar openings at our Douglas Aircraft Company
or with McDonnell Douglas Astronautics Company's Information
Systems Subdivision in Southern California.

We're looking for scientific programmers, math modelers,
digital computer analysts, business programmers, consultants,
systems analysts, marketing representatives and sales engineers.

If multi-project problem-solving is the kind of challenge you're
looking for, just send the coupon, with your resume if available.
We will arrange an interview.

Douglas Aircraft Company, Mr. P. T. Williamson, Professional
Employment, 3855 Lakewood Boulevard, Long Beach, Calif. 90801.

McDonnell Automation Company, Mr. W. R. Wardle, Professional
Employment, Box 14308, St. Louis, Missouri 631 /8.

McDonnell Douglas Astronautics Company, Mr. N. T. Stocks,
Professional Employment, 5301 Bolsa Avenue, Huntington Beach,
Calif. 92646.

IE TET
COM u

0CY0UT YD
T TOO {OCR}

Name

Home address.

City & State Zip Code _Phone—

Education: BS MS PhD Major Field .
(date) (date) (date)

Primary experience area.

Present position /
Area choice: East • Midwest • West • Best Opportunity • ~ ~

MCDONNELL. DOUGLAS
An equal opportunity employer

ESCAPE
TO REALITY . . .

table lookup to see what subroutine
should be used to read the particular
format identified.

Coexistence demands recognition,
yet I have stated that present data and
programs are not recognizable out of
context. Suppose that the computing
world were to follow these steps:
1. ESCape sequences are proposed

and registered for the various data
and program forms that are fairly
common (less common forms need
only the private and unregistered
sequences, indicated by two or more
intermediate characters).

2. Software is modified to detect omis
sion of these sequences, labels, etc.
The original or other programmer is
requested to supply the missing in
formation.

3. Software replaces the implicit form
of the data or source program by the
explicit form. Mixed alphanumeric
and packed numeric data are physi
cally separated by ESCape se
quences, where formerly only the
program knew where the split was.
Probably no use is made of such
identification at this time, and actual
control may be bypassed.

4. This process occurs for a number of
years, and more and more data and
programs are converted to explicit
identification. New data and pro
grams are created similarly. After
some years the conventions and
standards are really established.

5. New software systems are designed
to operate with identification con
trol. Data and software are recog
nized either as standard, or as non
standard of a certain, identified
type. If nonstandard, the system
determines:
a. That it can handle the represen

tation and format, and possibly
convert it to the standard in the
process, or

b. That it cannot handle it, and must
call for help.

I hope the industry agrees with me
that this is a practical approach and
should be undertaken. It doesn't work
100%, but then it works much more
than 0%. Don't forget, the communica
tions industry found out long before we
entered the act that having self-identi
fied devices makes things a lot simpler!

-R. W. BEMER

240
CIRCLE 332 ON READER CARD DBTBMHTIQN

75"7/

Software
Engineering
COINS III

VOLUME I

Proceedings of the Third Symposium on Computer and
Information Sciences held in Miami Beach, Florida, December, 1969

5? b ^
Edited by C^lD'^

JULIUS T. TOU
Center for Informatics Research /
University of Florida a* * ' ' • &
Gainesville, Florida o

O COMPUTER 50
* OPERATION^ "<

Academic Press New York • London • 1970

•"-H'<ncea Tr° m:
SOFTWARE ENGINEERING, VQl ,

Acad • ® W0 CODEM'C ERE„, ,NT N
Vork and l0„don ' "•» Tor

Manageable Software Engineering

I7- Bemer
GENERAL ELECTRIC COMPANY
PHOENIX, ARIZONA

I- Introduction
Management problems exktfo r

apparently independent. * 0l"Wd8h design Voices
It IS evident that this has nm k

LPr"'°"S »~rtin * H. and srs r ~ s 5

121

122 R. W. BEMER

TABLE I

Question Decision completeness, %

1. What should be produced ? 5-10
2. Should it be produced? 30
3. Can it be produced ? 70
4. How should the producer be organized ? 80
5. How should the product be tested ? 90
6. How should the product be introduced ? 95
7. How should the product be improved and serviced ? 100

II. What Should Be Produced ?

1. Does it Fill a Need?

Answer this question carefully. At a 1958 GUIDE meeting, it was reported
that a user programmer had rewritten an IBM input routine to run 10% faster.
Based upon programmer cost, machine time for test, and percent of usage,
it would pay off in the year 2040, at which time not many 705's will be around.
A trivial case, perhaps, but the McKinsey report [1] shows that this applies
also on a larger scale. Do not be afraid to discuss DP systems with your
management. They have found out how much they cost, and will probably
listen carefully.

Do not be too ambitious initially. Goals can change as you go along, and
there is nothing with lower salvage value than a DP system which does a job
you do not want, and is too difficult to modify.

2. For What Market?

Is it for use within your own company, or can some generalization or
modification in design enable it to be sold to others for the same purpose?
Or can the algorithm be compartmentalized from the application so it may
be used for different purposes by you and others [2]?

3. What Are the Advantages and Disadvantages, such as Efficiency and Cost
Effectiveness?

Beware the apparently aesthetic choices; don't forget production costs,
use costs, life cycle, durability, reliability, and maintainability. Make sure
that the tradeoffs are expressed quantitatively.

MANAGEABLE
SOFTWARE ENGINEERING

123

rhnracteristics and Side Effec ful work
W h a , M e * ^ ^ c o t n p t ^ ^ c ,

Because software is supp d fit human capa _ Y iretnent.

:XS-
111. SHOUM It Be Produced?

mlU,rayf«l<"F costs of conversi°n' introduction,

„iected gain-to 0P«m'sm'C0StS

A<J!ust 'I1",' 0f continuing proc««s'
(l and disruption 01

wtU„ Be VeefulWH"

i=^SSr
' ̂ SisafSSHsSSsS

all factors of THE D

4. Make or Buy? in who\e or in part, ^^ilable,

It may be possible to get jt.^JcateS that there is ^installations.

9 answer if the soi

R. W. BEMER

DATA PROCESSING INVENTORY

BILLIONS

OF $

-30

-30

-10

0

1969 1
i ,

— INCOME SURTAX
1969 A/0IDANCE

1969?

US. U.S. NON-U.S. NON-U.S
HDWE STWE HDWE STWE

FIGURE 1

outside software are user associations, software houses, and trade associations.
Remember that usually only one of a kind is necessary. Don't buy, exter

nally or internally, more than is necessary. I know one operating system that
has 20 different GET/PUT routines in it, by 20 different programmers.

5. How to Make the Final Decision?

I have not seen a quantitative answer to this question. When it was first
asked of me, at IBM in 1957, the reply was to get a man with the best batting
average in extrapolation, and trust proportionately to his judgment. This still
seems the best answer to such a complex question.

IV. Can It Be Produced ?

1. Is It Possible at All?

My most lasting impression of J. Paul Getty came from a Playboy article
in which he said that the smart man does not take on the impossible. There
are software systems which are neither feasible nor possible to build, given
even unlimited resources of programmers and computers. There are methods
at two extremes: (1) Plan the system all at once, then build it all at once.
(2) Follow my five word motto, "Do something small, useful, now", with of
course an eye to the changing future.

I don't have much faith in the first method, particularly for data processing,
because every big management scheme I have seen has died for two reasons:
(1) The planning was so monolithic that it took so long to do that it was out
of date before it could be implemented. (2) Even then it could not be corrected
or modified because the lack of results led management to put the planners
out of a job. Obviously, the function was being performed somehow during
this period.

MANAGEABLE SOFTWARE ENGINEERING 125

Assuming all else is OK, one should keep an eye upon the permanence of
his management and its goals. A new boss will often redirect effort and restart
from nearly scratch. This is common for elected public officials.

2. Are the Resources Adequate?

Here we speak of all resources—money, talent (not manpower), time,
technology, and direction—and they must be all allocatable to the project.'
Be careful when offered miracles. For years, I have carried a little cartoon
in my billfold. It shows two programmers looking at a printout, and one says
"Hey, Joe! It says our jobs are next!" Don't you believe it; we couldn't get
rid of those two in any way!

Figure 2 is the McClure chart, from the Report on the NATO Software
Engineering Conference. It shows how many instructions you will get if you

^ask a manufacturer to give you his software for a certain system. Note that
pthe vertical scale is logarithmic. This makes me fear that in a few years not

only will Joe and his buddy still be around, but so will twenty more program
mers, and there may not be that much suitable programming talent lying
around loose, even with a massive educational effort.

Is the size of a software system a worrisome factor? It certainly is, because
productivity for basic software has not increased with system size. If anything,
it has decreased markedly, and this is not surprising when one considers the
inevitable increase in connectivity [4], Figure 3 is my compilation of some
productivity statistics, in terms of instructions per hour (both scales are
logarithmic). This chart is designed to reflect total budget figures on the basis
of approximately 30% for design and implementation, 20% for test, and
^ /o leu* management, documentation, and support. I have arrived at the
OS 360 figure in several consistent ways, which are worth enumerating here:

1. Conway [5] postulated an expenditure of 15 million dollars in 1963,
45 million dollars in 1964, and 60 million dollars for the years 1965-1968. This
is consistent with official IBM figures as reported in Fortune magazine for
1966 October. This yields 300 million dollars to produce the 5 million instruc
tions the McClure chart shows for the end of 1968, or 60 dollars per instruction.

2. Original information released on the 360 software was 160 million dollars
for about 3 million instructions, as produced by 3000 programmers at peak.
This averages 53 dollars per instruction.

3. An IBM spokesman asked me at the 1967 February SHARE meeting
"Would you believe $53.50?"

4. Assume programmers at 20,000 dollars per year for 2000 hours of work.
At this 10 dollars per hour rate, 0.2 instructions per hour would cost 50
dollars, which is quite consistent.

R. W. BEMER

GROWTH IN SOFTWARE REQUIREMENTS

FIGURE 2

0.05

0.

SOFTWARE PRODUCTIVITY

(TOTAL BUDGET FIGURES)

0S360

/

,g> 465L"\0 x

<?/ Q/J£ U\I07(1964-5)

/ GE400

/ Ax
/ / / 3USAF

/ /
/

/
z 704 FORTRAN

T f 1 1 r r
025 0.05 0.1 0.2 0.5 I 2

MILLIONS OF INSTRUCTIONS
10

FIGURE 3

MANAGEABLE SOFTWARE ENGINEERING 127

5. 3000 programmers at 20,000 dollars per year yield the 60 million dollars
per year figure that Mr. T. J. Watson gave to the 1966 March meeting of
SHARE.

These production figures will seem low to many. One should not forget
that they are for very large, mature sustems of basic software [6]. The cost of
an instruction rises with longevity, because these systems must be maintained
and enhanced. Some parts are rewritten several times, and the superseded
instructions can t be counted anymore, even though their production cost is
still a factor.

My nightmares come from imagining a new system scheduled for 1972.
If the McClure chart holds true to give 25 million instructions, then the best
figures we have say that it will cost a billion and quarter dollars, produced by
15,000 programmers.

An obvious point of rebellion is "Are all those instruction necessary?"
Wouldn't it be nice to find some deadwood? According to David [3, p. 56],
this is very possible, as demonstrated in the MULTICS system (Table II).

TABLE II

WHY SO MANY INSTRUCTIONS? MULTICS—1,000,000 Reduced to 300,000

Improvement

Module
Man/mo.

Module Size Perf. effort

Page fault mechanism 1/26 50/1 3
Interprocess communication 1/20 40/1 2
Segment management 1/10 20/1 .5
Editor 1/16 25/1 .5
I/O 1/4 8/1 3

One would hardly express it as a law, on the basis of so few samples, but
in these cases it appears that if the program is l/N its former size, it will run
IN times faster. Part of the excess was due to use of a higher-level language,
of course, but this should not be used to discriminate against higher-level
languages per se. The sin is in using them in disregard of hardware character
istics. Code expansion is not the only culprit; duplication and unuse con
stitute an area of very high potential for extermination of excess instructions.

Now, if we can get a defined minimum of useful instructions to produce,
let's consider the people that are going to produce them. Figure 4 is a seren
dipity product of Sackman et al. [7], In explanation of the serendipity, these
results came from an experiment to measure the effects of on line program
ming versus off line, but differences between individual programmers were

128 R. W. BEMER

SOME VARIABILITY IN PROGRAMMERS

THE BEST PROGRAMMER

3 £
CODE TIME

5
I -DEBUG TIME FIGURE 4

CPU TIME

1

5

2 RUN TIME

PROGRAM SIZE

5 10 15 20 25 30

so great that they voided any possibility of measurements for the original
purpose. Two identical problems were given to a group of twelve programmers
with an average experience of seven years.

I told the authors that I considered the paper in which these data appeared
to be the most important work in the computer field in 1968; this opinion
is unchanged. Here we see more justification for asking if all those instructions
are necessary. Naturally, not all the worst cases in each category are due to
the same bad programmer, but the correlations are somewhat monotonic.

Note that the product of CPU time and program size would be the degrada
tion factor in a multiprogramming system. This speaks strongly to the position
that the best programmers should be selected and screened for the production
of basic software. So does the following consideration, which treats not the
originating cost, but the cost of use by the computer world:

During early instrumentation, 7% of GE 600 FORTRAN compile time
was found to be in four instructions, easily reduced to two (3.5% saving).
Suppose this were true for all software on third-generation systems, with an
installed value of 14 billion dollars. Now, if 10% of use is FORTRAN, and
40% of that is compilation, then two redundant instructions waste

or about 10 million dollars per instruction!

To me, this is a frightening picture, for these are unrecoverable costs to the
user. This should not be passed off as an isolated case, for it is demonstrable
that most software systems and application programs are honeycombed with
waste elements that surpass this one. And don't think that General Electric is
embarrassed to disclose this case—after all, we have taken ours out by intens
ive application of instrumentation programs! We're even proud, considering
that congressmen have been reelected with ease for saving the public this much
money! In fact, there are potential savings of over a billion dollars to be
realized by demanding instrumentation and measurement of software.

14 billion dollars x .1 x .4 x .035 = 519,600,000

MANAGEABLE SOFTWARE ENGINEERING 129

Thus, we see one critical input to the pragmatic question, "Can it be pro
duced?" Many people have given recipes for extrication from this dilemma,
all put forward with great fervor and, inversely, little hard justification My
list is:

1. High-level languages to write in (no one will quote more than a 3 : 1
advantage, and we have seen how that can be abused).

2. Good software management. (If you can find it, train it, have time to
train it, keep it, and keep it programming!)

3. A software production environment (the factory).
4. Good programmers.

Some may think \ have listed these in decreasing order of importance. To
the contrary, it is in increasing order. The good programmer is the key, just
as the top engineer is the key for hardware. The Univac 1004, a very successful

|piece of equipment, was designed and built by not more than a dozen people
Fin what was called "The Barn", in Rowayton, Connecticut. As an aside, they

did not build it to fit the existing market; their product shaped the market!

3. Are the Production Methods Available?

The generality of a data-processing system makes possible the finest
production methods, yet these are seldom exploited to advantage. A major
drawback of large software systems is that a substantial portion of the pro
duction cycle is often wasted by the invisibility of software—when the pro
grammer finally builds something, we find it is not what we wanted. Then
we must build something else, and the lost time cannot be regained. Large
systems are too complicated to depend upon intuitive design, or for one
individual to comprehend totally, or for a group of people to cooperate in the
construction of and communication about without mechanical aids. An ideal
plan is to build a model or skeleton and, if it acts as we wish, then to replace
the simulated units by real units—carefully, one at a time, to avoid confusion.

Production identification, change control, and labor distribution are im
portant tools. Their very tangibility for estimating provides the capability of
recalibrating to better estimates. They also make it more difficult for pro
grammers to lie to themselves, and perhaps to their management. I also have
a personal predilection for standing in a machine room and sensing what is
really happening. Then this can be matched against the production control
scheduling, and costing. PERT has failed in many large software projects,'
sometimes because there was not enough time to provide the inputs, sometimes
because it only gives the latest time one can do something provided absolutley
nothing goes wrong with all of the other things that people waited until the
deadline to do!

130 R. W. BEMER

4. Is a Good Production Environment Available?

If computers are useful for a general class of problem, then they should
be useful for producing their own systems. Some manufacturers are now
building a "software factory", or an environment residing upon a computer
within which all software production takes place. Programmers are directly
on line via terminals, and keypunchers are bypassed.

It is true that such systems will be very useful eventually for management
control in large projects, but in the beginning the accent and priority for
delivery must be on service to the programmer. The programmer is indepen
dent, so we must make the system attractive to him and worth the usage.
One of the most important aspects is increasing the number of accesses to
the computer per day. This is as low as one or two in much of our industry.
At this slow pace, programmers tend to lose the thread of their thought and
spin wheels. The difference between the good and bad programmer may well
rest upon the need for cohesiveness and pattern. Perhaps it is like half-life
decay of radioactive materials. In any event, this is a crucial factor in success
of large projects—yet it has been treated as virtually unimportant!

