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SUBJECT: MACHINE METHOD -  ITERATIVE SOLUTION OF GAMES 

By: Robert W. Bemer 

The method outlined here is for the solution of a 
20 x 20 game with three-digit elements in its pay-off matrix, as 
programmed for the Card-Programmed Electronic Calculator. It may 
be used for the solution of any game where the pay-off matrix has 
20 or fewer rows and columns, such as an 8 x 17 matrix. It may 
also be used, with a slight loss in accuracy, for matrices with 
elements of more than three digits; in this case, all  elements 
should be reduced by a constant factor to make the largest 
corrected element equal to 999- If any elements are negative 
a constant must be added to all elements to make them positive. 
The number of iterations required for the solution of the game 
depends upon the number of digits of accuracy required. It is 
conceivable that a sixth digit may be required in the running sums 
if  accurate work is being done. (You will note that only five 
storage positions have been allowed for each of the running sums.) 
This situation may be remedied in the middle of the process by 
subtracting a constant, C, from each of the running sums and then 
adding — to each of the values of and from that point on. 
The mechanics of the iteration process are explained in the paper 
P-/8B by Dr. George Brown of The RAND Corporation and may be 
further understood by examination of the illustrations attached 
to this paper. They are: 

Fig. 1 Wiring of Z+1 7 plug-board. 
Fig. 2 Program Sheet for 60L plug-board. 
Fig. 3 A 20 x 20 sample pay-off matrix with unique 

elements. 
Fig. U and 5 Key sheets which give the row and column 

numbers of any element in the sample matrix. 
(Note that for convenience the rows and columns 
are numbered 10 through 29 rather than the 
c o n v e n t i o n a l  1  t h r o u g h  2 0 . )  
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Fig. 6 Sheet indicating the punches in all  cards 
required. 

Fig. 7 A portion of the l ist  actually obtained in the 
solution of the sample game. 

I t  will be seen that the basic deck consists of two 
starter cards, twenty or fewer row cards, two row sum cards, a 
spacer card, twenty or fewer column cards, two column sum cards 
and a spacer card. This deck (with the exception of the starter 
cards, which are removed after the first pass) is fed into the 
417 repeatedly, each time representing a line of i teration. This 
basic deck is usually reproduced several times to form a convenient 

handful. The specific functions of these cards are: 

1. Starter cards -  Clear the storage where the pass or line 
number is maintained and determine a specific starting row. This 

arbitrary choice is made on the 604 board by altering the digits 
e m i t t e d  o n  p r o g r a m s  2  a n d  3 .  ( S e e  p r o g r a m s  1  t o  4 ,  ? i g .  2 ) .  

2„ Row cards -  Feed in columnwise the elements of a specific 
row through the field selector, add these new elements individually 
and again columnwise to the previous row sums, determine which of 
these amended sums is minimum and thereby make the choice of the 
next column to be added in. Referring to specific programs in 
Fig. 2: 

Programs 5 to 12 -  provide for indication of the column 
number of the row element currently being added. This is 
done by emitting a 10 on the first row card and raising the 
number by 1 for each new element. On program 9 the starting 
value of R min is established at 10. n 

Programs 13 to 17 -  add the element cumulatively to the 
old row sum. 

Programs 18 to 22 -  test the new row sum against the 
standing minimum row sum; if  i t  is smaller only, the old 
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minimum is replaced by the new and the columnwise indication 
correspondingly replaced. 

Programs ^3 to 24 -  build up the accumulative sum of 
row sums, pertinent to the checking device incorporated in 
the board. 

Programs *:5 to 26 -  send the various new sums to storage 
on Channel C. 

I t  may be noted here that Channel B reads in ten digits 
each time a row or column card is fed, the left hand five carrying 
the row sum for a specific column indication, the right hand five 
carrying the column sum for a specific row indication. Thus the 
row sum in column 13 and the column sum in row 13 are stored side 
by side, but only one sum is amended at a time. 

Regarding placement of the various elements on the row 
cards: For convenience in wiring through the field selector, 
columns 14 through 73 carry, in three digit divisions, the elements 
for rows 10, 20, 11, 21, 12, 22, 13, ,  2d, 19, 29. Columns 
1,  13 carry the column indication. This same arrangement occurs 
in the row sum cards. 

3 • Row sum cards -  Carry the sum of all  the elements in a 
specific row as a five digit figure, the left-most two (thousands) 
digits on the 130 card and the second three (units) on'the 131 
card. Referring to specific programs of Fig. 2: 

Programs 27 to 29 -  get the full five digit row sum in 
the counter. 

Programs 30 to 34 -  check to see that the row sum plus 
the old sum of row sums = the old sum of row sums plus the 
individual elements of the row accumulated one at a time. 
If this is not so, an error has occurred and the program 
repeat hue is impulsed stopping the computation. 
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Programs 35 to 45 ~ obtain the running value of V , to 

three whole numbers and two decimals rounded, for the specific 

line just calculated# This board may be used on a 40 program 

machine by substituting a single program of RO-MQ, RI-GS2 for 

programs 37 to 45, giving an unrounded value of V . 
—n 

Program 46 - sends the sum of row sums to counter-group 

2 for storage until the next 131 card comes up. 

The second row sum card contains a 9 in the operation code 

to summary punch from GS7 the next column chosen to be played, 

from GS2i and the line or pass number from GS3. If it is desired 

that only these values shall list on the 417, turn Set-up Change 
Switch No. 1 off. 

4. Spacer card - Allows time after summary punch. Program 

47 reads the next column to be played into the counter for listing. 

5, 6, and 7. Column cards, column sum cards and spacer 

caro — Read the same as Items 2, 3, and 4, substituting row for 

column, column for row, maximum for minimum, C max for R min. 
— n n ' 

larger for smaller and for V , counter grout) 3 for counter 
group 2. 

In order to expedite effective duplication of-this set-up, 

the sample matrix of Fig. 3 has been set up to show exactly how 

the decisions of play are made. The elements of this sample matrix 

consist of the numbers from 100 to 499 arranged randomly. Whenever 

possible an interpreted copy of the basic card deck for this matrix 

will be furnished along with the paper work. Also appended is Fig. 7, 

an actual portion of the solution of the game starting with row 11 

as the initial choice. If this is duplicated it may be assumed that 

your boards are in working order. Within the 119 passes shown. V max 
/ —• n 

= 303.21 ^pass 109) and min = 311.13 (pass 119), showing the 

actual value oi the game to be between these limits. 
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KEY-POSITION OF ELEMENTS IN SA,,iPLr MATRIX 

E l e m e n t  R o w  C o l  E l e m e n t  R o w  C o l  e l e m e n t  R o w  C o l  E l e m e n t  R o w  C o l  

1 0  0  1  0  1  8  1 5  0  2  8  2  5  2  0  0  1  3  1  5  2  5  0  2  1  2  9  
1 0  1  1  7  1  3  1 5  1  2  5  1  o  2  0  1  1  7  1  5  2  5  1  2  4  2  7  
1  0  2  1  2  2  8  1 5  2  2  2  2  3  2  0  2  2  3  1  2  2  5  2  1  4  2  6  
1 0  3  1  5  2  5  1 5  3  1  1  2  9  2  0  3  2  8  2  1  2  5  3  2  7  1  5  
1 0  4  2  3  2  8  1 5  4  1  3  1  0  2  0  4  1  0  1  6  2  5  4  2  0  2  0  
1  0  5  1  3  2  9  1  5  5  2  3  1  4  2  0  5  2  9  2  5  2  5  5  1  9  2  2  
1 0  6  2  2  2  0  1 5  6  2  1  1 .  2  2  0  6  1  4  2  3  2  5  6  2  8  2  8  
1 0  7  1  5  1  3  1 5  7  1  5  1  7  2  0  7  2  1  2  7  2  5  7  1  6  1  4  
1  0  R  1  0  1  7  1 5  8  2  3  2  7  2  0  8  2  8  1  3  2  5  8  1  6  2  4  
1 0  9  1  9  1  8  1 5  9  1  1  1  7  2  0  9  2  6  2  5  2  5  9  2  6  2  9  

1 1 0  2  2  1  5  1 8  0  1  4  2  7  2  1  0  1  4  1  0  2  6  0  2  2  2  1  
1 1 1  2  6  2  H  1 6  1  1  2  1  4  2  1 1  1  6  2  0  2  6  1  1  0  1  3  
1 1 2  1  5  2  7  1 6  3  2  6  1  1  2  1 2  1  2  1  8  2  6  2  1  7  2  8  
1 1 3  1  3  1  5  1 6  3  1  1  2  2  2  1  3  1  4  2  4  2  6  3  1  5  2  2  
1 1 4  1  1  2  5  1  r >  4  2  1  1  0  2  1 4  2  6  1  9  2  6  4  2  7  2  7  
1 1 5  1  5  2  1  1 6  5  2  2  1  4  2  1 5  1  3 .  2  4  2  6  5  2  5  2  6  
1 1 6  2  7  2  3  1 6  6  1  9  2  6  2  1 6  2  4  2  2  2  6  6  2  7  1  2  
1 1 7  1  5  1  4  1 6  7  2  5  2  5  2  1  7  2  4  1  4  2  6  7  2  7  1  6  
1 1 8  1  3  2  5  1 6  8  2  3  1  5  2  1 8  2  6  2  2  2  6  8  2  4  . 1  6  
1 1 9  2  5  2  2  1 6  9  1  8  2  0  2  1 9  2  3  2  4  2  6  9  1  5  1  0  

1 2  0  1  8  1  1  1 7  0  1  7  2  6  2  2  0  1  0  2  4  2  7  0  2  6  1  6  
1 2  1  1  9  1  0  1 7  1  2  8  2  9  2  2  1  1  2  1  7  2  7  1  2  0  1  6  
1 2  2  1  1  2  4  1 7  2  1  7  2  7  2  2  2  1  0  1  o  2  7  2  2  9  2  7  
1 2  3  2  0  2  2  1 7  3  2  0  1  0  2  2  3  2  0  1  4  2  7  3  2  3  2  3  
1 2  4  2  1  2  1  1 7  4  1  7  2  4  2  2  4  2  1  2  4  2  7  4  1  6  2  9  
1 2  5  1  3  1  9  1  7  5  1  4  1  5  2  2  5  1  1  1  9  2  7  5  1 .  0  1  2  
1 2  6  1  2  2  3  1 7  6  1  o  2  8  2  2 6  1  3  2  7  2  7  6  2  7  1  8  
1 2  7  2  8  1  7  1 7  7  2  2  1  8  2  2  7  1  0  2  f t  2  7  7  1  9  1  9  
1 2  8  2  5  1  7  1 7  8  2  6  1  3  2  2  8  2  9  1  1  2  7  8  1  8  1  0  
1 2  9  1  7  1  4  1 7  9  1  3  1  4  2  2  9  2  5  2  4  2  7  9  2  2  2  4  

1 3  0  1  4  1  2  1 8  0  1  9  2  1  2  3  0  2  9  1  4  2  8  0  2  7  2  1  
1 3  1  2  3  1  3  1 8  1  1  1  1  0  2  3  1  2  5  2  1  2  8  1  1  1  1  6  
1 3  2  1  6  2  3  1 8  2  2  2  1  9  2  3  2  1  1  1  4  2  8  2  2  4  2  4  
1 3  3  2  2  2  8  1 8  3  2  8  1  6  2  3  3  1  7  1  1  2  8  3  1  2  1  3  
1 3  4  1  0  2  3  1 8  4  2  5  2  0  2  3  4  1  0  1  4  2  8  4  2  5  1  5  
1 3  5  2  6  2  7  1 8  5  1  7  1  0  2  3  5  1  2  2  4  2  8  5  1  7  2 9  
1 3  6  1  2  1  9  1 8  6  1  7  1  7  2  3  6  2  4  1  9  2  8  6  2  1  2  6  
1 3 7  2  0  1  5  1 8  7  2  7  1  o  2  3  7  2  3  1  0  2  8  7  1  2  1  6  
1  3  B  2  4  2  1  1 8  8  1  9  1  6  2  3  8  2  5  2  8  2  8  8  2  1  1  8  
1 3  9  1  0  2  7  1 8  9  1  8  1  8  2  3  9  1  6  1  9  2  8  9  1  0  2  0  

1 4  0  1  7  1  6  1 9  0  2  2  2  7  2  4  0  1  0  2  5  2  9  0  1  5  1  9  
1 4  1  2  6  1  7  1 9  1  2  3  1  7  2  4  1  2  1  1  9  2  9  1  1  4  1  7  
1 4  2  1  1  1  5  1 9  2  2  4  2  0  2  4  2  2  9  1  3  2  9  2  1  1  1  3  
1 4  3  2  7  2  9  1  9  3  1 3  2  0  2  4  3  2  9  2  3  2  9  3  2  4  1  3  
1 4  4  1  7  2  1  1 9  4  2  9  1  0  2  4  4  2  0  2  1  2  9  4  1  5  1  1  
1 4  5  1  6  1  5  1 9  5  1  9  2  5  2  4  5  2  5  2  3  2  9  5  2  6  2  6  
1 4  6  2  2  2  6  1 9  6  2  1  2  5  2  4  6  1  9  2  3  2  9  6  2  3  2  6  
1 4  7  2  3  1  8  1  9  7  2  7  2  6  2  4  7  1  5  2  3  2  9  7  2  7  1  4  
1 4  8  2  5  2  7  1 9  8  1  2  2  2  2  4  8  1  1  2  6  2  9  8  1  8  2  1  
1 4  9  2  8  1  4  1 9  9  1  ?  l  1  0  2  4  9  1  2  i  ;  2  9  9  2  0  2  8  

Fig. 4 



KEY-POSITION Qp ELEMENTS IN SAMPLE MATRIX 

.. — 

E l e m e n t  R o w  C o l  
3  0  0  2  0  1  8  
3  0  1  1  6  2  6  
3  0  2  2  6  2  1  
3  0  3  2  3  2  5  
3  0  4  2  9  2  6  
3  0  f t  2  9  1  6  
3  0  6  1  6  1  1  
3  0  7  2  0  1  1  
3  0  8  2  7  2  2  
3  0  9  2  7  2  8  

3  1 0  2  0  1  2  
3  1 1  1  4  2  8  
3  1 2  1  8  2  6  
3  1 3  2  6  1  4  
3  1 4  2  3  1  6  
3  1 5  2  4  2  9  
3  1 6  1  f t  1  2  
3  1  7  2  2  1  0  
3  1 8  2  3  2  0  
3  1 9  2  2  1  7  

3  2  0  2  2  1  2  
3  2  1  2  6  1  2  
3  2  2  2  0  2  9  
3  2  3  2  4  1  0  
3  2  4  1  6  2  7  
3  2  5  1  4  2  2  
3  2  6  1  9  2  9  
3  2  7  2  7  1  9  
3  2  8  2  8  2  7  
3  2  9  1  4  1  9  

3  3  0  2  8  2  6  
3  3  1  2  4  2  6  
3  3  2  1  5  1  8  
3  3  3  1  7  2  5  
3  3  4  1  3  2  2  
3  3  5  2  4  1  5  
3  3  6  2  0  1  7  
3  3  7  1  3  1  2  
3  3  8  2  4  2  3  
3  3  9  2  4  2  5  

3  4  0  1  1  2  8  
3  4  1  . 1  f t  2  0  
3  4  2  2  4  1  1  
3  4  3  2  f t  2  9  
3  4  4  1  0  2  9  
3  4 f t  1  8  2  8  
3  4  6  2  0  2  3  
3  4  7  2  1  1  4  
3  4  8  2  2  1  1  
3  4  9  2  0  1  3  

Element Row Col Element Row Col Element Row Col 
3  5  0  
3  5  
3 5 8 
3  5  
3  5  
3  f t  
3  5  6  
3  5  
3  5  8  
3  5  9  

3  6  
3  6  
3  6  
3  6  
3  o  
3 b 5  
3  6  6  
3  6  7  
3  6  8  
3  6  9  

3  7  0  
3  7  1  
3  7  8  
3  7  3  
3 7  4  
3  7  5  
3  7  6  
3  7  7  
3  7  8  
3  7  9  

3  H  a  
3  8  1  
3  8  2  
3  8  3  
3  8  4  
3  8  5  
3  8  6  
3  8  7  
3  8  8  
3  8  9  

3  9  0  
3  9  1  
3  9  2  
3  9  3  
3  9  4  
3  9  5  
3  9  6  
3  9  7  
3  9  8  
3  9  9  

2  9  
2  f t  
1  4  
1  6  
1  2  
2  
1  3  
1  8  
2  8  
1  9  

1  8  
2  3  
2  0  
2  4  
1  3  
1 1 
1  6  
1  5  
2  8  
1  O  

1  8  
1  6  
2  3  
2  2  
1  4  
1  6  
2  1  
1  7  
1  2  
1  6  

2  7  
2  9  
2  5  
1  4  
2  1  
1  9  
2  9  
1  0  
2  0  
1  2  

2 1 
9  

1 0 
2  f t  
1  1  
2  8  
2  3  
1  3  
2  2  
1  3  

2  8  
1 8 
1  4  
1  7  
1  1  
1  0  
2  6  
1  7  
1  9  
1  2  

2  9  
1  9  
2 4  
2  8  
2  3  
2  3  
1  3  
2 4  
2  0  
1  5  

2  4  
2  8  
2  2  
2  9  
2  9  
1 2 
1  7  
1  2  
2  1  
. 1  8  

2  4  
I 5 
1  9  
2  1  
1  1  
1  7  
2  1  
2  1  
2  7  
1  f t  

2 2 
1 5 
1  9  
1 6 
1  2 
2 2 
2  9  
1 6 

3  
1  7  

4  0  0  
4  0 1  
4  0  2  
4  0  3  
4  0  4  
4  0  5  
4  0  6  
4  0  7  
4  0  8  
4  0  9  

4  
4  
4  
4  
4  
4  
4  
4  
4  
4  

4  
4  
4  
4  
4  
4  
4  
4  
4  
4  

2 0 
2 1 
2 2 
2  3  
2  4  
2  5  
2 6 
2  7  
2 8 
2  9  

4  
4  
4  
4  
4  
4  
4  

3  0  
3  1  
3  2  
3  3  
3  4  
3  5  
3  6  

4  3  7  
4  3  8  
4  3  9  

0  
1 
2 
3  
4  
5  
6  
7  
8 
9  

1  3  
1  8  
2  7  
1  8  
2  9  
2  1  
2  6  
1  3  
1 8 
1  9  

2  6  
2 8 
1  4  
2  7  
1 ft 
1  9  
2  1  
2  1  
2  6  
2  f t  

1 8 
2  0  
1  4  
2  9  
2  0  
1  9  
1  2  
1  9  
1  6  
2  4  

1  6  
1  2  
2  7  
1  2  
2  7  
2  3  
2  9  
1  1  
1  8  
2  2  

2  1  
1  9  

4  
1  3  
1  6  

7  
2  9  
2  9  
2  8  

ft 

2 8 
2  7  
2  
1  
2  
2  
1  
2  
2  
1  

1  
1  
1  
2  
1  
2  
1  
2 0 
2  3  
1 1 

1  9  
1  9  
1 1  
2 2  
2  6  
2  8  
2 ft 
1  3  
2  1  
1  8  

1  6  
2  7  
1 1 
2  6  
1  7  
1  1  
1  2  
1  8  
2 2 
2  5  

r >  
0  
0  
1  
2  
9  
4  
9  
1  

4  f t  0  
4  f t  
4  f t  2  
4  5  3  
4  f t  4  
4  5  5  
4  f t  6  
4  f t  7  
4  5  8  
4  5  9  

4  
4  
4  
4  
4  
4  
4  
4  
4  
4  

4  
4  
4  
4  
4  
4  
4  
4  
4  
4  

6 0 
6 1 
6 2 
6  3  
6  4  
6  5  
6 6 
6  7  
6 8 
6  9  

7  0  
7  1  
7  2  
7  3  
7  4  
7  5  
7  6  
7  7  
7  H  
7  9  

4  8  0  
4  8  1  
4  8  2  
4  8  3  
4  8  4  
4  8  f t  
4  8  6  
4  8  7  
4  8  8  
4  8  9  

9  0  
9  1  
9  2  
9  3  
9  4  
9  5  
9  6  
9  7  
9  8  
9  9  

8  
8  

2  
1  
1  
2  
1 
2  
1  
2  

1  
1  
2 
1  
1  
1  
1  
1  
1  
1  

0  
2  
1  
4  

8  
3  
2  
7  
ft 
9  
7  
2  
8  
7  

2  7  
2 8 
2 6 
2 8 
2  1  
2 0 
1  1  
1 8 
2  9  
2  f t  

8  
9  
5  
4  
1  
4  
6  
0  
5  
9  

2  1  
9  6  
2  4  
1  7  
2  9  

1  
8  

1 ft 
1  6  

1 6 
2  4  
2  4  
2  5  
2 8 
2 1 
1 1 
2 2 
2  7  
1  7  

1  4  
1 8 
1  6 
2  3  
2  9  
2  4  
2 2 
2  9  
1  3  
2  0  

1  3  
2  3  
2  0  
1 
1 
2 
1  
1 
1  
1 

o 3 
8 1  

1 
1 
2  
1  
1 
2 
1  

4  
8 
1 
6 
0  
2 
6 
4  

2  3  
1  5  
1 2 
1 8 
2  9  
2  0  
1  8  
2 6 
2  5  
2 0 

F i g .  5  



THESE COLUMNS CHAINS WITH 
A DIFFERENT MATRIX 

PERMANENT 
PUNCHES 

colunns 
6  6 ?  7 7 7  
S 9 0 12 3 

colunns 
DESCRIPTION 

STARTER CARDS BLANK 
1 '3 1 
4  0  9  
3  5  9  

1 7  3  
3  0  7  
3  1 0  
3  4  9  
2 2 3 
1 3  7  
2  7  1  
3  3  6  
3  0  0  

1 1 0  
1 1 1  
1 1 2  
1 1 3  
1 1 4  
1 1 5  
1 1 6  
1 1 7  
1 1 8  
1 1 9  
12 0 
12 1 
12 2 
1 2  3  
1 2  4  
12 5 
12 6 
1 2  7  
12 8 
1 2  9  

ROW CARDS 

4  3  9  
3  9  1  
1 3 8 
3  8  5  
1 0  9  
2  7  7  
4  4  1  
13 0 
2  5  5  
2  4  6  
4  6  5  
1 9  5  
16 6 
4  1 5  
4  2  5  
5 3 6 

2  0  4  
10 8 
10 0 
3  9  2  
2  8  9  
3  8  7  
4  8  7  
1 3  4  
2 2 0 
2  4  0  
2  2  7  
1 3  9  
17 6 
3 ^ 4  

COMMON XT IN 
COLUMN 74 

3  4  6  
3  6  2  
4  7  5  
4  2  4  
3  8  8  
2  9  9  
3  2  2  

(T0~5 6"0~6 
2 6 4  0 6 4  

ROW SUM CARDS 
SPACER CARD 8 8 8 

2  8  9  
4  9  5  
4  9  9  
1  9  3  
4  4  2  
3  4  1  
2 11 
4  6  9  
1 6  9  
4  4  1  
2  5  4  
4  1 7  
10 6 
3  1 8  
19 2 
1 8  4  
4  7  2  
4  0  2  
3  6  8  
4  0  4  

COLUMN CARDS 

COMMON XY IN 
" COLUMN 80 

0 0 6  0 0 6  
0 4 7  2 1 8  

0  0  4  0  0  6  
8 1 2  6 6 6  

COLUMN SUM CARDS 

COMPONENTS OF BASIC DECK - f 0 TIE ' OTRIX 

Fig. 6 



CAUTION: CLEAR COUNTER GROUPS AND AUX. rTOH.iGE ON FINAL TOTAL BEFORE RUNNING 

ROW 11 TO START 

1 n 1 
4  7  6  
. 3  0  4  
2  9  2  
S 3 2  
14 2 
2  B  1  
1 6  9  
4  3  7  
2 2 5 
4 9 5 

B  4  
6  3  
6  5  
2 2 
1  4  

2  4  8  
4  5  8  
3  4  0  
1 5  3  

c c  7  6  1  ̂  

C O L U M N  2 5  

4  
1 
3  
1 
1 

7 

10 1 
4 7 6 
3 9 4 
3 9 2 
2 32 
14 2 
2 0  1  
1 5 9  
4 3 7 
2 2 5 
4 9 5 
4 0 4 
16 3 
3 6 5 
12 2 
1 1 4  
2 4 0 
4 5 0 
3 4 0 
1 5 3 

SUM OF ELEMENTS OF ROW 11. 

CHANNEL B 
a, 

2  4  0  1 8  1  
1 1 4  4  7  6  
4  2  6  3  9  4  
1 1 8  2  9  2  
4  5  3  2  3  2  
1 0  3  1 4  2  
4  9  8  2  8  1  
3  3  3  1 5  9  
4  0  8  4  3  7  
1 9  5  2  2  5  
4  7  5  4  9  5  
1 9  6  4  8  4  
4  3  9  1 6  3  
3  0  3  3  6  5  
3  3  9  1 2  2  
1 6  7  1 1 4  
2  0  9  2  4  8  
4  1 3  4  5  8  
1 5  0  3  4  0  
2  0  5  1 5  3  

5-j 
<-7 8 4 

CHANNEL 

10 1 
4  7  6  
3  9  4  
2  9  2  
2  3  2  
14 2 
2 0 1 
1 5  9  
4  3  7  
2  2  5  
4  9  5  
4  8  4  
1 6  3  
3  6  5  
12 2 
1 1 4  
3  4  8  
4  5  8  
3  4  0  
1 5  3  

- ,57 6 1 
SUM OF ROW SUMS SO FAR 

•SUM OF ELEMENTS'OF COLUMN 25 

2 4 0 
1 1 4  
4 2 6 
1 1 8  
4 5 3 
10 3 
4 9 8 
3 .3 3 
4 0 8 
19 5 
4 7 5 
19 6 
4 3 9 
3 0 3 
3 3 9 
16 7 
2 0 9 
4 13 
15 0 
2 0 5 

MINIMUM ROW ELEMENT 
INDICATES COL 25 TO BE FLAYED NEXT 

LINE, 

5 76 1 1 1 4,0 0 

7 -il 
5 

^ COLUMN BEING PLAYED 

MAXIMUM COLUMN ELEMENT 
INDICATES ROW 16 TO 
BE PLAYED NEXT 

5 7 8 4 4 9 8.0 0 1 8,0 0-« 1 
7 ^ 

Fig.  7 



-ROW 16 
CHANNEL B 

A 

3 0 6 
3 7 5 
3 6 6 
2 5 7 
14 5 
4 3 0 
3 5 3 
3 7 9 
2 3 9 
2 11 
4 2 8 
4 4 4 
13 2 
2 5 B 
4 9 8 
3 O 1 
3 2 4 
3 7 1 
2 7 4 

18 1 4 7 6 
3 0 4  
2 Q 2  
2 3 2 
14 2 
2 8 1 
15 9 
4 3 7 
2 2 5 
4 9 5 
4 8 4 
16 3 
3 6 5 
12 2 
1 1 4  
2 4 8 
4 5 8 
3 4 0 
15 3 

2 4 0 
1 1 4  
4 2 6 
1 1 8 
4 5 3 
10 3 

9 8 
3 3 
0 8 
Q 5 

4 7 5 
1 Q 6 
4 3 9 
3 0 3 
3 3 9 
16 7 
2 0 9 
4 13 
15 0 
2 O 5 

CHANNEL 

^ C 5 7 7  
A SUM OF ELEMENTS 

OF ROW 16 

5 7 8 4 
SUM OF COLUMN 
SUMS SO FAR 

6  6  7  
7  8  2 
7 6 9 
6 5 8 
4 8 9 
2  8  7 -
7  1 1  
5 12 
8 16 
4 6 4 
7  0  6  
9 12 
6  0 7  
4  9 7  
3 8 0 
6 12 
5 4 9 
7  8  2  
7  1 1  
4  2 7  

cN"1 

2 4 0 
1 1 4  
4 2 6 
1 1 8  
4 5 3 
10 3 

9 8 
3 3 3 
4 0 8 
19 5 
4 7 5 
19 6 
4 3 9 
3 0 3 
3 39 
16 7 
2 0 9 
4 13 
15 0 
2 0 5 

2 3 3 8 

1 6  
ROW B2ING FLAYED 

MINIMUM ROW SUM 
"INDICATES COLUMN 15 TO 
BE FLAYED NEXT 

IINEV 

JT - COLUMN 15 
SUM OF ROW SUMS 
SO FAR (= 5761 -I 6577) 

1 4 3.5 (W 2 -

V —N 

3 6 9 6 6 7 2 4 0 
14 2 7 8 2 1 1 4  6 6 7 6 0 9 
3 8 9 7 6 9 4 2 6 7 8 2 2 5 6 
2 0 0 6 5 8 I I P  7 6 9 8 15 
17 5 4 8 9 4 5 3 6 5 8 3 18 
4 14 2 8 7 10 3 4 8 9 6 2 8 
14 5 7 11 4 0 8 2 8 7 5 17 
2 0 1 5 12 3 3 3 7 11 6 4 3 
4 0 3 8 16 4 0 8 5 1 2 5 3 4 
3 9 1 4 6 4 19 5 8 16 8 11 
13 7 7 0 6 4 7 5 4 6 4 5 8 6 
4 7 4 9 12 19 6 7 0 6 6 12 
1 1 0  6 0 7 4 3 9 9 12 6 7 0 
16 8 4 9 7 3 0 3 6 0 7 5 4 9 
3 3 5 3 8 0 3 3 9 4 9 7 4 71 
2 8 4 6 12 16 7 3 8 0 6 7 4 
4 9 1 5 4 9 2 0 9 6 12 4 5 1 
2 5 3 7 8 2 4 1 3 5 4 9 7 0 0 
4 11 7 11 15 0 7 8 2 6 6 6 
3 8 1 4 2 7 2 0 5 7 11 5 6 1 

53 4 2 7 5 8 6 
<>8 7 3 

(STI,: OF ELEMENTS SUM 
1 2 3 3 R-^ 

OF ROW ' 1 1 6  5  7  

1 5 
X COLUMN BEING FLAYED 

INDICATES ROW 12 TO 
BE FLAYED NEXT 
(MAXIMUM COLUMN J SUM) 

OF COLUMN 25 SUMS SO FAR SDK OF COLUMN SUMS 
SO FAR (= 5784 + 5873) 

4 0 7.5 0 

7 

2  

n 



t 

R - Section 

STEP ft . 
STEP jt . 
STEP 41 

!t . 

STEP n 
0 

Keypunch cards from the attached manuscript. 

Second operator KP cards from attached manuscript. 

Compare and correct, saving both corrected decks. 

—_— Adjoin both decks and duplicate to handful size. Place 
in front of this handful a starter card,with a 1 in col 6 and XY in col-?L 
and a blank. ,ire a 521 panel to summary punch (see page U of CSM 315). ' 
Run the deck on the games board with Setup Change Switch 1 OFF. Continue 

eit5®r hand °r right hand five diSits of Channel B overflow uo 100,000. tart with a row cnoice of . 

CARD FORM 

Choice Line V or V | -n n J 
1 2 3 K 5 



20 x 20 GAME MATRI X — KEYPUNCH MANUSCRIPT 

in 
;o l  OPER B C N 10 20 I I  21 12 22 13 23 14 24 15 25 16 26 17 27 18 28 19 29 
in 
;o l  

235 84 740 10 
35X I I  110 11 
3  5 X 12 120 12 
3 5X|  13 130 13 
35x '  14 140 14 
35X 15 150 1 5  

35X 16 160 16 

|35X 17 170 17 
35X 18 180 18 
35X 85 750 19 
35X 86 760 20 
35X 21 210 21 
35 X 22 220 22 
35X 23 2 30 23 
35X 24 240 24 

35 X 25 250 2 5 

35X 26 260 26 

35X 27 270 27 
3 5 X 28 280 28 
35X 87 770 29 

16S X 00 000 30 80 

I 799 82 720 31 74 

888 00 000 00 

245 84 740 10 
45X! I I  110 I I  

I45X 12 120 12 
|45X 13 130 13 
|45X 14 140 14 1 
|45X 15 150 15 
I45 X 16 160 16 
|45X 17 170 17 

I45X 18 180 18 

|45X 85 750 19 
[45X 86 760 20 
14 5X 21 210 21 
[45X 22 220 22 

|45X 23 230 23 

I45X 24 240 24 

|45X 25 250 25 
|45X 26 26C 26 
|45 X 27 270 27 

|45X 28 28C 2 8 

|45 X 87 77C 29 

I 66X OC OOC 30 80 

|799 83 730 31 
74 

1 888 00 OOC 00 



COLUMN CHOI CI 7HS JTTNCY HOW CHOIC-i FHEQUENCY CHOIC 

Section 

Havinv completed the required number of lines on step 
. * fl.yth Huoi STEP • n- vinp: caapicbcu *—— - —r-

take an even number of summary cards (row :nd column choice for each line) and 
order tofd!!cHn V ; split the deck in half by card count. The lower half 
deck contains V and^olumn choice, the upper half Vr and row choice. 

ZS_ V 

V max = at line # ; V, 2nd max = at line 
_« - —— 

V min = at line J! ; \ 2nd min = at line 

R ^ 
These four values will be found in the two cards on either side of the break in the 
deck Tort each half deck on line number. Usin^ the sorter, sum the row c. i-
frequencies SSaliy then thru this line . , then thru all the lines. Mow 

sun the column choice frequencies thru thisliney , thru this line y^and then 

thru all the lines. Tabulate in chart below. 

CARD FOHM: How or column choice in columns 1 and 2 
Li n e  n u m b e r  i n  c o l u m n s  3 »  U ,  5  
V or V in columns 6 to 10 
—n n 



PROCEEDINGS 

OF THE SECOND SESSION 

- GUIDE -

February 13-15, 1957 
Conrad Hilton Hotel 

Chicago, Illinois 



Appointment of Standing Committees 
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Appendix Z 

REPORT ON HISTORY AND USE 
OF AUTOMATIC CODING 

MR. R. W. BEMER of IBM: This business of the coding systems 
cannot be covered in small talk such as this. It is an unholy monster 
and has been going on for a number of years. Like many field of know
ledge, it has to divert itself greatly before we can cut it down to size 
again. 

Some of you here have been in this business for quite a bit of 
time and are familiar with many of the things I would like to say here. 
Others of you, I am sure, are not too familiar with computing systems 
outside of the 702 and 705 and perhaps may not be aware of some of the 
history and some of the reasons these things came into being. 

Of course, it has not always been as good as it is today^and, 
furthermore, what we now think is a good thing is terrible, it is going 
to be improved in the future. 

Inasmuch as I can cut this thing down, I would like to say that 
many of these things I would have otherwise talked about here can be 
found in some articles in Automatic Control magazine for March and 
April and I think will provide some means of keeping this information 
on tap. More or less the history of this business and all these articles 
are directed towards the engineers but then I believe it applies equally 
to people in the commercial field. 

I have a rather large list here which you certainly are welcome to 
look at later on. I have some 83 automatic coding systems which are 
completed. The first of this was established in February of 1951 and, 
as I recall that date, things at that time were in pretty sad machine 
language at best. 

The machine language at best is a poor language to work with for 
it does not have any relationship, that I can find, to the program of 
solving language and, if we never see it again, it will be too soon. I 
hope that you feel the same way that I do because most of you are in 
business to solve problems of one description or other. 

I don't think that you should have any concern with the computer 
itself. I think that you should be able to state your problem in con
nection with any particular model and in a language that the computer 
will work for you. 
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Report on History and Use 
of Automatic Coding - Continued 

Appendix Z 

When you speak of the machine language, this means our lowest 
level, the only language which the computer will understand. We 
realize that we code problems now to do work, that the automatic cod
ing systems are further extensions of machine usage and so thev will 
take over still another facet of our work. In other words instead of* 
doing quickly the problems that used to take a lot of handwork and 
comptometer work, the machine takes over in the same way and does 
a good deal of the repetition in programming which we formerly had 
to do. This is undoubtedly very fine but then it is not the end by any 
means. 

The next step up beyond that will be to provide learning and 
intelligence in these programs and also let us guys that have to worrv 
about making these automatic coding systems take advantage of the 
machine also, and I will describe how this might be done. 

,, * thlnk J-h(?se of you who have worked with machine language, with 
J ' symbolic coding and so on, have enough experience in this 

so that you are aware of the great savings you can make in manpower. 
This computing business has been growing, at least ever since I have 
been in it and if we keep on doubling people or programming every year 
pretty soon the entire population of the United States is going to be 
doing programming. Therefore, to eliminate the bottleneck, we have 
o get good automatic coding systems going, far superior to the ones 

that we have now. 

I thim-,. that this will probably effect, within the next two years 
savmgs on the order of ten to one, wherein one programmer will be'able 
to do the work of ten and, if we can also do some other things we have in 
mind, we will be able to make savings on the order of one hundred to 
one. This will bring us down more to the realm of possibility. 

In order to bring this thing down, I think that we have got to be 
within a ratio of about fifty per cent of what we can do with automatic cod
ing systems as they exist now. We have got to write equations for opera
tions, the various statutes that are applicable and so on. There even if 
we get a very fine language with which to describe our problem 'it is 
going to be very difficult to cut it down too much more than we have now. 
It is true that we will put it into English and that will make savings but 
the processing is still quite large. 
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What I would like to quickly tell you about is some of the plans we 
have over at IBM to make this large savings for the future. The reason 
that I say this is because the very name of your organization, "Guide" 
should enable you to be guided by some of the things that I would like to 
tell you. I do not want to worry you about them but I would like to have 
you know as to what may be coming up in the future and slant your think
ing in that direction. 

The program, after it is written, is essentially a depository of the 
intelligence of the man that writes it. If you are doing a hand calcula
tion program, you can go through the thing because you have made the 
calculations and you know how to do it. However, suppose that someone 
else wants to do it and you have to teach them how to do it. If 500 want 
to do it then you have to essentially teach them in a class or teach ten, 
who, in turn, go out and teach the rest. 

With programming on the computer this is not necessary any more. 
The program, as you write it, has input and output from that point on 
and, after that, you do not have to know what goes on inside. All that 
you have to know is what you put in and what you want to get out on the 
basis of such and such a process. 

Now then, if we can do this sort of thing, we have reduced a good 
deal of our labor. Let me tell you how this will help us in the future. 

Two hundred years ago mankind was saddled with roughly a fifth 
of a horsepower and books were written at that time to prove that it was 
impossible to have more than that. However, as we know, we have 
increased that so that there is available, to every person in the United 
States, youghiy 200 horsepower at his own personal command. This is 
in line with the cars and other mechanical devices we have in this coun
try. We have extended our power here and it hasn't seemed to do us any 
harm. 

It is now to the point where things have progressed to the point of 
where they are pretty much beyond us. No one man is smart enough to 
take care of our social and economic problems any more and the only solu
tion is to expand our brain power and we do this by linking together 
various things. I believe that we can do this by linking together intelli
gence and knowledge of the people themselves in the problems. 
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Obviously there must be some correlation between these things and 
so this is what we have to do. We must devise learning programs for 
the computers. I realize that there are many learning programs of a 
simple nature. I now have reference to the work of Simon and Newell. 
They have developed a logic machine that I think is going to have a lot of 
implications. It is a computer but, instead of computing what you might 
consider payroll, they program a logic. 

The first problem they set the program to doing was proving the 
mathematical theorems. I would like to illustrate that on the board 
by the use of the normal triangle. This is a triangle and we have given 
here equal angles and the problem is to prove that the opposite sides 
are equal. Of course, we all know the technique used to do this. How
ever, the machine would do it differently. The machine has certain 
learning mechanisms in which it alters its own program so that a good 
programmer cannot predict what will finally be in the machine. Here 
is what the machine does. It says "I have a side angle and it may 
intersect. I know this by an angle side angle combination and, there
fore, I flip it over on itself. I will take a mirror image and drop it. 
Therefore, it is on its side, superimposed on the same place. The 
angle on the right is now the same angle on the left and so it must be the 
same triangle. Now the side that used to be on the right hand side is 
occupying the left hand position and the left hand side is now on the right 
and so they must be equal". This is a much more intelligent proof than 
the mathematics involved. Of course, this is only the start of these 
things. We can reconstruct exactly how the machine thought as it went 
around doing these things. 

Therefore, what we are doing now is trying to find learning pro
cedures such as this, whereby the machine may alter itself on program. 
It not only gives you a better and more efficient program but it will do 
things that we as a single person could never have thought of before. 

In the programming research of IBM, we have approximately 30 
people right now and we expect to have up to 75 by the end of the year. 
This recognizes just one thing, that a system for using a computer is as 
important as the computer and, furthermore, they must both roll off the 
line together in order to have a good system. 
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Therefore, IBM is committed to producing these systems and we are 
presently working on some better automatic coding languages which we 
think will be far superior to anything we have right now. Of course, it 
is going to take a few years before we can get them to you. 

I think that the interesting thing will be this, that you will not have 
to worry about switching. At this time we think that we are grown up 
enough in this business to look ahead and we are designing this language 
so that it will work on the most advanced computers. 

We want to have a supervisory operation so that the machine 
schedules itself, figures out what problems should be done next. If this 
is done then we feel that we will then have a good means of making 
various programs together. 

Furthermore, if I have sequence to do, I like to make my accounts 
payable and payrolls. If I have done payroll 34 and accounts payable 28 
and various things, I would like to be able to say, "Do these in this order. 
Accounts payable; payroll; Jones, Smith, Pete Brown". You have a 
these names in very, very large operations and you will find, I am sure, 
that your thinking with respect to both commercial sides of the prolems 
will be greatly facilitated if you keep this method in your head, and I 
expect many of you do that with profit there. 

IBM has expended a great deal of effort on making this language. 
I think so much that probably any one installation or even group installa
tion will not be able to afford it or profit by doing this particular thing 
any more. Before the transition of 705, I know of exactly one person 
who has a fair idea of what goes on all through the system. The people 
that did the components did not know anyone else's part very well, and 
this is only our present system. The system of three of four years in 
the future will be such that it will be probably worked on by forty people 
and not one of them will realize what goes on in anybody else's section, 
and then when you find these learning techniques and the machine 
statistically improves its own program, nobody, even the man who 
originally wrote it, will be able to recognize it. 

So, it is obvious that the manufacturer has the responsibility to 
produce and use these systems and he will have to do it and it will take 
plenty of manpower. 
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, N°w' 1 donTt like t0 hire any more than the next person, so I would 
like to leave you with something in mind. 

also a mirfrom^h?!1?^^ fr°m United Aircraft at Hartford and 
J V A University of California Radiation Lab work on this' 

while it was developed. They did three things by this. They helped the 
th™vSemntra COm,pletio" 01 system. They learned the" inside of 
wantPrtfn 1 fe r extent than the normal USer' s« if they wanted to make special variations for their own usage, they were in 
o"h« neeonTe inh?he;„The W3S' they some" the 
inforn^tion! busmess and shared and cross-pollinate ideas and 

lu°Vld like t0 Pr°P°se that something like this might be 
possible for the languages that IBM is going to develop now. We have a 
woman from Bell Telephone Laboratories now working on the Fortran 
systems with the 32, 000 word 704; and this apparently so far has 
worked out very well for both the people concerned and the general 
industry, because of the way we submit our system. 

It will be to your advantage to contribute the man, if you have him 
to spare, or have their services available, to use on a consXinTbas™ 
so we can try to work the language out. Be our guinea pig. Would you ' 
mind learning the language and trying it on a theoretical problem or 
one you have in your shop? Only in this way will we know how to make 

usag^ mSnkU;0mangUage * aPPliCaWe eTery0ne's purpose 
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Why the Engineer Should Know 
Computer Programming 

One of the major expenses of setting up a modern high-speed 
computer to do useful work is incurred by programming—the 
science of translating a problem to terms and instructions that 
the computer can understand and obey. 

The type of problem affects programming costs ranging from 
60 to 100% of the cost of the computer itself, which varies from 
approximately $30,000 to more than $2,000,000 in production 
models. If a program is poorly constructed, the running pro
gram can take many times as long as it normally should to pro
duce the desired answers. 

With a trend now developing toward giving engineers more 
direct access to computers, efficient use of these modern engi
neering tools charges them with new responsibilities. The con
cluding article next month will detail what the engineer should 
know about programming. 

BY ROBERT W. BEMER 
Programming Besearch Dept. 

International Business Machines 

• The engineer knows his own prob
lem best. Simple economy dictates 
that it is better for the engineer to 
learn ONCE how to program any prob
lem for the computer, rather than his 
explaining each new problem to the 
professional programmer with result
ant loss of time and effort. 

The man with the problem may also 
make decisions "on-line," during the 
course of the computer rim, from the 
physical implications of the answers 
as they are produced. These fine grad
ations of magnitude and interrelation 
are immensely more significant to the 
engineer, whereas the operator can 
seldom be instructed to properly make 
these often delicate decisions. The di
rect-user technique can greatly reduce 
the computational costs of certain 
types of problems by eliminating cal
culations along visibly fruitless lines 
of investigation. 

Actually there are two ways to re
duce costs of computer operations. 
One is to reduce the actual labor 
spent in programming, affecting sal
aries and overhead. The other is to 
make the program more efficient from 
the machine standpoint, thus mini
mizing operating costs in dollars per 
problem solved. Both of these are of 
vital interest to the engineer because 
of the worth of his time. Further
more, management must be kept con
vinced that this profitable tool actu

ally makes money for the company as 
well as reducing the complexity of the 
engineer's tasks. These factors con
tribute to the many sound reasons 
why the engineer should know and 
understand computer programming. 

Computers permit cooperative ef
forts between engineers which mini
mize the work each must do. When 
properly constructed, computer pro
grams are "open-ended" and allow re
finements and additions to be append
ed at any time. After seeking compe
tent advice, the engineer inexperi
enced in programming should make a 
modest start on a single portion of 
his problem, which may then be aug
mented as planned or as initial results 
demonstrate to be desirable. For 
library purposes, the program may 
then be considered to be the reposi
tory of the intelligence of the engi
neer concerning that particular prob
lem. 

Furthermore, a computer program 
tends to clarify and organize a prob
lem much as explaining it to another 
person does, except that it is less gul
lible. When properly named, this pro
gram is now available as a component 
in a larger problem. If a hand-calcu
lation is performed, only the results 
of that specific case remain; the meth
od itself may not be distributed to 
others except by a teaching process. 
When coded for a computer, however, 
it is available to everyone without re
gard to the internal process. It essen
tially becomes a "black box" and all 

the user must know are the specifica
tions for the input and output. By 
extension, it is possible for a group 
of engineers to unify the whole spec
trum of their work. This complex of 
programs now represents a unified 
system, although programmed switch
es are usually inserted so that certain 
portions of the calculation may be 
bypassed when not required for a 
specific application. 

Thus, the computer affords the en
gineer the long-coveted opportunity 
of shedding the drudgery of numeri
cal calculation in its most repetitious 
forms. If the computation essential to 
a certain class of problems is reduced 
to a generalized form which automat
ically produces correct answers merely 
upon specification of controlled input, 
then the. arithmetic-bogged engineer 
is free to do engineering in the true 
and creative sense. 

Vast engineering experience can be 
gained in a minimum time with a 
computer. Many of us know the old 
hand who can predict the exact per
formance of a new airplane, the pre
cise way to design a boiler, or the ex
act proportions for the most efficient 
bridge design. Few of these men are 
born; most of them achieved such 
abilities by intelligent correlation of 
the cross-effects of many thousands 
of variations in design, observed 
through the many years of their ex
perience. 

A computer can condense this ex
perience in time scale, processing 
many thousands of variations in a 
short time once the controlling condi
tions and formulae have been speci
fied. For example, instead of design
ing a single airplane and completing 
the analysis slightly before the proto
type is built, aircraft engineers now 
use computers to try hundreds of de
signs. They may make the final deci
sion and design selection on compara
tive epsts as well as performance. 
Then too, many problems are now 
solvable for which there does not exist 
a classical method and so were only 
roughly approximated heretofore. One 
would hardly use a rigorous method 
to solve a cubic equation on a com
puter; it is possible to solve a 50th 
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order equation by iteration in not 
much more time than it takes to push 
the computer START button. 

The engineer may find unexpected 
sources of computing power in his 
company. It is quite common for com
puters to make their advent at a com
pany through the accounting or pro
duction control departments. How
ever, the engineer who is cognizant of 
the characteristics of computers and 

programming is also aware that com
puters originally designed for doing 
commercial work are capable also of 
doing engineering work, and vice 
versa. Most computer manufacturers 
provide relatively easy programming 
systems for performing these dual 
roles. 

It is important for the engineer to 
know how to justify computers for his 
needs, and in what pattern the work 

TYPICAL ENGINEERING APPLICATIONS 
FOR COMPUTERS 

Until the engineer actually starts to investigate the programming 
process he is not likely to be aware of all the opportunities for a 
computer to serve him in his work. This list of typical existing 
engineering applications should prove to be a useful guide. 

AERONAUTICAL ENGINEERING 

Aeroelastic, utter and vibration analysis 
Armament systems evaluation 
Bombing systems evaluation 
Body and duct design, lofting 
Compressible flow studies 
Data reduction-telemetered, theodolite, 

wind tunnel 
Engine cooling 
Fire control pursuit course calculations 
Flight trajectory calculations 
Fuel cell pressure analysis 
Guidance problems 
Guided missile optimization studies 
Heating studies 
High-speed instrumentation 
Landing gear design 
Load, shear and moment calculations 
Nozzle design 
Optical system design 
Power plant performance calculations 
Radar equipment design 
Radar detection probabilities 
Radar echo studies 
Radio interference 
Radome studies 
Servomechanism calculations 
Sound pressure analysis 
Standard performance calculations 
Wind tunnel balance computing 

CHEMICAL ENGINEERING 

Absorption analysis 
Crude oil evaluation 
Flash vaporization 
Gas vapor cycle performance coefficient 
Liquid-vapor equilibrium calculations 
Mass spectrometer analysis 
Multi-source planar diffusion 
Pilot diffusion cascade data analysis 
Pipeline design, stress analysis 
Refinery simulation, production analysis 
Tankage studies 

MATHEMATICS 

Algebraic equations—real and complex 
Applied probability functions 
Complex polynomials 
Eigenvalues 
Fourier analyses 

Generation, tables of special functions 
Linear programming 
Matrix calculations 
Minimize functions of two variables 
Ordinary differential equations 
Random -number generation 
Random walks 
S i m u l t a n e o u s  l i n e a r  a n d  n o n - l i n e a r  

equations 
S i m u l t a n e o u s  l i n e a r  a n d  n o n - l i n e a r  

differential equations 
Transportation problems 

ELECTRICAL ENGINEERING 

Circuit design and minimization 
Circuit breaker design 
Motor and generator core losses 
M o t o r  a n d  g e n e r a t o r — c r i t i c a l  s h a f t  

speeds 
Power system—economic operation 
Power system—loading and losses 
Power sub-station studies 
Stability and transient studies 
Transformer design 

PHYSICS 

Atomic power studies 
Gamma ray attenuation 
Neutron absorption breakdown 
Nuclear calculations 
Upper atmosphere research 
X-ray crystal structure analysis 

STATISTICS 

Analysis of variance 
Auto-correlation and,power spectra 
Climatological statistical analysis 
Least squares curve fitting 
Multiple correlation and regression 
Multiple bivariate frequency distribu

tion tables of weather elements 
Quality control 
Standard deviations and means 

MISCELLANEOUS 

Bridge and truss design 
Traffic control 
Cut and fill—road-building 

load should expand. Certainly any 
computer should go into reasonable 
production to earn its keep from the 
moment it is installed. Even with th^fe 
most enlightened management it is 
difficult to properly explain the 
amount of preparation and program
ming which must be done in advance 
of delivery. This is additionally com
plicated by the axiomatic condition 
that while the most efficient machine 
for the engineer is the largest and 
most expensive, it is the most difficult 
to initially load and justify. 

Before the advent of automatic cod
ing systems, which relegate to the 
computer itself most of the work 
caused by the nature of the machine 
language, there was an "open-shop" 
versus "closed-shop" controversy in 
the computing field. Programming for 
a computer was a difficult and tedious 
art to learn, with many "housekeep
ing" functions to be performed again 
and again. Unfortunately, these func
tions were caused by the limita
tions of computers; they contributed 
nothing to the solution of the problem. 
Most computer-equipped companies 
leaned to the closed-shop, teaming a 
programming specialist with the en
gineer because they felt it was too dii^ft 
ficult and expensive to teach program
ming to all of their engineers. 

