
Published Papers of Robert W. Bemer

Published Papers - Robert W. Bemer (1-30)

This document covers papers 1-60, from 1951 through 1970
For papers 61-116, from 1971 through 1979, CiisldSo

1' So"1 "Machine Method: Iterative Solution of Games"
RAND Memorandum RM-595-PR, 1951 '

2" aS"161"' ,T°lyn°mial relaxation coefficients",
3 «^ UElMeetmg, Phila., 1955 Sep

5 ibm c-»»-

7. R.W.Bemer, How to consider a computer" Data rnnttwi c t-
Automatic Control Magazine, 1957 Mar 66-69 " 10n'

10 r w°D r Research Foundation, 1957 Oct 24-25 107-117

' * FORTRAN,with growth
10 tA", ^LGOL predecessor from IBM

it. S: "Thtsŝ r Iacm n°- »»
Commun. ACM 2, No. 3, 8-13 1959 Mar Pr0grammin« sTs,ems".

B& SSSSPSgESZ ACM 2' N°- 4' »»•". - Apr
Automatic Control, 1959 Apr' 22™4 pr0grammm8 9"*™".

CommumA'cM iTo't^TsTs'&p """ C°de °f256 characters".
-- Computing Reviews 00025

19 rEwb publi,c„hJ,°' ofS-b" bytes to come.

-- Computing Reviews 00813 ' 60 Jun

Page 1 of 4

file://C:\ix\PUBS-l.HTM

08/01/2002

Published Papers of Robert W. Bemer Page 2 of 4

20. R.W.Bemer, "A proposal for character code compatibility",
Commun. ACM 3, No. 2, 71-72 (1960 Feb)
- Computing Reviews 00320
- Computer Abstracts 60-865

Here was disclosed Bemer's invention of escape sequences. (See it).
21. R.W.Bemer, "Comment on COBOL",

Management and Business Automation, 1960 Mar 22
22. R.W.Bemer, "Do it by the numbers - digital shorthand",

Commun. ACM 3, No. 10, 530-536,1960 Oct
- Computer Abstracts 61-199
- Picture and story, NY Herald Tribune, front page,

Section 2, 1960 Jul 05
This method programmed for RCA by C. Berners-Lee,

father of Tim Berners-Lee, father of the Web.
Also treated in David Kahn's classic "The Codebreakers",
and acknowledged as probably unbreakable then.

23. R.W.Bemer, "Survey of coded character representation",
Commun. ACM 3, No. 12, 639-641, 1960 Dec
- Computing Reviews 00639
- Computer Abstracts 61-287

Exposing the Babel of internal computer codes,
the impetus for the creation of ASCII.

24. R.W.Bemer, "Data compression system",
IBM Technical Disclosures Bull. 3, 8-9,1961 Jan

25. R.W.Bemer, "Survey of modern programming techniques",
The Computer Bulletin 4, No. 4, 127-135,1961 Mar
- Computing Reviews 01213
- Computer Abstracts 61-1025

26. R.W.Bemer, "Editor's note on binary reciprocals of decimal integers",
Commun. ACM 4, No. 4, 116, 1961 Apr
- Computer Abstracts 61-1909

27. R.W.Bemer, H.J.Smith, Jr., F.A.Williams,
"Design of an improved transmission/data processing code",
Commun. ACM 4, No. 5, 212-217, 225,1961 May
- Computer Abstracts 61-1920

ASCII in its original form. . „
28. M.Grems, R.W.Bemer, F.A.Williams, "IBM Glossary for Information Processing , 1961
29. R.W.Bemer, "The present status, achievement, and trends of programming

for commercial data processing", chapter in Digitale Informationswandler,
Vieweg & Sons, Braunschweig, Germany, 1962, J. Wiley, 1962, 312-349
- Computer Abstracts 62-1630

30. R.W.Bemer, "An international movement in programming languages", in
Computer Applications Symp., Spartan Books, Baltimore, MD, 1962, 204-214

file://C:\ix\PUBS-l .HTM 08/01/2002

CSM-315
2-26-51
Page 1

SUBJECT: MACHINE METHOD - ITERATIVE SOLUTION OF GAMES

By: Robert W. Bemer

The method outlined here is for the solution of a
20 x 20 game with three-digit elements in its pay-off matrix, as
programmed for the Card-Programmed Electronic Calculator. It may
be used for the solution of any game where the pay-off matrix has
20 or fewer rows and columns, such as an 8 x 17 matrix. It may
also be used, with a slight loss in accuracy, for matrices with
elements of more than three digits; in this case, all elements
should be reduced by a constant factor to make the largest
corrected element equal to 999- If any elements are negative
a constant must be added to all elements to make them positive.
The number of iterations required for the solution of the game
depends upon the number of digits of accuracy required. It is
conceivable that a sixth digit may be required in the running sums
if accurate work is being done. (You will note that only five
storage positions have been allowed for each of the running sums.)
This situation may be remedied in the middle of the process by
subtracting a constant, C, from each of the running sums and then
adding — to each of the values of and from that point on.
The mechanics of the iteration process are explained in the paper
P-/8B by Dr. George Brown of The RAND Corporation and may be
further understood by examination of the illustrations attached
to this paper. They are:

Fig. 1 Wiring of Z+1 7 plug-board.
Fig. 2 Program Sheet for 60L plug-board.
Fig. 3 A 20 x 20 sample pay-off matrix with unique

elements.
Fig. U and 5 Key sheets which give the row and column

numbers of any element in the sample matrix.
(Note that for convenience the rows and columns
are numbered 10 through 29 rather than the
c o n v e n t i o n a l 1 t h r o u g h 2 0 .)

CSM-315
2-26-51
Page 2

Fig. 6 Sheet indicating the punches in all cards
required.

Fig. 7 A portion of the l ist actually obtained in the
solution of the sample game.

I t will be seen that the basic deck consists of two
starter cards, twenty or fewer row cards, two row sum cards, a
spacer card, twenty or fewer column cards, two column sum cards
and a spacer card. This deck (with the exception of the starter
cards, which are removed after the first pass) is fed into the
417 repeatedly, each time representing a line of i teration. This
basic deck is usually reproduced several times to form a convenient

handful. The specific functions of these cards are:

1. Starter cards - Clear the storage where the pass or line
number is maintained and determine a specific starting row. This

arbitrary choice is made on the 604 board by altering the digits
e m i t t e d o n p r o g r a m s 2 a n d 3 . (S e e p r o g r a m s 1 t o 4 , ? i g . 2) .

2„ Row cards - Feed in columnwise the elements of a specific
row through the field selector, add these new elements individually
and again columnwise to the previous row sums, determine which of
these amended sums is minimum and thereby make the choice of the
next column to be added in. Referring to specific programs in
Fig. 2:

Programs 5 to 12 - provide for indication of the column
number of the row element currently being added. This is
done by emitting a 10 on the first row card and raising the
number by 1 for each new element. On program 9 the starting
value of R min is established at 10. n

Programs 13 to 17 - add the element cumulatively to the
old row sum.

Programs 18 to 22 - test the new row sum against the
standing minimum row sum; if i t is smaller only, the old

CSM-315
2-26-51
Page 3

minimum is replaced by the new and the columnwise indication
correspondingly replaced.

Programs ^3 to 24 - build up the accumulative sum of
row sums, pertinent to the checking device incorporated in
the board.

Programs *:5 to 26 - send the various new sums to storage
on Channel C.

I t may be noted here that Channel B reads in ten digits
each time a row or column card is fed, the left hand five carrying
the row sum for a specific column indication, the right hand five
carrying the column sum for a specific row indication. Thus the
row sum in column 13 and the column sum in row 13 are stored side
by side, but only one sum is amended at a time.

Regarding placement of the various elements on the row
cards: For convenience in wiring through the field selector,
columns 14 through 73 carry, in three digit divisions, the elements
for rows 10, 20, 11, 21, 12, 22, 13, , 2d, 19, 29. Columns
1, 13 carry the column indication. This same arrangement occurs
in the row sum cards.

3 • Row sum cards - Carry the sum of all the elements in a
specific row as a five digit figure, the left-most two (thousands)
digits on the 130 card and the second three (units) on'the 131
card. Referring to specific programs of Fig. 2:

Programs 27 to 29 - get the full five digit row sum in
the counter.

Programs 30 to 34 - check to see that the row sum plus
the old sum of row sums = the old sum of row sums plus the
individual elements of the row accumulated one at a time.
If this is not so, an error has occurred and the program
repeat hue is impulsed stopping the computation.

CSM-315
2-26-51
Page 4

Programs 35 to 45 ~ obtain the running value of V , to

three whole numbers and two decimals rounded, for the specific

line just calculated# This board may be used on a 40 program

machine by substituting a single program of RO-MQ, RI-GS2 for

programs 37 to 45, giving an unrounded value of V .
—n

Program 46 - sends the sum of row sums to counter-group

2 for storage until the next 131 card comes up.

The second row sum card contains a 9 in the operation code

to summary punch from GS7 the next column chosen to be played,

from GS2i and the line or pass number from GS3. If it is desired

that only these values shall list on the 417, turn Set-up Change
Switch No. 1 off.

4. Spacer card - Allows time after summary punch. Program

47 reads the next column to be played into the counter for listing.

5, 6, and 7. Column cards, column sum cards and spacer

caro — Read the same as Items 2, 3, and 4, substituting row for

column, column for row, maximum for minimum, C max for R min.
— n n '

larger for smaller and for V , counter grout) 3 for counter
group 2.

In order to expedite effective duplication of-this set-up,

the sample matrix of Fig. 3 has been set up to show exactly how

the decisions of play are made. The elements of this sample matrix

consist of the numbers from 100 to 499 arranged randomly. Whenever

possible an interpreted copy of the basic card deck for this matrix

will be furnished along with the paper work. Also appended is Fig. 7,

an actual portion of the solution of the game starting with row 11

as the initial choice. If this is duplicated it may be assumed that

your boards are in working order. Within the 119 passes shown. V max
/ —• n

= 303.21 ^pass 109) and min = 311.13 (pass 119), showing the

actual value oi the game to be between these limits.

d>
u.

£ -N *£*/ 'L£ *6z *+rz '81 *£l *L -V
aLiTds-onaz asiva ®ONLLSII HO^

IHVHD ONINNVld fr09
nQn SD jnQ dOJQ puo 0 OJd j UON i / O n OJ3Z UO // n sr,u!UJ UO

snld uo SS3addflS „S„ SS3HddnS .,d„ dflODId ®4°'!PUI

SNOIilSOd n - D 13NNVH0 Ol 11X3

30VS01S 1V83N30

una

-Ft

a3XNflOD

WVHOOHd DINOdi3313
ATNO AH1N3

aovaoxs aoxDvx
xono
xinw

Sil'VA OJ, "XOHcHV 'JJOM1H
•HES0H3 NM1T3D HO MOil

HONIM AHVKSflS

sun

NOIXVa3dO

NOISSSdddflS

XS3X
loa3z

XS3X
iva

+i

SS3JiddnS
dnodo

SaOX0333S01VD
NOIiVitadO

OH +IH
+IH — CH—

IH OH PURE OH
isnxav invH

OH +IH
+IH OH

OH P«Q OH
OH

"TH~ OH
SdlAIG

OH +IH
IH OH Pue OH

OH X X ° X X X IQIAIG
OH +IH

OH *ISEL OHSZ
-IH — CH—

CD
+IH OH

OH +IH
ro +IH OH

+IH OH
OH IH

•cfflS *OOHI OJ.
X

OH +IH
+IH OH

OH PURE OH — IH—
+IH CH- • i f t -

ins7 -s v+s
IH OH

IH OH liLQ IHOHJ 1!.
OH
OH

•IH
*IH J,S2»L SDNVTVa

IH OH
JIH_

"OH"

OH
" OH
+IH
+IH
+IH

IH OH PURE OH
+IH

IH

OH
OH

I iLITEF SI(i^ q < I \ 3 V q: niqq.

OH +IH
IH OH

OH P*re OH IH
(^io Z j j +IH las < JBUBJ^ UO). T JilIC

+IH OH
—IH- IH

IH OH PUB OH
+IH iioia v aiif
+IH Z HO I J, LI?

cnri
£ UmS TOOfeutT

jo kiAsT e l " xbilPO x^u,
^HzaTuPatpim HilNHOD

3DVBOXS 1VS3N30

-^uaa9-[i
xono
nnw

Tims M.OJ
jo)ims

r~trn

Y i

+

30V80XS aOXOVJ
NOava3dO XS3X

oaaz
XS31
1V8

SS3dddnS
dnoao

SaOX3313S-D1VD
NOIXVa3dO

NOISS3dddns

H3V3 SNOIilSOd 01 8 V V S13NNVHD WOdd AHIN3 WVHOOHd DINOH1D3I3
pXBO jaoudg -g uojxojado

pjBO l£l • L uojxojado
pjBO 0£l '9 uoijDJado

spvXso miinToo pus MOy qi}.og g uojjojad(^^^

XXUO SpJBO UUmXOQ -p uoijDJadQ
AXUO SpJBo etOg •£ uoiiDjado

d u o j S munxoo puB moj qoea jo paao z uojxojado
paEO I uoijDJado

XIHAVK a £ O Z * O Z

o\ xr to r- m XT XT xr X w X CM c to X X to Ov to rH xtf-
CM xr IT, 10 c C- V0 c- X X CM CM X c- Ov rH xf X XT > a

r> rH xf rH to M CM X to to to X to to to to X rH rH Xf
CO V£> o CM O rH xf rH CM X X 0v X to xf to X rH 0v X o
CM c- xr C c rH m c- X xf CM Ov c to C X ro rH c in X

rH to rH Xf to xr to CM ro M CM rH rH ro X rH to X to
C- o. CD rH ID C CM xr CM rH X X c- c X rH X X xf CD X
CM tO m to CM 10 rH CM c- O rH X o 0v X X Xf to X X c-

rH xr xr CM rH rH to rH xr •<T to X rH rH X rH rH X ro X
VO r- ac to 10 CM rH c CM X X X X rH X X ĉ - o Xf
CM CM xr to in in a /-> W f- rH X CM X xf a to X Ov o> PI c

CM CM •c to CM xr to rH to rH 'C X rH X to X X rH to to
X o xr X CO to to CD to CD X X X o. to Ov f- a. to o X
CM xf rH CM rH m o o> to c 0 D- 0 ro c to X c rH in c

CM rH xr rH XT rH XT to xr rH Nt rH Xf to to rH X xf rH X
"C O CM m m to c- CD NT o X CM r* O Ov CM 0 CM O rH X
CM CM CM to rH rH VO in C- o X X X c- rH X X X X x Xf

CM rH CM CM CM to CM rH co to X X X X X xf to Xf xf
to XT m •<0 xT VC C- CM to c X X o X to X X X X rH to
CM tO vo CM 10 o xr to X X r? o X p-> xf rH rH c- Xf

r-1 to rH to CM CM rH "C XT CM to xf rH X to X xf rH xf X
CM c- tO CO XT m to xf X X X to o c- X X c X C X to
CM CD \c C\ to CM V0 xf X to X CM Ov X c- rH tH rH c e cc

xf rH rH to to CM xf st xr CM rH to Xf ' to X rH X to to xf
rH c- xr CC C- to in X st X o •M" xf o X X rH X o to V0
CM QC CC > c X rH CM st a. X -c X X X to to c X c X

to xr to XT CO rH xr rH CM rH CM rH X Xf rH X to X X to
C CP in en to CM rH rH C\ Ov rH st c- X X X xf X X X Xf
CM CO o Ov C\ Xf XT rH X X X rH o rH Cv cr > c VC c

CM st st rH xr to CM XT rH CM xr rH to rH rH Xf Xf to xf
Ov CM in 10 in 0\ o Ov X O rH rH X rH X X xf c- c- CD
rH o\ CM to CM CM C to xf CM c- CM xf X X to X rH X m

n CM rH rH CO CM CM xr xr CM M" X rH to X to CM to Xf to
CD o c- CM rH to CM a to Ov o C X C- r- 0- rH C X X rH
x-i o to rH V0 X to c- 0\ X o O X c- xf X X rH > Ov X

rH xr CM Xf xr to to xr rH H CQ rH rH Xf to Xf X Xf Xf
<r a> rH c rH c- to X £> X X X Cv rH Cv X rH Xf c- X

rH o in CM Ov a. m X X in X to X rH Cf X X x: to X c-
rH rH CM to CM rH to rH to to to to to tH xf rH rH Xf rH xf

vc xt rH C- x X o o o X rH c X xf X to c to X
rH o CO 00 CK CD CD to xf in CD c- xr X rH X a. C- X X c

CM CM CM to st st NT rH Xf rH CM -M- Xf to X m X X rH to
IT Ov CM o o IT. St ir. r~i y r- c- xt c- X xf r— p ̂ t—' rH
rH X XT CO c c- rH xr c c ĉ to C- rH X y. X Cv X rH CD

tO rH to CM rH XT rH CM xf to rH x} rH rH to X Xf X xf to
xr CM rH a CM C- c- C- c c NV 0- X X c- X to > C c

rH y* IC C- Ir rH ir CM X X CM- Xf X X rH X rH c xf ro
CM CM rH rH to rH CM rH xT M" CM to rH rH CM Xf to X rH X

tO rH CM to to CM c- X rH X C- Ov X X rH to 0V X o X X
rH X & X rH rH o X o X CM XT rH a F- a c- ĉ - r*- c- V

CM CM CM rH xf •H to rH •<r to xf to rH X Xf rH Xf X X
CM in XT 0\ C- c VC m c- c- a, c X <5 X X Ov rH VC to VC
rH C- Ov V to to rH c- t> c- X rH X CM O Ov Xf X VC c- P-V

CM to CM to rH to to ro V to to rH to X Xf Xf to X Xf Xf
rH VC ID xf tO CM XT X to o. c- xf X X X Ov X X X X
rH m C- in xf CM 0V o to CM o o X xf to xf rH X to Xf X

xf y x; V CM to CM rH xj to jr> xj P-. xf rH Xf XJ fS -« V. 4 °
CM rH 0 xr O a X X (*• tu rH y xf r- c- to rH X c- X Xf

rl || CM CD a. m rH VC X X %-4 CM > X rH px. X X c X X C
CM rH rH rH CM CM xr rH CM rH rH rH to X to rH Xf rH X. rH

c / U / O rH CM to xr m X C- X ON O rH CM to xf X VC r- X o
/ o rH rH rH rH rH rH rH T-i rH rH CM X X X X X X X X X

Fig0 3

KEY-POSITION OF ELEMENTS IN SA,,iPLr MATRIX

E l e m e n t R o w C o l E l e m e n t R o w C o l e l e m e n t R o w C o l E l e m e n t R o w C o l

1 0 0 1 0 1 8 1 5 0 2 8 2 5 2 0 0 1 3 1 5 2 5 0 2 1 2 9
1 0 1 1 7 1 3 1 5 1 2 5 1 o 2 0 1 1 7 1 5 2 5 1 2 4 2 7
1 0 2 1 2 2 8 1 5 2 2 2 2 3 2 0 2 2 3 1 2 2 5 2 1 4 2 6
1 0 3 1 5 2 5 1 5 3 1 1 2 9 2 0 3 2 8 2 1 2 5 3 2 7 1 5
1 0 4 2 3 2 8 1 5 4 1 3 1 0 2 0 4 1 0 1 6 2 5 4 2 0 2 0
1 0 5 1 3 2 9 1 5 5 2 3 1 4 2 0 5 2 9 2 5 2 5 5 1 9 2 2
1 0 6 2 2 2 0 1 5 6 2 1 1 . 2 2 0 6 1 4 2 3 2 5 6 2 8 2 8
1 0 7 1 5 1 3 1 5 7 1 5 1 7 2 0 7 2 1 2 7 2 5 7 1 6 1 4
1 0 R 1 0 1 7 1 5 8 2 3 2 7 2 0 8 2 8 1 3 2 5 8 1 6 2 4
1 0 9 1 9 1 8 1 5 9 1 1 1 7 2 0 9 2 6 2 5 2 5 9 2 6 2 9

1 1 0 2 2 1 5 1 8 0 1 4 2 7 2 1 0 1 4 1 0 2 6 0 2 2 2 1
1 1 1 2 6 2 H 1 6 1 1 2 1 4 2 1 1 1 6 2 0 2 6 1 1 0 1 3
1 1 2 1 5 2 7 1 6 3 2 6 1 1 2 1 2 1 2 1 8 2 6 2 1 7 2 8
1 1 3 1 3 1 5 1 6 3 1 1 2 2 2 1 3 1 4 2 4 2 6 3 1 5 2 2
1 1 4 1 1 2 5 1 r > 4 2 1 1 0 2 1 4 2 6 1 9 2 6 4 2 7 2 7
1 1 5 1 5 2 1 1 6 5 2 2 1 4 2 1 5 1 3 . 2 4 2 6 5 2 5 2 6
1 1 6 2 7 2 3 1 6 6 1 9 2 6 2 1 6 2 4 2 2 2 6 6 2 7 1 2
1 1 7 1 5 1 4 1 6 7 2 5 2 5 2 1 7 2 4 1 4 2 6 7 2 7 1 6
1 1 8 1 3 2 5 1 6 8 2 3 1 5 2 1 8 2 6 2 2 2 6 8 2 4 . 1 6
1 1 9 2 5 2 2 1 6 9 1 8 2 0 2 1 9 2 3 2 4 2 6 9 1 5 1 0

1 2 0 1 8 1 1 1 7 0 1 7 2 6 2 2 0 1 0 2 4 2 7 0 2 6 1 6
1 2 1 1 9 1 0 1 7 1 2 8 2 9 2 2 1 1 2 1 7 2 7 1 2 0 1 6
1 2 2 1 1 2 4 1 7 2 1 7 2 7 2 2 2 1 0 1 o 2 7 2 2 9 2 7
1 2 3 2 0 2 2 1 7 3 2 0 1 0 2 2 3 2 0 1 4 2 7 3 2 3 2 3
1 2 4 2 1 2 1 1 7 4 1 7 2 4 2 2 4 2 1 2 4 2 7 4 1 6 2 9
1 2 5 1 3 1 9 1 7 5 1 4 1 5 2 2 5 1 1 1 9 2 7 5 1 . 0 1 2
1 2 6 1 2 2 3 1 7 6 1 o 2 8 2 2 6 1 3 2 7 2 7 6 2 7 1 8
1 2 7 2 8 1 7 1 7 7 2 2 1 8 2 2 7 1 0 2 f t 2 7 7 1 9 1 9
1 2 8 2 5 1 7 1 7 8 2 6 1 3 2 2 8 2 9 1 1 2 7 8 1 8 1 0
1 2 9 1 7 1 4 1 7 9 1 3 1 4 2 2 9 2 5 2 4 2 7 9 2 2 2 4

1 3 0 1 4 1 2 1 8 0 1 9 2 1 2 3 0 2 9 1 4 2 8 0 2 7 2 1
1 3 1 2 3 1 3 1 8 1 1 1 1 0 2 3 1 2 5 2 1 2 8 1 1 1 1 6
1 3 2 1 6 2 3 1 8 2 2 2 1 9 2 3 2 1 1 1 4 2 8 2 2 4 2 4
1 3 3 2 2 2 8 1 8 3 2 8 1 6 2 3 3 1 7 1 1 2 8 3 1 2 1 3
1 3 4 1 0 2 3 1 8 4 2 5 2 0 2 3 4 1 0 1 4 2 8 4 2 5 1 5
1 3 5 2 6 2 7 1 8 5 1 7 1 0 2 3 5 1 2 2 4 2 8 5 1 7 2 9
1 3 6 1 2 1 9 1 8 6 1 7 1 7 2 3 6 2 4 1 9 2 8 6 2 1 2 6
1 3 7 2 0 1 5 1 8 7 2 7 1 o 2 3 7 2 3 1 0 2 8 7 1 2 1 6
1 3 B 2 4 2 1 1 8 8 1 9 1 6 2 3 8 2 5 2 8 2 8 8 2 1 1 8
1 3 9 1 0 2 7 1 8 9 1 8 1 8 2 3 9 1 6 1 9 2 8 9 1 0 2 0

1 4 0 1 7 1 6 1 9 0 2 2 2 7 2 4 0 1 0 2 5 2 9 0 1 5 1 9
1 4 1 2 6 1 7 1 9 1 2 3 1 7 2 4 1 2 1 1 9 2 9 1 1 4 1 7
1 4 2 1 1 1 5 1 9 2 2 4 2 0 2 4 2 2 9 1 3 2 9 2 1 1 1 3
1 4 3 2 7 2 9 1 9 3 1 3 2 0 2 4 3 2 9 2 3 2 9 3 2 4 1 3
1 4 4 1 7 2 1 1 9 4 2 9 1 0 2 4 4 2 0 2 1 2 9 4 1 5 1 1
1 4 5 1 6 1 5 1 9 5 1 9 2 5 2 4 5 2 5 2 3 2 9 5 2 6 2 6
1 4 6 2 2 2 6 1 9 6 2 1 2 5 2 4 6 1 9 2 3 2 9 6 2 3 2 6
1 4 7 2 3 1 8 1 9 7 2 7 2 6 2 4 7 1 5 2 3 2 9 7 2 7 1 4
1 4 8 2 5 2 7 1 9 8 1 2 2 2 2 4 8 1 1 2 6 2 9 8 1 8 2 1
1 4 9 2 8 1 4 1 9 9 1 ? l 1 0 2 4 9 1 2 i ; 2 9 9 2 0 2 8

Fig. 4

KEY-POSITION Qp ELEMENTS IN SAMPLE MATRIX

.. —

E l e m e n t R o w C o l
3 0 0 2 0 1 8
3 0 1 1 6 2 6
3 0 2 2 6 2 1
3 0 3 2 3 2 5
3 0 4 2 9 2 6
3 0 f t 2 9 1 6
3 0 6 1 6 1 1
3 0 7 2 0 1 1
3 0 8 2 7 2 2
3 0 9 2 7 2 8

3 1 0 2 0 1 2
3 1 1 1 4 2 8
3 1 2 1 8 2 6
3 1 3 2 6 1 4
3 1 4 2 3 1 6
3 1 5 2 4 2 9
3 1 6 1 f t 1 2
3 1 7 2 2 1 0
3 1 8 2 3 2 0
3 1 9 2 2 1 7

3 2 0 2 2 1 2
3 2 1 2 6 1 2
3 2 2 2 0 2 9
3 2 3 2 4 1 0
3 2 4 1 6 2 7
3 2 5 1 4 2 2
3 2 6 1 9 2 9
3 2 7 2 7 1 9
3 2 8 2 8 2 7
3 2 9 1 4 1 9

3 3 0 2 8 2 6
3 3 1 2 4 2 6
3 3 2 1 5 1 8
3 3 3 1 7 2 5
3 3 4 1 3 2 2
3 3 5 2 4 1 5
3 3 6 2 0 1 7
3 3 7 1 3 1 2
3 3 8 2 4 2 3
3 3 9 2 4 2 5

3 4 0 1 1 2 8
3 4 1 . 1 f t 2 0
3 4 2 2 4 1 1
3 4 3 2 f t 2 9
3 4 4 1 0 2 9
3 4 f t 1 8 2 8
3 4 6 2 0 2 3
3 4 7 2 1 1 4
3 4 8 2 2 1 1
3 4 9 2 0 1 3

Element Row Col Element Row Col Element Row Col
3 5 0
3 5
3 5 8
3 5
3 5
3 f t
3 5 6
3 5
3 5 8
3 5 9

3 6
3 6
3 6
3 6
3 o
3 b 5
3 6 6
3 6 7
3 6 8
3 6 9

3 7 0
3 7 1
3 7 8
3 7 3
3 7 4
3 7 5
3 7 6
3 7 7
3 7 8
3 7 9

3 H a
3 8 1
3 8 2
3 8 3
3 8 4
3 8 5
3 8 6
3 8 7
3 8 8
3 8 9

3 9 0
3 9 1
3 9 2
3 9 3
3 9 4
3 9 5
3 9 6
3 9 7
3 9 8
3 9 9

2 9
2 f t
1 4
1 6
1 2
2
1 3
1 8
2 8
1 9

1 8
2 3
2 0
2 4
1 3
1 1
1 6
1 5
2 8
1 O

1 8
1 6
2 3
2 2
1 4
1 6
2 1
1 7
1 2
1 6

2 7
2 9
2 5
1 4
2 1
1 9
2 9
1 0
2 0
1 2

2 1
9

1 0
2 f t
1 1
2 8
2 3
1 3
2 2
1 3

2 8
1 8
1 4
1 7
1 1
1 0
2 6
1 7
1 9
1 2

2 9
1 9
2 4
2 8
2 3
2 3
1 3
2 4
2 0
1 5

2 4
2 8
2 2
2 9
2 9
1 2
1 7
1 2
2 1
. 1 8

2 4
I 5
1 9
2 1
1 1
1 7
2 1
2 1
2 7
1 f t

2 2
1 5
1 9
1 6
1 2
2 2
2 9
1 6

3
1 7

4 0 0
4 0 1
4 0 2
4 0 3
4 0 4
4 0 5
4 0 6
4 0 7
4 0 8
4 0 9

4
4
4
4
4
4
4
4
4
4

4
4
4
4
4
4
4
4
4
4

2 0
2 1
2 2
2 3
2 4
2 5
2 6
2 7
2 8
2 9

4
4
4
4
4
4
4

3 0
3 1
3 2
3 3
3 4
3 5
3 6

4 3 7
4 3 8
4 3 9

0
1
2
3
4
5
6
7
8
9

1 3
1 8
2 7
1 8
2 9
2 1
2 6
1 3
1 8
1 9

2 6
2 8
1 4
2 7
1 ft
1 9
2 1
2 1
2 6
2 f t

1 8
2 0
1 4
2 9
2 0
1 9
1 2
1 9
1 6
2 4

1 6
1 2
2 7
1 2
2 7
2 3
2 9
1 1
1 8
2 2

2 1
1 9

4
1 3
1 6

7
2 9
2 9
2 8

ft

2 8
2 7
2
1
2
2
1
2
2
1

1
1
1
2
1
2
1
2 0
2 3
1 1

1 9
1 9
1 1
2 2
2 6
2 8
2 ft
1 3
2 1
1 8

1 6
2 7
1 1
2 6
1 7
1 1
1 2
1 8
2 2
2 5

r >
0
0
1
2
9
4
9
1

4 f t 0
4 f t
4 f t 2
4 5 3
4 f t 4
4 5 5
4 f t 6
4 f t 7
4 5 8
4 5 9

4
4
4
4
4
4
4
4
4
4

4
4
4
4
4
4
4
4
4
4

6 0
6 1
6 2
6 3
6 4
6 5
6 6
6 7
6 8
6 9

7 0
7 1
7 2
7 3
7 4
7 5
7 6
7 7
7 H
7 9

4 8 0
4 8 1
4 8 2
4 8 3
4 8 4
4 8 f t
4 8 6
4 8 7
4 8 8
4 8 9

9 0
9 1
9 2
9 3
9 4
9 5
9 6
9 7
9 8
9 9

8
8

2
1
1
2
1
2
1
2

1
1
2
1
1
1
1
1
1
1

0
2
1
4

8
3
2
7
ft
9
7
2
8
7

2 7
2 8
2 6
2 8
2 1
2 0
1 1
1 8
2 9
2 f t

8
9
5
4
1
4
6
0
5
9

2 1
9 6
2 4
1 7
2 9

1
8

1 ft
1 6

1 6
2 4
2 4
2 5
2 8
2 1
1 1
2 2
2 7
1 7

1 4
1 8
1 6
2 3
2 9
2 4
2 2
2 9
1 3
2 0

1 3
2 3
2 0
1
1
2
1
1
1
1

o 3
8 1

1
1
2
1
1
2
1

4
8
1
6
0
2
6
4

2 3
1 5
1 2
1 8
2 9
2 0
1 8
2 6
2 5
2 0

F i g . 5

THESE COLUMNS CHAINS WITH
A DIFFERENT MATRIX

PERMANENT
PUNCHES

colunns
6 6 ? 7 7 7
S 9 0 12 3

colunns
DESCRIPTION

STARTER CARDS BLANK
1 '3 1
4 0 9
3 5 9

1 7 3
3 0 7
3 1 0
3 4 9
2 2 3
1 3 7
2 7 1
3 3 6
3 0 0

1 1 0
1 1 1
1 1 2
1 1 3
1 1 4
1 1 5
1 1 6
1 1 7
1 1 8
1 1 9
12 0
12 1
12 2
1 2 3
1 2 4
12 5
12 6
1 2 7
12 8
1 2 9

ROW CARDS

4 3 9
3 9 1
1 3 8
3 8 5
1 0 9
2 7 7
4 4 1
13 0
2 5 5
2 4 6
4 6 5
1 9 5
16 6
4 1 5
4 2 5
5 3 6

2 0 4
10 8
10 0
3 9 2
2 8 9
3 8 7
4 8 7
1 3 4
2 2 0
2 4 0
2 2 7
1 3 9
17 6
3 ^ 4

COMMON XT IN
COLUMN 74

3 4 6
3 6 2
4 7 5
4 2 4
3 8 8
2 9 9
3 2 2

(T0~5 6"0~6
2 6 4 0 6 4

ROW SUM CARDS
SPACER CARD 8 8 8

2 8 9
4 9 5
4 9 9
1 9 3
4 4 2
3 4 1
2 11
4 6 9
1 6 9
4 4 1
2 5 4
4 1 7
10 6
3 1 8
19 2
1 8 4
4 7 2
4 0 2
3 6 8
4 0 4

COLUMN CARDS

COMMON XY IN
" COLUMN 80

0 0 6 0 0 6
0 4 7 2 1 8

0 0 4 0 0 6
8 1 2 6 6 6

COLUMN SUM CARDS

COMPONENTS OF BASIC DECK - f 0 TIE ' OTRIX

Fig. 6

CAUTION: CLEAR COUNTER GROUPS AND AUX. rTOH.iGE ON FINAL TOTAL BEFORE RUNNING

ROW 11 TO START

1 n 1
4 7 6
. 3 0 4
2 9 2
S 3 2
14 2
2 B 1
1 6 9
4 3 7
2 2 5
4 9 5

B 4
6 3
6 5
2 2
1 4

2 4 8
4 5 8
3 4 0
1 5 3

c c 7 6 1 ̂

C O L U M N 2 5

4
1
3
1
1

7

10 1
4 7 6
3 9 4
3 9 2
2 32
14 2
2 0 1
1 5 9
4 3 7
2 2 5
4 9 5
4 0 4
16 3
3 6 5
12 2
1 1 4
2 4 0
4 5 0
3 4 0
1 5 3

SUM OF ELEMENTS OF ROW 11.

CHANNEL B
a,

2 4 0 1 8 1
1 1 4 4 7 6
4 2 6 3 9 4
1 1 8 2 9 2
4 5 3 2 3 2
1 0 3 1 4 2
4 9 8 2 8 1
3 3 3 1 5 9
4 0 8 4 3 7
1 9 5 2 2 5
4 7 5 4 9 5
1 9 6 4 8 4
4 3 9 1 6 3
3 0 3 3 6 5
3 3 9 1 2 2
1 6 7 1 1 4
2 0 9 2 4 8
4 1 3 4 5 8
1 5 0 3 4 0
2 0 5 1 5 3

5-j
<-7 8 4

CHANNEL

10 1
4 7 6
3 9 4
2 9 2
2 3 2
14 2
2 0 1
1 5 9
4 3 7
2 2 5
4 9 5
4 8 4
1 6 3
3 6 5
12 2
1 1 4
3 4 8
4 5 8
3 4 0
1 5 3

- ,57 6 1
SUM OF ROW SUMS SO FAR

•SUM OF ELEMENTS'OF COLUMN 25

2 4 0
1 1 4
4 2 6
1 1 8
4 5 3
10 3
4 9 8
3 .3 3
4 0 8
19 5
4 7 5
19 6
4 3 9
3 0 3
3 3 9
16 7
2 0 9
4 13
15 0
2 0 5

MINIMUM ROW ELEMENT
INDICATES COL 25 TO BE FLAYED NEXT

LINE,

5 76 1 1 1 4,0 0

7 -il
5

^ COLUMN BEING PLAYED

MAXIMUM COLUMN ELEMENT
INDICATES ROW 16 TO
BE PLAYED NEXT

5 7 8 4 4 9 8.0 0 1 8,0 0-« 1
7 ^

Fig. 7

-ROW 16
CHANNEL B

A

3 0 6
3 7 5
3 6 6
2 5 7
14 5
4 3 0
3 5 3
3 7 9
2 3 9
2 11
4 2 8
4 4 4
13 2
2 5 B
4 9 8
3 O 1
3 2 4
3 7 1
2 7 4

18 1 4 7 6
3 0 4
2 Q 2
2 3 2
14 2
2 8 1
15 9
4 3 7
2 2 5
4 9 5
4 8 4
16 3
3 6 5
12 2
1 1 4
2 4 8
4 5 8
3 4 0
15 3

2 4 0
1 1 4
4 2 6
1 1 8
4 5 3
10 3

9 8
3 3
0 8
Q 5

4 7 5
1 Q 6
4 3 9
3 0 3
3 3 9
16 7
2 0 9
4 13
15 0
2 O 5

CHANNEL

^ C 5 7 7
A SUM OF ELEMENTS

OF ROW 16

5 7 8 4
SUM OF COLUMN
SUMS SO FAR

6 6 7
7 8 2
7 6 9
6 5 8
4 8 9
2 8 7 -
7 1 1
5 12
8 16
4 6 4
7 0 6
9 12
6 0 7
4 9 7
3 8 0
6 12
5 4 9
7 8 2
7 1 1
4 2 7

cN"1

2 4 0
1 1 4
4 2 6
1 1 8
4 5 3
10 3

9 8
3 3 3
4 0 8
19 5
4 7 5
19 6
4 3 9
3 0 3
3 39
16 7
2 0 9
4 13
15 0
2 0 5

2 3 3 8

1 6
ROW B2ING FLAYED

MINIMUM ROW SUM
"INDICATES COLUMN 15 TO
BE FLAYED NEXT

IINEV

JT - COLUMN 15
SUM OF ROW SUMS
SO FAR (= 5761 -I 6577)

1 4 3.5 (W 2 -

V —N

3 6 9 6 6 7 2 4 0
14 2 7 8 2 1 1 4 6 6 7 6 0 9
3 8 9 7 6 9 4 2 6 7 8 2 2 5 6
2 0 0 6 5 8 I I P 7 6 9 8 15
17 5 4 8 9 4 5 3 6 5 8 3 18
4 14 2 8 7 10 3 4 8 9 6 2 8
14 5 7 11 4 0 8 2 8 7 5 17
2 0 1 5 12 3 3 3 7 11 6 4 3
4 0 3 8 16 4 0 8 5 1 2 5 3 4
3 9 1 4 6 4 19 5 8 16 8 11
13 7 7 0 6 4 7 5 4 6 4 5 8 6
4 7 4 9 12 19 6 7 0 6 6 12
1 1 0 6 0 7 4 3 9 9 12 6 7 0
16 8 4 9 7 3 0 3 6 0 7 5 4 9
3 3 5 3 8 0 3 3 9 4 9 7 4 71
2 8 4 6 12 16 7 3 8 0 6 7 4
4 9 1 5 4 9 2 0 9 6 12 4 5 1
2 5 3 7 8 2 4 1 3 5 4 9 7 0 0
4 11 7 11 15 0 7 8 2 6 6 6
3 8 1 4 2 7 2 0 5 7 11 5 6 1

53 4 2 7 5 8 6
<>8 7 3

(STI,: OF ELEMENTS SUM
1 2 3 3 R-^

OF ROW ' 1 1 6 5 7

1 5
X COLUMN BEING FLAYED

INDICATES ROW 12 TO
BE FLAYED NEXT
(MAXIMUM COLUMN J SUM)

OF COLUMN 25 SUMS SO FAR SDK OF COLUMN SUMS
SO FAR (= 5784 + 5873)

4 0 7.5 0

7

2

n

t

R - Section

STEP ft .
STEP jt .
STEP 41

!t .

STEP n
0

Keypunch cards from the attached manuscript.

Second operator KP cards from attached manuscript.

Compare and correct, saving both corrected decks.

—_— Adjoin both decks and duplicate to handful size. Place
in front of this handful a starter card,with a 1 in col 6 and XY in col-?L
and a blank. ,ire a 521 panel to summary punch (see page U of CSM 315). '
Run the deck on the games board with Setup Change Switch 1 OFF. Continue

eit5®r hand °r right hand five diSits of Channel B overflow uo 100,000. tart with a row cnoice of .

CARD FORM

Choice Line V or V | -n n J
1 2 3 K 5

20 x 20 GAME MATRI X — KEYPUNCH MANUSCRIPT

in
;o l OPER B C N 10 20 I I 21 12 22 13 23 14 24 15 25 16 26 17 27 18 28 19 29
in
;o l

235 84 740 10
35X I I 110 11
3 5 X 12 120 12
3 5X| 13 130 13
35x ' 14 140 14
35X 15 150 1 5

35X 16 160 16

|35X 17 170 17
35X 18 180 18
35X 85 750 19
35X 86 760 20
35X 21 210 21
35 X 22 220 22
35X 23 2 30 23
35X 24 240 24

35 X 25 250 2 5

35X 26 260 26

35X 27 270 27
3 5 X 28 280 28
35X 87 770 29

16S X 00 000 30 80

I 799 82 720 31 74

888 00 000 00

245 84 740 10
45X! I I 110 I I

I45X 12 120 12
|45X 13 130 13
|45X 14 140 14 1
|45X 15 150 15
I45 X 16 160 16
|45X 17 170 17

I45X 18 180 18

|45X 85 750 19
[45X 86 760 20
14 5X 21 210 21
[45X 22 220 22

|45X 23 230 23

I45X 24 240 24

|45X 25 250 25
|45X 26 26C 26
|45 X 27 270 27

|45X 28 28C 2 8

|45 X 87 77C 29

I 66X OC OOC 30 80

|799 83 730 31
74

1 888 00 OOC 00

COLUMN CHOI CI 7HS JTTNCY HOW CHOIC-i FHEQUENCY CHOIC

Section

Havinv completed the required number of lines on step
. * fl.yth Huoi STEP • n- vinp: caapicbcu *—— - —r-

take an even number of summary cards (row :nd column choice for each line) and
order tofd!!cHn V ; split the deck in half by card count. The lower half
deck contains V and^olumn choice, the upper half Vr and row choice.

ZS_ V

V max = at line # ; V, 2nd max = at line
_« - ——

V min = at line J! ; \ 2nd min = at line

R ^
These four values will be found in the two cards on either side of the break in the
deck Tort each half deck on line number. Usin^ the sorter, sum the row c. i-
frequencies SSaliy then thru this line . , then thru all the lines. Mow

sun the column choice frequencies thru thisliney , thru this line y^and then

thru all the lines. Tabulate in chart below.

CARD FOHM: How or column choice in columns 1 and 2
Li n e n u m b e r i n c o l u m n s 3 » U , 5
V or V in columns 6 to 10
—n n

PROCEEDINGS

OF THE SECOND SESSION

- GUIDE -

February 13-15, 1957
Conrad Hilton Hotel

Chicago, Illinois

Appointment of Standing Committees

Motion for Formation of a Special Committee
on Systems Development

Proposals for Reference Manual and
Time Record Keeping

Report on History and Use of Automatic
Coding, by Mr. R. W. Bemer

Panel Discussion:
Mrs. M. K. Hawes

. Mr. D„ D. Carter
Mr. JR.. Q. Schnuek
Mr. M. H. Grosz
Mr. W. A. McGonigle

TABLE OF CONTENTS

Related
Appendix Thursday Afternoon Meeting ~

February 14, 1957

Report of the Meeting Place Committee
By Mr. Jack Price

Appointment of Local Arrangements
Chairmen

iii

Appendix Z

REPORT ON HISTORY AND USE
OF AUTOMATIC CODING

MR. R. W. BEMER of IBM: This business of the coding systems
cannot be covered in small talk such as this. It is an unholy monster
and has been going on for a number of years. Like many field of know
ledge, it has to divert itself greatly before we can cut it down to size
again.

Some of you here have been in this business for quite a bit of
time and are familiar with many of the things I would like to say here.
Others of you, I am sure, are not too familiar with computing systems
outside of the 702 and 705 and perhaps may not be aware of some of the
history and some of the reasons these things came into being.

Of course, it has not always been as good as it is today^and,
furthermore, what we now think is a good thing is terrible, it is going
to be improved in the future.

Inasmuch as I can cut this thing down, I would like to say that
many of these things I would have otherwise talked about here can be
found in some articles in Automatic Control magazine for March and
April and I think will provide some means of keeping this information
on tap. More or less the history of this business and all these articles
are directed towards the engineers but then I believe it applies equally
to people in the commercial field.

I have a rather large list here which you certainly are welcome to
look at later on. I have some 83 automatic coding systems which are
completed. The first of this was established in February of 1951 and,
as I recall that date, things at that time were in pretty sad machine
language at best.

The machine language at best is a poor language to work with for
it does not have any relationship, that I can find, to the program of
solving language and, if we never see it again, it will be too soon. I
hope that you feel the same way that I do because most of you are in
business to solve problems of one description or other.

I don't think that you should have any concern with the computer
itself. I think that you should be able to state your problem in con
nection with any particular model and in a language that the computer
will work for you.

Page 1 of 6

Report on History and Use
of Automatic Coding - Continued

Appendix Z

When you speak of the machine language, this means our lowest
level, the only language which the computer will understand. We
realize that we code problems now to do work, that the automatic cod
ing systems are further extensions of machine usage and so thev will
take over still another facet of our work. In other words instead of*
doing quickly the problems that used to take a lot of handwork and
comptometer work, the machine takes over in the same way and does
a good deal of the repetition in programming which we formerly had
to do. This is undoubtedly very fine but then it is not the end by any
means.

The next step up beyond that will be to provide learning and
intelligence in these programs and also let us guys that have to worrv
about making these automatic coding systems take advantage of the
machine also, and I will describe how this might be done.

,, * thlnk J-h(?se of you who have worked with machine language, with
J ' symbolic coding and so on, have enough experience in this

so that you are aware of the great savings you can make in manpower.
This computing business has been growing, at least ever since I have
been in it and if we keep on doubling people or programming every year
pretty soon the entire population of the United States is going to be
doing programming. Therefore, to eliminate the bottleneck, we have
o get good automatic coding systems going, far superior to the ones

that we have now.

I thim-,. that this will probably effect, within the next two years
savmgs on the order of ten to one, wherein one programmer will be'able
to do the work of ten and, if we can also do some other things we have in
mind, we will be able to make savings on the order of one hundred to
one. This will bring us down more to the realm of possibility.

In order to bring this thing down, I think that we have got to be
within a ratio of about fifty per cent of what we can do with automatic cod
ing systems as they exist now. We have got to write equations for opera
tions, the various statutes that are applicable and so on. There even if
we get a very fine language with which to describe our problem 'it is
going to be very difficult to cut it down too much more than we have now.
It is true that we will put it into English and that will make savings but
the processing is still quite large.

Page 2 of 6

Report on History and Use
of Automatic Coding - Continued

Appendix Z

What I would like to quickly tell you about is some of the plans we
have over at IBM to make this large savings for the future. The reason
that I say this is because the very name of your organization, "Guide"
should enable you to be guided by some of the things that I would like to
tell you. I do not want to worry you about them but I would like to have
you know as to what may be coming up in the future and slant your think
ing in that direction.

The program, after it is written, is essentially a depository of the
intelligence of the man that writes it. If you are doing a hand calcula
tion program, you can go through the thing because you have made the
calculations and you know how to do it. However, suppose that someone
else wants to do it and you have to teach them how to do it. If 500 want
to do it then you have to essentially teach them in a class or teach ten,
who, in turn, go out and teach the rest.

With programming on the computer this is not necessary any more.
The program, as you write it, has input and output from that point on
and, after that, you do not have to know what goes on inside. All that
you have to know is what you put in and what you want to get out on the
basis of such and such a process.

Now then, if we can do this sort of thing, we have reduced a good
deal of our labor. Let me tell you how this will help us in the future.

Two hundred years ago mankind was saddled with roughly a fifth
of a horsepower and books were written at that time to prove that it was
impossible to have more than that. However, as we know, we have
increased that so that there is available, to every person in the United
States, youghiy 200 horsepower at his own personal command. This is
in line with the cars and other mechanical devices we have in this coun
try. We have extended our power here and it hasn't seemed to do us any
harm.

It is now to the point where things have progressed to the point of
where they are pretty much beyond us. No one man is smart enough to
take care of our social and economic problems any more and the only solu
tion is to expand our brain power and we do this by linking together
various things. I believe that we can do this by linking together intelli
gence and knowledge of the people themselves in the problems.

Page 3 of 6

Report on History and Use
of Automatic Coding - Continued

Appendix Z

Obviously there must be some correlation between these things and
so this is what we have to do. We must devise learning programs for
the computers. I realize that there are many learning programs of a
simple nature. I now have reference to the work of Simon and Newell.
They have developed a logic machine that I think is going to have a lot of
implications. It is a computer but, instead of computing what you might
consider payroll, they program a logic.

The first problem they set the program to doing was proving the
mathematical theorems. I would like to illustrate that on the board
by the use of the normal triangle. This is a triangle and we have given
here equal angles and the problem is to prove that the opposite sides
are equal. Of course, we all know the technique used to do this. How
ever, the machine would do it differently. The machine has certain
learning mechanisms in which it alters its own program so that a good
programmer cannot predict what will finally be in the machine. Here
is what the machine does. It says "I have a side angle and it may
intersect. I know this by an angle side angle combination and, there
fore, I flip it over on itself. I will take a mirror image and drop it.
Therefore, it is on its side, superimposed on the same place. The
angle on the right is now the same angle on the left and so it must be the
same triangle. Now the side that used to be on the right hand side is
occupying the left hand position and the left hand side is now on the right
and so they must be equal". This is a much more intelligent proof than
the mathematics involved. Of course, this is only the start of these
things. We can reconstruct exactly how the machine thought as it went
around doing these things.

Therefore, what we are doing now is trying to find learning pro
cedures such as this, whereby the machine may alter itself on program.
It not only gives you a better and more efficient program but it will do
things that we as a single person could never have thought of before.

In the programming research of IBM, we have approximately 30
people right now and we expect to have up to 75 by the end of the year.
This recognizes just one thing, that a system for using a computer is as
important as the computer and, furthermore, they must both roll off the
line together in order to have a good system.

Page 4 of 6

Report on History and Use
of Automatic Coding - Continued

Appendix Z

Therefore, IBM is committed to producing these systems and we are
presently working on some better automatic coding languages which we
think will be far superior to anything we have right now. Of course, it
is going to take a few years before we can get them to you.

I think that the interesting thing will be this, that you will not have
to worry about switching. At this time we think that we are grown up
enough in this business to look ahead and we are designing this language
so that it will work on the most advanced computers.

We want to have a supervisory operation so that the machine
schedules itself, figures out what problems should be done next. If this
is done then we feel that we will then have a good means of making
various programs together.

Furthermore, if I have sequence to do, I like to make my accounts
payable and payrolls. If I have done payroll 34 and accounts payable 28
and various things, I would like to be able to say, "Do these in this order.
Accounts payable; payroll; Jones, Smith, Pete Brown". You have a
these names in very, very large operations and you will find, I am sure,
that your thinking with respect to both commercial sides of the prolems
will be greatly facilitated if you keep this method in your head, and I
expect many of you do that with profit there.

IBM has expended a great deal of effort on making this language.
I think so much that probably any one installation or even group installa
tion will not be able to afford it or profit by doing this particular thing
any more. Before the transition of 705, I know of exactly one person
who has a fair idea of what goes on all through the system. The people
that did the components did not know anyone else's part very well, and
this is only our present system. The system of three of four years in
the future will be such that it will be probably worked on by forty people
and not one of them will realize what goes on in anybody else's section,
and then when you find these learning techniques and the machine
statistically improves its own program, nobody, even the man who
originally wrote it, will be able to recognize it.

So, it is obvious that the manufacturer has the responsibility to
produce and use these systems and he will have to do it and it will take
plenty of manpower.

Page 5 of 6

Report on History and Use Appendix Z
of Automatic Coding - Continued

, N°w' 1 donTt like t0 hire any more than the next person, so I would
like to leave you with something in mind.

also a mirfrom^h?!1?^^ fr°m United Aircraft at Hartford and
J V A University of California Radiation Lab work on this'

while it was developed. They did three things by this. They helped the
th™vSemntra COm,pletio" 01 system. They learned the" inside of
wantPrtfn 1 fe r extent than the normal USer' s« if they wanted to make special variations for their own usage, they were in
o"h« neeonTe inh?he;„The W3S' they some" the
inforn^tion! busmess and shared and cross-pollinate ideas and

lu°Vld like t0 Pr°P°se that something like this might be
possible for the languages that IBM is going to develop now. We have a
woman from Bell Telephone Laboratories now working on the Fortran
systems with the 32, 000 word 704; and this apparently so far has
worked out very well for both the people concerned and the general
industry, because of the way we submit our system.

It will be to your advantage to contribute the man, if you have him
to spare, or have their services available, to use on a consXinTbas™
so we can try to work the language out. Be our guinea pig. Would you '
mind learning the language and trying it on a theoretical problem or
one you have in your shop? Only in this way will we know how to make

usag^ mSnkU;0mangUage * aPPliCaWe eTery0ne's purpose

Page 6 of 6

Why the Engineer Should Know
Computer Programming

One of the major expenses of setting up a modern high-speed
computer to do useful work is incurred by programming—the
science of translating a problem to terms and instructions that
the computer can understand and obey.

The type of problem affects programming costs ranging from
60 to 100% of the cost of the computer itself, which varies from
approximately $30,000 to more than $2,000,000 in production
models. If a program is poorly constructed, the running pro
gram can take many times as long as it normally should to pro
duce the desired answers.

With a trend now developing toward giving engineers more
direct access to computers, efficient use of these modern engi
neering tools charges them with new responsibilities. The con
cluding article next month will detail what the engineer should
know about programming.

BY ROBERT W. BEMER
Programming Besearch Dept.

International Business Machines

• The engineer knows his own prob
lem best. Simple economy dictates
that it is better for the engineer to
learn ONCE how to program any prob
lem for the computer, rather than his
explaining each new problem to the
professional programmer with result
ant loss of time and effort.