Greg Williams of GE has proposed a lesson for management on why soft
ware is so expensive under limited-access conditions. He would ask them to
use the BASIC time sharing system to convert clock time to Gregorian, to
head an output, or to an accounting system. A simple, everyday problem,
but he hasn't had the nerve to try it yet. His estimate for management—100
mistakes, finding two per day. That is a long clock time!

V. How Should the Producer Be Organized ?

There is no one answer to this question, and perhaps more than one hundred.
Software mirrors intellectual processes, which are capable of infinite variation.
Some organization is required, for large software projects must be subdivided.
It is important to observe Conway's law [8], that the form and size of the
product reflects the form and size of the planning organization. The sub-
organizations should be structured to follow the design and architecture, with
the program interfaces under control of higher management.

1. How Large Should Modules Be?

Several authorities fix this figure at from 400 to 1000 instructions per
programmer. If this seems low, recall that a gross of 0.2 instructions per hour
means about one per hour by the programmer actually writing them, so that
1000 instructions represent about a half-year's work. This figure may be
raised significantly for smaller projects with fewer interactions, but seems to
hold well for systems of more than 250,000 instructions.

MANAGEABLE SOFTWARE ENGINEERING 131

2. Who Should Be in Charge?

Sottware engineering has much to learn from hospitals, where the doctor
does the work, with his decisions generally overriding the administrator's.
For large projects, 1 favor a leader who is a working programmer, not just
a supervisor. IT possible, it should be at least his third project of that type,
although he need not necessarily have been in charge previously. The reason
for this is that the first time he reinvents, ignoring literature, competition,
and scrounging; the second time, he is too confident that he can avoid all the
mistakes made the first time. The GECOS III operating system for the 600
is a splendid example of such avoidance of the Peter Principle, which takes
us to another question:

3. How Should Design and Implementation Be Partitioned? > u
Here we run head on into the old argument about system analysts versus

programmers versus coders. Contrary to intuition, such a division may
make sense for small projects, but not for large systems! A much more careful
and practical design will originate from the man that knows he will be stuck
for a year or more in its production! Additionally, the reasons for the design
are so much in his cognizance that he is alert to signals that a design change
may be desirable.

4. How Does the New Project Coexist with Present Work?

Present stratification is usually by job title or project assignment. Perhaps
we should try to stratify the individual programmer, giving him concurrent
responsibilities in several aspects—design, implementation, maintenance of
his previous work (at least on call), and, in the case of software houses,
assistance in customer sites. Admittedly, certain projects may be too complex
to permit distraction, but these are few. A side benefit may be found in closer
connection between present and future software, in the area of data and
program transferability.

VI. How Should the Product Be Tested ?

The proper design and use of extensive testing is mandatory. Auto manu
facturers have their test tracks to detect failure and weakness before they
make multiple copies to be driven by customers over whom they have no
control. In fact, the French do call software testing "rodage". This testing
becomes even more vital with separate software pricing, and also with con-

132 R. W. BEMER

siderations of public welfare and safety as computers become further inte
grated into human activity. This means that a nontrivial portion of the total
production costs must be allocated to this function.

1. What Should Be Tested?

The two major categories of quality standards are performance and
compliance. Unfortunately, the first is only now getting its full share of
attention.

2. What Are the Testing Tools?

A few tools are enumerated here; many more are possible and in use.
Performance testing is necessary because any given process can be: (1) un
necessary, (2) done more times than necessary (i.e., rerun), (3) too slow due to
hardware, (4) too slow due to software, (5) too slow due to hardware-I
software imbalance, (6) undesirable, but imposed by conflicting or non
existent standards, (7) inutile because of logic conflicts, (8) satisfactory.

Any of these can occur because of : (1) basic system software (the supplier
should fix it); (2) application usage (the supplier should advise and also control
the default options for preferred usage when possible).

For performance testing, the tools are:

1. Standards of comparison. With parameters of hardware performance
(such as Gibson mix), number of object instructions, and precision of input
and output, certain common functions can be compared against what is
considered good quality in the industry. For example, if the sine-cosine
evaluation routine runs extraordinarily slow compared to what comparison
standards say it should do, it should be considered for rework.

2. Periodic instrumentation, either by hardware (zero time) or software
(finite time, not supportable continuously). Hardware instrumentation is
accomplished normally by tapping in a second computer system or a special
hardware device. Software instrumentation can consist of: (a) interface
tracers, for connectivity; (b) trapping analysis of module use, timing, control
acquisition and release, etc. [9-12], (c) hardware-initiated actions for later
software analysis; as an example, Ellison set the rundown timer on the
GE-600 extraordinarily low, so that a given process could barely get started
before interrupt and relinquishment of control occurred; in this way, a
normal 24-hour use took almost 48 hours, while the actual store location of
the instruction being executed at interrupt time was recorded. A later count
and distribution gave an excellent Monte Carlo simulation of the frequency
of use of the various software modules. (This was how the anomaly reported^
in question 2 of Section IV was detected.) "

MANAGEABLE SOFTWARE ENGINEERING 133

3. Continuous instrumentation (low and supportable time allocated to
this purpose). This would include: (a) gathering statistics during operating
system time for later analysis; (b) monitoring resource allocation and usage
for real time display to the operator, preferably by CRT.

For compliance testing, the tools are:

1. Generalized tests for well-known standards, such as the U.S. Navy
COBOL Certifier.

2. Special tests written (concurrently with the software production cycle)
to test conformity to specifications. At Bull General Electric, I had at least
one programmer in every ten allocated to such tasks; not a surprising ratio
considering that the testing function for large systems can use as much as
20% of the total budget.

3. Test cases. Formerly, these have been considered as primarily for
|application programs, but they are also particularly valuable for testing
Psuccessive system revisions. One accumulates a test file of the malfunctions

reported for previous versions of the system, together with a sampling of
small applications. The file resulting from processing with the new system is
mechanically compared with the previous answer file, and deviations displayed
for analysis.

Quality in both performance and compliance is checked by field test. One
would wish to avoid such a procedure if possible, but most of the time this is
impossible for large systems, time sharing systems being a particularly visible
example. It is not known, nor have the computer scientists provided us with
the insight, how to simulate and test a large multiaccess system by means of
another computer program that exhibits the real time properties of: (1) any
randomly possible selection from the U.S. communication system, (2) the
U.S. population making other demands upon that system, (3) an unpredic
table user population, either in loading or arbitrary usage.

My company has found that many strenuous measures must be taken to
check out new time sharing systems. We have even switched a large number
of internal users from the regular national system to the field-test system,
to provide instantaneous overloads, peculiar usage combinations, and time-of-
day variations.

3. When Should It Be Tested?

Quality Control is continuous testing, during production, by the producer.
Quality Assurance is discrete testing, after production, by an agency acting
on the behalf of the user.

Both of these functions must be recycled for major revisions. A reasonable
criterion for a large operating system is that it shall perform continuously

134 R. W. BEMER

for at least two weeks without a malfunction affecting the user. It will usually
be a minimum of three months before such a status is achieved. Needham
of Cambridge University says "There are very few bugs in our operating
system that weren't put there in the last two weeks".

4. What Are the Authorities?

This is a management decision, or it may be delegated by them to the Q/A
group. Seldom, or never, should the release responsibility reside with the
producing group. In the case of public safety and welfare depending upon
the software, perhaps a Q/A group veto should be protected from a manage
ment override.

5. When Is the System Correct?

For large systems, it has been recognized that the answer is "Probably^
never". One should reject the interpretation of 100% "mathematical" or

logical correctness for software engineering purposes, for reasons of
statistical frequency of exercise, and the program interaction with the data:

1. A 99.9% correct program is no better than a 99.8% program, if the
data are only 80 % correct.

2. If the hardware has a logic flaw, but has a superimposed FORTRAN
processor which never exercises that feature, or causes it to be exercised,
then the combined system may be said to be correct (apart from other possible
flaws).

In short, correctness to the software engineer means that a system should
do the "proper" thing rather than do exactly the actions that were specified
with such imprecise knowledge.

1 prefer the following interpretations of correctness:

1. Design correctness: efficiently utilizes production resources; efficiently
utilizes system resources during running; maintainable and reliable" con-
structible; flexible (for change and added function).

2 Implementation correctness: matches the specifications; solves the
problem envisioned; free from malfunction; free from hang-up or locking.

For those that may feel dissatisfied with this thesis, I quote Schorr of IBM
speaking at the 1969 October NATO Conference on Software Engineering!

Apollo 11 software acceptance testing took about two months, and it was
at least 30 days before anything would even start to run in real time. Bugs/
were taken out of the software up until the day before launch".

MANAGEABLE SOFTWARE ENGINEERING 135

Thus, we see that system planning for incorrectness is far more effective
than excessive emphasis upon absolute correctness that cannot be achieved
in finite periods of time.

VII. How Should the Product Be Introduced ?

1. What Are the General Requirements?

The introduction of a software product is dependent upon the constitution
of the product, which may include: (1) The working software, or the where
withal to generate the working software; (2) operating instructions and rules;
(3) technical documentation on data forms, source, actions, flowcharts,
and all the other elements normally associated with program transferability;
(4) system support (if from an external supplier).

2. Is It a New Product, Not Replacing an Old One?

In this case, the main problem is the effect it may have upon data and data
file structure used by other programs. It may be completely independent of
the action of other programs, and yet have strong interactions with common
data.

It is desirable to have sample runs supplied for duplication in the production
environment.

3. Does It Replace a Previous Product?

1. If it is an update, performing basically the same functions, the main
requirement is for a period of parallel running with the old program, com
paring production answers.

2. If it is a new product, performing similar but not identical functions,
there must be an overlap period for phaseout. Whenever possible, the inter
face to humans should be consistent with the former interface, as in operating
modes, messages, etc.

4. If Data Conversion Is Required?

Several types of conversion may be required, such as: (1) graphic set
content, encoding, and character size; (2) precision and range of numerals;
(3) data formats; (4) file content (added, changed, or deleted); (5) file struc
ture; (6) media labeling; (7) physical media formats.

Once-and-for-all conversion is the exception, and it may be advisable to have

136 R. W. BEMER

it done on a service basis, particularly by an outside supplier. More commonly,
the new and old products must coexist until the new one is proven sufficiently.
In this case, it may be useful to have separate files for both the old and the
new product, with a bidirectional conversion program to verify identity
between the two versions at each stage.

VIII. How Should the Product Be Improved and Serviced ?

1. What Types of Improvements Are Possible?

1. Toward data and program transferability. This may require:

(a) Changes to comply to standards—programming languages, character
sets, data structures, media labeling, etc.

(b) Making the data files self-descriptive and identifying; e.g., copying,
the Data Division of a COBOL program on the data medium.

(c) Keeping programs in source form, without patches. If patches must be
employed, recover source form promptly and periodically.

(d) Making the program self-documenting.
(e) Improvement in ease of use, attention to human factors.

2. Additional capabilities, such as:

(a) New functions or features not previously available.
(b) Functions or features of existing programs which may be taken over,

obviating need for those programs.
(c) More choices of algorithms, for better efficiency in alternative situations.

This is a particular requirement for basic software, which is optimized for a
hypothetical, often nonexisting, user. The user should be provided with
instrumentation software and generators for specialization.

3. Better performance, via: (a) instrumentation, (b) design analysis, and
(c) restructuring data files.

4. More reliability, via: (a) elimination of hang-up conditions, and (b) con
fidence and range testing, checking for reasonableness.

2. Who Should Service the Product ?

1. Trainees? This is usually thought to be a good method of indoctrination
and gaining of experience. However, there are severe drawbacks. The trainee
can pick up bad habits, will get bored and discouraged easily, takes excessive
time to correct malfunctions, and may disrupt other parts of the program in t
the process of making a specific symptom disappear. '

MANAGEABLE SOFTWARE ENGINEERING 137

2. Experienced support personnelIt is rare to find programmers who will
be happy on a steady diet of correcting other people's mistakes. Forcing them
to continue in this function for long time periods leads to job dissatisfaction
and resignations.

3. The originator? Why not? He should know it best, and he doesn't
necessarily spend all of his time in the support, if other attractive duties are
made available to him. If he considers it a trap, let him know that nothing
but excellent and self-explaining documentation will release him; he himself
can construct the key for release. If the product is substantial and used on a
customer site (such as a major basic system for a computer line), it could be
desirable to put originators at these sites to keep up to date on field experience.
They can still participate in new software production via remote terminals.

IX. Conclusion

Software engineering is in a crisis of identity and maturation, and this has
and will lead to promotion of various panaceas, justified by saying that nothing
similar has existed before. Not so. We need to use our present tools under
good management practices more than we need new and spectacular develop
ments, many of which do not pay off. Art must be reduced to engineering,
and software made visible to management in order to avoid the present high
spoilage and nontransferability rates. The most profit lies in tooling for
production, building new systems via old systems which are stable and mature,
instrumenting for effectiveness, and standardizing to make user-developed
software reusable and to reduce needless variety.

REFERENCES

1. Garrity, J., "Getting the Most out of Your Computer." McKinsey, New York, 1963.
2. News article, "Software Classification Undertaken as Pilot Project." Compulerworld

p. 2, 1969 November 5.
3. David, E. E., Some thoughts about the production of large software systems."

NATO Conf Software Eng., Garmisch, 1968, excerpted in the Rep. on Conf. 1969.
NATO, Brussels.

4. Anonymous, "The end of OS." Datamation, 14, 72 (1968 April).
5. Conway, M. E., "On the economics of the software market." Datamation 14 28-31

(1968 October).
6. Aron, J. D., "Estimating resources for large programming systems." 2nd NATO Conf.

Software Eng., Rome, 1969. NATO, Brussels.
7. Sackman, H., Erikson, W. J., and Grant, E. E., "Exploratory experimental studies

comparing online and offline programming performance." Comm ACM II 3-10
(1968).

8. Conway, M. E., "How do committees invent?" Datamation 14, 28-31 (1968 April).

•
9. Bemer, R. W., and Ellison, A. L., "Software instrumentation systems for optimum
| performance." Proc. Int. Federation Information Processing Congr. 1968, Software 2

Booklet C. North-Holland Publ., Amsterdam.

R \v. BEMER *

138

10

11 "' ̂ vSrSssS^ :̂as
U- ?r'K n-i» 0»>; <« "i0 '

the five areas involved—management,
systems, programming, operations and
users? In evaluating a system we ask
again, does it provide all of the ele
ments of good documentation previ
ously mentioned? Is it available? Is
it usable, directly by the persons in
volved? Does it have good quality-
is it current, accurate, clear, objective,
reliable, valid? Is it complete? Is it
standardized, or is there further room
for increasing efficiency? And finally,
is it well suited to the intended pur
pose with the correct level of detail,
the correct organization, function and
relevancy?

But the evaluation must not end
there. For there is a need for a con
tinuing review and maintenanc " '*
new system is to have lasting s
There should be a permanen
signed responsibility, not on tl
of the original project tear
shoidd have been reassigned I
after cutover. Nevertheless,
should, at any point in time, ue a
designated person known to all those
concerned as being responsible for ac
cepting suggestions and coordinating
corrections and improvements in the
system.

It is highly appropriate to continue
to systematically consider input from
all quarters. It is necessary to have
continuing management support and
enforcement from the very bottom of
line supervision on up. It is necessary
to have continuing education and
training, both the new people in the
organization as well as the old. And,
of course, it is necessary to use the

by R. W. Bemer
General Electric Co.

Even if one thinks that the topic
of standardization is dull and

useless, standards can be important,
as the owners of a German ocean liner
believe (from a news story in the
New York Times, September 13,
1966):

"Inquiry Studies Hanseatic Fire —
The city's fireboats are not equipped
with the so-called international hose
connections, which the liner had, and
therefore could not provide water to
the liner's firefighting system, includ
ing both hoselines and sprinklers, a
witness said . . ."

Perhaps the New York City Fire

normal good sound management prac
tices—communication, discipline, etc.
—in the implementation and contin
ual effective utilization of this pro
gram as with any other.

SUMMARY

In this presentation we addressed
first of all just what documentation
is, stating that it is essentially any
thing in written fashion that is used
for communication. The elements of
good documentation were identified.
The justification, the purpose and the
objectives were discussed. We said
that economics is the primary consid
eration and good communication the

y use of sound documentation,
the contents of a good docu-
:ion program were reviewed
pme examples that can be con-
1 by any organization. Fourth,
nsidered a method for imple-
jg a good documentation pro

gram, Treating it as part of a more
general standards program and con
ducting the implementation as if this
were just another standard project
with all of the attendant methods and
controls normally used by good man
agement in conducting such a project.
And finally, in evaluating the installed
documentation system, the question
was asked, "Does the system meet the
prescribed objectives and does it do
the job effectively?" Of course, it is
necessary to continually upgrade, re
view and maintain the program so
that it will have lasting success in its
usefulness to the organization. •

Commissioners had taken the com
monplace attitude described in the
August 26, 1968, issue of the Ameri
can Machinist Magazine, asking if the
reader's definition of a standard was:
"A dull document produced by a com
mittee of dull people who argue in
terminably and consume reams of
paper in letter ballots before they pro
duce a consensus on a position that
is already obsolete when it is
adopted."