Although many inefficiencies were 
thus created, a few companies pio
neered the open-shop and we are in 
their debt for the methods that they 
developed and for forcing the auto
mation of coding. Today the contro
versy is simply settled. Available 
automatic coding systems (to be com
pletely listed in the first published 
directory of them next month—Ed.) 
now make it easy and worthwhile for 
the engineer to do his own program
ming in a "problem-solving" language 
rather than a "machine" language, 
thus fully realizing the benefits of the 
open-shop. All closed-shop people now 
concentrate on fabricating the much 
more intricate and intelligent auto
matic programming systems of the 
future. • • 



DATA Control 
What the Engineer Should Know About Programming 

How to Consider A Computer 
Engineering is taking on a "new look." Computers are the logi

cal and more powerful successors to the desk calculator and the 
slide rule, the previous working tools of the engineer. There is 
really only one major difference: because of their necessary size 
and cost to be so powerful, computers must be shared by a great 
many users. This means a new concept of shared system operation 
must be accepted by the engineer. 

To help you get oriented, here are some vital considerations 
affecting present and future computer use in your work and some 
helpful sources of further highly specialized information. 

BY ROBERT W. BEMER 
Programming Research Department 

International Business Machines 

• A computer should not be rented 
or purchased unless an automatic pro
gramming or coding system is fur
nished for its operation. The com
puter and the operational system con
stitute a matched pair, and one with
out the other is highly unsatisfactory 
from the point of view of getting 
work done at minimum cost. 

For engineering work, any auto
matic system should contain provi
sion for indexing and floating point 
operation, if these are not built in as 
hardware, for they are the two most 
vital features for easy usage. Index
ing allows for algebraic array nota

tion, which in turn makes for easy 
understanding of how a problem 
should be programmed. Floating 
point, although it may sometimes in
troduce either spurious accuracy or 
loss of it to the uninitiated, prevents 
a Gordian tangle of scaling difficul
ties from cluttering up the problem. 

HOW CODING SYSTEMS HELP 

Automatic coding systems have by 
no means reached their ultimate effi
ciency or sophistication, yet remark
able savings in programming costs 
have already been achieved, some
times by an order of 50! For the best 
of the present systems it is a reason
able estimate to say that they can, in 
general, reduce the programming 

costs and time to a tenth of that re
quired to code in stubborn machine 
language. 
There have been many attempts to 
relieve the burden of programming 
through special coding systems of all 
types. The data sheet on computer 
coding systems is not only an inter
esting history of growth, but is also 
presented for the edification of those 
now entering the field with incom
plete knowledge of what code to use 
for their machine. The time may come 
soon when you will be using a com
mon language exclusive of the char
acteristics of any particular computer. 
Thus, with an automatic translator 
for each different computer, a run
ning program may be produced for 
any desired machine from the single 
original problem mid procedure state
ment in the common language. Credit 
is due to Dr. Saul Gom of the Moore 
School of Electric Engineering for 
first championing these principles. 

GOOD COMPUTER OPERATION 
IS STATE OF USER'S MIND 

It is axiomatic that a computer 
should never stop, run useless prob
lems or be subjected to manual oper-
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ation and dial-twiddling. To do so 

beneMSHeT engineers of its Denent. Here are some detailed eon 
siderations pertinent to good com 
puter operation: 

ftlv Ca? d? °nIy what it is explic-
must°beerd t0 d°' and this ordering 
must be done eventually in its own 

• The reliability of most present-dav 
n7Pr"hf„i8S0high'ha'»»°' ™ 

sxrjrrSiiri.'T" Wrong aMw™ 

or m!Lf fr°m equation, 

•Allow for growth when doin? the 
original planning. Build ta ajj!* 

the Ir'8®8' "f" 00sts wil1 if e entire problem must be re-nro 
~ A stor?-Pr°gr*m may al
ways be corrected or augmented to 
give exactly what the engineer de 

toJoSthê  SPeda' effort repetition justifies the 

taction* Z??,"*' pIan ""Meter 
bl fr n efully 311(1 all°w flexi-
eteis Thpl ^? lndividual parameters I he computer may surprise von 
ui1„°rT(r.-tiat ""M "™«er ?al 

•? °Ptlmum conditions may be 
iZtfol Te T eXpeaM r i-• To make certain that the 

mitUan/ answers consistent 
with band-computations, first test the 
program on the machine for a specific 
combination Time this run. Then 
multiply this time by the total num 
if the P*r?me.ter combinations to see 
fost If M nal fGasible in time -3 
for- w 1 eters are combined 
for N values each, the total number 
of combinations is NM r 

For example, with 6 Parameters-
6 values for each will produce 46 666 
combinations; 5 wiu pLuce ifeg6 

4 will produce 4,096 ' 
The moral: Don't triple the cost of 
your problem if you are engineer to 

a curve through one less point 

FUTURE COMPUTER 
LANGUAGES R 

New synthetic languages are in rt,0 
process which will affect your use of 
computers. As problem-solving lan 
guages they will be much superior 1" 
Present systems in these ways: 

1. Even though the binary tyne of 

work, the need for th commerc>al 

2£S®!?SS 
»•"> He converse to oJpuHiuS 

W8USu1o?Vthe~ 

4U»:^R,S °FTHE 

sist of real at proeedures may con-
guage Idiom w m a 'ivlnS lan-
proSmTSi T" be s»f «•" the 
spoken language withl * 1 any 

age, with minor changes 
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I )  V I  A  < o n l r o l  

COMPUTER 

I.B.M. 
704 

SYSTEM NAME 
OR ACRONYM 

R-S 
Cage 
Fortran 
NYAP 
Pact 1A 
SAP 

Sperry-Rand 

1103 A 

Compiler I 
FAP 
Mishap 
Trans-Use 
Use 

DEVELOPED BY 

Las Alamos 
Oeneral Electric 
I.B.M. 
I.B.M. 
(See Pact Oraup) 
United Aircraft 

1103 
Chip 
Flip /Spur 
Rawoop 
Snap 

Boeingr Seattle 
Lockheed M.S.D. 
Lockheed M.S.D. 
Hoiloman A-F.B. 
Ramo-Wooldridge 

SYSTEM TYPE 

3  

Wright Field 
Convair San Diego 
Ramo-Wooldridge 
Ramo-Wooldridge 

I.B.M. 
705 

Autocoder 
Fair 
Print I 
Symb. Assem. 
SOHIO 

I.B.M. 
Eastman Kodak 
I.B.M. 
I.B.M. 
Std. Oil of Ohio 

Sperry-Rand 

Univac 
I. II 

AO 
A1 
A2 
A3 
AT3 
BO 
BIOR 
GP 
NYU 
Relcode 
Short Code 
X-l 

Remington Rand 
Remington Rand 
Remington Rand 
Remington Rand 
Remington Rand 
Remington Rand 
Remington Rand 
Remington Rand 
New York University 
Remington Rand 
Remington Rand 
Remington Rand 

I.B.M. 
702 

Autocoder 
Assembly 
Omnicode 
Script 

I.B.M. 
I.B.M. 
G.E. Hanford 
G.E. Hanford 

I.B.M. 
701 

Acorn 
Bacalc 
Douglas 
Dual 
607 
Flop 
Jcs 13 
Kompiler 2 
Naa Assembly] 
Pact I 
Queasy 
Quick 
Seesaw 
Shaco 
So 2 
Speedcoding 

Allison G.M. 
Boeing, Seattle 
Douglas Sm 
Los Alamos 
Los Alamos 
Lockheed Calif. 
Rand Corp. 
Ucrl Livermore 
N. Amer. Aviation 
(See Pact Group) 
Nets inyokern 
Douglas Es 

Los Alamos 
I.B.M. 
I.B.M. 

2 
2 

1,2 | 

1 

OPER. 
DATE 

Nov. 55 
Nov. 55 
Jan. 57 
Jan. 56 
Jan. 57 
Apr. 56 

Mar. 57 
Oct. 56 
Oct. 56 
Nov. 56 
Feb. 57 

Jun. 55 
Mar. 55 
Aug. 55 

Dec. 56 
Jun. 56 
Oct. 56 
Jan. 56 
May 56 

1.2 

Ctc 
Dot I 
Ugllac 

Purdue Univ. 
Electro Data 
United Gas Corp. 

I.B.M. 
650 

Ades II 
Bacaic 
Baiitac 
Bell 
Ctc 
Druco I 
Flair 
Mitilac 
Omnicode 
Sir 
Soap I 
Soap II 
Speed ceding 
Spur 

Whirlwind 

Burroughs 
Ferranti 
llliac 
Jehnniac 

Nore 
Seac 

Naval Ordnance Lab 
(toeing, Seattle 
M.I.T. 
Bell Tel. Labs 
Carnegie Tech 
I.B.M. 
Lockheed Msd, Ga. 
M.I.T. 
G.E. Hanford 
I.B.M. 
I.B.M. 
I.B.M. 
Redstone Arsenal -
Boeing, Wichita 

Algebraic 
Comprehensive] 
Summer ses. 

M.i.T. 
M.I.T. 
M.I.T. 

Easiac 
Magic 

Univ. of Michigan 
Univ. of Michigan 

1.2 

Transcede 
Dec order input] 
Easy fox 

Base 00 

Burroughs Lab 
Univ. of Toronto 
Univ. of Illinois 
Rand Corp. 
Naval Ordnance Lab 
Natl. Bur. Stds. 

I May 52 
Jan. 53 
Aug. 53 
Apr. 56 

| Jun. 56 
Dec. 56 
Apr. 55 
Jan. 55 
Feb. 54 
Apr. 56 
Feb. 51 
Jan. 56 
Apr. 55 
Jun. 54 

X I Propos 
X I Jul. 55 

Jul. 55 
May 53 
Mar. 53 
Sep. 53 
Mar. 53 
Dec. 53 

Jun. 55 
Jan. 55 
Jun. 53 

Apr. 53 
54 

Apr. 53 

FL PT 

M2 
M2 
M2 
M2 
M2 
M2 

M 
M 
M 
M 
M 
M 

SI 

M/Sl 

S 1 
S 0 
s 1 
S 2 

M/S | 2 
S I 0 
S 0 
— 1 
s 1 

COMMENTS 

S2 

SI 

SI 
SI 
SI 
SI 
51 
52 

S2 

— S 

2 
0 
2 
1 
1 

1 
1 
1 
1 
2 
2 
1 
1 
1 
1 
1 
1 

Modified Pact I for 704 
Official Share Assembly 

Magn. Tape Assembly + Correction 

Official for Use Organisation 

Similar to Flip 
Spur Unpacked, Twice as Fast 
One-Pass Assembly 
Used with Rawoop 

May bo Assembled on Acctng. Equip. 

— S 

S2 
SI 

s 
s 
s 
s 
s 

Fortran-Like, Output To A3, I + 
Runs on Univac I + II 
Primarily Business Data-Processing 
For Expert Programmers 

Runs on Univac I + II 

May be Assembled on Aectg. Equip. 
Super-Script 

X Ineomp 

Feb. 56 
Aug. 56 
Jan. 56 
Aug. 55 
Dec. 56 
Sep. 54 

| Feb. 55 
Jul. 55 
Dec. 56 

, May 56 
| Nov. 55 

Nov. 56 
Sep. 55 

I Aug. 56 

S2 

SI 

— I 1 
S 
s I o 

S2 

Nov. 52 
Jun. 53 

Aug. 54 

Aug. 54 
Sep. 52 
Oct. 55 
Feb. 56 

S2 

SI 
51 
52 

SI 
SI 
SI 

(M) 
SI 
(M) 

s 
s 
s 
s 
s 
s 
s 
s 
s 
(M) 
s 
s 

1 
1 
2 
0 
1 
0 
0 
2 
2 
2 
2 
2 
0 

Modification of 607 

Also Assembles 704 
Most Programs run on Pact IA 

Double Quick for Dbl Prec 

S2 
SI 
SI 

SI 
SI 

Ml 
SI 

M2 

S 
S 
S 
M 

Must Process on 701 
For all 650 models 

Output Processed by soap 

For all 650 models 
Must Process on drum 702 
Operates with soap I, II 

For all 650 models + variations 
Resembles 701 speedcoding 
For ail 650 models 

Pact Group Contains Douglas Sm, Es, Lb, Lockheed Cal, Nats, N. Amer., Rand 
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'HAN eoding0"^^™11 ,as lhe «*• 
tWMhtod tor ase by 

ab°ut the intent nf .? onable guess 
when some omission or J2ammer 

language rules occurs Li ?tl0n of 

oedures will be in™ ' arnmg pro-

statistics of previous o advantage of 
Pt»v. the pSr„r? » to ta-
TI».TOAY4INST?FCM,ES-
creativity where the It! °m °f 

may originate JL te Pressor 
>k. atateS from 

solved, rather than tv m to be 
-TO. TO STFNFR" •— "™-

eed^0^"" potion ,„rp„. 
been determined in baving 
the before-and-after ^ Jn.kages by 
the components Zj* for 
*«« Cario 
being used to determS / 6ady 

of occurrence 7° * fre<ple™ies 
bv.nehin^ethf°' vanous logical 
ftont »• 
by taking these tent,? • pro^ram 
<>.  TheTff lc t 'nc  s n s , f  
vartons and graded comZf n, 1 ?e 

computer system wiliT of tbe 

IkeprograiTcieirr^' 

£££*£* ~ aro 

•'ted which''w™e prog'"™ bfe ™e' 
computation, ^m^other ^evds 

coon l °l SVMB°« 

"Terms Used In A«-

B-boxes exist in^lrhi '"t6* re&isters or S) Simulated in th„„ne hardware. 
1) Limited form oitl" het,c language direetionally or h5' ,e'ther stepped uni-

certain registers T?rd only" having 
address positions Si Le to only certain combination). not compound (by 
be indexed'1 by°a™y any addres3 may 
registers. whiehm.„w°r.a c°mbination of 
or decremented hS o„ free'y Incremented sociated loon tnriSi., amount. Have as-PLOATING ^>T •? instructions, hardware. ' inherent in machine 

sfiEhteVVoh„Vmhet,c ,an*ua^ 
; »Lttabtieer regr,onal- reIatlve or "Hy deaprinfixrA —t, 

or 
of 

exact,y comp^'b^er regional, relative 
symbol lcomhinSoC/ilp^ive, where a word 
lhe contents of thS maI be descriptive of ALGEBRAIC A 1 aaa'sned storage, 
braic formula utot sln^Ie continuous alge-
processor contifnfmentuma7 be made. The 'nsr the asaociatlvl meohanisms for apply! 
of algebra to fnrXf A commutative laws ra to form the operative program 

Snbm^SmP°Sed on tbese. Boot-
which will allowaeevenelh! C°nsidered 

d e v e l o p s  t h e  p r o c e l s *  t o W b °  
portion of his work l * a good 
aliv hv pof k done automatic-

Jmn?v °f suPer"Computers. Th 

St Eone! have C°0U?,"'rc 

SSRSS-

prior to L« ?• by the Processor l or to execution time but win i 
created during a brekk in 1 !-b<J 

particular contingency Altf^Vh1" 3 

supervisors will Con' ^flth°l^h tbese 
for a while it i« • gnetle tape 
VCCI DRR""'!.""" "TO" 
ware eventual],, t,eh»rd-»*ss% tr 
nent. 7 otiler compo-

is a ten / speetrum of machii] 
s a tremendous waste of effort ai 

money on the part of both the ' n 
facturers and the users. 

FUTURE COMPUTER SYSTEMS 
Future computer operation, which 

strongly influences the design of the 
P^ammmg languages, h?s some 
v tally interesting possibilities. In this 
glimpse, the picture presented here is 
dependent upon three axioms: 

AUTOMATIC CONTROL 

• Faster computers always lower the 
dollar cost per problem solved, but 
not all companies will be able to af
ford the high prices of the next gen-
MARCH 1957 

mto °? * hu!?c ce»"»< » 
Puter can eliminate the discrete 
quisition of multiple smaller c< 
Z™* m°genize the entire str 
ture of usage, and allow a smal 
and more numerous class of user h 

timet th * tappinS a market ma 
wHh turret? °f PreSmtly Project 
access PraCtlCe in comp«t 

Assuming the availability of nra 

terns Tis™6 ?°mmunication sy 

P ^ R " R , O " » -
rent in?? I they woul< rent input-output equipment al 

T • difference. This peripheral 
equipment would perhaps be 3 

charged f'06 ?US 3 variable usaae 
most level no°fn"Ilnear basis- Tbe top-

,, ei of supervisory routine 
would compute these charges on an 
actual usage basis and bill the cus-
tomer in an integrated operation 

recognizable to operations research 



people as the Scheduling and Queuing 
Problems. 

Using commutative methods, just 
as motion pictures produce an image 
every so often for apparent continu
ity, entire plant operations might be 
controlled by such super-speed com
puters. 

These future hardware capabilities 
(and few competent computer manu
facturers will deny the feasibility, 
even today, of super-speed and inter

leaved programs) demonstrate a press
ing need for an advanced common 
language system so all users con
cerned can integrate their particular 
operations into the complex of con
trol demanded by an automated fu
ture. 

Just one last prediction—the engi
neer who is going to be at the top of 
his profession in the years to come 
had better become a computer expert, 
too. 

A WORKING GLOSSARY OF SOME AUTOMATIC CODING TERMS 

AUTOMATIC CODING — Systems 
which allow programs to be written 
In a synthetic language especially de
signed for problem statement, which 
the processor translates to presum
ably the most efficient final machine 
language code for any given com
puter. Usually such a system will ex
amine one entry at a time and pro
duce some amount of coding which is 
determined by that entry alone. 

AUTOMATIC PROGRAMMING—Sys
tems further up the scale of complex
ity, where the computer program 
helps to plan the solution of the prob
lem as well as supply detailed coding. 
Such systems usually examine many 
entries in parallel and produce optim
ized coding where the result of any 
single entry depends upon its Inter
actions with other entries. 

ASSEMBLER—An original generic 
name for a processor which converts, 
on a one-for-one basis, the synthetic 
language entries to machine instruc
tions. This process occurs prior to the 
actual execution of the working pro
gram. It is a one-level processor 
which can combine several sections or 
different programs into an integrated 
whole, meanwhile assigning actual 
operation codes and addresses to the 
instructions. 

COMPILER — Generally a more 
powerful processor than the assem
bler, although there is a great deal 
of confusion and overlapping of 
usage between the two terms. The 
compiler is capable of replacing sin
gle entries with pre-fabricated series 
of instructions or sub-routines, in
corporating them in the program 
either in-line or in predetermined 
memory positions with standard mech
anisms for entry from and exit to the 
main routine. Such compound entries 
are sometimes called "macro-instruc
tions." The basic principle of a com
piler is to translate and apply as 
much intelligence as possible ONCE 
before the running of the program, 
to avoid time-consuming repetition 
during execution. It produces an ex
panded and translated version of the 
original, or source program. Accord
ing to the ACM, a compiler may also 
produce a secondary synthetic pro
gram for interpretation while run
ning. 

FLOATING POINT—Number nota
tion whereby a number X is repre
sented by a pair of numbers Y and Z 
in the form: X = Y "B2 where B is 
the number base used. For floating 
decimal notation the base B is 10; for 
floating binary the base is 2. The 
quantity Y is called the fraction or 
mantissa, and in the best notation 
O = Y — 1. Z is an integer called the 
exponent or power. 

GENERATOR—A generator is a 
program which writes other programs, 
usually on a selective basis from 
given parameters and skeletal coding. 
It may be either a character-con
trolled generator, so that it selects 
among several options according to a 
preset character matrix, or a pure 
generator, which writes a Program on 
the basis of calculations which it 
makes from the input data. Almost 
all assemblers and compilers have 
generating elements in some form. 

INDEX REGISTER — A register 
whose contents are used ^ auto
matically modify addresses incorpo-
rated in instructions just prior to 
their execution, the original instruc-
tlon remaining intact and unmodified 
in memory. It may either be built to 
the hardware and circuitry of tne 
computer or be simulated by the pro
gram The original unmodified ad 
fresses are termed P^^ive the 
modified addresses are termed 
tive. 

INTERPRETER—In contrast to an 
assembler, compiler or Bener , 
source program designed f^or nte:rpr^ 
tation is converted to an object P 
gram which is not in machine lan-
luage when run. The interpreter it-
felf is an executive program which 

witli the^object* program, ays 

exe'cution* 

E25S& the 

instructions just before they ase^ ex 
ecuted Each entry in the interpretive HMMPE 
Hons from the object Instruction. 

MACHINE LANGUAGE—The w,r®d" 
in ctrcuftry language at a low logical 
level which is intelligible to the com 
outer It should seldom be used to 
code problems because of ; 
ties of usage at this levei 
tendency to error. 

OBJECT PROGRAM—The output of 
the processor when it has translated 
the source program to either machine 
language or a second level synthetic 
language. 

PROCESSOR—Also called a trans
lator. this is a computer pr°^raI" 
which produces other Pr°^ra™s' j. 
contrast to programs which are 
working and produce answers. 

SOURCE PROGRAM—The original 
program written to solve problems 
and produce answers, phrased in tne 
synthetic language. 
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PRINT 1—AN AUTOMATIC CODING SYSTEM FOR THE 
IBM 705 

BY 

ROBERT W. BEMER 1 

PURPOSE 

PRINT 1 is an automatic coding system for the IBM 705, primarily 
for use in scientific and engineering applications. It is fully symbolic and 
provides simulated floating point operation and index registers. It is not 
to replace or supersede the Autocoder system for business and commercial 
problems although it has this capability in a more limited form if needed. 
Both are concurrent products of the Programming Research Department 
of IBM, differing primarily in emphasis of application. There is no need 
to fuse the two systems inasmuch as better and more advanced common 
language systems are presently being developed. 

HISTORY 

The development of PRINT was essentially an emergency measure to 
have an engineering computing system for the "705" in operation as soon as 
possible. For this reason, PRINT is not at the level of the FORTRAN 
system for the "704" and advantage was not taken of the total automatic 
coding knowledge available at its conception. Coding was started in Feb
ruary 1956 and the system was being tested by the first customer at the 
end of July. Because of the interpretive nature of PRINT it was actually 
completed before Autocoder and FORTRAN. Copies of the completed 
system were distributed generally with the manuals in October 1956. The 
responsibility for maintenance and further development of the system now 
lies with the Applied Programming Department of IBM. 

USAGE AND EXPERIENCE 

PRINT 1 is in operation in the field and may be considered rather 
thoroughly tested at this time although, as with the computer itself, con
tinuing maintenance is required to add improvements as they become obvious 
or are requested by the users. Such changes will not be allowed if they 
refute the fixed principles of operation or introduce incompatibility. By 
the last count there are 28 installations either using or programming to use 
the PRINT system when delivery permits. Many of these have had fairly 
extensive experience by this time and have given helpful comments and 
suggestions. 

1 Assistant Manager of Programming Research, International Business Machines 
Corporation, New York N. Y. 
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30 ROBERT YV. BEMER 

PRINT 1 has given much evidence of the potential of current automatic 
coding systems. One example is furnished by the A. O. Smith Corporation 
of Milwaukee, Wisconsin, a long time user of computing equipment. In 
their initial attempt, a portion of a problem formerly requiring 305 instruc
tions in "705" machine language was recoded using 8 PRINT instructions. 
With a relatively small staff, the A. O. Smith people feel that it might have 
been impossible to get into satisfactory operation so soon had it not been 
for the availability of PRINT 1. I should add that we also owe them (Bob 
Brittenham in particular) a debt for the many excellent suggestions leading 
to some of the best instructions in the PRINT repertoire. 

Another example was furnished to us by Westinghouse Electric at 
Sharon, Pennsylvania, where one of their best programmers had previously 

a magnetic field parameter study. This program contained 2300 
705 instructions and required a week to write, a remarkable feat in itself, 

LO CA TIO N  OPERA TIO N  
CODE 

VARIABL E  F IELD 
CO MMEN TS 

6 -  . 10  I I -  - 11  14 .  

1  
i  

RPT -1,0, (Interval), 0 

1  
TSC A, XSUB 1, XTEST 

1  

\~ 
SUB , PAC 2, TEMP 1 f ( x j  - f ( X  , )  

1  

1  

SUB r XTEST, ARG 2. TEMP 2 Xfest _ 

V tV-I f 

X__, 
1  SUB ARG 1, ARG 2 

\I " 

—ir* 1 
Vi 1 

1 D1V TEMP 2 (PAC 1 implied 
Ici — 

as divisor) 
1 
1  

PMA PAC 2, TEMP 1. RSULT 
S T *  

FIG. 1. 

rSdav's^inst'1? nearlyu°"e 'nstruction written per minute. M 
the problem in ZS SV" ^ USC °f the PRI*T 1 system, he recod 
Examples like this ' f t  instructlons. and took only 20 minutes to do ! 
40 to 1 ratio between" "705""r C°"tention that there may be as much as 
written and in this S mstructions executed and PRINT instructio 
to less'than a hundredth'of'"^'?'''^ l° Wr'te ** proSram was reduc 

are perhaps exceptional but it is '"•! erIy re<lllired- Such exampi 
(not programminp-l Pff' *. 4u,te generally true that detailed codii 
use of this ar^Tother moder "» * "by « '«or „f 10 ,1,rough . 
the Carnegie Tech Compiler BACAIcTy8 Syslems such as FORTRA 

Another significant ? ' BZero and OMNICODE. 
Two people from Nation"?Sun"^ i'^ PRIN1 c,ass at Westinghou: 
vious computer experience at JT^ *** had had no pr 

in PRINT without having ever learned T*6 successful proSrar 
g ver learned to program for the "705" itself. 
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SIMULATED HARDWARE 

Since the "705" is not provided with hardware usually considered vital to 
easy programming of scientific problems, such hardware had to be simulated 
within the coding system. Floating point arithmetic is furnished in one 
of three system tapes, for fraction lengths of 8, 10 and 12 digits, with 
mathematical subroutines to corresponding accuracies. Three index reg-

Non-
indexable 

operations 

ATR Alternating TRansfer TNZ Transfer on Non-Zero 
BSi Backspace tape "i" TRM TRansfer on Minus 
LVE LeaVE PRINT TRP TRansfer on Plus 
RCD Read a CarD 

TRU 
RPL RePLace 

TRU TRansfer Unconditionally 

RPT RePeaT TRZ TRansfer on Zero 

RWi ReWind tape "i" TXi Transfer testing indeX limit, 

RWR Repeat With Reset (PAC1) augmenting "i" 

SRi Set index Register "i" WCD Write a CarD 

TMi write Tape Mark on tape "i" WHi Write a Heading, space "i" 

TNi Transfer Not testing limit, WLi Write a Line, space "i" 
augmenting "i" XTP eXTract Power 

Special ADC ADdress Constant FLC FLoating Constant 
operations BLK BLocK HDG HeaDinG 

CON CONstant ORG ORiGin 
DEL DELete REG REGister reservation 
FIN FINish SAY SAY it 

Indexable 
operations 

ADD ADD MPM Minus Polynomial Mult.—add 
ART ARcTangent MPY MultiPlY 
DIV DIVide PMA Polynomial Multiply—Add 
EXD Exponential," Decimal base RTi Read Tape "i" 
EXE Exponential, base E (e) SAC Sine And Cosine 
FLO FLOat SQR SQuare Root 
FPR Fix for Printing Rounded SUB SUBtract 
FXP FiX for Printing TAB Transmit ABsolute 
LGD LoGarithm to Decimal base TMT TransMiT 
LGE LoGarithm to base E (e) TNA Transmit Negative Absolute 
MAD Multiply — ADd TRC TRansfer on Comparison 
MDV Minus Divide TRE TRansfer on Equality 
MM A Minus Multiply — Add TSC Table Search on Comparison 
MMY Minus MultiplY WTi Write Tape "i" 

FIG. 2. Summary of mnemonic codes. 



32 ROBERT W. BEMER 

isters which may be used compositely are furnished, together with corres
ponding limit registers for incremental loop termination. Memory images 
for the printed line, heading and card form are symbolically addressable 
so that the programmer has the feeling of actually addressing type wheel 
or card column. Other special registers, such as pseudo-accumulators, also 
maintain invariant symbolic addresses. 

OPERATION 
COOE 

1 1 -  - 13  

V A RIA BLE F IELD 

• 0  

TRZ TRADD, TEST Transfer to TRADD If (TEST) ore zero 

TNZ TRADD, TEST Transfer to TRADD If (TEST) are non-zero 

TRP TRADD, TEST Transfer to TRADD If (TEST) are plus 

TRM TRADD, TEST Transfer to TRADD If (TEST) are minus 
TRU TRADD Transfer to TRADD unconditionally 

RPL ADDR1, INSTR Replace the 1st address In INSTR by ADDRI 

XTP FIRST, SECND Give (SECND) the same power as (FIRST) 

SRI A  n ,  A  | | m  Set contents of R| to An, limit to A llm 

TNI TRADD , A  A Auynent R j  by A  A , transfer to TRADD 

TX! TRADD, A  A Augment R, by A  A, transfer to TRADD only If 

new (Rj)< llm.. Otherwise proceed. 

RPT n» ± ' r ± I r ± k Repeat (perform) the next Instruction n times, Index-

Ing Its 1st, 2nd, cmd 3rd addresses, at they exist. 

by I, |, and k words lenflthi respectively. 
RWR n , A i , A J , A k  Reset PAC1 to zero, then operate same as RPT. ±1, 

A  ] and A  k may all be prefaced In RPT and RWR 

by an * to Indicate Indexing by number of char

acters, not word lengths. 

LVE TRADD Leave PRINT. Next Instruction Is next X)5 Instruct-

Ion If TRADD Is not written. TRADD If written. 
BSI n Backspace tape 1 for n records. 
RWI Rewind tope 1 . 
TMI Write a tape mark on tape I . 
WLI UNIT, n,TRADD Write a line. UNIT Is tape t or printer. 1 Is the 

space control after writing, n, TRADD Is optional 

Write n lines, transfer to TRADD rather than 
write the (n+l)th line 

WH! UNIT, n, TRADD Write a heading. (Equivalent to WL1) . 
WCD UNIT Write a card. UNIT Is either tape t or punch. 
RCD UNIT, TRADD Read a card. UNIT Is either tape t or printer. 

Transfer to TRADD on end-of-flle condition. 

(Optional specification of TRADD). 

FIG. 3. Summary of non-indexable operations. 
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INSTRUCTIONS 
PRINT instructions are written in a variable form with a variable 

number of operands or specifications separated by commas. A single in
struction may trigger several actions which are effectively coincident. A 
coding kernel for table search and linear interpolation is shown in Fig. 1 
(refer to Figs. 2, 3, 4 for explanation of the instructions). The table search 

OPERATION 
CODE 

VARI A BLE F IELD 

14  

C OMMENTS 

-80  

ADD 0PER 1 , 0PER2, SUMM (0PER1) + (0PER2) » SUMM 

SUB 0PER 1 , 0PER 2, DIFF (0PER1) - (0PER2) - DIFF 

MPY MLPLR, MCAND , PRDCT (MLPLR) (MCAND) PRDCT 

MMY MLPLR, MCAND , NGPRD -(MLPLR) (MCAND) <• NGPRD 

DIV DVDND, DVS0R, QU0T (DVDND) + (DVS0R) - QU0T 

MDV DVDND , DVS0R , NGQU0 -( DVDND) + (DVS0R) *- NGQU0 

MAD MLPLR, MCAND, CRSFT (MLPLR) (MCAND) + (PAC1) *- CRSFT 

MMA MLPLR, MCAND, CRSFT -(MLPLR) (MCAND) + (PAC1) - CRSFT 

PMA ADDND, MCAND, RSULT (ADDND) + (PAC1) (MCAND) *» RSULT 

MPM ADDND , MCAND , RSULT (ADDND) - (PAC1) (MCAND) - RSULT 

SQR SXTY4, EIGHT "V (SXTY 4) *" EIGHT 

SAC ANGLE, SINE, C0SIN sin (ANGLE) * SINE, cos (ANGLE) C0SIN 

ART TNGNT, ANGLE tan 1 (TNGNT) - ANGLE 

LGD NUMBR, DECLG log]n (NUMBR) DECLG 

LGE NUMBR, NATLG log„ (NUMBR) NATLG 

EXD EXP0N, TEN2X antiloq (EXP0N) " TEN2X 

EXE EXP0N,E2THX antilog (EXP0N) E2THX 

(FSR) ARGUM, RSULT function (ARGUM) RSULT 

TMT HERE, THERE (HERE) *" THERE 

TAB MINUS, PLUS |( MINUS)) * PLUS 

TNA PL/MN, MINUS |(PL/MN)| MINUS 

TRC TRADD, THIS, THAT Transfer to TRADD If (THIS) - (THAT) 

TRE TRADD , TFHS , THAT Transfer to TRADD If (THIS) x (THAT) 

TSC ± A, TABLE, ARGUM Search argument table for first number - (ARGUM), be-

ginning al TABLE. f(TABLE) is ±A word lengths away. 

WTi BEGIN, ENDD, TRADD, TM Write all successive words from BEGIN to ENDD, inclus-

|ve, as 1 record on tape I . Transfer to FRAUD It end-ot-

file Is reached, write tape mark if TM Is written. 

RTI START, TRADD Read record from tape 1, filling as many successive locat

ions as on record, beginning with START. Transfer to 

TRADD if a tape mark Is encountered. 

FXP FLNUM, t, wW, dD , s Fix (FLNUM) x 105 for print in line Image, decimal point 
in type wheel t, with w whole numbers and d decimals. 

FPR FLNUM , f, wW, dD , s Same as FXP, except round the number when fixing. 

FL0 C0LXX, n,R/L s, FLNUM Take the n digit number with units position In column XX. 

Move the decimal point R(ight) or L(eft) s positions. Put 

In floating point format In FLNUM. 

FIG. 4. Summary of indexable operations. 
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is initiated by the first two instructions. Both a coarse and a fine search 
are caused, and on completion both the bracketing table arguments and their 
corresponding functions may be found in special locations. 

Although it is more desirable to code throughout in PRINT, it is possible 
to exit and code in symbolic "705" language temporarily. This allows both 
for the writing of special portions of programs and for PRINT instructions 
to be altered during the running of a problem. An example of this latter 
usage would be the generation of a program for the solution of N simulta
neous equations with B sets of answers. Although the solution requires 
only 11 PRINT instructions for fixed values, it would be normally wasteful 
to write a new section of program for every case. It is sufficient t<> write 
the general program and use "705" instructions to modify it according to the 
prevailing values of N and B. 

LOCATION OPERATION 
CODE 

VARIABLE FIELD COHMCNTt 

• - -10 II- -13 14- .« 
HEAD | WHT T6, 20, PAGES PAGES. LINES and LASTL are u»d 
C0MP]U as convenient mnemonic names for 

1 

1— 
WLS T6, 9, LINES the associated Instructions. The first 
TRU C0MPU line therefore reads! 

LINE js WLD T6, 4, LASTL 
1 

1 
TRU C0MPU "Write a* Heading, Triple space, 

LAST IL 
f— 

WLI T6 on Tape 6 - write 20 PAGES. " 
1 TRU HEAD 

PAGE |S (continues computation after 20 paaes are written) 

FIG. 5. 

INPUT-OUTPUT INSTRUCTIONS 

Special consideration was given to the input-output instructions in 
PRINT to assure their having facility at least equal to that of the arithmetic 
and logical instructions. Their actions are described in the lower portions 
of F'gs. 3 and 4. FXP and FPR (FiX for Print and Fix for Print 
Rounded) and FLO (FLOat) are definitely oriented to the formats of the 

can havmg a11 Pertinent information specified in the vari-
af e, e. ' , ey a °w programmer to be unconcerned with the positions 
of decimal points throughout calculation; yet he may enter fixed point 
decimal input and produce fixed point printed output, pirhaps without even 
being awart, that internal operation is in the floating point mode. 

PPTNTVTe V pr0grammmg manual (32-7334) available for the 
11 Ti' i! f ,S "0t need to show many examples as there 

norma ly would be for a paper of this type. [ have excerpted a single 

pages, each with a &%£$£ ̂  SZ ̂  oiV' ̂  
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INTERNAL OPERATION 

Certain definitions are adopted from the 704 FORTRAN system in order 
to understand the hybrid operation of the PRINT system. A program 
written in the synthetic automatic coding language is called a "source" pro
gram. It is processed by a translator to produce an "object" program, 
which may be produced in either a machine language form, a still symbolic 
intermediate language such as that of an assembly program, or pseudo-
instructions for minimum interpretation. PRINT falls into the last 
category. 

Although interpretive in execution, meaning that the required machine 
language instructions have certain portions fabricated while the problem 
is running, PRINT is not equivalent to the usual interpretive program of 
early days in computers. PRINT language is freely and descriptively 
symbolic, much the same as any compiler, and instructions do not bear a 
recognizable resemblance to the object pseudo-instructions produced by the 
pre-editing, or translating, process. Thus the name—PRe-edited INTer-
pretive. Pre-editing does both assembly and conversion of all components 
of the synthetic instruction to a pseudo-instruction in a form most rapidly 
used at execution time, essentially following the first compiling principle of 
doing all repetitive processing once and for all wherever possible. In 
PRINT, the time expenditure to fabricate instructions from the pseudo-
components during execution amounts to no more than a 5 per cent total 
addition. For this price the program buys: 

1. Minimization of original processing time. 
2. Much more memory space for instructions and data, even though 

the executive routine is in memory at all times. 
3. A significant decrease in the time required to write such a system, 

because the operative routines are essentially canned and optimum. 

A factor in the decrease of interpretation time is the RPT (RePeaT) 
instruction. This causes the following instruction to be interpreted for the 
first execution only; for the remaining times it is executed generally faster 
than it could be in a compiled form. This apparent paradox is due to the 
serial character nature of the "705." Using a fixed interpretive routine, 
instructions may be judiciously placed so that address modification may be 
made with fewer characters than the four which are mandatory when the 
modified address cannot be predicted. A careful examination of the index
ing routine on page 52g of the manual will illustrate this principle unques
tionably. 

Routines which do not occur frequently are defined as floating sub
routines. They do not occupy memory space continuously during execution, 
but are called from the library tape as required by pre-edit compiled linkages, 
into a common area. 
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EXTERNAL OPERATION 

Because in this semi-interpretive mode the routines are what one might 
call canned or pre-compiled, there are other advantages which are not at 
first apparent. It takes very little time to pre-edit the symbolic source 
program into an object program ready to execute. Very few programs have 
taken over one minute to process from tape input. Because of this it was 
decided to re-process the program completely each time a change is made; 
in fact, it is impossible to correct or alter a PRINT program in anything 
other than the synthetic language. Any other means were carefully, as 
Sam Goldwyn says, "included out." 

This feature also leads to a radically different concept of error diagnosis. 
Since the program may be re-processed quickly and flexibly, the most desir
able diagnostic method is to actually insert snapshot instructions into the 
program. This gives the programmer absolute freedom and flexibility in 
inspecting intermediate answers. The usual method is to process the pro
gram initially with all of the snapshot instructions included, when the cause 
of the first error becomes apparent, to remove all snapshot instructions up 
to that point by deletion cards and correct the error all in the same re
processing. Of course, programs are never loaded more than once in card 
form. All corrections thereafter are made by collating the change or dele
tion cards against a master symbolic tape. Both this and a listing tape 
are thus continuously updated to provide a correct, permanent record of the 
programming of any problem. 

Ibis quick processing feature has demanded at least a primitive type of 
supervisory control directed by the system tape, which contains the pre-edit 
routine, the executive routine, the floating subroutine library, diagnostics 
and system control. A remarkably rapid interchange of problems has been 
achieved. With tapes previously mounted off-line, all that is required to 
process a new problem is to turn the tapes on-line, set alteration switches 
if required and depress the reset and start buttons. For the moment, the 
changing nature of scientific problems has not made a completely supervisory 
control mandatory for this system. 

CONCLUSION 

PRINT 1 is an operative scientific computing system for the IBM 705 
w IC r allows it to be used by both the commercial and engineering divisions 
of a company. By introducing pre-editing to take advantage of the lessons 
earned from compilers, it re-establishes the interpretive method as a useful 

tool in automatic coding systems for future computers of the STRETCH 
class. A programming manual (32-7334) is available from IBM for those 
desiring further information, and the entire system is available on cards 



DISCUSSION 

MR. BARRY GORDON1: YOU made quite a point of emphasizing that it 
was a remarkable thing that the man wrote a "705" program at the rate of 
one instruction per minute; however, you made very little of his writing 
sixty PRINT instructions in 20 minutes—at a rate of three instructions per 
minute. I am wondering how usual this is. 

MR. BEMER: I would say that in my estimation it is much easier to write 
the PRINT instructions because you don't have to worry about the auxiliary 
storage unit and all the actual details of operation. Incidentally, if you 
should doubt those figures I gave, let's bump it up to at least the same 
ratio—this is still 40 to 1 over the original time. 

MR. LEROY D. KRIDER 2: You said something about a compilation that 
actually went on during the execution ? 

SERIAL SYMBOLIC ADDRESS AND ACTUAL FIRST 
NUMBER LOC OP INDEX FIELDS LOC ADD 

1030 R008 REG R001 06981 
1040 SINEZ REG 06991 
1050 TEMP REG 07001 
1060 X020 REG X001 07201 
1070 Y008 REG Y001 07281 
1080 Z010 REG Z001 07381 
1090 ENT 07389 
1100 RCD READER 07400 
1110 RPT 20 »*4•1 07411 
1120 FLO C0L04»4 ,L2 »X001 07428 03512 
1130 RCD READER 07445 
1140 RPT 8 »* 5 »1 07456 
1150 FLO COLO 5 • 5 .L3.Y001 07473 03513 
1160 RPT 10 »* 4 »1 07490 

03552 1170 FLO C0L44»4 .L3.Z001 07507 03552 
1180 SR3 0.10 07524 
1190 PAGE WHT TAPE4 07535 
1200 SRI 0 120 07553 
1210 SAC Z001»3. SINEZ 07564 07291 
1220 TRU RSETY 07581 07605 
1230 LINE WLS TAPE4 07537 
1240 RSETY SR2 0.8 07605 
1250 SUB X001 .1 • SINEZ.TEMP 07616 07011 
1260 C0LMN SAC Y001*2 07634 07211 
1270 ADD X001»1 . PAC2 07651 07011 
1280 MPY • TEMP »R001* 2 07669 00254 
1290 TX2 COLMN»1 07687 07634 
1300 RPT 8*1 .*11 •07698 
1310 FPR R001.8. 4W.2D 07715 06911 
1320 TX1 LINE »1 07733 07587 
1330 WL1 TAPE4 07744 
1340 TX3 PAGE»1 07762 07535 
1350 LVE 07773 07784 

FIG. A. 

SEC, 
ADD 

THIRD 
ADD 

PRINT INSTRUCTION 
OR CONSTANT 

BOO 4873Z4U039 
7I7DA1100Y4 
2I1I000400100000 
9M351200070020DOF 
7I7DE6100Y4 
2 IOGOOO500100000 
9M351300072020E0E 
2 101000400100000 
9M355200072820D0E 
9DI900 0000 
6 10++00-0 + 20M38G40 
8DI800 0000 
2R7K8240069820235 
2D7F+5 
6 I0++00-0+20D26N4 
8 11 920 0000 
0M7-021006R826992Q 
2R7K. 0220002450235 
0M7-021000K350245H 
0R0K450026R926902H 
4D7FC420010 
2 IOGOOIOOOHOOOO 
9R6R020+00+27C0C0J 
3 17EH720010 
6I0++00-0+20D26N41 
4I7EC520010 
9117784 

1 Chief Programmer, Equitable Life Assurance Society, New York, N. Y. 
2 Remington Rand Univac, Minneapolis, Minn. 
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MR. BEMER: NO, there is no true compilation during execution. What 
there is is the completion of certain machine instructions with portions of 
the pseudo-instructions. If you have one of the example sheets (Fig. A), 
you will notice the pseudo-instruction on the right. This "garbage" is 
really several little portions that are required to fill in empty spots in any 
routine. For instance, in the instruction with serial number 1130, we see 
a 7I7DE6100Y4. 71 is the "Read Card" operation code, 7DE6 the prop
erly zoned address for the next instruction, 100 the last three digits of the 
card reader address, Y for a "705" read-operation code and 4 to fill in a 
TRS command in the units position. These components are inserted in 
the proper places of the canned subroutines just before execution, but they 
are properly detailed with everything that can be done once, so only these 
portions are inserted during operation. 

MR. KRIDER: It is essentially, then, just a stretch of initialization. 

MR. BEMER: Yes, it is really interpretive, with the exception that we 
have put in the symbolic notation and pre-edited everything we possibly 
could, to speed things up. 

MR. R. H. DOYLE 3: Since one can enter and leave absolute coding in 
the middle of the interpretive, is it also possible, by using something which 
could be called a Define instruction, to name-tag the new absolute coded 
subroutine so that it could be subsequently called for again by its interpretive 
name anywhere in the interpretive program ? 

MR. BEMER: Essentially, this facility exists in the floating subroutine. 
If you wish to enter any of the subroutine library you can do it. Other 
routines have been used this way by means of a dummy instruction, or 
actually a pair of instructions. I believe that the description of this opera-
ion has been published or is going to be out shortly, as a customer con

tribution. It is very definitely possible. 

DR. HANS K. FLESCH*: I heard you remark on time-sharing the de-
controH Pr0S'amS CW,ed in PWNT' Is «»» S rato system 

problem anHi^Mstlc ZiorZrTZcoVVllT la"guage' running 

alteration switches and the reset and start keys' * ,aI*' SIX 

MODERATOR WALTER F BAIIFR 5 • T , , . 
asked him what Machine X and MachineY a !  d , s a P P ° i n t e d  t h a t  n o b o d y  

MR. BEMER : They wouldn't havp 
ZT nave S°tten an answer if thev had. 

g International Business Machines Cornoratinn T • 

4 Project Engineer, Federal Telecnmm • ' xulgton» ^'ass-
6 Head of Digital Computing Center Ra^^vo"5 Laboratories. Nutlcy, N. J. 

"g Center, Ramo-Wooldridge Corporation, Los Angeles, Cal«• 
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PURPOSE 

This paper is to be something of a "state of the art" survey in the field of auto
matic coding systems for scientific work. In a rapidly changing field where the 
communication processes are by no means satisfactory, it may be valuable to 
collect and codify available information on the various svstems in use or in 
process of fabrication, if only to provide a solid basis for dispelling rumor arid 
misconception. Very little new or inventive material will be presented, inasmuch 
as this does not seem to be the natural means of development in this profes
sion. Development is rather by distillation and blending of certain principles 
which force themselves upon us as exceptions to the general case, while using the 
older systems in actual practice. Let us rather, for the moment, delineate trends 
and put existing efforts into historical perspective, making a summary of the 
various efforts so far with respect to magnitude and usefulness. 

There will undoubtedly be some gaps in the record due to incomplete informa
tion. In many cases this is not from negligence on my part but from lack of 
proper publicity and communication (publicity departments, please note). I 
further hope that this is one of the very last mentions of scientific computing as a 
separate entity; the very near future will bring us new systems that encompass 
both business and scientific applications and allow each group of users to have 
the powers formerly peculiar to the other. 

EXISTING CODING SYSTEMS 

Since most automatic coding systems have heretofore had their synthetic lan
guages tied closely to the particular computer on which they are used, the easiest 
way to make a resume of these is by machine categories. Table 1 is an updated 
version of a chart which previously appeared in the March, 1957, issue of Auto
matic Control Magazine. Two copies each of all available information and man
uals on these systems are being deposited with the Association for Computing 
Machinery at 2 East Sixty-third Street, $ew York City. It is my hope that the 
ACM will see fit either to lend material from this historical library or to refer 
interested correspondents to the proper sources for other copies. 

The more important or widely used scientific systems have a dagger preceding 
the name. (Note that B-ZERO [or FLOWMATIC] is listed as scientific because 
it accepts AT3 as well as other language.) Since there are ninety systems cata-
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TABLE 1* 

OPERATIOXAL AUTOMATIC CODIXG SYSTEMS FOR SCIENTIFIC PROBLEMS 

Computer 
Xame or Acronym 

of Automatic Developed By 
Opera-
tional 

O 
O 

U 
O JJ 

-O 

si 
jj 
SJ c 

1 u Index tc 

Coding System Date L. c 
u 

1= 
•J *1 ing 

•J 
•J. 

c rS 
5 
< t 

T.AFAC Allison G.M Sep 57 
Xov 55 

C X 2 X M2 M 
: CAGE x r -*t> General Electric > 

Sep 57 
Xov 55 X X 2 M 2 M 

TFORC Redstone Arsenal \ Jun 57 X 2 X M2 M 
IBM 704 +FORTRAX IBM / Jan 57 A X 2 X M2 M IBM 704 

: XY.AP 
TP ACT IA 

IBM v 

PACT Group V 
Jan 56 
Jan 57 

X 

X 

2 
1 

M2 
M2 

M 
M 

REG.-SYMBOLIC Los Alamos V Xov 55 X 1 M2 M 
SAP L'nited .Aircraft v Apr 56 ; R X 2 M2 M 

i ACOM Allison GM* . Dec 54 c X 0 SI S 
tBACAIC Boeing Seattle-' Jul 55 A X X 1 X 

SI 
S 

DOUGLAS Douglas (SM> v' May 53* X 1 S 
DUAL Los Alamos \/ Mar 53 s X X 1 s 
607 Los Alamos / 

Lockheed Calif.v 
Sep 53 X" 

X 
1 

FLOP 
Los Alamos / 
Lockheed Calif.v Mar 53 X X X 1 s 

JCS 13 RAXD Corp./ , Dec 53 X 1 
IBM 701 KOMPILER 2 UCRL Livermore/ Oct 55 X 1 X S2 

XAA ASSEMBLY Xorth American s X 
S2 

tPACT I PACT Group x. Jun 55 R X 1 S2 
QUEASY XOTS Inyokern' Jan 55 X s 
QUICK Douglas (ES)V' Jun 53 X 0 s 
SHACO Los Alamos v Apr 53* X 1 s 
SO 2 01 (A) IBM . Apr 53 > X 1 
SPEED CODIXG IBM Apr 53 < R X X 1 SI s 
ACOM Allison GM'. Apr 57 C X 0 SI 
AUTOCODER IBM / Dec 56 R X X X 2 s 
ELI Equitable LifeV May 57 C X 0 SI 

IBM 705-1.2 FAIR Eastman Kodakl Jan 57 X 0 
SI s 

fPRIXT 1 IBMv Oct 56 R X X X 2 S2 s 
SYMB. .ASSEMBLY IBM ' Jan 56 X 1 

S2 

SOHIO Std. Oil of Ohio' May 56 X X X 1 SI s 
AUTOCODER IBM Apr 55 X X X 1 s  

IBM 702 .ASSEMBLY IBM Jun 54 X 1 
tSCRIPT GE Hanford Jul 55 R X X X X 1 SI s 
t.ADES II Xaval Ordnance Lab? Feb 56 X 1 X S2 s 
tBACAIC Boeing Seattle V Aug 56 C X X X 1 X 

S2 s 
B.ALIT.AC MIT^ Jan 56 X X X 2 SI 

fBELL LI Bell Tel. Labs.v Aug 55 X X 0 SI s 
BELL L2, LS Bell Tel. Labs, v Sep 55 X X 0 SI s 
DRUCO I IBM •/ Sep 54 X 0 

SI s 
EASE II Allison GM • Sep 56 X X 2 S2 s 
ELI 6Cfc»oU Equitable Life * May 57 C X 0 SI 
ESCAPE Curtiss-Wright v' Jan 57 X X X 2 SI s 

IBM 650 FLAIR Lockheed MSD. Gav Feb 55 X X 0 SI s IBM 650 
tFOR TRANSIT IBM-Carnegie Tech' Oct 57 A X 2 X S2 s 
tlT Carnegie Tech. Feb 57 C X 1 X S2 s-l  
MITILAC MIT v Jul 55 X X 2 SI s 
OMXICODE GE Hanford X Dec 56 X X 2 SI s 
RELATIYE Allison GM - Aug 55 X 1 SI s 
SIR IBM .May 56 X 2 

SI 
s 

SOAP I IBM Xov 55 X 2 
- — ~v SOAP II IBM . Xov 56 R X 2 M M 

SPEED CODIXG Redstone Arsenal Sep 55 X X 0 SI s 
SPUR Boeing Wichita V Aug 56 X X X 1 M s 

* See explanation of symbols at end of Table 2. 
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TABLE 1—Continued 

Name or Acrony; 
of Automatic 

Coding System 

Opera
t ional 
Date 

FCOMPILER I 
FAP \ 
MISHAP; 
RAWOOP-SNAP 
TRANS-USE 

FUSE 

Boeing Seattle 
Lockheed MSD 
Lockheed MSD 
Ramo-Woold ridge 
Holloman AFB v 
Ramo-W ooldridge 

CHIP 
FLIP/SPUR 
RAWOOP 
SNAP 

Wright ADC v 
Convair San Diego 
Ramo-W ooldHdge 
Ramo-Woold ridae 

ALGEBRAIC 
COMPREHENSIVE 
SUMMER SESSION 

Lnjv. 01 Michigan 
L niv. of Michigan 

Lniv. of Toronto v 

Univ. of Illinois » 
RAXD Corp. V 
X'avai Ordnance Lab. 
X'at'l Bureau Stds. 

