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SUBJECT: MACHINE METHOD - ITERATIVE SOLUTION OF GAMES
By : Robert W. Bemer

The method outlined here is for the solution of a
20 x 20 game with three-digit elements in its pay-off matrix, as
programmed for the Card-Programmed Electronic Calculator. It may
be used for the solution of any game where the pay-off matrix has
20 or fewer rows and columns, such as an 8 x 17 matrix. It may
also be used, with a slight loss in accuracy, for matrices with
elements of more than three digits; in this case, all elements
should be reduced by a constant factor to make the largest
corrected element equal to 999. If any elements are negative
a constant must be added to all elements to make them positive,
The number of iterations required for the solution of the game
depends upon the number of digits of accuracy required. It is
conceivable that a sixth digit may be required in the running sums
if accurate work is being done. (You will note that only five
storage positions have been allowed for each of the running sums.)
This situation may be remedied in the middle of the process by
subtracting a constant, C, from each of the running sums and then
adding % to each of the values of Vn and !n from that point on,
The mechanics of the iteration process are explained in the paper
P-78B by Dr. George Brown of The RAND Corporation and may be
further understood by examination of the illustrations attached

to this paper. They are:

Fig. 1 Wiring of 417 plug-board,
Fig., 2 Program Sheet for 604 plug-board.
Fig. 3 A 20 x 20 sample pay-off matrix with unique

elements.

Fig. 4 and 5 Key sheets which give the row and column
numbers of any element in the sample matrix,
(Note that for convenience the rows and columns
are numbered 10 through 29 rather than the
conventional 1 through 20,)




CSM-315

~_"', = )1

= R TO U R A T ,
A“.A.‘."I. "~ - .ecﬁ 1nalx1cC C1ng v - Puliic -~ 1in al.l caras
required.
j ! - Ly A ~ Fal ! 3 - v ) ~ - -~ -
FLE e / portion of the list CCC:Au;ly yptainea 1ii the
solution of the sample game.
29 } ~ ) S o heoo- ~ 1e - o ! Y
It will be seen that the basic deck consists ol TWO
starter cards, twenty or fewer row cards, two row sum cardas, a

spacer card, twenty or fewer column cards, two column sum cards
L

¥ i v - - - mi 3 - - [ w2 y e ~ - > o = -

a spacter card. This deck (with the exception oi the starter
K S v e UL an at$e e L e S bt R A 4+

cards, which are removed after the first pass) is fed into the

1,17 repeatedly, each time representing a line of iteration. This

Q4+ Pl ) “re o "1 an +* e - s res Wk — ~ .~y o -~ 1
1. Starter cards - Clear the storage where the pass or line

» o - o v - - e < #£4 -~ - 1 - W my. 3
umber is maintained and determine a specific starting row. i4inis

arbitrary choice is made on the 604 board by altering the digits

w

o
f

emitted on programs 2 and 3. (See programs 1 to L, Fig. 2).

ements of a specific

b

2, Row cards - Feed in columnwise the e
row through the field selector, add these new elements individually
and again columnwise to the previous row sums, determine which of
wake the choice of the

b
next column to be added in. HReferring to specific programs in

Programs 5 to 12 - provide for indication of the column
m
-

v element currently being added. his is

~
=
8
[
®
-
o)
o)
ct
=,
£
o]

done by emitting a 10 on the first row card and raising the

number by 1 for each new element. OUn program 9 the starting
1

Prorsrams 13 to 17 - add the element cumulatively to the

old row sum.

4)]
ct
(‘1
Q.
e
=
g
,,,
e
}J
8
o
= |
3
o
)
£
83
b
15
'.l
ct
’_J
0
0]
>
o




n o
b0 + B —~
W\ v = n s @ S oo )
- M © 42 ~ Q 3 = D ~ ¢ T
™M | C— =4 ol ™ »i o ) = O -~
| O ® IS e~ B N N o w | 3 D O o = v £ ¢
= O & g O -~ b o O o o\ ‘ Q B
NI (&) < ) C ;I © nw o D 5 a C - BE «©
O N A, ord = D 5 B o D o > » n O BE O -~ %N
o o S | 3 = J i | 2 D ) ) 4 — ) > S - ;
= w 2 Q S Bv O o N = & C 0 o~ O
o4 ~ P = Q P VD ~ £ o j
¥ O 3 ) ; O o~ - : = 5 = C
Q b o e = 5 . Q - O Q O = o) )]
0 Da i o o Jd 8 o N 0 U - ) ~ ¥ O 2 o B
- @ O ) “ (® ~ + = = QD P S >
= ¥y O 0N ~ \ 2 T O -~ o —_ Lo ) 0
- =S o Fe ) QD ~ o+ 0O £ @ P v — =
= ho BIREPE | (4] o, o g ™ E © o d L w P o P =
= E - (o)} N S Q o e o £ O e e O
4 s SN M PP A . — i b - E s < o) 2 M
. 0 O N o g = D ) s Q -~ ~ = )
3 O -~ o= | m - . 0O E V) O e B — . - . oy 5 Gy
| - O 4 —i o 0N o . o g %4 & G4 P (e
3 Q or4 42 = . . . 3 D q o
£ (5] - ) = - O 4 . it o~ QO = ~— Q &
4 o o O -~ o Lo Y o S ¢ . o 5 —~ Q
'S I V) > = © | ~ ot o . O o W = n
T - ) O P | b o . B 2.8 0 G
S 2. o A -~  ord o o = . o C
J 3 e & M o IR o Q /)] o ] Y -
(] s ) = G go g @ - ~ £ 3 >,
= T B Gy S L o gl (R A= e > i) A
T S T ! O E g~ - o i 0 VS Q @
4 .4 o 3] = U - t P Y ) | Q . Lo
- D 4 = © — D Coq -~ o 4 o d - 3
) o i ) 3 ° £ (o] { = VIS > ol S oo (&) o O
. - D — O W J ' SR - v o 1} 3 ; .}
P T 1 P | N O T & | | FE R D
) ! O U &5 T -~ = 4 P P 0 >
>, O < O o O Moo e q > N ] v N 3 E g o
O o I + o B E £ N ~ = & o 1 N 3 0 =5 O
4o s el Gy = @ i (- ~4 | N < N \ 0
£ 0 C O E % > 3 O < -~ o O 7y —
) > o > ~ ~ = ) | 0] QO - [ I 0 = e " =
Q ab { O i o — i B D T o I v :
J ™ 2 Q@ o £ ™ o | B ~ 0 o~ @ M O ) 3
~4 > d d g (o ™ = (s " 0 d v J \ & 1
— S 2 ) 3 - » G 4 — ol o O 4y Gy Q o
t | - O - 3 | L - '3 5 v L2 O O 3
‘) O O J s | = - i o 1§ U = ! J 3 . B o - 4
3 ' S et = o~ 3 -~ - v () | “\ ) (o & ¢
) 5 - M o~ o . ¥ | > b C . 3 — by O I ~ o L
R B - - &0 4q T ) Qe o M N B 3 ; . W ®w 3, ey o8
& g Gy ) ! = - - D e O -
= ~ B J e = 2 0 P ) s - b ) O N | = N O T 0
3 { I O o, — 3] 3 TR 3 D x O P Q o 2y o~ o
=] : 0 © < = S T - > = Q O =
— | O O ¢! J o4 2y d ( = -
o < 1 & L - o e o - & . d Q
- O O .c = E £ B a 2 “\ = < -
E ©O b ) ( e S < e, I3 O ™y 4@ 7y I s —
& ™ o 0 : M - O S .
2 = ’ 3 3 e i T
_ O ! O - M ~H X - b))
< . o O O VT 3
4 0 b 0 ] O 4 - . © Q




CSM-315
2=26-51
Page 4

Programs 35 to 45 - obtain the running value of V., to
three whole numbers and two decimals rounded, for the specific
line just calculated. This board may be used on a 40 program
machine by substituting a single program of RO-MQ, RI-GS; for
programs 37 to L5, giving an unrounded value of In'

Program 46 - sends the sum of row sums to counter-group
2 for storage until the next 131 card comes Uup.

The second row sum card contains a 9 in the operation code
to summary punch from GS; the next column chosen to be played, En
from GS;, and the line or pass number from GS,. If it is desired
that only these values shall list on the L17, turn Set-up Change

Switch No. 1 off.
L. Spacer card - Allows time after summary punch. Program

L7 reads the next column to be played into the counter for listing.

5, 6, and 7. Column cards, column sum cards and spacer
card - Read the same as Items 2, 3, and &4, substituting row for
column, column for row, maximum for minimum, Cn max for hn min,
larger for smaller and Vh for ln’ counter group 3 for counter

group 2.

g
In order to expedite effective dunlication of -this set—-up,
the sample matrix of Fig. 3 has been set up to show exactly how
the decisions of play are made. The elements of this sample matrix
consist of the numbers from 100 to 499 arranged randomly. Whenever
possible an interpreted copy of the basic card deck for this matrix
will be furnished along with the paper work. Also appended is Fig. 7,
an actual portion of the solution of the game starting with row 11
as the initial choice, If this is duplicated it may be assumed that
your boards are in working order. Within the 119 passes shown, En max
= 303.21 (pass 109) and Vn min = 311.13 (pass 119), showing the

actual value of the game to be between these limits.
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Appendix Z

REPORT ON HISTORY AND USE
OF AUTOMATIC CODING

MR. R. W. BEMER of IBM: This business of the coding systems
cannot be covered in small talk such as this. It is an unholy monster
and has been going on for a number of years. Like many field of know-
ledge, it has to divert itself greatly before we can cut it down to size
again.

Some of you here have been in this business for quite a bit of
time and are familiar with many of the things I would like to say here.
Others of you, I am sure, are not too familiar with computing systems
outside of the 702 and 705 and perhaps may not be aware of some of the
history and some of the reasons these things came into being.

Of course, it has not always been as good as it is today,and,
furthermore, what we now think is a good thing is terrible, it is going
to be improved in the future.

Inasmuch as I can cut this thing down, I would like to say that
many of these things I would have otherwise talked about here can be
found in some articles in Automatic Control magazine for March and
April and I think will provide some means of keeping this information
on tap. More or less the history of this business and all these articles
are directed towards the engineers but then I believe it applies equally
to people in the commercial field.

I have a rather large list here which you certainly are welcome to
look at later on. I have some 83 automatic coding systems which are
completed. The first of this was established in February of 1951 and,
as I recall that date, things at that time were in pretty sad machine
language at best.

The machine language at best is a poor language to work with for
it does not have any relationship, that I can find, to the program of
solving language and, if we never see it again, it will be too soon. I
hope that you feel the same way that I do because most of you are in
business to solve problems of one description or other.

I don't think that you should have any concern with the computer
itself. I thini- that you should be abie to state your problem in con-
nection with any particular model and in a language that the computer
will work for you.
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Appendix Z

Report on History and Use
of Automatic Coding - Continued

When you speak of the machine language, this means our lowest
level, the only language which the computer will understand, We
realize that we code problems now to do work, that the automatic cod-
ing systems are further extensions of machine usage and so they will
take over still another facet of our work. In other words instead of
doing quickly the problems that used to take a lot of handwork and
comptometer work, the machine takes over in the same way and does
a good deal of the repetition in programming which we formerly had
to do. This is undoubtedly very fine but then it is not the end by any
means.

The next step up beyond that will be to provide learning and
intelligence in these programs and also let us guys that have to worry
about making these automatic coding systems take advantage of the
machine also, and I will describe how this might be done.

I think those of you who have worked with machine language, with
the 705, symbolic coding and so on, have enough experience in this
So that you are aware of the great savings you can make in manpower,
This computing business has been growing, at least ever since I have
been in it and if we keep on doubling people or programming every year,
pretty soon the entire population of the United States is going to be
doing programming, Therefore, to eliminate the bottleneck, we have
to get good automatic coding systems going, far superior to the ones
that we have now,

I think that this will probably effect, within the next two years,
savings on the order of ten to ¢ne, wherein one programmer will be able
to do the work of ten and, if we can also do some other things we have in
mind, we will be able to make savings on the order of one hundred to
one. This will bring us down more to the realm of possibility,

In order to bring this thing down, I think that we have got to be
within a ratio of about fifty per cent of what we can do with automatic cod-
ing systems as they exist now. We have got to write equations for opera-
tions, the various statutes that are applicable and so on. There, even if
we get a very fine language with which to describe our problem, it is
going to be very difficult tc cut it down too much more than we have now.
It is true that we will put it into English and that will make savings, but
the processing is still quite large.
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Appendix Z
Report on History and Use
of Automatic Coding - Continued

What I would like to quickly tell you about is some of the plans we
have over at IBM to make this large savings for the future. The reason
that I say this is because the very name of your organization, "Guide"
should enable you to be guided by some of the things that I would like to
tell you. T do not want to worry you about them but I would like to have
you know as to what may be coming up in the future and slant your think-
ing in that direction.

The program, after it is written, is essentially a depository of the
intelligence of the man that writes it, If you are doing a hand calcula-
tion program, you can go through the thing because you have made the
calculations and you know how to do it. However, suppose that someone
else wants to do it and you have to teach them how to do it. If 500 want
to do it then you have to essentially teach them in a class or teach ten,
who, in turn, go out and teach the rest.

With programming on the computer this is not necessary any more.
The program, as you write it, has input and output from that point on
and, after that, you do not have to know what goes on inside. All that
you have to know is what you put in and what you want to get out on the
basis of such and such a process.

Now then, if we can do this sort of thing, we have reduced a good
deal of our labor. Let me tell you how this will help us in the future.

Two hundred years ago mankind was saddled with roughly a fifth
of a horsepower and books were written at that time to prove that it was
impossible to have more than that, However, as we know, we have
increased that so that there is available, to every person in the United
States, roughly 200 horsepower at his own personal command. This is
in line with the cars and other mechanical devices we have in this coun-
try. We have extended cur power here and it hasn't seemed to do us any
harm.,

It is now to the point where things have progressed to the point of
where they are pretty much beyond us. No one man is smart enough to
take care of our social and economic problems any more and the only solu-
tion is to expand our brain power and we do this by linking together
various things. I believe that we can do this by linking together intelli-
gence and knowledge of the people themselves in the problems.
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Appendix Z
Report on History and Use
of Automatic Coding - Continued

Obviously there must be some correlation between these things and
so this is what we have to do. We must devise learning programs for
the computers. I realize that there are many learning programs of a
simple nature., I now have reference to the work of Simon and Newell.
They have developed a logic machine that I think is going to have a lot of
implications. It is a computer but, instead of computing what you might
consider payroll, they program a logic.

The first problem they set the program to doing was proving the
mathematical theorems. I would like to illustrate that on the board
by the use of the normal triangle. This is a triangle and we have given
here equal angles and the problem is to prove that the opposite sides
are equal. Of course, we all know the technique used to do this, How-
ever, the machine would do it differently, The machine has certain
learning mechanisms in which it alters its own program so that a good
programmer cannot predict what will finally be in the machine. Here
is what the machine does. It says "I have a side angle and it may
intersect. I know this by an angle side angle combination and, there-
fore, I flip it over on itself. I will take a mirror image and drop it.
Therefore, it is on its side, superimposed on the same place. The
angle on the right is now the same angle on the left and so it must be the
same triangle, Now the side that used to be on the right hand side is
occupying the left hand position and the left hand side is now on the right
and so they must be egua!", This is a much more intelligent proof than
the mathematics involved. Of course, this is only the start of these
things. We can reconstruct exactly how the machine thought as it went
around doing these things.

Therefore, what we are doing now is trying to find learning pro-
cedures such as this, whereby the machine may alter itself on program.
It not only gives you a better and more efficient program but it will do
things that we as a single person could never have thought of before.

In the programming research of IBM, we have approximately 30
people right now and we expect to have up to 75 by the end of the year,
This recognizes just one thing, that a system for using a computer is as
important as the computer and, furthermore, they must both roll off the
line together in order to have a good system.
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Report on History and Use
of Automatic Coding - Continued

Therefore, IBM is committed to producing these systems and we are
presently working on some better automatic coding languages which we
think will be far superior to anything we have right now. Of course, it
is going to take a few years before we can get them to you.

I think that the interesting thing will be this, that you will not have
to worry about switching. At this time we think that we are grown up
enough in this business to look ahead and we are designing this language
so that it will work on the most advanced computers.

We want to have a supervisory operation so that the machine
schedules itself, figures out what problems should be done next. If this
is done then we feel that we will then have a good means of making
various programs together.

Furthermore, if I have sequence to do, I like to make my accounts
payable and payrolls. If I have done payroll 34 and accounts payable 28
and various things, I would like to be able to say, '"Do these in this order.
Accounts payable; payroll; Jones, Smith, Pete Brown'. You have all
these names in very, very large operations and you will find, I am sure,

that your thinking with respect to both commercial sides of the prolems
will be greatly facilitated if you keep this method in your head, and I
expect many of you do that with profit there.

IBM has expended a great deal of effort on making this language.
I think so much that probably any one installation or even group installa-
tion will not be able to afford it or profit by doing this particular thing
any more. Before the transition of 705, I know of exactly one person
who has a fair idea of what goes on all through the system. The people
that did the components did not know anyone else's part very well, and
this is only our present system. The system of three of four years in
the future will be such that it will be probably worked on by forty people
and not one of them will realize what goes on in anybody else's section,
and then when you find these learning techniques and the machine
statistically improves its own program, nobody, even the man who
originally wrote it, will be able to recognize it.

So, it is obvious that the manufacturer has the responsibility to
produce and use these systems and he will have to do it and it will take
plenty of manpower.
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Report on History and Use
of Automatic Coding - Continued

Now, I don't like to hire any more than the next person, so I would
like to leave you with something in mind,

We profited by having a man from United Aircraft at Hartford and
also a man from the University of California Radiation Lab work on this'
while it was developed. They did three things by this. They helped the
formulation and completion of the System. They learned the inside of
the system to a much greater extent than the normal user, so if they
wanted to make special variations for their own usage, they were in
much better shape. The third thing was, they got to see some of the
other people in the business and shared and cross-pollinate ideas and
information,

Now, I would like to propose that something like this might be
possible for the languages that IBM is going to develop now. We have a
woman from BEeil Telephone Laboratories now working on the Fortran
Systems with the 32, 000 word 704, and this apparently, so far, has
worked out very well for both the people concerned and the general
industry, because of the way we submit our system,

It will be to your advantage to contribute the man, if you have him
to spare, or have their services available, to use on a consulting basis,
SO we can try to work the language out, Be our guinea pig. Would you
mind learning the language and trying it on a theoretical problem or
one you have in your shop ? Only in this way will we know how to make
the common, pure language that is applicable to everyone's purpose and

usages, Thank you,
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Why the Engineer Should Know

Programming

Computer

One of the major expenses of setting up a modern high-speed
computer to do useful work is incurred by programming—the
science of translating a problem to terms and instructions that
the computer can understand and obey.

The type of problem affects programming costs ranging from
60 to 100% of the cost of the computer itself, which varies from
approximately $30,000 to more than $2,000,000 in production
models. If a program is poorly constructed, the running pro-
gram can take many times as long as it normally should to pro-

duce the desired answers.

With a trend now developing toward giving engineers more
direct access to computers, efficient use of these modern engi-
neering tools charges them with new responsibilities, The con-
cluding article next month will detail what the engineer should

know about programming.

BY ROBERT W. BEMER
Programming Research Dept.
International Business Machines

B The engineer knows his own prob-
lem best. Simple economy dictates
that it is better for the engineer to
learn ONCE how to program any prob-
lem for the computer, rather than his
explaining each new problem to the
professional programmer with result-
ant loss of time and effort.

The man with the problem may also
make decisions “on-line,” during the
course of the computer run, from the
physical implications of the answers
as they are produced. These fine grad-
ations of magnitude and interrelation
are immensely more significant to the
engineer, whereas the operator can
seldom be instructed to properly make
these often delicate decisions. The di-
rect-user technique can greatly reduce
the computational costs of certain
types of problems by eliminating ecal-
culations along visibly fruitless lines
of investigation.

Actually there are two ways to re-
duce costs of computer operations.
One is to reduce the actual labor
spent in programming, affecting sal-
aries and overhead. The other is to
make the program more efficient from
the machine standpoint, thus mini-
mizing operating costs in dollars per
problem solved. Both of these are of
vital interest to the engineer because
of the worth of his time. Further-
more, management must be kept con-
vineed that this profitable tool actu-

ally makes money for the company as
well as reducing the complexity of the
engineer’s tasks. These factors con-
tribute to the many sound reasons
why the engineer should know and
understand computer programming.

Computers permit cooperative ef-
forts between engineers which mini-
mize the work each must do. When
properly constructed, computer pro-
grams are “open-ended” and allow re-
finements and additions to be append-
ed at any time. After seeking compe-
tent advice, the engineer inexperi-
enced in programming should make a
modest start on a single portion of
his problem, which may then be aug-
mented as planned or as initial results
demonstrate to be desirable. For
library purposes, the program may
then be considered to be the reposi-
tory of the intelligence of the engi-
neer concerning that partieunlar prob-
lem,

Furthermore, a computer program
tends to elarify and organize a prob-
lem much as explaining it to another
person does, except that it is less gul-
lible. When properly named, this pro-
gram is now available as a component
in a larger problem. If a hand-calcu-
lation is performed, only the results
of that specific case remain; the meth-
od itself may not be distributed to
others except by a teaching process.
When coded for a computer, however,
it is available to everyone without re-
gard to the internal process. It essen-
tially becomes a “black box” and all
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the user must know are the specifica-
tions for the input and output. By
extension, it is possible for a group
of engineers to unify the whole spee-
trum of their work. This complex of
programs now represents a unified
system, although programmed switeh-
es are usually inserted so that certain
portions of the calculation may be
bypassed when not required for a
specific application.

Thus, the computer affords the en-
gineer the long-coveted opportunity
of shedding the drudgery of numeri-
cal caleulation in its most repetitious
forms. If the computation essential to
a certain class of problems is reduced
to a generalized form which automat-
jcally produces correct answers merely
upon specification of controlled input,
then the arithmetic-bogged engineer
is free to do engineering in the true
and ereative sense.

Vast engineering experience can be
gained in a minimum time with a
computer. Many of us know the old
hand who can predict the exact per-
formanee of a new airplane, the pre-
cise way to design a boiler, or the ex-
act proportions for the most efficient
bridge design. Few of these men are
born; most of them achieved such
abilities by intelligent correlation of
the cross-effects of many thousands
of variations in design, observed
through the many years of their ex-
perience.

A computer can condense this ex-
perience in time scale, processing
many thousands of variations in a
short time once the controlling condi-
tions and formulae have been speci-
fied. For example, instead of design-
ing a single airplane and completing
the analysis slightly before the proto-
type is built, aireraft engineers now
use computers to try hundreds of de-
signs. They may make the final deci-
sion and design selection on compara-
tive costs as well as performance.
Then too, many problems are now
solvable for which there does not exist
a classical method and so were only
roughly approximated heretofore. One
would hardly use a rigorous method
to solve a cubic equation on a com-
puter; it is possible to solve a 50th




order equation by iteration in mot
much more time than it takes to push
the computer START button.

The engineer may find unexpected
sources of computing power in his
company, It is quite common for com-
puters to make their advent at a com-
pany through the accounting or pro-
duction control departments. How-
ever, the engineer who is cognizant of
the characteristies of computers and

programming is also aware that com-
puters originally designed for doing
commercial work are capable also of
doing engineering work, and vice
versa. Most computer manufacturers
provide relatively easy programming
systems for performing these dual
roles.

It is important for the engineer to
know how to justify computers for his
needs, and in what pattern the work

TYPICAL ENGINEERING APPLICATIONS
FOR COMPUTERS

Until the engineer actually starts to investigate the programming
process he is not likely to be aware of all the opportunities for a
computer to serve him in his work. This list of typical existing
engineering applications should prove to be a useful guide.

AERONAUTICAL ENGINEERING

Aeroelastic, utter and vibration analysis

Armament systems evaluation

Bombing systems evaluation

Body and duct design, lofting

Compressible flow studies

Data reduction-telemetercd, theodolite,
wind tunnel

Engine cooling

Fire control pursuit course calculations

Flight trajectory calculations

Fuel cell pressure analysis

Guidance problems

Guided missile optimization studies

Heating studies

High-speed instrumentation

Landing gear design

Load, shear and moment calculations

Nozzle design

Optical system design

Power plant performance calculations

Radar equipment design

Radar detection probabilities

Radar echo studies

Radio interference

Radome studies

Servomechanism calculations

Sound pressure analysis

Standard performance calculations

Wind tunnel balance computing

CHEMICAL ENGINEERING

Absorption analysis

Crude oil evaluation

Flash vaporization

Gas vapor cycle performance coefficient
Liquid-vapor equilibrium caleulations
Mass spectrometer analysis
Multi-source planar diffusion

Pilot diffusion cascade data analysis
Pipeline design, stress analysis
Refinery simulation, production analysis
Tankage studies

MATHEMATICS

Algebraie ations—real and complex
Applied probability functions
Complex polynomials

Eigenvalues

Fourier analyses

Generation, tables of special functions

Linear programming

Matrix calculations

Minimize functions of two variables

Ordinary differential equations

Random mnumber generation

Random walks

Simultaneous linear and nonlinear
equations

Simultaneous linear and nonlinear
differential equations

Transportation problems

ELECTRICAL ENGINEERING

Circuit design and minimization

Circuit breaker design

Motor and generator core losses

Motor and generator—critical shaft
speeds

Power system—economic operation

Power system—Iloading and losses

Power sub-station studies

Stability and transient studies

Transformer design

PHYSICS

Atomic power studies

Gamma ray attenuation
Neutron agsorplion breakdown
Nuclear calculations

Upper atmosphere research
X-ray crystal structure analysis

STATISTICS

Analysis of variance

Auto-correlation and power spectra

Climatological statistical analysis

Least squares curve fitting

Multiple correlation and regression

Multiple bivariate frequency distribu.
tion tables of weather elements

Quality control

Standard deviations and means

MISCELLANEOUS

Bridge and truss design
Traffic control
Cut and fill—road-building

load should expand. Certainly any
computer should go into reasonable

production to earn its keep from the
moment it is installed. Even with t
most enlightened management it is
difficult to properly explain the
amount of preparation and program-
ming which must be done in advance
of delivery. This is additionally com-
plicated by the axiomatic condition
that while the most efficient machine
for the engineer is the largest and
most expensive, it is the most difficult
to initially load and justify.

Before the advent of automatie cod-
ing systems, which relegate to the
computer itself most of the work
caused by the nature of the machine
language, there was an “open-shop"”
versus “closed-shop” controversy in
the computing field. Programming for
a computer was a difficult and tedious
art to learn, with many “housekeep-
ing” funetions to be performed again
and again. Unfortunately, these fune-
tions were caused by the limita-
tions of computers; they contributed
nothing to the solution of the problem.
Most computer-equipped companies
leaned to the closed-shop, teaming a
programming specialist with the en-
gineer because they felt it was too di
fieult and expensive to teach program-
ming to all of their engineers.

Although many inefficiencies were
thus created, a few companies pio-
neered the open-shop and we are in
their debt for the methods that they
developed and for forecing the auto-
mation of coding. Today the contro-
versy is simply settled, Available
automatic coding systems (to be com-
pletely listed in the first published
directory of them next month—Ed.)
now make it easy and worthwhile for
the engineer to do his own program-
ming in a “problem-solving” language
rather than a ‘““machine” language,
thus fully realizing the benefits of the
open-shop. All closed-shop people now
concentrate on fabricating the much
more intricate and intelligent auto-
matic programming systems of the
future. @ W
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What the Engineer Should Know About Programming

How to Consider A Computer

Engineering is taking on a “new look.” Computers are the logi-
cal and more powerful successors to the desk calculator and the
slide rule, the previous working tools of the engineer. There is
really only one major difference: because of their necessary size
and cost to be so powerful, computers must be shared by a great
many users. This means a new concept of shared system operation

must be accepted by the engineer.

To help you get oriented, here are some vital considerations
affecting present and future computer use in your work and some
helpful sources of further highly specialized information.

BY ROBERT W. BEMER
Programming Research Department
International Business Machines

® A computer should not be rented
or purchased unless an automatie pro-
gramming or coding system is fur-
nished for its operation. The com-
puter and the operational system con-
stitute a matched pair, and one with-
out the other is highly unsatisfactory
from the point of view of getting
work done at minimum cost.

For engineering work, any auto-
matic system should contain provi-
sion for indexing and floating point
operation, if these are not built in as
hardware, for they are the two most
vital features for easy usage. Index-
ing allows for algebraic array nota-

tion, which in turn makes for easy
understanding of how a problem
should be programmed. Floating
point, although it may sometimes in-
troduce either spurious accuracy or
loss of it to the uninitiated, prevents
a Gordian tangle of scaling difficul-
ties from cluttering up the problem.

HOW CODING SYSTEMS HELP

Automatic coding systems have by
no means reached their ultimate effi-
ciency or sophistication, yet remark-
able savings in programming costs
have already been achieved, some-
times by an order of 50! For the best
of the present systems it is a reason-
able estimate to say that they can, in
general, reduce the programming

costs and time to a tenth of that re-
quired to code in stubborn machine
language.

There have been many attempts to
relieve the burden of programming
through special coding systems of all
types. The data sheet on computer
coding systems is not only an inter-
esting history of growth, but is also
presented for the edification of those
now entering the field with incom-
plete knowledge of what code to use
for their machine. The time may come
soon when you will be using a com-
mon language exclusive of the char-
acteristies of any particular computer.
Thus, with an automatic translator
for each different computer, a run-
ning program may be produced for
any desired machine from the single
original problem and procedure state-
ment in the common langunage. Credit
is due to Dr. Saul Gom of the Moore
School of Eleetric Engineering for
first championing these prineiples.

GOOD COMPUTER OPERATION
IS STATE OF USER’S MIND

It is axiomatic that a computer
should never stop, run useless prob-
lems or be subjected to manual oper-
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ation and dial-twiddling. To do so
deprives your fellow engineers of its
benefit. Here are some detailed con-
siderations pertinent to good com-
puter operation :

Mt can do only what it is explie-
itly ordered to do, and this ordering
must be done eventually in its own
machine language, which is all it ean
understand,

» The reliability of most. present-day
computers is so high that!answers are
not right or reasonable, the chances
are at least 99 to 1 that it is some.
how the user’s fault, Wrong answers
usnally stem from wrong equations
or misuse,

» Allow for growth when doing the
original planning. Build in flexibility
for changes, or else costs will soar if
the entire problem must pe re-pro-
grammed. A stored-program may al-
ways be corrected or augmented to
give exaetly what the engineer de-
sires, including special report format
for jobs where repetition justifies the
effort.

» For design studies, plan parameter
variation carefully and allow flexi-
bility in changing individual param-
eters. The computer may surprise youn
by showing that some pParameter yal-
ues for optimum conditions may be
outside of the range expected or al.
lowed for. To make certain that the
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program gives answers consistent
with hand-computations, first test the
program on the machine for g specifie
combination. Tjme this run. Then
multiply this time by the total num.
ber of parameter ecombinations to see
if the study ig feasible in time and
cost. If M parameters are combined
for N values each, the total numbep
of eombinationg ig NM,

For example, with ¢ Parameters .
6 values for egeh will produce 46,656
combinations: 5 will produce 15,625 ;
4 will produce 4,096,

The moral: Doyt triple the cost of
your problem if yoq are engineer to
draw a curve through one Jess point.

FUTURE Compy TER
LANGUAGES

New synthetic languages are in the
process which will affeet your use of
computers, Ag problr-m-s(;h’ing lan-
guages they will pe much superior to
Present systems in these ways:

1. Even though the binary type of
computer will probably be universal
for both engineering and commereial
work, the need for the user to know
binary representation will effectively
disappear, Logical decision will be
the only remaining funetion which
will not appear in decimal form, anq
cven here facilities will be provided
so that the Programmer need not eop.
cern himself with the precise method
of operation within the machine. Con.
version from fixed point decimal to
floating point binary for operation,
and tle converse for output, will all
ba ¢ne “Uloniatically by the synthetie
larguege translator,

2. The elements of the synthetie
language will be essentially algebraic,
both arithmetje and logieal, and lip.
guistic so that procedures may eop.
sist of rea] Sentences in g living lan.
guage. Idiom wij) be such that the
Program will pe operative in any
spoken language, with minor changes
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SYSTEM TYPE
SYSTEM NAME + | OPER.
COMPUTER |OR ACRONYM DEVELOPED BY g -il 3 g é DATE g FL PT g 3 COMMENTS
£
R-S Los Alamos X Nov. 55 M2 M 1
Cage General Electric X X | Nov. 55 M2 M 2
LB.M. Fortran LB.M, 1 X | Jan, 57 M2 M 2 | X
704 NYAP 1LB.M. X Jan, 56 | M2 M 2
Pact 1A (See Pact Group) X | Jan. M2 M [ Modified Pact | for 704
SAP United Aircraft 1 X Apr. 56 M2 M 2 Official Share Anombl!_ N
Complier | Boelng, Seattle X X | Mar. 57 ] 1 X
Sperry-Rand | FAP Lockheod M.S.D. 1| X X Oct. 56 s1 ] o
Mishap Lockheod M.S.D. X Oct. 56 s 1 Magn. Tape Assembly -+ Correction
1103A Trans-Use Holloman A.F.B. X Nov. 56 S 2
Use Ramo-Wooldridge 1 X X | Feb, 57 [ M/s1 | M/S | 2 Official for Use Organizotion
Chip Wright Field X X $1 s 0 Similar to Flip
1103 Flip /Spur Convair San Diego X X Jun. 55 s s 0 Spur Unpacked, Twice as Fast
Rawoop Ramo-Wooldridge 1 X Mar. 55 s1 — 1 One-Pass Assembly
Snap Ramo-Wooldridge 1 X Avg. 55 $1 s 1 Used with Roaweoop
Autocoder LB.M. 1 | X | X X | Dec. 56 — S 2
1L.B.M. Fair Easiman Kodak X Jun. 56 - H 0
705 Print | 1.B.M. 1 x| x| X Oct. 56 $2 H) 2
Symb. Assem. | 1.B.M. X Jon, 56 | — 1 May be Assembled on Accing. Equip.
SOHIO Sid. Oll of Ohlo X| X | X May 56 s1 ] 1 )
A0 Remington Rand Xal:X X | May 52 s1 S 1
Al Remington Rand X | X X | Jan, 33 s1 S 1
A2 Remington Rand X | X X | Avg.53 s - 1
A3 Remington Rand 2| X|X X | Apr. 56 | S1 ) 1 A
AT3 Remington Rand 2 X "X | Jun. 56 s1 2 | X | Fortran-like, Output To A3, | -+ n
Sperry-Rand | BO Remington Rand 12| X | X X | Deec. $2 s 2 Runs on Univac | -+ Il
BIOR Remington Rand X| X X | Apr. 55 — - 1 Primarily Business Data-Processing
Univac GP Remington Rand 1| X | X X | Jan. 55 $2 s 1 For Expert Programmers
I NYU New York University X | Feb. 54 — H 1
Relcode Remington Rand X | X Apr. 56 — —_ 1
Short Code Remington Rand X X Feb. 51 — s 1
X-1 Remington Rand 2| X|X Jan. 56 p— —_ 1 Runs on Univac 1 + Il
Avtocoder LB.M. X| X X | Apr. 55 s 1
1LB.M. Assembly LB.M. X Jun, 54 — — 1 May be Assembled on Acclg. Equip.
702 Omnicode G.E. Hanford 2 X|X|X s 52 S 2 Super-Script
Seript G.E. Hanford 1 x| x| x| x|k 55 st - 1
Acom Allison G.M. X
Boeing, 1,2 X X | Jul. 55 — H 1| X
Douglas Douglas Sm X May 53 — S 1
Dual Los Alamos X X Mar, 53 — S 1
Los Alamos X Sep. 53 — — 1
Lockheed Calif. X|X|X Mar. 53 —_ s 1
LB.M. Jes 13 Rand Corp. X Dec. 53 — H 1 Modification of 607
701 Kompller 2 Uerl Livermore X
Noa Assembly| N. Amer. Aviation X Also Assembles 704 Programs
Pact | (See Pact Group) 1 X | Jun, 55 $2 — 1 Most Programs run on Pact 1A
Queasy Nots Inyokern X Jan. 55 — S -
Quick Douglas Es X Jun, 53 H 0 Double Quick for Dbl Prec
Seesaw
Shaco Los Alamos X | X Apr. 53 H 1
So 2 LB.M. X 54
Speedcoding | LB.M. X|X Apr. 53 s1 -
Cle Purdue Univ. 2 X | Incomp $2 s 1| X
Datatron Dot | Elociro Data X
Ugliac United Gas Corp. X
Ades Naval Ordnance Lab X | Feb. 56 s2 S 11X .
Bacalc Boeing, Seattle 2 X | X | X | Avg.56 — s 1 | X | Must Process on 701
Balitac T. X | X X | Jan, 56 $1 2 For all 650 models
Bell Bell Tel. Labs X X Avg. 55 51 S 0
Cte oc 1,2 X | Dec. 56 | 52 s | 1 | X | Output Processed by soap
1L.B.M. Druco | X S':t 54 H 0
650 Flair Lockheed Msd, Ga. X X 55 s1 S 0
Mitilac Y. X X Jul. 55 s s 2 For all 650 models
Omnicode G.E. Hanford 2 X | X | Dec. 56 $1 s 2 Must Process on drum 702
Sir LB.M. X May 56 | — s 2 Oporates with soap |, ]
Soap | LB.M. X Nov. 55 — 2
Soap Il LB.M. 1 X Nov.56 | (M) m) | 2 For all 650 models -+ varlations
Speed coding | Redstone Arsenal X X Sop. 55 s s 0 Resembles 701 speedcoding
Boeing, Wichita X|x|X Avg. 56 | (M) s 1 For oll 650 models
Algebraic M.LY. X $2 S 1 X
Whirlwind Comprehensive| M.LT. X|Xx|X Nov. 52 | SI S 1
) Summer ses. | MLT. X Jun, 53 s s 1
Easlac Univ. of Michigan X| X Aug. 54 $1 S 1
Midac Maglc Univ. of Michigan X | X s S 1
Burroughs Burroughs Lab X 1
Ferranti Transcode Univ. of Torento 1 X X | Aug.54 | MY S 1
Illac Dec order input| Univ. of lllinols 1 X Sep. 52 s S 1
Johnniac Easy fox Rand Corp. X|X Oct. 55 $ 1
Nore Naval Ordnance Lab X X | Feb. 56 | M2 M 1
Seac Base 00 Natl. Bur. Sids. X X
Pact Group Contains Dovglas Sm, Es, Lb, Lockheed Cal, Nots, N. Amer., Rand




in the dict.ionary, much as the FOR-
TRAN coding system has already been
translated for use by the French,

about the intent of the Programmep
when some omission op violation of
langnage rules ocenrs, Learning pro-
redures wi]] be Incorporated gq that
the translatop may take advantage of

solved, rather than from a given pro.

4, Flow-chart construetion for pro-
cedures wijj automatie, having

will be Superimposed on these. Boot- eration of Super-computers. They
strap methods are being considered simply may not have enough prob-

of oceurrence fop various logial which will allow eyen the person who lems to load one,

portion of his work done automatie. » Producing g Spectrum of machines

ally by reference to and through pre- 1is a tremendous waste of effort ang
vious work. money on the part of both the manu-

facturers ang the users.

various and graded components of the 6. The actual operatjon of the com-
computer system i be automatie ; puter will be under control of an in. » Availability of 4 huge central com.
the Programmey considers an infinite tegrated portion of the processor puter can eliminate the discrete go-
machine, whieh the processor ap. known as g Supervisory routine, In quisition of multiple smaller eom.
anges as it knows jtg own limitationg some instances the Program will not  puters, homogenize the entire strye-
and capabilities, have been createq by the processor ture of usage, and allow 4 smaller
: i i i i and more numerous class of yusep into
5. Not only wil Programs be cpe. prior to execution tlme,.but will be . . Sl
: : ¢reated during a bregk in execution  the act, thys tapping a market man;
tted which write Programs tn go : . . i ize of 1 jected
: - time under orders of this supervisory times the size of Presently projeecte
actual Computation, byt other levelg v ; . ith current ractice in computer
routine, which detects that no methoq  w ¢ p ‘
- e is in existence in the program for 5  access, . . I _
particular contingeney, Although these Assuming the availability of prac.
EXPLANATION oF SYMBOLS Supervisors will be on magnetic tape  tical micro-wave 'comrlnun;,eatmn Sys-
CODE 1) tRecommextllded for this particu. for a while, it is envisioned that they tzn:;’allteolsl 01:)1':;’.31‘ :::L fh '1 :lrtge?‘“:hi‘l
AT _computer, gome mes for volum i i i i £ sev 0 ¢ ¢
usage or lnterchanxe. or for lack of beettecl.'. will be buned In the m,a(’hlne }mrd . p ’u lat d
2) Common language to more than one ware eventually, to be Improved by anything presently contemplated,
> ter, . : : A
f\"\"’é‘"‘:"i}:ﬁ;ﬂ"pz ,(8¢0 “Terms Usea 1n Ay. replacement like 0y other compo-  could service a ]mulntude of users,
t t . OIm -
lf')\"g?.-:xcn\’(?d "J\f) Actual Index registers or nent, They would 10 longer rent a com
B-boxes exist in machine l;lar('!w?re. . puter as such; Instead they would
nguage, » -
d‘is)) :ﬂﬁ'nufltl:%fdrgin:. :eft’l'xzae:tglp; e »912';: rent input-output equipment, g|-
r na r word on Y. 5 1 1 o
cg;glnorexlz;tt?c;s agpncablte to only SgTiain FUTURE COMPUTER SYSTEMS though a; 1;;11' as thc](;peratmgm “b llll l{n
Address pog ons, or no comp: . . v a no e able to
combinationy Future computer Operation, which  Cconcerne copd Would n 4
JeGeneral form, where any address may . he desi £ tell the difference, This peripheral
be indexed by B0y 1 or a combination of strongly influences t 1€ design of the . £ 1d per be rented
reglsters, which may be freely Incrementeq o ing languages has some €quipmen ‘You per mps‘
or decremented by any amount. I;IAVO as- p Oglﬁmmm' < S g at a base price plus a variable usage
| soclated loop termination instructions, vital]y mterestmg possibilities, In this p 3
‘ FOATING PT. M) Infe.nstrue machine ; : : charge on a non-linear basis, The top-
/ hurdw'ltre., ted In the synthetic language glimpse, the pleture presented Rare fe most level of SUPEIvisory routine
a e . . S SOr}
| S LISM - “None, " dependent upon three axioms:

Jmited—either reglonal, relative or would compute these charges on an

] ully Gessrioitve, where o word or P Faster computers always lower the  actual usage basis ang bill the cus-
:g':"‘;gi.a,°,,';'.}”:,’;",’gz ;"_?,’gggdd':',f,ﬂ.?}g" % dollar cost per problem solved, but  tomer in an integrated operation.
ALGEBRATC °% single contlnuou; alge. not all companies will be able to af. These program featyres are, of course,
g:&ﬁ:fgn géﬁ?:f;:":::cth'nnr: snt:): for :bgl.?: he high prices of the next gen- recognizable to operations research
Ing the assoclative and commutative laws ford the 1gh p

of algebra to form the operative Program,

MARCH 1957
AUTOMATIC CONTRoL




people as the Scheduling and Queuing
Problems.

Using commutative methods, just
as motion pictures produce an image
every so often for apparent continu-
ity, entire plant operations might be
controlled by such super-speed com-
puters.

These future hardware capabilities
(and few competent computer manu-
facturers will deny the feasibility,
even today, of super-speed and inter-

leaved programs)demonstrate a press-
ing need for an advanced common
language system so all users con-
cerned can integrate their particular
operations into the complex of con-
trol demanded by an automated fu-
ture. ;

Just one last prediction—the engi-
neer who is going to be at the top of
his profession in the years to come
had better become a computer expert,
too.

AUTOMATIC CODING — Systems
which allow programs to be written
in a synthetic language especially de-
signed for problem statement, which
the processor transiates to presum-
ably the most efficient final machine
language code for any given com-
puter. Usually such a system will ex-
amine one entry at a time and pro-
duce some amount of coding which is
determined by that entry alone,

AUTOMATIC PROGRAMMING—Sys-
tems further up the scale of complex-
ity, where the computer program
helps to plan the solution of the prob-
lem as well as supply detalled coding.
Such systems usually examine many
entries In parallel and produce optim-
1zed coding where the resuit of any
single entry depends upon its Inter-
actions with other entries,

ASSEMBLER—An original generic
name for a processor which converts,
on a one-for-one basis, the synthetic
language entries to machine Instruc-
tions. This process occurs prior to the
actual execution of the working pro-
gram. It is a one-level processor
which can combine several sections or
different programs into an integrated
whole, meanwhile assigning actual
operation codes and addresses to the
Instructions.