The preferred definition is that of
Dr. A. V. Astin, former Director of
the National Bureau of Standards:

"A standard is an arbitrary solution
to a recurring problem."
Standardization is not really a dull

topic; it just seems that way. We are

all concerned with standards more
than we realize; they are all around
us, serving quietly and for the most
part unnoticeably, except when one
gets in trouble for lack of them.

Let's look at a few examples. Per
haps you have had correspondence
from Europe, and have noted the odd
size of the paper. I get quite a lot of
it and have to keep a cutting board
in my office to trim it to fit our ring
binders, or to reproduce it to send
around the company. Since it is 7/10
of an inch longer than U.S. paper, and
the European secretaries type as close
to the bottom of the page as do our
own, it is often quite difficult not to
trim off some copy. So our secretaries
complain about this paper, which is
called ISO A4 (ISO is the Interna
tional Standardization Organization,
based in Geneva, Switzerland). Why
don't the Europeans use the standard
size, they ask?

What makes secretaries think that
8-1/2 in. by 11 in. is standard? It
isn't to the U.S. Goverment. For them
it is 8 in. by 10-1/2 in., set by law.
The British have had a still different
size, but now they are going to A4
size in their metrication program. The
ISO size has a very sound basis, if we
look at the problem of photoreduc-
tion or enlargement, or paper stock
cutting. This is something that secre
taries can relate to, for the U.S. paper
size has always given them problems
in this matter.

The reason is apparent if one cuts
or folds a piece of 8-1/2 in. by 11 in.
paper in half horizontally. Turn it
vertically and you will notice that the
ratio (aspect ratio) of width to height
for the half sheet is not the same as
for the full sheet (5-1/2 in. to 8-1/2
in. + 8-1/2 in. to 11 in.). It is there
fore not projective (as for photore-
duction by camera), and that is where
the difficulty lies. The ISO A4 size,
when folded, is projective, for the
simple reason that the height of 297
mm is V2 times the width of 210
mm.

Perhaps, like the metric system, this
is so logical that we should change.
All we would have to do is replace or
modify all of the office equipment in
this country — like hole punches, ring
binders, briefcases, bookshelves, file
folders, file drawers, etc. Would such
a small difference (easily handled by
paper cutters) have any effect upon
international computer usage? Abso
lutely. In a former position as coordi-

Information Processing Standards

SEPTEMBER 1970 115

nator of systems engineering (and
standards), I found a non-impact
printer for computer output very
nearly in production. Unlike the pres
ent impact printers with the wide
sheets, this device produced normal
page sizes, cut from a continuous roll
of paper. I asked what the maximum
length of cut was, and the reply was
11 inches. The company confirmed
that they planned to market it in
Europe. I am afraid that my explana
tion at that time was not gentle, for
the maximum length was built into
the physical frame and was not pos
sible to increase.

One international standardization
topic should be of considerable inter
est to the DPMA, for it has pai tial
impetus from computer usage. That
is the way one writes the date. In
Europe (and formerly in the U.S.
Armed Forces) it is written as day-
month-year. Much of the U.S. public
uses month-day-comma-year. Perhaps
this doesn't seem earthshaking, but
I was once almost unable to attend
an important conference in Europe
because I could not get into the
country with a smallpox vaccination
certificate that expired on 9/3/59,
and it was already June!

The ISO has agreed, after eight
years, on the Swedish proposal for an
ordering of year-month-day. The U.S.
Department of Defense has adopted
this method effective the first of 1910.
The American Bankers Association
has made no move as yet to make the
forms of checks conform to this
change, but that could have a tremen
dous influence on adoption by the
public. Perhaps they remember the
public outcries about MICR digits,
and the vocal rebellion when all-digit
numbers were introduced by the tele
phone companies. To convert the gen
eral public to writing the date in this
form will take considerable public re
lations work.

If data processing people will us;
this format, as specified in document
X3/202 of the American National
Standards Institute, they will find
some interesting savings in computa
tion time. For example, a single sub
traction will tell which of two dates
is the earlier. General Electric uses
the same principle for scheduling on
a fiscal week basis, for project control
and PERT charts, i.e., 7046 - 7032
is a 14 week difference. This form is
also perfect for ordering (sorting) by
date. A companion standard gives

116

DATA PROCESSING INVENTORY

I

Monday as the first day of the fiscal
week. Obviously we would have run
into strong religious opposition if this
had been generalized to more than
business usage, for ISO standards are
for everything, not just computers.

There are many reasons to be cau
tious with respect to standardization.
Some of these are:

(1) Be careful of the way in which
standards are written. They usually
give necessary conditions, but these
are not always sufficient. Don't pre
sume anything if you don't have to.
For example, the British Standards
Institution was drafting a standard for
electric typewriters in 1960. I made
some comments and requests in be
half of IBM. The draft said that the
plane of the keyboard would be be
tween 11 and 16 degrees; I asked if
that could read "the plane defined by
the top and bottom row." They found
no reason to object and agreed, but
could see no reason why. The draft
said that the diameter of the keytop
was 9/16 in.; I asked if that could
read "the diameter of the finger con
tact." Again the same result. Then
IBM came out with the Selectric,
which has a concave keyboard and
no key tops as such.

(2) Don't believe things too ab
jectly, or accept them as obvious. I
once gave a paper on program trans
ferability, wherein I said that on the
whole it was a healthy phenomenon
to get different answers from the same
program running on a different com
puter. One of my co-workers objected
to this statement, so I gave him an
example:

"The U.S. Army had run a
FORTRAN object program on a 7090
for three years. UNIVAC was at
tempting to'sell an 1107. In compiling
the source program, a diagnostic mes
sage said that there was an entry to
the middle of a DO loop, which had
not been recognized for those three
years of wrong answers.

(3) Don't think that some things
are too simple and trivial to be

bothered with. Take the example of
the COBOL statement:

IF CHARACTER EXCEEDS 'S'
THEN NEXT STATEMENT
OTHERWISE STOP

Unfortunately the IBM 360
COBOL will give the opposite action
from that of the NCR Century
COBOL. For this reason, and also be
cause the U.S. Government has made
such a directive for file representa
tions, we have now persuaded
CODASYL to adopt the ASCII collat
ing sequence for COBOL. But watch
out, as this will give spurious solu
tions for two-case usage.

Going from specifics to the general,
there are many reasons for standardi
zation in data and information proc
essing. Some of these are:

Data interchange and movement
Multiple use of data (banks)
Transfer of data problem solutions
(programs) and documentation to:
Additional equipment
Multiple equipment
Backup equipment
Linked equipment
New equipment
Different equipment

1 Economy of competitive acquisi
tion (interfaces, mixed systems)

> Capture of other work, avoidance
of reinvention

• Flexibility in response to changing
requirements

» Personnel turnover and training

We can give many more, but they
all come down to one thing — money!
We are playing in a big game with
big dollars, as Figure 1 shows. Ac
companying over $5 billion in hard
ware in 1969 was about S7 billion in
software and mechanically recorded
data. A major redundancy factor ex-

S0FTWARE PRODUCTIVITY
(TOTAL BUDGET FIGURES)

/
OS 3 60—• -<S>

/ /

/ / , ' ' y o /
.o- / 0/ v

AV ^-U1107 (1964-65)

//
/' A'

/ / / 3 USAF

704F0RTRAN

-t 1 r- ! ! 1 1
.025 .05 .1 2 .5 1 2 5 10

MILLIONS OF INSTRUCTIONS

DATA MANAGEMENT

F i g u r e T h r e e

w Q
O
C J
C m
O
t n
a
2

200K

IOOK

50K

20K

10 K

5K

7?—

3 f j y /
'7090

X 7040

7 07(" /
-1401

1604
<^704

i
56 58 60

Y E A R -

62

—V
64 66 68

G R O W T H I N S O F T W A R E R E Q U I R E M E N T S

ists, however, when looking at actual
and projected figures. The U.S. Gov
ernment gets from 30 to 50% utiliza
tion from their equipment, other users
not much more, and they worry about
it. But how about that $7 billion in
software? No more than $1 billion
worth is reusable on other equipment
and other people's problems, due to
transferability problems. This is an
even lower utilization figure.

Perhaps this waste can be avoided
by some new miracle. Figure 2 shows
how the miracles are coming. This
chart is designed to reflect total budg
et figures on the basis of approxi
mately 30 per cent for design and im
plementation, 20 per cent for test and
50 per cent for management, docu
mentation and support. It is related
to the McClure chart on the size of
basic software systems (Figure 3).
Using these charts one may extrap
olate to 1972 to find a computer sys
tem with 25 million instruction soft
ware, costing $1.25 billion, con
structed by 15,000 programmers.
Something has to be done about the
difficulties of transferability. Stand
ards are a substantial part of the
answer, and that wasted $6 billion a
year tells me that they are very im
portant.

Of course we can always get along
with the crutch of emulation. We can
argue that differences must be per
petuated because it costs too much
to change. This is why the U.S. still
has not gone metric, yet it costs more

each year in waste, and will cost even
more to make the inevitable change.
See Figure 4.

One of my friends at IBM tried this
in the Spring of 1969, except that he
put the 702 inside the 705. He re
ported that the program ran slightly
faster on the 360 than it did on the
702, vintage 1954. It is shocking how
many people are fooling themselves
and running like this. Many do not
even use their files in EBCDIC, but
rather the old 6-bit code of the 705!
It was said that 80 per cent of the
7080s themselves were run with the
switch at the 705 MOD I position.
Why can't we move to use new equip
ment at its best? Is it the program or
the data that causes the difficulties?
I have a little saying that "If the data
are not transferable — the program
cannot be transferable".

NO STANDARDS FOR TRANSFER
Figure Four

One of the present difficulties in
data processing standardization is that
we are still working on standards in
the areas indicated by the past dec
ade, not in the area of greatest oppor
tunity and payoff in the next decade.
The difference may be illustrated by
starting with the following defini
tions:
Data — A representation of

facts or ideals in a
f o r m a l i z e d m a n n e r
capable of being com
municated or manip
ulated by some proc
ess.

Information — The meaning that a
human assigns to data
by means of the
known conventions
used in its representa
tion.

The distinction can also be made on
the basis that if you can move it, put
it away, find it again, transform it
and untransform it — without know
ing what it meant — it's data!

In the sixties we processed more in
formation than data; in the seventies
the processing of data will outweigh
by far the processing of information
(when the content is changed in any
way). The reason for this is, of
course, that we shall have more need
for simple access, display and data
movement — as computers are inte
grated more directly into human ac
tivities. Even now it is difficult to
awaken the standardization people to
the importance of data — its structure
and elements. We are going to have
to look at computing as it will be, not
as it was. Programmers have been
concerned for too many years with
algorithms and programming lan
guages. An algorithm is primarily an
information process performed upon
data. In the past these data have been
relatively homogenous and from close
or related sources.

Moving to data banks we must con
sider anew these processes, for the
data are no longer necessarily homo
genous in structure, nor are they
necessarily from related sources. Data
will now have to be public in nature;
this does not mean free from safe
guards of privacy and security, but
rather that it can be used by all who
have a right to access. The difficulty
with our present inventory of me
chanically-recorded data is that it is es
sentially local and private data, ham
pered by information losses that pre-

SEPTEMBER 1970 117

vent it from going public. Making
public data private is relatively easy;
one withdraws it or puts legislative
or other controls upon its usage. How
ever, recovering from those informa
tion losses to make private data public
is unbelievably difficult.

The real purpose of data processing
is to have the program and data dance
together. One may dance marathon
style, or periodically with long and
short intermissions. In private a single
couple may dance as they please to
their own music source, but in public
there are constraints as to when the
hall and the orchestra are available.
This is where operating systems come
in. They provide the time, place and
facilities for the data and program to
dance, as it were. Now communica
tions and data banks make it possible
for the same data to dance in many
ballrooms, even simultaneously, and
with different program partners.

To do this at all efficiently (for
reasons of data transferability and
reusage) it is necessary to make the
data management system the highest
in the hierarchy, as noted in Figure
5. Operating systems are subservient,
and there may be different operating
systems associated with a single data
management system, each providing
the ballroom for their programs to in
teract with the data.

If data dances in many ballrooms
there is going to be a recognition
problem. Thus data must be identified
as to type — either by data descrip
tive language or by identification to
allow one to look somewhere for the
characteristics. Thus there is a need
for levels of identification and famili
arity, as well as for levels of privacy.
There is a rather universal mechanism
to accomplish these, known as
"ESCape". ESCape usually indicates
a registered sequence which gives the
identification number of a different
character set, or variations in media
labels, data formats and data com
munications control procedures. It
may extend infinitely, for one can es
cape to another escape domain.

If one accepts my argument of the
separation of the data base manage
ment system from the operating sys
tem, even though the ultimate bene
fit is not so apparent now, then it will
be seen that there are many things
wrong with our existing standards.
For example, the Data Division of
COBOL is a part of the program, not
of the data tape or other media. De-

T H E H I E R A R C H Y O F S U B S E R V I E N C E

F i g u r e F i v e

stroy the program and what is on the
tape? Furthermore, the data proce
dures are not common between
COBOL, PL/I and FORTRAN. There
is no reason why they shouldn't
be common, and the users are paying
for this in operating inefficiency and
unnecessary software using up valu
able storage.

I do not wish to emphasize stand
ards of compliance more than stand
ards of performance. Both contribute
heavily to the efficiency and cost-per
formance effectiveness of computer
utilization. In both areas, however,
I am at a great disadvantage to con
vince users of the relative value of
standards, and to ask the users' sup
port in their creation and adoption,
because many users cannot relate to
what I am saying, lacking quantita
tive tools to measure the cost to per
formance of lack or misuse or stand
ards.

If some action takes 10 milliseconds
that should take only one, the human
cannot detect it in his software sys
tem, nor can he relate to it without
measurement. When we instrumented
the 600 software (a first in the indus
try) we found some serious system in
efficiencies. Correction has enabled
the improvement of performance by

by Milt Bryce
President
TekFax, Inc.

In discussing our attitudes toward
standards, I suggest that the reason

we, as a profession, have not devel
oped a formalized body of standards
is that we have emotional hang-ups
on the subject. Some individuals have
developed standards and some instal
lations have standards, but why as a
group have we resisted attacking this
problem head-on? Why, 19 years after
the first commercial computer was an-

better than two-to-one. Some firms
now supply instrumentation for cus
tomer programs, and have demon
strated 20 to 40 per cent performance
improvement in a short test time. But
these are primarily for user's pro
grams, not the manufacturer- or soft
ware house-supplied basic software.
The operation of this software is pret
ty much out of the user's control, and
very likely he is paying heavily (and
unwittingly) for processes which are
either useless or inefficient.

Standards affect the inefficient
processes, such as conversion to and
from the ISO (ASCII) Code in com
munication-based systems. Standardi
zation workers would find it easier to
talk to users on an understanding
basis if the users could only find out
from their computer salesman which
elements of the hardware and soft
ware system were there to get around
non-standardization, and then add up
the cost.

In closing there are two excellent
sources of such information detailing
the actual and diverse standardiza
tion activities:

(1) The series of notes on Federal
Information Processing Standards,
from the Center of Computer Sci
ences and Technology, the National
Bureau of Standards. These are avail
able in the NBS Technical News Bul
letin from the Supt. of Documents,
U.S. Government Printing Office,
Washington, D.C. A yearly subscrip
tion costs $3.

(2) BEMA, the Business Equip
ment Manufacturers Association, puts
out a quarterly progress report on na
tional and international standardiza
tion for computers and information
processing. Available upon request. •

nounced, are we still wrestling with
standards?

One reason might be that such
things as standards and standard op
erating procedures fail to fit the image
some of us have of ourselves. We like
impressing others with our computer
gibberish. If we became business-like
and used standards, we might lose
this image; the mystique of the com
puter room might disappear.

Also, standards are, by definition,
a measure or a base for comparison
purposes. Are we afraid of having our
performance measured? I have a feel-

Standardization—What, Why and How?