TRANSCODE 

DECIMAL INPUT 
EASY FON 

Computer 

Sperrv Rand 
1103 A 

Sperrv Rand 
1103 

Sperrv Rand 
Univac 
I. II 

Datatron 
203 

AO (A-ZERO) 
AI 
A2 

FAJ 
FATJ 
tBO (FLOWMATIC) 
BIOR 
GP 
MJS UR. 
NYU (OMNIFAX) 
RELCODE 
SHORT CODE 
X-L 

Whirlwind 

Midac 

Ferranti Fe-
rut 

Illiac 
Johnniac 
Xorc 
Seac 

DATACODE I 
DUMB(*T 
IT •*«. \ UT 
SAC *A 
UGLIAC 

Sperrv 
Sperrv 
Sperrv 
Sperrv 
Sperrv 
Sperrv 
Sperrv 
Sperrv 
UCRL 
Xew V 
Sperrv 
Sperrv 
Sperrv 

Rand 
Rand 
Rand 
Rand 
Rand 
Rand 
Rand 
Rand 
Livermore v 

ork Univ. v 
Rand / 
Rand , 
Rand . 

'Burroughs vc«r \X. 
Babcock & Wilcox A-y 
Purdue Univ. 
Electrodata (,p 
L nited Gas Corp. 
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lomied. at least seventy of which ate suitable for scientific usage, it will be impos-
nible to give detailed information on more than a selected few. 

I B M  1 0 4  —Bv far the most ambitious and widely used of these wor 0 -
J s f  ' F O R T R A X  i „  . h e  1 0 4  ( F 4 ) .  S e v e r a l  r e p o r t s  h a v e  a l r e a d y  b e e n  g . v 0  

elated time of coding by an average factor of five, according to careful statistics, 
• iic n{ ttip\>w York Citv Service Bureau, which bids for program-

PamtbI L^boSto corollary ,0 this which is not always 
TdVe^t » " "rogtanrtning costs have been running at least equal .0 U* 
"her installation costs (including rental, overhead, and physical plant),>co«M 
be said that an installation using FORTRAN exclusively can operate at pe 

CC The FORTRAN svstem has firmly established the continuous statement in 

CieS 'props'" A-revisedPv.rsion of FORTRAN for the 704 
i m, ac F4 ? is currentlv in process. Major improvements are (1) the addition 
SaTacStv U. mrim^a"dS,me subroutines in either FORTRAN o, SAP machine 
lanvua-e compile and optimise locally only into relative binary packages or 
conditional inclusion, and (2) improved diagnostic iac.lit.es. This version 

'°Tteote foVTvSm intensive us. is PACT IA, used particularly on the 
Coast bv the'original co-operative group that did the coding. I. is descr bed 

in detail in the Journal oi the ACM ior October, 19o6. It is of particular histon 
cai interest because it was the first major co-operative coding effort, and man. 
people believe that this technique will be our only solution when automatic coding 

^BM^O—ZATATROX.—The IT system, started by Dr. Alan Perlis for the 
D\T VTRON while at Purdue and later completed for the 650 at Carnegie ns i-
tute of Technoloev. is the only full-scale scientific system for either the 6*0 or 
the D VTVTRON. IT (Internal Translator) is used extensively at many um e -
sitvComputing laboratories and scientific installations. The output of this system 

n a form w-hich is further processed into a machine-language object program 
bv the SO\P assemblv program for the 650. IBM has just completed final testing 

f uoerRtructure to IT. called FOR TRANSIT, which translates a subset of 
the FORTRAN language to IT language in an initial processing. This is a signif-

t «.-i.lt because'"it demonstrates how higher-level synthetic languages may be 
made compatible "through pre-processors. IT is also nearly completed for the 
r> VTVTRON 205 except that the alpha-numeric input-output routines are not 
complete, since Purdue does not have this type of equipment yet, as I am given 

to understand. 



ft, crTL — 
IMC 

C-Yr-ci, 1~La 

G-f rtt-r-

AutomaticCoding Systems in Process of Development 

Computer 

IBM Tape 650 
IBM 709 
IBM 705-1,1. 
IBM 705-3 
IBM 705 
Univac 
1103 A 

1103A 

Name or Acronym 
of Automatic 

Coding System 

IBM 709 
IBM 705-3 
IBM 704 
IBM 705*1, "U 
IBM 704 
File-Computer 
Datamatic 
Cdec III 
Udec III 
Datatron 205 
Datatron 205, 

220 
Univac 
TX-2 
Stretch 

FORTRAN 
FORTRAN 
FORTRAN 
FORTRAN 
IT ftA.7 hut | 
IT F.<*//py 
IT 

fciV^A/ 
UNICODE ersn-eTC 
APS &«•»«*>,« ntuii, 
SCAT 
AUTOCODER ' 
NYDPP 
AFAC 
KOMPILER 3 
ABC 
ABC I Shvocjie: 
UDECIN 1 »coc*. 
UDECOM 3 Yto 

UAvecT. 
STAR -V"! S/«.Ok^-

MATRIX MATH 

FORTRAN 
UNIVERSAL CODE 

Being 
Developed By 

Expected 
Opera
tional 
Date 

IBM v 

IBM - Aug 58 
IBM-GUIDE v Aug 58 
IBM-GUIDE / Dec 58 
Std. Oil of Ohio 
Case Institute v aoc rj 
Carnegie Tech- Dec 57 

Ramo-Woold.'-
Sp. Rand, St. Paul • Oct 58 

•AyW'estinghouse Res,Fens 
T U X  r Ctr > n T- ' IBM-SHARE 
IB My 
Service Bureau Corp. 
Allison GM v 
UCRL Livermore • 
Sp. Rand. St. Paul 
Datamatic y 
Burroughs 
Burroughs -
Dow Chemical -
Burroughs v 

Franklin Inst.v' 
Lincoln Labs. * 
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EXPLANATION OF SYMBOLS, TABLES 1 AND 2 
Automatic Coding System Name: Dagger(t) indicates more important orwidelvused scientific system 

• a-

I se Code: 
R Recommended for this computer, sometimes onlv for heavv usa^e 
C Common language for more than one computer." 
A System is both recommended and has common language. 

Machine Lang.: User has option of using machine language together with svnthetic 
Symbolism: 

0 None. 
1 Limited, either regional, relative, or exactlv computable 

oiiisKS: ™rd'" ,yn"*>l ,,hich is <* 
Algebraic: A single continuous algebraic formula statement mav be made Processor Ens meet,, ; 

for applying associative and commutative laws to formoperTti veprogram mechanlsms 

Indexing: 
M Actual index registers or B-boxes in machine hardware 
S Index registers simulated in synthetic language of svstem 

maj^be'freelyincremented^^decr^ment^tiyaify amount.* COmbination of re°isters "hich 

Floating Pi.: 
M Inherent in machine hardware. 
S Simulated in language. 
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1103A.—There „ « ^ 
COMPILER I of Boeing Seattle an - ^ Although both have many 
zation. prepared by Ramo-Wooldri ge an f0RXRaN in power, for USE 
attractive feature, they are not e,u l to FORTRAN p ^ ̂  ̂  
does not use the algebraic format, and COMPILER i, 
subscripting in the algebraic statement UHIVAC I and'LL which 

**when 1 crparer closely to establish only the category that system 
other system to FOR - - , rtR \ N  for there are many features 
fi,s into and no. .0 evaluate * *»"*%£££*»* on the correspond-
Of AT3 and other languages which P - ̂  ̂  & ^ ̂  & preliminary 

ING FORTRAN components.) AT3 ha ^ ^ final manual {or 

manual, in two installations and is *b mS if desired, AT3 is map-
oeneral usage. For purposes of negotiability ot pro0rams, 
pable into FORTRAN and dce^rsa ar£ worthy of mention, 

Xon-V.S.A. compute, in Switzerland, who arrived mde-
particularly the work of D . FORTRAN for the ZUSE 4 
pendentlv at an algebraic language snm descriptive and vertically 

—* bui,d "p 
complicated algebraic routines. 

CODING SYSTEMS IX PROCESS 

The picture looks very good indee Qn other machines, are at 
of these are entirely aigebraic a • ^ translators. Thus we will find 
feast mappable into each oth ^ ^ fee d 

that, by various practice ^ ^ ̂  negotiability of programs. Since there 
manufacturers 1 nes addm fa ^ ̂  ̂  2 B su 

form. Note that we are now forced to categorize by 

systems a"d^anguage^herfor the IBM 
FORTR.4A . FORT - P the jgyj 709. A further exten-

TaP£ f FWT^ isteing considered for the STRETCH computer, to be de-
sion ot FORTRA. °sdentific Laboratories. These machines, except the 
livered to the Los_ ^ ^ ^ ,;forthcoming» category, and it is 
705-1, 2 and the Tap ; mdino svstems are to be delivered along 
pleasant to note that their aU °™a ' dficadon"s will be available at least four 
with the first production mo . ^ coding to be done prior to delivery, 
months before machine beljer^ ^ iod. Although this imposes addi-

^ —ng staff, it is nevertheless 

accounted a worthwhile gain. 
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An interesting feature of the 705 FORTRAN" stems from the fact that IBM is 
committed, as a part of its compatible-language policy, to producing FORTRAN 
for the 705-3 while leaving PRINT 1 unmodified. 

Owing to the active interest of the GUIDE organization in conversion prob
lems, it was agreed to pool the IBM effort with that of at least one programmer 
from interested companies (A. O. Smith. Esso. General Electric Pittsfield. the 
Texas Co., Y\ estinghouse Sharon, and Eastman Kodak) and to consolidate the 
planning for the two systems so that both processors might be written with an 
expenditure roughly equivalent to that required for 1.3 independent processors. 
Initial specifications will be modest, since there is no need for optimum assign
ment of index registers, as in 704 systems, or for Monte Carlo optimization of 
object programs. ALTOCODER is well suited to be output for this processor be
cause of its macro-instruction capability and its open-endedness. A later version 
will allow the output macros to specify autopoint arithmetic, determined by the 
record definitions of the data themselves: here FORTRAN ceases to be a 
purely scientific language and becomes useful for commercial problems as well. 
\\ ith the addition of more generators and additional superstructure in the lan
guage, it also ceases to be FORTRAN and becomes COMTRAX as we have en
visioned it. 

The FORTRAN language will be modified to a new level. That for the 705 is 
designated F5; F9 is for the 709. These two languages will be basically identical. 
In addition, old F4 programs and FOR TRANSIT may be run on these machines 
through the medium of pre-processors which convert to the revised language. Such 
a pre-processor may be used as an entity or incorporated in the more sophisti
cated processor. One of the new features in the language will be the abilitv to 
name and define sets of instructions. Thus a programmer may write a main line 
of coding which duplicates the logic of a flow chart block for block, decision for 
decision, while the actual subprocesses which represent the contents of those 
blocks are coded separately. With the F9 processor one may bypass index-register 
optimization at will, since this process can consume up to 80 per cent of compil
ing time. Registers will be assigned in rotation for quick processing and a trial 
run with real data. It is wasteful to expend such time if there are errors in the 
source program or if the mathematical techniques used are unsatisfactory. If the 
resultant object program is correct and suitable, one may effectively turn a 
switch to "Optimize" and reprocess for the most efficient object program. 

Output of the 709 FORTRAN will be into the official SHARE assembly pro
gram called SCAT (Share Compiler. Assembler, and Translator). This system is 
being coded by IBM's Applied Programming Department from SHARE Com
mittee specifications and is due for completion by March. 195S. With one excep
tion it is pretty much an updating of the SAP assembly for the 704. The exception 
is the "Load-and-Go" technique, whereby corrections are always made by fast 
symbolic reassembly with the previously assembled output, which is maintained 
in a condensed symbolic binary form. Current good practice is to save the ex
panded data generated by an assembly or compilation even when corrections are 
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to be made. SCAT does not as yet enjoy the "Define Record" characteristics, 
literal handling facility., or complete freedom of subroutine levels that mam-

other existing systems have. 
J X .  The IT language is also showing up in future plans for many different 

computers. Case Institute, having just completed an intermediate symbolic as
sembly to accept IT output, is starting to write an IT processor for UXI\ AC. 
This is expected to be working by I; :e summer of 1958. One of the original pro
grammers at Carnegie Tech spent the last summer at Ramo-Wooldridge to write 
IT for the 1105A. This project is complete except for input-output and may be 
expected to be operational by December. 1957. IT is also being done for the 
IBM 705-1. 2 by Standard Oil of Ohio, with no expected completion date known 
yet. It is interesting to note that Sohio is also participating in the /05 FOR
TRAN" effort and will undoubtedly serve as the basic source of FORTRAX-to-
IT-to-FORTRAX translational information. A graduate student at the Lmver-
sity of Michigan is producing SAP output for IT (rather than SOAP) so that 
IT will run on the 704: this, however, is only for experience; it would be much 
more profitable to write a pre-processor from IT to FORTRAN" (the reverse of 
FOR TRANSIT) and utilize the power of FORTRAN" for free. 

UXICODE.—Remington-Rand St. Paul is writing an algebraic compiler called 
UNICODE for the 1103A. This is apparently a large-scale effort like FOR FRAN" 
and may be expected to operate by October. 1958. The language, too, is FOR-
TR\X-like and ATS mav be considered a subset of it. Many of the character
istics of the F5-F9 language exist in UNICODE. This will provide the big 
algebraic system presently lacking for the 1103A. 

4 f 4c.—Allison GDI. is writing its 704 compiler for the 705 with the prime 
intent of obtaining compatibility. It is a commentary upon the unfortunate lack 
of communication^ this field that Allison justified the original writing of AFAC 
for the 704 by stating that, although they knew IBM was producing FORTRAN, 
they nevertheless needed a common language for the 705 as well. Had a co
operative effort for 705 FORTRAN been started sooner, they might have spent 
their large effort in such a way that all would be benefited. 

KOMPILER 3—This program, for the 704, is being written to serve the 
special needs of the University of California Radiation Laboratory at Livermore. 
It is FORTRAN-like. but it implies a sharp criticism of the lack of sufficient 
mathematical characters in today's computers by coding each algebraic statement 
in three lines (or punched cards). Thus the superscripts and subscripts stand 
out from the main statement. This eliminates a great deal of the otherwise neces
sary parentheses and special notation, although the total effect is an increase in 
card volume for a given program. 

MATRIX MATH COMPILER.—This program is an adaptation, by the 
Franklin Institute, of several previously separate L XIV AC service routines into 
one extensive package. Two installations are using the system with a preliminary 
manual, and a final manual and system are expected by January, 1958. 

CP.—A compiler of the GP (Generalized Programming) type is in process for 
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the LARC computer. This is a very large effort; certainly more than fifteen 
people are on the project. Algebraic coding is allowed as an instruction form, and 
generalized subroutines may be selectively generated for minimization in specific 
cases. Another interesting aspect of GP is the DuPont effort in rewriting the basic 
I XI\ AC compilers in GP for more generality and easier expansion. 

PHILOSOPHY AND TRENDS 

The preceding should have indicated (allowing for a slightly scientific bias) 
what the existing trend is in automatic coding. Evident characteristics are these: 

1. The language of communication will be our own—mathematical notation 
as far as possible and then English when we run out of concise symbolism. Present 
logical language is weak, and I imagine that even the commercial people had 
better brush up on their Boolean algebra. The area of loop control and recursive 
operations is still not well handled in existing mathematical notation, but com
puters are forcing the development. As an example, note the "Replace'' operator 
(<=) of K. Zuse. Although the ultimate in language does not exist yet. we can 
console ourselves meanwhile with compatible (as against common) language. 
There is much current evidence that existing algebraic languages are all map-
pable into one another by pre-processors. although these may be of varying and 
perhaps prohibitive complexity. The Germans, in particular, are concerned that 
such mappability be guaranteed before they make heavy coding investments for 
the many machines they will be operating. 

-• The trend is to on-line system control, with the automatic coding processor 
always available to the running program on call. Today, this technique involves 
losing (during object time) the services of one or more tape units, but random 
access memory is mtich more suitable for this purpose. Eventually a replaceable 
photographic plate should serve this purpose in a semi-interpretive mode. Such 
on-line control allows primitive learning and self-improvement of programs by 
the computer itself in a servo process. Actual portions of obiect programs would 
be compiled only upon demand, on an exception basis. IBM and Carnegie Tech 
are both formulating such compilers with executive control. 

Extensive means will be available for multiple-processing of intermingled test 
runs, compiling, and production. The CORBIE system of the National Bureau of 
Standards and the General Motors Supervisory System are advanced concepts in 
this direction. 

3. The trend is to set-notation whether for data, instructions, or conditions. 
Both macro- and micro-instructions will come into wider usage, and machine 
language will be recognized as merely that subset of a given machine's instruc
tions which happens to exist in the form of circuitry. Although on opposite sides 
of machine language when plotted against complexity, micro- and macro-instruc
tions can be machine-independent for easy interchangeability. Flow-charting will 
become synonymous with the writing of the main line of program statements 
when processors consider sets of sets of instructions by name only. Minor varia
tions in machine configuration will be handled through macro-instructions. Pro-
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grams tailor-made for each member of the configuration^ family will be 
constructed by assembling an identical program » times with * different libraries 

01 ^The trend is to standard machine configurations. The time is past when a 
tailored configuration could be sold for each different application. We simp > 
cannot afford the manpower to make a different version of all automatic cod,n 
svstems for all possible combinations. Some variants can be generated, it is true, 
with macro-instructions, but complete freedom is gone. IBM is specifying stan -
ard configurations for which automatic coding systems will be available in amp e 
time for customers to weigh this consideration. In most cases the large savings in 
programming costs realized by using these systems far outweighs the cost o 
additional equipment to bring a machine up to the minimum. Of course, local 
modification bv the customer for a lesser machine is always possible 

5 Future svstems will gradually blend into a combination suited for both 
scientific and commercial work. When you see a 705-3 AUTOCODER user 
suddenly slip into FORTRAN in the middle of coding a payroll problem, you 

will see what I mean. 
6. Internal computational methods are fairly well handled at t is time, 

emphasis at the moment is on getting much better coding for handling input an 
output, the preparation of reports, and file maintenance. I have concluded that 
people now engaged in scientific programming have a very complacent a i u e. 
perhaps bv virtue of being prior in the field. I was recently accused of being 
'•futuristic" for recommending that an output-report generator be constructed 
for the 709 by the SHARE group. Fortunately, this had been demonstrated by 
the General Electric Hanford Report Generator for the 702, a couple of machines 
back. The next step for scientific users is to get adjusted and learn the many 
techniques developed by the business and data-processing people. Input editing, 
file maintenance, and report generation remain relatively unknown techniques to 
the scientific user. and. although he will decry this with specious arguments, he 
nevertheless needs them badly. He can learn much from existing business sys
tems about basic assembly features, generators, diagnostic back-talk, macro-

instructions, etc. 

PRODUCTION OF AUTOMATIC CODING SYSTEMS 

There appear to be three inescapable facts about automatic coding systems as 

we know them. They are: . 
1. They are always getting more complicated and will require more initial 

manpower in their production in order to save much greater manpower expendi

ture by users. 
2. Just as a computer does, they require maintenance and improvement Ion.. 

after initial production. _ . 
3. They must be constructed open-endedly. without machine-oriented coding 

tricks, so that thev may be adapted to different models of the same machine and 
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converted to future machines with a minimum of recoding. From this time on, 
all new systems should be additive. 

Let me elaborate these points with examples. L XICODE is expected to require 
about fifteen man-years. Most modern assembly systems must take from six to 
ten man-years. SCAT expects to absorb twelve people for most of a year. The 
initial writing of the 704 FORTRAN" required about twenty-five man-years. 
Split among many different machines. IBM's Applied Programming Department 
has over a hundred and twenty programmers. Sperry Rand probably has more 
than this, and for utility and automatic coding systems only! Add to these the 
number of customer programmers also engaged in writing similar systems, and 
you will see that the total is overwhelming. 

Perhaps five to six man-years are being expended to write the Model 2 FOR
TRAN" for the 704, trimming bugs and getting better documentation for incor
poration into the even larger supervisory systems of various installations. If 
available, more could undoubtedly be expended to bring the original system up 
to the limit of what we can now conceive. Maintenance is a very sizable portion 
of the entire effort going into a system. 

Certainly, all of us have a few skeletons in the closet when it comes to adapting 
old systems to new machines. Hardly anything more than the flow charts is re
usable in writing 709 FORTRAN"; changes in the characteristics of instructions, 
and tricky coding, have done for the rest. This is true of every effort I am familiar 
with, not just IBM's. 

\\ hat am I leading up to? Simply that the day of diverse development of 
automatic coding systems is either out or. if not. should be. The list of systems 
collected here illustrates a vast amount of duplication and incomplete conception. 
A computer manufacturer should produce both the product and the means to use 
the product, but this should be done with the full co-operation of responsible 
users. There is a gratifying trend toward such unification in such organizations 
as SHARE, LSE. GLIDE. DLO. etc. The PACT group was a shining example 
in its day. Many other coding systems, such as FLAIR. PRINT. FORTRAN", 
and L'SE. have been done as the result of partial co-operation. FORTRAN" for 
the 705 seems to me to be an ideally balanced project, the burden being carried 
equally by IBM and its customers. 

Finally, let me make a recommendation to all computer installations. There 
seems to be a reasonably sharp distinction between people who program and use 
computers as a tool and those who are programmers and live to make things easy 
for the other people. If you have the latter at your installation, do not waste 
them on production and do not waste them on a private effort in automatic 
coding in a day when that type of project is so complex. Offer them in a co
operative venture with your manufacturer (they still remain your employees) 
and give him the benefit of the practical experience in your problems. You will 
get your investment back many times over in ease of programming and the 
guarantee that your problems have been considered. 
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P. C. HAMMER: Much has been discussed, and very profitably—the proving of 
theorems, for example, and the various applications in which I know you are all 
interested. One thing which has been left out in this discussion is the question 
of the output and its effect on human beings. For the Stretch machine, which 
was designed for the Los Alamos Scientific Laboratory, a year ago I proposed 
that the output should be in the form of moving pictures of surfaces. The fact 
is that the human mind is incapable of grasping numbers in large quantities. We 
could swamp all the faculty members at Wisconsin with our puny little 650. 
Thev could not read what we could put out even if they were so inclined. Num
bers are singularly poorly adapted to the human mind. Curves are a little better 
for interpretation. If a person has to act on information, he has to read it; the 
wav it is now. the opportunity for reading information is far less than the power 
of machines to put it out. 

Another point which bears on the use of computing but is not really an appli
cation of computing is the question of mathematical research in connection with 
the methods we use. We are using horse-and-buggy mathematical methods in a 
machine age. For example, there is a feeling among many people, largely due to 
the existence of methods in large quantities, that finite differences will be the 
answer to differential equations in the future. This probably will not be so. 
There is no hope that I see now for really doing a good job on a partial differen
tial equation which is the honest flow problem: four independent variables (that 
is. three spatial and one temporal) characterizing a fluid flowing in space. To do 
this bv finite differences would be almost incredible. It would be far more incred
ible if. after obtaining a solution by that method, a function table of four 
independent variables were to be printed as output. You could not read it or 
understand it if you had it. The entire output situation, I would say, is rather 
unsatisfactory. 

11S 
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It is also unsatisfactory to consider more and more automatic programming 
techniques when we do not know what we are going to do with these things in 
the future. For example, the kind of thing which Dr. Samuel mentioned, along 
the lines of proving theorems, is perhaps going to take hold one of these da\^. 
and maybe algebra will be done by machines. It is not known whether or not 
the automatic compiler which is devoted primarily to arithmetic on the assump
tion that all you handle is digital numbers in the machine will be suitable for 
this. We are not reflecting enough on the possible use of these computers: what 
they might be used for if we could ignore the cost momentarily. It is important 
to ignore the cost in order to get an adequate theory. 

Now, to turn this discussion over to some of the other people, I want to ask 
one question of Dr. Rich. He mentioned that two thousand words of storage 
was about the minimum and maximum size for a program. I was wondering if 
he meant that there was a human incapacity to do more than this or a machine 
incapacity to handle more than this? I would say that there are physical s\stems 
which cannot be done with that number of steps. 

R. P. RICH: I would like to start emphasizing a number of boundary conditions 
I put on this theorem. One needs hypotheses to draw conclusions. In the first 
place, the total storage was not two thousand words, but rather seven thousand, 
where five thousand words were used for storing tables, constants, and other 
reusable information. Two thousand words is the actual running program, consist
ing of the instructions executed each time around. That was the first restriction. 

The second restriction was that this was for a particular kind of problem: this 
working storage figure would obviously be very different for other types of prob
lems. That is, should one try to do certain nuclear-reactor problems within a 
factor of ten of this amount, difficulties would arise. The real point that I meant 
to emphasize by overstating my case (as I think one must to get points across 
in so short a talk) is that it is not only possible but also easy and obvious to ask 
the machine to do a lot of things that you should not ask the machine to do. 
For example, if you know the effect on the output of certain of the inputs, then 
these should not be redetermined during every run by Monte Carlo. In other 
words, if analytical answers are available for parts of such problems, then these 
should be inserted analytically. Random numbers should not be drawn to see 
whether a sine wave is in fact a sine wave. That was the major point I wanted 
to make—that random Monte Carlo procedures should be restricted to the things 
one actually does not know how to do analytically. 

Another point I tried to make was that, if sampling procedures are used. then, 
in order for answers to be precise enough to be of any use. fairly large samples 
must be run. With machine time costing what it does, and the demand on the 
machines being what it is, in order to get a reasonably large number of samples, 
the time per sample on the machine must be reasonable. Therefore, if too much 
is required of the machine at each single calculation, then each answer is a good 
answer, but it still is only one point of a sample: a hundred-point sample with 
several approximations at each point may still be worth a factor of three better 
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than a ten-point sample, just because of the sampling error. I could go on with 
this subiect at length, but I am sure that that is not the best way to spend our 
short remaining time, so I will let it pass for now as a rough answer to Dr. 
Hammer's question. 

P. C. HAMMER: Dr. Harder, vou mentioned in the course of your talk that 
there were certain instances in which network calculators and digital computers 
were equallv efficient. I wonder if you could give us some of the qualitative 
characteristics of such a situation as that? 

E. L. HARDER: For a system-stability calculation it is necessary actually to 
invert the complex impedance matrix of the power system. In this case the in
version of the matrix requires considerable time and must be carried out for 
each network configuration involved in the stability study. This is a type of 
power-system problem in which I think the network calculator excels at the 
present time. 

At present, for load-flow problems such as I illustrated, the efficiency of the 
two machines is about the same. Practically all the load-flow studies are being 
done by the nodal equation approach, and this has several effects. For one thing, 
considerable network identity is lost, and the mutual impedances between lines 
cannot be taken into account. 

In short-circuit or ground studies, a third type of power-system problem, there 
are mutual impedances between lines, and so. to use a digital computer technique, 
it is necessary to start all over again, not with the nodal equations (that is. 
Kirchoff's current law), but rather with Kirchoffs voltage law. It is much harder, 
however, to set up the voltage equations in a systematic fashion. \\ hether the 
digital computer or the network analyzer is better often depends on such a small 
thing as how good the initial guesses are. In a case where some experimenter has 
found that he can run the problem let us say two to one cheaper by digital 
computer, on digging into it one might find that, had his initial guesses been 
poor, it might have been two to one more expensive. So the question Dr. Hammer 
asked can be answered only by using particular instances. 

P. C. HAMMER: Dr. Samuel gave a very interesting talk about the proving of 
theorems. I wonder if he could give us an idea of what he considers the most 
promising line of thinking right now? I have been thinking about proving theo
rems in a very modest sense, not in the ambitious sense Dr. Samuel has been 
describing. For instance. I have run into some simultaneous non-linear equations, 
twenty-three hundred of them, and I would like to solve them. (Twenty-three 
hundred is one step on the way up to infinity.) The simple kind of thing I am 
thinking of is the proof by induction. Mathematical induction is one case in 
which one quite often knows fairly well the kind of thing he is doing, and 
therefore he could in principle carry out the proof by complete induction, by 
using roughly the same type of thing Dr. Samuel suggests. Let the machine 
establish the guesses as a function of -V, in a one-index problem; and let the 
machine prove that the guesses work. This could be done in cases where the 
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only excuse for doing it by machine really is the manipulation, the impossibility 
of writing out as many equations as one has. You cannot see them. So you know 
what to do, but you cannot do it. not practically. The same thing applies to 
calculating. You could presumably do all the calculation that the machine does, 
but you cannot quite carry this out. Would this kind of theorem, or theorems in 
complex functions or topology, be the kind of thing you might be able to prove? 

A. L. SAMUEL: It is very easy to talk glibly about these things, but at the 
present time plane geometry is proving extremely difficult, to say the least. I do 
not know when we will get to more complicated things such as those to which 
you refer. 

I might make one general remark, which may be obvious to you. in respect 
to dealing with problems both syntactically and semantically. If you are proving 
a theorem, you use the semantic interpretation of the numerical data as a guess 
to tell you whether you are proving your theorem or not. There is a converse of 
that, in which you are trying to prove a theory—trying to prove that a present 
theory is not true—where exactly the opposite should be done. You should use 
the semantic information as the truth, trust it. and doubt the syntactic informa
tion. I think we may be actually using computers before too long to derive new 
theories, which is just the opposite of proving theorems. 

P. C. HAMMER: Does anyone in the audience have any questions to ask the 
speakers? 

H. H. KANTNER (Armour Research Foundation): I would like to ask. ''What 
is the relationship between automatic programming and symbol identification or. 
as we know it more customarily, character recognition?" 

R. W. BEMER: I hope that eventually we will have a typewriter for input, 
similar to a typesetting machine or linotype, and such that when you write out 
an equation it can be recognized by the computer. Presently we are limited in 
the scanning of an algebraic statement, or even an English statement, by the 
many extra symbols used to separate our meaning. If I had the right kind of 
typewriter—imagine it has plenty of characters, upper- and lower-case roman. 
upper- and lower-case Greek, big and little numerals, brackets of different types, 
even hands that point, in short, a multiple font—I could press a button which 
would put the platen at half-carriage and cause a bit in a control word which 
says, "This is subscript." So I could subscript by sin A', or by reverse I could 
superscript, and I could go up to many levels of superscript. In this sense I think 
we will eventually be able to take type-set information and feed that into the 
computers. I do not know about handwritten information. That seems pretty far 
away. 

H. H. KANTNER: But you take the elements of the equation as symbols by 
themselves, and yet the equation per se is a symbol, as pictorial display. 

R. \Y. BEMER: Maybe this will be pertinent. In the future system we will be 
able to give temporary connotations of meanings to any variables, or symbols, or 
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sets of symbols. Thus, for temporary purposes. I can say that these operations 
will all be double-precision arithmetic, and these will all be complex arithmetic, 
from here on. Further, one can say that plus and minus indicate matrix opera
tions instead of plain linear operations: or. if I wish to replace sets of items. I 
can say. for example, that all variables which have names starting with "P are 
in South America. One can define this to the machine and change it at will. It is 
simply a matter of altering the table look-up in a dictionary by classes or sets. 

H. H. KAXTNER: I have not got an answer to the question, ' What is the 
relationship between symbol identification and automatic programming. 

P. C. HAMMER: May I take a stab at this? In a generalized sense, I think you 
could say that symbol identification is the same type of thing as automatic pro
gramming. That is to saw vour machine gets a certain word, it recognizes a 
certain word, like sin .v. ft proceeds to operate on this and generate a sequence 
of responses to it. If you call the whole sequence of responses a ''transformation 
and consider the who'le code vou are putting in as a symbol, then, if you want to. 
you can sav that this is one symbol and the machine responds to the whole 
symbol—vou can sav that this is the same as character identification. The 
machine knows what to do with this whole thing and recognizes the whole code 
altogether. I am thinking of it as one symbol now. What is a symbol anyway? 
It could be the whole thing. So I think the answer is that automatic programming 
is the same as symbol identification, presuming the machine makes no mistakes. 
Does that answer your question? 

H. H. KAXTXER: Thank you. It is a very good stab. 

R. S. DIKE (Caterpillar Tractor Company): Along the same line. I would say 
that. if you think about this reflectively, you will realize that the Chinese had a 
very strong symbol language, which has become very complex. Would we not 
be better off sticking with the simple symbols of our own language and stringing 
them out, rather than making too complex a symbolism? Would we not be 
forcing ourselves to have a language too complex to handle. 

L. U. ALBERS: I believe that you certainly can go too far in taking advantage 
of all the logical symbols and subscripts and German characters and so forth. 
In the direction of Dr. Hammer's suggestion, if you can present people with 
curves or pictures or written decisions or judgments, this is probably much more 
helpful than just multiplying the language. 

Incidentally, I would like to mention one other thing in regard to the matter 
of designing machines to learn. A young student at Case has programmed the 
650 to learn to play ticktacktoe. It starts off not knowing how, and in the process 
of seventeen or eighteen tries it has learned and is capable of tying or beating 

anyone it plays. 
\ L. SAMUEL : I am sorrv I did not mention that there have been man\. man\ 

attempts of this sort. A man at the National Physical Laboratory in England 
programmed the Ace to do the same thing. There have been a lot of things done; 
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1 pic,keTdjajfew isolated samples by way of illustration. I apologize to all the 
people I did not have time to mention. 

,  R  C -  HAMMER: In a way, the computing industry started with the big ma
chines. The government was behind these things, and the big companies started 
making big machines. Now we have this business of interpolating to zero with 
smaller types of machines. I was wondering if Mr. Gasser might sav something 
about whether or not his company is going to contemplate getting'bi<™er ones 
or is going to hold fast to this order? 

E. B GASSER: In my letter I sent forward to Boston, recommending the pur
chase of the LGP-30, we stated that at the current level of research activity we 
would\ bti satisfied with this machine for the next four years. At the end of" this 
time I think we will take a good, hard look at our machine and the competitive 
machines that exist at that time and make further decisions. We are bound for 
only our years. I think that the way things are going in the Toni organization, 
•n i h the strengthening by Gillette of the central research organization, we will 
find ourselves in the market for a larger computer by that time. 

, E' L' HARDER. I would like to ask Mr. Bemer a question in connection with 
the translation from machine to machine. Of course the translation between the 
superlanguages, and then the compiling for particular machines, is a fine wav 
provided you program in the first place in one of those superlanguages But can 
you comment on what is going to be our ability to use the programs for the 
present machines on their successors? 

R •  BEMER. The only way this is possible is on a machine that is specifically 
r esigned to accept all instructions of a previous machine plus additional instruc
tions: such a computer is the 705. Model .3. which will handle all programs 
written for the 705, Models 1 and 2. 

As a general procedure I do not think that it is possible to swim upstream to 
e general language. If you take a specific machine and take some odd-ball 

c 3 raster is tics it has—divide by an alphabetic number and swap the result end 
for end. tor example—anyone can produce a program that nobodv else can ever 
figure out in terms of what it was intended to do. If you want to compute /, <x) 
I can write down a program for a particular computer: but I cannot look at a 
p r o g r a m  f o r  S W A C ,  s a y ,  a n d  k n o w  t h a t  i t  w i l l  g i v e  m e  J 0  ( x ) .  

E. L .  HARDER: hat about 704 programs on the 709? 

R .  W.  BEMER: There is a special device that will enable you to run all 704 
programs on the rOO. I think that it is only necessary (or the conversion period, 
for the machine-language programs. 

E. L. HARDER: What can be done if you go to a large core memory and want 
to drop the magnetic drum memory? If you have a 30.000-word core' storage it 
seems foolish to retain an 8,000-word intermediate speed storage unle«vou 
really need it for some special reason. Do you think that the existing proems 
for drum and a 4,000-word, high-speed memory can be translated mechanical 
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in some way. perhaps by using tabulating equipment, to a machine that does 
not have a drum? 

R. M. BEMER: I think that it depends upon the complexity of the program. 
For instance. D^GSp-Ridgeway could tell you that he could not find any way of 
mechanically converting Fortran, written for the 4,000-word, high-speed memory 
and the 8.000-word drum, so that it would work with the 32,000-word, high-speed 
storage. They had to get in and change table sizes by hand; they had to juggle it. 
I think that there are many, many things like this that we are going to be stuck 
with for a period of time, which we cannot afford to mechanize, because writing 
the program for mechanization would be more work than it would be to do the 
original problem. II e are faced with many difficult problems in going up in the 
hierarchy of machines; the only solution I can see is getting to a high-level syn
thetic language quick enough so that we do not engender much of this machine-
language instruction. Y\ e could then hope to get the problem out of the way 
once and for all. 

R. P. RICH: \ou mentioned a five-to-one reduction in time in going to Fortran, 
but you did not say from what. Usually this factor is ten to one instead of five 
to one. but a person never says from what. 

R .  Y \ .  BEMER: I am trying to be conservative. It does not become me usually. 
This is from the SAP language, which is symbolic machine language. If vou 
were to program in pure binary, you would "find it twice as difficult as SAP^ so 
we multiply the two together and say that Fortran reduces ten to one in program
ming over actual machine language. 

R. IV FLOYD (Armour Research Foundation): Most equipment seems to be 
designed around pure numerical or alphabetical input, whereas most mathe
maticians are trained to use Greek letters for angles and special signs for "greater 
than, equal to. ' minus, and so forth. Is anything being planned for coming 
machines or interpretive routines to make it easier for the poor mathematician? 

R. W. BEMER: The Los Alamos people have their own design for a 300-
character typewriter which they would like as input to the Stretch system. They 
made a request for price quotation to IBM to reproduce this, and it is under 
consideration now. It has pretty much everything on it. I am very glad to see 
this myself. 

OPLER (DOW Chemical Company): \ esterdav, Dr. Hopper indicated that 
Remington-Rand, to solve this input problem, wanted to go to the English 
language instead of to symbolic. I think your approach is opposed to hers. She 
seems to have a broader brush treatment in the sense that she could meet busi
ness needs as well as those of the mathematician. The mathematician still knows 
the king's English. 

R. W. BEMER: I do not know how the king got into this. It is the queen's 
English now. Anyway. I do not think that actual language as such will hold up 
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too well it you extend Dr. Hoppers principle indefinitely to all the different wavs 
one can express statements. She says that, after perhaps twenty-nine different 
combinations, you have reached the limit of what anybody could possibly *av 

n the more complex programs there will undoubtedly be found other wavs to 

sT-mb r 'I3™ ! ?  ̂ thC maChine" 1 W°Uld mUCh prefer 3 mathematical or 
' °llC °f.Cal notat'on, which consists of specific characters, and see this used 

as an unambiguous input to the machine. 

A. OPLER: There are 20,000 characters in the Chinese language. 

R. W. BEMER: I do not propose to go to the Chinese language. We tried to 
make up a hst once, and within the neighborhood of ISO different character* we 
could do just about anything anyone required for the majority of scientific or 
commercial work. It seems reasonable that two four-bit characters in combina-

a,phabetic- ^« 

A. L. SAMUEL: One of the problems with English is that a person can make 
a s atement in English without realizing that he is not being precise. Thi* is one 
of the characteristics of the English language. So there is a certain argument in 

of requiring a limited artificiality in machine language which force* the 
person stating the problem to recognize what he does not know about the problem 
in order to state it precisely. prooient 

QUEZON FROM THE FLOOR: There are a number of installations I know of 
that have large-scale computing equipment and also have some of the smaller 
machmes that have been described today. I would like to hear from some of the 
panel members what they anticipate the effects of automatic coding techniques 

tions with theT USCS theSe Smaller machines have in those installations with the larger equipment available? 

I E;L' WE HAVE THIS Pr°hlcm at Westinghouse in that we have forty 
p ants and five large-scale computers and also about a half-dozen medium-scale 
computers. There is a possibility of the small computers being used ri-ht a Ion a 
jnfl, the large computer. There is a possibility in a big plants its betted 

°r.,t?;rfee flf°°rS awa-v or tvvo °r ^ree buildings awav: and. of course there is 
a possibility of its being used in a plant that does not have any other computer 
•Now, where there ,s a large-scale or medium-scale computer present then the 
decision as to whether you need a small computer also, for smaller prob em* i 
n a way competitive with the use of automatic programming. We are conduct 

an experiment right now to try to test this out-* very simplified Ztn oi 
Fortran as compared with the use of a *mall computer. The two factors that enter 
n are convenience and the time to do the programming. Of course, the cost comes 
n too. In general automatic programming seems to be about twice as fast a* 

the programming for most small computers, which do not have the benefit of 
symbolic programming. So the programming is a little shorter with the automatic 
programming technique. We are still trying to work out the balance of thtgab 
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for the automatic programming as against the scheduling difficulties and the 
problem of getting the answers for small problems through big computers sched
uling them along with other work. We do not know the answer yet. We rather 
leel that there will be a lot of use for the small computers. In fact, in our company 
now we have five of them, and a number of others ordered, along with the bis 
ones. Most of them are in special-purpose applications, although in one plant 
there is a small computer in the same office with a medium-scale computer. We 
are trv ing to work out the optimum pattern in order to advise our various plants. 

R. IV. BEMER: I would like to toss in a little remark. I am in favor of the 
short-order-cook policy that I think will come into effect perhaps five or ten 
years from now. It might resolve at least a certain class of problems as between 
the small and large computers. If one had an extremely large, extremely fast 
centralized computer with various lines radiating out, and with terminal facilities 
such as H person now only gets in the form of input-output devices at the com
puter. and if one could have high-speed transmission to and from this centralized 
computer, it would be like a short-order cook. It takes the orders off the lines 
and. so to speak, heats up the griddle and sees that the toast is ready while it 
is pouring the coffee. It will be self-scheduling, self-regulating, and self-billins 
to the customer on the basis of use of the input-output device. I think, since the 
larger and faster computers, as far as production problems are concerned, always 
produce more problems solved per dollar once the problems are in the machine, 
that this is the obvious direction to go. I agree that at the present time there are 
many small computers that seem to take less trouble than a large one; but I 
think that, in the long run, we will use the largest computers and will start 
thinking in terms of compatibility of languages and ultimately in terms of a 
single language. 

P. C. HAMMER: It is getting a little late. Maybe we had better draw this to a 
close. It there are no more questions. I want to thank all the speakers for the 
excellent job they did today, and thank you all for being here. 
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I AWS AV 
The GUIDE organization of 705 users is sponsoring a cooperative project with IBM to produce a 
FORTRAN system for the 705 models I and II. The processor will be written with the conversion to 
705 model III in mind so that the total effort will be minimized. Furnishing programming people for 
this project are: 

Westinghouse Electric Standard Oil Co. (Ohio) 
Eastman Kodak The Texas Co. 
General Electric Co. A. 0. Smith Corp. 

The first working version is expected to be tested by August 1958. The b OR IRAN language which 
it accepts will be identical with that for the 709. 

II CONTRIBUTIONS 
To start, and by way of demonstrating how trivial contributions may be, I am showing one taken iiom 
the PRINT I system for the IBM 705, a serial, decimal, \ ET machine. 

A MACHINE METHOD FOR SQUARE-HOOT COMPUTATION 
R. W. BEMEK 

I.B.M. Corporation, New York City 

Computers with operations having variable execution times (\ ET) require a different class ol subroutines 
to take full advantage of these characteristics. Well-suited for computing square root on decimal ma
chines is a variation of Newton's method which uses a linear first approximation such that convergence 
to the desired accuracy occurs in 2 iterations, thus causing a fixed and predetermined execution time. 

Floating point square root routines operate on arguments of the form: 
N = M • 10l> where .1 < M < 1, and M is always positive 

To establish a common program for both odd and even powers (P) of 10, let 
N = m • 10" where .01 < m < 1, and p is always even. 

Then, \/N = Vm • 10c-5"> and .5p = .5P (+ .5 when P is odd) 
m = f M (if P is even)1 

|.1M (if P is odd) 
Iterating twice with initial approximation Aj, 

—— = Q! A> = .5 (Ai + Qi) "7 — Q2 \/m = .5 (A2 + Q2) 
AI 

But m = AiQ> = A-2(A-. + A) = A22 + A2A This form is designed to minimize the number of 
digits of quotient which must be developed. Users 

m — A22 A22 d- A2A — A22 A 
2 A.. 2 A2 2 

__ A2 T Qj 2 A2 + A 
Vm = 

A m — A22 

Vm A2 + — ^ A2 + 2 = 1  '  2  A,  

of desk calculators will recognize it as the standard 
method of developing half of the required accuracy 
by long-hand square root method and dividing to 
place the second half of the root in juxtaposition. 
This method need not be followed, but the tables 
of segments of approximation still apply.. 
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xnvimitinn V is derived by using a table of linear segments which approximate v'm 
Th" 'Si» tolerance T is a function of m and the allowable error , m the final 

. ; liin a 
r, . ; „xiniation. To compute 1. 

m - O 
S  - Q '  

in V'm - Tx + 2 

Ignore 
V m + T  _  _  

m _ m _ Ti v'm +^v'm - Txs + 2 e V'm + |2_eT 

jVrt.fore, 2 f \/m = Tr * and T. « 

' T, - V2TI Vm Total tolerance T, = £ + T2 

accuracy, e = .5 X ^ and T. = 10-
= 5 X 10"10 and di = 10 5 *v m 

: ;;:::;i urm for least execute time. Tables for some common accuraces are shown here. 
A) ^ ax + b where X = most significant part of m 

10-digit 

0) 

Range b i 

ul .02 4.1 .060 
03 3.2 .078 

o:i .08 i 2.2 .110 
08 18 1.4 .174 
18 .30 1-0 .247 | 
30 GO 1 0.8 1 .304 , 
.',u 1.0 0.6 j .409 

n ihat range limits are also 
. en for minimum number of 
i: , for minimum TLU time. 
:. adjustments to these tables are possible. 

Range j a b 

.01-.02 4.2 .0585 

.02-.03 3.1 .0803 

.03 .05 2.5 .0991 

.05-.08 2.0 .1240 

.08-. 13 1.6 . 1545 

.13.23 1.2 .2060 

.23 .39 0.9 .2749 

.39-.60 0.7 .3550 

.60 .84 j 0.6 .4148 

.84-1.0 j 0.5 . 5005 

Because of the ,i adjustments tu Lticoo "soiu. i 
ial interval in arguments, address modification from the 

micnt is usually impractical; the normal method is to truncate 
argument to .xx or .xxx unrounded and do a table lookup on 
iparison. Because of r ound ing  overflow the subroutine is easier 

.. , / .-ii ^irxxx7or maintains the sam< 

j L'unu 

Range a b 

.010-.014 4.58 . 05439 

.014-.020 3.84 .06482 

.020-.028 3.23 .07712 

.028-.040 2.72 .09153 

.040-.056 2.29 .10876 

.056-.076 1.95 .12781 

.076-.105 1.66 .15004 

.105-.145 1.42 .17548 

.145-.195 1.21 .20596 

.195-.260 1.05 .23745 

.260-.350 0.91 .27395 

.350-.470 0.78 .31953 

.470-.630 0.68 .36649 

.630-.820 0.59 .42301 

.820-1.00 0.52 .48005 

a a r i s on .  Because o f  rounamgovei now tncsuwxw t An pari v 
»,i,o if ihe with even power maintains the same mantissaTor 

:->r tins condition will nsually save program steps masmuch as ovaflowis ^arante^newr » 
, I , r i ahles could be constructed for different but* -^^Lwn^Th VET. 

ibably be better to use 3 iterations. 

ample: Find the V-12345678 

.12345678 -s- .346 = .35681 

.12345678 -t- .35141 = .351318346 

\ .5 (.35141 + .351318346) = .35136417 

Iilterent accuracies, uuo u c.— , . ... .rrrr 
A similar method is also possible for binary machines with \ L . 

Ax = 1.4 (.123) + .174 = .346 
A2 = .5 (.346 + .35681) = .35141 

or, 
.12345678 - (.35141)2 - .0000322081 

.70282 .70282 

- .00004583 + .35141 = V~= .35136417 



XTRAN ANNOUNCEMENT - SHARE Meeting - 26 Feb 1958 

XTRAN Is a tentative name far a tentative same® language which is to I 
superstructure on the existing FORTRAN language. Certain of the pre llmfnory 
specifications are outlined <m Hie shoots you now hevo, together with some coding 
examples to demonstrate certain salient features* Note that ihasa specifications are 
Incomplete, pevticularly with respect to Input-output and logical statements * This 
does not Imply that we do not have Improvements developed, but merely that we could 
not decide on a proper Term far this presentation, rushed as we are* 

XTRAN follows a method dsmsnstratcd Jo be feasible by tha FOR TRANS 11 system, 
which Is a msaro of running source programs In the FORTRAN language en the 69D* 
This Is done by means of a sour so language - to - source language processor from FOR
TRAN to tho IT langucgo, which Is then used to produce symbolic and eventually machine 
language coding* Thus XTRAN programs produce FORTRAN programs which are fausi 
fed Into fh® FORTRAN processor for the 709u Again, Sho standard SHARE machine b 
the c mi figuration teed thruout. 

The basic mechanism of XTRAN k the Pre-Procecsar program, which is being cur
rently flewcharted for the 709. This pre-processor Is Itself a multi-pass Intelilgonce-
gctftering and transforming unit quite similar in principle to the multiple passes of the 
PACT system. I believe that most of our future programming systems will be constructed 
an this modular principle, limiting the variety of functional work performed on each poo 
so there Is little conflict, «acd certainly mcro flexibility for Improvement and change. 
This {he Information gathered In prates 3 end 5 might show that there were no source 
entries requiring the sendees of pass 8, which would be eliminated accordingly. 
For processing XTRAN on Hie 705 models I, II and 111, no pre~processer as such Is 
required bsccusc the combined GUIDE-IBM v/orhfng group Is starting from this language 
and trcftslctsng directly to Autocoder Hi. 

During the pre-processing, many of the XTRAN sterfcrnisnte will produce multiple 
statements of the FORTRAN variety, so tbet the pregrs»i Is likely to fes much expended 
whof) en taring th® FORTRAN processor. We ere coordinating XTRAN work, with {hot 
of iho FORTRAN 709 processor so that th© analysis end infometfoa-gethsrlng dona In 
the XTRAN pre-processor is switched off In .the FORTRAN processor end not duplicated 
cny mora thsn necosscary. If tfi©ra had been sufficient time to meke cm Integrated system 
before delivery of the firs? 709s we would have dnnc so, but th© present roods of fab
rication !x» a greater safety factor for completion on tiros. In actuality we expect the 
overlap to be negligible. . 

The basic Intentions for XTRAN ore: 

1. To minimize tha ©mount of actual writing and coding, resulting in fewer entries, 

2. To minimize possible coding errors by at lowing more freedom in rules end auto
matically Inserting nuw and corrective statements. Thus: 

a, Algsbrale tWwnsRh amy have mixed express tens aontclnlng flxod or 



floating paint variable, or constant.. WtipU 
a "RUNNINGSUM = INITIAL® some «pressi«> . This same stare 
may be used to create muUlway programmed switches. 

D.rr —-—J-

listing and group iham appropriately. 

Conditional -

it X£R't 5SMSL-

£te mlSSTiffeLdfefely fol^ • ** •»**"• ̂  M8d * 
think up dSfferawt names for stetemento. 

, Statement referents ond ^ iTa'^ropresafeat'ol referents}, 
ccfer alphanum^ie ^-fe ^ !vtl!9ni3 for FORTRAN 

^S^JSLWitSSWSE 
entictod with l«*s choice for duplicates. 

,. Subscripting and range crmtrol on BO seamen* « 
poure), ol lasting ^•d|y«^latsfre^cO|^ ^ ||m|[ci!on 

mentation as any Sxod lnaflOT of oner source 
*2 wutisuicrly in the wc of nagcMw subscripts and 
"** "".T*' 0O ,'nSw*. Vorfnrtcn for d! h*3c« ""V .'IIfresed 

SS^rSsSsassa 

•• jj^,ias^sss--^»JSS!RSS' 
LIST #Sofe.T«nt. TW» «*» cppK®3 *° Bop,-acn v 11 *"eSu 

fl. Much sniting »r ho Olfednofed by «—* 
marts, ,which effectively copy r«*» oi «•*"• ,B p 

„. Many*mUI«i and "" 
£A*« «*1MN prcc-fe,. as are 

ioglcal errore In coding e«d crnbsgueus tfetwonfc. 



To be compatible with lower level existing languages in ihcf any ,-ORTP.AN state
ment may exist In XTRAN, byt not vies versa* Ibis Is important In the? there may 
be coses where XT RAN programming v/iter* used to the utmost would produce a l<m 
efficient end slower-running pregrcm, although pregronmed modi mere simply la 
source language* In this CGSG, as with the present operation of 704 FORTRAN , 
the expert programmer may achieve better efficiency thru understanding of She 
system and coding In the lower level tarns* 

To be compatible with nszny IBM computers with llko capability, such <sS Hie various 
705s, Tape 650, etc. Machine crlsnfaficn has been removed from the language end 
facility Is provided to cods specific sections In the symbolic machine language of 
the several computers, meamhlie Ksdntefclng a cssreful watch to catch end give 
warning If such programs era run en other computers for which these sections ere 
unacceptable* 

5. To allow the fabrication of generalised hlgher-lovei slulumcah by the epen-ended 
definition of new language with the appropriate generates* * For this I» must nava 
recursive properties and bo susceptible to set notation, symbol substitution, logical 
algebra, etc. 

