PACT PRIMER

In the following discussion, we are going to treat PACT I
not as a system for use on a machine, but rather as the machine
itself, We are, in a certain sense, going to design a machine
which will enable us to do the problems which arise in the course
of our work., Our machine, like all machines, will not include
all of the desirable features that one might ask for, We think,
however, that it will be better than most,

In order to design a machine to do our problems, we must
see what kind of problems we have. Let's begin with a simple
one:

EG-1 Compute y = az® 4 bz + d for one value of 2
cz - e

What do we need in our machine to do this computation?
First, we need registers to hold the quantities involved and the
final answer. We shall call these registers "FACTORS", We must
have an instruction ("OPERATION") which allows us to "TAKE"
quantities from the Factors, We must have the ability to "ADD",
"SUBTRACT"™, "MULTIPLY", and "DIVIDE", We should be able to put
our final answer into one of the Factors (i.e. we want to make
a Factor "EQUAL" to something). We must be able to "HALT" when
our problem is completed. We must have the ability to do the
"STEPS" involved in the computation in a particular order.

Now, let us write down the "CODE" to carry out the computa-

tion we wish to do:

=02

1A Step *® Operation Factor
1 TAKE Z
2 MULTIPLY (by) G
3 SUBTRACT e
4 EQUALS DEMONINATOR
S TAKE Z
6 MULTIPLY (by) a
7 ADD b
8 MULTIPLY (by) Z
9 ADD d
10 DIVIDE (by) DEMONINATOR
11 EQUALS y
12 HALT

Note that in our Code, the result of one Step is available
for use as an operand for the succeeding Step only, and that we
therefore had to create the additional Factor "Denominator™, In
general, we will have many such "intermediate™ quantities., Let
us, therefore, create an additional convenience on our machine;
namely, that the result of step n (R n) shall be available on all
succeeding steps. In order to differentiate between ordinary
Factors and these new ones we will "CLUE" the machine by placing
the R in a special place.

Note also that we write many characters to specify our opera-
tions., Let us therefore, again for convenience, make our machine

accept "SYMBOLS" in place of "spelled out" operations:

OPERATION SYMBOL
TAKE (no symbol)
ADD +
SUBTRACT -
MULTIPLY X
DIVIDE /
EQUALS EQ
HALT HALT

i oy, |

(1B)

3=

We shall now rewrite the Code of our preceding example:

STEP OPERATION CLUE FACTOR

1 z

2 X c

3 - 3

4 z

5 X a

6 + b

7 X z

8 . d

9 / R 3
10 EQ y
11 HALT |

Let us now change our problem somewhat and see what addi-

tional features we should like to have on our machine.

EG-2

Compute Yi

- azf + bzy +d a f(z;)

for i =1 to 10 in steps of 1 [i = 1(1)10]

First we sha

11 write a "FLOW DIAGRAM" to indicate how we

are going to do our problem:

s 1]

<

S
| Compute y, = f(z;)
e

Increase i by one and "TEST"

i>10 i<1lo

o

-4-

We need to add to our machine, to do this problem, the
ability to specify subscripts and to "SET" and "TEST" them, As
a part of our testing, we also need the ability to go back to a
particular step in our code. We shall put our subscripts in a
special place and also allow each of our Factors to have two

subscripts., (Eventually, we should like to deal with matrices.)

STEP oP CLUE FACTOR S1 52

1 SET i 1
2 z i
3 X c
4 - e
) z i
6 X a
7 + b
8 X z i
9 + d

10 / R 4

11 EQ y i

12 TEST .2 i 10

13 HALT

EXPLANATION:

Step (1): Set i equal to 1 wherever it appears as:subscript
between the Set and Test Operations (steps 2, 5, 8, 11).

Steps (2) through (11): These steps are essentially the same as
steps (1) through (10) of (1B),.

Step (12): Increase i by 1 wherever it appears as a subscript
between the Set and Test operations (steps 2, 5, 8, 11),
If the new i is greater than 10, proceed to the next
step Etep (13)] ; if it is less than or equal to 10,
go ("TRANSFER") to the step specified as the Factor

step (2) .