The man with the problem may also
make decisions "on-line," during the
course of the computer rim, from the
physical implications of the answers
as they are produced. These fine grad
ations of magnitude and interrelation
are immensely more significant to the
engineer, whereas the operator can
seldom be instructed to properly make
these often delicate decisions. The di
rect-user technique can greatly reduce
the computational costs of certain
types of problems by eliminating cal
culations along visibly fruitless lines
of investigation.

Actually there are two ways to re
duce costs of computer operations.
One is to reduce the actual labor
spent in programming, affecting sal
aries and overhead. The other is to
make the program more efficient from
the machine standpoint, thus mini
mizing operating costs in dollars per
problem solved. Both of these are of
vital interest to the engineer because
of the worth of his time. Further
more, management must be kept con
vinced that this profitable tool actu

ally makes money for the company as
well as reducing the complexity of the
engineer's tasks. These factors con
tribute to the many sound reasons
why the engineer should know and
understand computer programming.

Computers permit cooperative ef
forts between engineers which mini
mize the work each must do. When
properly constructed, computer pro
grams are "open-ended" and allow re
finements and additions to be append
ed at any time. After seeking compe
tent advice, the engineer inexperi
enced in programming should make a
modest start on a single portion of
his problem, which may then be aug
mented as planned or as initial results
demonstrate to be desirable. For
library purposes, the program may
then be considered to be the reposi
tory of the intelligence of the engi
neer concerning that particular prob
lem.

Furthermore, a computer program
tends to clarify and organize a prob
lem much as explaining it to another
person does, except that it is less gul
lible. When properly named, this pro
gram is now available as a component
in a larger problem. If a hand-calcu
lation is performed, only the results
of that specific case remain; the meth
od itself may not be distributed to
others except by a teaching process.
When coded for a computer, however,
it is available to everyone without re
gard to the internal process. It essen
tially becomes a "black box" and all

the user must know are the specifica
tions for the input and output. By
extension, it is possible for a group
of engineers to unify the whole spec
trum of their work. This complex of
programs now represents a unified
system, although programmed switch
es are usually inserted so that certain
portions of the calculation may be
bypassed when not required for a
specific application.

Thus, the computer affords the en
gineer the long-coveted opportunity
of shedding the drudgery of numeri
cal calculation in its most repetitious
forms. If the computation essential to
a certain class of problems is reduced
to a generalized form which automat
ically produces correct answers merely
upon specification of controlled input,
then the. arithmetic-bogged engineer
is free to do engineering in the true
and creative sense.

Vast engineering experience can be
gained in a minimum time with a
computer. Many of us know the old
hand who can predict the exact per
formance of a new airplane, the pre
cise way to design a boiler, or the ex
act proportions for the most efficient
bridge design. Few of these men are
born; most of them achieved such
abilities by intelligent correlation of
the cross-effects of many thousands
of variations in design, observed
through the many years of their ex
perience.

A computer can condense this ex
perience in time scale, processing
many thousands of variations in a
short time once the controlling condi
tions and formulae have been speci
fied. For example, instead of design
ing a single airplane and completing
the analysis slightly before the proto
type is built, aircraft engineers now
use computers to try hundreds of de
signs. They may make the final deci
sion and design selection on compara
tive epsts as well as performance.
Then too, many problems are now
solvable for which there does not exist
a classical method and so were only
roughly approximated heretofore. One
would hardly use a rigorous method
to solve a cubic equation on a com
puter; it is possible to solve a 50th

Reprinted through the courtesy of AUTOMATIC CONTROL, February 1957

order equation by iteration in not
much more time than it takes to push
the computer START button.

The engineer may find unexpected
sources of computing power in his
company. It is quite common for com
puters to make their advent at a com
pany through the accounting or pro
duction control departments. How
ever, the engineer who is cognizant of
the characteristics of computers and

programming is also aware that com
puters originally designed for doing
commercial work are capable also of
doing engineering work, and vice
versa. Most computer manufacturers
provide relatively easy programming
systems for performing these dual
roles.

It is important for the engineer to
know how to justify computers for his
needs, and in what pattern the work

TYPICAL ENGINEERING APPLICATIONS
FOR COMPUTERS

Until the engineer actually starts to investigate the programming
process he is not likely to be aware of all the opportunities for a
computer to serve him in his work. This list of typical existing
engineering applications should prove to be a useful guide.

AERONAUTICAL ENGINEERING

Aeroelastic, utter and vibration analysis
Armament systems evaluation
Bombing systems evaluation
Body and duct design, lofting
Compressible flow studies
Data reduction-telemetered, theodolite,

wind tunnel
Engine cooling
Fire control pursuit course calculations
Flight trajectory calculations
Fuel cell pressure analysis
Guidance problems
Guided missile optimization studies
Heating studies
High-speed instrumentation
Landing gear design
Load, shear and moment calculations
Nozzle design
Optical system design
Power plant performance calculations
Radar equipment design
Radar detection probabilities
Radar echo studies
Radio interference
Radome studies
Servomechanism calculations
Sound pressure analysis
Standard performance calculations
Wind tunnel balance computing

CHEMICAL ENGINEERING

Absorption analysis
Crude oil evaluation
Flash vaporization
Gas vapor cycle performance coefficient
Liquid-vapor equilibrium calculations
Mass spectrometer analysis
Multi-source planar diffusion
Pilot diffusion cascade data analysis
Pipeline design, stress analysis
Refinery simulation, production analysis
Tankage studies

MATHEMATICS

Algebraic equations—real and complex
Applied probability functions
Complex polynomials
Eigenvalues
Fourier analyses

Generation, tables of special functions
Linear programming
Matrix calculations
Minimize functions of two variables
Ordinary differential equations
Random -number generation
Random walks
S i m u l t a n e o u s l i n e a r a n d n o n - l i n e a r

equations
S i m u l t a n e o u s l i n e a r a n d n o n - l i n e a r

differential equations
Transportation problems

ELECTRICAL ENGINEERING

Circuit design and minimization
Circuit breaker design
Motor and generator core losses
M o t o r a n d g e n e r a t o r — c r i t i c a l s h a f t

speeds
Power system—economic operation
Power system—loading and losses
Power sub-station studies
Stability and transient studies
Transformer design

PHYSICS

Atomic power studies
Gamma ray attenuation
Neutron absorption breakdown
Nuclear calculations
Upper atmosphere research
X-ray crystal structure analysis

STATISTICS

Analysis of variance
Auto-correlation and,power spectra
Climatological statistical analysis
Least squares curve fitting
Multiple correlation and regression
Multiple bivariate frequency distribu

tion tables of weather elements
Quality control
Standard deviations and means

MISCELLANEOUS

Bridge and truss design
Traffic control
Cut and fill—road-building

load should expand. Certainly any
computer should go into reasonable
production to earn its keep from the
moment it is installed. Even with th^fe
most enlightened management it is
difficult to properly explain the
amount of preparation and program
ming which must be done in advance
of delivery. This is additionally com
plicated by the axiomatic condition
that while the most efficient machine
for the engineer is the largest and
most expensive, it is the most difficult
to initially load and justify.

Before the advent of automatic cod
ing systems, which relegate to the
computer itself most of the work
caused by the nature of the machine
language, there was an "open-shop"
versus "closed-shop" controversy in
the computing field. Programming for
a computer was a difficult and tedious
art to learn, with many "housekeep
ing" functions to be performed again
and again. Unfortunately, these func
tions were caused by the limita
tions of computers; they contributed
nothing to the solution of the problem.
Most computer-equipped companies
leaned to the closed-shop, teaming a
programming specialist with the en
gineer because they felt it was too dii^ft
ficult and expensive to teach program
ming to all of their engineers.

Although many inefficiencies were
thus created, a few companies pio
neered the open-shop and we are in
their debt for the methods that they
developed and for forcing the auto
mation of coding. Today the contro
versy is simply settled. Available
automatic coding systems (to be com
pletely listed in the first published
directory of them next month—Ed.)
now make it easy and worthwhile for
the engineer to do his own program
ming in a "problem-solving" language
rather than a "machine" language,
thus fully realizing the benefits of the
open-shop. All closed-shop people now
concentrate on fabricating the much
more intricate and intelligent auto
matic programming systems of the
future. • •

DATA Control
What the Engineer Should Know About Programming

How to Consider A Computer
Engineering is taking on a "new look." Computers are the logi

cal and more powerful successors to the desk calculator and the
slide rule, the previous working tools of the engineer. There is
really only one major difference: because of their necessary size
and cost to be so powerful, computers must be shared by a great
many users. This means a new concept of shared system operation
must be accepted by the engineer.

To help you get oriented, here are some vital considerations
affecting present and future computer use in your work and some
helpful sources of further highly specialized information.

BY ROBERT W. BEMER
Programming Research Department

International Business Machines

• A computer should not be rented
or purchased unless an automatic pro
gramming or coding system is fur
nished for its operation. The com
puter and the operational system con
stitute a matched pair, and one with
out the other is highly unsatisfactory
from the point of view of getting
work done at minimum cost.

For engineering work, any auto
matic system should contain provi
sion for indexing and floating point
operation, if these are not built in as
hardware, for they are the two most
vital features for easy usage. Index
ing allows for algebraic array nota

tion, which in turn makes for easy
understanding of how a problem
should be programmed. Floating
point, although it may sometimes in
troduce either spurious accuracy or
loss of it to the uninitiated, prevents
a Gordian tangle of scaling difficul
ties from cluttering up the problem.

HOW CODING SYSTEMS HELP

Automatic coding systems have by
no means reached their ultimate effi
ciency or sophistication, yet remark
able savings in programming costs
have already been achieved, some
times by an order of 50! For the best
of the present systems it is a reason
able estimate to say that they can, in
general, reduce the programming

costs and time to a tenth of that re
quired to code in stubborn machine
language.
There have been many attempts to
relieve the burden of programming
through special coding systems of all
types. The data sheet on computer
coding systems is not only an inter
esting history of growth, but is also
presented for the edification of those
now entering the field with incom
plete knowledge of what code to use
for their machine. The time may come
soon when you will be using a com
mon language exclusive of the char
acteristics of any particular computer.
Thus, with an automatic translator
for each different computer, a run
ning program may be produced for
any desired machine from the single
original problem mid procedure state
ment in the common language. Credit
is due to Dr. Saul Gom of the Moore
School of Electric Engineering for
first championing these principles.

GOOD COMPUTER OPERATION
IS STATE OF USER'S MIND

It is axiomatic that a computer
should never stop, run useless prob
lems or be subjected to manual oper-

66

ation and dial-twiddling. To do so

beneMSHeT engineers of its Denent. Here are some detailed eon
siderations pertinent to good com
puter operation:

ftlv Ca? d? °nIy what it is explic-
must°beerd t0 d°' and this ordering
must be done eventually in its own

• The reliability of most present-dav
n7Pr"hf„i8S0high'ha'»»°' ™

sxrjrrSiiri.'T" Wrong aMw™

or m!Lf fr°m equation,

•Allow for growth when doin? the
original planning. Build ta ajj!*

the Ir'8®8' "f" 00sts wil1 if e entire problem must be re-nro
~ A stor?-Pr°gr*m may al
ways be corrected or augmented to
give exactly what the engineer de

toJoSthê SPeda' effort repetition justifies the

taction* Z??,"*' pIan ""Meter
bl fr n efully 311(1 all°w flexi-
eteis Thpl ^? lndividual parameters I he computer may surprise von
ui1„°rT(r.-tiat ""M "™«er ?al

•? °Ptlmum conditions may be
iZtfol Te T eXpeaM r i-• To make certain that the

mitUan/ answers consistent
with band-computations, first test the
program on the machine for a specific
combination Time this run. Then
multiply this time by the total num
if the P*r?me.ter combinations to see
fost If M nal fGasible in time -3
for- w 1 eters are combined
for N values each, the total number
of combinations is NM r

For example, with 6 Parameters-
6 values for each will produce 46 666
combinations; 5 wiu pLuce ifeg6

4 will produce 4,096 '
The moral: Don't triple the cost of
your problem if you are engineer to

a curve through one less point

FUTURE COMPUTER
LANGUAGES R

New synthetic languages are in rt,0
process which will affect your use of
computers. As problem-solving lan
guages they will be much superior 1"
Present systems in these ways:

1. Even though the binary tyne of

work, the need for th commerc>al

2£S®!?SS
»•"> He converse to oJpuHiuS

W8USu1o?Vthe~

4U»:^R,S °FTHE

sist of real at proeedures may con-
guage Idiom w m a 'ivlnS lan-
proSmTSi T" be s»f «•" the
spoken language withl * 1 any

age, with minor changes

AUTOMATIC CONTROL
MARCH 1957

I) V I A < o n l r o l

COMPUTER

I.B.M.
704

SYSTEM NAME
OR ACRONYM

R-S
Cage
Fortran
NYAP
Pact 1A
SAP

Sperry-Rand

1103 A

Compiler I
FAP
Mishap
Trans-Use
Use

DEVELOPED BY

Las Alamos
Oeneral Electric
I.B.M.
I.B.M.
(See Pact Oraup)
United Aircraft

1103
Chip
Flip /Spur
Rawoop
Snap

Boeingr Seattle
Lockheed M.S.D.
Lockheed M.S.D.
Hoiloman A-F.B.
Ramo-Wooldridge

SYSTEM TYPE

3

Wright Field
Convair San Diego
Ramo-Wooldridge
Ramo-Wooldridge

I.B.M.
705

Autocoder
Fair
Print I
Symb. Assem.
SOHIO

I.B.M.
Eastman Kodak
I.B.M.
I.B.M.
Std. Oil of Ohio

Sperry-Rand

Univac
I. II

AO
A1
A2
A3
AT3
BO
BIOR
GP
NYU
Relcode
Short Code
X-l

Remington Rand
Remington Rand
Remington Rand
Remington Rand
Remington Rand
Remington Rand
Remington Rand
Remington Rand
New York University
Remington Rand
Remington Rand
Remington Rand

I.B.M.
702

Autocoder
Assembly
Omnicode
Script

I.B.M.
I.B.M.
G.E. Hanford
G.E. Hanford

I.B.M.
701

Acorn
Bacalc
Douglas
Dual
607
Flop
Jcs 13
Kompiler 2
Naa Assembly]
Pact I
Queasy
Quick
Seesaw
Shaco
So 2
Speedcoding

Allison G.M.
Boeing, Seattle
Douglas Sm
Los Alamos
Los Alamos
Lockheed Calif.
Rand Corp.
Ucrl Livermore
N. Amer. Aviation
(See Pact Group)
Nets inyokern
Douglas Es

Los Alamos
I.B.M.
I.B.M.

2
2

1,2 |

1

OPER.
DATE

Nov. 55
Nov. 55
Jan. 57
Jan. 56
Jan. 57
Apr. 56

Mar. 57
Oct. 56
Oct. 56
Nov. 56
Feb. 57

Jun. 55
Mar. 55
Aug. 55

Dec. 56
Jun. 56
Oct. 56
Jan. 56
May 56

1.2

Ctc
Dot I
Ugllac

Purdue Univ.
Electro Data
United Gas Corp.

I.B.M.
650

Ades II
Bacaic
Baiitac
Bell
Ctc
Druco I
Flair
Mitilac
Omnicode
Sir
Soap I
Soap II
Speed ceding
Spur

Whirlwind

Burroughs
Ferranti
llliac
Jehnniac

Nore
Seac

Naval Ordnance Lab
(toeing, Seattle
M.I.T.
Bell Tel. Labs
Carnegie Tech
I.B.M.
Lockheed Msd, Ga.
M.I.T.
G.E. Hanford
I.B.M.
I.B.M.
I.B.M.
Redstone Arsenal -
Boeing, Wichita

Algebraic
Comprehensive]
Summer ses.

M.i.T.
M.I.T.
M.I.T.

Easiac
Magic

Univ. of Michigan
Univ. of Michigan

1.2

Transcede
Dec order input]
Easy fox

Base 00

Burroughs Lab
Univ. of Toronto
Univ. of Illinois
Rand Corp.
Naval Ordnance Lab
Natl. Bur. Stds.

I May 52
Jan. 53
Aug. 53
Apr. 56

| Jun. 56
Dec. 56
Apr. 55
Jan. 55
Feb. 54
Apr. 56
Feb. 51
Jan. 56
Apr. 55
Jun. 54

X I Propos
X I Jul. 55

Jul. 55
May 53
Mar. 53
Sep. 53
Mar. 53
Dec. 53

Jun. 55
Jan. 55
Jun. 53

Apr. 53
54

Apr. 53

FL PT

M2
M2
M2
M2
M2
M2

M
M
M
M
M
M

SI

M/Sl

S 1
S 0
s 1
S 2

M/S | 2
S I 0
S 0
— 1
s 1

COMMENTS

S2

SI

SI
SI
SI
SI
51
52

S2

— S

2
0
2
1
1

1
1
1
1
2
2
1
1
1
1
1
1

Modified Pact I for 704
Official Share Assembly

Magn. Tape Assembly + Correction

Official for Use Organisation

Similar to Flip
Spur Unpacked, Twice as Fast
One-Pass Assembly
Used with Rawoop

May bo Assembled on Acctng. Equip.

— S

S2
SI

s
s
s
s
s

Fortran-Like, Output To A3, I +
Runs on Univac I + II
Primarily Business Data-Processing
For Expert Programmers

Runs on Univac I + II

May be Assembled on Aectg. Equip.
Super-Script

X Ineomp

Feb. 56
Aug. 56
Jan. 56
Aug. 55
Dec. 56
Sep. 54

| Feb. 55
Jul. 55
Dec. 56

, May 56
| Nov. 55

Nov. 56
Sep. 55

I Aug. 56

S2

SI

— I 1
S
s I o

S2

Nov. 52
Jun. 53

Aug. 54

Aug. 54
Sep. 52
Oct. 55
Feb. 56

S2

SI
51
52

SI
SI
SI

(M)
SI
(M)

s
s
s
s
s
s
s
s
s
(M)
s
s

1
1
2
0
1
0
0
2
2
2
2
2
0

Modification of 607

Also Assembles 704
Most Programs run on Pact IA

Double Quick for Dbl Prec

S2
SI
SI

SI
SI

Ml
SI

M2

S
S
S
M

Must Process on 701
For all 650 models

Output Processed by soap

For all 650 models
Must Process on drum 702
Operates with soap I, II

For all 650 models + variations
Resembles 701 speedcoding
For ail 650 models

Pact Group Contains Douglas Sm, Es, Lb, Lockheed Cal, Nats, N. Amer., Rand

68

'HAN eoding0"^^™11 ,as lhe «*•
tWMhtod tor ase by

ab°ut the intent nf .? onable guess
when some omission or J2ammer

language rules occurs Li ?tl0n of

oedures will be in™ ' arnmg pro-

statistics of previous o advantage of
Pt»v. the pSr„r? » to ta-
TI».TOAY4INST?FCM,ES-
creativity where the It! °m °f

may originate JL te Pressor
>k. atateS from

solved, rather than tv m to be
-TO. TO STFNFR" •— "™-

eed^0^"" potion ,„rp„.
been determined in baving
the before-and-after ^ Jn.kages by
the components Zj* for
*«« Cario
being used to determS / 6ady

of occurrence 7° * fre<ple™ies
bv.nehin^ethf°' vanous logical
ftont »•
by taking these tent,? • pro^ram
<>. TheTff lc t 'nc s n s , f
vartons and graded comZf n, 1 ?e

computer system wiliT of tbe

IkeprograiTcieirr^'

£££*£* ~ aro

•'ted which''w™e prog'"™ bfe ™e'
computation, ^m^other ^evds

coon l °l SVMB°«

"Terms Used In A«-

B-boxes exist in^lrhi '"t6* re&isters or S) Simulated in th„„ne hardware.
1) Limited form oitl" het,c language direetionally or h5' ,e'ther stepped uni-

certain registers T?rd only" having
address positions Si Le to only certain combination). not compound (by
be indexed'1 by°a™y any addres3 may
registers. whiehm.„w°r.a c°mbination of
or decremented hS o„ free'y Incremented sociated loon tnriSi., amount. Have as-PLOATING ^>T •? instructions, hardware. ' inherent in machine

sfiEhteVVoh„Vmhet,c ,an*ua^
; »Lttabtieer regr,onal- reIatlve or "Hy deaprinfixrA —t,

or
of

exact,y comp^'b^er regional, relative
symbol lcomhinSoC/ilp^ive, where a word
lhe contents of thS maI be descriptive of ALGEBRAIC A 1 aaa'sned storage,
braic formula utot sln^Ie continuous alge-
processor contifnfmentuma7 be made. The 'nsr the asaociatlvl meohanisms for apply!
of algebra to fnrXf A commutative laws ra to form the operative program

Snbm^SmP°Sed on tbese. Boot-
which will allowaeevenelh! C°nsidered

d e v e l o p s t h e p r o c e l s * t o W b °
portion of his work l * a good
aliv hv pof k done automatic-

Jmn?v °f suPer"Computers. Th

St Eone! have C°0U?,"'rc

SSRSS-

prior to L« ?• by the Processor l or to execution time but win i
created during a brekk in 1 !-b<J

particular contingency Altf^Vh1" 3

supervisors will Con' ^flth°l^h tbese
for a while it i« • gnetle tape
VCCI DRR""'!.""" "TO"
ware eventual],, t,eh»rd-»*ss% tr
nent. 7 otiler compo-

is a ten / speetrum of machii]
s a tremendous waste of effort ai

money on the part of both the ' n
facturers and the users.

FUTURE COMPUTER SYSTEMS
Future computer operation, which

strongly influences the design of the
P^ammmg languages, h?s some
v tally interesting possibilities. In this
glimpse, the picture presented here is
dependent upon three axioms:

AUTOMATIC CONTROL

• Faster computers always lower the
dollar cost per problem solved, but
not all companies will be able to af
ford the high prices of the next gen-
MARCH 1957

mto °? * hu!?c ce»"»< »
Puter can eliminate the discrete
quisition of multiple smaller c<
Z™* m°genize the entire str
ture of usage, and allow a smal
and more numerous class of user h

timet th * tappinS a market ma
wHh turret? °f PreSmtly Project
access PraCtlCe in comp«t

Assuming the availability of nra

terns Tis™6 ?°mmunication sy

P ^ R " R , O " » -
rent in?? I they woul< rent input-output equipment al

T • difference. This peripheral
equipment would perhaps be 3

charged f'06 ?US 3 variable usaae
most level no°fn"Ilnear basis- Tbe top-

,, ei of supervisory routine
would compute these charges on an
actual usage basis and bill the cus-
tomer in an integrated operation

recognizable to operations research

people as the Scheduling and Queuing
Problems.

Using commutative methods, just
as motion pictures produce an image
every so often for apparent continu
ity, entire plant operations might be
controlled by such super-speed com
puters.

These future hardware capabilities
(and few competent computer manu
facturers will deny the feasibility,
even today, of super-speed and inter

leaved programs) demonstrate a press
ing need for an advanced common
language system so all users con
cerned can integrate their particular
operations into the complex of con
trol demanded by an automated fu
ture.

Just one last prediction—the engi
neer who is going to be at the top of
his profession in the years to come
had better become a computer expert,
too.

A WORKING GLOSSARY OF SOME AUTOMATIC CODING TERMS

AUTOMATIC CODING — Systems
which allow programs to be written
In a synthetic language especially de
signed for problem statement, which
the processor translates to presum
ably the most efficient final machine
language code for any given com
puter. Usually such a system will ex
amine one entry at a time and pro
duce some amount of coding which is
determined by that entry alone.

AUTOMATIC PROGRAMMING—Sys
tems further up the scale of complex
ity, where the computer program
helps to plan the solution of the prob
lem as well as supply detailed coding.
Such systems usually examine many
entries in parallel and produce optim
ized coding where the result of any
single entry depends upon its Inter
actions with other entries.

ASSEMBLER—An original generic
name for a processor which converts,
on a one-for-one basis, the synthetic
language entries to machine instruc
tions. This process occurs prior to the
actual execution of the working pro
gram. It is a one-level processor
which can combine several sections or
different programs into an integrated
whole, meanwhile assigning actual
operation codes and addresses to the
instructions.

COMPILER — Generally a more
powerful processor than the assem
bler, although there is a great deal
of confusion and overlapping of
usage between the two terms. The
compiler is capable of replacing sin
gle entries with pre-fabricated series
of instructions or sub-routines, in
corporating them in the program
either in-line or in predetermined
memory positions with standard mech
anisms for entry from and exit to the
main routine. Such compound entries
are sometimes called "macro-instruc
tions." The basic principle of a com
piler is to translate and apply as
much intelligence as possible ONCE
before the running of the program,
to avoid time-consuming repetition
during execution. It produces an ex
panded and translated version of the
original, or source program. Accord
ing to the ACM, a compiler may also
produce a secondary synthetic pro
gram for interpretation while run
ning.

FLOATING POINT—Number nota
tion whereby a number X is repre
sented by a pair of numbers Y and Z
in the form: X = Y "B2 where B is
the number base used. For floating
decimal notation the base B is 10; for
floating binary the base is 2. The
quantity Y is called the fraction or
mantissa, and in the best notation
O = Y — 1. Z is an integer called the
exponent or power.

GENERATOR—A generator is a
program which writes other programs,
usually on a selective basis from
given parameters and skeletal coding.
It may be either a character-con
trolled generator, so that it selects
among several options according to a
preset character matrix, or a pure
generator, which writes a Program on
the basis of calculations which it
makes from the input data. Almost
all assemblers and compilers have
generating elements in some form.

INDEX REGISTER — A register
whose contents are used ^ auto
matically modify addresses incorpo-
rated in instructions just prior to
their execution, the original instruc-
tlon remaining intact and unmodified
in memory. It may either be built to
the hardware and circuitry of tne
computer or be simulated by the pro
gram The original unmodified ad
fresses are termed P^^ive the
modified addresses are termed
tive.

INTERPRETER—In contrast to an
assembler, compiler or Bener ,
source program designed f^or nte:rpr^
tation is converted to an object P
gram which is not in machine lan-
luage when run. The interpreter it-
felf is an executive program which

witli the^object* program, ays

exe'cution*

E25S& the

instructions just before they ase^ ex
ecuted Each entry in the interpretive HMMPE
Hons from the object Instruction.

MACHINE LANGUAGE—The w,r®d"
in ctrcuftry language at a low logical
level which is intelligible to the com
outer It should seldom be used to
code problems because of ;
ties of usage at this levei
tendency to error.

OBJECT PROGRAM—The output of
the processor when it has translated
the source program to either machine
language or a second level synthetic
language.

PROCESSOR—Also called a trans
lator. this is a computer pr°^raI"
which produces other Pr°^ra™s' j.
contrast to programs which are
working and produce answers.

SOURCE PROGRAM—The original
program written to solve problems
and produce answers, phrased in tne
synthetic language.

69

PRINT 1 AN AUTOMATIC CODING SYSTEM FOR THE
IBM 705

Reprinted from Monograph No 3
JOURNAL OF THE FRANKLIN INSTITUTE Series

April, 1957

Second Session

PRINT 1—AN AUTOMATIC CODING SYSTEM FOR THE
IBM 705

BY

ROBERT W. BEMER 1

PURPOSE

PRINT 1 is an automatic coding system for the IBM 705, primarily
for use in scientific and engineering applications. It is fully symbolic and
provides simulated floating point operation and index registers. It is not
to replace or supersede the Autocoder system for business and commercial
problems although it has this capability in a more limited form if needed.
Both are concurrent products of the Programming Research Department
of IBM, differing primarily in emphasis of application. There is no need
to fuse the two systems inasmuch as better and more advanced common
language systems are presently being developed.

HISTORY

The development of PRINT was essentially an emergency measure to
have an engineering computing system for the "705" in operation as soon as
possible. For this reason, PRINT is not at the level of the FORTRAN
system for the "704" and advantage was not taken of the total automatic
coding knowledge available at its conception. Coding was started in Feb
ruary 1956 and the system was being tested by the first customer at the
end of July. Because of the interpretive nature of PRINT it was actually
completed before Autocoder and FORTRAN. Copies of the completed
system were distributed generally with the manuals in October 1956. The
responsibility for maintenance and further development of the system now
lies with the Applied Programming Department of IBM.

USAGE AND EXPERIENCE

PRINT 1 is in operation in the field and may be considered rather
thoroughly tested at this time although, as with the computer itself, con
tinuing maintenance is required to add improvements as they become obvious
or are requested by the users. Such changes will not be allowed if they
refute the fixed principles of operation or introduce incompatibility. By
the last count there are 28 installations either using or programming to use
the PRINT system when delivery permits. Many of these have had fairly
extensive experience by this time and have given helpful comments and
suggestions.

1 Assistant Manager of Programming Research, International Business Machines
Corporation, New York N. Y.

29

30 ROBERT YV. BEMER

PRINT 1 has given much evidence of the potential of current automatic
coding systems. One example is furnished by the A. O. Smith Corporation
of Milwaukee, Wisconsin, a long time user of computing equipment. In
their initial attempt, a portion of a problem formerly requiring 305 instruc
tions in "705" machine language was recoded using 8 PRINT instructions.
With a relatively small staff, the A. O. Smith people feel that it might have
been impossible to get into satisfactory operation so soon had it not been
for the availability of PRINT 1. I should add that we also owe them (Bob
Brittenham in particular) a debt for the many excellent suggestions leading
to some of the best instructions in the PRINT repertoire.

Another example was furnished to us by Westinghouse Electric at
Sharon, Pennsylvania, where one of their best programmers had previously

a magnetic field parameter study. This program contained 2300
705 instructions and required a week to write, a remarkable feat in itself,

LO CA TIO N OPERA TIO N
CODE

VARIABL E F IELD
CO MMEN TS

6 - . 10 I I - - 11 14 .

1
i

RPT -1,0, (Interval), 0

1
TSC A, XSUB 1, XTEST

1

\~
SUB , PAC 2, TEMP 1 f (x j - f (X ,)

1

1

SUB r XTEST, ARG 2. TEMP 2 Xfest _

V tV-I f

X__,
1 SUB ARG 1, ARG 2

\I "

—ir* 1
Vi 1

1 D1V TEMP 2 (PAC 1 implied
Ici —

as divisor)
1
1

PMA PAC 2, TEMP 1. RSULT
S T *

FIG. 1.

rSdav's^inst'1? nearlyu°"e 'nstruction written per minute. M
the problem in ZS SV" ^ USC °f the PRI*T 1 system, he recod
Examples like this ' f t instructlons. and took only 20 minutes to do !
40 to 1 ratio between" "705""r C°"tention that there may be as much as
written and in this S mstructions executed and PRINT instructio
to less'than a hundredth'of'"^'?'''^ l° Wr'te ** proSram was reduc

are perhaps exceptional but it is '"•! erIy re<lllired- Such exampi
(not programminp-l Pff' *. 4u,te generally true that detailed codii
use of this ar^Tother moder "» * "by « '«or „f 10 ,1,rough .
the Carnegie Tech Compiler BACAIcTy8 Syslems such as FORTRA

Another significant ? ' BZero and OMNICODE.
Two people from Nation"?Sun"^ i'^ PRIN1 c,ass at Westinghou:
vious computer experience at JT^ *** had had no pr

in PRINT without having ever learned T*6 successful proSrar
g ver learned to program for the "705" itself.

PRINT 1 31

SIMULATED HARDWARE

Since the "705" is not provided with hardware usually considered vital to
easy programming of scientific problems, such hardware had to be simulated
within the coding system. Floating point arithmetic is furnished in one
of three system tapes, for fraction lengths of 8, 10 and 12 digits, with
mathematical subroutines to corresponding accuracies. Three index reg-

Non-
indexable

operations

ATR Alternating TRansfer TNZ Transfer on Non-Zero
BSi Backspace tape "i" TRM TRansfer on Minus
LVE LeaVE PRINT TRP TRansfer on Plus
RCD Read a CarD

TRU
RPL RePLace

TRU TRansfer Unconditionally

RPT RePeaT TRZ TRansfer on Zero

RWi ReWind tape "i" TXi Transfer testing indeX limit,

RWR Repeat With Reset (PAC1) augmenting "i"

SRi Set index Register "i" WCD Write a CarD

TMi write Tape Mark on tape "i" WHi Write a Heading, space "i"

TNi Transfer Not testing limit, WLi Write a Line, space "i"
augmenting "i" XTP eXTract Power

Special ADC ADdress Constant FLC FLoating Constant
operations BLK BLocK HDG HeaDinG

CON CONstant ORG ORiGin
DEL DELete REG REGister reservation
FIN FINish SAY SAY it

Indexable
operations

ADD ADD MPM Minus Polynomial Mult.—add
ART ARcTangent MPY MultiPlY
DIV DIVide PMA Polynomial Multiply—Add
EXD Exponential," Decimal base RTi Read Tape "i"
EXE Exponential, base E (e) SAC Sine And Cosine
FLO FLOat SQR SQuare Root
FPR Fix for Printing Rounded SUB SUBtract
FXP FiX for Printing TAB Transmit ABsolute
LGD LoGarithm to Decimal base TMT TransMiT
LGE LoGarithm to base E (e) TNA Transmit Negative Absolute
MAD Multiply — ADd TRC TRansfer on Comparison
MDV Minus Divide TRE TRansfer on Equality
MM A Minus Multiply — Add TSC Table Search on Comparison
MMY Minus MultiplY WTi Write Tape "i"

FIG. 2. Summary of mnemonic codes.

32 ROBERT W. BEMER

isters which may be used compositely are furnished, together with corres
ponding limit registers for incremental loop termination. Memory images
for the printed line, heading and card form are symbolically addressable
so that the programmer has the feeling of actually addressing type wheel
or card column. Other special registers, such as pseudo-accumulators, also
maintain invariant symbolic addresses.

OPERATION
COOE

1 1 - - 13

V A RIA BLE F IELD

• 0

TRZ TRADD, TEST Transfer to TRADD If (TEST) ore zero

TNZ TRADD, TEST Transfer to TRADD If (TEST) are non-zero

TRP TRADD, TEST Transfer to TRADD If (TEST) are plus

TRM TRADD, TEST Transfer to TRADD If (TEST) are minus
TRU TRADD Transfer to TRADD unconditionally

RPL ADDR1, INSTR Replace the 1st address In INSTR by ADDRI

XTP FIRST, SECND Give (SECND) the same power as (FIRST)

SRI A n , A | | m Set contents of R| to An, limit to A llm

TNI TRADD , A A Auynent R j by A A , transfer to TRADD

TX! TRADD, A A Augment R, by A A, transfer to TRADD only If

new (Rj)< llm.. Otherwise proceed.

RPT n» ± ' r ± I r ± k Repeat (perform) the next Instruction n times, Index-

Ing Its 1st, 2nd, cmd 3rd addresses, at they exist.

by I, |, and k words lenflthi respectively.
RWR n , A i , A J , A k Reset PAC1 to zero, then operate same as RPT. ±1,

A] and A k may all be prefaced In RPT and RWR

by an * to Indicate Indexing by number of char

acters, not word lengths.

LVE TRADD Leave PRINT. Next Instruction Is next X)5 Instruct-

Ion If TRADD Is not written. TRADD If written.
BSI n Backspace tape 1 for n records.
RWI Rewind tope 1 .
TMI Write a tape mark on tape I .
WLI UNIT, n,TRADD Write a line. UNIT Is tape t or printer. 1 Is the

space control after writing, n, TRADD Is optional

Write n lines, transfer to TRADD rather than
write the (n+l)th line

WH! UNIT, n, TRADD Write a heading. (Equivalent to WL1) .
WCD UNIT Write a card. UNIT Is either tape t or punch.
RCD UNIT, TRADD Read a card. UNIT Is either tape t or printer.

Transfer to TRADD on end-of-flle condition.

(Optional specification of TRADD).

FIG. 3. Summary of non-indexable operations.

PRINT 1 33

INSTRUCTIONS
PRINT instructions are written in a variable form with a variable

number of operands or specifications separated by commas. A single in
struction may trigger several actions which are effectively coincident. A
coding kernel for table search and linear interpolation is shown in Fig. 1
(refer to Figs. 2, 3, 4 for explanation of the instructions). The table search

OPERATION
CODE

VARI A BLE F IELD

14

C OMMENTS

-80

ADD 0PER 1 , 0PER2, SUMM (0PER1) + (0PER2) » SUMM

SUB 0PER 1 , 0PER 2, DIFF (0PER1) - (0PER2) - DIFF

MPY MLPLR, MCAND , PRDCT (MLPLR) (MCAND) PRDCT

MMY MLPLR, MCAND , NGPRD -(MLPLR) (MCAND) <• NGPRD

DIV DVDND, DVS0R, QU0T (DVDND) + (DVS0R) - QU0T

MDV DVDND , DVS0R , NGQU0 -(DVDND) + (DVS0R) *- NGQU0

MAD MLPLR, MCAND, CRSFT (MLPLR) (MCAND) + (PAC1) *- CRSFT

MMA MLPLR, MCAND, CRSFT -(MLPLR) (MCAND) + (PAC1) - CRSFT

PMA ADDND, MCAND, RSULT (ADDND) + (PAC1) (MCAND) *» RSULT

MPM ADDND , MCAND , RSULT (ADDND) - (PAC1) (MCAND) - RSULT

SQR SXTY4, EIGHT "V (SXTY 4) *" EIGHT

SAC ANGLE, SINE, C0SIN sin (ANGLE) * SINE, cos (ANGLE) C0SIN

ART TNGNT, ANGLE tan 1 (TNGNT) - ANGLE

LGD NUMBR, DECLG log]n (NUMBR) DECLG

LGE NUMBR, NATLG log„ (NUMBR) NATLG

EXD EXP0N, TEN2X antiloq (EXP0N) " TEN2X

EXE EXP0N,E2THX antilog (EXP0N) E2THX

(FSR) ARGUM, RSULT function (ARGUM) RSULT

TMT HERE, THERE (HERE) *" THERE

TAB MINUS, PLUS |(MINUS)) * PLUS

TNA PL/MN, MINUS |(PL/MN)| MINUS

TRC TRADD, THIS, THAT Transfer to TRADD If (THIS) - (THAT)

TRE TRADD , TFHS , THAT Transfer to TRADD If (THIS) x (THAT)

TSC ± A, TABLE, ARGUM Search argument table for first number - (ARGUM), be-

ginning al TABLE. f(TABLE) is ±A word lengths away.

WTi BEGIN, ENDD, TRADD, TM Write all successive words from BEGIN to ENDD, inclus-

|ve, as 1 record on tape I . Transfer to FRAUD It end-ot-

file Is reached, write tape mark if TM Is written.

RTI START, TRADD Read record from tape 1, filling as many successive locat

ions as on record, beginning with START. Transfer to

TRADD if a tape mark Is encountered.

FXP FLNUM, t, wW, dD , s Fix (FLNUM) x 105 for print in line Image, decimal point
in type wheel t, with w whole numbers and d decimals.

FPR FLNUM , f, wW, dD , s Same as FXP, except round the number when fixing.

FL0 C0LXX, n,R/L s, FLNUM Take the n digit number with units position In column XX.

Move the decimal point R(ight) or L(eft) s positions. Put

In floating point format In FLNUM.

FIG. 4. Summary of indexable operations.

34 ROBERT W. BEMER

is initiated by the first two instructions. Both a coarse and a fine search
are caused, and on completion both the bracketing table arguments and their
corresponding functions may be found in special locations.

Although it is more desirable to code throughout in PRINT, it is possible
to exit and code in symbolic "705" language temporarily. This allows both
for the writing of special portions of programs and for PRINT instructions
to be altered during the running of a problem. An example of this latter
usage would be the generation of a program for the solution of N simulta
neous equations with B sets of answers. Although the solution requires
only 11 PRINT instructions for fixed values, it would be normally wasteful
to write a new section of program for every case. It is sufficient t<> write
the general program and use "705" instructions to modify it according to the
prevailing values of N and B.

LOCATION OPERATION
CODE

VARIABLE FIELD COHMCNTt

• - -10 II- -13 14- .«
HEAD | WHT T6, 20, PAGES PAGES. LINES and LASTL are u»d
C0MP]U as convenient mnemonic names for

1

1—
WLS T6, 9, LINES the associated Instructions. The first
TRU C0MPU line therefore reads!

LINE js WLD T6, 4, LASTL
1

1
TRU C0MPU "Write a* Heading, Triple space,

LAST IL
f—

WLI T6 on Tape 6 - write 20 PAGES. "
1 TRU HEAD

PAGE |S (continues computation after 20 paaes are written)

FIG. 5.

INPUT-OUTPUT INSTRUCTIONS

Special consideration was given to the input-output instructions in
PRINT to assure their having facility at least equal to that of the arithmetic
and logical instructions. Their actions are described in the lower portions
of F'gs. 3 and 4. FXP and FPR (FiX for Print and Fix for Print
Rounded) and FLO (FLOat) are definitely oriented to the formats of the

can havmg a11 Pertinent information specified in the vari-
af e, e. ' , ey a °w programmer to be unconcerned with the positions
of decimal points throughout calculation; yet he may enter fixed point
decimal input and produce fixed point printed output, pirhaps without even
being awart, that internal operation is in the floating point mode.

PPTNTVTe V pr0grammmg manual (32-7334) available for the
11 Ti' i! f ,S "0t need to show many examples as there

norma ly would be for a paper of this type. [have excerpted a single

pages, each with a &%£$£ ̂ SZ ̂ oiV' ̂

PRINT 1 35

INTERNAL OPERATION

Certain definitions are adopted from the 704 FORTRAN system in order
to understand the hybrid operation of the PRINT system. A program
written in the synthetic automatic coding language is called a "source" pro
gram. It is processed by a translator to produce an "object" program,
which may be produced in either a machine language form, a still symbolic
intermediate language such as that of an assembly program, or pseudo-
instructions for minimum interpretation. PRINT falls into the last
category.

Although interpretive in execution, meaning that the required machine
language instructions have certain portions fabricated while the problem
is running, PRINT is not equivalent to the usual interpretive program of
early days in computers. PRINT language is freely and descriptively
symbolic, much the same as any compiler, and instructions do not bear a
recognizable resemblance to the object pseudo-instructions produced by the
pre-editing, or translating, process. Thus the name—PRe-edited INTer-
pretive. Pre-editing does both assembly and conversion of all components
of the synthetic instruction to a pseudo-instruction in a form most rapidly
used at execution time, essentially following the first compiling principle of
doing all repetitive processing once and for all wherever possible. In
PRINT, the time expenditure to fabricate instructions from the pseudo-
components during execution amounts to no more than a 5 per cent total
addition. For this price the program buys:

1. Minimization of original processing time.
2. Much more memory space for instructions and data, even though

the executive routine is in memory at all times.
3. A significant decrease in the time required to write such a system,

because the operative routines are essentially canned and optimum.

A factor in the decrease of interpretation time is the RPT (RePeaT)
instruction. This causes the following instruction to be interpreted for the
first execution only; for the remaining times it is executed generally faster
than it could be in a compiled form. This apparent paradox is due to the
serial character nature of the "705." Using a fixed interpretive routine,
instructions may be judiciously placed so that address modification may be
made with fewer characters than the four which are mandatory when the
modified address cannot be predicted. A careful examination of the index
ing routine on page 52g of the manual will illustrate this principle unques
tionably.

Routines which do not occur frequently are defined as floating sub
routines. They do not occupy memory space continuously during execution,
but are called from the library tape as required by pre-edit compiled linkages,
into a common area.

36 ROBERT W. BEMER

EXTERNAL OPERATION

Because in this semi-interpretive mode the routines are what one might
call canned or pre-compiled, there are other advantages which are not at
first apparent. It takes very little time to pre-edit the symbolic source
program into an object program ready to execute. Very few programs have
taken over one minute to process from tape input. Because of this it was
decided to re-process the program completely each time a change is made;
in fact, it is impossible to correct or alter a PRINT program in anything
other than the synthetic language. Any other means were carefully, as
Sam Goldwyn says, "included out."

This feature also leads to a radically different concept of error diagnosis.
Since the program may be re-processed quickly and flexibly, the most desir
able diagnostic method is to actually insert snapshot instructions into the
program. This gives the programmer absolute freedom and flexibility in
inspecting intermediate answers. The usual method is to process the pro
gram initially with all of the snapshot instructions included, when the cause
of the first error becomes apparent, to remove all snapshot instructions up
to that point by deletion cards and correct the error all in the same re
processing. Of course, programs are never loaded more than once in card
form. All corrections thereafter are made by collating the change or dele
tion cards against a master symbolic tape. Both this and a listing tape
are thus continuously updated to provide a correct, permanent record of the
programming of any problem.

Ibis quick processing feature has demanded at least a primitive type of
supervisory control directed by the system tape, which contains the pre-edit
routine, the executive routine, the floating subroutine library, diagnostics
and system control. A remarkably rapid interchange of problems has been
achieved. With tapes previously mounted off-line, all that is required to
process a new problem is to turn the tapes on-line, set alteration switches
if required and depress the reset and start buttons. For the moment, the
changing nature of scientific problems has not made a completely supervisory
control mandatory for this system.

CONCLUSION

PRINT 1 is an operative scientific computing system for the IBM 705
w IC r allows it to be used by both the commercial and engineering divisions
of a company. By introducing pre-editing to take advantage of the lessons
earned from compilers, it re-establishes the interpretive method as a useful

tool in automatic coding systems for future computers of the STRETCH
class. A programming manual (32-7334) is available from IBM for those
desiring further information, and the entire system is available on cards

DISCUSSION

MR. BARRY GORDON1: YOU made quite a point of emphasizing that it
was a remarkable thing that the man wrote a "705" program at the rate of
one instruction per minute; however, you made very little of his writing
sixty PRINT instructions in 20 minutes—at a rate of three instructions per
minute. I am wondering how usual this is.

MR. BEMER: I would say that in my estimation it is much easier to write
the PRINT instructions because you don't have to worry about the auxiliary
storage unit and all the actual details of operation. Incidentally, if you
should doubt those figures I gave, let's bump it up to at least the same
ratio—this is still 40 to 1 over the original time.

MR. LEROY D. KRIDER 2: You said something about a compilation that
actually went on during the execution ?

SERIAL SYMBOLIC ADDRESS AND ACTUAL FIRST
NUMBER LOC OP INDEX FIELDS LOC ADD

1030 R008 REG R001 06981
1040 SINEZ REG 06991
1050 TEMP REG 07001
1060 X020 REG X001 07201
1070 Y008 REG Y001 07281
1080 Z010 REG Z001 07381
1090 ENT 07389
1100 RCD READER 07400
1110 RPT 20 »*4•1 07411
1120 FLO C0L04»4 ,L2 »X001 07428 03512
1130 RCD READER 07445
1140 RPT 8 »* 5 »1 07456
1150 FLO COLO 5 • 5 .L3.Y001 07473 03513
1160 RPT 10 »* 4 »1 07490

03552 1170 FLO C0L44»4 .L3.Z001 07507 03552
1180 SR3 0.10 07524
1190 PAGE WHT TAPE4 07535
1200 SRI 0 120 07553
1210 SAC Z001»3. SINEZ 07564 07291
1220 TRU RSETY 07581 07605
1230 LINE WLS TAPE4 07537
1240 RSETY SR2 0.8 07605
1250 SUB X001 .1 • SINEZ.TEMP 07616 07011
1260 C0LMN SAC Y001*2 07634 07211
1270 ADD X001»1 . PAC2 07651 07011
1280 MPY • TEMP »R001* 2 07669 00254
1290 TX2 COLMN»1 07687 07634
1300 RPT 8*1 .*11 •07698
1310 FPR R001.8. 4W.2D 07715 06911
1320 TX1 LINE »1 07733 07587
1330 WL1 TAPE4 07744
1340 TX3 PAGE»1 07762 07535
1350 LVE 07773 07784

FIG. A.

SEC,
ADD

THIRD
ADD

PRINT INSTRUCTION
OR CONSTANT

BOO 4873Z4U039
7I7DA1100Y4
2I1I000400100000
9M351200070020DOF
7I7DE6100Y4
2 IOGOOO500100000
9M351300072020E0E
2 101000400100000
9M355200072820D0E
9DI900 0000
6 10++00-0 + 20M38G40
8DI800 0000
2R7K8240069820235
2D7F+5
6 I0++00-0+20D26N4
8 11 920 0000
0M7-021006R826992Q
2R7K. 0220002450235
0M7-021000K350245H
0R0K450026R926902H
4D7FC420010
2 IOGOOIOOOHOOOO
9R6R020+00+27C0C0J
3 17EH720010
6I0++00-0+20D26N41
4I7EC520010
9117784

1 Chief Programmer, Equitable Life Assurance Society, New York, N. Y.
2 Remington Rand Univac, Minneapolis, Minn.

37

38 DISCUSSION OF BEMER PAPER

MR. BEMER: NO, there is no true compilation during execution. What
there is is the completion of certain machine instructions with portions of
the pseudo-instructions. If you have one of the example sheets (Fig. A),
you will notice the pseudo-instruction on the right. This "garbage" is
really several little portions that are required to fill in empty spots in any
routine. For instance, in the instruction with serial number 1130, we see
a 7I7DE6100Y4. 71 is the "Read Card" operation code, 7DE6 the prop
erly zoned address for the next instruction, 100 the last three digits of the
card reader address, Y for a "705" read-operation code and 4 to fill in a
TRS command in the units position. These components are inserted in
the proper places of the canned subroutines just before execution, but they
are properly detailed with everything that can be done once, so only these
portions are inserted during operation.

MR. KRIDER: It is essentially, then, just a stretch of initialization.

MR. BEMER: Yes, it is really interpretive, with the exception that we
have put in the symbolic notation and pre-edited everything we possibly
could, to speed things up.

MR. R. H. DOYLE 3: Since one can enter and leave absolute coding in
the middle of the interpretive, is it also possible, by using something which
could be called a Define instruction, to name-tag the new absolute coded
subroutine so that it could be subsequently called for again by its interpretive
name anywhere in the interpretive program ?

MR. BEMER: Essentially, this facility exists in the floating subroutine.
If you wish to enter any of the subroutine library you can do it. Other
routines have been used this way by means of a dummy instruction, or
actually a pair of instructions. I believe that the description of this opera-
ion has been published or is going to be out shortly, as a customer con

tribution. It is very definitely possible.

DR. HANS K. FLESCH*: I heard you remark on time-sharing the de-
controH Pr0S'amS CW,ed in PWNT' Is «»» S rato system

problem anHi^Mstlc ZiorZrTZcoVVllT la"guage' running

alteration switches and the reset and start keys' * ,aI*' SIX

MODERATOR WALTER F BAIIFR 5 • T , , .
asked him what Machine X and MachineY a ! d , s a P P ° i n t e d t h a t n o b o d y

MR. BEMER : They wouldn't havp
ZT nave S°tten an answer if thev had.

g International Business Machines Cornoratinn T •

4 Project Engineer, Federal Telecnmm • ' xulgton» ^'ass-
6 Head of Digital Computing Center Ra^^vo"5 Laboratories. Nutlcy, N. J.

"g Center, Ramo-Wooldridge Corporation, Los Angeles, Cal«•

PROCEEDINGS

of the

FOURTH ANNUAL

COMPUTER APPLICATIONS
SYMPOSIUM

OCTOBER 24-25, 1957

Sponsored by

ARMOUR RESEARCH FOUNDATION
OF ILLINOIS INSTITUTE OF TECHNOLOGY

TECHNOLOGY CENTER

Chicago, Illinois

THE STATUS OF AUTOMATIC PROGRAMMING
FOR SCIENTIFIC PROBLEMS

R. W. BEMER

International Business Machines Corporation

PURPOSE

This paper is to be something of a "state of the art" survey in the field of auto
matic coding systems for scientific work. In a rapidly changing field where the
communication processes are by no means satisfactory, it may be valuable to
collect and codify available information on the various svstems in use or in
process of fabrication, if only to provide a solid basis for dispelling rumor arid
misconception. Very little new or inventive material will be presented, inasmuch
as this does not seem to be the natural means of development in this profes
sion. Development is rather by distillation and blending of certain principles
which force themselves upon us as exceptions to the general case, while using the
older systems in actual practice. Let us rather, for the moment, delineate trends
and put existing efforts into historical perspective, making a summary of the
various efforts so far with respect to magnitude and usefulness.

There will undoubtedly be some gaps in the record due to incomplete informa
tion. In many cases this is not from negligence on my part but from lack of
proper publicity and communication (publicity departments, please note). I
further hope that this is one of the very last mentions of scientific computing as a
separate entity; the very near future will bring us new systems that encompass
both business and scientific applications and allow each group of users to have
the powers formerly peculiar to the other.

EXISTING CODING SYSTEMS

Since most automatic coding systems have heretofore had their synthetic lan
guages tied closely to the particular computer on which they are used, the easiest
way to make a resume of these is by machine categories. Table 1 is an updated
version of a chart which previously appeared in the March, 1957, issue of Auto
matic Control Magazine. Two copies each of all available information and man
uals on these systems are being deposited with the Association for Computing
Machinery at 2 East Sixty-third Street, $ew York City. It is my hope that the
ACM will see fit either to lend material from this historical library or to refer
interested correspondents to the proper sources for other copies.