118 DATA MANAGEMENT

INFORMATION PROCESSING STANDARDS

R. W. Bemer, the General Electric Co., Phoenix, Arizona

LADIES AND GENTLEMEN, I AM HERE TO TRY TO WHIP UP A LITTLE ENTHUSIASM ON A

TOPIC THAT MANY THINK IS DULL AND USELESS. EVEN IF DULL, STANDARDS CAN BE

IMPORTANT, AS THE OWNERS OF A GERMAN OCEAN LINER BELIEVE:

0 (SLIDE - INQUIRY STUDIES HANSEATIC FIRE)

PERHAPS THE NEW YORK CITY FIRE COMMISSIONERS HAD TAKEN A COMMONPLACE ATTITUDE

ABOUT STANDARDS:

(0 (SLIDE - IS THIS YOUR DEFINITION OF A STANDARD?)

I DON'T THINK STANDARDIZATION IS REALLY A DULL TOPIC. I THINK THAT SO FAR

WE'VE HAD MOSTLY DULL PEOPLE EXPLAINING IT, WHO DO NOT HAVE ANY AWARENESS OF

THE NEED FOR PUBLIC RELATIONS, OR THE DESIRE TO MAKE IT INTERESTING. I HOPE

THAT I CAN MAKE A CONTRIBUTION HERE, FOR YOU ARE ALL CONCERNED WITH STANDARDS

MORE THAN YOU KNOW. THEY ARE ALL AROUND US, SERVING QUIETLY AND FOR THE MOST

PART UNNOTICEABLY, EXCEPT WHEN ONE GETS IN TROUBLE FOR LACK OF THEM. THE

SWEDISH STANDARDS COMMISSION GIVES OUT MATCHBOOKS WITH A CARTOON OF A PARTLY

DRESSED LADY COVERING HERSELF IN PANIC BECAUSE HER WINDOW SHADE IS TOO SMALL

FOR THE WINDOW.

LET'S LOOK AT A FEW EXAMPLES. PERHAPS YOU HAVE HAD CORRESPONDENCE FROM EUROPE,

AND HAVE NOTED THE ODD SIZE OF THE PAPER. I GET QUITE A LOT IN MY JOB AND HAVE

TO KEEP A CUTTING BOARD IN MY OFFICE TO TRIM IT TO FIT OUR RING BINDERS, OR TO

REPRODUCE IT TO SEND AROUND THE COMPANY. SINCE IT IS 7/10 OF AN INCH LONGER

THAN U.S. PAPER, AND THE EUROPEAN SECRETARIES TYPE TO AS CLOSE TO THE BOTTOM OF

THE PAGE AS DO OUR OWN, IT IS OFTEN QUITE DIFFICULT NOT TO TRIM OFF SOME COPY.

SO OUR SECRETARIES COMPLAIN ABOUT THIS PAPER, WHICH IS CALLED ISO A4 (ISO IS THE

INTERNATIONAL STANDARDIZATION ORGANIZATION, BASED IN GENEVA, SWITZERLAND). WHY

DON'T THE EUROPEANS USE THE STANDARD SIZE, THEY ASK?

SO WHAT MAKES THEM THINK THAT 8 1/2 BY 11 IS STANDARD? IT ISN'T TO THE U.S.

GOVERNMENT. FOR THEM IT IS 8 BY 10 1/2, BY LAW! THE BRITISH HAVE HAD A STILL

DIFFERENT SIZE, BUT NOW THEY ARE GOING TO A4 IN THEIR METRICATION PROGRAM. IS

ISO CRAZY? LET'S LOOK AT THE PROBLEM OF PHOTOREDUCTION OR ENLARGEMENT, OR PAPER

STOCK CUTTING. HERE WE HAVE SOMETHING SECRETARIES UNDERSTAND, FOR THE U.S.

PAPER HAS ALWAYS GIVEN THEM PROBLEMS IN THIS MATTER. HERE'S WHY.

(DEMONSTRATION - FOLDED PAPER ON DIAGONAL, U.S. AND A4)

(P (SLIDE - THE MAGIC OF y/~2)

PERHAPS, LIKE THE METRIC SYSTEM, THIS IS SO LOGICAL THAT WE SHOULD CHANGE? ALL

WE WOULD HAVE TO DO IS REPLACE OR MODIFY ALL OF THE OFFICE EQUIPMENT IN THIS

COUNTRY--LIKE HOLE PUNCHES, RING BINDERS, BRIEFCASES, BOOKSHELVES, FILE FOLDERS,

FILE DRAWERS, ETC. YOU CAN PROBABLY THINK OF MANY OTHER ITEMS IN THE "ETC."

CLASS.

Threshold ,f of the Seventies

MANDATORY VISUAL LAYOUT FORM

SEQUENCE
NUMBER

7

speaker', visuals must bo standardised accordingly. JCC' "nd

n™.br.d ir-" "nt"
^^tbltuspiieod^VefcraM^ur/ng'a'inn^it/no'witli'o' rbon'ribbon^n^

•£>

-
VQ

tfft. = W**

H = 41TV0

no't go " """•'• d°

sire for ,,h.'«S?rur."/ dbiree?lvl".o " a'ke ^"".maH^Th'""""f ",0ry

r"* transparency for an overhead prelector for cl"" ," "

impact of a technical presentation. °' "" »»"<

&

<8>

I S O A 4

2 I O * t \ x 2 4 7 mh

8 . 2 . 7 " < I I ,

«•

(•
(A -

i ' O v ^

H A \ - . V

nn

u ̂ t

Pf tJT

'// '»

/ V

WOULD SUCH A SILLY DIFFERENCE (EASILY HANDLED BY PAPER CUTTERS) HAVE ANY EFFECT

UPON INTERNATIONAL COMPUTER USAGE?

(STORY - OMNITRONIC PRINTER, TO SELL IN EUROPE)

OF COURSE, OUR PRINTER DESIGNERS IN EUROPE HAVE MUCH THE SAME TYPE OF PROBLEM

FOR THE U.S. MARKET, JUST BECAUSE WE DO NOT YET HAVE STANDARDS IN THE PAPER

WE USE FOR LINE PRINTERS!

(STORY - CRIMPLOK PAPER AND THE KIDDER TRACTOR)

ONE INTERNATIONAL STANDARDIZATION TOPIC SHOULD BE OF CONSIDERABLE INTEREST TO

YOU, FOR IT HAS PARTIAL IMPETUS FROM COMPUTER USAGE. THAT IS THE WAY ONE WRITES

THE DATE. EUROPE, AND FORMERLY THE U.S. ARMED FORCES, WRITE IT AS DAY-MONTH-YEAR.

MUCH OF THE U.S. PUBLIC USES MONTH-DAY-COMMA-YEAR. PERHAPS THIS DOESN'T SEEM

EARTHSHAKING, BUT I WAS ONCE ALMOST UNABLE TO ATTEND AN IMPORTANT CONFERENCE IN

EUROPE BECAUSE I COULD NOT GET INTO THE COUNTRY WITH A SMALLPOX VACCINATION

CERTIFICATE THAT EXPIRED ON 9/3/59, AND IT WAS ALREADY JUNE!

IT WOULD TAKE TOO LONG HERE TO GO INTO A FULL HISTORY OF HOW THE ISO HAS AGREED,

AFTER EIGHT YEARS, ON THE SWEDISH PROPOSAL, FOR AN ORDERING OF YEAR-MONTH-DAY.

THE U.S. DEPARTMENT OF DEFENSE HAS ADOPTED THIS METHOD EFFECTIVE THE FIRST OF

THIS PRESENT YEAR. THE AMERICAN BANKERS ASSOCIATION HAS MADE NO MOVE AS YET TO

MAKE THE FORMS OF CHECKS FOR THIS ORDERING, BUT THAT COULD HAVE A TREMENDOUS

INFLUENCE ON ADOPTION BY THE PUBLIC. PERHAPS THEY REMEMBER THE PUBLIC OUTCRIES

ABOUT MICR DIGITS, AND THE VOCAL REBELLION WHEN ALL-DIGIT NUMBERS WERE

INTRODUCED BY ME IBIFPHONE COMPANIES, TO CONVERT IRE GENERAL PUBLIC TO WRITING

THE DATE IN THIS FORM WILL TAKE CONSIDERABLE P.R.

AS AN EXAMPLE OF REACTION, SOME PEOPLE COMPIAIN THAT IT IS TOO DIFFICULT TO

RELEARN, AND WHAT ABOUT ALL THOSE DATE STAMPS IN OFFICES? WELL, I HAVE USED

THIS ORDERING FOR SIX YEARS NOW, I HAVE THE CHANGE TIME DOWN TO FIVE MINUTES FOR

TWO WELL-KNOWN MODELS OF DATE STAMPS, AND SECRETARIES CAN CONVERT OVERNIGHT,

ONCE I RUN THROUGH A SIMPLE TEST. I ASK THE TIME ON MY WATCH, WITHOUT USING ANY

PREPOSITIONS IN THE REPLY. THEN I ASK "OH - YOU MEAN YOU MENTION THE LARGER UNIT
FIRST?"

IF YOU DATA PROCESSING PEOPLE WILL USE THIS FORMAT, AS SPECIFIED IN DOCUMENT

X3/202 OF THE AMERICAN NATIONAL STANDARDS INSTITUTE, YOU WILL FIND THAT THERE

ARE SOME INTERESTING SAVINGS IN COMPUTATION TIME. FOR EXAMPLE, A SINGLE SUB-

ION WILL TELL WHICH OF TWO DATES IS THE EARLIER. GENERAL ELECTRIC USES THE

SAME PRINCIPLE FOR SCHEDULING ON A FISCAL WEEK BASIS, FOR PROJECT CONTROL AND

PERT CHARTS.7046 - 7032 IS A FOURTEEN WEEK DIFFERENCE. PERFECT FOR ORDERING

(SORTING) BY DATE, TOO. I REMEMBER WHEN THE IBM 705 SORT COULD NOT HANDLE THE

FORM-IT WOULD TAKE ONLY FIVE KEY ELEMENTS. AS AN ASIDE, A COMPANION

STANDARD TO THIS GIVES MONDAY AS THE FIRST DAY OF THE FISCAL WEEK. OBVIOUSLY

WE WOULD HAVE RUN INTO STRONG RELIGIOUS OPPOSITION IF THIS HAD BEEN GENERALIZED

TO MORE THAN BUSINESS USAGE.

LET ME GIVE YOU THREE WAYS TO BE CAUTIOUS WITH RESPECT TO STANDARDIZATION:

1. BE CAREFUL OF HOW STANDARDS ARE WRITTEN. THEY ARE USUALLY NECESSARY, BUT

NOT ALWAYS SUFFICIENT. DON'T PRESUME IF YOU DON'T HAVE TO.

(STORY - BSI IN 1960. PLANE OF KEYBOARD, 9/16" KEYTOP. THEN

THE IBM SELECTRIC.)

2. DON'T BELIEVE THINGS TOO ABJECTLY, OR ACCEPT THEM AS OBVIOUS. I ONCE

GAVE A PAPER ON PROGRAM TRANSFERABILITY, AND SAID THAT ON THE WHOLE IT

WAS A HEALTHY PHENOMENON TO GET DIFFERENT ANSWERS FROM THE SAME PROGRAM

RUNNING ON A DIFFERENT COMPUTER. ONE OF MY CO-WORKERS OBJECTED TO THIS

STATEMENT, SO I FOUND HIM SOME EXAMPLES:

"THE U.S. ARMY HAD RUN A FORTRAN OBJECT PROGRAM ON A 7090 FOR THREE

YEARS. UNIVAC WAS ATTEMPTING TO SELL AN 1107. IN COMPILING THE SOURCE

PROGRAM, A DIAGNOSTIC MESSAGE SAID THAT THERE WAS AN ENTRY TO THE MIDDLE

OF A DO LOOP, WHICH HAD NOT BEEN RECOGNIZED FOR THOSE THREE YEARS OF

WRONG ANSWERS."

"A LARGE MATRIX WAS BEING INVERTED IN SHORT (32-BIT WORD) PRECISION.

THE PROGRAM WAS THEN MOVED TO A 48-BIT WORD MACHINE. THE USER THOUGHT HE

HAD 5-DECIMAL ACCURACY IN THE ANSWERS, WAS MAKING DECISIONS BASED UPON 3

DECIMAL DIGITS, AND NOW FOUND OUT THAT IT WASN'T ANY BETTER THAN ONE

DIGIT."

3- DON'T THINK THAT SOME THINGS ARE TOO SIMPLE TO BE BOTHERED WITH

(3 (SLIDE - IF CHARACTER EXCEEDS 'S'.)

WE HAVE NOW PERSUADED CODASYL TO ADOPT THE ASCII COLLATING SEQUENCE FOR

COBOL BECAUSE THE IBM 360 AND THE NCR CENTURY ACT DIFFERENTLY FOR THIS

STATEMENT, AND ALSO BECAUSE THE U.S. GOVERNMENT HAS MADE SUCH A DIRECTIVE

FOR FILE REPRESENTATIONS. BUT WATCH OUT FOR SPURIOUS SOLUTIONS TO THE

TWO-CASE PROBLEM. IF YOU USE THE STRAIGHT COLLATING SEQUENCE FOR

TELEPHONE BOOKS YOU WILL GET SOME ANGUISHED SUBSCRIBERS:

') (SLIDE - DIRECTORY EXCERPT)

T S GET DOWN TO BASICS. THERE ARE MANY REASONS FOR STANDARDIZATION IN

DATA AND INFORMATION PROCESSING: SOME OF THESE ARE:

0 DATA INTERCHANGE AND MOVEMENT

° MULTIPLE USE OF DATA (BANKS)

TRANSFER OF DATA, PROBLEM SOLUTIONS (PROGRAMS) AND DOCUMENTATION TO:

ADDITIONAL EQUIPMENT
MULTIPLE »
BACKUP "

LINKED » AND FOR BROKERAGE

NEW tt

DIFFERENT »

O ECONOMY OF COMPETITIVE ACQUISITION (INTERFACES, MIXED SYSTEMS)

O CAPTURE OF OTHER WORK, AVOIDANCE OF REINVENTION

FLEXIBILITY IN RESPONSE TO CHANGING REQUIREMENTS

° PERSONNEL TURNOVER AND TRAINING

WE CAN GIVE MANY MORE, BUT THEY ALL COME DOWN TO ONE THING-MONEY! WE ALL

LIKE IT BECAUSE WESTINGHOUSE, GE, AND SYLVANIA LIGHT BULBS FIT THE SAME

SOCKET AND GIVE US A CHEAPER PRICE VIA COMPETITION. BUT WE ARE PLAYING IN A

BIGGER GAME THAN LIGHT BULBS. PERHAPS SOME MAY NOT REALIZE HOW BIG:

'%) (SLIDE - DATA PROCESSING INVENTORY)

WITH OVER |5 BILLION IN HARDWARE IN 1969 WENT ABOUT J7 BILLION IN SOFTWARE AND

MECHANICALLY RECORDED DATA. OUR BUSINESS IS EXTRAPOLATED TO BE THE LARGEST IN

THE COUNTRY SOME TIME AROUND THE END OF THIS NEW DECADE. A MAJOR REDUNDANCY

FACTOR EXISTS, HOWEVER. « U.S. GOVERNMENT GETS FROM 30 TO 50% UTILIZATION

M THEIR EQUIPMENT, OTHER USERS NOT MUCH MORE, AND THEY WORRY ABOUT IT. BUT

HOW ABOUT THAT J7 BILLION IN SOFTWARE 7 NO MORE THAN ONE BILLION DOLLARS WORTH

IS REUSABLE ON OTHER EQUIPMENT AND OTHER PEOPLE'S PROBLEMS, DUE TO TRANSFERABILITY
PROBLEMS.

PERHAPS YOU THINK THIS CAN BE AVOIDED BY SOME NEW MIRACLE? LET ME SHOW YOU HOW

THE MIRACLES ARE COMING:

(SLIDE - PRODUCTIVITY OF BASIC SOFTWARE)

30% FOR DESIGN AND IMPLI^OTANON,?2WLFO™TOSTFIAN^50^PIFE BASIS °F APPR0XIMATELY
TION AND SUPPORT. ° TEST, AND 50% FOR MANAGEMENT, DOCUMENTA-

THIS IS RELATED TO THE MC CLURE CHART ON SIZE OF BASIC SOFTWARE SYSTEMS:

N) (SLIDE - GROWTH IN SOFTWARE REQUIREMENTS)

USING THESE CHARTS ONE MAY EXTRAPOLATE TO 197? Tn vtmh *
1972 TO FIND A COMPUTER SYSTEM WITH

25 MILLION INSTRUCTION SOFWARE, COSTINC 11.25 BILLION, CONSTRUCTED BY .5,000

PROGRAMMERS. SOMETHING HAS TO BE DONE ABOUT TRANSFERABILITY. STANDARDS ARE A

SUBSTANTIAL FART OF TEE ANSWER, AND TEAT WASTED ,6 BILLION A YEAR TELLS ME THAT

™EY ARE VERY IMPORTANT. I HOPE IT TELLS YOU THAT AND GENERATES SOME ACTION.