6. To allow a mere nearly "flowchert" typo and way of ceding, where &© detailed 
blocks of coding ere filled In later although not subjected to restrictions the* they 
must appear In the source progren In any particular flow pattern* 

7. To facilitate multiple processing cad testing of Intermingled programs 



£2^£!iJ^NgU^CpMPATIBIliTY THROUGH MULTILEVEL PROCESSORS 

gc<v .̂ 
sSlSSHSir? 

W ..ZiEUSS. tStlrstSiJisSZS •̂ 

•«. - ̂  »^Asasr x teaKs;-

*«• X" - - of 
who ore frying to create «. mhwudt . proweiw ofren faced fay prcsrcmmere 

iust"51,8 h"° of £tw>' ted fc 

«X!«0 £!f!Zk A?C^laHh On ch°ic® ®f Erin3 ra dtmalfy as possible from She 
« ^ ® i K o :  £"1 «"*« ® —v "»*<**»• 
by^ta .1 , f ̂ f"8 of *• odsHng subroutines oy wItfng a program m<?} calls upon the subroutines when fhey ere useful. 
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JSfttt stsaszr ** fcTOta--—Xi 

rot/™ !i!OV!ti>SH: •T'.C ,̂"roK,fe P™ «•• lirt *e merits of the Intfr -t 
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fvZntlS,  ̂ have most of to features desired to sire final 
5!fljfJ!fT: ,?Ba®0Menis point up <**fact. WERE IS NO GENERAL RULE. 
to !i5T EE" I®9""186 to obiaef Pro8rora <̂ Kfe 00 «"»* win vary v/ifb each individual c£sa0 Some of these <g>e: 

F^roRimJflg investment In the existing system <md the efficiency 
end usefulness of She existing systsm0 T 

IheF^r^Ws budget for creating the programing system end his 
deadline for having a cheeked-ow? running system. 

., . f.f  ̂*? P"'"" a* P8*'?1 iira •"«> portfaent. If a programmer simply 
ZTL ̂  ̂  b«fe®»<* «» fimo toslt ton aid write 0 completesystem Iran 
scratch, then the choice is made far htma He must use the indirect route of fhe 
preprocessor 0 

Another important point fo be considered Is to when a system Is created by 

££ wiirrZi '̂ tot?Wn9 codin9«whaf kind °f 

In order to help untotaml (to this to! product will lode like, soma points 
^prt̂ irocesamdtodbetoccto. Actually to a preproca^r shoSdl bo 
is a soiree longo-cge to source language translator, to translate from a higher level 

fo ? l$7'swf':ea <«S«8«, «al Incorporates advanced onto-
mafic programming features, during fhe translation. 

- uJ0ofca.fo,r' ° If8?**®® ̂ 'W i>® regarded.more as the to pass of 0 system, 
iiie 9  ̂of P0538® of «» overall system, rather tos 63 on Indoponckmf 

F«Sf€roming system simply placed in Sron? of 3ome other programming system,. True, 
sy^em may h® Initially created by Shfs tacking an of ihe preprocessor, 

'rST °? FCCCSS?ns f,m® ®«d «»• <Ml«»tfan of effort. Buf 
rM /Tff - fT* &W<sd <**' °"d deadline, If any, has 

a tohtoTS ovar 013 8teaa,!3 °ffeW P"1*" ™i 

ilia FOR TRANSIT system for the IBM 450 Illustrates to successful use of 
,?*'f?!1"°* '1,!'° ̂ "8 j° •W1 «••»•» SOAP, o symbolic assembly 

PSfT?.®dKa3ar,twisS,,9ŝ ten- Dr. Perils of 
1,18 ""+**! J-w- S^* «" H. R. Von Zcren, wrote a 

.llmiu!sr^!£ ' ® oufpuS !s '*'• ,BP l̂«'SiMga of SOAP, to 
eBednte'ry toneed for torn So write an assembly for to IT system, as to program 
T""*"***!18" f'̂ P̂ 'fteB.*8 SOAP system. The next step was for IBM 
prcgrsBmars to write to FORTRAN SIT preprocessor to translated from FORTRAN 

m 



statements toIT statemenis. This system Is more fhen just a source to source language 
francM*. The FOR TRANSIT preprocessor Incorporates many automatic programing 
features diet wore net possible with fhs IT system alone, has a one for retmy Input ou  ̂
raRmANSj"0*' ®" 9fV6B ** F°^emni€r ^ «*«**• of Ampler 

Th® resold overall program Is a three pass system that works In this way: Source 
programs ar® written using FORTRAN statements Q The first pass through the 650 scans 
eootbaI'.^05 **\®'bPw* statements sef$ «*P necessary tobies of correspondence between 
FORTRAN vcrlabfe names end IT variable nomas, at fhe same time double subscripted 
variables are assigned IT variable names. Then fhe whole program is translated to IT 
statements -for output-. For the seaatd pess, fhe newly crseted IT statements ere used 
fonfepuf. The compiler then scans end brocks down each Input statement, compiles 
subroutines and translates on a one for many basis dram the IT statemenfc to fhe symbolic 
ffliguag© of SOAP for output. For the third pegs, fhe symbolic SOAP program Is used 

for input', and Is assembled, die output being <m optimized machine language object 
program ready fcr execution. 

The overall result of this experiment- In tacking a processor In front of a processor 
that was tacked In front of a processor has bean a three pass system that Is long on 
processing time end dus to ihs three passes, on® which has been unwieldy In some 
cases. But creating fhe FOR TRANSIT system accomplished this: 

The programmer with a problem to solve need cnly concern himself with learning 
fh® FORTRAN language and very little else. In the Ideal cos© She programmer Is 
unaware of whether It takes three passes a? three hunsbed passes to process Ms FORTRAN 
statemsnfe. 

While fh® system is being used In fhe field, prcgrcmsraers at IBM care working on a 
to© pass system. The first pass will accept the FORTRAN sfc&erosRfe and compile a 
jmtb&Hc program which is assembled on tko second pass. Dupfleerifans on coding are 
being eliminated. The whole system will be tightened up. The result of this Is that 
this two pass FOR TRANSIT will have a marked decrease In processing time and greatly 
increased flexibility as well as a mere efficient object program. But remember, while 
this new system Is being prepared, people have the original system to us®, and when the 
Improved system Is distributed, th®r© will be very llftl® Intefrupi-Jsn, change over period, 
or releemfng time, In the 650 installations that ©re using fhe FOR TRANSIT system. 

Experience In writing and using fhe FOR TRANSIT system has shown that there can 
©® many impoitef advantages of pro-processors. 

One Is fhe possibility of introducing more advanced automatic programming features 
to cm exfsfing system through fh® us® of a pre-processor. This sen be accomplished by 
e preprocessor that not only accepts a higher level source language as Input, but nhw 
contains toe routines md ability to prepare this Input for processing by She fewer level 
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grmmnlng VZTtai ,̂,SBd-tel" 

«  J ? z 2 £ z z ' , £ , s  r i b l °  T ? *  * •  
°"fcroHc pryommfo, or coding syrtems. The FOR TRANSI^Jsto M^ht L utd "® 

an Illustration again hare, as ft translates from a 704 Input language to a 630 irsnut 
lmsU°s'' m*ln9 " •» - FORTRAN MmmtIZ eiS SoS  ̂f^>? 

A. B̂ f"r odT'°8e *!" " h p!xslbl<> *» P"*?™*!'*! systems to exist boforo 
the find source longuoge Is specified. For example, thereore feu, people LfivX 

T* ",0f '®*s K!ms aulD"a«= «oding or programming system 
£=± ' T**# 3 ACMf° "°C V*S«common ' 
ZfitZ £SkuL J5 e5mra0? ,<ffl9«W* >' tpee'Hed end occepted for use, 

^^tongucge tromlaSfng to ploy cm 
KT!T ,, !S ,wd,r  ̂aPPreBd» CGf» P®op!e *0 begin using the rL 
>̂ a£T B° W","° *» wlw!s ™» ̂ toms to to weoted from 

** "h"'0"8 brt ofeai ""tooked advantage of less 
«L £Tu pr°?°"m,nP e.ITORi- My fta*>i» loss work for o programme, to do 
tesfar Mm to .mdemtend fewer ruies to follow, there will bo a rjdtoffowl 
error.on his part. In odethon to this, the preprocessing pass should Incorporate error 
££?£ " 71 Error detection bacfetolk from the prepeSZ « 
n J u U ° 9"** ̂  *> debugging, end the earlST 
in s^tem errors ore detected Hie mare time saved. 

_ . .°  ̂9"01 J010' about preprocessors is that, if on automatic coding system 
SWCe pr°8rOTS hova h®®1 wm"° in I"8 luns«S89 of Mb existing 

^7, "J!U,°rr?i»'b «*Wr ̂  existing so£?£U» cr^ct ® 
obsolete. They do not have to be rewritten any more than a 

^X^riSTpr  ̂ *1,9 rawmeR **- —0,008 

of lh ,̂btf0r°i!^!0m t fraPl8tod «««•«.program may be vwitten in any one 
of ctawtaatheIft; "** *"• £yS!®" u 8l»® the programmer the freedom 
prograrrf source «tatom«nts from one level to another within his 

*™Uu!St?Z! ** p,?sible hy bu,W,"8 an Intelligence Into the preprocessor that 
££££ fte^t I*3, "T inpatient fhtf 
" Z° 7™* iev® «*•»«*» highest »s simply passed along to the proper place In the 

51,0 rKn0,Kkr of to® •* was a droeripHon of the propped 



I > \ I \ ( oiVl rol 

c" L^ ~ r 

>>r 6 

Evaluating Intelligence for Programming Systems 
A remarkable variation exists in the degree of sophistication of 
various programming systems. A particular manifestation is the 
jungle of assorted devices for reproducing limited human decision 
procedures. An attempt is made here to begin a systematic classifi
cation of the various devices for educating the computer to take 
over the decision-making functions of one or many human operat
ors, both those that have been demonstrated feasible to date and 
those that are highly desirable for the future. 

lookup mechanism. 

Are statements reserialized at eaeli 
reprocessing to renew insert ca
pacity? 

R. W. BEMER, 
I.B.M. Corporation 

available to DATA Control readers 
upon request. (See box). 

• It would be very presumptive to 
attempt to present an exhaustive sur
vey of intelligence in even the most 
narrow and limited field, which the 
design and application of computer 
systems certainly is not, since it has 
the capability of representing the 
inherent universality of thought pro
cesses. This article is intended only 
to create an expandable framework 
for additions by others. 

In this article, typical questions 
from such a checklist are amplified 
and explained so that some of the 
implications of such a check list can 
be appreciated bj. DATA Control 
readers with a detailed working 
knowledge of computer systems. 
Copies of the complete checklist are 

TYPICAL 
PROCESSOR QUESTIONS 

Is all action taken on an exception 
basis, so that programs which use a 
minimum of facilities and least flexi
bility will be processed fastest? 

A good example of this is the per
mitting of names of any number of 
characters. Suppose that the fixed 
word length of the computer will 
handle 5 alphabetic characters or 
special symbols. The programmer 
may then be cautioned that if he 
limits himself to names of 5 characters 
and less, only one word need be used 
for each and the processing will be 
much faster. If he used larger names, 
it will require longer tables and more 

Serial numbers have two purposes. 
The first is sequence checking of the 
statements in a source program. The 
second is the matching of corrections 
against the old source program, which 
is presumably on a medium which 
does not allow manual rearrangement. 
A common procedure is to either 
hand-serialize the original program, 
ignoring the lowest order position 
or have the first processing do this 
automatically if one is sure he will 
not disorder the program before 
processing. This lowest position is 
used for insertion of forgotten or ad
ditional statements, up to 9 if only 
numeric, and 35 if alphanumeric. 

Since the processor can assign serial 
numbers automatically for the first 
processing, it is only reasonable to 
give it the further responsibility of 
doing the same thing every time, 
which reopens tight spots for more 
inserts and in general tidies up the 
program listing. Each page of the 
listing should have its own number, 

and lines should be in sequence on 
that page, starting from 1. This is 
extra inducement for the programmer 
to use the updated machine-produced 
listing as his only source for changes 
on further corrections. 

Does the processor force overlays 
before compiling a full memory 
load, to leave a "pseudopod" link
age to the supervisory routine? 

It is always best to leave a free 
area of high speed memory to control 
overlays. Without such a buffer, the 
processor will fill memory completely 
and have no means to call in another 
section when the program is inevitably 
expanded. With it, a minimum change 
in assembly is possible by trivial 
patching. Otherwise, the section of 
program which is displaced may have 
been referred to by other sections, all 
of which must therefore be reas
sembled. 

Will the processor re-order and 
tidy the program at each processing 
to collect like items, as for declara
tive statements mixed with impera
tive? 

It is an imposition upon the pro
grammer to have to constantly re-

—-— " recoil 
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17. Can physical characteristics of v« 
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18. Will the processor create extra stc 
mixed expressions of classes of vari 2. 
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order liis source program so that non-
acting definition or declarative state
ments are read before the statements 
requiring this information. The «hering of intelligence should be a 

ies of sweeps thru the source pro
gram, and it is just as easy to extract 
this type of statement by means of 
the processor, which automatically 
puts them at the beginning of the 
program (where they would have 
been had the programmer been omnis
cient). 

Will the processor create extra 
statements for or allow mixed ex
pressions of classes of variables? 

In general, the programmer should 
not have to constantly remember 
whether a variable is for the moment 
in fixed or floating point notation, 
single or double precision, rational or 
complex. The processor has access to 
conversion routines and should norm
ally take care of this automatically. 

Can the processor incorporate in
put-output interpreters in the object 
program to allow servo control on 
the basis of actual data character
istics? 

Too much emphasis has been laid 
^jjion compiling the entire running 
^^fcgram before operating. Particu
larly with the advent of simultaneous 
reading, calculating and writing, the 
balancing of these three functions to 
obtain optimum efficiency is most im
portant. If one had to densely sprinkle 
the running program with interroga-

Computer Program 
Checklists Available 

The accompanying article discusses 
typical questions from a checklist of 
intelligence for computer program
ming systems. The list consists of 
several series of questions concerning 
the processor, supervisor, operator 
instructions and object program, lan
guage and diagnostics. DATA Control 
readers may obtain complete copies 
of the actual checklist by writing: 

DATA Control Editor 
Automatic Control Magazine 
430 Park Avenue 
New York 22, N. Y. 

tions of external equipment just to 
make decisions on the basis of its 
status, one would find that at least 
half of the memory was taken up with 
this function. A change of state of 
external equipment must interrupt 
the normal program sequence by a 
trap to an interrogatory program 
which assesses the need for rebalanc
ing and will select the proper sections 
of program to do so for this condi
tion. It is impossible for a compiler 
to choose an optimum mode of opera
tions when the characteristics of the 
•lata are not known until running time 
and may change abruptly or periodic
ally. 

When a set of instructions is 
labeled or called as a macro-instruc
tion, may it either be copied in-line 

set adequate, with prt 

-cilities unrestricted a 
ecursively e 

procedures 

in free for 
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ed, both 

rly iden 
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That 
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•"ismatchedV^T " °f Problert) 

connected. 

asm. 

each time it is called or set up as a 
closed subroutine, depending upon 
the number of included instructions 
and number of times used such that 
a proper balance is obtained in wast
age of memory vs. increased execu
tion time for calling sequences? 

There are various means of making 
this decision. Knowledge of how many 
times a routine will be executed dy
namically for minimum execution time 
is difficult to come by, but economy of 
memory is possible thru static usage 
counts. Various weighted approxima
tions may be used to give a simple 
formula for this determination. Take 
for example a routine which requires 
4 instructions when compiled in line, 
using 3 extra instructions for linkage 
if compiled as a closed subroutine. If 
memory wastage were the only criteria 
and the routine were used in 10 places 
in the program, it would require 40 
words in line and (10) (3) == 34 in 
a closed subroutine, which is better in 
this case although it takes more execu
tion time. However, if used in only 3 
places in the program, the in-line 
method uses slightly less memory, 12 
to 13, and is considerably shorter in 
execution. 

TYPICAL 
SUPERVISOR QUESTIONS 

Does supervisory control exist in 
and have access to real-time envi
ronment through a programmable 
clock? 

A programmable clock with a trap
ping interrupt feature can provide 
very useful decision data. Among the 
uses of such a clock are: (1.) Mainten
ance of a log of error frequency for 
statistical analysis by maintenance 
engineers. (2.) Determination of un
stable or non-convergent iteration 
processes. (3.) Causing checkpoint 
procedures at selected time intervals. 
(4.) Allowing on-line operation in 
control systems. (5.) Making time 
studies of input-output balance. Keep
ing track of the real time required to 
execute various sections of program, 
for the processor to later reprogram 
for better balance and efficiency. 

Can the supervisor schedule and 
select all components by names as
signed by the programmer and, 
without stopping the computer, call 
upon the processor to modify the 
program to use alternate units 
when hardware fails? 

The input-output program should 

communicate with the supervisor to 
assign the correspondence between 
the logical (named) units, such as 
tapes, to which the programmer re
fers and the available units which 
the supervisor may use. The operators 
should also be informed of the units 
which are free for setting up the next 
job. This next job should read the 
tape labels on the new tapes and pass 
this information to the supervisor 
which, knowing now which tape con
tains what file, automatically reworks 
the program to call upon them prop
erly. The physical unit number or 
designation thus makes no difference 
in the running of the job. 

Is there provision to retrieve the 
processor to compile a section of pro
gram upon demand in the middle of 
object program execution? 

In cases of many alternate pro
cedures, it is wasteful of memory to 
compile machine instructions for all 
of these, particularly when only a 
few may be used in actuality. It is 
possible to simply compile traps to 
the supervisor for each of these alter
natives. Then when such a program is 
actually needed, the trap to the su
pervisor calls in the processor and 
compiles an actual section of running 
program. It is less wasteful to keep 
such program alternates in low-speed 
memory in synthetic language form, 
than in expanded form in high-speed 
memory. 

Can the supervisor schedule com
ponents for the most efficient use on 
a spectrum of problems? 

Since the machine should never be 
allowed to stop, the supervisor(s) 
must be entrusted to manage the en
tire operation, scheduling automatic
ally the various problems presented to 
it. Such an operation may be likened 
to that of a short order cook, the 
peripheral equipment to his order 
wheel and the customers to waiters 
placing orders on the wheel. Although 
the orders are placed in time sequence, 
the cook does not necessarily process 
in that order but rather tailors his 
operation to present and future load
ing of his facilities. In other words, 
the coffee, toast and scrambled eggs 
must all be done at the same time. 
The supervisor, upon completion of 
each job, should inspect all current 
orders, estimate their duration, note 
the components required and decide 
what to process next. It might web 
delay a long problem in order to do 
several quick problems in a row to 
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AN EXTENDED CHARACTER SET STANDARD 

by 

R. W. Bemer and W. Buchholz 

1 • Introduction 

or so characters^and'th^eir^od'^ equipment is designed ,o handle 48 ssr s Srrr, 
tains codes for 120 C°n" 
sion to up to 256 charartevc j- e ls room for later expan-
useful subsets have beerdefined h f C0"tr01 Ch"act"s- "> addition 
120 characters and whTch uielhl 'f ""'T ?m6 "Ut *" °£ the" 
without translation. C° 63 the selected characters 

XZT and -̂ -̂-PP̂ cation1: wher̂ a'48-character 

•o satis^:;1:^^;^:—;a r r ' d e f o £  t h o u g b t  h a s  —  « * • »  
of them with a single ECS but fiPi +• ? ,VG lmPOS3lble to satisfy all 
an overriding requt emem ofVe^ Vh^ed^ C°nSidered t6 

data processing installations and the inevitable mixture^ ""T"'' betWeen 

Tzztr- a 

situation it is always possible to deflUab^Tr ther^ *** T* 
some applications demanding a highly specialized rh ! *** obviously 
do not consider this set to be ideal, but we do feel thaMt sice' 
many of the more common requirements. satisftes a great 

an ECS as we see'them^and IZ "T"' *° to 8et down lhe requirements of 
by this particular set. ' P°"1 °Ut ow thc'V have °' have not been met 

B 
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2.  Size of Set  

Present  IBM 48-character  sets  consist  of  

10 decimal digi ts ,  

26 capital  let ters ,  

11 special  characters ,  and 

blank.  

Because a  single set  of  11 special  characters  is  not  suff icient ,  there 
exist  several  choices of special  characters  as  "standard options".  

Since this  set  is  often represented by a  6-bit  code,  i t  is  natural  to 
t ry to extend this  set  to 63 characters  and a  blank,  so as  to exploit  the ful l  
capacity of  a  6-bit  code.  Although the extra 16 characters  would be very 
useful ,  this  s tep was thought not  to reach far  enough to just ify the develop
ment of  the new equipment which would be needed.  

As a  minimum, the new set  should also include 

26 lower-case let ters ,  

the more important  punctuation 
symbols found on al l  off ice type
writers ,  and 

enough mathematical  and logical  
symbols to sat isfy the needs of 
programming languages such as  
ALGOL. 

There is ,  of  course,  no defini te  upper l imit  on the number of characters .  
One could go to the Greek alphabet ,  various type fonts  and sizes,  etc . ,  and 
reach numbers well  into the thousands.  As the set  s ize increases,  however,  
the cost  and complexity of equipment goes up and the speed of print ing goes 
down. The actual  choice of 120 characters  was purely a  matter  of  judgment 
of  what  increment over exist ing sets  would be sufficiently large to just ify 
the departure from present  codes without  including many characters  of only 
marginal  value.  

3.  Sub s  et  s  

Two subsets  of  89 and 49 characters  are shown in Figs.  2 and 3.  
The 89 character  set  (Fig.  2)  is  aimed at  typewriters  which,  with 44 charac
ter  keys,  a  case shif t ,  and a  space bar ,  can readily handle 89 characters .  

- 2 -



al^adyp"n«W89 charlf1 'T'" beCaUSe typewriters can 
familiayr™Vp.opTe keyboards are 

the SUbfSet «Fig' 3) 1S Usable in * printer similar .0 
tar.Ta code which ,f reS ! me Conventio»al of "commercial" charac-
ped for the ECS it would sHuVe pY^'bl^T^h iT"1*!' "* 3 sys,em e1uiP" 
Cienuy on job. .such as bill p^^ be 

tor purety^ ~ork! f" 
sisting of the 10 di(?it<? arrf tv.^ u i 13-character set con-

g me digits and the symbols . and . together with a special blank. 

4* Expansion of Set 

One is t^^^dMonal^am. *'"?^ ™Y pla« in tw° 
allowance .ho^d be ̂ de for c.^ una"i8ned »-»* odes; 
communication and other devices  d °p" t° C° 69 wblcl1 ^*1 he needed for 
end of the cod. sequence iZ 1 i T in,ended '° °CCUpy the hi8h 

to "escape" to anoler 4am«er .« Thus h 9 ^ Cha"Ct" 
is encountered the next rhara + / ' whenever 411 e shift character 
character set, and subsequent '^ (°r grmlp °f cha«<*«»> identifies a new 
Another shift character in that , "if lnterPreted " belonging to that set. 
m a y  a g a i n  b e  t W ^ s e ,  o ^  a  * £ ? 3  T *  ^  
defined only if and when there ar ise  applications^r e q ^  

5. Code 

These vtuhd0inTh?siCzedlfttr'^"Tey ^heTT T'^' 
mation bits grouped topefhpr + ' smallest number of infor-

bytes which may represent a Am^Tm-re: 

single 6-bit byte with shift codes interspersed, 

double 6-bit byte » single 12-bit byte (Ref. 1), 

single 8-bit byte, 

ers single 12-bit byte for "standard" charact^ „ 
(punched card code) and two 12-bit bytes for 
other characters. 

* Note that the IBM 1403 has avafiuKu An i. 
Which is one more than the^ 
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Some of these codes were of IZt^ZZnt. 
compatible with earlier codes so q{ BQme rather ingenious proposals, 

partial compatibility were not enough to offset t e 

disadvantages. 

The 8-bit byte was chosen for the following reasons: 

The full capacity of 256 characters was 
be sufficient for the great majority of appi 

an ECS. 

(b) Within the limits of this capamty^a o£ any 

'p t̂TcTarlecord is tot dependent on the coincidence 

of characters in that record. 

« -reasonably economical of storage space. (C) 8-bit bytes are reasonaDiy e 

,d) For purely numeric work^ 

rePrbe8ê cke7in an 8-bit byte. Although such packing 

of turn etit data is not — 
practice to increase spee analogous scheme.) 
(The IBM 7070, for instance, ent code, 
Strictly speaking. 4-tut yt« ^ as compared 

£- ~ampie' xrds.to a simpler 
Tchine design and cleaner addressing logic. 

(e) Byte sizes of 4 and 8 bits, being features 

Euidressing0and^i^eidng to the bit level. (Ref.2, 3). 

In this report, the 8 hits of the code „Bit 0" may 
from left to right as 0 (high-order bit) to U° 
be abbreviated to Bq, etc. 

6. Parity Bit D . Jr cxx. xi> y 
" . t. . .. • _ attached to each byte for parity 

For transmitting data, a mnt ^ odd number of one bits. 

checking, and it is chosen so "TZZllZvof a signal, odd parity 
Assuming a one bit to "'respond to t P transmitted and to be positively 

- signal. The parity bit is identified 

here as B^ 
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0 --he" 
' f ?"or or other checking techniques within a given device 

or on a given medium when appropriate. given aevice 

C> 

7. Sequence 

eessinvHiThh,r»qUal"1°,a-.COmPariSOnS a" aspect of data pro-
g. Thus, in addition to defining a standard code for each character 

one must also define a standard comparison ("collating") sequence 
Obviously the decimal digits must be sequenced from 0 to 9 in ascending 
order, and the alphabet from A to Z. Rather more arbitrary is the relation 
the 48 gr°UPS °f Characters> but the most prevalent convention for 
the 48 IBM "commercial" characters is, in order- vention lor 

(Low) Blank 

H Special Characters . H & $ * _ / %#@ 

26 Alphabet A to Z 

(High) 10 Digits 0 to 9 

to the JUndamentally> the collating sequence of characters should conform 

this property, and it is then necessary, in effect to transl t • 
internal code during alphanumeric compaLons ' ThU ZTell ZlT 

H l̂TSl̂  sequence dt̂ tTt̂ Î  

been achieved because of conflicts with other objectives. 

translation: *** P'°VideS ^ f°"0Wing C°Uating -V 

(Low) Blank 

43 Special Characters (see chart) 

52 Alphabet nAbBcCtozZ 

20 «««• 0 1 , to 9 , 

f s ^ Special Characters . ; 

(High) All Unas signed Character Code 
? 

s 
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1 tters collate in pairs in adjacent 
Note that the l^eTfor direCt°l%°l™™* the 

&-'S2i s=si rs=- - - - " 
names, mn» 
considered unique.) nce and the earlier 

^^^-«f^r3==2£. 
able Aaracters had to^ ̂  ̂  ̂  sequence^ ^ rarely will 
characters do not a m g wouid be quite usa e, code. It is 
B was felt that the new s^ ̂  ̂  ̂  the transition to < e nce, as has to he 
it be «cessary to : ^ t<> obtam any oth 
always P°9Slb'\ ° inK codes, 
done with most existing 

8- . ont for the blank (i- e. , the 
de 0000 0000 is a natural assignm• ^ space). Not only 

bits (other than the P^ityta.)^ 
movement in a prin such as the all-ones 

Blank -"-i^'^a^rstVrade^r Racier occupyhtS ^ 

a Jnt--. -nrsl^acter and ~ 
A ..null" may be used to deUte ^ ̂  opportunity^ ^ ̂  

SHS ̂  pu'.trnVe&ng the control characters. 

Ty££̂ £ii5£jiSl5£Hi „d 26 keypunches has been 

Because.he shift keyon ^^wise 'low.""' 
used to cause number' ° Ptel different convention when » advantage of = — 1 -  - — -
^r^typing Skills as much as possible ^ ̂  ̂  ̂  ̂ 

The common typewrite^: keyboard -n-'9 44 r-.r. r.;:.-.-y « - - *v° -dthe 
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a separate bit (B?). The case shift was assigned to the lowest-order bit so 
as to give the desired sequence between lower and upper case letters. 

For ease of typing, the most commonly used characters should ap
pear in the lower shift (B «0). This includes the decimal digits and, when 
both upper and lower case letters are used in ordinary text, the lower-case 
letters (This convention is different from that for single-case typewriters 
presently used in many data processing systems; when no lower-case 
letters are available, the digits naturally appear in the same shift as the 
upper-case letters.) It is recognized that the typewriter keyboard is not 

e most efficient alphanumeric keyboard possible, but it would be unrealis
tic to expect a change in the foreseeable future. For purely numeric data, 
it is always possible to use a 10-key keyboard instead of, or in addition to, 
the typewriter keyboard. 

It was not practical to retain the upper-lower case relationships of 
punctuation and other special characters commonly found on typewriter key
boards. There is no single convention anyway, and typists are already ac
customed to finding differences in this area. 

10. Decimal Digits 

The most compact coding for decimal digits is a 4-bit code, and the 
natural choices for encoding 0 to 9 are the binary integers 0000 to 1001. 

s mentioned before, two such digits can be packed into an 8-bit byte; for 
example, the digits 28 in packed form could appear as 

0010 1000 

T o  r eP resent decimal digits unambiguously in conjunction with other 
CS characters, they must have a unique 8-bit representation. The obvious 

choice is to spread pairs of 4-bit bytes into separate 8-bit bytes and insert 
-bit prefix ( zone"); for example, the digits 28 might be encoded as 

VbVd VbVd 
where the actual value of the zone bits z is immaterial so long as the prefix 
is the same for all digits. 

^ f !?1S ^e<*uirement conflicted with requirements for collating sequence 
and for the shift bit. As a result, the 4-bit byte is offset by one bit, and the 
actual code for 28 is 

0110 0100 0111 0000 

- 7 -



This compromise retains the binary integer codes 0000 to 1001 in 
adjacent bit  posit ions,  but not in either of the two posit ions where they ap 
pear in the packed format.  

The upper-case counterparts of the normal decimal digits  are as
signed to i tal icized decimal subscripts.  

11.  Adjacency 

The 52 characters of the upper and lower case alphabets occupy 52 
consecutive code posit ions without gaps.  For the reasons given above, i t  
was necessary to spread the 10 decimal digits  into every other one of 20 
adjacent code posit ions,  but the remaining 10 posit ions are fi l led with 
logically related decimal subscripts.  The alphabet and digit  blocks are 
also contiguous.  Empty posit ions for addit ional data and control  characters 
are all  consolidated at  the high end of the code chart .  

This grouping of related characters into solid blocks of codes,  with
out empty slots that  would sooner or later be fi l led with miscellaneous 
characters,  assists  greatly in the analysis and classification of data for 
edit ing purposes.  Orderly expansion is  provided for in advance.  

12.  Uniqueness 

A basic principle underlying the choice of the ECS is  to have only 
one code for each character and only one character for each code.  

Much of the lack of standardization in exist ing character sets arises 
from the need for more characters than there are code posit ions available 
in the keying and printing equipment.  Thus,  in the exist ing 6-bit  IBM 
C© a r a C t e r  C O d i e S '  t h e  c o d e  0 0  HOO may stand for any one of the characters 
C or -  or .  The ECS was,  instead,  required to contain al l  of these 

characters with a unique code for each. 

The opposite problem exists too.  Thus -  may be represented by 
either 100000 or 001100 in one of the exist ing 6-bit  codes.  Such an embar
rassment of r iches presents a logical  problem when the two codes have in 
fact  the same meaning and can be used interchangeably.  No amount of 
comparing and sorting will  bring l ike i tems together unti l  one code is  re
placed by the other everywhere.  

In going to a reasonably large ECS, i t  was necessary to resist  a 
strong temptation to duplicate some characters in different code posit ions 
so as to provide equal facil i t ies in non-overlapping subsets.  Instead,  every 
character was chosen to be typographically dist inguishable even if  the 

- 8 -



character stands by i tself  without context.  Thus,  for programming purposes,  
i t  is  possible to represent any code,  to which a character has been assigned, 
by i ts  character even when the bit  grouping does not have the ordinary mean
ing of that  character (e.g.  ,  in operation codes).  

In many instances,  however,  i t  is  possible to find a substi tute charac
ter which is  close enough to a desired character to represent i t  in a  more 
restricted subset or for other purposes.  For example,  *  (equals) may stand 
for (is  replaced by) in an 89-character subset.  Or again,  if  a  hyphen is  
desired that  collates below the alphabet,  the symbol /— (a modified t i lde) is  
preferred to the more conventional -  (minus).  

A long-standing source of confusion has been the dist inction between 
upper-case Oh (O) and Zero (0).  Some groups have solved this by writ ing 
Zero as 0 .  Unfortunately,  other groups have chosen to write Oh as 0 .  
Neither solution is  typographically attractive.  Instead,  i t  is  proposed to 
modify the upper-case Oh by a center dot and to write and print  i t  as © when
ever a dist inction is  desired.  

Serifs are used to dist inguish let ters (I ,  1,  V, etc.)  from other 
characters ( |  , 1,  v> etc.)  .  It  is  suggested that  the i tal icized subscripts 
b e  u n d e r l i n e d  w h e n  h a n d w r i t t e n  b y  t h e m s e l v e s ,  e . g . ,  5  .  

13. Signs 

The principle of uniqueness implies a separate 8-bit  byte to represent 
a + or -  sign.  Keying and printing equipment also require separate sign 
characters.  This practice is ,  of course,  rather expensive in storage space,  
but i t  was considered superior to the ambiguity of present 6-bit  codes where 
otherwise "unused" zone bits  in numeric fields are used to encode signs.  If  
the objective is  to save space,  one may as well  abandon the alphanumeric 
code quite frankly and switch to a 4-bit  decimal coding with a  4-bit  sign digit  
or  go to the even more compact binary radix.  

14.  Card Punching 

After considering the possibil i ty of a  separate card code for the ECS 
characters,  a  code which has the conventional IBM card code as a subset 
(Ref.  1),  i t  was concluded that  i t  would be better to punch the ECS code di
rectly into the card.  This does not preclude also punching the conventional 
code (l imited to 48 characters)  in part  of the card for use with conventional 
equipment.  In this way, code translation is  needed only wherever the con
ventional card code is  used; if  a  non-ECS code were used, translation 
would be required for every column if  advantage is  to be taken of the ECS 
code in the rest  of the system. 



The punching convention is as follows: 

Card Row ECS Bit 

12 — 

11 — 

0 — 

1 B 
P 

2 B„ 0 
3 B1 
4 B„ 2 
5 B. 3 
6 B. 4 
7 B_ 5 
8 B6 
9 B_ 7 

In addition, both 12 and 11 holes are to be punched in column 1 of 
every card containing the ECS code, in addition to a regular ECS character, 
so as to distinguish an ECS card from cards punched with the conventional 
code. ECS punching always starts in column 1 and extends as far as desired; 
a control code "End" (0 1111 1110) has been defined to terminate the ECS 
code area. Conventional card code punching should be confined to the right 
end of cards identified with 12-11 punching in column 1. 

Since the parity bit is also punched, the ECS area of a card contains 
a checkable code. Note that "blank" columns in the ECS area still have a 
hole in the Bp row. If only part of the card is to be punched, however, it is 
possible to leave the remaining columns on the right unpunched. 

15. Ackno wl e dg ement s 

The Extended Character Set described here was developed jointly by 
E. G. Law, H. J. Smith, F. A. Williams, and the authors. 
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120 CHARACTER SET 

BITS 
45-6-7 0000 0001 

E 

0010 

JITS 0-

001 1 0100 

3 

0 1 0 1  01 10 01 1 1 

0000 BLANK [ + c k s 0 8 

0001 + D & C K S 0 8 

0010 - ] $ d 1 t l 9 

001 1 { o ( D L T I 9 

0 100 A - * e m u 2 • 

0 1 0 1  } = ) E M U P ; 

0 1 1 0  t —1 / f n V 3 -

0 1 1 1 V = F N V 3 ? 

1000 V % > g o w 4 

1 0 0 1  V \ > G O W 4 

1 0 1 0  \ o f h P X 5 

1 0 1  1  II 1 M H P X 5 

1 100 > # a i q y 6 

1 1 01 > 1 A I Q Y 6 

1 1 10 < @ b j r z 7 

11 1 1 < - B J R Z 7 

Fig. 1. 
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89 CHARACTER SET 

00 I 0 00 I I 0100 010 
BITS 

4-5-6-7 10000 

BITS 0-1-2-3 

0001 

0000 BLANK 

0001 

0010  

001  

0100  

0 1 0 1  

0 1  1 0  

1000 

1001  

1 0 1 0  

I 100 

Fig. 2. 
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49 CHARACTER SET 

BITS  
4-56-7 0000  0001  

B  

0010  

ITS 0-

001  1 

-1-2-2 

0100  0101  0 1  10  01  1 1  

0000 BLA N K  0  8  

0001  & c  K s  

0010  $ 1  9  

001  1  D  L  T  

0100  * 2  • 

0101  E  M  U  

01  10  / 3  -

0 1  1 1  F  N  V  

1000  % * 
4  

1001  G  O  W 

1010  o  f  5  

1 0 1  1  H  P  X  

1 1  0 0  # 6  

1 1  0 1  A  I  Q  Y  

1 1  1 0  @ 7  

11  11  B  J  R  Z  

Fig. 3. 

-14-



I lUIDUIiniHWllUIIINIIIIl 

IPIIIIIHI 

lit 
p 

0 
1 

2 
3 

4 

5 
6 
7 

ECS Card 
Identification i i  m m  

'»'» ' "I I» • »I ' ' III II ' ' 10 ' II III ' IB ' ' III 1 »01 ' ' B « I B I I o I I M M 1 1 J U 11 U III 

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ? Z 2 2 2 2 2 2 2 2 2 2 2 ? ? 2 2 2 2 2 2 | | | 2 2 2 2 2 2 ? 2 2 2 | ] I 2 2 2 2  

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3II 3 3 3 I 3 || 3 3 3 3 3 3 1 3 3 

4 4 4 4 4 4 4 I 4 4 4 4 4 4 4 4 1 4 4 4 4 4 4 4 4 4 I 4 4 4 4 4 ||| 11|| ||| ||| ||| ||| ||| ||| ||| 11|| ||| ||| ||| 11|| ||| ||| 111|| || |, |, , ||| ||| ||| ||| ||| 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

5 5 b 5 5 5 5 5 5 5 5 5 5 5 5 51|| ||| 11|| ||| ||| ||| ||| ||| ||| ||| || ||| ||||» ||| 5 5 5 5 5 5 5 5 5 S 5 5 5 5 5 51|| ||| 11|| || || ||| ||| ||| ||| ||| || 11| ||| ||| | 51|| 5 5 5 5 5 5 5 5 51|| 5 5 5 

6 6 0 6 5 6 6 6 III III ||| || 11|| III III 6 B 6 G 6 8 6 S ||| ||| ||| ||| ||| ||| ||| |||l 6 6 6 6 6 6 6 6111|| ||| || 11|| ||| 6 B 6 6 6 6 6 G ||| ||| 11|| ||| ||| ||| 11|| 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 

7 7 ' 7 III III II 7 7 7 71|| ||| ||| ||| 7 7 7 7|||| 7 7 7 7|||| 7 7 7 71|| ||| |||||| 7 7 7 7|||| 7 7 7 7|||| 7 7 7 7||||| 7 7| 7 7 7 7 7 7 7 7 7 7 7 7 

8 'III III 8 30| 6 81||| 8 3|||||| 8 8||||H 8 8|||||| 8 8|||||| 8 81||||| 3 8|| 8 8||l| 8 8||)i|l 8 81|| |) S 8 ||| ||| 8 8|||||| 8 8|| 8 8|| ||| ||| 8 8 8 8 8 8||| £ 8 8 8 8 8 8 8 

\± 

Blank' 
V & (  V i  V  i  w  ~  T „ V  U "  & (  »  =  :  "  A B  C  D E  F G t n  j  

I  +  '  a b c d e f g h i j  E r i i  
AB D E  Conventional 

Punching 
with Inter
pretation 

m i l  

in 

t III III 'l! ' M I  » " " N,s:" ",s •"•I n II wnn :• i; I .,n -.J I I I  I M I I M M M  < S «  < 7 «  «  M  S I  H  S J  M  S E S S I O N  tin M I S  H I . I J 5 •< ; r M M  I S  1 I I  !  

1 111 ill 111 I III ' III III 1 III 1 II" III 1 III ||| I HI 1 | | 1  1 11 ||1 1  ||1 ||1 I 11 11 1 I 1 1 || 1 1 1 II 1 1 11 1 1 11 1 11 |I1 II 1 I | 
22222222222222222222222222222222222222222222222222222222 1222222222222222222 ||| 222 ||| 

III III III III I III III III II1 III III III III III III III III III III III III III III III III III III III III III III III III I III III III 1 III III III III I III III III II! II | III III III III III III H 3 3 3 3 3 3 3 3 3 3 3 # 3 III 3 3 3 3 3 3 1 3 3 j 

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 1 ! | | | | | H | | | | | | | | | | , | | | | 4 4 < 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4  

5 5 5 5 5 S 5 9 S S 5 5 5 5 5 S | | | | | | | | | | | | | | | | 5 5 5 S 5 5 S 5 5 S S S S 5 5 5 | | | | | | | | | 5 5 S S S S 5 5 5 | 5 S S S 5 5 S 5 5 | 5 5 5  
6 6 6 6 6 6 6 6  || |HH| | | 6 6 6 6 6 G 6 6 | | |  IB | |  | [ | | 6 6 6 6 6 6 6 G | | | | | | | | | 6 6 6 6 6 6 6 6 | 6 6 6 6 6 6 6 6 6 6 6 6 6 G 6 6 6 6 6 6 6 6 6  
77 " l l l l "  7 7|||| 7 7 7 7 |||||||7 7 7 7 H H  7 7 7 7 H H  7 7 7 7 ||||7 7 7 7 I I I H  7 7 7 7 7 7 7 7 7 7 |7 7 7 7 7 7 7 7 7 7 7 7 

1 2 3 4 5 8 7 • 9 10 11 17 13 M 15 16 17 18 19 20 21 22 23 24 7S ?6 27 ?3 ?9 30 31 32 33 34 35 K 37 38 39 «0 41 

H-H 
K M N R U W 

IS<3U<5W<S « 49 3 SI S! S! H 5S SSI H 59 60 CI 62 63 W tS S« SJ M SS 70 11 J! U jj IS It II M B K 

4-

k  1  m n o p q r  s t u v w x y z  0  1 2 3 4  5  6 7  8 9  
? 
End 

F i g .  4 .  C a r d s  P u n c h e d  w i t h  E x t e n d e d  C h a r a c t e r  C o d e .  
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APPENDIX A 

List of ECS Codes and Characters 

Code 
P 0123 4567 
1 0000 0000 

0 0000 0001 

0 0000 0010 

1 0000 0011 

0 0000 0100 

1 0000 0101 

1 0000 0110 

0 0000 0111 

0 0000 1000 

1 0000 1001 

1 0000 1010 

0 0000 1011 

1 0000 1100 

0 0000 1101 

0 0000 1110 

1 0000 1111 

0 0001 0000 

1 0001 0001 

1 0001 0010 

0 0001 0011 

1 0001 0100 

0 0001 0101 

0 0001 0110 

1 0001 0111 

1 0001 1000 

0 0001 1001 

0 0001 1010 

1 0001 1011 

0 0001 1100 

1 0001 1101 

1 0001 1110 

0 0001 1111 

cter Name 
Blank (Space) 

Plus or minus 

Right arrow (Replaces) 

Left brace 

And 

Right brace 

Up arrow (Start superscript) 

Not equal 

Gr (inclusive) 

Exclusive or 

Down arrow (End superscript) 

Double lines 

Greater than 

Greater than or equal 

Less than 

Less than or equal 

Left bracket 

Implies 

Right bracket 

Degree 

Left arrow (Is replaced by) 

Identical 

Not 

Square root (Check mark) 

Percent sign 

Left slant (Reverse divide) 

Lozenge (Diamond) (Note) 

Absolute value (Vertical line) 

Number sign 

Exclamation point (Factorial) 

At sign 

Tilde (Hyphen) 

Code 
P 0123 4567 Character 
0 0010 0000 + 

1 0010 0001 & 

1 0010 0010 $ 

0 0010 0011 ( 

1 0010 0100 * 

0 0010 0101 ) 

0 0010 0110 / 

1 0010 0111 

1 0010 1000 , 

0 0010 1001 ; 

0 0010 1010 

1 0010 1011 " 

0 0010 1100 a 

1 0010 1101 

1 0010 1110 

0 0010 1111 

1 0011 0000 

0 0011 0001 

0 0011 0010 

1 0011 0011 

0 0011 0100 

1 0011 0101 

1 0011 0110 

0 0011 0111 

0 0011 1000 

1 0011 1001 

1 0011 1010 

0  0011 1011 

1 0011 1100 

0 0011 1101 

0 0011 1110 

1 0011 1111 

A 

b 

B 

c 

c 
d 

D 

e 

E 

f 

F 

g 

G 

h 

H 

i 

I 

j 

J 

Name 
Plus sign 

Ampersand 

Dollar sign 

Left parenthesis 

Asterisk (Multiply) 

Right parenthesis 

Right slant (Divide) 

Equals 

Comma 

Semi-colon 

Apostrophe (Single quote) 

Ditto (Double quote) 
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Code 
P 0123 4567 Character Name 
0 0100 0000 k 

1 0100 0001 K Code 
1 0100 0001 

Code 
1 0100 0010 1 P 0123 4567 Character Name 
0 0100 0011 L 1 0110 0000 Zero 
1 0100 0100 m 0 0110 0001 0 Subscript zero 
0 0100 0101 M 0 0110 0010 One 
0 0100 0110 n 1 0110 0011 f Subscript one 
1 0100 0111 N 0 0110 0100 Two 
1 0100 1000 o 1 0110 0101 * Subscript two 
0 0100 1001 o 1 0110 0110 Three 
0 0100 1010 p 0 0110 0111 j Subscript three 
1 0100 1011 p 0 0110 1000 Four 
0 0100 1100 q 1 0110 1001 * Subscript four 
1 0100 1101 Q 1 0110 1010 Five 
1 0100 1110 r 0 0110 1011 4 Subscript five 
0 0100 1111 R 1 0110 1100 Six 
1 0101 0000 8 0 0110 1101 t Subscript six 
0 0101 0001 s 0 0110 1110 Seven 
0 0101 0010 t 1 0110 1111 r Subscript seven 
1 0101 0011 T 0 0111 0000 Eight 
0 0101 0100 u 1 0111 0001 4 Subscript eight 
1 0101 0101 u 1 0111 0010 Nine 
1 0101 0110 V 0 0111 0011 4 Subscript nine 
0 0101 0111 V I 0111 0100 Period (Point) 
0 0101 1000 w 0 0111 0101 Colon 
1 0101 1001 w 0 0111 0110 - Minus sign 
1 0101 1010 X 1 0111 0111 ? Question mark 
0 0101 1011 X 

1 0101 1100 y 
0 0101 1101 Y 

NOTE: The character H has also been 

0 0101 1110 z 

1 0101 1111 Z 
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APPENDIX B 

6-Bit Character Codes in Current IBM Systems 

The special characters shown in the attached chart are those of the 
"commercial" set (A). For "scientific" computing, character substitutions 
(sets F and H) are usually made for codes representing certain symbols in 

the 'A1 set: 

Commercial Scientific 
A F H 

& + + 

% ( ( 

# 
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Code 

0) 
ft <d 

H 
u 
V 

ft 
0. 

A 

O 

00 

• 0 )  
Eh  o 

ft Eh  ft id 
PI 
o 

fd 
Eh  

2 
Eh  

bb r\J bio (d v O  id o 2 H 2 r- 2 
a. 2 .. o iH in o in r- o o m o o <n v O  r- r-H 

rt c! h <D 

O r- Code 

o 
ft <d 

H 
M V ft id 

& 

rH 

o 
oo 

H 

oi 
o <NJ 
s O  

IT) o ro 

V 
ft <d 

H 
si id 
2 
o in o 

o 

in o 
r-

o 
% 
EH 
b<) 
<d 
2 
O —I o O r- -< 

•—l 

S 
0) 4-> 

rf O r-

00 oooc b b Sp b 0 
00 0001 1 1 1 1 1 1 1 
00 0010 2 2 2 2 2 2 2 
00 0011 3 3 3 3 3 3 3 
00 0100 4 4 4 4 4 4 4 
00 0101 5 5 5 5 5 5 5 
00 0110 6 6 6 6 6 6 6 
00 0111 7 7 7 7 7 7 7 
00 1000 8 8 8 8 8 8 8 
00 1001 9 9 9 9 9 9 9 
00 1010 PI1 0 0 0 0 
00 1011 # # # # # # # 
00 1100 @ @ @ @ @ @ @ 
00 1101 PI7 

@ 

00 1110 EC1 
00 1111 Cor TM TM TM TM 

01 0000 0 0 b b b Sp & 
01 0001 / / / / / / A 
01 0010 S S S S S S B 
01 0011 T T T T T T C 
01 0100 U U U U U U D 
01 0101 V Y V V V V E 
01 0110 w W W W W W F 
01 0111 X X X X X X G 
01 1000 Y Y Y Y Y Y H 
01 1001 z Z Z Z Z Z I 
01 1010 PI 3 RM RM RM RM • 

0 
01 1011 * 9 > 9 9 » 

01 1100 % % % % % % 
01 1101 PI4 WS 
01 1110 Skip 
01 1111 EC 2 SM SM 

1 0  0 0 0 0  
1 0  0 0 0 1  
1 0  0 0 1 0  
1 0  0 0 1 1  
1 0  0 1 0 0  
1 0  0 1 0 1  
1 0  0 1 1 0  
1 0  0 1 1 1  
1 0  1 0 0 0  
1 0  1 0 0 1  
1 0  1 0 1 0  
1 0  1 0 1 1  
1 0  1 1 0 0  
1 0  1 1 0 1  
1 0  1 1 1 0  
1 0  1 1 1 1  

11 0000 
1 1  0 0 0 1  
1 1  0 0 1 0  
1 1  0 0 1 1  
1 1  0 1 0 0  
1 1  0 1 0 1  
1 1  0 1 1 0  
1 1  0 1 1 1  
1 1  1 0 0 0  
1 1  1 0 0 1  
1 1  1 0 1 0  
1 1  1 0 1 1  
1 1  1 1 0 0  
1 1  1 1 0 1  
1 1  1 1 1 0  
1 1  1 1 1 1  

J J J J J J J 
K K K K K K K 
L LI L L L L L 
M M M M M M M 
N N N N N N N 
O O O O O O O 
P P P P P P P 
Q Q Q Q Q Q Q 
R R R R R R R 

PI2 0 0 0 0 
$ $ $ $ $ $ $ 
* * * * * * * 

PI 6 
CR 
Err A A 

& & & & & & b 
A A A A A A / 
B B B B B B s 
C C C C C C T 
D D D D D D U 
E E E E E E V 
F F F F F F W 
G G G G G G X 
H H H H H H Y 
I I I I I I Z 

SP1 0 
•  0 + 

0 

W X X X X X % 
PI 5 
SP2 
TF GM GM GM 

Note: b stands for blank. 
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7 ' w'.;rr,l' P1:ir ,"s r( ' ,lui,r(1 fnr ; ,rrUr:i l '-V 
S -.= Krrwr stop^ or stops arc listed with rrf-
1 ^ j|)(, appropriate seetioti ol the flow eliait. T lie 

"p,, lolls what should )»• done in ease, of an error 

'' ' i p.u ( iiAH't"- l'rohleni-oriented rather than eom-
I and using a standard >et of symbols. 

\M ITSKLK. This section consists of the 

i |  ^ ^  1 1 1  •  *  ! '  '  •  
I n.cu.itie ami program steps: a listing of theeouiplete 

' for at least one computer 
Cross references front one program step to other steps 

,• ... a".(Urliee . 
. operating instructions including plugboard wiring 

where necessary 
W S'VUIK I'noiiLKMS. Included in the sample proh-
.... ,!„• reoiiired input data and the desired output 

I showing the results of the problem. 

VII. NOTATION. This is a list of the nomenclature used 
in the text and of the symbols in the source program listing. 

VIII. Literature References. 
JX. Illustrations. Drawings and other illustrative ma

terial, prepared in a manner to insure good reproduction, 
is included in this section. 