COMPILER — Generally a more
powerful processor than the assem-
bler, although there is a great deal
of confusion and overlapping of
usage between the two terms. The
compliler is capable of replacing sin-
gle entries with pre-fabricated series
of instructions or sub-routines, in-
corporating them in the program
either in-line or In predetermined
memory positions with standard mech-
anisms for entry from and exit to the
maln routine, SBuch compound entries
are sometimes called “macro-instruc-
tions."” The basic principle of a com-
piler is to translate and apply as
much intelligence as possible ONCE
before the running of the program,
to avold time-consuming repetition
during execution, It produces an ex-
panded and translated version of the
original, or source program. Accord-
ing to the ACM, a compller may also
produce & secondary synthetic pro-
slnm for interpretation while run-
ning.

FLOATING POINT—Number nota-
tion whereby & number X Is repre-
sented by a pair of numbers Y and Z
in the form: X = Y °B* where B 18
the number base used. For floating
decimal notation the base B is 10; for
floating binary the base is 2. The
quantity Y is called the fraction or
mantissa, and In the best notation
O =Y — 1. Z is an integer called the
exponent or power,

A WORKING GLOSSARY OF SOME AUTOMATIC CODING TERMS

GENERATOR—A generator s &
program which writes other programs,
usually on a selective basis from
given parameters and skeletal coding
It may be either a character-con-
trolled generator, so that it selects
among several options according to a
preset character matrix, or a pure
generator, which writes a program on
the basis of calculations which it
makes from the input data. Almost
all assemblers and compllers have
generating elements in some form,

INDEX REGISTER — A register
whose contents are used to auto-
matically modify addresses incorpo-
rated In Instructions just prior to
thelr execution, the original instruc-
tion remaining intact and unmodified
iIn memory. It may either be bullt in
the hardware and clreultry of the
computer or be simulated by the pro-
gram, The original unmodified ad-
dresses are termed presumptive, the
modified addresses are termed effec-
tive.

lN'I‘ERPRE‘I‘ER—In contrast to an
assembler, compiler or generator, &
gource program designed for interpre-
tation 18 converted to an object pro-
gram which is not in machine lan-
guage when run. The interpreter it-
self is an executive program which
must always be used in conjunction
with the object program, and always
resides in high-speed memory during
execution of the problem. The object
program ls always subservient to the
interpreter, which fabricates from the
{ncompletely converted instruction the
necessary parts of machine language
instructions just pefore they are ex-
ecuted. Each entry in the Interpretive
language usually calls for the use of
a complete subroutine, which is used
again and again by filling in the miss-
ing parts of certain of its instruc-
tions from the object instruction.

MACHINE LANGUAGE-—The wired-
{n circuftry language at & low logical
level which is {ntelligible to the com-
puter, It should seldom be used to
code problems because of the diffcul-
ties of usage at this level and the

tendency to error.

OBJECT PROGRAM—The output of
the processor when it has translated
the source program to either machine
language or a second level synthetic
language,

PROCESSOR—Als0 called a trans-
lator, this is a computer program
which produces other programs, in
contrast to programs which are
working and produce answers.

SOURCE PROGRAM—The original
program written to solve problems
and produce answers, phrased in the
synthetic language.
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PRINT 1—AN AUTOMATIC CODING SYSTEM FOR THE
IBM 705

BY
ROBERT W. BEMER!

PURPOSE
PRINT 1 is an automatic coding system for the IBM 705, primarily
for use in scientific and engineering applications. It is fully symbolic and
provides simulated floating point operation and index registers. It is not
to replace or supersede the Autocoder system for business and commercial
problems although it has this capability in a more limited form if needed.
Both are concurrent products of the Programming Research Department
of IBM, differing primarily in emphasis of application. There is no need
to fuse the two systems inasmuch as better and more advanced common
language systems are presently being developed.
HISTORY
The development of PRINT was essentially an emergency measure to
have an engineering computing system for the “705” in operation as soon as
possible. For this reason, PRINT is not at the level of the FORTRAN
system for the “704” and advantage was not taken of the total automatic
coding knowledge available at its conception. Coding was started in Feb-
ruary 1956 and the system was being tested by the first customer at the
end of July. Because of the interpretive nature of PRINT it was actually
completed before Autocoder and FORTRAN. Copies of the completed
system were distributed generally with the manuals in October 1956. The
responsibility for maintenance and further development of the system now
lies with the Applied Programming Department of IBM.

USAGE AND EXPERIENCE

PRINT 1 is in operation in the field and may be considered rather
thoroughly tested at this time although, as with the computer itself, con-
tinuing maintenance is required to add improvements as they become obvious
or are requested by the users. Such changes will not be allowed if they
refute the fixed principles of operation or introduce incompatibility. By
the last count there are 28 installations either using or programming to use
the PRINT system when delivery permits. Many of these have had fairly
extensive experience by this time and have given helpful comments and
suggestions.

1 Assistant Manager of Programming Research, International Business Machines
Corporation, New York N. Y.
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PRINT 1 has given much evidence of the potential of current automatic
coding systems. One example is furnished by the A. O. Smith Corporation
of Milwaukee, Wisconsin, a long time user of computing equipment, In
their initial attempt, a portion of a problem formerly requiring 305 instruc-
tions in “705" machine language was recoded using 8 PRINT instructions.
With a relatively small staff, the A. O. Smith people feel that it might have
been impossible to get into satisfactory operation so soon had it not been
for the availability of PRINT 1. I should add that we also owe them (Bob
Brittenham in particular) a debt for the many excellent suggestions leading
to some of the best instructions in the PRINT repertoire.

Another example was furnished to us by Westinghouse Electric at
Sharon, Pennsylvania, where one of their best programmers had previously
coded a magnetic field parameter study. This program contained 2300
“705” instructions and required a week to write, a remarkable feat in itself,

LOCATION onclg:‘m- VARIASLE TIELD COMMENTS
6 401 1. 43| 1a. =
| [RPT_[ -1, 0, (interval), 0 f
L | Tsc | &, xsuB1, xTEST 3
| lsu |, pAc2, TEMP1 F(Xy) = F(X1)
| | SUB | XTEST, ARG 2, TEMP2 — Xrest ~ Xp1
| | SUB | ARG 1, ARG2 o Ty - =Xy
Llov | TEMP2 (PAC | implied as divison) |
L |PMA [ PAC2, TEMP I, RSUT = F(Xypy) |

Fig. 1

fepfesclllillg as it does nearly one instruction written per minute. After
a single day’s instruction in the use of the PRINT 1 system, he recoded
the problem in 60 PRINT instructions and took only _’().minu(cs to do so.
Examples l.ikc this justify our contention that lhcrc.ma\' be as much as a
40-t0 1 ratio between “705” instructions executed and PRINT instructions
written, and in this case the time required to write the program was reduced
to less than a hundredth of the time formerly required. Such examples
are perhaps exceptional, but it is quite generally true that detailed coding
(not programming) effort may be reduced by a factor of 10 through the
use of this and other modern automatic coding systems such as FORTRAN,
the Camegie Tech Compiler, BACAIC, B-Zero and OMNIGODE.
Another significant omen arose from the PRINT class at Westinghouse.

attended, although they had had no pre-
' 1d were able to write successful programs
g ever learned to program for the “705” itself.

Two people from National Supply
vious computer experience at all, ay
in PRINT without hay




within the coding system.

PRINT 1

SIMULATED HARDWARE

Since the “705™ is not provided with hardware usually considered vital to
easy programming of scientific problems, such hardware had to be simulated

31

Floating point arithmetic is furnished in one

of three system tapes, for fraction lengths of 8, 10 and 12 digits, with

mathematical subroutines to corresponding accuracies.

Three index reg-

Non- ATR Alternating TRansfer TNZ Transfer on Non-Zero
indexable BSi BackSpace tape “i" TRM TRansfer on Minus
operations LVE LeaVEPRINT TRP  TRansferon Plus
RO R g.0uD TRU TRansfer Unconditionally
RPL RePLace
RPT RePeaT TRZ TRansferonZero
RWi ReWind tape “i" TXi Transfer tefting'_i.l:tdex limit,
RWR Repeat With Reset (PACI) et S
SRi  Set index Register "' WCD Write a CarD
TMi  write Tape Mark on tape i* ~WHi  Write a Heading, space “i"
TNi  Transfer Not testing limit, WLi  Write a Line, space “i"
augmenting “i" XTP eXTract Power
Special ADC ADdress Constant FLC FLoating Constant
operations BLK BLocK HDG HeaDinG
CON CONstant ORG ORiGin
DEL DELete REG REGister reservation
FIN  FINish SAY SAYit
Indexable ADD ADD MPM Minus Polynomial Mult.—add
operations ART ARcTangent MPY MultiPlY
DIV  DI1Vide PMA Polynomial Multiply—Add
EXD EXponential; Decimal base RTi Read Tape “i"
EXE EXponential, base E (e) SAC  Sine And Cosine
FLO FLOat SQR  SQuare Root
FPR  Fix for Printing Rounded SUB SUBtract
FXP FiX for Printing TAB Transmit ABsolute
LGD LoGarithm to Decimal base =~ TMT TransMiT
LGE LoGarithm to base E (e) TNA Transmit Negative Absolute
MAD Multiply — ADd TRC TRansfer on Comparison
MDV Minus DiVide TRE TRansfer on Equality
MMA Minus Multiply — Add TSC Table Search on Comparison
MMY Minus MultiplY WTi Write Tape “i"

F16. 2. Summary of mnemonic codes.
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or card column.

Roserr W. BEMER

isters which may be used compositely are furnished, together with corres-
ponding limit registers for incremental loop termination.
for the printed line, heading and card form are S_\'lllbﬂllc:l'”'\' addressable
so that the programmer has the feeling of actually addressing type wheel
Other special registers, such as psendo-accumulators, also

Memory images

maintain invariant symbolic addresses.

oremarion| vamasit fitin e SO === commintg
coot

R =

TRZ | TRADD, TEST Trarsfer to TRADD if (TEST) are zero

TNZ | TRADD, TEST Tronsfer to TRADD if (TEST) are non-zero

TRP TRADD , TEST Transfer to TRADD if (TEST) are plus

TRM | TRADD, TEST Tronsfer to TRADD if (TEST) are minus

TRU | TRADD Tromsfer to TRADD unconditionally

RPL ADDR1, INSTR Replace the Ist oddress in INSTR by ADDRI

XTP | FIRST, SECND Give (SECND) the same power as (FIRST)

SRI | xn,% lim Set contents of R, to £n, limit to % lim

TNi | TRADD, :4 Augment R, by + A, transfer to TRADD

TXi | TRADD, +A Augment R, by % A, transfer to TRADD only If
new (Ry) < llm; . Otherwise proceed.

RPFT | n, %1,%],%k Repeat (perform) the next Instruction n times, Indexs
ing Its 1st, 2nd, and 3rd addresses, as they exist,
by 1, ], and k words lengths respectively.

RWR | n, %1, %], %k Reset PAC] to zero, then operate same as RPT. *1,
+]ond £ k may all be prefaced In RPT and RWR
by an * to Indicate indexing by number of char-
acters, not word lengths. —

LVE TRADD Leave PRINT. Next instruction Is next 705 instruct-
fon If TRADD Is not written, TRADD If written. |

BS1 n Backspace tape | for n records.

RWI Rewind tape 1.

T™I Write a tape mark on tape i. —

WLi | UNIT, n, TRADD Write a line. UNIT is tope t or printer. | is the |
spoce control after writing. n, TRADD Is optional
Write n_lines, transfer to TRADD rother than |

write the (n+1)th line.

WHI UNIT, n, TRADD Write o heading. (Equivalent to WL1) .

WCD| UNIT Write o card, UNIT is either tape ¢ or punch.

RCD | UNIT, TRADD Read o card, UNIT is either tope t or printer, |
Transfer to TRADD on end-of-file condition.
(Optional specification of TRADD).

——

Frc. 3. Summary of non-indexable operations.
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INSTRUCTIONS

PRINT instructions are written in a variable form with a variable
number of operands or specifications separated by commas. A single in-
struction may trigger several actions which are effectively coincident. A
coding kernel for table search and linear interpolation is shown in Fig. 1
(refer to Figs. 2, 3, 4 for explanation of the instructions). The table search

OFPERATION| VWARIARLE FILLD
Laath COMMENTS

o
ADD | @PER1, PPER2, SUMM (DPER 1) + (PPER2) SUMM 1
SUB | @PER1, @PER 2, DIFF (@PER 1) = (PPER 2) DIFF

MPY | MLPLR, MCAND, PRDCT  (MLPLR) (MCAND) PRDCT
MMY| MLPLR, MCAND , NGPRD  -(MLPLR) (MCAND) NGPRD

DIV | DVDND,DVS@R, QUAT  (DVDND) + (DVSPR) QUBT
MDV| DVDND, DVS@R, NGQU@ -(DVDND) + (DVSZR) NGQUZ

MAD| MLPLR , MCAND , CRSFT (MLPLR) (MCAND) + (PAC1) — CRSFT
MMA| MLPLR , MCAND , CRSFT - (MLPLR) (MCAND) + (PAC1) —— CRSFT
PMA | ADDND , MCAND , RSULT (ADDND) + (PAC1) (MCAND) —> RSULT
MPM| ADDND , MCAND , RSULT (ADDND) = (PAC1) (MCAND) —— RSULT

SQR | SXTY4, EIGHT SXTY 4 » EIGHT
SAC | ANGLE, SINE, C@SIN sin (ANGLE) —= SINE, cos (ANGLE) —— C@SIN
ART | TNGNT, ANGLE tan ' (TNGNT) ANGLE
LGD| NUMBR, DECLG log o ( NUMBR) - DECLG
LGE | NUMBR, NATLG log, ( NUMBR) NATLG
EXD | EXPPN, TEN2X antilog (EXP@N) > TEN2X

EXE | EXPPN , E2THX antilog (EXP@N) EZTHX

(FSR) | ARGUM , RSULT function (ARGUM) —— RSULT

TMT | HERE , THERE ( HERE) THERE

TAB | MINUS, PLUS [(minus) =~ PLUS

TNA| PL/MN, MINUS [tezmn| —— MINUS
TRC | TRADD, THIS, THAT Transfer to TRADD if (THIS) > (THAT)

TRE | TRADD, THS, THAT Transfer to TRADD if (THIS) = (THAT)

TSC | %A, TABLE , ARGUM Search argument table for first number > (ARGUM), be-

ginning at TABLE. F(TABLE) is 4 word lengths away.
WTI | BEGIN,ENDD, TRADD , TM Write all successive words from BEGIN to ENDD, Iinclus-
ive, as | record on tape i. Transfer to TRADD if end-of-
file Is reached, write tape mark If TM is written.

RTI START , TRADD Read record from tape 1, filling as many successive locat-
lons as on record, beginning with START. Transfer to

TRADD if a tape mark Is encountered.

FXP | FLNUM,t,wW,dD,s Fix (FLNUM) x 10° for print in line image, decimal point
in type wheel t, with w whole numbers and d decimals.
FPR | FLNUM,t, wW,dD,s Same as FXP, except round the number when fixing.

FL® | COLXX, n,R/Ls,FLNUM Take the n digit number with units position in column XX.
Move the decimal point R(ight) or L(eft) s positions. Put
In floating point format in FLNUM.

Fi6. 4. Summary of indexable operations.
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is initiated by the first two instructions. Both a coarse and a fine search
are caused, and on completion both the bracketing table arguments and their
corresponding functions may be found in special locations.

Although it is more desirable to code throughout in PRINT, it is possible
to exit and code in symbolic “705"” language temporarily. This allows both
for the writing of special portions of programs and for PRINT instructions
to be altered during the running of a problem. An example of this latter
usage would be the generation of a program for the solution of N simulta-
neous equations with B sets of answers. Although the solution requires
only 11 PRINT instructions for fixed values, it would be normally wasteful
to write a new section of program for every case. It is sufficient to write
the general program and use “705" instructions to modify it according to the
prevailing values of N and B.

LOCATION O'ltz.l,.lﬁl WARIABLE FiDLD comMINTE
é -|g =u= A3 4. 4
PEAD (S WHIL 18, &0, PAGE) __PAGES, LINES and LASTL gre wed
CQMP}U ) as convenient mnemonic names for
| | WLS | T6, 9, LINES the assoclated Instructions. The first
| | TRU | COMPU line therefore reads:
LINE ;S| wLD | Té, 4, LASTL
| | TRU | comPy "Write o' Heading, Triple spoce,
LAST IL| wui | T6 on Tape & - write 20 PAGES. "
| | TRU | HEAD
| —
PAGE ;S (continues computation ofter 20 poges are written)
Fig. 5,

INPUT-OUTPUT INSTRUCTIONS

: Special consldcra.tion was gi'w.:u to the input-output instructions i.n
I RIN'It to assure their having facility at least equal to that of the arithmetic
and logmal instructions. Their actions are described in the lower portions
of Figs. 3 and 4. FXP and FPR (FiX for Print and Fix for Print
Rc_mnded.) and FLO (FLOat) are definitely oriented to the formats of the
printed line and card, having all pertinent information specified in the vari-
able ﬁe}d. Th-cy allow the programmer to be unconcerned with the positions
of flecm:nal points throughout calculation : yet he may enter fixed point
de_cnnal input and_ produce fixed point printed output p::rlmps without even
bemg" aware tlmt.mtemal operation is in the floating [')oint m(;dc

Since there is a programming manyal (32-7334) availz;ble for the
PRINT system, there is not the need to show many examples as there
normally would be for a paper of this type. 1 have c.;(ccrpmd a single

th th of the counting printing
f Fig. 5 will cause the writing of 20
es of answers in five groups of 10.

f..-xample. to show page format control with the yse
mstructions. The program kernel o
pages, each with a heading and 50 lin
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INTERNAL OPERATION

Certain definitions are adopted from the 704 FORTRAN system in order
to understand the hybrid operation of the PRINT system. A program
written in the synthetic automatic coding language is called a “source” pro-
gram. It is processed by a translator to produce an “object” program,
which may be produced in either a machine language form, a still symbolic
intermediate language such as that of an assembly program, or pseudo-
instructions for minimum interpretation. PRINT falls into the Ilast
category.

Although interpretive in execution, meaning that the required machine
language instructions have certain portions fabricated while the problem
is running, PRINT is not equivalent to the usual interpretive program of
early days in computers. PRINT language is freely and descriptively
symbolic, much the same as any compiler, and instructions do not bear a
recognizable resemblance to the object pseudo-instructions produced by the
pre-editing, or translating, process. Thus the name—PRe-edited INTer-
pretive. Pre-editing does both assembly and conversion of all components
of the synthetic instruction to a pseudo-instruction in a form most rapidly
used at execution time, essentially following the first compiling principle of
doing all repetitive processing once and for all wherever possible. In
PRINT, the time expenditure to fabricate instructions from the pseudo-
components during execution amounts to no more than a 5 per cent total
addition. For this price the program buys:

1. Minimization of original processing time.

2. Much more memory space for instructions and data, even though
the executive routine is in memory at all times.

3. A significant decrease in the time required to write such a system,
because the operative routines are essentially canned and optimum.

A factor in the decrease of interpretation time is the RPT (RePeaT)
instruction. This causes the following instruction to be interpreted for the
first execution only; for the remaining times it is executed generally faster
than it could be in a compiled form. This apparent paradox is due to the
serial character nature of the “705.” Using a fixed interpretive routine,
instructions may be judiciously placed so that address modification may be
made with fewer characters than the four which are mandatory when the
modified address cannot be predicted. A careful examination of the index-
ing routine on page 52g of the manual will illustrate this principle unques-
tionably.

Routines which do not occur frequently are defined as floating sub-
routines. They do not occupy memory space continuously during execution,
but are called from the library tape as required by pre-edit compiled linkages,
into a common area.
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EXTERNAL OPERATION

Because in this semi-interpretive mode the routines are what one might
call canned or pre-compiled, there are other advantages which are not at
first apparent. It takes very little time to pre-edit the symbolic source
program into an object program ready to execute. Very few programs have
taken over one minute to process from tape input. DBecause of this it was
decided to re-process the program completely each time a change is made;
in fact, it is impossible to correct or alter a PRINT program in anything
other than the synthetic language. Any other means were carefully, as
Sam Goldwyn says, “‘included out.”

This feature also leads to a radically different concept of error diagnosis.
Since the program may be re-processed quickly and flexibly, the most desir-
able diagnostic method is to actually insert snapshot instructions into the
program. This gives the programmer absolute freedom and flexibility in
inspecting intermediate answers. The usual method is to process the pro-
gram initially with all of the snapshot instructions included, when the cause
of the first error becomes apparent, to remove all snapshot instructions up
to that point by deletion cards and correct the error all in the same re-
processing. Of course, programs are never loaded more than once in card
form. All corrections thereafter are made by collating the change or dele-
tion cards against a master symbolic tape. Both this and a listing tape
are thus continuously updated to provide a correct, permanent record of the
programming of any problem.

This quick processing feature has demanded at least a primitive type of
supervisory control directed by the system tape, which contains the pre-edit
routine, the executive routine, the floating subroutine library, diagnostics
an(l‘ system control. A remarkably rapid interchange of prubicms has been
achieved. With tapes previously mounted off-line, all that is required to
process a new problem is to turn the tapes on-line, set alteration switches
if required and depress the reset and start buttons. For the moment, the

changing nature of scientific problems has not made a completely supervisory
control mandatory for this system.

CONCLUSION
'PRIN I 1‘ I an operative scientific computing system for the IBM 705
which allows it to be used by both the comn
of a company. By introducing pre-
learned from compile

tercial and engineering divisions
: editing to take advantage of the lessons
‘ ' rs, it re-establishes the interpretive method as a useful
tool in automatic coding systems for future computers of the STRETCH
class. A programming manual (32-7334) is available from IBM for those

desiring further information, and the entire system is available on cards
upon request. |




DISCUSSION

M. Barry Gorpox *: You made quite a point of emphasizing that it
was a remarkable thing that the man wrote a “705"” program at the rate of
one instruction per minute; however, you made very little of his writing
sixty PRINT instructions in 20 minutes—at a rate of three instructions per
minute. | am wondering how usual this is.

Mgz. Bemer: I would say that in my estimation it is much easier to write
the PRINT instructions because you don’t have to worry about the auxiliary
storage unit and all the actual details of operation. Incidentally, if you
should doubt those figures I gave, let's bump it up to at least the same
ratio—this is still 40 to 1 over the original time.

Mg. Leroy D. Kriper *: You said something about a compilation that
actually went on during the execution?

SERIAL SYMBOLIC ADDRESS AND ACTUAL FIRST SEC. THIRD PRINT INSTRUCTION
NUMBER LOC OP INDEX FIELDS LoC ADD ADD  ADD OR CONSTANT
1030 ROOEB REG ROO1 06981

1040 SINEZ REG 06991

1050 TEMP  REG 07001

1060 X020 REG X001 07201

1070 Y008 REG Y00l 07281

1080 2010 REG 2001 07381

1090 ENT 07389 500 48732411039
1100 RCD READER 07400 717DA1100Y4

1110 RPT 201%4s1 07411 2111000400100000
1120 FLO COLO4»4sL29X001 07428 03512 07011 9M3512000 70020D0F
1130 RCD READER 07445 717DE6100Y4

1140 RPT Be%541 07456 2106000500100000
1150 FLO COLOS5+5»L39Y001 07473 03513 07211 9M351300072020E0E
1160 RPT 10s%4s1 07490 2101000400100000
1170 FLO COL44»4sL392001 07507 03552 07291 9M3552000 72820D0E
1180 SR3 0910 07524 9D1900 0000

1190 PAGE WHT TAPE& 07535 610++00-0+20M38G40
1200 SR1 0220 07553 801800 0000

1210 SAC Z001»3+SINEZ 07564 07291 06991 00244 2R7KB240069820235
1220 TRU RSETY 07581 07605 2D7F+5

1230 LINE WLS TAPE4 07587 6104+00-0+20D26N4
1240 RSETY SR2 08 07605 811920 0000

1250 SUB X001s1+SINEZ+TEMP 07616 07011 06991 07001 OM7-021006R826992Q
1260 COLMN SAC Y0012 07634 07211 00254 00244 2R7K0220002450235
1270 ADD X00111+PAC2 07651 07011 00244 00254 OM7-021000K350245H
1280 MPY +TEMPsROO1+2 07669 00254 07001 06911 OROK450026R926902H
1290 TX2 COLMN»1 07687 07634 4DTFC420010

1300 RPT 8y1s%11 07698 2106001000110000
1310 FPR ROO1+844W 42D 07715 06911 9R6R020+00+27C0C0OJ
1320 TX1 LINE»1 07733 07587 317EH720010

1330 WL1 TAPE4 07744 6104+00~04+20D26N41
1340 TX3 PAGEs1 07762 07535 417EC520010

1350 LVE 07773 07784 9117784

Fic. A.

1 Chief Programmer, Equitable Life Assurance Society, New York, N. Y.
2 Remington Rand Univac, Minneapolis, Minn.
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Mg. BeMER: No, there is no true compilation during execution. What
there is is the completion of certain machine instructions with portions of
the pseudo-instructions. If you have one of the example sheets (Fig. A),
you will notice the pseudo-instruction on the right. This “garbage” is
really several little portions that are required to fill in empty spots in any
routine. For instance, in the instruction with serial number 1130, we see
a 7I7DE6100Y4. 71 is the “Read Card™ operation code, 7DE6 the prop-
erly zoned address for the next instruction, 100 the last three digits of the
card reader address, Y for a “705" read-operation code and 4 to fill in a
TRS command in the units position. These components are inserted in
the proper places of the canned subroutines just before execution, but they
are properly detailed with everything that can be done once, so only these
portions are inserted during operation.

Mg. KripEr: It is essentially, then, just a stretch of initialization.

Mr. BeMER: Yes, it is really interpretive, with the exception that we
have put in the symbolic notation and pre-edited everything we possibly
could, to speed things up.

Mr. R. H. DoyrE*: Since one can enter and leave absolute coding in
the middle of the interpretive, is it also possible, by using something which
could be called a “Define” instruction, to name-tag the new absolute coded
subroutine so that it could be subsequently called for again by its interpretive
name anywhere in the interpretive program ? -

MR. BEMER: Essentially, this facility exists in the floating subroutine.
If you wish to enter any of the subroutine library vou can do it. Other
routines have been used this way by means of a dummy instruction, or
actually a pair of instructions. 1 believe that the dcscripti‘ou of this opera-

tign h.as been published, or is going to be out shortly, as a customer con-
tribution. It is very definitely possible,

Dr. Hans K. Frescu *: I heard you remark on time-sharing the de-

bugging time for programs coded in PRINT. Is that all under system
control ?

M. BEMER.: Yes, i is. Processing the synthetic language, running the
problem and diagnostic action are all controlled by i

alteration switches and the reset and start keys
MoDERATOR WALTER F. BAygg ¢ -

A1 : : -
asked him what Machine X and Machinea T’ zrlc‘:me SipeCiuted dhat DS

M. Bemer: They wouldn't have gotten an answer if they had.
flntcfnational‘ Businc:ss Machines Corporation Lexington, M
3 }I-I)mjlcdf I[':)r.lgfnclcr, l‘cder.al Td"co‘m““"icalimls Labonto'rics“;:ullc N. ]

cad of Digttal Computing Center, Ramo-\\'ooldridsc Corpo'ntion yl:.os >A|.\xclcs Calif.
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THE STATUS OF AUTOMATIC PROGRAMMING
FOR SCIENTIFIC PROBLEMS

R. W. BEMER
International Business Machines C. orporation

PURPOSE

This paper is to be something of a “state of the art” survey in the field of auto-
matic coding systems for scientific work. In a rapidly changing field where the
communication processes are by no means satisfactory, it may be valuable to
collect and codify available information on the various systems in use or in
process of fabrication, if only to provide a solid basis for dispelling rumor arid
misconception. Very little new or inventive material will be presented, inasmuch
as this does not seem to be the natural means of development in this profes-
sion. Development is rather by distillation and blending of certain principles
which force themselves upon us as exceptions to the general case, while using the
older systems in actual practice. Let us rather, for the moment, delineate trends
and put existing efforts into historical perspective, making a summary of the
various efforts so far with respect to magnitude and usefulness.

There will undoubtedly be some gaps in the record due to incomplete informa-
tion. In many cases this is not from negligence on my part but from lack of
proper publicity and communication (publicity departments, please note). I
further hope that this is one of the very last mentions of scientific computing as a
separate entity; the very near future will bring us new systems that encompass
both business and scientific applications and allow each group of users to have
the powers formerly peculiar to the other.

EXISTING CODING SYSTEMS

Since most automatic coding systems have heretofore had their synthetic lan-
guages tied closely to the particular computer on which they are used, the easiest
way to make a résumé of these is by machine categories. Table 1 is an updated
version of a chart which previously appeared in the March, 1957, issue of Auto-
matic Control Magazine. Two copies each of all available information and man-
uals on these systems are being deposited with the Association for Computing
Machinery at 2 East Sixty-third Street, New York City. It is my hope that the
ACM will see fit either to lend material from this historical library or to refer
interested correspondents to the proper sources for other copies.

The more important or widely used scientific systems have a dagger preceding
the name. (Note that B-ZERO [or FLOWMATIC] is listed as scientific because
it accepts AT3 as well as other language.) Since there are ninety systems cata-
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TABLE 1*

whS Coemus
OPERATIONAL AUTOMATIC CODING SYSTEMS FOR SCIENTIFIC PROBLEMS
| .
| H ;
! Name or Acronym Opera- | o Slel. 3 g 2] Indes 8
Computer | of Automatic Developed By tional 3|E1=|2|2 32| E il -
Coding System Date = s z|8IEl1E] ™ |
gl= 2l Sl s
| S |E(2|S|=| 2= | =
TAFAC Allison G)M - Sep 57| C x 2(x| M2 | M
| CAGE t+-ne | General Electric: Nov 35+ x 2 M2 | M
[TFORC H.SAsswma Redstone Arsenal, | Jun 37 x 2(x| M2 | M
IBM 704 . |TFORTRAN IBM v Jan 57 | Al x| |2[x] M2 [ M
2 I Nyap IBM + Jan 36 x 2 M2 [ M
[ TPACT 1A PACT Group » Jan 57 X 1 M2 | M
_| REG.-sYMBOLIC | Los Alamosw Nov 35 § x 1 M2 | M
{d sae United Aircrait v/ | Apr 56 }R| |x 21 | M2 | M
| Acom Allison G+ Dec 544 C|x 0| | st |S
itBacalc Bocing Seattlev’ Jul 559 A x|x 1|x S
| DOUGLAS Douglas (SN v May 33* x 1 S
DUAL Los Alamos v/, Mar 33s x x|1 S
| 607 Los Alamos / Sep 353 X+ 1
| FLOP Lockheed Calii.v Mar 33 4 x| x x|1 S
| Jcs 13 RAND Corp./ , | Dec 33 x4 1
IBM 701 | KOMPILER 2 UCRL LivermoreY | Oct 33 X 1{x] S2
+ NAA ASSEMBLY | North Americany x
fPACT 1 PACT Group Jun 35 R x 1 S2
, QUEASY NOTS Inyvokern Jan 354 x S
| QUICK Douglas (ES)y Jun 33¢ x 0 S
SHACO Los Alamos v/ Apr 53¢ X 1 S
SO2 01 ¢R) IBM . Apr 33. x 1
SPEEDCODING IBM ¥ Apr 334 R|x|x 1 St |S
1 AcoM Allison G\ Apr 57 | C|x 0 S1
| AUTOCODER IBM v Dec 56 [ R| |x|x|x]|2 S
ELI Equitable Life v May 57 [ C|x 0 S1
IBM705-1.2] FAIR Eastman Kodak v Jan 57 x 0 S
fPRINT | IBM v Oct 56 | Rix|x| |x|2 §2 |S
SYMB. ASSEMBLY | IBM ¥ Jan 36 x 1
SOHIO Std. Oil of Ohio* May 56 x| x x|1 S1 S
AUTOCODER IBM Apr 35 x|x|x|1 S
IBM 702 ASSEMBLY IBM - Jun 54 x 1
fSCrRIPT GE Haniord ° Jul 55 | Rfx|x|x|x|1 St |S
TADES 11 Naval Ordnance Lab! | Feb 36 x 1|x| S2 |S
tBACAIC Boein§ Seattle V' Aug 56 | C|x|x|x 1| x S
BALITAC MIT Jan 56 x|{x|x|2 S1
fBELL L1 Bell Tel. Labs.> Aug 35 x x|0 St 'S
BELL L2, L3 Bell Tel. Labs. v/ Sep 55 x x|0 SY |'S
DRUCO 1 IBM Sep 34 x 0 S
EASE II A.W6ss | Allison GM + Sep 36 x| x 2 S2 |'S
ELI “Whoow | Equitable Life * May 57 | C|x 0 S1
ESCAPE thpw@R| Curtiss-WrightV .| Jan 37 x|{x|x 2 S1 S
1B 650 FLAIR Lockheed MSD. GaY | Feb 355 x x|0 St IS
- < |TFOR TRANSIT IBM-Carnegie Tech' | Oct 57 | A X 2|x| S2 |S
T Carnegie Tech.. Feb 57| C x| [1|x| s2 |S-»
MITILAC MIT v Jul 55 x x|2 S1 S
OMNICODE GE Haniord * Dec 56 x| |=x 2 St LS
RELATIVE skl Allison GM + Aug 55 x 1 S1 |S
SIR IBM May 56 x 2 S
SOAP I IBM . Nov 35 x 2 :
| SOAP II IBM . Nov 56 | R| |x 2 M M
SPEED CODING | Redstone Arsenal:, | Sep 335 x x|0 St | 'S
SPUR Boeing Wichita V' Aug 56 x|x| [x|1 AES

® See explanation of symbols at end of Table 2.
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logued, at least seventy of which are suitable for scientific usage, it will be impos-
sible to give detailed information on more than a selected few.

1BJ[ 704.—By iar the most ambitious and widely used of these working sys-
tems is FORTRAN ior the 704 (F4). Several reports have already been given of :
this system—at the 1957 Western Joint Computer Conference, the 1957 ACM
Conierence. and the September, 1957, SHARE meeting at San Diego—so it
would be redundant to go into any detail here. However, an over-all summary of
experience would show that the use of FORTRAN reduces both coding costs and
elapsed time of coding by an average factor of five, according to careful statistics,
particularly those oi the New York City Service Bureau, which bids for program-
ming jobs on this basis. There is an obvious corollary to this which is not always
made explicit: since programming costs have been running at least equal to the
other installation costs (including rental. overhead, and physical plant), it could
be said that an installation using FORTRAN exclusively can operate at 60 per
cent of the previous cost.

The FORTRAN system has firmly established the continuous statement in
algebraic form as a practical input and has demonstrated conclusively that a run-
ning program can be optimized by Monte Carlo and other statistical techniques
to a point where it is almost always competitive with the tight coding of the
most experienced programmers. A revised version of FORTRAN for the 704,
known as F4-2, is currently in process. Major improvements are (1) the addition
of a facility to write and name subroutines in either FORTRAN or SAP machine
Janguage, compile and optimize locally only into relative binary packages for
conditional inclusion, and (2) improved diagnostic facilities. This version is due
for release in the spring of 1938.

The other 704 system in extensive use is PACT IA, used particularly on the |
West Coast by the original co-operative group that did the coding. It is described
in detail in the Journal of the ACM for October, 1956. It is of particular histori-
cal interest because it was the first major co-operative coding effort, and many
peaple believe that this technique will be our only solution when automatic coding
gets many times more complex than it is now.

IB)M 650—DATA TRON —The IT system, started by Dr. Alan Perlis for the
DATATRON while at Purdue and later completed for the 650 at Carnegie Insti-
tute of Technology, is the only full-scale scientific system for either the 630 or
the DATATRON. IT (Internal Translator) is used extensively at many univer-
sity computing laboratories and scientific installations. The output of this system
is in a form which is further processed into a machine-language object program
by the SOAP assembly program for the 630. IBM has just completed final testing
of a superstructure 1o IT. called FOR TRANSIT, which translates a subset of
the FORTRAN language t0 IT language in an initial processing. This is a signif-
icant result because it demonstrates how higher-level synthetic languages may be
made compatible through pre-processors. IT is also nearly completed for the
DATATRON 203, except that the alpha-numeric input-output routines are not
complete, since Purdue does not have this type of equipment yet, as I am given
to understand.

B ——
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AUTOMATIC CODING SYSTEMS IN PROCESS OF DEVELOPMENT
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Computer of Automatic } : 2Ii1E|= e =
Codlie Ssteia Developed By | tional < g E| (5] % |
) Date ‘ Bis (f ] #1 T |
| - =|=|C|=|R|<| £ |
{ ‘ :
IBM Tape 650/ FORTRAN IBM * .\’ x| 2]x[ 32 [
IBM 709 FORTRAN IBM Aug 58] A X[ |2|x| M2 | M
| IBM 705-1,% | FORTRAN IBM-GUIDE Aug 38| A x] 2[x|S2 |S
IBM 705-3 FORTRAN IBM-GUIDE » Dec 58| A x| |2 x| M2 | M
IBM 705 IT RAY iT) Std. Oil of Ohio C x| |1 xl S2 |S
. Univac IT F.uwpy Case Institute , oL SR C x| |1]x]| 82 S
! ~ 11037 IT .| Carnegie Tech- Dec 57| C| x| |1|x}S2 | S
ToATaAN Ramo-Woold. " ‘ | Ve 1/o e, v
1103A UNICODE e€SIL€TH Sp. Rand, St. Paul- | Oct 38 x| |2 x|
_ APS Gorvmay esrawi iy \Westinghouse Res, 7rrs ’ ( x
IBM 709 SCAT : IBM-SHARE Mar 38 i X(xf |21 | M2}
IBM 7053 | AUTOCODER 1BV Sep 38| R [x[x|x|2 | §
| IBM 704 NYDPP Service Bureau Corp| Sep 357 1 O 5 |
IBM 705“}‘L AFAC Allison G)M \ Cl | Ix] |2]x]82 S
IBM 704 KOMPILER 3 UCRL Livermore . | | | |x| [2]x]|32]|2x
File-Computer | ABC  keisge. Sp. Rand, St. Paul . | Jun 38 | ] \ , |
Datamatic ABC I Gmvoerre Datamatic | [ b okxil |
Udec I11 UDECIN 1 swae | Burroughs-, | Dec 37 | ‘x‘ | ' 1| |/l s
Udec IT1 UDECOM 3 1% | Burroughs |"Dec: SH| o l] ; M |S
Datatron 203 PR LowoCE Dow Chemical - | p6 §9 l 1 Ix! (ol Il Soa| 2 £eoc
Datatron 203, | STAR ¥M S/mony Burroughs » i C ‘ X Ve |7
220 |
Univac MATRIX MATH Franklin Inst.v’ { Jan 38wl X
‘ TX-2 Lincoln Labs. - , * | ]
Stretch FORTRAN IBM v f ' R| X X
W GrAC UNIVERSAL CODE| Moore School v ' Apr 35 | ! x: (

EXPLANATION OF SYMBOLS, TABLES 1 AND 2
Automatic Coding System Name: Dagger (1) indicates more important or widely used scientific system.
Dezeloped By: The PACT Group contains Douglas (Santa Monica, El Segundo, Long Beach), Lock-
heed, NOTS Inyokern, North American, and RAND Corp.
Use Code:
R Recommended for this computer, sometimes only for heavy usage,
C Common language for more than one computer.
A System is both recommended and has common language.
Machine Lang.: User has option of using machine language together with synthetic.
Symbolism:
0 XNone,
1 Limited, either regional, relative, or exactly computable,
2 Fully descriptive English word, or symbol combination which is descriptive of the variable
or the assigned storage.
Algebraic: A single continuous algebraic formula statement may be made. Processor has mechanisms
for applying associative and commutative laws to form operative program,

Indexing:
M Actual index registers or B-boxes in machine hardware.
| S Index registers simulated in synthetic language of system,

1 Limited form of indexing, either stepped unidirectionally or by one word only, or having
certain registers applicable to only certain variables, or not compound (by combination of
contents of registers).
General form; any variable may be indexed by any one or a combination of registers which
may be freely incremented or decremented by any amount.

Floating Pt.:

M Inherent in machine hardware.

. S Simulated in language.
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11034 —There are IWO existing scientific compilers for this machine: the
COMPILER I of Boeing Seattle. and USE. the official compiler of that organi-
zation. prepared by Ramo-Wooldridge and others. Although both have many
attractive features. they are not quite equal to FORTRAN in power, for USE
does not use the algebraic format, and COMPILER I, which does, does not allow
subscripting in the aleebraic statement. ’

UNIVAC—ATS3 is an algebraic coding system for UNIVAC I and ‘il which
closely resembles FORTRAN. (I should mention here that, when I compare an-
other system 10 FORTRAN, I mean to establish only the category that system
fits into and not 10 evaluate it against FORTRAN, for there are many features
of AT3 and other languages which are perhaps improvements on the correspond-
ine FORTRAN components.) ATS3 has been used for a year, with a preliminary
manual, in two installations and is about to be released with its final manual for
general usage. For purposes of negotiability of programs, if desired, AT3 is map-
pable into FORTRAN and vice versa.

Non-U.S.A. computers—Nany foreign developments aré worthy of mention,
particularly the work of Dr. Rutishauser in Switzerland, who arrived inde-
pendently at an aleebraic language similar 10 that of FORTRAN for the ZUSE 4
computer in 1951. R. A. Brooker has developed 2 fully descriptive and vertically
algebraic Autocoding System for the \anchester machine. Dr. W. L. van der Poel
of Holland has developed some excellent methods for the ZEBRA computer, his
own design, which take advantage of the micnr-pmgramminf_’ features to build up
complicated algebraic routines.

CODING SYSTEMS IN PROCESS

The picture looks very good indeed for the systems in process. The majority
of these are entirely algebraic and, if not directly usable on other machines, are at
least mappable into each other by intermediate translators. Thus we will find
that. by various practical devices. automatic coding systems may be used across
manufacturers’ lines. adding greatly to the negotiability of programs. Since there
are not many such systems, I will describe them in some detail. Table 2 is a sum-
mary of these in condensed form. Note that we are now forced to categorize by
systems and languages rather than by machine types.

FORTR.—L\'.——FORTRA.\' processors are being programmed for the IBM
Tape 630, the IBM 705-1, 2, the IBM 705-3 and the IBM 709. A further exten-
sion of FORTRAN is being considered for the STRETCH computer, to be de-
livered to the Los Alamos Scientific Laboratories. These machines, except the
705-1. 2 and the Tape 650, are all in the “forthcoming” category, and it is
pleasant to note that their automatic coding systems are to be delivered along
with the first produclion models. Speciﬂcations will be available at least four
months before machine delivery date to allow coding to be done prior to delivery,
thus minimizing any losses in the transitional period. Although this imposes addi-
tional burdens upon the manufacturer’s prozramming staff, it is nevertheless
accounted a worthwhile gain.

——
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An interesting feature of the 705 FORTRAN stems from the fact that 1B)M is
committed, as a part of its compatible-language policy, to producing FORTRAN
for the 705-3 while leaving PRINT 1 unmodified.

Owing to the active interest of the GUIDE organization in conversion prob-
lems, it was agreed to pool the IBM efiort with that of at least one programmer
from interested companies (A. O. Smith, Esso, General Electric Pittsfield, the
Texas Co., Westinghouse Sharon, and Eastman Kodak) and to consolidate the
planning for the two systems so that both processors might be written with an
expenditure roughly equivalent to that required for 1.3 independent processors.
Initial specifications will be modest, since there is no need for optimum assign-
ment of index registers, as in 704 systems. or for Monte Carlo optimization of
object programs. AUTOCODER is well suited to be output for this processor be-
cause of its macro-instruction capability and its open-endedness. A later version
will allow the output macros to speciiy autopoint arithmetic, determined by the
record definitions of the data themselves: here FORTRAN ceases to be a
purely scientific language and becomes useful for commercial problems as well.
With the addition of more generators and additional superstructure in the lan-
guage, it also ceases to be FORTRAN and becomes COMTRAN as we have en-
visioned it.

The FORTRAN language will be modifed to a new level. That for the 703 is
designated F35; F9 is for the 709. These two languages will be basically identical.
In addition, old F4 programs and FOR TRANSIT may be run on these machines
through the medium of pre-processors which convert to the revised language. Such
a pre-processor may be used as an entity or incorporated in the more sophisti-
cated processor. One of the new features in the language will be the ability to
name and define sets of instructions. Thus a programmer may write a main line
of coding which duplicates the logic of a flow chart block for block. decision for
decision, while the actual subprocesses which represent the contents of those
blocks are coded separately. With the F9 processor one may bypass index-register
optimization at will, since this process can consume up to 80 per cent of compil-
ing time. Registers will be assigned in rotation for quick processing and a trial
run with real data. It is wasteful to expend such time if there are errors in the
source program or if the mathematical techniques used are unsatisfactory. If the
resultant object program is correct and suitable. one may effectively turn a
switch to “Optimize” and reprocess for the most efficient object program.