OF COURSE WE CAN ALWAYS GET ALONG WITH THE CRUTCH OF RATION. WE CAN ARGUE

™AT DIFFERENCES MIST BE PERFECTED BECAUSE IT COSTS TOO «1CH TO CHANGE. THIS

IS WHY THE U.S. STILL HAS NOT GONE METRIC, YET IT COSTS MORE EACH YEAR IN WASTE

AND MORE TO MAKE THE INEVITABLE CHANGE. HERE IS WHAT HAPPENS:

0 (SLIDE - NO STANDARDS FOR TRANSFERABILITY)

ONE OF MY FRIENDS AT IBM TRIED THIS IN THE SPRING OF 1969, EXCEPT THAT HE PUT

™ 202 INSIDE ™ 105. HE REPORTED THAT fflE PROGRAM RAN SLIGHTLY FASTER ON THE

360 THAN IT DID ON THE 702, VINTAGE 1954.

SHOCKING HOW MANY PEOPLE ARE FOOLING THEMSELVES AND RUNNING LIKE THIS

-NY DO NOT EVEN USE THEIR FILES IN EBCDIC, BUT RATHER THE OLD 6-BIT GODE OF

IT WAS SAID THAT 80% OF THE 7080s THEMSELVES WERE RUN WITH THE SWITCH

AT THE 705 MOD I POSITION.

IT'S NOT A LAUGHING MATTER, AS HOWARD SMITH AND I ONCE THOUGHT WHEN WE PLANNED

TO HOAX THE INDUSTRY BY PRETENDING TO FIND AN OLD MANUSCRIPT BY COUNTESS LOVELACE,

ENTITLED "SIMULATION OF YE DIFFERENCE ENGINE UPON YE ANALYTIC ENGINE".

WHY CAN'T WE MOVE TO USE NEW EQUIPMENT AT ITS BEST? IS IT THE PROGRAM OR THE

DATA THAT CAUSES THE DIFFICULTIES?

0 (SLIDE - IF THE DATA ARE NOT...)

ALREADY WE SEE SIGNS OF SERVICES ARRIVING IN RESPONSE TO THE PROBLEMS OF PROGRAM

(AND MORE BASICALLY DATA) TRANSFERABILITY. COMPUTERWORLD HAD AN ARTICLE (1970 FEB.)

ON THE FORMATION OF A NEW FIRM.

"COMPUTER CONVERSIONS, INC., INTENDS TO SPECIALIZE IN HELPING FIRMS

SURMOUNT CONVERSION PROBLEMS. BELIEVING THAT HUNDREDS, EVEN THOUSANDS,

OF COMPUTER INSTALLATIONS ARE NOT ABLE TO GET THE BEST OUT OF NEW

TECHNOLOGIES SIMPLY BECAUSE THEY DON'T HAVE ADEQUATE IN-HOUSE CONVERSION

CAPABILITIES.

"COMPUTER CONVERSIONS INTENDS TO HELP ITS CLIENTS NOT ONLY IN THE

SELECTION OF EQUIPMENT AND NEGOTIATION OF CONTRACTS BUT ALSO IN THE

SPECIFIC DEVELOPMENT OF SYSTEMS AND PROCEDURES FOR THE EFFICIENT CONVERSION

FROM THE OLD EQUIPMENT TO THE NEW. THIS INCLUDES, WHERE APPROPRIATE,

TRAINING OF PROGRAMMING AND OPERATING STAFFS, CONVERSION OF FILES, TESTING,

AND DOCUMENTATION OF OPERATIONAL PROGRAMS."

OF OUR PRESENT DIFFICULTIES IN DATA PROCESSING STANDARDIZATION IS THAT WE

ARE STILL WORKING ON STANDARDS IN THE AREAS INDICATED BY THE PAST DECADE, NOT

IN THE AREA OF GREATEST OPPORTUNITY AND PAYOFF IN „ NEXT DECADE. T.OK

AT THE DIFFERENCE BY STARTING WITH BASIC DEFINITIONS:

© (SLIDE - DEFINITION OF "DATA")

(SLIDE - DEFINITION OF "INFORMATION")

(SLIDE - HOW TO RECOGNIZE DATA)

IT IS RATHER INTERESTING THAT THE NAME OF THIS ASSOCIATION TC „
ASSOCIATION IS BECOMING MORE

PERTINENT FOR THE NEXT DECADE:

(SLIDE - HOW IT WAS IN 196X)

0 (SLIDE - HOW IT WILL BE IN 197X) (MORE DISPLAY AND MOVEMENT)

EVEN NOW IT IS DIFFICULT TO AWAKEN THE STANDARDIZATION PEOPLE TO THE IMPORTANCE

OE —.ITS STRUCTORE AND EIEMENTS. WE ARE GOING TO HAVE TO LOOK AT COMPUTING

AS IT WILL BE, NOT AS IT WAS. PROGRAMMERS HAVE BEEN CONCERNED FOR TOO MANY

YEARS WITH ALGORITOMS AND PROGRAMMING LANGUAGES. AN ALGORITHM IS PRIMARILY AN

INFORMATIONAL PROCESS PERFORMED UPON DATA. IN THE PAST THESE DATA HAVE BEEN

RELATIVELY HOMOGENOUS AND FROM CIOSE OR RELATED SOURCES.

MOVING TO DATA BANKS WE MUST CONSIDER ANEW THESE PROCESSES, FOR THE DATA ARE

NO LONGER HOMOGENOUS IN STRUCTURE, NOR ARE THEY NECESSARILY FROM RELATED
SOURCES:

, _ j (SLIDE - CHANGING THE RULES)

THB REAL PURPOSE OF DATA PROCESSING IS TO HAVE THE PROGRAM AND DATA DANCE

TOGETHER, ONE MAT DANCE MARATHON STYLE, OR PERIODICALLY WITH IONG AND SHORT

INTERMISSIONS, IN PRIVATE A SINGLE COUPLE MAY DANCE AS THEY PLEASE TO THEIR

CM MUSIC SOURCE, BUT IN PUBLIC THERE ARE CONSTRAINTS AS TO WHEN THE HALL AND

THE ORCHESTRA ARE AVAILABLE, THIS IS WHERE OPERATING SYS^MS COME IN. THEY

PROVIDE THE TIME, PLACE AND FACILITIES FOR THE DATA AND PROGRAM TO DANCE, AS

IT WERE.

IN THE NINETEENTH CENTURY WE DID NOT TRAVEL ENOUGH TO KNOW MANY STRANGERS,

SIMILARLY, DATA AND PROGRAMS HAVE BEEN VERY FAMILIAR TO EACH OTHER, IN FACT,

THR STLUICTURE OF THE DATA HAS COMMONLY BEEN BURIED IMPLICITLY IN PROGRAM.

BUT NOW COMMUNICATIONS AND DATA BANKS MAKE IT POSSIBLE FOR THE SAME D

DANCE IN MANY BALLROOMS, EVEN SIMULTANEOUSLY, AND WITH DIFFERENT PROGRAM

PARTNERS.

TO DO THIS AT ALL EFFICIEN^ (FOR REASONS OF DATA TRANSFERABILITY AND REUSAGE,

TT IS NECESSARY TO MAKE THE DATA MANAGEMENT SYS^M THE HISLEST IN THE HIERARCHY:

^ (SLIDE - THE HIERARCHY OF SUBSERVIENCE)

OPERATING SYSTEMS ARE SUBSERVIENT TO IT, AND THERE MAY BE MANY DIFFERENT

OPERATING SYSTEMS ASSOCIA^D WITH A SINGLE DATA MANAGEMENT SYSTEM, EACH PRO-

VIDING THE BALLROOM FOR THEIR PROGRAMS TO INTERACT WITH THE DATA.

IF DATA DANCES IN MANY BALLROOMS THERE IS GOING TO BE A RECOGNITION PROBLEM.

(DO YOU DANCE SWAHILI OR NEBRASKA CORNHUSKER STYLE?) THUS DATA MUST BE

IDENTIFIED AS TO TYPE—EITHER BY DATA DESCRIPTIVE LANGUAGE OR BY IDENTIFICATION

THAT ONE CAN LOOK UP SOMEWHERE FOR THE CHARACTERISTICS. IT IS JUST LIKE THE

RECOGNITION PROCESS BETWEEN HUMANS:

(SLIDE - THE RECOGNITION PROCESS)

THUS THERE IS A NEED FOR LEVELS OF IDENTIFICATION AND FAMILIARITY, AS WELL AS

FOR LEVELS OF PRIVACY. THERE IS A RATHER UNIVERSAL MECHANISM TO ACCOMPLISH

THESE, KNOWN AS "ESCAPE".

(\Q (SLIDE - USAGE OF ESCAPE)

IF YOU ACCEPT MY ARGUMENT OF THE SEPARATION OF THE DATA BASE MANAGEMENT SYSTEM

FROM THE OPERATING SYSTEM, EVEN THOUGH THE ULTIMATE BENEFIT IS NOT SO APPARENT

NOW, THEN YOU WILL SEE THAT THERE ARE MANY THINGS WRONG WITH OUR EXISTING STANDARDS.

FOR EXAMPLE, THE DATA DIVISION OF COBOL IS A PART OF THE PROGRAM, NOT OF THE DATA

TAPE OR, OTHER MEDIUM. DESTROY THE PROGRAM AND WHAT IS ON THE TAPE? FURTHERMORE,

THE DATA PROCEDURES ARE NOT COMMON BETWEEN COBOL, PL/l AND FORTRAN. THERE IS NO

REASON THAT THEY SHOULDN'T BE COMMON, AND THE USERS ARE PAYING FOR THIS IN

OPERATING INEFFICIENCY AND UNNECESSARY SOFTWARE USING UP VALUABLE STORAGE.

I DO NOT WISH TO EMPHASIZE STANDARDS OF COMPLIANCE MORE THAN STANDARDS OF

PERFORMANCE. BOTH CONTRIBUTE HEAVILY TO THE EFFICIENCY AND COST-PERFORMANCE

EFFECTIVENESS OF COMPUTER UTILIZATION. IN BOTH AREAS, HOWEVER, I AM AT A GREAT

DISADVANTAGE TO CONVINCE YOU OF THE RELATIVE VALUE OF STANDARDS, AND TO ASK YOUR

SUPPORT IN THEIR CREATION AND ADOPTION. WHY? - BECAUSE MANY OF YOU CANNOT

RELATE TO WHAT I AM SAYING, LACKING QUANTITATIVE TOOLS TO MEASURE THE COST

OF LACK OR MISUSE OF STANDARDS TO PERFORMANCE.

IF SOME ACTION TAKES 10 MILLISECONDS THAT SHOULD TAKE ONLY ONE, THE HUMAN

CANNOT DETECT IT IN HIS SOFTWARE SYSTEM, NOR CAN HE RELATE TO IT WITHOUT

MEASUREMENT. WHEN WE INSTRUMENTED THE 600 SOFTWARE (A FIRST IN THE INDUSTRY)

WE FOUND SOME PRETTY GHASTLY GLITCHES. CORRECTION HAS ENABLED THE IMPROVEMENT

OF PERFORMANCE BY BETTER THAN TWO-TO-ONE. SOME FIRMS NOW SUPPLY INSTRUMENTATION

FOR YOUR OWN PROGRAMS, AND HAVE DEMONSTRATED 20 TO 40% PERFORMANCE IMPROVEMENT

IN A SHORT TEST TIME. BUT THESE ARE PRIMARILY FOR YOUR OWN PROGRAMS, NOT THE

MANUFACTURER- OR SOFTWARE HOUSE-SUPPLIED BASIC SOFTWARE. THE OPERATION OF

ts
THIS^PRETTY MUCH OUT OF YOUR CONTROL, AND VERY LIKELY YOU ARE PAYING HEAVILY

(AND UNWITTINGLY) FOR TWO THINGS:

o USELESS PROCESSES

o INEFFICIENT PROCESSES

STANDARDS AFFECT THE INEFFICIENT PROCESSES, SUCH AS CONVERSION TO AND FROM ASCII

CODE IN COMMUNICATION-BASED SYSTEMS. ASK YOUR FRIENDLY COMPUTER SALESMAN TO

GUARANTEE TO YOU WHICH ELEMENTS OF THE SOFTWARE SYSTEM ARE THERE TO GET AROUND

NON-STANDARDIZATION. ADD UP THE COST, AND YOU AND I CAN TALK ON A MORE UNDER

STANDING BASIS.

I AM NOT INTERESTED IN TAKING UP TIME, OR FILLING UP PAPER, WITH THE TEDIOUS

DETAILS OF THE ACTUAL STANDARDIZATION ACTIVITIES. THERE ARE TWO EXCELLENT

SOURCES OF SUCH INFORMATION:

1. THE SERIES OF NOTES Oft FEDERAL INFORMATION PROCESSING STANDARDS, FROM THE

CENTER FOR COMPUTER SCIENCES AND TECHNOLOGY, THE NATIONAL BUREAU OF

STANDARDS. THESE ARE AVAILABLE IN THE NBS TECHNICAL NEWS BULLETIN FROM

THE SUPT. OF DOCUMENTS, U.S. GOVERNMENT PRINTING OFFICE, WASHINGTON, D.C.

A YEARLY SUBSCRIPTION COSTS $3, AND EVERY COMPUTING INSTALLATION WILL FIND

IT WELL WORTH WHILE TO HAVE THESE DOCUMENTS.

2. BEMA, THE BUSINESS EQUIPMENT MANUFACTURERS ASSOCIATION, PUTS OUT A

QUARTERLY PROGRESS REPORT ON NATIONAL AND INTERNATIONAL STANDARDIZATION

FOR COMPUTERS AND INFORMATION PROCESSING. AVAILABLE UPON REQUEST FROM

BEMA, 1828 L STREET NW, WASHINGTON, D.C. 20036.

IT TAKES SOME SACRIFICE TO FOLLOW STANDARDS, AND MORE TO PARTICIPATE IN THEIR

DEVELOPMENT. PRESENTLY THE USER FINDS IT DIFFICULT TO SPEND THE EFFORT AND

MONEY TO DO SO. NEVERTHELESS, THESE SACRIFICES WILL HAVE TO BE MADE TO ACHIEVE

BETTER RESULTS. YOU CAN IMAGINE THE EFFECT UPON THE FRENCH, WITH THEIR NATIONAL

AND LINGUISTIC PRIDE, TO WRITE AND DOCUMENT SOFTWARE IN ENGLISH. WE ARE

FORTUNATE NOT TO HAVE THAT PROBLEM, SO LET'S DO OUR PART IN OTHER WAYS. IT PAYS

OFF.

A SWEDISH FRIEND SAYS THERE IS A STANDARD ANSWER TO THE FEAR THAT A

STANDARDIZED WORLD MIGHT BE AWFULLY DULL. IT IS THAT "A STANDARD-SIZED BRICK

DOESN'T MAKE FOR DULL ARCHITECTURE, AND DON'T FORGET WHAT MOZART DID WITH ALL

THOSE STANDARDIZED LITTLE NOTES." WE'RE GOING TO BE IN AN AWFUL MUDDLE AS

THE LARGEST BUSINESS IN THE POST-INDUSTRIAL WORLD IF WE CAN'T BRING SOME

ORDER INTO ff THROUGH STANDARDS. WE ARE OVERDUE IN STARTING AN EFFORT OF THE

REQUIRED MAGNITUDE.

It
• v 5

ACM TO has many facets
but the central point is an
attempt to determine the users' needs
for the next decade

What Is ACM 70?
The ACM 70 Conference could have been

Gthe 25th annual ritual of a society
spawned and nurtured by the electronic
computer, dominated by technocentric in

terests, a little bit insolvent, and not caring how its
machine influenced society—just as long as they were
free to have fun with it, parse yet another program
ming language, argue about computational accuracy
with the fervor of an early tabulator of angels on the
head of a pin, and maintain a lovely insularity from
people who did not talk their own jargon. This will
not be so, however, thanks to the mass awakening to a
new set of values that most people are experiencing.

Without meaning to downgrade the value of efforts
1 through 24, let us see what effort 25 is about. Surely
the main characteristic is that it is about many things,
and they are:

It's a model of an activity. The structure of ACM 70
is shown in the figure at the right.

The activity is to enumerate the information pro
cessing requirements of the several end-users and
professions for the next decade, and plan the opti
mum way to allocate resources and development in
order to meet those requirements. Note that the inter
sections of sectors from each face are usually mean
ingful in some degree (i.e., management data in
transportation). Overlaps and even conflicts can
exist, but these have been worked out cooperatively.

This activity can be ACM 70. It can also be ACM 71
and 72. It can be a national computer year on the
lines of the International Geophysical Year. It can be
an international computer year activity. Each could

by R. W. Bemer
grow from the other with the addition of time, effort,
people and scope.