KDITOR'S COMMENT: While the ACM lei" never tulnpled ]ml»li-
eat ion Mandnrils, it now appears t hat program publication tin ml-
ar,Is for the ACM inny l.e desirable in the near future, la mv 
opinion, not only is tlie interest ie program interelmnce growing 
constantly, hut compiiter independenl language development i< 
bringing »s closer to the day when widespread publication of truly 
catholic programs will be an important function of computer-

oriented societies. 
Mr. Kent's abridgment of the AIChE committee's report 

avoids machine-oriented details such as punched card formats, 
it outlines a procedure which is csscnltally machinc-indepcndc.it. 
yet can be u-cd for machine-language publication. 

The full report describes means by which program publication 
is announced and plans for distribution and for covering the cost 
of small-scale publication by the Society. H. S. Ib 

A Proposal for Character Code 
Compatibility 

C/i.. 1/. Corporation, White Plaint, .V. 1 . 

I I -  i •  i - o - p c t '  o f  a  s i n g l e  s t a n d a r d  f r o m  a  w e l t e r  o l  
all., til:-, [iti-i-edenis depends upon twosolulions: 
I -ei< . \iiu or development of an adequate tind logical 
ind.il'd. 

pha-iug out (or peaceful coexistence with) the old 
ll**. 
paper deals with the latter problem and proposes 

- la.-. !i.-iiii-sV„r  J, solution in the area of character codes, 
t- jo. -.-!••,<•(] by bit combinations. 
b .aptn::;- impossible 1<) reconcile the many different 
-i.-- m usi- on paper or magnetic tape such that a particu-
' i-.iuid be the national or international standard. 

• sh- of the w ide usage of these various codes they must 
coiisuj. rc-d parallel standards subject to twrophv 

'• -h adoption of a single snperior rode. A simple de-
" u v I cull the "escape" character will allow as many 
"'I' :*.ie and graded standards as there are bit combina-
"" .my number of tracks, although it is certainly not 
"" ol. ii, i,.ive more of these than absolutely necessary. 
1 •• ••:! T .-ha racier tracks (not feed, parity, or control 

• k- tlu-re are 2r  possible code combinations. Normally 
are all assigneil to specific characters or controls. I 

"I"'-e that OIK of these combinations, the fame one for 

all standards, be reserved as an iiunuitak" character. I hi1 is 
to be excluded from every such set of characters assigned. 

Regarding the choice of this character, it is unwise t<> use 
a null, or absence of punches or bits. Furthermore, it is 
quite possible that the physical permutation of tracks on 
tape will not be in direct correspondence with the bit 
pattern of internal storage in a computer or data-process
ing device. The only code that avoids these difficulties 
the completely punched combination, or all ones in the bit 
structure. 

Let us make provision for this "escape" combination to 
interrupt normal decoding ol a stream ol character-. It 
will sav, in effect, that I lie next 7"—bit combination is .•.> 
be considered a numeric identifier ol a particular 
standard." Front then on. until interrupted by an/ escape' 
character in that set. ail combinational '/-bit character-
will be interpreted according to th.:t standard. .Shit.ing 
from one standard to another is therefore dynamic. A 
great additional advantage of such a scheme is that many 
messages in several different codes may be adjoined in the 
stream of transmission. In hardware, the "escape char
acter can be made to interrupt to set relays or other switch
ing devices to select otic of a variety of readers or decoders. 
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Cullmane Database Systems, Inc. 329-7700 
400 Blue Hills Drive 800-225-9930 
Westwood, MA 02090 

Dear Charlie: 

confining 1 |oprtoSBob iBemer°?oyhe?oyvU  "d  ^ S > : e l l y '  w i t h  a  

nomination of Bob as ©iringi Awardee Some of r e9a r d i n9 Pat 's 
letter may be useful ^ur fnel 'atTuter late t 3"C e  ° f  t h i '  

in complete agreement: "" 

remark that about^h^timl^f hthlhinlident "d "  B??e rbuddy, I should 
volunteered to replace « as AcS s^S S d e s cf l b e d  b al°w Bob 
Standards Section Associate Editor if  theVC o m mff t e e  c h ainnan and CACM 
from both jobs .  .  .  not for la  C°u n c il  w o u l d  get me fired 
enough in those jobs to satisfy Bob. Co^tVft l l l i  tfdfsV" ̂  
Charac^l^u^Talte^ SI "^"^"tion of 
principal creator of the ASCII sPf T  ,  ,  ? chair,  and was a 
for an explanation of the "Escape Chan?ttr"e m e m b e r  n ailing Bob once 
me when Bob pushed i t  through his group He W h i c h  w a s  n e w  t o  

length would meet all  requirements eJX'hK c o n v j-nced me no set of any 
future, and that the Esc^e concept wou^ w";vC e^a i n l y  n o t  i n  t h e  
competitors'  employees all  or,-a ^ °uld work. His Subcommittee, 
study, they ̂ became the ^a?^ ~ t h S  

somewhat less than^nthusiast^c If^ot^6  c ofp° r a t i o n  seemed 
the whole ASCII set.  It  is a matter of d?*? r i9h t  reluctant, toward 
employers about then. Several years late? that^?0^ h &  c h a n9e d  

- *e a r s  l a t er that company adopted ASCII. 

solid company man placing^is^onviction0 6^ t h l S  3 0  e x a mP l e  o f  a  

well-developed instinct for bureaucratic telf  ̂ es^1*? • a b°V e  h i s  

aren t  too many in this business who nt "e s e rvation? There 
that bizarre character trait .  '  y°U '  S e e m  t o  h a v e  displayed 

V e  t e l t  a .  f a t h e r ly concern about each sfrlwtfWn, 
irritatTn2 l dr. f 6 6 C°m f° r t a b i e  i f  the'  award for this year oo-s ho 

ompetent Bemer for the idea that will live after him 
Copy -to: RWB, PCS Y o u r s  

Herbert S..  Bright* 

COMPUTATION SYSTEMS /Analysis, Design, Management, Progr,mming 



Comment 

By Robert W. Bemer, IBM 
Corp., technical advisor to 
the Conference Committee on 
COBOL. 

The IBM Corporation has been active in COBOL 
since its formation, recognizing the desirability of 
such a common business language. IBM desires to 
implement such a language for several of its com
puters when it is proved feasible and reasonably 
efficient for the user. 

The extreme difficulties of developing such a lan
guage in a short period of time cannot be over
emphasized. One has only to look at the gradual 
evolution of English to see what thousands of options 
have sprung up and then disappeared. 

Although it is desirable to base a business language 
upon a natural language such as English (obviously 
for the convenience of the user), there are neverthe
less certain restrictions of present day computers 
which make the variety in English undesirable. For 
example, we understand a man who speaks English 
even though he stutters, but this is not economical 
to expect the machine to decode stuttering. Primarily 
this is because the human mind operates very much 
in parallel, whereas the computer of today is largely 
serial—at least in its scanning. A person who misses 
the sense of a sentence has only to reread and check 
a few points. If the computer has to do anything 
more than a single progressive reading of a sentence, 
such as a see-saw inspection, the cost of translation 
becomes prohibitive. I know of a case where it took 
a computer over 11 hours to produce a machine pro
gram of somewhat more than 2,000 instructions. 

When the language is formalized and the latitude 
of options removed, or to put it bluntly, if the user 
restrains himself with a little discipline, this same 
job should not take more than an hour. 

Additional complications are, of course, caused by 
the fact that the language must be universal and 
roughly as effective for each of several decidedly 
different computers. Compromise is necessary! Even
tually such compromise is well worth it, but this is 
a slow process. The goal of standardization in lan
guages is very desirable, but it will not be served 
if the first product, i.e., the COBOL language, fails 
in the field. Before such a language can be hailed as 
a panacea, it must be subjected to extensive field 
tests. 

IBM has put forth a major effort in this venture, 
supporting it with the services of many experts in 
computer languages. The experience gained with 
FORTRAN and the Commercial Translator has been 
freely given. Whether the goal of a common business 
language is achieveable without unduly compromis
ing machine performance is not yet proven. In this 
situation, it is advisable to make haste slowly that we 
may not raise the hopes of our customers before it 
is justified. 

COBOL-Commo 

%\ 

AUNIVERSAL computer language moved one step 
closer to reality with the announcement of 

COBOL (Common Business Oriented Language), 
a business language expected to be common to vir
tually all makes and models of electronic digital 
computers. 

The new source language system will permit 
programmers to use English words, statements, 
sentences and paragraphs in communicating in
structions to computer systems. 

Official news of the COBOL development is an
ticipated momentarily from the project sponsors, 
the Executive Committee of the Conference on 
Data Systems, headed by C. A. Phillips, director 
of the data systems research staff, Department of 
Defense. The committee is a volunteer group of 
computer users from Government and industry 
and representatives of computer manufacturers. 

Necessary violations 

COBOL was written by the Conference's Short 
Range committee, directed by Joseph H. Wegstein 
of the National Bureau of Standards. This group, 
composed of technical personnel from three gov
ernment agencies and six computer manufacturers, 
has worked continuously since June, 1959, to put 
the new language together. 

One of the principles adopted in the develop
ment stage was that everything in the language 
would be correct English. This did not mean that 
everything which is correct English is meant to be 
part of the system or acceptable to a COBOL com
piler. In some cases it was necessary to violate the 
principles of good English to allow inclusion of 
certain features which could not be handled by 
normal grammatical rules. 

22 MANAGEMENT and 
BUSINESS AUTOMATION 
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language for Computers 

, A Presents a" exclusive account of 
COBOL s-vs,<''"- a move toward the 

ultimate development of a universal Ian-
guage for business computers 

system^ (T) t0 the C0B°L 
common language, and (2)7? written m a 
translates this source nr Compiler, which 
sram capable of r„nning 

is used t0 «»"-«. rb\zThcie 
ment—involved in fVl. U ' taandEnviron-
names reflect the part of ape cation> and their 
^ey describe. ProceduretZTTke 

res which determine how the dlta is o J 
essed. Data includes the f proc" 
being processed Fnv' ription of the data 
tionof theTpilerr"'"6"' C°VerS thc **"•«>-
Each of the three element, a^'e"16 processin«-
rate division of the system. The compiler's r~"*~ 

produce the desired results It a II A" r to 

express his thoughts in Ene-lish J* USer to 

sentences or paragraphs V h ' Statements' 
action and se'ntê  
basic. It is also nossihn, + f Procedures are 
and "if" clauses to nm m Cal situations 
action. The fact that ft.1 ep aernative Paths of 
essentially machine-indenonH r°,Cedure division is 
important characteristics of The'COBOL̂  T"1 

Another programmer, or any COBOT ^ f™' 
can easily understand and translate thP °TP ' 
tion appearing in fhia a- • • lsJate the mforma-
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The Data division uses "file" and j , 
script,W' "escribe the hies oTlTtS the" 
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A group of unique characters 
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t he character set consists of the 



The Short Ranee I'^taelTs of ealtTnTâ tomrtkbosiness con,-

numbers 0 through 9, the 26 letters of the alphabet 
and a hyphen (or minus) sign. Seven characters 
are used for punctuation. These include the stand -
ard quotation marks, left and right parenthesis 
space (defined as a character), period, comma and 
semicolon. Eight additional characters are used to 
define the operations involved m formulas and 
relations. Altogether there are 51 unique char
acters which are recognized by the COBOL system. 

What's in a word 
A word in COBOL language can be composed of 

not more than 30 characters. Types of words in
clude nouns and verbs plus a special category o ^ 
"reserve" words which includes "correctives, 
"noise words," and "key words." A COBOL noun 
is defined as a single word which is applicable to 
such elements as "Data Name," "Condition Name, 
"Procedure Name," "Literal Name" and "Special 
Register Name." 

A Data Name is a word with at least one alpha
betical character which designates any data speci
fied in the data description. A Condition Name is 
given to a value which a field (called a conditional 
variable) may assume. For example, the fielc 
called "Title" is considered a conditional variable. 
The values which it may assume, and which aie 
written and defined in the Record Description, are 
Analyst, Programmer and Coder. These Cone 1-

tion Names may be used in conditional expres
sions. As an example, if the field "TITLE" were de
fined as one character in legnth—and the actua 
values 1, 2 and 3 were assigned respectively to the 
Condition Names ANALYST, PROGRAMMER and 
CODER —the conditional expression "IF CODER 
THEN" would generate a test of the field TITLE 
against the value "3." 

Procedure Names are applied either to para

graphs or to sections and accordingly are known 
as paragraph names or section names A proce
dure mav be named to permit one procedure in the 
language to refer to others, or it may be purely 

" A Literal is a noun which has a value identical 
to those characters represented by the noun, 
may be numeric, alphabetic or alpha-numeric. 

Special Register is a five-decimal digit fiel 
which has been assigned the name TALLY Its pri-
marv use is to hold information produced by the 
EXAMINE verb. It may also be used to hold infor
mation produced elsewhere in a program. 

Verbs are single words which appear in the Pio-
cedure division and designate action. Two types o 
action are allowed—object computer action by a 
special verb or compiler action denoted by a com
piler directing verb. 

Noise for improvement 
Reserve words may be used for syntactical pur

poses and may not be used as nouns or verbs. Con
nectives are used to denote the presence of a quali
fier or the presence of a subscript. Noise words are 
used to improve the readability of the language 
but, the presence or absence of noise w°r<k 
not affect the meaning of the statement. Within 
any division, any one or more of its noise words 
may be substituted for any other. Key words aie 
required in certain formats. They are used to com
plete the meaning of verbs or entries and theie-
fore must be present and correctly spelled. 

Every name in a COBOL program must be 
unique—either because no other name has t e 
identical spelling, or because the name exists with
in a hierarchy or names. The name can be made 
unique by mentioning several higher elements m 

Continued on Page 31 
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Control Data Produces 
New 160 Desk-size Computer 

An MBA Product Preview 

THE DESK-SIZE MODEL 160, 
all-transistorized electronic com

puter, has been announced by Con
trol Data Corp. 

The 160 has an array of building 
blocks and a magnetic core memory 
like those used in the Control Data 
1604 — the company's new large-
scale system also announced recent
ly. It computes in terms of micro
seconds and can execute 60,000 
instructions in one second. It is said 
to handle data transmissions to and 
from input-output equipment at 
speeds of up to 65,000 characters 
per second. 

The company has set the price of 
the 160 at $60,000, making it avail
able to a wide range of users. Sug
gested applications include statisti
cal and business data processing, 
data conversion, engineering and 
scientific calculations, data logging 
and data acquisition, industrial con
trol and communications systems. 

The 160 is a single-address com
puter with high-speed parallel mode 

of operation. Storage cycle time is 
6.4 microseconds. Basic add time is 
12.8 microseconds. Information read 
is available 2.2 microseconds after 
start of cycle. Average execution 
time is calculated at 15 microseconds 
per instruction. The computer uses 
a five megacyle logic. 

The company points out that full 
advantage of the speed and versatil
ity of the system can be realized 
through its repertoire of 62 instruc
tions and complete programming 
package—which includes 22-, 33-, 
and 44-bit fixed point arithmetic, 
floating point, complex floating 
point, decimal, floating decimal, and 
an algebraic compiler. Addressing 
modes include: no address, direct 
address, indirect address, and rela
tive address. Available input-output 
devices include a 350 character-per-
second paper tape reader, 60 char-
acter-per-second paper tape punch, 
electric typewriter, up to eight 
magnetic tape handlers, card reader, 
card punch, and a line printer. Cir
cle No. 3-17 

Continued from page 2U 

the hierarchy. These higher ele
ments are called "qualifiers" when 
used in this way, and the process is 
called "qualification." Two types of 
qualification are allowed; prefixing 
(i.e., adjectival modification) and 
suffixing. In the first instance, the 
nouns must appear in descending 
order of hierarchy (i.e. with the 
name being qualified as the last and 
all others in order). In the second 
case the nouns must appear in as
cending order of hierarchy with 
either of the words "OF" or "IN" 
separating them (the choice be
tween the two words is based 
on readability — they are logically 
equivalent). 

Dimensional arrays 

Taking "President Election Year" 
as an example, the hierarchy of 
data given is such that neither the 
field "YEAR" nor the field "ELEC
TION" are unique spellings. That is, 
both fields appear elsewhere in the 
Record Description. To reference 
the "YEAR" field, PRESIDENT and 
ELECTION are used as qualifiers, 
either as nouns used adjectively in 
a prefix (PRESIDENT ELECTION 
YEAR), or preceded by the connec
tive "of" for a suffix (YEAR OF 
ELECTION OF PRESIDENT). 

When a list of items is defined in 
a program, reference may be made 
to any particular one by "subscrip
ting." The list may not be referred 
to with subscripts. The name being 
subscripted is followed by the sub
script which is identified either by 
following the key word "FOR" or by 
being surrounded by parenthesis. In 
certain situations, complex tables 
may be defined which require more 
than one quantity to locate an item. 
COBOL permits arrays containing 
up to three dimensions. The order 
of subscripts, from left to right, is 
major, intermediate and minor. For 
example, the premium rate of an in
surance policy might depend upon 
the age, weight and the state of res
idence of the policyholder. The table 
would be classified as three dimen
sional and each valid subscript must 
be a series of three words. Paren-

Continued on next page 
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Continued from page 37 

theses must be used in this case be
cause the key word "FOR" might be 
ambiguous. The resulting instruc
tion would read: MULTIPLY POLICY-
VALUE BY RATE (AGE, WEIGHT, 
STATE) . 

COBOL procedures are expressed 
in a manner similar (but not iden
tical) to normal English prose. The 
largest unit is a section, which is 
composed of paragraphs. The latter 
is made up of sentences which are 
generally grouped for the purpose 
of describing a unified idea. The 
sentences are composed of sequences 
of statements, which in turn are 
made up of groups of words—nor
mally verbs and operands. COBOL 
makes available to the programmer 
several means of expressing logical 
situations through the use of the 
"conditional" procedures. These 
"conditionals" generally involve the 
key word "IF" followed by the con
dition to be examined, followed by 
the operations to be performed. The 
operations may vary, depending 
upon the truth or falsity of the con
ditions. For example: IF X EQUALS 
Y, MOVE A To B; OTHERWISE IF C 
EQUALS D, MOVE A TO D AND ALSO 
PERFORM X THROUGH Y. 

On the level 
Under the COBOL concept, data 

to be processed falls into three cate
gories—that which is contained in 
files and enters or leaves the inter
nal memory of the computer from 
specified areas; that which is de
veloped internally and placed into 
intermediate or working storage, 
and constants which are defined by 
the user. For purposes of proc
essing, the contents of a file are 
divided into logical records. By defi
nition, a logical record is any con
secutive set of information. In an 
inventory transaction file, for ex
ample, a logical record could be de
fined as a single transaction, or as 
all consecutive transactions which 
pertain to the same stock item. Sev
eral logical records may occupy a 
block (i.e., physical record), or a 
logical record may extend across 
physical records. The logical record 
concept is not restricted to file data, 
but carries over into the definition 

38 

"Individuality and creativeness can still 
flourish freely within the framework of ef
fective language standards."—C. A. Phillips, 
chairman of the Executive Committee of the 
Conference on Data Systems. 

of working storages and constants 
which may be grouped into logical 
entities and defined by a Record 
Description. 

File Description entry contains 
information pertaining to the phys
ical aspects of a file; the manner in 
which the data is recorded on the 
file, the volume of data in the file, 
the size of the logical and physical 
records, the names of the label rec
ords contained in the file, the names 
of the data records which comprise 
the file, and the keys on which the 
data records are sorted. The listing 
of data and label records in a File 
Description entry serves as a cross 
reference between the file and the 
records it contains. If the Record 
Description for these records is not 
found within the Data division of 
the problem description, it still can 
be automatically called from the 
COBOL library. 

A Record Description consists of 
a set of entries, each of which de
fines the characteristics of a partic
ular unit of data. Since COBOL 
Record Descriptions involve a hier-
archal structure, an entry giving 
only the general characteristics may 
be followed by a set of subordinate 
entries which together redescribe 
the unit in more specific terms. The 
contents of an entry may vary con
siderably, depending upon whether 
or not it is followed by subordinate 
entries. A file of job tickets sorted 
according to division, department, 
employe number and day of the 
week is a good example of this. If 
the logical record has been defined 

as all consecutive data pertaining 
to a single employe, the following 
levels could be defined; (1) A week
ly job record which consists of . . ., 
(2) Daily job ticket groupings 
which consist of . . ., (3) Job 
tickets which consist of ..., and (4) 
The individual fields within the job 
tickets. 

Within a COBOL Record Descrip
tion, the programmer organizes and 
defines data according to its relative 
level by writing separate entries for 
each level and for each item of data 
within each level. The definition of 
a particular item of data consists of 
the entry written for that level plus 
all following entries which are of a 
lower level. The level, itself, is 
shown by a level number which is 
relative to the largest element of 
data within the Record Description. 
Level numbers start at 1—for rec
ords—and may go as high as 49, 
but it is not expected that any prob
lem will require the full 49 levels of 
data. 

Divided Divisions 

The Environment Division is the 
one part of the COBOL system 
which must be rewritten each time 
a gpven problem is run on a differ
ent machine. It has been included in 
the system to provide a standard 
way of expressing the machine-de-
pendent information which must be 
included as the part of every prob
lem. 

The division has been divided 
into two sections — Configuration 

MANAGEMENT and 
BUSINESS AUTOMATION 



and Input-Output. The Configura
tion section deals with the over-all 
specifications of computers and is 
divided into three paragraphs: the 
Source-Computer, which defines the 
computer on which the COBOL 
Compiler is to be run; the Object-
Computer, which defines the com
puter on which the program pro
duced by the COBOL Compiler is 
to be run, and Special Names, which 
relate the actual names of the hard
ware used by the program to the 
names used in the program. 

The Input-Output section deals 
with the definition of the external 
media and that information that 
will create the most efficient trans
mission and handling of data be
tween the media and object pro
gram. The section is divided into 
two paragraphs: the 1-0 Control, 
which defines special input-output 
techniques, rerun, and multiple file 
tapes; and File-Control, which 
names and associates the files with 
the external media. 

In the beginning 

The COBOL Library contains 
three types of entries, correspond
ing to the three divisions of the 
COBOL system. Information de
scribing machine configurations is 
retrievable through the use of the 
Copy in the Environment division. 
File and record descriptions are 
retrievable through the use of the 
Copy in the Data division. Pro
cedure statements—commonly called 
subroutines—are retrievable 
through the use of the verb IN
CLUDE in the Procedure division. 
Each division is capable of obtain
ing material pertaining only to it
self. The physical makeup of the 
COBOL library, as well as the main
tenance and handling, are left to 
the individual implementor. The 
calling of library material produces 
the same effect as if the program
mer had written the material in his 
source program. 

COBOL had its beginning at a 
conference held at the University 
of Pennsylvania Computing Center 
on April 8, 1959. The meeting 
brought together a group represent
ing users, manufacturers and uni
versities to discuss the problem of 
developing a common business 
language. The group, headed by 
Phillips, observed the recent de

velopment of languages for auto-
m a t i c programming, such as 
Sperry-Rand's FLOWMATIC, 
IBM's COMTRAN, and AIMCO, 
developed jointly by the Air Ma
terial Command and Sperry-Rand. 
The conclusion was that it might 
be feasible to develop specifications 
for a problem-oriented but ma
chine-independent common lan
guage for business problems. The 
Department of Defense, as an ap
propriate agency with a major in
terest in the field, was asked to 
undertake the project. 

Action in the Pentagon 

On May 28, 1959, a two-day meet
ing was called in the Pentagon by 
Phillips to discuss the organization 
of the project. The concept of three 
committees, Short Range, Inter
mediate Range, and Long Range, 
was agreed upon with appropriate 
time schedules. The Short Range 
Committee was composed of six 
manufacturers, Government repre
sentatives and the chairman, Mr. 
Wegstein. Its task—to accomplish a 
fact-finding study of the strength 
and weaknesses of existing auto
matic business compilers and de
velop an improved system. Members 
of the group include: Col. Alfred 
Asch, Capt. Erwin Vernon and 
Duane Hedges of the Air Material 
Command-USAF; Robert S. Barton, 
William Logan and Mrs. Mary K. 
Hawes of Burroughs Corp. (Mrs. 
Hawes is now with RCA); Howard 
Bromberg, Ben F. Cheydleur, Nor
man Discount, Karl Kozarsky, Rex 
McWilliams and Gerald Rosenkrantz 
of Radio Corp. of America; William 
Carter, Charles Gaudette and Miss 
Sue Knapp of Minneapolis-Honey
well (Mr. Carter is now with 
IBM); Miss Deborah Davidson, 
Vernon Reeves and Miss Jean E. 
Sammet of Sylvania Electric Prod
ucts, Inc.; William Finley, Dan 
Goldstein and Edward F. Sommers 
of Sperry-Rand; Roy Goldfinger, 
William Selden and Miss Gertrude 
Tierney of IBM; Mrs. Frances E. 
Holberton and Mrs. Norah Taylor 
of David Taylor Model Basin, USN, 
and Roy Nutt of the Computer Sci
ence Corp. 

The Intermediate Range group 
will take the COBOL package and 
begin to modify and refine it within 
a time schedule ending sometime in 

1961. Chairman of the group is 
A. E. Smith of the Navy Depart
ment. 

The final phase of the program is 
the responsibility of the Long Range 
committee. This group will explore 
the fundamentals and philosophies 
of all machine language, regardless 
of its use on scientific or business 
data problems. The objective is to 
develop a "super" language which 
might supersede all existing scien
tific and business language systems. 
Such an accomplishment would be 
the ultimate—the Universal Com
puter Language. A special subcom
mittee, consisting of Robert Curry, 
vice president and comptroller of 
Southern Railway; Howard Eng-
strom, vice president of Sperry-
Rand, and John McPherson, vice 
president of IBM, is directing this 
effort. 

Trial of a concept 

Assisting the Conference Com
mittee as technical advisors in all 
phases of the COBOL project are 
Dr. Grace Hopper of Sperry-Rand, 
and Robert W. Bemer of IBM. 

As the Short Range committee 
report points out, the COBOL sys
tem is the first large-scale effort at 
writing business data processing 
problems for many computers in 
one language. As such, it will under
go the trials of any new concept. 
Improvements and additions will be 
made by the committee which has 
stated that it is making "every ef
fort to insure that improvements 
and corrections will be made in an 
orderly fashion." Proper provisions 
have been taken to avoid invalidat
ing existing users' investments in 
programming. 

The COBOL system further 
marks a major move toward com
plete computer compatibility. Other 
benefits include a reduction in the 
time requirements and costs of pro
gramming. The program has the 
complete support of the computer 
industry, and manufacturers have 
agreed to implement the language 
with compilers or processors to 
translate COBOL to the language 
of their particular machines. They 
r e c o g n i z e ,  C h a i r m a n  P h i l l i p s  
pointed out, that individuality and 
creativeness can still flourish freely 
within the framework of effective 
language standards. • 
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Do It by the Numbers—Digital Shorthand 
R. W. BEMER, International Business Machines Corporation, White Plains, New York 

Abstract Present communications systems transmit single 
characters in groups of coded pulses between simple termina 
equipments. Since English words form only a sparse set of all 
possible alphabetic combinations, present methods are inefficient 
when computer systems are substituted for these terminals. Using 
numeric representations of entire words or common phrases 
(rather than character-by-character representations) requires 
approximately one-third of present transmission time. This saving 
is reflected in overall costs. Other benefits accrue in code and lan
guage translation schemes. Provision is made for transmission o 
purely numeric and/or binary streams, and for single character-
transmission of non-dictionary words such as the names of people 
or places. 

General Principles 

Precedent may be found in the story of the comedians 
club that sat around and laughed when a member said 
"38." In this case the entire story is represented by that 
single number. One working example is that of standard 
Western Union messages such as birthday greetings. 
Not everyone realizes that the entire message is not tians-
mitted, only its number; this tells the receiver what 
verbal message to type out on a form. Another example 
is that of telephone numbers. A name and address may 
be transmitted in a more compact fashion by merely 
sending the number. The receiver, equipped with the 
same phone book ordered on number rather than name, 
can simply decode. 

Overstandardization at the message level vail not work 
generally for the infinite variety met in practical trans
mission. The single word, delimited by blanks, is the 
efficient denominator. An example of this is the book code 
that children use for ciphers. Here the page number, line 
number and nth position on the line define a specific 
word. These three numbers may be compressed to a 
single number by using fixed subfields. Thus, 0312806 
would indicate the 6th word of the 28th fine on the 31st 
page. A related method would be to number all the words 
in the dictionary sequentially starting with 1. 

Ground Rules 
English unabridged dictionaries contain less than 

600,000 individual entries. The average speaking vocabu
lary is from 1000 to 2000 words, the average writing 
vocabulary from 6000 to 8000. A college graduate may 
have from 7500 to 10000 words to use. It has been said 

* Presented at the meeting of the Association, August 23-26, 

1960. 

that a person with a 3000-word vocabulary can under-1 
stand 95 percent of general speech. 

Since 222~ 4,000,000, it seems that about 22 bits should 
be capable of representing any word in the language, 
with perhaps enough freedom and overcapacity to be 
informational if desired. That is, they may identify words 
as to tense, plurals, nouns, or verbs, etc. 

Examples given will use the six-bit representation lor 
letters proposed in a recent draft standard issued by the 
Electronic Industries Association [1]. 

Compression Method 
In early developments, Shannon [2] represented all 

words by an invariant or constant number of bits. lor 
reasons of economy this is not practical. The average 
length of an English word is usually taken as o letters, 
plus a delimiting blank. A minimum of 5 bits (yielding 
32 combinations) is necessary to represent a character 
singly. Thus the average number of bits required to repre
sent a word in this mode is 30. Reduction to 22 bits is 
not impressive. , 

Therefore, statistical frequency of usage may be used 
t o  p r o v i d e  r e p r e s e n t a t i o n s  o f  a  v a r i a b l e  n u m b e r  o  i s .  
The problem then is how to decode the bit stream at the 
receiving end. This may be done by 

(1) advance knowledge of a constant byte size, 
(2) termination by recognition of a fixed bit pattern 

normally excluded from the code, 
(3) self-definition, where the first n bits of a group 

indicate its length, U-F 

(4) termination by inspection of every nth bit, 
bits in a single track. 

Method 2 is due to Brillouin [3]. Each representation is 
distinguished by at least two consecutive 0 bits followed by 
a 1 bit. The stream of Figure 1 is decoded as an example. 

1 0 1 1 1 0 0 1 0 1 1 0 1 1 1 0 1 0 0 0 0 1 0 0 1 0 1 0 0 0 1  
I I I 1 

FIG. 1 

This method has the advantage of self-repair after 
a transmission error (except for the word in which the 
error occurred). It is not suitable for computer transfor
mation of large dictionaries because of the exclusion 
of all address combinations with two consecutive zeros. 
It can be seen from Table 3 that it takes a storage of 
more than a half-million words to handle a vocabulary o 
28,635 words, at an efficiency of only .0oo. . 

Self-defining (like a measuring worm), Method 3 is 
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suitable to computer decoding. As an example, assume 
that transmission is to be in parallel on four channels 
(or on single wire in identifiable groups of four). Figure 2 
shows how the leading bit(s) specify the length of a single 
word representation. 

TABLE 1. METHOD 3 

Leading bit(s) N°gr°fUps'eS Working bits 

10 
13 
21 

0 2 
10 3 
110 4 
111 6 

Number of words accommodated 

128 (2') 
896 (210 — 27) 

7,168 (213 — 210) 
2,088,960 (221 — 213) 

0 X 1 X X 1 X X X 1 X X X X X 0 1 1 1 
X X 0 X X 1 X X X 1 X X X X X 1 0 0 1 
X X X X X 0 X X X 1 X X X X X etc. 0 1 0 0 
X X X X X X X X X X X X X X X 1 1 1 0 

direction of reading > 

FIG. 2 

The specific example at the right in Figure 2 means 
that the first word is decoded from the octal number 133 
(or 000000000000001011011, in the full 21-bit address). 
There are many different methods of encoding for various 
byte sizes. Some are shown in Tahle 1. The example of 
Figure 2 is of Type B. The percent-usage figures are taken 
from Dewey's frequency study of 100,000 words [4]. 
The average number of bits per word may be reduced 
perhaps slightly from these figures by optimum adjust
ment to English frequency to the closest hit, rather than 
by the closest byte. However, this slight reduction is not 
warranted by the extra hardware and processing time. 
Note that the control patterns may be inverted or re
assigned with exactly the same effect. Arbitrary change 
in the decoding rules is convenient for encrypting messages. 

Correct positioning may he maintained for Method 3 by 
(1) using intervening pulses of different length, as in 

Teletype, 
(2) inserting synchronizing groups of all ones (1111 1111 

1111) which have been excluded by the computer from 
the legitimate numbers sent, 

(3) checking for reasonableness of message through 
statistical methods, 

(4) guaranteeing that synchronization is never lost 
through self-checking methods (addition of parity bits, 
error-detecting and correcting codes, etc.). 

If an out-of-phase condition is likely, the proper re
ceiving technique is to use a buffer area so the message 
can be re-interpreted. The amount of saving in this method 
will even allow the entire message to be sent twice, as an 
extreme measure. If the situation becomes intolerable in 
actual practice, Method 4 may be employed. Both Methods 
3 and 4 have full storage utilization, as opposed to Bril-
louin's Method 2. 

In Method 4, a single track is reserved for a word-
mark. This wordmark can delimit in either of two ways, 
as shown in figure 3 (see p. 532). 

At first appearance, this does not achieve the efficiency 
of Method 3. However, for all cases where the minimum 
number of bytes is two (i.e., Types A, B, D, H, J, K, M) 

Type 
Bits 
per 

byte 
First 
bits 

No. 
of 

bytes 

Work
ing 
bits 

Number of 
words ac

commodated 

Percent 
usage 
(est) 

Percent 
times 
bytes 

Bytes 
per 

word 

Bits 
per 

word 

A 4 0 2 7 128 57 114 2.69 10.76 
10 3 10 896 21 63 
110 4 13 7,168 19 76 
1110 5 16 57,344 2 10 
1111 6 20 983,040 1 6 

B 4 0 2 7 128 57 114 2.71 10.84 
10 3 10 896 21 63 
110 4 13 7,168 19 76 
111 6 21 2,088,960 3 18 

c 5 0 1 4 16 28 28 2.19 10.95 
10 2 8 240 36 72 
110 3 12 3,840 26 78 
1110 4 16 61,440 9 36 
1111 5 21 2,031,616 1 5 

D 4 00 2 6 64 48 96 2.76 11.04 
01 3 10 960 30 90 
10 4 14 15,360 21 84 
11 6 22 4,177,920 1 6 

E 6 0 1 5 32 38 38 1.85 11.10 
10 2 10 992 40 80 
110 3 15 31,744 21 63 
111 4 21 2,064,384 1 4 

F 5 0 1 4 16 28 28 2.28 11.40 
10 2 8 240 36 72 
110 3 12 3,840 26 78 
111 5 22 4,190,208 10 50 

G 6 00 I 4 16 28 28 1.95 11.70 
01 2 10 1,008 50 100 
10 3 16 64,512 21 63 
11 4 22 4,128,768 1 4 

H 5 0 2 9 512 71 142 2.34 11.70 
10 3 13 7,680 25 75 
110 4 17 122,880 3 12 
111 5 22 4,063,232 1 5 

J 5 0 2 9 512 71 142 2.37 11.85 
10 3 13 7,680 25 75 
11 5 23 8.380,416 4 20 

K 5 (X) 2 8 256 64 128 2.41 12.05 
01 3 13 7,936 32 96 
10 4 18 253,952 3 12 
11 5 23 8,126,464 1 5 

L 6 0 1 5 32 38 38 2.06 12.72 
10 2 10 992 40 80 
11 4 22 4,193,280 22 88 

M 6 0 2 11 2,048 84 168 2.17 13.02 
10 3 16 63,488 15 45 
11 

4 I 
22 4,128,768 1 4 

the position adjacent to the initiating or terminal one 
might be used for information. This is because two one-
bits in succession in the wordmark track constitutes an 
illegal condition. 
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0 1 0 1 0 0 1 0 0 0 1 0 0 0 0 
X X X X X X X X X X X X X X X , 
x X X X X X X X X X X X X X X 
X X X X X X X X X X X X X X X 

direction of reading 

1 0 1 0 0 1 0 0 0 1 0 0 0 0 1 
X X X X X X  X  X  X  X  X  X  X  X  X  
X  X  X  X X X  X  X  X  X  X  X  X  X  X  
X  X  X  X X X  X  X  X  X  X  X  X  X  X  

FIG. 3 

A third method may deserve study, that of using al
ternate ones and zeros in the wordnmrk track, changing 
at the start of each new word. The advantage of using one 
extra bit for information is lost in this scheme. Table 2 
shows corresponding efficiency in the wordmark mode. 
The corresponding efficiencies in bits per word are virtually 
the same as those of Table 1. 

TABLE 2. METHOD 4 

Method 3 Type Bits per byte Word mark bits No. of bytes Working bits 

A  4  X I  2  7 

X01 3  1 0  
X001 4 1 3  
X0001 5 10 
X00001 6 19 

B 4 XI 2 7 
X01 3 10 
X001 4 13 
X00001 6 19 

c 5 1 1 4 
01 2 8 

001 3 12 
0001 4 Hi 
00001 5 20 

E 6 1 1 5 

01 2 10 
001 3 15 
0001 4 20 

For transmission on parallel wires, Method 4 is superior 
to Method 3 when errors occur. 

It is also better for single wire transmission provided 
synchronization can be maintained regardless of error 
in any bit. 

Code Efficiency 
Brillouin [3] states that his code yields about 12 bits 

per word, very close to the theoretical lower limit that 
Shannon [2] believed to be 11.82. It is obvious from Table 
1 that Types A through H are all better than Shannon's 
limit. Having duplicated Brillouin's work with the ap
proximation to word frequency that he used (and also the 
Dewey frequencies), I get 10.12 bits per word with the 
frequency approximation that he used and 9.83 bits per 
word with the Dewey frequencies that Shannon used. 

The latter figure leads me to believe that Brillouin may 
have unknowingly penalized his scheme by 2 bits. 

Although Baudot code is nominally 5 bits per character, 
the effective average is probably closer to 6 because of the 
extra shift characters and terminal blanks required to 
space words. Fieldata code does not use shift characters 
but does require terminal blanks and at least one extra 
bit, so the average is nearly 7 bits per character. Thus 
the scheme outlined in this paper will save between 00 
and 65 percent over Baudot transmission and nearly 
70 percent over Fieldata. 

Brillouin has not published a scheme using more than 
two zeros as terminal indicators, and has stated that he 
believes it (the two-zero scheme) to be the most efficient 
possible. I have investigated the cases for three- and 
four-zeros termination, with the following results: 

Number of zeros Bits per word (Shannon) 
Bits per word 

(Dewey frequency) 

2 10.12 9.83 
3 10.31 10.10 
4 11.09 10.87 

These figures are for a vocabulary of about 12,000 words. 
Table 3 shows that in this range the address efficiency of 
the three-zero terminator is about five times as good as 
that for two zeros. Thus it is actually much superior for 
practical computer operation. The reason an extra zero 

n 
Z 
U 

U„ 
U, 
U„ 

TABLE 3. 
BRILLOUIN CODES OF THE FORM 1 XXXX .0C 

= number of digits to left of the decimal point 
= number of zeros in the terminator 
= number of usable combinations in each group 

a... 

Un-l + Un-i + 
U„_l + U n—2 + Un_3 + 1 
Un-l 4" Un—2 A Un—3 4" U n—1 4~ 1 

2U 
Address efficiency = 2" 

(for 
(for 
(for 

Z = 2) 
Z = 3) 
Z = 4) 

n 2" 

z = 2 z = 3 z = 4 Address Efficiency 

n 2" 
u 2U u 2U u 2U Z = 2 Z = 3 Z = 4 

1 2 1 1 1 1 1 1 .500 .500 .500 
2 4 2 3 2 3 2 3 .750 .750 .750 
3 8 4 7 4 7 4 7 .875 .875 .875 
4 16 7 14 8 15 8 15 .875 .938 .938 
5 32 12 26 15 30 16 31 .813 .938 .969 
6 64 20 46 28 58 31 62 .719 .906 .969 
7 128 33 79 52 110 60 122 .617 .859 .953 
8 256 54 133 96 206 116 238 .520 .805 .930 
9 512 88 •221 177 383 224 462 .432 .748 .902 

10 1024 143 364 326 709 432 894 .355 .692 .873 
11 2048 232 596 600 1309 833 1727 .291 .639 .843 
12 4096 376 972 1104 2413 1606 3333 .237 .589 .814 
13 8192 609 1581 2031 4444 3096 6429 . 193 .542 .785 
14 16384 986 2567 3736 8180 5968 12397 . 157 .499 .757 
15 32768 1596 4163 6872 15052 11504 23901 .127 .459 .729 
16 65536 2-583 6746 12640 27692 22175 46076 .103 .423 .703 
17 131072 4180 10926 23249 50941 42744 88820 .083 .389 .678 
18 262144 6764 17690 42762 93703 82392 171212 .067 .357 .653 
19 524288 10945 28635 78652 172355 158816 330028 .055 .329 .630 
20 1048576 17710 46345 144664 317019 306128 636156 .045 .292 .607 
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does not add a full bit per word is that a higher propor
tion of the frequently used words may now be assigned 
to a denser set of addresses. The remaining choice between 
Brillouin's method and Methods 3 and 4 is now made 
as follows: 

Brillouin 00 Brillouin 000 Method 3,4 B-mdot (Teletype) 

Bits per word 9.Si 10.10 10.62* 30. 
Address efficiency .06 .35 1.00 

* adjusted for corresponding vocabulary size 

Transformation Methods 

A stored-program computer or a device with associ
ative memory can transform a string of characters (each 
represented by a binary number) into a single compact 
and unique representation. An existing example of this 
statement is the conversion from binary coded decimal 
to pure binary numbers. The converse transformation 
at the receiving end requires only a simple address lookup 
to find the word or symbol to be printed. 

The input typing or keying device produces B bits 
per character or letter. B is greater than or equal to 6 
in order to handle at least 26 alphabetic characters, 10 
digits and other necessary characters such as punctuation. 
A group of letters is deliminted by a blank, hyphen or 
other delimiter. Figure 4 shows the bit stream produced 
in the EIA code for the word PRIME. The blank delimits 
a string (Ci, C2, C3, • • • , CN), N being the number of 
letters in the group, normally a word. This string is a 
number Ri. In Figure 4, Ri = 4547364232octai. The 
blank triggers the unloading of the buffer to a unit or 
program which transforms Ri to a number Rt, which is 
the compressed representation transmitted on the com
munications line. 

As the set of English words is sparse, the set of Ri is 
also sparse. Transmission efficiency increases as the set of 
Rt is denser. Rt is also the address used at the receiving 
end of the line, (Rt) = Ri, which may either activate a 
character printing device or be retransmitted in decom
pressed form. 

Rt is chosen to increase monotonically as frequency of 
the use of a word decreases. Thus the most frequently 
used words have lowest values of Rt and may thus have 
the leading zero bits truncated in the variable length 
mode. The program has an optional tally register as

sociated with each word. Actual usage will generate 
practical frequencies which may be used for reassignment 
of the Rt values. 

Rt may represent more than one word. After initial 
Rt's are formed, one per word, this compressed string may 
be inspected by matching pairs against a list of pairs 
which have high enough usage frequency to warrant 
condensation into a single Rt. This is recursive and any 
number of words may be represented by a single Rt. 
The only requirement is for the preceding Rt to remain in 
a buffer for matching. 

Tabic Lookup Method 

The length of a word is expressible in 5 bits. (Nmnx in 
English = 28 < 26 for the word antidisestablishmen-
tarianism.) The computer storage is arranged to contain 
the operating program, a master table of N, Ci and sub
ordinate tables corresponding to all these values. For 
each word, N and C1 are adjoined. (N, Ci) is found in 
the master table and is the address of the start of the 
proper table. In Figure 4 the value of N,Ci is 
0545octai. (0545) = starting address for table of all 
five-letter words starting with P. (N, Ci + 1) = ending 
address of table + 1. Between these limits, a binary 
search finds a match to the value of Rj. Associated with 
Ri in the table is the corresponding Rt. 

This method does not make use of frequency informa
tion. It may be desired to place the tables randomly in 
storage. In this case the master table must be doubled in 
size. Adjoin the 5 bits of X, 6 bits of Ci, and a final low-
order bit which indicates the starting address by 0, the 
ending address by 1. Finer grouping may be had at in
creased cost by using the concatenation of X*, Ci, C2. 

Chaining Method 

The entire number Ri is utilized directly to find the 
corresponding Rt. A number M is chosen such that 2M 

is convenient to storage size and related to vocabulary 
size for optimum conversion speed. For present storage 
sizes, M may vary from 10 to 14. The address Ri modulo 
M has the contents: 

Ri, Rt, chain address 

The set of numbers Rm = Ri modulo M will have dupli
cates and will not be dense, although denser than the 

Human 

i 
Hard 
copy 

Computer 

T 
Single character 

typing device 

I 
Code stream ,/ 

p R I M E blank 
100101 100111 011110 100010 011010 000000 

FIG. 4 
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set of RI. When there are duplicates, the contents of R,„ 
will not contain the proper Ri except for one word. If 
not, the contents of the chain address are tested for a 
match. This proceeds recursively until a match is found 
on RI; the RT associated with that address is then used. 
For dense storage packing, the chain addresses are chosen 
from a list of empty positions, that is, R„, values which 
the existing vocabulary does not utilize. 

It is possible to apply other transformations to RI to 
reduce it to the range from 1 to 2M. A simple extraction of 
M bits may be practical. For any value of Rm, the chain 
should be assigned in order of decreasing frequency of 
word usage. 

Storage is assigned by referring to its representation 
in three lists: 

(1) Storage (prime) already assigned to a word 
(2) Storage (secondary, or nonprime) already assigned 

to a word 
(3) Free list, not yet assigned 

A limiting number is experimentally chosen such that 
only this many words are allowed unlimited prime as
signment. Starting with the most frequently used word, 
R,„ is calculated and used as an address. If this address is 
found on the free list, it is removed and placed on the 
prime storage list. The address contents are assigned, 
using successively larger values of RT. If this address is 
not found on the free list, a duplication in RM has occurred. 
Such words are held aside for assignment after the limiting 
number is reached. These remaining words are then taken 
again in order of highest frequency of usage, and the 
remainder of the free list is used in sequence to fill the 
chaining addresses. Each word assigned must proceed 
through its chain. For example, take three words Wi, 
W2 and W3 for which the corresponding values of Rj,, 
RI2 and 1R, all yield identical values of R,„. 

WI is assigned (RM) = R,,, RT], FLAI 
W2 is assigned (FLAL) = RI„ RT„ FLA2 

W3 is assigned (FLA2) = R,„ RTL", RETURN 
(FLA means Free List Address) 

Ends of all chains are assigned to the RETURN address. 
When a word must be added to the chain, it is lengthened 
by replacing RETURN by the next chaining address and 
putting RETURN in the new last word. If RETURN is ever 
reached in actual transmission, it indicates that this word 
is not yet in the dictionary. Automatic addition of this 
entry (in both sender and receiver) then occurs upon 
inspection of the free list. 

Immediate Applications 

Present-day computers operate at speeds too high for 
constant usage with communication lines, except under 
special circumstances. Until special devices are built for 
this express purpose, there are several ways of efficiently 
combining computers with existing communication lines. 

(1) MESSAGE CENTER. Since the computer should be 
running nearly continuously to realize maximum savings 
from compression, one means of achieving economy is 

to create message centers in such cities as Paris, New 
York, London, etc., where the total volume of messages 
may be expected to approach capacity. Since the com
munication volume on lines is only about a third of present 
volume, capacity of such lines as Atlantic cables is tripled, 
without the need to lay new cables. Facsimile transmission 
may be interspersed with word messages to further justify 
the computer economy, since similar compression methods 
can achieve 4-to-l reduction in this area [5]. 

The extreme flexibility of the computer allows a variety 
of modes of compression, as shown in Table 1. Some of 
these are suitable to the existing five-bit pattern of Tele
type. Thus a computer equipped with paper tape input 
and output could take in continuous strings of normal 
Teletype messages, compress them, and output a con
tinuous string in condensed form but still suitable for 
transmission on regular Teletype circuits and equipment. 
This tape then enters the receiving computer and is either 
printed on its equipment or converted to the expanded 
tape suitable for relaying to local Teletype receivers. 
Large networks could thus be two-stage, with the greater 
proportion of distance (and cost) being traveled in the 
compressed form. It is conceivable that an asymmetric, 
condition could be used, with a central transmitter and 
several satellite receivers of lesser power. Radial trans
mission could be in compressed form, replies from the 
satellites in normal, uncompressed form. The compression 
algorithm must avoid using normal control codes as any 
part of the numbers. The same principles apply equally 
to other existing and proposed paper tape formats of 
six bits and more. 

(2) COMBINED MESSAGE AND DATA PROCESSING 
CENTER. Many computers are susceptible to external 
interruption of their regular operations and can inter
mingle several different jobs. This is known as multi
programming. Thus a computer in regular operation can 
be interrupted upon demand to either encode a message 
for transmission or decode and print an incoming message. 
However, demand does not need to be heeded instan
taneously. A minimum time lag would be that saved by 
the message compression. Depending on priority codes, 
iags of up to several minutes may be acceptable. This 
would allow for regular jobs to be interrupted at con
venient points with minimum disruption. 

(3) COMBINED MESSAGE AND LANGUAGE TRANSLATION 
CENTER. Several language translation schemes depend 
partially on corresponding dictionary lookup. In this 
method the receiving computer can look up the cor
responding word in Russian or French just as easily as 
in English. Since this lookup time is such a small pro
portion of available real time, the rest of the translation 
process may be carried on simultaneously. This allows 
messages to be sent to multiple receivers in different 
languages through virtually instantaneous translation. 

(4) ENCODING FOR SECRECY. Secrecy comes virtually 
free with this code. Whereas ciphers depend upon letter 
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substitution and are normally broken on the basis of 
letter frequency in a language, it is quite another thing 
to try to determine relative frequencies for thousands 
Of words rather than just 26 letters. Code is the more 
general term, being substitution of symbols for words. 

Normally both sending and receiving computers are 
equipped with the same dictionary, or library. When the 
sender adds a new word to the dictionary, it must transmit 
this word to the receiver in both single character (so it 
will know what to print) and compressed form. De
pending upon the mode of number assignment, this may 
cause a drastic restructuring of the entire encoding repre
sentation. In the example of the dictionary with words 
numbered in order, suppose a new word must be added 
just before "aardvark." Almost every word would have 
its representational number increased by one. This simple 
shift would be easy to detect, but the problem would be 
infinitely more difficult if many words were added at 
landom places throughout the dictionary. Now imagine 
this ordering of numbers determined not by alphabetic 
ordering in the dictionary but by frequency of usage in 
the language. 

Additions to the dictionary may be expected quite 
often. New users of the communications system may 
introduce new professional jargons. Personal or place 
names are used to identify many things, from army tactical 
positions to tropical storms. Mixed symbols such as part 
numbers for inventory will be used often. If these are 
popular or frequently used, it is more economical to add 
them to the compression dictionary than to send them 
by single characters. If not, the provision does exist to 
send single characters in groups of one, four, five, six 
or eight bits. 

A particular business requiring secrecy could purchase 
its own special dictionary, scrambled in a unique way. 
Computers can store a multiplicity of these on tape files 
and both sending and receiving computers could select 
one upon the basis of a control code. Multi-programmed 
computers can merge several messages together for si
multaneous transmission in a variety of patterns. A very 
simple example would be to interleave five messages so 
every fifth bit would belong to a specific message. Myriad 
varieties are possible and simple, but the unauthorized 
receiver would have to try every possible variety before 
he could make sense from any. 

A valuable by-product of this method will be the ability 
(at last) to determine actual usage and frequency figures 
for both letters and words in languages. The compression 
program contains a counting mechanism for usage. This 
may be disconnected at option. This is useful to period
ically rearrange the dictionary for efficiency, when operat
ing in a standard non-secret mode. Previous counts, on 
sample texts of from 100,000 to 300,000 words, did'not 
count punctuation symbols for frequency of occurrence. 
In this method, it is more economical to use these symbols 
as being identical to words. 