Output of the 709 FORTRAN will be into the official SHARE assembly pro-
gram called SCAT (Share Compiler. Assembler. and Translator). This system is
being coded by IBM'’s Applied Programming Department from SHARE Com-
mittee specifications and is due for completion by March. 1958. With one excep-
tion it is pretty much an updating of the SAP assembly for the 704. The exception
is the “Load-and-Go” technique, whereby corrections are always made by fast
symbolic reassembly with the previously assembled output, which is maintained
in a condensed symbolic binary form. Current good practice is to save the ex-
panded data generated by an assembly or compilation even when corrections are
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to be made. SCAT does not as yet enjoy the “Define Record” characteristics,
literal handling facility, or complete freedom of subroutine levels that many
other existing systems have.

IT —The IT language is also showing up in future plans for many different
computers. Case Institute, having just completed an intermediate symbolic as-
sembly to accept IT output, is starting to write an IT processor for UNIVAC.
This is expected to be working by I ze summer of 1958. One of the original pro-
arammers at Carnegie Tech spent the last summer at Ramo-Wooldridge to write
IT for the 1103A. This project is complete except for input-output and may be
expected to be operational by December. 1937. IT is also being done for the
IB)M 703-1, 2 by Standard Oil of Ohio. with no expected completion date known
vet. It is interesting to note that Sohio is also participating in the 705 FOR-
TRAN efiort and will undoubtedly serve as the basic source of FORTRAN-to-
IT-to-FORTRAN translational information. A graduate student at the Univer-
sity of Michigan is producing SAP output jor IT (rather than SOAP) so that
IT will run on the 704 this. however. is only for experience; it would be much
more profitable to write a pre-processor from IT to FORTRAN (the reverse of
FOR TRANSIT) and utilize the power of FORTRAN for free.

UNICODE.—Remington-Rand St. Paul is writing an algebraic compiler called
UNICODE for the 1103A. This is apparently a large-scale effort like FORTRAN
and may be expected to operate by October. 1958. The language, too, is FOR-
TRAN-like. and AT3 may be considered a subset of it. Many of the character-
istics of the F5-F9 language exist in UNICODE. This will provide the big
algebraic system presently lacking for the 1 103A.

AFAC.—Allison G is writing its 704 compiler for the 705 with the prime
intent of obtaining compatibility. It is a commentary upon the unfortunate lack
of communication in this field that Allison justified the original writing of AFAC
for the 704 by stating that. although they knew 1B was producing FORTRAN.
they nevertheless needed a common language for the 705 as well. Had a co-
operative efiort for 705 FORTRAN been started sooner, they might have spent
their large efiort in such a way that all would be benefited.

KOJMPILER 3—This program. for the 704, is being written to serve the
special needs of the University of C alifornia Radiation Laboratory at Livermore.
It is FORTRAN-like. but it implies a sharp criticism of the lack of sufficient
mathematical characters in today’s computers by coding each algebraic statement
in three lines (or punched cards). Thus the superscripts and subscripts stand
out from the main statement. This eliminates a great deal of the otherwise neces-
sary parentheses and special notation. although the total effect is an increase in
card volume for a given program.

AATRIX MATH COMPILER.—This program is an adaptation, by the
Franklin Institute. of several previously separate UNIVAC service routines into
one extensive package. Two installations are using the system with a preliminary
manual. and a final manual and system are expected by January, 1958.

GP.—A compiler of the GP (Generalized Programming) type is in process for
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the LARC computer. This is a very large effort; certainly more than fifteen
people are on the project. Algebraic coding is allowed as an instruction form, and
generalized subroutines may be selectively generated for minimization in specific
cases. Another interesting aspect of GP is the DuPont effort in rewriting the basic
UNIVAC compilers in GP for more generality and easier expansion.

PHILOSOPHY AND TRENDS

The preceding should have indicated (allowing for a slightly scientific bias)
what the existing trend is in automatic coding. Evident characteristics are these:

1. The language of communication will be our own—mathematical notation
as far as possible and then English when we run out of concise svmbolism. Present
logical language is weak, and T imagine that even the commercial people had
better brush up on their Boolean algebra. The area of loop control and recursive
operations is still not well handled in existing mathematical notation, but com-
puters are forcing the development. As an example, note the ““Replace” operator
(=) of K. Zuse. Although the ultimate in language does not exist vet, we can
console ourselves meanwhile with compatible (as against common) language.
There is much current evidence that existing algebraic languages are all map-
pable into one another by pre-processors. although these may be of varying and
perhaps prohibitive complexity. The Germans, in particular, are concerned that
such mappability be guaranteed before they make heavy coding investments for
the many machines they will be operating. |

2. The trend is to on-line system control, with the automatic coding processor
always available to the running program on call. Today, this technique involves
losing (during object time) the services of one or more tape units, but random
access memory is mtich more suitable for this purpose. Eventually a replaceable
photographic plate should serve this purpose in a semi-interpretive mode. Such

'8 on-line control allows primitive learning and self-improvement of programs by
the computer itself in a servo process. Actual portions of object programs would
be compiled only upon demand, on an exception basis. IBM and Carnegie Tech

i are both formulating such compilers with executive control.

Extensive means will be available for muitiple-processing of intermingled test
runs, compiling, and production. The CORBIE system of the National Bureau of
Standards and the General Motors Supervisory System are advanced concepts in
this direction. )

3. The trend is to set-notation whether for data, instructions. or conditions.
Both macro- and micro-instructions will come into wider usage. and machine
language will be recognized as merely that subset of a given machine’s instruc-
tions which happens to exist in the form of circuitry. Although on opposite sides
of machine language when plotted against complexity, micro- and macro-instruc-
tions can be machine-independent for easy interchangeability-. Flow-charting will
become synonymous with the writing of the main line of program statements
when processors consider sets of sets of instructions by name only. Minor varia-
tions in machine configuration will be handled through macro-instructions. Pro-
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orams tailor-made for each member of the configurational family will be

constructed by assembling an identical program n times with » different libraries

of macros.

4. The trend is to standard machine configurations. The time is past when a
tailored configuration could be sold for each different application. We simply
cannot afford the manpower to make a different version of all automatic coding
systems for all possible combinations. Some variants can be generated, it is true,
with macro-instructions, but complete ireedom is gone. IBM is specifying stand-
ard configurations for which automatic coding systems will be available in ample
time for customers to weigh this consideration. In most cases the large savings in
programming cOsts realized by using these systems far outweighs the cost of
additional equipment to bring a machine up to the minimum. Of course, local
modification by the customer for a lesser machine is always possible.

5. Future svstems will gradually blend into a combination suited for both
scientific and commercial work. When you see a 705-3 AUTOCODER user
suddenly slip into FORTRAN in the middle of coding a payroll problem, you
will see what I mean.

6. Internal cor{xpmalional methods are fairly well handled at this time. The
emphasis at the moment is on getting much better coding for handling input and
output. the preparation of reports, and file maintenance. I have concluded that
people now engaged in scientific programming have a very complacent attitude.
perhaps by virtue of being prior in the field. T was recently accused of being
“futuristic” for recommending that an output-report generator be constructed
jor the 709 by the SHARE group. Fortunately, this had been demonstrated by
the General Electric Hanford Report Generator for the 702, a couple of machines
back. The next step for scientific users is to get adjusted and learn the many
techniques developed by the business and data-processing people. Input editing.
file maintenance. and report generation remain relatively unknown techniques to
the scientific user. and, although he will decry this with specious arguments, he
nevertheless needs them badly. He can learn much from existing business sys-
tems about basic assembly features. generators, diagnostic back-talk, macro-
instructions, etc.

PRODUCTION OF AUTOMATIC CODING SYSTEMS

There appear to be three inescapable facts about automatic coding systems as
we know them. They are:

1. They are always getting more complicated and will require more initial
manpower in their production in order to save much greater manpower expendi-
ture by users.

2. Just as a computer does, they require maintenance and improvement long
after initial production.

3. They must be constructed open-endedly. without machine-oriented coding
tricks. so that they may be adapted to difierent models of the same machine and
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converted to future machines with a minimum of recoding. From this time on,
all new systems should be additive.

Let me elaborate these points with examples. UNICODE is expected to require
about fifteen man-years. Most modern assembly systems must take from six to
ten man-years. SCAT expects to absorb twelve people for most of a vear. The
initial writing of the 704 FORTRAN required about twenty-five man-years,
Split among many different machines. IBM's Applied Programming Department
has over a hundred and twenty programmers. Sperry Rand probably has more
than this, and for utility and automatic coding systems only! Add to these the
number of customer programmers also engaged in writing similar systems. and
you will see that the total is overwhelming.

Perhaps five to six man-years are being expended to write the Model 2 FOR-
TRAN for the 704, trimming bugs and getting better documentation for incor-
poration into the even larger supervisory svstems of various installations. If
available, more could undoubtedly be expended to bring the original system up
to the limit of what we can now conceive. Maintenance is a very sizable portion
of the entire effort going into a system.

Certainly, all of us have a few skeletons in the closet when it comes to adapting
old systems to new machines. Hardly anything more than the flow charts is re-
usable in writing 709 FORTRAN : changes in the characteristics of instructions.
and tricky coding, have done for the rest. This is true of every efiort I am familiar
with. not just IBM’s.

What am T leading up to? Simply that the day of diverse development of
automatic coding systems is either out or. if not. should be. The list of svstems
collected here illustrates a vast amount o duplication and incomplete conception.
A computer manufacturer should produce both the product and the means to use
the product, but this should be done with the full co-operation oi responsible
users. There is a gratifying trend toward such unification in such orzanizations
as SHARE, USE, GUIDE, DUO. etc. The PACT group was a shining example
in its day. Many other coding systems. such as FLAIR. PRINT. FORTRAN.
and USE, have been done as the result of partial co-operation. FORTRAN for
the 705 seems to me to be an ideally balanced project. the burden being carried
equally by IBM and its customers.

Finally, let me make a recommendation to all computer installations, There
i seems to be a reasonably sharp distinction between people who program and use
computers as a tool and those who are programmers and live to make things easy
for the other people. If you have the latter at vour installation. do not waste
them on production and do not waste them on a private efiort in automatic
coding in a day when that type oi project is so complex. Ofier them in a co-
operative venture with your manufacturer (they still remain your employees)
and give him the benefit of the practical experience in vour problems. You will
get your investment back many times over in ease of programming and the
guarantee that vour problems have been considered.
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P. C. Haxner: Much has been discussed. and very profitably—the proving of
theorems, for example, and the various applications in which I know you are all
interested. One thing which has been leit out in this discussion is the question
of the output and its efiect on human beings. For the Stretch machine, which
was designed for the Los Alamos Scientific Laboratory, a year ago I proposed
that the output should be in the form of moving pictures of surfaces. The fact
is that the human mind is incapable of grasping numbers in large quantities. We
could swamp all the faculty members at Wisconsin with our puny little 650.
They could not read what we could put out even if they were so inclined. Num-
bers are singularly poorly adapted to the human mind. Curves are a little better
for interpretation. If a person has to act on information, he has to read it; the
way it is now. the opportunity for reading information is far less than the power
of machines to put it out.

Another point which bears on the use of computing but is not really an appli-
cation of computing is the question of mathematical research in connection with
the methods we use. We are using horse-and-buggy mathematical methods in a
machine age. For example, there is a feeling among many people, largely due to
the existence of methods in large quantities, that finite differences will be the
answer to differential equations in the future. This probably will not be so.
There is no hope that I see now for really doing a good job on a partial differen-
tial equation which is the honest flow problem: four independent variables (that
is, three spatial and one temporal) characterizing a fluid flowing in space. To do
this by finite difierences would be almost incredible. It would be far more incred-
ible if. after obtaining a solution by that method, a function table of four
independent variables were to be printed as output. You could not read it or
understand it if you had it. The entire output situation, I would say, is rather
unsatisfactory.
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It is also unsatisfactory to consider more and more automatic programming
techniques when we do not know what we are going to do with these things in
the future. For example, the kind of thing which Dr. Samuel mentioned, along
the lines of proving theorems, is perhaps going to take hold one of these days.
and maybe algebra will be done by machines. It is not known whether or not
the automatic compiler which is devoted primarily to arithmetic on the assump-
tion that all you handle is digital numbers in the machine will be suitable for
this. We are not reflecting enough on the possible use of these computers: what
they might be used for if we could ignore the cost momentarily. It is important
to ignore the cost in order to get an adequate theory.

Now, to turn this discussion over to some of the other people, I want to ask
one question of Dr. Rich. He mentioned that two thousand words of storage
was about the minimum and maximum size for a program. I was wondering if
he meant that there was a human incapacity to do more than this or a machine
incapacity to handle more than this? I would say that there are physical systems
which cannot be done with that number of steps.

R. P. Rich: I would like to start emphasizing a number of boundary conditions
I put on this theorem. One needs hypotheses to draw conclusions. In the first
place. the total storage was not two thousand words. but rather seven thousand.
where five thousand words were used for storing tables. constants, and other
reusable information. Two thousand words is the actual running program. consist-
ing of the instructions executed each time around. That was the first restriction.

The second restriction was that this was for a particular kind of problem: this
working storage figure would obviously be very different for other types of prob-
lems. That is, should one try to do certain nuclear-reactor problems within a
factor of ten of this amount, difficulties would arise. The real point that T meant
to emphasize by overstating my case (as I think one must to get points across
in so short a talk) is that it is not only possible but also easy and obvious to ask
the machine to do a lot of things that you should not ask the machine to do.
For example, if you know the effect on the output of certain of the inputs. then
these should not be redetermined during every run by Monte Carlo. In other
words, if analytical answers are available for parts of such problems, then these
should be inserted analytically. Random numbers should not be drawn to see
whether a sine wave is in fact a sine wave. That was the major point I wanted
to make—that random Monte Carlo procedures should be restricted to the things
one actually does not know how to do analytically.

Another point T tried to make was that. if sampling procedures are used. then,
in order for answers to be precise enough to be of any use. fairly large samples
must be run. With machine time costing what it does, and the demand on the
machines being what it is, in order to get a reasonably large number of samples.
the time per sample on the machine must be reasonable. Therefore. if too much
is required of the machine at each single calculation. then each answer is a good
answer, but it still is only one point of a sample: a hundred-point sample with
several approximations at each point may still be worth a factor of three better
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than a ten-point sample, just because of the sampling error. T could go on with
this subject at length. but T am sure that that is not the best way to spend our
short remaining time. so I will let it pass for now as a rough answer to Dr.
Hammer's question.

P. C. Haxer: Dr. Harder, vou mentioned in the course of your talk that
there were certain instances in which network calculators and digital computers
were equally efficient. I wonder if you could give us some of the qualitative
characteristics of such a situation as that?

E. L. Haroer: For a system-stability calculation it is necessary actually to
invert the complex impedance matrix of the power system. In this case the in-
version of the matrix requires considerable time and must be carried out for
each network configuration involved in the stability study. This is a type of
power-system problem in which I think the network calculator excels at the
present time.

At present. for load-flow problems such as I illustrated, the efficiency of the
two machines is about the same. Practically all the load-flow studies are being
done by the nodal equation approach. and this has several effects. For one thing.
considerable network identity is lost. and the mutual impedances between lines
cannot be taken into account.

In short-circuit or ground studies. a third type of power-system problem, there
are mutual impedances between lines. and so. to use a digital computer technique.
it is necessary to start all over again. not with the nodal equations (that is.
Kirchoii’s current law). but rather with Kirchofi’s voltage law. It is much harder,
however. to set up the voltage equations in a systematic fashion. Whether the
digital computer or the network analyzer is better often depends on such a small
thing as how good the initial guesses are. In a case where some experimenter has
found that he can run the problem let us say two to one cheaper by digital
computer. on digging into it one might find that, had his initial guesses been
poor. it might have been two to one more expensive. So the question Dr. Hammer
asked can be answered only by using particular instances.

P. C. Haaner: Dr. Samuel gave a very interesting talk about the proving of
theorems. I wonder ii he could give us an idea of what he considers the most
promising line of thinking right now? I have been thinking about proving theo-
rems in a very modest sense, not in the ambitious sense Dr. Samuel has been
describing. For instance, I have run into some simultaneous non-linear equations.
twenty-three hundred of them, and I would like to solve them. (Twenty-three
hundred is one step on the way up to infinity.) The simple kind of thing T am
thinking of is the proof by induction. Mathematical induction is one case in
which one quite often knows fairly well the kind of thing he is doing, and
thereiore he could in principle carry out the proof by complete induction, by
using roughly the same type of thing Dr. Samuel suggests. Let the machine
establish the guesses as a function of ., in a one-index problem; and let the
machine prove that the guesses work. This could be done in cases where the
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only excuse for doing it by machine really is the manipulation, the impossibility
of writing out as many equations as one has. You cannot see them. So you know
what to do, but you cannot do it, not practically. The same thing applies to
calculating. You could presumably do all the calculation that the machine does.
but you cannot quite carry this out. Would this kind of theorem. or theorems in
complex functions or topology, be the kind of thing you might be able to prove?

A. L. SamuEeL: It is very easy to talk glibly about these things, but at the
present time plane geometry is proving extremely difficult. to say the least. I do
not know when we will get to more complicated things such as those to which
vou refer.

I might make one general remark. which may be obvious to vou. in respect
to dealing with problems both syntactically and semantically. If you are proving
a theorem, you use the semantic interpretation of the numerical data as a guess
to tell you whether you are proving yvour theorem or not. There is a converse of
that, in which yvou are trying to prove a theoryv—trying to prove that a present
theory is not true—where exactly the opposite should be done. You should use
the semantic information as the truth. trust it. and doubt the syntactic informa-
tion. I think we may be actually using computers before too long to derive new
theories. which is just the opposite of proving theorems.

P. C. HamMMER: Does anyone in the audience have any questions to ask the
speakers?

H. H. KANTNER (Armour Research Foundation): 1 would like to ask. *What
is the relationship between automatic programming and symbol identification or.
as we know it more customarily, character recognition?”

R. W. Bemer: T hope that eventually we will have a typewriter for input.
similar to a typesetting machine or linotype. and such that when you write out
an equation it can be recognized by the computer. Presently we are limited in
the scanning of an algebraic statement. or even an English statement. by the
many extra symbols used to separate our meaning. If T had the right kind of
typewriter—imagine it has plenty of characters, upper- and lower-case roman.
upper- and lower-case Greek, big and little numerals, brackets of different types.
even hands that point, in short. a multiple font—I could press a button which
would put the platen at half-carriage and cause a bit in a control word which
says, “This is subscript.” So I could subscript by sin X, or by reverse I could
superscript, and I could go up to many levels of superscript. In this sense I think
we will eventually be able to take type-set information and feed that into the
computers. I do not know about handwritten information. That seems pretty far
away.

H. H. KanT~ER: But you take the elements of the equation as symbols by
themselves, and yet the equation per se is a symbol. as pictorial display.

R. W. BEmERr: Maybe this will be pertinent. In the future system we will be
able to give temporary connotations of meanings to any variables, or symbols, or
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sets of symbols. Thus. for temporary purposes, I can say that these operations
will all be double-precision arithmetic. and these will all be complex arithmetic,
irom here on. Further. one can say that plus and minus indicate matrix opera-
tions instead of plain linear operations: or. if I wish to replace sets of items, I
can say, for example. that all variables which have names starting with “P” are
in South America. One can define this to the machine and change it at will. It is
simply a matter of altering the table look-up in a dictionary by classes or sets.

H. H. Kaxtxer: I have not got an answer to the question, “What is the
relationship between symbol identification and automatic programming?”

P. C. Haxer: May I take a stab at this? Ina generalized sense, I think you
could say that symbol identification is the same type of thing as automatic pro-
gramming. That is to say. your machine gets a certain word, it recognizes a
certain word. like sin x. It proceeds to operate on this and generate a sequence
of responses to it. If you call the whole sequence of responses a “transformation”
and consider the whole code vou are putting in as a symbol, then, if you want to,
vou can say that this is one symbol and the machine responds to the whole
symbol—you can say that this is the same as character identification. The
machine knows what to do with this whole thing and recognizes the whole code
altogether. I am thinking of it as one symbol now. What is a symbol anyway?
It could be the whole thing. So I think the answer is that automatic programming
is the same as symbol identification, presuming the machine makes no mistakes.
Does that answer your question?

H. H. Kaxt~xer: Thank you. It is a very good stab.

R. S. Dixe (Caterpillar Tractor Company): Along the same line, I would say
that. if vou think about this reflectively. you will realize that the Chinese had a
very strong symbol language, which has become very complex. Would we not
be better off sticking with the simple symbols of our own language and stringing
them out. rather than making too complex a symbolism? Would we not be
forcing ourselves to have a language too complex to handle?

L. U. Asers: I believe that vou certainly can go too far in taking advantage
of all the logical symbols and subscripts and German characters and so forth.
In the direction of Dr. Hammer’s suggestion, if you can present people with
curves or pictures or written decisions or judgments, this is probably much more
helpful than just multiplying the language.

Incidentally, T would like to mention one other thing in regard to the matter
of designing machines to learn. A young student at Case has programmed the
630 to learn to play ticktacktoe. It starts off not knowing how, and in the process
of seventeen or eighteen tries it has learned and is capable of tying or beating
anyone it plays.

A.L.Sayver: I am sorry I did not mention that there have been many, many
attempts of this sort. A man at the National Physical Laboratory in England
programmed the Ace to do the same thing. There have been a lot of things done;

e
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I picked a few isolated examples by way of illustration. I apologize to all the
people I did not have time to mention.

P. C. HAMMER: In a way, the computing industry started with the big ma-
chines, The government was behind these things, and the big companies started
making big machines. Now we have this business of interpolating to zero with
smaller types of machines. I was wondering if Mr. Gasser might say something
about whether or not his company is going to contemplate getting bigger ones
or is going to hold fast to this order?

E. B. Gasser: In my letter I sent forward to Boston, recommending the pur-
chase of the LGP-30, we stated that at the current level of research activity we
would be satisfied with this machine for the next four years. At the end of this
time, I think we will take a good. hard look at our machine and the competitive
machines that exist at that time and make further decisions. We are bound for

' only four years. I think that the way things are going in the Toni organization,
f with the strengthening by Gillette of the central research organization, we will
find ourselves in the market for a larcer computer by that time.

E. L. Haroer: I would like to ask Mr. Bemer a question in connection with
the translation from machine to machine. Of course the translation between the
superlanguages, and then the compiling for particular machines. is a fine way,
provided you program in the first place in one of those superlanguages. But can

‘ you comment on what is going to be our ability to use the programs for the

present machines on their successors?

R. W. Bexer: The only way this is possible is on a machine that is specifically

designed to accept all instructions of a previous machine plus additional instruc-

) tions: such a computer is the 703, Model 3. which will handle all programs
written for the 705, Models 1 and 2.

As a general procedure T do not think that it is possible to swim upstream to
the general language. If you take a specific machine and take some odd-ball
characteristics it has—divide by an alphabetic number and swap the result end
for end. for example- -anyone can produce a program that nobody else can ever
figure out in terms of what it was intended to do. If you want to compute J, (x).
I can write down a program for a particular computer: but I cannot look at a
program for SWAC, say, and know that it will give me J, (x).

e

E. L. HarpeEr: What about 704 programs on the 7092

R. W. BEmER: There is a special device that will enable you to run all 704
programs on the 709. T think that it is only necessary for the conversion period,
for the machine-language programs.

B T —

|

’ E. L. Haroer: What can be done ii You go to a large core memory and want
to drop the magnetic drum memory? I you have a 30,000-word core storage. it

[ seems foolish to retain an 8,000-word intermediate speed storage unless vou
really need it for some special reason. Do vou think that the existing programs

J for drum and a 4,000-word. high-speed memory can be translated mechanically

i
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in some way, perhaps by using tabulating equipment, to a machine that does
not have a drum?

R. W. Beugr: I think that it depends upon the complexity of the program.
For instance, D4C¢-Ridgeway could tell you that he could not find any way of
mechanically converting Fortran, written for the 4.000-word, high-speed memory
and the 8.000-word drum, so that it would work with the 32,000-word, high-speed
storage. They had to get in and change table sizes by hand; they had to juggle it.
I think that there are many, many things like this that we are going to be stuck
with for a period of time, which we cannot afford to mechanize. because writing
the program for mechanization would be more work than it would be to do the
original problem. We are faced with many difficult problems in going up in the
hierarchy of machines; the only solution I can see is getting to a high-level syn-
thetic language quick enough so that we do not engender much of this machine-
language instruction. We could then hope to get the problem out of the way
once and for all.

R. P. RicH: You mentioned a five-to-one reduction in time in going to Fortran,
but you did not say from what. Usually this factor is ten to one instead of five
to one. but a person never says from what.

R. W. Bexer: T am trying to be conservative. It does not become me usually.
This is from the SAP language, which is symbolic machine language. If you
were to program in pure binary, you would find it twice as difficult as SAP, so
we multiply the two together and say that Fortran reduces ten to one in program-
ming over actual machine language.

R. W. Froyp (drmour Research Foundation): Most equipment seems to be
designed around pure numerical or alphabetical input, whereas most mathe-
maticians are trained to use Greek letters for angles and special signs for “greater
than,” “equal to,” “minus.” and so forth. Is anything being planned for coming
machines or interpretive routines to make it easier for the poor mathematician?

R. W. BexEer: The Los Alamos people have their own design for a 300-
character typewriter which they would like as input to the Stretch system. They
made a request for price quotation to IB) to reproduce this, and it is under
consideration now. It has pretty much everything on it. I am very glad to see
this myself.

A. OpLer (Dow Chemical Company): Yesterday, Dr. Hopper indicated that
Remington-Rand, to solve this input problem, wanted to go to the English
language instead of to symbolic. I think vour approach is opposed to hers. She
seems to have a broader brush treatment in the sense that she could meet busi-
ness needs as well as those of the mathematician. The mathematician still knows
the king’s English.

R. W. Bexmez: T do not know how the king got into this. It is the queen’s
English now. Anyway, I do not think that actual language as such will hold up

s




Panel Discussion 125

too well if you extend Dr. Hopper’s principle indefinitely to all the different ways
One can express statements. She savs that, after perhaps twentv-nine difierent
combinations, you have reached the limit of what anybody could possibly say.
In the more complex programs there will undoubtedly be found other wayvs to
say the same thing to the machine. would much prefer a mathematical or
symbolic logical notation, which consists of specific characters, and see this used
as an unambiguous input to the machine.

A. OPLER: There are 20,000 characters in the Chinese language.

R. W. BemEer: I do not Propose to go to the Chinese language. We tried to
make up a list once, and within the neighborhood of 180 different characters we
could do just about anything anyone required for the majority of scientific or
commercial work. It seems reasonable that two four-bit characters in combina-
tion can express all the alphabetic. numerical, and special-character symbols we
will need for a while.

A. L. SamueL: One of the problems with English is that a person can make
a statement in English without realizing that he is not being precise. This is one
of the characteristics of the English language. So there is a certain argument in
favor of requiring a limited artificiality in machine language which forces the
person stating the problem to recognize what he does not know about the problem
in order to state it precisely.

QUESTION FROM THE FroOR: There are a number of installations T know of
that have large-scale computing equipment and also have some of the smaller
machines that have been described today. T would like to hear from some of the

panel members what they anticipate the efiects of automatic coding techniques

will be in terms of what uses these smaller machines will have in those installa-
tions with the larger equipment available?

E. L. Haroer: We have this problem at Westinghouse in that we have forty
plants and five large-scale computers and also about a hali-dozen medium-scale
computers. There is a possibility of the small computer’s being used right along
with the large computer. There is a possibility in a big plant of its being used
two or three floors away or two or three buildings away: and. of course. there is
a possibility of its being used in a plant that does not have any other computer.
Now, where there is a large-scale or medium-scale computer present, then the
decision as to whether you need a small computer also. for smaller problems, is
in a way competitive with the use of automatic programming. We are conducting
an experiment right now to try to test this out—a very simplified version of
Fortran as compared with the use of 2 *mall computer. The two factors that enter
in are convenience and the time to do the programming. O course. the cost comes
in, too. In general, automatic programming seems to be about twice as fast as
the programming for most small computers, which do not have the benefit of
symbolic programming. So the programming is a little shorter with the automatic
programming technique. We are still trying to work out the balance of this gain




126 Computer Applications Symposium

for the automatic programming as against the scheduling difficulties and the
problem of getting the answers for small problems through big computers, sched-
uling them along with other work. We do not know the answer yet. We rather
feel that there will be a lot of use for the small computers. In fact, in our company
now we have five of them, and a number of others ordered, along with the big
ones. Most of them are in special-purpose applications, although in one plant
there is a small computer in the same office with a medium-scale computer. We
are trying to work out the optimum pattern in order to advise our various plants,

R. W. Bexer: T would like to toss in a little remark. I am in favor of the
short-order-cook policy that I think will come into effect perhaps five or ten
vears from now. It might resolve at least a certain class of problems as between
the small and large computers. If one had an extremely large, extremely fast
centralized computer with various lines radiating out, and with terminal facilities
such as a person now only gets in the form of input-output devices at the com-
puter. and if one could have high-speed transmission to and from this centralized
computer, it would be like a short-order cook. It takes the orders off the lines
and. so to speak, heats up the griddle and sees that the toast is ready while it
is pouring the cofiee. It will be seli-scheduling, self-regulating, and self-billing
to the customer on the basis of use of the input-output device. I think, since the
larger and faster computers, as far as production problems are concerned, always
produce more problems solved per dollar once the problems are in the machine.
that this is the obvious direction to go. I agree that at the present time there are
many small computers that seem to take less trouble than a large one; but I
think that, in the long run, we will use the largest computers and will start
thinking in terms of compatibility of languages and ultimately in terms of a
single language.

P. C. Haxner: It is getting a little late. Maybe we had better draw this to a
close. If there are no more questions. I want to thank all the speakers for the
excellent job they did today, and thank vou all for being here.
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I NEWS

The GUIDE organization of 705 users is sponsoring a cooperative project with IBM to produce a

FORTRAN system for the 705 models 1 and I1.

The processor will be written with the conversion (o

705 model 111 in mind so that the total effort will be minimized. Furnishing programming people for
this project are:

Westinghouse Electrie Standard Qil Co. (Ohio

Fastman Kodak The Texas Co.

General Electrie Co. A. O. Smith Corp
The first working version is expected to be tested by August 1958. The FORTRAN language which

will be identical with that for the 709.

II CONTRIBUTIONS

To stz

art, and by way of demonstrating how trivial contributions may be, 1 am showing one taken from
the PRINT 1 system for the IBM 705, a serial, decimal, VET machine.

COMPUTATION

\ MACHINE METHOD FOR SQUARE-ROOT

R. W. BEMER
[.B.M. Corporation, New York City

| N . .
requiare

Computers with operations having variable execution times (VI

Well-suited for computing square root on decimal 1

a diierent ¢iass ol sul

to take full advantage of these characteristics.

chines is a variation of Newton's method which uses a linear first approximation such that cony
to the desired accuracy occurs in 2 iterations, thus causing a fixed and predetermined execution time
Floaling point square root routines operate on arguments of the form: ) 9
N M -10"  where .1 M 1, and M is always positive
To establish a common program for both odd and even powers (P) of 10, let
N m - 10" where 0l < m 1, and p is always even.
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acy, € G A L = and Iy 104 v m
’ b X 10 and T, 10-% /m
ab { inear segments may .l-r‘lel..\'E';l\'lx‘vi. The )a!ll.!)' l’u.‘ segments
L0 ev, simultaneousiy mizing the number ol digits in the multipher
» 1 | .
or least execution time. lables lor some common acecuracies are shown here.
Ay = aX b where X most significant part of m
19 Aiemt
S~ LU=zt 1 Z-a1git
\ b Range a b Range a D
| ol il (2 {. 2 585 110 (14 4 (154209
2 07 02-.03 3.4 OR03 014-.020 3 06482
) 2.2 110 03-.05 2.5 0991 020-.028 3 07712
') 1.4 174 5. 08 ) 028 - 040 2.72 09153
| 1.0 247 08-.13 1.6 1545 040-.056 2.29 10876
(1 8 (4 93 2 ()1610) 056 - 00 1 95 12781
J 0.6 109 23 9 0.9 2749 076-.105 1.66 15004
e 1G9 Bl 0.7 a0l 105-.145 1.42 17548
5 : 60 .84 0.6 §145 145-.195 1.21 20596
r¢ JImits are aiso R = SRR . = NTA
- 1 f4-1.0 0.9 H005 195-. 260 1.0 23145
nimum numbper )| > y = -
=g "iAll'l s 260-.350 0.91 27395
or mmmum 1 LU time. - -
numul : nny > B , 25() 170 0.78 11953
io these tables are possibie ecause ol the R s SAZ
e TR e S ; 170-.630 | 0.68 | .36649
erval in arguments, address modification {rom the = : - S
e T A 630-.820 | 0.59 42301
{ 1= usually impractical ; the norm method 1s to truncate = P
1) practical;theno xl.I ll 100 1 ‘ truncat 820-1.00 0 52 48005
to .xx or .xxx unrounded and do a table lookupon

on. Becauseof rounding oy erflow thesubroutineiseasier

the 1/.99999999 with even power maintains the same mantissa for the square root. An early
condition will usually save program steps inasmuch as overflow is guaranteed never to occur.

11
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be constructed for different accuracies, but if more than 12 digits are needed it will
be better to use 3 iterations. A similar method is also possible for binary machines with VET.
A, =14(123) + 174 = 346........

A, = .5 (.346 + .35681) = 50141

Find the 1/.12345678

12345678 = .346 = .35681 or,
Y & 12345678 — (.35141)* —.0000322081
12345678 ——— —

55141 351318346 70252

’ \ 5 (35141 + .351318346) = .35136417

— 00004583 + 35141 = v = .35 36417

-

T e
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XTRAN ANNOUNCEMENT = SHARE Meotlng = 26 Feb 1938

XTRAN is a tentalive nome for a isniufiva source language which Is fo
on the existing FORTRAN lengucgs. Certaln of the preliminary
gpecifications are outlined on the sheots you now hove, together with some coding
examples to demonsirate cericin sallent features. Note that these speclfications are
incomplete, porticulorly with respect fo Input-outpit and logical statements.  This
doas not Imply that we do not have improvesents doveloped, but merely that we could
not decide on a proper form for this preseniation, rushed s we cre.

XTRAN follows o mothod demonsivated to be femible by the FOR TRANSIT system,
which Is @ mears of nnning soures programs in the FORTRAN language on the 620,
This 1s done by means of a sowrse language ~ %o ~ sowrce language processor from FOR-
TRAN to the IT longuege, which Is then used to produce symbolic and evenivally machine
languege coding. Thus XTRAN progrems produce FORTRAN programs which are then
fed into the FORTRAN processer for the 709, Again, the stondard SHARE machine s
the configwation used thruout,

The bosic mechanism of XTRAN Is the Pre-Proceasar program, which is bolng cur=
rently flowcharted for the 709,  This pre~prosessor is Itsolf a mulit-pess kmteliigonce-
getherlng and tronsforming wnit quite timilar in princlple to the multiple pumes of the
PACT system. | belleve tha: most of ows future progremiming systems will be constructed
an this modular principle, limiting the vearisty of functions! wark perfarmed on each pass
so theve Is Jitile confllc?, end certalnly more flexibilfty for improvemant and change.
Thws the informotion gathered in passes 3 and 5 might show that thers ware no source
entries requiring tha service: of pess 8, which would be eliminated accordingly.

For processing XTRAN on the 705 madels I, [} and (i}, no pre~processor as such s
roquired becowse the combinad GUIDE-1BM werking group Is starting from this language
and translating directly to Autocoder IHl.

During the pre~processing, many of the XTRAN statemants will produes multiple
statements of the FORTRAN varlety, so that the pragram Is likely fo be much expandad
when eatering the FORTRAN processer. We wre coordinating XTRAN work with thet
of the FORTRAN 709 precessor so that the enalysis end informetion~gathsring dons In
the XTRAN pre-processor ¥s switched off in the FORTRAN processor and nof duplicated
uny more then Maz‘:‘ 17 there had besn sufficiont fime to meke an Infegrated sysiem
before delivery of the fisst 70% we would hove dane so, but the present mode of fub-
rication has a greater sofety factor for completion on tims. o actuality we expoct the

overlap fo be negligible,
The besic intentions for XTRAN are:
1. To minindze the emouni of actual wrlting end coding, rosulting in fewer epfries,

2. To minimize passible coding eirors by allowing more fresdom In rules and auto-
matically Inserting new and corrective siatements,  Thus:

a. Algshraic statomonts may have mixed expressions eonfolning flxad or










COMPUTER LANGUAGE COMPATIBILITY THROUGH MULTI=LEVEL PROCESSORS

Haooa >
W SIS/ SEMEK
Everyone has probably heard the story of the test given fo defermine the epiitude of

@ man applying for o job s @ mathematlcion, For the first pert of the test he was ploced
in @ room, and in this room there was o bucket of water on o foble, and o siove, The
problem wes for him 9o heat the water, The solution was obvious, He moved the bucket
of water from the top of the table fo the siove. He then [t the stove ond heated the
wafter,

For the second part of the test, he was placed in the same room with the sane props,
Bub this time the bucke? of wader was on the floor, The problem was the same = fo heat
the water, Afer some thought he moved the bucket of water from the floor to the tabla,
This was the correct solution, and he passed the fest because by moving the bucket of
water from the floor to the fabie he had reduced the problem o one he had alreody
solved,

Now this is a sllly story, cnd usually told in an effort to be funny, but the hero of
this story wos faced with o problem not unlike some problems ofien faced by progremmers
who are frying fo create on caufematic programming system for o diglial computer, Offen
the programmer will already have of his dispcsal an existing subroutine, or set of sub-
rovilnes, or even a checked ou program, [ust cs the hero of the story had the already
checked out table to stove subroutine,

‘ A programmer is faced wiih the cholas of going as directly as possible from the
souree language o the machine language objest progrem ¢ Saving a3 meny Instructions

as possible and corefully optimizing, or toking advantoge of the existing subrouiines
')

by writing a program that calls upon fie subroutines when they are weful.

A programmer who has af his disposal mere then just some subroutines b @ more
difficult cholce., He may have aceess fo an existing symbolic assembly, or even on
algebrofe compller,

If his task is fo create a more sophisilcated and more powerful programming sys
than the exlsiing one, he & siill faced with the some choice, Just a3 the hero of th
story could have moved his water directly to the siove, the programmer could ek s
direct route of going directly to machine language, or he could toke advant: je of
exdsting system by wilting o pre=processor that ivonslates from the new scurce lann
#o the langunge of the existing system,

Thers have been meny crouments: pro and con about the merlts of the Indlrast
route over tho direct and vice versa, The diract route hes the advantage of shorte

processing Hime but Is much more wark for the progrominer os it takes very Iitile
acventoge of axisting coding offort, The indirect route has the disadvaniage
3D )

processing fime, but hes the advoniege of being less work, since it fokes full
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ofmcadsﬁngsystunwhlcbmyolnedthemcsiofﬁw feaiures desived in the final
overall system. These arguments point up one faet, THERE 1S NO GENERAL RULE,
The route fo be faken from source language o object program dopends on many things
that will vary with each individue! case, Some of these are:

The programming investment In the existing system and the efficlency
and wefulness of the existing s .

The programmer’s budget for creating the programming sysfem and his
deadline for heving a checked-out running system,

ﬂ\ﬂhﬂwpolnhmmﬁnmtpaﬂm. i a progrommer simply
dom'thunﬂnhabﬂaﬁnﬂmhdtdwnmdwﬂhamhhmﬂnfmm
scratch, then the choice is made for him, He must use the indireet route of the

preprocessar.
Another Impartant point fo be consldered fs thit when g system Is created by

tacking preprocessors in front of existing autometic coding systems, what kind of
monster will the final product be?

in order fo help understand what this final product will lock like, some points
abou? preprocessors should be mede clear, Actually what @ preprocesser should be

Is a source language o source lenguage tronsiator » that translates from o higher level
source language o o lower level souwree language, and Incorporates advanced aulo=
matic programming feciwes, during the frenslation.

To be fair, a preprocessar should be regarded..more as the first pass of a system,
or the first group of passes of an overall system, rather than @ an Independent
programming system simply placed in front of some other programming system. True,
the overall system may be inftially ereated by this fatking on of the preprocessar,
with the resulting Increcse of processing fime and some duplicotion of effor?, But
once the system Is "off the ground” end checksd out,
been met, then later rewark should toke over the elements of the lower system ond
absorb them where they belong.

The FOR TRANSIT system for the IBM 650 Hlustrades the suecessful use of
preprocessars, The system came Info belng In this menner: SOAP; a symbolic assembly
system, wes writhen by IBM progrommers and was an existing system. Dy, Perlls of
Carnegle Tech, and his essocliates, J. W, Smith and H. R, Ven Zoren, vwote
complier which they named IT and whese ouiput is the input longuage of SOAP, thus
eliminading the need for them %o write an assembly for the IT system, cs the program
was assambled on o second pass wsing the SOAP system, The next siep was for IBM
programmers fo write the FORTRANSIT preprocessor thet ircnslated fram FORTRAN
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statements fo IT statements. This system s more then just o souree o source language
tronslafor, The FOR TRANSIT preprocsssor incorperates mony cutomatic programming

fntwuﬂ:dwondposfblowiﬂadnﬂ'sysm clons, hes a one for meny Input out=
put correspondsncae, cﬂhaﬂﬂmg!v&ﬂnwmhdmtmofhduplc

m.mdﬂngmdlmkcﬂweepmmmmdwksln this way: Source
programs are written uwsing FORTRAN siatements, The first pess through the 650 scans
dwﬂnhlmwaﬂunwmmy&lsdmapmdmbehm
FORTRAN variable names and IT varlable nemes, af the seme fime double subseripted
varicbles are assigned IT variable names, Then the whole progrem is tremsioted to IT
statements for oulput. For the second pass, the newly created IT statements are wed
for Input, ﬂnmﬂhﬁmmmdhedadwnochlwmw, compiles
mwm«:woaehmmybasls&omihelTstmtoﬂmsymbouc
lenguage of SOAP for output, For the third pos, the symbolic SOAP progrem is wsed
bhpﬂ,mdknuuﬂod,ﬁmombdngmom!wzndmddmlmgmoob{m

program ready for exseution,

The overall result of this expariment in facking a processor In front of a processor
thot wes tacked in front of a processor hes been o three pass system that Is long on
procassing time and dus to the three passes, one which hes been unwieldy in some
coses, But creating the FOR TRANSIT system accomplished this:

The programmer with a problem to solve need enly cancern himself with learning
the FORTRAN language and very Ifitle okse. In the ideal cme the progrommer {s
unaware of whether it takes three passes or three hundred passes to process his FORTRAN
statemaents,

While the system is belng wed In the field, programmers at 1BM are working on o
two poss system. The first pass will occept the FORTRAN stuf ements and compile o
symbolic program which Is assembled on the second pass. Duplicoifons on coding are
belng eliminated. The whole system will be tightened ups The resul? of this Is that
this two pass FOR TRANSIT will have a marked decrecse in processing time and greatly
increased flexdbility os well os o more efficient object program,. But remember, while
this new system Is being prepared, people have the ariginal system fo wse, and when the
improved system Is distributed, there will be vary little Intervuption, change over period,
or relearning #ime, In the 650 installations thot are using the FOR TRANSIT system,

Experlence In writing and using the FOR TRANSIT system has shown that there can
be many Importent advanteges of pre=processors.,

One Is the possibility of infroducing more advanced cutomatic progremming features
fo an exdsting system through the we of a pre=processer, This ean be eccomplished by
@ preprocamor that no? only aceepts a higher lovel source langunge as Input, but also
contoins the rewtines end ability fo prepare this inpu# for procassing by the lower level-
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system, Tboproprmcmocfuallydoa little progremming, thus ecsing the load
onﬂnhwmmmmdmd:k@ihomllsysmdosa?omwhmdé«pm-

gramming sysfem rather than coding system,

A second advontage Is that inter~computer compatibility is passible through the
uwse of ane common source language and translators fo the source languages of existing
aufomatic programming or coding systems. The FOR TRANSIT system might be wed
@ an [llwiration again here, as it franslates from a 704 input language fo a 650 input
lenguage, making it possible to use FORTRAN statements on either a 704 or a 650,

Ancther advantage Is that if is possible for programming systems fo exist before
the final sowce language Is specified, For example, there are few people actively
wsing computers foday who are not using some aufomaiic coding or progranming system,
Yot work Is still In progress by the ACM AD HOC Commitiee fo specify a common
computer language. Once this common language Is specified and accepfed for use,
then It Is possible for source %o source lenguage tramslating preprocessars fo play en
Important role. This indirect approach can enable people fo begin using the new
ACM universal language without walting for whole new systems fo be created from

scratch,

A final advantage is the obvious but often overlooked advantage of less
likelihood of progromming errors, Any time there is less work for o programmer fo do,
lass for him fo understond, fewer rules to follow, there will be a result of fewer
errors on his part, In oddifion fo this, the preprocessing pass should incarporate error
detection os one of Iis features, Error deteciion backialk from the preprocessing pass
in the form of dicgnostic print ouls can be a great aid fo debugging, and the earlier
In the syshem errors are detected the mare fime saved,

One final point about preprocessors s that, If an automatie coding system
exists, and many sowrce programs have been written in the language of this existing
compiler, and then a preprocessor Is added, the existing source programs cre not
necessarily made obsolete. They do not have o be rewritfen any more than a
machine language program would have fo be rewritten when somecne comes along

with a symbolic assembly program,

Once the overcll system is complefed source programs may be written in any one
of the levels of the system, and the system should give the programmer the freedom
of changing the mode of his source stafements from one level fo another within his

program,
This can be made possible by bullding an intelligence Into the preprocessor that

enables it fo recognize the mode of the input statements. Any input stotement that

Is of a lower level then the highest is simply passed along to the proper place in the
system for processing, The remalnder of the folk was & description of the proposed

XTRAN 709 system.