It's a conference, ACM 70 takes place Sept. 1-3, at
the New York Hilton Hotel. It will undoubtedly be
attended by many members of ACM. However, unless
the planners are all dreaming, it will be attended by a
host of people who may never have heard of the ACM,
but are nevertheless very much impacted by comput
ers in their work. Special one-day registrations have

22 DRTRMRTION

been provided for the convenience of working people
—doctors, lawyers, Wall Street men, city planners,
etc.

The chart below shows the conference schedule.
I t s a p l a n . If we are to make best use of computer

systems in the next decade we will have to have a
good plan. Coming before any plan are the goals to be
achieved. The ACM 70 goals are:

1. To consciously put computers in service to na
tional goals, to increase public understanding of the
role and potential of computer usage, and to accent
the role of the computer as servant.

2. To develop strategies for the best future use of
computer systems (technological, social, educational,
political, legislative).

3. To conserve, and maximize utility of, those exist
ing and future intellectual resources known as data

and programs by finding how to utilize them on
multiple equipments and in multiple applications.

4. To aid government, business and private deci
sions by opening up new and more complete data for
those decisions, and to facilitate making of these
decisions by reducing the information volume re
quired (as opposed to data volume).

5. To plan a closed cycle for redistributing work
assignments between people and computers, for re
education prior to change, so that our citizens can
best fulfill their potential.

6. To ensure that public safety and welfare are
considered adequately when computers are inte
grated directly into human activity.

7. To set up new and broad interdisciplinary infor
mation exchange paths among hitherto segregated
organizations, and to foster their maximum involve-

CONFERENCE ATA GLANCE

PAGE 9:00 11:00

TUESDAY (SEPT. 1)

2:00 6:00

WEDNESDAY (SEPT. 2)

9:00 12:00 12:00 2:00 6:00
2:00

THURSDAY (SEPT. 3)

9:00 12:30 2:00

Communications

Data & Programs

Earth Resources

Engineering

Health & Welfare

Industry

Management

Communication
Aspects (1)

Program
Classification

Computers in
College & Library

Computerization
in Liberal Arts

Transportation

Select. Computer
Work Force

Computers in
Future Cities

User
Requirements

Computers for
Instructions

Management
& Design Eng'g

Computers in
Government

Administration
& Education

Human Factors
4:30 6:00 p.m.

Computer Transp.
4:00 6:00 p.m.

Urban Develpmt.
2:00 4:00 p.m.

Communication
Aspects (2)

System
Analysis

Sensor
Acquisition

Programmer &
Operator Train.

Computer
Graphics in 70's

Securities
& Insurance

Computers in
Industry (1)

Computers &
Practice of Med.

Medical Research

Data Systems
Requirements

Comp. Science
Education

Design Eng'g.
2:00 4:00 p.n

Banking
& Accounting

Computers in
Health, Welfare

Computers in
Industry (2)

Scientific Appl.
4:00 6:00 p.m.

Earth Resource
Management

Computers &
Cont'd. Education

Production
Engineering

Computers in
Industry (3)

National Crime
Information Ctr.

Information Syst.
& Future Mgmt.

Scientific
Computer Syst.

* This session has been rescheduled to 9:00 to 1 1:00, Thurs. Sept. 3.
r * Legal Assistance via Computer session has been scheduled for this ti s time.

August 15,1970 23

What is ACM 70?.

ment on a national scale.
8. To plan the most economical and effective in

teraction between computing and other systems, such
as communications.

Undoubtedly it will take more than ACM 70 to
meet these goals, but this is the start.

It s finding where we are. Only the newest or most
myopic participants will believe that the computer
business knows where it is and is going. Government
estimates of the number of computers expected to be
in use by 1975 vary from 100,000 to 330,000 (just
actual count, no mention of processing power—which
can vary by factors of 50 without too much difficul
ty). Private census can barely enumerate existing
usage, much less predict the proportion five years
from now. Industries with slow growth rates can
perhaps afford to react; with high growth rates we
must plan ahead on a nationwide scale.

How are computers used?
On Dec. 20, 1968, the U.N. General Assembly

asked the Secretary General to find out how com
puters were being used in the various countries, in
oider to apply them with maximum utility to the
economic and social development of all peoples.

Accordingly the member countries were asked
what amounted to "How do you use computers?" and
to kindly reply by Oct. 15, 1969. Many countries did
reply. Some of the most comprehensive returns were
fiom the U.K., Japan, and Israel. Unfortunately miss
ing was a response from the world's greatest and
probably most knowledgeable user of computers. We
may conjecture that either the State Department did
not know how to contact a $14 billion yearly industry,
or that the huge industry itself did not really know
how those computers were used, at least in the sense
of being able to make a coherent reply.

It's an affirmation of responsibility. To be repeti
tious, it is publicly obvious that much of the world's
population has been shirking its social responsibilities
consistently. Science is now under suspicion as being
a definable subset of the shirkers. To our horror, the
sub-subset of computer science has found that its
baby is the handy focus of much antagonism. Call
any business to complain of an error and the clerk is
likely to answer: Sorry. We have a computer now,
and it doesn t work right." The answer is never that
the computer works but that the humans who pro
grammed it were at fault, or that the computer was
integrated into human activities without sufficient
attention to safeguards. Probably the sociologists and
psychologists can explain the reaction in technical
terms, but explaining does not solve the problem.

As the time rolled around to plan yet another
conference, it was painful for the ACM management
to face the situation, as it would be for any manage
ment. In the end, they bit the bullet, as they must.
The road to health must start with inward determina
tion.

I t s a n e w l o o k . Until now computer conferences
have been characterizable as either vendors talking to
vendors, or users talking to users. The new look is that
the users have been asked to give the computer
industry their best picture of their total information
processing needs for the next decade.

In line with this, there have been no unsolicited or

refereed papers for this conference. Nor will one hear
papers on microprogramming, fast adders, or the like.
The sector chairmen were selected for their knowl
edge of the user sector, not familiarity with computers
necessarily. Thus they knew the body of competent
and qualified people to turn to for an exposition of
this nature.

If it should turn out that their needs cannot be
enunciated well, then at least we have tried and
opened a door. Contrariwise (in Alice in Wonderland
terminology, which is very much like our own), the
odds are high that there are users just panting for the
chance to tell the computer industry—on a total and
nationwide basis, mind you—what they believe should
be produced.

It's a netv direction. At the least, ACM 70 will pose
questions that ACM 71 and 72 can try to answer, and
give continuing purpose to those activities. Very like
ly, if the 1970 conference meets enough of its goals,
the whole fabric of ACM can be rewoven. Like other
professional societies, ACM needs periodic redefinition
of its goals, membership growth consistent with in
dustry growth, and means of giving good services to
its members. However, ACM also needs to find better
ways of serving the public. Carl Frey, executive di
rector of the Engineers Joint Council, reminds us that
organizations of this type are tax-exempt under stat
ute 501(c)(3) only if the main thrust of their total
activity is in the public interest, and not solely for the
benefit of its members.

Mr. Frey also reports that the American Society of
Association Executives evidences a growing feeling
that there is also a collective responsibility owed
society which may be impossible to fulfill by individ
ual efforts of single societies. Much more cooperative
effort is required, and ACM 70 is the very model of
such a cooperative effort in solving a complex prob
lem.

It s a hope. Surely the case can be made that
computers yield more benefit than harm. The hope is
that this excess can be increased and maximized.

When it can be demonstrated that computers are
for people, then people will be for computers. To
achieve this will require a very conscious effort. In the
end, that's really what ACM 70 is. •

(The following articles are a sample of the sector
activities planned for ACM 70.)

M r . Bemer is manager of
systems and software en
g i n e e r i n g i n t e g r a t i o n f o r
General Electric and is pro
gram chairman for the
ACM's 25th annual con
vention. He is noted for his
contributions to such orga
nizations as IFIP, ANSI,
ECMA, and CODASYL and
as an author, editor, and
developer of computer
techniques.

DHTRMBTION

AGENDA

CODASYL 20TH ANNIVERSARY

MAY 21-22, 1979

WASHINGTON, DC

MONDAY, MAY 21, 1979

0800-0900

0900-0915

0915-0945

0945-1000

1000-1045

1045-1115

1115-1200

1200-1400

1400-1430

1430-1515

Registration - Capitol View Ballroom

StoTlo^rvice President, Southern Railway
System, Chairman, Executive Committee

Keynote Address
The Honorable Elmer B. Staats
Comptroller General of the United'States

Coffee Break

Presentation of Codasyl System Architecture
Richard Kurz, Southern Railway System

Executive Committee and Committee Chairman

Report of the Cobol Committee
Mr. Donald F. Nelson, Control Data Corporation
Chairman, Cobol Committee

Presentation - Distributed System Report
Mr. William H. Stieger, Standard Oil Company (Ohio)
Chairman, Systems Committ.ee

Luncheon - "Reminiscing"
Speaker Bob Bemer, Honeywell

Data Description Language Committee Report
Mr. Michael L. O'Connell, Digital Equipment
Corporation, Chairman, DDLC

Codasyl Data Base Implementation
Mr. John Cullinane
President, Cullinane Corporation

AGENDA
PAGE TWO

MONDAY, MAY 21, 1979 (Con't)

1515-1600 TOTAL - Another Approach to Data Base
Mr. Tom Nies, President, CINCOM

1600-1615 Coffee Break

1615-1700 Case Study of a Distributed Processor System
Using Mini-Computers
Mr. Mayford Roark, Executive Director
Ford Motor Company Systems Office

1700-1730 Question and Answer Period

1800 Reception (Cash Bar)

TUESDAY, MAY 22, 1979

0900-0930 Address by the Honorable William G. Claytor, Jr.
Secretary of the Navy

0930-1015 Presentation of EUFC Report
Dr. H. C. Lefkovits, H. C. Lefkovits Associates
Chairman, End User Facilities Committee

1015-1030 Coffee Break

1030-1115 Presentation of Common Operating System Control
Language, Mr. Thomas Harris
Chairman, Common Operating Systems Control Language

1115-1200 Question and Answer Period - All Committee
Chairmen

1200 Adj ournment

L u n c h e o n T a l k ,
2 0 t h A n n i v e r s a r y o f C O D A S Y L
1 9 7 9 M a y 2 1

R . W . B e m e r

(I n t r o d u c t i o n)

T h e o p p o r t u n i t y t o t a l k t o y o u a l l h e r e h a s o f
c o u r s e t r i g g e r e d a l o t o f r e c o l l e c t i o n s . F o r e x
a m p l e , I r e m e m b e r t h a t t h e S h o r t R a n g e C o m m i t t e e
t h a t g a v e u s t h e f i r s t c u t a t C O B O L w a s j u s t t h a t .
T h e y w e r e s u p p o s e d t o g e t i t o n w i t h i n 3 m o n t h s .
G r a c e H o p p e r a n d I s n i c k e r e d a b o u t t h e i m p o s s i b l y
s h o r t t i m e , a n d i t a p p e a r s w e w e r e j u s t i f i e d . C O
B O L i s n ' t f i n i s h e d y e t , a s w e c e l e b r a t e 2 0 y e a r s
o f w o r k !

S u r e l y y o u r e m e m b e r C O B O L 6 0 . A n d C O B O L 6 1 .
A n d C O B O L 6 8 . A n d C O B O L 7 4 . A n d C O B O L 8 0 . A n d
l o o k f o r w a r d t o C O B O L 2 0 0 0 . N o w o n d e r t h e i n h a b
i t a n t s o f B a t t l e s t a r G a l a c t i c a w o r s h i p p e d L o r d C O
B O L . H o w i m m o r t a l c a n y o u g e t ?

C O B O L m u s t h a v e b e e n a s i g n i f i c a n t c o n t r i b u t i o n ,
m e a s u r e d b y h o w t h e e a r l y p r o p o n e n t s h a v e b e e n
h o n o r e d . O f c o u r s e , C h a r l i e P h i l l i p s a n d J o e
C u n n i n g h a m w e r e v e r y d i s t i n g u i s h e d w h e n t h e y m o v e d
t h e p r o j e c t . F o r s o m e o t h e r s —

D o a n y o t h e r c o u n t r i e s i n t h e w o r l d h a v e
h i g h - r a n k i n g w o m e n o f f i c e r s t h a t a r e s o i m p o r
t a n t t h e y a r e n o t a l l o w e d t o r e t i r e , l i k e o u r
o w n N a v y C a p t a i n G r a c e M u r r a y H o p p e r ? B u t I ' m
n o t s u r e w h a t v e s s e l s s h e m a y b o a r d b e s i d e s
t h e U S S C o n s t i t u t i o n .

A n d w h o w a s t h e f i r s t w o m a n e l e c t e d p r e s i
d e n t o f t h e A s s o c i a t i o n f o r C o m p u t i n g M a c h i n
e r y ? J e a n S a m m e t .

W o u l d t h e H o n o r a b l e J a c k J o n e s h a v e k e p t a
V i c e P r e s i d e n c y s o L o n g i n a l a r g e c o m p a n y i f
h e h a d n ' t b e e n s o c l o s e l y a s s o c i a t e d w i t h C O
D A S Y L a n d C O B O L ? W e l l , y e s , h e w o u l d . B u t i s
t h a t a n y w a y t o r u n a r a i l r o a d ?

A n d t h e n t h e r e a r e t h o s e w h o p r e f e r b e i n g
t h e i r o w n b o s s — l i k e H o w a r d B r o m b e r g , w h o
t o o k o f f f o r S a n F r a n c i s c o a s s o o n a s h e h e a r d
a b o u t N o r t h B e a c h .

1

A ^ F L a s h o f H i s t o r y

D u e t o t h e f o r e s i g h t o f t h e f o u n d e r s , a n d t h e i r
c l e v e r n e s s i n k e e p i n g t h e h i s t o r y i n p r i n t v i a
h u n d r e d s o f t h o u s a n d s o f c o p i e s o f t h e C O B O L
s p e c i f i c a t i o n , I n e e d g o i n t o v e r y l i t t l e h i s t o r y
h e r e . W e a r e , o f c o u r s e , c e l e b r a t i n g t h a t f i r s t
m e e t i n g a t t h e P e n t a g o n , o n 1 9 5 9 M a y 2 8 a n d 2 9 .

I t w a s a n o b l e v e n t u r e . J e a n S a m m e t ' s h i s t o r y
q u o t e s a m o t i v e a s a r t i c u l a t e d b y C h a r l i e P h i l l i p s
— " T o b r o a d e n t h e b a s e o f t h o s e w h o c a n s t a t e
p r o b l e m s t o c o m p u t e r s " . P o s s i b l y h e a c t u a l l y s a i d
i t ; I h a v e a g r e a t a d m i r a t i o n f o r C h a r l i e .
P a r t i c u l a r l y w h e n y o u c o n s i d e r t h a t h e h a s b e e n
a c t i v e i n C O D A S Y L e i g h t y e a r s l o n g e r t h a n t h e f o r
m a l r e i g n o f t h e S h a h o f I r a n ! A n d w i t h e v e r y
p r o s p e c t o f r u n n i n g u p t h e t o t a l !

J e a n a l s o a l l o w e d a s h o w t h e S h o r t R a n g e C o m m i t
t e e w a s s o m e w h a t d e l u d e d , t h i n k i n g t h a t t h e i r
f i r s t s p e c w a s n o t " s o m e t h i n g i n t e n d e d f o r l o n g e v
i t y " . B u t l o n g e v i t y i t h a s , o f c o u r s e , d u e t o t h e
r e n e w a b i l i t y p e r m i t t e d b y t h e C O D A S Y L f r a m e w o r k .
W h i c h i s t h e p r i n c i p l e o f m y h o m e t o w n — P h o e n i x .
I t w o u l d b e i n t e r e s t i n g t o c o m p a r e t o d a y ' s g r o w n
u p C O B O L w i t h t h a t u p s t a r t F A C T l a n g u a g e o f H o n e y
w e l l , t h a t c a u s e d s u c h a s t i r t h e n !

T h e n a m e o f J e a n S a m m e t a l s o r e m i n d s m e o f a
t i m e w h e n m y w i f e M a r i o n a n d I w e r e b o t h w o r k i n g
a t I B M . S e e m s t h a t I s p o k e o f J e a n S a m m e t a n d C O
B O L q u i t e o f t e n , t o t h e p o i n t w h e r e m y w i f e b e c a m e
s o c u r i o u s t h a t i t c o u l d c h a n g e t o j e a l o u s . B u t
i t b l e w o v e r w h e n I e x p l a i n e d t h a t C O B O L w a s n ' t a
p e r f u m e !

P a s s i n g q u i c k l y o v e r h i s t o r y , y o u r e c a l l t h a t
t h e S h o r t R a n g e C o m m i t t e e d i d c o m p l y v e r y w e l l ,
a n d t h e i r r e p o r t w a s a c c e p t e d o n 1 9 6 0 J a n u a r y 7 .
T h i s l e d t o s u b m i s s i o n f o r p r i n t i n g i n A p r i l , a n d
a c t u a l p u b l i c a t i o n v i a t h e U S G P O i n J u n e .