Note: Our machine shall have the following restriction: whenever
an operation (such as Test) requires that the next step to be carried
out is not the next step as numbered, then the step to be carried out
must be within a certain class which we define as "the first step in
a sequence of steps” and which will be more fully explained later,

-5-
As a further extension of the problem we have been doing,

suppose we wanted to do the following:

EG-3 Compute: Yy = @ ;i + b z; +d= f(z4)
(O

i-e

if Izi|>d i = 1(1)1o
Yy 2%
it |z |s d

Again, we shall begin by making a Flow Diagram

Start —> [Set { to 1 |

o 5
Compute the quantity

o ek

Is this quantity
reater than zero?

yes no
¥y = f(zi) Yy = %4
‘E) .
U TR
Increment 1 by
1l and test to
see if it is
greater than 10
v
yes No
Halt

This poses two additional problems; we should like to be
able to work easily with the absolute value of numbers; we must
be able to make comparisons and as a result of these comparisons

“"TRANSFER" to a given Step.

‘ Operation Symbol Description
ABSOLUTE ABS "Take" the absolute value
of the Factor,
Transfer on TP If the result of the pre-
Positive vious Step is greater than

zero, go to the Step noted
as the Factor; otherwise,
proceedimg sequence.
TRANSFER T Go to the step noted as

} the Factor,

Code for EG-3

STEP opP CLUE FACTOR Sl 52
1 SET i 1
2 ABS z i
3 - d
4 TP 8
5 z i
6 EQ y i
7 T 18
8 z i
9 X c

10 - e

11 z i

12 X a

13 + b

14 X z i

18 e d

16 / R 10

17 EQ y i

18 TEST 2 i 10
19 HALT

Note that it is essential that all steps which use the subscript

i must occur between the Set and Test.

EG-4 Let us refer back to EG-1l, replacing y by f(z):

f(z) » 822 4 bz¢d
cz=-ce

Now suppose we wished to compute:

‘ w=p-f (q) «#t £ (r)

=7

Note that with our machine as it now stands, we would be obliged

to write the code of (1B) twice in order to accomplish our purpose
(unless we wished to use a trick which is left as an exercise for
the reader). But we don't like tricks and we are too lazy to write
excessively, so we'll improve our machine., We will call the Steps
associated with a given computation a "REGION"™, and we shall have
our machine able to "DO"™ a Region and then return to the Step

following the Do. The code of (1B) then becomes

Region Step oP CLUE FACTOR Sl 52
1 1 z
1 2 X c
1 3 - e
1 4 z
1 5 X a
1 6 - b
1 g X z
1 0 - d
1 9 / R a
1 10 EQ y

The Halt is omitted because we no longer wish to stop at the
end of this particular computation,
Our new operation is "DO", Do the Region specified as the

Factor and return to the Step following the Do.
The Code for computing w

Region Step oP CLUE FACTOR| S, | s,
2 1 q
2 2 EQ z
2 3 DO 1
2 4 y
2 S X p
2 6 EQ w
2 7 4
2 8 EQ z
2 9 DO 1
2 10 y
2 11 X T
2 12 - w
2 13 EQ w

-8=
Note: Step (6) was needed for the reason described below; w was
chosen as the factor in order to save factor space.

Our machine shall have the following restriction:

The results of a step in one region shall not be available
as a factor in any other region; in addition, they will not be
available to any steps in the given region if a "DO"™ has occurred
between the step whose result is wanted and the step which uses

this result,

A0

SCALING
In all of our preceding examples, we have been working with
numbers whose magnitude has been ignored. Unfortunately, the
magnitude of numbers can not be overlooked when one is doing
computational work. Therefore, we shall be required to specify
for each of our arithmetic steps, the number of digits to the left
of the point resulting from the computation being done on that
step (or, if the result is less than 1.0, the number of lead
zeros in the result), We shall differentiate between whole numbers
and lead zeros by putting a minus sign on the "Q" that we use to
specify the latter.
For example:
124345 would have Q = 2 to indicate 2 whole numbers
*01234 would have Q =4 to indicate 1 lead zero.
There is one additional complication we must mention before
we proceed to make life somewhat easier: our machine is a BINARY

computer so that the whole numbers or lead zeros must be expressed

in terms of powers of 2, (A table of powers of 2 is included in

the appendix,) Thus for the numbers in the preceding example:
12:345 has Q = 4 (23<12.345<29)
*01234 has Q = -6 (2-7< .01234 < 2-6)