® Evaluating Intelligence for Programming Systems

A remarkable variation exists in the degree of sophistication of
various programming systems. A particular manifestation is the
jungle of assorted devices for reproducing limited human decision
procedures. An attempt is made here to begin a systematic classifi-
cation of the various devices for educating the computer to take
over the decision-making functions of one or many human operat-
ors, both those that have been demonstrated feasible to date and
those that are highly desirable for the future.

R. W. BEMER,
I.B.M. Corporation

B It would be very presumptive to
attempt to present an exhaustive sur-
vey of intelligence in even the most
narrow and limited field, which the
design and application of computer
systems certainly is not, sinee it has
the ecapability of representing the
inherent universality of thought pro-
cesses, This article is intended only
to create an expandable framework
for additions by others.

In this article, typical questions
from such a checklist are amplified
and explained so that some of the
implications of such a check list can

be appreciated by DATA Control
readers with a detailed working
knowledge of computer systems.

Copies of the complete checklist are

available to DATA Control readers
upon request. (See box).

TYPICAL
PROCESSOR QUESTIONS

Is all action taken on an exception
basis, so that programs which use a
minimum of facilities and least flexi-
bility will be processed fastest?

A good example of this is the per-
mitting of names of any number of
characters. Suppose that the fixed
word length of the computer will
handle 5 alphabetic characters or
special symbols. The programmer
may then be cautioned that if he
limits himself to names of 5 characters
and less, only one word need be used
for each and the processing will be
much faster. If he used larger names,
it will require longer tables and more

lookup mechanism,

Are statements reserialized at each
reprocessing to renew inserl ca-
pacity?

Serial numbers have two purposes.
The first is sequence checking of the
statements in a source program. The
second is the matching of corrections
against the old source program, which
is presumably on a medium which
does not allow manual rearrangement.
A common procedure is to either
hand-serialize the original program,
ignoring the lowest order position
or have the first processing do this
automatically if one is sure he will
not disorder the program before
processing. This lowest position is
used for insertion of forgotten or ad-
ditional statements, up to 9 if only
numerie, and 35 if alphanumerie.

Sinee the processor ean assign serial
numbers automatically for the first
processing, it is only reasonable to
oive it the further responsibility of
doing the same thing every time,
which reopens tight spots for more
inserts and in general tidies up the
program listing. Eaeh page of the
listing should have its own number,

!
!
and lines should be in sequence on
that page, starting from 1. This is
extra inducement for the programmer

to use the npdated machine-produced

listing as his only source for changes

on further corrections.

Does the processor force overlays
before compiling a full memory
load, to leave a *pseudopod” link-
age to the supervisory routine?

It is always best to leave a free
area of high speed memory to control
overlays. Without such a buffer, the
processor will fill memory completely
and have no means to call in another
seetion when the program is inevitably
expanded. With it, a minimum change
in assembly is possible by trivial
patching. Otherwise, the section of
program which is displaced may have
heen referred to by other sections, all

of which must therefore be reas-
sembled.
Will the processor re-order and )

tidy the program at each processing
to collect like items, as for declara-
tive slatements mixed with impera-
tive?

It is an imposition upon the pro-
grammer to have to constantly re-
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s
order his souree program so that non-
acting definition or declarative state-
ments are read before the statements
requiring this information. The
hering of intelligence should be a
es of sweeps thru the source pro-
gram, and it is just as easy to extract
this type of statement by means of
the processor, which automatieally
puts them at the beginning of the
program (where they would have
been had the programmer been omnis-
cient).

Will the processor create extra
statements for or allow mixed ex-
pressions of classes of variables?

In general, the programmer should
not have to constantly remember
whether a variable is for the moment
in fixed or floating point notation,
single or double preeision, rational or
complex. The processor has access to
conversion routines and should norm-
ally take care of this automatically.

Can the processor incorporate in-
put-outpul interpreters in the object
program to allow servo control on
the basis of actual data character-
isties?

Too muech emphasis has been laid

on compiling the entire running
‘:rmu before operating. Particn-
larly with the advent of simultaneous
reading, calculating and writing, the
balaneing of these three funetions fo
obtain optimum efficiency is most im-
portant. If one had to densely sprinkle
the running program with interroga-
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Computer Program
Checklists Available

The accompanying article discusses
typical questions from a checklist of
intelligence for computer program-
ming systems. The list consists of
several series of questions eoncerning
the processor, supervisor, operator
instructions and object program, lan-
euage and diagnostics. DATA Control
readers may obtain complete copies
of the actual checklist by writing:

DATA Control Editor
Automatie Control Magazine
430 Park Avenue

New York 22, N. Y.

tions of external equipment just to
make decisions on the basis of its
status, one would find that at least
half of the memory was taken up with
this funetion. A change of state of
external equipment must interrupt
the normal program sequence by a
trap to an interrogatory program
which assesses the need for rebalane-
ing and will select the proper sections
of program to do so for this eondi-
tion. Tt is impossible for a compiler
to choose an optimum mode of opera-
tions when the characteristics of the
data are not known until running time
and may change abruptly or periodie-
ally.

When a set of instructions is

labeled or called as a macro-instruc-
tion, may it either be copied in-line

Ng and

Ppe P’f"", searchin
"9 ond running 7

n 7
for the operasor ':"c'::mg and

each time it is called or set up as a
closed subroutine, depending upon
the number of included instructions
and number of times used such that
a proper balance is obtained in wast-
age of memory vs. increased execu-
tion time for calling sequences?

There are various means of making
this decision. Knowledge of how many
times a routine will be executed dy-
namically for minimum execution time
is difficult to come by, but economy of
memory is possible thru statie usage
counts, Varions weighted approxima-
tions may be used to give a simple
formula for this determination. Take
for example a routine which requires
4 instructions when compiled in line,
using 3 extra instructions for linkage
if compiled as a closed subroutine. If
memory wastage were the only eriteria
and the routine were used in 10 places
in the program, it wounld require 40
words in line and (10) (3) = 34 in
a closed subroutine, which is better in
this case although it takes more execu-
tion time. Iowever, if used in only 3
places in the program, the in-line
method uses slightly less memory, 12
to 13, and is considerably shorter in
execntion.

TYPICAL
SUPERVISOR QUESTIONS

Does supervisory control exist in
and have access to real-time envi-

ronment through a programmable
clock?

A programmable clock with a trap-
ping interrupt feature can provide
very useful decision data. Among the
uses of such a clock are: (1.) Mainten-
ance of a log of error frequeney for
statistical analysis by maintenance
engineers. (2,) Determination of un-
stable or non-convergent iteration
processes. (3.) Causing checkpoint
procedures at selected time intervals.
(4.) Allowing on-line operation in
control systems. (5.) Making time
studiesof input-output balance. Keep-
ing track of the real time required to
execute various seetions of program,
for the processor to later reprogram
for better halance and efficiency.

Can the supervisor schedule and
select all components by names as-
signed by the programmer and,
without stopping the computer, call
upon the processor to modify the
program to use alternate units
when hardware fails?

The input-output program should

communicate with the supervisor to
assign the correspondence between
the logical (named) units, such as
tapes, to which the programmer re-
fers and the available units which
the supervisor may use. The operators
should also be informed of the units
which are free for setting up the next
job. This next job should read the
tape labels on the new tapes and pass
this information to the supervisor
which, knowing now which tape con-
tains what file, automatieally reworks
the program to call upon them prop-
erly. The physical unit number or
designation thus makes no difference
in the running of the job.

Is there provision 1o retrieve the
processor to compile a section of pro-
gram upon demand in the middle of
object program execution?

In cases of many alternate pro-
cedures, it is wasteful of memory to
compile maechine instructions for all
of these, particularly when only a
few may be used in actuality. It is
possible to simply compile traps to
the supervisor for each of these alter-
natives. Then when such a program is
actually needed, the trap to the su-
pervisor ecalls in the processor and
compiles an aetual section of running
program. It is less wasteful to keep
such program alternates in low-speed
memory in synthetie language form,
than in expanded form in high-speed
memory.

Can the supervisor schedule com-
ponents for the most efficient use on
a spectrum of problems?

Since the machine should never be
allowed to stop, the supervisor(s)
must be entrusted to manage the en-
tire operation, scheduling automatic-
ally the various problems presented to
it. Such an operation may be likened
to that of a short order cook, the
peripheral equipment to his order
wheel and the customers to waiters
placing orders on the wheel, Although
the orders are placed in time sequence,
the cook does not necessarily process
in that order but rather tailors his
operation to present and future load-
ing of his facilities. In other words,
the coffee, toast and scrambled eggs
must all be done at the same time.
The supervisor, upon completion of
each job, should inspeet all current
orders, estimate their duration, note
the ecomponents required and decide
what to process next. It might wel.
delay a long problem in order to do
several quick problems in a row to
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AN EXTENDED CHARACTER SET STANDARD
by

R. W. Bemer and W. Buchholz

1. Introduction

Present IBM keying and Printing equipment is designed to handle 48
Or so characters and their codes. In order to guide the development of new
equipment for keying and Printing many more characters, an Extended
Character Set (ECS) has been defined and is shown in Fig. 1. This set con-
tains codes for 120 different characters, but there is room for later expan-
sion to up to 256 characters including control characters. In addition,

It is intended that the design of future equipment conform to this
standard code whenever the added versatility of an extended character set
is desired. It is not expected that this code will obsolete the investment in

In selecting this character set, a great deal of thought has been given
to satisfying a number of requirements. It proved impossible to satisfy all
of them with a single ECS, but selecting a single ECS was considered to be
an overriding requirement of the future. The need to communicate between
data Processing installations and the inevitable mixture of applications in a
single installation make it more and more desirable to standardize. A
standard character set is, of necessity, a compromise set. In any one
situation it is always possible to define a better set, and there are obviously
some applications demanding a highly specialized character set. Hence we
do not consider this set to be ideal, but we do feel that it satisfies a great
many of the more common requirements.

The main purpose of this report is to set down the requirements of
an ECS as we see them, and to point out how they have or have not been met
by this particular set.




2. Size of Set
Present IBM 48-character sets consist of

10 decimal digits,
26 capital letters,
11 special characters, and

blank.

Because a single set of 11 special characters is not sufficient, there
exist several choices of special characters as ''standard options''.

Since this set is often represented by a 6-bit code, it is natural to
try to extend this set to 63 characters and a blank, so as to exploit the full
capacity of a 6-bit code. Although the extra 16 characters would be very
useful, this step was thought not to reach far enough to justify the develop-
ment of the new equipment which would be needed.

As a minimum, the new set should also include
26 lower-case letters,

the more important punctuation
symbols found on all office type-
writers, and

enough mathematical and logical
symbols to satisfy the needs of
programming languages such as
ALGOL.

There is, of course, no definite upper limit on the number of characters.
One could go to the Greek alphabet, various type fonts and sizes, etc., and
reach numbers well into the thousands. As the set size increases, however,
the cost and complexity of equipment goes up and the speed of printing goes
down. The actual choice of 120 characters was purely a matter of judgment
of what increment over existing sets would be sufficiently large to Justify
the departure from present codes without including many characters of only
marginal value.

3. Subsets
Two subsets of 89 and 49 characters are shown in Figs. 2 and 3,

The 89 character set (Fig. 2) is aimed at typewriters which, with 44 charac-
ter keys, a case shift, and a space bar, can readily handle 89 characters.
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This subset was considered important because input-output typewriters can
already print 89 characters without modification, and 44-key keyboards are
familiar to many people,

The 49 ~character subset (Fig. 3) is usable in a Printer similar to
the IBM 1403.% 1t represents the conventional set of "commercial"” charac-
ters in a code which is compatible with the ECS. Thus, in a system equip-
ped for the ECS it would still be possible to do high-volume Printing effi-

communication and other devices and which are intended to occupy the high
end of the code Seéquence. The second method is to define a shift character
to "escape' to another character set, Thus, whenever the shift character
is encountered, the next character (or group of characters) identifies a new
character set, and subsequent codes are interpreted as belonging to that set,
Another shift character in that set can be used to shift to a third set, which
may again be the first set or a different set. Such additional sets would be
defined only if and when there arise applications which require them.

5. Code

In choosing a code structure, many alternatives were considered,
These varied in the size of the ""byte'" (i.e., the smallest number of infor-
mation bits grouped together to represent a character) and in the number of
bytes which may represent a single (printable) character. Among them were:

single 6-bit byte with shift codes interspersed,
double 6-bit byte = single 12-bit byte (Ref. 1),
single 8-bit byte,

single 12-bit byte for ''standard!" characters
(punched card code) and two 12-bit bytes for
other characters.

* Note that the IBM 1403 has available 49 characters including the blank,
which is one more than the 48 characters on earlier Printing equipment.
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Some of these codes were attempts to remain, in some measure,
compatible with earlier codes so as to take advantage of existing equipment.
These attempts were abandoned, in spite of some rather ingenious proposals,
because the advantages of partial compatibility were not enough to offset the
disadvantages.

The 8-bit byte was chosen for the following reasons:

(a) The full capacity of 256 characters was considered to
be sufficient for the great ma jority of applications for
an ECS.

(b) Within the limits of this capacity, a single character is
represented by a single byte so that the length of any
particular record is not dependent on the coincidence
of characters in that record.

(c) 8-bit bytes are reasonably economical of storage space.

(d) For purely numeric work, a decimal digit can be
represented by only 4 bits and two such 4-bit bytes
can be packed in an 8-bit byte. Although such packing
of numeric data is not essential, it is a common
practice to increase speed and storage efficiency.
(The IBM 7070, for instance, uses an analogous scheme.)
Strictly speaking, 4-bit bytes belong to 2 different code,
but the simplicity of the 4 and 8 bit scheme, as compared
to a 4 and 6 bit scheme, for example, leads to a simpler
machine design and cleaner addressing logic.

(e) Byte sizes of 4 and 8 bits, being powers of 2, permit the
computer designer to take advantage of powerful features
of binary addressing and indexing to the bit level. (Ref.2, 3).

In this report, the 8 bits of the code are numbered for jdentification
from left to right as 0 (high-order bit) to 7 (low-order bit). "'Bit 0" may
be abbreviated to Bo, etc.

6. Parity Bit

For transmitting data, a ninth bit is attached to each byte for parity
checking, and it is chosen s0 a8 to provide an odd number of one bits.
Assuming a one bit to correspond to the presence of a signal, odd parity
permits all 256 combinations of 8 bits to be transmitted and to be positively
distinguished from the absence of any signal. The parity bit is identified
here as B
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The parity bit is defined here for purposes of communication between
devices and media using the ECS. It is not intended to exclude the possibi-
lities of error correction or other checking techniques within a given device
Or on a given medium when appropriate.

7. Seguence

High-equal-low comparisons are an important aspect of data pro-
cessing. Thus, in addition to defining a standard code for each character,
one must also define a standard comparison (''collating') sequence,
Obviously, the decimal digits must be sequenced from
order, and the alphabet from A to Z. Rather more arbitrary is the relation-
ship between groups of characters, but the most prevalent convention for
the 48 IBM "‘commercial' characters is, in order:

(Low) Blank
11 Special Characters . X & $ * < I,
26  Alphabet Ato Z

(High) 10 Digits 0to9

Fundamentally, the collating sequence of characters should conform
to the natural sequence of the binary integers formed by the bits of that code.
Thus 0000 0011 should collate below 0000 0100. Few existing codes have
this property, and it is then necessary, in effect, to translate to a special
internal code during alphanumeric comparisons. This takes extra equip-
ment, extra time, or both. An important objective of the ECS was to obtain
a usable collating sequence directly from the code without translation.

A second objective was to preserve the existing convention for the
above 48 characters within the new code. This objective has only partly
been achieved because of conflicts with other objectives.

The ECS provides the following collating sequence without any
translation:

(Low) Blank

43 Special Characters (see chart)

52 Alphabet a: A b B
20 * .

Digits 0 0 1
4 Special Characters . : - ?

All Unassigned Character Codes
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Note that the lower and upper case letters collate in pairs in adjacent
positions, following the convention established for directories of names.
(There appeared to be no real precedent for the relative position within the
pair. Telephone directories generally ignore the case shift for sequencing
purposes, even though both upper and lower case€ letters appear within some
names. This convention i8 not usable in general gince each code must be

considered unique.)

The difference between the ECS collating sequence and the earlier
convention lies only in the special characters. TWO of the previously avail-
able characters had to be placed at the high end and the remaining special
characters do not fall in quite the game sequence with respect to each other.
It was felt that the new sequence would be quite usable, and only rarely will
it be necessary to re-sort a2 file in the transition to the ECS code. It is
always possible to translate codes to obtain any other sequence, as has to be

done with most existing codes.

8. Blank

The code 0000 0000 is 2 natural assignment for the blank (i.€-» the
non-print symbol which represents an empty character space). Not only
should the blank collate below any printable character, but the absence of
bits (other than the parity bit) corresponds to the absence of mechanical
movement in 2 print mechanism.

Blank differs, however, from 2 1pull!' character, gsuch as the all-ones
code found on paper tape: Blank exists as 2 definite character occupying 2
definite position on a printed line, in 2 record, or in 2 field to be compared.

A 'null" may be used to delete an erroneous character and it would be com-~
pletely dropped from 2 record at the earliest opportunity. Null, therefore,
occupies no definite position in a collating sequence. A null has not been
defined here, but it could be placed when needed among the control characters.

9. Typewriter Keyboard

Typewriter — 4 ——

Because the shift key on existing IBM 24 and 26 keypunches has been
used to cause numbers to punch from otherwise alphabetic keys, it is neces-
sary to establish 2 completely different convention when introducing lower-
case letters. It was thought very desirable, therefore, to take advantage of
the widespread familiarity with the typewriter keyboard and to capitalize on
existing touch-typing skills as much a8 possible.

The common typewriter keyboard consists of up to 44 keys, and a

gseparate case shift key. To preserve this relationship in the code, the 44
keys are represented by b bits of the code (B 1 to B(,) and the case shift by
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a separate bit (B,). The case shift was assigned to the lowest-order bit so
as to give the desired sequence between lower and upper case letters.

For ease of typing, the most commonly used characters should ap-
pear in the lower shift (B =0). This includes the decimal digits and, when
both upper and lower case letters are used in ordinary text, the lower-case
lettera. (This convention is different from that for single-case typewriters
presently used in many data pProcessing systems; when no lower-case
letters are available, the digits naturally appear in the same shift as the
upper-case letters.) It is recognized that the typewriter keyboard is not
the most efficient alphanumeric keyboard possible, but it would be unrealis-
tic to expect a change in the foreseeable future. For purely numeric data,
it is always possible to use a 10-key keyboard instead of, or in addition to,
the typewriter keyboard.

It was not practical to retain the upper-lower case relationships of
punctuation and other special characters commonly found on typewriter key-
boards. There is no single convention anyway, and typists are already ac-
customed to finding differences in this area.

10. Decimal Digits

The most compact coding for decimal digits is a 4-bit code, and the
natural choices for encoding 0 to 9 are the binary integers 0000 to 1001.
As mentioned before, two such digits can be packed into an 8-bit byte; for
example, the digits 28 in packed form could appear as

0010 1000
To represent decimal digits unambiguously in conjunction with other
ECS characters, they must have a unique 8-bit representation. The obvious
choice is to spread pairs of 4-bit bytes into separate 8-bit bytes and insert
a 4-bit prefix ("'zone"); for example, the digits 28 might be encoded as

zazbzczd 0010 zazbzczd 1000

where the actual value of the zone bits z, is immaterial so long as the prefix
is the same for all digits.

This requirement conflicted with requirements for collating sequence
and for the shift bit. As a result, the 4-bit byte is offset by one bit, and the
actual code for 28 is

0110 0100 0111 0000




This compromise retains the binary integer codes 0000 to 1001 in
adjacent bit positions, but not in either of the two positions where they ap-
pear in the packed format.

The upper-case counterparts of the normal decimal digits are as-
signed to italicized decimal subscripts.

11. Adjac ency

The 52 characters of the upper and lower case alphabets occupy 52
consecutive code positions without gaps. For the reasons given above, it
was necessary to spread the 10 decimal digits into every other one of 20
adjacent code positions, but the remaining 10 positions are filled with
logically related decimal subscripts. The alphabet and digit blocks are
also contiguous. Empty positions for additional data and control characters
are all consolidated at the high end of the code chart.

This grouping of related characters into solid blocks of codes, with-
out empty slots that would sooner or later be filled with miscellaneous
characters, assists greatly in the analysis and classification of data for
editing purposes. Q@rderly expansion is provided for in advance.

12. Uniqueness

A basic principle underlying the choice of the ECS is to have only
one code for each character and only one character for each code.

Much of the lack of standardization in existing character sets arises
from the need for more characters than there are code positions available
in the keying and printing equipment. Thus, in the existing 6-bit IBM
character codes, the code 001100 may stand for any one of the characters
@ or - or ' . The ECS was, instead, required to contain all of these
characters with a unique code for each.

The opposite problem exists too. Thus - may be represented by
either 100000 or 001100 in one of the existing 6-bit codes. Such an embar-
rassment of riches presents a logical problem when the two codes have in
fact the same meaning and can be used interchangeably. No amount of
comparing and sorting will bring like items together until one code is re-
placed by the other everywhere.

In going to a reasonably large ECS, it was necessary to resist a
strong temptation to duplicate some characters in different code positions
80 as to provide equal facilities in non-overlapping subsets. Instead, every
character was chosen to be typographically distinguishable even if the
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character stands by itself without context. Thus, for programming purposes,
it is possible to represent any code, to which a character has been assigned,

by its character even when the bit grouping does not have the ordinary mean-
ing of that character (e.g., in operation codes).

In many instances, however, it is possible to find a substitute charac-
ter which is close enough to a desired character to represent it in a more
restricted subset or for other purposes. For example, = (equals) may stand
for «— (is replaced by) in an 89 -character subset. Or again, if a hyphen is
desired that collates below the alphabet, the symbol ~ (a modified tilde) is
preferred to the more conventional - (minus).

A long-standing source of confusion has been the distinction between
upper-case Oh (O) and Zero (0). Some groups have solved this by writing
Zero as @ . Unfortunately, other groups have chosen to write Gh as @ .
Neither solution is typographically attractive. Instead, it is proposed to
modify the upper-case Oh by a center dot and to write and print it as © when-
ever a distinction is desired.

Serifs are used to distinguish letters (I, 1, V, etc.) from other
characters ( |, 1, Vv, etc.) . It is suggested that the italicized subscripts
be underlined when handwritten by themselves, e. g:» 5

13. Signs

The principle of uniqueness implies a separate 8-bit byte to represent
a + or - sign. Keying and printing equipment also require separate sign
characters. This practice is, of course, rather expensive in storage space,
but it was considered superior to the ambiguity of present 6-bit codes where
otherwise '"unused' zone bits in numeric fields are used to encode signs. If
the objective is to save space, one may as well abandon the alphanumeric
code quite frankly and switch to a 4-bit decimal coding with a 4-bit sign digit
or go to the even more compact binary radix.

14. Card Punching

After considering the possibility of a separate card code for the ECS
characters, a code which has the conventional IBM card code as a subset
(Ref. 1), it was concluded that it would be better to punch the ECS code di-
rectly into the card. This does not preclude also punching the conventional
code (limited to 48 characters) in part of the card for use with conventional
equipment. In this way, code translation is needed only wherever the con-
ventional card code is used; if a non-ECS code were used, translation
would be required for every column if advantage is to be taken of the ECS
code in the rest of the system.




The punching convention is as follows:

Card Row ECS Bit
12 -
11 -
0 IS
1 B

P
2 B0
3 B1
-+ BZ
5 B3
6 B4
7 ZB5
8 B6
9 B_,

In addition, both 12 and 11 holes are to be punched in column 1 of
every card containing the ECS code, in addition to a regular ECS character,
so as to distinguish an ECS card from cards punched with the conventional
code. ECS punching always starts in column 1 and extends as far as desired;
a control code "End'" (0 1111 1110) has been defined to terminate the ECS
code area. Conventional card code punching should be confined to the right
end of cards identified with 12-11 punching in column 1.

Since the parity bit is also punched, the ECS area of a card contains
a checkable code. Note that '"blank' columns in the ECS area still have a
hole in the B, row. If only part of the card is to be punched, however, it is
possible to leave the remaining columns on the right unpunched.
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120 CHARACTER SET

BITS O—1—2-3
BITS
4567 |0000|000I[{00I10[001 1|IO100|010I1[O110(01 11
0000 |BLAank| | + c k S 0 8
000 | it D) & C K S




| 89 CHARACTER SET
() BITS 0—|-2-3
BITS
4567 10000/0001|0010[001 I[ol00[0lol|0r1 10011 |
0000 |BLANK + c k S 0 8
| 000l s cll kil sl i .
0010 $ d | t 1 9
001 | (SR BN TR 9
0100 * e m u 2
Ol10]| ) E| M| U P
o110 / f n \ 3 -
@, Olll = F | N Vv 3 ?
1000 : g 0 w 4
1001 » 1B Of Wl
1010 : h p X 5
101 | & H Pl X 5
| 100 a i q y | 6
11Ol A I Q Y 6
1110 b | 3 ¥ | z | 7
111 BlJIR]|Z |,

Fig. 2.

1%




49 CHARACTER SET

. BITS 0—-1-2-3
4367 |0oooolooot|ooioloot iforooloroiforiojort
0000 |BLANK 1 IS
000 | ol Bl B AN 2
0010 $ 1| 9
001 | D kel T
0100 x 2
010] E|M| U
0110 / 3 -
® olll Fadl* N"| 'Y
1000 v | 4
1001 G|O|W
1010 Sk 5
1011 H|P | X
1100 # 6
1101 Al eIl Y
1110 @ 7
R Bl S SR 7

. Fig. 3.
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Fig. 4. Cards Punched with Extended Character Code.
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APPENDIX A

List of ECS Codes and Characters

Code Code
P 0123 4567 Character Name P 0123 4567 Character Name

0000 0000 Blank (Space) 0 0010 0000 + Plus sign
0000 0001
0000 0010
0000 0011
0000 0100
0000 0101
0000 0110
0000 0111
0000 1000
0000 1001
0000 1010
0000 1011
0000 1100
0000 1101
0000 1110
0000 1111
0001 0000
0001 0001

*

Plus or minus 0010 0001 L Ampersand

Right arrow (Replaces) 0010 0010 s Dollar sign

Left brace 0010 0011 Left parenthesis
And 0010 0100 Asterisk (Multiply)
Right brace 0010 0101 Right parenthesis
Up arrow (Start superscript) o0l0 0110 / Right slant (Divide)
Not equal 0010 0111 Equals

Or (inclusive) 0010 1000 ’ Comma

Exclusive or 0010 1001 H Semi-colon

Down arrow (End superscript) 0010 1010 : Apostrophe (Single quote)
Double lines 0010 1011 -] Ditto (Double quote)
Greater than 0010 1100

= o § €% - Do)

Greater than or cqual 0010 1101
Less than 0010 1110
Less than or equal 0010 1111
Left bracket 0011 0000
Implies 0011 0001
0001 0010 Right bracket 0011 0010
0001 0011 Degree 0011 0011
0001 0100 Left arrow (Is replaced by) 0011 0100
0001 0101 Identical 00110101
0001 0110 Not 0011 0110
0001 0111 Square root (Check mark) 0011 0111
0001 1000 Percent sign 0011 1000
0001 1001 Left slant (Reverse divide) 0011 1001
0001 1010 Lozenge (Diamond) (Note) 0011 1010
0001 1011 Absolute value (Vertical line) 0011 1011
0001 1100 Number sign 0011 1100
0001 1101 Exclamation point (Factorial) o011 1101
0001 1110 At sign 0011 1110
0001 1111 Tilde (Hyphen) 0011 1111

>
13
<
3
(

Salit)




Code
P 0123 4567 Character Name
0 0100 0000 k
1 0100 0001 K Code
1 0100 0010 1 P 0123 4567 Character Name
0 0100 0011 L 1 0110 0000 0 Zero
1 0100 0100 m 0 0110 0001 e Subscript sero
0 0100 0101 M 0 0110 0010 1 One
0 0100 0110 n 1 0110 0011 ’ Subscript one
1 0100 0111 N 0 0110 0100 2 Two
1 0100 1000 ° 1 0110 0101 P Subscript two
0 0100 1001 ° 1 01100110 3 Three
0 0100 1010 » 0 oll0o01IN 2 Subscript three
1 0100 1011 P 0 0110 1000 4 Four
0 0100 1100 q 1 0110 1001 ' Subscript four
1 0100 1101 Q 1 0110 1010 5 Five
1 0100 1110 r 0 0110 101} P Subscript five
0 0100 1111 R 1 0110 1100 ] Six
1 0101 0000 s 0 0110 1101 P Subscript six
0 0101 0001 s 0 0110 1110 7 Seven
0 0101 0010 t 1 0110 1111 > Subscript seven
1 0101 o011} T 0 0111 0000 L] Eight
0 0101 0100 1 0111 0001 . Subscript eight
1 0101 0101 U 1 0111 0010 9 Nine
1 0101 0110 v 0 01110011 ’ Subscript nine
0 0101 0111 ' 1 0111 0100 Period (Point)
0 0101 1000 w 0 0111010} Colon
1 0101 1001 w 0 o111 0110 - Minus sign
1 0101 1010 x P oliroin ? Question mark
0 olo1 1011 X
% OIpL 1IN0 z NOTE The character I has also beon used
0 0101 1101 Y
0 0101 1110 s
1 0101111} Z
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APPENDIX B

6-Bit Character Codes in Current IBM Systems

The special characters shown inthe attached chart are those of the
ncommercial' set (A). For ngeientific'' computing, character substitutions
(sets F and H) are usually made for codes representing certain symbols in

the 'A' set:

Commercial Scientific
A F

&
X




a, a,
. () - v
o OB 2o B L PO
g MR g 7 g g poB . Pg
2y o i 2 0 =] A o . 2 oy §
g QO w v o o g N w o )
A S o > S - A o a3 p- -
o —: = g o o~ A = . f e -
un o L >~ o < un un ~ O M
ghds o 5.8 B S 5 B |can |o B BB ES 2
00 0000 b b Sp h 0 1100000] = = 5w » =
000001} 1 1 1 1 1 1 1 |100001| J J 3 3 3 5 7
000010f 2 2 2 2 2 2 2 [100010] K K KK K K K
000011} 3 3 3 3 3 3 3 (w001l L L B & T L L
000100| 4 4 4 4 4 4 4 [100100] M MM MM M M
000101} 5 5 5 5 5 5 5 /100101l N NN N N N N
000110/ 6 6 6 6 6 6 6 |100110/, O O O O O O O
000111} 7 7 7 7 7 7 7 |10011)] P PP P P P P
001000/ 8 8 8 8 8 8 81010000 QR Q QA Q QQ O
001001/ 9 9 9 9 9 9 91101001/l R R R R R R R
00 1010 PI1 0 0 0 0 10 1010 | PI2 o 0 0 &
00 1011 # # # # # # # |10 1011 $ $ $ 8 8§ $
| 0011000 @ @ @ @ @ @ @ |101100] * * % % % % =
\ 00 1101| PI7 10 1101/ P16
00 1110| EC1 10 1110 | CR
| 00 1111| Cor TM TM TM TM 10 1111 Err A A
| |
010000l 0 0 b b b Sp & 110000] & & & & & & b
oLoo01) 4 =) f ) f Ali1000L] A A A X A'a 7/
010010/ S S s s s s B(110010) B B BB B B §
010011/ T T T T T T C 110011l € € C C CC T
0101000 U U U U U U D|110100l D D DD D D U
010101/ V.V Vv V V V E|110101l E E EE E E V
0101100 W W W W W W F 110110/ F F FF F F W
010111/ X X X X X X G (110111l G G G G G G X
0110000 Y Y Y Y Y Y H 111000[ H HHHHHY
011001} 2 z 2z 2z z z 1 |111001] I I I I I I 2
011010 PI3 ~ RMRMRMRM § (111010 SPI 6 & &
QPROLL= i Iragtel . o 4 -
0111000 % % % % % % X [111100] X X X X X X %
01 1101{ P14 ws 11 1101/ PI5
01 1110{Skip 11 1110| sP2
01 1111 EC2 SM SM 11 1111| TF GM GM GM

Note: b stands for blank.
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Deciul places required for acenracy
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Frrers. Error Stop= oF other stops are listed with rof-
l : . ' - (2 Al
(o the appropriate seetion of the flow chart. The
-

fogtatas W '
Vi Satn PRORLEMS. Included in the sample prob-
1o sy tloe pevuired input anta aned the desired output
it shoy he results of the problem.
o oo qzener of o single standard from o welter of
Wl iy precedents depends upon two solutinns:
I sedeving or developient of an adequite W d logical
b
* phasine out (or peaceful coexistence with) the old
e
- et deals with the lutter problem and proposes
he 100n Wi Tor 1 solution in the area of charucter codes,
g ] 1or Hit combinations.
I s impossible 10 reconcile the man) different
fie- 12 e on papaer of magnetic tape such thara particu-
el vettid be the nationad or intenuaional standard.
v e of the wide usage of these various eodes they must
vonsubored purallel standards subjeet 1o atrophy
ol sdoption of a single superior eode. .\ ~simple de-
tat 1 oeadl the eseape” charaeier will allow as many
up e s graded standards as there are bit con:hina-
3 vember of tracks, although it is certainly not
to have more of these than absolutely neeessary.
o 7 ehmmeter tracks (not feed, parity, or control
“ha e there are 27 pussible code combinations. Normaliy
s ull gssigned 1o speeifie characters or controls. I
topuiss that o of these combinations, the same one for

I\ 1rom

fur 4

(ros~1

olls what should be done in case

[} M

hiert

of an error

CHART-- Problem-oriented rather than com-

paned using a standard set of symbols,

P want sk, This seetion eonsists of the

i

o program steps: i listing of the complete

an

v 1 lest ane computer

ofvrences from one progrins step to other steps

instruetions including plughonrd  wiring

NeCeSSary

V1. Noratios, This is « list of the nomenelature used
in the text and of the svmbols in the souree progrim listing,

V111, Litersture References.

1N, Hlustrations. Drwings and other illusteative ma-
terinl, prepared in g nunner 1o insure good reproduetion,
is ineluded in this section.

Enrror'a Cosaext: While the ACM has never sdapted jmblhi
cation standands, it now appears that progeam publication &land
ards for the ACM may be desirsble in the near futere. In my
opinion, not only is the interest iv progrem interchange growing
constantly, but computerdindependent lungunge development 1s
hringing us eloser to the duy when widespread publieation of t iy
catholic programs will be an important function of computer:
oricnted soeieties

Mr.
avoids
it outlines a procedure which is essentially machine-independent,

Keut's the AICKRE eommittec’s report

nuchine-oriented details such as putched card formats;

f 2 f
abridgment of

vet can be used for machine-language publication.

The full report deseribes means by which program publication
is announced and plans for distribution and for covering the cost
of small-seale publication by the Society. H. 8. B

A Proposal for Character Code
Compatibility

Mim’./f.\/. (‘arporatinn, White Plains, N. Y.

\450 te&-

p =

all stundards, be reserved as an uagaig” charocter. Thiz is
to be excluded from every suel set of characters axsigued.
tegarding the choice of this character, it is unwise {o use
o null. or absence of punches or bits. Furthermore, it is
quite possible that the physicul permutation of tracks on
tape will not be in direct correspondence with the bi:
pattern of internal storuge in a computer or duta-proc:
ing device. The only eade that avoids these difficulties is

S

the completely punched eombination, or all ones in the hit
structure,

Let us make provision for this “‘ezcape’ combination to
interrupt normal decodi It
will say, in effect, that *The next 7-bit combiuation is to
he pwnerie  identifier vl a particular
stancland.” From they on, until interrupted by an “eseupe

stream of characters.

ng of a

2 loredd 9
consdered o
A1 combinstions! T-bit charueters

charaeter in thal set.
will be interpreted secording to that stundard. Slufi

T
mg

from one standard 1o znother is therefore dynamic, A
great wdditional advantage of such a scheme is thut many
messages in several different codes may be adjoined in the
dream of transuission. In hardware, the “escape” char-
acter can be made to interrupt to set relays or other swit ch-
ing deviees to select one of u variety of readers or decoders,
7l
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COMPUTATION PLANNING, Inc,,® 7840 Aberdeen Road  Bethesda, Md. 20814 @ (301) 654-1800
March 11, 1982

THIS COPY TO RW BEMER,

—— ACM TURING AWARD SUBCOMMITTEE MATTER —

Mr. Charles W. Bachman, Vice President 617-329-7700
Cullinane Database Systems, Inc. 800-225-9930
400 Blue Hills Drive

Westwood, MA 02090

Dear Charlie:

This letter is written only to you and Pat Skelly, with a
confirming copy to Bob Bemer to help keep me honest, regarding Pat's
nomination of Bob as duringt Awvardee. Some of the substance of this
letter may be useful for your files at a later date.

On one subject — perhaps on only one — Bob and I are
in complete agreement: our unbounded admiration for Bob.

In order to dispel any thought that I'm a Bemer buddy, I should
i inci described below Bob
Committee Chairman and CacM
ouncil would get me fired
from both jobs . . . not for moral turpitude, alas, but for not doing
enough in those jobs to satisfy Bob. Council failed to do so.

Bob chaired the then-asa X3.1 Subcommittee on Standardization of
Character Sets during and after my stint in the X3 chair, and was a
pPrincipal creator of . ember nailing Bob once

the "Escape Character” concept, which was new to
through his group. He convinced me no set of any
certainly not in the
Scape concept would work. His Subcommittee,
competitors' employees all, grudgingly agreed. After some months of
study, they became the strongest boosters of the idea.

Meanwhile, Bob's employer — ga large corporation — seemed
somewhat less than enthusiastic, if not downright reluctant, toward
the whole ASCII set. It is a matter of public record that he changed
employers about then. Several years later that company adopted ASCII.

The question has bugged me ever since: Is this an example of a
solid company man placing his conviction about a public need above his
well-developed instinct for bureaucratic self-preservation? There
aren't too many in this business who, like you, seem to have displayed
that bizarre character trait.

ayi i aised, i Coungfl' toub DB 1088 O establichifg g mm,
mﬁﬁﬁ%Monmmmmmmm

Copy ‘to: RWB, PGS Yours truly,

Herbert S. yBrighit

COMPUTATION SYSTEMS /Analys_is, Design, Management, Programming Since 1966




Comment
On
COBOL

By Robert W. Bemer, IBM
Corp., technical advisor to
the Conference Committee on

COBOL.

The IBM Corporation has been active in COBOL
since its formation, recognizing the desirability of
such a common business language. IBM desires to
implement such a language for several of its com-
puters when it is proved feasible and reasonably
efficient for the user.

The extreme difficulties of developing such a lan-
guage in a short period of time cannot be over-
emphasized. One has only to look at the gradual
evolution of English to see what thousands of options
have sprung up and then disappeared.

Although it is desirable to base a business language
upon a natural language such as English (obviously
for the convenience of the user), there are neverthe-
less certain restrictions of present day computers
which make the variety in English undesirable. For
example, we understand a man who speaks English
even though he stutters, but this is not economical
to expect the machine to decode stuttering. Primarily
this is because the human mind operates very much
in parallel, whereas the computer of today is largely
serial—at least in its scanning. A person who misses
the sense of a sentence has only to reread and check
a few points. If the computer has to do anything
more than a single progressive reading of a sentence,
such as a see-saw inspection, the cost of translation
becomes prohibitive. I know of a case where it took
a computer over 11 hours to produce a machine pro-
gram of somewhat more than 2,000 instructions.

When the language is formalized and the latitude
of options removed, or to put it bluntly, if the user
restrains himself with a little discipline, this same
job should not take more than an hour.

Additional complications are, of course, caused by
the fact that the language must be universal and
roughly as effective for each of several decidedly
different computers. Compromise is necessary! Even-
tually such compromise is well worth it, but this is
a slow process. The goal of standardization in lan-
guages is very desirable, but it will not be served
if the first product, i.e., the COBOL language, fails
in the field. Before such a language can be hailed as
a panacea, it must be subjected to extensive field
tests.

IBM has put forth a major effort in this venture,
supporting it with the services of many experts in
computer languages. The experience gained with
FORTRAN and the Commercial Translator has been
freely given. Whether the goal of a common business
language is achieveable without unduly compromis-
ing machine performance is not yet proven. In this
situation, it is advisable to make haste slowly that we
may not raise the hopes of our customers before it
is justified.

22

COBOL-Commo

A

UNIVERSAL computer language moved one step
A closer to reality with the announcement of
COBOL (Common Business Oriented Language),
a business language expected to be common to vir-
tually all makes and models of electronic digital
computers.

The new source language system will permit
programmers to use English words, statements,
sentences and paragraphs in communicating in-
structions to computer systems.

Official news of the COBOL development is an-
ticipated momentarily from the project sponsors,
the Executive Committee of the Conference on
Data Systems, headed by C. A. Phillips, director
of the data systems research staff, Department of
Defense. The committee is a volunteer group of
computer users from Government and industry
and representatives of computer manufacturers.

Necessary violations

COBOL was written by the Conference's Short
Range committee, directed by Joseph H. Wegstein
of the National Bureau of Standards. This group,
composed of technical personnel from three gov-
ernment agencies and six computer manufacturers,
has worked continuously since June, 1959, to put
the new language together.

One of the principles adopted in the develop-
ment stage was that everything in the language
would be correct English. This did not mean that
everything which is correct English is meant to be
part of the system or acceptable to a COBOL com-
piler. In some cases it was necessary to violate the
principles of good English to allow inclusion of
certain features which could not be handled by
normal grammatical rules.

MANAGEMENT and
BUSINESS AUTOMATION




lewnguage for Computers

There are two basic elements to the COBOL,
system: (1) the Source Program, written in g
tommon language, and (2) the Compiler, which
translates this source program into an object pro-
gram capable of running on a computer,

The source language is used to specify the solu-
tion of a business data processing problem. There
are three elementshProcedul'e, Data and Environ-
ment—involved in this Specification, and their
names reflect the part of the over-a]] system which
they describe. Procedure covers the set of proce-
dures which determine how the data is to pe proc-
essed. Data includes the description of the data
being processed. Environment covers the descrip-
tion of the equipment being used in the processing,
Each of the three elements are defined as g sepa-
rate division of the system, The compiler’s fune-
tion is to integrate all of the divisions and produce
the object program,

The Procedure division Specifies the steps that
the user wishes the computer to follow in order to
produce the desired results. It allows the user to
express his thoughts in English words, statements,
sentences or paragraphs. Verh concepts denoting
action and sentences describing brocedures are
basic. It is also possible to yse logical situations
and “if” clauses to provide alternative paths of
action. The fact that the Procedure division is
essentially machine-independent is one of the most
important characteristics of the COBOI, system.
Another programmer, or any COBOL compiler,
‘an easily understand and translate the informa-
tion appearing in this division without regard to a
particular computer.

The Data division uses “file” and “record de-
scriptions” to describe the files of data that the

MARCH, 1960

object program is to manipulate oy create and the
individual logical records which comprise these
files. Certain physical characteristics of the files
are specifically not included~mezming that the
Data division, to g certain extent, is also machine-
independent.

A group of unique characters

The Environment division is that part of the
source program which specifies the equipment
being used. It contains descriptions of the com-
puters to be used for compiling the source program
and running the object program, Memory size,
number of tape units, hardware switches and
printers are among the many items that may he
mentioned for » particular computer, The division
has the ability to relate genera] program termi-
nology to Specific equipment, Those aspects of g
file which relate directly to hardware are also de-
scribed. Since this division deals entirely with the
specifications of the equipment, it is entirely ma-
chine-dependent.

Thus, it can be seen that the amount of inter-
machine compatibility throughout the COBOL, Sys-
tem varies with the divisions and the effort taken
to obtain such Compatibility, The Procedure divi-
sion requires virtually no effort to remain common
across machines, In the case of the Data division,
Some care must he taken or g4 possible loss of effi-
ciency may result. In the Environment division,
all information is machine-dependent, therefore
the compatibility is based on ease of understand-
ing rather than direct transference,

COBOL uses 37 characters to make up the lan-
guage’s “words.” The character Set consists of the
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The Short Range Committee, composed of representatives of six computer manufacturers and
Government personnel, studied the strength and weaknesses of existing automatic business com-
pilers and came up with COBOL system deseribed here.

numbers 0 through 9, the 26 letters of the alphabet
and a hyphen (or minus) sign. Seven characters
are used for punctuation. These include the stand-
ard quotation marks, left and right parenthesis,
space (defined as a character), period, comma and
semicolon. Eight additional characters are used to
define the operations involved in formulas and
relations. Altogether there are 51 unique char-
acters which are recognized by the COBOL system.