O f c o u r s e a l l t h e s e a c t i v i t i e s c a u g h t t h e p u b l i c
e y e . B u s i n e s s W e e k h a d b e e n o n t o p o f t h e s i t u a
t i o n s i n c e J u n e o f 1 9 5 9 , a n d i n A p r i l o f 1 9 6 0 t h e
e f f o r t w a s e x p o s e d i n C o m p u t i n g N e w s , I s s u e 1 7 1 .
T h e i n s i g h t o f i t s e d i t o r , J a c k s o n G r a n h o l m , w a s
s o p e n e t r a t i n g t h a t I w o u l d l i k e t o r e c a l l i t t o
y o u (m a i n l y b e c a u s e t h e N e w Y o r k P u b l i c L i b r a r y
h a s n o b a c k i s s u e s — i t ' s r u m o r e d t h a t t h e y w e r e
b u r n e d) :

2

In a master fu l p iece of report ing, ent i t led
"POOBLE-ORIENTED LANGUAGES", we f ind -

"That the eminent Dr . Rupert B. Pooble should
concern h imsel f wi th the subject of program
ming languages was to be expected. Af ter a l l ,
in h is posi t ion as Director of Mathemat ical
Act ion for the Inscrutable Atomic Corporat ion,
Pooble swung a b ig mass . . .

Therefore, as fate would have i t , i t was on a
wel l -known Tuesday dur ing November past that
Pooble cal led a meet ing in h is large, oak-
paneled of f ice. To th is meet ing he rather ar
b i t rar i ly summoned pract ica l ly everyone in the
manufactur ing end of the industry who could
see l ightn ing and hear thunder.

I t was apparent ear ly in the gather ing that
the at tendees tended to break pret ty wel l in to
two camps. These two camps, to coin some c l i
ches, might wel l be descr ibed as the "Know-
Nothings" and the "Green-back Party" .

The Know-Nothings l ined up sol id ly behind
thei r idol , Horton Dreamer, Associate Director
of Programmercraf t for the Suf f ix-Speci f ic Di
v is ion of Quantum-Occ luded-Domineer. The
Green-back par ty , on the other hand, were
so l id ly behind thei r eminent spokesman, Dr .
Mary Margaret Groper of the Compet ing Equip
ment Corporat ion of Amer ica.

Pooble was quick to get to the point .

" I t is mani fest" , he said, in h is resonant ,
cu l tured voice, " that Inscrutable Atomic is
the biggest comput ing machine customer in the
wor ld. We have at th is very moment in the
back room a to ta l of 43 e lectronic computers
of var ious s izes. These machines are on
renta l f rom 17 d i f ferent manufacturers . . .
However" , Pooble cont inued, " I am sorry to
note that these 43 machines are programmed in
no less than 678 systems of pseudocoding, not
to ment ion thei r own unique machine codes".

"My!" said Dr. Groper.

" I have asked you here to see what you in tend
to do about i t " , Pooble said.

"Not a damn th ing", said Dreamer, " I f you'd
stuck wi th our equipment l ike any sensib le
person you wouldn' t be in th is mess".

3

" N o w j u s t a d o g - b o n e d m i n u t e , H o r t o n " , P o o b l e
s a i d , h i s f a c e g r o w i n g c r i m s o n , " i f y o u d o n ' t
w a n t y o u r r e n t c u t o f f y o u b e t t e r s h a p e u p
b e t t e r t h a n t h a t " .

" N o n e e d t o g e t h o t u n d e r t h e c o l l a r , R u p e r t " ,
s a i d D r e a m e r , " b u t t h e y w a r n e d m e a t h e a d q u a r
t e r s t h a t y o u w e r e a p t t o p u l l s o m e g l i t c h
l i k e t h i s " .

" N e v e r m i n d t h a t " , P o o b l e s a i d . " W h a t I e x
p e c t y o u p e o p l e t o d o i s t o f o r m a c o m m i t t e e
t o p r o d u c e , a t n o c o s t t o I n s c r u t a b l e , t h e
u l t i m a t e p r o g r a m m i n g l a n g u a g e " .

" Y o u ' r e d a f t " . D r . G r o p e r o b s e r v e d .

" N o n e t h e l e s s , y o u h a v e t w o w e e k s t o g e t
s t a r t e d , o r w e g o b a c k t o d e s k c a l c u l a t o r s " .

M a n i f e s t l y t h e h e a t w a s o n , a n d t h e a t t e n d e e s ,
k n o w i n g o n w h i c h s i d e t h e i r b r e a d w a s p e a n u t -
b u t t e r e d , g o t w i t h i t w i t h d i s p a t c h .

B y 2 : 3 0 i n t h e a f t e r n o o n a n a m e h a d b e e n
s e l e c t e d . I t w a s d e c i d e d t h a t t h e u l t i m a t e
p s e u d o c o d e w o u l d b e c a l l e d " P 0 0 G 0 L " , f o r P o p u
l a r O p e r a t i o n a l O r d i n a r y G l i t c h - O r i e n t e d L a n
g u a g e .

B y t h e t i m e t h e m e e t i n g b r o k e u p , a m o d e s t
l i t t l e w o r k i n g g r o u p o f 3 1 0 m e m b e r s h a d b e e n
s e t u p t o i m p l e m e n t P 0 0 G 0 L i n t h r e e m o n t h s
(s i c) . D r . G r o p e r a n d H o r t o n D r e a m e r w e r e a p
p o i n t e d c o - c h a i r m e n . S i n c e t h e y d i d n ' t s p e a k
t o e a c h o t h e r t h i s m a d e f o r r a t h e r d i f f i c u l t
c o o r d i n a t i o n , b u t a t l e a s t t h e j o b w a s u n d e r
w a y .

T h e r e ' s m o r e , t h e s t o r y g o i n g t h a t t h e p r o j e c t
l o s t i t ' s d r i v i n g f o r c e . P o o b l e r e s i g n e d a n d w e n t
t o w o r k f o r D r e a m e r a t t w i c e t h e s a l a r y . E t c .

T h e r e m a y h a v e b e e n f a l l o u t f r o m t h i s r e p o r t a g e .
W h e n C h a r l i e P h i l l i p s w a s f i r s t a t B E M A , i t w a s i n
N e w Y o r k , w h o s e c i t i z e n s d r o p s o m e R ' s . A n u m b e r
o f p e o p l e h a d t h e m i s a p p r e h e n s i o n t h a t h e w o r k e d
f o r m e . T h i s p r o b l e m h a s n o w b e e n r e c t i f i e d b y
a d d i n g a " C " , t o g e t C B E M A , w h e r e a s I ' m R B E M A .

A n d o n e w o n d e r s w h e t h e r B r o m b e r g r e a d t h e s t o r y ,
h a v i n g i t s t i l l o n h i s m i n d a s h e p a s s e d a c e r t a i n
s t o n e w o r k s h o l d i n g a s a l e o n a n i m a l t o m b s t o n e s !

4

O r i g i n a l S u c e s s o f C O D A S Y L

A l t h o u g h t h e a c t i v i t i e s a r e n o w m o r e v a r i e d , t h e
o r i g i n a l s u c c e s s o f C O D A S Y L w a s t h e C O B O L l a n
g u a g e . A n d i t ' s w o r t h r e m i n d i n g o u r s e l v e s w h y
t h a t s h o u l d h a v e b e e n s o .

I t w a s n ' t t h a t i t o f f e r e d a s u b s t a n t i a l s e t o f
c a p a b i l i t i e s n o t p r e v i o u s l y a v a i l a b l e (B . C .) . T h e
o f f i c i a l h i s t o r y o f C O B O L r e c o u n t s t h e p r o p r i e t a r y
l a n g u a g e s t h a t w e r e a b s o r b e d , m e l t e d , a n d r e c a s t
i n t o C O B O L . T h e f e a t u r e s o f e a c h c o u l d b e f o u n d ,
i n a f o r m t h a t , w h e n a l t e r e d , u s u a l l y w a s f r e e o f
t h e p r e j u d i c e a n d p r o v i n c i a l i s m o f t h e o r i g i n a t o r
(w h o p r o b a b l y f o u n d i t s o m e w h e r e e l s e , a n y w a y) .

I t w a s n ' t t h a t t h e c o m p u t e r s y s t e m s u p p l i e r s o f
t h e t i m e , o v e r c o m e b y u s e r - i n s p i r e d a l t r u i s m a n d
c o n v i c t i o n t h a t t h e i r c u s t o m e r s k n e w m o r e t h a n
t h e y d i d , d e c i d e d t o o p e n t h e h a l l s f o r a c a m e l -
b u i l d i n g p a r t y . S o t h e y c o u l d l a u g h a t i t l a t e r
a n d h a w k t h e i r o w n c o n s i s t e n t p r o d u c t , n o t m a d e b y
c o m m i t t e e . E v e n i f s o , t h e S h o r t - R a n g e C o m m i t t e e
f o o l e d t h e m b y e v e n t u a l l y r e l e a s i n g a r e m a r k a b l y
w e l l m a d e s p e c i f i c a t i o n , q u i t e u n l i k e a c a m e l . B u t
t h e n w h e n w e h a d i t , n o t a l l s u p p l i e r s r u s h e d t o
m a k e C O B O L t h e i r p r o d u c t . I n a t l e a s t o n e c a s e ,
i t t o o k m u c h a r m - t w i s t i n g b y u s e r s , a n d p r o s p e c
t i v e u s e r s , t o g e t C O B O L c o m p i l e r s i n t h e c a t a l o g .
C O M T R A N i s n ' t m u c h r e m e m b e r e d a s o n e o f t h e a c r o
n y m s I d e v i s e d . F o r t u n a t e l y C O D A S Y L i s .

I n c i d e n t a l l y , I u s u a l l y p r o n o u n c e i t l i k e " c o d i
c i l " i n a w i l l , b e c a u s e t h a t ' s h o w i t c a m e t o
m i n d , r a t h e r t h a n l i k e a m u s i c a l " c o d a " . B u t t h i s
i s o n e p l a c e I d o n ' t w o r r y a b o u t a g r e e i n g u p o n a
s t a n d a r d .

C O B O L w a s s u c c e s s f u l b e c a u s e o f t h e " C O " i n i t ' s
n a m e . C O M M O N . N o t c o m m o n i n t h e v u l g a r s e n s e ,
b u t c o m m o n b e c a u s e t h e p r o g r a m s u s i n g i t w e r e
f a i r l y p o r t a b l e t o o t h e r c o m p u t e r s . W i t h b u s i n e s s
d a t a t h a t ' s a l o t t o u g h e r j o b t h a n w i t h f l o a t i n g
p o i n t n u m b e r s !

C O B O L w a s t h e s e v e n t h l a n g u a g e t o w o r k o n m o r e
t h a n o n e m o d e l o f c o m p u t e r , (F o r t r a n , A l g o l , A P T ,
I T , M y s t i c , I P L) a n d t h e t h i r d (A P T , A l g o l) t o
w o r k o n m o d e l s o f m o r e t h a n o n e m a n u f a c t u r e r . B u t
i t w a s t h e f i r s t b u s i n e s s l a n g u a g e o n b o t h c o u n t s ,
p r o v e d o n D e c e m b e r 6 o f 1 9 6 0 .

U n i q u e R o l e o f C O D A S Y L

T h e s i g n i f i c a n c e o f C O D A S Y L i s g r e a t e r t h a n e v e r
n o w . O u r e c o n o m i c s t r u g g l e i s n o l o n g e r w i t h i n
o u r o w n c o u n t r y . I t ' s w i t h o t h e r c o u n t r i e s . A n d
w e ' r e n o t d o i n g s o w e l l , o r h a v e n ' t y o u n o t i c e d ?
C o m p u t e r s a n d e l e c t r o n i c g e a r a c c o u n t f o r a s u b
s t a n t i a l p l u s i n o u r b a l a n c e o f p a y m e n t s a c t . T h e
t r a d e f i g u r e s f o r M a r c h w e r e r e l e a s e d l a s t w e e k .
T h e t o t a l U S d e f i c i t w a s $ 8 2 1 m i l l i o n . C o m p u t e r
e x p o r t s w e r e $ 4 9 6 m i l l i o n , i m p o r t s $ 6 8 m i l l i o n ,
f o r a n e t s u r p l u s o f $ 4 2 8 m i l l i o n . W i t h o u t c o m
p u t e r s a s a v i a b l e b u s i n e s s , t h e n , t h e U S d e f i c i t
w o u l d h a v e b e e n 5 2 % w o r s e ! S o w e s h o u l d b e c a r e
f u l t o m a i n t a i n t h i s a d v a n t a g e . D o y o u t h i n k w e
c a n ?

L a s t y e a r a F r e n c h m a n t o l d m e a b o u t a b u s i n e s s
d i n n e r h e h a d a t t e n d e d i n J a p a n . T h e J a p a n e s e e x
e c u t i v e n e x t t o h i m h a d b e c o m e c o n v i v i a l e n o u g h t o
s a y :

" D o y o u r e m e m b e r t h e G e r m a n c a m e r a s ?

A l l J a p a n e s e n o w . . .

R e m e m b e r t h e S w i s s w a t c h e s ?

A l l J a p a n e s e n o w . . .

R e m e m b e r t h e A m e r i c a n c o m p u t e r s ? . . . "

I f y o u ' r e t h i n k i n g " W h a t d o e s t h i s h a v e t o d o w i t h
C O D A S Y L ? " , l e t m e r e m i n d y o u o f t h i s c o u n t r y ' s
a n t i t r u s t l a w s . T h e y m a y h a v e h a d a m p l e j u s t i f i
c a t i o n w h e n p a s s e d . I n e a c h c o m p a n y I h a v e w o r k e d
f o r , I h a v e b e e n i n s t r u c t e d f i r m l y i n t h e l i m i t s
o f m y p a r t i c i p a t i o n i n s t a n d a r d s a c t i v i t i e s o f a l l
k i n d s . D o n o t h i n g t o c o n t r a v e n e t h e a n t i t r u s t
l a w s , t h e y s a y .

B u t t h e J a p a n e s e a r e n o t h a m p e r e d t h a t w a y i n
c o o p e r a t i v e v e n t u r e s . J u s t t h e o p p o s i t e . T h e y
h a v e g o v e r n m e n t - c o n t r o l l e d j o i n t r e s e a r c h , s h a r e d
b e t w e e n c o m p a n i e s . F r e e e n t e r p r i s e a n d t r a d i
t i o n a l A m e r i c a n c o m p e t i t i o n a r e p e n a l i z e d i n t h a t
g a m e . A n t i t r u s t l i m i t s s u c h c o o p e r a t i o n b e t w e e n
c o m p a n i e s (a l t h o u g h l a s t w e e k t h e g o v e r n m e n t p e i —
m i t t e d C h r s y l e r t o b u y s o m e r e s e a r c h r e s u l t s f r o m
G M , s o m a y b e t h e y ' r e w i s i n g u p) .

S o w h o c a n h e l p t h e U . S . t o k e e p a c o m p e t i t i v e
e d g e v i a c o o p e r a t i v e d e v e l o p m e n t e f f o r t s ?

6

o N o t A N S I . T h e i r c h a r t e r i s t o r e g i s t e r s t a n
d a r d s , n o t d e v e l o p o r l e g i s l a t e t h e m . T h e y
c a t e r t o m o r e f i e l d s t h a n j u s t c o m p u t e r s ,

o P r o f e s s i o n a l s o c i e t i e s c a n a t t r a c t v o l u n t e e r s ,
b u t t h e w o r k w o u l d h a v e t o b e f u n d e d b y d u e s .
T h e s e t w e n t y y e a r s h a v e s h o w n h o w i n a d e q u a t e l y
t h a t w o r k s . E x a m p l e : A C M t o o k 6 m o n t h s a f t e r
C O D A S Y L s t a r t e d t o e v e n a c k n o w l e d g e t h e w o r k ,

o T h e s e v e r a l u s e r g r o u p s c a n ' t b e e x p e c t e d t o
m a i n t a i n t h e n e c e s s a r y b r o a d s c o p e a n d v i e w
p o i n t r e q u i r e d f o r f u l l p o r t a b i l i t y ,

o E C M A (E u r o p e a n C o m p u t e r M a n u f a c t u r e r s A s s o c i a
t i o n) h a s d o n e e x c e l l e n t w o r k , b u t w e c a n ' t
e n t r u s t o u r e x p o r t b a l a n c i n g a c t t o t h e m .

S t r e n g t h o f a c o u n t r y , l i k e c o r p o r a t e s t r e n g t h ,
c a n c o m e f r o m c o o p e r a t i v e v e n t u r e s . F r o m c o m b i n e d
R & D .