Now to make life somewhat easier: we first note that every
Factor and the result of every step has a Q associated with it,
We may then define a "normal” specification of Q as follows:

l. In addition and subtraction, the Q of the result is the

Q of the larger of the two operands,
2. In multiplication, the Q of the result is the sum of the

Q's of the two operands,

«]l0=

3. In division, the Q of the result is the difference of
the Q of the Dividend and that of the Divisor.
(Note that 2 and 3 are merely exponential arithmetic)
We shall now give our machine an additional capability:
With but one exception, where Q is not specified, our machine shall

for aritmetic operations
assume a "normal” Q., The exception is that every EQUALS shall

have a Q specified,

Since it is not impossible to make errors in scaling, we

shall also put some checks into our machine:

1,) If the Q ("normal”™ or specified) for a division is not
large enough to accommodate the quotient, the machine
will halt and turn a special (DIVIDE CHECK) light on,

2,) If the Q ("normal"™ or specified) for any other opera-
tion is not large enough to accommodate the result of
that operation, a special "overflow indicator” shall
be turned on. (Note that in multiplication this may only
occur from the specified Q being wrong) We shall also
supply an operation to "test" the overflow indicator.

Transfer on Overflow (TF) If the overflow indicator is on, turn
it off and then go to the Step noted as
the Factor; otherwise, proceed in Sequence.

Let us now return to example 2, giving values to our letters;

Compute
Y{ = azi't bzi + d i=1(1)10
czi - e
where a = 2
b = 3
C = «96
d = 7.5
e = 16
‘6<- zis 3'5

e
Let us assume that the nunbersd:in the machine with Q's as
noted below (the method of entering numbers into the machine and

getting answers out of it, "Input-Output™, will be discussed later),.

Factor Q
a 2
b 2
c 0
d 3
e 5
zy 2

Notes 1, The variable zZ4 must be scaled for the maximum value that

it will take on,
2. Although 24 = 16, there are 5 digits in the binary repre-

sentation of 16 (10000); thus the scaling for e.
We shall now proceed to analyze our computation to find the
maximum magnitude the various steps may give us. Note that in
order to evaluate the maximum y;, we must also obtain the minimum

of the denominator

azy < 7.0 Specified Q 3 "Normal" Q = 4

azi+b£10- Q = 4 Q = 4

(az;4b)z; <35 Q =6 Q =6
(azyj+b)zj+4d € 42.5 Q =6 Q =6
*336Sczg = 196 Q=1 Q = 2
14.04 < |cz5-e| =15-664 Q = 4 Q=5
|y1|<3003 Q=2 Q=1

Note that in the computation of the numerator, we gain nothing
by specifying Q; in that of the denominator we may gain some signi-
ficance; in addition, if we specify Q for the denominator, the
"normal™ Q for the Quotient will be correct. One additional point
is that it doesn't really pay to specify Q for the first term of

the denominator, since this is changed immediately by the subtraction.

o

-]2=

Region Step oP Clue Factor 5 Ss Q
1 1 SET I 1
1 2 z I
1 3 X c
1 4 - e 4
1 S z I
1 6 X a
1 7 + b
1 8 X A 1
1 9 + d
1 10 V4 R 4
1 11 EQ y I 2
1 12 TEST 2 I 10
1 13 HALT

3135

Numbers and the coding sheet:

A. In our preceding example, a, b, c, d, and e were
not really Factors in the sense of being variables. They
were merely numbers which were needed to carry cut the
computation. To make 1ife easier, we shall provide more
convenient ways for using numbers.

1) Any integer, n, where - 999 < n < 999 may
be written in the space on The coding sheet
called "PFactor” (the minus sign is written
in the "clue" space). In order to differ-
entlate between integers and normal factors,
we shall require the latter to contain at least
one alphabetic character.