The more important or widely used scientific systems have a dagger preceding
the name. (Note that B-ZERO [or FLOWMATIC] is listed as scientific because
it accepts AT3 as well as other language.) Since there are ninety systems cata-

107

TABLE 1*

OPERATIOXAL AUTOMATIC CODIXG SYSTEMS FOR SCIENTIFIC PROBLEMS

Computer
Xame or Acronym

of Automatic Developed By
Opera-
tional

O
O

U
O JJ

-O

si
jj
SJ c

1 u Index tc

Coding System Date L. c
u

1=
•J *1 ing

•J
•J.

c rS
5
< t

T.AFAC Allison G.M Sep 57
Xov 55

C X 2 X M2 M
: CAGE x r -*t> General Electric >

Sep 57
Xov 55 X X 2 M 2 M

TFORC Redstone Arsenal \ Jun 57 X 2 X M2 M
IBM 704 +FORTRAX IBM / Jan 57 A X 2 X M2 M IBM 704

: XY.AP
TP ACT IA

IBM v

PACT Group V
Jan 56
Jan 57

X

X

2
1

M2
M2

M
M

REG.-SYMBOLIC Los Alamos V Xov 55 X 1 M2 M
SAP L'nited .Aircraft v Apr 56 ; R X 2 M2 M

i ACOM Allison GM* . Dec 54 c X 0 SI S
tBACAIC Boeing Seattle-' Jul 55 A X X 1 X

SI
S

DOUGLAS Douglas (SM> v' May 53* X 1 S
DUAL Los Alamos \/ Mar 53 s X X 1 s
607 Los Alamos /

Lockheed Calif.v
Sep 53 X"

X
1

FLOP
Los Alamos /
Lockheed Calif.v Mar 53 X X X 1 s

JCS 13 RAXD Corp./ , Dec 53 X 1
IBM 701 KOMPILER 2 UCRL Livermore/ Oct 55 X 1 X S2

XAA ASSEMBLY Xorth American s X
S2

tPACT I PACT Group x. Jun 55 R X 1 S2
QUEASY XOTS Inyokern' Jan 55 X s
QUICK Douglas (ES)V' Jun 53 X 0 s
SHACO Los Alamos v Apr 53* X 1 s
SO 2 01 (A) IBM . Apr 53 > X 1
SPEED CODIXG IBM Apr 53 < R X X 1 SI s
ACOM Allison GM'. Apr 57 C X 0 SI
AUTOCODER IBM / Dec 56 R X X X 2 s
ELI Equitable LifeV May 57 C X 0 SI

IBM 705-1.2 FAIR Eastman Kodakl Jan 57 X 0
SI s

fPRIXT 1 IBMv Oct 56 R X X X 2 S2 s
SYMB. .ASSEMBLY IBM ' Jan 56 X 1

S2

SOHIO Std. Oil of Ohio' May 56 X X X 1 SI s
AUTOCODER IBM Apr 55 X X X 1 s

IBM 702 .ASSEMBLY IBM Jun 54 X 1
tSCRIPT GE Hanford Jul 55 R X X X X 1 SI s
t.ADES II Xaval Ordnance Lab? Feb 56 X 1 X S2 s
tBACAIC Boeing Seattle V Aug 56 C X X X 1 X

S2 s
B.ALIT.AC MIT^ Jan 56 X X X 2 SI

fBELL LI Bell Tel. Labs.v Aug 55 X X 0 SI s
BELL L2, LS Bell Tel. Labs, v Sep 55 X X 0 SI s
DRUCO I IBM •/ Sep 54 X 0

SI s
EASE II Allison GM • Sep 56 X X 2 S2 s
ELI 6Cfc»oU Equitable Life * May 57 C X 0 SI
ESCAPE Curtiss-Wright v' Jan 57 X X X 2 SI s

IBM 650 FLAIR Lockheed MSD. Gav Feb 55 X X 0 SI s IBM 650
tFOR TRANSIT IBM-Carnegie Tech' Oct 57 A X 2 X S2 s
tlT Carnegie Tech. Feb 57 C X 1 X S2 s-l
MITILAC MIT v Jul 55 X X 2 SI s
OMXICODE GE Hanford X Dec 56 X X 2 SI s
RELATIYE Allison GM - Aug 55 X 1 SI s
SIR IBM .May 56 X 2

SI
s

SOAP I IBM Xov 55 X 2
- — ~v SOAP II IBM . Xov 56 R X 2 M M

SPEED CODIXG Redstone Arsenal Sep 55 X X 0 SI s
SPUR Boeing Wichita V Aug 56 X X X 1 M s

* See explanation of symbols at end of Table 2.

10s

TABLE 1—Continued

Name or Acrony;
of Automatic

Coding System

Opera
t ional
Date

FCOMPILER I
FAP \
MISHAP;
RAWOOP-SNAP
TRANS-USE

FUSE

Boeing Seattle
Lockheed MSD
Lockheed MSD
Ramo-Woold ridge
Holloman AFB v
Ramo-W ooldridge

CHIP
FLIP/SPUR
RAWOOP
SNAP

Wright ADC v
Convair San Diego
Ramo-W ooldHdge
Ramo-Woold ridae

ALGEBRAIC
COMPREHENSIVE
SUMMER SESSION

Lnjv. 01 Michigan
L niv. of Michigan

Lniv. of Toronto v

Univ. of Illinois »
RAXD Corp. V
X'avai Ordnance Lab.
X'at'l Bureau Stds.

TRANSCODE

DECIMAL INPUT
EASY FON

Computer

Sperrv Rand
1103 A

Sperrv Rand
1103

Sperrv Rand
Univac
I. II

Datatron
203

AO (A-ZERO)
AI
A2

FAJ
FATJ
tBO (FLOWMATIC)
BIOR
GP
MJS UR.
NYU (OMNIFAX)
RELCODE
SHORT CODE
X-L

Whirlwind

Midac

Ferranti Fe-
rut

Illiac
Johnniac
Xorc
Seac

DATACODE I
DUMB(*T
IT •*«. \ UT
SAC *A
UGLIAC

Sperrv
Sperrv
Sperrv
Sperrv
Sperrv
Sperrv
Sperrv
Sperrv
UCRL
Xew V
Sperrv
Sperrv
Sperrv

Rand
Rand
Rand
Rand
Rand
Rand
Rand
Rand
Livermore v

ork Univ. v
Rand /
Rand ,
Rand .

'Burroughs vc«r \X.
Babcock & Wilcox A-y
Purdue Univ.
Electrodata (,p
L nited Gas Corp.

109

j 10 Computer Applications Symposium

lomied. at least seventy of which ate suitable for scientific usage, it will be impos-
nible to give detailed information on more than a selected few.

I B M 1 0 4 —Bv far the most ambitious and widely used of these wor 0 -
J s f ' F O R T R A X i „ . h e 1 0 4 (F 4) . S e v e r a l r e p o r t s h a v e a l r e a d y b e e n g . v 0

elated time of coding by an average factor of five, according to careful statistics,
• iic n{ ttip\>w York Citv Service Bureau, which bids for program-

PamtbI L^boSto corollary ,0 this which is not always
TdVe^t » " "rogtanrtning costs have been running at least equal .0 U*
"her installation costs (including rental, overhead, and physical plant),>co«M
be said that an installation using FORTRAN exclusively can operate at pe

CC The FORTRAN svstem has firmly established the continuous statement in

CieS 'props'" A-revisedPv.rsion of FORTRAN for the 704
i m, ac F4 ? is currentlv in process. Major improvements are (1) the addition
SaTacStv U. mrim^a"dS,me subroutines in either FORTRAN o, SAP machine
lanvua-e compile and optimise locally only into relative binary packages or
conditional inclusion, and (2) improved diagnostic iac.lit.es. This version

'°Tteote foVTvSm intensive us. is PACT IA, used particularly on the
Coast bv the'original co-operative group that did the coding. I. is descr bed

in detail in the Journal oi the ACM ior October, 19o6. It is of particular histon
cai interest because it was the first major co-operative coding effort, and man.
people believe that this technique will be our only solution when automatic coding

^BM^O—ZATATROX.—The IT system, started by Dr. Alan Perlis for the
D\T VTRON while at Purdue and later completed for the 650 at Carnegie ns i-
tute of Technoloev. is the only full-scale scientific system for either the 6*0 or
the D VTVTRON. IT (Internal Translator) is used extensively at many um e -
sitvComputing laboratories and scientific installations. The output of this system

n a form w-hich is further processed into a machine-language object program
bv the SO\P assemblv program for the 650. IBM has just completed final testing

f uoerRtructure to IT. called FOR TRANSIT, which translates a subset of
the FORTRAN language to IT language in an initial processing. This is a signif-

t «.-i.lt because'"it demonstrates how higher-level synthetic languages may be
made compatible "through pre-processors. IT is also nearly completed for the
r> VTVTRON 205 except that the alpha-numeric input-output routines are not
complete, since Purdue does not have this type of equipment yet, as I am given

to understand.

ft, crTL —
IMC

C-Yr-ci, 1~La

G-f rtt-r-

AutomaticCoding Systems in Process of Development

Computer

IBM Tape 650
IBM 709
IBM 705-1,1.
IBM 705-3
IBM 705
Univac
1103 A

1103A

Name or Acronym
of Automatic

Coding System

IBM 709
IBM 705-3
IBM 704
IBM 705*1, "U
IBM 704
File-Computer
Datamatic
Cdec III
Udec III
Datatron 205
Datatron 205,

220
Univac
TX-2
Stretch

FORTRAN
FORTRAN
FORTRAN
FORTRAN
IT ftA.7 hut |
IT F.<*//py
IT

fciV^A/
UNICODE ersn-eTC
APS &«•»«*>,« ntuii,
SCAT
AUTOCODER '
NYDPP
AFAC
KOMPILER 3
ABC
ABC I Shvocjie:
UDECIN 1 »coc*.
UDECOM 3 Yto

UAvecT.
STAR -V"! S/«.Ok^-

MATRIX MATH

FORTRAN
UNIVERSAL CODE

Being
Developed By

Expected
Opera
tional
Date

IBM v

IBM - Aug 58
IBM-GUIDE v Aug 58
IBM-GUIDE / Dec 58
Std. Oil of Ohio
Case Institute v aoc rj
Carnegie Tech- Dec 57

Ramo-Woold.'-
Sp. Rand, St. Paul • Oct 58

•AyW'estinghouse Res,Fens
T U X r Ctr > n T- ' IBM-SHARE
IB My
Service Bureau Corp.
Allison GM v
UCRL Livermore •
Sp. Rand. St. Paul
Datamatic y
Burroughs
Burroughs -
Dow Chemical -
Burroughs v

Franklin Inst.v'
Lincoln Labs. *
IBM v'
Moore School v

Mar 58
Sep 58
Sep 57

Jun 58

Dec 57
Dec 57

a<is n

Jan 58e

Apr 55

M2
M2
S2
M2
S2
S2
52

M2

S2
M2

M/'S
M

M
M
S
M
S
S
S

l/o vet, i

M
S

t I»c

EXPLANATION OF SYMBOLS, TABLES 1 AND 2
Automatic Coding System Name: Dagger(t) indicates more important orwidelvused scientific system

• a-

I se Code:
R Recommended for this computer, sometimes onlv for heavv usa^e
C Common language for more than one computer."
A System is both recommended and has common language.

Machine Lang.: User has option of using machine language together with svnthetic
Symbolism:

0 None.
1 Limited, either regional, relative, or exactlv computable

oiiisKS: ™rd'" ,yn"*>l ,,hich is <*
Algebraic: A single continuous algebraic formula statement mav be made Processor Ens meet,, ;

for applying associative and commutative laws to formoperTti veprogram mechanlsms

Indexing:
M Actual index registers or B-boxes in machine hardware
S Index registers simulated in synthetic language of svstem

maj^be'freelyincremented^^decr^ment^tiyaify amount.* COmbination of re°isters "hich

Floating Pi.:
M Inherent in machine hardware.
S Simulated in language.

Computer Applications Symposium

1103A.—There „ « ^
COMPILER I of Boeing Seattle an - ^ Although both have many
zation. prepared by Ramo-Wooldri ge an f0RXRaN in power, for USE
attractive feature, they are not e,u l to FORTRAN p ^ ̂ ̂
does not use the algebraic format, and COMPILER i,
subscripting in the algebraic statement UHIVAC I and'LL which

**when 1 crparer closely to establish only the category that system
other system to FOR - - , rtR \ N for there are many features
fi,s into and no. .0 evaluate * *»"*%£££*»* on the correspond-
Of AT3 and other languages which P - ̂ ̂ & ^ ̂ & preliminary

ING FORTRAN components.) AT3 ha ^ ^ final manual {or

manual, in two installations and is *b mS if desired, AT3 is map-
oeneral usage. For purposes of negotiability ot pro0rams,
pable into FORTRAN and dce^rsa ar£ worthy of mention,

Xon-V.S.A. compute, in Switzerland, who arrived mde-
particularly the work of D . FORTRAN for the ZUSE 4
pendentlv at an algebraic language snm descriptive and vertically

—* bui,d "p
complicated algebraic routines.

CODING SYSTEMS IX PROCESS

The picture looks very good indee Qn other machines, are at
of these are entirely aigebraic a • ^ translators. Thus we will find
feast mappable into each oth ^ ^ fee d

that, by various practice ^ ^ ̂ negotiability of programs. Since there
manufacturers 1 nes addm fa ^ ̂ ̂ 2 B su

form. Note that we are now forced to categorize by

systems a"d^anguage^herfor the IBM
FORTR.4A . FORT - P the jgyj 709. A further exten-

TaP£ f FWT^ isteing considered for the STRETCH computer, to be de-
sion ot FORTRA. °sdentific Laboratories. These machines, except the
livered to the Los_ ^ ^ ^ ,;forthcoming» category, and it is
705-1, 2 and the Tap ; mdino svstems are to be delivered along
pleasant to note that their aU °™a ' dficadon"s will be available at least four
with the first production mo . ^ coding to be done prior to delivery,
months before machine beljer^ ^ iod. Although this imposes addi-

^ —ng staff, it is nevertheless

accounted a worthwhile gain.

Status of Automatic Programming for Scientific Problems 113

An interesting feature of the 705 FORTRAN" stems from the fact that IBM is
committed, as a part of its compatible-language policy, to producing FORTRAN
for the 705-3 while leaving PRINT 1 unmodified.

Owing to the active interest of the GUIDE organization in conversion prob
lems, it was agreed to pool the IBM effort with that of at least one programmer
from interested companies (A. O. Smith. Esso. General Electric Pittsfield. the
Texas Co., Y\ estinghouse Sharon, and Eastman Kodak) and to consolidate the
planning for the two systems so that both processors might be written with an
expenditure roughly equivalent to that required for 1.3 independent processors.
Initial specifications will be modest, since there is no need for optimum assign
ment of index registers, as in 704 systems, or for Monte Carlo optimization of
object programs. ALTOCODER is well suited to be output for this processor be
cause of its macro-instruction capability and its open-endedness. A later version
will allow the output macros to specify autopoint arithmetic, determined by the
record definitions of the data themselves: here FORTRAN ceases to be a
purely scientific language and becomes useful for commercial problems as well.
\\ ith the addition of more generators and additional superstructure in the lan
guage, it also ceases to be FORTRAN and becomes COMTRAX as we have en
visioned it.

The FORTRAN language will be modified to a new level. That for the 705 is
designated F5; F9 is for the 709. These two languages will be basically identical.
In addition, old F4 programs and FOR TRANSIT may be run on these machines
through the medium of pre-processors which convert to the revised language. Such
a pre-processor may be used as an entity or incorporated in the more sophisti
cated processor. One of the new features in the language will be the abilitv to
name and define sets of instructions. Thus a programmer may write a main line
of coding which duplicates the logic of a flow chart block for block, decision for
decision, while the actual subprocesses which represent the contents of those
blocks are coded separately. With the F9 processor one may bypass index-register
optimization at will, since this process can consume up to 80 per cent of compil
ing time. Registers will be assigned in rotation for quick processing and a trial
run with real data. It is wasteful to expend such time if there are errors in the
source program or if the mathematical techniques used are unsatisfactory. If the
resultant object program is correct and suitable, one may effectively turn a
switch to "Optimize" and reprocess for the most efficient object program.

Output of the 709 FORTRAN will be into the official SHARE assembly pro
gram called SCAT (Share Compiler. Assembler, and Translator). This system is
being coded by IBM's Applied Programming Department from SHARE Com
mittee specifications and is due for completion by March. 195S. With one excep
tion it is pretty much an updating of the SAP assembly for the 704. The exception
is the "Load-and-Go" technique, whereby corrections are always made by fast
symbolic reassembly with the previously assembled output, which is maintained
in a condensed symbolic binary form. Current good practice is to save the ex
panded data generated by an assembly or compilation even when corrections are

114 Computer Applications Symposium

to be made. SCAT does not as yet enjoy the "Define Record" characteristics,
literal handling facility., or complete freedom of subroutine levels that mam-

other existing systems have.
J X . The IT language is also showing up in future plans for many different

computers. Case Institute, having just completed an intermediate symbolic as
sembly to accept IT output, is starting to write an IT processor for UXI\ AC.
This is expected to be working by I; :e summer of 1958. One of the original pro
grammers at Carnegie Tech spent the last summer at Ramo-Wooldridge to write
IT for the 1105A. This project is complete except for input-output and may be
expected to be operational by December. 1957. IT is also being done for the
IBM 705-1. 2 by Standard Oil of Ohio, with no expected completion date known
yet. It is interesting to note that Sohio is also participating in the /05 FOR
TRAN" effort and will undoubtedly serve as the basic source of FORTRAX-to-
IT-to-FORTRAX translational information. A graduate student at the Lmver-
sity of Michigan is producing SAP output for IT (rather than SOAP) so that
IT will run on the 704: this, however, is only for experience; it would be much
more profitable to write a pre-processor from IT to FORTRAN" (the reverse of
FOR TRANSIT) and utilize the power of FORTRAN" for free.

UXICODE.—Remington-Rand St. Paul is writing an algebraic compiler called
UNICODE for the 1103A. This is apparently a large-scale effort like FOR FRAN"
and may be expected to operate by October. 1958. The language, too, is FOR-
TR\X-like and ATS mav be considered a subset of it. Many of the character
istics of the F5-F9 language exist in UNICODE. This will provide the big
algebraic system presently lacking for the 1103A.

4 f 4c.—Allison GDI. is writing its 704 compiler for the 705 with the prime
intent of obtaining compatibility. It is a commentary upon the unfortunate lack
of communication^ this field that Allison justified the original writing of AFAC
for the 704 by stating that, although they knew IBM was producing FORTRAN,
they nevertheless needed a common language for the 705 as well. Had a co
operative effort for 705 FORTRAN been started sooner, they might have spent
their large effort in such a way that all would be benefited.

KOMPILER 3—This program, for the 704, is being written to serve the
special needs of the University of California Radiation Laboratory at Livermore.
It is FORTRAN-like. but it implies a sharp criticism of the lack of sufficient
mathematical characters in today's computers by coding each algebraic statement
in three lines (or punched cards). Thus the superscripts and subscripts stand
out from the main statement. This eliminates a great deal of the otherwise neces
sary parentheses and special notation, although the total effect is an increase in
card volume for a given program.

MATRIX MATH COMPILER.—This program is an adaptation, by the
Franklin Institute, of several previously separate L XIV AC service routines into
one extensive package. Two installations are using the system with a preliminary
manual, and a final manual and system are expected by January, 1958.

CP.—A compiler of the GP (Generalized Programming) type is in process for

Status of Automatic Programming for Scientific Problems 11S

the LARC computer. This is a very large effort; certainly more than fifteen
people are on the project. Algebraic coding is allowed as an instruction form, and
generalized subroutines may be selectively generated for minimization in specific
cases. Another interesting aspect of GP is the DuPont effort in rewriting the basic
I XI\ AC compilers in GP for more generality and easier expansion.

PHILOSOPHY AND TRENDS

The preceding should have indicated (allowing for a slightly scientific bias)
what the existing trend is in automatic coding. Evident characteristics are these:

1. The language of communication will be our own—mathematical notation
as far as possible and then English when we run out of concise symbolism. Present
logical language is weak, and I imagine that even the commercial people had
better brush up on their Boolean algebra. The area of loop control and recursive
operations is still not well handled in existing mathematical notation, but com
puters are forcing the development. As an example, note the "Replace'' operator
(<=) of K. Zuse. Although the ultimate in language does not exist yet. we can
console ourselves meanwhile with compatible (as against common) language.
There is much current evidence that existing algebraic languages are all map-
pable into one another by pre-processors. although these may be of varying and
perhaps prohibitive complexity. The Germans, in particular, are concerned that
such mappability be guaranteed before they make heavy coding investments for
the many machines they will be operating.

-• The trend is to on-line system control, with the automatic coding processor
always available to the running program on call. Today, this technique involves
losing (during object time) the services of one or more tape units, but random
access memory is mtich more suitable for this purpose. Eventually a replaceable
photographic plate should serve this purpose in a semi-interpretive mode. Such
on-line control allows primitive learning and self-improvement of programs by
the computer itself in a servo process. Actual portions of obiect programs would
be compiled only upon demand, on an exception basis. IBM and Carnegie Tech
are both formulating such compilers with executive control.

Extensive means will be available for multiple-processing of intermingled test
runs, compiling, and production. The CORBIE system of the National Bureau of
Standards and the General Motors Supervisory System are advanced concepts in
this direction.

3. The trend is to set-notation whether for data, instructions, or conditions.
Both macro- and micro-instructions will come into wider usage, and machine
language will be recognized as merely that subset of a given machine's instruc
tions which happens to exist in the form of circuitry. Although on opposite sides
of machine language when plotted against complexity, micro- and macro-instruc
tions can be machine-independent for easy interchangeability. Flow-charting will
become synonymous with the writing of the main line of program statements
when processors consider sets of sets of instructions by name only. Minor varia
tions in machine configuration will be handled through macro-instructions. Pro-

j j6 Computer Applications Symposium

grams tailor-made for each member of the configuration^ family will be
constructed by assembling an identical program » times with * different libraries

01 ^The trend is to standard machine configurations. The time is past when a
tailored configuration could be sold for each different application. We simp >
cannot afford the manpower to make a different version of all automatic cod,n
svstems for all possible combinations. Some variants can be generated, it is true,
with macro-instructions, but complete freedom is gone. IBM is specifying stan -
ard configurations for which automatic coding systems will be available in amp e
time for customers to weigh this consideration. In most cases the large savings in
programming costs realized by using these systems far outweighs the cost o
additional equipment to bring a machine up to the minimum. Of course, local
modification bv the customer for a lesser machine is always possible

5 Future svstems will gradually blend into a combination suited for both
scientific and commercial work. When you see a 705-3 AUTOCODER user
suddenly slip into FORTRAN in the middle of coding a payroll problem, you

will see what I mean.
6. Internal computational methods are fairly well handled at t is time,

emphasis at the moment is on getting much better coding for handling input an
output, the preparation of reports, and file maintenance. I have concluded that
people now engaged in scientific programming have a very complacent a i u e.
perhaps bv virtue of being prior in the field. I was recently accused of being
'•futuristic" for recommending that an output-report generator be constructed
for the 709 by the SHARE group. Fortunately, this had been demonstrated by
the General Electric Hanford Report Generator for the 702, a couple of machines
back. The next step for scientific users is to get adjusted and learn the many
techniques developed by the business and data-processing people. Input editing,
file maintenance, and report generation remain relatively unknown techniques to
the scientific user. and. although he will decry this with specious arguments, he
nevertheless needs them badly. He can learn much from existing business sys
tems about basic assembly features, generators, diagnostic back-talk, macro-

instructions, etc.

PRODUCTION OF AUTOMATIC CODING SYSTEMS

There appear to be three inescapable facts about automatic coding systems as

we know them. They are: .
1. They are always getting more complicated and will require more initial

manpower in their production in order to save much greater manpower expendi

ture by users.
2. Just as a computer does, they require maintenance and improvement Ion..

after initial production. _ .
3. They must be constructed open-endedly. without machine-oriented coding

tricks, so that thev may be adapted to different models of the same machine and

Status of Automatic Programming for Scientific Problems 117

converted to future machines with a minimum of recoding. From this time on,
all new systems should be additive.

Let me elaborate these points with examples. L XICODE is expected to require
about fifteen man-years. Most modern assembly systems must take from six to
ten man-years. SCAT expects to absorb twelve people for most of a year. The
initial writing of the 704 FORTRAN" required about twenty-five man-years.
Split among many different machines. IBM's Applied Programming Department
has over a hundred and twenty programmers. Sperry Rand probably has more
than this, and for utility and automatic coding systems only! Add to these the
number of customer programmers also engaged in writing similar systems, and
you will see that the total is overwhelming.

Perhaps five to six man-years are being expended to write the Model 2 FOR
TRAN" for the 704, trimming bugs and getting better documentation for incor
poration into the even larger supervisory systems of various installations. If
available, more could undoubtedly be expended to bring the original system up
to the limit of what we can now conceive. Maintenance is a very sizable portion
of the entire effort going into a system.

Certainly, all of us have a few skeletons in the closet when it comes to adapting
old systems to new machines. Hardly anything more than the flow charts is re
usable in writing 709 FORTRAN"; changes in the characteristics of instructions,
and tricky coding, have done for the rest. This is true of every effort I am familiar
with, not just IBM's.

\\ hat am I leading up to? Simply that the day of diverse development of
automatic coding systems is either out or. if not. should be. The list of systems
collected here illustrates a vast amount of duplication and incomplete conception.
A computer manufacturer should produce both the product and the means to use
the product, but this should be done with the full co-operation of responsible
users. There is a gratifying trend toward such unification in such organizations
as SHARE, LSE. GLIDE. DLO. etc. The PACT group was a shining example
in its day. Many other coding systems, such as FLAIR. PRINT. FORTRAN",
and L'SE. have been done as the result of partial co-operation. FORTRAN" for
the 705 seems to me to be an ideally balanced project, the burden being carried
equally by IBM and its customers.

Finally, let me make a recommendation to all computer installations. There
seems to be a reasonably sharp distinction between people who program and use
computers as a tool and those who are programmers and live to make things easy
for the other people. If you have the latter at your installation, do not waste
them on production and do not waste them on a private effort in automatic
coding in a day when that type of project is so complex. Offer them in a co
operative venture with your manufacturer (they still remain your employees)
and give him the benefit of the practical experience in your problems. You will
get your investment back many times over in ease of programming and the
guarantee that your problems have been considered.

PANEL DISCUSSION

Engineering and Research Applications

October 25, 1957

Moderator: P. C. HAMMER. University oj Wisconsin

Participants: R. P. RICH, Johns Hopkins University
E. B. GASSER. The Toni Company
E. L. HARDER. Westinghouse Electric Corporation
A. L. SAMUEL. International Business Machines Corporation
L. U. ALBERS, National Advisory Committee jor Aeronautics
E. H. CLAMOXS. General Mills, Incorporated
R. W. BEMER. International Business Machines Corporation
P. KIRCHER. University oj California (Los Angeles)

P. C. HAMMER: Much has been discussed, and very profitably—the proving of
theorems, for example, and the various applications in which I know you are all
interested. One thing which has been left out in this discussion is the question
of the output and its effect on human beings. For the Stretch machine, which
was designed for the Los Alamos Scientific Laboratory, a year ago I proposed
that the output should be in the form of moving pictures of surfaces. The fact
is that the human mind is incapable of grasping numbers in large quantities. We
could swamp all the faculty members at Wisconsin with our puny little 650.
Thev could not read what we could put out even if they were so inclined. Num
bers are singularly poorly adapted to the human mind. Curves are a little better
for interpretation. If a person has to act on information, he has to read it; the
wav it is now. the opportunity for reading information is far less than the power
of machines to put it out.

Another point which bears on the use of computing but is not really an appli
cation of computing is the question of mathematical research in connection with
the methods we use. We are using horse-and-buggy mathematical methods in a
machine age. For example, there is a feeling among many people, largely due to
the existence of methods in large quantities, that finite differences will be the
answer to differential equations in the future. This probably will not be so.
There is no hope that I see now for really doing a good job on a partial differen
tial equation which is the honest flow problem: four independent variables (that
is. three spatial and one temporal) characterizing a fluid flowing in space. To do
this bv finite differences would be almost incredible. It would be far more incred
ible if. after obtaining a solution by that method, a function table of four
independent variables were to be printed as output. You could not read it or
understand it if you had it. The entire output situation, I would say, is rather
unsatisfactory.

11S

Panel Discussion 119

It is also unsatisfactory to consider more and more automatic programming
techniques when we do not know what we are going to do with these things in
the future. For example, the kind of thing which Dr. Samuel mentioned, along
the lines of proving theorems, is perhaps going to take hold one of these da\^.
and maybe algebra will be done by machines. It is not known whether or not
the automatic compiler which is devoted primarily to arithmetic on the assump
tion that all you handle is digital numbers in the machine will be suitable for
this. We are not reflecting enough on the possible use of these computers: what
they might be used for if we could ignore the cost momentarily. It is important
to ignore the cost in order to get an adequate theory.

Now, to turn this discussion over to some of the other people, I want to ask
one question of Dr. Rich. He mentioned that two thousand words of storage
was about the minimum and maximum size for a program. I was wondering if
he meant that there was a human incapacity to do more than this or a machine
incapacity to handle more than this? I would say that there are physical s\stems
which cannot be done with that number of steps.

R. P. RICH: I would like to start emphasizing a number of boundary conditions
I put on this theorem. One needs hypotheses to draw conclusions. In the first
place, the total storage was not two thousand words, but rather seven thousand,
where five thousand words were used for storing tables, constants, and other
reusable information. Two thousand words is the actual running program, consist
ing of the instructions executed each time around. That was the first restriction.

The second restriction was that this was for a particular kind of problem: this
working storage figure would obviously be very different for other types of prob
lems. That is, should one try to do certain nuclear-reactor problems within a
factor of ten of this amount, difficulties would arise. The real point that I meant
to emphasize by overstating my case (as I think one must to get points across
in so short a talk) is that it is not only possible but also easy and obvious to ask
the machine to do a lot of things that you should not ask the machine to do.
For example, if you know the effect on the output of certain of the inputs, then
these should not be redetermined during every run by Monte Carlo. In other
words, if analytical answers are available for parts of such problems, then these
should be inserted analytically. Random numbers should not be drawn to see
whether a sine wave is in fact a sine wave. That was the major point I wanted
to make—that random Monte Carlo procedures should be restricted to the things
one actually does not know how to do analytically.

Another point I tried to make was that, if sampling procedures are used. then,
in order for answers to be precise enough to be of any use. fairly large samples
must be run. With machine time costing what it does, and the demand on the
machines being what it is, in order to get a reasonably large number of samples,
the time per sample on the machine must be reasonable. Therefore, if too much
is required of the machine at each single calculation, then each answer is a good
answer, but it still is only one point of a sample: a hundred-point sample with
several approximations at each point may still be worth a factor of three better

120 Computer Applications Symposium

than a ten-point sample, just because of the sampling error. I could go on with
this subiect at length, but I am sure that that is not the best way to spend our
short remaining time, so I will let it pass for now as a rough answer to Dr.
Hammer's question.

P. C. HAMMER: Dr. Harder, vou mentioned in the course of your talk that
there were certain instances in which network calculators and digital computers
were equallv efficient. I wonder if you could give us some of the qualitative
characteristics of such a situation as that?

E. L. HARDER: For a system-stability calculation it is necessary actually to
invert the complex impedance matrix of the power system. In this case the in
version of the matrix requires considerable time and must be carried out for
each network configuration involved in the stability study. This is a type of
power-system problem in which I think the network calculator excels at the
present time.

At present, for load-flow problems such as I illustrated, the efficiency of the
two machines is about the same. Practically all the load-flow studies are being
done by the nodal equation approach, and this has several effects. For one thing,
considerable network identity is lost, and the mutual impedances between lines
cannot be taken into account.

In short-circuit or ground studies, a third type of power-system problem, there
are mutual impedances between lines, and so. to use a digital computer technique,
it is necessary to start all over again, not with the nodal equations (that is.
Kirchoff's current law), but rather with Kirchoffs voltage law. It is much harder,
however, to set up the voltage equations in a systematic fashion. \\ hether the
digital computer or the network analyzer is better often depends on such a small
thing as how good the initial guesses are. In a case where some experimenter has
found that he can run the problem let us say two to one cheaper by digital
computer, on digging into it one might find that, had his initial guesses been
poor, it might have been two to one more expensive. So the question Dr. Hammer
asked can be answered only by using particular instances.

P. C. HAMMER: Dr. Samuel gave a very interesting talk about the proving of
theorems. I wonder if he could give us an idea of what he considers the most
promising line of thinking right now? I have been thinking about proving theo
rems in a very modest sense, not in the ambitious sense Dr. Samuel has been
describing. For instance. I have run into some simultaneous non-linear equations,
twenty-three hundred of them, and I would like to solve them. (Twenty-three
hundred is one step on the way up to infinity.) The simple kind of thing I am
thinking of is the proof by induction. Mathematical induction is one case in
which one quite often knows fairly well the kind of thing he is doing, and
therefore he could in principle carry out the proof by complete induction, by
using roughly the same type of thing Dr. Samuel suggests. Let the machine
establish the guesses as a function of -V, in a one-index problem; and let the
machine prove that the guesses work. This could be done in cases where the

Panel Discussion 1 2 1

only excuse for doing it by machine really is the manipulation, the impossibility
of writing out as many equations as one has. You cannot see them. So you know
what to do, but you cannot do it. not practically. The same thing applies to
calculating. You could presumably do all the calculation that the machine does,
but you cannot quite carry this out. Would this kind of theorem, or theorems in
complex functions or topology, be the kind of thing you might be able to prove?

A. L. SAMUEL: It is very easy to talk glibly about these things, but at the
present time plane geometry is proving extremely difficult, to say the least. I do
not know when we will get to more complicated things such as those to which
you refer.

I might make one general remark, which may be obvious to you. in respect
to dealing with problems both syntactically and semantically. If you are proving
a theorem, you use the semantic interpretation of the numerical data as a guess
to tell you whether you are proving your theorem or not. There is a converse of
that, in which you are trying to prove a theory—trying to prove that a present
theory is not true—where exactly the opposite should be done. You should use
the semantic information as the truth, trust it. and doubt the syntactic informa
tion. I think we may be actually using computers before too long to derive new
theories, which is just the opposite of proving theorems.

P. C. HAMMER: Does anyone in the audience have any questions to ask the
speakers?

H. H. KANTNER (Armour Research Foundation): I would like to ask. ''What
is the relationship between automatic programming and symbol identification or.
as we know it more customarily, character recognition?"

R. W. BEMER: I hope that eventually we will have a typewriter for input,
similar to a typesetting machine or linotype, and such that when you write out
an equation it can be recognized by the computer. Presently we are limited in
the scanning of an algebraic statement, or even an English statement, by the
many extra symbols used to separate our meaning. If I had the right kind of
typewriter—imagine it has plenty of characters, upper- and lower-case roman.
upper- and lower-case Greek, big and little numerals, brackets of different types,
even hands that point, in short, a multiple font—I could press a button which
would put the platen at half-carriage and cause a bit in a control word which
says, "This is subscript." So I could subscript by sin A', or by reverse I could
superscript, and I could go up to many levels of superscript. In this sense I think
we will eventually be able to take type-set information and feed that into the
computers. I do not know about handwritten information. That seems pretty far
away.

H. H. KANTNER: But you take the elements of the equation as symbols by
themselves, and yet the equation per se is a symbol, as pictorial display.

R. \Y. BEMER: Maybe this will be pertinent. In the future system we will be
able to give temporary connotations of meanings to any variables, or symbols, or

122 Computer Applications Symposium

sets of symbols. Thus, for temporary purposes. I can say that these operations
will all be double-precision arithmetic, and these will all be complex arithmetic,
from here on. Further, one can say that plus and minus indicate matrix opera
tions instead of plain linear operations: or. if I wish to replace sets of items. I
can say. for example, that all variables which have names starting with "P are
in South America. One can define this to the machine and change it at will. It is
simply a matter of altering the table look-up in a dictionary by classes or sets.

H. H. KAXTNER: I have not got an answer to the question, ' What is the
relationship between symbol identification and automatic programming.

P. C. HAMMER: May I take a stab at this? In a generalized sense, I think you
could say that symbol identification is the same type of thing as automatic pro
gramming. That is to saw vour machine gets a certain word, it recognizes a
certain word, like sin .v. ft proceeds to operate on this and generate a sequence
of responses to it. If you call the whole sequence of responses a ''transformation
and consider the who'le code vou are putting in as a symbol, then, if you want to.
you can sav that this is one symbol and the machine responds to the whole
symbol—vou can sav that this is the same as character identification. The
machine knows what to do with this whole thing and recognizes the whole code
altogether. I am thinking of it as one symbol now. What is a symbol anyway?
It could be the whole thing. So I think the answer is that automatic programming
is the same as symbol identification, presuming the machine makes no mistakes.
Does that answer your question?

H. H. KAXTXER: Thank you. It is a very good stab.

R. S. DIKE (Caterpillar Tractor Company): Along the same line. I would say
that. if you think about this reflectively, you will realize that the Chinese had a
very strong symbol language, which has become very complex. Would we not
be better off sticking with the simple symbols of our own language and stringing
them out, rather than making too complex a symbolism? Would we not be
forcing ourselves to have a language too complex to handle.

L. U. ALBERS: I believe that you certainly can go too far in taking advantage
of all the logical symbols and subscripts and German characters and so forth.
In the direction of Dr. Hammer's suggestion, if you can present people with
curves or pictures or written decisions or judgments, this is probably much more
helpful than just multiplying the language.

Incidentally, I would like to mention one other thing in regard to the matter
of designing machines to learn. A young student at Case has programmed the
650 to learn to play ticktacktoe. It starts off not knowing how, and in the process
of seventeen or eighteen tries it has learned and is capable of tying or beating

anyone it plays.
\ L. SAMUEL : I am sorrv I did not mention that there have been man\. man\

attempts of this sort. A man at the National Physical Laboratory in England
programmed the Ace to do the same thing. There have been a lot of things done;

Panel Discussion 123

1 pic,keTdjajfew isolated samples by way of illustration. I apologize to all the
people I did not have time to mention.

, R C - HAMMER: In a way, the computing industry started with the big ma
chines. The government was behind these things, and the big companies started
making big machines. Now we have this business of interpolating to zero with
smaller types of machines. I was wondering if Mr. Gasser might sav something
about whether or not his company is going to contemplate getting'bi<™er ones
or is going to hold fast to this order?

E. B GASSER: In my letter I sent forward to Boston, recommending the pur
chase of the LGP-30, we stated that at the current level of research activity we
would\ bti satisfied with this machine for the next four years. At the end of" this
time I think we will take a good, hard look at our machine and the competitive
machines that exist at that time and make further decisions. We are bound for
only our years. I think that the way things are going in the Toni organization,
•n i h the strengthening by Gillette of the central research organization, we will
find ourselves in the market for a larger computer by that time.

, E' L' HARDER. I would like to ask Mr. Bemer a question in connection with
the translation from machine to machine. Of course the translation between the
superlanguages, and then the compiling for particular machines, is a fine wav
provided you program in the first place in one of those superlanguages But can
you comment on what is going to be our ability to use the programs for the
present machines on their successors?

R • BEMER. The only way this is possible is on a machine that is specifically
r esigned to accept all instructions of a previous machine plus additional instruc
tions: such a computer is the 705. Model .3. which will handle all programs
written for the 705, Models 1 and 2.

As a general procedure I do not think that it is possible to swim upstream to
e general language. If you take a specific machine and take some odd-ball

c 3 raster is tics it has—divide by an alphabetic number and swap the result end
for end. tor example—anyone can produce a program that nobodv else can ever
figure out in terms of what it was intended to do. If you want to compute /, <x)
I can write down a program for a particular computer: but I cannot look at a
p r o g r a m f o r S W A C , s a y , a n d k n o w t h a t i t w i l l g i v e m e J 0 (x) .

E. L . HARDER: hat about 704 programs on the 709?

R . W. BEMER: There is a special device that will enable you to run all 704
programs on the rOO. I think that it is only necessary (or the conversion period,
for the machine-language programs.

E. L. HARDER: What can be done if you go to a large core memory and want
to drop the magnetic drum memory? If you have a 30.000-word core' storage it
seems foolish to retain an 8,000-word intermediate speed storage unle«vou
really need it for some special reason. Do you think that the existing proems
for drum and a 4,000-word, high-speed memory can be translated mechanical

124 Computer Applications Symposium

in some way. perhaps by using tabulating equipment, to a machine that does
not have a drum?

R. M. BEMER: I think that it depends upon the complexity of the program.
For instance. D^GSp-Ridgeway could tell you that he could not find any way of
mechanically converting Fortran, written for the 4,000-word, high-speed memory
and the 8.000-word drum, so that it would work with the 32,000-word, high-speed
storage. They had to get in and change table sizes by hand; they had to juggle it.
I think that there are many, many things like this that we are going to be stuck
with for a period of time, which we cannot afford to mechanize, because writing
the program for mechanization would be more work than it would be to do the
original problem. II e are faced with many difficult problems in going up in the
hierarchy of machines; the only solution I can see is getting to a high-level syn
thetic language quick enough so that we do not engender much of this machine-
language instruction. Y\ e could then hope to get the problem out of the way
once and for all.

R. P. RICH: \ou mentioned a five-to-one reduction in time in going to Fortran,
but you did not say from what. Usually this factor is ten to one instead of five
to one. but a person never says from what.

R . Y \ . BEMER: I am trying to be conservative. It does not become me usually.
This is from the SAP language, which is symbolic machine language. If vou
were to program in pure binary, you would "find it twice as difficult as SAP^ so
we multiply the two together and say that Fortran reduces ten to one in program
ming over actual machine language.

R. IV FLOYD (Armour Research Foundation): Most equipment seems to be
designed around pure numerical or alphabetical input, whereas most mathe
maticians are trained to use Greek letters for angles and special signs for "greater
than, equal to. ' minus, and so forth. Is anything being planned for coming
machines or interpretive routines to make it easier for the poor mathematician?

R. W. BEMER: The Los Alamos people have their own design for a 300-
character typewriter which they would like as input to the Stretch system. They
made a request for price quotation to IBM to reproduce this, and it is under
consideration now. It has pretty much everything on it. I am very glad to see
this myself.

OPLER (DOW Chemical Company): \ esterdav, Dr. Hopper indicated that
Remington-Rand, to solve this input problem, wanted to go to the English
language instead of to symbolic. I think your approach is opposed to hers. She
seems to have a broader brush treatment in the sense that she could meet busi
ness needs as well as those of the mathematician. The mathematician still knows
the king's English.

R. W. BEMER: I do not know how the king got into this. It is the queen's
English now. Anyway. I do not think that actual language as such will hold up

Panel Discussion j,-

too well it you extend Dr. Hoppers principle indefinitely to all the different wavs
one can express statements. She says that, after perhaps twenty-nine different
combinations, you have reached the limit of what anybody could possibly *av

n the more complex programs there will undoubtedly be found other wavs to

sT-mb r 'I3™ ! ? ̂ thC maChine" 1 W°Uld mUCh prefer 3 mathematical or
' °llC °f.Cal notat'on, which consists of specific characters, and see this used

as an unambiguous input to the machine.

A. OPLER: There are 20,000 characters in the Chinese language.

R. W. BEMER: I do not propose to go to the Chinese language. We tried to
make up a hst once, and within the neighborhood of ISO different character* we
could do just about anything anyone required for the majority of scientific or
commercial work. It seems reasonable that two four-bit characters in combina-

a,phabetic- ^«

A. L. SAMUEL: One of the problems with English is that a person can make
a s atement in English without realizing that he is not being precise. Thi* is one
of the characteristics of the English language. So there is a certain argument in

of requiring a limited artificiality in machine language which force* the
person stating the problem to recognize what he does not know about the problem
in order to state it precisely. prooient

QUEZON FROM THE FLOOR: There are a number of installations I know of
that have large-scale computing equipment and also have some of the smaller
machmes that have been described today. I would like to hear from some of the
panel members what they anticipate the effects of automatic coding techniques

tions with theT USCS theSe Smaller machines have in those installations with the larger equipment available?

I E;L' WE HAVE THIS Pr°hlcm at Westinghouse in that we have forty
p ants and five large-scale computers and also about a half-dozen medium-scale
computers. There is a possibility of the small computers being used ri-ht a Ion a
jnfl, the large computer. There is a possibility in a big plants its betted

°r.,t?;rfee flf°°rS awa-v or tvvo °r ^ree buildings awav: and. of course there is
a possibility of its being used in a plant that does not have any other computer
•Now, where there ,s a large-scale or medium-scale computer present then the
decision as to whether you need a small computer also, for smaller prob em* i
n a way competitive with the use of automatic programming. We are conduct

an experiment right now to try to test this out-* very simplified Ztn oi
Fortran as compared with the use of a *mall computer. The two factors that enter
n are convenience and the time to do the programming. Of course, the cost comes
n too. In general automatic programming seems to be about twice as fast a*

the programming for most small computers, which do not have the benefit of
symbolic programming. So the programming is a little shorter with the automatic
programming technique. We are still trying to work out the balance of thtgab

126 Computer Applications Symposium

for the automatic programming as against the scheduling difficulties and the
problem of getting the answers for small problems through big computers sched
uling them along with other work. We do not know the answer yet. We rather
leel that there will be a lot of use for the small computers. In fact, in our company
now we have five of them, and a number of others ordered, along with the bis
ones. Most of them are in special-purpose applications, although in one plant
there is a small computer in the same office with a medium-scale computer. We
are trv ing to work out the optimum pattern in order to advise our various plants.

R. IV. BEMER: I would like to toss in a little remark. I am in favor of the
short-order-cook policy that I think will come into effect perhaps five or ten
years from now. It might resolve at least a certain class of problems as between
the small and large computers. If one had an extremely large, extremely fast
centralized computer with various lines radiating out, and with terminal facilities
such as H person now only gets in the form of input-output devices at the com
puter. and if one could have high-speed transmission to and from this centralized
computer, it would be like a short-order cook. It takes the orders off the lines
and. so to speak, heats up the griddle and sees that the toast is ready while it
is pouring the coffee. It will be self-scheduling, self-regulating, and self-billins
to the customer on the basis of use of the input-output device. I think, since the
larger and faster computers, as far as production problems are concerned, always
produce more problems solved per dollar once the problems are in the machine,
that this is the obvious direction to go. I agree that at the present time there are
many small computers that seem to take less trouble than a large one; but I
think that, in the long run, we will use the largest computers and will start
thinking in terms of compatibility of languages and ultimately in terms of a
single language.

P. C. HAMMER: It is getting a little late. Maybe we had better draw this to a
close. It there are no more questions. I want to thank all the speakers for the
excellent job they did today, and thank you all for being here.

1 0

I AWS AV
The GUIDE organization of 705 users is sponsoring a cooperative project with IBM to produce a
FORTRAN system for the 705 models I and II. The processor will be written with the conversion to
705 model III in mind so that the total effort will be minimized. Furnishing programming people for
this project are:

Westinghouse Electric Standard Oil Co. (Ohio)
Eastman Kodak The Texas Co.
General Electric Co. A. 0. Smith Corp.

The first working version is expected to be tested by August 1958. The b OR IRAN language which
it accepts will be identical with that for the 709.

II CONTRIBUTIONS
To start, and by way of demonstrating how trivial contributions may be, I am showing one taken iiom
the PRINT I system for the IBM 705, a serial, decimal, \ ET machine.

A MACHINE METHOD FOR SQUARE-HOOT COMPUTATION
R. W. BEMEK

I.B.M. Corporation, New York City

Computers with operations having variable execution times (\ ET) require a different class ol subroutines
to take full advantage of these characteristics. Well-suited for computing square root on decimal ma
chines is a variation of Newton's method which uses a linear first approximation such that convergence
to the desired accuracy occurs in 2 iterations, thus causing a fixed and predetermined execution time.

Floating point square root routines operate on arguments of the form:
N = M • 10l> where .1 < M < 1, and M is always positive

To establish a common program for both odd and even powers (P) of 10, let
N = m • 10" where .01 < m < 1, and p is always even.

Then, \/N = Vm • 10c-5"> and .5p = .5P (+ .5 when P is odd)
m = f M (if P is even)1

|.1M (if P is odd)
Iterating twice with initial approximation Aj,

—— = Q! A> = .5 (Ai + Qi) "7 — Q2 \/m = .5 (A2 + Q2)
AI

But m = AiQ> = A-2(A-. + A) = A22 + A2A This form is designed to minimize the number of
digits of quotient which must be developed. Users

m — A22 A22 d- A2A — A22 A
2 A.. 2 A2 2

__ A2 T Qj 2 A2 + A
Vm =

A m — A22

Vm A2 + — ^ A2 + 2 = 1 ' 2 A,

of desk calculators will recognize it as the standard
method of developing half of the required accuracy
by long-hand square root method and dividing to
place the second half of the root in juxtaposition.
This method need not be followed, but the tables
of segments of approximation still apply..

I.

xnvimitinn V is derived by using a table of linear segments which approximate v'm
Th" 'Si» tolerance T is a function of m and the allowable error , m the final

. ; liin a
r, . ; „xiniation. To compute 1.

m - O
S - Q '

in V'm - Tx + 2

Ignore
V m + T _ _

m _ m _ Ti v'm +^v'm - Txs + 2 e V'm + |2_eT

jVrt.fore, 2 f \/m = Tr * and T. «

' T, - V2TI Vm Total tolerance T, = £ + T2

accuracy, e = .5 X ^ and T. = 10-
= 5 X 10"10 and di = 10 5 *v m

: ;;:::;i urm for least execute time. Tables for some common accuraces are shown here.
A) ^ ax + b where X = most significant part of m

10-digit

0)

Range b i

ul .02 4.1 .060
03 3.2 .078

o:i .08 i 2.2 .110
08 18 1.4 .174
18 .30 1-0 .247 |
30 GO 1 0.8 1 .304 ,
.',u 1.0 0.6 j .409

n ihat range limits are also
. en for minimum number of
i: , for minimum TLU time.
:. adjustments to these tables are possible.

Range j a b

.01-.02 4.2 .0585

.02-.03 3.1 .0803

.03 .05 2.5 .0991

.05-.08 2.0 .1240

.08-. 13 1.6 . 1545

.13.23 1.2 .2060

.23 .39 0.9 .2749

.39-.60 0.7 .3550

.60 .84 j 0.6 .4148

.84-1.0 j 0.5 . 5005

Because of the ,i adjustments tu Lticoo "soiu. i
ial interval in arguments, address modification from the

micnt is usually impractical; the normal method is to truncate
argument to .xx or .xxx unrounded and do a table lookup on
iparison. Because of r ound ing overflow the subroutine is easier

.. , / .-ii ^irxxx7or maintains the sam<

j L'unu

Range a b

.010-.014 4.58 . 05439

.014-.020 3.84 .06482

.020-.028 3.23 .07712

.028-.040 2.72 .09153

.040-.056 2.29 .10876

.056-.076 1.95 .12781

.076-.105 1.66 .15004

.105-.145 1.42 .17548

.145-.195 1.21 .20596

.195-.260 1.05 .23745

.260-.350 0.91 .27395

.350-.470 0.78 .31953

.470-.630 0.68 .36649

.630-.820 0.59 .42301

.820-1.00 0.52 .48005

a a r i s on . Because o f rounamgovei now tncsuwxw t An pari v
»,i,o if ihe with even power maintains the same mantissaTor

:->r tins condition will nsually save program steps masmuch as ovaflowis ^arante^newr »
, I , r i ahles could be constructed for different but* -^^Lwn^Th VET.

ibably be better to use 3 iterations.

ample: Find the V-12345678

.12345678 -s- .346 = .35681

.12345678 -t- .35141 = .351318346

\ .5 (.35141 + .351318346) = .35136417

Iilterent accuracies, uuo u c.— ,rrrr
A similar method is also possible for binary machines with \ L .

Ax = 1.4 (.123) + .174 = .346
A2 = .5 (.346 + .35681) = .35141

or,
.12345678 - (.35141)2 - .0000322081

.70282 .70282

- .00004583 + .35141 = V~= .35136417

XTRAN ANNOUNCEMENT - SHARE Meeting - 26 Feb 1958

XTRAN Is a tentative name far a tentative same® language which is to I
superstructure on the existing FORTRAN language. Certain of the pre llmfnory
specifications are outlined <m Hie shoots you now hevo, together with some coding
examples to demonstrate certain salient features* Note that ihasa specifications are
Incomplete, pevticularly with respect to Input-output and logical statements * This
does not Imply that we do not have Improvements developed, but merely that we could
not decide on a proper Term far this presentation, rushed as we are*

XTRAN follows a method dsmsnstratcd Jo be feasible by tha FOR TRANS 11 system,
which Is a msaro of running source programs In the FORTRAN language en the 69D*
This Is done by means of a sour so language - to - source language processor from FOR
TRAN to tho IT langucgo, which Is then used to produce symbolic and eventually machine
language coding* Thus XTRAN programs produce FORTRAN programs which are fausi
fed Into fh® FORTRAN processor for the 709u Again, Sho standard SHARE machine b
the c mi figuration teed thruout.

The basic mechanism of XTRAN k the Pre-Procecsar program, which is being cur
rently flewcharted for the 709. This pre-processor Is Itself a multi-pass Intelilgonce-
gctftering and transforming unit quite similar in principle to the multiple passes of the
PACT system. I believe that most of our future programming systems will be constructed
an this modular principle, limiting the variety of functional work performed on each poo
so there Is little conflict, «acd certainly mcro flexibility for Improvement and change.
This {he Information gathered In prates 3 end 5 might show that there were no source
entries requiring the sendees of pass 8, which would be eliminated accordingly.
For processing XTRAN on Hie 705 models I, II and 111, no pre~processer as such Is
required bsccusc the combined GUIDE-IBM v/orhfng group Is starting from this language
and trcftslctsng directly to Autocoder Hi.

During the pre-processing, many of the XTRAN sterfcrnisnte will produce multiple
statements of the FORTRAN variety, so tbet the pregrs»i Is likely to fes much expended
whof) en taring th® FORTRAN processor. We ere coordinating XTRAN work, with {hot
of iho FORTRAN 709 processor so that th© analysis end infometfoa-gethsrlng dona In
the XTRAN pre-processor is switched off In .the FORTRAN processor end not duplicated
cny mora thsn necosscary. If tfi©ra had been sufficient time to meke cm Integrated system
before delivery of the firs? 709s we would have dnnc so, but th© present roods of fab
rication !x» a greater safety factor for completion on tiros. In actuality we expect the
overlap to be negligible. .

The basic Intentions for XTRAN ore:

1. To minimize tha ©mount of actual writing and coding, resulting in fewer entries,

2. To minimize possible coding errors by at lowing more freedom in rules end auto
matically Inserting nuw and corrective statements. Thus:

a, Algsbrale tWwnsRh amy have mixed express tens aontclnlng flxod or

floating paint variable, or constant.. WtipU
a "RUNNINGSUM = INITIAL® some «pressi«> . This same stare
may be used to create muUlway programmed switches.

D.rr —-—J-

listing and group iham appropriately.

Conditional -

it X£R't 5SMSL-

£te mlSSTiffeLdfefely fol^ • ** •»**"• ̂ M8d *
think up dSfferawt names for stetemento.

, Statement referents ond ^ iTa'^ropresafeat'ol referents},
ccfer alphanum^ie ^-fe ^ !vtl!9ni3 for FORTRAN

^S^JSLWitSSWSE
entictod with l«*s choice for duplicates.