What’s in a word

A word in COBOL language can be composed of
not more than 30 characters. Types of words in-
clude nouns and verbs plus a special category of
“reserve” words which includes “correctives,”
“noise words,” and “key words.” A COBOL noun
is defined as a single word which is applicable to
such elements as “Data Name,” “Condition Name,”
“Procedure Name,” “Literal Name” and “Special
Register Name.”

A Data Name is a word with at least one alpha-
betical character which designates any data speci-
fied in the data description. A Condition Name is
given to a value which a field (called a conditional
variable) may assume. For example, the field
called “Title” is considered a conditional variable.
The values which it may assume, and which are
written and defined in the Record Description, are
Analyst, Programmer and Coder. These Condi-
tion Names may be used in conditional expres-
sions. As an example, if the field “TITLE” were de-
fined as one character in legnth—and the actual
values 1, 2 and 3 were assigned respectively to the
Condition Names ANALYST, PROGRAMMER and
CoDER — the conditional expression “IF CODER
THEN" would generate a test of the field “TITLE”
against the value “3.”

Procedure Names are applied either to para-
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graphs or to sections and accordingly are known
as paragraph names or section names. A proce-
dure may be named to permit one procedure in the
language to refer to others, or it may be purely
numeric.

A Literal is a noun which has a value identical
to those characters represented by the noun. It
may be numeric, alphabetic or alpha-numeric.

Special Register is a five-decimal digit field
which has been assigned the name TALLY. Its pri-
mary use is to hold information produced by the
EXAMINE verb. It may also be used to hold infor-
mation produced elsewhere in a program.

Verbs are single words which appear in the Pro-
cedure division and designate action. Two types of
action are allowed—object computer action by a
special verb or compiler action denot ed by a com-
piler directing verb.

Noise for improvement

Reserve words may be used for syntactical pur-
poses and may not be used as nouns or verbs. Con-
nectives are used to denote the presence of a quali-
fier or the presence of a subseript. Noise words are
used to improve the readability of the languagze—
but, the presence or absence of noise words does
not affect the meaning of the statement. Within
any division, any one or more of its noise words
may be substituted for any other. Key words are
required in certain formats. They are used to com-
plete the meaning of verbs or entries and there-
fore must be present and correctly spelled.

Every name in a COBOL program must be
unique—either because no other name has the
identical spelling, or because the name exists with-
in a hierarchy or names. The name can be made
unique by mentioning several higher elements in

Continued on Page 37
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‘ Control Data Produces
New 160 Desk-size Computer

An MBA Product Preview

rl‘HE DESK-SIZE MODEL 160,
all-transistorized electronic com-
puter, has been announced by Con-
trol Data Corp.

The 160 has an array of building
blocks and a magnetic core memory
like those used in the Control Data
1604 — the company’s new large-
scale system also announced recent-
ly. It computes in terms of micro-
seconds and can execute 60,000
instructions in one second. It is said
to handle data transmissions to and
from input-output equipment at
speeds of up to 65,000 characters
per second.

The company has set the price of
the 160 at $60,000, making it avail-
able to a wide range of users. Sug-
gested applications include statisti-
cal and business data processing,
data conversion, engineering and
scientific calculations, data logging
and data acquisition, industrial con-
trol and communications systems.

The 160 is a single-address com-
puter with high-speed parallel mode

MARCH, 1960

of operation. Storage cycle time is
6.4 microseconds. Basic add time is
12.8 microseconds. Information read
is available 2.2 microseconds after
start of cycle. Average execution
time is calculated at 15 microseconds
per instruction. The computer uses
a five megacyle logic.

The company points out that full
advantage of the speed and versatil-
ity of the system can be realized
through its repertoire of 62 instrue-
tions and complete programming
package—which includes 22-, 33-,
and 44-bit fixed point arithmetic,
floating point, complex floating
point, decimal, floating decimal, and
an algebraic compiler. Addressing
modes include: no address, direct
address, indirect address, and rela-
tive address. Available input-output
devices include a 350 character-per-
second paper tape reader, 60 char-
acter-per-second paper tape punch,
electric typewriter, up to eight
magnetic tape handlers, card reader,
card punch, and a line printer. Cir-
cle No. 3-17

COBOL

Continuwed from page 24

the hierarchy. These higher ele-
ments are called “qualifiers” when
used in this way, and the process is
called “qualification.” Two types of
qualification are allowed; prefixing
(i.e., adjectival modification) and
suffixing. In the first instance, the
nouns must appear in descending
order of hierarchy (i.e. with the
name being qualified as the last and
all others in order). In the second
case the nouns must appear in as-
cending order of hierarchy with
either of the words “OrF"” or “IN"
separating them (the choice be-
tween the two words is based
on readability — they are logically
equivalent),

Dimensional arrays

Taking “President Election Year”
as an example, the hierarchy of
data given is such that neither the
field “YEAR” nor the field “ELEC-
TION" are unique spellings. That is,
both fields appear elsewhere in the
Record Description. To reference
the “YEAR" field, PRESIDENT and
ELECTION are used as qualifiers,
either as nouns used adjectively in
a prefix (PRESIDENT ELECTION
YEAR), or preceded by the connec-
tive “of” for a suffix (YEAR OF
ELECTION OF PRESIDENT).

When a list of items is defined in
a program, reference may be made
to any particular one by “subscrip-
ting.” The list may not be referred
to with subsecripts. The name being
subscripted is followed by the sub-
seript which is identified either by
following the key word “FoRrR” or by
being surrounded by parenthesis. In
certain situations, complex tables
may be defined which require more
than one quantity to locate an item.
COBOL permits arrays containing
up to three dimensions. The order
of subscripts, from left to right, is
major, intermediate and minor. For
example, the premium rate of an in-
surance policy might depend upon
the age, weight and the state of res-
idence of the policyholder. The table
would be classified as three dimen-
sional and each valid subseript must
be a series of three words. Paren-

Continued on next page
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COBOL

Continued from page 37

theses must be used in this case be-
cause the key word “For"” might be
ambiguous. The resulting instruc-
tion would read: MULTIPLY POLICY-
VALUE By RATE (AGE, WEIGHT,
STATE).

COBOL procedures are expressed
in & manner similar (but not iden-
tical) to normal English prose. The
largest unit is a section, which is
composed of paragraphs. The latter
is made up of sentences which are
generally grouped for the purpose
of describing a unified idea. The
sentences are composed of sequences
of statements, which in turn are
made up of groups of words—nor-
mally verbs and operands. COBOL
makes available to the programmer
several means of expressing logical
situations through the use of the
“conditional” procedures. These
“conditionals” generally involve the
key word “I¢” followed by the con-
dition to be examined, followed by
the operations to be performed. The
operations may vary, depending
upon the truth or falsity of the con-
ditions. For example: IF X EQUALS
Y, MovE A To B; OTHERWISE IF C
EquaLs D, Move A To D AND ALSO
PERFORM X THROUGH Y.

On the level

Under the COBOL concept, data
to be processed falls into three cate-
gories—that which is contained in
files and enters or leaves the inter-
nal memory of the computer from
specified areas; that which is de-
veloped internally and placed into
intermediate or working storage,
and constants which are defined by
the user. For purposes of proc-
essing, the contents of a file are
divided into logical records. By defi-
nition, a logical record is any con-
secutive set of information. In an
inventory transaction file, for ex-
ample, a logical record could be de-
fined as a single transaction, or as
all consecutive transactions which
pertain to the same stock item. Sev-
eral logical records may occupy a
block (i.e., physical record), or a
logical record may extend across
physical records. The logical record
concept is not restricted to file data,
but carries over into the definition
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“Individuality and creativeness can still
flourish freely within the framework of ef-
fective language standards.”—C. A. Phillips,
chairman of the Executive Committee of the
Conference on Data Systems.

of working storages and constants
which may be grouped into logical
entities and defined by a Record
Description.

File Description entry contains
information pertaining to the phys-
ical aspects of a file; the manner in
which the data is recorded on the
file, the volume of data in the file,
the size of the logical and physical
records, the names of the label rec-
ords contained in the file, the names
of the data records which comprise
the file, and the keys on which the
data records are sorted. The listing
of data and label records in a File
Description entry serves as a cross
reference between the file and the
records it contains. If the Record
Description for these records is not
found within the Data division of
the problem description, it still can
be automatically called from the
COBOL library.

A Record Description consists of
a set of entries, each of which de-
fines the characteristics of a partic-
ular unit of data. Since COBOL
Record Descriptions involve a hier-
archal structure, an entry giving
only the general characteristics may
be followed by a set of subordinate
entries which together redescribe
the unit in more specific terms. The
contents of an entry may vary con-
siderably, depending upon whether
or not it is followed by subordinate
entries. A file of job tickets sorted
according to division, department,
employe number and day of the
week is a good example of this. If
the logical record has been defined

as all consecutive data pertaining
to a single employe, the following
levels could be defined: (1) A week-
ly job record which consists ) O 1
(2) Daily job ticket groupings
which consist of . . ., (3) Job
tickets which consist of ..., and (4)
The individual fields within the job
tickets.

Within a COBOL Record Descrip-
tion, the programmer organizes and
defines data according to its relative
level by writing separate entries for
each level and for each item of data
within each level. The definition of
a particular item of data consists of
the entry written for that level plus
all following entries which are of a
lower level. The level, itself, is
shown by a level number which is
relative to the largest element of
data within the Record Description.
Level numbers start at 1—for rec-
ords—and may go as high as 49,
but it is not expected that any prob-
lem will require the full 49 levels of
data.

Divided Divisions

The Environment Division is the
one part of the COBOL system
which must be rewritten each time
a given problem is run on a differ-
ent machine. It has been included in
the system to provide a standard
way of expressing the machine-de-
pendent information which must be
included as the part of every prob-
lem.

The division has been divided
into two sections — Configuration
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and Input-Output. The Configura-
tion section deals with the over-all
specifications of computers and is
divided into three paragraphs: the
Source-Computer, which defines the
computer on which the COBOL
Compiler is to be run; the Object-
Computer, which defines the com-
puter on which the program pro-
duced by the COBOL Compiler is
to be run, and Special Names, which
relate the actual names of the hard-
ware used by the program to the
names used in the program.

The Input-Output section deals
with the definition of the external
media and that information that
will create the most efficient trans-
mission and handling of data be-
tween the media and object pro-
gram. The section is divided into
two paragraphs: the I-O Control,
which defines special input-output
techniques, rerun, and multiple file
tapes; and File-Control, which
names and associates the files with
the external media.

In the beginning

The COBOL Library contains
three types of entries, correspond-
ing to the three divisions of the
COBOL system. Information de-
scribing machine configurations is
retrievable through the use of the
Copy in the Environment division.
File and record descriptions are
retrievable through the use of the
Copy in the Data division. Pro-
cedure statements—commonly called
subroutines—are retrievable
through the use of the verb IN-
CLUDE in the Procedure division.
Each division is capable of obtain-
ing material pertaining only to it-
self. The physical makeup of the
COBOL library, as well as the main-
tenance and handling, are left to
the individual implementor. The
calling of library material produces
the same effect as if the program-
mer had written the material in his
source program.

COBOL had its beginning at a
conference held at the University
of Pennsylvania Computing Center
on April 8, 1959. The meeting
brought together a group represent-
ing users, manufacturers and uni-
versities to discuss the problem of
developing a common business
language. The group, headed by
Phillips, observed the recent de-
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velopment of languages for auto-
matic programming, such as
Sperry-Rand’s FLOWMATIC,
IBM’s COMTRAN, and AIMCO,
developed jointly by the Air Ma-
terial Command and Sperry-Rand.
The conclusion was that it might
be feasible to develop specifications
for a problem-oriented but ma-
chine-independent common lan-
guage for business problems. The
Department of Defense, as an ap-
propriate agency with a major in-
terest in the field, was asked to
undertake the project.

Action in the Pentagon

On May 28, 1959, a two-day meet-
ing was called in the Pentagon by
Phillips to discuss the organization
of the project. The concept of three
committees, Short Range, Inter-
mediate Range, and Long Range,
was agreed upon with appropriate
time schedules. The Short Range
Committee was composed of six
manufacturers, Government repre-
sentatives and the chairman, Mr.
Wegstein. Its task—to accomplish a
fact-finding study of the strength
and weaknesses of existing auto-
matic business compilers and de-
velop an improved system. Members
of the group include: Col. Alfred
Asch, Capt. Erwin Vernon and
Duane Hedges of the Air Material
Command-USAF ; Robert S. Barton,
William Logan and Mrs. Mary K.
Hawes of Burroughs Corp. (Mrs.
Hawes is now with RCA); Howard
Bromberg, Ben F. Cheydleur, Nor-
man Discount, Karl Kozarsky, Rex
McWilliams and Gerald Rosenkrantz
of Radio Corp. of America; William
Carter, Charles Gaudette and Miss
Sue Knapp of Minneapolis-Honey-
well (Mr. Carter is now with
IBM); Miss Deborah Davidson,
Vernon Reeves and Miss Jean E.
Sammet of Sylvania Electrie Prod-
ucts, Inc.; William Finley, Dan
Goldstein and Edward F. Sommers
of Sperry-Rand; Roy Goldfinger,
William Selden and Miss Gertrude
Tierney of IBM; Mrs. Frances E.
Holberton and Mrs. Norah Taylor
of David Taylor Model Basin, USN,
and Roy Nutt of the Computer Sci-
ence Corp.

The Intermediate Range group
will take the COBOL package and
begin to modify and refine it within
a time schedule ending sometime in

1961. Chairman of the group is
A. E. Smith of the Navy Depart-
ment.

The final phase of the program is
the responsibility of the Long Range
committee. This group will explore
the fundamentals and philosophies
of all machine language, regardless
of its use on scientific or business
data problems, The objective is to
develop a “super” language which
might supersede all existing scien-
tific and business language systems.
Such an accomplishment would be
the ultimate—the Universal Com-
puter Language. A special subcom-
mittee, consisting of Robert Curry,
vice president and comptroller of
Southern Railway; Howard Eng-
strom, vice president of Sperry-
Rand, and John McPherson, vice
president of I1BM, is directing this
effort.

Trial of a concept

Assisting the Conference Com-
mittee as technical advisors in all
phases of the COBOL project are
Dr. Grace Hopper of Sperry-Rand,
and Robert W. Bemer of IBM.

As the Short Range committee
report points out, the COBOL sys-
tem is the first large-scale effort at
writing business data processing
problems for many computers in
one language. As such, it will under-
go the trials of any new concept.
Improvements and additions will be
made by the committee which has
stated that it is making “every ef-
fort to insure that improvements
and corrections will be made in an
orderly fashion.” Proper provisions
have been taken to avoid invalidat-
ing existing users’ investments in
programming.

The COBOL system further
marks a major move toward com-
plete computer compatibility. Other
benefits include a reduction in the
time requirements and costs of pro-
gramming. The program has the
complete support of the computer
industry, and manufacturers have
agreed to implement the language
with compilers or processors to
translate COBOL to the language
of their particular machines. They
recognize, Chairman Phillips
pointed out, that individuality and
creativeness can still flourish freely
within the framework of effective
language standards. B
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Do It by the Numbers—Digital Shorthand”

R. W. BEMER, Infernational Business Machines Corporation, White Plains, New York

Abstract. Present communications transmit single

characters in groups of

systems
coded pulses between simple terminal
equipments. Since English words form only a sparse set of all
possible alphabetic combinations, present methods are inefficient
when computer systems are substituted for these terminals. Using
numeric representations
(rather
approximately one-third of present transmission time. This saving

of entire words or common phrases
than character-by-character representations) requires

is reflected in overall costs. Other benefits acerue in code and lan-
guage translation schemes. Provision is made for transmission of
purely numeric and/or binary streams, and for single character
transmission of non-dictionary words such as the names of people
or places.

General Principles

Precedent may be found in the story of the comedians’
club that sat around and laughed when a member said
“38 » Tn this case the entire story is represented by that
single number. One working example is that of standard
Western cuch as birthday greetings.
Not everyone realizes that the entire message is not trans-
mitted,
verbal message to type out on a form.

Union messages
only its number; this tells the receiver what
Another example
is that of telephone numbers. A name and address may
be transmitted in a more compact fashion by merely
sending the number. The receiver, equipped with the
same phone book ordered on number rather than name,
can simply decode.

Overstandardization at the message level will not work
generally for the infinite variety met in practical trans-
mission. The single word, delimited by blanks, is the
officient denominator. An example of this is the book code
that children use for ciphers. Here the page number, line
number and nth position on the line define a specific
word. These three numbers may be compressed to a
single number by using fixed subfields. Thus, 0312806
would indicate the 6th word of the 28th line on the 31st
page. A related method would be to number all the words

in the dictionary sequentially starting with 1.

Ground Rules

English unabridged dictionaries contain less than

600.000 individual entries. The average speaking vocabu-
lary is from 1000 to 2000 words, the average writing
vocabulary from 6000 to 8000. A college graduate may
bave from 7500 to 10000 words to use. It has been said

L)

* Presented at the meeting of the Association, August 23-26,

1960
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that a person with a 3000-word vocabulary can un(lor~.

stand 95 percent of general speech.

Since 222~ 4,000,000, it seems that about 22 bits should
be capable of representing any word in the language,
with perhaps enough freedom and overcapacity to be
informational if desired. That is, they may identify words
as to tense, plurals, nouns, or verbs, ete.

Examples given will use the six-bit representation for
letters proposed in a recent draft standard issued by the
Electronic Industries Association [1].

Compression Method

In early developments, Shannon [2] represented all
words by an invariant or constant number of bits. For
reasons of economy this is not practical. The average
length of an English word is usually taken as 5 letters,
plus a delimiting blank. A minimum of 5 bits (yielding
29 combinations) is necessary to represent a character
singly. Thus the average number of bits required to repre-
sent a word in this mode is 30. Reduction to 22 bits is
not impressive.

Therefore, statistical frequency of usage may be used
a variable number of bits.
at the

to provide representations of
The problem then is how to decode the bit stream
receiving end. This may be done by
(1) advance knowledge of a constant byte size,
(2) termination by recognition of & fixed bit pattern
normally excluded from the code,

(3) seli-definition, where the first n bits of a group
indicate its length,
(4) termination by inspection of every nth bit, or

bits in a single track.
Method 2 is due to Brillouin [3]. Each representation is
distinguished by at least two consecutive 0 bits followed by

a 1 bit. The stream of Figure 1 is decoded as an example.

10111001011011 lUlllll(Hl]lllllUlllll()l

FiG. 1
the advantage of self-repair after
(except for the word in which the

This method has
a transmission error
It is not suitable for computer transfor-
the exclusion

error oceurred).
mation of large dictionaries because of
of all address combinations with two consecutive
takes a storage of

ZeTOS.
It can be seen from Table 3 that it
more than a half-million words to handle a vocabulary of
98 635 words, at an efficiency of only 055.

Self-defining (like a measuring worm), Method 3 is




suitable to computer decoding. As an example, assume
that transmission is to be in parallel on four channels
(or on single wire in identifiable groups of four). Figure 2
shows how the leading bit(s) specify the length of a single
word representation.

No. of bytes

Leading bit(s) Working hits Number of words accommodated

(groups)
0 2 7 128 (27)
10 3 10 S9G (2w 27)
110 1 13 7,168 (212 29)
111 6 21 2,085,960 (2% %)
DGk (6 EEE 26 D6 L EE ¢ X ¢ 1 U B |
5ok MR DXL DE X X XK 1001
X XX X X|0 X X X|1 X X X X X| ete 0100
XXX X XX X X XX X XX XX 1110
direction of reading —
Fig. 2

The specific example at the right in Figure 2 means
that the first word is decoded from the octal number 133
(or 000000000000001011011, in the full 21-bit address).
There are many different methods of encoding for various
byte sizes. Some are shown in Table 1. The example of
Figure 2 is of Type B. The percent-usage figures are taken
100,000 words [4].
The average number of bits per word may be reduced

from Dewey’s frequency study of

perhaps slightly from these figures by optimum adjust-
ment to English frequency to the closest bit, rather than
by the closest byte. However, this slight reduction is not
warranted by the extra hardware and processing time.
Note that the control patterns may be inverted or re-
assigned with exactly the same effect. Arbitrary change
in the decoding rules is convenient for encrypting messages.

Correct positioning may be maintained for Method 3 by

(1) using intervening pulses of different length, as in
Teletype,

(2) inserting svnchronizing groups of all ones (1111 1111
1111) which have been excluded by the computer from
the legitimate numbers sent,

(3) checking for reasonableness of message through
statistical methods,

(4) guaranteeing that
through self-checking methods (addition of parity bits,

synchronization is never lost

error-detecting and correcting codes, ete.).

If an out-of-phase condition is likely, the proper re-
ceiving technique is to use a buffer area so the message
can be re-interpreted. The amount of saving in this method
will even allow the entire message to be sent twice, as an
extreme measure. If the situation becomes intolerable in
actual practice, Method 4 may be employed. Both Methods
3 and 4 have full storage utilization, as opposed to Bril-
louin’s Method 2.

In Method 4, a single track is reserved for a word-
mark. This wordmark can delimit in either of two ways,
as shown in figure 3 (see p. 532).

At first appearance, this does not achieve the efficiency
of Method 3. However, for all cases where the minimum
number of bytes is two (i.e., Types A, B, D, H, J, K, M)

TABLE 1. METHOD 3

: Bits First No. |Work- | Number of Percent Percent | Bytes | Bits
T'ype | per bits of ing words ac- usage | times per per
hyte 3 bytes | bits | commodated | (est) bytes word word

A $ 10 2 7 128 | 57 114 2.69 | 10.76
10 3 10 806 | 21 63
110 4 13 7,168 19 76
1110 5 16 57,34 2 10
1111 6 20 983,040 | 6

B i 0 2 7 128 57 114 2.71 | 10.84
10 3 10 806 21 03
110 4 13 7,168 1% 76
111 6 121 2,088,960 3 18

( 50 1 ! 16 28 28 | 2.19 | 10,95
10 2 S 240 36 72
110 3 12 3.810 26 78
1o 1 4 16 61,440 9 36
1111 5 21 2,031,616 | 5

D f 00 2 6 64 48 96 2.76 1 11,04
01 3 10 960 | 30 90
10 4 14 ‘ 21 84
11 6 22 | 6

I 6 0 | 5 32 8 38 1.85  11.10
10 2 10 02 10 80
110 3 15 31,74 21 63
111 | 21 12,064,384 1 4

F a0 1 | 16 28 28 2.28 | 11.40
10 2 8 240 36 72
110 3 12 3,840 26 78
111 5 22 14,190,208 10 50

G 6 00 I 4 16 a8 28 1.95 | 11.70
01 2 10 1L,OOR 50 100
10 3 16 21 63
11 | 22 1 !

H 500 2 0 512 71 142 2.34 | 11.70
10 3 13 7.680 | 25 79
110 1 17 122,880 3 12
111 5 22 14,063,232 1 5

J 5|0 2 9 512 7l 142 2.37 | 11.85
10 3 13 7,680 25 79
11 5 | 23 (8,380,416 { 20

K 5 100 2 S 256 | 64 128 | 2.41 | 12.05
01 3 13 7,936 | 32 96
10 | I8 253,952 3 12
11 5 23 8,126,464 | 5

L 6 0 1 5) 32| 38 38 | 2.06 | 12.72
10 2 10 992 40 S0
11 1 22 4,193,280 | 22 S8

M 60 2 11 2,048 | S84 168 | 2.17 | 13.02
10 3 16 63,488 15 15
11 | 22 14,128,768 | i

the position adjacent to the initiating or terminal one
might be used for information. This is because two one-
bits in sucecession in the wordmark track constitutes an
illegal condition.

Communications of the ACM 231




0 I 0 1 00 1 0 00 1 0 0 0 0
X X 56 5 DE DG RN XK XR: X X
X X IXNXX | XXX |XXX XX
X XX IXXX|IXXXX|  XXXXX
direction of reading »
1 0 1 001 00 01 00 001
X X X X X X 2% XK XK X oK K 2K KX
X XXX XXXX| XXX XX
X CIC X AKX | X XK D XK | XK X KX K
Fig. 3

A third method may deserve study, that of using al-
ternate ones and zeros in the wordmark track, changing
at the start of each new word. The advantage of using one
extra bit for information is lost in this scheme. Table 2
shows corresponding efficiency in the wordmark mode.
The corresponding efficiencies in bits per word are virtually
the same as those of Table 1.

TABLE 2. METHOD 4

Method 3 Type | Bits per byte Word mark bits No. of bytes | Working bits
A ! x1 2 7
X0l 3 10
> 001 i 13
X 0001 5 16
00001 G 10
B i X1 4 7
* 0l 3 10
X001 ! 13
00001 6 19
C 5 | 1 |
01 2 s
001 3 12
0001 H 16
00001 5 20
| 6 1 1 5
01 . 10
001 3 15
0001 { 20

For transmission on parallel wires, Method 4 is superior
to Method 3 when errors oceur.

It is also better for single wire transmission provided
synchronization ean be maintained regardless of error
in any bit.

Code Efficiency

Brillouin [3] states that his code vields about 12 bits
per word, very close to the theoretical lower limit that
Shannon [2] believed to be 11.82. It is obvious from Table
1 that Types A through H are all better than Shannon’s
limit. Having duplicated Brillouin’s work with the ap-
proximation to word frequency that he used (and also the
Dewey frequencies), I get 10.12 bits per word with the
frequency approximation that he used and 9.83 bits per
word with the Dewey frequencies that Shannon used.
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The latter figure leads me to believe that Brillouin may
have unknowingly penalized his scheme by 2 bits.

Although Baudot code is nominally 5 bits per character,
the effective average is probably closer to 6 because of the
extra shift characters and terminal blanks required to
space words. Fieldata code does not use shift characters
but does require terminal blanks and at least one extra
bit, so the average is nearly 7 bits per character. Thus
the scheme outlined in this paper will save between 60
and 65 percent over Baudot transmission and nearly
70 percent over Fieldata.

Brillouin has not published a scheme using more than
two zeros as terminal indicators, and has stated that he
believes it (the two-zero scheme) to be the most efficient
possible. 1 have investigated the cases for three- and
four-zeros termination, with the following results:

Bits per word

its per word (Shannon
Bits per rd DS (Dewey frequency)

Number of zeros

2 10,12 9.83
3 10.31 1010
l 11.00 10.87

These figures are for a voeabulary of about 12,000 words.
Table 3 shows that in this range the address efficiency of
the three-zero terminator is about five times as good as
that for two zeros. Thus it is actually much superior for
practical computer operation. The reason an extra zero

TABLE 3.
BRILLOUIN CODES OF THE FORM 1 XXX X .0)...

n = number of digits to left of the decimal point
7Z = number of zeros in the terminator

U = number of usable combinations in each group
l‘: - ",, s l... - | (for Z = 2)
Ug= Ui+ Uu_zs -+ Ups + | (for Z = 3)
U= Uny+ Un2a+ Cas+ Uas +1 (forZ = 4)
A |
Address efficiency =
: n

Z=2 Z=3 7 =4 Address Efficiency
= yu

U bt L =u L U Z=22=3Z=4
1 2 1 | | 1 | 500 1.500
2 l 2 3 2 3 2 790 .TH0
3 S | 7 i 7 | 7..875 |.875 |.875
! 16 7 14 S 15 8 15.875 .938 |.938
5 32 12 26 15 30 16 31813 438 060
G 4 20 16 8 N 31 62.719 906 969
7 128 33 79 52 110 60 122/.617 |.859 1.953
S 256 M 133 96 2006 116 238,520 805 .930
9 512 881 221 177 383 224 1621.432 748 902
10 1024 143 364 326 700 132 894..355 .62 873
11 2M8 232 5% 6001 1300 833 639 843
12 4006 376 972 1104 2413 1606 580 .84

13 Q102 609 1581 2031 4444 30060 6420103 542 785
14 16384 G86 2567 3736/ SIS0 5968 12397).157 |.449 |.T57
15 | 32768 1596 4163 6872 15052 11504 23901 .127 459 729
16 | 63536 2583 6746 12640 276092 22175 46076/.103 423 .703
17 | 131072 418010926 23240 50341 42744 88820 .083 389 678
I8 | 262144 6764 17690 42762 93703 S: 357

2171212067 357 |.633
10 | 52428R% 10045 28635 7R652 172355 158816 330028055 .32 |.630

20 1048576 1771046345 144664 317019 306128 636156 . 045 |.202 607




T R SESNSR——., p—

b By A L el BRS M L

does not add a full bit per word is that a higher propor-
tion of the frequently used words may now be assigned
to a denser set of addresses. The remaining choice between
Brillouin’s method and Methods 3 and 4
as follows:

is now made

Brillouin 00 Brillouin 000 Method 3.4 . Baudot
(Teletype
Bits per word 0.83 10.10 10.62* 30.
Address efficiency 06 .35 1.00

* adjusted for corresponding vocabulary size

Transformation Methods

A stored-program computer or a device with associ-
ative memory can transform a string of characters (each
represented by a binary number) into a single compact
and unique representation. An existing example of this
statement is the conversion from binary coded decimal
to pure binary numbers. The converse transformation
at the receiving end requires only a simple address lookup
to find the word or symbol to be printed.

The input typing or keying device produces B bits
per character or letter. B is greater than or equal to 6
in order to handle at least 26 alphabetic characters, 10
digits and other necessary characters such as punctuation.
A group of letters is deliminted by a blank, hyphen or
other delimiter. Figure 4 shows the bit stream produced
in the EIA code for the word privme. The blank delimits
a string (Cy, Gy, Cy, -+, Cy), N being the number of
letters in the group, normally a word. This string is a
number R;. In Figure 4, R, = 4547364232, The
blank triggers the unloading of the buffer to a unit or
program which transforms R; to a number R,, which is
the compressed representation transmitted on the com-
munications line,

As the set of English words is sparse, the set of R, is
also sparse. Transmission efficiency increases as the set of
R, is denser. R, is also the address used at the receiving
end of the line, (R,) = R,, which may either activate a
character printing device or be retransmitted in decom-
pressed form.

Ry is chosen to increase monotonically as frequency of
the use of a word decreases. Thus the most frequently
used words have lowest values of Ry and may thus have
the leading zero bits truncated in the variable length
mode. The program has an optional tally register as-

sociated with each word. Actual usage will
practical frequencies which may be used for reassignment
of the R, values.

R: may represent more than one word. After initial

Ri's are formed, one per word, this compressed string may

generate

be inspected by matching pairs against a list of pairs
which have high enough usage frequency to warrant
condensation into a single R.. This is recursive and any
number of words may be represented by a single R,.
The only requirement is for the preceding R, to remain in
a buffer for matching.

Table Lookup Method

The length of a word is expressible in 5 bits. (N« in
English = 28 < 2°
tarianism.) The computer storage is arranged to contain

for the word antidisestablishmen-

the operating program, a master table of N, C'; and sub-
ordinate tables corresponding to all these values. For
ach word, N and C, are adjoined. (N, () is found in
the master table and is the address of the start of the
proper table. In Figure 4 the N,C, is
054550, (0545) = starting address for table of all
five-letter words starting with P. (N, C; 4+ 1) = ending
address of Between these limits, a binary
search finds a match to the value of R,. Associated with
Ry in the table is the corresponding R.

This method does not make use of frequency informa-
tion. It may be desired to place the tables randomly in
storage. In this case the master table must be doubled in
size. Adjoin the 5 bits of N, 6 bits of Cy, and a final low-
order bit which indicates the starting address by 0, the
ending address by 1. Finer grouping may be had at in-
creased cost by using the concatenation of N, €, C..

value of

table -+ 1.

Chaining Method

The entire number R, is utilized directly to find the
corresponding R,. A number M is chosen such that 2™
is convenient to storage size and related to vocabulary
size for optimum conversion speed. For present storage
sizes, M may vary from 10 to 14. The address R; modulo
M has the contents:

Ri, Ry, chain address

The set of numbers R,, = R, modulo M will have dupli-
cates and will not be dense, although denser than the

Human Hard Computer -
r — | copy _ Code stream
! ‘ 1 l

Single character P R | M E blank

l typing device 100101 100111 011110 100010 011010 000000
! ' ! ! !

Buffer Punch Paper Magnetic Regular commun-
card tape tape ication line
Fic. 4
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set of Ry. When there are duplicates, the contents of R,
will not contain the proper R, except for one word. If
not, the contents of the chain address are tested for a
match. This proceeds recursively until a match is found
on Ry; the R, associated with that address is then used.
For dense storage packing, the chain addresses are chosen
from a list of empty positions, that is, R,, values which
the existing vocabulary does not utilize.

It is possible to apply other transformations to R; to
reduce it to the range from 1 to 2™. A simple extraction of
M bits may be practical. For any value of R,, the chain
should be assigned in order of decreasing frequency of
word usage.

Storage is assigned by referring to its representation
in three lists:

(1) Storage (prime) already assigned to a word

(2) Storage (secondary, or nonprime) already assigned

to a word

(3) Free list, not vet assigned
A limiting number is experimentally chosen such that
only this many words are allowed unlimited prime as-
signment. Starting with the most frequently used word,
R, is calculated and used as an address. If this address is
found on the free list, it is removed and placed on the
prime storage list. The address contents are assigned,
using successively larger values of R,. If this address is
not found on the free list, a duplication in R,, has occurred.
Such words are held aside for assignment after the limiting
number is reached. These remaining words are then taken
again in order of highest frequency of usage, and the
remainder of the free list is used in sequence to fill the
chaining addresses. Each word assigned must proceed
through its chain. For example, take three words W,
W. and W; for which the corresponding values of R;,,
Ry, und Ry, all yield identical values of R,,..

W, is assigned (Ra) = R,,, Ry,, FLA,
W, is assigned (FLA;) = Ry, Ry, FLA:
(FLA:) = Ry, Ry, RETURN
(FLA means Free List Address)

W; is assigned

Ends of all chains are assigned to the reTurN address.
When a word must be added to the chain, it is lengthened
by replacing rETUrN by the next chaining address and
putting ReETURN in the new last word. If RETURN is ever
reached in actual transmission, it indicates that this word
is not yet in the dictionary. Automatic addition of this
entry (in both sender and receiver) then occurs upon
inspection of the free list.

Immediate Applications

Present-day computers operate at speeds too high for
constant usage with communication lines, except under
special circumstances. Until special devices are built for
this express purpose, there are several ways of efficiently
combining computers with existing communication lines.

(1) MessaGge CextTER. Since the computer should be
running nearly continuously to realize maximum savings
from compression, one means of achieving economy is
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to create message centers in such cities as Paris, New
York, London, ete., where the total volume of messages
may be expected to approach capacity. Since the com-
munication volume on lines is only about a third of present
volume, capacity of such lines as Atlantic cables is tripled,
without the need to lay new cables. Facsimile transmission
may be interspersed with word messages to further justify
the computer economy, since similar compression methods
can achieve 4-to-1 reduction in this area [5).

The extreme flexibility of the computer allows a variety
of modes of compression, as shown in Table 1. Some of
these are suitable to the existing five-bit pattern of Tele-
type. Thus a eomputer equipped with paper tape input
and output could take in eontinuous strings of normal
Teletype messages, compress them, and output a con-
tinuous string in condensed form but still suitable for
transmission on regular Teletype circuits and equipment.
This tape then enters the receiving computer and is either
printed on its equipment or converted to the expanded
tape suitable for relaying to local Teletype receivers.
Large networks could thus be two-stage, with the greater
proportion of distance (and cost) being traveled in the
compressed form. It is conceivable that an asymmetric
condition could be used, with a central transmitter and
several satellite receivers of lesser power. Radial trans-
mission could be in compressed form, replies from the
satellites in normal, uncompressed form. The compression
algorithm must avoid using normal control codes as any
part of the numbers. The same principles apply equally
to other existing and proposed paper tape formats of
six bits and more.

(2) ComBiNED Message axp  Dara  ProcessiNg
CexNTeEr. Many computers are susceptible to external
interruption of their regular operations and can inter-
mingle several different jobs. This is known as multi-
programming. Thus a computer in regular operation can
be interrupted upon demand to either encode a message
for transmission or decode and print an incoming message.
However, demand does not need to be heeded instan-
taneously. A minimum time lag would be that saved by
the message compression. Depending on priority codes,
lags of up to several minutes may be acceptable. This
would allow for regular jobs to be interrupted at con-
venient points with minimum disruption.

(3) ComBINED MESSAGE AND LANGUAGE TRANSLATION
CexteER. Several language translation schemes depend
partially on corresponding dictionary lookup. In this
method the receiving computer can look up the cor-
responding word in Russian or French just as easily as
in English. Since this lookup time is such a small pro-
portion of available real time, the rest of the translation
process may be carried on simultaneously. This allows
messages to be sent to multiple receivers in different
languages through virtually instantaneous translation.

(1) Excopin For SECRECY. Secrecy comes virtually
free with this code. Whereas ciphers depend upon letter
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substitution and are normally broken on the basis of
letter frequency in a language, it 1s quite another thing
to try to determine relative frequencies for thousands
of words rather than just 26 letters. Code is the more
general term, being substitution of symbols for words.

Normally both sending und receiving computers are
equipped with the same dictionary, or library. When the
sender adds a new word to the dictionary, it must transmit
this word to the receiver in both single character (so it
will know what to print) and compressed form. De-
pending upon the mode of number assignment, this may
cause a drastic restructuring of the entire encoding repre-
sentation. In the example of the dictionary with words
numbered in order, suppose a new word must be added
just before “aardvark.” Almost every word would have
its representational number increased by one. This simple
shift would be easy to detect, but the problem would be
infinitely more difficult if many words were added at
random places throughout the dictionary. Now imagine
this ordering of numbers determined not by alphabetic
ordering in the dictionary but by frequency of usage in
the language.

Additions to the dictionary may be expected quite
often. New users of the communications system may
introduce new professional jargons. Personal or place
names are used to identify many things, from army tactical
positions to tropical storms. Mixed svmbols such as part
numbers for inventory will be used often. If these are
popular or frequently used, it is more economical to add
them to the compression dictionary than to send them
by single characters. If not, the provision does exist to
send single characters in groups of one, four, five, six
or eight bits.

A particular business requiring secrecy could purchase
its own special dictionary, scrambled in a unique way,
Computers can store a multiplicity of these on tape files
and both sending and receiving computers could select
one upon the basis of a control code. Multi-programmed
computers can merge several messages together for si-
multaneous transmission in a variety of patterns. A very
simple example would be to interleave five messages so
every fifth bit would belong to a specific message. Myriad
varieties are possible and simple, but the unauthorized
receiver would have to try every possible variety before
he could make sense from any.

A valuable by-product of this method will be the ability
(at last) to determine actual usage and frequency figures
for both letters and words in languages. The compression
program contains a counting mechanism for usage. This
may be disconnected at option. This is useful to period-
ically rearrange the dictionary for efficiency, when operat-
ing in a standard non-secret mode. Previous counts, on
sample texts of from 100,000 to 300.000 words, did not
count punctuation symbols for frequency of occurrence.
In this method, it is more economical to use these svmbols
as being identical to words.

TABLE 4.
EXAMPLE OF POSSIBLE ASSIGNMENTS (Type D)

Octal | Symbol Frequency®| Octal Symbol Frequency®
00 | (Open for contin- | 40 I ARE 1200
gency)
01 Enter binary mode 41 ON 1200
02 | Enter 4-bit (decimal) 42 OR 1100
mode** ’
03 Enter 6-bit mode** 43 HER 1100
04 Enter 8-bit mode** 44 HAD | 1100
05 Blank 45 AT | 1100
06 y 46 FROM ‘ 1000
07 THE 15500 | 47 THIS | 1000
10 : 50 MY [ 1000
11 OF 9800 51 THEY 1000
12 AND 7600 | 52 ALL [ 000
13 TO 5700 53 THEIR | 800
14 A 5100 M AN 800
15 IN 4300 55 SHE 800
16 THAT 3000 56 HAS 800
17 IS 2500 57 WERE 800
|
20 I 2300 60 ME [ 700
21 IT 2300 61 BEEN 700
22 ; 62 HIM | 700
2 FOR 1900 63 ONE 700
24 AS 1900 | 64 S0 700
25 WITH 1900 65 IF 700
26 WAS 1800 66 WILL 700
27 HIS 1700 67 THERE | 700
30 HE 1700 70 WHO 700
31 BE 1500 71 NO 700
32 NOT 1500 | 72 WE 4 600
33 BY 1400 73 WHEN | 600
34 | BUT 1400 74 WHAT | 600
35 HAVE 1300 75 YOUR 600
36 YOU 1300 76 MORE | 600
37 WHICH 1300 77 | (Open for contingency)

* 242 000 word sample from Cryptanalysis, H. F. Gaines, Dover,
1956.

**4-, 6- and 8-bit modes have identical characters to IBM
LOGICODE proposal. Those modes are provided to allow single
character formation. The 4-bit set is provided with a special
blank following 0 — 9 . — + . Return to Normal Mode is effected
in the various sets by encountering the character

01111100 in the 8-bit set

111110  in the 6-bit set
1110 in the 4-bit set

(If 6-bit return character is out-of-
phase with the end of the byte,
hold up 2 bits)

Amortization of Computer Costs

A rough program planned for an IBM 7090 takes an
average of 250 microseconds per word for total conversion
at both transmitting and receiving ends. This rate of
about 4000 words/second is more than adequate to keep
up with foreseeable transmission times, even microwave,
on a real time basis. At a nominal cost of $800 per hour,
the per-word cost would be

80000 A ‘ '
3600 X 4000 0056 cents per word.
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Cost estimates for land line transmission are 62 cents for
an average message consisting of 48 words of 5 characters
and blank, requiring an overall elapsed time of one minute.
These 288 characters actually require only 14.4 seconds
on the line at 20 characters per second transmission rate.
To realize the case most unfavorable to computer termi-
nals, assume interleaving of four messages. The cost
would be

62

IXi8 - 323 cents per word.

This shows conversion time to be negligible by almost
two orders of magnitude to the transmission costs saved.
Net costs with computers on each end should approximate

(35% of .323) + .0056 = .1186 cents per word.

Thus the overall cost may be expected (with a fully
utilized computer) to be from 37% to 40% of present
costs. The most profit comes from transoceanic routes

rather than land lines. Some typical costs*® are:

21 cents per word
25 cents per word
25 cents per word
31 cents per word

New York to London

New York to Paris

New York to Moscow

New York to 8.
America

New York to Japan

Radio/Cable

34 cents per word

*(night rates are half of day rates)

80 for first three
minutes, $3 each
additional; 66
words/minute st
50 bauds

New York to London/
Paris

Western Union-
Telex

Straight text costs a standard amount per word based
upon average word length. Coded text is charged modulo 5
letters. A group of 5 letters or less counts as one word; &
group of more than 5 is counted by components of 5 and
fewer letters. Thus a 12-letter group would be charged
as three words.
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Technical Committee 97 of the International Standards
Organization (ISO) is concerned with standards in data
processing. The American Standards Association holds the
nim- secretariat of this committee. Sectional Committee X3 of
if me- A.S.A. is responsible for national data processing standards
 Sim- in the U. S,

Fm One of the most important areas of standardization (and
one of the most pressing) is that of the logical representa-
tion of the character sets, These representations may be
by punched holes in paper tape, pulses on a communica-
tions line, bits stored in memory, marks on paper, ete. The
differ- existing standards work in this area has been done by
MEE 149 (now DPE) of the British Standards Institution
- num- and by TR 24.4 (now TR 27.6) of the Electronie Industries
Wy LN Association. This particular problem is now under the cog-
nizance of A.S.A. Sub-committee X3.2 on character sets
and data format,

b The chart (pp. 640-1) is presented as staff work for the
N deliberations of X3.2. It is the most complete information
 delib- - K& we have been able to assemble to date, but obviously
Stand- there may be errors and omissions. The primary aims in
8 publishing this chart are:

d ¢ (1) To indicate to the information processing industry
ES 88 ¢ why standardization is vital in this area.

(2) To request further information from the various ex-

; perts who possess it.

2 The chart is presented in 64-character modules (sufficient
! for a 6-bit set) and the positions are given designations in

{ octal number system from 00 to 77. For the benefit of
ayone not familiar with this notation, a conversion table
LS8 givey .

1" by

mbols

e of

re not

stems.

vell as

mation

dly re-

. Octal Binary
es :n'nll' 0. x]n
.-mofll \" 1 001
ORTRAS. 2 010
these de: ; 011
100
' 5 101
y Dump 6 110
: 7 111

{L SPresents an o or a punched hole condition. “( rep-
B8 OFF or ap unpunched condition, Obviously, the
BRESTSION. between physical and logical representation
V¢ made in tyq ways (for example, depending upon
8 edge of the Paper tape is on your right hand).

SYe-track Paper tape is shown as though one of either
B Or figure shifts had a sixth track. In most cases

Survey of Coded Character Representation

R. W. Bemer, IBM Corp., White Plains, N. Y.,

this is theoretical. The letter shift-figure shift relationship
is indicated on the chart together with the tape orientation.
If a “3” appears in the column marked units, then the “3”
hole side is octal 01. If g *on appears in the units column
the reverse is true. In most British tapes the letter shift is
shown in the high position because the collating sequence
adopted by the British for six-track codes puts the digits

low to the alphabet. The converse is mostly true in the
U. S.