2) Any number, Z, where [Z2]| < 34,359,738,368
may be written in the space provided on

the coding sheet and, provided the Factor
space 1s blank, will be used as the Factor.

B. Two additional conveniences will be added:

1) The negative of the result of a previous
step may be obtained by putting an N in the
clue column.

2) The negative of any other factor may be ob-
tained by placing a minus sign in the clue
column.

Explanation of the coding sheet

1) The numbers such as "9", "11" written 1in the
REG space indicate card columns (Input to
PACT is from cards).

Cols. 9(1)11 - Any mixture of alphabetic or numeric.

e

Cols. 12(1)15 - All numeric (Col. 15 is usually
left blank tc allow corrections to
be inserted).

Cols. 16(1)19 - (See cperation 1list.) It is essen-
tial to start from the left; thus
Equals (EQ) would be in Cols. 16
and 17.

20 - This is the Clue column R, N, or -.

Q
O
()

21(1)23 - Either a three digit integer or at
least one alphabetic symbol.
Important: the factor:

--X (where - means blank) is com-
pletely different from -X- or X--.
In other words, it 1is essential to
be consistent as to where a symbol
is placed, if that symbol is to
have the same meaning in different
steps.

(9]
C

[
&

Col. 24 - Used only when referring to a step
which does not have Col., 15 blank.

Cols. 25(1)27 - Any combination of alphabetic and/or
numeric. Same restriction as on
Cols. 21(1)23.

Same as above.

(@ (9]
(o)
|_J
W
n
o

—
—
~S—-
W
o
)

ols. 31(1)32 - 2 digit Q; negative Q is indicated
by placing a minus sign over the
left-most digit.

o

Col. 33 - Sign of number in Cols. 34(1)44.

Col. 34(1)4% - 10 digit number with decimal point
or 11 digit integer (see A2 above).

The sample coding sheet contains the example of page 12

using numbers in place of a, b, ¢, d, e.

PROBLEM

JOB NO.
ANALYST

PROG. NO.

CHECKED BY

DATE

A

CARD COLOR

PAGE

OF

REG. S

TEP

S
27 21

Sz

+ NUMBER

NOTES

T L 9 ' 2 2 o 33 #+
|
pbprn o .0 .PLmr MmelN‘”rl ‘.LI'F'A. |_ LN .F“ ek th [lb.l‘ﬁltA-Tv!r == L SRR RS e B SN S L B
|
b o .blp\—? = - =) 1SS — 2 Lm - IO LA H 4 Sl .\ _|||r|r SRR VRS Y s 1 .
= e e 4 - ——
R { oty _ xp . _ VY| — 1 1 aih A * vak’ol-pblrbl_c th —
‘ |
e) .*T .‘L A “ -\»QMMV L L g Irj_lllﬁ— VISEs L e I ¥ W WS
| _ Z
[. »m.“ ety rlLllehvlL Ve +1 als »ll&nlr[Ir.blT —— =
b——t —— .0* = Ihlvlrll.'ITL N“ 1 4 _ ¥ T W—— Y S W T VU W— — R —
| h
= J A .\N— I*H- A __[L.IFNJ_‘ ' = JT.ﬁIOAlrLIPIy.Ir'LI - S— . B S —
|
= T L »N—ﬂ Lxxlrls — - ..rw_f,tlL)LHTIrr S Ia* i " W WSS BT VY VS | . - - - —_—— e —
o .m“ bl e T T T BT S P e ol Sy TR D00 o S
! |
RI-J.IIL! \ro_F . + »“ &R e L Lq IR B e L e N L,
= _._“ E.Q. e hHLLo@Jf e =
et ~.pf+ Jlrm.mul _ - .NP_ v »H ..\Lblju * - = = =L — _ R O
BRI B ey XN RN ([R e 7z
_ | “ ‘
"L A “v i |'F.-Lfoh!.f1 he = »ﬁ St y - 7 ==
A — y - - _ tfln&ll.“' e Uy VNS Sm— _ Ao —de - N BN S — .
_ ! | 1
_ W)!P ‘r‘ﬁlwlblxlr!x.lrr “ -Lr = SIS S S -
I?Ll]£ [LJ?&IITIP'IT TIJIlr — i f»w = e S T =51 il
e T _ e ey) | _ Ty & _ =3 3 1 h P L L e L
| _ | |
=y 1 P | 18 Y 1 I e R 1 iy A Yooy YR ot VP
i it _ =
4 1 ' F =/ == _L[_ = L A a4 ' x~ A K 4 - a
L =
S - | | |
— Jﬂ =~ ﬂ 2 A ﬂb b S — e