,. Subscripting and range crmtrol on BO seamen* «
poure), ol lasting ^•d|y«^latsfre^cO|^ ^ ||m|[ci!on

mentation as any Sxod lnaflOT of oner source
*2 wutisuicrly in the wc of nagcMw subscripts and
"** "".T*' 0O ,'nSw*. Vorfnrtcn for d! h*3c« ""V .'IIfresed

SS^rSsSsassa

•• jj^,ias^sss--^»JSS!RSS'
LIST #Sofe.T«nt. TW» «*» cppK®3 *° Bop,-acn v 11 *"eSu

fl. Much sniting »r ho Olfednofed by «—*
marts, ,which effectively copy r«*» oi «•*"• ,B p

„. Many*mUI«i and ""
£A*« «*1MN prcc-fe,. as are

ioglcal errore In coding e«d crnbsgueus tfetwonfc.

To be compatible with lower level existing languages in ihcf any ,-ORTP.AN state
ment may exist In XTRAN, byt not vies versa* Ibis Is important In the? there may
be coses where XT RAN programming v/iter* used to the utmost would produce a l<m
efficient end slower-running pregrcm, although pregronmed modi mere simply la
source language* In this CGSG, as with the present operation of 704 FORTRAN ,
the expert programmer may achieve better efficiency thru understanding of She
system and coding In the lower level tarns*

To be compatible with nszny IBM computers with llko capability, such <sS Hie various
705s, Tape 650, etc. Machine crlsnfaficn has been removed from the language end
facility Is provided to cods specific sections In the symbolic machine language of
the several computers, meamhlie Ksdntefclng a cssreful watch to catch end give
warning If such programs era run en other computers for which these sections ere
unacceptable*

5. To allow the fabrication of generalised hlgher-lovei slulumcah by the epen-ended
definition of new language with the appropriate generates* * For this I» must nava
recursive properties and bo susceptible to set notation, symbol substitution, logical
algebra, etc.

6. To allow a mere nearly "flowchert" typo and way of ceding, where &© detailed
blocks of coding ere filled In later although not subjected to restrictions the* they
must appear In the source progren In any particular flow pattern*

7. To facilitate multiple processing cad testing of Intermingled programs

£2^£!iJ^NgU^CpMPATIBIliTY THROUGH MULTILEVEL PROCESSORS

gc<v .̂
sSlSSHSir?

W ..ZiEUSS. tStlrstSiJisSZS •̂

•«. - ̂ »^Asasr x teaKs;-

*«• X" - - of
who ore frying to create «. mhwudt . proweiw ofren faced fay prcsrcmmere

iust"51,8 h"° of £tw>' ted fc

«X!«0 £!f!Zk A?C^laHh On ch°ic® ®f Erin3 ra dtmalfy as possible from She
« ^ ® i K o : £"1 «"*« ® —v "»*<**»•
by^ta .1 , f ̂ f"8 of *• odsHng subroutines oy wItfng a program m<?} calls upon the subroutines when fhey ere useful.

Skt^ier? "** ̂

JSfttt stsaszr ** fcTOta--—Xi

rot/™ !i!OV!ti>SH: •T'.C ,̂"roK,fe P™ «•• lirt *e merits of the Intfr -t
^1'," J® S™*. ®dr,e* -'er!e- n» <Sire=» nwta has the cA/nitmo of shorfc
SSof ?*«»«» »"•—' - »«*.Xfito
rsnnsitnij finse btri her «v° 5*u'.' " "-V ?"f ™* *• *• AaAranfcgo of hr hrsa> «*'«» *• «WBfqB»«fl»ta9 »«. WW*, If falcos fall c;w

*• 2 "

fvZntlS, ̂ have most of to features desired to sire final
5!fljfJ!fT: ,?Ba®0Menis point up <**fact. WERE IS NO GENERAL RULE.
to !i5T EE" I®9""186 to obiaef Pro8rora <̂ Kfe 00 «"»* win vary v/ifb each individual c£sa0 Some of these <g>e:

F^roRimJflg investment In the existing system <md the efficiency
end usefulness of She existing systsm0 T

IheF^r^Ws budget for creating the programing system end his
deadline for having a cheeked-ow? running system.

., . f.f ̂*? P"'"" a* P8*'?1 iira •"«> portfaent. If a programmer simply
ZTL ̂ ̂ b«fe®»<* «» fimo toslt ton aid write 0 completesystem Iran
scratch, then the choice is made far htma He must use the indirect route of fhe
preprocessor 0

Another important point fo be considered Is to when a system Is created by

££ wiirrZi '̂ tot?Wn9 codin9«whaf kind °f

In order to help untotaml (to this to! product will lode like, soma points
^prt̂ irocesamdtodbetoccto. Actually to a preproca^r shoSdl bo
is a soiree longo-cge to source language translator, to translate from a higher level

fo ? l$7'swf':ea <«S«8«, «al Incorporates advanced onto-
mafic programming features, during fhe translation.

- uJ0ofca.fo,r' ° If8?**®® ̂ 'W i>® regarded.more as the to pass of 0 system,
iiie 9 ̂of P0538® of «» overall system, rather tos 63 on Indoponckmf

F«Sf€roming system simply placed in Sron? of 3ome other programming system,. True,
sy^em may h® Initially created by Shfs tacking an of ihe preprocessor,

'rST °? FCCCSS?ns f,m® ®«d «»• <Ml«»tfan of effort. Buf
rM /Tff - fT* &W<sd <**' °"d deadline, If any, has

a tohtoTS ovar 013 8teaa,!3 °ffeW P"1*" ™i

ilia FOR TRANSIT system for the IBM 450 Illustrates to successful use of
,?*'f?!1"°* '1,!'° ̂ "8 j° •W1 «••»•» SOAP, o symbolic assembly

PSfT?.®dKa3ar,twisS,,9ŝ ten- Dr. Perils of
1,18 ""+**! J-w- S^* «" H. R. Von Zcren, wrote a

.llmiu!sr^!£ ' ® oufpuS !s '*'• ,BP l̂«'SiMga of SOAP, to
eBednte'ry toneed for torn So write an assembly for to IT system, as to program
T""*"***!18" f'̂ P̂ 'fteB.*8 SOAP system. The next step was for IBM
prcgrsBmars to write to FORTRAN SIT preprocessor to translated from FORTRAN

m

statements toIT statemenis. This system Is more fhen just a source to source language
francM*. The FOR TRANSIT preprocessor Incorporates many automatic programing
features diet wore net possible with fhs IT system alone, has a one for retmy Input ou ̂
raRmANSj"0*' ®" 9fV6B ** F°^emni€r ^ «*«**• of Ampler

Th® resold overall program Is a three pass system that works In this way: Source
programs ar® written using FORTRAN statements Q The first pass through the 650 scans
eootbaI'.^05 **\®'bPw* statements sef$ «*P necessary tobies of correspondence between
FORTRAN vcrlabfe names end IT variable nomas, at fhe same time double subscripted
variables are assigned IT variable names. Then fhe whole program is translated to IT
statements -for output-. For the seaatd pess, fhe newly crseted IT statements ere used
fonfepuf. The compiler then scans end brocks down each Input statement, compiles
subroutines and translates on a one for many basis dram the IT statemenfc to fhe symbolic
ffliguag© of SOAP for output. For the third pegs, fhe symbolic SOAP program Is used

for input', and Is assembled, die output being <m optimized machine language object
program ready fcr execution.

The overall result of this experiment- In tacking a processor In front of a processor
that was tacked In front of a processor has bean a three pass system that Is long on
processing time end dus to ihs three passes, on® which has been unwieldy In some
cases. But creating fhe FOR TRANSIT system accomplished this:

The programmer with a problem to solve need cnly concern himself with learning
fh® FORTRAN language and very little else. In the Ideal cos© She programmer Is
unaware of whether It takes three passes a? three hunsbed passes to process Ms FORTRAN
statemsnfe.

While fh® system is being used In fhe field, prcgrcmsraers at IBM care working on a
to© pass system. The first pass will accept the FORTRAN sfc&erosRfe and compile a
jmtb&Hc program which is assembled on tko second pass. Dupfleerifans on coding are
being eliminated. The whole system will be tightened up. The result of this Is that
this two pass FOR TRANSIT will have a marked decrease In processing time and greatly
increased flexibility as well as a mere efficient object program. But remember, while
this new system Is being prepared, people have the original system to us®, and when the
Improved system Is distributed, th®r© will be very llftl® Intefrupi-Jsn, change over period,
or releemfng time, In the 650 installations that ©re using fhe FOR TRANSIT system.

Experience In writing and using fhe FOR TRANSIT system has shown that there can
©® many impoitef advantages of pro-processors.

One Is fhe possibility of introducing more advanced automatic programming features
to cm exfsfing system through fh® us® of a pre-processor. This sen be accomplished by
e preprocessor that not only accepts a higher level source language as Input, but nhw
contains toe routines md ability to prepare this Input for processing by She fewer level

- 4 -

« Z ̂ EXT?"1' "" 00S,R8 *• 100,1

grmmnlng VZTtai ,̂,SBd-tel"

« J ? z 2 £ z z ' , £ , s r i b l ° T ? * * •
°"fcroHc pryommfo, or coding syrtems. The FOR TRANSI^Jsto M^ht L utd "®

an Illustration again hare, as ft translates from a 704 Input language to a 630 irsnut
lmsU°s'' m*ln9 " •» - FORTRAN MmmtIZ eiS SoS ̂f^>?

A. B̂ f"r odT'°8e *!" " h p!xslbl<> *» P"*?™*!'*! systems to exist boforo
the find source longuoge Is specified. For example, thereore feu, people LfivX

T* ",0f '®*s K!ms aulD"a«= «oding or programming system
£=± ' T**# 3 ACMf° "°C V*S«common '
ZfitZ £SkuL J5 e5mra0? ,<ffl9«W* >' tpee'Hed end occepted for use,

^^tongucge tromlaSfng to ploy cm
KT!T ,, !S ,wd,r ̂aPPreBd» CGf» P®op!e *0 begin using the rL
>̂ a£T B° W","° *» wlw!s ™» ̂ toms to to weoted from

** "h"'0"8 brt ofeai ""tooked advantage of less
«L £Tu pr°?°"m,nP e.ITORi- My fta*>i» loss work for o programme, to do
tesfar Mm to .mdemtend fewer ruies to follow, there will bo a rjdtoffowl
error.on his part. In odethon to this, the preprocessing pass should Incorporate error
££?£ " 71 Error detection bacfetolk from the prepeSZ «
n J u U ° 9"** ̂ *> debugging, end the earlST
in s^tem errors ore detected Hie mare time saved.

_ . .° ̂9"01 J010' about preprocessors is that, if on automatic coding system
SWCe pr°8rOTS hova h®®1 wm"° in I"8 luns«S89 of Mb existing

^7, "J!U,°rr?i»'b «*Wr ̂ existing so£?£U» cr^ct ®
obsolete. They do not have to be rewritten any more than a

^X^riSTpr ̂ *1,9 rawmeR **- —0,008

of lh ,̂btf0r°i!^!0m t fraPl8tod «««•«.program may be vwitten in any one
of ctawtaatheIft; "** *"• £yS!®" u 8l»® the programmer the freedom
prograrrf source «tatom«nts from one level to another within his

*™Uu!St?Z! ** p,?sible hy bu,W,"8 an Intelligence Into the preprocessor that
££££ fte^t I*3, "T inpatient fhtf
" Z° 7™* iev® «*•»«*» highest »s simply passed along to the proper place In the

51,0 rKn0,Kkr of to® •* was a droeripHon of the propped

I > \ I \ (oiVl rol

c" L^ ~ r

>>r 6

Evaluating Intelligence for Programming Systems
A remarkable variation exists in the degree of sophistication of
various programming systems. A particular manifestation is the
jungle of assorted devices for reproducing limited human decision
procedures. An attempt is made here to begin a systematic classifi
cation of the various devices for educating the computer to take
over the decision-making functions of one or many human operat
ors, both those that have been demonstrated feasible to date and
those that are highly desirable for the future.

lookup mechanism.

Are statements reserialized at eaeli
reprocessing to renew insert ca
pacity?

R. W. BEMER,
I.B.M. Corporation

available to DATA Control readers
upon request. (See box).

• It would be very presumptive to
attempt to present an exhaustive sur
vey of intelligence in even the most
narrow and limited field, which the
design and application of computer
systems certainly is not, since it has
the capability of representing the
inherent universality of thought pro
cesses. This article is intended only
to create an expandable framework
for additions by others.

In this article, typical questions
from such a checklist are amplified
and explained so that some of the
implications of such a check list can
be appreciated bj. DATA Control
readers with a detailed working
knowledge of computer systems.
Copies of the complete checklist are

TYPICAL
PROCESSOR QUESTIONS

Is all action taken on an exception
basis, so that programs which use a
minimum of facilities and least flexi
bility will be processed fastest?

A good example of this is the per
mitting of names of any number of
characters. Suppose that the fixed
word length of the computer will
handle 5 alphabetic characters or
special symbols. The programmer
may then be cautioned that if he
limits himself to names of 5 characters
and less, only one word need be used
for each and the processing will be
much faster. If he used larger names,
it will require longer tables and more

Serial numbers have two purposes.
The first is sequence checking of the
statements in a source program. The
second is the matching of corrections
against the old source program, which
is presumably on a medium which
does not allow manual rearrangement.
A common procedure is to either
hand-serialize the original program,
ignoring the lowest order position
or have the first processing do this
automatically if one is sure he will
not disorder the program before
processing. This lowest position is
used for insertion of forgotten or ad
ditional statements, up to 9 if only
numeric, and 35 if alphanumeric.

Since the processor can assign serial
numbers automatically for the first
processing, it is only reasonable to
give it the further responsibility of
doing the same thing every time,
which reopens tight spots for more
inserts and in general tidies up the
program listing. Each page of the
listing should have its own number,

and lines should be in sequence on
that page, starting from 1. This is
extra inducement for the programmer
to use the updated machine-produced
listing as his only source for changes
on further corrections.

Does the processor force overlays
before compiling a full memory
load, to leave a "pseudopod" link
age to the supervisory routine?

It is always best to leave a free
area of high speed memory to control
overlays. Without such a buffer, the
processor will fill memory completely
and have no means to call in another
section when the program is inevitably
expanded. With it, a minimum change
in assembly is possible by trivial
patching. Otherwise, the section of
program which is displaced may have
been referred to by other sections, all
of which must therefore be reas
sembled.

Will the processor re-order and
tidy the program at each processing
to collect like items, as for declara
tive statements mixed with impera
tive?

It is an imposition upon the pro
grammer to have to constantly re-

—-— " recoil
"^T^etained 10 xY rep

:°Ve used -.n

*',bW 9°cV> process''"^

,ned V, ot inctea° ~~T.haV Pro9

_ „veep»°n .1 ,i;w w"

PROCESSOR (Continued) 1ANGUAGE

ed>° ,h°no, incre ĵ!!Ĵ --̂ rpro9

- ^Ton on e *

printed f

processor ,, e0dop<>d______ 77 .

. spei^ngs '^nYerroS

process*' u ^ enoo9^_ ^

« W pf09n

jroce^ . has ^ .—
s » pr09t°

border and t V statemen
processor re ^ aeC|^

ke ZZZc* aUoca*
* of roe«n°r' J access

16. Can the allocation of memory be mnri~
distributing data, instruction anc

17. Can physical characteristics of v«
e.g., known to be a fixed point

Does

18. Will the processor create extra stc
mixed expressions of classes of vari 2.

19. Will the processor accept statistical
occurrence of characteristics such as

20. Can the processor incorporate inputs
program to allow servo control on the

tim® \ M
maintenance)1 ̂ ^hecUout Wr

•tn ProCf.° form for re-

7 of an inviolaL
for a problem,
sr-slave fashio
» having no all

I continuously or
programs and I

AWP^r-.nopdaf'd
me<i«a

21. Does the processor guard against assig
or external equipment which does not A.

22. When a set of instructions is labeled o
may it either be copied in-line each t.
closed subroutine, depending upon the i
and number of times used such that a pi
wastage of memory vs. increased executi

a\y^2 -— ach ti

Are statistical ">unh ^routiner and °J

rarie5 5^ possibfy deleting^ _

16. Can the supervisor repair, change, update an
under its [urisdiction, noting the date and res
program processed may be tagged with this in)

17. Can the memory areas and execution order of
altered to take advantage of data bias, as in

of us°9e'

Spec1'

provisi°a ^j'ctass o

— —1— • 'will uuu 11 iwj iinpiuve prog
basis, e.g., choosing alternate library routines

1. Is the symbol

1 2-
Are naming 1

1 3"
Can the lam
new verbs,

[4 ^ Are stateme

1 5-
Are stateme

6. Can synony

1 7. Cap statem
imperative

8. Are all ex
of the stoi
descriptiol

23. Does the programmer have the option of
with power underflow replaced by true ze

receive " OPERATOR INSTRUCTIONS AND OBJECT PROGRAM

9. Is there c
acteristic
items by

pro 1 .cessor

proi ,b\em in 1*
current

24. If told that certain actions in a program c
will the processor create instructions which
economy of memory, those sections of the ,

millirr rTr the fer'°r ft"

Con fhe ^I'r^d"^,:

schedule and

to u

1. Is a notebook created with the printed record o;
ation, or caused to be printed as an initial port
program, which tells what this particular prograr

10. Are inpu
as sophis

Does It indicate initial and running control settir
by control cards, tape unit assignments, which h

1 •- J

11. Are ther
by progi

12. Are the

order liis source program so that non-
acting definition or declarative state
ments are read before the statements
requiring this information. The «hering of intelligence should be a

ies of sweeps thru the source pro
gram, and it is just as easy to extract
this type of statement by means of
the processor, which automatically
puts them at the beginning of the
program (where they would have
been had the programmer been omnis
cient).

Will the processor create extra
statements for or allow mixed ex
pressions of classes of variables?

In general, the programmer should
not have to constantly remember
whether a variable is for the moment
in fixed or floating point notation,
single or double precision, rational or
complex. The processor has access to
conversion routines and should norm
ally take care of this automatically.

Can the processor incorporate in
put-output interpreters in the object
program to allow servo control on
the basis of actual data character
istics?

Too much emphasis has been laid
^jjion compiling the entire running
^^fcgram before operating. Particu
larly with the advent of simultaneous
reading, calculating and writing, the
balancing of these three functions to
obtain optimum efficiency is most im
portant. If one had to densely sprinkle
the running program with interroga-

Computer Program
Checklists Available

The accompanying article discusses
typical questions from a checklist of
intelligence for computer program
ming systems. The list consists of
several series of questions concerning
the processor, supervisor, operator
instructions and object program, lan
guage and diagnostics. DATA Control
readers may obtain complete copies
of the actual checklist by writing:

DATA Control Editor
Automatic Control Magazine
430 Park Avenue
New York 22, N. Y.

tions of external equipment just to
make decisions on the basis of its
status, one would find that at least
half of the memory was taken up with
this function. A change of state of
external equipment must interrupt
the normal program sequence by a
trap to an interrogatory program
which assesses the need for rebalanc
ing and will select the proper sections
of program to do so for this condi
tion. It is impossible for a compiler
to choose an optimum mode of opera
tions when the characteristics of the
•lata are not known until running time
and may change abruptly or periodic
ally.

When a set of instructions is
labeled or called as a macro-instruc
tion, may it either be copied in-line

set adequate, with prt

-cilities unrestricted a
ecursively e

procedures

in free for

i and legi

ed, both

rly iden

rovide-
That
jnts s<

i l o n l y ? ~ — tr,ons for snapshots „ AT
• ls fhe system t J "Seated ?

^ J ^ e r n e n T o c c u r ?
~*»«•» used

•"ismatchedV^T " °f Problert)

connected.

asm.

each time it is called or set up as a
closed subroutine, depending upon
the number of included instructions
and number of times used such that
a proper balance is obtained in wast
age of memory vs. increased execu
tion time for calling sequences?

There are various means of making
this decision. Knowledge of how many
times a routine will be executed dy
namically for minimum execution time
is difficult to come by, but economy of
memory is possible thru static usage
counts. Various weighted approxima
tions may be used to give a simple
formula for this determination. Take
for example a routine which requires
4 instructions when compiled in line,
using 3 extra instructions for linkage
if compiled as a closed subroutine. If
memory wastage were the only criteria
and the routine were used in 10 places
in the program, it would require 40
words in line and (10) (3) == 34 in
a closed subroutine, which is better in
this case although it takes more execu
tion time. However, if used in only 3
places in the program, the in-line
method uses slightly less memory, 12
to 13, and is considerably shorter in
execution.

TYPICAL
SUPERVISOR QUESTIONS

Does supervisory control exist in
and have access to real-time envi
ronment through a programmable
clock?

A programmable clock with a trap
ping interrupt feature can provide
very useful decision data. Among the
uses of such a clock are: (1.) Mainten
ance of a log of error frequency for
statistical analysis by maintenance
engineers. (2.) Determination of un
stable or non-convergent iteration
processes. (3.) Causing checkpoint
procedures at selected time intervals.
(4.) Allowing on-line operation in
control systems. (5.) Making time
studies of input-output balance. Keep
ing track of the real time required to
execute various sections of program,
for the processor to later reprogram
for better balance and efficiency.

Can the supervisor schedule and
select all components by names as
signed by the programmer and,
without stopping the computer, call
upon the processor to modify the
program to use alternate units
when hardware fails?

The input-output program should

communicate with the supervisor to
assign the correspondence between
the logical (named) units, such as
tapes, to which the programmer re
fers and the available units which
the supervisor may use. The operators
should also be informed of the units
which are free for setting up the next
job. This next job should read the
tape labels on the new tapes and pass
this information to the supervisor
which, knowing now which tape con
tains what file, automatically reworks
the program to call upon them prop
erly. The physical unit number or
designation thus makes no difference
in the running of the job.

Is there provision to retrieve the
processor to compile a section of pro
gram upon demand in the middle of
object program execution?

In cases of many alternate pro
cedures, it is wasteful of memory to
compile machine instructions for all
of these, particularly when only a
few may be used in actuality. It is
possible to simply compile traps to
the supervisor for each of these alter
natives. Then when such a program is
actually needed, the trap to the su
pervisor calls in the processor and
compiles an actual section of running
program. It is less wasteful to keep
such program alternates in low-speed
memory in synthetic language form,
than in expanded form in high-speed
memory.

Can the supervisor schedule com
ponents for the most efficient use on
a spectrum of problems?

Since the machine should never be
allowed to stop, the supervisor(s)
must be entrusted to manage the en
tire operation, scheduling automatic
ally the various problems presented to
it. Such an operation may be likened
to that of a short order cook, the
peripheral equipment to his order
wheel and the customers to waiters
placing orders on the wheel. Although
the orders are placed in time sequence,
the cook does not necessarily process
in that order but rather tailors his
operation to present and future load
ing of his facilities. In other words,
the coffee, toast and scrambled eggs
must all be done at the same time.
The supervisor, upon completion of
each job, should inspect all current
orders, estimate their duration, note
the components required and decide
what to process next. It might web
delay a long problem in order to do
several quick problems in a row to

23 DC

no
January 06. I960 TR 00- 1S00°" 705

AN EXTENDED CHARACTER SET STANDARD

by

R. W. Bemer and W. Buchholz

Product Development Laboratory, Data Systems Division
International Business Machines Corporation, Poughkeepsie, New York

p

i

AN EXTENDED CHARACTER SET STANDARD

by

R. W. Bemer and W. Buchholz

1 • Introduction

or so characters^and'th^eir^od'^ equipment is designed ,o handle 48 ssr s Srrr,
tains codes for 120 C°n"
sion to up to 256 charartevc j- e ls room for later expan-
useful subsets have beerdefined h f C0"tr01 Ch"act"s- "> addition
120 characters and whTch uielhl 'f ""'T ?m6 "Ut *" °£ the"
without translation. C° 63 the selected characters

XZT and -̂ -̂-PP̂ cation1: wher̂ a'48-character

•o satis^:;1:^^;^:—;a r r ' d e f o £ t h o u g b t h a s — « * • »
of them with a single ECS but fiPi +• ? ,VG lmPOS3lble to satisfy all
an overriding requt emem ofVe^ Vh^ed^ C°nSidered t6

data processing installations and the inevitable mixture^ ""T"'' betWeen

Tzztr- a

situation it is always possible to deflUab^Tr ther^ *** T*
some applications demanding a highly specialized rh ! *** obviously
do not consider this set to be ideal, but we do feel thaMt sice'
many of the more common requirements. satisftes a great

an ECS as we see'them^and IZ "T"' *° to 8et down lhe requirements of
by this particular set. ' P°"1 °Ut ow thc'V have °' have not been met

B
- I -

2. Size of Set

Present IBM 48-character sets consist of

10 decimal digi ts ,

26 capital let ters ,

11 special characters , and

blank.

Because a single set of 11 special characters is not suff icient , there
exist several choices of special characters as "standard options".

Since this set is often represented by a 6-bit code, i t is natural to
t ry to extend this set to 63 characters and a blank, so as to exploit the ful l
capacity of a 6-bit code. Although the extra 16 characters would be very
useful , this s tep was thought not to reach far enough to just ify the develop
ment of the new equipment which would be needed.

As a minimum, the new set should also include

26 lower-case let ters ,

the more important punctuation
symbols found on al l off ice type
writers , and

enough mathematical and logical
symbols to sat isfy the needs of
programming languages such as
ALGOL.

There is , of course, no defini te upper l imit on the number of characters .
One could go to the Greek alphabet , various type fonts and sizes, etc . , and
reach numbers well into the thousands. As the set s ize increases, however,
the cost and complexity of equipment goes up and the speed of print ing goes
down. The actual choice of 120 characters was purely a matter of judgment
of what increment over exist ing sets would be sufficiently large to just ify
the departure from present codes without including many characters of only
marginal value.

3. Sub s et s

Two subsets of 89 and 49 characters are shown in Figs. 2 and 3.
The 89 character set (Fig. 2) is aimed at typewriters which, with 44 charac
ter keys, a case shif t , and a space bar , can readily handle 89 characters .

- 2 -

al^adyp"n«W89 charlf1 'T'" beCaUSe typewriters can
familiayr™Vp.opTe keyboards are

the SUbfSet «Fig' 3) 1S Usable in * printer similar .0
tar.Ta code which ,f reS ! me Conventio»al of "commercial" charac-
ped for the ECS it would sHuVe pY^'bl^T^h iT"1*!' "* 3 sys,em e1uiP"
Cienuy on job. .such as bill p^^ be

tor purety^ ~ork! f"
sisting of the 10 di(?it<? arrf tv.^ u i 13-character set con-

g me digits and the symbols . and . together with a special blank.

4* Expansion of Set

One is t^^^dMonal^am. *'"?^ ™Y pla« in tw°
allowance .ho^d be ̂ de for c.^ una"i8ned »-»* odes;
communication and other devices d °p" t° C° 69 wblcl1 ^*1 he needed for
end of the cod. sequence iZ 1 i T in,ended '° °CCUpy the hi8h

to "escape" to anoler 4am«er .« Thus h 9 ^ Cha"Ct"
is encountered the next rhara + / ' whenever 411 e shift character
character set, and subsequent '^ (°r grmlp °f cha«<*«»> identifies a new
Another shift character in that , "if lnterPreted " belonging to that set.
m a y a g a i n b e t W ^ s e , o ^ a * £ ? 3 T * ^
defined only if and when there ar ise applications^r e q ^

5. Code

These vtuhd0inTh?siCzedlfttr'^"Tey ^heTT T'^'
mation bits grouped topefhpr + ' smallest number of infor-

bytes which may represent a Am^Tm-re:

single 6-bit byte with shift codes interspersed,

double 6-bit byte » single 12-bit byte (Ref. 1),

single 8-bit byte,

ers single 12-bit byte for "standard" charact^ „
(punched card code) and two 12-bit bytes for
other characters.

* Note that the IBM 1403 has avafiuKu An i.
Which is one more than the^

- 3 -

Some of these codes were of IZt^ZZnt.
compatible with earlier codes so q{ BQme rather ingenious proposals,

partial compatibility were not enough to offset t e

disadvantages.

The 8-bit byte was chosen for the following reasons:

The full capacity of 256 characters was
be sufficient for the great majority of appi

an ECS.

(b) Within the limits of this capamty^a o£ any

'p t̂TcTarlecord is tot dependent on the coincidence

of characters in that record.

« -reasonably economical of storage space. (C) 8-bit bytes are reasonaDiy e

,d) For purely numeric work^

rePrbe8ê cke7in an 8-bit byte. Although such packing

of turn etit data is not —
practice to increase spee analogous scheme.)
(The IBM 7070, for instance, ent code,
Strictly speaking. 4-tut yt« ^ as compared

£- ~ampie' xrds.to a simpler
Tchine design and cleaner addressing logic.

(e) Byte sizes of 4 and 8 bits, being features

Euidressing0and^i^eidng to the bit level. (Ref.2, 3).

In this report, the 8 hits of the code „Bit 0" may
from left to right as 0 (high-order bit) to U°
be abbreviated to Bq, etc.

6. Parity Bit D . Jr cxx. xi> y
" . t. . .. • _ attached to each byte for parity

For transmitting data, a mnt ^ odd number of one bits.

checking, and it is chosen so "TZZllZvof a signal, odd parity
Assuming a one bit to "'respond to t P transmitted and to be positively

- signal. The parity bit is identified

here as B^

- 4 -

0 --he"
' f ?"or or other checking techniques within a given device

or on a given medium when appropriate. given aevice

C>

7. Sequence

eessinvHiThh,r»qUal"1°,a-.COmPariSOnS a" aspect of data pro-
g. Thus, in addition to defining a standard code for each character

one must also define a standard comparison ("collating") sequence
Obviously the decimal digits must be sequenced from 0 to 9 in ascending
order, and the alphabet from A to Z. Rather more arbitrary is the relation
the 48 gr°UPS °f Characters> but the most prevalent convention for
the 48 IBM "commercial" characters is, in order- vention lor

(Low) Blank

H Special Characters . H & $ * _ / %#@

26 Alphabet A to Z

(High) 10 Digits 0 to 9

to the JUndamentally> the collating sequence of characters should conform

this property, and it is then necessary, in effect to transl t •
internal code during alphanumeric compaLons ' ThU ZTell ZlT

H l̂TSl̂ sequence dt̂ tTt̂ Î

been achieved because of conflicts with other objectives.

translation: *** P'°VideS ^ f°"0Wing C°Uating -V

(Low) Blank

43 Special Characters (see chart)

52 Alphabet nAbBcCtozZ

20 «««• 0 1 , to 9 ,

f s ^ Special Characters . ;

(High) All Unas signed Character Code
?

s

- 5 -

1 tters collate in pairs in adjacent
Note that the l^eTfor direCt°l%°l™™* the

&-'S2i s=si rs=- - - - "
names, mn»
considered unique.) nce and the earlier

^^^-«f^r3==2£.
able Aaracters had to^ ̂ ̂ ̂ sequence^ ^ rarely will
characters do not a m g wouid be quite usa e, code. It is
B was felt that the new s^ ̂ ̂ ̂ the transition to < e nce, as has to he
it be «cessary to : ^ t<> obtam any oth
always P°9Slb'\ ° inK codes,
done with most existing

8- . ont for the blank (i- e. , the
de 0000 0000 is a natural assignm• ^ space). Not only

bits (other than the P^ityta.)^
movement in a prin such as the all-ones

Blank -"-i^'^a^rstVrade^r Racier occupyhtS ^

a Jnt--. -nrsl^acter and ~
A ..null" may be used to deUte ^ ̂ opportunity^ ^ ̂

SHS ̂ pu'.trnVe&ng the control characters.

Ty££̂ £ii5£jiSl5£Hi „d 26 keypunches has been

Because.he shift keyon ^^wise 'low.""'
used to cause number' ° Ptel different convention when » advantage of = — 1 - - — -
^r^typing Skills as much as possible ^ ̂ ̂ ̂ ̂

The common typewrite^: keyboard -n-'9 44 r-.r. r.;:.-.-y « - - *v° -dthe
- 6 -

a separate bit (B?). The case shift was assigned to the lowest-order bit so
as to give the desired sequence between lower and upper case letters.

For ease of typing, the most commonly used characters should ap
pear in the lower shift (B «0). This includes the decimal digits and, when
both upper and lower case letters are used in ordinary text, the lower-case
letters (This convention is different from that for single-case typewriters
presently used in many data processing systems; when no lower-case
letters are available, the digits naturally appear in the same shift as the
upper-case letters.) It is recognized that the typewriter keyboard is not

e most efficient alphanumeric keyboard possible, but it would be unrealis
tic to expect a change in the foreseeable future. For purely numeric data,
it is always possible to use a 10-key keyboard instead of, or in addition to,
the typewriter keyboard.

It was not practical to retain the upper-lower case relationships of
punctuation and other special characters commonly found on typewriter key
boards. There is no single convention anyway, and typists are already ac
customed to finding differences in this area.

10. Decimal Digits

The most compact coding for decimal digits is a 4-bit code, and the
natural choices for encoding 0 to 9 are the binary integers 0000 to 1001.

s mentioned before, two such digits can be packed into an 8-bit byte; for
example, the digits 28 in packed form could appear as

0010 1000

T o r eP resent decimal digits unambiguously in conjunction with other
CS characters, they must have a unique 8-bit representation. The obvious

choice is to spread pairs of 4-bit bytes into separate 8-bit bytes and insert
-bit prefix (zone"); for example, the digits 28 might be encoded as

VbVd VbVd
where the actual value of the zone bits z is immaterial so long as the prefix
is the same for all digits.

^ f !?1S ^e<*uirement conflicted with requirements for collating sequence
and for the shift bit. As a result, the 4-bit byte is offset by one bit, and the
actual code for 28 is

0110 0100 0111 0000

- 7 -

This compromise retains the binary integer codes 0000 to 1001 in
adjacent bit posit ions, but not in either of the two posit ions where they ap
pear in the packed format.

The upper-case counterparts of the normal decimal digits are as
signed to i tal icized decimal subscripts.

11. Adjacency

The 52 characters of the upper and lower case alphabets occupy 52
consecutive code posit ions without gaps. For the reasons given above, i t
was necessary to spread the 10 decimal digits into every other one of 20
adjacent code posit ions, but the remaining 10 posit ions are fi l led with
logically related decimal subscripts. The alphabet and digit blocks are
also contiguous. Empty posit ions for addit ional data and control characters
are all consolidated at the high end of the code chart .

This grouping of related characters into solid blocks of codes, with
out empty slots that would sooner or later be fi l led with miscellaneous
characters, assists greatly in the analysis and classification of data for
edit ing purposes. Orderly expansion is provided for in advance.

12. Uniqueness

A basic principle underlying the choice of the ECS is to have only
one code for each character and only one character for each code.

Much of the lack of standardization in exist ing character sets arises
from the need for more characters than there are code posit ions available
in the keying and printing equipment. Thus, in the exist ing 6-bit IBM
C© a r a C t e r C O d i e S ' t h e c o d e 0 0 HOO may stand for any one of the characters
C or - or . The ECS was, instead, required to contain al l of these

characters with a unique code for each.

The opposite problem exists too. Thus - may be represented by
either 100000 or 001100 in one of the exist ing 6-bit codes. Such an embar
rassment of r iches presents a logical problem when the two codes have in
fact the same meaning and can be used interchangeably. No amount of
comparing and sorting will bring l ike i tems together unti l one code is re
placed by the other everywhere.

In going to a reasonably large ECS, i t was necessary to resist a
strong temptation to duplicate some characters in different code posit ions
so as to provide equal facil i t ies in non-overlapping subsets. Instead, every
character was chosen to be typographically dist inguishable even if the

- 8 -

character stands by i tself without context. Thus, for programming purposes,
i t is possible to represent any code, to which a character has been assigned,
by i ts character even when the bit grouping does not have the ordinary mean
ing of that character (e.g. , in operation codes).

In many instances, however, i t is possible to find a substi tute charac
ter which is close enough to a desired character to represent i t in a more
restricted subset or for other purposes. For example, * (equals) may stand
for (is replaced by) in an 89-character subset. Or again, if a hyphen is
desired that collates below the alphabet, the symbol /— (a modified t i lde) is
preferred to the more conventional - (minus).

A long-standing source of confusion has been the dist inction between
upper-case Oh (O) and Zero (0). Some groups have solved this by writ ing
Zero as 0 . Unfortunately, other groups have chosen to write Oh as 0 .
Neither solution is typographically attractive. Instead, i t is proposed to
modify the upper-case Oh by a center dot and to write and print i t as © when
ever a dist inction is desired.

Serifs are used to dist inguish let ters (I , 1, V, etc.) from other
characters (| , 1, v> etc.) . It is suggested that the i tal icized subscripts
b e u n d e r l i n e d w h e n h a n d w r i t t e n b y t h e m s e l v e s , e . g . , 5 .

13. Signs

The principle of uniqueness implies a separate 8-bit byte to represent
a + or - sign. Keying and printing equipment also require separate sign
characters. This practice is , of course, rather expensive in storage space,
but i t was considered superior to the ambiguity of present 6-bit codes where
otherwise "unused" zone bits in numeric fields are used to encode signs. If
the objective is to save space, one may as well abandon the alphanumeric
code quite frankly and switch to a 4-bit decimal coding with a 4-bit sign digit
or go to the even more compact binary radix.

14. Card Punching

After considering the possibil i ty of a separate card code for the ECS
characters, a code which has the conventional IBM card code as a subset
(Ref. 1), i t was concluded that i t would be better to punch the ECS code di
rectly into the card. This does not preclude also punching the conventional
code (l imited to 48 characters) in part of the card for use with conventional
equipment. In this way, code translation is needed only wherever the con
ventional card code is used; if a non-ECS code were used, translation
would be required for every column if advantage is to be taken of the ECS
code in the rest of the system.

The punching convention is as follows:

Card Row ECS Bit

12 —

11 —

0 —

1 B
P

2 B„ 0
3 B1
4 B„ 2
5 B. 3
6 B. 4
7 B_ 5
8 B6
9 B_ 7

In addition, both 12 and 11 holes are to be punched in column 1 of
every card containing the ECS code, in addition to a regular ECS character,
so as to distinguish an ECS card from cards punched with the conventional
code. ECS punching always starts in column 1 and extends as far as desired;
a control code "End" (0 1111 1110) has been defined to terminate the ECS
code area. Conventional card code punching should be confined to the right
end of cards identified with 12-11 punching in column 1.

Since the parity bit is also punched, the ECS area of a card contains
a checkable code. Note that "blank" columns in the ECS area still have a
hole in the Bp row. If only part of the card is to be punched, however, it is
possible to leave the remaining columns on the right unpunched.

15. Ackno wl e dg ement s

The Extended Character Set described here was developed jointly by
E. G. Law, H. J. Smith, F. A. Williams, and the authors.

- 1 0 -

) 16. References

1. R. W. Bemer, "A Proposal for a Generalized Card Code
for 256 Characters, " Communications of the ACM; Vol. 2,
No. 9, September 1959.

2. F. P. Brooks, Jr., G. A. Blaauw, W. Buchholz,
"Processing Data in Bits and Pieces, " IRE Transactions
on Electronic Computers; EC-8, No. 2, June 1959.

3. W. Buchholz, "Fingers or Fists? (The Choice of
Decimal or Binary Representation), " Communications
of the ACM; Vol. 2, No. 12, December 1959.

- 1 1 -

120 CHARACTER SET

BITS
45-6-7 0000 0001

E

0010

JITS 0-

001 1 0100

3

0 1 0 1 01 10 01 1 1

0000 BLANK [+ c k s 0 8

0001 + D & C K S 0 8

0010 -] $ d 1 t l 9

001 1 { o (D L T I 9

0 100 A - * e m u 2 •

0 1 0 1 } =) E M U P ;

0 1 1 0 t —1 / f n V 3 -

0 1 1 1 V = F N V 3 ?

1000 V % > g o w 4

1 0 0 1 V \ > G O W 4

1 0 1 0 \ o f h P X 5

1 0 1 1 II 1 M H P X 5

1 100 > # a i q y 6

1 1 01 > 1 A I Q Y 6

1 1 10 < @ b j r z 7

11 1 1 < - B J R Z 7

Fig. 1.

- 1 2 -

89 CHARACTER SET

00 I 0 00 I I 0100 010
BITS

4-5-6-7 10000

BITS 0-1-2-3

0001

0000 BLANK

0001

0010

001

0100

0 1 0 1

0 1 1 0

1000

1001

1 0 1 0

I 100

Fig. 2.

-13-

49 CHARACTER SET

BITS
4-56-7 0000 0001

B

0010

ITS 0-

001 1

-1-2-2

0100 0101 0 1 10 01 1 1

0000 BLA N K 0 8

0001 & c K s

0010 $ 1 9

001 1 D L T

0100 * 2 •

0101 E M U

01 10 / 3 -

0 1 1 1 F N V

1000 % *
4

1001 G O W

1010 o f 5

1 0 1 1 H P X

1 1 0 0 # 6

1 1 0 1 A I Q Y

1 1 1 0 @ 7

11 11 B J R Z

Fig. 3.

-14-

I lUIDUIiniHWllUIIINIIIIl

IPIIIIIHI

lit
p

0
1

2
3

4

5
6
7

ECS Card
Identification i i m m

'»'» ' "I I» • »I ' ' III II ' ' 10 ' II III ' IB ' ' III 1 »01 ' ' B « I B I I o I I M M 1 1 J U 11 U III

2 ? Z 2 2 2 2 2 2 2 2 2 2 2 ? ? 2 2 2 2 2 2 | | | 2 2 2 2 2 2 ? 2 2 2 |] I 2 2 2 2

3 3II 3 3 3 I 3 || 3 3 3 3 3 3 1 3 3

4 4 4 4 4 4 4 I 4 4 4 4 4 4 4 4 1 4 4 4 4 4 4 4 4 4 I 4 4 4 4 4 ||| 11|| ||| ||| ||| ||| ||| ||| ||| 11|| ||| ||| ||| 11|| ||| ||| 111|| || |, |, , ||| ||| ||| ||| ||| 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

5 5 b 5 5 5 5 5 5 5 5 5 5 5 5 51|| ||| 11|| ||| ||| ||| ||| ||| ||| ||| || ||| ||||» ||| 5 5 5 5 5 5 5 5 5 S 5 5 5 5 5 51|| ||| 11|| || || ||| ||| ||| ||| ||| || 11| ||| ||| | 51|| 5 5 5 5 5 5 5 5 51|| 5 5 5

6 6 0 6 5 6 6 6 III III ||| || 11|| III III 6 B 6 G 6 8 6 S ||| ||| ||| ||| ||| ||| ||| |||l 6 6 6 6 6 6 6 6111|| ||| || 11|| ||| 6 B 6 6 6 6 6 G ||| ||| 11|| ||| ||| ||| 11|| 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

7 7 ' 7 III III II 7 7 7 71|| ||| ||| ||| 7 7 7 7|||| 7 7 7 7|||| 7 7 7 71|| ||| |||||| 7 7 7 7|||| 7 7 7 7|||| 7 7 7 7||||| 7 7| 7 7 7 7 7 7 7 7 7 7 7 7

8 'III III 8 30| 6 81||| 8 3|||||| 8 8||||H 8 8|||||| 8 8|||||| 8 81||||| 3 8|| 8 8||l| 8 8||)i|l 8 81|| |) S 8 ||| ||| 8 8|||||| 8 8|| 8 8|| ||| ||| 8 8 8 8 8 8||| £ 8 8 8 8 8 8 8

\±

Blank'
V & (V i V i w ~ T „ V U " & (» = : " A B C D E F G t n j

I + ' a b c d e f g h i j E r i i
AB D E Conventional

Punching
with Inter
pretation

m i l

in

t III III 'l! ' M I » " " N,s:" ",s •"•I n II wnn :• i; I .,n -.J I I I I M I I M M M < S « < 7 « « M S I H S J M S E S S I O N tin M I S H I . I J 5 •< ; r M M I S 1 I I !

1 111 ill 111 I III ' III III 1 III 1 II" III 1 III ||| I HI 1 | | 1 1 11 ||1 1 ||1 ||1 I 11 11 1 I 1 1 || 1 1 1 II 1 1 11 1 1 11 1 11 |I1 II 1 I |
22 1222222222222222222 ||| 222 |||

III III III III I III III III II1 III I III III III 1 III III III III I III III III II! II | III III III III III III H 3 3 3 3 3 3 3 3 3 3 3 # 3 III 3 3 3 3 3 3 1 3 3 j

4 | 1 ! | | | | | H | | | | | | | | | | , | | | | 4 4 < 4

5 5 5 5 5 S 5 9 S S 5 5 5 5 5 S | | | | | | | | | | | | | | | | 5 5 5 S 5 5 S 5 5 S S S S 5 5 5 | | | | | | | | | 5 5 S S S S 5 5 5 | 5 S S S 5 5 S 5 5 | 5 5 5
6 6 6 6 6 6 6 6 || |HH| | | 6 6 6 6 6 G 6 6 | | | IB | | | [| | 6 6 6 6 6 6 6 G | | | | | | | | | 6 6 6 6 6 6 6 6 | 6 6 6 6 6 6 6 6 6 6 6 6 6 G 6 6 6 6 6 6 6 6 6
77 " l l l l " 7 7|||| 7 7 7 7 |||||||7 7 7 7 H H 7 7 7 7 H H 7 7 7 7 ||||7 7 7 7 I I I H 7 7 7 7 7 7 7 7 7 7 |7 7 7 7 7 7 7 7 7 7 7 7

1 2 3 4 5 8 7 • 9 10 11 17 13 M 15 16 17 18 19 20 21 22 23 24 7S ?6 27 ?3 ?9 30 31 32 33 34 35 K 37 38 39 «0 41

H-H
K M N R U W

IS<3U<5W<S « 49 3 SI S! S! H 5S SSI H 59 60 CI 62 63 W tS S« SJ M SS 70 11 J! U jj IS It II M B K

4-

k 1 m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9
?
End

F i g . 4 . C a r d s P u n c h e d w i t h E x t e n d e d C h a r a c t e r C o d e .

- 1 5 -

APPENDIX A

List of ECS Codes and Characters

Code
P 0123 4567
1 0000 0000

0 0000 0001

0 0000 0010

1 0000 0011

0 0000 0100

1 0000 0101

1 0000 0110

0 0000 0111

0 0000 1000

1 0000 1001

1 0000 1010

0 0000 1011

1 0000 1100

0 0000 1101

0 0000 1110

1 0000 1111

0 0001 0000

1 0001 0001

1 0001 0010

0 0001 0011

1 0001 0100

0 0001 0101

0 0001 0110

1 0001 0111

1 0001 1000

0 0001 1001

0 0001 1010

1 0001 1011

0 0001 1100

1 0001 1101

1 0001 1110

0 0001 1111

cter Name
Blank (Space)

Plus or minus

Right arrow (Replaces)

Left brace

And

Right brace

Up arrow (Start superscript)

Not equal

Gr (inclusive)

Exclusive or

Down arrow (End superscript)

Double lines

Greater than

Greater than or equal

Less than

Less than or equal

Left bracket

Implies

Right bracket

Degree

Left arrow (Is replaced by)

Identical

Not

Square root (Check mark)

Percent sign

Left slant (Reverse divide)

Lozenge (Diamond) (Note)

Absolute value (Vertical line)

Number sign

Exclamation point (Factorial)

At sign

Tilde (Hyphen)

Code
P 0123 4567 Character
0 0010 0000 +

1 0010 0001 &

1 0010 0010 $

0 0010 0011 (

1 0010 0100 *

0 0010 0101)

0 0010 0110 /

1 0010 0111

1 0010 1000 ,

0 0010 1001 ;

0 0010 1010

1 0010 1011 "

0 0010 1100 a

1 0010 1101

1 0010 1110

0 0010 1111

1 0011 0000

0 0011 0001

0 0011 0010

1 0011 0011

0 0011 0100

1 0011 0101

1 0011 0110

0 0011 0111

0 0011 1000

1 0011 1001

1 0011 1010

0 0011 1011

1 0011 1100

0 0011 1101

0 0011 1110

1 0011 1111

A

b

B

c

c
d

D

e

E

f

F

g

G

h

H

i

I

j

J

Name
Plus sign

Ampersand

Dollar sign

Left parenthesis

Asterisk (Multiply)

Right parenthesis

Right slant (Divide)

Equals

Comma

Semi-colon

Apostrophe (Single quote)

Ditto (Double quote)

- 1 6 -

Code
P 0123 4567 Character Name
0 0100 0000 k

1 0100 0001 K Code
1 0100 0001

Code
1 0100 0010 1 P 0123 4567 Character Name
0 0100 0011 L 1 0110 0000 Zero
1 0100 0100 m 0 0110 0001 0 Subscript zero
0 0100 0101 M 0 0110 0010 One
0 0100 0110 n 1 0110 0011 f Subscript one
1 0100 0111 N 0 0110 0100 Two
1 0100 1000 o 1 0110 0101 * Subscript two
0 0100 1001 o 1 0110 0110 Three
0 0100 1010 p 0 0110 0111 j Subscript three
1 0100 1011 p 0 0110 1000 Four
0 0100 1100 q 1 0110 1001 * Subscript four
1 0100 1101 Q 1 0110 1010 Five
1 0100 1110 r 0 0110 1011 4 Subscript five
0 0100 1111 R 1 0110 1100 Six
1 0101 0000 8 0 0110 1101 t Subscript six
0 0101 0001 s 0 0110 1110 Seven
0 0101 0010 t 1 0110 1111 r Subscript seven
1 0101 0011 T 0 0111 0000 Eight
0 0101 0100 u 1 0111 0001 4 Subscript eight
1 0101 0101 u 1 0111 0010 Nine
1 0101 0110 V 0 0111 0011 4 Subscript nine
0 0101 0111 V I 0111 0100 Period (Point)
0 0101 1000 w 0 0111 0101 Colon
1 0101 1001 w 0 0111 0110 - Minus sign
1 0101 1010 X 1 0111 0111 ? Question mark
0 0101 1011 X

1 0101 1100 y
0 0101 1101 Y

NOTE: The character H has also been

0 0101 1110 z

1 0101 1111 Z

- 1 7 -

APPENDIX B

6-Bit Character Codes in Current IBM Systems

The special characters shown in the attached chart are those of the
"commercial" set (A). For "scientific" computing, character substitutions
(sets F and H) are usually made for codes representing certain symbols in

the 'A1 set:

Commercial Scientific
A F H

& + +

% ((

- 1 8 -

Code

0)
ft <d

H
u
V

ft
0.

A

O

00

• 0)
Eh o

ft Eh ft id
PI
o

fd
Eh

2
Eh

bb r\J bio (d v O id o 2 H 2 r- 2
a. 2 .. o iH in o in r- o o m o o <n v O r- r-H

rt c! h <D

O r- Code

o
ft <d

H
M V ft id

&

rH

o
oo

H

oi
o <NJ
s O

IT) o ro

V
ft <d

H
si id
2
o in o

o

in o
r-

o
%
EH
b<)
<d
2
O —I o O r- -<

•—l

S
0) 4->

rf O r-

00 oooc b b Sp b 0
00 0001 1 1 1 1 1 1 1
00 0010 2 2 2 2 2 2 2
00 0011 3 3 3 3 3 3 3
00 0100 4 4 4 4 4 4 4
00 0101 5 5 5 5 5 5 5
00 0110 6 6 6 6 6 6 6
00 0111 7 7 7 7 7 7 7
00 1000 8 8 8 8 8 8 8
00 1001 9 9 9 9 9 9 9
00 1010 PI1 0 0 0 0
00 1011 # # # # # # #
00 1100 @ @ @ @ @ @ @
00 1101 PI7

@

00 1110 EC1
00 1111 Cor TM TM TM TM

01 0000 0 0 b b b Sp &
01 0001 / / / / / / A
01 0010 S S S S S S B
01 0011 T T T T T T C
01 0100 U U U U U U D
01 0101 V Y V V V V E
01 0110 w W W W W W F
01 0111 X X X X X X G
01 1000 Y Y Y Y Y Y H
01 1001 z Z Z Z Z Z I
01 1010 PI 3 RM RM RM RM •

0
01 1011 * 9 > 9 9 »

01 1100 % % % % % %
01 1101 PI4 WS
01 1110 Skip
01 1111 EC 2 SM SM

1 0 0 0 0 0
1 0 0 0 0 1
1 0 0 0 1 0
1 0 0 0 1 1
1 0 0 1 0 0
1 0 0 1 0 1
1 0 0 1 1 0
1 0 0 1 1 1
1 0 1 0 0 0
1 0 1 0 0 1
1 0 1 0 1 0
1 0 1 0 1 1
1 0 1 1 0 0
1 0 1 1 0 1
1 0 1 1 1 0
1 0 1 1 1 1

11 0000
1 1 0 0 0 1
1 1 0 0 1 0
1 1 0 0 1 1
1 1 0 1 0 0
1 1 0 1 0 1
1 1 0 1 1 0
1 1 0 1 1 1
1 1 1 0 0 0
1 1 1 0 0 1
1 1 1 0 1 0
1 1 1 0 1 1
1 1 1 1 0 0
1 1 1 1 0 1
1 1 1 1 1 0
1 1 1 1 1 1

J J J J J J J
K K K K K K K
L LI L L L L L
M M M M M M M
N N N N N N N
O O O O O O O
P P P P P P P
Q Q Q Q Q Q Q
R R R R R R R

PI2 0 0 0 0
$ $ $ $ $ $ $
* * * * * * *

PI 6
CR
Err A A

& & & & & & b
A A A A A A /
B B B B B B s
C C C C C C T
D D D D D D U
E E E E E E V
F F F F F F W
G G G G G G X
H H H H H H Y
I I I I I I Z

SP1 0
• 0 +

0

W X X X X X %
PI 5
SP2
TF GM GM GM

Note: b stands for blank.

-19-

„ (in'Pu:

7 ' w'.;rr,l' P1:ir ,"s r(' ,lui,r(1 fnr ; ,rrUr:i l '-V
S -.= Krrwr stop^ or stops arc listed with rrf-
1 ^ j|)(, appropriate seetioti ol the flow eliait. T lie

"p,, lolls what should)»• done in ease, of an error

'' ' i p.u (iiAH't"- l'rohleni-oriented rather than eom-
I and using a standard >et of symbols.