TABLE 4. 
EXAMPLE OF POSSIBLE ASSIGNMENTS (Type D) 

Octal Symbol Frequency Octal Symbol Frequency* 

00 (Open for contin- 40 ARE 1200 
gency) 

1200 

01 Enter binary mode 41 ON 1200 
02 Enter 4-bit (decimal) 42 OR 1100 

mode** 
1100 

03 Enter 6-bit mode** 43 HER 1100 
04 Enter 8-bit mode** 44 HAD 1100 
05 Blank 45 AT 1100 
06 > 46 FROM 1000 
07 THE 15500 47 THIS 1000 

10 50 MY 1000 
11 OF 9800 51 THEY 1000 
12 AND 7600 52 ALL 900 
13 TO 5700 53 THEIR 800 
14 A 5100 54 AN 800 
15 IN 4300 55 SHE 800 
16 THAT 3000 56 HAS 800 
17 IS 2500 57 WERE 800 

20 I 2300 60 ME 700 
21 IT 2300 61 BEEN 700 
22 ; 62 HIM 700 
23 FOR 1900 63 ONE 700 
24 AS 1900 64 SO 700 
25 WITH 1900 65 IF 700 
26 WAS 1800 66 WILL 700 
27 HIS 1700 67 THERE 700 

30 HE 1700 70 WHO 700 
31 BE 1500 71 NO 700 
32 NOT 1500 72 WE 600 
33 BY 1400 73 WHEN 600 
34 BUT 1400 74 WHAT 600 
35 HAVE 1300 75 YOUR 600 
36 YOU 1300 76 MORE 600 
37 WHICH 1300 77 (Open for contingency) 

* 242,000 word sample from Cryptanalysis, H. F. Gaines Dover 
1956. 

**4-, 6- and 8-bit modes have identical characters to IBM 
LOGICODE proposal. Those modes are provided to allow single 
character formation. The 4-bit set is provided with a special 
blank following 0 — 9 . |- . Return to Normal Mode is effected 
in the various sets by encountering the character 

01111100 in the 8-bit set 
111110 in the 6-bit set (If 6-bit return character is out-of-

1110 in the 4-bit set phase with the end of the byte, 
hold up 2 bits) 

Amortization of Computer Costs 

A rough program planned for an IBM 7090 takes an 
average of 250 microseconds per word for total conversion 
at both transmitting and receiving ends. This rate of 
about 4000 words/second is more than adequate to keep 
up with foreseeable transmission times, even microwave, 
on a real time basis. At a nominal cost of $800 per hour,' 
the per-word cost would be 

80000 
3600 X 4000 = '°°o6 cents per word-
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Cost estimates for land line transmission are 62 cents for 
an average message consisting of 48 words of 5 characters 
and blank, requiring an overall elapsed time of one minute. 
These 288 characters actually require only 14.4 seconds 
on the line at 20 characters per second transmission rate. 
To realize the case most unfavorable to computer termi
nals, assume interleaving of four messages. The cost 
would be 

62 
4 X 48 

= .323 cents per word. 

This shows conversion time to be negligible by almost 
two orders of magnitude to the transmission costs saved. 
Net costs with computers on each end should approximate 

(35% of .323) + .0056 = .1186 cents per word. 

Thus the overall cost may be expected (with a fully 
utilized computer) to be from 37% to 40% of present 
costs. The most profit comes from transoceanic routes 

rather than land lines. Some typical costs* are: 

Radio/Cable New York to London 
New York to Paris 
New York to Moscow 
New York to S. 

America 
New York to Japan 

21 cents per word 
25 cents per word 
25 cents per word 
31 cents per word 

34 cents per word 

Western Union-
Telex 

*(night rates are half of day rates) 

New York to London/ S9 for first three 
Paris minutes, $3 each 

additional; 66 
words/minute 
50 bauds 

Straight text costs a standard amount per word based 
upon average word length. Coded text is charged modulo 5 
letters. A group of 5 letters or less counts as one word; a 
group of more than 5 is counted by components of 5 and 
fewer letters. Thus a 12-letter group would be charged 
as three words. 

1. Draft Standard 7233: 1-4: 5/60, Electronic Industries Associ
ation, Committee TR 24.4. 

2. SHANNON, C. E., Bell System. Tech. J. 30 (1951), 50-58. 
3. BRILLOUIN, L., Science and Information Theory, pp. 24-58 

(Academic Press, New York, 1956). 

4. DEWEY, G. C., Relativ Frequency of English Speech Sounds 
(Harvard University Press, 1923). 

5. WYLE, ERB AND BANOW, Reduced-time Facsimile Transmission 
by Digital Coding, Preprint at National Symposium on 
Global Communications, August 1960. (Ford Instrument 
Co., Long Island City 1, N.Y.) 
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Survey of Coded Character Representation 
R. W. BEMER, IBM Corp., White Plains, N. Y. 

fi--. 

Technical Committee 97 of the International Standards 
Organization (ISO) is concerned with standards in data 
pi m essing. The American Standards Association holds the 
secretariat of this committee. Sectional Committee X3 of 
A* A is responsible for national data processing standards 
in f ne L,. o. 

One of the most important areas of standardization (and 
one of the most pressing) is that of the logical representa
tion ot the character sets. These representations may be 
by punched holes in paper tape, pulses on a communica
tions line, bits stored in memory, marks 011 paper, etc. The 

vrrnflotfndardS W°rk 'n this area has been done by 
If PE) °f the BHtish Standards Institution 

and by 1R 24.4 (now TR 27.6) of the Electronic Industries 
Association. This particular problem is now under the cog
nizance of A.S.A. Sub-committee X3.2 on character sets 
and data format. 

The chart (pp. 640-1) is presented as staff work for the 
deliberations of X3.2. It is the most complete information 
we have been able to assemble to date, but obviously 
there may be errors and omissions. The primary aims in 
publishing this chart are: 

(1) To indicate to the information processing industry 
why standardization is vital in this area. 

(2) To request further information from the various ex-
perts who possess it. 

faVfiS 1S PreSerted in ^character modules (sufficient 
the f" 1 S6t'> a' the P°sitions are given designations in e octa! ber system from 0Q tQ „ For ^ ^ 

isX,? n° w,th this notation- a conversion table 
6'VcIl. 

Octal Binary 

000 
001 
010 
011 
100 
101 
110 
111 

J ^presents an ox or a punched hole condition. "0" rep-
Versior k°! Un unpunched condition. Obviously, the 

-y be mnrl! Ween physical and iogical representation 
bich edge 6f lu tW° WEyS (f°r example> depending upon 
Hve-tr;,pL- PapeF tape is on your right hand)-
Jetter nr ffaper tape is shown as though one of either 

gure shifts had a sixth track. In most cases 

his is theoretical. The letter shift-figure shift relationship 
is indicated on the chart together with the tape orientation, 
i a 3 appears in the column marked units, then the "3" 

hole side is octal 01. If a "2" appears in the units column 
the reverse is true. In most British tapes the letter shift is 
shown in the high position because the collating sequence 
adopted by the British for six-track codes puts the digits 
j.mvthe alphabet. The converse is mostly true in the 

Note: The <04 and 705 codes, for example, apparently violate 
this statement since the digits have lower octal represen
tations than the alphabet. However, ordering of files is 
controlled by a collating sequence in which the digits are 
higher than the alphabet. This is accomplished either by 
a comparison matrix in hardware or by programmed 
replacement of the keys in the records to be ordered. 

Some seven element codes are shown on two lines. In 
most cases these are accomplished by an upper and lower 
case shift on the input key board. These cases are indi
cated. The 7030 actually uses the seven (and eight) bit set 
internally. 

The elements of the code sets may possess either infor
mational or control characteristics. In my personal opinion 

ey should not possess both. Informational characters are 
shown by their single graphics. Control and functional 
characters are coded with two-letter mnemonics according 
to the following table, except for blank (which is shown as a 
lower case h with a slash through the stem) and special (©). 
BK—black 
BL—bell 
BS—backspace 
CL—clear 
CM—card mark 
CO—compute 
CR—carriage return 
CS—carriage shift 
DL—delete (erase) 
EB—end block 
ED—end data 
EF—end file 
EI—end information 
EN—end number 
ER—error 
ES—escape 
FF—form feed (paper throw) 
FS—figure shift 
ID—idle 
EC—lower case 
LF—line feed 
LS—letter shift 

MS—master space 
NA—no action 
NL—new line (CR + LF) 
NP—non-print 
OP—optional 
PA—put away 
PC—page change 
PF—punch-off 
PO—punch-on 
PR—print restore 
RD—red 
RE—read 
SI—shift in 
SIv—skip 
SM—segment mark 
SO—shift out 
SP—space 
ST—stop 
TB—tabulate 
TF—tape feed 
TM—tape mark 
LTC—upper case 
WA—who are you? 
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of Coded Character Representation 

CASE 

UPPER 
LOWER 

UPPER 
LOWER 
UPPER 
LOWER 
UPPER 
LOWER 

| UPPER 
LOWER 

I UPPER 
LOWER 

m a c h i n e  
fecXTTr 

TELETYPE 
FLEXOWRITER 

'METRO-VICK 950 

PEGASUS - MERCURY 
EBLsT T0TRA?T05MAY'59 

^EMGksu?°FLE4X0WRITER 
n 

1STANTEC ZEBRA 
I r ij I M/C TOOL 

ENGLISH ELEC. DEUCE 
| 1103 A TYPEWRITER 

LGP-30 FLEXOWRITER 
' M 
IRPC-9000 

(| j 

RPC- 4000 
N 

I L1NC0LNWRITER 
1 " 

NCR - 304 
704,709 7090 
PHILCO 2000 
m-H 800 
BENDIX I/O TYPER 
RCA 301 

ICARD) 
BENDIX 6 15 (CA 2) 

SIS'mPE* TAPE TYPER 
II 0 " 

PDP-1 

705, 7080, COC 1604 
7076 MAG. TAPE 
1401 
I410 „ TADC 650 MAG. TAPE 

b3u°r5ro*chsCeeo p-tape 
IBM 046 
NCR „ 

KLWAC M FLEXOWRITER 

HIDAC 101 PAPER TAPE 
KIMBALL PUNCH TAR 
OENNISON 
USS- 80 
U N I V A C  I , A  
UNIVAC M 
bfI^aXntV 5proposaL (b.s,.i 

TYPEWRITER 

I  ?S ta60 wbidic 
IBM 7030 1 „ H 

LOWER 
UPPER 
LOWER 
UPPER 

LOWER 
UPPER 

LOWER 
UPPER 

R W.BEMER, F . A .WILLIAMS 

I I I I o b c d • I v " ; 
- + . % ?  \ Z (  A B C D E F G H  I  

! 0 1 2 3 m  I B  7 8  9 C  +  E A D V - 1  
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i i i lS ' i i tJ I  I  1 I  -»e l  
is -CRTB® S . ®|w * , p _ „ , 
jsPgNLFFTBKSOSlU )%* v / u , t  _ 

l™« t ' a • » |k J j, K u M N o|p 0 R S T u V Jx ki lcS !  \ I  5 1 5 \  S H 0 P R f .  T « V ±  

S S i c O E F O H l  J K L « « 0  

a . . & A B C D1 
0 i £ 3 4 5 6 7 - -

, 01 2 3 4 | 1 7 
csIPC LF / Ol 2 34 56 

t u v w x y * . , 
T U V W X Y Z I , (  j! 

0 P ? N 8 T U V * * » ;  a d u f h '  "  n  '  r  f  ( " H I  J  S L M N  O P  0  R  S  T  u  v w x j  
uccclfcrspAB CDE F GH I J KLMN u , aBC0EFGH 

t V I >< C 3 '  - « « hlc d «_!—S-5-8 6 - A T V I  ,  _  + = 

REV. 9 OCT I960 
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I m n o p q 
K L M N O P Q R  
X P O R T  y c R Z  

-  J  K L M $  *  
" I ) J K L M  
"  )  5  J  K L M  

A B C D E F G H  
A B C D E F G H  

0 1 2 3 4 5 6  
0 1 2 3 4 5 6 7  
)  -  +  <  =  > _ $  
K L M N G P Q R  
Jt I m n o p q r 

C.C.l.T.T. 
TELETYPE 
FLEXOWRITER 
METRO-VICK 950 
LEO 
PEGASUS - MERCURY 
ELLIOTT 405 
B.S.I. DRAFT-MAY'59 
E.M.I. 1100, 2400 
PEGASUS FLEXOWRITER 

M  I I  

STANTEC ZEBRA 
E.M.I. M/C TOOL 
ENGLISH ELEC. DEUCE 
1103A TYPEWRITER 

" M 

LGP-30 FLEXOWRITER 
« u 

RPC- 9000 
H 

RPC-4000 
II 

LINCOLNWRITER H 
NCR- 304 
704,709, 7090 
PHILCO 2000 
M-H 800 
BENDIX I/O TYPER 
RCA 301 
M-H 1000 
ALWAC 2H (CARD) 
BENDIX 6 15 (CA-2) 
PERSEUS 
NCR PAPER TAPE TYPER 

•• II ft „ 

POP -1 
M 

705, 7080, CDC 1604 
7070 MAG. TAPE 
1401 
1410 
650 MAG. TAPE 
305 RAMAC 

BURROUGHS 220 P-TAPE 
IBM 046 " 
NCR « 
IBM 1620 « 
ALWAC II FLEXOWRITER « « 
HIDAC 101 PAPER TAPE 
KIMBALL PUNCH TAG 
DENNISON 
USS-80 
UNIVAC 1.31 
UNIVAC M 
BENDIX G 15 
FERRANTI PROPOSAL (B.S.I.) 
RCA 501, BIZMAC 
BENDIX G 20 TYPEWRITER 

* m n 
GAMMA 60 
FIELDATA, MOBIDIC 
IBM 7030 
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Survey of Punched Card Codes 

rX 
B 
C 

I B M  D  
TYPE . | 
ARRANGEMENTS F 

G 
H 
J 

U 
M-H 800 STD. PRINTER 
M-H 800 HI-SPEED PRINTER 
M-H 800 CONSOLE 
PHILCO 2000 
1103 A 
705 CONSOLE 
BURROUGHS 220 
G.E. 210 
NCR 304 
305 CONSOLE 
650 INQUIRY STATION 
1401, 1410 
7070 
1620 
UN I VAC H 
UNIVAC HI 
USS 80 
RCA 301 
RCA 501 
G- 15 / CA-2 
8RITISH TAB. MACHINE 
IBM WORLD TRADE 3000 
F.A.WILLIAMS, H.J.SMITH 

IBM 
TYPE 
ARRANGEMENTS 

M - H  8 0 0  S T D .  P R I N T E R  
M-H 800 HI-SPEED PRINTER 
M-H 800 CONSOLE 
PHILCO 2000 
1103 A 
705 CONSOLE 
BURROUGHS 220 
G.E. 210 
NCR 304 
305 CONSOLE 
650 INQUIRY STATION 
1401 , 1410 
7070 
1620 
UNIVAC E 
UNIVAC m 
USS 80 
R C A  3 0 1  
R C A  5 0 1  
G - 1 5  / C A - 2  
BRITISH TAB. MACHINE 
IBM WORLD TRADE 3000 
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Reprinted from The Computer Bulletin, Vol. 4, No. 4 
bwv.'oL 

SURVEY OF MODERN PROGRAMMING 
TECHNIQUES 

by R. W. Bemer 

This paper formed the basis of a talk given to the 
Society following the Annual General Meeting on 
29 September 1960. 

Introduction 
In the business section of the New York Times there 
often appears an advertisement (not of my own com
pany) for "Research Programmers to work in Macro-
Assembly language development, Heuristic Programming 
and Artificial Intelligence studies, Symbol Manipulation 
and other advanced computer areas." You may have 
seen it Even the lowly Machine Programmers are 
requested to write programs for a variety of large-
scale digital computers in the areas of Scientific Informa-
tion Processing, Natural Language Processing and 

.Information Retrieval Systems." At first this may sound 
Fake somebody has been reading Mr. Potter's books and 
this is merely one-upmanship in the programming area 
but I assure you this is not so. Programming has indeed 
moved to glamorous heights. 

Until about four years ago, programming was a more 
homogenised profession. This was to be expected in a 
relatively new field. However, so were the developments 
outlined in this advertisement. At present we have a 

ST" programmers in the world, certainly 
over 30,000 and the techniques used range from the 
ones described down to the most archaic. It is extremely 
unfortunate that the archaic end is the large end of the 
iceberg-the part under water. This is occasioned by 
the sheer rise in production programming, particularly 
in (but not restricted to) business and scientific applica
tions. The production of generalised systems such as 
the FORTRANS, Flowmatics, various assembly programs 
and rather complete systems like sos for the 709 is a 
very big business. I hope that the end-purpose of this 
talk (and others like it, with published articles on the 
S iiT i M t0 ra'f this Vast body of Programmers 
S doIdrums of outmoded techniques. I realised 

in 950, after my first year with electronic computers 
that the leverage factor between a good and bad pro
grammer, or a good and bad technique, can easily be as 
high as ten or twenty-to-one. In a tricycle factory one 
is Mely to become vice-president for increasing the 

|Output 10% at the same manufacturing cost. In pro
gramming, a 10% betterment of efficiency—that is in 

construction, not running efficiency—is likely to go 
unnoticed. 

I shall try, in this talk, to give a summary of new and 
improved techniques in the programming field. Surveys 
should gather information in one place to enable proper 
perspective for review and weighting of importance 
This survey will be restricted to generalised techniques 
and tools. Applications will not be covered, otherwise 
you might not get home until breakfast tomorrow 
morning. Despite much necessary overlapping, I am 
going to divide this talk into six parts as follows: 

1. The elements of languages 
2. Machine-dependent languages 
3. Machine-independent languages 
4. Analysis languages 
5. Processor techniques 
6. Operating systems. 

Elements of Languages 
When we instruct the computer to do work it is 

analogous to instructing another human being. In both 
cases we use languages. In early attempts the languages 
were at a very crude level and very awkward to use. 
Much of the recent pressure has been to use English as 
the language medium and instruct the machine ̂ almost 
indistinguishably from the instruction of another human. 

have severe doubts as to whether we can or should go 
in this direction alone. One thing is very sure—the 
economic need to more efficiently communicate with 
machines has provided great pressure to re-examine the 
meaning and structure of language. Millions of us use 

Unghsh language quite correctly, or at least as 
correctly as most, by having learned it through example 
and unconscious statistical selection. It may be possible 
that some day we will also teach machines in this way 
but with present machine construction this is likely to 
be very Most of our present approach is 
devoted to teaching languages by a rigorous exposition 
of their form and structure, "a*: 

There are many types of languages, and I don't mean 
Russian, French, or Pakistanian. There are the linear 
languages such as we have in writing or speech. There 
are the two-dimensional languages of tables and lists. 
There are symbol languages, such as flowcharts, and 
these by implication may be in many dimensions. 
There are pictorial languages. All of these have been 
used to communicate with computers. 
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The formation of language symbols is most interesting. 
Most all symbols have recursive, or combining properties. 
For example, the Chinese symbol for "riot" is formed 
of two identical symbols for "woman," with a broken 
line across to indicate a roof. Thus, to any knowledge
able man, two women under one roof indicates a riot. 

Alphabets, however, are far more efficient, and have 
beautifully recursive properties. Except for a few 
vowels, none of the single characters are meaningful 
words in English, disregarding their use as single-
character symbols for mathematics and the like. 
Theoretically—and I say theoretically only because 
George Bernard Shaw would otherwise arise from his 
grave—the characters in groups of one, two and three, 
etc., all have corresponding verbal sounds. These 
verbal sounds are then the analogue representations of 
symbols. However, I am afraid it would be very difficult 
to speak English to an analogue computer. The cost of 
storing symbol . patterns for discrimination would be 
horrendous. 

The digital computer is more fortunate because it can 
use binary bit representations for the elements of 
language. In common usage, bit representations are 
assigned to the letters of the alphabet, decimal digits 
and other useful characters. Using information theory, 
Shannon and others (myself among them) have used bit 
representations for entire words or phrases. However, 
to add new words or names the facility must always 
exist to represent the single characters by unique bit 
combinations. An analogy may be found in the 
representation of numbers by both coded decimal and 
binary notation. The binary notation corresponds to 
the word, since the entire symbol (that is, quantity) is 
represented by a single number, even though that has 
recursive forming elements of 0 and 1. The decimal 
number, or of any other base for that matter, is formed 
recursively by adjoining number symbols instead of 
letters. Let us not overlook the combinations of both 
numbers, letters, and special symbols, useful for part 
numbers and automobile licence numbers. 

If I may speak categorically, the input to and the 
output from a computer is primarily a bit stream. 
Whether or not this bit stream is broken up into bytes, 
of which some bits are delayed in time so that a group 
or byte of bits enters the computer in parallel, is of no 
consequence. The size of such bytes, whether they be 
defined as a single bit byte, the 5-bit Teletype or Baudot 
code, the 6-bit byte of many alphabetic computers, or 
the 8-bit byte of certain new computers and numerically 
controlled machine tools is of consequence only to the 
convenience of the designer and the efficiency of his 
product. I recommend for your study the paper by 
Howard Smith, Jr., of my group, which appeared in the 
August 1960 issue of the COMMUNICATIONS of the ACM, 
entitled "A Short Study of Notation Efficiency." 

Some of you may know that I have been crusading for 
some time in the interest of larger character sets. This 
has met with some success and you may note the IBM 
7030—the production version of the STRETCH computer— 
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accommodates a 256 character set, 8 bits per character. 
The attached printer will print 120 characters, including 
the upper and lower case alphabets, and all the other! 
characters of the reference language of ALGOL. The 
input/output typewriter for the Bendix G20 also handles 
8-bit ALGOL characters. This is of great interest to the 
programmer because he may now identify the unequivocal 
meaning of each character in a string without resorting 
to long programs that make many decisions on contextual 
relationships. 

To say there has been variety in the methods of 
assigning bit combinations to characters is putting it very 
mildly. We have catalogued over 50 different selections. 
This Babel has probably been the prime factor in 
instigating an international standardisation effort in 
data processing. The British Standards Institution has 
been active here for years. In the United States, con
sideration of these problems has been left until recently 
to the various professional and trade organisations. 
However, the X3 Sectional Committee for data pro
cessing has been formed in the American Standards 
Association to straighten out this matter and many 
others at both the national and international level. 
Quite naturally, there is excellent co-operation between 
the British Standards Institution and the American 
Standards Association in these matters. 

In actual practice, the bit representations do not need 
to be identical for interchange of information. The 
basic need is for a uniform collating or ordering sequence 
of characters. There is nothing more vital to the inter
change" of data and programs between computing 
machines than an identical collating sequence. There 
are certain natural collating sequences (Z is higher 
than A, 9 is higher than 0). I know of no reason why 
alphabet should be higher than numbers or numbers 
higher than alphabet other than historical precedent. 
Most of the millions of files produced by data processing 
machines in the United States are ordered with the 
numbers higher than the alphabet. Blank is a character 
in its own right and must be low. Collating sequence is 
an important factor in machine cost. Unless the ascen
ding binary sequence of characters in machine representa
tion is the same as the collating sequence, additional and 
expensive hardware will be needed to compare the keys 
of items to be marshalled or ordered. 

Another basic element in interchangeability is data 
format. In order to be operated upon, data must be 
precisely defined. This definition may be by means of 
the instruction sequence itself, by other stored data, as 
in the control word technique, or by self-definition. 
For the latter purpose, I prefer a numeric subset of the 
4-bit characters that contain the decimal digit 0 through 
9, decimal point, minus, plus, comma, blank, and per
haps a monetary sign, dollars or pounds. In most 
present arithmetic operations the position of the decimal 
or binary point is accommodated by either floating point 
arithmetic or by aligning the implicit decimal point 
within the instruction sequence. This alignment could 
possibly be done automatically with a coincidence-
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matrix detector if the decimal point is an explicit and 
.separate character contained in the data. Some scaling 
pnight still be necessary, of course. Another type of 
instruction/data interaction is that where the data itself 
signals that it is of a special class which may or may not 
alter the instruction sequence. An example of this 
would be the terminator bits in the 7030, which indicate 
the beginning and ending elements of a vector stored 
in memory. /' \tt .r\J 

Although another element of language structure is 
the syntax, I will take that up under some other groupings. 

Machine-Dependent Languages 
As long as we have computing machinery there will 

be a machine language for a particular computer to 
understand. I will not guarantee that the form will stay 
that way it is today, because already 

1. There are fixed word length and variable word length 
machines. 
There are machines that operate on words, machines 
that operate on characters, and machines that operate 
on bit streams. 
There are machines of one command and of more than 
one command in a single instruction, with one, two, 
three, four, and perhaps more addresses in a single 
instruction. 
There are machines with 20 instructions in the machine 
language repertoire and machines with over 500 different 
types of commands available. 

• 5. There are micro-instruction languages with which the 
^ programmer can get at each primitive required in 

fetching the necessary data to perform the operation; 
there are machines which have macro-instructions built 
into the hardware when a high frequency of usage 
indicates enough gain by paralleling the elements of 
execution. Examples of the latter are floating point, 
operations involving index registers, operations of 
indirect addressing and special table instructions such 
as the convert instruction in the IBM 709. 

We may yet see machine languages identical to ALGOL 
or some other presently machine-independent language. 

Expert programmers are well aware of the uncertainty 
in machine languages of the future. One certainty is 
that at the present time the engineers are far outstripping 
the ability of the programmer to use the machine, and 
there is a saturation point beyond which no amount of 
programmers can possibly speed up the writing of a 
program. Certainly more than two or three hundred 
programmers working together constitute a point of 
diminishing returns. We have no recourse as pro
grammers but to go to the machine designer and say 
"help." I am pleased to note that the Atlas machine 
has taken many steps forward in this direction. The 
convenience of numerical symbolic addressing is one of 
the most important features that will reduce translation 
time and programming effort. 

Given a particular machine-dependent language, there 
fere many interesting tricks and techniques which a 
programmer may use, sub-programs for counting the 
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number of 1 s in a binary number, for instance, or 
tricky mathematical sub-routines. Although not exactly 
applications, such techniques are nevertheless also 
excluded from this treatment. Let us leave machine-
dependent languages with only the reservation that 
eventually we have to convert the information we give 
the machine into this form. f\£) PoSS/6 

Machine-Independent Languages 
Machine-independent languages may be divided into 

two groups and I do not mean scientific versus com
mercial languages. This is an entirely different par
titioning. Machine-independent languages are either 
procedure-oriented or problem-oriented. 

There is a great deal of confusion existing between 
these two terms. It is unnecessary confusion because the 
distinction is simple. The procedure-oriented languages 
are available for one to describe how the process is to be 
carried out. With the problem-oriented language one 
needs only state the problem. Heuristic programming 
is of course only the upper stratosphere of problem-
oriented languages. There are many of these in existence 
today, of a simpler nature. As an example, take what 
is miscalled (in the United States) a sort-generator. What 
they really mean is ordering, or, to use the British term, 
marshalling. The input to such a generator would be 
items such as internal memory size, number of tape 
units, suspected bias in the ordering, record size and 
layout for the items to be ordered, preference for 
ordering method, grouping or blocking information, 
and many other items of information or advice. Inherent 
in the sorting generator is the pseudo-intelligence about 
the problem which will, from the intersection of this 
information and certain basic skeletal routines, construct 
an efficient operating program. The programmer may 
have called for a distribution or a sifting sort. He did 
not tell the machine how to accomplish a distribution or 
sifting sort. Had he actually written the program for a 
distribution sort he would probably have done so in 
procedure-oriented language. - -4 . 3- / 

Many of you have undoubtedly noted the metalinguistic 
formulae in which ALGOL 60 is described. This is due to 
John Backus, previously known as the developer of the 
FORTRAN program and language. I trust I may be 
excused for considering this a tremendously more 
important development than FORTRAN. Algebraic lan
guages did exist before FORTRAN—Rutishauser's and 
that of Laning and Zierler at MIT. I believe Brooker's 
work was also simultaneous with FORTRAN. 

This meta-language seems to me a remarkably rigorous 
means of describing a linear or string language. One 
would assume that the process should be recursive 
That is, there should be a meta-meta-language with 
which to describe the meta-language, and so on in depth. 
I have always been convinced that such rigorous forma
tion rules tend to simplify the translation process, just 
as in working at the aircraft factories during the war 
I found that the lower degree of the profile curve, the 
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better the air liked it. I was particularly pleased to 
hear from Peter Ingerman, University of Pennsylvania, 
at an ALGOL discussion during this summer's ACM 
meeting, that they had some difficulty implementing 
non-recursive procedures in ALGOL. When they redefined 
the procedures to be recursive everything was much 
simpler. In other words, a sounder and more generalised 
structure forces the programmer to do things the right 
way. . .. A r -A 

You are by now all familiar with the trend in scientific 
machine-independent languages through FORTRAN, 
UNICODE, Math-matic, Auto Code and such to the 
present state with ALGOL 60. Although by no means 
complete (in fact, I consider it still quite experimental) 
ALGOL is a far superior language to any of its pre
decessors. I know of four related processors for ALGOL 
in Germany; in the United States, processors have been 
written at least for ALGOL-like languages for the Bur
roughs 220, the CDC 1604, and its prototype Countess. 
An ALGOL processor exists for the 709/7090, and ALGOL 
processors are being constructed for many other machines. 
I have enough faith in the eventual future of ALGOL to 
have caused a program to be constructed which converts 
from FORTRAN source language into a rather stupid 
ALGOL. 1 have been asked many times why we did not 
make it translate from ALGOL to FORTRAN SO that the 
existing processors could be utilised. The answer has 
always been that we wish to obsolete FORTRAN and 
scrap it, not perpetuate it. Its purpose has been 
served. « CtfOlC 

A similar revolution is now taking place in the area 
of business languages. Under the sponsorship of the 
US Department of Defence there has been formed the 
Conference on Data Systems Languages (CODASYL). 
Although this conference has other long-range aims, its 
initial and most urgent purpose was to synthesise, from 
the existing business languages such as Flowmatic, 
Aimaco, and Commercial Translator, a somewhat 
universal language in the spirit of ALGOL. 

This language, COBOL, is nearly complete in its defini
tion. Its construction was beset with many more 
difficulties even than ALGOL. For one thing it had to 
handle almost all the features and classes of problems 
that ALGOL does in addition to many others. Let there 
be no mistake about it—business and commercial 
problems are vastly more difficult of solution than are 
scientific problems, at least in their translation to machine 
operation. The scientists and mathematicians, in con
structing ALGOL, drew upon a workable language of 
mathematics that has been in existence for hundreds of 
years. Their new contribution was the reduction of the 
verbiage that the mathematician normally finds between 
the formulae to algorithmic form in a more concise 
notation. On the contrary, business practice has 
differed wildly. 

The constructors of the COBOL language were beset by 
many new problems and I fear that in their initial attempt 
they ignored the rigour and syntactic beauty that a 
definition by meta-language would have gained them. 

There has been a general resistance on the part of IBM 
and myself to the willy-nilly adoption of COBOL in its^^ 
original form. We knew what was wrong with it and^^ 
tried to say so in the manner of elder statesmen. I am 
pleased to say that nearly all these basic flaws have now 
been removed. IBM is committed to produce COBOL 
processors for many of its computers on the assumption 
that the official form of the language will be revised no 
oftener than once a year. Practically all major producers 
of computing equipment in the United States are com
mitted to COBOL processors for their machines. 

One might now ask if ALGOL and COBOL are the end. 
I must say no, for part of the work the American 
Standards Association set up under its X3 Committee is 
a project for common programming languages. I suspect 
there will be those who walk into the X3-4 Sub-
Committee and expect to find ALGOL adopted as a 
standard. I expect the same may be true for the COBOL 
proponents. Having played the scientific against the 
commercial and vice versa, Saul Gorn and I have reason 
to believe that this is the very lever needed to force a 
fusion into a single language for both scientific and 
commercial work. 

If machine-independent languages are to be standard, 
they must be standardised according to a set of rules 
of graduated stringency. Adoption of a particular 
existing language as a standard would be fallacious. 
For one thing, a standard requirement should be that 
the language be expressible in the meta-language of 
Backus or some other development of this nature. For^^ 
another, all languages should be clearly partitioned.^^ 
The commercial languages are now in three parts, 
reminiscent of Gaul (!); namely, procedure, data 
description, and environment, ALGOL does not have 
separate data description because it operates only upon 
floating-point variables or fixed-point variables with 
rigid rounding and truncation principles not suitable to 
business, ALGOL does not have an environment section, 
and it could certainly use it. 

I further suspect within a period of two years a fourth 
section will be broken out of the language, a section 
exclusively reserved for time-dependencies and relation
ships. At present we are writing too much procedure 
into our problem solutions. Combinatorially, there are 
many different ways of constructing a flowchart to do 
the same problem. The variations are limited only by 
the time-dependencies. That is, A must be computed 
before B, because A is an input to the computation of B. 
If, for example, both A and B are input to C, it may not 
matter to the programmer whether A or B is computed 
first, but depending upon certain frequency information 
and other knowledge the compiling routine can well 
make this decision. 

We can look to see (within perhaps two years) an 
international machine-independent language of the 
procedure-oriented type which will be suitable for both 
scientific and commercial work and will be heavily 
partitioned into organisational entities for the reduction 
of programmer effort. The processors which accomplish 
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the translation of this language to machine language will 
be required to be extremely clever and intelligent. 

The problem-oriented languages are an upcoming and 
useful class. In this group we have sort generators (as 
mentioned before), report generators, file maintenance 
and updating generators, and table generators. All of 
these are very highly specialised towards certain frequent 
and recurring classes of operation. The investiture of 
the necessary and requisite intelligence into the program 
is economically justified by the frequency of need. 

Let us take the report generator for an example. Input 
to such a program would be a description of the physical 
layout of the file, its component structure and the detail 
structure of these components. The semi-pictorial 
layout of the output is also required, with indications 
given of the pagination, margin, number of lines, 
grouping, spacing, indentation, etc. For a typical 
report the headings are lettered in exactly as they are 
to be produced from a typing element in the proper 
column and row. The working information is laid out 
exactly as it is desired to be seen with proper decimalisa
tion and auxiliary characters. (Some means of relating 
this output to the structure of the input file is also 
necessary.) The cyclical characteristics of data must be 
specified. It takes a good deal of programming effort 
to write a good report generator, but there is an extreme 
pay-off when you invite the vice-president down and 
hand him an input sheet and say, "Make up your own 
report." He is shown the simple rules, the information 
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is key-punched and fed to the machine with the working 
file, and the report comes out in a matter of two or three 
minutes exactly as that vice-president specified it. It is 
remarkable how much support a computing installation 
can get that way. 

To finish with machine-independent languages, I 
should like to emphasise the importance of jargons, 
and what they do for us. When one considers, for 
example, the jargons (or dialects) of ALGOL such as 
NELIAC, CLIP, JOVIAL, MAD, etc., it can be seen that the 
external appearance of the language is quite a bit a 
matter of taste, ALGOL reflects certain distinct choices 
in a matter of exterior form. It has been noted by Julian 
Green in his work with ALGOL processors that there 
appears to be a rather rigorous sub-language created 
from the scan of a string language. This appears to be 
common regardless of the jargon used. Remarkably 
enough, it appears to have the quality of Polish Notation 
with an alternating sequence of operator, operand, 
operator, operand, etc. This does seem at first to give 
support to those that prefer Polish notation as the 
human programming language, as in ADES II and the 
APT programming language. The group that it actually 
supports is that which would like to see a specialised 
jargon for each field of computational need. Mike 
Barnett, for instance, carries this one step further with 
his so-called "Macro-directives," which are highly 
specialised jargons for a particular field. These are 

•
translated into an intermediate language such as FORTRAN 
or ALGOL and then processed into machine language. 

Brooker has been particularly keen on this, as evidenced 
by his paper on a self-defined phase-structure language. 
It would seem that the computer is versatile enough to 
take specifications of language structure and construct 
its own rules for translation to the sub-language. Of 
course, this is directly related to the problem of transla
tion of natural human languages. 

Analysis Languages 
This is a subject I can touch on only briefly because 

the field is actually in its infancy, but basically the 
analysis language should provide the tools to describe 
the operation of a total system. These are the languages 
we may expect our systems and procedures analysts of 
the future to use in describing their problems. There 
are prerequisites to successful language of this type. 
Among them are more rigorous methods of describing 
data organisation and set membership. I imagine they 
will be much more pictorial, being two- and perhaps 
three-dimensional. Examples of tabular languages are 
already in existence, developed by Hunt Foods and by 
General Electric. In the simplest form the dividing lines 
between the columns and rows represent and/or con
ditions. The resulting procedure or operation is 
described in a column following a double rule. In 
reality much of this is simply making Boolean algebra 
more palatable to the user by transformation of the 
language to a form more compatible with his previous 
experience. The development committee of CODASYL is 
extremely concerned with this problem. They point 
out, and rightly so, that actual programming is often a 
rather small part the entire analysis problem of today. 

Processor Techniques 
Two years ago programming was rather in the dol

drums. It seemed then that the twenty-five to forty-five 
man-years necessary to write a major processor were 
supportable only by manufacturers. Users and univer
sities rebelled at this and so did the manufacturers 
because of the heavy programming costs. Now we find 
universities that can write with two man-years of effort 
better and more sophisticated processors than those 
which would have required twenty-five man-years as late 
as 1958. I ascribe this in large part to the development 
of symbol manipulation techniques. 

At an ACM Council meeting a year ago, John Carr 
was rather perturbed by criticism of ALGOL since he had 
a large hand in the formation of the effort, and asked 
"Can anyone tell me just what is wrong with ALGOL?" 
It fell to me to answer the question and I said, "Simple. 
It's not a data processing language." In short, ALGOL 
could not be written in ALGOL. Assembly programs can 
be written in their own language; why not machine-
independent languages? To answer that this is 
theoretically impossible is wrong. Symbol manipulation 
is the link. When you are going to ship a language with 
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its translator out to face the world so that it can do 
virtually any problem, you might as well consider one of 
the most general of these problems. This is the problem 
of translating from itself to a machine language. In fact, 
this is the acid test. 

When ALGOL came into being as ALGOL 58, we were 
already embarked upon a language called XTRAN, 
designed to supplant FORTRAN. Indeed many of the 
characteristics of ALGOL were born in XTRAN. I asked 
Julian Green to run an effort to make an experimental 
processor for ALGOL. He was given only two rules: 

1. Nobody that ever worked on a FORTRAN processor was 
to be associated with the project for fear of prejudice. 

2. The processor was to be extremely flexible to accom
modate expected changes in ALGOL. 

The result of this is an experimental processor still 
carrying the name XTRAN but capable of providing as 
many different varieties of ALGOL as one needs. The 
reason for this is that XTRAN is written in its own 
language. Symbol manipulation elements have been 
added. Another successful project of this kind in the 
United States was undertaken at the System Development 
Corporation with the languages CLIP and JOVIAL. 

As I said in my introduction, most production pro
grammers are unaware of such techniques. The problem 
is how to convince them to utilise these new techniques. 
One possible answer lies in a course on compiler con
struction just given for the first time. This course lasts 
one week. The first two days are devoted to a special 
language for symbol manipulation. During the next 
three days each student writes a complete compiler in 
this symbol manipulation language and actually checks 
it out on a machine, in this case the 705. The compiler 
is a very simple one, and they do not write anything for 
recursive procedures. Yet it is complete, it works, and 
is written inside of one week. 

Perhaps the second greatest contribution to the 
programming art in recent years is something we wanted 
very much to do one or two years ago and only recently 
discovered how. This is bootstrapping. (I hope the 
term has the connotation in the United Kingdom as it 
does in the United States.) In any event, it means to use 
every possible facility that you have constructed so far 
in the construction of any new facility. This is not 
limited to a single machine but may also be extended to 
moving processors from one machine to another. The 
most difficult part of bootstrapping is to get that small 
initial handhold. Normally this starts with hand
writing of an origin feature, the assembly of a few 
instructions, a decoding table for operations and 
addresses, an assignment feature to actual addresses 
and a few other such functions. With these facilities 
one starts to program and moves slowly in an ever-
widening circle. 

This is the classical method. It was not good enough 
for Bob Shapiro of the XTRAN project. Shapiro came 
from the University of Chicago and was not bound by 
what any other programmer had ever done. He decided 
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that the first tool he needed was a scan to break apart 
and analyse the elements of the input language. How
ever, he felt that one of the things the scan ought to be{ 
able to do was scan itself. So Shapiro wrote what he 
thought the scan ought to be and then he played machine, 
imagining the scan scanning the scan. As he did so, 
he wrote down the machine instructions that he thought 
the machine should produce in so doing. He then 
entered these same machine instructions in the computer 
and actually fed the scan through the program. In fact, 
again scanning the scan. This process produced a 
program for scanning which at first, of course, was not 
quite the same as that Shapiro had written. He kept at 
it until the output program in the machine was identical 
to the program that actually had scanned it. With this 
he completed his first major bootstrap and saved an 
enormous amount of work. 

Bootstrapping is, however, a more useful device in 
modest present-day systems. As an example, we were 
required to produce a processor for a new machine, 
the 7070. There was a choice between starting from 
scratch or doing a wasteful job of writing a single 
translator on another machine—in this case the 705. 
After some initial opposition I persuaded the production 
people to write a program in 705 Autocoder which per
formed the translation from 7070 Autocoder to 7070 
machine language. After all, this is a production 
problem one might be expected to encounter with such 
a generalised program. The 7070 processor (that is, the 
processor which would actually run on the 7070) was 
then written in the full-blown language, taking advantage' 
of every feature available. This was then processed 
(virtually once and once only) on the 705 to produce a 
processor which would actually work on the 7070. 

The elapsed real time in thus producing the program 
was greatly reduced, which is very desirable in these 
days of automatic design and production of machines. 
We received a bonus we hadn't quite counted on, actually. 
Now we have one 705 running around the clock, doing 
nothing but assembling 7070 programs for customers 
that do not yet have their machines. 

XTRAN as an experimental processor has changed form 
many times, but the basic transformation from inde
pendent language to machine language has remained 
the same. One starts with the scan which produces 
macro instructions, possibly of a three address nature 
and quite independent of data configuration. The next 
step converts these macros to other macro instructions 
which are data-dependent. For instance, in the original 
macros we may have been attempting to add a fixed 
point number to a floating point number or perhaps 
two fixed point numbers that required decimal alignment, 
which was not necessary to consider at that time. The 
next transformation was either to symbolic machine 
language or direct to machine language through 
generators. Anatole Holt uses a diagram for this 
process that 1 like very much. It is a simple parallelo
gram which is completely below the base line. This( 

base line represents a dividing position between machine-
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independent and machine-dependent characteristics. 

•

Holt's diagram shows that the transformation is a 
gradual one through many steps. At each stage there 
must be a mapping from one form to the other so that 
no information is lost. 

I think this is a good time to dispel the UNCOL myth 
(Universal Computer Oriented Language.) According 
to its proponents, all machine-independent languages 
would translate into UNCOL and UNCOL would be trans
lated to all different machine languages. Apart from 
the fact that UNCOL has been demonstrated, through the 
success of CLIP and XTRAN, to be unnecessary, there are 
certain technical reasons why it cannot exist—excluding 
if you will the Turing machine. Since UNCOL must 
comprise the set of all possible machine level operations, 
it is likely to get outmoded as soon as someone develops 
a new one. For example, I wonder whether the UNCOL 
would have included the look-ahead feature of STRETCH 
if they had designed it five years ago? Then, too, it 
would seem that to be acceptable to all machines UNCOL 
would have to translate into the lowest common 
denominator among all classes of machines and thus the 
efficiency on each and every object machine would be 
minimal. I am afraid that as it is presently proposed, 
UNCOL is a miss, or myth. 

To my mind there is an intermediate language form 
which will serve this same purpose. The only real 
difference between machine-independent and machine-
dependent languages is that they have different con-

^^structions reflecting the different organisation of the 
^Riuman mind and the computer mind. To go from one 

to the other there must be an orderly transmutation of 
information. I submit that tables and lists can easily be 
the common denominator for this purpose. Several 
powerful list processors have already been constructed— 
LISP of McCarthy and Mealy, and the Newell-Simon-
Shaw processors. There are indications from the realm 
of information storage and retrieval that the day of the 
list processor has just begun. The ability of various 
trees to reference recursively both backward and for
ward on many program levels indicates that they are 
powerful enough to perform the stated function of 
UNCOL as an intermediate form. As an example, the 
XTRAN scan decomposes the string continuously into a 
matrix. The semicolon as a statement separator is 
never treated differently from any other character. 
As a result, arithmetic computations may be optimised 
over whole sections of the program with redundancies 
removed. Consider it this way—if one makes a list 
inside the processor of all the variables that ever have 
an addition operation performed upon them, it will be 
detectable that B + A is the same as A + B. All that 
is required is an ordered list and a search for duplicates. 

The translation from a machine-independent to a 
machine-dependent language raises some interesting 
speculation. There are two courses open today. One 
involves translation from the machine-independent 
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language to an intermediate assembly language in 
machine-like form, with the operators and operands 

given mnemonic English equivalents. A separate 
assembly operation then converts this form to machine 
language. The other alternative is direct generation of 
machine code. The latter is not enjoying much favour 
these days. I suspect it will in the future. The pro
ponents of the double step process tell us that machine-
independent languages cannot presently state every type 
of problem, whereas assembly languages can. Therefore, 
correct machine code in assembly form may be adjoined 
with the output of the first translation and all translated 
by the assembly program. This is a safe way to play it, 
and for today perhaps the most practical for production 
programming. It is predicated on the assembly and 
translation processes being long and tedious, such that 
one could not afford to start over from scratch each time 
an error is caught or a change made. Direct generation, 
on the other hand, is based on the principle of recom-
pilation from the beginning each time, although perhaps 
certain tables of correspondence may be saved. By 
avoiding the intermediate assembly language step much 
duplication is avoided and the running program may 
physically replace the source program in memory. 

Another important technique in today's processors is 
that of flow optimisation. It is well known that there 
are more devious ways of going to a point four blocks 
down the street than by walking to it directly. The 
average programmer left to his own devices is too likely 
to take many of these detours. The route is best left to 
the intelligent processor. Perhaps the most complicated 
section in the various FORTRAN processors is that for 
flow optimisation through the use of predecessor and 
successor logic. As you know, the programmer has the 
option of specifying expected frequency of taking various 
possible paths at branch points as override information. 
The processor takes as much of this information as the 
programmer gives it and constructs a rough test program. 
Test values of the variables are generated randomly and 
the test program is exercised with these values to deter
mine any unknown branch frequencies. With this 
information the program is then reconstructed to 
optimise the flow such that the most used paths through 
the program take the shortest time. Of course, if this 
penalises greatly a slightly less used path, a different 
choice must be made. Similar to the transportation 
problem, this technique is in effect a prior optimisation 
of the program. 

Many post-optimisations have been tried with success. 
This is particularly necessary when we go to macro-
instructions to decompose a string language. Normally 
the macro-instruction generators do not talk to one 
another. It may well be that the generation of two 
successive macro-instructions will engender some 
extraneous commands—multiple store, for example. 
Other crude rules for optimisation and modification of 
a program after it has been created fully have been 
developed. 

As one who was brought up on interpretive programs 
in the early years, it amuses me to see that the compiler 
is not the last word. To compile implies that you know 



134 

everything about the program beforehand and all the 
external characteristics and conditions. In today's 
multiple processing systems this is definitely not so. 
Many hardware assignments must be made on-line 
during actual running. Furthermore, an interpreter is 
often a more compact form of instruction, whereas a 
compiler might generate as many as a hundred different 
ways of doing something, all of which must be main
tained in memory in case their particular call should 
occur. The interpreter effectively generates the proper 
coding upon demand. The former reason for the 
unpopularity of interpretive programs was the length of 
time required for the fetch and interpretation cycles. 
With proper hardware design, such as that of ATLAS, 
this is not necessarily a problem. 

The interpreter also comes into its own when there is 
a difference in balance between computational equipment 
and printing and editing equipment. As a case in point, 
take a 7090 and a 1401. The 1401 is a small machine 
with big off-line editing and printing characteristics. To 
asynchronously operate such equipment on-line with a 
large machine in a multi-program fashion would require 
much control information and prior editing. In this 
case all the 1401 would do would be printing. We have 
determined that it is very effective for the large machine 
to construct an interpretive control language as its 
output, together with the resulting data. The 1401 is 
nicely able to interpret these control and editing instruc
tions with no loss of printing speed. 

A problem of recent interest is the naming facility in 
processors. I know the English have laughed at some 
of the three- to five-letter names one encounters in 
American programming systems. I admit this is quite 
unnecessary and I apologise. The possible names one 
could use of any number of characters form a very sparse 
set. It is very expensive to carry around character by 
character representations in the compiling and trans
lating process. These names are meaningful only to the 
programmer. They may be exchanged for compact 
binary representations for use in machine processing. 
A double list of these relationships is maintained for 
availability whenever output is required. 

The problem of locating files by their names is related 
to this. With random access memory it is cheaper and 
more convenient to transform the name into a unique 
address which locates the related file rather than perform 
a special table search for the name and find the associated 
address. Lists come into their own here, and chaining 
techniques have been developed. That is, one converts 
the numeric representation of the name into a more 
compact number. In the address given by this number 
one should find the original name to serve as verification. 
If not, a chaining address is also given for the next try. 
The need for this is occasioned because the conversion 
algorithms sometimes produce duplicates in a more 
dense set. However, the expenditure of search time is 
far, far less than that for binary search. On typical files 
where 20% of the total files get 80% of the activity, the 
average number of searches made in a fully packed file 
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has been determined as 1-12. Operating in this fashion 
is also good practice for the days of associative memory.. 

It was a combination of this chaining technique, th4 
work of Shannon, and zero-compression techniques that 
led to the development of "Digital Shorthand" as a 
communications code. With computers on each end 
of a communications line, rather than the simple ter
minal equipments of today, we can transmit three times 
the volume of formatted text in compressed form, 
decompressing it at the receiving end. Facsimile may 
be sent at a saving of 4 to 1. This method promises 
large savings over expensive communications linkages 
such as Atlantic cables and satellites. An experimental 
7090 program indicates that, with full utilisation, the 
cost of both sending and receiving computers is about 
0 006 pence per word. Contrast this with Is. 6d. per 
word day rate, London to New York, or 9d. night 
rates. This scheme will handle the full English dictionary 
at an average of 10-7 bits per word. 

I have briefly touched on some of fee more salient 
features and techniques that make large gains in both 
the writing of processors and the running of the programs 
they produce. Now to move to my final topic, the one 
probably dearest to my heart, that of operating systems. 

Operating Systems id 
There has been a steady trend away from the com

bined human-machine operation and toward fully auto
matic machine-controlled operation. There is no doub^^ 
but what the vast increases in machine speed have forcec^^ 
this, but it would have been a desirable development 
even if speeds had remained the same. The first large 
automatic operating system, developed at General Motors 
for the 704, doubled the working efficiency of that 
machine. 

One of the most important components of an operating 
system is the iocs, which stands for Input/Output Control 
System. The proper scheduling of Input/Output is a 
far more difficult matter than writing the procedure. 
With iocs we see new verbs introduced such as GET, 
PUT, INTERLOCK, OPEN and CLOSE FILE. All of these are 
compound instructions generated for maximum efficiency 
in feeding data to the operating procedures for producing 
answers. 

Obviously a complex system of this nature has many 
levels of operation. Control must exist through 
hierarchies of overrides and limits. All component 
functions must be organised as subroutines eventually 
called by the topmost level of control. Since the 
scheduling function is one of these components there 
must be access to all machine states by interrogation or 
trapping. If trapping is used it must be capable of 
being disabled and enabled by the control program. 

The scheduling function may be primitive or very 
complex. A good deal of development is being done by 
Codd and Held in the United States. Until a radical 
change in machine design, however, I am inclined 
favour the primitive approach for a sensible profit 
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too many experimental scheduling programs now take 
up more time in making the decision than the machine 

^ftime they gain. 
Assignment of operating units must not be made in 

the program proper. This is left to the operating system, 
which makes real time assignment according to what it 
has available soonest. For a tape unit, for example, 
this is probably the first unit the previous running 
program has relinquished. The programmer must in 
general refer to physical units by abstract names. This 
may be carried to the point of random loading of tape 
Units. At the beginning of each problem the control 
program reads the labels on each tape unit to find out 
what exists there. It may also interrogate memory to 
find out how much is available and adjust the program 
accordingly for more efficiency. Self-adjustment to 
machine configuration is not costly for such a powerful 
device. 

We would expect the program in the original language 
to be stored somewhere for ready access. Self-repair of 
programs may be effected by returning to the more 
compact source form. This is connected to the self-
repair of the machine itself. A diagnostic program con
tained in the operating system may be called upon to 
test for faulty machine elements. Upon discovery, a 
message would be typed out to the service man, but 
rather than halt operations, either the current program 
would be readjusted by partial recompilation to avoid 
the faulty area, or another program might be started 

•

which did not require it. 
) Experiments indicate the possibility of successful 
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diagnosis on a time-shared basis. This enables the 
programmer to essentially talk to the machine in real 
time at his convenience) Of course, all diagnosis is done 
and results obtained in the machine-independent 
language the program was originally written in. 