Nore: The 704 und 705 codes,
this statement since the
tations than the alphat
controlled by a collating
higher than the alphabet
A comparison matrix in hardware or
replacement of the

for example, apparently violate
digits have lower octal represen-

set. However, ordering of files is

sequence in which the digits are
- This is accomplished either by

by programmed
keys in the records to be ordered.

Some seven element codes are shown on two lines. In

most cases these are accomplished by a
case shift on the input key ho
cated. The 7030 actually uses

internally,

The elements of the code sets may
mational or control characteristics. In
they should not possess both. Informa
shown by their single graphics,
characters are coded with two-letter
to the following table, exc
lower case b with a sl

BK—black
BL—bell
BS—backspace
CL—clear
CM—card mark
CO—compute
CR—ecarriage return
CS—carriage shift
DL—delete (erase)
EB—end block
ED—end data
EF—end file
El—end information
EN—end number
ER—error
ES—escape

FF—form feed (paper throw)

FS—figure shift
ID—idle
LC—lower case
LF—line feed
LS—letter shift

MS—master space
NA—no action

NL—new line (CR + LF)

NP—non-print
OP—optional
PA—put away
PC—page change
PF—punch-off
PO—punch-on
PR—print restore
RD—red
RE—read
SI—shift in
SK—skip
SM—segment mark
SO—shift out
SP—space
ST—stop
TB—tabulate
TF—tape feed
TM—tape mark
UC—upper case
WA—who are vou?

Communications of the ACM

n upper and lower
ard. These cases are indi-
the seven (and eight) bit set

possess either infor-
my personal opinion
tional characters are
Control and functional
mnemonics according
ept for blank (which is shown as a
ash through the stem) and special (®).
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Survey of Punched Card Codes
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Reprinted from The Computer Bulletin, Vol. 4, No. 4

® SURVEY OF MODERN PROGRAMMING
TECHNIQUES

by R. W. Bemer

construction, not running efficiency—is likely to go

This paper formed the basis of a talk given to the unnoticed.
Society following the Annual General Meeting on I shall try, in this talk, to give a summary of new and
29 September 1960, improved techniques in the programming field. Surveys
should gather information in one place to enable proper

perspective for review and weighting of importance.
Irztroduclion This survey will be restricted to generalised techniques
and tools. Applications will not be covered, otherwise
you might not get home until breakfast tomorrow
morning. Despite much necessary overlapping, I am
going to divide this talk into six parts as follows:

In the business section of the New York Times there
often appears an advertisement (not of my own com-
pany) for “Research Programmers to work in Macro-
Assembly language development, Heuristic Programming
and Artificial Intelligence studies, Symbol Manipulation
and other advanced computer areas.” You may have
seen it. Even the lowly Machine Programmers are
requested to *‘write programs for a variety of large-
scale digital computers in the areas of Scientific Informa-
tion Processing, Natural Language Processing and

"

'lnformalion Retrieval Systems.” At first this may sound

. The elements of languages

. Machine-dependent languages

. Machine-independent languages
- Analysis languages

. Processor techniques

. Operating systems.

S B W -

like somebody has been reading Mr. Potter’s books and Elements OfLmlguages

this is merely one-upmanship in the programming area, When we instruct the computer to do work it is
but I assure you this is not so. Programming has indeed analogous to instructing another human being. In both
moved to glamorous heights. cases we use languages. In early attempts the languages

Until about four years ago, programming was a more were at a very crude level and very awkward to use.
homogenised profession. This was to be expected in a Much of the recent pressure has been to use English as
relatively new field. However. so were the developments the language medium and instruct the machine almost
outlined in this advertisement. At present we have a indistinguishably from the instruction of another human.
large number of programmers in the world, certainly I have severe doubts as to whether we can or should go
over 30,000, and the techniques used range from the in this direction alone. One thing is very sure—the
ones described down to the most archaic. It is extremely economic need to more efficiently communicate with
unfortunate that the archaic end s the large end of the machines has provided great pressure to re-examine the
iceberg—the part under water. This is occasioned by meaning and structure of language. Millions of us use
the sheer rise in production programming, particularly the English language quite correctly, or at least as
in (but not restricted to) business and scientific applica- correctly as most, by having learned it through example
tions. The production of generalised systems such as and unconscious statistical selection. It may be possible
the FORTRANs, Flowmatics, various assembly programs, that some day we will also teach machines in this way,
and rather complete systems like sos for the 709 is a but with present machine construction this is likely to
very big business. | hope that the end-purpose of this be very expensive. Most of our present approach is
talk (and others like it, with published articles on the devoted to teaching languages by a rigorous exposition
topic) will be to raise this vast body of programmers of their form and structure., RSt
from the doldrums of outmoded techniques. | realised There are many types of languages, and I don’t mean
in 1950, after my first year with electronic computers, Russian, French, or Pakistanian. There are the linear
that the leverage factor between a good and bad pro- languages such as we have in writing or speech. There
grammer, or a good and bad technique, can easily be as are the two-dimensional languages of tables and lists.
high as ten or twenty-to-one. In a tricycle factory one There are symbol languages, such as flowcharts, and
is likely to become vice-president for increasing the these by implication may be in many dimensions.
output 109, at the same manufacturing cost. In pro- There are pictorial languages. All of these have been

mming, a 10% betterment of efficiency—that is in used to communicate with computers.
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The formation of language symbols is most interesting.
Most all symbols have recursive, or combining properties.
For example, the Chinese symbol for “riot™ is formed
of two identical symbols for “‘woman,” with a broken
line across to indicate a roof. Thus, to any knowledge-
able man, two women under one roof indicates a riot.

Alphabets, however, are far more efficient, and have
beautifully recursive properties. Except for a few
vowels, none of the single characters are meaningful
words in English, disregarding their use as single-
character symbols for mathematics and the like.
Theoretically—and 1 say theoretically only because
George Bernard Shaw would otherwise arise from his
grave—the characters in groups of one, two and three,
etc., all have corresponding verbal sounds. These
verbal sounds are then the analogue representations of
symbols. However, I am afraid it would be very difficult
to speak English to an analogue computer. The cost of
storing symbo pauerns for discrimination would be
horrendous.

The digital compuler is more fortunate because it can
use binary bit representations for the elements of
language. In common usage, bit representations are
assigned to the letters of the alphabet, decimal digits
and other useful characters. Using information theory,
Shannon and others (myself among them) have used bit
representations for entire words or phrases. However,
to add new words or names the facility must always
exist to represent the single characters by unique bit
combinations. An analogy may be found in the
representation of numbers by both coded decimal and
binary notation. The binary notation corresponds to
the word, since the entire symbol (that is, quantity) is
represented by a single number, even though that has
recursive forming elements of 0 and 1. The decimal
number, or of any other base for that matter, is formed
recursively by adjoining number symbols instead of
letters. Let us not overlook the combinations of both
numbers, letters, and special symbols, useful for part
numbers and automobile licence numbers.

If I may speak categorically, the input to and the
output from a computer is primarily a bit stream.
Whether or not this bit stream is broken up into bytes,
of which some bits are delayed in time so that a group
or byte of bits enters the computer in parallel, is of no
consequence. The size of such bytes, whether they be
defined as a single bit byte, the 5-bit Teletype or Baudot
code, the 6-bit byte of many alphabetic computers, or
the 8-bit byte of certain new computers and numerically
controlled machine tools is of consequence only to the
convenience of the designer and the efficiency of his
product. [ recommend for your study the paper by
Howard Smith, Jr., of my group, which appeared in the
August 1960 issue of the COMMUNICATIONS of the ACM,
entitled ““A Short Study of Notation Efficiency.”

Some of you may know that I have been crusading for
some time in the interest of larger character sets. This
has met with some success and you may note the Bm
7030—the production version of the STRETCH computer—
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accommodates a 256 character set, 8 bits per character.
The attached printer will print 120 characters, including
the upper and lower case alphabets, and all the othe

characters of the reference language of ALGorL. The
input/output typewriter for the Bendix G20 also handles
8-bit ALGOL characters. This is of great interest to the
programmer because he may now identify the unequivocal
meaning of each character in a string without resorting
to long programs that make many decisions on contextual
relationships.

To say there has been variety in the me(hods of
assigning bit combinations to characters is putting it very
mildly. We have catalogued over 50 different selections.
This Babel has probably been the prime factor in
instigating an international standardisation effort in
data processing. The British Standards Institution has
been active here for years. In the United States, con-
sideration of these problems has been left until recently
to the various professional and trade organisations.
However, the X3 Sectional Committee for data pro-
cessing has been formed in the American Standards
Association to straighten out this matter and many
others at both the national and international level.
Quite naturally, there is excellent co-operation between

the British Standards Institution and the American .

Standards Association in these matters. (

In actual practice, the bit representations do not need
to be identical for interchange of information. The
basic need is for a uniform collating or ordering sequence
of characters. There is nothing more vital to the inter-
“change of data and programs between computing
machines than an identical collating sequence. There
are certain natural collating sequences (Z is higher
than A, 9 is higher than 0). I know of no reason why
alphabet should be higher than numbers or numbers
higher than alphabet other than historical precedent.
Most of the millions of files produced by data processing
machines in the United States are ordered with the
numbers higher than the alphabet. Blank is a character
in its own right and must be low. Collating sequence is
an important factor in machine cost. Unless the ascen-
ding binary sequence of characters in machine representa-
tion is the same as the collating sequence, additional and
expensive hardware will be needed to compare the keys
of items to be marshalled or ordered.

Another basic element in interchangeability is data
format. In order to be operated upon, data must be
precisely defined. This definition may be by means of
the instruction sequence itself, by other stored data, as
in the control word technique, or by seclf-definition.
For the latter purpose, I prefer a numeric subset of the
4-bit characters that contain the decimal digit 0 through
9, decimal point, minus, plus, comma, blank, and per-
haps a monetary sign, dollars or pounds. In most
present arithmetic operations the position of the decimal
or binary point is accommodated by either floating point
ar.nhmclic or by aligning the implicit decimal point
within the instruction sequence. This alignment could
possibly be done automatically with a coincidence-
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matrix detector if the decimal point is an explicit and
separate character contained in the data. Some scaling

ight still be necessary, of course. Another type of
instruction/data interaction is that where the data itself
signals that it is of a special class which may or may not
alter the instruction sequence. An example of this
would be the terminator bits in the 7030, which indicate
the beginning and ending elements of a vector stored
in memory. | Lale/Me STeenms

Although another element of language structure is
the syntax, I will take that up under some other groupings.
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Machine-Dependent Languages

As long as we have computing machinery there will
be a machine language for a particular computer to
understand. I will not guarantee that the form will stay
that way it is today, because already

I. There are fixed word length and variable word length
machines,

2. There are machines that operate on words, machines
that operate on characters, and machines that operate
on bit streams.

3. There are machines of one command and of more than
one command in a single instruction, with one, two,
three, four, and perhaps more addresses in a single

_l'// instruction.
= 4. There are machines with 20 instructions in the machine

language repertoire and machines with over 500 different
types of commands available.

. There are micro-instruction languages with which the
programmer can get at each primitive required in
fetching the necessary data to perform the operation:
there are machines which have macro-instructions built
into the hardware when a high frequency of usage
indicates enough gain by paralleling the elements of
execution. Examples of the latter are floating point,
operations involving index registers, operations of
indirect addressing and special table instructions such
as the convert instruction in the 18m 709,

We may yet see machine languages identical to ALGOL
or some other presently machine-independent language.

Expert programmers are well aware of the uncertainty
in machine languages of the future. One ccrtaint){ is
that at the present time the engineers are far outstripping
the ability of the programmer to use the machine, and
there is a saturation point beyond which no amount of
programmers can possibly speed up the writing of a
program. Certainly more than two or three hundred
programmers working together constitute a point of
diminishing returns. We have no recourse as pro-
grammers but to go to the machine designer and say
“help.” T am pleased to note that the Atlas machine
has taken many steps forward in this direction. The
convenience of numerical symbolic addressing is one of
the most important features that will reduce translation
time and programming effort.

Given a particular machine-dependent language.‘there

r¢ many interesting tricks and techniques \\{hlch a

rogrammer may use, sub-programs for counting the
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number of 1's in a binary number, for instance, or
tricky mathematical sub-routines. Although not exactly
applications, such techniques are nevertheless also
excluded from this treatment. Let us leave machine-
dependent languages with only the reservation that
eventually we have to convert the information we give
the machine into this form. pys P 7 OF

Machine-Independent Languages

Machine-independent languages may be divided into
two groups—and I do not mean scientific versus com-
mercial languages. This is an entirely different par-
titioning.  Machine-independent languages are either
procedure-oriented or problem-oriented.

There is a great deal of confusion existing between
these two terms. It is unnecessary confusion because the
distinction is simple. The procedure-oriented languages
are available for one to describe /sow the process is to be
carried out. With the problem-oriented language one
needs only state the problem. Heuristic programming
is of course only the upper stratosphere of problem-
oriented languages. There are many of these in existence
today, of a simpler nature. As an example, take what
is miscalled (in the United States) a sort-generator. What
they really mean is ordering, or, to use the British term,
marshalling. The input to such a generator would be
items such as internal memory size, number of tape
units, suspected bias in the ordering, record size and
layout for the items to be ordered, preference for
ordering method, grouping or blocking information,
and many other items of information or advice. Inherent
in the sorting generator is the pseudo-intelligence about
the problem which will, from the intersection of this
information and certain basic skeletal routines, construct
an efficient operating program. The programmer may
have called for a distribution or a sifting sort. He did
not tell the machine how to accomplish a distribution or
sifting sort. Had he actually written the program for a
distribution sort he would probably have done so in
procedure-oriented language. . ..

Q AW JEE foetint
Many of you have undoubtedly noted the me!a{inguisﬁc

formulae in which ALGOL 60'is described. This is due to
John Backus, previously known as the developer of the
FORTRAN program and language. I trust I may be
excused for considering this a tremendously more
important development than FORTRAN. Algebraic lan-
guages did exist before FORTRAN—Rutishauser’s and
that of Laning and Zierler at MIT. 1 believe Brooker’s
work was also simultaneous with FORTRAN.

This meta-language seems to me a remarkably rigorous
means of describing a linear or string language. One
would assume that the process should be r ive.
That is, there should be a meta-meta-language with
which to describe the meta-language, and so on in depth.
I have always been convinced that such rigorous forma-
tion rules tend to simplify the translation process, just
as in working at the aircraft factories during the war
I found that the lower degree of the profile curve, the
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better the air liked it. I was particularly pleased to
hear from Peter Ingerman, University of Pennsylvania,
at an ALGOL discussion during this summer’s ACM
meeting, that they had some difficulty implementing
non-recursive procedures in ALGOL. When they redefined
the procedures to be recursive everything was much
simpler. In other words, a sounder and more generalised
structure forces the programmer to do things the right
way. 4 Ths e
You are by now all familiar with the trend in scientific
machine-independent languages through FORTRAN,
UNICODE, Math-matic, Auto Code and such to the
present state with aLGoL 60. Although by no means
complete (in fact, I consider it still quite experimental)
ALGOL is a far superior language to any of its pre-
decessors. 1 know of four related processors for ALGOL
in Germany: in the United States, processors have been
written at least for ALGoL-like languages for the Bur-
roughs 220, the cpc 1604, and its prototype Countess.
An ALGOL processor exists for the 709/7090, and ALGoL
processors are being constructed for many other machines.
I have enough faith in the eventual future of ALGOL to
have caused a program to be constructed which converts
from FORTRAN source language into a rather stupid
ALGOL. I have been asked many times why we did not
make it translate from ALGOL to FORTRAN so that the
existing processors could be utilised. The answer has
always been that we wish to obsolete FORTRAN and
scrap it, not perpetuate it. Its purpose has been
served. M A+ = CHDI el ABEL HA

A similar revolution is now taking place in the area
of business languages. Under the sponsorship of the
US Department of Defence there has been formed the
Conference on Data Systems Languages (CODASYL).
Although this conference has other long-range aims, its
initial and most urgent purpose was to synthesise, from
the existing business languages such as Flowmatic,
Aimaco, and Commercial Translator, a somewhat
universal language in the spirit of ALGOL.

This language, cOBOL, is nearly complete in its defini-
tion. Its construction was beset with many more
difficulties even than ALGoL. For one thing it had to
handle almost all the features and classes of problems
that ALGOL does in addition to many others. Let there
be no mistake about it—business and commercial
problems are vastly more difficult of solution than are
scientific problems, at least in their translation to machine
operation. The scientists and mathematicians, in con-
structing ALGOL, drew upon a workable language of
mathematics that has been in existence for hundreds of
years. Their new contribution was the reduction of the
verbiage that the mathematician normally finds between
the formulae to algorithmic form in a more concise
notation. On the contrary, business practice has

Iveet

differed wildly.

The constructors of the coBoL language were beset by
many new problems and I fear that in their initial attempt
they ignored the rigour and syntactic beauty that a
definition by meta-language would have gained them.
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There has been a general resistance on the part of /BM
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and myself to the willy-nilly adoption of cosoL in it;'

original form. We knew what was wrong with it an
tried to say so in the manner of elder statesmen. [ am
pleased to say that nearly all these basic flaws have now
been removed. /BM is committed to produce COBOL
processors for many of its computers on the assumption
that the official form of the language will be revised no
oftener than once a year. Practically all major producers
of computing equipment in the United States are com-
mitted to coBoL processors for their machines.

One might now ask if ALGOL and coBoL are the end.
I must say no, for part of the work the American
Standards Association set up under its X3 Committee 1s
a project for common programming languages. 1 suspect
there will be those who walk into the X3-4 Sub-
Committee and expect to find ALGoL adopted as a
standard. I expect the same may be true for the cosoL
proponents. Having played the scientific against the
commercial and vice versa, Saul Gorn and [ have reason
to believe that this is the very lever needed to force a
fusion into a single language for both scientific and
commercial work. : ,

If machine-independent languages are to be standard,
they must be standardised according to a set of rules
of graduated stringency. Adoption of a particular
existing language as a standard would be fallacious.
For one thing, a standard requirement should be that
the language be expressible in the meta-language of

Backus or some other development of this nature. For‘

another, all languages should be clearly partitioned.
The commercial languages are now in three parts,
reminiscent of Gaul (!); namely, procedure, data
description, and environment, ALGoL does not have
separate data description because it operates only upon
floating-point variables or fixed-point variables with
rigid rounding and truncation principles not suitable to
business. ALGOL does not have an environment section,
and it could certainly use it. -
I further suspect within a period of two years a fourth
section will be broken out of the language, a section
exclusively reserved for time-dependencies and relation-
§hips. At present we are writing too much procedure
into our problem solutions. Combinatorially, there are
many different ways of constructing a flowchart to do
the same problem. The variations are limited only by
the time-dependencies. That is, A must be computed
before B, because A is an input to the computation of B.
If, for example, both A and B are input to C, it may not
matter to the programmer whether A or B is computed
first, but depending upon certain frequency information
and other knowledge the compiling routine can well
make this decision.
_ We can look to see (within perhaps two years) an
International machine-independent language of the
procedure-oriented type which will be suitable for both
scientific and commercial work and will be heavily
partitioned into organisational entities for the reduction
of programmer effort. The processors which accomplish
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the translation of this language to machine language will
be required to be extremely clever and intelligent.

The problem-oriented languages are an upcoming and
useful class. In this group we have sort generators (as
mentioned before), report generators, file maintenance
and updating generators, and table generators. All of
these are very highly specialised towards certain frequent
and recurring classes of operation. The investiture of
the necessary and requisite intelligence into the program
is economically justified by the frequency of need.

Let us take the report generator for an example. Input
to such a program would be a description of the physical
layout of the file, its component structure and the detail
structure of these components. The semi-pictorial
layout of the output is also required. with indications
given of the pagination, margin, number of lines,
grouping, spacing, indentation, etc. For a typical
report the headings are lettered in exactly as they are
to be produced from a typing element in the proper
column and row. The working information is laid out
exactly as it is desired to be seen with proper decimalisa-
tion and auxiliary characters. (Some means of relating
this output to the structure of the input file is also
necessary.) The cyclical characteristics of data must be
specified. It takes a good deal of programming effort
to write a good report generator, but there is an extreme
pay-off when you invite the vice-president down and
hand him an input sheet and say, **Make up your own
report.” He is shown the simple rules, the information

is key-punched and fed to the machine with the working
.ﬁlc. and the report comes out in a matter of two or three
minutes exactly as that vice-president specified it. It is
remarkable how much support a computing installation
can get that way.

To finish with machine-independent languages, 1
should like to emphasise the importance of jargons,
and what they do for us. When one considers, for
example, the jargons (or dialects) of ALGOL such as
NELIAC, CLIP, JOVIAL, MAD, etc., it can be seen that the
external appearance of the language is quite a bit a
matter of taste. ALGOL reflects certain distinct choices
in a matter of exterior form. It has been noted by Julian
Green in his work with ALGOL processors that there
appears to be a rather rigorous sub-language created
from the scan of a string language. This appears to be
common regardless of the jargon used. Remarkably
enough, it appears to have the quality of Polish Notation
with an alternating sequence of operator, operand,
operator, operand, etc. This does seem at first to give
support to those that prefer Polish notation as the
human programming language, as in ADES 11 and the
APT programming language. The group that it actually
supports is that which would like to see a specialised
jargon for each field of computational need. Mike
Barnett, for instance, carries this one step further with
his so-called ‘““Macro-directives,” which are highly
specialised jargons for a particular field. These are
translated into an intermediate language such as FORTRAN
or ALGOL and then processed into machine language.
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Brooker has been particularly keen on this, as evidenced
by his paper on a self-defined phase-structure language.
It would seem that the computer is versatile enough to
take specifications of language structure and construct
its own rules for translation to the sub-language. Of
course, this is directly related to the problem of transla-
tion of natural human languages.

Analysis Languages

This is a subject I can touch on only briefly because
the field is actually in its infancy, but basically the
analysis language should provide the tools to describe
the operation of a total system. These are the languages
we may expect our systems and procedures analysts of
the future to use in describing their problems. There
are prerequisites to successful language of this type.
Among them are more rigorous methods of describing
data organisation and set membership. I imagine they
will be much more pictorial, being two- and perhaps
three-dimensional. Examples of tabular languages are
already in existence, developed by Hunt Foods and by
General Electric. In the simplest form the dividing lines
between the columns and rows represent and/or con-
ditions. The resulting procedure or operation is
described in a column following a double rule. In
reality much of this is simply making Boolean algebra
more palatable to the user by transformation of the
language to a form more compatible with his previous
experience. The development committee of CODASYL is
extremely concerned with this problem. They point
out, and rightly so, that actual programming is often a
rather small part the entire analysis problem of today.

Processor Techniques

Two years ago programming was rather in the dol-
drums. It seemed then that the twenty-five to forty-five
man-years necessary to write a major processor were
supportable only by manufacturers. Users and univer-
sities rebelled at this and so did the manufacturers
because of the heavy programming costs. Now we find
universities that can write with two man-years of effort
better and more sophisticated processors than those
which would have required twenty-five man-years as late
as 1958. 1 ascribe this in large part to the development
of symbol manipulation techniques.

At an ACM Council meeting a year ago, John Carr
was rather perturbed by criticism of ALGOL since he had
a large hand in the formation of the effort, and asked
“Can anyone tell me just what is wrong with ALGoL?”
It fell to me to answer the question and I said, “*Simple.
It's not a data processing language.” In short, ALGOL
could not be written in ALGOL. Assembly programs can
be written in their own language; why not machine-
independent languages? To answer that this is
theoretically impossible is wrong. Symbol manipulation
is the link. When you are going to ship a language with
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its translator out to face the world so that it can do
virtually any problem, you might as well consider one of
the most general of these problems. This is the problem
of translating from itself to a machine language. In fact.
this is the acid test. NEEY & ol S is.
When ALGOL came into being as ALGOL 58, we were
already embarked upon a language called XTRAN,
designed to supplant FORTRAN. Indeed many of the
characteristics of ALGOL were born in XTRAN. [ asked
Julian Green to run an effort to make an experimental
processor for ALGOL. He was given only two rules:

1. Nobody that ever worked on a FORTRAN processor was
to be associated with the project for fear of prejudice.

2. The processor was to be extremely flexible to accom-
modate expected changes in ALGOL,

The result of this is an experimental processor still
carrying the name XTRAN but capable of providing as
many different varieties of ALGOL as one needs. The
reason for this is that XTRAN is written in its own
language. Symbol manipulation elements have been
added. Another successful project of this kind in the
United States was undertaken at the System Development
Corporation with the languages cLIP and JOVIAL.

As 1 said in my introduction, most production pro-
grammers are unaware of such techniques. The problem
is how to convince them to utilise these new techniques.
One possible answer lies in a course on compiler con-
struction just given for the first time. This course lasts
one week. The first two days are devoted to a special
language for symbol manipulation. During the next
three days each student writes a complete compiler in
this symbol manipulation language and actually checks
it out on a machine, in this case the 705. The compiler
is a very simple one, and they do not write anything for
recursive procedures. Yet it is complete, it works, and
is written inside of one week.

Perhaps the second greatest contribution to the
programming art in recent years is something we wanted
very much to do one or two years ago and only recently
discovered how. This is bootstrapping. (I hope the
term has the connotation in the United Kingdom as it
does in the United States.) In any event, it means to use
every possible facility that you have constructed so far
in the construction of any new facility. This is not
limited to a single machine but may also be extended to
moving processors from one machine to another. The
most difficult part of bootstrapping is to get that small
initial handhold. Normally this starts with hand-
writing of an origin feature, the assembly of a few
instructions, a decoding table for operations and
addresses, an assignment feature to actual addresses
and a few other such functions. With these facilities
one starts to program and moves slowly in an ever-
widening circle.

This is the classical method. It was not good enough
for Bob Shapiro of the XTRAN project. Shapiro came
from the University of Chicago and was not bound by
what any other programmer had ever done. He decided
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that the first tool he needed was.a scan to break apart
and analyse the elements of the input language. How-
ever, he felt that one of the things the scan ought to
able to do was scan itself. So Shapiro wrote what he
thought the scan ought to be and then he played machine,
imagining the scan scanning the scan. As he did so,
he wrote down the machine instructions that he thought
the machine should produce in so doing. He then
entered these same machine instructions in the computer
and actually fed the scan through the program. In fact,
again scanning the scan. This process produced a
program for scanning which at first, of course, was not
quite the same as that Shapiro had written. He kept at
it until the output program in the machine was identical
to the program that actually had scanned it. With this
he completed his first major bootstrap and saved an
enormous amount of work.

Bootstrapping is, however, a more useful device in
modest present-day systems. As an example, we were
required to produce a processor for a new machine,
the 7070. There was a choice between starting from
scratch or doing a wasteful job of writing a single
translator on another machine—in this case the 705.
After some initial opposition I persuaded the production
people to write a program in 705 Autocoder which per-
formed the translation from 7070 Autocoder to 7070
machine language. After all, this is a production
problem one might be expected to encounter with such
a generalised program. The 7070 processor (that is, the

processor which would actually run on the 7070) was')

then written in the full-blown language, taking advantage
of every feature available. This was then processed
(virtually once and once only) on the 705 to produce a
processor which would actually work on the 7070.

The elapsed real time in thus producing the program
was greatly reduced, which is very desirable in these
days of automatic design and production of machines.
We received a bonus we hadn't quite counted on, actually.
Now we have one 705 running around the clock, doing
nothing but assembling 7070 programs for customers
that do not yet have their machines.

XTRAN as an experimental processor has changed form
many times, but the basic transformation from inde-
pendent language to machine language has remained
the same. One starts with the scan which produces
macro instructions, possibly of a three address nature
and quite independent of data configuration. The next
step converts these macros to other macro instructions
which are data-dependent. For instance, in the original
macros we may have been attempting to add a fixed
point number to a floating point number or perhaps
two fixed point numbers that required decimal alignment,
which was not necessary to consider at that time. The
next transformation was either to symbolic machine
language or direct to machine language through
generators. Anatole Holt uses a diagram for this
process that I like very much. It is a simple parallelq—
gram which is completely below the base line. Thls
base line represents a dividing position between machine-
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independent and machine-dependent characteristics.
Holt’s diagram shows that the transformation is a
radual one through many steps. At each stage there
must be a mapping from one form to the other so that
no information is lost.

I think this is a good time to dispel the uncoL myth
(Universal Computer Oriented Language.) According
to its proponents, all machine-independent languages
would translate into UNcoL and uNcoL would be trans-
lated to all different machine languages. Apart from
the fact that uncoL has been demonstrated, through the
success of cLip and XTRAN, to be unnecessary, there are
certain technical reasons why it cannot exist—excluding
if you will the Turing machine. Since UNCOL must
comprise the set of all possible machine level operations,
it is likely to get outmoded as soon as someone develops
a new one. For example, I wonder whether the UNCOL
would have included the look-ahead feature of STRETCH
if they had designed it five years ago? Then, too, it
would seem that to be acceptable to all machines uNcoL
would have to translate into the lowest common
denominator among all classes of machines and thus the
efficiency on each and every object machine would be
minimal. I am afraid that as it is presently proposed,
UNCOL is a miss, or myth.

To my mind there is an intermediate language form
which will serve this same purpose. The only real
difference between machine-independent and machine-
dependent languages is that they have different con-

tructions reflecting the different organisation of the
‘mman mind and the computer mind. To go from one
to the other there must be an orderly transmutation of
information. I submit that tables and lists can easily be
the common denominator for this purpose. Several
powerful list processors have already been constructed—
Lisp of McCarthy and Mealy, and the Newell-Simon-
Shaw processors. There are indications from the realm
of information storage and retrieval that the day of the
list processor has just begun. The ability of various
trees to reference recursively both backward and for-
ward on many program levels indicates that they are
powerful enough to perform the stated function of
UNCOL as an intermediate form. As an example, the
XTRAN scan decomposes the string continuously into a
matrix. The semicolon as a statement separator is
never treated differently from any other character.
As a result, arithmetic computations may be optimised
over whole sections of the program with redundancies
removed. Consider it this way—if one makes a list
inside the processor of all the variables that ever have
an addition operation performed upon them, it will be
detectable that B -+ A is the same as A 4 B. All that
is required is an ordered list and a search for duplicates.

The translation from a machine-independent to a
machine-dependent language raises some interesting
speculation. There are two courses open today. One
involves translation from the machine-independent
'language to an intermediate assembly language in

machine-like form, with the operators and operands
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given mnemonic English equivalents. A separate
assembly operation then converts this form to machine
language. The other alternative is direct generation of
machine code. The latter is not enjoying much favour
these days. 1 suspect it will in the future. The pro-
ponents of the double step process tell us that machine-
independent languages cannot presently state every type
of problem, whereas assembly languages can. Therefore,
correct machine code in assembly form may be adjoined
with the output of the first translation and all translated
by the assembly program. This is a safe way to play it,
and for today perhaps the most practical for production
programming. It is predicated on the assembly and
translation processes being long and tedious, such that
one could not afford to start over from scratch each time
an error is caught or a change made. Direct generation,
on the other hand, is based on the principle of recom-
pilation from the beginning each time, although perhaps
certain tables of correspondence may be saved. By
avoiding the intermediate assembly language step much
duplication is avoided and the running program may
physically replace the source program in memory.

Another important technique in today’s processors is
that of flow optimisation. It is well known that there
are more devious ways of going to a point four blocks
down the street than by walking to it directly. The
average programmer left to his own devices is too likely
to take many of these detours. The route is best left to
the intelligent processor. Perhaps the most complicated
section in the various FORTRAN processors is that for
flow optimisation through the use of predecessor and
successor logic. As you know, the programmer has the
option of specifying expected frequency of taking various
possible paths at branch points as override information.
The processor takes as much of this information as the
programmer gives it and constructs a rough test program.
Test values of the variables are generated randomly and
the test program is exercised with these values to deter-
mine any unknown branch frequencies. With this
information the program is then reconstructed to
optimise the flow such that the most used paths through
the program take the shortest time. Of course, if this
penalises greatly a slightly less used path, a different
choice must be made. Similar to the transportation
problem, this technique is in effect a prior optimisation
of the program.

Many post-optimisations have been tried with success.
This is particularly necessary when we go to macro-
instructions to decompose a string language. Normally
the macro-instruction generators do not talk to one
another. It may well be that the generation of two
successive macro-instructions will engender some
extraneous commands—multiple store, for example.
Other crude rules for optimisation and modification of
a program after it has been created fully have been
developed.

As one who was brought up on interpretive programs
in the early years, it amuses me to see that the compiler
is not the last word. To compile implies that you know
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everything about the program beforehand and all the
external characteristics and conditions. In today’s
multiple processing systems this is definitely not so.
Many hardware assignments must be made on-line
during actual running. Furthermore, an interpreter is
often a more compact form of instruction, whereas a
compiler might generate as many as a hundred different
ways of doing something, all of which must be main-
tained in memory in case their particular call should
occur. The interpreter effectively generates the proper
coding upon demand. The former reason for the
unpopularity of interpretive programs was the length of
time required for the fetch and interpretation cycles.
With proper hardware design, such as that of ATLAS,
this is not necessarily a problem.

The interpreter also comes into its own when there is
a difference in balance between computational equipment
and printing and editing equipment. As a case in point,
take a 7090 and a 1401. The 1401 is a small machine
with big off-line editing and printing characteristics. To
asynchronously operate such equipment on-line with a
large machine in a multi-program fashion would require
much control information and prior editing. In this
case all the 1401 would do would be printing. We have
determined that it is very effective for the large machine
to construct an interpretive control language as its
output, together with the resulting data. The 1401 is
nicely able to interpret these control and editing instruc-
tions with no loss of printing speed.

A problem of recent interest is the naming facility in
processors. I know the English have laughed at some
of the three- to five-letter names one encounters in
American programming systems. [ admit this is quite
unnecessary and I apologise. The possible names one
could use of any number of characters form a very sparse
set. It is very expensive to carry around character by
character representations in the compiling and trans-
lating process. These names are meaningful only to the
programmer. They may be exchanged for compact
binary representations for use in machine processing.
A double list of these relationships is maintained for
availability whenever output is required.

The problem of locating files by their names is related
to this. With random access memory it is cheaper and
more convenient to transform the name into a unique
address which locates the related file rather than perform
a special table search for the name and find the associated
address. Lists come into their own here, and chaining
techniques have been developed. That is, one converts
the numeric representation of the name into a more
compact number. In the address given by this number
one should find the original name to serve as verification.
If not, a chaining address is also given for the next try.
The need for this is occasioned because the conversion
algorithms sometimes produce duplicates in a more
dense set. However, the expenditure of search time is
far, far less than that for binary search. On typical files
where 209, of the total files get 80% of the activity, the
average number of searches made in a fully packed file
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has been determined as 1+12. Operating in this fashion
is also good practice for the days of associative memory,

It was a combination of this chaining technique, th )

work of Shannon, and zero-compression techniques that
led to the development of “Digital Shorthand™ as a
communications code. With computers on each end
of a communications line, rather than the simple ter-
minal equipments of today, we can transmit three times
the volume of formatted text in compressed form,
decompressing it at the receiving end. Facsimile may
be sent at a saving of 4 to 1. This method promises
large savings over expensive communications linkages
such as Atlantic cables and satellites. An experimental
7090 program indicates that, with full utilisation, the
cost of both sending and receiving computers is about
0-006 pence per word. Contrast this with 1s. 6d. per
word day rate, London to New York, or 9d. night

rates. This scheme will handle the full English dictionalf)f o

at an average of 10-7 bits per word. Ly, R

I have briefly touched on some of the more salient
features and techniques that make large gains in both
the writing of processors and the running of the programs
they produce. Now to move to my final topic, the one
probably dearest to my heart, that of operating systems.

Operating Systems =~ 4~

There has been a steady trend away from the com-
bined human-machine operation and toward fully auto-
matic machine-controlled operation. There is no doub
but what the vast increases in machine speed have force
this, but it would have been a desirable development
even if speeds had remained the same. The first large
automatic operating system, developed at General Motors
for the 704, doubled the working efficiency of that
machine.

One of the most important components of an operating
system is the 10cs, which stands for Input/Output Control
System. The proper scheduling of Input/Output is a
far more difficult matter than writing the procedure.
With 10cs we see new verbs introduced such as GET,
PUT, INTERLOCK, OPEN and CLOSE FILE. All of these are
compound instructions generated for maximum efficiency
in feeding data to the operating procedures for producing
answers.

Obviously a complex system of this nature has many
levels of operation. Control must exist through
hierarchies of overrides and limits. All component
functions must be organised as subroutines eventually
called by the topmost level of control. Since the
scheduling function is one of these components there
must be access to all machine states by interrogation or
trapping. If trapping is used it must be capable of
being disabled and enabled by the control program.

The scheduling function may be primitive or very
complex. A good deal of development is being done by
Codd and Held in the United States. Until a radical
change in machine design, however, 1 am inclined t
favour the primitive approach for a sensible profit;

o
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too many experimental scheduling programs now take
up more time in making the decision than the machine
ime they gain.

Assignment of operating units must not be made in
the program proper. This is left to the operating system,
which makes real time assignment according to what it
has available soonest. For a tape unit, for example,
this is probably the first unit the previous running
program has relinquished. The programmer must in
general refer to physical units by abstract names. This
may be carried to the point of random loading of tape
units. At the beginning of each problem the control
program reads the labels on each tape unit to find out
what exists there. It may also interrogate memory to
find out how much is available and adjust the program
accordingly for more efficiency. Self-adjustment to
machine configuration is not costly for such a powerful
device.

We would expect the program in the original language
to be stored somewhere for ready access. Self-repair of
programs may be effected by returning to the more
compact source form. This is connected to the self-
repair of the machine itself. A diagnostic program con-
tained in the operating system may be called upon to
test for faulty machine elements. Upon discovery, a
message would be typed out to the service man, but
rather than halt operations, either the current program
would be readjusted by partial recompilation to avoid
the faulty area, or another program might be started
which did not require it.

Experiments indicate the possibility of successful
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diagnosis on a time-shared basis. This enables the
programmer to essentally talk to the machine in real
time at his convenience." Of course, all diagnosis is done
and results obtained in the machine-independent
language the program was originally written in.

Once a self-operating system is postulated and begun,
no matter how primitively, we are on the way to remote
shared operation of very large machines. The graphs
of problems per monetary unit always show remarkable
decreases when the machine gets larger and faster. I
have long envisioned computers larger than STRETCH
acting as large service and message centres. Because
they must be tied in with communications networks for
this purpose, they are automatically available for message
control and forwarding, text and facsimile compression
to high efficiency and low cost, and a variety of related
functions. Certainly the very organisation in this
manner will more than amortise the cost of the computers.

This concept would indicate that vast files of read-only
memory will be an important requirement for the future.
Even program instructions may be largely fixed and
unalterable. Old-time programmers remember a lot of
instruction modification, but how much do you need
now with index registers, indirect addressing to many
levels and symbolic addressing? 1 would venture to say
that less than 109 of our program instructions ever get
modified now, and the percentage will become much less.

I thank you for this wonderful opportunity to address
you, and if you think that I have been talking too much
“futures,” read a copy of this talk three years from now
and see how old-fashioned the ideas are.

UNWIN BROTHERS LIMITED, WOKING AND LONDON

COVEY TH ¢
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Editor’s Note

. I have seen a number of subroutines lately for the com-

To a routine, the

putation of transcendental functions.

binary repeating cycle is very short. Table 1I is therefor
of interest. The quantity enclosed in parentheses repeats

—————— . ————

continuously.

mge of the argument is at least us high as =/4. Nobody
ems to use tables to break up the range, nor do they The alert programmer will now see ways to perform
f trigonometric identities. certain multiple-precision  divisions by integers in less

Al Podvin’s sine-cosine

make use of

[ remember very well the day
routine for the 650 ran faster than mine beeause he had
used the formula for sine 36. For the information of sub-

time than the standard machine inst ructions would taks
by taking advautage of masking and shift instructions

R. W. B.
routine planners who have not investigated this tech-

nique, Table I gives some alternate expressions for the TABLE

L. Formulae for calculating sin n@, cos né

N i Tic - e B :

computation of sine and cosine of n8. The clever program-

mer will now see how he can trade off extra computation . S Tk
here for reduction in the size of the approximating poly- ) g c
nomials due to reduced range. Telescoping the c efficients
is also advisable. 2| asc ot — S
I belicve tricks like this will be highly efficient Lecause 1 - 28 \Q
of the large proportion of applications which demand the 205 = 1
computation of both sine and cosine; theodolite data re- ol a8 %48 40 — 3C N
o o — W° "t
dur,.nnu. for example. For binary machine users, t may b 33 — 4SY —C3 — 407
of interest to notice how many of the coefficients in Table S(4Ct — 1) _C(4S: — 1)
I are susceptible to shifting techniques for multiplication.
Let me anticipate the reader’s complaint that 8 must i 1SC(1L — 25%) 4(S*+ CY =3
: o3 3 1SCac: - 1) — 80 + 8C*
be computed with more precision. Do not divide the e : A st :
A E : AsC(r — §° 1 — 88 + 8§¢
argument, nf, by n, but rather multiply by the reciprocal | — 8C:S? Ie
of n. This leads to another interesting (and apparently
little known) characteristic of binary machines The 5! 38— 208 + 168 5C — 200% + 16C
reciprocals of all decimal integers are of course repeating S — 208 + 165° C(5 — 200* + 106 -
El T . & - St ey ) Voo 32 W4 (' - 125 <4 GBSt
-qetions, whether expressed in decimal or binary. How- ) ok E S l - s l
: S(1C: 4+ KA + K2) CiaCt 4+ Ka(C? + K.,
or. certain of these integers have the property that the PR b Lt

TABLE 1l. Binary recipro als of some small decimal inlegers

Niee t/N Binary Ndee 1/N Binary Nidoe 1/ N Binary Ndee 1/N Binary
1 26 0000100111011 51 (00000101 76 N
2 .1(0) % 52 7 :
3 .(01) 28 00(001) 53 8
4 .01(0) 20 M 79
5 L(0011) 30 o001 55 0 OO0 : |
6 L0(01) 31 . (00001) 3 000 (001 S1 .
7 . (001) 32 00001 (0) 57 82
8 001(0) 33 ,(00C0011111 58 83
U L (D0C111) H 000001111 30 84 00100001
10 L0(0011) 35 000001110101 60 00 (0001 ) 85 000 0Ll
11 L (0001011101 36 00 (000111 61 86
12 00(01) 37 62 0 (00001 87
3 (000100111011 38 63 1000001 88
14 .0(001) 39 - (0000C1 101001 . 64 00000110) 89
15 L 0001) 10 0000011 65 000000111111 90
16 0001 (0) 41 66 0000011111 91
17 L (00001111) 42 0 (000011 67 92
18 0000111) 13 . (00000101111101 68 L00(00001111) €3
19 41 L00 (0001011101 9 04
20 000011 45 (000001011011 70 95
21 L (000011) 1 L0 (00001011001 71 o4 00000 (01
22 L0001011101 17 72 000 (000111 97
Y4 3 . (00001011001 48 L0000 (01 73 (000000111 08
24 000(01) 40 74 99
. 25 30 75 100
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. 1873 June 14

Mr. J. Robert Logan
Data Systems Division
Litton Systems, Inc,
Van Nuys, CA

Dear Mr. Logan:

For historical interest, in connection with your article "Designing
a Binary Reciprocator", in the 1973 May issue of Computer Design,
I attach a copy of my Editor's Note in the 1961 April issue of the
Communications of the ACM. My Table II shows the reciprocals of

} your Table I, except that the repeating element is also indicated.

. Isn't it strange that these things get lost when new technologies
come along? I am pleased that you have resurrected this usage after

twelve years,

Sincerely yours,

R. W, Bemer
n

cc: Sydney Shapiro, Managing Editor




Standards

This paper describes a tentative standard code which has been proposed to the
membership of the ASA X3.2 Subcommittee on Character Sets and Input/Output
Media. The X3.2 Subcommittee is now examining this work in detail and, in my
opinion, will probably recommend us an American Standard a code which is quite
similar in principle to the one described here although it may differ in some de-
tails. Because of the urgency of this work and the very greal amount of effort
which has already gone into the development of this proposal, it is presented
here, informally, for the information and scrutiny of the ACM membership
had not yet been reviewed by the ACM Standards Com-
mittee for consideration as an ACM Standard. The authors and this Department
will welcome your comments.

although at proof time it

EDITOR’S NOTE

Design of an Improved*™

Transmission /Data Processing Code

R. W. Bemer, H. J. SmrrH, JR., F. A. WiLL1aums, JR.
IBM Corp., White Plains, N.Y.

Historically there has been strong difference of opinion
in the construction of 6-bit (64-character) data codes,
based upon whether the code is to be used for communica-
tions or data processing. This paper reports on investiga-
tion of an improved code which meets transmission re-
quirements and requires very little modification for varied
data processing usage.

It has been evident from the workings of the ASA
Subcommittee X3.2 that the transmission people are not
as adaptable to modifications as the data processing people.
This is simply a matter of inflexibility of existing semi-
mechanical communications equipment compared to the
general-purpose nature of electronic data processing equip-
ment.