\M ITSKLK. This section consists of the

i | ^ ^ 1 1 1 • * ! ' ' •
I n.cu.itie ami program steps: a listing of theeouiplete

' for at least one computer
Cross references front one program step to other steps

,• ... a".(Urliee .
. operating instructions including plugboard wiring

where necessary
W S'VUIK I'noiiLKMS. Included in the sample proh-
.... ,!„• reoiiired input data and the desired output

I showing the results of the problem.

VII. NOTATION. This is a list of the nomenclature used
in the text and of the symbols in the source program listing.

VIII. Literature References.
JX. Illustrations. Drawings and other illustrative ma

terial, prepared in a manner to insure good reproduction,
is included in this section.

KDITOR'S COMMENT: While the ACM lei" never tulnpled]ml»li-
eat ion Mandnrils, it now appears t hat program publication tin ml-
ar,Is for the ACM inny l.e desirable in the near future, la mv
opinion, not only is tlie interest ie program interelmnce growing
constantly, hut compiiter independenl language development i<
bringing »s closer to the day when widespread publication of truly
catholic programs will be an important function of computer-

oriented societies.
Mr. Kent's abridgment of the AIChE committee's report

avoids machine-oriented details such as punched card formats,
it outlines a procedure which is csscnltally machinc-indepcndc.it.
yet can be u-cd for machine-language publication.

The full report describes means by which program publication
is announced and plans for distribution and for covering the cost
of small-scale publication by the Society. H. S. Ib

A Proposal for Character Code
Compatibility

C/i.. 1/. Corporation, White Plaint, .V. 1 .

I I - i • i - o - p c t ' o f a s i n g l e s t a n d a r d f r o m a w e l t e r o l
all., til:-, [iti-i-edenis depends upon twosolulions:
I -ei< . \iiu or development of an adequate tind logical
ind.il'd.

pha-iug out (or peaceful coexistence with) the old
ll**.
paper deals with the latter problem and proposes

- la.-. !i.-iiii-sV„r J, solution in the area of character codes,
t- jo. -.-!••,<•(] by bit combinations.
b .aptn::;- impossible 1<) reconcile the many different
-i.-- m usi- on paper or magnetic tape such that a particu-
' i-.iuid be the national or international standard.

• sh- of the w ide usage of these various codes they must
coiisuj. rc-d parallel standards subject to twrophv

'• -h adoption of a single snperior rode. A simple de-
" u v I cull the "escape" character will allow as many
"'I' :*.ie and graded standards as there are bit combina-
"" .my number of tracks, although it is certainly not
"" ol. ii, i,.ive more of these than absolutely necessary.
1 •• ••:! T .-ha racier tracks (not feed, parity, or control

• k- tlu-re are 2r possible code combinations. Normally
are all assigneil to specific characters or controls. I

"I"'-e that OIK of these combinations, the fame one for

all standards, be reserved as an iiunuitak" character. I hi1 is
to be excluded from every such set of characters assigned.

Regarding the choice of this character, it is unwise t<> use
a null, or absence of punches or bits. Furthermore, it is
quite possible that the physical permutation of tracks on
tape will not be in direct correspondence with the bit
pattern of internal storage in a computer or data-process
ing device. The only code that avoids these difficulties
the completely punched combination, or all ones in the bit
structure.

Let us make provision for this "escape" combination to
interrupt normal decoding ol a stream ol character-. It
will sav, in effect, that I lie next 7"—bit combination is .•.>
be considered a numeric identifier ol a particular
standard." Front then on. until interrupted by an/ escape'
character in that set. ail combinational '/-bit character-
will be interpreted according to th.:t standard. .Shit.ing
from one standard to another is therefore dynamic. A
great additional advantage of such a scheme is that many
messages in several different codes may be adjoined in the
stream of transmission. In hardware, the "escape char
acter can be made to interrupt to set relays or other switch
ing devices to select otic of a variety of readers or decoders.

THIS COPY TO RW BEMER.

8.1.Turing,1982.1 . 2 . 1 . 2 COMPLAN®
COMPUTATION PLANNING, Inc.,. 7»o Abed... BtthclJl, Md. J08H . (3()])

March 11, 1982

ACM TURING AWARD SUBCOMMITTEE MATTER

Mr. Charles w. Bachman, Vice President f i l 7 „Q , ,n A
Cullmane Database Systems, Inc. 329-7700
400 Blue Hills Drive 800-225-9930
Westwood, MA 02090

Dear Charlie:

confining 1 |oprtoSBob iBemer°?oyhe?oyvU "d ^ S > : e l l y ' w i t h a

nomination of Bob as ©iringi Awardee Some of r e9a r d i n9 Pat 's
letter may be useful ^ur fnel 'atTuter late t 3"C e ° f t h i '

in complete agreement: ""

remark that about^h^timl^f hthlhinlident "d " B??e rbuddy, I should
volunteered to replace « as AcS s^S S d e s cf l b e d b al°w Bob
Standards Section Associate Editor if theVC o m mff t e e c h ainnan and CACM
from both jobs . . . not for la C°u n c il w o u l d get me fired
enough in those jobs to satisfy Bob. Co^tVft l l l i tfdfsV" ̂
Charac^l^u^Talte^ SI "^"^"tion of
principal creator of the ASCII sPf T , , ? chair, and was a
for an explanation of the "Escape Chan?ttr"e m e m b e r n ailing Bob once
me when Bob pushed i t through his group He W h i c h w a s n e w t o

length would meet all requirements eJX'hK c o n v j-nced me no set of any
future, and that the Esc^e concept wou^ w";vC e^a i n l y n o t i n t h e
competitors' employees all or,-a ^ °uld work. His Subcommittee,
study, they ̂ became the ^a?^ ~ t h S

somewhat less than^nthusiast^c If^ot^6 c ofp° r a t i o n seemed
the whole ASCII set. It is a matter of d?*? r i9h t reluctant, toward
employers about then. Several years late? that^?0^ h & c h a n9e d

- *e a r s l a t er that company adopted ASCII.

solid company man placing^is^onviction0 6^ t h l S 3 0 e x a mP l e o f a

well-developed instinct for bureaucratic telf ̂ es^1*? • a b°V e h i s

aren t too many in this business who nt "e s e rvation? There
that bizarre character trait . ' y°U ' S e e m t o h a v e displayed

V e t e l t a . f a t h e r ly concern about each sfrlwtfWn,
irritatTn2 l dr. f 6 6 C°m f° r t a b i e i f the' award for this year oo-s ho

ompetent Bemer for the idea that will live after him
Copy -to: RWB, PCS Y o u r s

Herbert S.. Bright*

COMPUTATION SYSTEMS /Analysis, Design, Management, Progr,mming

Comment

By Robert W. Bemer, IBM
Corp., technical advisor to
the Conference Committee on
COBOL.

The IBM Corporation has been active in COBOL
since its formation, recognizing the desirability of
such a common business language. IBM desires to
implement such a language for several of its com
puters when it is proved feasible and reasonably
efficient for the user.

The extreme difficulties of developing such a lan
guage in a short period of time cannot be over
emphasized. One has only to look at the gradual
evolution of English to see what thousands of options
have sprung up and then disappeared.

Although it is desirable to base a business language
upon a natural language such as English (obviously
for the convenience of the user), there are neverthe
less certain restrictions of present day computers
which make the variety in English undesirable. For
example, we understand a man who speaks English
even though he stutters, but this is not economical
to expect the machine to decode stuttering. Primarily
this is because the human mind operates very much
in parallel, whereas the computer of today is largely
serial—at least in its scanning. A person who misses
the sense of a sentence has only to reread and check
a few points. If the computer has to do anything
more than a single progressive reading of a sentence,
such as a see-saw inspection, the cost of translation
becomes prohibitive. I know of a case where it took
a computer over 11 hours to produce a machine pro
gram of somewhat more than 2,000 instructions.

When the language is formalized and the latitude
of options removed, or to put it bluntly, if the user
restrains himself with a little discipline, this same
job should not take more than an hour.

Additional complications are, of course, caused by
the fact that the language must be universal and
roughly as effective for each of several decidedly
different computers. Compromise is necessary! Even
tually such compromise is well worth it, but this is
a slow process. The goal of standardization in lan
guages is very desirable, but it will not be served
if the first product, i.e., the COBOL language, fails
in the field. Before such a language can be hailed as
a panacea, it must be subjected to extensive field
tests.

IBM has put forth a major effort in this venture,
supporting it with the services of many experts in
computer languages. The experience gained with
FORTRAN and the Commercial Translator has been
freely given. Whether the goal of a common business
language is achieveable without unduly compromis
ing machine performance is not yet proven. In this
situation, it is advisable to make haste slowly that we
may not raise the hopes of our customers before it
is justified.

COBOL-Commo

%\

AUNIVERSAL computer language moved one step
closer to reality with the announcement of

COBOL (Common Business Oriented Language),
a business language expected to be common to vir
tually all makes and models of electronic digital
computers.

The new source language system will permit
programmers to use English words, statements,
sentences and paragraphs in communicating in
structions to computer systems.

Official news of the COBOL development is an
ticipated momentarily from the project sponsors,
the Executive Committee of the Conference on
Data Systems, headed by C. A. Phillips, director
of the data systems research staff, Department of
Defense. The committee is a volunteer group of
computer users from Government and industry
and representatives of computer manufacturers.

Necessary violations

COBOL was written by the Conference's Short
Range committee, directed by Joseph H. Wegstein
of the National Bureau of Standards. This group,
composed of technical personnel from three gov
ernment agencies and six computer manufacturers,
has worked continuously since June, 1959, to put
the new language together.

One of the principles adopted in the develop
ment stage was that everything in the language
would be correct English. This did not mean that
everything which is correct English is meant to be
part of the system or acceptable to a COBOL com
piler. In some cases it was necessary to violate the
principles of good English to allow inclusion of
certain features which could not be handled by
normal grammatical rules.

22 MANAGEMENT and
BUSINESS AUTOMATION

i

language for Computers

, A Presents a" exclusive account of
COBOL s-vs,<''"- a move toward the

ultimate development of a universal Ian-
guage for business computers

system^ (T) t0 the C0B°L
common language, and (2)7? written m a
translates this source nr Compiler, which
sram capable of r„nning

is used t0 «»"-«. rb\zThcie
ment—involved in fVl. U ' taandEnviron-
names reflect the part of ape cation> and their
^ey describe. ProceduretZTTke

res which determine how the dlta is o J
essed. Data includes the f proc"
being processed Fnv' ription of the data
tionof theTpilerr"'"6"' C°VerS thc **"•«>-
Each of the three element, a^'e"16 processin«-
rate division of the system. The compiler's r~"*~

produce the desired results It a II A" r to

express his thoughts in Ene-lish J* USer to

sentences or paragraphs V h ' Statements'
action and se'ntê
basic. It is also nossihn, + f Procedures are
and "if" clauses to nm m Cal situations
action. The fact that ft.1 ep aernative Paths of
essentially machine-indenonH r°,Cedure division is
important characteristics of The'COBOL̂ T"1

Another programmer, or any COBOT ^ f™'
can easily understand and translate thP °TP '
tion appearing in fhia a- • • lsJate the mforma-
particular computer! 'S'0n '« *

The Data division uses "file" and j ,
script,W' "escribe the hies oTlTtS the"

MARCH, 1960

indtetduluogTcal ^ec^rd^wh^ a"d

files. Certain phvs.Val ? comprise th
are specihcally lotiLtded ®U°? °' lhe "
Data division to ^J"c!uded—leaning that 1
independent. ' ' ai" extent> is also machii

A group of unique characters

and running the objec^m'^ ̂ S°UrCe P1'0gl'aT

number of tape un ts FT**" Mem°ry -siz<
Printers are amon/tte hardware switches an.
mentioned for a narf i many ltems that may b.
has the abSty to ^ate ' The di^
nology to specific equipment*™ Pr0fiTam termi"
fiie which relate directly to hard aSpects of a

scribed. Since this diviJ hardware are also de-
specifications of the equinnw With the

chine-dependent. 1S entirely ma-

macteUnefompatibi]Sitvnthhat T am°Unt °f inter"
tem varies wfth tbl d °Ugh°ut the COBOL sys-
to obtain simh compatibBityS Th^ P* ^
sion requires virtually no eLt to ^
across machines In the I remain common
some care must be tlnT ** °ata divisio"'
ciency may result In ftp V P°SSib,e ,0SS of e«-
a 11 information is rnat bte E"Viro"ment division,
the compatibility is based on 6Pe"de„nt' therefore

^COBOL tha" UnderSta"d-
guage's "wordl^Th^c^a f t0 ™ake Up the lan"

t he character set consists of the

The Short Ranee I'^taelTs of ealtTnTâ tomrtkbosiness con,-

numbers 0 through 9, the 26 letters of the alphabet
and a hyphen (or minus) sign. Seven characters
are used for punctuation. These include the stand -
ard quotation marks, left and right parenthesis
space (defined as a character), period, comma and
semicolon. Eight additional characters are used to
define the operations involved m formulas and
relations. Altogether there are 51 unique char
acters which are recognized by the COBOL system.

What's in a word
A word in COBOL language can be composed of

not more than 30 characters. Types of words in
clude nouns and verbs plus a special category o ^
"reserve" words which includes "correctives,
"noise words," and "key words." A COBOL noun
is defined as a single word which is applicable to
such elements as "Data Name," "Condition Name,
"Procedure Name," "Literal Name" and "Special
Register Name."

A Data Name is a word with at least one alpha
betical character which designates any data speci
fied in the data description. A Condition Name is
given to a value which a field (called a conditional
variable) may assume. For example, the fielc
called "Title" is considered a conditional variable.
The values which it may assume, and which aie
written and defined in the Record Description, are
Analyst, Programmer and Coder. These Cone 1-

tion Names may be used in conditional expres
sions. As an example, if the field "TITLE" were de
fined as one character in legnth—and the actua
values 1, 2 and 3 were assigned respectively to the
Condition Names ANALYST, PROGRAMMER and
CODER —the conditional expression "IF CODER
THEN" would generate a test of the field TITLE
against the value "3."

Procedure Names are applied either to para

graphs or to sections and accordingly are known
as paragraph names or section names A proce
dure mav be named to permit one procedure in the
language to refer to others, or it may be purely

" A Literal is a noun which has a value identical
to those characters represented by the noun,
may be numeric, alphabetic or alpha-numeric.

Special Register is a five-decimal digit fiel
which has been assigned the name TALLY Its pri-
marv use is to hold information produced by the
EXAMINE verb. It may also be used to hold infor
mation produced elsewhere in a program.

Verbs are single words which appear in the Pio-
cedure division and designate action. Two types o
action are allowed—object computer action by a
special verb or compiler action denoted by a com
piler directing verb.

Noise for improvement
Reserve words may be used for syntactical pur

poses and may not be used as nouns or verbs. Con
nectives are used to denote the presence of a quali
fier or the presence of a subscript. Noise words are
used to improve the readability of the language
but, the presence or absence of noise w°r<k
not affect the meaning of the statement. Within
any division, any one or more of its noise words
may be substituted for any other. Key words aie
required in certain formats. They are used to com
plete the meaning of verbs or entries and theie-
fore must be present and correctly spelled.

Every name in a COBOL program must be
unique—either because no other name has t e
identical spelling, or because the name exists with
in a hierarchy or names. The name can be made
unique by mentioning several higher elements m

Continued on Page 31

MANAGEMENT and
BUSINESS AUTOMATION

COBOL

Control Data Produces
New 160 Desk-size Computer

An MBA Product Preview

THE DESK-SIZE MODEL 160,
all-transistorized electronic com

puter, has been announced by Con
trol Data Corp.

The 160 has an array of building
blocks and a magnetic core memory
like those used in the Control Data
1604 — the company's new large-
scale system also announced recent
ly. It computes in terms of micro
seconds and can execute 60,000
instructions in one second. It is said
to handle data transmissions to and
from input-output equipment at
speeds of up to 65,000 characters
per second.

The company has set the price of
the 160 at $60,000, making it avail
able to a wide range of users. Sug
gested applications include statisti
cal and business data processing,
data conversion, engineering and
scientific calculations, data logging
and data acquisition, industrial con
trol and communications systems.

The 160 is a single-address com
puter with high-speed parallel mode

of operation. Storage cycle time is
6.4 microseconds. Basic add time is
12.8 microseconds. Information read
is available 2.2 microseconds after
start of cycle. Average execution
time is calculated at 15 microseconds
per instruction. The computer uses
a five megacyle logic.

The company points out that full
advantage of the speed and versatil
ity of the system can be realized
through its repertoire of 62 instruc
tions and complete programming
package—which includes 22-, 33-,
and 44-bit fixed point arithmetic,
floating point, complex floating
point, decimal, floating decimal, and
an algebraic compiler. Addressing
modes include: no address, direct
address, indirect address, and rela
tive address. Available input-output
devices include a 350 character-per-
second paper tape reader, 60 char-
acter-per-second paper tape punch,
electric typewriter, up to eight
magnetic tape handlers, card reader,
card punch, and a line printer. Cir
cle No. 3-17

Continued from page 2U

the hierarchy. These higher ele
ments are called "qualifiers" when
used in this way, and the process is
called "qualification." Two types of
qualification are allowed; prefixing
(i.e., adjectival modification) and
suffixing. In the first instance, the
nouns must appear in descending
order of hierarchy (i.e. with the
name being qualified as the last and
all others in order). In the second
case the nouns must appear in as
cending order of hierarchy with
either of the words "OF" or "IN"
separating them (the choice be
tween the two words is based
on readability — they are logically
equivalent).

Dimensional arrays

Taking "President Election Year"
as an example, the hierarchy of
data given is such that neither the
field "YEAR" nor the field "ELEC
TION" are unique spellings. That is,
both fields appear elsewhere in the
Record Description. To reference
the "YEAR" field, PRESIDENT and
ELECTION are used as qualifiers,
either as nouns used adjectively in
a prefix (PRESIDENT ELECTION
YEAR), or preceded by the connec
tive "of" for a suffix (YEAR OF
ELECTION OF PRESIDENT).

When a list of items is defined in
a program, reference may be made
to any particular one by "subscrip
ting." The list may not be referred
to with subscripts. The name being
subscripted is followed by the sub
script which is identified either by
following the key word "FOR" or by
being surrounded by parenthesis. In
certain situations, complex tables
may be defined which require more
than one quantity to locate an item.
COBOL permits arrays containing
up to three dimensions. The order
of subscripts, from left to right, is
major, intermediate and minor. For
example, the premium rate of an in
surance policy might depend upon
the age, weight and the state of res
idence of the policyholder. The table
would be classified as three dimen
sional and each valid subscript must
be a series of three words. Paren-

Continued on next page

MARCH, 1960 37

COBOL
Continued from page 37

theses must be used in this case be
cause the key word "FOR" might be
ambiguous. The resulting instruc
tion would read: MULTIPLY POLICY-
VALUE BY RATE (AGE, WEIGHT,
STATE) .

COBOL procedures are expressed
in a manner similar (but not iden
tical) to normal English prose. The
largest unit is a section, which is
composed of paragraphs. The latter
is made up of sentences which are
generally grouped for the purpose
of describing a unified idea. The
sentences are composed of sequences
of statements, which in turn are
made up of groups of words—nor
mally verbs and operands. COBOL
makes available to the programmer
several means of expressing logical
situations through the use of the
"conditional" procedures. These
"conditionals" generally involve the
key word "IF" followed by the con
dition to be examined, followed by
the operations to be performed. The
operations may vary, depending
upon the truth or falsity of the con
ditions. For example: IF X EQUALS
Y, MOVE A To B; OTHERWISE IF C
EQUALS D, MOVE A TO D AND ALSO
PERFORM X THROUGH Y.

On the level
Under the COBOL concept, data

to be processed falls into three cate
gories—that which is contained in
files and enters or leaves the inter
nal memory of the computer from
specified areas; that which is de
veloped internally and placed into
intermediate or working storage,
and constants which are defined by
the user. For purposes of proc
essing, the contents of a file are
divided into logical records. By defi
nition, a logical record is any con
secutive set of information. In an
inventory transaction file, for ex
ample, a logical record could be de
fined as a single transaction, or as
all consecutive transactions which
pertain to the same stock item. Sev
eral logical records may occupy a
block (i.e., physical record), or a
logical record may extend across
physical records. The logical record
concept is not restricted to file data,
but carries over into the definition

38

"Individuality and creativeness can still
flourish freely within the framework of ef
fective language standards."—C. A. Phillips,
chairman of the Executive Committee of the
Conference on Data Systems.

of working storages and constants
which may be grouped into logical
entities and defined by a Record
Description.

File Description entry contains
information pertaining to the phys
ical aspects of a file; the manner in
which the data is recorded on the
file, the volume of data in the file,
the size of the logical and physical
records, the names of the label rec
ords contained in the file, the names
of the data records which comprise
the file, and the keys on which the
data records are sorted. The listing
of data and label records in a File
Description entry serves as a cross
reference between the file and the
records it contains. If the Record
Description for these records is not
found within the Data division of
the problem description, it still can
be automatically called from the
COBOL library.

A Record Description consists of
a set of entries, each of which de
fines the characteristics of a partic
ular unit of data. Since COBOL
Record Descriptions involve a hier-
archal structure, an entry giving
only the general characteristics may
be followed by a set of subordinate
entries which together redescribe
the unit in more specific terms. The
contents of an entry may vary con
siderably, depending upon whether
or not it is followed by subordinate
entries. A file of job tickets sorted
according to division, department,
employe number and day of the
week is a good example of this. If
the logical record has been defined

as all consecutive data pertaining
to a single employe, the following
levels could be defined; (1) A week
ly job record which consists of . . .,
(2) Daily job ticket groupings
which consist of . . ., (3) Job
tickets which consist of ..., and (4)
The individual fields within the job
tickets.

Within a COBOL Record Descrip
tion, the programmer organizes and
defines data according to its relative
level by writing separate entries for
each level and for each item of data
within each level. The definition of
a particular item of data consists of
the entry written for that level plus
all following entries which are of a
lower level. The level, itself, is
shown by a level number which is
relative to the largest element of
data within the Record Description.
Level numbers start at 1—for rec
ords—and may go as high as 49,
but it is not expected that any prob
lem will require the full 49 levels of
data.

Divided Divisions

The Environment Division is the
one part of the COBOL system
which must be rewritten each time
a gpven problem is run on a differ
ent machine. It has been included in
the system to provide a standard
way of expressing the machine-de-
pendent information which must be
included as the part of every prob
lem.

The division has been divided
into two sections — Configuration

MANAGEMENT and
BUSINESS AUTOMATION

and Input-Output. The Configura
tion section deals with the over-all
specifications of computers and is
divided into three paragraphs: the
Source-Computer, which defines the
computer on which the COBOL
Compiler is to be run; the Object-
Computer, which defines the com
puter on which the program pro
duced by the COBOL Compiler is
to be run, and Special Names, which
relate the actual names of the hard
ware used by the program to the
names used in the program.

The Input-Output section deals
with the definition of the external
media and that information that
will create the most efficient trans
mission and handling of data be
tween the media and object pro
gram. The section is divided into
two paragraphs: the 1-0 Control,
which defines special input-output
techniques, rerun, and multiple file
tapes; and File-Control, which
names and associates the files with
the external media.

In the beginning

The COBOL Library contains
three types of entries, correspond
ing to the three divisions of the
COBOL system. Information de
scribing machine configurations is
retrievable through the use of the
Copy in the Environment division.
File and record descriptions are
retrievable through the use of the
Copy in the Data division. Pro
cedure statements—commonly called
subroutines—are retrievable
through the use of the verb IN
CLUDE in the Procedure division.
Each division is capable of obtain
ing material pertaining only to it
self. The physical makeup of the
COBOL library, as well as the main
tenance and handling, are left to
the individual implementor. The
calling of library material produces
the same effect as if the program
mer had written the material in his
source program.

COBOL had its beginning at a
conference held at the University
of Pennsylvania Computing Center
on April 8, 1959. The meeting
brought together a group represent
ing users, manufacturers and uni
versities to discuss the problem of
developing a common business
language. The group, headed by
Phillips, observed the recent de

velopment of languages for auto-
m a t i c programming, such as
Sperry-Rand's FLOWMATIC,
IBM's COMTRAN, and AIMCO,
developed jointly by the Air Ma
terial Command and Sperry-Rand.
The conclusion was that it might
be feasible to develop specifications
for a problem-oriented but ma
chine-independent common lan
guage for business problems. The
Department of Defense, as an ap
propriate agency with a major in
terest in the field, was asked to
undertake the project.

Action in the Pentagon

On May 28, 1959, a two-day meet
ing was called in the Pentagon by
Phillips to discuss the organization
of the project. The concept of three
committees, Short Range, Inter
mediate Range, and Long Range,
was agreed upon with appropriate
time schedules. The Short Range
Committee was composed of six
manufacturers, Government repre
sentatives and the chairman, Mr.
Wegstein. Its task—to accomplish a
fact-finding study of the strength
and weaknesses of existing auto
matic business compilers and de
velop an improved system. Members
of the group include: Col. Alfred
Asch, Capt. Erwin Vernon and
Duane Hedges of the Air Material
Command-USAF; Robert S. Barton,
William Logan and Mrs. Mary K.
Hawes of Burroughs Corp. (Mrs.
Hawes is now with RCA); Howard
Bromberg, Ben F. Cheydleur, Nor
man Discount, Karl Kozarsky, Rex
McWilliams and Gerald Rosenkrantz
of Radio Corp. of America; William
Carter, Charles Gaudette and Miss
Sue Knapp of Minneapolis-Honey
well (Mr. Carter is now with
IBM); Miss Deborah Davidson,
Vernon Reeves and Miss Jean E.
Sammet of Sylvania Electric Prod
ucts, Inc.; William Finley, Dan
Goldstein and Edward F. Sommers
of Sperry-Rand; Roy Goldfinger,
William Selden and Miss Gertrude
Tierney of IBM; Mrs. Frances E.
Holberton and Mrs. Norah Taylor
of David Taylor Model Basin, USN,
and Roy Nutt of the Computer Sci
ence Corp.

The Intermediate Range group
will take the COBOL package and
begin to modify and refine it within
a time schedule ending sometime in

1961. Chairman of the group is
A. E. Smith of the Navy Depart
ment.

The final phase of the program is
the responsibility of the Long Range
committee. This group will explore
the fundamentals and philosophies
of all machine language, regardless
of its use on scientific or business
data problems. The objective is to
develop a "super" language which
might supersede all existing scien
tific and business language systems.
Such an accomplishment would be
the ultimate—the Universal Com
puter Language. A special subcom
mittee, consisting of Robert Curry,
vice president and comptroller of
Southern Railway; Howard Eng-
strom, vice president of Sperry-
Rand, and John McPherson, vice
president of IBM, is directing this
effort.

Trial of a concept

Assisting the Conference Com
mittee as technical advisors in all
phases of the COBOL project are
Dr. Grace Hopper of Sperry-Rand,
and Robert W. Bemer of IBM.

As the Short Range committee
report points out, the COBOL sys
tem is the first large-scale effort at
writing business data processing
problems for many computers in
one language. As such, it will under
go the trials of any new concept.
Improvements and additions will be
made by the committee which has
stated that it is making "every ef
fort to insure that improvements
and corrections will be made in an
orderly fashion." Proper provisions
have been taken to avoid invalidat
ing existing users' investments in
programming.

The COBOL system further
marks a major move toward com
plete computer compatibility. Other
benefits include a reduction in the
time requirements and costs of pro
gramming. The program has the
complete support of the computer
industry, and manufacturers have
agreed to implement the language
with compilers or processors to
translate COBOL to the language
of their particular machines. They
r e c o g n i z e , C h a i r m a n P h i l l i p s
pointed out, that individuality and
creativeness can still flourish freely
within the framework of effective
language standards. •

MARCH, I960 39

Reprinted from the COMMUNICATIONS OF THE ASSOCIATION FOR COMPUTING MACHINERY
Volume 3, Number 10, October 1960

Made in U.S.A.

Do It by the Numbers—Digital Shorthand
R. W. BEMER, International Business Machines Corporation, White Plains, New York

Abstract Present communications systems transmit single
characters in groups of coded pulses between simple termina
equipments. Since English words form only a sparse set of all
possible alphabetic combinations, present methods are inefficient
when computer systems are substituted for these terminals. Using
numeric representations of entire words or common phrases
(rather than character-by-character representations) requires
approximately one-third of present transmission time. This saving
is reflected in overall costs. Other benefits accrue in code and lan
guage translation schemes. Provision is made for transmission o
purely numeric and/or binary streams, and for single character-
transmission of non-dictionary words such as the names of people
or places.

General Principles

Precedent may be found in the story of the comedians
club that sat around and laughed when a member said
"38." In this case the entire story is represented by that
single number. One working example is that of standard
Western Union messages such as birthday greetings.
Not everyone realizes that the entire message is not tians-
mitted, only its number; this tells the receiver what
verbal message to type out on a form. Another example
is that of telephone numbers. A name and address may
be transmitted in a more compact fashion by merely
sending the number. The receiver, equipped with the
same phone book ordered on number rather than name,
can simply decode.

Overstandardization at the message level vail not work
generally for the infinite variety met in practical trans
mission. The single word, delimited by blanks, is the
efficient denominator. An example of this is the book code
that children use for ciphers. Here the page number, line
number and nth position on the line define a specific
word. These three numbers may be compressed to a
single number by using fixed subfields. Thus, 0312806
would indicate the 6th word of the 28th fine on the 31st
page. A related method would be to number all the words
in the dictionary sequentially starting with 1.

Ground Rules
English unabridged dictionaries contain less than

600,000 individual entries. The average speaking vocabu
lary is from 1000 to 2000 words, the average writing
vocabulary from 6000 to 8000. A college graduate may
have from 7500 to 10000 words to use. It has been said

* Presented at the meeting of the Association, August 23-26,

1960.

that a person with a 3000-word vocabulary can under-1
stand 95 percent of general speech.

Since 222~ 4,000,000, it seems that about 22 bits should
be capable of representing any word in the language,
with perhaps enough freedom and overcapacity to be
informational if desired. That is, they may identify words
as to tense, plurals, nouns, or verbs, etc.

Examples given will use the six-bit representation lor
letters proposed in a recent draft standard issued by the
Electronic Industries Association [1].

Compression Method
In early developments, Shannon [2] represented all

words by an invariant or constant number of bits. lor
reasons of economy this is not practical. The average
length of an English word is usually taken as o letters,
plus a delimiting blank. A minimum of 5 bits (yielding
32 combinations) is necessary to represent a character
singly. Thus the average number of bits required to repre
sent a word in this mode is 30. Reduction to 22 bits is
not impressive. ,

Therefore, statistical frequency of usage may be used
t o p r o v i d e r e p r e s e n t a t i o n s o f a v a r i a b l e n u m b e r o i s .
The problem then is how to decode the bit stream at the
receiving end. This may be done by

(1) advance knowledge of a constant byte size,
(2) termination by recognition of a fixed bit pattern

normally excluded from the code,
(3) self-definition, where the first n bits of a group

indicate its length, U-F

(4) termination by inspection of every nth bit,
bits in a single track.

Method 2 is due to Brillouin [3]. Each representation is
distinguished by at least two consecutive 0 bits followed by
a 1 bit. The stream of Figure 1 is decoded as an example.

1 0 1 1 1 0 0 1 0 1 1 0 1 1 1 0 1 0 0 0 0 1 0 0 1 0 1 0 0 0 1
I I I 1

FIG. 1

This method has the advantage of self-repair after
a transmission error (except for the word in which the
error occurred). It is not suitable for computer transfor
mation of large dictionaries because of the exclusion
of all address combinations with two consecutive zeros.
It can be seen from Table 3 that it takes a storage of
more than a half-million words to handle a vocabulary o
28,635 words, at an efficiency of only .0oo. .

Self-defining (like a measuring worm), Method 3 is

530 Communications of the ACM

suitable to computer decoding. As an example, assume
that transmission is to be in parallel on four channels
(or on single wire in identifiable groups of four). Figure 2
shows how the leading bit(s) specify the length of a single
word representation.

TABLE 1. METHOD 3

Leading bit(s) N°gr°fUps'eS Working bits

10
13
21

0 2
10 3
110 4
111 6

Number of words accommodated

128 (2')
896 (210 — 27)

7,168 (213 — 210)
2,088,960 (221 — 213)

0 X 1 X X 1 X X X 1 X X X X X 0 1 1 1
X X 0 X X 1 X X X 1 X X X X X 1 0 0 1
X X X X X 0 X X X 1 X X X X X etc. 0 1 0 0
X X X X X X X X X X X X X X X 1 1 1 0

direction of reading >

FIG. 2

The specific example at the right in Figure 2 means
that the first word is decoded from the octal number 133
(or 000000000000001011011, in the full 21-bit address).
There are many different methods of encoding for various
byte sizes. Some are shown in Tahle 1. The example of
Figure 2 is of Type B. The percent-usage figures are taken
from Dewey's frequency study of 100,000 words [4].
The average number of bits per word may be reduced
perhaps slightly from these figures by optimum adjust
ment to English frequency to the closest hit, rather than
by the closest byte. However, this slight reduction is not
warranted by the extra hardware and processing time.
Note that the control patterns may be inverted or re
assigned with exactly the same effect. Arbitrary change
in the decoding rules is convenient for encrypting messages.

Correct positioning may he maintained for Method 3 by
(1) using intervening pulses of different length, as in

Teletype,
(2) inserting synchronizing groups of all ones (1111 1111

1111) which have been excluded by the computer from
the legitimate numbers sent,

(3) checking for reasonableness of message through
statistical methods,

(4) guaranteeing that synchronization is never lost
through self-checking methods (addition of parity bits,
error-detecting and correcting codes, etc.).

If an out-of-phase condition is likely, the proper re
ceiving technique is to use a buffer area so the message
can be re-interpreted. The amount of saving in this method
will even allow the entire message to be sent twice, as an
extreme measure. If the situation becomes intolerable in
actual practice, Method 4 may be employed. Both Methods
3 and 4 have full storage utilization, as opposed to Bril-
louin's Method 2.

In Method 4, a single track is reserved for a word-
mark. This wordmark can delimit in either of two ways,
as shown in figure 3 (see p. 532).

At first appearance, this does not achieve the efficiency
of Method 3. However, for all cases where the minimum
number of bytes is two (i.e., Types A, B, D, H, J, K, M)

Type
Bits
per

byte
First
bits

No.
of

bytes

Work
ing
bits

Number of
words ac

commodated

Percent
usage
(est)

Percent
times
bytes

Bytes
per

word

Bits
per

word

A 4 0 2 7 128 57 114 2.69 10.76
10 3 10 896 21 63
110 4 13 7,168 19 76
1110 5 16 57,344 2 10
1111 6 20 983,040 1 6

B 4 0 2 7 128 57 114 2.71 10.84
10 3 10 896 21 63
110 4 13 7,168 19 76
111 6 21 2,088,960 3 18

c 5 0 1 4 16 28 28 2.19 10.95
10 2 8 240 36 72
110 3 12 3,840 26 78
1110 4 16 61,440 9 36
1111 5 21 2,031,616 1 5

D 4 00 2 6 64 48 96 2.76 11.04
01 3 10 960 30 90
10 4 14 15,360 21 84
11 6 22 4,177,920 1 6

E 6 0 1 5 32 38 38 1.85 11.10
10 2 10 992 40 80
110 3 15 31,744 21 63
111 4 21 2,064,384 1 4

F 5 0 1 4 16 28 28 2.28 11.40
10 2 8 240 36 72
110 3 12 3,840 26 78
111 5 22 4,190,208 10 50

G 6 00 I 4 16 28 28 1.95 11.70
01 2 10 1,008 50 100
10 3 16 64,512 21 63
11 4 22 4,128,768 1 4

H 5 0 2 9 512 71 142 2.34 11.70
10 3 13 7,680 25 75
110 4 17 122,880 3 12
111 5 22 4,063,232 1 5

J 5 0 2 9 512 71 142 2.37 11.85
10 3 13 7,680 25 75
11 5 23 8.380,416 4 20

K 5 (X) 2 8 256 64 128 2.41 12.05
01 3 13 7,936 32 96
10 4 18 253,952 3 12
11 5 23 8,126,464 1 5

L 6 0 1 5 32 38 38 2.06 12.72
10 2 10 992 40 80
11 4 22 4,193,280 22 88

M 6 0 2 11 2,048 84 168 2.17 13.02
10 3 16 63,488 15 45
11

4 I
22 4,128,768 1 4

the position adjacent to the initiating or terminal one
might be used for information. This is because two one-
bits in succession in the wordmark track constitutes an
illegal condition.

Communications of the ACM 531

0 1 0 1 0 0 1 0 0 0 1 0 0 0 0
X X X X X X X X X X X X X X X ,
x X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X

direction of reading

1 0 1 0 0 1 0 0 0 1 0 0 0 0 1
X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X

FIG. 3

A third method may deserve study, that of using al
ternate ones and zeros in the wordnmrk track, changing
at the start of each new word. The advantage of using one
extra bit for information is lost in this scheme. Table 2
shows corresponding efficiency in the wordmark mode.
The corresponding efficiencies in bits per word are virtually
the same as those of Table 1.

TABLE 2. METHOD 4

Method 3 Type Bits per byte Word mark bits No. of bytes Working bits

A 4 X I 2 7

X01 3 1 0
X001 4 1 3
X0001 5 10
X00001 6 19

B 4 XI 2 7
X01 3 10
X001 4 13
X00001 6 19

c 5 1 1 4
01 2 8

001 3 12
0001 4 Hi
00001 5 20

E 6 1 1 5

01 2 10
001 3 15
0001 4 20

For transmission on parallel wires, Method 4 is superior
to Method 3 when errors occur.

It is also better for single wire transmission provided
synchronization can be maintained regardless of error
in any bit.

Code Efficiency
Brillouin [3] states that his code yields about 12 bits

per word, very close to the theoretical lower limit that
Shannon [2] believed to be 11.82. It is obvious from Table
1 that Types A through H are all better than Shannon's
limit. Having duplicated Brillouin's work with the ap
proximation to word frequency that he used (and also the
Dewey frequencies), I get 10.12 bits per word with the
frequency approximation that he used and 9.83 bits per
word with the Dewey frequencies that Shannon used.

The latter figure leads me to believe that Brillouin may
have unknowingly penalized his scheme by 2 bits.

Although Baudot code is nominally 5 bits per character,
the effective average is probably closer to 6 because of the
extra shift characters and terminal blanks required to
space words. Fieldata code does not use shift characters
but does require terminal blanks and at least one extra
bit, so the average is nearly 7 bits per character. Thus
the scheme outlined in this paper will save between 00
and 65 percent over Baudot transmission and nearly
70 percent over Fieldata.

Brillouin has not published a scheme using more than
two zeros as terminal indicators, and has stated that he
believes it (the two-zero scheme) to be the most efficient
possible. I have investigated the cases for three- and
four-zeros termination, with the following results:

Number of zeros Bits per word (Shannon)
Bits per word

(Dewey frequency)

2 10.12 9.83
3 10.31 10.10
4 11.09 10.87

These figures are for a vocabulary of about 12,000 words.
Table 3 shows that in this range the address efficiency of
the three-zero terminator is about five times as good as
that for two zeros. Thus it is actually much superior for
practical computer operation. The reason an extra zero

n
Z
U

U„
U,
U„

TABLE 3.
BRILLOUIN CODES OF THE FORM 1 XXXX .0C

= number of digits to left of the decimal point
= number of zeros in the terminator
= number of usable combinations in each group

a...

Un-l + Un-i +
U„_l + U n—2 + Un_3 + 1
Un-l 4" Un—2 A Un—3 4" U n—1 4~ 1

2U
Address efficiency = 2"

(for
(for
(for

Z = 2)
Z = 3)
Z = 4)

n 2"

z = 2 z = 3 z = 4 Address Efficiency

n 2"
u 2U u 2U u 2U Z = 2 Z = 3 Z = 4

1 2 1 1 1 1 1 1 .500 .500 .500
2 4 2 3 2 3 2 3 .750 .750 .750
3 8 4 7 4 7 4 7 .875 .875 .875
4 16 7 14 8 15 8 15 .875 .938 .938
5 32 12 26 15 30 16 31 .813 .938 .969
6 64 20 46 28 58 31 62 .719 .906 .969
7 128 33 79 52 110 60 122 .617 .859 .953
8 256 54 133 96 206 116 238 .520 .805 .930
9 512 88 •221 177 383 224 462 .432 .748 .902

10 1024 143 364 326 709 432 894 .355 .692 .873
11 2048 232 596 600 1309 833 1727 .291 .639 .843
12 4096 376 972 1104 2413 1606 3333 .237 .589 .814
13 8192 609 1581 2031 4444 3096 6429 . 193 .542 .785
14 16384 986 2567 3736 8180 5968 12397 . 157 .499 .757
15 32768 1596 4163 6872 15052 11504 23901 .127 .459 .729
16 65536 2-583 6746 12640 27692 22175 46076 .103 .423 .703
17 131072 4180 10926 23249 50941 42744 88820 .083 .389 .678
18 262144 6764 17690 42762 93703 82392 171212 .067 .357 .653
19 524288 10945 28635 78652 172355 158816 330028 .055 .329 .630
20 1048576 17710 46345 144664 317019 306128 636156 .045 .292 .607

532 Communications of the ACM

does not add a full bit per word is that a higher propor
tion of the frequently used words may now be assigned
to a denser set of addresses. The remaining choice between
Brillouin's method and Methods 3 and 4 is now made
as follows:

Brillouin 00 Brillouin 000 Method 3,4 B-mdot (Teletype)

Bits per word 9.Si 10.10 10.62* 30.
Address efficiency .06 .35 1.00

* adjusted for corresponding vocabulary size

Transformation Methods

A stored-program computer or a device with associ
ative memory can transform a string of characters (each
represented by a binary number) into a single compact
and unique representation. An existing example of this
statement is the conversion from binary coded decimal
to pure binary numbers. The converse transformation
at the receiving end requires only a simple address lookup
to find the word or symbol to be printed.

The input typing or keying device produces B bits
per character or letter. B is greater than or equal to 6
in order to handle at least 26 alphabetic characters, 10
digits and other necessary characters such as punctuation.
A group of letters is deliminted by a blank, hyphen or
other delimiter. Figure 4 shows the bit stream produced
in the EIA code for the word PRIME. The blank delimits
a string (Ci, C2, C3, • • • , CN), N being the number of
letters in the group, normally a word. This string is a
number Ri. In Figure 4, Ri = 4547364232octai. The
blank triggers the unloading of the buffer to a unit or
program which transforms Ri to a number Rt, which is
the compressed representation transmitted on the com
munications line.

As the set of English words is sparse, the set of Ri is
also sparse. Transmission efficiency increases as the set of
Rt is denser. Rt is also the address used at the receiving
end of the line, (Rt) = Ri, which may either activate a
character printing device or be retransmitted in decom
pressed form.

Rt is chosen to increase monotonically as frequency of
the use of a word decreases. Thus the most frequently
used words have lowest values of Rt and may thus have
the leading zero bits truncated in the variable length
mode. The program has an optional tally register as

sociated with each word. Actual usage will generate
practical frequencies which may be used for reassignment
of the Rt values.

Rt may represent more than one word. After initial
Rt's are formed, one per word, this compressed string may
be inspected by matching pairs against a list of pairs
which have high enough usage frequency to warrant
condensation into a single Rt. This is recursive and any
number of words may be represented by a single Rt.
The only requirement is for the preceding Rt to remain in
a buffer for matching.

Tabic Lookup Method

The length of a word is expressible in 5 bits. (Nmnx in
English = 28 < 26 for the word antidisestablishmen-
tarianism.) The computer storage is arranged to contain
the operating program, a master table of N, Ci and sub
ordinate tables corresponding to all these values. For
each word, N and C1 are adjoined. (N, Ci) is found in
the master table and is the address of the start of the
proper table. In Figure 4 the value of N,Ci is
0545octai. (0545) = starting address for table of all
five-letter words starting with P. (N, Ci + 1) = ending
address of table + 1. Between these limits, a binary
search finds a match to the value of Rj. Associated with
Ri in the table is the corresponding Rt.

This method does not make use of frequency informa
tion. It may be desired to place the tables randomly in
storage. In this case the master table must be doubled in
size. Adjoin the 5 bits of X, 6 bits of Ci, and a final low-
order bit which indicates the starting address by 0, the
ending address by 1. Finer grouping may be had at in
creased cost by using the concatenation of X*, Ci, C2.

Chaining Method

The entire number Ri is utilized directly to find the
corresponding Rt. A number M is chosen such that 2M

is convenient to storage size and related to vocabulary
size for optimum conversion speed. For present storage
sizes, M may vary from 10 to 14. The address Ri modulo
M has the contents:

Ri, Rt, chain address

The set of numbers Rm = Ri modulo M will have dupli
cates and will not be dense, although denser than the

Human

i
Hard
copy

Computer

T
Single character

typing device

I
Code stream ,/

p R I M E blank
100101 100111 011110 100010 011010 000000

FIG. 4

C o m m u n i c a t i o n s o f t h e A C . \ 1 5 3 3

set of RI. When there are duplicates, the contents of R,„
will not contain the proper Ri except for one word. If
not, the contents of the chain address are tested for a
match. This proceeds recursively until a match is found
on RI; the RT associated with that address is then used.
For dense storage packing, the chain addresses are chosen
from a list of empty positions, that is, R„, values which
the existing vocabulary does not utilize.

It is possible to apply other transformations to RI to
reduce it to the range from 1 to 2M. A simple extraction of
M bits may be practical. For any value of Rm, the chain
should be assigned in order of decreasing frequency of
word usage.

Storage is assigned by referring to its representation
in three lists:

(1) Storage (prime) already assigned to a word
(2) Storage (secondary, or nonprime) already assigned

to a word
(3) Free list, not yet assigned

A limiting number is experimentally chosen such that
only this many words are allowed unlimited prime as
signment. Starting with the most frequently used word,
R,„ is calculated and used as an address. If this address is
found on the free list, it is removed and placed on the
prime storage list. The address contents are assigned,
using successively larger values of RT. If this address is
not found on the free list, a duplication in RM has occurred.
Such words are held aside for assignment after the limiting
number is reached. These remaining words are then taken
again in order of highest frequency of usage, and the
remainder of the free list is used in sequence to fill the
chaining addresses. Each word assigned must proceed
through its chain. For example, take three words Wi,
W2 and W3 for which the corresponding values of Rj,,
RI2 and 1R, all yield identical values of R,„.

WI is assigned (RM) = R,,, RT], FLAI
W2 is assigned (FLAL) = RI„ RT„ FLA2

W3 is assigned (FLA2) = R,„ RTL", RETURN
(FLA means Free List Address)

Ends of all chains are assigned to the RETURN address.
When a word must be added to the chain, it is lengthened
by replacing RETURN by the next chaining address and
putting RETURN in the new last word. If RETURN is ever
reached in actual transmission, it indicates that this word
is not yet in the dictionary. Automatic addition of this
entry (in both sender and receiver) then occurs upon
inspection of the free list.

Immediate Applications

Present-day computers operate at speeds too high for
constant usage with communication lines, except under
special circumstances. Until special devices are built for
this express purpose, there are several ways of efficiently
combining computers with existing communication lines.

(1) MESSAGE CENTER. Since the computer should be
running nearly continuously to realize maximum savings
from compression, one means of achieving economy is

to create message centers in such cities as Paris, New
York, London, etc., where the total volume of messages
may be expected to approach capacity. Since the com
munication volume on lines is only about a third of present
volume, capacity of such lines as Atlantic cables is tripled,
without the need to lay new cables. Facsimile transmission
may be interspersed with word messages to further justify
the computer economy, since similar compression methods
can achieve 4-to-l reduction in this area [5].

The extreme flexibility of the computer allows a variety
of modes of compression, as shown in Table 1. Some of
these are suitable to the existing five-bit pattern of Tele
type. Thus a computer equipped with paper tape input
and output could take in continuous strings of normal
Teletype messages, compress them, and output a con
tinuous string in condensed form but still suitable for
transmission on regular Teletype circuits and equipment.
This tape then enters the receiving computer and is either
printed on its equipment or converted to the expanded
tape suitable for relaying to local Teletype receivers.
Large networks could thus be two-stage, with the greater
proportion of distance (and cost) being traveled in the
compressed form. It is conceivable that an asymmetric,
condition could be used, with a central transmitter and
several satellite receivers of lesser power. Radial trans
mission could be in compressed form, replies from the
satellites in normal, uncompressed form. The compression
algorithm must avoid using normal control codes as any
part of the numbers. The same principles apply equally
to other existing and proposed paper tape formats of
six bits and more.

(2) COMBINED MESSAGE AND DATA PROCESSING
CENTER. Many computers are susceptible to external
interruption of their regular operations and can inter
mingle several different jobs. This is known as multi
programming. Thus a computer in regular operation can
be interrupted upon demand to either encode a message
for transmission or decode and print an incoming message.
However, demand does not need to be heeded instan
taneously. A minimum time lag would be that saved by
the message compression. Depending on priority codes,
iags of up to several minutes may be acceptable. This
would allow for regular jobs to be interrupted at con
venient points with minimum disruption.

(3) COMBINED MESSAGE AND LANGUAGE TRANSLATION
CENTER. Several language translation schemes depend
partially on corresponding dictionary lookup. In this
method the receiving computer can look up the cor
responding word in Russian or French just as easily as
in English. Since this lookup time is such a small pro
portion of available real time, the rest of the translation
process may be carried on simultaneously. This allows
messages to be sent to multiple receivers in different
languages through virtually instantaneous translation.

(4) ENCODING FOR SECRECY. Secrecy comes virtually
free with this code. Whereas ciphers depend upon letter

.">34 Communications of the ACM

substitution and are normally broken on the basis of
letter frequency in a language, it is quite another thing
to try to determine relative frequencies for thousands
Of words rather than just 26 letters. Code is the more
general term, being substitution of symbols for words.

Normally both sending and receiving computers are
equipped with the same dictionary, or library. When the
sender adds a new word to the dictionary, it must transmit
this word to the receiver in both single character (so it
will know what to print) and compressed form. De
pending upon the mode of number assignment, this may
cause a drastic restructuring of the entire encoding repre
sentation. In the example of the dictionary with words
numbered in order, suppose a new word must be added
just before "aardvark." Almost every word would have
its representational number increased by one. This simple
shift would be easy to detect, but the problem would be
infinitely more difficult if many words were added at
landom places throughout the dictionary. Now imagine
this ordering of numbers determined not by alphabetic
ordering in the dictionary but by frequency of usage in
the language.

Additions to the dictionary may be expected quite
often. New users of the communications system may
introduce new professional jargons. Personal or place
names are used to identify many things, from army tactical
positions to tropical storms. Mixed symbols such as part
numbers for inventory will be used often. If these are
popular or frequently used, it is more economical to add
them to the compression dictionary than to send them
by single characters. If not, the provision does exist to
send single characters in groups of one, four, five, six
or eight bits.

A particular business requiring secrecy could purchase
its own special dictionary, scrambled in a unique way.
Computers can store a multiplicity of these on tape files
and both sending and receiving computers could select
one upon the basis of a control code. Multi-programmed
computers can merge several messages together for si
multaneous transmission in a variety of patterns. A very
simple example would be to interleave five messages so
every fifth bit would belong to a specific message. Myriad
varieties are possible and simple, but the unauthorized
receiver would have to try every possible variety before
he could make sense from any.

A valuable by-product of this method will be the ability
(at last) to determine actual usage and frequency figures
for both letters and words in languages. The compression
program contains a counting mechanism for usage. This
may be disconnected at option. This is useful to period
ically rearrange the dictionary for efficiency, when operat
ing in a standard non-secret mode. Previous counts, on
sample texts of from 100,000 to 300,000 words, did'not
count punctuation symbols for frequency of occurrence.
In this method, it is more economical to use these symbols
as being identical to words.

TABLE 4.
EXAMPLE OF POSSIBLE ASSIGNMENTS (Type D)

Octal Symbol Frequency Octal Symbol Frequency*

00 (Open for contin- 40 ARE 1200
gency)

1200

01 Enter binary mode 41 ON 1200
02 Enter 4-bit (decimal) 42 OR 1100

mode**
1100

03 Enter 6-bit mode** 43 HER 1100
04 Enter 8-bit mode** 44 HAD 1100
05 Blank 45 AT 1100
06 > 46 FROM 1000
07 THE 15500 47 THIS 1000

10 50 MY 1000
11 OF 9800 51 THEY 1000
12 AND 7600 52 ALL 900
13 TO 5700 53 THEIR 800
14 A 5100 54 AN 800
15 IN 4300 55 SHE 800
16 THAT 3000 56 HAS 800
17 IS 2500 57 WERE 800

20 I 2300 60 ME 700
21 IT 2300 61 BEEN 700
22 ; 62 HIM 700
23 FOR 1900 63 ONE 700
24 AS 1900 64 SO 700
25 WITH 1900 65 IF 700
26 WAS 1800 66 WILL 700
27 HIS 1700 67 THERE 700

30 HE 1700 70 WHO 700
31 BE 1500 71 NO 700
32 NOT 1500 72 WE 600
33 BY 1400 73 WHEN 600
34 BUT 1400 74 WHAT 600
35 HAVE 1300 75 YOUR 600
36 YOU 1300 76 MORE 600
37 WHICH 1300 77 (Open for contingency)

* 242,000 word sample from Cryptanalysis, H. F. Gaines Dover
1956.

**4-, 6- and 8-bit modes have identical characters to IBM
LOGICODE proposal. Those modes are provided to allow single
character formation. The 4-bit set is provided with a special
blank following 0 — 9 . |- . Return to Normal Mode is effected
in the various sets by encountering the character

01111100 in the 8-bit set
111110 in the 6-bit set (If 6-bit return character is out-of-

1110 in the 4-bit set phase with the end of the byte,
hold up 2 bits)

Amortization of Computer Costs

A rough program planned for an IBM 7090 takes an
average of 250 microseconds per word for total conversion
at both transmitting and receiving ends. This rate of
about 4000 words/second is more than adequate to keep
up with foreseeable transmission times, even microwave,
on a real time basis. At a nominal cost of $800 per hour,'
the per-word cost would be

80000
3600 X 4000 = '°°o6 cents per word-

Communications of the ACM 535

Cost estimates for land line transmission are 62 cents for
an average message consisting of 48 words of 5 characters
and blank, requiring an overall elapsed time of one minute.
These 288 characters actually require only 14.4 seconds
on the line at 20 characters per second transmission rate.
To realize the case most unfavorable to computer termi
nals, assume interleaving of four messages. The cost
would be

62
4 X 48

= .323 cents per word.