e

216

At this point in the design of our machine, we have
provided ourselves with a reasocnable ability to do computa-
tions but no way of getting numbers into or out of the
machine. The latter point shall be discussed first (because
1t's easler!).

All output from our machine# shall be on printed "lists"
with a maximum of six numbers printed across the page. We
require an operation to "LIST" our Factors and a means of
identifying the Factors (ID). For example: to print the
6X0 matrix

A= (au), where each ::11.J has a Q = 3 we could code as

follows:

Reg Step OP Clue Factor Sl S5 Q
20 1 Set i 1
20 2 LIST

20 3 ID a i 1
20 4 ID a i 2
20 5 1D a i 3
20 6 1D a i 4
20 T ID a 1 5
20 8 ID a i 6
20 9 TEST i (6]
20 10 HALT

The resulting output will be:

5 13 s b | D
a21 . » - .
361 . . » - a.t')o

Note that in step 9 we did not specify a factor on the
TEST. Where a factor is not specified in a Test operation,

the transfer will be to the step immediately fcllowing the

5

Set for the same subscript.

An adéitienal—restrictionT tvery—ib—ehatl-halea—€

specified.

The same example could have been coded as follows:

Reg Step

2l
2l
21
21
2l
21
21

=~ OV =00 D =

OP

SET
SET
LIST
ID
TEST
TEST
HALT

Factor S

1 S, Q
1 1
J 1
1 J
J 6 4
i 6

The resulting ocutput would have been

Note that step 5 transfers to step

to step 2.

Input:

Warning:

one in the entire Primer.

3; step € transfers

This section is prcbably the most difficult

We shall begin by defining two terms:

1)

2)

or two)

Array - any factor which has subscripts (one

Scalar - any factor which has no subscripts.

%

-18-

’ The variable definition sheet
Any scalar for which we desire to enter (input)
initial values must be defined on the variable defini-
ticn sheet.
All arrays must be defined on the variable defini-
tion sheet.

Examples: In example (1), all the quantities involved (a,
b, ¢, d, e, ¥, z) are scalars; all but y are ones for
which we want to input values. All but y must be
defined on the variable definition sheet.

In example (2), a, b, ¢, d, e are scalars; Yy

and z, are arrays. All must be defined on the variable

i
definition sheet.
In the example on the sample coding sheet, Yy

and z, are arrays and must be defined.

Layout of the Variable Definition Sheet

Card Cols.9 - 11 12 - 14 15 - 17 18 - 20 21 - 23 24 - 26
FACTOR Sy S, Q D Dy

(3) 4 S I AR Dk)
The numbers in parentheses indicate the number of
digits. Insofar as the PRIMER 1is concerned, S1 and 32
will always be left blank. Q must always be specified
on the Variable Definition Sheet (XX). Dl contains
the maximum value taken on by Sl for the given Factor,

simlilarly D2 and 82.

. The Variable Definition Sheet for the example of page

19

15 would be
FACTOR S 1 32 Q Dl D2
Z +02 010
Y +02 Q10

Assume for the moment that compiling has been done.
The first page of output contains the "Variable List". For

this example it might well be as follows:

TAG REL LOC. VARIABLE
1st LAST FACT. Sl S Q XXX
v 2 20 Z 2 2 2
v e2 40 Y 2 2 e

The only things of interest to us are: 1ST, LAST,
FACT, Sl’ 82.

We shall define "LOC" only as something that we have
to know and then write the equations:
(EQ 1) LOC (of xiJ) = 1ST + (1-1) S, + (J-1) 5,
(EQ 2) LOC (of W,) = 1ST + (1-1) 2

We shall also define "P" as the number of digits to
the left of the decimal point.