The major obstacle lies in the collating, or ranking,
sequence of the characters of the set. It is true that a
large proportion of the ordered files of today are sequenced
on numeric keys alone. However, 8 substantial proportion
of these files are ordered on keys which contain alphabetic
and specisl punctuation characters. If a standard code
changes the relative ranking of such characters the pres-
ently ordered files will all have to be fully reordered to the
new sequence, & process requiring & great expenditure of
machine time. Transformation of one bit representation
to another is relatively simple when the sequencing
property is ignored. However, oné should try to guarantee
that the files are still in proper order after such conversion

(1.

P

* Revision, 15 Mar. 1961.
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There are three inputs to the collating problem:

(1) The most prevalent ranking in the US. is that
established by 1IBM equipment, particularly the 705. In
order are the blank, special characters, the alphabet, the
digits. The critical point here is that the digits are higher
than the alphabet, for whatever reason. The United King-
dom and certain other U S. manufacturers (Sperry Rand
and RCA) rank the digits lower than the alphabet.

(2) The desire of communications people, as first
evidenced by Fieldata (2, 3, 4], is to have the 6-bit, set
collapsible to & 5-bit Baudot-type set with effectively the
same characters. This is to utilize existing Baudot-Teletype
equipment with simple modification.

(3) Certain punctuation characters, by universally
accepted practice, should collate low to alphabets, digits,
and other special characters. For example, the following
two names would normally be ordered:

Roberts, A. B.
Robertson, X.
whereas the Fieldata code, because the comma ranks
higher than the alphabet, would yield an ordering:
Robertson, X.
Roberts, A. B.

Expausion and contraction between any of the 4-, 5-, 6-,
7- and 8-bit code sets demand a certain uniformity and
simplicity. Thus the alphabet should be reserved to two
contiguous quadrants of the four quadrants of the 6-bit
set. The choice now appears as in Figure A.




(%3

Quadrant

(rYPIFIED BY) 3 4
Bendix G-20, GAMMA 60........... Alphabet Alphabet Digits Special
Flgldata. .. s o s Alphabet Alphabet Special Digits, special
IBM Btretoh. . vereennrennnncnononas Blank, special Alphabet Alphabet Digits
VI8 SO ) BV, 2 e R R .| Blank, special Digits Alphabet Alphabet
Fre. A

In the opinion of the authors neither the Fieldata code
nor the U.K. code meet the criterion for 5-bit Baudot-like
operation completely, even though that was one of the
major design requirements. A Baudot type of code is
formed essentially as follows:

' Letters

— ( Control
' Digits and special

~

32 5-bit combinations

In any 2-mode code for paper tape, three of the control
codes, DELETE, FIGURE SHIFT and LETTER SHIFT, must in-
variably be common to both shifts. pELETE must be all
I’s (all punched on paper tape) and MASTER SPACE must be
all 0’s (unpunched tape). MASTER SPACE, BLANK, and
EscAPE preferably appear in both shifts. Such controls as
LINE FEED, CARRIAGE RETURN need appear in only one
shift, but operation is more complicated,

Some of these functions may be combined in a single
code combination. DELETE/LETTER SHIFT is a single code
in Baudot. FIGURE SHIFT is synonymous with one of the
three functions possible to Bscare. [6]

Since pr, ¥s and Ls must be common to both modes,
Fieldata loses the Y and Z of the alphabet and the — and
+ characters in the collapsed 5-bit mode. This is not
tolerable because some words are spelled using Y and Z.
Similarly, the UK. code loses the letters I' and G and the
symbols . and —~. The code developed in this paper is very
similar to both of these codes but removes these major
flaws.

All of the criteria of the Fieldata study are used here.
The full spectrum of expansion and contraction among
4-, 5-, 6-, 7- and 8-bit sets is considered in addition. Thus
there are the following additional criteria and remarks:

1. A collating sequence has utility in data processing
codes containing alphabets; transmission codes do
not require such a sequence.

2. A collating sequence has no utility in a 4-bit set.

3. A collating sequence has utility in 5- and 6-bit sets
and it is desirable that the sequence correspond to the
binary representations.

4. If it is assumed that the 7- and 8-bit sets contain upper
and lower case forms of the same alphabet, it is im-
possible to have the collating sequence match the
binary representations, for the case distinction is of
lesser significance than the distinetion between charac-
ters with different meanings. (7, 8]

5. It is not necessary that the full 4-bit set be in 16
contiguous positions in larger sets. It is only necessary

that the lowest four bit positions form the dense, un-
duplicated set. Other bit, positions may vary. However,
the digits 0-9 (10, 11) should be certainly be grouped
contiguously in any set.

6. Punctuation characters have natural delimiting
functions and should thus collate low to both the
alphabet and digits. These include, but are not limited
to:

blank .,/ — :;7() (not in ranked order)

7. Since period and hyphen are natural delimiters, they
should be placed low to both alphabets and digits,
However, they often serve as radix point and minus
sign (which are not delimiters) in the 4-bit numeric
set. There must also be a character in this set to serve
as a blank; this may or may not print in the 4-bit
numeric mode. Therefore any characters of the 4-bit
set which are delimiters should be in a different con-
tiguous block than the digits, so they can serve the
delimiting function in larger sets. There should be
some regular transformation to append bits when
expanding to larger sets.

8. All expansion and contraction from and to the various
set sizes shall be blind, without knowledge of the
meaning of the character assigned to any bit repre-
sentation, or of contextual adjacency (with the excep-
tion of FIGURE/LETTER SHIFT control in going between
5- and 6-bit, sets).

9. In all expansion and contraction, MASTER sPACE must
remain all 0’s and pELETE must remain all 1’s. EscApE
shall always be the second highest code, one less than
DELETE; thus all bits except the low order are 1. For
paper tape usage, BLANK must be different from
MASTER S8PACE and therefore shall have all bits 0 except
the low order. This guarantees that BLANK, as the
primary delimiter, collates low to all other characters.
It is also the complement of Escare.

10. All possible caution should be exercised in alphabetic
regions to provide maximum expansion for non-
English alphabets (> 26 letters).

The 8 bits are represented by B, through B, , high to
low order. The 6-bit transmission set will be developed
first. Figure 1 shows a modified Fieldata pattern with B,
not yet assigned, reflecting criterion 9 only. By = 0 for
Fieldata, Bs = 1 for UK.

It is now obvious that s and rs should be opposite
Es and pr, not Ms and BLANK, in order to maximize the
number of punctuation characters following BLANK.
Since the decimal digits must have their binary repre-
sentation equal to the binary value, they must be placed
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Digits & Special
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Alphabet
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+ ; |
For . - & /¢ R Y S o s WES P ¥ e e U e % <>
Basio OCTPY .. covvdoani i bunen o Vi Vi N V Vi AN A
ROIBLYDEL sk L B T Vi VLV N A e v v v Vi V. N/
Basic IBM Printers............. . VAN W A v vV v vV Vv
FORTRAN Printers.......... . ... .. Vi VO WV N W v v v v
1410, 7070, Comov. ............ ... Ve NV IV A i BN v Vv V. W oA VE N RN A
F » 27 Fig. 4

in the X1 quadrant. This is shown in Figure 2. LINE FEED
(L¥) and CARRIAGE RETURN (cr) are necessary for charac-
ter-at-a-time! printers associated with existing communi-
cation systems. As control signals, they are grouped with
other control signals rather than with ms and BLANK,
which are essentially informational.

There is space for 20 special characters in the 6-bit, set,
but four of these must disappear in the 5-bit set.

In conformity to most existing practice, the other six
characters of the 4-bit set have been selected as:
- =+ (for self-delimiting data fields)

b printing separator (may have graphic repre-
sentation)

: digit grouping Jlmost expendable for

. indicator for totals, ete. British pence (10, 11)

The two positions following the digit 9 are not usable
for delimiters in the 6-bit set, since they will collate high.
These six characters are assigned as shown in Figure 3.
The pairs (,,) and (=) are a distance of two bits apart,
for easier error detection. + is used fully interchangeably
with &, since & may also take the forms + ¢ &. / has
been chosen as alternate for the BLANK in the 4-bit set,
since it can serve very well as a space indicator, as
00/636/505///21.

By Bs.
Buo (00 01 10 11 0 0 10 1
0000 IMS|0 |[®]o <|o |0
0001 l bl |@®|r > e 1
0010 , Sl VL By = B, sl [ o B B
0011 | $ 3 B R B/ = B ¥ B; s B R 3
0100 (% |4 [¢c |8 s o |Is 4
0101 5 D |T y D |T 5
0110 ( |6 E|u ( B |u 6
o111 |) |7 | »| v i) s 2 18
1000 || : |8 |6 |w : G |w |8
1001 i 19 | v ] x 2 H|x |9
1000 |, [? |5 ]y B, = By SO ) R
1011 . I_ J l_ B} = Bq’ L B.' . J z !
1100 wlk | @ K |= )
101 | — lor| L | @ ] (2 1 %
110 || 4+ | ps | m | &s + M |%| E
ML j|/ |us|w DL | / 101 8|

Transmission Code Data Processing

Code
F1a. 5. The Proposed Standard Code
! The common term in communications is ‘‘page" printer;

however, printers which print an entire pPage at one time must
preempt this term.

R EE——

The basic set is achieved by changing the transform at
®.

Bl " ﬁ’ V (EI /\ Bl)

The British set should have 10 and 11 immediately
following 9. This is achieved by changing the transform
at ®,

Bl -— E: V Bz

Figure 4 gives the special characters specified in existing

systems.

A ForTrRAN-commercial substitution exists to overcome
limited capacity of line printers. The correspondence is:

¥ to @ to’ % to ( Oto)
The Bell and “who are you” functions are ignored here
because they do not warrant individual characters. They

are handled best by the Escapg mode.
B; may “now be assigned specifically.

X=0 X=1 yields a modified FreLpara which,
unless transformed, has punctua-
tion high to the alphabet. This is
not logically consistent.

X=1 X=0 yields modified U.K.

“  Univac, MH
“  RCA 501
“ 704 internal

We will thus choose the latter. This choice also di-
minishes the number of bits or punches in numeric data,
which is most frequent to data processing,

The specific proposal of Figure 5 implies either that:

(a) the data processing code is internal, and the EXCLU-
SIVE OR mapping takes place at the interface on reading
or writing externally on media such as tape or communica-
tion lines, which utilize the transmission code, or

(b) the data processing code is merely figurative and
represents the effective collating sequence obtained by a
simple comparison logic in the machine.

The transmission code folds to the Baudot-like code of
Figure 6. It retains all the special characters of present-
day Teletype, plus the s. Although ? and |, as effective
delimiters, might well precede the alphabet in the data
processing code (involving a swap with < and >), to do
50 would remove ? and ! from the 5-bit transmission
code. If the transmission people agree, this change could
he considered,

As a 6-bit transmission code, O to @ are available,
These might be used either for additional control fune-
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5-bit 6-bit Data Processing Code
Trwmis;ion Codes
Fi6. 8

tions or (preferably) for additional characters of foreign
alphabets. rs and Ls are also available, once the complete
change is made from existing equipment. Fieldata would
then use these characters as UPPER cASE (uc) and LOWER
cAsE (Lc) respectively. This provides a representation of a
7-bit code in 6-bit form, just as Baudot represents a 6-bit
code in 5-bit form. Therefore the ¥s-uc and rLs-1.c corre-
spondences are true, and either mnemonic might be used.
Perhaps & new combination would be desirable, as ¥u
(for Figure/Upper) and vt (for Letter/Lower).

= @ % and O are placed high in the data processing
code, and it is assumed they will not be used in control
keys. I'igure 7 shows the pp code satisfying the last set of
special characters of Iigure 4, plus the ForTRAN trans-
formation and a 48-character set.

The proposed set has the special characters assigned
for reasons other than matching correspondence between
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the digits and the characters associated with those digits on
typewriter keyboards. The reasons are:

1. Some typewriters do not have keys for the digit one
(1) or even for the digit (0).

2. There is no such thing as a standard typewriter key-
board in the U.S. There is a proposed British Standard,
but the characters placed most uniformly, the left and
right parentheses, are above 9 and 0 respectively. This
conforms with much practice in the U.S., but 0 must be
placed in parallel to Ms in accordance with our previous
rules.

3. Transmission people sometimes desire the paren-
theses over the 8 and 9 respectively, but this occurs only
in the Luebbert revision of Fieldata (not the original
Fieldata) and Ferranti computers.

4. Users normally adjust automatically to any arrange-
ment of special characters after a day’s usage.




5. Non-English keyboards differ greatly in this place-
ment. It would be unfair to inflict one of the many English
arrangements as an international standard.

6. The Forrran-Commercial interchange is accom-
plished in the proposed set by recognizing

B: /\ El /\ (B: = B5))

and inverting B; and B; if this condition is true. Any
other arrangement greatly complicates the logical hard-
Ware necessary in converting existing printers, probably a
more expensive process than converting existing Teletype-
writers.

7. Any such correspondence will still require two modes
of keyboard logic to generate codes.

If the transmission people could modify existing equip-
ment with an ExcLusive or function (two relays), a com-
pletely common and collatable 6-bit code could exist, as
shown in Figure 8, subject to the requirements for expan-
sion to 7- and 8-bit sets.
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APPENDIX

On the Relative Position of the Alphabet, Numbers
and Special Characters in a Code Set Based upon
Transmission and Data Processing Characteristics

Consider a 4-quadrant arrangement of 16 states per
quadrant in which Q1, Q2, Q3 and Q4 represent the octal
codes 00-17, 20-37, 40-57 and 60-77. Consider also four
classes of information symbols which may be placed in
these quadrants:

D representing the 10 or 12 digits of the decimal or duo-
decimal system

If each of these four classes of information is assumed to

consist of up to 16 codes, they may be assigned to the 4

quadrants in any of 24 combinations. We now consider
these combinations in light of their desirability for data
processing and data transmission.

Transmission Considerations

1. Concepts of MASTER 8PACE and BLANK are distinet, The term
“BLANK’’ refers to the element of information used to separate
words on a printed page. MASTER SPACE occupies the zeroth
position.

. The concept of ERASE or pELETE is represented by the Nth
character.

< MASTER SPACE, BLANK and DELETE are concepts required in
all alphabetic or alphanumeric sets. Further M8 and pL
always occupy the same relative position in each set.

. The 64-state code set is to be representable by a 32-state
code using a shift mode. In this compressed representation the
alphabet is to form one shift and the numbers and special
characters the other.

These criteria imply:

A and Z cannot fold upon each other (4).
Ql and Q4 cannot fold upon each other (1,2, 3).
MASTER SPACE must be in Q1. (1)

Data Processing Considerations

5. The digits are represented by their pure, natural binary

equivalents. Since only four bit positions are necessary to
represent up to 16 states, any additional bit position in a given
set must contain the same pattern of 1’s and 0's for each digit.

- No symbol other than MASTER sPacE ranks lower than BLANK
in the collating sequence.

. The alphabet is dense in collation.

» Certain field-separating symbols including nrANk must rank
lower than the alphabet in collating.

These criteria imply

04. D cannot be in the quadrant which contains or folds on

MASTER SPACE. Otherwise 0 and MASTER spacE would become
identical in some code set. (5)

05. Z cannot occupy Q1. (7)
06

MASTER SPACE and BLANK must appear as adjacent characters
in the same quadrant. Otherwise some symbols will be less
than BLANK or M5 will have a rank higher than sraNk. (6)
BLANK cannot be associated with A. Otherwise some special
symbols would either be lower in collating than BLANK, or
field-breaking symbols would be higher in collating than the
alphabet which they are intended to separate. (6, 7)

(7) and (8) immediately sbove imply that A cannot ocoupy
Q1 since M5 must be located here.

Application of Rules to the Combinations of D, A,
Z, and S on Q1, Q2, Q3, and Q4

The requirements 04, 08 and 05 remove from considera-

tion the 18 combinations beginning with D, A and Z
respectively. In addition any combination in which A
does not precede Z can result in a non-dense alphabet,

(please turn to page 225)

S representing the class of special characters

A representing a section of the alphabet beginning with the
letter A
representing a section of the alphabet ending with the
letter Z
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TABLE 1
Deviates of the Normal Function in Octal Corresponding lo the
Cumulative Area From .5 to 1.0

Area (Octal) [Normal Deviate (Octal)] Area (Octal) [Normal Deviate (Octal)
Scaled Scaled 2% Scaled 2* Scaled 7
200 00 00000 00000, 300 00 12625 32704.
00 00120 15457, 00 12772 42473.
00 00240 33636. 00 13140 41660.
00 00360 53002. 00 13307 32316.
00 00500 73431. 00 13457 16144.
00 00621 16043. 00 13627 77435.
00 00741 43141. 00 14001 60730.
00 01061 73214. 00 14154 44377.
210 00 01202 26537, 310 00 14330 34471.
00 01322 66042, 00 14505 34031.
00 01443 32032, 00 14663 45573.
00 01564 03006. 00 15042 74314,
00 01704 61253, 00 15223 42707.
00 02025 45515. 00 15405 34463.
00 02146 40500. 00 15570 55071.
00 02267 42513. 00 15755 27637.
220 00 02410 54064. 320 00 16143 40227.
00 02531 75526. 00 16333 12607.
00 02653 30005. 00 16524 33524.
00 02774 73427. 00 16717 27240.
00 03116 50535. 00 17114 02241,
00 03240 40077. 00 17312 41757,
00 03362 42443. 00 17512 73747.
00 03504 60346. 00 17715 25671.
230 00 03627 12161. 330 00 20121 65564.
00 03751 60466. 00 20330 42335.
00 04074 44256, 00 20541 43267.
00 04217 45711, 00 20755 00012.
00 04342 65610. 00 21173 00365.
00 04466 24554. 00 21413 55747.
00 04612 03410, 00 21637 22316.
00 04736 02547, 00 22065 70106.
240 00 05062 22626. 340 00 22317 52300.
00 05206 64474 00 22554 65705.
00 05333 51003 00 23015 50463.
00 05460 60415 00 23262 21226.
00 05606 13615 00 23533 00141.
00 05733 73512 00 24010 07632.
00 06062 01012 00 24271 74500.
00 06210 34430 00 24560 64671.
250 00 06337 16705 350 00 25055 11231.
00 06466 30775. 00 25357 26315.
00 06615 73671. 00 25667 74207.
00 06745 70150. 00 26207 36451.
00 07076 16612. 00 26536 46016.
00 07227 00465. 00 27076 02014.
00 07360 16636. 00 27446 51276.
00 07511 72144. 00 30031 33024.
260 00 07644 03467. 360 00 30427 40773.
00 07776 54160, 00 31042 23633.
00 10131 65174. 00 31473 35502,
00 10265 37466. 00 32144 76235.
00 10421 54234. 00 32641 23053.
00 10556 34507. 00 33363 41636.
00 10713 61765. 00 34137 46520.
00 11051 55313. 00 34752 51075.
270 00 11210 20025. 370 00 35633 37754.
00 11347 33317. 00 36573 54572.
00 11507 21011. 00 37631 00460.
00 11647 62131. 00 41010 33357.
00 12011 00143. 00 42354 42517.
00 12152 74634. | 00 44204 72526.
00 12315 51606, 00 46534 51133,
00 12461 10461. 00 52437 23555.

STANDARDS—Continved from page 217:

As can be seen, this is not the only method of applying
the stated rules. Despite the order taken the rules reduce
to three the number of acceptable combinations for data
processing and transmission. These combinations are S,
A, Z, D which is followed by IBM and 8, D, A, Z which
is advocated in the United Kingdom. Also possible is
S,A, D, Z

The FreLpaTa arrangement A, Z, S, D is not acceptable.
First, BLANK is associated with A, which means the
delimiting special characters will collate higher than the
alphabet. Second, if BLANK is not associated with MASTER
spACE in Q1 but is in the second position of Q3, one symbol
(the character in the first position of Q3) other than
MASTER SPACE must have & rank less than BLANK.

This examination of the possible combinations of S, D,
A, Z merely indicates which arrangements should be
further investigated with view of their expansion charac-
teristics in sets of more than 6 bits. The analysis is in-
tended to remove much of the confusion which has existed
as to what combinations are possible and desirable for
expansion and contraction. Thus, the arrangements
8, A, Z, Dand S, D, A, Z will be given further analysis
and a choice between them made on the facility of their
expansion and contraction characteristics.

Folding Considerations

At this point the methods of folding must be considered.
The four quadrants may be folded in one of the two ways
by the removal of either B5 or B4.

Q! on Q2 and Q3 on Q4
Q1 on Q3 and Q2 on Q4

When the folding consideration is applied to the remaining
combinations of 8, A, D, Z we find,

Q1 on Q2 Ql on Q3
SDAZ Note 1 Possible
SAZD Note 2 Note 4
SADZ Note 3 Note 1

Nore 1. The digits cannot fold on MASTER SPACE.

Note 2. The transformation characteristic between 5 and 6 bils
is dependent upon the combination being treated as
well as the shift.

Nore 3. This is possible by treating Bq of the 6-bit representation
as the mode bit. However, this leads to & non-dense
alphabet.

Note 4. Z cannot fold on MASTER SPACE.

Conclusion

From the consideration of data transmission and data
processing criteria we are led to a code organization of
S, D, A, Z. This organization, however, should not be
considered as giving the collating sequence.
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Summary. Programming for commercial problems requires all of the techniques
necessary to scientific problems and a great many more, This paper documents some
of the basic elements derived in the explosive development of programming techniques
that has taken place in the last eight years, which is the short time that electronic
data processing equipment has been applied in volume to commercial applications.
Programming costs are already a major portion of total data processing expenditures.
This relative percentage may be expected to increase as new hardware advances come
into production. It is therefore particularly important to assess the possibilities in re-
duction of programming costs through automatic techniques. Among these are machine-
independent languages, program generators for special classes of recurring problems,
program-hardware interactions, and total systems control programs.
There are several trends to be noted in programming methods. Among these are the
automatic operating systems (with disappearance of the operator console), tabular
languages, input-output control systems, the automatic production of automatic pro-
. gramming processors, remote operation of computers through communications links
and corresponding service to small users, standardization of techniques and com-
munication between different computers by common language. There is also an
important trend to generalize programs and share them among many users of a
particular class of machine through trade organizations.
Commercial programming has developed into a complex discipline of its own, with
professional status, Technical education and publication therefore assumes an increas-
ing importance,

Zusammenfassung. Die Programmierung von Problemen der kommerziellen Daten-
verarbeitung erfordert alle fiir das wissenschaftliche Rechnen notwendigen Programmier-
methoden — und dazu noch viele weitere. Dieser Beitrag hilt einige der grundsatzlichen
Tendenzen fest, die sich im Laufe der stiirmischen Entwicklung der Programmiertechnik
etwa wihrend der letzten acht Jahre herausgebildet haben, seit elektronische Daten-
verarbeitungsanlagen in groferem Umfange fiir kommerzielle Aufgaben eingesetzt
werden,

Die Kosten fiir Programmierarbeiten machen heute schon einen betrichtlichen Teil der
Gesamtkosten fiir die Datenverarbeitung aus, und es ist zu erwarten, daf der relative
Anteil dieser Kosten mit fortschreitender Entwicklung der technischen Anlagen weiter
wichst. Es ist deshalb besonders wichtig, die Moglichkeiten der Senkung der Pro-
grammierkosten durch automatische Programmiertechniken abzuschitzen. Hierzu
gehéren maschinenunabhingige Programmsprachen, Programmgeneratoren fiir spezielle
Klassen von rekursiven Problemen, Wechselwirkungen zwischen Programm und tech-
nischer Anlage, sowie Programme zur Steuerung von Gesamtsystemen,

In der Entwicklung der Programmiermethoden sind verschiedene Tendenzen hervorzu-
heben. Dazu gehdren automatische Bedienungssysteme (unter Weglassung des Bedie-
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nungspultes), tabellarische Programmsprachen, Ein-/Ausgabe-Steuerprogramme, auto-
matische Herstellung von Programmiibersetzern, Fernbedienung von Rechenanlagen mit
Hilfe von Nachrichteniibertragungsgeriten und Fernbenutzung durch Kleinabnehmer,
Standardisierung der Technik und des Verkehrs zwischen verschiedenen Rechenanlagen
durch eine gemeinsame Programmsprache. Von Wichtigkeit sind auch die Bestrebungen,
Programme zu verallgemeinern und einer groferen Anzahl von Benutzern einer
bestimmten Typenklasse von Maschinen durch entsprechende Vertriebsorganisationen
zur Verfiigung zu stellen.

Die Programmierung auf dem Gebiet der kommerziellen Datenverarbeitung hat sich
bereits in eine eigene komplexe Disziplin mit professionellem Status fortentwickelt.
Dementsprechend kommt der technischen Ausbildung und den publizistischen
Bemiihungen auf diesem Gebiet eine wachsende Bedeutung zu.

Résumé. La programmation des problémes de traitement des données commerciales
exige toutes les méthodes qui sont également nécessaires pour poser numériquement
les problémes scientifiques, et encore quelques unes de plus, Le présent travail traite de
quelques uns des éléments de base qui se sont développés pendant ces huit derniéres
années au cours de I'évolution rapide de la technique de la programmation et en parti-
culier pendant la période relativement courte au cours de laquelle des installations de
traitement électronique des données ont été mises en service sur une grande échelle
pour résoudre des problémes commerciaux.

Les frais de programmation représentent une partie importante des frais totaux dans
le domaine du traitement des données. Ce pourcentage continuera apparemment &
croitre dés que de nouveaux progrés dans 'assemblage des machines seront appliqués
a la production. C'est pourquoi l'évolution exacte des possibilités de réduction des frais
de programmation par des procédés automatiques prend une importance particuliére.
On compte parmi ceux-ci les langages de programme indépendants de la machine, les
programmes «produisant programmes» pour des classes spéciales de problémes
récurrents, les interactions entre le programme et la machine, et les programmes pour
commander le systéme complétement.

11 faut remarquer diverses tendances d’évolution dans les méthodes de programmation;
parmi celles-ci figurent, par exemple, les systémes entiérement automatiques (dans les-
quels on na plus besoin de panncau de commande), les langages de programme
synoptiques, les programmes de commande d’entrée et de sortie, I’établissement auto-
matique des traducteurs de programme, la télécommande des ensembles de calcul par
l'intermédiaire des réseaux de télécommunication et service correspondant pour les
petits utilisateurs, la normalisation des méthodes et I'échange d’information entre
différents ensembles de calcul par Vintroduction d'un langage de programme commun.
Les efforts en vue de généraliser les programmes et de les mettre 3 la portée d'un
nomb're aussi grand que possible d‘utilisateurs d’une classe déterminée de type de
machine par des organisations correspondantes d’exploitation sont également trés im-
portants.
z.:oruréog\:::;a?::o; d_ar;; le domaine du traitement des données commerciales a déja
scipline propre complexe avec un statut professionnel, L'éducation

technique et les efforts publicitai
icitaires prennent en ¢ ¢ importance
croissante. P onséquence une impo

1. The Environment

1.1 What Programming Is

The data processing or com
of basic instructions or co
are the prime control for

puting rflachine of today is provided with a repertoire
mmands imbedded in the hardware. These instructions
actual operation. However, such a set may be likened

o
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to the nervous system of man and its synaptic control of body movements and
actions. Although these elements are mostly present at birth, education of the
brain and related control centers is required for efficient action. The program-
ming of a computer is equivalent to this education. The external command
“Wrrite your name” will, in a human, set in motion that stored program necessary
to make the required movements automatically. The equivalent training could
be given to the machine so that, upon receiving the same command in a natural
language, circuitry would be actuated, storage would be searched, and the printer
would be activated and print out “I am a Siemens-Halske 2002".

In the quest for more speed and easier operation of electronic computers, it has
been recognized that an equivalent amount of education is necessary to allow
the human-machine-human input and output operation to keep reasonable pace
with internal speeds. Programming systems in general correspond to a liberal
education; programming for specific applications may be likened to on-the-job
training in a specific field, utilizing the liberal education for easier assimilation.
Comprehensive treatments of the principles of programming may be found in
the literature [1 to 7].

1.2 The Need for Improved Programming Systems

During the first decade of mass usage of stored program computers, various
devices have been developed to lessen the programming burden. These range
from simple assembly programs through symbolic and mnemonic assembly pro-
grams, macro-instructions, interpreters, generators and compilers. All of these
must be mentioned under the present state of the art because of the nonuniform
advancement of segments of the programming population. Even today we find
a large number of people, primarily in the area of commercial applications, still

‘ programming in actual machine language for one reason or another, particularly
in the belief that this yields the ultimum efficiency in running time.

Such complacency is possible when there is but one machine operating eight
hours or less per day, with only a few applications of a rather permanent and
invariant nature. However, whenever the first machine of a type is utilized around
the clock, or in multiple machine usage, or where the problems to be solved are
many and varied, — then we find that communication with the computer must
be accomplished in a higher level of language. Most experienced users of comput-
ing and data processing equipment are clamoring for advanced programming
systems for these several reasons:

1.21 Complexity of Business Problems. The staff of programmers does not seem
to diminish appreciably even after the first applications have been established
and running. This is due in part to improvement and expansion which was not
possible before and in part to continuing and awkward changes. The human clerk
is well adapted to making changes and handling exceptions. For this reason,
business users venturing into the computer field did not realize at first the volume
and continuing nature of procedural change due to laws, competition, improved
methods and management vagaries.

Scientific installations generally preceded commercial installations. The business
user, looking at the large profits realized in scientific computing, was deluded into
believing the same techniques were applicable to his operation. Unfortunately,
commercial problems are in general at least ten times as complex as scientific
problems. For one thing, there is no general language for business, as there is
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for mathematics. For another, many scientific problems are highly repetitive,
which lends itself nicely to the looping facilities of stored programming. Thus a
scientific program of 10,000 instructions is the exception, whereas a commercial
program of 80,000 instructions is almost commonplace.

1.22 Ratio of Programming to Running Time. Elapsed time for initial program-
ming and subsequent changes is presently too disproportionate to the actual
running time on the machine. It is not unusual for an average application to
require six months of programming and diagnostic correction to achieve a cor-
rectly running program. The computer must be prepared for every eventuality;
the human clerk can stop and ask every time a strange condition arises. This
reduces the time span in which competitive changes may be made effectively.

For the last five years, programming costs have been considered to be roughly
equal to all other costs of operating data processing equipment, such as price or
rental, installation, power, etc. Extrapolation of programming and engineering
advances indicate that this percentage may well climb from 50 to 90 within the
next five years. Machine speeds are now 100 times what they were five years
ago. Programming cannot maintain this pace, nor will pouring armies of pro-
grammers into the gap help appreciably. The answer must lie in advanced pro-
gramming systems which do a much larger proportion of the reasoning that
humans now do.

1.23 Changing Technologies and New Machines. The evolution of new and im-
proved hardware faces the user with additional problems. He finds himself with
the opportunity to obtain a computer which will do the same job faster and
cheaper than his present machine, yet his programming investment for the old
machine must usually be considered a total loss. A possible amelioration is seen

in adapting new technology to old logic, so that there is a family of machines 04
with roughly the same basic machine language. This technique has found
expression in simple transistorizing of machines that were formerly tube oriented,
or in replacing electrostatic storage with magnetic core storage. This is self-
defeating because the late members of such families cannot compete in power
with new machines that have broken completely away and are balanced to the
new technologies.

This dilemma has now occurred for one and possibly two generations of com-
puters. The first time was not so difficult, for most users were not yet adjusted
to the shifted emphasis required to convert applications from clerks or punched
card equipment to the very different electronic data processing concepts. They
were capable of making fresh starts with a new machine and their previous
investments were not so great. As more investment accrued, yielding more
experience, and the use of computers settled down to a predictable production
pace, the costs of reprogramming a large volume of applications became stagger-
ing. Without the prospect of being able to program in a language independent
of computer characteristics, the user must face an endless series of interruptions
with changing machines.

1.24 New Methodology. Although many data processing installations simply con-
verted existing methods and procedures to electronic equipment, additional
efficiency and profit may be obtained by revising such procedures to correspond
to t!\? logic of the computer. This requires not only programming languages but
additional ancillary languages suitable to the methods analyst, such as flowchart-
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ing, table structures, flow logic, etc., all oriented toward machine recognition
and convenience.

1.25 Systems Concepts. An entire business system was formerly the servo-
synthesis of the actions of a complex of humans with various responsibilities,
however dimly understood. The hybrid mode of operating a data processing
system under human supervision is not as satisfactory as having the supervision
reside in program hierarchies within the machine. New languages are therefore
needed to express executive concepts and translate them to machine action.

1.3 Opportunities in Commercial Applications

There is presently a great variety in the applications handled by data processing
equipment, yet the total volume is nothing to what we may expect for the future,
when such equipment is integrated with communications systems. Computers
are among the most expensive devices manufactured. Unshared usage requires
high volume. The shared usage of the future will reach a variety of low volume
applications. Some of the present applications firmly established as profitable
operations are:

Insurance, premiums and claims

General accounts, payable and receivable

Railway freight control

Petroleum reserves, product optimization

Tax gathering and verification, refunds

Inventory, shop scheduling, parts catalogs, spares

Shipping, transportation problem

. Stock and bond trading, quotations

Livestock improvement

Personnel records, skills inventory

School curricula and grading

Real time process control

Banking, check clearing

Reservations and loading

Military defense systems

Optimum steel production

Merchandizing, order and reorder

Some applications which are just now coming into being are:

Mechanical language translation
Medical diagnosis, records [8]
Numerical machine tool control

Legal searching and correlation
Information retrieval, abstracts, library
Compressed communications

Business games, optimizing profit
Mechanical editing

Patent search

An exhaustive survey of governmental applications may be found in [9].
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2. Programming Languages

2.1 Machine-oriented Languages

A general criterion for distinguishing a machine-oriented language is that pro-
grams written in this language will not run on another computer (not of the
same generic family) unless under control of a simulation program which
duplicates the characteristics of the original machine. Using as an example a
machine with instructions consisting of one operator and one operand address,
the various levels of convenience of representation might be:

00110001010101000110 (binary representation, no programming translation

required)
3 1546 (decimal digits used for characters, input-output
devices will accept and produce such characters)
H Aé623 (alphabetic characters as well in input-output devices)
RAD 20.66 (symbolic notation — RAD stands mnemonically for

Reset ADd, 20.66 is an address number standing con-
veniently for the actual address eventually assigned
by the assembly program)

RAD GROSSPAY (GROSSPAY serves the same purpose as 20.66 but
is more convenient to the programmer for its
mnemonic content)

Each refinement puts an additional burden upon the assembly program in the
assignment and translation functions, removing this same burden from the pro-
grammer. This is justified by the assumption that the machine can perform these
clerical functions with greater economy and fewer errors than the human. A
further refinement is the addition of macro-instructions [10, 11], which are
machine-like and compound. For example, any of the instructions

(a) MOVE, TODAY, CURDT

(b) MOVE, TODAY, CURRENTDATE
(c) MOVE TODAY TO CURRENTDATE

would generate for the 705 the instruction pair

RCV CURRENTDATE (ReCeiVe at the address for CURRENTDATE)
TMT TODAY (TransMiT the contents of TODAY)

Such macro-instructions illustrate the correspondence between programming and
hardware which sometimes leads to ambiguity and misunderstanding. For a
machine with instructions consisting of one operator and two addresses, these
would be simple instructions, not macro-instructions. Thus programming systems
in effect redesign the hardware of a computer. Conversely it might be possible

to cons.truct a machine which accepts, as instructions built into hardware, an
algebraic language such as ALGOL.

The common pracﬁc.e of limiting the number of characters in symbols employed
by the programmer is i!lustrated by (a). This is done for two reasons. First, in
a machine which moves information by words (groups of bits addressable unique-

¢

0




. Programming for Commercial Data Processing 319

ly) it is uneconomical to use more than one word to represent a symbol. In
most present machines 6 bits are used internally to represent a letter or digit,
thus a machine with 24-bit words handles no more than four character symbols
conveniently. Second, since these names must be carried through the translation
process, they become a more expensive burden as an increasing number of manip-
ulations are made. A better practice is to assign a working number (or address
number) to each symbol, in a table of double reference, more particularly be-
cause the set of meaningful alphabetic symbols is very sparse; i. e., GXPQ carries
no more mnemonic content to the programmer than 63987. (Cf. [12].) The
number of characters in each symbol may then be unlimited. COBOL [13], for
example, restricts the length of symbols to 30 characters for practical convenience.

More meaningful symbols may be used as separators or punctuators for clarity
to the programmer as it is shown by (c). The translating program can be made
to recognize this function and even to accept extraneous noise words. Thus the
so-called “English language” of the FLOW-MATIC Programming System [14]
for UNIVAC 1 is basically a method of employing three-address macro-instruc-
tions with freer form. Thus

ADD A, B, C is equivalent to ADD A TO B GIVING C

The difference lies in the fact that commas, as separators, do not order the
process either mnemonically or logically. The programmer must know the
function of each of the operands as written in the macro-instruction. The alter-
nate form of FLOW-MATIC is still restrictive logically. A rather rigid form is
still required. For example, it is not permissible to vary the previous instruction to

TO B ADD A GIVING C

Although proper English, such logical ability is not inherent in the formation

. rules of the restricted and artificial programming language and is therefore not
reflected in the translators. The macro-instruction ADD A, B, C is even more
ambiguous, however, since only by definition (which the programmer must re-
member) is it known whether it means

A=B+C, A+B=C, or even, although unlikely B=A+C

The same operation may be expressed in a number of alternate forms, any or
all of which may be acceptable, provided that the recognizing and translating
mechanisms are incorporated in the processor.

C=A+4B
A+B=C
SET. G=-A=+B

REPLACE C SUM A AND B
REPLACE C BY THE SUM OF A AND B, etc.

BY, THE and OF are examples of extraneous noise words added for clarity. They
are ignored by the translator.

Macro-instructions are normally of two types, library or programmer. Library
macro-instructions are those useful to a general class of problems and are thus
automatically available in the processor, which recognizes them by table-scanning
to be different from the one-for-one representation of a single machine instruc-
tion. Quite often these may be of a complex generative nature (usually formed
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under control of a matrix of alternates) which alters or eliminates redundant
instructions for efficiency.

Programmer macros, in contrast, are those specific to this particular problem.
Usually some sequence of instructions is virtually repeated in many places with
slight or no variations. The programmer, recognizing this, defines the general
case by example (which is assimilated by the processor upon recognition as such)
and thereafter saves much copying and possible error by its use. Processors com-
monly recognize this type of instruction by finding the term MACRO instead of
the normal operation code. The following Example 1 shows how a programmer
macro may be defined and later used.

Example 1
Name Operator Operand Field
SUMPROD MACRO A;'B,E
ADD A B, C (A+B—C)
MPY G B C ((A+B)B—C)
MPY CA G ((A+B)-B:A—C)
SUMPROD X, G Y

The last instruction thus computes Y = X-G+(X + G). This device may be
used very effectively when the number of instructions created is large and when
other macros of the same type are used recursively in the definition of a still

larger macro. This will be recognized as the genesis of the procedure statement
in ALGOL.

The Example 1 also illustrates the artificial time sequence of input to a translator.
Normally the sequence of entries is mapped into the sequence of instructions
executed, whether in contiguous sequence or chained (as in drum storage
machines). Here, however, the instructions of the example are never executed
in their own right; they are merely dummies. (Cf. Figure 4 for automatic reorgan-
ization of the program through addition, deletion and replacement.) Literals
and operators may also be varied within macro-instructions. (Cf. [15].)

Macro-instructions are essentially open subroutines and are placed in the main
line of the program, whereas closed subroutines require transfer instructions
and are set up by a calling sequence or linkage. Each time the macro is used, a
copy of the instructions generated is placed in direct line in the program. It is
not to be supposed that macro-instructions yield but a few machine instructions
while subroutines have many. The output of macro-instructions may also be
formed as a subroutine. The proper way to build a macro-instruction generator
is to equip it with the facility for self-determination of whether to insert in-line
or as a closed subroutine. The processor may contain a program section which
weighs available storage space against execution time and the number of times
used, for the closed subroutine consumes more running time by virtue of the
extra calling sequence required to set it up to operate.

o
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The expansion of a macro-instruction through Autocoder language into machine
language for the IBM 705 is illustrated in the following Example 2 which is an
excerpt from a two-tape merge problem taken from [16]. The sense of the
macro-instruction is to turn off the error indication triggers whenever a signal
is received from any of them.

Example 2

Macro-instruction written in Autocoder language:

DOA XOFF

Basic Autocoder instructions incdrporated in program:

X X 000005 LOD
TRA

XOFF UNL

LOD
ADM
SEL
TRS
XOFF2 SEL
TRS
XOFF3 TR

Location

0524
0529

1609
1614
1619
1624
1629
1634
1639
1644

1752

14 XX 000005
XOFF
14 XOFF3

14 #0010 #

14 XOFF3
901
XOFF2
902
XOFF3

Contents

80EK4
11609

71FM4
81GN2
61FM4
20901
01634
20902
01644
10534

0010

2.2 Procedure-oriented Languages

The distinguishing feature of a procedure-oriented language is that its syntax
is not necessarily related to that of the machine language for a particular machine.
There are many similarities; the need still exists to specify the procedure or

21 Dig. Inf.

TYPEWRITER INDICATOR OFF
SUBROUTINE

TO RETURN ADDRESS

TURN OFF 0901

TURN OFF 0902
RETURN TO MAIN PROGRAM

This produces basic machine instructions as:
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algorithm for problem solution in terms of time-dependent steps, both logical
and arithmetical. In general a procedure-oriented language depends upon impera-
tive statements. However, machine languages are introspective; procedure-
oriented languages are normally not introspective. That is, the specific characters
of the imperative statement may not be operated upon by actions initiated by
another imperative statement. The introspective nature of machine language may
be illustrated by the instruction group of the following Example 3.

Example 3

Address Operation Operand

0001 SET 0046
0002 RESET ADD 0001
0003 ADD 0020 (The contents of 0020 are 0027)
0004 STORE 0001
0005 TRANSFER 0001

The instruction in 0001 will now be SET 0073 when obeyed. A corresponding
example for a procedure-oriented language may be constructed by mapping

Address: Operation, Operand info Label: Statement

Introspection is now illustrated by the following statement group:
SUBSTITUTE: REPLACE LAST DATE BY CURRENT DATE PLUS 3.

: CHANGE OBJECT OF (SUBSTITUTE) TO NEXT TO LAST 6
DATE.

i : GO TO SUBSTITUTE.

It will be seen that scanning and logical difficulties are magnified greatly in the
latter set. Thus there is little introspection in present languages of this type.

A good test for validating a procedure-oriented language is to determine
whether a human could follow the procedure manually with limited know-
ledge of data-processing equipment. This is one of the two reasons for the design
of such languages — broader understanding with less experience. The second
reason is that casting procedures in this form leads to limited independence of
machine type, so that large sections of program will not have to be rewritten
| for a second machine.

Some examples of such languages are FLOW-MATIC [14], Commercial Trans-
lator [17], FACT [18], and (on the scientific side) ALGOL?'). The first great
advance made in such languages was the separation of the program into two
parts, procedure and data description. In using machine languages, the character-
istics of the data (operands) are implicit in virtually every instruction. Since the
statements of a procedure-oriented language must go through a computer trans-
lation process, it is economical to give the full characteristics of the data only

!) Reference is made to the contribution by F. L. Baver and K. Samersoy, in this
volume pp. 227—268.
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once and let the machine program produced be the intersection of the procedure
and the data description. This is a considerably more complicated process and
costs more in machine translation time, but it has been found that the advantages
in reduction of human cost and error, plus the multimachine freedom from
reprogramming, more than compensate.

A further advance was made in Commercial Translator, with the breaking out
of a third section on environment. Here the machine features (how many tapes,
what storage size, etc.) need to be specified only once, and the resultant program
is the intersection of all three inputs. Commercial Translator also introduced the
concept of logical multipliers, assigning arithmetic values of 1 to truth and 0 to
falsity. Thus the statement:

DISTANCE = 500—60 * TIRED (the asterisk signifies multiplication, either
logical or arithmetic)

If TIRED, as a characteristic of some variable, is true, then
DISTANCE = 500—60 * (1) = 440

If TIRED is not true, then the modifying term disappears and DISTANCE=500.

Another vital concept in such languages is that of logical brackets to delimit
the two resultants of a conditional statement. Consider the statement

IF A=C THEN IF A>B THEN DO K ELSE DO L ELSE IF B>A THEN DO M
ELSE DO N.

This statement represents the flowchart of Figure 1.

Fig. 1. Flowchart representing the statement
IF A= C THEN IF A> B THEN DO K ELSE DO L ELSE IF B> A THEN DO M ELSE DO N

Obviously THEN and ELSE are logical brackets [19] which could be represented
by single symbols for easier understanding, thus:

IF A=C (IF A>B (K) (L)) {IF B>A {M) {N))

It is not our intention to introduce herewith such a bracket notation; it is only
to clarify the principlee The ALGOL language, for instance, in the author’s
opinion is not quite as recursive as it possibly could be, and therefore not as
convenient in comparison to the less restrictive syntactical mechanism present in
the statement of Fig. 1. The awkwardness in ALGOL, due to the definition of the
if-statement which makes mandatory the provision of the statement parentheses

in and end, increases with more complex flowcharts. We must be aware that
business problems often structure themselves in much more complicated logical
patterns than do scientific problems.