This shows conversion time to be negligible by almost
two orders of magnitude to the transmission costs saved.
Net costs with computers on each end should approximate

(35% of .323) + .0056 = .1186 cents per word.

Thus the overall cost may be expected (with a fully
utilized computer) to be from 37% to 40% of present
costs. The most profit comes from transoceanic routes

rather than land lines. Some typical costs* are:

Radio/Cable New York to London
New York to Paris
New York to Moscow
New York to S.

America
New York to Japan

21 cents per word
25 cents per word
25 cents per word
31 cents per word

34 cents per word

Western Union-
Telex

*(night rates are half of day rates)

New York to London/ S9 for first three
Paris minutes, $3 each

additional; 66
words/minute
50 bauds

Straight text costs a standard amount per word based
upon average word length. Coded text is charged modulo 5
letters. A group of 5 letters or less counts as one word; a
group of more than 5 is counted by components of 5 and
fewer letters. Thus a 12-letter group would be charged
as three words.

1. Draft Standard 7233: 1-4: 5/60, Electronic Industries Associ
ation, Committee TR 24.4.

2. SHANNON, C. E., Bell System. Tech. J. 30 (1951), 50-58.
3. BRILLOUIN, L., Science and Information Theory, pp. 24-58

(Academic Press, New York, 1956).

4. DEWEY, G. C., Relativ Frequency of English Speech Sounds
(Harvard University Press, 1923).

5. WYLE, ERB AND BANOW, Reduced-time Facsimile Transmission
by Digital Coding, Preprint at National Symposium on
Global Communications, August 1960. (Ford Instrument
Co., Long Island City 1, N.Y.)

536 Communications of the ACM

Survey of Coded Character Representation
R. W. BEMER, IBM Corp., White Plains, N. Y.

fi--.

Technical Committee 97 of the International Standards
Organization (ISO) is concerned with standards in data
pi m essing. The American Standards Association holds the
secretariat of this committee. Sectional Committee X3 of
A* A is responsible for national data processing standards
in f ne L,. o.

One of the most important areas of standardization (and
one of the most pressing) is that of the logical representa
tion ot the character sets. These representations may be
by punched holes in paper tape, pulses on a communica
tions line, bits stored in memory, marks 011 paper, etc. The

vrrnflotfndardS W°rk 'n this area has been done by
If PE) °f the BHtish Standards Institution

and by 1R 24.4 (now TR 27.6) of the Electronic Industries
Association. This particular problem is now under the cog
nizance of A.S.A. Sub-committee X3.2 on character sets
and data format.

The chart (pp. 640-1) is presented as staff work for the
deliberations of X3.2. It is the most complete information
we have been able to assemble to date, but obviously
there may be errors and omissions. The primary aims in
publishing this chart are:

(1) To indicate to the information processing industry
why standardization is vital in this area.

(2) To request further information from the various ex-
perts who possess it.

faVfiS 1S PreSerted in ^character modules (sufficient
the f" 1 S6t'> a' the P°sitions are given designations in e octa! ber system from 0Q tQ „ For ^ ^

isX,? n° w,th this notation- a conversion table
6'VcIl.

Octal Binary

000
001
010
011
100
101
110
111

J ^presents an ox or a punched hole condition. "0" rep-
Versior k°! Un unpunched condition. Obviously, the

-y be mnrl! Ween physical and iogical representation
bich edge 6f lu tW° WEyS (f°r example> depending upon
Hve-tr;,pL- PapeF tape is on your right hand)-
Jetter nr ffaper tape is shown as though one of either

gure shifts had a sixth track. In most cases

his is theoretical. The letter shift-figure shift relationship
is indicated on the chart together with the tape orientation,
i a 3 appears in the column marked units, then the "3"

hole side is octal 01. If a "2" appears in the units column
the reverse is true. In most British tapes the letter shift is
shown in the high position because the collating sequence
adopted by the British for six-track codes puts the digits
j.mvthe alphabet. The converse is mostly true in the

Note: The <04 and 705 codes, for example, apparently violate
this statement since the digits have lower octal represen
tations than the alphabet. However, ordering of files is
controlled by a collating sequence in which the digits are
higher than the alphabet. This is accomplished either by
a comparison matrix in hardware or by programmed
replacement of the keys in the records to be ordered.

Some seven element codes are shown on two lines. In
most cases these are accomplished by an upper and lower
case shift on the input key board. These cases are indi
cated. The 7030 actually uses the seven (and eight) bit set
internally.

The elements of the code sets may possess either infor
mational or control characteristics. In my personal opinion

ey should not possess both. Informational characters are
shown by their single graphics. Control and functional
characters are coded with two-letter mnemonics according
to the following table, except for blank (which is shown as a
lower case h with a slash through the stem) and special (©).
BK—black
BL—bell
BS—backspace
CL—clear
CM—card mark
CO—compute
CR—carriage return
CS—carriage shift
DL—delete (erase)
EB—end block
ED—end data
EF—end file
EI—end information
EN—end number
ER—error
ES—escape
FF—form feed (paper throw)
FS—figure shift
ID—idle
EC—lower case
LF—line feed
LS—letter shift

MS—master space
NA—no action
NL—new line (CR + LF)
NP—non-print
OP—optional
PA—put away
PC—page change
PF—punch-off
PO—punch-on
PR—print restore
RD—red
RE—read
SI—shift in
SIv—skip
SM—segment mark
SO—shift out
SP—space
ST—stop
TB—tabulate
TF—tape feed
TM—tape mark
LTC—upper case
WA—who are you?

Communications of the ACM 639

Survey
of Coded Character Representation

CASE

UPPER
LOWER

UPPER
LOWER
UPPER
LOWER
UPPER
LOWER

| UPPER
LOWER

I UPPER
LOWER

m a c h i n e
fecXTTr

TELETYPE
FLEXOWRITER

'METRO-VICK 950

PEGASUS - MERCURY
EBLsT T0TRA?T05MAY'59

^EMGksu?°FLE4X0WRITER
n

1STANTEC ZEBRA
I r ij I M/C TOOL

ENGLISH ELEC. DEUCE
| 1103 A TYPEWRITER

LGP-30 FLEXOWRITER
' M
IRPC-9000

(| j

RPC- 4000
N

I L1NC0LNWRITER
1 "

NCR - 304
704,709 7090
PHILCO 2000
m-H 800
BENDIX I/O TYPER
RCA 301

ICARD)
BENDIX 6 15 (CA 2)

SIS'mPE* TAPE TYPER
II 0 "

PDP-1

705, 7080, COC 1604
7076 MAG. TAPE
1401
I410 „ TADC 650 MAG. TAPE

b3u°r5ro*chsCeeo p-tape
IBM 046
NCR „

KLWAC M FLEXOWRITER

HIDAC 101 PAPER TAPE
KIMBALL PUNCH TAR
OENNISON
USS- 80
U N I V A C I , A
UNIVAC M
bfI^aXntV 5proposaL (b.s,.i

TYPEWRITER

I ?S ta60 wbidic
IBM 7030 1 „ H

LOWER
UPPER
LOWER
UPPER

LOWER
UPPER

LOWER
UPPER

R W.BEMER, F . A .WILLIAMS

I I I I o b c d • I v " ;
- + . % ? \ Z (A B C D E F G H I

! 0 1 2 3 m I B 7 8 9 C + E A D V - 1
h 1 I A 7 8 9 - + « » V B C D

i i i lS ' i i tJ I I 1 I -»e l
is -CRTB® S . ®|w * , p _ „ ,
jsPgNLFFTBKSOSlU)%* v / u , t _

l™« t ' a • » |k J j, K u M N o|p 0 R S T u V Jx ki lcS ! \ I 5 1 5 \ S H 0 P R f . T « V ±

S S i c O E F O H l J K L « « 0

a . . & A B C D1
0 i £ 3 4 5 6 7 - -

, 01 2 3 4 | 1 7
csIPC LF / Ol 2 34 56

t u v w x y * . ,
T U V W X Y Z I , (j!

0 P ? N 8 T U V * * » ; a d u f h ' " n ' r f (" H I J S L M N O P 0 R S T u v w x j
uccclfcrspAB CDE F GH I J KLMN u , aBC0EFGH

t V I >< C 3 ' - « « hlc d «_!—S-5-8 6 - A T V I , _ + =

REV. 9 OCT I960

640 CommuriicalUio* of lhe ACM

I m n o p q
K L M N O P Q R
X P O R T y c R Z

- J K L M $ *
" I) J K L M
") 5 J K L M

A B C D E F G H
A B C D E F G H

0 1 2 3 4 5 6
0 1 2 3 4 5 6 7
) - + < = > _ $
K L M N G P Q R
Jt I m n o p q r

C.C.l.T.T.
TELETYPE
FLEXOWRITER
METRO-VICK 950
LEO
PEGASUS - MERCURY
ELLIOTT 405
B.S.I. DRAFT-MAY'59
E.M.I. 1100, 2400
PEGASUS FLEXOWRITER

M I I

STANTEC ZEBRA
E.M.I. M/C TOOL
ENGLISH ELEC. DEUCE
1103A TYPEWRITER

" M

LGP-30 FLEXOWRITER
« u

RPC- 9000
H

RPC-4000
II

LINCOLNWRITER H
NCR- 304
704,709, 7090
PHILCO 2000
M-H 800
BENDIX I/O TYPER
RCA 301
M-H 1000
ALWAC 2H (CARD)
BENDIX 6 15 (CA-2)
PERSEUS
NCR PAPER TAPE TYPER

•• II ft „

POP -1
M

705, 7080, CDC 1604
7070 MAG. TAPE
1401
1410
650 MAG. TAPE
305 RAMAC

BURROUGHS 220 P-TAPE
IBM 046 "
NCR «
IBM 1620 «
ALWAC II FLEXOWRITER « «
HIDAC 101 PAPER TAPE
KIMBALL PUNCH TAG
DENNISON
USS-80
UNIVAC 1.31
UNIVAC M
BENDIX G 15
FERRANTI PROPOSAL (B.S.I.)
RCA 501, BIZMAC
BENDIX G 20 TYPEWRITER

* m n
GAMMA 60
FIELDATA, MOBIDIC
IBM 7030

Communications of the ACM 641

Survey of Punched Card Codes

rX
B
C

I B M D
TYPE . |
ARRANGEMENTS F

G
H
J

U
M-H 800 STD. PRINTER
M-H 800 HI-SPEED PRINTER
M-H 800 CONSOLE
PHILCO 2000
1103 A
705 CONSOLE
BURROUGHS 220
G.E. 210
NCR 304
305 CONSOLE
650 INQUIRY STATION
1401, 1410
7070
1620
UN I VAC H
UNIVAC HI
USS 80
RCA 301
RCA 501
G- 15 / CA-2
8RITISH TAB. MACHINE
IBM WORLD TRADE 3000
F.A.WILLIAMS, H.J.SMITH

IBM
TYPE
ARRANGEMENTS

M - H 8 0 0 S T D . P R I N T E R
M-H 800 HI-SPEED PRINTER
M-H 800 CONSOLE
PHILCO 2000
1103 A
705 CONSOLE
BURROUGHS 220
G.E. 210
NCR 304
305 CONSOLE
650 INQUIRY STATION
1401 , 1410
7070
1620
UNIVAC E
UNIVAC m
USS 80
R C A 3 0 1
R C A 5 0 1
G - 1 5 / C A - 2
BRITISH TAB. MACHINE
IBM WORLD TRADE 3000

642 Communications of the AOI

Reprinted from The Computer Bulletin, Vol. 4, No. 4
bwv.'oL

SURVEY OF MODERN PROGRAMMING
TECHNIQUES

by R. W. Bemer

This paper formed the basis of a talk given to the
Society following the Annual General Meeting on
29 September 1960.

Introduction
In the business section of the New York Times there
often appears an advertisement (not of my own com
pany) for "Research Programmers to work in Macro-
Assembly language development, Heuristic Programming
and Artificial Intelligence studies, Symbol Manipulation
and other advanced computer areas." You may have
seen it Even the lowly Machine Programmers are
requested to write programs for a variety of large-
scale digital computers in the areas of Scientific Informa-
tion Processing, Natural Language Processing and

.Information Retrieval Systems." At first this may sound
Fake somebody has been reading Mr. Potter's books and
this is merely one-upmanship in the programming area
but I assure you this is not so. Programming has indeed
moved to glamorous heights.

Until about four years ago, programming was a more
homogenised profession. This was to be expected in a
relatively new field. However, so were the developments
outlined in this advertisement. At present we have a

ST" programmers in the world, certainly
over 30,000 and the techniques used range from the
ones described down to the most archaic. It is extremely
unfortunate that the archaic end is the large end of the
iceberg-the part under water. This is occasioned by
the sheer rise in production programming, particularly
in (but not restricted to) business and scientific applica
tions. The production of generalised systems such as
the FORTRANS, Flowmatics, various assembly programs
and rather complete systems like sos for the 709 is a
very big business. I hope that the end-purpose of this
talk (and others like it, with published articles on the
S iiT i M t0 ra'f this Vast body of Programmers
S doIdrums of outmoded techniques. I realised

in 950, after my first year with electronic computers
that the leverage factor between a good and bad pro
grammer, or a good and bad technique, can easily be as
high as ten or twenty-to-one. In a tricycle factory one
is Mely to become vice-president for increasing the

|Output 10% at the same manufacturing cost. In pro
gramming, a 10% betterment of efficiency—that is in

construction, not running efficiency—is likely to go
unnoticed.

I shall try, in this talk, to give a summary of new and
improved techniques in the programming field. Surveys
should gather information in one place to enable proper
perspective for review and weighting of importance
This survey will be restricted to generalised techniques
and tools. Applications will not be covered, otherwise
you might not get home until breakfast tomorrow
morning. Despite much necessary overlapping, I am
going to divide this talk into six parts as follows:

1. The elements of languages
2. Machine-dependent languages
3. Machine-independent languages
4. Analysis languages
5. Processor techniques
6. Operating systems.

Elements of Languages
When we instruct the computer to do work it is

analogous to instructing another human being. In both
cases we use languages. In early attempts the languages
were at a very crude level and very awkward to use.
Much of the recent pressure has been to use English as
the language medium and instruct the machine ̂ almost
indistinguishably from the instruction of another human.

have severe doubts as to whether we can or should go
in this direction alone. One thing is very sure—the
economic need to more efficiently communicate with
machines has provided great pressure to re-examine the
meaning and structure of language. Millions of us use

Unghsh language quite correctly, or at least as
correctly as most, by having learned it through example
and unconscious statistical selection. It may be possible
that some day we will also teach machines in this way
but with present machine construction this is likely to
be very Most of our present approach is
devoted to teaching languages by a rigorous exposition
of their form and structure, "a*:

There are many types of languages, and I don't mean
Russian, French, or Pakistanian. There are the linear
languages such as we have in writing or speech. There
are the two-dimensional languages of tables and lists.
There are symbol languages, such as flowcharts, and
these by implication may be in many dimensions.
There are pictorial languages. All of these have been
used to communicate with computers.

vC -De 3L S

/*% S

128

The formation of language symbols is most interesting.
Most all symbols have recursive, or combining properties.
For example, the Chinese symbol for "riot" is formed
of two identical symbols for "woman," with a broken
line across to indicate a roof. Thus, to any knowledge
able man, two women under one roof indicates a riot.

Alphabets, however, are far more efficient, and have
beautifully recursive properties. Except for a few
vowels, none of the single characters are meaningful
words in English, disregarding their use as single-
character symbols for mathematics and the like.
Theoretically—and I say theoretically only because
George Bernard Shaw would otherwise arise from his
grave—the characters in groups of one, two and three,
etc., all have corresponding verbal sounds. These
verbal sounds are then the analogue representations of
symbols. However, I am afraid it would be very difficult
to speak English to an analogue computer. The cost of
storing symbol . patterns for discrimination would be
horrendous.

The digital computer is more fortunate because it can
use binary bit representations for the elements of
language. In common usage, bit representations are
assigned to the letters of the alphabet, decimal digits
and other useful characters. Using information theory,
Shannon and others (myself among them) have used bit
representations for entire words or phrases. However,
to add new words or names the facility must always
exist to represent the single characters by unique bit
combinations. An analogy may be found in the
representation of numbers by both coded decimal and
binary notation. The binary notation corresponds to
the word, since the entire symbol (that is, quantity) is
represented by a single number, even though that has
recursive forming elements of 0 and 1. The decimal
number, or of any other base for that matter, is formed
recursively by adjoining number symbols instead of
letters. Let us not overlook the combinations of both
numbers, letters, and special symbols, useful for part
numbers and automobile licence numbers.

If I may speak categorically, the input to and the
output from a computer is primarily a bit stream.
Whether or not this bit stream is broken up into bytes,
of which some bits are delayed in time so that a group
or byte of bits enters the computer in parallel, is of no
consequence. The size of such bytes, whether they be
defined as a single bit byte, the 5-bit Teletype or Baudot
code, the 6-bit byte of many alphabetic computers, or
the 8-bit byte of certain new computers and numerically
controlled machine tools is of consequence only to the
convenience of the designer and the efficiency of his
product. I recommend for your study the paper by
Howard Smith, Jr., of my group, which appeared in the
August 1960 issue of the COMMUNICATIONS of the ACM,
entitled "A Short Study of Notation Efficiency."

Some of you may know that I have been crusading for
some time in the interest of larger character sets. This
has met with some success and you may note the IBM
7030—the production version of the STRETCH computer—

The Computer Bulletin March 1961

accommodates a 256 character set, 8 bits per character.
The attached printer will print 120 characters, including
the upper and lower case alphabets, and all the other!
characters of the reference language of ALGOL. The
input/output typewriter for the Bendix G20 also handles
8-bit ALGOL characters. This is of great interest to the
programmer because he may now identify the unequivocal
meaning of each character in a string without resorting
to long programs that make many decisions on contextual
relationships.

To say there has been variety in the methods of
assigning bit combinations to characters is putting it very
mildly. We have catalogued over 50 different selections.
This Babel has probably been the prime factor in
instigating an international standardisation effort in
data processing. The British Standards Institution has
been active here for years. In the United States, con
sideration of these problems has been left until recently
to the various professional and trade organisations.
However, the X3 Sectional Committee for data pro
cessing has been formed in the American Standards
Association to straighten out this matter and many
others at both the national and international level.
Quite naturally, there is excellent co-operation between
the British Standards Institution and the American
Standards Association in these matters.

In actual practice, the bit representations do not need
to be identical for interchange of information. The
basic need is for a uniform collating or ordering sequence
of characters. There is nothing more vital to the inter
change" of data and programs between computing
machines than an identical collating sequence. There
are certain natural collating sequences (Z is higher
than A, 9 is higher than 0). I know of no reason why
alphabet should be higher than numbers or numbers
higher than alphabet other than historical precedent.
Most of the millions of files produced by data processing
machines in the United States are ordered with the
numbers higher than the alphabet. Blank is a character
in its own right and must be low. Collating sequence is
an important factor in machine cost. Unless the ascen
ding binary sequence of characters in machine representa
tion is the same as the collating sequence, additional and
expensive hardware will be needed to compare the keys
of items to be marshalled or ordered.

Another basic element in interchangeability is data
format. In order to be operated upon, data must be
precisely defined. This definition may be by means of
the instruction sequence itself, by other stored data, as
in the control word technique, or by self-definition.
For the latter purpose, I prefer a numeric subset of the
4-bit characters that contain the decimal digit 0 through
9, decimal point, minus, plus, comma, blank, and per
haps a monetary sign, dollars or pounds. In most
present arithmetic operations the position of the decimal
or binary point is accommodated by either floating point
arithmetic or by aligning the implicit decimal point
within the instruction sequence. This alignment could
possibly be done automatically with a coincidence-

2.

The Computer Bulletin March 1961

matrix detector if the decimal point is an explicit and
.separate character contained in the data. Some scaling
pnight still be necessary, of course. Another type of
instruction/data interaction is that where the data itself
signals that it is of a special class which may or may not
alter the instruction sequence. An example of this
would be the terminator bits in the 7030, which indicate
the beginning and ending elements of a vector stored
in memory. /' \tt .r\J

Although another element of language structure is
the syntax, I will take that up under some other groupings.

Machine-Dependent Languages
As long as we have computing machinery there will

be a machine language for a particular computer to
understand. I will not guarantee that the form will stay
that way it is today, because already

1. There are fixed word length and variable word length
machines.
There are machines that operate on words, machines
that operate on characters, and machines that operate
on bit streams.
There are machines of one command and of more than
one command in a single instruction, with one, two,
three, four, and perhaps more addresses in a single
instruction.
There are machines with 20 instructions in the machine
language repertoire and machines with over 500 different
types of commands available.

• 5. There are micro-instruction languages with which the
^ programmer can get at each primitive required in

fetching the necessary data to perform the operation;
there are machines which have macro-instructions built
into the hardware when a high frequency of usage
indicates enough gain by paralleling the elements of
execution. Examples of the latter are floating point,
operations involving index registers, operations of
indirect addressing and special table instructions such
as the convert instruction in the IBM 709.

We may yet see machine languages identical to ALGOL
or some other presently machine-independent language.

Expert programmers are well aware of the uncertainty
in machine languages of the future. One certainty is
that at the present time the engineers are far outstripping
the ability of the programmer to use the machine, and
there is a saturation point beyond which no amount of
programmers can possibly speed up the writing of a
program. Certainly more than two or three hundred
programmers working together constitute a point of
diminishing returns. We have no recourse as pro
grammers but to go to the machine designer and say
"help." I am pleased to note that the Atlas machine
has taken many steps forward in this direction. The
convenience of numerical symbolic addressing is one of
the most important features that will reduce translation
time and programming effort.

Given a particular machine-dependent language, there
fere many interesting tricks and techniques which a
programmer may use, sub-programs for counting the

129
number of 1 s in a binary number, for instance, or
tricky mathematical sub-routines. Although not exactly
applications, such techniques are nevertheless also
excluded from this treatment. Let us leave machine-
dependent languages with only the reservation that
eventually we have to convert the information we give
the machine into this form. f\£) PoSS/6

Machine-Independent Languages
Machine-independent languages may be divided into

two groups and I do not mean scientific versus com
mercial languages. This is an entirely different par
titioning. Machine-independent languages are either
procedure-oriented or problem-oriented.

There is a great deal of confusion existing between
these two terms. It is unnecessary confusion because the
distinction is simple. The procedure-oriented languages
are available for one to describe how the process is to be
carried out. With the problem-oriented language one
needs only state the problem. Heuristic programming
is of course only the upper stratosphere of problem-
oriented languages. There are many of these in existence
today, of a simpler nature. As an example, take what
is miscalled (in the United States) a sort-generator. What
they really mean is ordering, or, to use the British term,
marshalling. The input to such a generator would be
items such as internal memory size, number of tape
units, suspected bias in the ordering, record size and
layout for the items to be ordered, preference for
ordering method, grouping or blocking information,
and many other items of information or advice. Inherent
in the sorting generator is the pseudo-intelligence about
the problem which will, from the intersection of this
information and certain basic skeletal routines, construct
an efficient operating program. The programmer may
have called for a distribution or a sifting sort. He did
not tell the machine how to accomplish a distribution or
sifting sort. Had he actually written the program for a
distribution sort he would probably have done so in
procedure-oriented language. - -4 . 3- /

Many of you have undoubtedly noted the metalinguistic
formulae in which ALGOL 60 is described. This is due to
John Backus, previously known as the developer of the
FORTRAN program and language. I trust I may be
excused for considering this a tremendously more
important development than FORTRAN. Algebraic lan
guages did exist before FORTRAN—Rutishauser's and
that of Laning and Zierler at MIT. I believe Brooker's
work was also simultaneous with FORTRAN.

This meta-language seems to me a remarkably rigorous
means of describing a linear or string language. One
would assume that the process should be recursive
That is, there should be a meta-meta-language with
which to describe the meta-language, and so on in depth.
I have always been convinced that such rigorous forma
tion rules tend to simplify the translation process, just
as in working at the aircraft factories during the war
I found that the lower degree of the profile curve, the

to
c*v&e_

CTS Ca*dC TCtwseoccr '
C 0©--
puv- &(*£> (Z&soert-

130 The Computer Bulletin March 1961

better the air liked it. I was particularly pleased to
hear from Peter Ingerman, University of Pennsylvania,
at an ALGOL discussion during this summer's ACM
meeting, that they had some difficulty implementing
non-recursive procedures in ALGOL. When they redefined
the procedures to be recursive everything was much
simpler. In other words, a sounder and more generalised
structure forces the programmer to do things the right
way. . .. A r -A

You are by now all familiar with the trend in scientific
machine-independent languages through FORTRAN,
UNICODE, Math-matic, Auto Code and such to the
present state with ALGOL 60. Although by no means
complete (in fact, I consider it still quite experimental)
ALGOL is a far superior language to any of its pre
decessors. I know of four related processors for ALGOL
in Germany; in the United States, processors have been
written at least for ALGOL-like languages for the Bur
roughs 220, the CDC 1604, and its prototype Countess.
An ALGOL processor exists for the 709/7090, and ALGOL
processors are being constructed for many other machines.
I have enough faith in the eventual future of ALGOL to
have caused a program to be constructed which converts
from FORTRAN source language into a rather stupid
ALGOL. 1 have been asked many times why we did not
make it translate from ALGOL to FORTRAN SO that the
existing processors could be utilised. The answer has
always been that we wish to obsolete FORTRAN and
scrap it, not perpetuate it. Its purpose has been
served. « CtfOlC

A similar revolution is now taking place in the area
of business languages. Under the sponsorship of the
US Department of Defence there has been formed the
Conference on Data Systems Languages (CODASYL).
Although this conference has other long-range aims, its
initial and most urgent purpose was to synthesise, from
the existing business languages such as Flowmatic,
Aimaco, and Commercial Translator, a somewhat
universal language in the spirit of ALGOL.

This language, COBOL, is nearly complete in its defini
tion. Its construction was beset with many more
difficulties even than ALGOL. For one thing it had to
handle almost all the features and classes of problems
that ALGOL does in addition to many others. Let there
be no mistake about it—business and commercial
problems are vastly more difficult of solution than are
scientific problems, at least in their translation to machine
operation. The scientists and mathematicians, in con
structing ALGOL, drew upon a workable language of
mathematics that has been in existence for hundreds of
years. Their new contribution was the reduction of the
verbiage that the mathematician normally finds between
the formulae to algorithmic form in a more concise
notation. On the contrary, business practice has
differed wildly.

The constructors of the COBOL language were beset by
many new problems and I fear that in their initial attempt
they ignored the rigour and syntactic beauty that a
definition by meta-language would have gained them.

There has been a general resistance on the part of IBM
and myself to the willy-nilly adoption of COBOL in its^^
original form. We knew what was wrong with it and^^
tried to say so in the manner of elder statesmen. I am
pleased to say that nearly all these basic flaws have now
been removed. IBM is committed to produce COBOL
processors for many of its computers on the assumption
that the official form of the language will be revised no
oftener than once a year. Practically all major producers
of computing equipment in the United States are com
mitted to COBOL processors for their machines.

One might now ask if ALGOL and COBOL are the end.
I must say no, for part of the work the American
Standards Association set up under its X3 Committee is
a project for common programming languages. I suspect
there will be those who walk into the X3-4 Sub-
Committee and expect to find ALGOL adopted as a
standard. I expect the same may be true for the COBOL
proponents. Having played the scientific against the
commercial and vice versa, Saul Gorn and I have reason
to believe that this is the very lever needed to force a
fusion into a single language for both scientific and
commercial work.

If machine-independent languages are to be standard,
they must be standardised according to a set of rules
of graduated stringency. Adoption of a particular
existing language as a standard would be fallacious.
For one thing, a standard requirement should be that
the language be expressible in the meta-language of
Backus or some other development of this nature. For^^
another, all languages should be clearly partitioned.^^
The commercial languages are now in three parts,
reminiscent of Gaul (!); namely, procedure, data
description, and environment, ALGOL does not have
separate data description because it operates only upon
floating-point variables or fixed-point variables with
rigid rounding and truncation principles not suitable to
business, ALGOL does not have an environment section,
and it could certainly use it.

I further suspect within a period of two years a fourth
section will be broken out of the language, a section
exclusively reserved for time-dependencies and relation
ships. At present we are writing too much procedure
into our problem solutions. Combinatorially, there are
many different ways of constructing a flowchart to do
the same problem. The variations are limited only by
the time-dependencies. That is, A must be computed
before B, because A is an input to the computation of B.
If, for example, both A and B are input to C, it may not
matter to the programmer whether A or B is computed
first, but depending upon certain frequency information
and other knowledge the compiling routine can well
make this decision.

We can look to see (within perhaps two years) an
international machine-independent language of the
procedure-oriented type which will be suitable for both
scientific and commercial work and will be heavily
partitioned into organisational entities for the reduction
of programmer effort. The processors which accomplish

The Computer Bulletin March 1961 131

the translation of this language to machine language will
be required to be extremely clever and intelligent.

The problem-oriented languages are an upcoming and
useful class. In this group we have sort generators (as
mentioned before), report generators, file maintenance
and updating generators, and table generators. All of
these are very highly specialised towards certain frequent
and recurring classes of operation. The investiture of
the necessary and requisite intelligence into the program
is economically justified by the frequency of need.

Let us take the report generator for an example. Input
to such a program would be a description of the physical
layout of the file, its component structure and the detail
structure of these components. The semi-pictorial
layout of the output is also required, with indications
given of the pagination, margin, number of lines,
grouping, spacing, indentation, etc. For a typical
report the headings are lettered in exactly as they are
to be produced from a typing element in the proper
column and row. The working information is laid out
exactly as it is desired to be seen with proper decimalisa
tion and auxiliary characters. (Some means of relating
this output to the structure of the input file is also
necessary.) The cyclical characteristics of data must be
specified. It takes a good deal of programming effort
to write a good report generator, but there is an extreme
pay-off when you invite the vice-president down and
hand him an input sheet and say, "Make up your own
report." He is shown the simple rules, the information

•
is key-punched and fed to the machine with the working
file, and the report comes out in a matter of two or three
minutes exactly as that vice-president specified it. It is
remarkable how much support a computing installation
can get that way.

To finish with machine-independent languages, I
should like to emphasise the importance of jargons,
and what they do for us. When one considers, for
example, the jargons (or dialects) of ALGOL such as
NELIAC, CLIP, JOVIAL, MAD, etc., it can be seen that the
external appearance of the language is quite a bit a
matter of taste, ALGOL reflects certain distinct choices
in a matter of exterior form. It has been noted by Julian
Green in his work with ALGOL processors that there
appears to be a rather rigorous sub-language created
from the scan of a string language. This appears to be
common regardless of the jargon used. Remarkably
enough, it appears to have the quality of Polish Notation
with an alternating sequence of operator, operand,
operator, operand, etc. This does seem at first to give
support to those that prefer Polish notation as the
human programming language, as in ADES II and the
APT programming language. The group that it actually
supports is that which would like to see a specialised
jargon for each field of computational need. Mike
Barnett, for instance, carries this one step further with
his so-called "Macro-directives," which are highly
specialised jargons for a particular field. These are

•
translated into an intermediate language such as FORTRAN
or ALGOL and then processed into machine language.

Brooker has been particularly keen on this, as evidenced
by his paper on a self-defined phase-structure language.
It would seem that the computer is versatile enough to
take specifications of language structure and construct
its own rules for translation to the sub-language. Of
course, this is directly related to the problem of transla
tion of natural human languages.

Analysis Languages
This is a subject I can touch on only briefly because

the field is actually in its infancy, but basically the
analysis language should provide the tools to describe
the operation of a total system. These are the languages
we may expect our systems and procedures analysts of
the future to use in describing their problems. There
are prerequisites to successful language of this type.
Among them are more rigorous methods of describing
data organisation and set membership. I imagine they
will be much more pictorial, being two- and perhaps
three-dimensional. Examples of tabular languages are
already in existence, developed by Hunt Foods and by
General Electric. In the simplest form the dividing lines
between the columns and rows represent and/or con
ditions. The resulting procedure or operation is
described in a column following a double rule. In
reality much of this is simply making Boolean algebra
more palatable to the user by transformation of the
language to a form more compatible with his previous
experience. The development committee of CODASYL is
extremely concerned with this problem. They point
out, and rightly so, that actual programming is often a
rather small part the entire analysis problem of today.

Processor Techniques
Two years ago programming was rather in the dol

drums. It seemed then that the twenty-five to forty-five
man-years necessary to write a major processor were
supportable only by manufacturers. Users and univer
sities rebelled at this and so did the manufacturers
because of the heavy programming costs. Now we find
universities that can write with two man-years of effort
better and more sophisticated processors than those
which would have required twenty-five man-years as late
as 1958. I ascribe this in large part to the development
of symbol manipulation techniques.

At an ACM Council meeting a year ago, John Carr
was rather perturbed by criticism of ALGOL since he had
a large hand in the formation of the effort, and asked
"Can anyone tell me just what is wrong with ALGOL?"
It fell to me to answer the question and I said, "Simple.
It's not a data processing language." In short, ALGOL
could not be written in ALGOL. Assembly programs can
be written in their own language; why not machine-
independent languages? To answer that this is
theoretically impossible is wrong. Symbol manipulation
is the link. When you are going to ship a language with

1 r\rp4 »AIUJ6<L 4 ̂ "v(

8C>i/NOK^r fit'1

132

its translator out to face the world so that it can do
virtually any problem, you might as well consider one of
the most general of these problems. This is the problem
of translating from itself to a machine language. In fact,
this is the acid test.

When ALGOL came into being as ALGOL 58, we were
already embarked upon a language called XTRAN,
designed to supplant FORTRAN. Indeed many of the
characteristics of ALGOL were born in XTRAN. I asked
Julian Green to run an effort to make an experimental
processor for ALGOL. He was given only two rules:

1. Nobody that ever worked on a FORTRAN processor was
to be associated with the project for fear of prejudice.

2. The processor was to be extremely flexible to accom
modate expected changes in ALGOL.

The result of this is an experimental processor still
carrying the name XTRAN but capable of providing as
many different varieties of ALGOL as one needs. The
reason for this is that XTRAN is written in its own
language. Symbol manipulation elements have been
added. Another successful project of this kind in the
United States was undertaken at the System Development
Corporation with the languages CLIP and JOVIAL.

As I said in my introduction, most production pro
grammers are unaware of such techniques. The problem
is how to convince them to utilise these new techniques.
One possible answer lies in a course on compiler con
struction just given for the first time. This course lasts
one week. The first two days are devoted to a special
language for symbol manipulation. During the next
three days each student writes a complete compiler in
this symbol manipulation language and actually checks
it out on a machine, in this case the 705. The compiler
is a very simple one, and they do not write anything for
recursive procedures. Yet it is complete, it works, and
is written inside of one week.

Perhaps the second greatest contribution to the
programming art in recent years is something we wanted
very much to do one or two years ago and only recently
discovered how. This is bootstrapping. (I hope the
term has the connotation in the United Kingdom as it
does in the United States.) In any event, it means to use
every possible facility that you have constructed so far
in the construction of any new facility. This is not
limited to a single machine but may also be extended to
moving processors from one machine to another. The
most difficult part of bootstrapping is to get that small
initial handhold. Normally this starts with hand
writing of an origin feature, the assembly of a few
instructions, a decoding table for operations and
addresses, an assignment feature to actual addresses
and a few other such functions. With these facilities
one starts to program and moves slowly in an ever-
widening circle.

This is the classical method. It was not good enough
for Bob Shapiro of the XTRAN project. Shapiro came
from the University of Chicago and was not bound by
what any other programmer had ever done. He decided

The Computer Bulletin March 1961

that the first tool he needed was a scan to break apart
and analyse the elements of the input language. How
ever, he felt that one of the things the scan ought to be{
able to do was scan itself. So Shapiro wrote what he
thought the scan ought to be and then he played machine,
imagining the scan scanning the scan. As he did so,
he wrote down the machine instructions that he thought
the machine should produce in so doing. He then
entered these same machine instructions in the computer
and actually fed the scan through the program. In fact,
again scanning the scan. This process produced a
program for scanning which at first, of course, was not
quite the same as that Shapiro had written. He kept at
it until the output program in the machine was identical
to the program that actually had scanned it. With this
he completed his first major bootstrap and saved an
enormous amount of work.

Bootstrapping is, however, a more useful device in
modest present-day systems. As an example, we were
required to produce a processor for a new machine,
the 7070. There was a choice between starting from
scratch or doing a wasteful job of writing a single
translator on another machine—in this case the 705.
After some initial opposition I persuaded the production
people to write a program in 705 Autocoder which per
formed the translation from 7070 Autocoder to 7070
machine language. After all, this is a production
problem one might be expected to encounter with such
a generalised program. The 7070 processor (that is, the
processor which would actually run on the 7070) was
then written in the full-blown language, taking advantage'
of every feature available. This was then processed
(virtually once and once only) on the 705 to produce a
processor which would actually work on the 7070.

The elapsed real time in thus producing the program
was greatly reduced, which is very desirable in these
days of automatic design and production of machines.
We received a bonus we hadn't quite counted on, actually.
Now we have one 705 running around the clock, doing
nothing but assembling 7070 programs for customers
that do not yet have their machines.

XTRAN as an experimental processor has changed form
many times, but the basic transformation from inde
pendent language to machine language has remained
the same. One starts with the scan which produces
macro instructions, possibly of a three address nature
and quite independent of data configuration. The next
step converts these macros to other macro instructions
which are data-dependent. For instance, in the original
macros we may have been attempting to add a fixed
point number to a floating point number or perhaps
two fixed point numbers that required decimal alignment,
which was not necessary to consider at that time. The
next transformation was either to symbolic machine
language or direct to machine language through
generators. Anatole Holt uses a diagram for this
process that 1 like very much. It is a simple parallelo
gram which is completely below the base line. This(

base line represents a dividing position between machine-

The Computer Bulletin March 1961 133

independent and machine-dependent characteristics.

•

Holt's diagram shows that the transformation is a
gradual one through many steps. At each stage there
must be a mapping from one form to the other so that
no information is lost.

I think this is a good time to dispel the UNCOL myth
(Universal Computer Oriented Language.) According
to its proponents, all machine-independent languages
would translate into UNCOL and UNCOL would be trans
lated to all different machine languages. Apart from
the fact that UNCOL has been demonstrated, through the
success of CLIP and XTRAN, to be unnecessary, there are
certain technical reasons why it cannot exist—excluding
if you will the Turing machine. Since UNCOL must
comprise the set of all possible machine level operations,
it is likely to get outmoded as soon as someone develops
a new one. For example, I wonder whether the UNCOL
would have included the look-ahead feature of STRETCH
if they had designed it five years ago? Then, too, it
would seem that to be acceptable to all machines UNCOL
would have to translate into the lowest common
denominator among all classes of machines and thus the
efficiency on each and every object machine would be
minimal. I am afraid that as it is presently proposed,
UNCOL is a miss, or myth.

To my mind there is an intermediate language form
which will serve this same purpose. The only real
difference between machine-independent and machine-
dependent languages is that they have different con-

^^structions reflecting the different organisation of the
^Riuman mind and the computer mind. To go from one

to the other there must be an orderly transmutation of
information. I submit that tables and lists can easily be
the common denominator for this purpose. Several
powerful list processors have already been constructed—
LISP of McCarthy and Mealy, and the Newell-Simon-
Shaw processors. There are indications from the realm
of information storage and retrieval that the day of the
list processor has just begun. The ability of various
trees to reference recursively both backward and for
ward on many program levels indicates that they are
powerful enough to perform the stated function of
UNCOL as an intermediate form. As an example, the
XTRAN scan decomposes the string continuously into a
matrix. The semicolon as a statement separator is
never treated differently from any other character.
As a result, arithmetic computations may be optimised
over whole sections of the program with redundancies
removed. Consider it this way—if one makes a list
inside the processor of all the variables that ever have
an addition operation performed upon them, it will be
detectable that B + A is the same as A + B. All that
is required is an ordered list and a search for duplicates.

The translation from a machine-independent to a
machine-dependent language raises some interesting
speculation. There are two courses open today. One
involves translation from the machine-independent

•
language to an intermediate assembly language in
machine-like form, with the operators and operands

given mnemonic English equivalents. A separate
assembly operation then converts this form to machine
language. The other alternative is direct generation of
machine code. The latter is not enjoying much favour
these days. I suspect it will in the future. The pro
ponents of the double step process tell us that machine-
independent languages cannot presently state every type
of problem, whereas assembly languages can. Therefore,
correct machine code in assembly form may be adjoined
with the output of the first translation and all translated
by the assembly program. This is a safe way to play it,
and for today perhaps the most practical for production
programming. It is predicated on the assembly and
translation processes being long and tedious, such that
one could not afford to start over from scratch each time
an error is caught or a change made. Direct generation,
on the other hand, is based on the principle of recom-
pilation from the beginning each time, although perhaps
certain tables of correspondence may be saved. By
avoiding the intermediate assembly language step much
duplication is avoided and the running program may
physically replace the source program in memory.

Another important technique in today's processors is
that of flow optimisation. It is well known that there
are more devious ways of going to a point four blocks
down the street than by walking to it directly. The
average programmer left to his own devices is too likely
to take many of these detours. The route is best left to
the intelligent processor. Perhaps the most complicated
section in the various FORTRAN processors is that for
flow optimisation through the use of predecessor and
successor logic. As you know, the programmer has the
option of specifying expected frequency of taking various
possible paths at branch points as override information.
The processor takes as much of this information as the
programmer gives it and constructs a rough test program.
Test values of the variables are generated randomly and
the test program is exercised with these values to deter
mine any unknown branch frequencies. With this
information the program is then reconstructed to
optimise the flow such that the most used paths through
the program take the shortest time. Of course, if this
penalises greatly a slightly less used path, a different
choice must be made. Similar to the transportation
problem, this technique is in effect a prior optimisation
of the program.

Many post-optimisations have been tried with success.
This is particularly necessary when we go to macro-
instructions to decompose a string language. Normally
the macro-instruction generators do not talk to one
another. It may well be that the generation of two
successive macro-instructions will engender some
extraneous commands—multiple store, for example.
Other crude rules for optimisation and modification of
a program after it has been created fully have been
developed.

As one who was brought up on interpretive programs
in the early years, it amuses me to see that the compiler
is not the last word. To compile implies that you know

134

everything about the program beforehand and all the
external characteristics and conditions. In today's
multiple processing systems this is definitely not so.
Many hardware assignments must be made on-line
during actual running. Furthermore, an interpreter is
often a more compact form of instruction, whereas a
compiler might generate as many as a hundred different
ways of doing something, all of which must be main
tained in memory in case their particular call should
occur. The interpreter effectively generates the proper
coding upon demand. The former reason for the
unpopularity of interpretive programs was the length of
time required for the fetch and interpretation cycles.
With proper hardware design, such as that of ATLAS,
this is not necessarily a problem.

The interpreter also comes into its own when there is
a difference in balance between computational equipment
and printing and editing equipment. As a case in point,
take a 7090 and a 1401. The 1401 is a small machine
with big off-line editing and printing characteristics. To
asynchronously operate such equipment on-line with a
large machine in a multi-program fashion would require
much control information and prior editing. In this
case all the 1401 would do would be printing. We have
determined that it is very effective for the large machine
to construct an interpretive control language as its
output, together with the resulting data. The 1401 is
nicely able to interpret these control and editing instruc
tions with no loss of printing speed.

A problem of recent interest is the naming facility in
processors. I know the English have laughed at some
of the three- to five-letter names one encounters in
American programming systems. I admit this is quite
unnecessary and I apologise. The possible names one
could use of any number of characters form a very sparse
set. It is very expensive to carry around character by
character representations in the compiling and trans
lating process. These names are meaningful only to the
programmer. They may be exchanged for compact
binary representations for use in machine processing.
A double list of these relationships is maintained for
availability whenever output is required.

The problem of locating files by their names is related
to this. With random access memory it is cheaper and
more convenient to transform the name into a unique
address which locates the related file rather than perform
a special table search for the name and find the associated
address. Lists come into their own here, and chaining
techniques have been developed. That is, one converts
the numeric representation of the name into a more
compact number. In the address given by this number
one should find the original name to serve as verification.
If not, a chaining address is also given for the next try.
The need for this is occasioned because the conversion
algorithms sometimes produce duplicates in a more
dense set. However, the expenditure of search time is
far, far less than that for binary search. On typical files
where 20% of the total files get 80% of the activity, the
average number of searches made in a fully packed file

The Computer Bulletin March 1961

has been determined as 1-12. Operating in this fashion
is also good practice for the days of associative memory..

It was a combination of this chaining technique, th4
work of Shannon, and zero-compression techniques that
led to the development of "Digital Shorthand" as a
communications code. With computers on each end
of a communications line, rather than the simple ter
minal equipments of today, we can transmit three times
the volume of formatted text in compressed form,
decompressing it at the receiving end. Facsimile may
be sent at a saving of 4 to 1. This method promises
large savings over expensive communications linkages
such as Atlantic cables and satellites. An experimental
7090 program indicates that, with full utilisation, the
cost of both sending and receiving computers is about
0 006 pence per word. Contrast this with Is. 6d. per
word day rate, London to New York, or 9d. night
rates. This scheme will handle the full English dictionary
at an average of 10-7 bits per word.

I have briefly touched on some of fee more salient
features and techniques that make large gains in both
the writing of processors and the running of the programs
they produce. Now to move to my final topic, the one
probably dearest to my heart, that of operating systems.

Operating Systems id
There has been a steady trend away from the com

bined human-machine operation and toward fully auto
matic machine-controlled operation. There is no doub^^
but what the vast increases in machine speed have forcec^^
this, but it would have been a desirable development
even if speeds had remained the same. The first large
automatic operating system, developed at General Motors
for the 704, doubled the working efficiency of that
machine.

One of the most important components of an operating
system is the iocs, which stands for Input/Output Control
System. The proper scheduling of Input/Output is a
far more difficult matter than writing the procedure.
With iocs we see new verbs introduced such as GET,
PUT, INTERLOCK, OPEN and CLOSE FILE. All of these are
compound instructions generated for maximum efficiency
in feeding data to the operating procedures for producing
answers.

Obviously a complex system of this nature has many
levels of operation. Control must exist through
hierarchies of overrides and limits. All component
functions must be organised as subroutines eventually
called by the topmost level of control. Since the
scheduling function is one of these components there
must be access to all machine states by interrogation or
trapping. If trapping is used it must be capable of
being disabled and enabled by the control program.

The scheduling function may be primitive or very
complex. A good deal of development is being done by
Codd and Held in the United States. Until a radical
change in machine design, however, I am inclined
favour the primitive approach for a sensible profit

The Computer Bulletin March 1961

too many experimental scheduling programs now take
up more time in making the decision than the machine

^ftime they gain.
Assignment of operating units must not be made in

the program proper. This is left to the operating system,
which makes real time assignment according to what it
has available soonest. For a tape unit, for example,
this is probably the first unit the previous running
program has relinquished. The programmer must in
general refer to physical units by abstract names. This
may be carried to the point of random loading of tape
Units. At the beginning of each problem the control
program reads the labels on each tape unit to find out
what exists there. It may also interrogate memory to
find out how much is available and adjust the program
accordingly for more efficiency. Self-adjustment to
machine configuration is not costly for such a powerful
device.

We would expect the program in the original language
to be stored somewhere for ready access. Self-repair of
programs may be effected by returning to the more
compact source form. This is connected to the self-
repair of the machine itself. A diagnostic program con
tained in the operating system may be called upon to
test for faulty machine elements. Upon discovery, a
message would be typed out to the service man, but
rather than halt operations, either the current program
would be readjusted by partial recompilation to avoid
the faulty area, or another program might be started

•

which did not require it.
) Experiments indicate the possibility of successful

OSOyU ^OJu> r'rPMg <-0"VCP THl ?

N. is n5

diagnosis on a time-shared basis. This enables the
programmer to essentially talk to the machine in real
time at his convenience) Of course, all diagnosis is done
and results obtained in the machine-independent
language the program was originally written in.

Once a self-operating system is postulated and begun,
no matter how primitively, we are on the way to remote
shared operation of very large machines. The graphs
of problems per monetary unit always show remarkable
decreases when the machine gets larger and faster. I
have long envisioned computers larger than STRETCH
acting as large service and message centres. Because
they must be tied in with communications networks for
this purpose, they are automatically available for message
control and forwarding, text and facsimile compression
to high efficiency and low cost, and a variety of related
functions. Certainly the very organisation in this
manner will more than amortise the cost of the computers.

This concept would indicate that vast files of read-only
memory will be an important requirement for the future.
Even program instructions may be largely fixed and
unalterable. Old-time programmers remember a lot of
instruction modification, but how much do you need
now with index registers, indirect addressing to many
levels and symbolic addressing? I would venture to say
that less than 10% of our program instructions ever get
modified now, and the percentage will become much less.

I thank you for this wonderful opportunity to address
you, and if you think that I have been talking too much
"futures," read a copy of this talk three years from now
and see how old-fashioned the ideas are.

UN WIN BROTHERS LIMITED, WOKING AND LONDON

T echnlguies
Editor

l have seen a number of subroutines lately for the com
putation of transcendental functions. To a routine, the

<rc of the argument is at least as high as ir/4. Nobody
vnrs to use tables to break up the range, nor do they

make use of trigonometric identities.
I remember very well the day A1 Podvin's sine-cosine

routine for the 650 ran faster than mine because he had
used the formula for sine 30. For the information ot sub
routine planners who have not investigated this tech
nique, Table I gives some alternate expressions for the
computation of sine and cosine of nd. The clever program
mer will now see how he can trade off extra computation
here for reduction in the size of the approximating poly
nomials due to reduced range. Telescoping the coefficients
is also advisable.

I believe tricks like this will be highly efficient because
of the large proportion of applications which demand the
computation of both sine'and cosine; theodolite data re
duction, for example. For binary machine users, it may be
of interest to notice how many of the coefficients 111 Table
I are susceptible to shifting techniques for multiplication.

Let me anticipate the reader's complaint that 6 must
be computed with more precision. Do not divide the
argument, nd, by n, but rather multiply by the reciprocal
of n. This leads to another interesting (and apparently
little known) characteristic of binary machines The
reciprocals of all decimal integers are of course repeating

fractions, whether expressed in decimal or binary. How-
^P/er, certain of these integers have the property that the

's Note
binary repeating cycle is very short. Table II is therefore
of interest. The quantity enclosed in parentheses repeats
continuously.

The alert programmer will now see ways to perform
certain multiple-precision divisions by integeis in less
timethan the standard machine instructions would take,
by taking advantage of masking and shift instructions.

R.)\. B.

TABLE I. Formulae for calculating sin »9. cos nd

Sin Bn

s

2 SC

3S - IS3

S(3 - 4Sh
sue - 1)

4SC(l - 2.S-)
4SC(2C* - 1)
4SC(C - S-)

Cos nd

5S - 20S3 + ICS5

S(5 - 20S! 4- ICS1)
S(1 - 12C1 4- ICC4)
S (4 (™ + A,) (4C S + K t)

TABLE II. Binary reciprocals of some small decimal integers

-Vi-c 1/iV Binary Ade l/.Y Binary Adrc l/.V Binary

1
2
3
4
5
6
7
8
{»

10
11
12
13
14
15
16
17
18
10
20
21
22
23
24

> 35

.1(0)

. (0 1)

.01(0)

.(0011)

.0(01)

.(001)
.001(0)
.(00C111)
.0(0011)
.(0001011101)
.00(01)
.(000100111011)
.0(001)
.(0001)
.0001(0)
. (00001111)
.0(000111)

.00(0011)

.(000011)

.0(0001011101)

.(00001011001)

.000(01)

20
27
28
29
30
31
32
33
34
35
30
37
38
39
40
41
42
43
44
45
40
47
48
49
50

.0(000100111011)

.00(001)

.0(0001)

.(00001)
.00001(0)
.(OOCOOlllll)
.0(00001111)
.(00000111C1C1)
.00(000111)

.(0000C1101001)

.000(0011)

.0(000011)

.(00000101111101)

.00(0001011101)

.(000001011011)
. 0 (00001011001)

.0000(01'

51
52
53
54
55
56

58
59
60
61
62
63
64
65
66

68
69
70
71
72
73
74
75

.(00000101)

.000(001)

.00(0001)

.0(0001)1)

. (000001)

.000001(0)

.(000000111111)

.0(0000011111)

.00(00001111)

.000(000111)

.(000000111)

c* - s-
1 - 2 S3

2C3 - 1

4CS - 3C
— C(3 - 4C-)
-C(4S3 - 1)

4(S4 4- C4) - 3
1 _ 8C2 4- 8C4

1 - 8S* 4- 8S4

1 - 8C!S2

oC - 20C» 4- 16C3

C(5 - 20C + ICC'4)
C(1 - 12S2 + ICS4)
C (4 C 5 4 - A ,) (4 C 3 4 - A , .

Ade

76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
£3
94
95
96
97
98
99

100

1 .V Binary

.0000(0011

.00(000011'

. (OOOOU)ll

.00000(01)

166 Communications of tin - ACM

1973 June 14

Mr. J . Robert Logan
Data Systems Division
Litton Systems, Inc.
Van Nuys, CA

Dear Mr. Logan:

For historical interest, in connection with your article "Designing
a Binary Reciprocator", in the 1973 May issue of Computer Design,
I attach a copy of my Editor 's Note in the 1961 April issue of the
Communications of the ACM. My Table II shows the reciprocals of
your Table I , except that the repeating element 1s also indicated.

I s n ' t i t s t r a n g e t h a t t h e s e t h i n g s g e t l o s t w h e n n e w t e c h n o l o g i e s
come along? I am pleased that you have resurrected this usage after
twelve years.

Sincerely yours,

n

cc: Sydney Shapiro, Managing Editor

R. W. Bemer

Standards
EDITOR'S NOTE

This paper <>«cribes^ 7n Characte^L^andTnput/Output

MedS?TheX35 Subcommittee is now quite

opinion, will probably recommcnda ^ although it may differ in some de-
similar in principle to the one desc amount of effort
tails. Because of the urgency of th.s work and }t u presented

which has already gone into the deve °P™e" f the aCM membership

here, informally, for the lhc ACM Standards Com-

^ —S a"d ^ DePartmCnt

will welcome your comments.