We are now ready to f1ill out the input sheet. Assume

for the preceding example that

Z1 =50 26 = 1.5
22 &, JF 27 = 2.0
23 = .8 g = 2.5
Zy = 9 29 = 3.0
25 = 1.0 ZlO- 3.5

Then the P1 are, in order: 0, O, O, 0, 1, 1, 1, 1, 1, 1

The LOC are, in order, (according to EQ 2): 2, 4, 6, 8,
10212, 15,716, 18, 20.

The following restrictions apply to the input sheet
-5<p<15 -18 < Q <53 All minus signs (Factor, P, Q)

are indicated by writing a minus over the left-most digit.

filled-out input sheet 1s on the next page. We now

need an operation to "READ" input cards.

READ: Input the Factors from cards. When a "12" punch
in card col. 80 is encountered, go on to the

next step.

<O -

—

PRET T NPT SHEET

Loc FACTOR Plalroe | FacToR Plafkoe| FAcTOR |F loe| FAReTOR |P|&
ooooooooo _.______ 222|22j22)2223|3333333334[|44(4a4f4a444/4a 5 55 uammum%m 66666 qqqq 71717 7|7 8
12345678/9012[34567 moo_ 2]34/56§7890]/1234567890|1 2|34f5678|9c 1 345678|90|I 2Bas56|7890123456|78/90
00026 oupn 00000 W0 10200004\ 70000 ©o0c0 PO\OAOIO6IFoor o _oacod 190 0009 Pocoa CCooc |O0|02

oo/ olMaono acoon ¥l 02 oo/Z 1500 aacae \otleAoo /120000 cacae ot Ao /&)l 25000 oocec O] 22

LZPoona cooonlp) 0240020135000 oo oodo] P2

'V_Mw»uaquuo_nuauuquuo.~wauoqooo_~uaoa¢.co_mu;ooquoo_muouoﬂooo.muaomﬂwwo.nuaooﬂauo

Partial Summary and some details

The steps involved in doing a problem on our machine
(assuming the analysis and flow diagram have been completed)
are as follows:

1. Do the coding and have the cards key-punched.

a. The last code card must have a "12" punch in
card column 80.
2. Make up the variable definition sheet and have the
cards key-punched.
a. The last variable definition card must have
a "12" punch in card column 80.
b. There must be at least one variable defini-
tion card (this card may contain only the
"12" punch in card column 80).
3. Arrange a deck as follows:

a. PACT load card

l:. » Varia_t;ie Definiéxigx"x cards.

. Code cafrc‘igs_i_'/
c Two bie;.nk cards.

4, Put the PACT Compiler Tape on unit 403 of the IBM
type 70l.

5. Put the PACT Compiler board in the printer.

6. Have tape units 400(1)403 ready; have printer
ready, have punch ready.

7. Load the deck of (3) at zero.

¥

-23=

8. The cards generated in the punch are the running
deck; the order of this deck 1s critical.

9. The first page(s) of printed matter is the
"Variable List". Subsequent pages are the com-
plled code. 14

10. By use of the Variable Llist and EQ 1 and 2§prepare
the input sheet and have the cards key-punched.

a. The last input card of a block must have a

"12" punch in card column 80. (See the
READ operation.)
11. Make up a deck as follows:
a. The running deck of (8)
b. The input cards of (10)
12, Put the PACT running board in the printer and
have the printer ready.
13. Load the deck of (11) at zero.

14. Hope that the answers come out correctly.

Thus far,

24.

in designing our machine, we have been con-

cerned with giving it the abllity to do operations which

are either necessary or extremely useful.

However, there

are many things we may add to the machine for nothing more

than convenience or general usefulness.
to a certain extent.

scribe the "complete" set of PACT operations.

Let us,

This we have done
therefore, enumerate and de-

(The word

"complete" is true only insofar as this Primer is concerned.)