Once a self-operating system is postulated and begun, 
no matter how primitively, we are on the way to remote 
shared operation of very large machines. The graphs 
of problems per monetary unit always show remarkable 
decreases when the machine gets larger and faster. I 
have long envisioned computers larger than STRETCH 
acting as large service and message centres. Because 
they must be tied in with communications networks for 
this purpose, they are automatically available for message 
control and forwarding, text and facsimile compression 
to high efficiency and low cost, and a variety of related 
functions. Certainly the very organisation in this 
manner will more than amortise the cost of the computers. 

This concept would indicate that vast files of read-only 
memory will be an important requirement for the future. 
Even program instructions may be largely fixed and 
unalterable. Old-time programmers remember a lot of 
instruction modification, but how much do you need 
now with index registers, indirect addressing to many 
levels and symbolic addressing? I would venture to say 
that less than 10% of our program instructions ever get 
modified now, and the percentage will become much less. 

I thank you for this wonderful opportunity to address 
you, and if you think that I have been talking too much 
"futures," read a copy of this talk three years from now 
and see how old-fashioned the ideas are. 

UN WIN BROTHERS LIMITED, WOKING AND LONDON 
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Editor 

l have seen a number of subroutines lately for the com
putation of transcendental functions. To a routine, the 

<rc of the argument is at least as high as ir/4. Nobody 
vnrs to use tables to break up the range, nor do they 

make use of trigonometric identities. 
I remember very well the day A1 Podvin's sine-cosine 

routine for the 650 ran faster than mine because he had 
used the formula for sine 30. For the information ot sub
routine planners who have not investigated this tech
nique, Table I gives some alternate expressions for the 
computation of sine and cosine of nd. The clever program
mer will now see how he can trade off extra computation 
here for reduction in the size of the approximating poly
nomials due to reduced range. Telescoping the coefficients 
is also advisable. 

I believe tricks like this will be highly efficient because 
of the large proportion of applications which demand the 
computation of both sine'and cosine; theodolite data re
duction, for example. For binary machine users, it may be 
of interest to notice how many of the coefficients 111 Table 
I are susceptible to shifting techniques for multiplication. 

Let me anticipate the reader's complaint that 6 must 
be computed with more precision. Do not divide the 
argument, nd, by n, but rather multiply by the reciprocal 
of n. This leads to another interesting (and apparently 
little known) characteristic of binary machines The 
reciprocals of all decimal integers are of course repeating 

fractions, whether expressed in decimal or binary. How-
^P/er, certain of these integers have the property that the 

's Note 
binary repeating cycle is very short. Table II is therefore 
of interest. The quantity enclosed in parentheses repeats 
continuously. 

The alert programmer will now see ways to perform 
certain multiple-precision divisions by integeis in less 
timethan the standard machine instructions would take, 
by taking advantage of masking and shift instructions. 

R. )\. B. 

TABLE I. Formulae for calculating sin »9. cos nd 

Sin Bn 

s 

2 SC 

3S - IS3 

S(3 - 4Sh 
sue - 1) 

4SC(l - 2.S-) 
4SC(2C* - 1) 
4SC(C - S-) 

Cos nd 

5S - 20S3 + ICS5 

S(5 - 20S! 4- ICS1) 
S(1 - 12C1 4- ICC4) 
S (4 (™  +  A, ) ( 4C S  +  K t )  

TABLE II. Binary reciprocals of some small decimal integers 

-Vi-c 1/iV Binary Ade l/.Y Binary Adrc l/.V Binary 

1 
2 
3 
4 
5 
6 
7 
8 
{» 

10 
11 
12 
13 
14 
15 
16 
17 
18 
10 
20 
21 
22 
23 
24 

> 35 

.1(0) 

. ( 0 1 )  

.01(0) 

.(0011) 

.0(01) 

.(001) 
.001(0) 
.(00C111) 
.0(0011) 
.(0001011101) 
.00(01) 
.(000100111011) 
.0(001) 
.(0001) 
.0001(0) 
. (00001111) 
.0(000111) 

.00(0011) 

.(000011) 

.0(0001011101) 

.(00001011001) 

.000(01) 

20 
27 
28 
29 
30 
31 
32 
33 
34 
35 
30 
37 
38 
39 
40 
41 
42 
43 
44 
45 
40 
47 
48 
49 
50 

.0(000100111011) 

.00(001) 

.0(0001) 

.(00001) 
.00001(0) 
.(OOCOOlllll) 
.0(00001111) 
.(00000111C1C1) 
.00(000111) 

.(0000C1101001) 

.000(0011) 

.0(000011) 

.(00000101111101) 

.00(0001011101) 

.(000001011011) 
. 0 (00001011001) 

.0000(01' 

51 
52 
53 
54 
55 
56 

58 
59 
60 
61 
62 
63 
64 
65 
66 

68 
69 
70 
71 
72 
73 
74 
75 

.(00000101) 

.000(001) 

.00(0001) 

.0(0001)1) 

. (000001) 

.000001(0) 

.(000000111111) 

.0(0000011111) 

.00(00001111) 

.000(000111) 

.(000000111) 

c* - s-
1 - 2 S3 

2C3 - 1 

4CS - 3C 
— C(3 - 4C-) 
-C(4S3 - 1) 

4(S4 4- C4) - 3 
1 _ 8C2 4- 8C4 

1 - 8S* 4- 8S4 

1 - 8C!S2 

oC - 20C» 4- 16C3 

C(5 - 20C + ICC'4) 
C(1 - 12S2 + ICS4) 
C ( 4 C 5  4 -  A , )  ( 4  C 3  4 - A , .  

Ade 

76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
£3 
94 
95 
96 
97 
98 
99 

100 

1 .V Binary 

.0000(0011 

.00(000011' 

. (OOOOU)ll 

.00000(01) 
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1973 June 14 

Mr. J .  Robert Logan 
Data Systems Division 
Litton Systems, Inc. 
Van Nuys, CA 

Dear Mr. Logan: 

For historical interest,  in connection with your article "Designing 
a Binary Reciprocator",  in the 1973 May issue of Computer Design, 
I  attach a copy of my Editor 's Note in the 1961 April  issue of the 
Communications of the ACM. My Table II  shows the reciprocals of 
your Table I ,  except that the repeating element 1s also indicated. 

I s n ' t  i t  s t r a n g e  t h a t  t h e s e  t h i n g s  g e t  l o s t  w h e n  n e w  t e c h n o l o g i e s  
come along? I am pleased that you have resurrected this usage after 
twelve years.  

Sincerely yours,  

n 

cc: Sydney Shapiro, Managing Editor 

R. W. Bemer 



Standards 
EDITOR'S NOTE 

This paper <>«cribes^ 7n Characte^L^andTnput/Output 

MedS?TheX35 Subcommittee is now quite 

opinion, will probably recommcnda ^ although it may differ in some de-
similar in principle to the one desc amount of effort 
tails. Because of the urgency of th.s work and }t u presented 

which has already gone into the deve °P™e" f the aCM membership 

here, informally, for the lhc ACM Standards Com-

^ —S a"d ^ DePartmCnt 

will welcome your comments. 

Design of an Improved* 
Transmission/Data Processing Code 

i. W. BEMER, H. J. SMITH, JR., F. A. WILLIAMS, JR. 

B M  C o r p . ,  W h i l e  P l a i n s ,  N . Y .  

Historically there has been strong difference of opinion 
n the construction of 6-bit (64-charaeter) data codes, 
->ased upon whether the code is to be used for communica
tions or data processing. This paper reports on mvest.ga-
tion of an improved code which meets transmission re
quirements and requires very little modification for varied 

data processing usage. _ 
It has been evident from the workings of the ASA 

Subcommittee X3.2 that the transmission people are not 
as adaptable to modifications as the data processing peop . 
This is simply a matter of inflexibility of existmg serm-
mechanical communications equipment compared to the 
general-purpose nature of electronic data processing equip-

m<The major obstacle lies in the collating, or ranking, 
sequence of the characters of the set. It is true that a 
large proportion of the ordered files of today are sequenced 
on numeric keys alone. However, a substantial proportion 
of these files are ordered on keys which contain alphabetic 
and special punctuation characters. If a standard cod 
changes the relative ranking of such characters the Pres" 
entlv ordered files will all have to be fully reordered to the 
new sequence, a process requiring a greatexpenditure of 
machine time. Transformation of one bit representat o 
to another is relatively simple when the sequenc g 
property is ignored. However, one should try to guarantee 
that the files are still in proper order after such conversion 

* Revision, 15 Mar. 1961. 
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There are three inputs to the collating problem : 
(1) The most prevalent ranking in the U.b. is 

established by IBM equipment, particularly the <0o. n 
order are the blank, special characters, the alphabet, t 
digits. The critical point here is that the digits arehighe 
than the alphabet, for whatever reason. The United King 
dom and certain other U.S. manufacturers (Sperry Rand 
and RCA) rank the digits lower than the alphabet. ^ 

(2) The desire of communications people, as nrs 
evidenced by Fieldata [2, 3, 4], is to have the 6-bit set 
collapsible to a 5-bit Baudot-type set with effective y the 
same characters. This is to utilize existing Baudot-Teletype 

equipment with simple modification. 
(3) Certain punctuation characters, by universally 

accepted practice, should collate low to alphabets digits, 
and other special characters. For example, the following 

two names would normally be ordered. 
Roberts, A. B. 
Robertson, X. 

whereas the Fieldata code, because the comma ranks 
higher than the alphabet, would yield an ordering: 

Robertson, X. 
Roberts, A. B. 

Expansion and contraction between any of the 4-, 5-, 6-, 
7- and 8-bit code sets demand a certain uniformity and 
simplicity. Thus the alphabet should be reserved to two 
contiguous quadrants of the four quadrants of the 6-bit 
set. The choice now appears as in Figure A. 



(TYPIFIED BY) 

Bendix G-20, GAMMA 60 
Fieldata 
IBM Stretch 
U.K. [5] 

Quadrant 
3 

Alphabet 
Alphabet 
Blank, special 
Blank, special 

Alphabet 
Alphabet 
Alphabet 
Digits 
FIG. A 

Digits 
Special 
Alphabet 
Alphabet 

Special 
Digits, special 
Digits 
Alphabet 

In the opinion of the authors neither the Fieldata code 
nor the U.K. code meet the criterion for 5-bit Baudot-like 
operation completely, even though that was one of the 
major design requirements. A Baudot type of code is 
formed essentially as follows: 

Letters 

Digits and special 
Control 

32 5-bit combinations 

In any 2-mode code for paper tape, three of the control 
codes, DELETE, FIGURE SHIFT and LETTER SHIFT, must in
variably be common to both shifts, DELETE must be all 
l's (all punched on paper tape) and MASTER SPACE must be 
all O's (unpunched tape), MASTER SPACE, BLANK, and 
ESCAPE preferably appear in both shifts. Such controls as 
LINE FEED, CARRIAGE RETURN need appear in only one 
shift, but operation is more complicated. 

Some of these functions may be combined in a single 
code combination, DELETE/LETTER SHIFT is a single code 
in Baudot, FIGURE SHIFT is synonymous with one of the 
three functions possible to ESCAPE. [6] 

Since DL, FS and LS must be common to both modes, 
Fieldata loses the Y and Z of the alphabet and the - and 
+ characters in the collapsed 5-bit mode. This is not 
tolerable because some words are spelled using Y and Z. 
Similarly, the U.K. code loses the letters F and G and the 
symbols . and —. The code developed in this paper is very 
similar to both of these codes but removes these major 
flaws. 

All of the criteria of the Fieldata study are used here. 
The full spectrum of expansion and contraction among 
4-, 5-, 6-, 7- and 8-bit sets is considered in addition. Thus 
there are the following additional criteria and remarks: 
1. A collating sequence has utility in data processing 

codes containing alphabets; transmission codes do 
not require such a sequence. 

2. A collating sequence has no utility in a 4-bit set. 
3. A collating sequence has utility in 5- and 6-bit sets 

and it is desirable that the sequence correspond to the 
binary representations. 

4. If it is assumed that the 7- and 8-bit sets contain upper 
and lower case forms of the same alphabet, it is im
possible to have the collating sequence match the 
binary representations, for the case distinction is of 
lesser significance than the distinction between charac
ters with different meanings. [7, 8] 

5. It is not necessary that the full 4-bit set be in 16 
contiguous positions in larger sets. It is only necessary 

that the lowest four bit positions form the dense, un-
duplicated set. Other bit positions may vary. However, 
the digits 0-9 (10, 11) should be certainly be grouped 
contiguously in any set. 

6. Punctuation characters have natural delimiting 
functions and should thus collate low to both the 
alphabet and digits. These include, but are not limited 
to: 

blank . , / — : ; ' ( ) (not in ranked order) 
7. Since period and hyphen are natural delimiters, they 

should be placed low to both alphabets and digits. 
However, they often serve as radix point and minus 
sign (which are not delimiters) in the 4-bit numeric 
set. There must also be a character in this set to serve 
as a blank; this may or may not print in the 4-bit 
numeric mode. Therefore any characters of the 4-bit 
set which are delimiters should be in a different con
tiguous block than the digits, so they can serve the 
delimiting function in larger sets. There should be 
some regular transformation to append bits when 
expanding to larger sets. 

8. All expansion and contraction from and to the various 
set sizes shall be blind, without knowledge of the 
meaning of the character assigned to any bit repre
sentation, or of contextual adjacency (with the excep
tion of FIGURE/LETTER SHIFT control in going between 
5- and 6-bit sets). 

9. In all expansion and contraction, MASTER SPACE must 
remain all O's and DELETE must remain all l's. ESCAPE 
shall always be the second highest code, one less than 
DELETE; thus all bits except the low order are 1. For 
paper tape usage, BLANK must be different from 
MASTER SPACE and therefore shall have all bits 0 except 
the low order. This guarantees that BLANK, as the 
primary delimiter, collates low to all other characters. 
It is also the complement of ESCAPE. 

10. All possible caution should be exercised in alphabetic 
regions to provide maximum expansion for non-
English alphabets (> 26 letters). 

The 8 bits are represented by B7 through B0, high to 
low order. The 6-bit transmission set will be developed 
first. Figure 1 shows a modified Fieldata pattern with B5 

not yet assigned, reflecting criterion 9 only. B6 = 0 for 
Fieldata, B6 = 1 for U.K. 

It is now obvious that LS and FS should be opposite 
ES and DL, not MS and BLANK, in order to maximize the 
number of punctuation characters following BLANK. 
Since the decimal digits must have their binary repre
sentation equal to the binary value, they must be placed 
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Bj.o 
0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111 

B.S.4 

XO XI 
1 1 

B,, B, 

xo XI 

Digits & Special Coalesces to 
5-bit set 

MS 
BLANK 

ES 
DL 

FIG. 1 

O ® 0 MS O 0 

® P ® I 6 P 1 

A Q 2 A Q 2 

B R 3 B R 3 

c S 4 ® = MS ? C S 4 

D T 5 ® - b ? D T 5 

E U 6 ® = LF ? E U 6 

F V 7 ® — CR ? F V i 
G W 8 ® — FS ES G w 8 

H X 9 ® = LS DL H X 9 | 

I y I y 

J z J z 
K ® ® K LF | 

L ® L CR 

M ® M FS I 

N ® ® N LS/DI. 

FIG. 2 

1 ® O 
! © P 

A Q 
B R 
C S 
D T 
E U 
F V 
G w 
II X 
I Y 
J Z 

K ® 
L ® 
M ® 
N ® 

® C 0 
© 1 yields the 1 

2 4-bit set 2 
3 3 
4 4 
5 5 
6 0 
7 7 
8 8 
9 *—@ 9 

* 

» 

* 

® • 

- ® -

+ & ® + 
b / ® b 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

+ 
b 

Proposed 
British 

FIG. 3 

Present 
British 

(for com-
comparison) 
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For 

Basic CCITT 
Teletype 
Basic IBM Printers 
FORTRAN Printers. 
1410, 7070, COBOL. .. 

+ 
& / 

V V 
V v 
V V 
V V 
V V 

V 
V 
V 
V 
V 

V V 

( ) 

A/ 

? = $ £ • % < > 
V V V V 

V a/ V V V V V 
V V 
V V V V v 
^ V V V V V 

V 
V 
V 

V V 
v v v v 

V 
V 

V V V 

FIG. 4 

V V V t/ 
V 
v' V V V A/ V 

n the XI quadrant. This is shown in Figure 2. LIKE EEED 

r ta"d,CTGE RETUHN (CR) are necessaT for charac-
ter-at-a-time1 printers associated with existing communi
cation systems. As control signals, they are grouped with 
other control signals rather than with MS and BLANK 
which are essentially informational. 

There is space for 20 special characters in the 6-bit set 
but four of these must disappear in the 5-bit set. 

In conformity to most existing practice, the other six 
characters of the 4-bit set have been selected as: 
• I- (for self-delimiting data fields) 

printing separator (may have graphic repre
sentation) 
digit grouping )mosfc expendable for 

* indicator for totals, etc. /British pence (10, 11) 
he two positions following the digit 9 are not usable 

or delimiters m the 6-bit set, since they will collate high 
these six characters arc assigned as shown in Figure 3 

he pairs (.,) and (-+) are a distance of two bits apart 
or easier error detection. + is used fully interchangeably' 

with &, since may also take the forms 1r f & /has 
been chosen as alternate for the BLANK in the 4-bit set 

SS.W/S" wc""" * """* -
B,.( 

B3-0 00 01 10 11 
0000 MJ 0 ® O 
0001 b 1 ® P 
0010 " 2 A Q 
0011 $ 3 B R 
0100 * 4 C S 
0101 > 5 D T 
0110 ( 6 E U 
0111 j ) 7 F V 
1000 8 G w 
1001 ; 9 H X 
1010 * ? I Y 
1011 | * ! J Z 
1100 LK K ® 
1101 — CR L ® 
1110 + FS M ES 
1111 / LS N DL 

B5,< 

Bs' = 

B/ = B,VB, 

B< = BS' 
B6 = B,' y B/ 

Transmission Code 

00 01 10 11 
N U L L  < 1 °  0 

b > p  1 
n A Q 2  
$ B R 3  
% C  S  4  
' D  T  5  
( E  U  6  
) F  V  7 
: G w  8 1 

> H X  9 1 
1  I Y ? 
* J Z  ! 

L 
K  

L  @ 
>-3 
O  

+ M % 
Pi 

a / ! N  • 0  
0  

Data Processing 
Code 

Fig- 5- The Proposed Standard Code 
1 The common term in communications is "page" printer-

preempt'this"term^ ^ ^ ^ timTS 

Q ^he basic set is achieved by changing the transform at 

B4 = Ba v (B, A BO 
The British set should have 10 and 11 immediately 

following 9. This is achieved by changing the transform 

B4 = Ba v Bs 

Figure 4 gives the special characters specified in existing 
systems. 6 

A FoRTRAN-commercial substitution exists to overcome 
limited capacity of line printers. The correspondence is: 

* to = @ to ' % to ( • to ) 

The Bell and "who are you" functions are ignored here 
because they do not warrant individual characters. Thev 
are handled best by the ESCAPE mode. 

B6 may_now be assigned specifically. 
X = 0, X = 1 yields a modified FIELDATA which, 

unless transformed, has punctua
tion high to the alphabet. This is 

Y n°t logically consistent. 
X = 1, X = 0 yields modified U.K. 

" UNIVAC, MH 
" RCA 501 
" 704 internal 

We will thus choose the latter. This choice also di
minishes the number of bits or punches in numeric data 
which is most frequent to data processing. 

The specific proposal of Figure 5 implies either that: 
(a) the data processing code is internal, and the EXCLU

SIVE OR mapping takes place at the interface on reading 
or writing externally on media such as tape or communica
tion lines, which utilize the transmission code, or 

(b) the data processing code is merely figurative and 
represents the effective collating sequence obtained by a 
simple comparison logic in the machine 

The transmission code folds to the Baudot-like code of 
figure 6. It retains all the special characters of present-
day Teletype, plus the *. Although ? and !, as effective 
delimiters, might well precede the alphabet in the data 
processing code (involving a swap with < and >) to do 
so would remove ? and ! from the 5-bit transmission 
code. If the transmission people agree, this change could 
be considered. 

As a 6-bit transmission code, ® to © are available, 
hese might be used either for additional control func-
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MS 0 0 
b P 1 

A i " Q 2 
B | $ R 3 
C | # S 4^ 
D | ' T 5^ 
E | ( U 6 

F I ^ V 7 
G | : W 8 
H ! ; X 9 
i ! , y ? 
j i • 

i z ! 
K 1 . 
| LF 

L » — CR 
M + FS 
N ! / LS/DL 

< O 0 
> P 1 
A Q 2 

$ B R 3 
C S 4 

1 D T 5 
< E U 6 
> F y 7 

G w 8 

1 H X 9 

1 I Y ? 
* J Z j 

. K = 

- L 

+ M % 
/ N • 

O 0 
P 1 

A Q 2 

$ B R 3 

c # C S 4 

F ' D T 5 

F ( E U 6 

F ) F V 7 

G W 8 
H X 9 

l I y 

* J z 

K F = 

- L C @ 

+ M c % 

/ N c • 

57 + Blank 
FIG. 6 

48 + Blank 
FIG. 7 

(Identical to) 
Fig. 6 

MS 0 | 0 

b p ! 1 

A u Q | 2 
B $ R ! 3 
C s 1 4 
D » T ! 5 
E ( u ! 6 
F ) v ! 7 
0 w 1 8 
H > x | 9 
I t Y j ? 
J * z ! 1 

K LF 
L — CR 
M + FS 
N / LS/DL 

5-bit 

MS 0 0 

b ® P 1 

" A Q 2 

$ B R 3 

% C S 4 
' D T 5 
( E U 6 
) F V 7 

G W 8 

i H X 9 
I Y ? 

* J Z 1 

K ® LF 
— L ® CR 
+ M FS ES 

/ N LS DL 

6-bit 

Transmission Codes 

(Identical to\ 
Fig- 7 ) 

NULL < O 0 

b > P 1 
rt A Q 2 

% B R 3 

a C S 4 
t D T 5 
( E U 6 
) F V 7 

G w 8 

> H X 9 

, I Y ? 
* J Z ! 

K 
= 

w3 
— L S 
+ M % 

E* 
y. 

/ N • 0 
0 

Data Processing Code 

FIG. 8 

tions or (preferably) for additional characters of foreign 
alphabets, FS and LS are also available, once the complete 
change is made from existing equipment. Fieldata would 
then use these characters as UPPER CASE (UC) and LOWER 
CASE (LC) respectively. This provides a representation of a 
7-bit code in 6-bit form, just as Baudot represents a 6-bit 
code in 5-bit form. Therefore the FS-UC and LS-LC corre
spondences are true, and either mnemonic might be used. 
Perhaps a new combination would be desirable, as FC 
(for Figure/Upper) and LL (for Letter/Lower). 

= @ % and • are placed high in the data processing 
code, and it is assumed they will not be used in control 
keys. Figure 7 shows the DP code satisfying the last set of 
special characters of Figure 4, plus the FORTRAN trans
formation and a 48-character set. 

The proposed set has the special characters assigned 
for reasons other than matching correspondence between 

the digits and the characters associated with those digits on 
typewriter keyboards. The reasons are: 

1. Some typewriters do not have keys for the digit one 
(1) or even for the digit (0). 

2. There is no such thing as a standard typewriter key
board in the U.S. There is a proposed British Standard, 
but the characters placed most uniformly, the left and 
right parentheses, are above 9 and 0 respectively. This 
conforms with much practice in the U.S., but 0 must be 
placed in parallel to MS in accordance with our previous 
rules. 

3. Transmission people sometimes desire the paren
theses over the 8 and 9 respectively, but this occurs only 
in the Luebbert revision of Fieldata (not the original 
Fieldata) and Ferranti computers. 

4. Users normally adjust automatically to any arrange
ment of special characters after a day's usage. 
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5. Non-English keyboards differ greatly in this place
ment,. It would be unfair to inflict one of the many English 
arrangements as an international standard. 

6. The FoKTRAN-Commercial interchange is accom
plished in the proposed set by recognizing 

B I A B ( A  ( B S  =  B 5 ) ,  

and inverting B3 and B6 if this condition is true. Any 
other arrangement greatly complicates the logical hard
ware necessary in converting existing printers, probably a 
more expensive process than converting existing Teletype
writers. 

7. Any such correspondence will still require two modes 
of keyboard logic to generate codes. 

If the transmission people could modify existing equip
ment with an EXCLUSIVE OR function (two relays), a com
pletely common and collatable 6-bit code could exist, as 
shown in 1'igure 8, subject to the requirements for expan
sion to 7- and 8-bit sets. 
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APPENDIX 

On the Relative Position of the Alphabet, Numbers 
and Special Characters in a Code Set Based upon 
Transmission and Data Processing Characteristics 

Consider a 4-quadrant arrangement of 16 states per 
quadrant in which Ql, Q2, Q3 and Q4 represent the octal 
codes 00-17, 20-37, 40-57 and 60-77. Consider also four 
classes of information symbols which may be placed in 
these quadrants: 

D representing the 10 or 12 digits of the decimal or duo
decimal system 

S representing the class of special characters 
A representing a section of the alphabet beginning with the 

letter A 
Z representing a section of the alphabet ending with the 

letter Z 

If each of these four classes of information is assumed to 
consist of up to 16 codes, they may be assigned to the 4 
quadrants in any of 24 combinations. We now consider 
these combinations in light of their desirability for data 
processing and data transmission. 

Transmission Considerations 

1. Concepts of MASTER SPACE and BLANK are distinct. The term 
BLANK" refers to the element of information used to separate 

words on a printed page, MASTER SPACE occupies the zeroth 
position. 

2. The concept of ERASE or DELETE is represented by the JVth 
character. 

3. MASTER SPACE, BLANK and DELETE are concepts required in 
all alphabetic or alphanumeric sets. Further MS and DL 
always occupy the same relative position in each set. 

4. The 64-state code set is to be representable by a 32-state 
code using a shift mode. In this compressed representation the 
alphabet is to form one shift and the numbers and special 
characters the other. 

These criteria imply: 

01. A and 2 cannot fold upon each other (4). 
02. Ql and Q4 cannot fold upon each other (1, 2, 3). 
03. MASTERSPACE must be in Ql. (1) 

Data Processing Considerations 

5. The digits are represented by their pure, natural binary 
equivalents. Since only four bit positions are necessary to 
represent up to 16 states, any additional bit position in a given 
set must contain the same pattern of l's and 0's for each digit 

6. No symbol other than MASTER SPACE ranks lower than BLANK 
in the collating sequence. 

7. The alphabet is dense in collation. 
8. Certain field-separating symbols including BLANK must rank 

lower than the alphabet in collating. 

These criteria imply: 

D cannot be in the quadrant which contains or folds on 
MASTER SPACE. Otherwise 0 and MASTER SPACE would become 
identical in some code set. (5) 
2 cannot occupy Ql. (7) 
MASTER SPACE and BLANK must appear as adjacent characters 
in the same quadrant. Otherwise some symbols will be less 
than BLANK or MS will have a rank higher than BLANK. (6) 
BLANK cannot be associated with A. Otherwise some special 
symbols would either be lower in collating than BLANK, or 
field-breaking symbols would be higher in collating than the 
alphabet which they are intended to separate. (6, 7) 
(7) and (8) immediately above imply that A cannot occupy 
Ql since MS must be located here. 

04. 

05. 
06. 

07. 

08. 

Application of Rules to the Combinations of D, A 
Z, and S on Ql, Q2, Q3, and Q4 

The requirements 04, 08 and 05 remove from considera
tion the 18 combinations beginning with D, A and Z 
respectively. In addition any combination in which A 
does not precede Z can result in a non-dense alphabet. 

{please turn to page 225) 
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TABLE 1 
Deviates of the Normal Function in Octal Corresponding to the 

Cumulative Area From .5 to 1.0 

Area (Octal) 
Scaled 21 

formal Deviate (Octal) 
Scaled 2" 

Area (Octal) ] 
Scaled 2' 

.'orraal Deviate (Octal) 
Scaled 2» 

200 00 00000 00000. 
00 00120 15457. 
00 00240 33636. 
00 00360 53002. 

00 00500 73431. 
00 00621 16043. 
00 00741 43141. 
00 01061 73214. 

300 00 12625 32704. 
00 12772 42473. 
00 13140 41660. 
00 13307 32316. 

00 13457 16144. 
00 13627 77435. 
00 14001 60730. 
00 14154 44377. 

210 00 01202 26537. 
00 01322 66042. 
00 01443 32032. 
00 01564 03006. 

00 01704 61253. 
00 02025 45515. 
00 02146 40500. 
00 02267 42513. 

310 00 14330 34471. 
00 14505 34031. 
00 14663 45573. 
00 15042 74314. 

00 15223 42707. 
00 15405 34463. 
00 15570 55071. 
00 15755 27637. 

220 00 02410 54064. 
00 02531 75526. 1 
00 02653 30005. 
00 02774 73427. 

00 03116 50535. 
00 03240 40077. 
00 03362 42443. 
00 03504 60346. 

320 00 16143 40227. 
00 16333 12607. 
00 16524 33524. 
00 16717 27240. 

00 17114 02241. 
00 17312 41757. 
00 17512 73747. 
00 17715 25671. 

230 00 03627 12161. 
00 03751 60466. 
00 04074 44256. 
00 04217 45711. 

00 04342 65610. 
00 04466 24554. 
00 04612 03410. 
00 04736 02547. 

330 00 20121 65564. 
00 20330 42335. 
00 20541 43267. 
00 20755 00012. 

00 21173 00365. 
00 21413 55747. 
00 21637 22316. 
00 22065 70106. 

240 00 05062 22626. 
00 05206 64474. 
00 05333 51003. 
00 05460 60415. 

00 05606 13615. 
00 05733 73512. 
00 06062 01012. 
00 06210 34430. 

340 00 22317 52300. 
00 22554 65705. 
00 23015 50463. 
00 23262 21226. 

00 23533 00141. 
00 24010 07632. 
00 24271 74500. 
00 24560 64671. 

250 00 06337 16705. 
00 06466 30775. 
00 06615 73671. 
00 06745 70150. 

00 07076 16612. 
00 07227 00465. 
00 07360 16636. 
00 07511 72144. 

350 00 25055 11231. 
00 25357 26315. 
00 25667 74207. 
00 26207 36451. 

00 26536 46016. 
00 27076 02014. 
00 27446 51276. 
00 30031 33024. 

260 00 07644 03467. 
00 07776 54160. 
00 10131 65174. 
00 10265 37466. 

00 10421 54234. 
00 10556 34507. 
00 10713 61765. 
00 11051 55313. 

360 00 30427 40773. 
00 31042 23633. 
00 31473 35502. 
00 32144 76235. 

00 32641 23053. 
00 33363 41636. 
00 34137 46520. 
00 34752 51075. 

270 00 11210 20025. 
00 11347 33317. 
00 11507 21011. 
00 11647 62131. 

00 12011 00143. 
00 12152 74634. 
00 12315 51606. 
00 12461 10461. 

370 00 35633 37754. 
00 36573 54572. 
00 37631 00460. 
00 41010 33357. 

00 42354 42517. 
00 44204 72526. 
00 46534 51133. 
00 52437 23555. 

STANDARDS—Continued from page 217:  

As can be seen, this is not the only method of applying 
wie stated rules. Despite the order taken the rules reduce 
to three the number of acceptable combinations for data 
processing and transmission. These combinations are S, 
A, Z, D which is followed by IBM and S, D, A, Z which 
is advocated in the United Kingdom. Also possible is 
S, A, D, Z. 

The FIELDATA arrangement A, Z, S, D is not acceptable. 
First, BLANK is associated with A, which means the 
delimiting special characters will collate higher than the 
alphabet. Second, if BLANK is not associated with MASTER 
SPACE in Q1 but is in the second position of Q3, one symbol 
(the character in the first position of Q3) other than 
MASTER SPACE must have a rank less than BLANK. 

This examination of the possible combinations of S, D, 
A, Z merely indicates which arrangements should be 
further investigated with view of their expansion charac
teristics in sets of more than 6 bits. The analysis is in
tended to remove much of the confusion which has existed 
as to what combinations are possible and desirable for 
expansion and contraction. Thus, the arrangements 
S, A, Z, D and S, D, A, Z will be given further analysis 
and a choice between them made on the facility of their 
expansion and contraction characteristics. 

Folding Considerations 

At this point the methods of folding must be considered. 
The four quadrants may be folded in one of the two ways 
by the removal of either B5 or B4. 

Ql on Q2 and Q3 on Q4 
Q1 on Q3 and Q2 on Q4 

When the folding consideration is applied to the remaining 
combinations of S, A, D, Z we find, 

Ql on Q2 Ql on Q3 
SDAZ Note 1 Possible 
SAZD Note 2 Note 4 
SADZ Note 3 Note 1 

NOTE 1. The digits cannot fold on MASTER SPACE. 
NOTE 2. The transformation characteristic between 5 and 6 bits 

is dependent upon the combination being treated as 
well as the shift. 

NOTE 3. This is possible by treating B< of the 6-bit representation 
as the mode bit. However, this leads to a non-dense 
alphabet. 

NOTE 4. Z cannot fold on MASTER SPACE. 

Conclusion 

From the consideration of data transmission and date 
processing criteria we are led to a code organization of 
S, D, A, Z. This organization, however, should not be 
considered as giving the collating sequence. 
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R O B E R T  W .  B E M E R  

N e w  Y o r k ,  U S A  

The Present Status, 
Achievement and Trends 
of Programming for 
Commercial Data Processing 
With 4 Figures 

Disposition 

1. The Environment 
1.1 What Programming Is 
1.2 The Need for Improved Programming Systems 
1.21 Complexity of Business Problems 
1.22 Ratio of Programming to Running Time 
1.23 Changing Technologies and New Machines 
1.24 New Methodology 
1.25 Systems Concepts 
1.3 Opportunities in Commercial Applications 

2. Programming Languages 
2.1 Machine oriented Languages 
2.2 Procedure-oriented Languages 
2.3 Problem or Goal-oriented Languages 
2.4 Simulators 

3. Elements of Programming Systems 
3.1 Translators 
3.2 Diagnostic Section 
3.21 Tracing Method 
3.22 Storage Print Method 
3.23 Snapshot Method 
3.24 Automatic Testing Systems 
3.25 Running Checks 
3.3 Input-output Control Systems 
3.4 Application Library 
3.5 Macro-instruction and Subroutine Library 

4. Retrieval of Information and Updating of Files 
4.1 Ordering Generators 
4.2 Report Generators 
4.3 Random Access to Files 

5. Factors Influencing the Level of Programming 
5.1 Logistics of Machine Configuration 
5.11 Character Sets 
5.12 Internal Storage 
5.13 External Storage 
5.14 Instruction Repertoire 
5.2 Cooperative Organizations 
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5.3 Standardization 
5.31 Programming Languages 
5.32 Systems Standards 
5.4 Experience 
5.5 Education and Literature 
5.51 Universities 
5.52 Manufacturers 
5.53 Teaching by Machine 

6. Costs and Statistics 
6.1 Programming Systems 
6.2 Programs for Specific Applications 
6.21 Size 
6.22 Instruction Cost 
6.23 Staff 

Summary. Programming for commercial problems requires all of the techniques 
necessary to scientific problems and a great many more. This paper documents some 
of the basic elements derived in the explosive development of programming techniques 
that has taken place in the last eight years, which is the short time that electronic 
data processing equipment has been applied in volume to commercial applications. 
Programming costs are already a major portion of total data processing expenditures. 
This relative percentage may be expected to increase as new hardware advances come 
into production. It is therefore particularly important to assess the possibilities in re
duction of programming costs through automatic techniques. Among these are machine-
independent languages, program generators for special classes of recurring problems, 
program-hardware interactions, and total systems control programs. 
There are several trends to be noted in programming methods. Among these are the 
automatic operating systems (with disappearance of the operator console), tabular 
languages, input-output control systems, the automatic production of automatic pro
gramming processors, remote operation of computers through communications links 
and corresponding service to small users, standardization of techniques and com
munication between different computers by common language. There is also an 
important trend to generalize programs and share them among many users of a 
particular class of machine through trade organizations. 
Commercial programming has developed into a complex discipline of its own, with 
professional status. Technical education and publication therefore assumes an increas
ing importance. 

Zusammenfassung. Die Programmierung von Problemen der kommerziellen Daten-
verarbeitung erfordert alle fur das wissenschaftliche Rechnen notwendigenProgrammier-
methoden — und dazu noch viele weitere. Dieser Beitrag halt einige der grundsatzlichen 
Tendenzen fest, die sich im Laufe der stiirmischen Entwicklung der Programmiertechnik 
etwa wahrend der letzten acht Jahre herausgebildet haben, seit elektronische Daten-
verarbeitungsanlagen in grofierem Umfange fur kommerzielle Aufgaben eingesetzt 
werden. 
Die Kosten fur Programmierarbeiten machen heute schon einen betrachtlichen Teil der 
Gesamtkosten fur die Datenverarbeitung aus, und es ist zu erwarten, dafi der relative 
Anteil dieser Kosten mit fortschreitender Entwicklung der technischen Anlagen weiter 
wachst. Es ist deshalb besonders wichtig, die Moglichkeiten der Senkung der Pro-
grammierkosten durch automatische Programmiertechniken abzuschatzen. Hierzu 
gehoren maschinenunabhangige Programmsprachen, Programmgeneratoren fur spezielle 
Klassen von rekursiven Problemen, Wechselwirkungen zwischen Programm und tech-
nischer Anlage, sowie Programme zur Steuerung von Gesamtsystemen. 
In der Entwicklung der Programmiermethoden sind verschiedene Tendenzen hervorzu-
heben. Dazu gehoren automatische Bedienungssysteme (unter Weglassung des Bedie-
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nungspultes), tabellarische Programmsprachen, Ein-/Ausgabe-5teuerprogramme, auto-
matische Herstellung von Programmiibersetzern, Fernbedienung von Rechenanlagen mit 
Hilfe von Nachrichteniibertragungsgeraten und Fernbenutzung durch Kleinabnehmer, 
Standardisierung der Technik und des Verkehrs zwischen verschiedenen Rechenanlagen 
durch eine gemeinsame Programmsprache. Von Wichtigkeit sind auch die Bestrebungen, 
Programme zu verallgemeinem und einer grofieren Anzahl von Benutzern einer 
bestimmten Typenklasse von Maschinen durch entsprechende Vertriebsorganisationen 
zur Verfiigung zu stellen. 
Die Programmierung auf dem Gebiet der kommerziellen Datenverarbeitung hat sich 
bereits in eine eigene komplexe Disziplin mit professionellem Status fortentwickelt. 
Dementsprechend kommt der technischen Ausbildung und den publizistischen 
Bemiihungen auf diesem Gebiet eine wachsende Bedeutung zu. 

Resume. La programmation des problemes de traitement des donnees commerciales 
exige toutes les methodes qui sont egalement necessaires pour poser numeriquement 
les problemes scientifiques, et encore quelques unes de plus. Le present travail traite de 
quelques uns des elements de base qui se sont developpes pendant ces huit dernieres 
annees au cours de l'evolution rapide de la technique de la programmation et en parti-
culier pendant la periode relativement courte au cours de laquelle des installations de 
traitement electronique des donnees ont ete mises en service sur une grande echelle 
pour resoudre des problemes commerciaux. 
Les frais de programmation representent une partie importante des frais totaux dans 
le domaine du traitement des donnees. Ce pourcentage continuera apparemment a 
croitre des que de nouveaux progres dans l'assemblage des machines seront appliques 
a la production. C'est pourquoi l'evolution exacte des possibilites de reduction des frais 
de programmation par des procedes automatiques prend une importance particuliere. 
On compte parmi ceux-ci les langages de programme independants de la machine, les 
programmes «produisant programmes" pour des classes speciales de problemes 
recurrents, les interactions entre le programme et la machine, et les programmes pour 
commander le systeme completement. 
II faut remarquer diverses tendances d'evolution dans les methodes de programmation; 
parmi celles-ci figurent, par exemple, les systemes entierement automatiques (dans les-
quels on n a plus besoin de panneau de commande), les langages de programme 
synoptiques, les programmes de commande d'entree et de sortie, l'etablissement auto-
matique des traducteurs de programme, la telecommande des ensembles de calcul par 
1 intermediaire des reseaux de telecommunication et service correspondant pour les 
petits utilisateurs, la normalisation des methodes et l'echange d'information entre 
differents ensembles de calcul par 1 introduction d'un langage de programme commun. 
Les efforts en vue de generaliser les programmes et de les mettre a la portee d'un 
nombre aussi grand que possible d'utilisateurs d'une classe d£terminee de type de 
machine par des organisations correspondantes d'exploitation sont egalement tres im-
portants. 

La programmation dans le domaine du traitement des donnees commerciales a deja 
evolue vers une discipline propre complexe avec un statut professionnel. L'education 
technique et les efforts publicitaires prennent en consequence une importance 
r r r t i ccanfo  

1. The Environment 

1.1 What Programming Is 

The data processing or computing machine of today is provided with a repertoi 
of basic instructions or commands imbedded in the hardware. These instruct 

the prime control for actual operation. However, such a set may be liken 
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to the nervous system of man and its synaptic control of body movements and 
actions. Although these elements are mostly present at birth, education of the 
brain and related control centers is required for efficient action. The program
ming of a computer is equivalent to this education. The external command 
"Write your name" will, in a human, set in motion that stored program necessary 
to make the required movements automatically. The equivalent training could 
be given to the machine so that, upon receiving the same command in a natural 
language, circuitry would be actuated, storage would be searched, and the printer 
would be activated and print out "I am a Siemens-Halske 2002". 
In the quest for more speed and easier operation of electronic computers, it has 
been recognized that an equivalent amount of education is necessary to allow 
the human-machine-human input and output operation to keep reasonable pace 
with internal speeds. Programming systems in general correspond to a liberal 
education; programming for specific applications may be likened to on-the-job 
training in a specific field, utilizing the liberal education for easier assimilation. 
Comprehensive treatments of the principles of programming may be found in 
the literature [1 to 7], 

1.2 The Need for Improved Programming Systems 

During the first decade of mass usage of stored program computers, various 
devices have been developed to lessen the programming burden. These range 
from simple assembly programs through symbolic and mnemonic assembly pro
grams, macro-instructions, interpreters, generators and compilers. All of these 
must be mentioned under the present state of the art because of the nonuniform 
advancement of segments of the programming population. Even today we find 
a large number of people, primarily in the area of commercial applications, still 
programming in actual machine language for one reason or another, particularly 
in the belief that this yields the ultimum efficiency in running time. 
Such complacency is possible when there is but one machine operating eight 
hours or less per day, with only a few applications of a rather permanent and 
invariant nature. However, whenever the first machine of a type is utilized around 
the clock, or in multiple machine usage, or where the problems to be solved are 
many and varied, — then we find that communication with the computer must 
be accomplished in a higher level of language. Most experienced users of comput
ing and data processing equipment are clamoring for advanced programming 
systems for these several reasons: 

1.21 Complexity of Business Problems. The staff of programmers does not seem 
to diminish appreciably even after the first applications have been established 
and running. This is due in part to improvement and expansion which was not 
possible before and in part to continuing and awkward changes. The human clerk 
is well adapted to making changes and handling exceptions. For this reason, 
business users venturing into the computer field did not realize at first the volume 
and continuing nature of procedural change due to laws, competition, improved 
methods and management vagaries. 
Scientific installations generally preceded commercial installations. The business 
user, looking at the large profits realized in scientific computing, was deluded into 
believing the same techniques were applicable to his operation. Unfortunately, 
commercial problems are in general at least ten times as complex as scientific 
problems. For one thing, there is no general language for business, as there is 
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for mathematics. For another, many scientific problems are highly repetitive, 
which lends itself nicely to the looping facilities of stored programming. Thus a 
scientific program of 10,000 instructions is the exception, whereas a commercial 
program of 80,000 instructions is almost commonplace. 

1.22 Ratio of Programming to Running Time. Elapsed time for initial program
ming and subsequent changes is presently too disproportionate to the actual 
running time on the machine. It is not unusual for an average application to 
require six months of programming and diagnostic correction to achieve a cor
rectly running program. The computer must be prepared for every eventuality; 
the human clerk can stop and ask every time a strange condition arises. This 
reduces the time span in which competitive changes may be made effectively. 
For the last five years, programming costs have been considered to be roughly 
equal to all other costs of operating data processing equipment, such as price or 
rental, installation, power, etc. Extrapolation of programming and engineering 
advances indicate that this percentage may well climb from 50 to 90 within the 
next five years. Machine speeds are now 100 times what they were five years 
ago. Programming cannot maintain this pace, nor will pouring armies of pro
grammers into the gap help appreciably. The answer must lie in advanced pro
gramming systems which do a much larger proportion of the reasoning that 
humans now do. 

1.23 Changing Technologies and New Machines. The evolution of new and im
proved hardware faces the user with additional problems. He finds himself with 
the opportunity to obtain a computer which will do the same job faster and 
cheaper than his present machine, yet his programming investment for the old 
machine must usually be considered a total loss. A possible amelioration is seen 
in adapting new technology to old logic, so that there is a family of machines 
with roughly the same basic machine language. This technique has found 
expression in simple transistorizing of machines that were formerly tube oriented, 
or in replacing electrostatic storage with magnetic core storage. This is self-
defeating because the late members of such families cannot compete in power 
with new machines that have broken completely away and are balanced to the 
new technologies. 
This dilemma has now occurred for one and possibly two generations of com
puters. The first time was not so difficult, for most users were not yet adjusted 
to the shifted emphasis required to convert applications from clerks or punched 
card equipment to the very different electronic data processing concepts. They 
were capable of making fresh starts with a new machine and their previous 
investments were not so great. As more investment accrued, yielding more 
experience, and the use of computers settled down to a predictable production 
pace, the costs of reprogramming a large volume of applications became stagger
ing. Without the prospect of being able to program in a language independent 
of computer characteristics, the user must face an endless series of interruptions 
with changing machines. 

1.24 New Methodology. Although many data processing installations simply con
verted existing methods and procedures to electronic equipment, additional 
efficiency and profit may be obtained by revising such procedures to correspond 
to the logic of the computer. This requires not only programming languages but 
additional ancillary languages suitable to the methods analyst, such as flowchart-
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ing, table structures, flow logic, etc., all oriented toward machine recognition 
and convenience. 

1.25 Systems Concepts. An entire business system was formerly the servo-
synthesis of the actions of a complex of humans with various responsibilities, 
however dimly understood. The hybrid mode of operating a data processing 
system under human supervision is not as satisfactory as having the supervision 
reside in program hierarchies within the machine. New languages are therefore 
needed to express executive concepts and translate them to machine action. 

1.3 Opportunities in Commercial Applications 
There is presently a great variety in the applications handled by data processing 
equipment, yet the total volume is nothing to what we may expect for the future, 
when such equipment is integrated with communications systems. Computers 
are among the most expensive devices manufactured. Unshared usage requires 
high volume. The shared usage of the future will reach a variety of low volume 
applications. Some of the present applications firmly established as profitable 
operations are: 

Insurance, premiums and claims 
General accounts, payable and receivable 
Railway freight control 
Petroleum reserves, product optimization 
Tax gathering and verification, refunds 
Inventory, shop scheduling, parts catalogs, spares 
Shipping, transportation problem 
Stock and bond trading, quotations 
Livestock improvement 
Personnel records, skills inventory 
School curricula and grading 
Real time process control 
Banking, check clearing 
Reservations and loading 
Military defense systems 
Optimum steel production 
Merchandizing, order and reorder 

Some applications which are just now coming into being are: 

Mechanical language translation 
Medical diagnosis, records [8] 
Numerical machine tool control 
Legal searching and correlation 
Information retrieval, abstracts, library 
Compressed communications 
Business games, optimizing profit 
Mechanical editing 
Patent search 

An exhaustive survey of governmental applications may be found in [9], 
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2. Programming Languages 

2.1 Machine-oriented Languages 

A general criterion for distinguishing a machine-oriented language is that pro
grams written in this language will not run on another computer (not of the 
same generic family) unless under control of a simulation program which 
duplicates the characteristics of the original machine. Using as an example a 
machine with instructions consisting of one operator and one operand address, 
the various levels of convenience of representation might be: 

00110001010101000110 (binary representation, no programming translation 
required) 

3 1546 (decimal digits used for characters, input-output 
devices will accept and produce such characters) 

H A623 (alphabetic characters as well in input-output devices) 

RAD 20.66 (symbolic notation — RAD stands mnemonically for 
Reset ADd, 20.66 is an address number standing con
veniently for the actual address eventually assigned 
by the assembly program) 

RAD CROSSPAY (GROSS?AY serves the same purpose as 20.66 but 
is more convenient to the programmer for its 
mnemonic content) 

Each refinement puts an additional burden upon the assembly program in the 
assignment and translation functions, removing this same burden from the pro
grammer. This is justified by the assumption that the machine can perform these 
clerical functions with greater economy and fewer errors than the human. A 
further refinement is the addition of macro-instructions [10, 11], which are 
machine-like and compound. For example, any of the instructions 

(a) MOVE, TODAY, CURDT 
(b) MOVE, TODAY, CURRENTDATE 
(c) MOVE TODAY TO CURRENTDATE 

would generate for the 705 the instruction pair 

RCV CURRENTDATE (ReCeiVe at the address for CURRENTDATE) 
TMT TODAY (TransMiT the contents of TODAY) 

Such macro-instructions illustrate the correspondence between programming and 
hardware which sometimes leads to ambiguity and misunderstanding. For a 
machine with instructions consisting of one operator and two addresses, these 
would be simple instructions, not macro-instructions. Thus programming systems 
in effect redesign the hardware of a computer. Conversely it might be possible 
to construct a machine which accepts, as instructions built into hardware, an 
algebraic language such as ALGOL. 

The common practice of limiting the number of characters in symbols employed 
by the programmer is illustrated by (a). This is done for two reasons. First, in 
a machine which moves information by words (groups of bits addressable unique-
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ly) it is uneconomical to use more than one word to represent a symbol. In 
most present machines 6 bits are used internally to represent a letter or digit, 
thus a machine with 24-bit words handles no more than four character symbols 
conveniently. Second, since these names must be carried through the translation 
process, they become a more expensive burden as an increasing number of manip
ulations are made. A better practice is to assign a working number (or address 
number) to each symbol, in a table of double reference, more particularly be
cause the set of meaningful alphabetic symbols is very sparse; i. e., GXPQ carries 
no more mnemonic content to the programmer than 63987. (Cf. [12].) The 
number of characters in each symbol may then be unlimited. COBOL [13], for 
example, restricts the length of symbols to 30 characters for practical convenience. 
More meaningful symbols may be used as separators or punctuators for clarity 
to the programmer as it is shown by (c). The translating program can be made 
to recognize this function and even to accept extraneous noise words. Thus the 
so-called "English language" of the FLOW-MATIC Programming System [14] 
for UNIVAC I is basically a method of employing three-address macro-instruc
tions with freer form. Thus 

ADD A, B, C is equivalent to ADD A TO B GIVING C 

The difference lies in the fact that commas, as separators, do not order the 
process either mnemonically or logically. The programmer must know the 
function of each of the operands as written in the macro-instruction. The alter
nate form of FLOW-MATIC is still restrictive logically. A rather rigid form is 
still required. For example, it is not permissible to vary the previous instruction to 

TO B ADD A GIVING C 

Although proper English, such logical ability is not inherent in the formation 
rules of the restricted and artificial programming language and is therefore not 
reflected in the translators. The macro-instruction ADD A, B, C is even more 
ambiguous, however, since only by definition (which the programmer must re
member) is it known whether it means 

A = B + C, A + B = C, or even, although unlikely B = A + C 

The same operation may be expressed in a number of alternate forms, any or 
all of which may be acceptable, provided that the recognizing and translating 
mechanisms are incorporated in the processor. 

C = A + B 
A + B  =  C  
SET C = A + B 
REPLACE C SUM A AND B 
REPLACE C BY THE SUM OF A AND B, etc. 

BY, THE and OF are examples of extraneous noise words added for clarity. They 
are ignored by the translator. 
Macro-instructions are normally of two types, library or programmer. Library 
macro-instructions are those useful to a general class of problems and are thus 
automatically available in the processor, which recognizes them by table-scanning 
to be different from the one-for-one representation of a single machine instruc
tion. Quite often these may be of a complex generative nature (usually formed 
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under control of a matrix of alternates) which alters or eliminates redundant 
instructions for efficiency. 
Programmer macros, in contrast, are those specific to this particular problem. 
Usually some sequence of instructions is virtually repeated in many places with 
slight or no variations. The programmer, recognizir\g this, defines the general 
case by example (which is assimilated by the processor upon recognition as such) 
and thereafter saves much copying and possible error by its use. Processors com
monly recognize this type of instruction by finding the term MACRO instead of 
the normal operation code. The following Example 1 shows how a programmer 
macro may be defined and later used. 