Design of an Improved*
Transmission/Data Processing Code

i. W. BEMER, H. J. SMITH, JR., F. A. WILLIAMS, JR.

B M C o r p . , W h i l e P l a i n s , N . Y .

Historically there has been strong difference of opinion
n the construction of 6-bit (64-charaeter) data codes,
->ased upon whether the code is to be used for communica
tions or data processing. This paper reports on mvest.ga-
tion of an improved code which meets transmission re
quirements and requires very little modification for varied

data processing usage. _
It has been evident from the workings of the ASA

Subcommittee X3.2 that the transmission people are not
as adaptable to modifications as the data processing peop .
This is simply a matter of inflexibility of existmg serm-
mechanical communications equipment compared to the
general-purpose nature of electronic data processing equip-

m<The major obstacle lies in the collating, or ranking,
sequence of the characters of the set. It is true that a
large proportion of the ordered files of today are sequenced
on numeric keys alone. However, a substantial proportion
of these files are ordered on keys which contain alphabetic
and special punctuation characters. If a standard cod
changes the relative ranking of such characters the Pres"
entlv ordered files will all have to be fully reordered to the
new sequence, a process requiring a greatexpenditure of
machine time. Transformation of one bit representat o
to another is relatively simple when the sequenc g
property is ignored. However, one should try to guarantee
that the files are still in proper order after such conversion

* Revision, 15 Mar. 1961.

212 Communications of the ACM

There are three inputs to the collating problem :
(1) The most prevalent ranking in the U.b. is

established by IBM equipment, particularly the <0o. n
order are the blank, special characters, the alphabet, t
digits. The critical point here is that the digits arehighe
than the alphabet, for whatever reason. The United King
dom and certain other U.S. manufacturers (Sperry Rand
and RCA) rank the digits lower than the alphabet. ^

(2) The desire of communications people, as nrs
evidenced by Fieldata [2, 3, 4], is to have the 6-bit set
collapsible to a 5-bit Baudot-type set with effective y the
same characters. This is to utilize existing Baudot-Teletype

equipment with simple modification.
(3) Certain punctuation characters, by universally

accepted practice, should collate low to alphabets digits,
and other special characters. For example, the following

two names would normally be ordered.
Roberts, A. B.
Robertson, X.

whereas the Fieldata code, because the comma ranks
higher than the alphabet, would yield an ordering:

Robertson, X.
Roberts, A. B.

Expansion and contraction between any of the 4-, 5-, 6-,
7- and 8-bit code sets demand a certain uniformity and
simplicity. Thus the alphabet should be reserved to two
contiguous quadrants of the four quadrants of the 6-bit
set. The choice now appears as in Figure A.

(TYPIFIED BY)

Bendix G-20, GAMMA 60
Fieldata
IBM Stretch
U.K. [5]

Quadrant
3

Alphabet
Alphabet
Blank, special
Blank, special

Alphabet
Alphabet
Alphabet
Digits
FIG. A

Digits
Special
Alphabet
Alphabet

Special
Digits, special
Digits
Alphabet

In the opinion of the authors neither the Fieldata code
nor the U.K. code meet the criterion for 5-bit Baudot-like
operation completely, even though that was one of the
major design requirements. A Baudot type of code is
formed essentially as follows:

Letters

Digits and special
Control

32 5-bit combinations

In any 2-mode code for paper tape, three of the control
codes, DELETE, FIGURE SHIFT and LETTER SHIFT, must in
variably be common to both shifts, DELETE must be all
l's (all punched on paper tape) and MASTER SPACE must be
all O's (unpunched tape), MASTER SPACE, BLANK, and
ESCAPE preferably appear in both shifts. Such controls as
LINE FEED, CARRIAGE RETURN need appear in only one
shift, but operation is more complicated.

Some of these functions may be combined in a single
code combination, DELETE/LETTER SHIFT is a single code
in Baudot, FIGURE SHIFT is synonymous with one of the
three functions possible to ESCAPE. [6]

Since DL, FS and LS must be common to both modes,
Fieldata loses the Y and Z of the alphabet and the - and
+ characters in the collapsed 5-bit mode. This is not
tolerable because some words are spelled using Y and Z.
Similarly, the U.K. code loses the letters F and G and the
symbols . and —. The code developed in this paper is very
similar to both of these codes but removes these major
flaws.

All of the criteria of the Fieldata study are used here.
The full spectrum of expansion and contraction among
4-, 5-, 6-, 7- and 8-bit sets is considered in addition. Thus
there are the following additional criteria and remarks:
1. A collating sequence has utility in data processing

codes containing alphabets; transmission codes do
not require such a sequence.

2. A collating sequence has no utility in a 4-bit set.
3. A collating sequence has utility in 5- and 6-bit sets

and it is desirable that the sequence correspond to the
binary representations.

4. If it is assumed that the 7- and 8-bit sets contain upper
and lower case forms of the same alphabet, it is im
possible to have the collating sequence match the
binary representations, for the case distinction is of
lesser significance than the distinction between charac
ters with different meanings. [7, 8]

5. It is not necessary that the full 4-bit set be in 16
contiguous positions in larger sets. It is only necessary

that the lowest four bit positions form the dense, un-
duplicated set. Other bit positions may vary. However,
the digits 0-9 (10, 11) should be certainly be grouped
contiguously in any set.

6. Punctuation characters have natural delimiting
functions and should thus collate low to both the
alphabet and digits. These include, but are not limited
to:

blank . , / — : ; ' () (not in ranked order)
7. Since period and hyphen are natural delimiters, they

should be placed low to both alphabets and digits.
However, they often serve as radix point and minus
sign (which are not delimiters) in the 4-bit numeric
set. There must also be a character in this set to serve
as a blank; this may or may not print in the 4-bit
numeric mode. Therefore any characters of the 4-bit
set which are delimiters should be in a different con
tiguous block than the digits, so they can serve the
delimiting function in larger sets. There should be
some regular transformation to append bits when
expanding to larger sets.

8. All expansion and contraction from and to the various
set sizes shall be blind, without knowledge of the
meaning of the character assigned to any bit repre
sentation, or of contextual adjacency (with the excep
tion of FIGURE/LETTER SHIFT control in going between
5- and 6-bit sets).

9. In all expansion and contraction, MASTER SPACE must
remain all O's and DELETE must remain all l's. ESCAPE
shall always be the second highest code, one less than
DELETE; thus all bits except the low order are 1. For
paper tape usage, BLANK must be different from
MASTER SPACE and therefore shall have all bits 0 except
the low order. This guarantees that BLANK, as the
primary delimiter, collates low to all other characters.
It is also the complement of ESCAPE.

10. All possible caution should be exercised in alphabetic
regions to provide maximum expansion for non-
English alphabets (> 26 letters).

The 8 bits are represented by B7 through B0, high to
low order. The 6-bit transmission set will be developed
first. Figure 1 shows a modified Fieldata pattern with B5

not yet assigned, reflecting criterion 9 only. B6 = 0 for
Fieldata, B6 = 1 for U.K.

It is now obvious that LS and FS should be opposite
ES and DL, not MS and BLANK, in order to maximize the
number of punctuation characters following BLANK.
Since the decimal digits must have their binary repre
sentation equal to the binary value, they must be placed

Communications of the ACM

Bj.o
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

B.S.4

XO XI
1 1

B,, B,

xo XI

Digits & Special Coalesces to
5-bit set

MS
BLANK

ES
DL

FIG. 1

O ® 0 MS O 0

® P ® I 6 P 1

A Q 2 A Q 2

B R 3 B R 3

c S 4 ® = MS ? C S 4

D T 5 ® - b ? D T 5

E U 6 ® = LF ? E U 6

F V 7 ® — CR ? F V i
G W 8 ® — FS ES G w 8

H X 9 ® = LS DL H X 9 |

I y I y

J z J z
K ® ® K LF |

L ® L CR

M ® M FS I

N ® ® N LS/DI.

FIG. 2

1 ® O
! © P

A Q
B R
C S
D T
E U
F V
G w
II X
I Y
J Z

K ®
L ®
M ®
N ®

® C 0
© 1 yields the 1

2 4-bit set 2
3 3
4 4
5 5
6 0
7 7
8 8
9 *—@ 9

*

»

*

® •

- ® -

+ & ® +
b / ® b

0
1
2
3
4
5
6
7
8
9

10
11

+
b

Proposed
British

FIG. 3

Present
British

(for com-
comparison)

214 Communications of the ACM

For

Basic CCITT
Teletype
Basic IBM Printers
FORTRAN Printers.
1410, 7070, COBOL. ..

+
& /

V V
V v
V V
V V
V V

V
V
V
V
V

V V

()

A/

? = $ £ • % < >
V V V V

V a/ V V V V V
V V
V V V V v
^ V V V V V

V
V
V

V V
v v v v

V
V

V V V

FIG. 4

V V V t/
V
v' V V V A/ V

n the XI quadrant. This is shown in Figure 2. LIKE EEED

r ta"d,CTGE RETUHN (CR) are necessaT for charac-
ter-at-a-time1 printers associated with existing communi
cation systems. As control signals, they are grouped with
other control signals rather than with MS and BLANK
which are essentially informational.

There is space for 20 special characters in the 6-bit set
but four of these must disappear in the 5-bit set.

In conformity to most existing practice, the other six
characters of the 4-bit set have been selected as:
• I- (for self-delimiting data fields)

printing separator (may have graphic repre
sentation)
digit grouping)mosfc expendable for

* indicator for totals, etc. /British pence (10, 11)
he two positions following the digit 9 are not usable

or delimiters m the 6-bit set, since they will collate high
these six characters arc assigned as shown in Figure 3

he pairs (.,) and (-+) are a distance of two bits apart
or easier error detection. + is used fully interchangeably'

with &, since may also take the forms 1r f & /has
been chosen as alternate for the BLANK in the 4-bit set

SS.W/S" wc""" * """* -
B,.(

B3-0 00 01 10 11
0000 MJ 0 ® O
0001 b 1 ® P
0010 " 2 A Q
0011 $ 3 B R
0100 * 4 C S
0101 > 5 D T
0110 (6 E U
0111 j) 7 F V
1000 8 G w
1001 ; 9 H X
1010 * ? I Y
1011 | * ! J Z
1100 LK K ®
1101 — CR L ®
1110 + FS M ES
1111 / LS N DL

B5,<

Bs' =

B/ = B,VB,

B< = BS'
B6 = B,' y B/

Transmission Code

00 01 10 11
N U L L < 1 ° 0

b > p 1
n A Q 2
$ B R 3
% C S 4
' D T 5
(E U 6
) F V 7
: G w 8 1

> H X 9 1
1 I Y ?
* J Z !

L
K

L @
>-3
O

+ M %
Pi

a / ! N • 0
0

Data Processing
Code

Fig- 5- The Proposed Standard Code
1 The common term in communications is "page" printer-

preempt'this"term^ ^ ^ ^ timTS

Q ^he basic set is achieved by changing the transform at

B4 = Ba v (B, A BO
The British set should have 10 and 11 immediately

following 9. This is achieved by changing the transform

B4 = Ba v Bs

Figure 4 gives the special characters specified in existing
systems. 6

A FoRTRAN-commercial substitution exists to overcome
limited capacity of line printers. The correspondence is:

* to = @ to ' % to (• to)

The Bell and "who are you" functions are ignored here
because they do not warrant individual characters. Thev
are handled best by the ESCAPE mode.

B6 may_now be assigned specifically.
X = 0, X = 1 yields a modified FIELDATA which,

unless transformed, has punctua
tion high to the alphabet. This is

Y n°t logically consistent.
X = 1, X = 0 yields modified U.K.

" UNIVAC, MH
" RCA 501
" 704 internal

We will thus choose the latter. This choice also di
minishes the number of bits or punches in numeric data
which is most frequent to data processing.

The specific proposal of Figure 5 implies either that:
(a) the data processing code is internal, and the EXCLU

SIVE OR mapping takes place at the interface on reading
or writing externally on media such as tape or communica
tion lines, which utilize the transmission code, or

(b) the data processing code is merely figurative and
represents the effective collating sequence obtained by a
simple comparison logic in the machine

The transmission code folds to the Baudot-like code of
figure 6. It retains all the special characters of present-
day Teletype, plus the *. Although ? and !, as effective
delimiters, might well precede the alphabet in the data
processing code (involving a swap with < and >) to do
so would remove ? and ! from the 5-bit transmission
code. If the transmission people agree, this change could
be considered.

As a 6-bit transmission code, ® to © are available,
hese might be used either for additional control func-

Communications of the ACM 215

MS 0 0
b P 1

A i " Q 2
B | $ R 3
C | # S 4^
D | ' T 5^
E | (U 6

F I ^ V 7
G | : W 8
H ! ; X 9
i ! , y ?
j i •

i z !
K 1 .
| LF

L » — CR
M + FS
N ! / LS/DL

< O 0
> P 1
A Q 2

$ B R 3
C S 4

1 D T 5
< E U 6
> F y 7

G w 8

1 H X 9

1 I Y ?
* J Z j

. K =

- L

+ M %
/ N •

O 0
P 1

A Q 2

$ B R 3

c # C S 4

F ' D T 5

F (E U 6

F) F V 7

G W 8
H X 9

l I y

* J z

K F =

- L C @

+ M c %

/ N c •

57 + Blank
FIG. 6

48 + Blank
FIG. 7

(Identical to)
Fig. 6

MS 0 | 0

b p ! 1

A u Q | 2
B $ R ! 3
C s 1 4
D » T ! 5
E (u ! 6
F) v ! 7
0 w 1 8
H > x | 9
I t Y j ?
J * z ! 1

K LF
L — CR
M + FS
N / LS/DL

5-bit

MS 0 0

b ® P 1

" A Q 2

$ B R 3

% C S 4
' D T 5
(E U 6
) F V 7

G W 8

i H X 9
I Y ?

* J Z 1

K ® LF
— L ® CR
+ M FS ES

/ N LS DL

6-bit

Transmission Codes

(Identical to\
Fig- 7)

NULL < O 0

b > P 1
rt A Q 2

% B R 3

a C S 4
t D T 5
(E U 6
) F V 7

G w 8

> H X 9

, I Y ?
* J Z !

K
=

w3
— L S
+ M %

E*
y.

/ N • 0
0

Data Processing Code

FIG. 8

tions or (preferably) for additional characters of foreign
alphabets, FS and LS are also available, once the complete
change is made from existing equipment. Fieldata would
then use these characters as UPPER CASE (UC) and LOWER
CASE (LC) respectively. This provides a representation of a
7-bit code in 6-bit form, just as Baudot represents a 6-bit
code in 5-bit form. Therefore the FS-UC and LS-LC corre
spondences are true, and either mnemonic might be used.
Perhaps a new combination would be desirable, as FC
(for Figure/Upper) and LL (for Letter/Lower).

= @ % and • are placed high in the data processing
code, and it is assumed they will not be used in control
keys. Figure 7 shows the DP code satisfying the last set of
special characters of Figure 4, plus the FORTRAN trans
formation and a 48-character set.

The proposed set has the special characters assigned
for reasons other than matching correspondence between

the digits and the characters associated with those digits on
typewriter keyboards. The reasons are:

1. Some typewriters do not have keys for the digit one
(1) or even for the digit (0).

2. There is no such thing as a standard typewriter key
board in the U.S. There is a proposed British Standard,
but the characters placed most uniformly, the left and
right parentheses, are above 9 and 0 respectively. This
conforms with much practice in the U.S., but 0 must be
placed in parallel to MS in accordance with our previous
rules.

3. Transmission people sometimes desire the paren
theses over the 8 and 9 respectively, but this occurs only
in the Luebbert revision of Fieldata (not the original
Fieldata) and Ferranti computers.

4. Users normally adjust automatically to any arrange
ment of special characters after a day's usage.

216 Com in u ni cations of the ACM

5. Non-English keyboards differ greatly in this place
ment,. It would be unfair to inflict one of the many English
arrangements as an international standard.

6. The FoKTRAN-Commercial interchange is accom
plished in the proposed set by recognizing

B I A B (A (B S = B 5) ,

and inverting B3 and B6 if this condition is true. Any
other arrangement greatly complicates the logical hard
ware necessary in converting existing printers, probably a
more expensive process than converting existing Teletype
writers.

7. Any such correspondence will still require two modes
of keyboard logic to generate codes.

If the transmission people could modify existing equip
ment with an EXCLUSIVE OR function (two relays), a com
pletely common and collatable 6-bit code could exist, as
shown in 1'igure 8, subject to the requirements for expan
sion to 7- and 8-bit sets.

REFERENCES

1. Electronic Industries Association, Basic Character Set Code,
lentative Standards Proposal 7233, May 1960.

2. LUEBBERT, W. F. Information handling and processing in
large communication systems. Tech. Report 099-1, Stanford
Electronics Laboratories, Stanford University, 11 July 1960.

3. U. S. Army Signal Corps, Fieldata Equipment Intercom
munication Characteristics. 1 August 1959.

4. LUEBBERT, W. F. The design of the new military common-
language data code. (Dittoed Copy).

5. British Standards Institution, Committee DPE 149, Draft
British Standard for Punched Tape Coding, Part 1 7 Track
Code, AA (DPE) 3543, Sept. 1960.

6. BEMBR, R. W. A proposal for character code compatibility
Comm. ACM S, No. 2, Feb. 1960.

7. BEMEB, R. W. On the design of extended character sets.
26 Jan. 1961 (Unpublished).

8. SMITH, H. F. JN. AND WILLIAMS, F. A. JR. Remarks on col
lating sequences. 22 Sept. 1960 (unpublished).

APPENDIX

On the Relative Position of the Alphabet, Numbers
and Special Characters in a Code Set Based upon
Transmission and Data Processing Characteristics

Consider a 4-quadrant arrangement of 16 states per
quadrant in which Ql, Q2, Q3 and Q4 represent the octal
codes 00-17, 20-37, 40-57 and 60-77. Consider also four
classes of information symbols which may be placed in
these quadrants:

D representing the 10 or 12 digits of the decimal or duo
decimal system

S representing the class of special characters
A representing a section of the alphabet beginning with the

letter A
Z representing a section of the alphabet ending with the

letter Z

If each of these four classes of information is assumed to
consist of up to 16 codes, they may be assigned to the 4
quadrants in any of 24 combinations. We now consider
these combinations in light of their desirability for data
processing and data transmission.

Transmission Considerations

1. Concepts of MASTER SPACE and BLANK are distinct. The term
BLANK" refers to the element of information used to separate

words on a printed page, MASTER SPACE occupies the zeroth
position.

2. The concept of ERASE or DELETE is represented by the JVth
character.

3. MASTER SPACE, BLANK and DELETE are concepts required in
all alphabetic or alphanumeric sets. Further MS and DL
always occupy the same relative position in each set.

4. The 64-state code set is to be representable by a 32-state
code using a shift mode. In this compressed representation the
alphabet is to form one shift and the numbers and special
characters the other.

These criteria imply:

01. A and 2 cannot fold upon each other (4).
02. Ql and Q4 cannot fold upon each other (1, 2, 3).
03. MASTERSPACE must be in Ql. (1)

Data Processing Considerations

5. The digits are represented by their pure, natural binary
equivalents. Since only four bit positions are necessary to
represent up to 16 states, any additional bit position in a given
set must contain the same pattern of l's and 0's for each digit

6. No symbol other than MASTER SPACE ranks lower than BLANK
in the collating sequence.

7. The alphabet is dense in collation.
8. Certain field-separating symbols including BLANK must rank

lower than the alphabet in collating.

These criteria imply:

D cannot be in the quadrant which contains or folds on
MASTER SPACE. Otherwise 0 and MASTER SPACE would become
identical in some code set. (5)
2 cannot occupy Ql. (7)
MASTER SPACE and BLANK must appear as adjacent characters
in the same quadrant. Otherwise some symbols will be less
than BLANK or MS will have a rank higher than BLANK. (6)
BLANK cannot be associated with A. Otherwise some special
symbols would either be lower in collating than BLANK, or
field-breaking symbols would be higher in collating than the
alphabet which they are intended to separate. (6, 7)
(7) and (8) immediately above imply that A cannot occupy
Ql since MS must be located here.

04.

05.
06.

07.

08.

Application of Rules to the Combinations of D, A
Z, and S on Ql, Q2, Q3, and Q4

The requirements 04, 08 and 05 remove from considera
tion the 18 combinations beginning with D, A and Z
respectively. In addition any combination in which A
does not precede Z can result in a non-dense alphabet.

{please turn to page 225)

Communications of the ACM 217

TABLE 1
Deviates of the Normal Function in Octal Corresponding to the

Cumulative Area From .5 to 1.0

Area (Octal)
Scaled 21

formal Deviate (Octal)
Scaled 2"

Area (Octal)]
Scaled 2'

.'orraal Deviate (Octal)
Scaled 2»

200 00 00000 00000.
00 00120 15457.
00 00240 33636.
00 00360 53002.

00 00500 73431.
00 00621 16043.
00 00741 43141.
00 01061 73214.

300 00 12625 32704.
00 12772 42473.
00 13140 41660.
00 13307 32316.

00 13457 16144.
00 13627 77435.
00 14001 60730.
00 14154 44377.

210 00 01202 26537.
00 01322 66042.
00 01443 32032.
00 01564 03006.

00 01704 61253.
00 02025 45515.
00 02146 40500.
00 02267 42513.

310 00 14330 34471.
00 14505 34031.
00 14663 45573.
00 15042 74314.

00 15223 42707.
00 15405 34463.
00 15570 55071.
00 15755 27637.

220 00 02410 54064.
00 02531 75526. 1
00 02653 30005.
00 02774 73427.

00 03116 50535.
00 03240 40077.
00 03362 42443.
00 03504 60346.

320 00 16143 40227.
00 16333 12607.
00 16524 33524.
00 16717 27240.

00 17114 02241.
00 17312 41757.
00 17512 73747.
00 17715 25671.

230 00 03627 12161.
00 03751 60466.
00 04074 44256.
00 04217 45711.

00 04342 65610.
00 04466 24554.
00 04612 03410.
00 04736 02547.

330 00 20121 65564.
00 20330 42335.
00 20541 43267.
00 20755 00012.

00 21173 00365.
00 21413 55747.
00 21637 22316.
00 22065 70106.

240 00 05062 22626.
00 05206 64474.
00 05333 51003.
00 05460 60415.

00 05606 13615.
00 05733 73512.
00 06062 01012.
00 06210 34430.

340 00 22317 52300.
00 22554 65705.
00 23015 50463.
00 23262 21226.

00 23533 00141.
00 24010 07632.
00 24271 74500.
00 24560 64671.

250 00 06337 16705.
00 06466 30775.
00 06615 73671.
00 06745 70150.

00 07076 16612.
00 07227 00465.
00 07360 16636.
00 07511 72144.

350 00 25055 11231.
00 25357 26315.
00 25667 74207.
00 26207 36451.

00 26536 46016.
00 27076 02014.
00 27446 51276.
00 30031 33024.

260 00 07644 03467.
00 07776 54160.
00 10131 65174.
00 10265 37466.

00 10421 54234.
00 10556 34507.
00 10713 61765.
00 11051 55313.

360 00 30427 40773.
00 31042 23633.
00 31473 35502.
00 32144 76235.

00 32641 23053.
00 33363 41636.
00 34137 46520.
00 34752 51075.

270 00 11210 20025.
00 11347 33317.
00 11507 21011.
00 11647 62131.

00 12011 00143.
00 12152 74634.
00 12315 51606.
00 12461 10461.

370 00 35633 37754.
00 36573 54572.
00 37631 00460.
00 41010 33357.

00 42354 42517.
00 44204 72526.
00 46534 51133.
00 52437 23555.

STANDARDS—Continued from page 217:

As can be seen, this is not the only method of applying
wie stated rules. Despite the order taken the rules reduce
to three the number of acceptable combinations for data
processing and transmission. These combinations are S,
A, Z, D which is followed by IBM and S, D, A, Z which
is advocated in the United Kingdom. Also possible is
S, A, D, Z.

The FIELDATA arrangement A, Z, S, D is not acceptable.
First, BLANK is associated with A, which means the
delimiting special characters will collate higher than the
alphabet. Second, if BLANK is not associated with MASTER
SPACE in Q1 but is in the second position of Q3, one symbol
(the character in the first position of Q3) other than
MASTER SPACE must have a rank less than BLANK.

This examination of the possible combinations of S, D,
A, Z merely indicates which arrangements should be
further investigated with view of their expansion charac
teristics in sets of more than 6 bits. The analysis is in
tended to remove much of the confusion which has existed
as to what combinations are possible and desirable for
expansion and contraction. Thus, the arrangements
S, A, Z, D and S, D, A, Z will be given further analysis
and a choice between them made on the facility of their
expansion and contraction characteristics.

Folding Considerations

At this point the methods of folding must be considered.
The four quadrants may be folded in one of the two ways
by the removal of either B5 or B4.

Ql on Q2 and Q3 on Q4
Q1 on Q3 and Q2 on Q4

When the folding consideration is applied to the remaining
combinations of S, A, D, Z we find,

Ql on Q2 Ql on Q3
SDAZ Note 1 Possible
SAZD Note 2 Note 4
SADZ Note 3 Note 1

NOTE 1. The digits cannot fold on MASTER SPACE.
NOTE 2. The transformation characteristic between 5 and 6 bits

is dependent upon the combination being treated as
well as the shift.

NOTE 3. This is possible by treating B< of the 6-bit representation
as the mode bit. However, this leads to a non-dense
alphabet.

NOTE 4. Z cannot fold on MASTER SPACE.

Conclusion

From the consideration of data transmission and date
processing criteria we are led to a code organization of
S, D, A, Z. This organization, however, should not be
considered as giving the collating sequence.

Communications of the ACM 225

nci

Sonderdruck aus

Reprinted from

Digitale
Informafionswandler

Probleme der Informationsverarbeitunq
•n ausgewdhlten Beitrdgen

Selected Articles on
Problems of Information Processing

Herausgeber/Editor

Walter Hoffmann

F R I E D R . V I E W E G & S O H N

B R A U N S C H W E I G

A utoren/Contributors

Yehoshua Bar-Hillel
Jerusalem
Friedrich L. Bauer
Mainz
Robert W. Bemer
New York
Theodor Erismann
Schaffhausen
Herman H. Goldstine
New York
Eiichi Goto
Tokyo
Motinori Goto
Tokyo
Walter Hoffmann
Zurich
Yasuo Komamiya
Tokyo
Noriyoshi Kuroyanagi
Tokyo
Tohru Motooka
Tokyo
Hiroji Nishino
Tokyo
Jan Oblonsky
Praha
Willem L. van der Poel
Den Haag
Erwin Reifler
Seattle
Klaus Samelson
Mainz
Hans Konrad Sdtuff
Dortmund
Ambros P. Speiser
Zurich
Antonin Svoboda
Praha
Shigeru Takahashi
Tokyo
Hidetosi Takahasi
Tokyo
Rudolf Tarjan
Budapest
Hideo Yamashita
Tokyo
Heinz Zemanek
Wien
Konrad Zuse
Bad Hersfeld

R O B E R T W . B E M E R

N e w Y o r k , U S A

The Present Status,
Achievement and Trends
of Programming for
Commercial Data Processing
With 4 Figures

Disposition

1. The Environment
1.1 What Programming Is
1.2 The Need for Improved Programming Systems
1.21 Complexity of Business Problems
1.22 Ratio of Programming to Running Time
1.23 Changing Technologies and New Machines
1.24 New Methodology
1.25 Systems Concepts
1.3 Opportunities in Commercial Applications

2. Programming Languages
2.1 Machine oriented Languages
2.2 Procedure-oriented Languages
2.3 Problem or Goal-oriented Languages
2.4 Simulators

3. Elements of Programming Systems
3.1 Translators
3.2 Diagnostic Section
3.21 Tracing Method
3.22 Storage Print Method
3.23 Snapshot Method
3.24 Automatic Testing Systems
3.25 Running Checks
3.3 Input-output Control Systems
3.4 Application Library
3.5 Macro-instruction and Subroutine Library

4. Retrieval of Information and Updating of Files
4.1 Ordering Generators
4.2 Report Generators
4.3 Random Access to Files

5. Factors Influencing the Level of Programming
5.1 Logistics of Machine Configuration
5.11 Character Sets
5.12 Internal Storage
5.13 External Storage
5.14 Instruction Repertoire
5.2 Cooperative Organizations

Programming for Commercial Data Processing 313

5.3 Standardization
5.31 Programming Languages
5.32 Systems Standards
5.4 Experience
5.5 Education and Literature
5.51 Universities
5.52 Manufacturers
5.53 Teaching by Machine

6. Costs and Statistics
6.1 Programming Systems
6.2 Programs for Specific Applications
6.21 Size
6.22 Instruction Cost
6.23 Staff

Summary. Programming for commercial problems requires all of the techniques
necessary to scientific problems and a great many more. This paper documents some
of the basic elements derived in the explosive development of programming techniques
that has taken place in the last eight years, which is the short time that electronic
data processing equipment has been applied in volume to commercial applications.
Programming costs are already a major portion of total data processing expenditures.
This relative percentage may be expected to increase as new hardware advances come
into production. It is therefore particularly important to assess the possibilities in re
duction of programming costs through automatic techniques. Among these are machine-
independent languages, program generators for special classes of recurring problems,
program-hardware interactions, and total systems control programs.
There are several trends to be noted in programming methods. Among these are the
automatic operating systems (with disappearance of the operator console), tabular
languages, input-output control systems, the automatic production of automatic pro
gramming processors, remote operation of computers through communications links
and corresponding service to small users, standardization of techniques and com
munication between different computers by common language. There is also an
important trend to generalize programs and share them among many users of a
particular class of machine through trade organizations.
Commercial programming has developed into a complex discipline of its own, with
professional status. Technical education and publication therefore assumes an increas
ing importance.

Zusammenfassung. Die Programmierung von Problemen der kommerziellen Daten-
verarbeitung erfordert alle fur das wissenschaftliche Rechnen notwendigenProgrammier-
methoden — und dazu noch viele weitere. Dieser Beitrag halt einige der grundsatzlichen
Tendenzen fest, die sich im Laufe der stiirmischen Entwicklung der Programmiertechnik
etwa wahrend der letzten acht Jahre herausgebildet haben, seit elektronische Daten-
verarbeitungsanlagen in grofierem Umfange fur kommerzielle Aufgaben eingesetzt
werden.
Die Kosten fur Programmierarbeiten machen heute schon einen betrachtlichen Teil der
Gesamtkosten fur die Datenverarbeitung aus, und es ist zu erwarten, dafi der relative
Anteil dieser Kosten mit fortschreitender Entwicklung der technischen Anlagen weiter
wachst. Es ist deshalb besonders wichtig, die Moglichkeiten der Senkung der Pro-
grammierkosten durch automatische Programmiertechniken abzuschatzen. Hierzu
gehoren maschinenunabhangige Programmsprachen, Programmgeneratoren fur spezielle
Klassen von rekursiven Problemen, Wechselwirkungen zwischen Programm und tech-
nischer Anlage, sowie Programme zur Steuerung von Gesamtsystemen.
In der Entwicklung der Programmiermethoden sind verschiedene Tendenzen hervorzu-
heben. Dazu gehoren automatische Bedienungssysteme (unter Weglassung des Bedie-

314 Robert W. Bemer

nungspultes), tabellarische Programmsprachen, Ein-/Ausgabe-5teuerprogramme, auto-
matische Herstellung von Programmiibersetzern, Fernbedienung von Rechenanlagen mit
Hilfe von Nachrichteniibertragungsgeraten und Fernbenutzung durch Kleinabnehmer,
Standardisierung der Technik und des Verkehrs zwischen verschiedenen Rechenanlagen
durch eine gemeinsame Programmsprache. Von Wichtigkeit sind auch die Bestrebungen,
Programme zu verallgemeinem und einer grofieren Anzahl von Benutzern einer
bestimmten Typenklasse von Maschinen durch entsprechende Vertriebsorganisationen
zur Verfiigung zu stellen.
Die Programmierung auf dem Gebiet der kommerziellen Datenverarbeitung hat sich
bereits in eine eigene komplexe Disziplin mit professionellem Status fortentwickelt.
Dementsprechend kommt der technischen Ausbildung und den publizistischen
Bemiihungen auf diesem Gebiet eine wachsende Bedeutung zu.

Resume. La programmation des problemes de traitement des donnees commerciales
exige toutes les methodes qui sont egalement necessaires pour poser numeriquement
les problemes scientifiques, et encore quelques unes de plus. Le present travail traite de
quelques uns des elements de base qui se sont developpes pendant ces huit dernieres
annees au cours de l'evolution rapide de la technique de la programmation et en parti-
culier pendant la periode relativement courte au cours de laquelle des installations de
traitement electronique des donnees ont ete mises en service sur une grande echelle
pour resoudre des problemes commerciaux.
Les frais de programmation representent une partie importante des frais totaux dans
le domaine du traitement des donnees. Ce pourcentage continuera apparemment a
croitre des que de nouveaux progres dans l'assemblage des machines seront appliques
a la production. C'est pourquoi l'evolution exacte des possibilites de reduction des frais
de programmation par des procedes automatiques prend une importance particuliere.
On compte parmi ceux-ci les langages de programme independants de la machine, les
programmes «produisant programmes" pour des classes speciales de problemes
recurrents, les interactions entre le programme et la machine, et les programmes pour
commander le systeme completement.
II faut remarquer diverses tendances d'evolution dans les methodes de programmation;
parmi celles-ci figurent, par exemple, les systemes entierement automatiques (dans les-
quels on n a plus besoin de panneau de commande), les langages de programme
synoptiques, les programmes de commande d'entree et de sortie, l'etablissement auto-
matique des traducteurs de programme, la telecommande des ensembles de calcul par
1 intermediaire des reseaux de telecommunication et service correspondant pour les
petits utilisateurs, la normalisation des methodes et l'echange d'information entre
differents ensembles de calcul par 1 introduction d'un langage de programme commun.
Les efforts en vue de generaliser les programmes et de les mettre a la portee d'un
nombre aussi grand que possible d'utilisateurs d'une classe d£terminee de type de
machine par des organisations correspondantes d'exploitation sont egalement tres im-
portants.

La programmation dans le domaine du traitement des donnees commerciales a deja
evolue vers une discipline propre complexe avec un statut professionnel. L'education
technique et les efforts publicitaires prennent en consequence une importance
r r r t i ccanfo

1. The Environment

1.1 What Programming Is

The data processing or computing machine of today is provided with a repertoi
of basic instructions or commands imbedded in the hardware. These instruct

the prime control for actual operation. However, such a set may be liken

Programming for Commercial Data Processing 315

to the nervous system of man and its synaptic control of body movements and
actions. Although these elements are mostly present at birth, education of the
brain and related control centers is required for efficient action. The program
ming of a computer is equivalent to this education. The external command
"Write your name" will, in a human, set in motion that stored program necessary
to make the required movements automatically. The equivalent training could
be given to the machine so that, upon receiving the same command in a natural
language, circuitry would be actuated, storage would be searched, and the printer
would be activated and print out "I am a Siemens-Halske 2002".
In the quest for more speed and easier operation of electronic computers, it has
been recognized that an equivalent amount of education is necessary to allow
the human-machine-human input and output operation to keep reasonable pace
with internal speeds. Programming systems in general correspond to a liberal
education; programming for specific applications may be likened to on-the-job
training in a specific field, utilizing the liberal education for easier assimilation.
Comprehensive treatments of the principles of programming may be found in
the literature [1 to 7],

1.2 The Need for Improved Programming Systems

During the first decade of mass usage of stored program computers, various
devices have been developed to lessen the programming burden. These range
from simple assembly programs through symbolic and mnemonic assembly pro
grams, macro-instructions, interpreters, generators and compilers. All of these
must be mentioned under the present state of the art because of the nonuniform
advancement of segments of the programming population. Even today we find
a large number of people, primarily in the area of commercial applications, still
programming in actual machine language for one reason or another, particularly
in the belief that this yields the ultimum efficiency in running time.
Such complacency is possible when there is but one machine operating eight
hours or less per day, with only a few applications of a rather permanent and
invariant nature. However, whenever the first machine of a type is utilized around
the clock, or in multiple machine usage, or where the problems to be solved are
many and varied, — then we find that communication with the computer must
be accomplished in a higher level of language. Most experienced users of comput
ing and data processing equipment are clamoring for advanced programming
systems for these several reasons:

1.21 Complexity of Business Problems. The staff of programmers does not seem
to diminish appreciably even after the first applications have been established
and running. This is due in part to improvement and expansion which was not
possible before and in part to continuing and awkward changes. The human clerk
is well adapted to making changes and handling exceptions. For this reason,
business users venturing into the computer field did not realize at first the volume
and continuing nature of procedural change due to laws, competition, improved
methods and management vagaries.
Scientific installations generally preceded commercial installations. The business
user, looking at the large profits realized in scientific computing, was deluded into
believing the same techniques were applicable to his operation. Unfortunately,
commercial problems are in general at least ten times as complex as scientific
problems. For one thing, there is no general language for business, as there is

316 Robert W. Bemer

for mathematics. For another, many scientific problems are highly repetitive,
which lends itself nicely to the looping facilities of stored programming. Thus a
scientific program of 10,000 instructions is the exception, whereas a commercial
program of 80,000 instructions is almost commonplace.

1.22 Ratio of Programming to Running Time. Elapsed time for initial program
ming and subsequent changes is presently too disproportionate to the actual
running time on the machine. It is not unusual for an average application to
require six months of programming and diagnostic correction to achieve a cor
rectly running program. The computer must be prepared for every eventuality;
the human clerk can stop and ask every time a strange condition arises. This
reduces the time span in which competitive changes may be made effectively.
For the last five years, programming costs have been considered to be roughly
equal to all other costs of operating data processing equipment, such as price or
rental, installation, power, etc. Extrapolation of programming and engineering
advances indicate that this percentage may well climb from 50 to 90 within the
next five years. Machine speeds are now 100 times what they were five years
ago. Programming cannot maintain this pace, nor will pouring armies of pro
grammers into the gap help appreciably. The answer must lie in advanced pro
gramming systems which do a much larger proportion of the reasoning that
humans now do.

1.23 Changing Technologies and New Machines. The evolution of new and im
proved hardware faces the user with additional problems. He finds himself with
the opportunity to obtain a computer which will do the same job faster and
cheaper than his present machine, yet his programming investment for the old
machine must usually be considered a total loss. A possible amelioration is seen
in adapting new technology to old logic, so that there is a family of machines
with roughly the same basic machine language. This technique has found
expression in simple transistorizing of machines that were formerly tube oriented,
or in replacing electrostatic storage with magnetic core storage. This is self-
defeating because the late members of such families cannot compete in power
with new machines that have broken completely away and are balanced to the
new technologies.
This dilemma has now occurred for one and possibly two generations of com
puters. The first time was not so difficult, for most users were not yet adjusted
to the shifted emphasis required to convert applications from clerks or punched
card equipment to the very different electronic data processing concepts. They
were capable of making fresh starts with a new machine and their previous
investments were not so great. As more investment accrued, yielding more
experience, and the use of computers settled down to a predictable production
pace, the costs of reprogramming a large volume of applications became stagger
ing. Without the prospect of being able to program in a language independent
of computer characteristics, the user must face an endless series of interruptions
with changing machines.

1.24 New Methodology. Although many data processing installations simply con
verted existing methods and procedures to electronic equipment, additional
efficiency and profit may be obtained by revising such procedures to correspond
to the logic of the computer. This requires not only programming languages but
additional ancillary languages suitable to the methods analyst, such as flowchart-

Programming for Commercial Data Processing 317

ing, table structures, flow logic, etc., all oriented toward machine recognition
and convenience.

1.25 Systems Concepts. An entire business system was formerly the servo-
synthesis of the actions of a complex of humans with various responsibilities,
however dimly understood. The hybrid mode of operating a data processing
system under human supervision is not as satisfactory as having the supervision
reside in program hierarchies within the machine. New languages are therefore
needed to express executive concepts and translate them to machine action.

1.3 Opportunities in Commercial Applications
There is presently a great variety in the applications handled by data processing
equipment, yet the total volume is nothing to what we may expect for the future,
when such equipment is integrated with communications systems. Computers
are among the most expensive devices manufactured. Unshared usage requires
high volume. The shared usage of the future will reach a variety of low volume
applications. Some of the present applications firmly established as profitable
operations are:

Insurance, premiums and claims
General accounts, payable and receivable
Railway freight control
Petroleum reserves, product optimization
Tax gathering and verification, refunds
Inventory, shop scheduling, parts catalogs, spares
Shipping, transportation problem
Stock and bond trading, quotations
Livestock improvement
Personnel records, skills inventory
School curricula and grading
Real time process control
Banking, check clearing
Reservations and loading
Military defense systems
Optimum steel production
Merchandizing, order and reorder

Some applications which are just now coming into being are:

Mechanical language translation
Medical diagnosis, records [8]
Numerical machine tool control
Legal searching and correlation
Information retrieval, abstracts, library
Compressed communications
Business games, optimizing profit
Mechanical editing
Patent search

An exhaustive survey of governmental applications may be found in [9],

318 Robert W. Bemer

2. Programming Languages

2.1 Machine-oriented Languages

A general criterion for distinguishing a machine-oriented language is that pro
grams written in this language will not run on another computer (not of the
same generic family) unless under control of a simulation program which
duplicates the characteristics of the original machine. Using as an example a
machine with instructions consisting of one operator and one operand address,
the various levels of convenience of representation might be:

00110001010101000110 (binary representation, no programming translation
required)

3 1546 (decimal digits used for characters, input-output
devices will accept and produce such characters)

H A623 (alphabetic characters as well in input-output devices)

RAD 20.66 (symbolic notation — RAD stands mnemonically for
Reset ADd, 20.66 is an address number standing con
veniently for the actual address eventually assigned
by the assembly program)

RAD CROSSPAY (GROSS?AY serves the same purpose as 20.66 but
is more convenient to the programmer for its
mnemonic content)

Each refinement puts an additional burden upon the assembly program in the
assignment and translation functions, removing this same burden from the pro
grammer. This is justified by the assumption that the machine can perform these
clerical functions with greater economy and fewer errors than the human. A
further refinement is the addition of macro-instructions [10, 11], which are
machine-like and compound. For example, any of the instructions

(a) MOVE, TODAY, CURDT
(b) MOVE, TODAY, CURRENTDATE
(c) MOVE TODAY TO CURRENTDATE

would generate for the 705 the instruction pair

RCV CURRENTDATE (ReCeiVe at the address for CURRENTDATE)
TMT TODAY (TransMiT the contents of TODAY)

Such macro-instructions illustrate the correspondence between programming and
hardware which sometimes leads to ambiguity and misunderstanding. For a
machine with instructions consisting of one operator and two addresses, these
would be simple instructions, not macro-instructions. Thus programming systems
in effect redesign the hardware of a computer. Conversely it might be possible
to construct a machine which accepts, as instructions built into hardware, an
algebraic language such as ALGOL.

The common practice of limiting the number of characters in symbols employed
by the programmer is illustrated by (a). This is done for two reasons. First, in
a machine which moves information by words (groups of bits addressable unique-

Programming for Commercial Data Processing 319

ly) it is uneconomical to use more than one word to represent a symbol. In
most present machines 6 bits are used internally to represent a letter or digit,
thus a machine with 24-bit words handles no more than four character symbols
conveniently. Second, since these names must be carried through the translation
process, they become a more expensive burden as an increasing number of manip
ulations are made. A better practice is to assign a working number (or address
number) to each symbol, in a table of double reference, more particularly be
cause the set of meaningful alphabetic symbols is very sparse; i. e., GXPQ carries
no more mnemonic content to the programmer than 63987. (Cf. [12].) The
number of characters in each symbol may then be unlimited. COBOL [13], for
example, restricts the length of symbols to 30 characters for practical convenience.
More meaningful symbols may be used as separators or punctuators for clarity
to the programmer as it is shown by (c). The translating program can be made
to recognize this function and even to accept extraneous noise words. Thus the
so-called "English language" of the FLOW-MATIC Programming System [14]
for UNIVAC I is basically a method of employing three-address macro-instruc
tions with freer form. Thus

ADD A, B, C is equivalent to ADD A TO B GIVING C

The difference lies in the fact that commas, as separators, do not order the
process either mnemonically or logically. The programmer must know the
function of each of the operands as written in the macro-instruction. The alter
nate form of FLOW-MATIC is still restrictive logically. A rather rigid form is
still required. For example, it is not permissible to vary the previous instruction to

TO B ADD A GIVING C

Although proper English, such logical ability is not inherent in the formation
rules of the restricted and artificial programming language and is therefore not
reflected in the translators. The macro-instruction ADD A, B, C is even more
ambiguous, however, since only by definition (which the programmer must re
member) is it known whether it means

A = B + C, A + B = C, or even, although unlikely B = A + C

The same operation may be expressed in a number of alternate forms, any or
all of which may be acceptable, provided that the recognizing and translating
mechanisms are incorporated in the processor.

C = A + B
A + B = C
SET C = A + B
REPLACE C SUM A AND B
REPLACE C BY THE SUM OF A AND B, etc.

BY, THE and OF are examples of extraneous noise words added for clarity. They
are ignored by the translator.
Macro-instructions are normally of two types, library or programmer. Library
macro-instructions are those useful to a general class of problems and are thus
automatically available in the processor, which recognizes them by table-scanning
to be different from the one-for-one representation of a single machine instruc
tion. Quite often these may be of a complex generative nature (usually formed

320 Robert W. Bemer

under control of a matrix of alternates) which alters or eliminates redundant
instructions for efficiency.
Programmer macros, in contrast, are those specific to this particular problem.
Usually some sequence of instructions is virtually repeated in many places with
slight or no variations. The programmer, recognizir\g this, defines the general
case by example (which is assimilated by the processor upon recognition as such)
and thereafter saves much copying and possible error by its use. Processors com
monly recognize this type of instruction by finding the term MACRO instead of
the normal operation code. The following Example 1 shows how a programmer
macro may be defined and later used.

Examp le 1

Name Operator Operand Field

SUMPROD MACRO A , B , C
ADD A , B , C (A + B^C)

MPY C , B , C ((A + B) • B-»-C)

MPY C, A , C ((A + B) -B-A-*C)

SUMPROD X, G, Y

The last instruction thus computes Y = X - G - (X + G). This device may be
used very effectively when the number of instructions created is large and when
other macros of the same type are used recursively in the definition of a still
l a rge r macro . Th i s wi l l be recogn ized a s the genes i s o f the p rocedure s ta temen t
in ALGOL.
The Example 1 also illustrates the artificial time sequence of input to a translator.
Normally the sequence of entries is mapped into the sequence of instructions
executed, whether in contiguous sequence or chained (as in drum storage
machines). Here, however, the instructions of the example are never executed
in their own right; they are merely dummies. (Cf. Figure 4 for automatic reorgan
ization of the program through addition, deletion and replacement.) Literals
and operators may also be varied within macro-instructions. (Cf. [15].)
Macro-instructions are essentially open subroutines and are placed in the main
line of the program, whereas closed subroutines require transfer instructions
and are set up by a calling sequence or linkage. Each time the macro is used, a
copy of the instructions generated is placed in direct line in the program. It is
not to be supposed that macro-instructions yield but a few machine instructions
while subroutines have many. The output of macro-instructions may also be
formed as a subroutine. The proper way to build a macro-instruction generator
is to equip it with the facility for self-determination of whether to insert in-line
or as a closed subroutine. The processor may contain a program section which
weighs available storage space against execution time and the number of times
used, for the closed subroutine consumes more running time by virtue of the
extra calling sequence required to set it up to operate.

Programming for Commercial Data Processing 321

The expansion of a macro-instruction through Autocoder language into machine
language for the IBM 705 is illustrated in the following Example 2 which is an
excerpt from a two-tape merge problem taken from [16]. The sense of the
macro-instruction is to turn off the error indication triggers whenever a signal
is received from any of them.

E x a m p l e 2

Macro-instruction written in Autocoder language:

DOA XOFF

Basic Autocoder instructions incorporated in program:

H W 000005 LOD
TRA

14 WW 000005
XOFF

XOFF U N L 14 XOFF3 TYPEWRITER INDICATOR OFF
SUBROUTINE

LOD 14 # 0010 #
ADM 14 XOFF3 TO RETURN ADDRESS

SEE 901
TRS XOFF 2 TURN OFF 0901

XOFF2 SEE 902
TRS XOFF 3 TURN OFF 0902

XOFF 3 TR RETURN TO MAIN PROGRAM

This produces basic machine instructions as:

Location Contents

0524 80EK4
0529 11609

1609 71FM4
1614 81GN2
1619 61FM4
1624 20901
1629 01634
1634 20902
1639 01644
1644 10534

1752 0010

2.2 Procedure-oriented Languages

The distinguishing feature of a procedure-oriented language is that its syntax
is not necessarily related to that of the machine language for a particular machine.
There are many similarities; the need still exists to specify the procedure or

21 Dig. Inf.

322 Robert W. Bemer

algorithm for problem solution in terms of time-dependent steps, both logical
and arithmetical. In general a procedure-oriented language depends upon impera
tive statements. However, machine languages are introspective; procedure-
oriented languages are normally not introspective. That is, the specific characters
of the imperative statement may not be operated upon by actions initiated by
another imperative statement. The introspective nature of machine language may
be illustrated by the instruction group of the following Example 3.

E x a m p l e 3

Address Operation Operand

0001 SET 0046
0002 RESET ADD 0001
0003 ADD 0020 (The contents of 0020 are 0027)
0004 STORE 0001
0005 TRANSFER 0001

The instruction in 0001 will now be SET 0073 when obeyed. A corresponding
example for a procedure-oriented language may be constructed by mapping

Address: Operation, Operand into Label: Statement

Introspection is now illustrated by the following statement group:

SUBSTITUTE: REPLACE LAST DATE BY CURRENT DATE PLUS 3.

: CHANGE OBJECT OP (SUBSTITUTE) TO NEXT TO LAST
DATE.

: GO TO SUBSTITUTE.

It will be seen that scanning and logical difficulties are magnified greatly in the
latter set. Thus there is little introspection in present languages of this type.
A good test for validating a procedure-oriented language is to determine
whether a human could follow the procedure manually with limited know
ledge of data-processing equipment. This is one of the two reasons for the design
of such languages — broader understanding with less experience. The second
reason is that casting procedures in this form leads to limited independence of
machine type, so that large sections of program will not have to be rewritten
for a second machine.

Some examples of such languages are FLOW-MATIC [14], Commercial Trans
lator [17], FACT [18], and (on the scientific side) ALGOL1). The first great
advance made in such languages was the separation of the program into two
parts, procedure and data description. In using machine languages, the character
istics of the data (operands) are implicit in virtually every instruction. Since the
statements of a procedure-oriented language must go through a computer trans-
ation process, it is economical to give the full characteristics of the data only

!) Reference is made to the contribution by F. L. BAUER and K. SAMELSON, in this
volume pp. 227—268.

Programming for Commercial Data Processing 323

once and let the machine program produced be the intersection of the procedure
and the data description. This is a considerably more complicated process and
costs more in machine translation time, but it has been found that the advantages
in reduction of human cost and error, plus the multimachine freedom from
reprogramming, more than compensate.
A further advance was made in Commercial Translator, with the breaking out
of a third section on environment. Here the machine features (how many tapes,
what storage size, etc.) need to be specified only once, and the resultant program
is the intersection of all three inputs. Commercial Translator also introduced the
concept of logical multipliers, assigning arithmetic values of 1 to truth and 0 to
falsity. Thus the statement:

DISTANCE = 500 — 60 * TIRED (the asterisk signifies multiplication, either
logical or arithmetic)

If TIRED, as a characteristic of some variable, is t r u e , then
DISTANCE = 500-60 * (1) = 440

If TIRED is not true, then the modifying term disappears and DISTANCE =500.

Another vital concept in such languages is that of logical brackets to delimit
the two resultants of a conditional statement. Consider the statement

IT A = C TH EN IF A>B THEN DO K ELSE DO L ELSE IF B >A THEN DO M
ELSE DO N .

This statement represents the flowchart of Figure 1.

Fig. 1. Flowchart representing the statement

IF A = C THEN IF A> B THEN DO K ELSE DO L ELSE IF B > A THEN DO M ELSE DO N

Obviously THEN and ELSE are logical brackets [19] which could be represented
by single symbols for easier understanding, thus:

IF A=C (IF A>B (K > <L» (IF B>A (M) (N))

It is not our intention to introduce herewith such a bracket notation; it is only
to clarify the principle. The ALGOL language, for instance, in the author's
opinion is not quite as recursive as it possibly could be, and therefore not as
convenient in comparison to the less restrictive syntactical mechanism present in
the statement of Fig. 1. The awkwardness in ALGOL, due to the definition of the
if-statement which makes mandatory the provision of the statement parentheses
begin and end, increases with more complex flowcharts. We must be aware that
business problems often structure themselves in much more complicated logical
patterns than do scientific problems.

21*

324 Robert W. Bemer

2.3 Problem or Goal-oriented Languages

A problem-oriented language is distinguished by the lack of a stated procedure
for solution. The responsibility for creating the object program as a procedure
in machine language belongs to the processor, which presumably allows for
all known variations in this type of problem. The method of problem solution
is implicit in the intelligence of the processor, which is variable and may be
augmented. Two classes of such languages are presently in volume use, the
ordering (or sort) generators and the report generators. (Reference is also made
to Section 4.)

Obviously such processors are suitable only for highly repetitive types of work
which will justify the expenditure of creating the language and programming
system. Processors for problem-oriented languages are special purpose as contrast
ed to the general purpose nature of machine- or procedure-oriented languages.
There is a direct analogy (as there usually is between programming and hard
ware) with the building of special purpose computers for recurring applications,
since they can be more efficient than a general purpose machine, although limited.

Other specialized languages have been created, and fall in this class. Examples
are the languages for automatic control of machine tools [20], operating systems
for computers [21 to 25], tabular languages [26 to 28], and even languages for
design problems. This latter class is exemplified by a program especially
created for the design of electrical transformers. The transformer manufacturer
allows the prospective customer to fill in a form (surely a type of language!)
with his own specifications and requirements, see them entered into a computer
and watch while the printer, after a matter of five minutes or so, writes a
complete set of specifications for that tranformer. These specifications also .
comprise the shop order and working information for manufacture, a bill of •
materials, the sales price and terms, — together with a duplicate copy with a
dotted line to serve as a purchase contract!