OPERATION
Take

Add

Subtract

Multiply

Divide

Equals

Absolute

Add
Absolute

Subtract
Absolute

Transfer

SYMBOL TYPE
(Blank) 1
+

X

e

EQ 2
ABS 1
+ ABS

- ABS

T 1

DESCRIPTION

Take the factor as the first operand
of a sequence of operations.

Add the factor to the result of the
previous step.

Subtract the factor from the result
of the previous step.

Multiply the result of the previous
step by the factor.

Divide the result of the previous
step by the factor and get the
quotient.

Put the result of the previous step
into the factor.

Take the absolute value of the factor
as the first operand in a sequence
of operations.

Add the absolute value of the factor
to the result of the previous step.

Subtract the absoclute value of the
factor from the result of the pre-
viocus step.

0o to the step noted as the factor.

OPERATION SYMBOL TYPE

Transfer on
Zero TZ 2

Transfer
on Plus

Transfer on
Negative

Transfer on
Overflow

Halt

Do Region
and Return

DESCRIPTION

Go to the step noted as the factor
if the result of the previous step
is zero. Otherwise, proceed in
sequence.

Go to the step noted as the factor
if the result of the previous step
is greater than zero. Otherwise,
proceed in sequence.

Go to the step noted as the factor
if the result of the previous step
is less than zero. Otherwise, pro-
ceed in sequence.

Test the cverflow switch: if it is
on, shut it off and then go to the
step noted as the factor; if it is
off, proceed in sequence. [The over-
flow switch 1s turned on when a i§Q
is insufficient to accommodate the
result of its associated step.]

Halt; if the start button is pushed
g0 to the step noted as the factor.

Do the region noted as the factor
and return to the step following
the DO.

Clear the factor to zero.

Set the subscript in Sl to the value
[Note :
a subscript may not be set to zero.]

noted or represented in tze Se.

Increase the subscript noted in Sl

by one. If this results in a value
which is greater than the value noted
or represented in S,, proceed in se-
quence. Otherwise, gc to the step
noted as the factor or, if the factor
is blank, to the step immediately
following the SET for the same sub-
script.

ﬁ!.

-26=-

OPERATION SYMBOL TYPE DESCRIPTION

Sine SIN i Compute the sine of the factor. The
angle must be in radians., Qe=\

Cosine C0S § 4 Compute the cosine of the factor.
The angle must be in radlians. Qe¢™!

Arctangent ARCT ,2’ Compute the Arctangent of the factor.
The result 1s in radians. Qg+

Square
Root SQRT 2 Compute the square root of the
factor.

Logarithm LOG 2/ Compute the natural logarithm of the
factor. Q¢ =6

Exponential EXP 2 Compute ex where x is the factor.
Read READ Input factors from cards until a

"12" punch in card column 80 is en-
countered. Then proceed to the next

step.
Print LIST p’ Print the factor(s) specified by the
ID ID which occur immediately after the

LIST operation.
Type 1 operations are the ones to which a transfer may be

made. (See the Note on the bottom of page 4.)

Type 2 operations are ones for which Q must be specified.

Summary
The essential aim of this PRIMER has been not only to

explain PACT to the inexperienced (or non-experiénced) coder,
but also to make it a system which he could use with a
minimum of extra explanation. To accomplish this end, we
have, at various times: omitted information, oversimplified,
uttered half-truths, and on occasion, have Just plain lied.
The experienced programmer has no doubt recognized many of
these instances and we apologize if he has been confused

by them.

£

Aggend ix A

Some pointers and additional restrictions

1.

D

Every SET operation must be followed by a TEST
operation within the same region.

If a DO operation is performed between a SET and
TEST, the SET and TEST will have no effect in the
region specified by the DO.

A subscript need not be SET to a number; it may be
SET to a variable. If so, the variable must have
Q=17.

when doing a LIST operation, the last ID cannot be
followed by a HALT. (If this is desired, put in a
"phony" TAKE before the HALT.)

The HALT operation cannot have a blank factor.
[This is because the Halt acts as a "stop" then

"tpansfer"” when the start button is depressed.]

IF masvRESQIT @~ R STE P 1s CAY F

BY ANOTHER STEP WITUIIA ¢

& ve &