L e t u s b e g r a t e f u l t h a t C O D A S Y L e x i s t s t o d a y ,
f o r w e m i g h t n o t b e a b l e t o e s t a b l i s h i t n e w t o
d a y . R e m i n d s m e o f a T - s h i r t s l o g a n - " D o i t n o w ,
b e f o r e i t b e c o m e s i l l e g a l " . C O D A S Y L i s u n i q u e .
I t s f a i r n e s s a n d p r o p r i e t y h a v e b e e n e s t a b l i s h e d .

I t ' s £ D A T A W o r l d

I t ' s h e a r t e n i n g t h a t t o d a y ' s m e e t i n g c o n f i r m s t h a t
w e b a c k e d t h e r i g h t h o r s e . I t ' s C o m m i t t e e o n D A T A
S y s t e m s L a n g u a g e s . M o s t c o m p u t e r u s a g e w a s s t i l l
f o r n u m e r i c a l c a l c u l a t i o n t h e n ; a t l e a s t t h e
v i s i b l e e m p h a s i s w a s . P a p e r s o n d a t a m a n i p u l a t i o n
w e r e f e w a t t h e c o n f e r e n c e s o f t h e d a y .

I s a i d t h e n t h a t b u s i n e s s p r o b l e m s w e r e 1 0 - 2 0
t i m e s a s d i f f i c u l t a s n u m e r i c a l p r o b l e m s , w h i c h
w a s n o t a p o p u l a r o p i n i o n . B u t i t h a s n ' t b e e n
u n t i l t h e l a s t f e w y e a r s , w o r k i n g w i t h l i v e d a t a
b a s e s , t h a t I r e a l i z e — i n s i m p l e e n o u g h t e r m s —
w h y t h i s i s s o .

C o m p u t e r s c a n u s u a l l y p r o c e s s a n i n p u t n u m b e r ,
f o r i t m a y l i e a n y w h e r e w i t h i n a k n o w n s p e c t r u m
a c c o r d i n g t o c e r t a i n f o r m a t i o n r u l e s . N o n - n u m e r i c
d a t a w o n ' t w o r k t h a t w a y . M o r e r e p r e s e n t a t i o n s
a r e p o s s i b l e , w h i c h i s w h y w e h a v e a l p h a b e t i c l i
c e n s e p l a t e s , a n d w h y t h e P o s t O f f i c e w a n t s t o a d d
f o u r m o r e d i g i t s t o t h e Z I P c o d e . A n d t h e y ' l l
p r o b a b l y s t i l l i n s i s t t h a t y o u g i v e t h e c i t y a n d
s t a t e , t o o , o r t h e y w o n ' t s e n d t h e m a i l .

T h a t ' s t h e k e y t o d a t a p r o c e s s i n g — p a t t e r n
m a t c h i n g . A p a t t e r n o f b i t s , o f c h a r a c t e r s , o f
w o r d s , o r o f t o t a l b e h a v i o r . I t ' s s t i l l t h e k e y .

7

R e a L W o r l d D a t a b a s e s

T w o y e a r s a g o I w a s a s k e d t o d e m o n s t r a t e s o m e
r e l a t i o n a l d a t a b a s e p r o c e s s i n g t o a c e r t a i n g o v
e r n m e n t a g e n c y . I w a s t o l e a v e P h o e n i x o n S u n d a y ,
a n d t h e i r s a m p l e d a t a j u s t a r r i v e d F r i d a y a f t e r
n o o n . I w e n t h o m e , f i r e d u p t h e t e r m i n a l , b u i l t a
M a r t i n i , a n d l o o k e d a t t h e f i l e w h i c h h a d b e e n
l o a d e d . I t a p p e a r e d t o b e a l l c a p i t a l s , a n d s t u d
d e d w i t h s p a c e s , l i k e m a y b e t h e y h a d u s e d a n o l d -
f a s h i o n e d k e y p u n c h t o e n t e r t h e d a t a . S o I u s e d
T E X t o r e p l a c e a l l d o u b l e s p a c e s w i t h a s e p a r a t o r ,
u n t i l n o n e w e r e l e f t . S t o r i n g t h e f i l e u n d e r a
n e w n a m e s h o w e d t h a t i t o n l y t o o k h a l f a s m u c h
s p a c e i n t h a t f o r m ! S o t h e y w e r e p a y i n g t h e i r
s u p p l i e r t w i c e t o o m u c h f o r d i s k p a c k s a n d d r i v e s .

B u t t h a t ' s n o t t h e m o s t i m p o r t a n t p a r t . T h e
c o n c o r d a n c e I r a n w a s a s t o n i s h i n g . I t s a i d t h a t a
c e r t a i n p e t r o l e u m c o m p a n y h a d t h r e e h i g h - l e v e l e x
e c u t i v e s w i t h s o u n d - a l i k e n a m e s — W o h l e g e m u t h ,
W o h l g e m u t h , a n d W o l g e m u t h .

Y o u ' v e g u e s s e d t h a t t h e y a r e r e a l l y j u s t o n e
m a n , t h a t t h e d a t a b a s e w a s d i r t y . N e v e r m i n d , o n
a q u e r y t h e y ' r e o n l y g o i n g t o f i n d h i m o n e t i m e
o u t o f t h r e e . D o y o u w a n t o u r g o v e r n m e n t t o m a k e
d e c i s i o n s f r o m s u c h d a t a ? O r d o y o u t h i n k t h a t
m a y b e t h a t ' s w h a t t h e p r o b l e m i s ?

T h a t ' s w h a t I m e a n b y r e a l w o r l d d a t a b a s e s a n d
r e a l w o r I d p e o p l e a s s o c i a t e d w i t h e n t r y a n d p r o
c e s s i n g o f t h e d a t a . N o t e t h a t C O D A S Y L D B T G
s c h e m a s w o u l d a l s o f a i l i n t h i s i n s t a n c e i f t h e r e
w e r e p o i n t e r s t o a l l t h r e e m e n . I n t h e r e a l w o r l d
o n e h a s f u z z y s e t s . " H i s n a m e s o u n d s l i k e . . . " ,
o r " I t h i n k i t b e g a n w i t h G y " . A n d i n t h e r e a l
w o r l d o n e d o e s n ' t a l w a y s k n o w i n a d v a n c e w h a t i s
e x p e c t e d t o b e e x t r a c t e d f r o m a d a t a b a s e u p o n
q u e r y o r d i s p l a y o f s o m e s u b s e t . O n e d o e s n ' t p u t
i n p o i n t e r s t o a l l o f t h e o t h e r p e o p l e i n t h e e n
t i r e w o r l d t h a t h a v e 1 9 7 3 b l u e D o d g e s . J u s t a s
p l a y i n g c h e s s b y c o m p u t e r c a n n o t b e d o n e b y p r o
j e c t i n g a h e a d a l l p o s s i b l e r e s u l t s o f t h e n e x t
n i n e m o v e s . I t g e t s t o o a s t r o n o m i c a l .

S u r e l y w e s e e f r o m t h e p r e s e n t u s a g e o f m i c r o
c o m p u t e r s t h a t m a n y o f o u r p r e v i o u s t a s k s w i l l b e
t r a n s f e r r e d t o t h e m . W h a t ' s l e f t f o r l a r g e c o m
p u t e r s t o d o ? M a n i p u l a t e d a t a b a s e s , f o r o n e .
T a k e i n , v i a c o m m u n i c a t i o n s , t h e s m a l l p r i v a t e d a
t a b a s e s , a g g l o m e r a t e t h e m , a n d p a r s e t h e m t o e x
t r a c t n e w i n f o r m a t i o n t h a t w a s p r e v i o u s l y u n s u s
p e c t e d o r u n a v a i l a b l e t o t h e s i n g l e o w n e r .

8

I d o n ' t m e a n t o d o w n g r a d e t h e D B T G w o r k (a n d g e t
s h o t b y m y c o l l e a g u e B a c h m a n) . I t ' s a m o s t i m p o r
t a n t t o o l , b u t n o t t h e l a s t t h a t C O D A S Y L s h o u l d
c o n c e r n i t s e l f w i t h i n t h e d a t a b a s e w o r l d . P a r
s i n g w i t h p a t t e r n - m a t c h i n g d e v i c e s o f s u f f i c i e n t
i n g e n u i t y c a n h a n d l e t h o s e " f u z z y s e t s " . A n d i t
c a n h a n d l e t h e h u g e n u m b e r o f t o d a y ' s e x i s t i n g d a
t a b a s e s t h a t a r e n o t o f t h e p o i n t e r e d t y p e .

B r i e f R e c o m m e n d a t i o n s

P e t e r L a n d i n ' s p a p e r " T h e N e x t 7 0 0 P r o g r a m m i n g
L a n g u a g e s " s a i d t h a t i f a u s e r b o d y b e c o m e s l a r g e
e n o u g h i t i s e c o n o m i c a l l y v i a b l e t o s p e c i a l i z e t o
s e g m e n t s o f u s a g e . W e m u s t r e m e m b e r t h a t w e m u s t
s u p p l y t o o l s f o r t h e p r e - D B T G u s e r s , a n d f o r t h e
p o s t - D B T G u s e r s , a s e x e m p l i f i e d b y t h e m i c r o c o m
p u t e r a n d c o m m u n i c a t i o n n e t w o r k s .

W i t h t h i s i n m i n d I o f f e r C O D A S Y L s o m e b r i e f a n d
m o d e s t r e c o m m e n d a t i o n s o n f u t u r e a c t i o n s a n d
n e e d s . T h e y m a y b e c o v e r e d f u l l y a l r e a d y . I f s o ,
i g n o r e m y p o i n t s a s f u l f i l l e d . H e r e t h e y a r e :

1 . I n y o u r d a t a b a s e w o r k , a c c o r d e q u a l r i g h t s t o
a l l p r o g r a m m i n g l a n g u a g e s . R i g h t n o w , C O B O L
i s f a v o r e d l i k e a s p r a i n e d a n k l e o v e r F O R T R A N .

2 . G i v e c o n s i d e r a t i o n t o p o i n t e r l e s s d a t a b a s e s .
C o n s i d e r f l a t f i l e s a n d c o - f i l e s f o r t h e m .
M e m o r y c o s t s s a y w e c a n d o i t n o w , a n d m a k e a
d a t a b a s e u n d e r s t a n d a b l e b y s i m p l y p r i n t i n g i t
s e r i a l l y . S u p p o r t e f f o r t s t o r e s e r v e t h e
u p p e r h a l f o f A S C I I f o r t o k e n s , n o t p r i n t i n g
c h a r a c t e r s (w h i c h a r e a d e q u a t e l y c o v e r e d b y
c o d e e x t e n s i o n) . T h e n y o u m a y h a v e f l a t f i l e s
d e s c r i b i n g t h e t o k e n - t o - a c t u a l r e l a t i o n s h i p s ,
b u t r u n t h e r e l a t i o n a l d a t a b a s e w i t h t o k e n s
o n l y .

3 . C o n t i n u e t h e g o o d w o r k f o r t h e e n d - u s e r s , b u t
r e m e m b e r t h a t w e m a y w i s h t o m a n i p u l a t e a d a
t a b a s e , n o t j u s t i n t e r r o g a t e i t .

4 . C o n t i n u e w i t h t h e o p e r a t i n g s y s t e m c o m m a n d
l a n g u a g e w o r k , b u t r e m e m b e r t h a t i t c a n a l t b e
d o n e w i t h a t e x t p r o c e s s i n g l a n g u a g e . W i t n e s s
t h e s u c c e s s o f t h e U N I X s y s t e m a n d T E X . K e e p
c l o s e l i a i s o n b e t w e e n t h e C O S C L w o r k a n d t h e
" N i c o l a " p r o j e c t u n d e r W . G e r m a n g o v e r n m e n t
s p o n s o r s h i p . M a p p i n g C O S C L t o N i c o l a w i l l b e
y o u r t e s t o f s u c c e s s .

9

5 . G e r r y W e i n b e r g s a y s " W h i l e 8 0 % o f c o m m e r c i a l
a p p l i c a t i o n s p r o g r a m m i n g i s d o n e i n C O B O L , n o t
e v e n 5 % o f t h e p r o g r a m m i n g l i t e r a t u r e d e a l s
w i t h C O B O L " . W h a t a r e y o u g o i n g t o d o a b o u t
i t ?

6 . C a r r y t h e C O B O L l e s s o n o f l e v e l s a n d m o d u l e s
o n e s t e p f u r t h e r , C a r r y i t t o m a n y l a n g u g e s ,
n o t o n e . W h a t ' s s o p a r t i c u l a r l y " d a t a b a s e "
a b o u t C O B O L ? Y o u ' r e a n s w e r i n g t h a t w i t h
F O R T R A N , a t l e a s t . B u t n o t w i t h a l l o f t h e
i m p o r t a n t l a n g u a g e s — i n c l u d i n g B A S I C ,
P A S C A L , a n d P L / I . W h a t ' s s o p a r t i c u l a r l y
" r e a l t i m e " a b o u t P L / I , t h a t d o e s n ' t a p p l y t o
C O B O L , F O R T R A N , C O R A L , P E A R L , e t c . ?

T h e r e ' s a w a y t o g e t r i d o f e x p e n s i v e d u p l i
c a t i o n b e t w e e n s o m a n y p r o g r a m m i n g l a n g u a g e s .
C O D A S Y L c o u l d s p o n s o r w o r k t o e x t r a c t t h e c o m
m o n p a r t s o f a l l o f t h e s e l a n g u a g e . T h e n t h e
s t a n d a r d s p e c i f i c a t i o n f o r P A S C A L c o u l d s a y
" S e e C O D A S Y L s t a n d a r d r e f e r e n t 6 . 2 . 3 f o r t h i s
f u n c t i o n " .

L o o k a t a n y b i g o p e r a t i n g s y s t e m . I t ' s c o m
p i l i n g s o u r c e p r o g r a m s i n s e v e r a l p r o g r a m m i n g
l a n g u a g e s s i m u l t a n e o u s l y , a n d e a c h c o m p i l e r
h a s i t s o w n c o d e f o r t h e f u n c t i o n s o t h e r w i s e
i d e n t i c a l i n e a c h l a n g u a g e . I d o n ' t w o r r y
a b o u t s a v i n g m e m o r y . I t ' s t h e b u i l d i n g a n d
m a i n t e n a n c e o f d u p l i c a t e a n d r e d u n d a n t s o f t
w a r e m o d u l e s t h a t i s b a d . L a n d i n s a y s t o
c l o a k t h e f u n c t i o n i n w h a t e v e r l a n g u a g e i s
e a s i e s t f o r y o u r a u d i e n c e a n d u s e r s . B u t I
s a y — d o n ' t u s e t h a t a s a n e x c u s e t o b u i l d
d u p l i c a t e s o f t w a r e .

10

C o n c l u s i o n

T h e s u c c e s s o f C O B O L h a s b e e n o v e r w h e l m i n g . I t s
a s p e c t s a n d c o n c e p t s h a v e e n t e r e d a n d m o d i f i e d o u r
w a y o f l i f e i n m a n y w a y s . T h e 1 9 7 9 M a r c h 1 5 i s s u e
o f C o m p u t i n g (t h e B r i t i s h w e e k l y) r e p o r t s h e a r i n g
a l u n c h e o n c o n v e r s a t i o n l i k e t h i s : " A s a m a n a g e r ,
h e ' s a l l D a t a D i v i s i o n a n d n o P r o c e d u r e D i v i s i o n " .

N e v e r t h e l e s s , I w a n t t o r e m i n d y o u t h a t t h e j o b
i s n ' t d o n e , i t c a n b e d o n e b e t t e r , a n d i t w i l l p a y
o f f t o d o i t b e t t e r . G e t i n s t e p w i t h t h e m i c r o
c o m p u t e r p e o p l e ; t h e y ' r e d o i n g t h i n g s w e h a v e s a i d
c o u l d n ' t b e d o n e .

I t h a s b e e n f u n t a l k i n g t o y o u . I h o p e t h a t w e
h a v e n e w a c h i e v e m e n t s t o b e p r o u d o f t e n y e a r s
f r o m n o w . I w a n t t o e x p r e s s , o n y o u r b e h a l f a n d
m i n e , a p p r e c i a t i o n f o r t h e v i s i o n o f t h e k n o w n
p i o n e e r s , f o r t h o s e w h o h a v e l e f t (l i k e R o y
G o l d f i n g e r) , f o r t h o s e t h a t w o r k e d b e h i n d t h e
s c e n e s (l i k e M a r y H a w e s , S a u l G o r n , W a l t e r
C a r l s o n , a n d m a n y o t h e r s) , f o r R i k B l a s i u s a n d t h e
h e l p f u l C a n a d i a n G o v e r n m e n t , a n d f o r t h o s e w h o
h a v e l a b o r e d t h e s e t w o d e c a d e s t o e n l a r g e a n d i m
p r o v e t h e w o r k .

11