2.4 Simulators

A simulator is a useful programming tool which does not qualify as a language
processor in its own right. It is a program that runs on one type of computer to
simulate the action of another type under control of a program written in the
anguage of the second computer. Thus a program that runs on a Mercury

Computer could also be run on a UNIVAC 1103 under control of an interpretive
simulator, if one happened to have been written. Simulators are useful under
the following circumstances:

(a) During transition to a new machine. If the new machine produces PV times
as much work per cost unit as the old one, and if the simulator runs no
more than PV times as slow as a direct program, the simulator will be
useful to run until the programs are rewritten and checked out for the
new machine. Not only is the cost of producing the simulator neglected
here, but it may be advantageous to incur time losses to effect the transition.

(b) To check programming systems written for a machine not yet manufactured,
so that the systems will be available with machine delivery.

^ Cj.eck Pr°duction programs on an existing machine before releasing
and displacing it by the new machine.

Programming for Commercial Data Processing 325

(d) In mixed machine installations to compensate for unbalanced work loads.
If machine A is overloaded and B is available, simulate some of the A
programs on B.

A sometimes cheaper means of achieving (b) is to write the translation processor
for the new machine directly in its own language and then rewrite that same trans
lation process as an application problem on another machine for which a com
parable program exists. The processor is then assembled on the old machine,
producing a machine language program for the new machine. From this point
on, both the old and new programs are useful, depending upon which machine
is available [29].

3. Elements of Programming Systems

There have been three basic stages in the solution of problems by data processing
equipment. The first is illustrated by Method I of Figure 2. The entire process
of planning and coding the solution is done without machine aid. Primitive

Fig. 2. Solution of problems by data processing equipment

Method I: Planning and coding without machine aid

programming systems are exemplified by Method II of Figure 3. This is basically
the assembly method, but with some modification an equivalent interpretive
system could be constructed.

The third stage in development of programming systems had its origins in the
supervisory system concept. With the flux of new ideas in the operation of
stored program computers, it is difficult to get general agreement on just what
elements should comprise an operational system. A composite, with much
latitude of definition, might consist of:

326 Robert W. Bemer

Executive Control or Supervisor
Translator — Assembly Language to Machine Language
Translator — Procedure Language to Assembly Language
Diagnostic Section
Input-output Control System (IOCS)
Macro-instruction and Subroutine Library
Application Library
Ordering Generator
Report and File Maintenance Generator | (treate<^ 'n Section 4)

Writ® program
in symbolic

assembly language

Correct in symbolic

assembly language

Assembly language
transl. program

Machine translation

to machine language

Production

Fig. 3. Solution of problems by data processing equipment

Method II: Primitive programming systems

specific answers are normal U A APPhcations programs, which obtain
the procesS07to runninrr t ^ Pr°8ramS" These are converted by
the control of the overall ^ executed' sti11 under

variou^phases^Method IHTF ^ manua^ Iink*8 ̂ ̂̂ eTthese
lhe compui"in mi c» ,roi

Programming for Commercial Data Processing

Programs writ ten in synthetic language

f —

3.1 Translators

There is considerable variation in the capabilities and duties of that element
which translates from the source to the object language. The translation proce
dure might utilize a two-stage process from synthetic language through an
intermediate assembly language to machine language. This allows for inter-

I

I 328 Robert W. Bemer

mixing other program sections at the assembly language level, particularly when
no methods exist in higher level languages for stating these procedures. Such an
assembly processor must exist anyway, and there is some economy in not
duplicating this process.
There are some advantages, however, in direct generation of machine language
without going through the intermediate assembly stage. Direct generation often
speeds up the translation process by eliminating variety in assembly. That is, the
assembly section does not have to be general enough to accept what any human
programmer might possibly write. All it must account for are the known actions
of the previous section of the translator.

Various duties may be charged to the translator, particularly in the optimization
of the object program. The minimization of both running time and storage is
possible through analysis of the usage of index registers, detecting duplicated
computation and statistical optimization of decision processes through flow
algebra [30], Thus those portions of the object program which are most likely
to be executed are given preferential treatment in flow and storage interchange
problems.

The translator may interrogate the configuration of the machine both when
translating and when running the object program to utilize available internal
and external storage most efficiently.

3.2 Diagnostic Section

Only a small core of programmers ever achieve programs which run correctly
on the first attempt. This is especially true as programs become larger and
more complex. Using the machine itself is the most effective method of detecting
errors and mistakes There are many theories about what constitutes 100 per 4
cent verification and checkout of a program. There is serious question whether
complex programs can ever be fully proven. All methods of machine diagnostics
involve printout of intermediate and final answers to test problems.

^racin8 Method. The earliest diagnostic systems superimposed an inter-
pretive control upon the execution of each individual instruction and caused
Ldre« f executl°?' ow'n8 input, output, operation and instruction
and rat h ldentlfl«tion. This method was useful for detecting spurious loops
to hP pff ?8 S6Ve, err0rS m 0ne run- 5uch systems were eventually modified
break intq1VTM°n J U^0n certain classes of instructions, perhaps as indicated by

reakpomts. This technique is known as (selective) automonitoring or tracing.

di2iceStInathPrintWhf°d' Strge Print' °f dump' is another basic diagnostic
mediatelv fo lnTP ^ * C°ntents of stora^ a" P"nted out im-
techniaue mav '"d ^ 61101 St°P' ^ormats °f varying complexities. This
execution II'T C°ntr°l be USed at anV «me during program
execu on h h. J" I™ "Tc the pr°gram being tested, for further
on tape comna d ^ ^ COntents of storage are retained

, • compared against the contents at stop time, and only the changed

isolateTdifficulriesquicke^" Usually^omeVf>'C'S t6di°US ^ scmrrarlv in • ™ zzszrjzszsxsrknown ,o co",ain

Programming for Commercial Data Processing 329

3.23 Snapshot Method. This is similar to tracing except that the method is not
interpretive. Instead, actual and precise printing instructions are compiled in the
symbolic program. They are flagged for easy and automatic removal when
testing is complete.

3.24 Automatic Testing Systems. There have been many special supervisory
systems written exclusively for bulk program testing. Test time is at a premium,
particularly with new machines, and unmechanized testing with the human at
the console is much too expensive. Such systems:

(a) Test, in series, the programs of many different people who are preferably
not present.

(b) Reduce manual and console operations.
(c) Ensure proper tape loading for each program without time lag.
(d) Generate various classes of test data to exercise as many program branches

as possible.
(e) Keep full records of all stops, addresses, conditions and operator actions

for easier diagnosis following the run.
(f) Feed in corrected data after an error so other error conditions may be

detected in the same run.

3.25 Running Checks. Many checks and verifications may be incorporated in the
running program. Records written erroneously may be identified upon reading
through the use of so-called hash-totals, which are not totals associated with the
program but are rather an artificial summation of the characters or bits in a
record, or group of records. Records may be automatically corrected if augmented
by Hamming check bits or characters. Normally records with flaws are not
allowed to stop the processing; they are written out on exception files for later
handling.

Checkpoints may be incorporated in a program at a convenient break point (i. e.,
integral processes are fully completed). Zero balance or matching data tests may
be made here. If errors are detected, the program is returned to the last succesful
checkpoint and restarted; if everything is checked, this point is installed in the
proper address as the last successful checkpoint. A comprehensive survey of
other auditing checks may be found in [31].

3.3 Input-output Control Systems

Approximately 40 per cent of the total number of instructions in a typical com
mercial program will pertain to input-output operations [32], This includes all
data movement through the central processor and related housekeeping which
must accompany this movement. A major saving to the programmer has been
the development of specialized input-output control systems (as integral portions
of the entire operating system) which can do the following functions auto
matically;

(a) Match tape labels to unit numbers, verifying correct mounting of data,
system and program.

(b) Detect tape type or density, when more than one recording density is
available.

330 Robert W. Bemer

(c) Prevent erroneous writing on tapes which contain permanent or semi
permanent records.

(d) Flip-flop tape units on symmetrical jobs, such as ordering.
(e) Maintain an automatic count of records entering and put out.
(f) Alternate input-output area usage in internal storage.
(g) Relocate programs in storage for multiple operation.
(h) Optimize read-compute-write overlap.

(i) Automatic unblocking of records for reading and blocking for writing,
(j) Housekeeping associated with tape files, such as rewind, error correction,

(k) End of reel operations in multi-reel files.

(1) End of job functions such as logging time, notifying next user, upspacing
printed records, labeling tape files created, etc.

(m) Automatic insertion of checkpoint and restart procedures pertaining to
input-output operations.

Such an input-output control system package is essential to the operation of
guage elements such as GET record, PUT record, OPEN file and CLOSE file

which appear in Commercial Translator, COBOL, etc.

3.4 Application Library

req"ireS MI "S'™ '» *1" translation

ESS z=̂ 5KS£ <
external storage not • • 11" pTO.grams maintained on magnetic tape or other
ohiec^-SX^ n-t -r-"' (0' S0"'C«' f°™ b"> m >1"
mation developed during the ^ '"h1" inf°r"

ex^ttive8rouTneTetrcherthTrhdentified ^ name of the application. The
another tape until it comes to the dXd^rUram^T' C°PYin8 ^ ̂ u°
into internal storage, corrected in source (°8ra™' Th,s program is now brought
form. All updated information on this °rm and translated to a corrected object
and all succeeding programs are rn • ,P™gramL ls now copied to the new tape
neously with the test execution of the^6 "Tri °'d t0 °eW tape simulta"
is corrected from information delivered"^ s Pr°g"m' Thu® the ob'ect Program
vention in only a fraction of the time a comnlet" °Ut operator inter-

me a comPlete reprocessing would take.

3.5 Macro-instruction and Subroutine Library

independent statements',^IgebmkequaHo^s^' °f 3 mixture of machine-
instructions and actual machine 1 • ' macro"lnstructions, symbolic machine
sponsible for sep. "," '7 ̂ S™ ""
indication of the ordering which ' A- unng Processing, retaining an exact
b, .be machine

y e tact that pseudo-operators do not

Programming for Commercial Data Processing
331

exist in the table of machine operation mnemonics. A table of macro-instruction
operators for which generators exist in the library is maintained in storage during
the scan.
After initial scanning, macro-instruction calls are grouped and reordered to the
order in which the generators appear on the library tape. The library tape is
then passed against this list and all generators called for are extracted. After
generation and establishment of symbolic addresses, the generated groups of
instructions are ordered again to the original sequence in which they were called
for by the program and merged with all other instructions to be generated or
assembled. Unless this method were followed, there would be a series of tape
searches and rewinds for each macro. Also, duplicates do not require additional
searches in the reordering method.

Closed subroutines are handled in much the same way, except that calling
sequences and return linkages are written by a single standard generator.

4. Retrieval of Information and Updating of Files

Files of data are maintained for specific purposes including display of individual
data, search by classes, listing, access by other programs on demand, etc. There
are several classes of generalized programs particularly concerned with this
process. They are:

(a) File maintenance and updating generators.
(b) Report generators.
(c) Ordering and merging generators.

| The first two apply to any type of file, the last applies only to files which are
effectively linear, such as magnetic tape, and not to random access files.
A file is a collection of data (on some storage medium) which displays groups
of similar properties. The individual elements of files are called records. A record
contains both the actual data needed and other data which serve to identify that
record from all other records. This identification is known variously as the key,
control field, label, name, identification number, etc. Such files are either
sequenced or randomly ordered, according to the storage medium upon which
they exist. Particular records are found correspondingly by either examining
keys through a prescribed search pattern or by transforming the key to a
secondary locator.

A deck of punched cards, a magnetic tape and a perforated paper tape are all
examples of sequenced files. They may be ordered by time sequence or key, i. e.,
it may be desired to find the 18th record in a file or that record containing the
data on Smith, H. J., for instance. In the latter case, a multiplicity of searches
may make it profitable to order the file alphabetically upon the key, rather than
scan the entire file each time (in random or linear order) until the key is found
to match the given key. This characteristic has accounted for perhaps 30 per cent

the operating time in today's commercial data processing. This figure is not
appreciably affected by random access files, which are a minority. Clearly this

as been an area for profitable improvements in the reduction of programming
and operating time. Since the problem is algorithmic, all ordering procedures
"e similar in principle and vary mostly in details. Such is the origin of the com-
P icated and highly specialized ordering (miscalled "sorting) generators of today.

332 Robert W. Bemer

4.1 Ordering Generators

Because of the relatively greater cost and access time required to retrieve data
randomly from files, the ordered file is still more economical for a large share
of data processing needs. Ordering is a two-stage process. The user provides the
generator with specific choices of, and statements about, the required input para
meters. The processor digests this information and produces a specialized running
program for these specific conditions. The actual program produced is the result
of modifying skeletal sections of program with computational results, and is then
utilized to order the files. Except for certain special and largely invariant con
ditions, these machine-generated programs are cheaper to produce and more
efficient to operate than those created by the average programmer-user. This
is because they are the product of specialists that can consider a larger spectrum
of applications, and because of certain invariant principles. An advanced order
ing generator might require the user to specify:

(a) The file size (number of records) and organization (whether on a single
or multiple tapes, and how these are labeled for identification).

(b) The machine model and particular configuration of components available
for this job.

(c) The number of magnetic tape units available for either mounting the files
or intermediate transfer of information, such as record rearrangement.

(d) A choice between physical rearrangement of records in the intermediate
steps or rearrangement of tags which identify or symbolize the particular
records, reserving the physical rearrangement of the entire file until the
sequence is fully determinable.

(e) The amount of internal storage available for use by each phase, or stage, ^
of the process. V

(f) The length of the records, whether fixed or variable length, and (if
variable) how the length may be determined.

(g) The length of the key and its placement (or the placement of its com
ponents) in the record.

(h) The ranking or marshalling (term used in England) order of the characters
from which the key may be formed.

(i) Existing partial ordering or bias in the data to be ordered, if any.

Many considerations are removed from the concern of the user by being incor
porated in the intelligence of the generator. Among these are:

(a) Overlap of read-compute-write operations where feasible.
(b) Choice of ordering method (digit, merge, distribution, internal ordering,

si ting, etc.) or a combination of several of these techniques as required
° ^ *Ze * 6 mac^ne in the various stages of the process (unless
specifically countermanded by the operator). (Cf. [33].)

(c) Internal or input-output buffering.

(d) towtnnmediaUPin8) °f reC°rdS f°T ^ transfer within storage 01

(6) Pfa,ddin8' °5 ,flllin8' of incomplete blocks or groups of blocks

of padding' on'completiom ^ le8UlariZed Automatic removal

Programming for Commercial Data Processing 333

(f) Automatic replacement of keys by working keys whenever the internal
character code of the machine does not have binary correspondence to the
desired ranking order. Automatic replacement of original keys upon com
pletion of the process.

(g) Collection and transformation of all elements of a key into a contiguous
unit for convenience of comparison, with later dispersal to original format
upon completion of the process.

(h) Calculation of estimated running time to completion, and advising the
operator.

(i) Balancing the process as a function of the ratio of average computation
time to tape read-write time (function of tape passing speed and bit
density).

(j) Assignment of actual addresses to instructions, input-output units, etc.,
with provision for symmetric exchange of functions during the process.

(k) Automatic incorporation of rerun and checkpoint routines, for use in case
of machine failure or detection of bad data. Provision for interruption at
controlled points for jobs with higher priorities; thus ordering may be
resumed at a later time without loss. This is vital because many files are
so large that it might take from 1 to 20 hours of continuous time on the
fastest machines.

An excellent description of some of these routines, with application to many
machines other than those manufactured by IBM, may be found in [34],

4.2 Report Generators

It may well be that someday the control and management of business will reside
within the computer program. In the meanwhile, decisions are still made by
humans on the basis of condensed and categorized information prepared by
either other humans or data processing equipment. The normal form of such a
summary is the printed report. Here again the process of preparing reports is
algorithmic and is thus suitable to action by a generator program.

The report generators create running programs which will abstract information
from one or more files as needed to construct a specific report, rearranging and
editing this information as required by the format of the report. (Cf. [35 to 37].)
The user normally supplies the generator with the following information:

(a) The characteristics and format of the records in the files to be used.
(b) A pictorial layout or description of the report format, indicating spacing

within the line and other editing conditions.
(c) Special instructions on printing or indicating various levels of totals, etc.
(d) Which different reports are to be printed on this one run, or passage of

input data.
(e) Order of rearrangement of data in case the file is in a different order.
(f) Conditional printing desired (group indication, where information is rep

etitive).
(g) Rules for insertions and deletions in the input file, if file maintenance is

incorporated in the same run.

334 Robert W. Bemer

Typically, much of the input information supplied is identical to that required
for ordering generators, thus the two processes are often combined. Most report
generators contain, in varying degree, the ability to be linked with other pro
grams, to perform simple arithmetic necessary to production of totals, to perform
file maintenance and updating, and to be modified at programmer discretion
with inserts of assembly language subroutines.

4.3 Random Access to Files

Files may be searched in three basic ways:

(a) The scan, or random search, method to find the record with a matching
key. This is prohibitive in cost except for very small files.

(b) The search of a file ordered on some function of the keys, such as alpha
betic or numeric sequence properties. There is expense in initial ordering
time and in addition to or deletion from the file. However, it is well suited
to linear files and batch processing. The search method is most commonly
binary or in a FiBONACCian sequence. The binary search is most prevalent
and consists of successive partitioning in halves, selecting the half in
which the required record must exist by checking the limiting keys against
the desired key, and successive reduction until only the desired record
remains.

(c) The search of a file located in storage by some algorithmic function of the
eys. The key for which the record must be found is then subjected to

the same algorithmic function to yield the address where the record is
'an' . °Ca^e<^' "^le only reason it may not be there is because of pos-
si e uplications in the values yielded by the algorithm over the entire
set of keys. The better method of this type is known as chaining. (Cf.

8 J°L Although an inherently simple process, it is often misunder-
stoo ecause o confusion about the handling of duplicated addresses.

Assuming the file is loaded, the chaining method requires that the key be
converted by the algorithm to a tentative address. The key is then compared to

e ey existing in this address. If they match, the further contents of that
address are those desired. If they do not match, a further address is also con-
arned within the location specified by the tentative address. The key in that

address (the chain address should then be matched against the search key. The
process is recursive until the proper key and address are found.

!fMlpkla rTPle 6Xample t0 Sh°W the loadin8 of N records into P positions.
invnlveq'thp6^ t f ^ P" Padced 01 loaded" The following Example 4
possible is- a 3 °r names, or keys. The algorithm chosen from the myriad

Tentative address = J (Letter position in alphabet) modulo p

hahndledabvachahi^Ab ™ t The duPlica«ons which occur will be
duplications, but in genem] Vis" not'w^h^ ̂ f°Und

a slightly better algorithm. P=N=lTm ^ T'ru'T, '"'M
initially in the order in which the namesappear ? ^

^ Programming for Commercial Data Processing

E x a m p l e 4

335

Name Computation 2
Tentative Address

= 2 mod 13

John 10 +15 + 8 +14 — 47 8
Fritz 6 +18 + 9 +20 +26 = 79 1
Klaus 11 +12 + 1 +21 +19 = 64 12
lulien 10 +21 +12 + 9 + 5 + 14 = 71 6
Grace 7 +18 + 1 + 3 + 5 = 34 8
Walter 23 + 1 +12 +20 + 5 + 18 = 79 1
Roy 18 -(-15 +25 = 58 6
Stan 19 +20 + 1 +14 54 2
Alan 1 H (-12 + 1 +14 28 2
Heinz 8 -i (- 5 + 9 + 1 4 + 2 6 - 62 10
Rene 18 - 5 +14 + 5 = 42 3
Bob 2 +15 + 2 = 19 6
Peter 1 6 + 5 + 2 0 + 5 = 64 12

E x a m p l e 5

) Method I Method II
A J J •ttaaress

Chain Name Data Seeks Chain Name Data Seeks

0 Grace 2 Grace 2
1 2 Fritz 1 4 Fritz 1
2 4 Walter 2 7 Stan 1
3 7 Roy 2 Rene 1
4 5 Stan 2 Walter 2

5 Alan 2 9 Roy 2

6 3 Julien 1 5 Julien 1

7 9 Rene 2 Alan 2

8 0 John 1 0 John 1

9 Bob 4 Bob 3

10 Heinz 1 Heinz 1
11 Peter 2 Peter 2

12 11 Klaus 1 11 Klaus 1

Average Seeks = 1.77 Average Seeks = 1.54

336 Robert W. Bemer |

Method I of Example 5 shows the result of loading when duplications are
assigned to the first available open position. Thus Grace, the first conflict, is
assigned to zero position. Method II shows the result if a different rule is used,
holding all duplicates aside until the list has been gone through once, then loading
into the available vacant positions. The number of seeks required to find each
item at random has been tabulated. Note the improvement due to Method II.
The scan, or random search, method of random loading would average seven
seeks per record.

It has been shown [41] that the average number of seeks with
random frequency distribution will be 1.5.

The average seek number can be improved by a number of techniques. Obvi
ously P > N will do so, but the advantage has been found in actual practice to
be insufficient to use anything other than 100 per cent loading. Advantage may
be taken of natural characteristics of data. Use of the method on the 305 RAMAC
has yielded average seeks of 1.2 for fully loaded files. This indicates [38] that
the average commercial problem will interrogate 20 per cent of the file 80 per
cent of the time. The average may become as low as 1.1 for loading on a fully
statistical frequency basis. This method was used to convert the English vocab
ulary to numbers [42], It was found that the natural frequency of English usage
yielded an average seek of 1.14.

The chaining technique is very helpful in translating programs to convert the
names o variables to working address numbers for faster processing (cf. [12])- /

5. Factors Influencing the Level of Programming

5.1 Logistics of Machine Configuration

tbp6l 'ar^.eSf: s'n^'e ^actor Meeting the advancement of the programming art is
gis ic structure of computing machinery. Data processing equipment consists

c .lri0rL* an a central processing unit with arithmetic and logical decision
incut J!T' TheaVa'IabiIity °f various hierarchies of storage facilities, various
sets all ha °U PU ,ev'CjS (both on" and off-line), printing devices and character
sets all have a profound effect upon the improvement of techniques.

faciliHes3^™1 F°r eXample' tbe ,adc of other than numeric input-output
thetic lanena °S f USSlan cornPuters has seriously slowed development of syn
potations whe? V COmm"nication with the machine. Even in scientific ccm-
of efficient ODtim' U,SSlanr a'8ebraic compilers have shown promise in the area
location bv the i43' 44]' the Programmer is unable to refer to a storage

°f ^ C°mentS and bave computer operate directly
Since Ziabetic 1/aUt°maticalIy signing an actual location in storage
transcriptionTs nereraC Ti.re n0t aVailabIe< a and inefficient process of
be entered into the imA* mU3t b<? done by hand before the Pr08ram m

Thus an ap^N b«w advanced the system is on paper.
PP entry trivial feature heavily affects operating philosophy.

£ Programming for Commercial Data Processing ^37

The stored program machine is a general purpose device. We have realized
or years that one of the problems it may be given is the automatic translation

from the language of the programmer to its own but this is not easily accom-
plished when the basic elements of the language, the characters, are not common
to both languages.

Alphabetic and other special characters are more available on computers in USA
but programming languages may still be found using phrases such as "if greater
than or equal to". If a single symbol were available to the user to represent this
phrase and others, processing time could be greatly reduced. As it is such
phrases must be written out in their entirety by the programmer in longhand
with the attendant possibilities of error and faulty decoding. A sample statement
describing income tax deductions in Commercial Translator required 700 bits
of information at 6 bits per character (a maximum of 64 symbols available) If
three new characters could be added to the set, the total number of bits required
would be reduced to 500 even if all characters had to be represented by 8 bits
rather than 6. (Cf. [45].)

AT?™ 7 3 l3rger S6t °f characters has been increasing, largely influenced by the
ALGOL language which presently has 1X0 characters for use in the reference
anguage. This may improve general communication with the machine in all

areas, and may prove to open new applications in computer-controlled typography.
Some new machines, particularly the IBM 7030, are designed to handle larger
character sets [46]. The Bendix input-output typewriter handles all the characters
o ALGOL in an 8-bit form. Ferranti and Bulmers (Friden) in England have
made provision for 7-bit sets for input and output.

Eternal Storage. There is apparently a minimum size of internal storage
necessary to scan and convert statements in a machine-independent language
e iciently to the corresponding machine language program. In practice this has
een found to be 212 (= 4096) words, each word handling a minimum of 6 charac-

ters-Storages from 213 to 2IS in size are of course more advantageous. A storage
0 2 is adequate for only the most ingenious scientific subroutines, wasting too
much programmer effort to be useful for commercial work.

5-13 External Storage. The lack of medium access, medium cost storage media
.. as magnetic tape is an example of a machine characteristic which severely
muts conceptualization of better computer usage. Although magnetic tape is
0r linear files, which have certain computational drawbacks, it is exceptionally

useful for supervisory control and library facilities in an integrated system of
1 a Pr°cessing. This narrowness of conception is particularly evident in England,

w ere tape usage is limited. A 1959 survey showed that only 11 out of 69
commercial computer systems were equipped with magnetic tape [47]. Few
ntish programming systems actually control computer action automatically

over multiple problems [48, 49]. Even when synthetic language is mechanically
ranslated into machine language, corrections to the running programs are usually

s "I made in machine language [50]. External storage media like tapes are manda-
0rV for the use of application library techniques.

such executive control is common in USA, it is not because the users are
everer, but rather because the very existence of tape units in volume has

P ompted such experimental usage and development. In a survey of 61 large
fuputers [32], government equipment averaged 18 tape units per machine,

22 D'8- Inf.

338 Robert W. Bemer

nongovernment equipment averaged 13 units. In both cases three units were
used for peripheral operations. Each unit is capable of holding 5,000,000
characters per reel on the average, but there are some short tapes. Including
metal, acetate and "Mylar" tapes, there are over 600,000 reels of tape in USA
today.

As the design of modern architecture would not have been possible with the
structural materials of a decade ago, it required the availability of magnetic
tape in quantity to trigger and inspire new systems concepts and designs.

5.14 Instruction Repertoire. An examination of early programs for small internal
storages show complex modification of instructions through looping and initiali
zation. Present machines have larger storage and, perhaps more importantly,
instructions which utilize index registers and indirect addressing. Not only do
these features reduce the number of instructions necessary to do complex proce
dures, but they also reduce the amount of error which may be introduced in the
program to be corrected later. It is safe to say that less than 10 per cent of all
program instructions are ever modified today, over the entire spectrum of prob
lems. In commercial applications alone, it is probably less than 5 per cent.
This characteristic may lead to permanent read-only memory [51] and larger
programs with fewer loops. For example, the introduction of a photographic
plate containing the entire basic programming system would have a heavy effect
upon application programming. One of the present problems is to contain the
working program so that incorrect modifications will not destroy the operating
system with all its linkages to necessary auxiliary routines. Some present com
puters have provision for programmed storage protection by blocks to avoid
such difficulties [52]. This would not occur with the programming system in
separate storage from the working program.

5.2 Cooperative Organizations

One of the mixed blessings of computer usage is the ability of the machine
designer to outstrip the last model by a factor of ten or so. The programmer
and user is not susceptible to such magnification without artificial aids. For a
single machine not much can be done, but for a group of identical machines the
costs of programming can be spread out and amortized.

m\rl/i^95u 3 8r°UP ?f 3irCraft comPanies in USA found, in planning to replace
IBM 701 s by 704 s, that severe dislocation of production would occur during
the changeover by virtue of the reprogramming necessary even though the
machines had common generic characteristics. It was found upon examination
that a vast amount of duplication and redundancy had existed in the usage of
the earlier machine. The question became "Should basic programming remain in
the realm of competitive advantage, or should a cooperative venture provide
basic tools for all?"

The outcome of this study was the SHARE organization, an informal cooperative
among 704 users that has since grown to well over 100 members each with at
least one 704 installed or on order. It has been expanded since to include the
successors 709 and 7090 as well. How well this organization succeeded is indi
cated by comparing the number of programming systems for less than twenty
701s with the number of systems for over one hundred 704's [53] Within a
general framework of assignment, each installation contributes basic programs

0 Programming for Commercial Data Processing
339

with prescribed documentation to the entire body to use or modify as they wish
Accompanying each program, however, is a disclaimer that frees the originator
of legal responsibility for its correct operation. originator

Following this single and successful venture, insularity disappeared in many
areas. Functioning user groups include: fflany

Group Machines

ALWAC Users Association ALWAC III, IV V

CUE CDC1604
Burroughs 220

DUO 1000 USe" Gr°UP Datamatic 1000
PYru A MPP Datatron 201 to 205
FAST Bendix G-15
rnrnr r , • , U.S. Army Fieldata Equipment
LINC temati°naI I0M 705,7070, 7080
Mr, [r Sperry Rand LARC

PR ?sn T r r- Mil i tary AN FSQ ser ies

prior " P Packard Bel1250
tt Royal-McBee LGP-30

RCA 501 Users Group RCA 501

cH A „c Autonetics RECOMP II
^Kt IBM 704, 709, 7090
I ,Mn,. Philco 2000 (formerly Transac)
USE " Gr°UP UNIVAC Tape Systems

^ UNIVAC Scientific 1103 and 1105

The above groups are all oriented to specific machines. In addition there are other
groups oriented to particular applications or disciplines. They are:

^ro"P Orientation

Military Applications
Highway Engineering Exchange
Nuclear Codes Group
American Inst, of Chemical Engineers
ALGOL (Zurich-Mainz-Munich-Darmstadt)

Th
the 5C ®rouPs have found by experience that basic programming (the education of
acq "1afllne) is not a competitive advantage after all, for each member has
effort Tj,^ m°re inte"'8ent machine for his particular applications through joint
a c°r ' "ls emphasizes that a certain amount of basic education is vital to operate

an^' e^'c'encY/ whether it be for a single machine or a hundred
doll l\ ' or^'na' computer and the original programming may cost a million
SuccarS,eacFl' ^e second computer costs nearly as much, but the second and
ca,ee 'n8 sets of programs are available at only the cost of reproducing some

or magnetic tape.

has KUCCeSS or8anizations of this type in promoting operational standards
Crjje °cn morked. They also serve as a unified source of feedback for marketing

na and information to the manufacturer. Interchange of new ideas and

pOUCHE
ZMMD

340 Robert W. Bemer

methods has effectively seeded and lifted the level of technical competence far
above what might be accomplished by the secretive or insular user. Gone are
the days when one oil company refused to test its programs on the manufacturer's
sample machine for fear another oil company might steal its secrets and methods
by a storage dump.
At present, the only user organizations existing outside USA are ZMMD and
GUIDE International (including the Committee for Europe), which has over 230
participating installations.
These organizations have strong control over specifications of operating systems.
The SHARE group, after selecting and improving SAP, the standard assembly
program for the 704, completely specified an extensive operating system called
SOS for the 709. (Cf. [54 to 59].) Gradually the interchange of programs is
moving from those written in machine-oriented assembly language to those
written in procedure-oriented and machine-independent languages such as ALGOL
and COBOL. This ensures usage both to the next generation of computer for
that group and, in many cases, exchange between several user groups.
A majority of these user groups have formed a joint users group, called JUG.
A loose affiliation with the Association for Computing Machinery was
accomplished in May 1961.

5.3 Standardization

5.31 Programming Languages. Much of the evolution of synthetic machine-inde
pendent languages has been quite similar. Most of the original translators for
algebraic languages evolved roughly in the same era (cf. refs. [60 to 64]). The
ALGOL 60 language is notable for the adaptation by P. NAUR of the meta-linguis-
tic symbology of J. W. BACKUS [65], an entire department in the journal Communi-f
cations of the ACM devoted to algorithms written in ALGOL, and the series of'
textbooks in ALGOL planned by Springer Verlag, Berlin, Germany.
Standardization in scientific languages preceded that in commercial languages,
just as scientific usage of computers preceded commercial usage in volume. No
professional body such as ACM or GAMM took equal interest in the problem
of commercial data processing languages, possibly because the problems were
more difficult. In the absence of any requested action, the U.S. Department of
Defense convened a meeting of manufacturers and users on May 28 and 29, 1959
to consider such an effort. Committees were established for short range, inter
mediate and long range considerations. In particular, the short range committee
was asked to prepare a proposal for a blend of FLOW-MATIC, AIMACO [66]
and Commercial Translator by September 1959. This was to serve as a stopgap
language which could be useful for a period of two years until supplanted by
the language to be developed by the intermediate group.

British manufacturers took an extreme interest in this effort and were called
together by International Computers and Tabulators (whose corresponding
language was CODEL) [67] in July 1959 to consider the same problem. It was
decided to await results from the group in USA and then evaluate that language.
As it developed, the short range group of CODASYL (Committee On Data
Systems Languages) preempted the domain of the intermediate group, which was
canceled. The resulting language was called COBOL (COmmon Business Oriented
Language) [13] and went somewhat further than the original directive called

Programming for Commercial Data Processing 341

for. The language is complex and conditions are worsened by some unreconcilable
differences in various equipments. Despite some remaining flaws and differences
in reconciliation, the following manufacturers have announced COBOL processors
for the indicated machines:

Manufacturer Machine

Bendix G-20
Burroughs B5000
Control Data 1604
Minneapolis-Honeywell 400
Minneapolis-Honeywell 800
Philco 2000
General Electric 225
IBM 705 III/7080
IBM 7070/7074
IBM 709/7090
IBM 1401
IBM 1410
ICT 1301
NCR 304
NCR 315
RCA 301
RCA 501
RCA 601
Sperry Rand UNIVAC II
Sperry Rand UNIVAC III
Sperry Rand 490
Sperry Rand 1107
Sperry Rand SS80/SS90
Sylvania MOBIDIC

5.32 Systems Standards. The chief obstacle to writing a single program for all
different machines has been the intractability of hardware design Many aspects
of computer design must reflect competitive technologies and salable character
istics. However, many differences between the several computers have been, in
the words of J. C. MCPHERSON, "capricious and arbitrary". Many different options
may be equally suitable, but when differing options are selected through non-
cognizance - it is time for standards organizations to step in. It is possible tha
this area will contribute heavily to the reduction and simplification of programming
effort.

A joint project in the standardization of certain aspects of data Process'"S
ment has been formed with TC97 (Technical Committee 97) of the ISO

national Standards Organization) and TC53 of the IEC (International Electro-
technical Commission). Initial work will proceed in four areas, commencing
the first meeting in Geneva in May 1961. These areas are:

Character Sets and Representations
Data Transmission
Programming Languages
Glossary of Terminology

342 Robert W. Bemer

The first two areas have to do with the common language interchange of both
data and programs between users and various equipments. It has been found
that much of the complexity in COBOL and similar languages is due to the need
to take care of basic differences in this area. The third area implies that there
may be an eventual joining of the scientific and commercial procedure languages.
This is supported by two trends noticed by workers in the field:

(a) Properties formerly exclusive to either type of language are very useful to
each other. The business language is enhanced by algebraic notation and
subscripting, the algebraic language can be improved by separating out
data description and being able to refer to operands other than floating
point variables.

(b) The underlying syntactical structure of both types of languages is similar
enough to suggest an eventual blending into a common language for all
purposes, each with its own jargon or dialect, if necessary, but enough
equivalent that common processors may be used for either.

Another factor in raising the efficiency of programming is the selection of stand
ard machine configurations. User groups do this to limit the variety of programs
needed. Although some of the variables in modular systems are compensated for
by program generation (such as varying sizes of internal storage), it is generally
advantageous to pick a specific configuration which is not always the minimum.
For example, the first SHARE standard 709 specified a 8,192 word storage.
However, it turned out that almost all machines were ordered with a 32,768 word
storage because the cost of the additional storage was more than offset by the
increased power in problems per dollar. Most programming systems are attuned
to top efficiency for a particular configuration. Sometimes they are not even
prepared for lesser configurations. It is usually advantageous in cost to get
additional hardware to bring the configuration up to the standard because of the
more than compensating savings achieved through use of the programming
system.

5.4 Experience

S. GILL [68] states that "the practical business of tapping the vast potentialities
of computers has come as such a novelty to us that we are practically developing
an entirely new subject — a new version of mathematics, if you like". Considering
the astonishing rate of growth in programming, it is not surprising that the
literature has not had a chance to catch up properly. Besides, programming more
than nearly any other field is learned by doing rather than reading.
Without risking philosophical debate, programming may be said to have enough
of the nature of thought processes that new developments stem mostly from
circumstances and not from speculation. The most effective means of disseminat
ing such acquired knowledge is by seeding less experienced groups with a few
highly experienced people. This has been adequately demonstrated by program
mers w o, aving reached a stasis point in one group, move to another group
with a higher experience level and quickly develop to a corresponding position
in that group. r

Conversely, it has been noted that those programmers that advance to higher
management positions (that do not involve actual contact with machines and
methods) quickly fall behind current technology levels unless they make strong

Programming for Commercial Data Processing 343

efforts to keep up with new techniques. The present era of programming is one
of stumbling in search of complete concepts. Current theories of programming
are faulty and conflicting. The programmer who stops now is likely to retain a
useless orientation for the future.

5.5 Education and Literature

The extremely rapid growth of the computing field has caused a notable lag in
the publications of timely papers in the technical journals and in program docu
mentation. Actual practice has preceded in time the publication of the theory
of practice to a surprising extent. Perhaps this has been due to a certain attitude
of waiting to see if the field would achieve true professional status.

5.51 Universities. Although single universities (such as Manchester and Cam
bridge in England; Mainz in Germany; Michigan, Illinois, Princeton, UCLA, MIT
and others in the USA) made developmental efforts in both hardware design
and programming, the infant science of computing was attached to a variety of
departments. Such work has been supported variously by departments of mathe
matics, business administration, electrical engineering and any other with enough
funding and interest to nurture a beginning. To date, no university recognizes
a chair in information processing, which is the general field encompassing the
computer sciences.

Not until 1957 was there any general effort to train people for computer design
and programming. Even here the universities did not take the lead by themselves.
The manufacturers, extrapolating to a drastic situation in the expanding field,
took steps to provide universities with special and production computers for
training purposes. The effect is now being felt. A few universities stand out
remarkably in programming. In Germany there are Munich, Mainz, and Darm
stadt, in Switzerland there is Zurich, and the USA has Carnegie Tech, Case
Institute, MIT and Michigan. England has relaxed the early lead in programming
techniques taken by M. V. WILKES at Cambridge and R. A. BROOKER at
Manchester.

The impact of programming training at universities is now felt. Each graduate
from the Massachusetts Institute of Technology in 1961 will have taken a man
datory course in computer programming. The latest count shows a total of 118
computers in universities in North America [69], There are approximately 65
computers in European universities. Pages 135—138 of [9] list 145 universities
in USA offering courses in automatic data processing and systems.

5.52 Manufacturers. The education of the user is of extreme interest to the
marketer of a product. Many manufacturers operate their own training schools
in order to staff satisfactorily a large number of machines. Some of these schools
are larger than universities. For example, IBM currently trains about 11,000 pro
grammers a year as part of a general educational program which reaches over
120,000. A program on this scale is necessary to achieve a predicted work force
of 170,000 professionals in 1966 for USA alone [70], Although sheer volume
does not necessarily produce improved methods, the net effect has been an accel
erated learning process in the efficient utilization of machines through program
ming. The description and documentation of programming systems has become
more professional.

344 Robert W. Bemer

Manufacturers also support the informal educational process by distribution of
technical literature. One manufacturer distributed over 450,000 copies of more
than 150 different publications in 1959 [71], In this instance, distribution of
exchange programs among members of user groups averaged 150 programs a day.

5.53 Teaching by Machine. One of the most promising methods for raising the
level and competence of programming is to enlist the aid of the machine itself.
The Computation Center at the Carnegie Institute of Technology, under
A. J. PERLIS, utilizes a 650RAMAC to teach students to program that same machine.
The student keypunches his name on a card, drops it in the read hopper and is
automatically enrolled in the course. Provision is made for orderly progression
through the lessons. When the lesson program written by the student does not
work, the teaching program analyzes the faults and sends him back to restudy the
proper previous lesson.

Many experiments are being made in automatic teaching by computer [72, 73],
North American Aviation has used semiautomatic methods to teach the
FORTRAN language to over a thousand of its engineers. Computers are also
being used to evaluate the effectiveness of programmers and point out where
additional training or discipline is needed [74],

6. Costs and Statistics

6.1 Programming Systems

Some idea of the relative size of programming systems may be gained from the
following survey (cf. [75]):

System Machine
Number of

Machine Language
Instructions

System Type

SURGE
CLIP
APT
CL-1
SOS

709

709

704, 709

704

709
12,000
18,000
35,000
45,000
50,000

Sort, report generator
Information processor
Machine tool language
Information processor
Compiler, operating

Programming for Commercial Data Processing 345

The costs of such programming systems may be expected to be reduced sharply
in the next few years. In IBM's experimental expanded ALGOL system, for
example, only 800 instructions are actually written in machine language; all
others are written in expanded ALGOL itself and are thus usable for many
different machines. The only machine language instructions needed are those
for basic symbol manipulation and reduction to symbolic macro-instructions. The
system is presently at about 12,000 machine language instructions; therefore
11,200 of these have been self-generated.

6.2 Programs for Specific Applications

6.21 Size. One of the largest applications on record [76] requires 65 separate
machine runs for a single problem. With an average of 3,000 machine instructions
per storage fill, this gives a total program size of about 200,000 instructions.

An oil company's first nine programs written in 705 Processor language [77]
averaged 2760 instructions per program, or 13,800 characters. The total pro
grams required from 7500 to 36,000 characters of storage, averaging 20,000.

6.22 Instruction Cost. Surveys taken in 1957 yielded the following average costs
per checked out instruction:

Language Cost per Instruction ($)

Machine language 10

Symbolic assembly 5-6

Symbolic + macros 2—3

Independent language 1

Further statistics are available for the programs mentioned in Section 6.21. The
average times for the nine programs were:

Block diagram, code, assembly 7 days programmer time
Assembly 97 minutes (avg. 2.5 assemblies per program)

Machine test 50 minutes

A rough calculation with these data yields less than a dollar per checked out
instruction, quite comparable to that for machine-independent languages.

The cost of moving applications to different machines varies considerably with
the source language used to write the programs. Table 1 shows the additional
advantages accruing from each additional degree of machine independency. Thus,
machine-independent languages are extremely useful not only as an aid in
decreasing the original cost of programs but also as insurance against moving
the program to different machines.

6.23 Staff. The largest computers, depending upon the class and variety of
applications, may require a staff of from 50 to 75 people [78].

346 Robert W. Bemer

Table 1. Comparison of typical conversion from one machine (family) to another

Program
Written in

Effort for
Machine "A"

% Additional
Effort for

Machine "B"

Net Additional
Effort for

Machine "B"

Machine
Language

100 °/o
(base) 100 % 100%

Symbolic
Assembly
Language

80% 80 % 64 %

Macro-
Language 60% 40 % 24 %

Procedure
Language 20% 25 %

1

5 %

Bibliography

[1] GOTLIEB, C C.: General-Purpose Programming for Business Applications. In:
Advances in Computers, Vol. 1 (Ed.: F. L. ALT). Academic Press, New York 1960,
pp. 1—42.

^ ^AC7Nc D ^EISS' *"*•' Pee' T.-H.: Programming Business Computers.
). Wiley & Sons, New York 1959.

^ MCCRACKEN, D. D.: Digital Computer Programming. J. Wiley & Sons, New York

[4] GOTLIEB C. C„ HUME, J. N. P.: High Speed Data Processing. McGraw-Hill,
New York 1958.

S WNEL' J-• Pr°Srammin8 for Digital Computers. McGraw-Hill, New York 1959.
New YorkLsV Pnmer °f ProSramming for Digital Computers. McGraw-Hill,

[7] PeJeson- J- H. (Editor): Electronic Business Machines. Heywood &: Co., London

^ SSS ^ MediCa' DaU PrOCeSSin8" °Perati°nS

[9] PrStingOffic; ^78^) "walhTngto^D cT/sf8 Equipment US" Govemmenl

[10]

[11] cTI^JreM CO?P^nSW York819h59.AUtOCOder SyStem' ReferenCe Ma"UaI

[12] ^nunuS/catiras^^^II28(1959)^rg'cLS6^p!'21--^4^^mEO'S LangUage PrOCeSSOrS'

Cl3] hons^for" CoS'® La"g"ages (CODASYL), COBOL, Initial Specifica-
Office, Washington D CU1960S ed LangUage' U S- Government Printing

[14] 1 u-1518'

Programming for Commercial Data Processing 347

[15] GREENWALD, I. D.: A Technique for Handling Macro Instructions. Communications
ACM 2 (1959) No. 11, pp. 21—22.

[16] Case Study Solutions for the 705 Autocoder. Form 22-6740-0, IBM Corp.,
New York.

[17] IBM Commercial Translator. General Information Manual F 28—8043, IBM Corp.,
New York 1960.

[18] FACT Manual. Report 160—2 M, DSI—27, DATAmatic Division. Minneapolis-
Honeywell, Wellesley Hills, Mass. 1960.

[19] GOLDFINGER, R.: Syntactical Description of a Common-Language Programming
System. CODASYL Report, March 8—10, 1960.

[20] APT, The Automatically Programmed Tool System (7 Volumes). Dept. of Elec
trical Engineering, Massachusetts Institute of Technology, Cambridge, Mass. 1959.

[21] Lo, Y. C., GAUDETTE, C. H.: An Automatic Multiprogram Operating System.
Preprint 60—329, Amer. Inst. Electr. Engrs., New York, February 1960.

[22] SMITH, R. B.: The BKS System for the Philco 2000. Communications ACM 4 (1961)
No. 2, pp. 104, 109.

[23] CAOS, Completely Automatic Operational System. Report LMSD—48482, Lock
heed Aircraft Corp., Sunnyvale, Cal. 1959.

[24] Introduction to the CL—1 Programming System. Manual TR 59—6, Technical
Operations, Inc., Washington, D. C. 1960.

[25] BEMER, R. W.: A Checklist of Intelligence for Programming Systems. Communica
tions ACM 2 (1959) No. 3, pp. 8—13.

[26] KAVANAGH, T. F.: TABSOL — A Fundamental Concept for Systems-Oriented
Languages. Proc. Eastern Joint Computer Conf., New York, Dec. 13—15, 1960,
pp. 117—136.

[27] EVANS, O. Y.: Advanced Analysis Method for Integrated Electronic Data Pro
cessing. Bulletin F 20—8047, IBM Corp., New York 1960.

[28] YOUNG, J. W., KENT, H. K.: Abstract Formulation of Data Processing Problems.
J. Ind. Engng. 9 (1958) No. 6, pp. 471—479.

[29] BEMER, R. W.: Survey of Modern Programming Techniques. Computer Bulletin 4
(March 1961) No. 4, pp. 127—135.

[30] WOLPE, H.: Algorithm for Analyzing Logical Statements to Produce a Truth
Function Table. Communications ACM 1 (1958) No. 3, pp. 4—13.

[31] The Auditor Encounters Electronic Data Processing. Price Waterhouse & Co.,
New York 1958.

[32] Proceedings of GUIDE, X, May 1960.
[33] BETZ, B. K., CARTER, W. C.: New Merge Sorting Techniques. Preprints, 14th ACM

Conference, Massachusetts Institute of Technology, Cambridge, Mass., Sept. 1—3,
1959.

[34] BATCHELDER, J. C.: Sorting Methods for IBM Data Processing Systems. General
Information Manual F 28—8001, IBM Corp., New York 1958.

[35] MCGEE, R. C., TELLIER, H.: A Re-Evaluation of Generalization. Datamation 6
(1960) No. 4, pp. 25—29. Cf. also: User's Reference Manual, 9 PAC System, IBM
Corp., New York 1960.

[36] IBM 7070 Report Program Generator. Bulletin J 28—6049, IBM Corp., New York
1959.

[37] Report Program Generator for IBM 1401 Card Systems. Bulletin J 29—0215, IBM
Corp., New York 1960.

[38] The Chaining Method of Disk Storage Addressing for the IBM RAMAC 305.
Bulletin J28—2008—1, IBM Corp., New York 1958.

[39] The Chaining Method for the 650 RAMAC System. Bulletin J 28—4002, IBM Corp.,
New York 1958.

[40] PETERSON, W. W.: Addressing for Random Access Storage. IBM Journal Res. &
Dev. 1 (1957) No. 2, pp. 130—146.

[41] JOHNSON, L. R.: An Indirect Chaining Method for Addressing on Secondary Keys.
Communications ACM 4 (1961) No. 5, pp. 218—223.

348 Robert W. Bemer

[42] BEMER, R. W.: Do It By the Numbers (Digital Shorthand). Communications
ACM 3 (1960) No. 10, pp. 530-536.

[43] ERSHOV, A. P.: Programming Programme for the BESM Computer. Pergamon
Press, Oxford 1959. (Transl. from Russian.)

[44] LJAPUNOV, A. A.: On Logical Schemes of Programs (in Russ.). Problemi Kibernetiki
Vol. 1. State Publishers of Physico-Mathematical Literature, Moscow 1958,
pp. 46—74. (Engl, transl. in preparation by Pergamon Press, Oxford.)

[45] SMITH, H. J.: A Short Study of Notation Efficiency. Communications ACM3 (1960)
No. 8, pp. 468—473.

[46] BEMER, R. W.: Survey of Coded Character Representation. Communications
ACM 3 (1960) No. 12, pp. 639—641.

[47] WILLIAMS, R. H.: The Commercial Use of Computers in Britain. Automatic Data
Processing 1 (Nov. 1959), pp. 33—35.

[48] COOK, R. L.: Time-Sharing on the National-Elliott 802. Computer Journal 2 (1960)
No. 4, pp. 185—188.

[49] STRACHEY, C.: Time Sharing in Large Fast Computers. Computers and Automa
tion 8 (Aug. 1959) No. 8, pp. 12—16.

[50] GILL, S.: Current Theory and Practice of Automatic Programming. Computer
Journal 2 (1959) No. 3, pp. 110—114.

[51] Atlas (Ferranti Ltd., Manchester and London, England). Digital Computer News-
letter 12 (1960) No. 4; reprinted in: Communications ACM 3 (Oct. 1960) No. 10,
pp. 580—582.

[52] NEKORA, M. R.: Comment on a Paper on Parallel Processing. Communications
ACM 4 (1961) No. 2, p. 103.

[53] BEMER, R. W.: The Status of Automatic Programming for Scientific Problems.
Proc. 4th Annual Computer Applications Symposium, Armour Research Founda
tion of Illinois Institute of Technology Chicago, 111., Oct. 24—25, 1957, pp. 107—117.

[54] BOEHM E. M„ STEEL, T. B.: The SHARE 709 System, Machine Implementation -
Symbolic Programming. Journal ACM 6 (1959) No. 2, pp 134—140

[55] BRATMAN, H„ BOLDT, I. V.: The SHARE 709 System, Supervisory Control. Journal
ACM 6 (1959) No. 2, pp. 152—155.

[56] DIGRI, F. J., KING, J. E.: The SHARE 709 System, Input-Output Translation.
Journal ACM 6 (1959) No. 2, pp. 141—144.
GREENWALD I D„ KANE, M.: The SHARE 709 System, Programming and Modifica
tion. Journal ACM 6 (1959) No. 2, pp. 128-133.
MOCK, O., S\\ IFT, C. J.: The SHARE 709 System, Programmed Input-Output
Buffering. Journal ACM 6 (1959) No. 2, pp. 145-151.
SHELL, D.: The SHARE 709 System, A Cooperative Effort. Journal ACM 6 (1959)
No. 2, pp. 123-127.

[60] RUTISHAUSER H: Uber automatische Rechenplananfertigung bei programm-
gesteuerten Rechenmaschmen. Z. angew. Math. Mech. 31 (1951) p 255.

[61] RUTISHAUSER, H.: Automatische Rechenplanfertigung bei programmgesteuerten
Rechenmaschmen. Mitt. Inst. Angew. Math. ETH Zurich, No. 3. Verlag Birkhauser,
Basel 1952.

fnr WL^ l ^ ^ Program for Translation of Mathematical Equations
for Wh'dwind I. Engineering Memorandum E-364, Massachusetts Institute of
1 echnology, Cambridge, Mass., January 1954

Ne0wYorkeir956.eferenCe F°RTRAN- Business Machines Corp.,

L64] Programme't'' Features of the Manchester Mercury Autocode

1651 y?* cAicolnlc6;'
tions ACM 3 (1960) No. 5, pp. 299-314 ' repr,nted C°mmUmCa

[57]

[58]

[59]

[62]

[63]

Programming for Commercial Data Processing 349

[66] AIMACO, The Air Material Command Compiler. Manual AMCM 171—2, Wright-
Patterson Air Force Base, Ohio 1959,

[67] WENSLEY, J. H„ et ah: An Introduction to the CODEL Automatic Coding System
Computer Developments Ltd., Kenton, Middlesex 1959.

[68] GILL, S.: The Philosophy of Programming. Annual Review in Automatic Pro
gramming, Vol. 1 (Ed.: R. GOODMAN). Pergamon Press, Oxford 1960, pp 178—188

[69] REEVES, R. F.: Digital Computers in Universities I-IV. Communications ACM 3
(1960) No. 7, p. 406; No. 8, p. 476; No. 9, p. 513; No. 10, pp. 544-545.

[70] Special Report on Computers. Business Week, June 21, 1958.
[71] JONES, G. E.: Address to the International Systems Meeting, October 12 1960

New York City.
[72] BAUER W. F., GERLOUGH, D. L„ GRANHOLM, J. W.: Advanced Computer Applica

tions. Proc. IRE 49 (1961) No. 1 (Computer Issue), pp. 296—304.
[73] GALANTER, E. (Editor): Automatic Teaching. J. Wiley & Sons, New York 1959
[74] BOGUSLAW, R„ PELTON, W.: STEPS - A Management Game for Programming

Supervisors. Datamation 5 (1959) No. 6, pp. 13—16,
[75] WAGNER, F. V.: Summary of Questionnaire on New POLs. SHARE February 15

1960. '
[76] Proceeding of GUIDE, II, 1957.
[77] The IBM 705 Processor. Bulletin J 28-6068, IBM Corp., New York 1959.
[78] PAINE, R. M.: Selection of Computer Personnel. Computer Bulletin 3 (1959) No 2

pp. 23—26. ' '