Examp le  1  

Name Operator Operand Field 

SUMPROD MACRO A ,  B ,  C  
ADD A ,  B ,  C  (A  +  B^C)  

MPY C ,  B ,  C  ((A + B) • B-»-C) 

MPY C,  A ,  C  ( (A  +  B) -B-A-*C)  

SUMPROD X, G, Y 

The last instruction thus computes Y = X - G -  (X + G). This device may be 
used very effectively when the number of instructions created is large and when 
other macros of the same type are used recursively in the definition of a still 
l a rge r  macro .  Th i s  wi l l  be  recogn ized  a s  the  genes i s  o f  the  p rocedure  s ta temen t  
in ALGOL. 
The Example 1 also illustrates the artificial time sequence of input to a translator. 
Normally the sequence of entries is mapped into the sequence of instructions 
executed, whether in contiguous sequence or chained (as in drum storage 
machines). Here, however, the instructions of the example are never executed 
in their own right; they are merely dummies. (Cf. Figure 4 for automatic reorgan
ization of the program through addition, deletion and replacement.) Literals 
and operators may also be varied within macro-instructions. (Cf. [15].) 
Macro-instructions are essentially open subroutines and are placed in the main 
line of the program, whereas closed subroutines require transfer instructions 
and are set up by a calling sequence or linkage. Each time the macro is used, a 
copy of the instructions generated is placed in direct line in the program. It is 
not to be supposed that macro-instructions yield but a few machine instructions 
while subroutines have many. The output of macro-instructions may also be 
formed as a subroutine. The proper way to build a macro-instruction generator 
is to equip it with the facility for self-determination of whether to insert in-line 
or as a closed subroutine. The processor may contain a program section which 
weighs available storage space against execution time and the number of times 
used, for the closed subroutine consumes more running time by virtue of the 
extra calling sequence required to set it up to operate. 
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The expansion of a macro-instruction through Autocoder language into machine 
language for the IBM 705 is illustrated in the following Example 2 which is an 
excerpt from a two-tape merge problem taken from [16]. The sense of the 
macro-instruction is to turn off the error indication triggers whenever a signal 
is received from any of them. 

E x a m p l e  2  

Macro-instruction written in Autocoder language: 

DOA XOFF 

Basic Autocoder instructions incorporated in program: 

H W 000005 LOD 
TRA 

14 WW 000005 
XOFF 

XOFF U N L  14 XOFF3 TYPEWRITER INDICATOR OFF 
SUBROUTINE 

LOD 14 # 0010 # 
ADM 14 XOFF3 TO RETURN ADDRESS 

SEE 901 
TRS XOFF 2 TURN OFF 0901 

XOFF2 SEE 902 
TRS XOFF 3 TURN OFF 0902 

XOFF 3 TR RETURN TO MAIN PROGRAM 

This produces basic machine instructions as: 

Location Contents 

0524 80EK4 
0529 11609 

1609 71FM4 
1614 81GN2 
1619 61FM4 
1624 20901 
1629 01634 
1634 20902 
1639 01644 
1644 10534 

1752 0010 

2.2 Procedure-oriented Languages 

The distinguishing feature of a procedure-oriented language is that its syntax 
is not necessarily related to that of the machine language for a particular machine. 
There are many similarities; the need still exists to specify the procedure or 

21 Dig. Inf. 
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algorithm for problem solution in terms of time-dependent steps, both logical 
and arithmetical. In general a procedure-oriented language depends upon impera
tive statements. However, machine languages are introspective; procedure-
oriented languages are normally not introspective. That is, the specific characters 
of the imperative statement may not be operated upon by actions initiated by 
another imperative statement. The introspective nature of machine language may 
be illustrated by the instruction group of the following Example 3. 

E x a m p  l e  3  

Address Operation Operand 

0001 SET 0046 
0002 RESET ADD 0001 
0003 ADD 0020 (The contents of 0020 are 0027) 
0004 STORE 0001 
0005 TRANSFER 0001 

The instruction in 0001 will now be SET 0073 when obeyed. A corresponding 
example for a procedure-oriented language may be constructed by mapping 

Address: Operation, Operand into Label: Statement 

Introspection is now illustrated by the following statement group: 

SUBSTITUTE: REPLACE LAST DATE BY CURRENT DATE PLUS 3. 

: CHANGE OBJECT OP (SUBSTITUTE) TO NEXT TO LAST 
DATE. 

: GO TO SUBSTITUTE. 

It will be seen that scanning and logical difficulties are magnified greatly in the 
latter set. Thus there is little introspection in present languages of this type. 
A good test for validating a procedure-oriented language is to determine 
whether a human could follow the procedure manually with limited know
ledge of data-processing equipment. This is one of the two reasons for the design 
of such languages — broader understanding with less experience. The second 
reason is that casting procedures in this form leads to limited independence of 
machine type, so that large sections of program will not have to be rewritten 
for a second machine. 

Some examples of such languages are FLOW-MATIC [14], Commercial Trans
lator [17], FACT [18], and (on the scientific side) ALGOL1). The first great 
advance made in such languages was the separation of the program into two 
parts, procedure and data description. In using machine languages, the character
istics of the data (operands) are implicit in virtually every instruction. Since the 
statements of a procedure-oriented language must go through a computer trans-
ation process, it is economical to give the full characteristics of the data only 

!) Reference is made to the contribution by F. L. BAUER and K. SAMELSON, in this 
volume pp. 227—268. 
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once and let the machine program produced be the intersection of the procedure 
and the data description. This is a considerably more complicated process and 
costs more in machine translation time, but it has been found that the advantages 
in reduction of human cost and error, plus the multimachine freedom from 
reprogramming, more than compensate. 
A further advance was made in Commercial Translator, with the breaking out 
of a third section on environment. Here the machine features (how many tapes, 
what storage size, etc.) need to be specified only once, and the resultant program 
is the intersection of all three inputs. Commercial Translator also introduced the 
concept of logical multipliers, assigning arithmetic values of 1 to truth and 0 to 
falsity. Thus the statement: 

DISTANCE = 500 — 60 *  TIRED  (the asterisk signifies multiplication, either 
logical or arithmetic) 

If TIRED,  as a characteristic of some variable, is t r u e ,  then 
DISTANCE = 500-60 * (1) = 440 

If TIRED is not true, then the modifying term disappears and DISTANCE =500. 

Another vital concept in such languages is that of logical brackets to delimit 
the two resultants of a conditional statement. Consider the statement 

IT  A  =  C TH EN  IF  A>B  THEN DO K  ELSE  DO L  ELSE  IF  B >A  THEN DO M  
ELSE  DO N .  

This statement represents the flowchart of Figure 1. 

Fig. 1. Flowchart representing the statement 

IF A = C THEN IF A> B THEN DO K ELSE DO L ELSE IF B > A THEN DO M ELSE DO N 

Obviously THEN and ELSE  are logical brackets [19] which could be represented 
by single symbols for easier understanding, thus: 

IF  A=C ( IF  A>B (K >  <L»  ( IF  B>A (M)  (N) )  

It is not our intention to introduce herewith such a bracket notation; it is only 
to clarify the principle. The ALGOL language, for instance, in the author's 
opinion is not quite as recursive as it possibly could be, and therefore not as 
convenient in comparison to the less restrictive syntactical mechanism present in 
the statement of Fig. 1. The awkwardness in ALGOL, due to the definition of the 
if-statement which makes mandatory the provision of the statement parentheses 
begin and end, increases with more complex flowcharts. We must be aware that 
business problems often structure themselves in much more complicated logical 
patterns than do scientific problems. 

21* 
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2.3 Problem or Goal-oriented Languages 

A problem-oriented language is distinguished by the lack of a stated procedure 
for solution. The responsibility for creating the object program as a procedure 
in machine language belongs to the processor, which presumably allows for 
all known variations in this type of problem. The method of problem solution 
is implicit in the intelligence of the processor, which is variable and may be 
augmented. Two classes of such languages are presently in volume use, the 
ordering (or sort) generators and the report generators. (Reference is also made 
to Section 4.) 

Obviously such processors are suitable only for highly repetitive types of work 
which will justify the expenditure of creating the language and programming 
system. Processors for problem-oriented languages are special purpose as contrast
ed to the general purpose nature of machine- or procedure-oriented languages. 
There is a direct analogy (as there usually is between programming and hard
ware) with the building of special purpose computers for recurring applications, 
since they can be more efficient than a general purpose machine, although limited. 

Other specialized languages have been created, and fall in this class. Examples 
are the languages for automatic control of machine tools [20], operating systems 
for computers [21 to 25], tabular languages [26 to 28], and even languages for 
design problems. This latter class is exemplified by a program especially 
created for the design of electrical transformers. The transformer manufacturer 
allows the prospective customer to fill in a form (surely a type of language!) 
with his own specifications and requirements, see them entered into a computer 
and watch while the printer, after a matter of five minutes or so, writes a 
complete set of specifications for that tranformer. These specifications also . 
comprise the shop order and working information for manufacture, a bill of • 
materials, the sales price and terms, — together with a duplicate copy with a 
dotted line to serve as a purchase contract! 

2.4 Simulators 

A simulator is a useful programming tool which does not qualify as a language 
processor in its own right. It is a program that runs on one type of computer to 
simulate the action of another type under control of a program written in the 
anguage of the second computer. Thus a program that runs on a Mercury 

Computer could also be run on a UNIVAC 1103 under control of an interpretive 
simulator, if one happened to have been written. Simulators are useful under 
the following circumstances: 

(a) During transition to a new machine. If the new machine produces PV times 
as much work per cost unit as the old one, and if the simulator runs no 
more than PV times as slow as a direct program, the simulator will be 
useful to run until the programs are rewritten and checked out for the 
new machine. Not only is the cost of producing the simulator neglected 
here, but it may be advantageous to incur time losses to effect the transition. 

(b) To check programming systems written for a machine not yet manufactured, 
so that the systems will be available with machine delivery. 

^ Cj.eck Pr°duction programs on an existing machine before releasing 
and displacing it by the new machine. 
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(d) In mixed machine installations to compensate for unbalanced work loads. 
If machine A is overloaded and B is available, simulate some of the A 
programs on B. 

A sometimes cheaper means of achieving (b) is to write the translation processor 
for the new machine directly in its own language and then rewrite that same trans
lation process as an application problem on another machine for which a com
parable program exists. The processor is then assembled on the old machine, 
producing a machine language program for the new machine. From this point 
on, both the old and new programs are useful, depending upon which machine 
is available [29]. 

3. Elements of Programming Systems 

There have been three basic stages in the solution of problems by data processing 
equipment. The first is illustrated by Method I of Figure 2. The entire process 
of planning and coding the solution is done without machine aid. Primitive 

Fig. 2. Solution of problems by data processing equipment 

Method I: Planning and coding without machine aid 

programming systems are exemplified by Method II of Figure 3. This is basically 
the assembly method, but with some modification an equivalent interpretive 
system could be constructed. 

The third stage in development of programming systems had its origins in the 
supervisory system concept. With the flux of new ideas in the operation of 
stored program computers, it is difficult to get general agreement on just what 
elements should comprise an operational system. A composite, with much 
latitude of definition, might consist of: 
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Executive Control or Supervisor 
Translator — Assembly Language to Machine Language 
Translator — Procedure Language to Assembly Language 
Diagnostic Section 
Input-output Control System (IOCS) 
Macro-instruction and Subroutine Library 
Application Library 
Ordering Generator 
Report and File Maintenance Generator | (treate<^ 'n Section 4) 

Writ® program 
in symbolic 

assembly language 

Correct in symbolic 

assembly language 

Assembly language 
transl. program 

Machine translation 

to machine language 

Production 

Fig. 3. Solution of problems by data processing equipment 

Method II: Primitive programming systems 

specific answers are normal U A APPhcations programs, which obtain 
the procesS07to runninrr t ^ Pr°8ramS" These are converted by 
the control of the overall ^ executed' sti11 under 

variou^phases^Method IHTF ^ manua^ Iink*8 ̂  ̂̂ eTthese 
lhe compui"in mi c» ,roi 
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Programs writ ten in synthetic language 

f  — 

3.1 Translators 

There is considerable variation in the capabilities and duties of that element 
which translates from the source to the object language. The translation proce
dure might utilize a two-stage process from synthetic language through an 
intermediate assembly language to machine language. This allows for inter-

I 
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mixing other program sections at the assembly language level, particularly when 
no methods exist in higher level languages for stating these procedures. Such an 
assembly processor must exist anyway, and there is some economy in not 
duplicating this process. 
There are some advantages, however, in direct generation of machine language 
without going through the intermediate assembly stage. Direct generation often 
speeds up the translation process by eliminating variety in assembly. That is, the 
assembly section does not have to be general enough to accept what any human 
programmer might possibly write. All it must account for are the known actions 
of the previous section of the translator. 

Various duties may be charged to the translator, particularly in the optimization 
of the object program. The minimization of both running time and storage is 
possible through analysis of the usage of index registers, detecting duplicated 
computation and statistical optimization of decision processes through flow 
algebra [30], Thus those portions of the object program which are most likely 
to be executed are given preferential treatment in flow and storage interchange 
problems. 

The translator may interrogate the configuration of the machine both when 
translating and when running the object program to utilize available internal 
and external storage most efficiently. 

3.2 Diagnostic Section 

Only a small core of programmers ever achieve programs which run correctly 
on the first attempt. This is especially true as programs become larger and 
more complex. Using the machine itself is the most effective method of detecting 
errors and mistakes There are many theories about what constitutes 100 per 4 
cent verification and checkout of a program. There is serious question whether 
complex programs can ever be fully proven. All methods of machine diagnostics 
involve printout of intermediate and final answers to test problems. 

^racin8 Method. The earliest diagnostic systems superimposed an inter-
pretive control upon the execution of each individual instruction and caused 
Ldre« f executl°?' ow'n8 input, output, operation and instruction 
and rat h ldentlfl«tion. This method was useful for detecting spurious loops 
to hP pff ?8 S6Ve, err0rS m 0ne run- 5uch systems were eventually modified 
break intq1VTM°n J U^0n certain classes of instructions, perhaps as indicated by 

reakpomts. This technique is known as (selective) automonitoring or tracing. 

di2iceStInathPrintWhf°d' Strge Print' °f dump' is another basic diagnostic 
mediatelv fo lnTP ^ * C°ntents of stora^ a" P"nted out im-
techniaue mav '"d ^ 61101 St°P' ^ormats °f varying complexities. This 
execution II'T C°ntr°l be USed at anV «me during program 
execu on h h. J" I™ "Tc the pr°gram being tested, for further 
on tape comna d ^ ^ COntents of storage are retained 

, • compared against the contents at stop time, and only the changed 

isolateTdifficulriesquicke^" Usually^omeVf>'C'S t6di°US ^ scmrrarlv in • ™ zzszrjzszsxsrknown ,o co",ain 
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3.23 Snapshot Method. This is similar to tracing except that the method is not 
interpretive. Instead, actual and precise printing instructions are compiled in the 
symbolic program. They are flagged for easy and automatic removal when 
testing is complete. 

3.24 Automatic Testing Systems. There have been many special supervisory 
systems written exclusively for bulk program testing. Test time is at a premium, 
particularly with new machines, and unmechanized testing with the human at 
the console is much too expensive. Such systems: 

(a) Test, in series, the programs of many different people who are preferably 
not present. 

(b) Reduce manual and console operations. 
(c) Ensure proper tape loading for each program without time lag. 
(d) Generate various classes of test data to exercise as many program branches 

as possible. 
(e) Keep full records of all stops, addresses, conditions and operator actions 

for easier diagnosis following the run. 
(f) Feed in corrected data after an error so other error conditions may be 

detected in the same run. 

3.25 Running Checks. Many checks and verifications may be incorporated in the 
running program. Records written erroneously may be identified upon reading 
through the use of so-called hash-totals, which are not totals associated with the 
program but are rather an artificial summation of the characters or bits in a 
record, or group of records. Records may be automatically corrected if augmented 
by Hamming check bits or characters. Normally records with flaws are not 
allowed to stop the processing; they are written out on exception files for later 
handling. 

Checkpoints may be incorporated in a program at a convenient break point (i. e., 
integral processes are fully completed). Zero balance or matching data tests may 
be made here. If errors are detected, the program is returned to the last succesful 
checkpoint and restarted; if everything is checked, this point is installed in the 
proper address as the last successful checkpoint. A comprehensive survey of 
other auditing checks may be found in [31]. 

3.3 Input-output Control Systems 

Approximately 40 per cent of the total number of instructions in a typical com
mercial program will pertain to input-output operations [32], This includes all 
data movement through the central processor and related housekeeping which 
must accompany this movement. A major saving to the programmer has been 
the development of specialized input-output control systems (as integral portions 
of the entire operating system) which can do the following functions auto
matically; 

(a) Match tape labels to unit numbers, verifying correct mounting of data, 
system and program. 

(b) Detect tape type or density, when more than one recording density is 
available. 
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(c) Prevent erroneous writing on tapes which contain permanent or semi
permanent records. 

(d) Flip-flop tape units on symmetrical jobs, such as ordering. 
(e) Maintain an automatic count of records entering and put out. 
(f) Alternate input-output area usage in internal storage. 
(g) Relocate programs in storage for multiple operation. 
(h) Optimize read-compute-write overlap. 

(i) Automatic unblocking of records for reading and blocking for writing, 
(j) Housekeeping associated with tape files, such as rewind, error correction, 

(k) End of reel operations in multi-reel files. 

(1) End of job functions such as logging time, notifying next user, upspacing 
printed records, labeling tape files created, etc. 

(m) Automatic insertion of checkpoint and restart procedures pertaining to 
input-output operations. 

Such an input-output control system package is essential to the operation of 
guage elements such as GET record, PUT record, OPEN file and CLOSE file 

which appear in Commercial Translator, COBOL, etc. 

3.4 Application Library 

req"ireS MI "S'™ '» *1" translation 

ESS z=̂ 5KS£ < 
external storage not • • 11" pTO.grams maintained on magnetic tape or other 
ohiec^-SX^ n-t -r-"' (0' S0"'C«' f°™ b"> m >1" 
mation developed during the ^ '"h1" inf°r" 

ex^ttive8rouTneTetrcherthTrhdentified ^ name of the application. The 
another tape until it comes to the dXd^rUram^T' C°PYin8 ^ ̂  u° 
into internal storage, corrected in source ( °8ra™' Th,s program is now brought 
form. All updated information on this °rm and translated to a corrected object 
and all succeeding programs are rn • ,P™gramL ls now copied to the new tape 
neously with the test execution of the^6 "Tri °'d t0 °eW tape simulta" 
is corrected from information delivered"^ s Pr°g"m' Thu® the ob'ect Program 
vention in only a fraction of the time a comnlet" °Ut operator inter-

me a comPlete reprocessing would take. 

3.5 Macro-instruction and Subroutine Library 

independent statements',^IgebmkequaHo^s^' °f 3 mixture of machine-
instructions and actual machine 1 • ' macro"lnstructions, symbolic machine 
sponsible for sep. "," '7 ̂ S™ "" 
indication of the ordering which ' A- unng Processing, retaining an exact 
b, .be machine 

y e tact that pseudo-operators do not 



Programming for Commercial Data Processing 
331 

exist in the table of machine operation mnemonics. A table of macro-instruction 
operators for which generators exist in the library is maintained in storage during 
the scan. 
After initial scanning, macro-instruction calls are grouped and reordered to the 
order in which the generators appear on the library tape. The library tape is 
then passed against this list and all generators called for are extracted. After 
generation and establishment of symbolic addresses, the generated groups of 
instructions are ordered again to the original sequence in which they were called 
for by the program and merged with all other instructions to be generated or 
assembled. Unless this method were followed, there would be a series of tape 
searches and rewinds for each macro. Also, duplicates do not require additional 
searches in the reordering method. 

Closed subroutines are handled in much the same way, except that calling 
sequences and return linkages are written by a single standard generator. 

4. Retrieval of Information and Updating of Files 

Files of data are maintained for specific purposes including display of individual 
data, search by classes, listing, access by other programs on demand, etc. There 
are several classes of generalized programs particularly concerned with this 
process. They are: 

(a) File maintenance and updating generators. 
(b) Report generators. 
(c) Ordering and merging generators. 

| The first two apply to any type of file, the last applies only to files which are 
effectively linear, such as magnetic tape, and not to random access files. 
A file is a collection of data (on some storage medium) which displays groups 
of similar properties. The individual elements of files are called records. A record 
contains both the actual data needed and other data which serve to identify that 
record from all other records. This identification is known variously as the key, 
control field, label, name, identification number, etc. Such files are either 
sequenced or randomly ordered, according to the storage medium upon which 
they exist. Particular records are found correspondingly by either examining 
keys through a prescribed search pattern or by transforming the key to a 
secondary locator. 

A deck of punched cards, a magnetic tape and a perforated paper tape are all 
examples of sequenced files. They may be ordered by time sequence or key, i. e., 
it may be desired to find the 18th record in a file or that record containing the 
data on Smith, H. J., for instance. In the latter case, a multiplicity of searches 
may make it profitable to order the file alphabetically upon the key, rather than 
scan the entire file each time (in random or linear order) until the key is found 
to match the given key. This characteristic has accounted for perhaps 30 per cent 

the operating time in today's commercial data processing. This figure is not 
appreciably affected by random access files, which are a minority. Clearly this 

as been an area for profitable improvements in the reduction of programming 
and operating time. Since the problem is algorithmic, all ordering procedures 
"e similar in principle and vary mostly in details. Such is the origin of the com-
P icated and highly specialized ordering (miscalled "sorting ) generators of today. 
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4.1 Ordering Generators 

Because of the relatively greater cost and access time required to retrieve data 
randomly from files, the ordered file is still more economical for a large share 
of data processing needs. Ordering is a two-stage process. The user provides the 
generator with specific choices of, and statements about, the required input para
meters. The processor digests this information and produces a specialized running 
program for these specific conditions. The actual program produced is the result 
of modifying skeletal sections of program with computational results, and is then 
utilized to order the files. Except for certain special and largely invariant con
ditions, these machine-generated programs are cheaper to produce and more 
efficient to operate than those created by the average programmer-user. This 
is because they are the product of specialists that can consider a larger spectrum 
of applications, and because of certain invariant principles. An advanced order
ing generator might require the user to specify: 

(a) The file size (number of records) and organization (whether on a single 
or multiple tapes, and how these are labeled for identification). 

(b) The machine model and particular configuration of components available 
for this job. 

(c) The number of magnetic tape units available for either mounting the files 
or intermediate transfer of information, such as record rearrangement. 

(d) A choice between physical rearrangement of records in the intermediate 
steps or rearrangement of tags which identify or symbolize the particular 
records, reserving the physical rearrangement of the entire file until the 
sequence is fully determinable. 

(e) The amount of internal storage available for use by each phase, or stage, ^ 
of the process. V 

(f) The length of the records, whether fixed or variable length, and (if 
variable) how the length may be determined. 

(g) The length of the key and its placement (or the placement of its com
ponents) in the record. 

(h) The ranking or marshalling (term used in England) order of the characters 
from which the key may be formed. 

(i) Existing partial ordering or bias in the data to be ordered, if any. 

Many considerations are removed from the concern of the user by being incor
porated in the intelligence of the generator. Among these are: 

(a) Overlap of read-compute-write operations where feasible. 
(b) Choice of ordering method (digit, merge, distribution, internal ordering, 

si ting, etc.) or a combination of several of these techniques as required 
° ^ *Ze * 6 mac^ne in the various stages of the process (unless 
specifically countermanded by the operator). (Cf. [33].) 

(c) Internal or input-output buffering. 

(d) towtnnmediaUPin8) °f reC°rdS f°T ^ transfer within storage 01 

(6) Pfa,ddin8' °5 ,flllin8' of incomplete blocks or groups of blocks 

of padding' on'completiom ^ le8UlariZed Automatic removal 
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(f) Automatic replacement of keys by working keys whenever the internal 
character code of the machine does not have binary correspondence to the 
desired ranking order. Automatic replacement of original keys upon com
pletion of the process. 

(g) Collection and transformation of all elements of a key into a contiguous 
unit for convenience of comparison, with later dispersal to original format 
upon completion of the process. 

(h) Calculation of estimated running time to completion, and advising the 
operator. 

(i) Balancing the process as a function of the ratio of average computation 
time to tape read-write time (function of tape passing speed and bit 
density). 

(j) Assignment of actual addresses to instructions, input-output units, etc., 
with provision for symmetric exchange of functions during the process. 

(k) Automatic incorporation of rerun and checkpoint routines, for use in case 
of machine failure or detection of bad data. Provision for interruption at 
controlled points for jobs with higher priorities; thus ordering may be 
resumed at a later time without loss. This is vital because many files are 
so large that it might take from 1 to 20 hours of continuous time on the 
fastest machines. 

An excellent description of some of these routines, with application to many 
machines other than those manufactured by IBM, may be found in [34], 

4.2 Report Generators 

It may well be that someday the control and management of business will reside 
within the computer program. In the meanwhile, decisions are still made by 
humans on the basis of condensed and categorized information prepared by 
either other humans or data processing equipment. The normal form of such a 
summary is the printed report. Here again the process of preparing reports is 
algorithmic and is thus suitable to action by a generator program. 

The report generators create running programs which will abstract information 
from one or more files as needed to construct a specific report, rearranging and 
editing this information as required by the format of the report. (Cf. [35 to 37].) 
The user normally supplies the generator with the following information: 

(a) The characteristics and format of the records in the files to be used. 
(b) A pictorial layout or description of the report format, indicating spacing 

within the line and other editing conditions. 
(c) Special instructions on printing or indicating various levels of totals, etc. 
(d) Which different reports are to be printed on this one run, or passage of 

input data. 
(e) Order of rearrangement of data in case the file is in a different order. 
(f) Conditional printing desired (group indication, where information is rep

etitive). 
(g) Rules for insertions and deletions in the input file, if file maintenance is 

incorporated in the same run. 
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Typically, much of the input information supplied is identical to that required 
for ordering generators, thus the two processes are often combined. Most report 
generators contain, in varying degree, the ability to be linked with other pro
grams, to perform simple arithmetic necessary to production of totals, to perform 
file maintenance and updating, and to be modified at programmer discretion 
with inserts of assembly language subroutines. 

4.3 Random Access to Files 

Files may be searched in three basic ways: 

(a) The scan, or random search, method to find the record with a matching 
key. This is prohibitive in cost except for very small files. 

(b) The search of a file ordered on some function of the keys, such as alpha
betic or numeric sequence properties. There is expense in initial ordering 
time and in addition to or deletion from the file. However, it is well suited 
to linear files and batch processing. The search method is most commonly 
binary or in a FiBONACCian sequence. The binary search is most prevalent 
and consists of successive partitioning in halves, selecting the half in 
which the required record must exist by checking the limiting keys against 
the desired key, and successive reduction until only the desired record 
remains. 

(c) The search of a file located in storage by some algorithmic function of the 
eys. The key for which the record must be found is then subjected to 

the same algorithmic function to yield the address where the record is 
'an' . °Ca^e<^' "^le only reason it may not be there is because of pos-
si e uplications in the values yielded by the algorithm over the entire 
set of keys. The better method of this type is known as chaining. (Cf. 

8 J°L Although an inherently simple process, it is often misunder-
stoo ecause o confusion about the handling of duplicated addresses. 

Assuming the file is loaded, the chaining method requires that the key be 
converted by the algorithm to a tentative address. The key is then compared to 

e ey existing in this address. If they match, the further contents of that 
address are those desired. If they do not match, a further address is also con-
arned within the location specified by the tentative address. The key in that 

address (the chain address should then be matched against the search key. The 
process is recursive until the proper key and address are found. 

!fMlpkla rTPle 6Xample t0 Sh°W the loadin8 of N records into P positions. 
invnlveq'thp6^ t f ^ P" Padced 01 loaded" The following Example 4 
possible is- a 3 °r names, or keys. The algorithm chosen from the myriad 

Tentative address = J (Letter position in alphabet) modulo p 

hahndledabvachahi^Ab ™ t The duPlica«ons which occur will be 
duplications, but in genem] Vis" not'w^h^ ̂  f°Und 

a slightly better algorithm. P=N=lTm ^ T'ru'T, '"'M 
initially in the order in which the namesappear ? ^ 
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Name Computation 2 
Tentative Address 

= 2 mod 13 

John 10 +15 + 8 +14 — 47 8 
Fritz 6 +18 + 9 +20 +26 = 79 1 
Klaus 11 +12 + 1 +21 +19 = 64 12 
lulien 10 +21 +12 + 9 + 5  + 14 = 71 6 
Grace 7 +18 + 1 + 3 + 5  = 34 8 
Walter 23 + 1 +12 +20 + 5 + 18 = 79 1 
Roy 18 -(-15 +25 = 58 6 
Stan 19 +20 + 1 +14 54 2 
Alan 1 H (-12 + 1 +14 28 2 
Heinz 8 -i ( - 5  + 9  + 1 4  + 2 6  - 62 10 
Rene 18 - 5 +14 + 5 = 42 3 
Bob 2 +15 + 2 = 19 6 
Peter 1 6 + 5  + 2 0  +  5  = 64 12 

E x a m p l  e 5 

) Method I Method II 
A J J •ttaaress 

Chain Name Data Seeks Chain Name Data Seeks 

0 Grace 2 Grace 2 
1 2 Fritz 1 4 Fritz 1 
2 4 Walter 2 7 Stan 1 
3 7 Roy 2 Rene 1 
4 5 Stan 2 Walter 2 

5 Alan 2 9 Roy 2 

6 3 Julien 1 5 Julien 1 

7 9 Rene 2 Alan 2 

8 0 John 1 0 John 1 

9 Bob 4 Bob 3 

10 Heinz 1 Heinz 1 
11 Peter 2 Peter 2 

12 11 Klaus 1 11 Klaus 1 

Average Seeks = 1.77 Average Seeks = 1.54 
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Method I of Example 5 shows the result of loading when duplications are 
assigned to the first available open position. Thus Grace, the first conflict, is 
assigned to zero position. Method II shows the result if a different rule is used, 
holding all duplicates aside until the list has been gone through once, then loading 
into the available vacant positions. The number of seeks required to find each 
item at random has been tabulated. Note the improvement due to Method II. 
The scan, or random search, method of random loading would average seven 
seeks per record. 

It has been shown [41] that the average number of seeks with 
random frequency distribution will be 1.5. 

The average seek number can be improved by a number of techniques. Obvi
ously P > N will do so, but the advantage has been found in actual practice to 
be insufficient to use anything other than 100 per cent loading. Advantage may 
be taken of natural characteristics of data. Use of the method on the 305 RAMAC 
has yielded average seeks of 1.2 for fully loaded files. This indicates [38] that 
the average commercial problem will interrogate 20 per cent of the file 80 per 
cent of the time. The average may become as low as 1.1 for loading on a fully 
statistical frequency basis. This method was used to convert the English vocab
ulary to numbers [42], It was found that the natural frequency of English usage 
yielded an average seek of 1.14. 

The chaining technique is very helpful in translating programs to convert the 
names o variables to working address numbers for faster processing (cf. [12])- / 

5. Factors Influencing the Level of Programming 

5.1 Logistics of Machine Configuration 

tbp6l 'ar^.eSf: s'n^'e ^actor Meeting the advancement of the programming art is 
gis ic structure of computing machinery. Data processing equipment consists 

c .lri0rL* an a central processing unit with arithmetic and logical decision 
incut J!T' TheaVa'IabiIity °f various hierarchies of storage facilities, various 
sets all ha °U PU ,ev'CjS (both on" and off-line), printing devices and character 
sets all have a profound effect upon the improvement of techniques. 

faciliHes3^™1 F°r eXample' tbe ,adc of other than numeric input-output 
thetic lanena °S f USSlan cornPuters has seriously slowed development of syn 
potations whe? V COmm"nication with the machine. Even in scientific ccm-
of efficient ODtim' U,SSlanr a'8ebraic compilers have shown promise in the area 
location bv the i43' 44]' the Programmer is unable to refer to a storage 

°f ^ C°mentS and bave computer operate directly 
Since Ziabetic 1/aUt°maticalIy signing an actual location in storage 
transcriptionTs nereraC Ti.re n0t aVailabIe< a and inefficient process of 
be entered into the imA* mU3t b<? done by hand before the Pr08ram m 

Thus an ap^N b«w advanced the system is on paper. 
PP entry trivial feature heavily affects operating philosophy. 
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The stored program machine is a general purpose device. We have realized 
or years that one of the problems it may be given is the automatic translation 

from the language of the programmer to its own but this is not easily accom-
plished when the basic elements of the language, the characters, are not common 
to both languages. 

Alphabetic and other special characters are more available on computers in USA 
but programming languages may still be found using phrases such as "if greater 
than or equal to". If a single symbol were available to the user to represent this 
phrase and others, processing time could be greatly reduced. As it is such 
phrases must be written out in their entirety by the programmer in longhand 
with the attendant possibilities of error and faulty decoding. A sample statement 
describing income tax deductions in Commercial Translator required 700 bits 
of information at 6 bits per character (a maximum of 64 symbols available) If 
three new characters could be added to the set, the total number of bits required 
would be reduced to 500 even if all characters had to be represented by 8 bits 
rather than 6. (Cf. [45].) 

AT?™ 7 3 l3rger S6t °f characters has been increasing, largely influenced by the 
ALGOL language which presently has 1X0 characters for use in the reference 
anguage. This may improve general communication with the machine in all 

areas, and may prove to open new applications in computer-controlled typography. 
Some new machines, particularly the IBM 7030, are designed to handle larger 
character sets [46]. The Bendix input-output typewriter handles all the characters 
o ALGOL in an 8-bit form. Ferranti and Bulmers (Friden) in England have 
made provision for 7-bit sets for input and output. 

Eternal Storage. There is apparently a minimum size of internal storage 
necessary to scan and convert statements in a machine-independent language 
e iciently to the corresponding machine language program. In practice this has 
een found to be 212 ( = 4096) words, each word handling a minimum of 6 charac-

ters-Storages from 213 to 2IS in size are of course more advantageous. A storage 
0 2 is adequate for only the most ingenious scientific subroutines, wasting too 
much programmer effort to be useful for commercial work. 

5-13 External Storage. The lack of medium access, medium cost storage media 
.. as magnetic tape is an example of a machine characteristic which severely 
muts conceptualization of better computer usage. Although magnetic tape is 
0r linear files, which have certain computational drawbacks, it is exceptionally 

useful for supervisory control and library facilities in an integrated system of 
1 a Pr°cessing. This narrowness of conception is particularly evident in England, 

w ere tape usage is limited. A 1959 survey showed that only 11 out of 69 
commercial computer systems were equipped with magnetic tape [47]. Few 
ntish programming systems actually control computer action automatically 

over multiple problems [48, 49]. Even when synthetic language is mechanically 
ranslated into machine language, corrections to the running programs are usually 

s "I made in machine language [50]. External storage media like tapes are manda-
0rV for the use of application library techniques. 

such executive control is common in USA, it is not because the users are 
everer, but rather because the very existence of tape units in volume has 

P ompted such experimental usage and development. In a survey of 61 large 
fuputers [32], government equipment averaged 18 tape units per machine, 

22 D'8- Inf. 
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nongovernment equipment averaged 13 units. In both cases three units were 
used for peripheral operations. Each unit is capable of holding 5,000,000 
characters per reel on the average, but there are some short tapes. Including 
metal, acetate and "Mylar" tapes, there are over 600,000 reels of tape in USA 
today. 

As the design of modern architecture would not have been possible with the 
structural materials of a decade ago, it required the availability of magnetic 
tape in quantity to trigger and inspire new systems concepts and designs. 

5.14 Instruction Repertoire. An examination of early programs for small internal 
storages show complex modification of instructions through looping and initiali
zation. Present machines have larger storage and, perhaps more importantly, 
instructions which utilize index registers and indirect addressing. Not only do 
these features reduce the number of instructions necessary to do complex proce
dures, but they also reduce the amount of error which may be introduced in the 
program to be corrected later. It is safe to say that less than 10 per cent of all 
program instructions are ever modified today, over the entire spectrum of prob
lems. In commercial applications alone, it is probably less than 5 per cent. 
This characteristic may lead to permanent read-only memory [51] and larger 
programs with fewer loops. For example, the introduction of a photographic 
plate containing the entire basic programming system would have a heavy effect 
upon application programming. One of the present problems is to contain the 
working program so that incorrect modifications will not destroy the operating 
system with all its linkages to necessary auxiliary routines. Some present com
puters have provision for programmed storage protection by blocks to avoid 
such difficulties [52]. This would not occur with the programming system in 
separate storage from the working program. 

5.2 Cooperative Organizations 

One of the mixed blessings of computer usage is the ability of the machine 
designer to outstrip the last model by a factor of ten or so. The programmer 
and user is not susceptible to such magnification without artificial aids. For a 
single machine not much can be done, but for a group of identical machines the 
costs of programming can be spread out and amortized. 

m\rl/i^95u 3 8r°UP ?f 3irCraft comPanies in USA found, in planning to replace 
IBM 701 s by 704 s, that severe dislocation of production would occur during 
the changeover by virtue of the reprogramming necessary even though the 
machines had common generic characteristics. It was found upon examination 
that a vast amount of duplication and redundancy had existed in the usage of 
the earlier machine. The question became "Should basic programming remain in 
the realm of competitive advantage, or should a cooperative venture provide 
basic tools for all?" 

The outcome of this study was the SHARE organization, an informal cooperative 
among 704 users that has since grown to well over 100 members each with at 
least one 704 installed or on order. It has been expanded since to include the 
successors 709 and 7090 as well. How well this organization succeeded is indi
cated by comparing the number of programming systems for less than twenty 
701s with the number of systems for over one hundred 704's [53] Within a 
general framework of assignment, each installation contributes basic programs 
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with prescribed documentation to the entire body to use or modify as they wish 
Accompanying each program, however, is a disclaimer that frees the originator 
of legal responsibility for its correct operation. originator 

Following this single and successful venture, insularity disappeared in many 
areas. Functioning user groups include: fflany 

Group Machines 

ALWAC Users Association ALWAC III, IV V 

CUE CDC1604 
Burroughs 220 

DUO 1000 USe" Gr°UP Datamatic 1000 
PYru A MPP Datatron 201 to 205 
FAST Bendix G-15 
rnrnr r , • , U.S. Army Fieldata Equipment 
LINC temati°naI I0M 705,7070, 7080 
Mr, [r Sperry Rand LARC 

PR ?sn T r r- Mil i tary  AN FSQ ser ies  

prior " P Packard Bel1250 
tt Royal-McBee LGP-30 

RCA 501 Users Group RCA 501 

cH A „c Autonetics RECOMP II 
^Kt IBM 704, 709, 7090 
I ,Mn,. Philco 2000 (formerly Transac) 
USE " Gr°UP UNIVAC Tape Systems 

^ UNIVAC Scientific 1103 and 1105 

The above groups are all oriented to specific machines. In addition there are other 
groups oriented to particular applications or disciplines. They are: 

^ro"P Orientation 

Military Applications 
Highway Engineering Exchange 
Nuclear Codes Group 
American Inst, of Chemical Engineers 
ALGOL (Zurich-Mainz-Munich-Darmstadt) 

Th 
the 5C ®rouPs have found by experience that basic programming (the education of 
acq "1afllne) is not a competitive advantage after all, for each member has 
effort Tj,^ m°re inte"'8ent machine for his particular applications through joint 
a c°r ' "ls emphasizes that a certain amount of basic education is vital to operate 

an^' e^'c'encY/ whether it be for a single machine or a hundred 
doll l\ ' or^'na' computer and the original programming may cost a million 
SuccarS,eacFl' ^e second computer costs nearly as much, but the second and 
ca,ee 'n8 sets of programs are available at only the cost of reproducing some 

or magnetic tape. 

has KUCCeSS or8anizations of this type in promoting operational standards 
Crjje °cn morked. They also serve as a unified source of feedback for marketing 

na and information to the manufacturer. Interchange of new ideas and 

pOUCHE 
ZMMD 
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methods has effectively seeded and lifted the level of technical competence far 
above what might be accomplished by the secretive or insular user. Gone are 
the days when one oil company refused to test its programs on the manufacturer's 
sample machine for fear another oil company might steal its secrets and methods 
by a storage dump. 
At present, the only user organizations existing outside USA are ZMMD and 
GUIDE International (including the Committee for Europe), which has over 230 
participating installations. 
These organizations have strong control over specifications of operating systems. 
The SHARE group, after selecting and improving SAP, the standard assembly 
program for the 704, completely specified an extensive operating system called 
SOS for the 709. (Cf. [54 to 59].) Gradually the interchange of programs is 
moving from those written in machine-oriented assembly language to those 
written in procedure-oriented and machine-independent languages such as ALGOL 
and COBOL. This ensures usage both to the next generation of computer for 
that group and, in many cases, exchange between several user groups. 
A majority of these user groups have formed a joint users group, called JUG. 
A loose affiliation with the Association for Computing Machinery was 
accomplished in May 1961. 

5.3 Standardization 

5.31 Programming Languages. Much of the evolution of synthetic machine-inde
pendent languages has been quite similar. Most of the original translators for 
algebraic languages evolved roughly in the same era (cf. refs. [60 to 64]). The 
ALGOL 60 language is notable for the adaptation by P. NAUR of the meta-linguis-
tic symbology of J. W. BACKUS [65], an entire department in the journal Communi-f 
cations of the ACM devoted to algorithms written in ALGOL, and the series of' 
textbooks in ALGOL planned by Springer Verlag, Berlin, Germany. 
Standardization in scientific languages preceded that in commercial languages, 
just as scientific usage of computers preceded commercial usage in volume. No 
professional body such as ACM or GAMM took equal interest in the problem 
of commercial data processing languages, possibly because the problems were 
more difficult. In the absence of any requested action, the U.S. Department of 
Defense convened a meeting of manufacturers and users on May 28 and 29, 1959 
to consider such an effort. Committees were established for short range, inter
mediate and long range considerations. In particular, the short range committee 
was asked to prepare a proposal for a blend of FLOW-MATIC, AIMACO [66] 
and Commercial Translator by September 1959. This was to serve as a stopgap 
language which could be useful for a period of two years until supplanted by 
the language to be developed by the intermediate group. 

British manufacturers took an extreme interest in this effort and were called 
together by International Computers and Tabulators (whose corresponding 
language was CODEL) [67] in July 1959 to consider the same problem. It was 
decided to await results from the group in USA and then evaluate that language. 
As it developed, the short range group of CODASYL (Committee On Data 
Systems Languages) preempted the domain of the intermediate group, which was 
canceled. The resulting language was called COBOL (COmmon Business Oriented 
Language) [13] and went somewhat further than the original directive called 
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for. The language is complex and conditions are worsened by some unreconcilable 
differences in various equipments. Despite some remaining flaws and differences 
in reconciliation, the following manufacturers have announced COBOL processors 
for the indicated machines: 

Manufacturer Machine 

Bendix G-20 
Burroughs B5000 
Control Data 1604 
Minneapolis-Honeywell 400 
Minneapolis-Honeywell 800 
Philco 2000 
General Electric 225 
IBM 705 III/7080 
IBM 7070/7074 
IBM 709/7090 
IBM 1401 
IBM 1410 
ICT 1301 
NCR 304 
NCR 315 
RCA 301 
RCA 501 
RCA 601 
Sperry Rand UNIVAC II 
Sperry Rand UNIVAC III 
Sperry Rand 490 
Sperry Rand 1107 
Sperry Rand SS80/SS90 
Sylvania MOBIDIC 

5.32 Systems Standards. The chief obstacle to writing a single program for all 
different machines has been the intractability of hardware design Many aspects 
of computer design must reflect competitive technologies and salable character
istics. However, many differences between the several computers have been, in 
the words of J. C. MCPHERSON, "capricious and arbitrary". Many different options 
may be equally suitable, but when differing options are selected through non-
cognizance - it is time for standards organizations to step in. It is possible tha 
this area will contribute heavily to the reduction and simplification of programming 
effort. 

A joint project in the standardization of certain aspects of data Process'"S 
ment has been formed with TC97 (Technical Committee 97) of the ISO 

national Standards Organization) and TC53 of the IEC (International Electro-
technical Commission). Initial work will proceed in four areas, commencing 
the first meeting in Geneva in May 1961. These areas are: 

Character Sets and Representations 
Data Transmission 
Programming Languages 
Glossary of Terminology 
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The first two areas have to do with the common language interchange of both 
data and programs between users and various equipments. It has been found 
that much of the complexity in COBOL and similar languages is due to the need 
to take care of basic differences in this area. The third area implies that there 
may be an eventual joining of the scientific and commercial procedure languages. 
This is supported by two trends noticed by workers in the field: 

(a) Properties formerly exclusive to either type of language are very useful to 
each other. The business language is enhanced by algebraic notation and 
subscripting, the algebraic language can be improved by separating out 
data description and being able to refer to operands other than floating 
point variables. 

(b) The underlying syntactical structure of both types of languages is similar 
enough to suggest an eventual blending into a common language for all 
purposes, each with its own jargon or dialect, if necessary, but enough 
equivalent that common processors may be used for either. 

Another factor in raising the efficiency of programming is the selection of stand
ard machine configurations. User groups do this to limit the variety of programs 
needed. Although some of the variables in modular systems are compensated for 
by program generation (such as varying sizes of internal storage), it is generally 
advantageous to pick a specific configuration which is not always the minimum. 
For example, the first SHARE standard 709 specified a 8,192 word storage. 
However, it turned out that almost all machines were ordered with a 32,768 word 
storage because the cost of the additional storage was more than offset by the 
increased power in problems per dollar. Most programming systems are attuned 
to top efficiency for a particular configuration. Sometimes they are not even 
prepared for lesser configurations. It is usually advantageous in cost to get 
additional hardware to bring the configuration up to the standard because of the 
more than compensating savings achieved through use of the programming 
system. 

5.4 Experience 

S. GILL [68] states that "the practical business of tapping the vast potentialities 
of computers has come as such a novelty to us that we are practically developing 
an entirely new subject — a new version of mathematics, if you like". Considering 
the astonishing rate of growth in programming, it is not surprising that the 
literature has not had a chance to catch up properly. Besides, programming more 
than nearly any other field is learned by doing rather than reading. 
Without risking philosophical debate, programming may be said to have enough 
of the nature of thought processes that new developments stem mostly from 
circumstances and not from speculation. The most effective means of disseminat
ing such acquired knowledge is by seeding less experienced groups with a few 
highly experienced people. This has been adequately demonstrated by program
mers w o, aving reached a stasis point in one group, move to another group 
with a higher experience level and quickly develop to a corresponding position 
in that group. r 

Conversely, it has been noted that those programmers that advance to higher 
management positions (that do not involve actual contact with machines and 
methods) quickly fall behind current technology levels unless they make strong 
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efforts to keep up with new techniques. The present era of programming is one 
of stumbling in search of complete concepts. Current theories of programming 
are faulty and conflicting. The programmer who stops now is likely to retain a 
useless orientation for the future. 

5.5 Education and Literature 

The extremely rapid growth of the computing field has caused a notable lag in 
the publications of timely papers in the technical journals and in program docu
mentation. Actual practice has preceded in time the publication of the theory 
of practice to a surprising extent. Perhaps this has been due to a certain attitude 
of waiting to see if the field would achieve true professional status. 

5.51 Universities. Although single universities (such as Manchester and Cam
bridge in England; Mainz in Germany; Michigan, Illinois, Princeton, UCLA, MIT 
and others in the USA) made developmental efforts in both hardware design 
and programming, the infant science of computing was attached to a variety of 
departments. Such work has been supported variously by departments of mathe
matics, business administration, electrical engineering and any other with enough 
funding and interest to nurture a beginning. To date, no university recognizes 
a chair in information processing, which is the general field encompassing the 
computer sciences. 

Not until 1957 was there any general effort to train people for computer design 
and programming. Even here the universities did not take the lead by themselves. 
The manufacturers, extrapolating to a drastic situation in the expanding field, 
took steps to provide universities with special and production computers for 
training purposes. The effect is now being felt. A few universities stand out 
remarkably in programming. In Germany there are Munich, Mainz, and Darm
stadt, in Switzerland there is Zurich, and the USA has Carnegie Tech, Case 
Institute, MIT and Michigan. England has relaxed the early lead in programming 
techniques taken by M. V. WILKES at Cambridge and R. A. BROOKER at 
Manchester. 

The impact of programming training at universities is now felt. Each graduate 
from the Massachusetts Institute of Technology in 1961 will have taken a man
datory course in computer programming. The latest count shows a total of 118 
computers in universities in North America [69], There are approximately 65 
computers in European universities. Pages 135—138 of [9] list 145 universities 
in USA offering courses in automatic data processing and systems. 

5.52 Manufacturers. The education of the user is of extreme interest to the 
marketer of a product. Many manufacturers operate their own training schools 
in order to staff satisfactorily a large number of machines. Some of these schools 
are larger than universities. For example, IBM currently trains about 11,000 pro
grammers a year as part of a general educational program which reaches over 
120,000. A program on this scale is necessary to achieve a predicted work force 
of 170,000 professionals in 1966 for USA alone [70], Although sheer volume 
does not necessarily produce improved methods, the net effect has been an accel
erated learning process in the efficient utilization of machines through program
ming. The description and documentation of programming systems has become 
more professional. 
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Manufacturers also support the informal educational process by distribution of 
technical literature. One manufacturer distributed over 450,000 copies of more 
than 150 different publications in 1959 [71], In this instance, distribution of 
exchange programs among members of user groups averaged 150 programs a day. 

5.53 Teaching by Machine. One of the most promising methods for raising the 
level and competence of programming is to enlist the aid of the machine itself. 
The Computation Center at the Carnegie Institute of Technology, under 
A. J. PERLIS, utilizes a 650RAMAC to teach students to program that same machine. 
The student keypunches his name on a card, drops it in the read hopper and is 
automatically enrolled in the course. Provision is made for orderly progression 
through the lessons. When the lesson program written by the student does not 
work, the teaching program analyzes the faults and sends him back to restudy the 
proper previous lesson. 

Many experiments are being made in automatic teaching by computer [72, 73], 
North American Aviation has used semiautomatic methods to teach the 
FORTRAN language to over a thousand of its engineers. Computers are also 
being used to evaluate the effectiveness of programmers and point out where 
additional training or discipline is needed [74], 

6. Costs and Statistics 

6.1 Programming Systems 

Some idea of the relative size of programming systems may be gained from the 
following survey (cf. [75]): 

System Machine 
Number of 

Machine Language 
Instructions 

System Type 

SURGE 
CLIP 
APT 
CL-1 
SOS 

709 

709 

704, 709 

704 

709 
12,000 
18,000 
35,000 
45,000 
50,000 

Sort, report generator 
Information processor 
Machine tool language 
Information processor 
Compiler, operating 
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The costs of such programming systems may be expected to be reduced sharply 
in the next few years. In IBM's experimental expanded ALGOL system, for 
example, only 800 instructions are actually written in machine language; all 
others are written in expanded ALGOL itself and are thus usable for many 
different machines. The only machine language instructions needed are those 
for basic symbol manipulation and reduction to symbolic macro-instructions. The 
system is presently at about 12,000 machine language instructions; therefore 
11,200 of these have been self-generated. 

6.2 Programs for Specific Applications 

6.21 Size. One of the largest applications on record [76] requires 65 separate 
machine runs for a single problem. With an average of 3,000 machine instructions 
per storage fill, this gives a total program size of about 200,000 instructions. 

An oil company's first nine programs written in 705 Processor language [77] 
averaged 2760 instructions per program, or 13,800 characters. The total pro
grams required from 7500 to 36,000 characters of storage, averaging 20,000. 

6.22 Instruction Cost. Surveys taken in 1957 yielded the following average costs 
per checked out instruction: 

Language Cost per Instruction ($) 

Machine language 10 

Symbolic assembly 5-6 

Symbolic + macros 2—3 

Independent language 1 

Further statistics are available for the programs mentioned in Section 6.21. The 
average times for the nine programs were: 

Block diagram, code, assembly 7 days programmer time 
Assembly 97 minutes (avg. 2.5 assemblies per program) 

Machine test 50 minutes 

A rough calculation with these data yields less than a dollar per checked out 
instruction, quite comparable to that for machine-independent languages. 

The cost of moving applications to different machines varies considerably with 
the source language used to write the programs. Table 1 shows the additional 
advantages accruing from each additional degree of machine independency. Thus, 
machine-independent languages are extremely useful not only as an aid in 
decreasing the original cost of programs but also as insurance against moving 
the program to different machines. 

6.23 Staff. The largest computers, depending upon the class and variety of 
applications, may require a staff of from 50 to 75 people [78]. 
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Table 1. Comparison of typical conversion from one machine (family) to another 

Program 
Written in 

Effort for 
Machine "A" 

% Additional 
Effort for 

Machine "B" 

Net Additional 
Effort for 

Machine "B" 

Machine 
Language 

100 °/o 
(base) 100 % 100% 

Symbolic 
Assembly 
Language 

80% 80 % 64 % 

Macro-
Language 60% 40 % 24 % 

Procedure 
Language 20% 25 % 

1 

5 % 
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