21*
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~ 2.3 Problem or Goal-oriented Languages

A problem-oriented language is distinguished by the lack of a stated procedure
for solution. The responsibility for creating the object program as a procedure
in machine language belongs to the processor, which presumably allows for
all known variations in this type of problem. The method of problem solution
is implicit in the intelligence of the processor, which is variable and may be
augmented. Two classes of such languages are presently in volume use, the
ordering (or sort) generators and the report generators. (Reference is also made
to Section 4.)

Obviously such processors are suitable only for highly repetitive types of work
which will justify the expenditure of creating the language and programming
system. Processors for problem-oriented languages are special purpose as contrast-
ed to the general purpose nature of machine- or procedure-oriented languages.
There is a direct analogy (as there usually is between programming and hard-
ware) with the building of special purpose computers for recurring applications,
since they can be more efficient than a general purpose machine, although limited.

Other specialized languages have been created, and fall in this class. Examples
are the languages for automatic control of machine tools [20], operating systems
for computers [21 to 25], tabular languages [26 to 28], and even languages for
design problems. This latter class is exemplified by a program especially
created for the design of electrical transformers. The transformer manufacturer
allows the prospective customer to fill in a form (surely a type of language!)
with his own specifications and requirements, see them entered into a computer
and watch while the printer, after a matter of five minutes or 50, writes a
complete set of specifications for that tranformer. These specifications also
comprise the shop order and working information for manufacture, a bill of
materials, the sales price and terms, — together with a duplicate copy with a
dotted line to serve as a purchase contract!

2.4 Simulators

A simulator is a useful programming tool which does not qualify as a language
processor in its own right. It is a program that runs on one type of computer to
simulate the action of another type under control of a program written in the
language of the second computer. Thus a program that runs on a Mercury
Computer could also be run on a UNIVAC 1103 under control of an interpretive
simulator, if one happened to have been written. Simulators are useful under
the following circumstances:

(a) During transition to a new machine. If the new machine produces W times
as much work per cost unit as the old one, and if the simulator runs no
more than W times as slow as a direct program, the simulator will be
useful to run until the programs are rewritten and checked out for the
new machine. Not only is the cost of producing the simulator neglected
here, but it may be advantageous to incur time losses to effect the transition.

(b) To check programming systems written for a machine not yet manufactured,
so that the systems will be available with machine delivery.

(c) To check production programs on an existing machine before releasing
and displacing it by the new machine.

SRR s AT
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(d) In mixed machine installations to compensate for unbalanced work loads.
If machine A is overloaded and B is available, simulate some of the A
programs on B,

A sometimes cheaper means of achieving (b) is to write the translation processor
for the new machine directly in its own language and then rewrite that same trans-
lation process as an application problem on another machine for which a com-
parable program exists. The processor is then assembled on the old machine,
producing a machine language program for the new machine. From this point
on, both the old and new programs are useful, depending upon which machine
is available [29].

3. Elements of Programming Systems
There have been three basic stages in the solution of problems by data processing

equipment. The first is illustrated by Method I of Figure 2. The entire process
of planning and coding the solution is done without machine aid. Primitive

Write program S Correct
in -—{ in machine language
machine language (by hand )

)

T T
|

\

|
| E
§I g. Test program
- on machine
0 i
% -
x| %
| €
|
|
L. yes no
yes
Production

Fig. 2. Solution of problems by data processing equipment

Method I: Planning and coding without machine aid

programming systems are exemplified by Method II of Figure 3. This is basically
the assembly method, but with some modification an equivalent interpretive
system could be constructed.

The third stage in development of programming systems had its origins in the
supervisory system concept. With the flux of new ideas in the operation of
stored program computers, it is difficult to get general agreement on just what
elements should comprise an operational system. A composite, with much
latitude of definition, might consist of:
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Executive Control or Supervisor
Translator — Assembly Language to Machine Language
Translator — Procedure Language to Assembly Language
Diagnostic Section

Input-output Control System (IOCS)
Macro-instruction and Subroutine Library
Application Library

Ordering Generator

\ . :
! ; Sect 4
Report and File Maintenance Generator | (treated i Section 4)

e Cm—
'r assembly language | assembly languoge
' i
| Assembly longuage
| y transl. program
|
| Machine translation
| to machine longuage
..l E
$8|e
=l g pateh in
aje = ; OR
n&:l = machine language
o
L Machine language |
l | object program
I Test program
| on machine
|
|
|
|
Jo8 no
== — Correct 7
yos
Production

Fig. 3. Solution of problems by data processing equipment

Method II: Primitive pProgramming systems

All of these are best interconnected by various control elements (programmed)
and t}?e entire system is called a processor. Applications programs, which obtain
specific answers, are normally called source programs. These are converted by
the processor to running, or object, programs which are then executed, still under
the control of the overall processor. It is realized that many contemporary data
processing installations provide only manual linkages to interconnect these
various phases. Method III of Figure 4 represents the computer in full control
of its own operation, subject to manual override.

Robert W, Bemer (: {
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Programs written in synthetic language
A=

e U

Off-line loading

Macro-instruction
and subroutine

g?gnr::ms library
Executive control Test 9 \
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k Machine. tronslation ord.ring
to machine longuage generator
— +
> v Report
> generator
>
%
i Application
| library
|
| Diagnostics
. ! Execute
: test program
| Test
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|
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L synthetic no Correct?
language Production
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yes
Production
Fig. 4. runs
Solution of problems Answers
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Method 111:
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3.1 Translators

There is considerable variation in the capabilities and duties of tha.t element
which translates from the source to the object language. The translation proce-
dure might utilize a two-stage process from synthetic la‘nguage through an
intermediate assembly language to machine language. This allows for inter-
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mixing other program sections at the assembly language level, particularly when
no methods exist in higher level languages for stating these procedures. Such an
assembly processor must exist anyway, and there is some economy in not
duplicating this process.

There are some advantages, however, in direct generation of machine language
without going through the intermediate assembly stage. Direct generation often
speeds up the translation process by eliminating variety in assembly. That is, the
assembly section does not have to be general enough to accept what any human
programmer might possibly write. All it must account for are the known actions
of the previous section of the translator.

Various duties may be charged to the translator, particularly in the optimization
of the object program. The minimization of both running time and storage is
possible through analysis of the usage of index registers, detecting duplicated
computation and statistical optimization of decision processes through Fflow
algebra [30]. Thus those portions of the object program which are most likely
to be executed are given preferential treatment in flow and storage interchange
problems.

The translator may interrogate the configuration of the machine both when
translating and when running the object program to utilize available internal
and external storage most efficiently.

3.2 Diagnostic Section

Only a small core of programmers ever achieve programs which run correctly
on the first attempt. This is especially true as programs become larger and
more complex. Using the machine itself is the most effective method of detecting
errors and mistakes. There are many theories about what constitutes 100 per
cent verification and checkout of a program. There is serious question whether
complex programs can ever be fully proven. All methods of machine diagnostics
involve printout of intermediate and final answers to test problems.

3.21 Tracing Method. The earliest diagnostic systems superimposed an inter-
pretive control upon the execution of each individual instruction and caused
printout after each execution, showing input, output, operation and instruction
address for identification. This method was useful for detecting spurious loops
and catching several errors in one run. Such systems were eventually modified
to be effective only upon certain classes of instructions, perhaps as indicated by
breakpoints. This technique is known as (selective) automonitoring or tracing.

3.22. Storage Print Method. Storage print, or dump, is another basic diagnostic
device. In the simplest form, the entire contents of storage are printed out im-
media.tely following an error stop, in formats of varying complexities. This
techmgue may, under program control, be used at any time during program
execution and then return control to the program being tested, for further
execution. In the more advanced forms, the original contents of storage are retained
on t.ape, compared against the contents at stop time, and only the changed
Portxons _°f storage are printed. This avoids much tedious human search and
isolates dl.fficulties quicker. Usually some form of conversion is applied to storage
before printing, particularly in a binary machine, whose dump would be rather

unintelligible. Sometimes areas of storage known to contain instructions are
transformed to assembly language form.

| al
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3.23 Snapshot Method. This is similar to tracing except that the method is not
interpretive. Instead, actual and precise printing instructions are compiled in the
symbolic program. They are flagged for easy and automatic removal when
testing is complete.

3.24 Automatic Testing Systems. There have been many special supervisory
systems written exclusively for bulk program testing. Test time is at a premium,
particularly with new machines, and unmechanized testing with the human at
the console is much too expensive. Such systems:

(a) Test, in series, the programs of many different people who are preferably
not present.

(b) Reduce manual and console operations.
(c) Ensure proper tape loading for each program without time lag.

(d) Generate various classes of test data to exercise as many program branches
as possible.

(e) Keep full records of all stops, addresses, conditions and operator actions
for easier diagnosis following the run.

(f) Feed in corrected data after an error so other error conditions may be
detected in the same run.

3.25 Running Checks. Many checks and verifications may be incorporated in the
running program. Records written erroneously may be identified upon reading
through the use of so-called hash-totals, which are not totals associated with the
program but are rather an artificial summation of the characters or bits in a

. record, or group of records. Records may be automatically corrected if augmented
by Hamming check bits or characters. Normally records with flaws are not
allowed to stop the processing; they are written out on exception files for later
handling.

Checkpoints may be incorporated in a program at a convenient break point (i. e.,
integral processes are fully completed). Zero balance or matching data tests may
be made here. If errors are detected, the program is returned to the last succesful
checkpoint and restarted; if everything is checked, this point is installed in the
proper address as the last successful checkpoint. A comprehensive survey of
other auditing checks may be found in [31].

3.3 Input-output Control Systems

Approximately 40 per cent of the total number of instructions in a typical com-
mercial program will pertain to input-output operations [32]. This includes .all
data movement through the central processor and related housekeeping which
must accompany this movement. A major saving to the programmer has !?een
the development of specialized input-output control systems (as integr?l portions
of the entire operating system) which can do the following functions auto-
matically:
(a) Match tape labels to unit numbers, verifying correct mounting of data,
system and program.
(b) Detect tape type or density, when more than one recording density is
available.
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(c) Prevent erroneous writing on tapes which contain permanent or semi-
permanent records.

(d) Flip-flop tape units on symmetrical jobs, such as ordering.

(e) Maintain an automatic count of records entering and put out,

(f) Alternate input-output area usage in internal storage.

(8) Relocate programs in storage for multiple operation.

(h) Optimize read-compute-write overlap.

(i) Automatic unblocking of records for reading and blocking for writing.

(j) Housekeeping associated with tape files, such as rewind, error correction.

(k) End of reel operations in multi-reel files.

(1) End of job functions, such as logging time, notifying next user, upspacing
printed records, labeling tape files created, etc.

(m) Automatic insertion of checkpoint and restart procedures pertaining to
input-output operations,

Such an input-output control system package is essential to the operation of
language elements such as GET record, PUT record, OPEN file and CLOSE file
which appear in Commercial Translator, COBOL, etc.

3.4 Application Library

The use of the application library requires full system control. In the translation
from source to object program, many items of information are gained at the

As changes are made, they are identified by the name of the application. The
executive routine searches the library for that program, copying the library to
another tape until it comes to the desired program. This program is now brought
into internal storage, corrected in source form and translated to a corrected object
form. All updated information on this Program is now copied to the new tape
and all succeeding programs are copied from the old to the new tape simulta-
neously with the test execution of the corrected program. Thus the object program
is corrected from information delivered in source form without operator inter-
vention in only a fraction of the time a complete reprocessing would take.

3.5 Macro-instruction and Subroutine Library

In the most flexible state
independent statements, algebraic equations

Fpo.nsi!?le for separating these into classes during Processing, retaining an exact
indication of' the ordering which indicates flow. Macro-instructions are identified
by the machine language-like form and by the fact that pseudo-operators do not

. s
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exist in the table of machine operation mnemonics. A table of macro-instruction
operators for which generators exist in the library is maintained in storage during
the scan.

After initial scanning, macro-instruction calls are grouped and reordered to the
order in which the generators appear on the library tape. The library tape is
then passed against this list and all generators called for are extracted. After
generation and establishment of symbolic addresses, the generated groups of
instructions are ordered again to the original sequence in which they were called
for by the program and merged with all other instructions to be generated or
assembled. Unless this method were followed, there would be a series of tape
searches and rewinds for each macro. Also, duplicates do not require additional
searches in the reordering method.

Closed subroutines are handled in much the same way, except that calling
sequences and return linkages are written by a single standard generator.

4. Retrieval of Information and Updating of Files

Files of data are maintained for specific purposes including display of individual
data, search by classes, listing, access by other programs on demand, etc. There
are several classes of generalized programs particularly concerned with this
process. They are:

(a) File maintenance and updating generators.
(b) Report generators.
(c) Ordering and merging generators.

’The first two apply to any type of file, the last applies only to files which are
effectively linear, such as magnetic tape, and not to random access files.
A file is a collection of data (on some storage medium) which displays groups
of similar properties. The individual elements of files are called records. A record
contains both the actual data needed and other data which serve to identify that
record from all other records. This identification is known variously as the key,
control field, label, name, identification number, etc. Such files are eitl:-er
sequenced or randomly ordered, according to the storage medium upon th}ch
they exist. Particular records are found correspondingly by either examining
keys through a prescribed search pattern or by transforming the key to a
secondary locator.
A deck of punched cards, a magnetic tape and a perforated paper tape are all
examples of sequenced files. They may be ordered by time sequence or .ke.y, ie.,
it may be desired to find the 18th record in a file or that record containing the
data on Smith, H, J., for instance. In the latter case, a multiplicity of searches
may make it profitable to order the file alphabetically upon the key, rat}.mr than
scan the entire file each time (in random or linear order) until the key is found
to match the given key. This characteristic has accounted for perh:aps'BO per cent
of the overating time in today’s commercial data processing.. Tl:ns figure is not
Ppreciably affected by random access files, which are a minority. Clearly t.hls
as been an area for profitable improvements in the reduction of programming
and Operating time. Since the problem is algorithmic, all orde.rlf\g procedures
are similar in principle and vary mostly in details. Such. is:he origin of t}Ee cgm-
Plicated and highly specialized ordering (miscalled “sorting ) generators of today.
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4.1 Ordering Generators

Because of the relatively greater cost and access time required to retrieve data
randomly from files, the ordered file is still more economical for a large share
of data processing needs. Ordering is a two-stage process. The user provides the
generator with specific choices of, and statements about, the required input para-
meters. The processor digests this information and produces a specialized running
program for these specific conditions. The actual program produced is the result
of modifying skeletal sections of program with computational results, and is then
utilized to order the files. Except for certain special and largely invariant con-
ditions, these machine-generated programs are cheaper to produce and more
efficient to operate than those created by the average programmer-user. This
is because they are the product of specialists that can consider a larger spectrum
of applications, and because of certain invariant principles. An advanced order-
ing generator might require the user to specify:

(a) The file size (number of records) and organization (whether on a single
or multiple tapes, and how these are labeled for identification).

(b) The machine model and particular configuration of components available
for this job.

(c) The number of magnetic tape units available for either mounting the files
or intermediate transfer of information, such as record rearrangement.

(d) A choice between physical rearrangement of records in the intermediate
steps or rearrangement of tags which identify or symbolize the particular
records, reserving the physical rearrangement of the entire file until the
sequence is fully determinable.

() The amount of internal storage available for use by each phase, or stage,
of the process.

(f) The length of the records, whether fixed or variable length, and (if
variable) how the length may be determined.

(8) The length of the key and its placement (or the placement of its com-
ponents) in the record.

(h) The ranking or marshalling (term used in England) order of the characters
from which the key may be formed.

(i) Existing partial ordering or bias in the data to be ordered, if any.

Many co.nsidere.ltions' are removed from the concern of the user by being incor-
porated in the intelligence of the generator. Among these are:

(a) Overlap of read-compute-write operations where feasible.
(b) (;:u?xce of ordering met‘hod (digit, merge, distribution, internal ordering,
sifting, etc.) or a combination of several of these techniques as required

to bgsf utilize the machine in the various stages of the process (unless
specifically countermanded by the operator). (CF. [33].)

(c) Internal or input-output buffering,

(d) Blocking (grou
between media.

(e) Automatic padding, or filling,
so that the file is modular for
of padding on completion.

ping) of records for faster transfer within storage Of

of incomplete blocks or groups of blocks
regularized processing. Automatic removal

Y

o




. Programming for Commercial Data Processing 333

(f) Automatic replacement of keys by working keys whenever the internal
character code of the machine does not have binary correspondence to the
desired ranking order. Automatic replacement of original keys upon com-
pletion of the process.

(g) Collection and transformation of all elements of a key into a contiguous
unit for convenience of comparison, with later dispersal to original format
upon completion of the procass.

(h) Calculation of estimated running time to completion, and advising the
operator.

(i) Balancing the process as a function of the ratio of average computation
time to tape read-write time (function of tape passing speed and bit
density).

(j) Assignment of actual addresses to instructions, input-output units, etc.,
with provision for symmetric exchange of functions during the process.

(k) Automatic incorporation of rerun and checkpoint routines, for use in case
of machine failure or detection of bad data. Provision for interruption at
controlled points for jobs with higher priorities; thus ordering may be
resumed at a later time without loss. This is vital because many files are
so large that it might take from 1 to 20 hours of continuous time on the
fastest machines.

An excellent description of some of these routines, with application to many
machines other than those manufactured by IBM, may be found in [34].

4.2 Report Generators

It may well be that someday the control and management of business will reside
within the computer program. In the meanwhile, decisions are still made by
humans on the basis of condensed and categorized information prepared by
either other humans or data processing equipment. The normal form of such a
summary is the printed report. Here again the process of preparing reports is
algorithmic and is thus suitable to action by a generator program.

The report generators create running programs which will abstract information
from one or more files as needed to construct a specific report, rearranging and
editing this information as required by the format of the report. (CE. [35 to 37].)
The user normally supplies the generator with the following information:

(a) The characteristics and format of the records in the files to be used.

(b) A pictorial layout or description of the report format, indicating spacing
within the line and other editing conditions.

(c) Special instructions on printing or indicating various levels of totals, etc.

(d) Which different reports are to be printed on this one run, or passage of
input data.

(e) Order of rearrangement of data in case the file is in a different order.

(f) Conditional printing desired (group indication, where information is rep-
etitive).

(8) Rules for insertions and deletions in the input file,
incorporated in the same run.

if file maintenance is
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Typically, much of the input information supplied is identical to that required
for ordering generators, thus the two processes are often combined. Most report
generators contain, in varying degree, the ability to be linked with other pro-
grams, to perform simple arithmetic necessary to production of totals, to perform
file maintenance and updating, and to be modified at programmer discretion
with inserts of assembly language subroutines.

4.3 Random Access to Files
Files may be searched in three basic ways:

(a) The scan, or random search, method to find the record with a matching
key. This is prohibitive in cost except for very small files.

(b) The search of a file ordered on some function of the keys, such as alpha-
betic or numeric sequence properties. There is expense in initial ordering
time and in addition to or deletion from the file. However, it is well suited
to linear files and batch processing. The search method is most commonly
binary or in a FiBoNaccian sequence. The binary search is most prevalent
and consists of successive partitioning in halves, selecting the half in
which the required record must exist by checking the limiting keys against

the desired key, and successive reduction until only the desired record
remains.

(c) The search of a file located in storage by some algorithmic function of the
keys. The key for which the record must be found is then subjected to
the same algorithmic function to yield the address where the record is
probably located. The only reason it may not be there is because of pos-
sible duplications in the values yielded by the algorithm over the entire ()
set of keys. The better method of this type is known as chaining. (CE
[38 to 40].) Although an inherently simple process, it is often misunder-
stood because of confusion about the handling of duplicated addresses.

Assuming the file is loaded, the chaining method requires that the key be
converted by the algorithm to a tentative address. The key is then compared to
the key existing in this address. If they match, the further contents of that
address are those desired. If they do not match, a further address is also con-
tained within the location specified by the tentative address. The key in that
address (the chain address) should then be matched against the search key. The
process is recursive until the proper key and address are found.

Let us take a simple example to show the loading of N

If N=P, the file is 100 per cent packed or loaded.
involves the data for 13 names, or k
possible is:

records into P positions.
The following Example 4
eys. The algorithm chosen from the myriad

Tentative address—= Z (Letter position in alphabet) modulo P

This evaluation is made in E
handled by chaining. Alternat
duplications, but in general j

xample 4. The duplications which occur will be
e algorithms might be found which minimize such
t is not worthwhile to waste time in searching for
13 in the example. The file is now loaded
ames appear.

a slightly better algorithm. P—N—
initially in the order in which the n




Example 4

‘ Programming for Commercial Data Processing

Name Computation DN Teria;-i“v;::;i;ess
John 10 +15 + 8 ++14 =47 8
Fritz 6 +18 + 9 +20 126 = 79
Klaus 11 +12 + 1 +21 +19 64 12
Julien 10, -+21  +12 +9 45 +14 = |71 6
Grace 7 A8 e D S SN s = 34 8
Walter 23 1. +12 420 -+5 +18 = 79 1
Roy 18 +15 +25 = |58 6
Stan 19 20 4 1. +14 = 54 2
Alan 1 +12 + 1 <414 = |28 2
Heinz 8 + 9 +14 -+26 = 62 10
Rene 18 - +14 + 5 42 3
Bob 2 15 -+ 2 = 19
Peter 16 + 5+ 4200 4 6§ = | 64 12

Example 5
. Method I Method I1
y Address
Chain Name | Data | Seeks Chain Name | Data| Seeks
0 Grace 2 Grace 2
1 2 Eritz 1 Fritz 1
2 4 |Walter 2 Stan 1
3 7 Roy 2 Rene 1
4 AR 2 Walter 2
5 Alan 2 Roy &
6 3 Julien 1 5 |Julien 1
7 Rank 2 Alan 2
8 John 1 0 John 1
9 Bob 4 Bob 3
10 Heinz 1 Heinz 1
11 Peter 2 Peter 2
12 11 Klaus 1 11 Klaus g
Average Seeks=1.77 Average Seeks=1.54




336 Robert W. Bemer (

Method I of Example 5 shows the result of loading when duplications are
assigned to the first available open position. Thus Grace, the first conflict, is
assigned to zero position. Method II shows the result if a different rule is used,
holding all duplicates aside until the list has been gone through once, then loading
into the available vacant positions. The number of seeks required to find each
item at random has been tabulated. Note the improvement due to Method II
The scan, or random search, method of random loading would average seven
seeks per record.

13
ZN N
1

It has been shown [41] that the average number of seeks with
random frequency distribution will be 1.5.

The average seek number can be improved by a number of techniques. Obvi-
ously P> N will do so, but the advantage has been found in actual practice to
be insufficient to use anything other than 100 per cent loading. Advantage may
be taken of natural characteristics of data. Use of the method on the 305 RAMAC
has yielded average seeks of 1.2 for fully loaded files. This indicates [38] that
the average commercial problem will interrogate 20 per cent of the file 80 per
cent of the time. The average may become as low as 1.1 for loading on a fully
statistical frequency basis. This method was used to convert the English vocab-
ulary to numbers [42]. It was found that the natural frequency of English usage
yielded an average seek of 1.14.

The chaining technique is very helpful in translating programs to convert the
names of variables to working address numbers for faster processing (cf. [12]). ( i

5. Factors Influencing the Level of Programming

5.1 Logistics of Machine Configuration

The largest single factor affecting the advancement of the programming art o
the logistic structure of computing machinery. Data processing equipment consists
of much more than a central processing unit with arithmetic and logical decision
.Capabilities. The availability of various hierarchies of storage facilities, various
input and output devices (both on- and off-line), printing devices and character
sets all have a profound effect upon the improvement of techniques.

5.11 Character Sets,

L Char For example, the lack of other than numeric input-output
facilities in most Ry

thetic 1 ssian computers has seriously slowed development _OF b
'€ languages for communication with the machine. Even in scientific com

putah'cn:\s, where Russian algebraic compilers have shown promise in the ared
IOE ef_fxcxent Optimization [43, 44], the programmer is ~unablc to refer to a storage
uocglt‘xo;].by‘ t;\e name of its contents and have the computer operate directlgl
SiF;\ce - 11;{: ?rm;‘hon, automatically assigning an actual location in storago~
franScri:tionei;C aracters are not available, a slow and inefficient prOCeS;‘ay
be entered into f:}e\cessar)': This must be done by hand before the progra™ .
Thus an ) m.ac.hme, no matter how advanced the system is on pape
apparently trivial featyre heavily affects operating philosophy.
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The stored program machine is a general purpose device. We have realized
for years that one of the problems it may be given is the automatic translation
from the language of the programmer to its own but this is not easily accom-
plished when the basic elements of the language, the characters, are not common
to both languages.

Alphabetic and other special characters are more available on computers in USA,
but programming languages may still be found using phrases such as “if greater
than or equal to”. If a single symbol were available to the user to represent this
phrase and others, processing time could be greatly reduced. As it is such
phrases must be written out in their entirety by the programmer in longhand
with the attendant possibilities of error and faulty decoding. A sample statement
describing income tax deductions in Commercial Translator required 700 bits
of information at 6 bits per character (a maximum of 64 symbols available). If
three new characters could be added to the set, the total number of bits required
would be reduced to 500 even if all characters had to be represented by 8 bits
rather than 6. (Cf. [45].)

Interest in a larger set of characters has been increasing, largely influenced by the
ALGOL language which presently has 110 characters for use in the reference
language. This may improve general communication with the machine in all
areas, and may prove to open new applications in computer-controlled typography.
Some new machines, particularly the IBM 7030, are designed to handle larger
character sets [46]. The Bendix input-output typewriter handles all the characters
of ALGOL in an 8-bit form. Ferranti and Bulmers (Friden) in England have
made provision for 7-bit sets for input and output.

5.12 Internal Storage. There is apparently a minimum size of internal storage
Necessary to scan and convert statements in a machine-independent language

W efficiently to the corresponding machine language program. In practice this has
been found to be 212 (=4096) words, each word handling a minimum of 6 charac-
ters. Storages from 212 to 25 in size are of course more advantageous. A storage
of 2% is adequate for only the most ingenious scientific subroutines, wasting too
much programmer effort to be useful for commercial work.

5.13 External Storage. The lack of medium access, medium cost storage media
such as magnetic tape is an example of a machine characteristic whid? severel.y
limits conceptualization of better computer usage. Although magnetic tape 1s
for linear files, which have certain computational drawbacks, it is exceptionally
useful for supervisory control and library facilities in an integrated. system of
data Processing. This narrowness of conception is particularly evident in England,
Where tape usage is limited. A 1959 survey showed that only 11 out of 69
commercial computer systems were equipped with magnetif tape [47]..Few
ritish Programming systems actually control computer action automatfcagy
over multiple problems [48, 49]. Even when synthetic language is medtamca“y
franslated into machine language, corrections to the running programs are usually
still made in machine language [50]. External storage media like tapes are manda-
tory for the use of application library techniques.
I such executive control is common in USA, it is not because. the users are
cleverer, by rather because the very existence of tape units in volume has
Prompted such experimental usage and development. In a survey of 61 ‘il:rge
fOmputerg [32], government equipment averaged 18 tape units per machine,

2 Dig. Inf,




338 Robert W. Bemer ( y

nongovernment equipment averaged 13 units. In both cases three units were
used for peripheral operations. Each unit is capable of holding 5,000,000
characters per reel on the average, but there are some short tapes. Including
metal, acetate and “Mylar” tapes, there are over 600,000 reels of tape in- USA
today.

As the design of modern architecture would not have been possible with the
structural materials of a decade ago, it required the availability of magnetic
tape in quantity to trigger and inspire new systems concepts and designs.

5.14 Instruction Repertoire. An examination of early programs for small internal
storages show complex modification of instructions through looping and initiali-
zation. Present machines have larger storage and, perhaps more importantly,
instructions which utilize index registers and indirect addressing. Not only do
these features reduce the number of instructions necessary to do complex proce-
dures, but they also reduce the amount of error which may be introduced in the
program to be corrected later. It is safe to say that less than 10 per cent of all
program instructions are ever modified today, over the entire spectrum of prob-
lems. In commercial applications alone, it is probably less than 5 per cent.

This characteristic may lead to permanent read-only memory [51] and larger
programs with fewer loops. For example, the introduction of a photographic
plate containing the entire basic programming system would have a heavy effect
upon application programming. One of the present problems is to contain the
working program so that incorrect modifications will not destroy the operating
system with all its linkages to necessary auxiliary routines. Some present com-
puters have provision for programmed storage protection by blocks to avoid
such difficulties [52]. This would not occur with the programming system in
separate storage from the working program.

5.2 Cooperative Organizations

One of the mixed blessings of computer usage is the ability of the machine
designer to outstrip the last model by a factor of ten or so. The programmer
and user is not susceptible to such magnification without artificial aids. For a
single machine not much can be done, but for a group of identical machines the
costs of programming can be spread out and amortized.

Early in 1954 a group of aircraft companies in USA found, in planning to replace
IBM 701°s by 704’s, that severe dislocation of production would occur during
the changeover by virtue of the reprogramming necessary even though the
machines had common generic characteristics. It was found upon examination
that a vast amount of duplication and redundancy had existed in the usage of
the earlier machine. The question became “Should basic programming remain in
the realm of competitive advantage, or should a cooperative venture provide

basic tools for all?”

The outcome of this study was the SHARE organization, an informal cooperative
among 704 users that has since grown to well over 100 members, each with at
least one 704 installed or on order. It has been expanded since to include the
successors 709 and 7090 as well. How well this organization succeeded is indi-
cated: by comparing the number of programming systems for less than twenty
701‘s with the:number of systems for over one hundred 704’s [53]. Within a
general framework of assignment, each installation contributes basic programs
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with prescribed documentation to the entire body to use or modify as they wish.

Accompanying each program, however,

is a disclaimer that frees the originator

of legal responsibility for its correct operation.

Following this single and successful v
areas. Functioning user groups include:

Group

ALWAC Users Association
CO-Oor

CUE

DATAMATIC 1000 Users Group
DUO

EXCHANGE

FAST

GUIDE International

LINC

MCUG

PB 250 Users Group

POOL

RCA 501 Users Group
RUG

SHARE

TUG

UNIVAC Users Group

USE

’The above groups are

enture, insularity disappeared in many

Machines

ALWACIIL 1V, V

CDC 1604

Burroughs 220

Datamatic 1000

Datatron 201 to 205

Bendix G-15

U.S. Army Fieldata Equipment
IBM 705, 7070, 7080

Sperry Rand LARC

Military AN FSQ series
Packard Bell 250

Royal-McBee LGP-30

RCA 501

Autonetics RECOMP 11

IBM 704, 709, 7090

Philco 2000 (formerly Transac)
UNIVAC Tape Systems
UNIVAC Scientific 1103 and 1105

all oriented to specific machines. In addition there are other

8roups oriented to particular applications or disciplines. They are:

Group Orientation

CAMP Military Applications

HEEP Highway Engineering Exchange

NCG Nuclear Codes Group

POUCHE American Inst. of Chemical Engineers

ZMMD

ALGOL (Ziirich-Mainz-Munich-Darmstadt)

These 8roups have found by experience that basic programming (the education of
the Machine) is not a competitive advantage after all, for each member. l'fas
4quired a more intelligent machine for his particular applications through joint
effort. This emphasizes that a certain amount of basic education is vital to operate

4 computer with

any efficiency, whether it be for a single machine or a hundred

(; ¢ it. The original computer and the original programming may cost a ";'”‘03
ollarg each. The second computer costs nearly as much, but the secon ane
“Ucceeding sets of programs are available at only the cost of reproducing som

c
3ds or magnetic tape.

The Success of organizations of this type in promoting operational star;(d‘:.r;is
£y bgon marked. They also serve as a unified source of feedback for Tiar ealng
ffiteria ang information to the manufacturer. Interchange of new ideas

ey
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methods has effectively seeded and lifted the level of technical competence far
above what might be accomplished by the secretive or insular user. Gone are
the days when one oil company refused to test its programs on the manufacturer’s
sample machine for fear another oil company might steal its secrets and methods
by a storage dump.

At present, the only user organizations existing outside USA are ZMMD and
GUIDE International (including the Committee for Europe), which has over 230
participating installations.

These organizations have strong control over specifications of operating systems.
The SHARE group, after selecting and improving SAP, the standard assembly
program for the 704, completely specified an extensive operating system called
SOS for the 709. (Cf. [54 to 59].) Gradually the interchange of programs is
moving from those written in machine-oriented assembly language to those
written in procedure-oriented and machine-independent languages such as ALGOL
and COBOL. This ensures usage both to the next generation of computer for
that group and, in many cases, exchange between several user groups.

A majority of these user groups have formed a joint users group, called JUG.
A loose affiliation with the Association for Computing Machinery was
accomplished in May 1961.

5.3 Standardization

5.31 Programming Languages. Much of the evolution of synthetic machine-inde-
pendent languages has been quite similar. Most of the original translators for
algebraic languages evolved roughly in the same era (cf. refs. [60 to 64]). The
ALGOL 60 language is notable for the adaptation by P. Naur of the meta-linguis-
tic symbology of J. W.Backus [65], an entire department in the journal Conmmni—( {
cations of the ACM devoted to algorithms written in ALGOL, and the series of

textbooks in ALGOL planned by Springer Verlag, Berlin, Germany.

Standardization in scientific languages preceded that in commercial languages,
just as scientific usage of computers preceded commercial usage in volume. No
professional body such as ACM or GAMM took equal interest in the problem
of commercial data processing languages, possibly because the problems were
more difficult. In the absence of any requested action, the U.S. Department of
Defense convened a meeting of manufacturers and users on May 28 and 29, 1959
to consider such an effort. Committees were established for short range, inter-
mediate and long range considerations. In particular, the short range committee
was asked to prepare a proposal for a blend of FLOW-MATIC, AIMACO [66]
and Commercial Translator by September 1959. This was to serve as a stopgap
language which could be useful for a period of two years until supplanted by
the language to be developed by the intermediate group.

British manufacturers took an extreme interest in this effort and were called
together by International Computers and Tabulators (whose corresponding
language was CODEL) [67] in July 1959 to consider the same problem. It was
decided to await results from the group in USA and then evaluate that language.

As it developed, the short range group of CODASYL (Committee On Data
Systems Languages) preempted the domain of the intermediate group, which was
canceled. The resulting language was called COBOL (COmmon Business Oriented
Language) [13] and went somewhat further than the original directive called




.Programming for Commercial Data Processing 341
for. The language is complex and conditions are worsened by some unreconcilable
differences in various equipments. Despite some remaining flaws and differences
in reconciliation, the following manufacturers have announced COBOL processors
for the indicated machines:

Manufacturer Machine
Bendix G-20
Burroughs B5000
Control Data 1604
Minneapolis-Honeywell 400
Minneapolis-Honeywell 800

Philco 2000
General Electric 225

IBM 705 111/7080
IBM 7070/7074
IBM 709/7090
IBM 1401

IBM 1410

ICT 1301

NCR 304

NCR 315

RCA 301

RCA 501

RCA 601
Sperry Rand UNIVACII
Sperry Rand UNIVACIII
Sperry Rand 490
Sperry Rand 1107
Sperry Rand 5580/5590
Sylvania MOBIDIC

5.32 Systems Standards. The chief obstacle to writing a single program for all
different machines has been the intractability of hardware design. Many aspects
of computer design must reflect competitive technologies and salable characte'r-
istics. However, many differences between the several computers have been', in
the words of J. C. McPuERsON, “capricious and arbitrary”. Many different options
may be equally suitable, but when differing options are selecteq throu.gh non-
cognizance — it is time for standards organizations to step in. It is possible t!'lat
this area will contribute heavily to the reduction and simplification of programming
effort,

izati in aspects of data processing equip-
e n?lmittee 97) of the ISO (Inter-
he IEC (International Electro-
commencing with

A joint project in the standard
ment has been formed with TC97 (Technical Co
National Standards Organization) and TC53 of t
technical Commission). Initial work will proceed in four areas,
the first meeting in Geneva in May 1961. These areas are:

Character Sets and Representations

Data Transmission

Programming Languages

Glossary of Terminology
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The first two areas have to do with the common language interchange of both
data and programs between users and various equipments. It has been found
that much of the complexity in COBOL and similar languages is due to the need
to take care of basic differences in this area. The third area implies that there
may be an eventual joining of the scientific and commercial procedure languages.
This is supported by two trends noticed by workers in the field:

(a) Properties formerly exclusive to either type of language are very useful to
each other. The business language is enhanced by algebraic notation and
subscripting, the algebraic language can be improved by separating out
data description and being able to refer to operands other than floating
point variables.

The underlying syntactical structure of both types of languages is similar
enough to suggest an eventual blending into a common language for all
purposes, each with its own jargon or dialect, if necessary, but enough
equivalent that common processors may be used for either.

Another factor in raising the efficiency of programming is the selection of stand-
ard machine configurations. User groups do this to limit the variety of programs
needed. Although some of the variables in modular systems are compensated for
by program generation (such as varying sizes of internal storage), it is generally
advantageous to pick a specific configuration which is not always the minimum.
For example, the first SHARE standard 709 specified a 8,192 word storage.
However, it turned out that almost all machines were ordered with a 32,768 word
storage because the cost of the additional storage was more than offset by the
increased power in problems per dollar. Most programming systems are attuned
to top efficiency for a particular configuration. Sometimes they are not even
prepared for lesser configurations. It is usually advantageous in cost to get ff |
additional hardware to bring the configuration up to the standard because of the

more than compensating savings achieved through use of the programming
system.

5.4 Experience

S. GiLL [68] states that “the practical business of tapping the vast potentialities
of computers has come as such a novelty to us that we are practically developing
an entirely new subject — a new version of mathematics, if you like*. Considering
the astonishing rate of growth in programming, it is not surprising that the
literature has not had a chance to catch up properly. Besides, programming more
than nearly any other field is learned by doing rather than reading.

Without risking philosophical debate, programming may be said to have enough
o'f the nature of thought processes that new developr.ncnts stem mostly from
Fxrcumstances and not from speculation. The most effective means of disseminat-
ing such acquired knowledge is by seeding less experienced groups with a few
highly experienced people. This has been adequately demonstrated by program-
mers who, having reached a stasis point in one group, move to another group

'with a higher experience level and quickly develop to a corresponding position
in that group.

Conversely, it ha.s. been noted that those programmers that advance to higher
man:gement. positions (that do not involve actual contact with machines and
methods) quickly fall behind current technology levels unless they make strong
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efforts to keep up with new techniques. The present era of programming is one
of stumbling in search of complete concepts. Current theories of programming
are faulty and conflicting. The programmer who stops now is likely to retain a
useless orientation for the future.

5.5 Education and Literature

The extremely rapid growth of the computing field has caused a notable lag in
the publications of timely papers in the technical journals and in program docu-
mentation. Actual practice has preceded in time the publication of the theory
of practice to a surprising extent. Perhaps this has been due to a certain attitude
of waiting to see if the field would achieve true professional status.

5.51 Universities. Although single universities (such as Manchester and Cam-
bridge in England; Mainz in Germany; Michigan, Illinois, Princeton, UCLA, MIT
and others in the USA) made developmental efforts in both hardware design
and programming, the infant science of computing was attached to a variety of
departments. Such work has been supported variously by departments of mathe-
matics, business administration, electrical engineering and any other with enough
funding and interest to nurture a beginning. To date, no university recognizes
a chair in information processing, which is the general field encompassing the
computer sciences.

Not until 1957 was there any general effort to train people for computer design
and programming. Even here the universities did not take the lead by themselves.
The manufacturers, extrapolating to a drastic situation in the expanding field,
took steps to provide universities with special and production computers for

. training purposes. The effect is now being felt. A few universities stand out
remarkably in programming. In Germany there are Munich, Mainz, and Darm-
stadt, in Switzerland there is Ziirich, and the USA has Carnegie Tech, Case
Institute, MIT and Michigan. England has relaxed the early lead in programming
techniques taken by M. V. Wikes at Cambridge and R. A. BRrooker at
Manchester.

The impact of programming training at universities is now felt. Each graduate
from the Massachusetts Institute of Technology in 1961 will have taken a man-
datory course in computer programming. The latest count shows a t9tal of 118
computers in universities in North America [69]. There are approx:m'ately. §5
computers in European universities. Pages 135—138 of [9] list 145 universities
in USA offering courses in automatic data processing and systems.

5.52 Manufacturers. The education of the user is of extreme interest to the
marketer of a product. Many manufacturers operate their own training schools
in order to staff satisfactorily a large number of machines. S.ome of these schools
are larger than universities. For example, IBM currently trains a!)out 11,000 pro-
grammers a year as part of a general educational program Whl.Ch reaches over
120,000. A program on this scale is necessary to achieve a predicted work force
of 170,000 professionals in 1966 for USA alone [70]. Although sheer volume
does not necessarily produce improved methods, the net effect has been an accel-
erated learning process in the efficient utilization of mavt'hmes thtoug}l: pr}(;gram-
ming. The description and documentation of programming systems has become

more professional.
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Manufacturers also support the informal educational process by distribution of
technical literature. One manufacturer distributed over 450,000 copies of more
than 150 different publications in 1959 [71]. In this instance, distribution of
exchange programs among members of user groups averaged 150 programs a day.

5.53 Teaching by Machine. One of the most promising methods for raising the
level and competence of programming is to enlist the aid of the machine itself.
The Computation Center at the Carnegie Institute of Technology, under
A.].Peruss, utilizes a 650 RAMAC to teach students to program that same machine.
The student keypunches his name on a card, drops it in the read hopper and is
automatically enrolled in the course. Provision is made for orderly progression
through the lessons. When the lesson program written by the student does not

work, the teaching program analyzes the faults and sends him back to restudy the
proper previous lesson.

Many experiments are being made in automatic teaching by computer [72, 73].
North American Aviation has used semiautomatic methods to teach the
FORTRAN language to over a thousand of its engineers. Computers are also
being used to evaluate the effectiveness of programmers and point out where
additional training or discipline is needed [74].

6. Costs and Statistics

6.1 Programming Systems

Some idea of the relative size of
following survey (cf. [75]):

programming systems may be gained from the

Number of
System Machine Machine Language

Instructions

System Type

SURGE 704

12,000 Sort, report generator
CLIP 709 18,000 Information processor
5 704,709 35,000 Machine tool language
CL— 709 45,000 Information processor
e 202 50,000 Compiler, operating

A typical major programming system will cost from $ 250,000 to $ 1,000,000 to

produce and require from 10 to 50 very high level programmers working from
one to two years.

The average cost per instruction produced is much higher for programming
system; than it is for applications, as they are much more complicated and
generalized. The cost may vary from 13 to 25 dollars an instruction in order to

produce a system which users may pr flazs
: . ogram at costs of or two dollar
an instruction. o ol

yielded 37 distinct machine language
diagnostics.
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The costs of such programming systems may be expected to be reduced sharply
in the next few years. In IBM’s experimental expanded ALGOL system, for
example, only 800 instructions are actually written in machine language; all
others are written in expanded ALGOL itself and are thus usable for many
different machines. The only machine language instructions needed are those
for basic symbol manipulation and reduction to symbolic macro-instructions. The
system is presently at about 12,000 machine language instructions; therefore
11,200 of these have been self-generated.

6.2 Programs for Specific Applications

6.21 Size. One of the largest applications on record [76] requires 65 separate
machine runs for a single problem. With an average of 3,000 machine instructions
per storage fill, this gives a total program size of about 200,000 instructions.

An oil company’s first nine programs written in 705 Processor language [77]
averaged 2760 instructions per program, or 13,800 characters. The total pro-
grams required from 7500 to 36,000 characters of storage, averaging 20,000.

6.22 Instruction Cost. Surveys taken in 1957 yielded the following average costs
per checked out instruction:

Language Cost per Instruction ($)
Machine language 10
’ Symbolic assembly 5-6
Symbolic + macros 2—3
Independent language 1

Further statistics are available for the programs mentioned in Section 6.21. The
average times for the nine programs were:

Block diagram, code, assembly 7 days programmer time
Assembly 97 minutes (avg. 2.5 assemblies per program)

Machine test 50 minutes

A rough calculation with these data yields less than a dollar per checked out
instruction, quite comparable to that for machine-independent languages.

The cost of moving applications to different machines varies considerabl).' .with
the source language used to write the programs. Table 1 shows the additional
advantages accruing from each additional degree of machine independency. "I'hu's,
machine-independent languages are extremely useful not only as an and'm
decreasing the original cost of programs but also as insurance against moving

the program to different machines.

6.23 Staff. The largest computers, depending upon the class and variety of
applications, may require a staff of from 50 to 75 people [78].
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Table 1. Comparison of typical conversion from one machine (family) to another

fort f /s Additional Net Additiona]

Prc.)gran.\ = oy .(,’;., Effort for Effort for
Written in Machine Machine “B” Machine “B”

Machine 100 %o o 2 100 Y/
Language (base) 30074 v
Symbolic i s
Assembly 80 % X 80 % = 64 %
Language

Lr\agcl::;e 60 % 40 % = 24%
l;;?xt::gr: 20% X 25% = 5%
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